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Supervisor’s Foreword

Quantum corrections in relativistic renormalizable quantum field theories are of
importance to explore the fundamental properties of elementary particles at high
precision. A central issue concerns the accurate measurement of the fundamental
parameters of the Standard Model, like the couplings of the different forces, the
matter and gauge-particle masses, and mixing parameters. The corresponding
corrections to cope with the current experimental precision are those of the three-
loop level for the strong interactions, as described by Quantum Chromodynamics
for high energy scattering experiments. Here an important process is deep-inelastic
lepton-nucleon scattering through which the very short-distance structure of
nucleons is probed. Some years ago, the dynamical contributions of massless
quarks have been calculated to this level, while corrections due to heavy quarks,
such as charm and bottom, were known to 1-loop level less only. In particular the
contribution due to charm quarks is rather large, requiring the treatment at the
same loop order.

In the present Thesis essential steps are undertaken to determine the massive
Wilson coefficients for deep-inelastic scattering at three-loop order. Currently the
computation of these quantities in the full kinematic region, i.e. also including low
values of the virtuality Q® of the exchanged gauge boson, cannot be performed.
However, already at scales szmzc, with m. the mass of the charm quark,
technologies are available to calculate these quantities even in analytic form. This
kinematic condition forms no essential restriction, but rather serves the purpose to
apply the theory to a range of better validity. At these scales the Wilson coeffi-
cients for the structure functions F 5(x, 0?) and gl(x, 0?) factorize into the known
massless Wilson coefficients and the process-independent massive operator matrix
elements, which are computed to three-loop for the first time.

The renormalization of these quantities is worked out. In case of charge
renormalization a new element had to be incorporated. It is advised to refer first to

a MOM-scheme before the desired expressions in the MS-scheme can be obtained.
Lower loop order operator matrix elements contribute. They were all calculated for
general values of the Mellin variable N up to the corresponding order in the

vii
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dimensional parameter ¢. Here modern summation technologies as developed by
the Linz group have been applied using the package Sigma. For the computation of
the three-loop massive operator matrix elements emphasis was laid on the corre-
sponding Mellin moments. An extension of the Feynman diagram generator
QGRAF allowing for local operator insertions was given. The corresponding
moments became calculable using the FORM-code MATAD after applying cor-
responding projectors of the spin-structures which emerge for the respective
moments. With these technologies all operator matrix elements, including those of
the gluonic channels, needed to establish the variable flavor scheme, were com-
puted for the moments N = 10,...,14 depending on the respective complexity.
These moments provide a unique and necessary basis for all upcoming calculations
aiming on the result for general values of the Mellin variable N. An important
check consists in comparing the moments of the three-loop anomalous dimensions,
obtained as a by-product of the present calculation, to the results in the literature,
which were confirmed. The computations required about one CPU year using
machines with a memory of up to 96 Gbyte and 1.5 Tbyte fast disc. Further
applications concerned the heavy flavor contributions to the transversity distri-
bution to three-loop order and the polarized heavy flavor Wilson coefficients to
two-loops. Finally, first steps were undertaken to compute a first non-trivial
massive three-loop topology for general values of N analytically.

The Thesis of Sebastian Klein represents an essential step in the field of analytic
three-loop calculations in Quantum Chromodynamics for single differential
quantities in the presence of a single mass and is an impressive piece of work,
given the short period of time through which it has been performed. Currently it
forms the basis of calculations determining the massive Wilson coefficients for
deep-inelastic scattering at high virtualities for general values of the Mellin
variable N.

Zeuthen, August 2011 Dr. Johannes Bliimlein
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Chapter 1
Introduction

Quantum Chromodynamics (QCD) is the well-established theory of the strong inter-
action. It explains the properties and the structure of hadrons, such as the proton or the
neutron, in particular at short distances. Together with the electroweak interaction it
forms the Standard Model' of elementary particle physics, which up to date explains
the microscopic world to a very good accuracy. The low energy manifestations of
the electroweak interaction are the electromagnetic and the weak interaction. The
former has been known the longest since it is also observable in the everyday world,
whereas the weak interaction concerns only microscopic phenomena such as the
radioactive B-decay. These theories have three features in common: (1) the matter
content is described in terms of elementary particles with definite properties such
as mass, charge or spin, (2) the interaction between these particles is mediated by
gauge bosons, (3) the strength of the interaction is given by a coupling parameter.
In the electroweak sector, there are six particles (and their respective anti-particles),
the electron, the muon, the tau and the neutrinos associated to them, the v, v, and v;.
They are referred to as leptons and the electroweak force is described in terms of four
gauge bosons, the photon and the W* and Z-boson, which are exchanged between
these particles. In case of QCD, the matter content is given by six different quarks
(also called flavors)—the up, down, strange, charm, bottom and top quark—which
are bound together by the mediator of the strong force, the gluons, to form hadrons.
Contrary to leptons, only these hadrons are observable in nature, because the size of
the strong interaction at small energies prevents the existence of free quark states.
This is one of the most important properties of QCD and referred to as confinement.

The path to the discovery of QCD started in the 1960s. By that time, a large
amount of hadrons had been observed in cosmic ray and accelerator experiments,
which occur as mesons (spin = 0, 1) orbaryons (spin = 1/2, 3/2). In the early 1960s
investigations were undertaken to classify all hadrons, based on their properties such
as flavor—and spin quantum numbers and masses. In 1964, Gell-Mann [1] and Zweig
[2], proposed the quark model as a mathematical description for these hadrons. Three
fractionally charged quark flavors, up (u), down (d) and strange (s), known as valence

' Gravity, the 4th fundamental force known today, is not yet incorporated in the Standard Model.

S. Klein, Charm Production in Deep Inelastic Scattering, Springer Theses, 1
DOI: 10.1007/978-3-642-23286-2_1, © Springer-Verlag Berlin Heidelberg 2012



2 1 Introduction

quarks, were sufficient to describe the quantum numbers of the hadron spectrum
which had been discovered by then. Baryons are thus considered as bound states of
three quarks and mesons of a quark-antiquark pair. Assuming an approximate SU (3)
flavor symmetry, “the eightfold way” [3-5], mass formulas for hadrons built on the
basis of quark states could be derived. A great success for the quark model was marked
by the prediction of the mass of the 2™ -baryon before it was finally observed [6]. In
the same year, Giirsey and Radicati [7], introduced spin into the model and proposed
alarger SU (6)spin— fiavor = SU2)spin ® SU (3) f1avor symmetry. This allowed the
unification of the mass formulas for the spin-1/2 and spin-3/2 baryons and provided
the tool to calculate the ratio of the magnetic moments of the proton and the neutron
to be &~—3/2, which is in agreement with experiment within 3% [8, 9]. However,
this theory required the quarks that gave the correct low-lying baryons to be in a
symmetric state under permutations, which contradicts the spin-statistics theorem
[10], since quarks have to be fermions. Greenberg [11], resolved this contradiction
by introducing a “symmetric quark model”. It allows quarks to have a new hidden
three-valued charge, called color, which is expressed in terms of parafermi statistics.
Finally, in 1965, Nambu [12], and Han and Nambu [13], proposed a new symmetry,
SU (3)color» Wwhich makes the hidden three-valued charge degree of freedom explicit
and is equivalent to Greenberg’s description. Since there was no explicit experimental
evidence of this new degree of freedom, the assumption was made that all physical
bound states must be color-neutral [12—14].

The possibility to study the substructure of nucleons arose at the end of the 1960s
with the advent of the Stanford Linear Accelerator (SLAC)[15, 16]. This facility
allowed to perform deeply inelastic lepton-nucleon scattering (DIS) experiments at
much higher resolutions than previously possible. The cross section can be para-
meterized quite generally in terms of several structure functions F; [17, 18], which
can be thought of as generalizations of the elastic nucleon form factors. The former
were measured for the proton by the SLAC-MIT experiments and depend both on
the energy transfer v and the four-momentum transfer g> = —Q? from the lepton
to the nucleon in the nucleon’s rest frame. In the Bjorken limit, {Q2, v — 00,
0?%/v = fixed} [19], it was found that the structure functions depend on the ratio
of 0% and v only, F;(v, Q%) = F;(Q?*/v). This phenomenon was called scaling
[20-23] cf. also [24], and had been predicted by Bjorken in his field theoretic analysis
based on current algebra [19]. As the relevant parameter in the deep-inelastic limit he
introduced the Bjorken-scaling variable x = Q%/2Mv, where M is the mass of the
nucleon. After scaling was discovered, Feynman gave a phenomenological expla-
nation for this behavior of the structure functions within the parton model [25-29].
According to this model, the proton consists of several point-like constituents, the
partons. His assumption was that during the interaction time—which is very short
since high energies are involved—these partons behave as free particles off which the
electrons scatter elastically. Therefore, the total cross section is just the incoherent
sum of the individual electron-parton cross-sections, weighted by the probability
to find the particular parton inside the proton. The latter is described by the parton
density f;(z). It denotes the probability to find parton i in the proton, carrying the
fraction z of the total proton momentum P. In the limit considered by Feynman,
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z becomes equal to x, giving an explanation for scaling. This is a direct consequence
of the rigid correlation Mv = ¢.P, as observed in experiment. Even more important
for the acceptance of the quark parton model was the observation that the Callan—
Gross relation [30], holds, namely that the longitudinal structure function F7, vanishes
in the situation of strict scaling. This experimental result favored the idea of the proton
containing spin-1/2, point-like constituents and ruled out different approaches, such
as the algebra of fields [31], or explanations assuming vector—meson dominance
[32-35]. Finally, Bjorken and Paschos [36], linked the parton model to the group
theoretic approach by identifying quarks and partons.

Today QCD forms one part of the Standard Model of elementary particle physics,
supplementing the electroweak SUp (2) x Uy(1) sector, which had been proposed
by Weinberg in 1967 [37], extending earlier work by Glashow [38], cf. also [39, 40],
for the leptonic sector. This theory was proved to be renormalizable by t’Hooft and
Veltman in 1972 [41], see also [42—-45], if anomalies are canceled [46—48], requiring
an appropriate representation for all fermions. t” Hooft also proved renormalization
for massless Yang—Mills theories [49]. These gauge theories had first been studied
by Yang and Mills in 1954 [50], and have the distinctive property that their gauge
group is non-abelian, leading to interactions between the gauge and bosons [14],
contrary to the case of Quantum Electrodynamics. In 1972/73, Gell-Mann, Fritzsch
and Leutwyler [51], cf. also [12], proposed to gauge color which led to an extension of
the Standard Model to SUL (2) x Uy (1) x SU.(3), including the strongly interacting
sector. The dynamical theory of quarks and gluons, Quantum Chromodynamics,
is thus a massless Yang—Mills theory which describes the interaction of different
quark flavors via massless gluons. Among the semi-simple compact Lie-groups,
SU (3). turns out to be the only possible gauge group for this theory, cf. [52, 53]. In
1973, Gross and Wilczek [54], and Politzer [55], showed in a 1-loop calculation that
Quantum Chromodynamics is an asymptotically free gauge theory, cf. also G. t’Hooft
1972 (unpublished), which allows to perform perturbative calculations for processes
at large enough scales. There, the strong coupling constant gy becomes a sufficiently
small perturbative parameter, meaning that for a given physical observable A(«;) the
expansion around og = 0

Alas) = AQ 4 o AD 4 o2ADP 1 (1.1)

gives a good approximation for A(c;). In contrast if oy > 1—as is the case for
QCD for small energies—the expansion Eq. 1.1 diverges and one has to use different
methods to calculate A(ay).

In the beginning, QCD was not an experimentally well-established theory, which
was mainly due to its non-perturbative nature. In the course of performing preci-
sion tests of QCD, the operator product expansion near the light-cone, the light-cone
expansion (LCE) [56-59], was important. By applying it to deep-inelastic processes
in the Bjorken-limit, one facilitates a separation of hadronic bound state effects
and the short distance effects. This is possible, since the cross sections of deeply
inelastic processes receive contributions from two different resolution scales 2.
One is the short distance region, where perturbative techniques can be applied.
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The other describes the long distance region. Here bound state effects are essen-
tial and a perturbative treatment is not possible due to the large coupling involved.
By means of the LCE, the two energy scales of the process are associated with two
different quantities: the Wilson coefficients C(z, 0?%/1?) and the already mentioned
hadronic operator matrix elements or parton densities f(z, u?). The former contain
the large scale contributions and can therefore be calculated perturbatively, whereas
the latter describe the low scale behavior and are quantities which have to be extracted
from experimental data or can be calculated by applying rigorous non-perturbative
methods. Schematically, this factorization can be written for a generic structure func-
tion F(x, 02) to all orders in perturbation theory as

2 0’ 2 1
Fx,0)=C\x, 5 |® f(x,u)+ 0\ =3 ) (1.2)
% 0
This is the so called twist-2 approximation, where all power-like contributions
O(1/Q?) are neglected, cf. e.g., [60, 61]. In Eq. 1.2, the Mellin-convolution ® is
defined by

11
A(x) ® B(x) := //dz1dZ2A(z1)B(zz)5(x —2122). (1.3)
00

At this point, it is also convenient to mention a rather technical aspect, which is
important for the understanding of this work. Many calculations simplify in Mellin
space compared to x-space. The Nth Mellin moment of a function f is defined
through the integral

1

MI[f1(N) :=/dxxN—1f(x). (1.4)

0

This transform diagonalizes the Mellin-convolution A® B Eq. 1.3 of two functions

M[A ® B](N) = M[A](N) x M[B](N), (1.5)

and turns it into a product. Hence in many occasions it is more convenient to work
in Mellin-space, as will be done throughout this thesis.

Using the LCE, one may derive Feynman’s parton model and show the equivalence
of the approaches by Feynman and Bjorken in the twist-2 approximation [62]. The
LCE also allows to go beyond the naive partonic description, which is formulated
in the renormalization group improved parton model. Shortly after the formulation
of QCD, logarithmic scaling violations of the deep inelastic cross section where
observed [63, 64], which had to be expected since QCD is not an essentially free field
theory, neither is it conformally invariant [65]. The theoretical explanation involves



1 Introduction 5

the calculation of higher order corrections to the Wilson coefficients as well as to the
anomalous dimensions of the composite operators emerging in the LCE [66—68], and
predicts the correct logarithmic Q% dependence of the structure functions. In fact,
the prediction of scaling violations is one of the strongest experimental evidences
for QCD.

Thus deeply inelastic scattering played a crucial role in formulating and testing
QCD as the theory governing the dynamics of quark systems. Its two most impor-
tant properties are the confinement postulate—all physical states have to be color
singlets—and asymptotic freedom—the strength of the interaction becomes weaker
at higher scales, i.e. at shorter distances, cf. e.g., [52, 69-85].

