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Preface

Due largely to their relevance in the design and synthesis of new materials and
futuristic devices, quantum confined model systems incorporating the repulsive as
well as attractive confining potentials have become a subject of growing research
interest. A diverse set of experiments involving, e.g. atoms and molecules under
pressure, quantum dots and atoms in metallofullerenes are analysed using such
models which are essentially defined by the given shape and strength of confinining
potential. Comprising a set of nine contributed chapters, dealing with the simplest
among the quantum confined model systems, this monograph records the significant
developments in the field subsequent to the two published volumes of Advances in
Quantum Chemistry (Academic Press, New York, 2009), Vol. 57–58. In Chap. 1,
Eugenio Ley-Koo and Guo-Hua Sun present their work on surface effects in light
atoms confined by dihedral angles in spherical, parabolic and prolate spheroidal
coordinates. In Chap. 2, Vladimir Pupyshev and Andrey Scherbinin discuss the
effect of symmetry lowering of the confining impenetrable cavity, including the
deformation of large cavity on the eigen-spectrum of hydrogen atom. In Chap. 3,
Norberto Aquino and A. Flores-Riveros discuss their work covering the effect of
soft spherical confinement on the popular information theoretical measures due to
Shannon and Fisher for the hydrogen atom in the position and momentum space. In
Chap. 4, H.E. Montgomery Jr. and K.D. Sen present the accurate total energy
calulations on the two electron isoelectronic systems in excited electronic states
within the impenetrable spherical boundary wall using variational perturbation
method. The following Chap. 5 contributed by Frederico Prudente and Marcilio
Guimarães describes the finite element and discrete variable representation under
the variational ansatz for the treatment of the few electrons under the spherical,
endohedral and plasmatical confinement conditions. Chapter 6, by L.G. Jiao and
Y.K. Ho, presents a set of highly accurate calculations on the bound and resonant
states in confined quantum dots. In the contribution under Chap. 7, S.A. Ndengué
and O. Motapon use the Galerkin variational method with the wave functions
obtained as expansions on B-splines basis sets in spherical, cylindrical or prolate
spheroidal coordinates. The authors describe how the electronic energy levels of
hydrogen atom, its wave functions and static and dynamic electric dipole
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polarizabilities are significantly changed under the spherical, cylindrical or prolate
spheroidal, endohedral or shell confinement conditions. The latter model potential
is frequently used to model the confinenment effects arising from a single and
multi-wall fullerene cage. The study is extended to the investigation of the Hþ

2
molecular ion and its isotopologues. In Chap. 8, J. Garza and R. Vargas formulate
the scheme of carrying out the Thomas-Fermi, modified Thomas-Fermi and the
density functional theory (DFT) calculations within the Kohn-Sham model for
the spherically confined many electron atoms. The influence of confinement on the
correlation energy has been studied within the DFT. Finally, in Chap. 9, A. Sarsa
and C. Le Sech study the effect of quantum confinement on the Hþ

2 molecular ion
and H2 molecule. For these molecules confined by impenetrable surfaces the trial
wave functions are computed using the variational and diffusional Monte Carlo
approaches. The study is carried out beyond the Born-Oppenheimer approximation
so that the motion of the nuclei is included in the trial wave function. It is hoped
that the theoretical formulations, algorithms and their applications contained in this
monograph will serve as a ready reference material to the interdiscipliniary research
community interested in studying confined quantum electronic systems.

Hyderabad, June 2014 K.D. Sen
J.C. Bose National Fellow
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Chapter 1
Surface Effects in the Hydrogen Atom
Confined by Dihedral Angles

Eugenio Ley-Koo and Guo-Hua Sun

1.1 Introduction

The contributions contained in the present Monograph on “Quantum Confined
Electronic Structure of Atoms and Molecules” constitute a representative sample of
the most recent developments in this field. They are intended to serve as guides, on
some specific recent and current problems, for the colleagues with theoretical and
experimental interests in the area. The updating has been implemented by taking the
chapters of volumes 57 [1–9] and 58 [10–15] of Advances in Quantum Chemistry
on “Theory of Confined Quantum Systems” Parts I and II, as the background in
contents and in time. The readers, according to their interests, may identify in some
of these chapters the variety of confined systems and confining environments, their
respective modelings, the changes of their physical properties in comparison with
those of the free systems, the diversity of effects and processes allowing the
measurement of those properties, etc.

The present contribution has its roots and trunk in Ref. [3], involving confine-
ment in semi-infinite spaces limited by conoidal boundaries. It can be remarked that
[8] is the only other chapter dealing explicitly with this type of confinement, while
[9] treats confined systems as open systems, and most of the other chapters involve
confinements inside spheres or spheroids. Reference [3] is also restricted to the
hydrogen atom, taking into consideration the separability of its Schrödinger
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equations in spherical, spheroconal, parabolic and prolate spheroidal coordinates, as
well as their exact solvability for the free system and also for confinement by the
natural boundaries defined by the successive coordinates, as reviewed and over-
viewed in its Sects. 1.3 and 1.4, respectively. The reference contains also Sect. 1.2
“Sample of Comments on Articles about Confined Atoms and Molecules”, and
Sect. 1.5 “Preview of Problems on Confined Atoms and Molecules of Current and
Future Investigations”; Sect. 2.4 and the sections 5.1–5.4 can be identified as the
off-shoots for the branches in the updating of Sect. 1.2 and the main body of Sect. 1.
3 in the Contents of this contribution.

In fact, the articles in [16, 17] gave the title of Section 2.4 in [3], and also formed
the basis of the Comment in [18]. Afterwards, the Letter in [19] motivated the
writing of the Comment in [20]. Both sets dealing with the binding of an electron
by a polar molecule, in confined and free configurations, respectively, justify the
title of the present Sect. 1.2.1, where the reasons for the Comments are illustrated.
On the other hand, our articles [21] briefly reviewed in Sect. 1.2.2, [22–25] in Sect.
1.2.3, [26] in Sect. 1.2.4, and [27, 28] in Sect. 1.2.5, are in direct correspondence
with the Preview sections in [3]: 5.3, 5.1, 5.2 and 5.4, as a comparison of their titles
show. In this way, Sect. 1.2 illustrates the updating of problems formulated 5 years
earlier, and some of their extensions already developed within that period. Spe-
cifically, the confinement of the hydrogen atom by elliptical cones [22] was shown
to be also applicable to any central potential [23], and to the rotations of asymmetric
molecules [24]; furthermore the theory of angular momentum in the bases of
spheroconal harmonics is now on a par with the familiar one in the basis of
spherical harmonics [25]. On the other hand, Ref. [26] established the superin-
tegrability of the harmonic oscillator and the hydrogen atom under dihedral angle
confinement, by identifying complete sets of ladder operators for their eigenstates in
the respective sets of separating coordinates. Finally, the complete electric dipole
fields and their sources inside, outside and on spheres and spheroids, respectively
[27], are alternatives for the analysis of the binding of an electron by a polar
molecule. In addition, the corresponding quadrupole magnetic fields [28] are
alternatives of interest in nuclear magnetic resonance and neutral atom traps.

Section 1.3 is the main body of this contribution. Its immediate antecedent is
Ref. [26], establishing the superintegrability and exact solvability of the Schrö-
dinger equation for the hydrogen atom confined by dihedral angles in spherical,
parabolic and prolate spheroidal coordinates. In Sect. 1.3.1 their respective eigen-
functions, eigenenergies and degeneracies are identified. Original results on the
surface effects in the hydrogen atom and the confining meridian half planes defining
the dihedral angle are evaluated and reported for the first time: Sect. 1.3.2 Electric
dipole moments for ground and excited states, in the different coordinates and as
functions of the confining angles, and the relationships among them, Sect. 1.3.3
Pressure distributions on the boundary meridian half-planes, Sect. 1.3.4 Hyperfine
structure for the ground state with the suppression of the Fermi contact contribution
and enhancement of the anisotropic contribution, and Sect. 1.3.5 Zeeman effect
with the suppression of the first order perturbation theory contribution, and of the
degenerate perturbation theory contributions for confining angles 2p= 2N þ 1ð Þ, and
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identification of nonuniform splitting patterns for other confining angles. The
remaining two sections include Sect. 1.3.6 a comparison with the confinements in
spheres and circular cones, as well as the description and an analysis of Sect. 1.3.7
single-electron quantum dots confined by dihedral angles.

Section 1.4 contains our perspective on future work on multielectron systems
confined by dihedral angles. The only available points of comparison involve
central confinement in spheres or spheroids, which give us a chance to emphasize
the qualitative differences between both types of confinement for Sect. 1.4.1 two-
electron atoms and quantum dots, Sect. 1.4.2 the filling of shells for the successive
elements and Sect. 1.4.3 the hydrogen molecular ion and neutral molecule. The
discussion in Sect. 1.5 summarizes the main results in the successive sections, the
relationships among them, and most important the anticipation of future theoretical
and experimental developments.

1.2 Updating and Extensions of Comment and Preview
in “The Hydrogen Atom Confined in Semi-infinite
Spaces Limited by Conoidal Boundaries”

This section takes the Comment 2.4 and the Preview Section 5 in [3] as the points
of reference to guide the readers to some of our published investigations in the last
5 years since the writing of that chapter.

1.2.1 On the Binding of an Electron by a Polar Molecule

Comment 2.4 in [3] was limited to point out conceptual inconsistencies in Refs. [16,
17] in their analysis of the binding of an electron by a polar molecule confined
inside spherical boxes and spheroidal boxes, respectively. At that moment we had
just written and submitted a Comment on both works, mentioning it in Sect. 1.2.4
and inviting to read [16, 17]. Our own Comment [18] was published in the Fall of
2008 and was included as Ref. [11] in [3]. Now, the interested readers are invited to
read [16, 17, 18] together and appreciate the difference in the binding energies
of free systems and of confined systems, which is the key point of interest in
Sect. 1.2.4 and other sections in [3].

One year later, we learned about the Letter [19] proposing new sets of angular
and radial eigenfunctions for the same problem in the free configuration. Our
familiarity with the solutions in the existing literature led us to try to understand the
new elements in [19], and in the process we decided to write our Comment [20].
Indeed, the Schrödinger equation with the potential energy of a negative electron
and a point electric dipole ~p, U ~rð Þ ¼ ep cos h=r2, is known to be separable in
spherical coordinates. The polar angle part corresponds to the eigenvalue equation
of the operator ‘̂2 þ 2mep cos h with eigenvalue �h2Eh, where ‘̂2 is the square of the

1 Surface Effects in the Hydrogen Atom Confined by Dihedral Angles 3



angular momentum and Eh is dimensionless. The radial part is simply the radial
Schrödinger equation with an effective potential �h2Eh=2mr2, inversely proportional
to the square of the radial coordinate. The Letter in [19] proposed angular eigen-
functions as expansions of Jacobi polynomials, with coefficients satisfying three-
term recurrence relations, and radial eigenfunctions as expansions of Laguerre
polynomials, also with coefficients satisfying three-term recurrence relations, for the
bound states which have Eh\0 and energy E\0. In the Comment [20] it was
pointed out that while for the angular eigenfunction the three-term recurrence
relations are determined by the selection rules ‘0 ¼ ‘ for ‘̂2 and ‘0 ¼ ‘� 1 for cos h,
reflected by the tridiagonal character of the matrix representation of their combined
operators, for the radial equation the corresponding representation does not hold.
Consequently, the radial functions in [19] are not bonafide solutions of the problem.

1.2.2 Ground State Energy Shift of the Helium Atom Close to
a Plane Surface

The title for this section is the first part of the title of Ref. [21]; the other parts of the
title “relation with the scattering potential” and “A confinement model” describe the
physical problem of interest and part of its modeling, respectively. In fact, the
problem belongs to the area of low-energy ion scattering by surfaces as a tool to
investigate the surface structure and topology as well as the dynamical changes in the
projectiles. One of the recent practical implementations involves grazing-scattering
experiments of low-energy ion beams impinging on insulator and metal surfaces.
Specifically in Refs. [3, 4] of [21], Wetherkam and Winter obtained evidence on the
ground state evolution of the helium atom near an Al(111) surface from the Heþ

grazing-scattering experiments after Auger neutralization, motivating the investi-
gation in [21]. The confinement model for both He and Heþ is the one for atoms in
semi-infinite spaces limited by a plane boundary in prolate spheroidal coordinates
[3, 8]. Figure 1.1 in [21] illustrates (A) the energies of the ground states of the atom
and the ion as functions of their distances to the plane surface, while Fig. 1.2 shows
the changes in the electron probability distribution for the atom as it approaches the
surface, and Table 1.1 contains the electric dipole moments acquired by the atom and
the ion due to the confinement, from variational calculations performed within the
Born-Oppenheimer approximation. The interested readers may follow in [21]: (B)
The identification of the atom-surface interaction energy in general, and specifically
in this model; the comparison with its counterparts for He interacting with a graphitic
plane and with Aluminum (111), (110) and (100) surfaces, from the continuum
average over the surface of the He–C and He–Al interactions, (C) The dynamic
response of a perfectly conducting surface to the presence of an atom or ion pos-
sessing a net electric charge and an electric dipole moment, is modeled by including
the image potential arising from those sources, Eq. (1.21), with the results of Fig. 1.9
[21]. The summary and conclusions are presented in Sect. 1.4.

4 E. Ley-Koo and G.-H. Sun



1.2.3 Hydrogen Atom and Asymmetric Molecules Confined
by Elliptical Cones

Section 5.1 in [3] shared the same title as the present one excluding “and asym-
metric molecules”. In fact, the investigation for the future previewed in that section
was implemented and published as Ref. [22]. The key difference between the
evaluation of the free spheroconal harmonics and the confined in an elliptical
cone spheroconal harmonics consists in the following: while the former involves
polynomial solutions with coefficients satisfying three-term recurrence relations, the
latter are infinite series with coefficients satisfying four-term recurrence relations.

Fig. 1.1 Circular polar graphs of the eigenfunctions of Eq. (1.4) for the states with nu ¼ 1,
exhibiting their variations with the value of the confining angle u0 ¼ p=6;p=4; . . .;p; 7p=4 and 2p

1 Surface Effects in the Hydrogen Atom Confined by Dihedral Angles 5



In both cases the separation constants and the expansion coefficients are evaluated
via matrix diagonalizations of finite and infinite sizes, respectively. The latter are
approximated with finite but large enough sizes guaranteeing convergence and
precision. In Ref. [22], we identified for the first time that the pressure distribution
on the walls of the confining cone include positive and negative values corre-
sponding to coexisting regions of high pressure and low tension.

While completing the above work we realized that we could also analyze the
rotations of asymmetric molecules, and also any central potential system, in the
same situation of confinement in elliptical cones. Preliminary results were presented
at the 50th Sanibel Symposium and published in its Proceedings [23]. Shortly after
the acceptance of the latter, we received the invitation to write a chapter reviewing
our recent works for a volume in Advances in Quantum Chemistry, on some of the
topics discussed at the Symposium [24], in which we included original results for
the rotations of the confined asymmetric molecules, and also started the identifi-
cation of spheroconal tools to construct a theory of angular momentum based on
spheroconal harmonics.

In February 2012, we participated in the International Symposium on “Super-
integrability, Exact Solvability and Special Functions”. The contribution by
Ricardo Méndez Fragoso was on “The Symmetries of Asymmetric Molecules”. The
invitation to write original contributions on the topics of the Symposium for a
special volume of SIGMA was the motivation to identify and construct the raising
and lowering operators connecting the different kinds and species of spheroconal

Fig. 1.2 (a) Angular momentum z-component eigenvaluel, (b) Energy spectraEn1n2nu e2=2a0½ �
and amplifications for (c) �0:2\Ev\0 and (d) �0:1\Ev\0 for n1 þ n2 ¼ 0 (—–)n1 þ n2 ¼ 1
(–·–), n1 þ n2 ¼ 2 (–··–), n1 þ n2 ¼ 3 (–···–), as functions of 0\u0=p\2

6 E. Ley-Koo and G.-H. Sun
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harmonics, common eigenfunctions of the square of the angular momentum and the
asymmetry distribution Hamiltonian, bringing the theory of angular momentum
based in spheroconal harmonics on a par with the familiar one based in spherical
harmonics [25].

1.2.4 Harmonic Oscillators and Hydrogen Atom Confined
by Dihedral Angles

Our other contribution to the Symposium mentioned in the last paragraph of the
previous section was “Superintegrability in the Confined Hydrogen Atom”. For our
written contribution to the volume in SIGMA [26], we constructed sets of ladder
operators connecting the eigenstates of the harmonic oscillators confined by dihe-
dral angles in circular cylindrical and spherical coordinates, and for the hydrogen
atom in the same situation of confinement in spherical, parabolic and prolate
spheroidal coordinates. The dihedral angle coordinate is common to all of them, and
the same happens with the canonically conjugate momentum, and its square.
Consequently, the different systems also share the same raising and lowering
operators for the common eigenstates of the square of the z-component of the
angular momentum, with non-integer eigenvalues l. The constants of motion
associated with the other coordinates, for the respective physical systems, keep their
polynomial eigenfunctions and integer eigenvalues, with the non-integer index of
associativity l. The corresponding ladder operators are modified accordingly, from
their free system forms.

1.2.5 Electric Dipole and Magnetic Quadrupole Fields
and Sources in Spheres and Spheroids

The writing of [27] was anticipated in Preview 5.4 of [3], recognizing the need of a
complete description of the electric dipole field, not only outside but also inside a
polar molecule, in order to analyze more realistically its binding of an electron
without the falling to the center of the point dipole, which is a mathematical and not
a physical effect. The corresponding electrostatic fields and their sources on the
surfaces of spheres and both prolate and oblate spheroids were explicitly identified.

As an extension of the same idea, and motivated for the needs in Nuclear
Magnetic Resonance imaging as well as in neutral atom traps, the magnetic
quadrupole fields and sources were constructed in the same geometries Ref. [28].
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1.3 Surface Effects in the Hydrogen Atom Confined by
Dihedral Angles in Spherical, Parabolic and Prolate
Spheroidal Coordinates

As anticipated in the Introduction, this section deals with the hydrogen atom
confined by dihedral angles and its properties in three different coordinates systems,
in Sects. 1.3.1–1.3.5. The last Sect. 1.3.6 and 1.3.7 establish the comparison with
the same system in spherical and circular cone confinements, and with quantum
dots confined by dihedral angles, respectively.

The Schrödinger equation for the motion of the electron relative to the nucleus is
considered in spherical r; h;uð Þ, parabolic n; g;uð Þ, and prolate spheroidal coor-
dinates u; v;uð Þ, which are connected by their transformation equations to cartesian
coordinates [29]:

x ¼ r sin h cosu ¼ ng cosu ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2 � 1Þð1� v2Þ

p
cosu;

y ¼ r sin h sinu ¼ ng sinu ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2 � 1Þð1� v2Þ

p
sinu;

z ¼ r cos h ¼ n2 � g2

2
¼ fuv;

ð1:1Þ

The Schrödinger equation is separable in the three coordinate systems when the
nucleus occupies the center, the focus and one of the focii, respectively, with
factorizable solutions of the common form:

w r; h;uð Þ ¼ R rð ÞH hð ÞU uð Þ; w n; g;uð Þ ¼ N nð ÞH gð ÞU uð Þ;
w u; v;uð Þ ¼ U uð ÞV vð ÞU uð Þ: ð1:2Þ

The confining angle is defined by the positions of its meridian half-planes u1 ¼
0 and u2 ¼ u0. The confinement of the hydrogen atom by the dihedral angle
imposes the boundary conditions that its eigenfunctions vanish at the positions of
those meridian half-planes, which involve only the common third factor in
Eq. (1.2):

� d2UðuÞ
du2 ¼ l2UðuÞ; Uðu ¼ 0Þ ¼ 0; Uðu ¼ u0Þ ¼ 0: ð1:3Þ

Since the z component of the angular momentum is canonically conjugate to
the angle u, and it appears quadratically in the Schrödinger equation, the corre-
sponding eigenfunctions satisfying the boundary conditions of Eq. (1.3) and their
eigenvalues are

UlðuÞ ¼
ffiffiffiffiffiffi
2
u0

s
sinðluÞ; l ¼ nup

u0
; nu ¼ 1; 2; 3; . . . ð1:4Þ

1 Surface Effects in the Hydrogen Atom Confined by Dihedral Angles 9



1.3.1 Eigenfunctions, Eigenenergies and Degeneracies

The readers are referred to [26] for the details on the construction of the eigen-
functions and eigenvalues in the successive coordinates, which are written in their
general forms, commented and illustrated next. Farther on, their degeneracies are
also counted and illustrated as functions of the confining angle. The eigenfunctions
in the respective coordinates have basically the same structure as in the free atom
[3], replacing the integer quantum magnetic number m with the label l in Eq. (1.4):

ws ¼Nnr nh l e
� r

a0mðr sin hÞl sinðluÞ rnh1F1 �nr; 2nh þ 2lþ 2;
2r
a0m

� �

2F1 �nh; nh þ 2lþ 1; lþ 1;
1� cos h

2

� �
þ �1ð Þnh2F1 �nh; nh þ 2lþ 1;lþ 1;

1þ cos h
2

� �� �
;

ð1:5Þ

wP ¼ Nnnngl e
�n2þg2

2a0m ngð Þlsin luð Þ1F1 �nn; lþ 1;
n2

a0m

� �
1F1 �ng; lþ 1;

g2

a0m

� �
;

ð1:6Þ

wPS ¼ Nnunvl e
�f ðuþvÞ

a0m f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2 � 1Þð1� v2Þ

ph il
sin luð ÞSlnuðuÞSlnvðvÞ: ð1:7Þ

Notice their common singularity removing factors: μ powers of r sin h; ng andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðu2 � 1Þð1� v2Þp
close to the z-axis, Eqs. (1.1); and decreasing exponentials of

the proton-electron radial separation at infinity. The other factors are polynomials of
degrees nr; nh; nn; ng; nu and nv in the first two independent variables of the
respective coordinates. Additionally, notice in spherical coordinates: the extra nh
power factor of r needed to remove the singularity at the origin, recognizing that
nh þ l ¼ k is the quantum label for the magnitude of the orbital angular momen-
tum; the same label is explicitly identified in the second entries of the hypergeo-
metric functions inside the brackets; if l were an integer, either function would be a
polynomial of even or odd powers of cos h and parity defined by their degree nh;
when l is non integer as in Eq. (1.4), both functions contain even and odd powers
of cos h; implying that the breaking of the rotation symmetry around the z-axis also
breaks the z ! �z parity symmetry; the combination of both functions in Eq. (1.5)
is needed to restore their z parity. The eigenfunctions in parabolic coordinates have
the formal structure of a two-dimensional harmonic oscillator in circular coordi-
nates [3, 26]. The S functions in prolate spheroidal coordinates are polynomials in
powers of u� 1 and v� 1, solutions of the same differential equation in the
domains of the respective spheroidal and hyperboloidal variables 1;1½ � and
�1; 1½ �; the coefficients in their expansions satisfy three-term recurrence relations
[3, 26, 30]. The eigenenergies are given by the familiar parametrization:

10 E. Ley-Koo and G.-H. Sun



Em ¼ � e2

2a0m2
ð1:8Þ

involving the principal quantum label in the respective coordinates:

m ¼ nr þ nh þ lþ 1 ¼ nn þ ng þ lþ 1 ¼ nu þ nv þ lþ 1 ð1:9Þ

Figure 1.1 illustrates the circular polar graphs of the eigenfunctions of Eq. (1.4)
for the states with nu ¼ 1 exhibiting their variations with the value of the confining
angle u0 ¼ p=6; p=4; . . .; p; . . .; 7p=4 and 2π. The value of π corresponds to
confinement by a plane [31] where the graph is a circle tangent to the plane at the
position of the nucleus. For the other angles the lobes are also tangent to the planes
defining the confining angle, getting more elongated as the latter becomes smaller,
and becoming heart-shaped as the angle increases up to 2p. Notice that the bisecting
angle exhibits also the reflection symmetry of the respective graphs. The general-
ization for the excited states with nu ¼ 2; 3; 4; . . . having 1; 2; 3; . . . equally spaced
azimuthal meridian nodes, and exhibiting alternatively antisymmetry and symmetry
under reflection in the bisecting meridian plane, follows from Eq. (1.4).

Figure 1.1 illustrates the variations of the label μ of Eq. (1.4) and the eigenen-
ergies of Eqs. (1.8, 1.9) as functions of the confining angle. The variations of μ are
inversely proportional to the angle, and they can be followed for nu ¼ 1; 2; 3; 4; . . .
in Fig. 1.2a. Starting from Levine’s plane with u0 ¼ p and l ¼ m integer, the
reader may follow the increasing values to the left and the decreasing values to
the right up to half integer numbers for u0 ¼ 2p. The variations of the eigenergies
are exhibited in Fig. 1.2b, c, and d for the ground and increasingly excited states, in
successively amplified energy intervals. Notice that each level increases the value
of its eigenenergy as the confinement of the atom increases when going from right
to left in each graph, which is correlated with the corresponding increases in l
already recognized in Fig. 1.2a. This is trivial for the ground state, shared by the
three coordinate systems with n1 ¼ n2 ¼ 0. It is also true for the degenerate excited
states with n1 þ n2 and any value of l, which are n1 þ n2 þ 1 in number. Conse-
quently, the reader’s attention is also called to follow the removal of degeneracies,
signaled by the separation of energy levels; and also to identify new degeneracies,
signaled by new crossing of levels and associated with combinations in Eq. (1.9)
such that n1 þ n2 þ l ¼ n01 þ n02 þ l0. Both types of signals can be recognized in
Fig. 1.2b and increasingly in Fig. 1.2c and d. For very small angles of confinement
on the left of each figure, l increases towards infinity and the eigenenergies tend to
zero, becoming infinitely degenerate at the ionization limit. This situation is also
shared by the hydrogen atom confined in semi-infinite spaces with other boundaries
[22, 24, 32, 33]. It is also important to understand that for u0 ¼ 2p, the eigen-
functions and eigenenergies are different from those of the free atom due to the
boundary conditions of Eq. (1.3).

Table 1.1 illustrates the degeneracies of the energy levels of the hydrogen atom
for a sample of confining dihedral angles. The basic degeneracy is of order

1 Surface Effects in the Hydrogen Atom Confined by Dihedral Angles 11



D n1þn2ð Þ ¼ n1 þ n2 þ 1, determined by the sum of the number of nodes in the other
two degrees of freedom, reminiscent of the degeneracy of the two-dimensional
harmonic oscillator [26]. Additional degeneracies may occur for coinciding values
of n1 þ n2 þ l in Eq. (1.9); and the sum of the basic degeneracies of the respective
combinations

D ¼
X
n1þn2

Dðn1þn2Þ

gives the accumulated degeneracy of the energy levels crossing at the specific
angle. Both types of degeneracies are counted for the successive combinations of
the quantum numbers n1 þ n2 and nu compatible with Eqs. (1.4) and (1.9) for each
confining angle. The counting extends to about sixty orbital states so that when the
electron spin degree of freedom is considered all the known chemical elements are
covered. Not surprisingly, these degeneracies differ from the n2 familiar counterpart
of the free atom.

1.3.2 Electric Dipole Moment

The electric dipole moment is defined by the charge of the electron times the
expectation value of the relative position vector of the electron from the proton:

wh n1n2l d
!

wn1n2l

������ ¼ �e wh n1n2l î xþ ĵ yþ k̂ z
	 


wn1n2l

����� ð1:10Þ

Here we report the results for the common ground state n1 ¼ 0; n2 ¼ 0;ð
nu ¼ 1Þ, and the pairs of eigenstates with lowest excitation n1 þ n2 ¼ 1; nu ¼ 1

	 

,

in the three coordinate systems. The integration over u is common for all of
them and the expressions for the dipole moment also have the common structure:

d
!D E

¼ �e
2
u0

4l2 sin u0
2

	 

4l2 � 1

î cos
u0

2

� �
þ ĵ sin

u0

2

� �h i
I?ðn1n2Þ þ k̂Izðn1n2Þ

 �
ð1:11Þ

Notice the distinction between the axial and transverse components. In fact, the
u integration for the axial component is simply the normalization constant, while
for the transverse component coincides with the expression for the electric dipole
moment of the hydrogen atom in two dimensions confined by the same angle [34],
in the direction of the bisecting angle. Izðn1n2Þ and I?ðn1n2Þ are the integrals over
the two other degrees of freedom for the respective cartesian components in the
successive coordinates. In spherical coordinates, the eigenfunctions have a well-
defined z parity and the corresponding component of the dipole moment vanishes.
In parabolic coordinates, the 01l and 10l states have the same transverse
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components, while their axial components share the same magnitude with opposite
directions, upward and downward, respectively. In prolate spheroidal coordinates,
the respective dipole moments interpolate between their counterparts in spherical
and parabolic coordinates in the limits of very small and very large focal distances.

Table 1.2 and Fig. 1.3 illustrate the numerical values of the magnitudes of the
transverse and axial components of the electric dipole moment of the hydrogen
atom as functions of the confining dihedral angle. The data for the ground state 001
are common for the three coordinate systems. For the excited states 011 and 101: in
S, the axial components vanish and only the transverse components are reported
with different numerical values; in P, both states share the same magnitudes for both
components, the transverse with the same direction and the axial in opposite
directions; in PS, three entries for small, intermediate and large focal distances are
included, with different values for the transverse components, and equal magnitudes
and opposite directions for the axial components. The transverse components
increase monotonically as the confining angle is reduced; notice the ground state
value of 3:75ea0 for Levine’s plane as the familiar reference; going from the ground
to the excited states, the magnitudes of the dipole moments change, but not too
much. The following relationships among their values in the different degenerate
excited states and coordinates can be recognized for the transverse components:

dS?ð011Þ� dPS? ð011; f ¼ 0:1Þ\dPS? ð011; f ¼ 5Þ
\dPS? ð011; f ¼ 100Þ � dP?ð011Þ ¼ dP?ð101Þ
¼ 1

2
dS?ð011Þ þ dS?ð101Þ
� � � dPS? ð101; f ¼ 100Þ

\dPS? ð101; f ¼ 5Þ\dPS? ð101; f ¼ 0:1Þ� dS?ð101Þ:

ð1:12Þ

The equalities at the middle follow from the equivalence of the parabolic
coordinates n and g, and from the fact that the P and S n1 þ n2 ¼ 1 degenerate
states are connected by the sum or difference of the other two, as illustrated in
Sect. 7 of [26]. The interpolation by the PS states between the S and P states is
explicitly exhibited. On the other hand, the axial components have small magni-
tudes, increasing monotonically with the confining angle.

1.3.3 Pressure Distributions

The average pressure of a quantum system confined in a finite volume is identified
with the rate of change of its energy with respect to the change in the confining
volume. This concept when applied to the hydrogen atom confined in a semi-
infinite space leads to a vanishing average pressure because the change of energy is
finite when the boundary is changed while the change in volume is infinite. Here,
we adopt the concept of pressure distribution on the confining boundary, assuming
that the latter is divided into elements of area h1Dq1h2Dq2 associated with cylinders
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of infinitesimal height h3Dq3. For such cylinders with infinitesimal volumes the
corresponding pressure is expressed as [35, 36],

P q1; q2; q3ð Þ ¼ � 1
h1h2Dq1Dq2

1
h3

o
oq3

e q1; q2; q3ð ÞDq1Dq2½ �
����
q3¼q30

ð1:13Þ

where eðq1; q2; q3Þ is the associated energy, such that

eðq1; q2; q3ÞDq1Dq2 ¼
Zq3þDq3

q3

h1h2h3dq3w
�ĤwDq1Dq2: ð1:14Þ

In the specific case of confinement in the dihedral angles with q30 ¼ u0, the
scale factorshr ¼ 1; hh ¼ r; hu ¼ r sin h ¼ ng ¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 1ð Þ 1� v2ð Þp

; hn ¼ hg ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2

p
and hu ¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � v2ð Þ= u2 � 1ð Þp

; hv ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � v2ð Þ= 1� v2ð Þp

do not
depend on the variableu; consequently their presence in Eq. (1.13) when Eq. (1.14) is
substituted, gives a quotient of one. Furthermore, the Hamiltonian Ĥ operating on its
eigenfunctions wn1n2l gives the same eigenfunctions multiplied by the eigenvalue
of the energy Ev u0ð Þ as a function of the opening of the dihedral angle. Thus the

Fig. 1.3 Magnitude of electric dipole moment transverse d? u0ð Þ and axial dz u0ð Þ components in
unit ea0½ � with the left and right side scales, respectively, in the successive coordinates, as functions
of u0=p

1 Surface Effects in the Hydrogen Atom Confined by Dihedral Angles 15



evaluation of the pressure in Eq. (1.13) is reduced to the numerical evaluation of
the derivative

P q1; q2;u0ð Þ ¼ � o
ou0

Emðu0Þw�
n1n2l q1; q2;u0ð Þwn1n2l q1; q2;u0ð Þ

h i
: ð1:15Þ

Table 1.3 and Fig. 1.4 illustrate the numerical values of the pressure distributions
for the 00l; 01l; 10l states in the successive coordinates for confining angles u0=p.
The entries in the Table cover the maximum pressure, the corresponding position
q1max, and the position where the pressure vanishes q10, at fixed positions in q2.
Figure 1.4 provides more details for the pressure as functions of q1, for the chosen
values of q2 and u0=p. Specifically, the entries in the first two rows and the first two
columns in the figure, correspond to the ground state S001 at the polar angle
position h ¼ p=6, with diminishing azimuthal angles of confinement u0=p ¼ n=6
for n ¼ 12; . . .; 1 as functions of the radial coordinate. The entries in the first two
rows and third column illustrate the corresponding information for the S011 and
S101 excited states and a more restricted set of confining angles. The entries in the
third row and first two columns are samples for the PS011 and PS101 excited states
at the hyperboloidal v ¼ 0:5 position, as functions of the spheroidal coordinate and

Table 1.3 Pressure distribution for the lower states in the three coordinates

The lower states u0=p 1=2 1 3=2 2

S : 001
h ¼ p=6

Pmax [10
13 Pa] 0.097935 2.87159 9.57853 17.6420

rmax [2r/a0] 4.958000 1.53800 0.81000 0.51390

R0 [2r/a0] 15.03650 7.29019 5.31829 4.44664

S : 011
h ¼ p=6

Pmax [10
9 Pa] 0.409302 2.61103 3.92984 4.21405

rmax [2r/a0] 10.10600 4.85300 3.51800 2.92800

R0 [2r/a0] 23.91210 13.6544 10.8319 9.53006

S : 101
h ¼ p=6

Pmax [10
9 Pa] 0.223558 3.31064 7.97022 11.7285

rmax [2r/a0] 4.188000 1.32560 0.69800 0.44690

R0 [2r/a0] 8.496770 3.87037 2.72494 2.22524

P : 011
g=

ffiffiffiffiffi
a0

p ¼ 1:2
Pmax [10

8 Pa] 4.361670 53.8539 84.3179 90.2903

nmax n=
ffiffiffiffiffi
a0

p� �
1.821000 0.93800 0.65780 0.49860

n0 n=
ffiffiffiffiffi
a0

p� �
3.006700 1.95444 1.59566 1.41341

PS : 011
v ¼ 0:5
f =a0 ¼ 1:2

Pmax [10
11 Pa] 9.332620 27.4735 35.8610 36.6268

umax 8.017000 3.87900 2.78900 2.28300

u0 16.15730 9.59709 7.77068 6.90960

PS : 011
v ¼ 0:5
f =a0 ¼ 0:6

Pmax [10
12 Pa] 1.159450 4.87012 25.4137 6.74402

umax 6.700000 2.38900 1.21900 1.58960

u0 12.69170 5.74147 4.04930 3.32243
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the indicated values of the focal distance. The third row and third column corre-
sponds to the P011 state for the same set of confining angles at the chosen g

� ffiffiffiffiffi
a0

p
position as functions of the n

� ffiffiffiffiffi
a0

p
coordinate. The same information is also valid

for the P101 state, with the exchange of the roles of the η and ξ coordinates. All the
curves have the same shape starting from the origin displaying a fast increase up to
a maximum, then a slower decrease, vanishing and taking negative values and
tending to zero asymptotically after a finite number of oscillations; the latter part
shows the coexistence of high pressure and low tension regions in the confining
planes. In this work, we evaluated the pressure for excited states in order to
establish that the alternation of its values and signs is a common happening, which
had not been noticed before our investigation of the ground states of the hydrogen
atom confined by elliptical cones [22].

1.3.4 Hyperfine Structure

The proton and electron spin-spin magnetic dipole interaction Hamiltonian, leading
to the hyperfine structure of the hydrogen atom, has the form [37]:

Ĥ~lps ;~les
¼ � 3 ~lps � r̂

	 

~les � r̂
	 
�~lps �~les

r3
þ 8p

3
~lps �~lesd ~re �~rp

	 

; ð1:16Þ

Fig. 1.4 Pressure as function of q1 for the chosen values of q2 and u0=p for the lower states 001,
011 and 101 in three coordinate systems
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where the last term corresponds to the Fermi contact interaction. In the case of
the free hydrogen atom in its ground state with zero orbital angular momentum, the
contribution of the first term vanishes; and the second term depending on the
probability density of finding the electron at the position of the nucleus,

w00l ~r ¼ 0ð Þ�� ��2; which is the expectation value of the Dirac delta function, deter-
mines the well-known hyperfine splitting of its eigenstates with total atomic angular
momentum F ¼ 1 and F ¼ 0 arising from the coupling of the proton and electron
one-half spins. In contrast, the hydrogen atom confined by dihedral angles exhibits
the suppression of the Fermi contact contribution, and the appearance of anisotropic
contributions from the first term in Eq. (1.16). In fact, w00l ~r ¼ 0ð Þ from Eq. (1.5)
contains the radial singularity removing factor rl, which reduces the probability of
finding the electron at the position of the proton to zero, thereby suppressing
completely the Fermi contact contribution to the hyperfine splitting in the confined
atom. On the other hand, concerning the first term in Eq. (1.16), the space
dependence of its different terms correspond to the harmonic quadrupole tensor
with five independent components: xy

�
r5; xz

�
r5; yz

�
r5; x2 � y2ð Þ�r5 and

3z2 � r2ð Þ�r5, which give a measure of the departure of the electron distribution
from a spherical one. It follows that for the hydrogen atom confined in the dihedral
angle, the first, fourth and fifth components provide finite contributions, while those
from the second and third terms vanish due to their negative z-parity; if we took an
x0 axis along the bisecting angle u0=2, then the contribution of the first component
x0y0

�
r5

� �
; would vanish due to its odd y0 reflection parity, while its compan-

ion x02 � y02ð Þ�r5� �
does not vanish. The reader need not worry about the presence

of the singular 1
�
r3 factor in the respective components; it is compensated by the

presence of the factors r 2þ2lð Þ from the volume element and the square of the wave
function, which becomes r3 for the smallest value of l ¼ 1=2 for u0 ¼ 2p. The
hydrogen atom confined by dihedral angles acquires a quadupole moment
responsible for its anisotropic contribution to the hyperfine splitting.

Next, we concentrate on the evaluation of the expectation values of the operators
3 cos2 h� 1ð Þ=r3 and sin2 h cos2 u0 � sin2 u0	 


=r3 for the ground state,

w00l r; h;uð Þ ¼ N00lr
l e�r= lþ1ð Þa0 sinl h cos lu0;

from Eq. (1.5) with the change in coordinate u0 ¼ u� u0
2 ; in the interval

�u0=2\u\u0=2:

A33 ¼ w00l

� �� 2� 3 sin2 h
r3

w00l

�� �
;

Ax02�y02 ¼ w00l

� �� sin2 h cos 2u0

r3
w00l

�� �
:
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The integrals over r2dr sin hdu0 share the common radial integrals with the inte-
grands r2lþ3e�2r= lþ1ð Þa0 and r2le�2r= lþ1ð Þa0 for the normalization constant and the
operator, leading to the net factor:

Iradial ¼ 2
lþ 1ð Þa0

� �3 C 2lð Þ
C 2lþ 3ð Þ ;

in terms of the respective gamma functions. The integrals over the polar angles can
be rewritten in terms of the respective integrands sin2lþ1 h and sin2lþ3 h, and can be
expressed in terms of beta functions with the results:

Ipolar33 ¼ 2� 3
B lþ 2; 1=2ð Þ
B lþ 1; 1=2ð Þ ¼ � 2l

2lþ 3

Ipolarx02�y02 ¼
B lþ 2; 1=2ð Þ
B lþ 1; 1=2ð Þ ¼

2 lþ 1ð Þ
2lþ 3

:

The integrations over u0 for the normalization and the operator of A33 give a net
factor of one. The corresponding factor for the other operator is

Iu
0

x02�y02 ¼
2
u0

Z/0=2

�/0=2

du0 cos 2u0 1
2

1þ cos 2l/0ð Þ ¼ l2 sinu0

l2 � 1ð Þu0
:

Correspondingly, the products of the respective factors give the final forms:

A33 ¼ � 1
a30

� �
4

lþ 1ð Þ4 2lþ 1ð Þ 2lþ 3ð Þ

Ax02�y02 ¼
1
a30

� �
4l

lþ 1ð Þ4 l� 1ð Þ 2lþ 1ð Þ 2lþ 3ð Þ
sinu0

u0

Table 1.4 contains the numerical values of these anisotropic components of the
hyperfine structure for the hydrogen atom confined by dihedral angles in units of
1=a30, for the interval 0; 2p½ � of u0. Figures 1.5a, b contain the respective plots
illustrating the monotonic increase in the magnitude of A33, and the increasing and
decreasing values of Ax02�y02 as the confining angle changes from zero to 2p. Notice
the vanishing of both components for u0 ¼ 0, the vanishing of the transverse
component for u0 ¼ 2p, and the equal values of 1/60 of both components for
Levine’s plane with u0 ¼ p. It is also pertinent to recall that the corresponding
magnitude of the Fermi contact isotropic hyperfine contribution for the free
hydrogen atom is 8=3a30.
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Table 1.4 Numerical values
of longitudinal and transverse
components of the anisotropic
hyperfine structure
contributions in units
1=a30
� �

for the successive
values of the confining angle

u0=p A33 Ax02�y03

0 0 0

0.1 −5.65643 × 10−7 6.18204 × 10−7

0.2 −2.15834 × 10−5 2.52387 × 10−5

0.3 −1.53069 × 10−4 1.87705 × 10−4

0.4 −5.55324 × 10−4 7.00474 × 10−4

0.5 −1.41093 × 10−3 1.79646 × 10−3

0.6 −2.88224 × 10−3 3.63560 × 10−3

0.7 −5.08985 × 10−3 6.24156 × 10−3

0.8 −8.10773 × 10−3 9.48087 × 10−3

0.9 −1.19675 × 10−2 1.30796 × 10−2

1.0 −1.66667 × 10−2 1.66667 × 10−2

1.1 −2.21769 × 10−2 1.98308 × 10−2

1.2 −2.84524 × 10−2 2.21808 × 10−2

1.3 −3.54358 × 10−2 2.33984 × 10−2

1.4 −4.30638 × 10−2 2.32799 × 10−2

1.5 −5.12703 × 10−2 2.17598 × 10−2

1.6 −5.99895 × 10−2 1.89174 × 10−2

1.7 −6.91574 × 10−2 1.49658 × 10−2

1.8 −7.87132 × 10−2 1.02271 × 10−2

1.9 −8.86001 × 10−2 5.09648 × 10−3

2.0 −9.87654 × 10−2 0

Fig. 1.5 Longitudinal (a) and transverse (b) components of the anisotropic hyperfine structure
contributions in units 1=a30

� �
, as functions of the confining angle /0
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1.3.5 Zeeman Effect

The Hamiltonian for the interaction of the hydrogen atom with an external axial
uniform magnetic induction field, ~B ¼ k̂B, including the orbital and spin contri-
butions of its electron magnetic moment, is

Ĥ~le;~B ¼ �~le �~B ¼ eB
2mec

lz þ gessz
� �

: ð1:17Þ

Here we concentrate on the orbital contribution, for the cases of the hydrogen atom
in its free and confined by dihedral angle configurations, successively. In the
familiar situation of the free atom, its wave functions are eigenfunctions of the z-
component of the angular momentum with integer m eigenvalues, leading to the
2lþ 1 uniformly split Zeeman pattern. The situation is radically changed for the
hydrogen atom confined by dihedral angles because its wave functions are eigen-
functions of the square of the z-component of the angular momentum, Eqs. (1.3,
1.4). The changes can be analyzed and identified by constructing the matrix of the
operator lz in the basis of eigenfunctions of Eqs. (1.5)–(1.7). Indeed, the typical
form of any matrix element:

wn01n
0
2n

0
u
lzj jwn1n2n3

D E
¼ k n01n

0
2n

0
u; n1n2nu

� �
n0u lzj jnu

D E
; ð1:18Þ

n0u lzj jnu
D E

¼ 2 �ihð Þ
u0

Zu0

0

du sin
n0upu
u0

d
du

sin
nupu
u0

¼
0 for n0u � nu even
�i�h
u0

4nun0u
n02u�n2u

h i
for n0u � nu odd

(
ð1:19Þ

includes the selection rule that the matrix elements with n0u � nu even vanish, and

only the matrix elements with odd sums contribute; the constants k n01n
0
2n

0
u;

�
n1n2nuÞ represent the integrals over the other two degrees of freedom.

We proceed now to enumerate the consequences of such selection rules on the
contributions to the Zeeman effect: (1) The first order perturbation theory contri-
bution is suppressed, because it involves the expectation value with n0u ¼ nu.
Examples: All the entries of states with D = 1 for the different confining angles in
Table 1.2. (2) There are also suppressed contributions for all the degenerate states
associated with the confining angles of 2p and 2p=3, because their nu values differ
in even numbers as illustrated in the same Table; the situation is the same for all
angles 2p= 2nþ 1ð Þ. (3) The D by D square matrix representations of lz in the bases
of degenerate states for the other confinement angles in the Table have diagonal
blocks with zero entries of the successive Dn1þn2 times Dn1þn2 dimensions, alter-
nating with neighboring rectangular blocks with non-zero entries of dimensions
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Dn01þn02 times Dn1þn2 and vice versa; the alternation of blocks with zero entries and
non-zero entries with diminishing dimensions continues until the entire matrix is
completed. The diagonalization of these hermitian matrices provides the Zeeman
effect non-uniform orbital energy shifts and eigenfunctions. It is also feasible to
include the spin contributions in the Hamiltonian of Eq. (1.16), as well as the spin
up and spin down spinors in the basis functions for a complete treatment of the
Zeeman effect in the confined hydrogen atom. Here, we restrict ourselves only to
emphasize the differences with the free hydrogen atom; the corresponding results
will be reported in the future.

1.3.6 Comparison with Other Confinements

In this section we revisit the hydrogen atom confined in spheres [38] and circular
cones [33] under the light of confinement in dihedral angles. The exercise turns out
to be instructive on more than one account, illustrating the differences between
confinements in finite volumes versus in semi-infinite spaces.

We start out from the free hydrogen atom and its chain of 0 4ð Þ 	 0 3ð Þ 	 0 2ð Þ
group symmetries, in spherical coordinates. Then we recognize that the successive
confinements correspond to the breaking of the 0 4ð Þ symmetry in the spherical case
with eigenstates jmr‘m> maintaining the 0 3ð Þ 	 0 2ð Þ symmetries; of the 0 3ð Þ
symmetry in the case of the circular cone with eigenstates jnr; mh;m> keeping the
other symmetries; and of the 0 2ð Þ symmetry for the dihedral angles with eigenstates
jnr; nh; l>.

The basic degeneracies are respectively D‘ ¼ 2‘þ 1 typical of a central
potential for the spherical case, Dnrþ mj j ¼ nr þ mj j þ 1 for the circular cone, and
Dnrþnh ¼ nr þ nh þ 1 for the dihedral angle. Additional degeneracies may appear
for specific values of the radius of the confining sphere when mr becomes an integer;
likewise for specific values of the polar angle defining the aperture of the confining
cone when mh becomes an integer; Table 1.1 illustrates the systematics for dihedral
angles in which l becomes also an integer. The differences can be traced to the
regular spacings of the zeros of the sine functions, versus the spacings of the
corresponding zeros of the Laguerre and Legendre polynomials.

Speaking about the physical effects on the properties of the hydrogen atom under
confinement, we can contrast the differences among the successive geometries. In
fact, for the sphere: the spherical harmonics survive the confinement, and conse-
quently, the pressure is uniform, the changes in the polarizability and the Fermi
contact contribution to the hyperfine structure are due to the changes in the radial
function. In the cases of confinement in semi-infinite spaces with a plane boundary
and its natural extensions of circular cones and dihedral angles: the free spherical
harmonics are replaced by their confined versions, already illustrated in Fig. 1.1 for
the dihedral angles, and also now for the circular cone in Fig. 1.6. Correspondingly,
the respective 0 3ð Þ and 0 2ð Þ symmetry breakings lead to non uniform pressures on
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the confining boundaries, electric dipole moments instead of polarizabilities, the
suppression of the Fermi contact contribution to the hyperfine structure with
the concomitant enhancement of the anisotropic contribution associated with the
acquired quadrupole moment. The survival of the 0 2ð Þ symmetry in the spherical
and circular cone confinements guarantees uniform orbital Zeeman splittings, in
contrast with the situation of Sect 1.3.5.

1.3.7 Single-Electron Quantum Dots Confined by Dihedral
Angles

The discussion in this section has been focused so far on the hydrogen atom. In this
final section we go back to [26], in which both the harmonic oscillator and the
hydrogen atom were investigated together, in order to recognize that the results for
the first system are immediately applicable in the description of single-electron
quantum dots confined by dihedral angles.

Indeed, Ref. [14] describes the modeling of quantum dots in sphere and
spheroids using isotropic harmonic oscillators, and anisotropic oscillators with
frequencies xx ¼ xy ¼ xz and xx ¼ xy 6¼ xz, respectively. The spheroids may be
prolate if xz\xx;or oblate if xz [xx.

Here we limit ourselves to point out that [26] contains the eigenfunctions and
eigenergies for the oscillators confined by dihedral angles in spherical coordinates
and circular cylindrical coordinates. The analysis of the surface effects for the single-
electron quantum dot confined by dihedral angles can be readily implemented.

1.4 Outlook for Multielectron Atoms and Molecules
Confined by Dihedral Angles

In the following discussion, the references [2, 4, 7, 39–44], dealing with confine-
ment in spherical volumes, serve as points of comparison for their counterparts in
confinement by dihedral angles. Concerning the hydrogen atom, Ref. [2] recog-
nized that its orbitals for confinement in spherical boxes interpolate between those
of the free atom for very large boxes, and the free-electron orbitals in a box for very
small boxes. On the other hand, the confinement of the hydrogen atom centered in a
fullerene cage was modeled by superposing a spherical attractive shell to the
nucleus-electron Coulomb potential, recognizing the changes in the orders of the
4s-3d and 5s-4d orbitals including their dissolution [40]. In contrast, for confine-
ment by dihedral angles, the hydrogen orbitals and their degeneracies behave
systematically as functions of the confining angle u0 in its domain ½0; 2p�, as
illustrated in Table 1.1. These differences are expected to play an important role for
the multielectron systems.
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1.4.1 Two Electron Systems: He-Like Atoms and Quantum
Dots

References [4, 7] reviewed the confinement of the helium atom at the center of a
rigid spherical box, while [39] characterized the spectroscopic changes of two-
electron systems: atoms and quantum dots in spheres and spheroids, using harmonic
oscillator confinement.

Now, we propose the study of the same systems for the alternative confinement
by dihedral angles. The hydrogenic orbitals in Sect. 1.3.1 or their harmonic
oscillator orbitals in Sect. 1.3.7 are the natural basis for variational calculations.
More noticeable changes are anticipated for confinement by dihedral angles versus
in spheres, relative to the free system.

1.4.2 The Filling of Shells in Multielectron Systems

The effect of isotropic compression of multielectron atoms was investigated in [41]
via Hartree-Fock averaged calculations for atoms with nuclear charge Z and Z
electrons, and their atomic ions with ðZ � 1Þ electrons, using the simple familiar
model of central confinement inside a sphere of decreasing radius. The results of such
calculations in the 3d and 4d periods of the transition metals showed that “In general,
the periodic table for confined (compressed) atoms can differ from that for free
atoms”. More specifically, while the filling of the shells follows the order of
increasing values of nþ l for free atoms according to the aufbau principle [42, 43], the
compression favors the filling of the hydrogenic orbitals with increasing values of n.

The entries in our Table 1.1 on the degeneracies of the hydrogen atom confined
by dihedral angles suggest that the changes of the filling of shells for multielectron
atoms in the same situations of confinement will be even more noticeable compared
to the free atoms, for any angle of confinement. The corresponding multielectron
atomic calculations will have to be implemented in order to establish the specific
changes and their consequent surface effects. The work in [8] involving both closed
and open boundaries is a good point of reference.

1.4.3 The Hydrogen Molecular Ion and Molecule

The hydrogen molecular ion and the neutral hydrogen molecule have been inves-
tigated under confinement by prolate spheroidal boxes [44].

We are also considering the alternative confinement by dihedral angles of some
molecular systems. The starting point is the molecular ion in its simplest config-
uration, which in prolate spheroidal coordinates implies that the nuclei positions are
the foci. According with the results the step to the neutral molecule will be taken at
the appropriate moment.
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1.5 Discussion

The topics in the Contents and some of their relationships, as described in the
Introduction, have been presented, successively and with varying details, in
Sect. 1.2 as a brief review of some of our recent works; in Sect. 1.3 on our current
work about the surface effects in the hydrogen atom confined by dihedral angles,
including a comparison with its confinement in spherical boxes and circular cones,
and an extension for single-electron quantum dots; and in Sect. 1.4 our perspective
on some multielectron atoms and molecules confined by dihedral angles, which are
interesting and we have started to analyze.

The updating on the binding of an electron by a polar molecule includes
Comment [18] on [16, 17], in which the binding energy of the electron to form the
anion in situations of confinement used the energy E ¼ 0, without any physical
basis; and Comment [20] on [19], identifying the invalidity of the proposal for new

Fig. 1.6 Polar angle graphs of Legendre function orbitals Pk cos hð Þ confined in circular cones for
increasing values of 2h0
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exact radial eigenfunctions for the bound states of an electron in a point electric
dipole molecule.

