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  Pref ace   

    Why Fluorine in Heterocyclic Chemistry? 

 Organofl uorine chemistry is almost as old as organic chemistry. First organofl uorine 
compound synthesized ever was a very simple compound. In 1835, Dumas prepared 
fl uoromethane by the reaction of potassium fl uoride with dimethyl sulfate. 
Therefore, organofl uorine chemistry is only 7 years younger than organic chemistry, 
which started its history from urea synthesis by Wöler in 1828. For more than one 
century the development of organofl uorine chemistry has been not very active. 
Maybe the most important impulse was done by weapon chemists mainly in USA, 
USSR and UK before and after the Second World War. After that new fl uorinated 
reagents appeared to intensify the development in the fi eld of fl uorinated organic 
compounds. As a result this part of organic chemistry started its enormous growth. 

 Another milestone in this fi eld was the synthesis of 5-fl uorouracil by Heidelberger 
in 1957. It was demonstrated that 5-fl uorouracil works as antineoplastic agent being 
antimetabolite of natural uracil. It was the fi rst fl uorinated synthetic drug. Nowadays 
fl uorine substitution is a commonly used tool in medicinal chemistry and agro-
chemistry. The presence of fl uorine can result in substantial functional changes 
in the biological as well as physicochemical properties of organic compounds. 
Incorporation of fl uorine into drug molecules can greatly affect their physicochemical 
properties, such as bond strength, lipophilicity, bioavailability, conformation, elec-
trostatic potential, dipole moment, pKa etc. as well as pharmacokinetic properties, 
such as tissue distribution, rate of metabolism and pharmacological properties, such 
as pharmacodynamics and toxicology. 

 The main part of modern marketed drugs are heterocyclic compounds of various 
types. Fluorinated heterocycles are becoming increasingly important in many areas 
including the pharmaceutical industry, materials science and agriculture. To refl ect 
the importance of this topic, two excellent books (Petrov V.A. (ed.)  Fluorinated 
Heterocyclic Compounds: Synthesis, Chemistry, and Applications . 2009 Wiley; and 
Gakh A., Kirk K.L. (eds.)  Fluorinated Heterocycles . 2009 ACS) and a number of 
nice reviews have been published recently. 



vi

 The present work combines comprehensive information on the chemistry of the 
fl uorinated heterocycles of interest to synthetic organic chemists in general, and 
particularly for those colleagues working in the fi elds of heterocyclic-compound 
chemistry, materials chemistry, medicinal chemistry, and fl uorine chemistry. All 
information is presented and classifi ed clearly to be effective source for broad 
auditory of chemists. The main feature of this book is classifi cation based on the 
type of heterocycle. I believe that separate presentation of each type of heterocycles 
makes clear reading, operation and search through this book to be helpful for readers. 
I hope that this book will be also interesting for scientists working in the fi eld of 
inorganic and coordination chemistry as well as materials science. 

 It is a great honor and pleasure for me to be the editor of this book. I would like 
to thank all the contributors for their excellent chapters. These outstanding scientists 
are known experts in this fi eld. Thank you very much for your efforts and your time! 
This book is a result of worldwide cooperation of contributors from many countries. 
I would like also to thank all my collaborators at Springer for help to realize this 
project. 

 I wish to dedicate this book to my wife Svetlana and our daughters Liza and 
Zhenya. Their support is really invaluable for me.   

    Moscow ,  Russia       Valentine     Nenajdenko      
 2013 

Preface
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    Abstract     Present review contains recent literature data published since 2009 for 
2012 as till 2009 four reviews on this fi eld have been published. The methods of 
synthesis of 2-, 3-, 4-fl uoropyridines, di-, tri-, polyfl uoropyridines, perfl uoroalkyl-
pyridines and also fl uoropyridines fused with carbo-, heterocycles are presented. 
Methods for synthesis of F 18  substituted pyridines for local radiotherapy of cancer 
and other biological active compounds are also presented.  
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1         Introduction 

 The present review contains the literature published since 2009 for 2012. Till 2009 
four reviews on this fi eld have been published, completely [ 1 ,  2 ] or in part [ 3 ] 
devoted to methods syntheses C-F pyridines and perfl uoroalkyl pyridines [ 2 ,  4 ]. To 
display full information about synthesis fl uorinated pyridines in the present review 
earlier classical works also are included. 

 An arising interest towards fl uoropyridines is explained by their interesting and 
unusual physical, chemical and biological properties owing to the presence of the 
strong electron-withdrawing substituent(s) in the aromatic ring. Fluoropyridines 
have reduced basicity and are usually less reactive than their chlorinated and bromi-
nated analogues. A selective synthesis of fl uoropyridines remains a challenging 
problem. Here a synthetic methods for preparation of 2-, 3-, 4-fl uoropyridines and 
di- and poly-fl uoropyridines are reviewed along with some synthetic routes towards 
 18 F-substituted pyridines, which present a special interest as potential imaging 
agents for various biological applications. 

 In the search for new agricultural products having improved physical, biological, 
and environmental properties, one of the most generally useful chemical modifi ca-
tions is the introduction of fl uorine atoms into lead structures. Fluorine-containing 
substituents are most commonly incorporated to carbocyclic aromatic rings, and a 
large number of compounds possessing fl uorine-containing substituents on aryl 
rings have been commercialized as agricultural active ingredients [ 5 ,  6 ]. 

 About 10 % of the total sales of pharmaceuticals currently used for the medical 
treatment are drugs containing fl uorine atom. Over 50 years, many fl uorinated 
medicinal and agrochemical candidates have been discovered and the interest toward 
development of fl uorinated chemicals has been steadily increased. High availability 
of the fl uorinated synthetic blocks and the effective fl uorinating reagents, the widely 
reliable fl uorination technology, and the accumulation of basic and advanced knowl-
edge of the fl uorine chemistry rapidly accelerated developments in this fi eld [ 7 ].  

2     Synthesis of 2-Fluoropyridines 

2.1     N-Fluoropyridinium Salts. The Umemoto Reaction 

 The chemistry of the pyridine ring has been enriched by the development of many 
signifi cant transformations. These reactions include addition, addition-elimination, 
elimination-addition, and ring-opening, as well as proton-abstraction reactions 
followed by nucleophilic substitution. The course of the reaction depends on the 
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nature of the pyridine rings and bases employed [ 8 ]. New reactions involving 
 N -fl uoropyridinium salts  3  have now been added to the fi eld of pyridine chemistry. 
In 1986, stable  N -fl uoropyridinium salts  3  were isolated and fully characterized by 
the T. Umemoto and his coworker [ 9 – 12 ]. These salts were synthesized by the 
 counteranion replacement reaction of unstable pyridine-F 2  compounds [ 13 ] which 
violently decompose above -2 °C. The isolation of the stable salts followed shortly 
after Gakh’s earlier report that the pyridine-F 2  compound, proposed as an 
JV-fl uoropyridinium structure, reacted in situ with a trinitromethane salt to form 
2-(trinitromethyl)pyridine in a 14 % yield [ 14 ]. The results of these efforts, including 
the discovery of the stable  N -fl uoropyridinium salts, have opened up a new area in 
pyridine chemistry [ 15 ,  16 ]. In 1987, the T. Umemoto and coworker reported novel 
base-induced reactions of the stable  N -fl uoropyridinium salts  3  [ 17 ] (Scheme  1 ).

N N N
F F

F

10%F2/N2

in CFCl3
-75°C

NaOSO2CF3

in CH3CN
-40°C, 2h

67%

OSO2CF3

21 3

NN
F

OSO2CF3 Cl

Base (1eq)

CH2Cl2, r.t.

43

Base: Et3N, 62%
Et2NH, 63%
pyridine, 41%
MeONa, 25%.

     Scheme 1              

    N -Fluoropyridinium salts  5  are effi cient precursors in the synthesis of substituted 
2-fl uoropyridines. They can be conveniently prepared in good yields by the reaction of 
the corresponding pyridine with F 2 /N 2  at the presence of strong acid [ 17 ]. 
 N -Fluoropyridinium tetrafl uoroborates, hexafl uoroantimonates or hexafl uorophosphates 
( 5 , X=BF 4 , SbF 6 , PF 6 ) upon treatment with a base undergo an exothermic reaction to 
form selectively 2-fl uoropyridines in moderate to high yield (Table  1 ) [ 18 ]. The reaction 
yields depend on the media’s basicity and in a stronger degree on the presence of sub-
stituents in the pyridine ring. In addition, it was demonstrated that the yields of com-
pounds  6  using ammonium fl uoride as a base without a solvent were identical to the 
yields of  6  using Et 3 N. Based on experimental data it was suggested that the fl uorine 
substituent in products  6  arrives from counter anion (BF 4  − , SbF 6  −  or PF 6  − ) [ 18 ] (Scheme  2 ).

N
F

R
X

N F
R

base

room temp., 5 min

X = BF4, SbF6, PF6.5 6

  Scheme 2           

    Compounds  6  can be obtained in one-pot process by reacting the corresponding 
pyridines with F 2 /N 2  mixture, followed by the subsequent treatment with Et 3 N [ 18 ]. 
However, the yields of the fl uorinated pyridines obtained by this protocol are 
 signifi cantly lower (22–35 %). 
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N
F

CF3SO3

N F

Et3N (1 eq), r.t.

CH2Cl2 (or CH2Br2)

X= Cl or Br.

N X N OSO2CF3

3
8 9

++

7
4-6% 60-63% 22-27%

N+

F

N NH

base

N
F

N
F

F

F

10 11 12 13

  Scheme 3           

   Table 1    Preparation of 2-fl uoropyridine  6  from  N -fl uoropyridinium salts  5  [ 18 ]   

 R  X  Base (equiv.)  Yield, % 

 H  BF 4   Et 3 N (1)  66 
 H  BF 4   Et 3 N (3)  73 
 H  BF 4   Et 3 N (10  79 
 H  BF 4    n- Bu 4 N + F − (2.6)  80 
 H  SbF 6   Et 3 N (10)  78 
 H  BF 4   KF (9) (7 days, 40  ° C)  26 
 H  PF 6   Et 3 N (10)  74 
 4-Me  BF 4   Et 3 N (10)  80 
 3,5-(Me) 2   BF 4   Et 3 N (10)  87 
 3,5-(Me) 2   BF 4   Py (10)  30 
 4- t -Bu  BF 4   Et 3 N (10)  91 
 2-MeO  BF 4   Et 3 N (10)  75 
 2-MeO  BF 4   Py (10)  10 
 3,5- bis (CF 3 )  BF 4   Et 3 N (10)  99 
 3-CN  BF 4   Et 3 N (10)  51 
 3-CN  BF 4   Py (10)  49 
 4-NO 2   BF 4   Et 3 N (10)  21 
 4-NO 2   BF 4   Py (10)  31 

 The mechanism of this reaction was discussed in several publications [ 17 ,  18 ]. 
It was demonstrated that under workup with triethylamine in CH 2 Cl 2  or CH 2 Br 2  
trifl ate salt  3  gives a mixture of three compounds: 2-fl uoropyridine (7), 2- halopyridine 
 8 , and compound  9  [ 17 ] (Scheme  3 ). Similarly, it was demonstrated that salts  5  give 
2-diethylaminopyridines, 2-phenylaminopyridines, or 2-(2-furyl and 3-furyl) pyridines 
when they are reacted with Et 2 NH, benzene, or furan.

   It was proposed that under basic conditions salt  3  undergoes heterolytic C 2 -H 
bond cleavage to form carbene  10↔11 , which in its turn eliminates F ̄  to give cation 
 12↔13 . A subsequent reaction of  12↔13  with nucleophiles or  n -π-electron con-
taining molecules gives above mentioned products. Some transformations of salt  3  
leading to 2-substituted pyridines are shown below [ 17 ,  19 ] (Schemes  4  and  5 ).
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N N

NN

N O

N N

N O

Me

Me

Me
Me + 9 (14%) + 7 (5%)

F

F

F

-HF

C Me

MeF
F

O

MeC N

25%

15,33%

16, 55%

N O
Me

CH225%

-HF

+ 9 (39%) + 7 (9%)

N NHCOCH3

+ 9 (7%) + 7 (6%)

Et3N

N
F
3

CF3SO3

+

  Scheme 5           

N Cl

N O

N Cl Cl

F

N O

N O

O

O

O
F

F

F

CH2Cl2

O

4 , 62%

5%

+FCH2Cl + 9 (21%) + 7 (5%)

N O(CH2)4F

14, 25%

+ 9 (33%) + 7 (6%)

N

F
3

Et3N

CF3SO3

  Scheme 4           

    Direct fl uorination of pyridine also can be carried out using CsSO 4 F as a source 
of fl uorine. It was shown that pyridine readily reacts with CsSO 4 F at room tempera-
ture producing a mixture of products (2-fl uoro-, 2-fl uorosulfonate- and 2-chloro- or 
2-alkoxy-pyridines) (Table  2 ) [ 20 ] (Scheme  6 ).
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2.2         Synthesis of 2-Fluoropyridines from 2-Aminopyridines 

 One of the typical examples of the Baltz-Schiemann reaction is synthesis of fl uoro-
substituted pyridines  19  from aminopyridines  18  [ 21 ]. In this variation the Baltz- 
Schiemann reaction is most often used for the synthesis of 2-fl uoropyridines [ 22 ]. 
On the fi rst step a diazonium tetrafl uoroborate is generated from 2-aminopyridine, 
NaNO 2  and solution of HF and BF 3  (HBF 4 ), while subsequent thermal decomposition 
of the diazonium salt leads to formation of 2-fl uoropyridines (Scheme  7 ). In this 
part of the chapter examples of synthesis 2-fl uoropyridines and illustrations of 
specifi c use Baltz-Schiemann reaction for preparation of biologically active derivatives 
of 2-fl uoropyridines are described.

N N

HF or HF.Py, NaNO2

20 21
R NH2

R F91-94%

R = H, Me

  Scheme 8           

N N
H2N F

1. NaNO2, HBF4
2. Δ

1918

  Scheme 7           

   Table 2    Products distribution in reaction between pyridine and CsSO 4 F [ 20 ]   

 Solvent 

 Yield, % 

 Solvent 

 Yield, % 

  7    17    8    7    17    8  

 n-C 5 H 12   56  44  –  CHCl 3   47  17  36; X = Cl 
 (CH 3 CH 2 ) 2 O  61  39  –  CH 2 Cl 2   26  12  62; X = Cl 
 c-C 6 H 12   70  30  –  C(CH 3 ) 3 OH  64  18  18; X = OC(CH 3 ) 3  
 CCl 4   70  30  –  CH(CH 3 ) 2 OH  22  7  71; X = OCH(CH 3 ) 2  

N
+ 2CsSO4F

N F

22°C, 0.5-4 h

N XN OSO2F

1 8

+ +

7 17

  Scheme 6           

   The reaction has general character. It is applied for the synthesis of various 2-, 3- or 
4-fl uoropyridines and is full enough described in earlier reviews [ 1 ,  3 ,  4 ]. Practical use 
the Baltz-Schiemann reaction for preparation of pesticides or medicines is described 
in reviews [ 6 ,  7 ]. Several variations of the Baltz-Schiemann reaction allow synthesis 
of fl uorinated pyridines in almost quantitative yields. For example, 2-fl uoropyridines 
 21  were prepared in 91–94 % yields by diazotization of 2-aminopyridines  20  with 
sodium nitrite in anhydrous HF or HF-pyridine complex [ 23 ] (Scheme  8 ).
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   3-Hydroxy-2-fl uoropyridine (25) was prepared from 2-amino-3- hydroxypyridine 
(24) by diazotization with NaNO 2  in HBF 4  solution [ 25 ]. Next, compound  25  was 
used for the preparation of 2-fl uoro-3-[2(S)-2-azetidinylmethoxy]pyridine (26), a 
closely related analog of the high affi nity nicotinic ligand A-85380 (Scheme  10 ).

N
N

R1

H

NH2

R2

N
N

R1

H

F
R2

NaNO2, HF.Py

27 28R1  = Boc, H. R2 = Ph, F, Cl, Br, I

  Scheme 11           

N N

NaNO2 aq. HBF4

24 25
NH2

F63%

OH OH

N F

O

26

NH

  Scheme 10           

N N

NaNO2/HF/CH2Cl2, MeOH

-78° C 0° C

22
NH2

F63-89%

R = H, CHF2, CHClF, CHFCF3

RCF2O RCF2O

23

  Scheme 9           

   Substituted 2-fl uoro-5-fl uoroalkoxypyridines (23) were prepared in good to high 
yields by diazotization of substituted 2-aminopyridines  22  with NaNO 2  in HF. 
Subsequently they were used as starting materials for the synthesis of some herbi-
cides and insecticides [ 24 ] (Scheme  9 ).

   Synthesis of  exo -2-(2′-fl uorosubstituted 5′-pyridinyl)-7-azabicyclo[2.2.1] heptanes 
(28), novel nicotinic receptor antagonists, was based on diazotization reaction of cor-
responding 2-aminopyridines  27  using HF-pyridine complex [ 26 – 29 ] (Scheme  11 ). 
Classical examples of use of this reaction are resulted in earlier works [ 23 – 29 ]. Now 
the Baltz-Schiemann reaction continues to use for synthesis fl uorinated pyridines.

   2-Amino-3-methylpyridine (29) has been used for synthesis fl uorine-containing 
pyridine aldoximes of potential use for the treatment of organophosphorus nerve- 
agent poisoning [ 30 ]. The Baltz-Schiemann technique was used to convert 2-amino- 
3-methylpyridine into 2-fl uoro-3-methylpyridine (30), subsequent permanganate 
oxidation of  30  provided acid  31 . Finally conversion of  31  to acyl chloride  32  and 
Rosenmund reduction resulted in carboxaldehyde  33 . Previously this technique was 
reported to give poor yields with heterocyclic acyl chlorides. The conversion of  32  
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to carboxaldehyde  33  in good yield (66 %) demonstrated that fl uoroheterocyclic 
compounds could undergo facile catalytic reduction by hydrogen in boiling xylene. 
Carboxaldehyde  33  reacted smoothly with hydroxylamine to provide oxime  34  in 
60 % yield (Scheme  12 ). 2-Fluoropyridine-6-aldoxime was prepared similarly from 
2-amino-6-methylpyridine (→ 2-fl uoro-6-methylpyridine 39 % → -6-carboxylic 
acid 50 % → -6-carboxylic acid chloride 72 % → -6-carboxaldehyde 68 % → 6-oxime 
71 %) [ 30 ].

N

29

CH3

NH2 N

30 41%

CH3

F N

31  53%

COOH

F

N

34 60%

CH=NOH

F N

33  66%

CHO

F N

32 42%

COCl

F

NaNO2

40% aq HBF4

aq KMnO4

SOCl2

H2

Pd.BaSO4

H2NOH

EtOH

reflux

  Scheme 12           

   Recently the Baltz-Schiemann reaction occupies important practical place for 
synthesis substituted 2-fl uoropyridines as an inhibitor and modulators of various kinase 
[ 31 – 33 ] and other biologically active compounds [ 1 ,  2 ,  34 ,  35 ], including F 18 -pyridines 
for radiotherapy of a cancer. Nucleoside analogues can be used to investigate a variety 
of enzyme substrate interactions, including polymerase dNTP recognition or protein-
DNA targeting. They can also be incorporated into nucleic acid sequences using con-
ventional synthesis protocols to explore the structural and functional aspects of DNA 
or RNA. In one class of DNA analogues fl uorine replaces the carbonyls and methyl 
replaces the exocyclic amino groups in the nucleobase heterocycle yielding a hydro-
phobic isostere of the natural nucleoside with the desired molecular shape [ 36 – 38 ]. 
Substituted 2-fl uoropyridines were recently used in the synthesis of pyridine 
C-nucleosides as analogues of the natural nucleosides dC and dU [ 39 ]. Commercially 
available 2,6-diaminopyridine (35) was used as the starting material for these synthe-
sis. Compound  35  was fi st transformed into the 2,6-diamino-3-iodopyridine (36) which 
was acylated and then converted into 6-amino-2-fl uoro-3-iodopyridine (39), which was 
transformed into 6-(4-nitrophenyldimethoxy)-2-fl uoro-3-iodopyridine (41). Both  39  
and  41  were used for the synthesis of nucleosides  42  and  43  [ 39 ] (Scheme  13 ).

2.3        Nucleophilic Substitution in 2-Substituted Pyridines 

 Pyridines containing leaving groups (Hal, R 3 N + , SO 2 R, NO 2 ) in position 2 are often 
used as starting materials for preparation of 2-fl uoropyridines in nucleophilic 
 substitution reactions. Typical nucleophiles are fl uorides of alkaline metals, hydro-
fl uoric acid, tetrabutylammonium fl uoride, and fl uoroboric acid. Although this 
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method allows preparation of 2-fl uoropyridines in good yields, its main disadvantages 
include a set of special demands towards fl uorine producing reagents, which, if not 
otherwise met, will signifi cantly reduce the yield of the fi nal products. In majority 
of all cases these reactions must be conducted in a dry aprotic solvents (DMSO, 
DMF, THF) with fl uoride source introduced as a fi ne dry powder (normally due to 
its low solubility of fl uorides in these solvents), since the hydration signifi cantly 
reduces the nucleophilicity of fl uoride anion. Dry environment for these reactions is 
dictated by a very high solvation ratio of the fl uoride anion in water, which in its 
turn signifi cantly increases its steric hindrance and reduces its nucleophilicity. 
However, in some cases high reactivity of the fl uoride anion in water-organic solvent 
two-phase system can be maintained, for example, using crown ethers [ 40 ]. Recently 
it was shown that bulky  tert -butanol as a solvent in nucleophilic substitution reactions 
gives only partially shielded solvates with fl uoride anion and actually increases 
fl uoride anion reactivity [ 40 ]. 

 It was shown that 2-halopyridines  44  containing chlorine substituent in position 
3, can be selectively converted into 2-fl uoropyridines  45  by treatment with KF [ 41 ] 
(Scheme  14 ). The reactions were conducted at elevated temperature (100–200 °C) 
producing fi nal pyridines  45  in 14–94 % yields (Table  3 ).

N
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H2N NH2 N
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H2N NH2

I

N
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H2N NHAc

I

N
38

F NHAc

I

N
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F NH2

I

N
H

F O

I

N
41

F O

I NO2

I2, H5IO6, AcOH, H2SO4 Ac2O, Py

HBF4, NaNO2
20% H2SO4  : MeOH

1 : 1

20% H2SO4, NaNO2

O2N

OH

Ph3P, DEAD/dioxane
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O O

HO

OH OH

HO

N NH

NH2

F
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O

F
41
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    One-step synthesis 2-fl uoropyridine (7) from 2-chloropyridine (4) in HF at tem-
perature 350 °C with use as catalyst MgO is of interest for the industry [ 42 ] 
(Scheme  15 ). This method is the advanced of three-steps method [ 43 ]. For synthesis 
2-F 18 -pyridines (46) reactions of nucleophilic substitution of F-, NO 2 - and NH 2 - 
groups by F 18  are used [ 44 – 46 ] (Scheme  16 ). The effective reagent – catalyst in 
synthesis 2-F 18 -pyridines appeared 2,2,2-Cryptand (49) at the presence of which 
time of reaction is reduced up to 20 min. It is necessary to note, that 2-F 18 -pyridines 
are used in radiobiology of a cancer, and half-life period of F 18  is equal to 12 h.

N NCl F18

4 46

R, K2CO3, H2O, 20 min., 140°C

N NNO2 F18

47 46

R, K2CO3, KF,H2O, 20 min., 140°C

N NNH2 F18

48 46

1. H2SO4, H2O2, H2O
2. R, K2CO3, KF, H2O, 20 min., 140°C

O

N O

O

N

OO

O
F 18FR = .

49 2,2,2-Cryptand

  Scheme 16           

    Table 3    Preparation of 2-fl uoropyridine  45  [ 41 ]   

 Compound  X  Y  R  Temp. °C  Compound  Y  R  Yield % 

  44a   Cl  Cl  Cl  200   45a   Cl  Cl  76.6 
  44b   Cl  H  Cl  200   45b   H  Cl  72.4 
  44c   Cl  H  CH 3   200   45c   H  CH 3   33 
  44d   Cl  Cl  CH 3   200   45d   Cl  CH 3   69.4 
  44e   Cl  H  CF 3   200   45e   H  CF 3   83–94 
  44f   Br  H  NO 2   100   45f   H  NO 2   14 

N NCl F
4 7

HF, MgO, 4.5h, 350°C

  Scheme 15           

    Fluorination of pyridine by complex AlF 3  and CuF 2  at 450–500 °C forms a 
 mixture of 2-fl uoropyridine and 2,6-difl uoropyridine in yields 32 and 11 % accord-
ingly [ 47 ]. 3-Bromo-2-nitropyridine reacts with Bu 4 N + F −  in DMF at 20 °C to form 
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2- fl uoro-3-bromopyridine. Nucleophilic substitution proceeds highly  regioselectively 
in the second position of pyridine [ 48 ]. 5-Amino-2-fl uoropyridine used as an 
 epilepsy medicine [ 49 ] was it is synthesized from 2-chloro-5-nitropyridine. 

 Fluorine-18 labeling and the pharmacological evaluation of a 2-fl uoropyridine 
analog of ABP688, [ 18  F]-(E)-3-((6-fl uoropyridin-2-yl)ethynyl)cyclohex-2-enone 
O-methyl oxime ([ 18 F]-FPECMO) (50), as a potential mGluR 5 imaging agent is 
described in the work [ 50 ]. Compound  50  was synthesized by reaction of nucleo-
philic substitution with use Kryptofi x K 222  (Scheme  17 ).

NBr
N

O
CH3

NF18

50 [18F]-FPECMO

N
O

CH3

[18F]KF-K222, DMSO, 130°C

  Scheme 17           
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N

55

56

54

57
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  Scheme 18           

   3-Cyano-2-fl uoropyridines are an important class of biologically active com-
pounds that include potent kinase inhibitors, potassium channel inhibitors, and CNS 
active agents  51–53  (Fig.  1 ) [ 51 – 55 ]. In addition, fl uorinated pyridines can be poten-
tially used as labeling agents for various spectroscopic techniques such as positron 
emission tomography, X-ray photoelectron spectroscopy, and NMR spectroscopy.

   Paper [ 56 ] describes the synthesis of 3-cyano-2-fl uoropyridines (54) by nucleo-
philic substitution of 2-nucleofuge-containing substituted 3-cyanopyridines 
(Scheme  18 ). This method employs classic sources of nucleophilic fl uoride such 
as KF and Bu 4 NF in DMF or DMSO at higher temperatures. The use of chloride 
and bromide 2-nucleofuges affords 3-cyano-2-fl uoropyridines in moderate to 
good yields. The 2-bromo substituted starting materials (55) present the advantage 
of being synthesized in one step in good yields, contrary to the 2-chloro-3- 
cyanopyridines (56) which are prepared in moderate yields. Readily available 
3-cyanopyridine-2(1 H )-thiones have also been C2-fl uorinated in good yields via 
3-cyano-2-methanesulfonylpyridines (57) and tetrahydrothiophenium (58) salt [ 56 ].
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   Substituted 2-bromo-3-cyanopyridines (59) were successfully converted into 
substituted 3-cyano-2-fl uoropyridines (60) (Scheme  19 ). A nucleophilic replace-
ment of bromine with fl uorine was achieved in heated DMF with dry KF (Method 
A) or with dry TBAF (Method B). The yields of 2-fl uoropyridines  60  were 15–20 % 
higher for Method B [ 56 ].

Ar1

Ar2 BrN

CN method A: KF, DMF, D

method B: Bu4NF, DMF, D

59

Ar1

Ar2 FN

CN

60

Ar1 Ar2 Yield 
(method A)

Yield 
(method B)

C6H5 C6H5 62 90
C6H5 4-F-C6H4 62 82
4-Cl-C6H4 C6H5 68 76
4-CH3-C6H4 C6H5 76 87
4-CH3O-C6H4 C6H5 76 90
2-C4H3S C6H5 63 76

  Scheme 19           
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F

CN

MeO

N

Cl

CN

HN

N
N

F
CN

N

F
F

H

N

i-PrO
51

52

53

  Fig. 1    Examples of biologically active fl uorinated pyridines       

   Due to hydration signifi cantly reduces the nucleophilicity of the fl uoride anion 
[ 1 ,  56 ], these reactions are normally conducted in dry aprotic solvents (DMSO, 
DMF, THF) with the fl uoride source introduced as a fi ne dry powder (due to its low 
solubility in these solvents). At the same time, reactions of 2- and 4-halopyridines 
with KF ̇ 2H 2 O or reactions in aqueous solutions were shown to be very slow and 
incomplete. Although, considerable effort has gone into the development and opti-
mization of anhydrous conditions for the preparation of fl uorinated pyridines, to the 
best of our knowledge, there are no reports on these reactions in untreated reagent 
grade solvents or in aqueous medium. 

 Recently it has been shown a practical synthetic approach towards 3-cyano- 2-
fl uoropyrines based on nucleophilic substitution of various leaving groups at the 
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2-postion of pyridine using “spray-dried” KF or Bu 4 NF in dry DMF and DMSO 
[ 56 ]. The developed protocols offered good to high yields of the fl uorinated pyri-
dines, however, they suffered from relatively harsh conditions, prolonged  reaction 
times, and the necessity to use anhydrous solvents and reagents. As such, 3-cyano- 
2-fl uoropyridines (54) were obtained from pyridines  55, 56  by heating for 8 h at 
140 °C (Scheme  20 ) (Table  3 ).

R1

R2

N

Z

Hal

Hal = Br (55); Cl (56).

2 KF.2H2O
MW, DMSO

55;56

R3

R1

R2

N

Z

F

54

R3

  Scheme 20           

   Being based on fact that microwave irradiation can promote dehydration, nucleo-
philic substitution reaction using a series of substituted halogen azines under micro-
wave irradiation using readily available KF ̇ 2H 2 O in non-dry reagent-grade 
dimethylsulfoxide were investigated [ 57 ]. 

 2-Bromo(chloro)-3-cyanopyridines (55, 56) were reacted with KF ̇ 2H 2 O in 
DMSO in a sealed vessel using a focused microwave synthesis system (CEM 
Discover BenchMate) under continuous stirring [ 57 ]. The incubation time was 
1.5–4 min with a fi xed 300 W microwave irradiation power and a maximum tem-
perature of 120 °C. Under such conditions the highest yields of the target  compounds 
were achieved when the ratio of halogenazine to KF ̇ 2H 2 O was 1:2 (Table  4 ).

   Taking into account that nucleophilic substitution reactions of azines  55, 56  typi-
cally do not occur in untreated DMSO and KF ̇ 2H 2 O under traditional heating, it is 
safe to assume that microwave irradiation promotes dissociation of KF and desolva-
tion of the fl uorine anion, which subsequently takes part in the nucleophilic substi-
tution reaction, similarly to “spray-dried” KF in anhydrous DMSO (Fig.  2 ).

3         Synthesis of 3-Fluoropyridines 

3.1     Synthesis of 3-Fluoropyridines from 3-Aminopyridines 

 The Baltz-Schiemann reaction is frequently used in synthesis substituted 
3- fl uoropyridine  58 –intermediate for synthesis of biologically active compounds 
[ 58 – 62 ]. In particular, compound  58  was used for synthesis of compound  59  active 
against atherosclerosis dyslipidemias [ 59 ,  60 ] (Scheme  21 ).

   2,6-Dibromopyridine-3-diazonium tetrafl uoroborate (60) was transformed at 
heating into 2,6-dibromo-3-fl uoropyridines (61), which was used in synthesis 
inhibitors of Btk (Bruton’s Tyrosine Kinaze) (62) [ 63 ] (Scheme  22 ).
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   The modifi ed method for the synthesis of 3-fl uoropyridine (63) by heating of 
borofl uoropyridines diazonium salts (64) or 3-(diisopropyltriazo)-pyridine (65) in 
perfl uorohexane [ 64 ] was recently developed (Scheme  23 ).

   The Baltz-Schiemann reaction was applied for the synthesis of 2-amino-5- 
fl uoropyridine (67) which is a starting material for synthesis pyridothiadiazene 
1,1-dioxides (68) acting as AMPA potentiators [ 65 ]. 2-Amino-5-fl uoropyridine (67) 
was obtained from 2-amino-5-nitropyridine (66) by row of transformations: acety-
lation by acetic anhydride to protect a 2-amino group, hydrogenation of nitro group 
to the amine and then by Baltz-Schiemann reaction enter atom of fl uorine and at a 
fi nal stage removing protection of 2-amino group afforded  67  (Scheme  24 ).

    Table 4    Structures of starting materials  55, 56  and yields of fl uoroazines  54    

 Starting material  Reaction product 

 Yield, % 

 “Spray-dried” KF, anhydrous 
DMSO, 140 °C, 8 h  56   

 KF ̇ 2H 2 O, DMSO, MW 
300 W  57   
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  Fig. 2    Desolvation of F −  anion under microwave irradiation       
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   3-Fluropyridine-2-aldoxime was prepared similarly compound  34  from 3-amino- 
2-methylpyridine [ 30 ] (Scheme  25 ).

   The Baltz - Schiemann reaction is the most often used method for the synthesis 
of 3-fl uoropyridines. This method utilizes readily accessible 3-nitropyridies as the 
precursors; since they can be readily reduced into amines and then used in the Baltz- 
Schiemann reaction. In this section selected examples applied for the synthesis of 
practically important compounds are given. For example, the Baltz-Schiemann 
reaction was used for the synthesis of fl uorosubstituted epibatidine analog  69  
(epibatidine is a high affi nity nonselective ligand for nicotinic cholinergic receptor 
(nAChRs)) [ 66 ] (Scheme  26 ).

Boc
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N
N

N
N

F

69

NH2

HF.Py, NaNO2

72%

  Scheme 26           
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  Scheme 23           
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  Scheme 24           
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   3-Deoxy-3-fl uoropyridoxamine 5′-phosphate (75) (a coenzyme B 6  analog) was 
also synthesized using the Baltz-Schiemann reaction [ 67 ]. First substituted pyridine 
 70  was nitrated to form 3-nitropyridine  71 , which was subsequently treated with 
PCl 5  to form 2-chloro-5-nitropyridine  72 . It was then reduced in two steps to form 
3-aminopyridine  73 , converted into 3-fl uoropyridine  74  by the Baltz-Schiemann 
reaction, and afterwards was transformed into 3-deoxy-3-fl uoropyridoxamine 
5′-phosphate (F-PMP) (75) (Scheme  27 ).
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N
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-
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7170 72

4737
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  Scheme 27           

3.2        Substitution Reactions in the Synthesis 
of 3-Fluoropyridines 

 The nucleophilic substitution reactions leading to 3-fl uoropyridines are rare. 
Although 2-amino (or buthylthio)-3-aminopyridines do not react with TBAF [ 68 ], 
the introduction of the electron-withdrawing group in position 2 of the pyridine ring 
in some cases makes possible such transformations. For example, 2-cyano-3- 
nitropyridine reacts with TBAF forming 2-cyano-3-fl uoropyridine in 64 % yield 
[ 68 ]. Similar transformations were reported for 3-substituted-4- carbethoxypyridines, 
which also undergo nucleophilic substitution at the position 3 of pyridine ring [ 69 ]. 
Potent  Bradykinin B  was synthesized from bromopyridine  77 . This compound 
was obtained from 5-bromo-2-cyano-3-nitropyridine (76). At the reaction of 
nucleophilic substitution of NO 2 -group the TBAF and H 2 SO 4  as the catalyst were 
used. The further transformations result in compound  78  [ 70 ] (Scheme  28 ). The 
similar method of synthesis of compound  77  was used in synthesis of biologically 
active substances [ 71 ]. The nucleophilic substitution of NO 2 -group by fl uorine in 
compound  76  followed by addition of 2 N HCl results in muriatic 5-bromo-2-cyano- 
3-fl uoropyridine [ 72 ].
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   The replacement of bromine into fl uorine in compound  79  was performed in 
two-steps. Transmetallation with BuLi followed by fl uorination of the organolith-
ium compound with N-fl uorobenzenesulfonimide resulted in 3-fl uoropyridine  80 . It 
was used as a starting material for synthesis of substituted 6-thia-1,2,3,5- 
tetraazabenzoazulenes (81) – anticancer medicines [ 73 ] (Scheme  29 ).
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  Scheme 29           

   High yield method for the preparation of substituted 3-fl uoropyridines  83  with 
use Selectfl uor® (1-(chloromethyl)-4-fl uoro-1,4-diazoniabicyclo-[2.2.2] octane bis 
(tetrafl uoroborate)) has been applied in synthesis of compounds possessing by her-
bicidal activity [ 74 ] (Scheme  30 ). This way allows to incorporate into a molecule 
atom of fl uorine, not touching an amino group and halogens in initial compound  82 .
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   N-fl uoro-2,4,6-trimethylpyridinium tetrafl uoroborate (F-TMP-BF 4 ) is also 
 effective fl uorinating reagent which have been used in synthesis 3-fl uoropyridine 
(63) from Grignard mediated compound (85) [ 75 ] (Scheme  31 ).

Br Mg.LiCl
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  Scheme 32           

   Wide spectrum of fl uorinated aromatic compounds has been synthesized by elec-
trophilic fl uorination of arylboronic acids. So 3-fl uoropyridine (63) has been obtained 
from 3-pyridine boronic acids  86  and F-TEDA-BF 4  in 72 % yield [ 76 ] (Scheme  32 ).

   A new strategy for the synthesis of poly-substituted pyridines  88  based on C-F 
bond breaking of the anionically activated fl uoroalkyl group  87  is described 
(Scheme  33 ). A series of 2,6-disubstituted 4-amino pyridines were prepared through 
this domino process in high yields under noble metal-free conditions, making this 
method a supplement to pyridine synthesis [ 77 ].

   A possible mechanism of this transformation includes hydroamination of alkyny-
limine with amine to form the intermediate vinylogous amidine  89  (Scheme  34 ), 
which undergoes deprotonation and dehydrofl uorination to generate an anion and 
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an imine coexisting in one molecule. When the reaction is carried out at a low 
 temperature with a soluble base (path a), the in situ generated amide nucleophile 
attacks imine immediately without isomerization to form dihydropyrimidine  90  
through a kinetically controlled pathway. Raising the reaction temperature (path b), 
however, makes the carbon nucleophilic addition become an option, rendering a 
1,2- dihydropyridine ring under thermodynamic control, which fi nalizes the pyri-
dine ring after proton migration,  β -F elimination, and isomerization, and an insolu-
ble base can effectively inhibit the kinetic pathway.
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4         Synthesis of 4-Fluoropyridines 

 In general, the reactivity of the pyridine ring in nucleophilic substitution reaction 
decreases in the row C2 > C4 > C3. Consequently, more synthetic routes are reported 
for 4-fl uoropyridines compared to 3-fl uoropyridines. Pyridines can form cationic 
complexes with electrophiles resulting in activation of heterocyclic ring towards 
nucleophilic substitution. On the other hand, pyridines have signifi cantly reduced 
reactivity towards electrophiles and typically undergo electrophilic substitution 
reactions in the presence of strong Lewis acids selectively in the position 3 [ 78 ]. 

4.1     Baltz-Schiemann Reaction in the Synthesis 
of 4-Fluoropyridines 

 The Baltz-Schiemann reaction can also be used for the synthesis of 4-fl uoropyridine 
derivatives [ 21 ,  22 ,  26 – 29 ]. For example, it was successfully applied to the synthe-
sis of 4-fl uoroazafl uorene [ 79 ]. First, 1-amino-4-azafl uorene (92) was synthesized 
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by amination of 4-azafl uorene (91) using the Chichibabin reaction and then was 
converted into 1-fl uoro-4-azafl uoren (93) in 18 % yield (Scheme  35 ).
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   6-Hydroxy-2-chloro-4-fl uoroquinolones (95) have been synthesized by Baltz- 
Schiemann reaction for creation of novel quinolone compounds applied as 
S-nitrosoglutathione reductase (GSNOR) inhibitors [ 80 ] (Scheme  36 ). 
4-Fluoropyridinone synthesized by Baltz-Schiemann reaction from 2-chloro-4- 
fl uoropyridine, it is used in synthesis 4-fl uorocytisine [ 81 ].

4.2        Substitution Reaction in the Synthesis 
of 4-Fluoropyridines 

 Usually 4-fl uoropyridines are synthesized from their nucleofuge-containing precursors 
by the nucleophilic substitution reaction. For example, 4-nitropyridines  96  react 
with TBAF in DMF with the formation of substituted 4-fl uoropyridines  97  [ 68 ] 
(Scheme  37 ). This reaction is highly regioselective despite of the presence of relatively 
good leaving group (Cl or CN) in position 2 of pyridine.

   Radiolabeled 4-[ 18  F]fl uoropyridine can be synthesized by no-carrier-added 
nucleophilic aromatic substitution with K[ 18  F]F-K 222  [ 82 ]. In another instances, the 
nucleophilic substitution reaction was also employed for the synthesis of steroids 
containing 4-fl uoropyridine motif [ 83 ,  84 ], and for the synthesis of 4- fl uoropyridines 
annulated with pyrrole (azoindoles) [ 85 ,  86 ]. Substantial difference in the reactivity 
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of the pyridinium ring toward nucleophilic substitution in 5-iodo-2,4- difl uorpyridine 
was effectively used for the preparation of 4-fl uoropyridines  99, 100  using difl uoro-
pyridine  98  as starting material [ 87 ] (Scheme  38 ).
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   Unsubstituted 4-fl uoropyridine has been synthesized by reaction of 4- nitropyridine 
with Bu 4 NF at heating in DMSO [ 88 ]. Nucleophilic substitution of NO 2 -group in 
quinolone  101  proceeds with use KF in DMSO at 140 °C (1.5 h) with formation 
substituted 4-fl uoroquinolone  102  in 37 % yield [ 89 ] (Scheme  39 ).

   New anesthetic compound – tetrahydro-1H-cyclopropa[3,4]cyclopenta[1,2-c]
pyrazole (104) has been prepared by reaction iodopyridine  103  with CsF in DMSO 
without change of stereochemistry at rather hard conditions (60 min. at 200 °C) [ 90 ] 
(Scheme  40 ). Compounds  104  are modulators of receptors of cannabinoids and can 
be used against a cancer and Alzheimer’s and Parkinson’s diseases [ 90 ].

   Compound  106  was obtained by multistep approach including nucleophilic 
 substitution of NO 2  group by F (using Bu 4 NF as fl uorination agent) in  105  
(Scheme  41 ). Compound  106  is used in synthesis of new drugs against Alzheimer’s 
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disease, schizophrenia and others [ 91 ]. The reaction of nucleophilic substitution 
used for synthesis of 4-fl uoro(pyridines)quinolones as starting materials to obtain 
new biologically active compounds [ 89 ,  92 ,  93 ]. It is possible to note, that in various 
conditions for this reaction have been published, however as a whole this method 
became classical, that is evidently displayed in reviews [ 1 – 4 ], and also in book of 
Fainzil’berg and Furin [ 94 ].

   Monofl uoropyridines were obtained also from polyfl uoropyridines, using reac-
tions of nucleophilic substitution. N-Ethyl-2,6-diamino-4-fl uoropyridinium trifl ate 
(108) was synthesized from N-ethyl-2,4,6-trifl uoropyridinium trifl ate (107) by 
interaction anhydrous ammonia gas in MeCN at 0 °C during 5–10 min. in 72 % 
yield [ 95 ] (Scheme  42 ). Compound  108  is used for synthesis biologically active 
8-fl uoro-4-ethyl-4H-bis[1,2,3]dithiazolo[4,5-b:5′,4′-e]pyridine-3-yl [ 95 ].
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   Substituted 4-fl uoropyridine  110  was synthesized from 2-chloro-5-tert-butylcar-
bonylaminopyridine (109). Treatment of  109  (Scheme  43 ) with  n -BuLi followed by 
quenching with  N- fl uorobenzenesulfonimide (NFSI) gave the desired fl uoropyri-
dine  110  in 60 % yield [ 96 ]. Compound  110  is used in synthesis a potent, orally 
active, brain penetrant inhibitor of phosphodiesterase 5 (PDE5).
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   New effective deoxyfl uorination reagent – N,N-diaryl-2,2-difl uoroimidazol 
(112) was applied for synthesis of fl uorinated pyridines from corresponding 
hydroxypyridines [ 97 ]. Fluorination of pyrine-4(1H)-one (111) with compound  112  
in toluene at the presence of 3 equivalents of CsF at 80 °С lead to 4-fl uoropyridine 
(113) [ 98 ] (Scheme  44 ). Similarly 3-fl uoro- and 2-fl uoropyridines were obtained in 
84 and 50 % yields accordingly.
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5         Synthesis of Di- and Polyfl uoropyridines 

 In many cases, di- and polyfl uoropyridines can be prepared using the same reactions 
for preparation of monofl uorinated analogues. The degree of fl uorination in some 
case can be controlled, however often it leads to mixtures of polyfl uorinated 
 compounds. Some polyfl uoropyridines can be reduced back to di- or monofl uoropyri-
dines, which can be successfully used for a selective synthesis of these compounds. 

5.1     Synthesis of Difl uoropyridines 

 Pentafl uoro- and tetrafl uoropyridines, which are usually prepared from pentachloro-
pyridine using Halex process, can be used as the starting materials for the  synthesis of 
difl uoropyridines [ 99 ]. For example, it was demonstrated that pentafl uoropyridine can 
be utilized in the synthesis of substituted 3,5- difl uoropyridines, which were investi-
gated as new antithrombotic drugs [ 100 ,  101 ]. However, one of the most  commonly 
used reaction for the synthesis of difl uoropyridines is a selective reduction of polyhalo-
genated pyridines [ 99 ]. For example, chlorodifl uoropyridines  114, 116, 118  can be 
reduced to the corresponding difl uoropyridines  115, 117  and  98  using palladium on 
carbon/ammonium formate in 80 % acetic acid. The described reaction is highly 
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selective and only chlorine atom is getting reduced. Similarly, a catalytic hydrogenation 
of 3-chloro-4,5- difl uoropyridine (119) provided mixture of 3,4-difl uoropyridine (120) 
along with small amount of 3-fl uoropyridine (ratio 95:3) [ 99 ] (Scheme  45 ).
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   Other possible synthetic route leading to difl uoropyridines such as  123, 120  and 
 98  is based on the reductive deamination of difl uoropyridinehydrazines in the pres-
ence of CuSO 4  or MnO 2  combined with the removal of SiR 3  group [ 99 ] (Scheme  46 ).
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   3,4-Difl uoropyridine ( 120 , 79 %) can be synthesized by the nucleophilic 
 substitution of chlorine in 4-chloro-3-fl uoropyridine with KF [ 99 ], while, 
2,5- difl uoropyridine ( 117 , 75 %) can be prepared by deamination reaction of 
2-hydrazino-3,6-difl uropyridine in the presence of NaOH [ 99 ]. 

 An interesting example is synthesis of 3,5-difl uoropyridine  130  [ 102 ]. This com-
pound was prepared from 3,5-dibromo-4-formylpyridine (127) by electrophilic 
fl uorination of its protected forms  128  or  129  by  N -fl uoro-benzenesulfonimide 
(NFSI) (Scheme  47 ).
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   As it was mentioned, substituted difl uoropyridines can be used for the synthesis 
of monofl uorinated pyridines. For example, varied difl uoropyridines were converted 
into monofl uoropyridyl-carboxylic acids [ 103 ,  104 ] and hydrazines [ 79 ,  105 ] by the 
reaction with the corresponding nucleophilic reagents. Reactions of nucleophilic 
substitution in dichloro-, trichloro- and also trifl uoro-or tetrafl uoropyridines by 
waterless KF, Bu 4 NF and others nucleophilic reagent most are frequently used for 
synthesis difl uoropyridines. For example, the reaction of 2,3,5-trichloropyridine 
(131) with KF in DMF proceeds during 6 h at 150 °С to give 5-chloro-2,3- 
difl uoropyridine (114) in 95 % yield [ 106 ] (Scheme  48 ). Similarly compound  114  
was obtained using Bu 4 NBr in a mixture with KF in 42 % yield [ 107 ].

   5-Bromo-2,3-difl uoropyridine (133) it is synthesized by Baltz-Schiemann 
reaction from 2-amino-5-bromo-3-fl uoropyridine (132) [ 108 ] (Scheme  49 ).
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   Reaction of compound  114  with boronic acid  134  resulted in a derivative 
2,3-difl uoropyridine  135 , used as HGF (Hepatocyde Growth Factor) modulators 
[ 109 ] (Scheme  50 ).
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   Substituted 2,3-difl uoropyridine  137  was prepared from 3-fl uoropyridine precur-
sor  136  using nucleophilic substitution with KF [ 110 ] (Scheme  51 ). Compound  137  
was obtained similarly from substituted 3-fl uoropyridine  138  by multistep sequence 
including chlorination, protection amino group, nucleophilic substitution with KF 
and removal of protective acyl groups [ 111 ] (Scheme  51 ). Compound  137  is used 
for synthesis of insecticides [ 110 ,  111 ].

   4- or 5-halosubstituted 2,3-difl uoropyridines are widely used for synthesis of 
biologically active compounds [ 108 ,  112 – 115 ]. These reactions of nucleophilic 
substitution are highly regioselective. Various heterocycles containing 
2,3- difl uoropyridine group  139–143  were synthesized by this method (Fig.  3 ).

   Various polyfl uoropyridines have found application in synthesis hardly available 
difl uoropyridines fused with others heterocycles [ 116 ]. Reaction of pentafl uoropyri-
dine (144) with 2-amino-3-picoline (145) under basic conditions in acetonitrile at 
refl ux or under microwave heating gave only one product – dipyridoimidazole  146  
(Scheme  52 ).

   Reaction of 2-amino-3-picoline (145) with 4-phenylsulfonyl-tetrafl uoropyridine 
(147) was less selective than the reactions described above and three major 
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products,  148 ,  149  and  146 , were synthesized accordingly  19  F NMR. Interaction of 
4-cyano-tetrafl uoropyridine (150) with 2-amino-3-methylpyridine (145) also 
resulted in formation a mixture of isomers of dipyridoimidazoles  151, 152  [ 116 ] 
(Scheme  53 ).
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   Various substituted difl iorodipyridoimidazoles  153–158  have been synthesized 
on the basis of obtained dipyridoimidazole  146  [ 116 ]. All reactions of  146  with 
nucleophiles gave products arising from selective displacement of fl uorine located 
at the C-1 position. Reaction with only one equivalent of lithium benzenethiolate 
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gave the disubstituted derivative  160  as the major product (44 %) arising from 
 displacement of fl uorine atoms located at the C-1 and C-4 positions, with only a 
small amount of the monosubstituted product  159  (2 %). Subsequently, reaction of 
 146  with two equivalents of lithium benzenethiolate gave high yields of  160  [ 116 ] 
(Scheme  54 ).
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   4-Phenylsulfonyl tetrafl uoropyridine (147) was used successfully for synthesis 
difl uoropyridines fused with hydrogenated pyridines  162–170  [ 117 ]. Synthesis of 
such compounds is based on reaction double (threefold) nucleophilic substitution of 
atoms of fl uorine (sulfonyl groups) with 1,4-dinucleophiles (161) (Scheme  55 ).

   By reaction of 5-chloro-2,3,6-trifl uoropyridine (171) with vinylstannane  172  and 
monothioacetic acids (173) 5,6-difl uoro-2,3-dihydrothieno[2,3-b]pyridine (174) 
was obtained and used as precursor for synthesis of anticancer drugs [ 118 ] 
(Scheme  56 ).

   Examples of synthesis substituted 2,6-difl uoropyridines are not numerous 
(Scheme  57 ). 3-Chloro-2,6-difl uoropyridine (176) was obtained by interaction 
2,3,6- trichloropyridine (175) with KF in sulfolane in 89 % yield [ 119 ]. 4-Bromo- 
2,6-difl uoropyridine (178) it is synthesized from symmetric trifl uoropyridine (177) 
[ 120 ]. Reaction of 2,6-dichloropyridine (179) with KF at heating in sulfolane at 
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presence of 18-crown-6 give 2,6-difl uoropyridine (180) in 78 % yield [ 121 ]. Heating 
of 2,6-dichloro-4-triphenylmethylaminopyridine (181) with 2,2,2-cryptand, KF in 
DMSO during 72 h give a mixture of compounds  182–184  [ 122 ].

   Synthesis of substituted 2,6-difl uoropyridine – starting materials for generation 
of potential medicines, is based on use of polyhalogenated pyridines in reactions of 
nucleophilic substitution. Compound  185a  was transformed successively to 
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substituted 2,6-difl uoro-4-hydroxymethylpyridine ( 186a ), which was used in 
 synthesis of HIV-1 non-nucleoside reverse transcriptase inhibitor  187a  [ 123 ] 
(Scheme  58 ).
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   A range of fl uorinated 3-hydroxypyridin-4-ones having fl uorine or fl uorinated 
substituent attached at 2- or 5- position of the pyridine ring has been synthesized in 
order to improve biological properties of 3-hydroxypyridin-4-ones. The syntheses 
of di- and trifl uoro-3-hydroxypyridin-4-ones ( 191a ) and ( 191b ) started from the 
pentahalo substituted pyridines  185 . Treatment of the commercially available 
3,5-dichloro-2,4,6-trifl uoropyridine ( 185a ) or 3-chloro-2,4,5,6-tetrafl uoropyridine 
( 185b ) with 1 equivalents of sodium methoxide yielded  188  in good yield. Treatment 
of  188  with 10 % Pd/C at the presence of ammonium formate at 50 °C for 10 h gave 
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compounds  189  in high yields. Subsequent lithiation, electrophilic substitution, and 
oxidation as outlined above, introduced a hydroxyl group to afford compound  190 . 
The 4-methyl protecting group was removed to produce  191a  and  191b , respec-
tively [ 124 ] (Scheme  59 ).
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   2,4-Difl uoro-3-nitropyridine ( 193 ) was used for synthesis antibacterial agents. 
 193  was prepared from 4-hydroxy-3-nitropyridine-2(1H)-on ( 192 ) by sequential 
processing with POCl 3  and then with KF [ 125 ] (Scheme  60 ).
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  Scheme 61           

   Sequential reactions of N-substituted 4-fl uoroindole  194  with s-BuLi, NFSI and 
then with Bu 4 NF led to 4,5-difl uoroindole  195  in 60 % yield. Compound  195  was 
used as a starting material for synthesis of kinase inhibitors [ 126 ] (Scheme  61 ).
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   Pyrazolopyridine kinase inhibitors, containing 3,5-difl uoropyridine fragment 
 201  were prepared by multistep synthesis. Three-component reaction of trifl uoro-
pyridylpyridopyrazole ( 196 ), 3-methyl-2-(piperazin-2-yl)butan-2-ol ( 197 ) and 
1-trimethylsilylimidazole (198) proceeded with formation of a mixture isomers  199  
(R, S) and  200  (R, R). The reaction of isomer  199  (R, S) with TBAF in THF gives 
target compound  201  having (R, S) confi guration [ 127 ] (Scheme  62 ).
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   3,5-Difl uoro-2,4,6-triazidopyridine ( 202 ) has been synthesized by reaction of 
nucleophylic substitution from pentafl uoropyridine (144) and sodium azide [ 128 , 
 129 ]. The 3,5-difl uoro-2,4,6-trinitren ( 203 ) has been obtained further from this 
compound and investigated by IR-spectroscopy [ 128 ,  129 ] (Scheme  63 ).

   Nucleophilic substitution of 3,5-dichloropyridine ( 204 ) with KF led to 
3,5- difl uoropyridine (123) [ 130 ] (Scheme  64 ).
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   Substituted 2,5-difl uoropyridines  206  are obtained from the corresponding 
 aminopyridines  205  by Baltz-Schiemann reaction, which are used in various areas 
of organic synthesis, including synthesis of biologically active compounds [ 108 , 
 131 – 133 ]. For example, by few steps reaction 2-amino-3-bromo-5-fl uoropyridine 
( 205 ) was converted to biologically active compounds ( 210 ) by few steps [ 133 ] 
(Scheme  65 ).
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   2,3,6-Trifl uoropyridines were used for synthesis of substituted 
2,5- difl uoropyridines. The atom of fl uorine which is taking place in the position 2, 
is most nucleophilic. Therefore, reactions with nucleophilic reagent proceeded 
highly regioselectively. 3,6-Difl uoro-2-methoxypyridine ( 212 ) has been obtained 
from 2,3,6-trifl uoropyridine ( 211 ) in methanol at presence MeONa [ 134 – 136 ] 
(Scheme  66 ). Pyridine ( 212 ) was applied in synthesis of antiviral compounds [ 134 ]. 
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3,6-Difl uoropyridine-2(1 H )-one ( 213 ) has been obtained by reaction of  121  with 
MeONa in MeOH followed by treatment with Me 3 SiCl and NaI in MeCN [ 136 , 
 137 ] (Scheme  66 ).

   Trifl uoroazoindoline  215  has been widely used in reaction of nucleophilic 
 substitution for synthesis substituted difl uoroazoindolines  216–224 . The starting 
compound  215  has been obtained from tetrafl uoropyridine  214  by two steps 
(Scheme  67 ). It is interesting to note, that pyrrole ring formation at the second step 
of process proceeds under action of peroxide and explained by the radical mecha-
nism. Nucleophilic substitution with various N-, O- and S-nucleophiles proceeded 
regioselectively with replacement of atom F in the second position as well as in the 
previous cases [ 138 ].
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5.2        Synthesis of Trifl uoropyridines and Polyfl uoropyridines 

 Usually trifl uoropyridines are prepared by the reduction or nucleophilic substitution 
of perhalogenated pyridines [ 99 ]. However, the reaction of the corresponding 
2,3,5-trichloropyridine (131) with KF (in sulfolane, dimethylpropyleneurea, 220 °C, 
16 h) resulted in only partial fl uorination and formation of 2,3-difl uoro-5- 
chloropyridine (114) [ 99 ]. Attempts to prepare 2,3,5-trifl uoropyridine (121) from 
the corresponding trichloropyridine were unsuccessful (Scheme  68 ).
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   Pentachloropyridine ( 225)  was used as the starting material in the reaction with 
KF, fi rst producing dichlorotrifl uoropyridine ( 185a ). At higher temperature, this 
compound was converted into 3-chlorotetrafl uoropyridine ( 185b ) and then pentaf-
luoropyridine (144) [ 99 ]. Tetrafl uoropyridines  226, 228  were used in the reduction 
reactions for the selective synthesis of 2,3,6-trifl uoropyridine (121) or 
2,4,5- trifl uoropridine ( 230 ) [ 99 ] (Scheme  69 ).

   Various tri- and tetrafl uoropyridines  233, 236  and  239  have been synthesized 
from the corresponding di- and trifl uoropyridines  115 ,  121, 123.  The starting mate-
rial was fi rst lithiated by  n -BuLi and transformed into chlorofl uoropyridines  232 , 
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 238  and bromofl uoropyridine  238  by the reaction with C 2 Cl 3 F 3  or Br 2 . The last step 
of the synthesis is based on Halex exchange reaction using spray-dried KF in anhy-
drous DMSO to give corresponding polyfl uorinated pyridines  233 ,  236 ,  239  [ 99 ] 
(Scheme  70 ).
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   Mixtures of polyfl uorinated pyridines can be obtained from the corresponding 
pyridines by fl uorination with tetrafl uorocobaltates (III) [ 139 ], this reaction has a 
low selectivity. For example, the reaction mixture derived from the reaction of pyri-
dine with KCoF 4  at 220 °C is reported to contain more than seven fl uoropyridines, 
two fl uoro-2-azahexenes, three azahexadienes, and two fl uoro-N - methylpyrrolidines. 
Four fl uorinated products were isolated from a fl uorination of pyridine by CoF 3  at 
150 °C: a 2-azahexene, two  N -methylpyrrolidines and 4 H -nona-fl uoropiperidine 
[ 140 ]. 

 2,3,5,6-Tetrafl uoro-4-trifl uoromethylthiopyridine ( 240 ) was prepared in high 
yield by the reaction of pentafl uoropyridine (144) with the CF 3 S ̄  anion, generated 
from F 2 C = S or its trimer, and cesium fl uoride at –15 °C [ 139 ] (Scheme  71 ). When 
the trimer was used as a precursor of the CF 3 S ̄  anion compound  240  reacted further 
at 20 °C to give a mixture of polysubstituted pyridines  241–243  in the ratio of 4.5: 
2: 1, respectively. When the reaction mixture was then heated at 100 °C both com-
pounds  241  and  243  were fully converted into compound  242 . Compound  242  was 
the only product (65 %) of the reaction which was carried out at 100–110 °C [ 141 ] 
(Scheme  71 ).

   Pentafl uoropyridine (144) was applied for the synthesis 2,4-diamino-3,5,6- 
trifl uoropyridine ( 244 ) [ 142 ]. Thus double nucleophilic substitution of fl uorine 
atoms in 2 and 4 positions of the pyridine  144  occurred to give  244 . The same 

 

Synthesis of Fluorinated Pyridines



38

reaction of nucleophilic substitution with 4-chloro-2,3,5,6-tetrafl uoropyridine ( 246 ) 
or 3-chloro-2,4,5,6-tetrafl uoropyridine ( 185b ) results to diamino-difl uoropyridines 
 247  or mixture of isomers of diaminodifl uoropyridine  248  and triaminofl uoropyri-
dine  249  [ 142 ] (Scheme  72 ).
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   The scope and limitation of the synthesis of polynitroxides ( 250 ) by nucleophilic 
substitution of electron-defi cient fl uorinated pyridines was described [ 143 ] 
(Scheme  73 ). The method provided a facile route to the formation of polynitroxides 
exhibiting strong electron exchange between nitroxide groups.

   The tendency perfl uoropyridines to nucleophilic substitution is widely used in 
synthesis fl uorinated and fused pyridines. In most cases the fi rst nucleophilic 
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substitution proceeds at 4 or 2 positions, sometimes at once 2,4-disubstituted 
 trifl uoropyridine is formed. Selective double substitution is used for synthesis fl uo-
roazoindoles  253,  through intermediate  251, 252  [ 144 ] (Scheme  74 ).
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   Various compounds benzothieno(furano)pyridines [ 145 ], 4-cyclopen tadi enyl-
pyridines [ 146 ], 4-phenoxypyridines [ 147 ], 4- acetylenepyridines [ 148 ], furano[2,3-
b]pyridines [ 149 ], 4-aminopyridines [ 150 ], bistetrafl uoro-4,4′-pyridine [ 151 ] and 
others practically important pyridines [ 152 – 155 ] were obtained by the reaction of 
nucleophilic substitution.   

6     Synthesis of Perfl uoroalkylpyridines 

 Perfl uoroalkylpyridines have reliably come in synthetic practice. These compounds 
are components of molecules applied as medicines, pesticides, dyes and other prac-
tically important compounds [ 1 – 3 ,  21 ]. 
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6.1     Substitution Reaction 

 Various perfl uoroalkylhalides, perfl uoroalkylsilanes and also fl uorinated organome-
tallic compounds were used most frequently for reactions of substitution. 
Pentafl uoroethyltrimethylsilane  (254)  reacts selectively with 2-cyano-4- iodopyrydine 
( 255 ) at presence KF and CuI in NMP to form substituted 4- pentafl uoroethylpyridine 
( 256 ) which is used for synthesis of pesticides  257  [ 156 ] (Scheme  75 ).
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   2-Trifl uoromethylpyridine ( 259 ) and 2-pentafl uoroethylpyridine ( 260 ) were 
obtained by the reaction of 2-iodopyridine ( 258 ) and tri- and pentafl uoroethylcoo-
per at heating in DMF Trifl uoromethylcopper and pentafl uoroethylcopper are pre-
pared conveniently via the reaction of the solid complex Zn(CF 3 )Br  .  2DMF with 
copper(I) bromide in N,N-dimethylformamide (Scheme  76 ). The maintenance of 
trifl uoromethyl- and pentafl uoroethyl derivatives was determined by  19  F NMR 
spectroscopy in both the mixtures [ 157 ].

   Reaction of 2-chloro-5-iodopyridine  (261)  and sodium pentafl uoropropionate 
( 262 ) at presence CuI in NMP resulted in 2-chloro-5-pentafl uoroethylpyridine ( 263 ) 
in 30 % yield [ 158 ] (Scheme  77 ).
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   Pentafl uoroethylquinoline  265  was obtained by the reaction of pentafl uoroethyl-
trimethylsilane  (254)  with substituted quinoline  264  [ 159 ]. Compound  265  was a 
precursor for the synthesis of  266  as VR1 receptor for treating pain, infl ammation 
and other diseases (Scheme  78 ).
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   2-Perfl uorohexyl-1,2-dihydroquinoline ( 268 ) was obtained in 72 % yield together 
with trace amounts of 2-(periluorohexyl)quinoline ( 269 ), the latter being formed by 
the autoxidation of  268 . The perfl uoroalkylation was improved up to 90 % yield by 
using 2 equiv. each of pertluorohexyl iodide, boron trifl uoride, and methyllithium-
lithium bromide. The autoxidation of dihydroquinoline  268  was complete in chlo-
roform after 2 days and  269  was obtained quantitatively [ 160 ] (Scheme  79 ).
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   Some articles have described synthesis of 3-trifl uoromethylquinoline ( 271 ) 
[ 161 – 165 ]. Catalytic oxidative trifl uoromethylation of 3-qunolineboronic acid  (270)  
resulted in 3-trifl uoromethylquinoline in 49 % yield [ 161 ]. Use Togni’s reagent 
 (272)  in reaction with boronic acids  270  resulted in increase yield of  271  up to 53 % 
[ 162 ]. 3-Trifl uoromethylquinoline was also obtained by reaction of boronic acids 
 270  with CF 3 I [ 163 ] or with trifl uoromethyl sulfonium salts [ 164 ] in 87 % yield. 
Interaction of 3-iodoquinoline ( 273 ) with sodium trifl uoromethyl formate at pres-
ence Cu and Ag 2 O also led to compound  271  [ 165 ] (Scheme  80 ).
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   Convenient reagents for incorporation of perfl uoroalkyl groups in a molecule of 
pyridine are 1,10-phenanthroline-ligated (perfl uoroalkyl) copper (I) complexes  274  
[ 166 ], which were obtained by reaction of copper 1,10-phenanthroline complex 
with Ruppert reagent and its C 2 F 5 -analog. The 1,10-phenanthroline complex  (274a)  
has been used in reaction with 3-iodopyridine  (273)  for synthesis 
3- trifl uoromethylpyridine  (275)  [ 167 ,  168 ] (Scheme  81 ).

   Cu(I)-diamine complexes were found to catalyze the trifl uoromethylation of 
other heterocycles. In the presence of a small amount of CuX (X = Cl, Br, I) and 
1,10-phenanthroline, the cross-coupling reactions of iodoazines with trifl uorometh-
ylsilanes proceeded smoothly to afford trifl uoromethylated azines in good yields 
[ 169 ]. For example, trifl uoromethylazines  277, 279  have been synthesized in good 
yields [ 169 ] by such method from iodoazines  276, 278  (Scheme  82 ).

   The corresponding trichloromethylazines  280  are frequently used for synthesis 
trifl uoromethylazines  281  (pyridine, quinoline, phenantroline and others.). SbF 3 , 
SbF 5 , liquid HF or their mixtures can be used for chlorine-fl uorine replacement 
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[ 170 – 173 ] (Scheme  83 ). Trifl uoromethylazines  281  are formed by this method usu-
ally in good yield.
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   Interaction of complex  282  obtained from copper difl uoride, trifl uoromethyltri-
methylsilane and three moles of PPh 3  with 2-iodopyridine ( 258 ) led to 
2- trifl uoromethylpyridine ( 259 ) in 75 % yield [ 174 ] (Scheme  84 ).
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   Ample opportunities are opened with synthesis of trifl uoromethylated azines via 
oxidative nucleophilic substitution of hydrogen by trifl uoromethyl carbanions 
[ 175 ]. This pathway to the synthesis of trifl uoromethylazines includes reaction of 
quaternization of azines  283  by p-methoxybenzylbromide (PMB) ( 284 ) to obtain 
salts  285 . Further KF is added to reaction mixture of salt  285  and CF 3 Si(CH 3 ) 3  to 
generate anion  286 . Regioselective trifl uoromethylation results in formation of 
1,2-dihydropyridines  287  which then have been oxidized by action CAN to get 
appropriate trifl uoromethylazines  288  (Table  4 ) [ 175 ] (Scheme  85 ). Regioselectivity 
of the reactions is determined by the nature of substituent at pyridine’s cycle. So in 
case of an ether of nicotinic acid and 3-benzoylpyridine the mixture of 2-and 
6- trifl uoromethylpyridines are formed (Table  5 ).

Si
H3C

H3C

F

CF3

CH3

KF, CH2Cl2, 24 h

287286 288

2 aquiv CAN

MeOH:H2O
4:1, r.t

+
aceton, r.t.

283 284 285

quinolinium

R=3-CH3, 3-COOCH3, 3-CN, 3-COPh.
5-methoxyquinolinium phenantrolinium

N

PMB
CF3

H

R

N CF3

R

N

R

H3CO

Br

N

PMB

R

Br
+

- CF3Si(CH3)3

  Scheme 85           

Cu

CF3

Ph3P PPh3

PPH3
N NI CF3

+
toluene, 80 °C

75%

282 258 259

  Scheme 84           

6.2         Synthesis of Perfl uoroalkylpyridines Based on Cyclization 
Reactions 

 Reactions of cyclization are widely used for synthesis hardly available multifunc-
tional perfl uoroalkylpyridines [ 2 ,  3 ,  176 ]. As a rule, these reactions proceed regiose-
lectively and in good yields. A perfl uorocarbonyls, 1,3-dicarbonyls, α,β-unsaturated 
carbonyl compounds and enamines are basic raw material for this synthesis [ 2 ,  3 , 
 176 ]. For example, condensation of trifl uoromethyl substituted 1,3-dicarbonyl com-
pounds  289  with cyanacetamide ( 290 ) proceeds highly regioselectively to form sub-
stituted 4-trifl uoromethylpyridine-2(1H)-ones ( 291 ) [ 2 ,  3 ,  176 – 179 ]. 1,3-Dicarbonyl 
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   Table 5    Aromatization of 2-Trifl uoromethyl-1,2-dihydroazines  287    

 Substrate  287   Product  288  (yield) 
 Overall yield 
for three steps 

 Total yield of 
two isomers 

  

N

H

CF3
PMB     

  N CF3    

 (77 %)  59 % 

  
N

H

F3C
PMB

COOCH3

    
  NF3C

COOCH3

    

 (79 %)  32 %  46 % 

  
N

H

CF3
PMB

COOCH3

    
  N CF3

COOCH3

    

 (47 %)  14 % 

  

N

H

F3C
PMB

CN

    
  NF3C

CN

    

 (62 %) a   18 % 

  

N

H

F3C
PMB

O

Ph

    
  NF3C

O

Ph

    

 (91 %)  40 %  62 % 

  
N

H

CF3
PMB

O

Ph

    
  N CF3

O

Ph

    

 (60 %)  22 % 

  
N

H

CF3
PMB

OCH3

    
  N CF3

OCH3

    

 (90 %)  68 % 

   a DDQ was used it stead of CAN (2.2 equiv. of DDQ, CH 2 Cl 2 , 0 °C to rt)  

compounds  292  and cyanthioacetamide  (293)  are used for synthesis substituted 
4-trifl uoromethylpyridine-2(1H)-thiones  294  [ 180 – 182 ]. More simple and conve-
nient way of synthesis of compounds  294  is based on use of sodium salt of 
1,3- dicarbonyl compounds  295  and cyanthioacetamide  (293)  [ 183 ]. Thus isolation 
and purifi cation of 1,3-diketones  292  is not required. As a whole, synthesis of 
4-three(di)fl uoromethylpyridine-2(1H)-thiones  294  from sodium salts  295  and  293  
proceeded highly regioselective in good yields (Scheme  86 ).

   New method for synthesis 7-fl uoro-8-(trifl uoromethyl)-1Н-1,6-naphthyridines 
 (303)  is based on intermolecular cyclization of N-silyl-1-azaallyl anion  (298)  with 
perfl uoroalkylethylenes  299  [ 184 ] (Scheme  87 ).

   Reaction of aniline  (304)  and ethyl trifl uoroacetoacetate  (305)  resulted in formation 
of 4-trifl uoromethylquinolin-2-one  (306)  from which 2-brom-4-trifl uoromethyl-
quinoline  (307)  was synthesized further. Reaction of compound  307  with pyridines 
 308  at the presence of a palladium complex as the catalyst resulted in quinoline 
ligands  309  [ 185 ] (Scheme  88 ).
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   Reaction of enamine  310  with pentafl uoropropionic anhydride  (311)  gives com-
pound  312 . The condensation of  312  with two moles of diethyl iminomalonate 
hydrochloride  (313)  led to substituted perfl uoroalkylpyridine  314 , which further is 
used in synthesis inhibitors of phosphoesterase [ 186 ] (Scheme  89 ).

N + [(C2F5)2CO]2O

C2H5OOC-CH2-C-OEt . HCl

NH

N

EtOOC

H2N CF2CF3

N

310

313 (2 eq.)

311

314, 24%

N(CH3)2

Et3N,CH2Cl2,

20 °C, 16 h

N

(H3C)2N

C2F5O

Na2CO3, H2O, Et2O

312

  Scheme 89           
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74-88 % X = H, CH3, t-Bu, OCH3.

  Scheme 88           

   Perfl uoroalkyl [1, 8]-naphtiridine ( 318 ) with herbicidal effect was synthesized 
by reaction of 2-amino-3-formylpyridine ( 315 ), 1,3-dicarbonyl compound  316  and 
1,3-cyclohexanedione ( 317 ) [ 187 ] (Scheme  90 ).

N N N

O

O

CHO

NH2 C2F5

O

OO

+F5C2COCH2COOEt +

315 316 317 318

  Scheme 90           
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   Substituted 3-perfl uoroethylisoquinoline  (321)  was obtained by interaction of 
compound  319  and pyridine-3-carbaldehyde ( 320 ). Compound  321  has been 
obtained also by three-component condensation directly from salt  322 , pentafl uoro-
acetonitrile ( 323 ) and pyridine-3-carbaldehyde ( 320 ) [ 188 ]. These reactions pro-
ceed with formation of two cycles at hard conditions (refl ux in xylene for a long 
time) (Scheme  91 ).

N

CHO

320

N

C2F5
Ph

Ph3P

+

319

Ph3PCH2Ph I + F5C2CN +
N

CHO

320322 323

1. Xylene, 0-10 °C
2. 240h reflux N

C2F5

N

321

51%

62%

  Scheme 91           

   The methods of synthesis of fl uorine-containing pyridines described in the given 
review specify growing interest to chemistry of these compounds that is caused by 
the big practical importance of fl uorinated azines.      
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    Abstract     The data on the chemistry of fl uorinated quinolines available in the literature 
of the last 10–15 years are presented. A variety of synthetic methods exploiting 
cyclization and cycloaddition reactions, displacements of halogen atoms or the diaza 
group, as well as direct fl uorinations have been considered. Novel approaches to 
functionalization of polyfl uorinated quinolines, including nucleophilic displacement 
of fl uorine atoms, cross-coupling reactions, and synthesis on the basis of organome-
tallic compounds are discussed. Selected representative examples of fl uoroquinolines 
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exhibiting a remarkable biological activity or those quinolines which have already 
found their applications in medicine will also be discussed in the text. The biblio-
graphy – 158 references.  

  Keywords     Quinoline   •   Cyclocondensation   •   Nucleophilic substitution of fl uorine 
atom   •   Cross-coupling reactions   •   Antibacterial activity   •   Enzyme inhibitor  

1         Introduction 

 The quinoline ring system, the fi rst representative of the family of benzazines bearing 
one nitrogen atom, is widespread in the nature. Alkaloid quinine has long been used 
traditionally as antimalarial drug, and it has happened to possess a toning effect. 
Oxamniquine is used for suppression of shistosoma, which is considered to cause 
many diseases in tropical regions. Being inhibitors of various enzymes, many synthetic 
quinolines proved to exhibit antibacterial, antineoplastic, and antiviral activities. 

 Incorporation of a fl uorine atom into azaaromatics is known to enhance biological 
activity of fl uorinated compounds, and provide some other unique properties. The 
quinoline skeleton has been used for a long time as a basic structure for search of 
synthetic antimalarial drugs, such as fl uoroquine [7-fl uoro-4-(diethyl-amino- 1-
methylbutylamino)quinoline] and mefl oquine. The antineoplastic drug Brequinar® 
and its analogs proved to be useful in transplantation medicine, and also for treatment 
of rheumatic arthritis and psoriasis. Flosequinan is one of drugs of new generation 
for treatment of heart diseases. However, the most known drugs belong certainly 
to the family of fl uoroquinolones exhibiting a broad spectrum of antibacterial 
activity (Scheme  1 ).
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  Scheme 1    Structure of fl uorinated quinolones with unique properties       
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   A number of fl uorinated quinolines have found application in agriculture, and 
also as components for liquid crystals. Cyanine dyes on the basis of quinolines also 
make a considerable share in commercial production. 

 A growing interest in fl uorinated derivatives of quinolines stimulates research 
studies aimed at development of novel methods of synthesis, studying of reactivity 
of fl uorinated quinolines and their plausible practical applications, as indicated by 
numerous publications, including recent monograph and review articles [ 1 – 4 ]. 

 In the frames of this chapter we would like to outline briefl y the recent data on 
fl uorine-containing quinolines in which fl uorine atoms are attached directly to 
carbons of the benzene or pyridine rings, and a special attention will be given to 
mono- fl uorinated derivatives.  

2     Synthesis and Structure 

  Cyclization reactions  appear to be the most common synthetic method for obtain-
ing of fl uorinated derivatives of quinolines and their analogs (Scheme  2 ). The most 
important way of synthesis of quinolines, bearing fl uorine atoms in benzene or 
pyridine rings, is  condensation of anilines having no substituent at least in one of 
two ortho-positions with carbonyl compounds capable of donating a three-carbon 
fragment .

N

F

N

F

  Scheme 2    Formation of pyridine ring of fl uorinated quinolines       

   The Skraup reaction is a good illustration of this common approach, as illustrated 
by the series of syntheses of 5,7-difl uoro- and 5,6,7-trifl uoroquinolines  2a,b  
proceeding in high yields on the basis of 3,5-difl uoro- and 3,4,5-trifl uoro-anilines 
 1a,b  (Scheme  3 ) [ 5 ]. In a similar way 5,6,8-trifl uoroquinolines  4a,b  have been 
obtained from 2,4,5-trifl uoro substituted acetanilide  3  and acrolein or crotonic 
aldehyde [ 6 – 8 ]. 5,7,8-Trifl uoroquinoline has also been obtained from 2,3,5-trifl uoro- 
acetanilide, while 6-trifl uoromethyl-5,7,8-trifl uoroquinoline – from 2,3,5-trifl uoro-
4-trifl uoromethyl acetanilide, respectively [ 6 ]. The Skraup cyclization is also an 
effective synthetic took to transform 2,3,4,5-tetrafl uoro substituted aniline  5  into 
5,6,7,8-tetrafl uoroquinoline, 2-methyl-5,6,7,8-tetrafl uoroquinoline and 4-methyl-
5,6,7,8-tetrafl uoroquinoline  6  by reacting aniline  5  with acrolein, crotonic aldehyde 
and methylvinylketone, correspondingly (Scheme  3 ). The reaction takes place even 
in the presence of a strong electron-withdrawing trifl uoromethyl group, as shown by 
the synthesis of 6-trifl uoromethyl-5,6,8-trifl uoroquinoline  8  from 2,3,5-trifl uoro-
4-trifl uoromethylacetanilide  7  (Scheme  3 ) [ 6 ].
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   Also the synthesis of 6,8-difl uoro-7-chloroquinoline  10  has been performed in a 
high yield by means of the modifi ed Skraup reaction from 3-chloro-2,4-difl uoro- 
aniline  9  [ 5 ]. Similarly 5-fl uoro-6-methoxy-8-nitroquinoline  12  was obtained from 
3-fl uoro-4-methoxy-6-nitroaniline (Scheme  4 )  11  [ 9 ].

NH2

R
FF

1a,b

CH2=CH-CH=O

(Skraup synthesis)
NF

R
F

2a,b

NHAc
F

F

F

CH2=CH-CH=O
(Skraup synthesis)

CH3-CH=CH-CH=O

PhMe, HCl, t, 2 h
(Doebner-Miller synthesis)3

N

F
F

R

F
4a,b

1, 2: R = H (a), F (b); 4: R = H (a), Me (b).

F

F
NH2F

F

5

CH2=CH-CH=O,

NF

F
F

R

R'

F 6

CH3-CH=CH-CH=O

or
CH2=CH-C(O)-CH3

R, R' = H, Me
NHAc

FF

F

7

HOCH2-CH(OH)CH2OH
H2SO4,

NF

CF3

F

F 8CF3

68-83%

56-60%

58%

60-69%

m-NO2 C6H4-SO3Na

  Scheme 3    Synthesis of quinolones  2 ,  4 ,  6 ,  8        
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  Scheme 4    Synthesis of quinolones  10 ,  12        

   There are some other synthetic methods to obtain fl uorine-containing quinolines 
which are based on using of fl uorinated anilines with a free  ortho -position and three-
carbon reagents. For instance, 8-fl uoro-2,3,6-trialkyl substituted 4- hydroxyquinolines 
 15  were synthesized by the reaction of  13  with ethyl 2- methylacetoacetate and 
cyclization of the obtained enamines  14  into 8- fl uoroquinolines  15  (Scheme  5 ) [ 10 ].
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  Scheme 6    Interaction of 4-fl uoroaniline  16  with trifl uoromethyl diketone       
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  Scheme 5    Synthesis of 4-hydroxy-8-fl uoroquinoline  15        

   The reaction of 4-fl uoroaniline  16  with trifl uoromethyl diketone has been estab-
lished to give a rise to 6-fl uoroquinolines  17  and  18  in the ratio 1:1 (Scheme  6 ) [ 11 ].

   2-Fluoro-3-methoxyprop-2-enyl anilides  20  were obtained by condensation of 
anilines  19  with methyl 2-fl uoro-3-methoxyacrylate. Compounds  20  can be trans-
formed in the presence of strong acids into 3-fl uoro-2-quinolines  22  (Scheme  7 ) 
[ 12 ]. A substituent in the  meta -position relative to the amino group in starting ani-
lines  19  directs the formation of a mixture of two regioisomers in the ratio 1:1, with 
3-methoxy- and 3-fl uoroanilines being exceptions [ 13 ]. 2-Trifl uoromethyl-3- 
fl uoroquinolines  22  were derived from anilines  19  and trifl uoromethyl ketones [ 11 ].
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   The synthesis of 6-fl uoro-2-cyanoquinolone  26  from 4-fl uoroaniline  16  is shown 
in Scheme  8 . 4,5-Dichloro-5H-1,2,3-dithiazolium chloride  23  reacts with the 
Meldrum acid to form 5-(4-chloro-5H-1,2,3-dithiazol-5-ylidene)-2,2-dimethyl-1,3-
dioxan- 4,6-dione  24 , which on treatment with 4-fl uoroaniline  16  is transformed into 
5-[(arylamino)(cyano)methylene]-2,2-dimethyl-1,3-dioxan-4,6-dione  25  in high 
yield. Heating of compound  25  in biphenyl ether results in the formation of 
2- cyanoquinolone  26  [ 14 ,  15 ].
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  Scheme 8    Synthesis of 2-cyano-6-fl uoroquinolone  26        

   6-Fluoro- and 6,8-difl uoro-4-methyl-2-(3-pyridinyl)-1,2,3,4-tetrahydroquino- 
lines and the corresponding aromatic quinolines  27a,b  have been obtained from 
4-fl uoro- or 2,4-difl uoroanilines  16a,b , and pyridine-3-carbaldehyde and allylmag-
nesium bromide (Scheme  9 ) [ 16 ].
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  Scheme 9    Synthesis of quinolones  27        

   The reaction of perfl uoro-2-methylpent-2-ene with 2,6-dimethylaniline or 2,6-
dimethoxyaniline has been shown to afford dihydroquinolines  28  (Scheme  10 ) [ 17 ].
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   Another synthetic approach to fl uoroquinolines is based on  cyclocondensations 
of fl uorinated anilines bearing in the ortho-position a carbon-containing func-
tional group  (trifl uoromethyl, nitrile, formyl, carbonyl groups, etc.),  with reagents 
containing a two-carbon fragment  (Scheme  11 ).
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  Scheme 12    Synthesis of 2-aminoquinoline  32        
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  Scheme 11    Formation of fl uorinated quinolones from two-carbon reagents       

   In accordance with this protocol 4-fl uoroquinolones ( 30 , R = Ar, N-methylindol- 
3-yl) were obtained by cyclocondensation of 2-trifl uoromethylaniline  29  with 
methyl acetates in the presence of a base (Scheme  9 ) [ 18 ]. The lithium reagents, 
generated from methylketones, phenylacetylene and substituted acetonitriles, were 
allowed to react with 2-trifl uoromethylaniline  29  to give the corresponding 
4- fl uoroquinolines  31, 32  (Scheme  12 ) [ 8 ,  19 – 21 ].

   Trifl uorovinyl lithium (prepared from 1,1,1,2-tetrafl uoroethane) was allowed to 
react with 2-trifl uoromethylaniline  29  at −78 °C to give 1,2,3-trifl uoroquinoline  33a  
in moderate to good yield. In a similar cyclization with aniline  29  1-chloro-2,2- 
difl uorovinyl lithium (prepared from 1-chloro-2,2,2-trifl uoroethane) afforded 
2-chloro-1,3-difl uoroquinoline  32b  (Scheme  13 ) [ 22 ].
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   The reaction of 2-amino-6-fl uorobenzonitrile  34  with ethyl 6-(4-methylpipe- 
razinyl)-1H-benzimidazolyl acetate takes place in the presence of  bis- (trimethylsilyl)
amide, thus resulting in the formation of quinolin-2-one  35  (Scheme  14 ) [ 23 ].
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  Scheme 13    Synthesis of 2,4-difl uoroquinoline  33        
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  Scheme 14    Synthesis of quinolin-2-one  35        

   The synthesis of 6,7-difl uoro-3-nitro-4-hydroxy-2-quinolone  40  and 2,3,4-
trichloro-6,7-difl uoroquinolone  41  from 4,5-difl uoro-2-nitrobenzoic acid  36a  is 
shown in Scheme  15 . Diester  37  has been transformed smoothly into 4-hydroxy- 
quinolone  38a  due to reductive cyclization proceeding in basic media in the pres-
ence of sodium borohydride. Diethyl 4,5-difl uoro-2-nitrobenzoyl malonate  37  on 
treatment with  p -toluolsulfonic acid affords ethyl 3,4-difl uoro-2-nitrobenzoyl 
acetate  39 . Reductive cyclization of  39  was shown to take place in case of catalytic 
hydrogenation of the nitro group on Pd/C in ethanol, thus enabling one to obtain 
6,7-difl uoro-4- hydroxyquinolin-2( 1H )-one  38b  in high yield. Decarboxylation of 
 38a  also affords 4-hydroxyquinolin-2( 1H )-one  38b . Compound  38b  can be nitrated 
into derivative  40 , followed by treatment of the latter with POCl 3  to form quinoline 
 41  [ 24 ]. In addition to condensation process, the reaction of  36b  with α,β-unsaturated 
esters (dimethyl fumarate and diethyl maleate) is accompanied by participation of 
the nitro group and desulfonisation leading to  42a ; fi nally displacement of fl uorine 
atom and reduction of the N-oxide moiety afford a mixture of  42b  and  42b  in the 
ratio 1:2 [ 25 ].
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   A convenient synthetic route to 3-fl uoroquinolines  44  which exploits the 
organosilane-promoted Friedlander reaction of aromatic α-fl uoroketones  43  has 
been suggested (Scheme  16 ) [ 26 ].
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  Scheme 15    Synthesis of 2,3,4-trichloroquinoline  41        

   To obtain quinolines bearing fl uorine atoms in the pyridine ring,  cyclizations of 
fl uorinated ortho-vinylphenylnitriles and isonitriles  proved to be an effective 
approach. Indeed, 3-fl uoroquinolines  48a–d  have been obtained by cyclocondensation 
of organometallic reagents with 2-(2,2-difl uorovinyl)phenyl substituted isonitriles 
 47  (Scheme  17 ). 2-(2,2-Difl uorovinyl)anilines  45 , derived from the reaction of 
2,2,2-trifl uoroethyl tosylate, butyl magnesium salt of 2-iodoaniline, butyl lithium 
and trialkylborane, have been transformed into isonitriles  47  [ 27 ,  28 ].
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   2,4-Disubstituted 3-fl uoroquinolines  49  and 4,4′-disubstituted 3,3′-difl uoro-
2,2′-bisquinolines  50  have been obtained from  ortho -isocyano substituted  β,β -
difl uorostyrenes  47  through their reduction with tributylstannyl lithium, and 
intra-molecular arrack at the carbon of the isocyano group (Scheme  18 ) [ 29 ]. It is 
interesting to note that when compound  47  is added to a solution of n-Bu 3 SnLi only 
quinoline  49  is formed, while the opposite order of mixing of reactants leads to 
bisquinoline  50  as the main product.
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  Scheme 17    Synthesis of 3-fl uoroquinolines  48        
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  Scheme 18    Synthesis of 3-fl uoroquinolines  49        

   The intramolecular cyclization takes place on treatment of  ortho -alkynyl substi-
tuted aryl isocyanides  51  with tetrabutyl ammonium fl uoride affording the corres-
ponding 2-fl uorinated quinolines  52  in good to excellent yields (Scheme  19 ) [ 30 ].
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  Scheme 19    Synthesis of 2-fl uoroquinolines  52        

   2-Benzylthio-3-cyanoquinolines bearing fl uorine atom in position 4 have been 
obtained on heating of functionalized N-vinyl anilines  53 ; the latter are prepared by 
condensation of the corresponding α-fl uorine-containing vinyl sulfi des with ani-
lines (Scheme  20 ) [ 31 ]. Alkaline hydrolysis of the reaction products afforded the 
corresponding 3-cyanoquinolin-4-ones  54 .
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   The intramolecular cyclization takes place smoothly in the 6- endo-trig  fashion 
on treatment with a base (sodium hydride or triethylamine) of  N -[ ortho- (3,3- 
difl uoroallyl)phenyl] substituted  p- toluenesulfonamides  55 . As a result 2-fl uoro-
quinolines  56  are formed in high yields (Scheme  21 ) [ 32 ].
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  Scheme 20    Condensation of α-fl uorine-containing vinyl sulfi des with anilines       
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  Scheme 22    Synthesis of 3-fl uoroquinolines  59 ,  60        
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  Scheme 21    Synthesis of 2-fl uoroquinoline  56        

   Intramolecular cyclization of  ortho -cyanomethylamino- β,β -difl uorostyrenes  57  
and  58  have been observed to occur in the presence of K 2 CO 3  or NaH to afford 
2-substituted 3-fl uoroquinolines  59, 60  (Scheme  22 ) [ 33 ,  34 ].
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   Also 2,3,4,5,6-pentafl uorophenyl substituted chalcones  61  undergo the intra- 
molecular cyclization into 5,6,7,8-tetrafl uoroquinolines  62  on treatment with 
ammonium acetate in acetic acid (Scheme  23 ) [ 35 ].
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  Scheme 24    Reactions of 5-fl uoroisatines  63        
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  Scheme 23    Synthesis of 5,6,7,8-tetrafl uoroquinolines  62        

    Fluorinated isatines  appear to be important intermediates in the synthesis of 
fl uoroquinolines. Indeed, 2-aryl- and 2-heteryl substituted derivatives  64, 65  were 
obtained from 5-fl uoroisatines  63  (Scheme  24 ) [ 36 ].

    Nucleophilic displacement of chlorine atoms with the fl uoride ion  is undoubt-
edly one of the most common methods to obtain fl uorinated quinolines from their 
chloro analogues. For instance, treatment of perchloroquinoline with cesium 
fl uoride in DMSO at 100° has resulted in a mixture of 2-fl uoro-3,4,5,6,7,8- 
hexachloroquinoline, 4-fluoro-2,3,5,6,7,8-hexachloroquinoline, 4,5-difluoro-
2,3,6,7,8-pentachloroquinoline and 2,4-difl uoro-3,5,6,7,8-penta- chloroquinoline. 
In similar way 3,5,6,7,8-pentachloroquinoline was transformed into a mixture of 
5-fl uoro-3,6,7,8-tetrachloroquinoline, 7-fl uoro-3,5,6,8- tetrachloroquinoline, 6,7-difl uoro-
3,5,8-trichloroquinoline and 5,7-difl uoro-3,6,8- trichloroquinoline. Nucleophilic 
fl uoro-dechlorination of 5,6,7,8-tetrachloroquinoline gave a mixture of 
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7-fl uoro-5,6,8-trichloroquinoline, 5-fl uoro-6,7,8- trichloroquinoline and 6,7-difl u-
oro-5,8-dichloroquinoline, while 7-fl uoro-4-chloroquinoline was obtained as the 
only product from 4,7-dichloroquinoline [ 37 ]. Also 5-fl uoro-6- methoxy-8-
nitroquinoline  66  was obtained by replacement of chlorine atom in 5-chloro-6-me-
thoxy-8-nitroquinoline (Scheme  25 ) [ 9 ], and potassium fl uoride proved to be an 
appropriate reagent to cause full transformation of heptachloroquinoline  67  into 
heptafl uoroquinoline  68  (Scheme  25 ) [ 38 ].
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  Scheme 26    Synthesis of 3,7-difl uoroquinoline  69        
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  Scheme 25    Nucleophilic displacement of chlorine atoms with the fl uoride ion       

   Heating of 4-chloroquinolines with potassium fl uoride (tetrabutylphosphonium 
fl uoride) in DMSO affords only low yields of the corresponding 4-fl uoro com-
pounds [ 39 ,  40 ], however use of microwave irradiation (300 W) results in the 
formation of 2-fl uoroquinolines from 2-chloroquinolines in 60–62 % yields [ 41 ]. 

  Replacement of the diaza group with the fl uoride ion,  the method which is 
widely used in heterocyclic chemistry, has also found its application to obtain fl uo-
roquinolines, as illustrated, for instance, by the syntheses of 3-fl uoroquinoline from 
3-aminoquinoline [ 42 ] and 3,5-difl uoroquinoline from 3-fl uoro-5-aminoquinoline, 
respectively [ 43 ]. 3,7-Difl uoro-6-methoxyquinoline  69 , one of the key intermedi-
ates for the synthesis of antibacterial agents, has been obtained by the reaction of 
3-amino-7-fl uoro-6-methoxyquinoline with sodium nitrite in the presence of hydro-
gen borotetrafl uoride (Scheme  26 ) [ 44 ].
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    Replacement of other groups with the fl uoride ion  can be illustrated by the 
palladium-catalyzed C-F bond formation affording a number of 4-fl uoro-quino-
lines  70  from the corresponding 4-susbstituted quinolines bearing OTf group 
(Scheme  27 ) [ 45 ].
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  Scheme 27    Synthesis of 4-fl uoroquinoline  70        
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  Scheme 28    The direct fl uorination of quinolines       

    The direct fl uorination  of quinolines has a limited use since a low selectivity of 
the reaction, and also due to technological and ecological diffi culties. However, 
there are several examples of selective syntheses of monofl uorinated quinolines. 
For instance, 2-fl uoroquinolines  72  were obtained by interacting quinoline  71  with 
elementary fl uorine in the presence of I 2  [ 46 ], yields proved to be in the range 
of 54–93 %, ratio I 2 -quinoline  71  was 1:1, and ratio F 2 -quinoline  71  was 2:1 
(Scheme  28 ). To obtain 2-fl uoro-4-chloroquinoline and 2-fl uoro-4,7-dichloroquino-
line the reaction was carried out in the presence of triethylamine.

   Also direct fl uorination of quinoline  71a  under acidic conditions has been 
reported [ 47 ,  48 ]. Electrophilic substitution in the series of quinolines proceeds not 
selectively, therefore a mixture of 5-fl uoroquinoline ,  6-fl uoroquinoline, 
8- fl uoroquinoline and 5,8-difl uoroquinoline is formed. 6-Methoxyquinoline was 
shown to undergo direct fl uorination at the position 5, and 5,5-difl uoroquinolin- 6-
one was isolated in addition to the main 5-fl uoro-6-methoxy compound [ 48 ]. 
5-Fluoro-6-methoxy-8-nitroquinoline was obtained by the reaction of 6-methoxy- 8-
nitroquinoline with N-fl uorobenzolsulphonamide [ 9 ] .  

  Other methods  .  An unusual example of the synthesis of 3-fl uoroquinoline sys-
tem  74  through annelation of the benzene ring has been reported to occur in the 
Rh(III)-catalyzed oxidative condensation of 3-fl uoropyridine  73  with two molecules 
of diphenyl acetylene [ 49 ] (Scheme  29 ).
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   Stereoselective multi-steps synthesis of fl uorinated 2,3-dihydroquinolin-4(1H)-
ones proceeding as a one-pot transformation has been described [ 50 ]. The 
Ts-protected  β -(2-anilino)- β -ketoesters  75  are capable of reacting with a variety of 
aldehydes under mild conditions to form fl uorinated quinolines  76  in good yields 
(up to 98 %) and high diastereo selectivities ( dr  up to 99:1) (Scheme  30 ). The com-
pounds  76  are considered as versatile synthetic intermediates, and, indeed, they can 
be transformed into functionalized heterocyclic derivatives. For example, decarbox-
ylation of compounds  76  results in the formation of 3-fl uoroquinolines  77 , while 
reduction with NaBH 4  affords  α -fl uoro- β -hydroxy esters  78 .
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  Scheme 29    Synthesis of 3-fl uoroquinoline  74        
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  Scheme 30    Formation of compounds  77 ,  78        

   2-Phenyl-6-fl uoroquinoline  80  has been obtained through the cycloaddition reac-
tion of bicyclo[2.2.1]heptadiene on 1,2,4-benzotriazine  79 , taking place under high 
pressure conditions (Scheme  31 ) [ 51 ].
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   Ring transformation of the thiazepine ring in compound  81  bearing fl uorine atom 
and perfl uoroalkyl substituent into the pyridine one enabled to obtain the corres-
ponding 3-fl uoroquinoline derivative  82  (Scheme  32 ) [ 52 ].
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  Scheme 31    Transformation of benzotriazine  79  into quinolone  80        
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  Scheme 32    Synthesis of 3-fl uoroquinoline  82        

   Synthetic methods leading to  quinolines bearing the trifl uoromethyl group  in 
the benzene ring are similar in many respects to those which are applied in the 
chemistry of fl uoroquinolines, containing fl uorine atoms in the benzene ring. As for 
quinolines containing the trifl uoromethyl group in the pyridine ring, this series of 
fl uorinated quinolines has been discussed in detail in the book [ 53 ]. Some recent 
examples are given below. 

 Various synthetic approaches to  2-(trifl uoromethyl)quinolines  are based on use 
of the trifl uoromethyl-containing reagents. In particular, 2-aminoaryl aldehydes 
(ketones) or  ortho -vinyl substituted anilines are appropriate starting materials to be 
condensed with readily available trifl uoromethyl 1,3-diketones or aldehyde hydrates 
respectively. For instance, the regioselective Friedlaender reaction of unsymmetrical 
trifl uoromethyl 1,3-diketones with 2-aminoaryl aldehydes appears to be an effi cient 
way to 2-trifl uoromethylquinolines  83a  and  83b  (Scheme  33 ) [ 54 ].
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   The acid-catalyzed condensation of anilines with ethyl 4,4,4-trifl uoro acetoace-
tate affords 1,4-dihydro-2-trifl uoromethyl-4H-4-quinolinones, which can easily be 
converted into 4-bromo-2-(trifl uoromethyl)quinolines (Scheme  34 ) [ 55 ].
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  Scheme 34    Synthesis of 2-(trifl uoromethyl)quinolones  85        
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  Scheme 35    Synthesis of 2-(trifl uoromethyl)quinolone  88        
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  Scheme 36    Synthesis of 2-(trifl uoromethyl)quinolones  90        

   Also 2-(trifl uoro-methyl)-4-methylquinoline  88  has been obtained through inter-
mediacy of the corresponding imine derived from the reaction of  ortho -vinylaniline 
 86  with perfl uorinated carbonyl compounds taken in the forms of semiacetals or 
aldehyde hydrates (Scheme  35 ) [ 56 ].

   Cyclizations of alkynyl derivatives proved to be a synthetically convenient way 
to 2-(trifl uoromethyl)quinolines. Indeed, the intramolecular cyclization of N-(α- 
trifl uoromethyl)propargyl anilines  89  takes place with the gold(I) catalyst under 
extremely mild conditions to afford 2-trifl uoromethylquinolines  90  (Scheme  36 ). 
The reaction mechanism has been suggested to involve cyclization and oxidation 
steps [ 57 ].

   Also the indium(III)-catalyzed Diels-Alder reaction of N-aryl trifl uoroethyl- 
imine  91  with a variety of readily available alkynes affords the corresponding 
2-trifl uoromethyl- 4-arylquinolines  92  (Scheme  37 ) [ 58 ].
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   Rapid method to prepare 3,4-disubstituted 2-trifl uoromethylquinolines  94  by a 
palladium catalyzed tandem Sonogashira-alkyne carbocyclization of β-trifl uoro- 
methyl β-enaminoketones  93  with arynes has been suggested (Scheme  38 ) [ 59 ].
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  Scheme 38    Synthesis of 2-(trifl uoromethyl)quinolones  94        
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  Scheme 37    Synthesis of 2-(trifl uoromethyl)quinolones  92        
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  Scheme 39    Synthesis of 2-(trifl uoromethyl)quinolones  95        

   4-Chloro-2-trifl uoromethyl quinolines  95  can be obtained from the correspond-
ing N-aryl trifl uoroacetimidoyl chlorides through the Rh(I)-catalyzed intramolecu-
lar cyclizations with the alkyne moieties (Scheme  39 ) [ 60 ,  61 ].

   Treatment of ethyl 2,2-dihydrotrifl uoropropionate with aromatic amines in ace-
tonitrile at 70 °C in the presence of triethylamine affords a mixture of the corre-
sponding enamines and imines, which undergoes cyclization on heating in 
polyphosphoric acid (PPA) at 170 °C to give 2-trifl uoromethyl-4-hydroxyquinoline 
in a good yield (Scheme  40 ) [ 62 ].
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   2-Trifl uoromethylquinolines  98  were obtained by condensation of arylamines 
with fl uoroalkyl gem-iodoacetoxy derivative, and the intermediate 1,5-diaryl-2- 
trifl uoromethyl-1,5-diazapentadiene  97  was isolated (Scheme  41 ) [ 63 ]. Use 
of 3- trifl oxy-3-trifl uoromethyl propeniminium trifl ate for the synthesis of 
2- trifl uoromethylquinolines  90  has been discussed (Scheme  42 ) [ 64 ].
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  Scheme 40    Synthesis of 2-(trifl uoromethyl)quinolones  96        
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  Scheme 42    Synthesis of 2-(trifl uoromethyl)quinolones  90        
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  Scheme 41    Synthesis of 2-(trifl uoromethyl)quinolones  98        
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    A three-step procedure for direct trifl uoromethylation of quinolines by using the 
oxidative version of nucleophilic substitution of hydrogen in the pyridine ring by 
CF 3  −  carbanion has recently been advanced (Scheme  43 ) [ 65 ]. The initial step in this 
process is addition of the CF 3  −  carbanion (generated from Me 3 SiCF 3  on treatment 
with KF in the presence of Ph 3 SnF as a catalyst), to N-alkylquinolinium salts, result-
ing in relatively stable 2-trifl uoromethyl-1,2-dihydroquinolines. Deprotection of the 
N- para -methoxybenzyl substituent and aromatization of the dihydropyridine ring 
on treatment with CAN [cerium(IV)ammonium nitrate] provides quinolines bearing 
CF 3  group in position 2.
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  Scheme 44    Synthesis of 4-(trifl uoromethyl)quinolones  99        
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  Scheme 43    Another approach to 2-(trifl uoromethyl)quinolones  90        

   The trifl uoromethylation of 4-iodo-7-chloroquinoline by action of trifl uoro- 
methylcopper(I)phenanthroline complex represents a modern way to 4-trifl uoro- 
methyl-7-chloroquinoline  99a  (Scheme  44 ) [ 66 ]. 4-Trifl uoromethyl substituted 
3-aminoquinolines  99b  have also been obtained by the reaction of 3- aminoquinoline 
with trifl uoroiodomethane-zinc-sulfur dioxide system (Scheme  44 ) [ 67 ].

   A series of highly substituted 2-trifl uoromethyl-3-iodoquinolines  100  have been 
prepared in good to excellent yields under rather mild reaction conditions according 
to the method which involves iodocyclization of trifl uoromethyl propargyl imines 
with I 2 -CAN or I 2  and ICl. The starting trifl uoromethyl propargyl amines can be 
obtained by means of the Sonogashira cross-coupling reaction of the corresponding 
readily accessible imidoyl iodides with alkynes followed by reduction with 
NaBH 3 CN (Scheme  45 ) [ 68 ].
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  Scheme 45    Synthesis of 2-(trifl uoromethyl)quinolones  100        
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   During the last decade the metal-catalyzed cross-coupling reactions proved to be 
one of the main methods for obtaining of  3-(trifl uoromethyl)quinolines . For instance, 
the copper-catalyzed oxidative trifl uoromethylation [Me 3 SiCF 3 , cat. Cu(OTf) 2 ] of 
quinolin-3-boronic acid results in the formation of quinoline  101  in 49 % yield 
(Scheme  46 ) [ 69 ]. Trifl uoromethylation of quinolin-3-boronic acid with CF 3 I leads to 
the same compound  101  in 67 % yield, as it has recently been described [ 70 ]. The 
ligand-free trifl uoromethylation of quinolin3-boronic acid in the presence of the cata-
lytic system [Ph 2 SCF 3 ] + [OTf] − /Cu(0) provides 75 % yield of compound  101  [ 71 ], 
while the copper-catalyzed trifl uoromethylation of  100  with the Togni’s reagent 
results in 3-trifl uoromethylquinoline  101  in 53 % yield [ 72 ]. Also the ligand-free cop-
per-catalyzed decarboxylative trifl uoromethylation of 3- iodoquinoline with sodium 
trifl uoroacetate using Ag 2 O as a promoter has been reported (Scheme  46 ) [ 73 ].
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  Scheme 46    Synthesis of 3-(trifl uoromethyl)quinolone  101a        

   2-Chloro- and 4-chloro-3-(trifl uoromethyl)-quinolines were obtained from the 
corresponding iodoquinolines by action of Me 3 SiCF 3  (Scheme  47 ) [ 74 ].
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  Scheme 48    Synthesis of 3-(trifl uoromethyl)quinolone  101e        
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  Scheme 47    Synthesis of 3-(trifl uoromethyl)quinolone  101b-d        

   The reaction of 3-iodo-5-fl uoro-8-chloroquinoline with CF 3 SiH 3 , KF, and CuI 
proceeds rather smoothly in 1-methyl-pyrrolidin-2-one, leading to the formation of 
3-trifl uoromethyl-5-fl uoro-8-chloroquinoline  101e  in 41 % yield (Scheme  48 ) [ 43 ].
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   2-Propyl-3-iodoquinoline has been transformed into 2-propyl-3-(trifl uoromethyl)
quinoline by action of ClCF 2 CO 2 Me, CuI, and KF on refl ux in DMF [ 75 ]. An inter-
esting example of highly selective trifl uoromethylation of 6-methylquinoline by 
means of the iridium-catalyzed reaction is presented in Scheme  49  [ 76 ].
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  Scheme 52    Synthesis of 4-(trifl uoromethyl)quinoline  108        
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  Scheme 51    Synthesis of 3-(trifl uoromethyl)quinoline  106        
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  Scheme 50    Synthesis of 2-amino-3-(trifl uoromethyl)quinoline  103        
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  Scheme 49    Synthesis of 3-(trifl uoromethyl)quinolone  102        

   Another approach to 3-(trifl uoromethyl)quinolines is based on cyclizations of 
trifl uoromethyl-containing intermediates, as illustrated, for instance, by the synthesis 
of 2-amino-3-(trifl uoromethyl)quinoline  103  by means of the Leimgruber- Batcho 
reaction (Scheme  50 ) [ 77 ].

   The reaction of perfl uoro-2-methylpent-2-ene  105  with 4-fl uoroaniline in the 
presence of Et 3 N illustrates one more approach to 3-trifl uoromethylquinoline deri-
vatives, in particular to the compound  106  (Scheme  51 ) [ 78 ].

   The synthesis of  4-(trifl uoromethyl)quinolines   108  can be realized through the 
cyclocondensation of oxotrifl uoroalkenyl anilines  107  (Scheme  52 ) [ 79 ,  80 ].

 

 

 

 

G.N. Lipunova et al.



81

   One-pot conversion of pentafl uoropropen-2-ol into quinolines  109  involves the 
sequence of the Mannich addition to aromatic aldimines followed by the Friedel- 
Crafts cyclization and aromatization (Scheme  53 ) [ 81 ].
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  Scheme 53    Synthesis of 4-(trifl uoromethyl)quinoline  109        

   The proline-catalyzed Friedlander reaction has been used for the synthesis of 
2-substituted 4-trifl uoromethyl quinolines  110  (Scheme  54 ) [ 82 ]. Compounds  110  
have also been obtained through the Zn(II)-mediated alkynylation-cyclization of 
 o -trifl uoroacetyl anilines (Scheme  54 ) [ 83 ].

N R

110

R'

90-98%

O

R
proline (30 mol-%)

DMSO

NH2

CF3

O

R'
or

R
ZnCl2, NEt3

CF3

  Scheme 54    Synthesis of 4-(trifl uoromethyl)quinolines  110        

   Condensation of anilines with ethyl 4,4,4-trifl uoroacetoacetate have been estab-
lished to give the corresponding 4,4,4-trifl uoro-3-oxobutane substituted anilides, 
precursors in the synthesis of 4-(trifl uoro-methyl)-2-quinolinones  111  [ 84 ]. Heating 
of these compounds with phosphoryl tribromide affords 2-bromo-4-(trifl uoro- 
methyl)quinolines which can be converted into 4-(trifl uoromethyl) quinolines  110  
by reductive debromination (Scheme  55 ) [ 85 ].
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  Scheme 55    Another approach to 4-(trifl uoromethyl)quinolines  110        
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   4-Fluoroalkyl-2-quinolinols  113  were obtained regioselectively in moderate 
to good yields by acid-assisted intramolecular ring-closure reaction of the 
corresponding N-aryl-3-oxa-polyfl uoroalkanamides  112  prepared from 
2,2- dihydropolyfl uoroalkanoic acids (Scheme  56 ) [ 86 ].
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  Scheme 56    Synthesis of 4-(trifl uoromethyl)quinolines  113        

   New approaches to  annelated quinolines  have also been developed, as illus-
trated by the synthesis of fl uorinated tetrahydroquinoline  115  through the radical 
cyclization of thioamide  114b  by action of 4 equivalents (Me 3 Si) 3 SiH in benzene on 
irradiation with UV light. Tioamide  114b  is easily accessible through thionation of 
amide  114a  with Louwesson’s reagent (Scheme  57 ) [ 87 ].
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  Scheme 57    Synthesis of compound  115        

   A number of fl uorinated azolo[ b ]quinolines  117  have been obtained by cyclo- 
condensation of  оrtho -chlorobenzaldehyde  116  with 5-amino-1,2-azoles 
(Scheme  58 ) [ 88 ].
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  Scheme 58    Condensation of  116  with 5-amino-1,2-azoles       

   Tricyclic system of benzo[ f ][1,7]naphthyridone  120  was obtained through the 
Gould-Jacobs cyclization of enamine  119 , derived from 3-amino-6,8-difl uoro- 7-
chloroquinoline  118  and diethyl ethoxymethylene malonate. The cyclization was 
carried out in diphenyl ether at 240 °C, providing a good yield of compound  120  
(Scheme  59 ) [ 89 ].
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   The Pd/C-Cu catalyzed coupling of 3-iodo-1H-6-fl uoroquinolin-4-ones  121  with 
the series of terminal alkynes proceeds regioselectively and results in the formation 
of furo[3,2- c ]quinolines  122  in high yields (Scheme  60 ). 3-Alkynyl-quinolines  123  
were isolated in those cases where the NH hydrogen in the starting 3-iodo-1H- 
quinolin-4-one  121  was replaced with the methyl group [ 90 ].
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  Scheme 60    Synthesis of compounds  122 ,  123        
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  Scheme 59    Synthesis of compound  120        

   The action of dimethylacetylenedicarboxylate (DMAD) on lithium salt of 
2,3,4,5,7,8-hexafl uoro-4-quinolinthiole  124  leads to 74 % of 4,6,7,8,9-pentafl uoro-
thieno[3,2- c ]quinoline  125  and 13 % dimethyl 1-(2,3,5,6,7,8-hexafl uoro-4-quinolyl-
thio)ethen-1,2-dicarboxylate (Scheme  61 ) [ 91 ].
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    The structure  of fl uorine-containing quinolines has been elucidated in crys-
tals and solutions. The data on X-ray crystallography analysis of a number of 
mono- and difl uoroquinolines are available in the literature [ 47 ,  92 ]. In order to 
elucidate the phenomenon of π-stacking for polyfl uoroaromatic rings the X-ray 
studies of some polifl uoroquinolines have been carried out [ 93 ]. Main types of 
internal motives in organisation of these systems appear to be associated with 
π…π polyfl uoroarene…poly-fl uoroarene, polyfl uoroarene…heteroarene, hetero-
arene…heteroarene interactions. 

 Fluorinated quinolines have been studied in detail by calculation methods. In 
particular, the quantum-chemical calculations of the series of difl uoroquinolines 
have recently been performed [ 94 ]. The negative charge of the nitrogen atom 
extends also on fl uorine atoms, because the nitrogen atom exhibits both σ- and 
π-electron withdrawing nature, while a fl uorine atom is a strong σ-acceptor, but at 
the same it has a π-donative character. Charges on carbon atoms of the pyridine ring 
are in accordance with π-electron withdrawing effect of the nitrogen atom. Non- 
substituted carbon atoms of the benzene ring are charged negatively due to π-electron 
donating effect of fl uorine atoms. 5,7-Difl uoroquinoline has the lowest energy due 
to the fact that π-electron donating fl uorine atoms are conjugated to the nitrogen 
atom. 6,8-Difl uoroquinoline has a little higher energy, since the arrangement of 
fl uorine atoms in this compound is similar to 5,7-difl uoroquinoline, however both 
fl uorine atoms aren’t conjugated to the pyridine nitrogen atom. Besides that, a nega-
tive charge on nitrogen atom in 5,7-difl uoriquinoline exceeds that in 
6,8- difl uoroquinoline. 6,7-Difl uoroquinoline and 5,8-difl uoroquinoline have a 
higher energy, than 5,7-difl uoroquinoline and 6,8-difl uoroquinoline, since effects of 
two  meta -orientated fl uorine atoms are in accord with each other. 

  1 H,  13 C and  19 F NMR spectra for the series of fl uoroquinolines have been anal-
ysed. Incorporation of a fl uorine into the pyridine ring of quinolines proved to cause 
the same changes in chemical shifts of signals, as in case of pyridine. Indeed, proton 
H 3  in 2-fl uoroquinoline resonates in a higher fi eld relative to the parent quinoline, 
while proton H 4  – in a lower fi eld. Incorporation of fl uorine into the benzene ring of 
quinolines results in upfi eld shifts for the resonance signals of H 6 , H 7 , H 8  of 
5-fl uoroquinoline and for H 5 , H 7  signals in case of 8-fl uoroquinoline (Fig.  1 ) [ 95 ]. 
It should be noted that coupling constant values  4  J (H 4 ,F) proved to exceed  3  J (H 3 ,F). 
Also  1 H NMR characteristics for quinolines bearing one or two fl uorine atoms in the 
benzene ring have been established [ 47 ,  94 ].

   The main features of the  13 C NMR spectra of 2-fl uoroquinolines associated with 
the presence of a fl uorine atom are similar to those of 2-fl uoropyridines. Incorporation 
of a fl uorine atom into positions 5 or 8 of the benzene ring results in upfi eld shifts 
of C 6 -C 8  (or C 5 -C 7 ) carbon resonances; the biggest shift value is observed for the C 6  
signal in case of 5-fl uoroquinoline and for C 7  resonance signal of 8-fl uoroquinoline 
(Fig.  1 ) [ 94 ]. The data of  13 C NMR spectroscopy for fl uoroquinolines with fl uorine 
atoms in the benzene ring are well presented [ 47 ]. 

 The resonance signal in the  19 F NMR spectrum of 2-fl uoroquinoline (−63 ppm) 
is shifted down fi eld relative to that for 2-fl uoropyridine (−68 ppm). Downfi eld 
shifts in the  19 F NMR spectra of 2-fl uoroquinolines, containing in the pyridine or 
benzene rings chloro, bromo, or trifl uoromethyl substituents are even bigger [ 46 ]. 
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The selected spectral  19 F NMR data for quinolines bearing one and two fl uorine 
atoms in the benzene ring are given in Fig.  2  [ 47 ,  94 ]. These data illustrate mutual 
effects of fl uorine atoms.

   In the  19 F NMR spectrum of perfl uoroquinoline the F 2  signal is observed in the 
weakest fi eld; while coupling constants for fl uorine atoms in the  peri -position to 
each other have the biggest values. Also, the data of  19 F NMR spectroscopy are 
available for fl uoroquinolines, bearing phosphorus groups in the benzene ring, and 
for 2-substituted quinolines with fl uorine atoms in the benzene ring [ 92 ].  

3     Chemical Properties 

 The quinoline system is of interest as an important building-block for the whole 
number of biologically active compounds; therefore development of new synthetic 
routes to fl uorinated quinolines, capable of various transformations is a key task of 
heterocyclic chemistry. One of the most common approaches to functionalization of 
fl uoroquinolines is based on their reactions with nucleophiles. In particular, 
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 nucleophilic replacement of fl uorine atoms  with a variety of nucleophiles is of 
signifi cant importance for synthetic use. 

 Systematic study on the problem of regioselectivity in the reactions of 6-X-5,7,8- 
trifl uoroquinolines with nucleophiles has been carried out [ 92 – 96 ]. Depending on 
the nature of nucleophilic reagents either displacement of fl uorine atoms takes place 
or competitive nucleophilic attack at position 2 and C-F bonds of the benzene ring 
has been shown to occur. Indeed, the reaction of 6-H-trifl uoromethyl-5,7,8- 
trifl uoroquinolines  126  (X=F, CF 3 )  with rigid nucleophiles – organometal com-
pounds RM  (MeLi, n-BuLi, PhLi and PhMgBr), followed by treatment with 
hydrochloric acid results in the formation of products of nucleophilic addition  128 . 
Compounds  128  are oxidized into 2-substituted 6-H-trifl uoroquinolines  129  in high 
yields (75–90 %) using air oxygen or MnO 2  (Scheme  62 ) [ 92 ].
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  Scheme 62    Reaction of quinolines  126  with organometal compounds RM       

   In addition to nucleophilic substitution of hydrogen in  126 , as the main route of 
the reaction (leading to the S N  H  products  129 ) [ 97 – 100 ], the second reaction path-
way associated with substitution of fl uorine atoms can be realized, especially with 
PhLi as nucleophilic reagent. Authors [ 92 ] reported that according to chromato- 
mass spectrometry data product, in which one fl uorine atom is replaced by phenyl 
group, was detected in reaction mixture. 

 Interaction of polyfl uoroquinolines with  O-nucleophiles  is illustrated by the 
reaction of 5,6,7,8-tetrafl uoroquinoline  130  with sodium methoxide (Scheme  63 ) 
[ 92 ]. When the reaction was carried out in methanol, a mixture of 7-methoxy- and 
6-methoxy derivatives  131  and  132  in the ratio 6:1 was obtained, while an excess of 
sodium methoxide provides a full conversion of both compounds,  131  and  132,  into 
6,7-dimethoxy-5,8-difl uoroquinoline  133 . The reaction of 5,6,7,8-tetrafl uoro- 
quinoline with sodium methoxide in the ratio 1:1.25, 1:1, or 1:0.5 has been estab-
lished to afford 7-methoxy derivative  131  as the only product.
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   Treatment of 5,7-difl uoroquinoline with sodium methoxide in liquid ammonia at 
218–240 K results in a mixture of 5-methoxy-7-fl uoroquinoline and 5-fl uoro-7- 
methoxyquinoline. In a similar reaction of 6,7-difl uoroquinoline 6-fl uoro-7- 
methoxyquinoline and 6-methoxy-7-fl uoroquinoline have been isolated. It is 
interesting to note that the reaction of 6,8-difl uoroquinoline with sodium meth-
oxide in liquid ammonia provides only 6-fl uoro-8-methoxy derivative, while 
5,8- difl uoroquinoline doesn’t react at all under the same reaction conditions. In case 
the reaction of 5,8-difl uoroquinoline with sodium methoxide was carried out in 
DMSO at 298–378 K a mixture of 5-methoxy-8-fl uoroquinoline and 5-fl uoro-8- 
methoxyquinoline was isolated [ 95 ]. 

  N-Nucleophiles  (aqueous ammonia, piperidine, N 2 H 4 –H 2 O in dioxane or sodium 
amide in liquid ammonia) react with 2-substituted 5,6,7,8-tetrafl uoroqui-nolines 
 134  to form amino-defl uorination products with substitution of F 6  and F 7  atoms  135  
and  136  in the ratio from 5:1 to 3:1 (Scheme  64 ) [ 96 ,  101 ]. Interaction of 
N-nucleophiles with 2- or 4-methylsubstituted 5,6,7,8-tetrafl uoroquinolines proceeds 
in a similar way.
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  Scheme 64    Amino-defl uorination reactions of 5,6,7,8-tetrafl uoroquinolines       

   Amination of 5,7-difl uoro- and 5,7,8-trifl uoroquinoline, 5,7-difl uoro-8-chloro-
quinoline and 6-trifl uoromethyl-5,7,8-trifl uoroquinoline leads to the formation of 
rather complicated mixtures of monoaminoquinolines [ 101 ]. The reaction of hepta-
fl uoroquinoline with  S-nucleophiles  (HS − , PhS − , MeS − , PrS −  и BuS) −  is very indicative, 
since it demonstrates a high regioselectivity, resulting in displacement of halogen at 
the position 4 [ 102 ]. 

 When 5,6,7,8-tetrafl uoroquinoline  130  reacts with P(As)-nucleophiles a mixture of 
two products is formed due to displacement of fl uorine atoms at positions 6 and 7 
[ 92 ]. Indeed, treatment of  130  with Me 2 PSiMe 3  in benzene at 50 °C for 6 h gave 
7-dimethylphosphano-5,6,8- and 6-dimethyl-phosphano-5,7,8-trifl uoroquino-lines 
 137  and  138  in the ratio 4:1 (Scheme  65 ). The feature of the reaction of  130  with 
Me 2 AsSiMe 3  is that, in addition to the expected arsines  139  and  140 , defl uorination 
products  141  and  142  have been isolated. Preferable replacement of fl uorine atoms in 
6 and 7 positions indicates that, besides the ring nitrogen atom, the cooperative effect 
of four fl uorine atoms plays an important role in stabilization of the intermediate 
σ-complex. Treatment of 6-trifl uoromethyl-5,7,8-trifl uoroquinoline or 5,7,8-trifl uoro-
quinoline with Me 2 PSiMe 3  resulted in the mixture of 7-, 5-, and 8-dimethylphosphano 
derivatives, while 7-dimethyl-phosphano-5,8- difl uoroquinolines were transformed 
into 7,8-bis(dimethylphosphano)-5- fl uoroquinoline [ 92 ].
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    Cross-coupling reactions  of fl uoroquinolines is also an important synthetic 
tool to modify the structure of quinolines. Indeed, 3-fl uoroquinolines proved to be 
useful intermediates in the synthesis of 3-substituted quinolines through nickel-
catalyzed cross-coupling reactions [ 103 ]. For instance, 3-fl uoroquinoline  143  can 
be transformed into 3-phenylquinoline  144  on treatment with phenyl-magnesium 
bromide in the presence of (1,2- bis- diphenylphosphoethane)nickel (II) dichloride 
or nickel (II) acetyl acetonate (Scheme  66 ) [ 103 ]. In a similar way the cross-
coupling reaction of 6-fl uoro-2-methylquinoline  145  leads to the formation of 
6-phenyl derivative  146 .
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  Scheme 65    Reactions of quinoline  130  with P(As)-nucleophiles       
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  Scheme 66    Nickel-catalyzed cross-coupling reactions       

   Reactions,  not being accompanied by the displacement of fl uorine atoms  are also 
important for functionalization of fl uorinated quinolines. For instance, 6- substituted 
5,7,8-trifl uoroquinolines  148–153  were obtained from 6-trifl uoro- methyl-5,7,8-
trifl uoroquinoline  147  (Scheme  67 ) through hydrolysis of the CF 3  group in quinoline 
 147  followed by decarboxylation of 5,7,8-trifl uoroquinoline- 6-carboxylic acid  148  
on heating in DMF [ 6 ]. From the acid  148  obtained is the acyl chloride  150 , which 
gives with methanol the methyl ester  151  and with ammonia – the amide of 
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  Scheme 68    The direct nitration of 3-fl uoroquinoline  143        

5,7,8-trifl uoroquinoline-6-carboxylic acid  152 . Involving the latter into the Hoffmann 
rearrangement leads to 6-amino-5,7,8-trifl uoroquinoline  153 .

   The direct nitration of 3-fl uoroquinoline  143  has been found to occur by action 
of a mixture of nitric and sulfuric acids, thus affording 24 % of  5-nitro-3-fl uoro-quinoline 
 154  and 38 % of 8-nitro-3-fl uoroquinoline  155  (Scheme  68 ) [ 101 ].

   Reactivity of 5,6,7,8-tetrafl uoroquinoline  130  with the fully fl uorinated benzene 
ring towards the amide anion has been studied [ 104 ]. The Chichibabin amination at 
C-2 has been shown to occur by action of sodium (potassium) amide in liquid 
ammonia in the presence of potassium permanganate, however only a low yield of 
the corresponding 2-aminoquinoline has been reached due to concurrent amino- 
defl uorination reactions, taking place at positions 6 and 7 (Scheme  69 ).
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   It is worth mentioning that treatment of difl uoro- or trifl uoroquinolines with 
sodium (potassium) amide in liquid ammonia followed by the reaction with methyl 
iodide has been used to incorporate the methyl group into the benzene ring of these 
fl uoroquinolones (Scheme  70 ) [ 101 ].
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  Scheme 70    Formation of quinolones  159        

N

F
F

F

F

MNH2, liq. NH3

M = Na, K N

F
H2N

F

F

+

N

F
F

H2N
F

1) MNH2, liq. NH3

2) KMnO4

N

F
F

F

F

NH2
17%

130

156

157 158total yield 49%

  Scheme 69    Amination of quinolone  130        

   Oxidation of 2-fl uoroquinoline  72а  with ozone and hydrogen peroxide or catalytic 
oxidation in the presence of ruthenium dioxide provides 2-fl uoropyridin- 5,6-
dicarboxylic acid  160a  [ 105 ]. Under similar conditions 3-fl uoroquinoline  143  is trans-
formed into 3-fl uoropyridine-5,6-dicarboxylic acid  160b  (Scheme  71 ) [ 104 ].

N F

72a

1) O3, CH2Cl2,0°C

2) H2O2 or
RuO2, NaOCl N F

160a

N

F

143

1) O3, CH2Cl2, 0°C

2) H2O2 or
RuO2, NaOCl N

F

160b

O

O

HO

HO

O

O

HO

HO

57%

64%

  Scheme 71    Oxidation of fl uoroquinolines  72а  and  143        

   An interesting synthetic approach to 6-fl uoro-3-(3-oxopiperazin-1-ylmethyl)-
2-phenylquinolin-4-carboxylic acid [( S )-1-cyclohexylethyl]amide  167  – dual antag-
onist for NK2 and NK3 receptors – is presented in Scheme  72  [ 105 ]. The reaction 

 

 

 

G.N. Lipunova et al.



91

of compound  161  with oxalylchloride initiates conversion of the starting 
 quinolinone into 2-chloroquinoline, while the carboxylic group is transformed fi rst 
into the corresponding chloroanhydride, and then into amide  162  on treatment with 
( S )-1- cyclohexylethylamine. The next steps involve the formation of 2-methoxy-
quinoline  163  and 3-bromomethylquinoline  164 , the subsequent reaction of  164  
with oxalylchloride and selective substitution of halogen with piperazin-2-one. 
Amide  166  undergoes the Suzuki cross-coupling reaction to give the corresponding 
2- phenylquinoline  167.  Also a multi-steps synthesis of quinoline  168  has been per-
formed [ 105 ] (Scheme  72 ).
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  Scheme 72    Synthesis of compound  167        

   Quinolone  169  after esterifi cation was transformed into bromoquinoline  170 ; the 
latter reacts with aniline, phenol, alcohols or indoline to give 2-substituted 6-fl uoro- 
quinolines  171, 172  (Scheme  73 ) [ 36 ].
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  Scheme 74    Synthesis of quinolincarboxylic acids  174 ,  177        
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  Scheme 73    Formation of compounds  171 ,  172        

    Syntheses on the basis of organometallic derivatives  have found wide application 
in the chemistry of fl uoroquinolines and their analogs. 

 Being treated with a mixture of lithium diisopropylamide and potassium  t - butoxide , 
3-fl uoroquinoline ( 173 , X=H, OCH 2 CH 2 CH 2 CH 3 ) undergoes the selective metallation 
of the C-H bond at position 4 of the heterocyclic ring. This reaction allows one to alkyl-
ate the position 4 of 3-fl uoroquinoline (Scheme  74 ) [ 12 ]. 2-Bromo-3-fl uoroquinoline 
( 173 , X=Br), derived from the reaction of 3-fl uoro- quinolin-2(1Н)-one with PBr 3 , is 
easily lithiated and transformed into 3-fl uoro- quinolin-2-carboxylic acid  174  on treat-
ment of 2-lithium compound with dry carbon dioxide [ 106 ].
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   3-Fluoroquinoline ( 173 , X=H) was obtained by reduction of 2-bromo-3- 
fl uoroquinoline  173  (X=Br) with Pd/C and NEt 3  in methanol. Bromo derivative 
 176  (R’=COOH) has been shown to form the corresponding organomagnesium 
compound, which was transformed on treatment with DMF into aldehyde  176  
[R’=COOH, X=C(O)H] and its thiosemicarbazone derivative  176  [R’=COOH, 
X=CH:NNHC(S)NH 2 ] [ 106 ]. In a similar way 2-bromo-3-fl uoroquinolin-4- 
carbaldehyde and its 1,3-dioxalan were obtained from 4-lithium-3-fl uoro-2- 
bromoquinoline and DMF. 

 8-Fluoro-6-(methoxymethoxy)quinoline in the reaction with MeLi undergoes a 
selective  ortho -metallation at C-7, while BuLi also lithiates the  ortho -position rela-
tive to fl uorine atom, however the metallation process is accompanied by nucleo-
philic addition at C-2 (Scheme  75 ) [ 107 ].
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  Scheme 75    Reaction of 8-fl uoroquinoline with MeLi and BuLi       
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  Scheme 76    Synthesis of 3-trifl uoromethylquinolin-2-carboxylic acid  179        

   Use of the direct metallation reactions followed by further functionalization of 
the obtained organometallic intermediates has been reported for the synthesis of 
3-trifl uoromethylquinolin-2-carboxylic acid (Scheme  76 ) [ 108 ].

   The Suzuki -coupling, as well as dehalogenation and carboxylation reactions of 
2-trifl uoromethyl-3-iodoquinolines have been studied (Scheme  77 ) [ 68 ].

 

 

Fluorinated Quinolines: Synthesis, Properties and Applications



94

   Rapid chlorination of side-chain Me group of 2-fl uoro-4-methylquinoline  72b  is 
reported using sodium hypochlorite under microwave irradiation (Scheme  78 ) [ 109 ].
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  Scheme 77    Synthesis of compound  180        

4        Selected Representatives of the Family of Fluoroquinolines 

 A great deal of fl uoroquinolines have demonstrated various types of biological 
activity, and some of them have already found their applications in medicine. For 
instance, 3-fl uoroquinolines  182  exhibit antibacterial activity against  gram-positive 
and gram-negative bacteria. Compound  182  was obtained by the reaction 
of 1-( t -butyloxycarbonyl)-4-aminopiperidin-4-carboxylic acid with 3-fl uoro-6- 
methoxy-4-(oxyran-2-yl)quinoline, followed be elimination of the protective 
ВОС- group and alkylation of the piperidinyl fragment with 2-[(2-bromo-ethyl)
sulphanyl]-1,4-difl uorobenzene [ 110 ]. Another 3-fl uoroquinoline  183  proved to 
be active against  Staphylococcus aureus IP8203  (Scheme  79 ) [ 111 ].
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  Scheme 78    Chlorination of Me group of 2-fl uoro-4- methylquinoline  72b        
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  Scheme 79    Structure of quinolines  182 ,  183        

   3-Fluoroquinoline  184 , also exhibiting antibacterial activity, has been obtained 
from 4-iodo-3-fl uoro-6-methoxyquinoline through the Pd-catalyzed cross-coupling 
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reaction followed by N-alkylation with 2-(2-bromoethylthio)thiophene [ 112 ]. 
3-Fluoroquinoline derivatives  185  have been shown to possess antimicrobial activ-
ity (Scheme  80 ) [ 113 ].
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  Scheme 81    Synthesis of 2-(1Н-Indol-3-yl)-7-fl uoroquinoline  187        
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  Scheme 80    Structure of quinolines  184 ,  185        

   The synthesis of 2-(1Н-Indol-3-yl)-7-fl uoroquinoline  187  from 3-fl uoroaniline 
has been performed (Scheme  81 ); compound  187  is active against methicillin- 
resistant  Staphylococcus aureus  strains [ 114 ].

   Tricyclic derivative  188  has been established to be active against multi-resistant 
gram-positive bacteria [ 90 ]. Also benzo annelated derivatives of fl uorinated 
3-hydroxyisoquinolindiones  189  exhibit antibacterial activity [ 115 ]. It is worth not-
ing, that derivatives of 6-fl uoro-2(1Н)quinolinone  190  are of interest as non- 
nucleoside inhibitors of reverse HIV transcriptase (Scheme  82 ) [ 116 ].
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   The synthesis of 5-fl uoroprimaquin  193 , an analog of the known antimalarial 
drug, has been reported from compound  191  (Scheme  83 ) [ 9 ].
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  Scheme 84    Structure of quinolines  64 ,  194 ,  195        
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  Scheme 83    Synthesis of 5-fl uoroprimaquin  193        
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  Scheme 82    Structure of quinolines  188–190        

   6-Fluoro-, 8-fl uoro- and 6,8-difl uoro derivatives of 4-aminoquinoline ( 194 , 
X=(CH 2 ) 3 , CHMe(CH 2 ) 2 ) are active against malaria, and can be used for treatment 
of the diseases caused by chloroquin-resistant strains of  P. falciparum W2  [ 117 ]. 
Also antiplazmodium activity of 7-fl uoro derivatives [ 194 , (CH 2 ) n , n = 2, 3, 10, 12 
and CHMe(CH 2 ) 2 ] has recently been reported [ 118 ]. 6-Fluoroquinoline-4-carboxylic 
acids  64  inhibit the melanoma В16 at mice; the sodium salt of  64  (X=H, R=2-
FC 6 H 4 ) has been launched by Dupont as Brequinar® drug [ 119 ]. The structure-
activity relationship for analogs of Brequinar® has been thoroughly investigated 
[ 119 – 123 ]. Several analogues of this drug are used in transplantation medicine, as 
well for treatment of rheumatic arthritis and psoriasis. Quinoline  195  proved to be a 
highly effective immunosuppressant (Scheme  84 ) [ 124 ,  125 ].
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   During the recent decade a growing interest in 3-fl uorosubstituted quinolines has 
been observed, since it has been shown that 3-fl uoroquinolines, unlike their 5-fl uoro 
analogues, are neither mutagenic not cancerogenic compounds, and can be used in 
medicine and agriculture [ 126 ]. Derivative of 3-fl uoroquinoline  196  was shown to 
act as mitogen-activated protein kinase kinase (МЕК) inhibitor [ 127 ], while com-
pound  197  – as NOS (nitrogen oxide synthetase) inhibitor [ 128 ]. Compound  198  
represents a novel type potent phosphoinositide 3-kinase (PI3K) inhibitors, it’s 
valuable for treatment of rheumatoid arthritis (Scheme  85 ) [ 129 ].
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  Scheme 85    Structure of quinolines  196–198        

   5-Fluoro-2-quinolone  199  proved to be a highly effective protein-kinase 
inhibitor [ 130 ]. Also 5-fl uoroquinoline derivatives  200  are inhibitors of acetyl-
choline esterase, and they are important for treatment of Alzheimer’s disease 
(Scheme  86 ) [ 131 ].

   Derivatives  166  and  168  are antagonists of neurokinine 3 (NK3) and can be 
applied to treatment of diseases of the central nervous system [ 107 ,  132 ]. Quinolines 
 201  are antagonists of P-selectine (Scheme  87 ) [ 133 ].
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   In order to develop new antidiabetic agents, guanidine and tetrazole substituted 
amides of 6-fl uoroquinolin-2-carboxamides  205, 206  and  207  have been obtained 
[ 138 ]. Compound  207  acts as fi broblast growth factor receptor 3 (FGFR 3 ) inhibitor 
and can be used for treatment of multiple myeloma (Scheme  89 ) [ 139 ,  140 ].
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  Scheme 87    Structure of quinolines  166, 168 ,  201        

   4-Quinolincarboxamides  202 , bearing a fl uorine atom in 6, 7 or 8, proved to act 
as ligands for the NK-3 receptors [ 134 ]. Among 2-aryl-4-pyperidinyl-6-fl uoro-quin-
olines  203  ligands of the benzodiazepine receptors have been revealed, and the 
1,2,4-oxadiazole fragment appears to act in this case as heterocyclic analogue of 
COOH and COOR functional groups [ 135 ,  136 ]. 6-Fluoro-4-ethoxyquinolin-2- 
carboxylic acid  204  can be used for treatment of hyperglycemia, obesity and diabe-
tes (Scheme  88 ) [ 137 ].
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  Scheme 90    Structure of quinolines  208–210        

   Salt of  208  with lactic acid has been shown to be an effective inhibitor of various 
kinases, such as receptors for vascular endothelial growth factor 2 (VEGFR2), fi bro-
blast growth factor receptor 1 (FGFR1), platelet-derived growth factor receptor- beta 
(PDGFRβ) [ 141 ,  142 ]. 6-Fluoroquinolinyl substituted anthranilic acid  209  is used for 
treatment of metabolic diseases of bones [ 143 ]. 6-Fluoro-2-arylquinolin-4- amines  210  
are antagonists of immunostimulator CpG-oligonucleotides (Scheme  90 ) [ 144 ].