An important step towards completing the Standard Model were the observations
of the three heavy quarks charm (c), bottom (b) and top (t). In 1974, two narrow
resonances, called W and W/, were observed at SLAC in eTe™ collisions at 3.1 GeV
and 3.7 GeV, respectively [86, 87]. At the same time another resonance called J was
discovered in proton—proton collisions at BNL [88], which turned out to be the same
particle. Its existence could not be explained in terms of the three known quark flavors
and was interpreted as a meson consisting of a new quark, the charm quark. This was
an important success of the Standard Model since the existence of the charm had
been postulated before [§9-91]. It is necessary to cancel anomalies for the second
family as well as for the GIM-mechanism [92], in order to explain the absence of
flavor changing neutral currents. With its mass of m, ~ 1.3 GeV it is much heavier
than the light quarks, m,, &~ 2MeV, mg =~ 5MeV, m; & 104 MeV [93], and heavier
than the nucleons. In later experiments, two other heavy quarks were detected. In
1977, the Y (= bb) resonance was observed at FERMILAB [94], and interpreted as
a bound state of the even heavier bottom quark, with mj; ~ 4.2 GeV [93]. Ultimately,
the quark picture was completed in case of three fermionic families by the discovery
of the heaviest quark, the top-quark, in pp collisions at the TEVATRON in 1995
[95-98]. Its mass is given by roughly m; ~ 171 GeV [93]. Due to their large masses,
heavy quarks cannot be considered as constituents of hadrons at rest or bound in
atomic nuclei. They are rather excited in high energy experiments and may form
short-lived hadrons, with the exception of the top-quark, which decays before it can
form a bound state.

The physics of heavy quarks is a very active area of research, both experimentally
and theoretically. From a theory point of view, calculations involving only massless
particles are not as challenging as those involving one or more heavy particles. This
is due to the larger number of scales involved, leading to more tedious mathematical
expressions. Therefore, the level of accuracy reached for processes involving heavy
quarks is not yet the same as has been done for massless quarks. However, one finds
that the mass-effects are large and can not be neglected.

In this thesis, the theoretical accuracy of scattering processes including heavy
quarks is increased. In particular, we study the Wilson coefficients of unpolarized
deeply inelastic scattering via single photon exchange. In this case, the double differ-
ential scattering cross-section can be expressed in terms of the structure functions
F>(x, Q%) and Fy (x, Q%). After the SLAC-MIT experiments forty years ago, many
DIS experiments have been performed [63, 64, 99-129]. Recently, the proton was
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probed to shortest distances at the Hadron—Elektron-Ring-Anlage HERA at DESY in
Hamburg [130-134]. In these experiments, a large amount of data has been acquired,
and in the case of HERA it is still being processed. This holds especially for the last
running period, which was also devoted to the measurement of F7 (x, Q%) [135]. Up
to now, the structure function F;(x, Q2) is measured in a wide kinematic region [93],
whereas F; (x, Q%) was mainly measured in fixed target experiments [136—141], and
determined in the region of large v [142].

In the analysis of DIS data, heavy quarks play an important role,
cf. e.g., [143-147]. One finds that the scaling violations of their contributions differ
significantly from those of the light partons in a rather wide range starting from lower
values of Q2. It also turns out that the heavy quark contributions to the structure
functions of the nucleon may amount up to 25-35%, especially in the small-x region
[145, 146, 148, 149]. This demands a more precise theoretical evaluation. The need
for considering heavy quarks has additional important aspects. Increasing our knowl-
edge on the perturbative part of deep-inelastic processes allows for a more precise
determination of the QCD-scale Aqcp and the strong coupling constant o, as well
as of the parton-densities f;(z) from experimental data. For the former, sufficient
knowledge of the next-to-next-to leading order (NNLO)massive corrections in DIS
is required to control the theory-errors on the level of the experimental accuracy and
below [150-159]. The parton distribution functions are process independent quanti-
ties and can be used to describe not only deeply inelastic scattering, but also a large
variety of scattering events at (anti-)proton—proton colliders such as the TEVATRON
at FERMILAB, and the Large-Hadron—Collider (LHC)at CERN [147]. Heavy quark
production is e.g. well suited to extract the gluon density since at leading order (LO)
only the photon—gluon fusion process contributes to the cross section [160-164].
It is given by

VY 4+ G — c+e. (1.6)

Here, y* is the virtual photon exchanged between the electron and the proton,
G is the gluon extracted from the proton and cc denotes the charm—anticharm pair
produced in the final state. Note that we do not consider the heavy quark to be
a sea-like constituent of the proton (intrinsic heavy quark production), since data
from HERA show that this production mechanism hardly gives any contribution,
cf. [165-169]. One also finds that due to the kinematic range of HERA and the
previous DIS experiments, charm is produced much more abundantly and gives a
higher contribution to the cross section than bottom [146]. Therefore we subsequently
limit our discussion to only one heavy quark. Next-to leading order (NLO) calcula-
tions, as performed in Refs. [170-172], showed that photon—gluon fusion, Eq. 1.6,
is still dominant, although now other processes contribute, too. The gluon density
plays a special role, since it carries roughly 50% of the proton momentum, as data
from FERMILAB and CERN showed already in the 1970s [173]. Improved knowl-
edge on the gluon distribution G (x, Q?) is also necessary to describe gluon-initiated
processes at the TEVATRON and at the LHC. The study of the gluon density will also
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help to further understand the small-x behavior of the structure functions, showing a
steep rise, which is mainly attributed to its properties.

The perturbatively calculable contributions to the DIS cross section are the
Wilson coefficients, Eq.1.2. In case of light flavors only, these are denoted by
Ciq.0)..)(x, Q*/11?) ? and at present they are known up to the third order in the
strong coupling constant [174—193]. Including massive quarks into the analysis, the
corresponding terms are known exactly at NLO. The LO terms have been derived in
the late seventies [160-164], and the NLO corrections semi-analytically in z-space
in the mid-90s [170-172]. A fast numerical implementation was given in [194].
In order to describe DIS at the level of twist T = 2, also the anomalous dimensions
of the local composite operators emerging in the LCE are needed. These have to be
combined with the Wilson coefficients and describe, e.g., the scaling violations of
the structure functions and parton densities [66—68]. This description is equivalent
to the picture in z-space in terms of the splitting functions, [195]. The unpolar-
ized anomalous dimensions are known up to NNLO.? At leading [66-68], and at
next-to-leading-order level [197-203], they have been known for a long time and
were confirmed several times. The NNLO anomalous dimension were calculated by
Vermaseren et. al. First, the fixed moments were calculated in Refs. [189, 190, 192]
and the complete result was obtained in Refs. [204, 205].

The main parts of this thesis are the extension of the description of the contributions
of heavy quark mass effects to the deep-inelastic Wilson coefficients to NNLO.In
course of that, we also obtain a first independent calculation of fixed moments of
the fermionic parts of the NNLO anomalous dimensions given in Refs. [189, 190]
before.

The calculation of the 3-loop heavy flavor Wilson coefficients in the whole
Q2 region is currently not within reach. However, as noticed in Ref. [206], a
very precise description of the heavy flavor Wilson coefficients contributing to
the structure function F>(x, Q%) at NLO is obtained for Q% > IOmé, disre-

garding the power corrections o (sz/ 0k, k > 1. If one considers the charm
quark, this covers an important region for deep-inelastic physics at HERA. In
this limit, the massive Wilson coefficients factorize into universal massive operator
matrix elements (OMEs) A;; (x, /1,2 / m2Q) and the light flavor Wilson coefficients

Cy,0.0,0)(x, Q?/11?). The former are process independent quantities and describe
all quark mass effects. They are given by matrix elements of the leading twist local
composite operators O; between partonic states j (i, j = ¢, g), including quark
masses. The process dependence is described by the massless Wilson coefficients.
This factorization has been applied in Ref. [207] to obtain the asymptotic limit for
Fzz(x, 0?) at NNLO. However, unlike the case for FZCE, the asymptotic result in
this case is only valid for much higher values Q% > 800m?,, outside the kine-
matic domain at HERA for this quantity. An analytic result for the NLO quarkonic
massive operator matrix elements A, ; needed for the description of the structure func-
tions at this order was derived in Ref. [206] and confirmed in Ref. [208]. A related

2
3

q = quark, g = gluon
In Ref. [196], the 2nd moment of the 4-loop NS anomalous dimension was calculated.
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application of the massive OMEs concerns the formulation of a variable flavor
number scheme (VENS) to describe parton densities of massive quarks at suffi-
ciently high scales. This procedure has been described in detail in Ref. [209], where
the remaining gluonic massive OMEs A ; were calculated up to 2-loop order, thereby
giving a full NLO description. This calculation was confirmed and extended in [210].

In this work, fixed Mellin-moments, Eq. 1.4, of all contributing massive OMEs at
the 3-loop level are calculated and presented, which is a new result [211-214]. The
OME:s are then matched with the corresponding known 0(013) light flavor Wilson
coefficients to obtain the heavy flavor Wilson coefficients in the limit Q2 > m?,
which leads to a precise description for 0?/m? > 10 in case of F>(x, Q?). Itis then
possible to calculate all logarithmic contributions o In(Q?/m?)* to the massive
Wilson coefficients in the asymptotic region for general values of the Mellin vari-
able N. This applies as well for a large part of the constant term, where also the
O (&) contributions at the 2-loop level occur (¢ being the parameter of dimensional
regularization, cf. [215-218]). The first calculation of the latter for all N forms a
part of this thesis, too [210, 211, 213, 219-222].Thus only the constant terms of the
unrenormalized 3-loop results are at present only known for fixed moments. Since the
OMEs are given by the twist T = 2 composite operators between on-shell partonic
states, also fixed moments of the fermionic contributions to the NNLO unpolarized
anomalous dimensions are obtained, which are thereby confirmed for the first time
in an independent calculation [211-214].

A more technical aspect of this thesis is the study of the mathematical structure
of single scale quantities in renormalizable quantum field theories [223-226]. One
finds that the known results for a large number of different hard scattering processes
are most simply expressed in terms of nested harmonic sums, cf. [227, 228], which
are generalizations of the harmonic sum S defined by

N
1

S1(N) ._Zi, N eN. (1.7)
This holds at least up to 3-loop order for massless Yang—Mills theories, cf. [154,
193, 204, 205, 223, 229-231], including the 3-loop Wilson coefficients and anom-
alous dimensions. By studying properties of harmonic sums, one may thus obtain
significant simplifications [199], because they obey algebraic [232], and structural
relations [233, 234]. Performing the calculation in Mellin-space one is naturally
led to harmonic sums, which is one of the reasons why we adopt this approach in
our calculation. In course of this, new types of infinite sums occur if compared to
massless calculations. In the latter case, summation algorithms such as presented
in Refs. [228, 235, 236] may be used to calculate the respective sums. The new
sums which emerge were calculated using the recent summation package Sigma
[237-242], written in MATHEMATICA,which opens up completely new possi-
bilities in symbolic summation and has been tested extensively throughout this

work [224].
For fixed values of N, single scale quantities reduce to zero-scale quantities, which
can be expressed by rational numbers and certain special numbers as multiple zeta
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values (MZVs) [243, 244], and related objects. Zero scale problems are much easier
to calculate than single scale problems. By working in Mellin-space, single scale
problems are discrete and one can seek a description in terms of difference equa-
tions. One may think of an automated reconstruction of the all N relation out of
a finite number of Mellin moments given in analytic form. This is possible for
recurrent quantities. At least up to 3-loop order, presumably to even higher orders,
single scale objects belong to this class. In this work [225, 226], we report on a
general algorithm for this purpose, which we applied to a problem being currently
one of the most sophisticated ones: the determination of the anomalous dimensions
and Wilson coefficients to 3-loop order for unpolarized deeply-inelastic scattering
[193, 204, 205].

The thesis is based on the publications Refs. [210, 214, 222,226, 245], the confer-
ence contributions [123,211-213,219-221, 224, 225, 246] and the paper in prepara-
tion. It is organized as follows. Deeply inelastic scattering within the parton model,
the LCE and how one obtains improved results using the renormalization group are
described in Chap.2. Chapter 3 is devoted to the production mechanisms of heavy
quarks and their contributions to the cross section. We also discuss the framework of
obtaining the heavy flavor Wilson coefficients using massive OMEs in the asymp-
totic limit Q2 > sz and comment on the different schemes one may apply to
treat heavy quark production [210, 214]. The massive operator matrix elements are
considered in Chap.4 and we describe in detail the renormalization of these objects
to 3-loop order, cf. [210-214, 222]. ChapterS contains transformation formulas
between the different renormalization schemes. We clarify an apparent inconsis-
tency which we find in the renormalization of the massive contributions to the NLO
Wilson coefficients given in Refs. [170-172] and the massive OMEs as presented in
Refs. [206, 209]. This is due to the renormalization scheme chosen, cf.
Ref. [210, 214]. In Chap. 6 the calculation and the results for the 2-loop massive
operator matrix elements up to O(¢) in dimensional regularization are presented.
This confirms the results of Ref. [209], cf. [210]. The O (¢) terms are new results and
are needed for renormalization at O (“53 ), cf. [210, 211, 213, 219-222]. We describe
the calculation using hypergeometric functions to set up infinite sums containing
the parameter N. These sums are solved using the summation package Sigma,cf.
[222, 224]. All sums can then be expressed in terms of nested harmonic sums. The
same structure is expected for the 3-loop terms, of which we calculate fixed moments
(N=2,...,10(14)) using the programs QGRAF [247], FORM, [248, 249], and MATAD
[250] in Chap. 7, cf. [211-214]. Thus we confirm the corresponding moments of the
fermionic contributions to all unpolarized 3-loop anomalous dimensions which have
been calculated before in Refs. [189, 190, 192, 204, 205].

In Chap.8 we calculate the asymptotic heavy flavor Wilson coefficients for the
polarized structure function g (x, 0% to 0(0(3) following Ref. [251] and compare
them with the results given there. We newly present the terms of 0(0(38) which
contribute to the polarized massive OMEs at O(a?) through renormalization [246].
One may also consider the local flavor non-singlet tensor operator for transversity
[252]. This is done in Chap.9. We derive the corresponding massive OMEs for
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general values of N up to O(aszs) and for the fixed moments N = 1,...,13 at
O(a), [245].

A calculation at 3-loops keeping the full N dependence has not been performed yet.
In Chap. 10, we describe several steps which have been undertaken in this direction
so far. This involves the calculation of several non-trivial 3-loop scalar integrals for
all N and the description of a technique to reconstruct the complete result starting
from a fixed number of moments, cf. [225, 226]. Chapter 11 contains the conclusions.

Our conventions are summarized in Appendix A. The set of Feynman-rules used,
in particular for the composite operators, is given in Appendix B. In Appendix C,
we summarize properties of special functions which frequently occurred in this
work. Appendix D contains examples of different types of infinite sums which
had to be computed in the present calculation. The main results are shown in
Appendices E-G: various anomalous dimensions and the constant contributions of
the different massive OMEs for fixed values of N at O(Ots3 ). All Figures have been
drawn using Axodraw [253].
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Chapter 2
Deeply Inelastic Scattering

Deep—inelastic scattering experiments provide one of the cleanest possibilities to
probe the space—Tlike short distance structure of hadrons through the reactions

IEN > 1T+ X 2.1)
w@)ON = IF + X (2.2)
IFN —> v(¥) + X, (2.3)

withl = e, u, Vi = Ve u,r, N = p,d or a nucleus, and X the inclusive hadronic
final state. The 4-momentum transfers g> = —Q? involved are at least of the order
of 0% > 4 GeV? and one may resolve spatial scales of approximately 1/ \/@ . The
different deep inelastic charged—and neutral current reactions offer complementary
sensitivity to unfold the quark flavor and gluonic structure of the nucleons. Further-
more, polarized lepton scattering off polarized targets is studied in order to investigate
the spin structure of the nucleons.