The work in [21] was contemporary to the writing of [3], belonging to the
latter’s Preview 5.3; however the time frame did not allow for including it there.
Section 1.2.2 in this chapter can be read as an updating or as an extension. The
remaining contributions [22–25] on free and confined-by-elliptical-cone atoms and
molecules, [26] on the harmonic oscillator and hydrogen atom confined by dihedral
angles, as well as [27, 28] on the complete electric dipole and magnetic quadrupole
fields and sources had been previewed in 5.1, 5.2 and 5.4 of [3], respectively.

Concerning the main section of this chapter, its natural connection with Ref. [26]
has already been mentioned. While the superintegrability of the free hydrogen atom
is familiar, its occurrence in the hydrogen atom confined by dihedral angles is
unique compared with the confinements in the other natural boundaries. The rela-
tionships between the degenerate eigenstates in the spherical, parabolic and prolate
spheroidal coordinates were explicitly established in [26], for any confining angle.
The main consequences are reflected in the common validity of the orbitals of
Eq. (1.4), illustrated in Fig. 1.1, and of the degeneracies illustrated in Table 1.1 for
the eigenstates in the different coordinates; and also in the relationships among the
electric dipole moments in the different excited states in the different coordinates,
Table 1.2 and Fig. 1.3. The alternation of regions of high pressure and low tension,
identified for the first time in the ground state of the hydrogen atom confined by
elliptical cones [22], is also exhibited by the ground and excited states in Table 1.3
and Fig. 1.4. The suppression and enhancement of the hyperfine structure and
Zeeman effects due to the confinement by dihedral angles should be easily
detectable experimentally. We hope this will encourage the practical implementa-
tion of such a confinement in the proper environments.

The comparison of the successive confinements in Sect. 1.3.6 allows to appre-
ciate their different effects. Specifically, the confinement in the circular cone shares
the suppression and enhancement effects of the hyperfine structure contributions, to
be expected from the comparison of the orbitals in Figs. 1.1 and 1.6. For con-
finement in spheres and spheroids, we suggest evaluating and measuring pressure
distributions instead of average pressures: for off-center confinement in spheres, and
for atoms with the nucleus at one focus of spheroids, the distributions are expected
to be non uniform and may allow the identification of weak spots in the confining
environment. It can also be mentioned that the spheroconal elliptical coordinates
interpolate between the polar angle and dihedral coordinates, justifying a careful
comparison of existing and additional results from [22, 33] and this chapter.

Section 1.4 contains some problems for atoms and molecules confined by
dihedral angles, that we think can be solved with the orbitals of Eqs. (1.4)–(1.7), or
their variants. We hope other members of the community will elaborate their own
lists.
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Chapter 2
Symmetry Reduction and Energy Levels
Splitting of the One-Electron Atom
in an Impenetrable Cavity

Vladimir I. Pupyshev and Andrey V. Scherbinin

2.1 Introduction

The splitting of a degenerate energy level is one of the oldest quantum-chemical
problems. Here we consider this problem for some simple one-electron systems
placed in an impenetrable cavity. The Hamiltonian of the model systems considered
here has the form

H ¼ �1
2
Dþ VðjrjÞ ð2:1Þ

where r is electron radius-vector and V is the spherically symmetric potential; here
and later we use only atomic units. Problems of this type appeared first in the Solid
State Theory, where one of the first models was closely connected with the solution
of the one-electron Schrödinger equation in a bounded region Ω with Neumann
boundary conditions on the wavefunctions φ(r) [1, 2]: the derivative along the
external normal n to the boundary ∂Ω of the region vanishes. That is,

onuðrÞjr2oX ¼ 0 ð2:2Þ

Here the normal derivative is denoted as ∂n = (n,∇r); ∇r is the gradient symbol
with respect to the particle coordinates.

It is natural, that one of the first problems studied was the problem of the particle
in a spherical cavity and corresponding energy changes under the sphere extension
[3–5]. For this problem some other types of the boundary conditions also were
studied; for example, the Dirichlet conditions that define the impenetrable cavity
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uðrÞjr2oX ¼ 0 ð2:3Þ

The general self-adjoint boundary conditions were also studied in [6] for some
parameter κ:

onuðrÞ � juðrÞjr2oX ¼ 0 ð2:4Þ

For a review of mathematical problems for boundary conditions (2.1–2.4), in
particular for the case when κ depends on some parameters, see in [7, 8]. We restrict
this study to Dirichlet boundary conditions (2.3).

The work of Michels et al. [9] is often regarded as a first example of how the
Dirichlet boundary conditions can be applied to study real physical problems. In
this work, the hydrogen atom under high pressure was studied. Note that the
approach is still in use, especially in astrophysics [10]. Another domain of appli-
cability is connected with modeling of defects in solids, superlattice structures,
quantum dots and quantum wires.

For example, excitons in semiconductors may be described as an electron-hole
pair. The differences with the hydrogen-like systems are here mainly in the effective
masses of particles and the polarization of the medium around the cavity. A large
number of examples and applications for the model of the atom embedded in a
cavity may be found in [11–13]. In [14] the interaction of embedded particles with
the cavity walls is considered. See also the other papers from the issue cited.

The problem of a spherically symmetric system placed at the centre of impen-
etrable spherical cavity allows for reduction to independent 1D problems; see e.g.
[15, 16]. The hydrogen atom problem in impenetrable spherical cavity is described
in details in [17]. The works [7, 16, 18, 19] summarize the energy spectrum
description for boundary conditions of general type (2.4). The 2D and 3D harmonic
oscillator in a spherical cavity problem is described in details in [20, 21].

The model of an atom in a cavity is often used to simulate the states of atoms
embedded in fullerenes or carbon nanotubes [22]. Note that the question of how
free is the atom or the molecule inside the cavity of a nanotube or a fullerene is
raised from time to time [23–26].

Closely related to the confined atom problems are the problems of the Crystal
Field theory and this is well known (see e.g. [27–31]). Effect of restrictions of the
region of free movement of electrons on the matrix elements of the perturbation
operator associated with the system of point charges was discussed, for example, in
the context of the crystal field theory in [31, 32].

The most common effect of symmetry reduction of the spherically symmetric
system under the influence of applied external field consists of splitting of
degenerate energy levels. In this paper, we consider similar effects for one-electron
systems in a cavity when Dirichlet boundary conditions are imposed. Such prob-
lems require the study of cavities of more general form than purely spherical ones.

Below we use the symbols φj(r, Ω), Ej(Ω) (or φj when the region is fixed and
clear) for eigenfunctions of the Hamiltonian (2.1) under the Dirichlet boundary
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conditions (2.3). For the free atom problem (i.e. for Ω = R3 and the condition that
the wavefunctions are square-integrable) the eigenfunctions of H and corresponding
energies of the discrete spectrum are denoted as ψj, Ej. The energy levels are
enumerated in increasing order. All the functions used here are real-valued.

2.2 Effects of Symmetry Lowering for Cavities
of Different Type

2.2.1 Spherical Cavity

The symmetry reduction in passing from the free system to the system in a cavity is
a well-known phenomenon. For example, the particle moving in the pure Coulomb
field possesses a higher dynamic symmetry than a general spherical one. This is the
reason for the high degeneracy of the energy levels. The energy is the same for the
states (n, ℓ) with the same principal quantum number n and different angular
momentum values [33]. However, for the hydrogen atom with the nucleus placed in
the center of impenetrable spherical cavity of finite radius R, the degeneracy
mentioned disappears. See the analysis of the energy levels for this problem in [17].

There exist a number of explanations for this phenomenon, but here we mention
only one of them. The extra degeneracy of the free hydrogen atom energy levels is
the result of the so called Lenz vector conservation [33] being a specific integral of
the motion for the Kepler problem in classical mechanics; this conservation law
implies constant orientation and shape of the elliptical orbit. When the atom is
placed in a spherical cavity, then the classical electron moves along the elliptical
orbit, but is then reflected from the spherical surface. The orbit is formed by the
system of elliptical fragments and the Lenz vector does not conserve. (The quantum
mechanical description of the problem in terms of Dirichlet boundary conditions
violations may be found in [34]). Nevertheless one may find that when the cavity
radius R equals the square of the angular momentum for any energy value, all the
orbits are closed and consist of exactly two elliptical fragments. This is the case
when the system “remembers” the additional conservation law [35] of its free state.
This is followed by a surprising degeneracy of quantum states (n, ℓ + 2) and (n − 1,
ℓ), being simultaneous for any n > ℓ + 2 when R = (ℓ + 1)(ℓ + 2) [17, 34]. For
example, for R = 2 au one may find relations E2s(R) = E3d(R), E3s(R) = E4d(R), ….
For the specific R noted the lowest energy of the state with momentum ℓ of the
hydrogen atom equals exactly to the energy of the free atom in the state (ℓ + 2, ℓ).

These regularities are closely connected with the properties of confluent
hypergeometric function that defines the radial wavefunctions of hydrogen-like
atom [17]. It is not strange that simultaneous degeneracy can be found in some
other problems, for example, for the confined isotropic harmonic oscillator in an
impenetrable spherical cavity [36]. For the description of the details in similar
situations, see also [20, 21, 37].
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In a more general case of the spherically symmetric potential one may find only
the usual 2ℓ + 1-fold degeneracy of the states with different angular momentum
projections, that is, due to the conventional spherical symmetry of the problem. One
may note only, that the energy of the state (n, ℓ) increases both with n and ℓ.
Extension of any cavity is accomplished with monotonic decreasing of each of the
energy levels (see [38], Sect. XIII.15, or [39]) that converge to the corresponding
Enℓ levels of the free system. A general statement also holds for convergence of
stationary state wavefunctions and their gradients [39, 40]. In particular, for the 3D
hydrogen-like atom in a sphere with large radius R, the lowest energy values are
ordered in energy as follows:

1s; f2p; 2sg; f3d; 3p; 3sg. . . ð2:5Þ

Here we use brackets to denote the groups of levels with the same limits as
R → ∞ [15, 17, 41]. For the spherically confined 3D isotropic harmonic oscillator,
for large R values, the order of the states differs from (2.5) [21]:

1s; 1p; f1d; 2sg; f1f; 2pg; f1g; 2d; 3sg; . . . ð2:6Þ

It is difficult to find general statements on the energy spectrum for arbitrary
potential. However it may be demonstrated for a wide class of potentials, including
the Coulomb one, that for small enough cavity size the potential does not influence
the state’s ordering and in case of the Dirichlet problem the levels are in the same
order as of the free particle in the same box. For the spherical cavity, the following
order can be found [33]:

1s; 2p; 3d; 2s; 4f; 3p; 5g; 4d; 6h; 3s. . . ð2:7Þ

(the hydrogen-like notations are used here, that is, n ≥ ℓ + 1, in contrast with
Eq. 2.6).

2.2.2 The Cavity of the More Complex Form

For the system in a non-spherical cavity, one may expect the additional splitting of
the energy levels that were degenerate for the free system. Application of pertur-
bation theory methods would seem natural, but a caution should be addressed here.
Let us consider the simplest case of a non-degenerate level, as the generalization to
the case of degenerate level is rather obvious. When the effect of the finite potential
walls of the height U0 around the cavity Ω is described, one may introduce the
perturbation of the form U0χΩ

c (r), where χΩ
c is the characteristic function of the

complement Ωc of the region Ω in R3. In the first order of the perturbation theory,
one may write
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EjðX;U0Þ � Ej þ U0

Z
XcðRÞ

jwjðrÞj2dr ð2:8Þ

The exact energy levels Ej(Ω, U0) are lower than the Dirichlet energies Ej(Ω) and
converge to Ej(Ω) in the limit U0 → ∞ monotonically [40]. Unfortunately, relation
(2.8) itself cannot describe this limit correctly, as the right hand side obviously
diverges (recall that the ψj and Ej notations correspond to the free system, i.e. they
are independent of U0). Note that it was demonstrated in the classic work by
Wigner [42] that perturbation theory requires carefulness when applied to the “box”
problems. However, the use of such a perturbation for large R values seems be
useful at least for qualitative discussions. One may hope, that at least the state
ordering may be estimated correctly for some finite U0 value when Ω is large
enough and the wavefunctions of the free system decrease exponentially. Note that
it is a common situation that the radial functions of quantum mechanical problems
may be asymptotically described as Brηexp(–αrβ) for some positive constants. All
the calculations below will be performed within this supposition.

Let R be the distance from the potential center O to the boundary ∂Ω, that is R is
equal to the radius of the sphere with the center O inscribed in the cavity Ω. The
sphere mentioned touches the boundary ∂Ω at points {rk} (|rk| = R). Let us suppose,
that any ray starting from the potential center crosses the boundary ∂Ω in exactly
one point (for example, this is true for any convex region Ω). Then one may
estimate the integral in Eq. (2.8) by the Laplace method (see Sect. 4.1–4.3 of [43])
for the radial variable. The resulting surface integral also may be evaluated by the
Laplace method. A simple idea, but a very cumbersome calculation shows that the
integral is reduced to the sum of the wavefunction values at the points {rk}. Hence
for large enough R one may write

EjðXðRÞÞ � Ej þ pU0

2ðabÞ2 R
3�2b

X
k

wjðrkÞ
�� ��2 ð2:9Þ

where α, β are the parameters of the above mentioned asymptotical form of the
wavefunction ψj. The modification of these relations to the case of the degenerate
level is now trivial. Nevertheless one may use Eq. (2.9) for the degenerate states
when one component of a certain symmetry type is considered.

For us, these formulas are not interesting in themselves, but only as qualitative
results that show that the values of the free problem wave functions at the points
rk(R) of ∂Ω determine the asymptotic behavior of the energy shifts.

2.2.3 Polyhedral Cavity

In the case of highly symmetrical cavities and the location of the potential origin at
the center of symmetry, one may apply the standard group-theoretical methods
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primarily developed in the framework of the Crystal Field Theory for the analysis
of reduction of the rotational group of R3 on a given subgroup (in this case—the
symmetry point group of the cavity). For example, the splitting laws of states with
the lowest values of the angular momentum are well known [27–29]. Thus one may
note for the cubic or octahedral cavities (the symmetry group Oh) the following
reduction laws

s ! a1g; p ! f1u; d ! eg þ f2g; . . . ð2:10Þ

According to the conventional symmetry notations, the a-states are non-
degenerate, while e- and f-states are doubly and triply degenerated, respectively.
Note that sometimes Oh states of the f-type are denoted in literature as t.

Among the symmetry operations there is no inversion for the tetrahedral cavity
(Td). This is followed by more complex form of reduction. The symmetry type f2
appears both for p and d-levels:

s ! a1; p ! f2; d ! eg þ f2; . . . ð2:11Þ

Relations like (2.9) for energy shifts and levels splitting allow us to expect that
the symmetry of the cavity Ω may be enough to determine the order of the splitted
states. Unfortunately, this is not the case.

Let us consider some numerically calculated data for the hydrogen atom at the
center of the impenetrable cubic cavity. Here we will not describe energy changes
under the displacements of the nucleus away from the center (see the analysis in
[44]). For the present calculations, we have used the method presented in [45] (see
Sect. 2.3.3).

Let the vertices of the cube be truncated with conservation of the Oh symmetry
of the cavity. This truncation may be described by the dimensionless parameter X
that defines the proportion of the truncated edge from the side of each of vertices.
The value X = 0 corresponds to the regular cube, while at X = 0.5 the cube edges
disappear, and the truncated cube is the cuboctahedron. The same polyhedron is the
result of truncation of the octahedron of the appropriate size. The results of trun-
cation of the cube and the tetrahedron are jointly represented in Fig. 2.1. for the
initial cube edge length of 4 au. As an abscissa, the variable t is used that defines the
cube truncation when t < 0.5 by the relation t = X; for t > 0.5 we use the definition
t = 1 − X, where X defines the octahedron truncation. The point t = 1 corresponds to
the regular octahedron.

Note that for any truncated cube with X ≤ 0.5, the inscribed sphere radius is the
same and, based on relation (2.9), one could expect the conservation of the state
ordering. The Fig. 2.1 shows that this is indeed the case. For the hydrogen atom in
the spherical cavity with R ≈ 2 au, the levels are ordered as 1s, 2p, 2s, 3d,… and the
levels 2s and 3d are degenerated for R = 2. As it was explained, the compression
that accomplishes the truncation of both cube and octahedron is followed by energy
increase [38]. These details are well represented in Fig. 2.1.
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It is interesting that the most essential changes in the state ordering occur near
the point t ≈ 0.58 where the points of the cavity boundary closest to the center of
the truncated octahedron replace that ones for the truncated cube. The relative
position of the state a1g [2s] changes near this point. When the size of the initial
cube increases, the energies of the states decrease and the corresponding curve for
the state 2a1g is much closer to the state 1f1u in accordance with the scheme (2.5).
The intersection point for the states eg and f2g remains practically unchanged with
the cavity size increase, and one may expect relations like (2.9) to be useful for
similar considerations, though the positive U0 value is undefined and the cavity size
is small.

In a similar way change the energy values in other confined systems. For
example, Fig. 2.2 demonstrates energies of an isotropic harmonic oscillator in a
tetrahedral cavity truncated in a symmetric way into an octahedron. It is interesting
that the qualitative behavior of the states for the harmonic oscillator is close to that
of a hydrogen atom (one may compare Fig. 2.2 with the Fig. 6 of the work [45]).
The position of the degeneracy point for the states e and f2 varies essentially with
the size of the tetrahedron and one can not use any simple geometrical arguments
here.

Fig. 2.1 Energy levels (au) for hydrogen atom placed at the centre of the cavity formed by joint
symmetrical truncation of both the cube with the edge 4 au and the octahedron. For an explanation
of the choice of dimensionless abscissa axis, see the text. In brackets, the corresponding states of
the free atom are supplied
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2.2.4 Note on the State Ordering

In certain cases, at least some of details of the state ordering can be explored by
means of simple qualitative arguments. Let us consider the 3D isotropic harmonic
oscillator with a variable force constant K in some fixed polyhedral cavity. When K
is large enough, one may consider the system as being practically free (indeed, the
wave functions of the lowest states are localized near the origin and the effect of
the boundaries can be shown to be negligible [39]). In this limiting case, the states
are ordered according to Eqs. (2.6), (2.10). When the force constant is negative-
valued, there are no discrete spectrum states in the free system, but for the same
system in an impenetrable cavity, only a discrete spectrum exists. It is quite clear
that, in the latter case, the wave functions of the low lying states are localized near
the vertexes of the polyhedral cavity. One may further consider conventional cor-
relation diagrams to establish the state ordering in between the two limiting cases,
K → −∞ and K → + ∞.

For example, for a cubic cavity, it is quite evident that when K < 0 and |K| is
large enough, at least 8 lowest states may be adequately represented as proper linear
combinations of 8 symmetry-equivalent basis functions, each being localized near
one of the vertexes. The corresponding 8-fold representation of the point group Oh

is easily decomposed into the following irreducible components: a1g, a2u, f1u and
f2g. The fact that eg-states are absent in this list implies that such states are situated
much higher in energy. Therefore, in the study of the d-state splitting of the har-
monic oscillator in a cubic cavity, in accordance with the symmetry reduction law

Fig. 2.2 The energies of the isotropic harmonic oscillator with the force constant K = 1 au placed
at the center of the tetrahedral cavity with the edge 5.65 au (X = 0) truncated to octahedron
(X = 0.5)
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(2.10), it is natural to expect that the eg-state is higher in energy than f2g-state, at
least for the 1d-level. For octahedral cavity, one may apply the same method to find
that six localized states define the lowest states of the types a1g, f1u and eg.

Note that one may use similar arguments for the Coulomb potential case. In this
case one should use negative nuclear charges to construct the correlation diagram
instead of negative K values for the case of harmonic oscillator. This difference is
unessential for the method presented. In particular, this makes it clear the eg − f2g
state inversion when the cube is transformed into the octahedron (see e.g. Fig. 2.1).
This is well known in the Crystal Field theory, though the state ordering on Fig. 2.1
differs from the usual one for the atomic states when the one-electron atom is
surrounded by negatively charged ligands.

For the tetrahedral cavity, the constructions described above are practically
useless, as for the tetrahedron the four lowest states are of the types a1 and f2
correlated with the free atomic states 1s and 2p. For example, one may find for the
harmonic oscillator in a tetrahedral cavity with the edge 6.53 au, that the splitting of
the harmonic oscillator 1d-state state into 2f2 and e is inverted near the force
constant value of K ≈ 1.5 au. This example demonstrates that the real level splitting
results from the interplay of numerous factors that require special attention and care.

2.3 Some Methods for Systems in Bounded Cavities

Practically each of the works on confined systems uses some original numerical
method for the real states analysis. Here we describe only some of them, mainly
important for qualitative description of the state order.

2.3.1 On the Numerical Methods for the Problems
in the Sphere

The simplest way for solution of the confined system problem with the full
spherical symmetry is the analysis of the radial wave functions Rℓ(r, E) for a given
angular momentum and arbitrary energy value E. For quantum-chemical problems,
any acceptable solution should be bounded at the origin and therefore behaves like
rℓ. The energy values of the stationary states with a given ℓ value for the Dirichlet
problem within an impenetrable spherical cavity of radius R are defined by solu-
tions of the following equation

R‘ðR;EÞ ¼ 0 ð2:12Þ

Radial functions and solutions of Eq. (2.12) may be determined analytically or
numerically for any E values. Similar methods are used to study the systems in
cavities like combinations of some spheres [46]. On the numerical methods for the

2 Symmetry Reduction and Energy Levels Splitting … 39



problem with fixed nucleus see [47]. For the use of the perturbation theory and
other constructions see [41, 48, 49].

Of course, the finite difference calculations and combined methods are also used
in practice. For example, a combination of numerical methods was implemented to
describe both electronic and nuclear motion in the adiabatic approximation and
to estimate the rovibronic energy levels and transition probabilities for the fully-
dimensional problem of hydrogen atom in a spherical cavity [50]. Similar con-
structions were used for modeling of vibrational and rotational energy levels of
diatomic molecules in an impenetrable sphere and to analyze the isotopic substi-
tution effects in molecular spectra [51, 52]. Note also an interesting study of
diatomics in cavity in [53, 54]. The methods for nuclear motion [55, 56] are closely
related with methods for two-electron systems [57, 58].

The effective potentials for the cavity simulation also may be used. This makes it
possible to use more traditional methods of quantum chemistry and molecular
modeling, but this line is far from the subject of this text, though the techniques
mentioned are developing rapidly in recent years.

2.3.2 The Method of Cutting Functions

It was suggested in [6] to consider the wave functions of the system in a cavity in
the form f(r)ψ(r), where ψ is some square-integrable solution of the Schrödinger
equation for the problem in the whole space, and f(r) is a “cutting factor”, which
ensures fulfillment of the desired boundary conditions. For example, for the
Dirichlet problem one may use functions with special property f|∂Ω = 0 (it is
supposed here that for r ∉ Ω one puts f(r) = 0). At one time this idea was popular
and often used for numerical estimates [59], for example, in the perturbation theory.
For the history of the method and its applications see also [40, 60]. For the
application of this technique to the confined system problems see [60–66].

Within the linear variational method, the use of cutting functions is particularly
efficient. For example, when the boundary is not too curvy, one may calculate the
matrix of the Hamiltonian in the basis of functions like {fψj} by using the ses-
quilinear form

eðu; vÞ ¼ 1
2
rujrvh iXþ ujVjvh iX ð2:13Þ

where the index Ω indicates the integration over the region only. Continuation of all
the functions out of Ω by zero value allows omitting this index.

Note that when the function v is in the domain of definition of the Hamiltonian
operator, then one may use the Green’s relation to find
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eðu; vÞ ¼ 1
2

Z
oX

uonvdrþ ujHvh iX ð2:14Þ

Here, u may be any piecewise smooth function and this property extends the
possible class of cutting functions. For example, let f be the piecewise smooth
function with properties |f| ≤ 1 and f = 0 in Ωc; in particular, f|∂Ω = 0. Let us use the
wavefunctions ψm and φk for the free and the Dirichlet problems, correspondingly,
to calculate the values ε(fψm, φk) and ε(ψm, fφk) with the help of relation (2.14).
One may find that

ðEkðRÞ � EmÞ fwmjukh i ¼ 1
2

Z
X

ðrf;wmruk � ukrwmÞdr ð2:15Þ

where (,) means the inner product of 3D-vectors. The surface integrals are absent in
this relation due to boundary properties of functions f and φk. One may note that the
integrand in the right hand side of (2.15) is non-zero only in the region where the
cutting function f differs from 1. Usually this region is some neighborhood of
the boundary ∂Ω. Sometimes one may suppose that in this neighborhood the
functions φm and ψm are proportional and one may find the function f = f0 such that
for all the points where ∇f0(r) ≠ 0, one may write φm(r) = f0(r)ψm(r) (in other
points of Ω, where f0 = 1, this relation may fail). For the function f0 one may write
(2.15) in the form

ðEmðRÞ � EmÞ f0wmjumh i ¼ 1
2
wmðrf0;rf0Þwmh i ð2:16Þ

The other important relation of this type is the Kirkwood-Buckingham relation
[40] that may be written for any function f(r) as

Hmn ¼ eðfwm; fwnÞ
¼ 1

2
ðEm þ EnÞ wm f2

�� ��wn

� �þ 1
2
wmjðrf;rfÞjwnh i ð2:17Þ

In particular, for the finite set of N basis functions fψ1, fψ2, … fψN one may
compose the N × N Hamiltonian matrix H with the elements Hmn and calculate
the variational energy estimates for the Dirichlet problem in the region Ω. In recent
years similar variational methods in the basis of cutting functions were often
applied to many-electron systems; see, for example, [58]. The overlap matrix
W for the set {fψj} has the form W = 1 − Q where Q is the matrix with elements
Qij = 〈ψi|1 − f2|ψj〉. It is important here that the matrix Q is nonnegatively defined
when |f| ≤ 1. In particular, its largest eigenvalue does not exceed the trace of Q.

The generalized eigenvalue problem with the Hamiltonian matrix H and
the overlap matrix W gives upper bounds Ej

* for the exact energies Ej(Ω) (“the
Hylleraas-Undheim-MacDonald theorem” [67]). Hence the sum of N lowest
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energies Ej(Ω) is estimated by the sum of N numbers Ej
*. The standard method

allows to estimate the sum:

XN
j¼1

EjðXÞ�
XN
j¼1

E�
j ¼ trHW�1 ð2:18Þ

Due to relations (2.17) for the matrix elements, it is easy to rewrite this
inequality in the form

XN
j¼1

ðEjðXÞ � EjÞ� 1
2

XN
j¼1

wjjjrfj2jwj

D E !
=ð1� trQÞ ð2:19Þ

where 1 − trQ gives the lower bound for the lowest eigenvalue of the overlap matrix
W. Of course, it is supposed in inequality (2.19) that the trQ is small enough.

All the terms in the sum in the left hand side of Eq. (2.19) are positive numbers
only and one may estimate each of the energy differences by the right hand side of
this relation. We will use Eq. (2.19) below. An alternative way to derive Eq. (2.19)
is presented in [39].

2.3.3 The Cavity of the More Complex Form

The main problem with cavities of a complex form is the compact description of the
cavity boundary surface. When the surface ∂Ω is not too complex one may use the
method described in [45], similar to the Shooting Method for 1D problems: for one-
electron problems one may define the energy values by imposing the boundary
conditions on the trial function φ(r, E). Here φ(r, E) is a solution of the differential
Schrödinger equation for some trial energy value E. For example, for the spherically
symmetric potential, the radial functions Rℓ(r, E) are known analytically or
numerically. For low symmetry cavities, one may construct the functions of a def-
inite symmetry type Г as linear combinations Yℓ

(Г)(θ, φ) of spherical harmonics with
some appropriate ℓ values. Thus the functions uℓ(r, E) of the form Rℓ(r, E)Yℓ

(Г)(θ, φ)
may be considered as a basis set for determination of a trial function of the form

uðLÞðr;E; cÞ ¼
XL
‘¼0

c‘u‘ðr;EÞ ð2:20Þ

Later on we use the c symbol for the vector with coefficients {cℓ}. The (2.20)
define some solution of the Schrödinger equation for each energy E and vector c for
a given symmetry species. For normalized functions φ(r, E, c) the Dirichlet
boundary condition (2.3) can be replaced with the relation D(φ, E, c) = 0, where the
functional D is defined as
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Dðu;E; cÞ ¼
Z
oX

juðr;E; cÞj2dr ð2:21Þ

This is the qualitative idea of the method described. It is based on the statement,
that when for some functions φ(L)(r, E(L), c(L)), being solutions of the differential
Schrödinger equation, for L → ∞ one may state that {D(φ(L), E(L), c(L))} → 0 and
E(L) → E*, then the limiting value E* defines the point of the discrete spectrum of
the Hamiltonian (2.1) with the Dirichlet boundaries. This is not a trivial statement
but restrictions on the functions {φ(L)} are not too strong; see [45].

When one tries to minimize the functional D (2.21) with trial functions of the
form (2.20) with respect to the vector c, it is clear that the quadratic form opti-
mization results in a generalized eigenvalue problem

Rc ¼ dðLÞðEÞSc ð2:22Þ

where S is the usual L × L overlap matrix for the basis functions {uℓ}, calculated by
integration over the region Ω, while Σ is a similar overlap matrix, but for the
restrictions of the functions {uℓ} only to the surface ∂Ω. The vector c defines
optimal approximation for φ(L), while the lowest eigenvalue δ(L)(E) gives the
optimal value of the functional for a given energy value E.

When the function δ(L)(E) is known, one may find the set of its local minima
E1
(L), E2

(L),… with respect to E. These local minima define, with increasing L, the
estimates for the energy levels E1(Ω), E2(Ω), … for the Dirichlet problem. The L
values required for calculations of low lying states are usually not too large.

There exist a variety of realizations of the idea described. One may note that
when there exists a zero eigenvalue of the matrix Σ, then it is the solution of
Eq. (2.22) for any form of the matrix S. In particular, in order to optimize the
calculation time, one may use approximate forms of the matrix S; this is equivalent
to the use of some weights for calculation of the functional D. For example, one
may use the diagonal part of S only, or S = 1. Of course, the results are stable to
such modifications only when the optimal values of δ(L)(E) are small enough. For
example, in [45] we used the exact S matrix, while in [44, 68] simpler forms of
overlap matrices were also tested. Note that the complete form of the method gives
the most stable computational results. The numerical data used for Figs. 2.1 and 2.2
were prepared by this method.

Note that for the spherical cavity Ω, the described method is simplified and
reduces to the usual solution of Eq. (2.12), and one may consider the construction
described as “the Shooting Method”. One may use both analytical and numerical
estimates for radial functions. One may consider the integral D minimization as
looking for approximate solution of the problem φ(L)|∂Ω = 0 at some grid points. So
one may consider the method as a variety of the Least Squares Method with weights
or as the collocation method.

For the excited states, the stability of the method decreases and it is sensitive to
the choice of the grid points used for calculations. The search of local minima for
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δ(L)(E) function becomes a very difficult problem as the minima are too sharp for
large L values. Nevertheless, when compared with other numerical tools such as
finite difference, perturbational or variational approaches [48, 49], the present
methods are quite reliable. In particular, they may be used for other types of
boundary value problems like Eq. (2.4).

2.4 Cavities of the Large Size

2.4.1 Evaluation of the Energy Shift

Let us evaluate the energy shift for a system in an impenetrable cavity with respect
to the free system. There exist a number of ways to do it. In any case, we consider a
parametric family of cavities expanding with the parameter growth. As a parameter
mentioned, the radius R of an inscribed sphere with the centre at the origin of the
potential is convenient. It is possible to prove L2 convergence of the wavefunctions
φj(r, Ω(R)), continued as identically zero-valued outside Ω(R), to the solutions
ψj(r) of the free problem. For 1D or equivalent problems it was first demonstrated in
[69] with Ω being a sphere. A similar in spirit but different in realization approach
developed in [70, 71] allows to asymptotically estimate the energies, wave func-
tions, oscillator strengths and polarizabilities for the confined hydrogen atom in
selected states. Some analytical approaches were also developed in [72–76].
(However, the detailed theoretical description of the R-dependence for oscillator
strength of the hydrogen atom, estimated in the wide range of the spherical cavity
radii in [77], does not exist up to now.)

The convergence of the energy levels Ej(R) to Ej is almost evident. For example,
one may use the cutting function f that differs from 1 in a neighborhood of ∂Ω for
points |r| > γR where γ < 1 is fixed. The function f decreases to zero value at ∂Ω. As
it was already mentioned, we use the asymptotic form Brηexp(–αrβ) for the radial
parts of the free problem wavefunctions (this idea was proposed in [69]). It is
obvious in this case, that the 〈ψk|(1–f

2)|ψk〉 integrals converge to zero exponen-
tially. Hence one may use inequality (2.19) in the form

XN
j¼1

EjðRÞ � Ej

� �� 1
2

XN
j¼1

wjjjrfj2jwj

D E
ð1þ oðRÞÞ ð2:23Þ

with some positive function o(R) that vanishes exponentially. As the integrals in
this relation are calculated for the region |r| > γR, the right hand side of Eq. (2.23)
also converges to zero when |∇f| is bounded.

One may rewrite (2.23) in a simpler form. It is a usual situation that the rate of
decay of discrete energy spectrum wave functions at infinity decreases with the
excitation level. Hence, for a non-degenerate energy level, one may write the
following asymptotic relation for large enough R values and |r| > γR:
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XN
j¼1

jwjj2 ffi jwNj2 ð2:24Þ

and one may rewrite (2.23) in a much weaker form

ENðRÞ � EN � 1
2

wNjjrfj2jwN

D E
ð1þ oðRÞÞ ð2:25Þ

Relations of this kind may be used to prove convergence of wavefunctions and
their gradients [39] by means of a combination of the Eckart relations [78] and the
Katriel trick [79]. Alternatively, this can be established by virtue of the Löwdin’s
results (see (3.41) in [80]).

More refined approval can be obtained if one uses (2.16) with some appropriate
function f0. This is true, for example, in one-dimensional problems or for the radial
equation, when for a sufficiently large distance from the centre, the potential values
are higher than the energy studied. It follows from the bilateral estimate 0 ≤ f0 ≤ 1
and the convergence of f0ψm to φm with increasing R, that the integrals 〈f0ψm|φm〉
converge to 1, not exceeding 1. Hence one may estimate the energy shift from
below, as follows:

EmðRÞ � Em � 1
2

wmjjrf0j2jwm

D E
ð2:26Þ

Relations (2.25) and (2.26) are similar, but obviously not equivalent. However,
in the problems that may be reduced to one-dimensional ones, one may look for the
optimal form of the function f from the minimization of the integral in the right
hand side of (2.25) (see e.g. Sect. 4.4 in [16]). As simple estimates show, with
optimal choice of f = fopt, the leading asymptotic term essentially depends on the
behavior of the wave functions at the boundary only, and this circumstance allows
us to combine estimates (2.25) and (2.26) in the case of spherical regions. The
energy shift is evaluated asymptotically through the radial part of the wave function
of the corresponding state of the free problem (here and later we use the radial
functions that are normalized with the weight factor r2):

EmðRÞ � Em ffi 1
2

wmjjrfoptj2jwm

D E
ffi �rRmðrÞor½rRmðrÞ	jr¼Rffi �R2RmðRÞorRmðRÞ

ð2:27Þ

Here, the symbol ∂ξ is used for the derivative with respect to the variable ξ. The
same estimate was described in [69]. For the next asymptotic terms of the energy
shift, see [70, 71, 81].
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2.4.2 The Large Polyhedral Cavity

For regions of general type we cannot guarantee the relations like (2.26) to be true,
but one may suppose the estimates of the form (2.25) to be not too poor. The
optimal form of the cutting function in Eq. (2.25) for convex polyhedral cavities
(or cavities described in Sect. 2.2.2) may be estimated by a solution of a pair of
one-dimensional problems. We will not give here fairly cumbersome intermediate
stages of asymptotic calculations, leading to qualitatively clear relations.

The upper bound for the optimal integral hwmjjrf�j2jwmi value can be found if
one uses the functions f(x) specified only by the distance from the point x to the
nearest plain face of the polyhedron. This is the case when one may reduce the
three-dimensional integrals to one-dimensional ones using the density of the state
averaged over the planes parallel to the polyhedron faces. All the calculations may
be performed on the basis of the method of Laplace (see Sects. 4.1–4.3 of [43]) for
the wave functions ψm of the above mentioned form.

For the polyhedron, the lower bound for the optimal integral value can be also
found when optimizing the cutting function along the radial direction from the
center to the boundary and omitting all the angular contributions in |∇f|2. The
remaining integral over the angular variables is calculated again using the method
of Laplace.

It is interesting that the leading terms of asymptotic expansions for the integral
under consideration are the same for both the upper and lower bounds, and the
resulting asymptotical value of the integral is expressed through the points {rk}
where the inscribed sphere touches the faces of the polyhedron (see also
Sect. 2.2.2). Thus one may write for R → ∞

1
2

wmjjrfoptj2jwm

D E
ffi 2pR

X
k

jwmðrkÞj2 ð2:28Þ

This estimate differs from the perturbation theory result (2.9) by a radial factor
only, but the factor does not change the state ordering, according to Eqs. (2.9) or
(2.28). So the role of the points {rk} in evaluating the energy shifts is confirmed in
an independent way.

The modification of Eq. (2.28) for the degenerate case is almost trivial. For
example, let us consider the splitting of the degenerated energy level of hydrogen
atom with the given principal quantum number n. The free atom radial wave
functions have the form rn−1e−r/n at large distances from the nucleus, and they differ
in the numerical factors Bnℓ only [33]:

Bn‘ ¼ 2n

nnþ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ ‘Þ!ððn� ‘� 1ÞÞ!p ð2:29Þ

If one is interested in the state ordering, the radial contributions may be omitted
and the splitting of the states with respect to the exact free atom value En = −1/2n2
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is defined by eigenvalues {tj} of the matrix T defined as follows. The matrix
elements of T are expressed through the B-factors (2.29) and the values of the
spherical harmonics at the respective points {ωk = rk/R} on a unit sphere:

Ti;j ¼ Bn‘iBn‘j

X
k

YiðxkÞYjðxkÞ ð2:30Þ

For some classical polyhedra, the calculated energy splittings for n = 3 are
collected in Table 2.1.

Recall that for the hydrogen-like atom in a large spherical cavity the levels with
the principal quantum number n = 3 are ordered as 3d, 3p, 3s. This is consistent
with the data from Table 2.1, where the 3p and 3s levels are referred to as (2f1u,
3a1g) and (3f2, 3a1) for cubic and tetrahedral systems, respectively. For the case of
the tetrahedron, the reduction laws (2.11) make it possible to consider also the
splitting of 3d states, also presented in Table 2.1.

Note, however, that for the tetrahedron in the case n = 3, the 5-fold degeneracy
conserves within the leading asymptotic order. The rank of the matrix T is small (it
equals 4) and the splitting of the 3d levels has to be studied in the next orders of the
asymptotic expansion. In [45] we mention too small energy gap between 1e and 2f2
states originated from the 3d atomic levels in tetrahedral cavities even of relatively
small sizes. For our discussion it is sufficient to notice that the small splitting of
these levels makes them very sensitive to a variety of other factors that can be seen
from discussion at the end of Sect. 2.2.4.

It is also worth noting that (2.28) and (2.9) look naturally in the context of the
method presented in Sect. 2.3.3 (see Eq. 2.21). There exists an intrinsic relation
between the energy shifts or splittings and the behavior of the free system wave
functions at the boundary.

2.4.3 Wave Functions Near the Boundary

One may find a large number of different relations for the energy shifts. For
example, one may estimate the value ε(ψj, φj) as it was described in Sect. 2.3.2. The
resulting relation was known to Fröhlich [6] and later it was re-derived many times:

Table 2.1 The energy splitting (tk in relative units) of the hydrogen atom states with n = 3 in some
large polyhedral cavities

Polyhedron Assignment and tk
Oh 1f2g 1eg 2f1u 3a1g
Cube 0 0.97 1.94 3.88

Octahedron 0.86 0 2.59 5.17

Td 2f2 1e 3f2 3a1
Tetrahedron (3s, 3p, 3d) 0 0 1.72 2.59

Tetrahedron (3d) 0.43 0 – –
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ðEjðXÞ � EjÞ wjjuj

� �
X
¼ �1

2

Z
oX

wjonujdr ð2:31Þ

In particular, one may note that for spherical cavities Ω the size increase is
accomplished by convergence of 〈ψj|φj〉Ω(R) to 1. Let us denote as Rj(r|R) the radial
parts of eigenfunctions of the Dirichlet problem normalized over the sphere with the
weight factor r2. Then (2.31) is immediately followed by the asymptotic relation

EjðRÞ � Ej ffi �1
2
r2RjðrÞorRjðrjRÞjr¼R ð2:32Þ

This equation is close to (2.27) where only free problem functions Rj(r) are used.
The detailed comparison of (2.27) and (2.33) clearly demonstrates an interesting
relation, that was found in [73] on the basis of analysis of explicit asymptotic
relations for radial functions. For the Dirichlet problem, one may write that the
following asymptotic relation holds in the R → ∞ limit:

orRjðrjRÞjr¼R ffi 2orRjðrÞjr¼R ðR ! 1Þ ð2:33Þ

It interesting that, for numerical estimates, Fröhlich used in [6] (see p. 946 near
Eq. 6) the natural analog of this relation without the factor 2. The nature of this
multiplier is clear from the simplified model that illustrates the discussion of [73].
Suppose that the Schrödinger equation has two solutions, one of which R(r)
decreases exponentially, while the other one grows exponentially. For large R
values, one may write the solution of the Dirichlet problem in the form

RðrjRÞ � C½expð�arÞ � expð�2aRÞ expðþarÞ	 ð2:34Þ

The coefficient C is defined by normalization condition and may be thought to be
a constant. The coefficient at the growing exponent is defined by the Dirichlet
condition at the point R. It is evident that relation (2.33) holds indeed, as:

orRðrjRÞjr¼R� 2C½�a expð�aRÞ	 � 2orRðrÞjr¼R ð2:35Þ

Surprisingly, although the convergence of the sequence of energies and the
norm-convergence of functions is insufficient to ensure the pointwise convergence
for the functions or their derivatives, and such groundless conclusions are dan-
gerous (see, e.g. (2.33) as an example, or [82, 83]), relation (2.33) may be obtained
by using the optimal cutting function (see the text before Eq. 2.27).

For the hydrogen atom in a spherical cavity, asymptotics of wave functions are
known. The use of estimates for the radial functions from [41, 71] immediately
gives the following asymptotic relations
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dRðRÞ ¼ orR1sðrjRÞ
orR1sðrÞ

����
r¼R

ffi 2� 2
R
þ � � � ð2:36Þ

drRðRÞ ¼ or½rR1sðrjRÞ	
or½rR1sðrÞ	

����
r¼R

ffi 2� 1
R2 þ

5
R3 þ � � �

� 	
ð2:37Þ

Clearly, ratio (2.37) for the functions normalized with a unit weight seems to be
more accurate for relatively small values of R. But even for the region R * 10 au,
where the 1s-state wave function practically vanishes, both dR and drR values are
markedly different from 2. This is evident from the numerical representation of
these ratios, presented in Fig. 2.3. Interestingly, the results of numerical estimations
of the derivatives at the boundary are close to the relations presented for R > 7 au.
Note that, in accordance with the energy ordering, among a group of states with the
same principal quantum number value, the higher the angular momentum, the faster
the limiting value 2 is approached.

For the case of general boundary conditions one may repeat all the calculations
on the basis of energy estimates from [16]. For example, for the Neumann con-
ditions (2.2) for R → ∞ one may state that Rj(r|R)|r=R ffi 2Rj(r)|r=R [73].

Fig. 2.3 The ratio of derivatives drR(R) for radial wave functions of the hydrogen atom in the
spherical cavity at the point r = R (au)
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2.5 Deformation of the Cavity of Large Size

2.5.1 The Basic Relations

Some almost obvious conclusions on the relative position of the energy levels of
simple systems can be derived using the results for the spherical cavity. Let us
consider the Dirichlet problem for cavities Ω(λ) that deform with the parameter λ
changes. Let the point λ = 0 correspond to Ω(0) = Ω. The orthonormalized
wavefunctions for the region Ω(λ) are denoted as φk(λ); for λ = 0 we use the
standard notations Ω(0) = Ω and φk.

Differentiation of the identity

eðuj;ukðkÞÞ � EkðXðkÞÞ ujjukðkÞ
� � ¼ 0 ð2:38Þ

with respect to the parameter λ gives immediately (by using the Green’s formula) a
simple relation that may be written for λ = 0 as follows:

okEkðXÞ ujjuk

� � ¼
¼ 1

2

Z
oX

onujokukdrþ ½EjðXÞ � EkðXÞ	 ujjokuk

� � ð2:39Þ

where the symbols ∂λφk and ∂λEk(Ω) denote the derivatives ∂λφk(λ) and ∂λEk(Ω(λ))
at the point λ = 0. One may suppose that, under small deformation of the cavity, the
point z ∈ ∂Ω moves in the direction of the outer normal n to ∂Ω at the point z and
transforms to the point z + ρ(z)ndλ. Then differentiation of the Dirichlet condition
φk(z(λ), λ) = 0 at the point λ = 0 allows one to estimate

okuk ¼ �qonuk for z 2 oX ð2:40Þ

(see the details, e.g. in [72] or [16]). Hence the orthogonality of the functions φk
implies the simple relation

okEkdjk ¼ �1
2

Z
oX

qonujonukdrþ ½EjðXÞ � EkðXÞ	 ujjokuk

� � ð2:41Þ

Note that the functions {φk} in (2.41) are the limits of the functions {φk(λ)}
when λ → 0. It means, for example, that for an arbitrary set of M degenerated
functions with the same energy one has to calculate the M × M matrix G with the
elements

Gjk ¼ �1
2

Z
oX

qonujonukdr ð2:42Þ
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and diagonalize it to find the derivatives ∂λEk as eigenvalues of the matrix G; the
corresponding eigenvectors define linear combinations for which Eq. (2.41) holds.
(Similar constructions are usual for perturbation theory for degenerate energy
levels. Here is one of variants of such constructions).

Relation (2.41) in a slightly modified form is described in a large number of
works, for example, [6, 84]. Note that for degenerate states, the second term in
Eq. (2.41) vanishes.

2.5.2 Example: Expansion of a Spherical Cavity

For a large enough spherical cavity, one may use relations of Sect. 2.5.1 in com-
bination with the asymptotical relations (2.33). For example, one may consider the
expansion of the spherical cavity using R as the parameter. It is clear that the normal
derivative to a sphere is the derivative with respect to the radial variable. Orthog-
onality of the spherical harmonics means that for a degenerate set of states with a
given angular momentum one may write (see the text near Eq. 2.29)

oREn‘ ffi Gn‘;n‘ ffi � 2
n2

B2
n‘R

2ne�2R=n ð2:43Þ

In agreement with Eq. (2.27), this relation is followed by

En‘ðRÞ ¼ En‘ð1Þ �
Z1
R

orEn‘ðrÞdr ffi En‘ þ B2
n‘

n
R2ne�2R=n ð2:44Þ

In particular, it is clear that the Bnℓ′s (2.29) define the state ordering in large
cavities. The higher the ℓ, the smaller is Bnℓ . That is, the atomic states are ordered
according to the decrease of the angular momentum (see Eq. 2.5). This statement is
popular in the literature and may be explained by a variety of arguments [17, 41, 81].
It is presented here to explain the main ideas of the next subsections.

2.5.3 Asymptotically Degenerate States

When one considers the deformation of a very large cavity, relation (2.41) deserves
more careful treatment. For example, for the hydrogen atom one has to consider the
whole group of the asymptotically degenerate states with the same principal
quantum number. Only for the case considered in Sect. 2.5.2 may one analyze states
with different angular moments in the independent way due to the spherical sym-
metry of the problem.
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When Ω is a sphere (or a slightly deformed sphere) of large radius R, one may
use relations (2.33) to see that the contribution of the matrix G in the right hand side
of Eq. (2.41) is of the same order as the energy shifts or their derivatives. But there
exists one more term in the right hand side of this equation. The energy difference
Ej(Ω) − Ek(Ω) vanishes for the states corresponding to the strictly degenerate
energy level, but for a large enough region Ω this difference has the same order as
the energy shifts and one may suppose it to be of approximately the same order
as the energy shifts under consideration. This means that in the general case, one
has to consider all the terms in Eq. (2.41).

In general, it is difficult to describe all the features of the wave function changes
under deformations of the cavity. But it is possible when the states studied are
localized mainly near the potential center, while the main changes in the densities
are localized near the boundary. The examples of optimal cutting functions for
similar problems [16, 39] confirm this statement. One may suppose the essential
changes in ∂λφk mainly in the region |r| > γR, for some linear size R of the cavity. It
means that one may suppose that for large enough cavity size, the matrix elements
〈φj|∂λφk〉 are small and decrease to zero with the cavity extension. But this is the
case when the last term in the right hand side of Eq. (2.41) vanishes asymptotically
in comparison with the first term.

For the situation considered one may reduce the derivative calculations to eval-
uation of the G matrix for all asymptotically degenerate states. For example, for the
one-electron atom, one should calculate the matrixG in the basis of the states ns, np,
nd, … simultaneously. Nevertheless, it is difficult to exclude situations when the
splitting of the states with different angular momenta is essential and it is desirable to
consider also the splitting of the states with a given angular momentum separately.

2.5.4 The Polyhedral Deformation of the Sphere

Now we are ready to study the state ordering for the polyhedral deformations of the
large spherical cavity Ω of radius R. We consider the set of similar polyhedrons P
(x) with the same center and parallel faces. The dimensionless parameter x
describes extension of polyhedrons from inscribed in the sphere (for x = 0) to
circumscribed around the sphere Ω (for x = 1). One may define the set of regions
Ω*(x) = Ω ∩ P(x) that may be considered as polyhedrons with vertices smoothed by
the sphere or as a result of the “polyhedral” truncation of the sphere.

It would be interesting to analyze the changes in the hydrogen atom spectrum for
the nucleus placed in the centre of an impenetrable cavity Ω*(x). But we cannot use
explicit relations for wavefunction derivatives on ∂Ω*(x) and solve here another
problem that may be considered as the sphere deformation “in the direction of the
region Ω*(x)”.

For a pair of points z = Rm on ∂Ω and z* = Rq(m, x)m on ∂Ω*(x) we consider
the deformation family Ω(λ, x) by the relation z(λ) = (1 − λ)z + λz* for the boundary
∂Ω(λ, x). It means that, in relations (2.40)–(2.42), one may use the function
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qðzÞ ¼ Rðqðm; xÞ � 1Þ ¼ Rq0ðm; xÞ ð2:45Þ

In order to calculate the matrix elements of G (see Eq. 2.42) for the hydrogen
atom, it is sufficient to use ρ0 and spherical harmonics Yk only. The radial functions
are the same and may be omitted to analyze the energy level splitting (it may be
considered as the use of a specific scale). That is, for each x we calculate the matrix
Λ with elements defined as

Kkj ¼ �Bn‘kBn‘j

Z
Y�

kYj q0ðm; xÞdx ð2:46Þ

The energy derivatives (2.41) are proportional to the eigenvalues Λj of this
matrix.

It is clear that, due to relation Ω*(x) ⊆ Ω, the energy derivatives with respect to λ
are nonnegative. When the energy levels for large enough region Ω are considered
as degenerate or almost degenerate, it is clear that the bigger the derivative Λj, the
higher is the energy of the corresponding atomic state.

The results of the e − f2 splitting in derivatives that may be attributed to the
components of the 3d-state are presented for the hydrogen atom in Fig. 2.4 for
different cavities Ω*(x). We consider the families of the cavities defined by classical
polyhedrons: cube, octahedron and tetrahedron.

Recall that, in the case of the cavities of the symmetry type Oh [cube, octahedron
and associated families Ω*(x)], there exists parity that distinguishes the 3d and 3p

Fig. 2.4 The differences δΛ = Λ(e) − Λ(f2) for the sphere deformations “in the direction Ω*(x)” in
relative units. The solid lines describe the difference for the system of states {3s, 3p, 3d}; the
dashed line corresponds to the pure 3d-state in the tetrahedral family of cavities
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states. But for tetrahedral systems, there is an essential difference between the
splitting in the case of almost-degenerate 3s, 3p, 3d states and selected 3d states. As
is clear from the Fig. 2.4 the interaction with 3p states drastically changes the
splitting of the atomic 3d state and sometimes it is negligible. This observation can
also be tied with the conclusions made on the basis of asymptotic estimates in
Sect. 2.3 (see also Table 2.1 and the end of Sect. 2.1). Crudely speaking, for the 3d
state, the levels are ordered in tetrahedral case so that the e level is below the f2 one,
but the 3p state of the same type f2 shifts the lowest f2 state below the e level.

One should stress the similarity of Eqs. (2.30) and (2.46), especially for the
region x ≈ 1.

2.6 Further Insights

Discussion of the problems of the relative positions of the energy levels of atomic
and molecular systems in cavities of different types stimulates a lot of further
insights of interaction between the system and the environment. The most serious
problems here are those concerning the structured nature of the surrounding
medium. This area is developing nowadays especially rapidly. In this regard, more
sophisticated models were formulated, based on the use of systems of point charges
or distributed multipoles, also taking into account the effects of polarization and
short-range interactions [85]. One could also mention different embedded cluster
and periodic models for a localized inhomogenity in an extended medium which are
increasingly used in practice, especially within the Density Functional Theory
(DFT) framework. See, e.g. the comprehensive reviews [86, 87] and references
therein for further details.

However, even in the simplest one-electron models new effects arise, e.g. when
considering a potential model with finite height walls. For example, in the case of
the hydrogen-like system in a cylindrical cavity, there were cases when the wave
functions were pushed out of the too-small potential well [88]. It is interesting to
note that similar effects occur in many-electron atoms [89] because the behavior of
the wave functions inside and outside of the potential well in the field of the other
electrons is considerably different [90].