   8-Fluoroquinoline derivative  211  is capable of binding with γ-aminobutyric acid 
receptors, and can be used for treatment of convulsions, mental disturbances, and dis-
orders of memory [ 145 ]. Compound  212  is antagonist of NK3 receptor [ 146 ], substi-
tuted 2-quinolone  213  – inhibitor of tyrosine-kinase vascular endothelial growth factor 
(VEGF) receptor (Scheme  91 ) [ 147 ]. 2-(Piperazin-1-yl)-5-fl uoro-6- nitroquinoline 
labelled with fl uorine-18 was shown to be useful for potential positron- emission-
tomography (PET) tracer for imaging the serotonin transporter [ 148 ].
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  Scheme 91    Structure of quinolines  211–213        

   An improved synthesis of mefl oquine has been advanced [ 149 ]. Also the 
asymmetric total synthesis of the (+)-enantiomer of mefl oquine hydrochloride 
has been described [ 150 ]. Modifi cations of mefl oquine aimed at development of 
novel biologically active compounds, including antituberculosis drugs, have 
extensively been performed (Scheme  92 ) [ 151 ]. Compounds  215, 216  were more 
active than mefl oquine against  M. tuberculosis  (MIC 11.9–33 μM), some of 
derivatives have a better tuberculostatic activity than the fi rst line tuberculostatic 
agent ethambutol (MIC = 15.9) [ 151 ].
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   Compound  217  active against nematodes, insects, mites, and plant pathogens 
[ 152 ]. Derivative of 8-fl uoroquinoline  218  useful as an agricultural chemical 
(Scheme  93 ) [ 10 ].
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  Scheme 93    Structure of quinolines  217 ,  218        

   5-Fluoro-8-cyanomethoxyquinoline  219  possesses herbicidal activity [ 153 ]. 
2,3-Dimethyl-4-hydroxy-6-t-butyl-8-fl uoroquinoline  220  is useful as rise blast con-
trol agent (Scheme  94 ) [ 154 ].

   2-Amino substituted 6,7-dimethoxy-4-(trifl uoromethyl)quinolines have been 
shown to possess fl uorescent properties [ 155 ]. 8-Hydroxyquinoline, its numerous 
derivatives and especially metal chelates on their basis attracted attention of many 
researchers since publication of the fi rst data on electro-luminescence of the alumi-
num complex with 8-hydroxyquinoline which possesses thermal stability, high 
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effi ciency of green luminescence, and rather good electronic mobility [ 156 ]. 
Infl uence of fl uorine atoms in various positions of the quinoline system on lumines-
cent characteristics of metal complexes of 8-hydroxyquinoline has been elucidated 
[ 157 ]. Due to specifi c properties of fl uorine atom complexes of 8-hydroxyquinoline 
with metals proved to have an enhanced electronic mobility, a low temperature of 
sublimation, a good stability on air, and a wide energetic gap. 2-Methyl-6,7-difl uoro-
8- oxyquinoline, its stiryl derivatives and Zn (II) complexes have recently been 
obtained to study luminescence of these compounds [ 158 ]. 

 In conclusion it is worth to mention that quinolines and their fl uorinated 
derivatives continue to be one of the most important class of heterocyclic com-
pounds. The medicinal chemistry remains one of the main fi elds for their appli-
cations, and special attention during the last decades is paid to the family of 
6-fl uoro-1,4-dihydroquinolin- 4-oxo-3-carboxylic acids which will be discussed 
in a separate chapter. Derivatives of 8-hydroxyquinoline have found wide appli-
cation in analytical, coordination chemistry, while their metal chelates are of 
interest as the basis to develop new materials.     
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    Abstract     The data on 6-fl uorо-1,4-dihydroquinolin-4-oxo-3-carboxylic acids and 
their structural analogues accumulated in the literature for the last 10–15 years are 
reviewed. Synthetic approaches to the quinolone system, as well as all kind of 
 structural modifi cations by incorporating substituents into 1–8 positions or by means 
of annelation have been discussed. The “structure-activity” relationships for antibac-
terial fl uoroquinolones, as well as the data on other types of biological  activity for the 
family of bi- and polycyclic fl uoroquinolones are presented. The formation of com-
plexes of fl uoroquinolones with metals and their applications have been considered. 
The bibliography – 377 references.  

  Keywords     Fluoroquinolones   •   Polycyclic fl uoroquinolones   •   Synthesis   
•   Modifi cations   •   Annelation   •   Activity   •   Metal complexes  

1         Introduction 

 Nearly three decades passed since the time when the fi rst representatives of the fl uo-
roquinolone family of antibacterials, such as norfl oxacin, pefl oxacin, ciprofl oxacin 
and ofl oxacin had appeared in the world pharmaceutical market (Scheme  1 ).
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  Scheme 1    Structure of some fl uoroquinolone antibacterials       
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   It is worth mentioning that the fi rst drug in the series of quinolones, nalidixic 
acid (1-ethyl-1,4-dihydro-7-methyl-4-oxo-1,8-naphthyridin-3-carboxylic acid), 
bearing no fl uorine atoms, was launched into medicinal practice in 1963. 

 Structural modifi cation of the quinolone skeleton by incorporating of fl uorine 
atoms at C-6 and other positions of the benzene ring resulted in a remarkable 
improvement of antimicrobial properties and opened new prospects in clinical 
treatment of infections. Indeed, compounds of the fl uoroquinolone family proved to 
exhibit a high level of antibacterial activity and a wide spectrum which surpass 
many antibiotics, including the third generation of cephalosporin’s and other 
chemotherapeutic antibacterials [ 1 – 13 ]. Due to enhanced penetration ability through 
cell membranes and their effects on bacteria reproduction by inhibiting bacterial 
DNA-gyrase, fl uoroquinolones possess a high antibacterial activity (Fig.  1 ) [ 6 ].

   It is extremely important that fl uoroquinolones have a specifi c mechanism of action, 
different from antibiotics and other groups of antibacterials (cephalosporins, aminogly-
cosides, etc.), which allows one to apply fl uoroquinolones for treatment of infectious 
diseases caused by strains resistant to many other classes of antibacterials drugs. 

 Depending on their behavior relative to bacteria enzymes of three types of 
fl uoroquinolones can be distinguished:

 –    the fi rst type of fl uoroquinolones inhibiting mainly the topoisomerase IV: 
norfl oxacin, enoxacin, fl eroxacin, ciprofl oxacin, lomefl oxacin, trovafl oxacin, 
grepafl oxacin, ofl oxacin and levofl oxacin;  

 –   the second type of fl uoroquinolones which inhibit mainly the DNA-gyrase 
(nadifl oxacin and sparfl oxacin);  

 –   the third type of fl uoroquinolones which have a double effect: they inhibit both 
topoisomerase IV and DNA-gyrase: gatifl oxacin, pazufl oxacin, moxyfl oxacin, 
and clinafl oxacin.    

 An important feature of fl uoroquinolones is their selective biological action: 
suppressing bacterial DNA-gyrase, they don’t infl uence the mammalian DNA cell 
processes. In fact, quinolones don’t kill bacteria by inhibiting critical cellular processes, 
but rather break action of two essential enzymes, DNA-gyrase and topoisomerase IV, 
and use them by causing a rupture of two-spiral DNA. 

  Fig. 1    Inhibiting bacterial 
DNA-gyrase by 
fl uoroquinolones 
(Reproduced with permission 
of publishing Folium [ 6 ])       
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 During the last two decades the whole series of antibacterial fl uoroquinolones 
have found their application in clinical practice, thus demonstrating a beginning 
of a new era in chemotherapy of bacterial infections. The vast majority of fl uoroqui-
nolones, launched into medical practice, are based on the bicyclic structure of 
6-fl uoro- 4-oxo-1,4-dihydroquinolin-3-carboxylic acid. Annelation of the benzene 
ring, and carbo- or heterocyclic fragments to the quinolone skeleton usually allow 
one to enhance antibacterial activity of fused fl uoroquinolones and their therapeutical 
properties; in some cases derivatives of this class become capable of exhibiting 
other types of activity, including antiviral and antineoplastic ones. The most known 
representatives of tricyclic fl uoroquinolones appear to be ofl oxacin and levofl oxacin. 
For many years fl uoroquinolones have been intensively studied worldwide as 
evidenced by numerous review articles and monographs [ 1 – 13 ].  

2     Synthesis and Antibacterial Activity of Fluoroquinolones 

2.1     Bicyclic Fluoroquinolones 

 There are two basic approaches which are commonly used for the synthesis of 
 quinolin-4-one-3-carboxylic acids [ 4 ,  14 ]. The fi rst one is based on use of fl uorinated 
anilines ( 1 , A = CH, CF) or 2-aminopyridines ( 1 , A = N) as starting materials and 
involves their condensation with ethoxymethylene derivative of malonate, cyanoace-
tate or acetoacetate to form enamines  2 . The intramolecular cyclization of compounds 
 2  with polyphosphoric acid (PPA) (the Gould-Jacobs reaction) affords the correspond-
ing fl uoroquinolones ( 3 , A = CH, CF) or naphthyridones ( 3 , A = N) (Scheme  2 ).
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  Scheme 2    Synthesis of fl uoroquinolones from fl uorinated anilines       

   One of the key problems of the Gould-Jacobs reaction is a choice of high-boiling 
solvent. Diphenyl ether which has been applied for a long time is not appropriate 
due to environmental reasons. A good alternative of Ph 2 O seems to be a summer 
diesel fuel, which is cheaper than individual C 12 -C 18  hydrocarbons, and allows one 
to carry out the process at 230–245 °С providing a good purity of the key intermedi-
ates in the synthesis of fl uoroquinolones. 

 The second approach suggests use of fl uorine-containing benzoyl derivatives ( 4 , 
A = CF, CH) or their nicotinoyl analogs ( 4 , A = N) as building-blocks (Scheme  3 ). 
The key intermediates in this case are benzoyl- or pyridinoyl acrylates  6  [ 6 ]. 
Cyclization of enaminones  7  can be carried out by heating in DMF in the presence 
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  Scheme 3    Synthesis of fl uoroquinolones from fl uorinated benzoyl derivatives       

of potassium carbonate, or in ethyl acetate with NaH. Other basic conditions can 
also be applied, including organic amines or amidines, 1,4-diazabicyclo[2.2.2]-
octane (DABCO) or 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) [ 4 ,  15 ].

   The method can be improved by use of the dimethylamino analogue of intermediate 
 7 , which can be derived from the reaction of ethyl 3-dimethyl aminoacrylate with the 
corresponding fl uorine-containing benzoyl chlorides followed by the displacement of 
the dimethylamino group with a suitable amine. 

 A great deal of research studies aimed at improvement of synthetic procedures 
leading to fl uoroquinolones, enhancing their yields and quality of products, and 
reducing a number of steps and cost of the synthesis have been performed [ 16 – 31 ]. 
Improved synthetic procedures have been applied to obtain 1-ethyl-6-fl uoro-7-
(4- methylpiperazinyl)-4-oxo-1,4-dihydro-3-quinolinecarboxylic acid and 1-ethyl-
6- fl uoro-7-(piperazinyl-1)-4-oxo-1,4-dihydro-3-quinolinecarboxylic acid as well as 
their intermediates [ 18 – 21 ]. Further research studies on the synthesis of more active 
bicyclic fl uoro-quinolones to expand a range of their biological activity, and to 
develop antibacterial drugs against resistant strains are in progress now. 

2.1.1     Modifi cation of the Position N(1) 

 The nitrogen atom N-1 and N-substituents are important features of the molecule of 
fl uoroquinolones because of their considerable contribution into antibacterial activity. 
Replacement of the nitrogen atom with a carbon or oxygen in analogues of the oxolinic 
acid results in complete deactivation of these molecules. Modifi cation of NH fl uoroqui-
nolones is usually based on N-alkylation reaction with the corresponding alkyl halide 
in the presence of a base. The fi rst representatives of commercial fl uoroquinolones 
bearing the ethyl group at N(1) are presented by norfl oxacin, pefl oxacin, and enoxacin; 
fl eroxacin has N-fl uoroethyl substituent, while amifl oxacin contains the N-methylamino 
group. Research study on activity of the series of analogues of enoxacin, bearing C 1 -C 5  
aliphatic groups at N(1) have shown the preference of the N-ethyl group [ 32 ]. 

 Modifi cation of the N-ethyl group by means of incorporation of a fl uorine atom 
(CH 2 CH 2 F, fl eroxacin) appeared to be a reasonable approach [ 33 ]. Also 
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conformationally restricted analogs of fl eroxacin  9  and  10  have been synthesized 
(Scheme  4 ). The  Z -isomers proved to be 2–32-fold more potent  in vitro  against 
gram-positive strains of bacteria then the corresponding  E -isomers [ 34 ].
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   Replacement of N-ethyl group with NHCH 3  leads to a highly effective drug 
amifl oxacin. Although it has not exhibited  in vitro  tests a considerable advantage 
in comparison with norfl oxacin and pefl oxacin, it shows a better pharmacokinetic 
profi le, being equally active in both oral and parenteral administration. 

 It has been revealed that a high antibacterial activity of fl uoroquinolones is associ-
ated with the presence of a small lipophilic group, such as, for instance, N-cyclopropyl 
substituent in position 1. Indeed, a number of commercially important fl uoroquino-
lones bear the cyclopropyl fragment at N(1): ciprofl oxacin, enrofl oxacin, grepafl oxa-
cin, clinafl oxacin, gatifl oxacin, moxifl oxacin (Scheme  5 ) [ 7 ].
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   Incorporation of methyl or phenyl substituents in the cyclopropane ring, as well 
as the replacement of the cyclopropyl moiety with cyclobutyl or cyclopentyl ones 
diminishes the activity of these derivatives (Table  1 ) [ 7 ].

   Further modifi cation of the cyclopropyl fragment (for example, 2- fl uorocyclopropyl 
derivatives  11 ) gives rise to optically active isomers, which differ considerably in 
their activities, as illustrated by the fact that  cis -analogs are more active against 
gram-positive strains of bacteria, than the corresponding  trans - isomers , for example, 
 cis -isomer of fl uoroquinolone  11  (R 7  = 4-methyl-piperazin- 1-yl) shows MIC 0,1 μg/
ml against  St. aur.,  while  trans- isomer has only 1,56 μg/ml. New synthetic approaches 
enabling one to introduce at N-1 of fl uoroquinolones a fl uorine-containing cyclo-
propyl fragment with a certain stereo-confi guration have been developed [ 35 ,  36 ]. 

 Incorporation of benzyl or  t -butyl groups at N-1 enhances antibacterial activity 
of fl uoroquinolones [ 37 ,  38 ]. Monofl uoro- t- butyl derivatives proved to possess a 
higher antibacterial activity than their non-fl uorinated analogs. An opportunity to 
use 1-trifl uoromethyl-1,2-ethylenediamines for modifi cation of position 1 of fl uoro-
quinolones (compounds  12 ) (Scheme  6 ) [ 39 ] has been shown.
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  Scheme 6    Structure of fl uoroquinolones  11  and  12        

   Table 1    Activity of N(1)-substituted fl uoroquinolones (MIC, μg/ml) 

  

N

O
COOH

N

HN

F

R1       

 R 1    St. aur.  A9537   E. coli  A15119   Ps. аer.  A 9843 

 Cyclopropyl ( ciprofl oxacin )  0.13     0.03  0.13 
 2-methylcyclopropyl ( trans )  1  0.06  2 
 2-methylcyclopropyl ( cis )  0.13  0.13  1 
 2,2-methylcyclopropyl  1  1  32 
 1-methylcyclopropyl  0.25  0.06  0.5 
 1-phenylcyclopropyl  0.13  0.13  4 
 Cyclobutyl  0.5  0.13  1 

   Derivatives of bicyclic pefl oxacin  13  and  14  represent an interesting type of 
hybrid molecules, in which N-butylfl uoroquinolone fragments are linked with the 
pyrimidine and purine heterocyclic bases (Scheme  7 ) [ 40 ].
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   Fluoroquinolones  15  bearing the (hydroxyethoxy)methyl fragment, which is 
present in acyclovir, the known antiviral agent, can be regarded as acyclic analogs 
of nucleosides (Scheme  8 ) [ 41 ]. Also 5′-thioalkyl acyclic nucleosides of fl uoroqui-
nolones have been obtained by the reaction of mesylate  15  with methanethiolate- or 
thiophenolate anions [ 42 ].
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  Scheme 8    Structure of fl uoroquinolones  15  and  16        

   A series of new quinolones  16  bearing the fragments of natural amino acids have 
been synthesized. According to the data of preliminary biological studies these fl uo-
roquinolones exhibit antibacterial activity against  Bacillus subtilis  and  Staphylococus 
aureus  [ 43 ]. 

 Synthetic routes to new fl uoroquinolones, containing in position 1 aryl substitu-
ent have also been described [ 44 – 46 ]. As a rule, a fl uorophenyl substituent with 
one or two fl uorine atoms has a favorable effect, increasing an activity of fl uoroqui-
nolones towards anaerobic bacteria. It has been found that 1-(5-amino-2,4- 
difl uorophenyl)-8-R-substituted quinolones  17  possess a rather high antibacterial 
activity relative to Gram-positive and Gram-negative microorganisms (Scheme  9 ) 
[ 47 ]. 7-(Methylpiperazinyl)-6-fl uoro-1-(4-fl uorophenyl)-1,4-dihydro-4-oxo-3-qui-
nolincarboxylic acids (difl oxacin) has been established to be one of the most active 
fl uoroquinolones in experiments  in vitro  against  Chlamydia trachomatis  and other 
intracellular parasites; also it demonstrates excellent pharmacokinetic properties. 
Also, the antibacterial drug linezolid  18  bearing at N-1 2-fl uoro-(4-oxazolidon-
1-yl)phenyl fragment has been developed [ 48 ] (Scheme  9 ). N-(5-Amino-2,4- 
difl uorophenyl)-7-aminoazetidinyl-8-chloro-substituted fl uoroquinolone has been 
found to possess a high antibacterial activity relative to Gram-positive and Gram- 
negative microorganisms; its activity against  Strentococcus pneumoniae  proved to 
be 30-fold higher than that of trovafl oxacin.
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   A number of researches were dedicated to incorporating of heterocyclic 
fragments in position 1 of fl uoroquinolones in expectation of enhanced activity [ 49 ]. 
Indeed, 1-(6-amino-3,5-difl uoropyridin-2-yl) substituted quinolone  19  (Scheme  10 ) 
proved to be rather promising for treatment of serious respiratory diseases and 
infections of the urinary tract. This fl uoroquinolone has a wide range of antibac-
terial activity, including quinolone-sensitive and resistant staphylococcus and 
streptococcus, vancomicin-sensitive and resistant enterococcus, anaerobic bacteria 
and other infections [ 50 ],  20  was shown to be more active than ciprofl oxacin [ 51 ] 
(Scheme  10 ).
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   1-Trifl uoromethylated fl uoroquinolone shows antibacterial activity at the level of 
norfl oxacin [ 52 ]. 1-Hydroxy-2-phenyl- and 1-hydroxy-2-methyl substituted quino-
lones have been obtained, however they have not shown a remarkable level of anti-
bacterial activity [ 53 ,  54 ]. 

 Analysis of the data of biological trials for N-substituted fl uoroquinolones avail-
able in literature enables to conclude that compounds bearing in position 1 cyclo-
propyl, fl uorophenyl or  t -butyl fragments exhibit a higher level of antibacterial 
activity than their N-unsubstituted analogues.  
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2.1.2     Modifi cation of the Position C(2) 

 Modifi cations of the C(2)-position are limited due to synthetic diffi culties associated 
with direct introduction substituents at C-2. However, the synthesis of 
2- phenylsubstituted fl uoroquinolones has been developed [ 55 ], and 6-fl uoro- quinolon- 
2-carboxylic acids have been obtained by cyclization of the corresponding 2-amino-
substituted 3-pentafl uorobenzoyl acrylic acids [ 56 ]. 2-Thio substituted quinolones are 
widely used for the synthesis [ a ]- or [ b ]-annelated fl uoroquinolones, such as thiazolo- 
and azethydinoquinolones [ 57 – 59 ]. Synthesis of 1-cyclopropyl- 2-alkylthio-8-
methoxyfl uoroquinolones was described; however elucidation of their antibacterial 
activity revealed no regularities associated with incorporation of 2-alkylthio substitu-
ents [ 60 ]. All known 2-aza analogues of quinolones and naphthyridines, derivatives of 
cinnoline, have not exhibited any remarkable antibacterial activity.  

2.1.3     Modifi cation of the 3-Carboxyl Group 

 Modifi cations of the 3-carboxyl group appear to be worth only in those cases where 
these derivatives are considered as precursors of the corresponding carboxylic acids 
[ 61 ], however precursors not always exhibit activity  in vivo . Replacement of the 
3-carboxyl group with acyl, ethoxycarbonyl, methoxycarbonyl and other acidic 
fragments (hydroxamic, acetic, phosphonic, sulphinic or sulpho) results in complete 
loss or diminishes dramatically antibacterial activity of these compounds. 

 Functional properties of the carboxyl group have been used to modify it with 
osteofi lic bisphosphonate fragments, as exemplifi ed by structural modifi cations of 
moxi-, gati- and ciprofl oxacin are developed [ 62 ]. Derivatives of these fl uoroquino-
lones  21 , containing bisphosphonate ester, thioester or amide groups have been 
obtained (Scheme  11 ). Their abilities to contact bones and to recycle thus active 
medicinal component have been studied. It has been shown that bisphosphonate deriv-
atives of fl uoroquinolones are osteotropic predecessors for prevention of osteomielit.

   Amides, hydrazides, and thiourea derivatives are important derivatives of 
fl uoroquinolones [ 63 – 65 ]. It is worth noting that 7-chloroquinolones bearing 
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the amide moiety at C-3 are rather active against  B. subtilis  and  S. aureus . Also 
phenylthiourea derivatives proved to be more active against  B. subtilis  than the 
parent ciprofl oxacin [ 64 ]. Synthesis of glycosylhydrazides and aminoacids on 
the basis of the corresponding hydrazido- and azido derivatives of 6-fl uoro-
quinolin-4-one-3-carboxylic acids has been described [ 66 ]. 

 Esters and hydrazides of 6-fl uoroquinoline-4-oxo-3-carboxylic acids have been 
used for modifi cation of the position 3 through the formation of heterocyclic frag-
ments, such as oxadiazole, triazole, thiadiazole, benzofuropyrazoline, thiazolidine 
and others [ 67 ,  68 ]. Synthesis of fl uoroquinolones containing in position 3 quinox-
alinone, benzoxazinone and benzothiazinone fragments has recently been described 
[ 69 ,  70 ]. This synthesis was realized through interaction of fl uoroquinolones bear-
ing EtOC(O)C(O) residue with aromatic 1,2-binucleophiles. 3-Formyl- and acetyl 
derivatives of fl uoroquinolones and also alcohols and amines have been obtained 
through transformation of amides [ 71 ]. 

 It has been established that after oral administration of 3-formyl analogue of 
norfl oxacin in mice the formyl group is metabolized rather fast into the carboxyl 
one, thus converting 3-formyl derivatives into norfl oxacin. Due to a good solubility, 
a much higher level (at least two times) of the formyl derivative in blood serum can 
be reached, than on administration of norfl oxacin, which at physiological рН values 
exists in the form of poor soluble zwitter-ionic form. 

 During the last two decades a lot of attention has been paid to development of “double 
mechanism” antibiotics. One of plausible approaches to such compounds is esterifi cation 
of fl uoroquinolone carboxylic acids with derivatives of cephalosporin and penicillin. Such 
combination allows one to expand a spectrum of antibacterial activity of beta-lactams 
conjugated with quinolones due to complementary mechanisms of their actions [ 7 ,  72 ]. 

 Displacement of the carboxyl group in position 3 with hydrogen atom and the 
decarboxylation of fl uoroquinolones have been discussed in the literature [ 73 – 76 ]. 
Since no decarboxylated fl uoroquinolones have exhibited antibacterial activity, many 
authors have come to conclusion on the extremely importance of the 3- carboxy group.  

2.1.4     Modifi cation of the 4-Oxo Group 

 The oxo group can be modifi ed through the formation of oximes, hydrazones, and 
semicarbazones, as exemplifi ed by transformations of norfl oxacin and other fl uoro-
quinolones [ 73 ]. Specifi c methods are needed to convert fl uoroquinolones into their 
4-alkoxy analogues, due to a preferable N-alkylation of fl uoroquinolones at position 
1. Another modifi cation is the synthesis of 4 Н -1,4-benzothiazin-1-oxides and 
1,1-dioxides [ 77 ] with various substituents in the benzene ring. However, these 
compounds proved to exhibit neither antibacterial activity, nor they inhibit DNA- 
gyrase. These results show that SO and SO 2  groups in quinolones cannot be regarded 
as bioisosters of the carbonyl group. 

 It has to be concluded that the oxo group at C(4) is necessary for linkage of 
quinolones with DNA-gyrase, and elimination or replacement of the oxo fragment 
with other moieties lead to inactive compounds.  
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2.1.5     Modifi cation of the Position С(5) 

 The most promising results have been received in those cases when the amino group 
was introduced at position 5 of fl uoroquinolones. The detailed analysis of the 
“structure–activity” relationship for 5-substituted 1-cyclopropyl-6-fl uoro-quino-
lones has shown that the positive effects of NH 2  and CH 3  groups are approximately 
identical, and these fl uoroquinolones possess a wide range and high level of antibac-
terial activity [ 7 ]. Indeed, 7-(7-aminomethyl-5-azaspiro[2.4]heptan-5-yl)quinolone 
 22  proved to be 12 times more active against  S. aureus HPC527  than ciprofl oxacin 
[ 78 ,  79 ]. The methoxy derivative  23 , and also its 8-methyl analogues show a high 
antibacterial activity towards a great deal of microorganisms [ 80 ] (Scheme  12 ). 
5-Also acylaminoquinolones have been synthesized [ 81 ].
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  Scheme 12    Structure of 5-aminofl uoroquinolones  22 ,  23        

   In order to obtain multi-binding therapeutic agents that modulate enzymatic pro-
cesses, two fl uoroquinolone ligands were linked at positions 5 through 1,3-di- 
aminopropane bridge (compound  24 ) [ 82 ]. Fluoroquinolones bearing the hydrazino 
group in position 5 appear to be effective antimicrobials towards a number of patho-
genic microorganisms; also they possess a good solubility in water relative to other 
fl uoroquinolones [ 83 ]. 5-Methoxy- and 5-hydroxy-6-fl uoro-1,8-naphthyridin- 4-
oxo-3-carboxylic acids ( 25a,b ) are more active against  S. pneumoniae 7257  than 
levofl oxacin [ 84 ] (Scheme  13 ).
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   Incorporation of such substituents as Cl, Br, SH, SCH 3 , CHO into position 5 of 
1-cyclopropyl-6,8-difluoro-7-(4-methylpiperazin-1-yl)-4-oxo-1,4-dihydro- 3-
quinolincarboxylic acids didn’t result in substantial increase of their activity. Some 
substituents at C(5) have a negative effect on antibacterial activity of fl uoroquino-
lones which can possibly be explained by steric hindrance to interaction of the 
4-oxo-3-carboxy-fragment of fl uoroquinolone molecules with metal ions of the 
bacterial DNA-gyrase. However, a fl uorine atom at C-5 with nearly the same space 
volume as a hydrogen one also diminishes the activity of fl uoroquinolones, and it 
can’t be connected with its steric effect.  

2.1.6     Modifi cation of the Position С(6) 

 Replacement of a fl uorine atom in position 6 with other substituents didn’t enhance 
their activity, at the same time it was shown that in order to obtain highly active 
antibacterial compounds the presence of fl uorine atom at C(6) is not obligatory, it is 
more important to have in the quinolone skeleton the N(1)-cyclopropyl and C(7)-3- 
aminopyrrolidinyl pharmacophoric groups (Table  2 ) [ 85 – 88 ].

   Studies of antibacterial activity of 6-fl uoro-1-[( 1R,2S )-2-fl uorocyclopropan- 1-
yl]-8-methoxyquinolones and their C(6)-defl uoro analogs showed that all of them 
are in 4–520 times more active against gram-positive bacteria, than trova-, moxi-, 
gati- or ciprofl oxacin [ 89 ]. These quinolones have shown the indices of activity 
against Gram-negative bacteria  E. coli  and  K. pneumoniae  which are comparable 
with those of trova- and ciprofl oxacin. 

 Incorporation of the nitrogen atom (derivatives of 1,6-naphthiridines) proved to 
diminish considerably the activity of quinolones.  

   Table 2    Antibacterial activity of mono- and difl uoroquinolones (MIC, μg/ml) 

  

N

O

N

COOH
R5

H2N

R6

R8

N

F
O

N

F

F

N
H

H
H2N

O

OH

Trovafloxacin
      

 R 5   R 6   R 8    St. aur.    E. coli    Ps. aer  

 H  H  H  0.25  0.008  0.5 
 H  H  F  0.03  0.008  0.25 
 F  H  H  1  0.13  4 
 F  H  F  0.13  0.06  2 
 H  F  H  0.03  0.004  0.25 
 H  F  F  0.008  0.008  0.13 
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2.1.7    Modifi cation of the Position С(7) 

 A great deal on the chemistry of 6-fl uoroquinolones concerns modifi cation of the 
position 7. It is due to the fact that a halogen atom at C(7) undergoes easily nucleo-
philic displacement with N-, S-, O- and C-nucleophiles, thus allowing one to vary 
the structure of quinolones. Nearly all commercially important fl uoroquinolones 
contain at C-7 the fragments of cycloalkylimines [ 90 – 94 ]. 

 Quinolones bearing in position 7 small or linear substituents, such as H, OH, 
OEt, COOH, Cl, Me, NH 2 , NHR, NH-c-C 3 H 5 , NHNH 2 , SCH 2 CH 2 NH 2  etc., have a 
relatively low activity against gram-positive microorganisms and are practically 
inactive towards the negative bacteria. Also 7-aza analogues of 6-fl uoroquinolon- 3-
carboxylic acids, derivatives of 1,7-naphthyridines, didn’t show any remarkable 
antibacterial activity. 

 A lot of studies have been directed to the synthesis of fl uoroquinolones, bearing 
a variety of piperazinyl substituents, since this part of quinolone molecule is of 
signifi cant importance. Indeed, some representatives of 6-fl uoroquinolones bearing 
at C(7) piperazine (norfl oxacin, ciprofl oxacin), 4-methylpiperazine (pefl oxacin), 
3-methylpiperazin (lomefl oxacin, temafl oxacin) proved to possess a much broader 
range of antibacterial activity, than those without the piperazine moiety, such as 
nalidixic and oxolinic acids. 

 In order to introduce the piperazine residue into position 7 of fl uoroquinolones 
the reaction of 7-chloroquinolone with N-alkoxycarbonylpiperazine in high-boiling 
dipolar aprotic solvent followed by hydrolysis of alkoxycarbonyl group has been 
exploited. In some cases the borondiacetate complexes of fl uoroquinolones have 
also been used for introduction of the piperazine fragment. 

 The difference in activity for  R - and  S -enantiomers of 7-(3-methylpiperazin- 
1-yl)quinolones, obtained from the corresponding ( R )- and ( S )- t -butyl-2- 
methylpiperazin-1-carboxylates, proved to be in the range from 2 to 64 folds in 
52 % of cases [ 95 ]. In order to improve transport through biological membranes the 
piperazine moiety in norfl oxacin was modifi ed considerably and compound  26  was 
obtained [ 96 ]. To clarify the mechanism of antibacterial action of fl uoroquinolones 
at the cellular level, two regioisomeric citrate-functionalized derivatives of cipro-
fl oxacin  27a,b  [ 97 ] (Scheme  14 ) have been obtained and studied.
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   Introduction of spiropiperazine or piperazinedione groups in position 7 of 
1-cyclopropyl substituted fl uoroquinolones has been shown to enhance their 
antimicrobial activity (compounds  28a,b ) (Scheme  15 ) [ 98 ,  99 ].

   Also the piperazine fragment of fl uoroquinolones was modifi ed by introduction 
of a number of heterocyclic fragments, such as 2,6-diaminopyrimidinyl, 
4,6-diamino-1,3,5-triazinyl, 2-aminothiazinyl, 1,3,4-thiadiazolyl, 2-furyl and other 
groups, thus allowing one to obtain more active antibacterial drugs [ 100 – 103 ]. 

 Hybrid derivatives of fl uoroquinolones bearing fragments of penicillin and ceph-
alosporin antibiotics or uracils, for example compounds  29 – 31 , proved to possess a 
wide spectrum and high level of antibacterial activity, including their potency 
against resistant to  β -lactams strains [ 74 ,  104 – 107 ] (Scheme  16 ). High antibacterial 
activity has also been shown by 7-(N-aryl-2,2,2-trifl uoroacetimidoyl)piperazinyl 
derivatives of fl uoroquinolones [ 108 ].
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   Infl uence of the second heteroatom in the piperazine ring is not so unequivocal. 
For instance, the replacement N(4) in the piperazine moiety of amifl oxacin with O, S 
or CH 2  fragments has been shown to diminish activity of these compounds  in vitro  
and  in vivo , however when the piperazine residue in norfl oxacin was replaced with 
thiomorpholine a much more potent compound against Gram-positive bacteria has 
been obtained. 7-(3-Aminomorpholin-1-yl) and 7-[3-(or 4)-aminomethylpiperidin-
1- yl]-derivatives proved also to possess a high activity against St. aur. (Table  3 ). 
7-Azetidinyl substituted fl uoroquinolones, in particular  trans -3-amino-2-methyl-1-
azetidinyl derivatives proved to be highly active antibacterial compounds [ 84 ,  109 ,  110 ].
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   A large group of highly active fl uoroquinolones contains the pyrrolidine frag-
ment in position 7, and, therefore, a considerable attention has been paid to the 
synthesis of 6-fl uoro-7-pyrrololidinoquinolones with 3-amino-, 3-aminomethyl- or 
3-(2-cyanomethylamino) substituents in the pyrrolidine ring [ 111 – 114 ]. As a rule, 
the compounds of this series possess a much higher activity towards Gram-positive 
microorganisms than the corresponding piperazine derivatives. 

 Fluoroquinolones  32a , containing alkyloximino substituent at C-4 and the ami-
nomethyl fragment at position 3 of the pyrrolidine ring, exhibit a high antibacterial 
activity towards Gram-positive and Gram-negative microorganisms, including a 
methicillin-resistant strain of  S. aureus  (MRSA) [ 115 – 118 ]. Compounds  32b  hav-
ing an optically active center in the pyrrolidine ring and the methyloximino group 
proved to possess not only high antibacterial activity, but also a good pharmacoki-
netic profi le [ 119 ,  120 ]. Also, the series of fl uoroquinolones, containing spiropyr-
rolidine substituents at C-7, for example, compound  33a , have been obtained 
(Scheme  17 ) [ 121 ,  122 ].

   Table 3    Antibacterial activity of 7-substituted fl uoroquinolones (MIC, μg/ml) 

  

N

O

COOH

F

F

R

      

 R   St.aur.    E. coli    Ps.aer.  

 Piperazin-1-yl  0.10  0.006  0.10 
 Piperidin-1-yl  0.78  3.13  50 
 Morpholin-1-yl  0.025  0.10  0.78 
 3-Aminomorpholin-1-yl  0.025  0.10  0.78 
 3-Methylaminomorpholin-1-yl  0.025  0.10  3.13 
 3-Acetylaminomorpholin-1-yl  0.20  1.56  12.5 
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   Effects of the chiral fragments, such as 1-( cis -2-fl uorocyclopropyl) and 
7-(7-amino-5-azaspiro[2.4]heptyl) substituents (compounds  32b, 33a ) on antibac-
terial properties of the series of fl uoroquinolones have been studied (Scheme  18 ) 
[ 123 ]. It has been shown that derivatives of 1-[( 1R,2S )-2-fl uorocyclopropyl]- and 
7-[( 7S )-amino-5-azaspiro[2.4]heptyl]-fl uoroquinolones are more active towards a 
number of Gram-positive and Gram-negative bacteria, than other stereoisomers. 
The presence of spiropyrrolidine residue at C(7) of fl uoroquinolones enhances 
their lipophilic properties, thus promoting a better assimilation on oral adminis-
tration [ 98 ].
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  Scheme 18    Structure of fl uoroquinolones  33b, 34        

   Compounds  33b, 34  with the amino group attached to the spiropyrrolidine or 
cyclopropyl-substituted pyrrolidine fragment proved to exhibit broad spectrum 
of antibacterial activity (Scheme  18 ) [ 124 – 129 ]. Aminomethyl substituted pyr-
rolidines and their heterocyclic derivatives were incorporated into position 7 of 
fl uoroquinolone [ 130 – 132 ]. Optically active derivatives of 7-(3-hydroxypyrro-
lidin-1-yl)-6-fl uoroquinolones have been shown to be promising antibacterials 
[ 133 – 135 ]. 

 One more residue which is frequently present in position 7 of active fl uoroqui-
nolones is piperidine [ 136 – 139 ]. Indeed, 1-cyclopropyl-6-fl uoro-quinolones, con-
taining ( 3S )-amino-( 4R )-piperidinyl fragment in position 7, show a high activity 
towards resistant strains of  Staphylococus aureus  and  Streptococus pneumoniae  
[ 140 ]. A number of substituents, such as 4-amino, 4-hydroxy, 3-aminomethyl, 
4- aminomethyl and 3-methylamino were incorporated in the piperidinyl fragment 
[ 141 ,  142 ]. Novel 6-fl uoroquinolones and naphthyridines with 4 (3)-alkoxyimino-
3-aminomethyl- 3-H(methyl)piperidinyl substituents, for instance  35 , have been 
obtained (Scheme  19 ) [ 143 – 145 ]. They shown a high activity against all gram-
positive organisms, including those resistant to fl uoroquinolones. One of compounds 
of this series proved to be in 16–128, 2–32 and 4–8 times more active against fl uoro-
quinolone-resistant MSSA, MRSA and MRSE than gemi-, cipro- and levofl oxacin, 
respectively. Introduction of 4-(1 Н -1,2,3-triazol-1-yl)piperidinyl residue in the 
structure of fl uoroquinolone resulted in a good activity against  S. aureus  and 
 S. epidermidis  [ 146 ].
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   A very promising modifi cation of fl uoroquinolones is introduction of bridged 
cyclic amines in position 7 [ 147 – 153 ]. A series new fl uoroquinolones  36  was 
synthesized (Scheme  19 ), and one of compounds showed high activity against 
quinolone- sensitive and multi-resistant bacteria, especially towards  Streptococcus 
pneumonia  [ 154 ]. 

 Trovafl oxacin  37 , the very active compound with a wide spectrum of action, 
contains 7-(1α, 5α, 6α)-3-azabicyclo[3.1.0]hexyl substituent (Scheme  19 ) [ 155 , 
 156 ]. 6-Fluoro-1-[( 1R, 2S )-2-fl uorocyclopropan-1-yl]-4-oxoquinolin-3-carboxylic 
acids, containing in position 7 2-amino-8-azabicyclo[4.3.0]nonan-8-yl fragment 
have been shown to inhibit bacterial DNA topoisomerase IV very effectively [ 157 ]. 
A great deal of research are dedicated to the synthesis and biological tests of 
7-di- and triazabicyclononyl substituted 6,8-difl uoroquinolones, for instance  38  
(Scheme  19 ) [ 158 – 163 ]. 

 An effective way for introduction of a variety of heterocyclic fragments in the 
position 7 of the fl uoroquinolone skeleton is the methodology of 1,3-dipolar cyclo-
addition reactions [ 164 – 167 ]. Indeed, the reaction of 7-azido derivative of 6-fl uoro-
quinolone  39  with enamines of cyclic ketones and norbornene proceeds rather 
smoothly with the formation of the corresponding  exo -1,2,3-triazolines  40  which 
undergo the cationic rearrangements into amidines  41  or aminonorbornane  42  [ 164 , 
 165 ]. 7-Azido derivatives  39  are capable of reacting with heterocyclic amines to 
form new 7- fl uoroquinolones (Scheme  20 ) [ 168 ].
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    The cycloaddition reaction of azomethine  43  with alkenes proceeds in regio- and 
stereoselective manner and represents a convenient way to obtain a variety of 
stereoisomeric 7-isoxazolidinyl quinolones  44–48  [ 166 ,  167 ] (Scheme  21 ).
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   Synthesis of new hydroxybisphosphonate derivatives of ciprofl oxacin  49  has 
been performed by using Cu-catalyzed 1,3-dipolar cycloaddition reaction between 
the corresponding azide and N-alkynyl substituted quinolone [ 169 ] (Scheme  22 ). 
Derivatives of gati- and moxifl oxacin have been obtained similarly. All of these 
modifi ed compounds maintained antibacterial activity of the starting quinolones 
and, in addition to that, exhibit osteotropic properties. 

   Synthesis on the basis of organoelement compounds play an important role 
for modifi cation of position 7 in fl uoroquinolones [ 171 ]. As mentioned above, 
fl uoroquinolones, containing hetaryl residues in position 7 are promising for 
medicinal chemistry [ 172 ]. In particular, a number of highly active fl uoroquino-
lones have been obtained on the basis of 7-nitromethyl derivatives [ 173 ,  174 ]. 

 A number of 6-fl uoroquinoline- and 6-fl uoronaphthyridine-3-carboxylic acids, 
containing at C(7) rather complicated fragment of multilinе (compounds  50 ) have 
been synthesized (Scheme  23 ) [ 170 ]. Quinolones  50  exhibit a high activity against 
resistant bacteria, in particular, methicillin- and quinolone-resistant  Staphylococcus, 
Streptococcus pneumoniae , etc.
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The 7-(1,2,3,4-tetrahydropirrolo[1,2- a ]pyrazin-7-yl) fragment has been incorporated 
in the structure of quinoline and naphthiridine carboxylic acids  51  through the 
carbon- carbon bond formation by reacting 7-halogeno or tosyl-substituted quino-
lones with the corresponding borates (Scheme  23 ) [ 175 ]. It should be noted that 
several compounds of this series have exhibited a high activity against ciprofl oxacin-
resistant bacteria of  Streptococcus pneumoniae . 

 Thus, varying substituents in position 7 provides a good platform for develop-
ment of novel antibacterial drugs. New opportunities for modifi cation of position 7 
are associated with design of hybrid molecules, as illustrated, for instance, by the 
development of the double action drugs containing both a fl uoroquinolone and 
β-lactam antibiotic fragments.  

2.1.8    Modifi cation of Position С(8) 

 The nature of substituents in position 8 of fl uoroquinolones also makes a certain 
impact on antibacterial activity. The key role of the 8-methoxy substituent is 
demonstrated by the fact that this fragment is a part of such effective drugs, as 
moxifl oxacin and gatifl oxacin [ 176 – 180 ]. Indeed, fl uoroquinolone  52  shows a high 
activity against  H. infl uenza  and  M. catarrhalis  [ 181 ], while compound  53  is 4 times 
more active against  S. pneumoniae  than levofl oxacin [ 182 ,  183 ]. 8-Methoxy-6- 
fl uoroquinolone  54  has smaller side effects on the cardio-vascular system, than 
gatifl oxacin (Scheme  24 ) [ 184 ].
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  Scheme 24    Structure of fl uoroquinolones  52 – 54        

   Fluoroquinolones, containing 8-methyl substituent usually demonstrate a high 
antibacterial activity, e.g. olamufl oxacin is of great importance for treatment of 
urological diseases [ 185 – 188 ]. Also the cyano group in position 8 proved to be an 
appropriate substituent, as illustrated by the synthesis of 8-cyanoquinolones  55  
and  56  [ 189 ] (Scheme  25 ). Indeed, compound  55  has been shown to possess a high 
antibacterial activity towards Gram-positive and Gram-negative bacteria [ 193 ], 
while 8- cyanoquinolone  56 , containing the diazobicyclononane residue in position 
7 is more active antibacterial compound than enrofl oxacin (Scheme  25 ) [ 190 ]. 
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Substituents NO 2 , NH 2 , SCH 3 , CF 3  in position 8 have usually a negative impact 
on both  in vitro  and  in vivo  activities, especially towards Gram-negative 
microorganisms.
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  Scheme 25    Structure of olamufl oxacin and fl uoroquinolones  55 ,  56        
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   In order to obtain “structure-biological activity” relationships mathematic 
methods have been used [ 191 – 193 ]. Quantitative correlations between molecular 
structure and pharmacokinetic and pharmacodynamic characteristics of fl uoroqui-
nolones in combination with informative hemometric approach have been used to 
forecast anti-pneumococcus activity [ 194 ]. Elucidation of the structure – activity 
relationships in the series of fl uoroquinolones is the subject of numerous publica-
tions [ 195 – 197 ]. Dependence of antibacterial activity on the nature of substituents 
has been established for several series of bicyclic fl uoroquinolones [ 11 ,  198 – 200 ].   

2.2     Polycyclic Fluoroquinolones 

 Modifi cation of fl uoroquinolones by annelation of carbo- or heterocyclic rings leads 
to fused polycyclic systems (Scheme  26 ).

2.2.1      [ a ]-Annelated Fluoroquinolones 

 There are two principal approaches to the synthesis of [ a ]-annelated fl uoro- 
quinolones. The fi rst one suggests that an [ a ]-annelated ring is already involved in 
the structure of intermediates, such as aminoacrylates A or malonates B, followed 
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by their cyclization into the corresponding fl uoroquinolones. The second approach 
is based on use of 1- or 2-substituted quinolones C or D, which undergo intramo-
lecular [ a ]-fusion (Scheme  27 ) [ 10 ].
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  Scheme 28    Synthesis of azolo[ a ]quinolones       
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  Scheme 27    Approaches to the synthesis of [ a ]-annelated fl uoroquinolones       

   Synthetic routes to [ a ]-fused quinolones of general formula  59  from the corre-
sponding polyfl uorobenzoyl chlorides and α-azahetaryl acetonitriles have been 
developed [ 202 ]. Heterocyclization of quinoxalones, containing polyfl uoroaroyl 
fragment in position 3 in DMSO in the presence of triethylamine affords  60  
(Scheme  29 ) [ 203 ].

   The fi rst approach has been used to obtain [ a ]-annelated fl uoroquinolones  57  
and  58  from the correspondingly substituted ethyl acetates and 2-chlorobenzazoles 
or iminoesters (Scheme  28 ). 7-(1-Piperazinyl)- and 7-(4-methyl-1-piperazinyl)-
benzothiazolo-[3,2- a ]quinolones  57  have been established to exhibit rather good 
activity against a number of bacteria [ 201 ].

 

 

Fluoroquinolones: Synthesis and Application



134

   The [ a ]-annelation in which the starting material is N-methylaminoquinolone 
has been described [ 204 ,  205 ]. Use of the 1,4-addition to the activated multiple bonds 
followed by the Michael intramolecular reaction leads to tetrahydropyrazolo[1,5- a ]
quinolones  61 , which are oxidized into the corresponding pyrazolo[1,5- a ]quino-
lones. Hexahydropyrrolo[1,2- a ]quinolones  62  can be regarded as [3 + 2] adducts 
derived from the reactions of N-(ethoxycarbonyl)methyl substituted ethyl esters 
of di-, three- and tetrafl uoro-4-oxo-1,4-dihydroquinolin-3- carboxylic acids with 
methylmetacrylate (Scheme  30 ) [ 206 ].
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  Scheme 30    Structure of fl uoroquinolones  61 – 64        
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   Derivative of [1, 2, 4]triazino[1,6- a ]quinoline  63  has been obtained from methyl 
6-fl uoro-4-oxo-1,4-dihydro-2-quinolincarboxylate through the N-amination fol-
lowed by condensation of the corresponding aroyl isocyanate and cyclization of the 
obtained α-semicarbazidocarboxylate [ 207 ]. 8-Fluoro-4-hydroxy- 1Н -[1,2,4]-
triazino[4,5- a ]-quinolin-1,6( 2Н )-dione  64  has been obtained by condensation of 
6-fl uoro-4-oxo-1,4-dihydro-2-quinolinecarbohydrazide by action of phosgene 
[ 208 ]. 8-Fluoro-1,2-dihydro[1,4]oxazino[4,3- a ]quinolin-4,6-dione was derived 
from intramolecular cyclization of 2-chloroethyl 6-fl uoro-4-oxo-1,4-dihydro- 2-
quinolincarboxylate [ 209 ]. New tetracyclic system containing fl uoroquinolone 
fragment  66  was obtained by intramolecular condensation of ethyl 3-acetyl- 5-
oxopyrazolo[1,5- a ]quinolin-4-carboxylate  65  on heating [ 210 ] (Scheme  31 ).

 

 

V.N. Charushin et al.



135

   2-Mercapto-6-fl uoroquinolin-3-carboxylic acids are considered as important 
intermediates in schemes leading to [ a ]-annelated fl uoroquinolones, as shown by 
the synthesis of a number of thiazeto[ a ]quinolones  67  possessing a high level of 
antibacterial activity (Table  4 ) [ 211 – 213 ]. For instance, modifi cation of position 7 
of thiazeto[3,2- a ]quinolones results in the formation of highly effective tricyclic 
antibacterials, such as prulifl oxacin  68 , which is metabolized in organisms into 
ulifl oxacin  69  (Scheme  32 ) [ 214 – 217 ]. It is worth noting that decarboxylation of 
ulifl oxacin drops down the antibacterial activity in 60–12,000 times. A similar 
phenomenon has been observed in case of cipro- and moxifl oxacin [ 60 ], thus showing 
an extremely important role of the carboxyl group. The synthesis of thiazolo[3,2- a   ]-, 
[1,3]benzothiazino[3,2- a ]- and [1,3]benzothiazino[1,2- a ]quinolin-6-carboxylic 
acids has also been reported [ 218 ,  219 ].
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  Scheme 31    Synthesis of tetracyclic fl uoroquinolone  66        

   Table 4    Activity of  67  (R = Me, R 2  = R 5  = H, R 3  = F), MIC, μg/ml   

 R 4    St. aur.    E. coli    Ps. аer.  

 Piperazinyl  0.05  0.0125  0.2 
 4-Methylpiperazinyl  0.1  0.025  0.39 
 Morpholinyl  0.1  0.1  0.39 
 Thiomorpholinyl  0.025  0.2  0.39 

    It should be noted that [ a ]-annelation of additional rings through the reactions 
of1- or 2-substituted fl uoroquinolones has certain restrictions, while cycloconden-
sation of fl uorinated benzoyl chlorides with C,N-bifunctional nucleophiles appears 
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to be a more common method for the synthesis of a broad range of [ a ]-annelated 
fl uoroquinolones. Incorporation of original bicyclic amines at position 7, as well as 
the synthesis of new derivatives through reactions of the carboxyl group are the 
main directions for modifi cation of [ a ]-annelated fl uoroquinolones.  

2.2.2    [ b ]-Annelated Fluoroquinolones 

 The thesis concerning necessity of the carboxyl group in position 3 of fl uoro- 
quinolones to provide their antibacterial properties is not in agreement with the 
data on activity of [ b ]-annelated isothiazolo-, pyrido-, pyrimido- and pyrazino- 
quinolones which stimulated research studies of this group of compounds [ 7 ]. 
Indeed, a whole number of oxoisothiazolo[5,4- b ]quinolones possessing a high 
antibacterial activity (Table  5 ), for instance compound  70a  and its analogues, have 
been obtained [ 220 – 224 ]. Also 9-cyclopropyl-6-fl uoro-8-methoxy-7-(2-methyl-
pyridin-4-yl)-9 H -isothiazolo[5,4- b ]-quinolin-3,4-dione has shown a high activity 
 in vitro  against methicillin-sensitive strains of  Staphylococcus aureus  (MRSA), 
high level of inhibiting of DNA-gyrase and topoisomerase IV of  S. aureus , in com-
bination with a neglect able effect on human topoisomerase II and low cytotoxicity 
[ 225 ,  226 ]. A series of 7-(3′-substituted) pyrrolidinyl-8-methoxyisothiazolo[ b ]
quinolones  71  has been obtained and their antibacterial activity towards methicillin-
sensitive  Staphylococcus aureus  (MSSA), methicillin-resistant  Staphylococcus 
aureus  (MRSA) and  Escherichia coli , including stereochemical aspects and infl u-
ence of substituents, has been elucidated [ 226 ].

   The synthesis of 1-methyl-1,4-dihydro-9H-pyrazolo[4,3- b ]quinoline-9-one  72,  
inhibitor of protein kinase C, has been performed by means of cyclization of 
4-[(4-fl uorophenyl)amino]-1-methyl-1Н-pyrazole-5-carboxylic acid (Scheme  33 ) 
[ 227 ]. The main trends in development of research studies in the fi eld of [ b ]-
annelated fl uoroquinolones are dealt with use of these compounds for the synthesis 
of novel [ i,j ]-annelated systems, a varying of substituents at C-7, and also with 
obtaining of new 2-substituted fl uoroquinolones.

   Table 5    Antibacterial activity of [ b ]-annelated fl uoroquinolones (MIC, μg/ml) 

  

F
O

N

R1

S
NH

O

N

HN 70b,c
      

 Compound   St. aur.    E. coli    Ps. аer.  

  70b  (R 1  = ethyl)  0.02  0.005  0.05 
 Norfl oxacin  0.20  0.01  0.1 
  70c  (R 1  = cyclopropyl)  0.1  0.1  0.20 
 Ciprofl oxacin  0.78  0.1  0.39 
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  Scheme 33    Structure of [ b ]-annelated quinolones  70a-72        

2.2.3       [ с ]- and [ d,e ]-Annelated Fluoroquinolones 

 The targeted synthesis of these types of fused fl uoroquinolones has never been 
carried out, since the oxo-group in position 4 which is responsible for linkage of 
fl uoroquinolones with DNA gyrase has to be eliminated [ 7 ].  

2.2.4    [ f ]- and [ g ]-Annelated Fluoroquinolones 

 Both [ f ], and [ g ]-annelation results in loss of fl uorine atom in position 6 the presence 
of which has long been associated with a high level of antibacterial activity of 
fl uoroquinolones. However, a number of highly active compounds have been 
revealed in the series of oxazolo-, thiazolo- and imidazo[4,5- f ] fused fl uoroquino-
lones. For instance, derivative  73  (R 3  = R 4  = F) has shown a good activity against 
both Gram- positive, and Gram-negative bacteria [ 228 ]. According to  in vitro  
biological tests 5-methoxyimidazo[4,5- f ]quinolones  74  exceeds in activity the 
corresponding analogs of ofl oxacin [ 229 ]. Furonaphthyridine  75  has found applica-
tion as the basis to obtain antibacterials (Scheme  34 ) [ 230 ].

2.2.5       [ h ]-Annelated Fluoroquinolones 

 6-Oxo-6,9-dihydro[1,2,5]oxadiazolo[3,2- h ]quinolin-7-carboxylic acid  76  was 
synthesized from 7-azido-8-nitroquinolone [ 231 ]. A convenient method for the 
synthesis of 6-oxothiazolo[3,4- h ]quinolin-7-carboxylic acids 77 has been suggested 
(Scheme  35 ) [ 232 ]. The structure of compounds  76  and  77  has been confi rmed by 
X-ray crystallography. Biological tests of fl uoroquinolone  77  have revealed that this 
compound possesses a high activity against Gram-positive  bacilli  and  staphylococci , 
including methicillin-resistant strains, as well as Gram-negative bacteria (Table  6 ).
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    A series of ethyl 2-R(Ar)-9-cyclopropyl-4-fl uoro-6-oxo-1H-imidazo[4,5- h ]
quinoline- 7-carboxylates  78  have been obtained through cyclocondensations of the 
corresponding 7,8-diamino quinolones [ 233 ]. Also a number of tetracyclic [ h ]-
annelated fl uoroquinolones, such as 1-cyclopropyl-6-fl uoro-4-oxo-1,4-dihydro- 
pyrido[2,3- a ]carbazole-3-carboxylic acids  79  and their thiene isosters have been 
obtained (Scheme  36 ) [ 198 ]. All derivatives proved to possess a high activity against 
 Bacillus subtilus  and  Staphylococci .
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  Scheme 35    Structure of [ h ]-annelated fl uoroquinolones  76 ,  77        

   Table 6    Activity of  77  (MIC, μg/ml)   

 Compound 
  Bacillus 
cereus  

  Bacillus subtilus 
ATCC 6633  

  Methicillin-resistant 
S. aureus  

  E. coli  
ATCC8739 

 Ciprofl oxacin  0.15  0.03  0.7  0.015 
  77   0.15  0.07  1.5  0.7 
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  Scheme 36    Structure of [ h ]-annelated fl uoroquinolones  78 ,  79        

2.2.6       [ i,j ]-Annelated Fluoroquinolones 

 The most known representatives of tricyclic [ i,j ]-annelated fl uoroquinolones are 
 ofl oxacin 80  and its analogues  81  (Scheme  37 ) [ 234 ]. Ofl oxacin is well-known to 
clinical physicians, since more than 15 years it has been applied in medical practice. 
Ofl oxacin has produced in two ready forms, peroral and injective ones, and both of 
them are characterized by a high clinical effi ciency, wide range of indications for treat-
ment, relative stability of the ofl oxacin molecule in the process of bio- transformations 
in organism, and a low interference with drugs of other pharmacological groups. 
The oxygen atom in the oxazine ring is supposed to be an important element of the 
structure, thus providing an optimal antibacterial effect of this compound. Ofl oxacin 
represents a racemic mixture of the right- and left-rotating optical isomers. The left-
rotating enantiomer, levofl oxacin, which proved to be much more active than its 
stereo analogue against nearly all bacteria, had been launched into medicinal prac-
tice in 1997. Inhibition of  E. coli  DNA gyrase by levofl oxacin (I 50  2,50 μg/ml) was 
shown to surpass inhibition of the same enzyme by ofl oxacin (I 50  6,20 μg/ml) [ 235 ].
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   The starting materials  82  for the synthesis of ofl oxacin and its analogues have 
been obtained by interacting ethyl 2-(tetrafl uorobenzoyl)-3-ethoxy acrylates with 
2-aminopropanol [ 236 ]. It is clear that use of optically active  S -(-)-2-aminopropanol 
enables one to obtain levofl oxacin [ 237 – 241 ]. Another approach to fl uoroquino-
lones  81  is cyclization of compounds  83 , derived from condensation of the corre-
sponding benzoxa(thia)zines with diethylethoxy methylenemalonate (Scheme  38 ). 
In this way the synthesis of levofl oxacin has been realized from the ( S )-isomer of 
7,8-difl uoro-2,3-dihydro-3-methyl-4H[1, 4]benzoxazine [ 242 ].
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  Scheme 38    Synthesis of fl uoroquinolones  81        

   During the last two decades the synthesis of levofl oxacin and its  S -(-)-pre-
cursors has been improved considerably, and new approaches have been advanced 
[ 243 – 255 ]. In particular, kinetic resolution of 7,8-difl uoro-2,3-dihydro-3-methyl-
4H-[1,4]-benzoxazine racemate using naproxen, N-[sulphonylsubstituted]-( R )-
proline and ( 2S )-(6-methoxynapht-2-yl)propionyl chloride, has been advanced 
[ 256 – 261 ]. The optically active ( S )-isomer obtained by this method has been used 
for the synthesis of levofl oxacin ( S )-(-)- 80  [ 256 ]. Also a new synthetic approach to 
( S )-isomer through catalytic reduction of 7,8-difl uoro- 3-methyl-2 H -1,4-
benzoxazine with use of chiral Bronsted acids as catalyst and substituted dihydro-
pyridine as a source of hydrogen has been described [ 262 ]. 

 A number of ofl oxacin analogues modifi ed in position 10, including the well- known 
antibacterial drug pazufl oxacin  84 , have been synthesized [ 263 – 265 ]. Some compounds 
of this series show a high activity towards a number of microorganisms, such as  Shigella 
fl exneri ,  Proteus vulgaris  [ 263 ]. It is worth noting that (3S)-10-[ Cis -( 3S,4S )-3-amino-4-
(fl uoromethyl)pyrrolidin-1-yl]-9-fl uoro-2,3-dihydro-3- methyl-7-oxo-7H-pyrido[1,2,3- d,e ]
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[1,4]benzoxazin-6-carboxylic acid  85  is more active than levofl oxacin against 
 Staphylococcus aureus 870307  [ 266 ]. An analogue of ofl oxacin, containing a mac-
rocyclic fragment in position 6 has been described [ 267 ]. All kinds of modifi cations 
of the structure of ofl oxacin have been performed by varying substituents not only 
in positions 6 and 10, but also in the oxazine ring. In particular, compounds  86  show 
a comparable with ofl oxacin activity against Gram-positive and negative microor-
ganisms, and a high activity towards methicillin- resistant strain of  S. aureus MR5867  
[MIC 0,016–0,25 μg/ml for compound  86  (X = O, R = 3-cyclopropylaminomethyl-
1-pyrrolidine)] (Scheme  39 ) [ 268 ].
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  Scheme 40    Structure of fl uoroquinolones  87 – 90        
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    Marbofl oxacin 87  is a representative of another promising group of tricyclic 
fl uoroquinolones, pyridino[3,2,1- i,j ]-1,3,4-benzoxadiazines, is widely used in vet-
erinary practice (Scheme  40 ) [ 269 ].

   Synthetic methods to obtain other members of the family of [ i,j ]-annelated 
fl uoroquinolones have been developed. For instance, derivatives of 
1,3,4-thiadiazino[6,5,4- i ,j ]-, 1,3,4-oxadiazino[6,5,4- i,j ]- and 1,2,4-triazino[5,6,1-
 i,j ]-annelated quinolones  88a-c  have been obtained by means of cyclization of 
2-polyfl uorobenzoyl acrylates bearing hydrazide, thiosemicarbazide or amidrazone 
moieties in position 3 [ 270 – 275 ]. Thiadiazino-fused quinolones  88a  and com-
pounds derived from displacement of fl uorine atoms in positions 8 and 10 with 
cycloalkylimines are of great interest as promising compounds exhibiting not only 
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antibacterial but also other types of biological activity [ 276 ,  277 ]. Synthesis of tet-
racyclic quinolones  89 , in which the thiadiazine fragment is fused with both the 
pyridine and triazole rings has been described [ 278 ]. Activity of compounds  89  with 
R = H, Me against Gram-positive and Gram- negative bacteria is comparable with 
that of ofl oxacin. Another core structure close to ofl oxacin is 1,2,4-oxadiazino[ i,j ]-
annelated fl uoroquinolone  90  which was obtained by cyclization of 3-[1-(hydroxyimi-
noethyl)amino] acrylate [ 279 ]. The synthesis of tetracyclic fl uoroquinolones  91  has 
been reported [ 280 ,  281 ]. The structure of novel pentacyclic fl uoroquinolones  92  
(Scheme  41 ), obtained by cyclization of ethyl 3-(benzazol-2-yl)hydrazino-2-poly-
fl uorobenzoyl acrylates, was elucidated by X-ray crystallography [ 282 – 284 ].
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  Scheme 41    Structure of fl uoroquinolones  91, 92        

   As a rule, cyclizations of 1-substituted 8-fl uoroquinolones have an advantage in 
comparison with annelation of the pyridine ring to a benzazine moiety, thus allow-
ing one to vary annelated fragments to a greater extent. However, the synthesis of 
levofl oxacin is an exception, since the scheme suggesting to obtain fi rst the optically 
active benzoxazine, as the key intermediate, followed by annelation of the pyridone 
fragment proved to be a more successful one.  

2.2.7    Tetracyclic [ a,i,j ]-Annelated Fluoroquinolones 

 Several examples of tetracyclic [ a,i,j ]-annelated fl uoroquinolones are available in 
the literature. In particular, compounds  93  and  94 , bearing 3-aminopyrrolidine and 
( 1S,4S )-5-methyl-2,5-diazabicyclo[2.2.1]heptane fragments, respectively are con-
sidered to be rather promising because they both exceed ofl oxacin in antibacterial 
activity (Scheme  42 ) [ 285 ,  286 ].
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3          Other Types of Biological Activity of Fluoroquinolones 

 During the last decades compounds of the fl uoroquinolone family proved to be not 
only effective inhibitors of bacterial enzymes; their antineoplastic [ 287 ], antiviral 
[ 41 ] (including concerning HIV [ 288 ]), anti-diabetic [ 289 ] and other types [ 290 , 
 291 ] of biological activity have been intensively elucidated. 

3.1     Anticancer Activity 

 Some representatives of the fl uoroquinolone family, especially polycyclic com-
pounds, are capable of inhibiting topoisomerase II, the key enzyme for replication 
DNA, and this is why they are promising for development of antineoplastic drugs 
[ 172 ,  292 ,  293 ]. In particular, a profound antineoplastic activity is demonstrated by 
quinobenzoxazines  95–97  (Scheme  43 ) [ 293 – 298 ]. Fluoroquinolone  95  (R’ = Н) is 
more active towards some tumor cells than such antineoplastic drugs, as adriamicin, 
camptotecin and etoposide [ 299 ]. Relationships between the nature of substituents 
in the amino fragment and the benzene ring of compounds  95–96  and their abilities 
to suppress the growth of tumor cells have been studied. Compounds with R’ = Н 
and R = Cl, NO 2  were shown to inhibit not only topoisomerase II, but also topoisom-
erase I [ 280 ,  299 – 301 ]. Amides  97  proved to suppress effectively the growth of 
HCT-116 cells, IC 50  values 0,03–0,4 μM [ 295 ].
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  Scheme 43    Structure of fl uoroquinolones  95 – 97        

   Further steps to modify the structure quinobenzoxazines  95  involve annelation of 
the benzene rings to the benzoxazine fragment, as illustrated by the synthesis of 
benzo- and dibenzoderivatives  98  and  99  (Scheme  44 ) [ 299 ,  302 ]. Research studies 
on activity of pentacyclic derivatives  98  towards a number of tumor cells have 
shown that  R -isomers are much more active, than  S -isomers (Table  7 ). Also it has 
been revealed that a molecular target for fused fl uoroquinolones  99  is the site of 
DNA capable of forming the quadruplex [ 303 ]. It has been shown that R-isomer  99  
is characterized by a strong linkage with G-quadruplex and a low infl uence on 
topoisomerase II, while the  S -isomer  99  has a strong linkage with topoizomerase II 
and a low interaction with G-quadruplex [ 296 ].
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    The data of biological tests on activity of compound  100  (drug QQ58), as an 
intercalator of DNA [ 304 ] confi rmed that this compound inhibits human telomerase 
(IC 50  28 μМ); in organisms it is transformed into qarfl oxacin which is linked with 
DNA G-quadruplexes [ 300 ,  304 – 306 ]. Polynuclear fl uoroquinolones, containing the 
amide fragment, for example  101  (Scheme  45 ), have been shown to inhibit effec-
tively the HeLa (mammalian cancer) growth (IC 50  0,1–0,2 μМ) [ 303 ,  307 ,  308 ].
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  Scheme 44    Structure of fl uoroquinolones  98 ,  99        

  Table 7    Inhibition of cancer 
cells by pentacyclic 
fl uoroquinolones  98   

 Cell lines 

 Value IC 50   in vitro, μ М 

 ( S )-isomer  ( R )-isomer 

 В16 (melanoma)  0.2  0.02 
 MDA-231 (breast cancer)  0.08  0.005 
 Н226 (lung cancer)  0.03  0.01 
 НТ-29 (colon cancer)  0.05  0.03 
 DU 145 (prostate cancer)  0.06  0.03 
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  Scheme 45    Structure of fl uoroquinolones  100 ,  101        

   Other fused fl uoroquinolones, derivatives of benzazolotriazino[ i,j ]-annelated 
quinolon-6-carboxylic acids  92  have shown anticancer activity [ 309 ]. Biological 
tests on 9 types of tumors revealed that annelation of 1-methylbenzimidazo frag-
ment to the triazine ring is more effective for suppression of cell growth, than that 
of the benzothiazole ring. An increase in numbers of fl uorine atoms in the benzene 
rings of quinoline or benzazole fragments enhance antineoplastic action of pentacyclic 
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derivatives; acids suppress growth of cells more strongly, than the corresponding 
ethyl esters. The biggest effect on melanoma has been observed  in vivo  experiments 
for fl uoroquinolone  92d  (Scheme  46 , Fig.  2 ) [ 310 ].

    Derivatives of levofl oxacin  103  (Scheme  47 ), bearing in position 3 a lipophilic 
fragment, or the benzothiazole fragment instead of the carboxyl group, proved to 
exhibit antineoplastic activity (Table  8 ) [ 311 ]. The highest level of activity against 
glioblastoma has been observed for the ester  103а .

 

 

 

V.N. Charushin et al.



145

    Antineoplastic activity of fl uorine-containing derivatives of 1,3,4-oxa(thia)-
diazine[6,5,4- i,j ]quinolon-6-carboxylic acids  104, 105  has been studied on cultures of 
60 lines of cancer cells for nine groups, such as leukemia, lung cancer, colon cancer, 
CNS cancer, melanoma, ovarian cancer, renal cancer, prostate cancer, mammalian 
cancer [ 309 ,  310 ]. In the series of thiadiazinoquinolines the highest effect on antineo-
plastic activity gas been observed for compounds  105а  and  105b  bearing such phar-
macophoric fragment, as N,N-dimethyl-1,3-diaminopropane. In case of compound 
 105b  the full death of nearly all tumor cells MCF7 and SF-268 (more than 90 %) has 
been reached. Biological tests of compounds  105а,c,d,f  have shown that the presence 
of a fl uorine atom in position 8 facilitates suppression of cell growth. Also a high 
activity of compound  105а  towards leukemia has been established [ 309 ,  310 ]. 

 Not only [ i,j ]-annelated fl uoroquinolones, but also polycyclic fl uoroquino-
lones, in which an additional ring is annelated to [ c ]- or [ h ]-sides proved to pos-
sess antineoplastic action. Research studies on antineoplastic activity of 
5-cyclopropyl-6,8-difluoro- 7-(2,6-dimethyl-4-pyridinyl)-5H-pyrazolo[4,3- c ]
quinolin-3(2Н)-ones  106  have shown that derivatives containing the cyclohexyl 
group in position 2 are the most effective inhibitors of topoisomerase II of HeLa 
cells (mammalian cancer), while the dimethylaminocyclohexyl compound has 
shown the best data on cytotoxicity towards Р388 (leukemia) cells (Table  9 ) [ 312 ]. 

   Table 8    Activity of levofl oxacin derivatives  103  against some cancer cells   

 Compound 

 IC 50   in vitro,  mkM 

 U373-MG 
(glioblastoma) 

 А549 (lung 
cancer) 

 РС-3 (prostate 
cancer) 

 LoVo (colon 
cancer) 

 MCF-7 (breast 
cancer) 

 Levofl oxacin  188  70  238  67  622 
  103а   0.2  65  86  0.3  0.3 
  103b   0.9  593  100  4  12 
  103c   2.3  2.2  1.5  0.8  2.1 

   Table 9    Inhibitory and cytotoxicity properties of pyrazoloquinolones  106    

 R 

 HeLa cell topo II 
inhibitory properties 
(ЕС 50 , μM) 

 Cytotoxicity 
properties for Р388 
 in vitro  (IC 50 , μM) 

 (CH 2 ) 2 NMe 2   2.6  0.26 
 (CH 2 ) 3 NMe 2   1.7  0.16 
 Cyclohexyl  0.9  0.68 
 CH(CH 2 CH 2 ) 2 O  1.7  0.29 
 CH(CH 2 CH 2 ) 2 NMe  3.2  0.094 
 CH(CH 2 CH 2 ) 2 CHNH 2 ( cis )  0.5  0.44 
 CH(CH 2 CH 2 ) 2 CHNMe 2 ( cis )  1.7  0.067 
 CH(CH 2 CH 2 ) 2 CHNMe 2 ( trans )  4.4  0.26 
 1-Cyclopropyl-6,8-difl uoro-7-(2,6-di- methyl-4-

pyridinyl)-4 Н -4-oxoquinoline- 3-carboxylic acid 
 7.6  29 

 1-Cyclopropyl-6,8-difl uoro-7-(2,6-di- methyl-4-
pyridinyl)-4 Н -quinoline-4-one 

 17  15 
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6-Fluoro-4-oxopyridino[2,3- a ]-carbazol-3-carboxylic acids  107  inhibit MCF-7 
(breast cancer) and A549 (lung cancer), activity of  107b  towards MCF-7 is twice 
higher, than that of ellipticine (Scheme  48 ) [ 198 ].
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  Scheme 48    Structure of fl uoroquinolones  106 ,  107        

    Also a number of bicyclic fl uoroquinolones are capable of suppressing the 
growth of tumor cells. Incorporation of pyrrolo[2,1- c ][1,4]benzodiazepine frag-
ment in position 1 of fl uoroquinolones resulted in compounds  108 , which inhibit 
the growth of HT-29 (colon cancer) cells and А549 (lung cancer) up to 80 % 
[ 313 ]. Derivatives of 1-phenylsubstituted fl uoroquinolones  109  suppress the 
growth of Solo205 (carcinoma) cells (IC 50  values 2–20 nМ) [ 314 ]. 3-Benzimidazolyl 
fl uoroquinolone  110  and its analogues (Scheme  49 ), including [ i,j ]-oxazino 
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annelated compounds, proved to suppress the growth of tumor KV, А2780 and 
Bel7404 cells [ 315 ].

   Rather high antineoplastic activity of ciprofl oxacin derivatives, containing a 
substituent in position 4 of the piperazine fragment has been shown [ 302 ]. 
Elucidation of the “structure-activity” relationships for 1-(2-thiazolyl)-6-fl uoro-
1,4-dihydro- 4-oxo-1,8-naphthyridin-3-carboxylic acids has shown that several 
compounds of this series exhibit activity, comparable with the well-known drug 
 etoposide  [ 316 – 318 ]. Also the data on activity of amides of 7-substituted 1-(2-thia-
zolyl)- and 1-(2-benzothiazolyl)-1,8-naphthyridin-4-on-3-carboxylic acids have 
been reported [ 319 ]. Ethyl 1-(4-cyano-2,3,5,6-tetrafl uorophenyl)-6,7,8-trifl uoro-
4-oxo-1,4-dihydroquinolin-3-carboxylate proved to inhibit the phosphorylation 
process of transcription STAT3 activator that plays an important role for cancer 
therapy [ 320 ].  

3.2     Tuberculostatic Activity 

 Being effective inhibitors of DNA-gyrase of mycobacteria some derivatives of 
fl uoroquinolones are important for therapy of rifampicin-resistant tuberculosis [ 321 ]. 
In particular, values of minimum inhibitory concentrations against  M. tuberculosis  
for a number of elucidated fl uoroquinolones proved to be in the range from 0,12 to 
128 μg/ml (Table  10 ) [ 322 ,  323 ].

   An important synthetic approach for development of fl uoroquinolones which are 
active against  Mycobacterium tuberculosis  appears to be introduction of isoniazide 
and pyrazinamide residues into the piperazine fragment in position 7. Indeed, 1-tert - 
butyl substituted fl uoroquinolones  111  and 1-cyclopropyl-5-amino-fl uoroquino-
lones  112  proved to exhibit a high activity towards  Mycobacterium tuberculosis 
in vivo  [ 38 ]. The minimum inhibitory concentration against  M. tuberculosis  H 37 R v  
for compound  113b  is 0,78 μg/ml (Scheme  50 ) [ 324 ]. Also quinolones, bearing 
residues of hydrazides of substituted benzoic acids, which can be regarded as 

   Table 10    Tuberculostatic activity of some fl uoroquinolones   

 Quinolone  MIC, μg/ml  Quinolone  MIC, μg/ml 

 Sparfl oxacin  0.25  Trovafl oxacin  16 
 Sitafl oxacin  0.25  Grepafl oxacin  1 
 Clinafl oxacin  0.5  Pefl oxacin  8 
 Gatifl oxacin  0.12  Tosufl oxacin  16 
 Ciprofl oxacin  0.5  Temafl oxacin  4 
 Moxifl oxacin  0.5  Fleroxacin  6.25 
 Levofl oxacin  0.5  Enoxacin  8 
 Ofl oxacin  1  Oxolinic acid  32 
 Gemifl oxacin  4  Flumequin  64 
 Garenofl oxacin  2  Pipemidic acid  128 
 Norfl oxacin  4  Nalidixic acid  128 
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isosters of isoniazide, proved to be active compounds (MIC 0,5 μg/ml for 
multiresistant  M. tuberculosis А8 241 ) [ 325 ].

   1-Cyclopropyl-8-methoxyquinolones  114  are active against  Mycobacterium 
tuberculosis,  its multi-resistant strains, as well as  Mycobacterium smegmatis  [ 326 ]. 
Derivative  115  possesses tuberculostatic activity against  Meningitis tuberculosis 
Н   37   R   v   (MIC 0,16–0,35 μg/ml) [ 327 ]. 1-[(6′-Fluoro-1′,4′-dihydro-7-(4”-methyl-1”-
piperazinyl)-1′-ethyl-4′-oxo-3′-quinolylamido)-3-iminomethyl]-rifampicin  116  proved 
to exhibit a considerable tuberculostatic activity (Scheme  51 ) [ 328 ].
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  Scheme 50    Structure of fl uoroquinolones  111 – 113        
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   1-(4′-Amino-2′-fl uoro)phenyl substituted fl uoroquinolones  117  (R = H, Me) 
inhibit the growth of  M. tuberculosis  [ 329 ]. Incorporation of aminoester or polyeth-
yleneamino fragments has been suggested to increase their ability to penetrate 
through cellular membranes. Indeed, fl uoroquinolones  118  have been established to 
possess a high specifi c activity against mycobacteria and a low toxicity [ 330 ]. 
Tuberculostatic activity of derivatives  118  (R = H; X, Y = 0; n = 4) proved to be fi ve 
times higher than that of pefl oxacin (Scheme  52 ).
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  Scheme 52    Structure of compounds  117 ,  118        

   Several compounds [ 331 ] of the benzothiazolo[3,2- a ]quinolone-6-carboxylic 
acids  119  family (Scheme  53 ) exhibit high tuberculostatic activity relative to multi- 
resistant strain of  M. tuberculosis  (Table  11 ).
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  Scheme 53    Structure of fl uoroquinolones  119 – 121        

   Table 11    Tuberculostatic activity of fl uoroquinolones  119    

 R 1 , R 2 , R 3  

 МIC, μg/ml 

  Mycobacterium 
tuberculosis  

 Multiresistant strain 
of  M. tuberculosis  

  M. smegmatis  
АТСС 14468 

 R 1  = pyperidin-1-yl, R 2  = R 3  = Н  0.39  0.19  6.53 
 R 1  = 4-СlC 6 H 4 , R 2  = OH, R 3  = Н  0.36  0.36  2.98 
 R 1  = R 2  = Н, R 3  = Et 2 NC(O)  0.18  0.08  3.15 
 R 3  = Н, R 1 , R 2  = OCH 2 CH 2 O  0.86  0.86  6.89 

    Ofl oxacin and its analogs are promising drugs for tuberculosis treatment. 
Ofl oxacin (daily dose 300–800 mg) and levofl oxacin (250–500 mg a day) in 
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combination with  p -aminosalicylic acid, cycloserine, or ethionamid are effective for 
the treatment of multi-resistant strains of tuberculosis. On using of these fl uoro- 
quinolones, a relatively high concentration in cells is reached, that increasing their 
antibacterial activity [ 38 ]. Derivatives of ofl oxacin, containing the nitro group in 
position 8, e.g.  120  proved to possess a high tuberculostatic activity [ 332 ]. Also 
compounds showing tuberculostatic activity have been found among oxadiazino- 
quinolines  121  and thiadiazinoquinolines  105  (MIC 0,2–0,4 μg/ml) [ 276 ,  277 ].  

3.3     Antiviral Activity 

 Fluoroquinolones  122 , bearing the (triazolylmethyl)phenyl fragment in position 1 
and an aryl substituent in position 4 of piperazine, are capable of protecting the 
HIV-infected cells from a virus-induced destruction (IC 50  0,25–0,7 μМ). They 
appear to be a new structural type of effective drugs for treatment and prevention of 
viral diseases caused by HIV retroviruses [ 333 ]. Fluoroquinolones  123  with 
4-(2′-pyridinyl)-1-piperazine fragment in position 7, inhibit reverse transcriptase of 
HIV-1 [ 334 ]. 8-Difl uoromethoxy- and 8-trifl uoromethylcarboxylic acids  124  inhibit 
replication of HIV-1, while CF 3 - derivatives are more active against HIV-1 than the 
corresponding difl uoromethoxy compounds (Scheme  54 , Table  12 ) [ 335 – 338 ].

122

X

O

F

NN
N

R

N
A Z

YN

O
F

NN

RN

N

O

F

NN

RN
R' X

O

OH

O

OH

O

OH

A = CH, N
123

124

123, 124: R=t-Bu (a), cyclopropyl (b), Me (c). X=OCHF2, CF3.

  Scheme 54    Structure of fl uoroquinolones  122 – 124        

    [ i,j ]-Annelation of the oxazine ring is favorable for exhibiting of antiviral activity, 
but does not lead to such promising compounds, as 8-methoxy- and 
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difl uoro- methoxy derivatives [ 339 ]. Fluoroquinolone  125c  is more active against 
the virus HIV-1, than thiazeto derivative  126  [ 336 ]. Values IC 50  3,7 μМ for  125а  and 
1,7 μМ for  125b  have been found, while values EC 50  0,074 μg/ml for  125c  and 
0,4 μg/ml for  126  have been obtained. Also a number of tricyclic fl uoroquinolones 
 127  proved to possess a high activity (ЕС 50  0,008−2.3 μg/ml) (Scheme  55 ) [ 340 ]. 
Also effective compounds against HIV-1 have been discovered in the series of the 
Mannich bases of norfl oxacin [ 341 ].

O
F

N

NX

N

O

N

R
125

O

F

N

N
N

N

N
S

Me
126

O

O

N

CH2

F

N

NR

O

OH

O
OH

O

OH

125: R=H, X=CH(a),
 R=F, X=CH(b), N(c).

127

  Scheme 55    Structure of fl uoroquinolones  125 – 127        

   Table 12    Inhibition of HIV-1 by  124    

 R  R’ 

 IC 50 , μМ 

 8-CF 3   8-OCHF 2  

 Me  2-OMeC 6 H 4   0.054  0.35 
 Et  2-OMeC 6 H 4   0.11  0.22 
 Cyclopropyl  2-OMeC 6 H 4   0.069  0.56 
 Me  2-pyrimidinyl  0.049  0.31 
 Et  2- pyrimidinyl  0.095  0.47 
 Cyclopropyl  2- pyrimidinyl  0.19  3.7 
 Me  2-pyridyl  0.014  0.24 
 Et  2- pyridyl  0.026  0.89 
 Cyclopropyl  2- pyridyl  0.065  0.49 

   Fluoroquinolone  128  bearing the (2-hydroxyethoxy)methyl fragment at N-1 
is active against  herpes virus  HSV-1 (EC 50  2,30 μМ), however the level of its 
activity is lower than that of  acyclovir  (EC 50  1,09 μМ) [ 41 ]. 8-Trifl uoro-
methylquinolones  124  have been reported to suppress  human cytomegalovirus  
[ 342 ]. Fluoroquinolones  129 , containing the sulphamidomethyl group in a 
piperazine fragment, are active against  infl uenza  H1N1, H3N2 and H5N1 
 viruses  [ 343 ]. Tricyclic fl uoroquinolones  130, 131  were found to possess a high 
activity against hepatitus B virus (IC 50  0,1 μМ) (Scheme  56 ) [ 344 ,  345 ]. 

 

Fluoroquinolones: Synthesis and Application



152

Ciprofl oxacin and levofl oxacin are recommended for treatment of patients after 
transplantation surgery operations in order to prevent the disease caused by 
poliomavirus BK [ 346 ].
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  Scheme 56    Structure of fl uoroquinolones  128 – 131        

3.4        Other Types of Biological Activity 

 Some fl uoroquinolones appear to be active against  fungi and parasites . For instance, 
the Mannich derivatives of  norfl oxacin   132  demonstrate a considerable antifungal 
activity against  Histoplasma capsulatum.  One of compounds of this family is more 
active than  clotrimazole  towards  Microsporum audouinii , while other derivatives sur-
pass  clotrimazole  in relation to  Cryptococcus neoformans  or  Microsporum gypsum . 
From all derivatives  132  which have been studied (Scheme  57 ), compound with 
R = Br, X = N, R 1  = NH 2 , Y-Z = CH, A = COMe, R 2 - R 3    = OMe proved to exhibit the 
highest antifungal activity (MIC for  Cryptococcus neoformans  and  Microsporum 
audouinii  0,6 μg/ml) [ 341 ].
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   Moxifl oxacin, gatifl oxacin, trovafl oxacin, and grepafl oxacin belong to a new 
generation of fl uoroquinlones, showing anti-parasitic activity against  Toxoplasma 
gondii  and  Plasmodium falciparum  which cause such severe diseases as toxoplas-
mosis and malaria, respectively. These fl uoroquinolones are targeting at the DNA- 
gyrase, located in a top layer of parasites [ 347 ]. For example, the IC 50  value for 
trovafl oxacin against  Toxoplasma gondii  is 0,96 μM. The data on activity of fl uo-
roquinolones  133  against parasites ( Coccidia ) [ 348 ], and activity of 7-(3′-azabicy-
clo[3.1.0]hexyl)quinolones  134  in relation to plasmodium have recently been 
reported (Scheme  58 ) [ 149 ].
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   Some fl uoroquinolones have been shown to exhibit  cardiovascular, hyperten-
sive , and  antitrombocyte  activities. For instance, compound  135  inhibits aggre-
gation of trombocytes [ 349 ]. According to the recently published data, 
5-amonofl uoroquinolones  136  and  137  are active as  glicogensyntase-kinase-3β 
inhibitors  (GSK, serine-treonine-proteinkinase) [ 265 ]. Bi- and tricyclic fl uoro-
quinolones, bearing the fragment of N-(2-pyridinyl)ethylenediamine appear to be 
promising GSK inhibitors (Table  13 ) [ 265 ].  138 , their 8-fl uoro- and 
5,8- difl uoroderivatives proved to be selective allosteric  modulators of М1 recep-
tor , activation of which is important for therapy of the Alzheimer’s disease 
(Scheme  59 ) [ 350 – 353 ].
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  Table 13    Inhibition of GSK 
by fl uoroquinolones  136, 137   

 Compound  R  IC 50 , nМ 

  136а   4-NH 2 C 6 H 4   900 
  136b   C 6 H 5   440 
  136c   imidazol-1-yl  3,400 
  136d   CH 2 C 6 H 5   45 
  136e   (imidazol-1-yl)methyl  45 
  136f   CH 2 CH 2 C 6 H 5   290 
  136g   (pyridin-2-yl)amino  22 

  137a   44 
  137b   31 
  137c   12 
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4          Structure and Spectral Characteristics 

  The structure  of fl uoroquinolones has been elucidated in crystals and solutions. 
The data on X-ray crystallography analysis of fl uoroquinolines are available in the 
literature for both quinolones [ 89 ,  123 ,  354 ,  355 ], and their polycyclic [ 204 ,  231 , 
 232 ,  270 ,  271 ,  282 ,  283 ,  356 ] condensed systems. 

 The  1 Н,  13 С and  19  F NMR spectra for the series of fl uoroquinolines have been 
registered and analyzed.  1 Н,  13 С NMR spectra of fl uoroquinolones bearing rather 
complicated optically active fragments, including heteronuclear correlation experi-
ments, have been discussed in the literature [ 164 – 168 ]. Elucidation of NMR  19  F 
spectra of compounds  12  has revealed long-range coupling constants  7  J  F-F  between 
the trifl uoromethyl group and fl uorine atom in position 8, which are realized through 
space due to vicinity of interacting spins [ 39 ]. The  19  F NMR spectra of benzimidazo 
[2′,3′:3,4]-1,2,4-triazino[5,6,1- i,j ]quinoline ring system  92  demonstrate unusual 
through space  1 H- 19  F and  19  F- 19  F spin-spin interactions with coupling constants 
  7    J (F 1 , F 11 ) = 3.5–4.0 Hz and   6    J (F 1 , Н 12 ) = 2.0–3.0 Hz (Scheme  60 ) [ 284 ].
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  Scheme 60    Long-range coupling constants in compounds  12 ,  92        

5        Complexes of Fluoroquinolones with Metals 

 Due to the presence of the carboxyl and  β −  oxo groups, as well as azaheterocyclic 
fragments, fl uoroquinolones have a profound ability to form metal-chelates, and 
other ionic structures. It is known that complexes with metals may enhance activity 
of fl uoroquinolones due to a better solubility and endocellular accumulation [ 357 , 
 358 ]. The crystal structures of a number of metal complexes, results of their thermal 
analysis, IR and NMR spectra of complexes and their bioactivity have been considered 
[ 359 ]. In the recently published review article [ 360 ] the data concerning the struc-
ture and properties of metal complexes of fl uoroquinolones, and their interaction 
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  Scheme 61    Structure of sparfl oxacin (sfl x)       

  Fig. 3    Structure of complex Cu 2 (sfl x) 2  (Reproduced with permission of Elsevier [ 365 ])       

with DNA have been analyzed. Also physical and chemical characteristics, as well 
as pharmacokinetic data and antibacterial properties of fl uoroquinolones complexes 
with a variety of metals have been reviewed [ 361 ]. 

 The Cu(II)-complex of ciprofl oxacin was shown to possess a high activity against 
 Mycobacterium tuberculosis  than the parent compound [ 362 ]. An enhanced solubility 
of metal complexes in lipids facilitates their transport into bacteria cells, while an eas-
ily proceeding reduction of metal leads to the formation of Cu(I) and activation of 
oxygen which kills mycobacteria. Authors came to a conclusion that redox- active 
metal complexes are very promising compounds for development of highly active 
antitubercular drugs. Indeed, the minimum inhibitory concentration for enrofl oxacin 
complex Cu(erx) 2 (H 2 O) against  E. coli  и  P. aeruginosa  is 0.125 μg/ml, while the same 
index for the parent enrofl oxacin is 1.0 μg/ml [ 363 ]. Antibacterial activity of N-propyl 
norfl oxacin (pr-norf) complex with CuCl 2  and phenanthroline (phen) [Cu(pr-norf)
(phen)Cl] has been was reported [ 364 ]. For instance, the formation of sparfl oxacin 
(sfl x) (Scheme  61 ) dimeric complex with Cu(II) [Cu 2 (sfl x) 2 ] and mononuclear com-
plex with phenanthroline [Cu(phen)(sfl x)H 2 O] has been shown (Figs.  3  and  4 ) [ 365 ].

     Antiproliferative effect of sparfl oxacin and its metal complexes against hormone 
independent BT20 breast cancer cell line has been studied (Fig.  5 ) [ 365 ]. 
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  Fig. 4    Structure of complex Cu(phen)(sfl x)H 2 O (Reproduced with permission of Elsevier [ 365 ])       

  Fig. 5    Suppression of cells 
growth by sparfl oxacin and 
its metal complexes, a- spfx, 
b-Cu 2 (sfl x) 2 , c-[Cu(bpy)(sfl x)
H 2 O], d-[Cu(phen)(sfl x)H 2 O], 
e-[Cu(df)(sfl x)H 2 O]; 
bpy = bipyridine, 
phen = phenanthroline, 
df = 4,5-diazafl uoren-9-one 
(Reproduced with permission 
of Elsevier [ 365 ])       

Coordination of sparfl oxacin with copper in the form of dimeric complex Cu 2 (sfl x) 2  
has been established to diminish the value of inhibitor concentration IC 50  (μΜ) in 
approximately ten times. These data are in agreement with a hypothesis that bio-
logical activity of fl uoroquinolones is in many respects caused by their ability for 
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metal chelate formation. Antitumor activity of moxifl oxacin-copper complexes 
against breast cancer cell lines has also been described [ 366 ].

   Complex of norfl oxacin [Fe(nf) 2 (H 2 O) 2 ]Cl 3  · 6H 2 O was shown to exhibit a higher 
antibacterial activity than the parent norfl oxacin against  E. coli  and  Bacillus dysen-
teriae bacteria  [ 367 ] .  Also it is worth noting that antimicrobial activity of cobalt 
complexes of ciprofl oxacin is less, than that of copper complexes [ 368 ]. 

 The reaction of ciprofl oxacin (cfH) with metal salts in the presence of aromatic 
polycarboxylate ligands (or under basic conditions) has been found to give original 
metal–cfH complexes, for example, [Ba 2 (cf) 2 (1,4-bdc)(H 2 O) 2 ]·H 2 O and [Mn(cfH)
(1,3-bdc)] (bdc = benzenedicarboxylate). The structure of [Ba 2 (cf) 2 (1,4-bdc)(H 2 O) 2 ]· 
H 2 O consists of unique two-dimensional arm-shaped layers (Fig.  6 ), while the sec-
ond complex contains double-chain-like ribbons constructed from [Mn 2 (cfH) 2 (CO 2 ) 2 ] 
dimers and 1,3-bdc (Fig.  7 ) [ 369 ].

    Supramolecular structure of cadmium complexes of ciprofl oxacin [Cd 2 (cf) 2 (bptc)
(H 2 O) 2 ]·8H 2 O is shown in Fig.  8  [ 369 ]. Two units are connected together by μ 3 -O 
atoms of carboxylic groups from cf ligands in an edge-sharing mode to form 
[M 2 (cfH) 2 (H 2 O) 2 ] dimers.

   Complexes of norfl oxacin with zinc(II), such as [Zn(nf) 2 ] · 4H 2 O and 
[Zn(H 2 O) 2 (nf) 2 ](NO 3 ) 2,  were found to exhibit a strong blue fl uorescent emission 
[ 370 ]. The complex of Zn(II) with enrofl oxacin and pyridine, as the second 
N-donative ligand, [Zn(erx) 2 (py) 2 ] · 6H 2 O · MeOH has been obtained (Fig.  9 ). 
Such complexes were found to interact with CT-DNA, thus demonstrating their 
ability to bind with DNA. According to the data obtained by using the UV spec-
troscopic titration technique, the binding strength for Zn(orx) 2 (py) 2  corresponds 
to the highest  K  b  value [ 371 ].

   The formation of ofl oxacin complexes with magnesium has been studied by using 
NMR  1 Н and 2D  1 H- 13 C HSQC methods [ 372 ]. Behavior of coordinative compounds 
of ciprofl oxacin, levofl oxacin and lomefl oxacin with Al(III) in water solutions has 
been elucidated by NMR  1 Н and  13 С spectroscopy [ 373 ]. Tetrakis[4-(3-carboxy-1-
ethyl-6-fl uoro-4-hydroxonio-1,4-dihydro-7-quinolyl)-1-methyl- piperazin-1-ium] 
di-μ 2 -chlorido-bis[tetrachloridobismuthate(III)] tetrachloride octahydrate, (C 17 H 22 F
N 3 O 3 ) 4 [Bi 2 Cl 10 ]Cl 4  · 8H 2 O, is composed of edge- shared centrosymmetric dinuclear 
[Bi 2 Cl 10 ] 4− anions, Cl − anions, dihydrogen pefl oxacinium cations and water molecules. 
The Bi III  coordination polyhedron is a distorted octahedron [ 374 ]. 

  Fig. 6    Structure of complex 
[Ba 2 (cf) 2 (1,4-bdc)
(H 2 O) 2 ]·H 2 O (Reproduced 
with permission of Wiley 
[ 369 ])       
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  Fig. 9    Structure of complex [Zn(erx) 2 (py) 2 ] · 6H 2 O · MeOH (Reproduced with permission of 
Elsevier [ 371 ])       

  Fig. 7    Structure of complex, [Mn(cf)(1,3-bdc)] (Reproduced with permission of Wiley [ 369 ])       

  Fig. 8    Supramolecular structure of ciprofl oxacin complex, [Cd 2 (cf) 2 (bptc)(H 2 O) 2 ]·8H 2 O 
(bptc = 3,3′,4,4′-benzophenontetracarboxylate) (Reproduced with permission of Wiley [ 369 ])       

 

 

 

Fluoroquinolones: Synthesis and Application



160

 One of the modern trend in the chemistry of fl uoroquinolones is the formation of 
Pd(II) and Pt(II) complexes with a number of fl uoroquinolones, such as ciprofl oxa-
cin, levofl oxacin, ofl oxacin, sparfl oxacin and gatifl oxacin [ 375 ,  376 ]. Two examples 
are given below Scheme  62 .
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  Scheme 62    Pd(II) and Pt(II) complexes of fl uoroquinolones       

   A great deal of complexes derived from enoxacin, norfl oxacin, lomefl oxacin, 
fl eroxacin, ofl oxacin, rufl oxacin, gatifl oxacin and sparfl oxacin and their lumines-
cence properties of Tb 3+ – and Eu 3+ –complexes have been investigated (Fig.  10 ) 
[ 377 ]. Complexes of Tb 3+ –enoxacin, Tb 3+ –norfl oxacin, Tb 3+ – lomefl oxacin and 
Tb 3+ –fl eroxacin were shown to display a relatively strong emission intensity com-
pared with Tb 3+ –ofl oxacin, Tb 3+ –rufl oxacin, Tb 3+ –gatifl oxacin and Tb 3+ – sparfl oxa-
cin. Quite weak peaks with unique characters of Eu 3+  at 590 and 617 nm have been 
observed in the luminescence spectra of Eu 3+ –enoxacin, however no luminescence of 
Eu 3+  could be detected when Eu 3+  was added to other fl uoroquinolones. The distinct 
changes in emission intensities for Tb 3+ –fl uoroquinolone and Eu 3+ –fl uoroquinolone 
complexes might originate from different energy gaps between the triplet levels of 
fl uoroquinolones and the excited levels of Ln 3+ . Thus, research studies in the fi eld of 
complexes of fl uoroquinolones with metals are aimed at obtaining of biologically 
active coordination compounds, and also to use of complex formation for quantita-
tive analysis of fl uoroquinolones.

   In conclusion it is worth noting that despite the successes reached in area of 
synthesis, studying of biological activity and application of fl uoroquinolones, 
tasks of design of new structures, development of synthetic approaches, modifi -
cations of existing drugs by means of incorporation of substituents into positions 
1–8 as well as annelation of additional rings to quinolone fragment continue to 
remain actual. Not less important studying of structure–activity relations among 
fl uoroquinolones as in process of accumulation of such material all new depen-
dences of antibacterial activity on positions and the nature of the substituents in 
a fl uoroquinolone fragment become clear. The increasing attention is given to 
the synthesis of optically active isomers among fl uoroquinolones and to their 
use as medicines. Fluoroquinolones are known to be not only antibacterial 
drugs, but also as compounds exhibiting other types of biological activity. 
Development of novel anticancer and antiviral agents in the series of fl uoroqui-
nolones is in progress. Researches in the fi eld of metalocomplexes of fl uoroqui-
nolonecarboxylic acids directed to elucidation of “structure – bioactivity” 
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relations and cation roles in interaction of fl uoroquinolones with DNA are 
developed. Studying of complex formation of fl uoroquinolones plays a crucial 
role for obtaining the fullest data on pharmacokinetic interaction of fl uoroqui-
nolones with other drugs.     

      References 

        1.    Andriole T (ed) (1988) The quinolones. Academic Press, New York  
   2.    Wolfson J, Hooper D (eds) (1989) Quinolone antimicrobial agents. American Society for 

Microbiology, Washington, DC  
   3.    Siporin C, Heifetz C, Damaglia J (1990) The new generation of quinolones. Marcel Dekker 

Inc., New York  
     4.   Mokrushina G, Alekseev S, Charushin V, Chupakhin O (1991) Zhurnal Vsesoyuznogo 

Khimicheskogo obschestva im. D.I. Mendeleeva 36:447–455  
   5.    Chu D, Fernandes P (1991) Recent developments in the fi eld of quinolone antibacterial 

agents. Adv Drug Res 21:39–144  
      6.    Fadeeva N, Shul’gina M, Glushkov G (1993) Molecular and biological features of antibacte-

rial action of derivatives 4-quinolon-3-carboxylic acids. Pharm Chem J 27:4–9  
         7.    Mokrushina G, Charushin V, Chupakhin O (1995) Relationship between structure and anti-

bacterial activity in the fl uoroquinolone series of compounds. Pharm Chem J 29:590–606  
   8.    Padeyskaya E, Yakovlev V (1995) Quinolones. Bioinform, Moscow  
   9.    Andriole T (1998) The quinolones, 2nd edn. Academic Press, New York  
    10.    Mokrushina G, Nosova E, Lipunova G, Charushin V (1999) Polycyclic fl uoroquinolones. 

Russ J Org Chem 35:1447–1463  
    11.    Hooper D, Rubinstein E (eds) (2003) Quinolone antibacterial agents. ASM Press, Washington, 

DC  

  Fig. 10    Emission spectra of Tb 3+ –complexes of some fl uoroquinolones (Reproduced with permis-
sion of Elsevier [ 377 ])       

 

Fluoroquinolones: Synthesis and Application



162

   12.    Shams W, Evans M (2005) Guide to selection of fl uoroquinolones in patients with lower 
respiratory tract infections. Drugs 65:949–991  

     13.    Keam S, Croom K, Keating G (2005) Gatifl oxacin: a review of its use in the treatment of 
bacterial infections in the US. Drugs 65:695–724  

    14.    Bouzard D (1993) In: Krohn R, Kirst H, Maag H (eds) Antibiotics and antiviral compounds. 
Wiley, Weinheim  

    15.      Hamada Y, Watanabe T, Umezu K (1999) Preparation of quinolinecarboxylic acid esters. JP 
Patent 11147875, 2 Jan 1999  

    16.   Stankovic S, Mitov S, Stanojovic C (2003) A process for synthesis of antibiotic fl uoroquino-
linic acid derivatives. WO Patent 10144, 6 Feb 2003  

   17.   Maslennikov E, Strunin B, Kalashnik V, Gusejnov F, Khaev E, Kovalev V (2003) 
Cyclocondensation method for preparing ethyl-6-fl uoro-7-chloro-1,4-dihydro-4-oxo-3- 
quinolinecarboxylate from diethyl-2-(3-chloro-4-fl uoroanilinometylenecarboxylate acid-Et 
ester. RU Patent 2206564, 20 June 2003  

    18.   Chupakhin O, Charushin V, Rusinov V, Mokrushina G, Kotovskaya S, Baskakova Z, 
Kolmakova T (1996) Method for production of 1-ethyl-6-fl uoro-7-(piperazinyl-1)-4-oxo-1,4-
dihydro- 3-quinolinecarboxylic acid. RU Patent 2054005, 10 Feb 1996  

   19.   Azev Yu, Alekseev S, Charushin V, Rusinov V, Chupakhin O (1996) Process for preparing 
ethyl ester derivatives of 7-fl uoro-1,4-dihydro-4-oxo-3-quinolinecarboxylic acid. RU Patent 
2052454, 20 Jan 1996  

   20.   Chupakhin O, Charushin V, Mokrushina G, Kotovskaya S, Karpenko I, Karpin I, Petrova G, 
Sidjrjv E, Nefedov O, Volchkov N, Lipkind M, Shajdurov V, Zabolotskich V, Shipilov A, 
Tolstikov G, Gruzdev V, Navashin S, Fomina I (1992) Preparation of 1-ethyl-6-fl uoro-7-(4- 
methylpiperazinyl)-4-oxo-1,4-dihydro-3-quinolinecarboxylic acid. SU Patent 1766921, 7 
Oct 1992  

    21.   Dzhemilev U, Tolstikov G, Nefedov O, Chupakhin O, Charoshin V, Navashin S, Dokichev V, 
Sultanov S, Gruzdev V, Zverev V (1993) Preparation of ethyl 6,7-difl uoro-1,4-dihydro- 4-
oxo-3-quinolinecarboxylate. SU Patent 1786028, 7 Jan 1993  

   22.    Richardson T, Shanbhag V, Adair K, Smith S (1998) Synthesis of 7-benzoxazol-2-yl and 
7-benzothiazol-2-yl-6-fl uoroquinolones. J Heterocycl Chem 35:1301–1304  

   23.   Kumar N, Bhandari P (1997) A new process for the preparation of 1,4-dihydro-1-alkyl-6- 
fl uoro-4-oxo-7-(1-piperazinyl)quinoline-3-carboxylic acid derivatives. IN Patent 178696, 10 
Feb 1997  

   24.   Shin H, Chang J, Lee K (2005) One-pot four-step process for preparing 7-chloro-1- 
cyclopropyl-6-fl uoro-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylic acid using DMF 
dialkyl acetals. WO Patent 40164, 6 May 2005  

   25.   Gomez C, Villasante Prieto A, Francisko P (2005) One-pot process for preparing gatifl oxa-
cin. WO Patent 47260, 26 May 2005  

   26.   Iki M, Ikemoto T, Sato T (2002) Process for preparing quinolinecarboxylic acid esters and 
1,8-naphthyridinecarboxylic acid esters. JP Patent 155081, 28 May 2002  

   27.   Lee T, Park N, Khoo J, Song S, An J (2004) Preparation of quinolonecarboxylate derivatives. 
WO Patent 56781, 8 July 2004  

   28.   Wang Y, Chen R, Dong Z, Ben S, Nan H, Yu B, Zhao C (2002) Preparation of quinolone 
carboxylic acids. CN Patent 1338455, 6 Mar 2002  

   29.   Randall J (2004) Preparation of quinoline derivatives as antibiotic intermediates using silylat-
ing agents for cyclization of ethoxy-substituted aromatic intermediates. WO Patent 13103, 14 
Mar 2004  

   30.   Muto M, Miura M, Kitagawa Y (2004) Process for the production of optically active quino-
linecarboxylic acid and intermediates therefor. WO Patent 108680, 16 Dec 2004  

    31.   Vales M, Lokshin V, Pepe G, Samat A, Guglielmetti R (2001) Enaminones acylation: 
 competitive formation of quinolin-4-one and isoquinolin-1-one derivatives. Synthesis 
2419–2426  

    32.    Nishimura Y, Minamida A, Matsumoto K (1988) Synthesis and antibacterial activity of enox-
acin analogues with a variant at position 1. Chem Pharm Bull 36:1223–1226  

V.N. Charushin et al.



163

    33.   Ptaszynska K, Winiarski J, Zadelek S, Biedrzycki M, Dziegielewski K, Lewandowska B, 
Nowakowska K, Michalowska J (2004) Preparation alkyl-N-(2-fl uoroethyl)-6,8-difl uoro- 7-
(4-methyl-1-piperazinyl)-4-oxo-3-quinoline-carboxylate. Pol Patent 187824, 29 Oct 2004  

    34.    Yoshikazu A, Kazuhiko I, Fujio I, Masaki H, Takayoshi I (2005) Synthesis and antibacterial 
activity of 1-(2-fl uorovinyl)-7-substituted-4-quinolone-3-carboxylic acid derivatives, confor-
mationally restricted analogues of fl eroxacin. J Med Chem 48:3194–3202  

    35.   Ritsumosa M, Sadahiro S (1994) Preparation of quinolinecarboxylic acids as intermediates 
for microbicides. JP Patent 0673013, 15 Mar 1994  

    36.   Takemura M, Takahashi H, Sugita K, Miyauchi R (1998) Preparation of substituted cyclobu-
tylamine derivatives as antibacterial agents. WO Patent 54169, 3 Dec 1998  

    37.    Sheu J, Chen Y, Fang K, Wang T, Tzeng C, Peng C (1998) Synthesis and antibacterial activity 
of 1-(substituted-benzyl)-6-fl uoro-1,4-dihydro-4-oxoquinoline-3-carboxylic acids and their 
6,8-difl uoro analogs. J Heterocycl Chem 35:955–964  

      38.    Shindikar A, Viswanathan C (2005) Novel fl uoroquinolones: design, synthesis, and in vivo activ-
ity in mice against  Mycobacterium tuberculosis H  37  Rv . Bioorg Med Chem Lett 15:1803–1806  

     39.    Aizikovich A, Nikonov M, Kodess M, Korotayev V, Charushin V, Chupakhin O (2000) Novel 
1-trifl uoromethyl substituted 1,2-ethylenediamines and their use for the synthesis of fl uoro-
quinolones. Tetrahedron 56:1923–1927  

    40.    Hanessian S, Saladino R, Nunez Y (1996) On the binding site of quinolone antibacterials. An 
attempt to probe the shen model. Bioorg Med Chem Lett 6:2333–2338  

      41.    Lucero B, Gomez C, Frugulhetti I, Faro L, Alvarenga L, de Souza M, de Souza T, Ferreira V 
(2006) Synthesis and anti-HSV-1 activity of quinolonic acyclovir analogues. Bioorg Med 
Chem Lett 16:1010–1013  

    42.    Masoudi A, Iman A (2003) Synthesis and reactions of some New 6,7-dihaloquinolones bear-
ing mercapto groups. Phosphorus Sulfur Silicon Relat Elem 178:2393–2402  

    43.    Zheng H, Liu J, Zhang P (2010) One-pot synthesis and antimicrobial activity of novel quino-
lone heterocyclic derivatives. J Heterocycl Chem 47:1411–1414  

    44.   Hong W, Lee K (2006) Baylis-Hillman route to several quinolone antibiotic intermediates. 
Synthesis 963–968  

   45.   Dumas J, Khire U, Lasch S, Nagarathnam D, Scott W (2004) Preparation of quinolinecarboxylic 
acid derivatives and methods for use in treating cancer. WO Patent 80465, 21 Feb 2004  

    46.   Khire U, Liu X, Nagaratham D, Wood J, Wang L, Wang L, Liu D, Zhao J, Guernon L, Zhang 
L (2005) Quinolinecarboxylic acid derivatives for treatment of hyperproliferative conditions, 
their preparation and pharmaceutical compositions. WO Patent 97752, 20 Oct 2005  

    47.    Kuramoto Y, Ohshita Y, Yoshida J, Yazaki A, Shiro M, Koike T (2003) A novel antibacterial 
8-chloroquinolone with a distorted orientation of the N1-(5-amino-2,4-difl uorophenyl) 
group. J Med Chem 46:1905–1917  

    48.    Gordeev M, Hackbarth C, Barbachyn M, Banitt L, Gage J, Luehr G, Gomez M, Trias J, Morin 
S, Zurenko G, Parker C, Evans J, White R, Patel D (2003) Novel oxazolidinone–quinolone 
hybrid antimicrobials. Bioorg Med Chem Lett 13:4213–4216  

    49.    Yoon S, Chung Y, Lee C, Oh Y, Choi D, Kim N, Lim J, Jin Y, Lee D, Lee W (1997) Synthesis, 
pharmacokinetics, and biological activity of a series of new pyridonecarboxylic acid antibac-
terial agents bearing a 5-fl uoro-2-pyridyl group or a 3-fl uoro-4-pyridyl group at N-1. J 
Heterocycl Chem 34:1021–1027  

    50.    Mealy N, Castaner J (2002) Quinolone antibacterial. Drug Future 27:1033–1038  
    51.   Yoon S, Yong H, Lee C, Oh Yo, Choi D, Kim N (1995) Novel quinolinecarboxylic acid deriv-

atives. WO Patent 5373, 23 Feb 1995  
    52.    Yoshikazu A, Ichiro A, Kazuhiko I, Iinuma F, Hosaka N, Ishizaki T (2005) Synthesis and 

antibacterial activity of the 4-quinolone-3-carboxylic acid derivatives having a trifl uoro-
methyl group as a novel N-1 substituent. J Med Chem 48:3443–3446  

    53.    Jung J, Jung Y, Park O (2001) Synthesis of 4-hydroxyquinolin-2(1 H )-one analogues and 
2-substituted quinolone derivatives. J Heterocycl Chem 38:61–67  

    54.    Jung J, Oh S, Kim W, Park W, Kong J, Park O (2003) Synthesis and biological properties of 
4-substituted quinolin-2(1 H )-one analogues. J Heterocycl Chem 40:617–623  

Fluoroquinolones: Synthesis and Application



164

    55.   Rao V, Wentrup C (2002) Synthesis of fl uorinated 2-phenyl-4-quinolones from pyrrole- 2,3- 
diones. J Chem Soc Perkin Trans I 1232–1235  

    56.    Saloutin V, Bazyl’ I, Skryabina Z, Aleksandrov G, Chupakhin O (1995) Crystalline hydrogen- 
bonded adducts of dimethyl sulphoxide and 7-hydroxypolyfl uoroquinolones (chromones). J 
Fluorine Chem 74:15–18  

    57.    Naik P, Chimatadar S, Nandibewoor S (2009) Kinetics and oxidation of fl uoroquinoline anti-
bacterial agent, norfl oxacin, by alkaline permanganate: a mechanistic study. Ind Eng Chem 
Res 48:2548–2553  

   58.    Pucci M, Ackerman M, Thanassi J, Shoen C, Cynamon M (2010) In vitro antituberculosis 
activities of ACH-702, a novel isothiazoloquinolone, against quinolone-susceptible and 
quinolone- resistant isolates. Antimicrob Agents Chemother 54:3478–3484  

    59.    Molina-Torres C, Ocampo-Candiani J, Rendon A, Pucci M, Vera-Cabrera L (2010)  In vitro  
activity of a new isothiazoloquinolone, ACH-702, against  Mycobacterium tuberculosis  and 
other mycobacteria. Antimicrob Agents Chemother 54:2188–2193  

     60.    Marks K, Malik M, Mustaev A, Hiasa H, Drlika K, Kerns R (2011) Synthesis and evaluation 
of 1-cyclopropyl-2-thioalkyl-8-methoxy fl uoroquinolones. Bioorg Med Chem Lett 
21:4585–4588  

    61.    Kondo H, Sakamoto F, Kawakami K, Tsukamoto G (1988) Studies on prodrugs. 7. Synthesis 
and antimicrobial activity of 3-formylquinolone derivatives. J Med Chem 31:221–225  

    62.    Tanaka K, Houghton T, Kang T, Dietrich E, Delorme D, Ferreira S, Caron L, Viens F, Arhin 
F, Sarmiento I, Lehoux D, Fadhil I, Laquerre K, Liu J, Ostiguy V, Poirier H, Moeck G, Parr 
T, Far A (2008) Bisphosphonated fl uoroquinolone esters as osteotropic prodrugs for the pre-
vention of osteomyelitis. Bioorg Med Chem 16:9217–9229  

    63.    Patel N, Patel A, Chauhan H (2007) Synthesis of amide derivatives of quinolone and their 
antimicrobial studies. Indian J Chem 46B:126–134  

    64.    Patel N, Patel S, Patel J, Patel J, Corgamwala Y (2011) Synthesis and antibacterial activity of 
thioureido amide of fl uoroquinolone. Int J Biol Chem 5:37–45  

    65.    Srivastava S, Srivastava SK, Shukla A, Chauhan P, Puri S, Bhaduri A, Pandey V (1999) 
Synthesis and methemoglobin toxicity of the amides of 6/7 mono or disubstituted quinolone. 
Bioorg Med Chem Lett 9:25–30  

    66.    Al-Soud Y, Al-Masoudi N (2003) A New class of dihaloquinolones bearing  N’ -
aldehydoglycosylhydrazides, mercapto-1,2,4-triazole, oxadiazoline and α-amino ester pre-
cursors: synthesis and antimicrobial activity. J Brazilian Chem Soc 14:790–796  

    67.    Patel N, Patel S (2009) Synthesis and antimicrobial activity of 2-phenyl-3-{1-cyclopropyl- 6-
fl uoro-7-[4-methylpiperazin-1-yl]-4-quinolone}carboxamido-3-thiazolidin-4-ones. Pharm 
Chem J 43:305–309  

    68.    Sharad S, Ganesh M, Sunil G, Charnsingh G (2010) Green synthesis and biological evalua-
tion of some novel azoles as antimicrobial agents. Bioorg Med Chem Lett 20:7200–7204  

    69.    Obanin G, Fokin A, Ya B, Ryzhkov O, Skryabina Z, Saloutin V, Chupakhin O (2000) 
Synthesis of N-substituted 2-(5,6,7,8-tetrafl uoro-4-oxo-1,4-dihydroquinolin 3-yl)glyoxalic 
acids. Russ Chem Bull 49:1231–1236  

    70.    Fokin A, Burgart Y, Ryzhkov O, Saloutin V (2001) Reactions of 1-aryl(alkyl)-3-ethoxalyl- 
5,6,7,8-tetrafl uoro-1,4-d-hydrocinnolin(quinolin)-4-ones with aromatic dinucleophiles. Russ 
Chem Bull 50:689–692  

    71.    Clark R, Wang S, Ma Z, Weitzberg M, Motter C, Tufano M, Wagner R, Gu Y, Dandliker P, 
Lerner C, Chovan L, Cai Y, Black-Schaefer C, Lynch L, Kalvin D, Nilius A, Pratt S, Soni N, 
Zhang T, Zhang X (2004) Novel inhibitors of bacterial protein synthesis: structure–activity 
relationships for 1,8-naphthyridine derivatives incorporating position 3 and 4 variants. Bioorg 
Med Chem Lett 14:3299–3302  

    72.    Iones R, Barry A, Thomsberry C (1989) Antimicrobial activity of Ro 23-9424, a novel 
ester- linked codrug of fl eroxacin and desacetylcefotaxime. Antimicrob Agents Chemother 
33:944–950  

     73.   Al-Hajjar F (2002) Preparation of 1-cyclopropyl-6-fl uoro-7-(piperazin-1-yl)quinolin-4-ones 
and derivatives as antibiotics. Eur Patent 1245566, 2 Oct 2002  

V.N. Charushin et al.



165

    74.    Kerns R, Rybak M, Kaatz G, Vaka F, Cha R, Grucz R, Diwadkar V (2003) Structural features 
of piperazinyl-linked ciprofl oxacin dimers required for activity against drug-resistant strains 
of  Staphylococcus aureus . Bioorg Med Chem Lett 13:2109–2112  

   75.    Park C, Lee J, Jung H, Kim M, Lim S, Yeo H, Choi E, Yoon E, Kim K, Cha J, Kim S, Chang 
D, Kwon D, Li F, Suh Y (2007) Identifi cation, biological activity, and mechanism of the anti- 
ischemic quinolone analog. Bioorg Med Chem 15:6517–6521  

    76.    Nguyen S, Ding X, Butler M, Tashjian T, Peet N, Bowlin T (2011) Preparation and antibacte-
rial evaluation of decarboxylated fl uoroquinolones. Bioorg Med Chem Lett 21:5961–5963  

    77.    Vysokov V, Charushin V, Afanasyeva G, Chupakhin O (1993) The synthesis of fl uorinated 
4H-1,4-benzothiazine-2-carboxylic acid 1,1-dioxides – thionated analogues of Pefl oxacin. 
Mendeleev Commun 3:159–160  

    78.   Guo H, Qi J (2003) Preparation of 7-(aminomethyl-azaspiroheptyl)-quinoline-carboxylic 
acid derivatives as bactericides. WO Patent 14108, 20 Feb 2003  

    79.   Saito T, Jouno T, Tani Y, Akiba T (2001) Process for producing quinolinecarboxylic acids and 
intermediates thereof. WO Patent 62734, 30 Aug 2001  

    80.   Guo H, Liu J, Wang Y (2004) Preparation of 5-amino-1-cyclopropyl-6-fl uoro-8-methoxy- 
1,4-dihydroquinolin-4-one-3-carboxylic acid derivatives as antibacterial agents. CN Patent 
1491944, 28 Apr 2004  

    81.   Akiba T, Kitagawa Yu, Muto M (2003) Improved preparation of 5-acylamino-4-oxo-quinoline- 
3-carboxylic acids as bactericides and their intermediates. JP Patent 160567, 3 June 2003  

    82.   Griffi n J, Judice J (1999) Novel multi-binding therapeutic agents that modulate enzymatic 
processes. Patent 64037, 16 12 WO. 1999  

    83.   Demuth T, White R (1997) 5-(N-Heterosubstituted amino)quinolone antimicrobials. US 
Patent 5646163, 8 July 1997  

     84.    Hansen T, Gu Y, Rehm T, Dandliker P, Chovan L, Bui M, Nilius A, Beutel B (2005) Synthesis 
and antibacterial activity of 5-methoxy- and 5-hydroxy-6-fl uoro-1,8-naphthyridone-3- 
carboxylic acid derivatives. Bioorg Med Chem Lett 15:2716–2719  

    85.   Takahashi H, Mijauchi R, Itoh M, Takemura M, Hayakawa I (2002) Preparation of deha-
logenoquinolinecarboxylic acid derivatives. WO Patent 40478, 25 May 2002  

   86.   Cecchetti V, Fravolini A, Terni P Pagella P, Tabardini O (1993) 6-Aminopiperazinylquinolones 
and analogs, their synthesis and their use as antibacterial agents. Eur Patent 531958, 17 Mar 1993  

   87.    Cecchetti V, Fravolini A, Palumbo M, Sissi C, Tabarrini O, Terni P, Xin T (1996) Potent 
6-desfl uoro-8-methylquinolones as new lead compounds in antibacterial chemotherapy. J 
Med Chem 39:4952–4957  

    88.    Lawrence L, Wu P, Fan L, Gouveia K, Card A, Casperson M, Denbleyker K, Barrett J (2001) 
The inhibition and selectivity of bacterial topoisomerases by BMS-284756 and its analogues. 
J Antimicrob Chemother 48:195–201  

     89.    Miyauchi R, Kawakami K, Ito M, Matsuhashi N, Ohki H, Inagaki H, Takahashi H, Takemura 
M (2009) Design, synthesis and biological evaluations of novel 7-[3-(1-aminocycloalkyl)
pyrrolidin-1-yl]-6-desfl uoro-8-methoxyquinolones with potent antibacterial activity against 
multi-drug resistant gram-positive bacteria. Bioorg Med Chem 17:6879–6889  

    90.   Ruzic M, Pucelj J, Tomsic Z, Makuc S, Brne P, Barut M, Strancar A (2005) Process for pre-
paring ciprofl oxacin by contacting it with a novel support. WO Patent 75430, 18 Aug 2005  

   91.   Niddam H, Dolitzky B, Pilarski G, Sterimbaum G (2004) Synthesis of gatifl oxacin. WO 
Patent 69825, 19 Sep 2004  

   92.   Mody S, Mehata B, Patel M, Shrikhande A, Mahajan R (1999) An improved process for the 
preparation of 1-ethyl-6,8-difl uoro-1,4-dihydro-7-(3-methyl-1-piperazinyl)-4-oxoquinoline- 
3-carboxylic acid and its salts. IN Patent 177148, 5 July 1999  

   93.   Berthon-Cedille L, Leguern M (2008) Process for the preparation of fl uoroquinolone-3- 
carboxylic acids via amination of alkyl fl uoro(haloquinolone)carboxylates with amines. US 
Patent 54643, 28 Nov 2008  

    94.   Himmler T, Jaetsch T, Hallenbach W, Rast H, Wetzstein H, Heinen E, Pirro F, Scheer M, 
Stegemann M, Stupp H (1998) Preparation of 7-(3-vinylpiperazin-1-yl)quinolinecarboxylic 
acid as antibacterials. DE Patent 19651687, 1 Jan 1998  

Fluoroquinolones: Synthesis and Application



166

    95.    Liu B, Yang C, Xu G, Zhu Y, Cui J, Wu X, Xie Y (2005) Syntheses of quinolone hydrochloride 
enantiomers from synthons ( R )- and ( S )-2-methylpiperazine. Bioorg Med Chem 13:2451–2458  

    96.   Mulvihill M, Shaber S (2004) Chemical modifi cation of drugs into labile derivatives with 
enhanced properties. US Patent 254182, 16 Dec 2004  

    97.    Md-Saleh S, Chilvers E, Kerr K, Milner S, Snelling A, Weber J, Thomas G, Duhme-Klair A, 
Routledge A (2009) Synthesis of citrate–ciprofl oxacin conjugates. Bioorg Med Chem Lett 
19:1496–1498  

     98.   Hayakama I, Atarashi S, Kimura E (1990) Preparation of 7-(azaspiroalkanyl)quinolonecar-
boxylates and analogs as bactericides. RU Patent 2094432, 7 Mar 1990  

    99.    Rameshkumar N, Ashokkumar M, Subramanian E, Llavarasan R, Sridhar S (2003) Synthesis 
of 6-fl uoro-1,4-dihydro-4-oxoquinoline-3-carboxylic acid derivatives as potential antimicro-
bial agents. Eur J Med Chem 38:1001–1004  

    100.   Yun S, Jung Y, Lee S, Lee J (1997) Antimicrobial quinoline derivatives and process for the 
preparation thereof. KR Patent 9703501, 18 Mar 1997  

   101.    Li Y, Lu R, Yang A, Zhang Y (2004) Synthesis of novel fl uoroquinolone compounds. 
Heterocycl Commun 10:447–450  

   102.    Foroumadi A, Emami S, Hassanzadeh A, Rajaee M, Sokhanvar K, Moshafi  M, Shafi ee A 
(2005) Synthesis and antibacterial activity of  N -(5-benzylthio-1,3,4-thiadiazol-2-yl) and 
 N -(5-benzylsulfonyl-1,3,4-thiadiazol-2-yl)piperazinyl quinolone derivatives. Bioorg Med 
Chem Lett 15:4488–4492  

    103.    Foroumadi A, Mansouri S, Kiani Z, Rahmani A (2003) Synthesis and in vitro antibacterial 
evaluation of  N -[5-(5-nitro-2-thienyl)-1,3,4-thiadiazole-2-yl] piperazinyl quinolones. Eur J 
Med Chem 38:851–854  

    104.   Chatterjee N, Bharat S, Naik S (1996) A process for the preparation of β-lactan antibiotic 
linked fl uoroquinolones as hybrid antibacterial agents. IN Patent 180479, 11 Apr 1996  

   105.   Zhi C, Wright G (2003) Preparation of uracils and related compounds as antibacterials that 
inhibit bacterial DNA polymerase III C and type II bacterial topoisomerase. US Patent 
181719, 25 Sep 2003  

   106.    Zhi C, Long Z, Manikowski A, Comstock J, Xu W, Brown N, Tarantino P, Karsten J, Holm 
A, Dix E, Wright G, Barnes M, Butler M, Foster K, LaMarr W, Bachand B, Bethell R, 
Cadilhac C, Charron S, Lamothe S, Motorina I, Storer R (2006) Hybrid antibacterials. DNA 
polymerase−topoisomerase inhibitors. J Med Chem 49:1455–1465  

    107.   Zhi C. Wright G (2002) Preparation of uracils and related compounds as antibacterials that 
inhibit bacterial DNA polymerase III C and type II bacterial topoisomerase. WO Patent 
102792, 27 Dec 2002  

    108.    Darehkordi A, Javanmiri M, Ghazi S, Assar S (2011) Synthesis of  N -aryl-2,2,2- 
trifl uoroacetimidoyl piperazinylquinolone derivatives and their antibacterial evaluations. J 
Fluorine Chem 132:263–268  

    109.   Hutschiterlen G, Specklin J, Baeschlin D, Lochev H, Sigwalt C (2004) Preparation and use 
of oxazolidinone-quinolinone and oxazolidinone-naphthyridinone hybrid antibiotics for the 
treatment of anthrax and other infections. WO Patent 96221, 12 Jan 2004  

    110.   Ellsworth E, Hutchings K, Murphy S, Powell S, Sciotti R, Tran T (2005) Synthesis of 
 azetidinyl quinolones as antibacterial agents. WO Patent 26146, 24 Mar 2005  

    111.   Kato N, Iwasaki N, Azuma T (2000) Preparation of antibacterial 5-amino-8-methyl-7- 
pyrrolidinylquinoline-3-carboxylic acids and their intermediates. JP Patent 247970, 12 Sep 2000  

   112.   Takahashi H, Ruroyanagi J, Miyauchi R, Nagamochi M, Takemura M, Hayakawa I (2005) 
Preparation of quinoline compounds containing pyrrolidine moiety as antibacterial agents. 
WO Patent 111015, 24 Nov 2005  

   113.   Takemura M, Takahashi H, Ohki H, Kimura K, Miyauchi R, Takeda T (1998) Preparation of 
cis-substituted fl uoromethylpyrrolidine derivatives of 1,4-dihydro-4-oxoquinoline-3- 
carboxylic acid as antibacterial agents. WO Patent 58923, 30 Dec 1998  

    114.   Ellsworth E, Tayler C, Murphy S, Ranckhorst M, Starr J, Hutchings K, Limberakis C, Hoyer 
D (2005) Preparation of quinoline antibacterial agents. WO Patent 49602, 2 June 2005  

    115.   Kim B (2001) A process for preparation of pyrrolidino-quinolinecarboxylic acid derivatives 
(e.g. gemifl oxacin) with improved fi ltration. WO Patent 68649, 20 Sep 2001  

V.N. Charushin et al.



167

   116.    Hong С, Kim Y, Lee Y, Kwak J (1998) Methyloxime-substituted aminopyrrolidine: a new 
surrogate for 7-basic group of quinolone. Bioorg Med Chem Lett 8:221–226  

   117.   Hong C, Kim Y, Kim S, Chang J, Choi H, Nam D, Kim A, Lee J, Park K (1998) Preparation 
of quinoline (or naphthyridine)-3-carboxylic acids such as 7-(4-aminomethyl-3- 
mrthyloxyiminopyrrolidin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydro-1,8-
naphthyridine- 3-carboxylic acid as antibacterials. US Patent 5776944, 7 July 1998  

    118.   Choi H, Choi S, Nam D, Choi B (2003) Improved two-step process for preparing acid salts of 
gemifl oxacin via Schiff-base protected intermediates. WO Patent 87100, 23 Oct 2003  

    119.    Choi D, Shin J, Yang J, Yoon S, Jung Y (2004) Syntheses and biological evaluation of new 
fl uoroquinolone antibacterials containing chiral oxiimino pyrrolidin. Bioorg Med Chem Lett 
14:1273–1277  

    120.    Lv K, Liu M, Feng L, Sun L, Sun Y, Wei Z, Guo H (2012) Synthesis and antibacterial activity 
of naphthyridone derivatives containing mono/difl uoro-methyloxime pyrrolidine scaffolds. 
Eur J Med Chem 47:619–625  

    121.   Nakayama T (2004) Preparation of intermediates for antibacterial quinoline-carboxylic 
acids. JP Patent 244380, 14 Feb 2004  

    122.   Naoki O, Toshifumi A (2003) Process for producing antibacterial quinolone-carboxylic acid 
derivatives. WO Patent 97634, 10 Sep 2003  

     123.    Kimura Y, Atarashi S, Kawakami K, Sato K, Hayakawa I (1994) Fluorocyclopropyl)quino-
lones. 2. Synthesis and stereochemical structure-activity relationships of chiral 7-(7-amino- 5-
azaspiro[2.4]heptan-5-yl)-1-(2-fl uorocyclopropyl)quinolone antibacterial agents. J Med 
Chem 37:3344–3352  

    124.   Yoon S, Chung Y, Lee C, Oh Y, Kim N, Lim J, Jin Y (1999) Preparation and antibacterial 
activity of quinolone carboxylic acid derivatives. WO Patent 00393, 12 Jan 1999  

   125.    Feng L, Liu M, Wang S, Chai Y, Lv K, Shan G, Cao J, Li S, Guo H (2011) Synthesis of naph-
thyridone derivatives containing 8-alkoxyimino-1,6-dizaspiro[3.4]octane scaffolds. Tetrahedron 
67:8264–8270  

   126.   Petersen U, Schenke T, Krebs A, Grohe K, Schriewer M, Haller I, Metzger K, Endermann R, 
Zeiler H (1997) Preparation of 7-(1-pyrrolidinyl)-3-quinolonecarboxylic acids and 
naphthyridine- 3-carboxylic acids as antimicrobial agents and feed additives. US Patent 
5607942, 4 Mar 1997  

   127.    Inagaki H, Miyauchi S, Miyauchi R, Kawato H, Ohki H, Matsuhashi N, Kawakami K, 
Takahashi H, Takemura M (2003) Synthesis and structure−activity relationships of 5-amino- 
6-fl uoro-1-[(1 R ,2 S )-2-fl uorocyclopropan-1-yl]-8-methylquinolonecarboxylic acid antibacte-
rials having fl uorinated 7-[(3 R )-3-(1-aminocyclopropan-1-yl)pyrrolidin-1-yl] substituents. J 
Med Chem 46:1005–1015  

   128.    Inagaki H, Takeda T, Miyauchi R, Kawakami K, Takahashi H, Takemura M (2004) Practical 
synthesis of DQ-113, a new quinolone antibacterial agent, by using the intramolecular 
Horner-Wadsworth-Emmons reaction. Heterocycles 63:699–706  

    129.   Muto M, Kitagawa Y (2004) Process for preparation of quinolinone derivatives. WO Patent 
113321, 29 Dec 2004  

    130.   Asahina Y, Takei M (2005) Preparation of quinolonecarboxylic acid derivatives as antibacte-
rial agents. Eur Patent 1666477, 24 Mar 2005  

   131.   Ellsworth E, Murphy S (2005) Preparation of quinolone derivatives as antibacterial agents. 
WO Patent 111030, 24 Nov 2005  

    132.   Park T, Lee S, Han Ch (2002) Preparation of pyridinyl (pyrrolidinyl) quinolone carboxylates 
as antimicrobials. US Patent 130302, 20 Nov 2002  

    133.   Asahina J, Takei M (2005) Preparation of quinolonecarboxylic acid derivatives as antibacte-
rial agents. WO Patent 26147, 24 Mar 2005  

   134.   Ellsworth E, Sciotti R, Stark J (2005) Preparation of pyrrolidinylquinolones as antibacterials. 
WO Patent 26165, 24 Mar 2005  

    135.   Hubschwerlen C, Specklin J, Surivet J, Baeschlin D (2005) Preparation of oxazolidinones- 
quinolinones as hybrid antibiotics. WO Patent 23801, 17 Mar 2005  

    136.   De Souza N, Patel M, Deshpande P, Agarwal S, Sreenivas K, Nair S, Chugh Ya, Shukla M 
(2003) Preparation of chiral, broad-spectrum antimicrobial 7-substituted piperidino quino-

Fluoroquinolones: Synthesis and Application



168

lone carboxylic acids derivatives effective against multidrug-resistant bacteria. US Patent 
216568, 20 Nov 2003  

   137.    Hilty P, Hubschwerlen C, Thomas A (2001) Expeditious solution phase synthesis of fl uoroqui-
nolone antibacterial agents using polymer supported reagents. Tetrahedron Lett 42:1645–1646  

   138.    Ganapati Reddy P, Baskaran S (2001) Microwave assisted amination of quinolone carboxylic 
acids: an expeditious synthesis of fl uoroquinolone antibacterials. Tetrahedron Lett 
42:6775–6777  

    139.   Deshpande V, Ravindvanathan T (2000) An improved process for the preparation of cipro-
fl oxacin. IN Patent 184650, 16 Nov 2000  

    140.    Hu X, Kim N, Gray J, Almstead J, Seibel W, Ledoussal B (2003) Discovery of (3 S )-amino-
(4 R )-ethylpiperidinyl quinolones as potent antibacterial agents with a broad spectrum of 
activity and activity against resistant pathogens. J Med Chem 46:3655–3661  

    141.   Ledaussal B, Alnstead J, Grey J, Hu X (1999) Preparation of quinolones as antimicrobials. 
US Patent 6329391, 25 Mar 1999  

    142.   Bowers GE, Macielag MJ, Xu X, Paget S, Weidner W (2005) Preparation of 7-(alkylidene-
substituted- heterocyclic amino) quinolones and naphthyridones as bactericides. WO Patent 
33108, 14 Apr 2005  

    143.    Chai Y, Liu M, Wang B, You X, Feng L, Zhang Y, Cao J, Guo H (2010) Synthesis and in vitro 
antibacterial activity of novel fl uoroquinolone derivatives containing substituted piperidines. 
Bioorg Med Chem Lett 20:5195–5198  

   144.    Chai Y, Wang B, Liu M, Yi H, Sun L, You X, Guo H (2011) Design, synthesis and in vitro 
antibacterial activity of 7-(4-alkoxyimino-3-aminomethylpiperidin-1-yl)fl uoroquinolone 
derivatives. Bioorg Med Chem Lett 21:3377–3380  

    145.    Zhang Y, Li G, Liu M, You X, Feng L, Lv K, Cao J, Guo H (2011) Synthesis and in vitro 
antibacterial activity of 7-(3-alkoxyimino-5-amino/methylaminopiperidin-1-yl)fl uoroquino-
lone derivatives. Bioorg Med Chem Lett 21:928–931  

    146.    Huang X, Zhang A, Chen D, Jia Z, Li X (2010) 4-Substituted 4-(1 H -1,2,3-triazol-1-yl)piperi-
dine: novel C7 moieties of fl uoroquinolones as antibacterial agents. Bioorg Med Chem Lett 
20:2859–2863  

    147.   Chiu C, Lewin T (1999) Process for preparing naphthyridones and intermediates. Eur. Patent 
930297, 21 July1999  

   148.   Okada H, Chiba K, Nakada K (1997) Preparation of pyridonecarboxylic acids and their use 
as antibacterial agents against Helibacter. JP Patent 9208578, 12 Aug 1997  

    149.    Anquetin G, Rouquayrol M, Mahmoudi N, Santillana-Hayat M, Gozalbes R, Greiner J, 
Farhati K, Derouin F, Guedj R, Vierling P (2004) Synthesis of new fl uoroquinolones and 
evaluation of their in vitro activity on  Toxoplasma gondii  and  Plasmodium  spp. Bioorg Med 
Chem Lett 14:2773–2776  

   150.       Vilsmaier E, Goerz T (1998) Diastereoselective syntheses of  N -protected derivatives of 
1 α ,5 α ,6 β -6-amino-3-azabicyclo[3.1.0]hexane; a route to trovafl oxacin 6 β -diastereomer. 
Synthesis 1998(5):739–744  

   151.   Ota N, Shirono T, Akiba T (2003) Process for preparing of quinolinecarboxylic acid deriva-
tives. JP Patent 96075, 3 Apr 2003  

   152.   De Souza N, Patel M, Gupta S, Upadhyay D, Shukla M, Chaturvedi N, Bhawsar S, Nair S, 
Jafri M, Khozakiwala H (2002) Preparation and use of quinolone and naphthyridine deriva-
tives as inhibitors of cellular effl ux pumps of microbes. WO Patent 9758, 7 Feb 2002  

    153.   Hagen S, Josyula V, Venkata N (2005) Preparation of substituted quinolones and derivatives 
there of as antibacterial agents. WO Patent 26161, 24 Mar 2005  

    154.    Huang X, Chen D, Wu N, Zhang A, Jia Z, Li X (2009) The synthesis and biological evalua-
tion of a novel series of C7 non-basic substituted fl uoroquinolones as antibacterial agents. 
Bioorg Med Chem Lett 19:4130–4133  

    155.       Norris T, Braish T, Butters M, DeVries K, Hawkins J, Massett S, Rose P, Santafi anos D, 
Sklavounos C (2000) Synthesis of trovafl oxacin using various (1α,5α,6α)-3-azabicyclo[3.1.0]
hexane derivatives. J Chem Soc Perkin Trans 1 2000:1615–1622  

    156.   Norris T (2000) Preparation of trovafl oxacin and analogs. Eur. Patent 976749, 2 Feb 2000  

V.N. Charushin et al.



