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Preface

The use of computers to collect, store, and manipulate chemical information is at 
the heart of chemoinformatics. The “tools of the trade” in this emerging area, whose 
main target thus far has been the pharmaceutical field, are general and can be ap-
plied to other types of chemical datasets, such as those containing food chemicals. 
Foodinformatics: Applications of Chemical Information to Food Chemistry collects 
together a number of studies where chemoinformatics tools have been applied in 
answering questions about food-related compounds. Chapter 1 presents a didactic 
introduction to the concepts of molecular similarity and chemical spaces, which are 
cornerstones of chemoinformatics. Chapters 2 and 3 discuss practical applications 
of chemical space and molecular similarity studies, respectively. Chapters 4 and 
5 describe two concepts of current interest, namely, reverse pharmacognosy and 
epigenetics. While Chap. 4 concerns the discovery of new health-related applica-
tions for existing food ingredients, Chap. 5 focuses on the exploration of molecular 
determinants and the pharmacological role of food and food-derived compounds as 
modulators of epigenetics and metabolism. Chapters 6, 7, 8 and 9 exemplify the use 
of molecular and/or statistical models to analyze food-related compound collections 
for biological activities or organoleptic properties. Finally, Chap. 9 provides a com-
pilation of software resources and databases that have been used or can be used in 
the food chemistry field; it also presents a perspective of Foodinformatics.

While the use of chemical information methodologies to address food-related 
challenges is still in its infancy, interest is growing and will continue to do so as the 
methods prove useful, particularly for providing practical solutions to food industry 
challenges. This book attempts to give an overview of basic concepts, applications, 
tools, and perspectives.

This book was made possible with the enthusiastic participation and efforts of all 
of the chapters’ authors, and valuable support and discussions with Dr. Terry Pep-
pard and Mr. John Sciré, who sadly passed away in November 2013.

K. Martinez-Mayorga
J. L. Medina-Franco
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1.1  Introduction

It is estimated that the chemical universe associated with small organic molecules is 
nearly 200 billion [1]. An older estimate, which includes larger organic molecules 
up to a molecular weight of 500 Da, suggests that this number may be around 1060 
[2] and constitutes what could be called the “small molecule universe.” Enumer-
ating and searching this set of compounds would be a daunting task. Recently, a 
new approach has been published that is based on the construction of what the 
authors claim is a “representative universal library” of drug-like compounds [3]. In 
any case, regardless of how the size of the chemical universe is assessed, there is 
no question that its size is immense. Because of the size of even “representative” 
subsets of that universe, computer-based methods are required to capture, manage, 
and search the massive amount of information, activities that fall under the rubric 
of chemical informatics.

While the chemical universe of molecules potentially relevant in food science 
is considerably smaller, it nonetheless is large enough to benefit from many of the 
chemical informatic concepts that have proved useful in medicinal chemistry and 
related fields of chemistry. Two of these concepts, molecular similarity and chemi-
cal space (CS), are dealt with in this chapter. Of the two, molecular similarity is 
more fundamental since it plays a crucial role in the definition of CS itself. Though 
important, activity or property landscapes, which provide the third leg of a triad 
of activities that play important roles in much of chemical informatics, will not 
be discussed here. Numerous recent publications describing the visual and statisti-
cal aspects of activity landscapes as well as the basic features of these landscapes 
should be consulted for details [4–8].

Similarity is a ubiquitous concept that touches nearly every aspect of our con-
scious lives and, no doubt, influences our subconscious thoughts as well. Although 
its earliest influence on scientific thinking can be traced to the Greek philosophers 
[9, 10], its impact in chemistry began in the nineteenth century, the most notable 
example being the development of the periodic table of elements by Mendeleev [11] 
and Meyer [12]. As noted by Rouvray (see Table 1.4 in [9]), the twentieth century 
saw a significant expansion in the number and variety of chemical applications of 
molecular similarity. However, it was not until late in that century that application 
of similarity flourished due in large measure to the greater availability of digital 
computers. This led to the development of a plethora of methods for computing mo-
lecular similarity, enabling medicinal chemists to address a growing need to search 
compound collections1 of rapidly increasing size for molecules with similar proper-
ties or biological activities.

Underlying this effort was the similarity-property principle (SPP) [13–15], which 
simply states that “Similar molecules tend to have similar properties.” Although 
perhaps intuitively obvious, it nonetheless provides an important rationale that has 
proved quite helpful as a basis for similarity searches of CSs.

1 The term database (DB) will generally be used to describe large collection of compounds whether 
or not material exists for screening the compounds.
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However, because similarity is a subjective concept (“Similarity like pornography 
is difficult to define, but you know it when you see it” [10]), an absolute standard 
to judge the effectiveness of similarity methods does not exist. As will be discussed 
in the sequel, this raises some significant issues that can seriously impact the ef-
fectiveness and reliability of similarity methods; chief among them is the fact that 
the similarity values depend on the method used to encode the relevant chemical 
or molecular information. Nevertheless, a large number of successful applications 
have shown that similarity methods, with all of their inherent flaws, can provide 
an effective means for carrying out a number of chemical informatic activities 
that facilitate the practice of medicinal chemistry and drug discovery ( vide infra). 
There are two main approaches to similarity in chemistry, what is typically called 
molecular or structural similarity, which is the focus of this work, and chemical 
similarity. The chemical similarity typically, but not exclusively, utilizes represen-
tations associated with macroscopic chemical properties such as solubility, heat 
of vaporization, molar refractivity, and logP, although occasionally properties of 
individual molecules such as pi-electron densities, highest-occupied and lowest-
unoccupied molecular orbital (HOMO and LUMO) energies, and dipole moments 
are also used.

Representations associated with molecular similarity are in general classified 
as one-dimensional (1-D), two-dimensional (2-D), or three-dimensional (3-D). 
1-D representations generally refer to macroscopic (e.g., solubility, logP, sublima-
tion energy, heat of formation, etc.) or microscopic (e.g., molecular orbital energy, 
atomic charges, spectra, etc.) scalar quantities (vide supra). 2-D features are derived 
from the 2-D structures typically used by chemists to represent molecules. Although 
such structures can encode stereochemical and conformational information, this is 
not generally the case in molecular similarity studies, which typically use what are 
called hydrogen-suppressed chemical graphs [16], where hydrogen atoms, except 
those on specific nitrogen and oxygen atoms, are not explicitly represented. Thus, 
chemical graphs primarily encode information on the types of atoms and the bonds 
between them—the latter is sometimes referred to as the bond topology of the mol-
ecule.

By contrast, 3-D features are generally derived from the overall 3-D geometric, 
and sometimes the electronic structure of molecules, which would seem to provide 
a more faithful representation of molecular information. Nevertheless, a number of 
substantive issues remain. This is especially true of molecules with multiple con-
formational states, since determining what conformational state or states have to be 
included in a given similarity analysis is not entirely straightforward. For example, 
in similarity studies aimed at identifying molecules with comparable biological ac-
tivities to known active molecules, does one use the minimum energy conformation 
or the biologically active one, which in many cases is not known. What about the 
case, when there are multiple conformations of comparable energy? All of these is-
sues can significantly complicate 3-D similarity studies.

Because of the greater simplicity of 2-D compared to 3-D representations, and 
because the corresponding functions used to evaluate similarities are generally eas-
ier to carry out as well, 2-D similarities tend to be much faster to compute than the 
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3-D similarities (see Sect. 1.2 for details). This raises the question of whether 2-D 
similarities perform equally or better than 3-D methods in tasks commonly carried 
out in chemical informatics. Conclusive results have not been achieved to date. 
Nevertheless, it appears that 2-D methods can in many cases perform equally well 
and in some cases outperform 3-D methods [17, 18] in a variety of tasks. These 
tasks include similarity-based searches designed to identify new, potentially active 
molecules based on previously determined actives and to identify molecules with 
potentially similar values for properties of interest in drug research such as logP—
both are examples of the SPP. In addition, these workers showed that of the 2-D 
methods considered “molecular ACCess system” (MACCS) structural-key-based 
fingerprints (FPs) (vide infra) consistently exhibited the best performance.

Because of this, most applications of molecular similarity over large sets of com-
pounds generally employ 2-D similarity methods. It should be emphasized, howev-
er, that procedures for comparing 2-D versus 3-D similarity methods are imperfect 
by their very nature since, as noted earlier, similarity is a subjective concept that 
does not admit to absolute comparisons of any type.

In simplistic terms, the concept of CS can be considered to be a multidimensional 
extension of the concept of a congeneric series. However, an important distinction 
between the two is that CS involves a pairwise relation that specifies the relation-
ship of the molecules to each other, generally in terms of a molecular similarity or 
CS-distance function. A set of objects and a pairwise relation among them are the 
basic ingredients of a mathematical space. In the present case, the objects are mol-
ecules and the pairwise relation characterizes the similarity or distance of separation 
of each pair of molecules in the CS. Similarity and distance are inversely related; 
the more similar a pair of molecules, the closer they are in CS, and vice versa.

Because CSs are generally of high dimension, faithfully depicting them in 2-D 
or 3-D is not possible, and some type of approximation is required. This, however, 
is not generally a problem because their visual depiction is only used qualitatively. 
More quantitative results can be obtained simply by carrying out the computations 
with respect to the full dimension of the CS in question.

Importantly, CS provides a conceptual framework for organizing the structural 
and property relationships of vast numbers of molecules within a common frame-
work. With the burgeoning amount of structural, chemical, and biological data cur-
rently being created and stored in publically accessible databases (DBs) such as 
ChEMBL [19], PubChem [20], ChemDB [21], and DrugBank [22], or in subscrip-
tion-based DBs such as WOMBAT [23] and MDDR [24], a conceptual framework, 
such as that provided by CS, is essential if we are to gain insights from information 
stored in these DBs. A summary of many public and private compound DBs is given 
in [25].

The remainder of this chapter covers set- and vector-based representations of 
structural and molecular data and how this information is converted into the vari-
ous similarity, dissimilarity, and distance measures that have found wide appli-
cation in chemical informatics. Examples of some of the types of structural and 
molecular descriptors are also presented, along with a discussion of their essential 
features. Significant emphasis is given to the concept of CS, a concept that plays 
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an absolutely essential role in almost all aspects of chemical informatics. Finally, 
examples of how similarity can be used to carry out many activities associated with 
CSs, such as comparing compound collections, acquiring new compounds to aug-
ment current collections, assessing the diversity of a collection, generating diverse 
subsets of compounds for high-throughput screening (HTS) campaigns, and ligand-
based virtual screening (LBVS). The latter activity has risen in importance over the 
past decade as an important strategy in drug discovery. The words “molecule” and 
“compound,” which are very similar and are quite prevalent throughout this work, 
are used essentially interchangeably.

Over the past decade, a number of books have provided a good overview of 
many aspects of the field of chemical informatics [26–30], and a number of re-
views and papers on molecular similarity [31–34] and CS [35–40] have also been 
published. These sources should be consulted for additional details on any of the 
subjects discussed in this work.

This chapter is not meant as a comprehensive review of molecular similarity 
and CSs. Rather it is intended to be somewhat pedagogical and to present, in some 
detail, a number of their key features and the interrelationships among them. In this 
way, it is hoped that readers will have a basic feel for the nature of the concepts and 
will be able to move on from there to tackle more complex aspects of these concepts 
and to apply them in a practical setting.

1.2  Structural Similarity Measures

Structural similarity is a pairwise relation between molecules. Similarity values 
are determined by a similarity measure that has three key components: (1) a rep-
resentation of the relevant chemical or structural features of the molecules being 
compared, (2) an appropriate weighting of these features, and (3) a function that 
maps the feature information for pairs of molecules to a value that lies on the unit 
interval of the real line [0,1]. As noted in the previous section, representations can 
utilize macroscopic chemical features, electronic structural features of individual 
molecules, and/or geometric features associated with the structure or substructures 
of molecules

A number of procedures for computing 2-D and 3-D molecular similarities have 
been described in great detail [10, 41]. In the current work, the focus is on the class 
of 2-D similarity measures based on molecular FPs that encode the substructural 
information in molecules and on measures derived from vectors whose components 
represent macroscopic and microscopic physicochemical properties or indices de-
rived from the topological properties of their chemical graphs. These approaches 
are the most prevalent ones and have been applied in a wide range of applications 
cited in Sects. 1.1, 1.2.3, 1.3.1, 1.3.2.1, 1.3.5.2, and 1.3.5.3. Moreover, they provide 
clear examples of the general workings of the types of molecular similarity mea-
sures in wide use today.
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1.2.1  Set-Based Similarity Measures

1.2.1.1  Set-Based Representations: Binary Structural FPs

Consider the set of n molecules

 (1.1)

A binary molecular FP for molecule Mi can be specified by a set of p substructural 
features

 (1.2)

where the binary values of the indicator (characteristic) functions  m k k pi ( ), , , ,= 1 2…  
in Eq. (1.2) determine whether a specific substructural feature is present or absent 
in the molecule, i.e.,

 
(1.3)

Binary molecular FPs are sometimes called bit vectors or bit strings since their 
elements are “1s” and “0s”. In this work, the nomenclature binary molecular FP 
may also be given by structural FP, molecular FP, binary FP, or just FP. Multiple 
occurrences of structural features are not accounted for in binary FPs, although they 
can be as described later in this section.

Equation (1.4) depicts a hypothetical FP

 
(1.4)

characterized by a binary p-tuple. This is a reasonably standard notation for FPs. 
However, because of their sparseness (i.e., relatively few 1-bits), it is not how they 
are generally handled in computers, where index-based and run-length encod-
ing schemes are typically used [42]. The former scheme basically indexes all of 
the 1-bits of a given FP. By contrast, run-length encoding indexes the lengths of 
runs of 0-bits followed by a 1-bit. As an illustration, consider the following simple 
example of a binary structural FP ( , , , , , , , , , , , , , , )0 0 11 0 0 0 0 1 0 0 1 0 0 0 . Hence, its index-
based encoding is given by ( , , , )2 0 4 2 , while its corresponding run-length encoding 
is ( , , , )3 4 9 12 , an example that clearly shows that the encodings are not of fixed 
length. Except in a few instances where stereochemical information is represented, 
most molecular FPs are based on the 2-D structural features of the molecules they 
symbolize and, hence, the representations described in this work correspond to 2-D 
molecular FPs. The number of components or elements, p, in molecular FPs can be 
quite large and can be either fixed or variable. The former usually corresponds to 
molecule-independent FPs and the latter to molecule-dependent FPs.

M M M M M= … …{ }1 2, , , , , .i n

mi i i i im m m k m p= … …{ }( ), ( ), , ( ), , ( )1 2

1, if the th structural feature is present;( )
0, if the th structural feature is absent.

i
km k
k

= 


mi

p

= …( , , , , , , , )1 0 0 1 1 1 0
� ���� ����
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Molecule-Independent/Directory-Based FPs The number of structural fea-
tures in molecule-independent FPs is fixed for all molecules, as exemplified by 
MACCS key FPs, which contain 166 structural features [43] and Barnard Chemi-
cal Information (BCI) FPs that contain more than 1000 features [44]. Figure 1.1 
provides a simple example, based on the anticholesterol drug Lipitor, of a mole-
cule-independent FP. Note that multiple occurrences of methyl groups, hydroxyl 
groups, and phenyl rings are not explicitly accounted for, nor is the elongated 
hydrocarbon chain that connects the nitrogen atom of the pyrrole ring with the 
terminal carboxylate fully accounted for, although a structural descriptor that 
represents a shorter hydrocarbon chain provides at least a partial account of the 
elongated chain.

Hence, structural information can be lost leading to similarity values of unity for 
pairs of molecules that are not structurally identical. Nevertheless, there is at least 
a partial correspondence between the descriptors in the directory and the binary 
molecular FP of a molecule, so that it may be possible in many instances to asso-
ciate particular substructural features with molecular properties and/or biological 
activities, a characteristic that is not generally shared by molecule-dependent FP 
representations ( vide infra). This can be partially ameliorated through the use of 
weighted molecular FPs that take account of the number of times a structural fea-
ture occurs in a molecule. However, since not all structural features that may be as-
sociated with a specific structure–property relationship (SPR) or structure–activity 
relationship (SAR) are necessarily accounted for in given FP, it may not be possible 
to infer SPR or SAR even when weighted FPs are employed.

Molecule-dependent FPs have variable numbers of elements that typically 
depend on the number of non-hydrogen atoms and functional complexity of mol-
ecules. Because of the rapid growth in the size and molecular complexity of modern 
compound DBs, molecule-dependent FPs have been growing in popularity since 

111 01 1 1 0 0 1 0 1

Fig. 1.1  An example based on the drug Lipitor of a simplified molecule-independent directory-
based binary structural FP with its corresponding set of descriptors. The symbol ‘X’ corresponds 
to any of the halogen atoms (F, Cl, Br, I)
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they can potentially handle a wider range of molecules than molecule-independent 
FPs. Two structural FPs that exemplify the types of molecule-dependent FPs in use 
today are the atom pair FPs (APFs) first developed by Carhart, Smith, and Ven-
kataraghaven nearly 30 years ago [45] and the more recent extended connectivity 
FPs (ECFPs) developed by Rogers and Hahn [46] that are in widespread use today. 
Simple examples of APFs and ECFPs are depicted in Figs. 1.2 and 1.3, respectively.

Both of these FPs are referred to as “2-D FPs,” since neither of them utilizes 3-D 
structural information. Although a number of FPs including AFPs and ECFPs can 
encode stereochemical information, they rarely do in common usage.

Atom-Pair Fingerprints
(APFs)

NX3 −(4)− CX 3 NX2 −(5)− NX3a b
o o o

Fig. 1.2  Examples of molecule-dependent atom pair fingerprints (APF) descriptors depicted with 
respect to the drug Lipitor. Regions highlighted in light green and light blue correspond to sub-
structures associated with two APFs; the labels below each figure correspond to respective desig-
nations given in reference [46] for these APFs

 

Fig. 1.3  Examples of molecule-dependent extended connectivity ECFP descriptors depicted with 
respect to the drug Lipitor. Atoms lying within the rings depicted in the figure correspond to near-
est ( colored in light blue) and next-nearest neighbors ( colored in light green) to the central atom 
( colored in light red) of a given ECFP4 descriptor.
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Atom Pair FPs Pairs of atoms and the minimum number of bonds linking them 
constitute the substructural components of APFs. Generally, only APs separated by 
seven or fewer bonds are considered. As described by Carhardt et al. [45], the gen-
eral form of the substructure of an APF is given by Eq. (1.5):

 (1.5)

where “atom-i” and “atom-j” are descriptions that contain information on the atom 
type (e.g., C, N, O,…), the number of non-hydrogen atoms bound to it, and whether 
it possesses a bonding pi-electron. The “separation” between atoms is based on a 
count of all the atoms, including atom-i and atom-j, on the shortest through-bond 
path connecting the two terminal atoms of the chain. Consider, for example, the 
APF designation NX CX3 34i − −( )  depicted in Fig. 1.2a. In the NX3 i  term con-
tained within the leftmost brackets, “ N ” designates the leftmost atom in the chain 
highlighted in light green, 3“ X ”  indicates that three atoms are bonded to it, and the 
“ ”i  indicates the presence of bonding pi-electron on the nitrogen atom. Next, the 
“ 4” in the parentheses indicates the number of atoms in the chain including the 
terminal atoms. Last, in the CX3 term contained within the rightmost brackets, “ C ” 
designates the rightmost atom in the chain and 3“ X ” indicates that three atoms are 
bonded to it. A similar interpretation can be made for the designation corresponding 
to the APF highlighted in light blue in Fig. 1.2b.

Because of the way in which APFs are handled in a computer, it is not possible to 
associate substructural features with specific bits in an APF. An excellent discussion 
based on the closely related Daylight FPs [47] discusses this issue and many other 
of the technical details that must be addressed in order to effectively implement 
APFs.

Extended Connectivity FPs By contrast, ECFPs sample the molecular environ-
ment surrounding each non-hydrogen atom. Thus, the local “circular” environ-
ments surrounding each non-hydrogen atom constitute the substructural features of 
a given molecule as depicted in Fig. 1.3. Although not always employed, ECFPs can 
also encode stereochemical information, which can be important in many aspects 
of drug discovery research since all stereoisomers of a given compound may not be 
equally active.

For example, consider the pyrrolic carbon atom in Fig. 1.3 highlighted in light 
red. As seen in the figure, two layers of atoms surround it, the first, whose atoms are 
highlighted in light blue, corresponds to nearest neighbors and the second, whose 
atoms are highlighted in light green, corresponds to next nearest neighbors. Each 
non-hydrogen atom and its layers of surrounding atoms constitute substructural 
features. The maximum number of layers considered is given by the diameter of 
the largest circular environment surrounding the central atom. This is based on the 
number of bonds needed to connect two diametrically opposed atoms in that layer. 
In the case shown here, four bonds are required. Such FPs are designated by ECFP4.

From the above, it is easy to see that the number of possible FP descriptors that 
can be obtained for compound collections is quite large. For example, Rogers and 

( )“atom- ” atom-separation “atom- ” ,i j− −
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Hahn [46] have shown that sets of ~ 50,000 compounds can give rise to ECFP de-
scriptors that number in the hundreds of thousands. For larger sets of compounds, 
the number of ECFP descriptors can potentially exceed 1 million. Hence, handling 
this amount of information efficiently presents some technical problems, the details 
of which are beyond the scope of this work. Interestingly, unlike AFPs whose sub-
structural information cannot be retrieved, this is not the case for ECFPs, although 
the procedure for doing so requires several steps. The paper by Rogers and Hahn 
[46] provides a detailed discussion of many of these issues. They also note that 
ECFPs were designed primarily to characterize the activities of compounds. Hence, 
ECFPs contain information on features that are present as well as those that are 
not present. ChemAxon provides a very clear description of many of the technical 
details associated with application of ECFPs [48]. In addition, they offer a useful, 
albeit brief, comparative discussion of AFPs and ECFPs, pointing out that the for-
mer performs best for substructure searches while the latter appears to be more suit-
able for similarity searches. Several other papers also provide useful assessments 
of ECFPs [49, 50].

Weighted Structural FPs Weighting the features of structural FPs is not common 
practice in chemical informatics. Nevertheless, it has been shown in a number of 
studies to provide improved results in virtual screening experiments [51–53].

Although numerous schemes exist [54], weighting nowadays is typically accom-
plished by accounting in some fashion for the number of occurrences of each of 
the features in a molecule, as for example, the methyl, phenyl, hydroxyl groups 
depicted in Fig. 1.1 for the hypercholesterol drug Lipitor™.

Clearly, not accounting for multiple occurrences of features can lead to signifi-
cant degeneracies that arise when different compounds have identical FPs. Some-
times the degeneracies can be quite large as shown by the following analysis based 
on Lipitor™. Consider each of the multiple structural FP descriptors in Lipitor™: 
three phenyl, two methyl, and two hydroxyl groups. There are seven possible de-
scriptor patterns containing at least one phenyl group and three possible patterns 
containing at least one methyl group and three containing at least one hydroxyl 
group. Assuming that each of the three descriptor patterns is independent of each 
other, a quite reasonable assumption is that the total number of possible patterns is 
7 3 3 67× × = . Hence, there are 67 different, albeit related, compounds that would 
all have exactly the same structural FP as Lipitor™. While this may be a somewhat 
extreme example, there are nonetheless numerous examples of compounds with 
multiple occurrences of specific substructural patterns. Surprisingly, the results ob-
tained with unweighted FPs are quite good. And although both APFs and ECFPs 
can take account of multiple occurrences of substructural patterns, they are rarely if 
ever considered in actual applications.

In fact, most cheminformatic studies continue to use binary structural FPs.

1.2.1.2  FP-Based Similarity Coefficients

The third component of a similarity measure is the function that maps the struc-
tural information contained in the molecular FPs of each pair of compounds 
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being compared to the unit interval of the real line [0,1]. Such functions are called 
by a number of names—similarity functions, similarity indices, or similarity 
coefficients—the latter nomenclature will be adhered to in this chapter [10]. Al-
though there are many types of similarity coefficients, only a limited number will 
be considered here. A summary of all types of similarity coefficients is given in a 
comprehensive review [31].

Based on his work in mathematical psychology, Tversky developed the most 
general form of similarity coefficient applicable to structural FPs [55]:

 
(1.6)

where the weighting parameters satisfy , 0α β ≥ , which ensures that the similarity 
values lie on the unit interval of the real line [0,1]. The various terms in Eq. (1.6) 
are described in Table 1.1.

As described in Table 1.1, the terms in parentheses in the denominator, N Ni i j− ,

and, N Nj i j− , , can be interpreted as the number of features unique to molecules Mi 
and M j, respectively, weighted by the corresponding values of α  and β .

It is clear from the form of Eq. (1.6) that the Tversky similarity coefficient is gen-
erally asymmetric with respect to the interchange of its arguments, i.e., M Mi j→  
and M Mi j← . This corresponds to interchanging the associated variables Ni

 and 
N j  in Eq. (1.6) so that ( )N N N Ni j i j→ ← and , i.e.,

 (1.7)

which is equal to the expression in Eq. (1.6) and is symmetric only in cases where 
α β= : Note that the variable Ni j,  is invariant to these interchanges. Such cases cor-
respond to well-known similarity coefficients, three of which are described below.

For example, the currently most popular similarity coefficient, S i jTan ( , ), is that 
due to Tanimoto and is obtained by setting 1α β= = ,

 (1.8)
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Table 1.1  Set-theoretic expressions useful in molecular similarity analysis
Symbol Set-theoretic expressiona Definition

Ni Card( )mi
Number of features in molecule Mi

Ni j, Card( )m mi j∩
Number of features common to molecules Mi 
and Mj

N Ni i j− , Card Card( ) ( )m m mi i j− ∩ Number of features unique to molecule Mi

a “Card” refers to the cardinality (i.e., number of elements) of the set in question
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The sum of the terms in the denominator is equal to the total number of features 
in common plus the number of unique features associated with molecules Mi  and 
M j , although the form of the expression differs from that usually used, namely, 
N N Ni j i j+ − , , where the ,“ ”i jN−  term corrects for double counting the features in 
both molecules. Thus, the Tanimoto similarity coefficient is the ratio of the number 
of features in common to both molecules over the total number of features (not the 
sum) in Mi  and M j .

Setting 1
2

α β= =  leads to the Dice similarity coefficient:

 
(1.9)

where the term in the denominator is the arithmetic mean of the number of features 
in Mi  and M j . Thus, the Dice similarity coefficient is the ratio of the number of 
features in common to Mi  and M j  over the arithmetic mean of the number of their 
features.

Although it cannot be obtained from Tve ( , , )S i j α β  simply by choosing appro-
priate values for  and α β , the well-known cosine similarity coefficient given by

 (1.10)

can be obtained from a related but more general similarity function [56]. Interestingly, 
the denominator is the geometric mean of the number of elements in Mi

 and M j , so 
that the cosine similarity coefficient is the ratio of the number of features in com-
mon to Mi

 and M j  over the geometric mean of the features.
Although not as general as the expression given in Eq. (1.6), a useful expression 

is obtained by setting 1β α= − , which gives

 (1.11)

so that 1α β+ = . Under such a constraint, it is not possible to transform Eq. (1.6) 
into the expression for Tanimoto similarity, Eq. (1.8), although the Dice coefficient 
given in Eq. (1.9) can still be obtained by setting 1/ 2α = . Any value of 1/ 2α ≠  
leads to asymmetric similarity coefficients. This asymmetry has been applied to 
enhance the effectiveness of similarity searches of large compound DBs [57, 58].

An interesting pair of asymmetric similarity coefficients is obtained at the limits 
when 1α =  or 0α = :

 (1.12)
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and

 (1.13)

Equation (1.12) can be interpreted as the fraction of Mi
 similar to M j , while 

Eq. (1.13) can be interpreted as the fraction of M j  similar to Mi
. By applying 

the “interchange rules” to Eq. (1.12), it is clear that the similarity coefficients are 
asymmetric, i.e.,

 (1.14)

A similar argument can be applied to Eq. (1.13).
Symmetric similarity coefficients corresponding to the asymmetric coeffi-

cients are given in Eqs. (1.15) and (1.16) and can be obtained simply by changing 
the denominators using the “min” and “max” functions, which are symmetric to 
interchanges of variables Ni

 and N j :

 (1.15)

and

 (1.16)

As was the case for the other similarity coefficients, SMax
 and SMin

 are again ratios 
equal to the number of features common to Mi

 and M jover the larger and smaller 
number of features of Mi

 and M j , respectively.
It can be shown that all of the similarity coefficients described above lie on the 

unit interval [0,1]. Because the terms in the denominators satisfy the following in-
equalities:

 (1.17)

and because their numerators are all identical and equal to Ni j, , the five symmetric 
similarity coefficients are ordered as:

 (1.18)
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0 1< ≤ ≤ ≤ ≤ ≤S S S S STan Max Dice Cos Min .
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1.2.1.3  FP-Based Molecular Dissimilarity Coefficients

For FP-based representations, dissimilarity is the 1’s complement of similarity, i.e.,

 (1.19)

Thus, dissimilarity values also lie on the unit interval [0,1]. For example, in the case 
of the Tanimoto similarity coefficient the corresponding dissimilarity coefficient is 
given by

 (1.20)

which is symmetric because S i jTan ( , )  is symmetric. Substituting Eq. (1.8) into 
Eq. (1.20) and simplifying terms yields

 (1.21)

Since the denominators, which normalize the similarity and dissimilarity values, 
in Eqs. (1.8) and (1.21), respectively, are the same for both coefficients, it is their 
numerators that provide the interpretation for these coefficients. In the case of 
Tanimoto similarity, the numerator, Ni j, , gives the number of features in common 
to both molecules, while the numerator for Tanimoto dissimilarity gives the num-
ber of features unique to Mi

, N Ni i j− , , and the number of features unique to M j, 
N Nj i j− , . This interpretation accords well with our qualitative notions of similarity 
and dissimilarity. Features that do not appear in either molecule are not accounted 
for in any of these coefficients.

It can also be shown that Tanimoto dissimilarity formally satisfies the three prop-
erties of an abstract distance [59]. In fact, the numerator is identical to the Hamming 
distance between two finite, classical sets [60] and the denominator ensures that the 
dissimilarity values satisfy 0 1≤ ≤DTan

, as required by Eq. (1.20).
Based on Eq. (1.19), dissimilarity coefficients corresponding to the similarity 

coefficients given in Eqs. (1.9), (1.10), (1.15), and (1.16) can also be constructed. 
Interestingly, the terms in their denominators are unchanged from their correspond-
ing similarity coefficients. However, the terms in their numerators are the same as 
those in their denominators with the important difference that N N Ni i i j→ − ,  and 
N N Nj j i j→ − , . Thus, for example, the Dice dissimilarity coefficient becomes

 D i j
N N N N

N N
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i j
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which is the ratio of the arithmetic mean of the number of unique features in Mi
 

and M j  to the arithmetic mean of the total number of features in Mi
 and M j . 

Recall that the term in square brackets is the Hamming distance so, as was the case 
for Tanimoto dissimilarity, Dice dissimilarity also satisfies the distance postulates.

Analogous expressions for dissimilarity can be derived for the remaining simi-
larity coefficients.

1.2.1.4  Size Dependence of FP-Based Similarity and Dissimilarity 
Coefficients

It is both intuitive and well known that the number of 1-bits in a binary molecular 
FP depends on the size and complexity of the molecule it is representing. More 
than 25 years ago, Flower noted a bias towards low similarity values in Tanimoto 
similarity-based searches when the bit densities, that is the ratio of 1-bits to the 
total number of bits in a binary FP, of the molecules being compared differed sig-
nificantly [61]. Subsequently, a number of laboratories observed a bias in diversity 
analyses towards smaller compounds [31, 62–65]. A publication also in that period 
by Godden et al. [66] further elaborated the issue by showing that mean Tanimoto 
similarity values obtained from sets of compounds are inherently biased by statisti-
cally preferred similarity values.2

It is not difficult to see how molecular size may have a biasing effect on the 
Tanimoto coefficient given in Eqs. (1.8). Consider two molecules, a query mol-
ecule, MQ , and a retrieved molecule, MR

, obtained from a similarity search. Now 
suppose that the query molecule is a small molecule such that the number of sub-
structural features (1-bits) in the FPs of both molecules satisfies N NQ R< . Since the 
number of substructural features common to both molecules, NQ,R , cannot be more 
than the number in the smaller of the two molecules,3 i.e.,

 (1.23)

In which case,

 (1.24)

The inequality obtains from Eq. (1.23) and the fact that the denominator of Eq. (1.24) 
satisfies

 (1.25)

2 Interestingly, since FP-based similarity coefficients are ratios of two integers, they represent a 
limited subset of rational numbers. Hence, they can by their very nature only yield restricted set of 
values on the unit interval of the real line.
3 In that case, the set of features in MQ are a subset of those in MR.
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Thus, for fixed values of N NQ R and , S Q RTan ( , )  reaches its maximum when the 
features of the query molecule are a subset of those of the retrieved molecule, that 
is, when N N NQ,R Q,R Q→ =max( ) . In this case, the smaller (or the closer in size) 
the retrieved molecule is to the query molecule, the larger the Tanimoto similarity 
value, and hence, the bias for small molecules in Tanimoto similarity searches when 
the query molecule is itself a small molecule. This type of bias should be called 
algebraic bias since it arises out of the form of the Tanimoto similarity coefficient 
and has no statistical component (cf. [67]).

If, on the other hand, the query is now a large molecule such that N NQ R> , then 
Eq. (1.26) can be obtained from Eq. (1.24) simply by interchanging the subscripts 
Q and R, i.e.,

 (1.26)

It is clear from the equation that since the query molecule is large and fixed, the only 
way to increase S Q RTan ( , )  is to increase the size of the retrieved molecule. Hence, 
in Tanimoto similarity searches where the query molecule is large, something that 
rarely occurs in practice, the algebraic bias will be towards larger retrieved mol-
ecules. Holliday et al. [67] have significantly extended this analysis, providing an 
extensive and detailed treatment of a large number of similarity coefficients that are 
documented in Table 1.1 of their paper.

The algebraic bias in similarity searches has led some researchers to consider 
other possible similarity functions that might overcome this problem. An interesting 
work in this regard is that of Chen and Brown [57], which was based on asymmetric 
similarity searching. A detailed discussion of asymmetric similarity searching and 
how it might overcome, to some extent at least, the algebraic size bias described 
above was recently presented [10, 41].

Although the algebraic size bias discussed above is relatively straight forward, 
this is not case when dealing with dissimilarity-based searching as it is applied, 
for example, in diversity analysis. In each step of a typical iterative dissimilarity-
based selection algorithm, the most dissimilar compound with respect to all of the 
previously selected compounds is chosen, a situation that differs significantly from 
that of similarity searching in a number of ways (see discussion in Sect. 1.3.5.3 for 
additional details). Moreover, the arguments presented above do not touch on some 
of the crucial issues that are statistical in nature. These were clearly described in a 
paper by Fligner et al. [65] and involved a statistical analysis of the discrete, hy-
percubical space in which binary structural FPs reside. Based on this analysis, they 
developed a modified version of the Tanimoto similarity coefficient that in addition 
to accounting for substructural features present in both molecules, also considered 
features that were absent. Basically, it is a weighted combination of Tanimoto simi-
larity coefficients, one corresponding to the usual form of the Tanimoto coefficient 
associated with 1-bits and the other of essentially similar form but associated in this 
case with the 0-bits.
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It was shown by both Fligner et al. [65] and Holliday et al. [67] that the modi-
fied Tanimoto coefficient did to a large extent ameliorate size bias associated with 
the Tanimoto similarity coefficient. More recently, Bajorath and his collaborators 
[58, 66] successfully introduced a related type of modified similarity measure that 
weights contributions associated with the presence and absence of substructural fea-
tures. In their case, however, a Tverksy-type similarity coefficient was used rather 
than the Tanimoto expression employed by Fligner et al. [65].

1.2.2  Vector-Based Similarity Measures

Analogous expressions to the FP-based Tanimoto, Dice, and Cosine similarity coef-
ficients (see Eqs. (1.8), (1.9), and (1.10), respectively) also exist for vectors with 
continuous, real valued components as described in the following section.4 Since 
each of the vector components may be associated with properties that have different 
units, i.e., are not comparable, they can be standardized according to Eqs. (1.30) 
and (1.31), so that their values are mean centered and of unit variance. Also, sub-
scripts designating the similarity coefficient are given in bold face upper case 
type to distinguish them from the corresponding FP-based similarity coefficients. 
Terms typically found in vector-based similarity and dissimilarity coefficients are 
described in Table 1.2.

4 Strictly speaking, these vectors should be called geometric vectors since they do not, in all cases, 
satisfy the properties of algebraic vectors (e.g., algebraic vectors satisfy the axioms of a linear vec-
tor space, namely, the addition of two vectors or the multiplication of a vector by a scalar should 
result in another vector that also lies in the space). Nevertheless, the terminology “vector,” which 
is common in chemical informatics, will be used here to include both classes of vectors.

Table 1.2  Vector-based expressions useful in similarity analysis
Operation Vector expression Corresponding set 

theoretic entitiesa
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a See Table 1.1
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1.2.2.1  Vector-Based Representations

Vector-based representations provide another means for encoding the molecular and 
chemical information associated with molecule Mi

 and are of the general form of 
p-dimensional row vectors also called p-tuples:

 (1.27)

Such vectors are in many instances given as column vectors. However, since the 
rows of data matrices generally correspond to points in a data space, the practice is 
continued here for consistency.

Each component of the vector represents the value of some macroscopic chemical 
property such as solubility, heat capacity, polarizability, pKa [68], some molecular 
property such as molecular weight, ionization potential, pi-electron distribution, 
number of hydrogen bonding donors or acceptors, and HOMO or LUMO energies 
[69], or some properties that characterize topological aspects of molecules, such 
as branching and shape indices [70]. Martin [71] has discussed the computation of 
many physicochemical property descriptors in the context of computational drug 
design. Todeschini and Consonni have compiled an extensive compendium of them 
[72]; Guha and Willighagen have recently surveyed a wide variety of quantitative 
descriptors useful for the calculation of chemical and biological properties [73]. 
Labute has also developed an internally consistent set of 32 descriptors based on 
the surface properties of molecules such as logP, molar refractivity, partial charges, 
and pKas [74, 75]. They were shown to be weakly correlated with each other, able 
to represent much of the information in many “traditional” molecular descriptors, 
and capable of providing an effective means for carrying out a range of quantitative 
structure–activity relationship (QSAR) and structure–property relationship (QSPR) 
calculations.

BCUT Descriptors A particularly interesting set of descriptors is that developed by 
Pearlman and Smith [76–78]. Called BCUTS, they provide an internally consistent, 
balanced set of molecular descriptors that encode information on the electrostatic, 
hydrophobic, and hydrogen bonding features of molecules and are generated in a 
way that exploits information on through-bond or through-space interatomic dis-
tances and atomic properties related to intermolecular ligand–protein interactions. 
BCUT values are determined from matrices whose diagonal elements are associated 
with atomic properties and whose off-diagonal elements are associated with  connec-
tivity-related properties and a scale factor that balances both types of information. 
Different definitions of the off-diagonal elements differentiate the different classes of 
BCUTS from each other. For example, 3-D BCUTS use through space interatomic 
distances to determine off-diagonal elements, while 2-D BCUTS use Burden num-
bers [79], and 2-DT BCUTS use topological interatomic distances. The largest and 
smallest eigenvalue obtained from each matrix are retained as potential descriptors.

Since there are many ways to compute the diagonal and off-diagonal elements 
of BCUT matrices, the number of potential descriptors is quite large for any of the 
three BCUT classes. In order to deal with this issue, Pearlman and Smith developed 
an “auto-choose” algorithm based on a -squaredχ  statistic that selects an optimum 

xrow ( ) ( , , , , , ), , , ., , , ,i x x x x i ni i i k i p= … … = …1 2 1 2
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subset of BCUT descriptors for a given set of compounds such that their distribution 
is as close to a uniform distribution as possible. Thus, intercompound correlations 
are reduced so that the compounds are maximally dispersed throughout CS in the 
minimum number of dimensions. Importantly, this shows that BCUT descriptors 
and their associated CSs depend on the set of compounds used to determine them. 
Thus, there are many possible CSs, most typically of dimension five and six. BCUT 
descriptor values are not standardized to zero mean and unit variance (see Eqs. 1.30 
and 1.31) since their value ranges are all comparable.

BCUT descriptors have been shown to perform well in diversity-analysis-related 
tasks [80–82]. And although not originally intended for this purpose BCUT de-
scriptors have, nonetheless, shown surprisingly good performance in QSAR and 
QSPR studies [83–85] and in selecting compounds for follow-on screening in drug 
discovery [86].

In general, the vectors associated with a set of n molecules can be combined into 
an n p× −dimensional  data matrix

 (1.28)

where ith row is the same as that given by Eq. (1.27) and jth column is given by

 (1.29)

Because the units associated with each of the descriptors are, in general, likely to 
differ, they should be normalized so that they all have equivalent units. This can be 
accomplished by standardizing the set of values for each descriptor to zero mean 
and unit variance using the well-known “z-transformation,” i.e.

 (1.30)

where the sample mean and variance of the jth variable are given by, respectively,
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(1.31)

All of the variables are now unitless and, thus, on equal footing. Row vectors and 
data matrices corresponding to the new z-transformed variables are now given, 
respectively, by (cf. Eqs. 1.30 and 1.31)

 (1.32)

and

 (1.33)

1.2.2.2  Vector-Based Similarity Coefficients

The vector-based Tanimoto similarity coefficient corresponding to the FP-based co-
efficient in Eq. (1.8) is given by

 
(1.34)

where the form of the continuous, real valued vectors is given in Eq. (1.27) and the 
nature of their components are described in the previous section. The vector-based 
similarity coefficient due to Hodgkin and Richards [87] is an analog of the FP-based 
Dice similarity coefficient given in Eq. (1.9):

 (1.35)
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The well-known cosine similarity coefficient, also called the Carbo similarity index 
[10], provides a measure of the cosine of the angle between two vectors

 

(1.36)

A variety of function and vector-based similarity coefficients have also been de-
scribed [10], and a detailed analysis of their interrelationships has been presented 
[56].5

1.2.2.3  Vector-Based Dissimilarity Coefficients and Distances

Vector-based dissimilarity coefficients can also be defined in analogy to those given 
in general for FP-based dissimilarities in Eq. (1.19). Tanimoto dissimilarities are 
given by

 (1.37)

Again, the terms are analogous to those for the FP-based dissimilarity given in 
Eq. (1.21) and summarized in Tables 1.1 and 1.2. As was the case for FP-based 
dissimilarities, the value of the vector-based dissimilarity is complementary (see 
Eq. 1.20) to the corresponding similarity value and, hence, lies on the unit interval 

5 An interesting relationship between the FP- and vector-based similarity coefficients oc-
curs when both have binary component values, e.g. ml = ( , , , , , , , , , )1 0 0 0 11 0 1 0 1  and 
xrow ( ) ( , , , , , , , , , )l = 1 0 0 0 11 0 1 0 1 . In such cases, but only in such cases, the similarity coefficients 
based on binary FPs or binary vectors yield exactly the same similarity value for all of the similar-
ity coefficients described above. However, this limitation has not been consistently adhered to and 
similarity values computed using continuous vectors or weighted FPs based on Eqs. (1.27)–(1.29) 
yield values that may differ significantly from their corresponding FP-based similarity coefficients.
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[0,1]. Importantly, the numerator is just the square of the Euclidean distance (see 
also Table 1.2):

 (1.38)

Since the denominator is just a constant factor that scales the distance so that dis-
tance lies on the unit interval [0,1], it again follows that DTAN satisfies the distance 
axioms as was true in the corresponding FP-based case for Dtan

.
Similarly, it can be shown that Hodgkin–Richards dissimilarity,

 (1.39)

accords well with the FP-based case for D i jDice ( , ) . Note that the numerator is the 
squared Euclidean distance of the two molecular feature vectors, so dissimilarity 
again satisfies the distance axioms and is a normalized distance whose values lie 
on [0,1].

Thus, it is clear from the above discussion that there is an underlying consis-
tency to the FP- and vector-based similarity coefficients. Moreover, for the case of 
binary FPs and binary feature vectors, the two approaches yield identical results 
( vide supra). However, for integer-weighted FPs (see Sect. 1.2.1.1) such as arise 
in cases where the number of occurrences of substructural features is considered, 
methods for treating vectors with continuous, real-valued components are no longer 
appropriate and multiset procedures provide a better, more consistent approach for 
dealing with such FPs [10, 41].

1.2.3  Fusing (“Aggregating”) Similarity Measures

Although molecular similarity studies have been carried out for more than two 
decades, it is generally recognized that no one similarity measure is capable of pro-
viding high-quality results for all classes of compounds. This has raised the possibil-
ity that aggregating or fusing multiple similarity measures may in some fashion lead 
to improved results [88]. Based on the pioneering works of Sheridan and his col-
leagues at Merck [89, 90] and Peter Willett and his colleagues in Sheffield, a num-
ber of procedures have been developed for combining similarity measures based on 
data fusion methods [91–93]. A recent review by Willett provides a comprehensive 
overall summary and analysis of similarity-based data fusion methods [94].
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Data fusion methods [95, 96] fall under the more general rubric of data aggrega-
tion methods that are widespread in many applications of multiparameter decision 
making [97]. The basic idea behind data fusion is that combining data from multiple 
sources will lead to improved results over data obtained from a single source. Data 
fusion can be implemented as an unsupervised or supervised procedure, the former 
being the most well studied of the two approaches, since the latter requires experi-
mental activity data in addition to computed similarities [94]. The focus in this work 
is on unsupervised procedures, and the previous reference should be consulted for 
details of supervised procedures. The description of similarity searching given in 
Sect. 1.3.3.3 is complementary to that presented here, where the emphasis is on is-
sues associated with data fusion procedures.

Although there are many possible unsupervised ways to combine multisource 
data, those typically applied in chemical informatics are relatively limited (see 
Fig. 1.2 of [94]). Table 1.3 provides a summary of the most effective data fusion 
rules associated with the different fusion procedures typically employed in chemi-
cal informatics applications ( vide infra). In certain applications, as seen in the table, 
data are best treated as similarity values or as rankings—specifics are described be-
low. Mathematical expressions corresponding to the different fusion rules given in 
Table 1.3 are relatively straightforward except for the reciprocal rank fusion (RRF) 
rule, which is directly related to the mean of the harmonic mean of the rank values 
[98].6 Because the RRF rule treats rank values reciprocally, compounds near the top 
of a ranked list will have lower values, and thus will be given more influence in the 
RRF rule than those further down the list. Recent studies in information retrieval 
[99] and chemical informatics [100] suggest that the RRF rule may be more gener-
ally applicable than heretofore had been suspected. Thus, it may be suitable as a 
replacement for the other fusion rules considered in Table 1.3 (i.e., MAX, MIN, and 
MEAN), which have enjoyed widespread use in the past [94]. Finally, it should be 
noted that fusions can also be effected using similarity values computed with any 
of the similarity measures although most studies have been confined to FP-based 
measures.

6 The RRF rule works best with rank values since similarities can in certain cases have zero values 
leading to undefined values for the reciprocals, a situation that can be overcome by the addition of 
a small positive constant to the denominator of each term.

Table 1.3  Examples of fusion rules
Fusion rule Applicable fusion methoda Mathematical expression
MAX Group fusion

max , , ,S S Si i i
qRef Ref Ref

1 2 …{ }
MIN Similarity fusion

min , , ,R R Ri i i
pSim Sim Sim

1 2 …{ }
MEAN Similarity fusion

( / )1
1

p Sik

p
kSim

=∑
RRF Similarity and group fusion

( / ) ( / )1 1
1 1

R Rik

p

il

q
k lSim Refor

= =∑ ∑
Only the most effective fusion rules are included in the table, where “Si” corresponds to a similarity 
value and “Ri” to a specific rank. See text for details
a See [94] for a detailed discussion of the performance of the different fusion rules
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1.2.3.1  Similarity Fusion

The initial approach to data fusion, called similarity fusion, combines the results 
of searches using multiple similarity measures with respect to a single reference 
molecule. The data generated in this procedure can be envisioned in the form of a 
data table such as that depicted in Fig. 1.4a, where the columns correspond to the 
p different similarity measures, and the rows correspond to the n molecules in a 
DB—at this point the ordering of the molecules is arbitrary. Each of the similarity 
elements in the table, Si

kSim , is designated by the DB molecule with which it is as-
sociated, as indicated by the set of subscripts { , , , }1 2 … n . The corresponding simi-
larity measures used to calculate its value are indicated by the set of superscripts 
{ , , , }Sim Sim Sim1 2 … p . All of the similarity values are computed with respect to the 
same reference molecule.

The similarity values in each row can be aggregated in various ways to yield a 
fused similarity value Si

SF . For example, as shown in Table 1.3, the arithmetic mean 
values of the similarity values in each row can be computed and placed in the cor-
responding column “fused sim” of Fig. 1.4a. Once this process is complete the rows 
can be reordered, as depicted in Fig. 1.4b, such that the first row contains the most 
similar molecule to the reference molecule based on its fused similarity value, the 
second row contains the next most similar molecule, and the process continues until 
all of the molecules are reordered with respect to their fused similarity values. This 
procedure effectively permutes the order of the molecules given in the first column 
of Fig. 1.4a, which as noted earlier is arbitrary, to that shown in the first column of 

Fig. 1.4  Data tables illustrating similarity fusion of similarity and rank values: a and b depict the 
procedure for fusing similarity values. c, d, and e depict the corresponding procedure for fusing 
rank values
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Fig. 1.4b, which is based on the decreasing fused similarity values in the second 
column of Fig. 1.4b, i.e.,

 (1.40)

The subscript notation 1( )iπ −  in the mathematical expression given in Eq. (1.40) 
is based on the mathematical theory of permutations [101], where the permuta-
tion function value ( )iπ  gives the rank of the ith molecule and the unique inverse 

1( )jπ − designates the jth molecule in the overall ranking. A graphic example of how 
these functions operate is provided in Fig. 1.5. It is important to note that while the 
permutations determine the rank order of the compounds, it is the similarity values 
themselves that are combined using the MEAN fusion rule in similarity fusion.

Alternatively, data fusion procedures can also be directly applied to rankings 
themselves as seen in Fig. 1.4c. In this case, the computation of similarities is fol-
lowed by a determination of the rank of each of the compounds with respect to each 
of the similarity measures as illustrated in Fig. 1.4d, and an appropriate data fusion 
procedure, in this case the MIN rule given in Table 1.3 is applied. Lastly, the result-
ing MIN fused rankings are permuted, i.e., 1

SF SF

( )j i
R R iπ −→ = , in increasing order

 (1.41)

1 1 1
SF SF SF

(1) (2) ( )n
S S Sπ π π− − −≥ ≥ ≥�

1 1 1
SF SF SF

(1) (2) ( )n
R R Rπ π π− − −< < <�

Fig. 1.5  Graphical example of mappings produced by the permutation functions π and their 
inverses π−1 (see text for additional details)
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1.2.3.2  Group Fusion

The development of group fusion [91, 92, 102] quickly followed that of similar-
ity fusion. In contrast to latter, a single similarity measure but multiple reference 
molecules are used. This is illustrated in Fig. 1.6a, b, which are quite similar to 
the previous figure except that the similarity measures in the top row of Fig. 1.4a 
are replaced by a set of q reference molecules { , , , }Ref Ref Ref1 2 … q  in Fig. 1.6a. 
Similarity values are computed for each DB compound with respect to each of the 
reference compounds using a single similarity measure, and the values in each row 
of the table are fused, yielding the similarity values in the last column of Fig. 1.6a. 
As was the case for similarity fusion, the next step is to reorder the fused similarity 
values from largest to smallest as indicated in Fig. 1.6b and Eq. (1.42):

 (1.42)

Numerous studies have shown that applying the MAX rule to similarity values pro-
vides excellent overall performance in similarity searches that are designed to as-
sess the efficacy of group similarity for retrieving known actives from compound 
DBs [91, 92, 94, 100]. Although, in general, the MAX rule works well, the RRF 
rule for combining rank values (see Table 1.3) appears to perform even better [100]. 
Figure 1.6c–e describes the rank-based group fusion process, which is similar to that 
given in Fig. 1.4c–e for the corresponding similarity fusion procedure. The fused 
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Fig. 1.6  Data tables illustrating group fusion of similarity and rank values: a and b depict the 
procedure for group fusion of similarity values. c, d, and e depict the corresponding procedure for 
fusing rank values
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values obtained by the RRF rule are given in the far right column of Fig. 1.6d, and 
the combined values are then permuted, i.e., 1

GF GF

( )j i
R R iπ −→ = , in increasing order

 (1.43)

to yield the final fusion-based ranking. Whichever rule is used, the superior per-
formance of group fusion makes it the preferred method for carrying out similarity 
searches [103].

Either the reordered similarity values or compound rankings can be used as a 
basis for subset selection. Furthermore, although group fusion provides improved 
results over both single similarity and similarity fusion approaches, it requires mul-
tiple reference compounds, which may not always be readily available. Even when 
such data are available, they usually are the result of early-phase HTS experiments 
and hence may, to a degree, be suspect. However, as discussed in the following 
section, a modification of group fusion called turbo similarity suggests that even 
somewhat erroneous data may not unduly affect the results obtained using group 
fusion.

1.2.3.3  Turbo Similarity

As noted in the previous section, a variant of group fusion called turbo similar-
ity has also shown promise [104–106]. Turbo similarity provides a procedure for 
applying group fusion when only a single active is known and is based on the fol-
lowing procedures: (1) compute the similarity of the known (reference) active with 
respect to all of the molecules in a DB of unscreened compounds; (2) order the list 
with respect to decreasing similarity or increasing rank values; (3) choose a subset 
of the highest scoring or ranked compounds that, based on the SPP [13–15] (see 
Sect. 1.3.1 for details), are assumed to be active; and (4) use these putative active 
compounds as the set of reference compounds in a group-fusion-based similarity 
search as described in the previous section (see also Table 1.3 and Fig. 1.6). Note 
that either the MAX rule with respect to similarity or the RRF rule with respect to 
rank values can be applied with nearly comparable effectiveness ( vide supra). A 
recent study [52] has shown that frequency weighting the components of structural 
FPs leads to improved results obtained with turbo similarity searching.

Interestingly, turbo similarity is reminiscent of library search procedures, where 
a given query yields a set of hits, each of which is used in a subsequent query to 
broaden the search [107].

1.2.4  Validating Similarity-Based Approaches

Although model validation is an important requirement in the development of com-
putational methods, there are cases where it can become problematic. One such 

1 1 1
GF GF GF

(1) (2) ( )n
R R Rπ π π− − −< < <�
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case is molecular similarity. Due to its subjective nature, well-defined values of 
molecular similarity do not exist. Hence, directly assessing the results of similarity 
calculations is not possible, and indirect methods must be used. These methods are 
typically based on the SPP noted in Sect. 1.3.1 (see also [13–15]) and assess the 
recovery rates (or some related measure) obtained from similarity searches of large 
compound DBs containing known actives [108, 109]. Two such measures are the 
recall and precision of compound retrievals given, respectively, by

 (1.44)

These measures, although relatively widespread, have a number of deficiencies, one 
of which is that they do not sufficiently account for “early enrichments” in sets of 
retrieved compounds. This issue can be dealt with using cumulative recall curves, 
which plot the fraction of actives against the number of compounds retrieved [108, 
109]. These curves are similar to receiver operating characteristic (ROC) curves. 
Truchon and Bayly [110] have provided a detailed analysis of their application to 
virtual screening methods.

