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Preface

Four years ago (2002), I (DGK) authored a unique educational program, ActivEpi
(Springer Publishers), developed in CD-ROM format to provide a multimedia
interactive “electronic textbook” on basic principles and methods of epidemiology.
In 2003, the ActivEpi Companion Text, authored by myself (DGK), KM Sullivan
and ND Barker and also published by Springer, was developed to provide a hard-
copy of the material contained in the ActivEpi CD-ROM. The CD-ROM contains
15 chapters, with each consisting of a collection of “activities” including narrated
expositions, interactive study questions, quizzes, homework questions, and web
links to relevant references on the Internet.

In the nearly three years since the publication of the ActivEpi CD-ROM, we
have received several suggestions from instructors of introductory epidemiology
courses as well as health and medical professionals to produce an abbreviated
version that narrows the discussion to the most “essential” principles and methods.
Instructors expressed to us their concern that the material covered by the CD-
ROM (and likewise, the Companion Text) was too comprehensive to conveniently
fit the amount of time available in an introductory course. Professionals expressed
their desire for a more economically time-consuming version that would
conveniently fit their “after hours” availability.

To address these suggestions, we have herewith produced A Pocket Guide to

Epidemiology which provides a much shorter, more “essential” version of the
material covered by the ActivEpi CD-ROM and Companion Text. We realize that 
determining what is “essential” is not a simple task, especially since, from our
point of view, the original CD-ROM was already restricted to “essential” topics. 
Nevertheless, to produce this text, we decided to remove from the original material
a great many fine points of explanation and complicated topics/issues about
epidemiologic principles and methods, with our primary goal a “quicker read”.

A Pocket Guide to Epidemiology contains less than half as many pages as the
ActivEpi Companion Text. We have continued to include in A Pocket Guide to 

Epidemiology many of the study questions and quizzes that are provided in each
Lesson of the CD ROM, but we have eliminated homework exercises, computer
exercises, and Internet linkages from the original CD-ROM. Nevertheless, we
indicate throughout A Pocket Guide to Epidemiology how and where the
interested reader can turn to the ActivEpi CD ROM (or the Companion Text) to
pursue more detailed information.

We authors view A Pocket Guide to Epidemiology as a stand-alone
introductory text on the basic principles and concepts of epidemiology. Our
primary audience for this text is the public health student or professional, clinician,
health journalist, and anyone else at any age or life experience that is interested in
learning what epidemiology is all about in a convenient, easy to understand format
with timely, real-world health examples.  We believe that the reader of this text
will also benefit from using the multi-media learner-interactive features of the
ActivEpi CD ROM electronic textbook to further clarify and enhance what is
covered in this more abbreviated (non-electronic) text. Nevertheless, we suggest
that, on its own, A Pocket Guide to Epidemiology will provide the interested
reader with a comfortable, time-efficient and enjoyable introduction to
epidemiology.
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CHAPTER 1
A POCKET-SIZE INTRODUCTION 

Epidemiology is the study of health and illness in human populations. For
example, a randomized clinical trial conducted by Epidemiologists at the Harvard
School of Public Health showed that taking aspirin reduces heart attack risk by 20
to 30 percent.  Public health studies in the 1950's demonstrated that smoking
cigarettes causes lung cancer. Environmental epidemiologists have been
evaluating the evidence that living near power lines may have a high risk for
childhood leukemia.  Cancer researchers wonder why older women are less likely
to be screened for breast cancer than younger women.  All of these are examples
of epidemiologic research, because they all attempt to describe the relationship
between a health outcome and one or more explanations or causes of that outcome.
All of these examples share several challenges: they must choose an appropriate
study design, they must be careful to avoid bias, and they must use appropriate
statistical methods to analyze the data.  Epidemiology deals with each of these
three challenges.



 

CHAPTER 2
THE BIG PICTURE - WITH EXAMPLES 

The field of epidemiology was initially concerned with providing a methodological
basis for the study and control of population epidemics. Now, however, 
epidemiology has a much broader scope, including the study of both acute and 
chronic diseases, the quality of health care, and mental health problems.  As the
focus of epidemiologic inquiry has broadened, so has the methodology.  In this
overview chapter, we describe examples of epidemiologic research and introduce
several important methodological issues typically considered in such research.

The Sydney Beach Users Study 

Epidemiology is primarily concerned with identifying the important factors or 
variables that influence a health outcome of interest.  In the Sydney Beach Users 
Study, the key question was “Is swimming at the beaches in Sydney associated
with an increased risk of acute infectious illness?”

In Sydney, Australia, throughout the 1980s, complaints were expressed in the local
news media that the popular public beaches surrounding the city were becoming
more and more unsafe for swimming. Much of the concern focused on the
suspicion that the beaches were being increasingly polluted by waste disposal.

In 1989, the New South Wales Department of Health decided to undertake a
study to investigate the extent to which swimming and possible pollution at 12 
popular Sydney beaches affected the public's health, particularly during the s
 Summer months when the
beaches were most crowded. The
primary research question of 
interest was: are persons who
swim at Sydney beaches at
increased risk for developing an
acute infectious illness?

The study was carried out by 
selecting subjects on the beaches
throughout the summer months
of 1989-90. Those subjects
eligible to participate at this initial interview were then followed-up by phone a 
week later to determine swimming exposure on the day of the beach interview and
subsequent illness status during the week following the interview.

Water quality measurements at the beaches were also taken on each day that 
subjects were sampled in order to match swimming exposure to pollution levels at 
the beaches.

Analysis of the study data lead to the overall conclusion that swimming in
polluted water carried a statistically significant 33% increased risk for an 
infectious illness when compared to swimming in non-polluted water. These
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results were considered by health department officials and the public alike to
confirm that swimming in Sydney beaches posed an important health problem.
Consequently, the state and local health departments together with other
environmental agencies in the Sydney area undertook a program to reduce sources
of pollution of beach water that lead to improved water quality at the beaches
during the 1990’s.

Summary

The Sydney Beach Users Study is an example of the application of
epidemiologic principles and methods to investigate a localized public health
issue.
The key question in the Sydney Beach Users Study was: 
o Does swimming at the beaches in Sydney, Australia (in 1989-90) pose an 

increased health risk for acute infectious illnesses?
o The conclusion was yes, a 33% increased risk.

Important Methodological Issues

We provide a general perspective of epidemiologic research by highlighting
several broad issues that arise during the course of most epidemiologic
investigations.

There are many issues to worry about when planning an epidemiologic research
study (see Box below). In this chapter we will begin to describe a list of broad
methodological issues that need to be addressed. We will illustrate each issue 
using the previously described Sydney Beach Users Study of 1989.

Issues to consider when planning an epidemiologic research study
Question Define a question of interest and key variables

Variables What to measure: exposure (E), disease (D), and control (C) variables
Design What study design and sampling frame?

Frequency Measures of disease frequency
Effect Measures of effect
Bias Flaws in study design, collection, or analysis

Analysis Perform appropriate analyses

The first two issues require clearly defining the study question of interest,
followed by specifying the key variables to be measured. Typically, we first
should ask: What is the relationship of one or 
more hypothesized determinants to a disease
or health outcome of interest?

A determinant is often called an exposure variable and is denoted by the letter 
E. The disease or health outcome is often denoted as D. Generally, variables other
than exposure and disease that are known to predict the health outcome must be
taken into account. We often call these variables control variables and denote
them using the letter C.

Next, we must determine how to actually measure these variables. This step 
requires determining the information-gathering instruments and survey
questionnaires to be obtained or developed.
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The next issue is to select an appropriate study

design and devise a sampling plan for enrolling
subjects into the study. The choice of study design
and sampling plan depends on feasibility and cost as 
well as a variety of characteristics of the population
being studied and the study purpose.

Measures of disease frequency and effect then
need to be chosen based on the study design. A
measure of disease frequency provides quantitative
information about how often a health outcome occurs
in subgroups of interest. A measure of effect allows 
for a comparison among subgroups.

We must also consider the potential biases of a 
study. Are there any flaws in the study design, the
methods of data collection, or the methods of data
analysis that could lead to spurious conclusions about
the exposure-disease relationship?

Finally, we must perform the appropriate data

analysis, including stratification and mathematical
modeling as appropriate. Analysis of epidemiologic
data often includes taking into account other
previously known risk factors for the health outcome.
Failing to do this can often distort the results and lead
to incorrect conclusions.

Data is obtained

from:
 Surveys
 Interviews 
 Samples
 Laboratories 

Terms to learn

Study Designs:
 Clinical trials
 Cross-sectional
 Case-control
 Cohort 
Measures of Disease
Frequency
 Rate 
 Proportion 
 Risk 
 Odds 
 Prevalence
 Incidence
Measures of Effect
 Risk ratio
 Odds ratio
 Rate ratio
 Prevalence ratio
Biases
 Selection bias
 Information bias
 Confounding bias
Data Analysis
 Logistic Regression
 Risk factors
 Confounding 
 Effect modification

Summary: Important Methodological Issues

What is the study question?
How should the study variables be measured?
How should the study be designed?
What measures of disease frequency should be
used?
What kinds of bias are likely?
How do we analyze the study data?

The Study Question 

Epidemiology is primarily concerned with identifying the important factors or 
variables that influence a health outcome of interest.  Therefore, an important first
step in an epidemiologic research study is to carefully state the key study question
of interest.

The study question needs to be stated as clearly and as
early as possible, particularly to indicate the variables
to be observed or measured. A typical epidemiologic
research question describes the relationship between a 
health outcome variable, D, and an exposure variable, E, taking into account the
effects of other variables already known to predict the outcome (C, control
variables).
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A simple situation, which is our primary
focus throughout the course, occurs when
there is only one D and one E, and there are
several control variables. Then, the typical
research question can be expressed as shown
below, where the arrow indicates that the
variables E and the controls (Cs) on the left
are the variables to be evaluated as predictors
of the outcome D, shown on the right.

In the Sydney Beach Users Study, the health outcome variable, D, of interest is 
whether or not a person swimming at a beach in Sydney develops an acute
infectious illness such as a cough, cold, flu, ear infection, or eye infection, within
one week of swimming at the beach.
The study subjects could be classified as either:

D=0 for those did not get ill, or D=l for those became ill. 

A logical choice for the exposure variable is the exposure variable swimming
status, which is set to:

E=0 for non-swimmers and E=1 for swimmers during the time period of the study.

(Note that other coding schemes could be used other than 0/1, such as 1/2, Y/N, or
+/-, but we will use 0/1).

Control variables might include pollution level at the beach, age of the subject,
and duration of swimming. Generally speaking, a study will not be very useful
unless a question or hypothesis of some kind can be formulated to justify the time
and expense needed to carry out the study.

Thus, the research question of this study example is to describe the relationship
of swimming to the development of an infectious illness, while taking into account
the effects of relevant control variables such as pollution level, age of subject and
duration of swimming.

Because several variables are involved, we can expect that a complicated set of 
analyses will be required to deal with all the possible relationships among the 
variables involved.

Summary: The Study Question

An important first step in an epidemiologic research study is to carefully state
the key study question of interest.
The general question: To what extent is there an association between one or
more exposure variables (Es) and a health outcome (D), taking into account
(i.e., controlling for) the possible influence of other important covariates (Cs)?
We can expect a complicated set of analyses to be required to deal with all
possible relationships among the variables involved.

Quiz (Q2.1)

In the Sydney Beach Users study, exposure was alternatively defined by
distinguishing those who swam in polluted water from those who swam in non-
polluted water and from those who did not swim at all. Based on this scenario, fill
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in the missing information in the following statement:

1. The exposure variable has ??? categories, one of which is ???

Choices: 2 3 4 5 did not swim polluted water swam water not polluted

2. When considering both swimming and pollution together, which of the
following choices is appropriate for defining the exposure variable in the
Sydney Beach Users study: ???

Choices:
a) E=O if did not swim, E=1 if swam in polluted water
b) E=O if did not swim, E=1 if swam in non-polluted water 
c) E=O if did not swim, E=1 if swam in polluted water, E=2 if swam in non-

polluted water 
d) E=O if did not swim, E=1 if swam

In the Sydney Beach Users study, the illness outcome was whether or not an acute
infectious illness developed 1 week after swimming at the beach. Also, in addition
to age, another control variable was whether or not a study subject swam on days
other than the day he or she was interviewed.  Fill in the missing information:

3. The health outcome has ??? categories. 
4. There are at least ??? control variables.
5. Which of the following choices is not a control variable: ???

a) age b) swimming status on other days c) swimming status on day of
   interview

Choices: 2 3 4 5 a b c

Measuring the Variables 

Another important issue is: How do we measure the variables to be studied?
Several measurement issues are now introduced.

Once the study question is determined, the investigators must determine how to 
measure the variables identified for the study and any other information that is 
needed. For example, how will the exposure variable be measured? If a subject
went into the water but never put his head under the water, does that count as 
swimming? How much time is required to spend in the water to be counted as
swimming? Is it feasible to observe each subject's swimming status on the day of 
initial interview, and if not, how should swimming status be determined?

After considering these 
questions, the study team defined
swimming as any immersion of the
face and head in the water. It was
decided that subject self-reporting
of swimming was the only feasible
way to obtain swimming information.

Measuring Exposure Variables

Definition of Swimming
Any immersion of face & head in water 

Measuring Swimming Status
Subject self-reporting

How will the health outcome be measured? Should illness be determined by a
subject's self-report, which might be inaccurate, or by a physician's confirmation,
which might not be available? The study team decided to use self-reported
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symptoms of illness obtained by telephone interview of study subjects 7 to 10 days
after the initial interview.

Another measurement issue concerned how to determine water quality at the
beach. Do water samples need to be collected? What time of day should they be
collected? How will such information be linked to study subjects? The study team
decided that health department surveyors would collect morning and evening
samples at the midpoint of each of three sectors of the beach.
As nearly as could practicably be achieved, study subjects were to be interviewed
during the period in which water samples were taken. A standard protocol was
determined for how much water was to be sampled and how samples were to be
assessed for water quality.

A final measurement issue concerned what 
information should be obtained from persons
interviewed at the beach for possible inclusion into the
study? The study team decided to collect basic
demographic data including age, sex, and postcode, to
ask whether or not each respondent had been swimming
anywhere in the previous 5 days, and had any condition
that precluded swimming on the day of the interview.

Interview Variables

 Age 
 Sex
 Postcode 
 Swimming history
 Health status

Subjects were excluded from the study if they reported swimming in the
previous 5 days or having an illness that prevented them from swimming. Subjects
were included if they were at least 15 years old and agreed to both an initial beach 
interview and a follow-up telephone interview.
All the measurement issues described above must be addressed prior to data
collection to ensure standardized information is collected and to provide a study
that is both cost and time efficient.

Study Questions (Q2.2)

1. What other variables might you also consider as control variables in the Beach
Users Study?

2. How do we decide which variables to measure as control variables?
3. Why should age be considered?
4. How would you deal with subjects who went to the beach on more than one

day?

Summary: Measuring the Variables

General measurement issues: 
How to operationalize the way a measurement is carried out?
Should self-reporting of exposure and/or health outcome be used?
When should measurements be taken?
How many measurements should be taken on each variable and how should
several measurements be combined?
How to link environmental measures with individual subjects?
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The Study Design, including the Sampling Plan 

Another important issue is: What study design should be used and how should we
select study subjects?  Several study design issues are now introduced.

There are a variety of study designs used in epidemiology. The Sydney Beach 
Users study employed a cohort design. A key feature of such a design is that
subjects without the health outcome are followed-up over time to determine if they
develop the outcome. Subjects were selected from 12 popular Sydney beaches
over 41 sampling days. An initial interview with the study subjects took place on 
the beach to obtain consent to participate in the study and to obtain demographic
information.

Persons were excluded from the study if they had an illness that prevented
them from swimming on that day or if they had been swimming within the
previous 5 days. It was not considered feasible to determine swimming exposure
status of each subject on the day of initial interview. Consequently, a follow-up
telephone interview was conducted 7 to 10 days later to obtain self-reported
swimming exposure as well as illness status of each subject.

Study Questions (Q2.3)

1. How might you criticize the choice of using self-reported exposure and 
illnesses?

2. How might you criticize the decision to determine swimming status from a 
telephone interview conducted 7 to 10 days after being interviewed on the
beach?

A complex sample survey design was used to obtain the nearly 3000 study
participants. Six beaches were selected on any given day and included 2 each from
the northern, eastern and southern areas of Sydney. Each beach was divided into
three sectors, defined by the position of the swimming area flags erected by the
lifeguards. Trained interviewers recruited subjects, starting at the center of each
sector and moving in a clockwise fashion until a quota for that sector had been
reached. Potential subjects had to be at least 3 meters apart. 

Study Questions (Q2.4)

1. Why do you think potential subjects in a given sector of the beach were
specified to be at least 3 meters apart?

2. Why is the Sydney Beach Users Study a cohort study?
3. A fixed cohort is a group of people identified at the onset of a study and then

followed over time to determine if they developed the outcome.  Was a fixed
cohort used in the Sydney Beach Users Study? Explain.

4. A case-control design starts with subjects with and without an illness and looks
back in time to determine prior exposure history for both groups. Why is the
Sydney Beach Users study not a case-control study?

5. In a cross-sectional study, both exposure and disease status are observed at the 
same time that subjects are selected into the study. Why is the Sydney Beach
Users study not a cross-sectional study?
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Summary: Study Design

Two general design issues:
o Which of several alternative forms of epidemiologic study designs should be

used (e.g., cohort, case-control, cross-sectional)?
o What is the sampling plan for selecting subjects?

Measures of Disease Frequency and Effect 

Another important issue is: What measure of disease frequency and measure of
effect should be used?  These terms are now briefly introduced.

Once the study design has been determined, appropriate measures of disease
frequency and effect can be specified. A measure of disease frequency provides
quantitative information about how often the health outcome has occurred in a 
subgroup of interest.

For example, in the Sydney 
Beach Users Study, if we want to
measure the frequency with which 
those who swam developed the
illness of interest, we could
determine the number of subjects
who got ill and swam and divide by
the total number who swam. The
denominator represents the total
number of study subjects among
swimmers that had the opportunity to become ill. The numerator gives the number
of study subjects among swimmers who actually became ill. Similarly, if we want
to measure the frequency of illness among those who did not swim, we could 
divide the number of subjects who got ill and did not swim by the total number of
non-swimming subjects.

The information required to carry out the above calculations can be described
in the form of a two-way table shown below. This table shows the number who
became ill among
swimmers and non-
swimmers. We can
calculate the proportion ill 
among the swimmers to be 
0.277 or 27.7 percent.  We 
can also calculate the 
proportion ill among the
non-swimmers as 0.165 or
16.5 percent.

Each proportion is a measure of disease frequency called a risk. R(E) denotes
the risk among the exposed for developing the health outcome. R(not E) [or

R( E )] denotes the risk among the unexposed. There are measures of disease 
frequency other than risk that will be described in this course. The choice of
measure (e.g., risk, odds, prevalence, or rate) primarily depends on the type of
study design being used and the goal of the research study.
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If we want to compare two measures
of disease frequency, such as two risks,
we can divide one risk by the other, say,
the risk for swimmers divided by the risk
for non-swimmers. We find that the ratio 
of these risks in our study is 1.68; this
means that swimmers have a risk for the
illness that is 1.68 times the risk for non-
swimmers.

Such a measure is called a measure of effect. In this example, the effect of
interest refers to the effect of one's swimming status on becoming or not becoming
ill. If we divide one risk by the other, the measure of effect or association is called 
a risk ratio. There are other measures of effect that will be described in this
course (e.g., such as the risk ratio, odds ratio, prevalence ratio, rate ratio, risk 
difference, and rate difference). As with measures of disease frequency, the choice
of effect measure depends on the type of study design and the goal of the research
study.

Summary: Measures of Disease Frequency and Effect

A measure of disease frequency quantifies how often the health outcome has
occurred in a subgroup of interest.
A measure of effect quantifies a comparison of measures of disease frequency
for two or more subgroups.
The choice of measure of disease frequency and measure of effect depends on
the type of study design used and the goal of the research study.

Bias

Another important issue is: What are the potential biases of the study?  The
concept of bias is now briefly introduced.

Bias: A flaw in the
o study design
o methods of data collection
o methods of data analysis
… which leads to spurious conclusions.

Sources of bias: 
o Selection
o Information
o Confounding

The next methodologic issue concerns
the potential biases of a study. Bias is a
flaw in the study design, the methods of
data collection, or the methods of data
analysis that may lead to spurious
conclusions about the exposure-disease
relationship. Bias may occur because of: 
the selection of study subjects; incorrect
information gathered on study subjects;
or failure to adjust for variables other
than the exposure variable, commonly called confounding.

In the Sydney Beach Users Study, all 3 sources of bias were considered. For 
example, to avoid selection bias, subjects were excluded from the analysis if they 
were already ill on the day of the interview. This ensured that the sample
represented only those healthy enough to go swimming on the day of interview.
Sometimes selection bias cannot be avoided. For example, subjects had to be
excluded from the study if they did not complete the follow-up interview. This
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non-response bias may affect how representative the sample is. 
There was also potential for information bias since both swimming status and

illness status were based on self-reporting by study subjects. Swimming status was
determined by self-report at least seven days after the swimming occurred. Also,
the report of illness outcome did not involve any clinical confirmation of reported 
symptoms.

Confounding in the Beach Users Study concerned whether all relevant
variables other than swimming status and pollution level exposures were taken
into account.  Included among such variables were age, sex, duration of swimming
for those who swam, and whether or not a person swam on additional days after
being interviewed at the beach. The primary reason for taking into account such
variables was to ensure that any observed effect of swimming on illness outcome
could not be explained away by these other variables.

Summary

Bias is a flaw in the study design, the methods of data collection, or the
methods of data analysis that may lead to spurious conclusions about the
exposure-disease relationship.
Three general sources of bias occur in:
oSelection of study subjects
o Incorrect information gathered on study subjects
oFailure to adjust for variables other than the exposure variable (confounding)

Analyzing the data 

Another important issue is: How do we carry out the data analysis?  We now
briefly introduce some basic ideas about data analysis.

Statistics
Frequency   Effect

Risk risk ratio
  Prevalence  prevalence ratio
  Odds  odds ratio 

Rate rate ratio

Stratification

Mathematical modeling

The final methodologic issue concerns the
data analysis. We must carry out an 
appropriate analysis once collection and 
processing of the study data are complete.
Since the data usually come from a sample of 
subjects, the data analysis typically requires
the use of statistical procedures to account for 
the inherent variability in the data. In 
epidemiology, data analysis typically begins
with the calculation and statistical assessment of simple measures of disease 
frequency and effect. The analysis often progresses to more advanced techniques
such as stratification and mathematical modeling. These latter methods are
typically used to control for one or more potential confounders.

Let's consider the data analysis in the Sydney Beach Users Study. We had
previously compared swimmers with non-swimmers. Now, we may wish to 
address the more specific question of whether those who swam in polluted water
had a higher risk for illness than those who swam in non-polluted water. We can
do this by separating the swimmers into two groups. The non-swimmers represent
a baseline comparison group with which the two groups of swimmers can be
compared.
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Based on the two-way table, we 
can estimate the risk for illness for
each of the three groups by computing
the proportion that got ill out of the
total for each group. The three risk
estimates are 0.357, 0.269 and 0.165,
which translates to 35.7 percent, 26.9
percent and 16.5 percent, respectively.

The risk ratio that compares the Swam-Polluted
(Yes-P) group with the Swam-Nonpolluted (Yes-NP) 
group is 1.33 indicating that persons who swam in
polluted water had a 33 percent increased risk than persons who swam in
nonpolluted water. 

Also, the risk ratio estimates
obtained by dividing the risks for each 
group by risk for non-swimmers are
2.16, 1.63, and 1. This suggests what
we call a dose-response effect, which
means that as exposure increases, the risk increases. 

The analysis just described is called a “crude” analysis because it does not take 
into account the effects of other known factors that may also affect the health
outcome being studied. A list of such variables might include age, swimming
duration, and whether or not a person swam on additional days. The conclusions
found from a crude analysis might be altered drastically after adjusting for these
potentially confounding variables.

Several questions arise when considering the control of many variables:

Which of the variables being considered should actually be controlled?

What is gained or lost by controlling for too many or too few variables?

What should we do if we have so many variables to control that we run out of
numbers?

What actually is involved in carrying out a stratified analysis or mathematical
modeling to control for several variables?

How do the different methods for control, such as stratification and
mathematical modeling, compare to one another?

These questions will be addressed in later activities.

Study Questions (Q2.5)

1. How do you interpret the risk ratio estimate of 1.33?
2. Does the estimated risk ratio of 1.33 indicate that swimming in polluted water 

poses a health risk?
3. Given the relatively small number of 154 persons who swam in polluted water,

what statistical question would you need to answer about the importance of the
estimated risk ratio of 1.33?

Summary: Analyzing the Data

The data analysis typically requires the use of statistical procedures to account
for the inherent variability in the data.
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In epidemiology, data analysis often begins with assessment and comparison of
simple measures of disease frequency and effect. 
The analysis often progresses to more advanced techniques such as
stratification and mathematical modeling.

Example: Alcohol Consumption and Breast Cancer 

The Harvard School of Public Health followed a cohort of about 100,000 nurses
from all over the US throughout the 1980s and into the 1990s. The investigators in
this Nurses Health Study, were interested in assessing the possible relationship
between diet and cancer. One particular question concerned the extent to which
alcohol consumption was associated with the development of breast cancer.

Nurses identified as being 'disease free' at enrollment into the study were asked
about the amount of alcohol they currently drank. Other relevant factors, such as
age and smoking history, were also determined. Subjects were followed for four
years, at which time it was determined who developed breast cancer and who did
not. A report of these findings was published in the New England Journal of
Medicine in 1987.

Recall that the first methodologic issue is to define the study question. Which
of the study questions stated here best addresses the question of interest in this
study?

A. Is there a relationship between drinking alcohol and developing breast cancer?
B. Are alcohol consumption, age, and smoking associated with developing breast

cancer?
C. Are age and smoking associated with developing breast cancer, after 

controlling for alcohol consumption?
D. Is alcohol consumption associated with developing breast cancer, after

accounting for other variables related to the development of breast cancer?

The best answer is "D,” although “A” is also correct.  In stating the study
question of interest, we must identify the primary variables to be measured.

Study Questions (Q2.6) Determine whether each of the following is a: 
Health outcome variable (D), Exposure variable (E), or Control variable (C)

1. Smoking history
2. Whether or not a subject develops breast cancer during follow-up
3. Some measure of alcohol consumption
4. Age

Once we have specified the appropriate variables
for the study, we must determine how to measure
them. The health outcome variable, D, in this
example is simply yes or no depending on whether
or not a person was clinically diagnosed with
breast cancer. The investigators at Harvard
interviewed study subjects about their drinking
habits, E, and came up with a quantitative
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measurement of the amount of alcohol in units of grams per day that were
consumed in an average week around the time of enrollment into the study. How
to treat this variable for purposes of the analysis of the study data was an important
question considered. One approach was to categorize the alcohol measurement
into 'high' versus 'low'. Another approach was to categorize alcohol into 4 groups:
non-drinkers; less than 5 grams per day; between 5 and 15 grams per day; and 15 
or more grams per day.

Age, denoted C1, is inherently a quantitative variable, although many of the
analyses treated age as a categorical variable in three age groups, shown here:

34 to 44 years, 45 to 54 years, 55 to 59 years
Smoking history, C2, was categorized in several ways; one was never smoked

versus ever smoked.
The research question in the nurse's health study can thus be described as

determining if there is a relationship between alcohol consumption, E, and breast
cancer, D, controlling for the effects of age, Cl, and smoking history, C2, and 
possibly other variables (C3, C4, etc.). 

Although a detailed analysis is not
described here, the data did provide
evidence of a significant association 
between alcohol use and development of
breast cancer. For heavy drinkers, when
compared to non-drinkers, there was
about an 80% increase in the risk of developing breast cancer.  Moderate drinkers
were found to have about a 50% increase in risk, and light drinkers had an
increased risk of about 20%.

Note: The Nurses Health Study provides an example in which the exposure
variable, alcohol consumption, has several categories rather than simply binary.
Also, the control variables age and smoking history can be a mixture of different
types of variables.  In the Nurses Health Study, age is treated in three categories,
and smoking history is treated as a binary variable.

Example: The Bogalusa Outbreak 

On October 31, 1989, the
Louisiana State Health 
Department was notified
by two physicians in
Bogalusa, Louisiana, that 
over 50 cases of acute
pneumonia had occurred
within a three-week
interval in mid to late 
October, and that six
persons had died. Information that the physicians had obtained from several
patients suggested that the illness might have been Legionnaires Disease.

In 1989, Bogalusa was a town of about 16,000 persons. The largest employer
was a paper mill located in the center of town adjacent to the main street. The
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paper mill included five prominent cooling towers. The mill also had three paper
machines that emitted large volumes of aerosol along the main street of town.
Many people suspected that the cooling towers and or the paper mill were the
cause of the outbreak, since they were prominent sources of outdoor aerosols
where the legionnaire's bacteria could have been located.

Recall that the first methodologic issue is to define the study question of
interest. Which of the study questions stated here best addresses the question of
interest in this study?

A. Was the paper mill the source of the Legionnaires Disease outbreak in 
Bogalusa?

B. What was the source of the outbreak of Legionnaires Disease in Bogalusa?
C. Why did the paper mill cause the outbreak of Legionnaires Disease in

Bogalusa?
D. Was there an outbreak of Legionnaires Disease in Bogalusa?

The most appropriate study question is "B." Even though the paper mill was the
suspected source, the study was not limited to that variable only, otherwise, it 
might have failed to collect information on the true source of the outbreak.

Study Questions (Q2.7) In stating the study question, we identify the primary
variables to be considered in the study. Determine whether each of these variables
is the health outcome variable, D, an exposure variable, E, or a control variable, C:
1. Exposure to the cooling towers of the paper mill?
2. Exposure to emissions of the paper machines?
3. Age of subject?
4. Visited grocery store A?
5. Visited grocery store B?
6. Diagnosed with Legionnaires Disease?
7. Visited drug store A?
8. Visited drug store B?
9. Ate at restaurant A?

The health outcome variable, D, indicates whether or not a study subject was
clinically diagnosed with Legionnaires Disease during the three week period from
mid to late October.  The exposure variable is conceptually whatever variable
indicates the main source of the outbreak. Since this variable is essentially
unknown at the start of the study, there is a large collection of exposure variables,
all of which need to be identified as part of the study design and investigated as
candidates for being the primary source of the outbreak. We denote these exposure
variables of interest E1 through E7. One potential control variable of interest was 
age, which we denoted as C1.

The general research question of interest in the Bogalusa outbreak was to
evaluate the relationship of one or more of the exposure variables to whether or
not a study subject developed Legionnaires Disease, controlling for age.

A case-control study, was carried out in which 28 cases diagnosed with
confirmed Legionnaires Disease were compared with 56 non-cases or controls.
This investigation led to the hypothesis that a misting machine for vegetables in a
grocery store was the source of the outbreak. This misting machine was removed



A Pocket Guide to Epidemiology 17

from the grocery store and sent to CDC where laboratory staff was able to isolate
Legionella organisms from aerosols produced by the machine. This source was a
previously unrecognized vehicle for the transmission of Legionella bacteria.

Note: The Bogalusa study provides an example in which there are several
exposure variables that are candidates as the primary source of the health outcome
being studied.  Hopefully, the investigators will be able to identify at least one
exposure variable as being implicated in the occurrence of the outbreak. It is even
possible that more than one candidate exposure variable may be identified as a 
possible source.

The case-control study of this and many other outbreaks can often be viewed
as hypothesis generating. Further study, often using laboratory methods, clinical
diagnosis, and environmental survey techniques, must often be carried out in order
to confirm a suspected exposure as the primary source of the outbreak. The
Centers for Disease Control and Prevention has a variety of scientists to provide
the different expertise and teamwork that is required, as carried out in the
Bogalusa study.

Example: The Rotterdam Study 

The Rotterdam study has been investigating the determinants of chronic disabling
diseases, including Alzheimer’s disease, during the 1990s and beyond.

In the early 1990s, the Department
of Epidemiology of the Erasmus
University in Rotterdam, the
Netherlands, initiated the
Rotterdam Study.  A cohort of
nearly 8000 elderly people was
selected. They continue to be 
followed to this day. The goal of 
the study is to investigate
determinants of chronic disabling
diseases, such as Alzheimer's and 
cardiovascular disease. One particular study question of interest was whether
smoking increases the risk of Alzheimer's disease. 

 Subjects who were free of dementia at
a first examination were included in the
study. This excluded anyone diagnosed at
this exam with Alzheimer's or any other
form of dementia due to organic or
psychological factors. Approximately
two years later, the participants were 
asked to take a brief cognition test. If they scored positive, they were further
examined by a neurologist. The investigators could then determine whether or not
a participant had developed Alzheimer's disease, the health outcome variable D of 
interest, since the start of follow-up.

The primary exposure variable, E, was smoking history. Three categories of



18 Chapter 2.  The Big Picture – With Examples

smoking were considered: current smokers at the time of the interview; previous
but not current smokers; and, never smokers. Control variables considered in this
study included age, gender, education, and alcohol consumption.

We define the study question of interest as: Is there a relationship between
smoking history and Alzheimer's disease, controlling for the effects of age, gender,
education and alcohol consumption?

Recall that one important methodologic issue is to determine the study design.

How would you define the design of this study?
1. Cohort design
2. Case-control design
3. Cross-sectional design
4. Clinical trial 

This is a cohort design because participants without the health outcome of
interest, in this case Alzheimer's disease, are followed up over time to determine if 
they develop the outcome later in life. 

Which of the following is influenced by the design of the study?
A. The assessment of confounding
B. The choice of the measures of disease frequency and effect
C. A decision regarding the use of stratified analysis 
D. The analysis is not influenced in any way by the study design used

The answer is B. We determine the appropriate measures of disease frequency
and effect based on the study design characteristics. Choices A and C are incorrect
because they are typically considered regardless of the study design used.

The investigators found that 105
subjects developed Alzheimer’s disease.
After taking the control variables into
account, the risk of Alzheimer's disease 
for current smokers was 2.3 times the risk 
for subjects who had never smoked. For
subjects who had smoked in the past but
who had given up smoking before the
study started, the risk of Alzheimer's disease was 1.3 times the risk for subjects
who had never smoked.

Study Questions (Q2.8) Based on the above results:
1. What is the percent increase in the risk for current smokers when compared to 

the risk for never smokers?
2. What is the percent increase in the risk for previous smokers when compared

to the risk for never smokers?

Because these results were statistically significant and controlled for previously
established predictors of Alzheimer's, the study gave support to the hypothesis that
smoking history was a significant risk factor in the development of Alzheimer's
disease.
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Nomenclature
C Control variable or covariate
D Disease or outcome variable

E Exposure variable
R(E) Risk among the exposed for developing the health outcome 

R(not E) or R( E ) Risk among nonexposed for developing the health outcome 

RR Risk ratio 
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A CDC Website. The Centers for Disease control has a website called EXCITE, which
stands for Excellence in Curriculum Integration through Teaching Epidemiology.  The
website address is http://www.cdc.gov/excite/

We suggest that you open up this website on your computer and look over the various
features and purposes of the website described on the first page you see.  Then click on the 
item (on menu on left of page) Disease Detectives at Work and read the first two articles
entitled Public Health on Front Burner After Sept 11 and USA’s ‘Disease Detectives’ Track
Epidemics Worldwide.  Then click on the item  (on menu on left of page) Classroom

Exercises and go through the exercise on Legionnaires Disease in Bogalusa, Louisiana. The 
specific website address for this exercise is:

http://www.cdc.gov/excite/legionnaires.htm

Answers to Study Questions and Quizzes

Q2.1

1. 3, did not swim 
2. C
3. 2
4. 2
5. C
Q2.2

1. General health status, smoking status, 
diet, including what a subject might 
have eaten at the beach.

2. Choose variables that are already
known determinants of the health

outcome.  This will be discussed later
under the topic of confounding.

3. Younger subjects might be less likely to
get ill than older subjects.

4. In the actual study, the investigators
chose to exclude subjects from the 
analysis if they visited the beach on
days other than the day they were 
interviewed on the beach.

Q2.3

1. Self-reported information may be
inaccurate and can therefore lead to 
spurious study results.
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2. As with the previous question, the 
information obtained about exposure 
much later than when the actual 
exposure occurred may be inaccurate 
and can lead to spurious study results. 

Q2.4

1. To minimize the inclusion in the study 
of a family or social groups. 

2. Subjects without the health outcome, 
that is, healthy subjects selected at the 
beach, were followed-up over time to 
determine if they developed the 
outcome.

3. No, the Sydney Beach User’s Study did 
not use a fixed cohort.  Study subjects 
were added over the summer of 1989-
90 to form the cohort. 

4. Because the study started with exposed 
and unexposed subjects, rather than ill 
and not-ill subjects, and went forward 
rather than backwards in time to 
determine disease status. 

5. Exposure and disease status were 
observed at different times for different 
subjects.  Also, each subject was 
selected one week earlier than the time 
his or her exposure and disease status 
were determined. 

Q2.5

1. The risk of illness for persons who 
swam in polluted water is estimated to 
be 1.33 times the risk of illness for 

persons who swam in non-polluted 
water.

2. Not necessarily.  The importance of any 
risk ratio estimate depends on the 
clinical judgment of the investigators 
and the size of similar risk ratio 
estimates that have been found in 
previous studies. 

3. Is the risk ratio of 1.33 significantly 
different from a risk ratio of 1?  That is, 
could the risk ratio estimate of 1.33 
have occurred by chance? 

Q2.6

1. C
2. D
3. E
4. C
Q2.7

1. E
2. E
3. E
4. E
5. D
6. E
7. E
8. E
Q2.8

1. The increased risk of 2.3 translates to a 
130% increase in the risk of current 
smokers compared to never smokers. 

2. The increased risk of 1.3 translates to a 
30% increase in the risk for previous 
smokers compared to never smokers. 



CHAPTER 3
HOW TO SET THINGS UP?  STUDY DESIGNS

A key stage of epidemiologic research is the study design. This is defined to be the
process of planning an empirical investigation to assess a conceptual hypothesis
about the relationship between one or more exposures and a health outcome.  The
purpose of the study design is to transform the conceptual hypothesis into an
operational hypothesis that can be empirically tested.  Since all study designs are
potentially flawed, it is therefore important to understand the specific strengths
and limitations of each design.  Most serious problems or mistakes at this stage
cannot be rectified in subsequent stages of the study.

Types of Epidemiologic Research 

There are two broad types of epidemiologic studies, experimental and 
observational. An experimental study uses randomization to allocate subjects to
different categories of the exposure. An observational study does not use
randomization.  (For additional information on randomization, please refer to the
end of this chapter.) In experimental studies, the investigator, through
randomization, determines the exposure status for each subject, then follows them
and documents subsequent disease outcome. In an observational study, the
subjects themselves, or perhaps their genetics, determine their exposure, for
example, whether to smoke or not. The investigator is relegated to the role of
simply observing exposure status and subsequent disease outcome.

Experimental studies in epidemiology usually take the form of clinical trials

and community intervention trials. The objective of most clinical trials is to test
the possible effect, that is, the efficacy, of a therapeutic or preventive treatment
such as a new drug, physical therapy or dietary regimen for either treating or 
preventing the occurrence of a disease. The objective of most community
intervention trials is to assess the effectiveness of a prevention program.  For 
example, one might study the effectiveness of fluoridation, of sex education, or of
needle exchange.

Most epidemiologic studies are observational. Observational studies are
broadly identified as two types: descriptive and analytic. Descriptive studies are
performed to describe the natural history of a disease, to determine the allocation
of health care resources, and to suggest hypotheses about disease causation.
Analytic studies are performed to test hypotheses about the determinants of a
disease or other health condition, with the ideal goal of assessing causation.  (See
the end of this chapter for additional information on disease causation.)

Summary

There are two broad types of epidemiologic studies: experimental and
observational
Experimental studies use randomization of exposures
Observational studies do not use randomization of exposures
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In experimental studies, the investigator pro-actively determines the exposure
status for each subject.
In observational studies, the subject determines his/her exposure status.
Experimental studies are usually clinical trials or community intervention
trials.
Observational studies are either descriptive or analytic.

Randomization

Randomization is an allocation procedure that assigns subjects into (one of the) the
exposure groups being compared so that each subject has the same probability of being in
one group as in any other.  Randomization tends to make demographic, behavioral, genetic, 
and other characteristics of the comparison groups similar except for their exposure status. 
As a result, if the study finds any difference in health outcome between the comparison
groups, that difference can only be attributable to their difference in exposure status.

For example, if subjects are randomly allocated to either a new drug or a standard drug 
for the treatment of hypertension, then it is hoped that other factors such as age and sex
might have approximately the same distribution for subjects receiving the new drug as for
subjects receiving the standard drug.  Actually, there is no guarantee even with
randomization that the distribution of, for example age, will be the same for the two
treatment groups. The investigator can always check the data to see what has happened
regarding any such characteristic, providing the characteristic is measured or observed in
the study. If the age distribution is found to be different between the two treatment groups, 
the investigator can take this into account in the analysis, for example, by stratifying on age.

The advantage of randomization is what it offers with regard to those characteristics not 
measured in one's study. Variables that are not measured obviously cannot be taken into
account in the analysis. Randomization offers insurance, though no guarantee, that such
unmeasured variables are evenly distributed among the different exposure groups. In 
observational studies, on the other hand, the investigator can account for only those
variables that are measured, allowing more possibility for spurious conclusions because of 
unknown effects of important unmeasured variables.

Causation

In any research field involving the conduct of scientific investigations and the analysis
of data derived from such investigations to test etiologic hypotheses, the assessment of 
causality is a complicated issue. In particular, the ability to make causal inferences in the
health sciences typically depends on synthesizing results from several studies, both
epidemiologic and non-epidemiologic (e.g., laboratory or clinical findings).

Instigated by a governmental sponsored effort in the United States to assess the health 
consequences of smoking, health scientists in the late 1950's and 1960's began to consider
defining objective criteria for evaluating causality. The particular focus of this effort was
how to address causality based on the results of studies that consider exposures that cannot
be randomly assigned, i.e., observational studies.

In 1964, a report was published by the US Department of Health, Education and
Welfare that reviewed the research findings dealing with the health effects of smoking, with
the objective of assessing whether or not smoking could be identified as a "cause" of lung
cancer and perhaps other diseases. The type of synthesis carried out in this report has been
referred to in the 1990's as a meta analysis, so that this report was in essence, one of the 
earliest examples of a meta analysis conducted in the health sciences. 

The 1964 document based much of its conclusions about smoking causation on a list of
general criteria that was formalized by Bradford Hill and later incorporated into a famous
1971 textbook by Hill. The criteria are listed as follows:

1. Strength of the Association: The stronger the observed association, the less likely the
association is due to bias; weaker associations do not provide much support to a causal 
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interpretation.
2. Dose-response Effect: If the disease frequency increases with the dose or level of

exposure, this supports a causal interpretation. (Note, however, that the absence of a 
dose-response effect may not rule out causation from alternative explanations, such as a 
threshold effect.) 

3. Lack of Temporal Ambiguity: The hypothesized cause must precede the occurrence of
the disease.

4. Consistency of Findings: If all studies dealing with a given relationship produce
similar results, a causal interpretation is advanced. (Note: Inconsistencies may be due to
different study design features, so that perhaps some kind of weighting needs to be
given to each study.)

5. Biological Plausibility of the Hypothesis: If the hypothesized effect makes sense in 
the context of current biological knowledge, this supports a causal interpretation. (Note, 
however, the current state of biological knowledge may be inadequate to determine
biological plausibility.)

6. Coherence of the Evidence: If the findings do not seriously conflict with our 
understanding of the natural history of the disease or other accepted facts about disease
occurrence, this supports a causal interpretation. 

7. Specificity of the Association: If the study factor is found to be associated with only
one disease, or if the disease is found to be associated with only one factor, a causal
interpretation is supported. (However, this criterion cannot rule out a causal hypothesis,
since many factors have multiple effects and most diseases have multiple causes.)
Examples include vinyl chloride and angiosarcoma of the liver; DES by women and 
vaginal cancer in offspring. 

8. Experimentation: use of experimental evidence, such as clinical trials in humans,
animal models, and in vitro laboratory experiments.  May support causal theories when 
available, but its absent does not preclude causality.

9. Analogy: when similar relationships have been shown with other exposure-disease
relationships.  For example, the offspring of women given DES during pregnancy were 
more likely to develop vaginal cancer.  By analogy, it would seem possible that other
drugs given to pregnant women could cause cancer in their offspring.

Quiz (Q3.1) Fill in the blanks with Experimental or Observational

1. A strength of the ??? study is the investigator's control in the
assignment of individuals to treatment groups.

2. A potential advantage of an ??? study is that they are often carried out in more
natural settings, so that the study population is more representative of the target
population.

3. The major limitation of ??? studies is that they afford the investigator the least
control over the study situation; therefore, results are generally more
susceptible to distorting influences.

4. A weakness of an ??? study is that randomization to treatment groups may not
be ethical if an arbitrary group of subjects must be denied a treatment that is
regarded as beneficial.

5. One community in a state was selected by injury epidemiologists for a media
campaign and bicycle helmet discount with any bicycle purchase. A similar
community about 50 miles away was identified as a comparison community.
The epidemiologists compared the incidence of bicycle-related injuries through
emergency room surveillance and telephone survey. This is an example of an
??? study.
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6. Researchers administered a questionnaire to all new students at a large state 
university. The questionnaire included questions about behaviors such as seat
belt use, exercise, smoking, and alcohol consumption. The researchers plan to
distribute follow-up questionnaires at graduation and every five years
thereafter, asking about health events and conditions such as diabetes and heart
disease. This is an example of an ??? study.

Directionality

The directionality of a study refers to when the
exposure variable is observed relative in time to
when the health outcome is observed. In a 
study with forward directionality, the
investigator starts by determining the exposure
status for subjects selected from some
population of interest and then follows these
subjects over time to determine whether or not
they develop the health outcome. Cohort studies
and clinical trials always have forward
directionality.

In a backwards design, the investigator
selects subjects on the basis of whether or not
they have the health outcome of interest, and 
then obtains information about their previous
exposures. Case-control studies always have
backwards directionality.

In a non-directional design, the investigator
observes both the study factor and the health
outcome simultaneously, so that neither variable
may be uniquely identified as occurring first. A 
cross-sectional study is always non-directional.

The directionality of a study affects the 
researcher's ability to distinguish antecedent
from consequent. This is important for evaluating causality. Also, the
directionality chosen affects the way subjects can be selected into the study.
Designs that are backwards or non-directional have more potential for selection

bias than forward designs. Selection bias will be addressed in more detail in a later 
chapter.

Summary

Directionality answers the question: when did you observe the exposure
variable relative in time to when you observed health outcome?
Directionality can be forward, backward, or non-directional.
Directionality affects the researcher’s ability to distinguish antecedent from
consequent.
Directionality also affects whether or not a study will have selection bias.
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Timing

Timing concerns the question of whether
the health outcome of interest has
already occurred before the study
actually began.  If the health outcome
has occurred before the study is
initiated, the timing is retrospective.
For example, let’s say a case-control
study is initiated to investigate cases of a 
disease that occurred in the previous year; this would be an example of a
retrospective case control study.

If, on the other hand, the health outcome occurs after the onset of the study,
then the timing is prospective.  Clinical trials are always prospective.

Cohort and case-control studies may
either be retrospective or prospective
since the study may begin either before or
after the health outcome has occurred.
The timing of a study can have important
implications for the quality of the data.
Retrospective data are often based on
personal recall, or on hospital or
employment records, and are therefore more likely than prospective studies to 
involve measurement errors. Measurement errors frequently lead to information
bias, which we discuss in a later chapter.

Summary

Timing answers the question: has the health outcome of interest already
occurred before the study actually began?
If the health outcome occurs before the study is initiated, the timing is 
retrospective.
If the health outcome occurs after the onset of the study, the timing is 
prospective.
Timing affects measurement error and information bias.

Clinical Trials 

A clinical trial is an experimental study designed to compare the therapeutic or
health benefits of two or more treatments.  The major objective of a clinical trial is
to test the efficacy of a preventive or therapeutic intervention. The long-range
goal of a preventive trial is to prevent disease; the long-range goal of a therapeutic
trial is to cure or control a disease. Examples of preventive trials include studies of
vaccine efficacy, use of aspirin to prevent coronary heart disease, smoking
cessation, diet modification, and exercise. Therapeutic trials are typically
performed by pharmaceutical companies to test new drugs for treating disease.

Key features of any clinical trial are randomization, blinding, ethical

concerns, and the use of intention to treat analysis. Randomization is used to
allocate subjects to treatment groups so that these groups are comparable on all 
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factors except for exposure status. Blinding means that either the patient or the
investigator is unaware of the treatment assigned. Single-blinding m

eans either the patient or investigator are unaware of the treatment assignment
and double blinding means that both the patient and the investigator are unaware
of the treatment assignment. Blinding helps eliminate bias.  The study must be
ethical, treatments that may be harmful are not used. Stopping rules are planned
that would end a trial early if it becomes clear that one of the treatments is 
superior. An intention-to-treat analysis requires that the investigators "analyze
what they randomize", that is, analysis should be compared to the originally
randomized treatment groups, even if study subjects switch treatments during the
study period.

Summary

The major objective of a clinical trial is to test the efficacy of a preventive or
therapeutic intervention.
Key features of any clinical trial are: 
Randomization Ethical concerns
Blinding Intention to treat analysis

Clinical Trial Example

A clinical trial involving 726 subjects conducted in 1993 compared standard
insulin therapy with intensive insulin therapy involving more frequent insulin
injections and blood glucose monitoring for the treatment of diabetes mellitus. The
outcome studied was retinopathy resulting in blindness, defined as either present
or absent for each patient.

Subjects were randomized to treatment groups using a computerized random
number generator. Double blinding could not be used in this clinical trial since
both the patient and their physician would know which treatment group the patient
was randomized.  However, the individuals who graded the fundus photographs to
determine the presence or absence of retinopathy were unaware of treatment-group
assignments. The randomization resulted in the standard and intensive therapy
groups having very similar distributions of baseline characteristics, such as age
and sex.

An intention-to-treat analysis compared the
originally randomized treatment groups with 
regard to the occurrence of retinopathy. It was 
found that 24% of the 378 subjects on standard
therapy developed retinopathy, whereas 6.7% of the 348 subjects on intensive
therapy developed retinopathy.

These data and more complicated analyses that controlled for several other
important predictors indicated that intensive therapy had a much lower risk than
standard therapy for retinopathy.

Summary

A clinical trial involving 726 subjects conducted in 1993 compared standard
insulin therapy with intensive insulin therapy.
The outcome studied was retinopathy resulting in blindness, defined as either
present or absent for each patient.
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24% of subjects on standard therapy developed retinopathy whereas
subjects on intensive therapy developed retinopathy.

6.7% of

uiz (Q3.2)Q  Fill in the Blanks; choices are Preventive or Therapeutic

. ???1  trials are conducted on individuals with a particular disease to assess a

2.

possible cure or control for the disease. For example, we may wish to assess to 
what extent, if at all, a new type of chemotherapy prolongs the life of children
with acute lymphatic leukemia.
??? trials can be conducted on either individuals or entire populations. An 

or each of the following features, choose the option that applies to clinical trials:

example is a study in which one community was assigned (at random) to 
receive sodium fluoride added to the water supply, while the other continued to
receive water without supplementation. This study showed significant
reductions in the development of tooth decay in the community receiving 
fluoride.

F

. The investigator's role regarding exposure: . . ???3
 a. assign b. observe

4. . ???Subject selection into groups: . . .
rando zation

5. ality . ???

a. self-selection b. mi
Direction : . . . .

. imi ?

a. backwards b. forwards c. non-directional
6 T ng: . . . . . . ??

7. Blinding: ???

a. prospective b. retrospective c. either
. . . . . .

8. Topic: ???

a. single b. double c. either
. . . . . .

9. Analysis by: ???

a. medication b. vaccine c. either 
. . . .

al

a. original assignment b. actual experience

Observational Study Designs 

here are three general categories of observational designs:T

Basic Designs: Cohort, Case-Control, Cross-Section

Hybrid Designs: Nested Case-Control, Case-Cohort

Incomplete Designs: Ecologic, Proportional
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Cohort Studies 

In 1948, a long-term observational
study began in Framingham
Massachusetts. Fifty-one hundred
subjects without cardiovascular
disease (CVD) were selected and 
examined, and information about
potential risk factors for this
disease was recorded. Subjects 
were then re-examined if possible
every 2 years over the next 50 
years. This classic study became known as the Framingham Heart Study and has
been the source of much of our knowledge about risk factors for cardiovascular
disease. The Framingham Heart study is an example of a prospective cohort
study.

A cohort design starts with subjects who do not have a health outcome of
interest and are followed forward to determine health outcome status. A key
feature of a cohort study is that subjects are grouped on the basis of their exposure
characteristics prior to observing the health outcome, that is, the directionality of
the study is always forward.

A cohort study may be retrospective or prospective. The Framingham Heart
study is an example of a prospective study since the study began before the health
outcome occurred. 

Summary

The Framingham Heart Study is a classic example of a cohort study.
The cohort design is always a follow-up study with forward directionality.
A cohort study can be prospective or retrospective.
The Framingham study is a prospective cohort study because the study began
before the health outcome occurred.

Advantages of a Cohort Study 

The primary advantage of a cohort study is its forward directionality. The
investigator can be reasonably sure that the hypothesized cause preceded the
occurrence of disease.  In a cohort study, disease status cannot influence the way
subjects are selected, so a cohort study is free of certain selection biases that
seriously limit other types of studies.

A prospective cohort design is less prone than other observational study
designs to obtaining incorrect information on important variables.  Cohort studies
can be used to study several diseases, since several health outcomes can be 
determined from follow-up.

Cohort studies are also useful for examining rare exposures. Since the 
investigator selects subjects on the basis of exposure, he can ensure a sufficient
number of exposed subjects. A retrospective cohort study can be relatively low-
cost and quick. Occupational studies that are based on employment records and 
death certificates or insurance and worker's comp records are an example.
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Disadvantages of a Cohort Study 

A prospective cohort study is often quite costly and time-consuming. A potential
problem in any cohort study is the loss of subjects because of migration, lack of
participation, withdrawal, and death. Such attrition of the cohort over the follow-
up period can lead to biased results.

A cohort design is statistically and practically inefficient for studying a rare
disease with long latency because of the long follow-up time and the number of 
subjects required to identify a sufficient number of cases. However, a retrospective
cohort study may find enough cases since the study events of interest have already
occurred.

Another problem in cohort studies is that the exposed may be followed more
closely than the unexposed; if this happens, the outcome is more likely to be
diagnosed in the exposed. This might create an appearance of exposure-disease
relationship where none exists.

Summary: Cohort Study +’s (advantages) and –’s (disadvantages)

(+) Prospective cohort study: least prone to bias compared with other
observational study designs.
(+) Can address several diseases in the same study. 
(+) Retrospective cohort study: can be relatively low-cost and quick;
frequently used in occupational studies.
(-) Loss to follow-up is a potential source of bias
(-) Prospective cohort study: quite costly and time-consuming; may not find
enough cases if disease is rare.
(-) If exposed are followed more closely than unexposed, the outcome is more
likely to be diagnosed in exposed.

Example: Retrospective Cohort Study of Spontaneous Abortions

The relationship between adverse pregnancy outcomes and the use of video
display terminals (VDT’s) became a public health concern in the 1980’s when
adverse pregnancy outcomes were reported among several clusters of women who
used VDT’s. A more comprehensive study of the effect of VDT’s was reported in
the New England Journal of Medicine in 1991. This study, conducted by the
National Institute for Occupational Safety and Health (NIOSH) used a
retrospective cohort design to examine the hypothesis that electromagnetic energy 
produced by VDT’s might cause spontaneous abortions.

In the NIOSH study, a 
cohort of female telephone
operators who were employed
between 1983 and 1986 was
selected from employers’
personnel records at two
telephone companies in eight
southeastern states in the US. 
In this cohort, there were 882
women who had pregnancies



30 Chapter 3.  How to Set Things Up?  Study Designs

that met the inclusion criteria for the study. Of these women, the pregnancy
outcomes of 366 directory assistance operators who used VDT’s at work were
compared with 516 general telephone operators who did not use VDT’s.

The results of the study showed no excess risk of spontaneous abortion among
women who used VDT’s during their first trimester of pregnancy. No dose-
response relation was found from the analysis of the women’s hours of VDT use 
per week either. Also, no excess risk was associated with VDT use when other
relevant characteristics of the study subjects were taken into account. The
investigators therefore concluded that the use of VDT’s and exposure to
electromagnetic fields they produce were not associated with an increased risk of 
spontaneous abortion.

Summary

A 1991 study used a retrospective cohort design to examine the hypothesis that
electromagnetic energy produced by VDT’s might cause spontaneous
abortions.
The pregnancy outcomes of 366 operators who used VDT’s at work were
compared with 516 operators who did not use VDT’s
The results of the study showed no excess risk of spontaneous abortion among
women who used VDT’s.

Example: Prospective Cohort Study of Alzheimer’s Disease

Inflammatory activity in the brain is thought to contribute to the development of 
Alzheimer’s disease.  This hypothesis suggests that long-term use of nonsteroidal
anti-inflammatory drugs (NSAIDs),may reduce the risk of this disease.

This hypothesis was investigated within the Rotterdam Study, a cohort study of 
the elderly that started in the Netherlands in 1990. At that time, 7,000 participants
did not have Alzheimer’s disease. During eight years of follow-up, 293 of the
participants developed the disease.

To avoid information bias from measuring NSAIDs, the investigators used
computerized pharmacy records instead of interview data to determine the total
number of months during which participants had used NSAIDs after the study
onset.  Controlling for age, gender, and smoking status, the investigators found
that the risk of Alzheimer’s for participants who had used NSAIDs for more than
24 months was significantly less than the risk of Alzheimer’s disease for 
participants who used NSAIDs for less than or equal to 24 months.  The
investigators concluded that long-term use of NSAIDs has a beneficial effect on
the risk of Alzheimer’s disease.

Summary

The Rotterdam study examined the hypothesis that long-term use of 
nonsteriodal anti-inflammatory drugs (NSAIDs) may reduce the risk of
Alzheimer’s disease.
The study used a prospective cohort design that followed 7,000 participants
without Alzheimer’s disease in 1990 over eight years.
The risk of Alzheimer’s disease for subjects using NSAIDs for more than 24
months was significantly smaller than for subjects using NSAIDs less than or
equal to 24 months.
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Quiz (Q3.3) Fill in the Blanks. For each of the following features, choose the
option that applies to cohort studies:

1. The investigator’s role regarding exposure: ???

a. assign b. observe
2. Subject selection into groups: ???

a. self-selection b. randomization
3. Directionality: ???

a. backwards b. forwards c. non-directional
4. Timing: ???

a. prospective b. retrospective   c. either 
5. Analysis by: ???

a. original assignment b. actual experience

For each of the following characteristics (strengths or weaknesses) of a study,
choose the type of cohort study with that characteristic; the choices are: 
Both Neither Prospective Cohort Retrospective Cohort

6. Less expensive: . . . . . ???

7. Quicker: . . . . . . ???

8. More accurate exposure information: . . . ???

9. Appropriate for studying rare exposures: . . . ???

10. Appropriate for studying rare diseases: . . ???

11. Problems with loss to follow-up: . . . ???

12. Better for diseases with long latency: . .  . ???

Case-Control Studies 

In case control studies, subjects
are selected based on their 
disease status. The investigator 
first selects cases of a particular
disease and then chooses
controls from persons without
the disease. Ideally, cases are 
selected from a clearly defined 
population, often called the
source population, and controls
are selected from the same population that yielded the cases. The prior exposure
histories of cases and controls are then determined. Thus, in contrast to a cohort
study, a case-control study works backwards from disease status to prior exposure
status. While case-control studies are always backward in directionality, they can
be either prospective or retrospective in timing.

In addition to being both cheaper and quicker than cohort studies, case-
control studies have other advantages:
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They are feasible for obtaining sufficient numbers of cases when studying
chronic or other rare diseases or diseases with long latency periods.

They tend to require a smaller sample size than other designs.

They can evaluate the effect of a variety of different exposures.

There are, nevertheless, several disadvantages of case-control studies:

They do not allow several diseases to be evaluated, in contrast to cohort
studies.

They do not allow disease risk to be estimated directly because they work 
backwards from disease to exposure

They are more susceptible to selection bias than other designs since the 
exposure has already occurred before cases and controls are selected. 

They are more susceptible to information bias than cohort studies because they 
are always backward in directionality.

They are not efficient for studying rare exposures

Summary

Start with cases and non-cases of a disease or other health outcome and
proceed backwards to determine prior exposure history.
Popular primarily because cheaper and less time-consuming than cohort
studies.
Other advantages include providing sufficient numbers of cases for rare
diseases with long latencies and allowing several exposures to be evaluated.
Disadvantages include being susceptible to both selection and information
bias, not allowing estimation of risk, not considering more than one disease,
and not feasible for rare exposures.

Incident versus Prevalent Cases in a Case-Control Study?

Cases can be chosen to be either incident or prevalent.  Incident cases are new cases of
a disease that develop over the time-period covered by the case-control study. When used in
case-control studies, incident cases are typically obtained from an institutional or
population-based disease registry, such as a cancer registry, or a health maintenance
organization that continuously records new illnesses in a specified population. 

Prevalent cases are existing cases of a disease at a point in time. When used in case-
control studies, prevalent cases are usually obtained from hospital or clinic records.

An advantage of using of incident cases in case-control studies is that an exposure-
disease relationship can be tied only to the development rather than the prognosis or 
duration of the disease.

In contrast, for prevalent cases, the exposure may affect the prognosis or the duration of 
the illness. If prevalent cases were used, therefore, an estimate of the effect of exposure on 
disease development could be biased because of failure to include cases that died before
case-selection.

Choosing Controls in a Case-Control Study 

One must select a comparison or control group carefully when conducting a case-
control study. The ideal control group should be representative of the population
from which the cases are derived, typically called the source population. This
ideal is often hard to achieve when choosing controls.
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Two common types of controls are population-based controls and hospital-

based controls. In population-based case-control studies, controls are selected 
from the community. Methods used to select such controls include random
telephone dialing, friend or neighborhood, and department of motor vehicle
listings. An advantage of a population-based case-control study is that cases and 
controls come from the same source population, so they are similar in some way. 
A disadvantage is that it is difficult to obtain population lists and to identify and 
enroll subjects. Increasing use of unlisted numbers and answering machines
increases non-response by potential controls.

In a hospital-based case-control study, controls are selected from hospital
patients with illnesses other than the disease of interest. Hospital controls are
easily accessible and tend to be more cooperative than population-based controls.
Hospital-based studies are much less expensive and time-consuming than
population-based studies. But, hospital-based controls are not likely to be
representative of the source population that produced the cases. Also, hospital-
based controls are ill and the exposure of interest may be a determinant of the
control illness as well as the disease of interest. If so, a real association of the
exposure with the disease of interest would likely be missed.

Summary

The ideal control group should be representative of the source population from
which the cases are derived.
Two common types of controls are population-based controls and hospital-
based controls.
In population-based case-control studies, cases and controls come from the 
same source population.
Hospital controls are easily accessible, tend to be cooperative, and are
inexpensive.
Hospital controls do not usually represent the source population but may
represent an illness caused by the exposure.

Example: Case-Control Study of Reye’s Syndrome 

Reye’s syndrome is a rare disease affecting the brain and liver that can result in
delirium, coma, and death. It usually affects children, and typically occurs
following a viral illness.  To investigate whether aspirin is a determinant of Reye’s 
Syndrome, investigators in the nineteen seventies and nineteen eighties decided
that using a clinical trial would not be ethical.

Why might a clinical trial on aspirin use and Reye’s syndrome be unethical?
(Choose one of the four choices below)

A. Children are involved.
B. Harmful consequences of the use of aspirin.
C. Double blinding may be used.
D. Clinical trials are never ethical.