The electron—proton experiments performed at SLAC in 1968 [1-6] cf. also [7-9]
and at DESY [10-12] found the famous scaling behavior of the structure functions
which had been predicted by Bjorken before [13]. These measurements led to the
creation of the parton model [14—16]. Several years later, after a series of experiments
had confirmed its main predictions, the partons were identified with the quarks, anti-
quarks and gluons as real quantum fields, which are confined inside hadrons. Being
formerly merely mathematical objects [17, 18] they became essential building blocks
of the Standard Model of elementary particle physics, besides the leptons and the
electroweak gauge fields, thereby solving the anomaly-problem [19-21].

In the following years, more studies were undertaken at higher energies, such
as the electron—proton/neutron scattering experiments at SLAC [22-25]. Muons
were used as probes of the nucleons by EMC [26, 27] BCDMS [28-32] and NMC
[33-35] at the SPS [36] at CERN, as well as by the E26—[37-39] CHIO—[40]

S. Klein, Charm Production in Deep Inelastic Scattering, Springer Theses, 17
DOI: 10.1007/978-3-642-23286-2_2, © Springer-Verlag Berlin Heidelberg 2012
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and E665—[41, 42] collaborations at FERMILAB. For a general review of u®N—
scattering, see [43]. The latter experiments were augmented by several high energy
neutrino scattering experiments by the CHARM- and CDHSW-collaborations
[44-49] and the WA21/25-experiments [50, 51] at the SPS, and by the CCFR-
collaboration [52-54] at FERMILAB. Further results on neutrinos were reported in
Refs. [55-62] cf. also [63—67]. The data of these experiments confirmed QCD as
the theory describing the strong interactions within hadrons, most notably by the
observation of logarithmic scaling violations of the structure functions at higher
energies and lower values of x, which had been precisely predicted by theoretical
calculations [68-70].

All these experiments had in common that they were fixed target experiments and
therefore could only probe a limited region of phase space, upto x > 1073, Q% <
500 GeV?. The first electron—proton collider experiments became possible with the
advent of the HERA facility, which began operating in the beginning of the 1990ies
at DESY [71]. This allowed measurements at much larger values of 07 and at far
smaller values of x than before, x > 1074, Q2 <20.000 GeVZ. The physics potential
for the deep—inelastic experiments at HERA was studied during a series of work-
shops, see [72-80]. HERA collected a vast amount of data until its shutdown in 2007,
a part of which is still being analyzed, reaching unprecedented experimental preci-
sions below the level of 1%. Two general purpose experiments to study inclusive and
various semi-inclusive unpolarized deep—inelastic reactions, H1 [81] and ZEUS [82]
were performed. Both experiments measured the structure functions F» 1, (x, Q2) as
well as the heavy quark contributions to these structure functions to high precision.
The theoretical calculations in this thesis are important for the analysis and under-
standing of the latter, as will be outlined in Chap.3 . The HERMES—experiment
[83] studied scattering of polarized electrons and positrons off polarized gas—targets.
HERA-B [84] was dedicated to the study of CP—violations in the B—sector.

In the following, we give a brief introduction into the theory of DIS and the
theoretical tools which are used to predict the properties of structure functions, such
as asymptotic scaling and scaling violations. In Sect. 2.1, we discuss the kinematics
of the DIS process and derive the cross section for unpolarized electromagnetic
electron-proton scattering. In Sect.2.2, we give a description of the naive parton
model, which was employed to explain the results obtained at SLAC and gave a first
correct qualitative prediction of the observed experimental data. A rigorous treatment
of DIS can be obtained by applying the light-cone expansion to the forward Compton
amplitude [85—-88] which is described in Sect.2.3 This is equivalent to the QCD-—
improved parton model at the level of twist T = 2, cf. e.g. [89-93]. One obtains
evolution equations for the structure functions and the parton densities with respect
to the mass scales considered. The evolution is governed by the splitting functions
[94] or the anomalous dimensions [68-70] cf. Sect.2.4.
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Fig.2.1 Schematic graph of 4
deeply inelastic scattering l
for single boson exchange

2.1 Kinematics and Cross Section

The schematic diagram for the Born cross section of DIS is shown in Fig. 2.1 for single
gauge boson exchange. A lepton with momentum / scatters off a nucleon of mass
M and momentum P via the exchange of a virtual vector boson with momentum gq.
The momenta of the outgoing lepton and the set of hadrons are given by !’ and
Pr, respectively. Here F' can consist of any combination of hadronic final states
allowed by quantum number conservation. We consider inclusive final states and
thus all the hadronic states contributing to F are summed over. The kinematics of the
process can be measured from the scattered lepton or the hadronic final states, cf. e.g.
[95-97] depending on the respective experiment. The virtual vector boson has space-
like momentum with a virtuality 0

0*=—¢*, q=1-1. (2.4)
There are two additional independent kinematic variables for which we choose

s= (P +1)7? (2.5)

W? = (P+q)* = P;. (2.6)

Here, s is the total cms energy squared and W denotes the invariant mass of the
hadronic final state. In order to describe the process, one usually refers to Bjorken’s
scaling variable x, the inelasticity y, and the total energy transfer v of the lepton to
the nucleon in the nucleon’s rest frame [98]. They are defined by

P.g W24+ 02— M?

= , 2.7
Y= Tu oM @D
_ —q* _ 0* 0’
x = = , (2.8)
2P-q 2Mv W24 Q% — M?
P-g 2Mv W2+ Q% — M?
y = = 5 = 5 , (2.9)
Pl s—M s—M
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where lepton masses are disregarded. In general, the virtual vector boson exchanged
canbe a y, Z or W¥-boson with the in—and outgoing lepton, respectively, being an
electron, muon or neutrino. In the following, we consider only unpolarized neutral
current charged lepton—nucleon scattering. In addition, we will disregard weak gauge
boson effects caused by the exchange of a Z-boson. This is justified as long as the
virtuality is not too large, i.e. Q2 < 500 GeV?, cf. [99]. We assume the QED- and
electroweak radiative corrections to have been carried out [96, 97, 100].

The kinematic region of DIS is limited by a series of conditions. The hadronic
mass obeys

w? > M2, (2.10)

Furthermore,

V>0, 0<y<l1, s>M> 2.11)

From (2.10) follows the kinematic region for Bjorken-x via

1
W2=(P+q)2=M2—Q2(1——)zM2 —0<x<l. (2.12)
X

Note that x = 1 describes the elastic process, while the inelastic region is defined
by x < 1. Additional kinematic constraints follow from the design parameters of
the accelerator [101, 102]. In the case of HERA, these were 820(920) GeV for the
proton beam and 27.5 GeV for the electron beam, resulting in a cms—energy /s
of 300.3(319) GeV.! This additionally imposes kinematic constraints which follow
from

0% = xy(s — M?), (2.13)
correlating s and Q2. For the kinematics at HERA, this implies
0% < sx ~ 10°x. (2.14)

In order to calculate the cross section of deeply inelastic ep—scattering, one con-
siders the tree—level transition matrix element for the electromagnetic current. It is
given by, cf. e.g. [§9-91]

_ 1
My =l n'yy*ud, n)q—2<PFIJ,im(0)|P, o). (2.15)

Here, the spin of the charged lepton or nucleon is denoted by 7(n’) and o, respec-
tively. The state vectors of the initial-state nucleons and the hadronic final state are

I During the final running period of HERA, low—energy measurements were carried out with

E, = 460(575) GeV in order to extract the longitudinal structure function Fp (x, 0%), [103].
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|P,o) and |Pf). The Dirac-matrices are denoted by y,, and bi-spinors by u, see
Appendix A. Further e is the electric unit charge and J;™ (§) the quarkonic part of
the electromagnetic current operator, which is self-adjoint :

THE) = 1u). (2.16)
In QCD, it is given by
JE) = D W E G g (), 2.17)
Iy

where W ¢ (&) denotes the quark field of flavor f. For three light flavors, A¢™ is given by
the following combination of Gell-Mann matrices of the flavor group SU (3) fiavor»
cf. [104, 105]

1 3 1 8
A = E ()‘flavor + ﬁ)‘flavor) : (2.18)

According to standard definitions [89-91, 106] the differential inclusive cross section
is then given by

do 1
o - 2 2m)4 84 (Pr +1' — P — )| M ;|2 2.19
Y@’ 320273 - P) MGF( )8 (Pr + )M il (2.19)

Inserting the transition matrix element (2.15) into the relation for the scattering cross
section (2.19), one notices that the trace over the leptonic states forms a separate
tensor, L*V. Similarly, the hadronic tensor W,,, is obtained,

L@, 1) = D [ad oy u. p)]" [ad’ )y ud.m].  (2.20)
n'.n

1
Win(g, P) = = > 2m)*6*(Pr — g = P)(P, o |1 O)|Pp) (PEIJ™ ()| P, o).
o, F

2.21)
Thus one arrives at the following relation for the cross section

do 1 o? 1 o2
I
ogr T apagtt e g grt W 22

where « denotes the fine-structure constant, see Appendix A. The leptonic tensor in
(2.22) can be easily computed in the context of the Standard Model,

2
L) = Trijy"y"] = 4 (lul; + by — %guv) .2
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This is not the case for the hadronic tensor, which contains non—perturbative hadronic
contributions due to long-distance effects. To calculate these effects a priori, non-
perturbative QCD calculations have to be performed, as in QCD lattice simulations.
During the last years these calculations were performed with increasing systematic
and numerical accuracy, cf. e.g. [107-111].

The general structure of the hadronic tensor can be fixed using S—matrix theory
and the global symmetries of the process. In order to obtain a form suitable for the
subsequent calculations, one rewrites Eq.2.21 as, cf. [90, 112]

1
Win(a, P) = =2 / d*& exp(ig€)(PIJS" (&), JS" (01| P)

| (2.24)
= — [ d*€exp(iq&)(P|LJS" (&), IS (0] P).
2 ®
Here, the following notation for the spin-average is introduced in Eq.2.24
1
EZ(P,amp,a) = (P|X|P). (2.25)
o

Further, [a,b] denotes the commutator of @ and b. Using symmetry and conservation
laws, the hadronic tensor can be decomposed into different scalar structure functions
and thus be stripped of its Lorentz—structure. In the most general case, including
polarization, there are 14 independent structure functions [113, 114] which contain all
information on the structure of the proton. However, in the case considered here, only
two structure functions contribute. One uses Lorentz—and time-reversal invariance
[85-88] and additionally the fact that the electromagnetic current is conserved. This
enforces electromagnetic gauge invariance for the hadronic tensor,

g W =0. (2.26)

The leptonic tensor (2.23) is symmetric and thus W, can be taken to be symmetric
as well, since all antisymmetric parts are canceled in the contraction. By making a
general ansatz for the hadronic tensor using these properties, one obtains

1 quq
Wy (q. P) = = (guv + ~o5- ) FL(x, 0%)
2x 0
2x quPy+quP 0? @27
+ hE (PMPU + % - mgw) F(x, 0%).

The dimensionless structure functions F;(x, Q2) and Fy (x, QZ) depend on two
variables, Bjorken-x and QZ, contrary to the case of elastic scattering, in which
only one variable, e.g. O, determines the cross section. Due to hermiticity of the
hadronic tensor, the structure functions are real. The decomposition (2.27) of the
hadronic tensor leads to the differential cross section of unpolarized DIS in case of
single photon exchange
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do 2ma?
dxdy — xyQ?

[[1 + (=] B 0) =y FLx, Q2>}. (2.28)
A third structure function, Fi(x, Qz),

1
Fix. 0 = 5- [ Fa(x. 09 = Fu(x. 09)). (2:29)

which is often found in the literature, is not independent of the previous ones.

For completeness, we finally give the full Born cross section for the neutral current,
including the exchange of Z-bosons, cf. [97]. Not neglecting the lepton mass m, it
is given by

dZ 2 2 MZ 2 M2
done _ e [[2(1 -2y (1 —2%) (1 +4x2—)
S

dxdy 2 2
e we s Q (2.30)
y
X m}fz(% 0%) +xy(2 — ) Fs(x, Qz)]~
Here, R(x, 0?) denotes the ratio
2 _ 0L _ TMP\ P, 0%
R, 0% =" = (1 +4x QZ) Feon " 231

and the effective structure functions Fj(x, 02),1 =1, ..., 3 are represented by the
structure functions F;, G; and H; via

Fi2(x, 0%) = Fia(x, 0% +2|Qc| (ve + Aae) x(0HG12(x, 0%
+ 4 (02 + a2 + 2hvea) PO H12(x, 0P, 232)

xFs3(x, 0% = -2 Sign(Qe)[lQel (@ + Ave) X (QH)xG3(x, Q%)

n [ZUEae A (vez n aZ)] x2(0Y)xHs(x, 0O} . (2.33)
Here, O, = —1, a, = 1 in case of electrons and
A = §&sign(Q.), (2.34)
ve =1 — 4sin? 68, (2.35)
G M2 Q2
x(QH=—LE_—Z (2.36)

V2 87a(0%) 02 + MZ’

with & the electron polarization, 953 the effective weak mixing angle, G, the Fermi
constant and M7 the Z-boson mass.
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2.2 The Parton Model

The structure functions (2.27) depend on two kinematic variables, x and Q. Based on
an analysis using current algebra, Bjorken predicted scaling of the structure functions,
cf. [13]

lim Fo.l (x, Qz) = Fo.)(x) . (2.37)

{02, v} — o0, x=const.

This means that in the Bjorken limit {Qz, v } — 00, with x fixed, the structure
functions depend on the ratio Q%/v only. Soon after this prediction, approximate
scaling was observed experimentally in electron-proton collisions at SLAC (1968)
[3-6] cf. also [7-9].2 Similar to the o« — particle scattering experiments by Rutherford
in 1911 [115] the cross section remained large at high momentum transfer 02, a
behavior which is known from point-like targets. This was found in contradiction
to the expectation that the cross section should decrease rapidly with increasing
Q2, since the size of the proton had been determined to be about 10713 cm with a
smooth charge distribution [116—118]. However, only in rare cases a single proton
was detected in the final state, instead it consisted of a large number of hadrons.
A proposal by Feynman contained the correct ansatz. To account for the observations,
he introduced the parton model [14, 15] cf. also [16, 89,91-93, 119]. He assumed the
proton as an extended object, consisting of several point-like particles, the partons.
They are bound together by their mutual interaction and behave like free particles
during the interaction with the highly virtual photon in the Bjorken-limit.> One
arrives at the picture of the proton being “frozen” while the scattering takes place.
The electron scatters elastically off the partons and this process does not interfere with
the other partonic states, the “spectators”. The DIS cross section is then given by the
incoherent sum over the individual virtual electron—parton cross sections. Since no
information on the particular proton structure is known, Feynman described parton i
by the parton distribution function (PDF) f;(z). It gives the probability to find parton
i in the “frozen” proton, carrying the fraction z of its momentum. Fig2.2 shows a
schematic picture of the parton model in Born approximation. The in- and out-going
parton momenta are denoted by p and p’, respectively.
Similar to the scaling variable x, one defines the partonic scaling variable t,

Q2

T .
2p-q

(2.38)

It plays the same role as the Bjorken-variable, but for the partonic sub-process. In
the collinear parton model,* which is applied throughout this thesis, p = zP holds,

2 The results obtained at DESY [10-12] pointed in the same direction, but were less decisive,
because not as large values of Q2 as at SLAC could be reached.