169

    157.    Inagaki H, Takahashi H, Takemura M (2004) Synthesis and antibacterial activity of novel 
6-fl uoro-1-[(1 R ,2 S )-2-fl uorocyclopropan-1-yl]-4-oxoquinoline-3-carboxylic acids bearing 
cyclopropane-fused 2-amino-8-aza-bicyclo[4.3.0]nonan-8-yl substituents at the C-7 position. 
Bioorg Med Chem Lett 14:5193–5198  

    158.   Himmer T, Rast H (2000) Semihydrochloride of 8-cyano-1-cyclopropyl-7-(1S,6S-2,8- 
diazabicyclo[4.3.0]nonan-8-yl)-6-fl uoro-1,4-dihydro-4-oxo-3-quinoline-carboxylic acid. DE 
Patent 19854357, 31 May 2000  

   159.   Himmer T, Hallenbach W, Rast H (2000) Crystal modifi cation A of 8-cyano-1-cyclopropyl-
7-(1S,6S-2,8-d iazab icyclo[4 .3 .0]nonan-8-yl)-6-fluoro-1,4-d ihydro-4-oxo-3- 
quinolinecarboxylic acid. DE Patent 19854356, 31 May 2000  

   160.   Himmer T, Hallenbach W, Rast H (2000) Crystal modifi cation B of 8-cyano-1-cyclopropyl-
7-(1S,6S-2,8-diazabicyclo[4.3.0]nonan-8-yl)-6-fl uoro-1,4-dihydro-4-oxo-3-quinoline-car-
boxylic acid. DE Patent 19854355, 31 May 2000  

   161.   Guo H, Liu J (2005) Preparation of quinolonecarboxylic acid derivative as antibiotics. WO 
Patent 103048, 3 Nov 2005  

   162.   Matzke M, Petersen U, Jaetsch T, Bartel S, Schenke T, Himmler T, Baasner B, Werling H, 
Scharler K, Labischinski H (1998) Preparation of 7-(2-oxa-5,8-diazabicyclo[4.3.0]non-8-yl)
quinolone- and naphthyridinecarboxylic acid derivatives for therapy of  Helicobacter pylori  
infections and associated gastroduodenal illnesses. DE Patent 19652239, 18 June 1998  

    163.   Bhushan L, Bhushan L, Kumar S (2005) Preparation of quinolones as novel antiinfective 
compounds. WO Patent 19224, 3 Mar 2005  

      164.    Nagibina N, Sidorova L, Klyuev N, Carushin V, Chupakhin O (1997) Application of 
1,3- dipolar cycloaddition methodology for the synthesis of novel fl uoroquinolones. Russ J 
Org Chem 33:1468–1475  

    165.    Nagibina N, Charushin V, Sidorova L, Klyuev N (1998) Molecular rearrangement of 
1,2,3- triazolines – adducts of 7-azido-6-fl uoroquinolone-4 with alkenes. Russ J Org Chem 
34:434–446  

    166.    Mochulskaya N, Charushin V, Sidorova L, Chupakhin O, Tkachev A (2000) Azomethinoxide 
fragment in the structure modifi cation of fl uoroquinolones. Russ J Org Chem 36:1800–1808  

     167.    Mochulskaya N, Sidorova L, Charushin V (2002) Three-component cyclization of 
hydroxylamino- substituted quinoline with reactive methylene compounds and formaldehyde: 
new method for the synthesis of 7-(isoxazolidin-2-yl)-6-fl uoroquinolones. Russ Chem Bull 
51:2106–2108  

     168.    Leyva S, Leyva E (2007) Thermochemical reaction of 7-azido-1-ethyl-6,8-difl uoroquinolone- 
3-carboxylate with heterocyclic amines. An expeditious synthesis of novel fl uoroquinolone 
derivatives. Tetrahedron 63:2093–2097  

    169.    McPherson J, Runner R, Buxton T, Hartmann J, Farcasiu D, Bereczki L, Roth E, Tollas S, 
Ostorhazi E, Rozgonyi F, Herczegh P (2012) Synthesis of osteotropic hydroxybisphospho-
nate derivatives of fl uoroquinolone antibacterials. Eur J Med Chem 47:615–618  

    170.   Yasumichi F, Masanori T, Yoshkazu A, Sato T, Kurasaki H, Ebisu H, Takei M, Fukuda H 
(2008) Preparation of mutilin derivatives containing heterocyclic aromatic carboxylic acid 
moiety at 14-position. Eur Patent 2149571, 27 Nov 2008  

    171.      Elmore S, Cooper C, Schultz C, Hutchinson D, Donner P, Green B, Anderson D, Xie Q, 
Dinges J, Lynch L (2001) Quinoline- and naphthyridinecarboxylic acid antibacterials. WO 
Patent 32655, 10 May 2001  

     172.    Zhang X, Mu F, Robinson B, Wang P (2010) Concise route to the key intermediate for diver-
gent synthesis of C7-substituted fl uoroquinolone derivatives. Tetrahedron Lett 51:600–601  

    173.    Zang Z, Zhou W (2005) Arylation of nitromethane: masked nucleophilic formylation of fl uo-
roquinolones. Tetrahedron Lett 46:3855–3858  

    174.    Zang Z, Zhou W, Yu A (2004) Synthesis and antibacterial activity of 7-(substituted)amino-
methyl quinolones. Bioorg Med Chem Lett 14:393–395  

    175.    Zhu B, Marinelli B, Goldschmidt R, Foleno B, Hilliard J, Bush K, Macielag M (2009) 
Synthesis and antibacterial activity of 7-(1,2,3,4-tetrahydropyrrolo[1,2- a ]pyrazin-7-yl) qui-
nolones. Bioorg Med Chem Lett 19:4933–4936  

Fluoroquinolones: Synthesis and Application



170

    176.   Takemura M, Kimura Y, Takahashi H, Ishida Y (1998) Preparation and formulation of 
aminocyclopropylpyrrolidinylquinolone derivatives as bactericides. Eur Patent 0919553, 
22 Jan 1998  

   177.   Tang X, Tang X (2004) Preparation of gatifl oxacin hydrobromide and application antibacte-
rial agents. CN Patent 1548435, 24 Nov 2004  

   178.    Ravikumar K, Sridhar B (2006) Moxifl oxacinium chloride–water–methanol (2/1/1), a novel 
antibacterial agent. Acta Crystallogr C 62:478–482  

   179.    Keating G, Scott L (2004) Moxifl oxacin: a review of its use in the management of bacterial 
infections. Drugs 64:2347–2377  

    180.   Xiao Y, Yong D, Li L, Liang Q, Chang Ya, Chen Yu, Lu X, Ye Z (2003) Process for the prepa-
ration of gatifl oxacin. CN Patent 1461748, 17 Dec 2003  

    181.   Lee E, Chris L, Bentlej T (2005) Preparation of quinolone antibacterial agents. WO Patent 
26145, 24 Mar 2005  

    182.   De Souza N, Patel M, Deshpande P, Agarwal S, Gupte S, Upadhyay D, Bhawsar S, Beri R, 
Sreenivas K, Nair S, Sheela C, Shukla M, ChughY, Shetty N, Yeole R, Reddy M (2002) 
Preparation of chiral broad-spectrum antimicrobial 7-substituted piperidino- 
quinolinecarboxylic acid derivatives. WO Patent 85886, 31 Oct 2002  

    183.   Deshpande P, Bhavsar S, Chugh Y, Yeole R, De Souza N, Patel M (2005) Novel polymorphs 
of racemic dextrorotatory and levorotatory enantiomers of 1-cyclopropyl-6-fl uoro-8- 
methoxy-7-(4-amino-3,3-dimethylpiperidin1-yl)-1,4-dihydro-4-oxoquinoline-3-carboxylic 
acid and hydrochloride and mesylate salts. WO Patent 66154, 21 July 2005  

    184.   Takahashi H, Hagiwara T, Hayakawa I (2002) Preparation of fl uoroquinoline drug with 
reduced effect on the heart. WO Patent 76458, 3 Oct 2002  

    185.   Schriewer M, Grohe K, Krebs A, Petersen U, Schenke T, Haller I, Metzger K, Endermann R, 
Zeiler H (1992) Antibacterial 5-alkylquinolinecarboxylic acids. US Patent 5140033, 18 Aug 1992  

   186.   Takemura M, Kimura Y, Takahashi H, Kimura K, Miyauchi S, Ohki H, Sugita K, Miyauchi 
R (2000) Preparation of  cis -substitutedaminocycloalkylpyrrolidine derivatives of 1,4-dihydro- 
4-oxo-quinoline-3-carboxylic acids as antimicrobial drugs. US Patent 6121285, 19 Sep 2000  

   187.   Gehring R, Mohrs K, Heilmann W, Diehl H (1997) Preparation of 8- methoxyquinolonecarboxylates. 
DE Patent 19751948, 24 Nov 1997  

    188.   Ochi K, Shimizu H (1993) Preparation of 6-fl uoro-7-(heterocyclic amino)-3- quinolonecarboxylic 
acid derivatives as intermediates for antimicrobial agents. US Patent 5869661, 2 May 1993  

    189.   Takahashi H, Miyauchi R, Takemura M (2005) Preparation of 8-cyanoquinolone-carboxylic 
acid derivatives as antibacterial agents. WO Patent 30752, 7 Apr 2005  

    190.   Bartel S, Jaetsch T, Himmler T (1997) 8-Cyano-1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0]
nonan-8-yl)-6-fl uoro-1,4-dihydro-4-oxo-3-quinoline-carboxylic acid derivatives. WO Patent 
31001, 28 Aug 1997  

    191.    Stepanchikova A, Lagunin A, Filimonov D, Poroikov V (2003) Prediction of biological activ-
ity spectra for substances: evaluation on the diverse sets of drug-like structures. Curr Med 
Chem 10:225–233  

   192.    Lagunin A, Zakharov A, Filimonov D, Poroikov V (2007) A new approach to QSAR model-
ling of acute toxicity. SAR QSAR Environ Res 18:285–298  

     193.    Lei B, Xi L, Li J, Liu H, Yao X (2009) Global, local and novel consensus quantitative structure- 
activity relationship studies of 4-(phenylaminomethylene) isoquinoline-1, 3 (2 H , 4 H )-diones 
as potent inhibitors of the cyclin-dependent kinase 4. Anal Chim Acta 644:17–24  

    194.    Li X, Zhu Z, Cheng X, Yang X (2007) Quantitative structure-pharmacokinetic/pharmacody-
namic relationship for fl uoroquinolones. Chem Pharm J 41:23–28  

    195.    Wagman A, Wentland M (2007) In: Taylor J, Triggle D (eds) Comprehensive medicinal 
chemistry II. Elsevier, Oxford  

   196.    Bryskier A (2005) In: Bryskier A (ed) Antimicrobial agents. ASM Press, Washington, DC  
    197.    Dalhoff A, Schmitz F (2003) In vitro antibacterial activity and pharmacodynamics of new 

quinolones. Eur J Clin Microbiol Infect Dis 22:203–207  
      198.    Al-Trawneh S, Zahra J, Kamal M, El-Abadelah M, Zani F, Incerti M, Cavazzoni A, Alfi eri R, 

Petronini P, Vicini P (2010) Synthesis and biological evaluation of tetracyclic fl uoroquino-
lones as antibacterial and anticancer agents. Bioorg Med Chem Lett 18:5873–5884  

V.N. Charushin et al.



171

   199.    Emami S, Shafi ee A, Foroumadi A (2006) Structural features of new quinolones and relation-
ship to antibacterial activity against gram-positive bacteria. Mini-Rev Med Chem 6:375–386  

    200.    Boteva A, Krasnykh O (2009) The methods of synthesis, modifi cation and biological activity 
of 4-quinolones. Chem Het Comp 45:757–785  

    201.   Chu D (1985) Preparation of benzoxazoloquinolines as antibacterial agents ZA Patent 02802, 
27 Nov 1985  

    202.    Lipunova G, Nosova E, Vasil’eva P, Charushin V (2003) Fluorinated benzimidazo[1,2-a]qui-
nolones. Russ Chem Bull 52:457–460  

    203.    Saloutin V, Burgart Y, Chupakhin O (2002) Fluorinated tricarbonyl compounds. UrO RAN, 
Ekaterinburg  

     204.   Barrett D, Sasaki H, Kinoshita T, Sakane K (1996) A novel [3 + 2] annulation: synthesis and 
X-ray crystallographic structure of a novel tetrahydropyrazolo[1,5- a ]quinoline, an intermedi-
ate towards new tricyclic quinolone antibacterials. J Chem Soc Chem Commun 61–62  

    205.    Barrett D, Sasaki H, Kinoshita T, Tsutsumi H, Sakane K (1996) Alkylation of 1-[ N  -(hydroxy-
methyl)-  N  -methylamino]-4-quinolones. An improved preparation of intermediates for novel 
potent tricyclic quinolone antibacterial agents. Bull Chem Soc Jp 69:1371–1375  

    206.    Tsoi E, Charushin V, Nosova E, Lipunova G, Tkachev A (2001) New approach to [ a ]-fused 
fl uoroquinolones: the synthesis of 5-oxo-1,2,3,3a,4,5-hexahydropyrrolo[1,2- a ]quinolines. 
Mendeleev Commun 11:53–55  

    207.    Edmont D, Marot C, Chenault J (2002) Synthesis of novel fused tricyclic quinolones: 
4 a ,5-dihydro- 1 H   -[1;2,4]triazino[1,6- a ]quinoline-2,4,6(3 H )-triones. J Heterocycl Chem 
39:1161–1167  

    208.    Edmont D, Chenault J (2003) 8-Fluoro-4-hydroxy-1 H -[1,2,4]triazino[4,5- a ]-quinoline- 
1,6(2 H )-dione: synthesis and reactivity. J Heterocycl Chem 40:789–793  

    209.    Edmont D, Chenault J (2001) A convenient selective  N -alkylation of 4-Oxo-1,4-dihydro-2- 
quinoline carboxylic acid. Synlett 6:833–837  

    210.    Azev Y, Shorshnev S, Gabel’ D, Dul’ks T (2003) Intramolecular thermal condensation of 
3-acetyl-5-oxopyrazolo[1,5-a]quinoline-4-ethylcarboxylate: a simple pathway to the new 
 tetracyclic system containing fl uoroquinolone fragment. Pharm Chem J 37:327–328  

    211.   Gao Y (2004) Preparation of prulifl oxacin from 3,4-difl uoroaniline and 3-hydroxy-2- 
butanone. CN Patent 1478781, 3 Mar 2004  

   212.    Segawa J, Kazuno K, Matsuoka M, Amimoto I, Ozaki M, Matsuda M, Tomii Y, Kitano M, 
Kise M (1995) Studies on pyridonecarboxylic acids. IV. Synthesis and antibacterial activity 
evaluation of S-(-)- and R-(+)-6-fl uoro-1-methyl-4-oxo-7-(1-piperazinyl)-4H-[1,3]thia-
zeto-[3,2-a]quinoline-3-carboxylic acids. Chem Pharm Bull 43:1238–1240  

    213.    Segawa J, Kazuno K, Matsuoka M, Shiranase I, Ozaki M, Matsuda M, Tomii Y, Kitano M, 
Kise M (1995) Studies on pyridonecarboxylic acids. III. Synthesis and antibacterial activity 
evaluation of 1,8-disubstituted 6-fl uoro-4-oxo-7-piperazinyl-4H-[1,3]thiazeto[3,2- a ]quino-
line- 3-carboxylic acid derivatives. Chem Pharm Bull 43:63–70  

    214.   Petersen U, Matzke M, Jaetsch T, Schenke T, Himmler T, Bartel S, Baasner B, Werling H, 
Schaller K, Labischinski H, Endermann R (1998) Use of 7-(1-aminomethyl-2-oxa-7- 
azabicyclo[3.3.0.]oct-7-yl)quinolonecarboxylates, naphthyridinones and related compounds 
for  Helibacter pylori  infection therapy and associated gastroduodenalillinesses. DE Patent 
19652219, 18 June 1998  

   215.    Matsuoka M, Segawa J, Makita Y (1997) Studies on pyridonecarboxylic acids. V. A practical 
synthesis of ethyl 6,7-difl uoro-1-methyl-4-oxo-4 H -[1,3]thiazeto[3,2- a ]quinoline-3- carboxylate, 
a key intermediate for the new tricyclic quinolone, prulifl oxacin (NM441) and versatile new 
syntheses of the 2-thioquinoline skeleton. J. Heterocycl Chem 34:1773–1779  

   216.    Keam S, Perry C (2004) Prulifl oxacin. Drugs 64:2221–2234  
    217.    Matsuoka M, Segawa J, Aminito I, Masui Y, Tomii Y, Kitano M, Kise M (1999) Synthesis and 

antibacterial activity of novel 7-substituted 6-fl uoro-1-methylene-4-oxo-4 H -[1,3]
thiazeto[3,2- a ]quinoline-3-carboxylic acid derivatives. Heterocycles 51:2915–2930  

    218.   Petersen U, Schenke T, Saetsch T, Bartel S, Bremm K, Endermann R, Metzger K (1994) 
Preparation of quinolone and naphthyridine carboxylic acid-derivative antibiotics. DE Patent 
4427530 4 Aug 1994  

Fluoroquinolones: Synthesis and Application



172

    219.    Cecchetti V, Cruciani G, Filipponi E, Fravolini A, Tabarrini O, Xin T (1997) Synthesis and 
antibacterial evaluation of [1,3]benzothiazino[3,2- a ]quinoline- and [3,1]benzothiazino[1,2-
 a   ]quinoline-6-carboxylic acid derivatives. Bioorg Med Chem 5:1339–1344  

    220.    Wiles J, Song Y, Wang Q, Lucien E, Hashimoto A, Cheng J, Marlor C, Ou Y, Podos S, 
Thanassi J, Thoma C, Deshpande M, Pucci M, Bradbury B (2006) Biological evaluation of 
isothiazoloquinolones containing aromatic heterocycles at the 7-position: in vitro activity of 
a series of potent antibacterial agents that are effective against methicillin-resistant 
 Staphylococcus aureus . Bioorg Med Chem Lett 16:1277–1281  

   221.    Wiles J, Hashimoto A, Thanassi J, Cheng J, Incarvito C, Deshpande M, Pucci M, Bradbury 
B (2006) Isothiazolopyridones: synthesis, structure, and biological activity of a new class of 
antibacterial agents. J Med Chem 49:39–42  

   222.   Bradbury B, Deshphande M, Pucei M, Wang Q, Wiles J, Song M, Hashimoto A, Lucien E 
(2005) Preparation of isothiazoloquinolones and related compounds as antiinfective agents. 
WO Patent 19228, 3 Mar 2005  

   223.    Wiles J, Wang Q, Lucien E, Hashimoto A, Song Y, Cheng J, Marlor C, Ou Y, Podos S, 
Thanassi J, Thoma C, Deshpande M, Pucci M, Bradbury B (2006) Isothiazoloquinolones 
containing functionalized aromatic hydrocarbons at the 7-position: synthesis and  in vitro  
activity of a series of potent antibacterial agents with diminished cytotoxicity in human cells. 
Bioorg Med Chem Lett 16:1272–1276  

    224.    Hashimoto A, Pais G, Wang Q, Lucien E, Incarvito C, Deshpande M, Bradbury B, Wiles J 
(2007) Practical synthesis and molecular structure of a potent broad-spectrum antibacterial 
isothiazoloquinolone. Org Process Res Dev 11:389–398  

    225.    Wang Q, Lucien E, Hashimoto A, Pais G, Nelson D, Song Y, Thanassi J, Marlor C, Thoma C, 
Cheng J, Podos S, Ou Y, Deshpande M, Pucci M, Buechter D, Bradbury B, Wiles J (2007) 
Isothiazoloquinolones with enhanced antistaphylococcal activities against multidrug- 
resistant strains: effects of structural modifi cations at the 6-, 7-, and 8-positions. J Med Chem 
50:199–210  

     226.    Kim H, Wiles J, Wang Q, Pais G, Lucien E, Hashimoto A, Nelson D, Thanassi J, Podos S, 
Deshpande M, Pucci M, Bradbury B (2011) Exploration of the activity of 7-pyrrolidino- 8-
methoxyisothiazoloquinolones against methicillin-resistant  Staphylococcus aureus  (MRSA). 
J Med Chem 54:3268–3282  

    227.   Kawamura K, Michara S, Nukii S, Uchida I (2003) Preparation of 1-methyl-1,4-dihydro- 9H-
pyrazolo[4,3-b]-quinoline-9-one derivatives as protein kinase C inhibitors. JP Patent 55376, 
26 Feb 2003  

    228.    Fujita M, Egawa H, Kataoka M, Miyamoto T, Nakano J, Matsumoto J (1995) Imidazo- and 
triazoloquinolones as antibacterial agents. Synthesis and structure-activity relationships. 
Chem Pharm Bull 43:2123–2132  

    229.    Fujita M, Egawa H, Miyamoto T, Nakano J, Matsumoto J (1996) 5-Alkoxyimidazoquinolones 
as potential antibacterial agents. Synthesis and structure-activity relationships. Chem Pharm 
Bull 44:987–990  

    230.    Cooper C, Tufano M, Donner P, Chu D (1996) The synthesis and in vitro antibacterial activity 
of conformationally restricted quinolone antibacterial agents. Bioorg Med Chem 4:1307–1315  

     231.    Yusuf M, Monther A, Khanfar A, Shuheil M, Ei-Abadelah M, Boese R (2006) Heterocycles 
[ h ]fused onto 4-oxoquinolines. Part I. Synthesis of 6-Oxo-6,9-dihydro[1,2,5]oxadiazolo[3,4-
 h   ]quinoline-7-carboxylic acid  N -oxide. Heterocycles 68:1163–1172  

     232.    Al-Qawasmeh R, Zahra J, Zani F, Vicini P, Boese R, El-Abadelah M (2009) Synthesis and 
antibacterial activity of 9-cyclopropyl-4-fl uoro-6-oxo-6,9-dihydro-[1,2,5]thiadiazolo[3,4- h ]-
quinoline-7-carboxylic acid and its ethyl ester. Arkivoc 2009(12):322–336  

    233.    Al-Dweik M, Zahra J, Khanfar M, El-Abadelah M, Zeller K, Voelter W (2009) Heterocycles 
[h]-fused to 4-oxoquinoline-3-carboxylic acid. Part VII: synthesis of some 6-oxoimidazo[4,5-
 h]quinoline-7-carboxylic acids and esters. Monatsh Chem 140:221–228  

    234.    Sidorenko S (2006) Levofl oxacin nowadays. Antibiot Chemother 51:28–37  
    235.    Tunitskaya V, Khomutov А, Kochetkov S, Kotovskaya S, Charushin V (2011) Inhibiting 

DNA-gyrase by levofl oxacin and other derivatives of fl uoroheterocycles. Acta Nat 3:98–104  

V.N. Charushin et al.



173

    236.   Dorgan R (1997) Preparation of pyrido[3,2,1- i,j ]-1,3,4-benzoxadiazines as antibacterial 
agents. WO Patent 26261, 24 July 1997  

    237.   Tanba H, Imai E, Mao S (2004) Preparation of optically active tricyclic compounds without 
forming diastereomers. JP Patent 99494, 2 Apr 2004  

   238.   Wang B, Wang J (2002) Preparation of levofl oxacin CN Patent 1357547, 10 Jan 2002  
   239.   Wang J, Wang B (2002) The process comprises substituting 2,4,5-trifl uoro-3-nitrobenzoyl 

fl uoride with Cl 2  at 190–195 °C for 16-18 h to obtain 3-chloro-2,4,5-trifl uorobenzoyl fl uoride 
substituting. CN Patent 1357548, 10 Jan 2002  

   240.   Shirato S (2007) Preparation of 3S-9,10-difl uoro-2,3-dihydro-3-methyl-7-oxo-7H- 
pyrido[1,2,3-de][1,4]benzoxazine-6-carboxylic acid. JP Patent 210914, 23 Aug 2007  

    241.   Patel M, Gupte S, Chugh Y, Saoji D, Agarwal S, deSouza N, Khorakiwala H (2000) 
Antibacterial optically pure benzoquinolizinecarboxylic acid derivatives processes, composi-
tions and methods of treatment. WO Patent 68229, 16 Nov 2000  

    242.    Yang Y, Ji R, Chen K (1999) A practical stereoselective synthesis of (S)-(-)-ofl oxacin. Chin J 
Chem 17:539–544  

    243.   Kim S, Kang S, Seo H, Kim J, Na H (2006) Cloning and characterization of ofl oxacin ester- 
enantioselective lipase, and use for levofl oxacin production. KR Patent 0109105, 19 Oct 2006  

   244.    Lee S, Min B, Hwang S, Koo Y, Lee C, Song S, Oh S, Min S, Lin S, Kim D (2001) 
Enantioselective production of levofl oxacin by immobilized porcine liver esterase. Biotechnol 
Lett 23:1033–1037  

   245.    Lee S, Min B, Seong S, Oh S, Lim S, Kim S, Kim D (2001) Polyacrylamide gel immobiliza-
tion of porcine liver esterase for the enantioselective production of levofl oxacin. Biotec 
Bioprocess Eng 6:179–182  

   246.    Kang S, Park S, Kim Y, Kim Y (1997) An improved synthesis of levofl oxacin. Heterocycles 
45:137–145  

   247.   Lee B, Shin S (2002) Process for preparation of alkyl 2-(2,3,5-trifl uoro-4-(4-methyl-1- 
piperazinyl)) benzoyl-3(S)-((1-hydroxyprop-2-yl)amino)acrylate KR Patent 0026961, 13 
Apr 2002  

   248.   Lee B, Shin S (2001) 248. Ethyl 2-2,3,5-trifl uoro-4-(4-methyl-1-piperazinyl)benzoyl-3(S)-
(1-hydroxyprophy-2-ylamino)acrylate and method for manufacturing the same. KR Patent 
0018722, 15 Mar 2001  

   249.   Lee B, Shin S (2001) Method for manufacturing ethyl 2,3,5-trifl uoro-4-(4-methyl-1- 
piperazinyl)benzoylacetate. KR Patent 0018721, 15 Mar 2001  

   250.   Lee B, Shin S (2008) Process for preparation of levofl oxacin WO Patent 077643, 7 Mar 2008  
   251.    Kawakami K, Atarashi S, Kimura Y, Takemura M, Hayakawa I (1998) Synthesis and antibac-

terial activity of novel pyridobenzoxazine analogues. Chem Pharm Bull 46:1710–1715  
   252.   Park Y, Lee H, Kim M, Kim K (2000) Preparation of (-)-pyrido-benzoxazine carboxylates 

from (+)-ethyl-2-(4-chloro-5-fl uoro-2-halo-3-nitrobenzoyl)-3-[(1-hydroxypropy-2(S)-
amino)]acrylate. WO Pat 50428, 31 Aug 2000  

   253.   Kim Y, Kang S, Park S (1999) Method for the preparation of 9-fl uoro-7-oxo-7H- pyrido[1,2,3- de]
[1,4]benzoxazine-6-carboxylic acid derivatives. US Patent 5952494, 14 Sep 1999  

   254.    Adrio J, Carretero J, Ruano J, Pallares A, Vicioso M (1999) An effi cient synthesis of ofl oxa-
cin and levofl oxacin from 3,4-difl uoroaniline. Heterocycles 51:1563–1572  

    255.   Sato K, Takayanagi Y, Okano K, Nakayama K, Imura A, Iton M, Yagi T, Kobayashi Y, Nagai 
T (2001) Process for the preparation of benzoxazine derivatives and intermediates therefor. 
Eur Patent 1211254, 12 Feb 2001  

     256.   Chupakhin O, Krasnov V, Levit G, Charushin V, Korolyova M, Tzoi E, Lee H, Park Y, Kim 
M, Kim K (2000) Preparation of (S)-benzoxazines and racemization of (R)-benzoxazines. JP 
Patent 178265, 17 June 2000  

   257.    Charushin V, Krasnov V, Levit G, Korolyova M, Kodess M, Chupakhin O, Kim M, Lee H, 
Park Y, Kim K (1999) Kinetic resolution of (±)-2,3-dihydro-3-methyl-4 H -1,4-benzoxazines 
with ( S )-naproxen. Tetrahedron Asymmetry 10:2691–2695  

   258.    Krasnov V, Levit G, Bukrina I, Andreeva I, Sh L, Sadretdinova L, Korolyova M, Kodess M, 
Charushin V, Chupakhin O (2003) Kinetic resolution of (±)-2,3-dihydro-3-methyl-4 H -1,4- 

Fluoroquinolones: Synthesis and Application



174

benzoxazine, (±)-2-methyl-1,2,3,4-tetrahydroquino-line and (±)-2-methylindoline using 
 N -tosyl-( S )-prolyl chloride. Tetrahedron Asymmetry 14:1985–1989  

   259.    Krasnov V, Levit G, Kodess M, Charushin V, Chupakhin O (2004)  N -phthaloyl-( S )-alanyl 
chloride as a chiral resolving agent for the kinetic resolution of heterocyclic amines. 
Tetrahedron Asymmetry 15:859–864  

   260.    Krasnov V, Levit G, Andreeva I, Grishakov A, Charushin V, Chupakhin O (2002) Kinetic 
resolution of (±)-2-methyl-1,2,3,4-tetrahydroquinoline and (±)-2-methylindoline. Mendeleev 
Commun 12:27–29  

    261.    Potemkin V, Krasnov V, Levit G, Bartashevich E, Andreeva I, Kuzminsky M, Anikin N, Charushin 
V, Chupakhin O (2004) Kinetic resolution of (±)-2,3-dihydro-3-methyl-4H-1,4- benzoxazine in 
the reaction with (S)-naproxen chloride: a theoretical study. Mendeleev Commun 14:69–71  

    262.    Rueping M, Stoeckel M, Sugiono E, Theissmann T (2010) Asymmetric metal-free synthesis 
of fl uoroquinolones by organocatalytic hydrogenation. Tetrahedron 66:6565–6568  

     263.   Takemura M, Takahashi H, Kawakami K (1996) Preparation of pyridobenzoxazine deriva-
tives as antibacterial agents. WO Patent 13370, 27 Sep 1996  

   264.    Han C, Lee J, Lobkovsky E, Porco J (2005) Catalytic ester − amide exchange using group 
(IV) metal alkoxide − activator complexes. J Am Chem Soc 127:10039–10044  

      265.    Cociorva O, Li B, Nomanbhoy T, Li Q, Nakamura A, Nakamura K, Nomura M, Okada K, 
Seto S, Yumoto K, Liyanage M, Zhang M, Aban A, Leen B, Szardenings A, Rosenblum J, 
Kozarich J, Kohno Y, Shreder K (2011) Synthesis and structure–activity relationship of 
4-quinolone-3-carboxylic acid based inhibitors of glycogen synthase kinase-3β. Bioorg Med 
Chem Lett 21:5948–5951  

    266.   Takamura M, Ohki H (2005) Preparation of pyridobenzoxazine derivatives as antibacterial 
agents. WO Patent 73238, 11 Aug 2005  

    267.    Jefferson E, Swayze E, Osgood S, Miyaji A, Risen L, Blyn L (2003) Antibacterial activity of 
quinolone–macrocycle conjugates. Bioorg Med Chem Lett 13:1635–1638  

    268.   Asahina Y, Takei M (2003) Preparation of 10-(3-cyclopropylaminomethyl-1-pyrrolidinyl)
pyridobenzoxazinecarboxylic acid derivatives effective against resistant bacteria. WO Patent 
78439, 25 Sep 2003  

    269.   Bortolaso R, Stivanello M (2002) Process for the preparation of marbofl oxacin via benzyl 
ether intermediates. IT Patent 1313683, 9 Sep 2002  

     270.    Lipunova G, Nosova E, Charushin V, Sidorova L, Chasovskikch O (1998) 1,3,4-Oxa(thia)
diazino [i, j]-annelated quinolines: a new type of key intermediate in the synthesis of tricyclic 
fl uoroquinolones. Mendeleev Commun 8:131–133  

    271.    Lipunova G, Sidorova L, Nosova E, Perova N, Charushin V, Aleksandrov G (1999) Derivatives 
of 1,3,4-thiadiazino[6,5,4-i, j]quinoline –new heterocyclic system. Zhurn Org Khim (Russ J 
Org Chem) 35:1729–1735  

   272.    Lipunova G, Nosova E, Charushin V, Chasovskikh O (2001) Synthesis of fl uorinated 
1,3,4-oxadiazino[6,5,4-i, j]quinolines. Chem Heterocycl Compd 37:1278–1288  

   273.    Nosova E, Sidorova L, Lipunova G, Mochul’skaya N, Chasovskikh O, Charushin V (2002) 
Synthesis of new fl uorinated derivatives of quinolinecarboxylic acids. Chem Heterocycl 
Compd 38:922–928  

   274.    Lipunova G, Nosova E, Mochul’skaya N, Andreiko A, Chasovskikh O, Charushin V (2002) 
1,2,4-Triazino[5,6,1-i, j]quinolines: a new type of tricyclic analogs of fl uoroquinolones. Russ 
Chem Bull 51:663–667  

    275.    Nosova E, Lipunova G, Sidorova L, Charushin V (2001) New derivatives of 
1,3,4-thiadiazino[6,5,4-i, j]quinoline. Russ J Org Chem 37:1169–1176  

     276.    Nosova E, Lipunova G, Charushin V (2001) Synthesis and antibacterial activity of 
1,3,4-thia(oxa)diazino[6,5,4-i, j]quinoline derivatives. Pharm Chem J 35:599–601  

     277.    Lipunova G, Nosova E, Kravchenko M, Sidorova L, Tsoi E, Mokrushina G, Chasovskikh O, 
Charushin V (2004) Fluorinated quinolones possessing antituberculous activity. Pharm Chem 
J 38:597–601  

    278.    Hu G, Zhang Z, Huang W (2004) Synthesis and antibacterial activity of new tetracyclic tri-
azolothiadiazino fl uoroquinolones. Chin Chem Lett 15:23–25  

V.N. Charushin et al.



175

    279.    Miao H, Ceccetti V, Tabarrini O, Fravolini A (2000) New 1,8- peri -annelated tricyclic quino-
lone antibacterials. J Heterocycl Chem 37:297–302  

     280.    Kwon Y, Na Y (2006) Study on the synthesis and cytotoxicity of new quinophenoxazine 
derivatives. Chem Pharm Bull 54:248–251  

    281.   Schwaebe M, Nagasawa J, Haggach M (2008) Preparation of fused pyridone hydrazides as 
anticancer drugs. WO Patent 131134, 30 Oct 2008  

     282.    Lipunova G, Mokrushina G, Nosova E, Rusinova L, Charushin V (1997) Novel pentacyclic 
fl uoroquinolones. Mendeleev Commun 7:109–111  

    283.    Nosova E, Lipunova G, Mokrushina G, Chasovskikh O, Rusinova L, Charushin V (1998) 
Novel pentacyclic fl uoroquinolones. Zhurn Org Khim (Russ J Org Chem) 34:436–441  

     284.    Charushin V, Nosova E, Lipunova G, Kodess M (2001) Fused fl uoroquinolones: synthesis 
and  1 H and  19  F NMR studies. J Fluorine Chem 110:25–28  

    285.   Wang E, Zhang X, Wu W (2003) Preparation of tetracyclic fl uoroquinolonecarboxylates as 
antibacterial agents. CN Patent 1425668, 25 June 2003  

    286.   Wang E, Zhang X, Wu B, Wu W (2003) Preparation of tetracyclic fl uoroquinolonescarboxyl-
ates as antibacterial agents. CN Patent 1425669, 25 June 2003  

    287.    Shaharyar M, Ali M, Abdullah M (2007) Synthesis and antiproliferative activity of 1-[(sub)]-
6-fl uoro-3-[(sub)]-1, 3,4-oxadiazol-2-yl-7-piperazino-1, 4-dihydro-4-quinolinone deriva-
tives. Med Chem Res 16:292–299  

    288.    Tabarrini O, Massari S, Daelemans D, Stevens M, Manfroni G, Sabatini S, Balzarini J, 
Cecchetti V, Pannecouque C, Fravolini A (2008) Structure − activity relationship study on 
anti-HIV 6-desfl uoroquinolones. J Med Chem 51:5454–5458  

    289.    Edmont D, Rocher R, Plisson C, Chenault J (2000) Synthesis and evaluation of quinoline 
carboxyguanidines as antidiabetic agents. Bioorg Med Chem Lett 10:1831–1834  

    290.    Srivastava S, Chauhan P, Bhaduri A, Fatima N, Chatterjee R (2000) Quinolones: novel probes 
in antifi larial chemotherapy. J Med Chem 43:2275–2279  

    291.    Dixit S, Mishra N, Sharma M, Singh S, Agarwal A, Awasthi S, Bhasin V (2012) Synthesis and 
in vitro antiplasmodial activities of fl uoroquinolone analogs. Eur J Med Chem 51:52–59  

    292.    Anderson V, Osheroff N (2001) Type II topoisomerases as targets for quinolone antibacterials 
turning Dr. Jekyll into Mr. Hyde. Curr Pharm Des 7:337–353  

     293.    Zeng Q, Kwok Y, Kerwin S, Mangold G, Hurley L (1998) Design of new topoisomerase II 
inhibitors based upon a quinobenzoxazine self-assembly model. J Med Chem 41:4273–4278  

   294.   Whitten J, Schwaebe M, Siddiqui-Jain A, Moran T (2005) Preparation of substituted quino-
benzoxazine analogs as antitumor agents. US Patent 200585468, 21 Apr 2005  

    295.   Whitten J, Pierre F, Schwaebe M (2006) Quinobenzoxazine analogs binding to G quartet 
structure in DNA and their preparation, pharmaceutical compositions, pharmacokinetics and 
use for treatment of proliferative diseases. WO Patent 113509, 26 Oct 2006  

    296.    Kim M, Duan W, Gleason-Guzman M, Hurley L (2003) Design, synthesis, and biological 
evaluation of a series of fl uoroquinoanthroxazines with contrasting dual mechanisms of 
action against topoisomerase II and G-quadruplexes. J Med Chem 46:571–583  

   297.    Kwok Y, Zeng Q, Hurley L (1999) Structural insight into a quinolone-topoisomerase II-DNA 
complex. J Biol Chem 274:17226–17235  

    298.    Schwaebe M, Ryckman D, Nagasawa J, Pierre F, Vialettes A, Haddach M (2011) Facile and 
effi cient generation of quinolone amides from esters using aluminum chloride. Tetrahedron 
Lett 52:1096–1100  

      299.    Kang D, Kim J, Jung M, Lee E, Jahng Y, Kwon Y, Na Y (2008) New insight for fl uoroquino-
phenoxazine derivatives as possibly new potent topoisomerase I inhibitor. Bioorg Med Chem 
Lett 18:1520–1524  

    300.    Duan W, Rangan A, Vankayalapati H, Kim M, Zeng Q, Sun D, Han H, Fedorov O, Nishioka 
D, Rha S, Lzbicka E, Von Hoff D, Hurley L (2001) Design and synthesis of fl uoroquino-
phenoxazines that interact with human telomeric G-quadruplexes and their biological effects. 
Mol Cancer Ther 1:103–120  

    301.    Kwok Y, Sun D, Clement J, Hurley L (1999) The quinobenzoxazines: relationship between 
DNA binding and biological activity. Anti-Cancer Drug Des 14:443–447  

Fluoroquinolones: Synthesis and Application



176

     302.    Azema J, Guidetti B, Dewelle J, Calve B, Mijatovic T, Korolyov A, Vaysse J, Malet-Martino 
M, Martino M, Kiss R (2009) 7-((4-Substituted)piperazin-1-yl) derivatives of ciprofl oxacin: 
synthesis and  in vitro  biological evaluation as potential antitumor agents. Bioorg Med Chem 
17:5396–5407  

     303.   Whitten J, Schwaebe M, Siddiqui-J, Moran T (2004) Preparation of substituted quinolene 
analogs as antitumor agents. WO Patent 91504, 16 Feb 2004  

     304.    Qin Y, Hurley L (2008) Structures, folding patterns, and functions of intramolecular DNA 
G-quadruplexes found in eukaryotic promoter regions. Biochimie 90:1149–1171  

   305.    Kelland R (2005) Overcoming the immortality of tumour cells by telomere and telomerase 
based cancer therapeutics – current status and future prospects. Eur J Cancer 41:971–979  

    306.    Parkinson G, Lee M, Neidle S (2002) Crystal structure of parallel quadruplexes from human 
telomeric DNA. Nature 417:876–880  

    307.   Whitten J, Pierre F, Regan C, Schwaebe M, Yiannikouros G, Jung M (2006) Preparation of 
fused quinolone analogs which inhibit cell proliferation and/or induce cell apoptosis. US 
Patent 0063761, 6 Apr 2006  

    308.   Hurley L, Guzman M (2007) Combination cancer chemotherapy. WO Patent 137000, 29 Nov 
2007  

      309.    Lipunova G, Nosova E, Mokrushina G, Sidorova L, Charushin V (2000) Antitumor activity of 
the fl uorinated derivatives of condensed quinolines and quinazolines. Pharm Chem J 34:19–22  

      310.    Lipunova G, Nosova E, Sidorova L, Charushin V (2011) Synthesis and antitumor activity of 
fl uorinated derivatives of [i, j]-annelated quinolones. Pharm Chem J 45:208–210  

    311.    Korolyov A, Dorbes S, Azema J, Guidetti B, Danel M, Lamoral-Theys D, Gras T, Dubois J, 
Kiss R, Martino R, Malet-Martino M (2010) Novel lipophilic 7 H -pyrido[1,2,3- de ]-1,4-
benzoxazine- 6-carboxylic acid derivatives as potential antitumor agents: improved synthesis 
and in vitro evaluation. Bioorg Med Chem 18:8537–8548  

    312.    Wentland M, Aldous S, Gruett M, Perni R, Powles R, Danz D, Klingbeil K, Peverly A, 
Robinson R, Corbett T, Rake J, Coughlin S (1995) The antitumor activity of novel pyrazolo-
quinoline derivatives. Bioorg Med Chem Lett 5:405–410  

    313.    Kamal A, Devaiah V, Reddy K, Kumar M (2005) Synthesis and biological activity of 
fl uoroquinolone- pyrrolo[2,1- c ][1,4]benzodiazepine conjugates. Bioorg Med Chem 
13:2021–2029  

    314.   Khire U, Liu X, Nagarathnam D, Wood J, Wang L, Liu D, Zhao J, Guernon L, Zhang L 
(2005) Quinolonecarboxylic acid derivatives for treatment of hyperproliferative conditions, 
their preparation and pharmaceutical compositions. WO Patent 097752, 20 Oct 2005  

    315.   Qidong Y, Xungui H, Zhiyu L (2004) Preparation of quinolone derivatives as antitumor 
agents. CN Patent 1473827, 11 Feb 2004  

    316.    Tomita K, Tsuzuki Y, Shibamori K, Tashima M, Kajikawa F, Sato Y, Kashimoto S, Chiba K, 
Hino K (2002) Synthesis and structure − activity relationships of novel 7-substituted 
1,4-dihydro-4-oxo-1-(2-thiazolyl)-1,8-naphthyridine-3-carboxylic acids as antitumor agents. 
Part 1. J Med Chem 45:5564–5575  

   317.    Tsuzuki Y, Tomita K, Shibamori K, Sato Y, Kashimoto S, Chiba K (2004) Synthesis and struc-
ture − activity relationships of novel 7-substituted 1,4-dihydro-4-oxo-1-(2-thiazolyl)-1,8-naph-
thyridine-3-carboxylic acids as antitumor agents. Part 2. J Med Chem 47:2097–2109  

    318.    Tsuzuki Y, Tomita K, Sato Y, Kashimoto S, Chiba K (2004) Synthesis and structure–activity 
relationships of 3-substituted 1,4-dihydro-4-oxo-1-(2-thiazolyl)-1,8-naphthyridines as novel 
antitumor agents. Bioorg Med Chem Lett 14:3189–3193  

    319.   Whitten J, Schwaebe M, Moran T (2004) Preparation of heterocyclic-substituted 1,4-dihydro- 
4-oxo-1,8-naphthyridine analogs. WO Patent 91627, 28 Jan 2004  

    320.    Xu J, Cole D, Chang C, Ayyad R, Asselin M, Hao W, Gibbons J, Jelinsky S, Saraf K, Park K 
(2008) Inhibition of the signal transducer and activator of transcription-3 (STAT3) signaling 
pathway by 4-Oxo-1-phenyl-1,4-dihydroquinoline-3-carboxylic acid esters. J Med Chem 
51:4115–4121  

    321.    Bryskier A, Lowther J (2005) Antituberculoses agents. In: Bryskier A (ed) Antimicrobial 
agents. ASM Press, Washington, DC  

V.N. Charushin et al.



177

    322.    Aubry A, Pan X, Fisher M, Jarlier V, Cambau E (2004)  Mycobacterium tuberculosis  DNA 
gyrase: interaction with quinolones and correlation with antimycobacterial drug activity. 
Antimicrob Agents Chemother 48:1281–1288  

    323.    Artico M, Nai A, Sbardella G, Massa S, Musiu C, Lostia S, Demontis F, Colla P (1999) 
Nitroquinolones with broad-spectrum antimycobacterial activity  in vitro . Bioorg Med Chem 
Lett 9:1651–1656  

    324.    Imramovsky A, Polanc S, Vinsova J, Kocevar M, Jampilek J, Reckova Z, Kaustova J (2007) 
A new modifi cation of anti-tubercular active molecules. Bioorg Med Chem 15:2551–2559  

    325.    Vavrikova E, Polanc S, Kocevar M, Horvati K, Bosze S, Stolarikova J, Vavrova K, Vinsova J 
(2011) New fl uorine-containing hydrazones active against MDR-tuberculosis. Eur J Med 
Chem 46:4937–4945  

    326.    Senthilkumar P, Dinakaran M, Banerjee D, Devakaram R, Yogeeswari P, China A, Nagaraja 
V, Sriram D (2008) Synthesis and antimycobacterial evaluation of newer 1-cyclopropyl- 1,4-
dihydro- 6-fl uoro-7-(substituted secondary amino)-8-methoxy-5-(substituted)-4-
oxoquinoline- 3-carboxylic acids. Bioorg Med Chem 16:2558–2569  

    327.    Sharma K, Fernandes P (2006) Synthesis and biological activity of substituted quino-
lones derived from 6-fl uoro-3-carbethoxy-1H-quinolin-4-one. Ind J Heterocycl Chem 
15:253–258  

    328.   Lakhina V, Zinchenko E, Yarotskij S, Charushin V, Chupakhin O, Tsoj E, Shorshnev S (1997) 
Antibiotic of rifamycin order showing antibacterial and antimycobacterial antituberculosis 
activity. RU Patent 2098419, 10 Dec 1997  

    329.    Sheu J, Chen Y, Tzeng C, Hsu S, Fang K, Wang T (2003) Synthesis, and antimycobacte-
rial and cytotoxic evaluation of certain fl uoroquinolone derivatives. Helv Chim Acta 
86:2481–2489  

    330.    Fedorova O, Rusinov G, Mordovskoj G, Zueva M, Kravchenko M, Ovchinnikova I, 
Chupakhin O (1997) Synthesis and tuberculostatic activity of podands with fl uoroquinoline 
fragment. Khim Farm Zhurn (Chem Pharm J) 31:21–23  

    331.    Dinarakan M, Senthilkumar P, Yogeeswari P, China A, Nagaraja V, Sriram D (2008) 
Antimycobacterial activities of novel 2-(sub)-3-fl uoro/nitro-5,12-dihydro- 5-
oxobenzothiazolo[3,2- a ]quinoline-6-carboxylic acid. Bioorg Med Chem 16:3408–3418  

    332.    Dinarakan M, Senthilkumar P, Yogeeswari P, China A, Nagaraja V, Srieam D (2008) Novel 
ofl oxacin derivatives: synthesis, antimycobacterial and toxicological evaluation. Bioorg Med 
Chem Lett 18:1229–1236  

    333.   Bartel S, Kleefeld G, Schulze T, Paessens A, Neumann R, Reefschlaeger J, Streissle G (1994) 
Quinolone- and naphthyridinecarboxylic acids. DE Patent 4303657, 11 Aug 1994  

    334.    Ceccetti V, Parolin C, Moro S, Pecere T, Filipponi E, Calistri A, Tabarrini O, Gatto B, 
Palumbo M, Fravolini A, Palu G (2000) 6-aminoquinolones as new potential anti-HIV agents. 
J Med Chem 43:3799–3802  

    335.    Witvrouw M, Daelemans D, Pannecouque C (1998) Broad-spectrum antiviral activity and 
mechanism of antiviral action of the fl uoroquinolone derivative K-12. Antivir Chem 
Chemother 9:403–411  

    336.   Kimura T, Katsube T (1993) Preparation of aminoquinolone derivatives as anti-HIV agents. 
US Patent 5519016, 1 Dec 1993  

   337.   Kimura T, Katsube T, Nishigaki T (1997) Preparation of trifl uoromethyl(piperazinyl)quino-
linecarboxylic acids as anti-HIV agents. JP Patent 09249568, 22 Sep 1997  

    338.    Ohmine T, Katsube T, Tsuzaki Y, Kazui M, Kobayashi N, Komai T, Hagihara M, Nishigaki T, 
Iwamoto A, Kimura T, Kashiwase H, Yamashita M (2002) Anti-HIV-1 activities and pharma-
cokinetics of new arylpiperazinyl fl uoroquinolones. Bioorg Med Chem Lett 12:739–742  

    339.    Hagihara M, Kashiwase H, Katsube T, Kimura T, Komai T, Momota K, Ohmine T, Nishigaki 
T, Kimura S, Shimada K (1999) Synthesis and anti-HIV activity of arylpiperazinyl fl uoroqui-
nolones: a new class of anti-HIV agents. Bioorg Med Chem Lett 9:3063–3068  

    340.   Tomoahi K, Toshinoro O, Hidekiho F, Masako T, Toshinoro N, Yoshinaki K, Tetsushi N 
(1998) Preparation and formulation of pyridobenzoxazinecarboxylic acid derivatives as viru-
cides. WO Patent 33835, 7 Apr 1998  

Fluoroquinolones: Synthesis and Application



178

     341.    Pandeya S, Srirama D, Nathb G, DeClercqc E (2000) Synthesis, antibacterial, antifungal and 
anti-HIV activities of norfl oxacin mannich bases. Eur J Med Chem 35:249–255  

    342.   Ishimura M, Furukawa H, Katsube T (1999) Preparation of fl uoroquinolones as anticyto-
megalovirus agents. WO Patent 42106, 26 Aug 1999  

    343.    Selvam P, Rathore P, Karthikumar S, Velkumar K, Palanisamy P, Vijayalakhsmi S, Witvroum 
M (2009) Synthesis and antiviral studies of novel N-sulphonamidomethyl piperazinyl fl uoro-
quinolones. Ind J Pharm Sci 71:432–436  

    344.   Schneider S, Ruppelt M, Schriewer M, Schulze T, Neumann R (1993) 9-fl uoro-7-oxo-7H- 
pyrido(1,2,3-de)(1,4)benzoxazine carboxylic acids and esters, and their use as antiviral 
agents. Patent EP 563734, 6 Oct 1993  

    345.   Schneider S, Bartel S, Ruppelt M, Sriewer M, Schulze T, Neumann R (1993) 7-oxo- 7H-
pyrido(1,2,3-de)(1,4)benz-oxazinecarboxylic acids and esters and their use as antiviral 
agents. Patent EP 563732, 6 Oct 1993  

    346.    Gabardi S, Waikar S, Martin S, Roberts K, Chen J, Borgi L, Sheashaa H, Dyer C, Malek S, 
Tullius S, Vadivel N, Grafals M, Abdi R, Najafi an N, Milford E, Chandraker A (2010) 
Evaluation of fl uoroquinolones for the prevention of BK viremia after renal transplantation. 
Clin J Am Soc Nephrol 5:1298–1304  

    347.    Anquetin G, Greiner J, Vierling P (2005) Synthesis of mono- and di-substituted 
2,4,5- trifl uorobenzoic acid synthons, key precursors for biologically active 6- fl uoroquinolones. 
Tetrahedron 61:8394–8404  

    348.   Abdul-Rahman S (1999) Preparation of quinolonecarboxylates as bactericides and paraziti-
cides. US Patent 6,967,205, 15 Nov 1999  

    349.   Watanuki S, Kogo Y, Moritomo H, Tsukamoto I, Kaga D, Okuda T, Hirayama F, Moritani Y, 
Takasaki J (2005) Preparation of quinolone derivatives as platelet aggregation inhibitors WO 
Patent 009971, 3 Feb 2005  

    350.    Yang F, Shipe W, Bunda J, Nolt M, Wisnoski D, Zhao Z, Barrow J, Ray W, Ma L, Wittmann 
M, Seager M, Koeplinger K, Hartman G, Lindsley C (2010) Parallel synthesis of  N -biaryl 
quinolone carboxylic acids as selective M 1  positive allosteric modulators. Bioorg Med Chem 
Lett 20:531–536  

   351.    Kuduk S, DiMarco C, Cofre V, Pitts D, Ray W, Ma L, Wittmann M, Seager M, Koeplinger K, 
Thompson C, Hartman G, Bilodeau M (2010) Pyridine containing M 1  positive allosteric 
modulators with reduced plasma protein binding. Bioorg Med Chem Lett 20:657–661  

   352.    Kuduk S, DiMarco C, Cofre V, Pitts D, Ray W, Ma L, Wittmann M, Veng L, Seager M, 
Koeplinger K, Thompson C, Hartman G, Bilodeau M (2010) N-heterocyclic derived M 1  posi-
tive allosteric modulators. Bioorg Med Chem Lett 20:1334–1337  

    353.    Kuduk S, DiMarco C, Cofre V, Ray W, Ma L, Wittmann M, Seager M, Koep[linger K, 
Thompson C, Hartman G, Bilodeau M (2011) Fused heterocyclic M1 positive allosteric mod-
ulators. Bioorg Med Chem Lett 21:2769–2772  

    354.    Toffoli P, Rodier N (1987) Méthanesulfonate de péfl oxacinium (péfl acine DCI). Acta 
Crystallogr Sect C 43:1745–1748  

    355.    Turel I, Leban I, Zupancic M, Bukovec P, Gruber K (1996) An adduct of magnesium sulfate with 
a member of the quinolone family (Ciprofl oxacin). Acta Crystallogr Sect C 52:2443–2445  

    356.    Hashimoto K, Fujita N, Tanaka T, Kido M (1995) 6-ethyl-9-fl uoro-6,7-dihydro-8-(4-hydroxy- 
piperidino)-5-methyl-1-oxo-1 H ,5 H -benzo[ ij ]quinoli-zine-2-carboxylic acid. Acta Crystallogr 
Sect C 51:519–521  

    357.    Anacona J, Toledo C (2002) Synthesis and antibacterial activity of metal complexes of cipro-
fl oxacin. Trans Met Chem 26:228–236  

    358.    Jakics E, Iyobe S, Hirai K, Fukuda H, Hashimoto H (1992) Occurrence of the nfxB type 
mutation in clinical isolates of  Pseudomonas aeruginosa . Antimicrob Agents Chemother 
36:2562–2567  

    359.    Turel I (2002) The interactions of metal ions with quinolone antibacterial agents. Coord 
Chem Rev 232:27–47  

    360.    Lipunova G, Nosova E, Charushin V (2009) Metal complexes of fl uoroquinolonecarboxylic 
acids. Russ Chem J 53:74–85  

V.N. Charushin et al.



179

    361.    Serafi n A, Stanczak A (2009) The complexes of metal ions with fl uoroquinolones. Russ J 
Coord Chem 35:83–97  

    362.    Saha D, Padhye S, Anson C, Powell A (2002) Hydrothermal synthesis, crystal structure, spec-
troscopy, electrochemistry and antimycobacterial evaluation of the copper (II) ciprofl oxacin 
complex: [Cu(cf) 2 (BF 4 ) 2 ] · 6H 2 O. Inorg Chem Commun 5:1022–1027  

    363.    Efthimiadou E, Sanakis Y, Katsarou M (2006) Antibacterial activity of enrofl oxacine metal-
locomplexes. J Inorg Biochem 100:1378–1388  

    364.    Katsarou M, Efthimiadou E, Psomas G, Karaliota A, Vourloumis D (2008) Novel copper(II) 
complex of N-propyl-norfl oxacin and 1,10-phenanthroline with enhanced antileukemic and 
DNA nuclease activities. J Med Chem 51:470–478  

        365.    Shingnapurkat D, Bucther R, Afrabiasi Z, Sinn E, Ahmed F, Sarkar F, Padhye S (2007) Neutral 
dimeric copper–sparfl oxacin conjugate having butterfl y motif with antiproliferative effects 
against hormone independent BT20 breast cancer cell line. Inorg Chem Commun 10:459–462  

    366.    Patitungkho S, Absule S, Dandawate P, Padhye S, Ahmad A, Sarkar F (2011) Synthesis, 
characterization and anti-tumor activity of moxifl oxacin–copper complexes against breast 
cancer cell lines. Bioorg Med Chem Lett 21:1802–1806  

    367.    Gao F, Yang P, Xie J, Wang H (1995) Norfl oxacin metallocomplexes: structure and antibacte-
rial activity. J Inorg Chem 60:61–67  

    368.    Jimenez-Garrido N, Perello L, Ortiz R (2005) Cobalt and copper complexes of ciprofl oxa-
cine. J Inorg Biochem 99:677–689  

        369.    Xiao D, Wang E, An H, Su Z, Li Y, Gao L, Sun C, Xu L (2005) Rationally designed, poly-
meric, extended metal–ciprofl oxacin complexes. Chem Eur J 11:6673–6686  

    370.    Chen Z, Xiong R, Zhang J, Chen X, Xue Z, You X (2001) 2D molecular square grid with 
strong blue fl uorescent emission: a complex of norfl oxacin with zinc(II). Inorg Chem 
40:4075–4077  

     371.    Tarushi A, Psomas G, Raptopoulou C, Psycharis V, Kessissoglou D (2009) Structure and 
DNA-binding properties of bis(quinolonato)bis(pyridine)zinc(II) complexes. Polyhedron 
28:3272–3278  

    372.    Drevensek P, Kosmrlj J, Giester G (2006) Spectral study of ofl oxacine coordination. J Inorg 
Biochem 100:1755–1763  

    373.    Sakai M, Hara A, Anjo S, Nakamura M (1999) Al (III) complexes of fl uoroquinoline forma-
tion: NMR study. J Pharm Biomed Anal 18:1057–1067  

    374.    Polishchuk A, Gerasimenko A, Gayvoronskaya K, Karaseva E (2008) Tetrakis(dihydrogen 
pefl oxacinium) di-μ2-chlorido-bis-[tetrachloridobismuthate(III)] tetrachloride octahydrate. 
Acta Crystal E 64:m931–m932  

    375.    Vieira L, deAlmeida M, Lourenco M, Bezerra A, Fontes A (2009) Synthesis and antitubercu-
lar activity of palladium and platinum complexes with fl uoroquinolones. Eur J Med Chem 
44:4107–4111  

    376.    Vieira L, deAlmeida M, de Abreu H, Duarte H, Grazul R, Fontes A (2009) Platinum(II) com-
plexes with fl uoroquinolones: synthesis and characterization of unusual metal–piperazine 
chelates. Inorg Chim Acta 362:2060–2064  

     377.    Sun C, Ping H, Zhang M, Li H, Guan F (2011) Spectroscopic studies on the lanthanide sen-
sitized luminescence and chemiluminescence properties of fl uoroquinolone with different 
structure. Spectrochim Acta A Mol Biomol Spectrosc 82:375–382    

Fluoroquinolones: Synthesis and Application



181V. Nenajdenko (ed.), Fluorine in Heterocyclic Chemistry Volume 2: 6-Membered Heterocycles, 
DOI 10.1007/978-3-319-04435-4_4, © Springer International Publishing Switzerland 2014

    Abstract     Fluorinated isoquinolines attract widespread attention as important 
 components of pharmaceuticals and materials, because of their unique characteristics 
such as biological activities and light-emitting properties. Thus, a number of fl uori-
nated isoquinolines have been synthesized. This chapter covers the syntheses, properties, 
and applications of ring-fl uorinated isoquinolines starting from earlier studies, as well 
as the syntheses of pyridine-ring-trifl uoromethylated isoquinolines. Modern syn-
thetic methodologies for fl uorinated isoquinolines have been greatly developed during 
last decade. These approaches are presented according to the classifi cation based on the 
standpoint of organic synthesis: (i) the direct introduction of fl uorine (or CF 3  group) 
onto the isoquinoline ring, (ii) the construction of a fused pyridine ring via cyclization 
of a precursor bearing a pre-fl uorinated benzene ring, and (iii) the simultaneous instal-
lation of an isoquinoline framework and a fl uorine substituent. This chapter also 
presents a discussion of the application of fl uorinated isoquinoline derivatives.  
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  Keywords     Fluorine   •   Isoquinoline   •   Trifl uoromethyl group   •   Baltz–Shiemann 
reaction   •   Halex reaction   •   Bischler–Napieralski reaction   •   Catalysis   •   Addition–
elimination   •   Bioactivity   •   Supramolecular chemistry   •   Organic light-emitting diode  

1         Synergy of Isoquinoline and Fluorine 

 Isoquinoline, which is a structural isomer of quinoline, possesses a nitrogen- 
containing heteroaromatics and benzene-ring-fused system. Isoquinolines are 
widely found in naturally occurring alkaloids [ 1 – 3 ]. Isoquinolines are essential in 
pharmaceutical, agricultural, and materials sciences because they exhibit various 
bioactivities and useful physical properties. Among isoquinolines, some tetrahy-
droisoquinoline derivatives exhibit severe neurotoxicity, which leads to Parkinson’s 
disease [ 4 ]. In contrast, a number of isoquinoline-related medicines are fl ourishing 
in worldwide pharmaceutical markets. For example, papaverine hydrochloride, 
morphine, and berberine tannate are prescribed as an antispasmodic drug, a pain-
killer, and an antidiarrheal, respectively [ 5 ]. 

 In general, supply of fl uorine-containing heterocycles has been mainly expanded 
for pharmaceutical uses, because electrostatic and steric effects that result from the 
introduction of fl uorine atoms often cause unique bioactivities [ 6 – 8 ]. Fluorinated 
isoquinolines, i.e., hybrid compounds with an isoquinoline framework and a fl uo-
rine substituent, have thus attracted a great deal of attention over the past several 
decades. A number of fl uorinated isoquinolines have been synthesized because of 
the remarkable progress in synthetic methodologies for fl uorinated heterocycles. 
Substantial enhancements of bioactivities have been observed with respect to some 
fl uorinated isoquinoline derivatives in comparison with the activities of the corre-
sponding fl uorine-free compounds. Furthermore, because other isoquinoline-related 
compounds have exhibited unique light-emitting properties, such compounds are 
expected to serve as electronic materials. 

 Some results of previous studies on perfl uoroalkylated isoquinolines were 
recently summarized by Petrov [ 7 ]. This chapter focuses on the syntheses, prop-
erties, and applications of ring-fl uorinated isoquinolines (limited to compounds 
that retain the aromatic isoquinoline scaffold), starting from the historical back-
ground of earlier studies. Additionally, an overview of the syntheses of pyridine-
ring- trifl uoromethylated derivatives is also given.  

2      Earlier Studies on Fluorinated Isoquinolines 

 Several typical synthetic methodologies for the preparation of fl uorinated isoquinoline 
derivatives emerged in the 1950s and 1960s. Fundamental reactivities and properties of 
such compounds were also concomitantly reported. In 1951, Roe and Teague reported 
the fi rst synthesis of monofl uorinated isoquinolines (Scheme  1 ) [ 9 ]. They successfully 
prepared 1-, 3-, 4-, and 5-fl uoroisoquinolines via heating diazonium intermediates 
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derived from the corresponding aminoisoquinolines on treatment with sodium nitrite 
and fl uoroboric acid, which is the Baltz–Schiemann reaction [ 10 ]. In the 1960s, Belsten 
and Dyke synthesized 8-fl uoroisoquinoline, [ 11 ] and Bellas and Suschitzky reported 
the fi rst synthesis of 6- and 7- fl uoroisoquinolines (Scheme  1 ) [ 12 ]. Both syntheses 
involved Baltz–Schiemann reactions similar to those used by Roe and Teague.

  Scheme 3    Difference in reactivities of fl uorinated isoquinolines       
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  Scheme 2    The Halex reaction toward 1-fl uoroisoquinolines       

N
H2N

N
+N2

–BF4

N
F

HBF4
NaNO2

heat
1

3
45

6

7
8

  Scheme 1    The Baltz–Shiemann reaction toward ring-fl uorinated isoquinolines       

   An alternative approach to the synthesis of 1-fl uoroisoquinolines was accomplished 
by the nucleophilic aromatic substitution (S N Ar) [ 12 ]. The chlorine–fl uorine exchange 
reaction (Halex reaction) [ 13 ,  14 ] was effected in 1-chloroisoquinolines with potas-
sium fl uoride to provide 1-fl uoroisoquinolines in high yield (Scheme  2 ). In the case of 
1,3-dichloroisoquinoline used as a substrate, 3-chloro-1- fl uoroisoquinoline was selec-
tively obtained despite the use of an excess of potassium fl uoride. The chemoselectivity 
was attributed to the lability of the carbon–halogen bond at the 1-position of the iso-
quinoline ring.

   The carbon–fl uorine bond at the 1-position of isoquinoline is also reactive. 
Although isoquinolines bearing a fl uorine atom at one of the 3–8-positions were 
easily converted to the corresponding  N -oxides by addition of hydroperoxide, 
1- fl uoroquinoline gave 1-isoquinolone (isocarbostyryl) via nucleophilic replace-
ment of the fl uorine substituent under the same reaction conditions (Scheme  3 ) [ 12 ].

 

 

 

Syntheses, Properties, and Applications of Fluorinated Isoquinolines



184

   More than one fl uorine atoms were introduced onto the isoquinoline framework 
(Scheme  4 ). In 1960, Bayer patented the synthesis of 1,3-difl uoroisoquinoline, 
which was derived from 1,3-dihydroxyisoquinoline and cyanuric fl uoride [ 15 ]. Six 
years later, Chambers and Musgrave successfully prepared heptafl uoroisoquinoline, 
[ 16 ] in which all hydrogen atoms of the parent isoquinoline were replaced by fl uo-
rine atoms via a chlorine–fl uorine exchange reaction. In this case, heating the mix-
ture of heptachloroisoquinoline and potassium fl uoride to 420 °C facilitated global 
fl uorination to provide an excellent yield of heptafl uoroisoquinoline.
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  Scheme 4    Syntheses of di- and perfl uorinated isoquinolines       

   Heptafl uoroisoquinoline thus formed easily underwent further S N Ar reactions 
with various nucleophiles (Scheme  5 ). Treatment of heptafl uoroisoquinoline with 
an equimolar amount of sodium methoxide selectively afforded hexafl uoro-1- 
methoxyisoquinoline because of the remarkable reactivity of the 1-fl uoro substituent 
(vide supra) [ 17 ,  18 ]. Monosubstitution at the 1-position also selectively occurred in 
reactions with ammonia, hydrazine, and lithium aluminum hydride to provide 1-ami-
nohexafl uoroisoquinoline, 1-hidrazinoisoquinoline, and 1 H -hexafl uoroisoquinoline, 
respectively. Even anhydrous hydrogen chloride gradually reacted with heptafl uo-
roisoquinoline at a high temperature to give the corresponding 1-chlorinated product 
[ 19 ]. Meanwhile, addition of two equivalents of sodium methoxide selectively gave 
pentafl uoro-1,6-dimethoxyisoquinoline.

   For the synthesis of functionalized fl uoroisoquinolines, cyclization of  N -[2-
(fl uorophenyl)ethyl]amides followed by aromatization was effective, which is 
called the Bischler–Napieralski reaction and is a typical method for 1-substituted 
3,4-dihydroisoquinolines directed toward isoquinoline synthesis [ 20 ]. The reaction 
smoothly proceeded, irrespective of the positions of fl uorine, when  N -[2-
(fl uorophenyl)ethyl]-2-phenylacetamides were used (Scheme  6 ) [ 11 ]. Notably, 
8-fl uoro-3,4-dihydroisoquinoline was not obtained by this method because  
N -[2-(3- fl uorophenyl)ethyl]-2-phenylacetamides gave 6-fl uoro-3,4-dihydroiso-
quinolines exclusively. The reduction of 3,4-dihydroisoquinolines to 
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tetrahydroisoquinolines followed by oxidative aromatization provided the corre-
sponding 1-benzyl- fl uoroisoquinolines, whereas the direct oxidation of fl uorinated 
3,4- dihydroisoquinolines failed and led to the loss of fl uorine with palladium spe-
cies [ 21 ].

  Scheme 5    Nucleophilic aromatic substitutions of heptafl uoroisoquinoline       

   The Pictet–Gams reaction, [ 22 ] which is known as a variation of the Bischler–
Napieralski reaction, enabled a sequential reaction consisting of cyclization and 
aromatization to give 1-benzyl-5-fl uoroisoquinoline from  N -[2-(2-fl uorophenyl)-2- 
methoxyethyl]-2-phenylacetamide (Scheme  7 ) [ 21 ].

  Scheme 6    Synthesis of fl uoroisoquinolines via the Bischler–Napieralski reaction       
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   As it was described previously, fl uoroisoquinoline chemistry has begun about 
half a century ago. Since the predawn of fl uoroisoquinoline chemistry, various syn-
theses of ring-fl uorinated isoquinoline derivatives have been accomplished, accom-
panied by remarkable progress in the aromatic ring fl uorination and in the 
construction of fl uorine-containing heterocycles. From the standpoint of organic 
synthesis, methodologies for fl uorinated isoquinolines can be classifi ed into three 
major groups: (i) the direct fl uorination onto the isoquinoline ring, (ii) the construc-
tion of a fused pyridine ring via cyclization of a precursor bearing a pre-fl uorinated 
benzene ring, and (iii) the simultaneous installation of an isoquinoline framework 
and a fl uorine substituent. In the following section, modern synthetic methodologies 
for fl uorinated isoquinolines are presented according to this classifi cation. The last 
section of this chapter presents a discussion of the application of fl uorinated iso-
quinoline derivatives in various scientifi c fi elds.  

3     Syntheses of Ring-Fluorinated Isoquinolines 

3.1     Direct Ring Fluorination 

 The Baltz–Schiemann reaction is still one of the most common methods for direct 
ring fl uorination because of the accessibility to aminated isoquinoline derivatives. 
The original conditions, which involve the use of tetrafl uoroboric acid (fl uoroboric 
acid), are still often employed, [ 23 – 27 ] even though several modifi ed procedures 
have been reported. For example, Myers synthesized 1-fl uoroisoquinoline  2  by the 
dealkylative diazotization of 1- tert -butyl-aminoisoquinoline  1  with pyridine hydro-
fl uoride instead of HBF 4  (Scheme  8 ) [ 28 ].
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  Scheme 8    Synthesis of 1-fl uoroisoquinoline via dealkylative diazotization       
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  Scheme 7    Synthesis of 5-fl uoroisoquinoline via the Pictet–Gams reaction       
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   Among neutral nitrogen substituents, a nitro group on an aromatic ring can be 
directly converted to a fl uorine substituent via the S N Ar mechanism [ 29 – 32 ]. In this 
fl uorodenitration method, tetraalkylammonium fl uorides and inorganic fl uoride 
salts have been used as fl uorine sources. For example, upon treatment with tetra-
methylammonium fl uoride, 8-nitroisoquinoline  3  afforded 8-fl uorinated isoquino-
line  4  (Scheme  9 ) [ 25 ].
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  Scheme 10    Synthesis of 5-fl uoroisoquinoline via fl uorodenitration with KF       
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  Scheme 9    Synthesis of 8-fl uoroisoquinoline via fl uorodenitration with Me 4 NF       

   Even potassium fl uoride induced fl uorodenitration of 5-nitroquinoline with the 
aid of 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8,8,8]-hexacosane (Kryptofi x 
222) [ 33 ,  34 ] as a phase transfer agent under microwave irradiation, which led to 
5-fl uoroquinoline (Scheme  10 ) [ 35 ].

   The Halex reaction for the synthesis of multi-fl uorinated isoquinoline was 
investigated in detail by Matthews et al., and they attempted chlorine–fl uorine 
exchange reactions of several multi-chlorinated isoquinolines [ 36 ]. When 3,5,6,7,
8- pentachloroisoquinoline was treated with an excess of cesium fl uoride in deuter-
ated dimethyl sulfoxide (DMSO- d  6 ) at 100 °C, 3,5,7,8-tetrachloro-6-fl uoroiso-
quinoline and 3,5,6,7-tetrachloro-8-fl uoroisoquinoline were formed in a 7:3 ratio 
after 20 min (Scheme  11 ). The observation of the predominant substitution at the 
6-position was consistent with the fact that the 6-position of heptafl uoroisoquino-
line was the second most reactive to nucleophiles after the 1-position (vide supra, 
Scheme  5 ) [ 17 ]. Similar reaction conditions were also employed in the reaction of 
heptachloroisoquinoline, where the 1-position was found to be more reactive than 
other positions (Scheme  12 ).
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    With respect to other positions, Matthews concluded that the reactivity for substi-
tution in heptachloroquinoline was 1> > 6 = 7 = 8 > 3 = 5 > 4. Notably, the 3-position of 
haloisoquinolines was less reactive toward nucleophilic substitution even though it 
was adjacent to the nitrogen atom, whereas the 1-position of haloisoquinolines and 
the 2-position of haloquinolines were substantially reactive [ 37 ]. 

 The direct fl uorination of a C–H bond of nitrogen-containing heterocycles was 
achieved with gaseous fl uorine and iodine by Chambers and Sandford et al [ 38 ]. 
The mixture of fl uorine and iodine served as sources of both I +  and F −  (Scheme  13 ). 
The heterocycles activated by  N -iodination underwent fl uoride attack at the carbon 
adjacent to the nitrogen atom. Elimination of hydrogen iodide gave the correspond-
ing ring-fl uorinated heterocycles. In this report, phenanthridine, a benzo analogue 
of isoquinoline, was fl uorinated to afford 6-fl uorophenanthridine.

  Scheme 13    Synthesis of 6-fl uorophenanthridine via fl uorination with F 2  and I 2        
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  Scheme 11    The Halex reaction of 3,5,6,7,8-pentachloroisoquinoline       
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  Scheme 12    The Halex reaction of heptachloroisoquinoline       

   In contrast to nucleophilic fl uorination, fl uoroisoquinoline syntheses via direct elec-
trophilic fl uorination were reported relatively recently. In 2007, Price developed direct 
electrophilic C–H bond fl uorination of an isoquinoline derivative with Selectfl uor® 
(1-(chloromethyl)-4-fl uoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafl uoroborate), 
F-TEDA), [ 39 ] which is known as an effi cient electrophilic fl uorine source [ 40 – 42 ]. 
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Refl uxing the mixture of 6-bromo-1-hydroxyisoquinoline ( 5 ) and Selectfl uor® in 
 acetonitrile afforded 7-bromo-4-fl uoro-1-hydroxy-isoquinoline ( 6 ) as a single isomer 
in a one-pot reaction (Scheme  14 ). In contrast, fl uorinated methanol adduct  7  was 
quantitatively produced, when the reaction was conducted at ambient temperature in an 
acetonitrile–methanol mixed solvent. Subsequent aromatization of  7  with hydrochloric 
acid gave  6  in high overall yield, whereas the reaction with phosphoryl chloride pro-
vided 1-chlorinated 4- fl uoroisoquinoline  8  as another variation of 4-fl uorinated iso-
quinoline derivatives.
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  Scheme 15    Electrophilic fl uorination of 1-isoquinolylmagnesium reagent       
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  Scheme 14    Electrophilic fl uorination with Selectfl uor®       

   In 2010 Knochel et al. reported the electrophilic fl uorination of heteroarylmag-
nesium reagents by applying their magnesiation methodology, [ 43 ,  44 ] in which 
heteroaryl bromides underwent a Br–Mg exchange through the addition of an iso-
propylmagnesium chloride–lithium chloride complex [ 45 – 47 ].  N - fl uorobenzene- 
sulfonimide (NFSI) was used as an electrophilic fl uorinating agent to trap the 
generated heteroarylmagnesium species in good to excellent yield (Scheme  15 ). 
Although electrophilic fl uorination of standard aryl Grignard reagents had already 
been reported, [ 48 ] Knochel’s method signifi cantly improved the product yields. 
Thus, 1-fl uoroisoquinoline was readily prepared from 1-bromoisoquinoline.
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3.2        Ring Construction of Pre-fl uorinated Substrates 

 The construction of heterocycles from fl uoroarene substrates is an effi cient approach 
to synthesize ring-fl uorinated heterocycles with a fused benzene ring because fl uo-
roarenes are relatively easy to access and aromatic C–F bonds are suffi ciently robust 
to survive most of the reaction conditions. Nowadays a wide variety of methodolo-
gies for heterocyclic ring construction have been established, this strategy has been 
predominant in the syntheses of benzene-ring-fl uorinated isoquinolines. To employ 
this strategy, the nitrogen atom must be located at appropriate positions, and cycli-
zation accompanied or followed by aromatization must smoothly proceed. 

 Aryl or benzyl imines have been commonly used as precursors of isoquino-
lines. In cases starting with  N -substituted imines, the substituents on the nitro-
gen atom should be effi ciently incorporated or eventually removed (Scheme  16 , 
routes a–c). The method via simultaneous reductive elimination and removal 
of  N -substituents from nitrogen-containing metallacycles is also effective 
(Scheme  16 , route d). The intermediary metallacycles can be mainly obtained 
from ( ortho -haloaryl)methanimines.

  Scheme 16    Approaches to fl uoroisoquinolines starting from imines bearing a fl uoroaryl group       

   Benzylideneaminoacetoaldehyde acetals prepared from benzaldehydes have been 
key intermediates of a well-established method for isoquinoline synthesis known as 
the Pomeranz–Fritsch reaction (Scheme  16 , route a) [ 49 ,  50 ]. Intramolecular cycliza-
tion of this type of imines under acidic conditions provided isoquinolines, where the 
two-carbon substituent on the nitrogen atom was transformed into a part of the iso-
quinoline ring. For the synthesis of 8- fl uoroisoquinoline, the application of the stan-
dard procedure gave a low yield of the desired product (3 % in two steps from 
2-fl uorobenzaldehyde) [ 51 ]. However, in the modifi ed procedure using ethyl chloro-
formate, trimethyl phosphite, and titanium tetrachloride for the cyclization step [ 52 ] 
provided 6-fl uoroisoquinoline from 4- fl uorobenzaldehyde in 34 % overall yield 
(Scheme  17 ) [ 25 ].
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   Stoltz et al. [ 53 ] and Ramtohul et al. [ 54 ] independently and almost simultane-
ously reported an isoquinoline synthesis via the reaction of  N -acetylenamines with 
benzynes (Scheme  16 , route b; Scheme  18 ). In this reaction, intermediary 
 N -acetylimines underwent nucleophilic attack of the aryl anions to give the corre-
sponding isoquinolines after aromatization. The carbonyl carbon on the nitrogen 
atom was incorporated into the 1-position of the resulting isoquinolines.
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  Scheme 17    Synthesis of 6-fl uoroisoquinoline via the Pomeranz–Fritsch reaction       
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  Scheme 18    Synthesis of 6,7-difl uoroisoquinoline via the reaction of  N -acetylenamine with benzyne       

   2-Alkynylbenzaldehyde  O -alkyl oximes were also used as precursors of isoquin-
olines (Scheme  16 , route c). After intramolecular electrophilic cyclization,  N -alkoxy 
groups were eliminated to form aldehydes (for example benzaldehyde). Shin et al. 
synthesized 5-fl uoro-3-phenylisoquinoline using a AgOTf/TfOH catalytic sys-
tem (Scheme  19 ), [ 55 ] while Wu achieved Cu-catalyzed synthesis of several 
7- fl uoroisoquinoline derivatives [ 56 ].
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  Scheme 19    Ag-catalyzed electrophilic cyclization of 2-alkynylbenzaldehyde  O -alkyl oxime for 
5-fl uoroisoquinoline synthesis       
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   The intramolecular electrophilic cyclization of  N -(2-alkynylbenzylidene)hydrazides 
or 2-alkynylbenzoaldoximes afforded isoquinolinium-2-ylamides or isoquinoline 
 N -oxides, respectively (Scheme  16 , route c). The carbon atoms at the 1-position of these 
compounds were substantially electrophilic because of the polarization of the N–O or 
N–N bond. Therefore, these isoquinoliniums readily underwent [3 + 2] cycloaddition 
and nucleophilic attack to the 1-position, as discussed in the subsequent paragraph. 

 Wu et al. synthesized a 5-fl uoroisoquinoline derivative via the reaction of 
a 2-alkynylbenzoaldoxime and an isocyanide with a AgOTf/Bi(OTf) 3  catalyst 
(Scheme  20 ) [ 57 ]. Sequential rearrangements were triggered by the addition of the 
isocyanide to the 1-position of the intermediary isoquinoline  N -oxide. The [3 + 2] 
cycloaddition of the  N -oxide with a carbodiimide followed by ring-opening also 
afforded 6- and 7-fl uoroisoquinoline derivatives (Scheme  21 ) [ 58 ]. Recently, simi-
lar approaches to functionalized fl uoroisoquinolines have been frequently adopted 
[ 59 – 65 ]. In addition to the above-mentioned imine derivatives,  N - tert -butyl imines 
were used, where the  tert -butyl group was removed from the nitrogen atom [ 66 ]. 
Furthermore, primary imines have been shown to serve as precursors of fl uorinated 
isoquinolines, albeit under harsh conditions [ 67 ,  68 ].
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  Scheme 21    Ag-catalyzed electrophilic cyclization of 2-alkynylbenzoaldoxime for 6- fl uoroisoquinoline 
synthesis       
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    The reductive elimination from seven-membered nitrogen-containing metallacycles 
also leads to the construction of the isoquinoline framework (Scheme  16 , route d). 
Such metallacycles result from the insertion of alkynes into metal–aryl bonds mainly 
formed by oxidative addition of aryl–halogen bonds. Konno et al. achieved the synthe-
sis of 8-fl uoroisoquinoline  11  via the reaction of 2- iodobenzylidenamine  9  with trifl uo-
romethylalkyne  10  with the aid of a palladium catalyst (Scheme  22 ) [ 69 ]. Related 
synthetic methodologies have been established with a nickel catalyst [ 70 ] as well as 
palladium catalysts [ 71 – 73 ]. Fagnou et al. succeeded in a similar isoquinoline synthe-
sis via C–H bond activation with a rhodium catalyst, which provided 6-fl uoroisoquino-
line  12  (Scheme  23 ) [ 74 ].
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  Scheme 22    Pd-catalyzed domino insertion/cyclization sequence for 8-fl uoroisoquinoline synthesis       
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  Scheme 23    Route to 6-fl uoroisoquinoline via Rh-catalyzed C–H bond activation       

    Nitrogen-containing functional groups other than imines can also participate in 
this type of isoquinoline synthesis. For example, nitriles were convenient because 
they possess no extra groups on the nitrogen atom to be removed. Fluorinated iso-
quinolines were prepared via the intramolecular and intermolecular reactions of 
nitriles. The nitrogen atom of nitriles exhibited suffi cient nucleophilicity to form 
C–N bonds that contributed to the construction of isoquinoline scaffolds [ 75 ,  76 ]. 
Imine-metal species derived from nitriles and organometallic reagents were effec-
tive for this purpose [ 28 ,  77 – 79 ]. Amines, [ 80 – 82 ] amides, [ 83 – 86 ] azides, [ 87 ] 
triazoles, [ 88 ] and enamine-type intermediates [ 89 ,  90 ] also served as key precur-
sors for fl uorinated isoquinolines. 

 Construction of benzene rings has rarely been conducted in the last stage of fl uo-
roisoquinoline synthesis. The use of fl uorinated pyridines as starting materials allows 
the introduction of fl uorine on the heterocyclic ring carbons. Queguiner et al. reported 
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the multi-step synthesis of an indole-fused 1-fl uoroisoquinoline. [ 91 ] Platonov et al. 
synthesized 1,3,4-trifl uoroisoquinoline via the copyrolysis of 2,3,5,6-tetrafl uoropyr-
idine-4-sulfonyl chloride with butadiene (Scheme  24 ) [ 92 ].

  Scheme 25    Synthesis of perfl uoro-3-methylisoquinoline via the hetero Diels–Alder reaction       
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  Scheme 24    Synthesis of 1,3,4-trifl uoroisoquinoline via copyrolysis of pyridine-4-sulfonyl chloride 
with butadiene       

   Exceptionally, there is an example for simultaneous construction of both benzene 
and pyridine rings toward a perfl uorinated isoquinoline. Feast et al. reported the syn-
thesis of perfl uoro-3-methylisoquinoline via the hetero Diels–Alder reaction of perfl u-
oro-1,4,6,7-tetrahydro-1,4-ethanonaphthalene with trifl uoroacetonitrile followed by 
pyrolysis, which involved elimination of tetrafl uoroethylene (Scheme  25 ) [ 93 ].

3.3         Simultaneous Installation of an Isoquinoline Framework 
and a Fluorine Substituent 

 Intramolecular cyclizations of  ortho -functionalized  β , β -difl uorostyrenes provide a 
general access to ring-fl uorinated heterocycles. In this methodology, both the con-
struction of a heterocyclic nucleus and the introduction of a fl uorine substituent are 
simultaneously effected. 

 The difl uoromethylene carbon of 1,1-difl uoro-1-alkenes exhibits strong electro-
philicity because of the electron-defi cient and highly polarized carbon–carbon 
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double bond, and thus difl uoroalkenes readily react with nucleophiles instead of 
electrophiles. Furthermore, the nucleophilic attack to difl uoroalkenes followed by 
fl uoride elimination (vinylic nucleophilic substitution; S N V) provides products 
bearing a fl uorovinylic moiety. Ichikawa et al. constructed 5-membered and 
6- membered heterocycles via intramolecular S N V reactions of 1,1-difl uoro-1- 
alkenes [ 94 – 96 ]. This strategy can introduce a fl uorine substituent at a prescribed 
position, whereas the direct fl uorination methods generally require regioselec-
tive pre-functionalization. This methodology has been successfully applied to the 
synthesis of 3-fl uoroisoquinolines, which has been diffi cult to prepare with previ-
ous methods, including heterocyclic ring construction.  β , β -difl uorostyrenes as 
cyclization precursors have been mainly prepared via palladium-catalyzed cou-
pling of  ortho -functionalized aryl iodides and difl uorovinylborans, which were 
 generated from 2,2,2-trifl uoroethyl 4-methylbenzenesulfonate [ 97 ,  98 ].  o -Cyano-
 β , β -  difl uorostyrenes thus formed reacted with organometallics to give the corre-
sponding iminyl metal intermediates, which in turn underwent 6- endo  cyclization to 
give 3-fl uoroisoquinolines (Scheme  26 ) [ 99 ].
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  Scheme 26    Synthesis of 3-fl uoroisoquinolines via the intramolecular S N V reaction of iminyl 
metal intermediates       

   Sulfonamides are suffi ciently reactive to serve as nucleophiles in the reaction 
with difl uorostyrenes under basic conditions (Scheme  27 ) [ 100 ]. Imines and oximes 
have also been utilized as nucleophiles to provide 3-fl uoroisoquinolines and their 
 N -oxides, respectively (Scheme  28 ) [ 101 ]. When the isoquinoline  N -oxide was 
treated with an isocyanate, the oxygen atom on the nitrogen was consequently 
 eliminated after the 1,3-dipolar addition to afford a 1-amino-3-fl uoroisoquinoline 
(Scheme  28 ).

 

Syntheses, Properties, and Applications of Fluorinated Isoquinolines



196

4          Syntheses of Pyridine-Ring-Trifl uoromethylated 
Isoquinolines 

 As well as a fl uorine substituent, a trifl uoromethyl group have recently attracted 
much attention as the shortest perfl uoroalkyl group. A variety of methodologies for 
the introduction of a trifl uoromethyl group into heteroaromatics have been also 
developed [ 102 ]. In 1970, Kobayashi et al. reported the copper-mediated direct tri-
fl uoromethylation of aryl and heteroaryl halides using trifl uoromethyl iodide as a 
source of a trifl uoromethyl group [ 103 ]. Thus, 1-(trifl uoromethyl)isoquinoline was 
synthesized, albeit in low yield (Scheme  29 ).
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  Scheme 28    Synthesis of 3-fl uoroisoquinolines via the intramolecular S N V reaction of difl uorosty-
renes bearing a formyl group       
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   Pyridine-ring-trifl uoromethylated isoquinolines are easier to access compared to 
ring-fl uorinated counterparts. Syntheses of pyridine-ring-fl uorinated isoquinolines via 
pyridine-ring construction are mostly diffi cult except for the 3- fl uoroisoquinoline syn-
thesis, which was effected via the intramolecular S N V reaction of  β , β -  difl uorostyrenes 
(see also Sect.  3.3 ). This is because pyridine-ring closure using fl uorine-presubstituted 
components could be retarded by considerable reactivity changes caused by fl uorine 
substituents. On the other hand, the trifl uoromethyl group is rather chemically inert. 
Thus, pyridine-ring-trifl uoromethylated isoquinolines have been successfully synthe-
sized via ring closure of trifl uoromethylated precursors. The following is an overview 
of the syntheses of pyridine-ring-trifl uoromethylated isoquinolines. 

 The Bischler–Napieralski reaction [ 20 ] and the Pictet–Gams reaction [ 22 ] are 
both known as typical methods for the construction of the isoquinoline framework 
as described in Sect.  2 . Cambon et al. synthesized 1-(trifl uoromethyl)isoquinolines 
via the Bischler–Napieralski reaction of  N -(phenethyl)trifl uoroacetamides, [ 104 ] 
whereas Simig et al. utilized the Pictet–Gams reaction of  N -(2-aryl-3,3,3-trifl uoro- 
2-methoxypropyl)amides of acetic or cinnamic acids for the synthesis of 4-(trifl uo-
romethyl)isoquinolines (Scheme  30 ) [ 105 ].

  Scheme 30    Syntheses of 1- or 4-(trifl uoromethyl)isoquinolines via the Bischler–Napieralski 
reaction or the Pictet–Gams reaction       

  Scheme 29    Copper- mediated trifl uoromethylation for 1-(trifl uoromethyl)isoquinoline synthesis       
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   Upon pyridine ring construction, small molecules bearing a trifl uoromethyl 
group can be applied to intermolecular reactions as ring components. 
Trifl uoroacetonitrile has been used not only as a component of the pyridine ring 
but also as a source of a trifl uoromethyl group. Nauta et al. reported the synthe-
sis of 3-(trifl uoromethyl)isoquinoline via the reaction of 2-methylbenzonitrile 
with trifl uoroacetonitrile under basic conditions (Scheme  31 ) [ 106 ]. Palacios 
et al. synthesized a 3-trifl uoromethylated isoquinoline via electrocyclization of 
the aza-Wittig reaction product of an  N -vinylic phosphazene, which was pre-
pared via [2 + 2] cycloaddition of a phosphorus ylide and trifl uoroacetonitrile 
(Scheme  32 ) [ 107 ]. As previously described, Feast et al. also used trifl uoroace-
tonitrile for the synthesis of a 3-(trifl uoromethyl)isoquinoline via the hetero 
Diels–Alder reaction (Scheme  25 ) [ 93 ]. Stoltz et al. used an  N -trifl uoroacetyl 
dehydroalanine ester for the synthesis of a 1-trifl uoromethylated isoquinoline 
(Scheme  18 ) [ 53 ], whereas Konno et al. used trifl uoromethylalkynes for the 
synthesis of 4-(trifl uoromethyl)isoquinolines (Scheme  22 ) [ 69 ].

  Scheme 32    Synthesis of 3-(trifl uoromethyl)isoquinoline using trifl uoroacetonitrile via the aza- 
Wittig reaction       

  Scheme 31    Synthesis of 3-(trifl uoromethyl)isoquinoline using trifl uoroacetonitrile       

    The trifl uoromethyl group is inert enough to survive under harsh reaction condi-
tions. Schiess et al. synthesized 3-(trifl uoromethyl)isoquinoline via fl ash vacuum 
pyrolysis of trifl uoroacetyloxybenzocyclobutene (Scheme  33 ) [ 108 ]. Although the 
skeletal rearrangement required an ultra-high temperature, this reaction proceeded 
without the loss of the trifl uoromethyl group.
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   Since the trifl uoromethyl group stabilizes the carbanion at its proximal carbon 
atom due to the strong electron-withdrawing nature, 2-trifl uoromethyl-1-alkenes are 
subject to nucleophilic attack at their 1-positions. Ichikawa et al. have applied such 
a chemical property of the trifl uoromethyl group to intramolecular cyclizations with 
carbon and heteroatom nucleophiles, which led to various fl uorine-containing 
carbo- and heterocycles [ 95 ,  109 ,  110 ]. Among the studies, 4-trifl uoromethyl- 3,4-
dihydroisoquinoline was synthesized via 6- endo - trig  cyclization of the aldimine 
intermediate derived from an  α -trifl uoromethylstyrene bearing an  o -formyl group 
(Scheme  34 ) [ 111 ]. 4-Trifl uoromethyl-3,4-dihydroisoquinoline provided 4-(trifl uo-
romethyl)isoquinoline and 4-(difl uoromethyl)isoquinoline under oxidative and 
basic conditions, respectively. The difl uoromethyl group is one of recently- 
highlighted fl uoroalkyl groups, as well as the trifl uoromethyl group [ 112 ].

  Scheme 34    Intramolecular cyclization of  o -formyl- α -(trifl uoromethyl)styrene for 3-(trifl uoromethyl)- 
or 3-(difl uoromethyl)isoquinoline synthesis       

  Scheme 33    Route to 3-(trifl uoromethyl)isoquinoline via fl ash vacuum pyrolysis       
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5        Properties and Applications of Ring-Fluorinated 
Isoquinoline Derivatives 

 Ring-fl uorinated isoquinoline derivatives thus synthesized exhibit a wide range of 
bioactivities that rival or surpass those of the original fl uorine-free compounds. In 
addition to such remarkable potentials in the fi eld of pharmaceutical sciences, the 
formation of supramolecular structures and the use of ligands of light-emitting 
metal complexes have also attracted considerable attention as possible functions of 
fl uoroisoquinolines. This section describes concrete examples of the properties and 
applications of fl uoroisoquinoline derivatives. 

 In the 1960s, isoquinoline derivatives were tested in an antitumor assay [ 113 ]. French 
et al. found that 1-formylisoquinoline thiosemicarbazone  13a  was effective for a variety 
of mouse tumors (Fig.  1a ). They subsequently carried out a comprehensive study of 
antitumor assays using various thiosemicarbazones of 1- formylisoquinolines [ 24 ]. 
Among the compounds tested, 5-fl uoro derivative  13b , along with non-fl uorinated com-
pound  13a , exhibited the strongest activity against L-1210 leukemia and the Lewis lung 
carcinoma. 7-Fluorinated derivative  13c  was found to be specifi cally active against the 
B-16 melanoma. Recently, Zhu et al. developed isoquinoline–pyridine-based protein 
kinase B/Akt antagonists [ 114 ]. 3-Fluorinated isoquinoline derivative  14  served as an 
effective Akt1 inhibitor (IC 50  = 3.5 nM), and the related compounds worked even in 
MiaPaCa-2 human pancreatic cancer cells (Fig.  1b ).

   Isoquinoline derivatives have been expected to serve as drugs for type II diabetes. 
Protein tyrosine phosphatase 1B (PTB1B) is considered to be one of the targets because 
it works as a negative regulator of the insulin-signaling pathway. A series of 1-(iso-
quinolin-1-yl)guanidines was tested as a PTB1B inhibitor by Liu and Wu et al. (Fig.  2a ) 
[ 65 ]. They found that 6-fl uorinated isoquinoline  15  was highly effective (IC 50  = 6.38 μg/
mL). 11β-Hydroxydehydrogenase 1 (11β-HSD1), which catalyzes the transformation 
of cortisone to cortisol, is another target compound for diabetes therapy. Investigation 
of various 1-(benzylthio)isoquinolines and 1-(benzylthio)-5,6,7,8-tetrahydroisoquino-
lines revealed that ring-fl uorinated isoquinoline derivatives  16b ,  16c , and  16e  possess 
signifi cant activity against 11β- HSD1 as non-fl uroinated compound  16a  (Fig.  2b ) 
[ 115 ]. Among compounds bearing isoquinoline scaffolds, 7-fl uorinated compound 
 16d  showed the highest activity in the inhibition of both mouse (IC 50  = 7 nM) and 
human (IC 50  = 2 nM) 11β- HSD1 enzymes.
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  Fig. 1    Antitumor active fl uoroisoquinolines       
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   Napthyridinones inhibit the activity of Janus kinase 2 (JAK2), which plays 
important roles in hematopoiesis and immune response (Fig.  3a ). Among napthy-
ridinones, compounds bearing a 6-fl uoroisoquinoline substructure exhibited 
extraordinary potency as JAK2 inhibitors [ 85 ]. Besides above-mentioned fl uori-
nated isoquinolines, aminothiophene-containing fl uorinated isoquinolines contrib-
uted to the inhibition of the c-Jun N-terminal kinases (JNKs), which are members 
of the mitogen-activated protein kinase (MAPK) family (Fig.  3b ) [ 27 ]. Dinapsoline 
derivatives prepared from fl uorinated isoquinolines also showed substantial bioac-
tivities as dopamine receptor agonists (Fig.  3c ) [ 25 ].

   In addition to exhibiting bioactivities, polyfl uoroaromatic compounds often dis-
play unique properties for accessing supramolecular architectures in crystalline 
states. Arene and polyfl uoroarene molecules are well known to alternately stack 
through π–π interactions in their 1:1 co-crystals to give columnar structures [ 116 ]. 

 Homocrystals of 1,2,3,4-tetrafl uoronaphthalene, a partially fl uorinated naphtha-
lene, showed an obvious π–π stacking structure with a head-to-tail orientation like 
co-crystals of arenes and polyfl uoroarenes (Fig.  4a ) [ 117 ]. In contrast, the CF/π 
interaction [ 118 ,  119 ] was predominant in homocrystals of 1,3,4- trifl uoroisoquinoline, 
in which the C2–F fragment of 1,2,3,4-tetrafl uoronaphthalene was replaced by a 
nitrogen atom (Fig.  4b ) [ 117 ]. This difference forced 1,3,4-trifl uoroisoquinoline to 
adopt a head-to-head orientation without π–π stacking.

   Iridium complexes bearing isoquinoline-based bidentate ligands are phosphores-
cent (Scheme  35 ). 1-Phenylisoquinolinyliridium complexes emit red phosphores-
cence as the result of spin-forbidden triplet metal-to-ligand charge transfer ( 3 MLCT) 
excitation [ 26 ]. Such complexes, including some based on 5-fl uoroisoquinoline, 
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  Fig. 2    Drug candidate fl uoroisoquinolines for type II diabetes       
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were utilized for organic light-emitting devices (OLEDs), which were fabricated 
as follows: 4,4′- N , N ′-dicarbazolebiphenyl (CBP) was used as a host material for 
iridium complexes, bathocuproine (BCP) was used as a hole blocker, 4,4′-bis( N - 
 naphthylphenylamino)biphenyl (NPB) was used as a hole transport layer, and tris(8-
hydroxyquinolinyl)aluminum(III) (Alq 3 ) was used as an electron transport layer. 
The OLEDs thus fabricated from iridium complexes  17  showed good emission 
quantum yields and high brightness. For example, [Ir(5-f-1piq) 2 (acac)] ( 17b ; 
5-f-1piq = 5-fl uoro-1-phenylisoquinoline) showed a turn-on voltage of 35 V, low- 
working voltages (1,883 cd m –2  at 7.1 V and 8,329 cd m –2  at 9.0 V), and a maximum 
brightness of 38,218 cd m –2  (14.0 V), which suggests that this complex has strong 
potential for use in full color displays (Table  1 ). The emission color coordinates of 
 17b  on the Commission Internationale de I’Éclairage (CIE) chart were ( x  = 0.68, 
 y  = 0.31), which is close to the standard red color.

  Fig. 4    Supramolecular networks in crystal structures of ( a ) 1,2,3,4-tetrafl uoronaphthalene and ( b ) 
1,3,4-trifl uoroisoquinoline       
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    Later, iridium complexes with 6-fl uoroquinoline-based ligands, (35dmPh- 
6Fiq) 2 Ir(acac) ( 18a ; 35dmPh-6Fiq = 6-fl uoro-1-(3,5-dimethylphenyl)isoquinoline) 
and (4 t BuPh-6Fiq) 2 Ir(acac) ( 18b ; 4 t BuPh-6Fiq = 6-fl uoro-1-(4- tert -butylphenyl)
isoquinoline) were developed as red color emitting phosphorescent materials 
(Fig.  5 ) [ 120 ]. When these iridium complexes as red emitters were combined with 
benzimidazole–indolo[3,2- b ]carbazole-linked molecules (TICCBI and TICNBI) as 
donor–acceptor bipolar hosts, the OLEDs exhibited high external quantum effi cien-
cies (14.4–15.6 %).
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  Scheme 35    Preparation of 1-phenylisoquinolinyliridium complexes       

   Table 1    Electrophosphorescent data of iridium complexes bearing isoquinoline-based bidentate 
ligands   

 Complex  Brightness (cd/m 2 )  External quantum effi ciency (%)  Voltage (V)  CIE coordinates 

  17a   1,514 a   8.46  8.53  x = 0.68 
 8,224 b   9.21  11.01  y = 0.32 

 24,978 c   7.00  13.92 
 31,776 d  

  17b   1,883 a   10.15  7.12  x = 0.68 
 8,329 b   9.00  8.98  y = 0.31 

 24, 038 c   6.50  11.04 
 38,218 d  

  17c   2,603 a   7.41  7.29  x = 0.60 
 9,644 b   5.28  8.79  y = 0.36 

 12,151 c   4.80  9.16 
 23,606 d  

  17d   1,511 a   5.48  9.02  x = 0.66 
 7,008 b   5.10  11.35  y = 0.33 

 19,661 c   3.86  14.10 
 31,490 d  

   a  J =  20 mA/cm 2  
  b  J =  20 mA/cm 2  
  c  J  = 20 mA/cm 2  
  d Maximum brightness at 14 V  
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6        Conclusions and Perspectives 

 In this decade, synthetic methodologies for ring-fl uorinated isoquinolines have been 
greatly developed as described above. The Baltz–Shiemann reaction provides a ver-
satile method for the syntheses of isoquinolines bearing a fl uorine atom at any posi-
tion, albeit with diffi culties in regioselective prefunctionalization. In the syntheses of 
benzene-ring-fl uorinated isoquinolines, a wide variety of methods can be employed 
to construct pyridine rings starting from fl uorobenzene derivatives. In terms of het-
erocyclic-ring-fl uorinated isoquinolines, 1-fl uoroisoquinolines are effectively pre-
pared via either nucleophilic or electrophilic substitution from 1-haloisoquinolines. 
3-Fluoroisoquinolines can be selectively synthesized via various intramolecular S N V 
reactions of  ortho -functionalized  β , β -difl uorostyrenes. 4-Fluoroisoquinolines can be 
obtained via electrophilic fl uorination of 1- hydroxyisoquinolines. As for the synthe-
ses of pyridine-ring-trifl uoromethylated isoquinolines, pyridine-ring construction 
methods are also quite effective. 

 In addition to the increasing diversity of ring-fl uorinated isoquinolines 
obtained, they have already been utilized not only as drug candidates but also as 
functional materials. The chemistry of the ring-fl uorinated isoquinolines will con-
tinue to progress; thus, in the near future, fl uoroisoquinolines with predominant 
properties will emerge in which the characteristics of the fl uorine substituent are 
fully utilized.     
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  Fig. 5    OLEDs fabricated with iridium complexes bearing 6-fl uoroquinoline-based ligands as 
emitters and TICCBI and TICNBI as donor–acceptor bipolar hosts       
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    Abstract     The synthesis, reactivity and applications of fl uorinated α- and 
γ-pyrones, chromones and coumarins are reviewed. The literature data clearly 
indicate that these heterocycles are very attractive building blocks for the synthe-
sis of various heterocyclic compounds containing the R F  group. This chapter 
reviews the  signifi cant advances in this area, highlighting new and interesting 
trifl uoromethylated derivatives and their novel transformations. The bibliogra-
phy includes 204 references.  

  Keywords     Fluorinated heterocycles   •   4-Pyrones   •   2-Pyrones   •   Chromones   • 
  Coumarins  

1         Fluorinated 4-Pyrones 

 4 H -Pyran-4-ones (4-pyranones, 4-pyrones, γ-pyrones) containing polyfl uoroalkyl 
substituents, especially the CF 3  group, serve as key precursors to a variety of fl uorinated 
pyridine derivatives having a wide range of biological activities. For example, 
2,6-bis(trifl uoromethyl)-4-pyridols have been found useful as herbicides and fungicides 
as disclosed in patent literature [ 1 a, b]. Certain 2-aryl-6-tri(di)fl uoromethyl-4- pyrones 
selectively inhibit COX-2 in preference to COX-1 and are useful in the treatment of 
COX-2 mediated diseases, such as infl ammation, pain, fever, and asthma with fewer 
side effects [ 1 c]. Due to the powerful electron-withdrawing ability of R F  groups the 
insertion of polyfl uoroalkyl substituents into the 2-position of 4-pyrone activates 
these molecules and dramatic differences in the reactivity of 2-alkyl(aryl)- and 
2-(polyfl uoroalkyl)-4-pyrones with respect to nucleophilic reagents are observed. 

1.1     Synthesis of 2-(Polyfl uoroalkyl)-4-Pyrones 

 In addition to the considerable variety of methods for the synthesis of non- fl uorinated 
γ-pyrones [ 2 ], Tyvorskii and co-workers have described three new procedures, 
which produced 2-(perfluoroalkyl)-4-pyrones. One of them is a convenient 
two-step synthesis of 5-substituted 2-(perfl uoroalkyl)-4 H -pyran-4-ones  2  by 
dehydration of 2,3-dihydro-3-hydroxy-6-(perfl uoroalkyl)-4 H -pyran-4-ones  1  prepared 
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by condensation of 2-acetyloxiranes with ethyl perfl uoroalkanoates [ 3 ]. The 
 reaction of dihydropyranones  1  with thionyl chloride in pyridine provides the 
desired pyrones  2  in 61–79 % yields with 10–15 % of chlorine-containing dihydro-
pyrones  3 . Pure compounds  2  were prepared in good yields by the treatment of  1  
with SOCl 2  followed by refl ux of the crude products in Et 3 N [ 4 ] (Scheme  1 ).
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  Scheme 2    Synthesis of pyrones 4       

   Additionally, unsubstituted and 6-substituted 2-(perfl uoroalkyl)-4 H -pyran-4- ones 
 4  have been prepared using alkyl enolates derived from β-dicarbonyl compounds. The 
reaction of acetylacetone enol ether with ethyl perfl uoroalkanoates in the presence of 
 t -BuOK, followed by  p -TsOH catalyzed cyclization in benzene afforded pyrones  4a,b  
in 57–75 % yields. Similarly, the parent compounds  4c,d  were obtained from the for-
mylacetone derivative in 40–64 % yields [ 4 ]. Analogue  4e  was accessible in low yield 
from the corresponding triketone [ 5 ] (Scheme  2 ).

   The alternative way to 5-aryl substituted γ-pyrone  2a,b  is based on the readily 
available aminoenones  5a,b . Reaction of  5a,b  with ethyl trifl uoroacetate in the pres-
ence of  t -BuOK afforded enamino diketones  6a,b  cyclized to pyrones  2a,b  [ 6 ]. 
Compounds  6b  and  2b  are starting materials for the preparation of 4-pyridones 
exhibited potent antimalarial activity [ 5 ] (Scheme  3 ).
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  Scheme 1    Synthesis of pyrones 2          
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   The ready availability of pyrones  2  and the enhanced reactivity at their 
α-position have made them the starting materials of choice for the synthesis of 
2-(trifl uoromethyl)-4-pyridinols  7  by reaction with ammonia or methylamine 
[ 6 – 8 ] (Scheme  4 ).
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  Scheme 4    Reactions of pyrones 2 with amines       
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  Scheme 5    Synthesis of pyrones 9 and 11       

   Trifl uoromethylated pyrones can also be prepared from acyl chlorides by reaction 
with pyridine and trifl uoroacetic anhydride followed by capture of the intermediate 
trifl uoroacyl ketene  8  with suitable reagents. Thus, addition of  N -cyclohexenyl-
morpholine to the intermediate from palmitoyl chloride gave pyrone  9  as the major 
product, accompanied by amide  10 . Ethyl vinyl ether yielded pyrones  11a  and  11b  
(through β-elimination of ethanol) [ 9 ] (Scheme  5 ).
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  Scheme 3    Synthesis of pyrones 2a,b       
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   Acylketene methodology [ 10 ] was also developed for the synthesis of 
4-pyrones bearing a polyfl uoroalkylthio substituent. The reaction of ethyl 
 trifl uoroacetoacetate with fl uoroalkanesulfenyl chlorides afforded compounds  12  
(Scheme  6 ).
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  Scheme 6    Synthesis of pyrones 14       
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  Scheme 7    Synthesis of pyrones 16       

   The latter reacting with P 2 O 5  gave rise to fl uoroalkylthio(trifl uoroacetyl)ketenes 
 13 , which were demonstrated to act as heterodienes in the Diels–Alder reaction with 
phenylacetylene to form 4-pyrones  14  [ 11 ]. Langer    et al. reported that the Me 3 SiOTf-
mediated cyclization of 1,3-bis(trimethylsilyloxy)-1,3-butadienes  15  with 4,4-dime-
thoxy-1,1,1-trifl uorobut-3-en-2-one resulted in the formation of trifl uoromethylated 
pyran-4-ones  16  [ 12 ] (Scheme  7 ).

   Condensation of 2-acetyldimedone with ethyl trifl uoroacetate in the presence of 
LiH afforded tetraketone  17  in 65 % yield existing in CDCl 3  as an equilibrium 
mixture of  17a  and  17b . In a mixture of DMSO- d  6  and CCl 4 ,  17  occurs as cyclic 
hemiketal  17c  (95 %) and open forms  17a  and  17b  (5 %). Treatment of  17  with 
concentrated H 2 SO 4  at ~20 °C for 5 h afforded the carbofused 4-pyrone  18  [ 13 ] 
(Scheme  8 ).
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   If dehydroacetic acid is used as the methylene component in the condensation 
with R F CO 2 Et under the same conditions, the reaction gives fl uorine-containing 
pyrones  19 , which underwent cyclization to 2-(polyfl uoroalkyl)-7-methylpyrano[4,3-
 b   ]pyran-4,5-diones ( 20 ) on treatment with H 2 SO 4  [ 14 ]. 

 The reaction of ethyl 2,4-dioxopentanoate with ethyl trifl uoroacetate in the presence 
of NaOEt leads to ester  21a . This ester is smoothly hydrolyzed to acid  21b  by refl ux in 
20 % HCl, whereas its treatment with 20 % ammonia depending on conditions applied 
affords amides  22  and  23  in high yields [ 15 ]. Decarboxylation of 6-(trifl uoromethyl)
comanic acid ( 21b ) gave 2-(trifl uoromethyl)-4 H -pyran-4-one ( 4c ) [ 4 ,  16 ] (Scheme  9 ).
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  Scheme 9    Synthesis of pyrones 21 and 22       

1.2        Reactions of 2-(Polyfl uoroalkyl)-4-Pyrones 

 Obydennov    and Usachev have reported [ 17 ] that 2-R F -4-pyrones  21a–d  react 
with aniline and  o -aminophenol under acidic conditions to give the correspond-
ing 2-R F - 1-aryl-4-pyridones  24 . Their reaction with  o -phenylenediamine in the 
presence of HCl gave R F -bearing benzodiazepines  25  and quinoxalin-2-ones  26  
(Scheme  10 ).
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  Scheme 8    Synthesis of pyrones 18 and 20       
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   In the absence of a strong acid, compounds  27  can be prepared as a mixture of 
two tautomers (R F =CF 3 ,  27 :  27′  = 21: 79; R F =CF 2 H,  27 :  27′  = 65: 35) from the reac-
tion of 6-R F -comanic acids  21b,d  with  o -phenylenediamine. To transform  27′  into 
more conjugated tautomers  27  the mixtures were heated in DMSO at 80–120 °C. 
Under the same conditions reaction of pyrone  21b  with  o -aminophenol led to the 
formation of benzo[ b ][1,4]oxazin-2-one  28  [ 17 ] (Scheme  11 ).
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  Scheme 10    Reactions of pyrones 21 with amines in the presence of an acid       
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  Scheme 11    Reactions of 21b,d with amines in the absent of an acid       

   It was also reported that acid  21b  reacts regioselectively with phenylhydrazine in 
water to give 1-phenylpyrazole-3-carboxylic acid  29 . Similar reaction in dioxane 
leads to 1-phenylpyrazole-5-carboxylic acid  30 . A strong solvent infl uence on the 
reaction route was also found for 6-(trifl uoromethyl)comanic acid derivatives  21a  
and  22  [ 18 ]. The reaction of  21b  with N 2 H 4  · 2HCl (2.2 equiv.) in water gave a 
mixture of regioisomeric pyrazoles from which 3-(trifl uoromethyl)pyrazole  31  was 
isolated in 30 % yield. Phenylhydrazones  29  and  30  as well as phenylhydrazone 
from pyrazole  31  were converted into 3-(pyrazolyl)indoles  32  and  33 , and indole-2- 
carboxylic acid  34 , by heating in MeSO 3 H with P 2 O 5  [ 19 ] (Scheme  12 ).
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   Pyrones  21a,b  react with aminoguanidine to give 5-CF 3 -pyrazolo[1,5- c ]pyrimidines 
 35a,b  as the major products, while the reaction of their precursor, ethyl 7,7,7-tri-
fl uoro-2,4,6-trioxoheptanoate ( 36 ), with the same polynucleophile gave regioisomeric 
2-CF 3 -pyrazolo[1,5- c ]pyrimidines  37 . On the other hand, the reaction of  21a  and 
 36  with thiosemicarbazide affords  38  and  39  in low yield [ 20 ] (Scheme  13 ).
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   Dehydration of pyronecarboxamide  22  with trifl uoroacetic anhydride in the 
 presence of pyridine leads to the formation of 2-cyano-6-(trifl uoromethyl)-4-py-
rone ( 40 ) in 61 % yield. The reactions of this cyanopyrone with  N -nucleophiles 
can proceed with or without substitution of the cyano group to give a wide range 
of novel trifl uoromethylated compounds. Thus, cyanopyrone  40  easily reacted 
with aliphatic and aromatic amines in EtOH at −20 °C and  o -phenylenediamine in 
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acetic acid to produce carbamoylated aminoenones  41  and benzimidazole  42 . 
Treatment of  41  with DMF-DMA in toluene under ambient conditions for 24 h 
gave 4-pyridone- 3-carboxamides  41a  in 31–68 % yields. The regiochemistry of 
the reactions of  40  with hydrazine and phenylhydrazine in EtOH is similar to 
those observed in the case of the amine attack. These reactions afforded deriva-
tives of 2-(3-trifl uoromethylpyrazol- 5-yl)acetic acid  43 , whereas the reaction with 
phenylhydrazine in toluene resulted in the formation of phenylhydrazone  44  in 
33 % yield. The reaction between  40  and hydroxylamine in ethanol proceeds by 
the nucleophilic addition to the cyano group to give amidoxime  45 . Heating this 
compound with trifl uoroacetic anhydride in the presence of pyridine gave pyrone 
 46  in high yield [ 21 ] (Scheme  14 ).
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  Scheme 14    Some reactions of pyrone 40       

1.3        Synthesis and Reactions 
of 2,6-bis(Polyfl uoroalkyl)-4-Pyrones 

 The fi rst synthesis of 4-pyrone derivatives with two CF 3  groups was reported in 
1988 by Lee and co-workers [ 22 ]. Acetone dicarboxylic acid monomethyl ester  47  
reacted with isobutylene in sulfuric acid to form  48 . Subsequent reaction with 
MgCl 2  and trifl uoroacetic anhydride led to pyrone  49 . This compound was con-
verted to the monoester  50 , which gave pyrone  51 . The latter was reacted with 
ammonia in methanol to form 4-hydroxypyridine  52  [ 22 ] (Scheme  15 ).
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   A variety of procedures have been used to obtain the 2,6-bis(polyfl uoroalkyl)-
4-pyrones  57  from the corresponding 1,3,5-triketones [H 2 SO 4 , PPA, HCl/MeOH, 
(Me 3 SiO) 3 PO]. Ethyl polyphosphate appeared to be the most effective dehydrating 
agent with regard to the isolation and yield of products formed [ 25 ] (Scheme  18 ).
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O O
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R = MeO (25-30%)
R = MeS (55-61%)
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O OAc

CF3

OF3C CF3

O O

R

NF3C CF3

OH O

R

Ac2O

ZnCl2 NH3

54 55 56 (90-92%)

THF100 °C

  Scheme 17    Synthesis of pyrones  55        

   Babu et al. reported that 3-acetoxy-4,4,4-trifl uoro-2-butenoates ( 54 ) undergo 
self-condensation at 100 °C in presence of catalytic amounts of zinc chloride to 
yield 2,6-bis(trifl uoromethyl)-4-pyrones  55 . These compounds were further 
converted to the corresponding pyridine derivatives  56  via ammonolysis [ 24 ] 
(Scheme  17 ).

   Diester  53  was obtained by the one-pot transformation of a magnesium 
diacetonedicarboxylate complex using trifl uoroacetic anhydride [ 23 ] (Scheme  16 ).
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  Scheme 15    Synthesis of compounds 49–52       
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  Scheme 16    Synthesis of pyrone 53       
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O O
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RF RF

RF = CF3, CF2H, (CF2)2H, C3F7, C4F9, C6F13 57 (73-95%)

(EtOPO2)n

CHCl3,

  Scheme 18    Synthesis of pyrones  57        

   Pyrazolo[1,5- a ]pyrimidine  58  and its hydrated form were obtained by reaction 
of 5-amino-3-methylpyrazole with 2,6-bis(trifl uoromethyl)-4-pyrone ( 57 ) [ 26 ] 
(Scheme  19 ).

   Polyfl uoroalkyl-substituted 4-pyrones  57  react with salicylaldehydes in the 
presence of piperidine and  p -TsOH to give a wide variety of fused 2 H -chromenes 
 59  and  60 . Compounds  59  were obtained as mixtures of the corresponding  trans-  
and  cis- isomers in variable proportions, depending on the nature of the starting 
materials and catalysts. This annulation proceeds by a tandem intermolecular 
oxa-Michael addition and subsequent intramolecular Mannich condensation [ 27 ] 
(Scheme  20 ).
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N
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  Scheme 19    Synthesis of compounds  58        
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  Scheme 20    Synthesis of compounds  59  and  60        
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2         Fluorinated 2-Pyrones 

 Most reports concerning 2 H -pyran-2-ones (α-pyrones) involve non-fl uorinated 
derivatives, which perform important biological functions in nature and have unlim-
ited synthetic potential for the construction of a variety of arenes and heteroarenes 
[ 28 ]. However, very few deal with 2-pyrones containing fl uoroalkyl groups. It is 
evident that the C-2, C-4 and C-6 positions of the 2-pyranone ring are electrophilic 
in nature and prone to nucleophilic attack. The presence of polyfl uoroalkyl substitu-
ents on the pyrone ring favours these reactions. At the same time, R F -containing 
2-pyrones behave as cyclic dienes in cycloadditions. 

2.1     Synthesis and Reactions of 6-(Polyfl uoroalkyl)-2-Pyrones 

 The ethyl 6-(trifl uoromethyl)-2-pyrone-3-carboxylate ( 61 ) was prepared by con-
densation of trifl uoroacetone with diethyl ethoxymethylenemalonate, followed by 
cyclization of intermediate diethyl β-acylethylidenemalonate. This pyrone was used 
for the preparation of cage derivatives to explore their usefulness as antiviral agents. 
Reaction of  61  with ethylene at high pressure afforded ester  62 . Hydrogenation of 
 62  yielded the corresponding alkyl bicyclo[2.2.2]octane-l-carboxylate, which was 
hydrolyzed to  63 . The latter was converted into bicyclo[2.2.2]octan-l-amine hydro-
chloride  64  via the Schmidt reaction [ 29 ] (Scheme  21 ).

   6-(Trifl uoromethyl)-2-pyrone ( 65 ) was prepared in 65 % yield by reaction of 
2-pyrone-6-carboxylic acid with SF 4 –HF at 100 °C. Chloromethylation with 
bis(chloromethyl) ether and sulfuric acid at 75 °C gave an inseparable mixture of 
mono- and bis(chloromethyl)pyranones. However, when the mixture was treated with 
phenylcopper-dimethyl sulfi de in THF at 35 °C, only  66  reacted, giving the desired 
pyrone  67  as one of the perspective inactivators of α-Chymotrypsin [ 30 ] (Scheme  22 ).

EtO

O O

OEt

OEt

MeCOCF3

EtO

O O

OEt

CH2COCF3

O O

CO2Et

F3C CH2=CH2
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O

CO2Et

CF3

O

CO2Et

CF3

CH2=CH2

-CO2

CO2H

CF3

NH3Cl

CF3

61 (10%)

62 64 (81%)63 (88%)

  Scheme 21    Synthesis of pyrone  61  and its derivatives       
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   The reactions of 2 H -pyran-2-one  71a  with  O – and  N -nucleophiles were studied 
and a series of trifl uoromethyl-containing oxazolone and pyridone derivatives were 
synthesized. The oxazolone  75 , which can exist in two tautomeric forms, can be 
obtained by heating of  71a  with KOH in DMF and subsequent acidifi cation. When 
 71a  was dissolved in aqueous 1N NaOH, a yellow solution of salt  76  was formed. 

O OHO2C O OF3C O OF3C

CH2Ph

O OF3C

CH2ClSF4 (CH2Cl)2O PhCu SMe2

65 (65%)

HF
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O
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COCF3

OF3C O

OH

OF3C

NaHCO3

-CF3CO2H

C
O

O

F3C

68 (41%) 69 (95%)

  Scheme 22    Synthesis of pyrones  67 – 69        

   Dealkoxylation of trifl uoroacetoacetic ester by P 2 O 5  leads to  trifl uoroacetylketene, 
which quickly dimerizes to hexafl uorodehydroacetic acid  68 . The reaction of  68  
with NaHCO 3  leads to the formation of 2-pyrone  69  [ 31 ] (Scheme  22 ). 

 Gerus et al. reported that heating of β-alkoxyvinyl ketones  70  and  N -acylglycines in 
acetic anhydride gave the corresponding 3-(acylamino)-6-(polyfl uoroalkyl)-2 H -pyran- 
2-ones ( 71 ) [ 32 ]. Reactions of thiazole  72  with enones  70  gave products  73  in good to 
high yields as a result of acylvinylation of the active methylene group. Products  73  
were cyclized to pyrones  74  by heating in acetic anhydride [ 33 ] (Scheme  23 ).
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+
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  Scheme 23    Synthesis of pyrones  71  and  74        
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After acidifi cation of the solution with HCl, hydroxypyrone  77  precipitated. 
The pyridones  78  were obtained by heating  71a  with ammonia or alkylamines 
[ 32 ,  34 ] (Scheme  24 ).

   The key step of the synthesis of new δ-(polyfl uoroalkyl)-δ-hydroxy-α-amino 
acids  81  was the hydrogenation of 2 H -pyran-2-ones  71  to the tetrahydropyrones  79 , 
which were transformed into the corresponding benzoylamino acid esters  80  by 
methanolysis. In all cases mixtures of diastereomeric esters  80  were formed, careful 
treatment of which with 15 % HCl gave a mixture of the diastereomeric benzoyl-
amino acids  81 . The latter are of interest as analogues of 2-amino-5-hydroxyvaleric 
acid and glutamic acid [ 35 ] (Scheme  25 ).

   The propensity of α-pyrones to undergo the Diels-Alder reaction makes them 
useful for syntheses of highly substituted aromatics and biphenyls. A practical 
method for the regioselective synthesis of the  N -benzoyl-4-(polyfl uoroalkyl)ani-
lines  82  by thermal Diels–Alder cycloaddition of  71  with fl uorostyrenes and acety-
lenes was described. Free 4-(polyfl uoroalkyl)anilines were smoothly formed in 
good yields by DBU-assisted deprotection. In the case of the reactions of pyrone 
 71a  with isobutyl vinyl ethers and cyclic vinyl ethers, compounds  83  and  84  were 
obtained, respectively [ 36 ] (Scheme  26 ).
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  Scheme 24    Some reactions of pyrone  71a        
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  Scheme 25    Reduction of pyrones  71        
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   The Cu-catalysed (3–6 mol%) addition of 1,1,1-trichloro-2,2,2-trifl uoroethane to 
methyl itaconate leads to the 1: 1 adduct  85  in 57 % yield. Double HCl elimination 
with triethylamine affords the diene  86  ( Z / E  = 17:83). Refl uxing of  86  in mesitylene 
leads to elimination of MeCl and formation of  87  in 62 % yield [ 37 ] (Scheme  27 ).

CF3CCl3 +
CO2Me
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  Scheme 27    Synthesis of pyrone  87        
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  Scheme 26    Diels-Alder reaction of pyrones  71        

   The presence of the carbomethoxy and trifl uoromethyl groups in the diene  system 
of the pyrone  87  increases its electrophilicity and its ability to undergo Diels- Alder 
reactions with inverse electron demand. The reaction of  87  with 1-( N -pyrrolidino)-1-
cyclopentene at 30 °C gives rise to the tricyclic lactone  88 . When  88  is treated with 
HCl/dioxane, the indane derivative  89  is obtained. This compound was prepared 
directly in the reaction of  87  with l-(trimethylsilyloxy)cyclopentene at 180 °C in 
90 % yield. More reactive tetramethoxyethylene adds at 100 °C to  87  to afford  90 . 
With 2,5-dihydrofuran at 130 °C,  91a  is formed as the sole isomer. Endo-adducts of 
this type result also with cyclopentene ( 91b , 120 °C), cyclooctene ( 91c , 150 °C), and 
indene ( 91d , 80 °C). All four possible regio- and stereoisomers can be identifi ed in 
the reaction of  87  with vinylacetate at 150 °C (79 % yield) (Scheme  28 ).

   Another feature of 2-pyrone  87  is its ability to undergo Diels-Alder reactions 
with acetylenes. The cycloadducts decarboxylate spontaneously to form benzene 
rings bearing the CF 3  group. The substitution pattern is determined by the 
regioselectivity of the [4 + 2] cycloaddition step. Thus, the reaction of  87  with 
1-( N , N - diethylamino )-1-propyne takes place at 0 °C to produce  92  as a single iso-
mer. Less electron rich acetylenes require heating at 140–200 °C. Treatment of  87  
with acetylene at 200 °C leads to  93 , while with dimethyl acetylenedicarboxylate 
triester  94  is formed [ 37 ] (Scheme  28 ). 
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  Scheme 28    Products obtained from pyrone  87        

 Our group reported that treatment of 1-aryl-4,4,4-trifl uorobutane-1,3-diones 
with PCl 5  and then with sodium diethyl malonate afforded ethyl 4-aryl- 6-
(trifl uoromethyl)-2-oxo-2 H -pyran-3-carboxylates ( 95 ) in moderate yields. These 
compounds can be converted in high yields to 2 H -pyran-2-ones  96  by refl uxing in 
aqueous acetic acid with H 2 SO 4  [ 38 ]. Pyrones  95  and  96  react with sodium azide to 
produce highly functionalized ( Z )-CF 3 -1,2,3-triazoles  97  and  98  [ 39a ] (Scheme  29 ).

   The reaction of  95  (Ar=Ph) with NH 4 OAc in refl uxing aqueous DMF, involving 
loss of the ethoxycarbonyl group at the 3-position, afforded the pyridinol derivative 
 99a , while the solvent-free inverse electron-demand Diels-Alder reaction with 
2,3-dihydrofuran gave bicyclic lactone  100  in 61 % yield. Treatment of  95  with 
H 2 SO 4  at 110–125 °C afforded the intramolecular Friedel-Crafts acylation products 
 101 , which are the fi rst representatives of a novel polynuclear fused heterocyclic 
system. Due to the presence of antiaromatic cyclopentadienone fragment compound 
 101  (R=H) showed high reactivity to weak nucleophiles such as water leading to the 
formation of  102  [ 38a ]. 2-(Trifl uoromethyl)-6 H -pyrano[3,4- c ]quinoline-4,5-diones 
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  Scheme 29    Synthesis of pyrones  95  and  96  and their reaction with NaN3       
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  Scheme 30    Some reactions of pyrones  95        

   Very recently, the concise synthesis of a range of disubstituted 2-pyrones  96  from 
(thiophenyl)acetic acids and readily available trifl uoromethyl enones via an isothio-
urea mediated one-pot Michael addition/lactonization/thiol elimination sequence 
has been demonstrated. Derivatization of these reactive pyrones to generate addi-
tional high-value products was next investigated and compounds  96a–c  were 
prepared in good yields [ 39b ] (Scheme  31 ).
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  Scheme 31    Synthesis and some reactions of pyrones  96        

 99b  can be obtained from pyrones  95  and  101  via the Schmidt reaction in moderate 
yields. When pyranocarbostyrils  99b  were heated in DMSO with NaN 3  at 120 °C 
for 3 h, triazoles  99c  were obtained in good yields and presumably arise via ring- 
opening of the initially formed fused intermediate [ 38 b] (Scheme  30 ).
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  Scheme 32    Synthesis of pyrones  103        

2.2        Synthesis of 4-(Perfl uoroalkyl)-2-Pyrones 

 In contrast to 6-(perfl uoroalkyl)-2-pyrones, only one method for the preparation of 
4-(perfl uoroalkyl)-2-pyrones has been described [ 41 ]. It was established that the 
reaction of methyl 2-perfl uoroalkynoates with aroylmethyltriphenyl phosphonium 
bromide in the presence K 2 CO 3  in dichloromethane at room temperature gave 
methyl 4-aroyl-2-triphenylphosphoranylidene-3-(perfl uoroalkyl)-3-butenoates  104  
in excellent yields. 6-Aryl-4-(perfl uoroalkyl)-2-pyrones  105  and methyl 4-aroyl- 3-
(perfl uoroalkyl)-3-butenoates  106  were obtained in moderate to high yield by 
hydrolysis of phosphoranes  104  with hot aqueous methanol in a sealed tube. The 
butenoates  106  were isolated chromatographically as mixtures of  Z  and  E  isomers, 
the ratios of which were estimated by  1 H NMR. Reaction mechanism was proposed 
to account for the formation of products  104–106  [ 41 ] (Scheme  33 ).
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  Scheme 33    Synthesis of pyrones  105        

   Gerster and Maas reported that heating 4-trifl uoroacetyl-substituted münchnone 
and the propyne iminium trifl ates in acetonitrile solution at 150 °C (closed vessel) 
under microwave irradiation furnished the (6-oxo-2-trifl uoromethyl-6 H -pyran-3-yl)
arylidene iminium salts  103  [ 40 ] (Scheme  32 ).
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  Scheme 34    Synthesis of pyrones  108        

2.3        Miscellaneous 

 Fluorinated α-pyrones were obtained from perfl uoroacryloyl fl uoride and 
 perfl uoromethacryloyl fl uoride by reaction with arylacetylenes and methyl 
ketones. The arylacetylene route involves a [4 + 2] cycloadduct, followed by a 
1,3 fl uoride ion shift to  107  and hydrolysis to the pyrone  108 . The methyl ketone 
route may involve addition of enols to the fl uorinated double bond, ring closure 
through the enol form of the resulting 1,5-diketone, and loss of HF [ 42a ] 
(Scheme  34 ).

   The synthesis and chemistry of perfl uoroacylketene  110  are described by England 
[ 42 b]. Hexafl uoropropene dimerizes under CsF catalysis. Heating the resulting 
mixture in a sealed vessel to 150 °C yields the thermodynamic dimer  109 , from 
which compound  110  was prepared in good yield (Scheme  35 ).

   Cesium fl uoride catalyst in tetraglyme without heating caused the acylketene 
 110  to dimerize to  111 . When heated with catalytic amounts of cesium fl uoride in 
tetraglyme  110  gave the pyronopyrone  112a  (from 3 mol of  110  with loss of 2 mol 
of C 2 F 5 COF). Hydrolysis of  112a  by sulfuric acid gave  112b . The acylketene  110  
also reacted with phenyl- and butylacetylenes to give pyrones  113 . Although acety-
lene was not reacted with  110 , the corresponding product  113  (R=H) was obtained 
by reaction with vinyl acetate with simultaneous loss of acetic acid. Compound  110  
added readily to the C=C bond in ketene with proton migration to give a mixture of 
hydroxypyrone  114a  and the acetylated product  114b . These products could be 
interconverted by hydrolysis of  114b  in sulfuric acid and by acetylation of  114a  
with ketene [ 42b ] (Scheme  35 ). 
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  Scheme 35    Products obtained on the basis of acylketene  110        
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  Scheme 36    Products obtained on the basis of acylketene  115        

 The chemistry of compound  115 , prepared from the reaction of hexafl uoropropene 
with sulfur and potassium fl uoride in DMF, is similar to  110 . Diels-Alder addition 
of  115  to vinyl acetate was accompanied by loss of acetic acid to give the parent 
pyrone  116  (R=H). The reaction of  115  with butyl- and phenylacetylenes gave  116  
(R=Bu, Ph). Addition of  115  to the C=C bond of ketene was accompanied by a 1,3 
hydrogen shift to produce the hydroxypyrone and its acetylated product  117 . In the 
presence of a weak base such as dimethylacetamide or dimethylpropionamide,  115  
underwent a self-condensation reaction with loss of CO 2  to give the pyrone  118 ; this 
reaction was not observed for  110  [ 43 ] (Scheme  36 ).

   England and Krespan reported that ketene  119  reacted exothermically with ketene 
at very low temperature to give β-lactone  120a , which was readily dimerized by base 
to give α-pyrone  121 , a reaction analogous to the formation of dehydroacetic acid 
from diketene. Lactone  120a  also reacted with another  equivalent of ketene  119  in 
the presence of zinc chloride as catalyst to give the insertion product  122 . 
Methylketene, like ketene, reacted with  119  to give a mixed lactone  120b , the reac-
tion of which with another mole of  119  in the presence of zinc chloride gave γ-pyrone 
 123 . Reaction of  123  with sodium methoxide replaced two fl uorine atoms to give the 
dimethoxypyrone  124 , methanol gave the keto diester  125  [ 44 ] (Scheme  37 ).

   A synthetic entry to 2-acyl-1,3-dimethyl-6-(trifl uoromethyl)-1 H -pyrano[4,3- b ]pyr-
rol-4-ones  126  in high yields has been developed via ring closure of pyrrole-2- acetic 
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  Scheme 37    Products obtained on the basis of ketene  119        
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  Scheme 38    3,4-Fused pyrones  126  and  128        

acid derivatives with trifl uoroacetic anhydride at refl ux [ 45a ]. Under the same condi-
tions trifl uoromethylated dihydropyridinecarboxylates were converted via compounds 
 127  into pyrano[4,3- b ]pyridine-3-carboxylates  128  in low yields [ 45b ] (Scheme  38 ).

   The butenolide, 3-(trifl uoromethyl)-2 H -furo[2,3- c ]pyran-2-one, was obtained by 
treatment of 3-iodo-2 H -furo[2,3- c ]pyran-2-one with trifl uromethyltriethylsilane in the 
presence of copper iodide and potassium fl uoride in 1-methyl-2-pyrrolidinone [ 45c ].   

3     Fluorinated Chromones 

 Chromones (4 H -chromen-4-ones, 4 H -1-benzopyran-4-ones) are naturally occurring 
oxygen-containing heterocycles which perform important biological functions in 
nature [ 46 ]. Many chromone derivatives, including fl avones and 2-(trifl uoromethyl)
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chromones, exhibit various types of biological activity and fi nd use as valuable 
 synthetic intermediates in the preparation of pharmacologically relevant products 
and new heterocyclic systems [ 47 – 49 ]. There are a number of methods available for 
preparing chromones, however, the most common methods involve Claisen conden-
sation of 2-hydroxyacetophenones with esters or  Baker- Venkataraman rearrange-
ment of 2-acyloxyacetophenones. The ensuing diketone is then cyclized under 
strongly acidic conditions to furnish chromones. These compounds possess two 
strong electrophilic centers (carbon atoms С-2 and С-4) and their reactions with 
nucleophiles start predominantly with attack of the С-2 atom (1,4- addition) and are 
accompanied by pyrone ring-opening to form an intermediate capable of undergoing 
intramolecular heterocyclizations. Alternatively, the initial attack can also occur at 
C-4 (1,2-addition) [ 46 ]. 