The answer is B, because of the potential harmful consequences of the use of 
aspirin. A cohort study was also considered inefficient: 
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Why would a cohort study of aspirin and Reye’s syndrome be inefficient?
Choose one of the four choices below)

A. The outcome is rare (would require a lot of subjects).
B. Requires at least 5 years of follow-up.
C. The exposure is rare.
D. Cohort studies are always inefficient

The answer is A, because the outcome is so rare. Consequently, a case-control
study was preferred, since such a study could be accomplished over a shorter
period, provide a sufficient number of cases, yet require fewer subjects overall
than a cohort study.

The original investigation of Reye’s Syndrome that identified aspirin as a risk
factor was a case-control study conducted in Michigan in 1979 and 1980. This
study involved 25 cases and 46 controls. Controls were children who were absent
from the same school, in a similar grade, had a similar time of preceding illness,
had the same race, the same year of birth, and the same type of preceding illness. 
A larger 1982 study attempted to confirm or refute the earlier finding.
Investigators used a statewide surveillance system to identify all cases with Reye’s
syndrome in Ohio. This study thus used newly developed, or incident, cases. 
Population-based controls were selected by identifying and then sampling subjects
in the statewide community who had experienced viral illnesses similar to those
reported by the cases but had not developed Reye’s syndrome. Parents of both
cases and controls were asked about their child’s use of medication during the
illness.

Another study published in 1987
selected cases from children admitted
with Reye’s syndrome to any of a pre-
selected group of tertiary care 
hospitals. Hospital-based controls were 
selected from children from these same
hospitals who were admitted for a viral
illness but did not develop Reye’s 
syndrome. Parents were interviewed to 
assess previous use of aspirin.

As a result of this case-control research on the relationship between use of
aspirin and Reye’s syndrome, health professionals recommended that aspirin not
be used to treat symptoms of a viral illness in children. Subsequently, as the use of
aspirin among children declined, so did the occurrence of Reye’s syndrome.

Summary

In the 1970s and 1980s, case-control studies were used to assess whether the
use of aspirin for the treatment of viral illnesses in children was a determinant
of Reye’s syndrome.
These studies started with subjects with the disease (i.e., Reye’s syndrome) and
similar subjects without the disease.
Parents of both cases and controls were asked about their child’s use of
medication over a comparable time period preceding the child’s first symptoms
of Reye’s syndrome.
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Health professionals recommended that aspirin not be used to treat symptoms
of viral illnesses in children.
As the use of aspirin among children declined, so did the occurrence of Reye’s
syndrome.

Example: Case-Control Study on Creutzfeldt-Jakob Disease 

Creutzfeldt-Jakob disease (CJD) is a rare disease characterized by rapidly
progressive dementia.  In the 1990's, a new variant of CJD in humans was 
discovered in Europe following an epidemic in cattle of mad cow disease, the
animal form of CJD. Subsequently, the European Union organized a study to
investigate whether a diet containing animal products is a risk factor for CJD.

Because CJD is a very rare disease with a long latency period, the investigators
chose a case-control study design. They collected data on 405 cases of CJD that
had occurred in the European Union. An equal number of control participants were
recruited from the hospitals where the patients with CJD had been diagnosed. Due
to the mental deterioration of patients from the disease, diet information on cases
had to be collected by interviewing one of the cases' next of kin.

How do you think the investigators collected diet information on control
subjects?  Even though the control participants were perfectly capable of giving
information about their diets themselves, the investigators interviewed one of the
control participants' next of kin instead. This way, they tried to avoid information
bias by keeping the quality of the data on diet similar for both cases and controls.

Remember that one of the advantages of a case-control study is the opportunity
to evaluate the effect of a variety of different exposures.  In this study, the 
investigators examined separately whether consumption of sausage, raw meat, raw
fish, animal blood products, milk, cheese, as well as other specified animal
products, increased the risk of CJD. None of these food products significantly
increased the risk of CJD, so, the investigators concluded that it is unlikely that
CJD is transmitted from animals to man via animal products.

Quiz (Q3.4) For each of the following, choose the option
that applies to case-control studies:

1. The investigator's role regarding exposure: ???

a. assign b. observe
2. Subject selection into groups: ???

a. self-selection b. randomization
3. Directionality: ???

a.  backwards b. forwards c. non-directional
4. Timing: ???

a. prospective b. retrospective c. either
5. Analysis by: ???

a. original assignment b. actual experience
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For each of the following characteristics (strengths or weaknesses) of a study,
choose the type of study with that characteristic.  The choices are: 
Case-control Prospective cohort

6. Less expensive: . . . . . ???

7. Quicker: . . . . . . ???

8. More accurate exposure information: . . . ???

9. Appropriate for studying rare exposures: . . . ???

10. Appropriate for studying rare diseases: . . ???

11. Can study multiple outcomes: . . . ???

12. Requires a smaller sample size: . . . . ???

13. Can estimate risk: . . . . ???

Determine whether each of the following statements is true or false:

14. Ideally, controls should be chosen from the same population that gave rise to

the cases. . . ???

15. Ideally, controls should be selected from hospitalized patients ???

16. Population-based controls include only neighbors and persons identified by

calling random telephone numbers.  . ???

Cross-Sectional Studies 

In a cross-sectional study, subjects
are sampled at a fixed point or
within a short period of time. All
participating subjects are examined,
observed, and questioned about
their disease status, their current or 
past exposures, and other relevant
variables.  A cross-sectional study
provides a snapshot of the health
experience of a population at a 
specified time and is therefore often used to describe patterns of disease
occurrence. A cross-sectional sample is usually more representative of the general
population being studied than are other study designs.  A cross-sectional study is a
convenient and inexpensive way to look at the relationships among several
exposures and several diseases. If the disease of interest is relatively common and 
has long duration, a cross-sectional study can provide sufficient numbers of cases 
to be useful for generating hypotheses about exposure-disease relationships. Other
more expensive kinds of studies, particularly cohort and clinical trials, are used to
test such hypotheses.

There are some disadvantages to cross-sectional studies. For example, such a 
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study can identify only existing or prevalent cases at a given time, rather than new
or incident cases over a follow-up time period. Therefore, a cross-sectional study
cannot establish whether the exposure preceded the disease or whether the disease 
influenced the exposure.

Because only existing cases are allowed, a cross-sectional study includes only 
cases that survive long enough to be available for study. This could lead to a 
misleading conclusion about an exposure-disease relationship since non-survivors
are excluded (see note at the end of this chapter on this issue). 

Short-duration diseases, such as the common cold or influenza, especially
those that occur during a particular season, may be under-represented by a cross-
sectional study that looks at the presence of such a disease at a point in time. 

Summary: Cross-Sectional Studies

Subjects are sampled at a fixed point or short period of time: a snapshot.
Advantages

Convenient and inexpensive.
Can consider several exposures and several diseases.
Can generate hypotheses.
Usually represents the general population.

Disadvantages

Cannot establish whether the exposure preceded disease or disease influence
exposure.
Possible bias since only survivors are available for study.
May under-represent diseases with short duration.

How Can Bias Occur from Survivors in a Cross-sectional Study?

In a cross-sectional study, bias can result because only cases that survive long enough 
are available for such a study. To illustrate this point, suppose that everyone with a certain
disease who does not do strenuous physical exercise regularly dies very quickly. Suppose, 
also, that those who have the disease but do strenuous physical exercise regularly survive
for several years.

Now consider a cross-sectional study to assess whether regular strenuous physical
activity is associated with the disease. Since this type of study would contain only
survivors, we would likely find a low proportion of cases among persons not doing 
strenuous physical exercise. In contrast, we would likely find a relatively higher proportion
of cases among persons who do strenuous physical exercise.  This would suggest that doing
strenuous physical exercise is harmful for the disease, even if, in fact, it were protective.

Example of a Cross-Sectional Study – Peripheral Vascular Disease, Scotland

A 1991 study examined a sample of
5000 Scottish men for the presence of 
peripheral vascular disease (PVD).
Other characteristics, including whether
or not a subject ever smoked, were also
determined for each subject during the
exam.

This was a cross-sectional study
since all study subjects were selected 
and observed at one point in time. Even though physical exams were performed,
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the study cost and time was much less than that required if disease-free subjects
were followed over time to determine future PVD status. The sample was 
representative of the Scottish male population.

The study found that 1.3 percent of 1727 ever-smokers had PVD whereas only
0.6 percent of 1299 never-smokers had PVD. Dividing .013 by .006, we see that
ever-smokers were 2.2 times more likely to have PVD than never-smokers.

These results suggested that smoking may contribute to developing PVD. Yet,
the results are just a snapshot of subjects at a point in time, 1991. Subjects without
PVD have not been followed over time. So, how do we know from this snapshot
whether PVD leads to smoking or smoking leads to PVD? This illustrates one of
the problems with cross-sectional studies - they are always non-directional. Also,
persons who died from PVD prior to the time that subjects were selected are not
allowed in the study. Therefore, the study results may be biased because only PVD 
survivors are being counted.

Summary

An example of a cross-sectional study is a 1991 study of peripheral vascular
disease (PVD) in Scotland.
Results show that ever-smokers are 2.2 times more likely to have PVD than
never-smokers.
This study was much cheaper and quicker then a cohort study.
Cannot determine whether PVD leads to smoking or smoking leads to PVD.
The study results may be biased because only PVD survivors are considered.

Quiz (Q3.5) For each of the following features, choose the
option that applies to cross-sectional studies: 

1. The investigator's role regarding exposure: . . ???

 a. assign  b. observe
2. Subject selection into groups: . . . ???

a. self-selection b. randomization
3. Directionality: . . . . . ???

a. backwards b. forwards c. non-directional
4. Timing: . . . . . . ???

a. prospective b. retrospective c. either

Determine whether each of the following statements is true or false:

5. Cross-sectional studies are better suited to generating hypotheses about
exposure-disease relationships than to testing such relationships. ???

6. Because exposure and disease are assessed at the same time, cross-sectional
studies are not subject to survival bias. . . . ???

7. Because exposure and disease are assessed at the same time, cross-sectional
studies may not be able to establish that exposure preceded onset of the disease
process. . . . . . . ???

8. Cross-sectional studies can examine multiple exposures and multiple diseases.
. . . . . . . ???
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Hybrid Designs 

Hybrid designs combine the elements of at least two basic designs, or extend the
strategy of one basic design through repetition.  Two popular hybrid designs are
the case-cohort study and the nested case-control study.  Both these designs
combine elements of a cohort and case-control study.  Another more recently
developed hybrid design is called the case-crossover design.

Incomplete Designs 

Incomplete designs are studies in which information is missing on one or more
relevant factors.  An ecologic study is an incomplete design for which the unit of
analysis is a group, often defined geographically, such as a census tract, a state, or
a country. A proportional morbidity or proportional mortality study only
includes observations on cases but lacks information about the candidate
population at risk for developing the health outcome. If the design involves
incident cases, the study is a proportional morbidity study. If deaths are used, the
study is a proportional mortality study.

See Lesson Page 3-3 in the ActivEpi CD ROM for further details on Hybrid and
Incomplete Designs
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Answers to Quizzes
Q3.1

1. Experimental
2. Observational
3. Observational
4. Experimental
5. Experimental
6. Observational

Q3.2

1. Therapeutic
2. Preventive
3. a
4. b
5. b
6. a
7. c
8. c
9. a

Q3.3

1. b
2. a
3. b
4. c
5. b
6. Retrospective
7. Retrospective
8. Prospective
9. Both
10. Neither
11. Both
12. Retrospective

Q3.4

1. b
2. a
3. a
4. c
5. b

6. case-control
7. case-control
8. prospective cohort
9. prospective cohort
10. case-control
11. prospective cohort
12. case-control
13. prospective cohort
14. T – If controls are chosen from a 

different population from which the 
cases came, there may be selection bias.

15. F – Hospital controls have an illness;
such controls are typically not
representative of the community from
which the cases came.

16. F – Population-based controls can be
obtained from random dialing of 
telephone numbers in the community
from which the cases are derived.
There is no guarantee that neighbors of
cases will be chosen.

Q3.5

1. b
2. a
3. c
4. b
5. T
6. F
7. T – A cross-sectional study includes

only cases that survive long enough to 
be available for study.  This could lead 
to a misleading conclusion about an
exposure-disease relationship since 
non-survivors are excluded.

8. T



CHAPTER 4
HOW OFTEN DOES IT HAPPEN? 
  DISEASE FREQUENCY 
In epidemiologic studies, we use a measure of disease frequency to determine
how often the disease or other health outcome of interest occurs in various
subgroups of interest.  We describe two basic types of measures of disease
frequency in this chapter, namely, measures of incidence and measures of
prevalence.  The choice typically depends on the study design being used and the
goal of the study.

Incidence versus Prevalence 

There are two general types of measures of disease frequency, incidence (I) and 
prevalence (P). Incidence measures new cases of a disease that develop over a
period of time. Prevalence measures existing cases of a disease at a particular
point in time or over a period of time.

To illustrate how incidence and prevalence differ, we consider our experience
with AIDS. The number of annual incident cases of AIDS in gay men decreased in
the US from the mid-1980s to the late 1990s. This has resulted primarily both from
recent anti-retroviral treatment approaches and from prevention strategies for
reducing high-risk sexual behavior.  In contrast, the annual prevalent cases of 
AIDS in gay men has greatly increased in the US during the same period because
recent treatment approaches for AIDS have been successful in prolonging life of 
persons with the HIV virus and/or AIDS.

Prevalence can also be viewed as describing
a pool of disease in a population, whereas
incidence describes the input flow of new cases
into the pool, and fatality and recovery reflects 
the output flow from the pool.

Incidence measures are useful for 
identifying risk factors and assessing disease
etiology. Typically, incidence measures are
estimated from clinical trials and from cohort studies, which involve the follow-up
of subjects over time.
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Prevalence measures are not as useful as incidence measures for assessing
etiology because prevalence does not consider persons who die from the disease
before the prevalence study begins. Typically, prevalence measures are estimated
from cross-sectional studies and from case-control studies that use prevalent rather
than incident cases. Since the number of prevalent cases indicates demand for 
health care, prevalence measures are most useful in the planning of health
services.

Summary

Incidence concerns new cases of disease or other health outcome over a
period of follow-up.
Prevalence concerns existing cases of a disease at a point in time.
Incidence measures are useful for identifying risk factors and assessing

disease etiology
Prevalence measures are most useful in the planning of health services

Mortality Might Be Used Instead of Disease Incidence

We discuss incidence and prevalence in terms of new or existing cases of a disease,
whether or not these cases eventually die or not during or after the period of study. There
are many situations, however, when the use of strictly mortality information is also 
worthwhile.

Mortality measures are an important tool for epidemiologic surveillance. Today such
surveillance programs have been applied to monitor the occurrence of a wide variety of
health events, including deaths, in large populations. Mortality statistics are also convenient
for evaluating etiologic hypotheses, especially when incidence data are not available. In
particular, for diseases with a low rate of cure or recovery, such as lung cancer, mortality 
measures give a reasonable approximation to incidence measures.

Use of mortality information for any of the above purposes has several pragmatic
advantages:

Mortality data are widely collected and virtually complete since registration of deaths 
is compulsory in most industrialized countries and few deaths are not reported.

Mortality data are defined using standardized nomenclature. In particular, the
International Classification of Diseases (ICD) is used to promote uniformity in 
reporting causes of death. 

Recording of mortality data is relatively inexpensive.

House Guests Example

Suppose guests arrive at your house at the rate of two per day and stay exactly five
days. How many people will be in your house after a week?

Let's see what happens day by day. On the first day, two guests
arrive and none depart, so there are 2 guests in your house at the
end of the first day. On the second day two more guests arrive, and
none depart, so there are now 4 guests in your house after 2 days.
Similarly, there are 6 guests after 3 days, 8 after 4 days and 10
guests in your house after five days, with no guests departing up to this point. But,
on the sixth day, two new guests arrive, but the two guests that came on day 1,
having been there for five days, now depart, leaving you again with 10 guests in
the house. At the end of the seventh day, there will still be 10 guests in the house,
which answers the question raised at the start of all this.
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This scenario illustrates the fundamental difference between incidence and
prevalence. In the example, after 5 days, a "steady state" is reached at which point
there are 10 houseguests as long as the arrival rate is 2 per day. This steady state of
10 houseguests is a prevalence, which describes the existing count of guests, at
any point in time after a steady state has been reached. The arrival rate of 2 guests
per day is an incidence, which describes how quickly new guests are arriving. The
duration of five days that guests stay in your house is the information needed to
link the incidence to the prevalence.  Prevalence can be linked to incidence with
the following formula: P = I x D

In our example, P is the number of guests in the house on any day after day
five, I is the arrival rate of 2 guests per day, and D is the duration of 5 days for
each guest. The formula works in this example since 2 times 5 equals 10.

We can see from this formula that for a given incidence, the prevalence will 
increase or decrease as the duration increases or decreases. For example, if guests
stayed for 8 days rather than 5 days, with the same arrival rate, the number of
guests at the house at steady state would be 2 times 8, which equals 16, rather than
10.

For a given duration, the prevalence will increase or decrease as the incidence
increases or decreases. Thus, if the guests arrive at the rate of only 1 guest per day
rather than 2, and stay 8 days, the prevalence will be 1 times 8, which equals 8,
instead of 16.

Summary

A scenario involving houseguests who arrive at 2 per day and stay five days
illustrates the fundamental difference between incidence and prevalence.

A steady state of 10 houseguests illustrates prevalence, which describes the
existing count of guests at any point in time after steady state is reached. 

The arrival of 2 guests per day illustrates incidence, which describes how
quickly new guests are arriving.

The duration of 5 days is the information needed to link how incidence leads
to prevalence

Prevalence is obtained as the product of incidence and duration (P = I x D)

The Relationship between Prevalence and Incidence

In the example involving "house guests", the formula P I D( )
was used to demonstrate that the steady state number of guests in the house after 7 days was 
equal to the product of the number of guests arriving each day times the duration that each
guest stayed in the house. 

The terms P, I, and D in this formula represent the concepts of prevalence, incidence
and duration, respectively, but, as used in the example, they each do not strictly conform to 
the epidemiologic definitions of these terms. As described in later activities in this chapter
on measures of disease frequency, the strict definitions of prevalence and incidence require
denominators, whereas the "house guest" scenario described here makes use only of 
numerator information.

Specifically, prevalence is estimated using the formula: P
C
N

and incidence uses one of the following two possible formulas depending on whether risk
or rate is the incidence measure chosen: 
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CI
I
N

 or IR
I

PT
In the above formulae, P, C, and N denote the prevalence, number of existing cases,

and steady state population-size, respectively. Also, CI denotes cumulative incidence,
which estimates risk, I denotes the number of new (incident cases), and N denotes the size 
of a disease-free cohort followed over the entire study period. Further, IR stands for 
incidence rate, and PT for accumulated person-time information. All these formulae are
described and illustrated in later activities.

The important point being made here is that all three of the above formulae have 
denominators, which were not used in the houseguest example, but are required for
computing prevalence and incidence in epidemiology.

The term D in the formula at the top of this page was used in the houseguest example to 
define the duration of stay that was assumed for each houseguest. In the epidemiologic use 
of this formula, D actually denotes the average duration of illness for all subjects in the
population under study, rather than being assumed to be the same for each person in the 
population.

Nevertheless, using the stricter epidemiologic definitions of prevalence and incidence
measures and using average duration, the above formula that relates prevalence to incidence
and duration still holds, provided the population is in steady state and the disease is rare. By
steady state, we mean that even though the population may be dynamic, the number of
persons who enter and leave the population for whatever reasons are essentially equal over 
the study period, so that the population does not change. If the disease is not rare, a
modified formula relating prevalence to incidence is required instead, namely:

P
I D

I D( ) 1

Quiz (Q4.1) For each of the following scenarios, determine whether it is more
closely related to incidence or to prevalence.
1. Number of campers who developed gastroenteritis within a few days after 

eating potato salad at the dining hall? ???

2. Number of persons who reported having with diabetes as part of the National
Health Interview Survey? ???

3. Occurrence of acute myocardial infarction (heart attack) among participants
during the first 10 years of follow-up of the Framingham Study? ???

4. Number of persons who died and whose deaths were attributed to Hurricane
Floyd in North Carolina in 1999? ???

5. Number of children who have immunity to measles, either because they had
the disease or because they received the vaccine? ???

Suppose a surveillance system was able to accurately and completely capture all
new occurrences of disease in a community.  Suppose also that a survey was
conducted on July 1 that asked every member of that community whether they
currently had that disease. For each of the following conditions, determine whether
incidence (per 1,000 persons per year) or prevalence (per 1,000 persons on July
1) is likely to be higher.
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6. Rabies (occurs rarely and has a short duration, e.g., death within one week)?
???

7. Multiple sclerosis (rare occurrence, long duration [many years])? ???

8. Influenza (common but winter-seasonal occurrence, short duration)? ???

9. Poison ivy dermatitis (common spring/summer/fall occurrence, 2-week 
duration)? ???

10. High blood pressure (not uncommon occurrence, lifelong duration)? ???

Risk

The term risk is commonly used in everyday life to describe the likelihood, or
probability, that some event of interest will occur. We may wonder, for example,
what is the risk that the stock market will crash or that we will be involved in a 
serious auto collision? We may worry about our risk for developing an undesirable
health condition, such as a life-threatening illness, even our risk for dying.

In epidemiology, risk is the probability that an individual with certain
characteristics, say, age, race, sex, and smoking status, will develop or die from a
disease, or even more generally, will experience a health status change of interest
over a specified follow-up period. When the health outcome is a disease, this 
definition assumes that the individual does not have the
disease at the start of follow-up and does not die from any 
other cause during follow-up.  Because risk is a 
probability, it is a number between 0 and l, or, 
correspondingly, a percentage.

When describing risk, it is necessary to specify a period of follow-up, called
the risk period. For example, to describe the risk that a 45 year-old male will
develop prostate cancer, we must state the risk period, say, 10 years of follow-up,
over which we want to predict this risk. If the risk period were, for example, 20
years instead of 10 years, we would expect our estimate of risk to be larger than
the 10-year risk since more time is being allowed for the disease to develop.

Study Questions (Q4.2)

1. What is the meaning of the following statement?  The 10-year risk that a 45-
year-old male will develop prostate cancer is 5%? (State your answer in
probability terms and be as specific as you can in terms of the assumptions
required.)

2. Will the 5-year risk for the same person described in the previous question be
larger or smaller than the 10-year risk?  Explain briefly.

Summary

Risk is the probability than an individual will develop or die from a given
disease or, more generally, will experience a health status change over a 
specified follow-up period. 
Risk assumes that the individual does not have the disease at the start of the
follow-up and does not die from any other cause during the follow-up.
Risk must be some value between 0 and 1, or correspondingly, a percentage
When describing risk, it is necessary to give the follow-up period over which
the risk is to be predicted.
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Confusing Risk with Rate 

The term rate has often been used incorrectly to describe a measure of risk.  For
example, the term attack rate is frequently used in studies of outbreaks to describe an
estimate of the probability of developing an infectious illness, when in fact, an estimate of
risk is computed.  Also, the term death rate has been confused with death risk in mortality
studies. In particular, the term case-fatality rate has often been misused to describe the
proportion of cases that die, i.e., such a proportion is actually estimating a risk.

The terms risk and rate have very different meanings, as described in other activities in
this chapter. Ideally, the correct term should be applied to the actual measure being used. 
This does not always happen in the publication of epidemiologic findings. Consequently,
when reading the epidemiologic literature, one should be careful to determine the actual
measure being reported.

Cumulative Incidence 

The most common way to estimate risk is to divide the number of newly detected
cases that develop during follow-up by the number of disease-free subjects
available at the start of follow-up. Such an estimate is often called cumulative
incidence or CI. When describing cumulative incidence, it is necessary to give the
follow-up period over which the risk is estimated.

up-followofstartatsubjectsfree-diseaseof#

up-followduringcasesnewof#

N
ICI

Technically speaking, cumulative incidence is not equivalent to individual risk,
but rather is an estimate of individual risk computed from either an entire
population or a sample of a population. However, we often use the terms risk and
cumulative incidence interchangeably, as we do throughout this course.

We usually put a hat (“^”) over the CI when the estimate of cumulative
incidence is based on a sample; we leave off the hat if we have data for the entire
population.

IĈ CI “hat” 

The cumulative incidence formula, with or without a "hat", is always a 
proportion, so its values can vary from 0 to 1. If the cumulative incidence is high,
as in an outbreak, the CI is sometimes expressed as a percent.

As a simple example, suppose we followed 1000 men age 45 and found that 50
developed prostate cancer within 10 years of follow-up and that no subject was
lost to follow-up or withdrew from the study. Then our estimate of simple
cumulative incidence is 50 over 1000, or 0.05, or, 5 %.

%505.
1000

50

N
IIĈ

In other words, the 10-year risk, technically the cumulative incidence for a 45 
year-old male is estimated to be 5%. The formula we have given for computing
risk is often referred to as Simple Cumulative Incidence because it is a simple
proportion that assumes a fixed cohort. Nevertheless, the use of simple cumulative
incidence is not always appropriate in all kinds of follow-up studies. Problems
with simple cumulative incidence and methods for dealing with such problems are 
discussed in activities to follow.
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Summary

Cumulative incidence (CI) is a population-based estimate of individual risk 
Cumulative incidence is always a proportion
When describing cumulative incidence, it is necessary to give the follow-up
period over which the risk is estimated.
The formula for simple cumulative incidence is CI=I/N, where I denotes the
number of new cases of disease that develop over the follow-up period and N
denotes the size of the disease-free population at the start of follow-up.
The terms cumulative incidence and risk are used interchangeably here, even
though technically, they are different.

Shifting the Cohort 

The formula for simple cumulative incidence implicitly assumes that the cohort is 
"fixed" in the sense that no entries into the cohort are allowed during the follow-up
period. What we should do if we do allow new entries into the cohort?

For example, in the Sydney Beach Users study described in Chapter 2, subjects
were selected from 12 popular Sydney beaches over 41 sampling days throughout
the summer months of 1989-90. Subjects could progressively enter the cohort on
different days during the summer, after which self-reported exposure and disease
information were obtained one week later.

To illustrate, consider six subjects
shown to the right. Each subject is 
followed for the required 7 days.
Subjects 1 and 5 (going from the
bottom individual to the top individual)
are the only subjects who reported
becoming ill. 

We can restructure these data by 
shifting the line of follow-up for each 
person to the left margin so that the horizontal time axis now reflects days of 
observation from the start of observation for each subject, rather than the actual
calendar days at which the observations occurred. This conforms to the follow-up
of a fixed cohort, for which the cumulative incidence is estimated to be 2/6 or one-
third.

We often have a cohort that allows subjects to progressively enter the study at
different calendar times. We can restructure the cohort to be fixed by shifting the
data for each subject to reflect the time of observation since initial entry into the
study rather than calendar time. We can then use the simple cumulative incidence
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formula to estimate risk. 

Study Questions (Q4.3) Suppose after shifting the cohort, one subject remained
disease-free during 4 years of follow-up whereas another subject in the cohort 
remained disease-free but was only followed for 2 years.
1. Do we have to assume that subjects who became cases were followed for the

same amount of time as subjects who remained disease-free?
2. Is there a problem with computing the cumulative incidence that includes both

these subjects in the denominator of the CI formula?
3. After we have shifted the cohort, do we have to assume that ALL subjects,

including those who became cases, were followed for the same amount of time
in order to compute cumulative incidence (CI)?

Summary

If subjects progressively enter the study at different calendar times, the data
can be shifted to reflect the time of observation since initial entry.
Simple cumulative incidence can be used to estimate risk for a shifted cohort.
After shifting the cohort, we can compute cumulative incidence provided all
subjects who remained disease-free throughout follow-up are followed for the
entire length of follow-up.

Problems with Simple Cumulative Incidence 

There are several potential problems with assuming a fixed cohort
when using the formula for simple cumulative incidence to
estimate risk.  One problem occurs because the size of a fixed 
cohort is likely to be reduced during the follow-up period as a 
result of deaths or other sources of attrition such as loss to follow-
up or withdrawal from the study. We don't know whether a subject
lost during follow-up developed the disease of interest.

Another problem arises if the population studied is a dynamic population

rather than a fixed cohort. A fixed cohort is a group of subjects identified at some
point in time and followed for a given period for detection of new cases. The
cohort is "fixed" in the sense that no entries are permitted into the study after the
onset of follow-up, although subsequent losses of subjects may occur for various
reasons such as withdrawal, migration, and death. But, a dynamic population is
continually changing, allowing for both the addition of new members and the loss
of previously entered members during the follow-up period.

The denominator in the simple cumulative incidence formula does not reflect
the continually changing population size of a dynamic population. And the
numerator in the simple cumulative incidence formula does not count new cases 
that may arise from those persons who entered a dynamic population after the 
beginning of follow-up.

Another difficulty for either a fixed or dynamic cohort is that subjects may be 
followed for different periods of time so that a cumulative incidence estimate will 
not make use of differing follow-up periods. This problem can occur when
subjects are lost to follow-up or withdraw from the study. It could also occur if 
subjects enter the study after the study start and are disease-free until the study
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ends, or if the follow-up time at which a subject develops the disease varies for
different subjects.

To illustrate these problems, let's consider a hypothetical example involving 12
initially disease-free subjects who are followed over a 5- year period from 1990 to 
1995.

An X denotes the
time at which a subject 
was diagnosed with the
disease and a circle (O)
denotes the time of
death that could be due
to the disease (circle
with an X inside) or due
to another cause (circle
without an X). Those
subjects that have no X or circle on their time line either withdrew from the study,
or were lost to follow-up, or were followed until the end of the study without the
developing the disease. The value to the right of each subject's time line denotes
that subject's follow-up time period until either the disease was diagnosed, the
subject withdrew or was lost to follow-up, or until the study ended. Based on this
information, answer the following questions:

Study Questions (Q4.4) The questions below refer to the figure above:
1. What type of cohort is being studied, fixed or dynamic?
2a. Which of these subjects was diagnosed with the disease?

Subject 2 Subject 3 Subject 5 Subject 7 

2b. Which of these subjects was lost or withdrawn?
Subject 2 Subject 3 Subject 5 Subject 7 

2c. Which of these subjects died with disease?
Subject 3 Subject 5 Subject 7 Subject 9 

2d. Which of these subjects died without the disease?
Subject 3 Subject 5 Subject 7 Subject 9 

2e. Which one was without the disease and alive at the end?
Subject 3 Subject 5 Subject 7 Subject 9 

Shifted Cohort

3. If we could shift the cohort, what is your estimate of simple cumulative
incidence of disease diagnosis in percent?
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4. What is your estimate of simple cumulative incidence of death in percent with 
no decimal places?

5. Using the “unshifted” graph from the previous page, Subjects 5, 8, 10 and 12 
have which of the following in common:

A. Same amount of observed follow-up time
B. Entered study at same calendar time
C. Withdrew from the study
D. Did not develop disease during follow-up

Computing simple cumulative incidence for the previously shown data is a
problem because … 

6a. Not all subjects developed the disease Yes No

6b. Not all subjects died Yes No

6c. The cohort is dynamic      Yes No

6d. Some subjects died from another cause Yes No

6e. Some subjects were lost or withdrew Yes No

6f. Some subjects developed disease at different follow-up times
Yes No

6g. Subjects not developing the disease had different follow-up times
Yes No

Summary

There are problems with assuming a fixed cohort when using the formula for
simple cumulative incidence to estimate risk.
If there is attrition of a fixed cohort, we will not know whether a subject lost
during follow-up developed the disease.
For a dynamic cohort, the denominator in the simple cumulative incidence
formula does not reflect the continually changing population size
Simple cumulative incidence does not allow subjects to be followed for
different periods of time.

Quiz (Q4.5)

After the second game of the college football season, 60 members of the 97-person
football team developed fever, malaise, loss of appetite, and abdominal
discomfort. Within a few days, 30 players became jaundiced. Blood samples were
drawn from all members of the team to test for antibodies to hepatitis A (the
presumptive diagnosis) and to test for elevation of liver enzymes

1. What is the cumulative incidence of jaundice? . ???

2. If you assume that all persons with symptoms had hepatitis A, even those that
did not develop jaundice, what is the presumed cumulative incidence of
hepatitis A? ???

3. Laboratory testing revealed that 91 had elevated liver enzymes of which 90 
had IgM antibody indicative of acute hepatitis A infection. Two players with 
normal liver enzymes had IgG antibody, indicating that they had previously
been exposed to hepatitis A and are now immune. What is the cumulative
incidence of hepatitis A? ???

Choices

30/60 30/97 60/97 90/91 90/95 90/97 91/95 91/97
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Label each of the following statements as True or False:
4. Cumulative incidence is always a proportion, even for a cohort with staggered

entry ("shifted cohort"). ???

5. Cumulative incidence is a useful measure for diseases with short incubation
periods in well-defined populations. ???

6. Cumulative incidence is a less-than-ideal measure for diseases with long
incubations periods in dynamic populations. ???

7. If a fixed population has substantial loss-to-follow-up, cumulative incidence
will overestimate the true risk of disease. ???

Rate

Rate is a measure of disease frequency that describes how rapidly health events
such as new diagnoses of cases or deaths are occurring in a population of interest.
Synonyms: hazard, incidence density.

Concept of a Rate 

The concept of a rate is not as easily understood as risk, and is often confused with
risk. Loosely speaking, a rate is a measure of how quickly something of interest
happens. When we want to know how fast we are traveling in our car, how quickly
the stock market prices are increasing, or how steadily the crime rate is decreasing, 
we are seeking a rate.

Suppose we are taking a trip in a car. We are driving along an expressway and 
we look at our speedometer and see we are going 65 miles per hour. Does this
mean that we will cover exactly 65 miles in the next hour? Of course not. The
speedometer reading tells us how fast we are traveling at the moment of time we
looked at the reading. If we were able to drive exactly this way for the next hour
without stopping for gas or a rest or slowing down for heavy traffic, we would
cover 65 miles in the next hour. The reading of 65 miles per hour on our
speedometer is the velocity at which we are traveling, and velocity is an example
of a rate. 

Actually, velocity is an example of an instantaneous rate, since it describes
how fast we are traveling at a particular instant of time. There is another kind of
rate, called an average rate, which we can also illustrate by continuing our car 
trip. If we actually traveled along the highway for the next hour and covered 55
miles during that time, the average rate, often called the speed that we traveled
over the one-hour period, would be 55.

In epidemiology, we use a rate to measure how rapidly new cases of a disease
are developing, or alternatively, how rapidly persons with a disease of interest are 
dying. As with velocity or speed, we might want to know either the instantaneous
rate or the average rate. With epidemiologic data, it is typically easier to determine
an average rate than an instantaneous rate. We could hardly expect to have a
speedometer-like device that measures how fast a disease is occurring at a
particular moment of time in a cohort of subjects. Consequently, in epidemiologic
studies, we typically measure the average rate at which a disease is occurring over
a period of time.

Because a rate is a measure of how quickly something is occurring, it is always
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measured in units of time, say, days, weeks, months, or years. This clarifies its 
interpretation. If we describe a rate of 50 new cases per 10,000 person-years, we
mean that an average of 50 cases occurs for every 10,000 years of disease free
follow-up time observed on a cohort of subjects. The 10,000 figure is obtained by
adding together the follow-up times for all subjects in the cohort.

If the unit of time was months instead of years, the interpretation of the rate 
can be quite different. A rate of 50 new cases per 10,000 person months indicates a
much quicker rate than 50 new cases per 10,000 person years.

Study Questions (Q4.6)

1. Which of the following rates is not equivalent to a rate of 50 new cases per
10,000 person years?

A. 100 new cases per 20,000 person years
B. 50 new cases per 120,000 person months
C. 50 new cases per 52,000 person weeks

2. Determine whether or not each of the following statements describes a rate:
A. 5 new cases per 100 person days Yes No

B. 40 miles per hour Yes No

C. 10 new cases out of 100 disease-free persons Yes No

D. 60 new murders per year Yes No

E. 60 deaths out of 200 clung cancer patients Yes No

Summary

Generally, a rate is a measure of how quickly something of interest is
happening
In epidemiology, a rate is a measure of how rapidly new cases of a disease or 
other outcome develop.
An instantaneous rate, like velocity, describes how rapidly disease or death is
occurring at a moment in time 
An average rate, like speed, describes how rapidly disease or death is
occurring as an average over a period of time.
In epidemiology, we typically use average rates rather than instantaneous rates.
Rates must be measured in units of time.
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Incidence Density- The Concept

The term incidence density (ID) has been proposed by Miettinen to provide an intuitive
interpretation of the concept of an average incidence rate.  The diagram below illustrates
incidence density as the concentration (i.e., density) of new case occurrences in an 
accumulation (or sea) of person-time. Person-time (PT) is represented by the area under
the curve N(t) that describes number of disease-free persons at time t during a period of
follow-up from time T0 to T1.  Each new case is denoted by a small circle located within the
sea of person-time at the time of disease occurrence. The concentration of circles within the
sea represents the density of cases. The higher the concentration, the higher is the average
rate during the period of follow-up. 

Calculation of a Rate 

To calculate a rate, we must follow a cohort of subjects, count the number of new
(or incident) cases, I, of a disease in that cohort, and compute the total time, called
person-time or PT, that disease-free individuals in the cohort are observed over the

study period. The estimated incidence rate ( ) is obtained by dividing I by PT:RÎ

PT

I
RÎ

This formula gives an average rate, rather than the more difficult to estimate
instantaneous rate. The formula is general enough to be used for any outcome of
interest, including death. If the outcome is death instead of disease incidence, the
formula gives the mortality incidence rate rather than the disease incidence rate.

Consider again the 
following hypothetical
cohort of 12 initially
disease-free subjects
followed over a 5-year
period from 1990 to 1995.

From these data, the
number of new cases is 5. 
The total person-time, in
this case person-years, is 
obtained by adding the
individual observed disease-free follow-up times this gives a total of 25 person
years. The incidence rate is therefore 5 divided by 25 or 0.20, which can be
translated as 20 new cases per 100 person years of follow-up.
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Study Questions (Q4.7)

1. In this example, is the value of 0.20 a proportion?
2. In this example, does the value of 0.20 represent the risk of developing

disease?
3. Which of the following rates is not equivalent to a rate of 20 new cases per 100 

person years?
A. 5 new cases per 25 years
B. 40 new cases per 200 person years
C. 480 new cases per 2400 person months
D. 20 new cases per 1200 person months

Summary

A rate is calculated using the formula I/PT, where I denotes the number of
incident cases and PT denotes the accumulated person-time of observed
follow-up over the study period.
This formula gives an average rate, rather than the more difficult to estimate
instantaneous rate. 
A rate is always greater than zero and has no upper bound.
The rate is always stated in units of person-time.
A rate of .20 cases per person-year is equivalent to 20 cases per 100 person-
years as well as 20 cases per 1200 person-months

The Big-Mac Assumption about Person-Time 

We have seen that the general formula for calculating an average rate (R) is: 

R
I

PT
where I is the number of new cases and PT is the accumulated person-time over a specified
period of follow-up.  When individually observed follow-up times are available, PT is
determined by summing these individual times together for all N subjects in the disease-free
cohort.

For example, if 100 persons are each followed for 10 years, then PT=1000 person-
years. Also, if 1000 persons are each followed for 1 year, we get PT=1000.

A key assumption about PT is that both of these situations provide equivalent person-
time information. In other words, the rate corresponding to a specified value of PT should 
not be affected by how the total person-time is obtained.  We call this assumption the Big-

Mac assumption because it is similar to assuming that eating 50 fast-food hamburgers
costing $2.00 each is equivalent to eating: $100 gourmet meal at the best-rated restaurant in
town.

The Big-Mac assumption for PT will not hold, however, if the average time between
first exposure and detection of the disease (i.e., the latency) is longer than the average
individually observed follow-up time. If so, we would expect the rate to be lower in a large
cohort that accumulates the same PT as a smaller cohort with larger individual follow-up
times.

For example, if the latency were 2 years, we would expect an extremely low rate for 
1000 persons followed for one-year each but a much larger rate for 100 persons followed
for two-years each. Individuals in the larger cohort would not be followed long enough to 
result in many new cases.
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Determining Person Time Information 

There are a number of ways to determine the person-time denominator in the
formula for a rate. As illustrated in the previous section, when individual follow-
up times are available on each person in the cohort, the person-time is calculated
by summing ( ) individual follow-up times over the entire disease-free cohort:

PT

I
RÎ

When individual follow-up times are not available, one method for computing
person-time information uses the formula:

PT = N* x t
where N* is the average size of the disease-free cohort over the time period of 
study and t is the time length of the study period.  This formula is particularly
useful if the study cohort is a large population, such as a city, where individual
person time information would be very difficult to obtain. For such a large cohort,
it would also be difficult to exclude existing cases of the disease at the start of the
study period as well as to determine the number of disease-free persons that are
not followed for the entire period of study.

Nevertheless, it may be that relatively few persons in the population develop
the disease. And, we may be able to assume that the population is a stable dynamic
cohort, that is, the population undergoes no major demographic shifts during the
time period of interest. If so, the average size of the disease free cohort can be
estimated by the size of the entire population based on census data available close
to the time period of the study, which is what we have denoted N* in our person-
time formula.

As an example, suppose a stable
population of 100,000 men is followed
for a period of 5 years, during which
time 500 new cases of bladder cancer
are detected. The accumulated person-
years for this cohort can then be
estimated as 100,000 times 5, or
500,000 person-years. Consequently,
the average incidence rate for the 5-
year period is given by 500 divided by
500,000, or 0.001 per year, or equivalently 1 new case per 1000 person years.

Summary

There are alternative ways to determine person-time information required in
the denominator of a rate when individual follow-up times are not available.
One method uses the formula PT = N* x t, where N* denotes the average size
of a stable dynamic cohort based on census data available close to the
chronological time of the study, and t is the time period of the study.
This formula is useful if the study cohort is a large population for which
individual person time information would be difficult to obtain.
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Incidence Rate of Parkinson’s Disease 

Parkinson's disease is a seriously disabling disease characterized by a resting 
tremor, rigidity, slow movements, and disturbed reflexes. A cohort of more than
6,500 Dutch elderly people who did not have Parkinson's disease at the start of the
study was followed for six years to determine the incidence rate at which new
cases of Parkinson's disease develop. During the follow-up period, 66 participants
were diagnosed with Parkinson's disease.

Because Parkinson's disease has a subtle onset, it was difficult to determine
exactly when the disease process had begun. Therefore, the investigators
calculated the time of onset as the midpoint between the time of diagnosis and the
time at which a participant was last known to be free of Parkinson's. They could
then calculate the total number of disease-free person-years in this study by adding
up the number of person-years that each of the 6,500 participants had contributed
to the study until he or she either:
1. Developed Parkinson's disease
2. Died
3. Reached the end of the study period alive without having developed

Parkinson's disease.
This resulted in a total of 38,458 disease-free person-years.  In this study, the

average incidence rate of Parkinson's disease for the 6-year study period is:
66 / 38,458 = 0.0017 cases per person-year

This means that, 1.7 new cases of Parkinson's disease develop per 1,000
person-years.

Study Questions (Q4.8)

1. Using the formula PT = N* x ( t), how many person-years would have been
computed for this study population had no detailed information on each 
individual’s contribution to the total amount of person-years been available?

2. Using the number of person-years from the previous question, what is the
incidence rate?

Summary

A cohort of more than 6,500 Dutch elderly people who did not have
Parkinson’s disease at the start of the study was followed for six years to 
determine the rate at which new cases develop.
The results indicate that 1.7 new cases of Parkinson’s disease develop for
every 1,000 person-years of follow-up.
The person-years calculation used the formula PT = N* x t since there was no 
detailed information on each individual’s person-years.

Quiz (Q4.9) Label each of the following statements as True or False.
1. Rate is not a proportion ???

2. Rate has units of 1/person-time, and varies from zero to one. ???

3. A rate can only be calculated if every person in a cohort is followed
individually to count and add up the person-time. ???

4. Rate can be calculated for a dynamic cohort, but not for a fixed, stable cohort.
???
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Risk versus Rate 

Incidence can be measured as either risk or rate.  Which of these types to use is an
important choice when planning an epidemiologic study.

We have seen two distinct measures for quantifying disease frequency, risk and
rate. Risk is a probability, lying between 0 and 1 that gives the likelihood of a 
change in health status for an individual over a specified period of follow-up.

Rate describes how rapidly new events are occurring in a population. An
instantaneous rate, which is rarely calculated, applies to a fixed point in time
whereas an average rate applies to a period of time. A rate is not a probability, is 
always non-negative, has no upper bound (i.e.  0 < Rate < ) and is defined in
units of time, such as years, months, or days.

When planning an epidemiologic study, which measure do we want to use, risk
or rate? The choice depends on the objective of the study, the type of disease
condition being considered, the nature of the population of interest, and the
information available.

If the study objective is to predict a change in health status for an individual,
then risk is required. In particular, risk is relevant for assessing the prognosis of a
patient, for selecting an appropriate treatment strategy, and for making personal
decisions about health-related behaviors such as smoking, exercise, and diet. By
contrast, a rate has no useful interpretation at the individual level.

If the study objective is to test a specific hypothesis about disease etiology, the
choice can be either risk or rate depending on the nature of the disease and the way
we observe new cases. If the disease is a chronic disease that requires a long
period of follow-up to obtain sufficient case numbers, there will typically be
considerable loss to follow-up or withdrawals from the study. Consequently,
individual observed follow-up times tend to vary considerably. A rate, rather than
a risk, can address this problem.

However, if an acute disease is considered, such as an outbreak due to an 
infectious agent, there is likely to be minimal loss to follow-up, so that risk can be
estimated directly. With an acute illness, we are not so much interested in how
rapidly the disease is occurring, since the study period is relatively short. Rather,
we are interested in identifying the source factor chiefly responsible for increasing
individual risk.

If the population studied is a large dynamic population, individual follow-up
times, whether obtainable or not, will vary considerably for different subjects, so 
rate must be preferred to risk. However, if individual follow-up times are not
available, even a rate cannot be estimated unless it is assumed that the population
size is stable, the disease is rare, and a recent census estimate of the population is
available.

Risk is often preferred to rate because it is easier to interpret. Nevertheless, rate
must often be the measure of choice because of the problems associated with 
estimating risk.

Summary

Risk is the probability that an individual will develop a given disease over a 
specified follow-up period. 
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Rate describes how rapidly new events are occurring in a population.
Risk must be between 0 and 1 whereas rate is always non-negative with no
upper bound, and is defined in units of time.
Risk is often preferred to rate because it is easier to interpret.
Rate must often be the measure of choice because of problems with estimating
risk.
The choice of risk versus rate depends on the study objective, the type of 
disease, the type of population, and the information available. 

Quiz (Q4.10) Do the following statements define a rate, risk, or both?

1. More useful for individual decision-making. ???

2. Numerator is number of new cases during a period of follow-up. ???

3. Lowest possible value is zero. ???

4. No upper bound. ???

5. Can be expressed as a percentage. ???

6. Better for studies with variable periods of follow-up. ???

7. Traditionally calculated in the acute outbreak (short follow-up) setting. ???

8. Measures how quickly illness or death occurs in a population. ???

9. Cumulative incidence. ???

10. Measure of disease occurrence in a population. ???

Prevalence

Prevalence measures existing cases of a health condition and is the primary
design feature of a cross-sectional study.  There are two types of prevalence, point
prevalence, which is most commonly used, and period prevalence.

In epidemiology, prevalence typically concerns the identification of existing
cases of a disease in a population and is the primary design feature of cross-
sectional studies. Prevalence can also more broadly concern identifying persons
with any characteristic of interest, not necessarily a disease. For example, we may
wish to consider the prevalence of smoking, immunity status, or high cholesterol
in a population.

The most common measure of prevalence is point prevalence, which is 
defi ed as the probability that an individual in a population is a case at time t, i.e., n

 t)at timesizen(Populatio

 t)at timecasesobservedof(#

N
C

P̂

Point prevalence is estimated as the proportion of persons in a study population
that have a disease at a particular point in time (C). For example, if there are 150 
individuals in a population and, on a certain day, 15 are ill with the flu, the
estimated prevalence for this population is 10%, i.e., 

%10
150
15

P̂

Study Questions (Q4.11)

1. Is point prevalence a proportion?
2. A study with a large denominator, or one involving rare events, may result in 

very low prevalence.  For example, suppose that 13 people from a population
of size 406,245 had a particular disease at time t. What is the point prevalence
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of this disease at time t?
A. 0.0032    B. 32%    C. 0.000032  D. 0.0000032

3. Which of the following expressions is equivalent to the point prevalence
estimate of 0.000032?

A. 3.2 per 1,000     B. 3.2 per 100,000   C. 32 per 100,000

When measuring point prevalence, it is essential to indicate when the cases
were enumerated by specifying a point calendar time or a fixed point in a time
sequence, such as the third post-operative day. Prevalence measures are very
useful for assessing the health status of a population and for planning health
services. This is because the number of existing cases at any time is a determinant 
of the demand for healthcare.

However, prevalence measures are not as 
well suited as incidence measures, such as
risk or rate, for identifying risk factors. This
is because prevalence concerns only
survivors, so that cases that died prior to the
time that prevalence is measured are ignored.

Summary

Prevalence concerns existing cases of a disease at a point or period of time. 
Prevalence measures are primarily estimated from cross-sectional surveys.
Point prevalence is the probability that an individual in a population is a case at 
time t.
Point prevalence is estimated using the formula P = C/N, where C is the
number of existing cases at time t, and N is the size of the population at time t.
Prevalence measures are useful for assessing the health status of a population
and for planning health services.
Prevalence measures concern survivors, so they are not well suited for
identifying risk factors.

Period Prevalence 

An alternative measure to point prevalence is period prevalence (PP), which requires
the assumption of a stable dynamic population for estimation. PP is estimated as the ratio
of the number of persons C* who were observed to have the health condition (e.g., disease)
anytime during a specified follow-up period, say from times T0 to T1, to the size N of the
population for this same period, i.e., the formula for period prevalence is: 

N
IC

N
CPP *

where C denotes the number of prevalent cases at time T0 and I denotes the number of
incident cases that develop during the period.  For example, if we followed a population of
150 persons for one year, and 25 had a disease of interest at the start of follow-up and 
another 15 new cases developed during the year, the period prevalence for the year would
be:

PP = (25 + 15)/ 150 = .27, or 27%,
whereas the estimated point prevalence at the start of the period is:

P = 25/150 = .17, or 17%
and the estimated cumulative incidence for the one year period is:

CI = 15/125 = .12, or 12% 
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Quiz (Q4.12) Label each of the following statements as True or False

1. Prevalence is a more useful measure for health planning than for etiologic
research. ???

2. Like cumulative incidence, prevalence is a proportion that may range from
zero to one. ???

3. Prevalence measures are most commonly derived from follow-up studies. ???

4. Whereas incidence usually refers to occurrence of illness, injury, or death,
prevalence may refer to illness, disability, behaviors, exposures, and genetic
risk factors. ???

5. The formula for point prevalence is:
a. # new cases / # persons in population
b. # new cases / # persons who did not have the disease at the starting point of

observation
c. # new cases / # person-time of follow-up
d. # current cases / # persons in population
e. # current cases / # persons who did not have the disease at the starting point

of observation
f. # current cases / # person-time of follow-up

Mortality

As with incidence measures of disease frequency, incidence measures of mortality
frequency can take the form of risk or rate depending on the study design and the
study goals. Mortality risk can be measured in a 
number of ways, including disease-specific

mortality risk, all-causes mortality risk, and
case-fatality risk. For each measure, the
formula for simple cumulative incidence can be
used. Here, I denotes the number of deaths
observed over a specific study period in an 
initial cohort of size N.

Study Questions (Q4.13)

1. For a disease-specific mortality risk, what does the I in the formula CI=I/N
represent. ???

A. The number of deaths from all causes 
B. The number of deaths due to the specific disease of interest
C. The number of persons with a specific disease
D. The size of the initial cohort regardless of disease status

Answer: For estimating disease-specific mortality risk, I is the number of deaths
due to the specific disease of interest, and N is the size of the initial cohort
regardless of disease status. 
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Study Questions (Q4.13) continued

2. For all-causes mortality risk, what does the I in the formula CI=I/N
represent. ???

A. The number of deaths from all causes 
B. The number of deaths due to the specific disease of interest
C. The number of persons with a specific disease
D. The size of the initial cohort regardless of disease status

Answer: I is the number of deaths from all causes, and N is the size of the initial
cohort, regardless of disease status.

Case-fatality risk is the proportion of people with a disease who die from that
disease during the study period.

Study Questions (Q4.13) continued

3. For case-fatality risk, what does the I in the formula CI=I/N represent. ???

A. The number of deaths from all causes 
B. The number of deaths due to the specific disease of interest
C. The number of persons with a specific disease
D. The size of the initial cohort regardless of disease status

Answer: I is the number of persons who die from the given disease, and N is the
number of persons with this disease in the initial cohort.

In a similar way, mortality rate can be measured using the general formula for 
average rate: IR = I/ PT. Here, I denotes the number of deaths observed over a
specified study period in an initial cohort that accumulates person-time PT. For
estimating disease-specific mortality rate, PT is the person-time for the initial
cohort, regardless of disease condition. For estimating all-cause mortality rate,
PT again is the person-time for initial cohort, regardless of disease condition.

For estimating case-fatality rate, PT is the person time for an initial cohort of 
persons with the specific disease of interest that is followed to observe mortality
status.

As an example of the 
calculation of mortality risk 
estimates, suppose you observe an
initial cohort of 1000 persons aged
65 or older for three years. One
hundred out of the 1000 had lung
cancer at the start of follow-up,
and 40 out of these l00 died from
their lung cancer. In addition, 15
persons developed lung cancer
during the follow-up period and 10
died. Of the remaining 885 persons without lung cancer, 150 also died.

The lung-cancer specific mortality risk for this cohort is 50/1000 or 5%.

The all-cause mortality risk is 200/1000 or 20%, and

The case-fatality risk for the 100 lung cancer patients in the initial cohort is
40/100 or 40%.
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Study Questions (Q4.14) For the lung cancer example just presented, answer the
following questions:
1. From the data, what is the estimated risk for the incidence of lung cancer over

the three-year period?
2. Why is the estimated incidence of lung cancer (LC) different from the 

estimated LC mortality of 5%?
3. Under what circumstances would you expect the LC incidence and LC 

mortality risk to be approximately equal?

Summary

Incidence measures of mortality frequency can take the form of risk or rate
depending on the study design and the study goals.
Mortality risk or rate can be measured in a number of ways, including disease-
specific mortality risk or rate, all-causes mortality risk or rate, and case-fatality
risk or rate.
For measuring mortality risk, the formula used for simple cumulative
incidence, namely, CI = I / N, can be used.
Similarly, mortality rate can be measured using the general formula for 
average rate, namely IR = I / PT.

Quiz (Q4.15)

During the past two years, a total of exactly 2,000 residents died in a retirement
community with a stable, dynamic population of 10,000 persons.
1. Given these data, the best choice for measure of mortality is the mortality rate. 

???

2. Since mortality is often expressed per 1,000, one could express this mortality
measure as 200 per 1,000 per year. ???

3. The disease-specific mortality risk is the number of deaths attributable to a 
particular disease, divided by the number of persons with that disease. ???

4. The denominator for the all-cause mortality risk and the cause-specific
mortality risk is the same. ???

5. The denominator for case-fatality risk is the numerator of the prevalence of the
disease. ???

Age-adjusted rate 

Most epidemiologic studies involve a comparison of measures of disease
frequency among two or more groups. For example, to study the effect of climate
conditions on mortality, we might compare mortality risks or rates in two or more
locations with different climates. Let's focus on two U.S. states, Arizona and 
Alaska. This would allow a comparison of mortality in a cold, damp climate with 
mortality in a hot dry climate.

The crude mortality rates for these two states for the year 1996 were:
Alaska 426.57 deaths per 100,000 population
Arizona 824.21 deaths per 100,000 population

You might be surprised, particularly considering the climates of the two states,
that Arizona's death rate is almost twice as high as Alaska's. Does that mean that 
it's far more hazardous to live in Arizona than Alaska?
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Study Question (Q4.16)

1. What do you think? Is if far more hazardous to live in Arizona than Alaska?

A little knowledge of the demographic make-up of these two states might
cause you to question such an interpretation. Look at the age distribution of the 
two states: 

(Note: Alaska is the left bar for each
of the clustered bars, Arizona the
right bar.)

Study Questions (Q4.16)  continued

2. Which population is older?
3. Why should we expect relatively more deaths in Arizona than in Alaska?

The variable age in this situation is called a confounder because it distorts the 
comparison of interest. We should correct for such a potentially misleading effect. 
One popular method for making such a correction is rate adjustment. If the
confounding factor is age, this method is generally called age-adjustment, and the 
corrected rates are called age-adjusted rates.

The goal of age adjustment is to modify the crude rates so that any difference
in mortality rates of Alaska and Arizona cannot be explained by the age
differences in the two states. The most popular method of rate adjustment is the
direct method. This method forces the comparison of the two populations to be
made on a common age distribution. The confounding factor age is removed by
re-computing the rates substituting a common age distribution for the separate age
distributions. The two populations are then compared as if they had the same age
structure.

The common age distribution is determined by identifying a standard

population. A logical choice here would be the 1996 total United States 
population. Other choices for the standard are also possible and usually won't
make a meaningful difference in the comparison of adjusted rates.

 (Note: The actual calculation of the age-adjusted rates is not shown here.  For details on
the calculation of the age-adjusted rates for this example, click on the asterisk on Lesson
page 4-4 of the CD-ROM or see the example at the end of this chapter.)
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The age-adjusted death rates 
obtained from using the direct
adjustment method with the 1996 US 
population as the standard are shown
here together with the crude rates:

When we remove age as a factor, the age-adjusted death rate in Arizona is 
actually lower than in Alaska.

Study Questions (Q4.17)

1. How do we interpret these new age-adjusted results?
2. Based on these results, how do you think the age distribution of Alaska

compares to that of the 1996 US population?
3. How do you think the age distribution of Arizona compares to that of the 1996

US population?

Summary

Comparing crude rates for two or more groups may be misleading because
such rates do not account for the effects of confounding factors.
If the confounding factor is age, this method is called age-adjustment, and the
corrected rates are called age-adjusted rates.
The goal of age adjustment is to modify the crude rates so that any difference
in rates cannot be explained by age distribution of the comparison groups.
The direct method of age-adjustment re-computes the rates by substituting a
common age distribution for the separate age distributions of the groups being
compared.
The common age distribution is determined by identifying a standard
population.

Terminology about Adjustment

The rates described for Alaska and Arizona are actually risks. We have purposely used
the term rates in this example to conform to the terminology typically used in published 
reports/papers that carry out age adjustment. In any case, the procedure used for (age) 
adjustment can be applied to any measure of disease frequency: risk, rate and/or prevalence.

Moreover, potential confounding factors of interest other than age, e.g., race and sex, 
can also be adjusted, both individually and simultaneously. We generally use the term rate

adjustment to describe adjustment involving any type or number of confounding factors
and any type of measure of disease frequency, whether a risk, rate, or prevalence.

Age-Adjustment – The Steps 

The method of direct age-adjustment involves the following steps: 
1. Select a standard population whose age structure is known. By convention, the 

standard distribution used for age-adjustment of mortality rates in the United States is
the US age distribution in the year closest to the year of the rates being compared.

2. Multiply the age-specific mortality rates for each group being compared by the
corresponding age-specific numbers of persons in the standard population. The result is 
the expected number of deaths in each group.

3. Sum the expected numbers of deaths within each age group to yield a total number of
expected deaths for each group being compared.

4. Divide the total number of expected deaths in each group by the total size of the
standard population to yield summary age-adjusted mortality rates.
An asterisk on lesson page 4-4 of the ActivEpi CD ROM provides a worked example of 

direct adjustment by comparing mortality rates for Alaska and Arizona in 1996.
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Quiz (Q4.18) Label each of the following statements as True or False

1. Age-adjustment is a method to eliminate disparities in age between two
populations. ???

2. Age-adjustment always brings two disparate rates closer together ???

3. When age-adjusting, one should use the U.S. population as the standard
population. ???

4. Age-adjustment can be used for one rate, two rates, or many rates. ???

5. If the age distributions of two populations are very similar, their age-adjusted
rates will also be similar. ???

6. If the age distributions of two populations are very similar, the comparison of
the age-adjusted rates will not be very different from the comparison of the
crude rates. ???

In the early 1990s, 7,983 elderly Dutch men and women were included in a 
prospective cohort study.  The investigators computed how many person-years
each participant had contributed to the study until January 2000. The total was 
52,137 person-years.  During follow-up, 2,294 of the participants died, and of
these, 477 were due to coronary heart disease.
7. What is the all-cause mortality rate in this population? ??? per 1000 person-

years.
8. What is the coronary heart disease-specific mortality rate? ??? per 1000

person-years
Choices 2294 44 477 9.1

The crude all-cause mortality rate for men was 47.4 per 1000 person-years (PY)
and for women was 41.9 per 1000 person-years. After making the age distribution
in the women comparable to the age distribution in men (by standardizing the rates
using the age distribution of the men), the mortality rate for women was only 27.8
per 1000 PY.

9. Based on these figures, the women must be considerably ??? than
the men in this population.

Choices older younger

Nomenclature
C Number of prevalent cases at time T
C* C + I (number of prevalence cases at time T plus incident cases

during study period)
CI Cumulative incidence (“risk”): CI=I/N
D Duration of disease
I Incidence
IR Incidence rate (“rate”): IR=I/PT
N Size of population under study
P Prevalence: P=C/N
PP Period prevalence: PP=C*/N
PT Person-time
R Average rate
T or t Time
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Answers to Study Questions and Quizzes

Q4.1

1. Incidence – Here we are interested in 
the number of new cases after eating
the potato salad.

2. Prevalence – Here we are interested in
the number of existing cases.

3. Incidence – Here we are interested in 
the number of new cases that occur
during the follow-up.

4. Incidence – Here we are interested in 
the number of new deaths attributed to
the hurricane.

5. Prevalence – Here we are interested in
the existing number of children who
have immunity to measles. 

6. Incidence – Since rabies has a short
duration, we would expect the
prevalence on a particular day to be low 
relative to the incidence.

7. Prevalence – The incidence of multiple
sclerosis would be low, but since it has
a long duration, we would expect the
prevalence to be higher.

8. Incidence – The incidence of influenza
would be high, but since it is of short 
duration the prevalence would be low. 

9. Incidence – Since the duration of

poison ivy is relatively short the
prevalence would be low, and since it is
a common occurrence, the incidence
would be high.

10. Prevalence – Since high blood pressure 
is common and of long duration, both 
incidence and prevalence are high, but 
the prevalence would be higher.

Q4.2

1. The statement means that a 45-year-old
male free of prostate cancer has a 
probability of .05 of developing
prostate cancer over the next 10 years if
he does not die from any other cause 
during the follow-up period.

2. Smaller, because the 5-year risk
involves a shorter time period for the 
same person to develop prostate cancer.

Q4.3

1. No, subjects should be counted as new 
cases if they were disease-free at the
start of follow-up and became a case at
any time during the follow-up period 
specified.

2. Yes, there is a problem, since a subject
followed for 2 years does not have the 
same opportunity for developing the 
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disease as a subject followed for 4 
years.

3. No, but we must assume that subjects
who do not develop the disease have 
the same follow-up time. Otherwise, we 
can get a misleading estimate of CI 
because not all subjects will have the
same opportunity to develop the disease
over the follow-up period.

Q4.4

1. Dynamic
2. Subject 2 
3. Subject 7 
4. Subject 9 
5. Subject 3 
6. Subject 5 
7. 5/12=42%
8. 4/12=33%
9. D
10. No
11. No
12. Yes
13. Yes
14. Yes
15. No
16. Yes
Q4.5

1. 30/97
2. 60/97
3. 90/95
4. True – The numerator of the CI formula

is a subset of the denominator.
5. True – Because the incubation period is

short, subjects are not likely to be lost 
to follow-up. 

6. True – The long incubation period 
means subjects are likely to be lost to 
follow-up, and hence cases may not be 
detected.  For a dynamic cohort, the
denominator in the CI formula does not 
reflect the continually changing
population size. 

7. False – the estimated CI will 
underestimate the true risk of disease.

Q4.6

1. C
2. a. Yes

b. No
c. Yes
d. No

Q4.7

1. No, the denominator of 25 does not 
describe 25 persons, but rather the 

accumulated follow-up time for 12
persons.