Another kind of serious problems is associated with displacement of the atomic
nucleus or other force center away from the highly-symmetric position in the cavity.
Qualitative methods for this sort of problems were described, in particular, for
cavities of small size, for spherical cavities [48], for cylindrical cavities [68, 91], for
cubic [44], tetrahedral and similar cavities [45]. On the methods useful for icosa-
hedral systems, see [92].

Many years ago [93–95] the energy changes were estimated for the hydrogen
nucleus shifted from the center to the points of the cavity boundary for the quantum
wire of square section. In this case, the results are almost evident when one uses the
simple model [96], initially proposed to describe the atomic states on the surface.
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For example, it is evident that when the nucleus is placed on the impenetrable
plane, the 2p-orbital oriented in the direction of its normal defines the ground state.
Indeed, this function is the solution of the Schrödinger equation that satisfies the
Dirichlet boundary conditions in the half-space and has no nodal surfaces (except
for the Dirichlet boundary). Similar considerations are very useful for the purpose
of qualitative analysis. One may consider approaches of this sort as a clever
development of ideas of classical works [97, 98] in which the energy of systems
with spatial restrictions was assessed using the known energy values of the states of
a free system, the wave functions of which have nodes in the right places. For more
complex situations, but for the ground state only, one may use the simple geometric
method proposed in [99] on the basis of some of comparison theorems [100].

In principle, for the study of the nuclear shift effects in degenerated states of
atomic systems in a cavity, it would be natural to use the Jahn-Teller theorem (on its
proof and some connected problems see also [101, 102]). Obviously, for the atomic
system in the cavity of a fixed form, there are not more than three nuclear dis-
placements that could be Jahn-Teller active in a conventional sense, while there
exist a lot of asymmetrical cavity deformations that would play a similar role here.

2.7 Conclusion

In the present work, we have considered the simplest effect of symmetry reduction,
namely, the splitting of degenerate energy levels of some model systems like the
hydrogen atom or the isotropic harmonic oscillator under transition from a free
system to a system in the cavity. Special attention was paid to the cavities of a large
size. In some cases, the asymptotic analysis of the splitting was proposed. It was
demonstrated that the observed energy level ordering in cavities results from
interplay of numerous factors and the relative positions of the energy levels could
change significantly with variations of the cavity shape within the fixed point
symmetry group.

The problems discussed here are closely related to those often encountered
within the Crystal Field Theory. However, the laws of the energy levels splitting are
determined by similar but slightly different relations. For example, relations like
Eq. (2.9) or (2.28) for cavities of a large size are reminiscent of the formulas of the
Crystal Field Theory. But to study the splitting of levels of an atom in a polyhedral
cavity, one should consider not the positions of the polyhedron vertices, but the
positions of the touch points for the faces and the inscribed sphere. For regular
polyhedra, these points specify the location of the vertices of the dual polyhedron.
This circumstance itself leads to some peculiarities of the problem when one tries to
compare the state ordering for atoms in polyhedral cavities and for the same atoms
surrounded by systems of point charges.

Another important detail is a need for analysis of a number of sets of degenerate
states with a given angular momentum in some cases and quasi-degenerated groups
of states. In the case of cubic or octahedral systems, it has no essential influence on
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the structure of the energy levels. For tetrahedral cavities, on the contrary, this is an
additional complication, leading to inversion of the state ordering in some cases.

Obviously, a more consistent consideration of the effects of spatial restrictions
on the motion of particles, taking into account all degrees of the freedom of the
system and estimating, e.g. the transition probabilities, is desirable. As an example,
the fully-dimensional quantum-mechanical problem of a hydrogen atom in a
spherical cavity, studied numerically in [50], has been already mentioned. Imple-
mentation of the same ideas for more complicated cavities (and, perhaps, for more
realistic models for the environment) requires, even in one-electron case, further
development of more powerful and efficient tools for the analysis of the boundary
value problems for the molecular Schrödinger equation.
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Chapter 3
The Confined Hydrogen Atom Revisited

N. Aquino and A. Flores-Riveros

3.1 Introduction

The present work is intended to be a continuation of the chapter “The hydrogen and
helium atoms confined in spherical boxes”, published in Advances in Quantum
Chemistry (AQC), Vol. 57 (2009). Although many of the methods used in the
confined hydrogen atom studies were reviewed in that chapter, we here describe
some of the contributions that were not included in that review. It should be noted
that volumes 57 and 58 of the AQC were dedicated to the study and applications of
a variety of quantum confined systems.

The present work is based on two recently published articles: In the first, we
consider a hydrogen atom confined in spherical impenetrable boxes of various
dimensions, taking into account the nuclear motion, where the Hamiltonian con-
tains the kinetic energy corresponding to two charged particles of different masses.
In the second, we have computed the Shannon and Fisher entropies for the ground
state of a hydrogen atom confined in soft spherical boxes of varying radius. In
previous works, these entropies have been shown to be associated with some
interesting physical properties.

The organization of this chapter is as follows: In Sect. 3.2, a brief description is
given of the various model potentials used to confine the hydrogen atom in a
spherical box. In Sect. 3.3, we discuss the confined hydrogen atom where the
nucleus is allowed to move inside a spherical box of hard walls by using the
variational method. Section 3.4 is devoted to the analysis of Shannon and Fisher

N. Aquino (&)
Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal
55-534, 09340 México, D.F., Mexico
e-mail: naa@xanum.uam.mx

A. Flores-Riveros
Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48,
72570 Puebla, PUE, Mexico

© Springer International Publishing Switzerland 2014
K.D. Sen (ed.), Electronic Structure of Quantum Confined Atoms and Molecules,
DOI 10.1007/978-3-319-09982-8_3

59



entropies as obtained for the ground state of an H atom spherically confined in
penetrable boxes of varying size and strength. Finally, in Sect. 3.5 we give our
conclusions.

3.2 An Overview

Because of a wide variety of applications in physics and chemistry, there has been a
growing interest in the study of quantum confined systems [1–13]. Atoms and
molecules confined by cavities of different geometrical forms and dimensions
[14–17] have been used to study the electronic structure, chemical reactivity and
ionization potentials of those systems under very high pressures [1–20] or, for
example, when embedded into fullerenes, and also to model zeolite molecular
sieves [21]. The confined harmonic oscillator has been used to model electrons in a
quantum dot [22, 23], quantum wells and quantum wires, where electric and
magnetic properties as well as the specific heat of metals can be analyzed [24].

Hydrogen atom represents the simplest and most frequently analyzed atomic
system under confinement. It has been studied when inside a spherical box of
penetrable or impenetrable walls [1–13] and in hard boxes of different geometrical
forms and varying size. The hydrogen atom confined in a spherical box and the free
hydrogen atom, have both exact solutions [2]. Many efforts have been devoted to
finding approximate analytical and numerical solutions and comparing their accu-
racy to the exact solution. The helium atom spherically confined by hard walls is the
simplest system where the role played by electron correlation can be systematically
studied. However, all studies of the confined helium atom have been restricted to
the ground and a few excited states. On the other hand, the analysis of many
electron atoms has been carried out by using a variety of approximate methods [9]
such as pseudopotential method, Hartree-Fock, CI, Fermi statistical method, DFT,
and recently, the variational and diffusive quantum Monte Carlo methods [12].

In the late 70s, Ley-Koo and Rubinstein proposed a model in which the
hydrogen atom is confined in a soft spherical box of radius rc. They aimed at
explaining the ionization of a hydrogen atom trapped in the a quartz as experi-
mentally observed [25].

The Hamiltonian of the system is given by

H ¼ � 1
2
r2 þ Vc;

where the potential is defined as

Vc ¼ �1=r; 0� r� rc
V0; rc\r1 :;

�
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in which V0 is a barrier with a constant height value. When V0 ! 1 the barrier
becomes impenetrable and the particle cannot escape from it. Being Vc a central
potential, the problem has a well defined angular momentum where the solution to
the time independent Schrödinger equation Hw ¼ Ew can be written as

wElmðr; h;/Þ ¼ RElðrÞYl;mðh;/Þ

By Substituting this solution in the above Schrödinger equation, one is led to the
radial Schrödinger equation

� 1
2
1
r2

d
dr

r2
dREl

dr

� �
þ lðlþ 1ÞREl

2r2
þ VcREl ¼ EREl

Ley-Koo and Rubinstein separated the problem in an interior region (i),
0� r� rc, and an exterior region (e), rc\r\1, and found the solution of the
radial Schrödinger equation in each.

For the interior region they expand the solution as a power series

RðiÞ
El ðxÞ ¼ Al x

l
X1
s¼0

cðlÞs xs;

where Al is a normalization constant and

x ¼ r
j
; j ¼ � 1

2E
;

whereas for the exterior region they found

RðeÞ
El ¼ Bl y�ðlþ1Þe�y

1F1ð�l;�2l; 2yÞ;

in which Bl is a normalization constant, 1F1 is the confluent hypergeometric
function, y ¼ kr and k2 ¼ 2ðV0 � EÞ.

Ley-Koo and Rubinstein computed the energy for a few of the lowest states as a
function of rc and the barrier height V0. They also calculated the polarizability, the
Fermi contact term, the screening constant and pressure as a function of rc and V0.

Montgomery and Sen, following the work of Ley-Koo and Rubinstein, improved
the accuracy attained by these authors in their calculations, where the energies are
determined by imposing continuity of the wave function and its derivative at r ¼ rc.
Montgomery and Sen noted that the continuity condition at r ¼ rc is more easily
accomplished by matching the logarithmic derivatives at r ¼ rc. By taking the

difference between the logarithmic derivatives of RðiÞ
El ðrÞ and RðeÞ

El ðrÞ at r ¼ rc, the
problem of finding the energy eigenvalues is replaced by the search of roots—which
are precisely the energy eigenvalues—of a transcendental function. They used the
Maple program to perform the numerical computation of the energy eigenvalues
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and reported their results with a 15-digit accuracy, thereby establishing a bench-
mark for this system. The wave functions are determined by imposing their con-
tinuity through r ¼ rc and are also normalized.

They calculated the 1s state dipole polarizability aðmÞ at frequency m in the frame
of perturbation theory (PT)

aðmÞ ¼
X
n¼2

fnp

Enp � E1s
� �2� hmð Þ2

;

where fnp, is the oscillator strength for the 1s� np transitions,

fnp ¼ 2
3

Enp � E1s
� � Zrc

0

RðiÞ
nprR

ðiÞ
1s r

2dr þ
Z1
rc

RðeÞ
np rR

ðeÞ
1s r

2dr

2
4

3
5
2

:

Since the radial functions are power series, all integrals are obtained analytically.
They showed that in order to calculate fnp it suffices to consider the discrete
spectrum only.

Montgomery and Sen computed the static and dynamic polarizabilties for a few
combinations of rc and V0. For finite potentials they found that the static polariz-
ability is strongly dependent on rc, which decreases as the cavity dimension
diminishes. On the other hand, for a fixed value of rc, the polarizability was found
to decrease as V0 grows. Their numerical results are considered benchmark cal-
culations for this system.

Recently [13], the Ley-Koo-Rubinstein Hamiltonian was solved numerically by
using the finite difference method, where the wave function is defined on a grid and
the oscillator strength, together with transition probabilities, are calculated for a few
states.

The endohedral fullerenes are systems in which atoms or small molecules are
confined in the cage of the carbon structure Cnðn� 20Þ. The interest of studying
these systems stems from a variety of applications they give rise to, from medicine
to quantum computation. The study of the electronic structure of endohedral ful-
lerenes is performed including all electrons treated via DFT or semi-empirical
methods. Nascimento et al. considered the guest atom electrons only and they
model the Cn by means of a short-range spherical Gaussian potential. They study
the confined H atom in a cage of C30 and C60, using the self-consistent finite-
element method. The potential proposed by Nascimento et al. is given by

wðrÞ ¼ �w0 exp � r � rcð Þ2=r2
h i

;

where w0 is the well depth, rc is the radius of the center of the confinement shell and
r is defined as the half-width at the w0e�1 amplitude. The rc value is chosen so that
it corresponds to the radius of the fullerene cage: 3.54 Å for C60 and 2.50 Å for C36.
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The other two parameters are obtained from theoretical and experimental infor-
mation on fullerenes.

The Schrödinger equation for the H atom inside the fullerene is given by

� 1
2
r2 � 1

r
þ wðrÞ

� �
wð~rÞ ¼ Ewð~rÞ:

Katriel and Montgomery studied the virial for the hydrogen atom confined by
various model potentials, penetrable and impenetrable, continuous and continuous
to piece. The potential used by Ley-koo and Rubinstein becomes that of a hydrogen
atom in a hard spherical box when V0 goes to infinity. In this case the wave
functions satisfy Dirichlet conditions. They have also solved the problem when the
wave functions satisfy Neumann conditions. They also treated the problem of a
hydrogen atom in a quantum dot that was proposed by Xiao and taken up by
Varshni.

The Hamiltonian of the quantum dot atom is given by

H ¼ �r2 � 2
r
þ xr2

Costa et al. added the Woods-Saxon potential

H ¼ �r2 � 2
r
þ xr2 þ 2k

1þ epx R� rð Þ=g½ � ;

whereas Katriel and Montgomery modified the potential as

H ¼ �r2 � 2
r
þ xr2 þ r

R

	 
k
:

Zicovich-Wilson et al. studied the Hamiltonian

H ¼ �r2 � 2
r
þ 1
R
cot

r
R

	 


In recent years, the following Hamiltonian has also been studied

H ¼ �r2 � V0 exp � r
R

	 
2
� �

to model a quantum dot.
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3.3 Variational and Perturbative Treatments
of the Confined Hydrogen Atom with a Moving Nucleus

3.3.1 Introduction

The confined hydrogen atom has been treated considering hard and soft boxes of
different geometrical shapes. In the case of an impenetrable spherical box the
energy is known to be lowest when the nucleus is clamped at the origin, which
increases as the nucleus is allowed to move toward the cavity surface. However,
when the atom is in a real environment, this energy increase cannot be assumed to
arise solely from the electron kinetic energy and its Coulomb interaction with the
nucleus, but also from the latter interacting with the environment simulated by a
particular confinement regime. As in the case of the particle in a box, we know that
the nucleus cannot have zero energy and it should move because of its interaction
with the surrounding cavity. Therefore, the fixed nucleus approach may not be the
most realistic one to appropriately describe a compressed H atom, but rather, a
model in which both the nucleus and the electron move within the box and are
confined by the same boundary conditions.

We here calculate the ground state energy and other properties for a confined
hydrogen atom where both electron and nucleus are allowed to move within an
impenetrable spherical cavity, as a function of the box radius by using a variational
method [26] and a perturbative approach. In the first treatment exponents and linear
coefficients are variationally optimized via a generalized fre; rn; rg-Hylleraas basis set
that fulfills appropriate boundary conditions, whereas the second approach is based on
an unperturbed exact solution for a pair of confined free particles. The variational
results led to an increased kinetic energy and an enhancedCoulomb interaction arising
from the nuclearmotion, as compared to a variational description of the confined atom
where the nucleus remains fixed. Throughout all box radii the variational energies are
below those perturbatively obtained, however, the energy difference gets fairly
reduced at the strong confinement region, which indicates that perturbation theory
represents a physically consistent picture of the compressed atom due to the strongly
free-particle behavior of the electron and nucleus at small cavity dimensions.

3.3.2 The Model

The Hamiltonian operator for a nonrelativistic hydrogen atom is

H ¼ T þ V ¼ � �h2

2me
r2

e �
�h2

2mn
r2

n �
e2

4pe0r
; ð3:1Þ

where me and mn are the masses of the electron and nucleus located at~re and~rn with
charges �e and e, respectively, r = j~re �~rnj and r2 denotes the Laplacian in the
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coordinates indicated by the subscript. If the atom is confined to a spherical box of
radius rc with impenetrable walls then the states should vanish when either j~rej ¼
re ¼ rc or j~rnj ¼ rn ¼ rc. In atomic units (�h ¼ me ¼ e ¼ 1), the above Hamiltonian
reads

H ¼ � 1
2
r2

e �
1

2mn
r2

n �
1
r
þ U ð3:2Þ

where mass mn ¼ 1836:15267261 and the confining potential U is

U ¼ 0; ðre ; rn � rcÞ
1; ðre ; rn [ rcÞ:

�
ð3:3Þ

3.3.3 Method of Calculation

3.3.3.1 Variational Treatment

Generalized Hylleraas basis sets expressed in fr1 ¼ re; r2 ¼ rn; r12 ¼ rg coordinates
In Hylleraas fre; rn; rg coordinates, the Hamiltonian in Eq. (3.2) can be written as

H ¼� 1
2

o2

or2e
þ 2
re

o
ore

þ o2

or2
þ 2

r
o
or

þ 2r̂e � r̂ o2

orer

� �

� 1
2mn

o2

or2n
þ 2
rn

o
orn

þ o2

or2
þ 2

r
o
or

� 2r̂n � r̂ o2

ornr

� �

� 1
r
þ U ð3:4Þ

where r̂e, r̂n and r̂ denote the unit vectors of the corresponding distances. Since
r2 ¼ j~re �~rnj2 ¼ r2e þ r2n � 2~re �~rn, scalar product factors r̂i � r̂ (i ¼ e; n) yield

r̂e � r̂ ¼~re � ð~re �~rnÞ
rer

¼ r2e �~re �~rn
rer

¼ r2e � r2n þ r2

2rer
;

r̂n � r̂ ¼~rn � ð~re �~rnÞ
rnr

¼~rn �~re � r2n
rnr

¼ r2e � r2n � r2

2rnr
:

ð3:5Þ

S symmetry wave functions expanded in Generalized Hylleraas (GH) basis sets
[27–29] expressed in fr1; r2; r12g coordinates,

wGH ¼
XN
k

ck r
nk
1 rmk

2 rlk12 e
�akr1�bkr2�ckr12 ; ð3:6Þ
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have been utilized for the variational description of 3-body Coulomb systems,
involving suitable optimization techniques depending on the required basis
dimension and the desired level of accuracy. The explicitly correlated character of
these functions ensures accurate energies for ground and low excited states of free
two-electron atoms and three-body molecular species over relatively low
expansions.

Since the particular system here analyzed refers to a confined hydrogen atom
with a moving nucleus, the Hylleraas coordinates are to be identified as
fr1 ¼ re; r2 ¼ rn; r12 ¼ rg. An earlier approach to this problem was based on the
simple ansatz [30]

/ðre; rn; rÞ ¼ A 1� re
rc

� �
1� rn

rc

� �
e�cr; ð3:7Þ

where c is a variational parameter, A is an appropriate normalization factor and rc
denotes the confining spherical box radius. Since it exhibits the correct asymptotic
behavior for the free atom, it yields accurate energies for large values of rc. A
natural improvement to such ansatz, allowing us to calculate ground and excited S
states, would be given by a variational expansion of the form

w ¼ 1� re
R

	 

1� rn

R

	 

e�are�brn�cr

XN
k

ckr
nk
e rmk

n rlk ; ð3:8Þ

where a cut-off function ð1� re=rcÞð1� rn=rcÞ is introduced in order to fulfill the
boundary condition of a vanishing wave function whenever re ¼ rc or rn ¼ rc.
Notice that toward the free atom regime (rc ! 1) the cut-off function goes to 1 and
w becomes a variational wGH-type wave function amenable for the description of an
unconfined two-particle system. The optimized ansatz w contains a single set of
nonlinear parameters {a; b; c} and N linear expansion coefficients. This type of trial
functions has recently been used to describe ground and excited states for confined
helium and other compressed two-electron atoms [31–34].

Ground state energies correspond to expectation values of the Hamiltonian with
respect to w,

E ¼ hwjHjwi
hwjwi ; ð3:9Þ

which leads to integrals in the spherical box of the form

Zrc
0

dre

Zrc
0

drn

Zreþrn

jre�rnj

dr rNe r
M
n r

Le�Are�Brn�Cr: ð3:10Þ
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These can be analytically evaluated where the differential volume is

dV ¼ 8p2 re rn rdre drn dr: ð3:11Þ

For each trial function, E is minimized by varying three nonlinear parameters
a; b; c and N linear coefficients ck through an algorithm based on a quasi-Newton
method for multivariable functions. By using an analytical expression for the
energy gradient, converged optimal values were attained within a gradient mag-
nitude in the range (10�6; 10�4).

Energy calculations for each box radius rc are performed by means of trial
functions expressed via a (N = 4)-term GH basis set expansion for the ground state,
spanned by powers fn;m; lg commensurate with the condition nþ mþ l� 1, i.e.,
only up to linear terms in coordinates fre; rn; rg are considered.

For the sake of comparison ground state energies for a compressed hydrogen
atom in the clamped or infinitely heavy nucleus approximation enclosed by a hard
spherical cavity at a given radius, are also variationally obtained for each rc.
Accordingly, we have used 5-term S symmetry radial expansions in coordinate r
including a cut-off factor,

u ¼ 1� r
rc

� �
e�dr

X5
k¼1

dk rk�1; ð3:12Þ

where parameter d and linear coefficients dk are optimized and u vanishes at r ¼ rc,
which is consistent with the description of one-electron systems spherically
enclosed by impenetrable boxes (VðrÞ ¼ 1; r[ rc). The energies of the moving
and fixed nucleus one-electron atoms are thus computed within the same variational
scheme.

Calculation of total energies for spherically confined one-electron systems
involves minimization of the expectation value

e ¼ hujHðfix nucÞjui
hujui ; Hðfix nucÞ ¼ � 1

2
r2 þ V ; V ¼ �1=r; ðr� rcÞ

1; ðr[ rcÞ
�

; ð3:13Þ

by varying the corresponding parameters of u where the same algorithm as for the
electron + nucleus system is utilized. This leads to conventional integrals of the
form

Zrc
0

rNe�Ardr: ð3:14Þ

Converged optimal values for the energy gradient were attained in the range
(10�6; 10�5).
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3.3.3.2 Perturbative Approach

As a first step we give a brief description of the free particle in a spherical cavity
problem. The Hamiltonian for such a system in an impenetrable box of radius rc is
given by:

H ¼ � �h2

2m
r2 þ VðrÞ ð3:15Þ

where

VðrÞ ¼ 0; ðr � rcÞ
1; ðr [ rcÞ:

�
ð3:16Þ

The eigenfunctions of the corresponding Schrödinger equations are

vðr; h;/Þ ¼ RnlðrÞYlmðh;/Þ ð3:17Þ

where RnlðrÞ and Ylmðh;/Þ denote radial functions and spherical harmonics,
respectively. The radial functions,

RnlðrÞ ¼ jlðxnlr=rcÞ ð3:18Þ

correspond to spherical Bessel functions jl of order l and xnl is the nth root of jl. The
eigenergies are given by

EnlðrÞ ¼ �h2 x2nl
2mr2c

: ð3:19Þ

We consider the Hamiltonian H ¼ H0 þ V , (see Eq. 3.2), expressed in atomic
units, where the unperturbed operator and the perturbation are given by

H0 ¼ � 1
2
r2

e �
1

2mn
r2

n ð3:20Þ

and

V ¼ � 1
r
; ð3:21Þ

respectively.
The zeroth order solutions are products of the form

wð0Þ
nlm;n0l0m0 ð~re;~rnÞ ¼ vnlmðre; he;/eÞvn0l0m0 ðrn; hn;/nÞ ð3:22Þ

with eigenvalues
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Eð0Þ
nl;n0l0 ¼

1
2r2c

x2nl þ
1
mn

x2n0l0

� �
ð3:23Þ

The first order correction to the energies is given by

Eð1Þ
nl;n0l0 ¼ Eð0Þ

nl;n0l0 � wð0Þ
nlm;n0l0m0

1
r

����
����wð0Þ

nlm;n0l0m0

� 
; ð3:24Þ

where S states (n ¼ n0 ¼ 1; l ¼ l0 ¼ 0) are only considered.

3.3.4 Results and Discussion

We here define the strong confinement region (rc � 1:0 au) as that corresponding to
spherical cavities smaller than the ground state average nucleus-electron distance
for the free hydrogen atom with a fixed nucleus. Beyond this, intermediate and
weak confinement regimes would extend throughout larger box radii (rc [ 1:0 au).

In Table 3.1 are shown the ground state perturbative and variational energies for
the confined hydrogen with a moving and a fixed nucleus as obtained with the
methods utilized in this report.

The perturbative energies for all box radii compiled in that table remain above
the variational values calculated with the GH wave functions. It is interesting to
note that this occurs due to an underestimated Coulomb attraction in the pertur-
bative description rather than to an overestimate of the electron and nuclear kinetic
energies, which, despite arising from the motion of a free and a “quasi-free” par-
ticles, they are found to be lower than those in the variational approach. In the
strong confinement region the atomic total energy increases so dramatically under
growing compression that the electron, and to a considerably lesser extent the
nucleus (due to its heavier mass), can be regarded as a free and a quasi-free particles
moving at high speed within the hard spherical walls, where the Coulomb inter-
actions become very small as compared to the total kinetic energy. Since this
feature is the underlying basis for applicability of the perturbation method, in such a
region it is physically justified to estimate the energy accordingly. This interpre-
tation is consistent with the fact of having comparable differences between the
perturbation and variational (with a moving nucleus) energies and those occurring
between the two variational schemes.

By comparing the variational results for the moving and fixed nucleus hydrogen
atoms at each box radius, we can see that the full E and total kinetic energy hTi are
expectedly higher when the nucleus is allowed to move. However, it should be
noted that the electron kinetic energy hTei is systematically higher within the
moving nucleus scheme for all rc’s, i.e., the electron increases its energy when in
the presence of another moving particle where both are confined in the same cavity.
Also, the Coulomb interaction between them increases slightly (it becomes less
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negative) for a varying nuclear position on a large portion of the confinement region
rc’s (rc � 4:0 au). This is in line with recent results [35] on perturbed energy
calculations for confined helium with a moving nucleus, where it is found an
important effect on the electrostatic interaction among all three particles under
such conditions. We have verified that for most rc’s the variational energies for the

Table 3.1 Perturbative and variational results (1st and 2nd row on each entry, respectively) for
the confined hydrogen atom (CHA) with a moving nucleus as a function of the box radius rc (au)

rc E hTi hTei hTni hVi
0.1 475.88825 493.74898 493.48022 0.26876 −17.86073

473.84272 497.55784 495.52046 2.03739 −23.71513

468.99313 493.59225 493.59225 0.0 −24.59911

0.2 114.50688 123.43724 123.37006 0.06719 −8.93037

112.47785 124.54287 123.91907 0.62381 −12.06502

111.07107 123.48629 123.48629 0.0 −12.41522

0.3 48.90742 54.86100 54.83114 0.02986 −5.95358

47.28928 55.44914 55.13094 0.31820 −8.15987

46.59279 54.94902 54.94902 0.0 −8.35623

0.4 26.39413 30.85931 30.84251 0.01680 −4.46518

25.06003 31.26099 31.06244 0.19855 −6.20096

24.63398 30.96278 30.96278 0.0 −6.32881

0.5 16.17781 19.74996 19.73921 0.01075 −3.57215

15.03997 20.06358 19.92556 0.13802 −5.02361

14.74805 19.86217 19.86217 0.0 −5.11412

1.0 3.15142 4.93749 4.93480 0.00269 −1.78607

2.46468 5.13617 5.09161 0.04456 −2.67149

2.37399 5.07314 5.07314 0.0 −2.69915

2.0 0.34134 1.23437 1.23370 0.00067 −0.89304

−0.09946 1.43084 1.41801 0.01283 −1.53031

−0.12500 1.41016 1.41016 0.0 −1.53515

4.0 −0.13793 0.30859 0.30843 0.00017 −0.44652

−0.47520 0.59178 0.58854 0.00325 −1.06699

−0.48327 0.58486 0.58486 0.0 −1.06813

6.0 −0.16053 0.13715 0.13708 0.00007 −0.29768

−0.49615 0.51194 0.51064 0.00130 −1.00809

−0.49928 0.50635 0.50635 0.0 −1.00563

8.0 – – – – –

−0.49857 0.50256 0.50180 0.00075 −1.00113

−0.49997 0.50032 0.50032 0.0 −1.00029

10.0 – – – – –

−0.49916 0.50070 0.50013 0.00057 −0.99985

−0.50000 0.50002 0.50002 0.0 −1.00002

Variational results for the CHA with a fixed nucleus are given in the 3rd row. Total energies (E)
and average values for kinetic (T ¼ Te þ Tn) and potential (V) energies, are given in hartrees
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fixed-nucleus hydrogen atom coincide within the 5 digit values reported in
Table 3.1 with those calculated via the two highly accurate methods utilized by
Aquino et al. [36].

In Table 3.2 are given all variational parameters for the ansätze w and u, as they
evolve along the box radius. It should be pointed out that optimization of w leads
systematically to a vanishing exponent a (associated with coordinate re) for all rc’s.
This probably indicates a quantum mechanical tendency of the electron to remain
mostly delocalized within the confining cavity (w � e�are where a 	 1). By con-
trast, exponent b of rn, becomes very large for box radii � 3:0 au (diminishing
slightly for growing cavities), which shows precisely the opposite effect: the
moving nucleus remains strongly localized near the origin within the confining
sphere (w � e�brn where b 
 1). On the other hand, exponent c of relative distance
r is also large—though not as much as b—throughout the strong confinement
region rc � 1:0 au thus displaying a lesser degree of localization of the electron as it
moves around a shifting nucleus that is comparatively more constrained inside the
spherical box. The mixed character of ansatz w can also be seen to change by
looking at the contributions that coefficients ci’s yield as a function of rc. Because
of a remarkably increased kinetic energy experienced by the electron at the con-
finement interval rc � 1:0 au the relevant polynomial contributions are associated
with r and re, which leads to a wave function of the approximate form
w � c2re�cr þ c4ree�cr. It then follows an intermediate rc interval (1:1� rc � 2:5
au) where coefficient c3 (associated with rn) is largest in conjunction with a value of
exponent b that continues to be sizable, perhaps enhancing the strongly localized
character of the nuclear particle at a slightly farther distance from the origin.
Finally, at the extended range of box radii (rc� 3:0 au), i.e., as we relax the
confinement strength, w clearly approaches the exact ground state wave function for
a free fixed-nucleus hydrogen atom (w � c1e�cr where c1 ¼ 1:0 and c� 1).

Variational description of the confined clamped-nucleus atom through the
r-dependent trial function u, yields a large value of exponent d at the strong
confinement region, where the most important coefficients dk (! rk�1) appear to
favor those associated with powers k � 1� 1. This probably indicates a localized
character of the electron in such region, as well as its free particle behavior on
account of an increased kinetic energy. However, for rc � 1:3 au, u follows a trend
parallel to w, clearly approaching the exact ground state wave function for a free
hydrogen atom (u � d1e�dr where d1 ¼ 1:0 and d� 1).

In Table 3.2 are also given the average distances hrei, hrni and hrimov (hrifix),
calculated with respect to w (u), as a function of the box radius. It can be seen how
very close to the origin the nucleus remains for most of rc ’s, especially in the strong
confinement region, on the other hand, the average values of re and r are located at
� rc=2 which is known to occur when a free particle is confined in an impenetrable
cavity. The average relative positions hrimov and hrifix in both schemes yield very
similar values throughout all box radii, approaching, for large rc, the exact average
electron-nucleus distance (hri ¼ 1:5 au) for a free hydrogen atom ground state.
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We consider the one-particle radial electron and nuclear densities of the com-
pressed H atom with a moving nucleus, defined as

alignedqmovðreÞdrn
Zjreþrnj

jre�rnj

jwj2r dr;qðrnÞdre
Zjreþrnj

jre�rnj

jwj2r dr;aligned ð3:25Þ

and also the radial electron density for the confined H atom with a fixed nucleus,
which simply corresponds to

qfixðrÞ ¼ hujui�1 juj2 r2; ð3:26Þ

where the subscripts in qmovðreÞ and qfixðrÞ refer to both schemes of atomic
confinement.

The above densities are depicted in Figs. 3.1, 3.2 and 3.3 as a function of
coordinates fre; rng for the strong, intermediate and weak confinement regions. The
following features emerge: The nucleus remains fairly close to the origin for
the three box radii considered (rc = 0.1, 1.0 and 5.0 au), as shown by the location of
the nuclear density [qðrnÞ] maxima (� at rc=10) in the curves, which of course is
entirely consistent with the fact of being the nucleus over three orders of magnitude
more massive than the electron. The shape of the nuclear density in all cases

-10

0

10

20

30

40

50

-0,02 0 0,02 0,04 0,06 0,08 0,1 0,12

r
c
=0.1

dn
de
def

D
en

si
ty

r (au)

Fig. 3.1 Radial electron and
nuclear densities for the CHA
in the moving and fixed
nucleus schemes as a function
of coordinates fre; rng for the
cavity radius rc = 0.1 au

74 N. Aquino and A. Flores-Riveros



corresponds to a localized rather than to a free particle, despite the strong con-
finement exerted within the smallest impenetrable cavities here considered. On the
other hand, the electron densities in the moving and fixed nucleus schemes are quite
similar to each other, as seen in those figures, displaying for the first two cases
(rc = 0.1 and 1.0 au) a symmetric shape, which indicates a free particle behavior for
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the electron. It is interesting to note that the electron densities for the largest cavity
radius (rc = 5.0 au), where the curves are now closer to that corresponding to the
free atom, our model consistently predicts an electron that can be found slightly
farther away from the box center when the nucleus is allowed to move.

3.4 Shannon and Fisher Entropies for a Hydrogen Atom
Under Soft Spherical Confinement

3.4.1 Introduction

In information theory, Shannon entropy is a measure of the uncertainty associated
with a random variable, a concept introduced by Claude E. Shannon in his 1948
paper “A Mathematical Theory of Communication” [37]. Since its proposal this
theory has led to a number of important applications in other areas, like statistical
inference, cryptography, thermal physics, quantum computing, atomic and molec-
ular structure and chemical reactivity, among others.

Shannon’s entropy appears in the description of mean excitation energy [38] and
it relates to certain features of the chemical bond [39]. Since the total entropy
increases with the improvement of the basis, it has been used as a measure of basis
quality in atomic and molecular calculations [40–42], and also to estimate the
degree of correlation included in a wave function [43–45] as well as in several
applications in physical chemistry [46, 47]. In chemistry, such entropy is closely
related to electron delocalization which plays a crucial role in aromatic compounds
[48]. There is a connection between Shannon entropy and the lowest ionization
potential in atoms, as obtained by means of Koopman’s theorem [49]. It has been
used as a quantitative measure of spin polarization associated with the ground state
of some atoms [50] and to describe the spreading of wave packets in fractal models
[51], and also to analyze eigenstates and coherent states supported by a Poschl-
Teller [52] potential and bound states for various systems [53].

Shannon entropy has been given an increasing attention [54] with regard to studies
of atoms confined in impenetrable boxes, where the latter represents a simplified
model to analyze how the atomic structure behaves under high pressure [1]. Shan-
non’s quantum entropy has been interpreted as the uncertainty associated with the
particle position, which in turn relates to the corresponding degree of localization (or
delocalization) [43, 44]. Confined quantum systems like atoms andmolecules trapped
in impenetrable boxes, as well as quantum dots and quantum wells, are thus ideal
systems to analyze that concept. The way Shannon entropy behaves has recently been
studied for the ground state of one-, two- and three-electron atoms and ions in hard
spherical boxes [54]. For several of these systems, local maxima and minima have
been found along the curve of Shannon’s total entropy as a function of the confine-
ment radius. It has also been found that Shannon’s entropy in the position space
becomes negative for a strong confinement regime (very small cavity dimensions)
in impenetrable boxes. In this connection, introducing a cavity of padded walls (soft
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confinement) for an atomic or molecular system would represent a physically more
realistic model, as discussed in this section, where the behavior of several quantum
mechanical properties of the hydrogen atom confined by soft spherical walls of
varying strength is analyzed as a function of the box radius rc.

The Shannon entropies in the position and momentum space are defined as

Sr ¼ �
Z1
0

qðrÞ ln½qðrÞ�d3r; ð3:27Þ

Sp ¼ �
Z1
0

cðpÞ ln½cðpÞ�d3p; ð3:28Þ

whereas the total Shannon entropy is given by

St ¼ Sr þ Sp: ð3:29Þ

A quantity that more adequately describes the degree of delocalization of the
electronic cloud in a system corresponds to the Shannon entropy power [37, 55]:

Jr;p ¼ 1
2pe

e2Sr;p=3: ð3:30Þ

The Fisher entropies [56] in the position and momentum space are given by

Ir ¼
Z1
0

j ~rqðrÞj2
qðrÞ d3r ¼

Z1
0

4
d~wðrÞ
dr

" #2

d3r; ð3:31Þ

Ip ¼
Z1
0

j ~rcðpÞj2
cðpÞ d3p ¼

Z1
0

4
d~/ðpÞ
dp

" #2

d3p: ð3:32Þ

where q is the one-particle probability density of the system, measure the con-
centration (sharpness) of the electron density. These quantities fulfill a generalized
uncertainty relation [55, 57]:

1
3
Ir;p Jr;p � 1: ð3:33Þ

The Fisher-Shannon information plane, obtained by plotting Jr;p versus Ir;p,
provides us with a useful tool to systematically analyze the electron correlation in
atoms [58].

Fisher’s information measure has given rise to a broad spectrum of physical
applications [59–65], for example, by minimizing such quantity one is led to a
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Schrödinger-like equation for the probability amplitude, where the ground state
describes equilibriumphysics and the excited states take into account non-equilibrium
situations [66]. By connecting Shannon entropy to disorder, Frieden et al. [67–69]
have extensively studied the concept of order or complexity and have shown that it is
associated with the Fisher entropy. Another measure of complexity is due to López-
Ruiz, Mancini and Calbet (LMC) [70], which has been used in the context of elec-
tronic structure of atoms and molecules [71]. The Fisher-Shannon entropy power is a
good descriptor of the complexity and it is related to the LMC complexity [72–76].

Calculations of Shannon entropies have been reported for one-electron atoms by
Sen [54] and of Fisher-Shannon in conjunction with statistical complexity measures
for two-electron atoms by Howard et al. [77], and also for the molecular ion Hþ

2 by
Montgomery and Sen [78]. Similar calculations for confined one-electron systems
have been addressed in a review article by Sen et al. [79].

In this section, Shannon and Fisher entropies are calculated in the position (Sr; Ir)
and momentum space (Sp; Ip) for the hydrogen atom spherically confined in soft and
impenetrable (as a limiting case) boxes. For the latter, calculations for a free particle
in a box are also included. For the atomic system and the free particle the evolution
of these quantities is analyzed in terms of the cavity dimension rc and strength U0.

The densities

qðrÞ ¼ j~wðrÞj2; ð3:34Þ

cðpÞ ¼ j~/ðpÞj2; ð3:35Þ

are defined in terms of the one particle system wave functions ~wðrÞ; ~/ðpÞ in
position and momentum coordinates, respectively.

In Sect. 3.4.2 we discuss the free particle in-a-box case and briefly review the
variational method based on atomic wave functions expanded in Slater-type basis
sets where, for soft confinement (finite U0), the radial coordinate extends over the
whole space (r goes from 0 to 1). When U0 ! 1 (hard spherical confinement)
the atomic wave function includes a cut-off factor to ensure correct fulfillment of
Dirichlet boundary condition (vanishing wave function at the box edge, where the
integral is performed from 0 to rc). Section 3.4.3 is devoted to the presentation and
discussion of results obtained by this method.

3.4.2 Method of Calculation

The eigenfunctions for a free particle in a spherical box of radius rc are given by

wnlmðr; h;/Þ ¼ Anl jlðxnl r=rcÞYlmðh;/Þ; ð3:36Þ
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with energies

Enl ¼ x2nl
2r2c

; ð3:37Þ

where Anl is a normalization constant, xnl is the nth-root of the spherical Bessel
function jl and the Ylm’s are the spherical harmonics.

Since we consider in particular the ground state, the corresponding wave
function is

w100ðr; h;/Þ ¼ A10 j0ðx10 r=rcÞY00ðh;/Þ ¼ A10ffiffiffiffiffiffi
4p

p j0ðx10 r=rcÞ; j0ðsÞ ¼ SinðsÞ=s:

ð3:38Þ

The normalized ground state wave function for a spherically confined free
particle in an impenetrable box is thus given by

~wFPðrÞ ¼
1ffiffiffiffiffiffiffiffiffi
2prc

p Sinðpr=rcÞ
r

; ð3:39Þ

~/FPðpÞ ¼
1ffiffiffiffiffiffi
2p

p 2
p

Zrc
0

SinðprÞ ~wFPðrÞr dr ¼
ffiffiffiffi
rc

p
p

SinðprcÞ
ðp� prcÞðpþ prcÞ ; ð3:40Þ

where ~/FPðpÞ is the Fourier Transform of ~wFPðrÞ.
For the H atom we consider the nonrelativistic one-electron Hamiltonian (given

in atomic units) in the infinitely heavy nucleus approximation:

H ¼ � 1
2
r2 � Z=r þ VðrÞ; ð3:41Þ

where VðrÞ refers to a logistic potential here defined as

VðrÞ ¼ U0

ewð1�r=rcÞ þ 1
; ð3:42Þ

and where we have chosen a factor w ¼ 1;000, which is sufficiently large so as to
simulate a spherical penetrable barrier whose strength U0 is nearly vanishing at
r\rc and remains approximately constant in the range r[ rc, i.e.,

VðrÞ ffi 0; r� rc
U0; r[ rc

�
: ð3:43Þ

Notice that, although VðrÞ is very similar to the step potential ~VðrÞ, strictly
defined as
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~VðrÞ ¼ 0; r� rc
U0; r[ rc

�
; ð3:44Þ

it differs from it in one essential respect: while VðrÞ is continuous in the entire radial
coordinate domain, ~VðrÞ is discontinuous at r ¼ rc. Hence, by using a logistic
potential one avoids describing the problem in a scheme where the complete
solution often depends on different trial wave functions at two separate spatial
regions (r� rc and r[ rc) that are required to fulfill some appropriate boundary
condition at r ¼ rc.

The hydrogen atom confined by ~VðrÞ was studied previously [4–6, 9].
For soft confinement (finite U0), the wave function is expanded in terms of radial

functions of the form

wSC ¼
X5
i¼1

Ci r
ni e�ar; ð3:45Þ

whereas for impenetrable boxes (U0 ! 1), the wave function must include a cut-
off factor that ensures fulfillment of Dirichlet boundary condition wHCðrcÞ ¼ 0, i.e.,

wHCðrÞ ¼
X5
i¼1

Cir
ni 1� r

rc

� �
e�ar: ð3:46Þ

(Labels SC and HC refer to soft and hard confinement, respectively.)
The parameter a and the linear coefficients Ci are optimized by minimizing the

total ground state energy, given by the expectation value of the Hamiltonian with
respect to w,

E ¼ hwjHjwi
hwjwi : ð3:47Þ

The variational method for the latter case has previously been applied to the
description of spherically compressed one and two-electron atoms [31, 32, 80]
where the nucleus remains fixed at the center of the cavity. A comprehensive review
on the subject has been reported by Aquino [9].

In order to obtain the corresponding wave functions in the momentum space, we
calculate the Fourier Transform of the atomic functions,

/AðpÞ ¼
1ffiffiffiffiffiffi
2p

p 2
p

Z1
0

SinðprÞwAðrÞr dr: ð3:48Þ

(A refers to either label SC or HC.)
Functions ~wFPðrÞ; ~wAðrÞ and ~/FPðpÞ; ~/AðpÞ are normalized such that
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h~wj~wi ¼ 4p
Zrc;1
0

j~wðrÞj2r2 dr ¼ 1; ð3:49Þ

h~/j~/i ¼ 4p
Z1
0

j~/ðpÞj2 p2 dp ¼ 1; ð3:50Þ

where

~wAðrÞ ¼
wAðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihwAjwAi

p ; ð3:51Þ

~/AðpÞ ¼
/AðpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih/Aj/Ai

p : ð3:52Þ

3.4.3 Results and Discussion

In Fig. 3.4, both the ground state energy of the atom under hard and soft con-
finement and that of the free particle in an impenetrable box, are seen to increase at
different rates, as we move toward the strong confinement region (small cavity
radii). The almost parallel evolution (especially when the systems become strongly
compressed) corresponding to the atom and free particle energies in a hard box,
clearly confirms the near free particle behavior of the electron in that region. On the
other hand, the atomic energies increase toward ever smaller cavities at gradually
lower rates for penetrable boxes of correspondingly reduced strength (U0 = 100, 50,
10, 1 hartrees). This behavior is consistent with the energy calculated by means of
the potential VðrÞ, where such a trend naturally follows from having an electron
trapped in cavity walls that exert less compression. For soft confinement and very
small cavity radii (rc\0:5 au) VðrÞ�U0; r[ rc, which leads to an effective free
atom Hamiltonian approximately shifted by a constant value close to U0, so that the
optimized energies appear to flatten as we move to shorter box radii, approaching
U0 þ E1 (where En¼1 is the H atom ground state energy).

For impenetrable boxes, our values for the confined H atom Shannon entropies, as
given in Table 3.3, are in good agreement with those reported by Sen [54]. Sr and Sp
values for the atom enclosed by soft and hard walls and the free particle in an
impenetrable box are displayed in Fig. 3.5, as a function of rc. Shannon entropies are
associated with the degree of localization and delocalization in the position and
momentum coordinates, respectively, evolving with the same rate but in opposite
directions, so that, for a given confinement strength and cavity radius, the more
spatially localized the electron the more delocalized in the momentum space. This
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simultaneous behavior of both quantities (Sr and Sp), that closely relates to
Heisenberg’s uncertainty principle, is illustrated in Fig. 3.5, where the curves appear
to be virtual mirror images from each other with respect to the horizontal reference
line (drawn at � 3.3 in the vertical axis). Notice that only for impenetrable boxes the
curvesmaintain the same trend all theway, growing in opposite directions aswemove
inward along rc. By contrast, toward small cavity radii, the curves corresponding to
penetrable boxes change their character in a pronounced way (especially for
U0 = 100 hartrees) where the finite potentials are unable to keep the electron localized
within the box range, so that the Sr and Sp curves tend to approach each other, instead
of moving away from one another. This behavior follows from having a charge cloud
(given by the radial density r2jwðrÞj2) that for rc = 0.1 au and U0 = 100 hartrees, for
example, it extends out at a radial distance from the box center r � 2:5 au (far beyond
rc). Interestingly, this behavior is consistent with very recent results by Dolmatov and
King [81] on a case study of a hydrogen atom under the pressure of a spherical
penetrable confinement potential, where they find atomic swelling effects upon
compression. In comparison to the case for rc = 1.0 au, the radial density evolves in a
similar way forU0 ¼ 1 and 100 hartrees, which indicates that for cavity radii outside
the critical range (strong confinement region) the system is less responsive to com-
pression effects. Unlike the case for soft cavitywalls, the radial density for the smallest
impenetrable box radii here analyzed, are virtually identical when comparing the
atomic electron and the free particle, which again confirms their nearly coincident
behavior in the strong confinement region.
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Table 3.3 Ground state energies E (hartrees), Shannon entropies (Sr , Sp, St) and Fisher
information measures (Ir; Ip) for a compressed H atom enclosed by soft spherical walls of
increasing values of U0 (hartrees) and impenetrable boxes (U0 ¼ 1), as well as for the free
particle in a box (U0 ¼ 1), as a function of the cavity radius rc (au)

rc U0 E Sr Sp St Ir Ip
0.1 1 0.4988 4.1377 2.4295 6.5673 0.3204 0.9508

10 9.4873 4.0662 2.5067 6.5729 0.3427 0.9083

50 49.3829 3.4597 3.1589 6.6186 0.6209 0.6168

100 98.3726 0.9440 5.8661 6.8102 4.9155 0.1371

1 468.9931 −6.2445 12.8536 6.6091 314.2306 0.0009

1 493.6082 −6.2322 12.8495 6.6173 314.1593 0.0009

0.2 1 0.4917 4.0955 2.4755 6.5711 0.3329 0.9264

10 9.3620 3.4297 3.2025 6.6322 0.6106 0.6174

50 38.9559 −1.6644 8.2041 6.5396 14.0952 0.0198

100 54.5147 −2.7724 9.2284 6.4561 26.4911 0.0089

1 111.0711 −4.1777 10.7788 6.6011 78.6138 0.0035

1 123.4020 −4.1527 10.7701 6.6173 78.5398 0.0036

0.3 1 0.4744 3.9981 2.5810 6.5791 0.3615 0.8726

10 8.6398 1.5249 5.1141 6.6391 2.0586 0.1750

50 23.3259 −1.7611 8.1984 6.4373 13.2395 0.0173

100 28.9483 −2.1916 8.6363 6.4447 17.7784 0.0130

1 46.5928 −2.9746 9.5676 6.5930 34.9816 0.0079

1 54.8454 −2.9363 9.5537 6.6173 34.9066 0.0081

0.5 1 0.3975 3.6147 2.9764 6.5910 0.4747 0.6801

10 5.2456 0.3338 6.1505 6.4843 3.4552 0.0722

50 9.6180 −0.8501 7.2976 6.4475 7.2936 0.0318

100 11.2484 −1.0834 7.5446 6.4612 8.6342 0.0273

1 14.7480 −1.4702 8.0473 6.5771 12.6446 0.0214

1 19.7443 −1.4039 8.0212 6.6173 12.5664 0.0225

1.0 1 0.0285 2.8463 3.6859 6.5322 0.6982 0.3958

10 1.1761 1.2005 5.2386 6.4390 1.8495 0.1246

50 1.9496 0.7211 5.7336 6.4547 2.5853 0.0908

100 2.3936 0.5438 5.9054 6.4492 2.9023 0.0806

1 2.3740 0.5290 6.0115 6.5405 3.2297 0.0806

1 4.9361 0.6756 5.9418 6.6173 3.1416 0.0900

5.0 1 −0.4985 4.0799 2.4704 6.5503 0.3251 0.9000

10 −0.4947 3.9742 2.5567 6.5308 0.3390 0.8260

50 −0.4898 3.8773 2.6397 6.5169 0.3540 0.7672

100 −0.4870 3.8320 2.6794 6.5114 0.3617 0.7418

1 −0.4964 4.0174 2.5244 6.5418 0.3339 0.8547

1 0.1974 5.5039 1.1134 6.6173 0.1257 2.2494

1 0 −0.5000 4.1447 2.4219 6.5666 0.3183 0.9549

Values for rc = 1 correspond to the free atom. Factor w in the logistic potential VðrÞ was set to
1,000
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The occurrence of negative values for the Shannon entropy in the position
coordinate, Sr (see Table 3.3), can be explained due to the large density magnitude
attained at those points, signaling a marked spatial localization of the electron/free
particle, where qr ¼ jwðrÞj2 turns out to be 
1 [82], so that �qr ln qr\1, and
since Sr ¼ � R rc

0 qr ln qr d
3r, Sr itself becomes negative.

In Fig. 3.6 are plotted the total Shannon entropies St for the systems here
considered. It should be noted that they remain above the lower bound
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Fig. 3.5 Shannon entropies Sr and Sp for a compressed H atom and a free particle in a box,
enclosed by spherical walls of selected values of U0, as a function of the box radius rc
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Fig. 3.6 Total Shannon entropy (St ¼ Sr þ Sp) for a compressed H atom and a free particle in a
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Fig. 3.7 Fisher information measures Ir (a) and Ip (b) for a compressed H atom in a box enclosed
by spherical walls of selected values of U0 and a free particle in impenetrable boxes, as a function
of the cavity dimension rc
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corresponding to the entropy uncertainty principle as derived by Bialynicki-Birula
and Mycielski [83],

St ¼ Sr þ Sp � 3ð1þ lnpÞ ¼ 6:4342: ð3:53Þ

The evolution of this quantity as a function of rc is determined by the smooth or
changing nature of the Sr and Sp contributions, which relates to the above dis-
cussion in terms of the behavior of those curves along the strong, intermediate and
weak confinement regions. Accordingly, we notice that the pronounced changes in
St occur precisely for small cavity radii and soft compression regimes (finite U0). In
particular, for U0 = 50 and 10 hartrees, the total entropy strongly fluctuates along
boxes of radii rc\1:5 au, thus reflecting a situation where these spherical barriers
are physically unable to contain the electron within cavities of such reduced
dimensions.

In Fig. 3.7 are illustrated the position (Ir) and momentum (Ip) Fisher entropies as
a function of rc for the electron surrounded by hard and soft walls and a free particle
confined in impenetrable boxes. The Ir and Ip curves follow opposite trends—in
accordance with Heisenberg’s uncertainty principle—thus behaving similarly to the
Shannon entropies, Sr and Sp, i.e., while one increases (decreases), the other
decreases (increases). For small cavity radii and penetrable boxes, the Fisher
entropies noticeably change their character just as Sr and Sp do, due again to the
extent the electron is localized in the strong confinement region when subjected to
potentials of finite strength.

3.5 Conclusions

In Sect. 3.3 we have variationally calculated the ground state energy and some other
properties for the spherically confined hydrogen atom in an impenetrable box of
varying radius, where the system is described within two frameworks: in one, both
electron and nucleus are allowed to move, whereas in the other the heavier of them
remains fixed. In addition, a perturbative approach based on the unperturbed
solution of two spherically confined free particles is utilized to calculate the moving
nucleus hydrogen atom ground state energies. Through the variational method trial
functions were constructed via Generalized Hylleraas basis sets that include up to
linear terms in coordinates fre; rn; rg and radial expansions in relative distance r to
describe the atom with a moving and a fixed nucleus, respectively. The variational
ground state energies are found to be lower in comparison to those perturbatively
obtained, however, the energy differences get reduced at the strong confinement
region where the perturbative treatment of energies is physically justified due to the
free- and quasi-free-particle behavior displayed by the electron and nucleus under
pronounced compression. Our findings can be summarized as follows: The increase
in kinetic energy due to addition of a moving nucleus is comparatively larger than
the energy difference between the Coulomb interactions calculated for each scheme
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along all box radii. The average nuclear position is found to be closer to the origin by
a factor ranging from 34 % (at rc ¼ 0:1 au) up to 67 % (at rc ¼ 10:0 au), relative to
the average electron position. As the confinement strength is relaxed the variational
ansätze w, u and average relative distances hrimov, hrifix steadily approach the exact
wave function and average electron-nucleus distance, respectively, corresponding to
the free hydrogen atom. The radial densities show that the nucleus remains very
close to the origin for all cavity radii considered, on account of its much greater
mass, where the shape of the nuclear density corresponds to a localized rather than to
a free particle. By comparison, the electron densities in the moving and fixed nucleus
schemes are found to be very similar to each other, where a free particle behavior is
clearly indicated toward the strong confinement region. On the other hand, as we
approach the free atom limit, by letting the nucleus move, our model predicts an
electron that can stray slightly farther away from the box center.