Significant issues remain that can confound attempts to assess the validity of 
similarity measures: (1) Untested DB compounds are assumed to be inactive, an 
assumption that is problematic at best. (2) The presence of activity cliffs [111–113], 
which arise when small changes in structure are associated with large changes in 
biological activity, although rare, represent violations of the SPP giving rise to what 
Stahura and Bajorath call the “similarity paradox” [114]. (3) The surprising preva-
lence of similarity cliffs [7, 8], which in contrast to activity cliffs occur when small 
changes in activity are accompanied by large differences in similarity, suggests that 
active compounds tend to be scattered throughout CSs, although they are likely 
to be found in multiple clusters of actives, not as singletons, dispersed through-
out those spaces.7 (4) As noted earlier, similarity measures are not invariant to the 
representation and similarity coefficient used. This lack of invariance leads, either 
directly or indirectly, to the notion that combining the results obtained from mul-
tiple similarity measures, as discussed in Sect. 1.2.3, can yield improved results in 
molecular similarity analyses.

The prevalence of similarity cliffs noted above also provides a rationale, albeit a 
tentative one, as to why group fusion (Sect. 1.2.3.2) performs as well does. Numer-
ous analyses by Willett and his colleagues show that it appears to work best with 
diverse rather than highly similar reference sets [92, 94, 106]. Their conclusion 

7 It should be noted that similarity cliffs are more general than scaffold hops since all scaffold 
hops do not result in compounds that are highly dissimilar, as may be the case when the scaffolds 
associated with scaffold hops are approximate bioisosteres or compounds with dissimilar scaffold 
nonetheless have similar overall structures.
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is consistent with the unexpectedly high occurrence of similarity cliffs in pairs of 
active compounds. In fact, in more than 50 % of the cases where both compounds 
in a compound pair are active (i.e., K ~ 7)ip , the compounds are also dissimilar [7] 
(cf. [115]8).

The significant presence of similarity cliffs suggests that similarity search meth-
ods that rely on single active reference compounds, regardless of whether single 
or multiple similarity measures—as in similarity fusion—are used, will by their 
very nature miss a significant portion of potentially active compounds because only 
the top scoring or highest-ranked compounds obtained in similarity searches are 
typically chosen—compounds located further down the ordered list are routinely 
ignored.

Group fusion, on the other hand, employs multiple reference actives and, as not-
ed above, performs best when the reference compounds are as diverse as possible. 
Hence, the dispersion of active compounds is explicitly accounted for by the meth-
od, although the available reference set may not, in many cases, provide sufficient 
coverage of all of the regions of CS that contain active compounds with respect to 
the given assay, and some actives will undoubtedly be missed.

Because group fusion uses either the MAX rule for similarities or the RRF rule 
for rankings, compounds located close to the reference compounds are given prefer-
ence over more distant, less similar compounds, a situation that accords well with 
the SPP since compounds located close to known actives are more likely to also be 
active than are less similar compounds. Thus, the performance of group fusion can 
be rationalized by the significant presence of similarity cliffs in activity landscapes.

1.2.5  Computational Versus Perceptual Aspects Molecular 
Similarity Measures

The computational methods described above provide algorithms for computing mo-
lecular similarities, albeit imperfect ones, due to the inherently subjective nature 
of similarity. This, however, begs the question as to how these similarity measures 
accord with the perceptions of chemists, an issue that has been discussed in more 
detail in several recent publications [10, 34]. An important question in this regard 
is whether similarity scales used intuitively by chemists agree with those obtained 
computationally. The answer, as we shall see, is that they do not.

Essentially, all computed similarity values lie on the unit interval [0,1] of the real 
line (more correctly the unit interval of the rational line). Highly similar molecules 
have values at the high end of this scale, while dissimilar molecules tend to lie at 
the lower end. Humans can, in general, assess the similarity of very similar objects, 
as chemists can assess the molecular similarity of molecules with similar structures. 
But what happens when molecules become less similar (more dissimilar)? There 

8 Even though the overall percentage of active compounds in large DBs is usually quite small, 
since most compounds are inactive in a given assay, the fraction of those actives where both com-
pounds of a compound pair are approximately of equal activity can be significant.
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is basically no issue with computational similarity measures, but humans, on the 
other hand, find it increasingly difficult to assess the degree of similarity of highly 
dissimilar objects. Beyond some point, all that can be said is that the objects are 
“not very similar,” but the degree of similarity becomes moot. This is also true for 
chemists’ assessments of highly dissimilar molecules.

Is this difference between computational and perceptual measures of similarity 
important? Since chemists are unable to perceive low degrees of similarity among 
molecules, low values of computed similarity do not have any explicit “structural 
meaning,” at least to chemists. Because of this, it is difficult for chemists to make 
meaningful structural inferences as would be required when, for example, assessing 
the diversity of or clustering a compound library, or evaluating compounds for acqui-
sition [116–118]. Computers, on the other hand, are not saddled with this perceptual 
limitation, and thus can handle similar and dissimilar molecules with equal ease.

Another matter bears on the issue of computation versus perception of struc-
tural similarity. In the former case, as described in previous sections, the similarity 
value obtained depends on the molecular representation used, the weighting of its 
components, and the similarity coefficient. Changing any or all of these can result 
in significant changes to the computed similarity values. By contrast, perception of 
molecular similarity depends on a chemist’s training, experience, and the field of 
chemistry in which they work. For example, a synthetic organic chemist might fo-
cus on likely sites of substitution, a medicinal chemist on the placement and nature 
of pharmacophoric groups, and a physical chemist on the electron distribution or the 
energy of a molecule’s highest-occupied and lowest-unoccupied orbitals.

1.3  Chemical Spaces

The amount of chemical information is growing exponentially. Thus, a framework 
is needed for dealing effectively with the flood of information. The concept of CS 
provides such a framework. In analogy to mathematical spaces, CSs are specified 
by a set of molecules and a binary relation that characterizes the relationship of one 
molecule to another and is typically based on some type of similarity, dissimilarity, 
or distance measure. Importantly, the notion of CS provides a basis for the well-
known SPP that explicitly or implicitly underlies many applications of similarity in 
chemical informatics ( vide infra) and is discussed in the following section.

CSs come in three flavors: (1) coordinate based, (2) cell based, and (3) graph or 
network based. Multidimensional vectors with continuous, real-valued components 
define the positions of molecules in coordinate-based CSs. The value associated 
with each of the coordinates is obtained from one of a wide variety of property 
descriptors discussed in Sect. 1.2.2.1. A simple 3-D example is given in Fig. 1.7a, 
but since these spaces are generally greater than dimension three, their graphic por-
trayal requires some type of reduction in the dimensionality of the space. Details of 
how this can be accomplished will be described in Sect. 1.3.2.

By contrast, compounds in cell-based CSs reside in p-dimensional hypercubes 
called cells that partition the original p-dimensional coordinate-based CS. Cell-based 
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partitioning is a coarse-grained approach that lowers the resolution of the space but 
does not necessarily reduce its dimensionality. Nevertheless, it offers potential ad-
vantages for handling a number of procedures commonly carried out in chemical in-
formatics, some of which will be discussed in more detail in Sect. 1.3.3. Figure 1.7b 
depicts a cell-based CS associated with the coordinate-based space illustrated in 
Fig. 1.7a. Other types of partitioning methods such as recursive partitioning have 
also been applied to molecular systems [119–121]. However, it should be noted that 
recursive partitioning and other tree-based decision methods generally fall in the 
class of supervised machine learning methods, while cell-based and clustering meth-
ods generally, but not always, fall into the class of unsupervised methods.9

The third type of CS representation is illustrated by the mathematical graph de-
picted in Fig. 1.7c called a reflexive, labeled or simple, labeled graph. The term 

9 Supervised machine learning methods typically try to model the relationship of a set of predic-
tor (independent) variables to a set of known values (e.g., biological activities and/or solubilities) 
associated with one or more dependent variables. Unsupervised methods only require information 
associated with predictor (independent) variables (e.g., physicochemical descriptors).
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“reflexive” indicates that that each vertex possesses a graph loop, while the term 
“labeled” indicates that each vertex and edge may be labeled by a set of alphanu-
meric characters or numbers that describe the properties of these graph entities. 
In the present application, each vertex corresponds to a molecule and each pair of 
molecules may or may not be connected by an edge labeled by the value of a pair-
wise property associated with the two molecules. In contrast to the previous two CS 
representations, this is a relational model that provides a faithful, discrete repre-
sentation of CSs. More specifically, the edges represent binary relations associated 
with similarities, dissimilarities, or distances among compound pairs and the nodes 
are associated with individual compounds. Because CSs typically contain many 
compounds, the graphs representing them are quite large and generally fall under 
the rubric “networks.” Network research has experienced extremely rapid growth 
over the past decade in a number of fields from social science [122] to biology and 
medicine [123–126] as well as in the popular literature [127, 128]. In this regard, 
the book by Newman not only provides an excellent overview of many aspects of 
networks but also addresses a number of algorithmic issues associated with them 
that are critical to their effective application [129].

Although the network model of CS is not in extensive use today, it corresponds 
closely to the data model of a new graph-based DB technology [130], and thus may 
provide an additional incentive for adopting this model for future work in chemi-
cal informatics. Details of how networks can be applied to the study of CSs are 
provided in Sect. 1.3.4.

1.3.1  Similarity-Property Principle

The SPP plays a major role in chemical informatics since it provides a crucial link 
between the similarity of molecules and their corresponding bioactivities or proper-
ties. Wilkins and Randic formally described this principle, which now seems in-
tuitively obvious, in a seminal paper published more than three decades ago [13]. 
Although “similarity” arguments had been advanced in chemistry before this time 
(cf. [9]), none directly addressed the structural similarity between molecules in a 
computationally amenable form. In the late 1980s and the early 1990s, the SPP 
was reiterated [14, 15] and since that time has played a substantive role, explicitly 
or implicitly, in numerous studies associated with similarity searching and virtual 
screening.

While the SPP obtains in most cases, there are some notable exceptions such as 
the presence of activity cliffs [111–113], which arise when pairs of similar com-
pounds exhibit significantly different activities leading to quasi-discontinuities10 in 
their corresponding CSs [131, 132]. Although statistically rare [7, 8], activity cliffs 
provide significant SAR information because they afford a means for identifying 

10 Since CSs are inherently discrete, the concept of discontinuity, which applies to continuous 
systems, is only approximate. Thus, “discontinuities” in these spaces, such as those arising from 
the presence of activity cliffs, are denoted as quasi-discontinuities.
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small structural changes, for example, the presence or absence of a functional group, 
that are associated with correspondingly large changes in activity.

Another quasi-discontinuous feature occurs in the case of similarity cliffs that, 
in contrast to activity cliffs ( vide supra), represent compound pairs where small 
changes in biological activity are associated with large changes in similarity ( vide 
supra Sect. 1.2.4). Thus, these cliffs are related to the notion of target promiscuity 
that stands in sharp contrast to the better-known notion of compound promiscuity 
associated with polypharmacologies [124, 133]. The fact that similarity cliffs are 
the most prevalent feature observed in activity landscapes for active compounds [7, 
8] implies that target promiscuity is also more prevalent than heretofore had been 
assumed. Taken together, both concepts reinforce the idea that compound specific-
ity may be a difficult goal to attain in many instances.

As noted earlier, since similarity measures are not invariant to the representation 
or similarity coefficient employed, small differences with respect to one measure 
may not be comparably small with respect to another measure. In such cases, ac-
tivity cliffs themselves will not be invariant to similarity measure [10, 34, 41], an 
uneasy state of affairs that raises the question of whether activity cliffs actually 
exist [134]. Alternative representations based on matched molecular pairs (MMPs) 
have sought to address this question using the 2-D structural representation favored 
by chemists, but entirely quantitative results have yet to be obtained [135, 136]. 
Because of its inherent subjectivity, it is unlikely that invariant values (absolute 
values) of molecular similarity can ever be obtained. Nevertheless, while it may be 
difficult to quantitate the magnitudes of activity cliffs, there is no doubt that they 
exist since many examples of “small” structural changes, as perceived by medicinal 
chemists, have resulted in relatively large activity differences [134].

Based on earlier work by Brown and Martin [17, 18], Martin et al. [137] have 
provided an updated assessment of the SPP in medicinal chemistry. They examined 
a large dataset containing the results from more than 100 different HTS assays and 
concluded that there is only about a 30 % chance that a compound with a Tanimoto 
similarity value ≥ 0 85.  (based on daylight FPs [138]) to a known active is also ac-
tive, significantly revising an earlier estimation of 80 % [139] (cf. [140]). However, 
a recent publication [34] has shown that such thresholds may not, in any case, be 
statistically significant.

Steffen et al. [141] have described a novel approach to the SPP that differs sig-
nificantly from typical FP methods. In their work, these authors employed a vec-
tor representation, where the vector components are categorical variables [41] and 
are based on the activities of compounds with respect to each one of a fixed set 
of assays. Hence, the vectors live in “biological activity space” not, as is usually 
the case, in some form of structure space. This enables the potential identifica-
tion of compounds with similar biological activity profiles that are structurally 
dissimilar—compound pairs that fall into this class are related to similarity cliffs 
( vide supra) [7, 8]. These authors also showed that representations that included 
physicochemical or pharmacophoric features were generally better able to retrieve 
dissimilar compound pairs with similar biological activity profiles. Importantly, this 
work opens up new possibilities in the study and application of the SPP.
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Given the caveats described above, it is important to remember that the SPP 
is applicable to any type of CS regardless of how it is represented ( vide infra). 
Today, the SPP is applied explicitly in many areas of chemistry, but particularly in 
medicinal chemistry. It might be said that the SPP, whether it is used explicitly or 
implicitly, is one of the foundations of medicinal chemistry.

1.3.2  Coordinate-Based CSs

The most common representation of coordinate-based CSs is as a set of points, each 
representing an individual molecule, embedded in a multidimensional Euclidean 
space much like the stars and planets in our galaxy. In general, p-dimensional Eu-
clidean spaces have p orthogonal coordinate axes, and each of the n points occupy-
ing the space is described by a p-dimensional vector as that given in Eq. (1.27). The 
set of row vectors can then be combined into the n p× − dimensional  data matrix 
given in Eq. (1.28), which contains the molecular and/or chemical information as-
sociated with the entire set of compounds. The relationship between any compound 
pair can be assessed in several ways: (1) by any of the vector-based similarity coeffi-
cients described in Eqs. (1.34)–(1.36), (2) by any of the corresponding dissimilarity 
coefficients described in Eqs. (1.37) and (1.39), or (3) by the Euclidean distance in 
CS between two molecular feature vectors as described in Table 1.2 and Eq. (1.38).

Figure 1.7a provides an illustration of a simple model 3-D CS. The five color-
coded compounds are, respectively: Cpd-1, an active colored in red; Cpd-2, its 
nearest neighbor colored in green; and Cpd-3, Cpd-4, and Cpd-5, the three next 
nearest neighbors, colored in blue, are ordered with respect to decreasing similarity 
(or increasing dissimilarity or distance) with respect to Cpd-1. Thus, Cpd-3 is nearer 
to Cpd-1 than Cpd-4, which is closer than Cpd-5.

Figure 1.8a portrays a 3-D projection of a real, six-dimensional (6-D) 3-D BCUT 
CS; additional details on its construction are supplied in Sect. 1.3.3.2. The projec-
tion is with respect to the three most significant BCUT descriptors that are de-
rived from the electronic (“Elec”), hydrophobic (“HPhob”), and hydrogen-bonding 
(“HBond”) features of atoms (see Sect. 1.2.2.1 for a more detailed description of 
BCUT descriptors). A diverse set (“Diverse”) containing approximately 175,000 
compounds is depicted in yellow; a combinatorially generated set (“Combi”) con-
taining approximately 150,000 compounds constructed from a set of 40 different 
scaffolds, is depicted in red. It is clear from the figure that Combi, which is of nearly 
comparable size to Diverse, covers only a small fraction of the CS covered by the 
latter. Figure 1.8b shows a magnified version of the CS shared by both collections.

The fact that many data spaces including CSs possess more than three dimen-
sions has, over the years, generated a significant amount of effort in the devel-
opment of dimensionality reduction techniques. There are three main reasons for 
reducing dimensionality. The first and most obvious is that graphical depiction of 
the space is restricted to three or fewer dimensions. The second and more important 
reason is due to the “curse of dimensionality” [142] that occurs because the data 
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distribution becomes more sparse as the dimension of the space increases. Thus, in 
order to ensure balanced or comparable coverage of the resulting higher-dimension-
al space requires an increase in the amount of data, which becomes more difficult 
to achieve as the dimension increases. Higher-dimensional spaces can also exhibit 
idiosyncratic behaviors that are difficult to comprehend [143]. The third reason is 
that the intrinsic dimension of the data may be considerably lower than its apparent 
dimension and may in some cases be confined to a non-Euclidean subspace, which  
could also be nonlinear. As discussed in Sect. 1.3.2.3, distances between points 
in non-Euclidean subspaces are generally different than they are in the Euclidean 
space in which they are embedded.

1.3.2.1  Coordinate-Based CSs Derived from Structural FPs

Constructing coordinate-based CSs from low-dimensional vector representations, 
which is relatively straightforward, is exemplified by BCUT descriptors described 
in Sect. 1.2.2.1. Figure 1.8 depicts an example of a 3-D BCUT chemical subspace 
projected from the original 6-D BCUT CS. Today, a common means for represent-
ing molecules is by their structural FPs. However, their direct use in the construction 
of coordinate-based CSs is beset by a number of problems that include: (1) they are 
generally of very high dimension, usually in the range of ~ 150–2000, and hence are 
plagued by the curse of dimensionality [142] and (2) their coordinates are generally 
binary or integer valued and thus are not compatible with the types of continuous, 
real-valued CS representations described above. Nevertheless, structural FPs can 
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Fig. 1.8  a Example of a three-dimensional projection of a six-dimensional 3-D BCUT CS con-
taining ca. 175,000 molecules depicted in yellow, and a combinatorial library of ca. 150,000 
molecules depicted in red. b Magnified version of the region of CS shared by both sets of mol-
ecules (See Section 2.2.1 for description of BCUT descriptors). (Figure kindly provided by Veer 
Shanmugasundaram)
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be transformed into continuous, real-space coordinates in a number of ways usually 
through the computation of some pairwise measure that characterizes the relation-
ships among the molecules of the set. These relationships are typically associated 
with the similarity or dissimilarity coefficients described in Sect. 1.2 or with some 
type of CS distance such as the Hamming distance [60].

A distinct advantage of this approach is that any type of representation can be 
used that affords a means for computing a similarity, dissimilarity, or distance mea-
sure. For example, chemical graphs [16], which cannot be treated using a purely 
coordinate-based approach, can be handled in a straightforward, albeit somewhat 
computationally demanding, manner [41]. Recent work on graph-based Kernel 
methods provides a novel means for extending and generalizing methods for com-
puting similarity coefficients [144].

Given that a matrix of similarity, dissimilarity, or distance values can be com-
puted for each unique pair of molecules, the question now becomes, “How can this 
array of values be transformed into a set of coordinates that define the positions 
of molecules in a coordinate-based CS?” In this regard, most efforts in chemical 
informatics have generally focused on five main techniques: (1) principal com-
ponent analysis (PCA) [145], (2) principal coordinate analysis (PCoA) [145], (3) 
multidimensional scaling (MDS) [146], (4) nonlinear mapping (NLM) [147], and 
(5) factor analysis [148]. All five methods provide the means for constructing low-
dimensional representations of CSs. A recent review by Shanmugasundaram and 
Maggiora [41] provides additional details and references to these methods.

Although any of the five methods would suffice, PCA, a method used in many 
chemical informatics applications, will be employed here as an example of how CSs 
can be constructed from several varieties of structural FPs. Consider the similarity 
coefficient values of a set of n molecules computed with respect to some type of 
structural FP that generates an n n× − dimensional  symmetric matrix of similarity 
coefficients11

 (1.45)

where si j,  corresponds to any of the similarity coefficients described in Sect. 1.2. 
There is no need to scale these values since they are all on the same scale and lie on 
the unit interval [0,1] of the real line.

Although the matrix does not have the form of a typical data matrix, the simi-
larity values can, nevertheless, be thought of as descriptor values. Consider, for 

11 In mathematics these are generally called Gram matrices and in statistics are usually called as-
sociation matrices.
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example, the i, jth element of Sn n×
, which can be interpreted as the similarity of 

the ith molecule in the set of n molecules with respect to the jth “descriptor mol-
ecule”. In this case, the n “descriptor molecules” are taken from the same set of n 
molecules under study—a generalization of this approach was recently described 
[149]. As was suggested by Kruscal [150], square symmetric matrices such as Sn n×  
can be handled in exactly the same manner that general data matrices are treated 
using PCA:

 (1.46)

the eigenvalues

 (1.47)

which are ordered from largest to smallest, are related to the variances in the new, 
transformed coordinate system12

 (1.48)

such that the percent of the total variance corresponding to the ith eigenvalue is 
given by

 (1.49)

Thus, to graphically depict a CS in three dimensions, the transformed coordinates 
associated with the first three eigenvalues will suffice, i.e.,

 (1.50)

Note, however, that the entire mean-centered similarity matrix Sn n×  is required.
Although this procedure provides a reasonably straightforward approach to the 

construction of low-dimensional CSs, the number of compounds that can be handled 
is somewhat limited because determining the transformed coordinates requires di-
agonalization of the n n×  covariance matrix, which becomes difficult for n > 2500
, although there are ways that this limitation can be overcome, for example, by using 
real time PCA [151].

Figure 1.9 shows examples of CSs constructed with respect to four different 
binary FP representations using the similarity-based PCA procedure described in 
the previous section. The first two examples are based on atom pair and MACCS 
key FPs that were discussed in some detail in Sect. 1.2.1.1. Of the latter two, both 

12 Note that the coefficient (n − 1)−1 would, if ignored, merely scale the eigenvalues by n − 1; the 
eigenvectors are unaffected.
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of which are available in molecular operating environment (MOE) [152], TGD FPs 
are similar to those in atom pairs, while the piDAPH4 are related to FPs whose 
components are 3-D pharmacophores [153]. Hence, in contrast to the first three, 
piDAPH4 FPs contain some 3-D structural and stereochemical information. The 
Tanimoto similarity coefficient given in Eq. (1.8) was used to compute the similar-
ity value in all four cases.

A total of 2250 molecules comprising nine classes of 250 molecules each were 
considered. The molecules in each class are color coded as follows: approved drugs 
(cyan), natural products (light green), a general screening collection from two ven-
dors (magenta), compounds targeted to adenosine receptors (blue), and five in-
house combinatorial libraries from the Torrey Pines Institute for Molecular Studies 
(depicted red, yellow, green, black, and light blue). The first three PCs account for 
80.8, 85.9, 90.3, and 73.0 % of the total variance in the data associated with the atom 
pair, MACCS key, TGD, and piDAPH4 FPs, respectively.

Although some of the variance in the data is not accounted for in the 3-D plots, 
a significant portion of it is. Hence, it is possible to draw some conclusions, albeit 
qualitative ones, from the distribution of compounds associated with the four differ-
ent FP representations. It is quite obvious from the figure that the four different FP 
representations lead to dramatically different graphical portrayals of the CS distribu-
tions of the same set of compounds, a not unexpected but visually dramatic example 
of the non-invariance of similarity measures and its consequences. Interestingly, in 

Fig. 1.9  Depictions of CSs generated from Tanimoto similarity coefficients computed with respect 
to binary FPs associated with four different types of descriptors—APF, MACCS key, TGD, and 
piDAPH4. (Adapted from Medina-Franco & Maggiora, Molecular Similarity Analysis [10])
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some cases, substantial differences arise even within individual compound classes, 
as shown, for example, by the class of approved drugs colored in cyan. Of even 
greater interest is the graphical depiction in Fig. 1.10 of the distribution of the same 
set of compounds with respect to similarity fusion based on the mean of the simi-
larity values (see Table 1.3). The results depicted in Fig. 1.10 differ significantly 
from any of those depicted in Fig. 1.9, which are based on the values of individual, 
“unfused” similarity measures obtained with respect to four different binary FPs.

It is important to note that graphical depictions described in this section are 
meant primarily as a means for enhancing intuition about the relationships among 
molecules in CSs. If quantitative analyses are required, detailed computations can 
be carried out using the full, multidimensional representation of the molecules in a 
dataset, as noted earlier.

1.3.2.2  Non-Euclidean Coordinate-Based CSs

The fact that CSs must have fewer than four dimensions for their graphical depiction 
is obvious. A less-well-known and much more subtle point is that high-dimensional 
data, in general, and CSs, in particular, may lie on lower-dimensional curved (i.e., 

Fig. 1.10  Depiction of a CS generated from mean fusion of similarity values obtained from Tani-
moto similarity coefficients computed with respect to binary FPs associated with APF, MACCS 
key, TGD, piDAPH4 descriptors. (Adapted from Medina-Franco & Maggiora, Molecular Similar-
ity Analysis [10])
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non-Euclidean) manifolds that are embedded in higher-dimension Euclidean spaces 
( vide supra). A simple example is given in Fig. 1.11, which depicts a 2-D hyper-
bolic manifold embedded in a 3-D Euclidean space. The important point is that 
the distance between points A and B depends on the space in which the distance is 
being evaluated. In the example, the Euclidean (“straight line”) distance is clearly 
less than the geodesic distance measured along curved surface of the 2-D manifold. 
Thus, molecules A and B are judged more similar if considered in Euclidean CS 
than if their similarity was assessed on the 2-D manifold defined by the hyperbolic 
surface depicted in Fig. 1.11 that more accurately represents the data (in this toy 
example).

Figure 1.12 provides a more “down to Earth” example that clearly illustrates the 
difference between the two distance measures. In this case, the Euclidean distance is 
given approximately by the air miles between the American cities of Seattle, Wash-
ington and Miami, Florida which is about 2730 miles. By contrast, the geodesic 
distance between these two cities, measured along the US highway system is about 
3300 miles, which represents about a 20 % increase in miles by car.

The paper by Agrafiotis and Xu provides a number of examples illustrating geo-
desic distances [154]. Although these authors published two more papers on this 
subject [155, 156] very little else has been published in the chemical information 
literature. This is obviously an important area of future research since it is one of 
several factors that can significantly influence the computed values of CS distances 
and, hence, the inferences that can be made about the compounds in a CS.

Lastly, it is well to point out that similarity values that lie on the unit inter-
val [0,1] of the real line can be obtained by transforming Euclidean distances, d, 
or non-Euclidean geodesic distances, �d , using any one of a number of different 
mathematical expressions, one possibility being

 (1.51)�
, ,1 / [1 · ],i j i js dη= +

Fig. 1.11  Example of a 
Euclidean distance and the 
corresponding geodesic 
distance of two compounds in 
a model CS. The surface ren-
dition is by Sam Derbyshire, 
http://creativecommons.org/
licenses/by-sa/3.0
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where the parameter 0η >  controls the rate at which the similarity value changes 
as a function of distance.

1.3.3  Cell-Based CSs

Cell-based partitionings of CSs [76, 157] are identical to partitions of mathematical 
spaces into families of nonintersecting subsets that cover the spaces. Thus, the set 
of Ncells

 cells that constitutes a cell-based CS is given by:

 (1.52)

and satisfies

 (1.53)
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Fig. 1.12  Car ( blue-grey) vs. air ( red) routes from Seattle, Washington to Miami, Florida. 
(Adapted from Google Maps)
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Each cell corresponds to an equivalence class, and the molecules within it are 
hence, in some fashion at least, equivalent. The many-to-one set-valued mapping13 
depicted in Fig. 1.13 takes molecules in a p-dimension coordinate-based CS to one 
of the cells of the corresponding cell-based space, i.e.,

 (1.54)

Thus, the location of compounds in cell-based CSs is given in two ways, namely, 
by their coordinates in the underlying coordinate-based CS, and by the address of 
the cell in which they reside. Figure 1.13 also shows that some cells in cell-based 
spaces are empty since only 15–20 % of the cells in cell-based CSs are typically 
occupied. It is also interesting to note that cell-based CSs are very similar to the 
multi-way contingency tables used in many statistical applications [158], except for 
the fact that contingency tables rarely have cells with zero values.14

The procedure for constructing virtually all cell-based CSs is basically a two-
step process:

• Generation of an appropriate low-dimensional coordinate-based CS
• Binning each of the axes of that space in such a way that the occupancy of the 

bins optimally covers the CS

The first and perhaps most important step in the process is the selection of suitable 
sets of reference compounds and descriptors, since they both play major roles in 

13 In function notation, the mapping in Eq. (1.54) is given by 
Φ( ) , , , , ; , , ,xi k i n k N= = … = …C cells1 2 1 2 .
14 Note that there are a number of “correction factors,” such as the well-known Laplace correction, 
that can be applied to the cells of a contingency table to correct for empty cells.
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determining the nature of the CSs ultimately generated. While it is well appreci-
ated that descriptor selection is important, the role played by the reference set of 
compounds is perhaps less well appreciated but is nonetheless crucial to the final 
form of the CS generated. Potential compound sets include corporate compound 
collections, publically available collections [25] such as ChEMBL [19], PubChem 
[20], ChemDB [21], and DrugBank [22], or sets of compounds suited to some spe-
cific tasks. In the latter case, for example, if the goal is to compare two large sets of 
compounds, it is desirable to combine the sets since the resulting CS will be more 
“balanced” and, hence, will take better account of the influence that molecular fea-
tures missing in one of the two collections may have on the overall representation 
of the resulting CS. Alternatively, if the goal is to generate diverse subsets for an 
HTS campaign, the corporate compound collection from which the sample will be 
drawn, may be the best choice. These are just two of the many possibilities that can 
be considered, some of which will be presented in the sequel.

The second step in the process involves binning each axis of the coordinate-
based CS yielding a total number of cells given by

 (1.55)

As an example, consider a typical 6-D coordinate-based CS with seven bins per 
axes, which will generate a cell-based CS containing 117,649 cells. Although bins 
generally are of equal size on each axis, this is not required as discussed by Bayley 
and Willett [159]. Choosing an appropriate number of bins per axis is also impor-
tant: If the number is too large, numerous cells will be unoccupied—normally a 
number of “occupied” cells around 15–20 % appears to be reasonable. In this re-
gard, it is important to note that in many types of cell-based analyses, including the 
above, the specific number of compounds in a given cell is not enumerated, only if 
the cell is occupied by at least some number of compounds (usually one) called the 
cell occupancy threshold value.15

Lastly, while cell-based CSs used in cheminformatic studies are generally parti-
tioned into hypercubes, other possibilities exist that may offer more effective ways 
to partition these spaces. Rush [160] has mathematically explored some of the pos-
sibilities, but practical applications in chemical informatics have not to my knowl-
edge been carried out to date.

Figure 1.7b portrays a model cell-based CS for the same set of compounds de-
picted in Fig. 1.7a. Although this example is oversimplified, cell-based CSs, nev-
ertheless, are typically around 3-D to 6-D. Cpd-1, the active compound indicated 
by the red dot, its nearest-neighbor Cpd-2 indicated by the green dot, and two of 
its next nearest neighbors, Cpd-4, and Cpd-5 indicated by the blue dots, all reside 
within the same cell. Hence, from a cell-based perspective, all four compounds are 
considered to be roughly equivalent. On the other hand, Cpd-3, which is nearer to 
Cpd-1 than either Cpd-4 or Cpd-5, resides in a neighboring cell, and thus, from a 

15 A similar situation exists in the case of threshold graphs obtained from labeled graphs when the 
edge values exceed some threshold value. Details of this are described in Sect. 1.3.7 on graph-
based CSs.

N N N N
pcells bins bins bins= × × ×

1 2
�
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cell-based perspective, is not considered to be equivalent to any of the compounds 
in the neighboring cell. This illustrates one of the limitations of the cell-based ap-
proach, which does not explicitly employ the concept of nearest neighbor cells, 
although the position of compounds in the underlying coordinate-based CS does 
afford the possibility for identifying nearest neighbors.

Clustering provides an additional way to partition CSs into a set of nonintersect-
ing subsets that cover the space [161]. Although clustering methods have some ad-
vantages over cell-based partitioning, they are difficult to apply to datasets as large 
as those that can be handled relatively easily using a cell-based approach. For exam-
ple, the addition of large numbers of new molecules can significantly alter cluster-
ings. This is not a problem in the cell-based case since the CS partitioning scheme 
is effectively compound independent—adding new compounds does not change the 
partitioning scheme. Moreover, many methods such as k-means clustering require 
specification of the number of clusters and hierarchical methods produce similarity 
(or distance)-dependent clusterings [161]. Lastly, because the clustering methods 
are a vast subject, even when only considered with respect to cheminformatics ap-
plications, no further discussion on this topic is provided in this work.

1.3.3.1  Representations of Cell-Based CSs

The BCUT descriptors described in Sect. 1.2.2.1 have proved to be a popular choice 
for directly constructing low-dimensional CSs. There are, of course, many other 
types of suitable descriptors that, in many cases, cannot be used directly since they 
lead to spaces whose dimension are too high. This can be ameliorated, as discussed 
by Xue, Stahura, and Bajorath [157], using a dimensionality reduction technique 
such as PCA.

The power of the cell-based description lies in its ability to simplify the repre-
sentation of CS, and thus to enhance the speed at which a number of the tasks, such 
as compound acquisition [162], diversity analysis [163], comparison of compound 
collections [77], and LBVS [164] can be performed. But the enhanced speed comes 
at a cost, which may or may not, significantly impact the results obtained. As dis-
cussed above, the cell-based partitioning leads to a coarse-grained representation 
of CS and, importantly, can introduce significant effects at cell boundaries. For 
example, molecules located near a common boundary in adjacent cells are gener-
ally more similar to each other than to many other molecules in their own cells (cf. 
Figs. 1.7 and 1.13). Obviously, this can lead to significant bias depending on the 
actual (not cell based) distribution of compounds in the CS, a problem that is also 
encountered in a number of clustering methods.

1.3.3.2  Example of Cell-Based CSs

The CS was constructed by combining the four compound collections given in 
 Table 1.4 into a single, large collection. Determining the optimal set of 3-D BCUT 
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 descriptors for that augmented collection yielded a 6-D CS upon which all subse-
quent analysis is based. Each axis was then partitioned into seven bins, giving a 
total of 117,649 cells in the 6-D space.

The difference between the Diverse and Combi collections depicted graphically 
in Fig. 1.8 is verified. Several key features in the table supporting this conclusion 
are the comparative number of occupied cells (18,731 and 2434, respectively) and 
the average cell occupancies (9.4 and 61.5, respectively), all of which clearly point 
to the more restricted and dense distribution of compounds in Combi compared to 
that in Diverse. The MDDR collection exhibits similar behavior to that of Diverse, 
although the absolute values of the cell-based parameters are somewhat lower than 
those of Diverse, which is not surprising given that Diverse is nearly twice as large 
as MDDR. Micros is a small, diverse collection of known drugs and related sub-
stances. Given its size, it nonetheless is relatively diverse since only slightly more 
than one compound on an average occupies each of the 516 occupied cells. On the 
other hand, its 516 cells occupied cells are almost insignificant when compared 
to the 18,371 occupied cells in Diverse. Moreover, each occupied cell in Micros 
contains on an average only 1.3 compounds, which again pales in comparison to 
Diverse’s average cell occupancy of 15.6.

These data illustrate two important points about diversity. First, small compound 
collections, which may be relatively diverse with respect to their own set of com-
pounds, may not in an absolute sense contain anywhere near the diversity that can 
potentially be obtained from much larger compound collections. Second, while diver-
sity may confer some advantage in identifying active compounds in HTS campaigns, 
if the diversity is sparsely distributed the chance of identifying actives is significantly 
diminished even if the diversity is widespread in a large compound collection. This 
follows from the fact that in a given assay the percentage of actives within “active 
regions” of CS is still surprisingly small, generally around 10–15 % or less.

The cell-based CS data summarized in Table 1.4, while helpful, are not suffi-
ciently detailed to address more specific questions regarding the similarity or dif-
ference between different compound collections. This is remedied in Sect. 1.3.5.1 
where details for comparing compound collections are described.

Table 1.4  Summary of compound collections in six-dimensional 3-D BCUT chemical space with 
seven bins per axis (total cell count = 117,649)
Compound 
collection

Number of 
compounds

Number of 
occupied cells

Percent 
occupied cells

Average cell 
occupancy

Largest cell 
population

Diversea 173,375 18,371 15.6 9.4 738
Combib 154,474 2434 2.1 61.5 5694
MDDRc 97,409 10,203 8.7 8.5 349
Microsd 799 516 0.4 1.3 7

a Subset of diverse compound collection (see text)
b Combinatorial chemistry library (see text)
c Subset of MDDR collection—Molecular Drug Data Report (MDDR), Version 2005.2; Symyx 
Software: San Ramon, CA, 2005
d Small discovery oriented library—MicroSource Discovery Systems, Inc., Gaylordsville, CT 
06755
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1.3.4  Chemical Space Networks

In addition to the coordinate and cell-based representations just described, CSs can 
also be represented by mathematical graphs. Such graphs provide information that 
is comparable to that provided by similarity, dissimilarity, or distance matrices and, 
as will be seen in the sequel, afford an intuitive as well as solid conceptual basis for 
analyzing many relationships among the compounds populating CSs. Since com-
pound collections can be quite large, their corresponding graphs are also quite large 
and generally fall under the rubric of “Networks.” The development and application 
of network theory, which has burgeoned over the two decades, has been applied in 
numerous fields, including social science, physics, computing, biology, and medi-
cine. A number of “chemically oriented” examples have been reported (see e.g., 
[123–126, 165–167]), and five papers describing the application of networks to the 
analysis of compound collections have been published [168–172]. An investigation 
that examines power laws in chemical systems, as do several of the just cited publi-
cations, has also been published. However, it does not directly address issues related 
to similarity-based networks that describe compound collections [173].

The present section provides a number of examples that elucidate the underlying 
features of networks such as their patterns of vertex connectivity. An understanding 
of these feature patterns is required in order to comprehend the nature of the large, 
complex networks such as those needed to represent CSs; because these networks 
are large, their feature patterns are usually analyzed in statistical terms. An impor-
tant aspect of the network representation of CSs is that it facilitates navigation of 
those spaces since there are powerful graph-based network algorithms for determin-
ing paths between vertices [129] in contrast to the situation in more traditionally 
represented CSs [174].

In order to facilitate understanding of networks, a number of simple examples 
based on the graphs depicted in Figs. 1.7c and 1.14 are presented in the following 
sections. These examples, though simple, illustrate a number of the most important 
network features needed to interpret the statistical data and to understand the nature 
of the CSs being analyzed.

1.3.4.1  Simple Example of a CS Network

As an illustration of the basic features of graphs, consider the reflexive, labeled 
graph 

�
G  depicted in Fig. 1.7c that represents the similarity relations among “hypo-

thetical” compounds 1–5 depicted in Fig. 1.7a, b. A compound identifier, which is 
a number in the present case, labels each vertex and a similarity value labels each 
edge of �G . Since the vertices represent distinct molecules they are distinguishable, 
a feature that influences the statistical mechanical features of networks ( vide infra) 
[175]. As noted earlier, the graph is reflexive because each vertex has an associ-
ated graph loop labeled by the value of the self-similarity16 of the molecule that 

16 Self-similarity is the similarity of the molecule with itself, and thus, its value is always unity. 
Graphs without self-loops and multiple edges between vertices are also called simple graphs.
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corresponds to that vertex. In most practical implementations, edges corresponding 
to self-similarities are omitted for clarity ( vide infra). Since similarity coefficients 
are generally symmetric, i.e., S i j S j i( , ) ( , )= , the edges of the corresponding graph 
do not have directionality. Hence, the networks typically employed can be classified 
as undirected, unlabeled, and simple networks.

There are, however, cases when the use of directed graphs may be desirable as 
in the representation of activity cliffs [112] or where asymmetric similarity coef-
ficients such as those given in Eqs. (1.6) and (1.11)–(1.13) are employed. Graphs 
where each vertex is connected to every other vertex connected are called complete. 
Thus, a complete graph with n vertices has n n( ) /−1 2  edges, and each vertex has 
n −1  edges called its vertex degree.

The similarity matrix given in Eq. (1.56) contains the same information as �G  in 
Fig. 1.7c:

 (1.56)

1.00 0.95 0.90 0.86 0.70

0.95 1.00 0.88 0.91 0.63

0.90 0.88 1.00 0.92 0.69

0.86 0.91 0.92 1.00 0.58

0.70 0.63 0.69 0.58 1.00
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Fig. 1.14  Other CSNs related to that depicted in Fig. 1.7c: a simple, complete CSN, b threshold 
CSN ( St > 0.85); the CSN linking compounds 1–4 is a complete subgraph/network called a clique, 
and c threshold CSN ( St > 0.90); while compounds 1–4 are still linked they no longer form a clique
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Hence, the similarity matrix provides a means for treating graphs algebraically 
[176]. For example, the eigenvalues associated with the matrix representations 
characterize a variety of graph invariants that have seen many useful applications 
in chemical graph theory [16], and although they have not yet been applied exten-
sively in the study of CSs, they, nonetheless, have the potential to provide new and 
interesting insights in graph-based CSs.

The example in Fig. 1.7c is, of course, a great simplification of “real” CSs 
that may contain millions of vertices each corresponding to a specific molecule 
and billions of edges linking the pairs of vertices each labeled by an appropriate 
similarity, dissimilarity, or distance value. In this work, the networks are called 
“CS networks” (CSNs) to emphasize their relationship to CSs. Hence, the graph 
in Fig. 1.7c can be described as a complete-reflexive-labeled CSN. The reflexive 
character of the graph is captured by the values of diagonal elements of similar-
ity matrix, S i i i n( , ) , , , ,= = …1 1 2 . Since the self-similarities do not add any new 
information since they are all the same and of value 1.00, graph loops are routinely 
omitted yielding the simple graph 

�
G , as illustrated in Fig. 1.14a. Such networks will 

be called complete CSNs since each vertex is connected to every other vertex except 
itself as the graph loops have been removed.

Because CSs are so large, their graphical display as CSNs can become visually 
“noisy” and difficult to comprehend for all but the smallest sets of compounds. 
Nevertheless, as in the case of the coordinate-based portrayal of CSs, the graphical 
depictions are only meant to provide an intuitive feel for the underlying relation-
ships associated with the CSN of a large compound collection. Alternative ways 
exist, however, for characterizing and handling the information contained in CSNs. 
Because matrices can provide faithful representations of graphs and networks, this 
affords the possibility that many powerful algebraic techniques can be applied to 
their analysis [177]. Algorithmic techniques, some but not all of which are based on 
the properties of graph matrices, have provided numerous other ways for analyzing 
the properties of graphs and networks. However, because of their size and com-
plexity, information on the characteristic features of networks obtained using these 
methods is commonly reported in terms of the statistical properties of the features, 
as will be described in Sect. 1.3.5.1 [129, 178].

All of the existing publications that describe applications of networks to CS anal-
ysis [168–172] do not use labeled graphs or networks, but rather rely on simpler 
entities called threshold graphs, which are generated by keeping only those labeled 
edges whose values satisfy some threshold as illustrated in Fig. 1.14b, c. In the first 
case, shown in Fig. 1.14b, a similarity threshold value of St > 0 85.  is used. Vertex 5 
is now isolated from the vertices 1–4, which remain fully connected, and thus form 
a complete subgraph of the original graph called a clique. Figure 1.14c provides 
another example based on a higher threshold value of St > 0 90. . Not surprisingly, 
fewer edges remain, and although vertices 1–4 are still connected, they no longer 
form a clique.

An important type of matrix that plays a role in many procedures designed to de-
termine graph/network properties is the adjacency matrix of mathematical graphs and 
networks. The adjacency matrix corresponding to the CSN in Fig. 1.14b is given by
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 (1.57)

Where

 (1.58)

As noted above, the subset of compounds Cpd-1,Cpd- ,Cpd-3,Cpd-42{ }  forms a 
complete subgraph of the threshold graph called a clique, i.e.,H G0 85 0 85. .⊂ . Thus, 
the four compounds are all linked in the threshold CSN, while Cpd-5 is an iso-
lated vertex as reflected by the block diagonal structure of the adjacency matrix 
in Eq. (1.57). Because of the block diagonal structure, each block can be treated 
independently of the others, a form of dimensionality reduction.

If the threshold is raised, to say St > 0 90. , the subset of compounds remains 
linked, but the subgraph induced by the higher threshold H0 90.  no longer forms a 
clique and H H0 90 0 85. .⊂ . Cpd-5, of course, remains an isolated node. In this case, 
the adjacency matrix simplifies to

 (1.59)

Although the block diagonal structure remains, the main 4 4×  block is simpler 
(i.e., has fewer nonzero elements) than that in Eq. (1.57). In any case, whether a 
graph-based or matrix-based representation is used, threshold CSNs provide a com-
prehensive representation of the global “pathways” that connect compounds with 
respect to a given threshold similarity value. As an example, it is possible to deter-
mine the minimum number of edges that must be traversed to go from any given 
compound to another compound given that the similarities of compounds along the 
pathway exceeds the similarity threshold value, a feature that can be useful in large 
screening campaigns but is difficult to carry out in coordinate or cell-based CSs.

As will be seen in the sequel, statistical analyses also play a major role in assess-
ing the characteristic features of networks [129, 177, 178]. In addition, algorithms 
for treating very large systems such as the Internet as networks has given rise to the 
development of many powerful methods for handling mega-networks [179]. Thus, 
representing CSs as CSNs has some distinct advantages as is seen below.

0.85

0 1 1 1

1 0 1 1
0

1 1 0 1 ,

1 1 1 0

0 [0]

  
  
  
  = 
  
  

  

A

,

1 if an edge exists between Cpd-  and Cpd-

0 otherwise i j

i j
a


= 



0.90

0 1 0 0

1 0 0 1
0

0 0 0 1

0 1 1 0

0 [0]

 
 
 
 


 
 
 
= 
 

 
 



A



G. M. Maggiora50

1.3.4.2  Statistical Aspects of CSNs

Vertex Degrees and Degree Distributions Because of their extremely large sizes 
and complexities, networks are typically characterized in terms of the statistical 
properties of their vertices and the relationships among subsets of them. One of 
the most important features of networks illustrated by the simple examples below 
is vertex degree—the number of edges incident on a vertex. 17 The distribution of 
vertex degrees for large random networks follows a Poisson distribution [129] that 
for networks with very large numbers of vertices becomes

 (1.60)

where k  is the degree of a randomly chosen vertex and k  is the mean vertex degree 
of a large random network. Although it remains finite, for large values of k  Pr( )k  
approaches a normal distribution.

It will be seen in the sequel that such networks do not describe typical CSNs. As 
illustrated in Fig. 1.14a, b, the degree of each vertex in a complete graph is given by 
k n i ni = − = …1 1 2, , , , , where n is the number of vertices in the complete graph; 
n = 5  in the current example. In Fig. 1.14a, ki = − =5 1 4 , while for the complete 
subgraph H0 85.  in Fig. 1.14b, k ii = − = = …4 1 3 1 4, , , , while the vertex degree 
of the isolated vertex is, of course, zero. In larger, more complex networks, vertex 
degrees are typically given by statistical distributions as illustrated by the simple 
example in Fig. 1.14c, where

 (1.61)

The degree distribution is the probability a given vertex has k incident edges, i.e.,

 
(1.62)

where the term in the numerator is a sum over all vertices of equal degree, and the 
values corresponding to the example in Fig. 1.14c are

 (1.63)

17 Although it is not addressed here, the vertex degree of directed graphs/networks can be handled 
by assessing the “in-degree” and “out-degree” of a vertex that corresponds, respectively, to the 
number of edges directed towards the vertex and the number directed away from the vertex.
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Degree Correlations: Assortativity Coefficients Degree correlations, also called 
assortativity coefficients, provide a measure of the correlation of vertex degrees 
between pairs of directly connected vertices. It is obvious from Fig. 1.14a, b that degree 
correlations for vertices in complete graphs or subgraphs are unity since all vertices in 
these graphs have identical vertex degrees and hence are maximally correlated. How-
ever, the situation in Fig. 1.14c is more complex. The average vertex degree based 
on the values in Eq. (1.61) is k = + + + + =1

5 0 1 1 2 2 1 2( ) .  and the assortativity coef-
ficients are given by a modified version of the Pearson correlation coefficient [180]18:

 

(1.64)

where G0 90.
 is the threshold graph of G  with respect to a similarity threshold value 

of 0.90, and A0 90. ( , )i j  is the i, jth element of the adjacency matrix correspond-
ing to that threshold graph. Because of the block structure of the adjacency matrix 
in Eq. (1.59) only, the vertices corresponding to Cpd-1 through Cpd-4 need be 
considered in Eq. (1.64).

Carrying out the computation yields a value for the degree correlation of

Transitivity: Mean Clustering Coefficient Another coefficient of interest is the 
transitivity or mean clustering coefficient, C k( ) , of all vertices with k edges, which 
can be computed according to:

 (1.65)

where Nk
 is the number of vertices with k edges and C ki ( )  is the local clustering 

coefficient

 (1.66)

with 
iε  being the number of edges connecting the k neighbors of the ith vertex to 

each other and 1
2 1

2
k k

k
( )− =







 is the number of unique pairs of neighbors. Thus, 

the local clustering coefficient is the ratio of the number of edges connecting the k 
neighbors with each other divided by the total number of possible edges among the 
set of k neighbors.

It is clear from Fig. 1.14c that the transitivity in all cases is zero. By contrast, 
the transitivity of the complete graph in Fig. 1.14a is unity since each vertex has an 

18 Note that the summations are over all unique pairs of vertices (i.e., molecules) and that the coef-
ficient  cancels out of the numerator and denominator of Eq. (1.64).
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identical number of edges and the vertices connected to that vertex are fully con-
nected with each other, hence, [ ]1

2( ) 4·3 4(4 1) 1iC k = − = , which when substituted 
into Eq. (1.65) gives C( )4 1= .

Shortest (Geodesic) Path Lengths/Distances In general, a path between vertices 
can be quite complex as it can include vertices or edges that have been traversed pre-
viously. Here, a special kind of path called a shortest path is considered. Such paths, 
also called geodesic paths, are the shortest distance between two vertices based on a 
count of the number of unlabeled edges in the path. They are not necessarily unique 
since several paths of equal length may exist in the same graph or network. Shortest 
path values are entirely equivalent to graph distances, di j, , and hence satisfy the 
well-known distance axioms [177]. A number of algorithms that exist for determin-
ing shortest paths have been clearly described in Newman’s book [129].

Mathematically, the mean geodesic distance between all unique pairs of vertices 
is given by

 (1.67)

As can be seen in Fig. 1.14b, the shortest (geodesic) path between two vertices of a 
complete, unlabeled graph is unity in all cases. This is not the case for the threshold 
graph in Fig. 1.14c. Computing shortest path lengths in this case is simple since a 
single path connects the four vertices. Hence, for example, the shortest path be-
tween vertex-1 and vertex-4 is of length two and that between vertex-1 and vertex-3 
is three. The corresponding mean shortest (geodesic) path length is, from Eq. (1.67),

 (1.68)

Another feature of shortest (geodesic) paths is of note, namely, they are self-avoid-
ing, as they do not cross themselves. If they did a loop would be formed that could 
be removed without interrupting the traversal of the path between the specified 
vertices. Determining shortest paths can be a challenge for large networks, but as 
noted above, robust path algorithms exist for mega-networks such as the Internet, so 
dealing with CSs while challenging is not out of the realm of possibility.

Small World Effect The small world effect, namely, that the mean geodesic dis-
tance between the vertices in networks defined by Eq. (1.69) is proportional to 
log n, and thus, is generally small for a number of real-world networks (see e.g., 
Table 8.1 in [129]). A common feature of many small-world and random networks 
is that their vertex degree distributions tend to be homogeneous with a peak at the 
mean value of the distribution and an exponential decay, Pr ( ) ~ exp ( )k k− , in its 
tail, giving rise to what are called exponential networks. Interestingly, there are a 

L
n n

d
i

n

i j
j i

n

=
− = =

∑ ∑1

11
2 1( ) ,

[ ] [ ]

0.90 1,2 1,3 1,4 2,3 2,4 3,41
2

1
2

1
( )

( 1)

1 1
1 3 2 2 1 1 10

4(4 1) 6

1.67

L d d d d d d
n n

 = + + + + + −

= + + + + + =
−

=

H



1 Introduction to Molecular Similarity and Chemical Space 53

number of types of small world networks including ones discussed below that also 
exhibit scale-free behavior ( vide infra) [181].

One consequence of the small world effect is the famous “six degrees of separa-
tion” hypothesis, namely, that everyone on Earth is separated by no more than five 
individuals (vertices) and hence six links (edges). That this is not an entirely unrea-
sonable hypothesis is based on the following overly simplistic argument. Suppose I 
have 100 friends each of which has 100 friends, each of which has 100 friends, etc. 
Thus, with only one degree of separation I can connect to 100 individuals, with two 
degrees I can connect to 100 100 10 000× = ,  individuals, and with only three de-
grees of separation I can connect to 100 100 100 1 000 000× × = , ,  individuals. If all 
six degrees of separation are considered, I could potentially connect to one trillion 
individuals, 50 times more than required to connect to everyone on Earth. Although, 
as pointed out by Watts [127] this argument has significant practical flaws, it none-
theless captures some essential features of small-world networks.

Networks exhibiting small-world behavior, hence, can facilitate many processes 
such as communication, the spread of disease, and the speed of inter-server access 
on the Internet. Not surprisingly, as will be discussed in Sect. 1.3.5.2, CSNs tend 
to exhibit small world behavior as well. This is not surprising given the nature of 
molecular and chemical similarity, which in general does not exhibit transitive be-
havior: i.e., if A is similar to B and B is similar to C, it does not in all cases follow 
that A is similar to C. This same phenomenon exists in social networks as well, i.e., 
if A knows B and B knows C it does not mean that A and C also know each other, 
although the likelihood that they do is higher than random chance. As discussed by 
Newman [129], transitivity is related to various forms of clustering coefficients.

Scale-Free Networks The vertex degree distributions of scale-free networks dif-
fer from those of large random networks and many small world networks, which 
are Poisson distributed ( vide supra). By contrast, scale-free networks described by 
Barabási and Albert [182] are nonhomogeneously distributed and follow power 
laws, such that the probability that a random vertex has degree k 19 is inversely 
related to a power of vertex degree, i.e.,

 (1.69)

where κ  is a constant and the exponent 1α >  is a scaling coefficient, which usu-
ally lies in the range 2 3α≤ ≤  for many real-world networks (see e.g., Table 8.1 in 
[129]). Van Steen gives a clear description of why the power law given by Eq. (1.69) 
is scale-free [180]. In addition, the mean shortest path length of scale-free networks 
is proportional to log log n, a value that is much less than the log n behavior noted 
above for many small world networks.