2. No, the risk in this example would be 
calculated as 5/12 or 0.42.  However,
using risk would be questionable here
because different subjects have 
different follow-up times. 

3. C

Q4.8

1. N* is the average size of the disease-
free cohort and t is the time length of 
the study period.  Therefore, a rough 
estimate of the total amount of person-
years contributed by the study is 6,500 
*6 = 39,000 person-years.

2. The incidence rate is 66/39,000 = 
0.0017, or 1.7 per 1,000 person-years.

Q4.9

1. True – For questions 1 & 2: a rate can 
range from 0 to infinity, whereas a risk
(which is a proportion) ranges from 0 to 
1 (or 0% to 100%).

2. False
3. False – There are alternative ways to

calculate person-time information when 
individual follow-up time is 
unavailable.

4. False – A rate can be calculated for 
either a dynamic cohort or fixed cohort,
depending on the person-time
information available.

Q4.10

1. Risk
2. Both
3. Both
4. Rate
5. Risk
6. Rate
7. Risk
8. Rate
9. Risk
10. Both
Q4.11

1. Yes, its value can range from 0 to 1 and
it is often expressed as a percentage

2. C. The prevalence of disease is
13/406,245 = 0.000032

3. B. 3.2 per 100,000 is an equivalent
expression and is easier to interpret

Q4.12

1. True – Prevalence considers existing
cases rather than incident cases.
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2. True – Since the numerator is contained 
in the denominator, prevalence is a 
proportion and must range from 0 to 1 
(or 0% to 100%). 

3. False – Cross-sectional studies are 
carried out at essentially a single (or 
short) point in time. 

4. True – Prevalence may concern a health 
outcome or any other characteristic of a 
subject.

5. d
Q4.13

1. B     2. A    3. B 
Q4.14

1. The estimate of LC incidence is 
calculated as CI = 15/900 = .017 or 
1.7%

2. The 5% mortality estimate counts the 
40 prevalent LC cases and does not 
count the 5 new LC cases that did not 
die.  Furthermore, the denominators are 
different. 

3. The LC incidence and mortality risks 
would be about equal if the disease was 
quickly fatal, so that there would be 
few if any prevalent cases in the initial 
cohort and all new cases would have 
died before the end of follow-up. 

Q4.15

1. True        2. True 
3.  False – The denominator of a disease-
specific mortality risk is the size of the 
initial cohort regardless of disease status. 
4. True       5.True 
Q4.16

1. The two rates are crude rates because 
they represent the overall mortality 
experience in 1996 for the entire 
population of each state.  Crude rates 
do not account for any differences in 
these populations on factors such as 
age, race, or sex that might have some 
influence on mortality. Without 
consideration of such factors, it would 
be premature to make such a 
conclusion. 

2. Arizona.  The dry, warm climate of 
Arizona attracts many older persons 
than does Alaska. 

3. There are relatively older persons living 
in Arizona, and older persons are at 
high risk of dying. 

Q4.17

1. Controlling for any age differences in 
the two populations, the overall 
mortality rate is higher in Alaska with a 
cold, damp climate, then in Arizona 
where the climate is warm and dry. 

2. The population of Alaska must be much 
younger than the US population since 
the age-adjusted rate was so much 
higher than the crude rate. 

3. The rate for Arizona did not change 
much from crude to adjusted because 
Arizona’s age distribution was only 
slightly younger than that of the entire 
US in 1996. 

Q4.18

1. True – If age-adjustment is not used, 
then a difference in risk or rates 
between two populations may be 
primarily due to age differences in the 
two populations. 

2. False – There is no guarantee that two 
adjusted measures will be either closer 
or further from each other than were 
corresponding crude measures. 

3. False – The choice of standard 
population depends on the 
characteristics of the populations being 
considered. 

4. True – There is no limitation on the 
number populations that could be age-
adjusted. 

5. False – For questions 5 & 6: If the 
crude rates are quite different whereas 
the age distributions are similar, then 
the adjusted rates are likely to be quite 
different. 

6. True
7. 44
8. 9.1
9. older – Women must be older than men 

in this case.  The mortality rate drops 
substantially in women when we 
standardize the rate using the age 
distribution of men.  In other words, if 
we take age out of the picture, the rates 
for women drop.  If the women were 
younger we would expect to see the 
adjusted rate increase once we remove 
age as a factor. 



CHAPTER 5
WHAT’S THE ANSWER?  MEASURES OF EFFECT 

In epidemiologic studies, we compare disease frequencies of two or more groups
using a measure of effect.  We will describe several types of measures of effect in 
this chapter. The choice of measure typically depends on the study design being
used.

Ratio Versus Difference Measures of Effect 

Our focus in Chapter 5 is on ratio measures of effect, which are of the form Ml/M0, where
Ml and M0 are two measures of disease frequency, e.g., risks, rates, or prevalences that are
being compared.

We consider difference measures of effect, which are of the form Ml-M0, in Chapter 6
on "Measures of Potential Impact". Difference measures are also called measures of
attributable risk.

Ratio measures are typically used in epidemiologic studies that address the etiology of a
disease/health outcome, whereas difference measures are used to quantify the public health
importance of factors that are determinants of a disease/health outcome.

Smoking and Lung Cancer 

Cigarette smoking became increasingly popular in America after World War I
when cigarettes were handed out to soldiers as a way to boost morale. But along
with the rise in smoking, came a disturbing rise in the lung cancer rate and some
early warnings from a handful of doctors about possible dangers of smoking. Early
studies in the 1930s and 1940s of the possible relationship between smoking and
lung cancer were case-control studies. It became quite apparent that lung cancer
patients smoked much more than controls. In one study in particular, lung cancer
patients were 17 times more likely than controls to be two-pack-a-day smokers.

In the early 1950s, doctors Horn and Hammond of the American Cancer
Society conducted one of the first cohort studies on the harmful effects of
smoking.  About 200,000 people were given a smoking questionnaire and then
followed for four years. Death rates and cause of death for smokers and for non-
smokers were compared. The preliminary study published in 1958 caused quite a 
sensation. It was the largest study on smoking that had been done, and it showed
that smokers were ten times more likely than nonsmokers to get lung cancer. 

Both the cohort and case-control studies attempted to assess the proposed
relationship between smoking and lung cancer by deriving a measure of effect that
quantified the extent of this relationship.   The measure described in the case-

control study is called an odds ratio. The measure described in the cohort study

is called a risk ratio. The activities that follow discuss these two fundamental
measures of effect.

Summary

The odds ratio and the risk ratio are two fundamental measures of effect. 
These measures were used in epidemiologic studies of the relationship between
smoking and lung cancer.
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The odds ratio is typically the measure of effect used in case-control studies.
The risk ratio is typically the measure of effect used in cohort studies.

The Risk Ratio 

The table below summarizes the results of a five-year follow-up study to
determine whether or not smokers who have had a heart attack will reduce their
risk for dying by quitting smoking. A cohort of 156 heart attack patients was 
studied, all of whom were regular smokers up to the time of their heart attack. 
Seventy-five of these patients continued to smoke after their attack. The other 81
patients quit smoking during their recovery period. Of the 75 patients that
continued smoking, 27 died, so the proportion of these patients that died is 0.36.
Of the 81 patients who quit
smoking, 14 died, so the
corresponding proportion is 0.17.
These proportions estimate the five-
year risks of dying for these two
groups of patients. We may wonder
whether those heart attack patients
who continue smoking are more
likely to die within 5 years after 
their first heart attack than those who quit.

A measure of effect gives a numerical answer to this question. Such a measure
allows us to make a comparison of two or more groups, in this case, continuing
smokers and smokers who quit. For follow-up studies such as described here, the
typical measure of effect is a risk ratio. To calculate a risk ratio, we take the ratio 
of the two risks being compared, that is, we simply divide one risk by the other.
Actually, we are getting an "estimate" of the risk ratio, which we indicate by

putting a "hat" symbol over the RR notation.  is an estimate because we are
using two estimates of risk based on samples from the two groups being
compared. In our example, therefore, we divide 0.36 by 0.17 to get 2.1.

RR̂

1.2
17.0

36.0

quit whosmokersforRiskEstimated

smokerscontinuingforRiskEstimated
RR̂Estimated

The estimated risk ratio of 2.1 tells us that continuing smokers are about twice
as likely to die as smokers who quit. In other words, for heart attack patients the
five-year risk for continuing smokers is about twice the corresponding risk for
smokers who quit.

Study Questions (Q5.1) Using the five-year follow-up study comparing mortality
between smokers and quitters example:
1. How would you interpret a Risk Ratio of 4.5?
2. What if the Risk Ratio was 1.1?
3. How about if the Risk Ratio was less than 1, say 0.5?
4. How would you interpret a value of 0.25?

If our estimated risk ratio had been 1.1, we would have evidence that the risk
for continuing smokers was essentially equal to the risk for smokers who quit. We
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call a risk ratio of 1 the null value of the risk ratio. This is the value that we get for
the risk ratio when there is no effect, that is, the effect is null.

Summary

The risk ratio (RR) is the ratio of the risk for one group, say group 1, to the
risk for another group, say group 0. 
The value of RR can be greater than one, equal to one, or less than one.
If the RR is greater than one, the risk for group 1 is larger than the risk for
group 0. 
If the RR is below one, the risk for group 1 is less than the risk for group 0.
And, if the RR is equal to 1, the risks for group 1 and 0 are equal, so that there
is no effect of being in one group when compared to the other.

Risk Ratio Numerator and Denominator 

In general, the risk ratio that compares two groups is defined to be the risk for one group 
divided by the risk for the other group. It is important to clearly specify which group is in
the numerator and which group is in the denominator. 

If, for example, the two groups are labeled group 1 and group 0, and the risk for group
1 is in the numerator, then we say that the risk ratio compares group 1 to group 0. On the 
other hand, if the risk for group 0 is in the numerator, then we say that the risk ratio 
compares group 0 to group 1.

Quiz (Q5.2) For heart attack patients, the risk ratio is defined to 
be the risk for continuing smokers divided by the risk for smokers
who quit. For the following scenarios what would be the risk ratio?

1. Continuing smokers are twice as likely to die as smokers who quit. ???

2. Continuing smokers are just as likely to die as smokers who quit. ???

3. Smokers who quit are twice as likely to die as continuing smokers. ???

Choices 0 0.1 0.2 0.5 1 2

Let's consider the data from a randomized clinical trial to assess whether or not
taking aspirin reduces the risk for heart disease. The exposed group received
aspirin every other day whereas the comparison group received a placebo. A table 
of the results is shown below.

Aspirin Placebo Total

n Column % n Column %

Yes 104 (1.04) 189 (2.36) 293Developed

Heart Disease No 9,896 (98.96) 7,811 (97.64) 17,707

Total 10,000 (100.00) 8,000 (100.00) 18,000

4. The estimated risk for the aspirin group is ???

5. The estimated risk for the placebo group is ???

6. The estimated risk ratio that compares the aspirin group to the placebo group is 
given by ???

Choices 0.0104 0.0236 0.44 104/189 2.269 98.96/97.64
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The Odds Ratio 

Epidemiologists in the Division of Bacterial Diseases at CDC, the Centers for 
Disease Control and Prevention in Atlanta, investigate the sources of outbreaks
caused by eating contaminated foods. For example, a case-control study was
carried out to determine the source of an outbreak of diarrheal disease at a Haitian 
Resort Club from November 30 to December 8, 1984. 

The investigators wondered
whether eating raw hamburger was a
primary source of the outbreak.
Because this is a case-control study

rather than a follow-up study, the
study design starts with cases, here,
persons at the resort who had diarrhea 
during the time period of interest. The
controls were a random sample of 33
persons who stayed at the resort but 
did not get diarrhea during the same time period. There were a total of 37 cases
during the study period. All 37 cases and the 33 controls were interviewed by a 
team of investigators as to what foods they ate during their stay at the resort.

Of the 37 cases, 17 persons ate raw hamburger, so that the proportion of the
cases that ate raw hamburger is 0.46. Of the 33 controls, 7 ate raw hamburger, so
the corresponding proportion is 0.21. We may wonder, then, whether these data
suggest that eating raw hamburger was the source of the outbreak.

Because this is a case-control study rather than a follow-up study, these
proportions do not estimate risks for cases and controls. Therefore, we cannot
compute a risk ratio. So, then, what measure of effect should be used in case-
control studies? The answer is the odds ratio (OR), which is described in the next
section.

Summary

A case-control study was used to investigate a foodborne outbreak at a 
Caribbean resort.
In a case-control study, we cannot estimate risks for cases and controls. 
Consequently, we cannot use the risk ratio (RR) as a measure of effect, but 
must use the odds ratio (OR) instead.

Why can't we use a risk ratio in case-control studies?

In a case-control study, we cannot estimate risk, but rather, we estimate exposure

probabilities for cases and controls.  The exposure probability for a case is the probability
that a subject is exposed given that he/she is a case; this is not equivalent to the probability
that a subject is a case given that he/she is exposed, which is the risk for exposed.

In other words, using conditional probability notation: 
Pr(exposed | case)  Pr(case | exposed), where "|" denotes "given".
Similarly the exposure probability for a control is not equivalent to 1 minus the risk for 

exposed. That is,
 Pr(exposed | control)  1 - Pr(case | exposed).

The ratio of two exposure probabilities is, unfortunately, not a risk ratio. Therefore, in 
case-control studies we must use a different measure of effect, namely the odds ratio.
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The Odds Ratio (continued) 

To understand odds ratios, we must start with the concept of an odds. The term
odds is commonly used in sporting events. We may read that the odds are 3 to 1 
against a particular horse winning a race, or that the odds are 20 to 1 against Spain
winning the next World Cup, or that the odds are 1 to 2 that the New York
Yankees will reach the World Series this year. When we say that the odds against
a given horse are 3 to 1, what we mean is that the horse is 3 times more likely to
lose than to win.

The odds of an event are easily calculated from its probability of occurrence.
The odds can be expressed as P, the probability that the event will occur, divided
by 1 - P, the probability that the event will not occur.

In our horse race example, if P denotes the probability that the horse will lose,
then 1 - P denotes the opposite probability that the horse will win. So, if the
probability that the horse will lose is 0.75, then the probability that the horse will
win is 0.25, and the odds are 3, or 3 to 1.

1

3
or3

0.25

0.75

 win) willP(horse

lose) willP(horse

P-1

P
Odds

In the Haitian resort case-control study, recall that the event of interest occurs
if a study subject ate raw hamburger, and, if so, we say this subject is exposed.
The estimated probability of exposure for the cases was 0.46, so the estimated
odds of being exposed for cases is 0.46 divided by 1 - 0.46:

85.
0.46-1

0.46
dsd̂O Cases

Similarly, the estimated probability of exposure for controls was 0.21, so the
estimated odds for controls is 0.21 divided by 1 - 0.21:

27.
0.21-1

0.21
dsd̂O Controls

The estimated odds ratio for these data is the ratio of the odds for cases
divided by the odds for controls, which equals 3.2.

3.2
.27

.85

dsd̂O

dsd̂O
)R̂(ORatioOdds

Controls

Cases

How do we interpret this odds ratio estimate? One interpretation is that the
exposure odds for cases is about 3.2 times the exposure odds for controls. Since
those who ate raw hamburger are the exposed subjects, the odds that a case ate raw 
hamburger appear to be about 3.2 times the odds that a control subject ate raw 
hamburger.

Study Questions (Q5.3)

Using the Haiti case-control study example:
1. How would you interpret an odds ratio of 2.5?
2. What if the odds ratio was 1.1?
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3. How about if the odds ratio less than 1, say 0.5?
4. How would you interpret a value of 0.25?

Odds ratios, like risk ratios, can be greater than one, equal to one, or less than
one. An odds ratio greater than one says that the exposure odds for cases is larger

than the exposure odds for controls. An odds ratio below one says that the
exposure odds for cases is less than the exposure odds for controls. An odds ratio
equal to 1 says that the exposure odds for cases and controls are equal.

Summary

The odds of an event can be calculated as P/(1-P) where P is the probability of
the event.
The odds ratio (OR) is the ratio of two odds.
In case-control studies, the OR is given by the exposure odds for the cases 
divided by the exposure odds for controls.
Odds ratios, like risk ratios, can be greater than 1, equal to 1, or less than 1,
where 1 is the null value.

Quiz (Q5.4) A causal relationship between cigarette smoking and
lung cancer was first suspected in the 1920s on the basis of
clinical observations. To test this apparent association, numerou
conducted between 1930 and 1960. A classic case-control study was done in
1947 to compare the smoking habits of lung cancer patients with the smoking
habits of other patients.

s studies were 

1. In this case-control study, it is ??? to calculate the risk of lung cancer among
smokers, and thus, the appropriate measure of association is the ???.

Choices Not possible odds ratiopossible risk ratio

Let's consider the data below from this classic case-control study to assess the
relationship between smoking and lung cancer. Cases were hospitalized patients
newly diagnosed with lung cancer. Controls were patients with other disorders.
This 2 x 2 table compares smoking habits for the male cases and controls.

2. The probability of being a smoker among cases is ???

3. The probability of being a smoker among controls is ???

4. The odds of smoking among cases is ???

5. The odds of smoking among controls is ???

6. The odds ratio is ???

Choices 0.11 1.04 10.50 1296/1357 1350/1357 1350/2646 192.86

21.25  7/68 9.08

Cigarette Smoker Non-Smoker Total

Cases 1350 7 1357
Controls 1296 61 1357

Total 2646 68 2714

In a case-control study to find the source of an outbreak, the odds ratio for eating
coleslaw is defined to be the odds for cases divided by the odds for controls. For
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the following scenarios what would be the odds ratio?

7. Cases have an odds for eating coleslaw three times higher than controls ???

8. Cases have the same odds for eating coleslaw as controls ???

9. Controls have three times the odds for eating coleslaw as cases ???

Choices 0 0.25 0.333 1 3 4

Calculating the Odds Ratio 

This layout for a two by two table provides a 
more convenient way to calculate the odds
ratio. The formula is a times d over b times c.
It is called the cross product ratio formula
because it is the ratio of one product that 
crosses the table divided by the other product
that crosses the table. 

To illustrate this formula
consider the data from the
Haitian resort outbreak. The
cross product formula gives us
the same result, 3.2, as we 
obtained originally from the ratio
of exposure odds for cases and
controls.

Study Question (Q5.5)

1. Should we calculate the OR for other foods eaten during the outbreak before
we blame raw hamburger as the source?

Although the odds ratio must be computed in
case-control studies for which the risk ratio
cannot be estimated, the odds ratio can also be
computed in follow-up studies.   (Note that the
OR and RR can also be calculated in randomized
clinical trials that have cumulative incidence
measures.)

For example, let us consider
the "quit smoking" study for
heart attack patients. The study
design here is a follow-up study.
We previously estimated that the
risk for patients who continued
to smoke was 2.1 times greater
than the risk for those who quit.

Using the cross product
formula on these follow-up data
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yields 2.7. The fact that these two numbers (the risk ratio and odds ratio) are not
equal should not be surprising, since the risk ratio and odds ratio are two different
measures. But the values in this example are not very different. In fact, these two 
estimates have similar interpretations since they both suggest that there is a

oderate relationship between quit smoking status and survival status.m

Summary

A convenient formula for the OR is the cross product ratio: (ad)/(bc)
The OR can be estimated in both case-control and follow-up studies using the
cross-product formula.

(See below for discussion of how the risk ratio can be approximated by the odds ratio.)

Quiz (Q5.6) To study the relationship between oral contraceptive use and ovarian
cancer, CDC initiated the Cancer and Steroid Hormone Study in 1980 (see table

elow). It was a case-control study.

1. status of 

b

Using the cross product ratio formula, the OR comparing the exposure
cases versus controls is (93) * (???) / (???) * (959) which equals ???.
This means that2. the ??? of ??? among the cases was ??? the ??? of exposure
among the ???.

Choices 0.23 0.77 1.3 683 86 cases controls disease

exposed exposure greater than less than non-exposed odds risk

Ever Used OCs Never OCsUsed Total

Cases 93 86 179
Controls 959 683 1642

Total 8211052 769 1

The Odds Ratio in Different Study Designs 

p studies the
risk

s ratio computed from a cross-sectional study a prevalence

odds ratio (POR).
As an example of the computation of a prevalence odds ratio for cross-

sectional data, consider these data that were collected from a cross-sectional

The odds ratio can be computed for b
studies. Because a case-control study 
requires us to estimate exposure
probabilities rather than risks, we often
call the odds ratio computed in case-
control studies the exposure odds

ratio (EOR). In contrast, because a 
follow-up study allows us to estimate
risks, we often call the odds ratio
computed from follow-u

oth case-control and follow-up (cohort)

odds ratio (ROR).
The odds ratio can also be computed for cross-sectional studies. Since a cross-

sectional study measures prevalence or existing conditions at a point in time, we 
usually call an odd
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sur

ds ratio depending on the study
desi

vey designed to assess the
relationship between coronary heart
disease and various risk factors, one of
which was personality type. For these
cross-sectional data, we can use the
general cross product ratio formula to
compute a prevalence odds ratio. The
odds of having a type A personality
among those with coronary heart
disease is 5 times the odds of those
without the disease.

In general we can use the cross product ratio formula to compute an exposure
odds ratio, a risk odds ratio, or a prevalence od

gn used.

Summary

The OR computed from a case-control study is called the exposure odds ratio

computed from a cross-sectional study is called the prevalence odds 

 depending on the study design used.

ot
y design, different values from a 2 x 2 table might be 

(EOR).
The OR computed from a follow-up study is called the risk odds ratio (ROR)
The OR
ratio (POR)
We can use the general cross-product ratio formula to calculate the EOR, 
ROR, or POR

Does ROR = EOR = POR? 

necessarily. Although the calculation formula (i.e., ad/bc) is the same regardless of theN
stud of the estimated odds ratio
obtained for different study designs. This is because of the possibility of selection bias
(described in Chapter 8). For example, a case-control study that uses prevalent cases could
yield a different odds ratio estimate than a follow-up study involving only incident cases.

Quiz (Q5.7) Data is shown below for a cross-sectional study to assess whether
maternal cigarette smoking is a risk factor for low birth weight.

non-smokers to deliver low birth weight babies. OR=???

1. Calculate the odds ratio that measures whether smokers are more likely than

2. This odds ratio estimate suggests that smokers are ??? than non-smokers to
have low birth weight babies.

3. This odds ratio is an example of a(n) ??? odds ratio.

Choices 0.48 2.04 2.18 exposure less likely more likely

prevalence risk

okers Non-Smokers TotalSm

Low Birth weight 1,556 14,974 16,530
High Birth weight 1694 14,532 5,226

Total 2,250 29,506 31,756
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Comparing the Risk Ratio and the Odds Ratio in 

Follow-up Studies

We have described two widely used measures of effect, the risk ratio and the odds
ratio. Risk ratios are often preferred because they are easier to interpret. But, as we 
have seen, in case-control studies, we cannot estimate risks and must work instead
with an exposure odds ratio (EOR). In follow-up studies, however, we have the
option of computing both a risk ratio and a risk odds ratio (ROR). Which should
we prefer?

It can be shown mathematically that if a risk ratio estimate is equal to or
greater than one, then the corresponding risk odds ratio is at least as large as the
risk ratio. For example,
using the follow-up data
for the quit smoking study
of heart attack patients, we
saw that the estimated risk
ratio was 2.1, which is 
greater than one; the
corresponding odds ratio
was 2.7, which is larger
than 2.1.

RR̂RÔR then 1,RR̂If
Similarly if the risk ratio is less than one, the corresponding odds ratio is as

small or smaller than the risk ratio. For example, if we switch the columns of the
quit smoking table, then the risk ratio is 0.48, which is less than one, and the
corresponding odds ratio is 0.37, which is less than 0.48.

RR̂RÔR then 1,RR̂If
It can also be shown that if a disease is "rare", then the risk odds ratio will

closely approximate the risk ratio. For follow-up studies, this rare disease
assumption means that the risk that any study subject will develop the disease is 
small enough so that the corresponding odds ratio and risk ratio estimates give
essentially the same interpretation of the effect of exposure on the disease.

Typically a rare "disease", is considered to be a disease that occurs so
infrequently in the population of interest that the risk for any study subject is 
approximately zero. For example, if one out of every 100,000 persons develops the
disease, the risk for this population is zero to 4 decimal places. Now that's really
rare!
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Study Questions (Q5.8)

1. Is a risk of .01 rare?
2. Suppose that for a given follow-up study, the true risk is not considered to be

rare. Is it possible for the ROR and RR to be approximately the same?

We can write a formula that expresses the risk odds ratio in terms of the risk 
ratio:

f x RRROR  where
)R(1

)R-(1
f

1

0

and R0 is the risk for the unexposed, R1 is the risk for the exposed, and RR=R1/R0

This formula says that the risk odds ratio is equal to the risk ratio multiplied by
the factor f, where f is defined as 1 minus the risk for the unexposed group (R0)
divided by 1 minus the risk for the exposed group (R1). You can see from this 
equation that if both R1 and R0 are approximately 0, then f is approximately equal
to one, and the risk odds ratio is approximately equal to the risk ratio.

Study Questions (Q5.9)

1. In the quit smoking example, where R0 is 0.17 and R1 equals 0.36, what is f?
2. For this value of f, is the ROR close to the RR?
3. What happens to f if the risks are halved, i.e., R0 = 0.17/2 = 0.085 and R1 = 

0.36/2 = 0.180?
4. Are the ROR and RR estimates close for this f?
5. What happens to f if we again halve the risks, so that R0=0.0425 and R1=0.09?
6. Is the approximation better?
7. Based on your answers to the above questions, how “rare” do the risks have to 

be for the odds and risk ratios to be approximately equal?

Summary

If an estimate of RR > 1, then the corresponding estimate of ROR is at least as
large as the estimate of the RR.
If an estimate of RR < 1, then the corresponding estimate of ROR is as small or
smaller than the estimate of RR.
In follow-up (cohort) studies, the “rare disease assumption” says that the risk 
for any study subject is approximately zero.
Under the rare disease assumption, the risk odds ratio (ROR) computed in a
follow-up study approximates the risk ratio (RR) computed from the same
study.

Comparing the RR and the OR in the Rotterdam Study 

Osteoporosis is a common disease in the elderly, and leads to an increased risk of
bone fractures. To study this disease, a cohort consisting of nearly 1800
postmenopausal women living in Rotterdam, the Netherlands, was followed for
four years.  The Rotterdam Study investigators wanted to know which genetic
factors determine the risk of fractures from osteoporosis.  They focused on a gene
coding for one of the collagens that are involved in bone formation.  Each person's
genetic make-up consists of two alleles of this gene, and each allele can have one
of two alternative forms, called allele A or allele B.  The investigators showed that
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women with two A alleles had a higher bone mass than women with at least one B
allele. They therefore hypothesized that the risk of fractures would be higher in
women with allele B. 

Of the 1194 women with two A alleles, 64, or 5.36%, had a fracture during
follow-up. Of the 584 women with at least one B allele, 47, or 8.05%, had a 
fracture.

Study Questions (Q5.10)

1. Calculate the risk ratio for the occurrence of fractures in women with at least 
one B allele compared to women with two A alleles. 

Because the risk ratio estimate is greater than 1, we expect the risk odds ratio 
to be at least as large as the risk ratio.

Study Questions (Q5.10) continued

2. Calculate the risk odds ratio for the occurrence of fractures in women with at
least one B allele compared to women with two A alleles. 

Note that the risk of fractures is relatively rare in this population; therefore the
risk odds ratio is approximately equal to the risk ratio. Recall the formula ROR = 
RR * f. Here, f is defined as 1 minus the
risk in women with two A alleles divided
by 1 minus the risk in women with at least
one B allele. 

Study Questions (Q5.10) continued

3. Using the formula ROR = RR x f, can you show that we computed the correct
risk odds ratio?

In this study, both the risk ratio and the risk odds ratio lead to the same
conclusion: women with at least one B allele have a 50% higher chance of
fractures than women with two A alleles.  The Rotterdam Study investigators
concluded that genetic make-up can predispose women to osteoporotic fractures.

Quiz (Q5.11): RR versus OR in follow-up studies A questionnaire was
administered to persons attending a social event in which 39 of the 87 participants
became ill with a condition diagnosed as salmonellosis. The 2 x 2 table below
summarizes the relationship between consumption of potato salad and illness.

1. The risk ratio comparing the exposed to the non-exposed is ???

2. The odds ratio is ???

3. Does the odds ratio closely approximate the risk ratio? ???

4. Do you consider this illness to be “rare”? ???

Choices 0.25 1.7 3.7 36.0 9.8 no yes

Exposed Non-Exposed Total

Ill 36 3 39
Well 12 36 48

Total 48 39 87
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Let's consider data from a classic study of pellagra. Pellagra is a disease caused
by dietary deficiency of niacin and characterized by dermatitis, diarrhea, and
dementia. Data comparing cases by gender are shown below.

5. The risk ratio of pellagra for females versus males is (1 decimal place) ???

6. The odds ratio is (to one decimal place) ???

7. Does the odds ratio closely approximate the risk ratio? ???

8. Do you consider this illness to be "rare"? ???

Choices 1.4 2.4 2.5 24.2 no yes

Females Males Total

Ill 46 18 64
Well 1438 1401 2839

Total 1484 1419 2903

Comparing the RR and OR in Case-Control Studies 

We have already seen that, for follow-up studies, if the disease is "rare", then the
risk odds ratio will be a close approximation to the risk ratio computed from the
same follow-up data. However, in case-control studies, a risk ratio estimate cannot
be computed, and an exposure odds ratio must be used instead. So, for case-
control data, if the disease is "rare", does the exposure odds ratio approximate the
risk ratio that would have resulted from a comparable follow-up study? The
answer is yes, depending on certain conditions that must be satisfied, as we will
now describe.

This two-way table categorizes 
lung cancer and smoking status for a 
cohort of physicians in a large
metropolitan city that are followed
for 7 years. Forty smokers and twenty
non-smokers developed lung cancer.
The risk ratio is 2. Also, for this
population, the risk odds ratio is 
equal to 2.02, essentially the same as
the risk ratio. Since these are
measures of effect for a population, we have not put the hat symbol over the risk
ratio and risk odds ratio terms.

We now consider the results that we 
would expect to obtain if we carried out
a case-control study using this cohort as 
our source population. We will assume
that the 7-year follow-up has occurred.
We also assume that there exists a comprehensive cancer registry, so that we were
able to find al1 60 incident cases that developed over the 7year period. These
would be our cases in our case-control study. Now suppose we randomly select 60
controls from the source population as our comparison group. Since half of the
entire cohort of 4000 physicians was exposed and half was unexposed, we would
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expect 30 exposed and 30 unexposed out of the 60 controls.
We can use the cross product ratio formula to

compute the expected exposure odds ratio, which turns
out to be 2. This value for the exposure odds ratio obtained from case-control data
is the same that we would have obtained from the risk ratio and the risk odds ratio
if we had carried out the follow-up study on this population cohort. In other words,
the expected EOR from this case-control study would closely approximate the RR 
from a corresponding follow-up study, even if the follow-up study was never
done!

We may wonder whether the EOR would
approximate the RR even if the 60 controls
did not split equally into exposed and
unexposed groups as expected. This can
occur by chance from random selection or if
we do a poor job of picking controls.  For
example, suppose there were 40 exposed and
20 unexposed among the controls. Then the estimated exposure odds ratio would
equal 1 instead of 2, so in this situation, the EOR would be quite different from the
RR obtained from a comparable follow-up study.

What we have shown by example actually reflects an important caveat when
applying the rare disease assumption to case-control data. The choice of controls
in a case-control study must be representative of the source population from which
the cases developed. If not, either by chance or a poor choice of controls, then the
exposure odds ratio will not necessarily approximate the risk ratio even if the
disease is rare. There is another important caveat for applying the rare disease 
assumption in a case-control study. The cases must be incident cases, that is, the
cases need to include all new cases that developed over the time-period considered
for determining exposure status. If the cases consisted only of prevalent cases at
the time of case-ascertainment, then a biased estimate may result because the
measure of effect would be estimating prevalence rather than incidence.

Summary

In case-control studies, the EOR approximates an RR when the following 3 
conditions are satisfied:
1) The rare disease assumption holds
2) The choice of controls in the case-control study must be representative of

the source population from which the cases developed.
3) The cases must be incident cases.

Quiz (Q5.12): Understanding Risk Ratio In a case-control study, 
if the rare disease assumption is satisfied, then:

1. The ??? approximates the ??? provided that there is no ??? in  the selection of
???, and the cases are ??? rather than ??? cases. 

Choices EOR ROR RR bias cases controls

incidence prevalent randomness
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In a community of 1 million persons, 100 cases of a disease were reported,
distributed by exposure according to the table below. 

2. Calculate the RR. ???

3. Calculate the ROR ???

4. Is this a rare disease? ???

Exposed Non-Exposed Total

Ill 90 10 100
Well 499,910 499,990 999,900

Total 500,000 500,000 1,000,000

If the exposure status of all one million persons in the study population had not
been available, the investigator may have conducted a case-control study. Suppose
a random sample of 100 controls were selected.

5. Approximately what percentage of these controls would you expect to be
exposed? ???

6. What is the expected EOR in the case-control study? ???

Choices 0.11 10 50 9.00 90 no yes

Note: On Lesson Page 5-3 of the ActivEpi CD-ROM, there is an activity (and
corresponding asterisk) that provides a mathematical proof of the odds ratio approximation
to the risk ratio in case control studies. This proof makes use of conditional probability
statements and Bayes Theorem.

The Rate Ratio 

A rate ratio is a ratio of two average rates. It is sometimes called an incidence

density ratio or a hazard ratio.  Recall the general formula for an average rate: I
denotes the number of new cases of the health outcome, and PT denotes the
accumulation of person-time over the follow-up.

The general data layout for computing a rate ratio is shown below. I1 and I0

denote the number of new cases in the exposed and unexposed groups, and PTl

and PT0 denote the
corresponding person time
accumulation for these two 
groups.  The formula for the
rate ratio or the incidence

density ratio (IDR) is also 
provided.  We have used the
notation IDR instead of RR to
denote the rate ratio in order to
avoid confusion with our
previous use of RR to denote
the risk ratio.

As with both the risk ratio and odds ratio measures, the rate ratio can be >1,
<1, or =1. If the rate ratio is equal to 1, it means that there is no relationship
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between the exposure and disease using this measure of effect. 
To illustrate the

calculation of a rate 
ratio, we consider
data on the
relationship
between serum
cholesterol level
and mortality from
a 1992 study of
almost 40,000
persons from the 
Chicago area. The 
data shown compares white males with borderline-high cholesterol levels and
white males with normal cholesterol levels. Subjects, including persons from other
race and sex categories, were enrolled into the study between 1967 and 1973, 
screened for cardiovascular disease (CVD) risk factors, and then followed for an
average of 14 to 15 years. There were a total of 26 CHD-related deaths based on
36,581 person-years of follow-up among white males aged 25 to 39 with
borderline-high cholesterol at entry into the study.  This yields a rate of 71.1
deaths per 100,000 person-years. Among the comparison group there were 14
CHD-related deaths based on 68,239 person-years of follow-up, this yields a rate
of 20.5 deaths per 100,000 person-years.  Thus, white males aged 25-39 with
borderline high cholesterol have 3.5 times the mortality rate as those with normal
cholesterol, indicating that persons with even moderately high cholesterol carry an
increased risk for CHD mortality.

Summary: Rate Ratio

A ratio of two average rates is called a rate ratio (i.e., an incidence density
ratio, hazard ratio)
The formula for the rate ratio (IDR) is given by:

where I1 and I0 are the number of new cases
and PT1 and PT0 are the accumulated person-
time for groups 1 and 0, respectively.

0

0

1

1

PT

I

PT

I

IDR

As with the RR and the OR, the IDR can be >1, <1, or =1. 

Quiz (Q5.13) Data is shown on the next page for a follow-up study to compare
mortality rates among diabetics and non-diabetics.

1. The mortality rate for diabetics is ???

2. The mortality rate for non-diabetics is ???

3. The rate ratio is ???

Choices 13.9 13.9 per 1000 person-years 2.8

2.8 per 1000 person-years 38.7 38.7 per 1000 person-years
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Diabetic Non-diabetic Total

Dead 72 511 583
Alive 146 3,312 3,458

Person-Years 1,862.4 36,532.2 38,394.6

4. The rate ratio comparing the mortality rates of diabetics with non-diabetics is 
2.8. Which of the following is the correct interpretation of this measure?
A. Those with diabetes are 2.8 times more likely to die than those without.
B. People are 2.8 times more likely to die of diabetes than any other illness
C. Death among diabetics is occurring at a rate 2.8 times that of non-diabetics

Nomenclature

Table setup for cohort, case-control, and prevalence studies:
Exposed Not Exposed Total

Disease/cases a b m1

No Disease/controls c d m0

Total n1 n0 n
Table setup for cohort data with person-time:

Exposed Not Exposed Total

Disease (New cases) I1 I0 I
No Disease - - -

Total disease-free person-time PT1 PT0 PT

t Change in time
EOR Exposure odds ratio; odds of exposure in diseased divided by the

odds of exposure in nondiseased
I Average incidence or total number of new cases

I0 Number of new cases in nonexposed

I1 Number of new cases in exposed

IDR Incidence density ratio; rate in exposed/rate in nonexposed (also
called the rate ratio)

N Size of population under study

N0 Size of population under study in nonexposed at time zero

N1 Size of population under study in exposed at time zero

OR Odds ratio: ad/bc

P Probability of an event

P(D E) Probability of disease given exposed

P(D not E) Probability of disease given not exposed

P(E D) Probability of exposure given diseased

P(E not D) Probability of exposure given not diseased

POR Prevalence odds ratio; an odds ratio calculated with prevalence
data

PT Disease-free person-time

PT0 Disease-free person-time in nonexposed
PT1 Disease-free person-time in exposed
R0 Risk in unexposed
R1 Risk in exposed
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ROR Risk odds ratio; an odds ratio calculated from cohort risk data
RR Risk ratio: risk in exposed divided risk in unexposed
T or t Time

Formulae
RR = R1 / R0

Odds = P / (1-P)

Odds ratio = ad/bc

ROR = RR * f   where f=(1-R0)/(1-R1)

IDR = (I1/PT1) / (I0/PT0)
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Answers to Study Questions and Quizzes
Q5.1

1. The five-year risk for continuing
smokers is 4½ times greater than the
risk for smokers who quit. 

2. The risk ratio is very close to 1.0, 
which indicates no meaningful 
difference between the risks for the two
groups.

3. Think of an inverse situation. 
4. You should have the hang of this by

now.
Q5.2

1. 2   2.  1  3.  0.5   4.  0.0104
5. . 0.0236
6.  0.44 – In general, the risk ratio that
compares two groups is defined to be the
risk for one group divided by the risk for
the other group.  It is important to clearly
specify which group is in the numerator and
which group is in the denominator.  If, for
example, the two groups are labeled group
1 and group 0, and the risk for group 1 is in
the numerator, then we say the risk ratio 
compares group 1 to group 0.
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Q5.3

1. The odds that a case ate raw hamburger
is about two ½ times the odds that a 
control subject ate raw hamburger. 

2. Because the odds ratio is so close to 
being equal to one, this would be 
considered a null case, meaning that the
odds that a case ate raw hamburger is 
about the same as the odds that a 
control subject age raw hamburger. 

3. An odds ratio less than one means that 
the odds that a case subject ate raw
hamburger is less than the odds that a 
control subject ate raw hamburger. 

4. You should have the hang of this by
now.

Q5.4

1. Not possible, odds ratio – The risk of
disease is defined as the proportion of 
initially disease-free population who
develop the disease during a specified
period of time. In a case-control study,
the risk cannot be determined.

2. 1350/1357
3. 1296/1357
4. 192.86
5. 21.25
6. 9.08 – In general, the odds ratio that 

compares two groups is defined to be 
the odds for the cases divided by the
odds for the controls. The odds for
each group can be calculated by the
formula P/(1-P), where P is the 
probability of exposure.

7. 3
8. 1
9. 0.333

Q5.5

1. Of course!  It is possible, for example,
that mayonnaise actually contained the 
outbreak-causing bacteria and maybe
most of the cases that ate raw
hamburger used mayonnaise.

Q5.6

1. 683, 86, 0.77
2. odds, exposure, less than, odds, 

controls – If the estimated odds ratio is
less than 1, then the odds of exposure 
for cases is less than the odds of 
exposure for controls.  If the estimated
odds ratio is greater than 1, then the 

odds of exposure for cases is greater
than the odds of exposure for controls.

Q5.7

1. 2.18
2. more likely
3. prevalence

Q5.8

1. That depends on the disease being
considered and on the time-period of
follow-up over which the risk is 
computed.  However, for most chronic 
diseases and short time periods, a risk
of .01 is not rare.

2. Yes, because even though the risk may
not be rare, it may be small enough so
that the ROR and the RR are
approximately the same. 

Q5.9

1. f = (1 – 0.17) / (1 – 0.36) = 1.30
2. No, since for these data, the estimated

RR equals 2.1 whereas the estimate
ROR equals 2.7.

3. f = (1 – 0.085) / (1 – 0.180) = 1.12
4. Yes, since the estimated RR is again 

2.1, (0.180/0.085), but the estimated 
ROR is 2.4.

5. f=1.05
6. Yes, since the estimated ROR is now 

2.2.
7. In the context of the quit smoking

example, risks below 0.10 for both
groups indicate a “rare” disease.

Q5.10

1. The risk ratio in this study is 0.0805
divided by 0.0536, which equals 1.50.

2. The risk odds ratio is 47/537 divided by
64/1130 equals 1.54.

3. f=(1-0.0536) / (1-0.0805) = 1.03.  The 
ROR = 1.03*RR = 1.03*1.50=1.54.

Q5.11

1. 9.8
2. 36.0
3. No
4. No – The risk ratio that compares two

groups is defined to be the risk for one 
group divided by the risk for the other 
group.  The odds ratio can be calculated 
by the cross product formula ad/bc.  In 
general, a disease is considered “rare”
when the OR closely approximates the
RR.

5. 2.44
6. 2.49
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7. Yes
8. Yes

Q5.12

1. EOR, RR, bias, controls, incident,
prevalent

2. 9
3. 9
4. Yes – A disease is considered rare 

when the ROR closely approximates
the RR.

5. 50
6. 9.00

Q5.13

1. 38.7 per 1000 person-years – The 
mortality rate for diabetics equals 
72/1,862.4 person-years = 38.7 per 
1000 person-years.

2. 13.9 per 1000 person-years – The 
mortality rate for non-diabetics equals
511/36,653.2 person-years = 13.9 per
1000 person-years.

3. 2.8 – The rate ratio is 38.7 per 1000 
person-years/13.9 per 1000 person-
years = 2.8.

4. C



CHAPTER 6
WHAT IS THE PUBLIC HEALTH IMPACT? 

In the previous chapter on Measures of Effect, we focused exclusively on ratio
measures of effect.  In this chapter, we consider difference measures of effect
and other related measures that allow the investigator to consider the potential
public health impact of the results obtained from an epidemiologic study.

The Risk Difference – An Example

The risk difference is the difference between two estimates of risk, whereas the
risk ratio is the ratio of two risk estimates.  We illustrate a risk difference using a
cohort study of heart attack patients who either continue or quit smoking after
their heart attack.

Consider again the results of a 
five-year follow-up study to
determine whether or not
smokers who have had a heart
attack will reduce their risk for
dying by quitting smoking.
The estimated risk ratio is 2.1,
which means that the risk for
continuing smokers was 2.1
times the risk for smokers who
quit.

We now focus on the difference between the two estimates of risk, rather than
their ratio. What kind of interpretation can we give to this difference estimate?
The risk difference (RD) of 0.19 gives the excess risk associated with continuing
to smoke after a heart attack. The estimated risk, 0.17, of dying in the quit
smoking group is the background or "expected" level to which the risk of 0.36 in
the continuing smokers group, is compared.

Study Questions (Q6.1)

1. How many deaths would have occurred among the 75 patients who continued
to smoke after their heart attack if these 75 patients had quit smoking instead?

2. How many excess deaths were there among the 75 patients who continued to
smoke after their heart attack?

3. What is the proportion of excess deaths among continuing smokers?

The null value that describes "no excess risk" is 0. There would be no excess
risk if the two estimated risks were equal.  Because the risk difference describes
excess risk, it is also called the attributable risk. It estimates the additional risk
“attributable” to the exposure.

The risk difference, therefore, can be interpreted as the probability that an 
exposed person will develop the disease because of the additional influence of
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exposure over the baseline risk. In this
example, the five-year attributable risk 
of 0.19 estimates the probability that
continuing smokers will die because
they have continued to smoke.

Study Questions (Q6.1) continued

4. If the study involved 1,000 heart
attack patients who continued to 
smoke after their heart attack, how 
many deaths could be avoided (i.e., attributable to exposure) for a risk
difference of 0.19 if all patients quit smoking?

5. How might you evaluate whether the excess risk of 0.19 is clinically (not
statistically) excessive 

6. Can you think of a reference value to compare with the excess risk? If so, how
would you interpret this relative comparison?

Summary

The risk difference is the difference between two estimates of risk.
The null value of the risk difference is 0, whereas the null value of the risk 
ratio is 1.
The risk difference reflects an excess risk attributable to exposure.
Excess risk describes the proportion of cases that could be avoided among
exposed subjects if exposed subjects had the same risk as unexposed subjects.
The risk difference is also called the attributable risk.

Difference Measures of Effect 

Difference measures of effect can be computed in randomized clinical trial, cohort,
and cross-sectional studies, but not in case-control studies. In cohort studies that
estimate individual risk using cumulative incidence measures, the difference
measure of interest is called the risk difference. It is estimated as the difference

between , the estimated cumulative incidence for the exposed group, and ,

the estimated cumulative incidence for the unexposed group

1IĈ 0IĈ

In cohort studies that estimate
average rate using person-time
information, the difference measure is
the rate difference. It can be estimated
as the difference between two estimated

rates, or incidence densities, and

.

1DÎ

0DÎ

In cross-sectional studies, the
difference measure is called the prevalence difference, and is estimated as the
difference between two prevalence estimates.

Difference measures of effect cannot be estimated in case-control studies
because in such studies neither risk, rate, nor prevalence can be appropriately
estimated.
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We'll illustrate the
calculation of the rate 
difference. We again
consider data on the
relationship between
serum cholesterol
level and mortality
from a 1992 study of
almost 40,000 persons
in Chicago, Illinois. Among white males ages 25-39 with borderline-high
cholesterol, there were 71.1 deaths per 100,000 person-years.  Among the
comparison group, there were 20.5 deaths per 100,000 person-years.

The estimated rate ratio that compares these two groups is 3.5. The estimated 
rate difference, or IDD, is 50.6 deaths per 100,000 person years. What kind of
interpretation can we give to this rate difference?

The rate difference indicates an excess rate of 50.6 deaths per 100,000 person
years associated with having a borderline-high cholesterol when compared to 
normal cholesterol. Here, we are using the estimated rate of CHD-related deaths in
the unexposed group as the background or expected level to which the rate in the
exposed group is compared.  The rate difference is also called the attributable

rate since it gives the additional rate attributable to the exposure.

Study Questions (Q6.2)

1. How many CHD-related deaths per 100,000 person years (i.e., py) could be
avoided (i.e., attributable to exposure) among persons with borderline-high
cholesterol if these persons could lower their cholesterol level to normal
values?

2. What is the excess rate of CHD-related deaths per 100,000 py among persons
with borderline-high cholesterol?

3. How might you evaluate whether the excess rate of 50.6 is clinically (not
statistically) excessive?

4. Can you think of a reference value to compare with the excess rate?  If so, how
would you interpret this relative comparison?

Summary

Difference measures can be computed in cohort and cross-sectional studies, but
not in case-control studies.
If risk is estimated, the difference measure is the risk difference.
If rate is estimated, the difference measure is the rate difference.
If prevalence is estimated, the difference measure is the prevalence

difference.
Difference measures of effect allow you to estimate the (excess) risk 
attributable to exposure over the background risk provided by the unexposed.
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Quiz (Q6.3) Which of the following terms are synonymous with risk difference?
Choices No Yes

1. Absolute risk ???

2. Attributable risk ???

3. Excess risk ???

4. Relative risk ???

During the 1999 outbreak of West Nile encephalitis in New York, incidence varied
by location. The reported rates were:
 Queens   16.4 per million   Bronx   7.5 per million
 Brooklyn   1.3 per million   Manhattan 0.7 per million
 Staten Island  0.0 per million   Total NYC 6.1 per million

To calculate the rate difference for residents of Queens, which location(s) could be
used for the baseline or expected rate? Choices No Yes

5. Queens ???

6. Bronx ???

7. Brooklyn ???

8. Manhattan ???

9. Staten Island ???

10. Total NYC ???

11. Bronx+Brooklyn+Manhattan+Staten Island ???

12. Calculate the rate difference between Queens and Manhattan. ???

Choices 15.7 15.7 per million 23.4 23.4 per million

Investigators interviewed all persons who had attended the Smith-Jones wedding
two days earlier, comparing the proportion who developed gastroenteritis among
those who did and those who did not eat certain foods. They now want to
determine the impact of eating potato salad on gastroenteritis.

13. The appropriate measure of potential impact is ???.

Investigators conducted a cross-sectional survey, identified respondents who had
been diagnosed with diabetes, and calculated an index of obesity using reported
heights and weights. They now want to determine the impact of obesity on
diabetes.

14. The appropriate measure of potential impact is ???.

Investigators enrolled matriculating college freshmen into a follow-up study.  The
investigators administered questionnaires and drew blood each year to identify risk
factors for and seroconversion to Epstein-Barr virus (the etiologic agent of
mononucleosis).  Using person-years of observation, the investigators now want to
determine the impact of residing in a co-ed dormitory on EBV seroconversion.
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15. The appropriate measure of potential impact is ???.

Choices not calculable odds difference prevalence difference

rate difference risk difference

Difference versus Ratio Measures of Effect 

Consider this table of 
hypothetical information
describing the separate
relationships of four different
exposures to the same disease. 

First focus on location, rural
versus urban, for which the risk
ratio is one and the risk difference is 0. There is no evidence of an effect of 
location on the disease, whether we consider the risk ratio or the risk difference. In
fact, if the risk ratio is exactly 1, then the risk difference must be exactly 0, and 
vice versa.

Location: Rural vs. Urban: RR=1.000   RD = 0.000; No Effect

Now, let's look at the effect of chewing tobacco on disease. The risk ratio for 
chewing tobacco is 5; this indicates a very strong relationship between chewing
tobacco and the disease. But, the risk difference of .004 seems quite close to zero, 
which suggests no effect of chewing tobacco.

Chewing Tobacco: RR = 5.000 RD = 0.004;
Strong Effect Small Effect 

Thus, it is possible to arrive at a different conclusion depending on whether we 
use the risk ratio or the risk difference. Does only one of these two measures of
effect give the correct conclusion, or are they both correct in some way? Actually,
both measures give meaningful information about two different aspects of the
relationship between exposure and disease.

Let's now compare the effect of chewing tobacco with the effect of coffee
drinking.

Coffee Drinking: RR = 1.087 RD = 0.004

The risk ratios for these two exposures are very different, yet the risk
differences are exactly the same and close to zero. There appears to be little, if 
any, effect of coffee drinking.  So, is there or is there not an effect of tobacco
chewing?

If we ask whether or not we would consider chewing tobacco to be a strong
risk factor for the disease, our answer would be yes, since a chewer has 5 times the
risk of a non-chewer for getting the disease. That is, chewing tobacco appears to
be associated with the etiology of the disease, since it is such a strong risk factor.

However, if we ask whether chewing tobacco poses a public health burden in
providing a large case-load of patients to be treated, our answer would be no. To
see the public health implications, recall that the risk difference of .004 for
chewing tobacco gives the excess risk that would result if chewing tobacco were
completely eliminated in the study population. Thus, out of, say, 1000 chewers, an
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excess of 1000 times 0.004, or only 4 chewers would develop the disease from
their tobacco chewing habit. This is not a lot of patients to have to treat relative to 
the 1000 chewers at risk for the disease. 

Study Questions (Q6.4)

1. Compare the effect of chewing tobacco with the effect of alcohol consumption
on the disease.  Do they both have the same effect in terms of the etiology of
the disease?

2. Do chewing tobacco and alcohol use have the same public health implications
on the treatment of disease?

3. Explain your answer to the previous question in terms of the idea of excess
risk.

Summary

If the risk ratio is exactly 1, then the risk difference is exactly 0, and vice versa,
and there is no effect of exposure on the health outcome.
If the risk ratio is very different from 1, it is still possible that the risk 
difference will be close to zero.
If the risk difference is close but not exactly equal to 0, it is possible that the
risk difference will be large enough to indicate a public health problem for 
treating the disease.
Ratio measures are primarily used to learn about the etiology of a disease or 
other health outcome.
Difference measures are used to determine the public health importance of a 
disease or other health outcome.

Quiz (Q6.5) During the 1999 outbreak of West Nile virus (WSV) encephalitis in
New York City, the reported rates were:

Queens   16.4 per million population
Rest of NYC 2.4 per million
Total NYC 6.1 per million

Label each of the following statements as True or False.

1. If Queens had experienced the same WNV rate as the rest of NYC, 10.3 fewer 
cases per million would have occurred there, i.e., the rate difference is 10.3 per
million. ???

2. The excess rate in Queens was 14.0 cases per million (compared to the rest of
NYC) ???

3. The attributable rate (i.e., rate difference) in Queens was 16.4 cases per
million. ???

4. The most common measure of effect for comparing Queens to the rest of NYC
is 6.8. ???

Determine whether each of the following statements is more consistent with risk

difference, risk ratio, both, or neither.

5. More of a measure of public health burden . . . . . ???

6. More of a measure of etiology . . . . . . . . . ???
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7. Null value is 0.0 . . . . . . . . . . . . . ???

8. Can be a negative number . . . . . . . . . . ???

9. Can be a number between 0.0 and 1.0 . . . . . . ???

10. Can be calculated from most follow-up studies . . . . ???

11. Can be calculated from most case-control studies  . . . ???

12. Has no units . . . . . . . . . . . . . . ???

13. A value very close to 0.0 indicates a strong effect . . . ???

14. Synonymous with attributable risk . . . . . . . . ???

Consider the data in the table below and the following estimates of risk on
smoking and incidence of lung cancer and coronary heart disease (CHD).

Lung Cancer CHD

Rate Ratio 12.9 2.1
Rate Difference 79.0/100k/yr 190.4/100k/yr

15. Which disease is most strongly associated with smoking? ???

16. Elimination of smoking would reduce the most cases of which disease? ???

Incidence of lung cancer 
Smokers Nonsmokers Total

New Lung Cancer cases 60,000 10,000 70,000

Estimated person-years 70,000,000 150,000,000 220,000,000

Estimated incidence density

per 100,000 person-years 1DÎ =85.7 0DÎ =6.7 DÎ =31.8

Incidence of coronary heart disease (CHD)
Smokers Nonsmokers Total

New CHD cases 250,000 250,000 500,000

Estimated person-years 70,000,000 150,000,000 220,000,000

Estimated incidence density

per 100,000 person-years 1DÎ =357.1 0DÎ =166.7 DÎ =227.3

Potential Impact – The Concept 

A measure of potential impact provides a public health perspective on an 
exposure-disease relationship being studied. More specifically, a measure of
potential impact attempts to answer the question, by how much would the disease
load of a particular population be reduced if the distribution of an exposure
variable were changed? By disease load, we mean the number of persons with a
disease of interest that would require health care at a particular point in time. 

The typical measure of potential impact is a proportion, often expressed as a
percentage, of the number of cases that would not have become cases if all persons
being studied had the same exposure status.  For example, when determining the
potential impact of smoking on the development of lung cancer, the potential
impact of smoking gives the proportion of new lung cancer cases that would not
have developed lung cancer if no one in the population smoked.

Or, one might determine the potential impact of a vaccine on the prevention of
a disease, say, HIV, in high-risk persons. The potential impact of the vaccine gives
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the proportion of all the potential cases of HIV prevented by the vaccine if there 
had been no vaccine, all of these cases would have occurred.

These examples illustrate two kinds of potential impact measures. A measure
of the impact of smoking on lung cancer considers an exposure that is associated
with an increased risk of the disease and is called an etiologic fraction. A measure
of the impact of a vaccine to prevent HIV considers an exposure that is associated
with a decreased risk of disease and is called a prevented fraction.
The remainder of this chapter will consider the various formulae and the
interpretation of the etiologic fraction. See Lesson Page 6-3 in the ActivEpi CD 
ROM for details about the prevented fraction.

Summary

A measure of potential impact gives a public health perspective about the 
effect of an exposure-disease relationship.
In general, measures of potential impact ascertain what proportion of cases
developed the disease as a result of the purported influence of the exposure.
The etiologic fraction is a measure of potential impact that considers an
exposure that is a potential cause of disease.
The prevented fraction is a measure of potential impact that considers an 
exposure that is preventive of the disease. 

Etiologic Fraction 

The etiologic fraction answers the question: what proportion of new cases that
occur during a certain time period of follow-up are attributable to the exposure of 
interest? Other names for this measure are the etiologic fraction in the 
population, attributable fraction in the population, the population attributable

risk, and the population attributable risk percent.
In mathematical terms, the etiologic fraction is given by the formula I* divided

by I, where I* denotes the number of new cases attributable to the exposure and I

denotes the number of new cases that actually occur. The numerator, I* can be
found as the difference between the actual number of new cases and the number of 

new cases that would have occurred in the absence of exposure, i.e., EF = I* / I.
To illustrate the calculation of the etiologic fraction, consider once again the

results of a five-year follow-up study to determine whether or not smokers who
have had a heart attack will reduce their risk for dying by quilting smoking The
estimated risk ratio here is 2.1 and the estimated risk difference is 0.19.
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A computational formula for the etiologic fraction is given here, where
denotes the estimated cumulative incidence or risk for all subjects, exposed and
unexposed combined, in the study. And  denotes the estimated cumulative

incidence for unexposed subjects. Notice that the numerator in this formula is not
the risk difference, which would involve , the estimated risk for exposed

persons, rather than , the overall estimated risk.

ĈI

ĈI0

ĈI1

Ĉ I

To calculate the etiologic fraction using our data then, we first must
compute , which equals .263, or roughly 26%. We already know that  is .173

or roughly 17%. Substituting these values into the formula, we find that the
etiologic fraction is .35, or 35%.

ĈI ĈI0

How do we interpret this result? The etiologic fraction of .35 tells us that 35% 
of all cases that actually occurred are due to continuing smoking. In other words, if
we could have gotten all patients to quit smoking after their heart attack, there 
would have been a 35% reduction in the total number of deaths. This is why the
etiologic fraction is often referred to as the population attributable risk percent. It
gives the percent of all cases in the population that are attributable, in the sense of
contributing excess risk, to the exposure. 

Study Questions (Q6.6) Based on the smoking example from the previous page:
1. How many cases would have been expected if all subjects had been

unexposed?
2. What is the excess number of total cases expected in the absence of exposure?
3. What is I*/I for these data?

Summary

The etiologic fraction is given by the formula I*/I, where I denotes the number
of new cases that actually occur and I* denotes the number of new cases
attributable to the exposure.
The numerator, I*, can be quantified as the difference between the actual
number of new cases and the number of new cases that would have occurred in
the absence of exposure.
A computational formula for the etiologic fraction is EF = (CI – CI0) / CI, 
where CI denotes cumulative incidence.
EF is often referred to as the population attributable risk percent, because it
gives the percent of all cases in the population that are attributable to exposure.

Alternative Formula for Etiologic Fraction 

In a cohort study that estimates 
risk, the etiologic fraction can be 
calculated from estimates of
cumulative incidence for the 
overall cohort and for unexposed
persons.  An equivalent formula
can be written in terms of the
risk ratio and the proportion (p) of exposed persons in the cohort.

To illustrate this alternative formula, consider once again the results of a five-
year follow-up study to determine whether or not smokers who have had a heart
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attack will reduce their risk for dying by quitting smoking. Using the first formula,
we previously computed the etiologic fraction to be .35, or 35%. Thus, 35% of all
cases that actually occurred are due to those who continued to smoke.

To use the second formula, we first calculate the proportion of the cohort
exposed, which is

p = 75/156 = .481. 
We now substitute this value and the

estimated risk ratio of 2.1 into the second
formula. The result is .35, which is exactly the
same as previously obtained because both 
formulas are equivalent.

The second formula gives us some additional insight into the meaning of the
etiologic fraction. This formula tells us that the size of the etiologic fraction 
depends on the size of the risk ratio and the proportion exposed.  In particular, the
potential impact for a strong determinant of the disease, that is, when the risk ratio
is high, may be small if relatively few persons in the population are exposed.

Suppose in our example, that only
10% instead of 48% of the cohort were
exposed so that p equals .10. Then the
etiologic fraction would be reduced to
0.10 or 10%, which indicates a much smaller impact of exposure than 35%.
Furthermore, if the entire cohort were unexposed, then the etiologic fraction would
be zero.

Now suppose that 90%, instead of
48%, of the cohort were exposed, so that
p equals .90. Then the etiologic fraction
increases to 0.50 or 50%. If the entire cohort were exposed the etiologic fraction
would increase to its maximum possible value of .52 or 52% for a risk ratio
estimate of 2.1. 

In general, for a fixed value of the risk
ratio, the etiologic fraction can range between
zero, if the entire cohort were unexposed, to a 
maximum value of RR minus one over RR if
the entire cohort were exposed.

Study Questions (Q6.7)

1. Use the formula (RR – 1)/RR to compute the maximum value possible EF
when the RR is 2.1

2. What is the maximum value possible for EF when RR is 10?
3. As RR increases towards infinity, what does the maximum possible value of

the EF approach?
4. If the RR is very large, say 100, can the EF still be relatively small? Explain.
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Summary

An alternative formula for the etiologic fraction is EF = p(RR-1) / [p(RR-
1)+1], where RR is the risk ratio and p is the proportion in the entire cohort
that is exposed.
The size of the etiologic fraction depends on the size of the risk ratio and the
proportion exposed.
For a fixed value of the risk ratio, the etiologic fraction can range between zero
to a maximum value of (RR – 1)/RR.
The potential impact for a strong determinant of the disease (i.e., high risk 
ratio) may be small if relatively few persons in the population are exposed.

Etiologic Fraction among the Exposed 

There are two conceptual formulations of the etiologic fraction. One, which we 
have previously described, focuses on the potential impact of exposure on the total
number of cases, shown below as I.  A second focuses on the potential impact of
the exposure on the number of exposed cases, which we denote as I1. This measure
is called the etiologic fraction among the exposed, attributable fraction among
the exposed, or the
attributable risk percent

among the exposed.  In 
mathematical terms, the
etiologic fraction among the
exposed, is given by the
formula I* divided by I1, where 
I* denotes the number of
exposed cases attributable to 
the exposure and I1 denotes the
number of exposed cases that actually occur.

The denominator (in the EFe formula) is the number of exposed cases. This is
different from the denominator in EF. That's because the referent group for EFe is 
the number of exposed cases that occur in the cohort rather than the total number
of cases in EF. The numerator in both formulas is the same, namely I*.  In
particular, the I* in both EF and EFe can be quantified as the difference between
the actual number of cases and the number of cases that would have occurred in
the absence of exposure

To illustrate the
calculation of the etiologic
fraction among the exposed,
consider once again the
results of a five-year follow-
up study to determine
whether or not smokers who
have had a heart attack will
reduce their risk of dying by
quitting smoking. The
previously computed etiologic fraction, or equivalently, the population attributable
risk percent computed for these data was 35%.
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The etiologic fraction among the exposed (EFe) can be calculated for these

same data using the formula shown above. The term denotes the estimated

cumulative incidence or risk for exposed subjects in the study and  denotes the

estimated cumulative incidence for unexposed subjects.  The numerator in this

formula is the estimated risk difference ( ). Since the estimated risk difference
is .19 and the risk for exposed persons is .36, we can substitute these values into
the formula for EFe to obtain .53, or 53%. How do we interpret this result?

1IĈ

0IĈ

DR̂

The etiologic fraction of .53 tells us that 53% of all deaths among continuing
smokers are due to continuing smoking. In other words, if we could have gotten
the continuing smokers who died to quit smoking after their heart attack, there
would have been a 53% reduction in deaths among these persons.