3.1     Synthesis of 2-(Polyfl uoroalkyl)Chromones 

 The fi rst representatives of 2-(trifl uoromethyl)chromones were obtained in 1951 by 
condensation of substituted 2-hydroxyacetophenones with ethyl trifl uoroacetate in 
the presence of sodium followed by dehydration of the initially formed β-diketones 
in an acid medium [ 50 ]. It has long been considered [ 51 ] that these diketones 
have a linear keto-enol structure  129a ; however, subsequently, it has been found 
on the basis of  1 H NMR data [ 52 ] that they exist as cyclic semiketals  129b  both in 
solutions and in crystals. Cyclisation is facilitated by the presence of the electron- 
withdrawing trifl uoromethyl group in the side chain and the hydroxy group in the 
 ortho -position of the benzene ring. Refl uxing of 2-hydroxychromanones  129b  in 
ethanol [ 50 ] or acetic acid [ 53 ,  54 ] in the presence of concentrated HCl results in 
2-(polyfl uoroalkyl)chromones  130  (Scheme  39 ).
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  Scheme 39    Synthesis of 2-RF-chromones  130        

   Modifi cation of natural products by replacing an alkyl group by a  polyfl uoroalkyl 
group has long attracted the attention of researchers, because the electron- 
withdrawing effect of the fl uorinated substituent entails electron density redistribu-
tion in the  molecule and thus changes its reactivity with respect to nucleophilic 
reagents [ 55 ]. In this connection, of obvious interest is the synthesis of 7-(polyfl uo-
roalkyl)norkhellins  131  [ 56 ,  57 ], which are fl uorinated analogues of natural 
furochromone khellin (active substance of the plant  Ammi visnaga L ., known for its 
therapeutic properties since antiquity), because it opens up the way for the 
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 preparation of a broad range of fl uorine-containing heterocycles that incorporate the 
benzofuran fragment and are potentially biologically active (Scheme  40 ).
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  Scheme 40    Synthesis of fl uorokhellins  131        

   Fluorokhellins  131  were prepared by the reaction of khellinone with R F CO 2 Et in 
the presence of LiH followed by dehydration of the condensation products, which 
exist as furochromanones  A  in crystals and in DMSO- d  6  solutions. In CDCl 3 , these 
compounds (except for R F =CF 3 ) are mixtures of tautomers  A–C . Irrespective of 
length of the fl uoroalkyl group, cyclic form  A  predominates (50–78 %), while the 
content of the diketone form  C  usually does not exceed 8 % [ 57 ]. 

 If 2-hydroxyacetophenone analogues such as 3-acetyl-4,6-dimethyl-2-pyridone 
and 4-acetyl-5-hydroxy-3-methyl-1-phenylpyrazole are used as the methylene com-
ponent in the condensation with R F CO 2 Et in the presence of LiH in THF or dioxane, 
the  reaction gives the corresponding R F -containing β-diketones  132  and  134 , whose 
dehydration under the action of concentrated H 2 SO 4  affords 8-aza-2-(polyfl uoroalkyl)
chromones  133  [ 58 ] and 6-(polyfl uoroalkyl)-3-methyl-1-phenylpyrano[2,3- c ]
pyrazol- 4(1 H )-ones  135  [ 59 ] (Scheme  41 ).
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  Scheme 41    Synthesis of compounds  133  and  135        

   Recently, 2-(trifl uoromethyl)chromones  130  have been prepared by the  reaction of 
2-hydroxyacetophenones with trifl uoroacetic anhydride in pyridine (80 °C, 3 h, yields 
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79–98 %) [ 60 ]. Due to the low solubility of phenolates, derivatives hydroxylated at the 
benzene ring are synthesized using the Kostanecki–Robinson method. Thus, 
7-hydroxy-2-(trifl uoromethyl)chromone was obtained in 68 % yield by heating 
2,4-dihydroxyacetophenone with trifl uoroacetic anhydride and sodium trifl uoroace-
tate [ 49 ]. In addition to these protocols, other methods for the synthesis of chromones 
 130  have also been developed. For example, the reaction of 2- hydroxyacetophenone 
with trifl uoroacetonitrile affords aminoenone  136 . Unlike diketones  128 , this com-
pound exists in the open form as  Z -isomer having a coplanar  s-cis -conformation sta-
bilised by an intramolecular hydrogen bond [ 61 ]. However, the products of 
condensation of CF 3 CN with sterically hindered 2-hydroxy-4,6- dimethylacetophenone 
and 1-acetyl-2-naphthol exist predominantly as 2- aminochroman-4-ones  137  and  138  
due to unfavourable interactions between the vinylic hydrogen atom and the  ortho -
substituent in the benzene ring [ 62 ]. In an acid medium, compounds  136–138  are 
converted into  130  in high yields (Scheme  42 ).
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  Scheme 42    Precursors  136 – 138        
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  Scheme 43    Synthesis of chromone imines  141        

   The condensation of ketimines, prepared from 2-hydroxyacetophenones and 
 primary amines, with R F CO 2 Et in the presence of LiH yields aminovinyl ketones 
 139  with γ-arrangement of the NHR and R F  groups, which exist only in the open 
form. In an ethanol solution of HCl, these compounds cyclise to 2-(polyfl uoroalkyl)-
4 H -chromene-4-iminium salts  140 , which can be neutralised with ammonia to form 
2-(polyfl uoroalkyl)-4 H -chromene-4-imines  141 . On treatment with aqueous acetic 
acid, compounds  139  and  141  are hydrolysed to chromanones  129 , which can be 
easily converted into chromones  130  [ 63 ] (Scheme  43 ).
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   The reactions of polyfl uoroalk-2-ynoic acids with a fi vefold excess of ArOH and 
KOH in an aqueous solution are stereoselective and result in ( Z )-β-(polyfl uoroalkyl)-
β-aryloxyacrylic acids  142 . On treatment with concentrated H 2 SO 4 , these compounds 
are converted into 2-R F -chromones  130  [ 64 ]. A similar approach to the synthesis of 
2-R F -chromones  130  has been described in a study [ 65 ], in which ethyl 2,2-dihy-
dropolyfl uorocarboxylates were used as the starting substrates. They were made to 
react with phenols in the presence of Et 3 N in MeCN at 60 °C, which gave ethers  143 , 
most often, as mixtures of  Z - and  E -isomers. When heated with polyphosphoric acid 
(PPA) at 170 °C, they were converted into chromones  130  in high yields (Scheme  44 ).

   The oxidation of enals  144  using sodium chlorite and hydrogen peroxide under 
mild conditions gave the corresponding acids  145 . When acids  145  were treated 
with polyphosphoric acid at high temperatures, the desired chromones  130  were 
obtained in predominantly very high yields [ 66 ] (Scheme  45 ).
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  Scheme 44    Syntheses of chromones  130        
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  Scheme 45    Synthesis of chromones  130        

3.2        Reactions of 2-(Polyfl uoroalkyl)Chromones 

 In recent years, our research group has examined the chemistry of 2-(polyfl uoroalkyl)
chromones  130  and a number of features of these compounds important from 
the synthetic standpoint have been found. This allowed chromones  130  to be 
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recommended as readily accessible highly reactive substrates for the synthesis of 
various heterocyclic derivatives including R F -containing compounds with a poten-
tial biological activity [ 46 b]. The NMR, vibrational, electronic, and structural 
properties of 6-nitro- and 6-amino-2-(trifl uoromethyl)chromones were discussed 
and assigned with the assistance of DFT calculations [ 67 a]. 

3.2.1     Nitration and Hydrogenation 

 2-(Trifl uoromethyl)chromone  130a  unsubstituted in the benzene ring, like its 
 non- fl uorinated analogues, is smoothly nitrated at the 6-position yielding 6-nitro-2-
(trifl uoromethyl)chromone ( 146a ). On heating with a mixture of nitric and sulfuric 
acids, 6-, 7- and 8-substituted 2-(trifl uoromethyl)chromones are nitrated into the 
positions, which is in line with the directing effect of substituents, giving rise to the 
corresponding nitro derivatives  146b–g  [ 54 ,  67 – 69 ] (Scheme  46 ).
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  Scheme 46    Some 2-CF3-chromone derivatives       

   Reduction of 2-(polyfl uoroalkyl)chromones  130  by sodium borohydride in 
methanol gives  cis -2-(polyfl uoroalkyl)chroman-4-oles  147  in high yields, which 
were easily oxidized under the action of chromic acid into 2-(polyfl uoroalkyl)
chroman- 4-ones  148 . Selective reduction of chromone  130a  can be achieved by 
using of diisobutylaluminium hydride. In this case, 2-(trifl uoromethyl)chroman-4- 
one ( 148a , R F =CF 3 ) and 2-(trifl uoromethyl)-4 H -chromen-4-ol ( 149 ) were obtained. 
Dehydration of chromanol  147a  (R F =CF 3 ) gave 2-(trifl uoromethyl)-2 H -chromene 
( 150 ) [ 70 ]. Chromanones  148 , which easily react at both the carbonyl carbon atom 
and α-methylene group, are of interest as the starting materials for the preparation 
of novel R F -containing chromans derivatives. Thus, they react with hydroxylamine, 
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hydrazine hydrate, benzaldehyde on refl ux in ethanol and with an excess of 
dimethylformamide dimethylacetal to give oximes and hydrazones  151  as well as 
methylidene derivatives  152  [ 70 ]. Application of the Ritter reaction conditions 
to chroman-4-ols  147  gave 4-(acylamino)-2-(polyfl uoroalkyl)chromans ( 153 ) in 
excellent yields. This reaction was stereoselective and chromanes  153  were obtained 
as mixtures of  trans - and  cis -isomers ( trans / cis  = 84/16–94/6) without the formation 
of any side products [ 71 ]. Treatment of an alcoholic solution of  148  with an excess 
of isopropyl nitrite and concentrated hydrochloric acid at 0–80 °C for 3 h gave 
3-hydroxychromones  154  in good yields [ 72 ] (Scheme  47 ).
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  Scheme 47    Some reactions of  130  and  148        

3.2.2        Reactions with Mono-, Di- and Triamines 

 In 1981, an attempt at using 6-methyl-2-(trifl uoromethyl)chromone ( 130 ) as a 
protective group in the peptide synthesis was made, which showed for the fi rst time 
that secondary amines (dimethylamine and piperidine) add reversibly to the C-2 atom 
without opening of the pyrone ring to give unstable compounds  155  (in the case of 
sterically hindered diethylamine, the reaction does not proceed). However, even mere 
mixing of 6-methylchromone  130  with primary amines (ethyl- and propylamines) 
induces opening of the pyrone ring to give aminoenones  156 . A similar transformation 
takes place for ethyl glycinate in MeCN [ 73 ]. Subsequently, the signifi cance of the 
steric factor in the reactions of  130  with ammonia and primary amines was also 
demonstrated for other examples (Scheme  48 ).
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   The nature of the substituent at the 5-position of the chromone system infl uences the 
form of existence of the reaction products, which can be either ring or open. The attack 
by the amine on the C-2 atom of  130  for R 1 =H is accompanied by the pyrone ring 
opening and yields aminoenones  157 ; when R 1  ≠ H, the process stops after the nucleo-
philic addition of the amine to give stable chromanones  158  [ 74 ] (Scheme  49 ).
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  Scheme 49    Reactions with primary amines       

   A change in the direction of nucleophilic attack has been found in a study of the 
reaction between chromones  130a–g  unsubstituted in the benzene ring and 
2- aminoethanol at room temperature. This amine easily yields aminovinyl ketones 
 159a–d , however the reaction with  130e–g  leads to imines  160e–g  [ 75 ,  76 ] (Scheme  50 ).
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  Scheme 50    Reactions with ethanolamine       
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  Scheme 48    Reactions of chromones  130  with amines       
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   Unlike non-fl uorinated chromones, whose reactions with ethylenediamine (EDA) 
give complex mixtures of products [ 77 ], the reactions of 2-R F -chromones  130  give 
rise to 5-(2-hydroxyaryl)-7-(polyfl uoroalkyl)-2,3-dihydro-1 H -1,4- diazepines ( 161 ) 
in excellent yields. The reaction is accompanied by opening of the pyrone ring with 
the initial formation of aminovinyl ketones  162  (in equilibrium with imidazolidines 
 163 ) and cyclization to dihydrodiazepines  161  [ 78 ,  79 ]. Compounds  161  exist in 
CDCl 3  as the 1 H -7-R F -tautomers due to the formation of an intramolecular hydro-
gen bond between the phenolic proton and the imine nitrogen atom of the hetero-
cycle. This conclusion was based on the values of the  3  J  H,F  coupling constants, which 
are 2.8–4.5 Hz for molecules with the HCF 2 CF 2 –C(X)=C fragments, where X=O, N 
[ 80 ] (Scheme  51 ).
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  Scheme 51    Synthesis of dihydrodiazepines  161        

   With diethylenetriamine (DETA), chromones  130  are converted into 5-(2-hydro-
xyaryl)-7-(polyfl uoroalkyl)-1,4,8-triazabicyclo[5.3.0]dec-4-enes ( 164 ) (35–91 %), 
which represent the cyclic form of dihydrodiazepines containing a 2-aminoethyl 
group at the nitrogen atom located most closely to the fl uorinated group. The fi rst 
step is nucleophilic addition of the primary amino group to the C-2 atom accompa-
nied by opening of the pyrone ring yielding  N -substituted aminovinyl ketones, 
which further cyclise to triazabicyclic products  164  with participation of both 
 electrophilic centres [ 81 ]. It should be emphasised that the formation of  164  is typi-
cal only of 2-R F -chromones and R F -aminovinyl ketones [ 82 ], where the R F  group 
substantially increases the reactivity of the carbon atom that carries this group. On 
keeping in ethanol for a week, compound  164  (R F =(CF 2 ) 2 H, R=MeO) isomerises 
into dihydrodiazepine  165  [ 83 ] (Scheme  52 ).
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  Scheme 52    Synthesis of compounds  164  and  165        
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   Thus, the reaction of 2-R F -chromones with amines usually starts with the attack 
by the amino group on the C-2 atom. In the case of secondary amines or in the pres-
ence of a substituent at the 5-position, the reaction can stop after 1,4-nucleophilic 
addition; however, in most cases, it is accompanied by pyrone ring opening giving 
the corresponding aminovinyl ketones, whose structural features and subsequent 
transformations provide a variety of products. An exception is the reaction of 2-R F - 
chromones with 2-aminoethanol pointing to the possibility of an attack by the amine 
on the carbonyl group.  

3.2.3     Reactions with Hydrazines, Hydroxylamine, 
Amidines and Sodium Azide  

 The reactions of chromanones  129  and chromones  130  with hydrazine hydrate 
resulted in the formation of 3(5)-(2-hydroxyaryl)-5(3)-polyfl uoroalkylpyrazoles 
that have a planar conformation and mainly exist as 1 H -5-R F -tautomers  166a  in 
CDCl 3  and as 1 H -3-R F -tautomers  167a  in DMSO. The reaction with phenylhydra-
zine allows one to synthesise regioisomeric 5-R F -pyrazole  166b  from  129  and 3-R F - 
pyrazoles  167b  from  130 . With methylhydrazine, only the 3-R F -regioisomers  167c  
are formed. Under mild conditions, the reaction of  129  with hydrazines can be 
arrested after the formation of dihydropyrazoles  168  [ 84 a]. Reactions of CF 3 - 
pyrazole  166a  (R 1 =H) with various 2-chloro-3-nitropyridines via nucleophilic 
 aromatic substitution followed by denitrocyclization gave benzo[ f ]pyrazolo[1,5- d ]
pyrido[3,2- b ][1,4]oxazepines in 50–60 % yields (Scheme  53 ).
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  Scheme 53    Reactions with hydrazines       

   The reaction of chromanones  129  with hydroxylamine gave oximes existing in 
the ring isoxazoline form  169  [ 53 ]. Under similar conditions, chromones  130  react at 
the C-2 atom rather than at the oxo group and give isomeric oximes  170 , which do 
not tend to cyclise, unlike the aliphatic analogues [ 85 ]. The change in the direction of 
the nucleophilic attack on passing from  129  to  130  makes it possible to obtain regioi-
someric 5-R F -isoxazoles  171  (refl uxing of  169  in toluene with SOCl 2 ) and 3-R F -
isoxazoles  172  (refl uxing of  170  in AcOH with HCl) (Scheme  54 ). Azachromones 
 133  react with amines, hydrazines and hydroxylamine similarly [ 86 ].
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  Scheme 54    Reactions with hydroxylamine       

   Substituted 2-R F -chromones are effective in the reaction with amidines to create 
R F -containing pyrimidine derivatives. Refl ux of chromones  130  with benzamidine 
hydrochloride or guanidinium nitrate in the presence of KOH yielded the pyrimi-
dines  173  in moderate to high yields [ 87 ] (Scheme  55 ).
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  Scheme 55    Reactions with amidines       
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  Scheme 56    Reactions of chromones  130  with sodium azide       

   The reaction is applicable to the 8-aza-5,7-dimethyl-2-(trifl uoromethyl)chromone 
( 133a ) to afford the corresponding pyrimidines with 2-pyridone substituent [ 87 ]. 

 Salicyloyltriazoles  174  were prepared by the reaction of 2-CF 3 -chromones  130  
with sodium azide. It should be noted that on replacement of the CF 3  group by H, 
CF 2 H or (CF 2 ) 2 H, the reaction does not take place. Furthermore, without an electron- 
withdrawing group at the 6-position the reaction slows down to such an extent that 
2-(trifl uoromethyl)chromone  130a  is recovered unchanged [ 88 ] (Scheme  56 ).
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  Scheme 57    Reactions with sodium azide       

   The reactivity of the pyrone ring with respect to NaN 3  can be increased by 
replacement of the C=O group by the C=NR group. It was shown [ 88 ] that the 
presence of an electron-withdrawing group in the benzene ring is not obligatory for 
chromene-4-imines  141 , and they easily react with NaN 3  in the presence of AcOH 
to give aryltriazolylketone imines  175  due to protonation of C=N bond (Scheme  57 ).

   Hydrolysis of imines  175  affords triazoles  174 , which could not be synthesised 
from the corresponding 2-CF 3 -chromones. Since the transformations  139  →  141  and 
 141  →  174  proceed via common iminium intermediate  140 , it comes as no surprise 
that aminovinyl ketones  139  are converted under these conditions into triazoles  174  
as easily as chromene-4-imines  141  [ 88 ].  

3.2.4     Reactions with Alkyl Mercaptoacetates 

 One of the most unexpected reactions of 2-CF 3 -chromones  130  is the reaction with 
ethyl mercaptoacetate in the presence of Et 3 N, which results in  176  and diethyl 
3,4-dithiaadipate via redox process. This reaction can be accomplished only with 
2-CF 3 -chromones. Most likely, it starts with the formation of  177 , subsequent reduc-
tive opening leads to  178  cyclizing to dihydrothienocoumarin  176  [ 89 ]. The reaction 
of alkyl mercaptoacetates with fl uorokhellins  131  stops after the formation of 
products  179 . Only under rigorous conditions (sealed tube, 150 °C), norkhellins  131  
were converted into  180  [ 57 ,  90 ] (Scheme  58 ).
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   The reaction of 8-aza-5,7-dimethyl-2-(trifl uoromethyl)chromone ( 133a ) with 
alkyl mercaptoacetates afforded bicycles  181a , b . When the reaction time and the 
amount of Et 3 N were increased, acyclic derivatives  182a , b  were isolated [ 91 ]. 
A similar reaction of pyranopyrazole  135  proceeds at the C-6 atom followed by 
pyrone ring opening and intramolecular condensation of the aldol type to give com-
pound  183 , from which heterofused coumarin  184  was obtained [ 59 ] (Scheme  59 ).
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  Scheme 58    Reactions of  130  and  131  with ethyl mercaptoacetate       

   Selective oxidation of dihydrothienocoumarins  176  gives rise to highly reactive 
 substrates, namely, sulfoxides  185  (NO 2 , CHCl 3 ) and sulfones  186  (H 2 O 2 , AcOH). 
Under Pummerer rearrangement conditions, sulfoxides  185  produce  thienocoumarins 
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 187  [ 89 b]. Sulfones  186  are transformed into 3-hydrazino-6-(2-hydroxyaryl)pyrid-
azines  188  by the action with hydrazine hydrate [ 92 ]. Previously, these pharmaceu-
tically valuable products providing the basis for a series of 3- hydrazinopyridazine 
drugs [ 93 ], were synthesised in seven steps starting from phenols and succinic 
 anhydride [ 94 ]. Multistep mechanism of this transformation is given below 
(Scheme  60 ).
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  Scheme 60    Synthesis of hydrazinopyridazines  188        

3.2.5        Reactions with  C -Nucleophiles 

 Trimethyl(trifl uoromethyl)silane (Ruppert’s reagent) easily reacts with α,β- unsaturated 
carbonyl compounds yielding the corresponding trifl uoromethylated alcohols [ 95 ]. 
The reaction of CF 3 SiMe 3  with 2-CF 3 -chromones  130  is the fi rst example of prepara-
tive 1,4-trifl uoromethylation of the α,β-enone system, which leads to trimethylsilyl 
ethers  189  giving after acid hydrolysis 2,2-bis(trifl uoromethyl)chroman-4-ones  190  
[ 96 ]. Chromone  130a  reacts with ethyl malonate and ethyl cyanoacetate to give 
methylidene derivatives of 4 H -chromene  191a,b . Subsequent reaction with CF 3 SiMe 3  
in the presence of Me 4 NF involves nucleophilic 1,6- addition to the conjugated 
systems to produce, through acid hydrolysis of intermediate  192 , 2 H -chromenes 
 193a,b  [ 97 ] (Scheme  61 ).
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   2-Methyl-2-(trifl uoromethyl)chroman-4-ones  194a,b  were obtained in good 
yields by reaction of chromene-4-imines  141  with malonic acid, which acts as meth-
ylating agent via addition-decarboxylation-hydrolysis sequence [ 98 ] (Scheme  62 ).
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  Scheme 61    Reactions with Ruppert’s reagent       
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  Scheme 62    Reactions with malonic acid       

   The reactions of 2-CF 3 -chromones  130  with dilithiooximes proceed via nucleo-
philic 1,2-addition to give β-hydroxy oximes  195a–d  and, on acidifi cation, 
4 H -chromene-4-spiro-5′-isoxazolines  196a–d . The isoxazoline ring in  196  undergoes 
opening under the action of concentrated H 2 SO 4 , yielding oximes  197a–c . Their nitro-
sation leads to  198a,b , while the Beckmann rearrangement, to α,β- unsaturated amides 
 199 . The latter are also formed from  196  using PCl 5  [ 99 ] (Scheme  63 ).

   Analogous reactions of acetophenone dimethylhydrazone and acetophenone 
 ethoxycarbonylhydrazone with chromone  130a  gave β-hydroxy hydrazone  200  and 
spiropyrazoline  201 , which are also 1,2-adducts. In contrast, acetophenone and 
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acetophenone anil behaved differently under the same conditions giving via 
1,4- addition chromanone  202  [ 99 ,  100 ] (Scheme  64 ).

   It was also found that 2-R F -chromones  130  react with  N -(1-arylethylidene)-2-
propanamines to afford pyridines  203  in moderate yields. Using this reaction, pyridine 
 203a  was obtained, demethylation of which to 2,6-bis(2-hydroxyphenyl)-4-
(trifl uoromethyl)pyridine ( 203b ) was achieved by heating with 48 % HBr at 200 °C 
[ 87 ]. When a mixture of chromones  130  with (isopropylidene)isopropylamine was 
refl uxed without solvent for 10 h, anilines  204  were obtained [ 101 ] (Scheme  65 ).

   The reaction of 6-nitro-2-R F -chromones  130  with 1,3,3-trimethyl-3,4- 
dihydroisoquinolines affords chiral zwitter-ions  205  in 35–82 % yields. This reac-
tion is typical only for 6-nitro derivatives and includes the nucleophilic attack of the 
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enamine tautomer of dihydroisoquinoline to C-2 atom of  130  followed by ring 
opening and intramolecular cyclization at the keto group with elimination of H 2 O. 
Cleavage of the Me 2 C–N bond, resulting in the formation of isomers  206 , takes 
place on heating or in the presence of H 2 SO 4  [ 102 ] (Scheme  66 ).
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  Scheme 65    Reactions of  130  with imines       

   We also found that 2-R F -chromones  130  react with salicylaldehydes in the pres-
ence of piperidine to afford  207  via oxa-Michael addition followed by intramolecu-
lar Mannich condensation [ 27 ]. Treatment of  130  with pyridoxal hydrochloride in 
the presence of NaOH (2.6 equiv.) gave oxepines  208  in moderate yields. In this 
case, the reaction proceeded at the alcoholic hydroxyl. Interestingly, using 1.3 equiv. 
of NaOH, it was possible to obtain  209  [ 103 ] (Scheme  67 ).
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   In conclusion, it should be noted that the trifl uoromethyl group occupies a 
 special place among polyfl uorinated substituents, because the most interesting and 
peculiar transformations with  N -,  S - and  C -nucleophiles can be carried out only for 

   Recently, Sosnovskikh et al. reported that 2-(trifl uoromethyl)chromones  130  reacted 
with two molecules of ethyl cyanoacetate, yielding benzo[ c ]chromene-8- carbonitriles 
 210 . A similar base-mediated reaction of  130  with diethyl malonate gave carboxylates 
 211 . These products are formed through nucleophilic attack followed by Claisen con-
densation (intermediate  A ), intramolecular cyclization and dehydration (intermediate 
 B ), and then by aromatization (after hydrolysis and decarboxylation) through involve-
ment of the phenolic hydroxy group. At the same time, chromone  130a  reacts with 
cyanoacetamide,  N -methyl cyanoacetamide, and cyanoacetohydrazide in the presence 
of sodium ethoxide, affording 2-pyridones  212  in good yields [ 104 ] (Scheme  68 ).
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2-CF 3 -chromones and their derivatives. Most of the reaction described in this chapter 
are typical only for 2-R F -chromones and does not occur when the R F  group is 
replaced by the methyl or trichloromethyl group [ 46 b].   

3.3     3-Substituted 2-(Polyfl uoroalkyl)Chromones 

3.3.1     Synthesis of 3-Substituted 2-(Trifl uoromethyl)Chromones 

 Preparation of 3-aryl and 3-hetaryl-2-(trifl uoromethyl)chromones  214  was achieved by 
reaction of trifl uoroacetic anhydride with pyridine solutions of ketones  213  [ 105 ]. This 
simple and effective procedure was also used for the synthesis of 7-hydroxy-2-
(trifl uoromethyl)chromone-3-carbonitrile ( 214 , X=CN), from which 7-hydroxy-2-
(trifl uoromethyl)chromone-3-carboxamide ( 214 , X=CONH 2 ) was obtained. These 
compounds are useful for preventing allergic and asthmatic symptoms [ 106 ]. The same 
procedure was employed for the preparation of isofl avones  215  and  216  which are 
potent dual PPARα and γ agonists [ 107 ]. By heating ω-phenylresacetophenone with 
(CF 3 CO) 2 O and sodium trifl uoroacetate isofl avone  217  was prepared with the intent to 
study antihypertensive activity [ 48 ]. The reactions of isofl avones containing a trifl uoro-
methyl group at the 2-position have been reviewed previously [ 108 ] (Scheme  69 ).

   2-Hydroxy-3-(methoxycarbonyl)propiophenone is easily converted into chro-
mones  218a,b  through DBU assisted Baker-Venkataraman reaction with perfl uoro-
alkanoyl anhydrides in pyridine [ 109 ]. The strength of the trifl uoroacetic anhydride 
as acylating agent and the electron delocalization toward the carbonyl oxygen 
 promoted by the  para -methoxyl group favor the over trifl uoracetylation of an inter-
mediate, which ultimately produce  219  in excellent yield [ 60 ] (Scheme  70 ).
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   The reaction of  o -fl uorobenzoyl chloride with β-ketoesters in the presence of NaH 
has been proposed as a method for the synthesis of 2-methylchromone-3- carboxylic 
acid and its esters. In particular, this reaction proved to be suitable for the preparation 
of ethyl 2-(trifl uoromethyl)chromone-3-carboxylate ( 220 ) [ 110 ] (Scheme  71 ).

   Derivatives of 4-hydroxy-2-(trifl uoromethyl)-4 H -chromene  221  were obtained 
via condensation of salicylaldehydes with methyl ( Z )-2-bromo-4,4,4-trifl uoro-2- 
butenoate [ 111 ] or methyl 2-perfl uoroalkynoates [ 112 ]. Treatment of  221  with 
Sarrett reagent in CH 2 Cl 2  generated chromones  220  in high yields [ 111 ] 
(Scheme  72 ).
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   3-(Trifl uoromethyl)fl avonoid derivatives  222  were prepared by trifl uoromethyl-
ation of 3-iodofl avonoids with FSO 2 CF 2 CO 2 Me/CuI. Other C ring and B ring trifl uo-
romethylated fl avones were also prepared. All the compounds were tested for their 
effect on the U2OS cell cycle. Bistrifl uoromethylated apigenin derivative  223  
showed the strongest activity [ 113 ]. Chrysin derivatives  224  and  225  were tested in 
vitro against human gastric adenocarcinoma cell line (SGC-7901) and colorectal 
adenocarcinoma (HT-29) cells [ 114 ] (Scheme  73 ).
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3.3.2         Reactions of 3-Substituted 2-(Polyfl uoroalkyl)Chromones 

 When treated with chlorine in the light (CCl 4 , ~60 °C, 1 h), chromones  130  add a 
chlorine molecule at the double bond of the pyrone ring and, after elimination of 
HCl, they are converted into 3-chlorochromones  226a , which are readily nitrated to 
give 3-chloro-6-nitrochromones  226b  [ 67 ,  115 ] (Scheme  74 ).
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   3-Chlorochromones  226  react with hydrazine dihydrochloride to give 
4- chloropyrazoles  227  in good yields [ 115 ]. It is the fi rst example of a reaction of 
3-halochromone with a nucleophile with retention of the halogen atom in the reac-
tion product. When chromones  226  are refl uxed with hydroxylamine, contraction of 
the pyrone ring to the furan ring, typical of 2-unsubstituted 3-halochromones, takes 
place to give benzofurans  228  [ 116 ]. The reactions involve intermediate  A  resulting 
from the attack of the NH 2  group on the C-2 atom with the pyrone ring opening. 
This is followed by either an intramolecular Ad N -E reaction between the C=O and 
NH 2  groups (X=NH 2 ) or nucleophilic substitution of the phenolic hydroxyl for the 
chlorine atom (X=OH) [ 116 ] (Scheme  74 ). 

 When 3-cyano-2-(polyfl uoroalkyl)chromones  229 , prepared from 3-(polyfl uoro-
acyl)chromones  230  (see Sect.  3.4.1 ), were treated with H 2 SO 4 , amides  231  were 
obtained in high yields. Heterocyclization of  229  with hydrazines, hydroxylamine 
and acetamidine resulted in pyrazoles  232 , 5-aminoisoxazole oxime  233 , and 
pyrimidin-5-ones  234  in variable yields [ 117 ] (Scheme  75 ).
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  Scheme 76    Acetylation of chromone  154a        

   We found that  154a  smoothly reacts with an excess of MeI (refl uxing acetone) 
and Ac 2 O–Py to produce the expected 3-methoxy- and 3-acetoxy-2-(trifl uoromethyl)
chromones in high yields. Treatment of  235  with primary amines and hydrazine 
gave only the corresponding ammonium salts  236  [ 72 ] (Scheme  76 ).
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   Chromones  220  were converted to 2-trifl uoromethyl-substituted benzoxepins 
 238  through cyclopropanation and Lewis acid-catalyzed ring opening of  237  [ 111 ] 
(Scheme  77 ).
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  Scheme 78    Synthesis of 3-(polyfl uoroacyl)chromones  230  and their heteroanalogs       

3.4         3-(Polyfl uoroacyl)- and 2-(Trifl uoroacetyl)Chromones 

3.4.1      Synthesis and Reactions of 3-(Polyfl uoroacyl)Chromones 

 3-(Polyfl uoroacyl)chromones  230  containing a β-dicarbonyl fragment and a masked 
formyl group are highly reactive R F -containing building blocks [ 118 ]. There has 
been only two reports on the preparation of  230  by trifl uoroacetylation of 
3-(dimethylamino)-1-(2-hydroxyphenyl)prop-2-en-1-one with trifl uoroacetic 
 anhydride or  N -(trifl uoroacetyl)imidazole [ 119 ] and by formylation of 2-hydroxy-
2-(polyfl uoroalkyl)chroman-4-ones  129  using diethoxymethyl acetate [ 120 ] 
(Scheme  78 ).
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   It should be taken into account that these compounds easily add a water 
molecule at the carbonyl group and exist as a mixture with their hydrates  230′  
[ 121 ]. Pure  230a  was obtained from a mixture of keto and hydrate forms using 
P 2 O 5  [ 122 ]. Heteroanalogues  239 – 241  were obtained similarly in high yields 
[ 59 ,  121 ,  123 ]. 

 As expected, the reaction of chromones  230  with alkyl orthoformates catalyzed 
with HCl or  p -TsOH resulted in the formation of hemiketals  242 . The reaction of 
 230  with primary amines afforded chromanones  243  in good yields [ 121 ] 
(Scheme  79 ).
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  Scheme 79    Reactions of  230  with amines and indoles       

   Chromones  230  smoothly react with indole and  N -methylindole in refl uxing 
pyridine resulting in the formation of  244  as mixtures of  Z - and  E -isomers [ 124 ]. 
These reactions include the nucleophilic 1,4-addition of the amine or indole with 
concomitant opening of the pyrone ring and subsequent intramolecular cyclization 
of the intermediate at the R F CO group [ 125 ]. 

 Reactions of 3-(polyfl uoroacyl)chromones  230  with hydrazine hydrate and methyl-
hydrazine proceed via nucleophilic 1,4-addition followed by opening of the pyrone ring 
and heterocyclization at polyfl uroacyl group into 4-(2-hydroxyaroyl)-3-(polyfl uoroalkyl)
pyrazoles  245  or aroyl group into 4-(polyfl uoroalkyl)-2,4-dihydro chromeno[4,3- c ]
pyrazol-4-oles  246  [ 126 ] (Scheme  80 ).
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  Scheme 80    Reactions of  230  with hydrazines and hydroxylamine       

   Similar reaction of  230  with hydroxylamine proceeds via 1,4-addition and 
 subsequent cyclization to  247  in good yields. On treatment with trifl uoroacetic acid, 
the isoxazole ring of this fused heterocyclic system opens to give 3-cyano-2-R F -chro-
mones  229  (see Sect.  3.3.2 ). On the other hand, oximation of  230  with  hydroxylamine 
hydrochloride occurs either at the C=O group connected to the R F  group or at the C-2 
atom to give chromones  248  and isoxazole  249 , respectively. The former were 
converted to isoxazoles  250  by heating in DMSO [ 127 ] (Scheme  80 ). Treatment of 
chromones  230  with amidine and guanidine gave 5-salicyloyl-4-(polyfl uoroalkyl)
pyrimidines  251  in variable yields, from which the corresponding 4-(trifl uoromethyl)
pyrimidine-5-carboxylic acids, a new class of potent ryanodine receptor activators, 
were obtained under Dakin reaction conditions [ 128 ] (Scheme  81 ).
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  Scheme 81    Reactions of  230  with amidines       
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   Reactions of chromones  230  with acetoacetamide and ethyl acetoacetate in 
 ethanol in the presence of ammonium acetate proceed at the C-2 atom of the chro-
mone system with pyrone ring-opening and subsequent cyclization to  252 . Similar 
reaction with β-aminocrotononitrile gave 5-hydroxy-2-methyl-5-(polyfl uoroalkyl)-
5 H - chromeno[4,3- b ]pyridine-3-carbonitriles ( 253a ) [ 129 ]. Three-component 
reaction between chromones  230 , dimedone, and AcONH 4  is accompanied by 
detrifl uoroacetylation and leads to  254  in low yields [ 130 ] (Scheme  82 ).

   Chromone  230a  reacts with heterocyclic amines  255  giving four types of 
 products, depending on the nature of the 1,3- C,N -dinucleophile and the solvent. The 
reaction of heterocycles  255a , i,j,l  with  230a  gave the corresponding fused pyridines 
 257  as the main products, while in the case of  255e–h  the formation of chromeno[4,3-
 b   ]pyridines  258  was preferred. At the same time, aminoheterocycles  255b,k,m–o  in 
DMF gave mainly chromanones  256 . Reactions of  255a–e , performed in glacial 
acetic acid yielded preferably products  257  and  259 , which represent fused  pyridines 
with a trifl uoromethyl group located in the α- or γ-position. It clearly appears that 
the less aromatic heterocycles  255a – j,l  have a proclivity to form fused pyridines 
 257 – 259  [ 131 ] (Scheme  83 ).

   While enamines react with chromones  230  mainly at the R F CO group to produce 
pyridine derivatives, reactions of dimethyl acetonedicarboxylate with  230  took an 
entirely different course and gave a series of 6 H -benzo[ c ]chromenes  260  in good 
yields. This heterocyclic system certainly is the product of the primary 1,4-addition 
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followed by the pyrone ring-opening, attack of the second CH 2  group to the carbonyl 
bound with the aromatic cycle, and ring-closure involving the phenolic hydroxyl 
and R F СО group [ 132 ] (Scheme  84 ).
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   3-(Polyfl uoroacyl)chromones  230  undergo heterodiene cycloaddition to 
3,4-dihydro-2 Н -pyran, 2,3-dihydrofuran and ethyl vinyl ether under mild condi-
tions, producing novel fused pyranes  261  and  262  with high stereoselectivity and in 
good yields. Some of these pyranes were transformed into 2-R F -containing pyri-
dines on treatment with ammonium acetate in ethanol [ 133 ] (Scheme  85 ).

3.4.2        Synthesis and Reactions of 2-(Trifl uoroacetyl)Chromones 

 We found that methyl 2-methoxytetrafl uoropropionate reacted with 2-hydro xyaceto-
phenones under Claisen reaction conditions (NaOEt or LiH) affording chromones 
 264  in high yields. Deprotection of chromones  265  was carried out using 96 % H 2 SO 4  
and SiO 2 , to afford 2-(trifl uoroacetyl)chromones  265 , which were prone to form 
hydrates [ 134 ] (Scheme  86 ).
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   Chromone  265  (R=H) behaves as a latent 1,2-diketone, having a masked aroyl 
fragment at the 3-position, and reacts with ethylenediamine and  o - phenylenediamine  
to give  266  and  267a,b  (two tautomeric forms) in good yields. This chromone 
reacted smoothly with indole to produce the expected adduct  268 . These results 
clearly indicate that C-2 of  265 , due to the electron-withdrawing effect of the CF 3 CO 
group, is very susceptible to nucleophilic attack [ 134 ] (Scheme  87 ).

4          Ring-Fluorinated Chromones and Coumarins 

4.1     Synthesis of Ring-Fluorinated Chromones and Coumarins 

 Ring-fl uorinated chromone carboxylic acids are very interesting compounds being 
oxygen analogues of the fl uoroquinolone antibiotics. It is well-known that polyfl uo-
roaryl β-dicarbonyl compounds are useful in this area because the nucleophilic 
replacement of their  ortho -fl uorine atom leads to the formation of chromone struc-
tures. Such behaviour has been found in the reactions of pentafl uoroaromatic 
β-ketoesters [ 135 ] and β-diketones [ 135 ,  136 ] and also in the synthesis of 
2- substituted 3-ethoxycarbonyl-5,6,7,8-tetrafl uorochromones  269a–d  through the 
reaction of pentafl uorobenzoyl and pentafl uorophenylacetyl chlorides with 
β-ketoesters in the presence of magnesium ethoxide. On hydrolysis,  269d  gave 
2-pentafl uorobenzyl-5,6,7,8-tetrafl uorochromone ( 270 ) [ 135 ,  137 ] (Scheme  88 ).

   Saloutin et al. reported [ 138 ] that the self-condensation of ethyl pentafl uorobenzo-
ylacetate ( 271 ) on refl uxing without any catalyst leads to the formation of compound 
 272  in 37 % yield, acid hydrolysis of which gave 2-pentafl uoro benzoylmethyl- 5,6,7,8-
tetrafl uorochromone ( 273 ). Other routes for preparing some new ring-fl uorinated 
chromones have been performed from the 2-ethoxymethylene pentafl uorobenzo-
ylacetic ester ( 274 ) and also via intramolecular cyclization of ethyl pentafl uoroben-
zoylpyruvate ( 275 ). The reaction of ester  271  with ethyl orthoformate results in the 
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formation of compound  274 , which was refl uxed with water to form 3-ethoxycar-
bonyl-5,6,7,8-tetrafl uorochromone ( 276 ). The latter was  hydrolyzed under acidic 
conditions to give carboxylic acid  277 , sublimation of which produced 5,6,7,8-tetra-
fl uorochromone ( 278 ). This compound was derived directly from ester  276  in boiling 
acetic acid [ 138 ]. Pentafl uoroacetophenone reacts with diethyl oxalate in the pres-
ence of LiH to give ethyl pentafl uorobenzoylpyruvate ( 275 ), which can be isolated 
through its copper(II) chelate. Ester  275  is stable at room temperature, but is con-
verted by heat to give 2-ethoxycarbonyl- 5,6,7,8-tetrafl uorochromone ( 279 ) in quan-
titative yield. The latter under acidic hydrolysis gave tetrafl uorochromone ( 280 ), 
sublimation of which at 230–250 °C produced chromone  278  [ 138 ]. 
Pentafl uoroacetophenone also reacts with Vilsmeier reagent to give chromone  278  
and its 3-formyl derivative depending on the conditions [ 139 ] (Scheme  89 ).

O

O

CH2C6F5

F
H2SO4

AcOH

O O

OEt
F

COR

O

F
Cl

RCOCH2CO2Et

Mg(OEt)2

O

O
CO2Et

R
F

R = Me (a), Ph (b), C6F5 (c)

-HF

269a-c

F
O

Cl

C6F5COCH2CO2Et

Mg(OEt)2
O

O
CO2Et

CH2C6F5

F

269d (47%) 270 (75%)

  Scheme 88    Synthesis of chromones  269  and  270        

O O

OEt
F

O

O

F
O

C6F5

O

O

O

CH2COC6F5

F
-2 EtOH,

O O

OEt

OEt

F

O

O

F

CO2Et

CH(OEt)3

271 272 (37%) 273 (43%)

274 (81%) 276 (62%)

O

O

F

CO2H

277 (69%)

O

O

F

278 (72-79%)

-HF

H3O+

-CO2

O O

O

OEt
F

H
275 (89%)

-HF
O

O

CO2Et
F

279 (95-100%)

O

O

CO2H
F

280 (80%)

HCl
AcOH

HCl

AcOH

230-250 °C

190-200 °C

  Scheme 89    Synthesis of chromones  273 ,  278  and  280        

 

 

V.Y. Sosnovskikh



261

   Heating diketone  281 , containing an easily replaceable fl uorine atom in the 
 ortho -position to the carbonyl group, with urea results in 2-(trifl uoromethyl)-
5,6,7,8-tetrafl uorochromone ( 282 ) [ 140 ]. Perfl uorofl avones  283a,b  were obtained 
from the reactions of bis(pentafl uorobenzoyl)- and fl uorobis(pentafl uorobenzoyl)-
methanes with methyl- and phenylhydrazines [ 136 ]. 3-Fluorofl avone  284a  and its 
6-substituted derivatives were prepared from appropriate fl avones by electrochemi-
cal fl uorination with Et 4 NF · 4HF or Et 3 N · 3HF. Anodic fl uorination of fl avones 
affords mono- ( 284a ), di- ( 284b ) and tri- ( 284c ) fl uoro derivatives, whose ratio 
depends on the type of salt used and the temperature of electrolysis. 3-Fluorofl avones 
 284a  are formed upon dehydrofl uorination of  284b  under the action of Et 3 N, while 
trifl uoro derivatives  284c  are the products of further fl uorination of  284a . The yields 
of  284a  vary over a broad range (25–63 %) [ 141 ] (Scheme  90 ).
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  Scheme 90    Some ring-fl uorinated chromones       

   Formation of perfl uoro-4-methylcoumarin  285  has been reported from perfl uoro-
3- methylindenone, in which the carbonyl group is involved in reaction with H 2 O 2  in 
the HF–SbF 5  system [ 142 a]. Perfl uoro-1-ethylindan heated with excess of SiO 2  in 
SbF 5  at 75 °C and then treated with water, gives isocoumarin  286a  in high yield. 
Perfl uoro-3-ethylindan-1-one is converted, under the action of SbF 5  at 70 °C, to 
perfl uoro-3,4-dimethylisocoumarin  286b  [ 142 b, c] (Scheme  91 ).
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4.2        Reactions of Ring-Fluorinated Chromones and Coumarins 

 The reactions of chromones with amines is known to afford the corresponding 
 aminoenones at the C-2 atom [ 46 ]. In contrast, chromone  279  reacts with cyclohex-
ylamine, morpholine,  N -methylpiperazine, and piperidine without pyrone ring 
opening to give compounds  287a–d . Similar reaction with methylamine furnishes 
compound  288 , which results from reaction at the ethoxycarbonyl group and 
nucleophilic displacement of the fl uorine atom at the 7-position of the heterocycle. 
At the same time, ammonia and aniline does not react with  279 . The reaction of  279  
with ethylenediamine gave piperazinone  289  [ 143 ]. Refl uxing of  279  with  o - 
phenylenediamine  in toluene for 18 h in the presence of BF 3  · Et 2 O results in the 
formation of quinoxalinone  290a  [ 144 ]. On treatment with  o -aminophenol chro-
mone  279  gave benzoxazinone  290b  in low yield [ 145 ,  146 ] (Scheme  92 ).
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  Scheme 91    Some ring-fl uorinated coumarins       
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   4-Hydroxycoumarin  297  was found to react with  о -phenylenediamine on  refl uxing 
in toluene to form product  298  existing as a mixture of tautomers  А  and  B . Under 
similar conditions, 3-acetyl-4-hydroxycoumarin  296  reacts with  о -phenylenediamine 

   The reaction of chromone  269a  with hydroxylamine affords isoxazole  291a , 
which could only arise from addition of the  N -nucleophile at the C-2 position of the 
heterocycle. This compound was subjected to cyclization on refl uxing under acidic 
conditions to give benzopyranoisoxazole  292a . A similar reaction of chromone  269a  
with hydrazine hydrate gave the corresponding pyrazole  291b . When  291b  was 
heated with a boiling mixture of concentrated acetic and hydrochloric acids, benzo-
pyranopyrazole  292b  was obtained [ 147 a]. Chromone  269a  also reacts with ammo-
nium hydroxide at room temperature to give a mixture of aminoenone  293a  and its 
cyclic derivative  294a . The latter can be derived from  293a  by refl uxing with ammo-
nium hydroxide. When  269a  was heated with ammonium hydroxide, only  294a  was 
obtained. Similar reaction of  269a  with benzylamine also proceeds at the C-2 posi-
tion and gives substituted aminoenone  293b , which was then subjected to cyclization 
to produce coumarin  294b  without any catalyst or solvent at 100 °C. Both keto-
enamino and imino-enol isomers are possible in structures  293  and  294 , however 
keto-enamino form is preferred [ 147 b, c]. Under acidic conditions, aminoenone  293a  
was hydrolyzed to give 2-methyl-5,6,7,8-tetrafl uorochromone ( 295 ), which was also 
obtained from 3-carboxy-2-methyl-5,6,7,8-tetrafl uorochromone and compound  294a  
by alkaline and subsequent acidic treatment. When  294a  was treated with diluted 
H 2 SO 4 , coumarin  296  was obtained. The latter was treated with concentrated H 2 SO 4  
to give 4-hydroxy-5,6,7,8-tetrafl uorocoumarin ( 297 ) [ 147 a] (Scheme  93 ).
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to form a mixture of products from which benzodiazepine-2-one  299  and compound 
 298  can be isolated. The former was also obtained in 65 % yield by the reaction of 
3-acetimidoyl-4-hydroxycoumarin  294a  [ 148 a] (Scheme  94 ).

   The reactions of 4-hydroxy-5,6,7,8-tetrafl uorocoumarine derivatives with 
 ammonia and morpholine involve aromatic nucleophilic substitution of fl uorine 
atoms at the 7-position as the main process [ 148 b].   

5     Fluorinated Coumarins 

 Derivatives of 2 H -1-benzopyran-2-one, also known as coumarins, are prominent 
natural products possessing a wide range of valuable physiological activities. Many 
coumarin derivatives exert anticoagulant, antitumor, antiviral, antiinfl ammatory and 
antioxidant effects, as well as antimicrobial and enzyme inhibition properties [ 47 a, 
 149 ]. In addition, they represent useful synthetic building blocks in organic and 
medicinal chemistry, and have also found application as photosensitisers, fl uores-
cent and laser dyes [ 150 ]. 7-Amino-4-(trifl uoromethyl)coumarins, the important 
class of laser dyes for the “blue-green” region, are strongly fl uorescent in polar 
solvents, and their fl uorescence properties depend on the electron-donating ability 
of the 7-amino group [ 151 ]. 

5.1     Synthesis and Application 
of Polyfl uoroalkylated Coumarins 

5.1.1     3-Unsubstituted 4-(Polyfl uoroalkyl)Coumarins 

 Coumarins have been synthesized by several routes, including Pechmann, Perkin, 
Knoevenagel and Wittig reactions. The reaction of various phenols with β-ketoesters 
in the presence of an acid catalyst, an example of the Pechmann reaction, has been 
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extensively used in the synthesis of 4-substituted coumarins. With ethyl 
4,4,4- trifl uoroacetoacetate [ 152 ] and electron-rich phenols, the reaction affords, 
almost invariable, 4-(trifl uoromethyl)coumarins  300  bearing different electron- 
donating substituents at the benzene ring [ 50 ,  153 ,  154 ]. 

 Various derivatives of 7-hydroxy- and 7-amino-4-(trifl uoromethyl)coumarins 
 300  are readily prepared by the Pechmann reaction using zinc chloride as the con-
densing agent [ 155 ]. Recently, there have been reports on the use of ZrCl 4  [ 156 ], 
AgOTf and molecular iodine [ 157 ], InCl 3  [ 158 ], Sc(OTf) 3  [ 159 ] and TiCl 4  [ 160 ] as 
Lewis acids for the synthesis of 4-CF 3 -coumarins  300 . A 30-membered library of 
4-substituted coumarins has been synthesized in a microwave-assisted Pechmann 
reaction using neat trifl uoroacetic acid both as an acidic reagent and a reaction 
medium [ 161 ]. Fused 4-(trifl uoromethyl)coumarins  301a–d , including 4-CF 3 - 
psoralen  301c , were obtained in the presence of an acid catalyst such as ZnCl 2 , 
methanesulfonic acid or sulfuric acid [ 162 – 165 ] (Scheme  95 ).

   Synthesis and purifi cation of 7-amino-4-(trifl uoromethyl)courmarin ( 300a ) 
(R = 7–NH 2 , R F =CF 3 , Coumarin 151) from 3-aminophenol by the Pechmann reaction 
was fi rst reported in 1980 [ 166 ]. Two    byproducts, 7-hydroxy-4-(trifl uoromethyl-2- 
quinolone ( 302 ) and 2-ethoxy-7-hydroxy-4-(trifl uoromethyl)quinoline ( 303 ), were 
also isolated and identifi ed. The synthesis of benzene ring fl uorinated 7-hydroxy-4-
methyl- and 7-hydroxy-4-(trifl uoromethyl)coumarins  304  in 45–80 % yields was 
reported by Sun et al. by the condensation of fl uorinated resorcinols with ethyl ace-
toacetate and ethyl trifl uoroacetoacetate in methanesulfonic acid at ~20 °C [ 167 ]. 
4-Fluorocoumarins  305a  were obtained from the corresponding 4- chlorocoumarins 
by a halogen-exchange reaction [ 168 a]. The reaction of ( Z )-2-fl uoro- 3-methoxyprop-
2-enoyl chloride with phenol gave 3-fl uorocoumarin  305b  [ 168 b]. Dmowski reported 
facile preparation of 3-fl uoro-4-hydroxycoumarins  305c  by treatment of  o -hydroxy-
2,3,3,3-tetrafl uoropropiophenone with aqueous KOH and NH 3  [ 168 c, d] (Scheme  96 ).
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also reacted with crotonic acid in the presence of PPA to offer the corresponding 
angular chromanone, which was further condensed with 1,1-diethoxy-3-methyl-2- 
butene under microwave irradiation to produce the target tetracyclic dipyranocou-
marin  310  as a potential anti-HIV-1 agent [ 171 ]. Reaction of 7-aminocoumarin 
 300a  with diethyl ethoxymethylenemalonate led to the condensation intermediate 
(the Gould-Jacobs reaction), thermal cyclization of which gave the desired tricyclic 
ester  311a . This ester was hydrolyzed to the corresponding benzopyranopyridine 
carboxylic acid  311b , which was found to possess high antimicrobial activity 
against Gram-positive microorganism [ 172 ] (Scheme  98 ).

   Reaction of 3-aminophenylpivalate with 3-acetoxy-3-methyl-l-butyne in the 
presence of CuCl afforded the corresponding propargyl aniline, which could be 
cyclized to  306  by treatment with catalytic CuC1 in refl uxing THF. Reduction of 
the olefi n by catalytic hydrogenation, deprotection of the phenol, and Pechmann 
cyclization using ethyl trifl uoroacetoacetate mediated by zinc chloride in 
ethanol, afforded coumarin  307 , the 1-oxa version of 4-(trifl uoromethyl)-2(1 H )-
piperidino[3,2- g ]quinolinone, typifi ed by the lead human androgen receptor antago-
nist LG120907. A series of 4-(trifl uoromethyl)-2 H -pyrano[3,2-g]quinolin-2-ones 
was prepared and tested for the ability to modulate the transcriptional activity of the 
human androgen receptor [ 169 ] (Scheme  97 ).

   It was shown that the base-catalyzed cyclization of  308 , prepared from  300b  and 
chloroacetone, gave difurocoumarin  309  in high yield [ 170 ]. Coumarin  300b  was 
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5.1.2        3-Substituted 4-(Trifl uoromethyl)Coumarins 

 Resorcinol and 5-methylresorcinol react with 3-oxo-2-aryl-4,4,4- trifl uorobutyronitrile 
using ZnCl 2  in dibutyl ether under the Hoesch reaction conditions to give a low yield 
of coumarins  312 . However, the related reaction with  m -methoxyphenol was found 
to produce poor yields of  312  and  313  [ 173 ] (Scheme  99 ).

   3-Aryl-7-(diethylamino)-4-(trifl uoromethyl)coumarins  314  were synthesized as 
a result of the photoreaction of 7-(diethylamino)-4-(trifl uoromethyl)coumarin 
( 300c ) with iodobenzene and 3,4-dimethoxyiodobenzene in acetonitrile. It was 
established that the electron-withdrawing CF 3  group and addition of triethylamine 
accelerate photosubstitution [ 174 ] (Scheme  100 ).

   Ethyl 2-( p -fl uorobenzyl)trifl uoroacetoacetate reacted with resorcinol in 70 % 
sulfuric acid at 100 °C to provide coumarin  315a . Upon treatment with  N,N - 
dimethylcarbamoyl  chloride in the presence of NaH, this compound was readily 
converted into the corresponding  N,N -dimethylcarbamate  316a , which was tested 
as a TNF-α inhibitor [ 175 ]. A similar reaction of resorcinol with diethyl 
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trifl uoroacetosuccinate in PPA gave compound  315b , from which  316b  as CYP2C9 
substrates responsible for the metabolism of drugs were obtained [ 176 ] 
(Scheme  101 ).

   Voznyi et al. reported that condensation of 4-(trifl uoroacetyl)resorcinol  317  
(R=H) with cyanoacetic ester occurs at 100–150 °C and is accompanied by closure 
of the pyrane ring and formation  318  as a result of condensation of  319  with cyano-
acetic ester, followed by hydrolysis of the cyano group and decarboxylation [ 177 ]. 
When the trimethylsilyl derivative  317  (R=Me 3 Si) was heated with cyanoacetic 
ester, it was possible to increase the yield of compound  319  from 10–12 % to 
79–82 %. The synthesis of  320  was realized by a similar method [ 178 ] (Scheme  102 ).
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   Similarly, reaction of  321  with cyanoacetic ester and potassium carbonate gave 
the benzopyrane  322 . When ketone  321  was treated with monoethyl malonate, 
triethylamine and phenyl phosphorodichloridate, the required coumarin  323a  was 
obtained and subsequent alkaline hydrolysis gave the acid  323b  [ 179 ] (Scheme  103 ).
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   Huang et al. reported that coumarins and thiocoumarin react with perfl uoroalkyl 
iodides in the presence of sodium hydroxymethanesulfi nate (Rongalite) to give 
3-(polyfl uoroalkyl)coumarins  324a,b  selectively and under mild conditions. 
A free- radical mechanism was proposed for the reaction [ 180 ]. The regioselective 
reaction of 3-unsubstituted coumarins with bis(perfl uoroalkanoyl)peroxides also 
affords 3-(perfl uoroalkyl)coumarins  324c . Though the introduction of perfl uoroal-
kyl groups into the 3-position of coumarins lowers the fl uorescence intensities, the 
derivatives  324c  are much more stable towards UV irradiation than 3-unsubstituted 
coumarins [ 181 ] (Scheme  104 ).
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5.1.3        Applications of 7-Amino-4-(Trifl uoromethyl)Coumarin Derivatives 

 7-Amino-4-(trifl uoromethyl)coumarin ( 300a ) is strongly fl uorescent in polar  solvents 
and its  19 F NMR spectrum shows only a singlet peak without any coupling to intra-
molecular protons. Thus, coumarin  300a  has been utilized as a reporter group that is 
active in both fl uorescence measurement and  19 F magnetic resonance imaging [ 182 ]. 

 The photophysical properties of fl uoroionophores composed of a laser dye, 
Coumarin 153, linked to azacrowns have been reported. The changes in the 
 photophysical properties upon complexation with alkali and alkaline-earth metal 
cations are due to the direct interaction between the cation and the carbonyl 
group of the coumarin. Of particular interest is the bis-coumarin  325 , which 
exhibits specifi c changes in quantum yield according to the size of the cation 
[ 183 ]. Mizukami et al. reported a novel fl uorescent anion sensor  326  that works 
in neutral aqueous solution for bioanalytical application. This molecule contains 
7-amino-4-(trifl uoromethyl)coumarin ( 300a ) as a fl uorescent reporter and 
Cd(II)-1,4,7,10-tetraazacyclododecane as an anion host. In neutral aqueous 
solution, Cd(II) of  326  is coordinated by the four nitrogen atoms of cyclen and 
the aromatic amino group of coumarin [ 184 ]. A colorimetric and fl uorescent 
cyanide probe based on 4-(trifl uoromethyl)coumarin  327  displays rapid response 
and high selectivity for cyanide over other common anions [ 185 ]. In order to 
develop coordination complexes that can be used as selective probes, fl uorescent 
agents and inorganic medicinal agents, the design, synthesis, characterization 
and X-ray structure of new water-soluble monofunctional Pt(II) complexes with 
useful  spectroscopic properties for assessing metal binding to biomolecules 
were investigated. Complex  328  was designed to allow the fl uorophore group, 
coumarin  300a , to be attached to metal centers through the diethylenetriamine 
moiety [ 186 ]. Proline-substituted coumarin derivatives, such as compound  329 , 
were prepared and used as environment-sensitive fl uorescence probes. 
Phosphorylation and dephosphorylation of tyrosine derivatives labeled with the 
coumarin–proline conjugate induced marked changes in fl uorescence intensity 
allowing phosphatase activity to be monitored [ 187 ] (Scheme  105 ).

   A coumarin-based derivative  330 , a highly selective and sensitive turn-on 
 fl uorogenic probe for the detection of hydrosulfate anion in aqueous solution, has 
been designed and synthesized. This compound exhibits a unique fl uorescence 
change in the presence of the HSO 4  −  ion and with high selectivity over other anions 
[ 188 ]. Compounds  331  were synthesized from 1-azulenecarboxaldehyde and 
7-amino-4-(trifl uoromethyl)coumarin ( 300a ) and a very fast vibrational cooling 
process of azulene was studied by the transient absorption method using molecular 
integrated systems with a molecular thermometer. This is the fi rst attempt to use the 
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molecular heater–molecular thermometer integrated system for investigating the 
thermalization process from the solvent side [ 189 ] (Scheme  106 ).
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   To probe the steric requirements for deacylation, lysine-derived small molecule 
substrates, including coumarin derivative  332 , were synthesized and their structure- 
reactivity relationships with various histone deacetylases were examined. It was 
found that compound  332 , prepared from the corresponding lysine derivative and 
coumarin  300a  in pyridine in the presence of POCl 3 , is selectively deacetylated by 
HDAC6 in preference to HDAC1 and HDAC3. This indicated that the structure of 
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 N -Boc and trifl uoromethyl coumaryl amide of  332  is selectively recognized by 
HDAC6 [ 190 ]. Suzuki et al. have identifi ed novel HDAC6-selective inhibitors 
whose designs were based on the structure of the HDAC6-selective substrate  332 . 
Thus, compound  333 , in which the acetamide of  332  is replaced by a thioester func-
tion, was obtained from the corresponding bromide and thioisobutyric acid under 
alkaline conditions [ 191 ] (Scheme  106 ). 

 Novel calix[4]arene-based anion sensor  334  with two coumarin units attached 
via amido functions acting also as binding sites was described. This compound may 
be considered as a potential fl uorescent chemosensor for F − . Reference calixarene 
 335  was also synthesized and its 1,3-alternate conformation was deduced from the 
 1 H NMR spectrum [ 192 ] (Scheme  107 ).

5.1.4        Applications of 7-Hydroxy-4-(Trifl uoromethyl)Coumarin 
Derivatives 

 One-step reaction of 7-hydroxy-4-(trifl uoromethyl)coumarin ( 300c ) with TIPS-Cl 
provided compound  336  in 67 % yield, which was used to detect fl uoride anions in 
organic and aqueous media, utilizing the specifi c affi nity of fl uoride anion to silicon 
[ 193 ]. Eighteen new fl uorogenic analogues of organophosphorus nerve agents were 
synthesised and characterised. They included analogues of tabun, sarin, cyclosarin, 
and soman, with the 7-hydroxy-4-(trifl uoromethyl)coumarin leaving group, for 
example, compound  337 . These analogues inhibited acetylcholinesterase effectively 
in vitro and therefore have potential as tools for the identifi cation of novel organo-
phosphatases in biological systems [ 194 ]. A series of potent and highly subtype- 
selective PPARα agonists was identifi ed through a systematic SAR study. Based on 
the results of superior in vivo effi cacy in the two animal models, coumarin  338  was 
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characterized in pharmacokinetic studies in three preclinical animal species. 
It exhibited low plasma clearance, good oral bioavailability, and no signifi cant 
off-target activity was observed for  338 . Unfortunately, the results for the stability 
studies of compound  338  indicated the lactone ring stability issues [ 195 ]. Bis-4-
(trifl uoromethyl)-7-hydroxycoumarins  339  (n = 0, 1) ended mono and diethyleneg-
lycols were prepared starting from bis(3-hydroxyphenyl)glycols by Pechmann 
condensation using ethyl trifl uoroacetoacetate. Accordingly, coumarin  300c  was 
converted to bis-coumarin ended three and tetraethylenglycol derivatives  339  (n = 2, 3) 
by reacting with three and tetraethyleneglycols dichlorides in Na 2 CO 3 /DMF. 
The Li + , Na +  and Rb +  metal/ligand selectivities of cation binding behaviour of 
products in acetonitrile were studied with steady state fl uorescence spectroscopy [ 196 ] 
(Scheme  108 ).

   Woo et al. synthesized and examined coumarin sulfamates  340 , of which 
4- methylcoumarin 7- O –sulfamate was found to be the most effective nonsteroidal 
E1-STS inhibitors [ 197 ]. The coupling between the fl uorescence properties of the (tri-
fl uoromethyl)coumarino fl uorophore and the protolytic state of the ion binding moiety 
of two fl uorescent cryptands  341  is investigated. The experimental results obtained with 
 341  indicate that the diprotonated state of the fl uorescent cryptands exhibit a compara-
tively high quantum yield around 0.6 and are characterized by a single lifetime around 
5.4 ns [ 198 ]. Coumarin  342 , a fl uorescent analogue of farnesyl pyrophosphate (FPP), 
was prepared and utilized to study ligand interactions with  E. coli  UPPs [ 199 ]. To 
explore the structural requirements of (+)- cis - khellactone  derivatives as novel anti-HIV 
agents, 24 monosubstituted 3′,4′-di- O -( S )-camphanoyl-(+)- cis -khellactone derivatives, 
including compound  343 , were synthesized asymmetrically [ 200 ]. The metabolism of 
7-benzyloxy-4-(trifl uoromethyl)coumarin to 7-hydroxy-4-(trifl uoromethyl)coumarin 
( 300a ) was studied in human liver microsomal preparations and in cDNA-expressed 
human cytochrome P450 (CYP) isoforms [ 201 ] (Scheme  109 ).
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5.2         Synthesis and Reactions of 3-(Trifl uoroacetyl)Coumarins 

 A series of ethyl 2-hydroxy-2-(trifl uoromethyl)-2 H -chromene-3-carboxylates 
( 344 ) was obtained in high yields via the Knoevenagel condensation of salicyl-
aldehydes with ethyl trifl uoroacetoacetate in the presence of piperidinium acetate. 
The subsequent recyclization of these chromenes proceeds smoothly in refl uxing 
chlorobenzene in the presence of  p -toluenesulfonic acid affording 3-(trifl uoroacetyl)
coumarins ( 345 ) in good yields [ 202 ]. These compounds were also prone to the 
facile and reversible covalent hydrate formation [ 120 ] (Scheme  110 ).
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   Coumarin  346  also reacts with electron-rich aminoheterocycles, dimethyl 
1,3-acetonedicarboxylate, hydrazines, alkyl thioglycolates, and methyl sarcosinate 
to give a variety of 3,4-heteroannulated coumarins  349a–h  with an excellent regi-
oselectivity and in moderate to high yields (41–85 %) [ 204 ] (Scheme  113 ).

   4-Chloro-3-(trifl uoroacetyl)coumarin ( 346 ) was synthesized via direct 
TMSCl- mediated acylation of 4-hydroxycoumarin with trifl uoroacetic anhydride 
(TFAA) followed by the treatment with POCl 3  [ 203 ] (Scheme  111 ).

   Iaroshenko et al. reported that the reaction of  346  with anilines is a two-step 
method, which affords via substitution products  347  a set of 7-(trifl uoromethyl)-
6 H -chromeno[4,3- b ]quinolin-6-ones ( 348 ) in concentrated H 2 SO 4  at 70 °C in high 
yields [ 203 ] (Scheme  112 ).
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6         Conclusion 

 Analysis of the published data demonstrates that of the diverse fl uorine-containing 
pyrones, chromones and coumarins, 2-(trifl uoromethyl)-4-pyrones and 2-(polyfl uo-
roalkyl)chromones, as well as 3-(polyfl uoroacyl)chromones and chromones with the 

   Treatment of  346  with dimethyl 1,3-acetonedicarboxylate in dioxane in the 
 presence of triethylamine at refl ux gave the expected benzo[ c ]coumarin  350 , 
whereas the reaction with methyl thioglycolate in dichloromethane at room 
 temperature resulted in the formation of thienocoumarin  351  [ 204 ] (Scheme  114 ).
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perfl uorinated benzene ring have now been studied most comprehensively. Data on 
3-fl uoro- and 3-(trifl uoromethyl)chromones and coumarins are quite scarce. Despite 
the ready accessibility of polyfl uoroalkylated pyrones and chromones, these com-
pounds have long remained out of sight of chemists engaged in synthesis, and their 
systematic study has started only in recent years. Nevertheless, it is already clear that 
these compounds and, in particular, trifl uoromethylated analogues of natural oxy-
gen-containing heterocycles are valuable substrates for the synthesis of diverse par-
tially fl uorinated heterocycles with a potential biological activity. Indeed, a 
polyfl uoroalkyl group present at the C-2 atom of the pyrone system entails dramatic 
changes in the reactivity of this ring, which is manifested as a bunch of new transfor-
mations uncharacteristic of non-fl uorinated analogues. In addition, the introduction 
of a polyfl uoroacyl group into the 3-position of the chromone system also changes 
crucially the reactivity of the pyrone ring with respect to nucleophiles and stipulates 
the broad synthetic potential of 2-unsubstituted 3-(polyfl uoroacyl)chromones. The 
diversity of properties of these compounds is due to the fact that, being actually 
highly reactive geminally activated alkenes with a good leaving group at the β-carbon 
atom, they acquire the ability to undergo additional reactions related to opening and 
transformation of the γ-pyrone ring.     
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    Abstract     This review deals with general and signifi cant developments in the area 
of chemistry of fl uorinated pyrimidine, pyrazine and pyridazine. Diazines bearing 
fl uoro or α-fl uoroalkyl substituent at carbon atoms of the heterocyclic ring, as well 
as their fused derivatives are discussed. The literature data are divided into two 
parts, which describe synthesis and chemical behavior of ring- and chain- fl uorinated 
diazines (RFD and CFD respectively).  

  Keywords     Pyrimidine   •   Pyrazine   •   Pyridazine   •   Fluorine   •   Trifl uoromethyl group   • 
  Synthesis   •   Chemical behaviour   •   Fluorinated heterocycles  

  Abbreviations 

   acac    Acetylacetone   
  AcOH    Acetic acid   
  AIBN    Azobisisobutyronitrile   
  Amphos    2-(2,4,6- i -Pr 3 -C 6 H 2 )–C 6 H 4 -PCy 2    
  ANRORC    Addition of the nucleophile, ring opening, and ring closure in 

nucleophilic attack on ring systems   
  aq.    Aqua is the Latin word for water   
  Bmim    1-Butyl-3-methylimidazolium hexafl uorophosphate   
  Bn    Benzil   
  Boc    tert-Butyloxycarbonyl   
  (BPin) 2     Bis(pinacolato)diboron   
  Bz    Benzoyl   
  CFD    Chain-fl uorinated diazines   
  CNC    (N,N′-dimethylimidazolidino)tetramethylguanidinium chloride   
  COD    Cyclooctadiene   
  Cy    Cyclohexyl   
  DABCO    Dimethylbenzylamine   
  DAST    Diethylaminosulfur trifl uoride   
  Dba    Dibenzylideneacetone   
  DBN    1,5-Diazabicyclo[4.3.0]non-5-ene   
  DBU    1,8-Diazabicycloundec-7-ene   
  DCC    N,N′-Dicyclohexylcarbodiimide   
  DCE    Dichloroethane   
  DCM    Dichloromethane   
  DDQ    2,3-dichloro-5,6-dicyano-1,4-benzoquinone   
  Deoxo-Fluor    Bis(2-methoxyethyl)aminosulfur trifl uoride   
  DEAD    Diethyl azodicarboxylate   
  DIPEA    Ethyl diisopropyl amine   
  DMA    Dimethylacetamide   
  DMAP    4-Dimethylaminopyridine   
  DME    Dimethoxyethane   
  DMG    Dimethylglyoxime   
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  DFMS    Zinc difl uoromethanesulfi nate   
  DMSO    Dimethyl sulfoxide   
  DNPG    Dinitrophenyl hydrazine   
  DoM    Direct  ortho -methalation   
  Dppf    1,1′-bis(diphenylphosphino)ferrocene   
  EDG    Electron donating group   
  EWG    Electron withdrawing group   
  5-FU    5-Fluorouracil   
  HATU    1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]

pyridinium 3-oxid hexafl uorophosphate   
  HFA    Hexafl uoroacetone   
  HIV    Human immunodefi ciency virus   
  HMBC    Heteronuclear Multiple Bond Correlation   
  HMPA    Hexamethylphosphoramide   
  HMTA    Hexamethylenetetramine   
  i-Am    Isoamyl   
   ihDA/rDA     Inverse-electron-demand hetero-/retro-Diels – Alder   
  KHMDS    Potassium Hexamethyldisilazane   
  LAH    Lithium aluminum hydride   
  LB    Lithium tertbutyl-(1-isopropylpentyl)amide   
  LDA    Lithium diisopropylamide   
   L -DBT    L-dibenzoyltartaric acid   
  LTMP    Lithium 2,2,6,6-tetramethylpiperidide   
  MeTFP    Methyl trifl uoropyruvate   
  MW    Microwave   
  MNDO SCF MO    Modifi ed Intermediate Neglect of Differential Overlap is a 

semi-empirical method   
  NaHMDS    Sodium Hexamethyldisilazane   
  NAS Ukraine    The National Academy of Sciences of Ukraine   
  NBS    N-Bromosuccinimide   
  NFSI     N- fl uorobenzenesulfonimide   
  NMP    N-methylpyrrolidone   
  NOAc    N4-Octadecylcytosine β-D-arabinofuranoside   
   O -TBDMS    O-tert-butyldimethylsilyl   
  PEG-400    Polyethylene glycol 400   
  PES    Photoelectron spectroscopy   
  PET    Polyethylene terephthalate   
  Phen    Phenantroline   
  PhMe    Methylbenzene   
  PPA    Polyphosphoric acid   
  Ph    Phenyl   
  py    Pyridine   
  PM3    Parameterized Model number 3 (a semi-empirical method)   
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  RCM    Ring-closing metathesis   
  RFD    Ring-fl uorinated diazines   
  SSCS    Statistical substituent chemical shift   
  TBAF    Tetra-n-butylammonium fl uoride   
  TBS    Tert-butyldimethylsilyl   
  TCBQ    Tetrachloro-1,4-benzoquinone   
  TDAE    Tetrakis(dimethylamino)ethylene   
  TEA    Triethylamine   
  TEBAC    Benzyltriethylammonium chloride   
  Tf    Trifl uoromethylsulfonyl   
  TFA    Trifl uoroacetic acid   
  TFAA    Trifl uoroacetic anhydride   
  TFMS    Zinc trifl uoromethanesulfi nate   
  THF    Tetrahydrofuran   
  THP    Tetrahydropyran   
  TMSPP    Trimethylsilyl polyphosphate   
  TMSBr    Bromo(trimethyl)silane   
  Ts    Tosy   

1           Introduction 

 Diazines, especially pyrimidines, are among most widespread six-membered het-
erocycles including both synthetic and natural compounds [ 1 – 3 ]. It is not surprising 
therefore that introduction of fl uorine into the diazine core or side chain has been 
used extensively in various areas of chemistry. The fi rst representative of the fl uori-
nated diazines refer to late 1940s when Miller and co-workers described synthesis 
of 6-trifl uoromethyl-2-thiouracil (1) (Fig.  1 ) [ 4 ]. In the next few years, several com-
pounds of general formula 2 were prepared using Biginelli reaction [ 5 ]. In 1957, 
fi rst representatives of ring-fl uorinated diazines (e.g. 5-Fluorouracil (3) [ 6 ]), as well 
as fl uorinated quinoxaline derivative 4 [ 7 ] were described.
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  Fig. 1    The fi rst representatives of fl uorinated diazines       
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  Fig. 2    Number of publications on fl uorinated diazines per year (Reaxys® June 2012). The publi-
cations describing different types of the fl uorinated diazines are counted several times (purine 
derivatives are excluded)          

   These pioneering works initiated an avalanche of publications on chemistry of 
fl uorinated diazines, which have been intensifi ed in recent years (Fig.  2 ).

   It should be noted that different types of the fl uorinated diazines are represented 
unequally among the known compounds (Table  1 ). In particular, nearly a half of 
literature references deals with 5-fl uoropyrimidines (49.1 %). Other popular struc-
tural motifs include 2- and 4-fl uoropyrimidines (2.9 and 4.3 %), 2-, 4(6)-, and 
5- trifl uoromethylpyrimidines (6.1, 16.2 and 5.0 %, respectively), and trifl uoromethyl- 
substituted pyrazines (2.9 % of the literature references, the works on fused deriva-
tives are included into numbers in all the above cases).

   In this chapter, diazines bearing fl uoro or α-fl uoroalkyl substituent at any carbon 
atoms of the heterocyclic ring, as well as their fused derivatives are discussed. The 
literature data are divided into two parts, which describe synthesis and chemical 
behavior of ring- and chain-fl uorinated diazines (RFD and CFD respectively). 
It should be noted that only chain-fl uorinated diazines having the fl uorine atom at α 
position of the alkyl substituent are discussed, since more distant fl uorine atoms have 
lesser effect on the chemistry of the corresponding heterocycles. Chain- fl uorinated 
diazines with fl uorine atoms or fl uorine-containing substituents linked to the aromatic 
ring via heteroatoms are also beyond the scope of this literature survey. 

 Both ring- and chain-fl uorinated diazines are widely used in medicinal chemistry 
and agrochemistry (see Chap.   7    ). In fact, fl uorinated diazines were used in drug 
discovery since the very fi rst works on their synthesis. Other areas of application 
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   Table 1    Distribution of the fl uorinated diazines in the literature citations a    

 #  Atom  Substituent 

 Number of citations 

 Total  Total (%)  Papers  Patents 

  Pyrimidines and their fused derivatives  
 1  2  F   288    2.9    158    130  
 2  CH 2 F  51  0.5  22  29 
 3  CHF 2   28  0.3  8  20 
 4  CF 3    597    6.1    228    369  
 5  CF 2 R b   66  0.7  25  41 
 6  4(6)  F   421    4.3    180    241  
 7  CH 2 F  54  0.6  17  37 
 8  CHF 2   73  0.7  23  50 
 9  CF 3    1589    16.2    562    1027  
 10  CF 2 R  143  1.5  95  48 
 11  5   F    4801    49.1    2604    2185  
 12  CH 2 F  16  0.2  5  11 
 13  CHF 2   26  0.3  10  15 
 14  CF 3    493    5.0    215    277  
 15  CF 2 R  28  0.3  21  7 

  Pyridazines and their fused derivatives  
 16  3(6)  F  111  1.1  78  33 
 17  CH 2 F  5  0.1  3  2 
 18  CHF 2   5  0.1  2  3 
 19  CF 3   184  1.9  91  93 
 20  CF 2 R  18  0.2  11  7 
 21  4(5)  F  83  0.8  62  21 
 22  CH 2 F  4  0.0  1  3 
 23  CHF 2   6  0.1  0  6 
 24  CF 3   88  0.9  36  52 
 25  CF 2 R  15  0.2  12  3 

  Pyrazines and their fused derivatives  
 26  any C  F  186  1.9  105  81 
 27  CH 2 F  42  0.4  4  38 
 28  CHF 2   32  0.3  7  25 
 29  CF 3    288    2.9    102    186  
 30  CF 2 R  38  0.4  27  11 

   a Reaxys® June 2012. The publications describing different types of the fl uorinated diazines are 
counted several times 
  b R – any substituent attached via carbon atom  

include dyes and liquid crystals. The 5-chloro-2,4-difl uoropyrimidinyl radical 
acts as the reactive group in reactive dyes for cellulose and cotton fi bers such as 
Levafi x EA (Bayer) and Drimarene K (Sandoz) and for wool, e.g., Verofi x (Bayer) 
and Drimalene (Sandoz) [ 8 ]. Both 2- and 4- fl uoropyrimidine derivatives were used 
in liquid crystals engineering [ 9 – 11 ]. Also the ring fl uorinated diazines were actively 
used as model compounds under investigation of different chemical transformation.  
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2     Ring Fluorinated Diazines 

 Ring-fl uorinated diazines constitute an important family of organic compounds with 
a wide array of applications ranging from drugs to multi-ton industrial intermediates 
[ 12 ,  13 ]. The fi rst representatives of RFDs, were synthesized in the 1960–1970s. 
Developments in this fi eld were made during all this time. The main purpose of this 
review is not only to explore the fi eld of chemistry of the ring-fl uorinated diazines but 
also to identify the remaining gaps as opportunities for the future research effort.  

3     Synthesis 

3.1     Substitution Reactions 

3.1.1     Electrophilic Fluorination. Replacement of H by F 

 Electrophilic fl uorination is one of the most direct methods for selective introduction 
of fl uorine into organic compounds. Historically fi rst electrophilic fl uorination of 
diazine derivatives was accomplished in 1960. Silver difl uoride has been used in the 
fi nal stage of an earlier synthesis of tetrafl uoropyrimidine  6  from trifl uoropyrimidine 
 5  [ 14 ]. Later the similar transformation was carried out using ClF 5  in 15 % yield and 
was found that side chlorination occurs in 9 % yield [ 15 ] (Scheme  1 ).
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  Scheme 2    Commercial synthesis of 5-FU       

   The most famous direct fl uorination of diazine derivatives is fl uorination of 
uracil by elemental fl uorine affording 5-fl uorouracil  9  (5-FU) [ 16 ] (Fig.  1 ). This is 
rare example of the use of fl uorine gas in a successful commercial process  developed 
by PCR Inc. in 1976. In spite of low yield of the process (~35 %), the original 
 multistep synthesis of 5-FU was more expensive [ 17 ] (Scheme  2 ). The success of 
industrial fl uorination of uracil was fi xed in 1978 by Daikin Kogyo Co., Ltd. which 
increased the yield up to 85 % [ 18 ].
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  Scheme 1    Synthesis of tetrafl uoropyrimidine       
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   Uracil gave 5-fl uorouracil when fl uorine was passed into an aqueous suspension 
of the uracil. It is suspected, that fl uorinating species of fl uorine formed in water 
are HOF and/or F 2 O, which reacted with uracil [ 19 ]. Besides elemental fl uorine 
another reagents were used in the reaction. Among successful reagents are CF 3 OF 
(ca. 90 %) [ 20 ], graphite intercalate, C 19 XeF 6  (90 %) [ 21 ], AcOF (80–90 %) [ 22 ], 
CsSO 4 F (54 %) [ 23 ] and Selectfl uore (82 %) [ 24 ]. Small-scale preparations involv-
ing direct fl uorination of uracil with fl uorine or trifl uoroacetyl hypofl uorite gave 
yields in the region 76–92 %, but scaling-up considerably reduced the effi ciency 
[ 25 ]. Problems arising from difl uorination of highly activated substrates [ 16 ,  26 ] 
have been overcome by incorporating an electron-withdrawing group in the ring. 
Direct fl uorination of isoorotic esters, amides, or nitriles  10  in the presence of water, 
methanol, or acetic acid, followed by mild hydrolysis and decarboxylation of inter-
mediate products gave up to 92 % yields of 5-fl uorouracil [ 25 ] (Scheme  3 ). Also the 
fl uorination of the orotic acid was investigated; the initially obtained fl uoroorotic 
acid  13  was subjected to decarboxylation. The use of two-step reaction sequence 
was claimed to be advantageous due to simplifi ed product isolation and purifi cation 
[ 27 ] (Scheme  3 ).
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  Scheme 3    Synthesis of 5-FU based on orotic and isoorotic acid derivatives       

   All of the direct fl uorinations reported appear to be addition-elimination 
processes with solvent involvement (Scheme  4 ). A study of the mechanism and 
stereochemistry of uracil fl uorination using F 2  and AcOF has implicated a radical-
cation mechanism [ 28 ]. The effect of acetate ion on the products proved to be 
important. In its absence both  cis -  16  and  trans -isomers  15  were observed in the 
reaction mixture, but only  trans -  15  in its presence. NMR studies have revealed that 
acetate originated from the solution containing acetate ion, rather than the residue 
from acetyl hypofl uorite, binds to the 6-position of uracil to form the intermediates 
 15  and  16  (Solv=OAc). Acetate is a suffi ciently strong base to induce  trans -elimination 
of acetic acid from the  cis -isomer  16  [ 29 ,  30 ].
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   Due to the high importance of the 5-FU derivatives as anti cancer drugs a lot of 
different fl uorinating agents were tested in the fl uorination of the derivatives. The most 
important examples of the fl uorination used in drug synthesis are listed in the next 
chapter of the book. 

 In a course of fl uorination of uracil derivatives, the fl uorination of cytosine 
 derivatives  17  leading to 5-fl uorocytosine  18  was investigated [ 28 ,  30 ]. In contrast 
to uracil some side process were disclosed. 1-Substituted cytosine intermediate 
adducts  19  rapidly deaminated in water to yield uracil analogues  21  [ 30 ] (Scheme  5 ). 
The corresponding NF 2 -derivatives were detected during fl uorination of cytosine 
in water by fl uorine [ 31 ]. It should be noted, that occurrence only one electron- 
donating hydroxy(keto) group in pyrimidinone-2 is suffi cient for direct fl uorination. 
The corresponding pyrimidinone-2 and its N1-substituted derivatives give under 
fl uorination by fl uorine in HF or AcOH the corresponding 5-fl uorinated derivatives 
in 38–61 % yields. In this case the fl uorination proceeds also as addition- elimination 
process [ 32 ].
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  Scheme 5    Proposed reaction scheme for the fl uorination of uracil       
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   The intensive development of electrophilic fl uorination reagents in last two 
decades leads to it’s using both in academician and industrial investigation. Recent 
patents and papers directed to the early stage drug discovery are illustrated this 
trend. Some examples of such fl uorinations based on electron rich pyrimidines are 
listed in Table  2 .

   As seen from the table for direct fl uorination of monocyclic pyrimidine ring 
needs activation at least by one amino group. Activation of the ring by alkoxy 
groups is not suffi cient. In this case of preliminary lithiation is used with subsequent 
fl uorination with NFSI (Table  2 , Entry 6). Besides fl uorination of lithium deriva-
tives, fl uorinations of other organomethallic derivatives of pyrimidines are known. 
In a series of purines XeF 2  mediated fl uorination of 8-tributylstannyl derivatives  22  
was developed leading to 8-fl uorinated derivatives  23  in high preparative yield 
(Scheme  6 ) [ 39 ,  40 ].

    Table 2    Electrophilic fl uorination of pyrimidine derivatives   

 #  Substrate  Conditions  Products  Yield (%)  Ref. 

 1 

  

N
N

N
N

N

O

O

N Ph

    

  
N

+

F
OTf-

     
DCM, rt, 30 min 

  

N
N

N
F

N

N

O

O

N Ph

    

 31  [ 33 ] 

 2 

  HO
N

N
HN

S

OH

R

    

 Selectfl uor, MeOH, 
rt, 3 days 

  HO
N

N
HN

S

OH

F R

    

 19–25  [ 34 ] 

 3 

  

N
N

N

Cl

O

N

    

 Selectfl uor, MeOH, 
5 °C, 16 h 

  

N
N

N

Cl

O

N
F

    

 20  [ 35 ] 

 4 

  Cl
N

O
N

N
R

    

 Selectfl uor, 
DCM-MeOH, 
overnight, rt 

  Cl
N

O
N

NF
R

    

 33  [ 36 ] 

 5 

  
N
H

N

N

    

 F 2 /N 2 , TFA, 15 °C 

  
N
H

N

N
F

    

 41  [ 37 ] 

 6 

  O
N

N
O

Cl

    

 1. LDA, THF, 
−78 °C, 1.5 h 

 2. NFSI, THF, 
−78 ÷ −20 °C, 15 h 

  O
N

N
O

ClF

    

 48  [ 38 ] 
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   Unusual approach to the 5-fl uoropyrimidides through organomercury derivatives 
was elaborated by Polish scientists. 2,4-Dimethoxypyrimidine  24  was readily 
mercurated with a boiling aq. Hg(OAc) 2  solution acidifi ed with AcOH for 2 h, and 
this hot solution containing  25  was applied at once in subsequent reactions with 
saturated aq. KI solution affording  26  in 79 % preparative yield. By analogous way 
uracil derivatives were synthesised. By successively reacting (at ca. −60 °C) these 
symmetric organomercurials with excess of neat liquid SF 4  (b.p. −40.4 °C) the 
corresponding monofl uorinated products  28  were obtained in ca. 30 % yield. In this 
reaction SF 4  formally plays unusual role as F+ source (Scheme  7 ) [ 41 ].
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  Scheme 7    Synthesis of F-containing pyrimidines via Hg–F exchange       

   Excluding pyrimidine derivatives electrophilic fl uorination of other diazines was 
almost not studied. To the best of our knowledge there is no examples of electro-
philic fl uorination of pyridazines and only 1 paper and 1 patent devoted to fl uorina-
tion of pyrazines and quinoxaline. Chambers and co-workers described fl uorination 
of quinoxalines  29  in good yields using elemental fl uorine–iodine mixtures at room 
temperature (Scheme  8 ). Mono- ( 30 ) and difl uorinated products  31  were formed in 
different ratio depending on amount of fl uorine used in the reaction. It should be 
noted that pyrazine, pyrimidine and pyridazine were recovered unchanged using 
similar condition [ 42 ].
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  Scheme 6    Synthesis of F-containing pyrimidines via Sn–F exchange       
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  Scheme 8    Fluorination of quinoxaline derivatives       

N

N

NH

Cl Cl

N

N

NH

Cl Cl

F

Selectfluor

CHCl3, 0 °C

63%32 33

  Scheme 9    Fluorination of pyrazine derivative       

   Fluorination of pyrazine  32  activated by amino group using Selectfl uor afforded 
fl uoropyrazine  33 in 63 % preparative yield (Scheme  9 ) [ 43 ].

3.1.2        Nucleophilic Fluorination. Halogen Exchange Reactions 

 The most practicable and versatile laboratory and industrial route to ring-fl uorinated 
diazines involves nucleophilic displacement of chloride by fl uoride from systems 
activated towards nucleophilic attack. This is often referred to as the ‘Halex’ (halogen 
exchange) process [ 44 ]. Historically fi rst electrophilic fl uorination of diazine 
derivatives was accomplished in 1960 by silver fl uoride [ 14 ]. Later different sources 
of fl uoride ion included hydrogen, sodium, potassium, cesium, antimony, silver 
tetralkylammonium fl uorides, and sulfur tetrafl uoride have been used. Reactivity of the 
alkali metal fl uorides decreases in the series CsF > KF >> NaF (i.e., with increasing 
lattice energy), and because the reactivity of fl uoride as a nucleophile decreases 
sharply on solvation, dipolar aprotic solvents are often use. A lot of diverse ring 
fl uorinated diazines were prepared by the manner. The rate determining step in 
nucleophilic aromatic fl uorination by substitution, including the Halex process, is the 
addition of fl uoride to form a Meisenheimer complex. Therefore, aryl chlorides are 
more suitable substrates in the Halex process than the corresponding aryl bromides 
and iodides, because chlorine is more electronegative than bromine and iodine. 

 In the last decade phase-transfer catalysis and ionic liquid using become popular 
nucleophilic fl uorination. The representative set of the reaction illustrated the 
methodology are listed in the Table  3 .
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   Table 3    Nucleophilic fl uorination of diazine derivatives   

 #  Substrate  Conditions  Products  Yield (%)  Ref. 

 1 

  Cl
N

N
Cl

Cl

    

 AgF, neat, 98 °C 

  F
N

N
F

F

    

 76  [ 14 ,  45 ] 

 2  -//-  KF, 300–310 °C  -//-  85  [ 46 ] 
 3  -//-  CsF, DMF, 150 °C, 2,5 h  -//-  53  [ 47 ] 
 4  -//-  3 eq. PS*HF, MeCN, 

50 °C, 48 h 
 -//-  98  [ 48 ] 

 5  -//-  6 eq. Bu 4 P +  HF 2  − , 50 °C, 4 h  -//-  85  [ 49 ] 
 6 

  Cl
N

N
Cl

Cl

    

 Et 3 N*3 HF, 80 °C 

  F
N

N
F

F

    

 93  [ 50 ] 

 7 

  Cl
N

N
Cl

    

 SF 4 , 150 °C, 9 h 

  F
N

N
F

    

 70  [ 51 ] 

 8 

  N

N
Cl

    

 CsF, NMP, 150 °C, 3,5 h 

  N

N
F

    

 33  [ 47 ] 

 9 

  Cl
N

N
ClS

F
FF

    

 KF, SbF 3 , 250 °C, 2 h 

  F
N

N
FS

F
FF

    

 63  [ 52 ] 

 10 

  Cl
N

N
Cl

ClCl

    

 KF, 480 °C 

  F
N

N
F

FF

    

 85  [ 53 ] 

 11 

  Cl
N

N
Cl

ClCl

    

 NaF, 300 °C 

  F
N

N
F

FCl

    

 85  [ 54 ] 

 12 

  

N

N

Cl

Cl

Cl

Cl

Cl
Cl     

 KF, 350 °C 

  

N

N

F

F

F

F

F
F     

 >60  [ 55 ] 

 13 

  Cl

N
N

Cl

Cl

Cl    

 KF, 300 °C 

  F

N
N

F

F

F     

 50–60  [ 56 ] 

 14 

  Cl N

N

Cl

Cl Cl

    

 KF, 310 °C 

  F N

N

F

F F

    

 95  [ 57 ] 

 15 

  

N

N

ClCl

Cl

Cl
Cl Cl     

 KF, 290 °C 

  

N

N

FF

F

F
F F     

 60  [ 58 ] 
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Table 3 (continued)

 #  Substrate  Conditions  Products  Yield (%)  Ref. 

 16 

  

N
N

Cl

Cl

Cl
Cl Cl

Cl

    

 KF, 290 °C 

  

N
N

F
F

F
F F

F

    

 n.r.  [ 59 ] 

 17 

  

N

N
Cl

Cl

Cl
Cl

Cl

Cl

    

 KF, 380 °C 

  

N

N
F

F

F
F

F

F

    

 50  [ 60 ] 

 18 

  N

N

Cl    

 1.3 eq. TBAF, 1 h 

  N

N

F    

 >95  [ 61 ] 

 19 

  

N
N

Cl

Cl    

 2.5 eq. TBAF, 30 min 

  

N
N

F

F    

 >95  [ 61 ] 

 20 

  

N
N

Cl

Ph

    

 1.3 eq. KF, 10 % 
18-crown-6, 200 °C, 1 h 

  

N
N

F

Ph

    

 100  [ 62 ] 

 21 

  

N
N

O

O

Cl
    

 KF, [bmim][BF 4 ], 
120 °C, MW, 10 min 

  

N
N

O

O

F
    

 80  [ 63 ] 

 22 

  

N
N

O Cl

Ph Cl

    
  

N
N

N
+

N F-

   , DMSO 
  

N
N

O Cl

Ph F

    

 93  [ 64 ] 

   The chlorine/fl uorine exchange reaction is an equilibrium reaction and can be 
infl uenced by altering the pressure, time, temperature and the ratio of the reactants. 
Usually high-temperature/high-pressure autoclave technique was used for shifted 
the equilibrium to fl uorinated product. Anhydrous potassium fl uoride in tetraglyme 
with a catalytic amount of dicyclohexano-l8-crown-6 at 15–16 °C converted 
2,4-dichloropyrimidine into 2,4-difl uoropyrimidine. This process solved the 
problem of having to use an autoclave or dimethylformamide as solvent, because 
in tetraglyme (bp 275–276 °C) the more volatile fl uoro products could be distilled 
directly from the reaction mixture uncontaminated by solvent. Under similar condi-
tions 2-chloro-5-methoxypyrimidine was converted into the 2-fl uoro analogue [ 65 ]. 

 Contact time very much controls the degree of conversion of polychlorinated 
pyrimidines heated in sealed tubes with solid potassium fl uoride (Entry 6) [ 66 ], 
and selectivity can also be achieved by careful control of reaction conditions and 
reagents. With 2,4,5-trichloropyrimidines, substituted at C–6 by chloro, methyl, 
chloromethyl, di- or tri-chloromethyl, sodium or potassium fl uoride use only 
resulted in nuclear fl uorination. Hydrogen fl uoride can displace chlorines on either 
side chain or nucleus (especially 2-chloro), and antimony fl uoride is specifi c for all 
chlorinated methyl groups. Sodium fl uoride initially replaces a 4-chloro group [ 67 ]. 
Fluorination reactions on tetrachloropyridazine using sodium fl uoride and potassium 
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fl uoride proceeds in 4 steps and produce mixtures of the various fl uorinating stages 
(from 1 to 4) in each case, it being possible to separate the compounds from each 
other using distillation. The second and third fl uorination stages are composed of 
the difl uorinated trifl uorinated isomers. In contrast to this, the chlorine/fl uorine 
exchange using hydrogen fl uoride proceeds selectively as this reaction only yields 
one isomer for each fl uorination stage. In last case the 4(5)-positions were found to 
be less active than the 3(6)-positions [ 68 ]. (proceeding from)In going from tetra-
chloropyazine to trichloropyrazine 4-position becomes more active towards Halex 
process [ 63 ]. Some of these processes have been subjected to kinetic investigation, 
which demonstrated that in polar, aprotic solvents fl uorine-chlorine exchange is a 
pseudo fi rst-order, consecutive reaction [ 69 ]. Recently a few papers devoted to 
the selectivity in clorine-fl uorine exchange in polychlorocompounds were published. 
Solvent-free PTC conditions (KF/18-crown-6) with MW activation or protone 
sponge (PS) hydrogen fl uorides using leads to complete or selective fl uorinations of 
certain dichloro(benzo)diazines in satisfactory yields. In some cases, the selectivity 
can be explained based on the difference between thermodynamic stability of the 
Meisenheimer complexes [ 48 ,  62 ]. 

 Among different conditions for Halex process one of the most effective for 
low activated substrates is (N,N′-dimethylimidazolidino)tetramethylguanidinium 
 chloride  37  (CNC) using as phase-transfer catalyst. The synthesis and using of the 
catalyst were developed in 2006 by LANXESS Deutschland GmbH in a course of 
Fluoxastrobin intermediate  39  development [ 70 ] (Scheme  10 ). It should be noted, 
that traditional phase-transfer catalysts does not work well in the transformation and 
in original Bayer synthesis stepwise fl uorination was used [ 71 ].
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+
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  Scheme 10    CNC catalyzed Halex process       
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   Besides chlorine, another living group can be involved into nucleophilic fl uori-
nation. Preliminary transformation of chloropyrimidines  41  to trimethylammonium 
salts  42  facilitate further fl uorination. In this case the reaction proceeds in very mild 
conditions – under 5 °C (Scheme  11 ) [ 72 ,  73 ]. This approach allows to fl uorinate 
pyrimidines deactivated by electron-donated groups. When heated with potassium 
fl uoride in ethylene glycol 2,6-dimethoxy-4-trimethylammoniopyrimidine salts 
were converted into the 4-fl uoroderivatives in 42 % yield [ 74 ] Analogously 
 fl uorination can be accomplished in 2-d position, which was illustrated by prepara-
tion of 2-fl uoro-4-phenyl-pyrimidine [ 75 ].

N

N

Cl

R R

N

N

N
+

R R

N

N

F

R R

NMe3 KHF2 - H2O

5 °C

Cl-

R = H, Me41 42 43

  Scheme 11    Fluorination of trimethylammoniopyrimidines       

3.1.3        Nucleophilic Fluorination. The Balz–Schiemann Reaction 

 In this classical reaction the leaving group, molecular nitrogen, is lost on pyrolysis and 
the mechanism appears to involve formation of an aryl cation which then abstracts 
fl uoride ion. In comparison with halogen exchange the Balz–Schiemann reaction is 
not widespread in diazine chemistry. But from early 1970 to recent times the method 
is actively used in laboratory scale (Table  4 ). Generally procedure includes the 
treatment of aminodiazine solution in aq. HBF 4  by NaNO 2  at ca −10 °C to −15 °C 
followed by neutralization with NaOH. Another procedure is based on NaNO 2  
treatment in HF-Py media with subsequent heating. The last method gives better 
yields, especially for 4-fl uoripyrimidines. The Balz–Schiemann approach allow to 
synthesized fl uoropyrimidines bearing active chlorine atom, which are unacceptable 
via Halex process (Entry 5 and 6).

3.2         Cyclization Processes 

3.2.1     “Principal Synthesis” of Pyrimidines 

 The condensation of two acyclic reagents (with any preattached substituents), one to sup-
ply N 1 C 2 N 3  fragment and the other to supply C 4 C 5 C 6  fragment to form the resulting ring, 
is the most used procedure and is known accordingly as the “principal synthesis” of 
pyrimidines. The approach is important for the synthesis of C 5 -F pyrimidine derivatives. 

 First synthesis of 5-FU was accomplished by Heidelberger in 1957 according the 
methodology [ 6 ,  81 ]. Ethyl fl uoroacetate  44  was subjected to Claisen condensation 
with ethyl formate to give  45 . The salt  45  was introduced into reaction with 
 S -alkylisothiourea derivatives  46  to give fl uoropyrimidines  47 , which were hydro-
lysed to give  5-FU  (Scheme  12 ).
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   Table 4    The Balz–Schiemann reaction of diazine derivatives   

 #  Substrate  Conditions  Products  Yield (%)  Ref. 

 1 

  N

N
NH2

    

 1. NaNO 2  in aq. HBF 4 , −10 °C 
 2. NaOH 

  N

N
F

    

 30–41  [ 72 ,  76 ] 

 2  -//-  1. 1.1 eq. NaNO 2 , 90 eq. HF-Py 
(X HF  = 0.86), 0 °C, 2° min 

 2. 20 °C, 1 h 

 -//-  55  [ 77 ] 

 3 

  N

N
NH2

Br

    

 1. NaNO 2  in aq. HBF 4 , −10 °C 
 2. NaOH 

  N

N
FBr

    

 38  [ 73 ] 

 4 

  N

N
OMe

NH2

    

 1. NaNO 2  in aq. HBF 4 , −10 °C 
 2. NaOH 

  N

N
OMe

F

    

 1°  [ 65 ] 

 5 

  
N

N
NH2

Cl

Cl     

 1. 1.1 eq. NaNO 2 , 90° eq. HF-Py 
(X HF  = 0.86), 0 °C, 20 min 

 2. 40 °C, 1 h 

  
N

N
F

Cl

Cl     

 8°  [ 77 ] 

 6 

  
N

N
NH2

Cl

    

 1. 1.1 eq. NaNO 2 , 90 eq. HF-Py 
(X HF  = 0.86), 0 °C, 20 min 

 2. 20 °C, 1 h 

  
N

N
NH2

Cl

    

 72  [ 77 ] 

 7 

  
N

N
H2N

    

 1. 1.1 eq. NaNO 2 , 90 eq. HF-Py 
(X HF  = 0.86), 0 °C, 20 min 

 2. 90 °C, 1 h 

  
N

N
F

    

 6°  [ 77 ] 

 8 

  

NN
NH2    

 1. NaNO 2  in aq. HBF 4 , −10 °C 
 2. NaOH 

  

NN
F

    

 n.r.  [ 78 ] 

 9 

  

N N

NH2    

 1. NaNO 2  in aq. HBF 4 , −5 °C 
 2. NaOH 

  

N N

F     

 3°  [ 79 ] 

 10 

  

N N
+

NH2

O

    

 1. NaNO 2  in aq. HBF 4 , Cu, −5 °C 
 2. NaHCO 3  

  

N N
+

F

O

    

 17  [ 80 ] 

HN

N
H

O

O

F

F COOEt
F COOEt

ONa

SRNH2

NH2

+

NH

N

O

RS

FHCOOEt

EtONa

aq HCl

24%

44 45

46

47 9

  Scheme 12    Heidelberger synthesis of 5-FU       

   The cyclization of 2-fl uoro-3-ketoesters derivatives with 1,3- NCN -bisnucleophiles 
is general approach to fl uorinated pyrimidines. There are a lot of examples of such 
transformations in the literature. A representative set of the cyclization is listed in 
Table  5 . Besides usual 1,3- NCN -bisnucleophiles, such as amidine, guanidine and 
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urea derivatives in the reaction a set of appropriate aminoheterocycles (Entry 4–6) 
was used. In this case fused derivatives of 5-fl uorineted pyrimidines were synthe-
sised. It should be noted, that synthesis of fused heterocyclic pyrimidines could not 
be accomplished in basic conditions, in a case of aminopyrazole and aminopyrimi-
dine neutral conditions were used, in a case of aminothiadiazole acidic catalysis 
works well. Fluorinated malonic acid derivatives were subjected also to the 
“Principal synthesis” of pyrimidines affording 4,6-dihydroxypyrimidine derivatives 
(Entry 7–9). Basic conditions in this case give fi nal products in 5°–9°% yields.

   Latent dicarbonyl compounds, especially fl uorinated “push-pull” enaminones also 
used as 1,3- CCC -bielectrophiles in the cyclization. In earlier examples based on 
3-dimethylamino-2-fl uoroacrolein both thermal and basic conditions were used for the 
synthesis of the corresponding pyrimidines in 26–57 % yields (Entry 10–12). Also 
3-dimethylamino-2-fl uoroacrolein gives parent 5-fl uoropyrimidine in 52 % yield under 
heating at 190 °C in formamide. Recent works dealt with sophisticated fl uorinated 
“push-pull” enaminones also referred basic cyclization conditions as well as thermal. 

 In many cases synthesis of the fl uorinated 1,3- CCC -bielectrophile precursors is 
the most diffi cult part of the synthetic sequence and using “classical” methods is 
usually accomplished by the use of highly toxic fl uoroacetic acid derivatives in 
Claisen condensation with ethyl formiate [ 81 ], ethyl chloroformate [ 95 ,  96 ], diethy-
loxalate [ 82 ,  97 ], acetyl, benzoyl chlorides [ 82 ] or Vilsmeier-type formylation [ 98 , 
 99 ] (Scheme  13 ). The product of Vilsmeier-type formylation is 3-dimethylamino- 2-
fl uoroacrolein  54  which reacts with triethyloxonium tetrafl uoroborate and dimeth-
ylamine to give the vinamidinium salt  55  [ 91 ], which also can be used as 
1,3-bielectrophile (see Scheme  19 ). Also Reformatsky-type synthesis of ethyl 
α-fl uoroacetoacetate  52  starting from ethyl chlorofl uoroacetate  56  was described in 
20 % yield [ 82 ].
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  Scheme 13    Approaches to fl uorinated 1,3-CCC-bielectrophiles       
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   Wittig and Wittig-Horner reactions were used to prepare α-fl uoro-β-keto esters 
from halofl uoroacetates (Scheme  14 ). Triethyl phosphite and ethyl bromofl uoroac-
etate  57  gave under thermal conditions (145 °C, 5 h) 150 g of fl uorinated  phosphonate 
 58  in one run in 61 % yield [ 100 ]. Tri- n -butylphosphine (Ph 3 P also entered into the 
reaction, but further transformation described using  n -Bu 3 P) reacts with ethyl bro-
mofl uoroacetate in THF solution at rt during 4°h affording phosphonium salt in 9°% 
yield, which was converted into ylide  59  by BuLi treatment in THF at −78 °C and 
used in the solution for further transformation [ 101 ]. Both substrates are applicable 
for the synthesis of α-fl uoro-β-keto esters using alkyl and aryl substituted acyl chlo-
rides. Acylation of ylide  59  with perfl uorinated and partially fl uorinated acyl chlo-
rides did not proceed cleanly, however the anion derived from phosphonate  58  
undergo acylation with further hydrolysis affording desired products in good yields 
[ 102 ]. Further some modifi cation of the procedure was reported using phosphonate 
 58  [ 103 ], which is now commercially available.
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  Scheme 14    Wittig and Wittig-Horner approach to fl uorinated 1,3- CCC -bielectrophiles       

   The further work devoted to the synthesis of fl uorinated 1,3- CCC -bielectrophiles 
tries to avoid the use of fl uoroacetic acid derivatives. These three general approaches 
to synthones gain commercial value:

 –    electrophilic fl uorination of the corresponding dicarbonyl compounds (Tosoh 
F-Tech, Inc., F 2 /N 2  [ 104 ]; Air Products and Chemicals, Inc. CF 2 (OF) 2  [ 105 ];)  

 –   nucleophilic fl uorination of the corresponding chloro-derivatives (Bayer, 
TEA*3HF [ 106 ,  107 ])  

 –   ethanolysis of hexafl uoropropene  61  (E.R. SQUIBB and SONS, INC., Scheme  15  
[ 108 ,  109 ])
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      Lab scale synthesis of fl uorinated 1,3- CCC -bielectrophiles based on electro-
philic fl uorination has disadvantage in difl uoroproducts formation. This problem 
was solved recently by application of iodotoluene difl uoride or iodosylbenzene – 
HF [ 110 ,  111 ]. A possible mechanism for a fl uorination reaction of 1,3-dicarbonyl 
compounds is shown in Scheme  16 . First, PhIF 2  should be formed in situ by reaction 
of PhIO with HF. The reaction of PhIF 2  with  64  is considered to proceed effectively 
after enolization of  64 . The resulting 2-iodanyl-1,3-dicarbonyl compound  68  read-
ily undergoes displacement by a fl uoride ion due to the high leaving ability of the 
phenyliodonium group, to give the fl uorine-containing product  65 . Also the fl uori-
nated product was formed through the  C -protonation of the iodonium ylide, fol-
lowed by displacement with fl uoride ion [ 112 ].
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Ph OEt

O O

Ph OEt

I
Ph F

PhIO 2 HF+ PhIF2 H2O+

55% aq HF, PhIO 

DCM, 40 °C, 24h 98%

p-Me-C6H4-IF2

rt, 9HF-Py, 3h

73%

64 65

64

66

TEA*3HF

DCM, rt, 1.5 h
25%

67

PhIF2

- HF

F- - PhI
- HF

65

68

  Scheme 16    Lab scale fl uorination of β-dicarbonyl compounds       
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  Scheme 15    Synthesis of monofl uoromalonate from perfl uoropropene       

   Another way to avoid the difl uorination can be achieved by using of “push-pull” 
enamines and Selectfl uor or NFSI as fl uorine source (Scheme  17 ) [ 92 ,  94 ].
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   Electrophilic fl uorination of formal formylacetic acid synthon was carried out 
through 5,6-unsubstituted 1,3-dioxin-4-ones  74  by fl uorine followed by treatment 
with triethylamine. The fl uorination proceeds via  cis -addition – elimination in 84 % 
overall yield affording 5-fl uoro-1,3-dioxin-4-one  76 . The compound could be trans-
formed to 5-FU by analogy with Heidelberger synthesis of 5-FU but original paper 
doesn’t refer yields for the transformations [ 113 ] (Scheme  18 ).
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  Scheme 17    Lab scale electrophilic fl uorination of “push-pull” enamines       
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  Scheme 18    5,6-unsubstituted 1,3-dioxin-4-ones fl uorination       

   Alternative approaches to some fl uorinated synthons were developed in 1990s by 
Yamanaka with co-workers starting from commercially available polyfl uorinated 
alcohol. The corresponding quaternary ammonium salt  80  was prepared in four step 
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synthesis in 69 % total yield.  80  under treatment by secondary amines gave vinami-
dinium salts  81  similar to Vilsmeier-type sequence (see Scheme  13 ) [ 114 ]. The salts 
appear appropriate synthons for pyrimidine synthesis, for example the reaction with 
formamidine hydrochloride affords parent 5-fl uoropyrimidine  82  in 82 % yield 
[ 115 ]. Same synthetic equivalent of fl uoromalonic dialdehyde – 3-dialkylamino- 2-
fl uoroacroleins  85  also acceptable from tetrafl uoropropanol via 3-step sequence 
including tosylation [ 116 ], elimination of HF via lithiation [ 117 ,  118 ] and dialkyl-
amino treatment. The overall yield of the sequence is 55 % [ 117 ]. Tosylate  84  
directly can be subjected to cyclization with amidines and can be used for synthesis 
of 1-substituted sulfonates through additional lithiation – alkylation/Pd-catalyzed 
coupling with ArI [ 119 ] (Scheme  19 ).
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  Scheme 19    Tetrafl uoropropanol as starting material for synthesis of fl uorinated pyrimidines       
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   Another Japanese group of chemists in 1988 described the synthesis of fl uorinated 
pyrimidines starting fl uorinated ketones. The treatment of fl uoroalkyl ketones  89  with 
sodium diethyl phosphate in THF at −10 °C gave 1-substituted fl uoro-1- alkenyl phos-
phates  90 , which readily reacted with amidine derivative at room temperature afford 
corresponding pyrimidines  91  bearing fl uorine at 5-th position as well as perfl uoroal-
kyl fragment [ 120 ]. Another synthon able to incorporate both ring fl uorine atom as 
well as perfl uoroalkyl group was described by Sloop in 2002 via fl uorination of silyl 
enol esters. This diketone  94  was converted to pyrimidinol  91  in acidic conditions in 
61 % yield [ 121 ] (Scheme  20 ).

Rf R

OF F

F F
Rf R

OF F

F

P
O

OEt

OEt R' NH2

NH*HCl

N

N

Rf
F

R R'

F3C

O O

F3C

O O
SiMe3

F3C

O O

F

NaOP(OEt)2

- 10 °C, THF

Rf = CF3, (CF2)4CF3

R = Alkyl, Ar, cycloalkyl, vinyl
R' = NH2, H, Me, Ph
Base = NaH, MeONa, KOH, K2CO3

for Rf = CF3, R = Me, 67% 

base rt

for Rf = CF3, R = Me, R' = NH2 64% 

BSA

Rf = CF3,
R = Me,
R' = OH

61%

CFCl3, 0 °CDCM

5% F2 / N2

urea, EtOH
H2SO4

89 90 91

92 93 94

  Scheme 20    Synthesis of ring and chain fl uorinated pyrimidines       

   3-Substituted- trans -2,3-difl uoro-2-acrylates  98  can be used as synthons for 
pyrimidine synthesis. Trifl uorovinyltrimethylsilane  96 , prepared from trimethylsilyl 
chloride, chlorotrifl uoroethylene  95  and n-butyl lithium in THF, reacted with a 
variety of lithium reagents to afford the corresponding addition–elimination prod-
ucts  97 . Ethyl chloroformate reacted with trans-(2-alkyl or 2-aryl-1,2- difl uoroethenyl)
trimethylsilanes  97  in presence of dry potassium fl uoride (1.5–2°equiv.) in DMF at 
80 °C to afford the corresponding esters  98  stereoselectively in good yields. 
Treatment of ethyl 3-substituted-trans-2,3-difl uoro-2-acrylates with acetamidine 
hydrochloride and benzamidine hydrochloride, respectively, in presence of K 2 CO 3  
in 1,4-dioxane gave the corresponding 5-fl uoropyrimidine derivatives  99  in good 
yield [ 122 ] (Scheme  21 ).

 

Fluorine Containing Diazines. Synthesis and Properties



318

   Similar approach (trough difl uorinated vinyls) was developed by Sizov with co- 
workers in early 2000-th starting from commercially available tetrafl uoropropionitrile 
 100 . The nitrile reacts with PhCH 2 SH in presence of 2 eq. of the BF 3 *NEt 3  complex 
affording vinyl sulfi de  101  in a preparative yield. Difl uorobenzylthioacrylonitrile 
reacted with amidines to produce the corresponding 4-amino-5-fl uoropyrimidines 
 102  [ 123 ,  124 ] (Scheme  22 ).
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  Scheme 21    Synthesis of fl uorinated pyrimidines from 2,3-difl uoro-2-acrylates       
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  Scheme 22    Synthesis of fl uorinated pyrimidines from difl uorobenzylthioacrylonitrile       

3.2.2        Miscellaneous Cyclization 

 5-Fluoropyrimidines  106  can be also synthesized using Diels-Alder reaction of 
fl uorinated 2-aza-1,3-diene  105  with tosyl cyanide. The corresponding 2-aza- 
1,3-diene was easy synthesized from N-acylimldates  104  through silylation 
with t-butyldimethylsilyl trifl ate in a presence of triethylamine [ 125 ] 
(Scheme  23 ).
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   Unusual approach to 4-fl uoriopyrimidines was developed by de Nanteuil where 
CF 3 -group plays a role of fl uorine source. The corresponding  α-chloro-α′-trifl uoromethyl 
ketones  111  were synthesised in 5 steps starting from  107 , which reacted with for-
mamidine affording 5-substituted 4-fl uoro-6-chloromethyl pyrimidines  112  in 
23–35 % yield [ 126 ] (Scheme     24 ).
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  Scheme 23    Diels-Alder approach to fl uorinated pyrimidines       
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  Scheme 24    Access to 4-Fluoropyrimidines from α-chloro-α′-trifl uoromethyl ketones       

   Very recently unusual approach to 4-fl uoropyrimidine N-oxides from alkenes 
was elaborated in Moscow State University. The method based on three-component 
heterocyclization involving gem-bromofl uorocyclopropanes  113  or  116 , nitrosyl 
tetrafl uoroborate, and a molecule of the solvent (nitrile) yielding previously 
unknown fl uorinated pyrimidine N-oxides  114  or  117  (Scheme  25 ) [ 127 ].
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   The fi rst step of cyclization involves the electrophilic attack of NO +  and the 
opening of the three-membered ring resulting in the formation of the intermediates 
type  119 . Than intermediate  119  is trapped by solvent, resulting in the formation of 
nitrilium species  120 , which undergo intramolecular cyclization into fi nal pyrimi-
dine N-oxides  122  (Scheme  26 ).

F

Br N
+

N

F

R
O

R' R'

F
Br

R' N
+

N

F

Me

O

NO+BF4
-

RCN, 80 °C

R = Et, 46%; t-Bu, 62%; Ph, 20%

CHBr2F, NaOH

DCM, TEBAC

NO+BF4
-

MeCN, 80 °C

113 114

114 116 117

R = n-Bu, 55%
n-Hex, 74%
Ph, 43%

R = n-Bu, 33%
n-Hex, 57%
Ph, 39%

  Scheme 25    Heterocyclization of  gem -Bromofl uorocyclopropanes with NOBF 4  and nitriles       
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  Scheme 26    Heterocyclization of  gem -Bromofl uorocyclopropanes with NOBF 4  and nitriles       

   Ichikawa and co-workers described in 2007 intramolecular cyclization leading to 
3-fl uoroccinnolines.  o -Amino-β,β-difl uorostyrenes  123 , prepared from CF 3 CH 2 OTs 
and o-iodoaniline, were treated with isoamyl nitrite (i-AmONO) for diazotization, 
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and then reduced with n-Bu 3 SnH. The expected intramolecular substitution of the 
terminal diazenyl nitrogen (HN=N–) proceeded smoothly, to give 3-fl uorocinnoline 
 126  (R= n -Bu) in 58 % yield. Then several other reducing reagents were tested, and 
it was found that benzenethiol raised the yield of  126  (R= n -Bu and  sec -Bu) to 88 
and 87 %, respectively (Scheme  27 ). In the reaction of  124 , diphenyl disulfi de 
(PhSSPh) was obtained in 90 % yield based on PhSH, which implies that PhSH 
defi nitely acted as a reducing agent [ 128 ].
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  Scheme 27    Synthesis of 3-fl uoroccinnolines       

4          Properties and Chemical Transformation 

4.1     General 

 RFDs without additional chromophores are either colorless liquids or white solids 
and, apart from having relatively high volatilities, no special handling procedures 
are required for their use. The boiling points of the perfl uorinated diazines some-
what lower than those for the corresponding parent hydrocarbons in contrast to 
perfl uorobenzenoid compounds which have boiling points that parallel those of the 
corresponding hydrocarbons (Table  6 ). This is attributed to the much lower intermo-
lecular forces and the very low basicities of the fl uorocarbon systems that compen-
sate for the increase in mass upon replacing hydrogen by fl uorine [ 129 ].

   All the perfl uoroheteroaromatic systems are very weak bases and, for instance, 
superacids are required to protonate pentafl uoropyridine. Relative base strengths of 
the perfl uorinated heteroaromatic systems have been determined by NMR competi-
tion experiments and the major infl uence is that of the fl uorine atoms ortho to ring 
nitrogen that signifi cantly decrease the basicity of the system (Fig.  3 ) [ 130 ]. Despite 
the fact that perfl uoropyrimidine did no participate in experimental NMR 
 competition CNDO/2 SCF-MO calculations of energy release on portonation in 
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gaseous phase (Δ E  g ) predict that basicity of the compound are between perfl uoro-
pyridine and pefl uoropyrazine [ 131 ].

   The common method of securing information about electronic structure is pho-
toelectron spectroscopy (PES), which permits a direct comparison with experiment 
of various quantum-chemical models used for the calculation of phischem charac-
teristics. The fl uorinated diazines have been investigated by the method [ 132 ]. By 
means of fl uorine substitution the analysis of the HR HeI line PES of the parent 
compounds was made in details in Twente University, made it possible to refi ne the 
assignment of the bands in the PE spectrums of diazines. Especially in a case of 
aza- and diazaaromatics, where nitrogen “lone-pair” bands and π-bands lie in the 
same region of the spectrum, the use of the perfl uoro effect is indispensable for a 
thorough analysis of the spectra. By the same scientists the electrochemical reduc-
tion of RFDs was studied [ 133 ]. The electrochemical reduction process of fl uori-
nated aza-aromatics can well be described by the pattern which is normally 
postulated for aryl halogenides, i. g. fi ssion of the carbon-halogen bond. However, 

   Table 6    Comparison of boiling points of perfl uoroheteroaromatics systems with the corresponding 
hydrocarbon systems   

 #  System  Boiling point (°C) 
 Boiling point of perfl uorinated 
compound (°C) 

 1  Benzene  80.1  80.2 
 2  Toluene  110.6  102–103 
 3  Pyridine  115.5  83.3 
 4  Pyridazine  208  117 
 5  Pyrimidine  123.5  89 
 6  Pyrazine  115  54 
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the stability of the intermediate mono-negative ions is generally higher than for the 
comparable fl uoro-substituted arenes. The half-wave reduction potentials of the fi rst 
reduction wave can be related to the electron affi nities of the molecules. These elec-
tron affi nities have been correlated with those obtained by quantum-chemical calcu-
lation. Also recently the theoretical MP2 study was performed for the structural 
investigation of anion-binding involving π-acidic RFDs [ 134 ]. 

 The hydrophobicity of molecules plays an important role in structure–activity 
relationship studies for various bioactive compounds. The introducing of the fl uo-
rine atom into diazine core increased hydrophobicity and selected experimental data 
is presented on Fig.  4  [ 135 – 137 ]

   Despite of a lot of NMR data of RFDs the limited data available for simple 
RFDs allow one to see how the position of the fl uorine substituent on a hetero-
cycle can signifi cantly affect its chemical shift [ 138 ]. To the best of our knowl-
edge there are not literature data dealing with general analysis of NMR data of 
RFDs. Only a few reviewed papers just summarized the  19 F NMR data of RFDs 
described in 1968–1981 [ 139 – 142 ]. For the synthetic chemists one of the most 
important is  19 F NMR data, because the knowledge allows simple monitoring of 
the reaction mixtures by  19 F NMR of the reaction mixtures. This data also give 
possibilities to registrate of non-isolable intermediates in solutions, which signifi -
cant simplify the mechanistic interpretation of the processes. Besides practical 
application the  19 F NMR data for RFDs, has been used to verify previously pub-
lished statistical substituent chemical shift (SSCS) values for fl uoroarenes. The 
data was allowed generation of a set of structure factors for aromatic nitrogen 
heterocycles which allows the signals for these compounds to be predicted from 
the same set of SSCS values as fl uoroarenes [ 143 ]. 

 In case of pyrimidines, large differences in chemical shift are observed for fl uo-
rines at the 2-, 4- (6-), and 5- positions with fl uorines at the 2-position of pyrimi-
dines being the most deshielded, and those at the 5-position being the most 
shielded. The chemical shifts for fl uoropyrimidines and 5-fl uorouracil are provided 
on Fig.  5 .  13 C and  1 H NMR chemical shift and coupling constant data for some ring 
fl uorinated pyrimidines are also given on Figs.  6  and  7 . It should be noted, that in 
fl uorinated pyrimidines, unlike with fl uorinated benzenes, the values of coupling 
 3  J  FH  constants are signifi cant small (0.8–2.7 Hz), less then values of  5  J  FH  constants 
in 5-fl uorinated pyrimidines (~3.3 Hz) and than values of  4  J  FH  constants in 4-fl uo-
rinated pyrimidines (~10 Hz).
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  Fig. 4    Hydrophobicity of RFDs       
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  Fig. 7     13 C NMR data of ring fl uorinated pyrimidines       

     In pyridazine series like in pyrimidines large differences in chemical shift are 
observed for fl uorines in 3-(6-)- and in 4-(5-) positions. The fl uorines at the 3-(6-)- 
positions of pyridazine being more deshielded. The values of of fl uorine-fl uorine 
coupling constants one can easily fi nd from NMR data of series fl uorochloropyrid-
azines [ 68 ] (Fig.  8 ). As in a case of pyrimidine a large value (ca. 30 Hz) of the  5  J  FF  
constant is noteworthy. Also on Fig.  9   13 C and  1 H NMR chemical shifts and cou-
pling constant of model 6-chloro-3-fuoropyridazine are provided. The values of 
coupling  3  J  FH  constants are signifi cantly small (~2 Hz) than values of  4  J  FH  constants 
(~6–7 Hz).

     19 F,  13 C and  1 H NMR chemical shift and coupling constant data for some ring 
fl uorinated pyrazines are provided on Fig.  10 .

   The determination of substitution patterns in diazine compounds is particular 
important. One of the approaches to solve the problem is 2D  15 N NMR spectroscopy. 
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  Fig. 10    NMR data of ring fl uorinated pyrazines       

Therefore in the literature there are some  15 N NMR data of ring fl uorinated diazines. 
The  15 N NMR of perfl uorinated diazines are summarized in Table  7  [ 144 ]. Also 
recently few works devoted to theoretical calculations of coupling constants in fl uo-
rinated azines were published [ 145 ,  146 ].
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   As an example of RFD structure determination based on long-range  1 H– 15 N 
GHMBC spectra one can refer determination of structure of 2-fl uoro-3-phenyl-5- 
iodopyrazine based on comparison of GHMBC spectra of fl uorinated pyrazines    
(Fig.  11 ) [ 147 ].

4.2        Nucleophilic Aromatic Substitution 

4.2.1     General Remarks: Orientation and Reactivity 

 A considerable number of ring-fl uorinated diazines undergoes various nucleophilic 
aromatic substitution reactions. Nucleophilic aromatic substitution reactions follow 
the well-established two-step addition–elimination mechanism  via  a Meisenheimer 
intermediate. The destabilization of  sp  2 -C bound fl uorine by p–π repulsion activates 
fl uorinated aromatic compounds toward nucleophilic attack and subsequent substi-
tution. The susceptibility of the carbon center toward nucleophiles is also enhanced 
by the negative inductive (− I  σ ) effect of fl uorine. Therefore the ease of nucleophilic 
halogen replacement – F > Cl > Br > I – is in the opposite order to that for aliphatic 
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  Fig. 11    Structure determination of 2-fl uoro-3-phenyl-5-iodopyrazine       

   Table 7    Comparison of  15 N chemical shifts of perfl uoroheteroaromatic systems with the 
corresponding hydrocarbons analogues (shifts relative to liq. NH 3 )   

 #  System  δ( 15 N) (ppm) 
 δ( 15 N) (ppm)of the 
hydrocarbon analogue   N J NF  (Hz)  N 

 1  Pyridine  234  316  −51.7  2 
 3.9  3 
 1.2  4 

 2  Pyridazine  328  400  −50.0  2 
 3  Pyrimidine  228  195  −53.7  2 

 2.9  3 
 4  Pyrazine  278  334  −45.1  2 
 5  Phtalazine  273  370  −59.5  2 

 8.8  3 
 6  Quinoxaline  273  329  −54.5  2 
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nucleophilic substitution. The kinetic data of pyperidinolysis in diazine series proof 
the assumption and k F /k Cl  ratios are listed in Fig.  12  [ 72 ,  148 ]. Also the acid- 
promoted hydrolysis of the 2-fl uoro derivatives of pyrimidine, 4-methylpyrimidine, 
and 4,6-dimethylpyrimidine have been studied in hydrochloric acid. The mecha-
nism for hydrolysis of the pyrimidines as distinct from that of the less activated 
2-fl uoroquinoline and the 2-fl uoropyridines by suggesting that nucleophilic attack 
takes place without proton transfer to a second water molecule in the reactions of 
the former compounds and with transfer in reaction of the latter [ 149 ]. Kinetic stud-
ies of basic hydrolysis of halogenopyrazines in aqueous NaOH also show that 
2- fl uoropyrazine in 640 times more active than 2-chloropyrazine [ 150 ] (Fig.  12 ).

   The difference in fl uorine/chlorine mobility was also practically illustrated by 
Amgen using bis-pyrimidine  127  for libraries construction [ 151 ]. In this case only 
the fl uorine displacement is observed (Scheme  28 ).
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X N
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EtOH, 30 °C)

kF / kCl = 72
(pyperidine,
EtOH, 30 °C)

kF / kCl = 229
(pyperidine,
MeOH, 5 °C)

kF / kCl = 640
(1.07N NaOH,
H2O, 26 °C)

  Fig. 12    Fluorine versus chlorine mobility in substitution reactions       
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  Scheme 28    Fluorine versus chlorine mobility in libraries constructions       

   Another example of fl uorine/chlorine exchange selectivity one can fi nd in 
Novartis patent were chlorofl uoropyrimidine  132  react with cyclopentylamine lead-
ing to compound  133  (Scheme  29 ) [ 152 ]. It should be noted, that the synthesis of 
starting compound  131  is similar to approach shown on Scheme  24 , where CF 3  
group is a source of fl uorine in pyrimidine nuclear.
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   High reactivity of 2-fl uoropyrimidine was used for the amines, anilines and ami-
noacids decoration on solid support. In this case among halopyrimidines only 
2- fl uoropyrimidine is appropriate as reagent and in a case of aminoacids gave cor-
responding in high preparative yields (Scheme  30 ) [ 76 ,  153 ,  154 ]
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  Scheme 30    Solid-supported decoration of amino acids by 2-fl uoropyrimidine       
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   The increasing of number of ring fl uorine atoms in diazines leads to increasing 
of activity towards various nucleophiles. The results of comparative kinetic stud-
ies of various polifl uorinated diazines in the reaction with ammonia in dioxane 
are shown on Fig.  13 . Among perfl uorinated azines the activities towards nucleo-
philes of pyrimidine and pyridazine are in the region between pyridine and tri-
azine. Tetrafl uoropyrazine is less active than pentafl uoropyridine. The reduced 
reactivity of tetrafl uoropyrazine compared to the other perfl uorinated azines 
refl ects the absence of highly activated sites in  para -position to ring nitrogen. 
The increasing of activity in pyrimidine (trifl uoro substituted to tetrafl uoro sub-
stituted) series are in agreement with data obtained in pyridine series. Activating 
infl uences of fl uorine in the pyrimidine ring system are k( ortho -F)/k(H) = 41 and 
k( meta -F)/k(H) = 3 respectively. This such big infl uence for  ortho  fl uorine atom 
explains the loss of the regioselectivity in fl uorine displacement in 2,4,6-trifl uo-
ropyrimidine [ 155 ,  156 ].

   Besides fl uorine the infl uences of another substituents such as Cl, CF 3 , NO 2 , CN 
on fl uorine displacement in 2,4,6-trifl uoropyrimidine were studied. The results 
(Table  8 ) can be satisfactory rationalized in terms of bimolecular additional- 
elimination S  N  Ar mechanism through Meisenheimer type complexes [ 157 ].
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  Fig. 13    Rate Constants for attack by ammonia in dioxane-water at 25 °C (L ⋅ mol −1  ⋅ s −1 )       
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4.2.2        Application in Organic and Combinatorial Synthesis 

 The high selectivity in sequential nucleophilic substitution in perfl uorodiazines 
made them attractive scaffolds for the synthesis of a diverse array of polysubstituted 
diazines. These approaches were recently developed by Stanford group. Thus, tetra-
fl uoropyrimidine may be used as a scaffold for the synthesis of a range of 
2,4,6- trisubstituted pyrimidine derivatives upon sequential displacement of the fl uo-
rine atoms attached to the strongly activated 4-, 6- and 2-positions (Table  9 ) [ 158 ]. 
The fi rst two substitutions proceed in very mild conditioned (0 °C or room tempera-
ture). The last nucleophilic substitution of fl uorine at 2-position proceeds in harsh 
conditions and needs MW heating.

   Similarly, trifl uoropyridazinone  140 , readily synthesised by reaction of tetrafl uo-
ropyridazine  139  with sulfuric acid, may be used as the starting material for the 
synthesis of a variety of 4,5-diamino-fl uoropyridazinone systems  144 . Reaction of 
trifl uoropyridazinone gives a mixture of products  141  and  142  arising from dis-

   Table 8    Nucleophilic substitution in 2,4,6-trifl uoropyrimidine 

  

N

N

F F

F

X
N

N

F F

Nu
X

N

N

F Nu

F

X

N

N

Nu F

Nu
X

N

N

F Nu

Nu
X

Nu

A B

C D       

 X  Nucleophile  T (°C) 

 Product 

 Yield (%) 

 Composition 

 A  B  C  D 

 H  MeOH–Na 2 CO 3   >20  77  67  33  0  0 
 H  aq. NH 3   0  79  33  67  0  0 
 Cl  MeOH–Na 2 CO 3   0–20  57  94  6  0  0 
 Cl  aq. NH 3   0  90  91  9  0  0 
 CF 3   MeOH–Na 2 CO 3   −20 to +20  87  50  45  0  0 
 CF 3   MeCH=CHLi  −96 to −78  56  4  83  0  0 
 NO 2   aq. NH  −20  73  0  0  100  0 
 CN  MeOH–Na 2 CO 3   −20 to +20  70  0  0  10  90 
 CN  aq. NH 3   −20 to +20  84  0  0  0  100 
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placement of fl uorine from either 4- or 5-positions, both positions are activated by 
 para  ring nitrogen, but these isomers can be separated by column chromatography 
and used in subsequent S  N  Ar processes for the synthesis of a range of aminated 
pyridazinone derivatives. The predominant product formed in the reaction is  product 
of 4-F substitution  141 . The fi rst substitution with amines proceeds in room tem-
perature whereas the next substitution, as in a case of tetrafl uoropyrimidine, needs 
MW heating (Scheme  31 ) [ 159 ].

   Table 9    Tetrafl uoropyrimidine as a core scaffold 

  N

N

F F

F

F

N

N

F F

Nu1

F

N

N

Nu2 Nu3

Nu1

F

N

N

Nu2 F

Nu1

F
Nu1 Nu2

Nu3

      
 Nu 1   Nu 2   Nu 3   Product 

 EtNH 2 , THF, DIPEA, 
0 °C 

 PhONa, THF, rt  EtONa, THF, MW, 
140 °C, 15 min 

  

N

N

O O

NH

F

Ph

    

  

O
NH     

THF, DIPEA, 0 °C 

 PhONa, THF, rt   n BuNH 2 , THF, MW, 
140 °C, 15 min 

  

N

N

O NH

N

F

Ph

O

    
 EtNH 2 , THF, DIPEA, 

0 °C 
 PhONa, THF, rt 

  NH     
THF, MW, 140 °C, 

15 min 

  

N

N

O N

HN

F

Ph

    
 PhNH 2 , THF, DIPEA, 

0 °C 
 EtNH 2 , THF, 

DIPEA, rt 
  NH     
THF, MW, 140 °C, 

15 min 

  

N

N

N
H

N

NH

F

Ph
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   Reactions of trifl uoropyridazinone with highly basic sodium methoxide or 
phenoxide gave complex mixtures of products and tar derived, presumably, from 
deprotonation of the pyridazinone ring NH and subsequent polymerisation. 
Protection of the ring NH group as a tetrahydropyran derivative, however, allows the 
functionalization of the pyridazinone core scaffold by oxygen-centred nucleophiles 
extending the range of functional pyridazinone systems which may be accessed by 
this general strategy [ 160 ]. Also the reaction of polyfl uorinated pyridazines with 
binucleophilic compounds leads fi rstly to intermolecular nucleophilic substitutions 
followed by cyclization to afford fused systems. This enhanced reactivity is refl ected 
in the relative reactivity found in intramolecular nucleophilic substitution reactions 
compared to corresponding intermolecular processes. Among binucleophiles N,N′-
dimethylethylene diamine, catechol and actoacetic ester derivatives were tested 
(Scheme  32 ). Besides tetratrifl uoropyridazine derivatives, tetratrifl uoropyrazine 
also entered into annelation reaction. In a case of acetoacetic ester furo[2,3-b]pyr-
azine derivative formed bearing two active fl uorine atoms. But the additional 
nucleophile treatment showed regioselective displacement only at C-3 position 
(Scheme  33 ) [ 159 – 162 ].
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  Scheme 31    Tetrafl uoropyridazine as core for diaminated derivatives       
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    In general, tetratrifl uoropyrazine is less studied as core scaffold. Reactions of 
tetrafl uoropyrazine with nucleophiles occur readily and, of course, there are no 
issues regarding regioselectivity of the fi rst nucleophilic substitution process due to 
the symmetry of this system. The reduced reactivity of tetrafl uoropyrazine com-
pared to the other perfl uorinated diazines refl ects the absence of highly activated 
sites in  para  position to ring nitrogen. The regiochemistry of the reaction of trifl uo-
ropyrazine derivatives with nucleophiles is infl uenced by the nature of the substitu-
ent as well as the presence of the remaining fl uorine atoms. If the substituent is 
either an alkoxy or amino group, the site of attack is generally  ortho  to the substitu-
ent, although steric effects can also infl uence the outcome of this reaction. In con-
trast, when the substituent is a hydrogen or alkyl group or chlorine, the site of attack 
is  para  – position to the substituent. (Fig.  14 ) [ 57 ,  163 ,  164 ].
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  Scheme 32    Annelation reaction based on polifl uoropyridazines       
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  Scheme 34    Medicinal chemistry synthesis of 5-fl uoro-2-(piperidin-4-yloxy)pyrimidin-4-amine       

   Of course in the academic and patent literature there are a lot of examples of 
nucleophilic substitution of fl uorine by different  N ,  S ,  O  – nucleophiles. Also 
another halogens in appropriate positions are able to entered in substitution reac-
tion. A recent example of using of nucleophilic substitution was described by 
Lexicon Pharmaceuticals in course of development of deoxycytidine kinase inhibi-
tors. Key intermediate for this investigation was 5-fl uoro-2-(piperidin-4-yloxy)
pyrimidin-4-amine  157 . The medicinal chemistry group used a synthesis based on 
the Mitsunobu reaction of commercially available 5-fl uorocytosine  154  and N-Boc- 
4-piperidinol  155  (Scheme  34 ). The resulting iminophosphorane  156  is then treated 
with HCl to give the 5-fl uoro-2-(piperidin-4-yloxy)pyrimidin-4-amine dihydrochlo-
ride in about 60 % yield. While this synthesis worked well on small scale and pro-
vided rapid access to gram quantities of  157  for early investigations of SAR, it gave 
inconsistent yields on scale-up [ 165 ].
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  Fig. 14    Regiochemistry pattern for trifl uoropyrazines       

   The R@D route to 5-fl uoro-2-(piperidin-4-yloxy)pyrimidin-4-amine  157  was 
developed starting from readily available 2,4-dichloro-5-fl uoropyrimidine  158 . This 
dichloroderivative, is one of the most frequently used building block among fl uori-
nated diazines (198 reactions from 164 references in Reaxys® database). It was sub-
jected to the reaction with bisallylamine and than with N-Boc-4-piperidinol affording 
compound  161 . The deprotection of amino group was carried out by isomerization 
using lithium tert-butoxide in DMSO/tert-butanol with subsequent hydrolysis lead-
ing to desired 5-fl uoro-2-(piperidin-4-yloxy)pyrimidin-4-amine dihydrochloride  157  
(Scheme  35 ).
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  Scheme 35    R@D route to 5-fl uoro-2-(piperidin-4-yloxy)pyrimidin-4-amine       

   Such unusual chemical route to the target compound was developed due to the 
number of side process disclosed during investigation: fl uorine substitution by dim-
syl sodium of defl uorination by catalytic hydrogenation (Scheme  36 ).
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  Scheme 36    Side process disclosed during 5-fl uoro-2-(piperidin-4-yloxy)pyrimidin-4-amine synthesis       

   In this review we have no possibility to give comprehensive information about all 
types of these diverse transformations. Some of these transformations used for drug 
synthesis will be discussed in next chapter of this book. Another part of transforma-
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tions has been partially reviewed early [ 166 – 169 ]. But in the next part of the section 
we would like to draw the reader’s attention to less known nucleophilic substitu-
tions such as with  C -,  P - and formally hydride nucleophiles and substitution of fl uo-
rine atom in 5-position of pyrimidine. 