Two important properties of scale-free distributions are that they do not have 
peaks and they decay at much slower rates than the corresponding Poisson and 

19 Note that this can also be interpreted as the fraction of vertices of degree k.

1
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normal distributions. The second property is especially important because it indi-
cates a higher probability that more extreme events may occur than can occur in the 
latter distributions. In this regard, an important example in the case of scale-free 
networks is the presence of vertices with exceptionally high vertex degrees, a situ-
ation that gives rise to highly connected “hubs” interconnected by relatively small 
numbers of edges, a rather extreme form of small world behavior to say the least.

Because of its form, depicting Eq. (1.69) as a log Pr( ) logk kversus  plot should 
result in a straight line if the distribution does follow a power law, at least asymptot-
ically. Proving that it does is not necessarily easy, since some values of k in the tail 
of the distribution may not satisfy the power law relationship. However, as pointed 
out by Newman among others [129], alternatives exist that provide a means for ac-
complishing this, although sometimes it requires removing some of vertex degrees 
that do not follow the power law.

1.3.4.3  Topologies of CSN

As noted earlier, five papers have been published that address various aspects of 
similarity-based networks of CSs [168–172], all of which differ from the related 
work on power laws in CSs by Benz et al. [173] that predates these papers. Both 
of the latter reports have presented evidence of the small world behavior of CSNs 
and in some cases scale-free behavior as well. Because the edges of the CSNs are 
unlabeled, threshold graphs were generated for different similarity threshold values. 
Not surprisingly, statistical features related to vertex degree tend to decrease as the 
similarity threshold is raised as is nicely illustrated in Table 1.2 of reference [169].

Although this behavior seems intuitive, it can be rationalized as follows. Due 
to the central limit theorem [183], the set of similarity values associated with large 
compound DBs is normally distributed with a mean around, say for example, 0.50. 
Now arrange the set of similarity values in descending order and determine the 
corresponding cumulative probability distribution depicted in Fig. 1.15, where the 
abscissa corresponds to the threshold similarity value for a given CSN, and the or-
dinate corresponds to the fraction, fedge , of the n n( ) /−1 2  possible edges that can 
be drawn between the n compounds that constitute the vertices of the network. It is 
clear from the figure that for a threshold similarity value of 0.75 less than 10 % of 
the compounds will be connected directly. Even at a threshold similarity of 0.5 only 
about half the possible number of edges are present.20 In order to gain a sense of the 
magnitude of the problem, consider a DB of only n = 10 000,  compounds. In this 
case, the complete CSN would have ~ 50 million edges. However, even at a similar-
ity threshold value of 0.75 about 8 % of the total possible edges (~ 4,000,000 edges) 
will be formed. As this is more than 400 times the minimal number of edges needed 
to connect all of the vertices with one another (~ 10,000), it is certainly sufficient 
to introduce significant and interesting structure in the CSN. Hence, it easy to see 

20 This argument is, of course, oversimplified since it depends on the width (standard deviation) 
of the probability distribution.
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that expanding to a DB of say 200,000 compounds can prove to be a challenging 
enterprise.

The paper by Tanaka et al. [168] investigates small world phenomena in several 
libraries obtained directly from the ZINC DB [184] and from virtual libraries con-
structed from structurally diverse fragments. By contrast, the paper of Krein and 
Sukumar [169] undertakes a much more comprehensive analysis based on a number 
of different sets of CS descriptors applied not only to CSs but also to their subspaces 
associated with activity cliffs. A recent paper from Bajorath’s group [172] also ad-
dresses subnetworks associated with activity cliffs. Obviously, these analyses can 
be extended to other landscape features such as similarity cliffs (see Sect. 1.2.4).

The approximately scale-free nature of CSNs observed by Krein and Sukumar 
led them to infer the existence of hubs, highly interconnected regions of CSNs 
linked together by relatively sparse paths. Hubs represent regions of CS associated 
with different structural motifs. Hence, paths linking hubs may provide a means for 
addressing the problem of scaffold hopping, a process associated with the presence 
of similarity cliffs, which are more general since they include scaffold hops as a 
special case.

Another application of threshold CSNs is exemplified by the work of Bajorath’s 
group on network-like similarity graphs (NSGs). NSGs are threshold graphs they 
developed as a means for analyzing the SARs of large, diverse sets of compounds. 
Figure 1.16 provides an example of an NSG that characterizes the activities of a set 
of lipoxygenase inhibitors taken from the paper by Wawer et al. [170]. Compound 
potencies are color coded from red for the most active (1 nM) to green for the 
least active (100 µM). Links are drawn between compound pairs if their MACCS 
Tanimoto similarity exceeds 0.65. Additional annotation corresponds to SAR in-
dex scores (decimal values) associated with compound clusters. The index ranges 
from 0.00 to 1.00, the larger the value the more “discontinuous” a given compound 
cluster—activity cliffs correspond to high levels of discontinuity.

Fig. 1.15  Cumulative 
distribution curve show-
ing the fraction of possible 
edges formed as a function 
of similarity threshold value. 
The light grey dashed line 
corresponds to a threshold 
similarity value of 0.75
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1.3.5  Exploring CSs

The concepts of structural similarity and CS, which are ubiquitous in medicinal 
chemistry, are finding a place in other chemically related sciences such as materials 
science and engineering [185]. A question that now arises is how can we develop 
procedures and algorithms that exploit these concepts to facilitate the discovery of 
new drugs and bioactive agents? Or, more appropriate to the book in which this 
chapter resides, how can these concepts be applied in food science and in aroma and 
flavor chemistry? Although the examples presented in this section do not represent 
a comprehensive set of the many possible methods that are available, they will at 
least provide a sample that should afford sufficient information to help answer this 
question.

1.3.5.1  Comparing Compound DBs

It is obvious from previous discussion in this chapter that compound DBs play 
an extremely important role in many aspects of chemical informatics. Thus, it is 
important that methods exist for assessing their similarities and differences. As has 

Fig. 1.16  Network-like similarity graph (NSG) depicting the CS and activity relationships of a 
set of lipoxygenase inhibitors taken from the work of Wawer et al. [170]. Compound potencies are 
color coded as shown by the colored bar on the upper left hand side of the figure, red being the 
most active and green being the least active. Compounds are connected by an edge if the MACCS 
Tanimoto similarity value of a given compound pair exceeds 0.65. The decimal numbers associ-
ated with clusters of compounds correspond to SAR Index scores (See text for additional details)
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been noted by a number of investigators cell-based methods are particularly suited 
to this task.

For example, consider the compound DBs listed in Table 1.4 and discussed in 
Sect. 1.3.3.2. While the numerical values in the table provide a reasonable summary 
of the cell-based characteristics of each collection, they are not specific enough to 
afford a detailed comparative assessment, as they do not account for relationships 
between the cells in collections being compared. Pearlman and Smith [76] devel-
oped an approach that is able to address this deficiency, albeit only partially.

The procedure is as follows. First, a cell occupancy threshold is chosen; in the 
example discussed here, an occupancy value ≥ 1  is used, i.e., each occupied cell 
contains at least one compound. Obviously this is a potential source of error since 
an occupied cell in one collection could contain a single compound, while the cor-
responding cell in another collection could be occupied by, say, more than a 100 
compounds. Hence, the Pearlman–Smith (P–S) procedure only compares patterns 
of occupancy, but this may be sufficient when very large compound collections 
of comparable size are being compared, or if only a coarse-grained estimate is 
required. Carrying out the analysis for a sequence of occupancy thresholds, e.g., 
tocc ≥ ≥ ≥ …1 2 3, , , , would provide a measure of the sensitivity of the results to the 
chosen occupancy threshold, but such an approach to my knowledge has not been 
carried out.

The P–S procedure can be viewed in a manner that is entirely equivalent to 
that described earlier for binary FPs since the set of cells in a cell-based CS can be 
thought of as one long FP. How the cell-based CS is unfolded into the linear array 
of cells is unimportant; what is important is that all equivalent cell-based CSs that 
are compared be unfolded in exactly the same way. Occupied cells are labeled with 
a “1” if they are occupied by at least one compound and by a “0” if they are unoc-
cupied. Hence, any of the FP-based similarity coefficients can now be used to assess 
the similarity of any pair of compound collections or libraries described by the same 
cell-based CS. These “DB FPs” are on the order of 100,000 or more cells, and hence, 
many times larger than typical binary structural FPs that usually have less than 2000 
elements. And, as seen in Table 1.4, only a small fraction of the cells are occupied 
so that these FPs are very sparse. The discussion in Sect. 1.2.1.1 shows that they can 
be handled using run-length encoding, or a similar procedure. Additional compres-
sion, such as is the case for some large molecular FPs, is not necessary in this case 
since the number of DBs being compared is many times smaller than the number of 
molecular FPs typically dealt with in similarity search-based activities.

The P–S procedure defines two measures for assessing the similarity of two 
compound DBs, nominally A and B, residing in the same CS:

 (1.70)

These definitions are completely equivalent to the asymmetric Tversky measures 
given in Eqs. (1.12) and (1.13), respectively, and can be interpreted in a like manner, 
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but any of the similarity coefficients described in this work that are based on binary 
structural FPs can be used. Note that the two expressions given in Eq. (1.70) can 
also be interpreted probabilistically.

Since the set of cells in a cell-based CS are analogous to binary structural FPs, 
other similarity measures such as those based on the Tanimoto or Dice similarity 
coefficients given in Eqs. (1.8) and (1.9) can be used. Alternatively, the correspond-
ing dissimilarity coefficients given in Eqs. (1.21) and (1.22) also can be used. As 
noted in Sect. 1.2.1.3, the numerator of the Tanimoto dissimilarity coefficient is just 
the Hamming distance, which is a measure of the number of differences between 
the two DB FPs.

Table 1.5 provides an example of how the similarity measures given in Eq. (1.70) 
can be applied to a more detailed assessment of the similarity of pairs compound 
collections. For example, 0.885 of the occupied cells in the Combi collection are 
also occupied in the Diverse collection. Conversely, only 0.117 of the occupied cells 
in the Diverse collection are also occupied in the Combi collection, a clear example 
of the much greater diversity inherent in the Diverse collection. In contrast, 0.985 
of the occupied cells in the Micros collection are also occupied by the Diverse col-
lection, while only 0.028 of the occupied cells in the Diverse collection are also 
occupied in the Micros collection—not a surprising result given that only 516 cells 
are occupied by the entire Micros collection. Thus, although in relative terms the 
Micros collection is diverse, in absolute terms it does not compare with that of the 
Diverse collection.

1.3.5.2  Subset Selection and Compound Acquisition

Subset Selection Subset selection is used primarily for assembling diverse 
subsets of compounds for HTS campaigns. Another form of subset selection called 
similarity searching or LBVS also requires activity data, albeit on a small subset of 
compounds, as will be discussed in Sect. 1.3.5.4. Hence, subset selection usually 
takes places in early screening while similarity searching or LBVS is typically used 
in subsequent follow-on screening activities. Because in the former case activity 
data are generally unavailable, constructing appropriate subsets of compounds for 
the initial phases of an HTS campaign can be challenging [186–189].

While there are many variations, the underlying strategy for generating initial 
screening sets almost always relies on maximizing their diversity by minimizing 

Table 1.5  Comparison of percent occupancies of compound collections in six-dimensional 3-D 
BCUT chemical space based on the P–S procedure
A\B Diverse Combi MDDR Micros
Diverse 11.7 43.8 2.8
Combi 88.5 85.2 6.0
MDDR 78.9 20.3 44.0
Micros 98.5 28.3 86.6

See Table 1.4 for details of compound collections. Cell occupancies ≥ 1
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the similarity (or maximizing the dissimilarity) of the compounds in the putative 
screening set. It is important to note that unlike similarity or dissimilarity, which 
are pairwise measures, diversity is a population-based measure associated with the 
dissimilarity of the entire subset of compounds [10, 41]. In this regard, a number 
of authors have addressed the issue of how to estimate the diversity of a large col-
lection of compounds [190–192]. Willett [193, 194] and Agrafiotis [191] have pre-
sented descriptions of many aspects of diversity-related methods and procedures. 
An interesting discussion of the early history of the concept of molecular diversity 
was published in 2001 [195].

Although the field of molecular diversity is vast, the focus in this work is on two 
approaches: on cell-based sampling of CS [76] and on a maximum dissimilarity/
distance algorithm called “Dfragall” [63]. Here the terminology MaxD will be used 
in place of Dfragall to indicate the generality of the procedure. Both approaches 
generally use 2-D structural information, although the use of 3-D BCUTS does 
account, albeit in a somewhat limited fashion, for 3-D information. Matter has pre-
sented a more detailed comparison of the role of 2-D and 3-D descriptors in select-
ing diverse subsets of compounds [196]. As will be seen in the following subsection 
on compound acquisition, the cell-based approach is clearly superior in its ability 
to identify and fill so-called “diversity voids,” which can be important in a number 
of instances.

A variety of cell-based sampling schemes can be employed in order to obtain 
a subset of the desired size and diversity [76, 78]. These schemes include simple 
sampling, where a single compound is obtained from each occupied cell, threshold-
based sampling, where the number of compounds selected from each cell is less 
than (if the cell has fewer compounds than the threshold value) or equal to the 
threshold value, proportional sampling, where the size of the sample is propor-
tional to the number of compounds in the cell, or property-based sampling, where 
compounds are selected based on a range of values for one or more properties such 
as molecular weight or logP. Property-based sampling can, of course, be applied 
simultaneously with any of the other sampling procedures. If the size of the desired 
sample is less than the number of compounds obtained by a given sampling proce-
dure, either fewer cells can be sampled or the number of compounds per cell can 
be reduced. In the former case, since neighborhood relations among cells are not 
considered in cell-based CSs, a random selection of sampled cells could be con-
sidered. By contrast, the subset selection procedure based on MaxD is much more 
computationally demanding and does not explicitly fill diversity voids, although 
it may inadvertently do so to some degree. In the MaxD case, a typical selection 
procedure is shown in Table 1.6.

An example that illustrates, but of course does not generally prove, the superior 
performance of cell-based compared to dissimilarity-based subset selection is de-
picted in Fig. 1.17. The computations were carried out in 3-D BCUT CS based on 
the Diverse DB (see Table 1.4) described earlier. The cyan dots in the 2-D projec-
tion of the CS depicted in Fig. 1.17a, b represent the compounds in the DB, while 
the yellow dots represent the compounds obtained in each of the sampling proce-
dures. In the MaxD subset selection depicted in Fig. 1.17a, only about 36 % of the 
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original 18,371 occupied cells in the associated cell-based CS are occupied by at 
least one sampled compound. By contrast, 100 % of the available cells are occupied 
in the cell-based procedure by a similar number of compounds to that obtained by 
the MaxD algorithm, which is not surprising since the cell-based procedure is based 
on sampling each cell of the CS. This affirms, but certainly does not prove, what is 
intuitively expected, namely, that the cell-based procedure results in broader sam-
pling than the corresponding MaxD procedure.

Compound Acquisition There are two general goals associated with compound 
acquisition—enhancing the diversity of an existing collection and maintaining its 
integrity. While the focus is generally on the former, the latter is also important 
due to the rate at which compounds can be used up in assays and related activities 
or can decompose over time. Enhancing diversity usually involves filling unoc-
cupied or partially occupied regions of CS. Maintaining DB integrity, on the other 
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Fig. 1.17  Comparison of subset selection procedures based on compounds in the Diverse collec-
tion depicted in cyan (see Table 1.4 and Sect. 3.6.1 for details). Yellow dots represent compounds 
obtained by the subset selection procedures: a dissimilarity-based selection. b Cell-based subset 
selection. (Figure kindly provided by Veer Shanmugasundaram)

 

Table 1.6  MaxD subset selection procedure
Step Procedure
1 Choose a compound, x1, at random from the compound collection of interest
2 Determine x2, the compound most dissimilar to or most distant from x1

3 Determine x3, most dissimilar to or distant from compounds x1 and x2

4 Repeat the process until the desired number of compounds is obtained or the chosen 
dissimilarity or distance value falls below the chosen threshold value or reaches a plateau
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hand, involves replenishing DB compounds that have become depleted or, if exact 
replacements are unavailable providing compounds that are, at least to some degree, 
similar to the original ones. A number of papers addressing compound acquisition 
have been published over the years, a sampling of which is given by the following 
references [162, 197–199].

The following is a brief description of the acquisition process based on the work 
reported in [162]. It illustrates a number of the general issues that must be dealt 
with, but since there are many ways to do so, what is given here should only be 
considered a rough outline of an acquisition process. The papers just cited should be 
consulted for additional examples. Table 1.7 provides a summary of the compound 
acquisition procedure.

A number of issues arise in step-1, especially when the purchase of large sets 
of compounds is desired. Some of which include the presence of compounds with 
undesirable features (e.g., nitro groups) in a vendor’s collection and whether the 
compounds are “Lipinski compliant,” i.e., obey the rule of five [200]. Although the 
rule of five was intended primarily to address potential drug delivery and bioavail-
ability issues, it has become a surrogate for drug likeness, and its application has far 
exceeded the developers’ initial intentions as to its domain of applicability. A recent 
procedure suggests a modification of the rule of five that increases its robustness to 
small differences in the parameter values, although it does not extend its domain of 
applicability [201]. In a related study, Bickerton et al. [202] developed a similar, but 
more comprehensive procedure that takes account of additional features, namely, 
molecular polar surface area, number of rotatable bonds, number of aromatic rings, 
and number of structural alerts, typically associated with drug likeness. In addition, 
diversity and structural novelty of a collection, timely availability of compounds, 
and compound purity are other desirable characteristics of vendor compound col-
lections.

In step-2, there are several choices of methods to carry out the initial selection of 
compounds. The cell-based approach is employed here because of its computational 
speed and ease of application. Figure 1.18 depicts a model of a cell-based sampling 
scheme similar, but not algorithmically identical, to that implemented in Diverse 
Solutions™ [78] (cf. [63]) and presented in a way that is designed to clarify the 

Table 1.7  Compound acquisition procedure
Step Procedure
1 Identify vendor collections from which to purchase compounds and preprocess them to 

remove “undesirable” compounds
2 Generate a cell-based chemical space containing the combined original compound DB 

and appropriate vendor DBs
3 Select the initial set of vendor compounds by filling diversity voids
4 Additional diversity assessment of the initially selected set of vendor compounds using  

a modified MaxD algorithm (see Table 1.8)
5 Apply compound filters that were developed based on the knowledge of experienced 

medicinal chemists
6 Direct review by medicinal chemists
7 Submit compounds for purchase
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compound selection process. A two-dimensional BCUT CS is generated by combin-
ing (using set-theoretic union) the set of compounds in the original compound DB, 
ODB , and the compounds in the set of vendor DBs V V ,V ,V  DB DB DB DB= …{ }1 2 3 , , 
where VDB

i
 is the set of compounds in the ith preprocessed vendor DB:

 (1.71)

�M is then used as a basis for constructing a CS that includes all of the original 
and preprocessed vendor compounds, which can be written symbolically as 
� �M CS(M)⇒ .

Figure 1.18a shows the distribution of the original set of compounds in the newly 
constructed CS. Likewise, Fig. 1.18b shows the distribution of the vendor com-
pounds in the same CS. In the cell-based approach, empty cells as well as those with 
very few compounds, say less than two or three, can be considered to be diversity 
voids. Such cells are suitable candidates for compound acquisition. In the exam-
ple in Fig. 1.18a, there are four empty cells and three cells containing single com-
pounds, all shaded in light grey, which can be classified as diversity voids in this 
model DB. Now compounds from the combined vendor DB depicted in Fig. 1.18b 
are used to fill the diversity voids in in Fig. 1.18a until the cell occupancy of all cells 
in the DB is at least two. This is illustrated in Fig. 1.18c, where the cells shaded in 
light gray indicate diversity voids that remain after compound acquisition. As seen 
in the figure, some of the empty cells are now populated with vendor’s compounds 
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Fig. 1.18  Schematic depiction of a model 2-D cell-based selection process for compound acquisi-
tion (Cf. [162]). In a unfilled circles represent compounds in the original compound DB; in b filled 
circles represent compounds in the combined, pre-processed vendor DB; c depicts the augmented 
compound DB after the initial selection process has been completed. Cells shaded in light grey rep-
resent diversity voids for cells containing fewer than two compounds. (See text for addition details)
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and some remain unoccupied, as no vendor compounds existed for those cells. The 
third cell from the left in the bottom row of Fig. 1.18c, which was unoccupied origi-
nally, is now occupied by a single vendor compound since only one such compound 
was available to fill that cell as seen in Fig. 1.18b.

The basic idea here is to populate unpopulated cells and those of low occupancy 
with commercially acquired compounds. As was the case in subset selection, there 
are a number of ways in which cells can be populated with new compounds, the 
simplest being to populate all unpopulated cells with at least one compound. While 
such an approach is straightforward, it is not, in general, a practical strategy. An ex-
amination of Table 1.4 clearly shows why this is the case. In that example, the 6-D 
CS contains 117,649 cells, 18,371 of which are occupied by at least one compound. 
This leaves 99,278 empty cells. Even if a set of sufficiently diverse compounds 
were available for purchase the cost would be significant—at an average price of 
$ 25 per sample, this would amount to nearly $ 2.5 million, an amount that would 
test the budget of all but the largest pharmaceutical companies. Thus, additional 
strategies need to be implemented to address compound acquisition in a way that 
ensures an optimal, albeit incomplete, selection is made [162].

Although the number of cells in cell-based CS is large, the hyper-dimensional 
volume of each of the cells is also large. Hence, compounds within a given cell may 
be quite dissimilar. In contrast, compounds located near a common boundary be-
tween two cells may be quite similar even though they reside in different cells ( vide 
supra). Because of this type of “idiosyncratic” behavior associated with cell-based 
CSs, and additional level of similarity analysis may be warranted to ensure that the 
selected compounds are as dissimilar to each other as possible. This can be accom-
plished in step-4 using a modified form of the MaxD (“Dfragall”) algorithm [63] 
based on Euclidean distance computed with respect to the BCUT coordinates or, as 
is traditionally done in the algorithm, using some form of similarity/dissimilarity 
measure, a procedure that further reduces the number of compounds.

An alternative approach to that described above has been described by Lajiness 
[63]. It is a variant of the MaxD (“Dfragall”) algorithm presented earlier and is sum-
marized in Table 1.8. One clear deficiency of this algorithm is that it is difficult to 
fill specific diversity voids.

In step-5 of Table 1.7, a set of compound filters based on the knowledge of expe-
rienced medicinal chemists is applied further reducing the size of the set of potential 
compounds for acquisition. Examples of these filters include a number of com-
pound characteristics such as number of rings (2–4), molecular weight (200–400), 

Table 1.8  Diversity assessment using a modified MaxD subset selection procedure
Step Procedure
1 Determine vendor compound, x1, that is most dissimilar to all of the compounds in the 

original compound database (C-DB) and add it C-DB giving C-DB + x1

2 Determine the vendor compound, x2, that is most dissimilar to C-DB + x1 and add it 
yielding C-DB + x1 + x2

3 Repeat steps 1 and 2 until the desired number of compounds is obtained or until the 
dissimilarity value falls below a specified threshold
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number of rotatable bonds (0–5), logP (− 1 to 2). Finally, in step-6, medicinal chem-
ists directly evaluate the remaining molecules [116], and those that survive this final 
review are submitted for purchase.

1.3.5.3  Similarity Searching and LBVS

Basically, there are three in silico approaches used to the identify compounds with 
potential biological activity all of which fall under the rubric of virtual screening 
methods:

• Ligand–protein docking
• Similarity searching based on 2-D molecular descriptors (2-D LBVS)
• Similarity searching based on 3-D molecular descriptors (3-D LBVS)

A number of edited volumes [164, 203–205] and reviews [104, 206–215] have ad-
dressed many aspects of virtual screening; and Parker and Bajorath have discussed 
an important but rarely touched upon issue concerning the effect of errors on both 
HTS and LBVS [216].

Ligand–Protein Docking21 Docking involves two basic steps, finding an optimal 
structure of the ligand–protein complex and scoring, in some fashion, the fitness 
of that complex. An advantage of this approach is that it does not require any prior 
knowledge of biological activity. On the other hand, it does require knowledge of 
the 3-D structure of the target protein, or of some closely related protein that can 
serve as a model of the desired target protein, to which the ligand can be docked. 
However, this is just the tip of the iceberg, as there are many complex issues that 
must be dealt with in ligand–protein docking including protein flexibility, ligand 
sampling, and effective scoring functions. In addition, if biological activity requires 
specific changes in protein structure induced by ligand binding and/or if the solution 
environment plays a crucial role in the functioning of the protein, then these added 
complications must also be addressed. And there are other factors some known and 
some unknown that can further complicate the docking process [217–219].

Similarity Searching There are two types of similarity searching procedures—
also called LBVS—that are classified according to the dimensionality of their fea-
ture descriptors. 2-D methods employ structural FPs or vector-based descriptors as 
described in Sects. 1.2.1 and 1.2.2, while the corresponding 3-D methods involve 
matching pharmacophores [153, 220–223] or molecular shapes [224–226]. Since 
3-D methods appear to contain more structural information such as stereochem-
istry, which in many cases is important for activity, it is surprising that 2-D meth-
ods tend to outperform or at least perform comparably to 3-D methods. There are 

21 There are, of course, other docking processes that are of importance in biology including pro-
tein–protein, ligand–nucleic acid, nucleic acid–nucleic acid docking to name a few. Ligand–pro-
tein docking is highlighted in this work because of its importance in drug discovery and its wide-
spread application in that field.
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many possible reasons for this observation including the fact that the topological 
structure encoded in 2-D representations may more than compensate for missing 
3-D information [10, 18, 88, 227, 228]. In addition, determining the ensemble of 
biological active conformations can be a difficult and uncertain task [229], and the 
many approximations made to increase computational efficiency and reduce com-
puting time, also contribute to the somewhat problematic performance of 3-D-based 
approaches. Hence, in keeping with the discussion in the rest of this chapter, the 
focus here is on the simpler and faster 2-D LBVS methods.

2 -D LBVS22 Although Stanton et al. [230] were, perhaps, the first group to explore 
the application of similarity-based techniques in HTS, many examples of LBVS 
have been published since then, especially in the first decade of the twenty-first 
century as can be seen from the following references [32, 33, 86, 104, 231–233] 
and those cited at the beginning of Sect. 1.3.5.3.

As depicted in Fig. 1.19, LBVS is typically an iterative process. In step-1, an 
active reference set of compounds is identified in some manner, usually in an HTS 
campaign. In step-2, the similarity values with respect to each of the actives in R* 
are computed. Several cases arise in this regard. First, consider the simplest case of 
a single active reference compound, which may obtain in many instances, at least 

22 See Sect. 1.2.3 for related discussion.

Fig. 1.19  Ligand-base virtual 
screening procedure
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in the initial iteration of the LBVS process. The compounds are then arranged in 
decreasing order of their similarity values, or in ascending order by their ranks, one 
being the highest rank. If, on the other hand, a distance-based measure of similarity 
is used, the list of compounds will be ordered from smallest distance to the largest 
distance value. The rank ordering will remain the same, one again being the highest 
rank. A subset of the top-“scoring” compounds (i.e., compounds with the largest 
similarity or smallest rank values) is selected. This can be accomplished in two 
ways, number based or value based. In the former case, a number of compounds, 
say the top 100, are selected for follow-on screening regardless of their similarity 
values or rankings, whereas in the latter, a subset of compounds all of whose simi-
larity values or rankings with respect to R* are less than or greater than, their respec-
tive threshold similarity or ranking values. Regardless of how the compounds are 
selected, they are screened yielding a new set of actives, and the process is repeated.

This, however, raises a new issue, namely, how are multiple active reference 
compounds handled in the LBVS process? There are several approaches to this 
problem. One way is through the use of group fusion described in Sect. 1.2.3.2, 
which is ideally suited to deal with this problem since multiple active reference 
compounds are an inherent feature of the method. And, as discussed in Sects. 1.2.3.2 
and 1.2.4, group fusion exhibits excellent performance as a means for identifying 
new actives. Interestingly, group fusion based on the fusion maximum similarity or 
minimum distance values is essentially identical to an approach called list-based 
searching [76, 78, 86].

This completes step-3 regardless of whether singleton or multiple active refer-
ence compounds were dealt with in that step. Obtaining a subset of the compounds 
from the resultant ordered list using either number- or value-based selection then 
completes step-4. In step-5, the resulting set of compounds is then screened. At this 
point, a choice must be made. If, after screening is completed, it is determined that a 
sufficient number active compounds of appropriate quality have been obtained, the 
process may then move to step-6 where the hit-to-lead phase of the drug discovery 
process can commence, otherwise the process moves back to step-1 and the process 
is repeated. It is well to note that identifying active reference sets may also include 
additional assays designed to more firmly establish the biological or pharmaco-
logical characteristics of the compounds, and thus to help in determining whether 
compounds active in HTS should be considered further.

Aggregating the Results of Individual Similarity Searches As discussed in 
Sect. 1.2.3, combining (“fusing”) similarity values, which falls within the class of 
data aggregation methods [97], has been shown to yield improved results in simi-
larity searches. Generally, fusion methods combine similarity (distance) values or 
rankings to yield new fused values prior to any similarity search. An alternative 
approach is to carry out multiple similarity searches on the same set of active refer-
ence compounds using different similarity or distance measures and then combine 
the sets of compounds obtained in this way [86], employing what can be called post-
search aggregation (PSA). Although related, this differs from similarity fusion that, 
as discussed in Sect. 1.2.5.1, combines the similarity values and then carries out a 
similarity search using the fused values.
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A difficulty with PSA methods is that the subset of compounds retrieved in each 
of the similarity- or distance-based searches may differ significantly. As an example, 
consider the family of three subsets of compounds retrieved by three corresponding 
similarity or distance-based searches of a compound DB, i.e.,

 (1.72)

where the size of each of the subsets may be taken to be the same and can be de-
termined by a number- or value-based procedure, or the sizes can, if desired, all be 
different. It is possible and, in fact, occurs frequently that some compounds may 
be found in more than one of the subsets. The Venn diagram depicted in Fig. 1.20 
indicates this. As will be seen in Eq. (1.73), the smaller the “overlap” among the 
subsets, as measured by set intersection, the broader the sampling of the CS repre-
sented in a compound DB.

The basic assumption underlying this approach is that multiple searches using 
different similarity or distance measures will give rise to higher enrichment factors 
in a common assay than would be obtained using a single search method. To see 
this, consider the background enrichment factor for a given assay, EBackground, which 
is basically the estimated fraction of active compounds in a DB, an estimate usually 
arrived at by the assay of compounds randomly selected from the DB.

When considering all three subsets, the breadth or diversity of the search can be 
defined as

 (1.73)

which satisfies 0 1≤ ≤∆ , where “Card” refers to the cardinality (i.e. number of 
elements) in a given set (see also footnote a in Table 1.1). The union of the three 
subsets is the set of compounds unique to all three subsets. Similar expressions 
can be constructed for the pairwise case by removing the extraneous subset(s).  

T = T T T1 2 3, ,{ }

∆ =
∪ ∪Card(T T T

Card(T ) + Card(T ) + Card(T
2

1 2 3

1 3
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T1 ∩ T2 ∩ T3
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T1 T2
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T1 ∩ T3
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Fig. 1.20  Venn diagram rep-
resenting the possible joint 
subsets obtained from three 
sets of compounds T1, T2, and 
T3 retrieved by three different 
similarity or distance-based 
search methods of a com-
pound DB
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The singleton case is trivial since ∆ = 1 . As can be seen from Eq. (1.73), as the 
breadth approaches unity, i.e., as ∆ → 1 , the sampling of CS increases reaching 
a maximum at unity. However, this procedure is of real value only if it leads to 
enhanced enrichment factors. The enrichment factor for the three sets of retrieved 
compounds can be obtained as follows:

The fraction of actives obtained from the three samples is given by

 (1.74)

where the asterisks in the numerator denote subsets of actives, such that 
T T for  i i i* , ,⊆ = 1 2 3   and ‘Card’ refers to the cardinality, that is the number of 
elements in the sets. The enrichment factor is then given by

 (1.75)

where fbackground  is the fraction of actives obtained from a random sampling of the 
compound collection of interest.

Interestingly, the procedure appears to be a combination of group fusion (i.e., 
list-based searching) and similarity fusion. The reasons, the first two of which are 
associated with group and similarity fusion, are as follows: (1) multiple active refer-
ence compounds are used, (2) the most similar (closest) compounds to each active 
reference compound are retained, and (3) multiple similarity measures are applied.

This approach was described in Shanmugasundaram et al. [86], who investi-
gated its application to a number of targets including those associated with anxiety, 
Alzheimer’s disease, and pathogenic bacteria. The data provided below are based 
on a bacterial enzyme target and a set of 12 well-characterized active reference 
compounds. A distance measure based on three different sets of BCUT descrip-
tors and a structural FP procedure based on the Tanimoto similarity coefficient 
were all employed in the analysis, yielding a breadth value of ∆ = =132 159 0 83/ . .  
This shows that the approach covered a wider region of CS than could have been 
achieved using a single similarity (distance) measure. Moreover, the ratio of the frac-
tion of actives in the three samples, fsample /= =23 132 0 174. , to the fraction of actives 
obtained from a random sample of the database, fbackground ≈ 0 04.  yields an enrichment 
of EF ≈ =0 174 0 04 4 4. . . ./  Thus, nearly four and a half times as many actives were 
obtained than would be expected by randomly sampling and screening compounds 
in the DB—more details can be obtained in the paper.

While this enhancement may not seem like a significant improvement over back-
ground, it is if a Las Vegas model of drug discovery is considered. As is true for 
many of the gambling activities in Las Vegas such as roulette and craps, the odds of 
winning are “shaved” slightly in the House’s favor. Given that enough people place 
bets, statistically the House will almost certainly win over time. This has a close 
parallel to the HTS in drug discovery. If the odds of finding actives are even slightly 
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better than those for random screening, and if enough compounds are screened, 
active compounds will almost certainly be found given that the compound DB is 
not highly biased, that is filled with biologically unsuitable compounds. Even an 
enhanced enrichment factor of two can still yield actives, but the smaller the factor 
the more compounds that need to be screened.

Target (Activity) Class-Specific Similarity Searching The basic idea behind tar-
get (activity) class-specific23 similarity searching is that particular feature descrip-
tors may exhibit some bias for specific classes of bioactivity such as, for example, 
HMG Co-A Reductase inhibitors, COX2 inhibitors, and 5HT (serotonin) receptor 
ligands. Since work in this area is based primarily on molecule-independent struc-
tural FPs, their bit positions can be unequivocally associated with specific structural 
features. The probability that a given feature is associated with a specific activ-
ity is estimated essentially by computing its relative frequency of occurrence in 
the set of molecules associated with that target class. Bits associated with features 
having high probabilities of occurrence, which may be called characteristic bits, 
are generally, but not always, weighted in some fashion to further emphasize their 
importance in subsequent similarity analyses; weighting can be accomplished in a 
number of ways ( vide infra).

This approach to target class-specific similarity searching, called reverse finger-
printing by Williams [234], has also been carried out in a number of other labora-
tories [235–242]. The application of methods utilizing “nontraditional” structural 
fragments [234, 237, 239] have shown promise, but none of the earlier methods 
including these have addressed the issue of interdependencies among structural de-
scriptors. Two papers from the Bajorath group [240, 241] that show promise have 
taken steps in this direction.

Based on a growing amount of data that show that compound and target promis-
cuity is more ubiquitous than had earlier been suspected may present significant 
challenges to the development of robust target class-specific similarity searching 
that is difficult to overcome (See Sect. 1.3.1 for further discussion).

1.4  Summary and Conclusions

Over the past two decades, computational methods have been playing an ever-in-
creasing role in drug discovery research due especially to the burgeoning amount 
of data being generated by ever faster and more powerful experimental techniques. 
Three concepts, molecular similarity, CS, and activity/property landscapes, in some 
fashion underlie all of these methods—the current work addresses molecular/struc-
tural similarity and CS, two important pillars supporting the edifice of chemical 
informatics.

23 In order to simplify discussion, the terminology “target class specific” will be used in the 
remainder of this section.
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Similarity is probably one of the most ubiquitous concepts in many human en-
deavors. Hence, it is no surprise that it also plays a significant role in many aspects 
of chemical informatics. And, as is essentially true in all conscious and subcon-
scious applications of the concept, however, what precisely it is remains somewhat 
a mystery since “similarity like pornography is difficult to define but you know 
it when you see it” [10]. The inherent subjectivity of similarity poses significant 
problems in chemical informatics since its application in this field is, in many cases, 
carried out computationally. Two key issues that then must be addressed are how 
to represent the relevant chemical or molecular information and how to compute 
an effective measure of similarity from that information. This has been covered ex-
tensively for a variety of 2-D similarity measures in Sect. 1.2 that, due primarily to 
their generally higher computational speeds, are by far the most popular similarity 
measures in use today. Surprisingly, perhaps, 2-D similarity measures perform com-
parably or better than many 3-D measures in a variety of cheminformatics tasks, 
one reason along with their higher computational speeds that accounts for their 
popularity.

An interesting extension of similarity-based methods that shows promise in-
volves combining similarity values using data fusion techniques that have been 
applied in many engineering applications. In some cases, fused similarity values 
have been shown to yield significantly improved results. This is especially true 
of an approach called group fusion, which is based on computing the similarity of 
compounds in a large DB with respect to a number of reference compounds using a 
single similarity measure. The similarity or rank values for each DB compound are 
then fused to yield a single similarity score or ranking. The resulting list provides 
a set of compounds such that those of higher rank can be selected, for example, for 
follow-on screening.

A discussion presented in Sect. 1.2.4 suggests a rationale, based on the surprising 
prevalence of similarity cliffs, as to why group fusion appears to perform better in 
similarity searches than the use of a single similarity measure or the fusion of mul-
tiple similarity measures, both carried out with respect to a single reference com-
pound. This is understandable since the relatively common occurrence of similarity 
cliffs, which arise when two structurally dissimilar compounds have similar activi-
ties in a given assay, suggests that active compounds may in many cases be more 
widely dispersed through CSs than heretofore had been suspected. Moreover, the 
fact that the more dissimilar the set of reference compounds the better the results of 
group fusion similarity searches supports this contention. An unresolved issue with 
this approach to similarity searching is the need for multiple active reference com-
pounds, a situation that may not be realized in the initial phase of an HTS campaign.

Aside from its computational uses in chemical informatics, similarity also plays 
a significant perceptual role in many aspects of chemistry. This clearly is the case 
in medicinal chemistry where chemists address the question of “what to make next” 
by inferring new structures for synthesis based on the structures of active and inac-
tive compounds considered earlier. There are, of course, many other such examples 
one can think of, all of which raise the issue as to whether computed similarities are 
comparable to those perceived by chemists.

As discussed in Sect. 1.2.5, the similarity scale, which generally is taken to lie on 
the unit interval [0,1] of the real line, is not uniform in terms of human perception. 
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Humans excel at comparing very similar objects, just as chemists excel at recogniz-
ing very similar molecules. However, at some point, as objects become less and 
less similar, humans can no longer discern how dissimilar they are to one another, 
only that they are very dissimilar. This is not entirely the case computationally since 
computers make no value judgments; they implement specific algorithms, although 
a caveat discussed in Sect. 1.2.1.4 shows that computational algorithms can also 
exhibit idiosyncratic behaviors such as the size-dependent behavior of FP-based 
similarity coefficients.

A possible reason for this disparity between chemists’ perceived similarity val-
ues and those obtained computationally is seen in the expressions for Tanimoto 
similarity and dissimilarity given in Eqs. (1.8) and (1.21), respectively. Since the 
denominators in both equations are identical, it is their respective numerators that 
determined the difference in these two coefficients. In the case of similarity, the nu-
merator is based on the number of features in common in the two molecules, while 
in the case of dissimilarity, the numerator is based on the number of features unique 
to each molecule. Unique features, that is, features in one molecule but not in the 
other, are more difficult for humans to perceive than features common to both mol-
ecules. Thus, cases of low similarity (few features in common) or high dissimilarity 
(more unique features) are difficult for humans to perceive. Clearly, the perceptual 
issue goes beyond the mathematical complementarity exhibited by Eq. (1.19). Im-
portantly, these arguments provide a mechanism that may account for the limited 
correspondence between computed and perceived similarities and dissimilarities.

The notion of CS is closely related to that of similarity. Section 1.3 provides 
a discussion of three possible representations of CSs, namely, coordinate based 
(Sect. 1.3.2), cell based (Sect. 1.3.3), and graph or network based (Sect. 1.3.4). The 
first two are well known in the chemical informatics field. The last is not, although 
networks are being employed to describe a growing number of chemically related 
systems such as those, for example, describing protein–protein interactions, drug–
target relationships, and pharmacological space. The network-based approach, 
which opens up new ways to investigate the nature of CSs, has two distinct advan-
tages, namely, it is inherently discrete and it provides an intuitive representation of 
these spaces. Unfortunately, very few papers describing network-based representa-
tions of CSs have been published, but the power of this approach would seem to 
auger well for its future application in chemical informatics. In this regard, a new 
graph-based DB scheme that may provide a powerful approach for treating CSs, is 
gaining recognition in the computer field.

Each of the three CS representations has its strengths and weaknesses with re-
gard to the types of applications for which they are best suited. A number of ex-
amples such as:

• Comparing compound DBs
• Selecting chemically diverse subsets
• Augmenting DBs through compound acquisition
• Similarity searching—2-D LBVS

are presented in Sect. 1.3.5 to illustrate this point.
The need for computational methods that can characterize relationships among 

sets of molecules is clearly manifest, especially in this age of massive and rap-
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idly growing compound DBs. And although imperfect almost by their very nature, 
similarity-based methods provide the means for addressing this critical need. These 
methods also provide the means for constructing CSs that help to unify the chemical 
universe in an intuitive and computationally powerful way. Both notions are now 
beginning to be applied in fields outside of chemical informatics such as materials 
science and engineering laying the groundwork for future applications in food sci-
ence and related fields.
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2.1  Introduction

In the complex array of molecules composing foods, flavourant molecules, although 
present in relatively small amounts, play a central role in determining the food fla-
vour in terms of taste and smell. Taste molecules, which have very diverse chemical 
structures and properties, interact directly with receptors in the mouth to trigger 
taste perceptions of bitter, sweet, sour, acidic, salty and umami [1]. Fragrances are 
generally small, apolar and volatile compounds, which must reach olfactory re-
ceptor neurons in the upper part of the nose to trigger the complex perception of 
smell through interactions with approximately 900 genetically distinct G-protein-
coupled olfactory receptors [2–6]. Fragrances are also used as ingredients in per-
fumes, soaps, shampoos or lotions. Classifications of fragrances, according to their 
perceived smell, produce tens to hundreds of fragrance families, although a general 
characterization system of smell is still difficult due to perceptual qualities [7]. The 
relationship between structural types and odour types is very diverse. Herein, we 
discuss flavourant molecules collected from the open-access databases, SuperScent 
[8], Flavornet [9], BitterDB [10] and SuperSweet [11], in an overall perspective 
of the chemical space classification of molecules to convey a global understand-
ing of this molecular class independent of detailed structure–activity relationships 
[12]. This global view provides a conceptual framework to understand the chemi-
cal structural diversity of taste and smell and suggests approaches to discover new 
flavours through chemical space exploration.
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2.2  Flavour Molecules

2.2.1  Databases of Organic Molecules

Organic molecules consist of a few tens of atoms of various types (carbon, hydrogen, 
nitrogen, oxygen, sulphur, halogens and a few others) linked together via kinetically 
stable covalent single or multiple bonds. The atoms and their connectivity pattern 
including their three-dimensional relative positions define the molecule’s identity, 
its molecular shape and its physicochemical and biological properties. Since the 
discovery of organic molecules, as the elementary building blocks of living matter, 
many millions of different organic molecules have been reported in the literature 
either as naturally occurring compounds or as the products of chemical syntheses.

Most efforts have been devoted to the area of medicinal chemistry where mol-
ecules are investigated for their drug properties. The cumulated knowledge ac-
quired there has been placed, in part, in the public domain thanks to open-access 
initiative, such as the US National Institute of Health PubChem database, in which 
the structure and possible biological evaluation of more than 30 million of organic 
molecules are freely accessible [13]. The Royal Society of Chemistry runs a similar 
but broader open-access archive in the form of ChemSpider, a repository in which 
authors are encouraged to deposit their structures [14]. Additional public databases 
of molecules of medicinal interest are listed in Table 2.1, including collections of 
commercially available compounds in ZINC [15], annotated database of bioactive 
molecules such as ChEMBL [16] and DrugBank [17], and very large databases of 
theoretically possible molecules covering the entire range of what is feasible with 
organic chemistry, such as the chemical universe databases GDB-11 [18], GDB-13 
[19] and GDB-17 [20], which list all organic molecules possible up to 11, 13 and 
17 atoms obeying simple rules for chemical stability and synthetic feasibility [21].

When considering flavourants, hundreds of thousands of molecules have been 
investigated for their fragrant properties by various fragrance companies world-
wide. However, there has been only very limited effort to establish a broad re-
pository of flavour molecules. Nevertheless, several relatively small databases have 
been made accessible online in the last few years: SuperScent [8] and Flavornet [1], 
which list almost 2000 documented fragrances and their properties; BitterDB [10], 
which lists 606 molecules with documented bitter taste, containing many alkaloids; 
and SuperSweet [11], which list 342 molecules with proven or likely sweet taste, 
containing, in particular, a broad range of glycosides. When combined together, 
SuperScent and Flavornet assemble to a collection of 1760 different fragrance mol-
ecules, here named FragranceDB. BitterDB and SuperSweet similarly combine to 
806 taste molecules, here named TasteDB.

2.2.2  Property Profiles

The properties of drug-like molecules have been extensively discussed in the litera-
ture focussing on the characteristics necessary for oral bioavailability in the form of 
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Lipinski’s “rule of five”, which sets boundaries to molecular weight (MW ≤ 500 Da), 
the octanol–water partition coefficient P (logP ≤ 5), and the number of hydrogen-
bond-donor atoms (HBD ≤ 5) and hydrogen-bond-acceptor atoms (HBA ≤ 10) [9]. A 
narrower definition with tighter boundaries on molecular weight (MW ≤ 300 Da), 
polarity (logP ≤ 3) and flexibility in terms of rotatable bonds (RBC ≤ 3) have also 
been defined to select molecules suitable as “fragments”, which are generally small-
er molecules showing weak activities, but which can be optimized by adding sub-
stituents [22].

A similar set of boundaries has not been proposed for flavours. While the prop-
erty ranges necessary for taste molecules is a priori rather large, one can guess 
that for fragrant molecules, upper values in terms of molecular weight and polarity 
are necessary to enable a minimum amount of volatility, which is the key feature 
necessary for fragrances to reach their site of action. To understand which boundar-
ies are suitable, we present herein the property profiles of the flavour collections, 
FragranceDB and TasteDB, and compare them with those of drug-like molecules in 
ChEMBL (bioactive molecules) [16], ZINC (commercial compounds for bioactiv-
ity screening) [15] and GDB-13 (possible molecules up to 13 atoms) [19].

The heavy-atom count (HAC, heavy atoms = all non-hydrogen atoms) profile 
shows that FragranceDB contains predominantly very small molecules with an up-
per boundary at approximately 21 atoms (Fig. 2.1a). A frequency peak appears at 

Table 2.1  Databases of organic molecules as of December 2013
Database Description Size Web address
PubChem Database of known molecules 

form various public sources
38.8 M http://pubchem.ncbi.nlm.nih.gov

ChemSpider Integrated resource of Royal 
Society of Chemistry

28.0 M http://www.chemspider.com/

ZINC Commercial small molecules 13.5 M http://zinc.docking.org
ChEMBL Bioactive drug-like small mol-

ecules annotated with experimen-
tal data

1.5 M https://www.ebi.ac.uk/chembldb

DrugBank Experimental and approved 
small-molecule drugs

6825 M http://www.drugbank.ca

SuperScent Database of scents from literature 1591 M http://bioinf-applied.charite.de/
superscent/

Flavornet Volatile compounds from the 
literature based on GC–MS

738 M http://flavornet.org

FragranceDB SuperScent + Flavornet 1760 M –
SuperSweet Database of carbohydrates and 

artificial sweeteners
342 M http://bioinf-applied.charite.de/

sweet/index.php?site = home
BitterDB Database of bitter Cpds from 

literature and Merck index
606 M http://bitterdb.agri.huji.ac.il/

bitterdb/
TasteDB SuperSweet + BitterDB 806 M –
GDB-11 Possible small molecules up to 11 

atoms of C, N, O, F
26.4 M http://www.gdb.unibe.ch

GDB-13 Possible small molecules up to 13 
atoms of C, N, O, S, Cl

980 M http://www.gdb.unibe.ch

GDB-17 Possible small molecules up to 17 
atoms of C, N, O, S, halogen

166.4 G http://www.gdb.unibe.ch

http://bioinf-applied.charite.de/superscent/
http://bioinf-applied.charite.de/superscent/
http://bioinf-applied.charite.de/sweet/index.php?site<2009>=<2009>home
http://bioinf-applied.charite.de/sweet/index.php?site<2009>=<2009>home
http://bitterdb.agri.huji.ac.il/bitterdb/
http://bitterdb.agri.huji.ac.il/bitterdb/
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9–11 heavy atoms corresponding to a diverse constellation comprising aliphatic 
linear and branched alkenes, aldehydes, alcohols, ketones and esters, various simple 
benzene, phenol and benzaldehyde analogues, furanones and monoterpenes. Fra-
granceDB shows only very limited size overlap with drugs (ChEMBL) and com-
mercial drug-like compounds (ZINC), which peak at the size of 20–30 heavy at-
oms. The chemical universe database GDB-13 falls within the size boundary of 
FragranceDB and offers a very large diversity of potential fragrances, including, 
in particular, analogues of monoterpenes with 10–11 atoms. TasteDB, on the other 
hand, covers a much broader size range, in agreement with the fact that flavours do 
not require volatility to reach their site of action. An abundance peak is neverthe-
less visible at 10–12 atoms and corresponds to various hexoses and their reduced 
hexitols, together with monoterpenes (menthone, camphor, citronellol), coumarins, 
anisols and some amino acids. Taste molecules in the size range of drugs (20–30 
atoms) correspond to simple di-glycosides as well as various alkaloids and aromatic 
compounds and peptides. The frequency peak at HAC = 56 corresponds to steviol 
glycosides listed in the database SuperSweet [23].

The heteroatom composition of flavours versus drugs is best compared by con-
sidering the sum of oxygen, nitrogen and sulphur atoms (Fig. 2.1b). Halogens are 

a

c d

b

Fig. 2.1  Property histograms of fragrance and taste databases in comparison to ChEMBL, ZINC 
and GDB-13
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rather rare in flavours, although organochlorine compounds such as sucralose have 
a sweet taste. FragranceDB stands out with a very low number of heteroatoms 
peaking at just two heteroatoms, which are mostly oxygen atoms as found in vola-
tiles aldehydes and ketones, alcohols, carboxylic esters and acids. As for the HAC 
profile, the overlap with drug molecules in ChEMBL and drug-like compounds in 
ZINC, in terms of heteroatom numbers, is small because drug molecules gener-
ally have a larger number of functional groups due to their larger size. Note that 
drug molecules very often contain multiple nitrogen atoms as well as amide bonds 
which are almost entirely absent in fragrances. The GDB-13 database displays rela-
tively more heteroatoms despite of the small molecular size due to a combinatorial 
enumeration favouring highly functionalized molecules. The heteroatom profile of 
TasteDB is much broader in line with the broader range of molecular weights, again 
a consequence of the abundance of sweet-tasting oligosaccharides, including the 
steviol glycosides with a high density of hydroxyl groups.

A further insight into global properties can be gained by considering the loga-
rithm of the calculated octanol/water partition coefficient clogP as a measure of 
polarity (Fig. 2.1c). ClogP indicates lipophilic molecules at high positive values, 
water-soluble molecules at strongly negative values and amphiphilic molecules 
around zero. Here, FragranceDB overlaps nicely with the drug and drug-like mol-
ecules in ChEMBL and ZINC by covering the range 0 < clogP < 5, which is a polarity 
range well suitable for rapid diffusion in biological media. This probably reflects 
the necessity of fragrances to diffuse from the gas phase to the olfactory neurons to 
reach their receptors, which requires properties similar to those necessary for drugs 
to reach their site of action. This property is also shared by the majority of TasteDB; 
however, in this case a significant fraction of the database extends into negative 
clogP values, comprising monosaccharides, disaccharides and related polyols, ste-
viol glycosides, and amino acids and peptides such as aspartame. It should be noted 
that GDB-13, which reflects the combinatorial enumeration of the entire chemical 
space, peaks at clogP = 0 due to the large fraction of cationic polyamines in the da-
tabase which extend into negative clogP values. Due to the large size of GDB-13, 
however (almost one billion molecules), the database still contains an extremely 
large number of molecules in the polarity range of fragrances compared to the other 
databases.

Structural rigidity is a defining molecular property in drugs because conforma-
tional entropy strongly reduces binding affinity. Generally, molecules with large 
number of cycles are more rigid and have a better chance to bind strongly and 
selectively to their target. Remarkably, FragranceDB is predominantly a collection 
of acyclic compounds, with an abundance of acyclic aliphatic alcohols, aldehydes, 
acids and esters, such as butter and fruit aroma (Fig. 2.1d). Monocyclic molecules 
are also abundant, in particular cyclic terpenes, such as limonene or menthol; and 
monocyclic aromatic molecules, such as cinnamaldehyde. The abundance of acyclic 
and monocyclic compounds in FragranceDB contrasts with the typical drug mol-
ecules in ChEMBL and ZINC, which tend to be polycyclic, also as a consequence 
of their size. The combinatorial enumeration of molecules in GDB-13 correspond-
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ing to the size range of fragrances favours bicyclic molecules as the most abun-
dant topology. TasteDB contains mostly monocyclic molecules, many of which are 
monosaccharides, but also extends into polycyclic molecules due to the presence of 
oligosaccharides and steroids in the collection.

2.3  Visualizing the Chemical Space of Flavours

2.3.1  The Chemical Space

In the context of organic chemistry, the term “chemical space” describes the en-
semble of all known and/or possible molecules, but also the various multidimen-
sional “property spaces” that can be defined by assigning dimensions to numerical 
descriptors of molecular structures [24, 25]. Such property spaces provide a general 
organization principle, which helps understand the molecular diversity available 
in large databases often containing many millions of molecules (Table 2.1). To ob-
tain visual representations of property spaces, one usually performs principal com-
ponent analysis (PCA) and representation of the (PC1, PC2)-plane containing the 
largest variance. This mathematical procedure is equivalent to taking a picture of 
the multidimensional space from the angle showing the largest diversity (Fig. 2.2) 
[26–32]. 