In Sect. 3.4, Shannon and Fisher entropies have been calculated in the position
(Sr; Ir) and momentum space (Sp; Ip) for the hydrogen atom spherically confined in
soft and impenetrable boxes, including the case of a free particle trapped by infi-
nitely high walls, being all analyzed as a function of the cavity radius rc and
potential strength U0. These quantities were found to evolve smoothly throughout
the whole range of cavity radii rc whenever the electron and free particle are
confined by impenetrable boxes. On the other hand, for the atomic electron under
soft compression regimes (finite U0) they were found to importantly change over
short radial intervals in the strong confinement region, a feature associated with
the degree of spatial charge localization induced by potentials of finite strength. The
occurrence of negative values for the Shannon entropy in the position coordinate is
explained on grounds of a pronounced spatial localization of the electron or free
particle, which leads to locally large density magnitudes.
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Chapter 4
Variational Perturbation Treatment
for Excited States of Confined
Two-Electron Atoms

H.E. Montgomery Jr. and K.D. Sen

4.1 Introduction

The numerical complications of confined system calculations have generally limited
studies of these systems to calculation of ground state properties. Incorporation of
Dirichlet boundary conditions as a cut-off function within the trial wavefunction
significantly increases the number of integrals that must be calculated and has
generally been considered a sufficient challenge. With the development of computer
algebra systems such as Maple and Mathematica that facilitate matrix operations
and evaluation of special functions and the porting of confined systems code to
multiprocessor clusters, the confined systems community is now at a point where
accurate treatment of excited state properties is a logical next step. In this work we
report Hylleraas-Scherr-Knight variational perturbation theory (HSK-VPT) [1, 2]
calculation of the energies of the 1s2s1S and 1s2s3S states of confined two-electron
atoms and ions for Z = 1–4. These are the first two excited states of the two-electron
system and serve as benchmarks for excited state calculations. The 1s2s1S state is a
challenge. While it can be calculated by the linear variational method using the
Hylleraas-Undheim-MacDonald theorem [3–5], obtaining accurate energies for
excited states while maintaining orthogonality to the 1s2 1S ground state requires
inclusion of a large number of basis functions in the variational wavefunction,
increases the computational time and introduces the possibility of linear dependence

H.E. Montgomery Jr. (&)
Chemistry Program, Centre College, 600 West Walnut Street,
Danville KY 40422-1394, USA
e-mail: ed.montgomery@centre.edu

K.D. Sen
School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500 046, India
e-mail: sensc@uohyd.ernet.in

© Springer International Publishing Switzerland 2014
K.D. Sen (ed.), Electronic Structure of Quantum Confined Atoms and Molecules,
DOI 10.1007/978-3-319-09982-8_4

91



of the basis functions. HSK-VPT provides a more direct path to excited state
calculations and replaces solution of the secular determinant, with a process that is
more akin to solution of simultaneous equations.

4.2 Variational Perturbation Theory

The derivation of Rayleigh-Schrödinger perturbation theory can be found in any
introductory quantum theory text [6]. Only those parts required to develop varia-
tional perturbation theory are repeated here. The central idea is that for a system
described by a Hamiltonian Ĥ, with ground state eigenfunction W and ground state
eigenvalue E, a system can be found with Hamiltonian Ĥ0, ground state eigen-
function u0 and ground state eigenvalue e0 that satisfies the same symmetry and
boundary conditions as Ĥ. We thus require

Ĥ0u0 ¼ e0u0 ð4:1Þ

Ĥ0 is the zero-order Hamiltonian and the Hamiltonian can now be written as

Ĥ ¼ Ĥ0 þ kĤ1; ð4:2Þ

where Ĥ1 is the first-order Hamiltonian and λ is called the perturbation parameter.
The Schrödinger equation is written as

ĤW ¼ ðĤ0 þ kĤ1ÞW ¼ EW ð4:3Þ

Since Ĥ depends on λ, Ψ and E must also depend on λ and they can be expanded as
power series in λ,

W ¼ w0 þ kw1 þ k2w2 þ k3w3 þ � � � ; ð4:4Þ

E ¼ E0 þ kE1 þ k 2 E2 þ k 3 E3 þ � � � ; ð4:5Þ

and we set w0 ¼ u0 and E0 ¼ e0 � wn is the nth order correction to the ground state
wavefunction, while En is the nth order correction to the energy.

Substituting into the Schrödinger equation gives the Rayleigh-Schrödinger
perturbation equations for E0 and E1

E0 ¼
R
w0Ĥ0w0 dsR
w0w0 ds

; ð4:6Þ

E1 ¼
R
w0Ĥ1w0 dsR
w0w0 ds

ð4:7Þ
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The Rayleigh-Ritz variational principle,Z
U Ĥ � E
� �

U ds� 0; ð4:8Þ

can be used to obtain approximate energies and wavefunctions. The variational
wavefunction, U, is expanded as a power series in λ, analogous to (4.4), as

U ¼ u0 þ ku1 þ k2u2 þ k3u3 þ � � � ; ð4:9Þ

where for non-degenerate energy levels we take w0 ¼ u0. It is important to note
that u1;u2;u3; . . . are approximate wavefunctions and need not be eigenfunctions
of any operator. We restrict consideration to real un and use the notation

mh jX nj i ¼
Z

umX̂un ds; ð4:10Þ

where X̂ is any operator.
Inserting the expansions for Ĥ, U and E into (4.8) gives

0h jĤ0 � E0 0j i þ 2 1jĤ0 � E0j0
� �þ 0jĤ1 � E1j0

� �� �
k

þ 2 1jĤ0 � E0j0
� �þ 1jĤ0 � E0j1

� �þ 2 1jĤ1 � E1j0
� �� E2 0j0h i� �

k2

þ 2 0jĤ0 � E0j3
� �þ 2 0jĤ1 � E1j2

� �þ 2 1jĤ0 � E0j2
� �

þ 2 1jĤ1 � E1j1
� �� E2 0 j 1h i � E3 0 j 0h i

� 	
k3 þ � � � � 0

ð4:11Þ

and in general,

X
m¼0

X
n¼0

kmþn mh jĤ0 þ kĤ1 nj i �
X
l¼0

klEl

( ) X
m¼0

X
n¼0

kmþn m j nh i
( )

� 0 ð4:12Þ

Expanding (4.12) gives a power series in k. Since φ0 is the unperturbed function
in (4.1), the coefficients of k0 and k1 are zero and the term involving k2 must be the
dominant term in the series. The term 1jĤ0 � E0j0

� �
in the coefficient of λ2 is zero

by (4.6) and

E2 � 1jĤ0 � E0j1
� �þ 2 1jĤ1 � E1j0

� �
; ð4:13Þ

provides a variational upper bound to E2, the second-order energy, and an
approximate first order wavefunction, u1. Equation (4.13) is the variational per-
turbation equation developed by Hylleraas [1] in 1930. To find E2 and u1, u1 is
expanded in a set of k trial functions, vi, as
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u1 ¼
Xk
i¼1

xivi; ð4:14Þ

where the xi are variational parameters and the vi must satisfy the same symmetry
and boundary conditions as Ĥ. The notation can be simplified by defining the two
integrals

PBi ¼ vih jĤ1 � E1 w0j i; ð4:15Þ

Ti;j ¼ vih jĤ0 � E0 vj


 �

: ð4:16Þ

When the expansion for u1 is inserted into (4.13), we obtain

E2 � 2
Xk
i¼1

xiPBi þ
Xk
i¼1

Xk
j¼1

xixjTi;j: ð4:17Þ

The xi’s are determined by minimizing E2 with respect to each of the xi’s. This
gives a set of k simultaneous linear equations that can be written as

Tx ¼ �PB; ð4:18Þ

where T is a k × k symmetric matrix and PB is a k-element column vector. Inversion
of T to find T−1 gives

x ¼ �T�1PB: ð4:19Þ

Thus the wavefunction coefficients can be obtained by one call to the matrix
inverse function of a Computer Algebra System (CAS) followed by a second call
to a matrix multiplication function to multiply T−1 and PB. Both Maple and
Mathematica have linear algebra packages that include Gaussian elimination and
linear solver functions that can solve (4.18) with a single function call.

Hylleraas [1] developed an efficient procedure for solving (4.18) subject to the
requirement that E2 be a minimum. A detailed outline of his method, which is similar
to the Gauss exclusion algorithm for matrix inversion along with a numerical
example of its application to the confined hydrogen atom were presented in [7].

Scherr and Knight [2] extended Hylleraas’ work by showing that, to the extent
that E2 and u1are given accurately by (4.13), the coefficient of k2 vanishes and the
coefficient of k3 provides an estimate of E3. An upper bound to E4 is given by the
coefficient of k4 and in general En is given by the coefficient of kn. Note that a
knowledge of un allows calculation of E2n and E2nþ1. This process can be con-
tinued to whatever order is desired.

A convenient aspect ofHSK-VPT is that if thefirst-order and higherwavefunctions
are composed of the same basis sets, the elements of the T matrix can be calculated
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once and then reused. In similar fashion, all of the overlap terms vi j w0h i and vi


 vj� �

and the interelectronic repulsion integrals vih j 1u w0j i and vih j 1u vj


 �

need only be
calculated once. This gives a very efficient way to carry the calculation to high order.

The ui calculated by the Hylleraas method do not satisfy the requirement that the
total wavefunction be normalized. Since the lack of normalization does not affect the
calculation of the En, we did not calculate the normalized wavefunction. The inter-
ested reader is referred to Sect. III of [2] for a detailed discussion of normalization.

Midtdal et al. [8] and Knight and Scherr [9] demonstrated that the higher order
wavefunctions obtained from the variational perturbation equations satisfy the same
orthogonality conditions as their exact first-order wavefunctions. This provides a
straightforward path to calculation of excited state energies. The present work can
be viewed as an extension of their work to helium confined at the center of an
impenetrable sphere.

4.3 Calculational Details

4.3.1 Zero-Order Wavefunctions

The zero-order system was a one-electron atom/ion confined at the center of an
impenetrable sphere of radius R. Although this system has an analytic solution in
terms of the confluent hypergeometric function, evaluation of the integrals
involving the confluent hypergeometrics imposed a severe time penalty. We
therefore chose to solve the confined one-electron system variationally using a
wavefunction of the form

v rð Þ ¼ ðR� rÞe�ar
X15
i¼0

ciri; ð4:20Þ

where R� r is a cutoff function that insures that the wavefunction goes to zero at
the surface of the sphere, and α and the cis are variational parameters determined by
minimizing the energy for the confined 1s wavefunction. The 1s wavefunction and
energy correspond to the lowest root of the resulting secular determinant while the
2s wavefunction and energy were obtained from the second root. The variational
energies were checked by comparison with the energy given by the confluent
hypergeometric wavefunction and agreed to one part in 1012 or better.

The variational wavefunctions were then combined to give the zero-order singlet
and triplet wavefunctions and transformed to the Hylleraas coordinates [10] defined
by

s ¼ r1 þ r2; t ¼ �r1 þ r2; u ¼ r12: ð4:21Þ

4 Variational Perturbation Treatment for Excited States … 95



4.3.2 Higher Order Wavefunctions

The higher order wavefunctions were expansions of the form

un ¼ R� 1
2

s� tð Þ
� �

R� 1
2

sþ tð Þ
� �

e�b s
XN
k¼1

cks
lk tmkunk ; ð4:22Þ

and the factors R� 1
2 s� tð Þ �

are cutoff functions. The wavefunctions included all
terms with lk þ mk þ nk � 7 subject to the requirement that mk = even for the singlet
state to ensure the required permutational symmetry of the spatial part of wave-
function. The triplet state wavefunction was obtained by multiplying each term of
the singlet wavefunction by t. The resulting wavefunctions thus included 70 basis
sets. β was found by variational minimization of E2.

The variational perturbation equations were programmed using the Maple 17
CAS. The coding was a Maple version of the FORTRAN code originally provided
to H.E.M. by R.E. Knight in 1969. Knight had used it in the work reported in [2, 9]
and was quite proud that he was able to take Hylleraas’ derivation [1] and convert it
to FORTRAN by following the details of Hylleraas’ arithmetic. Hylleraas’ work is
thus an interesting example of 83 years of “reused code”.

4.4 Results and Discussion

The calculations were carried out to 31st order in the energy. A representative set of
energy corrections for the 1s2s1S and 1s2s3S states of the helium atom for R = 2 a0
are shown in Table 4.1. Energy corrections for the 1s2s3S state typically converged
more rapidly than did the energies for the 1s2s1S state.

The En for both states exhibit a periodic oscillation, similar to that observed in a
previous HSK-VPT calculation [11] of one-electron wavefunctions. In that work we
concluded that the oscillation resulted from a degeneracy in the complex plane
caused by a square-root branch point singularity. We believe that we are seeing a
similar effect here, but further work is required to fully understand the behavior of
the energy corrections. In particular, it would be nice to quantify how changes in
R and Z affect the period and amplitude of the oscillations in the En.

Energies were calculated for the 1s2s1S and 1s2s3S states over a range of
confinement radii R = 1–10 a0 and for Z = 1–4. These data are shown in Table 4.2.

A discussion of the convergence of these HSK-VPT calculations must consider
two different kinds of convergence. The first, termed perturbational convergence
[9], deals with a consideration of how many En’s must be incorporated in the
perturbation expansion to give the desired accuracy. As mentioned above, the
answer to this question depends on the nuclear charge, the confinement radius and
the electronic state under consideration. In general, large nuclear charge converges
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more rapidly than small nuclear charge, tight confinement converges more rapidly
than loose confinement and the triplet state converges more rapidly than the singlet.

The second kind of convergence, termed variational convergence, applies to the
question of how well a given set of E2n, E2n+1 and φn provide upper bounds to
the energy corrections. This is a much more difficult question to answer since the
calculations reported in this work are, to the best of our knowledge, the first
perturbation theory calculations of confined excited states. In an effort to assess our
calculated energies, we recently performed a variational calculation of the excited
state energies for confined helium using a 125-term wavefunction in Hylleraas
coordinates [10]. These data are shown in Table 4.3 and compared with other recent
variational calculations.

The HSK-VPT energies for the triplet state reproduce the variational energies
within 2.0 × 10−6 Eh and are lower than the variational energies of [12]. For the
singlet state for R ≤ 6 a0 agreement among the HSK-VPT, 125-term variational and
the 161-term variational energies of [13] is excellent. For R > 6 a0, The HSK-VPT
energies are lower than the 125-term variational energies but are quite close to the
energies of [13]. This is consistent with our experience that variational calculations
of the 1s2s1S under moderate or low confinement require a large number of basis
sets in the wavefunction to achieve accurate energies.

Table 4.1 Energy
corrections in Eh for the
helium atom confined in a
sphere of radius 2 a0

Order 1s2s3S 1s2s1S

0 −0.252118681457 −0.252118681457

1 0.825389375615 1.249788436512

2 −0.013546832372 −0.051963754504

3 0.000550205816 0.001902482589

4 −0.000023581149 −0.001221349851

5 0.000000756472 0.000213363982

6 −0.000000005409 −0.000009122421

7 −0.000000001474 −0.000003724051

8 0.000000000131 0.000001201274

9 −0.000000000006 −0.000000035819

10 0.000000000000 −0.000000011818

11 0.000000001005

12 −0.000000000399

13 0.000000000079

14 −0.000000000040

15 0.000000000001

16 0.000000000003

17 0.000000000000
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While the work reported here is an initial investigation into the applicability of
HSK-VPT to confined systems, the data presented in Tables 4.2 and 4.3 support our
hypothesis that it is a viable approach, particularly for excited states. Preliminary
investigation of the 1s3s1S and 1s4s1S states indicates that our approach can be
readily extended to higher excited states.

Another area of investigation with interesting possibilities is extension of
Knight’s work on 3-10 electron atoms [14] to confined atoms. While the evaluation
of the required three-electron contributions presents significant numerical chal-
lenges, calculation of the energies of confined many-electron systems could provide
an exciting insight into the effects of nanoscale confinement.
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Chapter 5
Confined Quantum Systems Using
the Finite Element and Discrete Variable
Representation Methods

Frederico V. Prudente and Marcilio N. Guimarães

5.1 Introduction

In atomic and molecular physics, confinement can not be considered as a recent
problem, but the interest in quantum confined systems has increased considerably
over the years [1–4]. Indeed, many physical and chemical phenomena can occur in
environments that are considered cavities. As examples, the existence of atoms and
molecules under high pressure, impurities in solids, chemical reactions in zeolite
molecular sieves or fullerenes, etc. Furthermore, the advent of modern experimental
techniques have enabled the fabrication of semiconductor nanostructures, such as
quantum wells and quantum dots [5] providing additional motivation for the study
of confined quantum systems. The spatial confinement is responsible for modifying
the physical chemistry properties of the object relative to the free system due to
interaction between the quantum mechanical properties of the confining cage and
those of the enclosed object. These changes become more significant if the effective
size of the object is of the same magnitude as the cavity size.

The determination of spectra is associated with the possibility of interpretation of
experimental spectroscopic data for the confined systems, helping in a more
detailed understanding of various physical and chemical phenomena. Therefore, an
exact or approximate solution is useful for understanding some properties of these
systems. The physical theory that provides the natural approach to describe these
phenomena is quantum mechanics. However, difficulties in theoretical applications
are found due to the complexity of the calculation for the precise determination of
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the most interesting properties of quantum systems. Thus, an important factor to be
considered in these studies is the implementation of theoretical and computational
methodologies for its implementation. A numerical methodology should, among
other things, provide a good accuracy of the results and require less computational
effort for its implementation. Accordingly, various theoretical approaches have
been developed and/or employed for performing quantum-mechanical calculations
of confined quantum systems. Indeed, there are several ways to find this solution
numerically. Among them, the variational procedures have demonstrated to be a
very powerful tool in the development of algorithms for problems involving
bounded quantum systems. In this case the wave function is expanded in terms of
known basis functions and the coefficients of expansion are determined by solving a
set of linear algebraic equations. The success of variational calculus depends on the
correct choice of the set of basis functions; if the basis functions are appropriate to
the problem, then only a small number of them will be needed to obtain accurate
results.

A quite accurate procedure that is applied to solve quantum mechanical prob-
lems within the variational formalism of the wave function expansion is the finite
element method (FEM) [6]. The FEM is a general nomenclature for a set of
procedures that are based on discretization technique of the space in elements and
the use of polynomial basis functions defined in each of these elements. Another
(quasi) variational procedure is the discrete variable representation (DVR) method
which considers the discretized space and uses basis functions that diagonalize the
matrix representation of the potential energy operator on the points of the dis-
cretized space [7, 8]. In this case, the matrix representation of the operator kinetic
energy can be calculated analytically bringing great efficiency in the evaluation of
the array elements. Together with the uses of global basis functions, the DVR and
FEM are some of most utilized methods to solve quantum problems in molecular
physics. Being variational approximations, they provide a means to systematically
improve the accuracy of the calculations by increasing the number of basis
functions.

In the actual chapter we present a review of Finite Element and Discrete Variable
Representation methods to study typical confined quantum systems, discussing the
advantages and disadvantages of each one of them. This chapter is organized as
follows. In the Sect. 5.2 we establish the general theoretical problem to study
confined quantum systems. In Sect. 5.3 we discuss the variational formalism, and
presents the one-dimensional DVR and p-FEM methods for solving the time
independent Schrödinger equation associated with the electronic structure problem
of the confined systems. In the Sect. 5.4 is presented the applications to confined
systems with one and two electrons. Specifically, results for the energy spectrum
and other properties are presented for the bounded harmonic oscillator, the
hydrogen atom confined spherically and endohedrally, hydrogenic ion confined in a
plasma, and one and two electrons quantum dots. Finally, in the Sect. 5.5 we
present our concluding remarks.
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5.2 Confined Quantum Systems

The basic ingredients to the study of confined quantum systems are established in
this section. We restrict the analyze only to electronic movement, but it can be
extended easily for problems involving another particles (e.g., nuclei of atoms and
molecules). In such a case, the time independent Schrödinger equation for N con-
fined electrons is written as

ĤWðrÞ ¼ EWðrÞ ð5:1Þ

where the Hamiltonian operator, without any spin term, is given by

Ĥ ¼
XN
k¼1

ĥðrkÞ þ
XN
k¼1

XN
l[ k

e2

rkl
; ð5:2Þ

r � r1; . . .; rNf g represents collectively the position vector of N electrons, rk is
the position vector of the kth electron, and rkl is the kth and lth electrons distance.
The one-electron Hamiltonian ĥðrkÞ, including an external electromagnetic field,
consists of

ĥðkÞ ¼ 1
2me

�i�hrk � e
c
~AðrkÞ

� �2
þeUðrkÞ �

X
A

ZAe2

rkA
þ ŵðrkÞ; ð5:3Þ

being ZAe the charge of the nucleus A, rkA the distance between the kth electron and
Ath nucleus, ~AðrkÞ and UðrkÞ the vector and scalar potentials that define the elec-
tromagnetic field, and ŵðrkÞ the confinement potential term.

Of this way, the properties of an electronic confined system depend of many
different issues as the way to simulate the spatial confinement and its geometric
shape, the existence and the intensity of external electrical and/or magnetic field, the
accuracy of the description of electron-electron interaction, the inclusion of spin
dependent terms in Hamiltonian, and the quality of the calculations, among others.
Some of them are discussed in the next subsections.

5.2.1 Spatial Confinement Models

Usually, the spatial confinement of a quantum system can be simulated by the
imposition of the boundary conditions on the wave functions, by changing of
the actual potential by a model one, and by introduction of a confinement potential
(see Refs. [1, 3, 4] and references therein). The choice of these ways, as well as
the shape of the model potential, will depend strongly on the nature of the
confinement.
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In particular, the potential models to treat confined electronic systems can be
separated into at least three general categories. The first one represents the con-
finement by a repulsive potential barrier, which can be penetrable or impenetrable.
These models are found, for example, in atoms under extreme pressure or inserted
in cavities (such as in zeolites or impurities in solids) and in semiconductor
nanostructures such as artificial atoms and molecules and quantum dots. Some
examples of these potential models are:

• Infinite Spherical Box [9] ŵðrkÞ ¼ 0 for rk\rck
1 for rk � rck

�
• Harmonic potential [10] ŵðrkÞ ¼ 1

2mx
2r2k

• Wood-Saxon potential [11] ŵðrkÞ ¼ 2k
1þexp ðr0�rkÞ=g½ �

• Gaussian confining potential [12] ŵðrkÞ ¼ �D 1� exp �cr2k
� �� �

• Anisotropic harmonic potential [13] ŵðrkÞ ¼ 1
2m x2

xx
2
k þ x2

yy
2
k þ x2

z z
2
k

� �
• Quartic potential [14] VðrkÞ ¼ mcx2

0
2

1
4a2 x2k � a2

� �2þy2k
� �

The second type is a confinement by an attractive enclosure, which is always
penetrable, it is found, for example, in atoms inside fullerenes. Some examples of
these potential models are:

• Attractive spherical shell [15] ŵðrkÞ ¼ �U0 if rck � rk � rck þ D
0 otherwise

�
• d-potential [16] ŵðrkÞ ¼ �U0dðrk � rcÞ
• Gaussian spherical shell [17] ŵðrkÞ ¼ �U0 exp � ðrk�r0Þ2

r2

� �
The third group aims to describe atoms embedded in neutral media (e.g., neutral

plasma or liquid helium). Some examples of these potential models are:

• Debye screened potential [18] ŵðrkÞ ¼ �Ze2 exp �lrkð Þ
rk

• Ion-sphere potential [19] ŵðrkÞ ¼
ðZ�1Þe2

2rck
3� rk

rck

� �2
	 


for rk � rck

0 for rk [ rck

8<
:

Details of each one of these potential models and their constants can be found in
the cited references. Note that each one of them has advantages and disadvantages
for treating the confined systems that it is proposing to do. For example, the
harmonic potential is convenient to represent electrons in a quantum dot close to the
equilibrium geometry, but is not superiorly limited. An alternative for this case is
the use of a Gaussian potential. In the case of attractive layer, the attractive
spherical shell potential is easily implemented, but exhibits discontinuities, which
can be overcome by Gaussian spherical shell. And the Debye screened and Ion-
sphere potentials are indicated for different plasma regimes.
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5.2.2 Levels of Many-Particle Interactions

Others indispensable ingredients to a precise determination of quantum effects in the
few electrons quantum systems are the accuracy of the description of electron-electron
interaction and the quality of the calculation. Various theoretical approaches have
been used for this purpose. We can cite, among them, the Hartree approximation
[20–22], the Hartree-Fock procedure [20, 23–26], the CI method [23, 26–28], the
density functional theory [26, 29–32], the exact diagonalization [33, 34], the Green
function [35], the Quantum Monte Carlo technique [26, 36, 37], the analytical
approaches [38–40], the asymptotic iteration method [41], the perturbation theory
[42, 43], theWKB treatment [44], and theRandomPhase approximation [45].Most of
these methodologies are limited to calculate ground and few excited states properties
[13, 46]. Due to the number of studies and interest, the two-electron quantum systems
are attractive workbenchs for testing any new computational or theoretical procedure.

5.3 Variational Methods

5.3.1 Variational Formalism

Within the spirit of the Rayleigh-Ritz variational principle, the problem of deter-
mining the eigenenergies and eigenfunctions of a quantum problem as the Eq. (5.1)
consists in finding stationary solutions of a functional of energy as follows

J½W�;W� ¼
Z
X

dmW�ðrÞ Ĥ � E
� �

WðrÞ; ð5:4Þ

where X is the accessible volume of system, the normalization condition of WðrÞ is
added by the Lagrange multiplier E, dm is the volume element. In the case of a
confined system, it is considered that the accessible volume is finite and the wave
function should vanish at the closed surface which delimits X.

To obtain the solutions of problem (5.1), initially the wave function WðrÞ is
expanded in terms of a finite basis functions set fjðrÞ

� �
,

WðrÞ ¼
X
j

cjfjðrÞ; ð5:5Þ

where fcjg are the coefficients of expansion. This allows rewriting Eq. (5.4) in a
matrix notation as follows

J½cy; c� ¼ cy H� EOð Þc; ð5:6Þ
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where c is a column vector with the expansion coefficients, and H and O are,
respectively, the Hamiltonian and Overlap matrices whose elements are given by

Hij ¼
Z
X

dmf �i ðrÞĤfjðrÞ ð5:7Þ

and

Oij ¼
Z
X

dmf �i ðrÞfjðrÞ: ð5:8Þ

The next step is to impose the stationarity condition on J½cy; c� under variations of
such coefficients. Using the calculus of variation and taking the functional variation

on cy, the stationary condition leads to

Hc ¼ EOc; ð5:9Þ

which is a generalized eigenvalue-eigenvector problem whose solutions are the
energies and the respective wave functions of the quantum system. Taking the
functional variation on c, equivalent result is obtained because H and O matrices
are hermitian.

5.3.2 Discrete Variable Representation

The Discrete Variable Representation (DVR) method was originally proposed by
Harris et al. [47] to calculate matrix elements of potential energy operator in one-
dimensional problems, specifically of anharmonic oscillators ones. Later, Dickinson
and Certain [48] showed that the method proposed by Harris et al. is equivalent to
Gaussian quadrature when the basis is constructed of orthogonal polynomials. In
1985, Light and co-workers [49] generalized this method to calculate matrix ele-
ments of Hamiltonian operator of one-dimensional problems, furthermore they had
discussed the extension of this method for multidimensional problems. From these
original works, the DVRmethod has been widely used to determine the rovibrational
excited states of polyatomic molecules and to describe processes of bimolecular
reactions, among others (see Refs. [7, 8] and references therein). Only recently
the DVR method began to be used for the study of quantum confined systems
[11, 50–53] and electronic structure calculations [54].

Although the DVR method is not strictly variational, it presents formal and
strong links with other variational methods (see, for example, Ref. [55]). Therefore,
it can be employed to study problems using the formalism of Sect. 5.3.1. The DVR
method considers the discretized space due to a Gaussian quadrature and uses basis
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functions that diagonalize the matrix representation of the potential energy operator.
An advantage of this method is that the matrix representation of kinetic energy
operator can be generally calculated analytically.

In this subsection we describe the DVR method for a general Gaussian quad-
rature in a one-dimensional space and show its main features. Also we discuss the
equally spaced DVR which is the simplest choice of quadrature points.

5.3.2.1 Methodology

Given a particular set of orthonormal functions giðxÞ; i ¼ 1; . . .; n, which has the
following property,

Xn
i¼1

jgiihgij ¼ 1̂; ð5:10Þ

we can construct a Gaussian quadrature, where the points fxig are eigenvalues of
the matrix X whose elements are given by

fXgij ¼ hgijx̂jgji ¼
Z

dxg�i ðxÞxgjðxÞ; ð5:11Þ

and their respective weights fwig are obtained from the following relation:

wi ¼ 1Pn
j¼1 g

�
j ðxiÞgjðxiÞ

: ð5:12Þ

In particular, the functions fgiðxÞg are known as primitive functions of the Gaussian
quadrature.

Specifically, the DVR method consists to obtain a set of orthonormalized
functions that satisfy the condition

fiðxjÞ ¼ dijffiffiffiffiffi
wi

p ; ð5:13Þ

and utilize it as a basis to expand the wave function of the system within the
variational formalism. To obtain this basis set ffig, To get this set of basis functions
ffig, we expand it in terms of primitive functions fgig,

fiðxÞ ¼ hxjfii ¼
Xn
j¼1

hxjgjihgjjfii; ð5:14Þ

and evaluate the integral hgjjfii by applying the quadrature rule
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hgjjfii ¼
Xn
l¼1

wlg
�
j ðxlÞfiðxlÞ ¼

ffiffiffiffiffi
wi

p
g�j ðxiÞ; ð5:15Þ

where it is employed the property (5.13). Replacing the expression (5.15) in
Eq. (5.14), the set of basis functions ffig becomes

fiðxÞ ¼
Xn
j¼1

ffiffiffiffiffi
wi

p
g�j ðxiÞgjðxÞ: ð5:16Þ

Therefore, the discrete variable representation method consists in the expansion of
the wave function using the basis set (5.16) and in the evaluation of the relevant
integrals by quadratures, with the quadrature points obtained from the diagonal-
ization of the matrix X (Eq. 5.11) and the weights shown in Eq. (5.12). Then the
elements of potential and kinetic energy matrices, calculated by using the Gaussian
quadrature rule, are, respectively,

Vij ¼ hfijV̂ jfji ¼ VðxiÞdij ð5:17Þ

and

Tij ¼ ffiffiffiffiffiffiffiffiffi
wiwj

p Xn
k;l¼1

g�kðxiÞglðxjÞhgkjT̂jgli: ð5:18Þ

Evidencing that the matrix representation of potential energy operator is diagonal
and the matrix representation of kinetic energy operator is obtained analytically
since, usually, the integral hgkjT̂jgli can be calculated analytically. In the literature,
there is a great amount of DVR primitive functions which have been utilized to
generate the DVR basis functions (see, for example, Ref. [56]), including numer-
ically optimized DVR basis set [57, 58].

5.3.2.2 Equally Spaced DVR

In practice, the eigenvalues of position operator are not used in computation of
matrix elements as quadrature points. In substitution are used the roots of the
ðnþ 1Þth DVR primitive basis function. A simple primitive DVR functions are
eigenfunctions of a particle in a one-dimensional box of range ½a; b� [59],

gjðxÞ ¼ 2
b� a

� �1=2

sin
jpðx� aÞ
b� a

	 

; j ¼ 1; . . .; n; ð5:19Þ

being ½a; b� the interval where the particle is confined. As the used quadrature points
are the roots of gnþ1ðxÞ function, we have that
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xi ¼ aþ i
b� a
nþ 1

; i ¼ 1; . . .; n:

Using Eq. (5.12), the weights are given by

wi � w ¼ b� a
nþ 1

:

Because it forms a quadrature where the points are uniformly distributed in interval,
this implementation is named Equally Spaced DVR.

With this choice of DVR primitive basis functions we get orthonormalized
functions in the integration region and, furthermore, each one satisfy conditions that
are desired to the wave function WðxÞ, i.e., they are vanishing on the interval limits.
Figure 5.1 shows the complete set of basis functions, ffiðxÞg (i ¼ 1; . . .; 9) obtained
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(a)Fig. 5.1 The particle-in-box
DVR basis eigenfunctions for
N ¼ 9, a f1ðrÞ and b fiðrÞ,
i ¼ 1; . . .; 9. Dot-dashed
vertical lines indicates the
position of equally spaced
grid points. Reproduced from
Ref. [124]

5 Confined Quantum Systems Using the Finite Element … 109



from Eqs. (5.16) and (5.19). Thus, the kinetic energy matrix elements of Eq. (5.18)
become

Tij ¼ � �h2

2l
w
XN
k;l¼1

g�kðxiÞglðxjÞ
2

b� a

Zb

a

dx sin
kpðx� aÞ
b� a

	 

d2

dx2
sin

lpðx� aÞ
b� a

	 


¼ �h2

2l
w

p
b� a

� �2XN
k¼1

k2g�kðxiÞgkðxjÞ;

where we use the fact that

hgkjT̂ jgli ¼ � �h2

2l

Z
dxg�kðxÞ

d2

dx2
glðxÞ;

with l being the mass, and

2
b� a

Zb

a

dx sin
kpðx� aÞ
b� a

	 

sin

lpðx� aÞ
b� a

	 

¼ dkl:

We remember that the potential energy matrix is diagonal with elements given by
Eq. (5.17).

5.3.3 Finite Element Method

The finite element method (FEM) is employed in quantum mechanics as a meth-
odology based on the variational formalism for the expansion of the wave function
in a finite basis set [6]. It is a general nomenclature for a set of procedures which are
based on the technique of space discretization in elements and in the use of
polynomial basis functions defined in each of these elements. The finite element
method has been widely used in the analysis of engineering problems [60, 61], but
in recent years has increased its application in the study of molecular dynamics and
electronic structure for bounded systems [62–68], including in confined quantum
systems [9, 69–71], as well as scattering processes [72–76].

The procedure for space discretization and the representation of the wave
function by pieces of polynomials generate errors which can be minimized by
strategies to converge the results toward the exact values. Based on this, several
versions of the finite element method have been developed. The traditional version
of FEM is the h-version in which the accuracy of the results is increased by
decreasing the size, h, of the mesh elements due the increase of the number of
elements. In the p-version remains the same number of elements and increases the
order, p, of the polynomial. Already hp-version combines both approaches [77].
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In this subsection we describe the one-dimensional p-version of the finite
element method (p-FEM) and show its main features. Also we present the self-
consistent FEM (SC-FEM) for construction of a optimized mesh of elements.

5.3.3.1 Methodology

The finite element method (FEM) consist of dividing the space into subregions (or
elements) and expand the wave function in terms of basis functions defined in each
of these elements. In the unidimensional case, the range of integration ½a; b� is
divided into Ne elements, being the ith element defined in the range of xi�1 up to xi
with x0 ¼ a and xNe ¼ b, and the wave function is expanded as follows:

WðxÞ ¼
X
i¼1

Ne X
j¼0

ki

cijf
i
j ðxÞ; ð5:20Þ

where the basis functions {f ij ðxÞ} satisfy the following property:

f ij ðxÞ ¼ 0 if x 62 ½xi�1; xi�: ð5:21Þ

The parameter ki is the highest order of polynomials associated with ith element,
f ij ðxÞ is the jth basis function of the same element and {cij} are the coefficients of
expansion.

The p-version of the method of finite element (p-MEF) uses interpolant linear
and shape functions that allow to employ polynomials of different orders in different
elements. The two interpolant functions are defined as

Ii1ðxÞ � f i0ðxÞ ¼
xi � x

xi � xi�1

Ii2ðxÞ � f ikiðxÞ ¼
x� xi�1

xi � xi�1
x 2 ½xi�1; xi�;

ð5:22Þ

while the ki � 1 shape functions are defined as

SijðxÞ � f ij ðxÞ ¼ ð4jþ 2Þ�1
2 Pjþ1ðyiÞ � Pj�1ðyiÞ
� �

; j ¼ 1; . . .; ki � 1; ð5:23Þ

where yi ¼ 2f i0ðxÞ � 1 e PjðyiÞ are Legendre polynomials. In the Fig. 5.2 is shown
the linear and shape functions until the third order, and in Fig. 5.3 we display
pictorially the basis set for Ne ¼ 3 and ki ¼ k ¼ 2. These functions, defined in
expressions (5.22) and (5.23), satisfies the following relationships at the edges of
the elements:
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f i0ðxi�1Þ ¼ 1 ¼ f ikiðxiÞ
f i0ðxiÞ ¼ 0 ¼ f ikiðxi�1Þ

f ij ðxi�1Þ ¼ 0 ¼ f ij ðxiÞ j ¼ 1; . . .; ki � 1:

ð5:24Þ

Note that, based on relations (5.24), the imposition of the continuity of the wave
function in the nodes of elements yields the relationship ciki ¼ ciþ1

0 between the

coefficients of expansion, requiring that f ikiðxÞ þ f iþ1
0 ðxÞ be considered the basis

function that serves two elements. We then define a new set of independent coef-
ficients {ak}, whose relationship with the coefficients {cij} is given by

ak ¼ cij , k ¼ ði� 1Þki þ jþ 1:

Fig. 5.2 Some local basis functions used in p-FEM

Fig. 5.3 Example of a p-FEM basis functions set with Ne ¼ 3 and k ¼ 2 used to expand the wave
function
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Considering the wave function given by the expansion (5.20), whose the basis
functions satisfies the properties (5.21) and (5.24), the matrix representation B of
any local operator bB assumes the following block tridiagonal form:

B ¼

B1 b1 0 0 � � � 0
ðb1Þy B2 b2 0 � � � 0

0 ðb2Þy B3 b3 . .
. ..

.

0 0 ðb3Þy . .
. . .

.
0

..

. ..
. . .

. . .
.

BNe bNe

0 0 � � � 0 ðbNeÞy BNeþ1

2
6666666664

3
7777777775
; ð5:25Þ

where

Bi ¼

Bi�1
kiki þ Bi

00 Bi
01 � � � Bi

0ki�1
Bi
10 Bi

11 � � � Bi
1ki�1

..

. ..
. . .

. ..
.

Bi
ki�10 Bi

ki�11 � � � Bi
ki�1ki�1

2
6664

3
7775; bi ¼

Bi
0ki 0 � � � 0

Bi
1ki 0 � � � 0

..

. ..
. . .

. ..
.

Bi
ki�1ki 0 � � � 0

2
6664

3
7775

with i ¼ 1; . . .Ne and

BNeþ1 ¼ BNe
kNe kNe

:

In these expressions, the non-zero elements of B matrix are

Bi
jj0 ¼

Zxi
xi�1

dxf ij ðxÞbB f ij0 ðxÞ :

Note that when it is employed a p-FEM the B matrix is sparse, concentrated on the
diagonal and also it is hermitian if bB is hermitian. Another important property is
that only one basis function is different from zero in the last knot of mesh
(x ¼ xNe ¼ b). Because of this, the spatial confinement on the wave function WðxÞ
can be imposed easily employing a p-FEM just removing the basis function f Ne

ki
ðxÞ

of the expansion (5.20) [9].

5.3.3.2 Self-consistent FEM

An important point in p-FEM is the choice of size of each element of the unidi-
mensional mesh or distribution of the nodes that define these elements. A simple
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way to build the mesh is to get a equidistant discretization for the nodes,
{xi, i ¼ 0; . . .;Ne}, given by

xi ¼ aþ i
ðb� aÞ
Ne

: ð5:26Þ

However, in many cases it is necessary a optimized mesh to achieve better
convergence of results with a smaller number of basis functions. In Ref. [17],
Nascimento et al. introduced an amendment in the quantum mechanical procedure
(QMP) to build optimized meshes for each potential, originally proposed by
Prudente and Soares Neto [63]. The QMP is based on the rule of Gaussian
quadratures, used in the Potential Optimized DVR method [57, 58, 78]. This
method uses a set of orthonormal eigenfunctions of a particular Hamiltonian
operator to build a Gaussian quadrature associated with them, where the points of
the quadrature can be given as the eigenvalues of position operator on these
orthonormal basis functions.

In that renewed procedure, which is called self-consistent finite element method
(SC-FEM), initially is proposed an equidistant mesh and, after some self-consistent
cycles, it is obtained a new FEM mesh optimized for the potential [17]. The basic
steps of this procedure are:

1. It is estimated a set of eigenfunctions /iðxÞ of the quantum system in question
using the p-FEM with a mesh which initially may be uniform.

2. Using the Ne � 1 first eigenfunctions, we build a matrix whose elements are

Xf gij¼
Zb

a

dx/�
i ðxÞx/jðxÞ;

where X is a representation matrix of the position operator bX .
3. We diagonalize the matrix X, and their Ne � 1 eigenvalues are x1; x2; . . .; xNe�1

nodes that define the edges of the elements.
4. It is done a test of convergence comparing the eigenvalues of energy obtained

with the new mesh with those obtained with the previous mesh. If the difference
between them is out of a given tolerance it is returned to the stage 1 repeating
the procedure with the new mesh. When it reaches the convergence the process
is completed and the final mesh is obtained.

5.3.4 Commentary About Other Methods

The B-spline method refers to a representation of piecewise polynomial functions (or
pp-functions), i.e., functions defined piecewise by polynomials. Such pp-functions
in the B-form are often called spline functions which are expressed as a linear
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combinations of B-spline functions. Hence B-splines generalize polynomials in
the approximation of arbitrary functions. The B-splines was originally developed
by Curry and Schoenberg in 1947 [79] and the term is an abbreviation for basis
splines. Important contributions to the development of B-spline’s theory was also
given by De Boor [80]. B-spline method have been widely employed in atomic and
molecular physics [81–86] including review articles on the its applications in this
field [87, 88]. The Monte Carlo is a term that denote a set of stochastic methods,
doing reference to gambling located in Monte Carlo city. Specifically, the correlation
function quantumMonte Carlo (CFQMC) method [89–91] consists in a combination
of a variational procedure based on the expansion of wave function by a finite basis
set together with a stochastic methodology to compute the multidimensional inte-
grals. The stochastic feature of method is due to generation of a random walk by
Metropolis algorithm to evaluate the related integrals.

5.4 Applications

5.4.1 One-Dimensional Harmonic Oscillator

The one-dimensional harmonic oscillator (HO-1D) is one of the most extensively
used systems for testing new methodologies in quantum mechanics. In particular,
the confined HO-1D has been used in the literature to explain some experimentally
observed deviations from the results predicted by calculations based on the free
harmonic oscillator model. We can cite, for example, the emission spectra of the
luminescence centers in crystals [92], the infrared stretching transition of the por-
phine [10] and confinement effect in the vibrational energies of point defects,
impurities or luminescence centers in solids [1, 10, 93].

In this subsection we show results of the numerical calculation done with the
equally spaced discrete variable representation (DVR) applied to the study of
confined HO-1D. For this purpose, Costa et al. [11] proposed the Woods-Saxon
potential to simulate spatial confinement. In this procedure it is introduced in the
“free” Hamiltonian of the quantum system an additional modified Wood-Saxon
potential so that VðxÞ ¼ 1

2 kx
2 þ VMWSðx;RÞ where

VMWSðx;RÞ ¼
2k

1þexp½ðRþxÞ=g� x\0

2k
1þexp½ðR�xÞ=g� x[ 0

8<
: ð5:27Þ

whereas R defines the confinement barrier position, k controls the barrier height and
g controls its slope. Figure 5.4 shows the VMWS for different values of g. The great
advantage this methodology is that it enables the study of a wide range of systems
and confinement regimes by varying two parameters in the model potential. This
technique was employed to find numerical results in two different cases.
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5.4.1.1 Confinement with Zicovich-Wilson Model Potential

In order to simulate the Zicovich-Wilson et al. [10] confined potential given by

VðxÞ ¼ 1
2
k

tan ax
a

� �2
a ¼ p

2R
; ð5:28Þ

an optimization process is utilized to obtain the parameters g and k. Then, the
eigenenergies were calculated using 300 equally spaced points between −5.0 and
5.0 a.u. to build the DVR. Table 5.1 shows the energy eigenvalues for a few
confinement radius values (R ¼ 0:5, 1:0, 2:0, 3:0, 4:0) along with the exact values.
It has used in the calculations �h ¼ m ¼ k ¼ 1. The results are in very good
agreement with results obtained by Zicovich-Wilson et al.

5.4.1.2 Confinement with Constant Infinite Barrier

The other system is the confined HO-1D with an infinite barrier. Again, it was
utilized an optimization procedure to obtain the parameters g and k. The eigenen-
ergies were calculated utilizing 300 equally spaced points between�4:0 and 4:0 a.u.
to build the DVR. Table 5.2 shows the energy eigenvalues for 5 confinement radius
values ðR ffiffiffi

2
p ¼ 0:5, 1:0, 2:0, 3:0, 4:0Þ. The results obtained by Adams and Miller

using the modified WKB method [94] and by Consortini and Frieden with an ana-
lytical quantum procedure [95] are presented for comparison. In these calculations
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Fig. 5.4 General form of modified Woods-Saxon potential. Reproduced from Ref. [11]
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�h ¼ m ¼ 1 and k ¼ 1
4. One sees that the DVR results are in quite good agreement

with other results in the literature.

5.4.2 Confined Hydrogenic Atom/Ion

In this subsection we show application of theoretical and computational method-
ology based on variational formalism for bounded states and the p-version of finite
element method (p-FEM) on more specifics situations involving hydrogenic atoms
and ions. The Hamiltonian of the confined hydrogenic atom/ion assumes the same
form of the free one, except the potential energy, VðrÞ. The variational solutions are

Table 5.1 Energy
eigenvalues for confined
one-dimensional harmonic
oscillator using DVR method
with Woods-Saxon model
potential (VMWS) and with
Zicovich-Wilson method with
their model potential (ZWPJ)
(�h ¼ m ¼ k ¼ 1)

State R VMWS ZWPJ [10]

0 0.5 4.97935 4.98463

0 1.0 1.39537 1.41056

0 2.0 0.67337 0.67745

0 3.0 0.58008 0.57321

0 4.0 0.54841 0.54004

1 0.5 19.88122 19.88835

1 1.0 5.44507 5.46495

1 2.0 2.33341 2.34079

1 3.0 1.85533 1.85672

1 4.0 1.69600 1.69722

2 0.5 44.66856 44.66101

2 1.0 12.00843 11.98583

2 2.0 4.63198 4.62097

2 3.0 3.40211 3.41438

2 4.0 2.98925 3.00861

3 0.5 79.32291 79.30261

3 1.0 21.03005 20.97307

3 2.0 7.54599 7.51800

3 3.0 5.24103 5.24620

3 4.0 4.45743 4.47422

4 0.5 123.80203 123.81313

4 1.0 32.40033 32.42660

4 2.0 11.01635 11.03189

4 3.0 7.361411 7.35218

4 4.0 6.10798 6.09404

Reproduced from Ref. [11]
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obtained after solving, for a particular angular momentum l, the generalized
eigenvalue-eigenvector problem

Hlc ¼ EOlc; ð5:29Þ

where c is the coefficient vector. In such an equation the Hamiltonian and Overlap
matrix elements are given by

fHlgij ¼
Zrc
0

dr
�h2

2l
df l�i
dr

df lj
dr

þ f l�i Vef
l ðrÞf lj

( )
ð5:30Þ

Table 5.2 Energy
eigenvalues for confined
HO-1D with constant infinite
barrier using DVR method
with Woods-Saxon potential
(VMWS), analytical quantum
procedure (CF) and modified
WKB (AM)
(�h ¼ m ¼ 1; k ¼ 1

4)

State R
ffiffiffi
2

p
CF [95] AM [94] VMWS

0 0.5 9.87 9.88 9.87169

0 1.0 2.48 2.48 2.47645

0 2.0 0.65 0.67 0.64978

0 3.0 0.34 0.38 0.34373

0 4.0 0.27 0.30 0.26878

1 0.5 39.48 39.55 39.47954

1 1.0 9.89 9.90 9.89081

1 2.0 2.54 2.54 2.54007

1 3.0 1.25 1.26 1.24917

1 4.0 0.88 0.90 0.88269

2 0.5 88.80753

2 1.0 22.23399

2 2.0 5.63459

2 3.0 4.55298

2 4.0 1.70070

3 0.5 157.84127

3 1.0 39.51260

3 2.0 9.95907

3 3.0 7.01416

3 4.0 2.79291

4 0.5 246.54676

4 1.0 61.72734

4 2.0 15.51694

4 3.0 10.02051

4 4.0 4.18705

Reproduced from Ref. [11]
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and

fOlgij ¼
Zrc
0

drf l�i ðrÞf lj ðrÞ; ð5:31Þ

with ff lj g being the finite basis set and Vef
l ðrÞ ¼ VðrÞ þ ½�h2lðlþ 1Þ=2lr2�.

We present applications concerning three problems. The first is the model of
hydrogen atom under pressure showing some of its properties for various con-
finement radii. After we present results for the electronic structure of the hydrogen
atom endohedrally confined by type C36 and C60 fullerenes using a model potential.
Finally, we present the effect of plasma on the spectral properties of helium, alu-
minum and argon hydrogenic ions. Except when otherwise stated, all calculations
are in atomic units and the element mesh was built using equidistant discretization
and polynomials of same order for all elements (ki ¼ k 8 i).

5.4.2.1 Spherical Confinement

One of the first examples of confined quantum system, belonging to a small class of
problems in atomic physics that can be solved exactly [96] is the hydrogen atom
limited by an infinite spherical potential barrier. This model of compressed atom
was introduced in 1937, when Michels et al. [97] proposed to simulate the effect of
pressure on an atom. This work was followed by Sommerfeld and Welker [98] who
performed calculations of ground state and recognized the importance of the model
for astrophysics. Furthermore, several articles have studied this system including
its use in the understanding of the interiors of giant planets [99, 100] and of atoms
embedded in neutral media (e.g., neutral plasma or liquid helium [18, 101]).

We assume an infinite mass for the nucleus and putting it on the center of the
hard sphere with radius rc.

1 The potential energy becomes

VðrÞ ¼ � 1
r ; r\rc

1; r� rc
;

�
ð5:32Þ

where is included an impenetrable spherical barrier at r ¼ rc.
In Ref. [9] Guimarães and Prudente solved the problem given in Eq. (5.29) and

calculated the energies for many states of confined hydrogen in various confinement

1 Note that for a repulsive spherical cage the natural position of an atom is in the center, but for
attractive potentials, this is not a general situation. However, even if the atom is off-center, it is
reasonable first solve the problem with spherical symmetry, and then develop expansions that
represent the effect of the displacement of the atom to some other position. Similarly, the surface of
confinement need not be spherical, however, it is reasonable to start with a sphere, then consider
how the system is modified by the distortion of the confining surface.
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radii, using different numbers of basis functions, varying both the number of mesh
elements, Ne, as the polynomials order, k. The convergence process for the energies
was analyzed using the p-FEM with uniform mesh, given by expression (5.26),
when Ne and k were increased, defining a convergence factor

EðNe; kÞ � EðNe; k � 1Þj j � 10�11; ð5:33Þ

where EðNe; kÞ is the energy as function of the parameters of base (Ne and k). This
study indicated that the eigenfunctions for the hydrogen atom are better approxi-
mated by high order polynomials. Hence, there should be a balance between the
number of elements and the polynomial order to achieve a good convergence. This
fact motivated the uses of Ne ¼ 5 for calculations of energy levels while k was
chosen in order to achieve a accuracy of at least 11 figures.

The very accurate results previously obtained by Aquino [102] and by Goldman
and Joslin [103] were used as reference to evaluate the accuracy of p-FEM results.
Aquino employed a numerical method which uses an approximation of wave
function into Taylor series. On the other hand, Goldman and Joslin utilized an
analytical solution of radial part of Schrödinger equation for the confined hydrogen
atom, and, for each fixed l and rc, searched numerically the zeros of confluent
hypergeometric functions. The energies calculated by Aquino have precision of
10–11 figures, while Goldman and Joslin found results with accuracy of at least 7
figures. In Tables 5.3 and 5.4 are shown the energies for 1s and 3d states for various
confinement radii and compared with the ones calculated by a variational method
proposed by Varshni [104]. Moreover, in Table 5.3 the energies calculated by other
variational method utilizing Gaussian basis set proposed by Zicovich-Wilson et al.
[105] and the energies obtained by a time dependent variation perturbation calcu-
lations performed by Saha et al. [18] are shown for comparison.

The excellent precision of the p-FEM method to obtain eigenstates of confined
hydrogen atom for ground and excited states for different values of l can be noted in
these tables where the p-FEM results and the ones obtained by Aquino and
Goldman and Joslin agree up to seven figures for any energy state independently of
the confinement radius. Moreover, when compared with the other results shown in
Tables 5.3 and 5.4 the p-FEM is the one that presents the best results. To obtain this
precision, the value of highest order of polynomial basis functions associated with
an element varied between k ¼ 4 and k ¼ 9 for small and larger confinement radii,
respectively, representing small matrices with dimensions between 19	 19 and
44	 44. We also point out that the p-FEM basis are local functions, and, conse-
quently, the integration is not performed over all region of space.