 There are a few examples of fl uorine substitution by  C -nucleophiles. The reac-
tion of fl uorinated pyrimidines with stabilized carbanions affording the correspond-
ing functionalized pyrimidines in low to moderate yields was described [ 170 – 176 ]. 
In all this cases the reactions do not have preparative value and was used for synthe-
sis of model objects (Table  10 , Entry 1–3). Recently such arylation was carried out 

     Table 10    Fluorine substitution with by  C -nucleophile   

 #  Fluorinated diazine   C -nucleophile  Products  Yield (%)  Ref. 

 1 a    
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N
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N FF

F
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 36  [ 174 ] 

(continued)
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in asymmetric manner using an  O –benzoylated cinchona alkaloid derivative as 
organocatalyst (Table  10 , Entry 4). Besides arylation of stabilized carboanions the 
non catalytic hetarylation of π-electron reach indole was described by tetrafl uoropy-
rimidine [ 174 ]. Also at the early step of pefl uorinated diazines studies the reaction 
with Grignard reagents and alkyl lithium compounds were discovered by Banks and 
Chambers (Table  10 , Entry 6–8). It should be noted, that the regiochemistry of the 
reaction of fl uorinated diazines with  C -nucleophiles are in accordance with  N-  and 
 O–  nucleophiles regiochemistry.

   The reactions with  P -nucleophiles are even more rare than with  C -nucleophiles. 
Recently such reaction was used for the synthesis of polysubstituted pyrimidi-
nylphosphonic acid  172 . Microwave-assisted Michaelis-Arbuzov reaction of triiso-
propyl phosphite with the corresponding 2-fl uoropyrimidine  170 , followed by 
deprotection of the phosphonate group using TMSBr in acetonitrile gave the desired 
acid  172  in 66 % total yield. The derivative  172  exhibits anti-infl uenza virus A 
activity in the middle micromolar range (Scheme  37 ) [ 177 ].

 #  Fluorinated diazine   C -nucleophile  Products  Yield (%)  Ref. 

 6 e    

N

N
F

F

F

F

      

MgBr
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F
F F
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F

     40  [ 175 ] 

 7 e  

  N

N FF
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 MeLi 

  N

N MeF
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 70  [ 57 ] 

 8 f  

  

N
N

F

F F

F     
  

Li

F

F

F

F

F

    
  

N

N

C6F5

C6F5

C6F5

C6F5

    

 86  [ 176 ] 

   a Carbanion was generated from corresponding sulphone and BuLi 
  b Potassium malonate in MeCN a presence of 18-crown-6 
  c ee 68 %, CsOH, PhMe/CHCl 3 , −40 °C in  O -benzoylated cinchona alkaloid 
  d MeCN, refl ux 
  e Et 2 O, − 70 – −50 °C 
  f Generated from C 6 F 5 H and BuLi in Et 2 O-hexane at −78 °C  

Table 10 (continued)
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   Another reaction discussed in this section is reduction of fl uorinated pyrimidines 
by LAH. In this case LAH can be considered as strong hydride donor, which 
undergo nucleophilic substitution of fl uorine. In a case of tetrafl uoropyrimidine  6  
the defl uorination by LAH predominantly proceeds at 4-position. Double defl uori-
nation and defl uorination at 2-position were detected as byprocess. Analogously 
allyloxy derivative  176  also undergo defl uorination by LAH and major defl uorina-
tion proceeds at 4-position (Scheme  38 ) [ 178 ,  179 ].

N

NF F

F
F

N

NF

F
F N

NF

F

N

N

F
F

F

N

NF F

O
F

N

NF

O
F

N

N F

O
F

LAH, Et2O

- 72 °C to rt
+ +

35% 17% traces

LAH, Et2O

rt
+

96%

75 : 25

6 173 174 175

176 177 178

  Scheme 38    Defl uorination of polyfl uoropyrimidines by LAH       
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  Scheme 37    Michaelis- Arbuzov type reaction with fl uoropyrimidine       

   But this simple defl uorination methodology was found to be ineffective in a case 
of another diazines, therefore another approaches were elaborated. For example, 
tetrafl uoropyrazine  150  was converted to trifl uoropyrazine  180  in two steps – using 
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hydrazine hydrate substitution – copper oxidation sequence (Scheme  39 ) [ 163 ]. 
Another defl uorination strategy will be discussed in next sections.

   The most problematic nucleophilic substitution in fl uorinated diazine series is 
substitution of fl uorine at 5-position of pyrimidine due to the absence of highly 
activated sites  para  or  ortho  to ring nitrogen. The fi rst example of fl uorine 
exchange in 5-position was described simultaneously with tetrafl uoropyrimidine. 
Heating at 220 °C in di- n -buthylamine leads to exhaustive fl uorine exchange giv-
ing tetracis-di- n   -butylaminopyrimidine [ 14 ]. But further publication showed that 
fl uorine substitution in 5-position of pyrimidine needed activation by electron 
withdrawing groups or facilitating by intramolecular cyclization. Ester and CF 3  
groups in 2-and 4- position of pyrimidine ring were used as electron withdrawing 
groups (Table  11 ). Interesting fact was disclosed recently that fl uorine at 5-posi-
tion activated by ester group is more reactive than chlorine atom at 2-position of 
pyrimidine (Table  11 , Entry 3).

N

N FF

F F N

N N
H

F

F F

NH2

N

NF

F F

NH2NH2*H2O

MeOH

CuSO4

H2O

~ 30% in 2 steps

150 179 180

  Scheme 39    Defl uorination of pyrazines by NH 2 NH 2 –CuSO 4  sequence       

    Table 11    Fluorine substitution in 5-th pyrimidine position activated by electron withdrawing 
group   

 #  EWG  R1  R2  Nu  Product  Ref. 

  

N

N
EWG

R1

F

R2

N

N
EWG

R1

Nu

R2

Nu
    

 1  CF 3   H  H  NaOH, DME-H 2 O, 
refl ux, 2 h, 79 % 

  

N

N
F3C OH

    

 [ 180 ] 

 2  CO 2 Me 

  
Cl

    

 H  CF 3 CH 2 OH, Cs 2 CO 3 , 
DMSO, 60 °C, 
86 % 

  

N

N
O

O

O CF3

Cl

    

 [ 181 ] 

(continued)
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   The fi rst example of fl uorine substitution in 5-position accomplished by intramolecu-
lar cyclization was described by Ukrainian chemist in 1991. The reaction of 4-chloro-
5-fl uoropyrimidines  181  with carbanions generated from 2- tosylmethylazahetarenes 
 182  in presence of K 2 CO 3  in refl uxing DMF does not stop at the step involving 
replacement of the chlorine atom (intermediate  183 ) but concludes by cyclization to 
give triazafl uorene  184  (Scheme  40 ) [ 183 ].

 #  EWG  R1  R2  Nu  Product  Ref. 

  

N

N
R1

EWG

F

R2

N

N
R1

EWG

Nu

R2

Nu
    

 3  CO 2 Et  Cl  H  MeNH 2 , TEA, DCM, 
rt, 80 % 

  

N

N
Cl N

H

O
O

    

 [ 182 ] 

 4  CF 3   Me   n -Hex  MeONa, rt, 73 % 

  

N

N
O

CF3

n-Hex    

 [ 120 ] 

 5  CF 3   Me   n -Hex  CF 3 CH 2 ONa, rt, 46 % 

  

N

N
O

CF3

n-Hex    

 [ 120 ] 

Table 11 (continued)
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N
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S
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O

N

N
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S
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O

O

R

K2CO3, DMF
R = Cl, SMe

> 95%181

182

183 184

  Scheme 40    Reaction of 4,5-dihalopyrimidines with 2-tosylmethylazahetarenes       

   Further annelation to pyrimidine ring based on substitution of fl uorine at 
5- position was used in patent literature. Alantos Pharmaceuticals in a course of 
matrix metalloprotease inhibitors development described an effi cient pyrazole 
annelation to pyrimidine. The synthesis of key intermediate – pyrimidine dicarbox-
ylic acid  188  was accomplished in 3 step bromination – carbonylation – oxidation 
sequence from pyrimidinone  185 . The acid was converted to the corresponding 
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ester  189  and nitrile  190 . In both cases cyclization with hydrazine hydrate proceeds 
in mild conditions affording pyrazolo[4,3-d]pyrimidines  191  and  192  in nearly 
quantitative yields (Scheme  41 ) [ 184 ].
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  Scheme 41    Synthesis of pyrazolo[4,3-d]pyrimidines based on fl uorine substitution       

   Another example of annelation was demonstrated by Hoffmann-La Roche at the 
thiazolo[4,5-d]pyrimidine scaffold synthesis and decoration. Under thionation with 
P 2 S 5 , the acylated 6-aminopyrimidine  195  gives the corresponding thioamide, which 
cyclised spontaneously into thiazolo[4,5-d]pyrimidine thione  196 . Thione  196  was 
used further transformation for synthesis of key building block  197  applied for the 
preparation of the library  198  (Scheme  42 ) [ 185 ].

   The most interesting annelation example was recently described by Takeda during 
oxa-2,4,4b,10-tetraazaphenanthren-9-one scaffold  204  synthesis. Unlike above 
mentioned examples, in this case annelation does not proceed with aromatization. 
In compound  201  fl uorine atom is formally deactivated by electron donating 
dialkylamino residue at 4-position. Despite both this factors the intramolecular 
fl uorine substitution proceed in suffi ciently mild conditions (DMF, Cs 2 CO 3 , 60 °C) 
affording fused compound  202  in moderate yield (Scheme  43 ) [ 186 ].
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  Scheme 42    Synthesis of thiazolo[4,5-d]pyrimidines based on fl uorine substitution       
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4.2.3        Reactive Dyes 

 One of the most important application of fl uorine nucleophilic substitution in 
diazines was found in reactive dyes industry. In a reactive dye a chromophore 
contains a substituent that is activated and allowed to directly react to the surface of 
the substrate. Reactive dyes have good fastness properties owing to the bonding that 
occurs during dyeing. Reactive dyes are most commonly used in dyeing of cellulose 
like cotton or fl ax, but also wool is dyeable with reactive dyes. 

 Detailed reviews of this subject are now available [ 187 – 189 ]. In reactive dyes 
with halogen as a leaving group, these two partial structures nearly always linked 
by an amino function in the chromophore, which makes an important contribution 
to the chromophore conjugated π-electron system. In practical terms, this means 
that the  reactive component  must have at least two reactive groups, one of them 
reacts with dye base affording  reactive dyestuff  and another one reacts with cellu-
losic fi ber (Fig.  15 ).

   The development of reactive components based on azines started in 1956 with the 
launch of chlorotriazine dyes by ICI. The immediate success of the triazine based 
reactive dyes led to an intensive search for alternative reactive systems by the various 
dyestuff fi rms. Much efforts has been expended on the synthesis and evaluation of 
several related fl uoropyrimidinyl derivatives. Out of all the patented components 
only 5-chloro-2,4,6-trifl uoropyrimidine and 5-chloro-2,4-difl uoro-6-methylpyrimidine 
have attained notable technical and economic signifi cants. Figure  16  shows the 
relevant dyestuffs and their manufacturers.

4.2.4        Acid-Induced Processes 

 Although ring-fl uorinated compounds are only weak bases, nucleophilic substitu-
tion can be induced by proton or Lewis acids and interesting contrasts in orientation 
can sometimes be achieved because attack to  ortho-position  to nitrogen is often 
preferred under these conditions. Among perfl uorinated diazines pyridazine  139  is 
the most basic and and protonation of ring nitrogen by strong acids or alkylation is 
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  Fig. 15    Functioning of a reactive component in reactive dyes       
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  Scheme 44    Switching of regiochemistry under protonation of tetrafl uoropyridazine       

possible if a strong alkylating agent is used. It is clear from the striking tendency for 
the protonated systems, as shown in Scheme  44 , to give  ortho- attack to nitrogen 
that, again, polar infl uences are extremely important in governing the reactivity of a 
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C-F bond, at least with hard nucleophiles. In both of the examples contained in 
Scheme  44 , the orientation of entry of the nucleophile is changed in comparison 
with reaction with the neutral system [ 56 ,  190 ].

   Another important acid-induced process in fl uorinated diazine chemistry is 
fl uorine- halogen exchange promoted by Lewis acids. In some cases the switching of 
regiochemistry also observed. Thus in a case of dimethyl-(3,5,6-trifl uoro-pyrazin- 2-
yl)-amine  300  treatment with AlCl 3  leads to exchange of fl uorine at 6-th position 
unlike with Me 2 NH substitution (compare with Fig.  14 ). Subsequently dialkylamino 
– AlCl 3  treatment leads to dichloropyrazine  303 , which unavailable by selective 
manner from tetrachloropyrazine (Scheme  45 ) [ 164 ].
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  Scheme 45    AlCl 3  induced chlorine-fl uorine exchange       
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  Scheme 46    AlBr 3  induced bromine-fl uorine exchange       

   Like with AlCl 3 , AlBr 3  promote bromine-fl uorine exchange. In a case of perfl uo-
ropyrazine  150  AlBr 3  treatment leads to exhaustive bromination affording perbro-
mopyrazine  305 . For single fl uorine exchange to bromine atom another approaches 
were used (Scheme  46 , compare with Scheme  39 ) [ 57 ]

   These bromine-fl uorine exchanges are important processes because introduction 
of bromine by these simple procedures allows access to the powerful range of pal-
ladium chemistry that is now available (see next section). Also bromine introduc-
tion – Pd catalyzed hydrogenation gives an excess to fl uorinated nitrogen 
heterocycles with unusual substitution patterns (Schemes  47  and  48 ) [ 191 ].
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4.2.5         Fluoride-Ion-Induced Reactions 

 Reactions of perfl uorinated alkenes, such as hexafl uoropropene, with fl uoride ion 
give perfl uoroalkylcarbanions which can act as nucleophiles in S N Ar reactions 
with perfl uoroheteroaromatic systems (Fig.  17 ). These reactions are example of 
“mirror- image” chemistry and refl ect well-known Friedel–Crafts reactions of 
hydrocarbon systems that proceed by reaction of the corresponding electrophile 
and carbocationic intermediates. Reactions involving chlorotrifl uoroethene and 
bromotrifl uoroethene introduce further complexities. Direct substitution may 
occur giving halofl uorosubstituent, but this is frequently accompanied by loss of 
Cl or Br from the side chain to give a pentafl uoroethyl derivative. The almost 
complete list of the reaction with polifl uorinated heterocycles was earlier 
reviewed by Brooke in 1997 [ 166 ].
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   As an example, the discovering of kinetic and thermodynamic control in nucleo-
philic substitution in fl uorinated diazines can be shown. The use of MeO − /MeOH is 
routinely used to test for possible nucleophilic substitution of fl uorine in polyfl uo-
roheteroaromatic compounds and identifi es sites for kinetically controlled reactions 
because of the irreversibility of the reaction. Tetrafl uoropyridazine  139  forms only 
the 4,5-dimethoxy isomer  209  (Scheme  44 ) whereas the variability in the orienta-
tions of dipolyfl uoroalkylations of tetrafl uoropyridazine and other systems is a man-
ifestation of the interplay between kinetic and thermodynamic control of the reaction 
products (Scheme  49 ) [ 192 ]. In a case of octafl uoroisobutene the reaction with tet-
rafl uoropyridazine  139  in a presence of CsF in sulpholan at 20 °C leads to perfl uoro-
4- t   -butylpyridazine  313 . Heating the reaction mixture to 40 °C showed formation of 
perfl uoro-3,5-di- t -butypyridazine  314 , which under heating to 80 °C intermolecular 
rearrange to the least crowded perfl uoro-3,6-di- t -butypyridazine  316  through 
perfl uoro- 3- t -butylpyridazine  315 . Meanwhile, less hindered pentafl uoroethyl anion 
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in similar conditions gives the products arise exclusively from kinetic control 
(Scheme  50 ) [ 193 ,  194 ]. Hexafl uoropropene in this investigation occupies an inter-
mediate position and gives more complicate number of products. Therefore the 
variation in the observed products is consistent with the ease of formation as well as 
the steric requirements increasing in the series CF 3 -CF 2  −  < (CF 3 ) 2 CF −  < (CF 3 ) 3 C −  and 
these results provide a striking example of the interplay of kinetic and thermody-
namic control of reaction products in nucleophilic aromatic substitution.
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  Scheme 50    Fluoride-ion-induced pentafl uoroethylation of perfl uoropyridazine       

    Besides tetrafl uoropyridazine  139,  tetrafl uoropyrimidine  6  was investigated in 
the fl uoride induced reactions. These reactions also have specifi city. For example, 
the reaction of tetrafl uoropyrimidine  6  with hexafl uoropropene  320  induced by CsF 
in sulpholan gives mixture of perfl uoro-2,4,6-triisopropylpyrimidine  322 , perfl uoro- 
4,6-diisopropylpyrimidine  321  and perfl uoro-2,4,5,6-traisopropylpyrimidine  323  
were detected (Scheme  51 ) [ 195 ]. This is unusual pattern of nucleophilic attack on 
tetrafl uoropyrimidine where formation of the highly hindered  323  (with displace-
ment of inactivated fl uorine in 5-position) occurs when the reaction mixture still 
contained some of the disubstituted compound  321 , which offers an unhindered 
fl uorine atom at the 2-position. It may be interpreted by formation of possible inter-
mediates  324  and  325  and reversibility of the reaction.
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   An extension of the idea for generating other anionic nucleophiles by F −  addition 
to unsaturated precursors has been realised for nitrogen, sulphur and more recently 
for oxygen (Scheme  52 ). High reaction ability of tetrafl uoropyridazine and tetra-
fl uoropyrimidine towards nucleophiles made it useful in “trapping experiments” for 
anions  327 ,  329  and  331  [ 196 – 199 ].
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   Moreover investigation of nitrogen anion  327  leads to another fundamental 
result. It was found, that  327  generated by KF at room temperature gives kinetically 
controlled products  332  whereas  327  generated by CsF at higher temperatures pro-
duced thermodynamically controlled products  333 , which was confi rmed by 
 experiments in pyridazine series (Scheme  53 ). Applying the experiment to tetrafl uo-
ropyrimidine leads to discovery of kinetic and thermodynamic control under nucleo-
philic substitution in pyrimidine (Scheme  54 ) [ 196 ].
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4.3          Metalation Reaction 

 Moving from benzene via azines to the diazines, a decrease of aromaticity can be 
observed, this being attributed to the weaker overlap of the p orbitals in the rings. 
In consequence, the acidity of hydrogens is increased in the same order. A selection 
of calculated pKa values of nitrogen-containing heterocycles of interest is given 
in Fig.  18  [ 200 ]. Introducing into heterocycle of inductively electron-withdrawing 
fl uorine atom increase the thermodynamic acidity of the heteroaromatic hydrogen 
atoms. These hydrogen atoms can be abstracted by strong bases leading to metalated 
compounds. The metal atom – usually lithium – is also stabilized by favorable 
electrostatic and electron-donating interactions with the lone electron pairs of fl uorine. 
The observed  ortho  selectivity of the metalation of suitably substituted heteroaro-
matic compounds is, therefore, usually kinetically induced. Fluorine is highly effective 
as a strongly  ortho -directing, acidity-enhancing substituent. Whereas many aryl lithium 
species are stable up to room temperature and above,  ortho -fl uoro lithio hetarenes are 
stable at low temperatures only [ 201 ,  202 ]. Based of this general consideration we can 
conclude that ring fl uorinated diazines bearing     ortho - unsubstituted  position are good 
objects for direct ortho-methalation (DoM) reaction.
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4.3.1       Fluoropyrimidines 

 First lithiated fl uorodiazines were described in early 1980 by Tanaka. These deriva-
tives were prepared by deprotonation of fl uorouracils with excess of LDA. The reac-
tion proceeds though dilithiated species of type  339 , which after reaction with an 
electrophile and subsequent acidic treatment gave substituted uracils  340  in high 
yields (Scheme  55 ). The approach was used in synthesis of antileukemic nucleo-
sides [ 204 ] and anti HIV agents [ 204 – 206 ]. (Table  12 )

    Recently this transformation was applied for synthesis of orotidine-5′-monophosphate 
decarboxylase inhibitors [ 207 ]. Unexpected results was obtained during the methylation 
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   Table 12    DoM reaction of fl uorouracile derivatives   

 #  Substrate  Conditions  Product 
 Yield 
(%)  Ref. 

 1 

  

HN

N

O

O

F

O

O

O

OMOM

    

 i. LDA 2.5 eq., THF, 
−70 °C, 1 h 

 ii. PhS-SPh 

  

HN

N

O

O

F

O

O

O

OMOM

S
Ph

     100  [ 203 ] 

 2  -//-  i. LDA 2.5 eq., THF, 
−70 °C, 1 h 

 ii. I 2  

  

HN

N

O

O

F

O

O

O

OMOM

I

    

 92  [ 203 ] 

(continued)
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 #  Substrate  Conditions  Product 
 Yield 
(%)  Ref. 

 3   

HN

N

O

O

F

O

O
Si

OSi
O

     i. LDA 5 eq., THF, 
−78 °C, 1 h 

 ii. PhS-SPh   HN

N

O

O

F

O

O
Si

OSi
O

S
Ph

    

 59  [ 204 ] 

 4 

  

HN

N

O

O

F

O
TBDMSO     

 i. LDA 2.5 eq., THF, 
−70 °C, 1 h 

 ii. PhS-SPh 

  

HN

N

O

O

F

O
TBDMSO

S
Ph

    

 81  [ 205 ] 

 5  -//-  i. LDA 2.5 eq., 
THF, −70 °C, 1 h 

 ii. I 2  

  

HN

N

O

O

F

O
TBDMSO

I

    

 79  [ 205 ] 

 6  -//-  i. LDA 2.5 eq., THF, 
−70 °C, 1 h 

 ii. PhSe-SePh 

  

HN

N

O

O

F

O
TBDMSO

Se
Ph

    

 85  [ 206 ] 

 7 

  

HN

N

O

O

F

O

O

O

OTBDMS     

 i. LDA 3 eq., THF, 
−70 °C, 1 h 

 ii. I 2  

  

NH

N

O

O

F

O

O

O

OTBDMS

I

    

 95  [ 207 ] 

 8  -//-  i. LDA 5 eq., THF, 
−70 °C, 1 h 

 ii. HCO 2 Me 1.5 eq. 

  

NH

N

O

O

F

O

O

O

OTBDMS

O

    

 70  [ 207 ] 

Table 12 (continued)
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of lithium species by MeI. Earlier Tanaka has observed that lithiation of uridines at C-6 
followed by methylation can be accompanied with undesired α-methylation of the 
newly attached substituent [ 208 ]. Bello et al. in 2009 [ 207 ] turned the fact to good 
account and smoothly ethylated substrate  341   via  a two-stage methylation. In absence of 
fl uorine, the second methylation is a bit more tricky and under similar conditions (2.5 
equiv. LDA, followed by 3.3 equiv. MeI at −78 °C) a mixture of 6-methyluridine  344  
(44 %) and 6-ethyluridine  345  (<5 %) was isolated (Scheme  56 ) [ 209 ]. Therefore, assis-
tance of the neighboring fl uorine ( 342 ) facilitates alkylation.

NH

N

O

O

F

R

O

OO

OTBDMS
*

HN

N

O

O

F

R

N

N

O

O

F

R

Li

Li

NH

N

O

O

R

HN

N

O

O

R

HN

N

O

O

R

R = 

(i) LDA, 5 eq
THF, -78 °C

(ii) MeI, 3 eq
70%

(i) LDA, 2.5 eq
THF, -78 °C

(ii) MeI, 3.3 eq
72%

+

< 5%

338 341 342

343 344 345

  Scheme 56    Double alkylation of C-6 lithiated uridines       

   In 1990 Tanaka obtained lithiated 1,3-dialkyl-5-fl uorouracils  347  [ 210 ], which 
were iodinated with ICl to afford  348 . Later lithiated 1,3-dimethyl-5-fl uorouracils 
 347  were reacted with hexafl uoropropene  320  [ 211 ] to form intermediate carbanion 
 349  giving after fl uoride elimination vinylated products  350  as a mixture of E and Z 
isomers (Scheme  57 ).
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N
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N
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R

O

F
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N

N

O

R
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O

F
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N

N

O

O

F

F
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F
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F
F

F

N
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F F
F
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-80 °C ICl
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54% (Z/E = 10:1)

R = Me 3 eq, - 80 °C to rt

346 347 348
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  Scheme 57    Reactions of 6-lithio-1,3-dialkyl-5-fl uorouracils       
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   4-Fluoropyrimidines  351a,b  were also metallated with LDA affording the 
functionalized compounds  353a,b  in moderate to good yields (Scheme  58 ) [ 212 ]. 
When LTMP was used as a metalating agent under the same conditions a loss of 
regioselectivity in the  ortho -position of the fl uorine atom is observed. Besides 
compounds  352a,b  7–8 % of metalation at the C-6 position were observed.

N

NX

F

N

NX

F
Li

N

NX

F
E

* Et

OH

*

OH

Ph

LDA, 2.3 eq
THF,
-70 pC

30 min

X = F, SMe

E+

27 - 87%

E =                 ;                 ; COOH; CHO; I

351 a,b 352 a,b 353 a,b

  Scheme 58    Lithiation of 4-fl uoropyrimidines       

   When iodine was used as an electrophile the results were quite dependent on the 
experimental conditions (amounts of metalating agents and iodine) (Scheme  59 , 
Table  13 ). Metalation of  351b  with 1.1 eq. of LDA followed by reaction with 
iodine in excess led to the C(5) iodo derivative  354  (Table  13 , Entry 1). The diio-
doderivative  356  was the major product when the metalating agent and iodine were 
in excess (entry 2). It can be assumed that the reaction of  351b  with 1.1 eq. of LDA 
led to the C(5) lithioderivative which reacted with iodine affording compound  354 . 
In a presence of an excess of metalating agent, compound  354  underwent a further 
lithiation at the C(6) position and after the reaction with another equivalent of 
iodine afforded the diiodo derivative  356 . The unexpected C(6) iodo derivative  355  
was observed when LDA was in excess (2.3 eq.) and when iodine was in stochio-
metric amounts (entry 3). Such as unusual regioselectivity can be explained by 
formation of diiodo derivative  356 , which underwent halogen-lithium exchange 
affording C(5) lithium derivative  358 , which gave after hydrolysis the C(6) 
monoiodo derivative  355 . The formation of the C(5) lithio derivative  358  from the 
reaction of  356  with LDA was proved by trapping of the lithio derivative with ace-
tic aldehyde affording  359  in 84 % yield.

    Boc-protected aminofl uoropyrimidine  360  was subjected to lithiation with 
LTMP followed by acetone addition to form  361  in 89 % yield. It was used in syn-
thesis of as gaba-A alpha 2/3 ligands for depression [ 213 ]. The ethyl ester  363  was 
synthesized by similar way by lithiation of pyrimidine  362  [ 182 ] (Scheme  60 ).

    Table 13    Lithiation/
iodination of 
4-fl uoropyrimidine  351    

 #  n    m   354    355    356  

 1  1.2  3  87 %  –  6 % 
 2  2.3  3  10 %  –  70 % 
 3  2.3  1  –  77 %  3 % 
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F
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THF. -70 °C
60 min 
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20 min 89%
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THF. -70 °C
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(ii) (EtO)2CO,
-70 °C to rt yield n.r.

360 361

362 363

  Scheme 60    C(6) lithiation of 5-fl uoropyrimidines       

4.3.2        Fluoropyrazines 

 Metalation of fl uoropyrazine  364  has been achieved in 1998 by Queguiner with 
LTMP as metalating agent at −75 °C with a short reaction time (5 min) leading to a 
wide range of 2,3-disubstituted fl uoropyrazines  366 . Pyrazine derivatives are well 
known to be good electrophiles, when they are substituted by a good leaving group 
such as fl uorine, a further nucleophilic substitution is observed by the released spe-
cies coming from the electrophile used during the trapping step. For example, dur-
ing functionalization of fl uoropyrazine, formation of 2,3-diphenylthiopyrazine  367  
(89 % yield) and the 2-acetyl and 2-benzoyl-3-dimethylamino pyrazines  368  have 
been observed besides the expected disubstituted fl uoropyrazines when diphenyl-
sulfi de or N,N-dimethylacetamide or N,N-dimethylbenzamide have been used as 
electrophiles (Scheme  61 ) [ 214 ].

N
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N
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(ii) I2, m eq
THF, -70 0C, 
40 min

LDA
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351 b 354 355 356
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358359

  Scheme 59    Lithiation/iodinationof 4-fl uoropyrimidines       
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THF, -70 °C,
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(iii) EtOH/THF

364 366 369 370 371

  Scheme 62    Lithiation of 5-fl uoropyrazine       

   Table 14    Lithiation of 2-fl uoropyrazine   

 #  E  n  m  T (°C)   366    369    370    371  

 1  I  1.1  1.1  −78  50  –   6   4 
 2  I  2.0  2.0  −78  11  –  35  15 
 3  I  4.0  4.0  −78  –  –  –  65 
 4  Bu 3 SnCl  1.1  1.5  −78  11  26  –  – 
 5  Bu 3 SnCl  1.1  1.5  −100  54  –  –  – 
 6  Bu 3 SnCl  2.0  1.5  −100  15  10  52  – 
 7  Bu 3 SnCl  4.0  1.5  −100  –  20  –  53 

   Starting from fl uoropyrazine, a regioselective synthesis of iodo- and tributylstannyl 
substituted fl uoropyrazines has been elaborated. Lithiation of fl uoropyrazine with 
stoichiometric amounts of LTMP and iodine afforded the 2-fl uoro-3- iodopyrazine 
 366  (E=I) as sole product otherwise a mixture of mono-, di-, and triiodo derivatives 
were formed (Scheme  62 , Table  14 ) [ 147 ]. In a similar manner, use of tributyltin 
chloride as electrophile led to mono and di-stannylpyrazines [ 215 ]. Formation of 
compounds  369 ,  370  and  371  is a result of metalation at the position adjacent to the 
nitrogen atom without assistance of the fl uorine atom as DMG. Such a metalation 
without a DMG has been previously reported during direct metalation of bare 
pyrazine by use of an excess of LTMP (4 equiv.) with very short reaction time 
(5 min) at low temperature −78 °C [ 216 ].
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  Scheme 61    Lithiation of 2-fl uoropyrazine       
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    Lithiation of 2-fl uoro-1-hydroxymethylpyrazines  372  with LTMP (3 equiv.) in 
THF at −78 °C occurred at the C(6) position (Scheme  63 ). With iodine as the 
electrophile, the 6-iodo derivative has been obtained. This iodide was used in Negishi 
and Suzuki cross couplings to access a natural products analogues and liquid 
crystals [ 147 ,  217 ]. When alkylamides such as LTMP are used as metalating agent, 
the deprotonation is considered as thermodynamically controlled. The heats of 
formation of the lithio compound could be examined as a simple approach to esti-
mate the regioselectivity. Considering that the hydrogen of the hydroxyl group is 
fi rst abstracted by LTMP, a lithium atom could form a chelate between the oxygen 
of the alcoholate and the neighboring nitrogen. The lithium at the C(6) position may 
coordinate with the adjacent free nitrogen N(1) whereas such coordination cannot 
be observed when the lithium is at the C(5) position since the nitrogen N(4) is 
already chelated. This assumption is in agreement with the calculation of heats of 
formation of two lithio derivatives (Hal=Cl) by Li/PM3. C(6)-lithioderivative  374  is 
more stable than  375  with a difference of Δ(ΔH f ) = 6.8 kcal/mol [ 217 ].
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Me3SiCl, I2, CCl3CCl3
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..
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372 373
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  Scheme 63    Lithiation of 2-fl uoro-3-hydroxymethylpyrazines       

   A regioselective functionalization at the C(6) position has also been achieved 
when the 2-fl uoro-3-phenylpyrazine  376  reacted with an excess of LTMP 
(3 equiv.) followed by reaction with various electrophiles leading to compounds 
 377  (Scheme  64 ) [ 147 ]. To explain this regioselectivity which occurs exclusively at 
the C(6) position, theoretical calculations using Li/PM3 semiempirical method have 
been performed [ 147 ]. A complexation between the lithium of LTMP and the two 
nitrogen atoms of the pyrazine moiety, which behaves as a complexing agent, has 
been taken into account (Scheme  64 ). The values calculated indicated that the C(6)-
lithio derivative  378  is clearly more stable than the 5 one  379 . This result could 
explain the complete regioselectivity at C(6) position.

   However, when compound  376  was reacted with 3 eq. of LTMP at −78 °C for 5 min 
followed by reaction with 1 eq. of iodine, a C(5) monoiodo derivative  381  was formed 
in 64 % yield beside traces of diiododerivative  382 . In this case, as in a case of 5-fl uo-
ropyrimidine (Scheme  59 ), the lithiation of  376  followed by reaction with iodine as an 
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  Scheme 65    Lithiation/iodinationof 2-fl uoro-3-phenylpyrazine       

electrophile was investigated under various experimental conditions (Scheme  65 , 
Table  15 ) [ 147 ]. In the reaction with 1.1 eq. of LTMP and excess of iodine the C(6) 
derivative was obtained in good yield (entry 1). An excess of LTPM and of iodine leads 
to diiodo derivative  382  (entries 3,5). When the metallating agent was in excess in rela-
tion to iodine the C(5) iodo derivative  381  was obtained as a sole product (entries 2,4 
and 6). These results are in agreement with results obtained in pyrimidine series (see 
Scheme  59 ) and could be assumed by the similar way. The reaction of  376  with 1–4 eq. 
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  Scheme 64    Lithiation of 2-fl uoro-3-phenylpyrazine       

 #  n  m   380    380    382  

 1  1.1  2.0  73  –  – 
 2  2.1  1.0  –  59  – 
 3  2.1  2.0  –  –  80 
 4  3.1  1.0  –  64  – 
 5  3.1  3  –  –  68 
 6  4.1  1.0  –  57  – 

  Table 15    Lithiation / 
iodination of 
2-fl uoro-3-phenylpyrazine  
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of LTMP led fi rst to C(6)-lithio derivative which reacted with iodine to give C(6) iodo 
derivative. This compound underwent a further isomerisation involving iodine atom 
migration leading to C(5) iodo derivative  381 . Such isomerisation resulting from a 
halogen migration is known as a “halogen- dance” reaction.

    Besides iodine migration in fl uoropyrazine serie    the migration of the tributyl-
stannyl group is known. When metalation of 2-fl uro-3-tributylstannylpyrazine  383  
was performed with 2.1 equiv. of LTMP with a short reaction time and was followed 
by protonation of the lithio derivative, compound  386 , resulting from intramolecu-
lar tin/lithium exchange, was isolated in 63 % yield (Scheme  66 ) [ 215 ].
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  Scheme 66    The migration of the tributylstannyl group in pyrazine       
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  Scheme 67    Lithiation of 2-halo-6-methoxypyrazines       

   To establish a comparison between the ortho directing power of fl uoro, chloro, 
and methoxy groups, the lithiation of 2-halo-6-methoxypyrazines  387a,b  has 
been investigated using various alkylamides as metalating agent at −78 °C with a 
short reaction time (5 min) (Scheme  67 , Table  16 ) [ 218 ]. The main isomer has the 
substituent at the ortho position relative to the fl uorine atom as in  387a , contrary to 
what is observed with the chlorine atom as in  387b . When LDA is used as metalat-
ing agent, the metalation is more regioselective than with more bulky bases such as 
LTMP or LB (lithium tertbutyl-(1-isopropylpentyl)amide). These results allowed to 
estimate the relative ortho directing power as F > OMe > Cl.
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4.3.3         Fluoropyridazines 

 To the best of our knowledge only one paper deals with metalation of ring fl uorinated 
pyridazines [ 218 ]. In order to compare directly the  ortho  directing power of two 
halogens Quenguiner et al. in 2003 tried to synthesise 3-chloro-6-fl uoro-pyridazine 
by nucleophilic fl uorination of 3,6-dichloropyridazine. However the reaction of 
3,6-dichloropyridazine  390  with TEA*3 HF in a presence of proton sponge gave a 
mixture of products. The monofl uoro compound  391  was the main product beside 28 % 
of starting material and a small amount (5 %) of difl uoro derivative  392  (Scheme  68 ). 
Subsequent metalation of this mixture was performed with three electrophiles 
(Table  17 ). The proportions of the functionalized products  393 – 393  were constant 
with the electrophiles, the metalating agent and the time and refl ected the proportion 
of the starting material; this showed a similar behavior of the three compounds 
(393–395) with regard to the metalation reaction. The most important result was 
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  Scheme 68    Lithiation of mixture of pyridazines       

   Table 16    Lithiation of 2-halo-6-methoxypyrazines   

 Entry  X  R  Base  Yield (%)   388:389  

 1  F  Me  LDA  72  4:96 
 2  F  Me  LTMP  78  12:88 
 3  F  Me  LB  71  12:88 
 4  F  C 5 H 11   LDA  74  4:96 
 5  F  C 5 H 11   LTMP  65  14:86 
 6  F  C 5 H 11   LB  8°  14:86 
 7  Cl  Me  LDA  91  88:12 
 8  Cl  Me  LTMP  80  68:32 
 9  Cl  Me  LB  71  62:38 
 10  Cl  C 5 H 11   LDA  74  88:12 
 11  Cl  C 5 H 11   LTMP  82  67:33 
 12  Cl  C 5 H 11   LB  79  61:39 
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that the metalation of  391  was regioselective in  ortho  position relative to the fl uorine 
atom, leading to the conclusion that the fl uorine atom was a much better  ortho -
directing group than the chlorine.

4.4          Organometallic Compounds and Transition Metals 
Catalyzed Process 

 The most obvious feature of the chemistry of highly fl uorinated aromatic compounds 
which can be exploited is their susceptibility to nucleophilic attack. Therefore, 
reactions with anionic species containing metals can be useful and the most signifi -
cant examples of this type involve transition-metal carbonyl anions. Francis Gordon 
Albert Stone in 1968 described the reaction of carbonyl metal anions derived from 
Fe, Mn, Re and Mo with tetrafl uoropyridazine leading to organometallic complexes 
wherein 4-trifl uropyridazine group is σ-ligand to transition metals (Scheme  69 ) [ 219 ]. 
Compound  396  with [M] = π-C 5 H 5 Mo(CO) 3  was one of the fi rst molibdenium complex 
obtained by nucleophilic displacement with [π-C 5 H 5 Mo(CO) 3 ] − , and their isolation 
further illustrates the reactivity of perfl uoropyridazine, since the anion is a relatively 
weak nucleophile tolerated towards hexafl uorobenzene and pentafl uoropyridine.

   Table 17    Lithiation of 2-fl uoropyrazine   

 Entry  Base  Time, min  E-phile  Yield (%)  Product  393+394  (%) a   Product  395  (%) b  

 1  LDA  5  MeCHO  46  77  23 
 2  LTMP  5  MeCHO  44  72  28 
 3  LTMP  2°  MeCHO  48  74  26 
 4  LTMP  9°  MeCHO  63  77  23 
 5  LTMP  9°  PhCHO  55  72  28 
 6  LTMP  9°  I 2   37  77  23 

   a The amount of difl uorocompounds 394 was too low to be quantifi ed 
  b % determined by NMR  
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π-C5H5Mo(CO)3 20%
139 396

  Scheme 69    Reaction of tetrafl uoropyridazine with transition-metal carbonyl anions       

   But due to the extraordinary strength of the carbon–fl uorine bond, transition metal-
mediated activation of fl uoroalkanes and arenes is not easy to achieve. Nevertheless, 
Braun disclosed in 1999 activation of the C–F bond in highly electron- defi cient com-
pounds such as 2,4,6-trifl uoropyrimidine  397a  (R=H), with stoichiometric amounts of 
bis(triethylphosphano) nickel(0) giving activated complex  398  (Scheme  70 ) [ 220 ]. 
Later it was found that the transition from 2,4,6- trifl uoropyrimidine to 5-chloro-2,4,6-
trifl uoropyrimidine  397b  (R=Cl) in similar conditions (Ni(COD) 2 , PEt 3 ) leads to C-Cl 
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activation. But using PCy 3  instead of PEt 3  exclusive activation of the C–F bond takes 
place affording  trans -[NiF(4-C 4 N 2 ClF 2 )(PCy 3 ) 2 ]  400 . The treatment of the complex 
 400  by HCl led to 5-chloro-2,4-difl uoropyrimidine  402  meanwhile reaction with 
iodine gives 5-chloro-2,6-difl uoro-4-iodopyrimidine  401  (Scheme  70 ) [ 221 ].
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  Scheme 70    Nickel mediated activation of the aromatic carbon–fl uorine bond and subsequent 
reactions       
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  Scheme 71    Activation of 5-Chloro-2,4,6-trifl uoropyrimidine at Palladium and Nickel       

   In 2005 the same scientist showed that treatment of Ni(COD) 2  with 5-chloro- 
2,4,6- trifl uoropyrimidine  397b  in presence of P i -Pr 3  or PPh 3  effects the formation of 
the fl uoro complexes  trans -[NiF(4-C 4 N 2 ClF 2 )(PR 3 ) 2 ]  404 . In contrast, a reaction of 
 397b  with Pd(PPh 3 ) 4  leads to the insertion of a {Pd(PPh 3 ) 2 } unit into the C-Cl bond 
yielding  trans -[PdCl(5-C 4 N 2 F 3 )(PPh3) 2 ]  403 . Treatment of  404  with an excess of 
TolB(OH) 2  results in the slow formation of  trans -[NiF(4-C 4 N 2 TolClF)(PPh 3 ) 2 ]  405  
and subsequently 5-chloro-2-fl uoro-4,6-ditolylpyrimidine  406  (Scheme  71 ) [ 222 ]. 
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In catalytic experiments  397b  is converted with the set of boronic acids into  407  
when 10 % of  404b  is employed as catalyst (Scheme  72 ) [ 222 ].

    Meanwhile Queguiner with co-workers in 2002 disclosed Kharasch cross- coupling 
reactions of phenylmagnesium halides with fl uorodiazines. The nickel- catalyzed 
cross-coupling reactions between aryl Grignard reagents and fl uorodiazines  364 ,  408  
and  409  occurred in THF at rt using commercially available 1,2-bis(diphenylphosphino)
ethane, 1,3-bis(diphenylphosphino)propane, or 1,1′-bis(diphenylphosphino)ferrocene 
as ligands (Scheme  73 ) [ 223 ].
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  Scheme 72    Catalytic cross-coupling reactions of 5-Chloro-2,4,6- trifl uoropyrimidine              
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  Scheme 73    Nickel mediated cross-coupling of Grignard reagents with Fluorodiazines       

   Earlier in 1983 Norwegian chemists tried to applied the similar cross-coupling 
conditions to 2,4-dichloro-5-fl uoropyrimidine  158 . In a case of EtMgBr the diethyl-
ated product  415  formed in 53 % yield with small amount of C(6) addition product 
 416  [ 224 ]. But when PhMgBr was used the dihydropyrimidine  417  formed as a sole 
product (Scheme  74 ) [ 225 ].
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   Recently such type of transformation was used for the scalable process to the 
GSK3β Inhibitor AZD8926  422  (Scheme  75 ). The process include a lithiation of 
1-(pyran-4-yl)-2-trifl uoromethyl-imidazole  418 , a Ziegler-type coupling of lithiated 
 419  with commercially available 2-chloro-5-fl uoropyrimidine  362   via  1,2-addition 
over the 3,4-C–N bond and a copper-catalyzed dehydrogenative aromatization 
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  Scheme 74    Reactions of Grignard reagents with 2,4-dichloro-5- fl uoropyrimidine              
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  Scheme 75    Scalable process to the GSK3β inhibitor AZD8926       

using oxygen as the stoichiometric oxidant giving imidazopyrimidine  421  in 60 % 
total yield [ 226 ].

   Although aryl fl uorides are very unreactive toward oxidative addition of 
 palladium, whether the electron-defi cient pyrimidine ring coupled with the strong 
electron- withdrawing effect of fl uorine would allow 2,4,6-trifl uoropyrimidine to 
function as a suitable partner in a Suzuki coupling process. Unfortunately, when 
2,4,6-trifl uoropyrimidine was treated in a manner similar to the other halogenated 
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pyrimidines no arylation was observed. The major reaction appeared to be hydroly-
sis of one or more of the fl uorine substituents [ 227 ]. But this tolerance of fl uorine 
atom towards Pd-catalyzed coupling reactions can be used in organic synthesis. In 
can be illustrated by reactivity comparison of 2-fl uoro-5-bromopyrimidine and 
2,5-dibromopyrimidine (Fig.  19 ).

   In a case of 2,5-dibromopyrimidine Suzuki coupling with boronic acids proceeds 
selectively at 2-position leaving 5-bromine atom intact [ 228 ,  229 ] meanwhile 
Sonogashira coupling with terminal alkynes proceeds unselectively by both 
position [ 230 ]. But in a case of 2-fl uoro-5-bromopyrimidine the selectivity pattern 
of Pd-catalyzed couplings is switched off. Thus 2-fl uoro-5-bromopyrimidine  425  
entered in Suzuki coupling with boronic species  424  exclusively in 5-th brominated 
position leaving fl uorine intact giving compound  426  – BACE inhibitor, poten-
tial drug for the prevention of treatment of neurodegeneration [ 231 ] (Scheme  76 ). 
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  Fig. 19    Reactivity of 2-fl uoro-5-bromopyrimidine and 2,5-dibromopyrimidine       
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  Scheme 76    Suzuki reaction of 2-fl uoro-5-bromopyrimidine       

The selectivity pattern is general for fl uoro-bromo diazines. In course of diacylglycerol 
acyltransferase 1 (DGAT1) inhibitors  431  design and synthesis this assumption was 
proved. All fl uoro-bromo diazine derivatives  427  undergo Suzuki coupling only with 
bromine participation. Moreover, after the transformations the fl uorine atom in com-
pounds  430  remains active towards nucleophilic substitution [ 232 ] (Scheme  77 ).

    Another example of such differentiation of activity using was described during 
phosphoinositide 3-kinase (PI3K) inhibitors  435  development. In this case the core 
compound for the library construction was 7-bromo-2-fl uoroquinoxaline  432 . First 
the quinoxaline  432  was subjected to coupling reaction with boronic acid pinacol 
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ester  433  in MW condition giving corresponding key building block  434  in 64 % 
yield [ 233 ]. Than the  434  was used in parallel synthesis based on fl uorine substitution 
in DMSO solution with a list of 14 aliphatic amines with subsequent mass- directed 
purifi cation [ 234 ] (Scheme  78 ).
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   The similar situation was observed with fl uoro-iodo diazines. Fluoro-iodo 
pyrimidine  354  (see Scheme  59 ) was subjected to Stille coupling followed by intra-
molecular cyclization into targeted azacarboline  438  [ 212 ] (Scheme  79 ).
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  Scheme 79    Azacarboline synthesis based on fl uorinated pyrimidines       

   In 2003 the same group of scientists shown wide applicability of Pd-catalyzed 
coupling – metalation sequences in various pyrazine synthesis. Starting from 
2-fl uoro- 6-tributhylstannanyl-pyrazine  386  (Scheme  66 ) as building block a general 
synthetic route to access to various alkylaryl or diaryl pyrazines with multiple fl uo-
rosubstituents in strategic lateral position to generate a wide range of molecules was 
elaborated. The Stille, Suzuki, Sonogashira and Negishi couplings gave yields in 
range 50–80 % [ 215 ] (Scheme  80 ).
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  Scheme 80    2-Fluoro-6-tributhylstannanylpyrazine as key building block       
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   Later the different iodo/fl uoro activity was used in nicotinic acetylcholine 
receptor (nAChR) PET ligand  447 . On the early step of the synthesis starting from 
2- fl uoro-5-iodopyrimidine  444  the corresponding trialkyltin heteroaromatic inter-
mediate  445  was obtained based on “stanno-Stille” coupling in 90 % yield. Further 
the fl uorinated stannate was entered in reaction with iodopyridine  446  leading to 
cross-coupled pyridine-pyrimidine in 50 % yield. The fi nal step of the synthesis was 
Boc-deprotection by TFA affording  447  [ 235 ] (Scheme  81 ).
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  Scheme 81    Synthesis of acetylcholine receptor PET ligand       

   In 1995 selective Sonogashira reaction with 3-fl uoro-6-iodopyridazine  449  was 
described leading to selective substitution of iodine by propargyl alcohol in 64 % 
yield [ 236 ] (Scheme  82 ).
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  Scheme 82    Sonogashira reaction with 3-fl uoro-6-iodopyridazine       

   A lot of cross couplings were described for 2,4-dichloro-5-fl uoropyrimidine  158 . 
In a case of this substrate the exclusive substitution of chlorine in 4-position occurs 
leaving chlorine in 2-position intact. Iron-catalyzed coupling with Grignard reagent 
was used for introduction of alkyl group instead chlorine atom in 2,4-dichloro-5- 
fl uoropyrimidine leading to 2-chloro-5-fl uoro-4-methylpyrimidine in 48 % yield 
[ 237 ]. Alternative approaches to 2-chloro-5-fl uoro-4-alkylpyrimidines include 
Negishi coupling with organozinc derivatives and Suzuki coupling with alkyl 
boronic acids [ 238 ,  239 ] (Scheme  83 ).

   Different variants of Suzuki reaction were used for introduction of aryl and heta-
ryl group into 5-fl uoropyrimidine core. In majority cases the yield of reaction 
remains high and some functionality such as protected amino group or free alcohol 
function could be introduced together with benzene ring [ 240 – 243 ]. Also the reaction 
allows introduction of different heterocyclic moieties [ 244 ,  245 ] via Stille reaction 
[ 246 ] and Negishi coupling [ 247 ] using  158  (Scheme  84 ).
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  Scheme 84    Cross   -coupling reactions of 2,4-dichloro-5-fl uoropyrimidine       
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   More unusual transformation based on 2,4-dichloro-5-fl uoropyrimidine were 
described during development of inhibitors of the insulin-like growth factor-1 
receptor tyrosine kinase [ 248 ]. In a course of the project selective β-arylation of 
vinyl ethers by 4-chloropyrimidines could be achieved using a phosphine-free Heck 
reaction in polyethyleneglycol. The reaction of  158  with butyl vinyl ether (3 equiv.) 
in the presence of Et 3 N (1 equiv.) and Pd(OAc) 2  (7 mol %) using PEG-400 as a 
solvent provided vinyl ether  458  in 51 % yield. Bromination of the vinyl ether  458  
with NBS in dioxane–water followed by a cyclocondensation with 2-aminopyridine 
provided the imidazopyridine  460  in 7 % yield, presumably  via  the α-bromo hemi-
acetal  459 . With the aim of the replacement of the imidazopyridine ring by a 
pyrazolo[1,5-a]pyridine the 1,3-dipolar cycloaddition between vinyl ethers  458  and 
the azomethine imine formed by deprotonation of a 1-amino-pyridinium ion, fol-
lowed by an oxidative aromatization was carried out affording  461  in 49 % yield 
[ 249 ]. Alternative stereoselective approach to β-arylatated vinyl ethers  462  was 
described by Banyu Pharmaceutical starting from  cis -l-ethoxy-2-tri- n -butylstanyle-
thylene [ 250 ] (Scheme  85 ).

  Scheme 85    Cross-coupling reactions of 2,4-dichloro-5-fl uoropyrimidine       
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   Another useful Stille coupling was performed based on tributyl(1-ethoxyvinyl)
stannane  463  which allowed to obtain additional function in pyrimidine ring. The 
reaction of stannane  463  with  158  in presence of bis(triphenylphosphine) PdCl 2  in 
DMF leads to corresponding 4-vinyl ether  464  in 84 % yield. The amino group was 
introduced at position 2 upon treatment with aqueous concentrated ammonia in etha-
nol under heating with microwaves, and bromination of the resulting vinyl ether  465  
to α-bromo-ketone  466  was accomplished with N-bromosuccinimide in aqueous 
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tetrahydrofuran [ 251 ]. Also the 2-ethoxyvinyl moiety of  464  was subsequently 
converted into ethyl ester  466  by oxidative cleavage using NaIO 4 -KMnO 4  system 
[ 182 ] (Scheme  86 ).

  Scheme 86    Cross-coupling reactions of 2,4-dichloro-5-fl uoropyrimidine       
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4.5        Miscellaneous Cyclizations and Rearrangements 

 In the literature there are a lot of cyclization reaction were fl uorine in diazine core 
does not play signifi cant role. As an example the cyclizations of 6-fl uoropyridazin- 
3-ylamine  468  were shown [ 252 – 254 ] (Scheme  87 ).

  Scheme 87    Cyclizations based on 6-fl uoropyridazin-3-ylamine       
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   But in the section we would like to draw the reader’s attention to the more rare 
reaction, which results are not always clear from general considerations. For exam-
ple the reaction of 2,5,6-trifl uoropyrimidin-4-ol  471  with DMSO in presence of 
TFAA proceeds with 2,3-sigmatropic rearrangement leading to pyrimidine  472 , 
which was hydrolyzed to 5-fl uorouracil derivative  473  [ 255 ] The same scientists 
described the Claisen rearrangement of 4-allyloxy fl uoropyrimidines  474  in which 
N(3) is the migration terminus [ 181 ] (Scheme  88 ). 5-Fluoro-4,6-dimethoxypyrimidine 

 

 

Fluorine Containing Diazines. Synthesis and Properties



372

in reaction with activated DMSO also gave 2,3-sigmatropic rearrangement leading 
to 5-fl uoro-4,6-dimethoxymethylthiomethylpyrimidin-2(1H)-one in 59 % yield.

   Recently pyrimidine substituted alkynes  476  were subjected to intramolecular 
inverse-electron-demand hetero-Diels-Alder reaction with extrusion of HCN afford-
ing fused fl uorinated pyridines  478 . The reaction proceeds at high temperatures in 
sealed tubes for small amount of the starting materials [ 256 ] or as scalable fl ow 
process [ 257 ] (Scheme  89 )

  Scheme 88    Sigmatropic rearrangement of fl uorinated pyrimidines       
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  Scheme 89    Intramolecular inverse-electron-demand hetero-Diels-Alder reaction       
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   Unusual  tert -amino reaction was found under investigation of nucleophilic 
substitution in 3,5-bisheptafl uoroisopropyl-4,6-difl uoropyridazine  479  with 
dimethylamine. The reaction gives bis(dimethy1amino) derivative  480  which then 
undergoes spontaneous cyclisation by a displacement of fl uorine from a perfl uo-
roisopropyl group. This process is accelerated by water in DMF to give the colourless 
compound  481  in 90 % yield. The cyclization proceeds trough the loss of ‘tertiary’ 
fl uorine and formation of purple intermediate compound  482 , which was proved by 
isolation of a purple solid  484  (87 % yield) by adding boron trifl uoride-dietliyl ether 
to  480  [ 258 ] (Scheme  90 ).

   Historical developments of the structure of benzene is important part of history 
of chemistry. Structures considered were Dewar benzene  486 , Ladenberg’s pris-
mane  487  and benzvalene  488  (Fig.  20 ). Photochemistry of fl uorinated aromatic 
systems has made an important contribution to the study of valence isomers because 
it has been possible to isolate and characterize some species on which there had 
previously only been speculation.

 

 

D.M. Volochnyuk et al.



373

  Scheme 90    Tert-reaction with perfl uoroisopropyl group participation       
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   The fl uorinated diazines plays important role as model object for the investigation. 
Tetrafl uoropyridazine has been converted photochemitally into tetrafl uoropyrazine 
via formal 1,3-shift of nitrogen [ 259 ] (Scheme  91 ).

  Scheme 91    Photoizomerization of perfl uorinated pyridazine       
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   The use of polyfl uoroalkyl substituents in positions 4 and 5 (compound  489 ), 
however, enabled a mechanistic pathway to pyrazine  490  substituted at positions 2 
and 5, to be suggested (Scheme  92 ) Individual para-bonded species  491  and  492  have 
been isolated in this and other cases, and converted into the next component along the 
reaction pathway by photo or thermal reactions [ 260 ]. In a case of 4,6-disubstituted 
pyridazine  493  only pyrazine substituted at positions 2 and 6  494  was observed. 
A very unusual mechanistic pathway may be drawn from the structures of the isolated 
and characterised valence isomers (Scheme  92 ). This appears to be the fi rst case 
where substituent labelling has allowed each stage in a photochemical aromatic 
rearrangement to be identifi ed through various intermediate valence isomers.
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   Also during the investigation of photolysis of 4,6-disubstituted pyridazine  493  have 
been established that by-products are formed in the reaction through the intermediacy 
of an azacyclobutadiene derivative  496  [ 261 ] (Scheme  93 ). The azacyclobutadiene 
 496  was not isolated but the products of its dimerization  498 – 500  were isolated 
and characterized. From all characterized dimers the 1,5-diazocine derivative  500  
appears most thermodynamically stable (Scheme  94 ).

  Scheme 92    Substituent labeled photoizomerization of fl uorinated pyridazines       
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    A benzodiazabenzvalene derivative  502  has been proposed to account for the 
photochemical rearrangement of perfl uorocinnoline  501  to the quinazoline  503  [ 59 ] 
(Scheme  95 ).
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  Scheme 95    Izomerization of fl uorinated pyridazines to pyrimidines       

   A remarkable series of transformations has been discovered with fl uorinated pyrid-
azines, giving pyrimidines and small amounts of pyrazines on pyrolysis. The pyrolysis 
of tetrafl uoropyridazine  139  gave the isomer tetrafl uoropyrimidine  6  as the major product 
(30 %) (Scheme  95 ) [ 262 ], though at 815 °C tetrafl uoropyrazine was among the products. 

 Once again, the use of 4,5-di( polyfl uoroalkyl) derivatives  489  and the orientation 
of the substituents in the products enabled the reaction pathway to be rationalised on 
the basis of the formation and rearrangement of three intermediate diazabenzvalenes 
 504 ,  506  and  507 . For Rf=C 2 F 5 , the major component  505  was accompanied by a 
small amount of the 2,6-substituted pyrazine  494 , whereas for Rf=(CF 3 ) 2 CF, is 
formed with a smaller amount of the 2,5-substituted pyrazine  490  [ 263 ] (Scheme  96 ). 
Despite of no valence isomers have actually been isolated. Cycloaddition processes 
have been ruled out by N-15 labelling experiments. Furthermore, rearrangement 
is encouraged by free-radical promotors, leading to the conclusion that these 
processes involve free-radicals formation [ 264 ].
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   After investigation of Chambers group made in late 70-th in 1984 Clark and 
co- worker investigated plasma polymerization of the isomeric perfl uorodiazines. 
The studies showed that plasma polymers are produced by rearrangement mechanisms. 
A comparison of rates of formation of plasma polymer fi lms reveals distinctive 
differences between the isomeric diazines that suggest that equilibration of valence 
isomers occurs on a substantially slower time scale than for isomeric fl uorinated 
benzenes [ 265 ]. Also extensive MNDO SCF MO calculations were made to determine 
the heats of formation of the ground state of geometry-optimized perfl uorodiaza-
benzenes (pyridazine, pyrimidine, and pyrazine) and some of their structural isomers 
(Dewar benzene, benzvalene, prismane, fulvene and hexadienyne) [ 266 ]. From these 
calculations it is readily apparent that perfl uoropyridazine could eliminate nitrogen 
without further rearrangement with a heat of reaction of 27 kcal/mol. Despite of known 
pyrolyses of perfl uoroalkylpyridazines leads to rearrangements to pyrimidines 
and pyrazines, rather than loss of nitrogen, the pyridazines bearing perfl uoroaryl 
substituents loss the nitrogen under termolysis. Thermal elimination presents a route 
to fl uorinated alkyne derivatives [ 267 ] (Scheme  97 ).
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4.6        Fluorination Reactions 

 Chambers and coworkers studied direct fl uorination of perfl uoropyrimidine by 
elemental fl uoride. The formation of the dimeric compound  511  in the reaction 
indicated the radical nature of the process [ 267 ]. Addition of highly electrophilic 
fl uorine atom at a position meta to nitrogen in followed by dimerisation of  510  is 
easily understandable. Meanwhile the fl uorination of perfl uoropyrimidine by cobalt 
(III) fl uoride with calcium fl uoride leads to another product. In this case the reaction 
proceeds trough cation radical  512 , which after fl uoride anione additional formed 
radical  513 . Dimerization of the radical  513  followed by fl uorination leads to bispy-
rimidine  514  in 25 % isolated yield [ 268 ] (Scheme  98 ). Whereas perfl uoropyrazine 
under CoF 3 -CaF 2  fl uorination gives 1,3-diene  515  in 58 % yield with ~50 % conver-
sion of starting materials (Scheme  99 ). Bulky perfl uoroisopropyl group in 4- and 
6-positions of pyrimidine prevent dimerisation under CoF 3 -CaF 2  fl uorination and 
reaction results in formation of 1,4-dienes  519  in high yield. Similar situation is 
observed with fl uorination of perfl uoro-2,5-diisopropylpyrazine  490  (Scheme  100 ). 
But the pyridazine derivatives  489  and  493  each lost nitrogen on fl uorination. 
However, this provides a novel synthetic approach to some unusual fl uorinated 
alkenes (Scheme  101 ).
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5            Side Chain Fluorinated Diazines 

 Chain-fl uorinated diazines is another family of organofl uorine compounds which is 
of great importance for synthetic, medicinal and agricultural chemistry [ 12 ,  13 ]. 
The fi rst representatives of this class, namely, chain-fl uorinated pyrimidines and 
quinoxalines were obtained in late 1950s. Since then, over a thousand papers 
dealing with synthesis and chemistry of chain-fl uorinated diazines were published. 
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Due to a huge number of the data, this chapter gives a general review of synthetic 
methods and chemical properties of chain-fl uorinated diazines. Only selected 
(sometimes deliberately) literature examples are given to illustrate them. 

 Known approaches to the synthesis of chain-fl uorinated diazines are subdivided 
into two categories: the methods, which rely on introduction of fl uorine or fl uorine- 
containing substituents into diazine core (i.e. direct (per)fl uoroalkylation and 
nucleophilic substitution with fl uoride), and construction of the diazine core 
starting from fl uorine containing building blocks. Chemical properties of the 
chain- fl uorinated diazines are discussed in a separate section.  

6     Introduction of Fluorine-Containing Substituents 
into Diazine Core 

6.1     Direct (Per)Fluoroalkylation 

6.1.1      Perfl uoroalkylcopper Reagents 

 Perfl uoroalkylation with perfl uoroalkyl copper species is one of the most known 
“direct” method for introducing CF 3  group and other fl uorinated alkyl substituents 
into aromatic cores. One of the fi rst reports in this area was made in 1977 [ 269 ] and 
later in 1980 – as a full paper [ 270 ]. In these works, Kobayashi and co-workers used 
CF 3 I–Cu – HMPA system to generate CF 3 Cu solution, which reacted with 5-bromo-  526  
and 5-iodouracil derivatives  528  to give 5-trifl uoromethylpyrimidines  527  and  529  
(Scheme  102 ). The method was used for the synthesis of Trifl uridine and its analogues 
(see Chap.   20    ) [ 269 – 271 ].
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   A related procedure employed less expensive but less reactive CF 3 Br instead 
of CF 3 I as the source of the trifl uoromethyl group [ 272 ]. In this case, CF 3 Cu was 
generated by heating CF 3 Br and copper powder in DMF – pyridine at 115 °C in a 
sealed tube. It was found that addition of 4-dimethylaminopyridine (DMAP) 
substantially accelerated formation of the complex. The preformed CF 3 Cu reacted 
with pyrimidine  530  at to give  531 . This procedure was used for the preparation of 
FTC-092, an investigational anti-cancer drug (Scheme  103 , see Chap.   20    ).

N

N

O
O

O

O

Ph3CO

I

Ph

O

Ph

N

N

O
O

O

O

Ph3CO

Ph

O

Ph
F

F

F
Cu, CF3Br

DMAP

63%
DMF - py

530 531

  Scheme 103    Trifl uoromethylation step in the synthesis of FTC-092       

   Table 18    Perfl uoroalkylation of diazines with iodides 3 and 4. Conditions: 532 or 533, Cu, 2,2′-
bipy, DMSO, C 6 F 6 ,  ca . 85 °C   

 #  Substrate  Reagent  Product  Yield (%) 

 1 

  N

N

Cl Cl    

  532  

  N

N

C8F17 C8F17    

 70 

 2 

  N

N

Cl Cl

Cl

    

  532  

  N

N

C8F17 C8F17

C8F17

    

 59 

 3 

  N

N

Cl Cl

Cl

    

  533  

  N

N

(CF2)4OCF(CF3)2

(CF2)4OCF(CF3)2

(CF3)2CFO(CF2)4     

 56 

 4 

  N
N

Cl

Cl

    

  532  

  N
N

C8F17

C8F17

    

 68 

 5 

  N

N

Cl Cl    

  532  

  N

N

C8F17 C8F17    

 89 

   The method was extended to other perfl uoroalkyl iodides,  i.e.      n -C 8 F 17 I ( 532 ) or 
(CF 3 ) 2 CFO(CF 2 ) 4 I ( 533 ) (Table  18 ) [ 273 ]. In this case, the reaction was performed 
in C 6 F 6  as the solvent at  ca.  85 °C; DMSO and 2,2′-bipyridyl were used as additives 
to accelerate formation of perfl uoroalkyl copper reagents. The method was effective 
only for the primary perfl uoroalkyl iodides.
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   Analogous reaction of ethyl dibromofl uoroacetate with 2-bromopyrimidine  534  
gave the corresponding product  535  in low yield (12 %) (Scheme  104 ) [ 274 ].
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  Scheme 104    Coupling of 2-bromopyrimidine with ethyl dibromofl uoroacetate       

   Burton’s conditions ( i.e.  Cu–CF 2 Br 2  – DMA [ 275 ]) were also checked for trifl uo-
romethylation of diazines (namely, 2-chloropyrimidine). Despite high conversion of 
the substrate, the method gave nearly equimolar mixture of 2- perfl uoroalkylpyrimidines 
 536  and  537  was obtained (Scheme  105 ) [ 276 ,  277 ]. The mechanism of the reaction 
included reduction of CF 2 Br 2  with copper to give difl uorocarbene, which reacted 
with dimethylacetamide to give the adduct  538 . The latter acted as a source of fl uoride 
ion and reacted with difl uorocarbene to give CF 3 Cu species. In case of low activated 
substrates ( i.e.  2-chloropyrimidine), CF 3 Cu slowly reacted with difl uorocarbene to 
give C 2 F 5 Cu, which also took part in the transformation.

   Recently, several novel methods for the generation of perfl uoroalkyl copper 
species were used for direct perfl uoroalkylation of diazines, e.g. transmetallation 
reactions involving (CF 3 ) 2 Hg [ 278 ] and CF 3 ZnBr · 2DMF [ 279 ]. In both cases, the 
procedure did not require special laboratory equipment such as autoclaves or steel 
tubes, which were necessary in the case of using CF 3 Br or CF 3 I as the source of trifl uo-
romethyl group. The fi rst method ((CF 3 ) 2 Hg–Cu – dimethylacetamide, 110–140 °C) 
was successfully applied for trifl uoromethylation of 5′-iodouridine derivatives; 
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the corresponding products were obtained in more than 90 % yields. In the second 
procedure, C 2 F 5 Cu species were generated selectively (from CF 3 ZnBr · 2DMF and 
CuBr), which reacted with 2-iodopyrimidine to give the product  537  in 69 % 
yield (Scheme  106 ).
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  Scheme 106    Pentafl uoroethylation of 2-iodopyrimidine       

   An alternative source for the generation of trifl uoromethyl copper species, which 
gained momentum in the last years, is Ruppert – Prakash reagent (CF 3 SiMe 3 ). 
Hartwig and co-workers used this reagent to obtain stable complex CF 3 Cu · phen 
( 539 ) [ 280 ]. The latter was obtained in 96 % yield on a gram scale by reaction of 
copper (I)  tert -butoxide with 1,10-phenantroline (phen) and then – with CF 3 SiMe 3  
in benzene at rt (Scheme  107 ). The complex  539  is called Trifl uoromethylator™ ,  
which is an easily handled, thermally stable, single-component reagent for the 
trifl uoromethylation of aryl iodides and now is available from Aldrich. Reaction of 
 539  with uracil derivative  540  gave the product  541  in 78 % yield.

   One more method relied on reaction of CF 3 SiMe 3  with AgF in DMF, which led 
to CF 3 Ag species [ 281 ]. The latter was treated with copper to obtain the trifl uoro-
methyl copper reagent, which was rather effective for the trifl uoromethylation of 
2-bromopyrimidine (75 % yield) (Scheme  108 ). In case of 5-bromopyrimidine, a 
mixture of perfl uoroalkylation products  542 – 544  was formed at 56:41:3 ratio, 
respectively.
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   In a recent paper,  S -(trifl uoromethyl)diphenylsulfonium trifl ate ( 545 ) in the 
presence of copper was proposed as an effi cient reagent for trifl uoromethylation of 
heteroaromatic compounds [ 282 ]. In particular, 3-chloro-6-iodopyridazine smoothly 
reacted with this reagent to give the product of the iodine selective substitution ( 546 ) 
in 98 % yield (Scheme  109 ). The proposed mechanism for the formation of active 
species included reduction of  545  leading to trifl uoromethyl radicals, which in turn 
reacted with copper to give CF 3 Cu.
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  Scheme 108    Trifl uoromethylation with CF 3 SiMe 3  –AgF–Cu       
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  Scheme 109    Trifl uoromethylation with CF 3 SPh 2  + OTf – –Cu       

   It was found that FSO 2 CF 2 CO 2 Me readily eliminates CO 2  and SO 2  in the 
presence of CuI in DMF at 60–80 °C to produce CuCF 3  species that can be used for 
aromatic trifl uoromethylation [ 283 ]. The method was used for trifl uoromethylation 
of pyrimidines  547  [ 284 ] and  548  [ 285 ] (Scheme  110 ).
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   An analogous idea was implied in an older method which used CF 3 COONa–CuI 
–  N -methylpyrrolidone system for trifl uoromethylation of 2-bromopyrimidine 
(Scheme  111 ) [ 286 ]. The corresponding product  546  was obtained in 34 % yield. 
The authors proposed [CF 3 CuI] –  species as the active trifl uoromethylation agent.

CF3CuFSO2CF2COOMe
CuI

FSO2CF2COOCu
-SO2

-CO2

N

N
N

N

Br

NHBoc

N

N
N

N

CF3

NHBoc

N

N
I

O Ph

Ph N

N
CF3

O Ph

Ph

FSO2CF2COOMe

CuI, HMPA, DMF, 80 °C

547
24%

FSO2CF2COOMe

CuI, DMF, 80 °C

548

549

550

  Scheme 110    Trifl uoromethylation with FSO 2 CF 2 CO 2 Me–CuI       
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  Scheme 111    Trifl uoromethylation with CF 3 COONa–CuI       

   The most recent methodology for CF 3 Cu generation based on CF 3 H was 
elaborated by Grushin [ 287 ]. The method is based on a novel ate complex reagent, 
[K(DMF)][( t -BuO) 2 Cu], that is formed quantitatively upon treatment of CuCl with 
2 equiv. of t-BuOK. This dialkoxycuprate, generated in situ or preisolated, reacts 
with CHF 3  at room temperature and atmospheric pressure within minutes to give 
rise to CuCF 3  in >90 % yield. Stabilization of thus produced trifl uoromethyl 
copper(I) with a source of HF such as Et 3 N*3HF furnishes the reagent that is stable 
at room temperature for days (Scheme  112 ). Prior to the stabilization, fl uoroform- 
derived CuCF 3  reacted with haloarenes to give the corresponding arenetrifl uorides. 
The conditions were also checked for trifl uoromethylation of diazines [ 288 ]. Due to 
the cupration occurs within seconds at room temperature and is not mediated 
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by CF 3  −  or CF 2 , which accounts for its remarkably high selectivity, the reaction 
leads only to trifl uoromethyl derivatives without C 2 F 5  derivatives side-formation, 
unlike to above-mentioned procedures (Table  19 ).

CuCl + 2 t-BuOK
DMF

K(DMF)[Cu(Ot-Bu)2] + KCl

1. HCF3 2. 1/3 Et3N*3HF

CuCF3 + 2 t-BuOH + 1/3 Et3N + KF

  Scheme 112    Fluoroform- derived CuCF 3  generation       

   Table 19    Trifl uoromethylation of diazine bromides with fl uoroform-derived CuCF 3    

 #  Substrate  Conditions  Product  Yield (%) 

 1 

  N

N

Br    

 1.5 eq. CuCF 3 , 23 °C, 18 h 

  N

N

CF3    

 95 

 2 

  
N

N

Br    

 1.5 eq. CuCF 3 , 50 °C, 18 h 

  
N

N

CF3    

 24 

 3 

  N

N

Br

Br

    

 3 eq. CuCF 3 , 23 °C, 24 h 

  N

N

CF3

F3C

    

 94 

6.1.2         Perfl uorocarboxylic Acids or Their Derivatives 

 Perfl uorocarboxylic acids, in particular CF 3 COOH, are probably the most accessi-
ble sources of perfl uoroalkyl fragments. It is not surprisingly, therefore, that some 
efforts were put to develop the methods for direct perfl uoroalkylation of diazines 
using perfl uorocarboxylic acids or their derivatives. One of such methods was 
already mentioned in the previous section, namely, decarboxylative trifl uoromethyl-
ation using CF 3 COONa–CuI system reported in 1988 [ 286 ]. An alternative procedure 
used XeF 2  to generate active species from perfl uorocarboxylic acids [ 289 ]. In particu-
lar, intermediate xenon (II) perfl uocarboxylate  551  decomposed to give perfl uoro-
acyl radical. The latter eliminated CO 2  to form the corresponding perfl uoroalkyl 
radicals ( i.e.  CF 3  or C 2 F 5 ). These active species reacted with aromatics (in particular, 
pyrimidine derivative  552 ) (Scheme  113 ) at rt. The procedure was used for the 
synthesis of antiviral drug Trifl uridine (see Chap.   20    ). The reagent was also applied 
for trifl uoromethylation of 2-mercaptopyrimidines; in this case, mixtures of products 
( 554 – 558 ) was obtained (Scheme  114 ) [ 290 ].
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    Electrochemical generation of trifl uoroacetyl (and hence trifl uoromethyl) radicals 
in the presence of uracil derivatives was studied [ 291 ]. Electrolysis of CF 3 COOK/
CF 3 COOH solutions of N-1- and N-3-methylated uracils provided mixtures of 
5-trifl uoromethyl derivatives  559  and N–C uracil dimers  560  (Scheme  115 ). In case 
of 1,3-dimethyluracil, N-1 demethylathion was also observed.

RfCOOH + XeF2 Xe(OOCRf)2 RfCOO. Rf .

N

HN

O
O

O

AcO

AcO N

HN

O
O

O

AcO

AcO

Rf

551

RfCOOH

XeF2, CH2Cl2, rt 
31-33%

552
Rf = CF3, C2F5 553

  Scheme 113    Trifl uoromethylation with R f COOH–XeF 2        
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CF3S
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N
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N

N

HS N

N

CF3S N

N

CF3S

CF3

CF3COOH

XeF2, CH2Cl2,
-20 to 5 °C

+ +

554 (7%) 555 (14%) 556 (3%)

CF3COOH

XeF2, CH2Cl2,
-20 to 5 °C

+

557 (28%) 558 (14%)

  Scheme 114    Reaction of 2-mercaptopyrimidines with CF 3 COOH–XeF 2        

HN N

O

O
R

HN N

O

O

CF3

R

HN

N

O

O
R

N

N

O

O
R

R = H, Me

CF3COOK, CF3COOH

electrolysis

+

559 560

  Scheme 115    Electrolytic trifl uoromethylation of uracil derivative       
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6.1.3        (Per)Fluoroalkylsulfi nates 

 Although perfl uorocarboxylic acids are readily available sources for of perfl uoroalkyl 
groups, their use for direct perfl uoroalkylation often requires higher temperatures, 
transition-metal additives, or strongly oxidizing conditions. (Per)fl uoroalkylsulfi nic 
acids are alternative reagents, which can also deliver (per)fl uoroalkyl radicals. In 
particular, a method for trifl uoromethylation of heterocycles (including diazines) 
reported by Baran and co-workers in 2011 used CF 3 SO 2 Na– t BuOOH system 
(Table  20 ) [ 293 ]. A putative mechanism of the transformation included reaction of 
 tert -butoxy radical, generated from  t BuOOH and trace metal or another initiator, 
with CF 3 SO 2  –  to produce CF 3 SO 2  · radical (Scheme  117 ). This intermediate decom-
posed to release SO 2  and CF 3 ·. The trifl uoromethyl radical was then trapped with 
heterocyclic substrate; the intermediate formed was oxidized to the fi nal product 
with  t BuOOH, concomitantly generating another molecule of  t BuO·.

   The reaction of bis(perfl uoroacyl)peroxides and various  O –protected uracils is a 
valuable method for the introduction of perfl uoroalkyl group at C-5 atom of uracil [ 292 ]. 
The corresponding products were obtained in 20–56 % yields (Scheme  116 ). 
Substitution at C-6 of uracil did not interfere with reaction. The method could be 
extended for unprotected uracils and uridine derivatives (26–42 %).

N

N

OR

RO R1

N

N

OR

RO R1

Rf

N

N

OR

O

Sug

N

N

OR

O

Sug

Rf

R = Me, TMS      R1 = H, Me, CF3

Sug - sugar residue

(RfCOO)2

Freon-113
30-48 °C

20-56%

(RfCOO)2

Freon-113
30-48 °C
26-42%

561 562

563 564

Rf = CF3, n-C3F7, n-C6F13

  Scheme 116    Trifl uoromethylation of uracil derivatives with bis(perfl uoroacyl)peroxides       
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    Later, it was found that zinc sulfi nates are superior reagents for the (per)fl uoroal-
kylation of heterocycles in terms of both stability and reactivity [ 294 ]. A toolkit of 
zinc sulfi nates (Baran reagents), most of which are now commercially available 
from Sigma-Aldrich, was developed [ 295 ], including (CF 3 SO 2 ) 2 Zn (TFMS), 
(CHF 2 SO 2 ) 2 Zn (DFMS), and (CH 2 FSO 2 ) 2 Zn (Table  21 ). Although in many cases 
the yields in the transformations using zinc (per)fl uoroalkylsulfi nate –  tert -butyl 
hydroperoxide were moderate, these reactions can be conducted open to the air 
on unprotected.

N
H

HN

O

O

N
H

HN

O

O
CF3

N
H

NH

O

O
CF3

tBuOOH
initiator

tBuO .
CF3SO2

_

- tBuO
_ CF3SO2

.

SO2

SO4
2-

tBuOOH
OH

_

CF3
.

.

tBuOOH

+ H2O

  Scheme 117    Putative mechanism of uracil trifl uoromethylation with CF 3 SO 2 Na– t BuOOH       

   Table 20    Trifl uoromethylation of diazines with CF 3 SO 2 Na–tBuOOH. Conditions: CF 3 SO 2 Na 
(3 eq.), tBuOOH (5 eq.), CH 2 Cl 2 –H 2 O, rt   

 #  Substrate  Product  Yield (%) 

 1 

  N

N

COOMe    
  

N

N

COOMe
CF3

4- and 5-, 1 : 1     

 37 

 2 

  N

N

COOMe      N

N

COOMe

CF3

    

 50 

 3 

  N

N

      N

N

CF3    

 57 

 4 

  
N
H

HN

O

O

      
N
H

NH

O

O
CF3

    

 87 

 5 

  

N

HN

O
O

O

HO

HO

      

N

NH

O
O

O

OH

OH

CF3

    

 57 
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   Site-selectivity of (per)fl uoroalkylation depends on combined electronic properties 
of the reacting π-system and incoming radical species. This point is illustrated 
through a comparison between CF 3  and CF 2 H radical additions to Varenicline 
(marketed in the U.S. as the prescription medication Chantix by Pfi zer). In this case, 
high levels of selectivity are observed for CF 3  and CF 2 H radical addition, in spite of 
the multiple potentially reactive sites (Scheme  118 ). For Varenicline, innate radical 
C–H trifl uoromethylation takes place at the most electron rich position within the 
arene rings (C5, giving  566 ). Conversely, difl uoromethylation occurs exclusively 
at electron-poor sites adjacent to heteroatoms within the heteroarene rings (C2, 
giving  567 ).

   Table 21    (Per)fl uoroalkylation of diazines with (R f SO 2 ) 2 Zn– t BuOOH. Conditions: (R f SO 2 ) 2 Zn, 
 t BuOOH, organic solvent – H 2 O, rt – 50 °C   

 #  Substrate  Product 

 Yield (%), R f  = 

 CF 3   CHF 2   CH 2 F 

 1 

  N

N

COOMe      N

N

COOMe
Rf

    

 –  62  – 
 4- and 5- 
 4:1 

 2 

  N

N

CN      N

N

CN
Rf

    

 42  21  – 
 4- and 5-  4- and 5- 
 1.6:1  1.6:1 

 3 

  N

N

      N

N

Rf    

 –  66  – 

 4 

  N
N

OMe

Cl     
  N

N

OMe

Cl

Rf

    

 45  57  – 
 4 only  4- and 5- 

 6:1 

 5 

  N

N

      N

N

Rf    

 75  50  56 
 5 products 

N

N

NH

H

H

N

N

HN

CF3

N

N

HN
CHF2

Vareniciline 565

NaSO2CF3

C5 : C2 = 4:1

50%

DFMS
t-BuOOH

50%
566 567

5

2

  Scheme 118    Regiochemical comparison of innate difl uoro- and trifl uoromethylations       
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   Taking the advantage of photoredox catalysis, Nagib and MacMillan developed 
in 2011 a Ru(phen) 3 Cl 2 -catalyzed trifl uoromethylation reaction of arenes and hetero-
arenes by the use of trifl uoromethanesulfonyl chloride (CF 3 SO 2 Cl) as trifl uoromethyl 
group source (Scheme  119 ) [ 296 ]. The relatively low cost and ease of handing of 
CF 3 SO 2 Cl as well as the mild reaction conditions led this method to become par-
ticular interesting. The absorption of one photon by the photocatalyst Ru(phen) 3  2+  
will generate a high energy excited species *Ru(phen) 3  2+ . The reaction is initiated 
by the reduction of trifl yl chloride with *Ru(phen) 3  2+  (called oxidative quench) via 
one-electron transfer. The trifl yl chloride rapidly collapses to trifl uoromethyl radical 
when it ensues an electron from *Ru(phen) 3  2+ .

N

HN

O

N

HN

O
CF3

H

N

NH

O
CF3

H

N

HN

O
CF3

*Ru(phen)3
2+

Ru(phen)3
3+ Ru(phen)3

2+

F3CSO2Cl

F3CSO2Cl
. _

-Cl-
-SO2

CF3
.

. +

visible
light

  Scheme 119    Ru(phen) 3 Cl 2 -catalyzed trifl uoromethylation reaction of diazines       

   The addition of the trifl uoromethyl radical to (het)arenes would form a new 
cyclohexadienyl like radical species, which would give trifl uoromethylate (het)aryl 
compounds by the oxidation of Ru(phen) 3  3+  followed by deprotonation. The reaction 
has wide substrate scope. Different types of diazines gave good to excellent yields 
of trifl uoromethylated products under treatment by 1–4 eq. of CF 3 SO 2 Cl in MeCN 
in a presents of 1–2 % of Ru(phen) 3 Cl 2  and K 2 HPO 4  as a base with irradiation by 
26 W light source (Fig.  21 ).
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6.1.4        Other Methods 

 There are several other methods for generation of (per)fl uoroalkyl radicals in reactions 
with diazines. In particular, photochemical decomposition of perfl uoroalkyl mercury 
derivatives was used for perfl uoroalkylation of uracils  568  (Scheme  120 ) [ 297 ]. 
Whereas for the parent uracil the method gave satisfactory results (30–54 % yields), 
the procedure was unfruitful for the sugar-modifi ed derivatives (6–11 % yields).

N

N

O

CF3

N

NO

O
CF3

N

N

O
CF3 N

N

CF3

S

N

N

O
CF3

O O

N

N CF3

N

N CF3

N

N CF3

Cl Cl

92% 74% 72% 86%

82% 78% 94% 70%

  Fig. 21    Radical trifl uoromethylation of diazines via photoredox catalysis       

   Photochemical reaction of uracil  7  with CF 3 Br also gave the corresponding 
5- trifl uoromethyl derivative, although in this case, the yield was unsatisfactory 
(11 %, 56 % conversion) (Scheme  121 ) [ 298 ].
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  Scheme 120    Photochemical perfl uoroalkylation of uracils with bis(perfl uoroalkyl)mercury       
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  Scheme 121    Photochemical trifl uoromethylation of uracil with CF 3 Br       
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   Yamakawa with co-workers reported in 2010 Fe-catalyzed trifl uoromethylation 
of various aromatics (including diazines) with CF 3 I (Table  22 ). The method used 
FeSO 4 –H 2 O 2  system to generate active species from CF 3 I. Since the reaction was of 
electrophilic nature, only diazines with electron-donating substituents were used 
as the substrates [ 299 ].

   Several methods for the preparation of chain-fl uorinated pyridazines relied 
on the so-called “anionic Friedel – Crafts” reactions ( i.e.  aromatic nucleophilic 
substitution with perfl uoroalkyl anions or their synthetic equivalents) with tetra-
fl uoropyridazine, which was discussed in the corresponding section on chemistry of 
ring-fl uorinated diazines.   

6.2     Nucleophilic Substitution with Fluoride 

6.2.1     Substitution of Other Halogens 

 Nucleophilic substitution of halogen atoms with fl uoride ion was relatively rarely 
used for the preparation of chain-fl uorinated diazines. The method was applied 
for the preparation of monofl uoroalkyl and trifl uoromethyl diazines, and various 
reaction conditions were used in these two cases. Monofl uoroalkyl diazines were 
obtained by reaction of the corresponding benzyl-type halides with CsF in DMF 
[ 300 – 304 ] or HMPA – DMSO [ 307 ] (Table  23 ). This approach was successfully 

   Table 22    Fe(II)-catalyzed trifl uoromethylation of diazines with CF 3 I   

 #  Substrate  Conditions  Product  Yield (%) 

 1 

  N

N

NH2    

 CF 3 I (3 eq.), FeSO 4  (0.3 eq.), H 2 O 2  (2 eq.), 
 H 2 SO 4  (1 eq.), DMSO, rt 

  N

N

NH2

CF3

    

 22 

 2 

  
N
H

N

NH2O
    

 CF 3 I (3 eq.), FeSO 4  (0.3 eq.), 
 H 2 O 2  (2 eq.), DMSO, rt 

  
N
H

N

NH2O

CF3

    

 86 

 3 

  N

N

NH2    

 CF 3 I (3 eq.), FeSO 4  (0.3 eq.), H 2 O 2  (2 eq.), 
 H 2 SO 4  (1 eq.), DMSO, rt 

  N

N

NH2

CF3

    

 57 
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used for the preparation 2-(fl uoroalkyl)pyrimidines; the only literature example 
with pyrazine derivative reported low yield (9 %) [ 305 ].

   For the synthesis of trifl uoromethyl substituted diazines, the corresponding 
tricloromethyl derivatives were treated with HF [ 306 ], SbF 3  – cat. SbCl 5  [ 67 ,  307 ], or 
SbF 5  [ 308 ] at elevated temperatures (Table  24 ). Notably, the latter two reagents 
allowed selective fl uorination of the side chain in the presence of chlorine substitu-
ents in the heteroaromatic ring [ 67 ,  308 ]. Contrary, in case of fl uorination using HF 
the chlorine atoms in the diazine core were substituted fi rst [ 67 ].

   Table 23    Preparation of monofl uoroalkyl diazines using nucleophilic substitution   

 #  Substrate  Conditions  Product  Yield (%)  Ref. 

 1 

  

N

N

NH2

Cl

Cl     

 CsF, DMF, refl ux 

  

N

N

NH2

F

F     

 n/a  [ 300 ] 

 2 

  

N

N

NH2

OR

Cl     

 CsF, DMF, refl ux 
(R=Me, Et,  n -Bu) 

  

N

N

NH2

OR

F     

 n/a  [ 300 ] 

 3 

  N

N

NHR

Cl

Cl

    

 CsF, DMF, 120–140 °C 
(R=PhCH 2 , 
4-MeOC 6 H 4 (CH 2 ) 2 ) 

  N

N

NHR

F

Cl

    

 35–49  [ 301 ,  302 ] 

 4 

  N

N

NHR

Br

I

    

 CsF, DMF, 120–130 °C 
(R = 4-FC 6 H 4 (CH 2 ) 2 ) 

  N

N

NHR

F

I

    

 75  [ 303 ] 

 5 

  
N

N

S

Cl

    

 CsF, DMF, 100 °C 

  
N

N

S

F

    

 17  [ 304 ] 

 6 

  N

N COOMe

Cl
    

 CsF, HMPA, DMSO, 140 °C 

  N

N COOMe

F
    

 9  [ 305 ] 
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6.2.2        Deoxofl uorination 

 Reaction of alcohols, aldehydes and ketones with fl uorinating agents ( i.e.  deoxo-
fl uorination) is a well-established method for the synthesis of chain-fl uorinated 
diazines. Mono- and difl uoroalkyl substituted diazines were obtained in moderate to 
good yields using this method (Tables  25  and  26 ). A common reagent used to 
achieve this type of transformations is diethylaminosulfur trifl uoride (DAST) ( 571 ). 
Bis(2-methoxyethyl)aminosulfur trifl uoride (Deoxo-Fluor TM ) ( 572 ), which is of 
higher thermal stability and therefore more amenable to large-scale use [ 309 ], is an 
alternative reagent for deoxofl uorination. Both reagents work under mild conditions 
and are tolerant to a number of functional groups; they were successfully used for 
the fl uorination of many functionalized diazines. In the case of chiral alcohols 
(Table  25 , Entry 12–15), the reaction proceeded with inversion of the confi guration 
(Fig.  22 ).

    Table 24    Fluorination of trichloromethyl diazines   

 #  Substrate  Conditions  Product  Yield (%)  Ref. 

 1 

  N

N

Cl

Cl3C

Cl

Cl    

 SbF 3 , SbCl 5 , 175 °C 

  N

N

Cl

F3C

Cl

Cl    

 52  [ 67 ] 

 2 

  N

N

F

Cl3C

Cl

Cl    

 SbF 3 , SbCl 5 , 165 °C 

  N

N

F

F3C

Cl

Cl    

 38  [ 67 ] 

 3 

  N

N

Cl

Cl 3C

Cl

Cl    

 SbF 3 , SbCl 5 , 150 °C 

  N

N

Cl

F3C

Cl

F    

 42  [ 67 ] 

 4 

  N

N

F

Cl3C

Cl

F    

 SbF 3 , SbCl 5 , 135 °C 

  N

N

F

F3C

Cl

F    

 65  [ 67 ] 

 5 

  N

N

OCCl3

Cl3C Cl    

 SbF 3 , SbCl 5 , 

  N

N

OCF3

F3C F    

 72  [ 307 ] 

 6 

  N

N

Cl

Cl3C

    

 SbF 5 , 150 °C 

  N

N

Cl

F3C

    

 51  [ 307 ] 

 7 

  N

N

Cl

Cl3C

Cl     

 HF, 10 bar, 142 °C 

  N

N

F

F3C

F     

 90  [ 306 ] 
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    Table 25    Deoxofl uorination of diazine-derived alcohols   

 #  Substrate  Conditions  Product  Yield (%)  Ref. 

 1 

  N

N

Cl

HO
    

  571 , CH 2 Cl 2 , −78 °C to rt 

  N

N

Cl

F
    

 30  [ 310 ] 

 2 

  
N

N

Cl

OH

I

    

  571 , CH 2 Cl 2 , −78 °C to rt 

  
N

N

Cl

F

    

 38  [ 310 ] 

 3 

  
N

N

Cl

HO

    

  571 , CH 2 Cl 2 , 0 °C to rt 

  
N

N

Cl

F

I

N

N

Cl

F

I

    

 79  [ 310 ] 

 4 

  

N

N

NHBoc

OH 30     

  571 , CH 2 Cl 2 , 0 °C 

  

N

N

NHBoc

F     

 32  [ 311 ] 

 5 

  N

N

COOMe

OH

    

  n -C 4 F 9 SO 2 F, Et 3 N, Et 3 N · 3HF, 
0 °C to rt 

  N

N

COOMe

F

    

 15  [ 312 ] 

 6 

  

N

N

HO

CCl3

OMe

OMe

    

  571 , CH 2 Cl 2 , −78 °C to refl ux 

  

N

N

F

CCl3

OMe

OMe

    

 53  [ 313 ] 

 7 

  

N

N

HO

F Cl    

  571 , CH 2 Cl 2 , rt 

  

N

N

HO

F Cl    

 41  [ 314 ] 

 8 

  

N

N
OH

CN

MeO

OMe

31     

  571 , CH 2 Cl 2 , −5 °C to rt 

  

N

N
F

CN

MeO

OMe

    

 60  [ 315 ] 

 9 

  

N

N
OH

MeS

NH2

32     

  571 , CH 2 Cl 2 , 0 °C to rt 

  

N

N
F

MeS

NH2

    

 N/A  [ 316 ] 

(continued)
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Table 25 (continued)

 #  Substrate  Conditions  Product  Yield (%)  Ref. 

 9 

  

N

N
OH

NH

O

Cl

33     

  571 , CH 2 Cl 2 , 0 °C to rt 

  

N

N
F

NH

O

Cl

    

 50  [ 302 ] 

 10 

  

N

OH

N

N

34     

  571 , CH 2 Cl 2 , −78 °C 

  

N

F

N

N

    

 33  [ 317 ] 

 11 

  

N
N

OH

N

F 35     

  571 , CH 2 Cl 2 , −78 °C 

  

N
N

F

N

F 35     

 73  [ 318 ] 

 12 

  

N

N

N

OH

rac

41     

  571 , CH 2 Cl 2 , −65 °C 

  N

N

N

F

rac

    

 18  [ 319 ] 

(continued)
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 #  Substrate  Conditions  Product  Yield (%)  Ref. 

 13 

  

N

N

N

N

Âoc

HO 42     

  571 , CH 2 Cl 2 , −20 °C 

  
N

N

N

N

Âoc

F     

 72  [ 320 ] 

 14 

  

N

N

N

N

Âoc

HO 43     

  571 , CH 2 Cl 2 , −20 °C 

  
N

N

N

N

Âoc

F     

 61  [ 320 ] 

 15 

  

N

N

OH

Br

44     

  571 , CH 2 Cl 2 , −10 °C 

  

N

N

F

Br

    

 87  [ 321 ] 

Table 25 (continued)

   Table 26    Deoxofl uorination of diazine-derived aldehydes and ketones   

 #  Substrate  Conditions  Product  Yield (%)  Ref. 

 1 

  N

N

O

    

  571 , CFCl 3 , 20 °C 

  N

N
F

F

    

 39  [ 322 ] 

 2 

  

N

NPh

O

    

  571 , CH 3 CCl 3 , heating 

  

N

NPh

F

F

    

 61  [ 323 ] 

 3 

  

N

N

O

NHBoc 36     

  28 , CH 2 Cl 2 , 0 °C 

  

N

N
NHBoc

F

F

    

 23  [ 324 ] 

(continued)
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 #  Substrate  Conditions  Product  Yield (%)  Ref. 

 4 

  

N

N

O

O

OtBu 37     

  571 , THF, 0 °C to rt 

  

N

N

O

OtBu

F

F

    

 68  [ 325 ] 

 5 

  

N

N

O

    

  571 , CDCl 3 , 35 °C 

  

N

N
F

F

    

 95  [ 321 ] 

 6 

  

N

N

O

Cl

NC

38     

  571 , CH 2 Cl 2 , cat. EtOH, rt 

  N

N

Cl

NC
F

F

    

 N/A  [ 326 ] 

 7 

  

N

N

O

Cl     

  571 , CH 2 Cl 2 , −78 °C to rt 

  

N

N

Cl

F

F

    

 24  [ 310 ] 

 8 

  

N

N

O

Cl

Cl

    

  571 , CH 2 Cl 2 , rt 

  

N

N

Cl

F

F
Cl

    

 94  [ 327 ] 

 9 

  

N
N

O

O OMe

39     

  572 , CH 2 Cl 2 , 0 °C to rt 

  

N
N

O OMe

F F

    

 52  [ 311 ] 

 10 

  

N

N
O

O

O

CN

40     

  572 , 110 °C 

  
N

N
O

O

CN

F

F

    

 73  [ 328 ] 

Table 26 (continued)
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     Exhaustive deoxofl uorination of carboxylic group in diazines was studied 
scarcely: only a few examples included reaction of 2-aminopyrimidine-5- carboxylic 
acid ( 45 ), pyrazine mono- ( 575 ) and tetracarboxylic acids ( 577 ) with HF–SF 4  at 
120–150 °C, giving the corresponding trifl uoromethyl derivatives  547, 576  and  578  
respectively in 20–68 % yield (Scheme  122 ) [ 329 – 331 ]. Under milder reaction 
conditions ( e.g.  with DAST), deoxofl uorination of carboxylic acids stops at the 
formation of the corresponding acyl fl uorides.

N S
F

F
F

N S
F

F
F

O

O

571 (DAST) 572 (Deoxo-FluorTM)

  Fig. 22    Structure of DAST and Deoxo-Fluor       
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N

N CF3

N
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COOH

HOOC

HOOC N

N CF3

CF3

F3C

F3C

HF, SF4

120 °C

573 57464%

575 576

577 578

HF, SF4

150 °C
68%

HF, SF4

150 °C
20%

  Scheme 122    Deoxofl uorination of the carboxylic acids       

6.3         Electrophilic Fluorination 

 In principle, fl uorine atom can be introduced into the side chain of heterocycles 
by reaction of the corresponding α-hetarylcarbanions with electrophilic 
fl uorinating reagents. Nevertheless, this approach was rarely used for diazines. 
In particular, 6-fl uoromethylpurines  580  were obtained in 48–58 % yields by 
deprotonation of purine derivatives  579  with NaHMDS followed by reaction with 
 N- fl uorobenzenesulfonimide (NFSI,  51 ) (Scheme  123 ) [ 332 ]. A phthalazine deriva-
tive  583  was prepared by an analogous approach, using  N -fl uoro-2,α-cumenesultam 
( 584 ) as the fl uorinating agent [ 333 ].
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7           Construction of Diazine Core Using Fluorine-Containing 
Building Blocks 

7.1     Synthesis from α-Fluorocarboxylic Acids 
and Their Derivatives 

7.1.1     CCC+NCN Approach to Pyrimidines (Principal Synthesis) 

 Because of its wide applicability, the method that involves the reaction of a 
binucleophile to supply the three-atom fragment (NCN) with a bis-electrophile to 
provide the three-carbon fragment (CCC),  i.e.  CCC+NCN or [3+3] approach to 
pyrimidines, is known as the principal synthesis [ 334 ]. Among the NCN binu-
cleophiles, only amidines provide possibility to introduce the fl uorinated side 
chain into the pyrimidine core. 

 Trifl uoroacetamidine ( 585 ) is most widely used for the principal synthesis of 
pyrimidines. Compound  585  can be prepared from ethyl trifl uoroacetate by ammo-
nolysis, followed by dehydration with P 2 O 5  and reaction with ammonia (Scheme  124 ) 
[ 335 ,  336 ]. Amidine  585  has been introduced into reaction with various β-dicarbonyl 
compounds and their synthetic equivalents (Table  27 ), including β-ketoesters 
(Entries 1–6), in particular β-ketopyruvates (Entry 3) and α-alkoxymethylene-β- 
ketoesters (Entries 4–6), β-enaminocarbonyl compounds (Entries 7–9), malonic 
acid derivatives (Entry 10), fl uorinated β-diketones (Entry 11), vinamidinium salts 
(Entry 12), α,β-unsaturated nitriles with leaving group at β position (Entries 13–15) 
and other bis-electrophiles (Entries 16, 17). Usually, the reaction gives moderate 
yields of the target 2-CF 3 -pyrimidines ( ca . 50 %).

N

N

N

N
R

N

N

N

N
R

F

S
N

O

O
S

O

O
F

Ph Ph

N

N

HN

Cl

N

N

N

HN

Cl

N
F

S
N F

OO

R = sugar residue or THP

1. NaHMDS, THF, -78 °C

2. NFSI, THF

580
48-58%

581 (NFSI)

1. KHMDS, THF, -78 °C

2. 584, THF, -78 °C

583 584

579

582

  Scheme 123    Electrophilic fl uorination of diazines       
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CF3

O

OEt CF3

O

NH2
CF3

N

CF3

NH

NH2

NH3 P2O5 NH3

Et2O
83%

150 °C
71%

90%

585

  Scheme 124    Synthesis of trifl uoroacetamidine ( 585 )       

   Table 27    Syntheses of fl uorinated diazines using trifl uoroacetamidine ( 585 )   

 #  Substrate  Conditions  Product  Yield (%)  Ref. 

 1 

  

N

Ph

O OEt

O

. HCl

    

  585 , EtONa, EtOH, rt 

  

N

N

N
H

O CF3

Ph     

 78  [ 337 ] 

 2 

  

CF3

O

OEtO

    

  585 , EtONa, EtOH, rt 

  CF3

N

N
H

O CF3

    

 24  [ 338 ] 

 3 

  

O

O
O

OEt     

  585 , HCl, EtOH, 0 °C 

  

N

N CF3

COOEt     

 65  [ 339 ] 

 4 

  

O

OO

O

    

  585 , MeOH, acetone 
 0 °C to rt 

  
OO

NN

FF
F

    

 45  [ 340 ] 

 5 

  

O

OO

O

    

  585 , EtONa, EtOH, refl ux 

  O

NN

FF
F

EtO     

 55  [ 341 ] 

 6 

  
OO

O O

    

  585 , MeONa, MeOH, refl ux 

  
O

NN

FF
F

O
    

 50–60  [ 342 ] 

(continued)
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Table 27 (continued)

 #  Substrate  Conditions  Product  Yield (%)  Ref. 

 7 

  

O

O
O

N

    

  585 , EtOH, refl ux 

  

O
O

N
N

CF3

    

 44  [ 343 ] 

 8 

  

O

N

Boc

N

    

  585 , EtONa, EtOH, refl ux 

  

N

Boc

N
N

CF3

    

 N/A  [ 344 ] 

 9 

  O

N

O

O

    

  585 , EtOH, refl ux 

  O

NN

FF
F

EtO     

 44  [ 341 ] 

 10 

  

O

O
O

O
    

  585 , MeONa, MeOH, 0 °C to rt 

  OH

N

N
H

O CF3

    

 N/A  [ 345 ] 

 11 

  

N

Boc

O

CF3O

    

  585 , py, 80 °C 

  

N

Boc

N

NCF3 CF3

    

 87  [ 346 ] 

 12 

  

N
+

Cl

N

PF6
-

    

  585 , Et 3 N, MeCN, rt 

  Cl

NN

FF
F

    

 36  [ 347 ] 

 13 

  

O

NC CN     

  585 , EtONa, EtOH, rt 

  

NN

FF
F

CN
NH2

    

 72  [ 348 ] 

(continued)
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    A three-component one-pot reaction of  585 , methyl formate, methyl methoxyacetate 
in presence of sodium methoxide was also studied (Scheme  125 ) [ 353 ]. Obviously, 
in this case Claisen condensation occurred fi rst, followed by heterocyclization 
with  585  to give pyrimidine derivative  586 .

 #  Substrate  Conditions  Product  Yield (%)  Ref. 

 14 

  

Cl

NC CN    

  585 , Et 2 O, rt 

  

NN

FF
F

CN
NH2

    

 79  [ 349 ] 

 15 

  

Cl CN

F2C C
(CF2)

F2

n

    

  585 , Et 2 O, rt; n = 1, 2 

  

F2C C
(CF2)

N
N NH2

CF3

F2

n

    

 76–90  [ 350 ] 

 16 

  Cl

Cl

HN

O

O

Ph

    

  585 , AcONa, DMF, 80 °C 

  Cl

Cl

HN

O

Ph

N

N
CF3

    

 25  [ 351 ] 

 17 

  

O

O

O

O

OPh

Ph

Ph     

  585 , EtONa, 90 °C, MW 

  

OH

O

O

O

Ph

Ph

Ph

N

N CF3

    

 70  [ 352 ] 

Table 27 (continued)

O
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O
OO

O
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O

O CF3 NH
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N

NH

O

O

F

F
F

+
MeONa

THF

585

23%

586

  Scheme 125    A three-component reaction involving  585        
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   Reaction of amidine  585  with perfl uorinated alkene  587  led to the formation of 
amidine  588 , which upon heating with alkali gave a mixture of pyrimidines  590  
(7 %) and  589  (34 %) (Scheme  126 ) [ 354 ]. Pyrimidine  589  was obtained in 78 % 
yield when the second step of this sequence was performed using DABCO.

CF3 NH

NH2

F

C2F5

CF3

CF3

N
H

C2F5

CF3

CF3

CF3

NH

N
H

N

C2F5

CF3

O CF3

N

N

C2F5

CF3

F CF3 N
H

N

C2F5

CF3

O CF3

585

587 588

DABCO

54% 78%

589

NaOH

PhCH2NEt3+Cl-

590 (7%)

+

589 (34%)

  Scheme 126    Synthesis of pyrimidines starting from alkene  587        

   Apart from  585 , another fl uorinated amidines were used for the principal synthesis 
of pyrimidines including compounds  591 – 594  (Fig.  23 ).

C2F5

NH

NH2
F

NH2
+

NH2

Cl F

NH2
+

NH2

F

Cl
F

NH

NH2

591 592 593 594
  Fig. 23    Structure of 
α-fl uorinated amidines       

   Since the corresponding nitrile  595  does not react with ammonia directly, 
preparation of  591  starting from  595  used several steps (Scheme  127 ), including 
isolation of ethyl 2-fl uoroacetimidate (as hydrochloride  596 ) [ 355 ,  356 ] or ethyl 
2- fl uorothioacetimidate [ 357 ]. In some literature sources the step including reaction 
of  592  with ammonia was omitted [ 358 ]. Compound  592  was prepared in 48 % 
yield from methyl difl uoroacetate  597  by reaction with NH 4 Cl–Me 3 Al in toluene at 
80 °C [ 359 ]. Synthesis of  59  is analogous to that of trifl uoroacetamidine  585  [ 360 ], 
and  594  – of fl uoroacetamidine  591  [ 361 ].
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   Only a few examples of principal synthesis of pyrimidines involving amidines 
 591 – 594  were described to date (Table  28 ), including reaction of  591  and  592  with 
malonic acid derivatives (Entries 1 and 2),  593  – with β-diketone, enamino ketone 
and ethyxymethylene derivative of a β-ketoester (Entries 3–5), and  594  – with 
enamino ketone (Entry 6).

N
F F

NH2

+

OEt

Cl
F

NH2

+

NH2

Cl

N
F F

NH2
+

OEt

Cl
F

NH2
+

NH2

Cl

F

NH2
+

NH2

F

Cl
F

O

F

OMe

C2F5

N

C2F5

NH

NH2
C2F5 NH2

O

HCl

EtOH

NH3

EtOH

HCl

EtOH

94%

NH3

EtOH
82%

48%

NH4Cl, Me3Al

toluene, 80 °C

NH3

95%

P2O5

597

591

592

593

594

595 596

598 599

600 601

  Scheme 127    Synthesis of fl uorinated acetamidines  591 – 594        

   Table 28    Syntheses of fl uorinated diazines using amidines  591 – 594    

 #  Substrate  Conditions  Product  Yield (%)  Ref. 

 1 

  

O O

OEtEtO     

  591 , MeONa, MeOH, refl ux 

  

NHN

F

OHO     

 96  [ 355 ] 

 2 

  

O O

F

OEtEtO

    

  592 , MeONa, MeOH, 80 °C 

  

NHN

FF

OHO
F     

 61  [ 359 ] 

 3 

  

N
Boc

OCF3

O

    

  593 ,  i PrOH, cat. BF 3 ⋅Et 2 O, 120 °C 

  
N

Boc

N
N

C2F5

CF3

    

 59  [ 362 ] 

(continued)
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7.1.2        Other Approaches to Pyrimidines 

 Apart from the principal synthesis of pyrimidines ( i.e.  CCC+NCN or [3+3] 
approach), several other methods involve the use of fl uorinated carboxylic acid 
derivatives:

 –    NCCCN+C or [5+1] approach;  
 –   CC+2CN or [2+2+2] approach;  
 –   NCCCC + N or [5 + 1] approach;    

 One of them (NCCCN+C approach) is a common method for the preparation of 
quinazolines and their hetero-analogues (see the next section). Nevertheless, malo-
namide  602  was shown to react with various fl uorinated esters  603  to give  pyrimidine 
derivatives  604  in good yields (70–75 %) (Scheme  128 ) [ 365 ] (in some patents, 

 #  Substrate  Conditions  Product  Yield (%)  Ref. 

 4 

  N

N
N

O

N

    

  593 , MeONa, MeOH, 55 °C 

  N

N
N

N
N

C2F5

    

 44  [ 363 ] 

 5 

  

O O

OEt

OEt

F

F
    

  593 , EtONa, EtOH, refl ux 

  

O OEt

N N

F

F

C2F5     

 40  [ 364 ] 

 6 

  

S

N
O

N

N

N
    

  594 , MeO(CH 2 ) 2 OH, rt, then 
NaOH, 125 °C 

  S

N

NH2

N
N

F

    

 N/A  [ 361 ] 

Table 28 (continued)
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lower yield of the product was reported,  e.g.  29 % for the difl uoromethyl derivative 
[ 356 ]). Excess of sodium alcoxide was used in the reaction, therefore, sodium salt 
of malonamide was likely an active species, which allowed retaining nitrogen atoms 
of the amide fragment in the fi nal product. In the case of ethyl trifl uoroacetate, the 
reaction was performed on a kilogram scale (conditions: NaH,  n BuOH, toluene, 
100 °C, then 23–25 °C, 44 %) [ 366 ].

O

NH2 NH2

O O

OEt
N

NH

O

HO Rf

+
Rf

602

Rf = CH2F. CHF2, CF3, CHClF, MeCHF, PhCF2

EtONa

EtOH
70-75%

603 604

  Scheme 128    NCCCN+C approach to pyrimidines using fl uorinated esters       

   One more method relying on NCCCN+C approach was used for the synthesis of 
perfl uorinated pyrimidine derivatives. It relied on acylation of β-diimine  606  – a 
product of reaction of alkene  605  (an analogue of  587  mentioned in the previous 
section) with ammonia – with perfl uorinated anhydrides or acyl chlorides 
(Scheme  129 ) [ 367 ]. Pyrimidines  607 – 609  were obtained in 71–88 % yields.

F

C2F5

F

CF3

F
H2N

CF3

CF3NH

F
N

CF3

CF3NRf

605 606

NH4OH

acetone
66%

(CF3CO)2O,

(C2F5CO)2O

or nC3F7C(O)Cl

607, Rf = CF3, 71%
608, Rf = C2F5, 73%
609, Rf = nC3F7, 88%

Et2O, 1-3 °C

  Scheme 129    Synthesis of pyrimidines starting from alkene  66        

   Several methods for the preparation of chain-fl uorinated pyrimidines involve 
reactions of fl uorinated nitriles. One of such methods relies on reaction of two 
trifl uoroacetonitrile molecules with one molecule of a substrate,  i.e.  CC+2CN or 
[2+2+2] approach. This approach was used for several types of substrates (Table  29 ), 
including ynamines (Entry 1), enamines (Entries 2–7), imines and methylene active 
compounds (Entries 8, 9).
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    Table 29    CC+2CN approach to chain-fl uorinated pyrimidines   

 #  Substrate  Conditions  Product  Yield (%)  Ref. 

 1 

  

N

    

 CF 3 CN, hexane, −15 °C 

  

N

N

NCF3 CF3    

 75  [ 368 ] 

 2 

  

N

    

 CF 3 CN, hexane, 40 °C 

  

N

NCF3 CF3    

 78  [ 369 ] 

 3 

  

N

Ph     

 CF 3 CN, hexane, 40 °C 

  

N

NCF3 CF3

Ph

    

 72  [ 369 ] 

 4 

  n

N

O

    

 CF 3 CN, hexane, 40 °C; n = 1, 2 

  n

NN

CF3

CF3

    

 77–87  [ 369 ] 

 5 

  

N

O

N
    

 CF 3 CN, hexane, 40 °C 

  

NN

CF3

CF3

N
    

 52  [ 369 ] 

 6 

  

N

n     

 CF 3 CN, hexane, 40 °C; n = 1, 5 

  

N
N

CF3

CF3

n     

 71–78  [ 369 ] 

 7 

  

N

    

 CF 3 CN, hexane, 40 °C 

  

N

NCF3 CF3

NH

    

 81  [ 369 ] 

(continued)
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   Stepwise mechanism was proposed for the reaction of CF 3 CN with enamines 
including formation of tautomeric 1:1 adducts  610 – 612  (Scheme  130 ) [ 369 ]. 
Each of these adducts can react further with CF 3 CN to give 1:2 adducts  613 – 615 , 
which can undergo cyclization to dihydropyrimidines  616  and  617 , either directly or 
 via  tautomerization. Both  616  and  617  give the fi nal product  618  upon elimination 
of a secondary amine. In case of enamines lacking β′-hydrogen atom, only one 
of the pathways mentioned above is possible, namely,  via  adducts of the type 
 610  and  613 .

 #  Substrate  Conditions  Product  Yield (%)  Ref. 

 8 

  

O
CN

OEt     

  t BuOK, THF, rt; then CF 3 CN 

  

NHN

CF3

CF3

CN
O

    

 84  [ 370 ] 

 9 

  

O
CN

Ph     

 NaH, THF, rt; then CF 3 CN 

  

NN

CF3

CF3Ph
CN     

 63  [ 371 ] 

 10 

  

N

Ph       
619  

 CF 3 CN, rt 

  

NN

CF3

CF3Ph       
620  

 78  [ 372 ] 

 11 

  

N

Ph       
619  

 CHF 2 CF 2 CN, 65 °C 

  

NN

Ph

FF

FF

F

F

F
F       

621  

 90  [ 372 ] 

Table 29 (continued)
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   Ketimines ( e.g.   619 ) were also introduced into reaction with fl uorinated nitriles 
(CF 3 CN and CHF 2 CF 2 CN) to give 2:1 adducts (Table  29 , Entries 10 and 11) [ 374 ]. 
In case of  619 , pyrimidines  620  and  621  were obtained in 78–90 % yields, whereas 
for the 2-thienyl analogue of  619 , the yields of the corresponding products were 
moderate (26–45 %). Notably, the method allowed to use two different electron- 
defi cient nitriles, if CCl 3 CN was used in the fi rst step of the reaction (Scheme  131 ). 
In this case, intermediate  82  could be isolated.

N

Ph

N

NH2 CCl3

Ph

N

N

CCl3

Ph

619

Cl3CCN

74%

RfCN
Rf

60-87%

Rf = CF3, CHF2CF2

622
623

  Scheme 131    Two-step reaction of imines with electron-defi cient nitriles       
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  Scheme 130    Reaction of enamines with CF 3 CN: a proposed mechanism       

   Recently, an interesting approach to chain-fl uorinated pyrimidines was described 
(CF 3 COOH as the source of CF 3  group). The method relied on CCCCN+N ([5+1]) 
cyclization of enamides  628  and  629  with NH 4 OAc to give pyrimidines  630  and  631  
in 66 and 31 % yields respectively (Scheme  132 ) [ 373 ]. Compounds  628  and  629  
were prepared by generation of the corresponding lithiated allene derivatives  626  
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and  627 , followed by reaction with nitrile and subsequent acylation with CF 3 COOH. 
In case of  628 , the synthesis was complicated by partial removal of the trimethylsi-
lylethyl protecting group (TMSE) to result in low yield of the product (14 %).

OTMSE

Ph
OMe

O

R Li

R1

N
H

O
O

CF3 O

R
R1O

N
N

CF3
R

R1

BuLi, Et2O

-40 °Cor

626, R = H, R1 = TMSE
627, H = Ph, R1 = Me

1. tBuCN, -78 °C
2. TFA, - 78 °C to rt

628, R = H, R1 = TMSE, 14%
629, H = Ph, R1 = Me, 49%

NH4OAc

65 °C
31-66%

630, R = H, R1 = TMSE, 66%
631, H = Ph, R1 = Me, 31%

624

625

  Scheme 132    CCCCN+N ([5+1]) approach to chain-fl uorinated pyrimidines       

7.1.3        Construction of Pyrimidine Ring of Quinazolines 
and Their Hetero-analogues 

 A classical method for the synthesis of quinazolines is reaction of anthranilamides 
( i.e.  NCCCN-binucleophiles) with carboxylic acids or their derivatives ( i.e.  
C 1 - electrophiles) [ 374 ]. The reaction proceeds in two steps: acylation of aromatic 
amino group followed by heterocyclization. For example, reaction of anthranil-
amide  632  or its derivatives with trifl uoroacetic anhydride afforded amide  633 , 
which underwent cyclization upon action of aqueous NaOH [ 375 ], AcOH [ 376 ] or 
Ac 2 O [ 377 ] to give quinazolone  634  (56–99 % from  632 ) (Scheme  133 ). The reac-
tion sequence was also performed in one-pot manner by heating of anthranilamides 
and CF 3 COOH at 300 °C upon MW irradiation; in this case moderate to good yields 
of the products were obtained (29–75 %) [ 378 ]. Alternatively,  634  was obtained by 
heating of  632  and ethyl trifl uoroacetate [ 379 ]. Several modifi cations of the method 
were applied for the synthesis of fused quinalozolones and hetero-analogues,  e.g.  
pyrazolo[3,4- d ]pyrimidine (Table  30 , Entry 1), isoxazolo[5,4- d ]pyrimidine (Entry 
2), pteridine (Entry 3), or benzoquinazoline (Entry 4) derivatives.

NH2

O

NH2

NH

O

NH2

CF3O

N

NH

O

FF

F
TFAA

Et3N

aq NaOH,

AcOH or Ac2O
56-99% (from 632)

632 633 634

  Scheme 133    Synthesis of quinazolone  634        
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    The above mentioned approach was used extensively for the preparation of 
2-(aryldifl uoromethyl)quinazolin-4-ones and their hetero-analogues. In particular, 
anthranilamides, as well as their thiophene or pyrazole analogues  635 – 642  were 
coupled with (het)aryldifl uoroacetic acids  643 – 645  to give amides  646  (Table  31 ). 
For the activation of the carboxylic acid, a number of common reagents were used, 
including (COCl) 2 , HATU, and pentafl uorophenyl trifl uoroacetate. Cyclization of 
 103  was performed by heating with Me 3 SiCl/Et 3 N in 1,2-dichloroethane (DCE) at 
80–85 °C (Entries 1–5), as well as by refl uxing in AcOH or Ac 2 O/AcOH (Entries 6 
and 7). One-pot reaction of  637 – 642  and  643 – 645  was also developed by using of 
trimethylsilyl polyphosphate (TMSPP) at 115–130 °C (Table  32 ).

   Table 30    Synthesis of hetero-analogues of chain-fl uorinated quinalozolones   

 #  Substrate  Conditions  Product  Yield (%)  Ref. 

 1 

  

N
N

S
O

NH2

NH2

Cl Cl

Cl     

 CF 3 COOEt, EtONa, 
EtOH, refl ux 

  

N N

S
Cl

Cl

Cl

N
H

N

OCF3

    

 100  [ 380 ] 

 2 

  O
N

S

H2N

H2N
    

 TFAA, TFA, rt 

  

O
N

S

NHN

CF3

    

 40  [ 381 ] 

 3 

  

O

NH2

NH2 N

N

    

 TFAA, TFA, 90 °C 

  

O

NH

N

N

N

CF3

    

 90  [ 382 ] 

 4 

  

O
NH2

NH2

    

 TFAA, CHCl 3 , refl ux 

  

ON
H

N

CF3

    

 93  [ 383 ] 
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   Table 31    Two-step synthesis of 2-(aryldifl uoromethyl)quinazolin-4-ones and their hetero-analogues 

  

Ar

F

F

HO ONH2

O

NH2

NH

O

NH2

O
Ar

FF

N

O

NH

Ar
F

F

+
activating reagent

(e. g. (COCl2), HATU,
CF3COOC6F5)

base (Et3N, DIPEA etc.) 646

see the

Table

      

 #  Substrate  Acid 

 Cyclization step 

 Ref.  Conditions  Yield (%) 

 1 

  

O
H2N

H2N

O
O       

635  
  

FF

HO O

F       
643  

 Me 3 SiCl, Et 3 N, DCE, 85 °C  89  [ 384 ] 

 2 

  

O
H2N

H2N

      
636  

  

FF

NaO O

N

F       
644  

 Me 3 SiCl, Et 3 N, DCE, 85 °C  91  [ 385 ] 

 3 

  

O
H2N

H2N

      
637  

  643   Me 3 SiCl, Et 3 N, DCE, 85 °C  37  [ 386 ] 

 4   636  

  

FF

NaO O

N N

F       
645  

 Me 3 SiCl, Et 3 N, DCE, 85 °C  69  [ 385 ] 

 5 

  O

NH2

NH2

S

      
638  

  643   Me 3 SiCl, Et 3 N, DCE, 85 °C  83  [ 385 ] 

 6 

  

O
H2N

H2N

F
      

639  

  643   AcOH, 120 °C  61  [ 386 ] 

 7   638    643   AcOH, refl ux, then Ac 2 O, 
AcOH, refl ux 

 85  [ 384 ] 
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    A convenient precursor of quinazoline derivatives is anthranilic acid nitrile  646 . 
It should be noted that in order to introduce the substituent at C4 position of the 
quinazoline core starting from  646  or its derivatives, a nucleophile is necessary for 
the cyclization – a feature which can be advantageous since additional diversity 
point appears in the synthesis. In particular, reaction of  N -trifl uoroacetyl derivative 
of  646  – compound  647  – with PCl 5  in sulfolane gave 4-chloro derivative  648  in 
80 % yield (Scheme  134 ) [ 388 ]. Upon heating of  646  with H 2 O 2 /NaOH at 35–45 °C, 
quinazolone  634  was obtained; in this case, amide  633  was an intermediate in the 
reaction [ 393 ]. Reaction of  646  with Grignard reagents gave intermediates  649  and 

   Table 32    One-pot synthesis of 2-(aryldifl uoromethyl)quinazolin-4-ones and their hetero-analogues 

  

Ar

F

F

HO ONH2

O

NH2

N

O

NH

Ar
F

F

+
TMSPP

115-130 °C

      

 #  Substrate  Acid  Yield (%)  Ref. 

 1 

  O

NH2

NH2Br

      
640  

  643   79  [ 384 ] 

 2 

  

O

NH2NH2

N
N

      
641  

  643   91  [ 384 ] 

 3   640    644   77  [ 385 ] 
 4   637    644   66  [ 385 ] 
 5   638    644   43  [ 384 ] 
 6 

  O

NH2

NH2N
N

      
642  

  644   44  [ 387 ] 
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 650 , which upon acylation with TFAA or CClF 2 C(O)Cl gave quinazolines  651 – 653  
in 42–90 % yields [ 390 ]. Indium-promoted version of the latter method was also 
developed for the synthesis of 4-allylquinazolines, which could be illustrated by 
reaction of compound  47  with allyl bromide in a presence of indium [ 391 ].

   Compound  646  and the corresponding heterocyclic nitriles were used in the 
synthesis of other perfl uorinated quinazolines (Table  33 , Entry 1) and their hetero- 
analogues,  e.g.  pyrazolo[3,4- d ]pyrimidine (Entry 2), 7-deazahypoxanthine (Entry 3), 
pyrido[2,3- d ]pyrimidine (Entry 4), or thieno[2,3 -d ]pyrimidine derivatives (Entry 5). 
In all these cases, the corresponding amides ( e.g.   633 ) can be proposed as the 
intermediates in the reaction.

N CF3

R

N

NH2

N

NHMgBr

R

NMgBr

N CClF2

N

Ph

N CF3

N

N
H

CF3

O

N

N CF3

Cl

N

Br

N CF3

O

NH

646

RMgBr

Et2O

649, R = Et
650, R = Ph

TFAA

651, R = Et, 42%
652, R = Ph, 66%

CClF2C(O)Cl
(R = Ph)

653

71%

PCl5

647

80%

648

In, THF

H2O2/ NaOH

35%

634

654

  Scheme 134    Anthranilic acid nitrile ( 104 ) and its amide  105  as a quinazoline precursors       
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   An unusual (although scarcely preparative) variation of using nitrile  647  for the 
synthesis of quinazolines was described in late 1970s [ 396 ]. Compound  647  reacted 
with organoboron derivatives to give bora-heterocycles  655 , which upon hydrolysis 
rearranged to quinazoline derivatives  656  (Scheme  135 ).

   Table 33    Synthesis of chain-fl uorinated quinalozolones and their hetero-analogues of 
quinalozolones from the corresponding nitriles   

 #  Substrate  Conditions  Product  Yield (%)  Ref. 

 1   646   1. R f C(O)Cl, py, 60 °С 
 2. NaOH, H 2 O 2 , H 2 O, dioxane, 

35–40 °С; R f  = C 3 F 7 , C 5 F 11 , C 7 F 15  

  

NHN

O

Rf

    

 20–62  [ 389 ] 

 2 

  

NH2

HN
N

CN

    

 1. TFAA, 40 °С 
 2. KOH, H 2 O 2 , H 2 O, 10–15 °С 
 3. 210–260 °С 

  

HN
N

NHN

CF3

O

    

 61  [ 392 ] 

 3 

  

H2N

N

CN

Ph

    

 1. TFAA, TFA, refl ux, 20 min 
 2. P 2 O 5 , DMCA, H 2 O, 200 °С, 3 h 

  

N

NHN

CF3

OPh

    

 27  [ 393 ] 

 4 

  
N

H2N CN

    

 1. TFAA, py, 0 °С to rt 
 2. NaOH, H 2 O 2 , EtOH, H 2 O, 

refl ux then rt 

  

NHN

CF3

ON

    

 74  [ 394 ] 

 5 

  

H2N

S

CN

    

 TFA, POCl 3 , MW, 70 °С 

  
S

NHN

CF3

O
    

 N/A  [ 395 ] 

N
H

CF3

O

N

N
B

X

CF3O

N

R N

X

N

CF3

647

RBX2

X = Cl, Br

655
R = Ar, nBu

20-43%

H2O

CH2Cl2

656

  Scheme 135    Boron-mediated synthesis of quinazolines from  647        
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   Certain  peri -substituted aromatic diamines can act as NCCCN binucleophiles in 
reaction with fl uorinated acid derivatives to give pyrimidines. In particular, fused 
pyrimidine derivatives  658, 659  and  661  were obtained from amines  657  [ 397 ] and 
 660  [ 398 ] by reaction with fl uorinated anhydrides (Scheme  136 ).

NH2

O

NH O

O
O

O

N

O N

O

O
OO

CF3

H2N NH2

HN NH

N

N N

N
Rf Rf

(CF3CO)2O

CF3COOH
87%

660 661

(RfCO)2O

Et3N, THF, reflux
60%

657 658, Rf = CF3

659, Rf = C2F5

  Scheme 136    Synthesis of fused pyrimidines from  peri -substituted aromatic diamines       

   An unusual reaction sequence, which also falls into category of NCCCN+C 
approaches, was described in 1980 [ 399 ]. In particular, oxime  662  reacted with 
chlorofl uoroacetyl chloride to give acyl derivative  663 , which underwent cycliza-
tion to quinazoline  N -oxide  664  upon action of BF 3 ⋅Et 2 O (Scheme  137 ).

N
OH

NH2 N
OH

NHO

ClF

N N
+ O

ClF

CHClFC(O)Cl

NaOH
88%662 663

BF3
.Et2O

53%
664

  Scheme 137    Synthesis of quinazoline  N -oxide  121        

   One more example of an uncommon NCCCN binucleophile, compound  122 , 
was used recently in the synthesis of human A 1  adenosine receptor ligands 
(Scheme  138 ) [ 400 ]. In this case, a pyrazole nitrogen atom was one of the 
 nucleophilic centers in the reaction, which led to the formation of tricyclic fused 
aromatic ring system (compound  666 ).
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   NCCCN+C approach was also used for the preparation of fused dihydropyrimidines. 
In particular, reaction of imines  668  with trifl uoroacetaldehyde ethyl hemiacetal in 
the presence of acidic catalyst gave pyrimido[4,5- d ]pyrimidine derivatives  669 , 
although in low yields (14–28 %) (Scheme  139 ) [ 401 ].

N
N

NH2

O

HN
N

Ph

F

Ph

N
N O

N

N
N

CF3

Ph

F

Ph

(CF3CO)2O

665 666

68%
60 °C

  Scheme 138    Synthesis of a tricyclic fused aromatic ring system (compound  123 )       

N

N

O

O NH2

O N

N

O

O NH2

N
R

N

N

O

O N

N
R

CF3

RNH2

52-68%

CF3CH(OH)OEt

cat. TsOH
14-28%

R = Ar, PhCH2, Ph(CH2)2667 668 669

  Scheme 139    NCCCN+C approach in the synthesis of fused dihydropyrimidines       

   Apart from NCCCN+C ([5+1]) approach discussed in all syntheses of chain- 
fl uorinated quinazolines and their hetero-analogues described above, other methods 
were also developed, in particular:

 –    CCCN+CN ([4+2]) approach;  
 –   intramolecular cyclizations of alkynes;  
 –   other heterocyclizations.    

 An example of using CCCN+CN ([4+2]) approach includes preparation of 
chain-fl uorinated pyrimido[4,5- d ]pyrimidine derivative  671  (Scheme  140 ) [ 402 ]. In 
this method, enamine  670  reacted with trifl uoroacetamide at 120 °C to give  671  in 
64 % yield. Analogously, reaction of trifl uoroacetamide and pyridine derivative  672  
led to the formation of pyrido[3,4- d ]pyrimidine  673  [ 403 ].
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   A different example of using [4+2] approach described formation of tricyclic 
trifl uoromethyl-substituted pyrimidine derivatives  677   via  direct C–H bond func-
tionalization in azoles (Scheme  141 ) [ 408 ]. In this case the trifl uoromethyl group 
arrived to the fi nal products from CCNC reactants.

N

NO NH

O

N N

NO

O

N

N

CF3

N
N

NH

CF3

O

N
NH2

COOH

CF3C(O)NH2

64%

670 671

120 °C

CF3C(O)NH2

672 673
79%

210 °C

  Scheme 140    CCCN+CN ([4+2]) approach to fused trifl uoromethyl pyrimidines       

I

N

ClCF3

X
N
H

I

N

CF3 N
X

H

N CF3

N
X

+

X = CH, N

Pd(OAc)2, Ph3P,

KOAc, 140 °C
85-94%

677

674 675 676

  Scheme 141    CCNC+NC ([4+2]) approach to fused trifl uoromethyl pyrimidines       

   Several methods for the preparation of chain-fl uorinated quinazolines relied on 
using properly functionalized alkynes. In particular, upon treatment with a Lewis 
acis ( i.e.  ZnCl 2 , BF 3 ⋅Et 2 O, InCl 3 ⋅3H 2 O, CuSO 4  or Cu(OTf) 2 ), amidine  679  (prepared 
in two steps from aromatic amine  678 ) gave quinazoline derivative  681  in 68–82 % 
yield (Scheme  142 ) [ 405 ]. Furthermore, amidines  682  underwent analogous reac-
tion upon treatment with K 2 CO 3  in CH 3 CN at 80 °C. Products  683  (obtained as 
mixtures of  E / Z  isomers) were subjected to ozonolysis to give quinazolones  684  in 
64–82 % overall yield.
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   Palladium-catalyzed reaction of bis( o -trifl uoroacetamidophenyl) acetylene  685  
with various aryl and vinyl halides and trifl ates led to the formation of indolo[1,2- c ]
quinazolines  686  (Scheme  143 ) [ 406 ]. If the reaction was performed in presence of 
CO, the corresponding acyl derivatives  687  were obtained [ 407 ]. In both cases, the 
indole heterocyclic system was formed fi rst; the subsequent pyrimidine ring closure 
resulted in construction of the tetracyclic ring system.

N

N

CF2X

R

Ph

N

NHRXCF2

Ph

N

N

CF2X

O

R

N

N

CF2Br

Bu

NH2

N

ClBrCF2

N

NHBuBrCF2

682
X = F, Br

R = PhCH2, PMB

K2CO3

64-82%
(from 682)683

O3

Me2S

684

BrCF2COOH

Ph3P, CCl4, Et3N
80 °C

678

BuNH2

Lewis
acid

68-82%

680 681679

  Scheme 142    Syntheses of chain-fl uorinated quinazolines from alkynes  132  and  134        

   3,4-Dihydroquinazolines  690  were obtained by intramolecular Staudinger – 
aza- Wittig tandem sequence from azides  689 , which in turn were synthesized from 
aldehyde  688  using a four-component Ugi reaction (Scheme  144 ) [ 408 ].

O

N3 N3

OtBuHN

N
Ar

CF3

O

N

OBuHN

N

CF3

ArArNH2, tBuNC

CF3COOH

688
66-67%

689

PPh3

80-83%

690

  Scheme 144    Syntheses of chain-fl uorinated dihydroquinazolines  140        
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N
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NR CF3
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N CF3

O

R
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RX, Pd(Ph3P)4

K2CO3
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RX, Pd(Ph3P)4

CO, K2CO3

687

38-98%

R = aryl, vinyl; X = Br, I, OTf

22-92%
16 examples19 examples

  Scheme 143    Syntheses of chain-fl uorinated quinazolines from alkyne  137        
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   Tautomeric trifl uoromethyl-substituted spirocyclic quinazolines  693  and  694  
were formed when  p -benzoquinone imines  692  (synthesized by electrochemical 
oxidation of the corresponding  p -anisidine derivatives  691 ) were heated in DMSO 
at 120 °C (Scheme  145 ) [ 409 ]. The reaction was affected by solvent (DMSO giving 
the highest yields) and nature of the substituents in  692 . In the case of naphthalene 
derivatives (e.g.  695 ), the cyclization gave single tautomers (e.g.  696 ). A  synchronous 
mechanism was proposed for this transformation.

O
N

N

R

Ph
NH

N

O

Rf

Rf = CF3, nC3F7, nC7F15

f
hν

697 698

pyrene
40-75%

  Scheme 146    Photochemical recyclization of 1,2,4-oxadiazole derivatives       
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  Scheme 145    Syntheses of spirocyclic quinazolines from  p -benzoquinone imines       

   An interesting approach to chain-fl uorinated quinazolines relied on photochemical 
recyclization of 1,2,4-oxadiazole derivatives  697  (Scheme  146 ) [ 410 ]. The corre-
sponding quinazolones  698  were obtained in 40–75 % yields when pyrene was used 
as a sensitizer. This is contrary to the data obtained for simple alkyl-substituted 
oxadiazoles, which gave highest yields of the products upon irradiation in the presence 
of triethylamine.
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7.2         Principal Synthesis from Fluorinated β-Dicarbonyl 
Compounds and Their Analogues 

 In the previous section, synthesis of pyrimidine derivatives bearing fl uorinated alkyl 
substituent at C-2 atom was discussed. Derivatives of fl uorinated carboxylic acids 
and related compounds were used as the fl uorine sources. The most important 
method for the preparation of other chain-fl uorinated pyrimidines is the principal 
synthesis from fl uoroalkyl-substituted three-carbon bis-electrophiles ( e.g . 
β-dicarbonyl compounds). A huge number of fl uorinated bis-electrophiles were 
introduced in the principal synthesis of pyrimidines bearing fl uoroalkyl substituent 
at C-4 atom of the heterocyclic ring (Fig.  24 ), including fl uorine-containing:

 –     β-dicarbonyl compounds  699 ,  i.e.  β-diketones, β-ketoesters, β-ketoamides (385 
reaction hits in Reaxys®);  

 –   β-alkoxy-substituted enones  700  (202 hits), β-enaminones  701  (32 hits), (thio)
acetals  702  (9 hits), as well as other enones  703  (52 hits);  

 –   chromone derivatives and hetero-analogues  704  (23 hits) and  705  (22 hits);  
 –   β-halosubstituted α,β-unsaturated carbonyl compounds  706  (33 hits), as well as 

corresponding nitriles  707  (16 hits);  
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O

Rf

O
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710 (14 hits) 711 (39 hits) 712 (28 hits) 713 (46 hits)

  Fig. 24    Fluorinated bis-electrophiles used in synthesis of pyrimidines bearing fl uorinated sub-
stituent at C-4 (in brackets a number of hits in Reaxys®)       
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 –   β,β-dihalosubstitutes carbonyl compounds  708  (35 hits) and the corresponding 
vinyl iodides  709  (9 hits);  

 –   perfl uorinated alkenes  710  (14 hits);  
 –   ynones  711  (39 hits);  
 –   α,β-unsaturated sulfones  712  (28 hits);  
 –   methylenemalonodinitrile derivatives  713  (46 hits).    

 An overview of these reactions is given in the further sections; due to the 
huge number of data, only selected examples are provided. A separate section 
is related to principal synthesis of pyrimidines bearing fl uorinated substituent at 
C-5 atom. 

7.2.1     Pyrimidines with Fluorinated Alkyl 
at C-4 from β-Dicarbonyl Compounds 

 More than a third part of all the described principal syntheses of pyrimidines 
bearing fl uorinated alkyl at C-4 atom commences from fl uorinated β-dicarbonyl 
compounds  699 . The chemistry of these bis-electrophiles was reviewed recently 
[ 411 ,  412 ]; therefore, their preparation is not discussed herein. This synthesis of 
pyrimidines is fairly general (Table  34 ); it allows for introducing aliphatic, alicyclic 
and aromatic β-diketones (Entries 1–10), β-ketoesters (Entries 11–16), and cyclic 
β-ketoamides (Entry 17). Presence of some functional groups, such as additional 
ester moiety (Entry 15), is more or less tolerated, whereas increasing steric hindrance 
results in lowered yields of the products (Entry 10). A scope of common NCN 
binucleophiles include amidines (Entries 1, 11, 12, 17), (thio)urea and its deriva-
tives (Entries 2–4), guanidines (Entries 5, 16) and biguanides (Entry 6). Electron-rich 
amino heterocycles ( e.g.  aminoazoles and even 2,6-diaminopyridine) are excellent 
NCN binucleophiles for the principal synthesis of fused pyrimidine derivatives 
(Entries 7–10, 13–15).