Thousands of numerical descriptors of molecular structure are known, and the 
number of possible property spaces is therefore unlimited. Recently, we showed 
that the chemical space of molecular quantum numbers (MQN), a set of 42 simple 
integer value descriptors counting atoms, bonds, polar groups and topological fea-

Fig. 2.2  Principal component analysis ( PCA) projects a multidimensional property space into the 
plane of the largest variance
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tures, such as cycles, provides a simple classification system of large databases and 
produces insightful (PC1, PC2)-maps for a variety of databases [33]. These PC-
maps separate molecules by their mass, the number of cycles and rotatable bonds 
and their polarity, as can be illustrated by colour coding with property values. We 
have used such MQN-space maps to design interactive searchable maps of vari-
ous public databases including zoom-in function and visualization of the molecules 
with links to their source database in the form of a “Google-map”-type application 
freely available from www.gdb.unibe.ch [34]. A related classification system and 
interactive visualization system were also realized using a simplified molecular-
input line-entry system (SMILES) fingerprint (SMIfp), counting the occurrences of 
characters occurring in the SMILES representation of molecules [35]. One of the 
most striking features of these classification systems is that they group molecules 
by their pharmacophoric features and biological activities, and thus enable virtual 
screening in prospective searches [36].

2.3.2  Maps of the Flavours—Chemical Space

To gain an overview of the chemical space of flavours, we have performed a PCA 
visualization of the merged database containing FragranceDB and TasteDB, total-
ling 2517 compounds. These databases are represented in their (PC1, PC2)-plane 
which can be considered as a general 2-D map of their chemical space.

For the case of the MQN-space representation shown in Fig. 2.3a–d, the mol-
ecules spread by increasing size in the horizontal PC1-axis covering 67.97 % of data 
variability. The vertical PC2-axis separates molecules by structural rigidity cover-
ing 15.54 % of data variability. The total data variability represented by the (PC1, 
PC2)-plane amounts to 83.51 %, which is typical for the projection of large data-
bases from MQN-space. The molecules are grouped in descending diagonal stripes 
grouping molecules with an increasing number of cycles and ring atoms. Acyclic 
and monocyclic compounds are the most abundant category in FragranceDB, re-
spectively, TasteDB. The category map in Fig. 2.3d shows that FragranceDB is 
essentially an acyclic/monocyclic compound database of small molecules, while 
TasteDB extends in large and polycyclic molecules.

In the maps of the SMIfp-space shown in Fig. 2.3e–h, the PC1-axis covers 
66.9 % of data variability and the PC2-axis covers 18.97 %, totalling to 85.87 % 
of data variability visible in the (PC1, PC2)-plane. Molecules spread by increasing 
size along the descending diagonal (Fig. 2.3e). The horizontal PC1-axis separates 
molecules according to the number of nonaromatic carbons (Fig. 2.3g), and the ver-
tical axis according to the number of aromatic carbons (Fig. 2.3f). When comparing 
the category map in Fig. 2.3h with the property values in Fig. 2.3e–h, one can appre-
ciate that FragranceDB contains mostly nonaromatic molecules, which correspond, 
in large part, to the acyclic molecules seen in the MQN-map of Fig. 2.3b. On the 
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other hand, TasteDB spans a broader range of SMIfp values, in particular, many 
taste molecules contain a large number of aromatic carbon atoms.

Overall, the MQN- and SMIfp-maps of the combined FragranceDB and TasteDB 
illustrate the broad range of structural types encountered in flavours. Note that the 
(PC1, PC2)-plane does not reflect any distribution of polarity properties. These are 
generally to be found in the PC3-dimension which requires additional representa-
tions not discussed here.

 

a) MQN, heavy atoms

b) MQN, ring atoms

c) MQN, rotatable bonds

d) MQN, FragranceDB and TasteDB

e) SMIfp, heavy atoms

f) SMIfp, Aromatic carbons

g) SMIfp, non-aromatic Carbons

h) SMIfp, FragranceDB and TasteDB
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Fig. 2.3  Colour-coded maps of the flavours and taste chemical space. (PC1, PC2)-maps for PCA 
of the 42-dimensional MQN-space (a–d) and 34-dimensional SMIfp-space (e–h) are colour-coded 
by increasing value of the indicated property in the scale blue–cyan–green–yellow–orange–red–
magenta with the corresponding value indicated on the map, for (d, h) yellow = flavour, blue = 
taste, and grey = pixel with mixed categories
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2.4  Fragrance Analogues in Chemical Space

2.4.1  Similarity Searching by City-Block Distance

The MQN- and SMIfp-spaces discussed in the previous section allow not only sim-
ple PCA-mapping of chemical space but also an extremely fast search for analogues 
using dedicated online browsers, which are freely accessible for use at www.gdb.
unibe.ch. The browsers search for analogues of any query molecule as drawn in the 
query window using the principle of nearest neighbours in the multidimensional 
property space by measuring the city-block distance (CBD) between molecules. 
The CBD separating two molecules is the sum of the absolute differences between 
descriptor pairs across the 42 MQN and the 34 SMIfp descriptors. By pre-organiz-
ing databases according to file systems named X-MQN and X-SMIfp, databases 
of many millions of compounds can be searched within seconds for CBDMQN and 
CBDSMIfp neighbours, respectively, of any query molecule [37].

We have performed extensive comparisons between CBD and the more common 
Tanimoto coefficient as pairwise similarity measured between molecules and found 
the performance of both methods to be largely comparable, in particular, for the 
high-similarity pairs, i.e. both similarity measures will indicate the same molecules 
as the most similar, but differ substantially when considering very dissimilar com-
pounds. On the other hand, searching according to the Tanimoto similarity is much 
slower than searching by CBD. The X-MQN and X-SMIfp systems incorporate 
additional options to direct any analogue search by restricting certain parameters in 
the analogues shown to certain subclasses (charges, HBD, HBA, elemental formula 
or compliance with drug-likeness rules), as visible in the search-window interface 
for the database ZINC using MQN-similarity searching (Fig. 2.4).

2.4.2  Fragrance Analogues from MQN-Space

The chemical space neighbourhood search gives particularly interesting results 
when considering fragrances. In the context of an analogue search within databases 
of commercially available compounds such as ZINC, one can identify interesting 
analogues by MQN- or SMIfp-similarity searching by preserving the number of 
HBD and HBA atoms, the electrostatic charges and optionally the elemental for-
mula to avoid the selection of analogues with multiple heteroatoms, in particular 
nitrogen-rich heterocycles which are particularly abundant due to their importance 
in drug-discovery applications. Only the MQN-similarity search is exemplified 
here, but the SMIfp-similarity gives comparable results.

In Fig. 2.5, the MQN neighbours of the peppermint fragrance component, 
menthone, are shown. There are 27 commercially available compounds within 
CBDMQN ≤ 12, which is a useful distance boundary in the MQN-space [37]. These 
commercial analogues not only contain menthone itself (hit no. 1), a regioisomer 
(hit no. 2), but also various other cyclohexanones with the same number of acyclic 
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carbon atom substituents (hit nos. 3–9). Cycloheptanones (hit nos. 13–15) and cy-
clopentanones (hit nos. 26–27) are also proposed by the MQN-similarity search.

One can also extend the search to other databases containing a larger diversity 
of molecules. The chemical universe database GDB-13, which lists 977 million 
molecules of up to 13 atoms of C, N, O, S and Cl possible following simple rules 
of chemical stability and synthetic feasibility, is the largest database of small mol-
ecules to date [19]. GDB-13 is particularly relevant for fragrance analogue search-
es since it contains molecules in the size range most populated by fragrances; in 
particular, the majority of monoterpenes have less than 13 atoms. When applying 
the MQN-similarity search to typical fragrances, one can appreciate the very large 
number of high-similarity fragrance analogues that are possible, including isomers 
(Table 2.2). The vast majority of these molecules are presently unknown, and many 
do not pose any particular synthetic challenge, suggesting that large numbers of 
fragrant molecules remain to be explored.

2.5  Conclusion and Outlook

The general properties of flavour molecules, comprising fragrances which are rela-
tively small organic compounds with few polar functional groups, such as to be 
volatile, and the more polar and diverse taste molecules, define a subset of the 
chemical space that is clearly separated from the well-known drug-like molecules. 
A global understanding of chemical space aided by representations such as the  

Fig. 2.4  The search-window option to identify the nearest neighbours of menthone in the MQN-
space of the database ZINC (see also Sect. 1.4.2)
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PC-maps of the MQN- and SMIfp-chemical spaces presented here, illustrate the 
extent of the structural diversity at hand. This chemical space is currently relatively 
sparsely populated compared to its potential, implying that many millions of ad-
ditional flavour molecules remain to be discovered. Proximity searches in these 
chemical spaces can greatly facilitate the identification of flavour analogues.

The graphical and global understanding of flavour–chemical diversity presented 
in this chapter will probably serve as a confirmatory illustration of expert knowl-
edge to fragrance chemists. On the other hand, such overviews are excellent tools to 
help in the dissemination of flavour chemistry to the broader scientific community 
and the definition of further goals in terms of exploring the flavour–chemical space. 
In particular, one can hypothesize that a thorough analysis of structure–activity rela-
tionships in a chemical space perspective could lead to a better understanding of the 
diversity of odour and taste perception and reveal the general principles underlying 
the genetic diversity of the olfactory system.
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Chemoinformatics approaches to problem solving are commonly used in both 
academia and industry, and while a major focus is the pharmaceutical industry, 
many other sectors of the chemical industry lend themselves to it equally well. 
The chemoinformatic concepts, thoroughly discussed in Chap. 1 of this book, are 
general and can also be applied to address problems frequently encountered in food 
chemistry. A general strategy when applying these computational methods is to re-
place biological activity by a food-related property, for instance, flavor character 
or antioxidative activity. In many cases, the representation of the chemical struc-
ture remains the same (using, for example, molecular fingerprints, physicochemi-
cal and/or structure/substructure representations). In other words, structure-activity 
relationships (SAR) studies commonly conducted in medicinal chemistry for the 
purpose of drug discovery can be generalized to the study of structure–property re-
lationships (SPR) for virtually any chemistry-related project [1]. Herein, we discuss 
representative and specific applications of methods used in chemoinformatics to 
mine data and characterize SPR information relevant to food chemistry. The chapter 
is organized into two major sections. First, we discuss exemplary applications of 
chemoinformatic analyses and characterization of the chemical space of compound 
databases. In this section, we cover major related concepts such as chemical space 
and molecular representation. The second section is focused on the application of 
similarity searching to food chemical databases.
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3.1 Chemoinformatic Analyses

Chemoinformatics, “cheminformatics,” and “chemical information science” are 
different terms that have been coined for the common goal of applying informatics 
methods to solve chemical problems [2]. Chemoinformatics has also been defined 
as “a scientific field based on the representation of molecules as objects (graphs or 
vectors) in a chemical space” [3]. Further definitions are surveyed by Varnek and 
Baskin [3] and Willet [4]. Major aspects of chemoinformatics include the represen-
tation of chemical compounds, storing and mining information in databases, and 
generating and analyzing data [2].

Representation Molecular representation is at the core of chemoinformatics. There 
are two major types of representation: graphs and descriptor vectors. Graph-based 
approaches are applied to conduct structure and substructural analysis. These meth-
ods are easy to interpret and allow relatively straightforward communication with 
non-computational experts. Representations employing descriptor vectors are com-
monly used in chemoinformatics for database processing, clustering, similarity 
searching, and developing descriptive and predictive models of SAR; for example, 
QSPR/QSAR models and activity landscape models [1]. More than 5000 descrip-
tors of different design have been developed [5]. The choice of descriptors used to 
analyze compound data sets gives rise to different chemical spaces.

In the food chemistry field, it has been recognized that there is a need for stan-
dardized food descriptions [6]. Food databases such as INFOODS contain free text. 
Representative databases relevant to the food chemistry field are presented in more 
detail in Chap. 9. Such databases require curation of their chemical structures as 
well as of the associated descriptions. Curation then involves the standardization of 
vocabulary, dictionaries to homogenize terms, and deletion of unnecessary word-
ing. This is a tedious, but an important and necessary step. Relevant food data-
bases not involving chemical structures are also in common use in the food industry. 
These databases may have different purposes, involving: cooking methods, ingre-
dients, recipes, cuisine, and preparation location. In this context, the concept “food 
description” is used in a broad sense and applies to chemical and non-chemical 
databases. These databases allow for the sharing and exchange of food composition 
data. Some of the aspects that affect the quality of the information are: nutrient defi-
nitions, analytical methods used, and food description. The need for a “universal 
system” to describe and store food information has been recognized [6].

Another important aspect of food databases is that food and some food additives 
are, by nature, mixtures of components. For example, flavors frequently comprise 
or contain extracts of plants. Such mixtures and combinations of mixtures provide 
fertile ground for innovation. Similarly, in the search for bioactive molecules, natu-
ral products have been and continue to be a primary source of molecules with po-
tential therapeutic effect. In fact, traditional medicine around the world is ancestral 
and still in use. An interesting example of this is the medicinal herb St John’s wort 
( Hypericum Perforatum) which is prescribed in some countries for the treatment 
for depression [7]. The chemical composition and pharmacological effect of the 
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individual constituents have been characterized; however, the less dramatic side 
effects typically observed cf. standard antidepressant drugs seems to be related to 
the mixture’s complexity.

With the aim of standardizing the description of food-related databases and its 
analysis, Haddad et al. [8], for example, used a structural representation consisting 
of 1664 odorants, and used this information for classifying odorants based on simi-
larity measures, as explained later in this chapter.

Chemical Space The concept of chemical space has broad application not only 
in drug discovery but also in virtually any chemistry-related dataset. It has been 
pointed out that “unlike real physical space, a chemical space is not unique; each 
ensemble of graphs and descriptors defines its own chemical space” [3]. Chemical 
space has been directly compared to the cosmic universe and several definitions 
have been proposed in the literature [9]. For example, Virshup et al. [10] recently 
defined chemical space as “an M-dimensional Cartesian space in which compounds 
are located by a set of M physicochemical and/or chemoinformatic descriptors.” 
Comparison of the chemical space of compound collections is important for library 
selection and design [11]. When designing new libraries, or screening existing 
libraries, it is relevant to consider the chemical space coverage of the new com-
pounds, the structural novelty, and the pharmaceutical relevance. Systematic analy-
sis of the chemical space of compound libraries, in particular, large collections, 
requires computational approaches [12]. As we recently pointed out, depending on 
project goals, a wide range of approaches have been developed to populate, mine, 
and select relevant areas of chemical space [13].

It is possible to draw a direct analogy between chemical space and flavor space. 
A thorough discussion of chemical space is described elsewhere [9], while a com-
prehensive discussion of flavor and fragrance-relevant chemical space is discussed 
by Reymond et al. in Chap. 2 of this book.

Chemical Databases Chemical libraries vary in nature, composition, and design, 
and each may serve one or more specific purposes. Compound collections used for 
virtual (in silico) screening include combinatorial libraries, commercial vendors’ 
compounds, and natural products [14]. Molecular databases may contain hundreds, 
thousands, or even millions of molecules; these may be existing chemicals, or they 
may be hypothesized compounds, e.g., for later chemical synthesis. Libraries of 
existing compounds may be commercial, public domain, or proprietary.

Such chemical databases can be used for a wide variety of purposes, such as the 
development and systematic analysis of SAR [15] and identification of polyphar-
macology [16]. The constant increase in the number of molecules stored in com-
pound databases [17] has led to the concept of chemical space (vide supra).

Repurposing or repositioning of chemical compounds is an approach to accel-
erate the identification of a new use for a compound with a pre-existing use. Re-
purposing can be achieved computationally or experimentally or by using a com-
bination of the two approaches. In the pharmaceutical area, it is known as drug 
repurposing [18] and represents an application based on increasing evidence for 
the concept of polypharmacology, i.e., that observed clinical effects are often due 
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to the interaction of single or multiple drugs with multiple targets [19]. Reviews 
and discussions are described in the literature in an integrated manner with related 
concepts such as polypharmacology, chemogenomics, phenotypic screening, and 
high-throughput in vivo testing [20].

A number of food phytochemicals and food-related molecular databases are 
available [21]. Food and food-related databases are described in more detail in 
Chap. 9 of this book. Major examples of public databases of chemical compounds 
annotated with biological activity for drug-discovery applications have been devel-
oped. Prominent examples include: BindingDB, ChEMBL, PubChem, and WOrld 
of Molecular BioAcTivity (WOMBAT). These databases and others described in 
Chap. 9 can be analyzed and compared for knowledge of chemical space coverage 
and potential repurposing, for example, using the concept of similarity searching.

Chemoinformatic Profiling of Chemical Databases Chemoinformatics has a fun-
damental role in the diversity analysis of compound collections and in the mining 
of chemical space. Chemoinformatic approaches designed to mine and navigate 
through the chemical space of compound collections is described in detail elsewhere 
(Chap. 1 of this book). The various approaches in conducting chemoinformatic 
characterization of compound libraries are mainly distinguished by the structural 
representations and criteria used to characterize the chemical libraries. Typically, 
compound databases are compared using physicochemical properties, molecular 
scaffolds, or structural fingerprints. Following the same or similar approaches to 
those used to characterize databases of interest in the pharmaceutical industry, it is 
possible to conduct analysis of food chemical databases.

Since these three major types of structural representation are focused on specif-
ic aspects of the structures, it is convenient to use more than one criterion for com-
prehensive analysis of the structural and property diversity of molecular databases. 
This is because each of these methods has its own strengths and weaknesses. For 
example, the use of whole molecule properties (holistic properties) has the advan-
tage of being intuitive and straightforward to interpret. However, physicochemical 
properties do not provide information regarding structural patterns, and molecules 
with different chemical structures can have the same or similar physicochemical 
properties. Similar to physicochemical descriptors, chemotypes or scaffolds may 
be readily interpreted and enable easy communication with medicinal chemists 
and biologists. For example, scaffold analysis has led to concepts which are wide-
ly used in medicinal chemistry and drug discovery, e.g., “scaffold hopping” [22] 
and “privileged structures” [23]. One of the shortcomings of molecular scaffold 
analysis is a lack of information regarding structural similarity primarily due to the 
side chains cf. the inherent similarity or dissimilarity of the scaffolds themselves. 
An obvious solution is the analysis not only of the molecular frameworks per se 
but also of the side chains, the functional groups, and other substructural analysis 
strategies [24].

Molecular fingerprints are widely used and have been successfully applied to a 
number of chemoinformatic and computer-aided molecular applications. A chal-
lenge of some fingerprints is that they are more difficult to interpret. Also, it is well 
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known that chemical space may be highly dependent on the types of fingerprints 
used to derive it. In order to reduce the dependence of chemical space on the choice 
of structure representation, several SAR/SPR studies have implemented consensus 
methods in order to combine the information encoded by different molecular rep-
resentations. Use of multiple fingerprints and representations to derive consensus 
conclusions (e.g., consensus activity cliffs) has been proposed as a solution [1].

We have conducted a comprehensive chemoinformatic characterization of a 
subset of the Flavor and Extract Manufacturers Association (FEMA) Generally 
Recognized As Safe (GRAS) list of approved flavoring substances (discrete chem-
ical entities only) [25, 26]. To this end, we employed a set of rings, atom counts 
(carbon, nitrogen, oxygen, sulfur, and halogen atoms), six molecular properties 
(octanol/water partition coefficient, polar surface area, numbers of hydrogen bond 
donors and acceptors, number of rotatable bonds, and molecular weight), and 
seven structural fingerprints of different design: MACCS keys radial fingerprints 
(also known as extended connectivity fingerprints), chemical hashed fingerprints 
(implemented in ChemAxon), atom pair (Carhart), fragment pair, pharmacophore 
fingerprints, and weighted Burden number. In that work, we considered a set of 
2244 compounds based on the FEMA GRAS list, complete through GRAS 25 [26]. 
An early version of this GRAS database is briefly described in Peppard et al. [27]. 
This data set was compared to a database of 1713 approved drugs, two databases 
of natural products (with 2449 and 467 molecules, respectively) a set of 10000 
commercial compounds, a database of 2116 flavors and scents, and a collection of 
32357 compounds used in traditional Chinese medicine. It was concluded that the 
molecular size of the GRAS flavoring substances and the SuperScent database is, 
in general, smaller cf. members of the other databases analyzed. The lipophilicity 
profile of these two databases, a key property to predict human bioavailability, 
was similar to approved drugs. Using a visual representation of chemical space 
based on a principal component analysis based on the number of aromatic rings 
and six additional molecular properties, it was concluded that a large number of 
GRAS chemicals overlapped a broad region of the property space occupied by 
drugs. The GRAS list analyzed in that work has high structural diversity, compa-
rable to approved drugs, natural products, and libraries of screening compounds 
(Table 3.1).

Table 3.1  Reference databases used to characterize and compare FEMA GRAS list (3–25) and 
SuperScent
Database Content Size
FEMA GRAS Flavors 2244
AnalytiCon Natural products 2449
Specs NP Natural products 467
DrugBank Approved drugs 1713
SpecsWD3 Approved drugs 10000
TCM Natural products 32357
SuperScent Flavors and fragrances 2116
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3.2 Similarity Searching

Computational approaches, including those based on molecular modeling and che-
moinformatics tools, are increasingly being used to help identify compounds with 
biological activity. In particular, in silico or virtual screening is a valuable means 
of focusing experimental efforts on filtered sets of compounds yielding a higher 
probability of having the desired biological activity [28]. The rationale here is that 
the information of the system encoded in the computational procedure will increase 
the probability of identifying compounds with biological activity. Hit identification 
using computational screening requires several interactive and iterative steps and 
requires a careful selection of the methods to be used. The selection of a particular 
approach depends on the aim of the project, the information available for the sys-
tem, and the computational resources available. In addition, one needs to consider 
the inherent limitations of each step involved and computational cost.

Virtual screening methods can be roughly organized into two major groups, 
namely, ligand based and structure based [29]. Ligand-based approaches use struc-
ture-activity data from a set of known actives in order to identify candidate com-
pounds for experimental evaluation. A common ligand-based approach is based on 
the molecular similarity concept, which states that structurally similar molecules are 
more likely to have similar biological activity [30]. Significant exceptions to this 
rule do occur, with so-called activity cliffs describing situations where compounds 
with similar structure have, unexpectedly, very different biological activity [31]. 
Other ligand-based methods include substructure, clustering, quantitative structure-
activity relationships (QSAR), pharmacophore, and three-dimensional (3D) shape 
matching techniques [32].

Structure-based approaches use the 3D structure of the target, usually obtained 
from X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. 
However, in the absence of a receptor’s 3D structural information, homology mod-
eling [32] has successfully been used in virtual screening [33]. One of the most 
common structure-based methods is molecular docking. If information for both the 
experimentally active compound(s) and the 3D structure of the target are available, 
then the ligand- and structure-based virtual screening methods can be combined. 
Indeed, combining both methods increases the possibility of identifying active com-
pounds [34].

Similarity searching is a typical ligand-based approach. Selection of the query or 
reference compounds in virtual screening is one of the crucial initial steps required 
for a successful outcome. Depending on both the dataset and the biological activ-
ity, it is possible that one or more reference compounds are associated with activity 
cliffs, i.e., that each might be a potential “activity cliff generator” [35]. An activ-
ity cliff generator is defined as a molecular structure that has a high probability of 
forming an activity cliff with molecules tested in the same biological assay. Since 
activity cliffs represent significant exceptions to the similarity principle, typically 
leading to erroneous results in similarity searching, it has recently been proposed 
that activity cliff generators be identified and removed from data sets before select-
ing reference compounds. Moreover, removal of activity cliff generators has been 
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proposed as a general strategy, to be employed before developing predictive models 
such as those obtained with traditional QSAR, or other machine learning algorithms 
based on the similarity property principle [36].

Selection of chemical databases for similarity searching (or any other virtual 
screening approach) is another major component of the searching protocol. As men-
tioned in the previous section, a number of compound databases from different 
sources can be used. Notably, similarity searching can be applied to compound col-
lections initially assembled for a different purpose, detailed above as repurposing. 
For example, Méndez-Lucio et al. recently conducted a 3D similarity search of 
DrugBank, a database of drugs approved for clinical use, with a distinct inhibitor 
of DNA methyltransferases, an emerging and promising epigenetic target for the 
treatment of cancer and other diseases [37]. The anti-inflammatory drug olsalazine 
was one of the most similar molecules to the reference compound, and it indeed 
showed hypomethylating activity based on a well-characterized live-cell imaging 
assay mediated by DNMT isoforms [38].

Information contained in databases is, in almost all cases, multivariate in nature; 
those related to food chemicals present particular challenges. One issue frequently 
encountered is that the chemical information is ambiguous. For example, materials 
may comprise a mixture of constituents, as in the case of essential oils; a mixture of 
isomers; or single components, but having incomplete stereochemical information. 
This adds to the unavoidable problem of missing information in chemical databases, 
such as protonation state of amino or carboxylic acid groups, prevalence of par-
ticular tautomers, etc. Moreover, these structural characteristics change depending 
on environment, for instance, when bound to a biological target (or targets). Since 
these are unavoidable and “dynamic” structural features, the preference is to ignore 
protonation states and consider the most stable tautomer for a given molecule.

When geometric isomers or stereoisomers are incompletely defined, one strategy 
is to consider all possible isomers in the computations. Alternatively, it is possible to 
use structural representations that do not take into account stereochemical informa-
tion, although this will, of course, convey less chemical information. In the case of 
mixtures comprising multiple constituents, it is not possible to perform traditional 
chemoinformatic studies based on chemical structure (although there are studies 
that can be performed based purely on the nonstructural content of the databases). 
For such mixtures, e.g., essential oils, oleoresins, or other natural extracts, che-
moinformatic studies can be performed if the composition and property description 
(organoleptic, biological activity, etc.) can be obtained for each constituent. In ad-
dition, the possibility of synergistic effects cannot be dismissed or, as in the case of 
St. John’s wort, reduce side effects (in the treatment of mood disorders) due to the 
composition of the herb.

Another aspect to consider when dealing with food chemical databases is the 
dimensionality and, often times, the non-standardized description of the chemicals. 
In such cases, it is necessary to first use dictionaries or lexicons to ensure the infor-
mation is as homogeneous as possible. This process, which is part of the curation of 
the database, may require manual intervention in which case it may not be entirely 
unbiased. Curation also includes deletion of unnecessary wording and of duplicates. 
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Once these steps have been performed, the database may now have chemicals with-
out description; these will be discarded.

A final consideration is that the cleaned-up database which contains more than 
one description for each chemical is multi-dimensional cf. databases of chemical 
compounds containing just one biological activity. A similar scenario can be seen in 
the case of chemical databases containing the results of multiple biological assays.

There are reports in the literature by us and also by others facing these challeng-
es. For example, both Zarzo et al. (vide infra) and our group have discussed the cu-
ration and chemoinformatic description of odor and flavor databases, respectively. 
Regarding the analysis of chemical structures, we performed structural similarity of 
chemical structures based on fingerprint representations. In this arena, Sprous et al. 
[39], Pintore et al. [40], and Jensen et al. [41] have reported related studies.

Zarzo et al. [42] characterized an odor database; the first step consisted of en-
coding the odor description of the database in a dichotomic format, where 0 corre-
sponded to the absence of a given descriptor, while 1 represented its presence. From 
those data, the authors were able to perform a descriptive analysis of the database 
and show the incidence of each descriptor in the database. They also demonstrated 
associations among descriptors, in other words, pairs of descriptors that repeatedly 
were used together in the database. Lastly, using principal component analysis on 
a selected subset of the database, the authors constructed the corresponding “odor 
space.” The 2D graphical representation of this odor space organized descriptors in 
the same regions of the plot that are intuitively similar, such as fruity (pineapple, 
berry, peach, cherry, apple, etc.), floral (rose, sweet, other floral), etc. One of the 
outcomes of this work was the presentation of an odor space which provides useful 
information when training sensory panels for odor profiling.

We performed a chemoinformatic analysis of the FEMA-GRAS list (containing 
both chemical structures and associated sensory attributes), the first steps of which 
comprised the compilation and curation of the database [25]. After standardization 
of descriptive flavor terms using a recognized sensory lexicon (ASTM, American 
Society for Testing and Materials publication DS 66) and removal of unnecessary 
wording, the resultant database was analyzed for the incidence of descriptors and 
their associations using three independent methods: principal component analysis, 
clustering, and flavor descriptor relationships. We found that certain descriptors ap-
pear in the same region of the flavor space generated with the principal component 
analysis, as well as within nearby clusters when generating a clustering-based heat 
map, and also in a pair-wise analysis of descriptor associations. The correspondence 
of results obtained with these three methods gives confidence in the results.

The concept of information content, commonly used in the field of chemoinfor-
matics, has been applied to olfactory databases by Pintore et al. [40]. The challenge 
of establishing a standard olfactory description of chemicals is recognized by the 
authors. Two olfactory databases were compared, according to the consistency of 
odor description. Based on 2D representations, the authors applied several classifi-
cation methods, along with corresponding means of validation. The authors related 
this consistency to the information content of the databases, and concluded that one 
of the main difficulties when working with odor databases is the subjectivity used, 
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even by experts, to describe odor perception. Not surprisingly, this led to some 
wide discrepancies in descriptions of the same compound in the two databases. In 
this study, the 2D representations of the chemical structures included in the two 
databases were used to explore the consistency of the odor descriptions rather than 
to perform structural similarity with the aim of finding either similar compounds 
for structure–property relationships, or compounds with similar property profiles 
(biological activity, odor description, etc.).

Sprous and Salemme [39] reported a comparison of the FEMA GRAS com-
pounds with compounds contained in the Drugbank database. The study was based 
on determining the chemoinformatic profile of the database (vide supra), comput-
ing the population of structural and physicochemical features, such as molecular 
weight, molecular flexibility, logP, logS, and numbers of acceptor, donor, acidic and 
basic atoms, etc. The authors concluded that, in general, GRAS compounds occupy 
a different and identifiable region of chemical space relative to pharmaceuticals. 
However, more recent subsets of the GRAS list, which contain fewer compounds 
from natural sources, are more diverse, thus expanding the chemical space occupied 
by compounds of previous versions of the FEMA/GRAS list.

Haddad et al. [8] developed a metric for odorant comparison based on a chemi-
cal space constructed from 1664 molecular descriptors. A refined version of this 
metric was devised following the elimination of redundant descriptors. The study 
included the comparison with models previously reported for nine datasets. The fi-
nal, so-called multidimensional metric, based on Euclidean distances measured in a 
32-descriptor space, was more efficient at classifying odorants cf. reference models 
previously reported. Thus, this study demonstrated the use of structural similarity 
for the classification of odors in multidimensional space.

In order to identify potential bioactivity among the food-flavoring components 
that comprise the FEMA GRAS list, we recently conducted ligand-based virtual 
screening for compounds with structures similar to approved antidepressant drugs 
[43]. The virtual screening was performed by means of fingerprint-based similar-
ity searching. Valproic acid turned out to be the most similar antidepressant to a 
small number of GRAS compounds. Guided by the hypothesis that the inhibition 
of histone deacetylase-1 (HDAC1) may be associated with the efficacy of valproic 
acid in the treatment of bipolar disorder, we screened the GRAS compounds most 
similar to valproic acid for HDAC1 inhibition. The GRAS chemicals nonanoic 
acid and 2-decenoic acid inhibited HDAC1 at the micromolar level, with potency 
comparable to that of valproic acid. GRAS compounds likely do not exhibit strong 
enzymatic inhibitory effects at the concentrations typically employed in foods and 
beverages. As shown in that study, GRAS chemicals are able to bind, albeit weakly, 
to important therapeutic targets. Additional studies on bioavailability, toxicity at 
higher concentrations (GRAS flavor molecules being safe when used at or below 
the levels approved for foods and beverages) and off-target effects are warranted. 
The results of that work demonstrate that similarity searching followed by experi-
mental evaluation can be used for rapid identification of GRAS chemicals with 
possible biological activity, with potential application for promoting health and 
wellness [43].
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In two subsequent studies, again using structural similarity, we compared the 
FEMA GRAS list with analgesics and with compounds used as satiety agents. The 
list of analgesics comprised ten structurally diverse molecules currently used in 
the clinic. A total of eight satiety agents were identified in the literature, and these 
were used for similarity searching. The satiety agents included those currently used 
in the clinic, as well as those still in clinical trials.

In both studies, reference compounds were compared with the FEMA GRAS 
list using three software programs (MOE, ChemAxon, and PowerMV), with a total 
of seven structural representations. Compounds identified by different programs 
and representations were chosen as consensus compounds for further study. Then, 
a chemical space was constructed based on physicochemical properties. Nearest 
neighbors were identified based on Euclidian distances considering all the dimen-
sions (properties). Based on the comparison of structural features and physicochem-
ical properties, two FEMA GRAS compounds (listed on Table 3.2)were identified as 
similar to the reference analgesics. In the second study, a total of nine FEMA GRAS 
compounds were identified as similar to those used as reference satiety agents (see 
Table 3.3). For compounds having a known mode of action, in vitro studies using 
the identified GRAS chemicals could help determine whether or not they may have 
a satiety or analgesic effect in humans. However, it must be borne in mind that bio-
logical effects, in the large majority of cases, result from complex and multiple in-
teractions in the body, as already described above in the area of polypharmacology.

Phytochemicals derived from eatable plants represent a remarkable source 
of bioactive compounds. In a recent study, Jensen et al. [41] performed a high-
throughput analysis of phytochemicals in order to uncover associations between 
diet and health benefits using text mining and chemoinformatic methods. The first 
step of that study involved the extraction of associations between the terms of plants 
and phytochemicals, analyzing 21 million abstracts in PubMed/MEDLINE cover-
ing the period 1998–2012. This information was merged with the Chinese Natural 
Product Database and the Ayurveda dataset, which was also curated by the authors. 
The final dataset contained almost 37000 phytochemicals. A remarkable outcome 

Table 3.2  GRAS flavor chemicals with highest similarity to known analgesics

CAS # Name Structure

1093200-92-0

N-[(4-Amino-2,2-
dioxido-1H-2,1,3-
benzothiadiazin-5-

yl)oxy)]-2,2-dimethyl-
N-propylpropanamide

83-67-0 Theobromine
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Table 3.3  GRAS flavor chemicals with highest similarity to known satiety agents

CAS # Name Structure

100-86-7 2-mehtyl-1-phenylpropan-2-ol

103-05-9 2-Methyl-4-phenyl-2-butanol

83-67-0 Theobromine

4265-16-1 2-Benzofurancarboxaldehyde

39537-23-0 L-Alanyl-L-glutamine

714229-20-6 Advantame

1323-75-7

(2Z)-2-Mehtyl-5-{2-methyl-3-
methylidenebicyclo[2.2.1]heptan-

2-yl}pent-2-en-1-yl 2-
phenylacetate

1139-30-6
(1R,4R,6R,10S)-9-Methylene-

4,12,12-trimethyl-5-
oxatricyclo[8.2.0.04,6]dodecane

10024-57-4 (4-Methylphenyl) dodecanoate
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of that work is the structured and standardized database of phytochemicals associ-
ated with medicinal plants. As claimed by the authors, their approach facilitates the 
identification of novel bioactive compounds from natural sources, and the repurpos-
ing of medicinal plants for diseases other than those traditionally used for, with the 
added benefit that the information collected can help elucidate mechanism of action 
[41]. As a case study, the authors applied structural similarity searching in order to 
find molecules in their compiled database of phytochemicals with activity against 
a protein involved in the colon cancer pathway or a colon cancer drug target; the 
reference compounds were those reported in the ChEMBL database. A set of mol-
ecules from this study have not only reported health benefit against colon cancer but 
also verified activity against colon cancer protein targets.

The studies here described exemplify the application of the concepts and meth-
odologies widely used in pharmaceutical settings, such as of data mining, diversity 
analysis, polypharmacology, repurposing, and similarity searching, in databases 
containing food additives and phytochemicals.
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4.1  Introduction

In many ancient civilizations, such as the Chinese, Egyptian, Indian, and Sumar-
ian, foods were considered as medicine and traditional medicines would usually 
favor prevention over cure. Hippocrates, the father of Western medicine, famous-
ly considered food as medicine and medicine as food (~500 BC). During approxi-
mately the same period, in China, the so-called Yellow Emperor’s Inner Classic 
was compiled which represents the first codification of Chinese food therapy. 
So the concept of foods providing health benefits is not new. Today’s functional 
foods may be regarded as a modern continuation of our ancestors’ quest for good 
health. But what is a functional food? “Functional foods can be considered to be 
those whole, fortified, enriched or enhanced foods that provide health benefits 
beyond the provision of essential nutrients (e.g., vitamins and minerals), when 
they are consumed at efficacious levels as part of a varied diet on a regular ba-
sis” [26]. With better-informed consumers, the increase in life expectancy, and 
growing regulatory constraints, the food industry is today striving for constant 

Dedication—This chapter is dedicated to the memory of John Sciré, who sadly passed away in 
November 2013. It was largely through his efforts and his enthusiasm that work on the flavorings 
was able to be undertaken.
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innovation. Consequently, there are many opportunities for novel active food in-
gredients. Indeed, the global functional foods market is projected to reach nearly 
$30 billion by 2014 [44]. How can we try to fulfill the needs of this industry? We 
propose applying the technique of reverse pharmacognosy (RPG) to accelerate 
the discovery of new bioactive food ingredients and the substantiation of bioactiv-
ity in support of certain health claims. To define reverse pharmacognosy, we first 
define pharmacognosy.

The term pharmacognosy comes from the Greek pharmakon which means 
drug or recipe and gnosis which means knowledge. A simple definition could be: 
“Pharmacognosy is the science which studies natural compounds with therapeutic, 
cosmetic and agri-food applications” [6]. The workflow starts with a selection of 
plants based on ethnopharmacological data [1] and biodiversity [15]. Extracts are 
made, which are tested in biological assays. Active extracts are further fractionated 
and then tested again in a fraction-test iterative process until identification of the 
molecule(s) responsible for the biological activity.

The aim of RPG is to exploit the overwhelming amount of data generated 
by pharmacognosy. It was recently introduced to find new therapeutic activities 
among natural products and their botanical sources by means of database mining 
and computational tools. RPG represents a complementary approach to pharma-
cognosy, which makes it possible to find applications for living organisms based 
on the bioactive compounds they contain and the biological properties of these 
compounds. Inverse screening and natural compound/natural source databases 
are essential components of RPG. The workflow starts with a selected molecule 
(based on absence of toxicity, ease of sourcing, etc.). We identify putative affinity 
with proteins of interest, using in silico approaches to reduce the number of in 
vitro assays required to be performed, and then validate predicted activities with 
suitable in vitro tests. When biological activities are confirmed, we can position 
all extracts containing the studied compound (assuming present at sufficiently 
high concentration) in the applications linked by the modulation of the identified 
targets, provided of course that there are no adverse effects. Allergenic and other 
safety issues are crucial considerations in the development of future bioactive 
ingredients. Hence, several authors have considered food additives in the Flavor 
and Extract Manufacturers Association (FEMA) GRAS list of approved flavoring 
materials as another potential source of bioactive molecules, or promising start-
ing points for the development of such [66, 46, 41]. (The relationship between 
FEMA GRAS status and GRAS status subject to Food and Drug Administration, 
FDA, approval is mentioned below in the Results and Discussion section.) In this 
work, we describe examples of studies aimed at finding new active ingredients 
from natural products, and from molecules in the FEMA GRAS list using an RPG 
strategy. In either case, it may well be that the best outcomes are obtained by 
merely using such molecules as starting points (“hits”) for further development 
of functional ingredients, employing the “hit-to-lead”-type approach favored by 
medicinal chemists.
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4.2  Materials and Methods

4.2.1  In Silico Models

4.2.1.1  Protein-Based Approach

RPG needs a database with information relating natural compounds and living or-
ganisms that produce them, e.g., plants, microorganisms, etc. In this way, when 
an interesting activity is identified for a compound, we have natural sources for it 
and can develop an extraction process to yield an extract enriched in the desired 
molecule. We perform our studies based on Greenpharma database, a proprietary in-
house database containing 150,000 natural molecules and 160,000 organisms, with 
50,000 entries for traditional uses of plants and 20,000 biological data records. It is 
designed with open-source tools (Linux, Apache, mySQL, Php, Sketcher, etc.) [3].

We also need a target database comprising three-dimensional (3D) structures 
of proteins of therapeutic interest and docking software to predict the affinity of 
target compounds with their putative protein partners. In our case, we have devel-
oped “Selnergy” for virtual screening [15]. It is based on Surflex-Dock in the Sybyl 
Molecular Modeling Package (Tripos, MO, USA) with a target database of 10,000 
protein 3D structures. Proteins structures are extracted either from crystallography 
data in the Protein Data Bank (http://www.rcsb.org) or from homology modeling 
(e.g., some G-protein-coupled receptors). A procedure was set up to include or ex-
clude protein models in the Selnergy database. It is based on how well Selnergy can 
reproduce the pose of a co-crystallized ligand when docked with its cognate protein 
partner. Furthermore, the protein model must be able to discriminate decoy from ac-
tive compounds [17]. For a review of the protein database and in silico tools useful 
for RPG, refer to [3].

4.2.1.2  Ligand-Based Approach

One important prerequisite of the protein-based approach is obviously the need to 
have a protein 3D structure. Furthermore, molecules can have biological activities 
without identified targets. Yet this type of data is also of interest. Due to the exis-
tence of several databases containing small molecules and information about their 
biological activities, one can envisage using these information sources to identify 
new activities based on structure–activity relationships [33], with structurally simi-
lar compounds being likely to have similar biological activities. Below are several 
public domain databases of interest for the ligand-based approach:

ChEMBL [21] “ChEMBL is an Open Data database containing binding, func-
tional and ADMET information for a large number of drug-like bioactive com-
pounds. These data are manually abstracted from the primary published literature 
on a regular basis, then further curated and standardized to maximize their quality 
and utility across a wide range of chemical biology and drug-discovery research 
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problems. Currently, the database contains 5.4 million bioactivity measurements 
for more than 1 million compounds and 5200 protein targets. Access is available 
through a web-based interface, data downloads and web services at: https://www.
ebi.ac.uk/chembldb.”

Pubchem [32] Pubchem is a database maintained by the National Center for Bio-
technology Information (NCBI), which is part of the US National Institutes of 
Health (NIH). PubChem can be freely accessed through a web user interface or is 
downloadable by File Transfer Protocol (FTP) at http://pubchem.ncbi.nlm.nih.gov. 
Pubchem is organized into three main parts: substances (~126 million entries of 
compound mixtures, extracts, etc.), pure compounds (48 million unique structures), 
and bioassays (~740,000 records). Users can search the database by name, Pub-
Chem identifiers, structures of molecules to retrieve small molecules, calculated 
physicochemical data, and experimental biological data. Structure–activity relation-
ship tools are available for further analysis of the extracted results.

Drugbank [34] “The DrugBank database is a unique bioinformatics and chemin-
formatics resource that combines detailed drug (i.e., chemical, pharmacological 
and pharmaceutical) data with comprehensive drug target (i.e., sequence, structure, 
and pathway) information. The database contains 6825 drug entries including 1541 
FDA-approved small molecule drugs, 150 FDA-approved biotech (protein/peptide) 
drugs, 86 nutraceuticals and 5082 experimental drugs. Additionally, 4323 non-
redundant protein (i.e., drug target/enzyme/transporter/carrier) sequences are linked 
to these drug entries. Each DrugCard entry contains more than 150 data fields with 
half of the information being devoted to drug/chemical data and the other half 
devoted to drug target or protein data.” The database can be freely accessed and 
downloaded at http://www.drugbank.ca/.

BindingDB [38] “BindingDB is a public, web-accessible database of measured 
binding affinities, focusing chiefly on the interactions of proteins considered to be 
drug-targets with small, drug-like molecules. BindingDB contains 1,009,290 bind-
ing data, for 6589 protein targets and 427,325 small molecules. There are 2046 pro-
tein–ligand crystal structures with BindingDB affinity measurements for proteins 
with 100 % sequence identity, and 5815 crystal structures allowing proteins to 85 % 
sequence identity.”

The Protein–Small-Molecule Database (PSMDB) [75] “The Protein–Small-Mol-
ecule Database (PSMDB) provides non-redundant sets of protein–small-molecule 
complexes that are especially suitable for structure-based drug design and protein–
small-molecule interaction research.” It is designed to be easily updated and to 
avoid redundancies in terms of ligands (by using structural similarity) and proteins 
(by using protein sequence homology). Ligands are considered if they have at least 
seven heavy atoms. The database is downloadable, proteins and ligands being in 
separate files. PSMDB can be accessed at http://compbio.cs.toronto.edu/psmdb/.

CREDO [61] “CREDO is a unique relational database storing all pairwise atomic 
interactions of inter- as well as intra-molecular contacts between small molecules 
and macromolecules found in experimentally determined structures from the Pro-

https://www.ebi.ac.uk/chembldb
https://www.ebi.ac.uk/chembldb
http://compbio.cs.toronto.edu/psmdb
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tein Data Bank. These interactions are integrated with further chemical and bio-
logical data. The database implements useful data structures and algorithms such 
as cheminformatics routines to create a comprehensive analysis platform for drug 
discovery. The database can be accessed through a web-based interface, downloads 
of data sets and web services at http://marid.bioc.cam.ac.uk/credo.”

Examples of commercial database from several companies can be found such as 
Wombat, WDI, MDDR, CMC, etc.

To compare the structural similarity of the compounds under study with ligands 
from the abovementioned databases, one can rely on molecular descriptors such as 
fingerprints [58, 28, 77], descriptors [43, 46], or molecular graphs [29]. There are 
also numerous software programs that can perform virtual screening based on the 
structures of small molecules. Here are some examples: ChemMapper [20], Ftrees 
[56], Topomer [12], etc. It is beyond the scope of this chapter to do a comprehensive 
review of them.

The FEMA GRAS Database This is maintained by the FEMA. It comprises a 
compilation of flavoring materials, whose safety has been reviewed by an expert 
panel of toxicologists and other specialists, and which are GRAS for human con-
sumption within specified product categories and at specified usage levels. Materi-
als on the GRAS list, together with certain FDA-approved food additives, are those 
that are legally permitted for use as flavorings (and for related purposes, such as 
taste modification) in the USA [22, 23].

New additions to the GRAS list (originally published approximately 50 years 
ago) appear in Food Technology every year or two. For example, GRAS 26 was 
published in August 2013 and included approximately 50 botanicals and discrete 
chemical entities. For each material, a FEMA #, principal name, and synonyms are 
listed, along with permitted food and beverage applications, including anticipated 
average usual and average maximum use levels (in ppm). To date, of the approxi-
mately 2800 GRAS materials, just more than 80 % are discrete chemical entities. 
However, of these, in some cases, stereochemistry and even geometrical configura-
tion are not fully specified.

The GRAS database is available online on FEMA’s website (https://www.
femaflavor.org), though exclusively for member companies. However, it is also 
available through third-party software, such as Flavor-Base 9 by John Leffingwell 
& Associates, or alternatively, it can be accessed in the public domain through web 
sites such as http://www.thegoodscentscompany.com.

4.2.2  In Vitro Models

4.2.2.1  Inflammation

The murine macrophage cell line RAW 264.7 is routinely used to assess anti-in-
flammatory activity and NF-κB signaling in vitro. Inflammation can be induced 
in RAW 264.7 macrophages with lipopolysaccharides (LPS), a component found 
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on the outer membrane of Gram-negative bacteria. NO, cyclooxygenase (COX) 2, 
and prostaglandin E2 (PGE2) levels increase upon stimulation with LPS, as do the 
levels of proinflammatory cytokines tumor necrosis factor (TNF), and interleukin 
(IL) 1, and IL-6. Previously identified compounds isolated from plants, such as 
resveratrol, curcumin, and quercetin, have been shown to inhibit the proinflamma-
tory effects of LPS treatment in RAW 264.7 macrophage cells. Initial experiments 
measuring nitrite concentration released into the RAW 264.7 culture medium were 
conducted to establish conditions that would be ideal for the efficient and consistent 
screening of selected GRAS list compounds. Nitrite, as stable intermediate of NO, 
is frequently used as a proxy for NO production using the Greiss reaction, an effec-
tive and inexpensive method for measuring NO activity.

RAW 264.7 macrophage cells were routinely cultured in Dulbecco’s Modi-
fied Eagle’s Medium–high glucose (DMEM), supplemented with 10 % fetal bo-
vine serum (FBS), penicillin (100 units/mL), and streptomycin (100 μg/mL) and 
maintained at 37 °C under 5 % CO2-humidified air. Cells were seeded in 96-well 
plates at 1 × 105 cells/100 μL and incubated for 24 h. After incubation, the culture 
medium was removed and replaced with 200 μL of fresh medium and several con-
centrations of LPS (0, 0.1, 1, 10, and 100 ng/mL) were added. Cells were incubated 
for an additional 24 h, then 100 μL of culture medium was removed from each 
well and mixed 1:1 with Greiss reagent (Sigma-Aldrich Co.) and read with a spec-
trophotometer at 550 nm after 15 min. Experiments were conducted under both 
serum and serum-free conditions to determine the appropriate concentration of 
LPS needed to stimulate nitrite production in RAW 264.7 cells. LPS concentration 
used in serum and serum-free conditions was established anticipating that some 
compounds may bind the serum component of the growth medium and become 
inactive.

Nitrite release in RAW 264.7 macrophage cells treated with LPS was found to 
be concentration dependent. In serum-containing conditions, nitrite was detected 
by 1 ng/mL LPS before leveling off at 10 ng/mL. In serum-free conditions, nitrite 
levels increased from 1 ng/mL LPS before reaching maximum levels at 100 ng/
mL. Total RNA was extracted and purified from LPS-treated RAW 264.7 cells to 
establish the minimum amount of LPS needed to upregulate the gene expression of 
proinflammatory cytokines and other genes involved in the inflammatory process 
in both serum and serum-free conditions. Quantitative PCR was used to measure 
the levels of TNF-α, IL-1, IL-6, and COX-2 mRNA. Our results show that the mini-
mum LPS concentration needed to induce NO activity and gene expression in RAW 
264.7 cells is 10 ng/mL for serum conditions and 100 ng/mL for serum-free condi-
tions. LPS treatment at 10 and 100 ng/mL LPS increased the mRNA expression of 
proinflammatory cytokines, such as TNF-α, IL-6, Cox-2, and IL-1, which are well-
established markers for LPS stimulation in RAW 264.7 macrophages. Therefore, 
we proceeded to test compounds with both culture systems in the presence of 10 % 
FBS and 10 ng/mL LPS. This was chosen because we did not want to increase the 
LPS concentration so high that it would overwhelm the cells and no protective ef-
fect would be observed.
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4.2.2.2  Cytotoxicity by MTS Assay

RAW 264.7 macrophages were treated with LPS (50 ng/mL) in DMEM + 10 % FBS 
or LPS (100 ng/ml) in DMEM (serum-free). Cells were incubated with LPS alone 
or in combination with the compounds at various concentrations (0.1–100 μM). Af-
ter 24-h incubation, the media was removed and tested for nitric oxide activity. The 
remaining cells were treated with MTS to assess cell viability.

4.3  Results and Discussion

We have previously found interesting activities (e.g., inhibition of phosphodiester-
ases, cyclooxygenases, etc.) for several natural compounds employing RPG [3]. 
These illustrate the usefulness of RPG to identify potential applications for natural 
product molecules and the organisms that produce them. Below are two examples 
of studies we performed for two natural compounds which could be obtained in 
large quantities and which were devoid of toxicity.

4.3.1   Example of ε-Viniferin [16]

ε-Viniferin (EV) is a polyphenol and phytoalexin that can be extracted from leaves 
of the vine Vitis vinifera [35]. It is synthesized by plants in response to environment 
stress [35, 36]. EV consists of two fused resveratrol units. The naturally occurring 
stereoisomer is the E form. EV has numerous biological properties in oncology 
[2, 48], in CNS [9], as an antioxidant [54, 55], a hepatoprotector [52], and as an 
antibacterial [8]. EV was screened on a protein target database and phosphodiester-
ase 4 (PDE4) was found to be one of the most prominent targets. A binding assay 
confirmed the prediction with an IC50 = 4.6 μM. It was also shown that EV reduces 
the secretion of TNF-α and IL-8 in a dose-dependent manner [16]. So an extract 
of vine leaves may be useful for treating inflammatory conditions; likewise, any 
other sources that contain this molecule, provided there are no toxicity issues, etc. 
Table 4.1 lists the plants with the organ from which EV was purified.

Table 4.1  List of plants producing ε-viniferin (ND: Not Determined)
Family Genus Species Botanist Organ
Dipterocarpaceae Hopea parviflora Bedd. Stem bark
Dipterocarpaceae Shorea seminis (De Vriese) Sloot. Bark
Dipterocarpaceae Vateria indica Linn Stem bark
Dipterocarpaceae Vatica affinis Thwaites ND organ
Dipterocarpaceae Vatica rassak (Korth.) Blume Stem bark
Paeoniaceae Paeonia suffruticosa Andrews Seed
Vitaceae Vitis coignetiae Pulliat ex Planch. ND organ
Vitaceae Vitis vinifera L. Leaf
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4.3.2   Example of Meranzin [17]

This molecule is a coumarin derivative characterized by an epoxide group. Meran-
zin may be found in the fruit of the traditional Chinese medicinal plant Cnidium 
monnieri (L.) Cusson [63]. Little is known about the biological properties of this 
molecule. We performed a study of meranzin by RPG and COX 1 and 2 were clear-
ly identified by our in silico tool Selnergy as putative protein target partners for 
meranzin. Peroxisome proliferator-activated receptor (PPAR) δ was another inter-
esting target for meranzin. In vitro validations were performed for the proteins. We 
could demonstrate that our product inhibits COX2 in a dose-dependent manner with 
%I = 56 % at 400 nM and that it activates PPARδ activity by 40 % at 100 μM [17]. 
Taking these results together suggests that an extract of Cnidium monnieri with 
an appropriate amount of meranzin could be useful for treating inflammatory and 
metabolic conditions; likewise, any other sources that contain this molecule, pro-
vided there are no toxicity issues, etc. Table 4.2 lists the plants with the organ from 
which meranzin was purified.