3 Asymptotic freedom, which was discovered later, is instrumental for this property.

4 For other parton models, as the covariant parton model, cf. [120-125].
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Fig.2.2 Deeply inelastic
electron—proton scattering in
the parton model

l/

N—_———
spectators

i.e., the momentum of the partons is taken to be collinear to the proton momentum.
From (2.38) one obtains

TZ=2X. (2.39)

Feynman’s original parton model, referred to as the naive parton model, neglects the
mass of the partons and enforces the strict correlation

2
5 (% - ZQ_M) , (2.40)

due to the experimentally observed scaling behavior, which leads to z = x.
The naive parton model then assumes, in accordance with the quark hypothesis
[16—18] that the proton is made up of three valence quarks, two up and one down
type, cf. e.g. [126]. This conclusion was generally accepted only several years after
the introduction of the parton model, when various experiments had verified its
predictions.

Let us consider a simple example, which reproduces the naive parton model at
LO and incorporates already some aspects of the improved parton model. The latter
allows virtual quark states (sea-quarks) and gluons as partons as well. In the QCD—
improved parton model, cf. [89, 91,-93] besides the §-distribution, (2.40), a function
W{w (z, Q2) contributes to the hadronic tensor. It is called partonic tensor and given
by the hadronic tensor, Eq.2.24, replacing the hadronic states by partonic states i.
The basic assumption is that the hadronic tensor can be factorized into the PDFs and
the partonic tensor, cf. e.g. [127-134]. The PDFs are non-perturbative quantities and
have to be extracted from experiment, whereas the partonic tensors are calculable
perturbatively. A more detailed discussion of this using the LCE is given in Sect. 2.3
The hadronic tensor reads, cf. [135]

1 1
1 )
W (x, Q) = P E /dz dt (fi(2) + () W, (T, 0H)8(x —z1) . (2.41)
o 0

Here, the number of partons and their respective type are not yet specified and we
have included the corresponding PDF of the respective anti-parton, denoted by f7(z).
Let us assume that the electromagnetic parton current takes the simple form
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(ilj,(Oli) = —ie;u' yyu', (2.42)

similar to the leptonic current (2.15). Here ¢; is the electric charge of parton i. At LO
one finds

. 2me? A . . .
W;w(l', Qz) = q—p;(S(l - 1) [Zpilpf, + poIV + Pvau — 8uvq.p’] . (243)

The §-distribution in (2.43), together with the §-distribution in (2.4 1), just reproduces
Feynman’s assumption of the naive parton model, z = x. Substitution of (2.43) into
the general expression for the hadronic tensor (2.27) and projecting onto the structure
functions yields

FL(x,0%) =0,
Fa(x, Q) =x D e (fix) + f;(x) . (2.44)

This result, at LO, is the same as in the naive parton model. It predicts

¢ the Callan—Gross relation, cf. [136]
FL(x, Q%) = F(x, Q%) — 2xFi(x, Q%) =0. (2.45)

* the structure functions are scale-independent.

These findings were a success of the parton model, since they reproduced the
general behavior of the data as observed by the MIT/SLAC experiments.

Finally, we present for completeness the remaining structure functions G 3 and
H, 3 at the Born level for the complete neutral current, cf. Eq.(2.30),

Ga(x, Q%) =x Z leilvi (fi () + f3(x)) . (2.46)
Hy(x, 0%) = x Z % (u,? + a?) (i) + £:(0) . (2.47)
xG3(x, Q%) = x Z leilai (fi(x) = f:(x)) , (2.48)
xHi(x, Q%) = x Z %viai (fix) = f(x)), (2.49)

with a; = 1 and

vi =1 — 4le;| sin® 65 (2.50)



2.2 The Parton Model 27

2.2.1 Validity of the Parton Model

The validity of the parton picture can be justified by considering an impulse approx-
imation of the scattering process as seen from a certain class of reference frames,
in which the proton momentum is taken to be very large (Poo-frames). Two things
happen to the proton when combining this limit with the Bjorken—limit: The internal
interactions of its partons are time dilated, and it is Lorentz contracted in the direction
of the collision. As the cms energy increases, the parton lifetimes are lengthened and
the time it takes the electron to interact with the proton is shortened. Therefore the
condition for the validity of the parton model is given by, cf. [16, 137]

Tint
Tlife

<1. 2.51)

Here ;¢ denotes the interaction time and )it the average life time of a parton. If
(2.51) holds, the proton will be in a single virtual state characterized by a certain
number of partons during the entire interaction time. This justifies the assumption
that parton i carries a definite momentum fraction z;, 0 < z; < 1, of the proton
in the cms. This parton model is also referred to as collinear parton model, since
the proton is assumed to consist out of a stream of partons with parallel momenta.
Further >, z; = 1 holds. In order to derive the fraction of times in (2.51), one aligns
the coordinate system parallel to the proton’s momentum. Thus one obtains in the
limit P§ > M?, [138]

M2
P:(,/P32+M2;0,0, PS)%(P3+E§O,O, P3) . (2.52)

The photon momentum can be parametrized by

q=1(q90:93,.41), (2.53)

where ¢ denotes its transverse momentum with respect to the proton. By choosing
the cms of the initial states as reference and requiring that vM and g2 approach a
limit independent of P; as P3; — 00, one finds for the characteristic interaction time
scale, using an (approximate) time—energy uncertainty relation,

1 _ 4P3x
g Q*1-x)’

The life time of the individual partons is estimated accordingly to be inversely pro-
portional to the energy fluctuations of the partons around the average energy E

1
Tife &2 —=——— .
life ZiEi_E

(2.54)

Tint =~

(2.55)

Here E; denote the energies of the individual partons. After introducing the two-
momentum k| ; of the partons perpendicular to the direction of motion of the proton
as given in (2.52), a simple calculation yields, cf. [138]
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Fig.2.3 Schematic picture
of the optical theorem

Tint _ 2x (m? + k%)) 5
T Q2(1 —x) (Z ) - M), (2.56)

- Zi
L

where m; denotes the mass of the ith parton. This expression is independent of Ps.
The above procedure allows therefore to estimate the probability of deeply inelastic
scattering to occur independently of the large momentum of the proton. Accordingly,
we consider now the case of two partons with momentum fractions x and 1 — x and
equal perpendicular momentum, neglecting all masses. One obtains

Tint ~ Zki
Tile  Q*(1 —x)%

This example leads to the conclusion, that deeply inelastic scattering probes single
partons if the virtuality of the photon is much larger than the transverse momenta
squared of the partons and Bjorken-x is neither close to one nor zero. In the latter
case, x P3 would be the large momentum to be considered. If one does not neglect
the quark masses, one has to adjust this picture, as will be described in Sect.3.3.

(2.57)

2.3 The Light-Cone Expansion

In quantum field theory one usually considers time-ordered products, denoted by T,
rather than a commutator as it appears in the hadronic tensor in Eq. 2.24. The hadronic
tensor can be expressed as the imaginary part of the forward Compton amplitude for
virtual gauge boson—nucleon scattering, 7., (¢, P). The optical theorem, depicted
graphically in Fig. 2.3, yields

1
Wun(g, P) = ;Im Tuv(q, P), (2.58)
where the Compton amplitude is given by cf. [104]

Tyuv(q, P) =i/d4$ exp(iqé)(PITJ.(§)J,(0)|P). (2.59)

By applying the same invariance and conservation conditions as for the hadronic
tensor, the Compton amplitude can be expressed in the unpolarized case by two
amplitudes Tp (x, Q2) and 7> (x, Qz). It is then given by
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1 qud
Tk, P) = 5 (-4 2587 ) Tur. 02)
2 P,+q,Py  Q? (260
X quty T qvly 2
+ E (PuPu + T - mguu) Tr(x, 0) .

Using translation invariance, one can show that (2.59) is crossing symmetric under
q — —q,cf.[113,139]

T/w(Qa P) = T/w(_Q» P), (2.61)

with ¢ — —¢g being equivalent to v, x — (—v), (—x). The corresponding relations
for the amplitudes are then obtained by considering (2.60)

To.L)(x, 0%) = To.)(—x, 0%) . (2.62)

By (2.58) these amplitudes relate to the structure functions Fy, and F; as

1
Fo.ry(x, 0% = —Im T (x, 0% . (2.63)

Another general property of the Compton amplitude is that 77 and 75 are real analytic
functions of x at fixed Q2, cf. [140] i.e.

To.n(*, Q%) = Tj 1) (x, Q%) . (2.64)

Using this description one can perform the LCE [85-88] or the cut—yvertex method
in the time—Iike case [141-143] respectively, and derive general properties of the
moments of the structure functions as will be shown in the subsequent Section.
A technical aspect which has been proved very useful is to work in Mellin space
rather than in x-space. The Nth Mellin moment of a function f'is defined through the
integral

1

M[FI(N) = / dz N f) (2.65)
0

This transform diagonalizes the Mellin—convolution f ® g of two functions f, g

1 1
[f ®gl(z) = / dz / dz3 5(z — 2122) f(z)g(2) . (2.66)
0 0

The convolution (2.66) decomposes into a simple product of the Mellin-transforms
of the two functions,

M[f ® gl(N) = M[fI(N)M[g](N) . (2.67)



30 2 Deeply Inelastic Scattering

In Eqgs.2.65, 2.67 N is taken to be an integer. However, later on one may perform
an analytic continuation to arbitrary complex values of N [144, 145]. Note that it
is enough to know all even or odd integer moments—as is the case for inclusive
DIS—of the functions f, g to perform an analytic continuation to arbitrary complex
values N € C, [146, 147]. Then Eq.2.66 can be obtained from the relation for
the moments (2.67) by an inverse Mellin—transform. Hence in this case the z- and
N-space description are equivalent, which we will frequently use later on.

2.3.1 Light—-Cone Dominance

It can be shown that in the Bjorken limit, Q2 — 00, Vv — 00, x fixed, the hadronic
tensor is dominated by its contribution near the light—cone, i.e. by the values of the
integrand in (2.24) at £2 ~ 0, cf. [85-88]. This can be understood by considering
the infinite momentum frame, see Sect.2.2.1,

P =(P3;0,0, P3), (2.68)

Vv —V
= - 21 07 P 3 2.69
q (2P3 Jo? 2P3) (2.69)
Py~ /v — c0. (2.70)

According to the Riemann-Lebesgue theorem, the integral in (2.24) is dominated by
the region where ¢.£ =~ 0 due to the rapidly oscillating exponential exp(ig.£), [89].
One can now rewrite the dot product as, cf. [105]

1 1
46 =5@" —a)E +6)+ 5" +a)E" - &) —q'e, 271

and infer that the condition ¢.£ =~ 0 in the Bjorken-limit is equivalent to

%-O:t%-:‘lo(i, él 1

which results in
£2 ~ 0, (2.73)

called light—cone dominance: for DIS in the Bjorken-limit the dominant contribu-
tion to the hadronic tensor W, (g, P) and the Compton Amplitude comes from the
region where £2 ~ 0.

This property allows to apply the LCE of the current—current correlation in
Eq.2.24 and for the time ordered product in Eq.2.59, respectively. In the latter case
it reads for scalar currents, cf. [85-88]
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. —N
Jim TIE),TO) 0 D T 1) £y O35 O %) . 274)
- i\N,T

The O; . (&, w?) are local operators which are finite as £2 — 0. The singularities
which appear for the product of two operators as their arguments become equal are
shifted to the c-number coefficients 52]1 (€2, u?), the Wilson coefficients, and can
therefore be treated separately. In Eq.2.74, % is the factorization scale describing
at which point the separation between the perturbative and non—perturbative contri-
butions takes place. The summation index i runs over the set of allowed operators
in the model, while the sum over N extends to infinity. Dimensional analysis shows

that the degree of divergence of the functions 5?’, as £2 — 0 is given by

—t/2+dy
CrE 1) (6_2) . (2.75)

Here, d; denotes the canonical dimension of the current J(£) and 7 is the twist of
the local operator O;‘ rl"“ N (&, u?), which is defined by, cf. [148]

T = DO —N. (276)

Dy is the canonical (mass) dimension of Olff r‘““ N (&, /1,2) and N is called its spin.
From (2.75) one can infer that the most singular coefficients are those related to the
operators of lowest twist, i.e. in the case of the LCE of the electromagnetic current
(2.17), twist T = 2. The contributions due to higher twist operators are suppressed
by factors of (72 / Q2)¥, with 1z a typical hadronic mass scale of O(1 GeV). In a wide
range of phase—space it is thus sufficient to consider the leading twist contributions
only, which we will do in the following and omit the index t.

2.3.2 A Simple Example

In this Section, we consider a simple example of the LCE applied to the Compton
amplitude and its relation to the hadronic tensor, neglecting all Lorentz-indices and
model dependence, cf. Refs. [90, 149]. The generalization to the case of QCD is
straightforward and hence we will already make some physical arguments which
apply in both cases. The scalar expressions corresponding to the hadronic tensor and
the Compton amplitude are given by

1
W(x, Q%) = Z/d“é exp(ig§)(PI[J (). J(O)]| P), 2.77)

T(x, Q%) =i/d4§ exp(iq§)(PITJ(§)J(0)| P). (2.78)
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Eq.2.78 can be evaluated in the limit £2 — 0 for twist T = 2 by using the LCE given
in Eq. 2.74, where for brevity only one local operator is considered. The coefficient
functions in momentum space are defined as

_ 2 \V 2
/ eXpUiq-E)p, £y C (€2 1) = —i (_—qz) G CV (%) 2.79)

The nucleon states act on the composite operators only and the corresponding matrix
elements can be expressed as

P2
(P|OM1HN (0, u?)|P) = AN (—2) P PMN 4 trace terms. (2.80)
m

The trace terms in the above equation can be neglected, because due to dimensional
counting they would give contributions of the order 1/Q?, 1/v and hence are irrel-
evant in the Bjorken—limit. Thus the Compton amplitude reads cf. e.g. [90, 91]

N P2 IN ’ 1
T, 0 =2 > C ) (—2)x ;X == (2.81)

N=0,2,4,.. ®

In (2.81) only the even moments contribute. This is a consequence of crossing
symmetry, Eq.2.62, and holds as well in the general case of unpolarized DIS for
single photon exchange. In other cases the projection is onto the odd moments.
Depending on the type of the observable the series may start at different initial val-
ues, cf. e.g. [113, 114]. The sum in Eq.2.81 is convergent in the unphysical region
x > 1 and an analytic continuation to the physical region 0 < x < 1 has to be
performed. Here, one of the assumptions is that scattering amplitudes are analytic
in the complex plane except at values of kinematic variables allowing intermedi-
ate states to be on mass—shell. This general feature has been proved to all orders
in perturbation theory [150, 151]. In QCD, it is justified on grounds of the parton
model. When v > Q?/2M, i.e.0 < x < 1, the virtual photon—proton system can
produce a physical hadronic intermediate state, so the T(2 1) (x, Q2) and T (x, Q2),
respectively, have cuts along the positive (negative) real x-axis starting from 1(—1)
and poles at v = Q%/2M (x = 1, —1). The discontinuity along the cut is then
just given by (2.58). The Compton amplitude can be further analyzed by applying
(subtracted) dispersion relations, cf. [113, 114]. Equivalently, one can divide both
sides of Eq.2.81 by x”" and integrate along the path shown in Fig. 2.4, cf. [90, 135].
For the left-hand side of (2.81) one obtains

1
1 ,T
— day X (x /—Im T/, 0% =2/dx 2W(x, 09,
2mi
0
(2.82)
where the optical theorem (2.58) and crossing symmetry (2.62) have been used. The

right-hand side of (2.81) yields
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Fig.2.4 Integration contour
in the complex x’-plane

51
N

1 2 P2 _ 2 P2
— > cV (Q—z) AN (—2) ?{dx/ N = p0m! (Q—z) Am=1 (—2)
T 4 2 12 w w

(2.83)