Study Questions (Q6.8)

1. What is the excess number of exposed cases (i.e., deaths among continuing
smokers) expected in the absence of exposure?

2. Fill in the blanks: In this example, _________ of the ________ deaths among
continuing smokers could have been avoided.

3. Use the formula I*/I1 to compute EFe for these data. 
4. An alternative formula for the etiologic fraction among exposed is EFe=(RR-

1)/RR, where RR is the risk ratio. Use this formula to compute EFe for the
heart attack study data. 

5. The population attributable risk percent (EF) computed for these data is 35%
whereas the attributable risk percent among the exposed (EFe) is 53%.  How 
do you explain these differences?

6. For cohort studies that use person-time information, state a formula for the
etiologic fraction among the exposed that involves incidence densities in 
exposed and unexposed groups.

7. As in the previous question, state an alternative formula for EFe that involves
the incidence density ratio.

8. For case-control studies, which cannot estimate risk or rate, can you suggest
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formulae for EF and EFe?
Summary

The etiologic fraction among the exposed, EFe, focuses on the potential impact
of the exposure on the number of exposed cases, rather than the total number
of cases. 
EFe is defined as I*/I1, where I* is the excess number of exposed cases due to
exposure and I1 is the actual number of exposed cases.

For cohort studies that estimate risk: 
RR̂

1RR̂

IĈ

)IĈIĈ(
FeÊ

1

01

For cohort studies that estimate rate:
RD̂I

1RD̂I

DÎ

)DÎDÎ(
FeÊ

1

01

Etiologic Fraction – An Example 

Hypothyroidism, a disease state in which the production of thyroid hormone is
decreased, is known to increase the risk of cardiovascular disease. In elderly 
women, the subclinical form of hypothyroidism is highly prevalent. The
Rotterdam Study investigators therefore examined the potential impact of
subclinical hypothyroidism on the incidence of myocardial infarction.

In this study of nearly 1,000 women aged 55 and over, the prevalence of 
subclinical hypothyroidism was 10.8%. Consider the two-by-two table depicted
here. The cumulative incidence of myocardial infarction is 2.9% (3/103) in women
with subclinical hypothyroidism, 1.2% (10/854) in women without
hypothyroidism, and 1.4% (13/957) overall.

Subclinical

Hypothyroidism

No Subclinical

Hypothyroidism

Total

MI 3 10 13

No MI 100 844 944

Total 103 854 957

1IĈ =2.9%
0IĈ =1.2% IĈ =1.4%

Study Questions (Q6.9)

1. Using these data, can you calculate the etiologic fraction?

Answer:  The etiologic fraction is: EF = (1.4 - 1.2) / 1.4 = 14%. This indicates
that of all myocardial infarctions that occur in elderly women, 14% are due to the
presence of subclinical hypothyroidism. In other words, if subclinical
hypothyroidism could be prevented, there would be 14% less myocardial
infarctions in this population.

2. Can you calculate the etiologic fraction using the alternative formula:  EF = 
[p(RR-1)]/[p(RR-1) + 1] ?

3. Can you calculate the etiologic fraction in the exposed?

Answer to 3: The etiologic fraction in the exposed (EFe) is (2.9-1.2), which is 
equal to the risk difference, divided by 2.9, which is 60%.  Thus, among the
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women that are affected, 60% of the myocardial infarctions can be attributed to the
presence of subclinical hypothyroidism.
Summary

The Rotterdam Study investigators examined the potential impact of
subclinical hypothyroidism on the incidence of myocardial infarction.
Of all myocardial infarctions that occur in elderly women, 14% is due to the
presence of subclinical hypothyroidism.
Among women that are affected, 60% of the myocardial infarctions can be
attributed to the presence of subclinical hypothyroidism.

Quiz (Q6.10) Consider data in the table below on smoking and incidence of lung
cancer and cardiovascular disease (CHD).
Incidence of lung cancer 

Smokers Nonsmokers Total

New Lung Cancer cases 60,000 10,000 70,000

Estimated person-years 70,000,000 150,000,000 220,000,000

Estimated incidence density

per 100,000 person-years 1DÎ =85.7 0DÎ =6.7 DÎ =31.8

Incidence of coronary heart disease (CHD)
Smokers Nonsmokers Total

New CHD cases 250,000 250,000 500,000
Estimated person-years 70,000,000 150,000,000 220,000,000

Estimated incidence density

per 100,000 person-years 1DÎ =357.1 0DÎ =166.7 DÎ =227.3

1. The prevalence of smoking in this population is ???

2. The etiologic fraction for lung cancer is ???

3. The etiologic fraction for coronary heart disease is ???

4. The etiologic fraction among the exposed for lung cancer is ???

5. The etiologic fraction among the exposed for CHD is ???

6. The proportion of lung cancer among smokers attributable to smoking is ???

Choices 0.0% 26.7% 31.8% 53.3% 79.0% 92.2%

Label each of the following as either a Risk/Rate Difference, an Etiologic

Fraction or an Etiologic Fraction Among the Exposed.

7. Attributable risk percent among the exposed ???

8. Population attributable risk ???

9. Excess risk ???

10. Influenced by prevalence of the exposure in the population ???

11. Has same units as measure of occurrence ???

12. Can be a negative number ???

________

13. ??? can never be larger than ???

Choices (for Q.13) Etiologic Fraction Etiologic Fraction Among the Exposed
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Nomenclature:
Table setup for cohort, case-control, and prevalence studies:

Exposed Not Exposed Total

Disease/cases a b n1

No Disease/controls c d n0

Total m1 m0 n

Table setup for cohort data with person-time:
Exposed Not Exposed Total

Disease (New cases) I1 I0 I
No Disease - - -

Total disease-free
person-time

PT1

or L1

PT0

or L0

PT

Formulae for difference measures of effect
Risk Data Rate Data Prevalence Data

01 IĈIĈDÎC 01 DÎDÎDD̂I 01 P̂P̂DP̂

Formulae for etiologic fraction and for the etiologic fraction in the exposed based
on risk data, rate data, and case-control data.

Risk Data Rate Data Case-Control*

EF
ÊF

I*

I

Ê F
Ĉ I - Ĉ I0

Ĉ I

ÊF
(p)(R̂R -1)

(p)(R̂R -1) 1

ÊF
I*

I

Ê F
Î D - ÎD0

ÎD

ÊF
(p*)(ID̂ R -1)

(p*)(ID̂R -1) 1

ÊF
(p' )(ÔR -1)

(p' )(ÔR -1) 1

EFe

ÊFe
I*

I1

ÊFe
Ĉ I1 - ĈI0

ĈI1

ÊFe
R̂ D

Ĉ I1

ÊFe
R̂R 1

R̂R

ÊFe
I*

I1

ÊFe
ÎD1 Î D0

ÎD1

ÊFe
ID̂ D

Î D1

Ê Fe
ID̂ R 1

ID̂ R

ÊFe
ÔR 1

ÔR

where

n

m
p 1

01

1

LL

L
p*

0n

c
p'

*In case-control studies, the EF, EFe, PF, PFe based on the odds ratio will be a good 
estimates when the OR is a good estimate of the RR (e.g., rare disease assumption)
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Answers to Study Questions and Quizzes

Q6.1

1. 75 * .17 = 12.75 deaths would have 
occurred if the 75 patients had quit 
smoking.

2. 27 – 12.75 = 14.25 excess deaths
among those who continued to smoke

3. p(excess deaths among continuing
smokers) = 14.25 / 75 = .19 = risk
difference

4. 1,000 x 0.19 = 190 excess deaths could 
be avoided.

5. The largest possible risk difference is
either plus or minus one.  Nevertheless,
this doesn’t mean that 0.19 is small
relative to a clinically meaningful
reference value, which would be 
desirable.

6. One choice for a reference value is the
risk for the exposed, i.e., 0.36.  The 

ratio 0.19/0.36 = 0.53 indicates that
53% of the risk for the group of
continuing smokers would be reduced if
this group had quit smoking. 

Q6.2

1. 100,000 x 14 / 68,239 = 20.5 is the 
expected number of CHD-related
deaths per 100,000 py if persons with
borderline-high cholesterol had their
cholesterol lowered to normal values.
Thus 71.1 – 20.5 = 50.6 CHD-related
deaths per 100,000 py could be avoided
could have been avoided.

2. 50.6 (71.1-20.5) excess CHD-related
deaths per 100,000 person years.  This
value of 50.6 per 100,000 is the rate 
difference or attributable rate.

3. The largest possible rate difference is
infinite.  Nevertheless, this does not 
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mean that 50.6 is small relative to a
clinically meaningful reference value.

4. One choice for a reference is 71.1, the
rate for the exposed.  The ratio 50.6 / 
71.1 = .72 indicates that the rate in
borderline-high cholesterol group 
would be reduces by 72% if this group 
could lower their cholesterol to normal
levels.

Q6.3

1. No – Absolute risk describes the risk in 
a particular group rather than the 
difference in risk from two groups.

2. Yes
3. Yes
4. No – Relative risk is the ratio of (rather

than the difference between) risk 
among two groups.

5. No – for questions 5-11: Any location 
that does not include Queens itself
could be used for a baseline or 
expected rate.  So, Queens and New 
York City would not be good choices
since they both include Queens.

6. Yes
7. Yes
8. Yes
9. Yes
10. No
11. Yes
12. 15.7 per million – Since the individual

rates are in units of per million, the
difference in the rates will have the
same unit of measurement.

13. Risk difference – In an outbreak such 
as this, the investigators are comparing
two risks.  The appropriate measure of 
impact here is the risk difference.

14. Prevalence difference – In a prevalence
study, the appropriate measure of
disease frequency is prevalence.  A 
corresponding measure of impact is the 
prevalence difference.

15. Rate difference – In a follow-up study
we can use person-years of observation
to calculate a rate.  The appropriate
measure of potential impact here is the
rate difference.

Q6.4

1. Yes, because both chewing tobacco and
alcohol use have the same value (5) for 
the risk ratio.

2. No.  Chewing tobacco has little public 
health effect, whereas alcohol
consumption has a much stronger
public health effect.

3. Out of 1000 heavy drinkers (i.e., high
alcohol consumption), 40 persons 
would develop the disease because of
their drinking.  In contract, only 4
tobacco chewers out of 1000 tobacco
chewers would develop the disease
from chewing tobacco.

Q6.5

1. False – The rate difference between
Queens and the rest of NYC is 16.4 per
million – 2.4 per million = 14.0 per
million.  The excess rate (i.e., rate
difference) in Queens is therefore 14.0
cases per million population. 

2. True – see above for answer
3. False – 16.4 cases per million in not the

attributable rate (i.e., rate difference),
but the absolute rake of West Nile
encephalitis in Queens.  The rate
difference is 16.4 – 2.4 = 14.0 per
million population.

4. True – The most common measure of 
effect for comparing Queens to the rest 
of NYC is 6.8 and this is the rate ratio
calculated as 16.4/2.4.

5. Risk difference – a measure of public 
health burden.

6. Risk ratio – a measure of disease
etiology.

7. Risk difference – the null value for the 
risk difference is 0.0; the null value for
the risk ratio is 1.0.

8. Risk difference – The risk difference
can be negative if the baseline risk is 
higher than the risk in the group of
interest.  The risk ratio can never be
negative because it is a ratio of two
positive numbers.

9. Both – it is possible to have a risk 
difference and a risk ratio in the range 
of 0.0 to 1.0. Note that the CD states
the correct answer is Neither with the
rationale that neither the risk ratio or
risk difference is restricted to values
between 0.0 to 1.0.

10. Both – Since risk can be calculated
from most follow-up studies, then both
a risk ratio and risk difference can be 
calculated.
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11. Neither – Since risk cannot be 
calculated from case-control studies,
neither a risk difference nor a risk ratio
can be calculated.

5. The EF considers the potential impact
of exposure on ‘all cases’ in the cohort
whereas the EFe focuses on the
potential impact of exposure on only
‘exposed cases’ in the cohort.  Both
measures are meaningful, but have a 
different focus.

12. Risk ratio – The risk ratio has no units 
since it is a ratio of risks that has the
same units. 

6. EFe = (ID1 – ID0) / ID1, where ID1 and 
ID0 are the incidence densities (i.e.,
rates) for exposed and unexposed 
persons in the cohort.

13. Risk ratio – A risk ratio close to zero 
would indicate a strong protective 
effect.  A risk difference close to zero
would indicate no effect 

7. EFe = (IDR – 1) / IDR 14. Risk difference
8. EF = p’(OR - 1)/[p’(OR – 1) + 1] and 

EFe = (OR – 1) / OR, where OR is the
odds ratio and p’ is the proportional of
all controls that are exposed.

15. Lung cancer – The rate ratio is much
higher for lung cancer than for CHD

16. CHD – elimination of smoking would
reduce the number of CHD by 190.4
cases per 100,000 per year. Q6.9

1. The etiologic fraction is (1.4-1.2) / 1.4 
= 14% 

Q6.6

1. 156 x .173 = 27, where .173 is the risk 
for the unexposed subjects. 2. p=0.108

RR=(3/103)/(10/854)=2.5

EF
0.108(2.5 1)

0.108(2.5 2) 1
14%

2. 41 – 27 = 14 = I*
3. I*/I = 14/41 = .35 = EF

Q6.7

1.  (2.1 – 1) / 2.1 = .52
3. EFe=(2.9-1.2)/2.9=60%

2. (RR – 1) / RR = (10 – 1) / 10 = .90
Q6.10

3. The maximum possible value for the 
EF approaches 1 as RR approaches
infinity.

1. 31.8% - prevalence of smoking = 70
million/220 million = 31.8%

2. 79.0% - The EF for lung cancer is
(31.8-6.7)/21.8=79.0%.

4. Yes, even if RR is very large, the EF
can be small, even close to zero, if the 
proportion exposed in the population is
very small. 

3. 26.7% -
4. 92.2%
5. 53.3%

Q6.8
6. 92.2%

1. 75 x .19 = 14.25 = I*, where 75 is the 
number of exposed subjects and .19 is 
the risk difference.

7. Etiologic fraction among the exposed
8. Etiologic fraction
9. Risk/rate difference

2. In this example, 14 of the 27 deaths
among continuing smokers could have 
been avoided.

10. Etiologic fraction
11. Risk/rate difference
12. Risk/rate difference

3. I*/I1 = 14.25 / 27 = .53 = EFe.
4. EFe = (2.1 –1) / 2.1 = .52.  This is the 

same as the .53 previously obtained,
other than round-off error.

13. Etiologic Fraction, Etiologic Fraction
Among the Exposed



CHAPTER 7
IS THERE SOMETHING WRONG?

VALIDITY AND BIAS 

The primary objective of most epidemiologic research is to obtain a valid estimate
of an effect measure of interest.  In this chapter we illustrate three general types
of validity problems, distinguish validity from precision, introduce the term bias,
and discuss how to adjust for bias.

Examples of Validity Problems 

Validity in epidemiologic studies concerns methodologic flaws that might distort
the conclusions made about an exposure-disease relationship. Several examples
of validity issues are briefly described.

The validity of an epidemiologic study concerns whether or not there are
imperfections in the study design, the methods of data collection, or the methods
of data analysis that might distort the conclusions made about an exposure-disease
relationship. If there are no such imperfections, we say that the study is valid. If
there are imperfections, then the extent of the distortion of the results from the
correct conclusions is called bias. Validity of a study is what we strive for; bias is
what prevents us from obtaining valid results

In 1946, Berkson demonstrated that case-control studies carried out 
exclusively in hospital settings are subject to a type of "selection" bias, aptly
called Berkson's bias. Berkson's bias arises because patients with two disease
conditions or high-risk behaviors are more likely to be hospitalized than those with
a single condition. Such patients will tend to be over-represented in the study
population when compared to the community population. In particular, respiratory
and bone diseases have been shown to be associated in hospitalized patients but
not in the general population. Moreover, since cigarette smoking is strongly
associated with respiratory disease, we would expect a hospital study of the
relationship between cigarette smoking and bone disease to demonstrate such a
relationship even if none existed in the general population.

In the 1980's and 1990's, US Air Force researchers assessed the health effects
among Vietnam War veterans associated with exposure to the herbicide Agent
Orange. Agent Orange contained a highly toxic trace contaminant known as 
TCDD. Initially, exposure to TCDD was classified according to job descriptions of
the veterans selected for study. It was later determined that this produced
substantial misclassification of TCDD. The validity problem here is called
information bias. Bias could be avoided using laboratory techniques that were
developed to measure TCDD from blood serum. The use of such biologic

markers in epidemiologic research is rapidly increasing as a way to reduce
misclassification and, more generally, to improve accuracy of study
measurements.

As a final example, we return to the Sydney Beach Users Study described
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previously. A validity issue in this study concerned whether all relevant variables,
other than swimming status and pollution level, were taken into account. Such
variables included age, sex, duration of swimming, and additional days of
swimming. The primary reason for considering these additional variables is to
ensure that any observed effect of swimming on illness outcome could not be
explained away by these other variables. A distortion in the results caused by
failure to take into account such additional variables is called confounding bias.

Summary

Validity: The general issue of whether or not there are imperfections in the
study design, the methods of data collection, or methods of data analysis that
might distort the conclusions made about an exposure-disease relationship.
Bias: A measure of the extent of distortion of conclusions about an exposure-
disease relationship.
Validity issues are illustrated by:

Hospital-based case-control studies (Berkson’s selection bias).

Job misclassification to assess TCDD exposure (information bias).

Control of relevant variables in the Sydney Beach Users Study
(confounding).

Validity versus Precision 

Validity and precision concern two different sources of inaccuracy that can occur
when estimating an exposure-disease relationship: systematic error (a validity
problem) and random error (a precision problem).  Systematic and random error
can be distinguished in terms of shots at a target.

Validity and precision are influenced by two different
types of error that can occur when estimating an 
exposure-disease relationship. Systematic error affects
the validity, and random error, the precision.

These two types of error can be distinguished by
viewing an epidemiologic study as a shot at a target. The
blue dot in the middle of the target symbolizes the true

measure of effect being estimated in a population of interest. (Note: to be 
consistent with the CD, the use of the term “blue dot” in this text refers to the
center of the target or the ”bull’s eye”.)  Each shot represents an estimate of the
true effect obtained from one of 
possibly many studies in each of
three populations.

For Target A, the shots are
centered around the blue dot,
although none of the shots
actually hit it and all shots hit a 
different part of the target. For
Target B, the shots are all far off 
center, but have about the same
amount of scatter as the shots at 
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target A. For target C, the shots are centered around the blue dot, but unlike Target
A, are more spread out from one another.

Systematic error is 
illustrated by comparing
Target A with Target B. 
The shots at Target A are
aimed at the blue dot,
whereas the shots at Target 
B are not aimed at the blue
dot, but rather centered
around the red dot. (Note:
to be consistent with the
CD, the term “red dot” will
refer to the dot above and
to the left of the bull’s eye in Population B). The distance between the blue dot and 
the red dot measures the systematic error associated with Target B. In contrast, 
there is no systematic error associated with Target A. 

Systematic error occurs when there is a difference between the true effect
measure and what is actually being estimated. We say that the study is valid if 
there is no systematic error. Thus, validity is concerned with whether or not a 
study is aiming at the correct effect measure, as represented by the bull’s eye. 
Unfortunately in epidemiologic and other research, the bull’s eye is usually not
known. Consequently, the amount of bias is difficult to determine and the
evaluation of bias is to some extent always subjective.

All the targets illustrate random error, which occurs when there is a difference
between any estimate computed from the study data and the effect measure
actually being estimated. Targets A and B exhibit the same amount of random
error because there is essentially the same amount of scatter of shots around the
blue dot of Target A as there is around the red dot of Target B. In contrast Target
C, in which shots are much more spread out, exhibits more random error than
targets A or B.

Thus, the more spread out the shots, the more random error, and the less
precision from any one shot. Precision therefore concerns how much individual
variation there is from shot to shot, given the actual spot being aimed at. In other
words, precision reflects sampling variability.

Problems of precision generally concern statistical inference about the
parameters of the population actually being aimed at. In contrast, problems of 
validity concern methodologic imperfections of the study design or the analysis
that may influence whether or not the correct population parameter, as represented
by the blue dot in each target, is being aimed at by the study

Study Questions (Q7.1) Consider a cross-sectional study to assess the relationship
between calcium intake (high versus low) in one’s diet and the prevalence of
arthritis of the hip in women residents of the city of Atlanta between the ages of 45
and 69.  A sample of female hospital patients is selected from hospital records in
1989, and the presence or absence of arthritis as well as a measure of average
calcium intake in the diet prior to enter the hospital are determined on each patient.
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1. What is the target population in this study?
2. What does the center of the target (i.e., the bulls-eye) represent in

epidemiologic terms?
3. What do we mean by random error associated with this study?
4. What do we mean by systematic error associated with this study?

Summary

Validity concerns systematic error whereas precision concerns random error.
Systematic and random error can be distinguished in terms of shots at a target.
Systematic error: a difference between what an estimator is actually estimating
and the effect measure of interest.
Random error: a difference between any estimate computed from the study
data and the effect measure actually being estimated.
Validity does not consider statistic inference, but rather methodologic
imperfections of the study design or analysis.
Precision concerns statistical inferences about the parameter of the population
actually being aimed at.

A Hierarchy of Populations

To further clarify the difference between validity and precision, we now describe a 
hierarchy of populations that are considered in any epidemiologic study.

We typically identify
different populations when we
think about the validity of an 
epidemiologic study. These
populations may be contained
within each other or they may
simply overlap.

We refer to the collection of
individuals from which the study
data have been obtained as the sample. We use results from the sample to make
inferences about larger populations. But what populations can we make these
inferences about? What population does the sample represent?

The study population is the collection of individuals that our sample actually
represents and is typically those individuals we can feasibly study. We may be 
limited to sampling from hospitals or to sampling at particular places and times.
The study population is defined by what is practical, which may not be what we
ideally would like.

The source population is the collection of individuals of restricted interest;
say in a specific city, community, or occupation, who are at risk for being a case. 
Clearly all cases must come from the source population (if they were not at risk,
they would not have become cases). The source population also is likely to include
individuals who, although at risk, may not become cases. The source population
has been called the study base or the target population.
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We can make statistical 
inferences from the sample to the
study population, but we would
like to be able to make inferences
from the sample to the source
population. Unfortunately, the
study population, the population
actually represented by our 
sample, may not be
representative of the source

population.

Study Questions (Q7.2) Consider an epi study carried out in New York City
(NYC) to assess whether obesity is associated with hypertension in young adults.
The investigators decided that it was not feasible to consider taking a sample from
among all young adults in the city. It was decided that fitness centers would
provide a large source of young NYC adults.  A sample of subjects is taken from
several randomly selected fitness centers throughout the city and their blood
pressure is measured to determine hypertension status.
1. What is the source population for this study?
2. What is the study population in this study?
3. Does the sample represent the study population?
4. Does the study population represent the source population?

In a simple case every
member of the study population is
also in the source population -that
is, we are only studying individuals
who are in fact at risk. If the study
population is representative of the
source population and the sample is
representative of the study
population then there is no bias in
inferring from the sample to the
source population.

Study Questions (Q7.2) continued Recall the epi study carried out in New York
City to assess whether obesity is associated with hypertension in young adults.
Suppose the investigators decided that it was important to obtain a sample from all
young adults within NYC. They used the 2000 census information to get a listing
of all young NYC adults. A sample of subjects is taken from several randomly
selected city blocks throughout the city and their blood pressure is measures to
determine hypertension status.
5. What is the source population for this study?
6. What is the study population in this study?
7. Does the sample represent the study population?
8. Does the study population represent the source population?

Sometimes, however, even a sample from a study population that represents
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the source population can become biased. For example, in a typical cohort study, 
even though every member of the initial study population is also in the source
population the initial sample may change in the course of the study. The initial
sample may suffer from exclusions, withdrawals, non-response, or loss-to-follow-
up. The final study population is then only those individuals who are willing and
able to stay in such a study, a population that may not represent the initial study
population or the source population as well as we might wish.

Study Questions (Q7.2) continued

9. True or False. In a cohort study, the study population includes persons eligible
to be selected but who would have been lost to follow-up if actually followed.

10. True or False.  In a cohort study, the source population includes persons
eligible to be selected but who would have been lost to follow-up if actually
followed.

11. True or False.  In a case-control study, the study population may contain
persons eligible to be controls who were not at risk for being a case.

12. True or False.  In a cross-sectional study, the study population may contain
persons who developed the health outcome but had died prior to the time at 
which the sample was selected.

In general, it is possible for members of the study population not even to be at
risk and we may not be able to tell. We may, for example, draw our sample from a 
study population of persons who attend a clinic for sexually transmitted diseases.
These people may or may not have an STD and may or may not be exposing
themselves to STD's. For example, some of these subjects may have partners who
are not infected, and thus may not be at risk themselves. If they are not at risk, 
they are not part of the source population, but we may not know that.

It can also happen that the study population fails to include individuals who are
at risk (and thus part of the source population) either because we do not know they
are at risk or because it is not practical to reach them. For example when AIDS
was poorly understood, a study of gay men at risk for AIDS may have failed to 
include IV drug users who were also at risk.

Finally, we would often like to generalize our conclusions to a different
external population. An external population is a population that differs from the
study population but to which we nevertheless would like to generalize the results,
for example, a different city, community, or occupation. In a public health setting,
we are always concerned with the health of the general public even though we
must study smaller subpopulations for practical reasons. For statistical conclusions
that are based on a sample to generalize to an external population, the study
population must itself be representative of the external population, but that is often
difficult to achieve.

Study Questions (Q7.2) continued Consider an epi study carried out in New
York City to assess whether obesity is associated with hypertension in young
adults. Suppose it was of interest to determine whether the study results carry over
to the population of the entire state of New York.

13. Considering the variety of populations described, what type of population is
being considered? Explain briefly.
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Summary

There are a variety of populations to consider in any epi study.
The sample is the collection of individuals from which the study data have
been obtained.
The study population is the collection of individuals that our sample actually
represents and is typically those individuals we can feasibly study.
The source population is the group of restricted interest about which the
investigator wishes to assess an exposure-disease relationship.
The external population is a group to which the study has not been restricted
but to which the investigator still wishes to generalize the study results.

Internal versus External Validity

Target shooting provides an example that illustrates the difference between
internal and external validity.  Internal validity considers whether or not we are
aiming at the center of the target. If, we are aiming at this red dot (to the left and 
above the bulls-eye) rather than at the bulls-eye, then our study is not internally
valid.

Internal validity is about
drawing conclusions about the
source population based on
information from the study
population. Such inferences do
not extend beyond the source
population of restricted interest.

External validity concerns a 
different target; in particular, one
at which we are not intending to
shoot; whose bulls-eye we can't really see. We might imagine this external target
being screened from our vision.

Suppose that this screened target is 
in line with the target at which we are 
shooting. Then, by aiming at the bulls-
eye of the target we can see, we are also
aiming at the bulls-eye of the external 
target. In this case, the results from our 
study population can be generalized to
this external population, and thus, we
have external validity.  If the external
target is not lined up with our target, our study does not have external validity, and 
the study results should not extend to this external population.

External validity is about applying our conclusions to an external population
beyond the study's restricted interest. Such inferences require judgments about
other findings and their connection to the study's findings, conceptualization of the
disease process and related biological processes, and comparative features of the
source population and the external population. External validity is therefore more
subjective and less quantifiable than internal validity.
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Study Questions (Q7.3) Consider an epi study carried out in New York City to
assess whether obesity is associated with hypertension in young adults. Subjects
are sampled from several fitness centers throughout the city and their blood
pressure is measured to determine hypertension status.

1. What is required for this study to be internally valid?

Suppose it was of interest to determine whether the study results carry over to the
entire State of New York.

2. Does this concern internal validity or external validity?  Explain briefly. 

Results from the Lipid Research Clinics Primary Prevention Trial published in
1984 (JAMA) demonstrated a significant reduction in cardiovascular mortality for
white men ages 35 to 59 who were placed on a cholesterol-reducing diet and 
medication.

3. What question might be asked about the results of this study that concerns
external validity?

4. What question(s) might be asked about the study results that concern(s)
internal validity?

Summary

Internal validity concerns whether or not we are aiming at the center of the 
target we know we are shooting at.
External validity concerns a target that we are not intending to shoot at, whose
bulls-eye we can’t really see.
Internal validity concerns the drawing of conclusions about the target
population based on information from the study population.
External validity concerns drawing conclusions to an external population
beyond the study’s restricted interest.

Quiz (Q7.4) Label each of the following statements as True or False;
for questions 8-11, an additional response option is It depends.

1. Random error occurs whenever there is any (non-zero) difference between the
value of the odds ratio in the study population and the estimated odds ratio
obtained from the sample that is analyzed. ???

2. Systematic error occurs whenever there is any (non-zero) difference between
the value of the effect measure in the source population and the estimate from
the sample. ???

3. In a valid study, there is neither systematic error nor random error. ???

4. The study population is always a subset of the source population. ???

5. The sample is always a subset of the study population. ???

6. The sample is always a subset of the source population. ???

7. The estimated effect measure in the sample is always equal to the
corresponding effect measure in the study population. ???

8. Suppose the risk ratio in the source population is 3.0, whereas the risk ratio
estimate in the (study) sample is 1.2. Then the study is not internally valid. ???

9. Suppose the risk ratio in the source population is 3.0, whereas the risk ratio in 
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the study population is 1.2. Then the study is not internally valid. ???

10. Suppose the risk ratio in the source population is 3.0, whereas the risk ratio
estimate in the study population is 3.1.  Then the study is not internally valid.

???

11. Suppose the risk ratio in the source population is 3.0, whereas the risk ratio
estimate in the study population is 3.1.  Then the study is not externally valid.

???

Quantitative Definition of Bias 

A bias in an epidemiologic study can be defined quantitatively in terms of the
target parameter of interest and measure of effect actually being estimated in the
study population.

A study that is not internally valid is said to have
bias. Let's quantify what we mean by bias. The
measure of effect in the source population is our
target parameter.

The choice of this parameter depends on the
study design features, objectives of the study, and 
the type of bias being considered. We denote the
target parameter with the Greek letter  (“theta”). 
We want to estimate the value of  in the source
population.

Recalling the hierarchy of populations
associated with a given study, we denote as 0 the

measure of effect in the study population.

(“theta-hat”) denotes the estimate of our measure
of effect obtained from the sample actually

analyzed. Of course, ,

ˆ

ˆ 0 and  may all have 

different values.

Any difference between  and ˆ 0 is the

result of random error. Any difference
between 0 and is due to systematic error.

We use ˆ to estimate . We say that 

is a biased estimate of  if 

ˆ
0 is not equal to

, and we define the bias to be the
difference between these two parameters:

Bias ( ˆ, )=
0
-

Thus, a bias occurs if an estimated measure of
effect for the study population differs systematically
from the value of the target parameter. The not equal
sign shown below should not be strictly interpreted as
any difference from zero, but rather as a meaningful difference from zero. Such a 
flexible interpretation of the definition is necessary because bias can rarely be
quantified precisely because the target parameter is always unknown. 
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Study Questions (Q7.5) Consider a cohort study to evaluate whether heavy
drinking during pregnancy leads to low birth weight babies.  Although it is usually
unknown, suppose the risk ratio in the source population (i.e., entire cohort) is 3.5.
Suppose further that the study sample is representative of the source population at 
the start of follow-up, but that there is considerable migration out of the target
population location.  As a result, the risk ratio found in the final sample is 1.5.

1. For this scenario, what are the values of the target (i.e., source) population
parameter and the study population parameter?

2. Is there bias in this study?  Explain briefly.
3. What is the value of the bias in this study?
4. If the true effect being estimated is high (e.g., RR>3.5), but the study data

show essentially no effect, does this indicate a bias?  Explain briefly.
5. If the true effect estimated indicates no association, but the study data show a

high association, does this indicate a bias? Explain briefly. 

Summary

Bias measures the extent that study results are distorted from the correct results
that would have been found from a valid study. 
Bias occurs if an estimated measure of effect for the study population differs
systematically from the value of the target parameter.
Bias can rarely be quantified precisely primarily because the target parameter
is always unknown.

(“theta”) is the target parameter, 0 is the study population parameter, and

is the sample estimate.

ˆ

 is a biased estimate of  providedˆ 0  is not equal to .

Bias ( , ) = ˆ 0 - 

Relating the Target Parameter to Type of Bias

The target parameter in most epidemiologic studies is typically a measure of effect, e.g.,
some kind of risk ratio, odds ratio, or rate ratio, appropriate for the study design being
considered. The choice of parameter depends on whether the type of bias of interest is
selection bias, information bias, or confounding bias, or whether more than one of these 
three types of bias is of concern. 

When selection bias is the only type of bias being considered, the target parameter is 
typically the value of the measure of effect of interest in the source population from which 
the cases are derived.

If, however, information bias is the only type of bias considered, then the target
parameter is the measure of effect that corrects for possible misclassification or that would
result from the absence of misclassification.

If there is only bias due to confounding, then the target parameter is the measure of
effect estimated when confounding is controlled.

If more than one bias is possible, then the target parameter is the value of the measure
of effect after all contributing sources of bias are corrected.
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Direction of the Bias 

Although the precise magnitude of bias can never really be quantified, the 
direction of bias can often be determined.  The direction of the bias concerns
whether or not the target parameters is either overestimated or underestimated
without specifying the magnitude of the bias.

We have defined bias as the difference between the value of the effect measure
in our target (i.e., source) population and the value of the effect measure actually
being estimated in the study population. Since the target parameter is always
unknown and the effect being estimated in the study population has random error,
it is virtually impossible to quantify the magnitude of a bias precisely in a given
epidemiologic study.  Nevertheless, the investigator can often determine the
direction of the bias. Such assessment usually requires subjective judgment based
on the investigator's knowledge of the variables being studied and the features of
the study design that are the sources of possible bias.  By direction, we mean a 
determination of whether the target parameter is overestimated or 
underestimated without specifying
the magnitude of the bias. If the
target parameter is overestimated,
we say that the direction of the bias is 
away from the null. If the target 
parameter is underestimated, we say
that the direction of the bias is
towards the null.

For example, suppose the target
parameter is a risk ratio whose value is 1.5,
but the risk ratio actually being estimated
from our study is 4. Then the true effect has 
been overestimated, since the effect from the study appears to be stronger than it
really is. Both the target parameter and the study population parameter in this
example are greater than the null value of 1 for a risk ratio. Thus, the bias is away
from the null, since the incorrect value of 4 is further away from 1 than the correct
value of 1.5.

Similarly, if the target risk ratio is less than
the null value of 1, say .70 and the risk ratio
being estimated is .25, the true effect is also 
overestimated. In this case, the true effect is
protective, since it is less than 1, and the estimated effect of .25 is even more
protective than the true effect. Again, the incorrect value of .25 is further away
from 1 than the correct value of .70, so the bias is away from the null.

To describe underestimation, or bias

towards the null, suppose the target risk 
ratio is 4, but the estimated risk ratio is 
1.5. Then the true effect is 
underestimated, since the effect from the
study appears to be weaker than it really is. Moreover, the incorrect value of 1.5 in
this case is closer to the null value of 1 than is the correct value of 4, so the bias is
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towards the null.
If the target risk ratio is 0.25 but the risk

ratio being estimated is 0.70, then once again
the correct value is underestimated and the
bias is towards the null. In this case, the
incorrect value of 0.70 is closer to the null value of 1 than is the correct value of
.25.

Suppose, however, that the target risk
ratio is .50 but the risk ratio actually being
estimated is 2. These two values are on 
opposite sides of the null value, so we
cannot argue that the bias is either towards
or away from the null. In this case, we call 
this kind of bias a switchover bias. In other words, a switchover bias may occur if
the exposure appears in the data to have a harmful effect on the disease when it is
truly protective. Alternatively, a switchover bias can occur if the exposure appears
to be protective when it is truly harmful.

Study Questions (Q7.6) Knowing the direction of the bias can be of practical 
importance to the investigator.

1. Suppose an investigator finds a very strong effect, say the estimated RR (in the
study population) is 6, and she can also persuasively argue that any possible
bias must be towards the null.  Then what can be concluded about the correct
(i.e., target) value of RR?

2. Suppose an investigator finds a very weak estimated RR (in the study
population) of, say, 1.3, and can argue that any bias must be away from the 
null.  Then what can be concluded about the correct value of the RR?

Summary

The direction of the bias concerns whether or not the target parameter is either
overestimated or underestimated without specifying the magnitude of the bias.
If the target parameter is overestimated, the direction of the bias is away from
the null.
If the target parameter is underestimated, the direction of the bias is towards 
the null.
A switchover bias occurs if the target parameter is on the opposite side of the
null value from the parameter actually being estimated in one’s study.

Quiz (Q7.7) Label each of the following statements as True or False.

1. If the estimated RR equals 2.7 in the sample and it is determined that there is a 
bias away from the null, then the RR in the target (i.e., source) population is 
greater than 2.7. ???

2. If the estimated RR in the sample is 1.1 and it is determined that there is bias
towards the null, then there is essentially no association in the target population
(as measured by RR). ???
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3. If the estimated RR in the sample is 1.1 and it is determined that there is bias
away from the null, then there is essentially no association in the target
population. ???

4. If the estimated RR equals 0.4 in the sample and it is determined that there is a 
bias away from the null, then the RR in the target (i.e., source) population is 
less than 0.4. ???

5. If the estimated RR in the sample is 0.4 and it is determined that there is bias
towards the null, then there is essentially no association in the target population
(as measured by RR). ???

6. If the estimated RR in the sample is 0.98 and it is determined that there is bias
away from the null, then there is essentially no association in the target
population. ???

Fill in the Blanks; Choices Away from the null Switchover Towards the null

7. If OR equals 3.6 in the target population and 1.3 in the study population, then
the bias is . ???

8. If IDR is 0.25 in the target population and 0.95 in the study population, then
the bias is ???

9. If the RR is 1 in the target population and 4.1 in the study population, then the
bias is ???

10. If the RR is 0.6 in the target population and 2.1 in the study population, then
the bias is ???

11. If the RR is 1 in the target population and 0.77 in the study population, then the
bias is ???

12. If the RR is 4.0 in the target population and 0.9 in the study population, then
the bias is ???

What Can be Done About Bias?

The evaluation of bias is typically subjective and involves a judgment about either
the presence of the bias, the direction of the bias, or, much more rarely, the
magnitude of the bias.  Nevertheless, there are ways to address the problem of
bias, including adjusting the sample estimate to “correct” for bias.  Three general
approaches are now described.

Here are three general approaches for
addressing bias: 1) a priori study design

decisions; 2) decisions during the analysis

stage; and 3) discussion during the publication
stage.

When you design a study, you can make decisions to minimize or even avoid
bias in the study's results. You can avoid selection bias by including or excluding
eligible subjects, by choice of the source population, or by the choice of the
comparison group, say the control group in a case-control study.
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Study Questions (Q7.8)

1. What type of bias may be avoided by taking special care to accurately measure
the exposure, disease, and control variables being studied, including using pilot
studies to identify measurement problems that can be corrected in the main
study?

A. Selection bias     B. Information bias    C. Confounding bias

2. What type of bias may be avoided by making sure to measure or observe
variables at the design stage that may be accounted for at the analysis stage?

B. Selection bias     B. Information bias    C. Confounding bias

At the analysis stage, the investigator may be able to determine either the
presence or direction of possible bias by logical reasoning about methodologic
features of the study design actually used.

Study Questions (Q7.8) continued

3. In the Sydney Beach User’s study, both swimming status and illness outcome
were determined by subject self-report and recall.  This indicates the need to 
assess the presence or direction of which type of bias at the analysis stage?

A. Selection bias     B. Information bias    C. Confounding bias

4. Also, in the Sydney Beach Users study, subjects had to be excluded from the
analysis if they did not complete the follow-up interview.  This non-response
may affect how representative the sample is.  This is an example of which type
of bias?

A. Selection bias     B. Information bias    C. Confounding bias

At the analysis stage, bias
can also be reduced or eliminated 
by adjusting a sample estimate
by a guestimate of the amount of 
bias. Such adjustment is typically
done for confounding by
quantitatively accounting for the 
effects of confounding variables
using stratified analysis or
mathematical modeling

methods.
Adjustment for selection bias and information bias is limited by the availability

of information necessary to measure the extent of the bias. A simple formula for a 
"corrected" estimate involves manipulating the equation for bias by moving the
target parameter to the left side of the equation.  This formula is not as easy to 
apply as it appears. Most investigators will have to be satisfied with making a case
for the direction of the bias instead. The estimated bias depends on the availability
of more fundamental parameters, which are often difficult to determine. We
discuss these parameters further in the chapters that follow.

The final approach to addressing bias is how you report your study. A
description of the potential biases of the study is typically provided in the
"Discussion" section of a publication. This discussion, particularly when it
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concerns possible selection or information bias, is quite subjective, but judgment
is expected because of the inherent difficulty in quantifying biases. Rarely if ever
does the investigator admit in the write-up that bias casts severe doubt on the
study's conclusions. So, the reader must review this section with great care! 

Summary – What Can be Done about Bias?

The answer depends on the type of bias being considered: selection,
information, or confounding.
Approaches for addressing bias are: decisions in the study design stage, the
analysis stage, and the publication stage.
At the study design stage, steps can be taken to avoid bias.
At the analysis stage, one may use logical reasoning about methodologic
features of the study design actually used.
Also at the analysis stage, confounding bias can be reduced or eliminated by
quantitatively adjusting the sample estimate.

A simple formula for a corrected estimate: . This formula is not as 

easy to apply as it looks.
sâBiˆc

Potential biases are described in the Discussion section of a publication.
Beware!

Nomenclature
“theta”, the parameter from the target population

ˆ “theta-hat”, the parameter estimate from the sample actually analyzed

0
The parameter from the study population

RR Risk ratio of the target population
RR0 Risk ratio of the study population
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Answers to Study Questions and Quizzes
Q7.1

1. Women residents from Atlanta between
45 and 69 years of age. 

2. A measure of effect, either a prevalence
ratio or a prevalence odds ratio (i.e., the
blue dot or bulls eye), for the 
association between calcium intake and
prevalence of arthritis of the hip in the
target population.

3. Random error concerns whether or not
the estimated odds ratio in the hospital 
sample (i.e., the shot at the target)
differs from the odds ratio in the
population of hospital patients (i.e., the
red dot or the center of the actual shots) 
from which the sample is selected.

4. Systematic error concerns whether or 
not the odds ratio in the population of 
hospital patients being sampled (i.e., 
the red dot) is different from the odds 
ratio in the target population (i.e., the 
blue dot).

Q7.2

1. All young adults in New York City.
2. All young adults who attend fitness

centers in New York City (NYC) and 
would eventually remain in the study
for analysis.

3. Yes, the sample is randomly selected
from the study population and is 
therefore representative.

4. Probably not.  The group of young
adults in NYC is different from the 
group of all young adults in NYC.
Since fitness is so strongly related to
health, the use of those attending
fitness centers for all young adults is 
probably not the best choice for this 
study.

5. All young adults in New York City.
6. All young adults in NYC that would

eventually remain in the study for
analysis.

7. Yes, the sample is randomly selected
from the study population (by
definition of the study population) and
is therefore representative of it.
Nevertheless, neither the study
population nor the sample may be 
representative of all young adults in
NYC if not everyone selected into the 
sample participates in the study.

8. Yes, assuming that everyone selected
participates (i.e., provides the required
data) in the study, the study population
is the same as the source population.
However, if many of those sampled
(e.g., a particular subgroup) do not 
participate, the final sample and its
corresponding study population might
be unrepresentative of all young adults
in NYC.

9. False.  Persons lost-to-follow-up are not 
found in the study sample, so they can’t
be included in the study population that 
is represented by the sample.

10. True.  Persons lost-to-follow-up are not 
found in the sample, but they are still 
included in the source population of
interest.

11. True.  In the study population, controls
may be specified as persons without the
disease, regardless of whether they are
at risk for being a case.  However, the
source population may only contain
persons at risk for being a case. 

12. False. The study population in a cross-
sectional study is restricted to survivors
only.

13. The population of young adults in New 
York State is an external population,
because the study was restricted to
young adults in New York City. 
Extrapolating the study results to New
York State goes beyond considering the 
methodological aspects of the actual 
study.

Q7.3

1. The study will be internally valid
provided the study population
corresponding to the sample actually
analyzed is not substantially distorted
from the source population of young
adults from fitness centers in the city.
For example, if the sample eventually
analyzed is a much healthier population
than the source population, internal 
validity may be questioned.

2. External validity. The study was
restricted to persons in New York City.
Extrapolating the study results to New
York State goes beyond considering the 
methodological aspects of the New 
York City study
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3. Do the results of the study also apply to
women or to men of different ages?

4. Was the study sample representative of
the source population?  Were the 
comparison groups selected properly?
Did subjects consistently stick to their
diet and medication regimen?  Were 
relevant variables taken into account?

Q7.4

1. T
2. F – Systematic error occurs when there

is a difference between the true effect
measure and that which is actually
estimated, i.e., a difference between the
source and study populations. 

3. F – A valid study means there is no 
systematic error, but there may still be
random error 

4. F – Not always.  Ideally the study
population would be equivalent to the 
source population.  However, it may be 
that the study population and source 
population simply overlap.

5. T – The sample is always selected from
the study population.

6. F – If the study population is not a 
subset of or equivalent to the source 
population, then the sample may not be 
a subset of (or completely contained in)
the source population.

7. F – They may be different due to
random error. 

8. It depends – The difference may be a
result of random error.  If the risk ratio 
in the study population is meaningfully
different from 3.0, then the study is not 
internally valid.

9. T – Any meaningful difference
between the study and source 
population means that the study is not 
internally valid.

10. F – The difference between 3.0 and 3.1 
would not be considered a meaningful
difference.

11. It depends – We do not know about the
risk ratio in the external population.

Q7.5

1. The target population parameter is 3.5. 
We don’t know the value of the study
population parameter, but it is likely to
be closer to 1.5 than to 3.5 because the 
sample is assumed to be representative
of the study population.

2. There appears to be bias in the study
because the sample estimate of 1.5 is
meaningfully different from the
population estimate and it is reasonable
to think that the final sample no longer
represents the source population.

3. The bias can’t be determined exactly
because 1.5 is a sample estimate;
however, the bias in the risk ratio is
approximately 1.5 – 3.5 = -2. 

4. Yes, provided the reason for the 
difference is due to systematic error.

5. Yes, provided the reason for the 
difference is due to systematic error.

Q7.6

1. The correct RR must be even larger
than 6.

2. The correct RR must indicate an even
weaker, or no effect.

Q7.7

1. F – If the bias is away from the null, the
RR in the source population must lie 
between 1 and 2.7.

2. F – If the bias is towards the null, then
the RR in the source population is
greater than 1.1.  Since we cannot
determine how much greater, we cannot 
conclude that these is essentially no
association.

3. T – If the bias is away from the null,
then the RR in the source population is
between 1 and 1.1.  We can thus
conclude that there is essentially no
association.

4. F – If the bias is away from the null,
then the RR in the source population
must lies between 0.4 and 1.0.

5. F – If the bias is towards the null, then
the RR in the source population must be 
less than 0.4 and hence there is an
association.

6. T – If the bias is away from the null,
then the RR in the source population is
between 0.98 and 1.0, which means
there is essentially no association.

7. Towards the null 
8. Towards the null 
9. Away from the null
10. Switchover
11. Away from the null
12. Switchover

Q7.8

1. B;  2. C;  3. B;   4. A



CHAPTER 8
WERE SUBJECTS CHOSEN BADLY?

SELECTION BIAS

Selection bias concerns systematic error that may arise from the manner in which
subjects are selected into one’s study. In his chapter we describe examples of
selection bias, provide a quantitative framework for assessing selection bias, show
how selection bias can occur in different types of epidemiologic study designs, and
discuss how to adjust for or otherwise deal with selection bias.

Selection Bias in Different Study Designs 
Selection bias is systematic error that results from the way subjects are selected
into the study or because there are selective losses of subjects prior to data
analysis.  Selection bias can occur in any kind of epidemiologic study. In case-

control studies, the primary source of selection bias is the manner in which 

cases, controls, or both are selected and the extent to which exposure history
influences such selection.  For example, selection bias was of concern in case-
control studies that found an association between use of the supplement L-
tryptophan and EMS (eosinophilia myalgia syndrome), an illness characterized
primarily by incapacitating muscle pains, malaise, and elevated eosinophil counts.
The odds ratios obtained from these studies might have overestimated the true
effect.

Study Questions (Q8.1)

1. Assuming that the odds ratio relating L-tryptophan to EMS is overestimated,
which of the following choices is correct?
a. The bias is towards the null.
b. L-tryptophan has a weaker association with EMS than actually observed.
c. The correct odds ratio is larger than the observed odds ratio.

Consequently, the bias would be away from the null.
A primary criticism of these studies was that initial publicity about a suspected

association may have resulted in preferential diagnosis of EMS among known
users of L-tryptophan when compared with nonusers.

Study Questions (Q8.1) continued

2. Assuming preferential diagnosis of EMS from publicity about L-tryptophan,
which of the following is correct?  The proportion exposed among diagnosed
cases selected for study is likely to be ??? the proportion exposed among all
cases in the source population. 
a. larger than
b. smaller than
c. equal to

In cohort studies and clinical trials, the primary sources of selection bias are
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loss-to-follow-up, withdrawal from the study, or non-response.  For example,
consider a clinical trial that compares the effects of a new treatment regimen with
a standard regimen for a certain cancer. Suppose patients assigned to the new
treatment are more likely than those on the standard to develop side effects and
consequently withdraw from the study.

Study Questions (Q8.2) Clinical trial: new cancer regimen versus standard
regimen.  Suppose patients on new regimen are more likely to withdraw from
study than those on standard.
1. Why might the withdrawal information above suggest the possibility of 

selection bias in this study?
2. Why won’t and intention-to-treat analysis solve this problem?
3. What is the source population in this study?
4. What is the study population in this study?

In cross-sectional studies, the primary source of selection bias is what is called
selective survival. Only survivors can be included in cross-sectional studies. If
exposed cases are more likely to survive longer than unexposed cases, or vice
versa, the conclusions obtained from a cross-sectional study might be different
than from an appropriate cohort study.

Study Questions (Q8.2) continued Suppose we wish to assess whether there is 
selective survival in a cross-sectional study. 
5. What is the source population?
6. What is the study population?

Summary

Selection bias can occur from systematic error that results from the way 
subjects are selected into the study and remain for analysis.
The primary reason for such bias usually differs with the type of study used.
In case-control studies, the primary source of selection bias is the manner in
which cases, controls, or both are selected.
In cohort studies and clinical trials, the primary source of selection bias is loss
to follow-up, withdrawal from the study, or non-response.
In cross-sectional studies, the primary source of selection bias is what is called
selective survival.

Example of Selection Bias in Case-Control Studies 

In case-control studies, because the health outcome has already occurred, the 
selection of cases, controls, or both might be influenced by prior exposure status.
In the 1970's, there was a lively published debate about selection bias in studies of
whether use of estrogen as a hormone replacement leads to endometrial cancer. 
Early studies were case-control studies and they indicated a strong harmful effect
of estrogen. The controls typically used were women with gynecological cancers
other than endometrial cancer. Critics claimed that because estrogen often causes 
vaginal bleeding irrespective of cancer, estrogen users with endometrial cancer 
would be selectively screened for such cancer compared to nonusers with
endometrial cancer.
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Study Questions (Q8.3)

1. If the critics reasoning were correct, why would there be a selection bias
problem with choosing controls to be women with gynecological cancers other
than endometrial cancer?

2. If the critics reasoning were correct, would you expect the estimated odds ratio
obtained from the study to be biased towards or away from the null?  Explain
briefly.

An alternative choice of controls was proposed; women with benign
endometrial tumors, since it was postulated that such a control group would be just
as likely to be selectively screened as would the cases.

Study Questions (Q8.3) continued

3. Why would estrogen users with benign endometrial tumors be more likely to
be selectively screened for their tumors when compared to nonusers?

4. Assuming that estrogen users with both cancerous and benign endometrial
tumors are likely to be selectively screened for their tumors when compared to 
non-users, what problem may still exist if the latter group is chosen as 
controls?

Continued research and debate, however, have indicated that selective
screening of cases is not likely to contribute much bias. In fact, the proposed
alternative choice of controls might actually lead to bias.

Study Questions (Q8.3) continued Researchers concluded that because nearly all 
women with invasive endometrial cancer will ultimately have the disease
diagnosed, estrogen users will be slightly over-represented, if at all, among a series
of women with endometrial cancer.  Assume for the questions below that selective
screening of cases does not influence the detection of endometrial cancer cases.

5. If the control group consisted of women with benign tumors in the
endometrium, why would you expect to have selection bias?

6. Would the direction of the bias be towards or away from the null? Briefly
explain.

7. If the control group consisted of women with gynecologic cancers other than in
the endometrium, why would you not expect selection bias in the estimation of
the odds ratio?

In current medical practice, the prevailing viewpoint is that taking estrogen
alone is potentially harmful for endometrial cancer. Consequently, women who are 
recommended for hormone replacement therapy are typically given a combination 
of progesterone and estrogen rather than estrogen alone.

Summary

Selection bias concerns a distortion of study results that occurs because of the
way subjects are selected into the study.
In case-control studies, the primary concern is that selection of cases, controls,
or both might be influenced by prior exposure status.
In the 1970’s, there was a lively published debate about possible selection bias
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among researchers studying whether use of estrogen, the exposure, as a
hormone replacement leads to endometrial cancer.
The argument supporting selection bias has not held up over time; current
medical practice for hormone replacement therapy typically involves a
combination of progesterone and estrogen rather than estrogen alone. 

Example of Selection Bias in Cohort Studies 

Selection bias can occur in cohort studies as well as in case-control studies.  In 
prospective cohort studies, the health outcome, which has not yet occurred when
exposure status is determined, cannot influence how subjects are selected into the
study. However, if the health outcome is not determined for everyone initially
selected for study, the study results may be biased.  The primary sources of such
selection bias are loss-to-follow-up, withdrawal or non-response. The collection
of subjects that remain to be analyzed may no longer represent the source
population from which the original sample was selected. 

Consider this two-way
table that describes the five-year
follow-up for disease “D” in a
certain source population.
Suppose that a cohort study is
carried out using a 10% random
sample from this population.

Consider the following table of
expected cell frequencies for this cohort:

Study Questions (Q8.4)

1. Assuming this is the sample that is
analyzed, is there selection bias?

Assume that the initial cohort
was obtained from the 10%
sampling. However, now
suppose that 20% of exposed
persons are lost to follow-up but
10% of unexposed persons are 
lost. Also, assume that exposed persons have the same risk for disease in the final 
cohort as in the initial cohort and that the same is true for unexposed persons.

Study Questions (Q8.4) continued

2. Does the sample just described represent the source population or the study
population?

3. What is the source population for which this sample is derived?
4. For the above assumptions, is there selection bias?

Suppose that a different pattern
of loss-to follow-up results in the
two-way table shown here.
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Study Questions (Q8.4) continued

5. Do these results indicate selection bias?
6. Do the exposed persons in the study population have the same risk for disease

as in the source population?
7. Do the unexposed persons in the study population have the same risk for

disease as in the source population?
8. Do the previous examples demonstrate that there will be selection bias in 

cohort studies whenever the percent lost to follow-up in the exposed group
differs from the percent lost-to-follow-up in the unexposed group?

Summary

The primary sources of selection bias in cohort studies are loss-to-follow-up,
withdrawal, and non-response.
In cohort studies, the collection of subjects that remain in the final sample that
is analyzed may no longer represent the source population from which the
original cohort was selected.
Selection bias will occur if loss to follow-up results in risk for disease in the
exposed and/or unexposed groups that are different in the final sample than in
the original cohort. 

Some Fine Points about Selection Bias in Cohort Studies

Reference: Hill, HA and Kleinbaum, DG, "Bias in Observational Studies", in the
Encyclopedia of Biostatistics, P.A. Armitage and T Colton, eds., June 1998. 

Selection bias in cohort studies may occur even with a fairly high overall response rate or
with very little loss to follow-up.  Consider a cohort study in which 95% of all subjects
originally assembled into the cohort remain for analysis at the end of the study. That is, only
5% of subjects are lost to follow-up.  If losses to follow-up are primarily found in exposed
subjects who develop the disease, then despite the small amount of follow-up loss, the
correct (i.e., target) risk ratio could be underestimated substantially.  This is because, in the
sample that is analyzed, the estimated risk for developing the disease in exposed subjects
will be less than what it is in the source population, whereas the corresponding risk for 
unexposed subjects will accurately reflect the source population.

There may be no selection bias despite small response rates or high loss to follow-up. 
Suppose only 10% of all initially selected subjects agree to participate in a study, but this
10% represents a true random sample of the source population. Then the resulting risk ratio
estimate will be unbiased. The key issue here is whether risks for exposed and unexposed
in the sample that is analyzed are disproportionately modified because of non-response or 
follow-up loss from the corresponding risks in the source population from which the initial
sample was selected.

We are essentially comparing two 2x2 tables here, one representing the source
population and the other representing the sample: 

Source Population Sample for Analysis

E Not E E Not E 

D A B D a b

Not D C D Not D c d

Total N1 N0 Total n1 n0

Selection bias will occur only if, when considering these tables, the risk ratio in the
source population, i.e., 
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0

1

B/N

A/N  is meaningfully different from the risk ratio in the sample, i.e.,

0

1

b/n

a/n

In the first example above (95% loss to follow-up), the argument for selection bias is 
essentially that the numerator a/n1 of the risk ratio in the analyzed sample would be less 
than the corresponding numerator A/N1 in the source population, whereas the corresponding
denominators in these two risk ratios would be equal.

In the second example (10% non-response), the argument for no selection bias is
essentially that despite the high non-response, corresponding numerators and denominators 
in the source population and sample are equal.

Other Examples

Here are a few more examples of studies that are likely to raise questions about
selection bias.

Study Questions (Q8.5) Consider a retrospective cohort study that compares
workers in a certain chemical industry to a population-based comparison group for
the development of coronary heart disease (CHD).
1. In such a study, selection bias may occur because of the so-called “healthy 

worker effect”.  How might such a bias come about?

Selection bias may result from using volunteers for a study.
2. Explain the above statement in terms of study and source populations.
3. What is an alternative way to view the validity problem that arises when a 

study is restricted to volunteers?

In assessing long term neurologic disorders among children with febrile
seizures, clinic-based studies tend to report a much higher frequency of such
disorders than found in population-based studies.
4. Does the above statement indicate that clinic-based studies can result in 

selection bias? Explain briefly.

Summary

Selection bias may occur because of the so-called “healthy worker effect”. 
Workers tend to be healthier than those in the general population and may
therefore have a more favorable outcome regardless of exposure status.
Selection bias may result from using volunteers, who may have different
characteristics from persons who do not volunteer.
Clinic-based studies may lead to selection bias because patients from clinics
tend to have more severe illness than persons in a population-based sample.

What Can Be Done About Selection Bias Qualitatively? 

A description of quantitative formulas for correcting for selection bias, see is
provided on pages 8-2 and 8-5 of the ActivEpi CD.  Unfortunately the
information required to apply these formulas, namely the selection ratio
parameters or their ratios, is conceptually complicated, rarely available, and not
easily quantified.  The ideal way to address selection bias is to prevent or at least
minimize such bias when designing a study rather than to attempt to correct for the 
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bias once the data have been collected.
In case-control studies, the controls should be carefully chosen to represent the 

source population that produced the cases. The use of two or more control groups
should also be considered.

Case-control studies using incident cases and nested case-control studies are 
preferable to studies that use prevalent cases or to hospital-based studies. Selection
bias may also be avoided by assuring equal opportunity for disease detection
among exposed and unexposed subjects.

In cohort studies, efforts should be made to achieve high response and low
loss-to-follow-up.

Observational studies involving volunteers should be avoided, although
clinical trials involving volunteers are possible because of randomization.
Occupational cohort studies should avoid a healthy worker bias by ensuring that
unexposed subjects are as healthy as exposed subjects.

At the analysis stage, it may be possible to determine the direction of the bias,
even if the magnitude of the bias cannot be estimated or a numerical correction for 
bias is not feasible.

One approach to addressing selection bias as well as information and
confounding biases is in the write-up of the study. A description of the potential
biases of the study is typically provided in the "Discussion" section of a
publication. This discussion, particularly when it concerns possible selection bias,
is quite subjective, but such judgment is required because of the inherent difficulty
in quantifying such biases.

Summary

The information required to assess selection bias is conceptually complicated,
rarely available, nor is easily quantifiable.
At the study design stage, decisions may be made to avoid selection bias in the
study’s results.
At the analysis stage, it may be possible to determine the direction of selection
bias without being able to quantitatively correct for the bias.
At the publication stage, potential biases are typically addressed qualitatively
in the Discussion section of a paper.

The "Worst-Case Scenario" Approach 

This is a practical approach for assessing the direction of selection bias that considers
the most extreme changes in the estimate of effect that are realistically possible as a result
of the way subjects are selected.  Through such an approach it may be possible to show that 
the worst amount of bias possible will have a negligible effect on the conclusions of one's 
study.

For example, consider a cohort study involving lung-cancer-free 1000 smokers and
1000 non-smokers all over 40 years of age that are followed for 10 years. Suppose further
that over the follow-up period, 200 smokers and 100 non-smokers are lost-to-follow-up.
Also, suppose, that among those 800 smokers and 900 non-smokers remaining in the study,
the 2x2 table relating smoking status at the start of the study to the development of lung
cancer (LC) over the 10 year follow-up is shown as follows: 

Smokers Non-smokers

LC 80 10
No LC 720 890

Total 800 900
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The estimated risk ratio from these data is (80/800)/(10/900) = 9, which suggests a very
strong relationship between smoking status and the development of lung cancer.  A worst-
case scenario might determine what the risk ratio estimates would be if either all 200
smokers lost-to-follow-up did not develop lung cancer and/or all 100 non-smokers lost to
follow-up did develop lung.  Here are comparison of estimates for “worst-case” scenarios:

Scenario RR

1.  Actual observed data 9
2. 1/10th of 200 lost-to-follow-up smokers get LC and 1/90th of the 100 lost-to-
follow-up non-smokers get LC

9

3.  1/10th of the 200 lost-to-follow-up smokers get LC and 2/90th of the 100 lost-
to-follow-up non-smokers get LC

8.2

4.  None of the 200 lost-to-follow-up smokers get LC and 1/90th of the 100 lost-
to-follow-up non-smokers get LC

7.3

5.  None of the 200 lost-to-follow-up smokers get LC and 2/90th of the 100 lost-
to-follow-up non-smokers get LC

6.6

6.  None of the 200 lost-to-follow-up smokers get LC and all 100 lost-to-follow-
up non-smokers get LC

0.7

Notice that scenario #6 above changes smoking from being harmful to being protective.
Yet this is not a very realistic scenario. Scenario #2 is not really a "worst case" type of
scenario because it assumes that those lost to follow-up have the same risk as those actually
followed over the entire 10 years. The other three scenarios, i.e., #'s 3, 4, and 5, are
"realistic" and of a "worst-case" type; all of these show that the risk ratio is reduced, but is
still high.  The difficulty with this approach, as illustrated above, concerns the extent to 
which the investigator can identify a "worst-case" scenario that is the most realistic among
all possible scenarios.

Quiz (Q8.6)

1. Case-control studies using ??? are preferable to studies that use ???.
2. And ??? studies are preferable to ??? studies. 
3. In cohort studies, efforts should be made to achieve ??? and to avoid ???.

Choices cases controls high response hospital-based incident cases

loss-to-follow-up nested case-control prevalent cases selection bias

At the analysis stage, the extent of possible selection bias may be assessed using
what are often referred to as "worst-case" analyses.  Such analyses consider the
most extreme changes in the estimated effect that are possible as a result of 
selection bias. Determine whether each of the following is True or False.

4. This approach is useful since it could demonstrate that the worst amount of
bias possible will have a negligible effect on the conclusions of the study. ???

5. This approach can rule out selection bias, but it cannot confirm selection bias.
???

The tables below show the observed results and a 'worst-case' scenario for a
clinical trial. Ten subjects receiving standard treatment and 15 subjects receiving a
new treatment were lost-to-follow-up. The outcome was whether or not a subject
went out of remission (D = out, not D = in) by the end of the trial. In the 'worst-
case' scenario, all 10 subjects on standard treatment who were lost-to-follow-up
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remained in remission but all 15 subjects on the new treatment who were lost-to-
follow-up went out of remission.