4.3.3  Example of Studies on Selected FEMA GRAS Flavor 
Molecules

We now want to generalize the RPG approach to a group of compounds which are 
products of commerce and which are considered safe for human consumption. A list 
of food additives deemed GRAS is regularly updated by the US FDA. The defini-
tion of GRAS substances and the approach can be found at http://www.fda.gov/
Food/IngredientsPackagingLabeling/GRAS:

“Under sections 201(s) and 409 of the Federal Food, Drug, and Cosmetic Act 
(the Act), any substance that is intentionally added to food is a food additive, that 
is subject to premarket review and approval by FDA, unless the substance is gener-
ally recognized, among qualified experts, as having been adequately shown to be 
safe under the conditions of its intended use, or unless the use of the substance is 
otherwise excluded from the definition of a food additive. Under sections 201(s) 
and 409 of the Act, and FDA’s implementing regulations in 21 CFR 170.3 and 21 
CFR 170.30, the use of a food substance may be GRAS either through scientific 
procedures or, for a substance used in food before 1958, through experience based 

Table 4.2  List of plants producing meranzin
Family Genus Species Botanist Organ
Apiaceae Cnidium monnieri (L.) Cusson ex Juss. Fruit
Rutaceae Citrus maxima (Burm. f.) Merr. Peel
Rutaceae Citrus paradisi Macfad. (pro sp.) Pericarp
Rutaceae Limnocitrus littoralis (Miq.) Swingle Leaf
Rutaceae Murraya gleinei Thwaites ex Oliv Leaf

http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS
http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS
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on common use in food.” The FEMA adopted the GRAS concept, and is responsible 
for the FEMA GRAS list of flavoring materials used in foods and beverages in the 
USA [22, 23]. The GRAS procedure is extremely well respected within the food, 
beverage, and associated industries.

A database of discrete chemical entities existing in the FEMA GRAS list was 
extracted, and the data comprised chemical name, structure, FEMA reference num-
ber, and CAS registry number. We selected a subset of 60 molecules to reposi-
tion them in cosmetics and/or food applications. We filtered them using appropriate 
rules [37, 70] to retain “lead-like” compounds, and used Unity fingerprints [43] and 
Optisim algorithm [10] from the Sybyl package to select the most chemically di-
verse structures. We screened the 60 compounds with Selnergy by either docking on 
protein 3D structures or comparing the chemical structures of the GRAS products to 
our known active ligand database.

We prioritized molecules that have putative anti-inflammatory properties, as in-
flammation is implicated in a wide range of ailments and anti-inflammatory prod-
ucts may have numerous applications in the health and wellness domain, including 
skin care.

Nine compounds were thus selected. Table 4.3 shows all the targets predicted 
for these GRAS molecules either by protein- or by ligand-based approaches. Some 
compounds were found to interact with numerous targets, e.g., β-naphthyl anthra-
nilate and tolylaldehyde glyceryl acetyl. Others seem to be quite selective, e.g., 
phenoxaromate-681, vanillyl ethyl ether, and 2-methoxyphenyl acetate. We expect 
our putative modulators to be inhibitors of the listed enzymes (if indeed interaction 
is confirmed) as it is easier to block an enzyme or a receptor than to activate it. In 
the case of HST2—a homolog of sirtuin—an activator is sought.

In total, we have 24 different potential targets for the 9 GRAS molecules. For 
the sake of cost effectiveness and efficiency, we chose to employ a RAW 264.7 cell 
model—as described in the Materials and Methods section—to validate experimen-
tally the putative anti-inflammatory effects of our compounds. This high-content 
assay allows one to measure several important inflammation-related parameters, 
such as NO, TNF-α, IL-1, IL-6, and PGE-2 activities. In our test assays, we also 
included compounds such as resveratrol as references, since it is known to have 
anti-inflammatory effects in this cell-based screening system as well as in other in 
vitro and in vivo models. Compounds were evaluated according to their maximum 
nontoxic concentration according to MTS assay (Table 4.4).

n-Propyl-2-furanacrylate is the only compound to exert a strong inhibition on 
NO synthesis, namely 65 % at 0.5 μM. We found that several compounds have very 
potent activities against PGE2, such as cinnamyl anthranilate, β-naphthyl anthra-
nilate, and n-propyl-2-furanacrylate. No molecule shows activities on TNF-α. n-
Propyl-2-furanacrylate has a strong effect on lowering IL-6 secretion (%I = 53 % 
at 0.5 μM). In the case of IL-1β, cinnamyl anthranilate and β-naphthyl anthranilate 
demonstrated strong inhibition at 1 μM. The activity of NF-κB was inhibited by cin-
namyl anthranilate at 1 μM, and to a lesser extent by vanillyl ethyl ether and 2-me-
thoxyphenyl acetate (at 25 μM). n-Propyl-2-furanacrylate seems to strongly inhibit 
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the production of NO, PGE2, and IL-6. However, it also activates NF-κB. Cinnamyl 
anthranilate blocks three different markers of inflammation: PGE2, IL-1β, and NF-
κB. We now compare the predictions of Selnergy with the experimental data.

Table 4.3  Selected GRAS molecules with predicted protein partners and potential applications
Molecules Putative protein partners Potential applications related 

to predicted targets
Cinnamyl anthranilate Fatty acid binding protein Diabetes [19], obesity [45]

Monoamine oxidase A and B Antidepressant, anxiolytics 
[39]

Phospholipase A2 (PLA2) Inflammation [67]
Retinol-binding protein Skin protection [53]

β-Naphthyl anthranilate Cyclooxygenase 1 (COX1) Inflammation [65]
Estrogen receptor alpha Menopausal hot flash [5]
Estrogen-related receptor alpha Diabetes, obesity [74], osteo-

porosis [4]
Fatty acid binding protein Diabetes [19], obesity [45]
Retinoic acid receptor gamma Cancer, photoaging [59]

n-Propyl-2-furanacrylate Aldose reductase (AR) Diabetes complication [50]
Neutrophil collagenase (NC) Atopic dermatitis [24]

Tolylaldehyde glyceryl acetyl N/A Central nervous system 
stimulants, treat attention 
deficit hyperactivity disorder 
(Drugbank)

Methionine aminopeptidase Antibacterial [73]
Phosphodiesterase 2A Memory[72], anxiolytic [42]
Phosphodiesterase 5B Impotency, memory [72]
Matrix metalloproteinase 3 Prophylaxis for diabetic 

nephropathy [71], skin protec-
tion [62]

Adenosine deaminase Cancer [60]
Phenoxaromate-681 Glycogen synthase kinase 3 Diabetes, inflammation, can-

cer, Alzheimer disease [57]
Vanillyl ethyl ether Fatty acid binding protein Diabetes [19], obesity [45]
2-Methoxyphenyl acetate Cyclooxygenase 1 & 2 Inflammation [65]
Hesperetin 15-lipoxygenase (15-LOX) Inflammation [27]

Alpha-amylase Diabetes [47]
Aromatase (CYP19) Male aging [11]

Breast cancer [31]
Phosphatidylinositol-3 kinase 
(PI3K)

Inflammation, 
cardioprotection

Phloretin N/A UV screen
HST2 (homologue of sirtuin) Aging (in case of activators)

GRAS generally recognized as safe; N/A not available; these predictions are exclusively based on 
structural similarity with known active ligands
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Molecules Inflammation markers Test concentration (μM) % Inhibition
Resveratrol Nitrite (μM) 25 63

PGE2 1 54
TNF-α 50 43
IL-6 25 63
IL-1β 50 0
NF-κB 50 29

Cinnamyl anthranilate Nitrite (μM) 1 0
PGE2 1 84
TNF-α 1 8
IL-6 1 0
IL-1β 1 58
NF-κB 1 62

β-Naphthyl anthranilate Nitrite (μM) 1 0
PGE2 1 93
TNF-α 1 3
IL-6 1 0
IL-1β 1 61
NF-κB 1 30

n-Propyl-2-furanacrylate Nitrite (μM) 0.5 65
PGE2 0.5 90
TNF-α 1 0
IL-6 0.5 53
IL-1β 1 0
NF-κB 1 −111

Tolylaldehyde glyceryl acetyl Nitrite (μM) 49 12
PGE2 25 96
TNF-α 25 34
IL-6 25 44
IL-1β 49 0
NF-κB 25 65

Phenoxaromate-681 Nitrite (μM) 25 73
PGE2 1 99
TNF-α 25 26
IL-6 25 33
IL-1β 52 0
NF-κB 52 22

Vanillyl ethyl ether Nitrite (μM) 53.4 29
PGE2 25 90
TNF-α 53.4 10
IL-6 25 48
IL-1β 53.4 0
NF-κB 25 73

Table 4.4  In vitro evaluation of selected GRAS compounds 
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In Table 4.3, cinnamyl anthranilate was predicted to interact with fatty acid-
binding protein, monoamine oxidase A and B, phospholipase A2 (PLA2; Fig. 4.1), 
and retinol-binding protein. Among these proteins, only PLA2 is clearly involved in 
the inflammation process. It was demonstrated by Huwiler et al. [30] that the inhibi-
tion of PLA2 led to a decrease in PGE2 synthesis by downregulation of IL-1β and 
inhibition of NF-κB. This seems to be consistent with our prediction of cinnamyl 
anthranilate as an inhibitor of PLA2.

Within the targets identified for β-naphthyl anthranilate, COX1 is implicated 
in inflammation. Choi et al. [9] demonstrated the contribution of COX1 in neu-
roinflammation induced by LPS. Using COX1 knockout mice or wild-type mice 
administered with SC-560, a nanomolar range COX1 selective inhibitor, they ob-
served a significantly strong decrease in PGE2 ( P < 0.01), along with a decrease in 
IL-1β, IL-6, and TNF-α ( P < 0.05) via a reduction in the activation of NF-κB. We 
found that β-naphthyl anthranilate decreases PGE2, an indirect product of COX1 
enzymatic activity, IL-1β, and the activity of NF-κB, though neither IL-6 nor TNF-α 
were decreased.

n-Propyl-2-furanacrylate may interact with aldose reductase (AR; Fig. 4.2) and 
neutrophil collagenase (NC). In vitro, we observed a lowering of nitrite, which re-
lates to NO decrease, PGE2, IL-6, and increasing activity of NF-κB. The relation-
ship between inhibition of AR and NO production seems to be dependent on the type 
of cells or tissues. In RAW264.7 cells [76] and vascular tissues [49], inhibiting AR 
results in a decrease of NO. The inverse effect is observed in neutrophil-endothelial 

Table 4.4 (continued) 
Molecules Inflammation markers Test concentration (μM) % Inhibition
2-Methoxyphenyl acetate Nitrite (μM) 58 32

PGE2 25 92
TNF-α 58 0
IL-6 25 73
IL-1β 58 0
NF-κB 25 76

Hesperetin Nitrite (μM) 50 0
PGE2 50 89
TNF-α 50 6
IL-6 50 0
IL-1β 50 71
NF-κB 50 31

Phloretin Nitrite (μM) 25 31
PGE2 25 91
TNF-α 25 6
IL-6 25 23
IL-1β 25 75
NF-κB 25 45

GRAS generally recognized as safe, PGE2 prostaglandin E2, TNF tumor necrosis factor, IL inter-
leukin, NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells
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cells [51]. Shoeb et al. [64] demonstrated a link between the inhibition of AR and 
the decrease of PEG2. Fidarestat, an inhibitor of AR, provokes a significant lower-
ing of IL-6 ( P < 0.01), IL-1β ( P < 0.05), and TNF-α ( P < 0.05) according to Taka-
hashi et al. [68]. According to Wang et al. [76], AR inhibitors should also attenuate 
the activity of NF-κB, which is not the case here. To the best of our knowledge, 
there does not seem to have been any relationship between the inhibition of neutro-
phil collagenase and the listed markers according the scientific literature. Therefore, 
n-propyl-2-furanacrylate has a different profile compared to known AR inhibitors 
regarding its activation of NF-κB and its inactivity against IL-1β and TNF-α.

We could not relate in vitro observation of PGE2 level change with the inhibi-
tion of predicted targets for tolylaldehyde glyceryl acetyl. The attenuation of NF-κB 
activity may be linked to the inhibition of adenosine deaminase [14].

Only glycogen synthase kinase 3 (GSK3) was identified for phenoxaromate-681. 
There is some evidence that an inhibitor of GSK3 can exert a reduction of NO, 
PGE2, IL-1β, and TNF-α production [13]. We noticed that phenoxaromate-681 
strongly attenuates PGE2 production, diminishes NO, and at a lesser level TNF-α, 

Fig. 4.1  Cinnamyl anthranilate, represented in ball and stick fashion, is docked into the active site 
of phospholipase A2. The ribbon represents the protein backbone. Protein residues are highlighted 
in capped sticks. The volume occupied by the ligand is delimited by the transparent shape. The 
carbonyl of the ligand forms a dative bond with a calcium cation, and the amine group forms a 
hydrogen bond with the ASP49 carboxylate
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but observed no effect on IL-1β. However, we did observe a diminution in levels of 
IL-6 and NF-κB in the presence of phenoxaromate-681.

Vanillyl ethyl ether attenuates the activity of PGE2 and NF-κB. It was previously 
shown that blocking fatty acid-binding protein (FABP) can decrease the activation 
of NF-κB [40]. Nevertheless, we could not find any study in the scientific literature 
that reports the relationship between the inhibition of FABP and a diminution of 
PGE2 synthesis.

2-Methoxyphenyl acetate is a putative inhibitor of both COX1 and 2; in vitro 
results demonstrate that it modulates PGE2, IL-6, and NF-κB. Three proteins are 
listed as modulated by a COX1 inhibitor by Choi et al. [9].

There is no solid bibliographic evidence to support the inhibition of 15-LOX, 
alpha-amylase, or CYP19 with a change in the level of PGE2 or IL-1β. Phospha-
tidylinositol-3 kinase (PI3K) inhibitors, such as ZSTK474, were recently found to 
inhibit the production of PGE2 [25]. There is no clear evidence of a correlation 
of PI3K inhibition and the decrease of secretion of IL-1β through an experiment 
of LPS tolerance induction by Tanabe and Grenier [69] showed an attenuation of 

Fig. 4.2  n-Propyl-2-furanacrylate, represented in ball and stick fashion, is docked into the active 
site of neutrophile collagenase. The ribbon represents the protein backbone. Protein residues are 
highlighted in capped sticks. The volume occupied by the ligand is delimited by the transparent 
shape. The carbonyl of the ligand forms a dative bond with a zinc cation, and the oxygen of the 
furan forms a hydrogen bond with the nitrogen of the amidic group of LEU81
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the increase of IL-1β but not TNF-α. Therefore, hesperetin seems to have a profile 
similar to a PI3K inhibitor.

Phloretin is known to inhibit PGE2, IL-1β, IL-6, TNF-α, and NF-κB [7]. There-
fore, the in vitro values we found are consistent with the scientific literature—though 
its effect on TNF-α is not significant in our case. Probably the UV screen property 
identified for our molecule by in silico methods derives from this biological pro-
file. Phloretin may interact with HST2, a yeast sirtuin. The activation of sirtuin 1 
(SIRT1) is associated with antiaging, anticancer, and anti-inflammatory effects. We 
tested in vitro the activity of phloretin on human SIRT1. Unfortunately, our com-
pound shows a dose-dependent inhibition towards this enzyme (data not shown). 
Though the biological effect is not of interest, this result suggests an interaction of 
phloretin with SIRT1, thus validating the prediction of Selnergy.

Overall, we could relate most of the Selnergy predictions with the values we 
found for the markers of inflammation. Of course, this is not a direct proof, and we 
cannot rule out the possibility that we might have the same profile of markers with 
other targets.

4.4  Conclusions and Perspectives

RPG has demonstrated its usefulness in the identification of new activity for (or re-
purposing of) natural compounds, which may then be extrapolated to plant extracts 
containing them. This approach also provides a hypothesis for substantiation of the 
ingredient based on the prediction of putative protein partners which may interact 
with the compound in question. Furthermore, a chemo-marker is provided for the 
development and production of the extract ingredient. Obviously, Selnergy, a key 
component of RPG, can also be applied to commercially sourced compounds, and 
we demonstrated this by studying nine compounds selected from the FEMA GRAS 
list of permitted flavoring materials. Though we could not validate all predicted 
small-molecule–protein interactions, we were able to find several cases of agree-
ment between in silico predictions and in vitro results obtained, when focusing on 
targets related to inflammation. Cinnamyl anthranilate, β-naphthyl anthranilate, and 
tolylaldehyde glyceryl acetyl, better than being pursued as “actives” per se, may 
be good starting points (“hits”) for further development of a functional ingredient, 
employing the “hit-to-lead”-type approach. n-Propyl-2-furanacrylate needs further 
analysis to ascertain its effects related to activation of NF-κB.

Moreover, with targets identified by Selnergy for each molecule under study, we 
can explore combinations of compounds to inhibit complementary inflammation 
pathways and thus find potential synergies. For instance, n-propyl-2-furanacrylate 
and cinnamyl anthranilate may have putative synergistic effects on reducing inflam-
mation.

One important, albeit obvious, limitation of RPG is the required presence of 
relevant data in the protein and known active ligand databases. Clearly, if a protein 
target, or a series of active ligands related to a target, is not in the database, we will 



Q. T. Do et al.126

not find the related biological activity. However, with the constant increase in da-
tabase content in PDB and ChEMBL, DrugBank, etc., the impact of this limitation 
will gradually lessen over time.

The flavor industry has no intention of developing or promoting flavors for the 
purpose of treating, curing, preventing, or diagnosing disease, or even for the pur-
pose of making health-related structure/function claims. Rather, there is curiosity 
in exploring flavors’ secondary role as natural promoters of health and wellness 
by better understanding the occurrence of fortuitous relationships existing between 
some flavors and certain disease conditions (or parameters associated with them). 
In fact, numerous examples of this being the case are already present in the scien-
tific literature. In any event, if there does indeed turn out to be a promising link 
between flavor molecule “A” and disease condition “B,” then most likely the best 
practical results would be obtained by merely using identified flavor molecules as 
starting points for further development of functional ingredients. This work would 
most likely be carried out by companies actively involved in the development of 
bioactives.
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5.1  Introduction

Let food be thy medicine and medicine be thy food (Hippocrates)

The biological activity of chemical constituents from natural sources and food is 
crucial in many cellular processes. Several clinical, physiopathological, and epide-
miological studies highlight the detrimental or beneficial role of natural/food fac-
tors in conjunction with epigenetic and metabolic alterations. Chemical constituents 
isolated from various sources can interfere with many different biological targets 
and have been considered as possible starting points for therapeutic purposes. These 
agents include, for example, curcumin (turmeric), genistein (soybean), polyphenols 
(green tea, berries, and cocoa), resveratrol (grapes), and sulforaphane (cruciferous 
vegetables). Moreover, a wide variety of compounds from medicinal plants, spices, 
bees, or fish can also be mentioned as examples in this category. Among pathways 
and functions of cells that are notably modulated by these natural constituents, me-
tabolism and epigenetics have emerged in the context of cancer prevention and 
therapy. Interestingly, epigenetic changes are tightly linked to metabolism, thus 
adding a higher level of complexity to elucidate the biological role of these com-
pounds. A deeper understanding on how metabolism and epigenetics are influenced 
by compounds from natural sources and food can be achieved at molecular level 
by using a variety of chemoinformatic and computer-aided techniques. These in-
clude data mining, molecular databasing, and molecular design techniques such as 
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pharmacophore-based methods or molecular docking. An overview of these tech-
niques will be described in this chapter in the view of using them as valuable tools 
to elucidate molecular determinants, mechanism of actions, and polypharmacologi-
cal role of chemical constituents of food and natural sources.

5.2  Bioactivity of Natural and Food Compounds

The idea that nature is a rich source of bioactive constituents is a 4000-year-old 
concept. Indians, Egyptians, and Chinese have used natural sources as medicines 
in early periods of the human civilization. Hippocrates often described diet as a 
valuable way to treat diseases such as diabetes. Dioscorides, in his five-volume 
encyclopedia, described the medical uses of herbs, animals, and minerals, and this 
fantastic work remained alive for more than 15 centuries. Today, lifestyle modifi-
cations based on healthy diet, thus on the intake of food and natural compounds, 
is called lifestyle medicine. The perception that bioactivity of nutraceuticals may 
have causal relations with the cure or treatment of diseases and, therefore, influence 
the biological balance of our organism, was spurred starting from the early 1900s. 
A valuable example of this concept is the treatment of goiter, a disease caused, 
for over the 90 % of cases, by an iodine deficiency, successfully carried out by the 
administration of iodine-rich foods or potassium iodine. Yet, the beneficial role of 
natural compounds has been progressively associated to specific food intake. For 
instance, it has been observed that consuming fish could contribute to keep in good 
health heart of healthy people as well as positively influence people who are af-
fected by cardiovascular diseases and are exposed to correlated risks. Thanks to the 
progress in the analytical techniques of food chemicals, fish was identified to be 
a good source of omega-3 fatty acids (Fig. 5.1a). Indeed, this class of compounds 
has the capacity to decrease the risks of arrhythmia, triglycerides level, the rate of 
atherosclerotic plaque, and to lower blood pressure. Consequently, the beneficial 
effects of fish have been linked to omega-3 fatty acids.

The awareness that natural compounds and food have beneficial or detrimental ef-
fects on our life has been also fuelled by the growing epidemiological evidences that 
have been made possible by the effective exchange of scientific data, the growing 
availability of specific natural sources, and the effective number of scientists dedi-
cated to the study of phytochemicals, e.g., in the field of pharmacognosy. This kind 
of research has also assumed in the past decades the “multidisciplinary” dimension 
involving not only pharmacists, chemists, and pharmacologists but also biochem-
ists, cellular and molecular biologists, toxicologists, and clinicians, among others. 
Despite the growing information about natural and food components that would 
suggest their usage as valuable chemicals to prevent and/or treat diseases, contrib-
uting to people well-being, there are still several hurdles to clear in this field per-
vaded by misinformation, not only in the scientific literature but also in the common 
knowledge. For instance, a common misconception is the assumption that “natural 
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is always good,” which is an easily falsifiable statement. Indeed, a large number of 
phytochemicals are known to be harmful for health and, in several cases, also lethal. 
For example, α-amantine (Fig. 5.1b) is a natural cyclic octapeptide contained in the 
Amanita phalloides fungus, which is widely distributed across Europe and resem-
bles several species of edible mushrooms. α-Amantine is an example of highly poi-
sonous and deadly natural compound which was proved to bind to the bridge helix in 
RNA polymerase II, interfering with the translocation of RNA and DNA, leading to 
a drastically reduced rate of synthesis of the RNA molecule [1]. There are numerous 
classical examples of natural constituents from plants or food which are dangerous 
to health, such as strychnine from Strychnos species, cyanogenic glucosides from 
cassava ( Manihot species) or myristicin from nutmeg ( Myristica fragrans).

To clarify the role of natural and dietary compounds, an elucidation of the in-
teraction mechanisms of these molecules with the human biological network is re-
quired, especially at a molecular level. This includes the uncover of the biophysical 
mechanisms by which these compounds bind to receptors or enzymes (i.e., allosteric 
regulation and inhibition/activation profile) and their kinetics (i.e., reversible/irre-
versible, substrate and cofactors competition/non-competition) that could underlie 
to specific pharmacological actions. These studies are far to be accomplished be-
cause, in many cases, it is experimentally difficult to isolate large amounts of com-
pounds from the natural source and, even when this is possible, it is complicated to 
dissect their intrinsically polypharmacological roles, rendering this area of research 

a b

c

Fig. 5.1  Chemical structures reporting examples of natural compounds with different biological 
effects. a α-Linolenic acid, an essential omega-3 fatty acid. Omega-3 is known to decrease the 
risk of cardiovascular diseases; b α-amantine is a deadly natural compound found in the Amanita 
phalloides mushrooms; c resveratrol, a polyphenolic stilbenoid produced in plants with several 
reported pharmacological actions
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extremely challenging. An exemplifying case of polypharmacology is resveratrol 
(Fig. 5.1c), a polyphenolic stilbenoid produced in plants and found in wine which 
possesses several reported pharmacological actions, including anti-inflammatory, 
anticarcinogenic, antimutagenic, antiaging, antioxidant, and anticoagulant. Many 
examples reporting bioactivity of resveratrol in different molecular pathways can 
be found in the literature [2–6].

5.2.1  Pharmaceutical Development of Natural Compounds

It was only after the advent of advanced technologies for isolation, purification, and 
structure elucidation of organic compounds that scientists could realize how natural 
sources were able to deliver an important amount of diverse chemical entities. Now-
adays, it is well known that the natural product landscape constitute a very varied 
supply of building blocks and intermediates useful for the drug discovery process, 
which, in many cases, represent the starting point for generating lead compounds. 
The latter can be further synthetically modified in order to create and develop spe-
cific therapeutically relevant pharmaceuticals [7]. The impressive chemical diver-
sity along with the structural complexity of natural compounds represents a source 
of inspiration for the generation of chemical libraries belonging, in most cases, to an 
unexplored and “intellectual property free” chemical space, allowing pharmaceuti-
cal companies to protect composition of matter together with medical uses [8]. In 
this sense, we assist to a conceptual shift, passing from the classical era of combi-
natorial chemistry, during which pharmaceutical companies essentially disregarded 
the development of natural products as potential drug candidates, to the develop-
ment of targeted or focused compound libraries inspired by natural sources [9]. The 
accumulating evidence that the natural selection process represents a unique way 
to diversify the chemistry of natural compounds and the way in which the latter 
evolved in biological organisms has favored this process. For these reasons, the 
interactions of natural compounds with other biological macromolecules reflect, 
in different cases, high specificity and potency profiles. Since natural products can 
be considered the richest source of novel chemical scaffolds for biological studies, 
technologies and strategies to extract them from different sources have evolved 
rapidly in the past years [10]. A number of advanced separation and structure elu-
cidation techniques are now available for chemists/pharmacists that can now have 
access to an increasing number of purified natural compounds [11]. Among the 
separation procedures, high-performance liquid chromatography (HPLC) is the 
technique of choice because it allows isolation of compounds from the analytical 
to the preparative scale level. In addition, HPLC can also be coupled to ultraviolet 
(UV), mass spectrometry (MS), or nuclear magnetic resonance (NMR), compris-
ing the so-called hyphenated or tandem techniques (LC-MS or LC-NMR), which 
greatly increase the efficiency of compound identification [11].

However, despite the advance in purification techniques, natural products re-
sources are still largely unexplored, mostly due to the technical obstacles to collect 
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samples, especially from the most concealed places on earth, e.g., deep sea level, 
arid or extremely cold regions. Historically, the most widely used natural com-
pounds have been isolated from plants and animals by means of classical chromato-
graphic techniques such as column or thin-layer chromatography. Subsequently, 
cultured soil microorganisms, or the direct access to the genome of soil organisms 
clonable into culturable organisms, provided a rich source of natural products [12]. 
In the last decade, compounds recovered from the marine environment have come 
into focus: Indeed, oceans harbor one of the widest variety of ecosystems on earth, 
a fact reasonably reflected by an unprecedented discovery of new chemical entities 
of marine origin.

Food compounds, most of them plant secondary metabolites, can be seen as a 
particular class of natural compounds since they have to be considered as materi-
als designated as “generally recognized as safe” (GRAS) [13]. There is currently a 
great deal of interest in exploring benefits of bioactive food components and relate 
them to health and wellness. However, despite the efforts made by researchers to 
identify food-compounds, few studies report the systematic extraction and purifica-
tion of a specific bioactive component from different food sources, with the notable 
exceptions of fruits, vegetables, beverages, and essential oils [14, 15].

5.2.2  Anticancer Compounds from Natural and Food Sources

Natural and dietary compounds present molecular scaffolds that are particularly at-
tracting as sources of lead compounds for cancer therapy. Indeed, more than 60 % 
of the anticancer drugs have natural origin or are the result of chemical optimiza-
tions of natural scaffolds. Accordingly, it is not surprising that the interest in natural 
products have gained momentum in the past years, as their application as lead com-
pounds is source of novel chemical entities (NCEs) in different areas of antican-
cer drug design [16–18]. With their unique chemical diversity, the usage of natural 
compounds in cancer therapies is even more justified if considered the wide range 
of variability in terms of biochemical and biological pathways that are present in 
cancer pathologies. The result of the drift toward natural compounds and their de-
rivatives is reflected by the wide range of chemical compounds from very different 
sources already associated to bioactivities of oncogenic targets.

Historically, this discovery resulted mainly in the development of anticancer 
agents from plants (e.g., vinca alkaloids like vincristine and vinblastine; Podo-
phyllum lignans like podophyllotoxin; taxanes like paclitaxel and docetaxel; and 
quinoline alkaloid like camptothecin, topotecan, and irinotecan), marine organ-
isms (i.e., toxins like latrunculins; didemnins like aplidine and trabectedin; and 
strongylophorines) and microorganisms (e.g., anthracyclines like doxorubicin, 
daunorubicin, mitoxantrone and idarubicin; chromomycins like dactinomycin and 
plicamycin; and miscellaneous antibiotics like mitomycin and bleomycin). More 
recently, different types of terpenoids have been demonstrated to inhibit the NF-
kB signaling, to suppress inflammation processes and to reduce cancer progression 
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[19] while α-methylene-γ-lactones, in particular sesquiterpene lactones (especially 
found in Asteraceae species), have proven to be promising candidates for treatment 
of various types of cancer [20–22]. Salinosporamides, a class of marine natural 
compounds, present in Salinispora tropica bacterium, were identified to be potent 
inhibitors of proteasome [23].

Among natural sources, several food-component agents have also been iden-
tified as beneficial for anticancer therapy. Dietary sources including fruits, veg-
etables, and spices have drawn a great deal of attention from the scientific com-
munity due to their demonstrated ability to interfere with cancer mechanisms; nev-
ertheless, speculations by the general public has fomented the idea that fabricated 
supplements can be a panacea [24]. Scientific literature provided evidence that the 
regular consumption of fruits, vegetables and spices lowers the incidence of can-
cers (i.e., stomach, esophagus, lung, oral, endometrium, pancreas, and colon) [25]. 
These agents include curcumin (turmeric), resveratrol (red grapes, peanuts and ber-
ries), genistein (soybean), diallylsulfide (allium), S-allyl cysteine (allium), allicin 
(garlic), lycopene (tomato), capsaicin (red chili), diosgenin (fenugreek), 6-gingerol 
(ginger), ellagic acid (pomegranate), ursolic acid (apple, pears, prunes), silymarin 
(milk thistle), anethol (anise, camphor, and fennel), catechins (green and white tea, 
berries and cocoa), eugenol (cloves), indole-3-carbinol (cruciferous vegetables), 
limonene (citrus fruits), beta-carotene (carrots), and several dietary fibers.

Many other examples of natural and dietary compounds that have a role in can-
cer-related diseases underline the importance of this topic in oncological research. 
In the following paragraphs, we provide an overview of these compounds that spe-
cifically modulate cell pathways and functions connected to epigenetic and meta-
bolic changes in cancer diseases.

5.3  Epigenetic and Metabolic Pathophysiology of Cancer

Cancer is a complex set of diseases. Genetic aberrations, epigenetic alterations, and 
inflammations constitute some of the known mechanisms by which normal cells 
develop and progress towards neoplastic pathologies. While last decades marked 
a major understating in cancer genetics, it is now evident that the dissection of 
the mechanisms of this multifaceted set of diseases requires a deeper look in other 
paradigms of cancer biology in order to conceive new prevention or therapeutic 
approaches. This larger framework has evolved in the recent years on novel lines 
of research, for instance, toward the understanding of the immune system regula-
tion [26, 27] and the epigenetic modifications, but also on the reinterpretation of 
old studies by means of new scientific awareness that marked a return to cancer 
metabolism [28–31]. In the next paragraphs, we will discuss cancer metabolism 
and epigenetics, focusing on the possibilities to interfere with the mechanism of 
pathogenesis and progression of cancer diseases by means of small molecules of 
natural and food origin.
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5.3.1  Natural Compounds Modulating Epigenetic and Metabolic 
Mechanisms

Epigenetics is a general term that refers to modifications of genes expression 
through alteration of chromatin structure and/or DNA methylation occurring with-
out changes in the DNA sequence, from which the term epi-(from greek: over, 
outside of, around)genetics. Global modifications of chromatin packaging and its 
influence in the transcription of associated genes fuelled the research on cancer 
epigenetics in the past years. The ensemble of known epigenetic mechanisms can 
be categorized into three classes: i) histone posttranslational modifications (PTMs) 
that represent one of the major way to arrange the different states of chromatin; ii)
DNA methylation, i.e., the methylation of DNA cytosines to 5-methylcytosines; and 
iii) regulation of gene expression by non-coding RNA (ncRNA). The elucidation 
of epigenetic phenomena, representing nowadays an important topic of research, 
is necessary to understand the basis of several biological processes and is progres-
sively translating into the development of new therapeutic epi-compounds or epi-
drugs [32–34]. Different studies have highlighted how alterations in the epigenetic 
code contribute to the onset and growth of a variety of cancers [35–48]. Conse-
quently, epigenetic modifications are constituting attractive therapeutic targets for 
the development of new cancer therapies [33, 49–52]. An increasing number of 
reports describe, in particular, new types of histone post-translational modifications 
(PTMs) associated with the characterization of the enzymes that are in charge of 
operating these chemical reactions [53]. Yet, other studies point on the validation of 
these PTMs in the context of chromatin remodeling and regulation, as well as their 
clinicopathological relevance in human diseases [54]. It is important to point out 
that the increasing evidences linking epigenetic targets and cancer pathologies have 
been boosted by the surge of structural data describing these proteins, thus creat-
ing the basis to develop specific probe compounds and start new drug discovery 
campaigns [54, 55]. However, although the ensemble of these data promises to shed 
light on cancer epigenetics, the way in which epigenetic modifications relate to can-
cer and, consequently, their therapeutic relevance in cancer diseases, is still largely 
unknown. Most of these targets, despite being linked to cancer pathologies, may 
not have causal role in specific malignant transformations. Some notable excep-
tions [56, 57] are the recent success stories documenting the potential to interfere 
with these mechanisms by means of small organic molecules [34]. In particular, 
the first clinical results have been obtained with histone deacetylases (class I, II 
and IV HDACs) inhibitors [58], DNA methyltransferases inhibitors (DNMTi) [59] 
and histone methyltransferases inhibitors [60]. Other classes of epigenetic enzymes 
are rapidly reaching the potential to become pharmaceutically validated biological 
targets. Among them are sirtuins, which are NAD+-dependent histone deacetylases 
also known as class III HDACs [6], and histone demethylases [61]. Apart from 
histones PTMs and DNA methylation, growing evidences indicate that modulating 
microRNAs expression might be useful to interfere with epigenetic mechanisms 
and develop novel RNA-based drugs for a wide range of diseases [62–65]. Indeed, 
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the deregulation of microRNAs expression and activity is frequently observed in a 
variety of human pathologies including cancer [66]. Therefore, in addition to the 
general strategy of increasing or decreasing miRNA abundance and activity by us-
ing oligonucleotides or plasmid- and virus-based constructs, a novel paradigm aims 
to target miRNA expression by means of specific compounds targeting miRNA 
transcription and processing. Clearly, the potential success of small molecules can 
be ascribed to their capacity to circumvent the issue of delivery into most tissues 
making them very attractive as a therapeutic tool.

Metabolic changes have been rediscovered in the context of cancer diseases after 
the initial observations of Otto Warburg in the early 1920s [30, 31, 67]. Warburg 
noticed that proliferating cancer cells consume glucose at a high rate, releasing lac-
tate and not carbon dioxide. Indeed, one of the primary metabolic changes in cancer 
transformation is constituted by an increased catabolic glucose metabolism charac-
terized by high rates of anaerobic glycolysis, regardless of oxygen concentration. 
While the underlying mechanisms that alter metabolic programs of cancer cells are 
still to be fully elucidated, it is known that several genetic alterations in cell path-
ways responsible for the regulation of cells metabolism contribute to cancer growth 
and progression. For instance, the conversion of glucose to glucose-6-phosphate 
(G6P) is critical to different cancer phenotypes, a process catalyzed by the enzyme 
hexokinase-II. Thus, intermediates of glycolysis like G6P can therefore accumulate, 
creating a highly advantageous environment for cancer survival and growth. On 
these bases, the pharmacological modulation of specific metabolic enzymes is cur-
rently under investigation by various research groups as a viable strategy to block 
cancer cell proliferation [68–72].

Several natural and dietary components have been already identified as capable to 
interfere with different epigenetic and metabolic mechanisms [29, 73, 74] (Fig. 5.2). 
Dietary components like phenolics from green tea, genistein from soybean, isothiocy-
anates from plant foods (e.g., from Brassicaceae species), diallylsulfide from garlic, 
curcumin from turmeric, resveratrol from grapes, and sulforaphane from cruciferous 
vegetables have been studied for their ability to target the epigenome, in relation, for 
instance, to breast cancer [73, 75–79]. While in most of the cases the mechanisms 
of action of natural compounds are still poorly understood, some of them have been 
identified. For instance, luteolin (Fig. 5.2), a common flavonoid found in parsley 
and celery has been demonstrated to inhibit DNMTs and sirtuins (SIRTs), while reti-
noic acid, found in carrots, spinach and eggs, and used nowadays to treat leukemias, 
is an HDAC inhibitor. Among polyphenols, epigallocatechin-3-gallate, the major 
compound found in green tea, was reported to have a complex polypharmacology, 
as inhibitor of histone acetyltransferases (HATs), HDACs, SIRTs, DNMTs, retinoic 
acid receptor (RARβ), proteasome, 78 kDa glucose regulated protein (Grp78) and 
heat shock protein 90 (Hsp90). Similarly, curcumin (Fig. 5.2) and curcuminoids have 
also been widely studied for their anti-inflammatory, antiangiogenic, antioxidant, 
wound healing, and anticancer effects. Importantly, curcumin analogs, like dihy-
drocoumarins, have been demonstrated to inhibit sirtuins. Since the isoform SIRT1 
has been shown to have a role in deacetylating p53, a master regulator of metabolic 
function in the cell, the inhibition of enzymes like SIRT1 likely contributes to the 



5 Molecular Approaches to Explore Natural and Food-Compound Modulators … 139

regulation of both epigenetic mechanisms and metabolic pathways like glycolysis. 
Other classes of natural compounds, such as anacardic acid and related compounds 
from cashew nut, alkaloids such as sanguinarine, quinone derivatives, peptides and 
peptide conjugates, and polyisoprenylated benzophenone derivatives (PBDs), have 
been demonstrated to have activities against HATs [80]. As previously pointed out, 
the discovery of natural scaffolds is allowing the development of focused libraries of 
compounds that are able to act on epigenetic enzymes with more potent and specific 
profiles. An example of this strategy is given by Kundu and co-workers, who could 
generate garcinol derivatives starting from isogarcinol (Fig. 5.2), in order to devel-
op inhibitors for p300 and PCAF HATs [81]. Because of the tight connection with 
epigenetic and metabolic changes, it is known that specific cancer conditions are 
strongly influenced by lifestyle and environmental factors, including the intake of 
food and nutrients [82]. For instance, the absorption of compounds like flavonoids 
and folates through diet has been shown to alter DNA methylation and modify the 
risk of human colon cancer and cardiovascular diseases, even though their mecha-
nisms of action have to be ascertained, yet [83–85]. Additional researches on the 
effects that nutraceuticals have on epigenetic and metabolic changes promise to be 
relevant for devising new preventive and therapeutic interventions.

5.3.2  Linking Metabolism and Epigenetic Mechanism

Growing evidences show how epigenetic changes are linked to cancer metabolism in 
different cancer pathologies [29]. It is meaningful to stress on how many enzymes, 
substrates, and co-factors are common in metabolic and epigenetic pathways/tar-
gets, as shown in Fig. 5.3. For example, sirtuins deacetylate histone proteins and 
have also a primary role in metabolic regulation which is dependent on the pool of 
intracellular NAD+, whose biosynthesis and signaling became an emerging area in 

Fig. 5.2  Examples of the chemical diversity of natural compounds with a role in epigenetics and 
metabolic pathways
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medicinal chemistry [86]. Many cancer cells rely on glycolysis to satisfy their en-
ergy requirements, a process that leads to the production of lactate and not of acetyl-
CoA (AcCoA), like for healthy cells. Since AcCoA is also a substrate of epigenetic 
enzymes, such as histone acetyltransferases (HATs), depletion of the AcCoA in can-
cer cells might contribute to epigenetic alterations. A similar consideration can be 
drawn for other metabolic co-substrate and co-factors like S-adenosylmethionine 
(SAM), flavin adenine dinucleotide (FAD), and α-ketoglutarate (Fig. 5.3), which 
are all involved in the epigenetic regulation through various enzymatic mechanisms 
[87]. Moreover, compounds of natural and food origin can be converted by cell 

Fig. 5.3  Examples of connections between epigenetics and metabolic pathways. (Abbreviations: 
α-KT α-ketoglutarate; AcCoA acetyl coenzyme A; AcsCS1 acetyl-CoA synthase 1; ACL ATP-
citrate lyase; ETC electron-transport chain; FAD flavin adenine dinucleotide; GSH glutathione; 
IDH isocitrate dehydrogenase; LDH lactate dehydrogenase; NAD+ nicotinamide adenine dinucleo-
tide; SAM S-adenosyl methionine; TCA tricarboxylic acid cycle)
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metabolites into chemical intermediates implicated in epigenetic and metabolic al-
terations [25, 29, 44, 75, 82, 88]. So, it is evident that a molecular-level knowledge 
of the connections between metabolism and epigenetic mechanisms is required in 
order to define the polypharmacological role of small molecules. It should be noted 
that the biological effect of many chemical scaffolds, especially of natural origin, 
is in most cases ascribable to a promiscuous activity towards biological targets that 
uses common substrates and cofactors like NAD+/NADH, FAD, SAM, AcCoA, 
α-ketoglutarate, and ATP. Therefore, in the framework of developing compound 
libraries from natural and food origin, it is essential to assess compounds against 
their impact on epigenome and metabolism by looking at their polypharmacological 
behavior. In particular, the screening of biological activities acquires importance if 
considered that the detrimental or beneficial effects of natural compounds for the 
treatment of a specific disease, is dependent on the physiopathological context [89].

5.4  Computer-Aided Molecular Design Approaches

Computer-aided molecular techniques are heavily used in academia and industrial 
settings to assist the selection of new compounds with predefined biological activ-
ity. Several examples testify their successful applications in the development of new 
chemical entities [90–92] and a wide range of disciplines nowadays revolve around 
computer-aided drug discovery (CADD), including chemoinformatics, computa-
tional chemistry, structural biology, biophysics, medicinal chemistry, organic chem-
istry, and pharmacology. Among the various computational techniques available, 
virtual screening is certainly the most popular to screen rapidly and cost-effectively 
new chemicals from large libraries of compounds [93–95]. In principle, this tech-
nique can be divided in ligand- and structure-based drug design techniques (LBDD 
and SBDD): the first category usually takes advantage of information from known 
bioactive compounds (ligand), while the second usually exploit three-dimensional 
structure of the biological target (protein) in order to identify putative modulators 
of the protein activity. In the past years, the growing availability of protein struc-
tures, resolved by structural biologists, progressively raised the possibility to deploy 
SBDD. Nevertheless, ligand-based techniques are still essential tools, for example 
when structural information of a biological target is missing or when the molecular 
design is not directed towards a target-centric approach, but point to modulate cel-
lular pathways or phenotypic traits without a precise knowledge of the mechanism 
of action. In addition, it should be noted that, despite the apparent advantage and 
the success of the target-centric approach, which consist in the design of small mol-
ecules having high-selectivity profiles against a specific target, it has failed in many 
other cases [96].
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5.4.1  CADD Approaches on Epigenetic and Metabolic Targets

As seen in previous sections, the research aiming at developing new therapeutic 
anticancer strategies against epigenetic and metabolic targets has flourished in the 
past years. Several reports describe rationales, targets, new drugs, approaches, novel 
compounds, and methodologies [34, 35, 37, 41–48, 52, 53, 56, 97–107]. Compu-
tational techniques are being actively used in this field and several reviews and 
articles have been published recently on this topic [56, 57, 59, 105, 108, 109]. A 
valuable example is the extensive usage of computer-aided techniques for epigen-
etic enzymes like sirtuins [6, 108, 110–114]. A variety of computational tools like 
molecular docking and pharmacophore mapping have been used to identify novel 
modulating compounds while trying to explain the mechanism of actions of these 
small molecules. Equally, theoretical tools have also been applied to identify and 
elucidate pharmacological mechanisms of metabolic enzymes like lactate dehydro-
genase and hexokinase-II [69, 114, 115]. Of note, many of these targets use NAD+ 
as a cofactor and several computational strategies were directed to find competitive 
compounds of either the adenine or the nicotinamide pocket, or both. As an exam-
ple, Fig. 5.4 depicts a typical in silico screening workflow that uses pharmacophore 
techniques to identify NAD+ competitive inhibitors with natural or dietary-derived 
scaffolds mimicking the adenine or the nicotinamide moieties. In fact, three-dimen-

Fig. 5.4  Example of pharmacophore-based in silico approach to discover adenine and nicotin-
amide mimetic compound of NAD + originating from natural or food sources
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sional pharmacophore modeling techniques revealed to be useful for virtual screen-
ing and computational purposes to analyze diverse compound databases in order to 
define pharmaceutical values of new compounds [116, 117]. Interestingly, the use of 
less-sophisticated techniques based on topological-structural descriptors and subse-
quent statistical treatment, i.e., discriminant analysis, have also been demonstrated 
as very efficient methodologies for the selection of new natural compounds. Even 
in this case, the validated model could be readily applied for searching new chemi-
cals of natural origin in large databases [118, 119]. It is expected that the usage and 
combination of various in silico approaches and the availability of compound data-
bases of natural and dietary sources (see below) could constitute an effective step 
toward the identification, development, and pharmacological definition of natural 
and dietary-derived components in metabolic and epigenetic mechanism of cancer.

5.4.2  Chemical Space of Natural and Food Compounds

Since natural products and dietary components are known to represent a vast chemi-
cal diversity with underlying scaffold complexities and architectures, exploring the 
chemical space of these compounds it currently a major field of research for dif-
ferent groups [13, 120–125]. Most of the natural products are assorted by chemical 
groups reflecting novel molecular properties/features as compared to synthetic com-
pounds and available drugs. Several chemoinformatic analyzes, in fact, highlight 
this behavior and, at the same time, recognize the adherence to drug- and lead-like 
rules purporting the idea that several classes can be considered as pharmaceutically 
relevant entities [13, 124]. In addition, despite this diversity, natural products insure 
the presence of privileged scaffolds that could offer the advantage to address the 
coverage of poorly explored chemical space [121, 126]. As previously indicated, 
this feature is particularly appealing for industrial settings to insure the appropriate 
intellectual property protection requested for the pharmaceutical development. In 
this direction, it should be noted also that natural products are providing line prin-
ciples for novel library design in combinatorial chemistry and targeted compound 
libraries inspired by nature [126–128].

From the chemical point of view, the analysis of natural products databases avail-
able in the public domain shows a low-molecular overlap of compounds and high-
light as the most representative molecular fragment benzene, acyclic compounds, 
flavones, coumarins, and flavanones [121, 122, 125]. A particular class of natural 
compounds that can be considered as dietary component are flavoring substances 
like menthol, camphor, and anethol, that are discrete chemical entities that usually 
are considered “generally recognized as safe” (GRAS) compounds. Interestingly, 
the comparison of collections of compounds including GRAS, natural products, ap-
proved drugs, and dataset from commercial molecules by means of chemoinformat-
ic analysis demonstrated that GRAS products are an important source of bioactive 
compounds that possess all the characteristics for drug discovery and nutraceutical 
purposes [13].
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Among computational approaches that can help driving the discovery of new 
bioactive compounds, a prominent workflow is the screening of large database of 
readily available molecules. It is with surprise that the scientific community has not 
developed yet a freely available and fully chemically annotated database of food 
components [8, 9]. Despite this lack, some examples are starting to appear in the 
literature and on the Internet. Among them, we can list the INFOODS of FAO [129], 
the USDA national nutrient database [130] and the FooDB that has been recently 
released [131]. In the direction of the creation of a comprehensive and freely avail-
able collection of food chemicals, it should be noted also the necessity to include the 
possible procurement from commercial sources of purified samples of food compo-
nents that, ideally, should complement the major efforts that have been done in the 
past years for other natural sources [123].

5.5  Conclusions

Many anticancer drugs have natural origin or are the result of chemical optimiza-
tions of natural scaffolds. Because the natural product landscape constitutes a varied 
supply of building blocks and intermediates, they can represent the starting point 
for generating lead compounds with bioactive relevance. A thriving topic in cancer 
research deals with metabolism and epigenetics mechanisms that lead to malignant 
transformation and the way to interfere pharmacologically with the pathogenesis 
and progression of cancer diseases by means of small molecules. Natural and food-
derived compounds able to modulate epigenetic and metabolic mechanisms are of 
great interest because they promise to provide new therapeutic interventions, as 
they are capable to exert anti-inflammatory, antiangiogenic and antioxidant effects 
that could also be beneficial for anticancer purposes. In this framework, it is expect-
ed that advances in computational approaches, with emphasis on pharmacophore 
and docking-based techniques, together with the systematic cataloguing of natural 
and dietary-related components, would greatly help to track molecular mechanisms 
involved in nutriepigenomics and nutrimetabolomics, and therefore constitute a 
launching platform for new drug-discovery pipelines.
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6.1  Introduction

Both the prevalence and incidence of diabetes are increasing worldwide, particularly 
in developing countries. The sixth edition of the International Diabetes Federation 
(IDF) Diabetes Atlas estimated that 382 million people, or 8.3 % of the worldwide 
adult population, had diabetes in 2013 and that the number of people with the dis-
ease will rise to 592 million by 2035, an increase of the 55 % [1]. Diabetes caused 
approximately 5.1 million deaths in 2013 in people aged between 20 and 79 years, 
an equivalent of one death every 6 s [1]. People with diabetes have an increased risk 
of developing a number of serious health problems. Over time, diabetes can dam-
age the heart, blood vessels, eyes, kidneys and nerves, causing an increased risk of 
cardiovascular disease, blindness, kidney failure and lower limb amputation. The 
overall risk of dying among people with diabetes is at least double the risk of their 
peers without diabetes [2]. In financial terms, the burden of diabetes is enormous, 
costing US$ 548 billion in health spending in 2013 [1]. This accounts for 10.8 % of 
total health expenditure worldwide [1]. By 2035, this number is projected to exceed 
US$ 627 billion [1].

Type 2 diabetes (T2D), also called noninsulin-dependent diabetes mellitus or 
adult-onset diabetes, is the most common type of diabetes. At least 90 % of people 
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around the world with diabetes have T2D [3]. In T2D, the body is able to produce 
insulin but this either is insufficient or the body is unable to respond to the effects 
of insulin (also known as insulin resistance), leading to a build-up of glucose in the 
blood. People with T2D can remain undiagnosed for many years, unaware of the 
long-term damage being caused by the disease. T2D is often, but not always, as-
sociated with being overweight or obese, which itself can cause insulin resistance 
and lead to high blood glucose levels. Many people with T2D are able to manage 
their condition through a healthy diet and increased physical activity. People whose 
blood glucose levels are high but not as high as those in people with diabetes are 
said to have impaired glucose tolerance (commonly referred to as IGT) or impaired 
fasting glucose (IFG). IGT is defined as high blood glucose levels after eating, 
whereas IFG is defined as high blood glucose after a period of fasting. People with 
IFG and IGT are at increased risk of developing diabetes, although this is reversible. 
The global prevalence of IGT was estimated to be 6.9 % in 2013 and will rise to 
8.0 % in 2035 [1]. Adding the global prevalence of diabetes and IGT results, 15.2 % 
of the worldwide adult population, or almost 700 million people, had diabetes or 
were at a high risk of developing diabetes in 2013. If these trends continue, by 2035 
more than 1 billion people will suffer from diabetes or be at high risk of developing 
it.

Once diabetes is established, it is difficult to delay the complications associated 
with the disease even if a tight glycemic control is established [4]. Thus, the key is 
to prevent progression of glucose dysregulation and ideally, correct and reverse any 
disorder of glucose homeostasis at the earliest possible stage [4]. Although blood 
glucose levels return to normality over a period of several years in more than one 
third of IGT cases [5], the best evidence for preventing T2D comes from studies 
involving people with IGT. A healthy diet, regular physical activity, maintaining a 
normal body weight and avoiding tobacco use can prevent the progression of dia-
betes. Functional foods could add a new mode for the prevention and management 
of T2D [6–8]. Increasing insulin secretion, enhancing glucose uptake by adipose 
and skeletal muscle tissues, inhibiting intestinal glucose absorption and inhibiting 
hepatic glucose production are potential strategies by which functional foods could 
reduce blood glucose levels [8]. It is therefore evident that functional foods have a 
broad potential in terms of cost-effective public health policies [8].

Thiazolidinediones (TZDs) are a class of antidiabetic drugs developed in the 
late 1990s that have been widely used for the treatment of type II diabetes. TZDs 
work as insulin sensitisers that lower serum glucose without increasing pancreatic 
insulin secretion by binding to the peroxisome proliferator-activated receptor 
gamma (PPARγ), inducing the transactivation activity of this nuclear receptor. 
PPARγ-binding compounds are an active area of investigation for the prevention 
and treatment of T2D. In this chapter, we will review the following:

• The evidence needed to demonstrate the beneficial effects in vitro and in vivo, as 
well as the absence of adverse effects of the PPARγ-targeted compounds.

• The natural products and plant extracts that have been described to bind PPARγ.
• The way that these compounds can be discovered through VS procedures.
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6.2   PPARγ-Targeted Antidiabetic Compounds

PPARγ is a member of the nuclear receptor family [9] that plays a central role in 
adipogenesis, acting as a cellular sensor that activates transcription in response to 
the binding of endogenous ligands, i.e. free fatty acids and eicosanoids. Activation 
of PPARγ induces the differentiation of preadipocytes into adipocytes and favours 
lipid storage pathways. Synthetic ligands of PPARγ, such as rosiglitazone and pio-
glitazone from the TZD family, have been widely used as a novel class of insulin 
sensitisers to treat T2D. These compounds act as PPARγ full agonists by binding 
to PPARγ and making the cells more responsive to insulin, thus decreasing the in-
sulin resistance that is prevalent in T2D. Several trials have shown that TZDs can 
reduce the risk of developing diabetes [10–13]. In addition, it has been suggested 
that herbal and traditional natural medicines may provide an alternative mode of 
preventing or delaying the progression of diabetic retinopathy through the activity 
of PPARγ [14]. Despite the therapeutic benefits of rosiglitazone, its use has been 
highly restricted in the USA and withdrawn in Europe because an elevated risk of 
cardiovascular events, such as heart attack and stroke, was observed in patients 
treated with this drug [15]. Pioglitazone has recently been associated with a possible 
increased risk of bladder cancer [16] and has been withdrawn in some countries. 
In addition, TZDs present serious side effects such as weight gain, increased risk 
of bone fractures, fluid retention leading to oedema and heart failure [17–19]. For 
these reasons, the drug expenditures of TZDs in ambulatory visits for treatment of 
T2D in the USA have declined from 41 % in 2005 to 16 % in 2012 [20]. To over-
come the adverse effects of TZDs, a new class of compounds called PPARγ partial 
agonists or selective modulators of PPARγ, were developed [21]. These compounds 
showed enhanced therapeutic efficacy as insulin sensitisers but had reduced ad-
verse effects. Full and partial agonists bind differently to the ligand-binding domain 
(LBD) of PPARγ [22–25] (see Fig. 6.1 and Fig. 6.2). However, the binding differ-
ences between full and partial agonists do not explain the antidiabetic properties of 
both types of compounds.