Thus from Eqs.2.82 and 2.83 one obtains for the moments of the scalar hadronic
tensor defined in Eq.2.77

1

2 2
/dx N W, 05 =N (%) AN (%) ) (2.84)

0

2.3.3 The Light-Cone Expansion Applied to DIS

In order to derive the moment—decomposition of the structure functions one essen-
tially has to go through the same steps as in the previous section. The LCE of
the physical forward Compton amplitude (2.59) at the level of twist T = 2 in the
Bjorken—limit is given by, cf. [149, 152]

Tuw(q, P) — Z[[ngumgvuz + 8 Qvaps + vpadudpy — guvwlquz]

i\N
Q2 dudu Q2
x Ci,2(N’ 2 st Ty duqp: Ci.L | N 2

2 N
X qus--quy (@) (P|OFHN ()| P). (2.85)

Additionally to Sect.2.3.2, the index i runs over the allowed operators which
emerge from the expansion of the product of two electromagnetic currents, Eq.2.17.
The possible twist—2 operators are given by> [142]

5 Here we consider only the spin-averaged case for single photon exchange. Other operators
contribute for parity—violating processes, in the polarized case and for transversity, cf. Chaps. 8
and 9.
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N — A
OZf;Ml’._.,MN =iV-1s |:1pymD,L2 - D,LN?rlﬁ] —trace terms, (2.86)
S -N— A
OQ§MIs~~>MN =iN-Is [1//)/M1 Dy, ... DMNw] —trace terms, (2.87)
S ‘N—2 ,
0% gy = 20" "SSP [Fjj o Dyuy .. Dy Fiiyf' | —trace terms. — (2.88)
Here, S denotes the symmetrization operator of the Lorentz indices w1, ..., uy. Ar

is the flavor matrix of SU (ny) with n y light flavors, ¢ denotes the quark field, Fyj,,
the gluon field—strength tensor, and D,, the covariant derivative. The indices ¢, g
represent the quark- and gluon-operator, respectively. Sp in (2.88) is the color-trace
and a the color index in the adjoint representation, cf. Appendix A. The quark-fields
carry color indices in the fundamental representation, which have been suppressed.
The classification of the composite operators (2.86-2.88) in terms of flavor singlet
(S) and non-singlet (NS) refers to their symmetry properties with respect to the
flavor group SU (n r). The operator in Eq.2.86 belongs to the adjoint representation
of SU(ny), whereas the operators in Eqs.2.87, 2.88 are singlets under SU (n y).
Neglecting the trace terms, one rewrites the matrix element of the composite operators
in terms of its Lorentz structure and the scalar operator matrix elements, cf. [91, 105]

2

P
(PlO]" NPy = A; (N, —2) PH1L PHN, (2.89)
"

Eq.2.85 then becomes

2x Puqy + Pug,  Q? 0?
Tt Py =23 G | mo+ PR - T e (v

1 mom Q2
+£ [8#\;4‘? CiL N’ﬁ

1 p?
X WAI (N s F) .
(2.90)
Comparing Eq.2.90 with the general Lorentz structure expected for the Compton

amplitude Eq.2.60, the relations of the scalar forward amplitudes to the Wilson
coefficients and nucleon matrix elements can be read off

5 1 Q2 P2
Ton(, 0 =23 —=Cian NS )an(veos) 2.91)
i,N

Eq.2.91 is of the same type as Eq. 2.81 and one thus obtains for the moments of the
structure functions
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Fo,1)(N, Q%) = M[F@,1)(x, QP)I(N) (2.92)
Q2 P2
= ZZC,-,(Z,L) (F’ N) A; (F’ N). (2.93)

The above equations have already been written in Mellin space, which we will always
do from now on, if not indicated otherwise. Eqgs.2.91, 2.93 together with the gen-
eral structure of the Compton amplitude, Eqgs.2.60, 2.90 and the hadronic tensor,
Eq.2.27 are the basic equations for theoretical or phenomenological analysis of DIS
in the kinematic regions where higher twist effects can be safely disregarded. Note
that the generalization of these equations to electroweak or polarized interactions is
straightforward by including additional operators and Wilson coefficients. In order
to interpret Eqgs.2.91, 2.93 one uses the fact that the Wilson coefficients C; (2 1) are
independent of the proton state. This is obvious since the wave function of the proton
only enters into the definition of the operator matrix elements, cf. Eq.2.89. In order
to calculate the Wilson coefficients, the proton state has therefore to be replaced
by a suitably chosen quark or gluon state i with momentum p. The corresponding
partonic tensor is denoted by W{W (g, p), cf. below Eq.2.40, with scalar amplitudes
‘7'-52, L)(‘L', 0?). Here 7 is the partonic scaling variable defined in Eq.2.38. The LCE
of the electromagnetic current does not change and the replacement only affects
the operator matrix elements. The forward Compton amplitude for photon—quark
(gluon) scattering corresponding to wa (g, p) can be calculated order by order in
perturbation theory, provided the scale Q2 is large enough for the strong coupling
constant to be small. In the same manner, the contributing operator matrix elements
with external partons may be evaluated. Finally, one can read off the Wilson coeffi-
cients from the partonic equivalent of Eq.2.91.° By identifying the nucleon OMEs
(2.89) with the PDFs, one obtains the QCD improved parton model. At LO it coin-
cides with the naive parton model, which we described in Sect. 2.2, as can be inferred
from the discussion below Eq. 2.41. The improved parton model states that in the
Bjorken limit at the level of twist T = 2 the unpolarized nucleon structure functions
F;(x, Q%) are obtained in Mellin space as products of the universal parton densities
fi(N, ,uz) with process—dependent Wilson coefficients C; (2,1y(NV, Q2 / y,z)

2

Fo.(N,0) =" Ciouw (N, %) fi(N, 1) (2.94)

to all orders in perturbation theory. This property is also formulated in the factor-
ization theorems [127, 129-134] cf. also [128] where it is essential that an inclu-
sive, infrared—safe cross section is considered [153]. We have not yet dealt with the
question of how renormalization is being performed. However, we have already intro-

6 Due to the optical theorem, one may also obtain the Wilson coefficients by calculating the
inclusive hard scattering cross sections of a virtual photon with a quark(gluon) using the standard
Feynman-rules and phase—space kinematics.
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duced the scale 2 into the right—hand side of Eq. 2.94. This scale is called factoriza-
tion scale. It describes a mass scale at which the separation of the structure functions
into the perturbative hard scattering coefficients C; (2,1, and the non—perturbative
parton densities f; can be performed. This choice is arbitrary at large enough scales
and the physical structure functions do not depend on it. This independence is used
in turn to establish the corresponding renormalization group equation [154—158]
which describes the scale—evolution of the Wilson coefficients, parton densities and
structure functions w.r.t. to /L2 and Q2, cf. Refs. [89, 91, 152, 159-161] and Sect.2.4

These evolution equations then predict scaling violations and are used to analyze
experimental data in order to unfold the twist—2 parton distributions at some scale
Q(Z), together with the QCD-scale Aqcp, cf. [159, 162, 163].

Before finishing this Section, we describe the quantities appearing in Eq.2.94
in detail. Starting from the operators defined in Eqs.2.86-2.88, three types of par-
ton densities are expected. Since the question how heavy quarks are treated in this
framework will be discussed in Chap.3, we write the following equations for n s
light flavors in massless QCD. The gluon density is denoted by G(n s, N, w?) and
multiplies the gluonic Wilson coefficients Cq (2,1)(nf, N, Q2 / /ﬂ), which describe
the interaction of a gluon with a photon and emerge for the first time at O («y).
Each quark and its anti-quark have a parton density, denoted by f; z (ny, N, u?).

These are grouped together into the flavor singlet combination X(ny, N, w?) and a
non-singlet combination Ag(ny, N, uz) as follows

nr
S Ny = X | filnp Nowd) + fiing. N )], (2.95)
=1

1
Aclng, N, p?) = filng, N, u®) + fe(ng, N, u?) — oy 2 N 1. (2.96)

The distributions multiply the quarkonic Wilson coefficients Cj’é’ SL)(n N, 0?%/u?),
which describe the hard scattering of a photon with a light quark. The complete fac-
torization formula for the structure functions is then given by

n/' 2
1
Fo.p)(ny, N, 0% = o Zei[x(nf, NACS o1y (nps N, %) +Gng, N, 1)

I k=1
: 2
S Q 2y¢NS Q
*Ceen (nf’ N F)+ np Ak Ny o L) (”f’ N, F)]
(2.97)
Note, that one usually splits the quarkonic S contributions into a NS and pure-singlet

(PS)partviaS = PS + NS. The perturbative expansions of the Wilson coefficients
read

s 0° o i (0.8 0’
L),
Cg’(Z,L) (”fv N, F) = ZaéCg’(z’L) (nf, N, ﬁ), (2.98)
i=1
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2

(i).PS 0
chh, L)(nf N, ) Z“ cf L)(nf,N, ﬁ) (2.99)

NS (i),NS 0?
1
Cq,(z,L)(nf,N, —) _32+Zascq o, L)< N, ?) (2.100)
where a; = o /(47) and

8» = 1 for F, and §, = O for Fp . (2.101)

These terms are at present known up to O (as3 ). The O (ay) terms have been calculated
in Refs. [149, 164, 165] and the O(asz) contributions by various groups in Refs.
[166—-176]. The O(af) terms have first been calculated for fixed moments in Refs.
[177-180] and the complete result for all N has been obtained in Ref. [181].

2.4 RGE-Improved Parton Model and Anomalous Dimensions

In the following, we present a derivation of the RGEs for the Wilson coefficients,
and subsequently, the evolution equations for the parton densities. When calculating
scattering cross sections in quantum field theories, they usually contain divergences
of different origin. The infrared and collinear singularities are connected to the limit
of soft—and collinear radiation, respectively. Due to the Bloch—Nordsieck theo-
rem [183, 184] it is known that the infrared divergences cancel between virtual and
bremsstrahlung contributions. The structure functions are inclusive quantities. There-
fore, all final state collinear (mass) singularities cancel as well, which is formulated
in the Lee—Kinoshita—Nauenberg theorem [185, 186]. Thus in case of the Wilson
coefficients, only the initial state collinear divergences of the external light partons
and the ultraviolet divergences remain. The latter are connected to the large scale
behavior and are renormalized by a redefinition of the parameters of the theory, as
the coupling constant, the masses, the fields, and the composite operators [187, 188].
This introduces a renormalization scale p,, which forms the subtraction point for
renormalization. The scale which appears in the factorization formulas (2.94, 2.97)
is denoted by u  and called factorization scale, cf. [127-133]. Its origin lies in the
arbitrariness of the point at which short- and long-distance effects are separated and
is connected to the redefinition of the bare parton densities by absorbing the ini-
tial state collinear singularities of the Wilson coefficients into them. Note, that one
usually adopts dimensional regularization to regularize the infinities in perturbative
calculations, cf. Chap. 4, which causes another scale u to appear. It is associated to
the mass dimension of the coupling constant in D # 4 dimensions. In principle all

7 Recently, the O(ag) Wilson coefficient for the structure function x F3(x, QZ) was calculated in
Ref. [182].
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these three scales have to be treated separately, but we will set them equal in the
subsequent analysis, u = p, = uy.

The renormalization group equations are obtained using the argument that all these
scales are arbitrary and therefore physical quantities do not alter when changing these
scales [154—157, 187, 188]. One therefore defines the total derivative w.r.t. to ,uz

D) = p? s + Blas(u?)) (as(u®)m(u?) . (2.102)
“ s< 7y T dm (1)
Here the f—function and the anomalous dimension of the mass, y,,, are given by
2 2 day (Mz)
Blas(u?) = u Tou2 (2.103)
7
2 2
2 ne om(u”)
=— 2.104
Vm (as (I’L )) m (/J/z) a/vl/z ( )

cf. Sects. 4.3 and 4.4. The derivatives have to be performed keeping the bare quantities
ag, m fixed. Additionally, we work in Feynman-gauge and therefore the gauge—
parameter is not present in Eq.2.102. In the following we will consider only one
mass m. The composite operators (2.86—2.88) are renormalized introducing operator
Z—factors

NS _ 7NS ANS
Ofi,ri,ul ~~~~~ KN =2 (,LL )011 TSy s N (2'105)
S _ 7S AS P —
Oy = Z WOy 1= 408, (2.106)

where in the singlet case mixing occurs since these operators carry the same quantum
numbers. The anomalous dimensions of the operators are defined by

vag =1z "M@ LN, (2.107)
ol

il
MW Zi ) (2.108)
N

Vi? =nZ;
We begin by considering the partonic structure functions calculated with external
fields 1. Here we would like to point out that we calculate matrix elements of currents,
operators, etc. and not vacuum expectation values of time-ordered products with the
external fields included. The anomalous dimensions of the latter therefore do not
contribute [105] and they are parts of the anomalous dimensions of the composite
operators, respectively. The RGE reads

DA Fl (N, 0 =0. (2.109)
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On the partonic level, Eq.2.93 takes the form

2
Foopy(N. 0% =D Ciau (N, %) {110 (W) (2.110)

J

From the operator renormalization constants of the O;, Eqs.2.105, 2.106 the follow-
ing RGE is derived for the matrix elements [152]

1
> (Duﬂ) 8ij + zyﬁ”vs) (110 =0, 2.111)
J

where we write the S and NS case in one equation for brevity and we remind the
reader that in the latter case, i, j,/ = g only. Combining Eqs.2.109-2.111 one can
determine the RGE for the Wilson coefficients. It reads

1 Q?
> (D(M) 8ij — EVI'?’NS) Cia.L) (N, ?) =0. (2.112)

i

The structure functions, which are observables, obey the same RGE as on the partonic
level

d
D(u?)Fa.)(N, Q%) = uzmﬂz,mw, 0 =0. (2.113)

Using the factorization of the structure functions into Wilson coefficients and parton
densities, Egs.2.94, 2.97 together with the RGE derived for the Wilson coefficients
in Eq.2.112, one obtains from the above formula the QCD evolution equations for
the parton densities, cf. e.g. [89, 91, 152, 159-161]

d

1
T Mg Ny = =3y PNy N L (2114)

2 ij J
J

Eq.2.114 describes the change of the parton densities w.r.t. the scale . In the more
familiar matrix notation, these equations read

d (z(nf, N,uz)) _ 1! (qu ng) (2(”f’N’“2)) 2.115)

dinp2 \Gnyg, N, u?) 2 \Veq v2¢ ) \G(ny, N, %)
LAy N ) = =2y NS Ay N, i, (2.116)
dln p? 2744

where we have used the definition for the parton densities in Eqgs.2.95, 2.96. The
anomalous dimensions in the above equations can be calculated order by order in
perturbation theory. At LO [68-70] and NLO [189-195] they have been known for a
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long time. The NNLO anomalous dimension were calculated first for fixed moments
in Refs. [178-180] and the complete result for all moments has been obtained in
Refs. [196, 197].8 As described, the PDFs are non-perturbative quantities and have
to be extracted at a certain scale from experimental data using the factorization
relation (2.94). If the scale w2 is large enough to apply perturbation theory, the
evolution equations can be used to calculate the PDFs at another perturbative scale,
which provides a detailed QCD test comparing to precision data. There are similar
evolution equations for the structure functions and Wilson coefficients, cf. e.g. [89,
91, 152, 159-161]. Different groups analyze the evolution of the parton distribution
functions based on precision data from deep—inelastic scattering experiments and
other hard scattering cross sections. Analyzes were performed by the Dortmund group
[198-206] by Alekhin et. al. [207, 208] Bliimlein et. al. [209, 210] the MSTW—
[211] QTEQ—[212] and the NNPDF—collaborations [213]. The PDFs determined
in this way can e.g. be used as input data for the pp collisions at the LHC, since
they are universal quantities and only relate to the structure of the proton and not to
the particular kind of scattering events considered. Apart from performing precision
analyzes of the PDFs, one can also use the evolution equations to determine a; more
precisely [198, 199, 205-211].