It is well known that not always an useful method for computing the energy
spectrum is able for reproducing other electronic properties. In order to examine the
efficiency of the p-FEM method on the calculation of such properties, the dipole
polarizability (a) for the confined hydrogen atom in the 1s state for various con-
finement radii is shown in Table 5.5. They are compared with the values computed
by Dutt et al. [106] obtained from an approximate formula using a numerical exact
calculation, with the values calculated by Banerjee et al. [107] who utilized the
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variational perturbation procedure, with the values calculated by Saha et al. [18]
which also utilized variation perturbation calculations and with the precise
numerical values extracted from Laughlin [108]. Note that the p-FEM results are

Table 5.4 Energy eigenvalue (in Hartree) for 3d state for a compressed hydrogen atom as a
function of confinement radius (in Bohr); the p-FEM results are calculated using Ne ¼ 5

rc Varshnia Goldman and Joslinb p-FEMc Aquinod

0.1 1644.530 1644.52992240

0.5 63.16018 63.1601844674

1.0 14.990 14.96746 14.9674640862

1.5 6.294 6.28481943532

2.0 3.3320 3.327509 3.32750915650

3.0 1.2944 1.29280327199

4.0 0.6220 0.6513558 0.62135577618

5.0 0.32943 0.32911714297

7.0 0.09666 0.09658964090 0.09658964089

8.0 0.04605824738 0.04605824737

10.0 −0.00709 −0.007092784 −0.00709278397 −0.00709278397

14.0 −0.04311347041 −0.04311347041

20.0 −0.05396756442 −0.05396756442
a Ref. [104]; b Ref. [103]; c Ref. [9]; d Ref. [102]
Reproduced from Ref. [9]

Table 5.5 Polarizability a (in atomic units) for the 1s state as function of confinement radius rc;
The p-FEM results are calculates using Ne ¼ 6 and k ¼ 6

rc Dutt et al.a Banerjee et al.b Saha et al.c Laughlind p-FEMe

0.4 0.00085 0.000853148792

1.0 0.02868 0.03 0.0291 0.0287920226

1.4 0.09857 0.0990912992

2.0 0.34016 0.35 0.3344 0.342558 0.342558109

2.5 0.69490 0.700675176

3.0 1.02432 1.20 1.19170606

4.0 2.35782 2.39 2.377982333 2.37798233

5.0 3.40294 3.43 3.2176 3.422454224 3.42245422

7.0 3.51298 4.35 3.8079 4.347638027 4.34763803

9.0 4.49 4.487413391 4.48741338

12.0 4.499828228 4.49982819
a Ref. [106]; b Ref. [107]; c Ref. [18]; d Precise numerical values from Ref. [108]; e Ref. [9]
Reproduced from Ref. [9]
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identical to precise numerical values of Laughlin, which it indicates that the wave
function obtained within the p-version of the finite element method is enough
accurate.

In Fig. 5.5 it is plotted the energy levels of 2s, 2p, 3s, 3p and 3d states as
function of confinement radius, rc. It can be noted the splitting of the degeneracy
observed in the free hydrogen atom for the levels n l, with 0 6¼ l� n� 1, due to
isotropic compression. Also, it can be observed accidental degeneracy between 2s
and 3d levels at rc ¼ 2:0 bohr and the inversion of the energy values for rc [ 2:0
bohr.

5.4.2.2 Endohedral Confinement

Systems involving endohedral fullerenes, where atoms and small molecules are
confined in a cage of carbon with Cnðn� 20Þ, have attracted much interest because
their applications in nanoscience and nanotechnology [109]. Usually, the studies of
electronic structure of endohedral fullerenes are performed considering all electrons
by using ab initio, DFT and semi-empirical methods. However, it may be inter-
esting to substitute all electrons description by models where the electrons of the
guest atom or molecule are affected by an attractive spherical potential that simulate
the Cn cage. This strategy has been utilized with success to describe the essential

Fig. 5.5 Energy values (in Hartree) as function of confinement radius (in Bohr) for 2s, 2p, 3s, 3p
and 3d states of the compressed hydrogen atom. Reproduced from Ref. [9]
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features of the experimental results [2, 110]. The most employed models are the
short-range potential shell of inner radius rc and thickness D

VsrðrÞ ¼ �U0 for rc � r� rc þ D;
0 otherwise,

�
ð5:34Þ

and the d-potential

VdðrÞ ¼ �U0dðrÞ for r ¼ rc;
0 otherwise:

�
ð5:35Þ

In order to avoid numerical instability due to the sharp forms of potentials (5.34)
and (5.35) and provide a more realistic description of the physical behavior of the
confinement environment. Nascimento et al. [17] proposed to simulate the envi-
ronment of a fullerene cage by an attractive short-range spherical Gaussian type
potential given by

ŵðrÞ ¼ �w0 exp½�ðr � rcÞ2=r2�: ð5:36Þ

Therewith, the fullerenes can be modeled by the adjustment of the radius of
confinement shell, rc, the thickness, given by r, and the well depth, w0. For the
specific case of endohedrally confined hydrogen atom at the center of Cn cage, the
potential will be described by VðrÞ ¼ � 1

r þ ŵðrÞ.
Here are presented results of Ref. [17] concerning the use of the p-FEM to

perform electronic structure calculations of hydrogen atom inside C60 and C36

fullerenes modeled by the Gaussian shell potential (5.36). All p-FEM calculations
were performed using Ne ¼ 20, k ¼ 8, totalizing 139 local basis functions, and
rmax ¼ 200:0 a0; this assert an accuracy of, at least, four figures in the energy levels.
The self consistent finite element method (SC-FEM) was also utilized to make the
optimization process of element mesh. The Fig. 5.6 displays the equidistant and the
optimized mesh, jointly with the effective (Coulombic + Gaussian confinement +

centrifugal) potential, Vef
l ðrÞ, for w0 ¼ 0:647 Ryd, r ¼ 0:57 A



, rc ¼ 3:54 A



and

l ¼ 0. As expected, in the Figure it can be seen clearly that the node points of the
optimized mesh are more concentrated in the regions where the potential reach a
minimum. The consequence in the energy values is great: for the 1s energy level,
the equidistant mesh gives a value of �0:4987 Hartree, while it is found the
accurate value of �0:5006 Hartree for the optimized one.

In order to compare the Gaussian shell model with the previous one, Eq. (5.34),
proposed by Connerade et al. [15], the energy levels of ns, n ¼ 1; . . .; 4, electronic
states for H@C60 were calculated as a function of the confining well depth, w0. The
choice of rc was taken equal to the characteristic (or experimental) radius of the

fullerene cage; it was utilized rc ¼ 3:54 A


[111]. The value of r of the Gaussian

model was adjusted to satisfy the condition
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Z1
0

wðrÞdr ¼ U0D ð5:37Þ

where U0 is the well depth of the square well and D is the thickness of Eq. (5.34),
while it is assumed that w0 ¼ U0. Following Connerade et al. [15], it is assumed

that D ¼ 1 A


, leading r ¼ 0:57 A



to the C60 cage. The results of the spherical

Gaussian shell are shown in Fig. 5.7, where they are compared with those obtained
by Connerade et al. [15]. There we can see a good agreement among both results,
and the observed differences are due to the functional differences among the con-
finement potentials. For example, the 2s state is strongly modified even for small
values of w0, while the other states remain practically unchanged. However, the
avoided crossings between ns and ðnþ 1Þs states remain in the Gaussian shell
model, but their localizations are slightly differents; the 1–2s, 2–3s and 3–4s
avoided crossings occur approximately at 1.5, 5.4 and 11.6 Ryd, respectively, for
the present potential while for the Connerade et al. potential these crossings occur
approximately at 1.4, 5.0, and 13.5 Ryd, respectively.

The potential depth w0 to simulate a real cage can be obtained from experimental
or theoretical data. A simple procedure is by fitting the calculated energy of an
electron placed inside the Gaussian attractive shell (5.36) to the experimental value
of the electron affinity [2]. Performing the evaluation of the potential depth w0 to

Fig. 5.6 The effective (Coulombic + Gaussian confinement) potential Vef
0 ðrÞ (full line), the

equidistant (triangle up) mesh and optimized one (square) obtained using the SC-FEM; distance in
bohr and potential energy in Hartree. Reproduced from Ref. [17]
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simulate a real C36 cage, it was found w0 ¼ 9:29 eV ¼ 0:683 Ryd considering the
value of 2:8 eV for the experimental electron affinity of C36 [112]. Indeed, the
quality of the p-FEM calculations enables to show clearly that, at this typical value
of w0 for the C36, all states feel the influence of the confinement well. For this, in
Fig. 5.8 we display the 1s to 4d wave functions calculated at this w0, plotted with
the effective potential (Coulombic + confinement). The choice of rc was again taken
equal to the characteristic (or experimental) radius of the fullerene cage; it was

utilized rc ¼ 2:50 A


[113]. The states 2s, 2p, 3d have most of their amplitudes in

the confinement region and remain bond in the outer well. The 3s, 4s, 3p, 4p and 4d
states appears partially bound in the outer confining well. The 1s state has most of
its amplitude in the inner Coulomb well but a significant amount of it in the outer
well also, so that its energy is decreased by one amount nearly equal to the con-
fining well depth.

Figure 5.9 displays the 1s to 4d energy levels of H@C60 as a function of w0

calculated using the Gaussian shell. As well as in the spherical confinement (see
Fig. 5.5), it can be noted the splitting of the degeneracy observed in the free
hydrogen atom due to confinement potential. The nl states more affected by
the fullerene cage are the ones with l ¼ n� 1. Also the accidental degeneracy can
be observed more clearly than in the spherical confinement as we can see between
the 2s and 3d states.

Fig. 5.7 Energies of 1s to 4s levels of H@C60. Solid lines, p-FEM results; dashed lines,
Connerade et al. Reproduced from Ref. [17]
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Fig. 5.8 The 1s to 4d radial wave functions for H@C60 at w0 ¼ 0:683 Ryd and the effective
potential. Solid lines, s states; dashed lines, p states; dashed dot lines, d states; dotted line, effective
potential (Coulombic + confinement). Reproduced from Ref. [17]

Fig. 5.9 The 1s to 4d energy levels of H@C60. Reproduced from Ref. [17]
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5.4.2.3 Plasmatic Confinement

The properties of the plasma environment and its effect on atomic systems has been
subject of theoretical and experimental investigations for several years in many
areas such as plasma physics, astrophysics, chemistry and so on [114, 115]. The
interaction between the quantum mechanical properties of the plasma at a given
temperature and those of the bound electrons from the embedded ions produces an
external pressure on the system which modifies its spectral properties such as
energy levels, polarizabilities, etc. To study the behavior of atomic systems in
plasmas is necessary to understand their interaction with the plasma environment
and find the effective interaction potential which is the sum of the interaction
potential produced by strange electric charge in the plasma with the extra potential
produced by the disturb of spatial distribution of charged particles in the plasma.

The coupling constant of a plasma, C, is defined as the ratio between the average
Coulomb interaction energy and the average kinetic energy. For a weakly coupled
plasma (C�1) the Debye-Hückel model is very useful. Using this model, the
plasma is considered as a neutral fluid of high electrical conductivity wherein
we introduce an ion of electric charge Ze, where Z is the atomic number and e is
the electron charge. For a hydrogenic ion this results in the modification of the
Coulomb potential energy for the following (in Gaussian units)

VðrÞ ¼ �Ze2
e�l

D
r

r
; ð5:38Þ

where l
D
is the Debye parameter. The Debye screening radius is given by

rD ¼ 1
l

D

¼ kBT
4pð1þ ZÞne2

	 
1
2

:

where n is the density of ions and electrons in regions of null potential, kB is the
Boltzmann constant and T is the plasma absolute temperature.

In the case of one component spatially homogeneous strongly coupled plasma
(C[ 1), the ion-sphere model [116] is introduced as a useful concept replacing the
Debye-Hückel model. O Ion sphere consists of a single ion of charge Ze and its
neutralizing sphere negatively charged that surrounds it canceling its charge. This
sphere represents the territorial domain of ion influence, in which other particles,
having been repelled, are not likely to be found. Considering a hydrogenic ion with
nuclear charge Ze having a single bound electron immersed in a homogeneous
plasma with electronic charge density n within a sphere of radius R such that
exactly Z � 1 of the central positive charge is neutralized, under this condition the
interaction potential energy is
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VðrÞ ¼ � Ze2
r þ ðZ�1Þe2

2R 3� r
R

� �2h i
; (for) r�R

0 ; (for) r[R

(
; ð5:39Þ

where,

R ¼ Z � 1
4pn=3

	 
1
3

:

In the Table 5.6, are presented results of ground state energy from Al12þ ion in a
dense plasma for various ion-sphere radii calculated utilizing a optimized mesh by
the SC-FEM performed by Guimarães and Prudente [117]. They are compared with
others results calculated by a variational method which utilizes combination of
Slater type orbitals proposed by Bhattacharyya et al. [19]. On the other hand, in
Table 5.7, are presented results of ground state energy from Ar17þ ion for different
Debye parameter and screening radius also calculated utilizing the SC-FEM. They
are compared with results calculated by a variational method proposed by the same
former authors. We note in both tables that almost all results with FEM and the ones
obtained by Bhattacharyya et al. [19] agree in practically all decimals independently
of the confinement radius. To get this accuracy, the number of mesh elements and
the value of higher order polynomial basis functions associated with a mesh ele-
ment were Ne ¼ 4 and k ¼ 7, respectively. These values for Ne and k represent
matrices H and O (see Eqs. 5.30 and 5.31) with size 27	 27. However, if we
analyze the accuracy achieved in the calculations, the FEM has the feature of the
computation be fast because of the sparse characteristic of matrices generated (see
Eq. 5.25).

To demonstrate that the FEM is also effective in the calculation of excited states,
in Fig. 5.10 it is shown the behavior of 1s, 2s, 2p, 3s, 3s, 3p and 3d energies, as a
function of ion-sphere radius, for the He

þ
hydrogenic ion. When the confinement

Table 5.6 Ground state energy (�E1s), in Hartree, for the Al12þ in different plasma electronic
densities

Ion-sphere radius (a.u.) Plasma density (/cc) Bhattacharyya et al. [19] SC-FEM [117]

9.9 1.99(22) 82.6819 82.6819

3.38146 5.0(23) 79.1796 79.1796

3.0227 7.0(23) 78.5489 78.5489

2.7798 9.0(23) 78.0297 78.0297

2.13018 2.0(24) 76.0610 76.0610

1.86089 3.0(24) 74.8437 74.8437

1.3419 8.0(24) 71.1306 71.1303

Notation ðxÞ � 10x

The results obtained with SC-FEM use Ne ¼ 4 and k ¼ 7. Reproduced from Ref. [117]
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radius of ion-sphere tends towards zero the energy levels increase due to the
increased plasma density, then the degeneracy break, observed in free hydrogenic
ions, occurs, and the s-p competition tends to disappear. This common result occurs
for the three hydrogenic systems studied in this section (see Figs. 5.5 and 5.9).

Table 5.7 Ground state energy (�E1s), in Hartree, for the Ar17þ in different Debye parameters
and screening radius

Plasma den-
sity (/cc)

Temp.
(eV)

Debye param-
eter (a.u.)

Screening
radius (a.u.)

Bhattacharyya
et al. [19]

SC-FEM
[117]

1.0(23) 1,000 0.3103 3.2230 156.4865 156.4860

5.0(23) 1,000 0.6938 1.444 149.8640 149.8638

1.0(24) 1,000 0.9812 1.0192 145.0367 145.0360

5.0(24) 1,000 2.1939 0.4558 125.8566 125.8588

The results with SC-FEM utilize Ne ¼ 4 and k ¼ 7. Reproduced from Ref. [117]

Fig. 5.10 Energy levels, �E, against the ion-sphere radius, R, for the hydrogenic ion, He+. Also it
is shown the 1s state with spherical confinement only, without the plasma surrounding. Values in
atomic units. Reproduced from Ref. [117]
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5.4.3 Quantum Dots

Another situation quite similar to the confinement of atoms is the quantization of
electrons energy confining them in a quantum dot (semiconductor crystal having a
diameter of few nanometers). Indeed, the Hamiltonian of a quantum dot is essen-
tially the same as that of a confined atom, except that confinement is usually
modeled by enclosing the system by a harmonic potential, being apparently
somewhat good approximation for large radii. As quantum dots are similar to
atoms, they are often referred as artificial atoms or quantum dot atoms. Compari-
sons have been made, for example, between the properties of the two-electron
quantum dot, the helium atom, and the negative hydrogen ion, confined by a
harmonic potential [46].

What draws attention to quantum dots is the possibility of controlling their
shapes, their dimensions, their structures of energy levels and the number of con-
fined electrons. Since quantum dots absorb and emit light in a very narrow spectral
range, which is controlled, for example, by an external magnetic field, they might
have applications in the construction of controllable semiconductor lasers more
efficient and precise. Also is very promising the possibility of the quantum dots to
be used as quantum “bit” in a new generation of computers.

In this subsection we show results of energy spectrum for two different types
of quantum dot atoms: an impurity located in a parabolic quantum dot, and,
a two-electron quantum dot. This spectrum is computed using the discrete variable
representation (DVR) method.

5.4.3.1 Impurity in a Parabolic Quantum Dot

In the Ref. [11], Costa et al. considered the problem of a hydrogenic impurity in
the center of a parabolic quantum dot using the DVR method and, even as in the
Sect. 5.4.1, introducing the Woods-Saxon potential into the Hamiltonian so that,
within framework of effective-mass approximation and using atomic units,

H ¼ �r2 � 2
r
þ c2pr

2 þ VWSðr;RÞ: ð5:40Þ

where cp ¼ �hxp

2Ry and

VWSðx;RÞ ¼ 2k
1þ exp½ðR� xÞ=g� ð5:41Þ

Table 5.8 shows, for various confinement radius and three values of cp, the
binding energies (defined by Varshini [118]) and the optimized Woods-Saxon
parameters (g and k) obtained by DVR method. Also is shown the Varshni’s
numerical results [118] obtained by integration of the Schrödinger equation using
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Numerov’s method and a logarithmic mesh. These values can be considered as
exact binding energy and is utilized for comparison. One sees that DVR results
reproduce the exact energy with a great precision for all values of confinement
radius R and cp parameter considered. These results together with those obtained in
the study of confined one-dimensional harmonic oscillator demonstrate the strength
of the methodology of combining the Woods-Saxon model potential with the DVR
method to study confined quantum systems.

5.4.3.2 Two-Electron Quantum Dot

Finally, we present the system of interest, namely, a two interacting electrons of
effective mass m� in a quantum dot with an anisotropic harmonic confinement
potential whose Hamiltonian is

Table 5.8 Optimized Woods-Saxon parameters and binding energy values for an impurity in a
parabolic quantum dot using DVR method (VWS), and Varshni’s exact values (Vars)

R 1=g 2k VWS Vars [118] cp

1.0 86.754759 2993.473288 5.152486 5.152486 0.2

1.0 88.340541 2993.466669 5.153915 5.153915 0.3

1.0 88.342176 2993.465715 5.155917 5.155917 0.4

2.0 95.675910 2993.399842 2.732638 2.732638 0.2

2.0 95.696075 2993.429949 2.745262 2.745262 0.3

2.0 95.722799 2993.423707 2.762897 2.762897 0.4

3.0 105.602453 2994.562167 1.982281 1.982281 0.2

3.0 105.993863 2994.448853 2.026906 2.026906 0.3

3.0 106.701360 2994.595237 2.087713 2.087713 0.4

4.0 127.355689 2993.460078 1.670637 1.670637 0.2

4.0 126.181523 2994.322813 1.770142 1.770142 0.3

4.0 211.185350 2995.657302 1.892868 1.892868 0.4

5.0 47.274217 445.1123830 1.545602 1.545602 0.2

5.0 2451.832229 268.9006551 1.700058 1.700058 0.3

5.0 2455.073658 1.841043423 1.861207 1.861207 0.4

6.0 393.531103 19.94505925 1.505747 1.505747 0.2

6.0 105.814563 2994.595237 1.689308 1.689316 0.3

6.0 91.105971 2993.419025 1.859172 1.859181 0.4

7.0 471.792157 2.362595237 1.497086 1.497088 0.2

7.0 471.814563 2.362595237 1.688523 1.688530 0.3

7.0 472.597096 2.9934190255 1.859125 1.859134 0.3

Reproduced from Reference [11]
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H ¼
X2
j¼1

� 1
2m� r2

j

� �
þ Vdot ~rj

� �� �
þ e2

ej~r1 �~r2j ð5:42Þ

where~rj is the position of the jth electron and

Vdotð~rjÞ ¼ m�

2

� �
½x2

?ðx2j þ y2j Þ þ x2
z z

2
j �

is the confinement potential of the quantum dot. The effective atomic units are used
unless otherwise stated, i.e. �h ¼ m� ¼ effiffi

�
p ¼ 1.

It can be introduced the relative motion (RM) and the center-of-mass (CM)
coordinates in Eq. (5.42) so that the Hamiltonian splits like H ¼ HCM þ HRM [5].
Thus the total energy (E) of this system is the sum of the center-of-mass (ECM)
and relative motion (ERM) eigenenergies. The center-of-mass part can be solved
analytically and its solution is a planar oscillator with angular frequency x? and a
Z-direction harmonic oscillator with frequency xz; in consequence the center-
of-mass eigenenergy can be written as

ECM ¼ 2N þ jMj þ 1ð Þx? þ NZ þ 1
2

� �
xz ð5:43Þ

where N and M are the radial and the azimuthal quantum numbers associated with
the planar oscillator, respectively, and NZ is the quantum number associated with
the Z-direction harmonic oscillator.

The relative motion problem has not an analytical eigenfunction due to the
Coulomb interaction. In Ref. [50], Prudente et al. developed a strategy to solve
the relative motion Schrödinger equation employing a variational scheme based on
the DVR method to expand the radial direction wave function, fvjðrÞg, while that
for the angular directions the spherical harmonics, YlmðXÞ, were employed. Thus,
the relative motion problem turns to be the solution of a generalized eigenvalue
problem, which in matrix notation is the following equation,

HRMc
rm ¼ Erm

RMOc
rm ð5:44Þ

where crm is the coefficient vector, r is the parity of the relative motion wave
function with relation of interchange of the two electrons, and m is associated with
the eigenvalue of the z-component of the angular momentum operator lz. The
Hamiltonian matrix elements are given by

fHRMgjj0;ll0 ¼
Z

v�j ðrÞ � d2

dr2
þ lðlþ 1Þ

r2
þ 1
4
x2

?r
2 þ 1

r

� �
vj0 ðrÞdrdll0

þ Dx2

4
Alm
l0

Z
v�j ðrÞr2vj0 ðrÞdr

ð5:45Þ
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with Dx2 ¼ x2
z � x2

? and

Alm
l0 ¼

Z
Y�
lmðXÞ cos2 hYl0mðXÞdX ð5:46Þ

while

fORMgjj0;ll0 ¼
Z

v�j ðrÞvj0 ðrÞdrdll0 ð5:47Þ

are the overlap matrix elements.
The energy spectra is presented for different confining parameters (x? and xz).

The calculations were done expanding the relative motion wave function by using
30 spherical harmonics with a particular symmetry relative to singlet or triplet states
(odd or even l’s) and 100 fviðrÞg basis functions. The solutions fviðrÞg were
obtained employing 2500 DVR basis functions equally spaced in an appropriate
interval for each pair of parameters x? and xz. Thus, the energy spectra presented
here have precision at least 6 significant digits.

Isotropic Case

The isotropic situation (x? ¼ xz) is analyzed and calculations of the relative
motion eigenenergies (ERM) are presented. Due to the isotropy of the confinement
potential, the expression (5.43) indicates that the results can be labels using only the
radial, n, and angular momentum, l, quantum numbers. On the other hand, the
expression (5.43) for the center of mass eigenenergies (ECM) is reduced to

ECM ¼ 2N þ Lþ 3
2

� �
x ð5:48Þ

where N and L denote, respectively, the radial and angular momentum quantum
numbers related with the center-of-mass motion.

The complete spectrum (E = ECM + ERM) for a small set of ðN; L; n; lÞ states are
presented in Table 5.9 in order to compare with the ones obtained previously in
Refs. [119] and [120]. These total energies of two electron quantum dot were
determined in Ref. [120] solving the Hartree-Fock, Kohn-Sham and Schrödinger
equations by using the shift-1=N [121] and Schwartz numeric [122] methods, while
in Ref. [119] the ones are calculated by using the orbital integration method [123].
A comparison between the results shown in Table 5.9 indicates that the procedure
based on the DVR method gives results with a great precision, and that the use of
methodologies that completely compute the correlation effects is very important.
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The spectrum with the lowest 245 energies of ðN; L; n; lÞ states relative to the
quantum dot parameter (i.e., E=x) are displayed in Fig. 5.11 for different x’s and
for non-interacting electron problem. In the last case, relative motion eigenenergies
satisfy a similar expression of ECM (Eq. 5.48), i.e., ERM ¼ 2nþ lþ 3

2

� �
x. In this

Figure, the band structure clearly appears for x� 0:5, and when the values of
quantum dot parameter increase, the bands go sharpening and the interacting two-
electron spectrum move toward to the non-interacting ones. However, for weak
confinement (x ! 0) it is observed a more diffuse spectrum. Since the energy gaps
that occur between the (N þ 2Lþ nþ 2lþ 3)-fold degenerate states of the non-
interacting two-electron quantum dot is due to the spectrum associated with two
harmonic oscillator, Fig. 5.11 indicates that for stronger quantum dot parameters
(larger values of x) the motion of the electrons is mainly governed by the con-
finement potential, while for a weak confinement the electron-electron interaction
plays an important and essential role.

Anisotropic Case

The anisotropic situation (x? 6¼ xz) was analyzed and calculations of the relative
motion eigenenergies (ERM) associated with ðn;m; nzÞ states are presented. The first
42 relative motion energy levels for each pair of xz and x? are shown in Fig. 5.12
together with the non-interacting energy levels, which are given by
Enon
RM ¼ ð2nþ mþ 1Þx? þ ðnz þ 0:5Þxz. From this figure we can observe that

when it is considered the electron-electron interaction, differently from the isotropic
case, the electronic states in the band structure do not present a general rule.
Furthermore, we can observe that the error obtained to calculate the non-interacting
triplet ground state is smaller than the one obtained to calculate the non-interacting
singlet ground state. This indicates that the electron-electron interaction is more
important for singlet states than triplet ones.

In order to analyze the degeneracies that happens in the energy spectrum,
selected total energy levels (E ¼ ECM+ERM) associated with ðN;M;NZ ; n;m; nzÞ
states with up to two excitations for different xz’s are displayed in Fig. 5.13 as
function of xz parameter. We can see a splitting on the degenerate total energy
levels for x? ¼ xz ¼ 0:5 when xz varies. Moreover, other crossings of states
happens for different xz’s as, for example, it can be seen in the Fig. 5.13 for
xz ¼ 1:0 and for xz � 0:38. We can note that these crosser of energy levels are of
two types: one is due a symmetry of the confinement potential to particular x
parameters (as with xz ¼ 1:0), while the other is due an accidental degeneracy
which occurs between excited relative motion states and excited center-of-mass
ones (as with xz � 0:38). The last one is result of the electron-electron interaction
and the vertical deformation. Furthermore, it can be seen that the energy of a
excited relative motion state, ð0; 0; 0; n;m; nzÞ, is always smaller than the one of the
similar excited center-of-mass state, ðN;M;NZ ; 0; 0; 0Þ with N ¼ n, M ¼ m and
NZ ¼ nz. This can indicate that the effect of the electron-electron interaction is more
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accentuated, as the isotropic case, to low-lying states than the highly excited
(remembering that the center-of-mass eigenenergy is equal to the relative motion
one when the electron-electron interaction is taken off).

Fig. 5.11 Relative spectrum of isotropic two electron quantum dot with respect to confinement
parameter (EN;L;n;l=x) for five x’s (0:1, 0:25, 0:5, 1:0 and 4:0) and for non-interacting (WI) case.
Reproduced from Ref. [50]
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Fig. 5.12 Relative motion energy levels of anisotropic two electron quantum dot for xz ¼ 0:1,
0:25, 0:5, 1:0 and 4:0 with x? ¼ 0:5. The first entry of each xz is associated with the interacting
problem while the second entry is related with the non-interacting one. Reproduced from Ref. [50]
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5.5 Concluding Remarks

We have reviewed the theory of two variational numerical methodologies used to
determine properties of confined quantum systems: the finite element method
(FEM) and discrete variable representation (DVR) method. Applications of these
methodologies also were reviewed concerning the study of confinement effects in
some quantum systems. The first one was the one-dimensional harmonic oscillator
in two different confinement regimes, namely, confined by a model potential, and
confined between infinite rectangular walls. The second system was the hydrogenic
atom/ion under three different confinement regimes, namely, atom confined by an
infinite spherical potential barrier, atom confined endohedrally by fullerenes using a
model potential, and ion confined in a plasma environment. The last system was
regarding quantum dots, namely, the parabolic quantum dot-atom in presence of an
impurity, and the two electron quantum dot using a three-dimensional anisotropic
harmonic potential. We observed, in general, that the results agreed with others
fairly accurate previously published.

We point out some important aspects of this review paper. First, we observe that
in the present methodologies the basis functions are not modeled so as to be
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Fig. 5.13 Selected total energy levels as a function of xz parameter for the anisotropic two-
electron quantum dot system with x? ¼ 0:5. Reproduced from Ref. [50]
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restricted to the calculation of few states, thus providing any energy level, within a
finite number of basis functions. Second, we note that the procedures are suffi-
ciently accurate for any extension of the confinement region. Another consideration
is that many methods use trial basis functions modeled to describe specific prob-
lems and such functions have to be modified if one wishes to study a different or
more complex system. However, the FEM and DVR method can be applied to a
variety of systems without the requirement of new trial basis functions. In partic-
ular, the use of the self-consistent FEM for optimization of elements mesh provides
a reduction of the dimensions of the matrices involved in the problem, allowing a
reduction of the computational time involved in the diagonalization. Also the DVR
method has been widely applied in literature to study problems in molecular and
chemical physics being a well established numerical method to treat three-dimen-
sional systems.

Finally we note that in this paper the DVR and FEM were compared with several
methodologies such as analytical methods, numerical variational methods using
global basis functions, perturbation methods, Numerov’s method, etc. However, no
direct comparison between them has been made in the study of confined systems, so
it is necessary a work in this direction. Nevertheless, we conclude that the proce-
dures focusing on the FEM and DVR method are in general very efficient and we
hope to have shown the feasibility of implementing these methods in the study of
confined quantum systems.
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Chapter 6
Bound and Resonant States in Confined
Atoms

L.G. Jiao and Y.K. Ho

6.1 Introduction to the QD Confinement

With the fast development of experimental technology in the design and fabrication
of nanoscale electronic devices, a great deal of effort has been devoted to the
investigation of quantum confined systems, such as the atoms confined in hard
[1–3] or soft spherical cavities [4, 5], atoms encapsulated in fullerence cages [6–8],
and electrons or impurities confined in semiconductor quantum dot (QD) [9, 10].
The quantum dots, which are often described as artificial atoms, have attracted
considerable interest in recent years due to their not only fundamental importance in
theoretical researches but also practical significance in designing new functional
devices.

The theoretical investigation of the electronic structures and optical properties of
the QD is an active research area. Abundant phenomena have been discovered by
authors assuming the multi-electron systems with different model confinement
potentials. The rectangular potential, which has the form of

VRECTðrÞ ¼
�V0 r\R;

0 r�R;

8<
: ð6:1Þ

has been widely used to describe the quantum dots built of a narrow-gap semi-
conductor nanocrystal of radius R, surrounded by a wide-gap dielectric medium
with the conduction band off-set equal to V0. The energy spectra [11] including the
relativistic effects [12], fine structures [13] and electric-filed Stark effects [14] for

L.G. Jiao � Y.K. Ho (&)
Institute of Atomic and Molecular Sciences, Academia Sinica,
PO Box 23-166, Taipei 106, Taiwan
e-mail: ykho@pub.iams.sinica.edu.tw

© Springer International Publishing Switzerland 2014
K.D. Sen (ed.), Electronic Structure of Quantum Confined Atoms and Molecules,
DOI 10.1007/978-3-319-09982-8_6

145



one-electron QD have been calculated accurately by many authors. The bound state
and quantum capacity for many-electron QD have also been investigated [15].
The recent research by Bylicki et al. [16] has shown that the two-electron quantum
dots have very rich spectrum for resonant states. A new phenomenon of the
transformation from Feshbach to shape characters with changing the dot size has
been observed. The investigation of the quantum entanglement of the resonant
states in QD has also become increasingly interest in recent years [17].

Although the rectangular potential has simple form and good numerical feasi-
bility, it is unphysical due to the non-parabolic shape at the center of the quantum
dot. Another widely used model potential has the harmonic oscillator (HO) form
which fulfills such requirement in small region

VHOðrÞ ¼ 1
2
x2

0r
2: ð6:2Þ

The Schrödinger equation of the two-electron quantum dot confined in HO
potential has analytical solutions for a particular, denumerably infinite sets of
oscillator frequency [18, 19]. Some numerical methods have also been developed to
calculate the energies for the two- and many-electron QD in HO potential [20–22].
However, because of the infinite depth and range of the harmonic oscillator
potential, it is inappropriate for the description of the experimentally measured
quantum dots by finite number of excess electrons. For example, it automatically
excludes the possibility of autoionizing resonant states and also forbids the electron
exchanges between the QD and its surroundings. To circumvent these problems,
somewhat relatively weak confining models are warranted in favor of experiments.

The Gaussian attractive confining potential of the form

VGðrÞ ¼ �V0 exp
�r2

R2

� �
; ð6:3Þ

has been suggested by several authors to study the properties of finite excess
electrons in QD. Such potential possesses finite depth and range, and it can be
approximated by the parabolic potential in the vicinity of the dot center. The bound
state energies and photoionization processes of one- and two-electron quantum dots
have been investigated in different confining radius and potential depth [23–26].
Recently, it has been observed by Sajeev and Moiseyev [26] that the singly excited
states of two-electron QD can become resonant states for appropriately chosen
confining potential parameters. Further investigations by Genkin and Lindroth [27]
demonstrate that the impurity placed in the vicinity of the dot would significantly
influence the autoionizing resonant states. The impurity can lead to bound-resonant
transitions and avoided-crossing behaviors in the energy spectrum when the
impurity charge is varied.
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An alternative weakly confining potential is the finite oscillator (FO) potential
given as

VFOðrÞ ¼ �V0ð1þ RrÞ exp �Rrð Þ: ð6:4Þ

Such potential has the r2-dependence near the center of QD, which is typical for
the harmonic oscillator, but necessarily deviates from it with increasing the con-
finement distance. The FO potential shows large similarities in profile as the
Gaussian type and, at the same time, it allows for much simple and closed form
matrix elements in computation, especially when the Slater-type orbitals are used in
constructing the system wave functions. The FO potential has been used by Winkler
[28] to study the two-electron bound and resonant states in QD. However, the
author calculated some bound and resonant states of the two-electron system using
the wave functions optimized without the electron-electron interaction. Even the
interaction was included back in the subsequent calculations with full Hamiltonian,
the final results are subject to certain uncertainties. Later, Kimani et al. [29] applied
the restricted Hartree-Fock method to estimate the ground states of many-electron
close-shell quantum dots with the electron correlations included approximately. It
should also be noted that, the impurity effect was not taken into account in their
investigations. As mentioned in the Gaussian potential, the Coulomb field generated
by impurity ions would have large effects on the various properties of QD [30].
Most recently, Chakraborty and Ho [31] have investigated the two-electron reso-
nances of QD with He2þ impurity by using the stabilization method. The resonance
parameters for the 2s2 1Se state was calculated for a wide variety of confining
potential radius. It has been shown that the resonance width has an oscillatory
behavior when the size of the dot changes, which is a direct evidence of the
interferences between the QD potential and resonance wave functions.

In this work, we present a detailed investigation of the bound and autoionizing
resonant states of two-electron QD with He2þ impurity (i.e. the He atom confined in
QD) by employing the Rayleigh-Ritz variational method and the complex-scaling
method, respectively. The emphasis is placed on the FO model potential. The
impurity charge was fixed to 2 so that a comparison with the free He atom can be
made. Two types of trial basis sets, the configuration-interaction (CI) basis built
from the product of Slater-type orbitals and the correlated Hylleraas-type basis are
used in the expansion of system wave functions. The present paper is organized as
follows. In Sect. 6.2, we describe the general problems of one- and two-electron QD
with impurity. The construction of the trial wave functions and the procedure of the
complex-scaling calculations are also introduced in Sect. 6.2. The results and dis-
cussions of the energy spectra for one- and two-electron QD systems are presented
in Sect. 6.3. Concluding remarks are made in Sect. 6.4. The traditional atomic unit
notations are used throughout the work to label the effective atomic units based on
the effective-mass approximation, in which the energy and length units are denoted
by effective Hartree and effective Bohr radius, respectively [11, 15–17, 27].
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6.2 Theoretical Method

6.2.1 One-Electron QD

The Hamiltonian describing a one-electron QD system confined in the FO potential is

H ¼ � 1
2
r2 � Z

r
þ VFOðrÞ; ð6:5Þ

where Z is the impurity charge. The FO potential in spherical symmetry is sug-
gested by [28, 29, 31, 32]

VFOðrÞ ¼ �A 1þ Bffiffiffi
A

p r

� �
exp � Bffiffiffi

A
p r

� �� �
; ð6:6Þ

where A and 1=B have length dimensions and characterize the depth and width of the
FO confining potential. In Fig. 6.1, we show the profiles of the FO potential for a
particular depth (A ¼ 0:5 a.u.) and different radii (1=B ¼ 0:1; 1; 10 and 100 a.u.) as
well as the pure Coulomb potential for Z ¼ 2. The limit 1=B ! 0 represents the
confining potential VFO approaches to 0 except at the original point, i.e. only the
Coulomb interaction exists; whereas the limit 1=B ! 1 refers to a rectangle
potential well with infinite width, i.e. the pure Coulomb plus a constant potential�A.
In other cases, the QD confinement would interact with the Coulomb potential and

Fig. 6.1 Comparison of the pure Coulomb potential for He+ ion and the FO potentials with
A ¼ 0:5 a.u. and 1=B ¼ 0:1; 1; 10 and 100 a.u.
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such problem has no analytic solutions. In a variational treatment, one can expand
the system radial wave function in the Slater orbitals

WðrÞ ¼
X
i

Cir
ni expð�nirÞ: ð6:7Þ

The one-electron energies can then be calculated, such as, in the framework of
Rayleigh-Ritz variational principle.

6.2.2 Two-Electron QD: CI Basis

The Hamiltonian for the two-electron QD inside a FO potential cavity is expressed
by

H ¼ � 1
2
r2

1 �
1
2
r2

2 �
Z
r1

� Z
r2

þ VFOðr1Þ þ VFOðr2Þ þ 1
r12

; ð6:8Þ

where r1 and r2 are the radial coordinates of the two electrons and r12 is their
relative distance. In the CI representation of the two-electron wave functions, it is
useful to employ the product of Slater-type orbitals to construct the basis

Wðr1; r2Þ ¼ A
X
la;lb

X
i;j

Cai;bjgaiðr1Þgbjðr2ÞYLM
la;lbðr̂1; r̂2ÞSðr1; r2Þ; ð6:9Þ

where A is the anti-symmetrization operator

A ¼ 1þ ð�1ÞSP̂12

� �
; ð6:10Þ

and C’s are the coefficients to be determined. In Eq. 6.10, P̂12 is the permutation
operator and S is the total spin of the system. In Eq. 6.9, g’s are the single-electron
Slater orbitals

gaiðrÞ ¼ rnai expð�anai rÞ; ð6:11Þ

in which a is an overall scaling parameter. Y is the eigenfunction of the two-
electron total angular momentum L

YLM
la;lbðr̂1; r̂2Þ ¼

X
mla

X
mlb

Cðla; lb; L;mla ;mlb ;MÞYla;mla
ðr̂1ÞYlb;mlb

ðr̂2Þ ð6:12Þ

with C the Clebsch-Gordan coefficients. S is the two-electron spin eigenfunction.
Such CI-type wave functions have limitations to accurately calculate the lower-
lying intrashell states with small total angular momentum, due to the omission of
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r12 coordinate in the system wave functions. A strategy to improve the convergence
of calculations is employing multiple n for Slater orbitals with same l. Such a
choice of basis set corresponds to an extensive representation of the wave functions
in both the close- and far-range space sectors.

6.2.3 Two-Electron QD: Hylleraas Basis

Due to the electron-electron coordinate is not included explicitly in the CI-type
wave function, an alternative choice of the basis is the Hylleraas-type wave func-
tion, which introduces powers of the interelectronic distance r12 to take into account
the electron correlation effects explicitly. For two-electron systems, we use the
following form to build up the system wave function

Wðr1; r2Þ ¼ A
X
la;lb

X
p

Cla;lb;pvpða; bÞrla1 rlb2 YLM
la;lbðr̂1; r̂2ÞSðr1; r2Þ; ð6:13Þ

where

vpða; bÞ ¼ ri1r
j
2r

k
12 expð�ar1 � br2Þ; ð6:14Þ

with ðiþ jþ kÞ�x and ðla þ lbÞ� L. In Eq. 6.14, p is the index labeling the three
nonnegative integer values {i; j; k}. A; Y and S have same expressions as those in CI
basis. For the lower-lying S-wave states of a two-electron atom, Eq. 6.13 reduces to
a more simpler form

Wðr1; r2Þ ¼
X
i;j;k

Ci;j;kr
k
12 ri1r

j
2 þ ð�1ÞSr j1ri2

h i
exp �aðr1 þ r2Þ½ �; i� j: ð6:15Þ

In computation, the Hamiltonian of the system must be written in the Hylleraas
coordinate {r1; r2; r12;X1;X2}

H ¼ � 1
2

X2
i¼1

o2

or2i
þ 2
ri

o
ori

� liðli þ 1Þ
r2i

� �
� o2

or212
þ 2
r12

o
or12

� �

� 1
2

r21 � r22 þ r212
r1r12

o2

or1or12
þ r22 � r21 þ r212

r1r12

o2

or2or12

� �

þ ~r2 � rY
1

	 
 1
r12

o
or12

þ ~r1 � rY
2

	 
 1
r12

o
or12

� �

� Z
r1

� Z
r2

þ VFOðr1Þ þ VFOðr2Þ þ 1
r12

;

ð6:16Þ

where rY
i corresponds to the angular part of the gradient operator. The calculation

details are available in the literatures [33–35] and will not be presented here.
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6.2.4 Complex-Scaling Method

The ground and bound-excited states of the two-electron QD can be calculated via
the Rayleigh-Ritz variational procedure as in the one-electron system. However, the
calculations of the doubly-excited resonant states are more complicated due to
the asymptotic divergence of the wave functions. There are two simple ways to
calculate atomic resonances using the bound-state-type wave functions, the com-
plex-scaling method [36, 37] and the stabilization method [37, 38]. The stabiliza-
tion method diagonalizes the real Hamiltonian matrix with different box sizes. A
resonance exists when the eigenvalues exhibit stationary behavior in the stabil-
ization plateau, which reveals the localization of resonant scattering wave functions
at short range. Such a method shows particular simplicity in calculating the lower-
lying resonant states and has been extensively used in investigating the resonances
in many atomic systems [31, 38].

In the complex-scaling approach, the radial coordinates of the system are
transformed by

r ! reih; ð6:17Þ

so that the resonance wave function becomes asymptotically convergent and then
can be calculated by using the L2-type basis functions. The Hamiltonian of the
system is transformed to

HðhÞ ¼ Te�2ih þ VCe
�ih þ VFOðr1eihÞ þ VFOðr2eihÞ; ð6:18Þ

where T is the kinetic energy operator and VC the Coulomb potential operator. In
the present calculations, the complex FO potential matrix elements are calculated
by scaling the potential parameter

B0 ¼ Beih: ð6:19Þ

Due to the fact that both the CI-type and Hylleraas-type trial wave functions are
non-orthogonal basis, the generalized complex eigenvalue problem is solved with

X
j

Ck
j ðHij � EkNijÞ ¼ 0; ð6:20Þ

in which the Hamiltonian matrix elements are

Hij ¼ hwijHðhÞjwji; ð6:21Þ

6 Bound and Resonant States in Confined Atoms 151



and the overlapping matrix elements

Nij ¼ hwijwji: ð6:22Þ

In the above equations, wi represents a single basis function of the type defined
in Eqs. 6.9 or 6.13. The resonance poles are determined by finding the positions
where the complex eigenvalues exhibit the most stabilized characters with respect
to the changes of rotation angle h and scaling parameter a [39]

joEresj
oh

����
a¼aopt

¼ min;
joEresj
oa

����
h¼hopt

¼ min : ð6:23Þ

Once the position of the resonance pole is determined, the corresponding energy
(Er) and total width (C) are given by [36, 37]

Eres ¼ Er � 1
2
iC: ð6:24Þ

6.3 Results and Discussions

6.3.1 One-Electron QD State

The energy levels of the Heþ QD confined by FO potential are calculated by using
Eq. 6.7. In most situations, the employing of 20 Slater orbitals is accurate enough to
obtain the low- and intermediate-lying hydrogen-like states. The Heþ(n ¼ 1� 4;
l ¼ 0� 3) bound state energies are listed in Table 6.1 and displayed in Fig. 6.2 with
potential depth A ¼ 0:5 a.u. and radius 1=B varying from 0:1 to 100 a.u. Since
1=B ! 0 and 1 correspond to a free atom and a free atom plus a negative constant
potential �A, respectively, the energy levels with same principal quantum numbers
n are nearly degenerate at these two limits. For intermediate values of 1=B, the
hydrogenic states with same n and different l quantum numbers split separately and
cross with each other forming a much complicated pattern. Although there is no
rigorous rule about the sequence of the energy levels, it can be empirically con-
cluded from these figures that (a) for relatively small confinement radius, the l ¼
n� 1 states are always higher than others with same n and (b) for relatively large
radius, the states in the same n shell have descending orders with increasing l.

The one-electron QD confined in the FO potential exhibits the energy spectrum
which is very similar to those in other weakly confining potentials. Lin and Ho [25]
have compared the bound state energies of the hydrogen impurity in a spherical QD
confined by FO and Gaussian potentials, and similar confinement effects have been
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found. In addition, Yang et al. [13] have also shown the one-electron QD in finite
rectangle potential well has a similar energy level splitting and ordering sequence as
shown in Fig. 6.2.

(a)

(b)

Fig. 6.2 Energy levels of the He+ QD states as functions of potential radius 1=B with A ¼ 0:5 a.u.
a He+ (n ¼ 1� 3) states and, b He+ (n ¼ 4) states
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6.3.2 Two-Electron QD Bound States

The 1Se bound states of the two-electron He QD confined in FO potential are
investigated in the variational framework by using the two types of basis set
mentioned above. For the CI-type wave functions, we construct the basis by using
two groups of Slater orbitals. The first group contains 10 s-, 9 p-, 8 d-, 7 f-, 6 g-, 5 h-,
4 i-, 3 k-, 2 l-, 1 m-type Slater orbitals of Eq. 6.11 with all n ¼ 1:0, the second group
contains 5 p-, 4 d-, 3 f-, 2 g-, 1 h-type orbitals with n ¼ 0:4. These two groups would
couple to a total of 385 terms in the expansion of system wave functions. Here we
use the notation lmax ¼ 9� 4 to represent such basis. We also construct an enlarged
CI basis of lmax ¼ 10� 5, which couples to 538 terms, to check the calculation
convergence. For the Hylleraas-type wave functions, we use one-group functions of
Eq. 6.15 with x ¼ 16, and the total number of terms in the basis is 525. All the
calculation results are shown in Fig. 6.3 for A ¼ 0:2 and 0:5 a.u., and displayed in
Table 6.2 for A ¼ 0:5 only. In Table 6.2, we also include the state-of-the-art He 1Se

free-atom bound states calculated by Drake [40, 41] who uses a multi-group
Hylleraas-type basis set.

As we can see from Table 6.2, the convergence of the CI calculations is quite
good with only small discrepancies in the last decimal point. However, for the 1s2

ground state, the Hylleraas results are expected to be more accurate than those
obtained by CI due to the explicit inclusion of r12 coordinate in the wave functions.
The overall discrepancy between these two kinds of basis sets is about 0.00007 a.u.
For the higher-lying excited states, such as 1s4s, the CI calculations are more
reliable than the Hylleraas results due to the fact that we use only one-group basis in
the latter. The calculations by multiple-group Hylleraas basis are worthwhile to try
in the future.

The variations of the He QD bound states with the dot size are illustrated in
Fig. 6.3 and their changes are quite interesting. The ground state energy decreases
monotonously with increasing the confining radius 1=B, due to the two electrons are
simultaneously trapped into a closer region near the center of QD which would lead
to a lower energy. For the singly-excited states, the energies first decrease rapidly,
then show a flat “plateau” at moderate values of potential radius, and then con-
tinuously decrease as 1=B increases. Such phenomenon is closely related to the
different radial distributions of the two electrons. When the radius is relatively
small, the confining potential affects mostly on the inner electron and the overall
QD confinement effects on the two-electron states are dominated by the inner-
electron trapping. As a result, the energy variation of the He QD system is very
similar to its ionization threshold (He+ (1s) state), as we can see from Fig. 6.3.
When the dot radius increases to larger values, the confinement effects of the
potential move to the outer electron. The overall energy continuously decreases to
lower energies, which corresponds to the second fast decrease in the energy
spectrum. This can also be understood from the right-shift of the “plateau” from
1s2s to 1s4s states. The movement of the plateau to larger values for higher excited
states reflects the increased distance of the outer electron with respect to the center
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of QD. The variations of the energies for the triplet and higher angular momentum
states against the confining radius are similar to the trends as shown in Fig. 6.3, and
they will not be shown here.

(a)

(b)

Fig. 6.3 Energy levels of the He QD bound-excited 1Se states as functions of potential radius 1=B.
385 and 538 represent the number of terms in CI basis in the calculations and their results are
demonstrated by dots and lines, respectively. The green stars refer to the results using Hylleraas-
type basis. a A ¼ 0:2 a.u. and b A ¼ 0:5 a.u.
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Table 6.2 The 1Se bound state energies of the two-electron He QD with FO potential depth
A ¼ 0:5 a.u.

1/B Basis 1s2 1s2s 1s3s 1s4s

0 a −2.90362 −2.14595 −2.06125 −2.03357

b −2.90364 −2.14596 −2.06126 −2.03358

c −2.90372 −2.14597 −2.06127 −2.03331

d −2.90372 −2.14597 −2.06127 −2.03359

0.1 a −2.92995 −2.16459 −2.07950 −2.05172

b −2.92997 −2.16460 −2.07951 −2.05173

c −2.93004 −2.16461 −2.07952 −2.05141

0.25 a −3.05937 −2.24985 −2.16282 −2.13460

b −3.05939 −2.24986 −2.16283 −2.13463

0.4 a −3.20593 −2.33703 −2.24794 −2.21929

b −3.20594 −2.33703 −2.24794 −2.21931

1 a −3.56480 −2.53712 −2.43113 −2.39958

b −3.56482 −2.53713 −2.43114 −2.39959

c −3.56490 −2.53715 −2.43115 −2.39947

2.5 a −3.79809 −2.78686 −2.56669 −2.50800

b −3.79811 −2.78687 −2.56670 −2.50801

4 a −3.85292 −2.91402 −2.66961 −2.55870

b −3.85293 −2.91403 −2.66962 −2.55870

10 a −3.89344 −3.06988 −2.88199 −2.76116

b −3.89346 −3.06989 −2.88200 −2.76117

c −3.89353 −3.06990 −2.88201 −2.76118

25 a −3.90184 −3.12730 −3.00103 −2.92321

b −3.90186 −3.12731 −3.00103 −2.92322

40 a −3.90292 −3.13769 −3.03030 −2.97058

b −3.90293 −3.13770 −3.03031 −2.97059

100 a −3.90352 −3.14445 −3.05431 −3.01606

b −3.90353 −3.14446 −3.05432 −3.01606

c −3.90361 −3.14448 −3.05433 −3.01605

The rows of 1=B ¼ 0 represent the free He atom. The notations a and b label the CI-type basis with
lmax ¼ 9� 4 and lmax ¼ 10� 5, respectively, and c refers to the Hylleraas-type basis with x ¼ 16.
d represents the most accurate results calculated by Drake [40, 41] for the free-atom case
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6.3.3 Two-Electron QD Resonant States

In the present work, we employ the complex-scaling method described in
Sect. 6.2.3 to investigate the resonant states of He QD confined in FO potential. The
basis sets used here are lmax ¼ 10� 5 for CI-type and x ¼ 16 for Hylleraas-type
wave functions. The calculations are performed in varying the parameters a and h in
a wide range to make sure that the stationary conditions of Eq. 6.23 can be fulfilled.
In Fig. 6.4 we demonstrate the general procedure of extracting the resonance
parameters for the lowest resonance state at A ¼ 0:5 and 1=B ¼ 10 a.u. The rota-
tional paths near the resonance pole for a group of a are displayed with different h.
In each curve, the movement of the complex eigenvalues with increasing h slows
down when h approaches hopt. The cusp positions are calculated by using Eq. 6.23.
With further examination of the changes of eigenvalues with respect to a at hopt, the
value of aopt can be obtained. Finally, the complex eigenvalue at hopt and aopt is
used in Eq. 6.24 to determine the resonance parameters.