In 2010, Choi and coworkers [26] suggested a new mechanism by which PPARγ 
agonists act to improve insulin sensitivity. This mechanism is independent of the 
classical receptor activity of PPARγ and consists of blocking the cyclin-dependent 
kinase 5 (CDK5)-mediated phosphorylation of PPARγ at Ser273 [26]. Inflamma-
tory signals such as cytokines are commonly observed in obesity. These signals 
activate CDK5, which phosphorylates PPARγ at Ser273 [26]. TZDs and other 
PPARγ agonists inhibit the CDK5-mediated phosphorylation of PPARγ at Ser273, 
preventing the transcription of some genes that include adipsin (a fat-cell-selective 
gene, the expression of which is altered in obesity) and adiponectin (an insulin-
sensitising adipokine) [26]. Interestingly, the CDK5-mediated phosphorylation of 
PPARγ is completely independent of classical receptor transcriptional agonism 
[26]. This new mechanism explain how partial agonists can exhibit similar or higher 
antidiabetic effects than full agonists and how the two types of agonists can have 
differing side effect profiles. It seems likely that partial and full agonists achieve 
comparable efficacy in insulin sensitisation through a similar inhibitory effect on 
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PPARγ phosphorylation, whereas the differences in their agonistic potency could 
explain the differences in their side effects [27]. With this new knowledge, effective 
and safe PPARγ agonists designed as antidiabetic compounds must maximise the 
inhibition of PPARγ phosphorylation at Ser273 while reducing the PPARγ transac-
tivation activity.

6.3  Experimental Evidences Needed to Demonstrate 
the Action of a PPARγ-Mediated Antidiabetic 
Compounds

The identification of novel antidiabetic PPARγ agonists in vitro has been usually 
performed by evaluating their binding affinity to PPARγ and studying their activity 
in functional assays that assess transactivation and lipogenesis activities [28]. 
However, recent evidence suggests that the classical transactivation activity of 

Fig. 6.1  Binding differences between proliferator-activated receptor (PPARγ) partial and full 
agonists. The ligand-binding domain (LBD) of PPARγ forming a complex with amorfrutin B (a 
partial agonist, in yellow) from the protein data bank (PDB) entry 4A4 is superimposed with the 
structure of rosiglitazone (a full agonist, in purple) from the PDB entry 1FM6. Amorfrutin B is a 
natural product with high binding affinity to PPARγ, but it only shows a 20 % PPARγ transactiva-
tion activity with respect to the maximum activation of rosiglitazone. The partial agonist occupies 
mainly arm II and arm III of the LDB of PPARγ, but the full agonist occupies mainly arm I and 
arm II. Both structures were validated by VHELIBS software and then were aligned by Maestro 
(Schrodinger)
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PPARγ could be responsible for the adverse effects of PPARγ agonists and that the 
inhibition of CDK5-mediated phosphorylation of PPARγ at Ser273 is a key determi-
nant of their antidiabetic effects. For these reasons, a PPARγ-mediated antidiabetic 
compound must have a high glucose-lowering activity, while lacking adipogenic 
activity. To characterise such compounds and demonstrate their beneficial effects 
on glucose metabolism, compounds must bind to PPARγ with a good affinity with-
out promoting the transactivation activity of PPARγ (or promoting less than PPARγ 
full agonists). In addition, these compounds must not stimulate adipocyte differ-
entiation while blocking the phosphorylation of PPARγ at Ser273, which would 
increase the insulin-induced glucose uptake in adipocytes. Below, we summarise 
the techniques available for these analyses.

• Calculation of the binding affinity (IC50) to PPARγ. Fluorescence polarisa-
tion (FP) is a homogeneous method that allows the rapid, quantitative analysis 
of diverse molecular interactions and enzyme activities. FP detection is based 
on the excitation of a fluorophore in a manner similar to standard fluorescence 
intensity. An easy and reliable calculation of the binding affinity of a test com-
pound for the PPARγ nuclear receptor could be done with the PolarScreenTM 
PPARγ Competitor Assay Kit from Life Technologies, which is based on FP. 
When the nuclear receptor binds to the Fluormone™ ligand, the resulting com-
plex yields a high polarisation value. If the test compound displaces the Fluor-
mone™ ligand from the complex, the polarisation value is lowered. Because this 
occurs only in the presence of a test compound, the shift in polarisation value 
enables the accurate and convenient determination of the relative affinity of a 
test compound for the nuclear receptor. The concentration of the test compound 
that resulted in a half-maximal shift in polarisation value is defined as IC50. This 

Fig. 6.2  Key interactions between proliferator-activated receptor (PPARγ) full and partial agonists 
with the ligand-binding domain of PPARγ. Schematic diagrams of atomic interactions between a 
rosiglitazone (pdb:2PRG) and b amorfrutin B (pdb:4A4W) bound to the ligand-binding domain 
(LBD) of PPARγ. The diagrams were obtained with Maestro (Schrodinger) using the ligand inter-
action diagram. Residues coloured in green are hydrophobic while residues coloured in cyan are 
polar. Red residues are negatively charged and could act as acceptors, whereas purple residues 
are positively charged and could act as donors. Ligand exposure to the solvent is coloured in light 
grey. Hydrogen bonds to the protein backbone are shown by solid pink lines and hydrogen bonds 
to the protein side chains are shown by dotted pink lines
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value is a measure of the relative affinity of the test compound for the PPARγ 
LBD.

• In vitro  transactivation activity  on PPARγ and adipogenic  activity  assay. 
Reporter gene assays are the most common and widespread in vitro test systems 
for quantifying the transactivation activity of a nuclear receptor in the presence 
of its ligand [29]. In these assays, cells such as HeLa cells are transfected with 
a plasmid expressing the full-length PPARγ and a second vector containing a 
reporter gene, e.g., firefly luciferase, under the control of the PPARγ response 
element. This enables the quantification of the transcriptional activity of PPARγ 
after treatment with PPARγ ligands [28]. In general, reporter gene assays can be 
used to characterise agonists and antagonists. For agonist testing, the transfected 
cells are incubated with varying concentrations of the test compound. From the 
resulting sigmoidal curve an EC50 value can be estimated as well as the maxi-
mum activation activity compared to a known PPARγ full agonist (which is set 
as 100 %). Figure 6.3 compares the reporter gene activity between a PPARγ full 
agonist and a PPARγ partial agonist. The maximum activation activities of the 
PPARγ partial agonists are less than the values for full agonists. For the charac-
terisation of an antagonist, the transfected cells can be incubated with varying 
concentrations of the test compounds and a constant concentration of a known 
agonist, in a competitive assay. Comparison of the relative transcriptional activ-
ity of ligands in cells transfected with each of the three different PPAR subtypes 
(α, δ and γ) allows for the study of the selectivity of these compounds. PPARγ 
plays an important role in the regulation of adipocyte differentiation. In the ab-
sence of PPARγ or a PPARγ agonist, adipocytes fail to develop. The lipogenic 
activity of a compound can be therefore assessed in vitro by analysing during 
their development the triglyceride (TG) accumulation of preadipocytes such 
as murine 3T3-L1 cells. Antidiabetic compounds must not have an adipogenic 
activity to avoid weight gain and other adverse effects showed by PPARγ full 
agonists.

• Analyses to show the inhibition of phosphorylation at Ser273. A specific an-
tibody against PPARγ phosphorylated at Ser273 is required for the development 

Fig. 6.3  Comparison of the 
in vitro proliferator-activated 
receptor (PPARγ) transac-
tivation activity, measured 
with a luciferase reporter 
assay, between a full agonist 
(represented by squares) and 
a partial agonist (represented 
by triangles)
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of an in vitro assay to study the inhibitory capacity of the natural products on 
PPARγ phosphorylation at Ser273. The assay could be developed as follows: 
Purified PPAR LBD is incubated with active CDK5 p35 (Sigma) in the presence 
of ATP and a full agonist, partial agonist or the test compounds at several con-
centrations. Proteins are resolved by SDS-PAGE, and PPARγ phosphorylation is 
assessed by immunoblotting with the anti Ser273 antibody. The concentration-
dependent reduction of the Ser273 phosphorylation band is a reflex of the spe-
cific phosphorylation inhibitory capacity of the tested compounds. In order to 
normalise the signal, the total content of non-phosphorylated PPARγ must also 
be assessed by using one of the commercially available PPARγ antibodies.

• Effects on insulin-induced glucose uptake in adipocytes and in vivo analy-
ses. For an in vitro measurement of the glucose uptake induced by the test com-
pounds, the radioactive glucose (2-deoxy-d-[3H]glucose) assay in differentiated 
adipocytes, such as the murine cell line 3T3-L1, could be used [30]. This as-
say measures the incorporation of the radioactive signal inside the cell, which 
is induced by the test compound. Administration of PPARγ agonists to several 
insulin-resistant animal models has been used to evaluate the agonists’ ability 
to reduce plasma glucose levels and lower insulin in vivo [28]. There are sev-
eral genetic animal models, such as ob/ob mice, db/db mice, obese Zucker (fa/
fa) rats, Zucker fatty diabetic (ZDF) rats and diabetic KKAy mice that present 
this insulin-resistance state. Alternatively, several non-genetic approaches, such 
as streptozotocin-treated mice and high-fat-diet-induced obese C57BL/6J mice, 
could also be developed to induce insulin resistance. Independently of the animal 
model used, the reduction of plasma glucose and insulin levels demonstrates the 
antidiabetic effectiveness of the tested compound. The weight of the animals can 
also be checked to assess if the administration of the test compounds produces 
weight gain, an adverse effect of PPARγ full agonists.

6.4   Natural Products that Modulate the Action of PPARγ

Natural products, especially plants extracts, have been traditionally used for the 
treatment of T2D [31]. More than 111 plant families, including Leguminoseae, La-
miaceae, Liliaceae, Cucurbitaceae, Asteraceae, Moraceae, Rosaceae, Euphorbia-
ceae and Araliaceae, have been identified to have antidiabetic properties [31, 32]. 
However, there are few studies that demonstrate the mechanisms of action of the 
bioactive compounds responsible for the antidiabetic properties of natural extracts.

Natural products offer a privileged starting point in the search for highly spe-
cific and potent modulators of biomolecular function as well as novel drugs [33]. 
Several plant and fungi extracts have been shown to modulate the activity of PPARγ 
[7, 34–46]. Mueller and Jungbauer [38] analysed the influence of 70 plants, herbs 
and spices on PPARγ activation or antagonism. Approximately, 50 out of the 70 
plant extracts, such as pomegranate, apple, clove, cinnamon, thyme, green coffee, 
bilberry and bay leaves, were found to bind PPARγ in a competitive ligand-binding 
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assay [38]. Only five spices, nutmeg, licorice, black pepper, holy basil and sage, 
were found to transactivate PPARγ [38]. Interestingly, nearly all plant extracts an-
tagonised rosiglitazone-mediated coactivator recruitment [38], suggesting that there 
are many candidate plant extracts that may have antidiabetic properties through the 
modulation of PPARγ, without the adverse effects presented by TZDs and other full 
agonists. This opens the possibility of using these extracts for the development of 
new functional foods with antidiabetic action. One of the main problems of using 
plant extracts for experimental research is that in some cases, the active compounds 
that exert the biological action are not yet completely identified [44]. In some cases, 
the molecule responsible for the PPARγ-mediated activity of a natural extract has 
been suggested (see Table 6.1). What is lacking, however, are deeper studies of the 
metabolic effects of PPARγ modulation. In most cases, by similarity with TZDs, 
potential antidiabetic compounds and natural extracts are suggested by their ca-
pacity of promoting the transactivation activity of PPARγ, identifying PPARγ full 
agonists as suitable candidates for the treatment of T2D or metabolic syndrome. 
With the new antidiabetic mechanism proposed for TZDs [26, 27], deeper analyses 
are needed to demonstrate the antidiabetic action of a compound or extract. In ad-
dition, the adverse effects caused by TZDs and other PPARγ full agonists must be 
considered when a new (PPARγ-mediated) antidiabetic natural compound or extract 
is suggested. Some of the natural compounds that bind to PPARγ seem to be weak 
transactivators of PPARγ or do not stimulate adipocyte differentiation [39, 42, 47]. 
Some of them, such as amorfrutin 1 and pseudoginsenoside F11, have been shown 
to block the CDK5-mediated phosphorylation of PPARγ at Ser273 [48, 49]. These 
compounds are the interesting ones. Some PPARγ antagonists, i.e. compounds that 
inhibit the PPARγ-induced adipocyte differentiation, such as ginsenosides Rh2 and 
Rg3 and tanshinone IIA, are able to improve glucose tolerance in vivo [50–53]. 
These PPARγ antagonists could be compounds that do not promote the transactiva-
tion activity of PPARγ, but still have antidiabetic properties through the inhibition 
of CDK5-mediated phosphorylation of PPARγ at Ser273. In addition, if these com-
pounds antagonise the transactivation activity of PPARγ and adipocyte differentia-
tion, they could also possess antiobesity effects.

Glycyrrhiza uralensis or Glycyrrhiza Radix is one of the herbs used in traditional 
Chinese medicine for the treatment of diabetes [54]. Glycyrin is a component found 
in the roots of G. uralensis that has a high transactivation activity on PPARγ that 
is similar to troglitazone, a member of the TZDs, and significantly decreases the 
blood glucose levels of genetically diabetic mice (Table 6.1) [55]. A fraction of 
flavonoid oil from the roots of Glycyrrhiza glabra, or licorice, has been shown to 
suppress weight gain and the increase of blood glucose levels in genetically diabetic 
mice fed with a high-fat diet [56]. An ethanolic extract from licorice stimulates hu-
man adipocyte differentiation in vitro [56], suggesting that its hypoglycemic effects 
are possibly mediated via the activation of PPARγ [56]. Several phenolics com-
pounds isolated from G. glabra exhibit significant PPARγ ligand-binding activity 
and their transactivation activities on PPARγ are similar or higher than troglitazone 
[57]. Other natural products identified as full agonists of PPARγ (Table 6.1) are 
psi-baptigenin, hesperidin and chrysin [58]. However, their effect as antidiabetic 



6 Discovery of Natural Products that Modulate the Activity of PPARgamma 159

C
om

po
un

d
N

at
ur

al
 so

ur
ce

Ty
pe

 o
f P

PA
R

γ 
ag

on
is

t
B

in
di

ng
 a

ffi
n-

ity
 IC

50
 μ

M
Tr

an
sa

ct
iv

at
io

n 
ac

tiv
ity

 (%
 

of
 m

ax
. a

ct
iv

at
io

n 
re

la
tiv

e 
to

 
ro

si
gl

ita
zo

ne
)

Ef
fe

ct
 o

n 
gl

uc
os

e 
m

et
ab

ol
is

m
R

ef
er

en
ce

Sa
uf

ur
an

 A
Sa

uf
ur

an
 B

R
oo

ts
 o

f S
au

ru
ru

s c
hi

ne
ns

is
Fu

ll 
Pa

rti
al

H
ig

h 
(c

om
pa

ra
bl

e 
to

 c
ig

li-
ta

zo
ne

) w
ea

k
[1

02
]

D
eh

yd
ro

tra
m

et
-

en
ol

ic
 a

ci
d

Po
ri

a 
co

co
s W

ol
f 

(P
ol

yp
or

ac
ea

e)
It 

re
du

ce
s h

yp
er

gl
yc

em
ia

 
an

d 
ac

t a
s a

n 
in

su
lin

 se
ns

i-
tis

er
 in

 m
ou

se
 m

od
el

s

[6
8,

 6
9]

G
ly

cy
rin

R
oo

ts
 fr

om
 G

ly
cy

rr
hi

za
 

ur
al

en
si

s
Fu

ll
H

ig
h 

(s
im

ila
r t

o 
tro

gl
ita

zo
ne

)
Si

gn
ifi

ca
nt

ly
 d

ec
re

as
es

 th
e 

bl
oo

d 
gl

uc
os

e 
le

ve
ls

 o
f 

ge
ne

tic
al

ly
 d

ia
be

tic
 m

ic
e

[5
5]

D
ai

dz
ei

n
Pu

er
ar

ia
 th

om
so

ni
i

D
ua

la
M

od
er

at
e 

(2
5 %

 re
la

tiv
e 

to
 

pi
og

lit
az

on
e)

[7
4]

G
en

is
te

in
Pl

an
ts

 su
ch

 lu
pi

n,
 fa

va
 b

ea
ns

, 
so

yb
ea

ns
, k

ud
zu

 a
nd

 p
so

ra
le

D
ua

la
K

i =
 5.

7 
μM

M
od

er
at

e 
(3

5 %
 re

la
tiv

e 
to

 
pi

og
lit

az
on

e)
b

[7
4,

 1
07

]

Fo
rm

on
on

et
in

As
tr

ag
al

us
 m

em
br

an
ac

eu
s

D
ua

la
M

od
er

at
e 

(1
7 %

 re
la

tiv
e 

to
 

pi
og

lit
az

on
e)

[7
4]

B
io

ch
an

in
 A

Le
gu

m
es

 su
ch

 a
s r

ed
 c

lo
ve

r, 
so

y,
 a

lfa
lfa

 sp
ro

ut
s, 

pe
an

ut
s, 

ch
ic

kp
ea

, o
re

ga
no

D
ua

la
23

.7
M

od
er

at
e 

(2
6 %

)
[7

1,
 7

4]

G
in

se
no

si
de

 R
h2

G
in

se
no

si
de

 R
g3

G
in

se
ng

 ( 
Pa

na
x 

gi
ns

en
g)

A
nt

ag
on

is
t

Si
gn

ifi
ca

nt
ly

 in
hi

bi
ts

 th
e 

ro
si

gl
ita

zo
ne

-in
du

ce
d 

tra
n-

sc
rip

tio
na

l a
ct

iv
ity

Si
gn

ifi
ca

nt
ly

 e
nh

an
ce

s 
gl

uc
os

e 
up

ta
ke

 in
 th

e 
in

su
lin

-r
es

is
ta

nt
 m

us
cl

e 
ce

lls

[5
0,

 5
3]

Ps
i-b

ap
tig

en
in

Pl
an

ts
 su

ch
 a

s R
ed

 c
lo

ve
r 

( T
ri

fo
liu

m
 p

ra
te

ns
e)

, H
en

’s
 

ey
e 

( A
rd

is
ia

 c
re

na
ta

 S
im

s)
 

an
d 

th
e 

ba
rk

 o
f B

ra
zi

l-
ia

n 
Tu

lip
w

oo
d 

( D
al

be
rg

ia
 

fr
ut

es
ce

ns
)

Fu
ll

H
ig

h 
(s

im
ila

r t
o 

ro
si

gl
ita

zo
ne

)
[5

8]

Ta
bl

e 
6.

1  
N

at
ur

al
 p

ro
du

ct
s d

es
cr

ib
ed

 a
s P

PA
R

γ 
ag

on
is

ts
 o

r a
nt

ag
on

is
ts

 



S. Garcia-Vallve et al.160

C
om

po
un

d
N

at
ur

al
 so

ur
ce

Ty
pe

 o
f P

PA
R

γ 
ag

on
is

t
B

in
di

ng
 a

ffi
n-

ity
 IC

50
 μ

M
Tr

an
sa

ct
iv

at
io

n 
ac

tiv
ity

 (%
 

of
 m

ax
. a

ct
iv

at
io

n 
re

la
tiv

e 
to

 
ro

si
gl

ita
zo

ne
)

Ef
fe

ct
 o

n 
gl

uc
os

e 
m

et
ab

ol
is

m
R

ef
er

en
ce

H
es

pe
rid

in
C

itr
us

 fr
ui

ts
Fu

ll
H

ig
h

[5
8]

C
hr

ys
in

Pa
ss

io
n 

flo
w

er
s P

as
si

flo
ra

 
ca

er
ul

e 
an

d 
Pa

ss
ifl

or
a 

in
ca

r-
na

ta
, O

ro
xy

lu
m

 in
di

cu
m

, 
ch

am
om

ile
, t

he
 m

us
hr

oo
m

 
Pl

eu
ro

tu
s o

st
re

at
us

 a
nd

 in
 

ho
ne

yc
om

b

Fu
ll

H
ig

h
[5

8]

A
pi

ge
ni

n
Pl

an
ts

 su
ch

 a
s p

ar
sl

ey
, c

el
er

y 
an

d 
ch

am
om

ile
 te

a
Pa

rti
al

80
M

od
er

at
e 

(1
6 %

)
[3

8,
 5

8]

Ta
ns

hi
no

ne
 II

A
Sa

lv
ia

 m
ilt

io
rr

hi
za

A
nt

ag
on

is
t

3.
90

Im
pr

ov
es

 g
lu

co
se

 
to

le
ra

nc
e 

in
 a

 h
ig

h-
fa

t-
di

et
-in

du
ce

d 
ob

es
e 

an
im

al
 

m
od

el

[5
2]

7-
C

hl
or

oa
rc

ti-
no

ne
-b

R
oo

ts
 o

f R
ha

po
nt

ic
um

 
un

ifl
or

um
A

nt
ag

on
is

t
K

D
 =

 2.
63

 μ
M

[1
01

]

Q
ue

rc
iti

n
Pl

an
ts

 su
ch

 a
s d

ill
, b

ay
 

le
av

es
, o

re
ga

no
A

nt
ag

on
is

t
3.

0
N

on
e

[7
1]

R
os

m
ar

in
ic

 a
ci

d
M

ar
jo

ra
m

, o
re

ga
no

, s
ag

e,
 

th
ym

e,
 ro

se
m

ar
y

A
nt

ag
on

is
t/

PP
A

R
α 

ag
on

is
t

32
.4

N
on

e
[7

1]

D
io

sm
et

in
O

re
ga

no
A

nt
ag

on
is

t
13

N
on

e
[7

1]
N

ar
in

ge
ni

n
G

ra
pe

fr
ui

t, 
or

an
ge

s, 
or

eg
an

o
Pa

rti
al

81
M

od
er

at
e 

(1
6 %

)
[7

1]
Se

ve
ra

l f
la

vo
ne

 
an

d 
is

of
la

vo
ne

s 
de

riv
at

iv
es

R
oo

ts
 fr

om
 G

ly
cy

rr
hi

za
 

gl
ab

ra
Fu

ll
H

ig
h 

(s
im

ila
r t

o 
tro

gl
ita

zo
ne

)
Su

pp
re

ss
es

 th
e 

in
cr

ea
se

 
of

 b
lo

od
 g

lu
co

se
 le

ve
ls

 in
 

ge
ne

tic
al

ly
 d

ia
be

tic
 m

ic
e

[5
6,

 5
7]

2′
-h

yd
ro

xy
 

ch
al

co
ne

C
in

na
m

on
Pa

rti
al

3.
8

H
ig

h 
(4

8 %
)

[3
8]

T a
bl

e 
6.

1 
(c

on
tin

ue
d)

 



6 Discovery of Natural Products that Modulate the Activity of PPARgamma 161

C
om

po
un

d
N

at
ur

al
 so

ur
ce

Ty
pe

 o
f P

PA
R

γ 
ag

on
is

t
B

in
di

ng
 a

ffi
n-

ity
 IC

50
 μ

M
Tr

an
sa

ct
iv

at
io

n 
ac

tiv
ity

 (%
 

of
 m

ax
. a

ct
iv

at
io

n 
re

la
tiv

e 
to

 
ro

si
gl

ita
zo

ne
)

Ef
fe

ct
 o

n 
gl

uc
os

e 
m

et
ab

ol
is

m
R

ef
er

en
ce

C
ou

m
es

tro
l

A
lfa

lfa
Pa

rti
al

11
M

od
er

at
e 

(2
5  %

)
[3

8]
R

es
ve

ra
tro

l
B

ilb
er

ry
Pa

rti
al

62
M

od
er

at
e 

(3
9 %

)
[3

8]
O

le
an

on
ic

 a
ci

d
O

le
or

es
in

 o
f P

is
ta

ci
a 

le
nt

is
cu

s 
va

r. 
C

hi
a 

(c
hi

os
 m

as
tic

 g
um

)
Pa

rti
al

M
od

er
at

e 
(2

0 %
)

[9
9]

D
ie

ug
en

ol
D

rie
d 

flo
w

er
 b

ud
s o

f S
yz

y-
gi

um
 a

ro
m

at
ic

um
 (c

lo
ve

)
Pa

rti
al

K
i =

 0.
24

 μ
M

M
od

er
at

eb
[9

8]

Te
tra

hy
dr

od
ie

u-
ge

no
l

D
rie

d 
flo

w
er

 b
ud

s o
f S

yz
y-

gi
um

 a
ro

m
at

ic
um

 (c
lo

ve
)

Pa
rti

al
K

i =
 0.

32
 μ

M
M

od
er

at
eb

[9
8]

M
ag

no
lo

l
B

ar
k 

of
 M

ag
no

lia
 o

ffi
ci

na
lis

 
R

eh
d.

 a
nd

 W
ils

Pa
rti

al
K

i =
 2.

04
 μ

M
M

od
er

at
eb

[9
8]

A
rte

pi
lli

n 
C

Ba
cc

ha
ri

s d
ra

cu
nc

ul
ifo

lia
W

ea
ke

r 
af

fin
ity

 th
an

 
ro

si
gl

itz
an

e

b
In

 m
at

ur
e 

3T
3-

L1
 a

di
-

po
cy

te
s, 

it 
si

gn
ifi

ca
nt

ly
 

en
ha

nc
ed

 th
e 

ba
sa

l a
nd

 
in

su
lin

-s
tim

ul
at

ed
 g

lu
co

se
 

up
ta

ke

[1
03

]

Lu
te

ol
in

M
ar

jo
ra

m
, s

ag
e,

 ro
se

m
ar

y,
 

ta
rr

ag
on

, t
hy

m
e,

 p
ar

sl
ey

 a
nd

 
al

fa
lfa

Pa
rti

al
0.

50
M

od
er

at
e 

(3
5 %

)
Lu

te
ol

in
-5

-O
-b

-r
ut

in
os

id
e 

re
du

ce
s g

ly
ce

m
ia

 a
nd

 
in

cr
ea

se
s p

an
cr

ea
tic

 in
su

lin
 

in
 d

ia
be

tic
 ra

ts

[4
7,

 5
9]

D
ec

an
oi

c 
ac

id
C

oc
on

ut
 a

nd
 p

al
m

 k
er

ne
l o

il,
 

m
ilk

 o
f m

am
m

al
s

Pa
rti

al
K

i =
 41

.7
 μ

M
A

t 1
0 

an
d 

50
 μ

M
 in

cr
ea

se
d 

th
e 

re
po

rte
r e

xp
re

ss
io

n 
by

 3
.3

- 
an

d 
4.

3-
fo

ld

Its
 tr

ig
ly

ce
rid

e 
fo

rm
 

de
cr

ea
se

s t
he

 fa
st

ed
 b

lo
od

 
gl

uc
os

e 
le

ve
ls

 in
 d

ia
be

tic
 

m
ic

e

[1
04

]

Ti
ro

tu
nd

in
Ta

gi
tin

in
 A

Ti
th

on
ia

 d
iv

er
si

fo
lia

D
ua

la
27 55

M
od

er
at

e–
hi

gh
[7

3]

Ta
bl

e 
6.

1  
(c

on
tin

ue
d)

 



S. Garcia-Vallve et al.162

C
om

po
un

d
N

at
ur

al
 so

ur
ce

Ty
pe

 o
f P

PA
R

γ 
ag

on
is

t
B

in
di

ng
 a

ffi
n-

ity
 IC

50
 μ

M
Tr

an
sa

ct
iv

at
io

n 
ac

tiv
ity

 (%
 

of
 m

ax
. a

ct
iv

at
io

n 
re

la
tiv

e 
to

 
ro

si
gl

ita
zo

ne
)

Ef
fe

ct
 o

n 
gl

uc
os

e 
m

et
ab

ol
is

m
R

ef
er

en
ce

A
m

or
fr

ut
in

s
R

oo
ts

 o
f G

ly
cy

rr
hi

za
 fo

et
id

a 
(li

co
ric

e)
 a

nd
 fr

ui
ts

 o
f A

m
or

-
ph

a 
fr

ut
ic

os
a

Pa
rti

al
0.

24
–0

.3
4

M
od

er
at

e 
(1

5–
39

 %
)

A
m

or
fr

ut
in

 1
 re

du
ce

s 
pl

as
m

a 
in

su
lin

 a
nd

 g
lu

co
se

 
co

nc
en

tra
tio

ns
 in

 le
pt

in
 

re
ce

pt
or

-d
ef

ic
ie

nt
 d

b/
db

 
m

ic
e

[4
8,

 6
0]

H
on

ok
io

l
B

ar
k 

of
 M

ag
no

lia
 o

ffi
ci

na
lis

Pa
rti

al
K

i =
 22

.8
6 

μM
M

od
er

at
e 

(1
7 %

 re
la

tiv
e 

to
 

pi
og

lit
az

on
e)

En
ha

nc
es

 th
e 

gl
uc

os
e 

up
ta

ke
 in

 a
di

po
cy

te
s 

Si
gn

ifi
ca

nt
ly

 im
pr

ov
es

 th
e 

gl
uc

os
e 

to
le

ra
nc

e 
an

d 
in

su
-

lin
 le

ve
ls

 o
f d

ia
be

tic
 m

ic
e

[6
1]

Fa
lc

ar
in

di
ol

R
hi

zo
m

es
 a

nd
 ro

ot
s o

f N
ot

op
-

te
ry

gi
um

 in
ci

su
m

Pa
rti

al
K

i =
 3.

07
 μ

M
M

od
er

at
e 

(3
5 %

 re
la

tiv
e 

to
 

pi
og

lit
az

on
e)

b
[1

05
]

Ps
eu

do
gi

ns
en

os
id

e 
F1

1
R

oo
ts

 a
nd

 le
av

es
 o

f P
an

ax
 

qu
in

qu
ef

ol
iu

m
 L

. (
A

m
er

ic
an

 
gi

ns
en

g)

Pa
rti

al
M

od
er

at
e 

(3
0 %

)b
[4

9]

Is
os

ily
bi

n 
A

M
ilk

 th
is

tle
 ( 

Si
ly

bu
m

 
m

ar
ia

nu
m

)
Pa

rti
al

M
od

er
at

e
[1

06
]

PP
AR

 p
ro

lif
er

at
or

-a
ct

iv
at

ed
 re

ce
pt

or
a  D

ua
l: 

PP
A

R
α/

γ 
du

al
 a

go
ni

st
b  I

t p
ro

m
ot

es
 th

e 
ad

ip
oc

yt
e 

di
ffe

re
nt

ia
tio

n 
of

 p
re

-a
di

po
cy

te
s

Ta
bl

e 
6.

1  
(c

on
tin

ue
d)

 



6 Discovery of Natural Products that Modulate the Activity of PPARgamma 163

compounds has not been analysed. Glycyrin and other PPARγ full agonists are po-
tential antidiabetic natural products, although their high transactivation activity and 
putative adverse effects must be taken into account.

Luteolin, amorfrutins and honokiol are natural products with a low or moder-
ate transactivation activity on PPARγ that show beneficial effects on glucose me-
tabolism (see Table 6.1). Luteolin is found in marjoram, sage, rosemary, tarragon, 
thyme, parsley and alfalfa [38]. It has a moderate transactivation activity on PPARγ 
[47] and a luteolin derivative (luteolin-5-O-b-rutinoside) reduces glycemia while 
increasing pancreatic insulin in diabetic rats [59]. Amorfrutins are PPARγ partial 
agonists found in the roots of Glycyrrhiza foetida that have a moderate capacity of 
promoting the transactivation activity of PPARγ, showing a transactivation activity 
of 15–39 % relative to full PPARγ activation by rosiglitazone [48, 60]. Amorfrutin 
1 reduces plasma insulin and glucose concentrations in leptin receptor-deficient db/
db mice and blocks the CDK5-mediated phosphorylation of PPARγ at Ser273 [48]. 
Honokiol is found in the bark of Magnolia officinalis and has a moderate transac-
tivation activity (maximal activity of 17 % relative to pioglitazone) [61]. Honokiol 
enhances the glucose uptake in adipocytes and significantly improves the glucose 
tolerance and insulin levels of diabetic mice [61]. 2′-Hydroxy chalcone is a natu-
ral product found in cinnamon and has a moderately high capacity to promote the 
transactivation activity of PPARγ [38]. Traditional Native American treatments of 
diabetes now use cinnamon [62], as cinnamon-derived active compounds have been 
shown to exert beneficial effects on glucose metabolism and insulin sensitivity [8]. 
However, a recent review has concluded that there is insufficient evidence to sup-
port the use of cinnamon for type 1 or type 2 diabetes mellitus [63]. Further ran-
domised clinical trials are required to establish the therapeutic safety and efficacy of 
cinnamon. Other natural products that act as PPARγ partial agonists are saufuran B, 
apigenin, naringenin, coumestrol, resveratrol, oleanonic acid, diugenol, tetrahydro-
dieugenol, magnolol and falcarindiol (Table 6.1). However, deeper studies on the 
effects of these compounds on the glucose metabolism and their potential capacity 
to block the CDK5-mediated phosphorylation of PPARγ are needed.

Curcumin from turmeric ( Curcuma longa, a spice used in Indian cuisine and in 
curry) ameliorates diabetes in high-fat-diet-induced obese and leptin-deficient ob/
ob male C57BL/6J mice as determined by glucose and insulin-tolerance testing and 
hemoglobin A1c percentages [64]. The beneficial effects of curcumin are signifi-
cantly abolished by pretreatment with PPARγ antagonists, suggesting that the ben-
eficial effects are mediated through the activation of PPARγ [36, 65, 66]. However, 
curcumin has not been suggested to be a PPARγ ligand because it does not induce 
the differentiation of preadipocytes, does not increase the relative transcriptional 
activity of PPARγ and does not displace [3H]-rosiglitazone from the PPARγ-LBD 
[67]. Similarly, dehydrotrametenolic acid from Poria cocos Wolf, a mushroom used 
in traditional Chinese medicine to treat diabetes, was suggested to act as an insulin 
sensitiser through the action of PPARγ [68]. However, because it does not activate 
the PPARγ pathway, the enhanced insulin sensitivity induced by dehydrotramet-
enolic acid has been suggested to be irrespective of PPARγ [69]. It is important to 
remark that the lack of adipogenic activity and/or transcriptional activity of PPARγ 
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in the presence of a compound must not be considered an evidence that their anti-
diabetic activity is not mediated by PPARγ. Further investigations into the potential 
ability of a compound to block the CDK5-mediated phosphorylation of PPARγ are 
needed to characterise its antidiabetic mechanisms. The lack of transcriptional ac-
tivity on PPARγ makes curcumin and dehydrotrametenolic acid potential effective 
antidiabetic compounds that might not have the adverse effects present in TZDs and 
other full agonists.

Ginseng has been used in traditional medicine for more than 2000 years. Several 
reports have described that several ginsenosides from Panax ginseng (Asian gin-
seng) and Panax quinquefolius (American ginseng) show antidiabetic properties 
[8, 31]. However, further studies that take into account the chemical differences 
between the types of ginseng are needed to shed light on its therapeutic potential 
[8]. Ginsenoside Rh2 and ginsenoside Rg3 have been suggested as candidates for 
preventing metabolic disorders such as obesity through their capacity to inhibit adi-
pocyte differentiation via PPARγ inhibition [50, 51]. In addition, both compounds 
also significantly enhance glucose uptake in insulin-resistant muscle cells [53]. 
These two compounds could be, at least in part, responsible for the antidiabetic ef-
fect of ginseng, with the additional benefit as anti-obesity compounds. Tanshinone 
IIA from Salvia miltiorrhiza is another PPARγ antagonist that improves glucose 
tolerance in a high-fat-diet-induced obese animal model [52]. S. miltiorrhiza has 
been used traditionally to treat diabetes [31]. The molecules deoxyneocryptotan-
shinone and miltionone I from S. miltiorrhiza are extremely similar to tanshinone 
IIA, and have been predicted to be PPARγ partial agonists [70]. A possible mecha-
nism for the antidiabetic activity of PPARγ antagonists is that they might block the 
CDK5-mediated phosphorylation of PPARγ at Ser273. Other PPARγ antagonists 
are diosmetin and quercitin [71], although there are no studies on the effect of these 
compounds on glucose metabolism (see Table 6.1).

Dual PPARα/γ agonists are compounds that are used to treat dyslipidemia and 
diabetes; combining the therapeutic effects of both PPAR-γ and PPAR-α selective 
agonists [72]. Several natural products have been suggested to be dual PPARα/γ 
agonists [45]. Tirotundin and tagitinin A are sesquiterpene lactones derived from 
Tithonia diversifolia (a traditional Chinese medicine used for treating diabetes), 
which have been suggested to be dual PPARα/γ agonists [73], along with rosmarinic 
acid [71], daidzein, genistein and formononetin [74] (Table 6.1). However, more 
evidence is required to demonstrate their antidiabetic effects and their molecular 
mechanism. In addition, their transactivation activity must be low in order to avoid 
the adverse effects of PPARγ full agonists. The failed development of several dual 
PPARα/γ agonists represents the increased awareness of potential toxicities with 
this class of compounds [72].

A food can be regarded as ‘functional’ if it satisfactorily demonstrates beneficial 
effects (beyond adequate nutrition) on one or more target functions in the body 
in a way that is relevant to either an improved state of health and wellbeing and/
or the reduced risk of disease [75]. To develop new functional foods for diabetes 
prevention mediated by PPARγ, nutraceuticals and natural compounds that modu-
late PPARγ activity should be identified. However, only rigorous analyses could 
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establish the pharmacological and toxicological profiles of these compounds and 
their potential in influencing human health [76]. In this sense, results should be vali-
dated through large-scale population trials [8]. Although there are different PPARγ-
targeted molecules that have shown promising results as antidiabetic compounds, 
the new antidiabetic mechanism suggested for PPARγ modulators makes the acqui-
sition of more evidence necessary in order to demonstrate their beneficial effects 
and the absence of adverse effects.

6.5   Cheminformatic Tools for the Discovery of PPARγ-
Mediated Antidiabetic Compounds

Computer-aided drug design methods have had a huge impact on drug discovery. 
A preliminary application of these methods optimises time and cost in introducing 
a drug to the market. One of the most widely used techniques is virtual screening 
(VS) [77]. VS is a computational technique to search libraries of small molecules 
in order to identify those structures which are most likely to bind to a target and be-
come potential drugs. Figure 6.4 shows an example of a hypothetical VS workflow 
based on five usual in silico techniques, which are summarised below, for finding 
novel active compounds.

• Prediction of absorption, distribution, metabolism and excretion/toxicity 
(ADMET) properties. To develop its pharmacological activity, a drug candidate 
has to penetrate various physiological barriers, move to its effector site, be 
modified by specialised enzymes and finally be removed from the body. In other 
words, it requires some particular properties of absorption, distribution, metabo-
lism and excretion without being toxic. ADMET properties have been identified 

Fig. 6.4  Hypothetical 
virtual screening workflow. 
Schematic overview of a 
virtual screening work-
flow for identifying lead 
compounds from large and 
chemically diverse databases. 
This workflow consists of 
applying several computer-
aided drug design methods 
with one usually used after 
another in a filter-like process 
in order to select potential 
hits
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as defining characteristics for the success or failure of drug development. Thus, 
it is important to assess and predict the pharmacokinetic properties of bioactive 
compounds in the early stages of drug discovery projects [78]. Several software 
programs and databases can be used for predicting ADMET properties in silico 
[79].

• Pharmacophore modelling. Pharmacophore modelling has become a popular 
tool for VS to discover novel scaffolds. A pharmacophore is a specific 3D ar-
rangement of steric and electronic features that are essential to a compound’s 
biological activity [80]. Typical pharmacophore features include hydrogen bond 
acceptors or donors, hydrophobic centroids, aromatic rings, cations and anions. 
A pharmacophore can be established based on the knowledge of which active li-
gands bind to the same receptor (a ligand-based pharmacophore model) or based 
on the 3D structure of the target protein to generate a topological description of 
the ligand–receptor interactions (a structure-based pharmacophore model) [81]. 
A variety of pharmacophore-modelling approaches has been implemented by 
packages such as Catalyst/Discovery Studio, Phase [82], MOE and LigandScout 
[83]. Figure 6.5 shows a structure-based common pharmacophore derived from 
the alignment of several PPARγ partial agonists [30]. The pharmacophore is 
formed by one hydrogen bond acceptor (AP1) coloured in pink and three hydro-
phobic sites (HP1, HP2 and HP3) coloured in green. Amorfrutin B, a recently 
described PPARγ partial agonist (from the protein data bank (PDB) entry 4A4W) 
[60], perfectly matches this pharmacophore (Fig. 6.5).

• Protein-ligand docking. Protein–ligand docking is a widely used structure-
based drug discovery approach that predicts the binding orientation of small 

Fig. 6.5  Proliferator-activated receptor (PPARγ) partial agonist pharmacophore. Structure-based 
common pharmacophore derived from the alignment of PPARγ partial agonists. The pharmaco-
phore is formed by one hydrogen bond acceptor ( AP1) coloured in pink and three hydrophobic 
sites ( HP1, HP2 and HP3) coloured in green. The ligand amorfrutin B (from the protein data bank 
(PDB) entry 4A4W) is also represented as a spatial reference. The pharmacophore was generated 
by Phase (Schrodinger)
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molecule drug candidates to their protein targets in order to predict the affinity 
and activity of the small molecule [84]. Docking protocols can be described as a 
combination of search algorithms and scoring functions to rank and evaluate the 
orientation and conformation of a ligand [85]. Most docking programs account 
for ligand flexibility. Efficient handling of the flexibility of the protein receptor 
and the scoring function are considered to be the main challenges in the field of 
docking. Several protein–ligand docking software applications, such as Glide, 
AutoDock, GOLD and eHiTS, are available [84].

• Similarity analysis. Molecular similarity, clustering and diversity analysis has 
played a significant role in ligand-based drug discovery [86, 87]. Similarity 
search algorithms use 2D fingerprints descriptors (fingerprint similarity analy-
sis) or 3D shape descriptors (electrostatic/shape similarity analysis) to compare 
a biologically active query molecule to a database molecule. Along with other 
metrics, the Tanimoto coefficient is used to quantify the similarity. OpenEye 
suite has similarity algorithms for comparison of shape (ROCS ) and electrostat-
ic (EON) properties (OpenEye Scientific Software, Inc., Santa Fe, New Mexico, 
USA; http://www.eyesopen.com).

• QSAR: quantitative structure activity relationship. QSAR models have been 
applied in the development of relationships between physicochemical proper-
ties of molecules and their biological activities to obtain a reliable statistical 
model for predicting the activities of new drug candidates [88]. This method is 
only fruitful if the dataset contains compounds that are structurally related to the 
molecules used to construct the model. Therefore, in contrast to lead discovery 
techniques, such as similarity analysis and pharmacophore modelling, QSARs 
are frequently used in the optimisation phases of drug design [89]. Many differ-
ent 1D, 2D, 3D and multidimensional QSAR approaches have been developed 
during the past several decades [88]. The major differences in these methods 
include the chemical descriptors and mathematical approaches that are used to 
establish the correlation between the target properties and the descriptors. QSAR 
models are typically created using a training set of ligands, and the models are 
then tested against the test set of ligands. From an application point of view, 
numerous software programs and websites exist for predicting a wide range of 
properties in either a qualitative or quantitative way.

VS has emerged as an important tool in identifying bioactive compounds by 
employing knowledge about the protein target or known bioactive ligands [90]. For 
VS to be successful, it is essential to ensure the reliability and accuracy of the data 
used. Taking into account that crystal structures are models, it is important to vali-
date the experimental PDB complexes before using them in structure-based drug 
discovery approaches [91]. Different validation tools are available for evaluating 
the binding site and ligand against the electron density [92]. The number of com-
plexes classified as good, dubious or bad after applying the VHELIBS tool [92] to 
173 ligand/PPARγ binding site complexes is shown in Table 6.2. Only 5 of the 173 
complexes are defined as good, i.e. the electron density map perfectly matches the 
coordinates of the PDB model, simultaneously for the ligand and binding site. Most 
of the complexes on Table 6.2 are classified as a dubious. This does not mean that 
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these models are wrong, but a visual inspection to check if the coordinates fit well 
with the electron density is necessary prior to using these models in any structure-
based approach.

Successful VS relies on the ability to discriminate between active and inactive 
compounds in order to provide a set of compounds for experimental screening that 
is highly enriched in active molecules [93]. Sets of known active and inactive com-
pounds are needed for the assessment of VS approaches. Decoys are molecules 
that are presumed to be inactive against a target, which can be used when too few 
inactive compounds are available for such testing [94]. Many metrics are currently 
used to quantify the effectiveness of a VS [95]. The enrichment factor (EF) repre-
sents one of the most prominent metrics in VS. EF measures how many more active 
compounds are found within a defined ‘early recognition’ fraction of the ordered 
list relative to a random distribution. Sensitivity and specificity are also descriptors 
that assess the enrichment of active molecules from a database. Sensitivity (Se, or 
true positive rate) describes the ratio of the number of active molecules found by 
the VS method to the number of all active compounds in the database. Specificity 
(Sp, or true negative rate) represents the ratio of the number of inactive compounds 
that were not selected by the VS protocol to the number of all inactive molecules 
included in the database [93].

There are successful examples of the application of drug design methods in the 
discovery of new PPARγ-mediated antidiabetic compounds. Table 6.3 shows a se-
lection of VS examples that used natural products or derivatives as a starting data-
base for the screening. While the first studies did not specify between a search for 
full and partial PPARγ agonists, the profiles of the hit compounds follow the full 
PPARγ agonist features. Most of the studies apply protein–ligand docking after the 
VS workflow in order to get a deeper mechanistic understanding of the binding of 
compounds to the PPARγ ligand-binding pocket. Salam and coworkers [58] used 
a docking approach against a natural product library of 200 compounds to reveal 
29 potential PPARγ full agonists. Of these 29 potential hits, 6 flavonoids that in-
cluded apigenin, chrysin, hesperidin and psi-baptigenin were shown to stimulate 
PPARγ transcriptional activity in vitro. Tanrikulu and coworkers [96] used a struc-
ture-based pharmacophore to search 15,590 compounds from the AnalytiCon Dis-
covery collection of natural-product-derived combinatorial database. Of the eight 
compounds tested, two were derived from the natural compound α-santonin and 
were able to promote the PPARγ transactivation activity in a cell-based reported 

Table 6.2  Number of complexes classified as good, dubious or bad after applying VHELIBS to 
173 ligand/PPARγ binding site complexes using the PDB profile with default values

Binding site
Good Dubious Bad

Ligand Good 5 29 5 39
Dubious 9 89 20 118
Bad 2 11 3 16

16 129 28 173
PPAR proliferator-activated receptor, PDB protein data bank
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gene assay, with values of 31 and 8 % for maximal PPARγ activation relative to 
pioglitazone [96]. Rupp and coworkers [97] combined several machinelearning 
methods to virtually screen a database of 360,000 compounds. They tested 15 com-
pounds in a cellular reporter assay [97]. Eight compounds exhibit agonistic activ-
ity towards PPARα, PPARγ or both. The most potent PPARγ-selective hit was a 
derivative of the natural product truxillic acid [97]. Using a pharmacophore-based 
VS of 19,892 natural products, Fakhrudin and coworkers [98], identified several 
neolignans, such as dieugenol, tetrahydrodieugenol and magnolol, as PPARγ partial 
agonists. However, these three compounds induce 3T3-L1 preadipocyte differen-
tiation [98], suggesting that they could have some adverse effects when used as 
antidiabetic compounds. Using a 4-point pharmacophore based on 13 PPARγ partial 
agonists, Petersen and coworkers [99] scanned a database of 57,346 compounds 
from the Chinese natural product database and identified methyl oleanonate as a 
PPARγ partial agonist [99]. The in vitro analysis of several subfractions of Chios 
mastic gum, where methyl oleanonate is found, confirmed their biological activity 
towards PPARγ [99]. Guasch and coworkers [30] developed a VS procedure us-
ing structure-based pharmacophore, protein–ligand docking and electrostatic/shape 
similarity to discover novel scaffolds of PPARγ partial agonists. Interestingly, the 
VS procedure of Guasch and coworkers [30] is the only approach that includes a 
structure-based anti-pharmacophore to exclude possible PPARγ full agonists. This 
VS procedure was used to identify 135 compounds as potential PPARγ partial ago-
nists [30] from an initial set of 89,165 natural products and natural product deriva-
tives from the ZINC database [100]. Five out of the eight tested compounds were 
confirmed to be PPARγ partial agonists as they bind to PPARγ, do not or only mod-
erately stimulate the transactivation activity of PPARγ, do not induce adipogenesis 
of preadipocyte cells and stimulate insulin-induced glucose uptake by adipocytes 
[30]. Using a slightly modified version of their VS workflow, Guasch and cowork-
ers [70] predicted, as potential PPARγ partial agonists, 12 molecules from 11 natu-
ral extracts known to have antidiabetic activity. In addition, they also identified 10 
molecules from 16 plants with undescribed antidiabetic activity but that are related 
to plants with known antidiabetic properties [70].

6.6  Conclusions

Although several natural compounds and plant extracts have been shown to modu-
late the activity of PPARγ, deeper analyses of the active compounds, their mo-
lecular mechanisms and their metabolic effects are needed. The new antidiabetic 
mechanism of blocking the CDK5-mediated phosphorylation of PPARγ at Ser273 
suggests that new classes of PPARγ-mediated antidiabetic compounds must be 
based on preventing this specific phosphorylation. The classical transactivation ac-
tivity of PPARγ is not enough to prove the antidiabetic properties of a compound 
or extract, and this activity must be absent in order to avoid the adverse effects of 
TZDs and other PPARγ agonists. VS procedures and other cheminformatics tools 
may be useful for finding PPARγ-mediated antidiabetic compounds with the de-
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sired properties. More research into the molecular mechanisms and the efficacy of 
PPARγ-mediated antidiabetic compounds is needed prior to developing PPARγ-
based functional foods for the prevention of diabetes.
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7.1  Introduction

7.1.1  Type 2 Diabetes Mellitus

Diabetes is a chronic disease that occurs when the pancreas does not produce suf-
ficient insulin. Diabetes may also arise when the body cannot effectively use the 
insulin it produces. Hyperglycemia, or increased blood sugar, is a common effect 
of uncontrolled diabetes. Chronic hyperglycemia leads to serious damage to many 
body systems, particularly the nerves and blood vessels.

Type 2 diabetes mellitus—formerly referred to as noninsulin-dependent diabetes 
mellitus (T2DM)—is a chronic metabolic disease that is characterized by hypergly-
cemia and results from the body’s ineffective use of insulin (i.e., a gradual decline 
in insulin sensitivity and/or insulin secretion). T2DM accounts for 90 % of people 
with diabetes and has become a worldwide epidemic. Moreover, many countries 
are now reporting the onset of T2DM at an increasingly young age due to sedentary 
lifestyles, longer life expectancies, and obesity [1].
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The majority of patients with T2DM are obese [2], and many of the current 
therapeutic options for management of T2DM can cause further weight gain [3, 4].  
Concerns about weight gain adversely affect patients’ willingness to begin and 
continue treatment with glucose-lowering medications, such as thiazolidinedio-
nes, insulin, and sulfonylureas [5]. In addition to weight gain, a patient’s quality 
of life can be negatively affected by the underlying disease process and its com-
plications, such as polypharmacy, hypoglycemia and micro- and macro-vascular 
complications [6].

The World Health Organization (WHO) and the International Diabetes Federa-
tion (IDF) report that between 347 and 371 million people worldwide currently 
have diabetes. It is forecasted that the number of diabetes deaths will double be-
tween 2005 and 2030, which will make diabetes the seventh leading cause of death 
in 2030 [7, 8]. According to the WHO and IDF information, this strong correlation 
between diabetes and death are supported by the following data: (a) between 50 and 
80 % of people with diabetes die of cardiovascular disease (primarily heart disease 
and stroke) [9], (b) diabetes is among the leading causes of kidney failure [10], (c) 
the overall risk of dying among people with diabetes is at least double the risk of 
their peers without diabetes [11], and (d) half of all people who die from diabetes 
are under the age of 60. Moreover, the WHO data also reveal the following: (a) 
the combination of diabetes with reduced blood flow and neuropathy increases the 
chance of foot ulcers, infection, and eventual need for limb amputation, and (b) 1 % 
of global blindness can be attributed to diabetes because it is the result of long-term 
accumulated damage to the retina’s small blood vessels [12].

7.1.2  Current T2DM Incidence in North America and the 
Caribbean Region

According to the last Diabetes Atlas Update from the IDF [1], approximately 9.6 % 
of the population between 20 and 79 years old in the North American and Caribbean 
region (corresponding to 36.8 million people; 24.4 million in the USA) is estimated 
to be affected by diabetes. By 2035, the number of affected people is expected to 
increase to 50.4 million. Moreover, 44.2 million people (13.2 % of adults in this 
region) have impaired glucose tolerance (58.8 million expected by 2035), which 
increases their risk for developing T2DM. Diabetes-related causes were responsible 
for 13.5 % (150,000 men and 143,000 women) of all deaths among adults in this 
region during 2013. In the USA, more than 192,000 people died from diabetes in 
2013, which is one of the highest numbers of deaths due to diabetes of any country 
in the world. The USA is estimated to account for almost half (42 %) of the world’s 
diabetes-related health-care spending.
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7.1.3  Pharmacological Treatment of T2DM

There are now ten different drug classes available as adjuncts to diet and exercise 
for the management of hyperglycemia in T2DM patients in the USA (e.g., sul-
fonylureas, biguanides, meglitinides, α-glucosidase inhibitors, thiazolidinediones, 
glucagon-like peptide 1 (GLP-1) agonistṣ, DPP-IV inhibitors, amylin analogs, 
bile acid sequestrants, and dopamine receptor agonists; Table 7.1) [13]. Despite 
the many available drugs, there is still a need for new therapies to control glyce-
mia [14]. Many compounds can reduce blood glucose levels. However, clinical 
use requires an effective antihyperglycemic agent that can meet requirements be-
yond simply reducing the blood glucose levels [15]. For example, safety profiles 
(particularly cardiovascular safety) have received significant attention over the 
past few years.

7.1.4  DPP-IV Inhibition in T2DM Treatment

DPP-IV (also known as adenosine deaminase-binding protein or CD26; EC 
3.4.14.5) is a ubiquitous aminodipeptidase that was first described by Hopsu-Havu 
and Sarimo [16]. It belongs to the α/β-hydrolases (family S9B) and is related to the 
prolyl oligopeptidase [17]. DPP-IV is expressed on the surface of several cell types 
including lymphocytes and monocytes and in tissues in the pancreas, kidneys, liver, 
and the gastrointestinal tract [18]. There are different expression levels in different 
tissue types. Its expression is particularly high in the kidney cortex, the small intes-
tine brush-border membranes, and the epithelial cells of pancreatic ducts [19]. The 
widespread expression of DPP-IV means that it can easily access and inactivate a 
wide variety of biological regulatory peptides. The target peptides include glucose-
dependent insulinotropic polypeptide (GIP), GLP-1, growth hormone, peptide YY, 
and neuropeptide Y [20].