The evolution Eqgs. 2.114-2.116 are written for moments only. The representation
in x-space is obtained by using (2.65-2.67) and is usually expressed in terms of the
splitting functions P;;(x), [94]. At the level of twist-2 the latter are connected to the
anomalous dimensions by the Mellin—transform

vij(N) = —M[P;;](N) . (2.117)

The behavior of parton distribution functions in the small x region attracted special
interest due to possibly new dynamical contributions, such as Glauber-model based
screening corrections [214-220] and the so-called BFKL contributions, a ‘leading
singularity’ resummation in the anomalous dimensions for all orders in the strong
coupling constant [221-225]. For both effects there is no evidence yet in the data
both for F>(x, Qz) and F (x, Qz), beyond the known perturbative contributions to
0] (ag’ ). This does not exclude that at even smaller values of x contributions of this kind
will be found. The BFKL contributions were investigated on the basis of a consistent
renormalization group treatment, together with the fixed order contributions in Refs.
[226-230]. One main characteristic, comparing with the fixed order case, is that
several sub-leading series, which are unknown, are required to stabilize the results,
see also [231]. This aspect also has to be studied within the framework of recent
approaches [232, 233].

8 Note that from our convention in Eqgs.2.107, 2.108 follows a relative factor 2 between the
anomalous dimensions considered in this work compared to Refs. [196, 197].
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Chapter 3
Heavy Quark Production in DIS

In the Standard Model, the charm, bottom and top quark are treated as heavy quarks,
all of which have a mass larger than the QCD-scale Aqcp(ny = 4) ~ 240 MeV,
[1-7]. The up, down and strange quark are usually treated as massless. Because
of confinement, the quarks can only be observed via the asymptotic states baryons
and mesons, in which they are contained. In the following, we concentrate on the
inclusive production of one species of a heavy quark, denoted by Q(Q), with mass
m. In the case of HERA kinematics, O = c. This is justified to a certain extent
by the observation that bottom quark contributions to DIS structure functions are
much smaller, cf. [8].! Since the ratio mg /my ~1/10 is not small, there are regions
in which both masses are potentially important. The description of these effects is
beyond the scope of the formalism outlined below and of comparable order as the
mz / Q2 corrections. Top-quark production in /* N scattering is usually treated as a
semi-inclusive process, cf. [10-12].

Charmed mesons are more abundantly produced at HERA than baryons. D-mesons
are bound states of charm and lighter quarks, e.g. D, = uc, Dy = dc etc. Fur-
thermore also cc resonances contribute, such as J /vy, by the observation of which
charm was discovered [13—15]. The charm contributions to the structure functions
are determined in experiment by tagging charm quarks in the final state, e.g. through
the D-meson decay channel D* — Dz, —> K . In the case of DIS, the mea-
sured visible cross section is then extrapolated to the full inclusive phase space using
theoretical models if structure functions are considered [8, 16-21].

Within the approach of this thesis, the main objective for studying heavy quark
production in DIS is to provide a framework allowing for more precise measurements
of ag and of the parton densities and for a better description of the structure functions
Fz‘f, szb. The current world data for the nucleon structure functions sz ’d(x, Qz)
reached the precision of a few per cent over a wide kinematic region. Both the mea-
surements of the heavy flavor contributions to the deep-inelastic structure functions,
cf. [8, 19, 20, 22], and numerical studies [23-25], based on the leading, [26-30],

1 Likewise, for even higher scales the b-quark could be considered as the heavy quark with u, d,

s, ¢ being effectively massless, cf. e.g. [9].
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and next-to-leading order heavy flavor Wilson coefficients [31-33], show that the
scaling violations of the light and the heavy contributions to (2.97) exhibit a differ-
entbehavior over a wide range of Q2. This is both due to the logarithmic contributions
In*(Q?/m?) and power corrections o (m?/ 0%k, k > 1. Moreover, in the region of
smaller values of x the heavy flavor contributions amount to 20-40%. Therefore,
the precision measurement of the QCD parameter Aqcp, [1-7, 30, 34-36], and of
the parton distribution functions in deeply inelastic scattering requires the analysis
at the level of the O(af ) corrections to control the theory-errors at the level of the
experimental accuracy and below [2, 4, 34-36].

The precise value of Agcp, a fundamental parameter of the Standard Model, is
of central importance for the quantitative understanding of all strongly interacting
processes. Moreover, the possible unification of the gauge forces [37, 38], depends
crucially on its value. In recent non-singlet analyzes [1, 2, 4], errors for a;(M %) of
0(1.5%) were obtained, partially extending the analysis effectively to N3LO. In the
flavor singlet case the so far unknown 3-loop heavy flavor Wilson coefficients do yet
prevent a consistent 3-loop analysis,[39-41]. Due to the large statistics in the lower
X region, one may hope to eventually improve the accuracy of aS(M%) beyond the
above value.

Of similar importance is the detailed knowledge of the PDFs for all hadron-
induced processes, notably for the interpretation of all scattering cross sections mea-
sured at the TEVATRON and the LHC. For example, the process of Higgs-boson
production at the LHC, cf. e.g. [42, 43], depends on the gluon density and its accu-
racy is widely determined by this distribution.

In Sect.3.1, we describe the general framework of electroproduction of heavy
quarks in DIS within the fixed-flavor-number-scheme (FFNS), treating only the light
quarks and the gluon as constituents of the nucleon. In the following Sect.3.2 , we
outline the method, which we use to extract all but the power suppressed contribu-
tions o< (m?/Q%)K, k > 1 of the heavy flavor Wilson coefficients [44]. The latter
are equivalent to the Wilson coefficients introduced in Sect.2.3.3, including heavy
quarks. Finally, in Sect.3.3 we comment on the possibility to define heavy quark
parton densities within a variable-flavor-number-scheme (VFNS) [45].

3.1 Electroproduction of Heavy Quarks

We study electroproduction of heavy quarks in unpolarized DIS via single photon
exchange, cf. [26-30, 46], at sufficiently large virtualities 0%, 0% > 5GeV.? Here,
one can distinguish two possible production mechanisms for heavy quarks: extrinsic
production and intrinsic heavy quark excitation. In the latter case, one introduces
a heavy quark state in the nucleon wave function, i.e. the heavy quark is treated at

2 One may however, also consider photoproduction of heavy quarks in ep collisions where Q2 ~ 0,
which is a widely hadronic process, cf. [47, 48], and especially important for the production of heavy
quark resonances, as e.g. the J /.
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Fig. 3.1 LO intrinsic heavy
quark production I

the same level as the light quarks in the factorization of the structure functions, cf.
Eqgs. 2.97-2.100. The LO contribution is then given by the flavor excitation process
shown in Fig. 3.1

Y+ 0(0) - 0(0). 3.1)

Several experimental and theoretical studies suggest that the intrinsic contribution
to the heavy flavor cross section is of the order of 1% or smaller [16, 49-52], and we
will not consider it any further.

In extrinsic heavy flavor production, the heavy quarks are produced as final states
in virtual gauge boson scattering off massless partons. This description is also referred
to as the fixed flavor number scheme. At higher orders, one has to make the distinction
between whether one considers the complete inclusive structure functions or only
those heavy quark contributions, which can be determined in experiments by tagging
the final state heavy quarks. In the former case, virtual corrections containing heavy
quark loops have to be included into the theoretical calculation as well, cf. also
Sect.5.1.

We consider only twist-2 parton densities in the Bjorken limit. Therefore no
transverse momentum effects in the initial parton distributions will be allowed, since
these contributions are related, in the kinematic sense, to higher twist operators.
From the conditions for the validity of the parton model, Eqgs. 2.51, 2.56, it follows
that in the region of not too small nor too large values of the Bjorken variable x, the
partonic description holds for massless partons. Evidently, iff Q>(1 — x)2/m? %1
no partonic description for a potential heavy quark distribution can be obtained.
The question under which circumstances one may introduce a heavy flavor parton
density will be further discussed in Sect. 3.3. In a general kinematic region the parton
densities in Eq. 2.97 are enforced to be massless and the heavy quark mass effects are
contained in the inclusive Wilson coefficients. These are calculable perturbatively and
denoted by

2 2
S,PS,NS 0° m
cS:PS, (t,n +1,—,—). 3.2)
i,(2,L) f n2’ 2
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The argument n y + 1 denotes the presence of ny light and one heavy flavor. 7 is
the partonic scaling variable defined in Eq. 2.38 and we will present some of the
following equations in x-space rather than in Mellin space.

One may identify the massless flavor contributions in Eq. 3.2 and separate the
Wilson coefficients into a purely light part C; 2,1, cf. Eq. 2.97, and a heavy part

2 2 2
S,PS.NS 0 m S,PS.NS 0
Ci,(Z,L) ('C,nf—i-l,F,F) :Ci,(Z,L) (T,nf,F)

2 2
S,PS 0- m

+ H> (r,n —l—l,—,—)
@.L) f w2 12

i
2 2
PS,N O° m
+L§’(2,SL’)S(r,n,f—}-l,—uz,ﬁ). (3.3)

Here, we denote the heavy flavor Wilson coefficients by L; ; and H; ;, respectively,
depending on whether the photon couples to a light (L) or heavy (H) quark line. From
this it follows that the light flavor Wilson coefficients C; ; depend on n ¢ light flavors
only, whereas H; j and L; ; may contain light flavors in addition to the heavy quark,
indicated by the argument n ¢ + 1. The perturbative series of the heavy flavor Wilson
coefficients read

2 2 00 2 2
s 0° m7\ i 1(D).S 0" m
Hy o p (T’ ny+1, ek _Mz) =D aH, 5, (T’ ny+1, Pl _Mz)’ (3.4)

i=1

0* m? o i ().PS 0* m?
HPS (‘L’,n +1, =, =) =S "dH": nnr+1, =, — ), (3.5)
q.2,L) f 12 2 ; stq,,L) f e

Q2 m2 oo .5 Q2 m2
LS (T,n +1, =, =) =SN"d LY tnr+1, =, —), (3.6
g.(2,L) f 12 2 gzl stg.(2,L) f w2 02

2 2 0 2 2
s 0" m i @).S Q° m
L T, n +1,—,—)= a,L (r,n +1,—,—). (3.7)
4.2.L) ( ! AT ; s™q,2.0) ! W2 U2
Note that we have not yet specified a scheme for treating ag, but one has to use
the same scheme when combining the above terms with the light flavor Wilson
coefficients. At LO, only the term Hg (2, 1) contributes via the photon—gluon fusion
process shown in Fig. 3.2,

Yy +g— 0+ 0. (3.8)
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Fig. 3.2 LO extrinsic heavy I
quark production I
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The LO Wilson coefficients corresponding to this process are given by
[26-30, 46], 3

2 m?2
) m 1
H;lz (‘L’, @) =8TF [v[ 7 +4z(1 —r)+2Q 7(t — 1)]
1 2 4
+[ §+T—T +2_T(3T—1)+4—‘[:|
(=)l o)
X In ) .

HY "\ 161 Lo
n oz = FI:T(I—'C)U-FZET In . ] (3.10)

The cms velocity v of the produced heavy quark pair is given by

4m3t

The LO heavy flavor contributions to the structure functions are then

1
_ 2
00 2 2y 2 dz ) X m
Fo L), Q% m )—eQas/ L CPRe) L)( Qz)

ax

x G(nyg,z, 0%, a=1+4m?/0?% (3.12)

where the integration boundaries follow from the kinematics of the process. Here e
denotes the electric charge of the heavy quark.

At O(az) the terms H P(z L) and qu @.L) contribute as well. They result from the
process

3 Egs. 3.16, 3.17 in Ref. [53] contain misprints
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Y +a@ — 9@ + X, (3.13)

where X = Q + Q in case of extrinsic heavy flavor production. The latter is of
phenomenological relevance if the heavy quarks are detected in the final states, e.g.
via the produced D.-mesons in case Q = c. For a complete inclusive analysis
summing over all final states, both light and heavy, one has to include radiative
corrections containing virtual heavy quark contributions as well. The term Li @.L)
can be split into a NS and a PS piece via

S _ NS PS
Lion=Lyen tLie, (3.14)

where the PS-term emerges for the first time at O(as) and the NS-term at O(asz),
respectively. Finally, Lg” @.L) contributes for the first time at 0(&3) in case of heavy
quarks in the final state but there is a O(asz) term involving radiative corrections,
which will be commented on in Sect.5.1. The terms H ;2()2, Ly H gg;LS) and L;?)(’ZITILS)
have been calculated in x-space in the complete kinematic range in semi-analytic
form in Refs. [31-33], * considering heavy quarks in the final states only.

The heavy quark contribution to the structure functions F( 1, (x, Q2) for one
heavy quark of mass m and n s light flavors is then given by, cf. [45] and Eq. (2.97),

00 2 2 2] ;NS 0" m
F(2,L)(x’”f + l, Q ,m ) :Zek[l’q,(z.l‘) (x,l’lf + 17 Wv F)
k=1
® I:fk(xv w2 ) + frlx, 1, nf)]
I ps Q2 m2 ,
+ ,Tqu,(z,L) (xv”f +1, 2 2 ® X(x, u7,ny)
l s 0> m? N
+-L o+l =5, = ) @Glx, 1,
22
2| yPS 0 m )
+8Q[Hq,(2,L) (x’nf + 1, PR ?) ® X(x, u",ny)
2 2
S 0° m )
TH o (x, ny+1, PR F) ® G(x, u ,nf)]
(3.15)

where the integration boundaries of the Mellin-convolutions follow from phase space
kinematics, cf. Eq. (3.12).

3.2 Asymptotic Heavy Quark Coefficient Functions

An important part of the kinematic region in case of heavy flavor production in
DIS is located at larger values of Q2, cf. e.g. [12, 55]. As has been shown in
Ref. [44], cf. also [45, 56, 57], the heavy flavor Wilson coefficients H; ;, L; ;

4 A precise representation in Mellin space was given in [54].
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factorize in the limit Q% > m? into massive operator matrix elements Ay; and
the massless Wilson coefficients C; ;, if one heavy quark flavor and 7 ¢ light flavors
are considered. The massive OMEs are process independent quantities and contain
all the mass dependence except for the power corrections o< (m”/Q%)X, k > 1. The
process dependence is given by the light flavor Wilson coefficients only. This allows
the analytic calculation of the NLO heavy flavor Wilson coefficients [44, 58]. Com-
paring these asymptotic expressions with the exact LO and NLO results obtained in
Refs. [26-33], respectively, one finds that this approximation becomes valid in case

of FZQQ for Q%?/m? > 10. These scales are sufficiently low and match with the
region analyzed in deeply inelastic scattering for precision measurements. In case of

F LQ Q, this approximation is only valid for Q?/m? > 800 [44]. For the latter case,
the 3-loop corrections were calculated in Ref. [59]. This difference is due to the
emergence of terms o (m?/Q2) In(m?/Q?), which vanish only slowly in the limit
0%/m? — oo.