6. What are the values of a*? ???, b*? ???, c*? ???, d*? ???

Choices 106 110 121 22 32 42 90 91

7. Refer to the data in the tables above. What is the risk ratio estimate based on 
the observed data? ???

8. What is the risk ratio estimate based on the 'worst-case' scenario? ???

9. In the worst-case scenario, is there selection bias? ???

10. Does a “worst-case” assessment such as illustrated here “prove” that there is 
selection bias? ???

Choices 1.3 1.4 3.9 4.8 No Yes
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Answers to Study Questions and Quizzes
Q8.1

1. b
2. a; exposed cases are likely to be over-

represented in the study when
compared to unexposed cases.

Q8.2

1. Withdrawals from the study can distort 
the final sample to be analyzed as

compared to the random sample
obtained at the start of the trial.

2. Those who withdraw from the study
have an unknown outcome and 
therefore cannot be analyzed.

3. A general population of patients with 
the specified cancer and eligible to
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receive either the standard or the new
treatments.

4. The (expected) sample ignoring random
error that would be obtained after the 
withdrawals from the random sample
initially selected for the trial.

5. The source population is the population
cohort from which the cases would be 
derived if an appropriate cohort study
had been carried out. 

6. The study population is the expected
sample obtained from the cross-
sectional sample that is retained for 
analysis.  Alternatively, the study
population is the stable population from 
which the cross-sectional sample is 
obtained for study.

Q8.3

1. It is unlikely that women in this control
group (e.g., with cervical or ovarian
cancers) would be selectively screened
for their cancer from vaginal bleeding
caused by estrogen use.

2. Away from the null because of 
selective screening of cases but not 
controls.  This would yield too high a
proportion of estrogen users among 
cases but a correct estimate of the
proportion of estrogen users among 
controls.

3. Because those who have vaginal
bleeding from using estrogen will be 
more likely to have their benign
endometrial tumor detected than those
non-users with benign endometrial
tumors.

4. Using benign endometrial tumors as the 
control group would hopefully 
compensate for the selective screening
of cases.  However, it is not clear that
the extent of selective screening would 
be the “same” for both cases and 
controls.

5. Having a benign tumor in the 
endometrium is not readily detected
without vaginal bleeding.  Therefore,
controls with benign endometrial
tumors who use estrogen are more
likely to have their tumor detected than
would nonuser controls.

6. Towards the null because there would
be selective screening of controls but
not cases. This would yield too high a 

proportion of estrogen users among 
controls but a correct estimate of the
proportion of estrogen users among 
cases.

7. Because there is unlikely to be selective
screening in the detection of control 
cases (with other gynecological
cancers) when comparing estrogen
users to nonusers.

Q8.4

1. No, since the risk ratio for the expected
sample is 3, which equals the risk ratio
in the source population.

2. Study population, because the sample
just described gives the expected 
number of subjects obtained in the final 
sample.

3. The source is the population from 
which the initial 10% sample obtained
prior to follow-up was selected. This is 
the population of subjects from which
cases were derived.

4. There is no selection bias because the
RR=3 in the study population, the same 
as in the source population.

5. Yes, because the estimated risk ratio in 
the study population of 3.9 is somewhat 
higher than (3) in the source population
as a result of subjects being lost to
follow-up.

6. No, the risk for exposed persons is 
150/10,000 or .0150 in the source 
population and is 14/800 = .0175 in the 
sample.

7. No, the risk for unexposed persons is 
50/10,000 or .0050 in the source 
population and 4/900 or .0044 in the 
sample.

8. No.  There will only be selection bias if
loss to follow-up results in risks for 
disease in the exposed and/or 
unexposed groups that are different in
the final sample than in the original
cohort.

Q8.5

1. Workers tend to be healthier than those 
in the general population and may
therefore have a more favorable
outcome regardless of exposure status. 

2. Volunteers may have different
characteristics from person who do not
volunteer.  The study population here is
restricted to volunteers, whereas the
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source population is population-based,
e.g., a community.

3. There is lack of external validity in
drawing conclusions from a source
population of volunteers to an external
population that is population-based.

4. Yes.  Clinic-based studies may lead to
spurious conclusions because patients
from clinics tend to have more severe
illness than persons in a population-
based sample. 

Q8.6

1. incident cases, prevalent cases
2. nested case-control, hospital-based
3. high response, loss-to-follow-up
4. True
5. True – Since the “worst-case” analysis

can demonstrate that the worst amount

of bias will have a negligible effect on 
the conclusions, one could rule out 
selection bias.  However, since the
“worst-case” analysis gives us the 
“worst possible” results, we cannot 
confirm selection bias.  We cannot be 
sure that our results will be as extreme
as “worst-case” results.

6. 32, 22, 110, 106
7. 3.9
8. 1.3
9. Yes
10. No - A worst-case analysis gives the 

“worst possible” results.  Therefore, we 
cannot be sure that the lost-to-follow-
up results that “actually” occur are as
extreme as the worst-case “possible”.



CHAPTER 9
ARE THE DATA CORRECT?  INFORMATION BIAS 

Information bias is a systematic error in a study that arises because of incorrect
information obtained on one or more variables measured in the study. The focus
here is on the consequences of having inaccurate information about exposure and
disease variables that are dichotomous, that is, when there is misclassification of
exposure and disease that leads to a bias in the resulting measure of effect. We 
consider exposure and disease variables that are dichotomous.  More general
situations, such as several categories of exposure or disease, continuous exposure
or disease, adjusting for covariates, matched data, and mathematical modeling
approaches, are beyond the scope of the activities provided below.

What is Misclassification Bias? 

The two-way table to the right
shows the correct classification of 
16 subjects according to their true 
exposure and disease status. Let's
see what might happen to this 
table and its corresponding odds 
ratio if some of these subjects
were misclassified.

Suppose that 3 of the 6 
exposed cases, shown here in the 
lighter shade, were actually
misdiagnosed as exposed non-cases. Suppose further that one of the two 
unexposed cases was also misclassified as an unexposed non-case.  To complete
the misclassification picture, we assume that two of the four truly exposed non-
cases and two of the four truly unexposed non-cases were misclassified as cases. 

The misclassified data are the data that would actually be analyzed because
these data are what is observed in the study. So, what is the odds ratio for these
data and how does it compare to the correct odds ratio? The odds ratio for the
misclassified data is 1; the correct odds ratio is 3. Clearly, there is a bias due to 
misclassification. The misclassified data suggests no effect of exposure on disease,
but the true effect of exposure is quite strong.

Summary

If subjects are misclassified by exposure or disease status, the effect measure,
e.g., the OR, may become biased
Bias from misclassification can occur if the effect measure for the correctly 
classified data is meaningfully different from the estimated effect actually
observed in the misclassified data.
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Subjects are misclassified if their location in one of the four cells of the
correctly classified data changes to a different cell location in the 
(misclassified) data that is actually observed.

Misclassifying Disease Status 

What are the reasons why a 
subject, like an exposed
case, might be misclassified
on exposure or disease
status?  In particular, why
might subjects be
misclassified from diseased 
to non-diseased or from non-
diseased to diseased status?
First, a subject may be 
incorrectly diagnosed. This
can occur because of limited
knowledge about the disease, because the diagnostic process is complex, because
of inadequate access to state-of-the-art diagnostic technology, or because of a
laboratory error in the measurement of biologic markers for the disease. In 
addition, the presence of disease may be not be detected if the disease is sub-
clinical at the time of physical exam. Misdiagnosis can occur because of a
detection bias if a physician gives a more thorough exam to patients who are
exposed or have symptoms related to exposure.

Another source of error occurs when disease status is obtained solely by self-
report of subjects rather than by physician examination. In particular, a subject
may incorrectly recall illness status, such as respiratory or other infectious illness,
that may have occurred at an earlier time period. A subject may be reluctant to be
truthful about an illness he or she considers socially or personally unacceptable.
Finally, patient records may be inaccurate or coded incorrectly in a database.

The table to the right summarizes
misclassification of disease status. The columns of
the table show true disease status. The rows of the 
table show classified disease status. We call this 
table a misclassification table.

Suppose the following numbers appear in the
table:
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Study Questions (Q9.1) The following questions refer to the previous table.
1. How many truly diseased persons are misclassified?
2. How many truly non-diseased persons are correctly classified?
3. The percentage of truly diseased persons correctly classified?
4. The percentage of truly non-diseased persons correctly classified?

Summary

Misclassification of disease status may occur from any of the following
sources: Incorrect diagnosis, subject self-report, and coding errors 
A misclassification table provides a convenient summary of how disease status
can be misclassified from true disease status to observed disease status. 

Misclassifying Exposure Status 

How can subjects be misclassified from
exposed to unexposed or from unexposed
to exposed?  Misclassification of exposure
status can occur because of imprecise
measurement of exposure. This can result
from a poorly constructed questionnaire
or survey process that doesn't ask the right
questions, or from a faulty measuring device or observation technique.

tudy QueS stions (Q9.2) A primary criticism of studies evaluating whether living
near power lines increases one’s risk for cancer is the quality of measurements of 
personal exposure to electromagnetic fields (EMFs). Which of the following
“reasons” for imprecise measurement of personal EMF exposure do you think are
True or False?

1. Measurements are usually made at only one time point and/or in one location

2. easuring EMF exposure are not available.
ission lines near

4. ents over time are needed.
 tools is

6.  individual related to EMF exposure are difficult to 

or may occur when exposure is determined solely from self-report
by

t self-report may also be incorrect because of reluctance of subjects to 
be

of a residence.
Instruments for m

3. Methods for measuring distances and configuration of transm
residences are poorly developed.
Better methods for monitoring measurem

5. Measuring EMF exposure from intermittent use of appliances or
difficult to measure.
Mobility patterns of
measure.

Exposure err
subjects, particularly when recalling prior exposure status. This is typically a 

problem in case-control studies, since cases may be more motivated to recall past
exposures than controls. Recall error can also occur in cohort studies. For
example, in the Sydney Beach Users study described in Chapter 2, subjects were 
asked to report their swimming status seven days after swimming may have 
occurred.

Subjec
truthful in reporting exposures relating to behaviors considered socially



142 Chapter 9.  Are The Data Correct?  Information Bias

unacceptable.  This problem often occurs in studies that measure food intake, 
sexual behavior, and illegal drug-use.

A third source of error in classifying exposure is interviewer bias. In particular,
an

tions (Q9.2) continued

interviewer may probe more thoroughly about exposure for cases than for
controls.

tudy QuesS Consider a case-control study of the effect of

0. Why might there be misclassification of exposure, i.e., oral contraceptive use,

11. o be the direction of such misclassification bias?

Finally, exposure data can be coded incorrectly in a
dat

Study Questions (Q9.2) continued

oral contraceptive use on the development of venous (i.e., in the vein) thrombosis
(i.e., clotting).  (Note: there are no questions numbered 7 to 9.)

1
in such a study?
What you expect t

12. How might you avoid such bias?

abase.  The table to the right summarizes exposure
status misclassifications. The columns of the table show 
true exposure status. The rows of the table show 
classified exposure status. 

The questions are

rsons are misclassified?

15. age of truly exposed persons correctly cl
?

ummary

ification of exposure status may occur from any of the following

a convenient summary of how exposure can 

Example: Misclassifying Both Exposure and Disease Status 

isclassification can

recent year. The study objective was to determine

based on the table to the right.
13. How many truly exposed pe
14. How many truly unexposed persons are correctly

classified?
The percent assified?

16. The percentage of truly unexposed persons correctly classified

S

Misclass
sources: Imprecise measurement, subject self-report, interviewer bias, and
incorrect coding of exposure data
A misclassification table provides
be misclassified from true exposure to observed exposure.

M
sometimes occur for both
exposure and disease in the 
same study.  For example, the 
table to the right considers
hypothetical cohort data from
subjects surveyed on the
beaches of Sydney, Australia 
during the summer months of a
if those who swam at the beach were more likely to become ill than those who did
not swim.
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Subjects were asked to recall one week later whether they had swum for at
lea

ppose of the 367 subjects who got ill and swam, only 264 reported that they 
got

bjects who truly got ill but did not swim,
130

ing in this way, the
tabl

up

tudy Questions (Q9.3)

st a half an hour on the day they were interviewed on the beach and whether
they had developed a cold, cough or flu during the subsequent week.  Since both
exposure and illness information were obtained by subjects' recall, it is reasonable
to expect some subjects may incorrectly report either swimming or illness status or
both.

Su
 ill and swam, and 30 subjects reported that they got ill but didn't swim, 66

subjects reported that they did not get ill but swam, and 7 subjects reported that
they did not get ill and did not swim.

Suppose, further, that of the 233 su
 reported this correctly, but 56 reported that they got ill and swam, 14 reported

that they did not get ill but swam, and 33 reported that they did not swim and did
not get ill.

Continu
e can be further revised to

describe how the 300 subjects
who truly did not get ill and
swam were misclassified. The
table can also be revised to 
describe the misclassification
of the 1100 subjects who truly did

We can now separately sum
not get ill and did not swim.

the 4 frequencies within
each of the 4 cells in the table 
of observed data to obtain a
summarized table of the
observed data as shown here:

S

ratio for the observed data?
r true data)

sure and disease, will the bias always

ummary

1. What is the estimated risk
2. Why is there misclassification bias? (Hint: RR=3.14 fo
3. What is the direction of the bias?
4. If there is misclassification of both expo

be towards the null?

S

ification can sometimes occur for both exposure and disease in the

of such misclassification is likely if both the exposure variable

isease, the observed

Misclass
same study. 
An example
and the disease variable are determined by subject recall. 
When there is misclassification of both exposure and d
data results from how the cell frequencies in each of the four cells of the 2x2 
table for the true data get split up into the four cells of the 2x2 table for the
observed data.
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Misclassification Probabilities – Sensitivity and 

Specificity

This misclassification table describes how a disease D may be misdiagnosed.
Twelve subjects who were truly diseased
were misclassified as non-diseased and 14 
subjects who were truly not diseased were
misclassified as diseased. 48 subjects who
were truly diseased and 126 subjects who
were truly non-diseased were correctly
classified.

In a perfect world, we would
hope that no one was misclassified,
that is, we would want our table to
look like the table below.  Then the
proportion correctly classified as
diseased would be 1 and the
proportion correctly classified as non-diseased is also 1.

In the real world, however, these 
proportions are not equal to one. In
our example, the proportion of truly
diseased correctly classified as 
diseased is .80 (48/60). The
proportion of truly non-diseased correctly classified as non-diseased is .90
(126/140).

The first of these proportions is 
called the sensitivity. Generally, the
sensitivity for misclassification of 
disease status is the probability that a
subject is classified as diseased given
that he or she is truly diseased.

The second of these proportions is 
called the specificity. Generally the
specificity for misclassification of 
disease is the probability that a subject is classified as not diseased given that he or
she is truly not diseased.

The ideal value for both sensitivity and specificity is l.0 or 100%. We can also
make use the misclassification table for exposure status to define sensitivity and
specificity parameters.
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Study Questions (Q9.4) Consider the numbers in the following misclassification
table for exposure.

1. What is the sensitivity for misclassifying exposure?
2. What is the specificity for misclassifying exposure?
3. Do your answers to the previous questions suggest that there should be some

concern about misclassification bias?

Summary

The underlying parameters that must be considered when assessing
information bias are called sensitivity and specificity.
Sensitivity gives the probability that a subject who is truly diseased (or
exposed) will be classified as diseased (or exposed) in one’s study.
Specificity gives the probability that a subject who is truly non-diseased (or 
unexposed) is classified as non-diseased (or unexposed) in one’s study.
The ideal value for both sensitivity and specificity is 1, or 100%, which means
there is no misclassification.

Nondifferential Misclassification 

This table describes the
true exposure and disease
status for 2000 subjects in
a hypothetical case-
control study of the
relationship between diet
and coronary heart disease (CHD):

The exposure variable is the amount of fruits and vegetables eaten in an
average week, categorized as low or high, as recalled by the study subjects. The
disease variable is the presence or absence of CHD.  Suppose there is no 
misclassification of disease status, but that most subjects over-report their intake 
of fruits and vegetables because they think that diets with high amounts of fruits
and vegetables are more acceptable to the investigator. In other words, there is
misclassification of exposure status. 

The two tables that follow describe how exposure is misclassified separately
for both the CHD cases and the non-cases.
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Study Questions (Q9.5)

1. What are the sensitivity and specificity for the CHD cases?
2. What are the sensitivity and specificity for the non-cases?
3. What do these two misclassification tables have in common?

This example illustrates non-differential misclassification of exposure. This
occurs whenever the sensitivities and specificities do not vary with disease status. 
We have assumed that CHD status is not misclassified in this example. The
sensitivities and specificities for misclassifying disease are all equal to 1 regardless
of exposure group. Thus, in this example there is no misclassification of disease.

Study Questions (Q9.5) continued

4. Use the column total in both misclassification tables (i.e., 600, 400, 300, and
700) to determine the odds ratio for the correctly (i.e., true) classified data.

The row totals from each of the
misclassification tables for exposure allow us to
determine the study data that would actually be
observed as a result of misclassification.

Study Questions (Q9.5) continued

5. Why is there bias due to misclassifying exposure (Note: the correct odds ratio 
is 3.5)?

6. What is the direction of the bias?

This example illustrates a 
general rule about non-
differential misclassification.
Whenever there is non-
differential misclassification
of both exposure and disease,
the bias is always towards the
null, provided that there are 
no other variables being
controlled that might also be 
misclassified.

Summary

Nondifferential misclassification of disease: the sensitivities and specificities
for misclassifying disease do not differ by exposure.
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Nondifferential misclassification of exposure: the sensitivities and
specificities for misclassifying exposure do not differ by disease.
Nondifferential misclassification of both disease and exposure leads to a bias

towards the null.

What Happens if a Variable other than Exposure or Disease Gets Misclassified?

Greenland (1980) showed that if there is non-differential misclassification of exposure and 
disease, but also misclassification of a covariate, then there is no guarantee that there will 
be a bias towards the null.  However, if misclassification of exposure and disease is non-
differential and a covariate that is not misclassified is controlled in the analysis (say, by
stratification), then both stratum-specific and summary measures that adjust for the
covariate will be biased towards the null.

Other issues about misclassification of covariates were also addressed as follows:

Misclassification of exposure can spuriously introduce effect modification (described in
Chapter 10) by a covariate.

Misclassification of a confounder (also described in Chapter 10) can reintroduce
confounding in a summary estimate that controls for confounding using misclassified
data.

Differential Misclassification 

This table describes the true exposure
and disease status for the same 2000 
subjects described in the previous
section for a hypothetical case-control
study of the relationship between diet
and coronary heart disease: 

Suppose, as before, there is no 
misclassification of disease status, but 
that subjects over-report their intake of
fruits and vegetables because they think that diets with high amounts of fruits and
vegetables are more acceptable to the investigator.  Suppose also that a CHD case, 
who is concerned about the reasons for his or her illness, is not as likely to over-
estimate his or her intake of fruits and vegetables as is a control. Here are the two 
tables that describe how exposure is misclassified for both the CHD cases and
controls:

Study Questions (Q9.6)

The following questions are based on the previous two tables.
1. What are the sensitivity and specificity for the CHD cases?
2. What are the sensitivity and specificity for the non-cases?
3. Is there non-differential misclassification of exposure?
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This example illustrates
differential misclassification of 

exposure. This occurs because the
sensitivities and specificities for 
misclassifying exposure vary with
disease status.

The row totals from each of the 
misclassification tables for exposure allow us
to determine the study data that would actually
be observed as a result of misclassification:

Study Questions (Q9.6) continued

The following questions refer to the previous table and the table with the true
exposure information shown previously.

4. Is there a bias due to misclassifying exposure? (Note, the correct OR is 3.5.)
5. What is the direction of the bias, if any?

In general, when there is 
differential misclassification of
either exposure or disease, the bias
can be either towards the null or
away from the null (see below
for an example of bias away from
the null).

Summary

With differential misclassification, either the sensitivities and specificities for
misclassifying D differ by E or the sensitivities and specificities for 
misclassifying E differ by D.
Differential misclassification of either D or E can lead to bias either towards
the null or away from the null.

Quantitative Assessment of Misclassification Bias 

Let's assume that we know there
is a likely misclassification of 
exposure or disease that could
bias our study results. How can
we quantitatively correct for such
bias to obtain an adjusted effect
measure that is no longer biased?

To quantify bias, we need to
adjust the cell frequencies for the
observed data to obtain a two-



A Pocket Guide to Epidemiology 149

way table of corrected cell frequencies from which we can compute a corrected
effect measure. We can then compare the observed and possibly biased estimate
with our corrected estimate to determine the extent of the possible bias and its 
direction.

Study Questions (Q9.7) Use the information in the table below about the
observed and corrected effect measures to determine whether the observed bias is 
towards or away from the null.

Question

Number

Observed

Effect

Corrected

Effect

Towards the 

null?

Away from

the null?

a. 2.2 1.7

b. 2.5 3.8

c. 4.0 6.1

d. 4.1 1.2

e. 0.5 0.9

f. 0.8 0.9

g. 0.3 0.2

h. 0.7 0.1

Suppose we have determined that whatever bias that exists results from
nondifferential misclassification of exposure or disease.
1. Do we need to obtain an adjusted effect measure that corrects for such bias?
2. How can we determine whether or not misclassification is nondifferential?

Suppose we have determined that there is differential misclassification of exposure
or disease.
3. Do we need to obtain an adjusted effect measure that corrects for possible

misclassification bias?

In presentations on Lesson Pages 9-3 and 9-4 of the ActivEpi CD, we give
formulae for obtaining corrected estimates that consider non-differential or
differential misclassification of either exposure or disease variables. Because these
formulae are complex computationally, we do not provide them in the text below;
the interested reader may work through the activities on 9-3 and 9-4 in the
ActivEpi CD for further details.

In any case, each of these
formulae require reliable 
estimates of sensitivity and 
specificity.  How can we 
determine the sensitivity and
specificity if all we have are the
observed data?  One option is to
take a small sample of the
observed data for which true
disease and exposure status is 
determined, so that sensitivities
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and specificities can be estimated (a drawback to this approach is the sample might
be too small to give reliable values for sensitivity and specificity).

Another option is to determine sensitivity and specificity parameters from
separate data obtained in a previous study involving the same variables.  A third
option is simply to make an educated guess of the sensitivity and specificity
parameters from your clinical or other knowledge about the study variables.  A
fourth option is to carry out what is often referred to as a sensitivity analysis with 
several educated guesses to determine a range of possible biases.

Study Questions (Q9.7) continued Consider the following results of a sensitivity
analysis for correcting for misclassification that is assumed to be nondifferential:

Observed OR Sensitivity? Specificity? Corrected OR

1.5 80% 80% 3.5
1.5 80% 90% 2.5
1.5 90% 80% 2.5
1.5 90% 90% 1.8

4. Why do the observed results compared to the corresponding corrected results
illustrate a bias that is towards the null?

5. Which values of sensitivity and specificity are associated with the most bias?
6. Which values of sensitivity and specificity are associated with the least bias?
7. Based on the sensitivity analysis described above, how might you decide

which corrected OR is “best”?

Summary

We can correct for misclassification bias by computing an adjusted effect
measure from a two-way table whose cell frequencies are corrected from the
misclassification found in observed cell frequencies.
The correction requires accurate estimation of sensitivity and specificity
parameters.
Options for estimating sensitivity and specificity:

o A sub-sample of the study data
o A separate sample from another study
o A questimate based on clinical or other theory/experience
o A sensitivity analysis that considers several guestimates

Diagnostic Testing and Its Relationship to 

Misclassification

Diagnostic Test Studies 

In clinical medicine, studies concerned with misclassification of disease are
usually called diagnostic test studies. The primary goal of such a study is to
evaluate the performance of a test for diagnosing a disease condition of interest.
Suppose, for example, that the disease condition is deep vein thrombosis, or DVT.
In a diagnostic study for DVT, the clinician targets only patients with a specific
symptom, for example "acute leg swelling" and then performs both the diagnostic
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test, typically an ultrasound, and the gold standard procedure, typically an x-ray
venogram, on these patients. Here are the results of such a diagnostic test study in
the form of a misclassification table. 

Using the diagnostic test, the disease
classification status that is determined
for a given patient is called the test

result, and is labeled as positive “+” or 
negative “-“ on the rows of the table.
The procedure used to define true 
disease is called the gold standard, however imperfect it may be. In the
misclassification table, the results from using the gold standard are labeled on the
columns of the table.  Typically, the gold standard is a test that is more detailed,
expensive, or risky than the diagnostic test used by the physician. The gold
standard might even require prolonged follow-up of the patient if the disease is
expected to eventually declare itself, post-mortem examination, or a measure
combining more than one strategy, sometimes in complex ways tailored to the
specific disease.

Using the information in the misclassification table, the performance of a 
diagnostic test can be evaluated using several important measures, including the
sensitivity, the specificity, and the prevalence.  Recall that sensitivity describes
the test's performance in patients who truly have the disease, and is defined as the
conditional probability of a positive test result given true disease, i.e.: 

P(Test + | True +) 

Study Questions (Q9.8)

1. What is the sensitivity of the test in the above table?
2. If the sensitivity had been 0.99, what could you conclude about a truly

diseased patient who had a negative test result?

Specificity describes the tests performance among patients who are truly
without the disease. It is defined as the conditional probability of a negative test
result given the absence of disease, P(Test - | True -).

Study Questions (Q9.8) continued

3. What is the specificity of the test?
4. If the specificity had been .99, what would you conclude about a truly

nondiseased patient who had a positive test result?

Prevalence is calculated as the proportion of patients in the study sample
who truly have the disease, P(True +). If little is known about a patient, disease
prevalence in a diagnostic test study is the best estimate of pre-test probability that
the patient has the disease.

Study Questions (Q9.8) continued

5. What is the prevalence of true disease from these data?
6. Based on the sensitivity, specificity, and prevalence calculations above, do

you think that the test is a good diagnostic tool for DVT?  Explain briefly. 

Although the three measures, sensitivity, specificity, and prevalence provide
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important summary information about the performance of the diagnostic test, a
more useful measure of overall performance is called the predictive value. It is 
described in the next section.

Summary

In clinical medicine, studies concerned with misclassification of disease are 
usually called diagnostic test studies.
The purpose of a diagnostic test study is to evaluate test performance rather
than to adjust for information bias.
The procedure used to define true disease is called the gold standard.
In a diagnostic study, the clinician targets patients with a specific symptom and
then performs both the diagnostic test and the gold standard procedure on these
patients.
The performance of a diagnostic test can be evaluated using several important
measures, including sensitivity, specificity, and prevalence.
A more useful measure of the performance of a diagnostic test is provided by
the predictive value.

Screening Tests

A second type of clinical study concerned with misclassification is called a screening test.
In contrast to a diagnostic test, a screening test targets a broad population of asymptomatic
subjects to identify those subjects that may require more detailed diagnostic evaluation. The
subjects in a screening test have not gone to a physician for a specific complaint.

Members of the general public are typically invited to undergo screening tests of 
various sorts to separate them into those with higher and lower probabilities of disease.
Those with higher probabilities are then urged to seek medical attention for definitive
diagnosis.  Those with lower probabilities receive no direct health benefit because they do
not have the disease condition being screened.  Also, depending on invasiveness of the
screening test and/or the disease condition being targeted, persons under going screening
may suffer risks as well as face some inconvenience, anxiety, personal cost, and sometimes
discomfort, e.g., as with the use of a colonoscopy to screen for bowel cancer.

The Predictive Value of a Diagnostic Test 

The probability of true disease status for an individual patient given the result of a 
diagnostic test is called the test's predictive value. The predictive value is 
particularly useful to the clinician for individual patient diagnosis because it
directly estimates the probability that the patient truly does or does not have the
disease depending on the results of the diagnostic test. That's what the clinician
wants to know.

Study Questions (Q9.9) Suppose T+ denotes the event that a patient truly has a
disease condition of interest, whereas D+ denotes the event of a positive diagnostic
test result on the same patient.

1. Which of the following two probability statements describes sensitivity and
which describes predictive value?

A. P(T+|D+)    B. P(D+|T+)
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The predictive value can be obtained directly from the misclassification table
generated by a diagnostic test study.  Because there are two possible results for a
test, there are two different predictive values. The probability of actually having
the disease when the test is positive is called the positive predictive value, and is
denoted as PV+. The
probability of actually not
having the disease if the test is
negative is the negative

predictive value, and is
denoted as PV-. Both PV+ and
PV- are proportions. The closer
these proportions are to 1, the
better the test's predictive
performance.

The positive predictive value is calculated as 
the number of true positive results divided by all 
positive results.

Study Questions (Q9.9) continued

2. What is PV+ for the above table?

The positive predictive value is often referred to as the post-test probability

of having disease. It contrasts with prevalence, which gives the average patient's
pre-test probability of having disease.

Study Questions (Q9.9) continued

3. Based on the data in the misclassification table, what is the estimate of the
average patient’s probability of having DVT prior to performing an
ultrasound?

4. Has the use of an ultrasound improved disease diagnosis for persons with
positive ultrasound results?  Explain briefly. 

The negative predictive value is the number of
true negative results divided by the total number of 
subjects with negative test results.

Study Questions (Q9.9) continued

5. What is PV- for these data?
6. Based on the data in the misclassification table, what is the estimate of the

average patient’s probability of not having DVT prior to performing an
ultrasound?

7. Has the use of an ultrasound improved disease diagnosis for persons with
negative ultrasound results?  Explain briefly.

The prevalence of true disease in a diagnostic test study can greatly influence
the size of the predictive values obtained. To illustrate this, we now consider a
second misclassification table for a different group of patients who have presented
to their clinician with pain but without swelling in their leg.
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Study Questions (Q9.9) continued

8. What are the sensitivity, specificity, and prevalence in the table?
9. In the previously considered misclassification table, the sensitivity, specificity,

and prevalence were 0.80, 0.90, and 0.30, respectively.  How do these values
compare with the corresponding values computed in the previous question?

10. What are the values of PV+ and PV- in the above table?
11. In the previously considered misclassification table, PV+ and PV- were .77 and

.91, respectively, and the prevalence was .30.  How do these values compare
with the corresponding predicted values computed in the previous question?

12. What is the moral of this story relating predictive value to disease prevalence?

Summary

The predictive value (or post-test probability) is the probability of true disease
status given the result of a diagnostic test. 
The predictive value can be obtained directly from the misclassification table
generated by a diagnostic test study.
The probability of disease when the test is positive is called the positive
predictive value, and is denoted as PV+ 
The probability of disease when the test is negative is called the negative
predictive value, and is denoted as PV-. 
PV+ = # true positives / all positive
PV- = # true negatives / all negatives
The closer PV+ and PV- are to 1, the better the test. 
The prevalence of true disease in a diagnostic test study can greatly influence
the size of the predictive value. 

Quiz (Q9.10) For the classification table shown on
the right, determine each of the following: 

1. What is the sensitivity? ???

2. What is the specificity? ???

3. What is the prevalence of the disease? ???

4. What is the positive predictive value? ???

Choices: 10% 33.3% 36.7% 81.8% 90%
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The sensitivity and specificity for the
classification table shown on the right are still
90% as in the previous questions. For this table,
answer each of the following:

5. What is the prevalence of the disease? ???

6. What is the positive predictive value? ???

7. The prevalence in this table is smaller than in the previous table; therefore, 
the positive predictive value is ??? than in the previous table. 

Choices: 16.7% 64.3% 90% larger smaller

Once again, the sensitivity and specificity for the
classification table shown on the right are 90%. For
this table, answer each of the following:

8. What is the prevalence of the disease? ???

9. What is the positive predictive value? ???

10. The prevalence in this table is smaller than in the previous two tables,
therefore, the positive predictive value is ??? than in the previous two tables.

11. These results illustrate the fact that if the prevalence is small, the predictive
value can be quite ??? even if the sensitivity and specificity parameters are 
quite ???

Choices: 10%  36.7% 50% high larger small smaller

Nomenclature
Misclassification tables for disease and exposure

Misclassification table for disease:

Truth

D Not D

Classified D
Not D

Misclassification table for exposure:
Truth

E Not E

Classified E
Not E

Observed (misclassified) and corrected tables

Observed (i.e., misclassified) Data
E Not E

D a b
Not D c d

Corrected (i.e., adjusted) Data
E Not E

D A B
Not D C D
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D Truly has disease
D Classified as having disease
E Truly exposed
E Classified as exposed
Not D Truly does not have disease
Not D Classified as not having disease
Not E Truly not exposed
Not E Classified as not exposed

R̂O Odds ratio from observed data = ad/bc

adjR̂O Odds ratio from corrected or adjusted data = AD/BC

R̂R Risk ratio from observed data = [a/(a+c)]/[b/(b+d)]

adjR̂R Risk ratio from corrected or adjusted data = [A/(A+C)]/[B/(B+D)]

Sensitivity Of those truly with the characteristic, proportion correctly classified
as having characteristic; for disease, Pr(D |D); for exposure, Pr(E |E)

SeD Sensitivity of disease misclassification
SeE Sensitivity of exposure misclassification
SpD Specificity of disease misclassification
SpE Specificity of exposure misclassification
Specificity Of those truly without the characteristic, proportion correctly 

classified as not having the characteristic; for disease, P(not D |not
D); for exposure, P(not E |not E). 
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Answers to Study Questions and Quizzes
Q9.1

1. 2
2. 7
3. 100 x (6/8) = 75%
4. 100 x (7/10) = 79%

Q9.2

1. False.  Typically, several times and 
locations are used in the same
residence, and a time-weighted average
(TWA) is often calculated.

2. False.  Good instrumentation for 
measuring time-weighted average has
been available for some time.

3. False.  A system of wire codes to 
measure distance and configuration has
been used consistently since 1979 to 
rank homes crudely according to EMF 
intensity.  However, the usefulness of 
this system for predicting past exposure
remains an open question.

4. True
5. True
6. True
(Note: there are no questions 7 to 9) 
10. Interviewer bias.  Subjects known to 

have experienced a venous thrombosis
might be probed more extensively than
controls for a history of oral 
contraceptive use. 

11. Away from the null.  The proportion of
exposed among controls would be less 
than it should have been if both cases 
and controls were probed to the same 
extent.  Consequently, the odds ratio in
the misclassified data would be higher
than it should be. 

12. Keep the interviewers blind to case-
control status of the study subject.

13. 5
14. 70
15. 100 x (95/100) = 95% 
16. 100 x (70/80) = 87.5%
Q9.3

1. The estimated risk ratio for the
observed data is (380/1000)/(240/1000)
= 1.58.

2. Because the observed risk ratio of 1.58 
is meaningfully different than the true 
(i.e., correct) risk ratio of 3.14.

3. Towards the null, since the biased
estimate of 1.58 is closer to the null
value than is the correct estimate.

4. No way to tell from one example, but
the answer is no, the bias might be 
either towards the null or away from the 
null.

5. The observed OR of 2.6 that results 
from misclassifying exposure is
meaningfully different than the true 
odds ratio of 3.5.

6. The bias is towards the null.  The biased
OR estimated of 2.6 is closer to the null
value of 1 than is the correct OR.

Q9.4

1. Sensitivity = 720 / 900 = .8 or 80%
2. Specificity = 910 / 1100 = .83 or 83% 
3. Yes.  Both sensitivity and specificity

are smaller than one.  However, without
correcting for the bias, it is not clear
that the amount of bias will be large. 

Q9.5

1. Sensitivity = 480/600 = .80 or 80% and
Specificity = 380/400 = .95 or 95%.

2. Sensitivity = 240/300 = .80 or 80% and
Specificity = 665/700 = .95 or 95%.

3. The sensitivities for CHD cases and
non-cases are equal.  Also, the 
specificities for CHD cases and non-
cases are equal.  The sensitivity
information indicates that 20% of both
cases and non-cases with low intake of
fruits and vegetables tend to over-
estimate their intake.  The specificity
information indicates that only 5% of
both cases and non-cases with high
intake tend to under-estimate their
intake.

4. In the correctly classified 2x2 table,
a=600, b=400, c=300, and d=700, so 
the estimated odds ratio is ad/bc = (600 
x 700) / (400 x 300) = 3.5.

5. The observed OR of 2.6 that results 
from misclassifying exposure is
meaningfully different than the true 
odds ratio of 3.5.

6. The bias is towards the null.  The biased
OR of 2.6 is closer to the null value of 1
than the correct OR. 
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Q9.6

1. Sensitivity = 580/600 = .97 or 97% and 
Specificity = 380/400 = .95 or 95%.

2. Sensitivity = 240/300 = .80 or 80% and 
Specificity = 665/700 = .95 or 95%.

3. No.  Although the specificities for
cases and non-cases are equal (i.e., 
95%), the sensitivity for the cases
(97%) is quite different from the 
sensitivity for the non-cases (80%).
This difference in sensitivities indicates
that cases with low intake of fruits and 
vegetables are less likely to over-
estimate their intake than non-cases.

4. Not much.  The observed OR of 3.95
that results from misclassifying
exposure is slightly higher than the true
odds ratio of 3.50.

5. The bias is slightly away from the null.
The biased OR of 3.95 is further away
from the null value of 1 than is the
correct OR of 3.5. 

Q9.7

a) Away
b) Towards
c) Towards
d) Away
e) Away
f) Away
g) Towards
h) Towards
1. It depends.  We know that the bias 

must be towards the null. If the
direction of the bias is all that we are
interested in, then we do not need to
correct for the bias.  However, if we 
want to determine the extent of the bias 
and to obtain a quantitative measure of
the true effect, then we need to correct
for the bias. 

2. We can either reason that
misclassification is nondifferential 
from our knowledge or experience with
the exposure and disease variables of
our study, or we can base our decision
on reliable estimates of the sensitivity
and specificity parameters.

3. It depends.  The bias may be either
towards the null or away from the null.
We might be able to determine the
direction of the bias by logical
reasoning about study characteristics.
Otherwise, the only way we can

determine either the extent or direction
of the bias is to compare a corrected
estimate with an observed estimate.

4. The biased (i.e., misclassified) observed
odds ratio is closer to the null than the
corrected odds ratio.

5. The greatest amount of bias is seen with
the observed OR is 1.5 compared to the 
corrected OR of 3.5, which occurs
when both the sensitivity and specificity
are 80%.

6. The bias is smallest when the correct
OR is 1.8, which results when both
sensitivity and specificity are 90%.

7. One way to decide is to choose the
corrected OR corresponding to the most 
realistic set of values for sensitivity and
specificity.  Another way is to choose 
the corrected OR (here, 3.5) that is most
distant from the observed OR. A third 
alternative is to choose the corrected
OR that changes least (here, 1.8) from
the observed OR.

Q9.8

1. Sensitivity = 48 / 60 = 0.80.
2. The patient is very unlikely to have the

disease, since the probability of getting
a negative test result for a patient with
the disease is.01, which is very small.

3. Specificity = 126 / 140 = 0.90 
4. The patient is very likely to have the

disease, because the probability of
getting a positive result for a patient 
without the disease is .01, which is very 
small.

5. Prevalence of true disease = 60 / 200 =
0.30.

6. Cannot fully answer this question.  Both
the sensitivity and specificity are
relatively high at .80 and .90, but the 
prevalence is only 30%. What is
required is the proportion of total
ultrasound positives that truly have
DVT, which in this study is 48 / 62 =
0.77, which is high but not over .90 or 
.95.

Q9.9

1. Choice A is the predictive value and
Choice B is sensitivity.

2. PV+ = 48 / 62 = 0.77
3. Based on the table, the prior probability

of developing DVT is 60 / 200 = 0.30,
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which is the estimated prevalence of 
disease among patients studied. 

4. Yes, the prior probability was 0.30, 
whereas the (post-test) probability 
using an ultrasound increased to 0.77 
given a positive result on the test. 

5. PV- = 126 / 138 = 0.91 
6. Based on the table, the prior probability 

of not developing DVT is 140 / 200 = 
0.70, which is 1 minus the estimated 
prevalence of disease among patients 
studied.

7. Yes, the prior probability of not 
developing DVT was 0.70 whereas the 
(post-test) probability of not developing 
DVT using an ultrasound increased to 
0.91 given a negative test result. 

8. Sensitivity = 16 / 20 = 0.80, specificity 
= 162 / 180 = 0.90, prevalence = 20 / 
200 = .10. 

9. Corresponding sensitivity and 
specificity values are identical in both 
tables, but prevalence computed for this 
data is much lower at 0.10 than 
computed for the previous table (.30). 

10. PV+ = 16 / 34 = 0.47 and PV- = 162 / 
166 = 0.98. 

11. PV+ has decreased from 0.77 to 0.47 
and PV- has increased from 0.91 to 0.98 
whereas the prevalence has dropped 
from 0.30 to 0.10 while sensitivity and 
specificity has remained the same and 
high.

12. If the prevalence decreases, the 
predictive value positive will decrease 
and may be quite low even if sensitivity 
and specificity are high.  Similarly, the 
predictive value negative will increase 
and may be very high, even if the 
sensitivity and specificity are not very 
high.

Q9.10

1. 90%
2. 90%
3. 33.3%
4. 81.8%
5. 16.7%
6. 64.3%
7. smaller 
8. 10%
9. 50%
10. smaller 
11. small, high 



CHAPTER 10
OTHER FACTORS ACCOUNTED FOR?
    CONFOUNDING AND INTERACTION 

Confounding is a form of bias that concerns how a measure of effect  may change
in value depending on whether variables other than the exposure variable are
controlled in the analysis. Interaction/effect modification, which is different from
confounding, compares estimated effects after other variables are controlled.

The Concept of Confounding 

Confounding is an important problem for health and medical researchers whenever
they conduct studies to assess a relationship between an exposure, E, and some
health outcome or disease of interest, D.  Confounding is a type of bias that may
occur when we fail to take into account other variables, like age, gender, or
smoking status, in attempting to assess an E D relationship.

To illustrate confounding consider the results from a hypothetical retrospective
cohort study to determine the effect of exposure to a suspected toxic chemical on
the development of lung cancer for workers in a chemical industry. We will call 
the chemical TCX. The ten-year risks for lung cancer are estimated to be 0.36 for
those who were exposed to TCX and 0.17 for those who were not exposed to
TCX. The estimated risk ratio is 2.1,
which indicates that those exposed to
TCX have twice the risk for lung 
cancer as those unexposed. So far, we
have considered two variables,
exposure to TCX, and lung cancer
status, the health outcome.

We haven't yet considered any
other variables that might also have
been measured or observed on the patients in this study. For example, we might
wonder whether there were relatively more smokers among those who were
exposed to TCX than those unexposed to TCX. If so, that may explain why
workers exposed to TCX were found to have an increased risk of 2.1 compared to
unexposed workers. Those exposed to TCX may simply have been heavier
smokers and, therefore, more likely to develop lung cancer than among those not
exposed to TCX, regardless of exposure to TCX. Perhaps TCX exposure is a
determinant of some other form of cancer or another disease, but not necessarily
lung cancer.

Suppose that we categorize our study data into two smoking history categories,
non-smokers and smokers. For these tables, the estimated risk ratio is computed to
be 1.0 for non-smokers and 1.3 for smokers. Notice that these two stratum-specific
risk ratios suggest no association between exposure to TCX and the development
of lung cancer.
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When we form strata by categorizing the entire dataset according to one or 
more variables, like smoking history in our example here, we say that we are
controlling for these variables, which we often refer to as control variables.
Thus, what looks like a twofold increase in risk when we ignore smoking history,
changes to no association when controlling for smoking history.  This suggests
that the reason why workers exposed to TCX had a twofold increase in risk
compared to unexposed workers might be explained simply by noting that there
were relatively more smokers among those exposed to TCX.  This is an example
of what we call confounding, and we say that smoking history is a confounder of
the relationship between TCX exposure status and ten-year risk for lung-cancer. In 
general, confounding may be described as a distortion in a measure of association,
like a risk ratio, that may arise because we fail to control for other variables, for
example, smoking history, that might be risk factors for the health outcome being
studied. If we fail to control the confounder we will obtain an incorrect, or biased,
estimate of the measure of effect. 

Summary

Confounding is a distortion in a measure of effect, e.g., RR, that may arise
because we fail to control for other variables, for example, smoking history,
that are previously known risk factors for the health outcome being studied.
If we ignore the effect of a confounder, we will obtain an incorrect, or biased,
estimate of the measure of effect. 

Quiz (Q10.1)

1. Confounding is a ??? in a ??? that may arise because we fail to ??? other
variables that are previously known ??? for the health outcome being studied.

Choices case-control study control for distortion effect modifiers

eliminate measure of effect risk factors
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A study finds that alcohol consumption is associated with lung cancer, crude OR =
3.5. Using the data below, determine whether smoking could be confounding this
relationship.

2. What is the OR among smokers? ???

3. What is the OR among non-smokers? ???

4. Does the OR change when we control for smoking status? ???

Choices 0.01 1.0 3.5 5.4

5. Is there evidence from data shown below that smoking is a confounder of the
relationship between alcohol consumption and lung cancer? ???

Choices no yes

Crude versus Adjusted Estimates 

Confounding is assessed in epidemiologic studies by comparing the crude

estimate of effect (e.g., ) in which no variables are controlled, with an 

adjusted estimate of effect (e.g., ), in which one or more variables is 

controlled. The adjusted estimate is typically computed by combining stratum-
specific estimates into a single number.

RR̂c

RR̂a

For example, to assess confounding by smoking history in the previously
described retrospective cohort study of the effects of exposure to the chemical
TCX on the development of lung cancer, we can compare the crude risk ratio of
2.1 to an adjusted risk ratio that combines the risk ratios of 1.0 and 1.3 for the two 
smoking history categories. The method for combining these estimates into a 
single summary measure involves computing a weighted average of stratum-
specific measures of effect; see Chapter 14 on Stratified Analysis for more details.
Once we have combined these stratum specific estimates, how do we decide if
there is confounding? The data-based criterion for confounding requires the
crude estimate of effect to be different from the adjusted estimate of effect. How
different must these two estimates be to conclude that there is confounding? To
answer this question, the investigator must decide whether or not there is a
clinically important difference.

In our retrospective cohort study the adjusted estimate would be some number
between 1.0 and 1.3, which suggests a much weaker relationship than indicated by
the crude estimate of 2.1. Most investigators would consider this a clinically
important difference. Suppose the crude estimate had been 4.2 instead of 2.1, the
difference between crude and adjusted estimates would indicate even much
stronger confounding.

We can compare other crude and adjusted estimates. Suppose, for example that 
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an estimated crude risk ratio was 4.2 and the estimated adjusted risk ratio was 3.8. 
Both these values indicate an association that is about equally strong, so there is no
clinically important difference between crude and adjusted estimates.  Similarly, if 
the estimated crude risk ratio is 1.2 and the estimated adjusted risk ratio is 1.3,
both these values indicate about the same very weak or no association. So, here
again, there is no clinically important difference between these crude and adjusted 
estimates.

Risk Ratio (RR)

Clearly, deciding on what is clinically important requires a subjective decision
by the investigators. One investigator might conclude, for example, that the
difference between a 1.2 and a 1.3 is clinically important whereas another 
investigator might conclude otherwise. This problem may lead one to want to use
a test of statistical significance to decide on whether there is a difference between
the crude and adjusted estimate. However, because confounding is a validity issue,
it should not be evaluated using a statistical test, but rather by looking for a 
meaningful difference, however imprecise.

A commonly used approach for
assessing confounding is to specify, prior
to looking at one's data, how much of a
change in going from the crude to the
adjusted estimate is required. Typically, a 
10 per cent change is specified, so that if
the crude risk ratio estimate is say, 4, then
a 10% change in this estimate either up or down would be obtained for an adjusted
risk ratio of either 3.6 or 4.4. Thus, if the
adjusted risk ratio were found to be below
3.6 or above 4.4, we would say that
confounding has occurred with at least a
10% change in the estimated association.

Risk Ratio (RR)

Risk Ratio (RR)

As another example, if a 20% change is specified and the crude risk ratio is, 
say, 2.5, the adjusted risk ratio would have to be either below 2 or above 3 to
conclude that there is confounding.

Summary

Confounding is assessed by comparing the crude estimate of effect, in which
no variables are controlled, with an adjusted estimate of effect, in which one or 
more variables are controlled.
Confounding is present if we conclude that there is a clinically important or
meaningful difference between crude and adjusted estimates.
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We do not use statistical testing to evaluate confounding.
A commonly used approach for assessing confounding is to specify, prior to
looking at one’s data, how much of a change in going from the crude to the
adjusted estimate is required.

Quiz (Q10.2) A case-control study was conducted to study the relationship
between oral contraceptive use and ovarian cancer. The crude OR was calculated
as 0.77. Since age was considered a potential confounder in this study, the data
were stratified into 3 age groups as shown below.

1. The OR for the 20-39 year age group is ???

2. The OR for the 40-49 year age group is ???

3. The OR for the 50-54 year age group is ???

4. Do you think that this data provides some evidence that age is a confounder of
the relationship between oral contraceptive use and ovarian cancer? ???

Choices: 0.58 0.61 0.65 0.69 0.77 1.45 no yes

In this study described in the previous question, the crude OR was 0.77, and the
adjusted OR controlling for age was 0.64.

5. If a 15% change in the crude versus adjusted OR is specified by the
investigator as a meaningful difference, an adjusted OR less than ??? or
greater than ??? provides evidence of confounding.

6. Is there evidence of confounding? ???

7. Suppose the investigators determined that a 20% change was a meaningful
difference. Is there evidence of confounding? ???

Choices: 0.15 0.63 0.65 0.85 0.89 0.92 no yes

Quiz (Q10.3) Determine whether each of the following is True or False.
1. An adjusted estimate is a suitably chosen weighted average of the stratum

specific estimates. ???.
2. An adjusted estimate is always less than the corresponding crude estimate.

???

3. Most epidemiologists prefer to give equal weight to each stratum specific
estimate in case-control studies. .???.

4. Confounding is a validity issue and therefore, requires the use of a statistical
test to determine its significance. ???.

Use the formula below to calculate the adjusted RR for the following examples
whose stratum specific estimates are given.  (Note: Although the formula below 
gives a weighted average, the usual formula for aRR is a more complicated
“precision-based” weighted average described in Chapter 12 on Stratified 
Analysis.)



 Chapter 10.  Other Factors Accounted For?  Confounding166

5. Stratum 1: RR=1.13, w=13.1; Stratum 2: RR=1.00, w=7.7. The adjusted RR is
???.

6. Stratum 1: RR=2.25, w=31.3; Stratum 2: RR=1.75, w=5.6. The adjusted RR is
???

Choices: 1.06 1.07 1.08 1.09 1.98 2.08 2.17

Criteria for Confounding 

In addition to the data-based criterion for confounding, we must assess several a

priori criteria. These are conditions to consider at the study design stage, prior to 
data collection, to identify variables to be measured for possible control in the data
analysis.

The first a priori criterion is that a confounder must be a risk factor for the

health outcome. This criterion ensures that a crude association between exposure
and disease cannot be explained away by other variables already known to predict
the disease. Such variables are called risk factors. For example, suppose we are
studying the link between exposure to a toxic chemical and the development of 
lung cancer in a chemical industry.  Based on the epidemiologic literature on the
determinants of lung cancer, we would want to control for age and smoking status,
two known risk factors. Our goal is to determine whether exposure to the chemical
contributes anything over and above the effects of age and smoking on the
development of lung cancer.

The second criterion is that a confounder cannot be an intervening variable

between the exposure and the disease. A pure intervening variable (V) is any
variable whose relationship to exposure and disease lies entirely within the causal
pathway between exposure and disease.

Given a hypothetical scenario where saturated fat levels are measured to 
determine their effects on CHD, would we want to control for LDL levels? (Note:
use of LDL in this example might

The answer: If we control for LDL level, we essentially control for the 
saturated fat level, and we would likely find an adjusted risk ratio or odds ratio
relating saturated fat to coronary heart disease status to be close to the null value.
The intervening variable here is LDL level, and we should not control for it.

LDL

The third criterion is that a confounder

must be associated with the exposure in 

the source population being studied. By 
source population we mean the underlying
population cohort that gives rise to the
cases used in the study. Consider a study to assess whether a particular genetic
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factor, BRCAl, is a determinant of breast cancer. Age is a well-known risk factor 
for breast cancer, but is clearly not associated with the presence or absence of the
gene in whatever source population is being studied.

The third a priori criterion is therefore not satisfied. Consequently, even if by
some chance, age turned out to be associated with the gene in the study data, we
would not control for age, even though there is data-based confounding, because
age does not satisfy all a priori criteria. 

All three a priori criteria plus the data-based criterion are required for a
variable to be considered a true confounder.

Summary

A confounder must satisfy 3 a priori criteria in addition to the data-based criterion
for confounding.  These are:

A confounder must be a risk factor for the health outcome.
A confounder cannot be an intervening variable in the causal pathway
between exposure and disease.
A confounder must be related to exposure in the source population from
which the cases are derived.

Some "fine points" about risk factors 

The decision regarding which variables to include in the list of risk factors is, in practice,
rarely a clear-cut matter. Such is the case when only a small amount of literature is 
available on a given study subject. On the other hand, a large literature may be controversial
in terms of which previously studied variables are truly predictive of the disease.

Also, after data collection, but prior to the primary data analysis, the list of risk factors
may need to be re-evaluated to allow for the addition or deletion of variables already
measured but not explicitly considered for control. Variables measured for other purposes,
say in a broad study to evaluate several etiologic questions, may be added to the list of risk
factors if they were previously overlooked.

Furthermore, a surrogate of a risk factor may have to be used when the latter is
difficult to measure. For example, the number of years spent in a given job in a particular
industry is often used as a surrogate measure for the actual amount of exposure to a toxic
substance suspected of being an occupationally related carcinogen.

Some "fine points" about a priori criterion 3 

The third a priori criterion for confounding is of particular concern in case-control studies, 
where the controls are usually selected into the study after the cases have already occurred.
In such studies, it is possible that the study data are not representative of the source
population with regard to the exposure as well as other variables.

Therefore, a variable, say C, that may be not associated with exposure in the source 
population may still be associated with the exposure in the actual study data. In such a case,
criterion 3 says that the variable C cannot be considered a confounder, and should not be
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controlled, even if there is data-based confounding.
In cohort studies, the exposure status is determined before disease status has occurred, 

so that the source population is the study cohort. In such studies, a variable, C, that is not 
associated with the exposure in the study data, does not satisfy condition 3 and therefore
should not be considered a confounder.

The main difficulty in assessing the third a priori criterion concerns how to determine
the association of the suspected confounder, C, with the exposure, E, in the in the source
population. This requires some knowledge of the epidemiologic literature about the
relationship between C and E and about the source population being studied

Quiz (Q10.4) A study was conducted to assess the relationship between
blood type (O-positive and O-negative) and a particular disease. Since
age is often related to disease outcome, it was considered a potential confounder.
Determine whether each of the a priori criteria below is satisfied.

1. A confounder must be a risk factor for the health outcome. ???

2. A confounder cannot be an intervening variable between the exposure and the
disease. ???

3. A confounder must be associated with the exposure in the source population
being studied. ???

4. Can age be a confounder in this study? ???

Choices: no not satisfied satisfiedyes

Confounding in Different Study Designs 

We have seen that the assessment of confounding requires both data-based and
apriori criteria. The data-based criterion requires that the crude estimate of effect
be meaningfully different from the adjusted estimate of effect.  The adjusted
estimate of effect is computed as a weighted average of stratum-specific estimates
obtained over different categories of the potential confounder. The measure of
effect used for this comparison changes with the study design but it always 
compares a crude estimate with an adjusted one.

We have thus far only considered follow-up
studies where the measure of effect of interest is 
the risk ratio. For case-control studies, we 
compare crude and adjusted estimates of the
exposure odds ratio.  In cross-sectional studies,
we compare crude and adjusted estimates of the
prevalence odds ratio or the prevalence ratio.

Summary

The measure of association used to assess
confounding will depend on the study design.
In a follow-up study, we typically compare a crude risk ratio with an adjusted 
risk ratio. 
In a case-control study, we typically compare a crude exposure odds ratio with 
an adjusted exposure odds ratio.
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In a cross-sectional study, we typically compare a crude prevalence odds ratio
with an adjusted prevalence odds ratio, or we might use a prevalence ratio
instead of a prevalence odds ratio.
Regardless of the study design, data based confounding is assessed by
comparing a crude estimated of effect with an appropriate adjusted estimate of 
effect.

Assessing Confounding in Case-Control Studies 

These tables show results from a
case-control study to assess the 
relationship of alcohol
consumption to oral cancer. The 
tables describe the crude data
when age is ignored and the
stratified data when age has been
categorized into three groups. The 
investigators wanted to evaluate
whether there was possible
confounding due to age.

From the above data, we can conclude the following:
1. The crude odds ratio relating alcohol to oral cancer is calculated by using the

formula (a x d)/(b x c) which in this case equals 2.8
2. The stratum-specific odds ratio relating alcohol to oral cancer can be calculated 

for each strata by using the formula (a x d)/(b x c).  The stratum-specific odds
ratios are 2.2 for the 40 to 49 age group, 2.2 for the 50 to 59 age group and 2.0
for the 60 and higher age group.

3. There is data-based confounding because the crude odds ratio of 2.8 is
meaningfully different than any weighted average of stratum-specific odds
ratios, all of which are about 2.

4. There is data-based confounding because the crude odds ratio of 2.8 is
meaningfully different than any weighted average of stratum-specific odds
ratios, all of which are about 2.

5. Age is a confounder provided all three a priori conditions for confounding are 
assumed to be satisfied.

Summary

As an example to assess confounding involving the exposure odds ratio, we
consider a case-control study of the relationship between alcohol consumption
and oral cancer.
Age, a possible confounder, has been categorized into three groups.
The crude estimate of 2.8 indicates a threefold excess risk whereas the adjusted
estimate of 2.1 indicates a twofold excess risk for drinkers over non-drinkers.
The results indicate that there is confounding due to age.
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Quiz (Q10.5) These data are 
from a cross-sectional
seroprevalence survey of HIV 
among prostitutes in relation to 
IV drug use.  The crude
prevalence odds ratio is 3.59.

1. What is the estimated POR among the black or Hispanic group? ???

2. What is the estimated POR among the whites? ???

3. Which table do you think should receive more weight when computing an 
adjusted odds ratio? ???

Choices: 3.25 3.59 4.00   4.31 4.69  Black or Hispanic   White

In the study described in the previous questions, the estimated POR for the Black
or Hispanic group was 4.00 and the estimated POR for the Whites was 4.69. The
“precision-based” adjusted POR for this study is 4.16.  Recall that the crude POR
was 3.59.

4. Is there confounding? . . . .. ???

Choices    maybe   no yes

Confounding versus Interaction 

Another reason to control variables in an epidemiologic study is to assess for 
interaction. To assess interaction, we need to determine whether the estimate of
the effect measure differs at different levels of the control variable.  Consider the
results from a case-control study to assess the potential relationship between
alcohol consumption and bladder cancer. These data are stratified on race in three 
categories.

2.21

The estimated odds ratios for the three race strata and the combined strata are
computed to be 1.74, 1.72, 3.75, and 1.73. There is clear evidence of interaction
here because the effect is strong in Asians, but less so in Whites and Blacks. It is 
not clear whether there is confounding, since the value of the adjusted estimate
could vary between 1.72 and 3.75, depending on the weights assigned to the strata.
The precision-based adjusted odds ratio is computed to be 2.16, which is not very
different from the crude odds ratio of 1.73, suggesting that there is little evidence



A Pocket Guide to Epidemiology 171

of confounding.
Confounding and interaction are different concepts. Confounding compares the

estimated effects before and after control whereas interaction compares estimated
effects after control. When assessing confounding and interaction in the same
study, it is possible to find one with or without the other.

Consider the table shown here giving stratum specific and crude risk ratio
estimates from several hypothetical data sets in which one dichotomous variable is 
being considered for control. For each data set in this table, do you think there is 
interaction or confounding? Think about your answer for a few minutes, and then
continue to see the answers below.

Let us look at the data sets, one at a time. For dataset 1, there is clearly
interaction, because the estimate for stratum 1 indicates no association but the
estimate for stratum 2 indicates a reasonably strong association. There is clearly
confounding, because any weighted average of the values 1.02 and 3.50 will be
meaningfully different from the crude estimate of 6.0. 

For data set 2, again there is clearly interaction, as in data set 1. However, it is
not clear whether or not there is confounding. The value of an adjusted estimate
will depend on the weights assigned to each stratum. If all the weight is given to
either stratum 1 or stratum 2, then the crude estimate of 2.0 will differ
considerably from the adjusted estimate, but if equal weight is given to each
stratum, the adjusted estimate will be much closer to the crude estimate.
Nevertheless, the use of an adjusted estimate here is not as important as the
conclusion that the E D association is different for different strata.

Dataset 3 also shows interaction, although this time the nature of the
interaction is different from what we observed in datasets 1 and 2. Here, the two 
stratum specific estimates are on opposite sides of the null risk ratio value of 1. It 
appears there is a protective effect of exposure on disease in stratum 1, but a
harmful effect of exposure on disease in stratum 2. In this situation, the assessment
of confounding is questionable and potentially very misleading, since the
important finding here is the interaction effect, especially if this strong interaction
holds up after performing a statistical test for interaction.

In dataset 4, the two stratum specific estimates are identically equal to one, so 
there is no interaction. However, there is clear evidence of confounding, since the
crude estimate of 4.0 is meaningfully different from both stratum-specific
estimates.

In dataset 5, there is no interaction, because the stratum-specific estimates are 
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both equal to 4. There is also no confounding because the crude estimate is
essentially equal to both stratum specific estimates.

Summary

Confounding and interaction are different concepts.
Interaction considers what happens after we control for another variable.
Interaction is present if the estimate of the measure of association differs at
different levels of a variable being controlled.
When assessing confounding and interaction in the same study, it is possible to 
find one with or without the other.
In the presence of strong interaction, the assessment of confounding may be 
irrelevant or misleading.

Quiz (Q10.6)

1. In contrast to ??? when interaction is present, the estimates of the ??? differ at 
various levels of the control variable.

2. When assessing confounding and interaction in the same study, it is ??? to find
one without the other.

Choices confounding effect measure     effect modification

not possible possible precision variance

For datasets 1-3 in the table below, select the best answer from the following:

A. Confounding
B. Interaction
C. No confounding or interaction
D. Calculation error (not possible)

3. Data set 1 ? ???

4. Data set 2? ???

5. Data set 3? ???
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Interaction versus Effect Modification

The term effect modification is often used interchangeably with the term
interaction. We use effect modification from an epidemiologic point of view to
emphasize that the effect of exposure on the health outcome is modified depending
on the value of one or more control variables. Such control variables are called 
effect modifiers of the relationship between exposure and outcome. We use
interaction from a statistical point of view to emphasize that the exposure variable
and the control variable are interacting in some way within a mathematical model
for determining the health outcome.

To illustrate effect modification, consider the case-control data to assess the 
relationship between alcohol consumption and bladder cancer. The data showed
clear evidence of interaction, since the estimated effect was much stronger in
Asians than in either Blacks or Whites. This evidence suggests that race is an 
effect modifier of the relationship between alcohol consumption and bladder
cancer. Such a conclusion is supported by the epidemiologic literature, which
indicates that alcohol is metabolized in Asians differently than in other racial
groupings.

The assessment of interaction or effect modification is typically supported
using the results of statistical testing. Recall that confounding does not involve
significance testing because it is a validity issue. Nevertheless, statistical testing of
interaction is considered appropriate in epidemiologic studies because effect
modification concerns understanding the underlying causal mechanisms involved
in the E D relationship, which is not considered a validity issue. One such test
for stratified data that has been incorporated into available computer software, is 
called the Breslow-Day test

Summary

Effect modification and interaction are often used interchangeably.
If there is effect modification, then the control variable or variables involved
are called effect modifiers.
The assessment of effect modification is typically supported by statistical
testing for significant interaction.
One popular statistical test for interaction is called the Breslow-Day test. 

Is There Really a Difference between Effect Modification and Interaction?
Although the terms effect modification and interaction are often used interchangeably, there
is some controversy in the epidemiologic literature about the precise definitions of effect
modification and interaction (see Kleinbaum et al., Epidemiologic Research: Principles and
Quantitative Methods, Chapter 19, John Wiley and Sons, 1982). 