Following the above procedure, the lowest five 1Se resonance states
(2s2; 2p2; 2s3s; 2p3p and 2s4s) are calculated for A ¼ 0:2 and 0:5 a.u. with 1=B
varying from 0:1 to 100 a.u. or to 1000 a.u. All the results are shown in Fig. 6.5 for
resonance energy and Figs. 6.6, 6.7, 6.8, 6.9 and 6.10 for width. Some selected values
for A ¼ 0:5 a.u. are listed in Tables 6.3 and 6.4 for energy and width, respectively. In
the free-atom situation, several methods have been applied to investigate the

Fig. 6.4 Rotational paths for the He QD 2s2 (1Se) resonant state at A ¼ 0:5 and 1=B ¼ 10 a.u. by
using the CI-type basis functions. Each line represents the trajectory with a single value of a and
different rotational angle h. The resonance parameters are obtained by using Eq. 6.24
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(a)

(b)

Fig. 6.5 Resonant state energies of the He QD in 1Se symmetry as functions of potential radius
1=B. HY and CI represent the Hylleraas-type and CI-type basis sets and the corresponding results
are demonstrated by dots and lines, respectively. The green stars refer to the results from
stabilization calculations [31]. a A ¼ 0:2 a.u. and b A ¼ 0:5 a.u.
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Fig. 6.6 Resonance width for the He QD 2s2 1Se resonant state at A ¼ 0:2 and 0:5 a.u. The
notations are same as Fig. 6.5

Fig. 6.7 The same as Fig. 6.6 but for the 2p2 1Se resonant state. Only the Hylleraas results are
included. Lines are used to guide the eyes
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resonance phenomena in atomic systems, such as the Feshbach projection method
[42, 43], the close-coupling approximation [44], multi-configuration Hartree-Fock
method [45], hypersphercial close-coupling method [46, 47], stabilization method

Fig. 6.8 The same as Fig. 6.6 but for the 2s3s 1Se resonant state

Fig. 6.9 The same as Fig. 6.6 but for the 2p3p 1Se resonant state
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[48–50] and the complex-scaling method [51–53]. In Tables 6.3 and 6.4, we also
include the results of Bürgers et al. [53] by using the complex-scaling method with
the Sturmian-type basis. It can be seen that the results calculated by Hylleraas basis
are more accurate than those by CI for the npn0p resonances, especially for the 2p2

state. It has long time been recognized that [53, 54] the angle h12 between the two
electron position vectors for nsn0s resonance states has values larger than 90°. In the
limit of n0 ! 1 these states have a collinear configuration X � Y � X with the two
electrons are localized on the opposite sides of the nucleus (h12 � 180�). However,
for npn0p resonance states in 1Se symmetry, h12 is generally smaller than 90°, and the
limit n0 ! 1 corresponds to a collinear configuration Y � X � X with both electrons
on the same side the nucleus (h12 � 0�). It is expected that the electron correlation
effects in npn0p states are quite important and, therefore, the inclusion of r12 factor in
the system wave function is necessary.

When the He atom is confined in the QD, only the stabilization method calcu-
lation was performed by Chakraborty and Ho [31] for the lowest-lying resonance
state. The comparisons in Figs. 6.5 and 6.6 show that the present complex-scaling
calculations with both basis sets are in excellent agreement with the previous
results. Figure 6.5 depicts the variations of the resonance energies of He QD along
with the corresponding He+ (n ¼ 2) threshold states when the potential radius
changes. Although the energies continuously decrease with increasing the dot size,
no “plateau” patterns are visible for the doubly-excited resonant states as compared
to the singly-excited bound states displayed in Fig. 6.3. It should be noticed that
even though the resonant state is denoted by the products of single-electron orbitals,
2s2 for example, it actually has components of all those products that can couple to

Fig. 6.10 The same as Fig. 6.6 but for the 2s4s 1Se resonant state
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Table 6.3 The 1Se resonant state energies of the two-electron He QD with FO potential depth
A ¼ 0:5 a.u.

1/B Basis 2s2 2p2 2s3s 2p3p 2s4s

0 a −0.77787 −0.62193 −0.58989 −0.54809 −0.54488

b −0.77786 −0.62182 −0.58989 −0.54806 −0.54488

c −0.77787 −0.62193 −0.58989 −0.54809 −0.54488

0.1 a −0.78051 −0.62258 −0.59151 −0.54925 −0.54598

b −0.78050 −0.62246 −0.59151 −0.54923 −0.54598

0.4 a −0.80257 −0.63835 −0.60704 −0.56404 −0.56045

b −0.80256 −0.63823 −0.60704 −0.56402 −0.56044

0.6667 a −0.84176 −0.68169 −0.63750 −0.59976 −0.58983

b −0.84174 −0.68154 −0.63749 −0.59975 −0.58980

1 a −0.92896 −0.76689 −0.70009 −0.66370 −0.64983

b −0.92894 −0.76669 −0.70008 −0.66372 −0.64982

2 a −1.21136 −1.03822 −0.88034 −0.82562 −0.81020

b −1.21131 −1.03799 −0.88032 −0.82562 −0.81016

2.5 a −1.31169 −1.13749 −0.95735 −0.88707 −0.86767

b −1.31164 −1.13721 −0.95733 −0.88702 −0.86763

4 a −1.49484 −1.32089 −1.13860 −1.05314 −0.99368

b −1.49481 −1.32062 −1.13857 −1.05305 −0.99366

6.6667 a −1.63186 −1.46037 −1.31474 −1.22809 −1.15959

b −1.63184 −1.46014 −1.31473 −1.22800 −1.15958

10 a −1.69787 −1.52964 −1.41769 −1.33566 −1.27821

b −1.69785 −1.52944 −1.41768 −1.33558 −1.27820

20 a −1.75265 −1.59042 −1.52205 −1.45321 −1.41945

b −1.75263 −1.59027 −1.52205 −1.45315 −1.41945

40 a −1.77076 −1.61243 −1.56685 −1.51089 −1.49345

b −1.77074 −1.61230 −1.56685 −1.51085 −1.49345

66.667 a −1.77518 −1.61823 −1.58033 −1.53099 −1.52051

b −1.77517 −1.61810 −1.58033 −1.53096 −1.52050

100 a −1.77665 −1.62022 −1.58533 −1.53933 −1.53214

b −1.77664 −1.62010 −1.58532 −1.53931 −1.53213

The rows of 1=B ¼ 0 represent the free He atom. The notations a and b label the Hylleraas-type
basis with x ¼ 16 and CI-type basis with lmax ¼ 10� 5, respectively. c represents the resonant
states of free He atom calculated by Bürgers et al. [53]
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Table 6.4 The same as Table 6.2 but for the resonance widths of the two-electron He QD
modeled by FO potential

1/B Basis 2s2 2p2 2s3s 2p3p 2s4s

0 a 0.004541 0.000216 0.001363 0.000075 0.000492

b 0.004546 0.00017 0.001361 0.00006 0.000491

c 0.004541 0.000216 0.001363 0.000075 0.000492

0.1 a 0.004483 0.000226 0.001329 0.000186 0.000368

b 0.004488 0.001329 0.00018 0.000363

0.4 a 0.003976 0.000243 0.001146 0.000200 0.000270

b 0.003980 0.001145 0.00020 0.000271

0.6667 a 0.004830 0.000173 0.001350 0.000115 0.000290

b 0.004832 0.001349 0.00011 0.000285

1 a 0.006785 0.000080 0.001435 0.000518 0.000036

b 0.006781 0.001423 0.00049 0.000029

2 a 0.009538 0.000004 0.002997 0.000825 0.000002

b 0.009531 0.002973 0.00081 0.000001

2.5 a 0.009544 0.000007 0.004119 0.000529 0.000325

b 0.009541 0.004111 0.00050 0.000307

4 a 0.008551 0.000039 0.005311 0.000059 0.002243

b 0.008554 0.005309 0.00003 0.002215

6.6667 a 0.007022 0.000099 0.004813 0.000001 0.002931

b 0.007028 0.004813 0.00000 0.002926

10 a 0.006039 0.000137 0.003960 0.000012 0.002682

b 0.006046 0.003962 0.00001 0.002680

20 a 0.005070 0.000176 0.002667 0.000035 0.001906

b 0.005076 0.002668 0.00002 0.001905

40 a 0.004700 0.000198 0.001898 0.000045 0.001239

b 0.004706 0.001899 0.00003 0.001240

66.667 a 0.004603 0.000207 0.001608 0.000049 0.000919

b 0.004609 0.001608 0.00003 0.000921

100 a 0.004570 0.000211 0.001486 0.000054 0.000755

b 0.004575 0.001487 0.00004 0.000751
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the final 1Se configuration, such as the nsn0s; npn0p; ndn0d etc. Such configuration
interactions are stronger for higher-lying resonances. As a results, the radial dis-
tribution of the resonant state is more complicated than the bound states and no
“plateau” exists.

The widths of the 2s2; 2p2; 2s3s; 2p3p and 2s4s resonances are shown in
Figs. 6.6, 6.7, 6.8, 6.9 and 6.10, respectively. The oscillatory behavior of the
resonance width was firstly predicted by Chakraborty and Ho [31] for the lowest
resonant state. The present complex-scaling calculations confirm this phenomenon
and, in addition, it has been found that the oscillatory frequency increases for
higher-lying resonant states. Such character arises from the strong interferences
between the QD confining potential and the resonance wave functions. For two-
electron systems, the wave functions of a doubly excited autoionizing state has
large amplitude in the inner region and oscillator character in the outer region. The
radial distribution of the two electrons in r1 and r2 contour plot show nodal and
antinodal structures resulting from the electron correlations and configuration
interactions. When the He atom is confined in a QD cavity, the node or antinode of
the resonance wave function lies on the edge of the potential cavity, destructive or
constructive interferences would take place inside the cavity, leading to shortening
or prolonging of the autoionization lifetime. As a result, the resonance width
exhibits oscillatory behavior when the size of the QD changes. For an extremely
small (1=B ! 0) or large (1=B ! 1) dot size, the resonance width approaches to
the free-atom values in both cases, as we can see from Figs. 6.6, 6.7, 6.8, 6.9 and
6.10. The higher-lying resonant states have more nodal and antinodal structures
[55] and therefore show more oscillatory characters between these two limits. From
these Figures, one can also observe that the deepening of the confinement potential
increases the oscillatory amplitude, which can be understood as the enhancement of
the interference effects by the QD cavity.

Another interesting phenomenon is the nearly opposite effects of the QD cavity
on the width for different resonant states. In Fig. 6.11, we categorize the 2s2; 2s3s
and 2p2 in one group and 2s4s and 2p3p in another. It is found that the resonant
states with nsn0s and npn0p configurations in each group show nearly opposite
changes against 1=B. The different angular correlations (approximate X � Y � X
structure for nsn0s states and Y � X � X structure for npn0p ones) and the nearly
degenerate energies between the nsNs and npðN � 1Þp states [53] are responsible to
such interesting phenomenon. Last but not least, we would like to mention the
possible interferences existing between the resonant states in strong confinement. In
Fig. 6.11d for A ¼ 0:5, the 2s4s and 2p3p states show additional structures in the
region of 1=B ¼ 1 to 2 a.u., whereas in Fig. 6.11b for A ¼ 0:2 they do not. Such
phenomenon may also become severer for higher-lying resonances and in deeper
confining potentials.
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6.4 Concluding Remarks

In this work, we investigate the confinement effects of the quantum dots modeled
by finite oscillator potential on atomic systems. The bound states of the one- and
two-electron QD with He2+ impurity are calculated in the variational approach. The
degeneracies of the one-electron hydrogen-like energy levels are destroyed when
the confinement potential is introduced. The two-electron bound states show some
interesting “plateaus” in the energy spectrum arising from the different radial dis-
tributions of the two electrons in singly excited states. The doubly-excited resonant
states of He QD are calculated by using the complex-scaling method. The system
wave functions are represented by the configuration interaction-type and Hylleraas-
type basis sets. The resonance energies decrease monotonously with increasing the
dot radius, but no “plateau” patterns exist due to the strong configuration interac-
tions. In the extremely small or large QD radii, the system approaches to a free atom
situation or to a free atom plus a constant potential with infinite radius. Between
these two limits, the resonance widths show oscillatory characters against the dot
size, which is a result of the constructive and destructive interferences between the
confining potential and the nodal structures of the resonance wave functions. The
oscillatory behaviors are also manifestations of the radial and angle correlations of

(a) (b)

(c) (d)

Fig. 6.11 Categories of the resonance width for He QD resonant states in 1Se symmetry. a 2s2,
2s3s and 2p2 resonances for A ¼ 0:2 a.u., b 2s4s and 2p3p resonances for A ¼ 0:2 a.u., c the same
as (a) but for A ¼ 0:5 a.u. and d the same as (b) but for A ¼ 0:5 a.u.
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the two electrons in autoionizing resonant states. The properties of the bound
and resonant states of QD systems with impurities are very different with those
containing only excess electrons, and there may still be other interesting phenomena
that have not been discovered and fully understood. It is hoped that our work would
encourage further investigations on the confinement effects in the QD systems.
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Chapter 7
Spatial and Shell-Confined One Electron
Atomic and Molecular Systems: Structure
and Dipole Polarizability

S.A. Ndengué and O. Motapon

7.1 Introduction

The idea of confined quantum system originates from the pioneering work of
Michels et al. [1] who used an impenetrable cavity to simulate the effect of pressure
on the static polarizability of a hydrogen atom. Later on, the concept of confinement
was used to model atomic systems subjected to different types of traps. Under
special constraints—spatial restriction (of various geometries) under pressure,
trapping inside a hollow cage (fullerene cage) or an attractive potential—atoms
have been found to undergo numerous changes in their properties (orbitals, energy
levels, localization of electrons, polarizability, filling of shells, photon induced
ionization and absorption, etc.) compared to the free atoms. In the past two decades,
confined atoms have known a rising interest owing to the whole bunch of potential
applications: hydrogenic impurities in semiconductors/nanostructures (quantum
dots, quantum well, quantum well wires), atoms emprisoned in zeolite traps, atoms
trapped in fullerene cages, etc. Detailed discussions of these applications are
available on several review articles [2–4]. Recently, two consecutive volumes of
Advances in Quantum Chemistry [5, 6] provided state-of-the-art advances in the
study of confined atoms and molecules. The principal idea one may consider for the
attractivity of this study is the inadequacy of standard quantum chemistry programs
to obtain adequate results, that is most of the time, new (or modified standard) codes
and approaches have to be proposed to tackle issues related to confinement.

It is currently admitted that the spherical cage [7–9] can be an ideal represen-
tation of the endohedral confinement, as well as the spherical cavity proposed by
Michels et al. [1] and used by several authors [10–15] is an ideal description of the
pressure effect in an ionized medium. This situation is adequate for analytical or
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numerical treatment due to the separability of the Schrödinger equation as well as it
is interesting for modelling spherical atomic trapping. The effect of such an envi-
ronment on the energy levels, the shell filling and other properties of atoms were
described [8, 16–18], and the wavefunctions used to account for the redistribution
of oscillator strengths and the so-called confinement resonances that appear in the
photoionization cross section of endohedrally confined atoms [9, 18–20].

The cavity can have a deformed shape. This is why prolate spheroidal cavity can
be used to generalize the spherical one, and this is natural in the molecular context.
A less ideal situation for numerical computations would be to consider the atom
confined in a cylindrical cavity. This could happen if one imagines an atom trapped
in a nanotube, a nanowire or any other type of cylindrical potential. In this situation,
the Schrödinger equation is no longer completely separable (except for some
special types of potentials [21]) and we therefore have to deal with a multidi-
mensional equation with a Coulomb potential.

Molecules can also experience spatial or endohedral confinement. Experiments
[22] have reported the encapsulation of molecules in fullerene cages. Ab initio and
semi-empirical computations have been devoted to the characterization of the sta-
bilization—equilibrium distance and energy—of some basic molecules trapped
inside the C60 cage [23, 24] or inside nanotubes [25]. The study of hydrogen
molecular ion inside a penetrable prolate spheroidal box was addressed by the
group of Cruz [26–28] where spatial confinement was obtained at the infinite limit
of the confining potential. A similar work, based on H2, was carried out by Pang
[29] using a diffusion quantum Monte Carlo method. Tayebirad et al. [30] used the
same method to study slightly varying equilibrium position of hydrogen molecule
and hydrogen molecular ion inside a fullerene cage. Those works were limited to
the description of the energy curve and spectroscopic properties of the electronic
ground state.

This contribution revisits the structure and electric dipole polarizability of one
electron atoms and molecular systems. It proceeds in a first step through a
description of spherical one-electron basis sets, indicated for one electron atoms in
spherically symmetric potentials. In a second step, a two-center spheroidal basis set
approach, appropriate for the description of one-electron molecular systems is
developed. Results for both the ground and excited electronic states of Hþ

2 , since we
are interested in the polarizability, under spatial confinement, are presented. We
also report an investigation of the same states submitted to a confinement within a
fullerene cage Hþ

2 @C60
� �

. Such a system constitutes a benchmark for the study of
the properties of simple molecules confined in an endohedral cage, and represents a
starting point for the theoretical study of the storage of small molecules in this kind
of device as experimentally realized recently in nanotubes [31, 32]. Finally, the
atomic limit of the confined Hþ

2 can be obtained by taking adequate electric charges
at the two centers and an appropriate limit for the internuclear distance. This has
enabled us to revisit the so-called centered and off-centered hydrogen atom spatially
confined (previously studied by Ting-Yun et al. [33] and Neek-Amal et al. [34]) or
endohedrally confined [35, 36]. In a third step, we present the case of the cylindrical
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confinement of the H atom, indicated to model trapping in quantum nanowires and
nanotubes. After the initial works of Yurenev et al. [37] and Yurenev et al. [38] who
studied the energy and stability of the hydrogen atom confined in a perfect cylinder,
we revisit previous calculations of the non-relativistic energies of cylindrically
centered confined atom and follow our current interest on confined systems [39, 40]
in computing the static and dynamic dipole polarizability. An implemented fit
approach consisting in expressing the potential as an expansion of product form is
found to be efficient in saving computation time [41].

This contribution is organized as follows. The theoretical method is presented in
Sect. 7.2. It deals with the methods of solutions of the Schrödinger equation
in different confinement situations, as well as the polarizability computation. In
Sect. 7.3, we present the results of the developed models. We conclude this chapter
by presenting the future directions that those initial works can initiate.

7.2 Theoretical Method

The Schrödinger equation is the starting ground for the study of microsystems. In
our works, we approximate it with the variational Galerkin approach, expanding the
wavefunctions on a B-Splines basis set. This section gives a brief description of
the mathematical tools used to solve the Schrödinger equation. Also the forms of
the Schrödinger equation in the various types of confinement investigated, the
methods for their solutions, and the operational forms for the static and dynamic
electric dipole polarizability of the corresponding systems will be developed.

7.2.1 B-Splines Basis Set and Variational Galerkin Approach

7.2.1.1 B-Splines Basis Set

A B-Splines basis set is a set of piecewise polynomials represented in a finite
interval. That interval is divided into segments, the endpoints of which are given by
a knot sequence tif g; i ¼ 1; 2; . . .; nþ k, where n is the number of B-splines and
k their order. Following the notation of de Boor [42] the B-Splines of order
k;Bi;k rð Þ; are defined in this knot sequence by the relations:

Bi;1 rð Þ ¼ 1 ti � r� tiþ1

0 otherwise

�
ð7:1Þ
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and

Bi;k rð Þ ¼ r � ti
tiþk�1 � ti

Bi;k�1 rð Þ þ tiþk � r
tiþk � tiþ1

Biþ1;k�1 rð Þ ð7:2Þ

They satisfy the relations

Rrmax

0
Bi;kðrÞBj;kðrÞdr ¼ 0 for ji� jj [ k

Pk
i¼1

Bi;kðrÞ ¼ 1

8>><
>>: ð7:3Þ

The functions Bi;k rð Þ are piecewise polynomials of degree k � 1 in the interval
ti � r� tiþk and vanish out of this interval. The points defining our sequence have a
multiplicity of k at r ¼ 0 and r ¼ rmax, i.e. t1 ¼ t2 ¼ � � � ¼ tk ¼ 0 and
tnþ1 ¼ tnþ2 ¼ � � � ¼ tnþk ¼ rmax. These points can be distributed at our convenience
linearly, geometrically, exponentially or even sinusoidally. They can also be adjusted
so as to describe non differentiable conditions of the wavefunctions at some regions of
the space. The Spline Bi;k rð Þ; defined in the range ½ti; tiþk� is differentiable of order
k � m� 1 on the knots of its range, where m is the multiplicity of the particular knot
[43, 44]. The exponential knot sequence is suitable in atomic physics in general
because it concentrates points at the small radii where the wavefunctions oscillate. In
this work, a linear sequence has been preferred to insure a correct description of the
wavefunctions at the boundaries of the shell potential i.e. at rc and rc þ D.

The B-splines are reliable for their flexibility and have drawn a great interest
during the last 25 years. They provide a good alternative to the finite difference
methods for the solution of differential equations. Their definition and properties
have been presented by de Boor [42] and have been widely reviewed or used in a
number of papers of interest in atomic and molecular physics among which one can
mention several references [45–49]. They have been used to solve the Schrödinger
equation in one or several dimensions, for two or many body problems, in spherical
or spheroidal coordinates.

7.2.1.2 Variational Galerkin Approach

In order to solve with the variational Galerkin approach the Schrödinger equation:

Ĥw ¼ Ew ð7:4Þ

we expand the radial wavefunction as:

wnl rð Þ ¼
XN
i¼1

ciBi;k rð Þ ð7:5Þ

where Bi;k is the ith B-Spline function of order k.
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When studying a free atom, an atom confined in fullerene (modelled as a shell),
an atom in a plasma (modelled by a Debye potential), or an atom under an infinite
range potential, the infinite space is restricted to a finite one in order to make
computations numerically affordable. This is done by defining a parameter rmax that
controls our domain and chosen sufficiently great so that most of the low-lying
levels wavefunctions are evanescent at rmax. For systems under hard wall con-
finements, rmax would represent the confinement radius and thus suits well with this
type of studies. However, since the method is approximate and the basis functions
are not eigenfunctions of our system, in all the mentioned cases, convergence is
achieved by increasing the B-Splines basis size.

The transformation of the radial Schrödinger Eq. (7.4) through the variational
Galerkin procedure [50] with respect to the ci coefficients leads to an N × N gener-
alized eigenvalue problem:

Av ¼ eSv ð7:6Þ

v being the column matrix of the ci coefficients, A the hamiltonian matrix, S the
overlapping matrix and e the variational energies. Solving this generalized eigen-
value equation gives the eigenvalues ek which are energy levels and eigenvectors vk

which are used to generate the eigenfunctions.
At this point it is important to note that the variational Galerkin procedure

employed here does not include the conditions at the boundaries of the shell
potential (Eq. 7.13). Nevertheless we are able to solve accurately the problem
taking advantage of the integration which is not perturbed much by the disconti-
nuity at the shell boundary for any function (continuous or not). The major problem
comes from the derivative of B-Splines which may have extremely high (or infinite)
values at the shell boundary due to the discontinuity of their (discontinuous)
primitive counterpart function. This problem is overcome by either using a rela-
tively high (more than a hundred) number of B-Splines functions to obtain correct
results or increasing the multiplicity of the knots at the non differentiable points of
the domain as stated in the previous section.

7.2.2 Schrödinger Equation in Spherical Representation:
Solutions and Dipole Polarizability

7.2.2.1 Wavefunctions and Energy Levels

The radial wavefunction /nlðrÞ ¼ wnlðrÞ
r and the eigenenergies Enl of a hydrogen like

system confined or trapped in a potential UðrÞ can be obtained, in the non rela-
tivistic case, by solving the radial Schrödinger equation which reads (after the
common transformation) in atomic units (m ¼ �h ¼ e ¼ 1):
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�1
2

d2

dr2
� lðlþ 1Þ

r2

� �
� Z

r
þ U rð Þ

� �
wnlðrÞ ¼ EnlwnlðrÞ ð7:7Þ

In the case of a spatial confinement, UðrÞ is represented by:

UðrÞ ¼ 0 r�Rmax

1 otherwise

�
ð7:8Þ

The endohedral environment can be modelled, in the case of a single-walled
cage, by a potential of the form [7, 8]:

UðrÞ ¼ �U0 rc � r� rc þ D
0 otherwise

�
ð7:9Þ

where U0 is positive, rc is the inner radius of the shell and Δ the difference between
the inner and the outer radii. For rc and Δ, we used the values proposed by Xu et al.
[7] for a fullerene C60 molecule, that is rc ’ 5:75 a.u., and D ’ 1:89 a.u.

In the case of a multi-walled cage (buckyonion), the endohedral environment can
be modelled by a potential of the form:

UðrÞ ¼
Xn
i¼1

aiUi rð Þ ð7:10Þ

with ai ¼ 0 or 1, and:

Ui rð Þ ¼ �UðiÞ
0 rðiÞc � r� rðiÞc þ DðiÞ

0 otherwise

�
ð7:11Þ

where UðiÞ
0 ; rðiÞc andDðiÞ stand for the depth, the inner radius and the distance

between the inner and the outer radii for the ith shell. For the three-shell case
modelling H@C60@C240@C540 for example, the values for these constants are

taken to be [40, 51] UðiÞ
0 ¼ 0:302 a.u. for C60, 0.367 for C240, and 0.441 for C540;

rðiÞc is 5.75 a.u. for C60, 12.60 for C240, and 18.85 for C540; and DðiÞ is the same
(1.89 a.u.) for C60, C240, and C540, because the thickness is largely determined by
the extent of the carbon atom.

The radial wavefunctions wnlðrÞ, which are part of the total wavefunctions
WnlmðrÞ ¼ 1

r wnlðrÞYlmðh;/Þ where the Ylmðh;/Þ‘s are spherical harmonics, satisfy
to the boundary conditions:

wnlð0Þ ¼ wnlð1Þ ¼ 0 ð7:12Þ
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and

w0
nlðrðiÞ\Þ

wnlðrðiÞ\Þ
¼ w0

nlðrðiÞ[ Þ
wnlðrðiÞ[ Þ

ð7:13Þ

at each wall where the prime denotes a derivative with respect to r; rðiÞ\ and rðiÞ[
corresponding to two regions separated by a wall located at rðiÞ or rðiÞ þ DðiÞ.

In the case of simple space confinement, UðrÞ is taken to be zero, and the
pressure effect comes from vanishing wave functions at Rmax. To solve the
Schrödinger Eq. (7.7), we apply the variational Galerkin procedure [50] with B-
Splines functions as the expanding set.

7.2.2.2 Electric Dipole Polarizability

When the atom in the state n0l0 is submitted to a uniform electric field directed
along the z axis, the electric static dipole polarizability, that materializes the atomic
second order response, reads:

an0l0 ¼ 2
X

nlm6¼n0l0m0

jhWnlmðrÞjr cos hjWn0l0m0ðrÞij2
Enl � En0l0

ð7:14Þ

Replacing the functions WnlmðrÞ and Wn0l0m0ðrÞ by their expression, one finds:

an0l0 ¼ 2
X

nlm6¼n0l0m0

1
Enl � En0l0

Rnl
n0l0

� 	2
Alm

l0m0

� 	2
ð7:15Þ

or

an0l0 ¼ 2
X

nlm 6¼n0l0m0

Rnl
n0l0

� 	2

Enl � En0l0
ð2lþ 1Þð2l0 þ 1Þ l 1 l0

0 0 0


 �2
l 1 l0
�m 0 m0


 �2

ð7:16Þ

where

Rnl
n0l0 ¼

Zrmax

0

rwnlðrÞwn0l0ðrÞdr ð7:17Þ
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and

Alm
l0m0

¼
Z

dXð�ÞmYl;�mðXÞY10ðXÞYl0m0ðXÞ ð7:18Þ

a b c
d e f


 �
being a Wigner 3j symbol.

For an atom initially in the ground state n0l0 ¼ 1sð Þ, one has

a1s ¼ 2
3

X
np;n6¼1

R
np
1s

� �2
Enp � E1s

ð7:19Þ

7.2.3 Schrödinger Equation in the Prolate Spheroidal
Representation: Solutions and Dipole Polarizability

7.2.3.1 One Electron Schrödinger Equation

Let us consider theHydrogenmolecular ion in theBorn-Oppenheimer approximation.
The two atoms are positioned in A and B separated by a distance R. This approach can
then be extended to atomic systems, by considering half atoms centered on A and B
with R ! 0 (nearly centered case), or a full atom centered on either A or B (off-center
case). For such systems it is natural to use prolate-spheroidal coordinates:

n 2 1;1½ Þ; g 2 �1; 1½ �;/ 2 0; 2p½ �ð Þ; ð7:20Þ

with:

n ¼ rA þ rB
R

and g ¼ rA � rB
R

; ð7:21Þ

where rA (resp. rB) is the distance from center A (resp. B) to the electron and / is
the angle around the internuclear axis.

We follow the description proposed by Vanne and Saenz [52] of which we will
just present the main steps in this text, and invite the interested reader to report to
this reference.

The One Electron Schrödinger Equation (OESE) is written as:

ĥw ¼ ew ð7:22Þ

with

ĥ ¼ � 1
2
r2 þ V n; gð Þ þ U n; gð Þ: ð7:23Þ
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where

r2 ¼ 1
R2

1

n2 � g2
o
on

n2 � 1
� � o

on
þ o
og

1� g2
� � o

og
þ n2 � g2

n2 � 1
� �

1� g2ð Þ
o2

ou2

" #

ð7:24Þ

V n; gð Þ is the Coulomb potential, written as follows:

V n; gð Þ ¼ � 2

R2 n2 � g2
� � ðZB þ ZAÞRnþ ðZB � ZAÞRgf g; ð7:25Þ

and U the confinement potential.
The wave functions are searched in the form:

wðn; g;uÞ ¼ n2 � 1
� � mj j=2

Bi;knðnÞ 1� g2
� � mj j=2

Bj;kgðgÞ
1ffiffiffiffiffiffi
2p

p eimu ð7:26Þ

To solve Eq. (7.22), two sets of B-Splines are introduced. The first set comprises
nn B-Splines Br nð Þ r ¼ 1; . . .; nnð Þ of order kn for variable n. The knot sequence
nbi

 �
is chosen according to:

1 ¼ nbi ¼ � � � ¼ nbkn\nbknþ1\ � � �\nbnnþ1 ¼ � � � ¼ nbnnþkn ¼ nmax; ð7:27Þ

Similarly, the second set comprises ng B-Splines Br gð Þ r ¼ 1; . . .; ng
� �

of order
kg for variable g, but now using the knot sequence gbi

 �
according to:

�1 ¼ gbi ¼ � � � ¼ gbkn\gbknþ1\ � � �\gbnnþ1 ¼ � � � ¼ gbnnþkn ¼ 1: ð7:28Þ

This OESE can be used to treat both centered and off-centered situations of
hydrogen-like systems. In the centered case, we place 1/2 charges on each center
and let the intercenter distance R ! 0 and n ! 1 [35]. In the off-centered case, we
place a charge on one center and let the other center free of charge. The off-centered
displacement will then be half the intercenter distance R.

7.2.3.2 Spatial Confinement in the Spheroidal Description

Referring to the approach described above for the OESE, we easily implement the
spatial confinement on the system. The basis parameter nmax defines the size of the
ellipsoidal box in which the OESE is solved. It is related to the semi-major axis of
the elliptical box 2Rcð Þ by the relation:
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nmax ¼
2Rc

R
ð7:29Þ

Working with a particular value of the spatial confinement Rcð Þ is then equiv-
alent to studying the system for a value of nmax dependent of Rc and the intercenter
distance, as the previous equation shows. The same formalism applies to Hydrogen
and Hydrogen-like systems. In this case, having n ! 1 and R ! 0 is used to
ensure that the the semi-major axis of the ellipsoidal box 2Rcð Þ will be sufficiently
large so that the wavefunctions of the system shall not feel a spatial confinement in
a free atom case. In the situation of spatial confinement, we just have to let R ! 0
and impose a value of Rc. We deduce then the value of nmax.

7.2.3.3 Shell Potential Confinement in the Spheroidal Description

The endohedral shell potential is modelled according to two methods which give
the same results in a particular case. The first approach consists in writing the shell
potential as:

UðnÞ ¼ �U0 ns � n� ns þ Ds

0 otherwise

�
ð7:30Þ

In this approach the endohedral shell has a shape homothetically similar to the
box, that is the shell will exhibit the same deformation than the ellipsoidal box.
Hence, if the box is strongly deformed from a sphere, it will be the same for the
shell potential.

The second approach consists in writing the shell potential as:

Uðn; gÞ ¼ �U0 inside the shell
0 otherwise

�
ð7:31Þ

where the shell is located between two ellipsoids [35] of revolution with principal
diameters Ain;Bin and Aout;Bout given by:

Ain ¼ 2þ d
2� d


 �2=3

Rs; Aout ¼ 2þ d
2� d


 �2=3

Rs þ Ds½ � ð7:32Þ

Bin ¼ 2� d
2þ d


 �2=3

Rs; Bout ¼ 2� d
2þ d


 �2=3

Rs þ Ds½ � ð7:33Þ

Rs being the inner radius of the shell and Ds the difference between the inner and the
outer radii. For Rs and Ds, we used the values proposed by Xu et al. [7] for a
fullerene C60 molecule, that is Rs ’ 5:75 a.u., and Ds ’ 1:89 a.u.
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The ellipsoidal potential shell region of non-zero potential is defined by the
following system of two equations:

d2

4
n2 � 1
� �

g2 � 1ð Þ
B2
in

þ d2

4
n2g2

A2
in

� 1 ð7:34Þ

d2

4
n2 � 1
� �

g2 � 1ð Þ
B2
out

þ d2

4
n2g2

A2
out

� 1 ð7:35Þ

where d is the focal distance defining the family of spheroidal coordinates.

7.2.3.4 Electric Dipole Static and Dynamic Polarizability

The polarizability of the Hþ
2 as any molecular system consists of an electronic

contribution and a nuclear contribution which can be both described simultaneously
in a non adiabatic approach or separately in a Born-Oppenheimer approach. In the
present work, we deal with the latter approach. In this case, the electronic part of the
electric dipole polarizability can be separated into two components:

(i) A transversal component

ae? ¼ 2
X
ex

w0 dxj jwexh ij j2
Eex � E0

; ð7:36Þ

where

dx ¼ �r cosu ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r21r

2
2 þ 2r21R

2 þ 2r22R
2 � r41 � r42 � R4

p
2R

cosu: ð7:37Þ

(ii) A longitudinal component

aek ¼ 2
X
ex

w0 dzj jwexh ij j2
Eex � E0

; ð7:38Þ

where

dz ¼ � r21 � r22
2R

: ð7:39Þ

In the above equations, the subscript 0 and ex are used for the initial (ground)
state and the excited states respectively.
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The weighted electronic polarizability is:

ae ¼ ðaek þ 2ae?Þ=3: ð7:40Þ

In spheroidal coordinates, the wave functions can be put in the forms:

w0 r;Rð Þ � w0 n; g;uð Þ ¼ 1ffiffiffiffiffiffi
2p

p /0 n; gð Þeim0u ð7:41Þ

and

wex r;Rð Þ � wex n; g;uð Þ ¼ 1ffiffiffiffiffiffi
2p

p /ex n; gð Þeimexu ð7:42Þ

and the electric dipole moment component in the form:

dx ¼ �r cosu ¼ � cosu
2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�R4n2g2 � R4 þ R4 n2 þ g2

� �q
; ð7:43Þ

that is

dx ¼ �R cosu
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2ð Þ n2 � 1

� �q
; ð7:44Þ

and

dz ¼ � r21 � r22
2R

¼ � R
2


 �
ng: ð7:45Þ

In this case, the transversal electronic polarizability is given by:

ae? ¼ R8

256

X
ex

R R
/0 � /ex

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2ð Þ n2 � 1

� �q
n2 � g2
� �

dndg
� 	2

Eex � E0ð Þ

� 1
2p

Z
e�im0ueimexu cosudu


 �2
ð7:46Þ

Note that 1
2p

R
e�im0ueimexu cosudu ¼ 1

2 if and only if mex ¼ m0 	 1:
For m0 ¼ 0;mex is	1 is, which means that transitions are from σ to π and vice

versa. One will then have:

ae? ¼ R8

512

X
ex

R R
/0 � /ex

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2ð Þ n2 � 1

� �q
n2 � g2
� �

dndg
� 	2

Eex � E0ð Þ : ð7:47Þ
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The longitudinal electronic polarizability gives:

aek ¼ 2R8

256

X
ex

R R
/0 � /exng n2 � g2

� �
dndg

� �2
Eex � E0

� 1
2p

Z
e�im0ueimexudu


 �2

:

ð7:48Þ

1
2p

R
e�im0ueimexudu ¼ 1 if and only if mex � m0 ¼ 0 which implies a transition from

a σ to a σ state. When this condition is satisfied, the longitudinal electronic
polarizability is:

aek ¼ R8

128

X
ex

R1
�1

Rþ1

1
/0 � /exng n2 � g2

� �
dndg


 �2

Eex � E0
: ð7:49Þ

The integrals involved in the transversal and longitudinal polarizabilities can be
expressed as sums of products of integral expressions involving B-splines which can
be evaluated accurately by a Gauss-Legendre quadrature. It is to be reminded that
ae? and aek are functions of the internuclear distance R. In the Born-Oppenheimer
approximation, the total polarizability at the equilibrium distance aðReÞ, including
the nuclear part, is obtained by averaging aeðRÞ over the rovibronic state fJ;vðRÞ. For
the ground state polarizability, the clamped nucleus approximation [53] gives:

ag ¼
Z

f0;0ðRÞaeðRÞf0;0ðRÞdR: ð7:50Þ

7.2.4 Schrödinger Equation in the Cylindrical Representation:
Solutions and Dipole Polarizability

The hydrogen atom experiencing a cylindrical confinement can be described as a
one electron atom fixed at the geometric center of an impenetrable wall cylinder of
length zmax and radius qmax. The Schrödinger Eq. (7.4) obeyed by our system then
reads:

� 1
2q

o
oq

q
o
oq


 �
� 1
2q2

o2

o/2 �
1
2
o2

oz2
� Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ q2
p

" #
W ¼ eW ð7:51Þ

with 0� q� qmax;
�zmax

2 � z� þzmax

2 and 0�/� 2p. The wavefunction, solution to
Eq. (7.51) is written as:
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Wðq; z;/Þ ¼ wðq; zÞ e
im/ffiffiffiffiffiffi
2p

p ð7:52Þ

and satisfies the following boundary conditions:

wðq; zmax=2Þ ¼ wðq;�zmax=2Þ ¼ wðqmax; zÞ ¼ 0 ð7:53Þ

That is the wavefunction vanishes on the walls of our cylinder. This is equivalent
to solving the Schrödinger equation with a potential having the Coulomb type
inside the cylinder domain, but infinite outside.

Equation (7.51) is solved by expanding the wavefunction on B-Splines, like in
the two previous cases, but with a different approach.

7.2.4.1 Variational Method for the Cylindrical Problem

The non angular part of the wavefunction is expanded as a linear combination of
products of functions in ρ and z:

wðq; zÞ ¼
XN
i¼1

CifiðqÞgiðzÞ ð7:54Þ

with N being the number of functions and Ci the real coefficients of the expansion to
be determined. The functions f and g are B-splines functions:

fiðqÞ ¼ Bkq
a ðqÞ; giðzÞ ¼ Bkz

b ðzÞ ð7:55Þ

The i index is expressed as:

i ¼ ða� 1Þ~gu þ b; a ¼ 1; ~gq; b ¼ 1; ~gu: ð7:56Þ

~gq ¼ gq � 1; ~gu ¼ gu � 2: ð7:57Þ

The −1 and −2 in Eq. (7.57) come from the exclusion of the edge splines,
following our boundary conditions. This happens since the first and last B-Splines
are non-zero on the boundaries of the domain they span.

When the atom is placed at the center of the cylinder, the system has a D1h

symmetry [38] and the confined states are defined by the quantum number m, the
absolute value of the projection of angular momentum onto the z axis of the
cylinder. Also, the parity of the states with respect to inversion is denoted by P
taking values +1 and −1, corresponding to gerade and ungerade states. Taking
advantage of those elements we reduce by four (selectively computing gerade or
ungerade states) the size of our basis by conveniently defining our wavefunctions
[52]. The f and g functions change to:
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fiðqÞ ¼ Bkq
a ðqÞ; giðzÞ ¼ Bkz

b ðzÞ þ ð�1ÞmPBkz
guþ1�bðzÞ; ð7:58Þ

Hence, with

~gq ¼ gq � 1; ~gu ¼ ðgu � 2Þ=2; ð7:59Þ

the variational transformation of the Schrödinger Eq. (7.51) leads to a set of N � N
generalized eigenvalue equation on the energies e and the coefficients Ci.

Hv ¼ eSv ð7:60Þ

where H is the Hamilltonian matrix and S the overlapping matrix. v is the vector of
Ci coefficients.

Following a recently proposed fit approach [41], the Coulomb potential is
expressed as a linear combination of product of functions depending on ρ and z.

Vðq; zÞ ¼ �Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ z2

p ¼
XM
j¼1

DjB
kfq
c ðqÞBkfz

f ðzÞ ð7:61Þ

where the D0s are the coefficients of the expansion and the B’s are B-Splines
functions of order kfq and kfz (generally low—cubic or quartic—in order to reduce
the Runge phenomenon [54]).

The fit of the Coulomb potential is performed using the regrid subroutine of the
Dierckx package [55–57] from the NETLIB repository. The routine allows a fast
and adjustable calculation of the expansion coefficients and produce accurate results
except at the center of the cylinder ðq ¼ 0; z ¼ 0Þ due to the Runge phenomenon.
This situation is inconvenient since (at least) the ground state wavefunction and
energy relies on the accuracy of the potential close to the center, as the principal
structure of the wavefunction is localized in that region. However, this issue could
be overcome by having more B-Splines functions located in the problematic region
so as to better describe it.

The calculation of the polarizability proceeds by the sum-over-states method. As
the numerical approach is very similar to the calculation of the electronic compo-
nent of the hydrogen molecular ion polarizability and has been detailed elsewhere
[41], we shall not repeat it here.

7.3 Computations and Results

The methods presented in the previous section are implemented in Fortran codes. In
this section the energies and polarizabilities obtained for one electron systems in the
three different types of confinement (prolate spheroidal, spherical and cylindrical)
will be presented and discussed. We will then present successively the study of the
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hydrogen molecular ion in prolate spheroidal coordinates and the hydrogen atom in
spherical, prolate spheroidal and cylindrical coordinates.

7.3.1 Electronic Energies and Polarizabilities of Spatially
and Endohedrally Confined One Electron Molecular
Systems

The hydrogen molecular ion is the simplest and thus a benchmark system for the
study of molecules. It has been studied with different approaches, using adiabatic as
well as non adiabatic computations. However, it is only until about 10 years that the
group of Cruz [26–28] and others ([29, 30] to mention few) started comprehensive
work on the confinement of hydrogen molecular ion and hydrogen molecule. In this
section, we will extend previous known results on the hydrogen molecular ion
under spheroidal confinement. We will then consider the hydrogen molecular ion
under spatial confinement but also under endohedral confinement and compute the
electronic energies as well as the polarizability.

The theoretical methods developed in Sect. 7.2.3 were used to compute the
electronic energies and generate the Potential Energy Curves (PECs). In Table 7.1,
we compare the electronic ground state potential energy at equilibrium distance Re,
for various confinement radii Rmax, with the results of Mateos-Cortés et al. [26] for
Hþ

2 . This table shows a good agreement with those computations and confirms the
good accuracy of our computations. The last value reported in this table, i.e.
−0.602634, which corresponds to the case of the free hydrogen molecular ion,
agrees very well with other values found in the literature in the Born-Oppenheimer
approximation [58, 59].

We also present in Figs. 7.1 and 7.2 the effect of spatial confinement on some
Potential Energy Curves (PECs). Whereas Fig. 7.1a represents the five lowest Rþ

g

Table 7.1 Comparison of the ground state energy of Hþ
2 with that of Mateos-Cortés et al. [26] at

equilibrium distance Re for various confinement radii Rmax

Re (a.u.) Rmax (a.u.) Ref. [26] This work

0.588 1.0 2.291855 2.292825

0.902 1.5 0.293301 0.293721

1.193 2.0 −0.271120 −0.270893

1.450 2.5 −0.472430 −0.472292

1.660 3.0 −0.551622 −0.551531

1.815 3.5 −0.583451 −0.583389

1.912 4.0 −0.595851 −0.595805

1.997 ∞ −0.602634 −0.602634
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(a) (b)

Fig. 7.1 a PECs of the first five Rþ
g states in the absence of confinement; b Ground state potential

energy curve of the electronic ground state for various confinement radii. In case (b), the number
near each curve is the radius Rmax of the confining cavity

(a) (b)

(c) (d)

Fig. 7.2 PECs of the first five Rþ
g states under spatial confinement of values: a Rmax = 1 u.a.;

b Rmax = 1.5 u.a.; c Rmax = 2.5 u.a.; d Rmax = 5 u.a
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states of Hþ
2 in the absence of confinement, Fig. 7.1b, illustrating various con-

finement cases of the ground state PEC, is found to reproduce well the graphs of
Fig. 7.1e of the paper by Mateos-Cortés et al. [26].

The spatial confinement has a number of effects on the PECs. The first one is the
bending experienced by the PECs, clearly due to the effect of the box pressure. This
wall pressure leads to an increase of the energy value, as can be seen from Fig. 7.1.
With decreasing Rmax, the equilibrium distance is shifted leftward and the bending
structure of the PECs is increased to such a point that they may allow to obtain
vibrational states with high energy values and higher frequencies. The energy
increase is in analogy to what can be observed with hydrogen atom [13] in an
impenetrable cavity: that is positive energy ground state, because the electron could
not escape from the potential barrier. In Fig. 7.2, we can see, in addition to the
bending structure of the PECs, that spatial confinement keeps symmetry since the
avoided crossings remain. All levels have the potential to possess vibrational states
because of the shape exhibited by PECs. This proves that the spectroscopy of the
molecule in such a confinement will exhibit a richer spectrum than free molecular
hydrogen.

The study of the endohedral confinement of Hþ
2 is reported in Figs. 7.3 and 7.4.

To the best of our knowledge, the only report made on this system is that of
Tayebirad et al. [30] which was devoted to the study of the ground state near the
equilibrium position R ¼ 2 a:u:ð Þ as a function of the shell potential. We cannot
make relevant comparison since we are—much more—interested in the behaviour

Fig. 7.3 PECs of the first four Rþ
g states under endohedral confinement: full lines U0 = 0 u.a.;

dashed lines U0 ¼ 0:6 u.a.; dashed-dotted lines U0 ¼ 1:0 u.a
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of the PECs under the shell confinement at various U0 and for different cage
deformations. However we may discuss some features presented in that paper.

The endohedral confinement of Hþ
2 molecule acts on it differently from the pure

spatial confinement. Here, the ground state’s curve is progressively bent downward
at high values of R as U0 increases, hence exhibiting a shoulder. The Coulomb
barrier that appears is canceled with increasing U0, and the potential is expected to
be totally repulsive at high values of U0 with a strong slope. As for the excited
states, they experience avoided crossings—as a consequence of the Wigner and
Von Newmann’s rule [60]—at very different positions than that in the cage free
case, and present various wells that may justify a rich vibrational structure above
R = 3 a.u. With increasing value of U0, lower states become one after the other
totally repulsive. Usually, the next upper level after a state that has just become
repulsive may possess vibrational states as we can see from Fig. 7.3. We may see it
as the new ground state of the system when the potential well value U0 increases.
This is quite similar to the effect observed on the hydrogen atom [39]. We observed
shell potential (well) levels dominating Coulomb levels and going below those
levels. This mechanism has here the additional effect to create a displacement of the
equilibrium position of the new ground states as the PECs structure vary with the
value of U0. These new states have the further advantage that we may observe
vibrational states on highly excited states which were dissociative in the free
molecule case. One further remark is the observation of avoided crossings, the shell
potential has as only effect to shift them slightly. Moreover, where they appear,

(a) (b)

(c) (d)

Fig. 7.4 Deformation effects on the lower electronic curves with Rþ
g within the endohedral

confinement with U0 = 0.302 a.u. a–b: in black d ¼ 0:0 and in red d ¼ 0:5, a ground state; b 2Rþ
g .

c–d: five lowest Rþ
g states when d ¼ 0:0 (c) and d ¼ 0:5 (d)
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seems to be the equilibrium position of the corresponding new state. A similarity
can be made with the paper of Tayebirad et al. [30]. In Fig. 7.3, we can see that till
the value U0 ¼ 1:0 a.u. the equilibrium position is not modified by the effect of the
cage though, as the graph shows, the entire structure of the PEC of the ground state
is modified. We thus expect, as it was pointed out in Ref. [30], that at the value
U0 ¼ 1:3 a:u the structure of the state may feel the effect of the well depth (and that
is indeed the results we obtain in calculations not shown here). This can be
explained, considering similarities with the H-atom case [39], by the fact that we
have reached at this particular value of R a level of the system consisting of an
electron inside a potential well. In Fig. 7.4 we have represented the effects of the
deformation on the lower electronic curves with Rþ

g symmetry within the endo-
hedral confinement with U0 = 0.302 a.u. The shell deformation has values d = 0.0
and 0.5. Some of the values used to represent those curves are reported in Table 7.2.
The increase of the deformation is found to decrease the electronic energy values.
Furthermore, the avoided crossings are found to be removed by the deformation of
the cavity, which means that the deformation reduces the configuration interaction.

The situation depicted here as a hard box confinement is an extreme (ideal) case
of confinement that is not often observed in real-life systems. More realistic
potentials would be a penetrable potential as presented in [26] or even shell
potential such as those used to model fullerene [7]. Those potentials globally move
the equilibrium positions of the system and modify the energy values which result
in an increase of the vibrational energy. This could then lead to an enhancement of
the nuclear tunneling through Coulomb barrier which, added to other actions, may
increase fusion rates significantly, as revealed by Segal et al. [61].

Accurate computations of the electronic ground and excited states, as we pre-
sented above, give the possibility to express the electronic but also total polariz-
ability of the hydrogen molecular ion (that is incuding the nucleus contribution) and
its symmetric isotopologues (Dþ

2 and Tþ
2 ). As a matter of fact, computations

reported in previous works for Hþ
2 and Dþ

2 , using the adiabatic and/or the clamped

Table 7.2 Electronic energies of the ground and first two gerade excited states Rþ
g of Hþ

2 in an
endohedral potential well value of U0 ¼ 0:302 a.u. with deformation d having values ≈0.0 and 0.5

R (a.u.) 1rg 2rg 3rg
d ! 0:0 d ! 0:5 d ! 0:0 d ! 0:5 d ! 0:0 d ! 0:5

1.0 −0.4518 −0.4518 0.5411 0.4232 0.6696 0.4842

2.0 −0.6026 −0.6027 0.0698 −0.0681 0.1695 −0.0094

3.0 −0.5777 −0.5780 −0.0897 −0.2321 −0.0101 −0.1739

4.0 −0.5467 −0.5474 −0.1609 −0.3154 −0.1014 −0.2563

5.0 −0.5266 −0.5277 −0.2039 −0.3649 −0.1640 −0.3050

6.0 −0.5187 −0.5185 −0.2319 −0.3972 −0.2086 −0.3358

7.0 −0.5234 −0.5177 −0.2490 −0.4194 −0.2327 −0.3561

8.0 −0.5414 −0.5250 −0.2728 −0.4327 −0.2242 −0.3718
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nucleus approach, give polarizabilities that are very close to those obtained
experimentally from the non adiabatic treatment [53, 62]. Contrary, the correct
description of asymmetric isotopologues like HD+ require a full account of non
adiabatic effects that enhances significantly the corresponding polarizabilities. The
contribution of the nuclear motion to the total polarizability of Hþ

2 has been
obtained using the development presented in Sect. 7.2.3.4. The calculation of the
electronic energies under various confinements leads to the PECs which are used as
inputs in relations (7.47)–(7.49). Here, the electric potential is replaced by the
potential energy curve and the confinement or endohedral potential is disregarded
since it is already being taken into account in the calculation of the PEC.

Table 7.3 presents the electronic and total static dipole polarizabilities of Hþ
2

experiencing a spatial confinement. We can see that our computations agree well
with the previous studies and that the nuclear contribution to the electric dipole
polarizability at equilibrium distance decreases with space confinement. It varies
from 10.71 % for Rmax = ∞ to 5.06 % for Rmax = 3.5 and less than 0.2 % for
Rmax = 1. In Table 7.4, the static dipole polarizabilities of Dþ

2 and Tþ
2 are presented

in comparison with previous works whenever available. This exhibits the effect of
isotropic substitution on the electric static dipole polarisability of Hþ

2 .
The ground state dynamic dipole polarizability of Hþ

2 at equilibrium distance Re

is represented in Figs. 7.5, 7.6 and 7.7 for the three confinement radii Rmax = 1, 3
and 6 a.u. respectively. In each graph, the transversal and longitudinal components
of the polarizability are plotted as well as the total polarizability. Resonant struc-
tures are observed, starting at low frequencies for the high Rmax case, and at high
frequencies for the low Rmax cases. In fact, as we have seen, in the presence of
pressure, the energy levels are shifted upward, and the energy differences between
electronic states are increased, resulting in high resonance frequencies. The dif-
ferences between the resonance positions resulting from the longitudinal and
transversal component is a consequence of the selection rules of the transitions
between electronic states.

The study of the hydrogen molecular ion could be connected to the study of the
hydrogen atom inside a prolate spheroidal cavity. This is possible through
the atomic limit of the model, and will be presented in Sects. 7.3.3 and 7.3.4, where
the spatial and endohedral confinements are studied separately.