In order to derive the factorization formula, one considers the inclusive Wilson
coefficients CE}PS’NS, which have been defined in Eq. 3.2. After applying the LCE
to the partonic tensor, or the forward Compton amplitude, corresponding to the
respective Wilson coefficients, one arrives at the factorization relation, cf. Eq. (2.93),

2 2 2

S,PS,NS,asymp 0 m~\ S.PS.NS . m

Ciaw (N’ nptlog _2) =245 (N’”/ +1 —2)
He R p 1

2 m2

x CEETNS (N, ny +1, Q—z) +0(%;). (3.16)
2 " 0

Here p refers to the factorization scale between the heavy and light contributions in
Cj,i and ‘asymp’ denotes the limit Q2 > m?. The C;,j are precisely the light Wilson
coefficients, cf. Egs. 2.97-2.99, taken at n ¢ + 1 flavors. This can be inferred from
the fact that in the LCE, Eq. 2.74, the Wilson coefficients describe the singularities
for very large values of Q%, which can not depend on the presence of a quark
mass. The mass dependence is given by the OMEs A;;, cf. Egs. 2.80, 2.89, between
partonic states. Eq. 3.16 accounts for all mass effects but corrections which are
power suppressed, (m>/Q%)*, k > 1. This factorization is only valid if the heavy
quark coefficient functions are defined in such a way that all radiative corrections
containing heavy quark loops are included. Otherwise, 3.16, would not show the
correct asymptotic Q2-behavior [45].

An equivalent way of describing Eq. 3.16 is obtained by considering the calcula-
tion of the massless Wilson coefficients. Here, the initial state collinear singularities
are given by evaluating the massless OMEs between off-shell partons, leading to
transition functions I';;. The I';; are given in terms of the anomalous dimensions
of the twist-2 operators and transfer the initial state singularities to the bare parton-
densities due to mass factorization, cf. e.g. [44, 45]. In the case at hand, something
similar happens: The initial state collinear singularities are transferred to the parton
densities except for those which are regulated by the quark mass and described by
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the OME:s. Instead of absorbing these terms into the parton densities as well, they are
used to reconstruct the asymptotic behavior of the heavy flavor Wilson coefficients.
Here,

2
ASNS(N np+1, - ) (103N j) _5,,+§ alADSNS37)
u?
i=1

are the operator matrix elements of the local twist-2 operators being defined in
Eqgs. 2.86-2.88 between on-shell partonic states |j), j = g, g. As usual, the S con-
tribution can be split into a NS and PS part via

S _ 4NS PS
Ay, =Agg T A (3.18)

Due to the on-shell condition, all contributions but the O(a?) terms vanish > if no
heavy quark is present in the virtual loops. This is due to the fact that integrals
without scale vanish in dimensional regularization, cf. Sect. 4.1. Hence only those
terms with a mass remain and these are referred to as massive OMEs. The calculation
of these massive OMEs is the main objective of this thesis. In case of the gluon
operator, (2.88), the contributing terms are denoted by A ¢q,0 and Age o, where the
perturbative series of the former starts at O (asz) and the one of the latter at O (a?).6
For the quark operator, one distinguishes whether the operator couples to a heavy or
light quark. In the NS- case the operator by definition couples to the light quark. Thus

there is only one term, ANS 40,0 which contributes at O (ao) In the S and PS-case, two

OME:s can be distinguished, {A aq, Q’ } and {AZ?I, AS }, where in the former
case the operator couples to a light quark and in the latter case to a heavy quark. The
terms Ag;, o emerge for the first time at O(as’), AZS at O(asz) and ASQg at O(ay).
In this work we refer only to the even moments, cf. Sect.2.3. In the non-singlet
case we will obtain, however, besides the NS contributions for the even moments
also the NS terms, which correspond to the odd moments.
Equation 3.16 can now be splitinto its parts by considering the different n s-terms.
We adopt the following notation for a function f(n y)
fny) = M. (3.19)
nf

This is necessary in order to separate the different types of contributions in Eq. 3.15,
weighted by the electric charges of the light and heavy flavors, respectively. Since
we concentrate on only the heavy flavor part, we define as well for later use

fop)=fop+1) = fuy), (3.20)

5 In Ref. [60] use was made of this fact to calculate the massless Wilson coefficients without

having to calculate the massless OMEs.
6 The O(a?) term of Ag, does not contain a heavy quark, but still remains in Eq. 3.16 because no
loops have to be calculated.
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—

with f(nf) = [f(nf)]. The following Egs. 3.21-3.25 are the same as Egs. 2.31-
2.35inRef. [45]. We present these terms here again, however, since Ref. [45] contains
a few inconsistencies regarding the f-description. Contrary to the latter reference,
the argument corresponding to the number of flavors stands for all flavors, light or
heavy. The separation for the NS-term is given by

2 2 2
NS Q NS Q" m
Ca.. L)(N ny. _) +Lq,(2,L>(N’ ny+1, _Mz’_uz)

Qz)‘

2
m NS
AqqQ(N,nf+1,F)Ct]’(lL)(N,nf‘i‘l,—2 (321)

Here and in the following, we omit the index “asymp” to denote the asymptotic heavy
flavor Wilson coefficients, since no confusion is to be expected. For the remaining
terms, we suppress for brevity the arguments N, Q2/u? and m?/u?, all of which
can be inferred from Egs. 3.3, 3.16. Additionally, we will suppress from now on the
index S and label only the NS and PS terms explicitly. The contributions to L; ; read

PS PS
Cq)(z L)(nf)—l—Lq 2. L)(”f +1)
—[ N olnp+ D+ AFS H(ny 4+ 1)+ AT (nf+1)]nf'c';§2’“(nf+1)

+ Aqq oy + 1)cq’(2yL)(nf + D)+ Agg 0y +DnygCyryny+1), (322)

Cooy(nf)+ Leryng+1)
= Age. 00y + DnCony(nf+ 1)+ Agg oy + DCNY |y + 1)
+[Agg.ony + D+ Agg(ny + D]npCity 1)y +1). (3.23)

The terms H; ; are given by

PS PS NS ~ps
Hq’(z’L)(nf+1) = AQq(nf + 1)[Cq 2, L)(nf +1+ Cq’(z’L)(l’lf + 1)]
+[ANS gy + D+ ABS oy + D]CPS, 101y + 1)
+ Agg.0(ny + 1)Cg,(z,L)(ﬂf +1), (3.24)

Hg@.)(ny+1) = Age o(ny + DCq.1y(np +1)
+ Aggons + 1)E;§Z’L)(nf +1)

+ Agg(ns + 1) [C;\"?Z’L)(nwa D+CPS,  ny + 1)]. (3.25)

Expanding the above equations up to O(af), we obtain, using Egs. 3.19, 3.20, the
heavy flavor Wilson coefficients in the asymptotic limit :
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2),NS ~(2),NS
NS, g+ 1) = af[A;q)’Q (ny+ )8, + C;,EZ’L)(nf)]

+ad AL B0y + D6+ AS By + 1)

99.Q qq9.0
1),NS ~(3).NS
X C;vEZ,L)(nf + 1) + C;,EZ,L)(nf)]’ (326)

3),PS
LS s+ =al [AEM)’Q (ny+ D&+ A2 Snp)

~(1) 2(3),PS
xnfCo oyt D+ "qu,@,L)(nf)], (3.27)

s 2, (D) ~1
Leonns+1D=as Aég,Q("f + D"fcg,zz,u("f + 1

+a; [A;?,Q(nf + & + A;Q,Q(nf +1)
=2
X nfcé,zz,ll)(nf + 1)+ A;?’Q(nf +1)
~(1
xngCl,y g+ 1)+ AQ) (g + 1)

6(2)’PS 1 a(3)
xnfly e.r (ny+D+ "ng,(z,L)(”f)], (3.28)

2).PS ~).
HS, g+ D) =[Gy + D8+ COYT 00 + 1)

3).PS ~(3).PS
+a; [A‘Q; (np+ D8+ Coly g+ 1)
2 ~(1)
+ qu,Q(nf'i_l)Cg’(z’L)(nf + 1)

PS ,
+ A(szz (ny+ 1)C§122N3(nf + 1)], (3.29)

HS o (np + 1) =a, [A(Qli,(nf + 18+ CN,  nf + 1)]
+ GE[A(QZL(W + Dé2 + A(le,(nf + 1)
x Sy + 1)+ AW Sy + 1)
x E;%gZ,L)(”f +1D+ 5;322,@(”.)" + 1)]
+a [Agg(nf + D8+ AD 1y + DNy + 1)

2 ~
+Ag oy +DCG, ) + 1)
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1
+ Agyny +1)
2),NS ~(2),PS
x {C;,Ez,m(”f + 1)+ Gl ng + 1)}

+ AL Sy + DED, iy + D+ CD, |y + 1)]. (3.30)

Note that 6, has been defined in Eq. 2.101. The above equations include radiative
corrections due to heavy quark loops to the Wilson coefficients. Therefore, in order
to compare e.g. with the calculation in Refs. [31-33], these terms still have to be
subtracted. Since the light flavor Wilson coefficients were calculated in the MS-
scheme, the same scheme has to be used for the massive OMEs. It should also be
thoroughly used for renormalization to derive consistent results in QCD analyzes of
deep-inelastic scattering data and to be able to compare to other analyzes directly.
This means that one has to take special attendance of which scheme for the definition
of a; was used. In Sect. 4.4 we will describe a scheme for ay, to which one is naturally
led in the course of renormalization. We refer to this scheme as MOM-scheme and
present the transformation formula to the MS as well. How this affects the asymp-
totic heavy flavor Wilson coefficients is described in Sect.5.1, where we compare
Egs. 3.26-3.30 to those presented in Ref. [44].

3.3 Heavy Quark Parton Densities

The FENS forms a general starting point to describe and to calculate the heavy
flavor contributions to the DIS structure functions. Approaching higher values of
Q?, one may think of the heavy quark becoming effectively light and thus acquiring
an own parton density. Different variable flavor scheme treatments were considered
in the past, cf. e.g. [61, 62]. Here we follow [45] to obtain a description in complete
accordance with the renormalization group in the MS-scheme. In the kinematic
region in which the factorization relation (3.16) holds, one may redefine the results
obtained in the FFNS, which allows for a partonic description at the level of (n s +1)
flavors.

In the strict sense, only massless particles can be interpreted as partons in hard
scattering processes since the lifetime of these quantum-fluctuations off the hadronic
background tjjfe o 1/ (ki + sz) has to be large against the interaction time

Tint & 1/ 02 in the infinite momentum frame, [63], cf. also Sect.2.2.1. In the mas-
sive case, Tjife is necessarily finite and there exists a larger scale Q% below which
any partonic description fails. From this it follows, that the heavy quark effects
are genuinely described by the process dependent Wilson coefficients. Since
parton-densities are process independent quantities, only process indepen-
dent pieces out of the Wilson coefficients can be used to define them for heavy
quarks at all. Clearly this is impossible in the region close to threshold but requires
Q2/m2Q = r > 1, with » > 10 in case of F>(x, Q%). For Fy (x, Q?) the cor-
responding ratio even turns out to be » = 800 [25, 44, 59]. Heavy flavor par-


http://dx.doi.org/10.1007/978-3-642-23286-2_2
http://dx.doi.org/10.1007/978-3-642-23286-2_4
http://dx.doi.org/10.1007/978-3-642-23286-2_5
http://dx.doi.org/10.1007/978-3-642-23286-2_2

58 3 Heavy Quark Production in DIS

ton distributions can thus be constructed only for scales > >> sz This is done
under the further assumption that for the other heavy flavors the masses m ¢, form
a hierarchy mZQl < szz « etc. Their use in observables is restricted to a region,
in which the power corrections can be safely neglected. This range may strongly
depend on the observable considered as the examples of F> and F;, show. Also in
case of the structure functions associated to transverse virtual gauge boson polar-
izations, like F;(x, Q2), the factorization (3.16) only occurs far above threshold,
Qt2hr ~ 4m2Qx/(1 — x), and at even larger scales for Fp (x, Q2).

In order to maintain the process independence of the parton distributions, we
define them for (n; + 1) flavors from the light flavor parton distribution functions
for n s flavors together with the massive operator matrix elements. The following set
of parton densities is obtained in Mellin-space, [45] :

fitng + 1, N, >, m?) + fr(np + 1, N, u?, m?)

2
"
= AN, (N, np+1, W) N fing, Ny w®) + fr (np, N, )]

1 uz 2
+ quqQ N,nf+1,m Xy, N, u%)

1 /J,z 2
—A N, I, — ) -Gnyg, N, u), 3.31
o qg,Q( np mz) (np, No ) 43D

fony+ LN 2. m*) + fgng+1,N, u* m?)
2
—APS (N, + 1, ) s N, 1)
= Agq sy "2 ng, N,
2
+ Agg (N, ng+1, W) -G(nyg, N, u?). (3.32)

The flavor singlet, non-singlet and gluon densities for (n s + 1) flavors are given by
2 .2 NS W W
z 1, N, n=, =|[A N, 1, A N, 1, —
(ny+ u? m?) = [ qu( ng+ )+ qu( ny+ m2)

2
PS K 2
AQq (N, ng+1, mz)j| : Z(nfv N, uo)

2 2
J{ qgQ(N np+1, 2 )+AQg(N np+1, = )}

x G(ny. N, 1),
(3.33)
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Ar(ny +1,N, u>,m?) = fi(ny + 1, N, u*, m?)
+ fr(ng+1,N, 1%, m?)

> 1, N, 12, m?), 3.34
n 1 (ny+ W=, m") (3.34)

2
Gmny+1,N, MZ’m2) =Ag0 (N,nf +1, %) -X(nys, N, Mz)

2
"
+ Age 0 (N,nf +1, W) -G(ns, N, pu?). (3.35)

Note, that the new parton densities depend on the renormalized heavy quark mass
m? = mz(af(,uz)). As will be outlined in Chaps.4, 5, the corresponding relations
for the operator matrix elements depend on the mass-renormalization scheme. This
has to be taken into account in QCD-analyzes, in particular, m? cannot be chosen
constant. The quarkonic and gluonic operators obtained in the light-cone expansion
can be normalized arbitrarily. It is, however, convenient to chose the relative factor
such, that the non-perturbative nucleon-state expectation values, X(n s, N, w?) and

Gy, N, uz), obey
Sy N=2,p")+Gmnp N=2p>)=1 (3.36)

due to 4-momentum conservation. As a consequence, the OMEs fulfill the
relations, [45],

NS PS PS
ANSOIN=2)+ APS (N =)+ ADS(N =2) + Aggo(N =2) =1, (3.37)

Agg.o(N =2)+ Agg(N =2) + Age o(N =2) = 1. (3.38)

The above scenario can be easily followed up to 2-loop order. Also here diagrams
contribute which carry two different heavy quark flavors. At this level, the addi-
tional heavy degree of freedom may be absorbed into the coupling constant and thus
decoupled temporarily. Beginning with 3-loop order the situation becomes more
involved since there are graphs in which two different heavy quark flavors occur in
nested topologies, i.e., the corresponding diagrams depend on the ratio p = mg / mi
yielding power corrections in p. There is no strong hierarchy between these two
masses. The above picture, leading to heavy flavor parton distributions whenever
Q2 > m? will not hold anymore, since, in case of the two-flavor graphs, one cannot
decide immediately whether they belong to the c- or the b-quark distribution. Hence,
the partonic description can only be maintained within a certain approximation by
assuming p < 1.