The structure of DPP-IV is a homodimeric transmembrane glycoprotein. Each 
subunit of the protein is anchored to the plasma membrane by a hydrophobic he-
lix consisting of seven N-terminal amino acids. Each subunit has a large globular 
extracellular region that contains an active site located in the interface between the 
β-propeller domain (from residues 39 to 508) and the α/β-hydrolase domain (from 
residues 509–766; Fig. 7.1) [21–24]. The cleavage of the extracellular portion of 
DPP-IV from the transmembrane section results in a soluble circulating form of ap-
proximately 100 kDa. The soluble form is found in plasma and cerebrospinal fluid 
[18, 25]. DPP-IV is secreted as a mature monomer, but it requires dimerization to 
undergo normal proteolytic activity [26].

Recent studies indicated that in addition to the regulation of postprandial gly-
cemia, DPP-IV may have pleiotropic effects (e.g., obesity, tumor growth, and HIV 
infection), which makes it an attractive target for drug discovery research [27–32]. 
DPP-IV inhibitors block the degradation of GLP-1 and inhibit the inactivation 
of several other peptides that may have vasoactive and cardioprotective effects  
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Antidiabetic 
agents

Examples Mode of action Advantages Adverse effects

Sulfonylureas Glipide, 
glyburide, 
glimepiride

Induction insulin 
release from β cells 
by inhibiting potas-
sium flux through 
ATP-dependent 
potassium channels 
(KATP)

Reduced hepatic 
uptake, inhibition 
of glucagon and 
enhanced insulin 
sensitivity

Hypoglycemia, 
body weight 
gain and possible 
affection to pan-
creatic function

Biguanides Metformin Suppression of 
hepatic gluconeo-
genesis by AMPK 
phosphorylation

Low rates of hypo-
glycemia, weight 
stability/loss, better 
insulin sensitivity

Gastrointestinal 
side effects and 
possible affection 
to renal or hepatic 
function

Meglitinides Repaglinide, 
nateglinide

Interaction with the 
voltage-dependent 
KATP chanels of 
pancreatic β cells

Induction of an early 
insulin response 
to meals decreas-
ing postprandial 
blood glucose 
levels, low rates of 
hypoglycemia

Weight gain and 
increased on the 
insulin deficiency

α-glucosidase 
inhibitors

Acarbose, 
miglitol

Competitive 
inhibition of the 
α-glucosidase in the 
intestine

No drug-drug 
interaction, weight 
loss, no risk of 
hypoglycemia, car-
dioprotective effects, 
stimulated secretion 
of GLP-1

Gastrointestinal 
effects: flatulence, 
diarrhea, abdomi-
nal discomfort

Thiazolidinedio-
nes or PPAR-γ 
agonists

Rosiglitazone, 
pioglitazone

Binding on the 
PPAR-γ, it activates 
the transcription of 
specific genes of 
lipid metabolism

Sensitivity to insulin, 
anti-inflammatory 
effects and ameliora-
tion of hypertension, 
microalbuminuria 
and hepatic steatosis

Severe liver 
failure, death and 
increased cardiac 
risk

GLP-1 agonists 
or mimetics

Exenatide, 
liraglutide

They are modified 
GLP-1 molecules 
that are resistant to 
DPP-IV induced 
degradation

Stimulate insulin 
secretion and inhibit 
glucagon output in 
a glucose-dependent 
manner, slow gastric 
emptying and 
decrease appetite

Increased risk 
of pancreatitis, 
pre-cancerous 
cellular changes 
called pancreatic 
duct metaplasia 
and of tumor 
development at 
the thyroid gland

DPP-IV 
inhibitors

Sitagliptin, 
Saxagliptin

Increase circulat-
ing GLP-1 and GIP 
levels prolonging 
their action (which 
lead to decreased 
levels of blood 
glucose, HbA1c and 
glucagon)

Better glucose 
homeostasis with 
a lower risk of 
hypoglycemia and 
without adversely 
affecting cardiovas-
cular markers

Headache, 
nausea, vomiting, 
loss of appetite

Table 7.1  The ten different drug classes currently available in the USA that serve as adjuncts to 
diet and exercise in the management of hyperglycemia in T2DM patients
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[33–42]. Therefore, the growing body of evidence suggests that DPP-IV inhibitors 
improve several cardiovascular risk factors, including (a) improvement of endothe-
lium-dependent relaxation, (b) reduction of the vascular inflammation and oxida-
tive stress, (c) reduction of total cholesterol levels, (d) prevention of vascular endo-
thelial dysfunction and atherosclerosis, and (e) reduction of myocardial fibrosis and 
oxidative stress [42]. Major prospective clinical trials involving various DPP-IV 
inhibitors with predefined cardiovascular outcomes are currently in progress. These 
studies are examining T2DM patients who have a high-risk cardiovascular profile 
to confirm this cardiovascular protective effect [40].

7.1.5  Importance of Selectivity in DPP-IV Inhibition

DPP-IV is in a family of ubiquitous atypical serine proteases with numerous func-
tions, including roles in nutrition, metabolism, the endocrine and immune systems, 
cancer growth, bone marrow mobilization, and cell adhesion [20]. The DPP-IV 
family includes four enzymes (DPP-IV, fibroblast activation protein (FAP),DPP8, 
and DPP9) and two nonenzymes (DPP-IV-like protein-6; DPP6, DPL-1, or DPP-X; 
and DPP10; DPL-2) [20].

The enzyme FAP, also known as seprase, is the most similar family member to 
DPP-IV. FAP and DPP-IV share 52 % amino acid identity (human enzymes) and 
similar substrate specificity. Despite these similarities, FAP and DPP-IV differ in 
their expression patterns because FAP expression is confined predominantly to  

Antidiabetic 
agents

Examples Mode of action Advantages Adverse effects

Amylin 
analogues

Pramlintide Amylin binds to 
calcitonin recep-
tors in the central 
nervous system 
that cooperate with 
receptor activity 
modifying proteins

Enhanced sati-
ety, diminished 
glucagon secretion 
and delayed gastric 
emptying

Severe hypogly-
cemia, nausea, 
vomiting, 
anorexia and 
headache

Bile acid 
sequestrants

Colesevelam Binding to the 
nuclear farnesoid 
X receptor or the 
membrane receptor 
TGR5, where it 
regulates lipids and 
glucose levels

No toxicity, no 
dependency of liver 
and kidney function

Abdominal and 
muscle pain, 
nausea, diarrhea 
and constipat-
ing effects. 
Associated 
with dysphagia 
and esophageal 
obstruction

Dopamine 
receptor agonists

Bromocriptine Activation of 
hypothalamic-pitu-
itary-adrenal axis

No effects on free 
fatty acids levels 
or hepatic glucose 
production

Nausea, vomiting, 
diarrhea, stomach 
cramps and 
depression

Table 7.1 (continued) 
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activated fibroblasts in diseased tissue (e.g., fibrotic and epithelial tumors, invasive 
cancers [43], and some fetal mesenchymal tissues), but it is absent in the adult 
human tissues. The other two catalytically active DPP-IV family members, DPP8 
and DPP9, share 26 and 21 % amino acid identity with the protein sequence of 
DPP-IV and FAP, respectively (human enzymes). DPP8 and DPP9 are soluble mo-
nomeric proteins in the cytoplasm and are very similar proteins because they share 
61 % amino acid sequence similarity. DPP8 expression is upregulated in activated 
T cells, and high levels of DPP9 are found in cancer cells, normal skeletal muscle, 
and the heart and liver [44]. However, their physiological function is not known. 
Compounds that were previously thought to be specific for DPP-IV could also be 
inhibitors of other members of the DPP-IV family.

A number of DPP-IV inhibitors have recently been tested for selectivity to DPP-
IV, FAP, DPP8, and DPP9 enzymes [45]. In that study, individually selective com-
pounds for DPP-IV, DPP8/9, and FAP were identified, which allowed an evaluation 
of the potential toxicity and tolerability of each type of inhibition. The DPP8/9 

Fig. 7.1  A general overview of the 3D fold of the extracellular region for one of the subunits in the 
human DPP-IV homodimer. The β-propeller domain is shown in yellow whereas the α/β-hydrolase 
domain is shown in green. The location of the active site is indicated by the red residues from the 
catalytic triad (Ser630, Asp708 and His740) and the fluoroolefin inhibitor ( in cyan). This figure 
has been built with the PDB structure with 3C45 code [92] and with the molecular visualization 
software RasMol [208]
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selective inhibitor produced alopecia, thrombocytopenia, reticulocytopenia, multi-
organ histopathological changes, enlarged spleen, and mortality in rats. In dogs, the 
DPP8/9 inhibitor produced gastrointestinal toxicity. However, investigation of the 
DPP-IV selective inhibitor demonstrated no apparent toxicity [45]. Because inhibi-
tion of DPP8 and/or DPP9 has been shown to cause severe toxicity in preclinical 
species [45], high selectivity is an important criterion in selecting DPP-IV inhibitors 
for antidiabetic clinical development. Thus, new DPP-IV inhibitors reported on the 
literature are selective relative to other members of the DPP-IV family [86–105].

7.2  The Incretin System

7.2.1  Overview

Incretin hormones are gut peptides secreted by endocrine cells in the intestinal mu-
cosa in response to nutrient ingestion. These peptides play a key role in the regu-
lation of islet function and blood glucose levels (Fig. 7.2). In humans, the major 
incretin hormones are GLP-1 and GIP, and, together, they fully account for the 
incretin effect [46]. The incretin effect is defined as the phenomenon whereby orally 
ingested glucose elicits a much greater insulin response compared with the response 
obtained when glucose is infused intravenously to give identical blood glucose lev-
els (the so-called isoglycemic glucose infusion) [47–49]. It has been demonstrated 
that the incretin effect is responsible for 50–70 % of insulin response in healthy 
humans [48, 50, 51].

The incretin hormones are released following meal ingestion and are rapidly 
degraded by DPP-IV [46, 48, 52]. GLP-1 is produced by L cells located in the ileum 
and in the colon where they are found in high density [49]. In contrast, GIP is se-
creted by K cells, which are primarily located in the duodenum. Both L cells and K 
cells are situated in the intestinal mucosa. As a result, these cells can be influenced 
by direct contact with nutrients from food ingestion [49, 53]. The secretion of GLP-
1 and GIP depends not only on the type of macronutrients but also on the rate of 
gastric emptying and intestinal transit time. Moreover, some evidences show that 
secretion is modulated by the circadian system, and that higher secretion occurs in 
the morning than in the afternoon [54, 55]. The incretin metabolites are primarily 
cleared by the kidneys.

7.2.2  Incretins and Glucose Homeostasis

Both GLP-1 and GIP are able to regulate glucose homeostasis by interacting with 
G-protein-coupled receptors (GPCR) [56, 57]. The GIP receptor is mainly ex-
pressed on islet β cells, but it also occurs in adipose tissue and in the central nervous 
system. Conversely, the GLP-1 receptor is localized on islet α and β cells and in 
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peripheral tissues, such as the heart, kidneys, lungs, gastrointestinal tract, and pe-
ripheral nervous system [57]. As a result of  β cell activation, the levels of cAMP 
and intracellular calcium increase rapidly [57, 58]. This causes insulin secretion in 
a glucose-dependent manner because of their action after nutrient ingestion [58].

The incretin effect is involved in multiple actions that stimulate all stages of 
insulin biosynthesis and secretion to reduce the levels of glucose after food inges-
tion. GLP-1 acts on α cells by suppressing the secretion of glucagon, which has 
been demonstrated to reduce the risk of hyperglycemia [58]. GLP-1 has a trophic 
effect on β cells. It not only stimulates their proliferation but also enhances the 
differentiation of pancreatic cells and reduces apoptosis [49, 59]. Moreover, this 
gastrointestinal hormone slows gastric emptying and can reduce the postprandial 

Fig. 7.2  The incretin system. Relationship between the physiological effects of GLP-1 and GIP 
on insulin secretion and the action of targets implied in T2DM treatment. GLP-1 and GIP are 
released from enteroendocrine cells after nutrient ingestion to stimulate insulin secretion. How-
ever, their activity is reduced because of the cleavage of DPP-IV at the second residue of GLP-1 
and GIP. Two alternatives to avoid the cleavage are administration of incretin mimetics or DPP-IV 
inhibitors
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glucose levels. These effects are similar to inhibiting appetite and food intake [49]. 
In addition, GLP-1 protects against ischemic and reperfused myocardium injury 
in rats via mechanisms independent of insulin because of the receptors expressed 
in this tissue. The hormone may also possess neuroprotective effects. GLP-1 has 
been proposed as a new therapeutic agent for neurodegenerative diseases such as 
Alzheimer’s disease [49, 58, 59].

Similar to GLP-1, GIP increases insulin biosynthesis and secretion and has a 
protective activity on β cells. In addition, GIP stimulates the release of glucagon, 
and it is implicated in lipid metabolism and adiposity [60].

7.2.3  Incretins in T2DM Patients

Although patients with T2DM produce normal levels of GIP, the reduced response 
to the insulinotropic actions may be related to a reduction in receptor expression or 
reduced β cell sensitivity to GIP. However, GLP-1 maintains full physiological ef-
ficacy, despite being produced in lower concentrations [56, 61, 62]. Although GLP-
1 and GIP are responsible for 50–70 % of postprandial insulin release in healthy 
subjects, the incretin effect contributes to only 20–35 % of the insulin response to 
oral glucose in T2DM patients [48]. A reduced insulinotropic effect is also found in 
healthy subjects with experimental insulin resistance induced by a combination of a 
high-fat diet, sedentary lifestyle, and steroid therapy [48, 63].

7.3  DPP-IV Inhibition in Detail

7.3.1  Commercially Available DPP-IV Inhibitors

The inhibition of DPP-IV in humans increases the circulating GLP-1 and GIP levels 
(and, consequently, prolongs their action), which leads to decreased levels of blood 
glucose, HbA1c, and glucagon. Therefore, DPP-IV inhibition improves glucose ho-
meostasis with a lower risk of hypoglycemia. As a result, DPP-IV inhibitors are of 
considerable interest to the pharmaceutical industry [64]. Intensive research activi-
ties in this field have resulted in the launch of sitagliptin, saxagliptin, alogliptin, lin-
agliptin, vildagliptin, gemigliptin, and teneligliptin (collectively called as gliptins) 
to the market (Table 7.2) [19, 65]. 

7.3.2  Side Effects of Commercially Available DPP-IV Inhibitors

A recent post (March 14, 2013) at the sitagliptin [66], saxagliptin [67], and lina-
gliptin [68] pages on MedLinePlus showed that the US Food and Drug Admin-
istration (FDA) is evaluating unpublished new findings by a group of academic 
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Table 7.2  Main features of commercially available DPP-IV inhibitors
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researchers. The new data suggest an increased risk of pancreatitis and precancer-
ous cellular changes called pancreatic duct metaplasia in patients with T2DM who 
were treated with these drugs. It is important to note this early communication from 
the FDA is intended only to inform the public and health-care professionals that 
the Agency intends to obtain and evaluate the new information before reaching any 
conclusions about the safety risks of these drugs.

Interestingly, it has been reported that patients with T2DM have a two- to three-
fold increased risk of suffering from acute pancreatitis [69]. However, other reported 
studies suggest no increased risk of pancreatitis or malignancy in clinical trials with 
these drugs [70–75]. For instance, in a pooled analysis of 19 randomized double-blind 
clinical trials that included data from 10,246 patients, the incidence of acute pancre-
atitis was 0.10/100 patient–years in the placebo group and 0.08/100 patient–years in 
the sitagliptin group [71]. A recent analysis has updated the safety and tolerability of 
sitagliptin by examining pooled data from 25 double-blind clinical studies that lasted 
up to 2 years. These studies included data from 14,611 patients and concluded that 
treatment with sitagliptin is not associated with an increased risk of major adverse 
cardiovascular events, malignancy, or pancreatitis [72]. Therefore, it is likely that 
sitagliptin does not play a causal role in the reported instances of pancreatitis [72]. 
Moreover, clinical trials have not demonstrated an increased risk of renal failure with 
sitagliptin administration [71], and other studies suggest that sitagliptin, saxagliptin, 
and linagliptin may be used in patients with advanced kidney disease [76, 77].

7.3.3  DPP-IV-Binding Site Description

The DPP-IV binding site is highly druggable in the sense that tight and specific 
binding to the enzyme can be achieved using small molecules that have drug-like 
physicochemical properties [56, 78]. It is accessible in two ways: (1) via an opening 
in the β-propeller domain or (2) via the large side opening, which is formed at the 
interface of the β-propeller and α/β-hydrolase domain (Fig. 7.1) [18, 19, 23]. The 
structural features of DPP-IV suggest that substrates and inhibitors enter or leave 
the binding site via the side opening. Thus, the ligands can directly reach the active 
site and are correctly oriented for the subsequent cleavage. However, this possibility 
has not been fully elucidated [18, 79, 80].

In the active site of a protease, there are subsites labeled according to the peptide 
residue that they bind [81]. The point of peptide cleavage is between the peptide 
bond that binds residue P1 with residue Pʹ1. As a result, the residues that surround 
this position are labeled relative to the cleavage site as P2, P1, Pʹ1, Pʹ2, and so on. 
Therefore, the protein subsites occupied by residues P2, P1, Pʹ1, and Pʹ2 are labeled 
as S2, S1, Sʹ1, and Sʹ2, respectively.

The analysis of the different DPP-IV/inhibitor complexes available at the protein 
data bank (PDB) has allowed the following different subsites to be identified for 
DPP-IV (Fig. 7.3 and Table 7.3) [21, 78, 80, 82–86]: (a) the N-terminal recogni-
tion is formed by residues Glu205, Glu206, and Tyr662 where the Glu205 (and, in 
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some cases, Glu206) forms a salt bridge/hydrogen bond with the peptide’s basic 
amine; (b) the S2 pocket is formed by the residues Arg125, Ser209, Phe357, Arg358, 
Tyr547, and Asn710, where Arg125 and Asn710 are essential to coordinate the car-
bonyl of the P2 residue and, together with Glu205 and Glu206, align the substrate 
optimally for the nucleophilic attack by Ser630 [87]; (c) the oxyanion hole is formed 
by the backbone NH of Tyr631 and the side chain OH of Tyr547 and stabilizes the 
negatively charged tetrahedral oxyanion intermediate that is generated in the transi-
tion state [87]; (d) the S1 pocket is formed by the residues Tyr631, Val656, Trp659, 
Tyr662, Tyr666, and Val711; and (e) the catalytic triad is formed by the residues 
Ser630, Asp708, and His740 (with Ser630 cleaving the peptide bond between P1 
and Pʹ1 by performing a nucleophilic attack). Although in principle, no subsites are 
defined further than S2 in DPP-IV, a recent study has shown that the inhibitors and 
not the substrates can bind well beyond the S2 subsite to increase their inhibitory 
activity [88, 89]. The site beyond S2 was defined as the S2 extensive subsite and is 
formed by Val207, Ser209, Phe357, and Arg358 [23].

Based on the analysis of the DPP-IV crystal structures [90–96] and the interpreta-
tion of the structure–activity relationship data, both the lipophilic S1 pocket and the 
Glu205/Glu206 dyad can be considered as crucial molecular anchors for DPP-IV 
inhibition [78]. Moreover, this conclusion is supported by results derived from two 
different energetic pharmacophores [97, 98] obtained by our group that have quanti-
fied the relative contribution of the different pharmacophore sites to the intermo-
lecular interactions with DPP-IV. The first energetic pharmacophore was built from 
the PDB structure of ten complexes of DPP-IV with potent (IC50 values ≤ 10 nM) 
reversible inhibitors of a nonpeptide nature (Fig. 7.3a) [99]. This study showed that 

 

Fig. 7.3  DPP-IV binding site description. Residues belonging to the N-terminal recognition, the 
S2 extensive subsite, the S2 subsite, the S1 subsite, the catalytic triad, the oxyanion hole and the P2 
amide recognition region are shown in purple, light green, green, blue, orange, pink and yellow, 
respectively. a Structure-based energetic pharmacophore built from the PDB structure of 10 com-
plexes of DPP-IV with potent (IC50 values ≤ 10 nM) reversible inhibitors of a non-peptide nature 
[99]; b fragment-based energetic pharmacophore built after docking a library of rigid fragments 
at the DPP-IV binding site and further clustering of the fragments with highest binding energy; 
c the DPP-IV inhibitor from the PDB structure 3C45 in the context of the binding-site and of 
the fragment-based energetic pharmacophore. Pharmacophore sites are labeled according to their 
chemical characteristics ( H hydrophobic, R aromatic ring, P polar, D hydrogen bond donor sites 
and A hydrogen bond acceptor sites; sites labeled as H/R and P/D accept two different chemical 
features). All three panels are in the same orientation to facilitate the comparison
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two of the six sites of the pharmacophore (P/D and H/R1): (a) were accomplished 
by all ten inhibitors, (b) accounted for more than 90 % of the inhibitor/DPP-IV bind-
ing energy, and (c) were located in the two previously identified crucial molecular 
anchors for DPP-IV inhibition (P/D and H/R1 are close to the Glu205/Glu206 dyad 
and the S1 pocket, respectively). The second energetic pharmacophore (unpub-
lished results) has been obtained after (1) docking a library of rigid fragments at 
the DPP-IV binding site and (2) further clustering of the fragments with the highest 
binding energy. This fragment-based energetic pharmacophore is formed by five 
relevant sites (i.e., two hydrogen-bond donors, one hydrogen-bond acceptor, one 
hydrophobic site, and one aromatic ring; Fig. 7.3b). According to our results, two 
of these five sites (R and H) show a very large contribution to the binding energy 
(scores of − 10.05 and − 5.77 kcal/mol, respectively) compared with the remaining 
three binding energies (scores of − 2.71, − 2.09 and − 1.33 kcal/mol). Interestingly, 
the comparison of the energetic pharmacophores in Figs. 7.3a and b show that (a) 
the P/D site at Fig. 7.3a matches the D1 site at Fig. 7.3b; and (b) the H/R1 site in 
Fig. 7.3a approximately matches the R site at Fig. 7.3b. Therefore, both energetic 
pharmacophores highlight the importance of the N-terminal recognition performed 
by the Glu205/Glu206 dyad and the intermolecular interactions at the hydrophobic 
S1 site. Moreover, other studies suggest that the binding free energy can be further 
improved by additional favorable contacts [84] with the following: (a) the catalytic 
triad, (b) the oxyanion hole, (c) the P2 amide recognition region (formed by Arg125 
and Asn710) where, for instance, Arg125 can stabilize the amide carbonyl moiety 
of an inhibitor by making a hydrogen bond with it [82], (d) the phenyl rings from 
Phe357 and Tyr547 (by interacting with different aromatic ligand fragments to give 
π–π stacking interaction or by making hydrophobic contacts with large aliphatic 
groups) [80, 84], or (e) Arg358, which uses its positively charged side chain to 
interact with substituents on the ligand’s aromatic rings or to place electronegative 
groups on the ligands close to its positive-charged side chain [84].

Interestingly, the comparison of Figs. 7.3a and b also shows that there are unex-
plored ways to inhibit DPP-IV. In the fragment-based pharmacophore sites A and 
D2 (with scores of − 2.71 and − 2.09 kcal/mol, respectively) located between the 
residues Phe357, Tyr547, and Tyr666 (Fig. 7.3b) are not present at the PDB-based 
energetic pharmacophore (Fig. 7.3a). A similar situation occurs for the H site (lo-
cated at the center of the DPP-IV binding site; Fig. 7.3b) that, as mentioned before, 
has a very large score (−5.77 kcal/mol). As a result, it is remarkable that only three 
of the ten experimental poses that were used to derive the structure-based pharma-
cophore are able to simultaneously fit the R, H, and D1 sites of the fragment-based 
pharmacophore (unpublished results). Therefore, it can be concluded that the use 
of the fragment-based pharmacophore in a virtual screening could identify previ-
ously undescribed DPP-IV inhibitors in molecular databases by reducing the bias 
toward the existing covered space of the binding site. Our group is currently using 
this pharmacophore to identify potent DPP-IV inhibitors in the molecules found in 
nontoxic mushrooms of the Catalan forests. Our aim is to use extracts rich in these 
bioactive molecules as food additives for people affected (or potentially affected) 
by T2DM.
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7.3.4  How Differences at the Binding Site Among DPP-IV, 
DPP8, and DPP9 Explain the Selective Inhibition  
of DPP-IV

Unlike DPP-IV and FAP, the 3D structures for DPP8 and DPP9 are unknown. How-
ever, the structures can be built by homology modeling [100–102]. A comparison of 
the binding sites in DPP-IV, DPP8, and DPP9 suggests how to look for (or design) 
potent DPP-IV inhibitors with no (or low) bioactivity on DPP8/9 [103]. This com-
parison shows the following: (a) the S1 pocket is significantly smaller in DPP-IV 
(27.72 Å3) than it is in DPP8 (99.77 Å3) and DPP9 (75.89 Å3) [103, 104–106], 
which suggests that the excluded volumes obtained for this pocket in DPP-IV can 
be used to remove DPP8/9 inhibitors during the virtual screening (VS) workflow, 
(b) the Glu205/Glu206 dyad side chains are oriented towards the ligand site in DPP-
IV where they form a salt bridge with ligands whereas in DPP8/9 one of the two 
equivalent glutamic acids (Glu276 for DPP8 and Glu249 for DPP9) has its side 
chain oriented away from the active site (consequently, its intermolecular interac-
tion with a ligand hydrophilic group is not as strong as it is in DPP-IV [103, 106], 
which can result in a lower docking score for the same ligand in DPP8/9 relative to 
DPP-IV), and (c) whereas the S2 extensive subsite has not been clearly defined for 
DPP8/9, it has been shown to be important for the potency and selectivity of DPP-
IV inhibitors [23, 27, 78, 88, 100, 105, 107].

7.3.5  How to Predict DPP-IV Selective Inhibition

The relevance of selectivity in the clinical application of DPP-IV inhibitors is an 
essential step in reducing the toxicity associated with the inhibition of DPP8 and 
DPP9 [45]. Thus, the importance of computational approaches in designing or 
looking for selective DPP-IV inhibitors has become indispensable [103]. Various 
in silico methods have been described, mostly supported by docking studies on 
DPP8 and DPP9 enzymes [101, 103, 104], which could be subsequently followed 
either by finding molecules that show a significant higher (i.e., more negative) score 
for DPP-IV than for DPP8/9 [103], or by a 3D-QSAR study that uses the aligned 
docked poses to build a predictive model [104]. In contrast, it has been recently 
used as a conformational-free ligand-based methodology (i.e., holographic QSAR 
or HQSAR) for predicting DPP-IV selectivity [108] that has the advantage that 
eliminates the need for generation of the putative binding conformations at the dif-
ferent binding sites and their subsequent 3D-structure alignment. HQSAR involves 
the investigation of important indications of the molecular fragments that are di-
rectly related to biological activity or responsible for the low biological potency 
of the compounds, and this method is used to propose structural modifications. 
Therefore, contribution maps indicating the individual contributions to the activity 
of each atom in a given molecule of the data set can be obtained. Additionally, the 
most relevant structural fragments can be analyzed.
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7.3.6  Natural Products as DPP-IV Inhibitors

Dietary intervention is accepted as a key component in the prevention and manage-
ment of T2DM [109]. Natural products are useful as bioactive components to de-
velop new functional foods for specific population sectors [110–112]. A functional 
food has been defined as “any modified food or food ingredient that may provide a 
health benefit beyond the traditional nutrients it contains” [113]. According to the 
literature, the capacity to inhibit DPP-IV has been identified in natural nonpeptide 
(Fig. 7.4) [99, 114–125] and peptide products (Table 7.4) [18, 126–142]. Therefore, 
they could be used as bioactive ingredients in functional foods for T2DM preven-
tion or treatment [99, 126]. These foods may also serve as lead compounds for 
deriving more potent DPP-IV inhibitors [99, 117, 143].

7.3.6.1  Natural Products of Nonpeptide Nature

There are presently a limited number of DPP-IV inhibitors that have a nonpeptide 
nature (see Fig. 7.4 for the most relevant examples). Akiyama et al. [144] isolated 
sulphostin from the culture broth of Streptomyces sp. MK251–43F3. This molecule 
exhibits an antidiabetic activity that is 100-fold stronger than the well-known DPP-
IV peptide inhibitor diprotin A [145]. Berberine [115], trigonelline [116], and eight 
different DPP-IV inhibitors [119] have been isolated from different plants (e.g., 
Coptis chinensis, Trigonella foenum-graecum, Bacopa monnieri, and Daphne odo-
ra) and are widely used as antihyperglycemic agents in traditional Chinese medi-
cine (TCM). Moreover, curcumin (isolated from the rhizome of the herb Curcuma 
longa), resveratrol, luteolin, apigenin, flavone, and naringin (commonly found in 
berry wine blends, citrus, berry, grape, and soybean) are plant phenolic compounds 
that are also DPP-IV inhibitors [117, 121, 122]. Moreover, different natural extracts 
inhibit DPP-IV, although the specific nonpeptide molecules that are responsible for 
this bioactivity have not been fully characterized [114, 123–125].

7.3.6.2  Naturally Derived Peptides

Protein–peptide interactions are vital for life because peptides can take part in 
nearly 40 % of macromolecular interaction-mediating signals [146]. In recent years, 
studies on peptides derived from food proteins have shown that their bioactivity 
can significantly improve human health and prevent chronic diseases [126]. These 
bioactive peptides are short peptide sequences that are typically less than ten amino 
acids. They are encrypted within the structure of a food protein and can be released 
by enzyme hydrolysis, microbial fermentation, or physical and chemical process-
ing [18]. The peptides can interact with specific receptors and regulate a variety of 
physiological functions. Interestingly, peptides offer certain advantages as drugs 
due to their high biological activity, high specificity, and low toxicity [147].
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Several recent studies have demonstrated that peptides obtained from proteins 
from the following sources are able to inhibit DPP-IV: dairy products [126, 127, 
129–131, 135, 139–141], defatted rice bran [132], tuna cooking juice [133], dry-
cured ham [134], Amaranthus hypochondriacus [136], barley [126], canola [126], 
oat [126], soybean [126], wheat [126], chicken egg [126], bovine meat [126, 142], 

Fig. 7.4  Chemical structures and DPP-IV inhibitory activity for the most relevant natural com-
pounds of non-peptide nature: a sulphostin; b berberine; c trigonelline; d compound 4; e curcumin; 
f resveratrol; g luteolin; h apigenin; i flavone; j naringin; and k ZINC02132035
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Peptide sequence IC50 (μM) Type of inhibition
Ile-Pro-Ile (diprotin A)* 3.4–24.7 Competitive
Val-Pro-Leu (diprotin B) 5.5 Competitive
Ile-Pro-Ile-Gln-Tyr* 35.2 Competitive
Gly-Pro-Gly-Ala* 41.9
Ile-Pro-Ala-Val-Phe 44.7
Leu-Lys-Pro-Thr-Pro-Glu-Gly-Leu-Asp* 45 Un-competitive
Leu-Pro-Gln-Asn-Ile-Pro-Pro-Leu 46
Ile-Pro-Ala 49
Gly-Pro-Ala-Glu* 49.6
Leu-Lys-Pro-Thr-Pro-Glu-Gly-Leu-Asp-Leu-Glu-Ile-Leu* 57 Un-competitive
Trp-Val* 65.69 Non-competitive
Cys-Ala-Tyr-Gln-Trp-Gln-Arg-Pro-Val-Asp-Arg-Ile-Arg* 78
Leu-Pro-Gln 82
Pro-Ala-Cys-Gly- Gly-Phe-Try-Ile-Ser-Gly-Arg-Pro-Gly* 96.4
Leu-Pro-Tyr-Pro-Tyr * 108.3 Competitive
Val-Pro-Ile-Thr-Pro-Thr-Leu 110
Pro-Gly-Val-Gly-Gly-Pro-Leu-Gly-Pro-Ile-Gly-Pro-Cys-Tyr-
Glu*

116.1

Val-Pro-Ile-Thr-Pro-Thr 130
Trp-Leu-Ala-His-Lys-Ala-Leu-Cys-Ser-Glu-Lys-Leu-Asp-
Gln*

141 Un-competitive

Ile-Pro-Ala-Val-Phe-Lys 143
His-Leu* 143.19 Competitive
Ile-Pro* 149.6 Competitive
Leu-Pro-Gln-Asn-Ile-Pro-Pro 160
Leu-Ala-His-Lys-Ala-Leu-Cys-Ser-Glu-Lys-Leu* 165 Competitive
Thr-Lys-Cys-Glu-Val-Phe-Arg-Glu* 166 Un-competitive
Val-Ala* 168.24 Competitive
Val-Ala-Gly-Thr-Trp-Tyr 174
Leu-Cys-Ser-Glu-Lys-Leu-Asp-Gln* 186 Non-competitive
Ile-Pro-Ala-Val-Phe-Lys-Ile-Asp-Ala* 191 Competitive
Tyr-Pro-Tyr-Tyr* 194.4 Competitive
Leu-Pro-Leu* 241.4 Competitive
Tyr-Pro-Tyr* 243.7 Competitive
Phe-Pro-Gly-Pro-Ile-Pro-Asn 260
Ile-Leu-Asp-Lys-Val-Gly-Ile-Asn-Tyr* 263 Competitive
Trp-Leu-Ala-His-Lys-Ala-Leu* 286 Non-competitive
Thr-Pro-Glu-Val-Asp-Asp-Glu-Ala-Leu-Glu-Lys 319.5
Leu-Pro-Leu-Pro-Leu* 325 Competitive
Ile-Val-Gln-Asn-Asn-Asp-Ser-Thr-Glu-Tyr-Gly-Leu-Phe* 337 Non-competitive
Phe-Leu* 399.58 Competitive
Ile-Pro 410 Competitive
Val-Leu-Val-Leu-Asp-Thr-Asp-Tyr-Lys 424.4
Tyr-Pro* 658.1 Competitive
Tyr-Pro-Phe-Pro-Gly-Pro-Ile-Pro-Asn 670
Leu-Pro* 712.5 Competitive
Met-Pro 870 Competitive
Val-Pro 880 Competitive

Table 7.4  Peptide sequences that inhibit DPP-IV according to the literature
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and chum and Atlantic salmon (Table 7.4) [126, 138]. They are usually di-, tri-, 
and oligopeptides that contain proline and/or hydrophobic amino acids within their 
sequence [126]. Moreover, the sequence of the peptide, not its amino acid composi-
tion, influences the DPP-IV inhibitory activity. For instance, the dipeptides Ile–Pro 
and Trp–Val had DPP-IV inhibitory activity (Table 7.4). However, the reverse pep-
tides Pro–Ile and Val–Trp had no inhibitory activity [130, 132]. Thus, proline is the 
preferential amino acid residue at the P1-position. Furthermore, alanine, glycine, 
and serine are also accepted (Table 7.4). The data in Table 7.4 also show that (a) 
dipeptides of the general structures Xaa-Pro (except Gly-Pro) are competitive in-
hibitors of DPP-IV [148], and (b) the residue present at the N-terminus influences 
inhibitory activity because the dipeptide Leu-Pro has a higher IC50 value than Ile-
Pro (see Table 7.4) [18].

Peptide sequence IC50 (μM) Type of inhibition
Ala-Leu* 882.13 Competitive
Pro-Gly-Pro-Ile-His-Asn-Ser 1000
Ile-Pro-Pro-Leu-Thr-Gln-Thr-Pro-Val 1300
Pro-Gln-Asn-Ile-Pro-Pro-Leu 1500
Arg-Pro 2240 Competitive
Thr-Pro 2370 Competitive
Leu-Pro 2370 Competitive
Met* 2381.51 Competitive
Val-Pro-Pro-Phe-Ile-Gln-Pro-Glu 2500
Ser-Leu* 2517.08 Competitive
Lys-Pro 2540 Competitive
Gly-Leu* 2615.03 Competitive
His-Pro 2820 Competitive
Tyr-Pro 3170 Competitive
Glu-Lys* 3216.75 Competitive
Leu* 3419.25 Competitive
Phe-Pro 3630 Competitive
Trp* 4280.4 Competitive
Trp-Pro 4530 Competitive
Pro-Pro 5860 Competitive
Ser-Pro 5980 Competitive
Lys-Ala* 6270
Ala-Ala-Ala-Thr-Pro* 6470
Ala-Pro 7950 Competitive
Ala-Ala-Ala-Ala-Gly* 8130
Ala-Ala* 9400
Gly-Pro* 9690

Rows are sorted according to increasing IC50. The presence of Pro at the P1 position of some pep-
tides is highlighted
*The IC50 value has been measured with porcine instead of human DPP-IV

Table 7.4 (continued) 
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Longer peptides (larger than 13 residues) have been shown to act as noncompeti-
tive inhibitors by forming interactions at the dimerization interface and blocking the 
formation of the DPP-IV active dimer [136, 149].

7.4  Using In Silico Tools for Identifying DPP-IV 
Inhibitors of Natural Origin

The identification of inhibitors with previously undescribed bioactivities in natural 
extracts exclusively by in vitro or in vivo approaches is a complex and expensive 
process [114–117, 127, 129–135, 138–140, 144]. The use of in silico approaches 
can significantly increase this identification of natural extracts. There are success-
ful examples of newly identified DPP-IV inhibitors of natural origin that have been 
found using either VS workflows [99, 120] or target fishing [119] or sequence simi-
larity tools [126, 141, 142].

7.4.1  Virtual Screening Workflows

7.4.1.1  Defining Virtual Screening Workflows

A VS workflow consists of several sequential filters that are used to discern the 
molecules that share and those that do not share properties that characterize drugs 
with a specific bioactivity. In a VS workflow, the molecules that survive a filter 
are then evaluated by the next filter (whereas the rest are rejected). Thus, a VS 
workflow is described as a funnel shape to indicate the decreasing number of mol-
ecules that are evaluated by the successive filters (Fig. 7.5). Some of the most com-
monly used filters during VS workflows include ADME/Toxicity analysis, protein–
ligand docking, pharmacophore matching and similarity/electrostatic comparison 
(Fig. 7.5) [99, 120].

7.4.1.2  Natural Products Databases

The main goal of using a VS workflow and finding bioactive molecules for func-
tional food design is to find a cheap natural source that can easily provide extracts 
enriched in the bioactive molecule. Therefore, it is necessary to use databases for 
naturally occurring molecules that, in addition to showing the molecular structure, 
include the natural source from which these molecules can be obtained. Examples 
of such databases are the NuBBE database [150], the TCM database @Taiwan 
[151], and Reaxys [152].
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7.4.1.3  Examples

We have developed a VS workflow to successfully identify molecules that are able 
to inhibit DPP-IV and molecules that do not inhibit this enzyme [99]. Among oth-
er filters, this VS workflow included a structure-based energetic pharmacophore 
(Fig. 7.3a) that was obtained from the consensus of the different energetic pharma-
cophores [97] that can be obtained from ten different complexes between human 
DPP-IV and potent reversible inhibitors (i.e., IC50 values ≤ 10 nM) of nonpeptide 
nature available in the PDB [153]. This VS workflow was applied to the Natu-
ral Products subset of the ZINC database [154]. The results predicted that 446 of 
the 89,425 molecules present in the database could be potential DPP-IV inhibitors. 
These 446 molecules were merged with 2,342 known DPP-IV inhibitors, and the 
resulting set was classified into 50 clusters according to chemical similarity. We 
found that there were 12 clusters that contained only natural products not previously 
identified as DPP-IV inhibitors [99]. Nine molecules from 7 of the 12 clusters (from 
which no antidiabetic activity has been described to date) were selected for in vitro 
activity testing. The results of the in vitro activity testing showed the following: (a) 
seven molecules that could be solubilized inhibited DPP-IV, and (b) the most potent 
compound was ZINC02132035 (with an IC50 of 61.55 μM; Fig. 7.4k) [99]. There-
fore, we experimentally demonstrated that the VS workflow was able to identify 
DPP-IV inhibitor molecules that (1) have never been reported to have antidiabetic 
activity and (2) were not structurally related to any known DPP-IV inhibitor.

We next used a slightly modified version of the VS workflow to evaluate an in-
house database of 29,779 natural products annotated with their natural source. We 
were able to identify 84 molecules (isolated from 95 different natural sources) that 
were predicted to inhibit DPP-IV [120]. An exhaustive bibliographic search revealed 
that we predicted 12 potential DPP-IV inhibitors from 12 different plant extracts that 
are known to have antidiabetic activity (Table 7.5). Six of these 12 molecules are 
identical or similar to molecules with described antidiabetic activity (although their 
role as DPP-IV inhibitors has not been suggested as an explanation for their bioac-
tivity; Table 7.5). Therefore, it is plausible that these 12 molecules could be partially 
responsible for the antidiabetic activity of these extracts through DPP-IV inhibition 
[120]. In addition, we identified six potential DPP-IV inhibitor molecules from six 

Fig. 7.5  Overview of a 
typical virtual screening 
workflow
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Table 7.5  Natural extracts with reported antidiabetic activity that contain molecules predicted to 
be DPP-IV inhibitors by our VS protocol [120]
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Table 7.5 (continued)

The first column shows the 2D structure of each molecule. The second column shows the cor-
responding common name and the CAS number (when available). The third column shows the 
scientific name of one of the sources in which the antidiabetic activity has been reported (rows in 
that table are alphabetically sorted based on this column). Bibliographic references for each mol-
ecule are divided into three columns in which (a) the first column presents studies that describe 
the purification of the molecule from the corresponding extract, (b) the second column lists studies 
that describe the antidiabetic activity of the corresponding extract; and (c) the third column lists 
studies, when available, that describe the antidiabetic activity of the corresponding molecule or 
one that is very similar to it
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different plants with no described antidiabetic activity. These molecules share the 
same genus as plants with known antidiabetic properties (thus suggesting that they 
could be new sources for antidiabetic extracts; Table 7.6). Moreover, none of the 18 
molecules that we predicted as DPP-IV inhibitors exhibits chemical similarity with 
any previously known DPP-IV inhibitor [120]. Finally, the same study also pre-
dicted 77 other sources with no described antidiabetic activity that contain at least 
one VS hit. Consequently, this work will permit the discovery of new antidiabetic 
extracts of natural origin that could be of use in the design of functional foods aimed 
at preventing/treating T2DM [120].

7.4.2  Target Fishing

7.4.2.1  Defining Target Fishing

Target fishing refers to a computer-assisted methodology used to predict the targets 
of a specific compound (or a limited set of compounds). Therefore, it can be consid-
ered the inverse process of a usual VS workflow. Target fishing has applications in 
drug repositioning [198] and anticipating potential side effects [199]. Other common 
synonymous for target fishing are chemogenomics [200], drug repurposing [201], 
polypharmacology [202], virtual target screening [203], and target profiling [204].

7.4.2.2  Examples

The potential drug target database (PDTD) [205] was searched using the TarFisDock 
server [206] to identify putative targets for a collection of 19 natural products ob-
tained from Bacopa monnieri (L.) Wettst and Daphne odora Thunb. var. marginata 
(two plants commonly used by TCM and Ayurvedic medicine in diabetes and inflam-
mation treatment) [119]. This study predicted that from more than 800 drug targets 
available at PDTD, DPP-IV was one of the most probable for these 19 molecules 
(consistent with the known therapeutic indications of both plants). Furthermore, 
an in vitro analysis of the bioactivity of these 19 molecules showed that five have 
moderate inhibitory activities for DPP-IV (with IC50 values ranging from 14.13 to 
113.76 μM) [119]. Subsequently, these five molecules were used to identify 27 ana-
logs in the in-house natural products database of the researchers. The in vitro analy-
sis of the bioactivity of these 27 molecules showed that 13 have moderate inhibitory 
activities for DPP-IV (with IC50 values ranging from 22.39 to 87.72 μM) [119].

7.4.3  Sequence Similarity

The aim of these kind of studies consist in performing an in silico evaluation of 
dietary proteins as potential precursors of biologically active peptides, as well as to 
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Table 7.6  Natural extracts with no described antidiabetic activity (but from the same genus as 
plants with extracts with described anti-diabetic activity) that contain molecules that are predicted 
to be DPP-IV inhibitors by our VS protocol [120]

 

 

 

  

  

 

 

 

 

The first column shows the 2D structure of each molecule. The second column shows the cor-
responding common name and/or the CAS number (when available). The third column lists the 
source from which the VS hits have been purified (rows in that table are alphabetically sorted 
based on this column). The fourth column lists the studies that describe the purification of the 
each molecule from the corresponding extract. The fifth column shows the extracts from the same 
genus where the antidiabetic activity has been described. Finally, the last column lists studies that 
describe the antidiabetic activity of the corresponding extract
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determine whether such peptides can be released by selected proteolytic enzymes 
[126, 141, 142]. This approach finds biologically active peptides in the protein se-
quences that remain inactive in precursor protein sequences. However, when re-
leased by proteolytic enzymes, these peptides may interact with selected receptors 
and regulate physiological functions [141]. Thus, the potential of various dietary 
proteins to serve as DPP-IV inhibitor precursors is predicted by searching for frag-
ments within the protein chains that match the peptide sequences reported in the 
literature (Table 7.4) to present an inhibitory activity against DPP-IV. This potential 
is quantified for each protein by calculating A (the occurrence frequency) as A = a/N 
(where a is the number of peptides with DPP-IV inhibitory activity within the pro-
tein chain and N is the number of amino acid residues in the protein chain) [141]. 
These studies show that β-casein from cow’s milk, collagens from bovine meat, and 
chum salmon have occurrence frequency values of 0.249, 0.380, and 0.305, respec-
tively, and appeared to be the best potential sources of DPP-IV inhibitory peptides 
among all of the proteins studied [126, 141]. Moreover, it is also shown that DPP-IV 
inhibitory peptides can be obtained from milk proteins by using serine endopepti-
dases (e.g., proteinase K, EC.3.4.21.14; pancreatic elastase, EC 3.4.21.36; prolyl 
oligopeptidase, EC 3.4.21.26; chymotrypsin C, EC 3.4.21.2; and leukocyte elastase, 
EC 3.4.21.37) or cysteine endopeptidases (papain, EC 3.4.22.2; ficin, EC 3.4.22.3; 
and bromelain, EC 3.4.22.4) or thermolysin (EC 3.4.24.27). [141] These proteins 
also hold special interest for the food industry because proteins from the connective 
tissue (usually with low commercial value) are rich in proline. Therefore, they can 
be a very important source for DPP-IV inhibitors (Table 7.4) and may represent a 
new method of generating profit from food industry byproducts.

7.5  Concluding Remarks and Future Perspectives

DPP-IV inhibition appears to be one of the most effective and secure ways of con-
trolling diabetes and related diseases. Three of the seven gliptins that are currently 
authorized for human use have been released to the market over the last 2 years 
(Table 7.2). Moreover, DPP-IV inhibitors are orally administered, which makes 
them compatible with the food additive concept. Therefore, finding naturally avail-
able molecules with bioactivity is an area of high interest for the functional food 
and nutraceutical industry. VS is an essential (and low-cost) tool for predicting new 
DPP-IV inhibitors from natural molecule databases and recovering them from food-
processing byproducts or biomass with low- or no-economic value. Nevertheless, 
there are some key points that, in our opinion, could improve the performance of VS 
on DPP-IV and that need to be addressed in future research: (1) including di- and 
tripeptides in VS studies; (2) improving VS filters to remove molecules that could 
inhibit FAP, DPP8, or DPP9; and (3) using the dimerization area as the part of the 
target where ligand binding is predicted during VS. Our lab is making progress in ad-
dressing these challenges and has promising results that will be published elsewhere.
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8.1  Introduction

Multivariate data analysis, i.e., the simultaneous analysis of more than one mea-
sured variable, includes different statistical methods that study both the impact of 
a measured variable on the samples and the interaction and correlation among the 
measured variables. In that sense, multivariate data analysis, or more generally, 
multivariate statistics, may be more effective in evaluating naturally occurring 
events than univariate statistics, since in nature, things are connected and impact 
each other. Especially in recent years, study designs which generate large data sets 
which involve complex connections among experimental variables frequently re-
quire multivariate analysis methods in order to fully evaluate the complex research 
questions involved [1].

Multivariate data statistics is applied in many sciences, including natural and life 
sciences as well as social sciences and each area uses slightly different techniques 
to study similar problems. In an applied and interdisciplinary field, such as food 
science, the challenge is to make use of all these different fields for useful and ap-
plicable methods for one’s own research.

Generally, two types of questions are asked when applying multivariate data 
analysis techniques; one question aims to explore the gathered data without any 
preconceived assumptions or notions, while the second question relates to sample 
classification and finding valid and powerful models for prediction purposes.

© Springer International Publishing Switzerland 2014  
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The essence of exploratory data analysis methods is to filter relevant information 
from the gathered data, and present these important features, often in a visual way.

One of the most commonly used exploratory methods is principal component 
analysis (PCA), which is also an unsupervised technique. PCA is a lower-dimen-
sional representation of the multidimensional data space, using linear combinations 
(so-called principal components PCs) of the existing variables that explain most 
of the variance in the data set [1, 2]. These PCs are also orthogonal to each other, 
which means that they are uncorrelated and perpendicular to each other [2]. Creat-
ing the PCs is independent of any assumptions, and simply based on the gathered 
data, thus called unsupervised. Using just a few PCs, one typically is able to explain 
most of the variance in the data. Relationships among samples as well as between 
samples and variables are then displayed in so-called score plots (the positions of 
the samples in the lower-dimensional space) and loadings plots (the positions of 
the measured variables). In the score plot samples that are similar to each other 
show similar scores and are positioned close to each other, while dissimilar samples 
are positioned further apart from each other. Similarly with the loadings, measured 
variables that are positively correlated to each other are close to each other in the 
loadings plot, while negatively correlated variables are positioned opposite of each 
other.

PCA is a widely used technique in food science, and is used in nearly every 
subfield within food science such as sensory and consumer science [3] and food 
component profiling [4, 5], and is now part of a typical workflow, in general to gain 
a deeper understanding of the differences among a set of samples, how these differ-
ences relate to each of the measured variables, and which variables explain more 
of the observed differences. Specific examples are, e.g., the use of PCA to analyze 
and correlate instrumental and sensory measurements of cooked wheat noodles 
with varying degrees of gluten and glyceryl monostearate [6], where the authors 
used PCA besides PLSR and general procrustes’ analysis (GPA) to study how the 
changes in the physical properties affected the appearance and texture. PCA was 
also used to study the impact of stabilization on the changes in volatile patterns of 
food packaging materials over time [7].

In contrast to exploratory techniques, classification methods are used to test if 
samples group together based on prior assumptions, and to model data for future 
prediction. In that sense, classification techniques are supervised and the research-
er has a testable hypothesis about relationships within the gathered data prior to 
running the analysis. One example of a supervised classification method is canoni-
cal variate analysis (CVA), sometimes also called Fisher’s linear discriminant anal-
ysis (LDA). A CVA tries to find linear combinations of the measured variables that 
maximize the variance ratio by minimizing the variance within the group and maxi-
mizing the variance between the groups [2]. In contrast to a PCA, a CVA highlights 
the differences between the groupings, e.g., different wine regions [8]. The linear 
combinations of the measured variables, the so-called canonical variates (CVs), 
are not necessarily orthogonal as in a PCA, and the angle between the CVs can be 
calculated [2], but are in most cases close to 90°. The importance of the various axes 
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of a CVA solution can be tested statistically using the Bartlett’s test, thus, helping to 
select the appropriate number of dimensions for interpretation; this is not possible 
for a PCA. Additionally, confidence intervals around the group means can be easily 
calculated and incorporated into the CVA product plot, providing a visual statistical 
significance test (confidence interval circles that do not overlap are statistically dif-
ferent at the chosen significance level, e.g., 5 %).

Classification problems are numerous in food science, for example, classifica-
tion methods are used to determine a food’s origin based on chemical fingerprints 
[9], but can also discriminate among different fig cultivars with sensory attributes, 
independent of the source and harvest date of the different cultivars [10]. CVA is 
just one of many classification techniques, and the reader is referred to specific 
articles, e.g., partial least squares discriminant analysis (PLS-DA) [11], artificial 
neural networks (ANNs) [12], and support vector machines (SVMs) [13].

Besides using classification techniques to identify separate groups in a given 
sample set, classifying methods can also be used for creating prediction models. 
Typically, one uses a set of given samples with known properties to create the mod-
el, which is then tested with a second set of new samples. In this chapter, we use 
one data set to predict the second data set, as a way to study the correlation between 
the variables of the two data sets. This is done using partial least squares regression 
(PLSR) [1]. PLSR combines PCA and regression, and can be used to predict a group 
of so-called dependent (i.e., predicted) variables by a second set of independent, or 
predicting variables. In contrast to multiple regression, PLSR is trying to select so-
called latent vectors (LVs) that explain most of the covariance between the predict-
ing and the predicted data sets [14]. PLSR attempts to find LVs that maximize the 
covariance between the two data sets and that capture most of the variance in both 
data sets at the same time [1].

PLSR is commonly used to correlate different data sets to each other (e.g., sen-
sory to chemical measurements), as well as for prediction purposes (i.e., substitu-
tion of various wet chemistry methods by a near-infrared spectroscopy (NIR)-based 
model). One example for the former case is the correlation of the sensory and in-
strumental flavor perception in ice creams with different flavor compounds and 
additionally also varying in fat levels [15]. A quantitative and validated prediction 
model for fatty acid profile, fat and water content, retrogradation, and viscosity was 
developed by [16] for the characterization of potato, maize, wheat, rice, and tapioca 
starches for industrial purposes.

Using two defined data sets, we will apply these three data analysis techniques to 
show the differences and similarities between different multivariate methods. The 
data consists of trace elemental and sensory measurements of wines that have been 
stored at different conditions, varying in temperature and packaging type. Compar-
ing the outcome of different data analysis methods is something not very often 
done. For example, Heymann and Noble compared PCA and CVA outcomes of 
sensory data [2], while Zhao and Maclean compared the same two techniques for 
spectral transformations in satellite image preprocessing [17].
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8.2  Methods and Materials

8.2.1  Samples

Twelve sample treatments were realized, storing one Cabernet Sauvignon wine 
(vintage 2009, from Northern California) in four different packaging configurations 
at three constant storage temperatures (10, 20 and 40 °C) for a period of 6 months. 
The four packaging configurations were (1) a 3-L bag-in-box container (BIB; Du-
rashield 34ES, Scholle Packaging, Northlake, IL, USA), (2) a 0.75-L dark-green 
glass bottle closed with natural cork (AC-1 grade, 29 mm × 49 mm, ACI Cork, 
Fairfield, CA, USA), a 0.75-L dark-green glass bottle capped with an aluminum 
screw cap (Federfin Tech S.R.L., Tromello, Italy) with a tin-PVDC liner (Oenoseal, 
Chazay D’Azergues, France) with either (3) a normal filling height (headspace was 
15 mm) or (4) filled to the very top of the bottle. Further details about the samples 
and how they were prepared can be found in [18].