One distinction frequently made is that effect modification describes a non-

2.21
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quantitative clinical or biological attribute of a population, whereas interaction is 
typically quantitative and data-specific, and in particular, depends on the scale on 
which the "interacting" variables are measured. Nevertheless, this conceptual
distinction is often overlooked in the applied research studies.

Why Do Epidemiologists Statistically Test for Interaction but not for

Confounding?
We have previously pointed out that the assessment of confounding should not involve
statistical testing, essentially because confounding is a validity issue involving systematic
rather than random error. Moreover, if there is a meaningful difference between estimated
crude and adjusted effects, then a decision has to be made as to which of these estimates to 
report; consequently, the adjusted effect must be used, without consideration of a statistical
test, because it controls for the variables (i.e., risk factors) designated for adjustment.

Furthermore, it is not obvious, even if we wanted to statistically test for confounding, 
exactly how to properly perform a test for confounding. What is typically done, though
incorrect, is to test whether the potential confounder, e.g., age, is significantly associated
with the health outcome, possibly also controlling for exposure status. Such a test does not 
really assess confounding, since it concerns random error (i.e., variability) rather than
whether or not the crude and adjusted estimates are different in the data!

As to whether or not one should do a statistical test for assessing interaction/effect
modification, the answer is not as clear-cut. If we consider interaction as a data-based
manifestation of a population-based phenomenon (i.e., effect modification), then a
statistical test can be justified to account for the random error associated with a data-based
result. Moreover, in contrast, to the assessment of confounding, there are several 'legitimate'
approaches to testing for interaction, one of which is the Breslow-Day test for stratified data 
(described in Chapter 14) and another is a test for the significance of product terms in a
logistic model. 

Furthermore, it may be argued that the assessment of interaction/effect modification
isn't a validity issue, but rather concerns the conceptual understanding/explanation of the 
relationships among variables designated for control. The latter argument, in this author's
opinion, is a little too esoteric to accept at face value. In fact, a counter argument can be 
made that the presence of interaction/effect modification implies that the most "valid" 
estimates are obtained by stratifying on effect modifiers, provided that one can determine
which variables are the "true" effect modifiers.

As in many issues like this one that arise in the undertaking of epidemiologic
research, the best answer is probably, "it depends!" That is, it depends on the
researcher's point of view whether or not a statistical test for interaction/effect
modification is appropriate. Nevertheless, this author tends to weigh in with the
opinion that effect modification is a population phenomenon that can be assessed
using 'legitimate' statistical testing of a data-based measure of interaction.

Effect Modification – An Example 

In the early 1990's, investigators of the Rotterdam Study screened 8,000 elderly
men and women for the presence of Alzheimer's disease. One of the research 
questions was whether the presence of atherosclerosis increased the risk of this
disease.  In a cross-sectional study, the investigators found that patients with high
levels of atherosclerosis had a three times increased risk of having Alzheimer's
disease compared to participants with only very little atherosclerosis. These results
were suggestive of a link between cardiovascular disease and neurodegenerative
disease.

The investigators knew from previous research that one of the genes involved
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in lipid metabolism influences
the risk of Alzheimer's
disease. For this gene, there
are two alternative forms,
allele A and allele B. Each 
person's genetic make-up
consists of two of these
alleles. Persons with at least
one B-allele have a higher risk
of Alzheimer's disease than
persons with two A-alleles. 

The investigators hypothesized that a person's genetic make-up might modify
the association they found between atherosclerosis and Alzheimer's disease.
Therefore, they divided the study population into a group of participants who had
at least one B-allele, and a group of participants with two A-alleles.  They found
the following results: Among those with at least one B allele, the prevalence of
Alzheimer's disease for those with high levels of atherosclerosis was three times
the prevalence of those with low levels. This result is the same as the crude.
However, among those with two A-alleles, the prevalence for those with high
levels of atherosclerosis was only 1.4 times the prevalence of those with low 
levels.

These results provide an example of effect modification. Genetic make-up is
the effect modifier. The investigators showed that the extent of atherosclerosis is
associated with Alzheimer's disease, but only in those whose genetic make-up
predisposes them to the development of this disease.

Study Questions (Q10.7)

The prevalence of Alzheimer’s and the prevalence ratios for each gene group are
listed above. Answer the following assuming the group with low ATH and two A-
alleles is the reference.
1. What is the prevalence ratio comparing those with high ATH and two A-

alleles to the reference group?
2. What is the prevalence ratio comparing those with low ATH and at least one

B-allele to the reference group?
3. What is the prevalence ratio comparing those with both high ATH and at

least one B-allele to the reference group?
4. What is the difference between the three prevalence ratios you just calculated

and the two listed above?
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Quiz (Q10.8)     True or False

1. The term effect modification emphasizes that the effect of exposure
on the health outcome is modified depending on the value of one or more
control variables.

???

2. Evidence for effect modification is present when the stratum-specific measures
of association are approximately the same. ???

3. This assessment can be supported by a statistical test known as the Breslow-
Day test. ???

A measles vaccine may be highly effective in preventing disease if given after a
child is 15 months of age, but less effective if given before 15 months.
4. This example illustrates ???, where the exposure is ???, the outcome is ???,

and the effect modifier is ???.

Choices: age at vaccination   confounding effect modification

  measles measles vaccine

Nomenclature

RÔaE Estimate of the adjusted exposure odds ratio

RÔaP Estimate of the adjusted prevalence odds ratio

RP̂a Estimate of the prevalence ratio

RR̂a Estimate of an adjusted risk ratio

C Confounding variable

RÔcE Estimate of the crude exposure odds ratio

RÔcP Estimate of the prevalence odds ratio

RP̂c Estimate of the prevalence ratio

RR̂c Estimate of the crude risk ratio

D Disease
E Exposure
V Intervening variable
w or wi Weight; with a subscript i, denotes the weight for a stratum
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Answers to Study Questions and Quizzes

Q10.1

1. distortion, measure of association,
control for, risk factors

2. 1.0
3. 1.0
4. yes
5. yes – The data-based assessment of 

confounding is made by determining 
whether the crude estimate of the
measure of association is meaningfully
different from an adjusted measure of
association.

Q10.2

1. 0.69
2. 0.65
3. 0.61
4. yes – The data-based assessment of 

confounding is made by determining 
whether the crude estimate of the
measure of association is meaningfully
different from an adjusted measure of
association.

5. 0.65, 0.89 – To determine whether
there is a meaningful difference in the 
crude and adjusted estimates based on a
specified percent change required
between the crude and adjusted
estimates, multiply the crude estimate
by the specified percent change, and 
then add and subtract that value to the
crude estimated.  If the interval
obtained contains the adjusted estimate,
then there is no meaningful difference.

6. yes
7. no

Q10.3

1. True
2. False – The adjusted estimate can be

greater or less than the corresponding
crude estimate.

3. False – Most epidemiologists prefer to
give unequal weight to each stratum
specific estimate.  Weights are usually
determined based on sample size or 
precision.

4. False – Since confounding is a validity
issue, it should not be evaluated by
statistical testing, but by looking for a 

meaningful difference in the crude and 
adjusted estimates.

5. 1.08
6. 2.17

Q10.4

1. satisfied
2. satisfied
3. not satisfied – Age cannot possibly be

associated with blood type.
4. no – Age cannot possibly be associated

with blood type.
Q10.5

1. 4.00
2. 4.69
3. Black or Hispanic – You might think

that the table for the white group should
receive more weight since it has a
slightly larger sample size, however,
the table for the Black or Hispanic
group is actually more balanced.  See 
Chapter 14 for a more complete
explanation on balanced data. 

4. maybe – It depends on whether the
investigator considers the difference
between 3.59 and 4.16 a meaningful 
difference.

Q10.6

1. confounding, effect measure 
2. possible
3. B
4. A
5. D – Data set 3: Recall that the adjusted

estimate is a weighted average of the
two stratum specific estimates and
therefore, must lie between them.

Q10.7

1. 4.8% / 3.4% = 1.4 
2. 4.4% / 3.4% = 1.3 
3. 13.3% / 3.4% = 3.9
4. The two PRs above are the stratum-

specific PRs for each of the two gene 
groups.  The three calculated here use 
one group as a reference and compare 
the other three to that group. In this 
example, having low ATH and 2 A-
alleles is the reference group compared
to those having either one or both of the 
risk factors (high ATH, 1 B-allele).  To
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see how these 3 PRs can be used to 
define two different types of 
interaction, see the first asterisk on the 
ActivEpi CD lesson page (10-4) or the
box labeled Two Types of Interaction

- Additive and Multiplicative.

Q10.8

1. True

2. False – Evidence for effect
modification is present when the 
stratum-specific measures of 
association are different.

3. True
4. effect modification, measles vaccine,

measles, age at vaccination



CHAPTER  11
CONFOUNDING CAN BE CONFOUNDING -

SEVERAL RISK FACTORS 

This chapter considers how the assessment of confounding gets somewhat more 
complicated when controlling for more than one risk factor.  In particular, when 
several risk factors are being controlled, we may find that considering all risk 
factors simultaneously may not lead to the same conclusion as when considering 
risk factors separately.  We have previously (Chapter 10) argued that the 
assessment of confounding is not appropriate for variables that are effect 
modifiers of the exposure-disease relationship under study.  Consequently, 
throughout this chapter, our discussion of confounding will assume that none of 
the variables being considered for control are effect modifiers (i.e., there is no 
interaction between exposure and any variable being controlled). 

Assessing Confounding in the Presence of Interaction 
We have restricted our discussion of confounding involving several variables to the 

situation where none of the variables considered for control are effect modifiers of the 
exposure-disease relationship under study. This restriction has been made primarily for 
pedagogical reasons, since it is easier to discuss the confounding among several variables 
when there is no effect modification. 

Nevertheless, it is often quite appropriate to consider confounding even when 

interaction is present. For example, if we are only controlling for one variable, say gender, 
and we find that the odds ratio for males is 1.3 whereas the odds ratio for females is 3.6 and 
the crude odds ratio is 10.1, then both confounding and interaction are present and each 
may be addressed. A similar situation may present itself when two or more variables are 
being controlled. 

Moreover, when several variables are being controlled and there is interaction of, say, 
only one of these variables with the exposure variable, then the remaining variables 
considered for control may be assessed as potential confounders. For example, if in a cohort 
study of risk factors for coronary heart disease (CHD), it was determined that cholesterol 
level (CHL) was the only effect modifier of the exposure variable (say, physical activity 
level) among risk factors that included age, smoking status, gender and blood pressure, then 
these latter variables may still be assessed for possible confounding. 

In the latter situation, one method for carrying out confounding assessment involves 
stratifying on the effect modifier (CHL) and assessing confounding involving the other 
variables separately within different categories of CHL. 

Another approach is to use a mathematical model (e.g., using logistic regression) that 
contains all risk factors considered as main effects and also contains a product term of 
exposure with cholesterol. Those risk factors other than CHL can then be assessed for 
confounding provided the main effect of cholesterol, the exposure variable, and the product 
of exposure with CHL remains in the model throughout the assessment.
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Two Important Principles 

We have thus far considered only the control of a single confounder in an
epidemiologic study. But usually
several risk factors are identified
and measured for possible
control. Recall the a priori
criteria for confounding. When
several factors meet these 
criteria, how do we determine
which to control for in the analysis?

Suppose age and race are two risk factors identified and measured for possible
control in a case-control study
to assess an exposure disease
relationship. It is possible that
the adjusted odds ratio, which
simultaneously controls for
both age and race to give
different results from those 
obtained by controlling for each
variable separately. 

If the odds ratio that controls for all potential risk factors is our standard, then
should we always control for all risk factors? Not necessarily. It is possible that
only a subset of these factors needs to be controlled to obtain valid results.

Suppose these results were obtained from our case-control study:

Here, the odds ratio controlling for age alone is equivalent to the odds ratio
controlling for both age and race. In this case, we would not lose anything with
regards to validity by selecting only age for control.

These examples illustrate two fundamental principles about the control of
confounding when several risk factors have been identified and measured.  First, 
the joint (or simultaneous) control of two or more variables may give different
results from those obtained by controlling for each variable separately. The

adjusted estimate (denoted here as a theta hat, ) that simultaneously controls for

all risk factors under consideration should be the standard on which all 
conclusions about confounding and the identification of specific confounders must
be based.

ˆ

Second, not all the variables in a given list of risk factors may need to be 
controlled; it is possible that different subsets of such variables can correct for
confounding. We will discuss these two principles in the activities that follow.
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Study Questions (Q11.1) Suppose age, race, gender, and smoking status are the
only risk factors considered for control in assessing an exposure-disease
relationship.
1. Describe the adjusted estimate that should be the standard on which all 

conclusions about confounding and the identification of specific confounders
be based.

2. If one fails to consider all potential confounders simultaneously, what might be
some of the problems to arise?

3. If the gold standard adjusted estimate controls for all risk factors, is it possible
that a subset of such risk factors may also control for confounding?

4. Why might the use of such a subset of variables be advantageous over the use
of the adjusted estimate that controls for all potential confounders?

Summary

There are two fundamental principles about the control of confounding when
two or more risk factors have been identified and measured for possible
control.
1. The joint or simultaneous control of two or more variables can give

different results from those obtained by controlling for each variable
separately.

2. Not all variables in a given list of risk factors may need to be controlled.
Moreover, depending on the relationships among these risk factors, it is
possible that confounding can be corrected by using different subsets of risk
factors on the list.

Joint Versus Marginal Confounding 

We defined data-based

confounding involving a single
potential confounder to mean 
that there is a meaningful
difference between the estimated 
crude effect (which completely
ignores a potential confounder)
and the estimated adjusted
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effect (which controls for a potential confounder).  We now define data-based

joint confounding in the presence of 2 or more potential confounders. This occurs
when there is a meaningful difference between the estimated crude effect and the
estimated adjusted effect, which simultaneously controls for all the potential
confounding.

Study Questions (Q11.2) Suppose a follow-up study was conducted to evaluate
an E D relationship.  Age and smoking status were determined as possible
control variables.  Suppose further that:

aRR(age, smoking) = 2.4
aRR(age) = 1.7
aRR(smoking) = 1.9
cRR = 1.5

1. Is this evidence of joint confounding? Why or why not?

Suppose for a different follow-up study of the same E D relationship that once
again age and smoking status were possible control variables.  Suppose further
that:

aRR(age, smoking) = 1.4
aRR(age) = 2.4
aRR(smoking) = 2.4
cRR = 1.5

2. Is this evidence of joint confounding? Why or why not?

In contrast, we define data-

based marginal confounding to 
mean that there is a meaningful
difference between the estimated 
crude effect and the estimated
adjusted effect that controls for
only one of several potential
confounders.

Study Questions (Q11.2) continued Suppose a follow-up study was conducted
to evaluate an E D relationship. Age and smoking status were determined as 
possible control variables. Suppose that:

aRR(age, smoking) = 2.4
cRR = 1.5

3. Is there evidence of marginal confounding? Why or why not?
4. If the aRR(age) = 1.4, does this provide evidence of marginal confounding?
5. Does this mean that we should not control for age as a confounder?

Joint confounding is the primary criterion for determining the presence of data-
based confounding when all are eligible for control. Nevertheless, data-based
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marginal confounding can help determine whether some potential confounders
need not be controlled.

Study Questions (Q11.2) continued

6. In the follow-up study described in the previous study question, the:

aRR(age, smoking) = 2.4
aRR(age) = 1.5
aRR(smoking) = 2.4
cRR = 1.5
Does this mean that we do not have to control for age?

7. What problem might there be in practice that could prevent the estimate of the 
effect that controls for all risk factors (e.g., C1, C2,  …, Ck)?

8. What should we do if there are too many potential confounders in our list and
we are unable to determine the appropriate adjusted estimate?

9. What if the choice of such a subset becomes difficult?

Summary

Data-based joint confounding occurs when there is a meaningful difference
between the estimated crude effect and the estimated adjusted effect that
simultaneously controls for all the potential confounders.
Data-based marginal confounding occurs when there is a meaningful
difference between the estimated crude effect and the estimated adjusted effect, 
which controls for only one of the several potential confounders.
Our conclusions regarding confounding should be based on joint confounding
whenever possible.

Quiz (Q11.3) Suppose F and G are two distinct risk factors for some disease with 
dichotomous levels F1, F0, and G1, G0, respectively. The estimated risk ratios
describing the association between the disease and some exposure are listed below
for various combinations of levels of F and G. Assume that the risk ratio estimates
are of high precision (i.e., are based on large sample sizes).

1.0)R(GR3.0)GR(FR

1.0)R(GR0.3)GR(FR

1.0)R(FR3.0)GR(FR

1.0RRc1.0)R(FR3.0)GR(FR

000

110

001

111

ˆˆ

ˆˆ

ˆˆ

ˆˆˆ

Determine whether the following statements are True or False.
1. There is evidence of interaction in the data. ???

2. There is evidence of confounding in the data. ???

3. At level G0, there is no confounding due to factor F. ???

4. At level F1, there is no interaction due to factor G. ???

5. At level F0, there is no interaction and no confounding due to factor G .???

6. At level G0, there is confounding but no interaction due to factor F ???

7. It is not necessary to control for either F or G (or both) in order to understand
the relationship between D and E. ???.
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Variable Selection and Control of Confounding 

The adjusted estimate that controls for 
all potential risk factors is the standard
on which conclusions about confounding
should be based. However, if an adjusted
estimate that controls for only a subset
of risk factors is equivalent to this
standard, we may then choose such a 
subset for control.

Consider a case-control study in which three risk 
factors, F, G, and H are being considered for
control. The crude odds ratio differs from the
adjusted odds ratio that controls for all three
factors. Because the crude and adjusted estimates
differ, we have evidence of data-based joint
confounding in these data.

Suppose now that controlling for any two of
these factors provides the same results as 
controlling for all three. F, G, and H do not
all need to be controlled simultaneously.
Controlling for any two of the three risk
factors will provide the same results as the
standard.

We may also wish to consider marginal
confounding to see if any single variable is an
appropriate subgroup. These results indicate
that there is no marginal confounding because
each of these results differs from the standard
estimate, not one of these variables alone would be an appropriate subgroup for
control.
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Study Questions (Q11.4)

1. What might be the advantage to controlling for only two of these risk factors
rather than all three even though it is the standard?

2. How might you determine which two variables to controls?
3. Why can’t we control for F, G, or H separately?

Assume that F, G, H, I, and J are the only risk factors in a case-control study. 
Suppose further that:
   cOR  aOR(F, G, H, I, J) 

but
   aOR(F, G, H, I) = aOR(G, J) = aOR(I) = aOR(F, G, H) = aOR(F, G, H, I, J) 

and that
  aOR(any other subset of risk factors)  aOR(F, G, H, I, J)

Determine whether each of the following is a proper subset of confounders that
controls for (joint) confounding in this study by answering Yes or No:

4. {G, J}?
5. {I}?
6. {G, H, I}?
7. {F, G, H}?

Summary

When two or more risk factors are considered for control, we can select an 
appropriate subset of confounders for control.
When the results from controlling for various subsets of risk factors are
equivalent to the joint control of all risk factors, we can select any one of
which provides valid and precise results.

Confounding: Validity versus Precision 

The fully adjusted estimate that
controls for all factors simultaneously
is the standard on which all decisions
should be based. Why then would we 
want to go through the process of
seeking out candidate subsets of
confounders? If we cannot improve on
the validity of the effect measure, why
not just use the fully adjusted estimate?

The precision of the estimate may
justify such an effort. Controlling for a smaller number of variables may yield a
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more precise estimate of effect. The identification of the subset of confounders
giving the most precise estimate is important enough to make such examination
worthwhile.  Consider the following exercise to illustrate this point.

Study Questions (Q11.5) A clinical trial was conducted to determine the
effectiveness of a particular treatment on the survival of stage 3 cancer patients.
The following variables were considered in the analysis:
RX = exposure AGE = age at trial entry
SERH = serum hemoglobin level TSZ = size of primary tumor
INSG = combined index that measures tumor stage and grade.

1. The cRR = 6.28 and the aRR(AGE, SERH, TSZ, INSG) = 8.24. Does this
provide evidence of joint confounding in the study?  (Assume all quantities
above are estimates.)

We calculated the aRR for all possible subsets of the four potential confounders.
Excluding the crude results and the gold standard, there are 14 possible subsets of
these 4 confounders.

2. What criteria may we use to reduce the number of candidate subsets?

Below are the results from the gold standard and the 4 candidate subsets whose
aRR is within 10% of the gold standard:

3. The most valid estimate results from controlling which covariates?
4. The most precise estimate results from controlling which covariates?
5. Which covariates do you think are most appropriate to control?

This exercise has illustrated that we need to 
consider both validity and precision when assessing
an exposure-disease relationship. Getting a valid
estimate of effect is most important. Nevertheless,
you must also consider the trade-off between
controlling for enough risk factors to maintain
validity and the possible loss in precision from the
control of too many variables.

Summary

The reason for seeking candidate subsets of all potential confounders is the
possibility of improving the precision of the estimated effect. 
Controlling for fewer variables may (or may not) lead to a more precise 
estimate of effect. 
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When controlling for several potential confounders, you should consider the
possible trade-offs between:
o Controlling for enough risk factors to maintain validity versus
o Possible loss in precision from the control of too many variables.

Quiz (Q11.6) Suppose that variables F, G, and H have been measured in a certain 
study and that only F and G are considered to be risk factors for some disease (D).
Suppose that it is of interest to describe the relationship between this disease and
some study factor (E), and that there is no interaction of any kind present in the
data. Finally, suppose that the following relationships hold among various odds
ratios computed from the data:

Determine whether the following statements are True or False.
1. There is confounding in the data. ???

2. Variable F needs to be controlled to avoid confounding. ???

3. Variable G needs to be controlled to avoid confounding. ???

4. Variable H needs to be controlled to avoid confounding. ???

5. Both variables F and G do not need to be controlled simultaneously in order to
avoid confounding. ???

A ten-year follow-up study was conducted to determine if someone experiencing
food allergies is at increased risk of coronary heart disease. The following
covariates were considered in the analysis: AGE = age at enrollment, BMI = body
mass index, and SMK = smoking status. The results for the standard and all
possible subsets are listed below. The crude risk ratio = 1.02. 

6. Is there evidence of confounding? . . . ???.
7. Besides the standard, which are candidate subgroups for control? ???,

???,. ???.
8. Which of the candidate subgroups corresponds to the most valid estimate

(including the standard)? . . . ???.
9. Is there more than one candidate subgroup that is the most precise? ???.
10. Which estimate should be used? . . ???.

Choices #2 #3 #4 #5 #6 #7 no yes
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Nomenclature
ˆ Estimated measure of effect

aOR Adjusted odds ratio
aRR Adjusted risk ratio
Ci Confounding variable
CI Confidence interval
cOR Crude odds ratio
cRR Crude risk ratio
D Disease
E Exposure

Reference

Kleinbaum DG, Kupper LL, Morgenstern H. Epidemiologic Research: Principles and 
Quantitative Methods. John Wiley and Sons Publishers, New York, 1982 (Chapter 14).

Answers to Study Questions and Quizzes
Q11.1
1. The adjusted estimate that

simultaneously controls for all 4 risk
factors under consideration.

2. Confounding might not be controlled if 
there is not a subset of potential
confounders that yields (essentially) the 
same adjusted estimate as obtained
when all confounders are controlled.

3. Yes, provided the subset yields
essentially the same adjusted estimate
as the gold standard.

4. Adjusting for a smaller number of 
variables may increase precision.  Also,
such a subset provides a more
parsimonious description of the 
exposure-disease relationship. 

Q11.2

1. Yes, the cRR of 1.5 differs from the
aRR(age, smoking) of 2.4 that controls
for both potential confounders.

2. No, the cRR of 1.5 is essentially equal
to the aRR(age, smoking) of 1.4 that 
controls for both potential confounders.

3. No, the cRR of 1.5 differs from the 
aRR(age, smoking) of 2.4, which
controls for all potential confounders.
This is evidence of joint confounding.

4. No, since the cRR of 1.5 is 
approximately equal to the aRR(age) of 
1.4, there is no evidence of marginal 
confounding due to age.

5. Not necessarily.  Our conclusions
regarding confounding should be based 
on the joint control of all risk factors.

6. Yes.  Controlling for smoking alone
gives us the same result as controlling
for both risk factors.  We might still 
wish to evaluate the precision of the 
estimates before making a final 
conclusion.

7. There may be so many risk factors in
our list relative to the amount of data 
available that the adjusted estimate
cannot be estimated with any precision
at all.

8. Then we may be forced to make
decisions by using a subset of this large 
initial set of risk factors.

9. The use of marginal confounding may
be the only alternative.

Q11.3

1. True – There is interaction because the 
risk ratio estimated in one stratum
(F0G1) is 0.3, which is quite different
from the stratum-specific risk ratios of 
3.0 in the other strata.

2. True – The presence of strong 
interaction may preclude the
assessment of confounding.  Also, the 
value of an adjusted estimate may vary
depending on the weights chosen for 
the different strata.

3. False – The RR for F1 and F0 at level
G0 are both 3.0.  These differ from the 
overall RR at level G0 of 1.0. 
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Therefore, at level G0, there is 
confounding due to factor F. 

4. True
5. False – There is interaction and 

possibly confounding.  At level F0, the 
RR for G1 and G0 are very different, 
and both are very different from the 
overall risk ratio at level F0.

6. True
7. False – Both confounding and 

interaction are present and each should 
be addressed. 

Q11.4

1. Controlling for fewer variables will 
likely increase the precision of the 
results.

2. The two that provide the most precise 
adjusted estimate. 

3. Controlling for any of these three 
factors alone yields different results 
than controlling for all three, which is 
the standard on which our conclusions 
should be based. 

4. Yes
5. Yes
6. No
7. Yes

Q11.5

1. Yes, the cRR differs from the aRR 
controlling for all potential 
confounders, which is the gold 
standard.

2. We may choose to only consider those 
results within 10% of the gold standard.  
In this case, that would be 8.24 ± 0.82 
which is a range of values between 7.42 
and 9.06. 

3. Controlling for all the covariates 
provides the most valid estimate.  It is 
the gold standard. 

4. Controlling for both INSG and AGE 
provides the narrowest confidence 
interval and hence is the most precise. 

5. Debatable: Controlling for SERH alone 
yields an almost identical aRR as the 
gold standard, increases precision, and 
is the stingiest subset.  Controlling for 
INSG and AGE provides a slightly 
larger increase in precision (than 
controlling for SERH only) and its aRR 
is within 10% of the standard.  
Consider the trade-off between 
parsimony and political/scientific 
implications of not controlling for all 
risk factors, and more precision from 
controlling for fewer risk factors. 

Q11.6

1. True
2. True
3. False – Variable G does not need to be 

controlled since aOR(F,G)=aOR(F).  In 
other words, controlling for F alone 
yields the same results as the gold 
standard, controlling for both F and G. 

4. False – Variable H is not a risk factor in 
this study, and therefore should not be 
considered a confounding. 

5.  True 
6. Yes – The cRR of 1.02 differs from the 

standard RR of 4.10 that controls for all 
potential confounders. 

7. #3, #5, #7 
8. #1 – The most valid estimate controls 

for all risk factors measured. 
9. Yes – Candidate subgroups 1 and 7 are 

equally precise. 
10. #1 – The gold standard is the most valid 

estimate; has the same precision as 
obtained for candidate 7.  No precision 
is gained by dropping any risk factors 
so it can be argued the gold standard is 
the ‘political’ choice for it controls for 
all considered risk factors.  Controlling 
only for SMK is the best choice for it 
gives the smallest, most precise subset 
of variables. 



CHAPTER 12
SIMPLE ANALYSES-

      2 2 TABLES ARE NOT THAT SIMPLE 

This chapter discusses methods for carrying out statistical inference procedures
for epidemiologic data given in a simple two-way table. We call such procedures
simple analyses because we are restricting the discussion here to dichotomous
disease and exposure variables only and we are ignoring the typical analysis
situation that considers the control of other variables when studying the effect of
an exposure on disease.

WHAT IS SIMPLE ANALYSIS? 

When analyzing the crude data that describes the relationship between a
dichotomous exposure and dichotomous disease variable, we typically want to
make statistical inferences about this relationship. That is, we would like to 
determine whether the measure of effect being estimated is statistically significant
and we would like to obtain an interval estimate that considers the sample
variability of the measure of effect.

The tables shown here
have been described in
previous chapters to 
illustrate data from
three different studies,
a cohort study to 
assess whether
quitting smoking after 
a heart attack will 
reduce one's risk for 
dying, a case-control
study to determine the
source of an outbreak
of diarrhea at a resort
in Haiti, and a person-time cohort study to assess the relationship between serum
cholesterol level and mortality.

In each study, a measure of effect was computed to estimate the extent of the
relationship between the exposure variable and the health outcome variable. In the
quit smoking cohort study, the effect measure was a risk ratio and its estimate was
2.1. In the outbreak study, the effect measure was an odds ratio and its estimate
was 3.2.  And in the cholesterol mortality study, the effect measure was a rate 
ratio, also called an incidence density ratio, and its estimate was 3.5.

We have discussed how to interpret each of these estimates in terms of the
exposure disease-relationship being studied. All three estimates, even though
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dealing with different study types and different study questions, are similar in that
they are all larger than the null value of one, and they all indicate that there is a
moderately large effect from exposure.  Nevertheless, we must be careful to
realize that each of these three estimates is based on sample data. If a different
sample had been drawn, any of these estimates might have resulted in a different
value, maybe a lot larger, maybe closer to the null value of one. That is, there is
always random error associated with any sample estimate.

We call these estimates point estimates because they each represent a single
number or point from the possibly wide range of numbers that might have been
obtained if different samples had been drawn. So, we might wonder, given the
inherent variability in a point estimate, how can we draw conclusions about the
population parameters being estimated?

For example, in the first cohort study, what can we say about the population

risk ratio based on the estimated risk ratio? Or, in the case-control study, what
can we conclude about the population odds ratio based on the estimated odds

ratio? In the person-time study what can we conclude about the population rate

ratio based on the estimated rate ratio?  In answering these questions, we
typically have one of two objectives. We may want to determine whether we have
evidence from the sample that the population risk ratio, odds ratio or rate ratio
being estimated is different from the null value of one. For this objective, we use
hypothesis testing.  Or, we may want to determine the precision of our point
estimate by accounting for its sampling variability.  For this objective, we use
interval estimation.

The methods used to achieve these objectives comprise the general subject
matter of statistical inference. When our attention is focused on the relatively
simple situation involving only one dichotomous exposure variable and one
dichotomous disease variable, as illustrated by these three studies, we call these
methods simple analyses.

Summary

Estimates of measures of effect such as RR, OR, and IDR are point estimates,
since each estimate represents a single number that may vary from sample to 
sample.
Statistical inference involves drawing conclusions about the value of a
measure of effect in a population, based on its estimate obtained from a 
sample.
The two types of statistical inference procedures are hypothesis testing and 
interval estimation.

STATISTICAL INFERENCES – A REVIEW

The activities in this section review fundamental concepts and methods of
statistics.  Our primary focus concerns how to draw conclusions about
populations based on data obtained in a sample. We assume that you already have
some previous exposure to basic statistical concepts, including the distinction
between a sample and a population, a sample statistic and a population
parameter, some important distributions like the normal, binomial, Student's t, and
chi square distributions. We also assume that you have some previous exposure to
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the concepts underlying statistical tests of hypothesis and confidence intervals,
which are the two types of statistical inferences possible. Our focus here will be to
review statistical inference concepts in the context of the statistical questions that
apply to the analysis of a 2 x 2 table, which is the kind of data we are considering
in a simple analysis. You may wish to skip this entire review section and proceed
to the next section, Cohort Studies, on page 12-4.  We begin by using data from a
famous "incident" to distinguish between the two types of statistical inference
procedures: hypothesis (significance) testing and confidence interval estimation.
See if you can guess what "incident" we illustrate.

Statistical Inference Overview

Here are some data from an incident
in which a group of persons were at
risk of dying. From these data, we
can find the proportions who died for
men and women, separately. We can
see that 79.7% of the men died, but
only 25.6% of the women died.

Clearly these two percentages are
meaningfully different since the men
had a much higher risk for dying than
the women. But can we also claim that there is a difference in the risk for dying
among men and women in the population from which these samples came? In
other words, is the difference in the risks for men and women statistically

significant?
If we wish to draw conclusions about a population from data collected from a 

sample, we must consider the methods of statistical inference. In particular, we
must view the two proportions or percentages as estimates obtained from a sample.

Let's focus on the two sample proportions, which we denote  and . The

corresponding population proportions are denoted  and , without “hats”.

Mp̂ Wp̂

Mp Wp

Statistical inference draws conclusions about a population parameter based on
information obtained from a sample statistic. So, what is the population parameter
considered for these data and what is its corresponding sample statistic?

Since our focus here is to compare the proportions for males and females, one
logical choice for our parameter of interest is the difference between the two
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population proportions. The
corresponding sample statistic is the
difference between the two estimated
proportions.

Study Questions (Q12.1)

1. What other (epidemiologic)
parameters could also be considered as alternatives to the difference in the two
proportions?

Hypothesis testing can be used here to determine whether the difference in the
two proportions is statistically significant. This is one of the two types of statistical
inference questions we may ask. Our hypothesis in this case, usually stated as what
we want to disprove, is that the true difference in the two population proportions is 
zero. This is called the null

hypothesis. In hypothesis
testing, we seek evidence from
the sample to disprove the null
hypothesis in favor of the
alternative hypothesis that there
is a difference in the population
proportions.

Study Questions (Q12.1) continued

2. If the parameter of interest is the risk ratio (RR), how would you state the null
hypothesis?

3. If the parameter of interest is the odds ratio (OR), how would you state the null
hypothesis?

We can use interval estimation to determine the precision of our point
estimate. Here, our goal is to use our sample information to compute two numbers,
say, L and U, that define a confidence interval for the difference between the two
population proportions. Using a confidence interval, we can predict with a certain
amount of confidence, say 95%, that the limits, L and U, bound the true value of
the parameter. For our data, it turns out, that the
lower and upper limits for the difference in the
two proportions are .407 and .675, respectively.

It may appear from these two numbers that
an interval estimate is less precise than a point estimate. The opposite is actually
true. The range of values specified by the interval estimate actually takes into
account the unreliability or variance of the point estimate. It is therefore more
precise, since it uses more information to describe the point estimate.

In general, interval estimation and hypothesis testing can be contrasted by their
different approaches to answering questions. A test of hypothesis arrives at an
answer by looking for rare or unlikely sample results. In contrast, interval
estimation arrives at its answer by looking at the most likely results, that is, those
values that we are confident lie close to the parameter under investigation.
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Summary

Statistical inference concerns drawing conclusions about a population
parameter based on information obtained from a sample statistic.
The two types of statistical inference are hypothesis testing and interval

estimation.
When we test a hypothesis, we typically want to disprove a null hypothesis.
When doing interval estimation, we want to obtain a confidence interval that
provides upper and lower limits that we can be, say 95%, confident covers the 
population parameter of interest.
A test of hypothesis looks for rare or unlikely results from our sample, where a
confidence interval looks for likely results.

The Incident 

The story of the Titanic is well known. The largest ship that had ever been built up 
to that time, she left Southampton, England on her maiden voyage to New York on
Wednesday, April 10, 1912, carrying many of the rich and famous of England and
the United States, but also many of more modest means. Because the Titanic was
so large and so modern, many thought that she could not sink.

After a stop at Cherbourg France, where she took on many 3rd class
passengers seeking new lives in the New World, and a brief stop off Queenstown,
Ireland, she set out across the Atlantic. At 11:40 on the evening of April 14th, the
Titanic struck an iceberg and, by 2:15 the next morning, sank.

Of 2,201 passengers and crew, only 710 survived. Some facts can be gleamed
about the passengers, about who survived and who did not. One underlining
question of interest in any disaster of this sort is did everyone have an equal
chance of surviving? Or, stated in statistics terms, was the probability of surviving
independent of other factors.

Hypothesis Testing

We illustrate how to
carry out a statistical test
of hypothesis to compare
survival of men and
women passengers on the
Titanic. We want to 
assess whether the
difference in sample
proportions for men and 
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women is statistically significant.
A test of hypotheses, also called a test of significance, can be described as a 

seven-step procedure. In step one we state the information available, the statistical
assumptions, and the population parameter being considered. In our example, the
information includes the numbers of men and women passengers and the sample
proportions. We need to assume that the data represents a sample from a larger
population and that each sample proportion is approximately normally distributed.
The population parameter of interest is the difference between the two 
population proportions being estimated (PM - PW). The corresponding sample

statistic is the difference between the two estimated proportions .)P̂-P̂( WM

In step 2, we specify the null and alternative hypotheses. A hypothesis is a
claim about a value of a population parameter. The hypothesis that we plan to test 
is commonly called the null hypothesis. This is often the accepted state of 
knowledge that we want to question.  The null hypothesis in our example is that
the difference in the two population proportions is zero. H0 is essentially treated
like the defendant in a trial. It is assumed true, or innocent, until the evidence from
the data makes it highly unlikely to have occurred by chance. Our testing goal here
is to see if we have evidence to disprove this null hypothesis. The alternative
hypothesis, typically called HA, gives the values the parameter may take if the null
is false. In our example, the alternative hypothesis is that the difference in
population proportions is not equal to zero. This is called a two-sided alternative

because it states that we are interested in values both above and below the null.
The alternative hypothesis would be called one-sided if, before looking at our
data, we were interested in determining only whether men were at greater risk for
dying than women.  To avoid biasing
one's analysis, both the null and
alternative hypothesis should be made
without looking at the study data and
be based only on the a priori objectives
of the study.

In step 3, we specify the significance level, alpha. We will set the significance
level for our example at .05 or 5 percent.  This means that in carrying out our
procedure, we are willing to take a 5 percent risk of rejecting the null hypothesis
even if it is actually true. Equivalently, the significance level tells us how rare or
unlikely our study results have to be under the null hypothesis in order for us to
reject the null hypothesis in 
favor of the alternative
hypothesis. An alpha of 5 
percent means that, if the
null hypothesis is actually
true, we will have a 5%
chance of rejecting it. 

Summary of first 3 steps.

A statistical test of hypothesis can be described as a seven-step procedure.  The
first three steps are: 
Step 1: State the information available, the statistical assumptions, and the
population parameter being considered.
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Step 2: Specify the null and alternative hypotheses.
Step 3: Specify the significance level alpha ( ).

In step 4 of our hypothesis testing procedure, we must select the test statistic

to use, and we must state its sampling distribution under the assumption that the
null hypothesis is true.  Because the parameter of interest is the difference between
two proportions, the test statistic T is given by the difference in the two sample
proportions divided by the estimated standard error of this sample difference under
the null hypothesis.  The denominator here is computed using an expression

involving the pooled estimate, , of the common proportion for both groups that

would result under the null hypothesis.

p̂

Step 4: Select the test statistic and state its sampling
distribution under H0.
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Study Question (Q12.2) The pooled estimate of the common proportion for two
groups is a weighted average of the two sample proportions, where the weights are
the sample sizes used to compute each proportion.  The sample size proportions
and their corresponding sample sizes are .7972 and 1667, respectively for men,
and .256 and 425 for women.
1. Compute the pooled estimate from the above information.  (You will need a

calculator to obtain your answer.)

The sampling distribution of this test statistic is approximately the standard
normal distribution, with zero mean and unit standard deviation, under the null
hypothesis.

In step 5, we formulate the decision rule that partitions the possible outcomes
of the test statistic into acceptance and rejection regions. Because our test statistic 
has approximately the standard normal or Z distribution under the null hypothesis,
the acceptance and rejection regions will be specified as intervals along the Z-axis 
under the curve of this distribution.  In particular, because our alternative
hypothesis is two-tailed and since our significance level is .05, these two regions
turn out to be as shown here by the red and green lines. (Note: the red lines are in
the tail areas < -1.96 and > 1.96; the green line between –1.96 and 1.96.)  The area
under the standard normal curve above the interval described as the acceptance
region is .95 .The area under the curve in each tail of the distribution identified as 
rejection regions is .025.  The sum of these two areas is .05, which is our chosen
significance level. The -1.96 on the left side under the curve is the 2.5 percentage
point of the standard normal distribution, and the 1.96 on the right side under the
curve is the 97.5 percentage point.
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Our decision rule can now be described as follows. If the value of the test

statistic T computed from our data falls into the rejection region, we reject the 
null hypothesis in favor of the alternative hypothesis. However, if the observed
study value falls into the acceptance region, we do not reject the null hypothesis.

Step 6 of our process simply requires us to compute the value of the test
statistic T from the observed data. We will call the computed value T* to 
distinguish it from the test statistic T. Here again are the sample results:

Step 6: Compute the test statistic T from the data 
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Computed T = T*

(women)4252565.ˆ

(men)16677972.ˆ

combined) women and(men6874.ˆ
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Substituting the sample information into the formula for T, our computed value
T* turns out to be 21.46.

Finally, in Step 7, we use our computed test statistic to draw conclusions about
our test of significance. In this example, the computed test statistic falls into the
extreme right tail of the rejection region because it is much larger than 1.96.
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Consequently, we reject the null hypothesis and conclude that we have a
statistically significant difference between the two proportions at the .05
significance level. We therefore conclude that of all those that could have been
aboard the Titanic, men were more likely to die than women.

Summary

A statistical test of hypothesis can be described as a seven-step procedure.  The
first three steps are: 
Step 1: State the information available, statistical assumptions, and the
population parameter being considered.
Step 2: Specify the null and alternative hypotheses.
Step 3: Specify the significance level alpha ( ).
Step 4: Select the test statistic and state its sampling distribution under the null
hypothesis.
Step 5: Formulate the decision rule in terms of rejection and acceptance
regions under the null hypothesis.
Step 6: Compute the test statistic using the observed data.
Step 7: Draw conclusions, i.e., reject or do not reject the null hypothesis at the
alpha significance level.

Hypothesis Testing – The P-value 

We have found that the difference in the sample proportions of the men and
women who died on the Titanic was statistically significant at the 0.05
significance level.  In particular, the computed value of the test statistic fell into
the extreme right tail of the rejection region. This tells us that if the null hypothesis
were true, the observed results had less than a 5% chance of occurring. That is, the
results were quite unlikely under the null hypothesis.

We may wonder, then, exactly how unlikely, or how rare, were the observed
results under the null hypothesis? Were they also less than 1% likely, or less than
0.1% likely, or even rarer? The answer to these questions is given by the P-value.
The P-value gives the probability of obtaining the value of the test statistic we 
have computed or a more extreme value if the null hypothesis is true.

Let's assume, as in our example, that the test statistic has the standard normal
distribution under the null hypothesis. To obtain the P-value, we must determine
an area under this curve. Here, we show four different areas that correspond to 
where the computed value T* falls under the curve and to whether the alternative
hypothesis is one-sided or two-sided.
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If the alternative hypothesis is an upper one-sided hypothesis, then the P-value
is the area under the curve to the right of T* (upper right distribution in the above
figure). If the alternative hypothesis is a lower one-sided hypothesis, then the P-
value is the area under the curve to the left of T* (upper left distribution in the
above figure).  If the alternative hypothesis is two-sided and T* falls in the right
tail under the curve, then the P-value is the sum of the areas under the curve to the
right of T* and to the left of -T*.  If the alternative hypothesis is two-sided and T*
falls in the left tail under the curve, then the P-value is the sum of the areas under
the curve to the left of T* and to the right of -T*.  The P-value gives the area under 
the curve that shows the probability of the study results under the null hypothesis.

Study Questions (Q12.3)

1. Which of the four scenarios above correspond to the P-value for our Titanic
example? (Hint: T* = 12, HA is two-sided.)

2. To obtain the P-value for a 2-sided HA, why is it not necessary to compute 2
areas under the normal curve?

Now, let's see how rare our computed test statistic is under the null hypothesis.
The computed test statistic is 12.0, so we need to find the area under the normal
curve to the right of the value 12.0, and to the left of -12.0. One way to determine
this area is to use a table of the percentage points of the standard normal or Z
distribution. In one such table, as illustrated in the figure that follows this
paragraph, the highest percentage point is 3.8, corresponding to the 99.99
percentage point. Although we can't find the area to the right of 12.0 under the 
normal curve exactly, we can say this area is less than .0001, clearly a very small
value.

Study Questions (Q12.3) continued

3. If our alternative hypothesis had been one-tailed, what would be our P-value?
4. Since our alternative hypothesis was actually two-tailed, what is our P-value?
5. Based on your answer to question 2, has a rare event occurred under the null

hypothesis?
6. Based on the P-value here, what should you conclude about whether or not the

test of hypothesis is significant?

P-values are often used as an alternative way to draw conclusions about a test 
of hypothesis rather than specifying a fixed significance level in advance of
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computing the test statistic.  If the P-value is small enough, so that a rare event has
occurred, then we reject the null hypothesis. If the P-value is not small, then we
would not reject the null hypothesis.

So, how small must the P-value be for our results to be considered rare?  The
answer here essentially depends on the alpha ( ) significance level we wish to use. 
A conventional choice for alpha is 0.05, although a frequent alternative choice is
0.01. Thus if the P-value is <0.05 or <0.01, then the test results are typically
considered rare enough to reject the null hypothesis in favor of the alternative
hypothesis.

Study Questions (Q12.3) continued If your significance level was .05, what 
conclusions would you draw about the null hypothesis for the following P-values?
7. a) P > .01? b) P = .023?
8. c) P < .001? d) P = .54? e) P = .0002?

If your significance level was .001, what conclusions would you draw about H0 for
the following P-values?
9. a) P > .01? b) P = .023?
10. c) P < .001? d) .01 < P = .05?     e) P = .0002?

Summary

The P-value describes how unlikely, or how rare, are the observed results of
one’s study under the null hypothesis.
For one-tailed alternative hypotheses, the P-value is determined by the area in
the tail of the distribution, beyond the computed test statistics (i.e., to the right
or left), under the null hypothesis.
For two-tail alternative hypotheses, the P-value is twice the area in the tail of
the distribution, beyond the computed test statistic, under the null hypothesis.
The P-value is often used as an alternative way to draw conclusions about a 
null hypothesis rather than specifying a significance level prior to computing
the test statistics.
If the P-value is considered small by the investigators, say, less than .05, .01,
we reject the null hypothesis in favor of the alternative hypothesis.
If the P-value is not considered small, usually greater than .10, we do not reject
the null hypothesis.

Z-scores and Relative Frequencies – The Normal Density Function

Most statistics texts include a table that lets you relate z-scores and relative
frequencies in a normal density. The tables always give this information for the
Standard Normal Density, so that the x-axis of the density is marked out in z-
scores.  The normal density tool we have been working with provides the same
information more easily. For example, to find the relative frequency of values with 
z-scores below -1.5, just drag the left flag to the z-score value -1.5 and read the
relative frequency in the lower left box, 0.067.
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Summary

The Standard Normal Density curve, for which tables are usually given in
statistics textbooks, relates z-scores and relative frequencies.
The Normal Density tool (lesson page 12-2 of the ActivEpi CD ROM)
provides the same information and gives you some practice exercises.

Quiz (Q12.4) Fill in the Blanks.
1. We use ??? to assess whether the population parameter is different fro

null value.
m the

2. When determining the precision of a point-estimate, ??? accounts for sampling
variability.

3. ??? looks for rare or unlikely results.
4. By looking at the most likely results, ??? finds those values that we are 

confident lie close to the population parameter.

Choices: hypothesis testing interval estimation

5. The ??? gives the risk we are willing to take for rejecting the null hypothesis
when the null hypothesis is false. 

6. The ??? can be either upper-one-sided, lower one-sided or two-sided.
7. If the computed value of the test statistic falls into the ???, we reject the ???

and conclude that the results are ??? significant.

Choices acceptance region alternative hypothesis meaningfully

null hypothesis rejection region significance levels statistically

8. The ??? describes how rare or how unlikely are the observed results of one's
study under the ???.

9. If the P-value satisfies the inequality P>.30, we should ??? the null hypothesis.
10. If the P-value satisfies the inequality P<.005, we should reject the null

hypothesis at the ???. significance level, but not at the ??? level.

Choices .001 .01 P-value alternative hypothesis not reject

null hypothesis reject significance level

Confidence Intervals Review 

A confidence interval (CI) provides two numbers L and U between which the
population parameter lies with a specified level of confidence. Here we describe
how to compute a large-sample 95% CI for the difference in two proportions.
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Confidence Interval for Comparing Two Proportions 

We now show how to calculate a confidence interval for the difference in two 
proportions using the Titanic data.  Our goal is to use our sample information to 
compute two numbers, L and U, about which we can claim with a certain amount
of confidence, say 95%, that they surround the true value of the parameter.  Here
is the formula for this 95 percent confidence interval:

The standard error of the difference is the square root of the sum of the

variances of the proportions, where each variance is of the form ( )(1- ) /

(sample size).  The value 1.96 is the 97.5 percent point of the standard normal
distribution. This percent point is chosen because the area between -1.96 and
+1.96 under the normal curve is .95, corresponding to the 95% confidence level
we specified. The normal distribution is used here because the difference in the
two sample proportions has approximately the normal distribution if the sample
sizes in both groups are reasonably large, which they are for these data. This is 
why the confidence interval formula described here is often referred to as a large-

sample confidence interval.

p̂ p̂

Study Question (Q12.5)

1. Why is the standard error formula used here different from the standard error
formula used when testing the null hypothesis of no difference in the two 
proportions?

We can calculate the confidence interval for our data by substituting into the

formula the values for , , , and :Mp̂ Wp̂ Mn Wn
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The standard error turns out to be .0234. The lower and upper limits of the
95% interval are then .495 and .587, respectively.
Thus, the 95 percent confidence interval for the
difference in proportions of men and women who
died on the Titanic is given by the range of values
between .495 and .587.

Summary

A confidence interval (CI) provides two numbers L and U between which the
population parameter lies with a specified level of confidence.
A large-sample 95% CI for the difference in two proportions is given by the
difference +1.96 times the estimated standard error of the estimated difference.
The estimated standard error is given by the square root of the sum of the
estimated variances of each proportion. 

Interpretation of a Confidence Interval 

How do we interpret this confidence interval? A proper interpretation requires that 
we consider what might happen if we were able to repeat the study, in this
example, the sailing and sinking of the Titanic, several times. If we computed 95 
percent confidence intervals for the data resulting from each repeat, then we would 
expect that about 95 percent of these confidence intervals would cover the true
population difference in proportions.

This is equivalent to saying that there is a
probability of .95 that the interval between .495
and .587 includes the true population difference
in proportions.

The true difference might actually lie
outside this interval, but there is only a
5% chance of this happening.
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The probability statement that describes the confidence interval, which has the 
population parameter, PM – PW, without any hats, at its center, suggests that this
parameter is a random variable. This is not so. The parameter PM – PW does not
vary at all; it has a single fixed population value. The random elements of the
interval are the limits 0.495 and .587,
which are computed from the sample data
and will vary from sample to sample.

In general, a confidence interval is a
measure of the precision of an estimate of some
parameter of interest, which for our example, is the 
difference between two population proportions.
The narrower the width of the confidence interval, 
the more precise the estimate.

In contrast, the wider the width
is, the less precise the estimate will 
be.

The extreme case of no precision at all would occur for difference measures
(e.g., risk difference and incidence rate difference) where the confidence interval
goes from minus infinity to infinity; for ratio measures (e.g., odds ratio, risk ratio,
and incidence density ratio), it would be a confidence interval from zero to
infinity; and for proportions, it would be a confidence interval from zero to 1. 

Study Questions (Q12.6)

1. For a confidence interval that goes from minus infinity to infinity, how much
confidence do we have that the true parameter is being covered by the interval?

2. If 90%, 95%, and 99% confidence intervals were obtained for the difference
between two proportions based on the same data, which confidence interval
would be the widest, and which would be the narrowest?

3. Suppose two different datasets yielded 95% confidence intervals for the
difference between two proportions. Which dataset (A or B below) gives the
more precise estimate?

Dataset A: .49 < p1 – p2 < .58
Dataset B: .40 < p1 – p2 < .52

Summary

A 95% CI can be interpreted using the probability statement P(L < the
parameter < U) = .95
If a CI is computed for several repeats of the same study, we would expect
about 95% of the CI’s to cover the true population parameter.
The random elements of a confidence interval are the limits L and U. 
It is incorrect to assume that the parameter in the middle of a confidence
interval statement is a random variable.
The larger the confidence level chosen, the wider will be the confidence
interval.

A Debate: Does the Titanic data represent a population or a sample?
Our example, as previously indicated, describes the survival data for all men and women
passengers on the Titanic, the "unsinkable" ocean liner that struck an iceberg and sank in
1912.  Since these data consider all men and women passengers, it can be argued that the
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proportions being compared are actually population proportions, so that it is not appropriate
to carry out either a statistical test of significance or to compute a confidence interval with
these data.  Nevertheless, a counter-argument is that the 1667 men and 425 women
passengers represent a sample of men and women who were eligible to be chosen for the
Titanic's journey, whereas the population difference in proportions refers to the proportions
of all those eligible for the trip.

These two arguments are debatable, and from our point of view, there is no clear-cut
reason to conclude that either argument is correct.  In fact, similar debates often occur when
analyzing data from an epidemiologic outbreak investigation. For example, when seeking
the source of an outbreak of diarrhea from a picnic lunch, statistical tests are often carried
out on data that represent everyone who attended the picnic. Such tests are justifiable only if
the data being analyzed is considered a sample rather than a population.

Quiz (Q12.7)  Fill in the blanks.

1. A large-sample 95% confidence interval for the difference in two proportions
adds and subtracts from the estimated difference in the two proportions 1.96
times the ??? of the estimated difference.

2. The confidence interval example shown below does not contain the null value
for the ??? of the two proportions.

3. The ??? within a confidence interval has a single fixed value and does vary at
all.

Choices confidence level difference estimated mean

estimated standard error estimated variance population parameter ratio

4. The ??? of a confidence interval may vary from sample to sample.
5. For a ??? confidence interval, the probability is 0.95 that the interval between

the upper and lower bounds includes the true population parameter.
6. The true population parameter might actually lie outside this interval, but there

is only a ??? chance of this happening.

Choices: 5% 95% 97.5% confidence level population parameter upper limit

COHORT STUDIES INVOLVING RISK RATIOS 

Hypothesis Testing for Simple Analysis in Cohort Studies 

We return to the data from a cohort study to assess whether quitting smoking after
a heart attack will reduce one's risk for dying.  The effect measure in this study
was a risk ratio and its estimate
was 2.1. What can we say about
the population risk ratio based on
the estimated risk ratio obtained
from the sample?

We wish to know if we have evidence from the sample that the risk ratio is 
statistically different from the null value. That is, we wish to perform a test of

hypothesis to see if the risk ratio is significantly different from 1. The null
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hypothesis being tested is that the population risk ratio is 1. The logical alternative
hypothesis here is that the risk ratio is >1, since prior to looking at the data the
investigators were interested in whether continuing smoking was more likely than
quitting smoking to affect mortality.

Because the risk ratio is the ratio of
cumulative incidences for the exposed group
(CI1), divided by cumulative incidences for
the unexposed group (CI0), we can 
equivalently state the null hypothesis in
terms of the difference in population
cumulative incidences as shown here:

Because the risk ratio equals one if and only if the risk odds ratio equals one, 
we can also equivalently state the null hypothesis in terms of the risk odds ratio.
Because cumulative incidence is a proportion, the cumulative incidence version of
the null hypothesis implies that our test about the risk ratio is equivalent to testing
a hypothesis about the difference between two proportions: H0: p1 – p0 = 0.

The test statistic is the difference
in the two estimated cumulative
incidences divided by the estimated
standard error of this difference,
under the null hypothesis that the
risk ratio is one. Because the sample
sizes in both groups are reasonably large, this test statistic has approximately a 
standard normal distribution under the null hypothesis.

The computed value of the test 
statistic is obtained by substituting the
estimated cumulative incidences and
corresponding sample sizes into the test
statistic formula as shown here. The
resulting value is 2.65.

The P-value for this test is then obtained by finding the area in the right tail of
the standard normal distribution above the computed value of 2.65.  The exact P-
value turns out to be .0040.  Because the P-value of .0040 is well below the
conventional significance level of .05, we reject the null hypothesis and conclude
that the risk ratio is significantly greater than the null value of one. In other words,
we have found that among heart attack patients who smoke, continuing smokers
have a significantly higher risk for dying than smokers who quit after their heart
attack.

Summary

When testing the hypothesis about a risk ratio (RR) in a cumulative-incidence
cohort study, the null hypothesis can be equivalently stated as either RR = 1,
CI1 – CI2 = 0, or ROR = 1, where CI1 and CI2 are the cumulative incidences for
the exposed and unexposed groups, respectively.
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The alternative hypothesis can be stated in terms of the RR either as RR  1,
RR > 1, or RR < 1 depending on whether the alternative is two-sided, upper
one-sided, or lower one-sided, respectively.
To test the null hypothesis that RR = 1, the test statistic is the same as that used
to compare the difference between two proportions.
Assuming large samples, the test statistic has approximately the N(0,1)
distribution under H0.

Chi Square Version of the Large-sample Test

The large-sample test for a risk ratio can be carried out using either the normal

distribution or the chi square distribution.  The reason for this equivalence is 
that if a standard normal variable Z is squared, then Z square has a chi square
distribution on 1 degree of freedom.

More specifically, for our mortality study of heart attack patients, here is the
test statistic that we previously described, it follows a standard normal distribution
under the null hypothesis that the risk ratio equals 1. The square of this statistic is 
shown next to its corresponding chi square distribution:

With a little algebra, we can rewrite the statistic in terms of the cell frequencies
a, b, c and d of the general 2 by 2 table that summarizes the exposure disease
information in a cohort study that estimates cumulative incidence.

For the mortality study of heart attack patients, the values of the cell 
frequencies are shown following this paragraph. Substituting these values into the
chi square statistic formula, we obtain the value 7.04. This value is the square of
the computed test statistic we found earlier (2.652  7.04)
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Is the chi square version of our test significant? The normal distribution
version was significant at the .01 significance level, so the chi square version had
better be significant.

But in comparing these two versions of the test, we need to address a small
problem. A chi-square statistic, being the square of a Z statistic, can never be
negative, but a standard normal statistic can either be positive or negative.  Large
values of a chi square statistic that might indicate a significant result could occur
from either large positive values or large negative values of the normal statistic.  In
other words, if we use a chi square statistic to determine significance, we are 
automatically performing a test of a two-sided alternative hypothesis even though
we are only looking for large values in the right tail of the distribution.

Study Questions (Q12.8) The .99 and .995 percentage points of the chi square
distribution with 1 df are given by the values 6.635 and 7.789, respectively.
1. Does the computed chi square value of 7.04 fall in the upper 1 percent of the

chi square distribution?
2. Does the computed chi square value of 7.04 fall in the upper .5 percent of the 

chi square distribution?
3. Would a test of a two-sided alternative for RR be significant at the .01

significance level? (Note: The computed test statistic is 7.04.)
4. Would a test of a two-sided alternative for RR be significant at the .005

significance level?

So, if our chi square statistic allows us to assess a two-sided alternative
hypothesis about the risk ratio, how can we assess a one-sided alternative?  One
way is simply to carry out the normal distribution version of the test as previously
illustrated. The other way is to divide the area in the right tail of the chi square
curve in half.

Study Questions (Q12.8) continued
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5. Using the above results, would a test of an upper one-sided alternative RR > 1
be significant at the .01 significance level?

6. Would a test of an upper one-sided alternative RR > 1 be significant at the .005
significance level?

Summary

An alternative but equivalent way to test for the significance of a risk ratio is to
use a chi square test. 
The square of a standard normal variable has the chi square distribution with
one degree of freedom.
We can directly compute the chi square statistic using a formula involving the
cell frequencies of a 2 x 2 table for cohort data that allows for estimation of 
risk.
When we use a chi square statistic to determine significance, we are actually
performing a test of a two-sided alternative hypothesis.
We can assess a one-sided alternative either using the normal distribution
version of the test or by using the chi square distribution to compute a P-value.

The P-value for a One-Sided Chi Square Test

We now describe how to compute a P-value when using a chi square test involving
a one-sided alternative hypothesis about a risk ratio. We will illustrate this
computation once again using data from the mortality study on smoking behavior
of heart attack patients. To determine the P-value, we must first compute the area 
shaded as pink (lighter shaded in the right tail of the distribution) under the chi-
square distribution above the
value of the computed chi-
square statistic 7.04. This
area actually gives the P-value
for a 2-sided alternative
hypothesis. In fact, it is 
equivalent to the combined
area in the two tails of the
corresponding normal
distribution defined by the
computed value of 2.65.

For the upper one-sided alternative that the population risk ratio is greater than
1, we previously found the P-value to be the area only in the right tail of the
normal curve above 2.65. This right tail area is but one-half of the corresponding
area in the right tail of the chi-square curve above 7.04. Consequently, the area in
the right tail of the chi square curve gives twice the P-value
for a one-tailed alternative. Therefore, this area must be
divided by 2 in order to get a one-sided P-value.

Study Questions (Q12.9)

1. Suppose the alternative hypothesis in our example above was a lower one-
sided alternative and the computed value of the chi square statistic is 7.04,
corresponding to a computed Z statistic of +2.65. What is the corresponding
P-value?
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2. Based on your answer to the previous question, what would you conclude
about the null hypothesis that the RR equals 1?

3. Suppose the alternative hypothesis was a lower one-sided alternative and the
computed value of the chi square statistic is 7.04, but this time corresponding
to a computer Z statistic of –2.65. What is the corresponding P-value?

4. Based on your answer to the previous question, what would you conclude
about the null hypothesis that the RR equals 1?

Summary

When using a chi square test of a two-sided alternative hypothesis about a risk
ratio, the P-value is obtained as the area under the chi square curve to the right
of the computed test statistic. 
If the alternative hypothesis is one-sided, e.g., RR > 1, then the P-value is one-
half the area in the right tail of the chi square curve.

Testing When Sample Sizes Are Small

This table displays hypothetical results from a five-month randomized clinical trial
comparing a new anti-viral drug for shingles with the standard anti-viral drug
“Valtrex”. Only 13 patients
were involved in the trial,
which was a pilot study for a 
larger clinical trial.  The
estimated risk ratio from these
data is 3.2, which indicates that,
in the sample of 13 patients, the
new drug was 3.2 times more
successful than the standard
drug.

Is this risk ratio significantly different from the null value of one? We are 
considering a small sample size here, so a large-sample test of hypothesis is not
appropriate. (Note: How large is large is somewhat debatable here, but it is
typically required that the sample size for a proportion must be large enough (e.g.,
>25) for the sample to be normally distributed.) However, there is a statistical test
for sparse data, called Fisher's Exact Test, that we can use here.  Fisher's Exact 
Test is appropriate for a 2x2 table relating a dichotomous exposure variable and a
dichotomous disease variable. To use Fisher's exact test, we must assume that the 
values on the margins of the tables are fixed values prior to the start of the study.
If we make this 'fixed marginals assumption', we can see that once we identify the 
number in anyone cell in the table, say the exposed cases or a cell, the numbers in 
the other three cells can be determined by using only the frequencies on the
marginals.

Study Questions (Q12.10)

1. Determine the formulas for calculating the values for b, c, and d in terms of a

and the fixed marginal values.
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2. Calculate the values in the other cells of the table above knowing only the
marginal values and the value in one cell. 

To test our hypothesis about the risk ratio, we need only consider the outcome
for one of the four cells of the table. For example, we would like to know what
values we might get in the a cell that would be unlikely to occur under the null
hypothesis that the risk ratio, or for that matter the risk odds ratio, equals 1.  In 
particular, we would like to determine whether the value obtained in the a cell for
our study, which turned out to be 4, is a rare enough event under the null
hypothesis for us to reject the null hypothesis and conclude that the observed risk
ratio is statistically significant. We can answer this question by computing the P-
value for our test.

Study Questions (Q12.10) continued

3. Suppose the a cell value was 5 instead of 4, assuming the marginals are fixed.
What would be the corresponding revised values for b, c, and d?

4. What would be the risk ratio for the revised table?
5. Is the revised risk ratio further away from the null risk ratio than the risk ratio

of 3.2 actually observed?
6. Are there any other possible values for the a cell that would also be further

away from the null risk ratio than 3.2?
7. Based on the previous questions, why would we want to compute the

probability of getting an a cell value of 4 or 5 under the null hypothesis?