   Although there are examples of uncatalyzed principal synthesis of pyrimidines 
using  699  as the starting material, the reaction usually requires acid or base as a 
promoter. Typical reaction conditions are refl ux of the starting materials in AcOH 
or in alcohol in presence of alcoxide. Whereas AcOH is a common solvent for the 
reactions of (thio)ureas and amino heterocycles, the latter conditions are preferable 
if amidine or guanidine salts are used as the source of NCN binucleophiles, since 
the active species are liberated as the free bases in this case. Other reaction promot-
ers include H 2 SO 4 , polyphosphoric acid (PPA), TsOH, BF 3 ⋅Et 2 O, AcONa and 
K 2 CO 3  (see Table  34 ). 

 In case of non-symmetrical binucleophiles, the reaction with  699  is regioselec-
tive (although not always 100 %). Normally, it should start with attack of more 
nucleophilic nitrogen atom of the nucleophile at the fluoroalkyl-substituted 
carbonyl group of the electrophile (see, for example, Table  34 , Entries 4 and 12). 
Nevertheless, the available data, reported mainly for the reactions of aminoazoles, 
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       Table 34    Principal synthesis of pyrimidines with fl uorinated β-dicarbonyl compounds 699   

 #  Reactants  Product  Conditions (yield)  Ref. 

 1 

  O

CF2Cl

O

    

  NH

NH2

Ph     

  

CF2Cl

N

N

Ph    

 AcONa, xylene, 
139 °C (71 %) 

 [ 413 ] 

 2 

  O

CF3

O

    

  O

NH2

H2N     

  

CF3

N

NH

O    

  cat.  H 2 SO 4 , EtOH, 
refl ux (83 %) 

 [ 121 ] 

 3 

  O

C2F5

O

      

NH2

+

S

H2N
HSO4

-
      

C2F5

N

N

S     

 BF 3 ⋅Et 2 O, Et 3 N,  i PrOH, 
refl ux (81 %) 

 [ 414 ] 

 4 

  O

CF3

O

    

  

OHN

NH2

O

OHCl

    

  

O

O

Cl OEt

N

N

CF3     

 EtOH, H 2 SO 4 , 
85 °C (9 %) 

 [ 415 ] 

 5 

  O

CF3

O

Ph     

  NH

NH2

H2N     

  

CF3

N

N

NH2Ph     

 EtOH, refl ux (72 %)  [ 416 ] 

 6 

  O

CF3

O

      NH2

+

HN

NH2

NH2

NH2

+

SO4
2-

    

  

CF3

N N

NH

NH

H2N

    

 NaOH, EtOH, rt, then 
refl ux (100 %) 

 [ 417 ] 

 7 

  O

CF3

O

Ph     
  

N
H

N

H2N O

EtO

    

  

NN
N

O

EtO

CF3
Ph

    

 AcOH, refl ux (79 %)  [ 418 ] 

 8 

  O

CF3

O

      
N
H

N

H2N

Ph

    

  

CF3

N

N
N

Ph

    

 AcOH, refl ux (84 %)  [ 419 ] 

 9 

  O

CF3

O

    
  

N
H

N

NH2 Ph

165     
  

CF3 N
N

N Ph

    

 AcOH, 15 °C (89 %)  [ 420 ] 

(continued)
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 #  Reactants  Product  Conditions (yield)  Ref. 

 10 

  

O O
CF3

      

NHN

NH2     

  

N

CF3

N

N

    

 K 2 CO 3 , EtOH, 
refl ux (18 %) 

 [ 421 ] 

 11 

  O O

O

F

    

  NH2

+
NH2

OAc
_

    

  

F

O N
H

N

    

 MeONa, MeOH, 
40 °C (65 %) 

 [ 422 ] 

 12 

  
O

CF3
O

EtO

O

    

  

NHHN

NCl

    
  

NCl

N N

O CF3

O     

 CH 2 Cl 2 , refl ux (45 %)  [ 423 ] 

 13 

  
O

CF3
O

EtO       

N
H

N

NH2 Ph

165       

NH
N

N Ph

CF3

O

    

 AcOH, refl ux  [ 424 ] 

 14 

  
O

CF3
O

EtO       

HN N
N

NH2

CF3     

  

N N

CF3

N
NHO

CF3

    

 TsOH, toluene, 
refl ux (50 %) 

 [ 425 ] 

 15 

  
O

CF3
O

EtO       

N

NH2

NH2     
  

NO

CF3

N
H2N

    

 PPA, 80 °C (78 %)  [ 426 ] 

 16 

  O O

O

O O
CF3

    

  NH2

+

NH2

NH2

Cl−

    

  

O
O

CF3

O
N
H

N

NH2    

 EtONa, EtOH, 
refl ux (82 %) 

 [ 427 ] 

 17 

  
O

CF3

O

N
    

  NH

NH2

Ph     

  

CF3

N

N

N Ph
    

 neat, 100–180 °C (51 %)  [ 428 ] 

Table 34 (continued)
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are somewhat controversial. For example, reaction of 1,1,1-trifl uoro-2,4- pentanedione 
 714  and pyrazole  715  afforded a single product, assigned to structures  716  [ 429 ] 
and  717  [ 419 ] by two groups of authors (Scheme  147 ). Although different reaction 
conditions were used in these two works (piperidine – EtOH and AcOH, respec-
tively), a more thorough NMR study confi rmed the second structure,  717 , for both 
cases [ 430 ]. Further evidences for such regioselectivity, including X-Ray crystal-
lographic data, were obtained for analogous substrates [ 431 ] (see Table  34 , Entries 
7–9 for additional examples).

O

CF3

O N
N
H

NH2

Ph

N
N N

CF3

Ph

N
N N

CF3

Ph

+

715 716

or

717714

  Scheme 147    Regioselectivity in the reactions of 1,1,1-trifl uoro-2,4-pentanedione and aminopyr-
azole  715        

   It should be noted that the reaction outcome depended strongly on the solvent. 
In particular, a mixture of  716  and  717  was obtained by heating the starting materials 
in EtOH instead of AcOH,  717  still being the major isomer ( 717 : 716  = 70:30) [ 419 ]. 
These data show that the structures of the products in the reactions of fl uorinated 
β-diketones  699  with amino azoles should be checked carefully in each particular 
case, especially for the early reports in this area. It is interesting to note, that oppo-
site regioselectivity (confi rmed by X-Ray) was observed in the case of fl uorinated 
β-ketoesters (Table  34 , Entries 13–15) [ 432 ]. 

 Recently, intermediates  718  were isolated in the reaction of 1,1,1-trifl uoro- 2,4-
pentanedione and aminopyrazoles  719  (Scheme  148 ) [ 433 ]. Compounds  718  were 
formed in CH 2 Cl 2  below 10 °C in several minutes. Upon heating to 50 °C or stand-
ing at ambient temperature, they underwent dehydration to form the expected aro-
matic products  720 . An analogous intermediate  722  was isolated in the reaction of 
ethyl trifl uoroacetoacetate and aminopyrazole  721  [ 434 ]. Intermediates  723  and 
 724 , which correspond to isomerization and partial dehydration of an analogue of 
 718  – compound  725  – were also detected by NMR [ 431 ]. Obviously, formation of 
these intermediates is responsible for the diminished regioselectivity of the process, 
which is observed at elevated temperatures or upon change of the solvent.
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7.2.2        Pyrimidines with Fluorinated Alkyl at C-4 from Enones 

 Fluoroalkyl-substituted enones represent another important class of CCC bis- 
eletrophiles widely used for the preparation of pyrimidines with fl uorinated alkyl at 
C-4. Their chemistry has been reviewed recently [ 435 ,  436 ], therefore, preparation 
of these bis-electrophiles is not discussed herein. Several subtypes of β-enones are 
amendable for the synthesis of chain-fl uorinated pyrimidines. The most common 
group include compounds with a leaving group at β position ( 700 – 702  and  706 ). 
(Fig.  24 ). A special case of these bis-electrophiles is chromone derivatives and their 
hetero-analogues (704, 705). Other β-enones  703  ( i.e.  non-functionalized) and  712  
(β-sulfonyl, hydrates) are also used. 

 β-Alkoxy-substituted enones  700  were used as the starting materials in nearly 
quarter of all the principal syntheses of pyrimidines with fl uorinated alkyl at C-4. 
The structures of the compounds of general formula  700  are summarized in Fig.  25 . 
Quite expectedly, most of them contain trifl uoromethyl substituent, although compounds 
with difl uoromethyl ( 727  [ 239 ],  749  [ 437 ,  438 ]), chlorodifl uoromethyl ( 728  [ 413 ]), 
1,1,2,2-tetrafl uoroethyl ( 750  [437, 439, 4406]), pentafl uoroethyl ( 729  [ 441 ]), 
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  Scheme 148    Isolation of intermediates in the principal syntheses of chain-fl uorinated pyrimidines 
from β-dicarbonyl compounds  699        
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heptafl uoropropyl ( 751  [ 432 ,  433 ,  440 ]), and difl uoro(fl uorosulfonyl)methyl ( 730  [ 441 ]) 
groups were also involved. Apart from the parent trifl uoromethyl-substituted 
β-alkoxyenones  726  (Table  35 ), compounds with alkyl ( 731  [ 442 – 448 ],  732  [ 443 ], 
 733  [ 449 ],  734  [ 450 ]), aryl ( 735  [ 442 ,  444 ,  447 ,  451 – 455 ],  736  [ 454 ],  739  [ 449 ,  451 ]) 
and hetaryl ( 737  and  738  [ 442 ,  449 ,  455 ]) substituents were used in the synthesis of 
4(6)-trifl uoromethylpyrimidines. Cyclic enones  743  [ 449 ,  454 – 456 ],  744  [ 445 – 448 ], 
and  745  [ 445 ,  446 ,  452 ] can be outlined. Among functionalized β-alkoxy-substituted 
enones, the derivatives containing an ester moiety at α-position ( 748 – 751 ) are most 
important (Table  35 ); other examples include allyl bromides  740  [ 457 ,  458 ],  741  
[ 457 ,  458 ], and  742  [ 458 ], β-diketones  746  [ 459 ] and  747  [ 447 ,  454 ], and ζ-ketoester 
 752  [ 442 ].
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  Fig. 25    Structures of biselectrophiles used (R=Me, Et, iPr, iBu)       
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         Table 35    Principal synthesis of pyrimidines with β-alkoxy-substituted enones   

 #  Reactants  Product  Conditions (yield)  Ref. 

 1 

  

CF3

O

EtO     
  NH2

+

NH2

Cl−

    
  

CF3

N

N

    

 NaOMe, MeOH, 0 °C (77 %)  [ 445 ] 

 2 

  

CF3

O

EtO

O

EtO

    

  NH

NH2

    

  

CF3

NN

O OEt    

 EtONa, EtOH, refl ux (58 %)  [ 455 ] 

 3 

  

CF3

O

EtO     

  O

NH2

NH2     

  

CF3

N

NH

O    

 conc. HCl, MeOH, 
60 °C (85 %) 

 [ 461 ] 

 4 

  

CF3

O

EtO     

  S

HN

NH2     

  

CF3

N

N

S
      

760  

 HCl, MeOH, 10 °C (68 %)  [ 341 ] 

 5 

  

CF3

O

EtO

O

EtO

      

NH2

+

NH2

S

HSO4
-

    

  

CF3

NN

O OEt

S

    

 AcONa, DMF, 
80–90 °C (60 %) 

 [ 463 ] 

 6 

  

CF3

O

EtO     
  NH2

+

NH2

NH2

Cl−

    
  

CF3

N

N

NH2    

 NaOH, EtOH, rt (64 %)  [ 464 ] 

 7 

  

CF3

O

EtO     

  

NH
NH2

NH
N

O     

  

NH
N

O

N
N

CF3

    

 EtOH, rt (96 %)  [ 444 ] 

 8 

  

CF3

O

EtO       

N
N
H NH2

    

  

N

N N

CF3     

 Et 3 N, toluene, refl ux (95 %)  [ 452 ] 

(continued)
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    A range of NCN binucleophiles introduced into reaction with  700  is similar to 
that for fl uorinated β-dicarbonyl compounds discussed in the previous section and 
includes amidines (Table  35 , Entries 1, 2), (thio)urea and its derivatives (Entries 
3–5), guanidines (Entry 6), semicarbazide derivatives (Entry 7), and electron-rich 
amino heterocycles (Entries 8–12). 

 As in case of fl uorinated β-diketones, in most cases reactions of  700  with NCN 
binucleophiles were promoted by either acids (e.g. HCl, AcOH, BF 3 ⋅Et 2 O, Ti(O i Pr) 4 ) or 
bases (RONa, Et 3 N, AcONa) (see Table  35 ). Again, basic conditions were preferred 
when the binucleophile was used in a salt form; in cases of urea derivatives and 
amino heterocycles the reaction was either promoted by acids or non-catalyzed. 

 The reaction of  700  with unsymmetrical NCN binucleophiles demonstrated 
regioselectivity, which was infl uenced by the nature of binucleophile, substituents 
in  700 , and even catalyst loading. In particular, reaction of N-alkylureas with 
β-alkoxyenones  726  and  731  in the presence of conc. aq HCl in refl uxing MeOH led 

 #  Reactants  Product  Conditions (yield)  Ref. 

 9 

  

CF3

O

EtO

O

EtO

      
N
H

N

NH2

    

  

CF3

NN
N

O OEt    

 conc. HCl, EtOH, 70 °C (42 %)  [ 465 ] 

 10 

  

CF3

O

EtO Ph       

NHN

NH2

N

      CF3

NN

N
N

Ph    

 MeCN, rt, then refl ux (79 %)  [ 453 ] 

 11 

  

CF3

OEtO

Br     

  
N
H

N

NH2

    

  

CF3

N

N
N

Br     

 AcOH, rt (86 %)  [ 466 ] 

 12 

  

CF3

O

i BuO     
  

N NH2HN

N

    

  

N

N

N N

CF3

    

 xylene, MW (82 %)  [ 460 ] 

Table 35 (continued)
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to the formation of pyrimidines  753  and  754  in 65–90 % yields [ 443 ] (Scheme  149 ). 
In the case of  732 , analogous products  755  were obtained when high concentration 
of HCl were used; upon lower acidity of the reaction medium, the products of alter-
native regioselectivity – compounds  756  – were obtained. Presumably, the reaction 
starts with the Michael addition of the amino groups of the  N -alkylurea at the 
β-carbon atom of the enone, followed by elimination of an alcohol molecule to give 
enaminones  757  or  758 . Formation of  758  is faster due to higher steric accessibility 
of the primary amino group of the  N -alkylurea. Cyclization of  758  furnishes com-
pounds of the type  756 . In the case of R2=Me and low concentration of acid,  756  is 
stable, probably due to the steric effect of the methyl substituent on the trifl uoro-
methyl and hydroxyl groups. When R2=H or the reaction is carried out at high 
concentration of acid, compounds of type  756  can equilibrate back to the starting 
compounds and then – to enaminone  757 . Cyclization of  757  followed by dehydra-
tion leads to the formation of pyrimidinones  753 – 755 . It should be noted that an 
intermediate  758  was isolated in the reaction of  726  with  N -methylthiourea [ 462 ]. 
Again, upon prolonged reaction time this kinetic product rearranged to give enaminone 
of the type  757 , which underwent heterocyclization to give  760  (Table  35 , Entry 4).
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  Scheme 149    Regioselectivity in the reaction of  726 ,  731 , and  732  with  N -alkylureas       

   Most reaction of enones  700  with amino azoles have analogous mechanism,  i.e.  
formation of enaminones  761 , followed by their cyclization and subsequent dehy-
dration of intermediates  762  (Scheme  150 ) (Table  35 , Entries 9–12). In many 
cases, hydrates  762  and/or enones  761  are reasonably stable and can be isolated 
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[ 437 – 439 ,  453 ]. For example, reaction of  751  and 3-amino-1 H -[ 1 ,  2 ,  4 ]triazole in 
dioxane gives hydrate  763 , which exists in equilibrium with its open forms  764  and 
 765  in solution (DMSO,  763 : 764 : 765  = 80:11:9; acetone,  763 : 764 : 765  = 28:41:31) 
[ 438 ]. Dehydration of these species to obtain pyrimidine  766  requires prolonged 
refl ux (~60 h) in AcOH. It should be noted that for all examples mentioned in the 
above paragraph, the reaction started with substitution of alkoxy group in the enone 
molecule with amino group of the amino azole ( via  addition – elimination mechanism). 
Therefore, the perfl uoroalkyl group was in the neighboring position to the fusion 
nitrogen atom in the fi nal product. Opposite regioselectivity was reported for the 
reaction of enones  700  with 2-aminobenzimidazole (Table  35 , Entry 8). It was 
postulated that in this case, the reaction started with attack of endocyclic nitrogen at 
β-carbon of the enone [ 452 ].

   Interesting intermediates of the type  767  were obtained in the reaction of enones 
 700  with amidines (Scheme  151 ) [ 445 ]. Formation of these intermediates cannot be 
rationalized using the mechanistic schemes discussed above.
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  Scheme 150    Reaction of enones  700  with amino azoles       
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   Enaminones  701  demonstrated similar behavior in the reactions with NCN 
binucleophiles compared with β-alkoxy-substituted enones  700  (Table  36 ). It should 
be noted, however, that rather unusual substituents were introduced into the molecules 
of the target pyrimidines using reagents  701  (Entries 3–9). In particular, the enaminone 
fragment of  701  can be a part of aminouracil moiety (Entry 9), although in this case, 
CCCN+CN mechanism for the pyrimidine ring formation is possible.

CF3

O

EtO
R1 NH2

NH2

+

Cl

N
H

N

CF3HO

R1EtO N

N

R1

CF3

726 (R = OEt)

+
aq NaOH

or R'ONa/R'OH
43-98%

and/or

767

  Scheme 151    Intermediates in the reaction of enones with amidines       

   Table 36    Principal synthesis of pyrimidines with fl uorinated β-enaminones   

 #  Reactants  Product  Conditions (yield)  Ref. 

 1 

  

CF3

O

NH2     
  

NHN

NH2

N

    
  F3C

N

N
N

N

    

 AcOH, 40 °C (65 %)  [ 467 ] 

 2 

  

CF3

O

N

O

Ph

    
  

NH2

+

NH2

O

HSO4
-

    

  

CF3

OPh

N N

O     

 K 2 CO 3 , MeCN, 25 °C (63 %)  [ 468 ] 

 3 

  

F3C
O

N

O

O

O
    

  NH2

+

NH2

NH2

Cl−

    

  
O

O

O

N
N

CF3

NH2

    

 K 2 CO 3 , MeCN, 65 °C (88 %)  [ 469 ] 

 4 

  

F3C

O

N

N

N
N

    

  

NH2

+
NH2

EtO OEt

Cl

    

  

F3C

N

N
N

NN

OEtEtO

    

 EtONa, EtOH, refl ux (27 %)  [ 470 ] 

(continued)
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 #  Reactants  Product  Conditions (yield)  Ref. 

 5 

  

F3C

O N

N
N N

N Ph

    

  NH2

+

NH2

Cl

    

  

F3C

N
N N

N Ph

NN

    

 EtONa, EtOH, refl ux (97 %)  [ 471 ] 

 6 

  

O

F F
F F

F F

N

Òs

    

  NH2

+

NH2

NH2

Cl

    

  

F F
F F

F F

Òs

N

N

NH2

    

 K 2 CO 3 , MeCN, refl ux (95 %)  [ 472 ] 

 7 

  

CF3

O

N

O

O

OEt

    

  NH2

+

NH2

Ph

Cl

    

  

CF3

O

O

EtO

N N

Ph     

 K 2 CO 3 , MeCN, refl ux (50 %)  [ 473 ] 

 8 

  

F3C

O

N

O O
    

  NH2

+

NH2

Cl

    

  

CF3

HN
O

O

N
N

    

  n -hexanol, refl ux (74 %)  [ 474 ] 

 9 

  

F3C O

N N

O

NH2O

    

  
NH2

+

NH2

OAc-     

  

F3C

N N

O

O N

N

    

 DMF, 140 °C (66 %)  [ 401 ] 

Table 36 (continued)

   Two enones of general formula  702  were introduced into reaction with NCN 
binucleophiles, namely,  768  [ 453 ] and  769  [ 475 ] (Scheme  152 ). In case of  768 , one 
of the ethoxy groups can be retained in the fi nal structure. Reactions with  769  were 
accompanied with the dithiane ring opening to give thiols  771 .
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   Chromone derivatives and their analogues  704  and  705  were used for synthesis 
of 4-fl uoroalkylpyrimidines. In both cases, reaction with NCN binucleophiles was 
accompanied with recyclization of the γ-(thia)pyrone ring to give (2-(thio)
hydroxyphenyl)-substituted pyrimidines or their analogues (Table  37 ).
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+
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+
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  Scheme 152    Synthesis of pyrimidines with fl uorinated β-enones  702        

   Table 37    Synthesis of pyrimidines with fl uorinated chromones and their hetero-analogues   

 #  Reactants  Product  Conditions (yield)  Ref. 

 1 

  

OO

CF3

O

O
    

  

NH2NH2

+
Cl

    

  N

N

CF3

O

O

OH

    

 K 2 CO 3 , DMF, 
75–80 °C (74 %) 

 [ 476 ] 

 2 

  

OO

Cl

CF3    

  

NH2NH2

+

Ph

Cl

    

  N

N

CF3

Cl

OH

Ph
    

 KOH, EtOH, 
refl ux (71 %) 

 [ 477 ] 

(continued)
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   The method was extended to 2,6-bis(perfl uoroalkyl)-substituted γ-pyrones  772 ; 
in this case, equilibrium mixtures of products  773  and the corresponding hydrates 
 774  were obtained (Scheme  153 ) [ 480 ].

 #  Reactants  Product  Conditions (yield)  Ref. 

 3 

  

OO

CF3

O

S N     

  NH

NH2

NH2     

  N

N

CF3

O

OHS

N

    

 EtONa, EtOH, 
refl ux, (78 %) 

 [ 478 ] 

 4 

  

N

OO

CF3    

  

NH2

+

NH2

NH2

NO3
-

    

  

NH

O

N

NCF3 NH2    

 KOH, EtOH, 
refl ux (58 %) 

 [ 477 ] 

 5 

  

OO

O
Rf

Rf = CHF2, CF3,
CHF2CF2, n-C3F7    

  

NH2

+

NH2

R

R = H, Me,
Ph, NH2     

  

OHO

R
N

N

R

f

    

 AcONa, DMF, 
80 °C (52–92 %) 

 [ 479 ] 

 6 

  

N

OO

O
CF3     

  NH

O

NH2     

  

NH

OO

N
NCF3

O
    

 KOH, EtOH, 
refl ux (38 %) 

 [ 479 ] 

 7 

  

SO

O
CF3     

  NH2

+

NH2

    

  

SHO

CF3
N

N

R     

 AcONa, DMF, 
100 °C (57 %) 

 [ 479 ] 

Table 37 (continued)
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   Apart from α,β-unsaturated carbonyl compounds having O–, N- and S-leaving 
groups at the β-position, compounds  706  with halogen nucleofuges ( i.e.  Cl, F) were 
also used in the synthesis of 4-fl uoroalkylpyrimidines. In particular, reaction of 
aldehyde  775  [ 481 ], ketone  776  [ 482 ], or ester  777  [ 483 ] with amidines or guani-
dines gave pyrimidines  778 – 780  in 39–98 % yields (Scheme  154 ).
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  Scheme 154    Syntheses of pyrimidines with  775 – 777        
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  Scheme 153    Reaction of γ-pyrones  772  with amino azole       

   Reaction of fl uorinated α,β-unsaturated esters  781  with 2-aminobenzothiazole 
derivatives resulted in a regioselective pyrimidine ring fusion and led to the tricyclic 
compounds  782  in 67–83 % yields (Scheme  155 ) [ 484 ]. On the contrary, reaction of 
 781  with 2-aminopyridines was not regioselective and led to the mixtures of isomers 
 784  and  785 . Similar results were obtained with 2-aminothiazole. In the case of 
6-methyl-2-aminopyridine, only one regioisomer  783  was formed, presumably due 
to the steric effect of the methyl group which prevented attack of the β carbon of  781  
at the endocyclic nitrogen atom.
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   Aromatic ( 786 ) and xylose-derived ( 787 ,  788 ) fl uorinated enones were successfully 
introduced into reaction with amidines or analogous NCN binucleophiles to give 
pyrimidines  789  in 58–80 % yields (Scheme  156 ) [ 485 ].
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  Scheme 155    Principal syntheses of pyrimidines with  781        
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  Scheme 156    Principal syntheses of pyrimidines with  786 – 788        

   In principle, enones without a leaving group in β-position  703  can also react with 
NCN binucleophiles; in this case, partially hydrogenated pyrimidine derivatives are 
obtained. In particular, reaction of β-trifl uoroacetylstyrene ( 790 ) with urea and 
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thiourea gave tetrahydropyrimidines  791  with more than 30:1  dr  (Scheme  157 ) [ 486 ]. 
Analogous products  792  were obtained in case of acetamidine and guanidine. In 
case of aminotriazole and aminotetrazole, fused pyrimidine derivatives  793  were 
obtained as single diastereomers, whereas 2-aminobenzimidazole gave a 3:1 mix-
ture of diastereomers  794  [ 487 ]. It should be noted that in both cases, the reactions 
were regioselective. Tetrahydropyrimidine derivatives  791  and  793  were subjected 
to dehydration to give  795  and  796 , respectively. Similar results were obtained in 
the reactions of urea and thiourea [ 488 ], as well as amino azoles [ 489 ,  490 ] with 
enones  797 .
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  Scheme 157    Principal syntheses of di- and tetrahydropyrimidines with  790        

   Analogously, reaction of enone  798  with thiourea gave tetrahydropyrimidines 
 799 , whereas in the case of enone  800 , dihydropyrimidine  801  was obtained 
(Scheme  158 ) [ 486 ].
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   One-pot procedure for the synthesis of aromatic pyrimidine derivatives  803  from 
β-aryl-enones  802  was developed (Scheme  159 ) [ 491 ]. It included reaction of  802  
with amidines, followed by dehydration with POCl 3  and oxidation with MnO 2 .

F3C

O

R'
R NH2, NaOH

NH2
+

Cl

F3C

NN

R'

R'
802

1.

2. POCl3, SiO2, py
3. MnO2 803

  Scheme 159    One-pot synthesis of aromatic pyrimidine derivatives  803  from  802        
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  Scheme 158    Syntheses of di- and tetrahydropyrimidines with enones  798  and  800        

   Reaction of β-sulfonyl-enone hydrates  804  with aminotriazoles in acetonitrile at 
room temperature led to the formation the 5-CF 3  isomer of tetrahydropyrimidines 
 805 , which were transformed to their aromatic counterparts ( e.g.   806 ) by refl ux in 
AcOH (Scheme  160 ). The reaction of  804  with  805  in other conditions (heating in 
water or acetic acid) lead to losing of the regioselectivity [ 492 ].
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  Scheme 160    Principal syntheses of pyrimidines with  163        
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7.2.3        Other CCC Bis-electrophiles 

 Apart from fl uorinated β-dicarbonyl compounds and β-enones, CCC bis- 
electrophiles used for the synthesis of 4-(per)fl uoroalkylpyrimidines include alkynes 
 711 , α,β-unsaturated nitriles  707  and  713 , as well as compounds in which the fl uo-
rine atoms of the perfl uoroalkyl substituent act as leaving group ( 708 – 710 ). 
Reactions of alkyne-derived aldehydes, ketones and esters of general formula  711  
were analogous to that of β-enones discussed in the previous section (Table  38 ). 
Due to presence of triple bond, neither leaving group at β position nor using the 
oxidizing reagents were necessary to obtain aromatic derivatives. The method was 
used successfully for amidines (Entry 1), guanidines (Entries 2 and 3), aminopyri-
dines and their fused analogues (Entry 4), and 2-aminooxazolidines (Entry 5) as 
NCN binucleophiles.

   Table 38    Synthesis of pyrimidines with alkyne derivatives  711    

 #  Reactants  Product  Conditions (yield)  Ref. 

 1 

  

O

FF

    

  

NH2NH2

+
Cl

    

  

FF

N

N

    

 Na 2 CO 3 , MeCN, refl ux (51 %)  [ 493 ] 

 2 

  

O

F
F

Br

    

  NH

NH2

NH2     

  

O

Br

N
N

F

F
NH2     

 Na 2 CO 3 , CHCl 3 , MeCN, refl ux  [ 321 ] 

 3 

  C5F11

O
O

    
  

NH2

+
NH2

HN

NH2

O

O     

  

HN

NH3

+O

O

HN N

O C5F11

    

 aq HCl, MeOH, refl ux (30 %)  [ 494 ] 

(continued)
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   Malonodinitrile derivative  807 , as well as compounds with phosphonate ( 808 ) 
and trifl uoromethylthio ( 809 ) groups were used in reactions with NCN binucleo-
philes, including  N -alkylamidines, 3-aminopyrazoles and 2-aminopyridines to form 
 707  (Table  39 ). Activated alkenes  807 – 809,  unlike the compound  777  containing 
COOMe group, gave amino or imino derivatives of pyrimidines, which arose from 
attack of the nucleophile at the nitrile group. Analogous reaction was observed in 
case of  810 ; as a result dihydropyrimidine derivatives  811  or  812  were formed 
(Scheme  161 ) [ 497 – 500 ].

 #  Reactants  Product  Conditions (yield)  Ref. 

 4 

  

O

F
F

O

F     

  

NH2

N

    

  F
F

F

N

N

O

    

 EtOH, rt (98 %)  [ 495 ] 

 5 

  

O

F

O

    

  

NH2

NO

TsO     

  

F

N

O

N O

TsO     

 EtOH, refl ux (33 %)  [ 496 ] 

Table 38 (continued)

   Table 39    Principal synthesis of pyrimidines with nitriles of general formula  707    

 #  Reactants  Product  Conditions (yield)  Ref. 

 1 

  

CNNC

Cl CF3      
807  

  

NH2

N
NH    

  

CN

CF3N

NH2

NN

    

 CHCl 3 , rt (68 %)  [ 501 ] 

 2 

  

P(O)(OEt)2

Cl CF3

NC

      
808  

  

NH2

N

    

  

P(O)(OEt)2

CF3

NN

HN

    

 MeCN, rt (40 %)  [ 502 ] 

 3 

  

CNF3CS

Cl CF3      
809    

NH2

N

HN

Ph

Ph       

SCF3

CF3

N

N

NH
Ph

Ph     

 Et 2 O (78 %)  [ 349 ] 
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    Aldehydes, ketones and esters of general formula  708  reacted with amidines to 
give pyrimidine derivatives (Table  40 , Entries 1–4). Analogous methods were devel-
oped for (per)fl uorinated vinyl halides  709  (Entry 5) and  710  (Entries 6, 7). 
Analogous reaction was successful with enol phosphate  814 , obtained from ketone 
 813  and sodium diethyl phosphite (Scheme  162 ) [ 120 ]. In all these cases, nucleo-
philic substitution of two fl uorine atoms at α-carbon of the perfl uoroalkyl group 
occurred.

Rf

R

CN

CN

R' NH2

NH CN

N NH

NH2
Rf

R

R'

N
H

N

NH2

R''CN

HN

NH2
Rf

R
N

N
R'' 810

811

20-71%

812
R = COOMe, Rf. CF2P(O)(OEt)2, 2-(1-methylpyrrolyl),
(substituted) 3-indolyl, (4-dialkylamino)phenyl, 2-thienyl
Rf = CHF2, CClF2, CF3 
R'' = Me, Ph, CF3

30-90%

  Scheme 161    Syntheses of pyrimidines with  810        

    Table 40    Synthesis with compounds type  708 – 710  (see Fig.  24 )   

 #  Reactants  Product  Conditions (yield)  Ref. 

 1 

  
F

F
F

FF

O

OEt
      NH2

NH2

+

Cl

    

  

F

FF
N

NH

O

    

 Na 2 CO 3 , dioxane, 
60 °C (75 %) 

 [ 502 ] 

 2 

  
F

Br
F

FF

O

    
  NH2

NH2

+

Ph

Cl

    

  

F

FF
N

N

Ph

    

 Na 2 CO 3 , EtOH, 
rt (89 %) 

 [ 502 ] 

 3 

  

FF

F F

O

F F

F F

Cl     

  NH2

NH2

+

Cl

    

  

F F
F F

F F

Cl

N

N

    

 Na 2 CO 3 , EtOH, 
rt (77 %) 

 [ 502 ] 

 4 

  
F

F
F

F
F O     

  NH2

NH2

+

Cl

    

  

F

FF
N

N

    

 Na 2 CO 3 , EtOH, 
rt (77 %) 

 [ 502 ] 

(continued)
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7.2.4         Pyrimidines with Fluorinated Group at C-5 Position 

 Unlike their C-2 and C-4-substituted counterparts, pyrimidines with fl uorinated 
alkyl at C-5 were rarely prepared using reaction of NCN binucleophiles and CCC 
bis-electrophiles. Several examples of such transformations were already men-
tioned in previous section (reactions with  710  leading to 4,5-bis- 
perfl uoroalkylpyrimidines, see Table  40 , Entries 6,7). Analogous reactions with 
alkene  817 , as well as its precursor  816  (a stable adduct of methanol and 
2-(trifl uoromethyl)-1,1,3,3,3-pentafl uoropropene), led to the formation of 5-trifl uo-
romethylpyrimidines  818  (Scheme  163 ) [ 505 ,  506 ]. Pyrimidines  822  and  825  were 
also prepared from  816 . Reaction of  816  with triethylamine resulted in formation of 
enolate  819  (Scheme  163 ) [ 507 ]. When  in situ  generated  819  was treated with HCl, 
acyl fl uoride  820  was formed. Reaction of  820  with  N , N ′-dimethyl(thio)urea 
resulted in the formation of adduct  821 , which underwent cyclization to  822  upon 

 #  Reactants  Product  Conditions (yield)  Ref. 

 5 

  

F

F
F

FF

I

    

  NH2

NH2

+

Cl

    

  

F

FF
N

N

    

 NaH, THF, rt (60 %)  [ 503 ] 

 6 

  
F

F
F

FF

CF3

CF3

F

    
  NH2 NH2

NH2

+

Cl

    

  

FF

F F
F

CF3

N

N

FNH2

    

 Et 3 N, MeCN, 
rt (83 %) 

 [ 504 ] 

 7 

  

CF3

CF3

CF3

Cl

    
  NH2

NH2

+

Cl

    

  

CF3

N

N

F

CF3     

 NaOH, BTEA, 
F-113, H 2 O, 
rt (47 %) 

 [ 354 ] 

Table 40 (continued)
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  Scheme 162    Synthesis pyrimidines using enol phosphate  814        
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treatment with triethylamine. Reaction of  819  with  S -alkyl isothiouronium salts 
resulted in generation of  820 , which reacted with  S -alkyl isothiourea base to give 
adduct  2823  [ 508 ]. Cyclization of  823  led to formation of pyrimidine  824 . Synthesis 
of  824  from  817  was also performed in one-pot manner.
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  Scheme 163    Synthesis of pyrimidines from  816        
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  Scheme 164    Synthesis of pyrimidines from 2-trifl uoromethylmalonic acid derivatives       

   2-Trifl uoromethylmalonic acid derivatives were used in the synthesis of 
5- trifl uoromethyl-substituted pyrimidines. In particular, acyl fl uorides  827  were 
obtained by alkylation of trifl uoromethylmalonyl fl uoride ( 826 ), in turn prepared 
from acyl fl uoride  825  (Scheme  164 ) [ 509 ]. Reaction of  827  with urea led to the 
formation of fl uorinated barbiturates  828 .
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   α-Trifl uoromethylacrylic acid ( 829 ), as well as and its derivatives  830  and  831  
are valuable building blocks which can be used for preparation of 
5- trifl uoromethylpyrimidines. In particular, reaction of  829  with ureas in acetic 
anhydride led to the formation of 5-trifl uoromethyl-5,6-dihydrouracils ( 832 ) in 
67–84 % yields (Scheme  165 ) [ 510 ]. In case of unsymmetrical ureas, the reaction 
was regioselective (except  N -methylurea, which gave a mixture of regioisomers). 
An alternative method was more effective for thioureas (DCC, DMF, 90 °C, 
50–55 % yields), since S-acetylation occurred when Ac 2 O was used.

CF3

O

OH
N N

O

X

CF3

R R'
N
H

N
H

X
R R'

829
832

+
Ac2O, 100 °C

or DCC, DMF, 90 °C
50-84%

X = O, S
R' = H, R = H, Me, Ph, PhCH2

or R = R' = Me

  Scheme 165    Synthesis of pyrimidines from α-trifl uoromethylacrylic acid 829       
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  Scheme 166    Synthesis of pyrimidines from  830        
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  Scheme 167    Synthesis of pyrimidines from  831        

   The reaction of 5-iodo-1,3-dioxin-4-one  833  with trifl uoromethyl iodide in the 
presence of copper powder in HMPA led to formation of 1,3-dioxine derivative  830  
(Scheme  166 ) [ 511 ]. Compound  830  reacted with  N , N' -dimethylurea in refl uxing 
toluene to give pyrimidine  834  in 84 % yield.

   α,β-Unsaturated esters  831  were prepared by reaction of bis(trifl uoromethyl) 
acetates  835  with various thiols in presence of BF 3 ⋅Et 3 N complex (Scheme  167 ) 
[ 124 ]. Reaction of  831  with amidines led to pyrimidines  836  in 47–71 % yield.
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   Vinamidinium salt  840  is a promising reagent for the synthesis of 
5- trifl uoromethylpyrimidines  841 , unsubstituted at positions C-4 and C-6. 
Compound  840  was prepared from 2,2,2-trifl uoropropanoic acid ( 839 ). Acid  839  
was obtained  via  radical addition of trifl uoromethyl iodide to TBS-enolate  838  of 
 tert -butyl acetate  837 , followed by acidic hydrolysis (Scheme  168 ) [ 512 ]. Reaction 
of  840  with amidines and their analogues led to formation of the corresponding 
pyrimidines  841  in 54–85 % yields. Additional examples of such transformations 
were described [ 347 ,  513 ], including also reaction with aminopyrazole  843  
(Scheme  169 ) [ 514 ]
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+
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+
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  Scheme 168    Synthesis of pyrimidines from vinamidinium salt  840        
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88%
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  Scheme 169    Synthesis of fused pyrimidines from vinamidinium salt  842        

7.3          CNC+CCN Approach to Fluoroalkyl-Substituted 
Pyrimidines 

 A group of methods for the preparation of fl uoroalkyl-substituted pyrimidines relied 
on CNC+CCN connection of the aromatic ring. A variety of fl uorinated 
1,3- dielectrophiles was used for the annulations of CNC triade to CCN binucleo-
philes ( i.e.  anilines, enamines and electron-rich amino heterocycles). The most 
widely used among such 1,3-CNC-dielectrophiles are functionalized heterocumulenes 
 845 – 847  (Fig.  26 ); trifl uoromethyl substituted imine derivatives  848 ,  849  and  850  
can be also mentioned.
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   Most of these building blocks are not commercially available, since their 
 preparation requires quite expensive fl uorine-containing starting compounds, and 
the procedures leading to their formation cannot be classifi ed as easy-to-perform. 
This may be the reason why their chemical behaviour has not been documented to 
a full extent. Only few research groups (mainly at the Institute of Organic Chemistry 
NAS Ukraine) deal with these CNC fl uorine-containing bis-electrophiles [ 515 ]. 

 Isocyanates  854  were fi rst synthesized in Kiev by Samarai and co-workers in 1975 
using the synthetic pathway described in the Scheme  170  [ 516 ,  517 ]. The starting 
aryl Grignard reagent was coupled with trifl uoroacetonitrile to give of 2,2,2-trifl uoro-
1-arylethanimine  851 . The subsequent treatment of  851  with trichloromethyl 
isocyanate, which exists predominantly in the iminocarbonyl chlonde form  853  [ 518 ] 
led to the formation of the isocyanate  854 . The reaction proceeds through interme-
diate  854 , which undergo thermal extrusion of cyanogen chloride. Heterocumulenes 
 846  can be prepared in satisfactory yields from isocyanate  845  using aza-Wittig 
protocol with arylphosphinimines [ 519 ].
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  Fig. 26    Fluorinated CNC 
bis-electrophiles used for the 
synthesis of pyrimidines       

Ar N C O
CF3

Cl

NH

Ar CF3

CF3

Ar N C N

CF3

Cl

Ph

N
PPh3

Ph

N
CCl2

O

Cl Cl N

N
Ar

Cl

O

Ar-MgBr

CF3CN

852

853

CCl3NCOCCl3COCl

NaN3

Ph2CH2

150 °C
75%

851

PhCH3

0 °C

110 °C - ClCN

854
Ar = Ph, p-Me-C6H4, p-MeOC6H4

p-Cl-C6H4,p-CF3-C6H4

30-75%

845846
45-70%

PhH, 20 °C

  Scheme 170    Samarai synthesis of  845  and  846        
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   The above mentioned approach to isocyanates  854  has considerable disadvantages: 
the necessity of using highly toxic and diffi cultly accessible trichloromethyl isocya-
nate and excretion of highly toxic cyanogen chloride. In 2008 Vovk and co- workers 
propose a more convenient approach to 1-aryl-1-chloro-2,2,2-trifl uoroethyl isocya-
nates. Acylation of imines  852  with alkyl chloroformates gives the corresponding 
carbamates  855  (Scheme  171 ) [ 520 ]. The subsequent reaction of  855  with phospho-
rus pentachloride in boiling phosphoryl chloride leads to the formation of target 
isocyanates  845  in 65–86 % yield. But in spite of visible benefi ts, the Vovk approach 
to isocyanates  854  has not been scaled up jet and Samarai method is still in use for 
multigram synthesis.
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  Scheme 172    Synthesis of  847  and  848        

NH

Ar CF3

NAr

CF3

OR

O
Ar N C O

CF3

Cl

ClCOOR

R = Me, Et

xylene
140 °C

68-71%

852

855
845

PCl5 in POCl3

refluxe, 4h

than SO2

stream 65-86%

  Scheme 171    Vovk synthesis of  845        

   1,1-Dichloro-2,2,2-trifl uoro-1-isocyanatoethane  286  [ 521 ] was also fi rst synthe-
sized in Kiev by Boiko and co-workers  via  chlorination of N-trifl uoroacetylcarbamate 
 856  with phosphorus pentachloride at 170 °C. The method gives no more than 34 % 
of the target product. The same scientists optimized in 2002 the synthesis of trifl uo-
roacetylisocyanate  857  [ 522 ], which is available from tris(trimethysilyl)cyanurate 
 858  [ 523 ]. Compound  847  readily reacts with alcohols in presence of triethylamine 
to give alkyl 1-chloro-2,2,2-trifl uoroethylidenecarbamates  848  [ 524 ]. Alternatively, 
 848  were prepared by Osipov using the reaction of  856  with SOCl 2  in presence of 
Et 3 N [ 525 ], this method was effective only for benzyl derivative (Scheme  172 ).

   Finally, acyl imines of hexafl uoroacetone ( e.g.   850 , Scheme  173 ) can be prepared 
using aza-Wittig reaction [ 526 ].
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   Reactions of fl uorinated alkylheterocumulenes  845 – 847  with CCN binucleo-
philes were studied for more than 30 years by Vovk laboratory. Initial reports in this 
area, however, were limited to reactions with (1-cyclohexenyl)dialkylamines [ 527 , 
 528 ] and ethyl β- N -methylaminocrotonate ( 859 ) [ 529 ]. For example, reaction of 
 859  with isocyanates  845  led to the formation of dihydropyrimidines  860  
(Scheme  174 ). Remarkably, the regioselectivity observed was opposite to that for 
the reaction of  859  with isocyanates  861  lacking trifl uoromethyl group [ 530 ,  531 ].
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  Scheme 173    Synthesis of hexafl uoroacetone imines       
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  Scheme 174    Reaction of α-chloroisocyanates with enaminones       
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  Scheme 175    Reaction of  283  with enamines  297        

   Tertiary enamines  863  also undergo reaction with isocyanates  283  in presence of 
triethylamine as a base, but the reaction products are dihydropyrimidones 
(Scheme  175 ) [ 532 ]. The reaction gives the corresponding carbamoyl derivatives 
 864 . Treatment of the adducts  864  with strong bases like DBU or DBN results in 
cyclization to pyrrolidin-1-yl-6-(trifl uoromethyl)-5,6-dihydropyridin-2(1 H )-ones 
 300 . The reaction is faster if enaminoesters rather than enaminonitriles were used as 
the starting compounds of the type  863 ; on the other hand, donor substituents in 
the aryl fragment of  845  reduced the reaction rate. Other enamines studied in the 
reaction with  845  are shown in Table  41 . It should be noted that in all these cases, 
the regioselectivity of the reaction with  845  was opposite to that observed for 
isocyanates  861  lacking the trifl uoromethyl group.
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    It was found that benzothiazole derived acetonitriles  866  react with  845  in 
benzene in presence of triethylamine at room temperature to give adducts  868 , 
whereas reaction in toluene without a base at refl ux led to the formation of isomeric 
compounds  870  via  869  (Scheme  176 ) [ 536 ]. These results were explained by 
reversible formation of intermediate  867 . Analogous results were obtained in reaction 
of  845  with 2-pyridylacetonitrile  871  as CCN binucleophile (Scheme  177 ) [ 537 ].
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   Table 41    Reaction of  845  with enamines   

 #  Enamine  Product  Conditions  Yield, %  Ref. 
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    Detailed investigation of the reaction of  845  with benzimidazole derivative  874  
demonstrated that the process carried out both in presence of a base at room tem-
perature or without base at heating resulted in a single type of compounds  876 . 

 The result is obviously due to the enhanced basicity of the benzimidazole ring 
compared to those of benzimidazole and pyridine. Therefore the adduct  875  is more 
stable than its pyridine and benzothiazole analogues and does not dissociate into 
starting reagents under heating. Also when benzimidazolyl acetate with R=H, 
EWG=CO 2 Me was used, the corresponding compounds  876  was found unstable to 
give decarboxylated compounds  877  (Scheme  178 ) [ 538 ].
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  Scheme 177    Reaction of  845  with 2-pyridylacetonitrile  871        
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  Scheme 178    Reaction of  845  with benimidazole derivatives  874        

   Besides cyclizations of hetaryl acetonitriles, the reactions of isocyanate  845  with 
anilines were studied. In presence of base the reaction leads to N-alkylidene-N- 
arylureas  879 . The compounds  879  bearing the C=N bond activated by trifl uoromethyl 
group undergo thermal intramolecular cyclization to give 4-trifl uoromethyl-
1,2,3,4-tetrahydroquinazolin-2-ones  880  in good yields. A wide range of anilines 
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bearing EDG as well as EWG enters into cyclization. This fact is indirect proof 
that the reaction proceeds as synchronic process through 6-membered transition 
state  881 . Aminonaphthalenes afforded angular tricyclic compounds  882  and  883  
(Scheme  179 ) [ 539 ].

N
N

R
N
H CF3

Ar
HN

O

OMe
N

N

R
NH2

N
N

R
N Ar

CF3

NAr

CF3

OR

O

Et3N, cat
> 85%

1 eq. Et3N
110 °C

~ 50-60 %

884 885 886

855

  Scheme 180    Reaction of  855  with aminopyrazole       
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  Scheme 179    Reaction of  845  with anilines       

   In order to establish scope and limitation of the method the set of electron-rich 
aminoheterocycles [ 540 ,  541 ] were reacted with isocyanates  845 . Unexpectedly it 
was found that the reaction resulted in complex mixture of products. For increasing 
of reaction selectivity the less electrophilic acyl imine  855  was used. But in this case 
the reaction proceeds at nitrogen atom of aminoheterocycle and further thermal 
treatment resulted in trifl uoromethyl-containing hetarylimines (Scheme  180 ) [ 542 ].

   Only aminothiazoles generated  in situ  from  887  and aminoimidazoles  888  were 
appropriate CCN binucleophiles to provide thiazolo[4,5- d ]pyrimidones  889  and 
fl uorinated dihydropyrines  890  (Scheme  181 ) [ 543 ]. The optimal reaction conditions 
were: Et 3 N, CH 2 Cl 2 , ambient temperature.
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   In many cases, reactions of carbodiimide  846  with binucleophiles were analogous 
to that of  845  in terms of regioselectivity. In particular,  846  reacted with enamine 
 859  to provide adduct  891 , which was transformed to pyrimidine  derivative  892  
upon heating (Scheme  182 ) [ 544 ].
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   On the contrary, reaction of  846  with 2-pyridylacetonitrile ( 871 ) showed some 
differences compared to  845 . Unlike  846 , the same products  893  were formed either 
upon action of tertiary amines or heating without bases (Scheme  183 ) [ 553 ]. The 
reaction of  846  with benzimidazole derivatives  874  proceeds in a similar way to 
afford tricyclic compounds  894  (Scheme  183 ) [ 538 ].
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   The feature of chemical behavior of carbodiimides  846  is ability to undergo 
intramolecular cyclization into dihydroquinazolidenes  897  in a presence of TEA. In 
absence of proton donating nucleophiles TEA attacks the highly electrophilic carbon 
of heterocumulene  846  providing intermediate  895 . The bond between a chlorine 
and a α-carbon in the latter is strongly polarized, and therefore these intermediates 
may exist in equilibrium with diazadiene  896  (compare with  881 , Scheme  179 ). 

 The presence of triethylamonium moiety considerably increases the electrophi-
licity of the α-carbon in the  895  as well as the carbon in the N-ethylidene fragment 
in  896 . As a result a ring closure at the ortho-position of the N-tolyl moiety becomes 
possible (Scheme  184 ) [ 545 ]. The structure of unusual zwitterionic compounds was 
confi rmed by X-ray.
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   Besides the reactions of  845  and  846  with hetaryl acetonitriles interaction of these 
compounds with α,α-dichloroisocyanate  847  was studied. In all cases annelation of 
pyrimidine ring affording compounds  898 – 900  (Scheme  185 ) [ 536 – 538 ].
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   Also the reaction of α,α-dichloroisocyanate  847  with anilines was studied by 
Samarai and Vovk in presence of equimolar amounts of 2,4,6-trimethylbenzonitrile 
oxide [ 546 ]. The role of nitrile oxide consists in its unique blocking of the initial 
stage of the reaction to form  904  [ 547 ]. Nitrile oxide can be recovered in almost 
quantitative yield after completion of the process. It was established by IR spectros-
copy that the reaction actually proceeds through isocyanates  901 , which undergo 
intramolecular cyclization (Scheme  186 ).
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   It should be noted, that isocyanates  901  can be generated by another ways. 
Samarai in 1977 described thermal nitrogen elimination from α-azidoisocyanates 
 905  followed by rearrangement to  901  [ 548 ]. Uneyama described in 1990 dehydro-
methoxylation at 250 °C of  907  to form ketenimide  901 , which afforded fi nally  902  
in 71 % yield (Scheme  187 ) [ 549 ].
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   Reaction of  847  with aminothiazole precursors  887  was also studied; although 
the corresponding products of pyrimidine ring annelation  315  were obtained, their 
yields (15 %) were too low    (Scheme  188 ; note the different regioselectivity compared 
to that observed for  283 , Scheme  181 ) [ 543 ].

   Imines  848  are promising reagents for the synthesis of fl uoroalkyl-substituted 
pyrimidinines and their fused analogues since they lead to functionalized low-
molecular- weight compounds which are of special interest for medicinal chemistry. 
Many CCN binucleophiles discussed in this section were also introduced into reac-
tion with  848 . In particular, formation of pyrimidine derivatives  911  in reaction of 
 848  and enamines  909  (including compounds  859  discussed above) was described 
recently. The most likely initial step is the imidoylation of the nucleophilic carbon 
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atom in the enamine moiety of  909 . The resulting intermediate  910  appears to 
cyclize to compounds  911  already at room temperature (Scheme  189 ) [ 550 ].
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   Reaction of  848  with hetaryl acetonitriles in presence of triethylamine also 
proceeds through fi rst  C -imidoalkylation step as it confi rmed by isolation of a stable 
compounds  912 . Compounds  912  were quantitatively converted into annelation 
products  898 – 900  by heating in boiling  o -xylene (Scheme  190 ) [ 536 – 538 ]. It should 
be noted that the yields of  898 – 900  were somewhat lower than in the case of isocya-
nate  847  (see Scheme  185 ).

   Reaction of  848  with amino heterocycles is a valuable approach to chain- 
fl uorinated purines and their bioisosteres. It was found that cyclocondensation of 
 848  with electron-rich aromatic and heteroaromatic amines proceeded in two steps 
(Scheme  191 ) [ 543 ,  551 – 554 ]. First, amidines  913  were formed under mild condi-
tions (Et 3 N, CH 2 Cl 2 , ambient temperature) in moderate yields (44–60 %). Cyclization 
of  913  occurred under harsh conditions (toluene or xylene, refl ux); however, the 
yields of the products  914  in this step were high (83–96 %). It should be noted that 
in the case of 5-methylisoxazol-3-amine  915 , triazine derivative  917  was formed 
instead of the corresponding pyrimidine [ 555 ].
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   This approach was recently used for the synthesis of 2-trifl uoromethyl allopurinol 
riboside. Aminopyrazole  918  reacts with two equivalents of imine  848  under 
mild conditions affording the product bearing two methyl 1,1,1-trifl uoropropan- 2-
ylidenecarbamate groups, which was detected by HPLC. During the elution with 
EtOAc 1,1,1-trifl uoropropan-2-ylidenecarbamate group on the 5-th position of the 
sugar residue was removed to give intermediate  919 . Amidine  919  appeared to be 
stable to the ring cyclization and required heating at 180 °C during 1 h. Removing 
the protecting group by acidic treatment leads to target 2-trifl uoromethyl allopurinol 
riboside  921  (Scheme  192 ) [ 556 ].
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   The chemistry of imines of hexafl uoroacetone  849  and  850  as CNC bis- 
electrophiles was elaborated by Chkanikov and than developed by Sokolov group. 
Dihydroquinazoline derivatives  924  were obtained by reaction of imine  849  and 
 N -alkylanilines (Scheme  193 ) [ 557 ,  558 ]. Initially,  N -alkylation product  922  was 
formed, which is in equilibrium with starting materials. This intermediate rear-
ranged to the product of C-alkylation to give  924  upon further dehydration. The 
water liberated in this reaction caused hydrolysis of the imine  849  as a side reaction. 
The rate of heterocyclization depends on stability of  922 , which decreases with 
increasing steric effect at the nitrogen atom of aniline. Indeed,  N -methyl derivative 
of the type  922  is stable enough under reaction conditions and is converted to dihy-
droquinazoline only by heating, whereas in the case of  N -isopropyl derivative, the 
heterocyclization product is formed already at 20 °C.
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  Scheme 194    Reaction of  849  with  N -alkylanilines       

   In 2001 Sokolov with co-workers extended the reaction to aminouracil. In a case 
of benzoyl imine  849  the reaction with uracil  925  gives C-aminoalkylated product 
 927  cyclized into fused pyrimidine derivative  928  (compare with amopyrazole 
behaviour, see Scheme  180 ). It should be noted, that similar sequence with imine of 
trifl uoropyruvate  926  leads instead of  849  to pyrrolo[2,3-d]pyrimidine derivative 
 929  (Scheme  194 ) [ 559 ].
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   Puch-pull enamines and more complicated hexafl uoroacetone acyl imines  849b  
afforded pyrimidines  930  (Scheme  195 ) [ 560 ,  561 ]. Ethyl 2,2,2-trifl uoro- 1-
(trifl uoromethyl)ethylidenecarbamate  850  is another CNC bis-electrophile, which 
has been used for pyrimidine ring assembly. Aminouracil, aminocrotononitrile and 
3-amino-5,5-dimethylcyclohex-2-en-1-one react readily with  850  to give pyrimi-
dines  931  (Scheme  195 ) [ 562 ] as a single regioisomer.

N

CF3 CF3

O

OEt

NH2

N
H

NH

CF3 CF3

O

O

NHMe
Me

R''

NH2Me

NC

HN

N

O

R'
X NH2

NH2

N
H

N

CF3 CF3

R
N

CF3 CF3

O

R

* N

O

R = 849 a: Me, 849 b:

69-88%
931

DMF, Et3N

90-100 °C, 5 h

=

850

70-75%

DMF, Et3N

rt, 5 h
849 a,b

X = O,S; R' = Ar, Alk; R'' = H, Alk

930

  Scheme 195    Reaction of  849  and  850  with CCN binucleophiles       

NH2

R R

N
H

N
C3F7

NH

R

C3F7

C3F7

N

C3F7

F
F

FNH2

N

N
C3F7

C3F7

NH

2

MeCN, TEA, 45 °C
65-72%

2

MeCN, TEA, 45 °C
61%

932 933934

N(C4H9)3

Freon 113, NaF

F2, N2

N(C4F9)3

150 °C, 24h
78 %

- C4F10

ACF

65%

  Scheme 196    Reaction of perfl uoroimine  932  with anilines       

   The reaction of anilines with perfl uorinated imine  932  can be considered also as 
CNC+CCN approach to fl uoroalkyl-substituted pyrimidines. Imine  932  was synthe-
sized by perfl uobutane elimination from perfl uorotributylamine [ 563 ] under ACF 
(Aluminium chlorofl uoride, AlCl x F 3−x , x ≈ 0.05–0.25) catalyzed thermolysis [ 564 ]. 
This imine have been found to react smoothly with 2 equivalents of anilines in pres-
ence of 3 equivalents of TEA in MeCN to give the fused pyrimidines  933  in good 
yields. In a case of 2,6-dimethylaniline the reaction leads to the dihydroquinazoline 
derivative  934  (Scheme  196 ) [ 565 ].
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7.4        Multicomponent Synthesis of Fluorinated Pyrimidines 

 Due to their productivity, high yields, convergence and facile execution multicom-
ponent reactions are widely used in the synthesis of heterocycles. Surely, the most 
known multicomponent reactions in the fi eld of pyrimidines is Biginelli reaction – a 
three-component condensation of aldehyde, methylene active compound and urea 
[ 566 ]. The use of fl uorinated β-dicarbonyl compounds as methylene components in 
Biginelli reaction was documented fi rst in 1950s [ 5 ]. In this work, formation of the 
structure  935  was reported in the reaction of ethyl trifl uoroacetoacetate, benzalde-
hyde and urea (Scheme  197 ). Reinvestigation of these results, made in late 1990s, 
showed that stable hydrate  934  (most thermodynamically stable stereoisomer) was 
formed at these conditions [ 567 ]. Elimination of water from  934  occurred only in 
presence of a strong acid (TsOH, refl ux in toluene).
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  Scheme 197    The fi rst Biginelli reaction with fl uorinated β-dicarbonyl compounds       

   The method was extended to other classes of fl uorinated β-dicarbonyl com-
pounds, including β-ketoesters (Table  42 , Entry 1), β-diketones (Entry 2), 
β-ketosulphones (Entry 3), β-ketosulphamides (Entry 4), and β-ketophosphonates 
(Entries 5 and 6). It should be noted that in case of some β-diketones ( i.e.  
1,1,1,5,5,5-hexafl uoroacetylacetone), the products of principal pyrimidine synthe-
sis were formed instead of Biginelli adducts under reaction conditions [ 568 ]. Apart 
from urea and thiourea, other classes of NCN binucleophiles were also introduced, 
including  N -alkylureas (Entries 7 and 8, note different stereochemistry of the 
products), aminotriazoles (Entries 9 and 10), aminotetrazole (Entry 11), and 
2- aminobenzimidazole (Entry 12). 

 A huge number of the reaction promoters were used for the preparation of struc-
tures of both types  934  and  935  in a selective manner. Apart from those mentioned 
in the Table  42 , these include:

 –     for hydrates  934 : Yb(OTf) 3  [ 576 ], ZrCl 4  [ 577 ], ionic liquids [ 578 ], LiCl–CuCl 2  
[ 579 ], LiCl–SnCl 2  [ 580 ], SmI 2  [ 581 ], K 5 CoW 12 O 40 ⋅3H 2 O [ 582 ],  p -dodecyl 
benzenesulfonic acid [ 583 ], TsOH with grinding [ 584 ].  

 –   for dihydropyrimidines  935 : ytterbium (III) perfl uorooctanoate [ 585 ], Bi(OTf) 3  
[ 586 ], TaBr 5  [ 587 ], bioglycerol-based sulfonic acid functionalized carbon 
catalyst [ 588 ], cerium ammonium nitrate with ultrasound activation [ 589 ], 
citric acid [ 590 ].    
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     Table 42    Biginelli reaction with fl uorinated β-dicarbonyl compounds   

 #  Reactants  Product  Conditions  Yield  Ref. 

 1 

  

O

OEt

O

F

F

    

  NH2 NH2

O

    

  

HN

N
H

Ph

OH

COOEt

O

F F

rac

    

 PhCHO, cat. HCl, 
EtOH, refl ux 

 75  [ 569 ] 

 2 

  

O

O

F

F
F

    

  NH2 NH2

S

    

  

HN

N
H

Ph

CF3

OH
O

Orac

    

 PhCHO, cat. HCl, 
EtOH, refl ux 

 22  [ 569 ] 

 3 

  

O

F

F
F

Òs    

  H2N NH2

O

    

  

HN

N
H

Ph

CF3

OH
O

Òs

rac

    

 PhCHO, Ac 2 O, 
AcOH, 80 °C 

 85  [ 570 ] 

 4 

  

O

F

F
F

S
O

O
NEt2    

  NH2 NH2

O

    

  

HN

N
H

Ph

CF3

OH
O

SO2

NEt2rac

    

 PhCHO, Ac 2 O, 
AcOH, 80 °C 

 76  [ 570 ] 

 5 

  
P

O

O
F

F

F

OEtEtO     

  NH2 NH2

O

    

  

HN

N
H

Ph

CF3

OH
O

P
O OEt

OEt

rac

    

 PhCHO, TMSCl, 
MeCN, rt 

 60  [ 571 ] 

 6 

  
P

O

O
F

F

F

OEtEtO     

  NH2 NH2

O

    

  

HN

N
H

Ph

O CF3
    

 PhCHO, AcOH, 80 °C  70  [ 571 ] 

 7 

  

O

OEt

O

F

F
F

    

  
NH2 NH

O

    

  

HN

N

Ph

CF3

OH
O

COOEt

rac

    

 PhCHO, TMSCl, 
DMF, rt 

 73  [ 572 ] 

 8 

  

O

OEt

O

F

F
F

    

  
HN NH

O

    

  

N

N

Ph

OH

CF3
O

COOEt

rac

    

 PhCHO, TMSCl, 
DMF, rt 

 52  [ 572 ] 

 9 

  

O

OEt

O

F

F
F

    

  H2N N

NHN

    

  

NH

OEtO

N
N

N

CF3Ph

    

 PhCHO, cat. HCl, 
EtOH, refl ux 

 55  [ 573 ] 
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Fluorine Containing Diazines. Synthesis and Properties



464

 Some interesting results were found recently by Shermolovich with co-authors 
upon investigation of 2-oxo-2-polyfl uoroalkylethane-1-sulfones and -sulfamides in 
Biginelli reaction (Table  42 , Entry 3). The corresponding Biginelli compounds 
undergo ‘retro-Biginelli’ reaction by treatment with hexamethylenetetramine 
(HMTA) under thermal conditions involving replacement of 6-aryl substituent of 
the pyrimidinone cycle with a hydrogen atom donated by HMTA (Scheme  198 ) 
[ 570 ]. The formation of  937  proceeds through acyclic intermediate  940 , generated 
via thermal cleavage of  936 . In this intermediate the carbanion adjacent to the sul-
fonyl substituent is stabilized strong electron-withdrawing group, while the imin-
ium cation is postulated as an intermediate in the condensation of aldehydes with 
urea in the classical Biginelli reaction. The arylidene group is transferred to HMTA 
releasing the methylidene moiety to afford the intermediate  942 , subsequent cycli-
zation of which results in the 6-unsubstituted tetrahydropyrimidinone  937 . When 
ketones  944  were directly subjected to the Biginelli reaction with urea and HMTA 
using TMSCl as promoter the expected tetrahydropyrimidinones  937  were obtained 
in ca. 40 % yield (Scheme  198 ).

 #  Reactants  Product  Conditions  Yield  Ref. 

 10 

  

O

OEt

O

F

F
F

      NH2

NN

N
H

S

    

  

NH

OEtO

N
N

N

CF3Ph

S
    

 PhCHO, EtOH, 
MW, 150 °C 

 79  [ 574 ] 

 11 

  

O

OEt

O

F

F
F

    

  NH2
N

N
NHN

    

  

NH
CF3

OH

OEtO

N
N

N N

Ph

    

 PhCHO, cat. HCl, 
EtOH, refl ux 

 47  [ 574 ] 

 12 

  

O

OEt

O

F

F
F

      

NH2

N S

    

  

NPh

CF3

HOEtOOC

N
S

rac     

 PhCHO, 80 °C  84  [ 575 ] 

Table 42 (continued)
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   In another paper dealing with TMSCl promoted by Biginelli reaction unusual 
results were obtained in a case of trifl uoroacetyl acetone and N-substituted (thio)
ureas. In this case the cyclization leads to compounds  945  bearing CF 3 CO group at 
5th positions. To the best of our knowledge this reaction is the only example of 
Biginelli reaction with fl uorinated unsymmetrical β-dicarbonyl compounds were 
CF 3 CO groups leaves intact and compounds  945  are the only representatives of 
Biginelly compounds bearing CF 3 CO groups at the 5th positions (Scheme  199 ) [ 572 ].
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  Scheme 198    ‘Retro-Biginelli’ reactions       
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  Scheme 199    The Biginelli reaction with ‘abnormal’ regioselectivity       
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   Apart from the Biginelli reaction, several additional three-component condensations 
are worth mentioning in this section. In particular, a transformation closely related 
to Biginelli reaction was described by Shermolovich and coworkers, namely, reac-
tion of β-ketophosphonates  946 , urea and orthoformates, which leads to adducts 
 947  (Scheme  200 ) [ 571 ]. The corresponding aromatic compounds  948  were not 
isolated, presumably due to high electrophilicity of C=N bond in their molecules. 
Evidently, the reaction occurs via intermediate formation of  946 , which has been 
reported by same scientists in the reaction of 3-arylsulfonyl-1,1,1-trifl uoropropan- 
2-ones  944  with orthoformates [ 591 ].

F3C

O

P
RO

OR

O H2N NH2

O

N
H

NH
P
O

RO

RO

O
F3C

R'O
N
H

N
P
O

RO

RO

OF3C

F3C

O

P
RO

OR

O
OR' F3C

O

S
O

R"

O
OR'

+

946

+ HC(OR')3

947 948

65-70%

R, R' = Me, Et

949 950

  Scheme 200    Reaction of β-ketophosphonates  946 , urea and ortoformates       
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  Scheme 201    Reaction of β-enaminones  951 , formaldehyde and primary amines       

   Reaction of fl uorinated β-enaminones  951  with formaldehyde and primary amines 
resulted in tetrahydropyrimidines  952  in 78–85 % yields (Scheme  201 ) [ 592 ].

   Dihydropyrimidines  954  or  955  were the products of the reaction of 2,2- dihydro
polyfl uoroalkylaldehydes  953  with ammonia and aldehydes, ketones or enol ethers 
(Scheme  202 ) [ 593 ].
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   One more three-component condensation leading to formation of chain- fl uorinated 
pyrimidines  956  was microwave-assisted reaction of malononitrile, 2,2,2-trifl uoro-
1-phenylethanone and amidine in water (Scheme  203 ) [ 594 ]. Attempts to perform 
this reaction under thermal conditions were unsuccessful.
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  Scheme 202    Three-component reactions with aldehydes  953        
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  Scheme 203    Synthesis of pyrimidine  956  by three- component reaction       

7.5        Miscellaneous Methods for the Preparation of Pyrimidines 

 Several methods for construction of diazine core of chain-fl uorinated pyrimidines 
do not fall into any of the mentioned above categories. One of such approaches is 
discussed in Sect.  7.8 , namely, inverse-electron-demand Diels-Alder reactions with 
fl uorinated  sym -triazines. Other methods that fall into category “miscellaneous” are 
too different to discuss them systematically; therefore, selected examples of them 
are listed in this section. 

 An unusual method for the preparation of fl uorinated uracil derivatives  962  relied 
by Shermolovich with co-workers on reaction of fl uorinated sulphones  957  with 
sodium cyanate in presence of triethylamine, followed by acidifi cation (Scheme  204 ) 
[ 595 ]. The mechanism of the reaction included base-catalyzed elimination of HF, 
followed by addition of two cyanate ions to the formed alkene  958 .
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   Another cyanate-based method was used in the synthesis of reverse transcriptase 
inhibitors, namely, reaction of trifl uoroacetophenones  963  with sodium cyanate, 
affording hydrate  964 , followed by dehydration in xylene (Scheme  205 ) [ 596 ].
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  Scheme 204    Reaction of fl uorinated sulphones  957  with sodium cyanate       

   One more method relied on reaction of chiral fl uorinated amino ketones  966  and 
aryl isothiocyanates to give pyrimidine derivatives  968  in 58–87 % yields and optical 
purity of 88–96 % (Scheme  206 ) [ 597 ].
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  Scheme 205    Reaction of trifl uoroacetophenones  963  with sodium cyanate       
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  Scheme 206    Reaction of fl uorinated amino ketones  441  with aryl isothiocyanates       
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   A method which relied on the use of benzoyl isocyanate was developed for the 
synthesis of 5-fl uoro-6-fl uoromethylcytosine ( 971 ) (Scheme  207 ) [ 598 ]. Thorpe 
condensation of fl uoroacetonitrile generated unstable enamine  969 , which reacted 
with benzoyl isocyanate in presence of pyridine to give urea derivative  970 . 
Cyclization of  970  upon action of NaOEt led to the formation of  971 .
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  Scheme 207    Synthesis of 5-fl uoro-6-fl uoromethylcytosine       
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  Scheme 208    Enaminone  972  as C 1  synthon in pyrimidine synthesis       

   Tricyclic pyrimidine derivative  976  was obtained in the reaction of bis(pyrrolyl)
methane ( 974 ), enaminone  972  and Tf 2 O (Scheme  208 ) [ 599 ]. This is an example of 
quite unusual reactivity of enaminones (as C 1  synthons) in the synthesis of pyrimi-
dines. This reactivity can be explained by preferential formation of the six- membered 
ring over eight-membered.

   Another example of fl uorinated pyrimidine synthesis via [5+1] approach using 
fl uorinated C 1  synthon was described by Burger in 1980. Amidines  976  react with 
hexafl uoroacetone (HFA) affording adduct  977 , which under treatment with 
POCl 3 -Py generating diazabuta-1,3-dienes  978  spontaneously cyclized into 
3,4-dihydro-quinazolines  979  (compare with Schemes  179 ,  184 ,  193  and  194 ). If 
the fi rs step of the cyclization proceeds in ether with an excess of HFA the chemistry 
becomes more complicated. In this case 5,6-dihydro-2H-1,3,5-oxadiazines  980  are 
formed, which undergo retro Diels Alder reaction on thermolysis. Elimination of 
hexafl uoroacetone leads to diazabuta-1,3-dienes  978  transformed into fi nal 
3,4-dihydro-quinazolines  979  (Scheme  209 ) [ 600 ]
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   Recently Chinese chemists elaborated unusual cyclization based on alkyny-
limines  981 . Reaction of  981  (prepared by CuI-catalyzed coupling of terminal 
alkynes with fl uoroalkylimidoyl chlorides) and primary amines led to formation of 
enamines  982 , which were not isolated but treated with  t -BuOK at −40 °C to give 
dihydropyrimidines  984  (Scheme  210 ) [ 601 ].
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  Scheme 209    Fluorinated dihydroquinazolines  979  synthesis based on HFA       
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   On the contrary, reaction in presence of Cs 2 CO 3  at 80 °C provided pyridines  986 . 
A possible explanation of these results included formation of  982 , followed by 
generation of anion  983  upon action of base. When the reaction was carried out at a 
low temperature with a soluble base ( t -BuOK), intramolecular  N -nucleophilic cycli-
zation of  983  was observed immediately to form dihydropyrimidine  984  through 
a kinetically controlled pathway. However,  C -nucleophilic addition became an 
option upon elevated temperatures and/or with the use of an insoluble base (Cs 2 CO 3 ), 
providing 1,2-dihydropyridine ring under thermodynamic control. The subsequent 
proton migration, β-fl uoro elimination and fi nal aromatization to form the pyridine 
ring of  986  also provided a driving force for this pathway.  

7.6     Synthesis of Chain-Fluorinated Pyridazines 

7.6.1     Synthesis from Fluorinated 1,4-Dicarbonyl Compounds 
and Their Analogues 

 The reaction of 1,4-dicarbonyl compounds or their synthetic equivalents with 
hydrazines is one of the most signifi cant methods for the construction of the diazine 
ring of chain-fl uorinated pyridazines. Two subtypes of fl uorinated 1,4-dicarbonyl 
compounds can be used for this aim ( 987  and  988 ) (Fig.  27 ), leading to formation 
of 3(6)- and 4(5)-fl uoroalkyl-substituted pyridazines, respectively.

   Formation of pyridazine ring by reaction of 1,4-dicarbonyl compounds of the 
type  987  was reported fi rst in 1960, when characterization of 5,5,5-trifl uorolevulinic 
acid ( 991 ) and its lactone  992  was performed (Scheme  211 ) [ 602 ]. Upon their 
reaction with 2,4-dinitrophenyl hydrazine (2,4-DNPG) in ethanol, a product  993  
was obtained instead of 2,4-dinitrophenyl hydrazones. The starting compound  991  
was obtained by hydrolysis of a Claisen adduct  990 , prepared from ethyl trifl uoro-
acetate and diethyl succinate  989 .
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  Fig. 27    1,4-Dicarbonyl compounds for the synthesis of chain-fl uorinated pyridazines       

 

Fluorine Containing Diazines. Synthesis and Properties



472

   Recently, a modifi cation of this approach was developed by chemists from China 
[ 603 ]. In this method, esters  995  were prepared from  994  by heating with H 3 BO 3  
(Scheme  212 ). Compound  995  reacted with various hydrazines in presence of TsOH 
to produce dihydropyridazines  996  (although in the case of aryl hydrazines with 
EWG ( e.g.  2,4-DNPG), the corresponding hydrazones  998  did not or only partially 
underwent cyclization to  996 ). Aromatization of  996  could be performed by action 
of bromine in acetic acid to give products of the type  997 .
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  Scheme 212    Synthesis of pyridazines from esters  339        
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  Scheme 211    Synthesis of pyridazines from 5,5,5-trifl uorolevulinic acid ( 991 )       

   Reaction of functionalized enamines  1001  with hydrazines assumed a slightly 
anomalous course leading to pyridazine derivatives  1002  (Scheme  213 ) [ 604 ]. The 
starting compounds  1001  were obtained in two steps from dimethyl acetylenedicar-
boxylate  999 .
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   Fluorinated 1,4-dicarbonyl compounds of the type  987 , which carbonyl groups 
are mounted on an aromatic core, are common starting materials for the preparation 
of chain-fl uorinated phthalazines and their analogues. Apart from benzene deriva-
tives  1003  [ 605 ] and  1005  [ 606 ] (Scheme  214 ), derivatives of azulene [ 607 ], indene 
[ 608 ] and furane [ 609 ] were introduced into these transformations.
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  Scheme 213    Synthesis of pyridazines  345        

O

CF3

CF3

O

N

CF3

CF3

N

O

CF3

OH

O

HN
NH2

COOH

N
CF3

N

O
O

O

N2H4
.HCl

1003

py

73%

1005

+

H2SO4

MeOH

1004

1006

  Scheme 214    Synthesis of chain-fl uorinated phthalazines       

   Thioesters  1009  are examples of fl uorinated compounds of the type  987 , which 
give 4(5)-fl uoroalkyl-substituted pyridazines upon reaction with hydrazine. 
Compounds  1009  were prepared by reaction of ketene dithioacetal  1007  with the 
corresponding enolate anion, followed by hydrolysis (Scheme  215 ) [ 610 ]. Reaction 
of  1009  with hydrazines led to the formation of dihydropyridazines  1010  in a 
regioselective manner. Aromatization of  1010  was achieved by heating with CuCl 2  
in acetonitrile. Analogous reaction sequence with thioester  1009  led to formation of 
dihydropyridazines  1013 , which underwent easily elimination of HF upon action of 
a base affording pyridazine  1014 . In case of hydrazine hydrate, compound of the 
type  1013  was not isolated; HF elimination occurred upon reaction conditions. 
The drawback of the approach is poor availability of commercially unavailable 
ketene dithioacetals  1007 . As in a case of above mentioned CNC-biselectrophiles, 
preparation of these compounds requires quite expensive fl uorine-containing starting 
compounds, and the procedures leading to their formation cannot be classifi ed as 
easy to perform [ 611 ].
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  Scheme 215    Synthesis of pyridazines from thioesters  1007  and  1012        
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  Scheme 216    Synthesis of pyridazines from MeTFP  1015        

   A convenient two-step methodology for the preparation of 4-trifl uoromethyl-
(2 H )-pyridazin-3-ones starting from methyl trifl uoropyruvate MeTFP ( 1015 ) was 
developed (Scheme  216 ) [ 612 ]. The approach relied on aldol condensation of  1015  
with various ketones, followed by reaction of the adducts  1016  with hydrazine. Recently, 
this methodology was used for the preparation of γ-secretase modulators [ 613 ].

   An unusual synthetic equivalent of trifl uoromethyl substituted 1,4-dicarbonyl 
compounds is furanone  1020 , which can be obtained by condensation of acetophenone 
and methyl 2-methoxytetrafl uoropropionate  1018  (synthetic equivalent of MeTFP 
in Claisen condensation), followed by acidic dehydration (Scheme  217 ) [ 614 ]. 
Reaction of  1020  with hydrazine led to the formation of pyridazine derivative  1021  
in 81 % yield.
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  Scheme 217    Synthesis of pyridazines from  1018        
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  Scheme 218    Synthesis    of pyridazines using intramolecular diaza-Wittig reactions       

7.6.2        Diaza-Wittig Reactions 

 An interesting approach to pyridazine derivatives was described in 1998 by 
Guillaume and others [ 615 ] and studied later by Nikolaev and co-workers [ 616 , 
 617 ]. The key idea of the method is implemented in the fi nal step of sequence – 
intramolecular cyclization of intermediates  1026  – the so-called “diaza-Wittig” 
reaction (Scheme  218 ). Two alternative pathways for the generation of  1026  were 
used, both commencing from diazo-β-dicarbonyl compounds  1022 , in turn obtained 
by diazo transfer reaction. Compounds  1022  were subjected to Wittig reaction with 
stabilized ylides  1023 ; the reaction proceeded in a stereoselective manner, so that 
 E- isomer of product  1024  was formed. Reaction of  1024  with triphenylphosphine 
resulted in generation of  1026 , which underwent cyclization to give pyridazines 
 1027  in good yields. In an alternative scheme, compound  1022  was treated with 
triphenylphosphine to give Staudinger adducts  1025 . Wittig reaction of  1023  and 
 1025  resulted in generation of  1026 , which spontaneously underwent cyclization to 
give  1027 , although in moderate yields.
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   A closer look into stereochemical aspects of the diaza-Wittig reaction discussed 
above revealed that only one isomer of  1026  ( E  or  cis ) undergoes spontaneous cycli-
zation to give pyridazine derivatives  1027  [ 618 ,  619 ]. The other isomer ( Z  or  trans ) 
can be isolated and in some cases even characterized by X-Ray data. 

 It was found that compounds  1025  ( i.e.   1028 ) react with β-dicarbonyl com-
pounds to give pyridazine derivatives  1029  (Scheme  219 ) [ 620 ]. In this case, inter-
molecular diaza-Wittig reaction occurred, followed by intramolecular 
heterocyclization. The reaction was sensitive to steric factors: in case of β-diketone 
possessing bulky  tert -butyl group,  1029  was isolated in low yield (9 %).
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  Scheme 220    Synthesis of chain-fl uorinated pyridazines from hydrazones  1030        
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  Scheme 219    Synthesis of pyridazines using intramolecular diaza-Wittig reactions       

7.6.3       NNCC+CC Approaches 

 3-Hydrazono-1,1,1-trifl uoroalkan-2-ones  1030  are NNCC units that have found use 
in synthesis of pyridazine derivatives. In particular, they undergo dimerization upon 
treatment with trifl uoroacetic acid to give pyridazines  1031  (Scheme  220 ) [ 621 ]. 
Mechanistic study of this transformation showed that a key step of the reaction is 
concerted [4+2] cycloaddition of protonated  1030  [ 622 ]. Pyridazines ( i.e.   1032  and 
 1033 ) were the products in other reactions of hydrazones  1030  with acetylene dicar-
boxylates [ 621 ] and β-dicarbonyl compounds [ 623 ].
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   Another fl uorinated NNCC building blocks which give pyridazines through 
[4+2] cycloadditions are dichlorohydrazones  1035  (Scheme  221 ) [ 624 ,  625 ]. In this 
case, the fl uoroalkyl substituent arrives from the CC partner of the reaction. Upon 
treatment with Hünig’s base, 4-chloroazodienes  1036  are generated from  1035 , 
which undergo reaction with fl uorinated enamines  1037  to form a mixture of diaste-
reomers  1038  and  1039 . This mixture can be transformed to their aromatic counter-
parts  1040  by action of a strong base.
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  Scheme 222    Synthesis of chain-fl uorinated pyridazines from hydrazone  1041        
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  Scheme 221    Synthesis of chain-fl uorinated pyridazines from hydrazones  1034        

   Hydrazone  1042  (prepared from 2-amino-1,1,1-trifl uoro-3-phenylsulfonyl-2- 
propanol) is one more NNCC binucleophile for the synthesis of chain-fl uorinated 
pyridazines (Scheme  222 ) [ 626 ]. In this case, two-step reaction of  1042  with 
α-diketones is used, including acid-catalyzed hydrazone formation and base- 
promoted heterocyclization.

   In another two-step NNCC+CC strategy, acylation of hydrazones  1045  with 
perfl uoropropionic anhydride led to the formation of  1046 , which underwent 
cyclization to pyridazines  1047  upon heating with silica gel (Scheme  223 ) [ 627 ].
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   Heteroaromatic hydrazines were used as NNCC building blocks For the preparation 
of fused pyridazines. In particular, hydrazine  1048  reacted with hydrate of fl uorinated 
α-diketone  1049  to give 4-trifl uoromethylpyrimido[4,5- c ]pyridazine derivative  1050  
(Scheme  224 ) [ 628 ]. Furthermore, reaction of hydrazines  1051  with ethyl trifl uo-
roacetoacetate led to the formation of pyridazino[3,4- b ]quinoxaline derivatives 
 1052  [ 629 ].
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  Scheme 224    NNCC+CC approach to fused chain-fl uorinated pyridazines       
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  Scheme 225    NNC+CCC approach to chain-fl uorinated triazolopyridazines       

7.6.4       Other Methods 

 Reaction of 4-aminotriazole ( 1053 ) with fl uorinated β-diketones is a method for the 
preparation of triazolopyridazines  1054  (Scheme  225 ) [ 630 ]. The method can be 
considered as NNC+CCC approach to the construction of the pyridazine ring.
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   Analogous pyridazine derivatives  1059  were prepared from diene precursors 
 1058  using metathesis reaction (Grubbs II catalyst, toluene, 100 °C). The correspond-
ing trifl uoromethyl-substituted cyclic hydrazines  1059  were obtained in reasonable 
to good yields. In almost all cases, 20 mol% of catalyst had to be added over a 
period of approximately 1 h in order to reach full conversion. (Scheme  227 ) [ 632 ].
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  Scheme 226    CCCC+NN approach to chain-fl uorinated pyridazines       
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  Scheme 227    Synthesis of chain-fl uorinated pyridazines using metathesis reaction       

7.7         Synthesis of Chain-Fluorinated Pyrazines 

7.7.1    Synthesis from 1,2-Diamines and Fluorinated 1,2-Bis-Electrophiles 

 A common method for the preparation of chain-fl uorinated pyrazines relies on reac-
tion of NCCN binucleophiles ( i.e.  1,2-diamines) and fl uorinated CC bis- 
electrophiles. This approach is especially valuable for the synthesis of quinoxalines 
and their hetero-analogues, since aromatic system is formed directly under reaction 
conditions. Therefore, most of the literature data concern heterocyclization with 
 o -phenylenediamines, as well as the corresponding heterocyclic 1,2-diamines. 

   [4+2] cycloaddition of fl uorinated diene  1055  and azo compound  1056  provided 
tetrahydropyridazine derivative  1057  – an example of CCCC+NN disconnection of 
chain-fl uorinated pyridazine ring (Scheme  226 ) [ 631 ].
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Aliphatic diamines (mostly 1,2-ethylenediamine) are much less studied and often 
give poor results in the reaction with fl uorinated 1,2-bis-electrophiles; possibly the 
only exception is diaminomaleonitrile ( 394 ), which also gives aromatic systems in 
these transformations. 

 The range of fl uorinated 1,2-bis-electrophiles (some of these reagents ( e.g.  trifl uo-
ropyruvic acid) are available as hydrates) used for the construction of pyrazine core 
is vast (Fig.  28 ) and includes:

 –     trifl uoropyruvic acid, its esters and higher homologues ( 1061 );  
 –   hexafl uorobiacetyl, its derivatives and its higher homologues ( 1062 );  
 –   perfl uoroalkyl-substituted α-diketones and their derivatives  1063 ;  
 –   trifl uoromethyl glyoxal and its synthetic equivalents  1064 ;  
 –   fl uorinated α-halo-β-dicarbonyl compounds  1065 ;  
 –   perfl uorinated epoxides  1066 ;  
 –   other fl uorinated 1,2-bis-electrophiles.    

 Preparations of these 1,2-bis-electrophiles share some common features. 
In particular, esters of trifl uoropyruvic acid (like MeTFP  1015 ) are available 
commercially, but they can be prepared in two steps from an epoxide  1067  
(namely, hexafl uoropropylene oxide, which is available on industrial scale) [ 633 ] 
(Scheme  228 ). In turn, epoxides  1067  are obtained by oxidation of the corresponding 
perfl uorinated alkenes,  e.g.  with hypochlorite [ 634 ].

CN

CNH2N

H2N

Rf O

ORO

Rf O

YRf

R O

YRf

CF3 O

Y

CF3 O

Cl/Br
O

X
OF

Rf

F

F/Rf

1060 1061, R = H, Me, Et 1062 1063, R = Alkyl, Aryl

1064 1065 1066

X = Alkyl, Aryl, OR
Y = O, NR, N-NR2

Rf = mostly CF3,
also C3F7 and higher
perfluoroalkyl

  Fig. 28    Common substrates for NCCN+CC approach to pyrazines       
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  Scheme 228    Synthesis of methyl trifl uoropyruvate       

   Hexafl uorobiacetyl can be prepared in a reproducible manner in satisfactory 
yield (50 %) by oxidation of commercially available alkene  1068  (Scheme  229 ) [ 635 ]. 
Due to highly inhalation toxicity (LC 50  inhalation – rat – 4 h – 16 ppm) the purchase 
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   Although generation and reactions of 1,1,1-trifl uorobiacetyl was reported as 
early as in 1957, the compound was not isolated in this work [ 637 ]. Trifl uoromethyl- 
substituted derivatives  1071  were obtained  via  trifl uoroacetylation of hydrazones 
 1070  [ 638 ,  639 ], acylation of (trifl uoroacetimidoy1)lithium derivatives  1075  [ 640 ], 
or condensation of trifl uoroacetimidoyl chlorides  1077  with aromatic aldehydes in 
presence of sodium hydride [ 641 ] (Scheme  230 ). These methodоlogies were also 
used for the synthesis of trifl uoromethyl glyoxal equivalents  1064  [ 640 ,  642 ].
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  Scheme 229    Synthesis of hexafl uorobiacetyl       
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  Scheme 230    Synthesis of trifl uoromethyl-substituted derivatives of the type  397  and  398        

   Higher perfl uoroalkyl homologues of the type  1063  were prepared  via  oxidation 
of benzyl-substituted ketones ( i.e.   1080 ) with SeO 2  [ 643 ] or hydrolysis of α,α- 
dichloroketones  1084  [ 644 ] (Scheme  231 ).

and transport of compound  1068  has some restriction, but the alkene can be prepared 
in laboratory by SbF 5  fl uorination of hexachlorobutadiene [ 636 ].
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   Synthesis of fl uorinated α-halo-β-dicarbonyl compounds  1065  was straightforward 
and relied on halogenation of the corresponding fl uorinated β-dicarbonyl counterparts 
( e.g.  with NBS), which could be performed even in one-pot manner [ 645 ]. 

 Selected examples of reactions of 1,2-bis-electrophiles  1061 – 1066  with 
1,2-diamines are given in Table  43 . The method gives good to excellent results 
when at least one of the starting components is symmetric; otherwise, the reaction 
is usually regioselective (see Entries 3, 12 and 14). Isolation of hydrates is a 
common feature in case of aliphatic 1,2-diamines (Entry 2), with a few exceptions 
(Entry 6), they are not observed in case of aromatic binucleophiles or diaminoma-
leonitrile  1060 . In a number of cases, the reactive 1,2-bis-electrophile is generated 
 in situ  or using one-pot procedure (Entries 7, 9, 12 (see also earlier work [ 646 ]), 13, 
15). Apart from  1061 – 1066 , other fl uorinated 1,2-bis-electrophiles were involved 
into reactions with 1,2-diamines (Table  24 , Entries 18–26). Some of these bis- 
electrophiles can be considered as synthetic equivalents of  1061 – 1066 . In particular, 
epoxide  1086  can be used instead of trifl uoromethyl glyoxal  1064  (Entry 18), 
whereas oxime  1087  – as a replacement for fl uorinated α-halo-β-dicarbonyl 
compounds  1065  (Entry 19). Other 1,2-bis-electrophiles give an access to rather 
unusual pyrazine-derived structures. For example, adduct  1089  is obtained upon 
reaction of malonodinitrile derivative  1088  with  o -phenylenediamine (Entry 20) 
(upon prolonged reaction times, however, malonodinitrile is eliminated from  1089 ). 
In the reaction of imine  1090  with ethylenediamine, double formation of the 
pyrazine rings occurs (Entry 21), whereas in the case of chromone derivative  1091 , 
recyclization is observed (Entry 24). Another recyclization – a variation of Yur’ev 
reaction – was found in the case of ethylenediamine and furane derivative  1092  
(Entry 25).
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  Scheme 231    Synthesis of higher perfl uoroalkyl-substituted derivatives of the type  1063        
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   Table 43    Synthesis of pyrazines from 1,2-diamines and fl uorinated 1,2-bis-electrophiles   

 #  Reactants  Product  Conditions  Yield  Ref. 

 1 

  

NH2

NH2      

CF3O

O OEt    
  

N

N
H

O

CF3

    

 H 2 O, 50 °C  82  [ 647 ] 

 2 

  

NH2

NH2      

CF3O

O OEt    

  

N
H

N
H

O

OH
CF3

    

 Neat, 0 °C  80  [ 648 ] 

 3 

  

NH2 NH2

O2N     

  

CF3O

O OEt    

  

N NH

OCF3

NO2

      

N NH

OCF3

O2N     

 EtOH, refl ux  20  [ 649 ] 
 70 

 4 

  

NH2

NH2      

CF3O

O CF3      

N

N CF3

CF3

    

 Neat, 0 °C  N/A  [ 650 ] 

 5 

  N

NH2

NH2      

CF3O

O CF3      N

N

N CF3

CF3

    

 DMF, 50 °C  66  [ 651 ] 

 6 

  

HN

N

NH2

NH2

O . H2SO4

    
  

CF3O

O CF3    

  

HN

N

N
H

N
H

O
OH

OH

CF3

CF3

    

 NaHCO 3 , DMF, 
H 2 O, rt 

 47  [ 651 ] 

 7 

  

NH2

NH2    

  

F3C

N
N

CF3

O

    

  

N

N CF3

CF3

    

 EtNMe 2 , CHCl 3 , rt a   74  [ 652 ] 

 8 

  

NH2

NH2

NC

NC     

  

O
O

CF3

    

  

N
N

CN
CN

CF3

    

 MeCN, rt  74  [ 638 ] 

 9 

  

NH2

NH2    

  

O
N

CF3

Ph     

  

N

N CF3

Ph

    

 aq HCl, MeOH, rt  100  [ 640 ] 
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 #  Reactants  Product  Conditions  Yield  Ref. 

 10 

  

NH2

NH2      

O
CF3

OHHO

    
  

N

N CF3    

 MeCN, rt  52  [ 639 ] 

 11 

  

NH2

NH2      O

OC7F15

Ph       

N

N C7F15

Ph

    

  m -cresol, rt  59  [ 644 ] 

 12 

  N

NH2

NH2    
  

CF3O

HO OH
    

  

N N

N

CF3

      N

N

N

CF3

    

 MeOH, 70 °C b   74 4  [ 653 ] 
  

 13 

  

NH2

NH2    

  

N

CF3

O

N

    

  

N

N

CF3

    

 AcOH, MeCN, rt  75  [ 642 ] 

 14 

  

NH2 NH2

      O OEt

CF3

O
Br

    

  

N N

CF3

OEt
O

    

 Ionic liquid, rt  89  [ 654 ] 

 15 

  

NH2

NH2    
  O OEt

CF3

O

    

  

N N

CF3

OEt
O

    

 NBS, H 2 O, 70 °C  80  [ 645 ] 

 16 

  

NH2

NH2      

F

CF3 F

FO

    
  

N

N
H

O

CF3

    

 NaHCO 3 , Et 2 O, rt  84  [ 655 ] 

 17 

  

NH2

NH2      

F

CF3 F

CF3O

      

N

N CF3

CF3

    

 Dioxane, 100 °C  51  [ 656 ] 

 18 

  

NH2

NH2      SO2Ph

CF3O

      1086  
  

N

N

CF3

    

 EtOH, rt, then refl ux  45  [ 657 ] 

 19 

  

NH2

NH2    
  

O

CF3
O

N
OH OEt

      1087  
  

N N

CF3

OEt
O

    

 MeOH, refl ux  70  [ 658 ] 
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 #  Reactants  Product  Conditions  Yield  Ref. 

 20 

  

NH2

NH2    
  

CNNC

CF3

O

OEt

      1088  
  

HN
NH

O
CF3

CN
NC

      
1089  

 Et 2 O, −20 °C to 20 °C  98  [ 659 ] 

 21 

  

NH2

NH

NH2     
  

NH2CF3

F

NH

CF3

      1090    

N

N

N
H

CF3

CF3

    

 EtOH, refl ux  44  [ 660 ] 

 22 

  

NH2

NH2    

  

O

O
Ph3P

CF3

CF3

CF3

CF3

    

  

N
H

N
H

F

CF3

    

 CH 2 Cl 2 , Et 2 O, rt, then 
Et 3 N, THF, refl ux 

 45  [ 661 ] 

 23 

  

HN N

NH2

NH2O

NH2     

  

CF3O

Cl
FF

    

  

N
H

N

N

O

NH2

NH
F

FCF3

    

 Et 3 N, EtOH, refl ux  71  [ 662 ] 

 24 

  

NH2

NH2    

  

O

O

O CF3

      1091    

OH

O

N

HN
CF3

    

 MeOH, acetone, rt  57  [ 632 ] 

 25 

  

NH2

NH2    

  O CF3

O

      
1092  

  N CF3

N

    

 Benzene, rt, 
then refl ux 

 68  [ 663 ] 

 26 

  

NH

NH
      

Cl

Cl

FF
F

F
F

F F F       

N

N

F

F
F

F F F Cl

F

    

 Et 3 N, benzene, 25 °C  60  [ 664 ] 

   a  The bis-electrophile is generated  in situ  from trifl uoroacetaldehyde dimethylhydrazone and 
trifl uoroacetic anhydride 
  b  The bis-electrophile is generated prior the reaction from 1,1-dibromo-3,3,3-trifl uoroacetone by 
heating with NaOAc in H 2 O at 98 °C  

Table 43 (continued)
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7.7.2       Other Methods 

 An interesting method for preparation of fl uorinated quinoxaline  N , N' -dioxides 
 1094  relies on reaction of benzofuroxanes  1093  with fl uorinated β-dicarbonyl 
compounds – a fl uoro version of the so-called Beirut reaction (named after the city 
where it was discovered) (Scheme  232 ). The reaction has attracted some attention 
due to the products  1094  revealed high antitumor and anti-trypanosomatid activity 
[ 665 – 667 ]. The method gave satisfactory results when at least one of the starting 
components was symmetric; otherwise, the reaction was not always regioselective. 
The approach was also used for simple fl uorinated ketones; in this case, the corre-
sponding products  1095  were obtained in low to moderate yields (16–48 %) [ 668 ].

N
O

N
+

O

R''
CF3

O

N
+

N
+

O

O
R''

CF3

N
O

N
+

O

R

O

R

O
R'

N
+

N
+

O

O

R

R

O

R'

+

1095

Na, EtOH

16 - 48%

R = Alkyl, Aryl, 2-furyl, 2-thienyl, NR2

R' = H, F, CF3, Cl, OMe
R'' = H, Me, Et
Rf = CF3, CHF2

1093

+

f

1094

Et3N

f
45 - 70%

  Scheme 232    Synthesis of fl uorinated quinoxaline  N , N' -dioxides  412  using Beirut reaction       

N NH2 N

CF3

Ar
N

NH
F3C Ar

1096

+

1097

AcOH

68 - 70%

1098

  Scheme 233    Synthesis of fl uorinated pyrrolo[1,2- a ]pyrazines       

   Pictet-Spengler-type reaction of pyrrole-derived amine  1096  and enamines  1097  
was used recently for the preparation of pyrrolo[1,2- a ]pyrazine derivatives  1098  – a 
[5+1] approach to the construction of pyrazine ring (Scheme  233 ) [ 669 ].

   A rare example of [3+3] retrosynthetic disconnection of fl uorinated pyrazine 
ring was implemented by dimerization of fl uorinated formamidine  1099  
(Scheme  234 ) [ 670 ]. Another example is dimerization of azirine derivative  1101  [ 671 ].
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   Fused tricyclic pyrazine derivative  1104  was prepared by intramolecular cyclization 
of amide  1103  under rather drastic conditions (P 2 O 5 , POCl 3 , 180 °C in autoclave) 
(Scheme  235 ) [ 672 ]. It should be noted that for the synthesis of trifl uoromethyl 
analogue  1106 , direct trifl uoromethylation was used instead of this cyclization 
(see Sect.  6.1.1 ).

N
CF3 Cl

CF3 N

N

N NMe2

NMe2

CF3

CF3

CF3

CF3

N

C5F11 COOEt C5F11

HN

NH
OH

COOEt

COOEt
OH

C5F11

2
Et3N

MeCN
50%

1099

1101

1. HF, py

2. aq HCl

1100

1102

  Scheme 234    [3+3] approach to fl uorinated pyrazines       

N

O

N

N

N
H

O

F

F

N

O

N

N

N

F

F

N

O

N

N

N

I

N

O

N

N

N

CF3

POCl3

P2O5, 180 °C

1103

>88%

1104

1105 1106

Me3SiCF3, 
KF, CuI

NMP, 50 °C
58%

  Scheme 235    Synthesis of fused tricyclic pyrazine derivatives       

    o -Iodoaniline derivatives  1107  and  1109  were the key intermediates for the 
preparation of fused tricyclic pyrazines  1108  and  1110 . To obtain  1108 , Friedel-
Crafts acylation was used, followed by intramolecular cyclization based on 
Pd-catalyzed arylation (Scheme  236 ) [ 404 ]. A tandem azide click reaction – Ullman-
type intermolecular coupling allowed for the construction of tricyclic system  1110  
[ 673 ]. Bromo and chloro analogues of  1109  were also used to synthesize  1110 , but 
they were less effective.
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7.8           Inverse-Electron-Demand Diels – Alder Reaction 
with Fluorinated Building Blocks 

 An unusual approach to the synthesis of chain-fl uorinated diazines relies on the 
inverse-electron-demand hetero-/retro-Diels – Alder ( ihDA/rDA ) sequence. The 
background of this method for the preparation of nitrogen-containing heterocycles 
in general has been reviewed recently [ 674 ]. Typical dienes used for the synthesis of 
chain-fl uorinated diazines are given in Fig.  29 . Since electron-defi cient dienes are 
necessary for the fi rst step of the sequence – inverse-electron-demand hetero-Diels – 
Alder reaction, fl uoroalkyl substituents of tri- and tetrazines  1111 – 1112  are favor-
able for the process. Typical electron-rich dienophiles for the reactions with 
 1111 – 1112  are enamines (including amino heterocycles) and alkynes, although 
other examples are also known.

N
HI

N

CF3Cl
N CF3

N

I

N

CF3

R

N CF3

N

NN
R

1107

+
1. AlCl3, CH2Cl2, rt

2. Pd(OAc)2, PPh3,
    KOAc, DMF, 140 °C

68% 1108

1109

CuI, NaN3

L-proline, DMSO

56 - 98%

1110

R = n-Bu, t-Bu, AcOCH2, COOMe,
Ph and substituted aryls, 2-thienyl

  Scheme 236    Synthesis of fused tricyclic pyrazines from  o -iodoaniline derivatives       

N

N N

N

CF3

CF3

N

N N

N

F CF3

F CF3

N N

N

Rf

RfRf

1111
1113

Rf = CF3 (mostly), CHF2, C2F5, CF2Cl

1112

  Fig. 29    Hetero-dienes used 
for the synthesis of chain- 
fl uorinated diazines 
via  ihDA/rDA        
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    ihDA/rDA  sequence with  1111  or  1112  and CC-dienophiles is accompanied with 
elimination of molecular nitrogen and results in formation of pyridazine deriva-
tives – a process which is known in 1,2,4,5-tetrazine chemistry as Carboni – Lindsey 
reaction [ 677 ]. In fact, this reaction was discovered by Carbony and Lindsey when 
they studied chemical properties of  1112  (among some other  sym -tetrazines) [ 678 ]. 
The method worked effectively with various non-functionalized alkenes (Table  44 , 
Entries 1–3), including strained ones (Entry 4), to give dihydropyridazines. Aromatic 
pyridazine derivatives were formed in reactions with alkynes (Entry 5); the 
procedure showed high functional group tolerance (Entry 6) and was used for 
the preparation of nucleoside analogues (Entry 7). Even benzene underwent [4+2] 
cycloaddition with  1111 , although under harsh conditions (Entry 8); notably, in the 
case of substituted and fused benzene derivatives, the reaction demonstrated 
regioselectivity (Entry 9). Analogous results were obtained in the case of heteroaro-
matic compounds (Entries 10 and 11), although in some cases, ring opening of the 
aromatic ring occurred. Enol ethers and enamines are especially good dienophiles, 
which were used in a number of preparative syntheses (Entries 13–15). Unlike usual 
alkenes, these dienophiles gave aromatic pyridazines due to elimination of the leaving 
group (alkoxy or dialkylamino) under reaction conditions.

   3,6-Bis(trifl uoromethyl)-1,2,4,5-tetrazine ( 1111 ) and its homologue  1112  are 
extremely reactive hetero-dienes towards Diels – Alder reaction. Compounds  1111  
and  1112  were prepared by reaction of oxadiazole  1114  [ 675 ] or perfl uoropropene 
 1116  [ 676 ], respectively, with hydrazine, followed by oxidation (Scheme  237 ).

N
N

O

CF3

CF3

CF3
OEt

O

CF3
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O

NH2

CF3 NH

O

NH

O

CF3

HN

HN N

N

CF3

CF3

N

N N

N

CF3

CF3

CF3

F

F

F HN

HN N

N

F CF3

F CF3

N

N N

N

F CF3

F CF3

N2H4

TFAA P2O5 N2H4

30%

FeCl3

80%

11111114

1116

N2H4

41%

HNO3

HOAc
84%

1112

1115

1117

  Scheme 237    Synthesis of  sym -tetrazines  1111  and  1112        
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   Table 44    Carboni – Lindsey reactions of  426  and  427    

 #  Dienophile  Product  Conditions  Yield  Ref. 

 1 

      

  

HN

N

F CF3

F CF3

Ph

    

  1112 , Et 2 O, pentane, rt  60  [ 678 ] 

 2 

      

  

HN

N

F CF3

F CF3     

  1112 , rt  62  [ 678 ] 

 3 

      

  

HN

N

CF3

CF3     

  1111 , 0 °C  88  [ 675 ] 

 4 

      

  

N

N

CF3

CF3     

  1111 , CCl 4 , rt  95  [ 679 ] 

 5       

  

N

N

CF3

CF3    

  1111 , 0 °C  79  [ 675 ] 

 6 

  

SnMe3

SnMe3    
  

N

N

CF3

CF3

SnMe3

SnMe3

    

  1111 , 0 °C  78  [ 675 ] 

 7 

  

O

O

Ph

O

PhO

Ph

    
  

O

O

Ph

O

PhO

Ph

N
N

CF3

CF3     

  1111 , toluene, heating  77  [ 680 ] 

 8 

      

  

N

N

CF3

CF3     

  1111 , 140 °C, O 2  (air)  87  [ 681 ] 

(continued)
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 #  Dienophile  Product  Conditions  Yield  Ref. 

 9 

      

  

N

N

CF3

CF3     

  1111 , 140 °C, O 2  (air)  40  [ 681 ] 

 10 

  O

N

    

  

N

N

CF3

CF3

N
H

O

    

  1111 , toluene, heating  80  [ 682 ] 

 11 

  
N

N

    

  

N

N

CF3

CF3

N
N

    

  1111 , toluene, heating  60  [ 682 ] 

 12 

  
N

NO

O
    

  

N

N

CF3

CF3

N
H

N O

    

  1111 , toluene, heating  94  [ 683 ] 

 13 

  OTMS

OTMS

    

  

N

N

CF3

CF3

OH

    

  1111   70  [ 684 ] 

 14 

  

N

      

N

N

CF3

CF3     

  1111 , CH 2 Cl 2 , rt  78  [ 685 ] 

 15 

  

N O

EtO

OMe

H

    

  

N O

EtO

H

N
N

CF3

CF3     

  1111 , toluene, refl ux  88  [ 686 ] 

Table 44 (continued)

   Sym-triazine derivatives of general formula  1113  can be prepared by trimerization 
of the corresponding perfl uorinated nitriles  1118  (Scheme  238 ) [ 687 ]. Compounds 
 1113  are much less reactive towards cycloaddition reactions than  1111  or  1112 ; it is 
not surprising therefore that the fi rst reports on such transformations were made 
in early 2000s. In particular, reaction of 5-amino-1-phenyl-4- pyrazolecarboxylic 
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acid ( 1119 ) with  1111  resulted in a tandem decarboxylation –  ihDA/rDA  sequence 
with formal elimination of the perfl uorinated nitrile  431  and ammonia to give 
pyrazolo[3,4- d ]pyrimidine derivatives  1120  (Scheme  239 ) [ 688 ].

N N

N

Rf

RfRf

1113

HCl
3 RfCN

94%
(Rf = CF3)1118

  Scheme 238    Synthesis of fl uorinated sym-triazines  1113        

N N

N

Rf

RfRf

N
N NH2

O

HO

Ph

N

N

Rf

RfN
N

Ph

1113

+

1119

AcOH, DMF

90 °C
70 - 78%

1120

  Scheme 239    An early report on  ihDA/rDA  sequence with  1111        

    A wide range of amino heterocycles was introduced into reaction with  1111  
(Table  45 ), including pyrazoles (Entry 1), pyrroles (Entry 2), furans (Entry 3), 
indoles (Entry 4), thiophenes (Entry 5), imidazoles (Entry 6), push-pull enamines 
(Entry 7) and even anilines (Entry 8). The method was also used for the synthesis of 
nucleoside analogues (Entry 9). Moreover, it was shown that amino imidazoles can 
be generated in situ in the reaction mixture containing  1111  for the preparation of 
fl uorinated purines (Scheme  240 ) [ 689 ]. The latter procedure worked well for 
aliphatic amines and hydrazines (including those containing additional basic center); 
by using TMSOTf catalyst, it was also extended to aromatic and heteroaromatic 
amines.

   Table 45     ihDA/rDA  sequence with  428    

 #  Dienophile 
 R f  in 
 1111   Product  Conditions  Yield  Ref. 

 1 

  
N
H

N NH2

    

 CF 3  

  

NN

HN
N

CF3

CF3

    

 AcOH, CH 2 Cl 2 , rt  95  [ 689 ] 

 2 

  

N NH2

    

 CF 3  

  

N

N

N

CF3
CF3

    

 Et 3 N, THF, rt  61  [ 690 ] 

(continued)
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 #  Dienophile 
 R f  in 
 1111   Product  Conditions  Yield  Ref. 

 3 

  

O

NH2

O
O

    

 CF 3  

  

N
N

O

CF3

CF3

O O
    

 DMSO, 100 °C  75  [ 691 ] 

 4 

  

HN

NH2

.HCl
    

 CF 3  

  

N
N

HN

CF3

CF3

    

 MeOH, 50 °C  94  [ 692 ] 

 5 

  

S

NH2

O
O

    

 CHF 2  

  

NN

S

CHF2

CHF2

O
O

    

 AcOH, CH 2 Cl 2 , rt  91  [ 693 ] 

 6 

  

N
N

NH2    

 CF 2 Cl 

  

NN

N
N

CF2Cl

CF2Cl

    

 AcOH, CH 2 Cl 2 , rt  93  [ 693 ] 

 7 

  

NH2

OEtO     

 CF 3  

  

NN

CF3

CF3

COOEt     

 AcOH, CH 2 Cl 2 , rt  100  [ 693 ] 

 8 

  

NH2

N
    

 C 2 F 5  

  

N
N

C2F5

C2F5

N
    

 AcOH, CH 2 Cl 2 , rt  89  [ 693 ] 

 9 

  

N
N NH2

O

O

O

OH     

 CF 3  

  

NN

O
O

O

OH

N
CF3

CF3

    

 AcOH, CH 2 Cl 2 , rt  97  [ 556 ] 

Table 45 (continued)
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    The mechanism of  ihDA/rDA  reaction of  1111  with aminoheterocycles was 
studied extensively in the pyrrole series (Scheme  241 ) [ 694 ,  695 ]. It was shown that 
formation of “Diels – Alder” adduct of the type  1125  is nonconcerted; instead, the 
reaction starts as aromatic nucleophilic substitution to give Meisenheimer complex 
 1123  as an initial intermediate. Then, cyclization of  1123  leads to the formation of 
 1125 . Decomposition of  1125  occur as  retro -[4+2] cycloaddition to form intermedi-
ate of the type  1129 . Aromatization of  1123  occurs via elimination of perfl uorinated 
amidine, which was detected among the products of the reaction.

N

N

CF3

CF3N

N

R

NNC O N N

N

CF3

CF3CF3

+
CH2Cl2

+RNH2

R = Alkyl, Aryl, Hetaryl, NR2
for (hetero)aromatic amines, TMSOTf catalyst was used

40 - 93%

1111 1121

  Scheme 240    Three-component synthesis of fl uorinated purines via  ihDA/rDA  sequence       
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  Scheme 241    The mechanism of  ihDA/rDA  sequence with  1111        
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8         Properties and Chemical Transformation of CFD 

 In this part of the chapter, chemical properties of chain-fl uorinated diazines are 
discussed. Since both diazine ring and fl uoroalkyl group are electron-withdrawing, 
it is not surprising that most of the transformations discussed herein are reactions 
with nucleophiles. Diazine rings, namely, carbon atoms of the C=N double bonds, 
are common centers of the nucleophilic attack. Depending on the nucleophile and 
presence of the nucleofuge, the result of the reaction can be nucleophilic addition, or 
nucleophilic substitution. The reaction can occur not only with common nucleo-
fuges like halogens, but with fl uoroalkyl group itself. Fluoroalkyl substituent can 
also act as electrophilic center; in this case, nucleophilic substitution of fl uorine 
occurs, which is promoted by electron-withdrawing diazine ring. Other reactions to 
be discussed are electrophilic substitution, metallation, reduction, oxidation and 
recyclization of the diazine ring, transition metal-catalyzed cross-couplings, 
photochemical cycloadditions as well as electron-demanding Diels-Alder reactions. 
Most of the examples will be taken from pyrimidine series since their chemistry is 
studied more thoroughly; chemical transformation of other side-chain fl uorinated 
diazines will be discussed occasionally. 

8.1     Addition of Nucleophiles to C=N Double Bond 

8.1.1    Formation of Hydrates and Other Solvates 

 In the previous sections discussing synthesis of chain-fl uorinated diazines by 
heterocyclizations, there were many examples of formation of di-, tetra- and 
hexahydropyrimidines – so-called hydrates (or other solvates) – instead of the corre-
sponding aromatic products. This situation was quite common for the preparation of 
chain- fl uorinated pyrimidinones or fused pyrimidines possessing an additional 
electron- withdrawing group, as well as Biginelli-type adducts (Fig.  30 , see also 
Sect.     7  of this chapter).
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  Fig. 30    Stable diazine hydrates (see Sect.  7  of this chapter)       
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   Moreover, these adducts were often so stable that they underwent water elimination 
only upon heating and/or action of dehydration agents. Nevertheless, in most cases 
the stability of these covalent hydrates was kinetic rather than thermodynamic, and 
the corresponding reverse reaction,  i.e.  formal addition of water or alcohols to the 
C=N bonds of the diazine ring are not common. The fi rst observation of this type 
was made in 1990 by Lee and Sing, who noticed surprisingly high solubility of 
pyrimidine  1143  in aqueous alkali. More detailed investigations showed that a 
mixture of two adducts  1144  and  1145  were formed from  1143  in either aqueous 
sodium hydroxide or methanolic sodium methoxide- d  3  solutions (Scheme  242 ) [ 696 ]. 
Whereas with OH – , a 1:1 mixture was formed, in the case of CD 3 O –  ion, regioselec-
tivity of the reaction was observed, presumably due to its higher steric volume.

N

N CF3O

R

O

HN

N
H

O

R

O

OH
CF3

N

N CF3O

OCF3
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N
H
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1145, R = Ph

HBr

AcOH
72 - 76%

1148

HCl

THF
92%

1146, R = CF3

1147, R = Ph
1149

  Scheme 243    Formation of covalent hydrates upon demethylation of CFD       
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CF3OR
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ROH +

R = H, 1 : 1
R = CD3O, 10 : 11142 1143

  Scheme 242    Reaction of pyrimidine  1141  with anionic O-nucleophiles       

   Another example was also found serendipitously: upon demethylation of 
pyrimidine derivative  1144  with HBr/AcOH, covalent hydrate  1146  was obtained in 
72 % yield (Scheme  243 ) [ 468 ]. The method was extended to some other substrates 
( 1145  and  1148 ).

   Formation of adducts with solvent was observed for the pyrimidine derivatives 
 1150  upon their recrystallization from methanol (Scheme  244 ) [ 697 ]. Unlike the 
previous example, in this case the reaction was reversible, since the adducts  1151  
gave pyrimidines  1150  upon heating.
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8.1.2       Addition of C-Nucleophiles 

 Addition of carbanions to C=N bond in chain-fl uorinated diazines received 
considerable attention in the quinazoline series, since the products obtained in this 
reaction are intermediates in the synthesis of HIV 1 reverse transcriptase inhibitors 
(see Chap.   20    ). In particular, quinazolines  1152  react with acetylenides in the 
presence of BF 3 ⋅Et 2 O in THF to give adducts  1153  in moderate to excellent yields 
(Scheme  245 ) [ 698 – 700 ].

HN

N

X

CF3O

HN

N
H

X

O
O

CF3

1150 1151

MeOH

Δ

X = PhC(O), PhCH2, Et, iPr

  Scheme 244    Reversible formation of adducts of pyrimidines 6 with methanol       
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X X

1152

BF3
.Et2O, THF

1153R = Alk, Ar, hetaryl

16 - 97%

  Scheme 245    Addition of  C -nucleophiles to C=N bond of quinazolines  1152        

   The method was extended for the preparation of optically pure compounds. 
In the fi rst strategy, chiral auxiliary approach was used; namely, camphanoyl and 
α-phenyletylamine auxiliaries were introduced, the latter being more productive 
(Table  46 ) [ 701 ,  702 ]. Although quinazoline  1155  had limited stability, they could 
be generated  in situ  prior the reaction with the nucleophile. Notably, a wide range of 
nucleophiles was studied in this reaction, including organolithium, organomagnesium 
compounds and even methanol; nevertheless, lower chemical yields and/or diaste-
reoselectivities were observed in many cases. The method was amendable to 
kilogram preparations.
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   Table 46    Diastereoselective addition of nucleophiles to C=N bond of quinazoline  1155  

  

Cl

N
H

N

CF3
OH

Ph

O

Cl

N

N Ph

O

CF3 Cl

N
H

N Ph

O

CF3 Nu

SOCl2, Et3N

toluene, 0 °C

NuM

1154 1155
1156

      

 #  NuM  T, °C  Conversion, %  de, % 

 1   Li     −70  95  85 

 2   MgCl     −60  95  92 

 3   MgCl     −10  97  80 

 4  MeOH  −5  95  80 
 5  CH 2 =CHMgBr  −60  88  95 
 6  PhMgCl  −60  35  95 
 7  PhLi  −20  40  40 
 8  PhCH 2 MgCl  −60  93  <10 
 9  MeMgI  −60  90  55 
 10  MeZnI  −5  94  95 
 11  LiAlH(O t Bu) 3  (Nu=H)  –  94  85 
 12 

  

N

    

 −60  89  95 

   Alternative strategy for the preparation of enantiopure quinazolines of the type  9  
relied on enantioselective moderation. It was found that in the presence of 
carene- derived chiral moderator  1157 , addition of cyclopropylethynyl lithium to 
quinazoline  1158  occurs in high yield and good enantioselectivity (Scheme  246 ) 
[ 703 ]. It should be noted that a number of other amino alcohols were evaluated as 
chiral additives in this reaction [ 704 ]. The mechanism of this transformation 
includes formation of mixed aggregates of the type  1160 – 1162  (Fig.  31 ) [ 704 ]. 
Even more complex aggregates are formed upon reaction of  1160 – 1162  with 
lithium salt of the quinazoline substrate [ 705 ].

N
H

N

CF3

O

F

F

Li

N
H

NH

O

CF3
F

F

N

OH

O

1158

LHMDS, 1157
85%, 99.6% ee

11571159

  Scheme 246    Enantioselective addition of  C -nucleophiles to C=N bond of quinazoline 12       
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    Completely different reaction conditions for the synthesis of enantiopure 
quinazolines  1153  relied on Lewis acid catalysis. In particular, treatment of 
quinazoline  1163  with cyclopropyl acetylene and Zn(OTf) 2  in the presence of chiral 
additive  1164  (Scheme  247 ) [ 706 ] was extended to enantioselective diynylation of 
 quinazolines [ 707 ]. An example of using organocatalysis included enantioselective 
Mannich-type reaction of  1166  or its analogues with ketones in the presence of 
chiral diamine  1167  and L-dibenzoyltartaric acid ( L -DBT) (Scheme  248 ) [ 708 ]. 
In the latter case, the enantioselectivity was moderate, it might be improved to 
>99 % by a single recrystallization of the product.

N

N

CF3

O

O

Cl R

N

NH

O

CF3

R

O

Cl

O2N

OH

N

O

1163

Zn(OTf)2, 1164

R = c-C3H5, Ph, 
t-Bu, TMS etc.

63 - 96%
>98% ee

1164
1165

  Scheme 247    Enantioselective addition of  C -nucleophiles to C=N bond of quinazoline  1163        
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  Fig. 31    Mixed cyclopropylethynyl lithium aggregates       
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  Scheme 248    Enantioselective addition of  C -nucleophiles to C=N bond of quinazoline  1166        
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    Apart from quinazolines, quinoxalines  1169  were successfully introduced into 
the reaction with lithium acetylenides to give adducts  1170  (Scheme  249 ) [ 709 ].

N

N

O
SEM

X CF3
Li

N

N
H

O
SEM

X
CF3

1169 1170
45 - 92%

  Scheme 249    Addition of  C -nucleophiles to C=N bond of quinoxalines  1169        

8.2         Nucleophilic Substitution at the Diazine Ring 

8.2.1     Substitution of Common Nucleofuges 

 Nucleophilic substitution of common nucleofuges such as halogenes is one of the 
most well-studied reactions in the chain-fl uorinated diazine series. Analysis of the 
literature data shows that nearly 90 % examples of chain-fl uorinated halodiazine 
reactions with  N -,  S -, and  O –nucleophiles refer to pyrimidine derivatives (Table  47 ). 
Only 2- and 4-fl uoroalkyl-5-halopyrimidines have received almost no attention in 
these transformations. Data on nucleophilic substitution of halogens in chain- 
fl uorinated diazines correlates with the accessibility of the corresponding substrates, 
and to a lesser extent – with their reactivity towards nucleophiles.

   Table 47    Reactions of chain-fl uorinated halodiazines with nucleophiles (Reaxys®)   

 #  Substrate a   No. of hits 

 No. of citations 

 Total  Papers  Patents 

  Pyrimidines and their fused derivatives  
 1 

  N

N

X
Rf

    

 194  80  15  65 

 2 

  N

N

X

Rf     

 356  87  26  61 

 3 

  N

N

X

Rf    

 267  97  36  61 

 4 

  N

N

X

Rf

    

 252  82  15  67 

(continued)

 

D.M. Volochnyuk et al.



501

 #  Substrate a   No. of hits 

 No. of citations 

 Total  Papers  Patents 

 5 

  N

N

Rf

X    

 218  114  37  77 

 6 

  N

N

Rf

X

    

 2  1  1  0 

 7 

  N

N

Rf

X

    

 7  7  1  6 

  Pyrazines and their fused derivatives  
 8 

  N

N
X

Rf

    

 24  10  4  6 

 9 

  
N

N

Rf

X    

 5  4  1  3 

 10 

  

N

N

Rf

X     

 13  12  1  11 

  Pyridazines and their fused derivatives  
 11 

  
N

N

X

Rf

    

 11  8  4  4 

 12 

  N
N

X

Rf

    

 1  1  1  0 

 13 

  N

N
X

Rf

    

 5  1  0  1 

 14 

  
N

N

X Rf

    

 5  5  0  5 

 15 

  
N

N

Rf X

    

 1  1  0  1 

 16 

  
N

N

Rf

X    

 28  23  4  19 

   a X=F, Cl, Br, I  

Table 47 (continued)
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   The reactivity of the chain-fl uorinated halodiazines towards nucleophiles is to a 
considerable extent similar to that of the corresponding non-fl uorinated analogues. 
In particular, chain-fl uorinated 2(6)- and 4-halopyrimidines are the most reactive 
substrates for the nucleophilic attack, so that very mild reaction conditions are pos-
sible (Table  48 , Entries 1–4, 6, 8). In the case of less reactive substrates, very harsh 
reaction conditions ( e.g.  heating or MW irradiation at 140–180 °C) still can promote 
“classical” nucleophilic substitution (Entries 9, 11, 13, 14, 16, 18), although using 
palladium or copper catalysts might be more convenient (Entries 10, 12).

   Table 48    Typical reaction conditions for the nucleophilic substitution in CFD   

 #  Reactants  Product  Conditions  Yield  Ref. 

 1 

  

N

N
F3C

Cl

NH

    

  

NH2

    

  

N

N
F3C

HN

NH

    

 K 2 CO 3 , MeCN, 
50 °C, 5 h 

 78  [ 710 ] 

 2 

  N

N
F3C

Br

Br      

N
H

N

NH2     
  N

N
F3C

HN

Br

N
H

N

    

 EtOH, rt, 8 h  85  [ 711 ] 

 3 

  N

N

Cl

F3C     

 28 % aq NH 3  

  N

N

NH2

F3C     

 MeCN, rt, 12 h  98  [ 712 ] 

 4 

  N

N

Cl

F3C

Br

    

 EtONa 

  N

N

O

F3C

Br

    

 EtOH, rt  83  [ 713 ] 

 5 

  N

N

F3C Cl    

  

N

NH2

boc     

  

N

N

F3C N

N
boc    

 TEA, DMF, 
100 °C, 3 h 

 85  [ 714 ] 

 6 

  N

N

F3C Br

Br

    

 NH 2 NH 2  

  

N

N

F3C NH

Br

NH2    

 EtOH, rt  95  [ 715 ] 

(continued)
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 #  Reactants  Product  Conditions  Yield  Ref. 

 7 

  N

N

F3C Cl

S

Cl

    

  
N
H

N
I

    

  N

N

F3C Cl

S

Cl

    

 K 2 CO 3 , DMF, 
130 °C, 1 h 

 97  [ 716 ] 

 8 

  N

N

F3C Cl

O

O

    

  O

NH2

    

  

N

N

F3C NH

O

O

O     

 DIPEA, THF, rt, 16 h  91  [ 717 ] 

 9 

  N

N

CF3

Cl

    

  

N

N
H

boc    

  

N N

CF3

N

N

boc

    

 isobutyramide, 
180 °C, MW, 
20 min 

 55  [ 347 ] 

 10 

  N

N

CF3

Br

    

  

N
H

O

N

    

  

N

O

N

NN

CF3

    

  t BuONa, DavePhos, 
Pd 2 dba 3 , dioxane, 
120 °C, MW, 1 h 

 25  [ 718 ] 

 11 

  N

N

CF3

Cl

    

  

N

N
H

boc    

  

N

N
CF3

N

N

boc

    

 140 °C, MW, 45 min  47  [ 719 ] 

 12 

  

N

N

Cl

CF3     

  

N
H

OH    

  

N

N

N

CF3

HO

    

 CuI, K 2 CO 3 , 
 L -proline, DMSO, 
65 °C, 48 h 

 94  [ 720 ] 

Table 48 (continued)
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 #  Reactants  Product  Conditions  Yield  Ref. 

 13 

  

N

N

Cl

CF3     
  

N
H

O

N

    

  

N

O

N

N
N

CF3

    

 K 2 CO 3 , DMSO, 
140 °C, MW, 
45 min 

 83  [ 718 ] 

 14 

  

N

N

Br

CF3     
  

N

N
H

boc    

  

N

N

CF3

N

N

boc

    

 isobutyramide, 
180 °C, MW, 
20 min 

 32  [ 347 ] 

 15 

  

N

N

Br

CF3     
  

N
boc

H

H

OH     

  

N

N

CF3

N
boc

H

H

O

    

 NaH, DMSO, rt, 1 h  50  [ 721 ] 

 16 

  N

N
F3C

Cl

    

 28 % aq NH 3  

  N

N
F3C

NH2

    

 DME, sealed reactor, 
180 °C, 8 h 

 36  [ 722 ] 

 17 

  

N

N
F3C

Cl

Ph     
  

N

O

NH2     
  

N

N
F3C

HN

Ph

N

O

    

 butan-1-ol, refl ux, 48 h,  94  [ 723 ] 

 18 

  

N

N

Cl

CF3     
  

N

N
H

boc    

  

N

N

N

CF3

N

boc

    

 DIPEA, MeCN, 
180 °C, MW, 
30 min 

 99  [ 724 ] 

Table 48 (continued)
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   Due to their electron-withdrawing inductive effect, the fl uoroalkyl substituents 
activate substitution at α- and γ-positions. Although this activation does not over-
come the effect from the nitrogen atoms of the diazine ring, it may defi ne 
regioselectivity of the reaction in certain cases. In particular, reaction of 3,6-dichloro-
4-fl uoroalkylpyridazines  1171, 1172  with hydrazine or sodium methoxide results 
in nucleophilic substitution at C-4 (Scheme  250 ) [ 723 ,  725 ]. On the contrary, 
reaction of 3,4-dibromo-6-trifl uoromethylpyridazine  1177  with NaOMe leads to the 
formation of 4-substituted derivative  1178  – a usual regioselectivity observed for 
the non-fl uorinated analogues (Scheme  251 ) [ 727 ].

N

N

Cl

Cl
CF3

N

N

Cl

NH
CF3

NH2

N

N

HN

CF3

Cl

NH2

N

N

Cl

Cl
C2F5

N

N

Cl

O
C2F5

N

N

O

C2F5

Cl

N2H4 +

1171 1173 50% 1174 4%

MeONa
+

1172 ca. 3 : 11175 1176

  Scheme 250    Nucleophilic substitution in 3,6-dichloro-4- fl uoroalkylpyridazines              

N

N

CF3

Br

Br

N

N

CF3

Br

O
MeONa

1177 1178

64%

  Scheme 251    Nucleophilic substitution in 3,4-dibromo- 6-trifl uoromethylpyridazine       

    Several reports deal with nucleophilic substitution in chain-fl uorinated 
2,4-dichloropyrimidines. It is widely accepted that reaction of 2,4- dichloropyrimidines 
with nucleophiles occurs fi rst at C-4 atom of the diazine ring, and the corresponding 
products can be obtained with high regioselectivity. In the case of 2,4-dichloro- 5-
trifl uoromethylpyrimidine  1179 , nearly 1/1 mixtures of the corresponding regioiso-
mers are obtained (Scheme  252 ) [ 728 ,  729 ]. The situation is changed if the reaction 
is carried out in the presence of a Lewis acid (ZnCl 2 ); in this case, substitution at C-2 
atom occurs regioselectively. These features were addressed to the increased steric 
demands at C-4 provided by the fl uoroalkyl group. Both aromatic and aliphatic 
amines [ 728 ], as well as thiolates were successfully introduced into the latter 
transformation [ 730 ], although in the case of aromatic amines capable of zinc 
 coordination, as well as aliphatic amines, 2 equivalents of ZnCl 2  were necessary to 
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ensure high regioselectivity. However, the latter conditions in most cases led to the 
diminished yields of the products (28–33 % instead of 72–95 %) and prolonged 
reaction times.

   For 2,4-dichloro-6-trifl uoromethylpyrimidines, usual regiselectivity was 
observed in nucleophilic substitution reactions, namely, preferential attack of the 
nucleophile at C-4 atom (Scheme  253 ) [ 731 ,  732 ].

N N

CF3

Cl

Cl

N N

CF3

Cl

NH2

N N

CF3

NH2

Cl
N N

CF3

N

Cl

RR'

N N

CF3

S

Cl

+
NH3

ca. 45% ca. 45%

MeOH

RR'NH

ZnCl2 (1 or 2 eq)

then Et3N

R = Aryl, R' = H
or R = Alkyl, R' = H, Alkyl

regioselectivity > 5 : 1
28 - 95%

MeSNa
ZnCl2

64%

1179
1180 1181 1182

1183

  Scheme 252    Nucleophilic substitution in 2,4-dichloro-5-trifl uoromethylpyrimidine       
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N N
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 47%
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20%
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71%

1184 1185 11861187
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  Scheme 253    Nucleophilic substitution in 2,4-dichloro-6-trifl uoromethylpyrimidine       

   The reactions of the halogenated chain-fl uorinated diazines with  C -nucleophiles 
are less studied in comparison with  N ,  S ,  O – derivatives. The most actively used 
transformation is chlorine-cyanide exchange in a case of 4-chloro substituted 
pyrimidines (Table  49 ). In a case of nucleophilic catalysis by DMAP or DABCO the 
yields are in region 50-93 %. Without nucleophilic catalysis the yields of the cyana-
tion decreased extremely (Table  49 , Entry 11).
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   In a case of 2-chloro substituted chain-fl uorinated pyrimidines the cyanation is 
also described on two examples in “classical” variant as well as palladium catalyzed 
conditions (Scheme  254 ) [ 735 ,  736 ].

    Table 49    Chlorine-cyanide exchange in 4-chloro chain-fl uorinated pyrimidines 

  

N

N

Rf R1

R2

Cl

N

N

Rf R1

R2

CN
NaCN

1189 1190       

 #  R f   R 1   R 2   Conditions  Yield (%)  Ref. 

 1  CF 3   SMe  I  DMAP, EtCN, rt, 3 h  51  [ 733 ] 
 2  CF 3   Me  H  DABCO, DMSO-H 2 O, rt, 2 h  81  [ 338 ] 
 3  CF 3   H  Br  -//-  93  [ 338 ] 
 4  CF 3   SMe  H  -//-  64  [ 338 ] 
 5  CF 3   H  H  -//-  75  [ 338 ] 
 6  CHF 2   H  H  -//-  83  [ 338 ] 
 7  C 2 F 5   H  H  -//-  61  [ 338 ] 
 8  C 3 F 7   H  H  -//-  51  [ 338 ] 
 9  CF 3   CF 3   H  -//-  93  [ 338 ] 
 10  CF 3   MeO  H  -//-  50  [ 338 ] 
 11  CF 3   H  H  MeCN, refl ux, 20 h  18  [ 734 ] 

   Among other common  C -nucleophiles only malonate and hetarylacetonitriles 
derivatives were used. 2-Chloro as well as 4-chloro chain-fl uorinated pyrimidines 
 1193  and  1195  gave the corresponding pyrimidinylacetic acid derivatives  1194  and 
 1196  depicted on Schemes  255  [ 737 ,  738 ] and  256  [ 738 – 740 ].

N

N

F3C Cl

R

N

N

F3C

R

CN

M+CN-

1191 1192

R = H, M+ = Na, DMSO, rt, 30 min, 40%
R = Ph, M+ = K, DMF, Pd(PPh3)2Cl2, 67%    

  Scheme 254    Cyanation of 2-chloro substituted chain-fl uorinated       
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    Recently Vanelle reported the fi rst example of a S N Ar reaction using TDAE- 
initiated carbanions in fl uorinated quinazoline series. The  o -nitrobenzyl carbanion 
 1200 , formed by the action of TDAE on  o -nitrobenzyl chloride  1197 , reacts with 
4-chloro-2-trifl uoromethylquinazoline  1198  via a S N Ar mechanism affording 
4-benzyl-2-trifl uoromethylquinazolines  1199 . The reaction as electron withdrawing 
group-dependent and in a case of non-fl uorinated analogue of  1198  does no work 
(Scheme  257 ) [ 741 ].

N

N Cl

CF3

R
EWG EWG'

N

N

CF3

R

EWG

EWG'

N

N
*

boc*
N

O

N S

N
*

1193 1194

                         R = H, EWG = CN, EWG' = CO2tBu; NMP, 80 °C; 48 %

           R = H, EWG = CN, EWG' =                            ; NaH, THF, 0 °C to rt; 88%

R =                      EWG = CONH2, EWG' =                           ; NaH, THF, 0 °C to rt; 33%

  Scheme 255    Reaction of 2-chloro chain-fl uorinated pyrimidines with C-nucleophiles       
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  Scheme 256    Reaction of 4-chloro chain-fl uorinated pyrimidines with C-nucleophiles       
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   Another unusual S N Ar reaction of fused trifl uoromethylchloropyrimidines was 
disclosed in a course of human adenosine A 2A  receptor antagonists discovery [ 742 ]. 
This is the reaction of aroylation of 2-chloro-4-trifl uoromethylthieno[3,2-d]pyrimi-
dine  1201  by aldehyde incorporation catalyzed by N,N-dimethylimidazolium chlo-
ride affording the ketoaryl compound  1202 . The process based on S N Ar reaction of 
zwitterionic intermediate  1203  with followed dimethylimidazolium elimination. 
Unfortunately the exact procedures does not refer in original paper but reported in 
Vernalis patent (Scheme  258 ) [ 743 ].

N

N

CF3

ClNO2

Cl

R

N

N

CF3

O2N

R

NO2

CH2
N

+

NN
+

N

R = H, 5-Me, 4,5-(OMe)2

+

1 eg 2 eq

TDAE, DMF

- 20 0C, 1h to 
50 0C, 0.5h

1197 1198 1199

-
Cl-

1200

45-90%

  Scheme 257    S N Ar reaction using TDAE-initiated carbanions       
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Ar = Ph, 2-thienyl
-

1203

  Scheme 258    Aroylation of  1201  by aldehyde incorporation       

   Also Friedel–Crafts-type reaction of 2-naphthol with 4-chloro-2- 
trifl uoromethylquinazoline  1198  was recently reported Guiry. The reaction condi-
tions employed 3 equiv. of AlCl 3  at 80 °C in DCE for 3.5 h. In the condition 
quinazoline  1198  gives 4-(2-hydroxynaphthalen-1-yl)quinazoline  1205  in quantita-
tive yield. The latest compound is useful intermediate for the synthesis of atropiso-
meric P–N ligand, Quinazolinap, which has been successfully applied to the 
rhodium-catalyzed hydroboration of vinylarenes and palladium-catalyzed allylic 
alkylation (Scheme  259 ) [ 744 ].
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8.2.2        Addition with Elimination of the Fluoroalkyl Substituent 

 In principle, addition of a nucleophile to the C=N bond of the diazine ring can be 
accompanied by elimination of fl uoroalkyl substituent. Two-step version of this 
reaction was used in the synthesis of alkaloid rutaecarpine ( 1210 ). In particular, 
reaction of anhydride  1206  with trifl uoroacetic anhydride and then – with trypt-
amine led to the formation of quinazoline  1208 , which was transformed to  1210  
with elimination of trifl uoromethane upon acid-catalyzed cyclization, followed by 
alkaline hydrolysis (Scheme  260 ) [ 744 ].