8.2.2  Sensory Analysis

Ten unpaid volunteers were recruited based on their availability and agreement to 
serve on the sensory panel (mean age 33.8 years, nine females), and included stu-
dents, staff, and retirees of the UC Davis campus. The UC Davis institutional review 
board approved the study. All panelists completed six training sessions of 1 h each, 
spread over a period of 2 weeks. During these training sessions, the panelists creat-
ed, chose, and agreed upon the descriptors and descriptor references to describe dif-
ferences among the samples, using different subsets of the samples for each training 
session. The panel chose 16 aroma descriptors ( red fruit, cherry, jammy, grapefruit, 
fresh veggie, canned veggie, earthy, wood, black pepper, spice, molasses/soy sauce, 
brown flavor, dried fruit, oxidized, chemical, floral), three taste descriptors ( sour, 
sweet, bitter), and three mouthfeel descriptors ( astringent, hot mouthfeel, viscous), 
all with corresponding reference standards (see [18] for details). Panelists also com-
pleted scaling exercises to ensure that the panel perceived differences among the 
samples in a similar way, both in quality and magnitude. Following training, all 
samples were tasted in triplicate over a period of 3 weeks in separate tasting booths. 
Each panelist tasted six samples during each of the evaluation sessions. Samples 
were presented in a randomized William Latin Square design to control for carry-
over effects. Panelists rated each descriptor for each sample on an unstructured line 
scale, anchored on the left with “low” and on the right with “high,” using a dedi-
cated sensory computer software (FIZZ, Biosystemes, Couteron, France).
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8.2.3  Trace Element Analysis

All samples were profiled for their elemental composition using inductively coupled 
plasma mass spectrometry (ICP-MS). An Agilent 7700x ICP-MS (Santa Clara, CA, 
USA) was equipped with a MicroMist nebulizer, a double-quartz spray chamber, 
and a peristaltic pump (0.1 rps). Argon was used as carrier gas (1.03 L/min), while 
Helium was used in the octapole reaction cell at a flow rate of 4.3 or 10 mL/min. 
All monitored isotopes (51V, 52Cr, 55Mn, 56Fe, 57Fe, 58Ni, 59Co, 60Ni, 66Zn, 75As, 78Se, 
111Cd, 117Sn, 118Sn, 119Sn, 120Sn, 133Cs, 205Tl, 208Pb) were measured in helium mode, 
with 75As and 78Se in high-energy helium mode (flow of 10 mL/min). Samples 
were prepared in triplicate by diluting them 1:3 in 1 % nitric acid (HNO3; Optima, 
Fisher Scientific, Pittsburgh, PA, USA). Quality control samples were prepared by 
spiking wine samples with 0.5, 1, or 10 μg/L tin (Inorganic Ventures, Christians-
burg, VA, USA), and measured together with the samples. An internal standard (IS) 
mix consisting of six elements (SPEX CertiPrep, Metuchen, NJ, USA) covered the 
whole mass range between 6 and 238 amu, and was constantly fed into the sample 
stream using a mixing tee. All monitored elements were quantified between 0 and 
500 μg/L in a matrix-matched solution (1 % HNO3 and 4 % ethanol). Limits of de-
tection (LOD) and quantification (LOQ) were determined via the standard deviation 
of seven calibration blank runs. Further details with regard to the ICP-MS method 
can be found in [19].

8.2.4  Data Analysis

The sensory data (10 judges × 12 samples × 3 replicates = 360 observations of 22 
descriptors) as well as the ICP-MS data (12 samples × 3 replicates = 36 observations 
of 19 isotopes) were statistically evaluated with a fixed effect analysis of variance 
(ANOVA), after a multivariate analysis of variance (MANOVA) for a sample effect 
showed significant differences ( P ≤ 0.05). For the sensory data all three main effects 
and all two-way interactions were added to the model, while for the ICP-MS data 
only the two main effects were included.

All significant sensory descriptors that showed a significant sample effect to-
gether with a significant sample × judge interaction were treated with a pseudo-
mixed model, with the interaction as the new error term, as suggested by Gay in 
[20]. All significant descriptors and elements were retained for further analysis.

Exploratory data analysis was conducted using PCA on the correlation matrix 
(i.e., scaled to unit variance) of the averaged data sets (over judges and replicates) to 
account for scaling and concentration differences in the two data sets. A classifica-
tion technique, CVA, based on the MANOVA model with a sample effect was also 
conducted. The main difference between PCA and CVA lies in the interpretation 
of sample differences; while a PCA algorithm attempts to maximize the sample 
differences, the CVA algorithm maximizes the ratio of the between-group to the 
within-group sums of squares (the groups in our case are the samples). Additionally, 
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confidence intervals (e.g., at the 95 % level) can easily be constructed as circles 
around the sample means, providing visual significance testing. Circles that overlap 
are not significantly different from each other, and were calculated using the algo-
rithm described by Owen and Chmielewski [21]. Due to the nature of CVA using a 
MANOVA model, a Bartlett’s test for the number of significant dimensions can be 
included.

In a last analysis step, the two data sets were compared to each other with PLSR 
to find correlations between the descriptors and the elements.

All analyses were conducted in RStudio [22], running in the R language environ-
ment [23], with several add-on packages, including FactoMineR [24, 25], candisc 
[26], plotrix [27], and pls [28].

8.3  Results and Discussion

8.3.1  Descriptive Analysis Panel

Significant differences among the samples were revealed by MANOVA, and in the 
subsequent individual ANOVAs, 11 aroma descriptors were found to differ signifi-
cantly among the treatments ( P ≤ 0.05). These significant descriptors were subse-
quently used in all analyses (for further details see [18]).

8.3.2  PCA of the Sensory Data Set

A PCA was conducted using the significant 11 sensory descriptors, and the result-
ing biplot is shown in Fig. 8.1. In the scree plot (dimensions over eigenvalues) a 
large drop and a knee was observed after two dimensions (data not shown). Ad-
ditionally, over 80 % of the total variance was explained within the first two PCs, 
thus, the first two dimensions were kept for the interpretation of the PCA. Samples 
were separated in the PCA to a large degree due to their storage temperature, and 
to a smaller degree by their packaging configuration. Along the first principal com-
ponent (PC 1), explaining 67 % of the total variance, samples stored at 40 °C were 
well separated from the 10 and 20 °C samples. Samples on the right-hand side of 
the PCA plot, which were stored at 40 °C, were described by the sensory panel with 
the descriptors dried fruit, brown flavor, spice, oxidized, molasses/soysauce, canned 
veggie, and earthy. All these sensory descriptors were previously reported as ageing 
and/or oxidation attributes in red wine [29–31]. On the left-hand side of the PCA 
plot, samples that were stored at 10 and 20 °C are positioned. These treatments were 
scored higher in red fruit, cherry, grapefruit, and black pepper. Fresh fruit attributes 
as well as citrus aromas were previously described in young Cabernet Sauvignon 
wine [30].
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Along the second PC, an additional 14 % of the total variance was explained, 
and PC 2 captures mostly the differences due to the different packaging configura-
tions. All BIB samples ( bib10, bib20, bib40) are positioned at the bottom of the 
plot, while all screw-capped samples with a low-fill height ( low-fill screw10, low-
fill screw20, low-fill screw40) are positioned towards the top of the PCA plot. In 
between those treatments the remaining two packaging configurations (natural cork 
closure and high-fill screw-capped bottles) are located.

With increasing storage temperature, the differences between the four packaging 
configurations become larger. Samples stored at 40 °C form three subgroups, with 
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Fig. 8.1  PCA biplot of the DA data, showing the significant descriptors (in black) projected into 
the score plot of the samples. Samples are color-coded according to their storage temperature ( blue 
10 °C, green 20 °C, red 40 °C), and different symbols represent different packaging configura-
tions ( filled circle 3 L bag-in-box (BIB), filled triangle 0.75 L green glass bottle with natural cork 
(naco), filled square 0.75 L green glass bottle with a screw cap and filled to the top of the bottle 
(high fill screw), and filled diamond 0.75 L green glass bottle with a screw cap and filled to a 
normal fill height (low fill screw))
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the natural cork sealed bottles and the low-fill screw-capped bottles forming one 
group and scoring higher in canned veggie and earthy, while high-fill screw cap 
and BIB samples formed two separate groups. The latter two samples were more 
described by oxidized, brown flavor, dried fruit, and molasses/soysauce characters, 
with the high-fill screw cap sample stored at 40 °C being positioned in between the 
BIB sample and the other two samples stored at the same temperature.

The PCA on the DA data shows a clear separation of the samples due to their 
storage conditions; storage temperature had the largest impact on the sensory prop-
erties of the stored wines, while the packaging configuration altered the sensory 
profile to a lesser extent, especially at lower storage temperatures. The most oxi-
dized wine in the sample set was the combination of a highly oxygen-permeable 
wine packaging, such as BIB, with high storage temperature.

8.4  CVA of the Sensory Data Set

Similar to the PCA, only the significantly different sensory descriptors were used 
in the CVA. As CVA is a classification technique, an a priori grouping is needed. 
We chose the most basic model, and used a MANOVA model with only the sample 
effect. Bartlett’s test for the determination of significant canonical dimensions re-
vealed that only the first CV was significantly different ( P ≤ 0.05). However, a knee 
in the scree plot was observed after the first two CVs, thus, the first two dimensions 
were kept for interpretation (data not shown).

Nearly 90 % of the total variance ratio is explained within the first two CVs 
shown in Fig. 8.2. Along the first dimension (CV 1), explaining 75 % of the vari-
ance ratio, treatments are somewhat separated due to their storage temperature, with 
samples stored at 40 °C more on the left-hand side of the plot, and all 10–20 °C 
samples clustering together on the right side. The BIB sample stored at 40 °C is the 
main driver for the observed separation among the samples, while the other three 
40 °C treatments are not significantly different from each other (their confidence in-
terval circles overlap). The descriptors oxidized, molasses/soysauce, brown flavors, 
dried fruit, earthy, and grapefruit are close to the 40 °C treatments, while samples 
stored at lower temperatures were described by the attributes spice, cherry, red fruit, 
black pepper, and canned veggie, with the latter two being expressed in the bottle 
treatments stored at 40 °C as well.

The second CV, accounting for an additional 14 % of the variance ratio, is main-
ly expressing the differences between the 40 °C bottle treatments and the 10–20 °C 
samples, with the latter group being higher in cherry and red fruit and spice char-
acters, while the 40 °C bottle samples showed increasing ratings in canned veggie.

In contrast to the PCA, the CVA is mostly driven by the extreme changes ob-
served in the BIB stored at 40 °C, which is responsible for the separation along 
the first (and only significant) CV. Additionally, the addition of the confidence in-
tervals around the sample means provides a visual significance test, and reveals 
that the natural cork samples stored at 40 °C showed a larger variability than the 
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screw cap and the BIB samples stored at the same temperature, which could be the 
result of cork being a natural product with an inherently higher product variability. 
Comparing the results from the PCA to the CVA results, one might also conclude 
that the differences among the bottle treatments at 40 °C were more significant in 
the PCA than they are statistically–e.g., the low fill screw cap and the natural cork 
samples stored at 40 °C seem different from the high fill screw cap sample which 
seems different from the BIB sample in the PCA, while in the CVA the confidence 
intervals for the three bottle treatments at 40 °C overlap, and only the BIB treatment 
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Fig. 8.2  CVA biplot of the DA panel, showing the significant descriptors (in black) projected 
into the score plot of the samples. Samples are color-coded according to their storage temperature 
( blue 10 °C, green 20 °C, red 40 °C), and different symbols represent different packaging configu-
rations ( filled circle 3 L bag-in-box (BIB), filled triangle 0.75 L green glass bottle with natural 
cork (naco), filled square 0.75 L green glass bottle with a screw cap and filled to the top of the 
bottle (high fill screw), and filled diamond 0.75 L green glass bottle with a screw cap and filled 
to a normal fill height—low fill screw). 95 % confidence intervals around the sample means are 
shown as gray circles
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at 40 °C is statistically different from all the other 40 °C samples. Similar were the 
differences in the packaging at lower temperatures; in the PCA the samples seem 
more different than in the CVA where the confidence intervals overlap for all sam-
ples stored at 10–20 °C.

8.4.1  Elemental Profiling

Significant differences in the elemental composition among the samples were re-
vealed by MANOVA, and in the subsequent individual ANOVAs, five elements 
differed significantly among the treatments ( P ≤ 0.05), and were subsequently used 
in all analyses (for further details see [19]).

8.5  PCA of the Elemental Profile Data Set

The resulting biplot from the PCA on the five elements that differed significantly 
among the samples is shown in Fig. 8.3. Similar to the DA data set, a very high 
proportion (over 90 %) of the total variance is explained within the first two PCs. 
In contrast to the DA data, sample separation in the elemental data set is driven 
by the packaging configuration, explaining 69 % of the total variance in PC 1. All 
BIB samples are positioned close to each other on the left side of the PCA biplot, 
followed by the natural cork samples, the low fill height screw cap samples and 
the high fill screw samples when moving to the right-hand side of the plot. An ad-
ditional 21 % of the total variance is explained by PC 2, which separates the treat-
ments due to their storage temperature; the higher the storage temperature the more 
the samples are positioned at the top of the PCA biplot. Sample separation is driven 
by higher levels of all five elements in the bottle treatments compared to the BIB 
samples, which showed the lowest concentrations in all elements. Lead (Pb), cop-
per (Cu), and vanadium (V) showed higher correlations to the high fill screw cap 
samples stored at 10–20 °C, while chromium (Cr) and Pb were more correlated to 
the high fill screw cap samples stored at 40 °C. Previously, V and Cr were measured 
in wine, and their presence was explained due to the use of stainless steel equipment 
in the winery, for which these two elements are known alloy elements [32, 33]. Cu 
present in wine can be the result of both viticultural and enological practices, as 
copper sulfate is a known fungicide used in the vineyard, and Cu itself is a fining 
agent used in winemaking [32, 34]. Pb, which is still present in the ambient envi-
ronment due to its former use in gasoline, could also end up in wine due to its use 
in winery equipment [35]. The presence of tin in wines was just recently described 
[19], most likely the result of using a tin liner in the screw caps. None of the metal 
concentrations were above the allowable levels defined by the International Organi-
zation of Vine and Wine (OIV) [36]

Another interesting fact is the degree of changes observed in each packaging 
configuration with increasing storage temperature; while the BIB samples barely 
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change in their elemental composition as a function of temperature, the high fill 
screw cap samples showed large changes in their elemental composition. Changes 
in the elemental composition in the wines can be explained in two ways: At lower 
temperatures, metals present in the wine form complexes with other wine compo-
nents, such as polyphenols or proteins, and these complexes precipitate at higher 
storage temperatures [32, 34], which could be the explanation for the observed dif-
ferences in Cr, V, and Pb. In contrast to that, the tin levels increased with increasing 
storage temperature, which could be the result of increased leaching of tin from the 
liner when the wine expanded at higher storage temperatures, or, in case of the high 
fill screw cap samples, even touched the liner [19].

52Cr

63Cu

118Sn

208Pb

51V

Fig. 8.3  PCA biplot of the elemental data, showing the significantly different elements (in black) 
projected into the score plot of the samples. Samples are color-coded according to their storage 
temperature ( blue 10 °C, green 20 °C, red 40 °C), and different symbols represent different packag-
ing configurations ( filled circle 3 L bag-in-box (BIB), filled triangle 0.75 L green glass bottle with 
natural cork (naco), filled square 0.75 L green glass bottle with a screw cap and filled to the top of 
the bottle (high fill screw), and filled diamond 0.75 L green glass bottle with a screw cap and filled 
to a normal fill height—low fill screw)
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8.6  CVA of the Elemental Profile Data

Using the significantly different elements, a CVA biplot was created and is shown 
in Fig. 8.4. The Bartlett’s test revealed that the first four CVs were significantly 
different from each other, but in the scree plot a knee was observed after the second 
CV, thus, only the first two CVs are used for further interpretation (data not shown).

Within the first two dimensions, over 88 % of the total variance ratio is explained, 
and along CV 1, samples are separated in a different way than in the PCA.

51V

52Cr

63Cu

118Sn

208Pb

Fig. 8.4  CVA biplot of the elemental data, showing the significant descriptors (in black) projected 
into the score plot of the samples. Samples are color-coded according to their storage temperature 
( blue 10 °C, green 20 °C, red 40 °C), and different symbols represent different packaging configu-
rations ( filled circle 3 L bag-in-box (BIB), filled triangle 0.75 L green glass bottle with natural 
cork (naco), filled square 0.75 L green glass bottle with a screw cap and filled to the top of the 
bottle (high fill screw), and filled diamond 0.75 L green glass bottle with a screw cap and filled to 
a normal fill height—low fill screw). 95 % of confidence intervals around the sample means are 
shown as gray circles
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While in the PCA all the BIB samples were positioned together at the left-hand 
side of the plot, all the BIB samples are clustered in the middle of the CVA plot, and 
similar to the PCA, they show a low correlation to all the elements. All other pack-
aging types are close to each other with the exception of the high fill level screw 
caps, which show again large differences between the three storage temperatures. 
Along CV 2, explaining nearly 20 % of the total variance ratio, samples are sepa-
rated due to storage temperature, with samples stored at lower storage temperatures 
positioned at the top of each packaging type.

Elements responsible for the sample separation are similarly correlated to the 
individual treatments, with tin being positioned close to the two screw cap samples 
stored at 40 °C, Cr being positively correlated to the low-fill screw-capped wines 
and the natural cork samples, while V and Pb show a high positive correlation to the 
high fill screw cap treatments at 20–10 °C.

The main differences between the PCA and the CVA for the elemental data lies 
in the slightly different interpretation, while the temperature effect for the low fill 
crew cap and the natural cork samples are statistically significant in the CVA (the 
confidence intervals of these treatments do not overlap),this effect is not so apparent 
in the PCA. Also, tin is very clearly associated with all of the screw cap samples 
stored at 10–20 °C in the CVA—this is somewhat harder to tell in the PCA. One 
might come to slightly different conclusions on the changes in metal composition 
with the different packaging types based on the two methods—e.g., the loadings for 
Cu, V, Cr loadings are somewhat different between the two methods.

8.6.1  Comparison of the Two Data Sets

We hypothesized that changes in the metal content could relate to sensory differenc-
es since metals act as catalysts for many chemical reactions (e.g., oxidation) [37]. 
Therefore, in order to compare the two different data sets to each other and identify 
correlations between the variables, which could then be tested for causality, a PLSR 
was conducted. All sensory descriptors were used as predicted, and all elements 
as predicting variables in the PLSR model. The PLSR model was evaluated with 
a leave-one-out bootstrapping algorithm. Using the first three model components 
(LVs), over 99 % of the total variance of the predictor matrix (i.e., the elements) 
was explained. On average, 43 % of the predicted matrix ( Y) was explained by the 
first three components of the PLS regression, with each sensory descriptor being 
at least 26 % explained (Table 8.1). The model did not improve by adding more 
components, and additionally, the validation plots (Fig. 8.5) show for each sensory 
descriptor minimum root mean squared error or prediction (RMSEP) with three 
LVs, except for canned veggie and earthy, which have their minimum RMSEP with 
two LVs. It was decided to keep the first three LVs of the PLS model as most of 
the sensory variables had their minimum RMSEP there, indicating the best fit, and 
overfitting by including more model dimensions.
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However, the sensory descriptors are not well predicted by the elements, and 
this lack of correlation is also represented in the correlation plots shown in Fig. 8.6.

Despite the good modeling of the variability of the elemental data (i.e., predict-
ing data set), only four ( red fruit, cherry, canned veggie, earthy) of the 11 sensory 
descriptors (i.e., predicted data set) are sufficiently explained by the model (i.e., 
falling within the dotted lines as shown in Fig. 8.6a, b, with over 50 % variance 
accounted for in the first two model dimensions (see also Table 8.1). Adding an-
other dimension to the model only slightly improves the number of descriptors 
explained; in Fig. 8.6b, only grapefruit and black pepper were additionally ex-
plained with at least 50 % of the variance explained by adding a third model com-
ponent.

Some correlation was found between the elements and the sensory descriptors, 
such as a negative correlation of V, Pb and Cr to molasses/soysauce, dried fruit, 
oxidized, and brown flavors, and a somewhat positive correlation between copper 
and grapefruit, cherry, and red fruit, while tin shows a negative correlation to these 
sensory descriptors.

However, due to the poor model quality, the observed correlations are more 
likely coincidental than causal. Despite a clear hypothesis that metals could play 
a major role in the formation of oxidative sensory characters [37], the observed 
correlations were poor, and the observed sensory changes are more likely due to 
oxygen ingress through the packaging. Generally, one should always be careful in 
interpretation of statistical models and inferring causality. A robust hypothesis and 

Table 8.1  Percentages of explained variance for the predictor matrix ( X), the average of the pre-
dicted matrix ( Y) and each of the predicted sensory variables for the first five components (comps) 
of the PLS regression model
(Percent variance explained) 1 comps 2 comps 3 comps 4 comps 5 comps
X 66.0 85.8 99.4 99.6 100.0
Y 15.4 29.2 42.8 59.0 62.4
red fruit 28.9 48.9 52.1 70.0 71.3
cherry 31.0 45.6 58.7 64.8 72.2
grapefruit 32.0 35.4 55.9 72.7 74.4
canned veggie 5.0 52.3 55.0 56.2 58.4
earthy 12.2 44.9 46.7 51.5 51.6
black pepper 8.1 8.7 50.4 60.5 76.5
spice 1.1 2.3 26.3 28.4 31.1
molasses/soysauce 14.8 26.5 29.7 60.3 61.8
brown flavor 10.8 14.9 28.0 56.0 58.1
dried fruit 10.0 19.3 38.7 68.2 68.4
oxidized 15.8 22.5 29.6 60.9 62.3



8 Comparison of Different Data Analysis Tools to Study the Effect of Storage … 227

a real understanding of the chosen variables is crucial for later interpretation and it 
creates a PLS model that is also useful in exploring relationships between variables 
and samples.
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Fig. 8.5  PLS validation plots showing for each predicted variable (i.e., sensory descriptor) the 
root mean squared error of prediction (RMSEP) over the first five model dimensions. RMSEP 
values were obtained from a leave-one-out bootstrapping algorithm, and both the cross-validated 
estimate ( black solid line) and the bias-adjusted cross-validation estimate ( red dotted line) are 
shown [38]
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8.7  Conclusion

Choosing one data analysis technique over another can be a challenging task, with 
often no clear or “correct” answer. To help with this decision, analyzing defined 
and well-studied data sets with different techniques can enhance the understanding 
of the strengths and weaknesses of each method. In this chapter, we analyzed two 
related data sets individually and together, using unsupervised exploratory and su-
pervised classification techniques, including PCA, CVA, and PLSR.

Depending on the goal of the data analysis, each method provides useful insight 
into the underlying pattern of the data, but highlighted different aspects of the stud-
ied data.

Using a rather simple data set, we discussed the different outcomes of various 
multivariate data analysis techniques from an applied standpoint. We have shown 
that each method has its justification, but a critical evaluation of the obtained results 
is necessary for high quality and reliable research, and a basic understanding of how 
these techniques work will help with this evaluation.

In the end, which method is applied to a certain data set is governed by the 
research question one seeks to answer, as well as the data itself. Ideally, the data 
analysis methods used after the data collection step would be decided upon before 
any data is collected, during the experimental design stage. Only then is one able to 
correct the data collection plan to being able to use certain data analysis methods. 
Especially with more and more variables measured in less time than ever before, the 
importance of a solid experimental design in combination with a thought-out data 
analysis plan at the beginning of an experiment (i.e., prior to any data collection) 
is increased, and additionally decreases the risk of data that cannot be analyzed 
properly. The actual analysis of data is in most cases trivial, but choosing the proper 
analysis method is the part where sufficient understanding of the different methods 
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Fig. 8.6  PLS correlation plots for a the first and second model component, and b the first and third 
model component. Predicting variables (i.e., the elements) are shown in italicized black font, and 
the predicted variables (i.e., the sensory descriptors) are shown in red font
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is crucial. The man who created the word “chemometrics,” Svante Wold, summa-
rized the problem every scientist faces today below, as one needs to (1) extract 
information from measured data by (2) creating a mathematical analogy for the 
problem one seeks to solve, followed by (3) selecting appropriate mathematical 
models [39]:

The art of extracting chemically relevant information from data produced in chemical 
experiments is given the name of “chemometrics” in analogy with biometrics, economet-
rics, etc. Chemometrics, like other “met-rics,” is heavily dependent on the use of differ-
ent kinds of mathematical models (high information models, ad hoc models, and analogy 
models). This task demands knowledge of statistics, numerical analysis, operation analysis, 
etc., and in all, applied mathematics. However, as in all applied branches of science, the 
difficult and interesting problems are defined by the applications; in chemometrics the main 
issue is to structure the chemical problem to a form that can be expressed as a mathematical 
relation. The connected mathematical problems are rather simple. (Today, 1994, I would 
like to add: “as the statistical problems usually are.”) Therefore, chemometrics must not be 
separated from chemistry, or even be allowed to become a separate branch of chemistry; it 
must remain an integral part of all areas of chemistry.
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9.1  Databases

In the food chemistry field, a number of databases have been compiled; some, 
though not all, contain chemical structures. In certain cases, food components in 
databases are not single chemicals, but rather mixtures [1]. Nonetheless, conducting 
useful analyses without necessarily reporting all chemical structures is still feasible, 
as has been reported by us [2] and by others [3]. When chemical structures are 
available, however, additional analyses and comparisons can be performed [2, 4]. 
In other cases, food databases do not contain chemical information, but instead 
other food-related information, for example, databases containing specific diets to 
be followed in hospitals or information about food items shelf life, etc.

Typically, each database aims to be unique and serve specific purposes, although 
in practice there is a fair amount of redundancy and duplication among them. In many 
cases, chemical databases of commercially available compounds are built and freely 
distributed. The purpose of such databases is to provide readily useful information 
(chemical, physicochemical, organoleptic, toxicological, etc.) to the user.
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9.1.1  General Food/Flavor-related Databases

Three of the most comprehensive flavor-related databases are described in this sec-
tion. These databases are accessed worldwide by member companies or via annual 
subscription.

The Flavor and Extract Manufacturers Association (FEMA) assesses and main-
tains the generally recognized as safe (GRAS) database [5] of flavoring substances. 
It comprises a compilation of flavoring materials, whose safety has been reviewed 
by an expert panel of toxicologists and other specialists [6, 7]. As such, the materials 
are considered GRAS for human consumption within specified product categories 
and at/or below listed maximum usage levels. Materials on the GRAS list, together 
with certain Food and Drug Administration (FDA)-approved food additives, are 
those that are legally permitted for use as flavorings (and for related purposes, such 
as taste modification) in the USA. Certain other countries have also adopted the 
GRAS list in their flavor legislation.

New additions to the GRAS list (originally published about 50 years ago) appear 
in Food Technology every year or two. For example, GRAS 26 was published 
in August 2013 and included approximately 50 botanicals and discrete chemical 
entities. For each material, a FEMA #, principal name, and synonyms are listed, 
along with permitted food and beverage applications, including anticipated average 
usual and average maximum use levels (in ppm). To date, of the approximate 2800 
GRAS materials, ca. 83 % are discrete chemical entities. In some cases, however, 
stereochemistry and even geometrical configuration has not been fully specified. In 
other cases, materials are actually mixtures of isomers.

The FEMA GRAS database is available on FEMA’s web site, though exclusively 
to member companies, and while it is searchable online, entries comprise only a 
very few fields, as shown in the example below:

Principal name or synonym [2-(1-Propoxyethoxy)ethyl]benzene
CAS number 7493-57-4
FEMA number 2004
GRAS publication GRAS 3
Most recent NUL/FC published (normal use 
level/food category)

GRAS 25

The Research Institute for Fragrance Materials (RIFM)/FEMA Fragrance and 
Flavor Database [8] is maintained by the RIFM and is available online by annual 
subscription. The database is an extremely comprehensive, worldwide source of 
toxicology data, literature, and general information on fragrance and flavor ingre-
dients, classifying more than 5100 materials. RIFM claims to review more than 50 
journals every month, conducts literature searches, and regularly collects member 
company data. According to the RIFM web site, the database has more than 54,000 
references and houses more than 112,000 human health and environmental studies. 
Basic material information includes: Chemical Abstracts Service (CAS) registry 
numbers, synonyms, chemical structures, simplified molecular-input line-entry  
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system (SMILES) notation, molecular formulas, molecular weights, and physical 
properties (both measured and estimated). The database also contains material 
relationships such as isomers and metabolites, as well as commercial usage data. 
Finally, a vast amount of regulatory and compliance information, both domestic 
and international, is also contained within the database. RIFM recently released an 
enhanced version of their database, which features an improved interface, additional 
content, etc.

The International Organization of the Flavor Industry [9] (IOFI) maintains 
an online database of chemically defined substances (as well as natural complex 
substances, i.e., botanicals, extracts, etc.) used by the flavor industry worldwide. 
Access to this database is restricted to IOFI member associations and their member 
companies. According to the IOFI web site, the database comprises up-to-date 
regulatory and analytical information on almost 2800 flavoring substances used in 
global commerce. The regulatory information includes legal status in the USA, the 
EU, Japan, China, Russia, and other major markets. Also included are synonyms, 
CAS registry numbers (and other unique numeric identifiers), chemical structure, 
etc.

9.1.2  Databases of Flavorings Permitted for use in Individual 
Countries or Economic Regions

In some cases, lists of flavoring materials approved for use in individual countries or 
economic regions have been placed in the public domain and are readily accessible 
online and/or are available for download. An example is the EU’s so-called EC 
Flavor Register, a list of more than 2500 flavoring substances which can be used 
in food [10]. The EU flavoring database includes name, CAS registry number, and 
various other numeric identifiers, plus purity criteria. It is available online [11] 
though it can also be downloaded as a searchable portable document format PDF file 
[12] which may optionally be extracted into a spreadsheet or a database program.

The FDA “Everything Added to Food in the United States” (EAFUS) Database 
[13] is freely available online, being generated from a database maintained by the 
US FDA Center for Food Safety and Applied Nutrition (CFSAN). The database 
comprises administrative, chemical, and toxicological information on more than 
2000 substances directly added to food, including substances regulated by the US 
FDA as direct, “secondary” direct, and color additives, as well as GRAS and prior-
sanctioned substances. The database contains additionally, less than 1000 substanc-
es, for which only administrative and chemical information is available. EAFUS 
contains only a partial list of all legally permitted food ingredients, because under 
federal law some ingredients may be added to food under a GRAS determination 
made independently of the FDA; the list does contain many, but not all such sub-
stances.

The Food Chemicals Codex [14] (FCC) is a compendium of internationally 
recognized standards for the purity and identity of food ingredients. Originally 
published in 1966 and now available for purchase through the United States 
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Pharmacopeia (USP) it comprises more than 1200 monographs of food-grade 
chemicals, processing aids, certain foods (e.g., fructose, vegetable oils, etc.), 
flavoring agents, vitamins, and functional food ingredients (e.g., lycopene, olestra, 
etc.). For each monograph, FCC provides ingredient name, chemical structure, 
chemical formula, molecular weight, and CAS registry number, plus information on 
each ingredient’s function, packaging, storage, and labeling requirements, as well 
as information concerning identification and assay (e.g., by ultraviolet (UV) and/or 
infrared (IR) spectrum). Most recently, information on USP’s food fraud database 
has been added. FCC is published every two years in print and online formats, and is 
offered as a subscription that includes a main edition and intervening supplements.

Flavor-Base Database of Flavoring Materials and Food Additives [15], written 
and marketed by John Leffingwell & Associates, provides one of the most com-
prehensive and wide-ranging collections of flavor, regulatory, toxicological, and 
related data relevant to the flavor, food, beverage, and tobacco industries. Flavor-
Base (version 9) includes all flavor chemicals (and natural flavor materials, e.g., 
botanicals and derivatives) on the FDA and FEMA GRAS lists through mid-2012, 
plus all flavor chemicals on the EU’s EC Flavor Register. Selected other national 
jurisdictions and international regulatory bodies are also referenced. Additionally 
included are direct food additives approved by the FDA, as well as those approved 
by the European Commission.

The types of information included in the database are illustrated in Fig. 9.1. 
Molecular structures and other properties for all flavor chemicals are documented. 
In addition, a wealth of sensory descriptors and flavor thresholds (including as Odor 

Fig. 9.1  Screenshot of eugenol entry from Flavor-Base 9 software illustrating some of the infor-
mation available
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Activity Values or Flavor Units) are given. Also available are the flavor chemicals’ 
occurrence in foodstuffs and/or natural products (including some data on the levels 
at which they occur). When available commercially, suppliers of listed flavor chem-
icals are provided. Finally, the program includes a bibliographic database file with 
5000+ references to pertinent flavor literature published through mid-2012.

One very nice feature of Flavor-Base is the ability to export data (selected 
materials, or indeed all of them) into spreadsheet format using the find and then 
the report functions. But while the database, as mentioned above, does provide 
molecular structures, given in the form of on-screen graphic images, it does not 
currently include this information in SMILES (or similar) notation, or provide any 
other means of importing chemical structure information by structure editors for 
conversion back into 2D or 3D molecular models.

In addition to Flavor-Base, the Leffingwell website [16] provides a wealth of 
highly useful, pertinent, and up-to-date flavor and fragrance-related information, 
of both a scientific and technical nature, as well as legislative and business related. 
Leffingwell also publishes some original articles, e.g., updates of the sensory prop-
erties of flavor molecules recently added to the GRAS list [16]. Finally, aside from 
Flavor-Base itself, Leffingwell offers a number of other useful flavor and fragrance 
software/database programs, some of which are also written by his group, while 
others are products of outside organizations. Some of these are briefly described 
below.

VCF: Volatile Compounds in Food Database [17]. TNO (The Netherlands 
Organization for Applied Scientific Research) long ago established a database 
designed for the collection of literature-based information on the natural occurrence 
of volatile compounds in food products. The VCF database, published for many 
years in book form, is nowadays available by online subscription.

The VCF database comprises 13 product groups (e.g., vegetables) representing 
102 product categories (e.g., Allium spp.) and containing altogether about 500 
products (e.g., chive, garlic, scallion, etc.); additionally 175 single products are 
tabulated. Volatile compounds are enumerated for each product, with more than 
8000 volatile compounds grouped in 18 chemical classes, such as hydrocarbons, 
aldehydes, esters, etc. To be included, specific compounds must have been identi-
fied by at least two analytical methods, e.g., gas chromatographic retention time and 
mass spectrum. Quantitative data are provided if available. In all, the database lists 
more than 5500 literature references.

For individual named compounds, additional information comprises synonyms, 
unique identifiers (CAS registry number, FEMA GRAS number, etc.), molecular 
weight and molecular formula; molecular structures are also shown when available. 
More than 18,500 Kovats’ Retention Indices are given, on four types of gas 
chromatographic columns (differing in polarity). Finally, approximately 2800 odor 
values are cataloged.

ESO: The (Complete) Database of Essential Oils [18]. This database, originally 
published by the Boelens Aroma Chemical Information Service (BACIS) appears to 
be most readily available through the Leffingwell web site, as indicated above. (The 
database was apparently updated in 2006, though we have no direct experience with 
this version.) ESO comprises more than 4100 quantitative analyses of essential oils, 
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including in some cases multiple samples of the same oil from different sources, 
e.g., from different parts of the same plant (leaves, roots, etc.) or having different 
countries of growing origin. Each oil entry includes name and/or botanical name, 
CAS registry number (where applicable), and literature references.

The essential oils’ quantitative analyses list a total of more than 4200 naturally 
occurring chemicals. For each analysis, components are listed in a decreasing order 
of total gas chromatography (GC) peak area %. Chemicals are specified by name, 
synonym(s), and CAS registry number. In addition, for approximately 2500 com-
pounds, retention indices on various GC columns are listed (up to six stationary 
phases, each of differing polarity). One very nice feature of ESO is the ability to 
reverse search all of the oils containing one or more particular chemicals, based on 
a user-specified threshold amount. For example, just four oils were listed, when 
searching for a combination of linalool and linalyl acetate, and using a composition 
threshold concentration of 35 % for each compound.

FFM: Allured’s Flavor and Fragrance Materials [19]. Access to this online data-
base is through Allured, the publisher of Perfumer & Flavorist magazine. It should 
be noted that we have direct experience only with FFM 2008, a PC-based version of 
the product. The database contains information collected from a variety of sources, 
including flavor and fragrance suppliers, industry and government organizations, as 
well as related texts. Aside from access to materials’ names, synonyms, identifiers 
(e.g., FEMA number, CAS registry number, FDA number, etc.), and empirical for-
mula (or botanical name, as appropriate) functionality in our opinion is somewhat 
limited. For example, no structural information is provided. However, FFM is an 
excellent resource for finding suppliers of desired flavor materials (suppliers’ names 
and contact details are provided). Also, the database usefully includes the status of 
listed materials in terms of whether natural, nature-identical, or synthetic.

Flavornet database [20, 21]. Flavornet is a compilation of aroma compounds 
found in human odor space, meaning at suprathreshold concentrations where they 
are likely to stimulate human olfactory receptor neurons [22]. Access to the online 
database (sponsored by DATU, Inc.) is freely available in the public domain.

Flavornet is based on articles published since 1984 (though data has apparently 
not been added since 2004) concerning the use of gas chromatography–olfactometry 
(GC–O) to detect odorants in natural products. Therefore, to be included in Flavornet, 
an odorant must have been detected in a natural product or real environment by 
some form of quantitative GC–O, e.g., dilution analysis (Aroma Extraction Dilution 
Analysis or CharmAnalysis™), or perceived intensity analysis (e.g., Osme), or 
detection frequency analysis (e.g., SNIFF). The database comprises more than 730 
flavor molecules (identified by CAS registry number) for which both Kovats’ and 
ethyl ester-based GC retention indices are provided (four stationary phases, varying 
in polarity) as well as characteristic odor note descriptions.

The SuperScent Database [23]. Developed and maintained by Preissner et al., 
SuperScent makes available a database containing 2D and 3D structures of ap-
proximately 2100 volatiles. An important feature is the standardization of odor 
description; accordingly, SuperScent includes around 9200 synonyms. Originally 
designed as an information source for users/customers looking for odor components, 
this database is a good reference for comparative studies, as has been reported by 
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us [4, 24]. For easy analysis, it includes physicochemical properties, commercial 
availability, and references [25].

The Good Scents Company Information System [26]. Originally setup years ago 
as one perfumer’s card-index system for information archiving and retrieval, and 
progressing through dBase, the current public domain online database is truly a 
cornucopia of valuable flavor and fragrance data, with handy features absent in 
many commercial products. The website contains links to scientific and industry 
associations, and even useful flavor-related books. Information available for indi-
vidual flavoring materials is searchable by multiple parameters, including: name, 
various identifiers, odor descriptors, etc. Figure 9.2 illustrates just a fraction of the 
information available for, for example, eugenol (note that the list of synonyms has 
been truncated for the sake of brevity). As indicated, visible directly on a chemical’s 
main web page, or easily accessed via links, are supplier information, safety data, 
physicochemical properties, chemical structures (both 2D and 3D) and application 
data. The menu shown towards the center of Fig. 9.2 directs users to search engines, 
and contains links to the literature, including patents, scientific articles, related 
books, and regulations.

Fig. 9.2  Screenshot of eugenol entry from Good Scents Company web site illustrating some of 
the information available
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Phenol-Explorer [27]. Collected from more than 1300 scientific publications, 
Phenol-Explorer contains more than 500 different polyphenols in over 400 foods. 
In addition to online searching, the database is available for download. The current 
version includes data on polyphenol metabolism, as well as the effects on food 
processing and cooking.

9.1.3  Other Online Databases

Rather beyond the scope of what was originally intended to be included in this 
review, though useful nonetheless, are several databases which link taste or odor 
receptors to their cognate ligands, at least in the case of those receptors which have 
been deorphaned to date. For example, in the taste domain, BitterDB comprises a free 
searchable online database of currently more than 600 bitter compounds obtained 
from the literature (individual structures can be downloaded, e.g., in SMILES or 
SDF format) as well as their associated 25 human bitter taste receptors (hT2Rs) for 
which sequence data is also available [28, 29]. One can search for specific bitter 
compounds, or by selected ligand properties, or (using substructure searching) by 
structural similarity to a query compound. Alternatively, one can search by specific 
bitter receptors or combinations of receptors. So caffeine, for example, is a known 
cognate ligand of T2R7, 10, 14, 43, and 46, whereas individually these receptors are 
associated with as few as six to more than 40 listed bitter molecules.

In the case of odor, the SenseLab Project, part of the Human Brain Project, in-
volves novel informatics approaches to constructing databases and database tools 
for collecting and analyzing neuroscience information, using the olfactory system 
as a model [30]. SenseLab relates odor molecules in the OdorDB database to 
ORDB, a database of olfactory receptors (which also contains data on the genes and 
sequences for olfactory receptor proteins). So 2-hexanone, for example, is a known 
cognate ligand of both ORL2156 and ORL2157, whereas both of these receptors are 
associated with 20 or more listed odor molecules.

In addition to some of the databases containing sensory attributes of flavor mol-
ecules, already discussed earlier in this section, there are a number of additional 
useful sources of such information existing in the public domain, represented by 
vendors’ websites. For example, both Sigma-Aldrich [31] and FrutArom [32] fea-
ture online lists (catalogs) of flavor molecules, searchable by their principal taste 
and/or odor qualities.

Even though chemical structures are reported in many of the public domain and 
commercially available databases described above, they are not readily available 
for download as structure files, for instance in .MOL2 or Structure data format 
(.SDF). Nonetheless, there is software available that can convert structure names, 
SMILES, SMARTS, or InChI notation into molecular or structural files. This is 
discussed in the next section of this chapter.
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9.2  Software and Online Resources

Software for chemoinformatic studies. Software designed specifically to perform 
chemoinformatic studies has been developed; one of the main applications has been 
drug discovery, though it is not restricted to that. There are different options to 
access the software, ranging from perpetual or annual renewal-based commercial 
licenses (often available at no or low cost to academic institutions) to freely avail-
able. Some of the underlying principles and capabilities of the software are common 
among companies’ offerings. However, each usually provides features that make 
it unique. The different types of software required to develop a chemoinformatic 
study can be broadly arranged into two classes. Examples of each class are sum-
marized in Table 9.1.

The first class consists of data generators and analysis. Programs to produce 
fingerprint representations or descriptors belong to this category. The program 
Dragon is well recognized as generating one of the largest numbers of descriptors. 
ChemAxon, MOE, and Schrödinger are also able to produce a large number of 

Table 9.1  Representative software used in chemoinformatic studies
Name Description Reference
Data generators and analysis
Dragon Application for the calculation of molecular descriptors. Used 

to evaluate SAR or SPR, as well as for similarity analysis and 
HTS of molecule databases

[50]

mMaya Tools [51]
ChemAxon Cheminformatics and life science research [52]
MOE Drug discovery software package [53]
Schrödinger Computational chemistry for life sciences and materials 

research
[54]

Data analysis, processing, statistical modeling, and visualization
Statistica Merging, aggregating, stacking, and unstacking of data, 

transformations, and smoothing of data, for cleaning/recoding/
imputing of missing data, for identifying duplicate records, 
finding and recoding outliers, etc.
Comprehensive selection of advanced data mining algorithms 
in a single package, options for text mining, comprehensive 
options for quality control charting, multivariate control meth-
ods, model-based quality control methods (including PLS-
based methods for monitoring of batch processes in real time), 
and simple and advanced process monitoring algorithms. Even 
advanced simulation and general optimization algorithms are 
provided, to solve complex risk modeling problems and/or 
perform multi-goal optimization of data mining or STATIS-
TICA models.

[55]

Spotfire Data discovery and visualization, predictive analytics [56]
Miner3D Provides interactive 3D and 2D visual data analysis, data mining, 

navigation, cherry picking, sonification, chart, and report creation
[57]

SAR structure–activity relationship, SPA structure–property relationships, HTS high-throughput 
screening
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descriptors and fingerprint representations. These last three are multipurpose plat-
forms, capable of running a number of applications, ranging from bioinformatics 
to molecular modeling and chemoinformatics. These multipurpose programs allow 
one to transition from one application to another, in a seamless manner, without 
conflicts of formatting and without requiring additional editing of input files. Due 
to the frequent necessity of complementing one program with another, it is both 
possible and worthwhile keeping files in generic formats that may be recognized by 
other software. This can be done by saving the files in, e.g., .MOL, .PDB, .SDF, or 
.TXT format, or directly in a format to be used within other software.

The second class is devoted to data analysis and visualization. Robust software 
is available to perform these tasks. Statistica by StatSoft Inc. allows executing from 
data preparation to statistical models, with a number of options at each step. Spotfire 
and Miner3D are mainly devoted to data visualization as a means of analysis. Each 
of these programs can handle huge databases.

It is worth mentioning that there are overlaps among the tasks that each program 
can perform. Although software companies stand apart on many aspects, intercon-
nection among software platforms is fortunately not uncommon. For example, 
Schrödinger allows for data analysis through Spotfire, though, of course, licenses 
for both programs are required.

Table 9.1 does not purport to be comprehensive, but rather representative of 
software commonly used in chemoinformatic studies. Additionally, software devel-
oped and maintained by research groups abound. There are justified reasons for the 
proliferation of such software. Since the chemoinformatic field is relatively new, 
the implementation of novel analyses and concepts requires developing scripts to 
automate the handling of data and its analysis, which justify generating in-house 
programs. These programs can be accessed from the researchers’ websites or by 
request. Another reason for in-house software development can be related to cost. 
This can be a viable route when getting a license is an issue and the research group 
is able to produce its own scripts. However, the benefits of experience, trouble-
shooting, and testing provided by the software companies must not be overlooked. 
On this point, it cannot be stressed enough that it is necessary to have in-depth 
knowledge on the theory and algorithms employed in each program to be used. This 
provides the required knowledge to properly employ, complement, and analyze the 
data.

In the area of molecular modeling, there are websites that perform calculations 
online. For example, DockBlaster [33] performs automated docking of compounds 
with minimal intervention; it was developed as a tool for medicinal chemists with an 
interest in docking. In the area of bioinformatics, servers to perform different steps 
in the modeling of biomacromolecules are plentiful; some of them have gained 
strong reputations and are widely used. Examples of these servers are UniProt [34] 
and PredictProtein [35], used for different stages in modeling studies of biomac-
romolecules. Chemoinformatic methodologies and concepts are also increasingly 
employed. A relevant example is the use of similarity principles to search for and 
select compounds or proteins in databases, such as in the Protein Data Bank. In 
addition, direct implementation of chemoinformatics on the web is the use of search 
engines.
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Online resources: Online programs and services have become increasingly used 
as part of the various steps employed in investigations. The advantages of such 
methods are: updates can be performed by the developers at any time; for services, 
there is no need to download software or databases; for users, there is no need for 
large hardware requirements to perform calculations. There are, however, disad-
vantages, for example, the user has limited or no access to the predefined settings. 
Unfortunately, it is not uncommon that the user has restricted knowledge of how the 
calculations are performed; this is, of course, the user’s responsibility.

The online services vary widely; they can be classified as search engines for 
chemical information and online services.

Search engines are typically part of other software, such as Chemicalize by 
ChemAxon, or are managed by editorial groups, like ChemSpider and Reaxys, 
which belong to the Royal Society of Chemistry and to Elsevier, respectively. 
Table 9.2 provides the corresponding websites.

Online services are dedicated to data generators and data mining from different 
sources. The computer-aided drug discovery group at the National Cancer Institute 
(NCI/CADD), managed by the US federal government through the National Insti-
tutes of Health (NIH), provides chemoinformatics tools and user services to handle 
chemical structures and associated biological activity. For example, it is possible 
to calculate properties, convert graphical representations of chemical structures in 
journal articles, and perform chemical searches, among other tasks.

Directly related to food chemistry, an interesting web server called biopep, per-
forms proteolysis simulation of endogenous enzymes, based on the recognition and 
cut sequence. This simulation allows the prediction of bioactive products by the in 
silico hydrolysis of proteins by selection of endopeptidases launched on the server.

Table 9.2  Representative online servers to perform chemoinformatic studies
Search engines

Chemicalize Find chemical structures on web pages and provide data 
for each structure (by ChemAxon)

[58]

ChemSpider Free chemical structure database providing fast text and 
structure searches to over 29 million structures

[59]

Reaxys Online chemistry workflow, provides access to informa-
tion including chemical compounds, chemical reactions, 
and synthesizing compounds

[60]

Online applications and services
NCI/CADD group Provides structures, data, tools, programs, and other use-

ful information to the public
[61]

Biopep Sequence databases of proteins and bioactive peptides [62]
MOLPRINT 2D A molecular fingerprint method for similarity searching [63]
SEA Similarity Ensemble Approach [64]
VCCLab Virtual Chemistry Lab. Online calculation of physico-

chemical properties
[65]

PASS Prediction of Activity Spectra for Substances [66]
FAF-Drugs Free ADME/tox Filtering [67]
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As detailed in Chap. 1 of this book, similarity searching is at the core of chemoin-
formatics, and multiple articles are published frequently on this topic. As expected, 
commercial software as well as programs developed by various research groups are 
available. For instance, ChemAxon, mentioned above, is a chemoinformatics plat-
form and has a robust implementation of similarity searching methods. MOE and 
Schrödinger have also implemented structural similarity methods. Online resources 
are also available. For instance, MOLPRINT 2D and SEA (listed in Table 9.2) pro-
vide for similarity searching, the former for ligands and the latter for proteins.

Finally, an important commonly pursued goal is the prediction of bioactivity as 
well as ADME/tox properties. Physicochemical properties and bioactivities, and 
ADME/tox properties can be calculated through online services such as VCCLab, 
PASS, FAF-Drugs. Table 9.2 provides the corresponding websites, for more 
information.

Being a major concern, a number of initiatives are dedicated to food safety is-
sues. Some programs are maintained by, or in cooperation with, universities while 
others are consortia involving, in many cases, governments. Some of them are: 
the Centers for Disease Control [36], the Food Safety Research Consortium [37], 
ComBase [38], and Bits [39]. Developed and/or maintained by universities are: 
FareMicrobial [40], and the Center for Food Safety [41].

In addition, other online services are specifically focused on food information 
(food informatics). In these cases, the information contained is not necessarily di-
rectly related to chemical structures, though it does illustrate the versatility of and 
need for using information technology to excel on tasks having a direct impact on 
health and well-being through food and nutrition.

Vision Software assists the organization, storage and use of information, data 
and knowledge for food and nutrition-related problem solving and decision mak-
ing. One direct application is in the area of diets for hospitals, hotels, etc. [42]. 
A related novel piece of work (albeit somewhat controversial) concerns so-called 
food pairing theory. The hypothesis is that a pair of ingredients which share many 
flavor compounds accompany each other better than those that do not, e.g., bacon 
and cheese, asparagus and butter, and chocolate and blue cheese. This food pairing 
concept is useful to understand and further develop culinary practice [43].

The Food & Biobased Research Company (Wageningen UR) has five major 
projects. One of them, called Food Informatics, focuses directly on food research. 
This project is conducted in cooperation with the Top Institute-Food & Nutrition 
(TIFN), Unilever Research, TNO Quality of Life research center, and Friesland 
Foods. Their focus is on the modeling of knowledge-intensive processes and the 
development of corresponding applications. Based on ontologies, Top et al. have 
focused on methods and tools for extracting knowledge in the food industry domain 
[44]. For example, using this approach, they have developed an on-line system for 
searching the properties and practical applications of five natural antimicrobial 
preservatives and their relationships to a large number of microbes and food types 
[44]. Another example consists of how these methods can help as decision support 
in the fruit and vegetable supply chain [45, 46].
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Another online service is called Nutrition Informatics. Nutrition informatics 
is defined as “the effective retrieval, organization, storage, and optimum use of 
information, data, and knowledge for food and nutrition-related problem solving 
and decision making. Informatics is supported by the use of information standards, 
information processes, and information technology.” As part of the Academy of 
Nutrition and Dietetics, the Nutrition Informatics group provides a service to regis-
tered members. It is the intersection of information, nutrition, and technology. The 
hugely data-rich food-related information includes food/nutrient analysis tables. 
This provides registered dietitians web-based tools, allowing them to use their 
knowledge and skills more efficiently in making dietary recommendations [47].

Another service that can be classified in this category is that provided by the 
O’Neill Institute for National & Global Health Law. It is a free online database of 
law, from around the world, relating to health and human rights. The database offers 
an interactive, searchable, and fully indexed website of case law, national constitu-
tions, and international instruments [48].

9.3  Perspectives and Potential Applications

While the exploitation of chemical information in the food chemistry field is still 
emerging, this has already proven to constitute a useful approach, as illustrated 
through several examples described in the second section of this book and as also 
reported in the literature elsewhere.

The use of similarity to compare and explore food-related databases, described 
in Chap. 1 and exemplified in Chap. 3 clearly demonstrate the applicability of 
these methods and alludes to exploring other applications; for example, expanding 
the studies to diseases, methodologies, and databases beyond those explored in 
Chap. 3. In addition, methods such as artificial neural networks proved useful when 
exploring the effects of foods on cancer cell growth, suppression activity, antivi-
ral activity and antioxidant stress activity; this, of course, suggests exploring other 
diseases.

The use of information technology in the food and beverage field is not limited to 
chemical structures. In fact, data mining is widely used to collect, organize, analyze, 
and archive diets in hospitals and restaurants, just as it is applied to chemical struc-
tures in the area of chemical information. The theory behind the methods devised 
to perform these tasks is general and can be applied to datasets regardless of origin. 
Therefore, the software employed in drug discovery can readily be used or adapted 
to food chemical applications. In the same way that new concepts and methodologies 
are developed on an almost daily basis and reported in chemical information jour-
nals, the food chemical information field can be expected to grow significantly 
during the coming decade. Taking into account the knowledge and applicability 
of chemical information devoted to drug discovery, and considering the inherent 
complexity of the food chemistry field, it is also expected that concepts now devel-
oped in the food chemical information area will feed back into the drug discovery 
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arena. This can be exemplified by the well-known complexity of odor perception, 
where multiple odor receptors are activated by multiple ligands, ultimately to pro-
duce specific percepts. The multiple receptor/multiple ligand notion is central to the 
polypharmacology concept that is gaining attention nowadays. The idea of multiple 
target responses is neither new nor unexpected, however, only relatively recently 
is the paradigm change from single target to multitarget being recognized [49]. 
This interplay between drug discovery and food chemical information is not only 
promising but has also proven to be useful and may yet further expand our knowl-
edge and boost our creativity in developing new methods to deal with complex 
multivariable systems.

In the light of the discussion above, there is clearly a need for professionals with 
skills in information technology and a strong background in food chemistry. To fill 
this need, it will be necessary to explore the suitability of various chemoinformatic 
methods, selecting and developing the most useful candidates, and to design appro-
priate programs and courses in universities. This has been the path of the chemical 
information field, but with emphasis in drug discovery. For example, chemoin-
formatics courses leading to a Masters in Science have been implemented at the 
University of Sheffield, the University of Manchester and Indiana University. How 
fast we respond to this need will have an impact not only on the development of the 
field but also on how we take advantage of the emerging field of food informatics.
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