To compute the P-value for Fisher's Exact test, we need to determine the
probability distribution of the a cell frequency under the null hypothesis.
Assuming fixed-marginals, this distribution is called the hypergeometric

distribution. The formulae for the hypergeometric distribution and the
corresponding P-value for Fisher's Exact Test are described in an asterisk on 
Lesson Page 12-4 (cohort studies) and 12-6 (case-control studies) of the ActivEpi

CD ROM.

Study Questions (Q12.10) continued Using the hypergeometric distribution, the
(Fisher’s Exact Test) one-sided P-value for the study described in this section is
P(a =4 or 5|Rr=1) = P(a=4|RR=1) + P(a=5|RR=1) = .0816 + .0046 = .0863.

8. What are your conclusions about the null hypothesis that RR = 1?
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Summary

Fisher’s Exact Test provides a test of significance for a risk ratio or an odds
ratio when the data are sparse.
To use Fisher’s exact test, we must assume that the values on the margins of a 
2x2 table are fixed values prior to the start of the study.
The marginal frequencies of a 2x2 table provide no information concerning the
strength of the association.
To compute the P-value for Fisher’s Exact test, we need to determine the
probability distribution of the a cell frequency under the null hypothesis.
Assuming fixed-marginals, the a cell has the hypergeometric distribution.
Computer programs, including a DataDesk program for ActivEpi, are available
to calculate the P-value for this test. 

COHORT STUDIES INVOLVING RISK RATIOS 
(continued)

Large-sample version of Fisher's Exact Test - The Mantel-

Haenszel Test

Let's consider again the mortality study data on smoking behavior of heart attack
patients. For these data, we have previously described a large-sample chi square
statistic for testing the null hypothesis that the risk ratio is 1. 

Because the mortality data involves a
large-sample, we do not need to use Fisher's
Exact Test for these data. Nevertheless, we
could still compute the Fisher's Exact test
statistic.  To compute Fisher's Exact test, we
assume that the frequencies on the margins of
the table are fixed and then we compute the probability under the null hypothesis
of getting an a cell value at least as large as the value of 27 that was actually 
obtained. We would therefore compute and sum 15 probability values, from a= 27
to a= 41 to obtain the P-value for Fisher's Exact Test. 

Although such a calculation can be accomplished with an appropriate
computer program, a more convenient large-sample approximation to Fisher's
Exact Test is often used instead when the cell frequencies in the two by two table
are moderately large.  This large-sample approach is called the Mantel-Haenszel

(MH) test for simple analysis.  The Mantel-Haenszel statistic is shown below.
This statistic has an approximate chi square distribution with one degree of
freedom under the null
hypothesis that the risk ratio is 1.
Consequently, the P-value for a 
one-sided alternative using this
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statistic is obtained in the usual way by finding the area under the chi-square
distribution above the computed test statistic and then dividing this area by 2.

If we compare the large-sample chi square statistic for Fisher's exact test with 
the large-sample chi square statistic previously described for comparing two 
proportions, we see that these two test statistics are remarkably similar. In fact,
they differ only in that the statistic for
approximating Fisher Exact Test contains n-1
in the numerator but the earlier large-sample
version contains n in the numerator. When n
is large, using either n or n-l in the numerator
will have little effect on the computed chi
square statistic.

In our mortality data example, for instance, the value of the chi square
approximation to Fisher's exact test is equal to 6.99.  The large-sample chi square
statistic for comparing two proportions was previously shown to be 7.04. Clearly,
the two chi square statistics are very close, although not exactly equal. The
corresponding one-sided P-values are .0040 and .0041, respectively, essentially
equal.

*Note: in the box above one-sided p-values are provided.

This example illustrates that in large-samples, these two chi square versions
are essentially equivalent and will lead to the same conclusions about significance.

Study Questions (Q12.11)

For the above data, we previously showed that the one-sided P-value for Fisher’s
Exact test is .0863.  The MH statistic computed from these data turns out to be
3.46.
1. The P-value for a two-sided MH test is .0630. What is the P-value for a one-

sided Mantel-Haenszel test?
2. Why is the P-value for the Mantel-Haenszel test different from the P-value for

Fisher’s Exact test?
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3. The computed value for the large-sample chi square statistic for comparing two
proportions is 3.75. Why is this latter value different from the computed
Mantel-Haenszel test statistic of 3.46?

Summary

A large-sample approximation to Fisher’s Exact test is given by the Mantel-
Haenszel (MH) chi-square statistic for simple analysis.
The MH statistic is given by the formula:
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The MH chi square statistic contains n-1 in the numerator whereas the large-
sample chi square version for comparing two proportions contains n in the
numerator.
In large-samples, either of these two chi square versions are essentially
equivalent and will lead to the same conclusions about significance.

Large-Sample Confidence Interval for a Risk Ratio

We once again use the data from the mortality study on smoking behaviors of
heart attack patients, this time to describe how to obtain a large-sample confidence
interval for a risk ratio.

A risk ratio is a ratio of two proportions, each of which is a measure of
cumulative incidence. If we were interested in the difference rather than the ratio

between two cumulative incidences, the large sample confidence interval would be
given by the commonly used confidence interval formula for two proportions
shown here:

This formula says that we must add and subtract from the difference in the two
estimated proportions 1.96 times the estimated standard error of this difference.
The corresponding 95 percent
confidence interval formula for a 
risk ratio is slightly more
complicated.  In contrast to the risk
difference formula, the risk ratio 
formula looks like as shown to the
right:
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An equivalent version of the risk ratio
formula, which helps explain where this
formula comes from, is shown here:

The confidence interval for a risk ratio is obtained by exponentiating a large
sample confidence interval for the natural log of the risk ratio. The formula used
for the estimated variance of the log 
of the risk ratio is actually an
approximate, not an exact formula.

There are two reasons why the
formula for the risk ratio is more complicated than for the risk difference. First, the
estimated difference in two proportions is approximately normally distributed, but
the estimated ratio of two proportions is highly skewed. In contrast, the log of the
risk ratio is more closely normally distributed.

Second, the variance of a ratio of two proportions is complicated
mathematically and is not equal to the ratio of the variances of each proportion.
However, since the log of a ratio is the difference in logs, approximating the
variance of a difference is much easier.

We now apply the risk ratio formula to the mortality study data set. 
Substituting the values for the estimated risk ratio, the cumulative incidences in
each group, and the sample sizes, we obtain the lower and upper confidence limits
shown here:

Study Question (Q12.12)

1. Interpret the above results.

Summary

The confidence interval formula for a ratio of two proportions is more
mathematically complicated than the formula for a difference in two
proportions.
The 95% risk ratio formula multiplies the estimated risk ratio by the
exponential of plus or minus the quantity 1.96 times the square root of the 
variance of the log of the estimated risk ratio.
This risk ratio formula is obtained by exponentiating a large sample confidence
interval for the natural log of the risk ratio.
The estimated ratio of two proportions is highly skewed whereas the log of the
risk ratio is more closely normally distributed.
The variance of the log of a risk ratio is mathematically easier to derive than is
the variance of the risk ratio of itself, although an approximation is still
required.
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Quiz (12.13)

For the cohort study data shown below, the estimated probability of death among
continuing smokers (CS) is 0.303, and the estimated probability of death among
smokers who quit (OS) is 0.256.

1. What is the estimated probability of death among the entire sample: ???.
2. Based on the computed probability values, use a calculator or computer to 

compute the value of the test statistic T for testing the null hypothesis that the
RR equals 1. Your answer is T* = ???.

Choices 0.279 0.475 0.491 0.533 0.721 2.20 2.23 2.27 2.31 2.36

3. Find the P-value for based on the computed T statistic (2.23) and assuming an
upper-one-sided alternative hypothesis. Your answer is: P-value = ???.

4. Based on the P-value, you should reject the null hypothesis that RR=1 at the
??? significance level but not at the ??? significance level.

Choices 0.003 0.013 0.021 0.120 1% 5%

The computed Z statistic for testing RR = 1 for these data is 2.23.

5. Using the computed Z statistic, what is the value of the Mantel-Haenszel chi-
square statistic for these data? MH CHISQ = ???.

6. What is the P-value for a two-sided test of the null hypothesis that RR=1?
(You may wish to use the chi square distribution tool located on lesson page
16-2 of the ActivEpi CD-ROM. ) P-value =???.

7. Fisher's exact test is not necessary here because the sample size for this study
is ???.

Choices: 0.006 0.013 0.026 0.120 0.240 4.970 4.973 large small

Calculating Sample Size for Clinical Trials and Cohort Studies
When a research proposal for testing an etiologic hypothesis is submitted for funding, it is
typically required that the proposal demonstrate that the number of subjects to be studied is 
"large enough" to reject the null hypothesis if the null hypothesis is not true. This issue 
concerns the sample size advocated for the proposed study. The proposer typically will 
prepare a section of his/her proposal that describes the sample size calculations and
resulting decisions about sample size requirements.

Since most epidemiologic studies, even if considering a single dichotomous exposure 
variable, involve accounting for several (control) variables in the analysis, the methodology
for determining sample size can be very complicated. As a result, many software programs
have been developed to incorporate such multivariate complexities, e.g., Egret SIZ, PASS,
and Power and Precision (a web-based package). The use of such programs is likely the
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most mathematically rigorous and computationally accurate way to carry out the necessary
sample size deliberations. 

Nevertheless, there are basic principles from which all sophisticated software derive,
and such principles are conveniently portrayed in the context of a 2x2 table that considers
the simple (i.e., crude) analysis of the primary exposure-disease relationship under study.
Moreover, the use of sample size formulae for a simple analysis is often a convenient and
non-black-box approach for providing a reasonable as well as understandable argument 
about sample size requirements for a given study. A description of such formulae now
follows.

All formulae for sample size requirements for hypothesis testing consider the two types
of error that can be made from a statistical test of hypothesis. A Type I error occurs if the
statistical test (incorrectly) rejects a true null hypothesis, and a Type II error occurs if the
test (incorrectly) does not reject a false null hypothesis. The probability of making a Type I
error is usually called , the significance level of the test. The probability of making a 
Type II error is usually called , and 1-  is called the power of the test. All sample size
formulae that concern hypothesis testing are aimed at determining that sample size for a
given study that will achieve desired (small) values of  and  and that will detect a specific
departure from the null hypothesis, often denoted as . Consequently, the investigator needs 
to specify values for , , and  into an appropriate formula to determine the required
sample size.

For clinical trials and cohort studies, the sample size formula for detecting a risk ratio
(RR) that differs from the null value of 1 by at least , i.e. ( = RR –1) is given by the
formula:
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where

= the 100(1 - /2) percent point of the N(0,1) distribution2/1Z
 = the 100(1 – ) percent point of the N(0,1) distribution 1Z

 p2 = expected risk for unexposed subjects

p  = p2(RR + 1) / 2

p1q
r = ratio of unexposed to exposed subjects 

(Note: if the sample sizes are to be equal in the exposed and unexposed groups, then r = 
1. When r does not equal 1, the above formula provides the sample size for the exposed 
group; to get the sample size for the unexposed group, use n x r.)

To illustrate the calculation of n, suppose  = .05,  = .20, RR = 2, p2 = .04, and r = 3.
Then:

p  = (.04)(2 + 1) / 2 = .06

and substituting these values into the formula for n yields:

9.368
31)(.04)(2

1)(3(.06)(.94)0.8416)(1.96
n

2

2

Thus, the sample size (n) needed to detect a risk ratio (RR) of 2 at an  of .05 and a 
of .20, when the expected risk for exposed (p2) is .04 and the ratio of unexposed to exposed
subjects (r) is 3, is 369 exposed subjects and 368.9 x 3 = 1,107 unexposed subjects.  The
above sample size formula can also be used to determine the sample size for estimating a
prevalence ratio (i.e., PR) in a cross-sectional study; simply substitute PR for RR in the
formula.
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CASE-CONTROL STUDIES AND CROSS-

SECTIONAL STUDIES 

Below we provide summaries of techniques for carrying out the analysis of a 2 x 2
table in case-control and cross-sectional studies. In case-control studies, the
measure of effect of interest is the exposure odds ratio (i.e., EOR), and in cross-
sectional studies, the measure of effect of interest is either the prevalence odds
ratio (i.e., POR) or the prevalence ratio (i.e., PR).

Large sample Z tests and Mantel-Haenszel chi square tests for the EOR, POR,
and PR use identical computational formula as used for tests about risk ratios
(i.e., RR). Large sample confidence intervals for these parameters require
different formulae for different parameters. Formulae for such tests and
confidence intervals are provided at the end of this chapter.

For more details on large sample tests for EOR, POR, and PR, as well as
Fisher’s Exact Test for small samples and sample size calculation, see lesson
page 12-6 in the ActivEpi CD ROM.

Summary- Large Sample Tests

When testing the hypothesis about an odds ratio (OR) in a case-control study,
the null hypothesis can be equivalently stated as either EOR = 1 or p1 – p2 = 0, 
where p1 and p2 are estimated exposure probabilities for cases and non-cases.
The alternative hypothesis can be stated in terms of the EOR either as EOR 
1, EOR > 1, or EOR < 1, depending on whether the alternative is two-sided,
upper one-sided, or lower one-sided, respectively.
One version of the test statistic is a large-sample N(0,1) statistic used to 
compare two proportions.
An alternative version is a large-sample chi square statistic, which is the square
of the N(0,1) statistic.
A Mantel-Haenszel large-sample chi square statistic can alternatively be used
for the chi square test. 

Summary- Fishers Exact Test

Fisher’s exact test provides a test of significance for an odds ratio as well as a
risk ratio with the data are sparse.
To use Fisher’s exact test, we must assume that the values on the margins of a 
2x2 table are fixed values prior to the start of the study.
To compute the P-value for Fisher’s exact test, we need to determine the
probability distribution of the a cell frequency under the null hypothesis.
Assuming fixed-marginals, the a cell has the hypergeometric distribution.
Computer programs, including DataDesk for ActivEpi, are available to
calculate the P-value for this test.

Summary- Large Sample Confidence Intervals

The formula for a 95% confidence interval for an odds ratio formula multiplies
the estimated odds ratio by the exponential of plus or minus the quantity 1.96
times the square root of the variance of the log of the estimated odds ratio.
The odds ratio formula is obtained by exponentiating a large sample
confidence interval for the natural log of the odds ratio.
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The variance of the log of an odds ratio is approximately equal to the sum of
the inverses of the four cell frequencies in the 2x2 table layout.

COHORT STUDIES INVOLVING RATE RATIOS

USING PERSON-TIME INFORMATION 

In cohort studies that use person-time information, the measure of effect of interest
is the rate ratio (i.e., incidence density ratio, IDR). Formulae for large sample
tests and confidence intervals for the IDR are provided at the end of this chapter.
For more details, see lesson page 12-7 in the ActivEpi CD ROM.

Summary- Large Sample Tests

When testing the hypothesis about a rate ratio in a person-time cohort study,
the null hypothesis can be equivalently stated as either IDR = 1 or IR1 – IR0 = 
0.
IDR denotes the rate ratio (i.e., incidence density ratio) and IR1 and IR0 are 
the incidence rates for the exposed and unexposed groups.
The alternative hypothesis can be stated in terms of the IDR  1, IDR > 1, or 
IDR < 1 depending on whether the alternative is two-sided, upper one-sided, or
lower one-sided, respectively.
One version of the test statistic is a large sample N(0,1) or Z statistic used to 
compare two incidence rates.
An alternative version is a large-sample chi square statistic, which is the square
of the Z statistic. 

Summary- Large Sample Confidence Interval

The 95% CI formula for a rate ratio multiplies the estimate rate ratio by the
exponential of plus or minus the quantity 1.96 times the square root of the 
variance of the log of the estimated rate ratio.
This rate ratio formula is obtained by exponentiating a large sample confidence
interval for the natural log of the rate ratio.
The variance of the log of a rate ratio is approximately equal to the sum of the
inverses of the exposed and unexposed cases.

Nomenclature

Table setup for cohort, case-control, and prevalence studies:
Exposed Not Exposed Total

Disease/cases a b n1

No Disease/controls c d n0

Total m1 m0 n

Table setup for cohort data with person-time information:

Exposed Not Exposed Total

Disease (New cases) I1 I0 I
Total disease-free
person-time

PT1 PT0 PT
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2
MH

Mantel-Haenszel chi square

CID Cumulative incidence difference or risk difference, CI1 – CI0; same as risk
difference (RD) 

DÎ
Incidence density (or “rate”) in the population (I/PT) 

0DÎ Incidence density (or “rate”) in the not exposed (I0/PT0)

1DÎ Incidence density (or “rate”) in the exposed (I1/PT1)

IDD Incidence density difference or rate difference, ID1 – ID0

IDR Incidence density ratio or rate ratio: ID1 / ID0; same as Incidence Rate Ratio 
(IRR)

MH Mantel-Haenszel

Formulae

Statistical Tests 

T statistic for the difference between two sample proportions
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Confidence intervals
Large sample 95% confidence interval for the difference between two 
proportions (cumulative or risk difference)
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Large sample 95% confidence interval for the risk ratio (ratio of two
proportions)
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statistics to the biological and health sciences.) Consequently, it is not our intention here to 
provide an exhaustive list of all such texts, but rather to suggest a few references that this
author has used and/or recommends. Among these, we first suggest that you consider 
Velleman's ActivStats CD ROM text, which has the same format has ActivEpi. Suggested
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Multivariable Methods, 3rd Edition. Duxbury Press, 1998. (Chapter 3 provides a
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Moore D. The Active Practice of Statistics. WH Freeman Publishers, 1997 (This book is 
designed specifically to go with ActivStats and matches it closely.)

Remington RD and Schork MA. Statistics with Applications to the Biological and Health 
Sciences. Prentice Hall Publishers, 1970. 

Velleman P. ActivStats - A Multimedia Statistics Resource (CDROM), Addison-Wesley
Publishers, 1998.

Weiss N. Introductory Statistics, 6th Edition. Addison-Wesley Publishing Company,
Boston, 2002. 
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Answers to Study Questions and Quizzes

Q12.1

1. RR, the ratio or two proportions, or OR,
the ratio of two odds, each of the form 
p/(1-p).

2. The usual null hypothesis for a risk
ratio is RR = 1, where 1 is the null 
value of the risk ratio.

3. The usual null hypothesis for an odds 
ratio is OR = 1, where 1 is the null
value of the odds ratio.

Q12.2

1. The pooled estimate of the common
proportion is given by {(.7972 x 1667) 
+ (.2565 x 425)} / {1667 + 425} = 
.6874.

Q12.3

1. The 2-sided alternative A1, in the lower
right corner.

2. Because the normal curve is symmetric,
the left and right tails have equal areas. 
Thus, compute one tail’s area and then
multiply by two.

3. For an upper one-sided alternative, the
P-value is the area under the normal
curve to the right of T*=12.0.  From the 
table, we find P<.0001.  Thus, if the
null hypothesis were true and our
alternative hypothesis had been one-
tailed, our results had less than a .01%
chance of occurring.

4. The P-value is twice the area beyond
the value of 12.0 under the curve, so P 
< 0.0002.  This is because a computed
T* less than –12.0 in the left tail of the 
normal distribution would also

represent a worse value under the null
hypothesis than the T* = 12.0 that was 
actually observed.  Thus, if the null 
hypothesis were true and our alternative
hypothesis had been two-tailed, our 
results had less than a .02% chance of
occurring.

5. Yes, the P-value, which represents the
chance that our results would occur if
the null hypothesis were true, is
extremely small.

6. Conclude that the test is significant, i.e., 
reject the null hypothesis and conclude 
that the proportions for men and 
women are significantly different.

7. a) P > .01: Do not reject H0. b) P = 
.023: Reject H0.

8. c) P < .001: Reject H0.  d) P = .54: Do 
not reject H0.  e) P = .0002: Reject H0.

9. a) P > .01: Do not reject H0. b) P = 
.023: Do no reject H0.

10. c) P < .001: Reject H0.  d) .01 < P <
.05: Do not reject H0.  e) P = .0002: 
Reject H0.

Q12.4

1. hypothesis testing
2. interval estimation
3. hypothesis testing
4. interval estimation
5. significance level 
6. alternative hypothesis
7. rejection region, null hypothesis,

statistically
8. P-value, null hypothesis
9. not reject 
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10. .01, .001 
Q12.5

1. The standard error used here does not 
assume that the null hypothesis is true.
Thus, the variance for each proportion
must be computed separately using its 
sample proportion value.

Q12.6

1. 100% confidence.
2. The 99% confidence interval would be 

the widest and the 90% confidence
interval would be the narrowest.

3. Dataset A gives the more precise
estimate because it’s confidence
interval is narrower than that for
Dataset B.

Q12.7

1. estimated standard error 
2. difference
3. population parameter
4. upper limit
5. 95%
6. 5%
Q12.8

1. Yes, because 7.04 is larger than 6.635, 
which is the .99 percent point of the chi
square distribution with 1 df. 

2. No, because 7.04 is less than 7.879, 
which is the .995 percent point of the 
chi square distribution with 1 df. 

3. Yes, because the P-value for a two-
sided test is the area above 7.04, which 
is less than the area above 6.635, which 
is .01. 

4. No, because the P-value is the area
above 7.04, which is greater than the
area above 7.879, which is .005.

5. Yes, because the upper one-sided test 
using the normal curve was significant
at the 1 percent level.

6. Yes, the one-tailed P-value using the 
normal distribution was .0040, which is
less than .005.

Q12.9

1. The correct P-value is the area under 
the normal curve below +2.65, which is 
1 minus the area above 2.65, which is
calculated to be 1 - .004 = .996.  The 
value of .996 can equivalently be 
obtained from the chi square curve by
taking one half of .008 and subtracting 
from 1, i.e., 1 – (.008 / 2) = .996.  It 
would be incorrect, therefore, to take

one-half of the area of .008 under the 
chi-square curve nor would it be correct
to take one-half of 1 minus .008.

2. Do not reject the null hypothesis
because the P-value is very high.

3. The correct P-value is the area under 
the normal curve below –2.65, which is 
.004. This can also be obtained by
taking half of the area above the chi 
square value of 7.04, which is .008/2 = 
.004.

4. Reject the null hypothesis because the 
P-value is very small, and much smaller
than .05 and .01. 

Q12.10

1. b = m1 – a; c = n1 – a; d = m0 – n1 + a
2. b = 2; c = 1; d = 6
3. b = 1; c = 0; d = 7
4. RR = (5/5) / (1/8) = 8 
5. Yes
6. No.  An a cell value greater than 5 is 

not possible because the assumed fixed
column marginal of 5 would then be 
exceeded.

7. P(a=4 or 5|RR=1) = P(a=4|RR=1) + 
P(a=5|RR=1).  This tells us how rare 
our observed results are under the null 
hypothesis.  It is the P-value for testing
this hypothesis.

8. Since P is greater than .05, we fail to
reject at the .05 significance level for 
the null hypothesis that the RR = 1. 

Q12.11

1. The one-sided p-value is .0630 / 2 =
.0315

2. The large-sample assumption does not 
hold.

3. The sample size n = 13 is not large, so 
that the difference between n = 13 and 
n – 1 = 12 has a stronger effect on the 
calculation of each test statistic.

Q12.12

1. This confidence interval has a 9% 
probability of covering the true risk 
ratio that compares continuing smokers
to smokers who quit.  Even though the 
confidence interval contains the null
value of 1, it is wide enough to suggest
that the true risk ratio might be either
close to one or as large as 3.6.  In other
words, the point estimate of 2.1 is
somewhat imprecise, and the true effect
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of quitting smoking after a heart attack
may be either very weak or very strong.

Q12.13

1. 520/1863 = 0.279
2. 2.23:  T* = (.303 - .256) / [sqrt{.279 * 

(1-.279) * [(1/915) + (1/948)]}] = 2.23 
3. .013
4. 5%, 1% 
5. 4.970: MH chi square = (1862 * 

2.232)/1863 = 4.970
6. 0.026
7. large



CHAPTER 13
CONTROL- WHAT IT’S ALL ABOUT 

In previous chapters, we have discussed and illustrated several important concepts
concerning the control of additional (extraneous) variables when assessing a
relationship between an exposure variable and a health-outcome variable.  In this
chapter, we briefly review these concepts and then provide an overview of several
options for the process of control that are available at both the design and
analysis stages of a study.

What do we Mean by Control? 

Suppose we are studying whether there is a link between exposure to a toxic
chemical and the development of lung cancer in a chemical industry.  To answer
this question properly, we would want to isolate the effect of the chemical from 
the possible influence of other variables, particularly age and smoking status, two
known risk factors for lung cancer. That is, our goal is to determine whether or not
exposure to the chemical contributes anything over and above the effects of age
and smoking to the development of lung cancer.

Variables such as age and smoking in this example are often referred to as
control variables. When we assess the influence of such control variables on the
E D relationship, we say we are controlling for extraneous variables. By 
extraneous, we simply mean that we are considering variables other than E and D
that are not of primary interest but nevertheless could influence our conclusions
about the E D relationship.

In general, we typically carry out a simple analysis of an exposure-disease
relationship as the starting point for more complicated analyses that we will likely
have to undertake. A simple analysis allows us to see the crude association

between exposure and disease and therefore allows us to make some preliminary
insights about the exposure-disease relationship. Unfortunately, a simple analysis
by definition ignores the influence that variables other than the exposure may have
on the disease. If there are other variables already known to predict the disease,
then the conclusions suggested by a simple analysis may have to be altered when
such risk factors are taken into account.

Consequently, when we control for extraneous variables, we assess the effect
of the exposure E on the disease D at different combinations of values of the
variables we are controlling. When appropriate, we evaluate the overall E D

relationship by combining the information over the various combinations of
control values.
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Study Questions (Q13.1) Consider a case-control study to assess whether a
certain toxic chemical (E) is associated with the development of lung cancer (D) in
a chemical industry.  Suppose we wish to consider the control of age and smoking
status.  Assume that we categorize age into three groups: below 40, 40-55, and 
over 55. We also categorize smoking as “ever smoked” versus “never smoked”.

1. How many combinations are there of the categories of age and smoking?

Two kinds of pooled analyses with these data are: 

Pool 2x2 tables of these combinations into one overall “pooled” table and
compute an odds ratio for this pooled table, and

Compute an odds ratio for each 2x2 table corresponding to each
combination and then average these separate odds ratios in some way. 

2. Which of these two analyses controls for age and smoking?

Several questions arise when considering the control of extraneous variables.
Why do we want to control in the first place? That is, what do we accomplish by
control? What are the different options that are available for carrying out control?
Which option for control should we 
choose in our study? Which of the
variables being considered should
actually be controlled? What should
we do if we have so many variables
to control that we run out of data?
These questions will be considered
in the activities to follow.

Summary

When assessing an E D relationship, we determine whether E contributes
anything over and above the effects of other known predictors (i.e., control

variables) of D.
When we assess the influence of control variables, we say we are controlling

for extraneous variables.
A simple analysis ignores the control of extraneous variables.
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Controlling assesses the E D relationship at combinations of values of the
control variables.
When appropriate, controlling assesses the overall E D relationship after 
taking into account control variables.

Reasons for Control 

The typical epidemiologic research question assesses the relationship between one
or more health outcome variables, D, and one or more
exposure variables, E, taking into account the effects 
of other variables, C, already known to predict the
outcome.

When there is only one D and one E,
and there are several control variables, the 
typical research question can be expressed
as shown here, where the arrow indicates
that the variable E and the C variables on
the left are to be evaluated as predictors of
the outcome D, on the right.

Why are the C variables here? That is,
what are the reasons why we want to
control for the C's? One reason for control
is to ensure that whatever effect we may find of the exposure variable cannot be
explained away by variables already known to have an effect on the health
outcome. In other words, we want to make sure we have accounted for the
possible confounding of the E D relationship due to the influence of known risk
factors for the health outcome.

A second reason for control is to ensure that we remove any variability in the
estimate of the E D effect contributed by other known predictors. We might gain
precision in our effect estimate, for example, a narrow confidence interval, as a 
result of controlling. In some situations there may be a loss of precision when
controlling for confounders.

A third reason for control is to allow us to assess whether the effect of the
exposure may vary depending on the characteristics of other predictors. For
example, there may be a strong effect of exposure for smokers but no effect of
exposures for non-smokers. This issue concerns interaction, or effect

modification.
These are the primary three reasons for controlling:

1) to control for confounding; 2) to increase precision;
and 3) to account for the possibility of effect

modification.
All three reasons are important, but there is 

nevertheless an ordering of when they should be
considered in the course of an analysis.

The possibility of effect modification should be
considered first, because if there is an effect modification, then a single adjusted
estimate that controls for confounding may mask the fact that the E D

relationship differs for different categories of a control variable.
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Once effect modification is addressed or found to be absent, confounding

should be considered, particularly in terms of those control variables not found to
be effect modifiers. Confounding should be assessed prior to precision because
confounding concerns the validity of an estimate. Precision only concerns
random error. We would rather have a valid estimate than a narrow confidence
interval around a biased estimate. 

Study Questions (Q13.2) Consider again a case-control study to assess whether a
certain toxic chemical (E) is associated with the development of lung cancer (D) in
a chemical industry, where we wish to control for age and smoking status.  Also,
assume that we categorize age into three groups: below 40, 40-55, and >55 years
of age; and we categorize smoking as “ever smoked” versus “never smoked.”

1. True of False. We can assess confounding of either age or smoking by
determining whether the E D relationship differs within different categories
of either age or smoking or both combined.

2. True or False.  A more precise estimate of the odds ratio (OR) for the E D

association will be obtained if we control for both age and smoking status.

Suppose that when controlling for both age and smoking status, the OR for the
E D association is 3.5, but when ignoring both age and smoking status, the
corresponding crude OR is 1.3. 

3. Does this indicate confounding, precision, or interaction?

Suppose that when controlling for age and smoking status, the adjusted OR is 3.5,
as above, with a 95% confidence interval ranging from 2.7 to 4.5, but that the
crude OR of 1.3 has a 95% confidence interval from 1.1 to 1.5.

4. Which of these to OR’s is more appropriate?

Suppose in addition to the above information, you learned that the estimated OR
relating E to D is 5.7 for smokers but only 1.4 for non-smokers?

5. Would you want to control for confounding of both age and smoking?

Summary

The typical epi research question assesses the relationship of one or more E

variables to one or more D variables controlling for several C variables.
The three reasons to control are confounding, precision, and effect
modification.
The possibility of effect modification should be considered first, followed by
confounding, and then precision.
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Options for Control 

Design Options 

Suppose you wish to assess the possible association of personality type and 
coronary heart disease. You decide to carry out a cohort study to compare the
CHD risk for a group of subjects with Type A personality pattern with the 
corresponding risk for Type B subjects. You plan to follow both groups for the
same duration, say 5 years.

Your exposure variable, E, is therefore dichotomous. You recognize that age,
gender, ethnicity, blood pressure, smoking status, and cholesterol level are
important CHD risk factors that you need to observe or measure for control in
your study. You also recognize that there are other factors such as genetic factors, 
daily stress level, physical activity level, social class, religious beliefs, that you
might also like to consider but you don't have the resources to measure.

How do you carry out your study to control for any or all of the variables we
have just mentioned? That is, what are your options for control? Some of your
options need to be carried out at the study design stage prior to data collection.
Other options are carried out during

the analysis stage after the data has
been obtained. It is possible to choose
more than one option in the same
study.

We first focus on the design options. One design option is randomization.
You might wish to randomly assign an initial disease-free individual to either
Type A or Type B personality type. If you could randomize, then the variables you
want to control for, even those you don't actually measure, might be distributed
similarly for both exposure groups. However, this option is unavailable here. You
can't force people to be one personality type or another; they are what they are. 

A second design option is called restriction. This means specifying a narrow
range of values for one or more of the control variables. For example, you might
decide to restrict the study to African-Americans, to women, to persons older than
50, or to all three, but not to restrict any of the other variables on your list. 
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Study Questions (Q13.3)

1. What is a drawback to limiting the study to women only?
2. Other than generalizing to other age groups, what is another drawback to

limiting the age range to persons over 50?

A third design option is matching. Matching imposes a “partial restriction” on
the control variable being matched.  For example, if we match on smoking status
using what is called pair matching, our cohort would consist of pairs of subjects,
where each pair would have a Type A subject and Type B subject who are either
both smokers or both non-smokers.  Smoking status would therefore not be
restricted to either all smokers or all non-smokers. What would be restricted,
however, is the smoking status distribution, which would be the same for both
Type A and Type B groups.  Matching is often not practical in cohort studies such
as the study described here, so it is rarely used in cohort studies. Rather it is most
often used in case-control studies or in clinical trials. 

Study Questions (Q13.3) continued Suppose you carry out a case-control study
to compare CHD risks for Type A with Type B subjects.  You decide to pair-
match on both smoking status (ever versus never) and gender. Your cases are
CHD patients identified from a cardiovascular disease registry and your controls
are disease-free non-CHD subjects that are community-based.

3. What is the smoking status and gender of a control subject who is matched
with a male non-smoking case?

4. If there are 110 cases in the study, what is the total number of study subjects?
(Assume pair matching, as described above.)

5. Is there any restriction on the smoking status or gender of the cases?
6. Is there any restriction on the smoking status or gender of the controls?

Summary

Three design options for controlling extraneous variables are: 
Randomization – randomly allocating subjects to comparison groups
Restriction – specifying a narrow range of possible values of a control
variable.
Matching – a partial restriction of the distribution of the comparison group.

Analysis Options 

What control options are available at the analysis stage of a study? We'll continue
the illustration of a 5-year cohort study to assess the possible association of
personality type and coronary heart disease. Once the data are collected, the most
direct and logical analysis option is a stratified analysis.

In our cohort study, if we have not used either restriction or matching at the
design stage, stratification can be done by categorizing all control variables and
forming combinations of categories called strata. For example, we might
categorize age in three groups, say under 50, 50-60, and 60 and over; ethnicity into
non-whites verses whites; diastolic blood pressure into below 95 and 95 or higher;
and HDL level at or below 35 versus above 35. Because there are 6 variables
being categorized into 3 categories for age and 2 categories for the other 5
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variables, the total number of category combinations is 3 times 25, or 96 strata.

An example of a stratum is subjects over 60, female,
non-white, with a diastolic blood pressure greater than 95, a
smoker, and with HDL level below 35. For each stratum we
form the 2x2 table that relates exposure, here personality
type, to the disease, here, CHD status.

A stratified analysis is then carried out by making decisions about the E-D

relationship for individual strata and if appropriate, combining the information
over all strata to provide an overall adjusted estimate that controls for all variables
together.

Study Questions (Q13.4)

1. When would it not be appropriate to compute an overall adjusted estimate that
combines the information over all strata?

2. How would you assess the E D relationship within any given stratum?
3. For the cohort study illustrated here, what is the biggest obstacle in carrying

out stratum-specific analyses?
4. How might you carry out stratified analyses that avoid dealing with a large

number of strata containing zero cells?
5. What would be an advantage and a disadvantage of doing several stratified

analyses one variable at a time?

A major problem with doing stratified analysis when there are many variables
to control is that you quickly run out of subjects. An alternative option that gets

around this problem is to use a mathematical model. A mathematical model is 
a mathematical expression or formula that describes how an outcome variable, like
CHD status in our example, can be predicted from other variables, which in our
example are the exposure variable and the control variables we have measured or
observed. In other words, we have a variable to be predicted, often referred to as
the dependent variable and typically denoted Y, and predictors, often called
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independent variables and typically denoted with X's.

When modeling is used, we do not have to split up the data into strata. Instead,
we obtain a formula to predict the dependent variable from the independent
variables. We can also use the formula to obtain estimates of effect measures such
as risk ratios or odds ratios.  But modeling has
difficulties of its own. These include the choice of
the model form to use, the variables to be included
in the initial and final model, and the assumptions
required for making statistical inferences.

For dichotomous dependent variables like CHD
in our example, the most popular mathematical model is called the logistic model.

Study Questions (Q13.4) continued Suppose we want to use mathematical
modeling to assess the relationship between personality type (E) and CHD status
(D) controlling for age, gender, ethnicity, diastolic blood pressure (DBP), smoking
(SMK), and high-density lipoprotein (HDL).

6. True or False.  The only possible choices for the independent variables in this
model are E and the above 6 control variables.

7. True or False. In a mathematical model, continuous variables must be
categorized.

8. True or False.  In a case-control study, the dependent variable is exposure 
status.

Suppose f(X1, X2, X3, X4, X5, X6, X7) represents a mathematical formula that 
provides good prediction of CHD status, where X1 through X7 denote E and the 6
control variables described above.

9. True or False.  If we substitute a person’s specific values for X1 through X7

into the formula, we will determine that person’s correct CHD status.

Summary

At the analysis stage, there are two options for control:
Stratified analysis - categorize the control variables and form combinations of
categories or strata.
Mathematical modeling – use a mathematical expression for predicting the
outcome from the exposure and the variables being controlled.
Stratified analysis has the drawback of running out of numbers when the
number of strata is large.
Mathematical modeling has its drawbacks, including the choice of model and
the variables to be included in the initial and final model.
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Quiz (Q13.5) The three primary reasons for controlling in an epidemiological
study, listed in the order that they should be assessed, are: 

1. ???

2. ???

3. ???

Choices:  Confounding Effect Modification Matching Stratification

Mathematical Modeling PrecisionRandomization Restriction

There are three options for control that can be implemented at the design stage.

4. ??? is a technique for balancing how unmeasured variables are distributed
among exposure groups.

5. ??? limits the subjects in the study to a narrow range or values for one or more
of the control variables.

6. In a case-control study, ??? ensures that the some or possibly all control
variables have the same or similar distribution among case and control groups.

Choices Matching Mathematical Modeling Optimization

Randomization Restriction Stratification

7. Stratification is an analysis technique that starts by dividing the subjects into
different ??? based on categories of the ??? variables.

8. A major problem with stratified analyses is having too many ??? variables,
which can result in ??? data in some strata. 

Choices control diseaseexposure large numbers random samples

sparse strata treatment

9. In mathematical modeling we use a formula to predict a ??? variable from one
or more ??? variables.

10. The problems with using a mathematical model include the choice of the ???

of the model, deciding what 111 to include in the model, and the ??? required
for making statistical inferences from the model.

Choices assumptions cases complexity control dependent form

independent subjects treatments variables

Randomization

Randomization allocates subjects to exposure groups at random.  In 
epidemiologic research, randomization is used only in experimental studies such
as clinical or community trials, and is never used in observational studies.

What does randomization have to do with the control of extraneous variables?
The goal of randomization is comparability. Randomization tends to make the
comparison groups similar on demographic, behavioral, genetic, and other
characteristics except for exposure status. The investigator hopes, therefore, that if
the study finds any difference in health outcome between the comparison groups,
that difference can only be attributable to their difference in exposure status. 
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For example, if subjects are randomly allocated to either a new drug or a
standard drug for the treatment of hypertension, then it is hoped that other factors,
such as age and sex, might have approximately the same distribution for subjects
receiving the new drug as for subjects receiving the standard drug. Actually, there
is no guarantee even with randomization that the distribution of age, for example,
will be the same for the two treatment groups. The investigator can always check
the data to see what has happened regarding any such characteristic, providing the
characteristic is measured or observed in the study. If, for example, the age
distribution is found to be different between the two treatment groups, the
investigator can take this into account in the analysis by stratifying on age.

An important advantage of randomization is what it offers for those variables
not measured in the study. Variables that are not measured obviously cannot be
taken into account in the analysis. Randomization offers insurance, though no
guarantee, that such unmeasured variables are similarly distributed among the
different exposure groups. In observational studies, on the other hand, the
investigator can account for only those variables that are measured, allowing more
possibility for spurious conclusions because of unknown effects of important
unmeasured variables.

Study Questions (Q13.6) Suppose you plan to do a case-control study to assess
whether personality type is a risk factor for colon cancer.
1. Can you randomly assign your study subjects to different exposure groups?

Suppose you plan a clinical trial to compare two anti-hypertensive drugs.  You 
wish to control for age, race, and gender, but you also wish to account for possible
genetic factors that you cannot measure.

2. Can you control for specific genetic factors in your analysis?
3. Will the two drug groups have the same distributions of age, race, and gender?
4. What do you hope randomization will accomplish regarding the genetic factors 

you have not measured?

Summary

Experimental studies use randomization whereas observational studies do
not use randomization.
The goal or randomization is comparability.
Randomization tends to make comparison groups similar on other factors to be 
controlled.
An important advantage of randomization is that it tends to make variable not
measured similarly distributed among comparison groups.
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There is not guarantee that randomization will automatically make comparison
groups similar on other factors.

Restriction

Restriction is another design option for control in which the eligibility of potential
study subjects is narrowed by restricting the categories of one or more control
variables.  Restriction can be applied to both continuous and categorical variables.
For a categorical variable, like gender, restriction simply means that the study is 
limited to one or more of the categories. For a continuous variable, restriction
requires limiting the range of values, such as using a narrow age range, say from
40 to 50 years of age.

Restriction typically provides complete control of a variable. It is convenient,
inexpensive, and it requires a simple analysis to achieve control. For example, if a
study is restricted to females only, the analysis does not require obtaining an
adjusted effect that averages over both genders. The main disadvantage of
restriction is that we cannot generalize our findings beyond the restricted category.
For continuous variables, another disadvantage is that the range of values being
restricted may not be sufficiently narrow, so there may still be confounding to be
controlled within the chosen range.

Given a list of several control variables to
measure, we typically use restriction on a 
small number of variables. This allows 
hypotheses to be assessed over several
categories of most control variables, thereby
allowing for more generalizability of the
findings.

For example, if we want to control for age, gender, ethnicity, diastolic blood
pressure, smoking, and HDL level, we would likely use restriction for no more
than two or three of these variables, say age and gender.

Restriction may be used at the analysis stage even if not used at the design
stage. For example, even though the study sample may include several ethnic
groups, we may decide to only analyze the data for one of these groups,
particularly if other ethnic groups have relatively few subjects. However, it's more
advantageous to choose restriction at the design stage to gain precision in the
estimated effect or to reduce study costs. For example, for a fixed study size or 
fixed study cost, restricting ethnicity to African-Americans at the design stage will
provide more African-American subjects, and therefore more precision in effect
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measures for African-Americans, than would be obtained if the design allowed 
several ethnic groups to be eligible.

Summary

Restriction is a design option that narrows the eligibility of potential study
subjects by restricting the categories of one or more control variables.
Restriction can be applied to both categorical and continuous variables.
Restriction typically provides complete control, is convenient, inexpensive,
and requires a simple analysis to achieve control.
The main disadvantage of restriction is not being able to generalize findings
beyond the restricted category. 
For continuous variables, another disadvantage is the possibility of residual
confounding within the range of restricted values.
Restriction may be used in the analysis stage, but if used at the
design stage, precision may be gained and/or study costs may be
reduced.

Quiz (Q13.7) Label each of the following statements as True or False.

1. Restriction can only be used with categorical variables. ???

2. An advantage of restriction is that it requires only a simple analysis to achieve
control. ???

3. One disadvantage of restriction is that it can be expensive to administer. ???

4. Restriction can be used at both the design and analysis stage. ???

Matching

Matching is a design option that can be used in experimental studies and in
observational cohort studies, but is most widely used in case-control studies. A
general definition of matching that allows other designs is given in Chaptersson
15.

There are generally two types of matching: individual matching and 
frequency matching. When individual matching is used in a case-control study,
one or more controls are chosen for each case so that the controls have the same or 
similar characteristics on each of the variables involved in the matching.  For
example, if we match on age, race, and sex, and a given case is, say, 40 years old,
black, and male, then the one or more controls matched to this case must also be 
close to or exactly 40 years old, black, and male. For continuous variables, like
age, the categories used for matching must be specified prior to the matching
process. For age, say, if the matching categories are specified as 10-year age bands
that include the age range 35-45, then the control match for a 40-year-old case
must come from the 35-45 year old age range.

Here, we are restricting the distribution of age, race, and gender in the control
group to be the same as in the case group. But we are not restricting either the
values or the distribution of age, race, and sex for the cases. That's why we say
that matching imposes a partial restriction on the control variables being
matched.
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If frequency matching is used in a case-control study, then the matching is 
done on a group rather than individual basis. For example, suppose we wish to
frequency match on race and gender in a case-control study, where the cases have 
the race-by-gender breakdown shown here:

The controls then must be chosen as a group to have the same distribution as 
the cases over the four races by gender strata. If we want to have twice as many
controls as cases, then the race by gender breakdown for controls will follow the
same distribution pattern as the cases. 

Several issues need to be considered when matching.

First, what are the advantages and disadvantages of matching? A major
reason for matching is to gain efficiency or precision in the estimate of effects, 
say, the odds ratio.
Should we match at all, or should we choose the cases and controls without
matching? There is no simple answer to this question, but a rough guideline is 
to only match on variables that you think will be strong confounders in your
data.
How many controls should we choose for each case? A rough guideline here
is that usually no more than four controls per case will be necessary in order to 
gain precision.
How do we analyze matched data? The answer here depends in part on
whether or not there are other variables to be controlled in the analysis besides
the matching variables. In particular, if the only variables being controlled are
involved in the matching, than the appropriate analysis is a special kind of
stratified analysis. But if in addition to the matching variables, there are other
variables to be controlled, then the appropriate analysis involves
mathematical modeling, usually using logistic regression methods.
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Summary

Matching can be used in both experimental and observational studies, and is
most often used in case-control studies.
There are two types of matching: individual matching and frequency

matching.
A major reason for matching is to gain efficiency or precision in the estimate
of effect. 
Usually no more than four controls per case will be necessary in order to gain
precision.
If the only variables being controlled are involved in the matching, then use
stratified analysis.
If there are other variables to be controlled, then use mathematical modeling.

Quiz (Q13.8) Label each of the following statements as True or False.

1. Matching is used mostly with observational cohort studies. ???

2. For continuous variables, the ranges used for creating matching categories
must be specified prior to the matching process. ???

3. For frequency matching, there can be more controls than cases. ???

4. Stratified Analysis is typically used for matched data to control for variables
other than those involved in the matching. ???

Stratified Analysis 

Stratified analysis is an analysis option for control that involves categorizing all
study variables, and forming combinations of categories called strata. If both the
exposure and the disease variables are dichotomous, then the strata are in the form
of several two by two tables. The number of strata will depend on how many
variables are to be controlled and how many categories are defined for each
variable.

Study Questions (Q13.9)

1. If three variables are to be controlled and each variable is dichotomized, how
many strata are obtained?
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2. If the control variables are age, race, and gender, give an example of one of the
strata.

Once the strata are defined, a stratified analysis is carried out by making 
stratum-specific simple analyses and, if appropriate, by making an overall
summary assessment of the E D relationship that accounts for all control
variables simultaneously. Both the stratum-specific analyses and the overall
summary analyses will typically involve computing and interpreting a point
estimate of the effect, say a risk ratio, a confidence interval for the point estimate,
and a test of hypothesis for the significance of the point estimate.

For an overall summary assessment, the point estimate is an adjusted estimate
that is some form of weighted average of stratum-specific estimates. The
confidence interval is an interval estimate around this weighted average, and the
test of hypothesis is a generalization of the Mantel-Haenszel chi-square that now
considers several strata. 

Summary

Stratified analysis involves the following steps:
Categorize all variables
Form combinations of categories (i.e., strata)
Carry out stratum-specific analyses 
Carry out an overall E D assessment, if appropriate 
Both stratum-specific analyses and overall assessment require point and
interval estimates, and a test of hypothesis.

For overall assessment:
The point estimate is an adjusted estimate that is a weighted average of 
stratum-specific estimates.
The confidence interval is an interval estimate around the adjusted (weighted)
estimate.
The test of hypothesis is a generalization of the Mantel-Haenszel chi square
test.

Quiz (Q13.10) Label each of the following statements as True or False.

1. Stratified analysis is an analysis option for control that involves categorizing
all study variables, and forming combinations of categories called strata. ???

2. Tests of hypothesis are not appropriate for stratified analyses. ???

3. When carrying out stratum-specific analyses, the point estimate is typically
computed as a weighted average. ???

4. When carrying out stratum-specific analyses, an appropriate test statistic for
large samples is a Mantel-Haenszel chi square statistic. ???

5. If it is appropriate to carry out overall assessment over all strata, a 
recommended test statistic for large samples is a Mantel-Haenszel chi square
statistic. . . . ???

6. When carrying out overall assessment over all strata, a Mantel-Haenszel chi 
square statistic is always appropriate for large samples. ???
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Mathematical Modeling 
See lesson page 13-3 in the ActivEpi CD ROM for an introduction to mathematical
modeling, including the terms independent and dependent variables, and expected value
of a model. Also, a brief introduction to the logistic model is also provided.
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Answers to Study Questions and Quizzes

Q13.1

1. 3 x 2 = 6 combinations
2. Approach 2 controls for age and smoking,

since it considers what happens when
variables are controlled.  Approach 1 ignores
control of age and smoking.

Q13.2

1. False. The statement addresses the question 
of interaction/ effect modification, not
confounding.

2. False. The precision obtained will depend 
on the data; there is no guarantee that 
precision is always gained by controlling for
extraneous variables. 

3. Confounding, since the statement concerns
what happens when we compare a crude
estimate of effect with an adjusted estimate
of effect.

4. If age and smoking are risk factors for lung
cancer (they are), then the OR of 3.5 is more
appropriate because it controls for
confounding, even though it is less precise
than the crude estimate; i.e., validity is more
important than precision.

5. No, estimated OR’s of 5.7 for smokers and
1.4 for non-smokers indicate strong
interaction due to smoking (provided the
observed interaction is statistically
significant).  An assessment of confounding
would require comparing a crude estimate to
an adjusted estimate, but use of the latter 
would not be appropriate because it would 
mask the presence of strong interaction.

Q13.3

1. You cannot generalize your results to men;
that is, generalizing to men is an “external
validity” problem.

2. The age group of persons over 50 is not 
necessarily narrow enough to completely
control for age.  In particular, there may still
be “residual” confounding due to age within 
the age group over 50.

3. The control will have the same smoking
status and gender as the case, i.e., the control
will be a non-smoking male.

4. 220, since there will be 110 cases and 110
matched controls.

5. No, cases can be either male or female and
either smokers or non-smokers, and they can
have any distribution possible of each of
these variables. 

6. Yes, the controls are restricted to have the
same distribution of both smoking status and
gender as the cases.

Q13.4

1. It would not be appropriate to compute an
overall adjusted estimate of there is strong
evidence of interaction, e.g., if the estimated
risk ratios in two or more strata are both 
statistically and meaningfully different.

2. Carry out a simple analysis for the given 
stratum by computing a point estimate of
effect (e.g., a risk ratio), a confidence
interval around the point estimate, and a test 
of hypothesis about the significance of this
estimate.

3. There are 96 strata in all, so that it is highly 
likely that the entire dataset will be greatly 
thinned out upon stratification, including
many strata containing one or more zero
cells.

4. Do a stratified analysis one variable or two
variables at a time, rather than all the
variables being controlled simultaneously.
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5. An advantage is that you can make some
preliminary insights about confounding and
interaction for every control variable.  A 
disadvantage is that you will not be 
controlling for all variables simultaneously.

6. False.  If age is continuous, then age2 might
also be used.  Similarly for other continuous
variables.  Also, product terms like E x age,
age x gender might be used.

7. False.  Continuous variables can be treated 
as either continuous or categorical,
depending on the investigator’s judgment.
However, for a stratified analysis,
continuous variables must be categorical.

8. False. Even though cases and controls are
selected first and previous exposure then 
determined, case-control status is the 
dependent variable in a mathematical model
because it represents the health outcome
variable being predicted.

9. False. Mathematical models rarely, if ever,
perfectly predict the outcome variable.
There is always some amount of error that 
represents the difference between a predicted
value and the observed value.

Q13.5

1. Effect modification
2. Confounding
3. Precision
4. Randomization
5. Restriction
6. Matching
7. Strata, Control
8. Control, Sparse
9. Dependent, Independent
10. Form, Variables, Assumptions

Q13.6

1. No.  In a case-control study, exposure status
is determined only after cases and controls 
are selected.  Therefore, randomization to 
exposure groups (i.e., personality types) is
not possible in case-control studies.

2. No.  You cannot control for factors in your
analysis that you have not measured.

3. Not necessarily. Randomization would tend
to make the distribution of age, race, and
gender similar in the two drug groups, but 
there is no guarantee that they will be the 
same.

4. You hope that the distribution of genetic
factors is similarly distributed within the two
drug groups, even though these factors have 
not been measured.  Moreover, you hope
that, for any other unmeasured factors,
randomization will distribute such factors 
similarly over the groups being considered.

Q13.7

1. False – Restriction can also be used to limit
the range of values of a continuous variable.

2. True – An advantage of restriction is that it 
is inexpensive to administer.

3. False
4. True

Q13.8

1. False – Matching is used mostly with case-
control studies.

2. True
3. True
4. False – If in addition to the matching

variables, there are other variables to be
controlled, then the appropriate analysis
involves mathematical modeling using
logistic regression methods.

Q13.9

1. 2 x 2 x 2 = 8 strata
2. One stratum would contain all study subjects

who are in a categorized age group and have
the same race and gender (e.g., white
females 30-40 years old).

Q13.10

1. True
2. False – both the stratum-specific and the

overall summary statistics will typically
involve computing a point estimate, a 
confidence interval, and a test of hypothesis.

3. False – when carrying out stratum-specific
analyses, the point estimate is a simple point 
estimate calculated for a specific stratum.

4. True
5. True
6. False – a Mantel-Haenszel test is not 

appropriate if there is significant and 
meaningful interaction over the strata.



CHAPTER 14
HOW TO DEAL WITH LOTS OF TABLES?
    STRATIFIED ANALYSIS 

This is an analysis option for the control of extraneous variables that involves the
following steps:

1. Categorize all variables.
2. Form combinations of categories (i.e., strata).
3. Perform stratum-specific analyses.
4. Perform overall E-D assessment if appropriate. 

Both stratum-specific analyses and overall assessment require a point
estimate, an interval estimate, and a test of hypothesis.  In this chapter we focus
on overall assessment, which is the most conceptually and mathematically
complicated of the four steps. For overall assessment, the point estimate is an
adjusted estimate that is typically in the form of a weighted average of stratum-
specific estimates. The confidence interval is typically a large-sample interval
estimate around the adjusted (weighted) estimate. The test of hypothesis is a
generalization of the Mantel-Haenszel chi square test.

An Example – 1 Control Variable 

We illustrate the four steps of a stratified analysis with an example:

The tables below show data from a hypothetical retrospective cohort study to
determine the effect of exposure to a suspected toxic chemical called TCX on the 
development of lung cancer.  Suppose here that the only control variable of
interest is smoking. First, we categorize this variable into two groups, smokers and
non-smokers. Second, we form two-way tables for each stratum. Third, we
perform stratum specific analyses as shown here. These data illustrate
confounding. The crude data that ignores the control of smoking yields a 
moderately strong risk ratio estimate of 2.1. This is meaningfully different from
the two estimates obtained when smoking is controlled, both of which indicate no
association.
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Step 3 also involves computing interval estimates and a P-value for each
stratum and then interpreting the results separately for each stratum as well as for
the crude data.  Each stratum-specific analysis is essentially a simple analysis for
a two-way table. Here are the computed results:

P = 0.25

Study Questions (Q14.1)

1. What is your interpretation of the stratum-specific results?
2. Does there appear to be interaction due to smoking?
3. Does there appear to be an overall effect of TCX exposure after controlling for

smoking status?

Step 4, the overall E D assessment, should only be performed when
appropriate. When evidence of confounding is present, this assessment should be
conducted. However, when there is sufficient evidence of interaction or effect

modification, this step is considered inappropriate. In our example, the risk ratio
estimates for both smoking groups are essentially the same, which indicates that it
is reasonable to go ahead with a summary or overall assessment.

To perform this step, we must do three things: compute an overall adjusted

estimate of the exposure-disease effect over all the strata, carry out a test of

hypothesis of whether or not there is an overall effect controlling for the
stratification, and compute and interpret an interval estimate around the adjusted
point estimate.
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The adjusted estimate typically is some form of weighted average of stratum-
specific estimates. The test procedure is the Mantel-Haenszel test for stratified 
analysis. The interval estimate is typically computed as a large sample confidence
interval based on percentage points of the normal distribution. These three
components of overall assessment will be described further in the activities to 
follow.

Study Questions (Q14.1) continued A precision-based adjusted risk ratio
estimate of the TCX to lung cancer relationship is computer to be 1.25.  A 95%
confidence interval around this estimate turns out to be (.78, 2.00).  The Mantel-
Haenszel test statistic has a P-value of .28. 

4. What do you conclude from these results about the overall assessment of the E-
D relationship in this study?

Summary

The simplest form of stratification occurs when there is a single dichotomous
variable to be controlled.
In this case, only one variable is categorized (step 1) and two strata are
obtained (step 2).
Step 3 typically involves computing a point estimate, an interval estimate, and
a P-value for each stratum.
Overall assessment (step 4) may not be appropriate if there is interaction/effect
modification.
Step 4 involves computing an overall adjusted estimate of effect, a large-
sample confidence interval for the adjusted effect, and a test of significance
(the Mantel-Haenszel test).

Overall Assessment? 

Because the risk ratio estimates for both smoking groups are essentially the same,
we have concluded that it is reasonable to go ahead with an overall assessment
using an adjusted estimate, a confidence interval around this adjusted estimate,
and a Mantel-Haenszel test for the stratified data. The results are presented
below. They clearly indicate that there is no meaningful or significant effect of
TCX on the development of lung cancer when controlling for smoking.
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But, what if we obtained a different set of stratum specific estimates, for
example, the results shown below (examples 2 and 3)? Would we still want to 
compute an adjusted estimate, obtain a confidence interval around it and compute
a Mantel-Haenszel test?

Note: The rows of risk ratio results are, from top to bottom, examples 1, 2, and 3, 
respectively.

These two examples show a very strong interaction due to smoking. And, the
type of interaction in example 2 is quite different from the interaction in example
3. The stratum-specific risk ratio estimates of 0.52 and 3.5 in example 2 are on the
opposite side of the null value of 1. In contrast, the stratum-specific risk ratio
estimates of 1.1 and 4.2 from example 3 are on the same side of the null value,
although they are also quite different.

When stratum specific effects are on opposite sides of 1, as in example 2, it is 
possible that they can cancel each other in the computing of an adjusted effect.
Consequently, in this situation, the use of such an adjusted estimate, corresponding
confidence interval, and Mantel-Haenszel test is not recommended. The important
results in this case are given by the contrasting stratum-specific effects, and these
are likely to be masked by carrying out overall assessment.

When stratum specific effects are all in the same direction, as in example 3, a 
spurious appearance of no association cannot arise from cancellation of opposite
effects. It may therefore be worthwhile, despite the interaction, to perform overall
assessment, depending on the investigator's judgment of how large the difference
between stratum-specific effects is or how stable these estimates are. 

Summary

Overall assessment (step 4) may not be appropriate if there is interaction/effect
modification.
The most compelling case for not carrying out an overall assessment is when
significant stratum-specific effects are on opposite sides of the null value.
When all stratum-specific effects are on the same side of the null value, overall 
assessment may be appropriate even if there is interaction.
The most appropriate situation for performing overall assessment is when
stratum-specific effects are all approximately equal, indicating no interaction
over the strata.
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An Example – Several Explanatory Variables 

In recent years, antibiotic resistance has become a major problem in the treatment
of bacterial infections. Many antibiotics that used to provide effective treatment
against certain bacteria, particularly Staphylococcus aureus, or Staph, no longer
work because newer strains of Staph aureus are resistant to antimicrobial drugs. 
When someone is diagnosed with infection due to Staph aureus, the first line of 
treatment typically involves methicillin-based antimicrobial drugs. However,
strains of Staph aureus resistant to those drugs are now are considered a major
problem for patients seen in emergency rooms. Resistant bacteria of this type are 
called methicillin-resistant Staph infections or MRSA. 

We may wonder what are the
characteristics or risk factors 
associated with having an MRSA 
infection? To study this question, a 
cross-sectional study was carried out
at Grady Hospital in Atlanta, Georgia
involving 297 adult patients seen in 
an emergency department whose
blood cultures taken within 24 hours
of admission were found to have Staph aureus infection. Information was
obtained on several variables, some of which were previously described risk
factors for methicillin resistance: 

We use this information to illustrate a stratified analysis to assess whether
previous hospitalization is associated with methicillin resistance, controlling for
age, gender, and prior use of antimicrobial drugs.  Age is continuous so we will
categorize age into two groups (1=age greater than 55 years; 0=age less than or
equal to 55 years).

We first consider the crude data relating previous hospitalization to MRSA 
status:

Study Questions (Q14.2)

1. Looking at the crude data only, is previous hospitalization associated with
methicillin resistance?

2. What reservations should you have about your answer to question 1?
3. Should you automatically stratify on age, sex, and prior antimicrobial use since

they were measured in the study?
4. Since there were 297 persons in the study, why does the overall total equal

292?

Now let's see what happens when we stratify separately on age, sex, and prior
antimicrobial drug use?  Each stratified table is depicted separately in the
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following.

Relation between MRSA and Previous Hospitalization Stratified on Age

5. Focusing on stratifying age only, does there appear to be interaction/effect
modification due to age based on the stratum-specific results?

6. The Breslow Day (BD) Test for Interaction provides a P-value for testing the
null hypothesis that there is no interaction over the strata.  Based on this test 
with stratifying on age, is there evidence of interaction?

7. Based on your answers to the above questions, is an overall assessment of the
E-D relationship appropriate when stratifying on age?

8. Is there confounding due to age? (Hint: = 11.67.)RÔc
9. Does there appear to be a significant effect of previous hospitalization on

MRSA when controlling for age?
10. What does the confidence interval for the adjusted estimate say about this

estimate?

Relation between MRSA and Previous Hospitalization Stratified on Sex

11. Is an overall assessment of the E-D relationship appropriate when stratifying
only on gender?

12. Is there confounding due to gender? (Hint: = 11.67.)RÔc
13. Does there appear to be a significant effect of previous hospitalization on

MRSA status when controlling for gender?
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Relation between MRSA and Previous Hospitalization Stratified on Prior

Antimicrobial Drug use (“PAMDU”)

14. Is an overall assessment of the E-D relationship appropriate when stratifying
only on PAMDU?

15. Is there confounding due to PAMDU? (Hint: = 11.67.) RÔc
16. Does there appear to be a significant effect of previous hospitalization on

MRSA status when controlling for PAMDU?

Summary

When several variables are being controlled using stratified analysis, the
typical first step in the analysis is to analyze and interpret the crude data.
The next step typically is to stratify separately on each control variable
including carrying out an overall assessment of the E-D relationship, if
appropriate.
One approach to determine whether overall assessment is appropriate is to 
assess whether stratum-specific effects are more or less the same.
Another approach is to carry out a Breslow Day test of the null hypothesis that
there is no interaction/effect modification due to the variable(s) being
stratified.

An Example – Several Explanatory Variables 

(Continued)

Here is a summary table that results from stratifying on each control variable
separately.
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Study Questions (Q14.3)

1. Based on the information in the above table, which, if any, of the variables age,
gender, and previous antimicrobial drug use needs to be controlled?

2. Is there a gain in precision from the control of any of the variables age, gender,
and previous antimicrobial drug use?

We now add to the summary table the results from controlling for two and
three variables at a time.

3. Does controlling for age, gender, or both have an affect on the results after
already controlling for previous antimicrobial drug use (PAMDU

4. Using the BD P-value, is there any evidence that there is interaction when
stratifying on any or all of these three variables being controlled?

5. Why do you think it is necessary to use a correction factor such as .5 in strata 
that contain a zero frequency?

6. Based on all the information in the table, what is the most appropriate estimate 
of the odds ratio of interest? (You may choose two alternatives here.)

7. Is there evidence that previous hospitalization has an effect on whether or not a
person is methicillin resistant to Staph aureus?

The stratum-specific results when simultaneously controlling for age, gender,
and previous antimicrobial drug use are shown in the box at the end of this
chapter.  There are 8 strata, because three variables are being controlled and each
variable has two categories.