   Elimination of trifl uoromethane was undesirable reaction which was observed 
during attempted stereoselective synthesis of HIV 1 reverse transcriptase inhibitors 
via intermediate  1154 ; it occurred upon treatment of  1154  with bases (Scheme  261 ) 
[ 702 ].
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H
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H
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  Scheme 260    Synthesis of rutaecarpine       
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  Scheme 259    Friedel–Crafts-type reaction of 2-naphthol with  1198        
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   The reaction is particularly illustrative in the case of 6,7-bis(trifl uoromethyl)-
8-ribityllumazines  1212 , which were evaluated as potential inhibitors of lumazine 
synthase. It was found that both diastereomers of  1212  slowly eliminate trifl uoro-
methane in neutral aqueous solutions above 37 °C giving 6-(trifl uoromethyl)-7-oxo- 
8-ribityllumazine  1213 ; at 60 °C, half-life of  1212  was 15 min (Scheme  262 ) [ 745 ]. 
Interestingly, the reaction was catalyzed by lumazine synthase, but only for one 
diastereomer ( 1212 ). A mechanistic rationale for this stereoselectivity was proposed 
from the data obtained by 2D NMR data [ 746 ].
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  Scheme 262    Elimination of trifl uoromethane from  1212        
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  Scheme 261    Elimination of trifl uoromethane from  1154        

8.3         Transformation of Fluoroalkyl Substituent in CFD 

 Despite the widely accepted opinion that fl uoroalkyl substituents in aromatic rings 
are chemically stable and rarely susceptible towards nucleophilic attack, a number 
of reactions of chain-fl uorinated diazines at α-carbon of the fl uoroalkyl moiety can 
be found. In fact, the fi rst examples of such transformations were reported in 1960s 
[ 747 ]; they concerned an unusually easy hydrolysis of 5-trifl uoromethyluracil and 
its derivatives upon warming in alkaline media (Scheme  263 ). Mechanism of the 
reaction was proposed, which included elimination of fl uoride from anionic species 
 1214  and  1215 , formed either by deprotonation of the substrate or addition of 
hydroxide ion [ 748 ]. Additional (but similar) reaction pathways were also possible 
if more acidic NH protons were present in the molecule of the substrate.
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   It was shown that other nucleophiles can undergo analogous reactions with 
5- trifl uoromethyluracil or its derivatives,  e.g.  amines (methoxyamine [ 749 ]), bisul-
fi te [ 750 ], and NH 4 OH (to form 5-cyano-2′-deoxyuridine) [ 751 ]. Recently, this 
reaction was used for the synthesis of various heterocycles containing uracil moiety 
 1216 – 1219  (Scheme  264 ) [ 752 ].
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  Scheme 263    Hydrolysis of 5-trifl uoromethyluracil and its derivatives       

   Hydrolysis of trifl uoromethyl group was accomplished in a different type of 
substrates, namely, tetrazolyl-substituted pyrimidines  1220  affording pyrimidine 
carboxylic acids  1221  (Scheme  265 ) [ 471 ]. Although support from the tetrazolyl 
moiety was stated, no explanation for this effect was proposed by the authors.
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  Scheme 264    Synthesis of heterocycles from 5-trifl uoromethyluracil       
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   Methanolysis of trifl uoromethyl group in fused pyrimidine derivative  1222  was 
reported; in this case, orthoester  1223  was obtained (Scheme  266 ) [ 753 ].

   Apart from nucleophilic substitution in the trifl uoromethyl-substituted diazines 
discussed above, transformations related to mono- and difl uoromethyl groups were 
also mentioned in the literature. In particular, hydrolysis of 5-difl uoromethyluracyl 
and its derivative to form 5-formyl uracils was described [ 754 ]; the proposed mech-
anism reaction was analogous for the corresponding trifl uoromethyl analogue. 
Nucleophilic substitution in fl uoromethyl derivative  1224  was reported; in this case, 
 N -acetylcysteine was acting as  S -nucleophile (Scheme  267 ) [ 755 ].
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  Scheme 266    Methanolysis of the CF 3 -moiety in fused pyrimidine  1222        
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  Scheme 265    Hydrolysis of the trifl uoromethyl moiety in tetrazolylpyrimidines       
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   In another work, fl uoromethyl group in pyrimidines  1225  acted as CH-acid in an 
intramolecular condensation with carbonyl compound, leading to the formation of 
8-fl uoro-pyrrolo[1,2- a ]pyrimid-4-one derivatives  1226  (Scheme  268 ) [ 358 ,  756 ].

   Another type of reactivity was disclosed for difl uorochloro group in pyrimidine 
series. Recently Iaroshenko, Langer and co-workers shown that difl uorochloro sub-
stituted pyrimidines  1227  can be converted into corresponding difl uoromethyl 
pyrimidines  1228  by radical reduction with tributyltin hydride in the presence of 
AIBN in moderate yields. In addition, CF 2 Cl-substituted pyrimidines  1227  were 
transformed to the corresponding 1,1-difl uorobut-3-enyl pyrimidines  1129  by reac-
tion with allyltributyltin and AIBN. In this case the yields of transformation are 
lower in comparison with tributyltin hydride reduction (Scheme  269 ) [ 412 ].

   1,1-Difl uorobut-3-enyl substituent is useful fragment for further transformation. 
Fustero with co-workers used the fragment for RCM reactions in synthesis of fused 
fl uorinated uracils. Starting uracils in this case were synthesized not by CF 2 Cl func-
tion transformation but by cyclization based on α,α-difl uoro-4-pentenenitrile  1230  
served as the starting materials. Nitrile  1230  reacted with ester enolates at −78 °C to 
afford intermediate β-enaminoesters, which could then be reacted with several iso-
cyanates in the presence of sodium hydride in DMF-THF as solvent. In this way, 
several intermediate uracils  1231  were prepared in good yields. Than allyl acetate 
was used as alkylating agent in the presence of Pd(0) as catalyst to provide the 
N-allyl derivatives  1232 . Finally, these dienes reacted with the fi rst generation 
Grubbs catalyst to afford the bicyclic seven-membered derivatives  1233  in excellent 
yields (Scheme  270 ) [ 757 ,  758 ].
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  Scheme 269    Radical reaction of CF 2 Cl-substituted pyrimidines  1227        
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  Scheme 268    Synthesis of 8-fl uoro-pyrrolo[1,2-a]pyrimid-4-one derivatives  1226        
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   A slightly different strategy was used for the synthesis of the C5-C6 fused bicy-
clic uracils. The reaction of pentenoic and butenoic ester enolates with nitrile  1230  
initially provided β-enamino esters  1234 , which then reacted with isocyanates to 
afford C5-C6 disubstituted uracils  1235  in variable yields. These uracils were trans-
formed into the new family of fused bicyclic six- and seven-membered uracils  1236  
by means of treatment with fi rst generation Grubbs catalyst under the same condi-
tions as described above, also in good yields (Scheme  271 ). These new families of 
uracils  1233  and  1226  were tested on acaricidal activity against  Tetranychus urti-
cae . Preliminary results showed that the best results for these compounds were 
slightly inferior than those for Tehufenpyrad [ 757 ,  758 ].
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  Scheme 271    Synthesis of C5-C6 fused bicyclic uracils       

F F

CN

OLi

OEt

HN N

O

F F
O

R'
OAc

N N

O

F F
O

R'

Ru
Cl

Cl Ph

PCy3

PCy3

N

O

O

R'
N

FF

1.

THF, - 78 °C

2. NaH, DMF, 
R'NCO

Pd2dba3, dppb

R = Alk, Ar

10 mol%

DCM

1230

1231

1232 1233

57-84%

H2O, THF, 60 °C 

53-82% 81-94%

  Scheme 270    Synthesis of N1-C6 fused bicyclic uracils       

 

 

Fluorine Containing Diazines. Synthesis and Properties



516

8.4        Electrophilic Substitution and Metalation at 
the Diazine Ring 

 Electrophilic substitution at the aromatic ring of chain-fl uorinated diazines is rather 
unfavourable due to their electron-defi cient nature. It is possible however when 
electron-donating substituents are also present in the diazine ring. For example, 
Shlösser reported successful bromination of pyrimidone  1237  with molecular bro-
mine (Scheme  272 ) [ 715 ]. Halogenation of chain-fl uorinated pyrimidine  1239  with 
SO 2 Cl 2 –FeCl 3  was also reported (Scheme  273 ) [ 759 ].
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  Scheme 272    Bromination of pyrimidone  1237        
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  Scheme 273    Chlorination of chain-fl uorinated pyrimidone with SO 2 Cl 2 –FeCl 3        

    An alternative approach for introducing electrophilic species into diazine ring 
relies on metalation. The fi rst report about metalation CFD was made in 1997 by 
Queguiner using 2-thiomethyl-4-trifl uoromethylpyrimidine  1241  [ 760 ]. In case of 
alkyllithium as metalating agent in THF at −100 °C, only 6-alkyl derivatives  1242  
were obtained as a result of the nucleophilic addition at C6. To avoid the nucleo-
philic addition, lithium alkyl amides were tested in the reaction. In spite of electron- 
withdrawing effect of CF 3 -group which favors  ortho -lithiation, the steric hindrance 
of the group alters the orientation in this case. With excess of LTMP in THF at 
−100 °C metalation occurs at the C6, whereas with weaker base LDA in similar 
conditions only starting material was recovered. In a case of using 1.1 equivalent of 
LTMP the starting material was recovered with dimeric product  1244 . The forma-
tion of  1244  assumed that the metalation is slow or incomplete and  1241  underwent 
the nucleophilic attack from  1245 . To prevent the competitive reaction 4-fold excess 
of LTMP was used, so deuteriated compound  1243  was obtained without starting 
material, but small amounts of dimer  1244  were always present (Scheme  274 , 
Table  50 ).
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    To avoid nucleophilic addition, a metalation/ in situ  trapping was used with a set 
of electrophiles. The simultaneous introduction of the electrophile and the com-
pound  1241  prevent the dimer formation. Reaction of the lithioderivative  1245  with 
iodine or hexachloroethane as electrophiles gave 6-halopyrimidines in low yield 
whereas moderate or good yields observed for carbonyl compounds trimethylsilyl 
chloride and diphenyl sulphide (Scheme  275 , Table  51 ) [ 760 ].
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  Scheme 274    Lithiation of 4-trifl uoromethylpyrimidine       

   Table 50    Lithiation of 4-trifl uoromethylpyrimidine   

 #  n  T (°C)  t(min)   1241    1243    1244  

 1  1.1  −78  30  24  –  17 
 2  2.2  −78  30  26  –  19 
 3  4  −78  15  –  33  10 
 4  4  −78  60  –  42  12 
 5  4  −100  60  –  22  30 
 6  4  −78  105  –  46  11 
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  Scheme 275    Lithiation of 4-trifl uoromethylpyrimidine by  in situ  trapping method       
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    Nine years after Queguiner paper the Shlösser group have studied lithiation of 
another trifl uoromethyl-substituted pyrimidines [ 761 ]. According to  in situ  trapping 
method for pyrimidine  1247  with trimethylsilyl chloride no silylated pyrimidine 
was detected in the reaction mixture, only dimer  1248  was isolated in low yield. But 
consecutive treatment of  1247  with butyllithium in toluene at −90 °C leads to 
bromo/lithium permutation. Subsequent reaction with carbon dioxide followed by 
neutralization and esterifi cation with diazomethane afforded methyl 4-(trifl uoro-
methyl)pyrimidine-2-carboxylate  1250  in 36 % yield (Scheme  276 ).
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  Scheme 276    Bromo/lithium permutation for 2-bromo-4-(trifl uo-romethyl)pyrimidine       

   Table 51    Lithiation of 4-trifl uoromethylpyrimidine by  in situ  trapping method   

 #  Electrophile  E  Yield (%) 

 1  PhCHO  PhCH(OH)  69 
 2  Ph 2 CO  Ph 2 C(OH)  77 
 3  I 2   I  26 
 4  C 2 Cl 6   Cl  19 
 5  Me 3 SiCl  Me 3 Si  96 
 6  PhSSPh  SPh  98 

   On the other hand, excellent results were achieved with 2,4-dihalo- 6-
(trifl uoromethyl)pyrimidines  1251 . The corresponding pyrimidine-5-carboxylic 
acids  1253  were isolated in good preparative yields (Scheme  277 ).
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  Scheme 277    Metalation and subsequent carboxylation of 2,4-hal--6-(trifl uoromethyl)pyrimidines       
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   Another 5-metalated 4-trifl uoromethylpyrimidines could be generated by 
halogen- lithium exchange. The corresponding derivative  1254  was lithiated at 5-th 
position  via  iodine-lithium exchange affording intermediate  1255 , which was 
converted to acid  1256 , but the yield was low. In contrast, clean reactions were 
encountered with 5-bromo-4-chloro-6-(trifl uoromethyl)pyrimidine  1257a  and 
4,5-dibromo-6-(trifl uoromethyl)pyrimidine  1257b  as the substrates when isopro-
pylmagnesium chloride in diethyl ether and, respectively, butyllithium in toluene 
were employed as the exchange reagents. 4-Chloro and 4-bromo substituted 
6-(trifl uoromethyl)pyrimidine-5-carboxylic acids were isolated in 73 and 54 % 
yield respectively. The rigorous discrimination between the two bromine atoms by 
the Grignard reagent is observed (Scheme  278 ) [ 761 ]. Notably, the halogen atoms 
in the molecules of  1259 a,b  could be removed by catalytic hydrogenation.
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  Scheme 278    Carboxylation of 4-trifl uoromethylpyrimidines via halogen/metal exchange       

N

N

CF3

Li

OR

N

N

CF3

Br

OR

N

N

CF3 O

OR

1260 1262 65-82%1261

n-BuLi
THF,
-78 °C

R = Me, Et

HCO2Me
or DMF

10 -40 min

  Scheme 279    Synthesis of  1262        

   The bromine-lithium exchange by butyllithium in CFD began to fi nd industrial 
application. Kumiai Chemical Industry and Syngenta used the lithiation-formylation 
sequence for the synthesis of the corresponding aldehydes in herbicides develop-
ment programs (Scheme  279 ) [ 713 ,  762 ]. Both methyl formate and DMF were used 
as formilating agents to afford aldehydes  1262  in good yields.
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   Also the bromine-lithium exchange in 4-bromo-2-trifl uoromethylquinazoline 
 1263  was described using butyl lithium. The corresponding litho-derivative  1264  
was entered into reaction with benzaldehyde to give alcohol  1265  (Scheme  280 ) [ 742 ]
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  Scheme 280    Synthesis of  1265        

   Besides pyrimidine derivative, as to the best of our knowledge, only one example 
is described for another CFD. Janseen in 2008 described DoM reaction of pyrida-
zine  1266  with LTMP followed by iodination affording iodo-derivative  1268  in 
82 % preparative yield (Scheme  281 ) [ 724 ].
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  Scheme 281    DoM lithiation-iodination of pyridazine  1266        

8.5        Transition Metal-Catalyzed Cross-Couplings 

 Unlike nucleophilic substitution with  N -,  S -, and  O –nucleophiles discussed in 
Sect.  8.2.1  of this chapter, transition metal-catalyzed C–C couplings are not well- 
documented in chain-fl uorinated diazine series. Almost all examples deal with 
palladium- catalyzed cross-coupling involving chain-fl uorinated halodiazines and 
the corresponding organoelement compounds ( e.g.  Suzuki, Stille, Negishi or 
Kumada reactions), alkenes ( i.e.  Heck reaction), or alkynes ( i.e.  Sonogashira 
reaction) (Table  52 ). The reaction conditions are quite common for the analogous 
transformations involving aryl halides (Table  53 ).
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   Table 52    Reaxys® data for the C–C cross-couplings of chain-fl uorinated halodiazines   

 #  Substrate a   No. of hits 

 No. of citations 

 Total  Papers  Patents 

  Pyrimidines and their fused derivatives  
 1 

  N

N

X
Rf

    

 23  5  2  3 

 2 

  N

N

X

Rf     

 11  9  3  6 

 3 

  N

N

X

Rf    

 14  15  3  12 

 4 

  N

N

X

Rf

    

 2  2  0  2 

 5 

  N

N

Rf

X    

 12  10  4  6 

 6 

  N

N

Rf

X

    

 16  5  1  4 

 7 

  N

N

Rf

X

    

 6  5  1  4 

  Pyrazines and their fused derivatives  
 8 

  N

N
X

Rf

    

 7  6  1  5 

 9 

  
N

N

Rf

X    

 1  1  0  1 

 10 

  

N

N

Rf

X     

 6  5  1  4 
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 #  Substrate a   No. of hits 

 No. of citations 

 Total  Papers  Patents 

  Pyridazines and their fused derivatives  
 11 

  
N

N

X

Rf

    

 7  4  2  2 

 12 

  N
N

X

Rf

    

 –  –  –  – 

 13 

  N

N
X

Rf

    

 4  2  –  2 

 14 

  
N

N

X Rf

    

 –  –  –  – 

 15 

  
N

N

Rf X

    

 –  –  –  – 

 16 

  
N

N

Rf

X    

 12  8  0  8 

   a X=F, Cl, Br, I  

Table 52 (continued)

   Table 53    Typical reaction conditions for the C–C couplings in chain-fl uorinated diazines   

 #  Reactants  Product  Conditions  Yield  Ref. 

 1 

  
N

N
F3C

Cl

O
    

  

SnBu3EtO

    

  
N

N
F3C

O

OEt

    

 Pd(PPh 3 ) 4 , toluene, 110 °C  N/A  [ 763 ] 

 2 

  
N

N
F3C

I

S
    

  

OO

    

  

OO

N

N
F3C

S
    

 Pd(PPh 3 ) 2 Cl 2 , Et 3 N,DMF, 
MW, 120 °C 

 69  [ 764 ] 

(continued)
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 #  Reactants  Product  Conditions  Yield  Ref. 

 3 

  
N

N

Cl

SCF3
    

  
B

HO OH

S

    

  
N

N

SCF3

S

    

 Pd(PPh 3 ) 4 , Na 2 CO 3 , 
DME–H 2 O, refl ux 

 82  [ 765 ] 

 4 

  
N

N

CF3

Cl

NH

O

    

 CO, MeOH 

  

N

N
CF3

NH

O

O
O

    

 Pd(OAc) 2 , dppf, 
DMF, 70 °C 

 60  [ 766 ] 

 5 

  
N

N

CF3

Cl

NHN

    

  n -PrMgBr 

  
N

N

CF3

NHN

    

 Ni(dppp)Cl 2 , THF, 50 °C  30  [ 767 ] 

 6 

  

N N

CF3

Cl     

  

N

B
OO

CN

    
  

N

CN

N N

CF3

    

 Pd(PPh 3 ) 4 , CuI, CsF, 
dioxane, 65 °C 

 42  [ 768 ] 

 7 

  
N

N

Cl

CF3

    

  I O

O

    

  

N
N

CF3

O
O

    

 Zn/Cu, MeCONMe 2 , 
toluene, then 
Pd(PPh 3 ) 4 , 70 °C 

 78  [ 769 ] 

 8 

  
N

N

CF3Cl

Ph

    

 PhSnBu 3  

  
N

N

CF3

Ph

Ph

    

 Pd(PPh 3 ) 4 , MeCN, 
MW, 180 °C 

 98  [ 482 ] 

 9 

  

N N

OTf

CF3     

  

SiMe3

    

  

N N

CF3

SiMe3

    

 Pd(PPh 3 ) 2 Cl 2 , CuI, 
Et 3 N, 80 °C 

 95  [ 770 ] 
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 #  Reactants  Product  Conditions  Yield  Ref. 

 10 

  

N N

Br

CF3     

  

OO

    

  

N N

CF3

OO

    

 Pd(OAc) 2 , Et 3 N, 110 °C  72  [ 771 ] 

 11 

  

N

N

CF3

Cl

    

        

N
N

CF3

n-C8H17    

 [ t -Bu 2 (4-Me 2 NC 6 H 4 )P] 2 Pd, 
Cs 2 CO 3 , MeCN 

 87  [ 772 ] 

 12 

  

N N

CF3 Br

BrNH2

    
  

Cl

B
HO OH    

  

N
N

CF3

Br

NH2

Cl

    

 Pd(PPh 3 ) 4 , Na 2 CO 3 , 
DME– H 2 O, refl ux 

 66  [ 773 ] 

 13 

  

N

Cl

N

CF3

Ph

    
  

O

B
HO OH    

  

N

N

Ph

CF3

O     

 Pd(PPh 3 ) 4 , K 2 CO 3 , 
EtOH–H 2 O, refl ux 

 95  [ 774 ] 

 14 

  

N

CF3

N

I

N

NBoc

    

  
B

HO OH     

  

N

CF3

N
N

NBoc
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    So far, the only reported example of organoelement compound derived from 
chain-fl uorinated diazines used in C–C couplings is boronate  1270 , prepared from 
bromo derivative  1269  (Scheme  282 ) [ 787 ]. Compound  1270  was successfully 
introduced intro Pd-catalyzed coupling with chloride  1272  to give the product  1273  
in good yield (95 %).

8.6        Reduction and Oxidation of the Diazine Ring 

 Usually nuclei of CFD are stable to common reduction agent such as complex metal 
hydride (NaBH 4 , LAH etc.) and metals in low oxidation state (SnCl 2 , Fe etc.) which 
allow to made different transformation of functional groups in these compounds 
leaving the ring of CFD intact. But in literature there are rare examples of reduction 
of the CFD nuclear by NaBH 4 . Recently Vovk with co-workers shown that due to 
the alternation of bonds in the ring pyrimidones  911  (see Scheme  189 ) react with 
NaBH 4  in methanol at room temperature to give quantitatively a mixture of two 
stable isomeric tetrahydropyrimidines,  1274  and  1273 , with the predominance of 
the latter product as a result of 1,4-reduction of the endocyclic conjugated double 
bonds. 2-Oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates  1273  can be isolated in 
pure form by double recrystallization from ethanol (Scheme  283 ) [ 550 ].
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  Scheme 282    Synthesis and Pd-catalyzed coupling of  1270        
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   Also the NaBH 4  reduction of fused pyrazolo[1,5-a]pyrimidines was disclosed in 
a course of discovery of antitubercular agents and novel structural class of potent 
calcium-sensing receptor antagonists. The reduction proceeds also in mild condi-
tion giving diastereoselectively desired tetrahydropyrazolo[1,5-a]pyrimidines in 
good preparative yields (Scheme  284 ) [ 418 ,  778 ].
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  Scheme 283    Reduction of pyrimidones  911  with NaBH 4        
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  Scheme 284    Reduction of fused pyrimidines  1275  with NaBH 4        

   Besides pyrimidines one example of NaBH 4  reduction described for 
4-trifl uoromethylpyrimido[4,5-c]pyridazines  1050  (see Scheme  224 ), which reacted 
with NaBH 4  giving corresponding dihydroderivatives  1277  in good yields 
(Scheme  285 ) [ 628 ].
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  Scheme 285    Reduction of fused pyridazines  1050  with NaBH 4        
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   Another agent used for CFD nuclear reduction is triethylsilane in the presence of 
trifl uoroacetic acid. In a case of pyrimidine  1278  (R= t -Bu) the reaction leads to 
cyclic guanidine  1279  in 30 % yield [ 789 ]. The better result in similar transforma-
tion gives catalytic hydrogenation over palladium. In this case the preparative yield 
of guanidine  1280  is near to quantitative [ 780 ] (Scheme  286 ). In should be noted, 
that formation of cyclic guanidines under aminopyrimidines reduction is typical 
also for non-fl uorinated analogues using triethylsilane as well as catalytic hydroge-
nation. The latest method also was used for tetrahydropyrazolo[1,5-a]pyrimidine 
 1281  synthesis. In this case dechlorination and pyrimidine reduction occurs by one 
step (Scheme  286 ) [ 418 ].
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  Scheme 286    Reduction of chain fl uorinated pyrimidines with Et 3 SiH and hydrogen       

   Reduction of fl uoroalkylpyrazines could be a promising method for the synthesis 
of chain-fl uorinated piperazines. This method was used for the synthesis of 
 difl uoromethyl- and (1,1-difl uoroethyl)piperazines  1283 ; nevertheless, it was 
obtained in low yield [ 322 ,  781 ]. Therefore the synthesis of “parent” (trifl uoro-
methyl) piperazine  1284  is based on 4 steps synthesis started from methyl trifl uoro-
pyruvate and N,N′-dibenzyl ethylenediamine (Scheme  287 ) [ 782 ].
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  Scheme 287    Synthesis of chain-fl uorinated piperazines       
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   Among oxidation of the diazine ring in CFD the major part of the reports deal 
with the oxidation of the partially unsaturated diazines. Thus, tetrachloro-1,4- 
benzoquinone (TCBQ) or 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) [611, 
815], copper (II) halides [ 593 ,  784 ] and bromine [ 603 ,  785 ] were used as oxidizing 
agents. Also ozonolysis of chain-fl uorinated diazines was reported. In particular, 
reaction of 5- and 6-trifl uoromethyluracils with ozone led to the formation of hydan-
toins  1254  (Scheme  288 ) [ 786 ]. It was assumed that oxidative cleavage occurs at 
C5–C6 bond of the diazine ring, followed by hydrolysis and cyclization of the inter-
mediate formed.
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  Scheme 289    Recyclization of chain-fl uorinated pyrido[1,2-a]pyrimidin-4-ones       

HN

N
H

R'

R
O

O

HN

NH

O

O

OR'

O

R

HN

NH2

O

O
O

R

HN

NH

O

O
O

R

OHO

N
HN

O

O

OH

R

O
R'

N
H

NH

O

O

OH

RO3 (R' = H)

    R = CF3, R' = H
or R = H, R' = CF3

1254, 85 - 98%1249

1250
1251

1252

1253

  Scheme 288    Ozonolysis of trifl uoromethyluracils       

8.7        Recyclizations 

 Since ANRORC-type processes are characteristic for pyrimidine series, it is not 
surprising that there are some examples of recyclizations with chain-fl uorinated 
pyrido[1,2-a]pyrimidin-4-ones  1255 . In particular, heating of fused pyrimidines 
 1255  in diphenyl ether resulted in the formation of 1,8-naphtyridine derivatives 
 1256  (Scheme  289 ) [ 787 ,  788 ].
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   Another example includes rearrangement of quinazoline derivative  1257  into 
benzodiazepine  1258 , described in a patent (Scheme  290 ) [ 789 ].
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  Scheme 290    Recyclization of fused pyrimidine  1257        

8.8        Inverse-Electron-Demand Diels-Alder Reaction 

 It was described in Sect.  7.8  of this chapter that chain-fl uorinated diazines can be 
synthesized using inverse-electron-demand Diels-Alder reactions. Some of the 
fused pyridazines can also undergo analogous reactions with electron-rich alkenes. 
In particular, Diels-Alder reactions of pyridopyrazine  1259  were studied. It was 
found that  1259  reacted with enamines to give quinoline derivatives ( e.g.   1260 ) 
(Scheme  291 ) [ 790 ]. Reaction of  1259  with ketene N,S-acetal  1261  led to a mixture 
of regioisomers  1262  and  1263 , whereas reaction with  N -methylindole gave com-
plex mixture of products  1264 – 1267  (Scheme  292 ) [ 791 ].
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  Scheme 291    Diels-Alder reactions of pyridopyrazine  1259  with enamines       
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    Pyridazino[4,5- b ]indole  1268  is another example of aza-diene which was 
successfully introduced into inverse-electron-demand Diels-Alder reactions with 
enamines. The reaction proceeds upon prolonged refl uxing in 1,4-dioxan 
(Scheme  293 ) [ 792 ]. Notably, reaction of  1268  with acyclic enamine  1270  
proceeded in a regioselective manner.
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  Scheme 292    Diels-Alder reactions of pyridopyrazine  1259  with  N -methylindole       
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  Scheme 293    Diels-Alder reactions of pyridopyrazine  1268        

8.9        Photochemical [2+2] Cycloadditions 

 Chain-fl uorinated diazines can undergo photochemical [2+2] cycloaddition with 
alkenes to give cyclobutane or azetidine derivatives. In particular, 1,3-dimethyl- 5-
trifl uoromethyluracil  1272  reacted with naphthalene under UV-irradiation in the 
presence of piperylene preferentially underwent 1,2-cycloaddition to give cis- tetrah
ydronaphthocyclobutapyrimidine  1273  in high stereoselectivity [ 793 ]. It should be 
noted that similar reaction without piperylene pass through 1,4-cycloaddition 
affording an ethenobenzoquinazoline derivative  1274  as sole product of the reaction 
[ 794 ] (Scheme  294 ).
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  Scheme 294    Photochemical    reaction of 5-trifl uoromethyluracil  1272  with naphthalene       

   Also the reaction of 1,3-dimethyl-5-trifl uoromethyluracil  1272  with isobutylene 
was studied. In this case nearly exclusively the head to-tail adducts  1274  formed, 
but the yield of transformation was extremely low (Scheme  295 ) [ 795 ].

   In 2006 Aitken with co-workers developed a procedure of [2+2] cycloaddition, 
which in a case of trifl uoromethyluracils and ethylene gave excellent preparative 
yields (Scheme  296 ). Based on cycloaddition product  1279  the synthesis of cyclobu-
tane derived amino acid  1281  was elaborated [ 796 ].
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   Intramolecular [2+2] photochemical cycloaddition based on 
2- trifl uoromethylquinazolines was studied. Compounds  1282  afforded the corre-
sponding [2+2] adducts  1283  in 90–95 yields even on irradiation at 350 nm. 
Treatment of the adducts  1283  by methanol containing borontrifl uoride etherate 
leads to cleavage of the azetidine cycle leading to fused compounds  1284 . In a case 
of treatment of the compound  1284  (n = 1) with DBU elimination of the CF 3 -group 
occurs affording compound  1285  (see Sect.  8.2.2  of this chapter) (Scheme  297 ) [ 797 ].

   Also itermolecular photochemical [2+2] cycloaddition based on 
2- trifl uoromethylquinazoline  1286  was studied. In a similar conditions the reaction 
with ethylene gives compound  1287  in 17 % yield as a sole product probably due to 
low solubility of ethylene in methanol. Ene-type product  1288  was isolated in 65 % 
yield when isobutylene was used in the reaction, showing that biradical intermedi-
ate is involved in the transformation. In a case of ethyl vinyl ether acetal  1292  was 
formed as product of methanolysis of intermediate azetidine  1289 . Similarly was 
used intermediate azetidine  1290  was not isolated when dichloroethylene and its 
formation was proved by isolation of methanolysis product  1293  in 89 % yield. It 
should be noted, that treatment of product  1288  with base leads to elimination of 
CF 3 -group as in a case of  1284  (Scheme  298 ) [ 797 ]
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   The same group of Japanese authors studied the photochemical reaction of 
fl uorinated quinoxalines. Photochemical cycloadditions with quinoxaline derivative 
 1294  occurred and C=N double of the diazine ring, leading to the formation of 
azetidine derivatives (Scheme  299 ). The presence of trifl uoromethyl group in the 
molecule of  1294  activated the substrate towards cycloaddion, so that even electron- 
defi cient methyl methacrylate was introduced in the reaction [797]. In the case of 
ethyl vinyl ether as the alkene, the adduct  1296  also as in a case with  1289  was not 
stable and underwent azetidine ring-opening upon action of the solvent. Ketene was 
also successfully introduced in [2+2] cycloaddition with trifl uoromethyl-substituted 
quinoxaline derivatives [ 797 ]

NH

N

O

CF3

NH

O

CF3
N

NH

O

CF3
N
H

NH

O

CF3
N

EtO

NH

O

CF3
N

Cl
Cl

OEt

Cl

Cl

NH

O

N

NH

O

CF3
N
H

EtO
OMe

NH

O

CF3
N
H
O

OMe

1286

UV

CH2=CH2

1287

1288

1289

1290

MeOH

MeOH

KOH

DMSO
1291

1292

1293

65%

14%

82%

71%

89%

  Scheme 298    Intermolecular photochemical [2+2] cycloaddition of  1286        

 

Fluorine Containing Diazines. Synthesis and Properties



534

9         Conclusions and Outlook 

 Since discovery of the fi rst fl uorinated diazine – antineoplastic agent 5-fl uorouracil 
more than 20 compounds from the class were introduced into the pharmaceutical 
and crop protection market. Also these compounds fi nd industrial application as 
reactive component for the synthesis of reactive dyestaff in textile industry and as a 
component of liquid crystals. Besides industrial application fl uorinated diazines 
appear excellent objects for theoretical investigations. Starting from Halex process 
and electrophilic fl uorination of uracil fl uorinated diazines still attract the attention 
of chemists working in different industries as interesting objects of study. 
Undoubtedly the success was achieved due to joint progress of medicinal chemistry, 
agrochemistry as well as synthetic methods of heterocyclic and fl uoroorganic chem-
istry. But despite really the huge number of articles and patents in this fi eld the 
chemical space covered by fl uorinated diazines remains “white spots”. Thus, dia-
zine scaffold decorated by important for medicinal chemistry and agrochemistry 
fl uorinated fragments such as -CHF 2    , -CH 2 CF 3 , -OCF 3 , -SCF 3 , -SF 5  were not 
investigated because the synthetic chemistry of these compounds is still on devel-
opment phase or not developed at all. For example only in this year Yagupolskii 
with co- workers developed the fi rst method of synthesis of 5-OCF 3  substituted 
pyrimidines [ 798 ]. Also the chemistry of organoelement (B, Si, Sn) derivatives of 
fl uorinated diazines, able to transition metal catalyzed coupling reaction still 
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remains almost unexplored, especially in a case of CFD. Therefore the comprehensive 
investigations in the fi eld of fl uorinated diazines still are interesting both for 
academic and industrial scientists.     
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    Abstract     The combination of a fl uorine atom and a diazine ring, which both possess 
unique structural and chemical features, can generate new relevant building blocks 
for the discovery of effi cient fl uorinated biologically active agents. Herein we give 
a comprehensive review on the biological activity and synthesis of fl uorine contain-
ing, pyrimidine, pyrazine and pyridazine derivatives with relevance to medicinal 
and agrochemistry.  

  Keywords     Pyrimidine   •   Pyrazine   •   Pyridazine   •   Fluorine   •   Bioactive compounds   • 
  Medicinal chemistry   •   Agrochemistry  

  Abbreviations 

   AHAS    acetohydroxy acid synthase   
  ATP    adenosine triphosphate   
  B 2 (Pin) 2     Bis(pinacolato)diboron   
  BCR    B-cell receptor   
  Boc     tert -butoxycarbonyl   
  BOP    benzotriazol-1-yloxy-tris(dimethylamino)-phosphonium 

hexafl uorophosphate   
  Bu    Butyl   
  CDK    cyclin-dependent kinase   
  CDMT    2-chloro-4,6-dimethoxy-1,3,5-triazine   
  CLL    chronic lymphocytic leukemia   
  CNS    central nervous system   
  CSA    camphorsulfonic acid   
  CyJohnPhos    2-(dicylohexyl¬phosphino)biphenyl   
  DAST    diethylaminosulfur trifl uoride   
  Dba    Dibenzylideneacetone   
  DHFU    Dihydrofl uorouracil   
  DIC    diisopropyl carbodiimide   
  DIBAL    diisobutylaluminium hydride   
  DIPEA    ethyl diisopropyl amine   
  DMF    Dimethylformamide   
  DMSO    dimethyl sulfoxide   
  DNA    deoxyribonucleic acid   
  dppe    bis(diphenylphosphino)ethane   
  Dppf    1,1′-bis(diphenylphosphino)pherocene   
  DPP-4    dipeptidyl peptidase   
  dTMP    deoxythymidine monophosphate   
  dUMP    deoxyuridine monophosphate   
  EPA    environmental protection agency   
  FDA    Food and Drug Administration   
  FdUDP    fl uorodeoxyuridine diphosphate   

D.M. Volochnyuk et al.



579

  FdUMP    fl uorodeoxyuridine monophosphate   
  FdUTP    fl uorodeoxyuridine triphosphate   
  FMDV    foot-and-mouth disease virus   
  FUDP    fl uorouridine diphosphate   
  FUDR    Floxuridine   
  FUMP    fl uorouridine monophosphate   
  FUR    Fluorouridine   
  FUTP    fl uorouridine triphosphate   
  EDC    1-ethyl-3-(3-dimethylaminopropyl)carbodiimide   
  GIP    gastric inhibitory peptide   
  GLP-1    glucagon-like peptide-1   
  HIV    Human immunodefi ciency virus   
  HOBT    Hydroxybenzotriazole   
  HPLC    high-performance liquid chromatography   
  JAK    Janus kinase   
  JAK–STAT    Janus kinase – signal transducer and activator of transcription   
   L -DOPA    L-3,4-dihydroxyphenylalanine   
  Me    Methyl   
  NADH    Nicotinamide adenine dinucleotide   
  NMM    N-methylmorpholine   
  PDC    pyridinium dichromate   
  Ph    Phenyl   
  py    Pyridine   
  RNA    ribonucleic acid   
  (S,S)-Et-DuPhos    1,2-bis[(2S,5S)-2,5-diethylphospholano]benzene   
  TBAF    tetra-n-butylammonium fl uoride   
  TBDPS    tert-butyl diphenyl silyl   
  TFA    trifl uoroacetic acid   
  TMSNCO    Trimethylsilylisocyanate   
  TMSO    Tetramethylenesulfoxide   
  TMSOTf    trimethylsilyl trifl uoromethanesulfonate   
  WNV    West Nile virus   
  XantPhos    4,5-bis(diphenylphosphino)-9,9-dimethylxanthene   
  YFV    yellow fever virus   

1           Introduction 

 Diazines are aromatic six-membered heterocycles that contain two sp 2 -hybrid-
ized nitrogen atoms in the ring. The three diazine isomers are pyridazine (1,2-dia-
zine), pyrimidine (1,3-diazine) and pyrazine (1,4-diazine). The most important 
naturally occurring diazines are the pyrimidine bases uracil, thymine, and cyto-
sine, which comprise the fundamental nucleoside building blocks in deoxyribo-
nucleic acid (DNA) and ribonucleic acid (RNA). Pyrazines occur frequently as 
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constituents in foodstuffs and are responsible for their fl avor and strong aroma. 
Although being present in very small amounts, they are highly odiferous and can 
be detected at extremely low concentrations. Unlike other heterocycles found in 
many important natural products, pyridazines were discovered only after 1970, 
and relatively few pyridazines have thus far been isolated from natural sources. 
As synthetic compounds, all diazines constitute an important pharmacophoric 
moiety present in many drugs acting on various pharmacological targets as well 
as agrochemicals. 

 Inspite of organofl uorine compounds are almost absent as natural products, 
~25 % of drugs in the pharmaceutical pipeline and ~15 % of agrochemicals contain 
at least one fl uorine atom. One of the earliest synthetic fl uorinated drugs is the 
antineoplastic agent 5-fl uorouracil, derivative of pyrimidine, an antimetabolite fi rst 
synthesised in 1957. Since the advent of 5-fl uorouracil, fl uorine substitution is 
commonly used in contemporary medicinal and agrochemistry to improve meta-
bolic stability, bioavailability and protein–ligand interactions. In this review only 
compound bearing fl uoro or fl uoroalkyl substituent in diazine ring are discussed. 
Among fl uorine containing diazines now 12 drugs and 10 agrochemicals are pre-
sented on the market. This review provides an information about fl uorinated diazines 
as drugs or agrochemicals and their mode of action as well as synthesis. The review 
is divided in two parts. First part dedicated to the medicinal and synthetic chemistry 
of fl uorinated diazines that have reached at least clinical development phase. The 
second one dedicated to the biological role and the chemistry of the marketed agro-
chemicals based on fl uorinated diazines.  

2     Fluorine-Containing Diazines in Medicinal Chemistry 

 It is widely accepted that compounds containing fl uorine atoms have a remarkable 
record in medicinal chemistry and play a continuing role in providing lead com-
pounds for potential therapeutic applications. The reasons for that have been dis-
cussed extensively in a number of books and reviews [ 1 ,  2 ]. In this view, 
fl uorine-containing diazines are not the exception; they have attracted attention of 
medicinal chemists since 1950s when Fluorouracil ( 1 ) was introduces as anti-cancer 
drug. Analysis of MDDR (MDL Drug Data Report) data retrieved 1,150 hits derived 
from fl uorine-containing diazines [ 3 ]. Nearly a third part of them is represented by 
anti-cancer agents (Fig.  1 ); other important classes (more than 100 examples) 
include compounds with antiviral (mainly anti-HIV) and antiarthritic activity.

   According to MDDR, 106 compounds containing a fl uorinated diazine moiety 
have entered pre-clinical studies, 40 of them have reached clinical phase, and 12 of 
these have become drug substances (Fig.  2 ). In the following sections, fl uorine- 
containing diazine derivatives that have reached at least clinical development phase 
will be discussed, focusing on their aspects related to medicinal and synthetic 
organic chemistry.
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3        Anti-cancer Agents 

3.1     Fluorouracil and Floxuridine 

 The use of fl uorinated diazines as anti-cancer agents is the major fi eld of their appli-
cation in medicinal chemistry. The fi rst representative of this class, Fluorouracil ( 1 ) 
was developed by Charles Heidelberger and co-workers in 1957 [ 4 ]. It was approved 
by U.S. FDA [ 5 ] in 1962 as antineoplastic agent in the treatment of advanced 
colorectal cancer. Fluorouracil represents a class of rationally designed anticancer 
agents which act as antimetabolites. The observation that rat hepatomas utilized 
radiolabeled uracil more avidly than normal tissues [ 6 ] implied that the enzymatic 
pathways for utilization of uracil or its close analogs differed between malignant 
and normal cells – a feature which might provide a target for antimetabolite chemo-
therapy. A minimal modifi cation of uracil by introducing a single fl uorine atom 
allowed for implementation of cellular uptake and metabolic activation of  1  via the 
same transport processes and enzymes involved in the case of uracil. However, in 
the case of essential biological targets, remarkable differences are observed due to 
unique properties of the fl uorine atoms, which result in inhibition of the metabolic 
and signal pathways involved. Although all the details of the mechanism by which 
Fluorouracil gives its biological effect are not elucidated, a remarkable progress has 
been made over the past half a century in elucidating its cellular and clinical phar-
macology [ 7 ,  8 ]. 
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  Fig. 1    Distribution of biological activity for fl uorine-containing diazines in MDDR       
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 The key steps in Fluorouracil metabolism are shown in Scheme  1 . Up to 80 % of 
 1  administered as injection is transformed to dihydrofl uorouracil (DHFU,  13 ) by 
dihydropyrimidine dihydrogenase (mostly in liver tissues). However, this metabo-
lite is not involved into antineoplastic activity; instead,  13  itself and its further 
metabolites are responsible for most of the toxic effects of  1 . The main mechanism 
of activation of Fluorouracil is conversion to fl uorouridine monophosphate (FUMP,  14 ), 
either directly by orotate phosphoribosyltransferase, or  via  fl uorouridine (FUR,  15 ) 
through the sequential action of uridine phosphorylase and uridine kinase.  14  is then 
phosphorylated to give fl uorouridine diphosphate (FUDP,  16 ), which can be either 
phosphorylated again to the active metabolite fl uorouridine triphosphate (FUTP, 
 19 ), or reduced to fl uorodeoxyuridine diphosphate (FdUDP,  18 ) by ribonucleotide 
reductase. In turn,  18  can either be dephosphorylated or phosphorylated to generate 
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the active metabolites fl uorodeoxyuridine monophosphate (FdUMP,  19 ) and 
fl uorodeoxyuridine triphosphate (FdUTP,  19 ), respectively.
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  Scheme 1    Metabolism of Fluorouracil (active metabolites are shown in  bold )       

   An alternative activation pathway involves the thymidine phosphorylase catalysed 
conversion of  1  to Floxuridine (FUDR,  4 ), which is then phosphorylated by thymidine 
kinase to give  19 . The metabolite of  1  – Floxuridine – is itself used as an anti-cancer agent 
[ 9 ]. It was launched in 1970 by Hospira Inc [ 5 ]. Upon rapid injection, most of Floxuridine 
is catabolized to Fluorouracil; hence similar effects on the organism are obtained in this 
case. On the contrary, when  4  is slowly administered into the arterial blood, it is mostly 
transformed to  19 ; thus toxic effects are diminished comparing to  1  [ 10 ]. 

 It has long been recognized that one of the main mechanisms underlying Fluorouracil 
action is inhibition of thymidylate synthase by fl uorodeoxyuridine monophosphate 
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( 19 ) [ 11 ]. Thymidylate synthase belongs to a class of enzymes required for DNA 
replication, and its activity is higher in rapidly proliferating cells. In particular, thymi-
dylate synthase is responsible for methylation of deoxyuridine monophosphate (dUMP, 
 21 ) to deoxythymidine monophosphate (dTMP,  22 ) with the use of 5,10-methylenetet-
rahydrofolate ( 23 ) as a cofactor (Scheme  2 ) [ 12 ]. With fl uorodeoxyuridine monophos-
phate, a slowly-reversible ternary complex  24  is formed instead. Inhibition of 
thymidylate synthase leads to deoxyribonucleotide imbalance, and hence to interfer-
ence with DNA synthesis and repair. Alternative mechanism of DNA-directed 
Fluorouracil effect is misincorporation of fl uorodeoxyuridine triphosphate ( 20 ) into 
DNA. Analogously, fl uorouridine triphosphate ( 17 ) is extensively incorporated into 
different RNA species, disrupting their normal processing and function [ 7 ,  8 ,  11 ].
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  Scheme 2    Thymidylate synthase inhibition by fl uorodeoxyuridine monophosphate ( 19 )       

   Two principal approaches were used for the preparation of Fluorouracil (Scheme  3 ). 
One of the fi rst methods [ 13 ,  14 ] commenced from ethyl fl uoroacetate which was 
subjected to Claisen condensation with ethyl formate to give  25 . The salt  25  was 
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introduced into reaction with  S -alkylisothiourea to give fl uoropyrimidines  26 , which 
were hydrolysed to give  1 . Several variations of this method were also described; their 
common drawback was the use of highly toxic fl uoroacetic acid derivatives.
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  Scheme 3    Syntheses of Fluorouracil ( 1 )       

   In an alternative approach, Fluorouracil was prepared by direct fl uorination of 
different pyrimidine derivatives, including uracil [ 15 ], cytosine [ 16 ], and orotic acid 
[ 17 ]. In the latter method, the initially obtained fl uoroorotic acid  27  was subjected 
to decarboxylation. The use of two-step reaction sequence was claimed to be advan-
tageous due to simplifi ed product isolation and purifi cation. 

 Early synthesis of Floxuridine commenced from Fluorouracil ( 1 ) which was 
transformed into its mercury salt  28  and then allowed to react with 2-deoxy-D- 
ribofuranosyl chloride derivative  29  (Scheme  4 ) [ 18 ]. The product  30  was subjected 
to alkaline hydrolysis to give Floxuridine ( 4 ).
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   As in the case of Fluorouracil, newer syntheses of Floxuridine relied on direct 
fl uorination of uracil derivatives. Fluorination of uridine  31  was done using fl uorine 
[ 19 ], acetyl fl uoride [ 20 ], and CF 3 OF [ 21 ]. The latter reagent gave good but still 
moderate yield of the product  4  (47 %). The use of a two-step reaction sequence,  i.e.  
fl uorination of diacetoxy derivative  32  and hydrolysis, improved the yield of  4  to 
82 % over two steps [ 21 ,  22 ].  

3.2     Prodrugs of Fluorouracil 

 Despite Fluorouracil remains the main agent for the treatment of certain cancer 
types ( i.e.  colorectal) [ 23 ], it displays various side effects due to its nonspecifi c 
cytotoxicity, poor distribution to tumor sites, and serious limitations in effectiveness 
due to drug resistance. Apart from modulation of Fluorouracil biological action 
through combination therapies [ 7 ,  24 ], a number of drugs and clinical candidates 
acting as prodrugs of  1  and/or  4  were developed (Table  1 ).

   Table 1    Fluorouracil   /Floxuridine prodrugs [ 3 ,  5 ]   
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 Structure 

 INN or ID, 
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Table 1 (continued)
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   The fi rst example of Fluorouracil prodrug is Tegafur ( 3 ) developed in 1960s in 
Latvia [ 25 ,  26 ]. Tegafur is an oral slow-release prodrug formulation of Fluorouracil 
which is readily absorbed through the gastrointestinal tract. The major pathway of 
metabolic activation of  3  includes hydroxylation by hepatic cytochrome P450 
enzymes, mostly CYP2A6 (Scheme  5 ) [ 27 ].
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  Scheme 5    Metabolic activation of Tegafur ( 3 )       

   Apart from Fluorouracil, 4-hydrohybutyraldehyde and succinic dialdehyde are 
also formed, which are further transformed into γ-butyrolactone and 4- hydrohybutyric 
acid [ 28 ]. Tegafur was shown to be 2–5 times more potent and less toxic than  1 ; 
hence lower doses of  3  can be utilized, resulting in decreased neurotoxicity without 
compromising the antitumor effects. 

 Another prodrug of Fluorouracil – Doxifl uridine ( 5 ), which also implies the 
idea of attachment of sugar-like moiety to the molecule of  1 , was launched in 
Japan in 1987 [ 29 ]. The mechanism of metabolic activation of  5  is rather simple 
and includes hydrolysis to Fluorouracil by thymidine phosphorylase [ 299 ]. Since 
the level of thymidine phosphorylase is signifi cantly higher in several types of 
solid tumours (in particular, colorectal, breast, and kidney cancers) as compared 
with normal tissues, Doxifl uridine possesses a higher therapeutic index for these 
types of cancers. The use of  5  is somewhat limited by gastrointestinal toxicity 
after oral administration due to release of  1  by intestinal pyrimidine nucleoside 
phosphorylase [ 30 ]. 

 Yet another sugar-modifi ed Fluorouracil derivative – OGT 719 ( 33 ), in which 
galactose is incorporated onto the fl uoropyrimidine moiety, was developed by Oxford 
GlycoSciences and had reached Phase I clinical study [ 31 ]. In 1999, the company 
decided to discontinue development of  33  as the results of Phase I/II clinical study 
were not suffi ciently strong to justify large scale Phase II studies. OGT 719 was ratio-
nally designed to reduce the systemic toxicity normally associated with Fluorouracil 
while retaining activity against tumors localized in the liver, in which it may be pref-
erentially localized through the asialoglycoprotein receptors [ 32 ]. These receptors are 
present on the surface of hepatocytes and recognise various sugar-containing biomol-
ecules through terminal galactose and  N -acetylgalactosamine residues. The metabolic 
activation of OGT 719 occurs once the compound enters hepatocytes, where the 
galactose molecule is cleaved from the Fluorouracil residue. 
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 Two derivatives of Floxuridine – TT-62 ( 34 ) and T-506 ( 35 ) have reached Phase 
II clinical trials in Japan [ 3 ]. The compounds showed signifi cant antitumor activity 
by oral administration; moreover, they slowly released Floxuridine, and the effec-
tive level of  4  was prolonged [ 33 ,  34 ]. The gastro-intestinal disturbances and loss of 
body weight were serious side effects of  34  and  35 . 

 Several prodrugs of Flourouracil were obtained by acylation or carbamoylation 
of N-1 and/or N-3 atoms of the pyrimidine ring of  1 . In particular, an oral drug 
Carmofur ( 2 ) which is 1-hexylcarbamoyl derivative of  1  was launched in Japan in 
1981 and later – in other countries [ 35 ]. The carbamate moiety in  2  decomposes 
gradually in neutral water or in basic conditions, but it is strongly resistant to acidic 
hydrolysis and hence can survive acid in the stomach. The 1-hexylcarbamoyl moi-
ety also facilitates the rapid uptake of  2  through the cell membrane [ 36 ]. The meta-
bolic activation of Carmofur involves oxidation and scission of the side-chain with 
slow release of  1  [ 37 ]. Two main routes of the side chain transformation are 
ω-oxidation and (ω–1)-oxidation: metabolites  40 – 43  were detected after adminis-
tration of Carmofur (Fig.  3 ) [ 38 ]. Non-enzymatic hydrolytic decomposition of  2  and 
its metabolites also contributes to release of  1 .

   Another oral prodrug of Fluorouracil, Atofl uding ( 36 ) is a diacyl derivative of  1 . 
Atofl uding has reached Phase III clinical trials in China [ 39 ]. The activation of  36  
includes its fast non-enzymatic hydrolysis to 3- o -toluyl-5-Fluorouracil ( 44 ) following 
oral administration;  44  is then slowly metabolized to  1  (Scheme  6 ) [ 40 ]. Since the acetyl 
group of Atofl uding is not stable and prone to decompose, impairing quality control for 
the preparation, a possibility of direct application of  44  was also considered [ 41 ].
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   An interesting idea was behind design of Emitefur ( 37 ), a prodrug of 
Fluorouracil which was developed by Otsuka Pharmaceutical and has reached 
Phase III clinical trials in Japan [ 3 ,  42 ,  43 ]. The structure of  37  contains the 
fragments of two biologically active components: Fluorouracil ( 1 ) and 3-cyano-
2,6-dihydroxypyridine ( 45 ), which is a potent inhibitor of dihydropyrimidine 
dehydrogenase. Therefore,  37  is a double prodrug which not only delivers 
Fluorouracil but also prevents its enzymatic biotransformation to the dihydropy-
rimidine derivative  12 . Metabolic activation of  37  occurs  via  rapid cleavage of 
the ester bonds by esterase to give  45  and 1- ethoxymethyl-5-fl uorouracil ( 46 ) 
(Scheme  7 ). The intermediate  46  is further metabolized to  1  by microsomal 
enzymes in the liver [ 44 ].
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  Scheme 7    Metabolic activation of Emitefur ( 37 )       

   All the prodrugs of Fluorouracil discussed above contained the fragment of  1  
in their structure; their transformation to  1  included hydrolysis reaction as the 
key step. On the contrary, 5-fl uoro-2-pyrimidinone (5-FP,  38 ) which has been 
studied in Phase I clinical trials [ 45 ] is activated through oxidative process. In 
particular, pyrimidine  38  is transformed to  1  by aldehyde oxidase, which is 
present in high concentrations in the human livers but not in the gastrointestinal 
tract [ 46 ]. 

 Two prodrugs of  1 , Capecitabine ( 6 ) and Galocitabine ( 39 ), are 5-fl uorocyti-
dine derivatives. Both the compounds were developed by Hoffman La Roche; 
whereas Capecitabine was launched in 1998, Galocitabine was terminated at 
Phase II clinical trials [ 47 ]. Both the compounds are close analogues as well as 
prodrugs of Doxifl uridine ( 5 ), which was used as the lead compound in their 
design. The main goals of such design were to minimize the mielotoxicity and to 
increase the tumor selectivity of  5 . In fact, Capecitabine ( 6 ) indeed demonstrated 
minimal mielotoxicity in clinical studies. Although the therapeutic indices of  39  
were much higher in mice tumor models than in the case of  5 , it was not effi ciently 
metabolised to the active species in humans. The metabolic activation of  6  and  39  
includes their hydrolysis by carboxylesterase or acylamidase in liver to give 
5′-deoxy-5-fl uorocytidine ( 47 ), which is then transformed to  5  by cytidine deami-
nase (Scheme  8 ) [ 48 ].
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   Syntheses of Fluorouracil prodrugs relied on either chemical modifi cation of  1  or 
direct fl uorination of the corresponding pyrimidine derivatives. In particular, 
Tegafur ( 3 ) was obtained from  1  by reaction with 2,3-dihydrofuran [ 49 – 54 ], 
2-chloro- [ 55 ,  56 ], 2-alkoxy- [ 57 ], 2-acetoxytetrahydrofuran [ 58 ,  59 ,  300 ], and 4- tri -
methylsilyloxybutyraldehyde dimethyl acetal ( 48 ) (Scheme  9 ) [ 60 ]. Alternatively,  3  
was prepared via fl uorination of compound  49  [ 61 ] or ester  50  [ 62 ].
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  Scheme 9    Syntheses of Tegafur ( 3 )       

   One of the early syntheses of Doxifl uridine ( 5 ) [ 63 ,  64 ] commenced from Floxuridine 
( 4 ) which reacted with thionyl chloride to give cyclic sulphite  51  (Scheme  10 ). 
Methanolysis of  51  upon treatment with sodium methylate gave  52 , which was reduced 
with tributyltin to give  5 . In an analogous approach, the compound  5  was prepared via 
iodide  53 , in turn obtained from  4  in two steps (Scheme  11 ) [ 65 ]. It should be noted that 
direct transformation of  4  into the corresponding iodide was done with low yield of the 
product, hence the protection strategy was necessary to use. Bromide  54  was a key 
intermediate in one more analogous scheme [ 66 ].
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    Several syntheses of Doxifl uridine relied on glycosylation of Fluorouracil 
derivative  55 . In particular, 5′-deoxyrybose derivatives  56 ,  57 , and  58  were used 
for that purpose (Scheme  11 ) [ 67 ,  68 ]. Finally, direct fl uorination of 5′-deoxyuridine 
derivatives with F 2 /N 2  [ 69 ] or AcOF [ 70 ] was also described. 

 Syntheses of OGT 719 ( 33 ) relied on glycosylation of the compound  55  (Scheme  12 ). 
Reaction of  55  with bromide  59  [ 71 ,  72 ] or acetate  60  [ 73 ] gave tetraacetyl derivative 
 61 , which was transformed to  33  upon deprotection. With  60  as the glycosylating 
reagent,  in situ  generation of  55  from Fluorouracil was also described [ 74 ].
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   TT-62 ( 34 ) was prepared as a free acid ( 62 ) from  63  which reacted with tosyl-
chloride and tetradecylphosphate to give the corresponding phosphodiester, which 
upon deprotection gave  34  (Scheme  13 ) [ 75 ].

   Synthesis of T-506 ( 35 ) commenced from Fluorouracil derivative  64  (Scheme  14 ) 
[ 76 ]. Compound  64  reacted with 2-bromoethyl phosphorodichloridate to give bro-
mide  65 . Compound  65  was transformed to  35  upon reaction with trimethylamine.
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   Synthesis of Carmofur ( 2 ) and Atofl uding ( 36 ) was performed in obvious and 
straightforward manner. Carmofur ( 2 ) was prepared by reaction of Fluorouracil ( 1 ) 
and  n -hexylisocyanate (Scheme  15 ) [ 77 ,  78 ]. Alternative approach included reac-
tion of  1  with phosgene and then – with  n -hexylamine.
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   Synthesis of Atofl uding ( 36 ) relied on a stepwise double acylation of Fluorouracil 
with acetic anhydride and then – with  o -toluoyl chloride (Scheme  16 ) [ 79 ].
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   Emitefur ( 37 ) was obtained by stepwise reaction of building blocks  46 ,  67 , and 
 66  in the presence of triethylamine (Scheme  17 ) [ 80 – 82 ]. Compound  66  was pre-
pared by benzoylation of 3-cyano-2,6-dihydroxypyridine ( 45 ), whereas  46  – by eth-
oxymethylation of the silyl derivative  55 .
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   Early syntheses of 5-fl uoro-2-pyrimidinone ( 38 ) relied on desulfurization of 
Fluorouracil thio-derivatives. In particular, reaction of pyrimidine derivatives  68  
with P 2 S 5  followed by treatment with Raney nickel and gave alkoxy derivative  69 , 
which was transformed to  38  upon acidic hydrolysis (Scheme  18 ) [ 83 ]. A more 
straightforward transformation sequence was also described; including reaction of 
Fluorouracil ( 1 ) with P 2 S 5  and reduction of thione  70  with Raney nickel [ 84 ,  85 ]. 
Alternatively, the thione  70  was alkylated to give derivative  71 , which was either 
oxidated and then hydrolyzed [ 86 ] or subjected to reaction with hydrazine and then 
– silver oxide [ 301 ]; in both cases,  38  was obtained. A completely different syn-
thetic scheme commenced from fl uoroacetic acid which was subjected to Vilsmeier-
type formylation to give 2-fl uoro-3-dimethylamino-acrolein ( 72 ) [ 87 ]. Reaction of 
 72  with triethyloxonium tetrafl uoroborate and dimethylamine gave the salt  73 , 
which led to  38  upon reaction with urea. Finally,  38  was also obtained by direct 
fl uorination of 2-pyrimidinone [ 88 ,  89 ].

   Syntheses of Capecitabine ( 6 ) started from 5-fl uorocytosine ( 9 ) (see further sec-
tions for the preparation of  9 , which is used as antifungal drug). In particular, com-
pound  70  reacted with 1,2,3-tri- O -acetyl-5-deoxy-β- D -ribofuranose ( 58 ) to give 
diacetyl derivative  72 , which was acylated with  n -pentylchloroformate and then 
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hydrolyzed, resulting in the formation of  6  (Scheme  19 ) [ 90 – 95 ]. Variations of this 
method using a silyl derivative of  70  instead of  70  itself [ 68 ,  96 ], as well as 
1- O -acetyl-2,3-O-isopropylidene-5-deoxy- D -ribofuranose ( 73 ) (Scheme  20 ) [ 96 ] or 
1,2,3-tri- O -methoxycarbonyl-5-deoxy- D -ribofuranose [ 97 ] as the sugar sources 
were also reported. Syntheses of Galocitabine ( 39 ) were performed analogously to 
that of Capecitabine, 3,4,5-trimethoxybenzoyl chloride being used instead of  n - 
pentylchloroformate  at the corresponding steps [ 68 ,  89 ,  90 ,  98 ].
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3.3         Other Antimetabolites 

 Apart from Floxuridine, Fluorouracil and its pro-drugs, there are two additional 
examples of anti-cancer agents which also act as antimetabolites and have reached 
clinical development phase,  i.e.  both Trifl uridine ( 7 ) (as a component of TAS-102) 
and FTC-092 ( 74 ) (Fig.  4 ) were developed by Taiho Pharmaceutical. These 
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compounds are derivatives of α,α,α-trifl uorothymine and are thus structurally 
related to Fluorouracil. Trifl uridine was approved by FDA as an ophthalmic drug 
against herpes virus in 1995 (see also further sections) [ 5 ]; it is now being investi-
gated in Phase III clinical trials as a component of anti-cancer drug TAS-102 (which 
is a combination of  7  and Tipiracil ( 75 )) [ 99 ] FTC-092 was evaluated for antitumor 
activity in Phase I clinical trials [ 3 ].

   The active principle of both TAS-102 and FTC-092 with anti-cancer effect is 
Trifl uridine ( 7 ). As in the case of Fluorouracil, one of the mechanisms by which 
compound  7  exhibits its antitumor activity is inhibition of thymidylate synthase 
[ 100 ]. More precisely, Trifl uridine is transformed into α,α,α-trifl uorothymidine 
monophosphate ( 76 ) by thymidine kinase (Scheme  21 ); similarly to the Fluorouracil 
derivatives discussed in the previous sections, compound  76  is true inhibitor of thy-
midylate synthase. However, compound  7  exhibits an anticancer effect on colorectal 
cancer cells that have acquired Fluorouracil resistance as a result of the overexpres-
sion of thymidylate synthase.
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   Therefore, an alternative mechanism of action is also in operation, namely, 
incorporation of α,α,α-trifl uorothymidine triphosphate ( 77 ) into DNA, which 
results in single-strand breaks, followed by double-strand breaks when the cells 
progress to a subsequent DNA replication phase [ 101 ] The major drawback of 
Trifl uridine ( 7 ) is its high susceptibility to biodegradation, which is catalysed by 
thymidine phosphorylase and gives α,α,α-trifl uorothymine ( 78 ) and 2-deoxy-α- D -
ribose 1- phosphate ( 79 ) [ 102 ]. In the case of TAS-102, this issue is overcome by 
co-administration of thymidine phosphorylase inhibitor Tipiracil ( 75 ) [ 103 ], 
whereas improved biological effect of FTC-092 upon oral administration is 
achieved by its gradual biotransformation, mainly through the action of liver 
microsomes, releasing  7  over a long period [ 104 ]. 

 The fi rst synthesis of Trifl uridine commenced from trifl uoromethylacrylonitrile 
( 80 ) which reacted with HBr and then with urea to give amide  81  in moderate yield. 
Hydrolysis of  81  was accompanied by cyclization and led to dihydropyrimidine  82  
(Scheme  22 ). Two-step aromatization of  81  gave α,α,α-trifl uorothymine ( 78 ). 
Compound  78  was transformed to  7  in low yield (8 %) by enzymatic glycosylation 
[ 105 ]. The yield of the last step in this sequence was signifi cantly improved when 
 78  was preliminarily transformed to bis-silyl derivative  83 , and chloride  84  was 
used for glycosylation [ 106 ,  107 ].
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   An alternative approach to  7  was based on direct trifl uoromethylation of the cor-
responding deoxyuridine derivatives  32  or  84 , using CF 3 COOH–XeF 2  [ 108 ] and 
CF 3 I–Cu–HMPA [ 109 ] as the reagents, respectively (Scheme  23 ).
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   FTC-092 ( 74 ) was prepared by regioselective benzylation of Trifl uridine ( 7 ) 
(Scheme  24 ) [ 110 ]. As in the case of  7 , direct trifl uoromethylation was also used for 
synthesis of  74 . The following sequence was established as the most practical: trity-
lation of 2′-deoxy-5-iodouridine ( 85 ), 3′- O -benzylation,  N  3 -benzoylation, cross- 
coupling reaction with CF 3 Cu reagent, and acidic deprotection (Scheme  25 ) [ 111 ]. 
Alternatively,  74  was prepared in low yield by glycosylation of α,α,α-trifl uorothymine 
using the bis-silyl derivative  83  (Scheme  26 ) [ 112 ].
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3.4          Kinase Inhibitors 

 An approach to cancer treatment which relies on using fl uorinated uracil analogues 
as antimetabolites is the most recognised in the fi eld of fl uorinated diazines relevant 
to medicinal chemistry. However, other strategies are also gaining momentum; in 
particular, several compounds which act as kinase inhibitors ( i.e.   87 – 92 ) have 
reached clinical development phase (Table  2 ).

   Compound LY-2835219 ( 87 ) is currently being developed by Eli Lilly and Co.; 
monomesylate salt of  87  has entered Phase I clinical trials in patients with advanced 
cancer in 2011 [ 113 ]. It acts as a potent oral inhibitor of the cyclin-dependent 
kinases 4 and 6 (CDK4/6), playing a key role in regulating cellular proliferation 
[ 114 ]. In particular, these cyclin D-dependent kinases facilitate progression of gap 
1 cell cycle phase (G 1 ) by phosphorylating retinoblastoma susceptibility protein 
(Rb), which prevents association of Rb with E2F transcription factor, and thus 
relieves transcriptional repression by the Rb-E2F complex. In addition, these 
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kinases also sequester CDK interacting and kinase inhibitory proteins (Cip/Kip) 
from their complexes with cyclin-dependent kinase 2 (CDK2), facilitating activa-
tion of CDK2 with cyclin E [ 115 ] Monomesylate salt of  87  inhibits CDK4 and 
CDK6 with IC50 values of 2 and 10 nM, respectively; moreover, it is able to cross 
blood-brain barrier and therefore has the potential for the treatment of brain tumors 
and metastases [ 114 ]. 

 Fostamatinib disodium (Tamatinib fosdium,  88 ), which is prodrug of Tamatinib 
( 92 ) (Scheme  27 ), was discovered by Rigel; it is currently studied in Phase II clini-
cal trials by Rigel and Astra Zeneca Plc. for treatment of B-cell lymphoma [ 113 ]. 
Apart from that, compound  88  is also investigated as agent for treatment of autoimmune 
thrombocytopenia and rheumatoid arthritis. Because of its poor pharmaceutical 
properties, Tamatinib ( 92 ) is orally administered as the methylene phosphate 

   Table 2    Fluorinated diazines as kinase inhibitors in clinical development phase [ 113 ]   
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prodrug  88 . Fostamatinib disodium ( 88 ) is quickly cleaved to  92  by alkaline 
phosphatases that are present on the apical brush-border membranes of the intesti-
nal enterocytes, after which the more hydrophobic  92  can be readily absorbed [ 116 ].
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  Scheme 27    Metabolic activation of Fostamatinib disodium ( 88 )       

   Tamatinib ( 92 ) acts as an ATP-competitive inhibitor of Spleen tyrosine kinase 
(Syk) – a non-receptor tyrosine kinase which is a key component of the B-cell 
receptor (BCR) signaling pathway [ 117 ]. It is shown that BCR-mediated signaling 
through Syk occurs to a greater degree and for a longer duration in neoplastic cells 
than in nonmalignant B-cells. Inhibition of the Syk pathway prevents chronic lym-
phocytic leukemia (CLL) cells from interacting with the microenvironment, and 
promotes proapoptotic signals. 

 R-763 ( 89 ), also known as AS-703569, is another kinase inhibitor discovered by 
Rigel. It was investigated in Phase I clinical trials for several types of tumors by 
Rigel and Merck Serono; the latest study was terminated in 2012, concerning a 
review of the available clinical data and low probability of completing the trial 
based on the observed recruitment rate [ 113 ]. Compound  89  inhibits Aurora kinases 
–serine/threonine kinases which are essential for cell proliferation, mainly due to 
regulation of gap 2 and mitotic cell cycle phases (G 2 /M). Over-expression of Aurora 
kinases is found in several human cancers and correlated with histological malig-
nancy and clinical outcomes. Although the biological functions of two types of 
Aurora kinases (A and B) are different, in both cases their inhibition induces apop-
tosis of the cell, leading to similar phenotypes. Some other kinases are also inhibited 
by  89 , in particular Fms-like tyrosine kinase 3 (FLT3) [ 118 ]. 

 One more Aurora kinase inhibitor – PF-03814735 ( 90 ) – was developed by Pfi zer; 
it has been investigated in Phase I clinical trials for treatment of solid tumors (the study 
completed in 2012) [ 113 ]. PF-03814735 was generally well tolerated with manageable 
toxicities, and a recommended phase II dose could be established; however, clinical or 
metabolic antitumour activity was limited [ 119 ]. Similarly to R-763 ( 89 ), compound 
 90  inhibits both Aurora A and B kinases; other kinases are affected to a lesser extent 
[ 120 ]. Therefore, PF-03814735 ( 90 ) produces a block in cytokinesis, resulting in inhi-
bition of cell proliferation and the formation of polyploid multinucleated cells. 

 AZD-1480 ( 91 ) was developed by AstraZeneca and studied in Phase I clinical 
trials for treatment of advanced solid malignancies (the study terminated in 2012) 
[ 113 ]. AZD-1480 is an ATP-competitive inhibitor of Janus kinase 2 (JAK2) – an 
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intracellular non-receptor tyrosine kinase that transduce cytokine-mediated signals 
via the Janus kinase – signal transducer and activator of transcription (JAK–STAT) 
signaling pathway. In particular, inhibition of JAK2 blocks Stat3 signaling, associ-
ated with chronic cytokine stimulation in some tumors [ 121 ]. X-Ray diffraction 
study of complex formed by  91  and JAK2 shows that the donor-acceptor-donor 
hydrogen-bonding motif provided by aminopyrazole fragment forms three hydro-
gen bonds with an adenine binding pocket, whereas the fl uoropyrimidine ring occu-
pies a nearby hydrophobic pocket [ 122 ]. 

 Synthesis of LY-2835219 ( 87 ) relied on selective functionalization of 
2,4-dichloro-5-fl uoropyrimidine ( 93 ), which can be easily obtained from 
Fluorouracil ( 1 ) (Scheme  28 ) [ 123 ]. First, boronic ester  94  was prepared from ani-
line  95  in three steps, including benzimidazole ring construction and palladium- 
catalyzed coupling with pinacol diborane. Suzuki-type reaction of  93  and  94  
resulted in selective functionalization at C-4 of the pyrimidine ring and gave chlo-
ride  96 . Buchwald-Hartwig coupling of  96  with amine  97  (prepared in two steps 
from 1-ethylpiperazine ( 98 ) and ( 99 )) gave the fi nal product  87 .
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   Analogously, selective functionalization of  93  was used for the preparation of 
Fostamatinib disodium ( 88 ) (Scheme  29 ). In particular, reaction of  93  with equimo-
lar amount of amine  100  and then – with 3,4,5-trimethoxyaniline ( 101 ) gave 
Tamatinib ( 92 ) [ 124 ]. It should be noted that no detailed procedures of performing 
these transformations were given in the initial patent; moreover, synthesis of the 
starting compound (amine  100 ) is not documented to date. To obtain Fostamatinib 
disodium ( 88 ), compound  92  was treated with chloride  102  and Cs 2 CO 3 ; further 
deprotection subsequent and salt formation gave the target product  88  [ 125 ].
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  Scheme 29    Synthesis of Fostamatinib disodium ( 88 )       

   Similar approach was used for the synthesis of R-763 ( 89 ) (Scheme  30 ) [ 126 ]. In 
this case, lactam  102 , which was obtained from norbornadiene ( 103 ) and Graf 
isocyanate (ClSO 2 NCO), was protected with Boc 2 O and then subjected to ring-
opening with aqueous ammonia to give amide  104 . Deprotection of  104  followed 
by arylation with  93  gave an intermediate  105 , which was then treated with 
 N -arylpiperazine derivative  106  (prepared in two steps from 4-fl uoro-3-methylnitro-
benzene ( 107 )) to give racemic  89 . Optically pure  89  was obtained either by chiral 
stationary phase HPLC applied at different steps of the synthesis, or  via  enzymatic 
resolution of Boc- protected lactam  102 .
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   It is not surprising that synthesis of PF-03814735 ( 90 ) also followed analogous 
strategy, 2,4-dichloro-5-trifl uoromethylpyrimidine ( 111 ) being used as a key fl uori-
nated diazine building block instead of  93  (Scheme  31 ) [ 302 ]. The synthetic scheme 
commenced from amine  108  which was  N -trifl uoroacetylated, then nitrated, and 
subjected to a change of the protecting group to give Boc derivative  109 . Two alter-
native pathways were developed for further transformations. In the fi rst one, com-
pound  109  was reduced into fused aniline derivative  110  which reacted with  111  to 
give compound  112 . Deprotection of  112  followed by coupling with  N -acetylglycine 
led to the formation of chloride  113 .

   Alternatively, compound  109  was deprotected, coupled with  N -acetylglycine, 
reduced catalytically and then arylated with  111  to give  113 . Finally, compound  113  
reacted with cyclobutyl amine to give the fi nal product  90  as racemate. Both enan-
tiomers of  90  were also obtained using this scheme if Boc derivative  109  was sub-
jected to chiral stationary phase HPLC prior further transformations. 

 Although a similar strategy was used for the preparation AZD-1480 ( 91 ), in 
this case the fl uorinated diazine moiety is not in a central part of the molecule; 
hence a different approach was used for the construction of the fl uorinated 
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pyrimidine fragment. As in the previous syntheses discussed in this section,  91  
was obtained by selective functionalization of 5-substited 2,4-dichloropyrimidine 
derivative ( i.e.   114 ), fi rst by reaction with aminopyrazole  115  and then – with 
chiral amine  116  (Scheme  32 ) [ 122 ,  127 ]. For the preparation of enantiopure  116 , 
two approaches were developed, both starting from nitrile  117 , in turn prepared 
from 2-chloro-5- fl uoropyrimidine ( 118 ) [ 127 ]. In the fi rst method, compound  117  
was reduced with DIBAL into aldehyde  119 , which reacted with Ellman’s sulfi n-
amide  120  to give imine  121 . Reaction of  121  with MeMgBr and subsequent 
deprotection led to the formation of  116 . Alternatively,  117  was treated with 
MeMgBr and then – Ac 2 O to give enamine derivative  122 , which was subjected to 
enantioselective rhodium- catalyzed hydrogenation with ( S , S )-Et-DuPhos as a chiral 
ligand. The resulting chiral amide  123  was obtained with more than 99 %  ee . 
After a change of the protecting group, Boc derivative  124  was deprotected to give 
the target amine hydrochloride  116 .
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4         Antiviral, Antibacterial and Antifungal Agents 

4.1     Anti-HIV Agents 

 The fi ght against HIV infection is another important fi eld where fl uorinated diazines 
have remarkable record, including approved drug Emricitabine ( 8 ) and 7 compounds 
that have reached clinical development phase (compounds  125 – 131 ) (Table  3 ). All 
these compounds act as HIV reverse transcriptase inhibitors and fall into two cate-
gories: fl uorocytidine analogues ( 8  and  125–127 ) and trifl uoromethyl- substituted 
quinazolone derivatives ( 128 – 131 ).

   Table 3    Anti-HIV drugs – derivatives of fl uorinated diazines [ 5 ,  113 ]   

 Structure  INN or ID, development phase  Company 

  

N
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O

S

O

F
NH2

HO

8     

 Emtricitabine  Emory University, 
Gilead Sciences  Launched (2003) 
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 Racivir  Pharmasset 

 Phase II 
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126     

 Elvucitabine  Yale University, 
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 Phase II 

  

N

N

O

O

F
NH2

HO

127     

 Dexelvucitabine  Emory University, 
Incyte Co.  Phase II 

(continued)
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 Structure  INN or ID, development phase  Company 
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131     
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 Phase I 

Table 3 (continued)

   Emtricitabine ( 8 ) was discovered in Emory University (Atlanta, USA); develop-
ment of the drug was completed by Gilead Sciences, and the compound was 
approved by FDA under trade name Emtriva ®  in 2003. It is also marketed in combi-
nations with other anti-HIV agents,  i.e.  Tenofovir ( 132 , used as a prodrug) 
(Truvada ® ), Efavirenz ( 133 ) and Tenofovir (Atripla ® ), Rilpivirine ( 134 ) and 
Tenofovir (Complera ® ), and Elvitegravir ( 135 ), Cobicistat ( 136 ), and Tenofovir 
(Stribild ® ) [ 5 ] Emricitabine is a close analogue of Lamivudine ( 137 ), which is an 
example of nucleoside analogs – an important class of reverse transcriptase inhibi-
tors, which has gained much attention since the initial success of the fi rst represen-
tative, Zidovudine ( 138 ) [ 128 ] (Fig.  5 ).

   Emtricitabine ( 8 ) was discovered in Emory University (Atlanta, USA); develop-
ment of the drug was completed by Gilead Sciences, and the compound was 
approved by FDA under trade name Emtriva ®  in 2003. It is also marketed in 
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combinations with other anti-HIV agents,  i.e.  Tenofovir ( 132 , used as a prodrug) 
(Truvada ® ), Efavirenz ( 133 ) and Tenofovir (Atripla ® ), Rilpivirine ( 134 ) and 
Tenofovir (Complera ® ), and Elvitegravir ( 135 ), Cobicistat ( 136 ), and Tenofovir 
(Stribild ® ) [ 5 ] Emricitabine is a close analogue of Lamivudine ( 137 ), which is an 
example of nucleoside analogs – an important class of reverse transcriptase inhibitors, 
which has gained much attention since the initial success of the fi rst representative, 
Zidovudine ( 138 ) [ 128 ]. 

 Emtricitabine ( 8 ) is very similar to Lamivudine ( 137 ) with respect to its activity, 
convenience, safety and resistance profi le; the only remarkable difference is longer 
intracellular half-life of  8 . Analogously to  137 , the biologically active form of  8  is 
triphosphate  139 , which is formed by a stepwise phosphorylation of  8  (Scheme  33 ). 
Compound  139  can be considered as 2,3-dideoxycytidine trifosphate analogue and 
acts as a competitive inhibitor and alternate substrate of the normal deoxycytidine 
triphosphate ( 140 ). As a competitive inhibitor of the normal substrate,  139  inhibits 
incorporation of  140  into the growing DNA chain by viral reverse transcriptase; as 
an alternate substrate, it is incorporated into this chain (as  141 ) and acts as a chain 
terminator (since  141  is missing the 3′-hydroxyl group required for further chain 
elongation) [ 128 ,  129 ].
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  Fig. 5    Some active ingredients of anti-HIV drugs       
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   Although Emtricitabine might have the potential for toxicity caused by interaction 
with human mitochondrial DNA enzymes, both  in vitro  and  in vivo  testing results 
show that this is not a serious issue. Low toxicity of  8  as compared to other nucleoside 
reverse transcriptase inhibitors is a remarkable advantage of this drug. As with all 
representatives of this class, the major drawback of  8  is rapid development of drug 
resistance by a single point mutation of viral reverse transcriptase [ 129 ]. The main 
route of elimination of  8  is renal excretion, mostly unchanged (86 % of the dose). 
The metabolic transformations of Emtricitabine include oxidation of the sulphur 
atom to form the 3′-sulfoxide diastereomers (9 %) and conjugation with glucuronic 
acid to give 2′- O -glucuronide (4 %) [ 130 ]. 

 A racemic form of Emtricitabine, Racivir, was also studied in clinics by 
Pharmasset and has reached Phase II trials [ 113 ], designed to measure its effi cacy in 
patients harbouring virus resistant to Lamivudine. It was shown that  D (+)-
enantiomer  125  is less potent and more toxic than Emtricitabine itself. One of the 
reasons behind lower potency of  125  is that  8  is phosphorylated by deoxycitidine 
kinase to a greater extent; therefore, the active form ( 139 ) is formed more readily for 
(–)-enantiomer [ 131 ,  132 ]. 

 Elvucitabine ( 126 ) and its enantiomer Dexelvucitabine ( 127 ) were discovered in 
Yale University (New Haven, USA) and Emory University (Atlanta, USA), respec-
tively. Both compounds were further developed by commercial companies 
(Achillion Pharmaceuticals and Incyte Co., respectively), and have reached Phase II 
clinical trials [ 113 ]. Development of  127  was terminated due to inability to pair with 
other cytidine analogues and higher risk of hyperlipasemia. Phase II studies of  126  
were suspended because of bone marrow suppression in several patients [ 133 ]. The 
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  Scheme 33    Metabolic activation of Emtricitabine ( 8 )       
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mode of action of Elvucitabine is quite similar to that of Emtricitabine; the major 
advantages of  126  include long plasma half-life (up to ten times greater than that of 
 8 ) and superior potency against common resistance mutations [ 134 ]. 

 Four compounds DPC-961 ( 128 ), DPC-961 ( 129 ), DPC-083 ( 130 ), and DPC- 082 
( 131 ) were developed by DuPont Pharmaceuticals as non-nucleoside reverse tran-
scriptase inhibitors. Al the compounds have reached Phase I clinical trials; DPC-083 
( 130 ) was further progressed into Phase II trials by Bristol-Myers Squibb after the 
company had acquired DuPont Pharmaceuticals; however, the development was 
stopped in 2003 due to poor pharmacokinetics [ 135 ]. The compounds are close ana-
logues of Efavirenz ( 133 ) – a non-nucleoside reverse transcriptase inhibitor approved 
by FDA in 1998 [ 5 ]. All the compounds  128 – 131  showed similar to Efavirenz activity 
towards wild-type virus  in vitro ; however, they were more effective towards single-
mutation variants and showed lower plasma serum protein binding [ 136 ,  137 ]. 

 It might be assumed that mechanism of action of  128 – 131  is similar to that of 
Efavirenz, which is known to bind within the non-nucleoside inhibitor binding 
pocket of reverse transcriptase [ 138 ], both spatially and also functionally associated 
with the substrate-binding site. 

 Metabolism of DPC-961 ( 128 ) was studied in rats. Analogously to Efavirenz, the 
main metabolite is glucuronide conjugate  142  (more than 90 % of excreted dose in 
the bile) (Scheme  34 ). However, a glutatione conjugate  143  was also isolated, which 
is presumably formed via oxirene intermediate  144 ; in this view, metabolism of  128  
was different from that of  133  [ 139 ].
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   Early synthesis of Emtricitabine ( 8 ) commenced from  L -gulose ( 145 ) 
(Scheme  35 ) [ 140 ]. Selective tosylation of  145  followed by acetylation gave 
 146 . Treatment of  146  with HBr in AcOH yielded the bromo derivative  147 , 
which was refl uxed with  O -ethylxanthate and then deacetylated using NH 4 OH 
in MeOH to obtain the 1,6-thioanhydro-L-gulopyranose ( 148 ). Selective oxida-
tive cleavage of vicinal  cis  diol in  148  by NaIO 4  and reduction with NaBH 4 , 
followed by protection of the resulting diol as the acetonide yielded the 1,3-oxa-
thiolane derivative  149 . Silyl protection of the hydroxyl group followed by 
deprotection of the isopropylidene moiety afforded derivative  150 . Oxidative 
cleavage of vicinal diol  150  by Pb(OAc) 4  followed by pyridinium dichromate (PDC) 
oxidation gave the acid  151 . Treatment of  151  with Pb(OAc) 4  – pyridine in 
anhydrous THF afforded acetate  152 . Reaction of  152  with fl uorocytosine derivative 
 153 , separation of anomers and subsequent deprotection gave  8 . The same 
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approach starting from D-mannose or D-galactose was used for the preparation 
of D-enantiomer  125  [ 141 ].

   Most of the methods describing the preparation of Emtricitabine (and Racivir) 
rely on the construction of 1,3-oxathiolane ring by reaction of glycolaldehyde or 
glyoxalic acid derivatives with mercaptoacetic acid or mercaptoacetic aldehyde 
(which exists as 1,4-ditiane  154 ). For example, one of the fi rst of syntheses of this 
type commenced from allyl alcohol which was silylated and then subjected to ozon-
olysis to give glycolaldehyde derivative  155  (Scheme  36 ) [ 142 ]. Reaction of  155  
with mercaptoacetic acid afforded 1,3-oxathiolane  156 , which was reduced with 
LiAlH(O t Bu) 3  or DIBAL and then acetylated to form  157 . Finally, reaction of  157  
with silylated fl uorocytosine derivative  158  followed by deprotection led to the 
formation of racemic  8  (Racivir).
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  Scheme 36    Synthesis of racemic  8  (Racivir) patented by Emory University (Relative confi gura-
tions are shown)       

   More than 15 preparations described in patents are variations of the above 
synthetic scheme. In particular, to obtain optically pure Emtricitabine, lipase-catalyzed 
enzymatic resolution, as well as chiral stationary phase HPLC was used [ 143 ]. 
However, the most effective procedure included separation of menthyl derivatives. 
This method evolved signifi cantly since the fi rst publication (which in fact relied on 
separation of all the 4 possible diastereomers) [ 144 ]; one of the recent multigram 
preparations is shown in the Scheme  37  [ 145 ]. The fi rst step of the synthesis included 
formation of methyl ester  159  from glyoxalic acid and  L -menthol. Reaction of  159  
with 1,4-ditiane  154  gave 1,3-oxathiolane  160  as a mixture of  cis  diastereomers. 
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Compound  160  was transformed to chloride  161  by treatment with thionyl chloride 
and methanesulfonic acid. Reaction of  161  and  158  led to the formation of  162 , 
which was separated as a single diastereomer by transformation to oxalate and 
subsequent crystallization. Finally, reduction of  162  with NaBH 4  gave Emtricitabine 
( 8 ) which was isolated as hydrochloride.

   An interesting variation of the method was patented by Glaxo Wellcome Inc 
[ 146 ]. Their synthesis was started from 2,4-dichloro-5-fl uoropyrimidine ( 93 ) 
(Scheme  38 ). Reaction of  93  with NaOEt and then – with anion of 
2,2- dimethoxyethanol gave pyrimidine derivative  163 , which upon detection 
formed aldehyde  164 . Reaction of  164  and  154  led to the formation of 1,3-oxa-
thiolane  165 , which was acetylated to give  166 . Treatment of  166  with TMSOTf 
resulted in rearrangement leading to  167 , which was transformed to racemic  8  
(Racivir) by reaction with ammonia.

   A number of methods for the preparation of Elvucitabine ( 126 ) were reported in 
the literature. In the fi rst synthetic scheme developed in Yale University [ 147 ], 
2′-deoxy-5-fl uoro-β-L-uridine ( 168 ), which is enantiomer of Floxuridine ( 4 ), was 
used as the key intermediate (Scheme  39 ). Compound  168  can be prepared in 
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rations are shown)       

several steps from  L -arabinose. Mesylation of  168  followed by alkaline cyclization 
led to the formation of oxetane  169 , which was transformed to cytidine derivative 
 170 . Compound  170  was rearranged to  126  by treatment with  t -BuOK in DMSO.

   Synthesis of Elvucitabine ( 126 ) developed by chemists from Vion Pharmaceuticals 
commenced from lactone  171  (Scheme  40 ), which can be obtained in 4 steps from 
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D-glutamic acid [ 148 ]. Phenylselenation of enolate generated from  171  proceeded 
highly diastereoselectively and led to  172 .

   Phenylselenide  172  was reduced with DIBAL and then acetylated to give 
acetate  173  as a mixture of anomers. Reaction of  173  with  158  was also 

diastereoselective due to the steric effect of bulky phenylselenyl substituent and 
gave β anomer  174  in almost quantitative yield. Oxidative elimination of the 
selenide substituent from  174  and subsequent deprotection gave Elvucitabine 
( 126 ) as a single enantiomer. An analogous synthesis was described by chemists 
from Emory University [ 149 ]. 

 Syntheses of Dexelvucitabine ( 127 ) [ 150 ] and later – Elvucitabine ( 126 ) 
[ 151 ] were described, starting from D- and L-xylose, respectively, both using 
almost the same methodology. In particular, D-xylose was transformed into the 
dibenzoyl derivative  181  using standard manipulations (Scheme  41 ). Under 
modifi ed Appel conditions (I 2 /PPh 3 /imidazole),  181  gave unstable glycal  182 , 
which reacted with fl uorocytosine derivative  158  and  N -iodosuccinimide to 
yield  183 . Compound  183  was subjected to reductive elimination and deprotec-
tion to give  127 .

   Preparation of Dexelvucitabine ( 127 ) on a kilogram scale starting from 
5- fl uorocytidine ( 184 ) was developed by chemists from Pharmasset (Scheme  42 ) 
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[ 152 ]. Compound  184  was subjected to bromoacylation with excess of 2-acetoxy- 2-
methylpropionyl bromide ( 185 ) to give a mixture of esters  186  and  187 . This mixture 
was subjected to reductive elimination to give  188 , which was transformed to  127  
upon alcoholysis.

   Another synthesis of  127  relied on palladium mediated Ferrier rearrangement- 
type glycosidation of a furanoid glycal (Scheme  43 ) [ 153 ]. The initial steps of 

N

N

O

O

F

NH2OH

127

N

N

TMSO

F

NHTMS

158

O
HO

HO O

O

O
HO

HO OH

OH
1. Me2C(OMe)2,
    cat. H2SO4

2. 0.2% aq HCl

1. PhC(O)Cl, py

2. aq H2SO4

O
PhCOO

PhCOO OH

OH

181
I2, PPh3
imidazole

O
PhCOO

PhCOO
182

N

O

O

I

N

N

O

O

F

NH2PhCOO

IPhCOO 183

Zn
cat. AcOH

N

N

O

O

F

NH2PhCOO BuNH2

50%

51%

95%

60% from 181

90%

  Scheme 41    Synthesis of Dexelvucitabine ( 127 )       

N

N

O

O

F
NH2

HO 127

N

N

O

O

F
NH2

HO

OH

OH
184

AcO
O

Br

185

N

N

O

O

F

NH2O

BrAcO

O

OAc

186

+
N

N

O

O

F

NH2O

OAcBr

O

OAc

187

Zn/Cu

N

N

O

O

F
NH2

O

OOAc

188

NaOMe

91%

67%

86%

(186 : 187 = 12 : 1)

  Scheme 42    Synthesis of Dexelvucitabine ( 127 ) by Pharmasset       

 

 

Fluorine-Containing Diazines in Medicinal Chemistry and Agrochemistry



620

the synthesis were quite similar to those shown in Scheme  41 . The major differ-
ence was the use of polymer-supported PPh 3  at the glycal generation step, which 
allowed for isolation of unstable glycal  189  with more than 90 % purity. 
Palladium-catalyzed reaction of  189  with 5-fl uorocytosine ( 9 ) was accompanied 
by Ferrier-type rearrangement and led to derivative  190 , which was transformed 
to  127  upon deprotection.

   All the reported syntheses of DPC-961 ( 128 ) and DPC-963 ( 129 ) commenced 
from the corresponding  o -amino-α,α,α-trifl uoroacetophenones  191  (Scheme  44 ). 
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  Scheme 43    Synthesis of Dexelvucitabine ( 127 )       

In the fi rst preparations of  128  and  129 ,  191  reacted with TMSNCO to give 
adducts  192 , which were transformed to cyclic imines  193  upon dehydratation. 
Reaction of  193  with lithium cyclopropylacetylenide gave racemic  128  and  129 , 
which were subjected to chiral stationary phase HPLC to isolate  128  and  129  as 
pure enantiomers [ 136 ,  137 ]. Several improvements were reported for this syn-
thetic scheme. In particular, diastereoselective additions of lithium cyclopropyl 
acetylenide to the derivatives of  193  containing residues of α-phenylethyl amine 
or campheic acid were developed [ 154 ,  155 ]. Moreover, an enantioselective modi-
fi cation of this method employing amino alcohol  194  as an asymmetric catalyst 
was discovered [ 156 ,  157 ]. Another enantioselective method involved reaction of 
the derivatives of  193  and cyclopropyl acetylene itself, catalysed by amino alcohol 
derivatives ( e.g.   195 ) and Zn(OTf) 2  [ 158 ].

   DPC-083 ( 130 ) and DPC-082 ( 131 ) were obtained by reduction of  128  and  129 , 
respectively, with LiAlH 4  [ 136 ,  137 ]. Recently, an alternative approach to the synthesis 
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of  130  was reported, which relied on enantioselective organocatalytic Mannich-type 
reaction of imine derivative  196  and cyclopropyl methyl ketone (Scheme  45 ) [ 159 ]. 
Although enantioselectivity of the key step was moderate ( ee  75 %), it could be 
easily enhanced to >99 % by a single recrystallization of intermediate  197 .
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  Scheme 44    Synthesis of DPC-961 ( 128 ) and DPC-963 ( 129 )       
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4.2        Other Antiviral Agents 

 Apart from anti-HIV drugs discussed in the previous section, two additional antiviral 
agents can be mentioned: Trifl uridine ( 7 ) and Favipiravir ( 198 ). Trifl uridine ( 7 ) was 
mentioned above as a component of Phase III investigational drug TAS-102. It is 
however more known as an ophthalmic anti-herpes agent launched by Glaxo 
Wellcome (now merged into GlaxoSmithKline) in 1980 [ 5 ]. It is effective against 
herpetic keratitis, and seems to be especially useful in ‘diffi cult’ cases [ 160 ]. High 
susceptibility to biodegradation of Trifl uridine is advantageous for its use as ophthal-
mic drug, as its action in other tissues is thus prevented. As in the case of anti- tumor 
activity, the mechanism of antiviral action of  7  involves the inhibition of viral repli-
cation. Trifl uridine does this by incorporating into viral DNA during replication, 
which leads to the formation of defective proteins and an increased mutation rate 
[ 161 ]. Inhibition of thymidylate synthetase also seems to contribute into antiviral 
effect of  7 . The details of these processes, as well as synthesis of  7  were discussed in 
the above sections. 

 Favipiravir ( 198 ) has been discovered by Toyama Chemicals; it is currently in 
Phase III (Japan) and Phase II (USA) clinical trials [ 113 ,  162 ]. Favipiravir is under 
development as an agent against infl uenza virus, however, it was also tested against 
other RNA viruses, including arenaviruses, bunyaviruses, West Nile virus (WNV), 
yellow fever virus (YFV), and foot-and-mouth disease virus (FMDV) [ 163 ]. A pro-
posed mechanism of action of  198  includes its biotransformation into ribofuranos-
yltriphosphate derivative  199  (Scheme  46 ), which inhibits infl uenza virus RNA 
polymerase in the host cells [ 164 ].
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  Scheme 46    A proposed pathway of Favipiravir ( 198 ) bioactivation       

   One of the syntheses of  198  is based on pyrazine  200  (Scheme  47 ) [ 165 ,  166 ]. 
Compound  200  was transformed to methoxy derivative  201  via diazotization step; 
 201  was then subjected to Buchwald – Hartwig amination to give  202 . Ester  202  
was transformed to amide  203 ; diazotization of  203  in the presence of pyridine 
hydrofl uoride led to the formation of fl uoro derivative  204 . The last step of the 
 synthesis included deprotection of the methyl ether to give  198 .

 

D.M. Volochnyuk et al.



623

92%

O

O

NH2

O

NH2NH2

O

KNO3

H2SO4

POCl3

N

N Cl

Cl CN

KF Bu4NBr

92%

92%

N

N
H

O

NH2

O

N

N
H

O

NH2

O

O2N
65%

py

78%

N

N
H

O

NH2

O

F

198

N

N F

F CN

205

aq HCl

N

N F

F

O

NH2

206

aq NaHCO3NaOAc

H2O

N

N
H

O

F CN

NaOH

H2O2

ROH

N

N OR

F CN

R = benzyl, allyl

AlCl3

Et3N

  Scheme 48    Synthesis of Favipiravir ( 198 ) via the key intermediate  205        

N

N
H

O

NH2

O

F

N

N

O

O

NH2

Br N

N

O

O

O

Br N

N

O

O

O

NH2

N

N

O

NH2

O

NH2N

N

O

NH2

O

F

198

200

1. NaNO2, 
H2SO4

2. MeOH
201

Ph2C=NH,
tBuOK

Pd2(dba)3, 
BINAP 202

NH3

MeOH

203

NaNO2

py . HF

204

Me3SiCl

NaI

  Scheme 47    Synthesis of Favipiravir ( 198 ) reported in 2002       

   Several syntheses of  198  involved difl uoro derivative  205  as a key intermediate 
which was prepared in 4 steps from readily available materials (Scheme  48 ) [ 166 ,  167 ]. 
Acidic hydrolysis of  205  gave amide  206 , which upon mild alkaline hydrolysis led to 
 198 . Alternatively, compound  198  was obtained by mild alkaline hydrolysis of  205  fol-
lowed by reaction with H 2 O 2 –NaOH, or by reaction of  205  with allyl or benzyl alcohol, 
removal of the protection, and hydrolysis. Recently, an improved version of this method 
was patented, which allowed authors to claim its industrial applicability [ 168 ].
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   One more method for the preparation of  198  commenced from pyrazine derivative 
 207 , which was transformed to dichloride  208  using Sandmeyer reaction 
(Scheme  49 ) [ 166 ]. Hydrolysis of the ester moiety in  208  followed by one-pot chlo-
roanhydride formation, introduction of fl uorine atom and amination gave derivative 
 209 , which was transformed into  198  by diazotization and subsequent hydrolysis.
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  Scheme 49    Synthesis of Favipiravir ( 198 ) from pyrazine derivative  207        

   Several other approaches to the synthesis of Favipiravir were also described, 
most of them relying on direct fl uorination of pyrazine derivatives with molecular 
fl uorine [ 166 ] All they were low-yielding and allowed for the preparation of 
milligram quantities of the fi nal product.  

4.3     Antibacterial Agents 

 A single compound is discussed in this category, namely GSK-1322322 ( 210 ), 
which was developed by GlaxoSmithKline and has reached Phase II clinical trials 
in bacterial skin infections [ 113 ] and Phase III – in community-acquired bacterial 
pneumonia [ 169 ]. Compound  210  acts as an inhibitor of peptide deformylase – an 
enzyme that removes the formyl group during eubacterial peptide elongation. 
Bacterial protein synthesis initiates with formyl-methionyl-tRNA and, conse-
quently, all polypeptides newly synthesized in bacteria contain an  N -formyl- 
methionine  terminus. This residue is further removed in two steps catalyzed by 
peptide deformylase and methionine aminopeptidase, respectively. Inhibition of 
peptide deformylase increase production of bacterial  N -formylated polypeptide, 
which prevents bacteria growth and possibly triggers an enhanced immune response 
[ 170 ]. Peptide deformylase is a metalloprotease, which mostly utilizes Fe 2+  in its 
active site. It was shown for analogs of  210  that  N -formyl- N -hydroxylamine func-
tion coordinated to metal ion when the inhibitor was bound to the enzyme [ 171 ]. 
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 Synthesis of  210  was started from preparation of chiral diamine  211  (Scheme  50 ) 
[ 172 ]. In particular,  D -serine methyl ester was converted to  N -benzyl derivative  212 , 
which was transformed into carboxylic acid  212  using reaction with chloroacetyl chlo-
ride and subsequent hydrolysis. Carboxylic acid  212  was subjected to coupling with 
benzyl amine, reduction, reaction with ethyl oxalyl chloride and reductive cyclization 
to give bicyclic compound  213 . Finally,  211  Two-step reduction of  213  led to the for-
mation of diamine  211 , which was isolated as dihydrochloride. Reaction of  211  with 
dichloro derivative  215  and then – hydrazine hydrate gave the product  216 , which was 
coupled with carboxylic acid  217  and subjected to catalytic hydrogenation to give  210 .
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  Scheme 50    Synthesis of GSK-1322322 ( 210 )       
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4.4        Antifungal Agents 

 Two drugs were launched as anti-fungal agents to date: Flucytosine ( 9 ) (Valeant, 
1971) and Voriconazole ( 10 ) (Pfi zer, 2002) (Fig.  6 ) [ 5 ]. Flucytosine itself has no 
antifungal activity; its activity results from the rapid conversion into Fluorouracil 
( 1 ) within susceptible fungal cells [ 173 ]. The mechanism of cytotoxic effect of 
Fluorouracil has been discussed in the previous sections. Flucytosine is taken up by 
fungal cells by cytosine permease, which is the transport system for cytosine and 
adenine. Inside the fungal cells,  9  is deaminated to  1  by cytosine deaminase. The 
specifi city of this step is crucial for the narrow antifungal spectrum of  9 : mamma-
lian cells as well as fungi lacking cytosine deaminase are not sensitive to  9 . On the 
other hand, Fluorouracil itself cannot be used as an antifungal drug, since it is only 
poorly taken up by fungal cells and is too toxic to human cells.

   The major drawback of Flucytosine is rapid development of resistance in fungi, 
either by mutations or by increased synthesis of pyrimidines; this limits the use of  9  
as a single antifungal agent. Monotherapy with Flucytosine is currently only used in 
some cases of chromoblastomycosis and in uncomplicated candidosis; in all other 
cases,  9  is used together with other agents, usually Amphotericin B [ 173 ]. 

 The effect of Voriconazole ( 10 ) is exerted within the fungal cell membrane. In 
particular, cytochrome P450-dependent 14-α-lanosterol demethylase is inhibited, 
which prevents the conversion of lanosterol ( 217 ) to ergosterol ( 218 ) – an important 
component of yeast and fungal cell membranes which does not occur in mammalians 
(Scheme  51 ). This mechanism results in the accumulation of toxic methylsterols 
and inhibition of fungal cell growth and replication [ 174 ].
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   Voriconazole is active against many fungal infections, including invasive 
aspergillosis,  Pseudallescheria ,  Scedosporium ,  Fusarium  infections [ 175 ]. It is also 
proposed for empirical antifungal therapy [ 176 ]. An important advantage of 
Voriconazole is high oral bioavailability (96 %). The most common side effect, 
which is unique for Voriconazole among other azole antifungals, is a reversible 
disturbance of vision (photopsia): it occurs in nearly a third of patients but rarely 
leads to discontinuation of the drug [ 174 ]. Resistance to Voriconazole still remains 
uncommon, although an increase of resistance and continued surveillance with 
greater use of the drug has been reported [ 177 ]. 

 The fi rst synthesis of Flucytosine ( 9 ) has been reported in 1957 [ 13 ,  14 ]. The 
synthetic scheme is quite similar to that for Fluorouracil ( 1 ); in the case of  9 , 
compound  27  was subjected to reaction with PCl 5  and then – liquid ammonia to 
give  219 , which was transformed to  9  upon hydrolysis (Scheme  52 ). In an alterna-
tive method, compound  70  (prepared from Fluorouracil) reacted with SOCl 2  to 
give  220 , which was transformed to  9  upon reaction with ammonia in methanol 
[ 84 ]. Another synthesis commenced from 2,5-difl uoro-4-chloropyrimidine, 
which, however, is not readily accessible [ 178 ]. Flucytosine was also obtained by 
direct fl uorination of cytosine using CF 3 OF (85 % yield) [ 179 ,  180 ], fl uorine [ 181 , 
 182 ], and AcOF [ 20 ].
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  Scheme 52    Syntheses of Flucytosine ( 9 )       

   Despite numerous syntheses of Voriconazole ( 10 ) were documented, they all 
followed the same synthetic strategy, namely, addition of anion  221  to ketone  222 , 
followed by isolation of necessary diastereomeric pair and its resolution with 
10-camphorsulphonic acid (Scheme  53 ). Three different approaches were used for 
the generation of anion  221  or the corresponding organometallic species. First of 
them relied on deprotonation of the pyrimidine derivative  222  (prepared from the 
fl uorinated keto ester  223  or dichloro derivative  93 ) by strong bases such as LDA 
(Scheme  54 ) [ 183 – 189 ].
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    The main drawback of this method was low diastereoselectivity of the key 
step; therefore tedious separation of diastereomers was necessary. Another 
approach to generation of  221  relied on ZnCl 2 -catalyzed decarboxylation of 
salts  224 , prepared from  225  (Scheme  55 ) [ 190 ]. In this case, the desired diaste-
reomeric pair was obtained with much better selectivity (6.5: 1). The last 
approach relied on Reformatsky-type reaction involving  222  and bromides  226  
(prepared from  223  [ 191 ,  192 ] or its thio analogues [ 193 – 195 ]) or sulfonates 
 227  (prepared from  93 ) (Scheme  56 ) [ 196 ,  197 ]. In this case, good diastereose-
lectivities were obtained.
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5          Agents Acting at Nervous System 

 Seven compounds designed as agents acting at central and/or peripheral nervous 
system have reached at least Phase II clinical trials, and only one of them was 
launched (Table  4 ) [ 3 ,  113 ]. These compounds address different biological tar-
gets and act as skeletal muscle relaxants (Afl oqualone ( 11 )), antipsychotics 
(BMY- 14802 ( 228 ), A-437203 ( 229 ), and JNJ-37822681 ( 230 )), nootropic 
agents (BMY- 21502 ( 231 )) or analgesics (BW-BW-4030W92 ( 232 ) and 
GW-842166X ( 233 )).
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N
N

N

N N

OH

F

F

F

X

N N

F
X NBS

AIBN N N

F
X

Br

226

222

Zn/ZnCl2

X = Cl, SR
dr 9 : 1

65%

N N

F
Cl

Cl 93

CH3CHO, 
AcOH

K2S2O8,
FeSO4

N

N

F

ClCl

O 1. H2, Pd-C, 
NaOAc

2. NaBH4

N

N

F

OH

R'SO2Cl

Et3N
N

N

F

R'OSO2

10

222Zn/Pb

227

  Scheme 56    Synthesis of Voriconazole ( 10 ) using Reformatsky-type reaction       

 

 

Fluorine-Containing Diazines in Medicinal Chemistry and Agrochemistry



   Table 4    Derivatives of fl uorinated diazines – nervous system modulators [ 3 ,  5 ,  115 ]   

 Structure 
 INN or ID, development 
phase, company  Action 
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F11     

 Afl oqualone  Skeletal muscle relaxant 
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 Mitsubishi Tanabe Pharma 
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5.1       Skeletal Muscle Relaxants 

 A representative of fl uorinated diazines, Afl oqualone ( 11 ), was launched in 1983 in 
Japan as a central acting muscle relaxant [ 198 ]. It is an analogue of Methaqualone 
( 234 ) (Fig.  7 ) – a drug widely used as a hypnotic, for the treatment of insomnia, and 
as a sedative and muscle relaxant in 1970s, but reclassifi ed as a Schedule I con-
trolled substance in USA in 1984 [ 199 ].

   The mechanism of action of Afl oqualone is not well studied. It was shown 
that its site of action is different from that of other central acting muscle relax-
ants,  i.e.  Mephenesin, Chlormesazone or Diazepam [ 200 ]. GABA-enhancing 
effect was also demonstrated [ 303 ]. The main routes of metabolism of  11  in 
human include  N -acetylation, followed by hydroxylation at the 2′-methyl and 
acetyl methyl carbons, as well as glucuronidation of the aromatic amino group. 
This pattern of metabolism is similar to that observed in monkeys and rats, but 
drastically different from that in dogs [ 304 ]. 

 Synthesis of Afl oqualone commenced from 5-nitroanthranilic acid ( 235 ) which 
was transformed to amide  236  via the corresponding chloroanhydride (Scheme  57 ) 
[ 201 ]. Catalytic reduction of  236  followed by acetylation gave  237 , which reacted 
with chloroacetyl chloride to form quinazoline  238 . Nucleophilic substitution of 
chlorine atom in  238  with fl uorine led to the formation of  239 , which upon deprot-
ection gave Afl oqualone ( 11 ). Alternatively, compound  236  was subjected to acyla-
tion with fl uoroacetyl chloride or anhydride to give amide  240  [ 202 ]. Refl uxing of 
 240  with acetic anhydride gave quinazoline  241 , which was reduced to Afl oqualone 
either by catalytic hydrogenation or using SnCl 2 .

5.2        Antipsychotics 

 All three compounds discussed in this section ( i.e.   228 – 230 ) have reached Phase II 
clinical trials as agents for treatment Schizophrenia. Development of BMY-14802 
( 228 ) was discontinued more than 10 years ago. For ABT-925 ( 229 ), Phase II trials 
were terminated in 2011; for JNJ-37822681 ( 230 ), the latest clinical study was com-
pleted in February 2012 [ 113 ]. Despite the disease addressed by  228 – 230  is com-
mon, the compounds express their effect through interactions with different 
biological targets. In particular, BMY-14802 ( 228 ) developed by Bristol-Myers 
Squibb acts as a dual antagonist of σ 1  and 5-HT 1A  receptors. However, it should be 
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noted that relative role of these two targets in biological effect of  228  was debated 
in the literature. Whereas in pigeons, the effect was serotonergically mediated pri-
marily through 5-HT 1A  receptors [ 203 ], in other model systems, these interactions 
did not seem to contribute signifi cantly to the potential antipsychotic action of the 
compound [ 204 ]. Although studies in animal models supported for the suggestion 
that BMY-14802 ( 228 ) may possess antipsychotic properties [ 205 ], clinical trials 
showed lack of effi cacy in Schizophrenia treatment [ 206 ]. 
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 Recently, BMY-14802 was proposed as a promising candidate for clinical trials 
of  L -DOPA-induced dyskinesia – a common side effect observed during prolonged 
use of  L -DOPA in Parkinson disease patients [ 207 ]. It was shown that the compound 
suppresses abnormal involuntary movements related to  L -DOPA-induced dyskine-
sia via its 5-HT 1A  agonistic effect. 

 ABT-925 ( 229 ) developed by Abbott is a selective D3 receptor antagonist [ 208 ]. 
It was suggested that selective antagonists of D3 receptor might be promising anti-
psychotic agents lacking the presumed D2 receptor-mediated side effects, although 
D3 antagonists may express their effect via mechanisms that cannot be refl ected by 
the commonly used animal models [ 209 ]. It was shown that ABT-925 produced 
cognitive signals but did not achieve suffi cient D3 receptor occupancy at the doses 
used in clinical studies [ 210 ]. Nevertheless, these studies allowed for the assump-
tion that the development and clinical testing of newer D3 receptor antagonists with 
higher potency at D3 receptors, enabling suffi cient receptor occupancy, is highly 
warranted [ 211 ]. 

 On the contrary, JNJ-37822681 ( 230 ) is a D2 highly selective receptor antagonist 
and hence acts in a mode analogous to that of most marketed antipsychotics [ 212 ]. 
JNJ-37822681 is characterized by a rapid dissociation rate from the dopamine D2 
receptor, which was hypothesized to confer antipsychotic effi cacy and improved 
tolerability [ 213 ]. Clinical studies in patients with an acute exacerbation of schizo-
phrenia showed that JNJ-37822681 had similar biological activity but lesser ten-
dency to induce weight gain compared to a known antipsychotic drug, Olanzapine 
( 242 ) [ 214 ] (Fig.  8 ).

   Synthesis of BMY-14802 ( 228 ) commenced from pyrimidine derivative  243  
which reacted with piperazine  244  to give derivative  245  (Scheme  58 ) [ 215 ,  216 ]. 
Reduction of the compound  245  followed by deprotection gave amine  246 , which 
was alkylated with chloride  247  and then subjected to acidic hydrolysis to form 
ketone  248 . Reduction of  248  allowed BMY-14802 ( 228 ) to be obtained. Pure enan-
tiomers of  228  were also obtained. To achieve this, the following methods were 
used: resolution of  228  with using reaction with α-phenylethyl isocyanate [ 217 ] or 
lipase-catalyzed acetylation or hydrolysis [ 218 ], alkylation of  245  with enantiopure 
alcohols  249  [ 219 ]; and microbial reduction [ 305 ] or Ru-catalyzed enantioselective 
hydrogenation [ 220 ] of  248 .
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   ABT-925 ( 229 ) was obtained starting from amidine  250  and ethyl trifl uoroaceto-
acetate to give pyrimidine  251  (Scheme  59 ) [ 221 ]. Reaction of  251  with SOCl 2  and 
then – piperazine led to the formation of amine  252 . Selective alkylation of  252  with 
1-bromo-3-chloropropane gave chloride  253 , which reacted with thiouracil anion to 
form ABT-925 ( 229 ).
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5.3        Nootropic Agents 

 BMY-21502 ( 231 ) was developed by Bristol-Myers Squibb as nootropic agent 
( i.e.  for cognition disorders) and has reached Phase II clinical studies. The 
compound was effective in vitro [ 223 ] as well as in animal models [ 223 – 227 , 
 306 ] that may predict cognitive enhancement. The mode of action of BMY-
21502 is poorly understood. It was shown that the compound has an anti-anoxic 
action, and activation of the CNS cholinergic system is involved as one of the 
causative mechanisms for this effect [ 228 ]. Clinical trials showed that BMY-
21502 was not significantly superior to placebo in Alzheimer’s disease; more-
over, although generally well tolerated,  231  also had a higher rate of 
discontinuations [ 229 ,  230 ]. 

 Synthesis of BMY-21502 ( 231 ) optimized for large scale preparations com-
menced from malonodiamide and ethyl trifl uoroacetate, which reacted to give 
pyrimidine  255  (Scheme  61 ) [ 231 ]. Compound  255  was transformed into 
dichloro derivative  256  upon treatment with POCl 3 . Reaction of  256  with piperidine 
 257  (prepared from 4-pyridinylmethyl chloride in two steps) gave  258 , which 
was reduced catalytically to form BMY-21502 ( 231 ). Alternatively, BMY-21502 
was obtained by arylation of  257  with 4-chloro-2-trifl uoromethylpyrimidine 
( 259 ) [ 232 ].

   Synthesis of JNJ-37822681 ( 230 ) was quite trivial and relied on selective func-
tionalization of 4-aminopiperidine core, fi rst with 3-chloro-6- trifl uoromethylpyridazine 
( 254 ) and then – with 3,4-difl uorobenzaldehyde (Scheme  60 ) [ 222 ].
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5.4        Analgesics 

 Both the compounds discussed in this section,  i.e.  BW-4030W92 ( 232 ) and GW 
842166X ( 233 ), were developed by GlaxoSmithKline. Development of 
BW-4030W92 was discontinued in 2002; the latest Phase II clinical studies of 
GW-842166X were completed in 2009 [ 113 ]. BW-4030W92 ( 232 ) was developed 
as a CNS-acting antihyperalgesic agent ( i.e.  for treatment of increased sensitivity 
to pain). It is an analogue of anticonvulsant drug Lamotrigine ( 260 ) (Fig.  9 ), used 
n the treatment of epilepsy and bipolar disorder [ 233 ]. Like Lamotrigine, 
BW-4030W92 binds to the transmembrane segment S6 in domain IV of α subunit 
of voltage-gated sodium channels (Na v ), thus acting as a pore blocker [ 234 ]. It is 
assumed that neuropathic pain is partially mediated by an increase in the density 
of Na V  channels in injured axons and their dorsal root ganglions. Clinical studies 
in patients with chronic neuropathic pain showed that although BW-4030W92 
signifi cantly lowered allodynia severity at the fi rst day, the effect did not maintain 
in further treatment [ 235 ].

   GW-842166X ( 233 ) is a selective CB2 receptor full antagonist which has potent 
analgesic, anti-infl ammatory and anti-hyperalgesic actions. It was selected as a clin-
ical candidate after lead optimization of a pyrimidine ester  261  (GK02076, Fig.  9 ), 
identifi ed in a focused screen as a partial agonist at the CB2 receptor with 
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micromolar potency [ 236 ]. The compound was evaluated as an analgesic for treat-
ment of infl ammatory pain (Phase I trials) and dental pain (Phase II trials) [ 113 ]. In 
the latter study, single doses of GW842166 failed to demonstrate clinically mean-
ingful analgesia in the setting of acute dental pain [ 237 ]. 

 Synthesis of BW-4030W92 ( 232 ) started from 2,3-dichlorobenzaldehyde ( 262 ) 
which was transformed into nitrile  263  (Scheme  62 ) [ 238 ]. Compound  263  which 
reacted with ethyl diethoxyacetate –  t -BuOK and then – ethyl iodide to give enol 
ether  264 . Reaction of  264  with guanidine afforded pyrimidine derivative  265 , 
which upon deprotection gave aldehyde  266 . Compound  266  was reduced with 
sodium borohydride and then subjected to reaction with diethylaminosulphur 
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trifl uoride (DAST) to give racemic  232 . Alternatively, nitrile  263  reacted with ethyl 
fl uoroacetate –  t -BuOK and then – ethyl iodide to give enol ether  267 , which was 
transformed to racemic  232  by reaction with guanidine. Resolution of enantiomers 
of  232  was achieved by crystallization of dibenzoyl- L -tartaric acid salt; the more 
active  R -enantiomer was isolated.

   In the synthesis of GW-842166X ( 233 ), commercially available pyrimidine  268  
reacted with 2,4-dichloroaniline to give ester  269 , which was subjected to hydrolysis 
followed by amide coupling with 4-aminomethyltetrahydropyran ( 270 ) to afford 
 233  (Scheme  63 ) [ 236 ,  239 ,  240 ].
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6         Other Classes 

 In the previous sections, compounds targeting cancer cells or nervous system, as 
well as those fi ghting foreign organisms were discussed. 

 Three compounds do not fall into any of these categories. Fostamatinib disodium 
( 88 ) was mentioned above as an anti-cancer investigational drug, but it was also stud-
ied as agent for autoimmune diseases,  i.e.  rheumatoid arthritis (currently in Phase III) 
and autoimmune thrombocytopenia (in Phase II). Gemigliptin ( 12 ) was approved as 
an anti-diabetic drug in South Korea in 2012. PF-04634817 ( 271 ) was discontinued 
after Phase I studies as an agent for liver fi brosis; nevertheless, it is currently investi-
gated in diabetic nephropathy (Fig.  10 ) (Phase II, October 2012) [ 113 ].
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   As it was mentioned in the previous sections, the active principle of 
Fostamatinib disodium ( 88 ) is Tamatinib ( 92 ), which is formed by enzymatic 
hydrolysis of  88  in the intestine. As in the case of lymphoma, the effect of  88  in 
autoimmune diseases is related to inhibition of Spleen tyrosine kinase (Syk) by 
 92  [ 241 ,  242 ]. As Syk has the central role in transmission of activating signals 
within B cells, inhibition of this enzyme lowers expression of a number of pro-
infl ammatory cytokines and hence leads to immunosuppression [ 243 ]. 
Fostamatinib has shown signifi cant effi cacy in the treatment of patients with 
rheumatoid arthritis not responding to Methotrexate ( 272 ) (a drug which is used 
conventionally in therapy), although a number of adverse events were observed 
[ 244 ]. If these results are confi rmed once Phase III studies are completed, it may 
fi nd a place in the treatment of patients with rheumatoid arthritis with poor 
response to conventional therapy (Fig.  11 ).
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  Fig. 10    The structure of Gemigliptin ( 12 ) and PF-04634817 ( 271 )       
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   Gemigliptin ( 12 ) was developed by LG Life Sciences as an inhibitor of 
dipeptidyl peptidase 4 (DPP-4) – a target of oral drugs used to treat used to treat 
type 2 diabetes (characterized by high blood glucose in the context of insulin 
resistance and relative insulin defi ciency) [ 245 ]. The fi rst representative of this 
class, Sitagliptin ( 273 ) was launched in 2006. In human body, Gemigliptin is 
metabolized to LC15-0636, which is a major active metabolite, by cytochrome 
P450 3A4 isozyme [ 246 ]. Inhibition of DPP-4 results in increase of incretin levels 
(which is normally inactivated by DPP-4), in particular glucagon-like peptide-1 
(GLP-1) and gastric inhibitory peptide (GIP) [ 247 ]. Incretins inhibit glucagons 
release and stimulate insulin secretion, which leads to decrease in glucose blood 
levels. Clinical trials showed effi cacy and safety of Gemigliptin administered 
once daily as a monotherapy, [ 248 ] as well as in addition to Metformin ( 274 ) 
[ 249 ] for type 2 diabetes patients. 

 PF-04634817 ( 271 ) is a Phizer’s investigational drug, initially developed as 
agent for liver fi brosis – formation of excess fi brous connective tissue in liver [ 250 ]. 
The development of the compound was discontinued since February 2012 after 
Phase I trials. Recently, a Phase II study of PF-04634817 in diabetic nephropathy – 
a progressive kidney disease caused by angiopathy of capillaries in the kidney 
glomeruli [ 251 ] – was registered [ 113 ]. PF-04634817 is an antagonist of chemokine 
receptors ( i.e.  CCR2 and CCR5) [ 252 ]. These chemokine receptors are important 
players in the traffi cking of monocytes/macrophages and in the functions of other 
cell types relevant to pathogenesis of many diseases [ 253 ], including liver fi brosis 
[ 307 ] and diabetic nephropathy [ 254 ]. 

 Gemigliptin ( 12 ) was prepared by a convergent synthesis involving key interme-
diates  275 ,  276  and  277  (Scheme  64 ) [ 255 ]. Compound  275  was obtained by Swern 
oxidation of β-amino acid derivative  278 . Both  276  and  277  were prepared starting 
from  N -Boc-3-piperidone  279 . In particular,  279  reacted with diethylaminosulfur 
trifl uoride (DAST) to give difl uoro derivative  280 . Ru-catalyzed oxidation of  280  
led to the formation of amide  281 , which was subjected to ring-opening with 
NaOMe and then acidic deprotection to give hydrochloride  276 . To obtain  277 , 
 N -Boc-3-piperidone was deprotonated and then acylated with ethyl trifl uoroacetate 
to give β-diketone  282 . Reaction of  282  with trifl uoroacetamidine followed by 
deprotection afforded  277 . Further step of the synthesis included reductive amina-
tion of aldehyde  275  with amine  276 , which was accompanied with piperidone ring 
formation to give  283 . Full deprotection of  283  followed by selective protection of 
the amino group gave carboxylic acid  284 , which was coupled with amine  277  to 
afford Boc derivative  285 . Finally, deprotection of  285  led to the formation of 
Gemigliptin ( 12 ).

   Synthesis of optically active PF-04634817 ( 271 ) based on commercially avail-
able (-)-Vince Lactam as chirality source. Starting from (-)-Vince Lactam the chiral 
key 4-amino-2-cyclopentene-1-carboxylic acid derivative  286  was synthesized. The 
compound  286  is dimethyl pyrrole protected form of corresponding aminoacid, 
which was subjected to amide coupling with Boc-protected diamine  287  to give 
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amine  288  (Scheme  65 ) [ 252 ]. Removing of the pyrrole function followed by cata-
lytic hydrogenation gave amine  289 , which was subjected to reductive amination of 
ketone  290 , separation of diastereomers, deprotection and then – arylation with 
pyrimidine derivative  291  to afford the fi nal product,  271 .

7        Fluorine-Containing Diazines in Agrochemistry 

 Agrochemistry is one of more important fi eld of application of the fl uorinated com-
pounds which is widely recognized [ 256 ,  257 ]. Eleven derivatives of fl uorine- 
containing diazines are agrochemicals: 8 compounds ( 292 – 299 ) are herbicides; 
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Fluoxastrobin ( 300 ) is a fungicide, Fluacrypyrim ( 301 ) – an acaricide, and 
Flufenerim ( 302 ) is currently under development as an insecticide (Fig.  12 ).

8        Herbicides 

8.1     Protoporphyrinogen Oxidase Inhibitors 

 Uracil derivatives Butafenacil ( 292,  Inspire®, Rebin®) and Benzfendizone ( 293 ) 
were introduced as herbicides in 1998, whereas their pyridazine-derived ana-
logue Flufenpyr-ethyl ( 295 ) – in 2000 [ 258 ]. Butafenacil (developed by Syngenta 
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AG) is used for weed control in grapes, nut crops, pome and stone fruits and also 
as a cotton defoliant [ 259 ]. It was registered in Australia and approved by U. S. 
environmental protection agency. Benzfendizone (developed by FMC 
Corporation) is a post-emergence herbicide that provides good control of grass 
and broadleaf weeds in tree fruits and vines, as a cotton defoliant, and in total 
vegetation control [ 256 ]. Flufenpyr-ethyl (developed by Sumitomo Chemical 
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Company) was registered in USA for use on corn, soybeans and sugarcane [ 259 ]. 
The most recent example is Safl ufenacil ( 294 , Kixor®), introduced by BASF in 
2009 for preplant burndown and selective PRE dicot weed control in multiple 
crops, including corn. [ 260 ]. 

 Compounds  292 – 295  act as inhibitors of protoporphyrinogen oxidase (Protox) 
– an enzyme in the chloroplasts of the plant cells that oxidizes protoporphyrinogen 
IX ( 303 ) to produce protoporphyrin IX ( 304 ) (Scheme  66 ) [ 261 ]. In turn,  304  is a 
precursor molecule for both chlorophyll and heme. When protoporphyrinogen oxi-
dase is inhibited, protoporphyrinogen IX is accumulated and transferred from chlo-
roplasts into the cytoplasm, where non-enzymatic conversion of  303  to  304  occurs. 
When present in cytoplasm,  304  is cytotoxic due to interaction with oxygen upon 
action of light, which results in formation of singlet O 2  molecules.  1 O 2  causes lipid 
peroxidation, membrane disruption and plant cell death.
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  Scheme 66    Biological role of protoporphyrinogen oxidase       

   Butafenacil is known to be eye, skin and respiratory tract irritant in humans 
[ 262 ]. It also demonstrated very high toxic effect to algae, and moderate toxicity to 
fi sh, aquatic invertebrates and honeybees. For Benzfendizone and Flufenpyr-ethyl, 
no reports on toxic effects are available. Acute mammalian toxicology studies of 
Safl ufenacil indicate that herbicide has low toxicity for mammals after ingestion, 
dermal exposure or inhalation. It is not an irritant for eyes and skin and does not act 
as a sensitizer. 

 Studies of the structure–activity relationship (SAR) of uracile derivatives as pro-
tox inhibitor showed that presence of a polyfl uorinated alkyl group at position 6 of 
the uracil ring critical. Alkyl groups such as methyl at position 6 of the uracil ring 
resulted in compounds with low or no biological activity [ 263 ]. 

 Limited data are available on the synthesis of Butafenacil ( 292 ). In particular, it 
was prepared by esterifi cation of carboxylic acid  305 , [ 264 ] as well as by reaction 
of isocyanate  306  with ester  307  (Scheme  67 ) [ 265 ]. Preparation of neither  305  nor 
 306  was disclosed in the corresponding patents, although synthesis of carboxylic 
acid  305  was partially described elsewhere [ 266 ].
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   Benzfendizone ( 293 ) was obtained from ethyl trifl uoromethylaminocrotonate 
( 308 ) which reacted with isocyanate  309  in the presence of NaH and then directly 
methylated to give  310  (Scheme  68 ) [ 267 ]. Demethylation of phenol moiety in  310  
followed by alkylation with benzyl chloride  311  gave Benzfendizone.
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   The synthesis of Safl ufenacil ( 294 ) is similar to Benzfendizone synthesis, but on 
the key step of uracile formation instead of isocyanate corresponding urethane  316  
was used in basic conditions. Starting amine  315  was obtained in 3 steps from acid 
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 312 . The fi nal step of Safl ufenacil formation is alkylation by Me 2 SO 4  in phase transfer 
conditions (Scheme  69 ) [ 268 ].
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  Scheme 69    Synthesis of Safl ufenacil ( 294 )       

   In the preparation of Flufenpyr-ethyl ( 295 ), hydrazones  318  or  319  were the key 
synthetic intermediates (Scheme  70 ) [ 269 – 271 ]. Both compounds  318  and  319  
were prepared by reaction of dibromoketone  320  and the corresponding hydrazines 
 321  and  322 , in turn obtained by reduction of diazonium salts  323  and  324 . 
Alternatively, hydrazone  319  was prepared by reaction of  324  and ethyl trifl uoro-
acetoacetate, followed by hydrolysis and decarboxylation.

   Further transformations of  319  included reaction with (carbethoxylidene)triphe-
nylphosphorane resulting in the formation of pyridazine derivative  327 . Acidic 
hydrolysis of  327  led to  328 , which was alkylated with ethyl bromoacetate to give 
 295  (Scheme  71 ).
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   Alternatively, either  318  or  319  reacted with methylmalonic acid to give adducts 
 329  or  330 , which underwent cyclization upon heating with carboxylic acid and a 
base to give  331  and  327 , respectively. Both  331  and  327  were transformed to 
Flufenpyr-ethyl ( 295 ) as described above (Scheme  72 ).
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8.2        Acetohydroxy Acid Synthase Inhibitors 

 Compounds discussed in this section are derivatives or analogues of sulfonylurea 
herbicides – agrochemicals which began the present low-dose era of herbicide 
chemistry in 1970s [ 257 ]. Primisulfuron-methyl ( 299 ) (from Ciba-Geigy 
Corporation and Syngenta AG) is a sulfonylurea derivative introduced in 1990 
[ 262 ]. It is used for post-emergence control of actively growing weeds in corn and 
in non-cropland areas [ 272 ]. Cloransulam-methyl ( 296 ), Florasulam ( 298 ), and 
Diclosulam ( 297 ), all developed by Dow AgroSciences, are examples of the triazo-
lopyrimidine sulfonanilide herbicides; they were introduced in 1998, 1999, and 
2000, respectively. Cloransulam-methyl is used for soil-applied and post-emer-
gence control of broadleaf weeds in soybeans [ 273 ]. Florasulam is a highly-selec-
tive broadleaf herbicide which is registered for use in cereals in many countries 
around the world. Diclosulam-based products are registered for use to control 
annual and certain perennial broadleaf weeds; they can be can be applied as soil, 
foliar, or burndown treatments in crops such as sugar cane, peanuts and soybeans 
and in forestry applications. 

 Compounds  296 – 299  inhibit acetohydroxy acid synthase (AHAS), formerly 
known as acetolactate synthase. Its activity is not present in animals, but it has 
been found in all plants where measurements have been attempted. Acetohydroxy 
acid synthase catalyses the fi rst step in production of branched amino acids (leu-
cine, valine and isoleucine) (Scheme  73 ), which are obviously needed for the 
protein synthesis and cell growth. The compounds  296 – 299  seem to bind within 
the substrate- access channel of the enzyme, thus blocking α-ketocarboxylate 
access to the active site. While these herbicides are undoubtedly highly success-
ful, resistance developed due to mutations within AHAS is becoming a serious 
problem [ 274 ,  275 ].
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   Primisulfuron-methyl is a slightly toxic for skin, inhalation and eye exposure, 
with little metabolic activity in mammalian. It is slightly toxic to freshwater fi sh, 
aquatic organisms and to marine shrimp and has no toxic effect on birds and honey-
bees [ 276 ]. Cloransulam-methyl can be highly toxic to certain aquatic plants and 
algae on an acute basis; it is practically nontoxic to other non-plant organisms. 
Florasulam is highly toxic to aquatic organisms and slightly toxic to birds, and 
Diclosulam is very highly toxic to aquatic organisms [ 272 ]. 

 In contrast to uracile herbecides in which CF 3 -group is critical for activity in 
fl uorinated triazolopyrimidine series fl uorine atom responsible for the methabo-
litic transformation of the herbecides. The different metabolic pathway of the 
 triazolopyrimidine herbicide diclosulam and Cloransulam-methyl are guided by 
the fl uorine atom at the 7-position on the triazolopyrimidine ring system 
(Scheme  74 ). The predominance of one pathway is very crop specifi c. In cotton, 
 296  and  297  are metabolized by the displacement of the 7-fl ouro substituent on 
the triazolopyrimidine ring by a hydroxy group, forming  332 . Its soybean selec-
tivity is attributed to facile conjugation with homo-glutathion (homoGSH), which 
displaces the 7-fl uoro substituent ( 333 ). This mechanism was found to only occur 
in soybeans for these herbecides. In maize and wheat,  296  and  297  are detoxifi ed 
by hydroxylation at the 4-th position on the aniline moiety ( 334 ) followed by 
subsequent glycosidation [ 277 ].
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   Cloransulam-methyl ( 296 ) and Diclosulam ( 297 ) were obtained by reaction of 
sulfonyl chloride  340  with the corresponding aniline derivatives (Scheme  75 ). 
Synthesis of  340  commenced from dichloropyrimidine  335  [ 278 ], which reacted 
with KF and then – hydrazine hydrate to give  337 . Reaction of  337  with CS 2 /Et 3 N 
and then – benzyl chloride was accompanied by Dimroth rearrangement and gave 
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[1,2,4]triazolo[1,5- c ]pyrimidine derivative  338 , which was transformed to  339  by 
treatment with EtONa. Finally, chlorination of  339  in H 2 O–CHCl 3  led to the 
 formation of  340 . Reaction of  340  with the corresponding aniline derivatives was 
performed in the presence of Me 3 SiCl–NaI [ 278 ], as well as of  N -arylsulfi limine 
compounds  341  [ 279 ] or 1,2-diols ( e.g.  1,2-propanediol) [ 280 ].

   Florasulam ( 298 ) was synthesised starting from dichloropyrimidine  93 , 
which was converted to dimethoxy derivative  342 . The reaction of  342  with 
hydrazine hydrate in MeOH regioselectively leads to hydrazine  343 , which was 
cyclized with CS 2  into [1,2,4]triazolo[4,3-c]pyrimidine-3-thion  344 . The based 
catalysed Dimroth rearrangement of  344  gave [1,2,4]triazolo[1,5-c]pyrimidine-
2-thione  345 . Oxidation of  345  followed by chlorination and sulfamide coupling 
afforded target Florasulam ( 298 ) in high preparative yield (Scheme  76 ) 
[ 281 – 283 ].
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   The synthesis of Primisulfuron-methyl ( 299 ) started from reaction of diethyl 
malonate and thiourea (Scheme  77 ) [ 284 ]. The resulting pyrimidine derivative 
 348  was methylated, difl uoromethylated and then oxidized to give sulfone  351 . 
Reaction of  351  with aqueous ammonia gave heteroaromatic amine  352 , 
which was transformed to Primisulfuron-methyl ( 299 ) upon treatment with 
isocyanate  353 .
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9         Mitochondrial Respiratory Chain Inhibitors 

 Fluoxastrobin ( 300 ) is a pesticide from Bayer CropScience for the control of fungal 
diseases, which was registered by U. S. environmental protection agency (EPA) in 
2005 [ 276 ]. Fluoxastrobin is used on peanuts, tuberous and corm vegetables, leaf 
petiole vegetables, fruiting vegetables and turf. Fluacrypyrim ( 301 ) was discovered 
by BASF AG and introduced in 2002 by Nippon Soda Co., shows acaricidal effect 
against all stages of tetranychid [ 285 ]. Both  299  and  300  are representative of stro-
bilurin family with parent compound Strobilurin A ( 354 ) (Fig.  13 ), discovered in 
late 1970s [ 286 ]. Interestingly, Fluacrypyrim ( 301 ) is the fi rst representative of stro-
bilurin family which is not used as a fungicide.

   Strobilurins are the part of the larger group of the so-called quinone outside 
inhibitors (QoI) –compounds which act at the quinol outer binding site of the cyto-
chrome  bc   1   complex. This enzyme, also referred to as ubiquinol: ferricytochrome  c  
reductase, or complex III, is the third complex in the electron transport chain – a 
cascade of enzymes which couples electron transfer between NADH and O 2  with 
the transfer of H +  ions across a membrane to generate chemical energy in the form 
of adenosine triphosphate (ATP) [ 287 ]. The overall result of the reaction catalyzed 
by cytochrome  bc   1   complex is reduction of ferricytochrome  c  by oxidation of ubi-
quinol ( 355 ) and the concomitant pumping of 4 protons from the mitochondrial 
matrix to the intermembrane space. The mechanism of this process is too sophis-
ticated to be discussed herein. It is important that the enzyme has two binding 
sites for the substrate  355  or its oxidized form  356  (Fig.  14 ),  i.e.  outer (Q 0 ) and inner 
(Q 1 ), and the quinone outside inhibitors bind to the outer site. This leads to 
inhibition of mitochondrial respiration – a process which is essential to all living 
organisms. The selective biological effect of quinone outside inhibitors on certain 
organisms ( i.e.  fungi or mites) is achieved by differential penetration and 
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degradation between various species, leading to a combination of high fungicidal 
(or acaricidal, in the case of  301 ) potency and good crop safety [ 288 ]. Unfortunately, 
resistance has already evolved to this class of pesticides in some plant pathogens in 
certain geographical areas [ 289 ].

   Although the  in vitro  fungicidal activity of the natural strobilurin  A  was discov-
ered soon, its agrobiological testing  in vivo  was diffi cult because of its volatility and 
the inherent lability of the ( E,Z,E )-triene system, which resulted in rapid photolytic 
or metabolic degradation. The unusual structural simplicity of this natural product 
soon made it a target for chemical derivatization. Below a set of isosterical replace-
ment in a course of lead optimization of natural strobirulin  A  leading to commercial 
synthetic products shown on the Fig.  15 .

   The fi rst sequence leads to fi rst commercialized strobilurin azoxystrobin (1996, 
Amistar®, Syngenta) and than to fl uoxastrobin ( 300 ), which structure combines a 
methoximino 5,6-dihydro-1,4,2-dioxazin-2-yl toxophore (Bayer toxofore) with an 
optimally adjusted side-chain bearing a 6-(2-chlorophenoxy)-5-fl uoro-pyrimidin- 4-
yl- oxy moiety as an essential element. Fluoxastrobin ( 300 ) has an advantage as no 
reorientation of the toxophore is necessary for binding to the target. The SARs stud-
ies indicate that the fl uorine atom has a benefi cial effect on the phytotoxicity and 
leaf systemicity. Another sequence leads to Picoxystrobin (2002, Acanto®, 
Syngenta), which has a 6-CF 3 -pyridin-2-yl moiety in its arylalkyl ether side-chain. 
An indication switch from the fungicidally to acaricidally active strobilurin type 
with β-methoxyacrylate pharmacophore is achieved by exchange of the 6-CF 3 - 
pyridin-2-yl moiety in the arylalkyl ether side-chain of Picoxystrobin with a 2-i PrO- 
6-CF 3 -pyrimidin-4-yl moiety to give fl uacrypyrim ( 301 ). 