7.3.2 Energies and Polarizabilities of Endohedrally Confined
Centered Hydrogen Atom

For the endohedrally confined hydrogen atom, the energy levels are combinations
of the Coulomb potential energy levels and the potential well energy levels. As a
matter of fact, for a particular value of U0, the energy levels come either from the
Coulomb potential problem or the potential well problem. Considering N = 160 B-
Splines of order k = 12 and Rmax = 80 a.u., energies and polarizabilities of a single-
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shell confined H atom have been computed, as a function of the shell potential.
Figure 7.8 shows the behaviour of energies of the atom in the endohedrally con-
fined potential as a function of U0. Starting from U0 ¼ 0 Ry when the energy levels
are purely due to the Coulomb potential, the increase of the shell potential depth
(U0) induces a progressive appearance of new bound states (around U0 = 1.5 Ry,
U0 = 5 Ry, U0 = 13.5 Ry, etc.), hence modifying the position of the initial 1s level
in the classification which then becomes 2s, 3s, 4s and so on. This shift accounts for
the avoided crossings observed around the 1s-energy level and the permanent
existence of that s state around −1.0 Ry justifies a stabilization zone around this

Table 7.3 Comparison of the electric dipole polarizability (electronic part and total) of the ground
state energy of Hþ

2 at equilibrium distance Re for various confinement radii Rmax, with other
computations

Re

(a.u.)
Rmax

(a.u.)
References aek ae? ae ag

0.588 1.0 This work 0.032674021 0.021745237 0.025388164 0.025422149

Ref. [26] 0.031998 0.021564 0.025042

0.902 1.5 This work 0.16151798 0.091085539 0.11456302 0.11518771

Ref. [26] 0.158429 0.090445 0.113107

1.193 2.0 This work 0.48756678 0.23645037 0.32015584 0.32395005

Ref. [26] 0.4766987 0.23474 0.315397

1.450 2.5 This work 1.0961524 0.46624140 0.67621174 0.69028822

Ref. [26] 1.070265 0.461576 0.664472

1.660 3.0 This work 1.9827796 0.76142154 1.1685410 1.20841228

Ref. [26] 1.934183 0.749521 1.144408

1.815 3.5 This work 2.9988196 1.0756733 1.7167221 1.80359646

Ref. [26] 2.923839 1.049882 1.674534

1.912 4.0 This work 3.8905283 1.3495811 2.1965635 2.34920126

Ref. [26] 3.794213 1.303753 2.133907

1.997 ∞ This work 5.0776490 1.7576486 2.8643155 3.171241

Ref. [26] 4.918180 1.644148 2.735492

Ref. [73] 5.0776490 1.7576486 2.8643154

Ref. [74] 5.07765 1.75765 2.86431

Ref. [75] 3.1713

Refs. [76, 77] 3.1681

Ref. [78] 3.178 303

Ref. [79] 3.168 725

Ref. [53] 3.1682

aek and ae? stand for the parallel and the longitudinal components of the electronic part of the ground state

electric dipole polarizability, and ag is the total molecular ground state dipole polarizability
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energy value. Figure 7.9 represents the wavefunctions of 1s, 2s, 3s, 2p, 3p and
4p for different values of U0. For the considered values of U0 (0.0, 0.4, 1.7 and 5 Ry
for s states and 0.0, 0.2, 1.4 and 7 Ry for p states), the wavefunctions are subjected
to significant changes. For very low and high values of U0, 1s and 2s on one hand,
and 2p and 3p on the other hand, vary between from pure Coulomb potential

Table 7.4 Total molecular ground state dipole polarizability of Dþ
2 and Tþ

2

Re a:u:ð Þ Rmax a:u:ð Þ References ag Dþ
2

� �
ag Tþ

2

� �
0.588 1.0 This work 0.02540922 0.02540414

0.902 1.5 This work 0.11498836 0.11490263

1.193 2.0 This work 0.32281123 0.32231329

1.450 2.5 This work 0.68607061 0.68421745

1.660 3.0 This work 1.19663937 1.19145879

1.815 3.5 This work 1.77755320 1.76614925

1.912 4.0 This work 2.30309463 2.28302384

1.997 ∞ This work 3.07386246 3.03160831

Ref. [80] 3.07198869 3.03062032

Ref. [75] 3.0731

Refs. [76, 77] 3.0712

Ref. [79] 3.071988
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Fig. 7.5 Dynamic polarizability of the Hþ
2 molecular ion at equilibrium distance Re confined in a

sphere with Rmax ¼ 1 a.u
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Fig. 7.6 Dynamic polarizability of the Hþ
2 molecular ion at equilibrium distance Re confined in a

sphere with Rmax ¼ 3 a.u
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Fig. 7.7 Dynamic polarizability of the free Hþ
2 molecular ion at equilibrium distance
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functions and pure shell potential functions. For intermediate values of U0 or for
3s and 4p levels, the wavefunctions are superpositions of Coulomb potential and
shell potential eigenfunctions. Furthermore, the 1s function appears, with increasing
U0 as a 2s and a 3s wavefunction. This is a signature of the avoided crossings
mentioned above, as the energy levels follow the same evolution. That is not the
case for the p states for which the centrifugal potential compensates the Coulomb
potential at short radial distances, such that the potential well barrier is much easily
crossed than for low s states. The features observed here can be analyzed from the
probability for finding the electron in the shell potential, as it is closely related to the
behaviour of the wavefunction. This probability can be used more generally to
describe the localization of electrons between the Coulomb and shell potential for
endohedrally confined atoms, as described for He@C60 [44].

The polarizabilities of the 1s, 2s and 3s levels of the hydrogen atom, as well as
the contributions of the 2p→ ns and 2p→ nd transitions to the polarizability of the
2p state, subjected to single shell confinement, are reported in Table 7.5. The first
row of this table gives the well known values of the polarizabilities of these states in
the free H atom. When increasing U0, singularities occur at the values of U0 for
which the state that dominates the contributions to the polarizabilities (see Eq. 7.16)
is close to the initial state, and negative values occur when this state lies lower in
energy than the initial state.

The effects of additional shell confinement (buckyonions) have also been

investigated. Considering a one-shell Uð1Þ
0 6¼ 0:0; Uð2Þ

0 ¼ 0:0; Uð3Þ
0 ¼ 0:0

� 	
, two-

shell (Uð1Þ
0 6¼ 0:0;Uð2Þ

0 ¼ 0:367;Uð3Þ
0 ¼ 0:0) and three-shell Uð1Þ

0 6¼ 0:0;Uð2Þ
0 ¼

�
0:367;Uð3Þ

0 ¼ 0:441Þ fullerene, the static polarizabilities have been calculated as a

function of the confining potential of the first shell Uð1Þ
0 , for various initial states. A

representative case is shown on Fig. 7.10 for the 3p ! nd transition. It has been
clearly found that except for the 1s case, the addition of the second shell increases
the static polarizability significantly and that the addition of the third shell increases
it much more. More generally, the multiwall endohedral confinement may lead to
very large values of the static polarizability of the encapsulated atom. It can be also
observed that the significant enhance due to the second- and third-shells vanishes

when Uð1Þ
0 exceeds a critical value. This increase is due to the proximity of the

initial state with the dominant contributing state.
The dynamic polarizabilities have been computed for H@C60, H@C60@C240,

and H@C60@C240@C540 corresponding to a single-walled, two-walled, and a
three-walled fullerene cage. Sample results obtained are reported in Figs. 7.11 and
7.12, respectively, for 2p ! ns and 2p ! nd transitions. The polarizabilities
present a rich singularities structure, the positions of which correspond to transition
frequencies between the initial state and all the relevant accessible states. Many
more poles appear in some cases than others, especially, when there are several
states close to the initial state. This is a consequence of the removal of the
degeneracy in the energy spectrum when there are several potential shells.
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Table 7.5 Static dipole polarizabilities of the endohedrally confined hydrogen atom in the first
three ns states and the 2p state, as a function the shell confining potential U0

U0 (a.u.) 1s 2s 3s 2p ! ns 2p ! nd

0 4.500 120.000 1,012.498 8.000 208.000

0.1 4.595 2,636.408 −95,543.641 −2,568.169 276.005

0.2 4.749 1,715.888 −29,038.680 −1,680.189 347.036

0.3 5.034 1,478.299 −10,292.068 −1,460.100 406.040

0.4 5.678 1,405.290 −2,751.142 −1,396.314 447.728

0.5 7.731 1,396.158 498.472 −1,393.505 475.097

0.6 21.527 1,435.350 1,647.143 −1,448.713 492.848

0.7 521.961 1,964.075 1,638.302 −2,479.098 504.586

0.8 1,165.974 −6.841 1,024.757 −1,152.912 512.604

0.9 1,249.389 3.265 211.806 −1,246.876 518.279

1 1,279.378 4.069 −548.688 −1,277.951 522.437

1.2 1,306.122 4.323 −2,065.306 −1,305.248 528.022

1.4 1,319.417 4.447 −211.225 −1,318.768 531.544

1.6 1,327.669 4.623 3,240.817 −1,327.151 533.944

1.8 1,333.356 4.957 1,854.034 −1,332.924 535.679

2 1,337.531 5.791 1,539.245 −1,337.159 536.989

2.2 1,340.732 9.220 1,472.435 −1,340.404 538.014

2.4 1,343.268 64.744 1,605.082 −1,342.974 538.837

2.6 1,345.329 1,024.975 −31.688 −1,345.062 539.514

2.8 1,347.039 1,208.999 2.943 −1,346.794 540.081

3 1,348.483 1,254.207 3.841 −1,348.255 540.564

3.2 1,349.720 1,275.782 3.961 −1,349.507 540.980

3.4 1,350.793 1,289.034 4.000 −1,350.593 541.342

3.6 1,351.734 1,298.226 4.024 −1,351.544 541.662

3.8 1,352.567 1,305.056 4.045 −1,352.387 541.947

4 1,353.311 1,310.363 4.066 −1,353.138 542.202

4.2 1,353.980 1,314.619 4.088 −1,353.815 542.432

4.4 1,354.586 1,318.116 4.112 −1,354.427 542.641

4.6 1,355.138 1,321.044 4.139 −1,354.984 542.833

4.8 1,355.643 1,323.536 4.171 −1,355.495 543.008

5 1,356.108 1,325.686 4.210 −1,355.964 543.171

5.5 1,357.127 1,329.971 4.377 −1,356.993 543.528

6 1,357.985 1,333.193 4.903 −1,357.859 543.830

6.5 1,358.722 1,335.725 11.228 −1,358.602 544.091
(continued)
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7.3.3 Energies of Spatially Confined Centered
Hydrogen Atom

We have computed energy values of centered H atom within a prolate spheroidal
spatial confinement, reported in Table 7.6 on one hand, and within a prolate
spheroidal endohedral confinement, reported in Table 7.7 on the other hand. In
Table 7.6, A and B represent respectively the semi-minor and semi-major axis
values in an elliptical case. They are used to deduce the confinement radius value in
the spherical situation according to the formula Rc ¼

ffiffi½p
3�A2B. Our approach uses

a prolate spheroidal two-center study, putting half charge on each center and letting
the intercenter distance turn to zero. Imposing R ! 0 and a semi-minor or semi-
major axis value leads to a quasi-spherical system (and not a perfectly spherical
one). Hence, comparison with results of Neek-Amal et al. [34] could not be

Table 7.5 (continued)

U0 (a.u.) 1s 2s 3s 2p ! ns 2p ! nd

7 1,359.365 1,337.784 1,136.654 −1,359.251 544.320

7.5 1,359.934 1,339.505 1,270.063 −1,359.825 544.523

8 1,360.443 1,340.975 1,299.589 −1,360.338 544.706

8.5 1,360.904 1,342.254 1,314.346 −1,360.802 544.872

9 1,361.323 1,343.384 1,323.595 −1,361.225 545.024

9.5 1,361.708 1,344.395 1,330.103 −1,361.612 545.164

10 1,362.063 1,345.308 1,335.041 −1,361.970 545.293

From Ref. [39]. © IOP Publishing. Reproduced with permission. All rights reserved

Fig. 7.10 3p ! nd static polarizability as a function of the confining potential. Uð1Þ
0 ;Uð2Þ

0 andUð3Þ
0

have values shown in the graph. (from Ref. [40]. Copyright © 2010 Wiley Periodicals, Inc.
Reproduced with permission. All rights reserved)
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(d)

(c)

(b)

(a)

Fig. 7.11 2p ! ns dynamic polarizability as a function of the confining potential.

a Uð1Þ
0 ¼ 0:0;Uð2Þ

0 ¼ 0:0;Uð3Þ
0 ¼ 0:0: b Uð1Þ

0 ¼ 0:302;Uð2Þ
0 ¼ 0:0;Uð3Þ

0 ¼ 0:0: c Uð1Þ
0 ¼ 0:302;

Uð2Þ
0 ¼ 0:367;Uð3Þ

0 ¼ 0:0: d Uð1Þ
0 ¼ 0:302;Uð2Þ

0 ¼ 0:367;Uð3Þ
0 ¼ 0:441: (from Ref. [40]. Copy-

right © 2010 Wiley Periodicals, Inc. Reproduced with permission. All rights reserved)

(d)

(c)

(b)

(a)

Fig. 7.12 2p ! nd dynamic polarizability as a function of the confining potential.

a Uð1Þ
0 ¼ 0:0;Uð2Þ

0 ¼ 0:0;Uð3Þ
0 ¼ 0:0: b Uð1Þ

0 ¼ 0:302;Uð2Þ
0 ¼ 0:0;Uð3Þ

0 ¼ 0:0: c Uð1Þ
0 ¼ 0:302;

Uð2Þ
0 ¼ 0:367;Uð3Þ

0 ¼ 0:0: d Uð1Þ
0 ¼ 0:302;Uð2Þ

0 ¼ 0:367;Uð3Þ
0 ¼ 0:441: (from Ref. [40]. Copy-

right © 2010 Wiley Periodicals, Inc. Reproduced with permission. All rights reserved)
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Table 7.6 Comparison of the ground state energy (in atomic units) of centered spherically
confined H atom with a prolate spheroidally confined H atom from Neek-Amal et al. [34]

A B Rc Ref. [34] Sphere Spheroid

1.0 1.1 1.0323 1.8321 2.1458 2.1485

2.0 2.2 2.0646 −0.1843 −0.1640 −0.1634

3.0 3.3 3.0968 −0.4343 −0.4344 −0.4341

4.0 4.4 4.1291 −0.4823 −0.4862 −0.4861

5.0 5.5 5.1614 −0.4937 −0.4972 −0.4971

1.0 1.5 1.1447 1.4607 1.5111 1.5132

2.0 3.0 2.2894 −0.2578 −0.2685 −0.2680

3.0 4.5 3.4341 −0.4522 −0.4606 −0.4604

4.0 6.0 4.5789 −0.4946 −0.4931 −0.4930

5.0 7.5 5.7236 −0.5008 −0.4989 −0.4988

Sphere and spheroid stand respectively for the spherical and spheroidal representation. A and B are
semi-minor and semi-major axis for the prolate spheroidally confined case and Rc is corresponding
spherical confinement radius

Table 7.7 Comparison of the 15 lowest H energy states with those of Connerade et al. [35] in the
prolate spheroidal centered case. Energies are in eV

nl Connerade et al. [35] This work

Confined H Free H Confined H Free H

1s −13.6160 −13.6057 −13.6158 −13.6057

2s −6.78244 −3.40143 −6.77138 −3.40133

2p −6.28502 −3.40143 −6.27453 −3.40133

3d −4.73846 −1.51174 −4.72910 −1.51165

4f −2.83312 −0.85036 −2.82788 −0.85026

3p −1.68030 −1.51174 −1.68088 −1.51165

3s −1.57282 −1.51174 −1.57262 −1.51165

4d −1.05907 −0.85036 −1.05858 −0.85026

4p −1.04016 −0.85036 −1.04045 −0.85026

4s −0.88192 −0.85036 −0.88186 −0.85026

5f −0.76559 −0.54423 −0.76519 −0.54413

5g −0.72233 −0.54423 −0.72132 −0.54413

5p −0.65131 −0.54423 −0.65126 −0.54413

5d −0.62804 −0.54423 −0.62756 −0.54413

5s −0.56613 −0.54423 −0.56607 −0.54413
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coherent as they used a perfect sphere for their computations. Still we compared
those results with the ones that would have been obtained for equivalent values of
the volume when a deformation of spatial confinement is taken into account. They
are reported in Table 7.6. We can see that they are globally in good agreement with
those of Neek-Amal et al. [34]. This shows that the action of a spatial spheroidal
confinement on the Hydrogen atom is nearly comparable to that of to the spherical
one when the confinement pressure is not too great. Comparisons made with similar
results from Connerade et al. [35] show also a good agreement.

7.3.4 Energies of Spatially and Endohedrally Confined
Off-centered Hydrogen Atom

Table 7.8 reports the effects of spatial confinement in an off-centered case on the H
atom with comparison made with papers from Ting-Yun et al. [33] and Neek-Amal
et al. [34]. In this table, the deformation ratio represents the ratio between the semi-

Table 7.8 Comparison of the ground state energy (in atomic units) with those of Ting-Yun et al.
[33] and Neek-Amal et al. [34] in the off center case for various confinement radii Rmax and
displacement distances D

Rmax (a.u.) D (a.u.) Deformation ratio Ref. [33] Ref. [34] This work

2 0.1 1.00125 −0.12285 – −0.12158

0.5 1.03226 −0.06888 – −0.03778

1.0 1.14354 0.12760 – 0.32165

3 0.1 1.00055 −0.42358 – −0.42337

0.3 1.00504 – −0.39980 −0.41881

0.5 1.01406 −0.41388 – −0.41029

0.6 1.02062 – −0.38560 −0.40348

0.9 1.04829 – −0.38430 −0.37387

1.0 1.05887 −0.37835 – −0.36009

1.2 1.09108 – −0.37130 −0.32231

1.5 1.15470 – −0.29650 −0.23414

4 0.1 1.00031 −0.48317 – −0.48311

0.5 1.00787 −0.48105 – −0.48045

1.0 1.03226 −0.47337 – −0.47057

5 0.5 1.00504 – −0.48810 −0.49569

1.0 1.02062 – −0.49470 −0.49360

1.5 1.04829 – −0.48640 −0.48883

2.0 1.09108 – −0.49080 −0.47865

2.5 1.15470 – −0.47160 −0.45682
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major axis and the semi-minor axis, which are determined by the spheroidal cavity.
We can see that our results are closed to those of the above mentioned authors results
[33, 34] when this ratio is close to one as expected (our case corresponds to an
ellipsoidal cavity and in such situations values may have been taken as reference).

Calculations made gave as value for the ground state energy under endohedral
confinement with parameters U0 = −0.4 a.u. and D = 0.25 a.u. (the displacement
from the center), the value −0.50069 a.u., consistent with the value of Connerade
et al. [35] of −0.5004 a.u. in a centered case with U0 = −0.302 a.u. but rather
inconsistent with the value of −0.5072 a.u. given by Neek-Amal et al. [63] in the
same conditions. This is also the case when we look at the value of the energy when
U0 = 0.0 a.u. and D = 0.25 a.u. for instance we obtain −0.5000 a.u. when Neek-
Amal et al. [63] obtain −0.5010 a.u. This has a sense since when U0 = 0.0 there is
indeed no interaction potential between the shell and the Hydrogen atom and
energy is supposed to be the free H-atom ground state energy. Though the approach
presented here is able to achieve a complete study of prolate spheroidal off-centered
H-atom ground and excited states with and without deformation, we rather skipped
it as it was not the major scope of our work, and it requires much more compu-
tational effort than that needed for the Hþ

2 molecule.

7.3.5 Dynamic Polarizabilities of Spatially Confined Centered
and Off-centered Hydrogen Atom

In Tables 7.9 and 7.10, we report dynamic polarizabilities of the 1s state of free and
confined Hydrogen, using three different representations: the spherical representa-
tion and the two atomic limits (symmetric and asymmetric) of the spheroidal rep-
resentation. The polarizability of the H atom has been widely studied using a
variety of methods and approximations [11–13, 15, 36, 64–72]. The comparison
has been done only between our results and those of Cohen et al. [64] and
Montgomery [36] which almost agree with former investigations. The agreement
we obtain is excellent. In particular, the two spherical limits (symmetric and
asymmetric) of the spheroidal description lead to the same polarizabilities. This
code can be used to calculate the polarizabilities of ground and excited states of off-
centered atom as well its isoelectronic atomic systems, in a variety of confinement
situations, with a good accuracy.

7.3.6 Energies and Polarizabilities of Cylindrically Confined
Hydrogen Atom

The B-Splines based variational method using the sum of products for the repre-
sentation of the Coulomb potential has been recently used to compute the polar-
izability of the hydrogen atom in a cylindrical potential [41]. The energies obtained
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are very accurate as compared to previous computations [37, 38]. Obviously, at
large cylinder dimensions, the free H atom values are recovered. The ground state
polarizabilities for the perfect cylinder (L ¼ 2R) and the infinitely long cylinder
(L� 10R) are presented in Fig. 7.13 for different cylinder radii.

The static dipole polarizability for the Hydrogen atom confined in a perfect
cylinder reduces with the confinement radius, less however, than in a sphere with
the same confinement radius. Similar in symmetry to the hydrogen molecular ion,

Table 7.9 Dynamic polarizabilities aðxÞ for the 1s state of the free H atom

x ða:u:Þ S.R. (Ref. [40]) Ref. [64] Ref. [36] S.S.R. S.A.R.

0:00 4:5000000 4:5000000 4:50000 4:5000000 4:5000000

0:05 4:5675530 4:5675530 4:56755 4:5675530 4:5675530

0:10 4:7843004 4:7843003 4:78430 4:7843003 4:7843003

0:15 5:2009678 5:2009678 5:20097 5:2009678 5:2009678

0:20 5:9416749 5:9416749 5:94167 5:9416747 5:9416747

0:25 7:3351730 7:3351730 7:33517 7:3351731 7:3351731

0:30 10:563890 7:3351730 10:56389 10:563890 10:563889

0:35 25:935844 25:935849 25:93585 25:935850 25:935848

0:40 �16:822640 �16:822645 �16:822645 �16:822645

0:45 �17:646880 �17:646935 �17:646935 �17:646935

0:50 1:9150256 1:9150272 1:9150272

In the two last columns we have the dynamic polarizabilities computed from the code on Hþ
2 in

some limits cases. B-splines parameters are nn ¼ 61; kn ¼ 7; ng ¼ 18; kg ¼ 6: S.R. stands for
Spherical Representation, S.S.R. for Spheroidal Symmetric Representation and S.A.R. for
Spheroidal Asymmetric Representation

Table 7.10 Same as Fig. 7.10 for the 1 s state of spatially-confined H Rmax ¼ 6 u:a:ð Þ
x ða:u:Þ S.R. (Ref. [40]) Ref. [64] Ref. [36] S.S.R. S.A.R.

0:00 4:0581405 4:0581402 4:05814 4:0581405 4:0581405

0:05 4:1080867 4:1080867 4:10809 4:1080867 4:1080867

0:10 4:2658656 4:2658655 4:26587 4:2658656 4:2658656

0:15 4:5587057 4:5587056 4:55871 4:5587057 4:5587057

0:20 5:0463858 5:0463857 5:04639 5:0463858 5:0463858

0:25 5:8585577 5:8585574 5:85856 5:8585577 5:8585577

0:30 7:3124756 7:3124749 7:31248 7:3124752 7:3124752

0:35 10:409677 10:409677 10:40968 10:409677 10:409677

0:40 20:743222 20:743216 20:743220 20:743220

0:45 �134:30635 �134:30689 �134:30674 �134:30674

0:50 �13:910520 �13:910522 �13:910520 �13:910520
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the cylindrically confined hydrogen atom has selection rules and the dipole
polarizability is split in two components: a parallel and an orthogonal component.
The singularities on Fig. 7.13 identify either Dm ¼ 0 or Dm ¼ þ1. The Figure also
presents comparison of the perfect to infinitely long confinement of the atom. We
see that the infinitely long cylinder presents many more structures than the perfect
cylinder as one would have expected.

7.4 Conclusion

Coupled to the variational procedure, the finite basis methods offer a powerful tool
for the study of confined quantum systems, for which the boundary conditions do
not allow obvious analytical solutions. These methods lead to eigenenergies,
eigenfunctions and other properties quite systematically. Many features depending
on the shell potential depth like the avoided crossings pointed out by Connerade [8]
and their impact on the polarizability can be explained easily. Based on finite basis
expanded solutions, the prolate spheroidal approach is a suitable and efficient way
to determine energies and polarizabilities of spatially and endohedrally confined H-
atom and Hþ

2 molecule. The present works describe and explain numerous struc-
tures observed on the PECs of Hþ

2 subjected to spatial and endohedral confinements
such as the removal of avoided crossings with increasing shell deformation or the
modification of equilibrium position and vibrational energy.

Several aspects developed in this contribution may be an interesting object of
investigation on bigger systems, that is, many electrons systems, in which electron
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Fig. 7.13 Ground state dynamic dipole polarizability of perfect (red) and infinitely long (black)
cylinder for qmax ¼ 1 (a), 2 (c), 4 (b) and 6 a.u. (d)
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correlation may play a significant role on the effects of confinement. Our future
works will be devoted to such systems trapped in various type of confinements
(endohedral and others).

Acknowledgment The authors are grateful to R. L. Melono Melingui for fruitful discussions.
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Chapter 8
Density Functional Theory Applied
on Confined Many-Electron Atoms

Jorge Garza and Rubicelia Vargas

8.1 Density Functional Theory and Confinement Imposed
by Rigid Walls

The density functional theory (DFT) has been applied on atoms, molecules, solids
and surfaces, where the electrons are under the influence of external potentials that
impose boundary conditions on the electron density [1–3]. For atoms, spatial
restrictions have been considered to modeling spatial confinements, which give
additional contributions to the external potential [4–7]. In particular, one restriction
used for the study of confined atoms is represented by a spherical potential, tR rð Þ,
which is defined as

tR rð Þ ¼ 0 for r\Rc

h for r�Rc

�
ð8:1Þ

where h is a constant. If h = 0 we have a non-confined atom but if h ≠ 0 we have an
atom spatially confined. In particular, in this report we discuss the confined imposed
by h = ∞, such that the atom is confined by rigid walls. Naturally, we must take
care of the conditions imposed on the electron density at the boundary Rc. In 2009,
Advances in Quantum Chemistry devoted two volumes, 57 and 58, to confined
systems, the reader is encouraged to read carefully these volumes.

By its nature, the DFT has several ways to estimate the total energy of an
electronic system. The starting point of this theory is given by the first theorem of
Hohenberg and Kohn [8] where the total energy is written as
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E q½ � ¼ F q½ � þ
Z

drq rð Þt rð Þ: ð8:2Þ

In this equation F[ρ] is the universal functional which contains the kinetic energy,
T, the electron-electron interaction, Vee, and the last term in Eq. 8.2 represents the
nuclear-electron interaction. Precisely, in the universal functional is where many
approximations are involved since this quantity is unknown.

In this report, we discuss two forms of the universal functional that have been
discussed in different contexts and that have been applied on confined atoms. In
particular we treat the Thomas-Fermi model, [9, 10] which was used even before of
the Hohenberg and Kohn theorems were reported. Additionally, we also deal with
the Kohn-Sham model, [11] which is the most popular version of the DFT, and that
it has been applied successfully on confined many-electron atoms.

8.2 Thomas-Fermi Model Applied on Confined Atoms

One simple model to the kinetic energy and the electron-electron interaction is
represented by the proposal made independently by Thomas [10] and Fermi [9]
where, in the context of the universal functional,

F q½ � ¼ CF

Z
drq5=3 rð Þ þ 1

2

ZZ
drdr0

q rð Þq r0ð Þ
r� r0j j : ð8:3Þ

The first term in Eq. 8.3 represents the kinetic energy, with CF ¼ 3
10 3p2ð Þ2=3, and

the second one the electron-electron interaction, estimated as the Coulomb con-
tribution of a charge distribution named many times as J q½ �. The minimum of the
energy is reached when the method of Lagrange multipliers is used to incorporate
the restriction

N ¼
Z

drq rð Þ: ð8:4Þ

Thus, the electron density that minimize the total energy must satisfy

l ¼ 5
3
CFq

2=3 rð Þ þ t rð Þ þ
Z

dr0
q r0ð Þ
r� r0j j ; ð8:5Þ

where μ represents a Lagrange multiplier. For atoms

t rð Þ ¼ � Z
r
; ð8:6Þ
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and consequently the Euler-Lagrange equation is

l ¼ 5
3
CFq

2=3 rð Þ � Z
r
þ
Z

dr0
q r0ð Þ
r� r0j j: ð8:7Þ

Recognizing that the electrostatic potential is

U rð Þ ¼ Z
r
�
Z

dr0
q r0ð Þ
r� r0j j ; ð8:8Þ

then

q rð Þ ¼ 3
5CF

� �3=2

lþ U rð Þ½ �3=2: ð8:9Þ

By using the Poisson equation

r2U ¼ 4pq rð Þ � 4pZd rð Þ; ð8:10Þ

and the function Q defined from

lþ U rð Þ ¼ Z
r
Q rð Þ; ð8:11Þ

in Eq. 8.9, it is obtained that

d2Q
dr2

¼ 4p
3

5CF

� �3=2 Z
r

� �1=2

Q3=2 rð Þ; ð8:12Þ

or

d2Q xð Þ
dx2

¼ Q3=2 xð Þ
x1=2

; ð8:13Þ

with x ¼ 128
9p2
� �1=3

Z1=3 r, and the condition on Q(0) = 1.
Equation 8.13 does not admit an analytic solution and consequently there are

several proposals to get an approximated solution. In particular, Slater and Krutter
used this model to estimate the pressure on an atom. Such an approach implies
necessarily a spatial confinement. In their work, Slater and Krutter proposed an
atom enclosed by a spherical potential, which mimics a polyhedral cell in a metal
[12]. Thus, by integrating Eq. 8.10 within a sphere of radius Rc we obtain
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R2
c
dU
dr

����
r¼Rc

¼ Nc � Z; ð8:14Þ

or in terms of Q

Rc
dQ
dr

����
r¼Rc

�Q Rcð Þ ¼ Nc

Z
� 1: ð8:15Þ

In Eqs. 8.14 and 8.15, Nc represents the number of electrons enclosed by the sphere
of radius Rc.

In their original proposal, Slater and Krutter studied neutral systems and the
working equation is obtained from Eq. 8.15, which gives

Rc
dQ
dr

����
r¼Rc

¼ Q Rcð Þ; ð8:16Þ

or in terms of x

xc
dQ
dr

����
x¼xc

¼ Q xcð Þ: ð8:17Þ

This condition has a direct implication on the electron density because from 8.9 and
8.11

q rð Þ ¼ 3
5CF

Z
r

� �3=2

Q rð Þ3=2; ð8:18Þ

and using the condition 8.16 it is obtained for neutral atoms that

dq
dr

����
r¼Rc

¼ 0: ð8:19Þ

Thus, in the Thomas-Fermi model we can confine a neutral atom within a sphere of
radius Rc where the density is different than zero and its derivative is cancelled. The
solution of Eq. 8.13 is obtained by using numerical techniques, for this purpose it is
convenient to use the variable x = ω2/2 giving as result

d2Q
dx2 ¼

1
x
dQ
dx

þ
ffiffiffi
2

p
xQ3=2: ð8:20Þ

208 J. Garza and R. Vargas



For x � 0 the solution is

Q xð Þ ¼ 1þ 1
2
a2x

2 þ 21=2

3
x3 þ � � � ð8:21Þ

For this case the solution is expressed exclusively in terms of the coefficient a2.
With the information around x � 0 we can use any numerical technique to solve
the corresponding differential equation. The algorithm to solve Eq. 8.13 under the
restriction of Eq. 8.17 is as follows: (1) A value for a2 must be proposed. (2) Apply
a numerical technique to solve Eq. 8.20. (3) Find the intersection of the solution

with the straight line f ¼ mx with m ¼ dQ=dx

���
x¼xc

Following this algorithm, we

found Q(x) for several values of a2. The corresponding solutions are depicted in
Fig. 8.1.

Naturally, with the solution we can evaluate the total energy, the electron den-
sity, or any property that depends explicitly on the density. In particular, the
pressure can be found from

P ¼ � oE
oV

� �
N
: ð8:22Þ

For atoms in the Thomas-Fermi model it is found that [13]

P ¼ 2
3
CFq Rcð Þ5=3: ð8:23Þ

From Eq. 8.23 it is clear the role of the density evaluated at the boundary where it is
evident that in the limit of q Rcð Þ ! 0 the pressure will be null.

Fig. 8.1 Q(x) for several
values of a2. The intersection
of Q(x) with a line of the form
f = mx is presented for
a2 = −1.5
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For non-neutral atoms the confinement on atoms within the Thomas-Fermi
model must be analyzed carefully. Suppose that

Q Rcð Þ ¼ 0 ð8:24Þ

on Eq. 8.15. If Nc 6¼ Z and Rc is arbitrary then Eq. 8.15 is transformed in

dQ
dr

����
r¼Rc

¼ 1
Rc

Nc

Z
� 1

� �
: ð8:25Þ

Depending on the values assigned for Nc and Z we see three possibilities:

1. Nc = Z. For this case, the derivative is equal to zero. Thus, the solution and its
derivative are equal to zero. This condition is reached just for Rc ! 1, in
conclusion: the electron density for neutral atoms in the Thomas-Fermi model
cannot be cancelled for an arbitrary r.

2. Nc < Z. For this case, dQ=dr

���
r¼Rc

\ 0: According to Fig. 8.1, this condition is

reached when Q(x) intercepts the abscises axis. Thus, in the Thomas-Fermi
model the atoms with positive charge have finite size.

3. Nc > Z. For this case, dQ=dr

���
r¼Rc

[ 0: This possibility is unacceptable by the

behavior exhibited in Fig. 8.1. Thus, anions in the Thomas-Fermi model cannot
be confined.

In summary, just atoms with positive charge allow confinement with rigid walls in
the Thomas-Fermi model neutral atoms and anions do not exist under such a
circumstance.

8.3 Modified Thomas-Fermi model

The Thomas-Fermi model exhibits several problems, between these problems we
want to mention the behavior of the electron density close to the origin. For this
model, the electron density at the nucleus diverges and evidently shows a wrong
behavior. In order to correct such a deficiency Parr and Gosh [14] proposed

M ¼
Z

drr2q rð Þe�2kr; ð8:26Þ

as restriction on the minimization process. In the same way than the previous
section and imposing the cusp condition [15]
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dq rð Þ
dr

����
r¼0

¼ �2Zq 0ð Þ; ð8:27Þ

it is obtained that

q rð Þ ¼ 3
5CF

� �3=2
l�

Z
dr0

q r0ð Þ
r� r0j j þ kZe�2kr þ Z

r
1� e�2kr
� �	 
3=2

; ð8:28Þ

with

k ¼ 5
6
CF

� �1=2
q1=3 0ð Þ: ð8:29Þ

Parr and Ghosh solved Eq. 8.28 by using an iterative procedure. However, in this
report we solve this equation numerically following the ideas of Feynman,
Metropolis and Teller [16]. On this way, by using the definition for Q(r), in
Eq. 8.11, and scaling r by α

x ¼ ar; ð8:30Þ

with

a ¼ 128
9p2

� �1=3
Z1=3; ð8:31Þ

Equation 8.28 is written as

q xð Þ ¼ 3Za
5CFx

� �3=2
Q xð Þ þ kx

a
� 1

� �
e�2kr=a

	 
3=2
ð8:32Þ

The variable ω is more convenient to use, in order to analyze the behavior near to
the origin of ρ(r), thus

q xð Þ ¼ 6Za
5CFx2

� �3=2
Q xð Þ þ kx2

2a
� 1

� �
e�kx2=a

	 
3=2
: ð8:33Þ

If

Q xð Þ ¼
X1
n¼0

cnx
n ð8:34Þ
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then

q xð Þ ¼ 6Za
5CF

� �3=2 c0 � 1
x2 þ c1

x
þ c2 þ 3k

2a

� �
þ O xð Þ

	 
3=2
: ð8:35Þ

By using this equation, if q 0ð Þ 6¼ 1 when x ! 0 then c0 ¼ 1 and c1 ¼ 0.
Consequently

Q xð Þ ¼ 1þ c2x
2 þ � � � ð8:36Þ

and

q 0ð Þ ¼ 6Za
5CF

� �3=2
c2 þ 3k

2a

	 
3=2
ð8:37Þ

by using Eq. 8.29 it is found that

c2 ¼ 3k
2a

k
Z
� 1

� �
: ð8:38Þ

If we use the Poisson equation (Eq. 8.10) and Q(0) = 1 then Eq. 8.32 is written as

d2Q
dx2

¼ 1
x1=2

Qþ kx
a
� 1

� �
e�2kr=a

	 
3=2
: ð8:39Þ

Comparing this equation with Eq. 8.13 we can see that they are very similar and the
difference is imposed by the exponential function. In terms of ω we have

d2Q
dw2 ¼ 1

w
dQ
dw

¼ 21=2w Qþ kw2

2a
� 1

� �
e�kw2=a

	 
3=2
: ð8:40Þ

Inserting Eq. 8.34 in 8.40 we obtain a recurrence relation for the coefficients cl. The
first twelve coefficients cl are reported in Table 8.1.

With this analysis, the solution is known for the range 0�x\xi. For the whole
domain we applied the Runge-Kutta method of fourth order where it is needed a
mesh with a step = h. In Table 8.2, the results obtained with this approach (h = 0.04,
ωi = 0.26 and 16 terms for the polynomial expansion) are compared with those
reported by Parr and Ghosh [14].

From Table 8.2 it is evident that the iterative approach to solve Eq. 8.28 and the
numerical solution give the same results.

In order to estimate the pressure according to the Slater and Krutter proposal, the
Poisson equation is sufficient, thus for the function Q(ω) we have
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xc
dQ
dx

����
x¼xc

¼ 2Q xcð Þ: ð8:41Þ

With this condition it is possible to evaluate the density at the surface of the
sphere. In Fig. 8.2, this quantity is depicted as a function of the confinement radius
for noble gases.

This plot gives an idea about of the atomic size. For example, for a fixed
confinement radius (vertical line at Rc = 0.5 a.u.) clearly the Rn atom has the biggest
value of the density on the surface of the sphere and the helium the smallest one.
Because the Rn atom has more electrons than the helium atom, its electron density
is rapidly touched by the surface of the sphere. Additionally, for a fixed value of the
density on the surface of the sphere, in this example the horizontal line at ρ(Rc) = 1,
the helium needs smaller Rc values to reach this value than other atoms. Naturally,
these results are in accord with the physical intuition.

Table 8.1 First twelve coefficients of Eq. 8.33 to satisfy Eq. 8.41

c2 ¼ 3k
2a

k
Z � 1
� �

c4 ¼ 0

c6 ¼
k=aþc2

� �3=2
12

ffiffi
2

p c8 ¼ �
k=aþc2

� �1=2
16

ffiffi
2

p k
a

� �2

c10 ¼ 3

320
ffiffi
2

p k=aþc2

� �1=2 k
a

� �4þ 3 k=aþc2

� �1=2
160

ffiffi
2

p

0
B@

1
CA k

a

� �3þ k=aþc2

� �2

640

c12 ¼ 1

960
ffiffiffi
2

p k=aþ c2

� �3=2 k
a

� �6

� 1

160
ffiffiffi
2

p k=aþ c2
� �1=2 k

a

� �5

�
k=aþ c2

� �1=2
240

ffiffiffi
2

p k
a

� �4

�
k=aþ c2

� �
768

k
a

� �2

Table 8.2 q 0ð Þ, q 0ð Þ=Z3 for noble gases

Z q 0ð Þ q 0ð ÞZ3

This work Parr and Ghosh

2 1.8184 0.2273 0.2274

10 367.1735 0.3672 0.3672

18 2,343.9946 0.4019 0.4020

36 20,175.8832 0.4324 0.4325

54 70,214.2495 0.4459 0.4460

86 291,401.9354 0.4581 0.4581
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The proposal by Parr and Ghosh to determine the density at the origin allows a
study of this quantity as a function of the confinement radius. The behavior of the
density at the origin divided by its value at the infinity, q 0ð Þq 0ð Þinf0 , is depicted in
Fig. 8.3.

The electron density evaluated at the origin is a local property, which is cor-
roborated in Fig. 8.3 where all noble gases, except the helium, response to pressure
effects for small confinement radii. In particular, the Rn atom shows important
deviation for quite small confinement radii. By other side, the helium atom is the
atom that exhibits a pronounced response when the confinement radius is reduced.

In these two sections we have discussed the Thomas-Fermi model and its
connection with confined atoms, where the energy is minimized with regard to the
electron density. Naturally, there is a vast literature around the Thomas-Fermi
model. In recent years, Díaz-García and Cruz have tackled the confined atoms
problem under the Thomas-Fermi model by a different strategy [17, 18].

Fig. 8.2 Electron density at
Rc as a function of Rc

Fig. 8.3 Electron density
evaluated at the nuclei of
noble gases atoms
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8.4 Kohn-Sham Model

The Kohn-Sham model is the most successful approach within the DFT, [11] in this
approach the universal functional of Hohenberg and Kohn is written as

F q½ � ¼ Ts þ 1
2

ZZ
drdr0

q rð Þq r0ð Þ
r� r0j j þ Exc0 ð8:42Þ

where

Ts ¼
XN
i¼1

ui �
1
2
r2

����
����ui

� �
ð8:43Þ

and the exchange-correlation functional, Exc, is defined as

Exc ¼ T � Ts þ Vee � J: ð8:44Þ

By its definition, Exc contains small contributions to the total energy and conse-
quently it is hard to be modeled. Currently, there are many approximations to this
quantity and depending on the problem to be solved is the Exc to be used.

We see from Eq. 8.43 that the energy has an explicit dependence on a set of
orbitals. The orbitals that minimize to the total energy must satisfy the Kohn-Sham
equations

� 1
2
r2 þ

Z
dr0

q r0ð Þ
r� r0j j þ

dExc

dq rð Þ
� �

ui rð Þ ¼ eiui rð Þ; ð8:45Þ

and the electron density is build with these orbitals from

q rð Þ ¼
XN
i¼1

u�
i rð Þui rð Þ: ð8:46Þ

For confined atoms there are several reports where rigid walls are used [19–21].
This kind of walls implies that the solution of Eq. 8.45 must be found by imposing
Dirichlet boundary conditions. One way to solve Eq. 8.45 with these boundary
conditions has been reported by Garza et al. [21]. In this approach the radial Kohn-
Sham equations are solved numerically in a mesh with a fixed step, this procedure is
carried out over three steps and the results are extrapolated according to a Rich-
ardson extrapolation. Details of the implementation can be found in Ref. [21]. In the
original paper of Garza et al. few exchange-correlation functionals were imple-
mented, fortunately there is a library where many exchange-correlation functionals
are available, such a library has been linked with the original numerical code of
Garza et al. [22]. The results presented in the next sections have been obtained with
this library.
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8.4.1 Electronic Transitions Induced by Spatial Confinement

In Table 8.3 we are presenting the total energy as a function of the confinement
radius for two atoms, Na and K, by using the PBE exchange-only functional [23,
24]. The change rate ΔE/ΔRc = (Ei+1 − Ei)/0.2 for few values of Rc is also reported
in Table 8.3. We have used the electronic configuration that corresponds to the non-
confined atom for this table.

From this table we can appreciate large changes on the total energy when many-
electron atoms are confined under small confinement radii. The non-confined atom
corresponds to that Rc where changes on the total energy are not observed.

Naturally, the confinement impact is observed also on orbital energies and not
just on the total energy. In Fig. 8.4, we are presenting the highest orbital energies
for the K atom.

The Fig. 8.4 shows several important results about the confinement effect on the
electronic structure of atoms. The first effect we want to stress is the orbital energies
crossing. Let us suppose that the K atom starts to be confined, in this figure Rc = 8 a.
u. represents the beginning of the confinement. Clearly, when the confinement is
increased the orbital energies increase their values, although with different rate. In
particular, the 4s energy grows up faster than the 3d energy and therefore there is a
point (around 4.5 a. u) where these energies have the same value. For this electronic
configurations we impose that the 4s orbital is occupied, however after the crossing
point the 3d energy is below of the 4s orbital suggesting that now the configuration
is [Ar]3d1 instead of [Ar]4s1. This effect in solid state physics is know as s-d
transition and is observed for many atoms where the valence shell is not totally
occupied. If this is true then the total energy of the configuration [Ar]3d1 must be
deeper than the [Ar]4s1 when the crossing between orbital energies is presented. In
Table 8.4 the total energy for the [Ar]4s1 configuration is contrasted with the

Table 8.3 Total energy and ΔE/ΔRc for Na ([Ne]1s1) and K ([Ar]4s1)

Rc (a. u.) Na K

TE ΔE/ΔRc TE ΔE/ΔRc

1.0 −118.937095 −475.747431

1.2 −138.349633 −97.06 −531.531071 −278.92

1.4 −148.079988 −48.65 −559.589815 −140.29

1.6 −153.322850 −26.21 −574.814123 −76.12

1.8 −156.311764 −14.94 −583.562278 −43.74

2.0 −158.098476 −8.93 −588.818996 −26.28

3.0 −160.988374 −597.140863

4.0 −161.525124 −598.442127

5.0 −161.687817 −598.766797

The results were obtained with the PBE exchange-only functional. All quantities are in atomic
units
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corresponding energy for the [Ar]3d1 configuration. Clearly, there is a crossing
between the total energies of these configurations, around 4.6 a. u. Thus, for Rc

greater than the crossing point the [Ar]4s1 is the most stable configuration and for
Rc less than that point the [Ar]3d1 is the most stable configuration.

It is evident from these results that the pressure, obtained numerically from
Eq. 8.22, will be different for each configuration since the response to the con-
finement on each electronic configuration is different. In Fig. 8.5, we are presenting
the dependence of the energy on the pressure.

Figure 8.5 is important because shows the pressure where the transition is
observed. In fact, we have made estimations for s-d transitions for two families in
the periodic table and our results are acceptable with respect to the experimental
data [25, 26]. The amazing result we have found with this simple model is the
volume change observed for this transition since for the pressure where both
electronic configurations give the same energy the confinement radii are different
predicting in this way different volumes for each electronic configuration.

8.4.2 Ionization Potential for Confined Atoms

An additional effect we can extract from Fig. 8.4 is that all orbital energies are
increased when the confinement radius is reduced, in fact the 4s orbital energy has
positive values before of the crossing point. The radius where the 4s orbital energy

Fig. 8.4 Orbital energies for the K atom as functions of the confinement radius
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is zero is known as the critical radius because if we accept that the energy of the
highest occupied molecular orbital (HOMO) represents an approximation to the
ionization potential (IP) [27] then the critical radius indicates the confinement
radius where we do not need energy to remove one electron. In fact, if we use the

Table 8.4 Total energy for the K atom for two electronic configurations

Rc (a. u.) [Ar]4s1 [Ar]3d1 [Ar]3d1 − [Ar]4s1

4.0 −598.442127 −598.577197 −0.1351

4.2 −598.541390 −598.620407 −0.0790

4.4 −598.618504 −598.653297 −0.0348

4.6 −598.679245 −598.678994 0.0003

4.8 −598.727701 −598.699610 0.0281

5.0 −598.766797 −598.716561 0.0502

All quantities are in hartrees

Fig. 8.5 Total energy as a function of the pressure for two electronic configurations for the K
atom by using the exchange-only PBE functional

Table 8.5 Total and HOMO energies for the non-confined K atom. All quantities are in hartrees

Clementi Bunge Thakkar

Total energy −599.1645907 −599.1648610 −599.1648675

εHOMO −0.147521 −0.147639 −0.147648
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exact exchange-correlation potential then IP = −εHOMO [28]. Naturally, for hard
walls the electron does not escape by the presence of the boundaries and therefore
the IP concept is different for confined atoms than for free atoms, where the IP is
evaluated as the energy difference between neutral and charged atoms. Díaz-García
and Cruz have mentioned this problem and they treat the helium atom as an
example [29]. However, when Ludeña applied the Hartree-Fock (HF) method on
confined many-electron atoms he used the −εHOMO to estimate the critical radius
[30]. Unfortunately, the basis set functions used by Ludeña were not optimized for
each confined radius, which is an important ingredient when the HF method is used
on confined atoms. Recently we have published a methodology to obtain efficiently
HF results for confined atoms [31]. This methodology has been applied on the K
atom, in Table 8.5 we are presenting the basis set functions effect on the total and
HOMO energies. For this case we have used three basis set functions based on
Slater type orbitals and designed for non-confined atoms [32–34].

Evidently the basis set functions designed by Thakkar [34] gives the lowest
energy. With this basis set the prediction to the IP by the HOMO is of 4.02 eV
versus 4.34 eV, which corresponds to the experimental information [35].

By using as starting point the Thakkar basis set functions, in Table 8.6 we are
reporting, for some values of Rc, the HOMO energy. Of course, we have optimized
for each Rc the exponents of the basis set in accord with a previous HF study made
by Garza and Vargas [36]. In the same table we are also reporting the HOMO
energy obtained with two exchange-only functionals, PBE [23, 24] and OPTX [37].

From this table we appreciate large differences between the results obtained with
PBE and OPTX with regard to those obtained with the HF method. It is well known
that the wrong asymptotic behavior exhibited by several exchange-correlation
functionals is the responsible of the mentioned differences [38–40]. For that reason
the HOMO energy obtained by many exchange-correlation functionals do not give
good estimations of IP. From these results it is evident that PBE and OPTX predict
a critical radius larger than that radius predicted by the HF method. Even with these
large differences between HF and PBE or OPTX we have found a linear correlation,
eHFHOMO ¼ mex�only

HOMO � b, between the corresponding HOMOs. For PBE we found

Table 8.6 −εHOMO obtained for several values of confinement radius (Rc) by using the Hartree-
Fock (HF) method and two exchange-only functionals, PBE and OPTX

Rc HF PBE OPTX

4.6 0.147073 0.268220 0.274415

4.8 0.100938 0.218258 0.224705

5.0 0.063049 0.176922 0.183573

5.5 −0.005785 0.100808 0.107827

6.0 −0.050224 0.050553 0.057822

6.5 −0.079793 0.016227 0.023690

7.0 −0.099932 −0.007858 −0.002224
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m = 0.8959, b = 0.0946 with a correlation coefficient of 0.9998. For OPTX
m = 0.8971, b = 0.1007 and a correlation coefficient of 0.9997. Even with this linear
relationship between eHFHOMO and eKSHOMO it is evident that the argument of the wrong
asymptotic behavior as responsible of this difference is not enough since the con-
finement radii tested in this example do not belong to the asymptotic region. Thus,
there is a contribution, in the non-asymptotic region, on the exchange potential that
contributes to the behavior of the orbital energies, in particular the HOMO energy.

In this section we have discussed approximations to the IP for confined atoms.
However, by its nature the electron propagator is the best technique to estimate this
quantity, [41–43] in particular for confined atoms. Thus, it is necessary an imple-
mentation of this technique on the HF codes reported for confined atoms.

Fig. 8.6 Radial distribution
function (RDF) for the K
atom for Rc = 2.0 a.u. (dotted
line) and Rc = 10.0 a.u. (solid
line). Both axes are in
logarithmic scale and in
atomic units

Fig. 7 Exchange-only PBE
potential, times r, obtained for
Rc = 2.0 a.u. (dotted line) and
Rc = 10.0 a.u. (solid line), for
K atom. r is in logarithmic
scale
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8.4.3 The Response of the Shell Structure to the Confinement

The impact of the confinement on orbital energies is also mapped on the electron
density and local properties. For example, the radial distribution function (RDF
(r) = 4π r2ρ(r)) for the K atom, for two confinement radii, is presented in Fig. 8.6.
Clearly this atom presents different number of shells depending on the applied
confinement. A discussion about the RDF for confined atoms, within the KS
context, is presented in Ref. [44].

Evidently, the RDF is not the only local quantity that is affected by the con-
finement imposed by the rigid walls. For example, the exchange-correlation func-
tional depends explicitly on the electron density and consequently this quantity also
must exhibit changes when the atom is confined, as it is shown in Fig. 8.7, where
the exchange-only PBE potential (r vx) for the K atom is contrasted between two
confinement radii.

From Fig. 8.7 we can conclude that the shell structure in an atom can be studied
by using several tools, in our case we use the radial distribution function and the
exchange-only potential. Clearly, for large confinement radii the last shell for K
atom is better appreciated when the exchange-only potential is used. Evidently,
there are other quantities that are used to analyze the shell structure that must be
implemented in confined atoms codes to obtain insight about the electron-electron
interaction in these systems [45].

8.4.4 Correlation Energy from DFT in Confined Atoms

There are few works where the correlation energy is estimated for confined atoms.
In particular, the helium atom is the system that has been studied in detail with
many techniques [46–52]. For this system, it is found that the correlation energy is
almost constant for any confinement radius, with a value around of −0.042 hartrees;
there are no reports about this topic with DFT. In Table 8.7 we present the total
energy obtained by several exchange-correlation functionals and by a Hylleraas
wave functions expansion (HWF) for the confined helium atom [47]. For this case,
PBEPBE represents to the PBE functional for the exchange and for the correlation
contributions. PBELYP uses the PBE for the exchange energy and LYP [53] for the
correlation contribution. BLYP uses the Becke88 [54] functional for the exchange
and LYP for the correlation. It is important to remark that these functionals were
designed for non-confined atoms. Thus, it is interesting to see the behavior
exhibited by these exchange-correlation functionals for confined atoms. From this
table we conclude that the BLYP exchange-correlation functional shows an
impressive performance since it gives total energies closer to the HWF results.

In order to see the contribution of each part of the exchange-correlation func-
tionals, in Table 8.8 we are reporting the exchange energy obtained by three
functionals and they are contrasted with the HF results reported in Ref. [36].
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From this table we appreciate two important results. (1) The PBE exchange
functional underestimate always the exchange energy for any confinement radius.
(2) The Becke88 exchange functional does not show a regular behavior because for
some confinement radii this functional underestimates the exchange energy and for
others it overestimates. From this observation it is clear that if we want to modify
these exchange-only functionals, it seems easier to do this work with the PBE
proposal.

By the side of the correlation energy, in Table 8.9 we are reporting this quantity
for several confinement radii. The first thing we note is the relevance of the
exchange functional used when it is coupled with the correlation functional since
the LYP functional predicts different values depending of the exchange functional
coupled with it. In general we can say that the correlation functionals predicts
correlation energy almost constant for moderate confinements, Rc ≥ 4. However,
when the confinement is increased these correlation functionals predict correlation
energies with important differences with respect to the HWF results.

Table 8.7 Total energy for the helium atom for several confinement radii

Rc HWF PBEPBE PBELYP BLYP

2.0 −2.60403 −2.57286 −2.55830 −2.59126

3.0 −2.87246 −2.85451 −2.85177 −2.86828

3.5 −2.89354 −2.87835 −2.87736 −2.89144

4.0 −2.90042 −2.88668 −2.88642 −2.89950

4.5 −2.90264 −2.88959 −2.88963 −2.90231

5.0 −2.90337 −2.89060 −2.89076 −2.90330

6.0 −2.90368 −2.89107 −2.89128 −2.90376

7.0 −2.90370 −2.89112 −2.89134 −2.90382

All quantities are in hartrees

Table 8.8 Exchange energy, in hartrees, for helium atom estimated by several methods

Rc HF PBEPBE PBELYP BLYP

2.0 −1.24412 −1.19019 −1.17462 −1.23251

2.5 −1.12763 −1.08124 −1.06577 −1.12663

3.0 −1.07118 −1.02756 −1.01217 −1.07647

3.5 −1.00135 −0.98597 −1.05321

4.0 −1.03342 −0.98881 −0.97341 −1.04273

4.5 −0.98297 −0.96754 −1.03817

5.0 −1.02682 −0.98032 −0.96489 −1.03624

6.0 −1.02589 −0.97867 −0.96324 −1.03514

7.0 −0.97838 −0.96295 −1.03496
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Without doubt, calculations with several exchange-correlation functionals are
needed for extreme confinements and they must be contrasted with techniques
based on the wave-function, such as many-body perturbation theory, configuration
interaction, coupled cluster, quantum Monte Carlo [55] or Hylleraas wave functions
expansion. Evidently, correlated methods based on the wave-function must be
developed around of the confined many-electron atoms.