Study Questions (Q14.3) continued (Note: there is no question 8)
9. What is the most obvious characteristic that describes the stratified results just

shown?
10. What does your answer to the previous question indicate about stratum-

specific analyses with these strata?
11. Based on comparing stratum-specific odds ratio estimates, does there appear to

be interaction within the stratified data?
12. Give three reasons that justify doing an overall Mantel-Haenszel test using 

these data?
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Summary

When several variables are being controlled simultaneously using stratified
analysis, not all of these variables may need to be controlled depending on
whether a variable contributes to confounding or precision.

The simultaneous control of several variables typically leads to strata with
small numbers and often zero cell frequencies.

When there are small numbers in some strata, stratum-specific conclusions
may be unreliable.

There are three things to consider when assessing interaction in stratified data: 

o Are stratum-specific estimates essentially the same?
o Is the Breslow-Day test for interaction significant?
o Are stratum-specific estimates unreliable because of small numbers?

Stratum Specific Results

Here are the stratum specific results when simultaneously controlling for age, gender, and
previous antimicrobial drug use. 

1. Age < 55, Male, PAMDU=Yes 2. Age < 55, Male, PAMDU = No

Prev. Hosp. Prev. Hosp.
Yes No Yes No

MRSA Yes 37 2 39 MRSA Yes 5 4 9

No 22 7 29 No 13 49 62

RÔ RÔ=5.89
59 9 68

=4.71
18 53 71

3. Age < 55, Female, PAMDU=Yes 4. Age < 55, Female, PAMDU = No 

Prev. Hosp. Prev. Hosp.
Yes No Yes No

MRSA Yes 9 0 9 MRSA Yes 0 0 0

No 14 3 17 No 2 13 15

RÔ RÔ=4.59*
23 3 26

=5.4*
2 13 15

5. Age > 55, Male, PAMDU=Yes 6. Age > 55, Male, PAMDU = No

Prev. Hosp. Prev. Hosp.
Yes No Yes No

MRSA Yes 24 1 25 MRSA Yes 2 2 4

No 2 2 4 No 7 12 19

RÔ RÔ=24.00
26 3 29

=1.71
9 14 23

7. Age > 55, Female, PAMDU=Yes 8. Age > 55, Female, PAMDU = No 

Prev. Hosp. Prev. Hosp.
Yes No Yes No

MRSA Yes 22 0 22 MRSA Yes 3 3 6

No 9 1 10 No 5 15 20

RÔ RÔ=7.11*
31 1 68

=3.00
8 18 26

*with .5 adjustment
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Quiz (Q14.4) Label each of the following statements as True or False.

1. Stratification only involves categorizing variables into two groups and
conducting separate analysis for each group. ???

2. One of the four steps of a stratified analysis is to compute an overall summary
E-D assessment when appropriate. ???

3. The calculation of an overall summary estimate may be considered
inappropriate if there is considerable evidence of statistical interaction. ???

4. The calculation of an overall summary estimate may be considered
inappropriate if there is considerable evidence of confounding. ???

5. When considering the appropriateness of computing overall summary results,
the investigator must exercise some judgment regarding the clinical importance
of the observed differences among stratum-specific estimates as well as to the
stability of these estimates. ???

6. Compare the stratum specific RR estimates for each of the three situations
below. Fill in the blank with yes, no or maybe regarding the appropriate use of 
a summary estimate. 

Situation: RR: Stratum 1 RR: Stratum 2 Overall Est.

Opposite direction 0.7 3.5 ???

Same direction 1.5 4.8 ???

Uniform effect 2.3 2.9 ???

See Lesson pages 14-2 through 14.6 in the ActivEpi CD ROM for a detailed
discussion of the following topics:

The Mantel-Haenszel (MH)Chi Square Test for Stratified Analysis
When Not to Use the MH Test
The MH Test for Person-time Cohort Studies
Overall Assessment Using Adjusted Estimates
Mantel-Haenszel Adjusted Estimates (e.g., mOR)
Interval Estimation of Adjusted Estimates
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Answers Study Questions and Quizzes 

Q14.1

1. For both smokers and non-smokers 
separately, there appears to be no 
association between exposure to TXC
and the development of lung cancer.
Never the less, it may be argued that the
RR of 1.3 for smokers indicates a 
moderate association; however, this
estimate is highly non-significant.

2. No, the two stratum-specific risk ratio 
estimates are essentially equal.  Again,
the RR of 1.3 for smokers indicates a 
small effect, but is highly non-
significant.

3. No, even though the crude estimate of 
effects is 2.1, the correct analysis
requires that smoking be controlled,
from which the data show no effect of 
TCX exposure.  An adjusted estimate
over the two strata would provide an 
appropriate summary statistic that
controls for smoking. 

4. Since the adjusted point estimate is
close to the null value of 1 and the 
Mantel-Haenszel test statistic is very
non-significant, you should conclude 
that there is no evidence of and E-D 
relationship from these data

Q14.2

1. Yes, the odds ratio of 11.67 is very high
and the MH test is highly significant
and, even though the confidence
interval is wide, the interval does not 
include the null value.

2. The association may change when one 
or more variables are controlled.  If this
happens and the control variables are 
risk factors, then an adjusted estimate
or estimates would be more
appropriate.

3. Not necessarily.  If one or more of these
variables are not previously known risk 
factors for MRSA status, then such
variables may not be controlled.

4. Some (n=5) study subjects had to
having missing information on either
MSRA status or on previous
hospitalization information.  In fact, it 
was on the latter variable that 5
observations were missing. 

5. No, the stratum-specific odds ratios

within different age groups are very
close (around 11).

6. No, the P-value of .95 is very high,
indicating no evidence of interaction
due to age.

7. Yes, overall assessment is appropriate
because there is no evidence of 
interaction due to age.

8. No, the crude and adjusted odds ratios 
are essentially equal. 

9. Yes, the Mantel-Haenszel test for 
stratified data is highly significant 
(P<.0001).

10. The confidence interval is quite wide,
indicating that even though the adjusted 
estimate is both statistically and 
meaningfully significant, there is little
precision in this estimate.

11. Yes, overall assessment is appropriate
because there is no evidence of 
interaction due to gender.

12. No confounding since the crude and 
adjusted odds ratios are essentially
equal when controlling for gender.

13. Yes, the Mantel-Haenszel test for 
stratified data is highly significant 
(P<.0001).

14. The answer to this question is “maybe.”
There appears to be interaction because
the odds ratio is 8.48 with previous 
drug use but only 3.66 with no previous 
drug use.  However, both odds ratio 
estimates are on the same side of 1, so
an adjusted estimate will not be the
result of opposite effects canceling each 
other.  Moreover, the BD test for
interaction is non-significant, which 
supports doing overall assessment. 

15. Yes, when controlling for previous drug
use, the crude odds ratio of 11.67 is 
quite different than the much smaller
odds ratio of 5.00.

16. Yes, the Mantel-Haenszel test for 
stratified data is highly significant 
(P<.0001), and although the confidence
interval is wide, it still does not contain
the null value.

Q14.3

1. Previous antimicrobial drug use needs 
to be controlled because it is a 
confounder.
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2. Yes, precision is gained from 
controlling for previous antimicrobial 
drug use, since the width of the 
confidence interval for the adjusted
estimate is much narrower than the
width of the corresponding confidence 
for the crude data.

3. No, neither the adjusted odds ratio nor
the confidence interval nor the MH P-
value changes either significantly or
meaningfully when comparing the 
results that control for PADMU alone 
with results that control for additional
variables.

4. No, all P-values are quite large,
indicating that the null hypothesis of no
interaction should not be rejected.
However, perhaps a comparison of 
stratum-specific estimates may suggest
interaction when more than one 
variable is controlled.

5. Because the estimated odds ratio is 
undefined in a stratum with a zero cell 
frequency.

6. OR=4.66 is an appropriate choice 
because it controls for all three
variables. being considered for control.
Alternatively, OR=5.00 is also
appropriate because it results from 
controlling only for previous
antimicrobial drug use, which is the
only variable that affects confounding
and precision.

7. Yes, the adjusted odds ratio (close to 
5.00) indicates a strong effect that is 
also statistically significant.  The 95% 
confidence interval indicates a lack of 
precision, but the results are overall
indicative of a strong effect.

8. (Note: there is no question 8) 
9. There are small numbers, including a 

number of zeros in almost all tables. 
10. Stratum-specific analyses, even when 

there are no zero cells, are on the whole 
unreliable because of small numbers. 

11. Yes, the odds ratio estimate in table 5 is 
24.00 whereas the odds ratio in table 6 
is 1.71 and the odds ratio in table 1 is 
5.89, all quite different estimates.

12. The BD test is not significant, all odds 
ratio estimates, though different, are all 
on the same side of the null value, and
the strata involve very small numbers.

Q14.4

1. F – Stratification also involves
performing an overall assessment when 
appropriate.

2. T
3. T
4. F – An overall summary estimate may

be considered inappropriate if there is
considerable evidence of interaction.

5. T
6. No,  Maybe,  Yes



CHAPTER 15
MATCHING - SEEMS EASY, BUT NOT THAT EASY 

Matching is an option for control that is available at the study design stage. We
previously introduced matching in Chapter 13.  We suggest that you review that
chapter before proceeding further with this chapter.  The primary goal of
matching is to gain precision in estimating the measure of effect of interest. There
are other advantages to matching as well, and there are disadvantages. In this
chapter, we define matching in general terms, describe different types of matching,
discuss the issue of whether to match or not match, and describe how to analyze
matched data.

Definition and Example of Matching 

Reye's syndrome is a rare disease affecting the brain and liver that can result in
delirium, coma, and death. It usually affects children and typically occurs
following a viral illness.

To investigate whether aspirin is a determinant of Reye's syndrome,
investigators in a 1982 study carried out a matched case-control study that used a
statewide surveillance system to identify all incident cases with Reye's syndrome
in Ohio. Population-based matched controls were selected as the comparison
group. Potential controls were first identified by statewide sampling of children
who had experienced viral illnesses but who had not developed Reye's syndrome.
Study controls were then chosen by individually matching to each case one or
more children of the same age and with the same viral illness as the case. Parents
of both cases and controls were asked about their child's use of medication,
including aspirin, during the illness.

Study Questions (Q15.1)

1. Why do you think that type of viral illness was considered as one of the
matching variables in this study?

2. Why do you think age was selected as a matching variable?

This study is a classic example of the use of individual matching in a case-
control study. Although the simplest form of such matching is one-to-one or pair

matching, this study allowed for more than one control per case. 
Matching typically involves two groups being compared, the index group and

the comparison group. In a case-control study, the index group is the collection of 
cases, for example, children with Reye’s syndrome, and the comparison group is
the collection of controls.

If the study design was a cohort study or clinical trial, the index group would
instead be the collection of exposed persons and the comparison group would be
the collection of unexposed persons. Because matching is rarely used in either
cohort or clinical trial studies, our focus here will be on case-control studies.
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No matter what type of matched design is used, the key feature is that the
comparison group is restricted to be similar to the index group on the
matching factors.  Thus, in the Reye’s Syndrome study, the controls were
restricted to have the same distribution as the cases with regard to the variables
age and type of viral illness. But we are not restricting the distribution of age or 
viral illness for the cases. That's why we say that matching imposes a partial

restriction on the control group in a case-control study.

Summary

A 1982 study of the relationship of aspirin to Reye’s syndrome in children is a 
classic example of individually matching in a case-control study.
The simplest form of individual matching is one-to-one or pair matching, but
can also involve more than one control per case.
Typically, matching compares an index group with a comparison group.
In a case-control study, the index group and the comparison group are the
cases and controls, respectively.
In a cohort study or clinical trial, the index group and the comparison are the
exposed and unexposed, respectively.
The key feature of matching is that the comparison group is restricted to be
similar to the index group with regards to the distribution of the matching
factors.

Types of Matching 

There are two types of matching, individual matching and frequency matching.
Individual matching, say in a case-control study, is carried out one case-at-a-time
by sequentially selecting one or more controls for each case so that the controls
have the same or similar characteristics as the case on each matching variable. For
example, if we match on age, race, and sex, then the controls for a given case are
chosen to have the same or similar age, race and sex as the case.

When matching on continuous variables, like age, we need to specify a rule for 
deciding when the value of the matching variable is “close-enough.” The most
popular approach for continuous variables is category matching. (Note: category
matching is one of several ways to carry out individual matching involving a
continuous variable.  See the box at the end of this section for a description of
other ways to match on a continuous variable.)  The categories chosen for this type
of matching must be specified prior to the matching process.  For example, if the
matching categories for age are specified as 10-year age bands then the control
match for a 40-year-old case must come from the 36-45 year old age range.

The first step is to categorize each of the matching variables, whether
continuous or discrete. Then for each index subject match by choosing one or
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more comparison subjects who are in the same category as the index subject for 
every one of the matching variables.

Study Questions (Q15.2) Consider a case-control study that involves individual
category matching on the variables age, gender, smoking status, blood pressure,
and body size. 

1. What do you need to do first before you can carry out the matching?
2. How do you carry out the matching for a given case?
3. If the case is a 40-year-old male smoker who is obese and has high blood

pressure, can its matched control be a 40-year-old male smoker of normal body
size with low blood pressure?  Explain.

In frequency matching the matching is done on a group rather than individual
basis. The controls are chosen as a group to have the same distribution as the cases 
on the matching variables. For example, we might frequency match on blood
pressure and age in a case-control study where the cases have the blood pressure-
by-age category breakdown shown below, by insuring that the controls have the
same breakdown:

Study Questions (Q15.2) continued Suppose you wish to have three times as 
many total controls as cases. Answer the following questions.

4. What is the BP group by age group breakdown for the number of controls?
5. What is the percentage breakdown by combined BP group and age group for

the controls?

How do you decide between individual matching and frequency matching?
The choice depends primarily, on which type of matching is more convenient in
terms of time, cost, and the type of information available on the matching
variables. The choice also depends on how many variables are involved in the
matching. The more matching variables there are, the more difficult it is to form
matching groups without finding matches individual by individual.

Study Questions (Q15.2) continued Suppose cases are women with ovarian
cancer over 55 years of age in several different hospitals and you wanted to choose
controls to be women hospitalized with accidental bone fractures matched on age
and hospital.

6. Which would be more convenient, frequency matching or individual
matching?

Suppose cases are women with ovarian cancer over 55 years of age in one hospital
and controls were women hospitalized with accidental bone fractures and matched
on age, race, number of children, age at first sexual intercourse, and age at first 
menstrual period.
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7. Which would be more convenient, frequency matching or individual
matching?

Summary

There are two general types of matching, individual versus frequency

matching.
Individual matching in a case-control study is carried out one case at a time. 
With individual matching, we sequentially select one or more controls for each
case so that the controls have the same or similar characteristics as the given
case on each matching variable.
For continuous variables, matching can be carried out using caliper matching,
nearest neighbor matching, or category (the most popular) matching.
Frequency matching involves category matching on a group basis, rather than
using individual matching.

Matching Ratios 

An important design issue for a matched study is the ratio of the number of
comparison subjects to the number of index subjects in each matched stratum. We
call this ratio the matching ratio for the matched study. Here is a list of different
matching ratios that are possible:

The smallest and simplest ratio is 1 to 1, also referred to as pair matching. In 
a case-control study, pair matching matches 1 control to each case and requires 
individual matching. Why use pair matching? Pair matching can lead to a gain in
precision in the estimated effect measure when compared to not matching at all for 
a study of the same total size. Also, it is easier to find one match than to find 
several matches per index subject.

R to 1 matching in a case-control study involves choosing R controls for each 
case using individual matching. For example, 3 to 1 matching in a case-control
study would require three controls for each case.  R to 1 matching is preferable to
pair matching because even more precision can be gained from the larger total 
sample size would be increased. However, from a practical standpoint, it may be 
difficult to find more than several matched controls for each case. 

Ri to 1 matching allows for a varying number of matched subjects for
different cases using individual matching. For example, 3 controls may be found
for one case, but only 2 for another and perhaps only one control for a third.  Ri to
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1 matching is often not initially planned but instead results from trying to carry out
R to 1 matching and then finding fewer than R matches for some cases. 

Ri by Si matching allows for one or more controls to be matched as a group to
several cases also considered as a group The letter i here denotes the i-th matched
group or stratum containing Ri controls and Si cases.  This matching ratio typically
results from frequency matching but can also occur from individual matching
when pooling exchangeable matched strata.

Study Questions (Q15.3) A detailed discussion of pooling is given in a later 
section.  Consider an individually matched case-control study involving 2 to 1
matching, where the only matched variable is smoking status (i.e., SMK = 0 for
non-smokers and SMK = 1 for smokers). Suppose there are 100 matched sets in
which 30 sets involve all smokers and 70 sets involve all non-smokers. Suppose
further that we pool the 30 (“exchangeable”) sets involving smokers into one 
combined stratum and the 70 (“exchangeable”) sets involving non-smokers into
another combined stratum.

1. How many cases and controls are in the first matched stratum (that combine 30
matched sets)?

2. How many cases and controls are in the second matched stratum (that
combines 70 matched sets)?

3. What type of matching ratio scheme is being used involving pooled data, R to
1 or Ri to Si?

Consider the following table determined by frequency matching on race and 
gender in a case-control study.

4. How many matched strata are there in this frequency-matched study?
5. What type of matching ratio describes this design: R to 1 or Ri to Si?
6. What are the numbers of controls and cases in each stratum?

Summary

The matching ratio for a matched design is the ratio of the number of 
comparison subjects to the number of index subjects in each matching stratum.
Matching ratios may be 1 to 1, R to 1, Ri to 1, or Ri to Si.
The simplest matching ratio is 1 to 1, also called pair matching.
R to 1 matching gives more precision than 1 to 1 matching because of
increased sample size, but finding R matches per index subject may be 
difficult.
Ri to 1 matching typically occurs when trying for R to 1 matching but finding
less than R comparison subjects for some index subjects.
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Ri to Si matching typically results from frequency matching but may also
result from pooling artificially matched strata from individual matching.

How Many Matched Should You Select? 

If R to 1 matching is used, how large should R be?  The widely accepted answer
to this question is that there is little to gain in terms of precision by using an R
larger than four.  The usual justification is based on the Pitman Efficiency 

criterion, which is approximately the ratio of
the variance of an adjusted odds ratio 
computed from pair matching to the
corresponding variance computed from R to 1 
matching.  Here is the Pittman efficiency
formula:

Computing this criterion for several values of R yields the following table:

This table shows diminishing returns once R exceeds 4. The Pittman efficiency
increases 33.3 percent as R goes from 1 to 2, but only 4.2 percent as R goes from
4 to 5. The percent increase in efficiency clearly is quite small as R gets beyond 4.
Moreover, the maximum possible efficiency is 2 and at R = 4 the efficiency is 1.6.

Study Questions (15.4)

1. Why does the Pittman efficiency increase as R increases?
2. What does the previous table say about the efficiency of 2 to 1 matching

relative to pair-matching?

Summary

For R to 1 matching, there is little to gain in precision from choosing R to be 
greater than 4.
A criterion used to assess how large R needs to be is the Pittman Efficiency

criterion, which compares the precision of R to 1 matching relative to pair
matching.
A table of Pittman Efficiency values computed for different values of R

indicates a diminishing return regarding efficiency once R exceeds 4.
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Quiz (15.5) True or False:
1. If we match in a case-control study, the index group is composed of exposed

subjects. ???

2. If we match in a cohort study, the comparison group is composed of non-cases.
???

3. If we individually category match on age and gender in a case-control study,
then the control for a given case must be either in the same age category or 
have the same gender as the case. ???

4. When frequency matching on age and race in a case-control study, the age
distribution of the controls is restricted to be the same as the age distribution of 
the cases. ???

5. Five-to-one matching will result in a more precise estimate of effect than
obtained from 4-to-one-matching for the same number of cases. ???

6. Ri-to-1 matching may result when trying to carry out R-to-1 matching. ???

7. Pair matching is a special case of Ri-to-Si matching. ???

8. Not much precision can be gained from choosing more than one control per
case. ???

Reasons for Matching 

Why should we use matching to control for extraneous variables when designing
an epidemiologic study?  The primary advantage of matching is that it can be used
to gain precision in estimating the effect measure of interest. Matching can allow
you to get a narrower confidence interval around the effect measure than you
could obtain without matching.

Another reason for matching is to control for variables that are difficult to
measure.  For example, matching on neighborhood of residence would provide a 
way to control for social class, which is difficult to measure as a control variable.
Matching on persons from the same family, say brothers or sisters, might be a 
convenient way of controlling for genetic, social, and environmental factors that
would be otherwise difficult to measure.

A third reason for matching is to take advantage of practical aspects of
collecting the data, including convenience, timesaving, and cost-saving features.

For example, if cases come from different hospitals, it may be practical to
choose controls matched on the case's hospital at the same time as you are 
identifying cases from the hospital's records.  In an occupational study involving
different companies in the same industry, controls can be conveniently matched to 
cases from the same company. Such controls will likely have social and
environmental characteristics similar to the cases.

Another reason often given for matching is to control for confounding. We
have placed a question mark after this reason because, even if matching is not
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used, confounding may be controlled using stratified analysis or mathematical
modeling. Also, if you match in a case-control study, you must make sure to do
what we later describe as a matched analysis in order to properly control for
confounding.

Matching is usually limited to a restricted set of control variables. There are
typically other variables not involved in the matching that we might want to
control. Matching does not preclude controlling for confounding from those risk
factors that are measured but not matched.

Summary The reasons for matching include:
Gain precision 
Control for variables difficult to measure
Practical aspects: convenience, time-saving, cost-savings
Can control confounding for both matched and unmatched variables.

Reasons Against Matching 

Why might we decide not to use matching when designing an epidemiologic
study? One reason is that matching on a weak or non-risk factor is unlikely to
gain precision and might even lose precision relative to not matching. If all
potential control variables are at best weak risk factors, the use of matching will
not achieve a gain in precision.

Study Questions (Q15.6) Suppose you match on hair color in a case-control
study of occupational exposure for bladder cancer.

1. Do you think hair color is a risk factor for bladder cancer?
2. Based on your answer in the previous question, would you expect to gain

precision in your estimate by matching on hair color?  Explain.

Another reason not to use matching is the cost of time and labor required to
find the appropriate matches, particularly when individual matching is used. To
actually carry out the matching, a file that lists potential controls and their values
on all matching variables must be prepared and a selection procedure for matching
controls to cases must be specified and performed. This takes time and money that
would not be required if controls were chosen by random sampling from a source 
population.

A third reason for not matching is to avoid the possibility of what is called
overmatching. Overmatching can occur if one or more matching variables are
highly correlated with the exposure variable of interest. For example, in an 
occupational study, if we match on job title, and job title is a surrogate for the
exposure being studied, then we will 'match out' the exposure variable. That is, 
when we overmatch, we are effectively matching on exposure, which would result
in finding no exposure-disease effect even if such an effect were present.

Study Questions (Q15.6) continued

3. If the exposure variable is cholesterol level, how might overmatching occur
from matching on a wide variety of dietary characteristics, including average
amount of fast-food products reported in one’s diet?
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Another drawback of matching is that your study size might be reduced if you
were not able to find matches for some index subjects. The precision that you 
hoped to gain from matching could be compromised by such a reduction in the
planned study size.

Study Questions (Q15.6) continued

4. What study size problem might occur if you category-match on several
variables using very narrow category ranges?

Summary

Reasons for not matching:
Matching on weak risk factors is unlikely to gain (and may lose) precision.
Matching may be costly in terms of time and money required to carry out the
matching process.
You may inappropriately overmatch and therefore effectively match on 
exposure.
You may have difficulty finding matches and consequently lose sample size
and correspondingly the precision you were hoping to gain from matching.

To Match or Not to Match? 

How do we decide whether or not we should use matching when planning an
epidemiologic study? And if we decide to match, how do we decide which
variables to match on? The answer to both of these questions is “it depends”.
Let's consider the list of reasons for and against matching that we described in the
previous activities:

Your decision whether to 
match or not to match
should be based on a careful
review of the items in both
columns of this list and on
how you weigh these
different reasons in the
context of the study you are
planning.

Study Questions (Q15.7) Suppose the practical aspects for matching are
outweighed by the cost in time and money for carrying out the matching.  Also
suppose that previously identified risk factors for the health outcome are not
known to be very strong predictors of this outcome.

1. Should you match?

Suppose age and smoking are considered very strong risk factors for the health 
outcome:

2. Should you match or not match on age and smoking?

Suppose you want to control for social and environmental factors.
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3. Should you match or not match on such factors?

Although all items listed for or against matching are important, the primary
statistical reason for matching is to gain precision. The first items on both lists 
concern precision and they suggest that whether or not matching will result in a 
gain in precision depends on the investigator's prior knowledge about the
important relationships among the disease, exposure, and potentially confounding
variables. If such prior knowledge, is available, for example from the literature,
and is used properly, a reasonable decision about matching can be made.

It is widely recommended that, with regards to precision, the safest strategy is 
to match only on strong risk factors expected to show up as confounders in a
study.  This recommendation clearly requires subjective judgment about what is
likely to happen in one's study regarding the distribution of potential confounders.
In practice, a decision to use matching for precision gain applies to only those
factors identified in the literature as strong predictors of the health outcome.

Summary

The answer to the question “to match or not to match?” is “it depends”.
Your decision depends on a careful review of the reasons for and against
matching and how you weigh these different reasons.
Whether or not you will gain precision depends on the investigators’ prior
knowledge about the relationships of the variables being measured.
Recommendation regarding precision: match only on strong risk factors
expected to show up as confounders in one’s study.

Quiz (15.8)  True or False:

1. One reason for deciding to match in a case-control study is to obtain a valid 
estimate of the odds ratio of interest. ???

2. An advantage of matching over non-matching is that your sample size may be
smaller from not matching. ???

3. Matching on a weak risk factor may result in a loss of precision when
compared to non-matching. ???

4.
Fill in the Blanks 

5. Which of the following choices are reasons against using matching. ???

a. You match on a non-risk factor.
b. You want to control for a variable difficult to measure.
c. You want to control for both matched and unmatched variables.
d. Your matching variable is highly correlated with the exposure variable.
e. It is costly to carry out the matching.

Choices a only a, b and c a, b and d a, d and e b only b, c and d

c only d only e only
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6. If matching is convenient and inexpensive to carry out, it should always be
preferred to non-matching. ???

7. If your primary reason for considering matching is to gain precision in your
estimated odds ratio, should you match or not match in a case-control study?

???

Choices False It depends True Don’t match if costly Match always

Match if convenient Never match

Analysis of Matched Data – Options and General 

Principles

There are two options for analyzing 
matched data with dichotomous
outcomes: stratified analysis using
Mantel-Haenszel methods and
mathematical modeling using logistic

regression. Mantel-Haenszel methods
are appropriate whenever all the
variables being controlled are involved
in the matching.  Logistic regression 
methods are appropriate if some
variables being controlled have not
been matched-on and some variables have been matched-on.

For example, if we match in case-control study on age, race and sex and these
three variables are the only ones being considered for control, then the Mantel-
Haenszel methods, for stratified analysis, are appropriate.  In contrast, if we match
on age, race and sex and we also want to control for other non-matched variables,
such as physical activity level, body size, and blood pressure, then it is necessary
to use logistic regression methods.

When carrying out a matched analysis, we must consider four important
principles. First, a matched analysis requires that you actually “control” for the
matching variables. In particular, if you fail to control for the matching variables
in a case-control study, you will not have addressed confounding due to these
variables and your estimated odds ratio will be biased towards the null. And, if 
you don't control for the matching variables in a follow-up study, you are likely
not to gain the precision in your estimated risk ratio that you had intended to
achieve through matching.

Second, a matched analysis is a stratified

analysis. The strata are the matched sets or pooled
matched sets. For example, if you pair match in a case-
control study and you have 100 cases, then there are l00 
matched sets or strata to analyze. Each matched set
would contain two persons, the case and the control:

Third, when using logistic regression to do a 
matched analysis, the strata are defined using dummy or indicator variables. The
number of dummy variables will be one less than the number of matching strata.
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For example, if we pair-match in a case-control study and we have l00 cases, a
logistic model for such data will require 99 dummy variables to incorporate the l00 
matching strata.

Study Questions (Q15.9)

1. State the logit form of a logistic model that allows for the analysis of 100 case-
control matched-pairs to describe the relationship of a dichotomous exposure
variable E to a dichotomous outcome D. 

Fourth, a key advantage to using logistic modeling with matched data is that
you can control for variables involved in the matching as well as variables not
involved in the matching. If you use a stratified analysis instead, you will typically
have to drop some matching strata from the analysis, and consequently will lose
precision in your estimate.

Study Questions (Q15.9) continued

Suppose you match on age, race, and sex in a case-control study involving 100
matched pairs.  For your analysis, you wish to control for systolic blood pressure
(SBP) and cholesterol level (CHL), neither of which is involved in the matching,
as well as controlling for the matching variables.

2. State the logit form of a logistic model for carrying out the analysis described
above.

3. What information will be lost if a stratified analysis is carried out to control for
the matching as well as for SBP and CHL?

Summary

Two options for analyzing matched data are stratified analysis using Mantel-
Haenszel methods and mathematical modeling using logistic regression.
A matched analysis requires that you control for the matching variables.
A matched analysis is a stratified analysis.
When using logistic regression to do a matched analysis, the strata are defined
using dummy (i.e., indicator) variables.
When using logistic modeling with matched data, you can control for variables
involved in the matching as well as variables not involved in the matching.

Does Matching Control for Confounding?

The answer to this question is clearly no if we wish to control for variables not matched on 
in addition to the variables involved in the matching. If, however, we assume that the only

variables being controlled are involved in the matching, then the answer requires us to 
consider cohort and case-control studies separately.

In a cohort study, matching automatically controls for confounding without the
need to control for the matching variables. Nevertheless, you still need to control for the
matching in order to gain the precision that you expected to gain by matching (assuming
you made a good decision on which variables to match).

In a case-control study, matching does not automatically control for confounding,
so that it is necessary to control for the matching variables in order to control for
confounding.

Moreover, it can be shown (details omitted here) that the crude odds ratio for

matched case-control data is always biased towards the null value of 1. Thus, it is
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necessary to control for the matching variable F (using stratified analysis or logistic 
regression) since ignoring the control of F (by using a crude odds ratio estimate) will give a 
biased answer tending towards concluding an absence of an effect.

What are the Consequences from Not Doing a Matched Analysis 

 (Case-Control Data)?

There are two ways to not carry out a matched analysis:
1. Ignore the matching 

2. Break the matching

1. If we match on one or more variables, but we analyze the resulting study data without
controlling for any of the matched variables, then we are ignoring the matching.  As
an example, suppose we have dichotomous E and D variables, 100 cases, and we pair-
match on age and sex. If we ignore the matching and ignore controlling for any other
risk factors not matched on, then we are effectively doing a "crude analysis" of the data,
i.e., our estimate is a crude odds ratio, cOR 'hat'. There are two fundamental criticisms 
of ignoring the matching:
a. The estimated cOR is always biased towards the null value of 1 in matched (case-

control and cohort) studies. Thus, the estimated cOR is expected to give a different
(biased) odds ratio from the odds ratio (i.e., mOR) expected from a matched
analysis.

b. If the matching does its job (i.e., helps precision), the mOR estimate is expected to
give better precision than the corresponding cOR estimate.

2. If we match, but control for the matched variables without doing a matched analysis,
then we are breaking the matching.  As an example, suppose, as above, we have
dichotomous E and D variables, 100 cases, and we pair-match on age and sex. If we 
break the matching, then we control for age and sex by forming strata from 
combinations of these 2 variables, and then do a stratified analysis. The number of
resulting strata is likely to be considerably less than 100, e.g., if age has 3 categories
and sex has 2 categories, then the number of strata is six.   If we do not break the
matching, we control for age and sex by treating each matched set as a single stratum.
Since there are 100 case-control pairs, a matched analysis would then be a stratified
analysis involving 100 strata with 2 persons per strata. 

What is a good reason to break the matching?  In the above example, where age 
has 3 categories and sex has 2 categories, breaking the matching is equivalent to
pooling exchangeable matched sets, which is more appropriate than assuming that 
there are 100 distinct matching strata. [See the activity on "Pooling" on Lesson Page
15-4 of the ActivEpi CD]. What are some of the problems with breaking the 

matching?

a. If you break the matching, then it is possible that the precision of the estimated
odds ratio might be less than the precision obtained by doing a matched analysis
(with or without pooling).

b. The strata resulting from breaking the matching may not be equivalent to the strata
that would result from pooling exchangeable matched sets (the correct analysis).

c. As a consequence of b, the estimated odds ratio obtained from a stratified analysis
resulting from breaking the matching may be meaningfully different from the 
estimated odds ratio obtained from a pooled analysis.

d. If you wish to control for variables that have not been matched in addition to the
matching variables, then breaking the matching will require you to break up
matched sets for those pairs that are in different categories of the unmatched
variable(s).
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Analysis of Pair-Matched Case-Control Data 

We now illustrate a matched analysis using pair-matched case-control data.  The
data can be analyzed using a stratified analysis to obtain a mOR, a MH test of
hypothesis, and a confidence interval around the mOR.

In the 1970s, several studies were carried out to evaluate whether the use of
estrogen as a hormone replacement for menopausal women leads to endometrial
cancer. One such study used individual matching to carry out a pair-matched

case-control study involving women living in a Los Angeles retirement
community between 1971 and 1975. There were 63 cases. Controls were chosen
by individual matching to cases on age, marital status, and date of entry into the
retirement community.  Each of the 63 matched-pairs represents 63 strata 
containing 2 persons per stratum. For each stratum, we form the 2 by 2 table that 
relates exposure, here estrogen use, to disease outcome, here, endometrial cancer 
status.  Each of these strata can take on one of the four forms shown below,
depending on the exposure status determined for the case and control persons in a
given stratum.

Stratum Type 1 holds any matched pair where both the case and the controls
are exposed, that is, both used estrogen. A matched pair of this type is called a
concordant matched pair. We denote the number of concordant matched pairs of
this type W.  The study actually found 27 matched pairs of this type.

Stratum Type 4 holds those matched pairs where neither the case nor the
control used estrogen. This type of stratum also holds concordant matched pairs
since both cases and controls have the same exposure status, this time unexposed.
We denote the number of concordant matched pairs of this type Z.  The study
actually found 4 matched pairs of this type.

The other two stratum types hold what are called discordant pairs. In stratum
type 2, the case uses estrogen but the control does not. In stratum type 3, the case 
did not use estrogen, and the control did. In both these types of strata, the case has
a different exposure than its matched control.  The numbers of discordant pairs of
each type are called X and Y, respectively. The study found X equal to 29 and Y

equal to 3.  Notice that the sum of W, X, Y, and Z is 63, the number of matched
pairs in the study.

How do we analyze these data?  A simple answer to this question is that we 
use a computer to carry out a stratified analyses of these 63 strata to obtain a
Mantel-Haenszel odds ratio, a Mantel-Haenszel test of hypothesis, and a 95%

confidence interval around the estimated odds ratio.  We will carry out this
analysis in the next section.
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Study Question (Q15.10)

1. Why is it necessary to compute an mOR instead of a precision-based adjusted
odds ratio (i.e., aOR)?

Summary

We illustrate a matched analysis using pair-matched case-control data.
The study involved 63 matched-pairs or strata with 2 persons per stratum.
There were 4 types of strata, 2 of which involved concordant matched pairs
and 2 of which involved discordant matched pairs.
W = the number of concordant pairs where both the case and control are 
exposed.
X = the number of discordant pairs where the case is exposed and control
unexposed.
Y = the number of discordant pairs where the case is unexposed and the
control exposed.
Z = the number of concordant pairs where both the case and control are
unexposed.
The data can be analyzed using a stratified analysis to obtain a mOR, a MH 
test of hypothesis, and a confidence interval around the mOR.

Analysis of Pair-Matched Case-Control Data (continued)

A stratified analysis of the 63 strata can be carried 
out using a computer to obtain a Mantel-Haenszel

odds ratio, a Mantel-Haenszel test of hypothesis,
and a 95% confidence interval for the mOR.  Each 
of the 63 strata is of one of the four types shown in
the table in the previous section. A convenient way to carry out this analysis
without using a computer is to form the following table using the numbers of
concordant and discordant pairs W, X, Y, and
Z.

This table is called McNemar's table for

pair-matched case-control data. The numbers
in this table represent pairs of observations rather
than individual observations.  Using this table,
simple formulas can be written for the mOR,
Mantel-Haenszel test statistic, and for a 95 percent confidence interval for the
mOR (see table following this paragraph). Notice that all these formulas involve
information only on the numbers of discordant pairs, X and Y; the concordant

pair information is not used.
Substituting the values for X and Y into each of 

these formulas, we obtain the results shown here:

Study Question (Q15.11)

1. How do you interpret the above results in terms of the relationship between
estrogen use (E) and endometrial cancer (D) that was addressed by the pair-
matched case-control study?
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Summary

A convenient way to carry out a matched-pairs analysis for case-control data is 
to use McNemar’s table containing concordant and discordant matched pairs.
Using only the discordant pairs X and Y, simple formulae can be used to 
compute the mOR, the MH test of hypothesis, and a 95% CI around the mOR.

The Case-Crossover Design

The case-crossover design is a variant of the matched case-control study that is intended 
to be less prone to bias than the standard case-control design because of the way controls
are selected.  The design incorporates elements of both a matched case-control study and a
nonexperimental retrospective crossover experiment. (Note: In, a crossover design,
each subject receives at least two different exposures/treatments at different occasions.) The 
fundamental aspect of the case-crossover design is that each case serves as its own control.
Time-varying exposures are compared between intervals when the outcome occurred (case
intervals) and intervals when the outcome did not occur within the same individual.

The case-crossover design was designed to evaluate the effect of brief exposures with
transient effects on acute health outcomes when a traditional control group is not readily
available. The primary advantage of the case-crossover design lies in its ability to help
control confounding. Self-matching subjects against themselves automatically eliminates
confounding between subjects and from both measured and unmeasured fixed covariates.

As an example of a case-cross over design, Redlemeier and Tibshirani studied whether
the use of a cellular telephone while driving increases the risk of a motor vehicle collision.
Their data considered 699 drivers who had cellular telephones and who were involved in 
motor vehicle collisions resulting in substantial property damage but no personal injury.
Each person's cellular-telephone calls on the day of the collision and during the previous
week were analyzed through the use of detailed billing records. 

Overall, 170 of the 699 subjects had used a cellular telephone during the l0-minute
period immediately before collision, 37 subjects had used the telephone during the same 
period on the day before the collision, and 13 subjects had used the telephone during both
periods. This information provided the following McNemar table for analysis:

Day Before

Crash Day Use Not Use 

Use 13 157 170

Not Use 24 505 529

37 662 699

The above results indicates a very strong and significant effect that indicates that cell 
phone use while driving increases the risk for motor vehicle collision. Furthermore, the 
primary analysis, which adjusted for intermittent driving, yielded an estimated mOR of 6.5
with a 95% confidence interval of 4.5 to 9.9.

See Lesson pages 15-3 through 15.5 in the ActivEpi CD ROM for a 
detailed discussion of the following topics:

Analysis of R-to-1 Matched Case-Control Data
Pooling Matched Data
Analysis of Frequency Matched Data
Analysis of Matched Cohort Data
Logistic Regression – Matched and Unmatched Covariates for Matched
Case-Control Studies



A Pocket Guide to Epidemiology 273

References

References on Matching
Breslow NE, Day NE. Statistical Methods in Cancer Research. Volume 1. The Analysis of 

Case-Control Studies. International Agency for Research in Cancer, Lyon, 1980.
Brock KE, Berry G, Mock PA, MacLennan R, Truswell AS, Brinton LA. Nutrients in diet

and plasma and risk of in situ cervical cancer. J Natl Cancer Inst  1988 Jun
15;80(8):580-5.

Diaz T, Nunez JC, Rullan JW, Markowitz LE, Barker ND, Horan J. Risk factors associated
with severe measles in Puerto Rico. Pediatr Infect Dis J 1992;11(10):836-40. (Example
of frequency matching) 

Donovan JW, MacLennan R, Adena M. Vietnam service and the risk of congenital 
anomalies. A case-control study. Med J Aust 1984;140(7):394-7.

Halpin TJ, Holtzhauer FJ, Campbell RJ, Hall LJ, Correa-Villasenor A, Lanese R, Rice J,
Hurwitz ES. Reye's syndrome and medication use. JAMA 1982;248(6):687-91. 

Kleinbaum DG, Klein M.  Logistic Regression: A Self-Learning Text, 2nd Ed.  Springer 
Verlag Publishers, 2002. 

Kleinbaum DG, Kupper LL, Morgenstern H. Epidemiologic Research: Principles and 
Quantitative Methods. John Wiley and Sons Publishers, New York, 1982.

Kupper LL, Karon JM, Kleinbaum DG, Morgenstern H, Lewis DK, Matching in 
epidemiologic studies: validity and efficiency considerations. Biometrics
1981;37(2):271-291.

McNeil D. Epidemiologic Research Methods. John Wiley and Sons Publishers, 1996.
(Example of pair matching in a cohort study)

Miettinen OS. Individual matching with multiple controls in the case of all-or-none
responses. Biometrics 1969;25(2):339-55.

Miettinen OS. Estimation of relative risk from individually matched series. Biometrics
1970;26(1):75-86.

Ury HK. Efficiency of case-control studies with multiple controls per case: continuous or
dichotomous data. Biometrics 1975;31(3):643-9.

Case-Crossover Design
Maclure M, Mittleman MA. Should we use a case-crossover design? Annu Rev Public

Health 2000;21:193-221. 
Maclure M. The case-crossover design: a method for studying transient effects on the risk

of acute events. Am J Epidemiol 1991;133(2):144-53.
Redelmeier DA, Tibshirani RJ. Association between cellular-telephone calls and motor

vehicle collisions. N Engl J Med 1997;336(7):453-8.

Answers to Study Questions and Quizzes

Q15.1

1. Reye’s syndrome was associated with 
only certain types of viruses, so “virus
type” was an important risk factor for 
the outcome.

2. Older children were less likely to
develop Reye’s syndrome, i.e., age was
an important risk factor. 

Q15.2

1. You need to categorize the continuous
variables age, blood pressure, and body
size.

2. Choose one or more controls to be in

the same category of age, gender,
smoking status, blood pressure, and
body size as the case.

3. No.  The case and controls have to be in
the same category for each of the
matching variable.  The control choice 
in the question is not appropriate
because both body size and blood 
pressure categories of the control are
different categories than observed on
the case.

4. {High BP, age > 55} = 120;  {High BP, 
age < 55} = 180; {Normal BP, age >
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55} = 150; {Normal BP, age < 55} = 
150

5. {High BP, age > 55} = 20%;  {High
BP, age < 55} = 30%; {Normal BP, age 
> 55} = 25%; {Normal BP, age < 55} = 
25%

6. Frequency matching because it should
be logistically easier and less costly to 
find groups of control subjects, 
particularly by hospital than to find 
controls one case at a time.

7. Individual matching because there are 
many variables to match on, many of
which are quite individualized. 

Q15.3

1. 30 cases and 60 controls
2. 70 cases and 140 controls
3. Ri to Si, since R1 = 60, S1 = 30, and R2

= 140, S2 = 70 
4. Four
5. Ri to Si matching ratio. Even though 

there are twice as many controls overall
as there are cases, the numbers of cases
and controls vary within each stratum.

6. White Male: R = 200, S = 100; White 
Female: R = 200, S = 100; Black Male: 
R = 80, S = 40;  Black Female: R = 
120, S = 60.

Q15.4

1. For a fixed number of index subjects, 
total sample size for the study increases
as R increases

2. There is a 33% increase in going from 
R = 1 to R = 2. This indicates that there
is considerable precision to be gained
by using 2 to 1 matching instead of 1 to
1 matching.

Q15.5

1. False – in a case-control study, the
index group is composed of cases. 

2. False – in a cohort group, the 
comparison group is composed of 
unexposed individuals.

3. False – The control of a given case in
this situation would need to be the same
regarding both matching factors.

4. True
5. True – Five to one matching will result 

in an increase in precision of 4.2%
compared to four to one matching.

6. True
7. True
8. False – Choosing 2 controls per case

versus 1 per case will increase precision
by 33%.  This increase in precision will 
continue with each added control per 
case.  However, the table of Pittman
Efficiency, values computed for 
different values of R (number of 
controls per case) indicates a 
diminishing return regarding efficiency
once R exceeds 4.

Q15.6

1. No, hair color has no known
relationship to bladder cancer.

2. Because hair color has no known
relationship to bladder cancer, and is 
not a risk factor needing to be 
controlled, matching on hair color is 
unlikely to have any effect on the
precision of the estimated exposure-
disease effect, i.e., even though
matching on hair color will make cases 
and controls “balanced” with respect to
hair color, the estimated effect is
unlikely to be more precise than would
result from “unbalanced” data obtained
from not matching.

3. Fast-food products tend to be high in 
saturated fats, so if you match on 
amount of fast-food products in one’s 
diet, you may effectively be matching
on cholesterol level. 

4. You will have difficulty finding
matches for some index subjects and 
are likely to obtain a smaller sample
size than originally planned.

Q15.7

1. There is no strong reason for matching,
and the reasons against outweigh the 
reasons for. 

2. You might expect to gain precision
from matching, but you also need to
weigh the other reasons listed, 
particularly the cost in time and money
to carry out the matching.

3. Again, your decision depends on how 
you weight all the reasons for and 
against matching.  Matching on 
neighborhood of residence may be a
convenient way to control for social 
and environmental factors that are
difficult to measure.  However, if the
exposure variable has a behavioral 
component, you must be careful that 
you won’t overmatch in this situation.
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Q15.8

1. False – one reason for deciding to
match in a case-control study is to 
obtain a more precise estimate of the
odds ratio of interest.

2. False – a reduction in the sample size 
due to not finding an appropriate match 
would be a disadvantage of matching. 

3. True
4. a, d, and e 
5. False – you still need to be concerning

about matching on weak risk factors
and overmatching.

6. It depends – it depends on at what cost 
you gain the precision.  It is important 
to consider other things such as cost,
money, time, how strong or weak are 
the risk factors, overmatching, etc.

Q15.9

1. Logit P(X) = b0 + b1(D1) + b2(D2) + …
+ b99(D99) + b100(E) where D1 through 
D99 are 99 dummy variables that 
distinguish the 100 matched pairs.  In 
particular, the Di may be defined as 
follows: Di=1 for a subject in the i-th
matched pair and Di = 0 for a subject
not in the i-th matched pair. Thus, for 
each of the two subjects in the first
matched pair, D1 = 1, D2 = D3 =…= 
D99 = 0 and for each subject in the 
100-th matched pair, D1 = D2 =…D99 
= 0. 

2. Logit P(X) = b0 + b1(D1) + b2(D2) + …
+ b99(D99) + b100(SBP) + b101(CHL) + 
b102(E) where D1 through D99 are 99
dummy variables that distinguish the 
100 matched pairs. 

3. Any matched pair in which the case is 
in a different SBP or CHL category
than is the corresponding control will 
have to be dropped from such a 
stratified analysis.  The only matched
pairs to be kept for analysis will be 
those in which both the case and
control are in the same SBP and CHL 
categories.

Q15.10

1. All strata have zero cells, so it is not
possible to compute stratum-specific
odds ratios. 

Q15.11

1. The mOR estimate of 9.67 indicates a 
very strong relationship between

estrogen usage and endometrial cancer,
controlling for the matching variables.
The MH test has a P-value equal to zero
to four decimal places. Therefore, the
point estimate is highly significant.
The 95% CI is quite wide, so there is 
considerable imprecision in the point 
estimate.  Overall, however, the results
suggest a strong effect of estrogen use 
on the development of endometrial
cancer.
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age-adjustment, 65-66 
alternative hypothesis, 194, 196-201, 

207-211, 219-220 
analytic studies, 20 
aOR, 185, 272 
apriori criteria, 168 
association, 5, 10, 14, 22, 32, 76, 118, 

127, 161-162, 164, 166, 168, 171-172, 
213, 227, 230-232, 245, 248 

attributable rate, 93 
attributable risk, 71, 91-92, 98-99, 101 
average rate, 53-54, 55-56, 59, 63-64, 85-

86, 92 
away from the null, 119-121, 127, 129, 

148-149

B

backward(s), 23, 30-31 
Berkson's bias, 109 
bias, 1, 4, 10-11, 22-31, 34, 36-38, 79, 84, 

109-123, 127-135, 139-151, 162, 196, 
230, 268-270, 273 

binomial, 192 
blinding, 24-25 
Breslow-Day test, 173-174 

C

caliper matching, 261 
case-cohort, 26, 39 
case-control, 8-9, 15-17, 23-26, 30-35, 

39, 44, 71-72, 74-87, 92-93, 109-110, 
121, 127-134, 141, 145, 167-170, 173, 
180, 184-185, 191-192, 219-220, 238-

240, 258-265, 268-274 
case-crossover, 39, 273 
case-fatality, 48, 62-64 
category matching, 259-261 
causation, 20-22 
chi square, 192, 208-221, 241, 245, 254 
CI, see confidence interval or cumulative 

incidence 
clinical trial, 1, 20-26, 32-33, 36, 43, 73, 

77, 92, 127-128, 133-134, 11, 217-218, 
232, 236, 258-259 

cohort, 8-9, 13, 16-18, 23-33, 36-37, 43, 
46, 48-58, 62-63, 71-72, 78, 81, 83-84, 
91-93, 99-103, 114, 118, 127-134, 142, 
161, 163, 166, 168, 179, 191-193, 206-
213, 217-220, 231-233, 238, 245, 254, 
258-259, 269-270 

community intervention trials, 20-21  
comparison group, 11, 21, 66, 73, 83, 86, 

93, 121, 132, 232, 235-237, 258-259, 
264

conceptual hypothesis, 20 
concordant, 271-273 
conditional probability, 74, 85, 151 
confidence interval, 68, 193-195, 202-

206, 215-216, 219-222, 230, 241, 245-
250, 264, 271-273 

confounder, 11, 65, 147, 162-169, 174, 
179-187, 229, 239, 267 

confounding, 10-12, 65-6, 110, 118, 122-
123, 133, 147, 161-174, 179-187, 229-
230, 237-238, 245-246, 254, 264-269, 
273

continuous variable, 234, 237-238, 259-
261

control group, 32, 121, 129, 133, 235, 
238, 238, 259, 273 

control variable, 3-7, 14-18, 122, 162, 
170, 173, 182, 227-238, 241, 245, 251, 
265

controls, 5, 15, 30-35, 71, 74-78, 83-85, 
114, 127-129, 133, 141-142, 147, 167, 
174, 180-185, 229, 232-233, 238-240, 
258-265, 269, 271, 273 

corrected cell frequencies, 149 
cross-sectional, 8-9, 17, 23, 26, 35-38, 44, 

60-61, 78-79, 92-94, 128-129, 168-170, 
174, 219, 249 

cross-product ratio, 78-79 
crude analysis, 12, 270 
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crude association, 166, 227 
crude death rates (see crude mortality) 
crude effect, 181-183 
crude estimate, 163-165, 168-172, 242 
crude mortality, 64 
crude odds ratio (cOR), 169-170, 179, 

184, 269-270 
crude rate, 65-67 
crude risk ratio, 163-164, 168, 171 
cumulative incidence, 46, 48-53, 61-64, 

77, 92, 99, 102-103, 207-208, 215-216 

D

data analysis, 4, 10-13, 109-110, 127, 
166-167

data-based confounding, 167-169, 181-
182

data-based criterion, 163, 166-168 
data-based joint confounding, 182-184 
data-based marginal confounding, 182-

183
decision rule, 192, 198-199 
dependent variable, 233-234, 242 
descriptive studies, 20 
diagnostic test, 150-154 
dichotomous, 139, 171, 183, 191-192, 

211, 217, 231, 234, 240, 247, 268-270 
difference measure(s), 71, 91-93, 96, 205 
differential, 147-150 
direct method, 65-66 
direction of bias, 119 
directionality, 23, 26-27, 30 
discordant, 271-273 
disease frequency, 3-4, 9-13, 17, 22, 43-

45, 53, 59, 62, 64, 66, 71 
disease-specific mortality, 63-65 
dose-response, 12, 22, 30 
double-blinding, 26 
dummy variable, 270-271 

E

ecologic, 27, 40 
ecologic study, 40 
effect measure, 111-114, 118, 121, 141, 

150-152, 170, 185, 191, 206, 234, 260, 
266

effect modification/modifier (see also 
interaction), 149, 163, 175-178, 181, 
231-232, 246, 248, 250 

efficacy, 20, 25-26 
epidemiology, 1, 3, 5, 9, 12, 14, 17, 21, 

48-49, 55-56, 62 
ethical concerns, 26-27 
etiologic, 22, 46, 64, 96, 100-107, 169, 

219
etiologic fraction, 100-107 
excess risk, 31, 93-94, 97, 101, 171 
exchangeable, 264, 272 
exchangeable matched sets, 264, 272 
expected value, 244 
experimental, 21-23, 26, 238, 240 
exposures, 12, 21-24, 29, 33, 36-40, 64, 

97, 143, 231, 75 
exposure odds, 77-82, 85-86, 170-171, 

221
exposure odds ratio (EOR), 80-82, 85-86, 

170-171
exposure variable, 4-7, 11-12, 14-19, 24, 

99, 145-147, 163, 175, 181, 193-194, 
213, 219, 229, 231, 233, 235, 267, 271 

external population, 116-118 
external validity, 117-118 
extraneous, 229-230, 234, 237. 247, 266 

F

Fisher's exact test, 213-221 
fixed cohort, 9, 50-54, 71 
fixed-marginals, 213 
forward directionality/design, 24, 29 
Framingham heart study, 29 
frequency matching, 240-242, 261-266 

G

gold standard, 153-154, 183, 188 

H

hazard, 55, 87-88 
hazard ratio, 87-88 
health outcome, 1, 3-19, 21-26, 29, 33, 

45-46, 49, 73, 87, 98, 116, 130, 132, 
163-164, 168-170, 175-176, 13, 231, 
237, 268-269, 275 

healthy worker effect/bias, 134-135 
hybrid designs, 28, 41 
hypergeometric distribution, 214-215, 

281
hypothesis testing, 194-208, 220 

I

Incidence, incidence rate, incidence  
density, 24, 45-66, 86-89, 94, 96, 99-
101, 104-106, 193, 207-210, 217-218, 
222-224

incidence density ratio (IDR), 87-89, 104, 
193, 207, 222-224 

incident cases, 33, 38, 41, 45-48, 58, 63, 
81, 85-86, 135-136, 260 

incomplete designs, 28, 41 



A Pocket Guide to Epidemiology 279

independent variable, 236 
index group, 260-261, 266 
individual matching (see also pair 

matching), 238, 240, 257-264, 270 
information bias, 11, 25, 30, 32, 35, 109-

110, 118, 122-123, 139, 145, 152 
instantaneous rate, 54-57, 60 
intention to treat analysis, 25-26 
interaction (see also interaction), 161, 

170-174, 179, 248, 251-254 
internal validity, 117-118 
interval estimate/estimation, 191-195, 

241, 245-247, 254 
intervening variable, 166-168, 176 

J

joint confounding, 184-188 

L

large sample or large-sample, 183, 202, 
208, 211-216, 219-222, 241, 244, 247 

latency or latencies, 29, 32, 35, 57 
logistic, 174, 179, 234, 239, 267-269, 272 
logistic regression, 179, 239, 267, 269, 

272
logit, 268 
loss-to-follow-up, 54, 114, 128, 130-134 

M

Mantel-Haenszel (mh) test, 213, 216-217, 
249-250, 252, 271 

Mantel-Haenszel estimate/ adjusted 
estimate, 256, 267-271 

Mantel-Haenszel (mh) chi square 
test/statistic, 217, 219, 221, 241, 245 

Mantel-Haenszel methods, 267-268 
Mantel-Haenszel odds ratio (mhOR), 

270-271
marginal confounding, 181-184 
match out, 364 
matched analysis, 264, 267-271 
matched case-control study, 257, 261, 

270-272
matched set, 261, 267, 269 
matching, 232, 235, 238-242, 257-273 
matching factors, 258 
matching ratio, 260-261 
matching stratum, 261 
matching variable, 239, 257-260, 264, 

267-269
mathematical model, 4, 11-13, 122, 139, 

173, 179, 223, 233-235, 239-242, 264, 
267-268

McNemar's, 271-272 

measure of association, 162, 168, 172 
measure of disease frequency, 4, 9-10, 

44, 54, 67 
measure of effect, 4, 9-10, 71-74, 84, 86, 

110, 117-118, 139, 161-162, 168, 191-
192, 219-220, 257 

measure of potential impact, 97-98 
misclassification, 109-110, 118, 139-155 
misclassification bias, 139, 142-145, 148-

150
mortality, 40-41, 45, 49, 56, 63-68, 86-

88, 93, 116, 191, 207-216 
mortality rate, 64-68, 86-87 
mortality risk, 63-65 

N

natural log, 216, 219-220 
nearest neighbor matching, 260 
negative predictive value, 153-154  
nested case-control, 27, 40 
non-directional, 23, 38 
non-response, 11, 33, 114, 122, 128, 130-

132
nondifferential, 145-150, 156-158 
normal distribution, 197, 199, 203, 207-

210, 247 
null hypothesis, 194-220, 251 
null value, 73, 76, 91-92, 119-120, 166, 

192, 206-207, 211, 218, 248, 268-269 

O

observational, 20-22, 27-29, 133, 235-
240

observational studies/study, 20-21, 27-29, 
133, 235-236, 240 

odds, 9-10, 71-88, 116, 118, 218, 139, 
146, 166,-170, 176, 179-180, 184, 187, 
191-192, 194, 205, 207, 212-213, 219-
222, 228, 230, 234, 239, 262, 266-271 

odds ratio (OR), 10, 71-88, 116, 118, 127, 
139, 146, 166, 168-170, 176, 179-180, 
184, 187-188, 192, 205, 207, 212-213, 
209-222, 228, 230, 234, 239, 262, 266-
271

one-sided, 196, 199-202, 208-220 
one-to-one, 257-258 
operational hypothesis, 20 
outbreak(s), 14-16, 49, 60-61, 74-77, 94, 

96, 191, 206 
overmatch, 264-265 

P

p-value, 199-202, 207, 210-214, 219, 
217, 250 
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pair-matched (see also individual 
matching), 270-271 

pair-matching (see also individual 
matching), 262 

parameter, 111-112, 117-123, 144-145, 
150, 192-199, 202-206, 219 

period prevalence, 61-62 
person-time, 47, 56-59, 64, 85-87, 102, 

105, 191-192, 220, 254 
person-years, 55-59, 68, 86-87, 93-94, 97 
Pitman efficiency, 262 
point estimate, 192, 194, 224, 241, 245-

247
point prevalence, 61-62 
pooled analysis, 269 
pooling exchangeable matched sets/ strata 

/ data, 261, 269  
population attributable risk (PAR), 98-

102
population attributable risk percent, 98-

102
positive predictive value, 153-155 
post-test probability, 153-154 
potential confounder, 11, 165, 168, 174, 

179, 181-183, 186, 266 
potential impact, 91, 97-106 
pre-test probability, 153-154 
precision, 109-112, 166, 170, 185-188, 

192, 194, 202, 205, 217, 220-230, 237-
241, 247, 253, 257, 260-271 

precision-based, 166-170 
predictive value (PV), 152-155 
prevalence, 9-10, 44-47, 61-68, 78-79, 

84, 87, 92-95, 103-105, 111, 151-155, 
168-170, 175-176, 218-220 

prevalence difference, 92-93 
prevalence odds ratio (POR), 78-79, 87. 

168-170, 176, 219 
prevalent cases, 32, 37, 44-45, 62, 68, 79, 

84, 133 
prevented fraction, 98 
proportional, 27, 40 
proportional morbidity study, 40  
proportional mortality study, 40 
prospective, 25, 28-32, 68, 130 

R

r-to-1, 263, 272 
random error, 110-112, 117-119, 174, 

192, 230 
random variable, 205 
randomization, 20-22, 25, 133, 231-232, 

235-237

rare disease, 29, 32-36, 80-81, 84-85, 
105, 257 

rate, 9-10, 45-49, 54-68, 71, 85-96, 102-
105, 131, 191-192, 205, 220-221 

rate adjustment, 66-67 
rate difference, 10, 92-96, 221 
rate ratio, 10, 85-87, 93, 118, 191-192. 

220-221
ratio measures, 71, 85, 91, 95-96, 205 
regression 179, 239, 267-272 
rejection region, 197-199 
residual confounding, 238 
restriction, 179, 231-232, 237-238, 258 
retrospective, 25, 28-32, 161, 163, 245, 

272
ri-to-1, 263 
ri-to-si, 263 
risk, 1, 3-5, 10-19, 29, 31-37, 41-42, 45-

55, 61-69, 72-89, 92-106, 113-121, 
131-137, 142, 152-153, 162-172, 175-
178, 180-188, 192-197, 203, 206-223, 
228, 230, 232-237, 246-250, 264-269, 
272

risk difference (RD), 11, 92-97, 100, 103-
104, 216-217, 222-223  

risk factor, 5, 19, 29, 35-36, 45-46, 63-64, 
79, 87, 95-96, 163, 167-169, 175, 178, 
180-188, 228, 230, 232, 237, 250, 264-
266, 269 

risk odds ratio (ROR), 78-85, 208, 213 
risk period, 49 
risk ratio (RR), 11, 13, 72-78, 81-86, 89, 

92-93, 96-97, 99-103, 119-121, 124, 
132-136, 157, 162-169, 172, 177, 184, 
188-189, 192-195, 206-223, 246-249, 
267

S

sample size, 33, 184, 198, 204, 208, 212, 
217-220, 260-261, 265 

sampling distribution, 198, 200 
sampling plan, 5, 9-10 
screening test, 153 
selection bias, 11, 24, 28, 32, 79, 111, 

119, 122-123, 128-136 
selection ratio, 133 
selective survival, 129 
sensitivity, 145-156 
shifted cohort, 51-54 
significance level, 197-203, 208, 210-

211, 218-219 
simple analyses/analysis, 192-194, 207, 

214, 216, 219, 228-229, 238-239, 242-
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243, 247 
simple cumulative incidence, 49-53, 63, 

65
source population, 31-33, 84-85, 113-

119, 122, 129, 131-134, 167-169, 264 
specificity, 23, 145-157 
stable dynamic population, 62  
stable population, 58 
standard error, 198, 204-208, 216 
standard normal distribution, 198-200, 

204, 208-209 
standard population, 66-68 
statistic/statistical/statistically, 1, 4, 12-

14, 18, 29, 45, 112-115, 132, 165-166, 
172, 174-175, 177, 192-203, 207-223, 
236, 242, 255, 266, 271 

statistical inference, 113-114, 192-196, 
235-236

steady-state, 46-47 
stratification, 5, 12-14, 148, 233, 247-248 
stratified analysis, 13, 18, 123, 164, 167, 

233-235, 240-242, 246-255, 264, 267-
271, 275 

student's t, 193 
study base, 113 
study design, 1, 4-5, 9-12, 16, 18, 21-29, 

35-37, 44, 63, 65, 72, 74, 77-79, 110-
113, 118-124, 128, 134, 167, 169-170, 
232, 257 

study population, 23, 59, 61, 86, 96, 110, 
113-124, 129-132 

study question, 4-7, 14, 16-18 
switchover, 121-122 
systematic error, 111-113, 117-118, 128-

129, 140 
systematically, 118-119 

T

t distribution, 195, 201 
target parameter, 118-124 
target population, 23, 113, 117, 119, 124 
test of hypothesis, 195-197, 200-201, 

207, 212, 219, 242-243, 246-247, 270-
272

test statistic, 198-203, 208-221, 248, 271 
timing, 24-25, 32 
towards the null, 120-12, 147-151, 267-

269
two-sided, 197, 200-203, 209-212, 221 

U

Unbiased, 132 

V

valid estimate, 110, 187, 231 
validity, 110-117, 133, 165-166, 174-175, 

181, 186-188, 231 
variability, 12, 14, 112, 175, 192-193, 

203, 230 
variance, 173, 195, 204-207, 217, 220-

221, 262 
variation, 112 

W

weighted average, 164-172, 198, 242, 
246, 248  

withdrawal, 29, 51, 60, 115, 129, 131-132 
worst-case scenario, 134-135 

Z

Z statistic, 210-212, 218, 221 
zero cell, 234, 254 
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