 Fluoxastrobin ( 300 ) was obtained by reaction of compounds  359  and  360  in the 
presence of K 2 CO 3  (Scheme  78 ) [ 290 ]. Compound  359  was prepared by reaction of 
4,5,6-trifl uoropyrimidine ( 358 ) with potassium  o -chlorophenolate. In turn,  358  was 
obtained from 5-chloro-4,6-difl uoropyrimidine ( 357 ) by reaction with KF.
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   The synthesis of key intermediate  360  bearing unusual fragment of 
5,6-dihydro-1,4,2-dioxazin was developed by Bayer in 2002. Synthesis started from 
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benzofuran-3-one which was converted to oxime  362 . Nitrozation of  363  with 
followed alkylation with bromoethanole leads to bisoxime  364 , with under acidic 
treatment gave target dioxazin  360  (Scheme  79 ) [ 291 ].
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   Preparation of Fluacrypyrim ( 301 ) started with reaction of  O -isopropylisourea 
hydrochloride and ethyl trifl uoroacetoacetate to give pyrimidine  361  (Scheme  80 ) 
[ 292 ]. Alkylation of  361  with bromide  362  (or the corresponding chloride  363  [ 293 , 
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 294 ]) in the presence of alkali or K 2 CO 3  gave Fluacrypyrim. Cu 2 O-catalyzed  alkylation 
of  361  was also developed for the synthesis of  300  [ 295 ]. Compounds  362  and  363  
were obtained using several closely related methods. In particular, TiCl 4 - mediated 
reaction of chloride  366  and methyl orthoformate was used to obtain  363  (Scheme  81 ) 
[ 293 ,  294 ]. Alternatively,  366  reacted with methyl formate in the presence of TiCl 4 –
Et 3 N to give  367 , which was treated with  p -toluenesulfonic acid in methanol to give 
 363 . Yet another method included reaction of  367  with methyl orthoformate to give 
 368 , which was transformed to  363  upon treatment with methanesulfonic acid.

    Another approach to Fluacrypyrim ( 301 ) commenced from pyrimidine  derivative 
 364 , which reacted with methyl formate in the presence of TiCl 4 –Et 3 N to give  365  
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  Scheme 81    Synthesis of key intermediate  363        

(Scheme  80 ) [ 293 ,  294 ]. Methylation of  365  using methyl orthoformate or dimethyl 
sulphate and alkali led to the formation of  301 . 

 The last pesticide from this section is Flufenerim (Flumfen®  302 ), which is 
under development by Ube Industries as an insecticide. It is reported to control 
aphids, whitefl ies, and cotton leafworm, but has no activity against thrips [ 296 ]. 
Since Flufenerim is chemically related to Pyrimidifen (Miteclean®  369 ) (Fig.  16 ), 
it was initially believed to have similar mechanism of action,  i.e.  inhibition of the 
mitochondrial electron transport of NADH dehydrogenase (NADH: ubiquinone 
oxidoreductase, complex I) – an enzyme which transfers electrons from NADH to 
ubiquinone and hence opens the electron transport chain cascade. Nevertheless, it 
was shown that  302  reduced activity of acetylcholinesterase – an effect which 
possibly can be addressed to interaction with other systems [ 297 ].

   Flufenerim ( 302 ) was prepared from 4,5-dichloro-6-ethylpyrimidine ( 347 ) 
(Scheme  82 ) [ 298 ]. Compound  370  was chlorinated with chlorine gas; the product 
 371  thus obtained was subjected to nucleophilic substitution with AcOK to give 
acetate  372 , which upon hydrolysis and subsequent reaction with diethylaminosul-
phur trifl uoride (DAST) gave fl uoride  374 . Finally, reaction of  374  with amine  375  
led to the formation of Flufenerim ( 302 ).
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10        Conclusions and Outlook 

 Since discovery of the fi rst fl uorinated diazine – antineoplastic agent 5-fl uorouracil 
more than 20 compounds from the class were introduced into the market. 
Undoubtedly the success was achieved due to joint progress of medicinal chemistry, 
agrochemistry as well as synthetic methods of heterocyclic and fl uoroorganic chem-
istry. The continued progresses in these fi elds of science allow us to predict that the 
number of fl uorine containing diazines as drugs or agrochemicals on the market will 
be increased. Recent trends in using of perfl uorinated diazines as core scaffold for 
the synthesis of a diverse array of polysubstituted fl uorinated diazines for HTS 
increases probability of these compounds as potential hits and leads. Also the new 
methodologies of direct introduction of fl uorinated substituent, like Baran approach, 
continue to appear facilitating further investigation. Moreover in the chemical space 
covered by fl uorinated diazines remains “white spots”. Thus diazine scaffold deco-
rated by important in med and agrochem fl uorinated fragments such as -CHF 2 , 
-CH 2 CF 3 , -OCF 3 , -SCF 3 , -SF 5  not investigated because the synthetic chemistry of 
these compounds on development phase or not developed at all. Therefore the com-
prehensive investigations in the fi eld of fl uorinated diazines still are interesting both 
for academic and industrial scientists.     
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    Abstract     In this chapter data on structure, synthetic routes, reactivity of derivatives 
of 1,2,3-triazines, 1,2,4-triazines and 1,3,5-triazines − bearing one or several 
fl uorine atoms in heterocyclic ring as well as trifl uoromethyl substituted triazines 
are considered and analyzed, and also their certain representatives are discussed. 
The bibliography – 119 references.  

  Keywords     Fluorine   •   Trifl uoromethyl group   •   Triazine   •   NMR spectroscopy   • 
  Antiviral activity   •   Dyes  

1         Introduction 

 A    growing interest to fl uorinated derivatives of triazines which is observed for the 
recent two decades has undoubtedly stimulated the development of new synthetic 
methods, as well as studying of their reactivity and elucidation of areas of their 
plausible applications.  

2     Structure 

 In this section the data of theoretical studies refl ecting the effects of fl uorine atom(s) 
on geometrical characteristics of fl uorine-containing triazines will be discussed. 
Selected examples of the X-ray crystallography analysis of 1,3,5-triazines, 
1,2,4- triazines and 1,2,3-triazines as well as the data of  19 F NMR spectroscopy 
elucidations will be considered. 

2.1     Quantum-Chemical Calculations 

 The effects of incorporating of a fl uorine atom in the position 2 of 1,3,5-triazine ring 
have been estimated by  ab initio gradient  method [ 1 ]. According to the data of 
quantum chemical calculations (Table  1 ), the angle of N 1 C 2 N 3  increases of 1.6°, 
the bonds C 2 -N 1  and C 2 -N 3  become shorter of 0.0017 nm. It should be noted that the 
C-F bond in 2-fl uoro-1,3,5-triazine is shortest one relative to 2-fl uoropyridine (the 
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difference is −0.003 nm) and 2-fl uoropyrimidine (−0.001 nm) (Fig.  1 ). Calculations 
using HF//6-31G*//6-31G* gave following values of the N-F bond distances in 
1-fl uoro-2,4,6-trichloro- s -triazinium hexafl uoroarsenate and 1-fl uoro- s -triazinium 
hexafl uoroarsenate: 0.1314 nm and 0.1317 nm respectively [ 2 ].

2.2         X-ray Crystallography Analysis Data 

 Research of fl uorinated derivatives of triazine by the X-ray method has fragmentary 
character. Fluorinated 1,3,5-triazines are most in detail considered. The X-ray data 
for 2,4-difl uoro-6-bis(trimethylsilylphosphino)-1,3,5-triazine (Fig.  2 ) have been 
obtained [ 3 ]. The P(CN) 3  fragment of the molecule is practically planar, however the 
angles in the 1,3,5-triazine ring proved to differ considerably from those of the cor-
rect hexagon fi gure. The C 1 –N 1 –C 2  angle is 112.3°, while the opposite angle N 2 –C 3 –
N 3  has a much higher value of 132.0°. The C-N bond lengths have value which are 
typical for the corresponding double bond (0.131–0.135 nm), whereas C-P bond is 
signifi cantly longer (0.181 nm), but keeps within an interval of typically C-P bond.

   Also fl uorinated anionic triazine systems with TAS +  [(Me 2 N) 3 S + ] cation have 
been studied by the X-ray crystallography (Figs.  3 ,  4 ,  5  and  6 ) [ 4 ]. It has been shown 
that values of the C 1 –N 1  and C 1 –N 3  bonds in the anion C 3 N 3 F 4  −  correspond to those 

  Table 1    Characteristics 
of 1,3,5-triazine and 
2-monofl uoro analogue   Parameter   

N

N

N

      

N

N

N

F    

 Bond length, nm 
 N 1 –C 2 , N 3 –C 2   0.1332  0.1315 
 N 3 –C 4   0.1332  0.1332 
 C 4 –N 5   0.1332  0.1332 
 C 2 –X 2   0.1067  0.1332 
 C 4 –H 4   0.1067  0.1066 
 С 6 –Н 6   0.1067  0.1066 
 Valency angles 
 С 6 N 1 С 2   116.1  115.5 
 N 1 C 2 N 3    123.9    125.5  
 N 3 C 4 N 5   123.9  123.7 
 C 4 N 5 C 6   116.1  116.0 
 N 1 C 2 X 2   118.1  119.0 
 N 3 C 4 H 4   118.1  117.8 
 Dipolar moment  0  2.28 

N F0.1297

126.4° 127.1°

0.1313

0.13420.1362 125.5°

0.1315

0.1332

N

N

F

N

N

N

F

  Fig. 1    Bond lengths (nm) and angles for 2-fl uoropyridine, 2-fl uoropyrimidine and 2-fl uoro-
1,3,5-triazine       
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N N-

N

F F

F F

N N

N

F F

F F
-

(Me2N)3S+

Bond lengths (nm):
C1-F1 0.1400(4), C1-F2 0.1383(4),
C1-N1 0.1403(4), C1-N3 0.1400(4),
N1-C2 0.1277(4), N3-C3 0.1279(4),
C2-N2 0.1329(4), N2-C3 0.1319(4),
C2-F 0.1345(3), C3-F 0.1348(3).
Valency angles: N1-C1-N3 120.4(3),
N1-C2-N2 132.0(3), F1-C1-F2 101.1(2)

  Fig. 3    X-ray data for TAS +  C 3 N 3 F 4  −  (Reproduced with permission of RCS [ 4 ])       

N N

NF F

O

-

(Me2N)3S+

Bond lengths (nm):
C1-O 0.1225(4), C1-N1 0.1390(4),
C1-N3 0.1391(5), N1-C2 0.1288(5),
N3-C3 0.1281(5), C2-N2 0.1310(6),
N2-C3 0.1322(6), C2-F 0.1350(5),
C3-F 0.1342(5).
Valency angles: N1-C1-N3 119.4(3),

N1-C2-N2 132.1(4).

  Fig. 4    X-ray data for РСА TAS +  C 3 N 3 F 2 O −  (With permission of RCS [ 4 ])       

N

N

N

F

F

P

SiMe3

SiMe3

Bond lengths (nm):
C1-N1 0.131(2), C1-N3 0.136(2),
C1-P1 0.181(1),  C2-N1 0.130(2),
C2-N2 0.132(2),  C2-F1 0.133(1),
C3-N2 0.131(1),  C3-N3 0.130(2),
C3-F2 0.134(2), P1-Si1 0.2256(5),
P1-Si2     0.272(5), Si1-C51  0.186(2),
Si1-C52  0.186(2), Si1-C53  0.186(1),
Si2-C54  0.186(2), Si2-C55  0.186(2),
Si2-C56  0.186(2).

Valency angles:
N1-C1-N3 123.4(8), N1-C1-P1 118.4(8),
N3-C1-P1 117.1(6), N1-C2-N2 130.7(8),
N2-C3-N3 130.5(8), C1-N1-C2 113.1(7),
S-1-P1-Si2 112.6(3), C1-P1-Si2 101.1(4),
C1-P1-Si1 101.9(4),  C1-N3-C3 112.6(7),
C2-N2-C3 109.4(8).

  Fig. 2    X-ray data for 2,4-difl uoro-6-bis(trimethylsilylphosphino)-1,3,5-triazine (Reproduced with 
permission of ACS [ 3 ])       
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N N

N

F3C CF3

F3C
F

- (Me2N)3S+

Bond lengths (nm):

C4-C5 0.1458(8).
Angle N1-C3-N3 118.3(4),
sum of angles 720.3.

C1-N1 0.1444(6), N1-C3 0.1263(7)
N2-C3 0.1332(8), C1-C2 0.1536(5),

  Fig. 5    X-ray data for TAS +  C 3 N 3 F(CF 3 ) 3  −  (Reproduced with permission of RCS [ 4 ])       

N N

N

F CF3

F3C CF3

- (Me2N)3S+

Bond lengths (nm):

C1-N1 0.1456(4), N1-C3 0.1302(4),
N2-C3 0.1334(4), C1-C2  0.1526(4),
C5-C6 0.1514(4).
Angle N1-C3-N3 117.0(2),
sum of angles 716.7°.

  Fig. 6    X-ray data for TAS +  C 3 N 3 F(CF 3 ) 3  −  (Reproduced with permission of RCS [ 4 ])       

of the ordinary bond, the N 1 –C 2  and C 3 –N 3  bonds are double, while the C 2 –N 2  and 
N 2 –C 3  bonds proved to have intermediate values between ordinary and double bonds. 
The ring C 3 N 3  fragment of compound TAS +  C 3 N 3 F 4  −  is a planar one with the C 1  
carbon atom to be in a tetrahedral confi guration.

      X-ray data for 2-tris(trimethylstannyl)amino-4,6-difl uoro-1,3,5-triazine (Fig.  7 ) 
show that the triazine ring is a little distorted, the molecule is nearly planar with the 
exception of methyl groups. The maximum deviation from the plane is exhibited by 
tin atoms (0.009 nm). The enlarged angle N 2 –C 3 –N 3  (130.0°) is resisted by the 
angle C 2 –N 1 –C 1  (114.7°). The C-N bond attached to the triazine ring is unusually 
small and its length is very close to values of three other C-N bonds of the ring, 
thus indicating at a considerable π-linkage of the ring with the exocyclic nitrogen 
atom [ 5 ].

   The N-F bond length (0.11 nm) in 1-fl uoro-2,4,6-trichloro- s -triazine hexafl uoro-
arsenate is shorter than its calculated value of 0.0214 nm [ 2 ]. Also perfl uorinated 
hexahydro-1,3,5-triazin-2,6-dione has been studied by X-ray crystallography 
method (Fig.  8 ) [ 6 ].
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2.3        NMR Spectroscopy 

 Existence of three nitrogen atoms in a ring and such substituents as fl uorine atoms 
in molecules of considered group of compounds does the most informative for the 
analysis of structure and properties NMR  13 C and  19 F spectroscopy. 

2.3.1     NMR  13 C Spectroscopy 

 The data on NMR  13 C spectroscopy of 6-substituted fl uorinated 1,3,5-triazines 
have been analyzed [ 3 ,  5 ,  7 ,  8 ]. Replacement of fl uorine atom by CF(CF 3 ) 2  
group leads to upfi eld shift of signals of triazine carbons in NMR  13 C spectra. 

N

N
H

N

O O

CF3
F3C

F F

Valency angles: N1-C1-N2 113.0(5),
C1-N2-C3  124.3(5), N2-C3-N3 115.4(5),
C3-N3-C4  125.7(5), N3-C4-N1 115.3(5),
C4-N1-C1 125.1(5), F1-C1-F2 104.9(4),
F8-C5-F6 107.6(6), C8-C5-F7  110.2(6),
F6-C5-F8  106.3(6), F5-F6-F4  108.7(6),
F5-C6-F3  107.6(6), F4-C6-F3 108.2(6).

  Fig. 8    X-ray data for perfl uorinated hexahydrotriazindione (Reproduced with permission of 
Elsevier [ 6 ])       

N

N

N

N

F F

SnSn
Me

Me
Me

Me
Me
Me

Bond lengths (nm):
N4-C1 0.1333(16), C1-N1 0.1366(16),
N1-C2 0.1297(18), C2-N2 0.1277(20),
N2-C3 0.1318(20), C3-N3 0.1311(19),
N3-C1 0.1356(16).
Valency angles: N3-C1-N4 120.9(11),
N4-C1-N1 118.8(11), C1-N1-C2 114.7(11),
N1-C2-N2 131.2(12), C2-N2-C3 109.2(11),
N2-C3-N3 130.0(12), C3-N3-C1 144.3(11).

  Fig. 7    X-ray data for 2- tris (trimethylstannyl)amino-4,6-difl uoro-1,3,5-triazine (Reproduced with 
permission of ACS [ 5 ])       
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F
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N

1 5

3172.3
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N
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1

53

170.4

171.2
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N

N

N
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CF3F3C
F

H3C

1

53

170.2

170.3

168.2

3J(C2, F)= 14,
1J(C4, F)= 226,
3J(C4, F)= 19 Hz

3J(C2, F)= 13, 4J(C2, F)=3, 3J(C2, F)= 13, 4J(C2, F)=3,
2J(C4, F)= 21, 3J(C4, F)= 12,
1J(C6, F)= 228, 4J(C6, F)=3,1J(C6, F)= 229, 4J(C6, F)=3,

2J(C4, F)= 22, 3J(C4, F)= 12,

N

N

N

F

N N

CH2CH3
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CH(CH3)2

166.8 167.7

169.4
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165.6

209.2

N

O

N

N

N

F

N

CH3

H3C

H3C CH3

166.4 167.3

210.2

N

O

N

N

N

F

NH

CH(CH3)2

1J(C2, F)=211.5 Hz 1J(C2, F)= 209.2 Hz 1J(C2, F)= 210.5 Hz

N

N

N

F

N FMe3Sn

SnMe3

1

5

3
171.02

171.02175.67
N

N

N

F

P FMe3Si
SiMe3

1

5

3
169.6

169.6203.05
N

N
H

N

O O

CF3F3C
F F

143.6143.6

119.8119.8
115.5

1J 258.6 Hz

1J(C2, F)= 222.28,
3J(C2, F4)= 22.9,
3J(C6, F4)= 16.0

1J(C2, F)= 230, 3J(C2, F4)= 70,
3J(C2, F)= 27, 1J(C6, P)= 38.8,
3J(C6, F4)= 42

  Scheme 1    NMR  13 C spectra data of fl uorinated triazines       

NMR  13 C spectra of perfl uorinated hexahydrotriazinedione have been also 
 studied (Scheme  1 ) [ 6 ].

   Cyclic carbons with fl uorine atom in NMR  13 C spectra of boronfl uoride salt of 
2,4-difl uoro-6-(1,3-diisopropyl-4,5-dimethylimidazolyl-2)-1,3,5-triazine are fi xed in 
the form of a multiplet at 170.6–172.9 ppm [ 9 ]. NMR  13 C spectra of difl uoro-
sulphonamido- 1,3,5-triazines in THF- d   8   at different temperatures (Table  2 ) reveal 
that at the room temperature C 2  and C 3  atoms are equivalent, and at low temperatures 
rotation of the substituent round exocyclic C-N bond slows down so that C 2  and C 3  
atoms become magnetically nonequivalent [ 10 ].

2.3.2         19 F NMR Spectroscopy 

 The  19 F NMR spectra of a number of fl uorinated 1,3,5-triazines have been reported 
(solvent CDCl 3 ), the chemical shifts of fl uorine are observed at -32-(-42) ppm 
[ 8 ]. As the information about spectra of fl uorine-containing diazines in the same 
solvent is absent, it is diffi cult to compare  19 F NMR spectra of fl uorotriazines and 
fl uorodiazines (Scheme  2 ).
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N N

N FF

F

N N

N CF(CF3)2F

F

N N

N FF

NMe2

N N

N FF

NR2

-33 -32

-40
-37 (R = Me),
-43 (R = Et)

  Scheme 2    Chemical shifts in  19 F NMR spectra of fl uorinated 1,3,5-triazines       

N N

N

F3C CF3

F3C F

- (Me2N)3S+
N N

N

F3C CF3

F F

- (Me2N)3S+-46.3

-82.2

-46.3

-75.3

-81.9

  Scheme 3    The NMR  19 F spectra data of the anionic fl uorine-containing triazine systems and TAS +        

   The NMR  19 F spectra of the salts consisting of the anionic fl uorine-containing 
triazine systems and TAS +  [(Me 2 N) 3 S + ] as the cation have been elucidated, the 
chemical shifts of aromatic fl uorine are equal −46.3 ppm (Scheme  3 ) [ 4 ]:

   Table 2    NMR  13 C data of difl uorosulphonamido-1,3,5-triazines in THF- d   8   at different temperatures 

  N

N

N

N

F F

SO2REt

1

23

      

 R  T, °C  Chemical shift of С 1   Chemical shift of С 2  and С 3  

 С 8 F 17   2  170.6 t  172.4 dd 
 −60  170.5 t  172.2 dd 

 С 8 Н 17   20  170.3 t  172.0 dd 
 −50  170.0 t  173 br, 170 br 
 −90  170.0 t  171.2 dd, 172.1 dd 

 С 6 Н 4 СН 3   24  169.3 t  171.8 dd 
 −60  168.9 t  173 br, 170 br 
 −90  168.8 t  171.0 dd, 171.9 dd 

   The NMR  19 F spectra data for the delocalized 1,3,5-triazinium cation which 
is formed on treatment of 3,5-trifl uoromethyl-2,4,4,6,6-pentafl uoro-3,4,5,6-tetra-
hydro-1,3,5-triazine with SbF 5  have been presented, the chemical shifts of aromatic 
fl uorine are −13.5 ppm (Scheme  4 ) [ 6 ].
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N

N

N
CF3F3C
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+
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-33.5
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13.5 Hz

19.8 Hz

22.5 Hz

N

N
H

N

O O

CF3F3C
F F -54.0

-48.915.2 Hz

  Scheme 4    The NMR  19 F spectra data for the delocalized 1,3,5-triazinium cation       
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N
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N
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  Scheme 5    Chemical shifts and coupling constants in  19 F NMR spectra of fl uorotriazines       

   The data of  19 F NMR spectroscopy show that chemical shifts of fl uorine atoms 
attached to the ring in 1,2,3-triazines are varied greatly and lay in range from −79.5 
to −166.0 ppm [ 11 ]. The data on  19 F NMR spectra of fl uorinated 1,2,4-triazines have 
recently been presented and discussed [ 12 ]. Coupling constants  5  J  F(3),F(6)  lay in range 
from 35 to 37 Hz, constant  3  J  F(5),F(6)  proved to be 24 Hz, whereas the  4  J  F(3),F(5)  has 
smallest value (<4 Hz) (Scheme  5 ).

3          Synthetic Methods 

 One of the most common synthetic approach to 1,2,3-, 1,2,4- and 1,3,5-triazines, 
bearing fl uorine atoms as substituents in the ring, consists of the nucleophilic 
displacement of chlorine or bromine atoms with the fl uoride anion in the 
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corresponding haloderivatives, a direct fl uorination, the Shimman reaction in 
 addition to another synthetic strategies based on condensations and ring 
transformations. 

3.1     Synthesis of Fluorine-Containing 1,2,3-Triazines 

3.1.1     Nucleophilic Displacement of Bromine or Chlorine Atoms with the 
Fluoride Anion 

    The displacement of bromine or chlorine atoms in heteroaromatic compounds is 
certainly one of the most effective synthetic methods leading to fl uorinated hetero-
cyclic compounds [ 13 ]. For instance, heating 4,5,6-tribromo-1,2,3-triazine  1  with 
dry potassium fl uoride at 550 °C in vacuum results in the formation of a mixture of 
4,5,6-trifl uoro-1,2,3-triazine  2  and 5-bromo-4,6-difl uoro-1,2,3-triazine  3  in the ratio 
1:1 (Scheme  6 ) [ 14 ].

N
N

N

Cl
Cl

Cl

N
N

N

F
F

F

4 2

N
N

N

F

Cl

Cl

+

6

+ N
N

N

F

Cl

F

5

KF

15% 11% 49%

  Scheme 7    The reaction of 4,5,6-trichloro-1,2,3-triazine  4  with KF       

N
N

N

Br
Br

Br

N
N

N

F
F

F550 °C, 1-3 mbar

1 2

N
N

N

F
Br

F

+

3
16%

KF

16%

  Scheme 6    Nucleophilic displacement of bromine atoms with the fl uoride anion       

   The reaction of 4,5,6-trichloro-1,2,3-triazine  4  with potassium fl uoride at an 
elevated temperatures provides fully substituted 4,5,6-trifl uoro-1,2,3-triazine  2  in 
addition to compounds  5  and  6  with partial displacement of chlorine atoms 
(Scheme  7 ) [ 11 ]. It is clear that yields of fl uorinated products depend on the reaction 
conditions (Table  3 ) [ 11 ]. At temperatures of 150–200 °C replacement of one or two 
chlorine atoms take place. The polyfl uorinated 1,2,3-triazines  2, 5  were obtained 
when using two-step process in 55–69 % yields.

    Interaction of 4,5,6-trichloro-1,2,3-triazine  4  with hexafl uoropropene in 
the presence of potassium and cesium fl uorides leads to the formation of 
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4,6-di-(perfl uoroisopropyl)-5-fl uoro-1,2,3-triazine  7  in addition to small quantities 
of polyfl uorinated alkyl-1,2,3-triazines  8  and  9  (Scheme  8 ) [ 11 ,  15 ]. Trifl uoromethyl 
substituted 1,2,3-triazines are still unknown compounds.

N
N

N

Cl
Cl

Cl

N
N

N

CF(CF3)2
F

CF(CF3)2

KF, CsF

4 7

N
N

N CF(CF3)2

CF3

CF3

++ N
N

N

CF(CF3)2

CF(CF3)2

CF(CF3)2

8

sulfolane, 25 °C
2 days

F3C CF3

F

F

F3C CF3 9

CF3

F

F

F

(48%) (3%) (2%)

  Scheme 8    Interaction of  4  with hexafl uoropropene in the presence of KF and CsF       

   Table 3    Fluorination of 4,5,6-trichloro-1,2,3-triazine [ 11 ]   

 Reaction conditions  Yields, % 

 Temperature   2    5    6  

 KF, sealed tube  150 °C  –  11  49 
 10 −2  mm, 18 h  180 °C  –  58  9 

 200 °C  –  37  0 
 KF, vacuum  500 °C (1 cycle)  3  40  47 
 Transfer 10 −2  mm  500 °C (4 cycles)  18  65  – 

 (a) 500 °C (b) 600 °C  69  15  – 
 (a) 450 °C (b) 700 °C  55  4  – 
 (a) 450 °C (b) 600 °C  65  18  – 

3.2         Synthesis of Fluorine-Containing 1,2,4-Triazines 

 Fluorinated 1,2,4-triazines can be obtained by means of several synthetic approaches: 
the formation of 1,2,4-triazine ring through cyclocondensations of fl uorine- 
containing synthones, a direct fl uorination of the ring, replacement of chlorine 
atoms in chlorotriazines with the fl uoride anion and other methods. 

3.2.1     Cyclocondensation Reactions 

 The synthesis of azoloannelated fl uoro-1,2,4-triazines – 2-R-6-fl uoro-1,2,4- 
triazolo[5,1- c ][1,2,4]triazin-7(4H)-ones  10  has been recently described [ 16 ]. The 
coupling of 1,2,4-triazolyl-5-diazonium salts  11  with ethyl 2-fl uoroacetate and 
the accompanied deacetylation leads to the formation of hydrazones  12  followed by 
cyclization on heating in aqueous alcohol in the presence of sodium acetate into 
the target fl uoro compounds  10  (Scheme  9 ).
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3.2.2        Direct Fluorination Reactions 

 A rare example of the incorporation of a fl uorine atom into azaaromatic compounds 
is the direct fl uorination reaction of 6-azauracyl  13a  and 2-(   2,3,5-tri-O-acetyl-β-D-
ribofuranozyl-1,2,4-triazin)-3,5(2H,4H)-dione  13b  which takes place on passing of 
fl uorine through a solution of azauracils  13a,b  in acetic acid, thus giving 6-fl uoro- 
1,2,4-triazin-3,5(2H,4H)-diones  14  in 20–55 % yields (Scheme  10 ) [ 17 ,  18 ].

HN

N NO
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R
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N NO

O
F

R

AcOH, 15 °C

13 a,b 14

R = H (a),
O

AcO

AcO OAc

F2

(b)

(20-55%)

  Scheme 10    Direct fl uorination reactions       
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  Scheme 11    Synthesis of 1,3-dimetyl-5-fl uoro-6- azauracyl  16        

N
H

N

F
NN

N

O

R

N

NN

R NH2

H NaNO2, HCl

N

NHN

R N2
+

Cl
-

Me

OO

F

EtO

AcONa, EtOH, 5 °C-r.t.-5 °C

N

NHN

R N
H

N

F

O

OEt
AcONa, 80% EtOH

11

12 10 (55-63%)R = H, CH3, SCH3
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  Scheme 9    Synthesis of triazolotriazin-7(4Н)-ones  10        

3.2.3        Nucleophilic Displacement of Bromine or Chlorine 
Atoms with the Fluoride Ion 

 The reaction of bromo or chloro derivatives of triazines with the fl uoride ion is one 
of the main methods for the synthesis of fl uorinated 1,2,4-triazines [ 13 ]. For 
instance, 1,3-dimetyl-5-fl uoro-6-azauracyl  16  was obtained by reacting dry potassium 
fl uoride with the corresponding bromo precursor  15  (Scheme  11 ) [ 19 ].
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   Another example illustrating utility of this approach is displacement of chlorine 
atoms in 3,5,6-trichloro-1,2,4-triazine which does occur in a melt of compound  17  
with dry KF (Scheme  12 ) [ 20 ]. The conversion degree depends on the reaction 
conditions: at 450 °С the dominant product of the reaction proved to be 3,5,6- trifl uoro-
1,2,4-triazine  18 , while 3-chloro-5,6-difl uoro-1,2,4-triazine  19  was isolated as a 
minor product.
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N NCl

Cl
Cl

N

N NF

F
F

450 °C

17 18

N

N NCl

F
F

19

+
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  Scheme 12    Displacement of chlorine atoms in 3,5,6-trichloro-1,2,4-triazine       
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  Scheme 14    The Baltz-Schiemann reaction       
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  Scheme 13    Reaction of compound  21  with KF       

   In order to obtain 3-fl uoro-5-phenyl-1,2,4-triazine  22  from the corresponding 
3-chloro derivative  20  the chlorine atom has to be displaced fi rst with the trimethyl-
ammonium fragment (compound  21 ), which undergoes easily the fl uorination 
reaction by action of potassium fl uoride to give 3-fl uoro-1,2,4-triazine  22  in 
addition to 3-dimethylamino-5-phenyl-1,2,4-triazine  23  [ 21 ] (Scheme  13 ).

3.2.4        The Baltz-Schiemann Reaction 

 3-Fluoro-1,2,4-triazin-2-oxides  26  were obtained through diazotization of the corre-
sponding amino derivatives  24  followed by thermolysis of the resulting diazonium 
tetrafl uoroborates  25  (Scheme  14 ). It should be noted the salts  25  have been isolated 
fi rst as rather stable heterocyclic diazonium species [ 22 ].
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   Two main synthetic approaches to trifl uoromethyl substituted 1,2,4-triazines are 
known. They are cyclocondensation process based on (trifl uoromethyl)carbonyl 
derivatives and transformation of 3,6-bis(trifl uoromethyl)-1,2,4,5-tetrazine ring. 

 A synthesis of 3-methylthio-5-trifl uoromethyl-1,2,4-triazine  30  was described 
using dibromotrifl uoroaceton  3  and S-methylthiosemicarbazide  27  as starting 
materials (Scheme  15 ) [ 23 ]. The synthesis of 3-methylthio-6-trifl uoromethyl-1,2,4- 
triazine  31  was achieved by using trifl uoropyruvaldehyde  28  and S-methyl-
thiosemicarbazide  27  as starting materials (Scheme  15 ) [ 24 ]. 3-Aminotriazine  33  
was prepared by the condensation of aminoguanidine  32  with dibromoketone  29 , 
this condensation was non-selective, and 6-trifl uoromethyl- isomer as by-product 
was formed (Scheme  15 ) [ 25 ].
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  Scheme 16    Synthesis of 5-trifl uoromethyl-1,2,4-triazines  36        
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  Scheme 15    Synthetic approaches to trifl uoromethyl substituted 1,2,4-triazines       

   3-Hydrazono-1,1,1-trifl uoroalkan-2-ones  35  prepared from 1,1,1-trifi uoroalkane- 
2,3-diones  34  reacted with several aldehydes in the presence of aqueous NH 4 OH 
to afford 5-trifl uoromethyl-2,3-dihydro-1,2,4-triazines, of which oxidation gave 
5-trifl uoromethyl- 1,2,4-triazines  36  (Scheme  16 ) [ 26 ].
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   Microwave assisted reaction of 2-diazo-4,4,4-trifl uoro-3-oxobutanoate  37  with 
aryl hydrazides in the presence of copper(II)acetate, followed by reaction with 
ammonium acetate in acetic acid gave the 1,2,4-triazines  38  in modest yield 
(Scheme  17 ) [ 27 ].

CF3

O

MeOOC

NHNH2

NH
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  Scheme 18    Synthesis of triazine  42        
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  Scheme 17    Synthesis of 1,2,4-triazines  38        

   The reaction of trifl uoropyruvate  39  with 4-methylbenzoic acid amidrazone was 
carried out in refl uxing ethanol to give 3-(p-tolyl)-6-trifl uoromethyl-1,2,4-triazin- 
5(2H)-one  40  in 57 % yield. A 6-trfluoromethyl-1,2,4-triazine derivative  42  
was synthesized in almost quantitative yield from  40  by chlorination followed by 
catalytic hydrogenation to remove chlorine substituent (Scheme  18 ) [ 28 ].

   Bis(trimethylsilyl) ether of 5-trifl uoromethyl-6-azauracil  48  was obtained for 
the synthesis of the corresponding β-D-deoxyribonucleoside and nucleotide. 
α-Trifl uoromethacrylic acid  43  has been converted with hydrogen peroxide to 
α,β-dihydroxy- α-trifl uoromethylpropionic acid  44 , which gave the hydrate of per-
fl uoropyruvic acid  45  on treatment with sodium periodate. The semicarbazone  46  
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was cyclized using thionyl chloride to 5-trifl uoromethyl-6-azauracil  47 , compound 
 47  was heated under refl ux in hexamethyldisilazane under nitrogen atmosphere thus 
resulting in the formation of 6-trifl uoromethyl-1,2,4-triazine  48  (Scheme  19 ) [ 29 ].

N

N N
N

CF3

CF3
49

Me2N-N=CH-CH=N-NMe2
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  Scheme 20    Transformation of 3,6-bis(trifl uoromethyl)-1,2,4,5-tetrazine  49  ring       
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  Scheme 19    Synthesis of 6-trifl uoromethyl-1,2,4-triazine  48        

   Examples of synthesis of trifluoromethyl-substituted 1,2,4-triazines by 
transformation of 3,6-bis(trifl uoromethyl)-1,2,4,5-tetrazine  49  ring are pre-
sented at Scheme  20 . The anomeric  C -glycosyl precursors  50 , functionalized by 
an imidate group and appropriate for  C -nucleoside synthesis were utilized as 
heterodienophiles in a  Diels-Alder  reaction with inverse electron demand to 
yield the  O -benzyl protected 5-(   β-D-ribofuranozyl)- and 5-(α- D -ribofuranosyl)-
1,2,4-triazines  51  (Scheme  20 ) [ 30 ].
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   Analogues synthesis of 3,6-bis(trifl uoromethyl)-1,2,4-triasines bearing (2′,3′-
dideoxy-β-D-ribofuranosyl)- or (2′-deoxy-β-D-ribofuranosyl)-residue at posi-
tion 5 was reported [ 31 ,  32 ]. A new strategy for a straightforward synthesis of 
chiral 5-(2′-pyrrolidinyl)-1,2,4-triazines  53  starting from ( S )- and ( R )-proline imi-
noester  52  utilizing as the key steps the inverse electron demand Diels–Alder 
reaction of tetrazine  49  was achieved (Scheme  20 ) [ 33 ]. Electron-rich C = N bond 
of the hydrazone Me 2 N-N = CH-CH = N-NH 2  proved to be effective dienophiles 
towards the electron-defi cient tetrazine  49 . The substituted 1,2,4-triazine  54  was 
formed by way of [4 + 2]cycloaddition and elimination of nitrogen [ 34 ].   

3.3     Synthesis of Fluorine-Containing 1,3,5-Triazines 

 The most studied and widespread type of fl uorinated triazines are 1,3,5-triazines. 
As well as their isomer compounds, fl uorinated 1,3,5-triazines can be synthesized 
by several ways: (i) the formation of heterocyclic ring by means of cyclization 
reactions from fl uorine-containing precursors; (ii) direct fl uorination of triazines; 
(iii) nucleophilic displacement reactions of chlorinated triazines with the fl uorine 
ion, and other synthetic procedures. 

3.3.1     Cyclocondensation Reactions 

 Heating of a mixture of NaCN and NF 3  (or ClCN and NF 3 ) at 400–500 °C affords 
2,4,6-trifl uoro-1,2,3-triazine (cyanuric fl uoride)  55  in a high yield (Scheme  21 ) [ 35 ]. 
The formation of triazine  55  is also observed on heating of chlorocyane with copper 
chloride at 300 °C [or on heating of chlorocyane with HgN(CF 3 ) 2  at 120 °C] [ 36 ], or 
by the reaction of trifl uoroacetonitrile with cesium fl uoride and NF 3  (Scheme  21 ) 
[ 37 ]. At room temperature, liquid cyanogen fl uoride FCN is converted rapidly to 
polymeric materials, including cyanuric fl uoride and a high-melting, water-sensitive 
solid polymer, but in the gas phase at atmospheric pressure it has been recovered 
partially after several weeks or under the conditions of polymerization [ 38 ].
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  Scheme 21    Synthesis of 2,4,6-trifl uoro-1,2,3-triazine (cyanuric fl uoride)  55        
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   N-(4,6-Difl uoro-1,3,5-triazin-2-yl)-N-ethyloctane-1-sulphonamide has been 
obtained from N-ethyloctane-1-sulphonamide and cyanuric fl uoride [ 9 ]. The forma-
tion of 2,4-difl uoro-1,3,5-triazine fragment has been exploited in the synthesis of 
dyes. The synthesis of triazine dyes has also been reported in a number of publica-
tions [ 39 ,  40 ] (Scheme  22 ). 2,4-Difl uoro-6-arylamino-1,3,5-triazines  57  were 
obtained by the reaction of arylazoanilines  56  with cyanuric fl uoride.

N N
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F
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  Scheme 23    Transformation of 3,5,6-trifl uoro-1,2,4-triazine  18  under heating       
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  Scheme 22    Synthesis of 2,4-Difl uoro-6-arylamino-1,3,5-triazines  57        

3.3.2        Ring Transformations 

 Heating of 3,5,6-trifl uoro-1,2,4-triazine  18  at a high temperature (approximately 
500 °C) for many hours gave 2,4,6-trifl uoro-1,3,5-triazine  55 , as the ring transfor-
mation product, and perfl uoropropylene (Scheme  23 ) [ 12 ].

   A rather complicated mixture of fl uorinated compounds, including triazine  55 , is 
formed on heating of 4-dichloroamino-2,3,5,6-tetrafl uoropyridine at 550 °С [ 41 ]. 
Such transformations are supposed to occur due to decomposition of one fl uorinated 
heterocycle into fl uorocyane followed by the construction of a new fl uorinated tri-
azine system (Scheme  24 ).
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3.3.3       Direct Fluorination 

 Fluorination of the ring has been shown to take place on treatment of perfl uoroalkyl- 
1,3,5-triazines  58  with fl uorine, thus resulting in the formation of a mixture of cyan-
uric fl uoride  55  in addition to mono- and difl uoro-1,3,5-triazines  59  and  60  
(Scheme  25 ) [ 42 ].
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  Scheme 25    Fluorination of perfl uoroalkyl-1,3,5-triazines  58        
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3.3.4       Dehalogenation of Cyclic Halogenoamidines 

 Fluoroanhydride of cyanuric acid  55  was formed in a high yield by the defl uorina-
tion reaction of perfl uoro-1,3,5-triazacyclohexane  61a  by action of ferrocene 
(Scheme  26 ) [ 43 ]. Dehalogenation of (NClCF 2 ) 3   61b  under the action of ClSC(O)
CF 3  was reported (Scheme  26 ) [ 44 ].
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3.3.5       Replacement of Chlorine Atoms with Fluoride Ion 

 Replacement of chlorine atoms with fl uoride ion is one of the main synthetic procedure to 
obtain fl uorinated 1,3,5-triazines. Being depending on the reaction conditions and the 
nature of reagents, the reactions of cyanuric chloride with various fl uorinating reagents lead 
to mono-, di- and trifl uoro-1,3,5-triazines (Scheme  27 , Table  4 ) [ 45 – 56 ]. A mixture of 
SbF 3 , SbCl 3  and Cl 2  is an appropriate agent for total fl uorination of cyanuric chloride  62.  
Formation of trifl uoroderivative  55  proceeds selectively in high yield under reaction of 
 62  with HF and N(C 2 H 5 ) 3  in 1-methyl- pyrrolidinone at room temperature.
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R1 R2 R3 R4 Yield, %
CCl3 Cl CF3 F 73
CCl3 CCl3 CF3 CF3 79
C6H5 Cl C6H5 F 73
C6H5 C6H5 C6H5 C6H5 80

  Scheme 28    Synthesis of fl uorinated 1,3,5-triazines  66        
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  Scheme 27    Fluorination of cyanuric chloride  62        

   Table 4    Fluorination of cyanuric chloride   

 Reaction conditions 

 Yield, % 

 Literature   63    64    55  

 SbF 3 , SbCl 3 , Cl 2 , 160–180 °C  –  –  91  [ 47 ] 
 SF 4 , 150–250 °C, autoclave, 12 h  –  –  40  [ 48 ] 
 SF 4 , 150–250 °C, autoclave, 6 h  29  39  –  [ 48 ] 
 HF, 1-methyl-pyrrolidinone, N(C 2 H 5 ) 3 , 20–25 °C  –  –  90  [ 51 ] 
 CsF, 1- n -butyl-3-methylimidazolium hexafl uorophosphate, 80 °C  11  3  10  [ 51 ,  53 ] 
 KSO 2 F, 120–150 °C  3  11  31  [ 46 ] 
 KF, C 3 Cl 3 N 3 /KF, 300 °C  –  –  48  [ 52 ] 
 AgF, 100 °C, 1 h  –  –  78  [ 53 ] 
 F 2 , 125 °C  –  [ 50 ] 

    It is worth to note that chlorine atoms both in the ring and in CCl 3  groups of 
compound  65  are subjected to the replacement reaction (Scheme  28 ) [ 47 ].
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   Fluorination of 2,3-diamino-6-chloro-1,3,5-triazines  67  with anhydrous KF has 
been shown to proceed smoothly in the presence of catalytical amounts of 
dicyclohexano- 18-crown-6 (Scheme  29 ). Fluoro-1,2,4-triazines  68  were obtained in 
93–99 % yields [ 7 ]. 2-Isopropylamino-4-ethylamino-6-fl uoro-1,2,4-triazine  68  
(R 1  = NH( i -C 3 H 7 ), R 2  = C 2 H 5 ) was isolated in 66 % yield under similar reaction condi-
tions with triethylpentadecylammonium bromide as the phase transfer catalyst [ 7 ].
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67 68 (93-99%)

crown, 140 °C
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  Scheme 29    Synthesis of fl uorinated 1,3,5-triazines  68        
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  Scheme 30    Synthesis of fl uorinated 1,3,5-triazines  70        

3.3.6       The Baltz-Schiemann Reaction 

 2,4-Difl uoro-1,3,5-triazine  70  was obtained by diazotization of the corresponding 
diamino compound  69  followed by thermolysis of the resulting diazonium tetrafl uo-
roborate (Scheme  30 ) [ 57 ].

   The main synthetic approaches to trifl uoromethyl substituted 1,3,5-triazines are 
trimerization of CF 3 CN [ 58 ], cyclocondensation process based on imidoylamidines 
[ 59 ], cyanoguanidines [ 60 ] or biguanides [ 61 ] and also fl uorination of trichloromethyl- 
1,3,5-triazines [ 47 ,  62 ]. 

 For example, trifl uoroacetonitrile  73  trimerizes to give 2,4,6-tris(trifl uo-
romethyl)-1,3,5-triazine  74  [ 63 ]. Monomeric CF 3 CN was generated by reaction of 
diisopropylcyanamide  71  and trifl uoroacetic anhydride [ 58 ] or from perfl uoroethyl-
dimethylamine  72  [ 6 ] (Scheme  31 ).

   Di(pentafl uorocyclopropanyl)-substituted triazine  76  was prepared from nitrile 
 75  by reaction with ammonia followed by acylation-cyclization with trifl uoroacetic 
anhydride (Scheme  32 ) [ 64 ].
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   By the method of acylation-cyclodehydration of imidoylamidines  77  1,3,5- triazines 
 78  have been prepared (Scheme  33 ) [ 59 ]. Synthesis of 2-trifl uoromethyl- 4,6-bis(2,3-
dichloro-1,1,2,3,3-pentafl uoro)-1,3,5-triazine from 3,4-dichloro-2,2,3,4,4-pentafl uo-
robutyronitril, NH 3  and trifl uoroacetic anhydride was reported [ 65 ].
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  Scheme 33    Synthesis of fl uorinated 1,3,5-triazine  78        
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  Scheme 31    Synthesis of 2,4,6-tris(trifl uoromethyl)-1,3,5-triazine  74        

   2-Amino-4-trifl uoromethyl-6-methoxy-1,3,5-triazine  80  can be easily prepared 
starting from cyanoguanidine  79  by a zinc chloride-catalysed process (Scheme  34 ) [ 60 ].
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   Cyclocondensation of substituted biguanides  81  with methyl trifl uoroacetate in 
the presence of catalytic amounts of sodium ethylate gave 2-amino-4-(substituted 
amino)-6-trifl uoromethyl  sym -triazines  82  (Scheme  35 ) [ 66 – 72 ]. A rapid and effi cient 
synthesis under microwave irradiation has been developed for various substituted 
1,3,5-triazines that can serve as versatile building blocks for both supramolecular 
and medicinal chemistry [ 61 ,  73 ].
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  Scheme 34    Synthesis of fl uorinated 1,3,5-triazine  80        
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  Scheme 36    Synthesis of fl uorinated 1,3,5-triazine  85        

   2-Imino-1,3-thiazetidine  83  was used as precursor in the synthesis of triazine  85  
(Scheme  36 ) [ 74 ]. Reaction of  83  with trifl uoroacetic anhydride leads to 
2-trifl uoromethylimino- 3-(4-chlorophenyl)-1,3-thiazetidine  84 , the treatment of  84  
with S-methylisothiourea sulfate results in trifl uoromethyl substituted triazine  85 .

   2,4,6-Tris(trichloromethyl)-1,3,5-triazine  86  was transformed to trifl uorometh-
ylderivative  74  under the action of SbF 5  (Scheme  37 ) [ 62 ].
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4          Chemical Properties 

 The main reactions of fl uorine-containing triazines are connected with attack on the 
carbon atom bearing fl uorine, which results to replacement of the fl uorine atom or 
cycle transformation. 

4.1     Chemical Properties of 1,2,3-Triazines 

 Aromatic amines are capable to displace fl uorine atoms in trifl uroro-1,2,3-triazine  2  
to give 4-substituted products  87  (Scheme  38 ) [ 75 – 77 ].
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  Scheme 39    Transformation of 4,5,6-trifl uoro-1,2,3- triazine  2  under UV-irradiation       
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     Scheme 37    Synthesis of 2,4,6-tris(trifl uoromethy1)-1,3,5-triazine  74        
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  Scheme 38    Amino- defl uorination process in trifl uroro-1,2,3-triazine  2        

   Being UV-irradiated 4,5,6-trifl uoro-1,2,3-triazine  2  is transformed into trifl uoroazet 
 88  (Scheme  39 ) [ 78 ].

 

 

 

V.L. Rusinov et al.



697

N

N NF

F
F

18

HN

N
H

NO

O
F

89 (45%)

N

N NF

O
O

90

N

N NH3CO

O
F

91

+
CH3

CH3
CH3

N

N NF

NH2

F

92 (76%)THF, r.t.

N

N NF

N(C2H5)2

F

93 (20%)

N

N N
N

N(C2H5)2
F

94 (45%)

+
Na2CO3, r.t.

Na2CO3, THF, r.t. 95 (50%)

N

N
NN

H

HN
F

Cl

ClH2N Cl

r.t.

r.t.

H2O

NH3

CH3OH

HN(C2H5)2

C2H5

C2H5

  Scheme 40    Displacement of fl uorine atoms in fl uorinated 1,2,4-triazines       

4.2        Chemical Properties of 1,2,4-Triazines 

 A number of transformations involving the displacement of fl uorine atoms in fl uorinated 
1,2,4-triazines have been described. In case of 3,5,6-trifl uoro-1,2,4-triazine  18  the 
leaving mobility of fl uorine atoms in these displacement reactions is decreasing as 
follows F 5  > F 3  > F 6 . In accordance with this sequence the hydrolysis of 1,2,4-triazine 
 18  results in the formation of 6-fl uoro-1,2,4-triazine-3,5-(2Н,4Н)-dione  89  
(Scheme  40 ) [ 20 ]. The reaction of compound  18  with methanol in a sealed tube 
afforded 3,5-dimethoxy-6-fl uoro- and 5,6-dimethoxy-3-fl uoro-1,2,4-triazines  90  and 
 91  in the ratio 1:2 in total yield of 46 % [ 20 ]. Reactivity of 3,5,6-trifl uoro-1,2,4- 
triazine  18  towards N-nucleophiles can be illustrated by the reactions with ammonia 
(leading to 5-amino-3,6-difl uoro-1,2,4-triazine  92 ), diethylamine and 4- chloroaniline. 
The reaction of  18  with diethylamine affords two products, 5-diethylamino- 3,6-
difl uoro-1,2,4-triazine  93  and 3,5-bis(diethylamino)-6-fl uoro- 1,2,4- triazine  94  
(Scheme  40 ) [ 20 ], while the only compound  95  was obtained from the reaction of  18  
with 4-chloroaniline.
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   It is worth to note that the replacement of fl uorine atoms in 3,5,6-trifl uoro-1,2,4- 
triazine  18  by action of bis(trifl uoromethyl)amino anion (the latter can be obtained 
from perfl uoro-2-azapropene and cesium fl uoride) provides a mixture of mono-, di- 
and trisubstituted perfl uorodimethylamino-1,2,4-triazines  96–98  (Scheme  41 ) [ 12 ].
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  Scheme 43    Reaction of  18  with hexafl uoropropene       
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  Scheme 41    Interaction of  18  with bis(trifl uoromethyl)amino anion       
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  Scheme 42    Dimeriration of 3,5,6-trifl uoro-1,2,4-triazine  18        

   When 3,5,6-trifl uoro-1,2,4-triazine  18  was kept in vacuo at -20 °C for 1 month in 
a Pyrex ampoule the dimeriration product, 3,6-difl uoro-5-(3,5,5,6-tetrafl uoro- 4,5-
dihydro- 1,2,4-triazine-4-yl)-1,2,4-triazine  99,  was shown to be formed (Scheme  42 ) 
[ 20 ]. The dimer  99  was passed over potassium fl uoride at 250 °C to form triazine  18 .

   Incorporation of perfl uoroisopropyl groups into trifl uoro-1,2,4-triazine takes place 
smoothly in the reaction of  18  with hexafl uoropropene and cesium fl uoride without 
of any solvent [ 12 ]. When the reaction is carried out at 125 °С for 25 min a mixture of 
5-perfl uoroisopropyl-derivative  100  and 3,5-di- and 3,5,6-tri (perfl uoroisopropyl)-
1,2,4-triazines  101, 102  are formed (Scheme  43 ), while the formation of trisubstituted 
derivative  102  (yield 52 %) takes place on heating at 110 °С for 2 h.
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   A number of ring transformations and reactions involving the displacement of 
substituents such as SMe-group in trifl uoromethyl containing 1,2,4-triazines have 
been described.  N -substituted cyanamides participate in cycloaddition exclusively 
across C-5/N-2 of the 1,2,4-triazine nucleus  103  yielding the bicycle  104  as nonisol-
able intermediate. Elimination of trifl uoroacetonitrile leads to the 1,3,5-triazines  105  as 
the main reaction products. Besides, the 1,2,4-triazines  106  are formed by loss of 
methyl thiocyanate (Scheme  44 ) [ 28 ].
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  Scheme 44    Transformations and displacement of SMe-group in trifl uoromethyl containing 
1,2,4-triazines       
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  Scheme 45    Diels-Alder reactions of triazine  107        

   When the 5-methoxy derivative  107  was reacted with enamine in refl uxing 
chloroform, pyridine  108  was obtained (Scheme  45 ) [ 28 ]. Diels-Alder reaction of 
triazine 5 with norbornadiene leads to formation of pyridine  109  (Scheme  45 ). Low 
yield of  109  clearly shows that this Diels-Alder reaction proceeds in an inverse 
electron demand manner [ 28 ].

   Annulated pyridines  112  or  113  were formed on heating of triazines  110  or  111  
bearing at position 3 NH-(CH 2 ) n -C ≡ CH, O-(CH 2 ) n -C ≡ CH or S-(CH 2 ) n -C ≡ CH 
groups in chlorobenzene or diphenylether (Scheme  46 ) [ 23 ,  24 ]. This transformation is 
an example of intramolecular Diels-Alder reaction of 1,2,4 triazines accomplished 
with nitrogen elimination.
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   Nucleophilic displacement of the thiomethyl group in triazines  30  is described 
(Scheme  47 ) [ 23 ,  24 ,  80 ]. This reaction is valuable approach to broad variety of 
trifl uoromethylated triazines.

N
N

NX
n(H2C)

CF3

N

N

N

X

(CH2)n

CF3

110

111

nitrobenzene, t

nitrobenzene, t

N

F3C

X
(CH2)n

N XF3C
(CH2)n

112

113

X = NH, O, S; n = 2, 3, 4

21-38%

68-85%

  Scheme 46    Transformations of triazines  110  or  111        
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114

  Scheme 47    Nucleophilic displacement of the thiomethyl group in triazines  30        

4.3        Chemical Properties of 1,3,5-Triazines 

 The chemistry of fl uorinated 1,3,5-triazines is not as well studied as the chemistry 
of their chloro derivatives. In case of fl uorotriazines the reactions directed on the 
ring nitrogen atoms, displacement of fl uorine atoms and reactions on carbon atoms 
on the ring with retention of the fl uorine atoms appear to be the most characteristic 
ones. In this section the N-alkylation and N-acylation reactions, as well as replace-
ment of fl uorine atoms by a variety of nucleophiles will be considered. Metallation 
of fl uorotriazines and synthesis on the basis of organometallic compounds, as well 
as the cross-coupling reactions were described. Also several examples of photo-
chemical reactions and transformations are presented. 

4.3.1    Replacement of Fluorine Atoms 

 Nucleophilic replacement of fl uorine atoms in azaaromatic compounds can be 
performed under rather mild reaction conditions, and this method is certainly 
one of the most effective approaches to their functionalization. Incorporation of 
perfl uoroisopropyl groups into 2,4,6-trifl uoro-1,3,5-triazine  55  proceeds smoothly 
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by action of hexafl uoropropene and cesium fl uoride without of any solvent 
(Scheme  48 , Table  5 ) [ 11 ,  81 – 83 ]. Trisubstituted derivatives  118  were formed in 
52 % yield at 110 °С during 2 h. If reaction was carried out at 125 °С within 25 min 
the mixture of trisubstituted derivative  118  and 5-perfl uoroisopropyl-1,2,4-triazine 
 115  and 3,5-di-(perfl uoroisopropyl)-1,2,4-triazine  116  (Scheme  48 ) was isolated.
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  Scheme 48    Incorporation of perfl uoroisopropyl groups into 1,3,5-triazine  55        

   Table 5    The reaction of cyanuric fl uoride  55  with hexafl uoropropene   

 Reaction conditions 

 Yield, % 

 Ref   115    116    117    118  

 CsF, 125 °C  11  10  –  11  [ 11 ] 
 CsF, 110 °C, 2 h  52  [ 11 ] 
 KF, 70 °C, 19 h, sulfolane  36  15  –  8  [ 83 ] 
 PSHF, 72 h, sulfolane  35  8  –  –  [ 47 ] 
 N(C 2 H 5 ) 3 , 60 °C, 48 h, CH 3 CN  11  29  40  16  [ 82 ] 
 NCH 3 , 60 °C, 48 h, CH 3 CN  11  16  40  –  [ 82 ] 
 NCH 3 , r.t., 10–12 h  20  37  –  36  [ 83 ] 
 NCH 3 , 60 °C, no solvent, 48 h  –  –  –  95  [ 82 ] 

    It is worth noting that 2,4,6-trifl uoro-1,3,5-triazine  55  is less active than cyanuric 
chloride in the reaction of with aniline (Scheme  49 ) [ 84 ]. N,N-Dimethylaniline 
and 1,8-bis(dimethylamino)naphthalene react with cyanuric fl uoride  55  as 
C-nucleophiles to give 2,4-difl uoro-6-(4-dimethylaminophenyl)-1,3,5-triazine  119  
and 1,8-bis(dimethylamino)- 4,5-(2,4-difl uoro-1,3,5-triazinyl-6)naphthalene  123  
(Scheme  49 ) [ 8 ]. Contrary to it, N,N-diethylaniline, and  ortho - or  para -substituted 
N,N-dimethylanilines react with trifl uoro-1,3,5-triazine  55  as N-nucleophiles. 
These reactions are accompanied by elimination of N-alkyl group and the formation 
of 2,4-difl uoro-6-arylamino-1,3,5-triazines  120–122  (Scheme  49 ).
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   In a similar way, on treatment of perfl uoro-1,3,5-triazine  115  with dimethylaniline 
2-fl uoro-4-heptafl uoroisopropyl-6-(4-dimethylaminophenyl)-1,3,5-triazine  124  was 
obtained in 36 % yield (Scheme  50 ) [ 8 ].
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  Scheme 50    Formation of triazine  124        

   Replacement of fl uorine atoms in triazines  55, 115  and  115a  take place also by 
action of pyrrole, N-methylpyrrole and N-methylindole resulting in the formation of 
the corresponding 1,3,5-triazines  125–130  (Scheme  51 ) [ 8 ].
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   In a similar manner, the reaction of cyanuric fl uoride  55  with tris(trimethylstannyl)
amine in dry ether at 0 °C leads to the formation of 2,4-difl uoro- 6-[di(trimethylstannyl)]-
amino-1,3,5-triazine  131  (Scheme  52 ) [ 5 ].
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  Scheme 52    Reaction of cyanuric fl uoride  55  with tris(trimethylstannyl)amine       
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  Scheme 51    Replacement of fl uorine atoms in triazines  55, 115  and  115a        
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  Scheme 53    Substitution of fl uorine atoms in 2,4,6-trifl uoro-1,3,5-triazine  55        

   Reaction pathway for substitution of fl uorine atom in 2,4,6-trifl uoro-1,3,5- triazine 
 55  under the action of trifl uoromethyl anion has been studied [ 4 ] (Scheme  53 ). 
Since  C   3   N   3   F   4    −   can act as a potential fl uoride donor, initial reaction takes place 
between  C   3   N   3   F   4    −    (A)  and Me 3 SiCF 3  forming a reactive silane, a source of the elusive 
CF 3  anion, which can then attack the neutral triazine (Scheme  53 ). Through  A  →  B  
rearrangement, elimination, and further addition reactions the observed. As a result 
products  132 ,  133  and  134  are formed (Scheme  53 ).

 

 

 

Fluorinated Triazines



704

   The anion C 3 N 3 F 4  ( 135 ) was prepared using TASF as the fl uoride source via a 
 simple fl uoride addition to a carbon centre of C 3 N 3 F 3 . After removal of the solvent and 
all volatile products in vacuo, a colourless solid was isolated in quantitative yield 
(Scheme  54 ). The compound shows two signals in the  19 F NMR spectrum, due the 
presence of two magnetically nonequivalent fl uorine groups. This indicates the absence 
of fast intramolecular fl uorine exchange, which was found e.g. in cyclic fl uorophosp-
hazenates [ 4 ,  85 ].
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  Scheme 54    Fluoride addition to a carbon centre of C 3 N 3 F 3        
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  Scheme 56    Formation of fl uorotriazine  139        
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  Scheme 55    Interaction of  55  with 2,3-dihydro-1,3-isopropyl-4,5-dimethylimidazol-2-ylidene 
tetrafl uoroborate  136        

   2,4,6-Trifl uoro-1,3,5-triazine  55  reacts with 2,3-dihydro-1,3-isopropyl-4,5-
dimethylimidazol- 2-ylidene tetrafl uoroborate  136  resulting in replacement of one 
fl uorine atom to yield difl uoro-1,3,5-triazine  137  (Scheme  55 ) [ 8 ].

   The reaction of 2,4-difl uoro-6-(1-methylpyrrolyl-2)-1,3,5-triazine  138  with 
iodpropargyl alcohol affords the product  139  due to replacement of one fl uorine 
atom (Scheme  56 ) [ 86 ].
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   Deoxygenative ability of cyanuric fl uoride  55  for sulfoxides has been shown 
(Scheme  57 ) [ 87 ]. In contrast to cyanuric chloride no concomitant formation of unde-
sired halogenated sulfi des forms due to relatively low nucleophilicity of the fl uoride ion.
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  Scheme 57    Deoxygenative ability of cyanuric fl uoride  55        
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  Scheme 59    Synthesis of cyclohexyloxy-derivatives of fl uorinated triazines       

   Replacement of fl uorine atoms in 2,4-difl uoro-6-heptafl uoro- iso -propyl- and 
2-fl uoro-4,6-bis(heptafl uoro- iso -propyl)-1,3,5-triazines  115  and  116  takes place 
quantitatively on refl ux of  115  or  116  with methanol, isopropanol or phenols in 
acetonitrile (Scheme  58 ) [ 83 ].

   Heating of compound  115  with cyclohexanol has been established to afford 
2,4-dicyclohexyloxy-6-heptafl uoro- iso -propyl-1,3,5-triazine  141 , while 2-cyclohe-
xyloxy- 4,6-bis(heptafl uoro- iso -propyl)-1,3,5-triazine  142  was formed from com-
pound  116  (Scheme  59 ) [ 83 ].
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   It is known [ 88 ] that replacement of fl uorine atoms in cyanuric fl uoride  55  with 
tetra-O-benzyl- or tetra-O-acetylglucose takes place consequently with the forma-
tion of di- and trisubstituted 1,3,5-triazines  143  and  144  (Scheme  60 ).
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  Scheme 60    Replacement of fl uorine atoms in  55  with tetra-O-benzyl- or tetra-O-acetylglucose       

N N

N FF

F

55

(C2H5)3N, (C2H5)2O, r.t.

145 (87%)

OHOH

146

OH OH

O

O

N

N

N

F

O

O

N

NN

F

N
N

N

F

F

OO

N
N

N

F

F

O

O

N

N

N

C3H7HN

O

O

N

NN

NHC3H7

CHCl3, reflux

(C2H5)3N, CH3CN,
r.t.

147  (66%)

C3H7NH2

  Scheme 61    Synthesis of calix[2]arene-[2]triazines  146  and  147        

   The ability of fl uorine atoms in cyanuric fl uoride  55  to be replaced by action of 
O-nucleophiles can be exploited for the synthesis of calix[2]arene-[2]triazines  146  
and  147  [ 89 ]. The reaction of  55  with 1,3-phenylenedimethanol leads to the forma-
tion of fl uoro compound  145 , and then to calix  146 . Remaining fl uorine atoms in the 
triazine fragments of calix  146  can be replaced easily by action of amines (Scheme  61 ).
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   Reaction of 2,4,6-trifl uoro-1,3,5-triazine  55  with 1-amino-8-naphthol-3,6- 
disulfonic acid provides 1-(4′,6′-difl uoro-1′,3′,5′-triazyn-2′-yl)amino-8-naphthol- 
3,6-disulfonic acid in 95 % yield [ 90 ]. Substitution of fl uorine atoms in fl uorotriazine 
dye  148  with the alkoxides, generated from tetrahydropyran-2-methanol, α- and 
β-methylglucopyranoside, D-sorbitol, D-mannitol and D-glucose, has been found to 
lead to the corresponding conjugates  149  (Scheme  62 ) [ 91 ].
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  Scheme 62    Synthesis of derivatives  149        

   Replacement of one of fl uorine atoms in 2,4-difl uoro-6-(4-arylazophenyl)-
amino-1,2,4-triazines  150  with methoxy or amino group is used for the synthesis of fl uo-
rotriazine dyes  151  and  152 , which are effective for cotton coloring (Scheme  63 ) [ 39 ,  40 ].
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   The chemical process of replacement of fl uorine atoms has found its practical 
application for fi xing of yellow and dark blue fl uorotriazine dyes  153  on cellulose 
(Scheme  64 ) [ 92 – 94 ].
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  Scheme 64    Fixing of yellow and dark blue fl uorotriazine dyes  153  on cellulose       
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  Scheme 65    Acyl fl uorides  155 , powerful acylating agents for peptide synthesis       

   Replacement of three fl uorine atoms in cyanuric fl uoride  55  was applied for 
construction biologically active molecules of deazapurine type [ 95 ]. Cyanuric fl uo-
ride mediated reaction of chiral N α -tritylamino acids leads to the corresponding 
acyl fl uorides  155  which are powerful acylating agents for peptide synthesis 
(Scheme  65 ) [ 96 ].

   Reactions of replacement of SMe [ 79 ], trichloromethyl [ 97 ] or trifl uoromethyl 
groups represent effective approaches for modifi cations of trifl uoromethyl con-
taining 1,3,5-triazines. Direct vapor-phase fl uorination of tris-(trifl uoromethy1)-
s- triazine  74  has been studied and was found that the perfl uoroalkyl groups of  74  
were progressively replaced by fl uorine to give mixture of 2,4-difl uoro-6-
trifl uoromethyl-s- triazine  156  and 2,4-bis-(trifl uoromethyl)-6-fl uoro-s-triazine 
 157  (Scheme  66 ) [ 98 ]. Photoirradiation of tris-(trifl uoromethy1)- s -triazine in 
cyclohexane leads to a mixture of adduct  158  and dihydrocompound  159  
(Scheme  66 ) [ 99 ].
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   Diamine compound  161  was obtained in the reaction of tris(trifl uoromethyl)-s- 
triazine  74  with ammonia. The reaction was presumed to proceed through addition- 
elimination mechanism as shown at Scheme  67  from the fact that 1,4-adduct was 
obtained, when ammonia gas was bubbled into the ether solution of the s-triazine [ 100 ].
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  Scheme 66    Transformations of tris-(trifl uoromethy1)- s -triazine       
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  Scheme 67    Reaction of tris(trifl uoromethyl)-s-triazine  74  with ammonia       

   Transformation of diamino-derivative  161  to N-oxide  162  was reported via oxida-
tion with peracetic acid [ 101 ]. 2,4,6-Tris-(trifl uoromethyl)-1,3,5-triazine  74  reacts 
with ethanol an the presence of hydrochloric acid to form ethyl trifl uoroacetate [ 62 ].    

5     Application of Fluorinated Triazines 

 2-R-6-Fluoro-1,2,4-triazolo[5,1- c ][1,2,4]triazin-7(4 Н )-ones  10  were shown to be 
active against fl u A virus [ 16 ], while 1′-substituted carbonucleosides  163  bearing 
the fragment of pyrrolo[5,1- f ][1,2,4]triazine were reported to possess antiviral 
activity (Scheme  68 ) [ 102 ].
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   2,4,6-Trifl uoro-1,3,5-triazines are widely used as starting materials for the syn-
thesis of dyes, sensors, and biologically active compounds. A series of synthetic 
dyes containing one or two fl uorine atoms, for example  148  [ 91 ],  151, 152  [ 39 ,  45 ], 
 54  [ 86 ,  92 ,  94 ] have been described. Also patents [ 103 – 112 ] are dedicated to fl uo-
rotriazine dyes. The reaction of cyanuric fl uoride with amines has been used for the 
synthesis of analogs of the anticancer drug trimelamol which is 2,4,6-tris-
[(hydroxymethyl)methylamino]-1,3,5-triazine. That is why cytotoxic properties of 
its analogs, such as 2-fl uoro-4,6-bis[(2,2,2-trifl uoroethyl)amino]-1,3,5-triazine and 
2-fl uoro-4,6- bis (propargylamino)-1,3,5-triazine, towards a variety of tumor cell 
lines in vitro have been studied. They revealed that 2,4,6-trisubstituted derivatives 
proved to be more active than 2-fl uoro-4,6-disubstituted analogs [ 113 ]. Compound 
 164  was shown to inhibit enzyme Akt1-kinase [ 114 ], while aminotriazine  165  was 
found to act as 5-HT 7  receptor antagonist (binding affi nity K i  = 10 nM) [ 115 ]. 
6-(4-Bromobenzylamino)-2-methyl-4-trifl uoromethyl-1,3,5-triazine  166  was found 
to possess strong pre- and post-emergence herbicidal activities (Scheme  69 ) [ 97 ].
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  Scheme 68    Annelated fl uorotriazines possessing antiviral activity       

   3-(4,6-Difl uorotriazinyl)amino-7-methoxycoumarin (FAMC,  167 ) is useful for 
determination of antiviral drug amantadine by high-performance liquid chromatog-
raphy. Amantadine was derivatized quantitatively into fl uorescent compound through 
the amino group treatment with FAMC, this method gave satisfactory results with 
respect to recovery and precision to quantify amantadine spiked in urine [ 116 ]. 
3-(Difl uoro-1,3,5-triazinyl)-1-(ethylthio)-2-n-propylbenz[f]isoindole ( 168 ), which 
reacts with phenolic hydroxyl groups, can use as a fl uorescence derivatization reagent 
for estrogens in high-performance liquid chromatography (Scheme  70 ) [ 117 ].
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   Receptor for naphthalene diimide guest with effi cient quenching of prophyrin 
fl uorescence was obtained by replacement of two fl uorine atoms in compound  169  
by n-pentylamine [ 118 ]. Perfl uoroalkyl-s-triazines  170  can be used as high- 
temperature fl uids (Scheme  71 ) [ 119 ].
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6        Conclusion 

 It is worth to mention that triazines and their fl uorinated derivatives continue to be 
important for applications in medicine as well as intermediates for dyes and sensors.     
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    Abstract     Fluorinated purines and related nucleosides exhibit a diverse range of 
biological activities. The presence of a single fl uoro or trifl uoromethyl group at the 
2-, 6-, or 8-position of a purine or purine nucleoside, or combinations of multiple 
substitutions at these positions, can confer advantageous changes to physicochemi-
cal, metabolic and biological properties. The incorporation of an  18 F label into 
purine nucleosides provides tools for  in vivo  imaging by positron emission tomog-
raphy (PET). In this chapter we outline the many synthetic routes, both well estab-
lished and more unusual, that are available for the selective preparation of 2-, 6-, 
or 8-substituted fl uorinated purines, and the extension of these methods to make 
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 derivatives fl uorinated at specifi c combinations of these positions. Applications of 
fl uorinated purines in biomedical research are highlighted. The reactions of fl uori-
nated purines are also summarised, in particular the range of nucleophilic displace-
ments that make the molecules useful as synthetic intermediates for medicinal 
chemistry and reagents for chemical biology studies.  

  Keywords     Purines   •   Nucleosides   •   Fluorination   •   Trifl uoromethylation   •   Diazotization   
•   Fluorodediazonation   •   Positron emission tomography  

1         Introduction 

 This chapter reviews the synthetic chemistry to prepare fl uorinated purines, and their 
subsequent reactions, concentrating in particular on simple fl uoro and trifl uoromethyl 
substitution. The major applications of fl uorinated purines in biomedical research are 
surveyed. The chemistry of fl uorinated purines has evolved  substantially since its 
origins some 60 years ago, and while efforts have been made to show this general 
development in the choice of examples discussed, this short chapter is not intended as 
a comprehensive historical survey. In organising the material, the uses of fl uorinated 
purines as synthetic intermediates are discussed in the synthetic chemistry sections, 
while the applications of stable fl uorinated compounds are treated separately.  

2     2-Fluoro- and 2-(Trifl uoromethyl)Purines 

2.1      Synthetic Chemistry 

 A range of simple 2-fl uoropurine derivatives  1 – 11  and nucleosides were fi rst 
 prepared through the Balz-Schiemann reaction of the corresponding 2-aminopurine 
starting materials by diazotization-fl uorodediazoniation in aqueous fl uoroboric acid 
[ 1 ,  2 ] (Scheme  1 ). Yields were generally low but could be improved when the purine 
 N -9 was protected, as purifi cation was simplifi ed. 2,6-Diaminopurine reacted selec-
tively at the 2-amino group, and this selectivity has been generally observed with 
other substrates, although conversion of certain derivatives of 2,6-diaminopurine to 
the 2,6-difl uoropurines under these conditions has also been reported [ 3 ]. The 
increased reactivity of the 2-fl uoro substituents to hydrolysis compared with analo-
gous 2-chloropurines was demonstrated in these compounds. Addition of the 
electron- withdrawing 2-fl uoro substitution resulted in the thiopurines  5  and  11  
adopting the thiol tautomers in acidic and neutral solutions, rather than the thione 
forms observed for the 2-unsubstituted parent molecules. A signifi cant improve-
ment in the yield and ease of synthesis of 2-fl uoroadenine  2  directly from 
2,6-diaminopurine was achieved by using anhydrous conditions    (NaNO 2 , anhy-
drous HF; 22 % yield) [ 4 ].
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   Variations on the Balz-Schiemann reaction conditions have remained the most 
frequent method for the synthesis of 2-fl uoropurines since these early publications. 
A major development was the introduction of HF-pyridine as the fl uoride source, 
which gives improved yields in some cases (e.g. 80 % yield of  10  from 
2- aminoadenosine using KNO 2 /HF-pyridine) [ 5 ,  6 ]. The application of  tert -butyl 
nitrite as the diazotization reagent in anhydrous 45–60 % HF-pyridine proved an 
especially versatile method, proceeding rapidly at low temperatures (−30 to −20 °C) 
in high yield [ 7 ] (Scheme  2 ). The anhydrous methods are tolerant of N-, O- and 
S-substitution at C-6, and of alkyl, acetal or no substitution at N-9. In a study of the 
fl uorination of 2-aminoinosine derivatives containing  O -silyl protecting groups, a 
combination of  tert -butyl nitrite and the milder fl uoride sources, antimony trifl uo-
ride or polyvinylpyridinium polyhydrogenfl uoride (PVPHF) offered improved 
yields compared to HF-pyridine [ 8 ].  In situ  diazotization using  tert -butylthionitrate 
in the presence of sodium tetrafl uoroborate has also been reported as a mild method 
for the 2-fl uorination of guanosine derivatives [ 9 ]. The aqueous or anhydrous 
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diazotization- fl uorodediazoniation of 2-aminopurines is now the routine approach 
to 2-fl uoropurines and 2-fl uoropurine nucleosides for biomedical research [ 10 – 13  
and citations in Sect.  2.2 ].

   2-Fluoropurines have also been prepared by S N Ar displacement of 2-nitropurine 
derivatives, using tetra- N -butyl ammonium fl uoride (TBAF) as the fl uoride source 
[ 14 ]. A variation on this method proved particularly useful for the introduction of an 
 18 F radiolabel into 2-fl uoroadenosine  10 , since the Balz-Schiemann reaction 
is poorly applicable to radiochemistry and the displacement of 2-iodo- or 
2- fl uoropurines with radioactive fl uoride ion is ineffi cient [ 15 ] (Scheme  3 ).

N

N N

N

Bu3Sn

R

O

OSitBuMe2

OSitBuMe2
tBuMe2 SiO

N

N N

N

F

R

O

OSitBuMe2

OSitBuMe2
tBuMe2 SiO

XeF2, AgOTf
2,6-tBu2-4-Me-Pyr
CH2Cl2

15 R = Cl 85%
16 R = NH2 80%

  Scheme 4    The use of XeF 2  to prepare 2-fl uoropurine nucleosides from the 2-(tributylstannyl) 
derivatives       

N

N N

N

O2N

N(Bz)2

O

OBz

OBz
BzO

N

N N

N

F

NH2

O

OH

OH
HO

1. F-

2. NH3 aq,
MeOH, rt Conditions Yield (%)

TBAF, THF, DMF, rt, 1 h 67

[18F]KF, K2CO3, K222,
MeCN, 60°C, 8 min

28

10
K222 = 4,7,13,16,21,24-tetraoxa-1,10-
diazabicyclo[8.8.8]hexacosane
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   The introduction of a 2-fl uoro substituent through reaction with an electrophilic 
fl uorine source was achieved following the synthesis of 2-tributylstannyl derivatives 
of purine nucleosides [ 16 ] (Scheme  4 ). Xenon difl uoride was used as the fl uorinat-
ing reagent, and the method was compatible with the presence of alkenes in the 
substrate, as well as  O -silyl and acetonide protecting groups, and with amine substi-
tution of the purine [ 16 – 18 ].

   The most frequently reported reactivity of 2-fl uoropurines involves aromatic 
nucleophilic substitution (S N Ar) with amine nucleophiles under basic conditions, and 
has been amply demonstrated with simple 2-fl uoropurines and 2-fl uoropurine nucleo-
sides as substrates. The reaction of 2-fl uoropurine nucleosides with amines is  successful 
with a wide range of functionality present at the purine 6-position, including hydrogen 
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[ 19 ,  20 ], alkoxy, hydroxy, alkylthio [ 21 – 23 ], and thiol [ 22 ]  substituents ( 17 – 21 ) 
(Scheme  5 ). The use of a 2-( p -nitrophenyl)ethyl protecting group at the O-6 position 
of 2-fl uoroguanosine derivatives allowed simultaneous O-deprotection during amine 
substitution at C-2 [ 24 ]. The S N Ar reaction extends to alkoxy and thiol nucleophiles, as 
demonstrated on 2-fl uoro-2′,3′-dideoxyadenosine [ 25 ].
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   The introduction of 2-amino substituents by S N Ar displacement of 2- fl uoropurine 
nucleosides has been extensively used to prepare functionalised nucleoside interme-
diates for subsequent incorporation into DNA or RNA [ 19 ,  20 ,  26 – 29 ]. Importantly, 
the reaction can also be carried out on 2-fl uoropurines after incorporation into 
deoxyribonucleotide oligomers. Thus in an early example, 2-fl uorodeoxyinosine 
was introduced into a DNA pentamer and subsequently converted to the 
 N -phenylglycinol derivative  22  to provide a mimic of the carcinogenic and muta-
genic adduct formed between metabolically activated styrene and guanine bases in 
DNA [ 30 ] (Scheme  6 ). The reaction of DNA-incorporated 2-fl uoropurines with 
amine nucleophiles has been used to prepare models of adducts of other reactive 
molecules with DNA, e.g. methylglyoxal [ 31 ] and mitomycin C [ 32 ], and to cross- 
link the strands in a DNA duplex [ 33 ].

   The introduction of exocyclic  15 N-containing substituents into purine nucleo-
sides has been achieved, starting with the 2-fl uoropurine derivatives, to provide 
labelled materials for NMR studies, using  15 N-ammonia [ 34 ,  35 ],  15 N-benzylamine 
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or  15 N-phthalimide [ 36 ]. Similarly,  13 C-labelled dimethylamine was used to 
 introduce a spin label into dinucleotide analogues of mRNA caps [ 37 ]. 

 Nucleophilic substitution reactions of non-nucleoside 2-fl uoropurines by amines 
have found extensive use in medicinal chemistry. For example, a large number of 
2-substituted- O 6-cyclohexylmethylguanines were effi ciently prepared for assess-
ment as cyclin dependent kinase (CDK) inhibitors through the displacement of 
2-fl uoro- O 6-cyclohexylmethylguanine  23  by primary and secondary alkylamines 
under basic conditions [ 38 ,  39 ]. The use of anilines as the nucleophilic component 
required the addition of trifl uoroacetic acid, where protonation was postulated to 
activate the purine to attack by the (unprotonated) weakly nucleophilic anilines in 
the addition-elimination sequence [ 40 ] (Scheme  7 ). Yields were improved by 
 conducting the reactions in 2,2,2-trifl uoroethanol, chosen to favour formation of the 
charged intermediates. An advantage of this acid-mediated procedure was its 
 compatibility with the nucleophile-sensitive 2,2,2-trifl uoroethoxysulfonate func-
tionality, which allowed a new electrophilic centre for subsequent reactions to be 
incorporated into the purines [ 41 ]. Microwave irradiation has been applied to 
enhance the effi ciency of the base-mediated S N Ar reaction of amines with 
2- fl uoropurines to generate 2,6-diaminopurines [ 42 ], where sodium iodide was also 
observed to catalyze the reaction.
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  Scheme 7    Nucleophilic substitution of a 2-fl uoro-6-alkoxypurine is mediated through proton-
ation at N3       

   An early report on a 2-fl uoro-6-chloropurine nucleoside suggested that displace-
ment of the 2-fl uoro substituent was the major product from the reaction with 
ammonia [ 22 ]. However, despite the increased reactivity of directly comparable 
fl uoro  vs  chloro substituents towards S N Ar, in simple 2-fl uoro-6-chloropurines the 
6-chloro substituent is more usually selectively displaced by amines and this has led 
to the development of several powerful combinatorial approaches to polysubstituted 
purines. A recent example of a typical synthetic route using this process started 
from 2-fl uoro-6-chloropurine  9  for the preparation of CDK inhibitors related to the 
clinical candidate seliciclib [ 43 ] (Scheme  8 ).
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   Similar strategies have been used to prepare 2-alkylamino-6-anilinopurine CDK 
inhibitors [ 44 ], Src tyrosine kinase inhibitors [ 45 ] and protein A mimetics from  9  
[ 46 ], as well as 2,6-dialkylamino- and 2-anilino-6-alkylaminopurine adenosine A 3  
receptor antagonists [ 47 ]. Interestingly, in contrast to the above reactions the treat-
ment of  N 9-isopropyl 2-fl uoro-6-chloropurine  24  with deprotonated amides under 
strongly basic conditions gave predominantly displacement of the 2-fl uoro group 
[ 48 ] (Scheme  9 ). Highly selective reaction of the 6-chloro substituent of  24  with 
alkyl and aryl amides was achieved using Buchwald palladium-catalysed conditions 
(RCONH 2 , Pd 2 dba 2 , xantphos, Cs 2 CO 3,  100 °C, 69–85 %), which could be followed 
by amine displacement of the 2-fl uoro group. Substitution reactions of non- nucleoside 
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2-fl uoropurines with nucleophiles other than amines are uncommon, but examples 
have been reported with phenols [ 38 ,  47 ], thiophenol [ 47 ] and hydroxide [ 42 ].

   The selective S N Ar reactivity of 2-fl uoro-6-chloropurine  9  has formed the basis 
of several solid-phase strategies for the synthesis of purine compound libraries .  
Shultz, Gray and colleagues developed a sequence to 2,9-substituted purines involv-
ing attachment of  9  to an amine-functionalised resin through a 6-benzylamino linker 
to give  25  [ 49 ] (Scheme  10 ). Mitsunobu alkylation at N-9 was followed by S N Ar 
amination at C-2 before acid-mediated cleavage from the resin [ 49 ]. A similar strat-
egy to give 2,6,9-trisubstituted products used an indole-3-carboxaldehyde derived 
linker that allowed for the introduction of varied potential N-6 substituents, through 
reductive amination of the resin before the loading of  9  [ 50 ]. A traceless linker strat-
egy to 2,6,9-trisubstituted products from Shultz, Gray and co-workers involved 
resin-capture, using a pre-functionalised amine resin to react with and purify the 
crude Mitsunobu products from the reactions of 2-fl uoro-6-thiobenzylpurine  27  [ 51 , 
 52 ] (Scheme  11 ). Oxidation of the 6-thiobenzyl substituent to the sulfoxide acti-
vated the substrate for a fi nal S N Ar amination at C-6 prior to release from the resin. 
Microwave irradiation was found to accelerate the S N Ar reaction of resin-bound 
2-fl uoro-6-(substituted amino)purines [ 53 ].
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  Scheme 10    A solid supported synthesis of 2,6,9-trisubstituted purines from 2-fl uoroadenine       
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    Solid phase combinatorial synthesis is also applicable to purine nucleosides, as 
exemplifi ed by the preparation of a library of more than fi ve hundred 2,8- disubstituted 
guanosine analogues using S N Ar displacement of the 2-fl uoro group in the pro-
tected nucleoside  28 , linked to the polystyrene resin with a methoxytrityl group 
through the ribose C-5′ hydroxyl [ 54 ] (Scheme  12 ). The S N Ar reactions were suc-
cessful with primary or secondary alkylamines, but not with anilines or other 
arylamines.
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  Scheme 11    A traceless linker solid phase synthesis of 2,6,9-trisubstituted purines from 
2-fl uoro-6-thiobenzylpurine       
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   2-Trifl uoromethylpurines have been prepared mainly through formation of the 
pyrimidine ring starting from highly functionalised imidazoles. 5-Amino-4-
(cyanoformimidoyl)imidazole  29  reacted rapidly with neat trifl uoroacetic anhy-
dride to give the 6-cyano-2-trifl uoromethylpurine  30  (20 °C, 10 min, 52 %) [ 55 ] 
(Scheme  13 ). However, hydrolysis to the 6-carboxamidopurine  31  was observed 
when the reaction was carried out over several days [ 55 ,  56 ]. This latter transforma-
tion has been applied to prepare 9-(3-hydroxy-propyl)-2-trifl uoromethyl-9 H - purine-
6- carboxamide [ 57 ].
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  Scheme 13    The preparation of 2-trifl uoromethylpurines through synthesis of the fused  pyrimidine 
ring       

   5-Amino-1 H -imidazole-4-carboxylic acid amides  32  and  33  have also served as 
the substrates for forming 2-trifl uoromethylpurines (Scheme  13 ). Acylation of  32  
with trifl uoroacetic anhydride generated an amide intermediate that was resistant to 
cyclization using dehydrating agents, but which gave the purinone  34  in high yield 
(77 %) on melting of the solid followed by cooling and recrystallization [ 58 ]. 
Alternative but lower yielding conditions for the similar cyclization of  33  to give 
 35  have been reported [ 59 ]. 

 The reaction of 5-amino-imidazole-4-carboxamidine with refl uxing trifl uoro-
acetamide gave 2-trifl uoromethyladenine (86 %) [ 60 ], and this reaction was found 
to be applicable to nucleosides in the preparation of 2-trifl uoromethyladenosine 
cyclic 3′,5′-phosphate (CF 3 CONH 2 , DBU,  N,N , N ′, N ′-tetramethylurea, 135 °C, 
47 %) [ 61 ]. Pyrimidine ring formation has also been achieved by low yielding 
(36 %) acylation of 1,2,-dimethyl-5-aminoimidazole with methyl 1-chloro-2,2,2- 
trifl uoroethylidenecarbamate, to give an intermediate amidine  36  which underwent 
effi cient thermal  6-exo-trig  intramolecular acylation to generate 2-trifl uoromethyl- 
purine  37  (toluene, refl ux, 88 %) [ 62 ] (Scheme  14 ). The organometallic reagent 
formed  in situ  from CF 3 ZnBr and CuI has been used to effect selective 
2- trifl uoromethylation of 6-chloro-2-iodopurine (triacetoxy)riboside  38  (HMPA, 
DMF, 50 °C, 77 %) [ 63 ] (Scheme  15 ).
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    2-Trifl uoromethyl-purinones such as  34  and  35  have been further functionalised 
through conversion of the 6-oxo substituent to 6-chloro with POCl 3 , followed by 
displacement with amines [ 58 ,  59 ,  63 ,  64 ]. 6-Chloro-2-trifl uoromethyl-9-(4-
methylbenzyl)purine  39  underwent partial reduction of the imidazole ring upon 
treatment with sodium borohydride [ 65 ] (Scheme  16 ). An unusual base-mediated 
dehydrochlorination was then observed in the presence of sodium hydroxide, to 
give access to the simple 6-unsubsituted 2-trifl uoromethyl purine  40 .
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  Scheme 14    A thermal intramolecular cyclisation to prepare a 2-trifl uoromethylpurine       
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  Scheme 16    An unusual base-mediated dehydrochlorination reaction of 2-trifl uoromethyl-6-
chloropurines       

2.2          Applications 

 Due to the many enzymes and receptors using adenosine or adenosine derivatives as 
co-factors or ligands, 2-fl uoroadenine nucleosides and nucleoside-mimics have 
been extensively investigated for antiparasitic [ 66 ,  67 ], antiviral [ 10 ,  12 ,  68 – 72 ], 
and anticancer activity [ 1 ,  2 ,  10 ,  12 ,  18 ,  72 ,  73 ]. The presence of the 2-fl uoro 
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substituent often confers resistance to metabolism of the purine ring, particularly by 
attenuating susceptibility to adenosine deaminase [ 74 ]. In several cases highlighted 
below, the fl uorine substituent favourably modifi ed the potency or selectivity over 
the unfl uorinated analogues. For example, biological activity was signifi cantly 
increased by the incorporation of 2-fl uoroadenine in place of adenine in adenosine 
A 1  and A 2A  receptor agonists [ 17 ,  75 ] and inhibitors of adenylyl cyclase [ 76 ]. 
2-Fluoro-4-nitrobenzyl mercaptopurine riboside was identifi ed as the most potent 
analogue in a series of inhibitors of the hENT1 nucleoside transporter [ 23 ]. 

 The 2-fl uoropurine nucleoside fl udarabine ( 41 ) (Fig.  1 ), administered intrave-
nously as the monophosphate derivative and more recently formulated for oral 
 dosing [ 78 ], is a fl uorinated analogue of the antiviral agent vidarabine (adenosine 
arabinoside). It is approved for the treatment of chronic lymphocytic leukaemia, and 
is also used in combinations for the treatment of Hodgkins lymphoma and acute 
myeloid leukaemia [ 77 – 79 ]. Fludarabine phosphate is rapidly dephosphorylated in 
cells and then transformed to the pharmacologically active triphosphate derivative 
(2-fl uoro-ara-ATP) by deoxycytidine kinase [ 80 ]. The metabolite appears to act by 
inhibiting DNA polymerase α, ribonucleotide reductase and DNA primase,  resulting 
in inhibition of DNA synthesis [ 81 ]. Fludarabine was originated by Montgomery 
and Hewson [ 82 ] as a more metabolically stable analogue to 9-β-D- 
arabinofuranyosyladenine [ 83 ]. The nucleoside 2′-deoxy-2-fl uoroadenosine has 
been investigated as the prodrug component in a gene therapy approach for selective 
introduction of cytotoxic 2-fl uoroadenine to tumours [ 73 ], while 2-[ 18 F]fl uoro-
adenosine itself has been proposed as a tool for PET imaging [ 15 ].
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   4′-Ethynyl-2-fl uoro-2′-deoxyadenosine (EFdA,  42 , Fig.  1 ) is an exceptionally 
potent reverse transcriptase (RT) inhibitor under development for the treatment of 
HIV infection [ 68 ,  70 ,  71 ]. Unusually for this class of inhibitors,  42  retains the 3′-OH 
group of the ribose, which renders the monophosphate derivative a better substrate 
for RT than adenosine monophosphate, and contributes to the high potency [ 69 ]. 

 2-Fluoronoraristeromycin ( 43 , Fig.  1 ) was investigated as an inhibitor of 
 S -adenosyl-L-homocysteine (SAH) hydrolase in  Plasmodium falciparum , and 
showed 100-fold enhanced selectivity for toxicity to the parasite versus mammalian 
cells when compared to the unfl uorinated noraristeromycin [ 67 ]. Analogues of SAH 
inhibit human DNA methyltransferases, which use  S -adenosyl-L-methionine as the 
cofactor to transfer methyl groups to DNA [ 18 ]. The addition of a 2-fl uoro substitu-
ent to SAH was found to confer selectivity for inhibition of the DNMT1 isoform of 
enzyme over the DNMT3b2 subtype, while unfl uorinated SAH was a better inhibi-
tor of the DNMT3b2 enzyme. 

 2-Fluorination of the purine substrates of enzymes has been successfully used to 
elucidate biochemical mechanisms. Thus, nicotinamide 2-fl uoroadenine dinucleo-
tide (2-F-NAD + ) was prepared as a sterically equivalent analogue of the natural 
co-factor NAD +  to probe the mechanism of ADP-ribosyl cyclases. 2-Fluorination 
reduced the electron density of the purine N-1 atom, retarding the enzymic cycliza-
tion and revealing a previously kinetically cryptic NAD +  glycohydrolase activity of 
the ADP-ribosyl cyclase from the invertebrate  A. californica  [ 84 ]. Fluorination of 
purines was used to control the pKa of adenosine monomers incorporated into func-
tional RNAs [ 85 ]. NMR studies showed the most basic site of 2-fl uoroadenosine to 
be N-7, with negligible basicity at N-1. 2-Fluoroadenosine was used with other fl uo-
rinated analogues to demonstrate that the ligating function of the VS ribozyme 
required N-1 protonation at a specifi c residue in the oligonucleic acid. 

 Non-nucleoside 2-fl uoropurine derivatives have shown important biological 
activity. PU24FCl ( 44 , Fig.  1 ) is a purine inhibitor of heat shock protein 90 (HSP90), 
a molecular chaperone essential for the folding of many oncogenic proteins, and 
thus an attractive target for anticancer therapy [ 86 ,  87 ]. PU24FCl was discovered 
through structure-based design combined with the synthesis and screening of librar-
ies of elaborated purine derivatives. The incorporation of the 2-fl uoro substituent 
was found to increase the aqueous solubility and inhibitory potency of compounds 
in this series [ 6 ,  11 ,  86 ,  88 ], which is speculated to be due to increased hydrogen- 
bond donor capability of the N-6 amino group. 

 2-Trifl uoromethyl-9-benzyl purines have been extensively investigated for anti-
viral activity [ 59 ,  64 ,  89 – 91 ], where the lipophilic electron withdrawing properties 
of the 2-CF 3  group were found to be optimal for activity against rhinovirus. 
6-(3-Fluoroanilino)-9-(3-fl uorobenzyl)-2-trifl uoromethyl-9 H -purine ( 45 , Fig.  1 ) 
was found to have broad spectrum activity, with IC 50  between 0.4 and 13 μM against 
80 % of 43 rhinovirus serotypes, but further development was precluded by low oral 
bioavailability [ 91 ]. 

 The 2-trifl uoromethyl adenine derivative NCS613 ( 46 , Fig.  1 ) was found to be a 
potent and highly selective inhibitor of cAMP phosphodiesterase type-4 (PDE4) 
[ 92 ,  93 ]. Introduction of the 2-CF 3  group into a series of 9-benzyladenines was 
found to confer increased potency ( 46 , PDE4 IC 50  40 nM), and to give more than 
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100-fold selectivity for inhibition of the PDE4 subtype over PDE1, 2 and 3. 
Replacement of the 2-fl uorobenzyl substituent by 2-methoxybenzyl further 
increased potency and selectivity (PDE4 IC 50  1.4 nM; >50,000-fold selectivity). 
NCS613 ( 46 ) was recently shown to be effective for slowing disease progression in 
a genetically-engineered mouse model of the autoimmune disease, lupus, and in 
reducing tumour necrosis factor alpha (TNFα) secretion by peripheral blood lym-
phocytes from lupus patients [ 94 ].   

3     6-Fluoro- and 6-(Trifl uoromethyl)Purines 

3.1        Synthetic Chemistry 

 Methods to synthesise 6-fl uoro substituted purines have included reactions  involving 
tertiary amine displacement of a 6-halo substituent and subsequent fl uoride dis-
placement of the intermediate, diazotization-fl uorodediazonation strategies, direct 
HALEX (HALogen EXchange) reactions, ring closure of an appropriately substi-
tuted precursor and S N Ar chemistry on a 6-nitropurine. 

 Unlike the 2-fl uoro purines discussed in  2.1 , diazotization-fl uorodediazonation 
reactions are not as well represented. Treatment of  47  with NaNO 2  in ~55 % 
HF-pyridine at −25 °C yielded the 6-fl uoropurine  48  in high yield [ 95 ] (Scheme  17 ). 
This transformation depended strongly on the HF-pyridine concentration and 

N

N N

N

O

NH2

OAc

OAc
Cl

-25 to 0 °C

N

N N

N

O

F

OAc

OAc
Cl

86%

47 48

N

N N

N

O

NH2

OAc

OAc
S

NaNO2, ~55% HF-pyridine

NaNO2, ~55% HF-pyridine

-10 to -5 °C

N

N N

N

O

F

OAc

OAc
S

49 N
R

O
NH

O
50 R = H 64%
51 R = NO 24%

  Scheme 17    Diazotization-fl uorodediazonation reactions to prepare 6-fl uoropurine nucleosides       
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temperature, which required optimisation for each substrate. Diazotization- 
fl uorodediazonation of  N -acetyl protected  49  resulted in a signifi cant amount of an 
 N -nitrosoamide by-product ( 51 ), as well as the desired 6-fl uorinated purine ( 50 ).

   An earlier report found that if a 6,8-diamino substituted purine was used; the 
desired 6-fl uoro-8-amino purine  52  could be isolated (Scheme  18 ). However, the 
8-position was susceptible to hydrodeamination, which afforded  53  [ 96 ]. 
Interestingly, 8-amino-6-fl uoro-9- β -D-ribofuranosyl-9 H -purine was stable in the 
presence of ammonia, unlike a variety of 6-fl uoropurines discussed below.
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  Scheme 18    An example of the susceptibility of 8-aminopurines to hydrodeamination during 
diazotization-fl uorodediazonation       

   The introduction of  tert -butyl nitrite as the diazotization reagent coupled with the 
use of HF-pyridine has proved a versatile alternative reagent combination [ 97 ]. Other 
methods involving a diazo intermediate have used   t  BuSNO n  (n = 1 or 2) with NaBF 4  
[ 9 ] and NaNO 2  with fl uoroboric acid, although the latter method was heavily substrate 
dependent and generally lower yielding than the more recent improvements [ 3 ,  98 ]. 

 The most commonly used route to 6-fl uoropurines involves tertiary amine dis-
placement of a 6-chloro substituent and subsequent fl uoride displacement of the 
intermediate. In general, a 6-chloropurine is reacted with trimethylamine to form a 
trimethylammonium intermediate which is then displaced with KF in DMF [ 99 , 
 100 ]. Alternative procedures have used potassium hydrogen fl uoride in ethanol/
water or potassium fl uoride in  n -butanol to afford the 6-fl uoro product but in lower 
yields. Various attempts to improve the overall yield from the trimethyl(purin-6-yl)
ammonium chloride by performing the fl uorination at a higher temperature (above 
70 °C) resulted in a Martius-Hofmann rearrangement of the quaternary ammonium- 
substituted purine to afford a 6-dimethylaminopurine  54  (Scheme  19 ).
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  Scheme 19    A common side reaction in the preparation of 6-fl uoropurines from trimethyl(purin-
6-yl)ammonium chlorides by nucleophilic substitution       
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   The stability of 6-fl uoropurine was probed by exposure to 1 M sodium hydroxide 
at 25 °C with no formation of hypoxanthine, but increasing the temperature resulted 
in complete conversion. Exposure to hydrochloric acid resulted in the formation of 
hypoxanthine after 30 min at 25 °C [ 99 ,  100 ]. 

 The chloro-amino-fl uoro displacement sequence is a general and very useful 
method for the synthesis of 6-fl uoropurines (e.g.  56 – 62 ) (Scheme  20 ). The prepara-
tion of  60  demonstrates the selectivity for the displacement sequence at the 6-chloro 
position over the 2-chloro position, while formation of  61  demonstrates the selectiv-
ity of the reaction for the 6-position over the 8-position [ 101 ].
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  Scheme 20    Examples of the 6-chloro-amino-fl uoro displacement sequence on purines and purine 
nucleosides       

   Variations of these reaction conditions have remained the most frequent method 
for the synthesis of 6-fl uoropurines since these early publications [ 12 ,  25 ,  102 – 108 ]. 
A development of the conditions was the use of  N -methyl pyrrolidine instead of 
condensing gaseous trimethylamine which led to a simplifi cation of the reaction 
procedure [ 35 ]. Alternatively, a silver fl uoride mediated reaction was used to great 
effect to convert a  N -norbornyl-6-chloropurine to the corresponding  N -norbornyl-6- 
fl uoropurine in good yield (71 %) [ 109 ]. 
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 An improvement to an industrially important selective HALEX reaction was 
reported by the Di Magno group [ 110 ] (Scheme  21 ). Traditionally this reaction 
requires prolonged and harsh conditions in a high boiling point, polar aprotic sol-
vent with spray-dried KF and a phase transfer catalyst to solubilise the fl uoride ion. 
 N -Benzyl-6-chloropurine  63  was treated with a soluble, highly nucleophilic fl uoride 
ion source derived from anhydrous tetrabutylammonium fl uoride (TBAF anh ) for 
30 min in DMSO to give the desired 6-fl uoropurine  64  in quantitative yield [ 110 ]. 
However, if the  N 9-position was not protected the reaction required 14 days and an 
excess of TBAF anh  to afford a 65 % yield of the desired compound. This disparity in 
reactivity was suggested to result from deprotonation of the unprotected 
6-chloropurine.
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  Scheme 21    An example of a TBAF-mediated HALEX reaction to prepare 6-fl uoro-9-benzylpurine       

   A report by Scammells demonstrated the susceptibility of the 6-chloropurine 
position to TBAF-mediated displacement to yield an inseparable mixture of the 
6-chloro and 6-fl uoro purines [ 111 ]. Alternatively, a selection of 2-substituted (NH 2 , 
F or OH) 6-chloropurines were converted to the 6-fl uoropurines ( 65 – 67 ) in moder-
ate yield (56–69 %) using the HALEX conditions of KF in sulfolane with the phase 
transfer catalyst tetraphenyl phosphonium bromide (TPPB) [ 112 ] (Scheme  22 ).
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  Scheme 22    A mild variant of the HALEX reaction using a phase transfer catalyst       

   Less common methods to prepare 6-fl uoropurines include a thermally assisted 
ring closure of a triamino pyrimidine (containing a fl uoro group) with formamide 
[ 113 ] (Scheme  23 ) and S N Ar reaction of a 6-nitropurine [ 114 ] (Scheme  24 ). 
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  Scheme 23    A thermally assisted ring closure to prepare a 6-fl uoropurine       
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However, the product  68  was shown to be diffi cult to characterise due to its 
 hydrolytic instability, which resulted in 9-(2,3-dideoxy-2-fl uoro- β - D - threo -
pentafuranosyl)hypoxanthine (F-ddI) [ 114 ]. This is a useful property for potential 
prodrugs and is discussed further in Sect.  3.2 .
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nucleoside       

    A major study addressing the synthesis, kinetics and mechanism of S N Ar 
 displacement of 6-halopurine nucleosides with nitrogen, oxygen and sulphur 
nucleophiles was reported by    Liu and Robins [ 97 ] (Scheme  25 ). The 6-fl uoro group 
of  69  was displaced with butylamine, aniline, methanol and KSCOMe. The well 
understood order of reactivity at the 6-position was switched when a weakly basic 
aniline was used, to be I > Br > Cl> > F. An autocatalytic induction period was identi-
fi ed and the addition of trifl uoroacetic acid eliminated this lag time and returned the 
reactivity order to F > other halogens.

   Robins and Cass also employed a range of electron-rich and electron-poor 
 benzylamines to react with 6-fl uoropurine thionucleoside in high yield [ 95 ]. 
Sterically congested aminotriols of relevance to the study of poly aromatic hydro-
carbons (PAHs) have also been incorporated in modest to excellent yields (50–93 %, 
dependent on the bulk of the amine) [ 105 ,  115 ]. Similarly, aminoesters [ 116 ] and 
amino alcohols [ 117 ] have been incorporated  via  a S N Ar reaction with 6-(fl uoro)-2′-
deoxyadenosine analogs in modest yield. Glutathione ( 70 ) has also been shown to 
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undergo reaction at the 6-fl uoro position of the purine ring, both enzymatically and 
nonenzymatically [ 118 ] (Scheme  26 ).
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  Scheme 26    Glutathione reacts both enzymatically and non-enzymatically with 6-fl uoropurines       

   The only example of 6-fl uoropurine analogues undergoing metal-catalysed 
cross-coupling reactions was reported by    Liu and Robins [ 119 ]. A combination of 
an imidazolium-carbene and nickel (0) bis(cyclooctadiene) was used to form a 
catalyst capable of insertion into the C–F bond of 6-fl uoropurine nucleosides such 
as  69  [ 119 ] (Scheme  27 ). A variety of boronic acids bearing electron donating and 
withdrawing groups were successfully incorporated ( 72 – 74 ).

N

N N

N

F

O
OMes

MesO

N

N N

N

R

O
OMes

MesO

Ni(COD)2, 71
RB(OH)2, K3PO4

THF, 60 °C

71 =

R Yield (%)

phenyl 84

4-methoxyphenyl 84

4-fluorophenyl 73

OMes OMes

N N

iPr

iPr

iPr

iPrCl

72

73

74

69

  Scheme 27    Metal-catalysed cross-coupling reactions of a 6-fl uoropurine nucleoside derivative       

   Installation of the 6-(trifl uoromethyl) group onto a purine is most widely reported 
to occur  via  copper mediated cross-coupling of a trifl uoromethyl containing 
reagent and a 6-halopurine [ 120 ]. For example, treatment of  75  with a CF 3 -Cu solu-
tion (obtained by fi ltration under inert conditions of a vigorously shaken and heated 
mixture of CF 3 I, Cu and HMPA) afforded  76  in a modest yield [ 120 ] (29 %) 
(Scheme  28 ). The introduction of the fi ltration step eliminated a problematic reduc-
tive dehalogenation. This procedure has been used successfully elsewhere [ 121 ].
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   Modifi cations to this route have generally involved an alternative trifl uorometh-
ylation reagent; examples employed in purine chemistry include CF 3 TMS [ 109 , 
 122 ], FSO 2 CF 2 CO 2 Me (MFSDA) [ 123 ], and CF 3 CO 2 Na [ 112 ]. The use of CF 3 TMS 
in conjunction with CuI, KF, DMF and NMP was used to install a trifl uoromethyl 
group onto an  N -norbornyl-6-chloropurine in good yield (81 %) [ 109 ]. The sodium 
salt of trifl uoromethylacetic acid with CuI in DMF was used to functionalise a range 
of 6-chloro purines in modest to good yields (53–84 %) [ 112 ]. 

 An elegant use of both the CF 3 I-Zn-CuI and MFSDA-CuI-HMPA routes was 
employed by    Veliz et al. [ 123 ]. Both reagents afforded the desired 6-(trifl uoromethyl)
purine riboside  76  in excellent yield (96 % and 91 %, respectively). However, the 
use of liquid MFSDA over gaseous CF 3 I conferred a practical advantage. A mechanism 
for this reagent was reported by Chen and Wu [ 124 ]. The proposed mechanism implies 
a transient difl uorocarbene species, however the equilibrium would lie mainly with 
the CF 3  −  species in the presence of CuI to give  77  (Scheme  29 ). The suggestion of a 
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carbene or a radical mechanism was ruled out by unsuccessful trapping experiments 
using 2,3-dimethylbut-2-ene (carbene scavenger) and  p - dinitrobenzene (a single elec-
tron scavenger), respectively, which has supported the involvement of a [CF 3 CuI − ] 
intermediate  77 . Furthermore, no reaction occurred in the absence of copper (I) iodide.

   Of historical importance was a seven-step synthesis of 6-(trifl uoromethyl)purine, 
which was accomplished by the Bendich group in 1958 [ 60 ] (Scheme  30 ). The key 
step was the installation of the trifl uoromethyl group into a pyrimidine ( 79 ) by con-
densation of the phenyldiazo ester  78  with thiourea in the presence of sodium 
butoxide. Subsequent conversion of the hydroxyl to an amine and formamide- 
mediated ring closure gave  80 . Similarly, the research group of Geen prepared 
6-(trifl uoromethyl)purines from a trifl uoromethyl containing triamino pyrimidine 
with a thermally assisted formamide-mediated ring closure [ 113 ].

    N -alkylation is a common reaction of both 6-fl uoro and 6-trifl uoromethyl substituted 
purines. However, there are two possible outcomes;  N 9- or  N 7-alkylation. A study 
detailing the effect of the 6-substituent was reported by Geen [ 113 ] (Scheme  31 ). In 
their particular example, a 6-fl uoro group ( 81 ) exerted a small infl uence on the  N 9: N 7 
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ratio (3.4:1) and a 6-(trifl uoromethyl)group ( 82 ) exerted a substantially larger infl uence 
on the reaction outcome (21:1), presumably due to a larger steric infl uence over the 
reacting centres. The 6-fl uoro group will also better stabilise the charged transition state 
at the 7-position, leading to a less dramatic effect compared to the parent substrate.

   Of importance for purine riboside chemistry, the reaction of 2′-chloro-3′,4′,5-
(Tol, Bn or Bz) protected ribose with 6-(trifl uoromethyl)purine gave the desired 
 N 9-isomer in high yields ( 83–85 , 74–81 %) (Scheme  32 ). All the glycosylation reac-
tions reported were regio- (and stereo-) selective to afford the β-nucleoside [ 121 ].
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  Scheme 32    Stereo- and regioselective preparation of N9-ribosylated products from 
6-trifl uoromethylpurine       

   Further evidence of the  N 9: N 7 effect was witnessed when 6-fl uoropurine was reacted 
with  14 MeI to give methylated purines in high radiochemical purities (>95 %) with 36 % 
isolated yield for  N 9- 14 Me and 13 % isolated yielded for the  N 7 isomer [ 118 ]. 

 Campos et al .  have reported that aminal functionality at the N-9 position of a 
purine can migrate to an extent to the N-7 position during trifl uoromethylation of a 
6-iodopurine analogue using CF 3 TMS-CuI-KF at 60 °C. A rationale for this unusual 
migration was proposed to explain the reversibility of the process at elevated tem-
peratures. An important experiment revealed that the migration occurred simply by 
heating the starting material for a short time,  via  intermediate  86  [ 122 ] (Scheme  33 ). 
The transformation is reversible and the outcome is thermodynamically controlled 
with the  N 9-isomer being ~5 kcal/mol more stable than the  N 7-isomer.

   The incorporation of a 6-(fl uoromethyl) group into purines has been achieved  via  
two main routes; metalation of a 6-methyl substituent and trapping of the anion with 
NFSI [ 125 ,  126 ] and fl uorination of a 6-(hydroxymethyl)purine riboside [ 127 ]. The 
metalation and NFSI trapping procedure gave the desired 6-fl uoromethyl purine in 
a modest yield (48–57 %) with only a trace of the 6-difl uoromethyl purine analogue 
observed. Importantly, the use of  n -BuLi and LiHMDS resulted in unselective meta-
lation at both the 6–CH 3  and 8-CH positions. Switching to NaHDMS or KHMDS 
resulted in a regioselective metalation at the 6-methyl position [ 125 ,  126 ]. 

 Silhar    et al. [ 127 ] investigated three alternative fl uorination reagents (DAST, 
C 4 F 9 SO 2 F and Deoxo-Fluor) for the conversion of hydroxymethyl purine  87  into  90  
using different bases and also pre-conversion of the hydroxyl group to a mesylate 
( 88 ) or iodide ( 89 ) and treatment with AgF (Scheme  34 ). Ultimately, it was found 
that the silver fl uoride displacement of the iodide was the most general route afford-
ing  N -benzyl-6-(fl uoromethyl)purine  90  in isolated yields of between 72 and 84 %.
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3.2         Applications 

 The major use of 6-fl uoropurine analogues has been as prodrugs, as although the 
6-fl uoro position is more chemically stable than the 2- and 8-fl uoro purines, it is read-
ily enzymatically hydrolysed to the carbonyl-containing inosine analogue. A body of 
work has been published by the research group of Kim with the intention of designing 
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and preparing 6-fl uoropurine analogues of the potent and selective  antiherpetic drugs: 
Acyclovir, Ganciclovir and Penciclovir as prodrugs [ 102 ,  106 – 108 ]. Examples of 
compounds prepared include;  91  (prodrug of Acyclovir, Fig.  2 ),  92  (prodrug of 
Ganciclovir, Fig.  2 ), and  93  (prodrug of Penciclovir, Fig.  2 ). All of these prodrugs 
contain a substitution of the parent 6-oxo group with a fl uorine atom. The major 
advantage conferred by the substitution of the 6-position of the purine with a fl uoro 
group is the increase in the effi ciency of the metabolism of the prodrug to the active 
form by adenosine deaminase, compared to the previously prepared 6-amino purine 
analogues [ 108 ]. The dehalogenation of a 6-fl uoropurine substituent using adenosine 
deaminase and/or adenosine kinase has been widely published [ 96 ,  128 ]. An impor-
tant property of these 6-fl uoropurine analogues was the increase in water solubility 
compared to the 6-oxo drugs which is of relevance for oral administration.

   The introduction of a 6-fl uoropurine group has also been applied to anti-HIV 
prodrugs for delivery to the central nervous system [ 12 ,  104 ,  114 ]. The 6-fl uoro 
purine prodrug  68  (Fig.  2 ) of F-ddI was converted by adenosine deaminase to the 
active inosine compound. The fl uoro analog had the greatest conversion rate to the 
active species when exposed to adenosine deaminase, compared to ten other struc-
turally similar non-fl uoro analogs. Crucially, the 6-fl uoro analog was one of the most 
potent analogs tested with an EC 50  < 5 μM [ 104 ,  114 ]. A further advantage of the 
6-fl uoro group is the increase in lipophilicity and improved blood-brain-barrier pen-
etration. However, in another study introduction of a 6-fl uoro group onto a different 
series of purines was shown to be of no benefi t in an  in vitro  anti-HIV assay [ 12 ]. 

 The anti-cancer properties of 6-fl uoro- and 6-(trifl uoromethyl)purines have been 
published widely [ 12 ,  96 ,  121 ,  125 – 127 ]. A 6-(trifl uoromethyl)purine ribofuranosyl 
derivative  94  (Fig.  2 ) was shown to possess cytotoxicity against HeLaS3 and CCRF- 
CEM cell lines, with GI 50  of 2 μM and 450 nM respectively, whilst being inactive 
against L929 and L1210 cultures. A range of other 6-(trifl uromethyl)purine analogs 
were tested and shown to be inactive [ 121 ]. Data presented for antiproliferative 
activity against the MCF-7 human breast cancer cell line showed IC 50 s of 3 μM for 
the  N 9-substituted compound  95  (Fig.  2 ) and 25 μM for its  N 7-substituted isomer 
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 96  (Fig.  2 ) [ 122 ,  129 ]. In all other examples in these reports the  N 7-substituted 
 isomers were similarly more potent, and the presence of a trifl uoromethyl group or 
a halogen in the 6-position conferred increased antiproliferative activity. 

 Of interest for suicide gene therapy, a 6-(fl uoromethyl)purine nucleoside was a 
non-toxic prodrug, shown to be a good substrate for  E. coli  purine nucleoside phos-
phorylase ( E. coli  PNP) and converted to a highly toxic purine analogue (equipotent 
with the methyl analogue). These results demonstrated that the fl uorine atom incor-
poration did not affect the  E. coli  PNP enzyme activity [ 126 ]. 

 6-Fluoro and 6-(trifl uoromethyl) containing purines have also been screened for 
activity against fungi including  Bacillus subtillis, Aspergillus niger  and  Candida 
tropicalis  and were all shown to have an effect on the diameter of the inhibition zone 
[ 112 ]. An example of a 6-fl uoropurine analogue was shown to have no signifi cant 
effect on three protozoan parasites,  T. b. brucei ,  T. cruzi  and  L. donvani  [ 130 ]. 

 6-Fluoro and 6-(trifl uoromethyl)purines bearing an  N 9-norbornyl group have 
been investigated as inhibitors of Coxsackievirus B3 (CVB3) which is of the entero-
viruses family and an important human pathogen. The 6-fl uoro derivative was inac-
tive against CVB3 in contrast to the 6-(trifl uoromethyl)derivative which had an EC 50  
of 16 μM ± 10 μM [ 109 ]. 

 A 6-(trifl uoromethyl)purine ribonucleoside containing a phosphoramidite group 
was used to perform a site-specifi c attachment onto RNA to study the RNA struc-
ture and the binding of RNA-modifying enzymes [ 123 ]. Furthermore, 6- fl uoropurines 
have been used as part of a post-oligomerization strategy. The incorporation of the 
fl uorine-containing purine bearing a phosphoramidite group into an oligonucleotide 
was used to study the interaction of polyaromatic hydrocarbons (PAHs),  via  reac-
tion at the 6-fl uoropurine position, on the  ras  codon 61 [ 105 ]. 

 Unlike the 2- and 8-positions of purines (see Sects.  2.2  and  4.2 , respectively), the 
6-position has not been used to the same extent for  18 F labelling experiments. The 
6- 18 F group was incorporated in high radiochemical yield using a Ag 18 F mediated 
reaction on a selection of purines where  N 9 was substituted with benzyl or ribosyl 
groups [ 131 – 133 ]. 6- 18 Fluoro-9-benzylpurine was demonstrated to be unstable in 
acid but showed promise as a brain imaging PET agent due to its biodistribution in 
a mouse model with high uptake in the brain [ 133 ].   

4     8-Fluoro- and 8-(Trifl uoromethyl)Purines 

4.1     Synthetic Chemistry 

 Compared to the analogous 2- and 6-fl uoropurines (see Sects.  2.1  and  3.1 ),  relatively 
few examples exist of the syntheses of 8-fl uoropurines. The fi rst synthesis of an 
8-fl uoropurine was reported in 1963, whereby treatment of 8-chloro-9- methylpurine 
with silver fl uoride in refl uxing toluene resulted in the  formation of 8-fl uoro-
9-methylpurine  via  an S N Ar mechanism [ 134 ]. This original method was modifi ed 
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and improved some years later, by starting from analogous 8- bromopurines. In this 
case, 2′,3′,5′-tris- O -acetyl-8-bromoadenosine  97  was treated with dry KF and 
18-crown-6 in MeCN, giving the corresponding 8-substituted fl uoropurine  98  in 
25 % yield [ 135 ] (Scheme  35 ). In both instances, the low yields of the 8- fl uoropurine 
were attributed to the lability of the resulting C-F bond.
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  Scheme 36    5′-Hydroxyl protection is required to prevent intramolecular reaction of an 
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  Scheme 35    The preparation of an 8-fl uoropurine nucleoside       

   A further elaboration of this strategy was used to prepare various protected 
8- fl uoropurine nucleosides ( 100 – 102 ), using CsF as the fl uorinating agent [ 136 ] 
(Scheme  36 ). In this case, initial attempts were made to fl uorinate 8-bromo-2′,3′- O -
(1-methylethylidene)adenosine  99 , however, despite consumption of the starting 
material, no fl uorinated product was observed. Further investigation revealed that 
the corresponding 5′,8-anhydro-adenosine derivative  103  was being formed, pre-
sumably by intramolecular nucleophilic attack of the 5′-hydroxyl group of the 
ribose on the intermediate 8-fl uoro compound. Upon protecting the 5′-hydroxyl 
group with either an acetate or a tetrahydropyran group, the desired 8- fl uoroadenosine 
compounds were produced in moderate yields. Analysis of these crude reaction 
mixtures also revealed the presence of a dimer, which was attributed in an intermo-
lecular attack of the 6-NH 2  group of another adenosine molecule, demonstrating the 
highly labile nature of the 8-fl uoro substituent.
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   In contrast to 2- and 6-fl uoropurines, the Balz-Schiemann reaction rarely  features 
in the synthesis of 8-fl uoropurines. In fact, the only example to date was reported, 
whereby 2′,3′,5′-tris- O -acetyl-8-aminoadenosine was treated with fl uoroboric acid 
and sodium nitrite, to afford triacetylated-8-fl uoroadenosine [ 137 ]. However, subse-
quent attempts by other research groups to repeat this reaction were unsuccessful, 
believed to be as a consequence of the lability of the C-F bond [ 135 ]. 

 An alternative strategy to access 8-fl uoropurines is through the electrochemical 
oxidation of 2,6-disubstituted purines. Subjecting either caffeine or guanosine 
 tetraacetate to anodic oxidation in the presence of Et 3 N-3HF, resulted in 
8- fl uorocaffeine (40 %) and 8-fl uoroguanosine tetraacetate (6 %), respectively 
[ 138 ]. Despite the low yields, this method enables access to 8-fl uoropurines directly 
from the corresponding unsubstituted purine. Another way in which 8-fl uoropurines 
can be prepared directly is  via  an electrophilic aromatic substitution with fl uorine 
gas. A range of purines have been shown to react cleanly with F 2  (1 % in He) in 
polar solvents, such as MeCN, affording the corresponding 8-fl uoropurine ana-
logues ( 104 – 107 ) in 30–40 % yield, along with recovered starting material [ 139 ] 
(Scheme  37 ). Attempts to force the reaction to completion, or exchange fl uorine gas 
for a more conventional fl uorinating agent, (such as XeF 2 , or Selectfl uor®) were 
unsuccessful.
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  Scheme 37    The preparation of 8-fl uoropurines using fl uorine gas       

   Approaching the 8-fl uorination of purines by deprotonation of the C8-H, 
 followed by reaction of the corresponding anion with an electrophilic fl uorinating 
agent has proved successful. After screening a range of strong bases, it was discov-
ered that the use of LDA in a mixture of toluene and THF, in combination with 
 N -fl uorobenzenesulfonamide (NFSI) as a fl uorine source, resulted in the formation 
of a range of 8-fl uoro substituted nucleosides [ 140 ] (Scheme  38 ). It was noted that 
the product distribution of the reaction was very sensitive to the solvent system 
used. The isolation of phenylsulfonyl-derivative  108  as a side product also  suggested 
that a competing single electron-transfer (SET) mechanism was in operation. 
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In fact, under homogenous reaction conditions it was found that the SET  mechanism 
prevailed, affording phenylsulfonyl-derivative  108  as the major product. Similar 
reactivity patterns were observed in guanidine analogues, with sulfonylation of the 
2-NH 2  group occurring as the most common side product.
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  Scheme 39    The preparation of 8-trifl uoromethylpurines from 4,5-diaminopyrimidine precursors       
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   Further elaboration of this methodology revealed that 6-methyl substituted 
purines, when treated under similar conditions, were deprotonated unselectively at 
both the 8- and 6-methyl positions with LDA [ 126 ]. On optimising the reaction, it 
was found that by using NaHMDS as the base, regioselective deprotonation at the 
6-methyl position could be achieved. Subsequently, fl uorination of the anion with 
NFSI afforded 6-fl uoromethyl purine in 57 %, with none of the corresponding 
8- fl uoropurine isolated (see Sect.  3.1 ). 

 As with the 8-fl uoropurines, the 8-trifl uoromethylpurines are less common than 
the corresponding 2- and 6-substituted purines. The most frequent method for 
accessing 8-trifl uoromethylpurines is from the corresponding 4,5- diaminopyrimidines. 
For example, treatment of a range of 4,5-diaminopyrimidines, in either refl uxing 
trifl uoroacetic anhydride, trfl uoroacetic acid, or trifl uoroacetamide resulted in the 
formation of the corresponding 8-trifl uoromethylpurines ( 109 – 112 ) in high yields 
(47–82 %) [ 60 ] (Scheme  39 ). This methodology has been used by several groups for 
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the synthesis of 8-CF 3  substituted purines [ 141 ,  142 ]. In one case, subjecting 
4,5-diaminopyrimidines to an excess of trifl uoroacetic anhydride and heating in an 
autoclave resulted in the isolation of a range of 8-CF 3  substituted purines in 60–90 % 
yields, which were then shown to undergo partial reduction under hydrogenation 
conditions at the N-7 = C-8-CF 3  alkene. This reduction was not seen in the corre-
sponding unsubstituted purines.

   While achieving 8-CF 3  substitution from the corresponding 4,5- diaminopyrimidines 
proved to be an effi cient and high yielding transformation, it is important to be able 
to access 8-CF 3  substituted purines directly from the  corresponding purines in order 
to prepare fl uorinated purine nucleosides. Similar to the synthesis of 8-fl uoropu-
rines, it is possible to make 8- trifl uoromethylpurines from the 8-bromo substituted 
analogues. It has been reported that subjecting 8-Br and 8-I analogues of adenosine 
to a CF 3 -Cu complex in HMPA resulted in the formation of the corresponding 8-tri-
fl uoromethyl adenosine compounds ( 113 ,  114 ) in moderate yields [ 120 ] (Scheme  40 ). 
The active copper complex was formed  in situ  by shaking  trifl uoromethyl iodide and 
copper powder in HMPA.
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  Scheme 41    An electrochemical synthesis of 8-trifl uoromethylpurines       
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  Scheme 40    The synthesis of 8-trifl uoroadenosines using a trifl uoromethyl-copper complex 
 prepared  in situ        

   Finally, 8-CF 3  substituted purines can also be synthesised by an electrochemical 
approach. In this case, reduction of CF 3 Br in the presence of an adenine anion  115  
was performed under redox catalysis [ 143 ] (Scheme  41 ). It was postulated that this 
reaction occurs  via  an S RN 1 mechanism to afford the corresponding 8-CF 3  substi-
tuted purines ( 116 – 119 ); however, no yields have been reported for these 
transformations.
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4.2         Applications 

 Due to the diffi culties in synthesising 8-fl uoropurines, scope remains for the 
 exploration of their biological applications. It has been postulated that the electro-
negative effects of the C-8 fl uorine may be signifi cant on the substrate activity of 
8- fl uoropurine ribosides with enzymes such as N-ribosylhydrolases and transfer-
ases [ 144 ]. The kinetics of 8-fl uoroadenosine deamination with calf spleen adenos-
ine deaminase have been measured and compared to adenosine. Since the 
mechanism of deamination is proposed to proceed  via  protonation of N-1, it was 
correctly postulated that the variation in pKa between the N-1 of adenosine (3.59) 
and 8-fl uoroadenosine (2.95) would result in the latter undergoing deamination at a 
slower rate. 

 Direct fl uorination of purines using F 2  gas has been used to good effect in the 
 18 F- radiolabelling of substrates for biological studies. 8-[ 18 F]Fluoroganciclovir 
(FGCV) was synthesised using this technique and was demonstrated to be a sub-
strate for herpes simplex virus 1 thymidine kinase (HSV1-TK) [ 145 ]. The binding 
of FGCV to HSV1-TK was observed by positron emission tomography (PET) 
imaging during non-intrusive  in vivo  studies. This work has led to an increased 
understanding of how the drug is distributed  in vivo , and where the drug accumu-
lates in cells that express the HSV1-tk gene. 

 Pharmacological applications of 8-trifl uoromethylpurines are less widespread. 
8-Trifl uoromethyladenosine and its 2-deoxy analogue have been screened against 
leukaemia L1210 cells, but showed no signifi cant activity [ 120 ]. More recently,  O 6 -
benzyl-8-(trifl uoromethyl)guanine has been shown to inactivate the angiotensin 
(AGT) protein in HT29 human colon tumor cells, however, the compound was found 
to be less active than the corresponding unfl uorinated  O 6-benzylguanine [ 146 ].   

5     2,6- 2,8- and 6,8-Disubstituted Analogues 

5.1     Synthesis and Applications 

 Purines or purine nucleosides that have been fl uorinated at multiple positions are of 
great interest in medicinal chemistry. Most techniques currently available for the 
synthesis of difl uorinated purines rely on combining several fl uorination techniques. 
The fi rst examples of difl uorinating purines came from subjecting 2-amino-9-(2,3,5-
tri- O   -acetyl-β-D-xylofuranosyl)adenine derivative  12  to a modifi ed Schiemann 
reaction (Scheme  42 ). In this case, treatment with NaNO 2  and 48 % fl uoroboric acid 
afforded a mixture of the 2-fl uoroadenine  120  and the 2,6-difl uoroadenine deriva-
tive  121 , which were isolated in 13 % and 16 %, respectively [ 3 ]. The fact that no 
6-fl uoroadenine derivative was isolated led to the hypothesis that under the reaction 
conditions, diazotization-fl uorodediazonation at the 2-position occurred before 
 fl uorination at the 6-position could take place.
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   It was rationalised that fl uorination at the 2-position decreased the basicity of the 
6-NH 2 , leading to less protonation at this position and enhancing subsequent reac-
tion of the 6-NH 2  with the diazotizing species. This hypothesis is supported by 
results obtained upon fl uorinating various adenosine derivatives, with varying sub-
stituents at C-2 [ 3 ] (Scheme  43 ). It was discovered that when X=H ( 52 ), no fl uorina-
tion was observed at C-6. However, when an electron withdrawing group such as F 
or CF 3  resided at C-2, diazotization of the less basic 6-NH 2 , followed by fl uorination 
occurred readily, to afford disubstituted nucleosides  122  and  123  in moderate yields.
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  Scheme 42    The preparation of 2-fl uoro- and 2,6-difl uoropurine nucleosides by double 
 Balz- Schiemann reaction       
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  Scheme 43    2-Fluoro- and 2-trifl uoromethyl substitution alter the reactivity of 6-aminopurines       

   This general strategy has been optimised by taking 2-fl uoro-6-chloropurine  9 , 
and subsequently treating it either with KF and tetraphenyl TPPB as a phase transfer 
catalyst to form 2,6-difl uoropurine  124  (64 % yield), or with sodium trifl uoroacetate 
incorporated with a copper catalyst to afford 2-fl uoro-6-trifl uoromethylpurine  125  
(84 % yield) [ 112 ] (Scheme  44 ). Both of these compounds were found to have high 
antifungal activity against  Bacillus subtillis ,  Aspergillus niger  and  Candida 
tropicalis .
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   In order to access 2,6-ditrifl uoromethylpurines, a novel approach consisting of an 
inverse electron-demand Diels-Alder reaction has been developed. The reaction of 
1-substituted-1 H -imidazol-5-amines (e.g.  126 ) with 2,4,6-tris(trifl uoromethyl)-1,3,5-
triazine in dichloromethane led to a successful Diels-Alder – retro Diels-Alder reac-
tion  via  intermediate  127 , to afford the corresponding N-9 substituted 
2,6-ditrifl uoromethylpurines (e.g.  128 ) in good yields (48–93 %) [ 147 ] (Scheme  45 ). 
These compounds are of particular interest as potential adenosine deaminase (ADA) 
inhibitors. It is considered that the CF 3 -group is isosterically close to an -NH 2  group, 
and  in vivo , that hydration can occur at the 6-position of the purine, affording an 
adenosine-like nucleoside, which mimics the transition state in the ADA deamina-
tion process. Inhibition of the ADA enzyme could have potential therapeutic 
 applications to Parkinson’s disease, auto immune and a range of other diseases.
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  Scheme 44    The syntheses of 2,6-difl uoropurine and 2-fl uoro-6-trifl uoromethylpurine from 
2-fl uoro-6-chloropurine       
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  Scheme 45    An inverse-electron demand Diels-Alder reaction for the synthesis of 
2,6-di(trifl uoromethyl)purines       

   In contrast to the 2,6-difl uoropurines, very few methods exist for the direct synthesis 
of 2,8-difl uorinated purine species. However, it is assumed that using a combination of 
monofl uorination methods would enable the formation of 2,8-difl uoropurines. In one 
interesting case, it has been shown that it is possible to substitute at the 2- and 8- posi-
tions of purines with difl uoromethyl groups. By using a novel reagent, zinc difl uoro-
methylsulfi nate, in combination with  tert - butylhydroperoxide, it has been demonstrated 
that 6-chloropurine  129  will readily undergo a radical reaction to install two CF 2 H 
groups at the 2- and 6-position, to give  130  in 30 % yield [ 148 ] (Scheme  46 ). Substitution 
with CF 2 H offers an alternative isostere to more traditional hydrogen bond donors and 
has the added benefi t to potential therapeutics of improving membrane permeability, 
though increasing lipophilicity.
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   6,8-Difl uoropurines are also relatively sparsely described. To date, the only reported 
method for accessing 6,8-difl uorinated purines is by an S N Ar strategy. Subjecting a 
6,8-dichloropurine nucleoside  131  to a two step fl uorination procedure afforded the 
corresponding 6,8-difl uoropurine nucleoside  132  in 35 % over two steps [ 101 ] 
(Scheme  47 ). It was found that using potassium fl uoride with trimethylamine in DMF 
resulted in substitution primarily at the 6-position (see Sect.  3.1 ). Although small 
quantities of difl uorinated  132  were also isolated, it was necessary to subject mono-
fl uorinated  61  to more forcing conditions, with cesium fl uoride and 18-crown-6 in 
acetonitrile, to give the desired disubstituted purine. Attempts to create a one-pot reac-
tion by treating dichloropurine  131  with the more nucleophilic CsF conditions resulted 
in the formation of difl uorinated  132 , albeit in signifi cantly lower yields. This case 
highlights the fundamental reactivity differences between the 6-position and 8-posi-
tion of the halogenated purines, with the 6-chloropurines undergoing a higher yielding 
reaction under less forcing conditions than the corresponding 8-chloropurines.
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  Scheme 46    Radical reaction of 6-chloropurine with zinc difl uoromethylsulfi nate generates 
2,8-di(difl uoromethyl)-6-chloropurine       
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   To date, no methods for directly accessing 6,8-ditrifl uoromethylpurines from 
purine starting materials exist. It is, however, possible to prepare these compounds 
from the corresponding 4,5-diaminopyrimidines. Subjecting either 4,5-diamino- 2-
chloro-6-trifl uoromethylpyrimidine or 2,4,5-triamino-6-trifl uoromethylpyrimidine 
to a mixture of trifl uoroacetic acid and trifl uoroacetic anhydride at refl ux, gave the 
corresponding 2-substituted-6,8- ditrifl uoromethylpurine in 28 % ( 133 ) and 22 % 
( 134 ), respectively [ 60 ,  149 ] (Scheme  48 ).
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  Scheme 48    The preparation of 6,8-di(trifl uoromethyl)purines       

6          N 9-(Fluoroalkyl)- and  N 9-(Fluoroalkenyl)Purines 

6.1     Synthesis and Reactivity 

 Currently, few techniques exist for the  N -fl uoroalkylation or  N -fl uoroalkenylation 
of purines. Of those that have been described,  N -alkylation and  N -alkenylation reac-
tions of purines proceed with a preference for the N-9 position over N-7. The most 
common method for alkylation of N-9 consists of treating the purine with a base, 
followed by the addition of an alkyl halide. These conditions were fi rst used to 
install a CF 3  group at the N-9 position of 2-chloro-6-(4-chlorobenzylamino)purine, 
using sodium hydride as the base in combination with an unspecifi ed trifl uoro-
methyl halide [ 150 ]. The resulting compound was screened for CDK2 kinase inhibi-
tion along with a range of non-fl uorinated purines and exhibited an IC 50  of 1 μM, 
one of the most potent inhibitors in the screen. 

 This general approach to alkylation was also used to install a more complex 
fl uoro- alkyl group regioselectively at N-9 in the synthesis of the adenine- 
fl uorobutynol derivative  136  [ 151 ] (Scheme  49 ). The transformation of  135 – 136  
was also achieved with potassium carbonate in DMSO, however, the yield in this 
instance was lowered to 25 %. Subsequent removal of the THP group afforded 
4-(adenin-9-yl)-4-fl uorobut-2-yn-1-ol, which was found to be stable under mildly 
basic conditions. However, upon subjection to stronger base, such as potassium  tert -   
butoxide in DMF, hydrolysis of the fl uorobutynol group took place. This presum-
ably occurred  via  deprotonation of the 6-NH 2 , which in turn promoted an increase 
in the reactivity of the N-9 nitrogen lone pair. As a result of this, displacement of the 
fl uoride could occur, to form the corresponding enamine, which was subsequently 
hydrolysed. It was also observed that subjecting 4-(adenin-9-yl)-4-fl uorobut-2-yn-
1- ol to phosphate buffer at pH 7 led to a similar decomposition pathway, which 
could adversely affect biological assays of this compound.
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    N 9-(Fluoroalkenyl)adenine derivatives containing a pendant alkynyl- phosphonate 
group have been synthesised by similar methods. Upon subjecting adenine to an initial 
alkylation with diethyl (3,4-dibromo-1,1-difl uorobut-2-en-1-yl)phosphonate, a series of 
eliminations took place in the presence of TBAF to afford an intermediate 1′,3′-diyne-
phosphonate  137  [ 152 ] (Scheme  50 ). Further reaction with TBAF was found to facilitate 
fl uoride attack alpha to N-9 to afford the corresponding  N 9-(fl uoroalkenyl)purine  138 .
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  Scheme 49    The preparation of an N9 4-fl uorobut-2-yn-1-ol derivative of adenine       
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  Scheme 50    The preparation of an N9-(fl uoroalkenyl)adenine bearing a pendant phosphonate       

   Other techniques have been reported to enable the synthesis of  N 9-(fl uoroalkenyl)
purines. Using either adenine or guanine in combination with sodium hydride and 
hexafl uoropropene (HFP), afforded a range of N9-(fl uoroalkenyl)purines  140 – 143  
[ 153 ] (Scheme  51 ). Despite being formed as  E / Z  mixtures (60:40), the olefi nation 
took place exclusively at the CF 2  = terminus, as the intermediate anion  139  is 
strongly stabilised by the CF 3  group. Interestingly, it was also found that subjecting 
 N 6-benzoyladenine derivatives to a fourfold excess of sodium hydride and hexa-
fl uoropropene resulted not only in olefi nation at N-9, but also olefi nation at N-1 
(compound  144 ). This compound was formed in a 3:1 ratio of di- to mono- olefi -
nated product. Subsequent NMR studies were conducted on all of these compounds 
in order to investigate the structural differences in the  E  and  Z  stereoisomers [ 154 ].
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7         Conclusion 

 Fluorinated purines have an established and continuing role in biomedical research, 
in large part refl ecting the widespread importance within biology of purine nucleo-
sides and nucleotides. The presence of fl uoro or trifl uoromethyl substitution often 
substantially and favourably modifi es the biological activities, physicochemical 
properties and metabolic stability of nucleosides and simpler purine derivatives. 
Fluorine incorporation provides an opportunity for developing useful 
 18 F-radiolabelled derivatives for  in vivo  imaging by positron emission tomography. 
The synthetic modifi cation of fl uorinated purines, primarily through nucleophilic 
displacement reactions, is widely used in the generation of new compounds for 
medicinal chemistry and these reactions can also be applied within biological mac-
romolecules. Despite these important uses, there are only a few general methods 
available for the synthesis of fl uorinated purines. Diazotization-fl uorodediazoniation 
or displacements of other halopurines by fl uoride dominate, while electrophilic 
fl uorination is currently less exemplifi ed. For the introduction of fl uoroalkyl sub-
stituents,  de novo  syntheses of the heteroaromatic rings are often employed, 
although the introductions of trifl uoromethyl organometallic species and radical 
chemistry for direct fl uoroalkylation promise increased fl exibility for the synthesis 
of these derivatives in the future.     
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