8.5 Perspectives

In this report we have discussed some results obtained by the density functional
theory, for many-electron atoms confined by a sphere with infinity potential at its
surface. Clearly, there are several issues that must be treated with more detail.
For example, the prediction of ionization potentials for confined atoms must be
performed by sophisticate techniques, such as the electron propagator or by
exchange-correlation potentials corrected on the asymptotic behavior. The perfor-
mance exhibited by several exchange-correlation functionals is an issue that must
be carried out. Our position is that with the confined atoms model we can extract
useful information in order to design new functionals or correct some of them.
Evidently, this issue has impact on the exchange-correlation potential and conse-
quently on orbital energies.
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154784, 155698 and 155070. The authors thank the facilities provided by the Laboratorio de
Supercómputo y Visualización en Paralelo at the Universidad Autónoma Metropolitana-
Iztapalapa.

Table 8.9 Correlation energy, in hartrees, for helium atom estimated by three correlations
functionals and a Hylleraas wave functions expansion

Rc HWF PBEPBE PBELYP BLYP

2.0 −0.0415 −0.0494 −0.0387 −0.0492

3.0 −0.0414 −0.0432 −0.0432 −0.0434

3.5 −0.0417 −0.0419 −0.0435 −0.0423

4.0 −0.0418 −0.0412 −0.0434 −0.0418

4.5 −0.0419 −0.0409 −0.0433 −0.0415

5.0 −0.0420 −0.0407 −0.0433 −0.0414

6.0 −0.0420 −0.0406 −0.0432 −0.0414

7.0 −0.0420 −0.0406 −0.0432 −0.0414
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Chapter 9
Study of Quantum Confinement of Hþ

2 Ion
and H2 Molecule with Monte Carlo.
Respective Role of the Electron
and Nuclei Confinement

Antonio Sarsa and Claude Le Sech

9.1 Introduction

The properties of atoms and molecules undergo significant changes when they are
spatially confined in either penetrable or impenetrable surfaces. Quantum con-
finement means confinement on a scale comparable to the atomic size, as opposed
to ordinary confinement when the cavity is very much larger than the atom. The
confinement of a particle in a potential is a well known problem of basic quantum
mechanics. A direct application of this model in nuclear physics is the under-
standing of the alpha radioactivity assuming a square well potential when the
particle is inside the nucleus, and a coulombic potential outside the nucleus.
Consideration about confinement is also useful in a number of fields of physics: the
effect of the pressure on the energy levels, the polarizability and the ionization
threshold of atoms and molecules, artificial atoms like quantum dots, wires and
quantum well and in several other areas like astrophysics. These problems have
addressed a lot of attention and they become a field of active research due to the
possibility to load nanocavities with molecules and to observe their modifications
by efficient new techniques, see e.g. [15] and references therein. We refer also to the
recent reviews [7, 8, 10, 16, 22] available for the interested reader.

The theory of chemical binding, see e.g. [28] is one of the first outstanding result
of the quantum mechanics. In most of the theoretical approaches, describing
molecular systems by quantum chemistry, the electron-pair of the covalent bond are
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allowed to span the whole space without any constraint. However it is well known
that the probability density associated to the wave function is larger between the
nuclei in the ground r state. This raises a pending question: what will be the
changes induced in the molecular bond by the modification of the probability
density of the binding electrons? When the binding electrons are subjected to
external electrostatic forces, for instance in a polar cavity, the available space where
they can be located is different from the free state. This remark leads to the problem
of quantum confinement of the particles constituting the molecule. When confined
molecules are investigated in order to study the dynamical changes of trapped
molecules in nanocavities, the simplest molecular systems like H2

+ or H2 are very
suitable. They are convenient to study the effects of confinement on the bonding
electron and to analyze the variation of the energy levels or internuclear distances
[6, 19, 23, 26]. These systems are a model to study the changes of the molecular
covalent bond properties when the electrons are confined by an external constraint.

The hard-wall confinement model is far to be only an academic problem. It is
very useful to study atoms and molecules confined by a model of impenetrable wall.
It might be considered also as the starting point of a more accurate description of a
spatially limited system by a soft boundary surface instead of a hard one. For
instance molecules like H2 placed in the inner cavities of fullerene allow for dif-
ferences in their physical and chemical properties. Considerations relative to a
significant decrease of the barrier of fusion between the nuclei resulting from
confinement have been reported [27] and this issue will be briefly illustrated in the
last section.

Within the Born-Oppenheimer approximation the Schrödinger equation for Hþ
2

is separable in elliptic coordinates. In reference [20] the exact values for the energy
when the ion is confined inside hard prolate spheroidal boxes have been reported.
Recent studies have completed the understanding of this molecular ion under
spheroidal confinement using a simple accurate wave function for Hþ

2 , including the
Dirichlet boundary conditions and soft confinement when the boundary surface is
penetrable, in a variational approach [9]. The Rayleigh-Ritz variational method is
one of the most popular method for calculating accurately the ground or excited
state energy of an atomic or a molecular system and its extension to confined
systems is useful to study confined systems.

In the present work a study of the confined Hþ
2 ion and H2 molecules, placed

inside spherical hard boxes, is presented in the frame work of a variational approach
beyond the Born-Oppenheimer approximation. Jacobi coordinates are used to
describe the three and four-body system. An approximate wave function is con-
structed taking into account accurately the dynamics of the nuclei in the lowest
rovibrational state and the interelectronic correlation in the case of the neutral
molecule. In the frame work of this approach it becomes possible to study the
respective role of the electronic or nuclei confinement on the internuclear distances
and energy values. It will be shown that electronic confinement reduces the inter-
nuclear distances and increases the energy level of the molecules resulting in a
metastable state compared to the free system i.e. when constrain is removed.
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The paper is organized in the following manner. In Sect. 9.2 the derivation of the
approximate functions the for Hþ

2 molecular ion and the H2 molecule, including the
cut-off function, is presented and the computational methodology is discussed. In
Sect. 9.3 we show the results obtained with the present choice of the wave function.
First and in order to ascertain the accuracy of our ansatz we compare our variational
results with the exact ones for those special cases where the later can be obtained.
This is the case of a confined hydrogen atom and the Hþ

2 ion with clamped nuclei
inside spheroidal surfaces with different eccentricities. The second part of Sect. 9.3
reports the results for the confined Hþ

2 molecular ion and H2 molecule including
nuclear dynamics. Finally a brief discussion is devoted to some consideration rel-
ative to enzymes and a possible role of electronic confinement in the their catalytic
properties. A short discussion about a possible increase of nuclear cold fusion rate
by quantum confinement of bounding electron in cavities is proposed at the end of
this section. The conclusion of this work are presented in Sect. 9.4.

Atomic units are used throughout this work unless otherwise indicated.

9.2 Theory

9.2.1 Hþ
2 Molecular Ion Including Motion of Nuclei

9.2.1.1 Schrödinger Equation

The Schrödinger equation for a confined Hþ
2 like ion can be written using atomic

units

�r2
re

2m
�

r2
~R1

2M1
�

r2
~R2

2M2
þ V

 !
Wðre;R1;R2Þ ¼ EWðre;R1;R2Þ ð9:1Þ

where re is the position vector of the electron and R1 and R2 the position vectors of
the two nuclei with masses M1 and M2 respectively, and m is the electron mass,
m ¼ 1, in atomic units. The potential, V , is given by

V ¼ 1
R
� 1
rA

� 1
rB

þ Vce þ VcN ð9:2Þ

with

R ¼ jR2 � R1j; rA ¼ jre � R1j; rB ¼ jre � R2j ð9:3Þ

and the potentials Vce and VcN are infinitely high when the electron or one nucleus is
at the respective defined boundary surfaces—spheroidal or spherical—and equal
zero when particles are inside the volume limited by the confining surfaces.
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This equation can be simplified by using Jacobi coordinates as follows. The
origin is placed in the center of mass of the nuclei and we introduce, r, the position
vector of the electron relative to this origin and, R, the relative vector of the two
nuclei. By using these two coordinate we have

rA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ zþ R

2

� �2
s

; rB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z� R

2

� �2
s

ð9:4Þ

and the Schrödinger equation for the intrinsic coordinates, once the center of mass
motion has been removed, becomes

�r2
r

2e
�r2

R

2l
þ V

� �
Wðr;RÞ ¼ EWðr;RÞ ð9:5Þ

where e and l are reduced masses

e ¼ mðM1 þM2Þ
mþM1 þM2

; l ¼ M1M2

M1 þM2
ð9:6Þ

For the Hþ
2 molecular ion we use M1 ¼ M2 ¼ 938:2720 MeV=c2 and m ¼

0:5109989 MeV=c2 obtaining e ¼ 0:9997278 and l ¼ 918:0763 in atomic units of
mass.

9.2.1.2 Trial Function for the Free Hþ
2 Molecular Ion

In this work, the following trial wave function, Wtðr;RÞ, is employed

Wtðr;RÞ ¼ FðRÞ/ðrA; rB;RÞ ð9:7Þ

where FðRÞ describes nuclear vibration and rotation and /ðrA; rB;RÞ the motion of
the electron and nuclei.

The lowest rotational and vibrational level is considered here and the following
form is assumed for FðRÞ

FðRÞ ¼ e�dðR�R0Þ2

R
ð9:8Þ

with d and R0 variational parameters.
For /ðrA; rB;RÞ, the form proposed by Guillemin and Zener, GZ, [11] is

employed
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/ðrA; rB;RÞ ¼ e�ZðRÞrAe�a rB þ e�ZðRÞrBe�a rA ð9:9Þ

This function is written by using prolate spheroidal coordinates ðn; g;uÞ

n ¼ rA þ rB
R

; g ¼ rA � rB
R

ð9:10Þ

and u is the azimuthal angle. The domain of these variables is

1� n�1; 1� g� 1; 0�u� 2p: ð9:11Þ

In terms of these variables, the function, /, (9.9) becomes

/ðn; g;RÞ ¼ exp � ZðRÞ þ a
2

Rn

� �
cosh

ZðRÞ � a
2

Rg

� �
ð9:12Þ

When the nuclei are fixed R is a parameter, as in the Born-Oppenheimer
approximation and the coefficients ZðRÞ and a are optimized variationally at each
internuclear distance R ¼ R0. For instance, at the equilibrium distance R0 ¼ Re ¼
2:0 au, the optimal values are ZðReÞ þ a ¼ 1:36 and ZðReÞ � a ¼ 0:92, providing
an energy EGZ ¼ �0:60244 au to be compared to the accurate Born-Oppenheimer
value EBO ¼ �0:60263 au.

If the motion of the nuclei is considered, ZðRÞ becomes a function of R. It is
reasonable to assume that ZðRÞ tends toward 1 when the nuclei are far apart each
other. The following simple choice is made to take into account the variation of Z
versus R

ZðRÞ ¼ 1þ c
R

ð9:13Þ

with c a variational parameter. With this choice, Eq. (9.12) reads

/ðn; g;RÞ ¼ exp � c
2
þ 1þ a

2
R

� �
n

� �
cosh

c
2
þ 1� a

2
R

� �
g

� �
ð9:14Þ

Defining the new parameters a and b

a ¼ c
2

b ¼ 1þ a
2

ð9:15Þ

we have a two-parameter factor, /, (9.9) describing the motion of the electron and
the nuclei
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/ðg; n;RÞ ¼ exp½�ðaþ bRÞn� coshf½aþ ð1� bÞRÞ�gÞg ð9:16Þ

Thus, final form of the trial wave function employed here to describe the free
molecular ion Hþ

2 including the nuclear motion is

Wtðr;RÞ ¼ exp½�ðaþ bRÞn� coshf½aþ ð1� bÞRÞ�gÞg e�dðR�R0Þ2

R
ð9:17Þ

The parameters a, b, d and R0 are to be fixed variationally. It is worth men-
tioning here that a more general trial wave functions such as

W0
tðr;RÞ ¼ exp½�ðaþ bRÞn� cosh½ða0 þ b0RÞg� e

�dðR�R0Þ2

R
ð9:18Þ

containing six variational parameters could be considered. However this option will
not be studied here. As we shall see, the four parameters wave function of this work
provides an accurate description of the confined molecular Hþ

2 .

9.2.1.3 Trial Function for the Confined Hþ
2 Molecular Ion

For a confined quantum system with hard surfaces, the wave function vanishes at
the surface. In order to fulfill this condition, a cut-off factor is included in the
variational wave function.

WtcðXÞ ¼ WtðXÞxðXÞ ð9:19Þ

where X represents the coordinates of the system and xðXÞ the cut-off factor. For
the Hþ

2 molecular ion, the following form of the cut-off factor is considered here

xðr;RÞ ¼ wrceðrÞWrcN ðRÞ ð9:20Þ

where the first term is a cut-off factor for the electron and the second for the nuclei.
The functional form here employed is

wrceðrÞ ¼ 1� r
rce

� �
exp

r
rce

� �
ð9:21Þ

WrcN ðRÞ ¼ 1� R
RcN

� �
exp

R
RcN

� �
ð9:22Þ

with r ¼ jrj and rce and RcN are the radius of the limiting hard surfaces confining
the electron and the nuclei respectively. This type of cut-off functions was proposed
in Ref. [17] and this choice was found to provide accurate results in previous
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studies of confined atoms [18, 25]. By using rce 6¼ RcN one can study separately the
effect of the electron and nuclear confinement.

Finally the approximated wave function for a spherically confined Hþ
2 molecular

ion in its ground state, including nuclear motion is

Wtcðr;RÞ ¼ exp½�ðaþ bRÞn� coshf½aþ ð1� bÞRÞ�gÞg e�dðR�R0Þ2

R

� 1� r
rce

� �
1� R

RcN

� �
exp

r
rce

þ R
RcN

� � ð9:23Þ

9.2.2 H2 Molecule Ion Including Motion of Nuclei

9.2.2.1 Schrödinger Equation

The kinetic energy operator, T , for a molecular-like four body problem in atomic
units is

T ¼ �r2
s1

2m
�r2

s2

2m
� r2

R1

2M1
� r2

R2

2M2
ð9:24Þ

where Mi and Ri are the masses and position vectors of the nuclei and m the
electron mass (m ¼ 1 in atomic units) and si the position vectors of the electrons.

The following Jacobi coordinates are used here

Rc ¼ a1R1 þ a2R2 þ bs1 þ bs2
R ¼ R1 � R2

r1 ¼ �f1R1 � f2R2 þ s1

r2 ¼ �f1R1 � f2R2 þ s2

ð9:25Þ

with

ai ¼ Mi

M1 þM2 þ 2m
; i ¼ 1; 2

b ¼ m
M1 þM2 þ 2m

fi ¼ Mi

M1 þM2
; i ¼ 1; 2

ð9:26Þ

After change of coordinates we obtain the following form of the kinetic energy
operator
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T ¼ � 1
2M

r2
Rc

� 1
2l

r2
R � 1

2e
r2

r1
� 1
2e

r2
r2
� 1
M1 þM2

rr1 � rr2 ð9:27Þ

where each one of the Laplacian operators are with respect to the coordinates given
in Eq. (9.25), M is the total mass of the system and l and e are the reduced masses
given in Eq. (9.6).

For the H2 molecule, we have M1 ¼ M2 and

m�Mn

so that contribution of the mass polarization term in Eq. (9.27),
(�1=ðM1 þM2Þrr1 � rr2 ), to the ground state energy is very small and it can be
considered as a perturbation. The same mass values as for the Hþ

2 molecular ion are
employed here, see Sect. 9.2.1.1.

The potential energy operator written in terms of the relative coordinates
employed in this work becomes

V ¼ 1
R
� 1
r1A

� 1
r1B

� 1
r2A

� 1
r2B

þ 1
r12

þ Vconf ð9:28Þ

with

R ¼ jRj; riA ¼ jri � R1j; riB ¼ jri � R2j; i ¼ 1; 2; r12 ¼ jr1 � r2j ð9:29Þ

and Vconf stands for the confinement potential giving the Dirichlet condition at the
boundary limits.

The center of mass can be removed when using this coordinate system and the
following intrinsic Schrödinger equation is obtained

� 1
2l

r2
R �

1
2e

r2
r1
� 1
2e

r2
r2
þ V

� �
Wðr1; r2;RÞ ¼ EWðr1; r2;RÞ ð9:30Þ

9.2.2.2 Trial Function for the Free H2 Molecule

The trial wave function Wt employed here to describe the ground state of a H2

molecule in a non- adiabatic scheme is a generalization to a two electron molecule
of the trial function employed for the Hþ

2 molecular ion of Sect. 9.2.1.2 and it
includes electronic correlations

Wtðr1; r2;RÞ ¼ FðRÞUðr1; r2;RÞJðr12Þ ð9:31Þ

The factor FðRÞ describes the nuclear vibration and rotation. The lowest rota-
tional and vibrational level will be considered here. Two different geometries will
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be considered, spherical and cylindric symmetry with the molecule lying along the
internuclear axis Z. For spherical symmetry, FðRÞ, will be parameterized as in
Eq. (9.8). For cylindric symmetry the following functional form is used

FðZÞ ¼ exp½�dðZ � Z0Þ2� ð9:32Þ

where Z is the internuclear distance and d and Z0 are variational parameters. This
form corresponds to the ground state of a one dimension harmonic oscillator.

The factor U in Eq. (9.31) describes the motion of the nuclei and the two
electrons and it is written as follows

Uðr1; r2;RÞ ¼ /ðg1; n1;RÞ/ðg2; n2;RÞ ð9:33Þ

where the function /ðgi; ni;RÞ describes the three-body wave function for the
nuclei and the electron i and is taken as the two parameter function given in
Eq. (9.16) with confocal elliptic coordinates for each electron

ni ¼
riA þ riB

R
; 1� ni �1

gi ¼
riA � riB

R
; �1� gi � 1

ð9:34Þ

and riA and riB are the distances of electron i to the nuclei A and B respectively as
given in Eq. (9.29).

Finally, the factor Jðr12Þ in the wave function of Eq. (9.31) is a Jastrow term
describing the interelectronic correlation. The following form is employed here

Jðr12Þ ¼ exp
br12

1þ cr12

� �
ð9:35Þ

with b and c variational parameters.

9.2.2.3 Trial Function for the Confined H2 Molecule

For a confined H2 molecule, the same approximation as in the case of the Hþ
2

molecular ion is employed to consider confinement, see Eq. (9.19). Two different
confinement geometries are considered. First, boundary hard spherical surfaces
centered mid point to the nuclei. The cut-off x taken to fulfill the Dirichlet con-
ditions is [17, 18, 25]

xðr1; r2;RÞ ¼ 1� r1
rce

� �
1� r2

rce

� �
1� R

RcN

� �
exp

r1
rce

þ r2
rce

þ R
RcN

� �
ð9:36Þ

This is a generalization to a two electron case of the cut-off factor employed for
the Hþ

2 molecular ion, Sect. 9.2.1.3.

9 Study of Quantum Confinement of Hþ
2 Ion and H2 Molecule … 235



Cylindrical boundary conditions will be also considered in this study. The
confining surface is a non penetrable cylinder of radius qce. The cylinder axis is the
molecular axis. The cut-off factor employed for this case is

xðq1; q2Þ ¼ 1� q1
qce

� �
1� q2

qce

� �
exp

q1
qce

þ q2
qce

� �
ð9:37Þ

with

qi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ y2i

q
; i ¼ 1; 2

where only electronic confinement is considered.
In Eqs. (9.8), (9.33) and (9.35) for spherical confinement or (9.37) for cylindric

confinement, the parameters a, b, b, c, d, R0 or Z0 are fixed variationally.

9.2.3 Dirichlet Boundary Conditions and Variational Monte
Carlo Approach

The expectation value of the Hamiltonian of the Hþ
2 molecular ion and the H2

molecule with the wave trial functions described in Sects. 9.2.1 and 9.2.2 respec-
tively will be carried out by using the Variational Monte Carlo (VMC) method. The
Variational Monte Carlo method is based on the variational approach with
expectation values calculated by using random walks, see e.g. [12] for a complete
description of the technique.

For a free molecule, the integration volume is the full configuration space of the
system and the trial wave function vanishes at the infinity. In our case, we have a
molecule inside a hard wall so that the wave function vanishes at the boundary of
the surface, os. We have included this boundary condition in our ansatz by means
of a cut-off factor xðXÞ, see Eq. (9.19). Analytical transformation of the multi
dimension integral leads to a convenient form of the functional for the VMC [25].
As we shall see below, with this manipulation minor changes are requested in order
to include the constraint in an VMC code working for an unbound system.

The expectation value of the Hamiltonian for a confined system enclosed by
impenetrable surfaces with the trial wave function of Eq. (9.19), can be written as
follows

hWtcjHjWtci ¼
Z

sðosÞ

� 1
2
½x2ðXÞWtðXÞr2WtðXÞ þ xðXÞW2

t ðXÞr2xðXÞ
�

þ2xðXÞWtðXÞrxðXÞ � rWtðXÞ� þ VðXÞx2ðXÞW2
t ðXÞ

�
dX

ð9:38Þ
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where sðosÞ represents the volume enclosed by the surface os and r is the Gradient
respect the coordinates of all the particles.

The term with the Gradients can be simplified by usingZ
sðosÞ

½xðXÞrxðXÞ� � ½WtðXÞrWtðXÞ�dX ¼ 1
4

Z
sðosÞ

rx2ðXÞ � rW2
t ðXÞdX

and applying a Green transformation

Z
sðosÞ

rx2ðXÞ � rW2
t ðXÞdX ¼

Z
os

W2
t ðXÞrx2ðXÞ � dS�

Z
sðosÞ

W2
t ðXÞr2x2ðXÞdX

In this equation the surface term vanishes because of the Dirichlet condition and
the volume term can be rewritten as followsZ

sðosÞ

W2
t ðXÞr2x2ðXÞdX ¼ 2

Z
sðosÞ

W2
t ðXÞxðXÞr2xðXÞdX

þ 2
Z

sðosÞ

W2
t ðXÞ½rxðXÞ�2dX

the first integral cancels out when substituted in the expectation value of the
Hamiltonian, Eq. (9.38), and the following result is obtained

hWtcjHjWtci ¼
Z

sðosÞ

WtðXÞj j2 x2ðXÞEt
LðXÞ þ

1
2
½rxðXÞ�2

� 	
dX ð9:39Þ

¼
Z

sðosÞ

WtcðXÞj j2 Et
LðXÞ þ

1
2
½r lnxðXÞ�2

� 	
dX ð9:40Þ

where

Et
LðXÞ �

HWtðXÞ
WtðXÞ

is the local energy for the unconfined molecule.
Equation (9.40) is specially suited for a VMC calculation [12]. By using the

Metropolis algorithm configurations sampled from WtcðXÞ can be generated and the
integral in (9.40) is evaluated starting from the term in braces calculated for each
one of the configurations. Equation (9.39) can also be employed by using config-
urations distributed according to the wave function corresponding to the free
molecule and using weights to account for the cut-off factor and the normalization.
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This leads to an, in general, less efficient calculation. It is worth to remark here that
by using either expression, one can calculate bound systems by performing minor
changes in a working VMC code for the corresponding free system. Finally it is
worth to remark here that this formalism is general and can be used for any confined
atom or molecule with a trial function written as in Eq. (9.19).

9.2.4 Dirichlet Boundary Conditions and Diffusion Monte
Carlo Approach

To improve the energies of the confined molecular systems here studied, a Quantum
Monte Carlo calculation is carried out. More specifically, we shall use in this work
the Diffusion Monte Carlo (DMC) method. We recall briefly here the main ideas
underlying the DMC approach. Further details relative to this powerful approach to
solve the Schrödinger by simulating the Green’s function of the system in question
by statistical methods can be found in e.g. Ref. [12]. The variationally optimized
wave functions shown in Sects. 9.2.1.3 and 9.2.2.3 will be employed as guiding
functions, see below.

Consider the following general Hamiltonian

H ¼ Dr2 þ V

where V is the potential operator, r2 is the Laplacian with respect to all of the
coordinates of the N particle system and D ¼ �h2=ð2mÞ. For simplicity in what
follows all the particles’ masses, m, are identical. Generalization for different par-
ticle mass is straightforward. DMC method starts from the time dependent
Schrödinger equation in imaginary time, that becomes classical diffusion equation.

owðX; sÞ
os

¼ Dr2wðX; sÞ þ ½Et � VðXÞ�wðX; sÞ ð9:41Þ

where Et is a constant and s the imaginary time

s ¼ i t

In the limit s ! 1, the asymptotically stationary behavior is obtained and the
partial derivative with respect to imaginary time vanishes. In that limit, Eq. (9.41)
becomes the time-independent Schrödinger equation.

Let us note that the factor, Et � VðXÞ, will present large fluctuations along the
configuration space of the system. In order to develop an efficient Monte Carlo
algorithm to solve Eq. 9.41 in the asymptotic regime, it is necessary to use a noise
reduction technique called importance sampling. Importance sampling starts from a
guiding function, WðXÞ, used to bias the sampling. This guiding function is an
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approximation to the exact ground state wave function. Then the following distri-
bution function is defined

f ðX; sÞ ¼ /ðX; sÞWðXÞ ð9:42Þ

If we multiply Eq. (9.41) by WðXÞ and rewrite this equation in terms of f ðX; sÞ
we obtain

of ðX; sÞ
os

¼ Dr2f ðX; sÞ � Dr � ½f ðX; sÞFðXÞ� þ ½Et � ELðXÞ�f ðX; sÞ ð9:43Þ

where

FðXÞ � 2
rWðXÞ
WðXÞ ; ELðXÞ � HWðXÞ

WðXÞ ð9:44Þ

In Eq. (9.43), the term FðXÞ represents a drift in the Monte Carlo that bias the
simulation towards those regions of the configuration space where the probability,
given by the guiding function is larger. In the form given by Eq. (9.43), the term
giving rise to fluctuations is the local energy, ELðXÞ. The local energy is a constant
if the exact wave function is employed as guiding function. Therefore it is con-
venient to use an accurate wave function as guiding function in order to reduce the
statistical noise of the simulation. However, very involved parameterizations, which
generally are time consuming, will slow down the calculation due to the fact that
the Gradient and the Laplacian of the guiding function must be calculated for all of
the configurations at every step of the Monte Carlo simulation. Hence, compact and
concise and still accurate wave functions are ideal as guiding functions.

In order to solve Eq. (9.43) by using Monte Carlo methods, this equation is
written in integral form

f ðX; sÞ ¼
Z

dX 0 ~GðX;X 0; sÞ f ðX; 0Þ ð9:45Þ

where ~G is the importance sampling imaginary-time Green’s function or propa-
gator. This function is not exactly know in general. However, for small values of
the imaginary time, approximations to the imaginary-time Green’s function can be
employed as the following one

~GðX;X 0; dsÞ ¼ ~GDðX;X 0; dsÞ~GBðX;X 0; dsÞ þH½ðdsÞ2� ð9:46Þ

where

~GBðX;X 0; dsÞ ¼ e�ð1=2½ELðXÞþELðX 0Þ��EtÞds ð9:47Þ
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~GDðX;X 0; dsÞ ¼ 1

ð2pr2Þ3N=2
e�ðX�X 0�r2FðX 0ÞÞ=ð2r2Þ ð9:48Þ

where

r2 � 2Dds

and N is the number of particles.
The Diffusion Monte Carlo algorithm is based in the integral form of the

Schrödinger equation in imaginary time, Eq. (9.45) with the approximate form of
the propagator given in Eqs. (9.46) and (9.48).

The DMC algorithm is as follows. A small value of the time step, ds, is fixed. An
initial set of configurations, drawn for example from the guiding function is gen-
erated. Starting from each one of the configurations a new one is proposed based on
the anisotropic diffusion part of the propagator, ~GD. This configuration is replicated
m times according to the branching part of the propagator, ~GB. A complete and
detailed description of this and other algorithms tailored to simulate the propagation
given by Eq. (9.45), can be found in [12]. The propagation is iterated many times
until the asymptotic regime of large imaginary time steps is reached. Then the exact
ground state energy, within the statistical error, is obtained by calculating the
average value of the local energy, ELðXÞ, Eq. (9.44) in the asymptotic set of
configurations. Several simulations for different time step values, ds, are carried out
in order to extrapolate the results to ds ¼ 0 removing the finite time step error of the
propagator (9.46)

Fermion systems present some additional problems due to the antisymmetry of
the wave function. This is not the case of the molecules here considered because
they present spatially symmetric states. Finally, let us note that more elaborate
approximations for the short time Green’s function have been proposed and
employed in the literature, see e.g. [24, 29].

9.3 Results and Discussion

This section presents the results obtained for the confined Hþ
2 and H2 molecular

systems. As a first step we study the accuracy of the variational ansatz, including a
check for the choice of the cut-off factor. In order to do that, calculations are made for
different systems and the results are compared with the data available in the literature.

For this purpose, the energy values of the hydrogen atom located at one of the
foci confined by a hard spheroidal surface have been calculated. Exact values are
known for this problem, allowing for a check of the approximate wave function of
this work. Secondly the energy values of the molecular ion Hþ

2 under spheroidal
constraint, in the frame work of fixed nuclei, will be calculated and compared to the
exact values also available for this system.

240 A. Sarsa and C. Le Sech



9.3.1 Confined Hydrogen Atom Located at One of the Foci
Confined by a Hard Spheroidal Surface

The calculation for hydrogen atom confined by a hard spheroidal surface can be
seen as a check of the cut-off function chosen here. The hydrogen atom is located on
the axis oz at one of the focus i.e. A, with charge ZA ¼ 1, separated from the other
focus, B, by a distance R. The charge at the focus B is taken ZB ¼ 0 in order to
study a confined hydrogen atom. The spheroidal impenetrable surface is defined by
the value of nc ¼ constant. The trial wave function including the cut-off is

WðrÞ ¼ expð�Zeff rAÞð1þ bzÞ 1� n�1
nc�1


 �
exp n�1

nc�1


 �
if n� nc

0 if n[ nc

(
ð9:49Þ

In this function Zeff and b are variational parameters. The factor ð1þ bzÞ is
needed to describe the polarizability of the atom along the oz axis when relatively
large eccentricities 1=nc values are considered.

In Table 9.1 we report the variationally optimized values for the energy of
the confined hydrogen atom. The comparison with the exact results and those of
reference [9] shows a good agreement and validate the choice of the present wave
function in this case.

9.3.2 Clamped Nuclei Hþ
2 Molecular Ion Confined

by a Spheroidal Surface

The Hþ
2 molecular ion is standing along the oz axis and the nuclei are located at

the centers A and B with charges ZA ¼ 1 and ZB ¼ 1. The foci A and B are
separated by a fixed distance R ¼ R0 ¼ 2 au. The spheroidal hard surface is defined

Table 9.1 Energy and optimal parameters for the confined hydrogen atom with the wave function
of this work, Eq. (9.49) as compared with the exact and another approximate calculation

nc Eexact
a Eb Ethiswork Zeff b

10 �0:4999 �0:4997 �0:4998 1 0

4.1098 �0:475 �0:4713 �0:4730 0.95 0

3.3931 �0:425 �0:4217 �0:4239 0.97 0

3.0697 �0:375 �0:3721 �0:3740 1 0

2.5918 �0:225 �0:2225 �0:2234 1.04 0.09

2.4142 �0:125 �0:1223 �0:1207 1.05 0.13
a Ref. [20], b Ref. [9]
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by the value of nc ¼ constant. Thus the trial wave function here proposed for this
case is

Wðr;R0Þ ¼ expð�Zt nÞ coshðagÞ 1� n�1
nc�1


 �
exp n�1

nc�1


 �
if n� nc

0 if n[ nc

(
ð9:50Þ

The exact energy for this problem has been reported in reference [20] for dif-
ferent values of nc. A comparison with these values and other approximate values
will provide a check of the accuracy of the function proposed here for this ion.

The parameters Zt and a are variationally optimized. In Table 9.2 we report
the results here obtained as compared to those calculated in reference [9] and to the
exact values, [20].

The agreement is found to be good even for relatively large values of the
eccentricity, 1=nc. This make us confident on the reliability of the variational anzatz
here employed to describe the 1srg ground state of the confined Hþ

2 ion when
nuclei are fixed.

9.3.3 Confined Three-Body Hþ
2 Molecular Ion by a Spherical

Surface

When the vibration and the rotation of the Hþ
2 ion are considered the symmetry of

the lowest energy state, m ¼ 0, and K ¼ 0, is spherical with respect to the origin
located mid of the nuclei. For this problem, with spherical symmetry, it is necessary
to make the choice of spherically symmetric boundary hard surfaces. The boundary
hard surfaces considered now are two spheres with center at the mid of the nuclei.
The cut-off radii are, respectively, rce and RcN . The present approach allows to make
different choices like rce ¼ RcN or rc 6¼ RcN in order to study the respective role of
the electron or nuclei confinement.

Table 9.2 Energy and optimal parameters obtained from the wave function of Eq. (9.50) with
fixed internuclear distance as compared with the exact and another approximate calculation

nc Eexact
a Eb Ethiswork Zt a

5.6924 �0:6025 �0:6022 �0:6022 1.3 0.92

2.9162 �0:525 �0:5237 1.27 0.88

2.4196 �0:375 �0:3746 1.38 0.81

2.2237 �0:25 �0:2499 �0:25 1.49 0.75

1.9934 0 0:0001 0:85� 10�5 1.68 0.57

1.6150 1:0 1:025 1:0072 2.44 0.0
a Ref. [20], b Ref. [9]
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The parameters a, b, d and R0 are optimized variationally. The optimum values
and the VMC and DMC energies, EVMC and EDMC respectively and the expectation
value of the internuclear distance hRi are reported in Table 9.3 for different con-
finement radii.

The results for the unconfined ion are also reported. The variational energy in
this case EVMC ¼ �0:596690ð6Þ au is in a very good agreement with the result that
can be considered as exact E ¼ �0:59713906 au of [14] while the DMC agrees
with this energy within the numerical error. When confinement becomes stronger
the energy is increased. It can be remarked that even for relatively large confine-
ment radii, for example rce ¼ RcN ¼ 4 au, the energy is significantly different from
the ground state one, though the internuclear distance is almost unchanged.

In Table 9.4 we show results obtained when different confinement radii are used
for the electron and the nuclei. Two different limiting situations are considered.

From these results it is clear that when the confinement of the electron is strong,
rce ¼ 2 au, whereas the confinement of the nuclei is large, RcN ¼ 20 au, the mean
internuclear distance is much more decreased than in the opposite situation,
rce ¼ 20 au and RcN ¼ 2 au. This finding illustrates the fact that in the former case
the larger screening of the nuclei, induced by the strongly confined electronic
charge, reduces the internuclear distance more efficiently that in the reverse situa-
tion. In reference [27] it has been suggested that this property might be useful to
decrease the fusion barrier of protons. It is worthy also to remark that the raise in
energy, E ¼ �0:29173ð8Þ au, is much more important when electron is confined

Table 9.3 Energy and optimal parameter for different confinement

rce ¼ RcN a b d R0 EVMC EDMC hRi
1 0.14 0.61 5.27 2.07 �0:596690ð6Þ �0:59714ð3Þ 2.05580(5)

20 0.14 0.60 6.20 2.05 �0:596543ð6Þ �0:59713ð3Þ 2.03789(5)

5.0 0.07 0.58 6.80 2.05 �0:594984ð9Þ �0:59637ð4Þ 2.02685(5)

4.0 0.11 0.55 7.60 2.00 �0:58835ð1Þ �0:59062ð2Þ 1.97514(5)

3.5 0.10 0.54 6.50 1.95 �0:57679ð1Þ �0:57905ð8Þ 1.91265(6)

3.0 0.05 0.53 5.20 1.90 �0:54615ð2Þ �0:5496ð3Þ 1.83127(6)

2.5 0.08 0.53 3.40 1.80 �0:47034ð2Þ �0:4772ð2Þ 1.64659(5)

2.0 0.12 0.55 2.50 1.70 �0:27894ð2Þ �0:2916ð1Þ 1.38087(4)

The accurate energy for the unconfined molecular ion [14] is �0:5971390631 au. In parentheses
we show the statistical error in the last figure

Table 9.4 Energy and optimal parameter for different confinement

rce RcN a b d R0 EVMC EDMC hRi
2.0 20 0.11 0.55 6.60 1.35 �0:28714ð1Þ �0:29173ð8Þ 1.33915(2)

20 2.0 0.16 0.61 5.80 2.05 �0:582429ð5Þ �0:58308ð1Þ 1.70460(1)

In parentheses we show the statistical error in the last figure
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than when nuclei are confined E ¼ �0:58308ð1Þ au. Under electronic constraint the
energy of the molecular ion can be raised above the dissociation limit of the free
system and the expectation value of the internuclear distance hRi is smaller in the
confined system than in the unconfined one. The electronic constraint results in a
sort of metastable bound state - high energy metastable state by confinement -
compared to the free system. Some possible consequences of such mechanism is
illustrated below along with a possible role in the catalytic mechanism of enzymes.

In Table 9.5 we show different radial expectation values hri, electron to origin
distance, and hreNi, electron nucleus distance, along with the mean value of hhi the
angle between the radius of the electron re and the internuclear axis oz.

The expectation values, hri, and hreNi decrease when the confinement is
increased. This is further illustrated in Fig. 9.1, where we plot the energy and the
radial expectation values hRi, hreNi and hri as a function of the confinement for the
case of rce ¼ RcN . For both kind of confinement, electron or nuclei, the hri values
are smaller than that those corresponding to the free system. It is interesting to note
that the confinement due to the nuclei, RcN ¼ 2:0 au, rce ¼ 20:0 au gives
hri ¼ 1:299 au, a value almost equal to hri ¼ 1:280 au when the electron con-
finement is set to rce ¼ 3:5 au. The mean value of the angle hhi remains always
close to p=2. This means that, on the average, the electron stays in the mid plane
between the nuclei perpendicular to the axis oz for all values of the confinement
radii.

The mean quantum pressure, P, exerted on the spherical box of radius rce ¼ RcN

is calculated starting from

P ¼ � dE
dV

¼ � 1
4pr2

dE
dr

� �
r¼rce

ð9:51Þ

Table 9.5 Different expectation values and the quantum pressure as a function of the confinement

rce RcN hri hreNi hhi P (atm)

20.0 20.0 1.42755(9) 1.6893(1) 89.992(6)

5.0 5.0 1.39745(7) 1.6621(1) 90.005(7) 2:2� 103

4.0 4.0 1.33424(7) 1.5922(1) 89.995(7) 2:2� 104

3.5 3.5 1.28052(6) 1.5337(1) 90.000(7) 7:3� 104

3.0 3.0 1.21271(5) 1.45892(8) 90.000(6) 2:0� 105

2.5 2.5 1.06899(5) 1.29649(7) 90.001(6) 1:0� 106

2.0 2.0 0.88670(4) 1.08293(6) 90.001(6) 3:8� 106

2.0 20.0 0.88380(4) 1.06984(6) 90.002(6)

20.0 2.0 1.29936(9) 1.5091(1) 90.003(7)

In parentheses we show the statistical error in the last figure
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The numerical results for the pressure, in atmosphere (1 au (pressure) = 2.913
06 ×108 atm) are reported in Table 9.5 as a function of the constrain radius. As
expected the pressure augments very rapidly when the confinement is stronger.

In practice the boundary conditions limiting the space available to electrons can
be realized, for example, by cages like those existing in fullerene, as proposed by
different authors, see for example reference [27].

9.3.4 Confined Four-Body H2 Molecule by a Spherical
Surface

Following a similar approachmade to study the Hþ
2 ion, the VMCmethod is used first

to make the variational optimization of the parameters a, b, d, b, c and R0 or Z0 in the
wave function of Hþ

2 . The optimized wave function is next employed as a guiding
function in the DMC approach. For the ground state this method provides the exact
non-relativistic energy up to the numerical precision, because the nodal surface is
exactly defined through the Dirichlet conditions. A check of the accuracy can be
made easily considering the calculated dissociation energy D0 for the ground state of
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Fig. 9.1 Energy and the expectation value of the internuclear distance hRi, mean electron-nuclei
distance hreNi, and the distance of the electron to the center of mass of the two nuclei, hri for
different values of the confinement radius for the Hþ

2 molecular ion. The lines are for guiding the
eye and the error is smaller than the size of the symbols
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free Hþ
2 molecule. In the present work we have obtained D0 = 36,120 ±11 cm−1 to be

compared to the experimental value D0= 36118 cm−1 [2]
In Table 9.6 we provide the Variational Monte Carlo (EVMC) and Diffusion

Monte Carlo (EDMC) energy values and the expectation values of radial distances
between nuclei and electrons and the variational parameters employed for different
confinements radii with rce ¼ RcN . It is of interest to notice that the energy is
increasing with the strength of the confinement. Even for a relatively soft con-
finement the change in energy is significant as already noticed in Ref. [4]. For
instance at rce ¼ RcN ¼ 4 au the calculated energy is E ¼ �1:1412 au to be
compared to the ground state energy EGS ¼ �1:1641 au.

It is worth to remark here that the expectation value of the mass polarization
term, Eq. (9.27) is of the order of 10�5 � 10�4 au.

In Table 9.7 some expectation values of interest for the different confinement
considered are reported. hRi is the expectation value of the internuclear distance;
hreNi is the mean electron-nucleus distance; hri is the expectation value of the
electron-nuclear center of mass distance; hreei is the average value of the interelec-
tronic distance; hheei is the expectation value of the angle subtended by the position
vector of the electrons and hhðr;RÞi is the expectation value of the angle subtended
by each electron with the molecular axis (internuclear vector). The interparticle
distances decrease with the confinement. For instance the mean internuclear distance
is hRi ¼ 1:03 au when rce ¼ RcN ¼ 2 au to be compared to hRi ¼ 1:453 au for
the free molecule. The electronic confinement of the bonding electrons is able to
shorten significantly the internuclear distances. This result was already noticed by
Segal et al. [27] in relation with the cold fusion problem. The values of the angles
hhðr;RÞi remain in all cases close to p=2 illustrating that the bonding electrons stay
on the average in the mid-plane perpendicular to the nuclei axis.

Table 9.6 Variational Monte Carlo, EVMC and Diffusion Monte Carlo EDMC ground state energies
for the spherically confined Hþ

2 molecule for different confinement radii

rce ¼ RcN EVMC EDMC a b b c d R0

1 �1:15304ð3Þ �1:16403ð5Þ 0.11 0.60 0.72 0.45 8.8 1.46

20 �1:15286ð3Þ �1:16400ð4Þ 0.11 0.60 0.72 0.45 8.8 1.46

5.0 �1:14572ð3Þ �1:16025ð9Þ 0.10 0.55 0.60 0.40 9.2 1.45

4.5 �1:13945ð3Þ �1:15465ð9Þ 0.10 0.56 0.57 0.33 9.9 1.43

4.0 �1:12522ð3Þ �1:14193ð9Þ 0.10 0.56 0.62 0.35 11.0 1.40

3.5 �1:09516ð3Þ �1:11216ð9Þ 0.10 0.56 0.57 0.33 11.5 1.35

3.0 �1:02532ð4Þ �1:04381ð8Þ 0.10 0.57 0.70 0.36 15.0 1.26

2.5 �0:8709ð4Þ �0:88488ð8Þ 0.10 0.56 0.56 0.34 16.5 1.13

2.0 �0:47909ð4Þ �0:49408ð8Þ 0.10 0.59 0.60 0.41 19.5 1.02

The optimum parameters in the VMC calculation a, b, b, c, d and R0 are also shown. In parentheses we
show the statistical error in the last figure
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In Table 9.8 we show the energy values for cylindric confinement calculated by
using the VMC and DMC approaches. It is important to recall here that only the
electrons are confined in this case. Nuclei are not confined, see Eq. (9.37). However
cylindrical hard boundary surfaces constraint induces a significant raise in energy,
even for relatively soft confinement condition, as already noted in the case of the
spherical confinement. The results show the raise in the energy and the decrease of
the mean internuclear distance even when the Dirichlet boundary conditions are not
a closed surface and concern only the electrons. However the cylindrical constraint
needs a stronger confinement, qce\rce, in order to reach the same energy increment
as that of the spherical confinement.

In Fig. 9.2 we plot the DMC energy values for different radii of constraint for
both the Hþ

2 molecular ion and the H2 molecule. In the upper curves of Fig. 9.2 we
compare the results for the energy obtained by using the Born-Oppenheimer
approximation, BO curve, as a function of the internuclear distance R for a free Hþ

2
molecular ion and the confined non adiabatic energies of this work versus hRi. The
same is shown in the lower curves of Fig. 9.2 for the H2 molecule, including both
spherical and cylindrical symmetry. In both cases, steep raise in energy is obtained.

The constraint gives rise to a metastable state with higher energy than the free
molecule. It is of interest to analyze the fate of the metastable state when the
constraint is removed. For instance, let us consider the metastable state represented
by the point M in the Fig. 9.2, and assume a sudden relaxation of the constraint. The
symmetry of the metastable state (g) is identical as the free state. This precludes an
electronic radiative dipolar transition. The final state will be a vibrationally excited
state of the 1R ground state of the molecular bond represented by the broken line in
Fig. 9.2, assuming that the removal of the constraint is ideally sudden.

The question of how such metastable state can be obtained in practice with the
help of a suitable confinement is of importance. To achieve a significant decrease in
the bond length following the electronic confinement it is necessary that the forces
are set on the bonding electrons during a sufficient long time in order that the nuclei,

Table 9.7 Different expectation values

rce ¼ RcN hRi hrai hri hreei hheei hhðr;RÞi
1 1.45304(2) 1.55848(5) 1.40469(7) 2.1470(1) 98.094(4) 90.000(4)

20 1.45267(2) 1.55403(5) 1.39993(7) 2.1393(1) 98.089(4) 89.997(4)

5 1.38090(2) 1.48033(5) 1.33585(6) 2.0445(1) 98.765(4) 90.002(4)

4.5 1.41983(2) 1.48637(5) 1.33557(6) 2.0338(1) 98.321(4) 90.005(4)

4 1.38921(2) 1.44020(5) 1.29167(5) 1.9680(1) 98.614(4) 90.002(4)

3.5 1.33746(2) 1.36707(5) 1.22215(5) 1.8538(1) 98.217(4) 89.998(4)

3 1.24811(1) 1.27225(4) 1.13696(4) 1.73378(8) 99.239(4) 89.999(4)

2.5 1.11746(1) 1.13663(4) 1.01510(4) 1.52644(7) 97.577(4) 90.001(4)

2 1.00311(1) 0.97833(3) 0.86400(3) 1.28947(5) 96.918(4) 90.002(4)

In parentheses we show the statistical error in the last figure
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which are heavy particles, have enough time to move. Such long constraint in time
cannot be obtained in a strongly polar solvent, for example, because the forces due
to the electrostatic environment are not coherently reoriented during a sufficiently
long time due to the thermal dispersion in continuum solvent models. Confinement
is probably not a relevant mechanism of the chemical reactions in water solutions.

9.3.5 Consideration of Confinement in Active Site
of Enzymes

Polar cavities, with a stable preorganized electrostatic environment, look suitable to
induce the right confinement on the substrate molecules. One of the common
features in the catalysis by enzymatic transformations is the confinement of the
substrate in the enzyme pocket. Compression of the nuclei of the substrate inside

Fig. 9.2 Illustration of the energy changes induced by confinement. Upper curves: Hþ
2 ion, open

squares BO results; filled triangles confinement by spherical hard surfaces of different radii. Lower
curves: H2 molecule, open triangles BO approximation; filled triangles spherical confinement;
filled circles cylindrical confinement
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the cavity is often invoked to contribute to the catalytic power of the enzymes by
lowering the distance between reactive termini thus facilitating nuclear tunneling
across the activation barrier [3, 21]. Different works concerned with the problem of
catalytic transfer of hydrogen atom in red-ox reactions argue that the distance
between donor and acceptor is decreased by compression [13].

The analysis made above shows that compression/decompression of the bonding
electrons is a mechanism able to produce a vibrationally excited state of the
chemical bond. The net result will be similar to an increase of the temperature of the
substrate making easier an atomic rearrangement to give the products. Such a
compression/relaxation cycle by electrostatic forces of the bonding electrons might
occur in the polarized active site of the enzyme, when the enzyme-substrate
complex is formed, and driven by the molecular dynamics of the enzyme that
governs the shape and volume of the active cavity.

Such mechanism can explain qualitatively the primary and secondary kinetic
isotope effect (KIE) observed in some catalyzed reactions made by the enzymes.
Let us consider the reaction of a transfer of an hydrogen atom and the substitution
by a deuterium atom (primary KIE) in the reactant. As the deuterium is twice
heavier than the proton it moves slower than the proton when the same pulse of
force is applied on the bonding electrons. As a direct consequence the metastable
state reached by the D isotope during the compression/relaxation cycle, which is
assumed to be identical for both atoms, will result in a metastable state with lower
energy. Relaxation of the constraint induces a transition to the ground state with a
smaller vibrational quantum number m than for the H case. This analysis predicts
that the reaction rate should be larger for the H atom transfer from a C–H bond
compared to C-D case.

A secondary KIE corresponding to an isotope substitution in the enzyme, even at
a large distance from the active site, will affect the molecular dynamic of the
enzyme cavity. The final outcome is a reduced catalytic activity of the enzyme due
to a lower efficiency of the compression/relaxation cycle process.

In summary we suggest that the induction of the vibrational excitation via
electronic confinement/relaxation in the particular molecular bond concerned by the
chemical reaction of the substrate, is a basic molecular mechanism that increases
the reaction rate. We propose that this mechanism plays a role in the catalytic power
of the enzymes.

9.3.6 Decreasing the Coulomb Barrier for the Fusion
of Protons by Electronic Confinement

The fusion of two protons in a molecular ion Hþ
2 under normal condition of

pressure and temperature—cold fusion—is a highly unprobable event. Under these
conditions the fusion rate has been estimated [5] to be 10�74 s�1. The muon
catalyzed fusion, as demonstrated by Alvarez [1], is based on the decreasing of the

250 A. Sarsa and C. Le Sech



internuclear distance when the electron is replaced by a muon in the molecular ion.
The present results on the compressed Hþ

2 ion indicate that the electronic con-
finement can induce a significant lowering of the internuclear distance. A rough
estimation of the enhancing of tunneling through the Coulomb repulsive barrier is
presented following [27].

The rate of the fusion reaction w is related to the following probability

w	 jWðRNÞj2 ð9:52Þ

where RN is the distance between the protons when the strong nuclear forces are
present i.e. RN ¼ 10�7 nm. In order to reach such small distances the protons must
tunnel through the repulsive Coulomb potential from the classical turning point Rt

given by E ¼ VðRtÞ. In the frame work of the JWKB semi-classical approximation
the nuclear probability can be estimated by the integral

jWðRNÞj2 	 exp 2
ZRN

Rt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l

�h2
ðVðRÞ � EÞ

r
dR

8<
:

9=
; ð9:53Þ

The fusion rate for the ground state E ¼ E0 can be estimated as

w	 2lE0

4p2�h2Al
exp 1� p

ffiffiffiffiffiffiffiffiffi
2
Rt

Al

s" #
where Al ¼ �h2

le2
ð9:54Þ

with l the reduced mass.
The lowering of Rt by a factor c � 1 gives a turning point R

0
t ¼ cRt: The

approximated tunneling rate w
0
is given, in a more quantitative way, by [5]

w0

w
¼ exp p

ffiffiffiffiffiffiffi
2Rt

Al

s
ð1� ffiffiffi

c
p Þ

" #
ð9:55Þ

Taking for example for the value of the classical turning point in the ground state
Rt ¼ 0:1 nm and Al ¼ 2:9� 10�5 nm, a decrease of about 40 % in Rt is obtained i.
e. c = 0.6. The corresponding enhancement in the tunneling factor is w

0
=w	 1025.

Results from Table 9.5 show that such enhancement is reached for a confinement of
about rce ¼ 2:0 au, corresponding to a pressure of 3:8� 106 atm. The gain is not
sufficient to sustain cold fusion. However, it is of interest to keep in mind that the
confinement of the electron decreases significantly the fusion barrier. An additional
transitory increase of pressure by a shock wave, for example, might induce more
events of fusion and could be of significant interest for cold fusion purpose and its
applications to obtain energy.

9 Study of Quantum Confinement of Hþ
2 Ion and H2 Molecule … 251



9.4 Conclusions

Most of the studies presently available concerning the constrained Hþ
2 molecular

ion and the H2 molecule are performed under the hypothesis of clamped nuclei. The
boundary surfaces, where Dirichlet conditions are fulfilled, are usually spheroidal
surfaces. Exact values have been calculated for the latter situation and should be
considered to be a check of any other approach.

In the present work we have developed approximate wave functions to describe
the Hþ

2 ion and H2 molecule in their ground rovibrational state using the Jacobi
coordinates. A different cut-off radius is fixed for the electron or the nuclei allowing
for a quantitative analysis of the respective role of the electron or nuclei confine-
ment. Using the Variational and Diffusion Monte Carlo approaches the energy and
several expectation values including the quantum pressure have been obtained for
different radii of the constrain. It is found that the electron confinement is much
more efficient to decrease the mean internuclear distance as compared to the nuclei
confinement. As a consequence the raise in energy of the ion is more important
when electron confinement is considered.

Confinement by hard surfaces, not necessarily closed surfaces, of the bonding
electrons augments the energy and decreases the interparticle distances. Due to the
confinement a metastable state with higher energy is obtained. This raises the
interesting question of the fate of such metastable state when the constraint is
removed. We have discussed the formation of a vibrationally excited state induced
induced when a confinement/deconfinement cycle is considered. As a consequence
a sudden release of the constraint will result in an excited vibrational state of the
chemical bond in the free system. Such mechanism might play a significant role if
molecules are located in a cavity, like the active pocket of an enzyme, assuming that
a fluctuation of the surrounding charges induces the right pulse of constraint.
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