Conversely, one may extend the kinematic regime for deep-inelastic scattering to
define the distribution functions (3.31)—(3.35) upon knowing the power corrections
which occur in the heavy flavor Wilson coefficients H; ; = H; ;, L; ;. This is the
case for 2-loop order. We separate
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Q2 m? asymp Q2 m? power Q2 m?
Hi’j (X,W,ﬁ :Hi,j X, W’E +Hi,j X, W’E 5 (339)

where HaSymp (x, Q*/m?, m?/u?) denotes the part of the Wilson coefficient given in

Eq. 3.16. If one accounts for Hpower(x 0?%/m?, m?/u?) in the fixed flavor number
scheme, Eqs. 3.31-3.35 are still valid, but they do not necessarily yield the dominant
contributions in the region closer to threshold. There, the kinematics of heavy quarks
is by far not collinear, which is the main reason that a partonic description has to fail.
Moreover, relation Eq. 2.51 may be violated. In any case, it is not possible to use
the partonic description (3.31)—(3.35) alone for other hard processes in a kinematic
domain with significant power corrections.

For processes in the high p; region at the LHC, in which condition 2.51 is
fulfilled and the characteristic scale > obeys u? > m?, one may use heavy flavor
parton distributions by proceeding as follows. In the region Q% > 10 m? the heavy
flavor contributions to the F»(x, Q%)-world data are very well described by the
asymptotic representation in the FFNS. For large scales one can then form a variable
flavor representation including one heavy flavor distribution [45]. This process can
be iterated towards the next heavier flavor, provided the universal representation
holds and all power corrections can be safely neglected. One has to take special care
of the fact, that the matching scale in the coupling constant, at which the transition
ny — ny + 11is to be performed, often differs rather significantly from m, cf. [64].
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Chapter 4
Renormalization of Composite
Operator Matrix Elements

Before renormalizing the massive OMEs, they have to be calculated applying a
suitable regularization scheme, for which we apply dimensional regularization in
D =4 + ¢ dimensions, see Sect. 4.1. The unrenormalized massive OMEs are then
denoted by a double—hat and are expanded into a perturbative series in the bare
coupling constant a, ! via

(Z,SN)_alﬁi “)( V)

18/2 )

_5U+ZA1( ) Ay (m2=/L2,S,N) 4.1)

=1

The OMEs in Eq.4.1 depend on ¢, the Mellin—Parameter N, the bare mass m and
the renormalization scale i = . Also the factorization scale ur will be identified
with p in the following. Note that in the last line of (4.1), the dependence on the ratio
of the mass and the renormalization scale was made explicit for each order in d;. The
possible values of the indices ij have been described in Sect. 3.2, below Eq. (3.17).

The factorization between the massive OMEs and the massless Wilson coefficients
(3.16) requires the external legs of the operator matrix elements to be on—shell,

p* =0, (4.2)

where p denotes the external momentum. Unlike in the massless case, where the
scale of the OMEs is set by an off-shell momentum —p? < 0, in our framework
the internal heavy quark mass yields the scale. In the former case, one observes a
mixing of the physical OMEs with non-gauge invariant (NGI) operators, cf. [1-3],

! We would like to remind the reader of the definition of the hat-symbol for a function f, Eq. 3.20,

which is not to be confused with the hat-symbol denoting unrenormalized quantities
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and contributions originating in the violation of the equations of motion (EOM).
Terms of this kind do not contribute in the present case, as will be discussed in
Sect. 4.2.

Renormalizing the OMEs then consists of four steps. First, mass and charge
renormalization have to performed. The former is done in the on—mass—shell-scheme
and described in Sect. 4.3. For the latter, we present the final result in the MS—scheme,
but in an intermediate step, we adopt an on—shell subtraction scheme (MOM-scheme)
for the gluon propagator, cf. Sect. 4.4. This is necessary to maintain condition (4.2),
i.e., to keep the external massless partons on—shell. Note, that there are other, differing
MOM-schemes used in the literature, cf. e.g. [4].

After mass and coupling constant renormalization, we denote the OMEs with
a single hat, A; 7. The remaining singularities are then connected to the composite
operators and the particle kinematics of the corresponding Feynman—diagrams. One
can distinguish between ultraviolet (UV) and collinear (C) divergences. In Sect. 4.5,
we describe how the former are renormalized via the operator Z—factors. The UV-
finite OMEs are denoted by a bar, A ij- Finally, the C—divergences are removed via
mass factorization, cf. Sect. 4.6. The renormalized OMEs are then denoted by A;;.
Section 4.7 contains the general structure of the massive OMEs up to O (a_;”) in terms
of renormalization constants and lower order contributions.

4.1 Regularization Scheme

When evaluating momentum integrals of Feynman diagrams in D =4 dimensions,
one encounters singularities, which have to be regularized. A convenient method
is to apply D-dimensional regularization, [5—8]. The dimensionality of space—time
is analytically continued to values D # 4, for which the corresponding integrals
converge. After performing a Wick rotation, integrals in Euclidean space of the form

4Pk (kZ)r B 1 F(V+D/2)F(m_V_D/Z)(Rz)H-D/Z—m

Qm)P (k2 4+ R%)m — (4m)D/2 I'(D/2)T (m)

4.3)
are obtained. Note that within dimensional regularization, this integral vanishes if
R =0, i.e., if it does not contain a scale, [9]. The properties of the I'—function in
the complex plane are well known, see Appendix C. Therefore one can analytically
continue the right-hand side of Eq. 4.3 from integer values of D to arbitrary complex
values. In order to recover the physical space—time dimension, we set D =4 + ¢.
The singularities can now be isolated by expanding the I'—functions into Laurent-
series around & = 0. Note that this method regularizes both UV- and C-singularities
and one could in principle distinguish their origins by a label, ey v, ec, but we treat
all singularities by a common parameter ¢ in the following. Additionally, all other
quantities have to be considered in D dimensions. This applies for the metric tensor
g and the Clifford-Algebra of y—matrices, see Appendix A. Also the bare coupling
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constant g, which is dimensionless in D =4, has to be continued to D dimensions.
Due to this it acquires the dimension of mass,

gs,D = /Lie/zé;ss (44)

which is described by a scale p corresponding to the renormalization scale in Eq. 4.1.
From now on, Eq.4.4 is understood to have been applied and we set

&
(4m)?

—a;. (4.5)

Dimensional regularization has the advantage, unlike the Pauli—Villars regulariza-
tion, [10], that it obeys all physical requirements such as Lorentz-invariance, gauge
invariance and unitarity, [5, 11]. Hence it is suitable to be applied in perturbative
calculations in quantum field theory including Yang—Mills fields.

Using dimensional regularization, the poles of the unrenormalized results appear
as terms 1/ &', where in the calculations in this thesis i can run from 1 to the number
of loops. In order to remove these singularities, one has to perform renormalization
and mass factorization. To do this, a suitable scheme has to be chosen. The most
commonly used schemes in perturbation theory are the MS-scheme, [12], and the
M_S-scheme, [13], to which we will refer in the following.

In the MS-scheme only the pole terms in ¢ are subtracted. More generally, the
MS-scheme makes use of the observation that 1/e—poles always appear in combi-
nation with the spherical factor

S, = exp[%(yE _ ln(4n))], (4.6)

which may be bracketed out for each loop order. Here yr denotes the Euler-
Mascheroni constant

N
, 1
yp = lim_ (;_1 o ln(N)) ~ 0.577215664901 . . . . 4.7)

By subtracting the poles in the form S, /¢ in the MS-scheme, no terms containing
Inf(4m), y g will appear in the renormalized result, simplifying the expression. This
is due to the fact that for a k—loop calculation, one will always obtain the overall term

G (ke
> = (7) ) (4.8)

Il — k&
(_stgexp(
i=2

(4m)

with ¢; being Riemann’s ¢-values, cf. Appendix C. In the following, we will always
assume that the MS-scheme is applied and set S, = 1.
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4.2 Projectors

We consider the expectation values of the local operators (2.86)—(2.88) between
partonic states j

Gij,o={jl0ilj)o. 4.9)

Here, i, j =¢q, g and the subscript Q denotes the presence of one heavy quark.
In case of massless QCD, one has to take the external parton j of momentum p
off—shell, p> < 0, which implies that the OMEs derived from Eq.4.9 are not gauge
invariant. As has been outlined in Ref. [14], they acquire unphysical parts which are
due to the breakdown of the EOM and the mixing with additional NGI operators.
The EOM terms may be dealt with by applying a suitable projection operator to
eliminate them, [14]. The NGI terms are more difficult to deal with, since they affect
the renormalization constants and one has to consider additional ghost—and alien—
OMEs, see [1-3, 14, 15] for details.

In the case of massive OMEs, these difficulties do not occur. The external particles
are massless and taken to be on—shell. Hence the EOM are not violated. Additionally,
the OMEs remain gauge invariant quantities, since the external states are physical
and therefore no mixing with NGI-operators occurs, [1, 9, 14, 15].

The computation of the Green’s functions will reveal trace terms which do not
contribute since the local operators are traceless and symmetric under the Lorentz
group. It is convenient to project these terms out from the beginning by contracting
with an external source term

IN=Dpy . Ay (4.10)

Here A, is a light-like vector, A%?=0. In this way, the Feynman-rules for
composite operators can be derived, cf. Appendix B. In addition, one has to amputate
the external field. Note that we nonetheless choose to renormalize the mass and the
coupling multiplicative and include self-energy insertions containing massive lines
on external legs into our calculation. The Green’s functions in momentum space
corresponding to the OMEs with external gluons are then given by

e (P)GY " (P) =" (P)IN(AL (P Ogupy .y | AL(P)E" (), (4.11)
()G e () =" (P)IN (AL (P Ogipiy.ui | AL(P)) 0" (), (4.12)

" (P)G4o 1n€” () =" (D) INCAL (P Ogipuy.un | AN (D)) 0€" (p). (4.13)

In Eqgs. 4.11-4.13, Aj, denote the external gluon fields with color index a,
Lorentz index w and momentum p. The polarization vector of the external gluon
is given by € (p). Note that in Eq.4.11, the operator couples to the heavy quark.
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In Egs. 4.12, 4.13 it couples to a light quark or gluon, respectively, with the heavy
quark still being present in virtual loops.
In the flavor non-singlet case, there is only one term which reads

_ iNS _ .

W(p, )G hru(p, )= Iy (Wi (PIONS L 1 (M) o, (“.14)
with u(p,s), u(p,s) being the bi—spinors of the external massless quark and
anti—quark, respectively. The remaining Green’s functions with an outer quark are
given by

T(p. $)GHu(p. )= Iy (Wi ()| O puy..un 1% (D)) (.15)
@(p.$)G ou(p. s) = In(Wi(p)| Og iy _un |V (D))o, (4.16)
T(p. )G ou(p. 5)= In (T (D) Oguy..n ¥ (D)) 0. (4.17)

Note that in the quarkonic case the fields W, W with color indices i, J stand for the
external light quarks only. Further, we remind that the S—contributions are split up
according to Eq. (3.18), which is of relevance for Eq. (4.16).

The above tensors have the general form, cf. [14, 16],

~ ~2
G P Puly+Ayup
GQ,,W:A (MZ,E,N)(Sab(A'P)NI:_guv‘F%puv:l, (4.18)
A ~2
¢ A n Puly + Aup
(4.19)
Gy = Ay (2 M)A g (4.20)
0=\ 2% p : .

i 2 m? . 3
Glo=Auo(Sz & N3 APV, 1=g.q. r=S NS, PS (421

Here, we have denoted the Green’s function with a hat to signify that the above
equations are written on the unrenormalized level. In order to simplify the evaluation,
it is useful to define projection operators which, applied to the Green’s function, yield
the corresponding OME. For outer gluons, one defines

Sap _g"" -
(1) Aab _ a N A
P GZ @Qmw =" N2_1D— (A p) G] (0),uv° (4.22)
c
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N Sab 1 _
PG o = ya s p 3@ N (e

prA” +p”A“) Aab
N2-1D-2

A-p 1,(Q),pv*
(4.23)
The difference between the gluonic projectors, Eq. 4.22 and Eq. 4.23, can be traced
back to the fact that in the former case, the summation over indices w, v includes
unphysical transverse gluon states. These have to be compensated by adding diagrams
with external ghost lines, which is not the case when using the physical projector in
Eq.(4.23).
In the case of external quarks there is only one projector which reads

e §iJ 1 e
12 _ —N L
PGllig = PN T [p G,’(Q)]. (4.24)

In Egs. 4.22-4.24, N, denotes the number of colors, cf. Appendix A. The unrenor-
malized OMEs are then obtained by

A 22

A m R

Ate (F “ N) =P PGl (4.25)
N nij

Alq(?’ eN)=PyGlg) (4.26)

The advantage of these projection operators is that one does not have to resort to
complicated tensorial reduction. In perturbation theory, the expressions in Egs. 4.25,
4.26 can then be evaluated order by order in the coupling constant by applying the
Feynman-rules given in Appendix B.

4.3 Renormalization of the Mass

Inafirst step, we perform mass renormalization. There are two traditional schemes for
mass renormalization: the on—shell-scheme and the MS—scheme. In the following,
we will apply the on-shell-scheme, defining the renormalized mass m as the pole
of the quark propagator. The differences to the MS—scheme will be discussed in
Sect. 4.5. The bare mass in Eq.4.1 is replaced by the renormalized on—shell mass
m via

m2

o A &/2 ~2 m?\e ~3
m:mezm[l +as(—2) smy + & (—2) (sz] +o0@. @21
u M

The constants in the above equation are given by 2

2 Note that there is a misprint in the double—pole term of Eq.4.28 in Ref. [17].
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Smy = CF[g 44 (4 n %Q)a] (4.28)

(1)
dm,
=1 4+ sm” 4omVe, (4.29)
I

Smy = Cp[ (18CF —22C +8Tr(ny + Nh))

1 91
+ g(——CF = Cp— 14Tp(ny + Nh))
199 51
+ CF(? ~ S0 +48@)0 - 12;3)
605
+Cy (_T + 36— 24In@)0 + 6@)
45 69
+Trns(—= + 1080 ) + Np| = — 140 ]
(s (@]
-2) =)
dm sm’
=—2—+—2— +om). 4.31)
I &

Equation 4.28 is easily obtained. In Eq. 4.30, n y denotes the number of light flavors
and N, the number of heavy flavors, which we will set equal to N, = 1 from now on.
The pole contributions were given in Refs. [18, 19], and the constant term was derived
in Refs. [20, 21], cf. also [22]. In Egs. 4.29, 4.31, we have defined the expansion
coefficients in ¢ of the corresponding quantities. After mass renormalization, the
OME:s read up to O(a?)

m2\e/2md 2D m?
H—,s,N)Hml(F) Ay (F’S’N)]
+al [f;,(;)(m—j e, N) +8m (mfi)s/z‘mid,ifz,)(ﬂa N N)

w 3 dm A\ 2

s (mz)smdjm(mz N)+5m%(m2)9m2d2A:<l)<m2 N)
ma w2) am”i Mz*g’ 2 \2) am2 Cii Mz’g’ :
(4.32)

4.4 Renormalization of the Coupling

Next, we consider charge renormalization. At this point it becomes important to
define in which scheme the strong coupling constant is renormalized, cf. Sect. 3.2.
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We briefly summarize the main steps in the massless case for n ¢ flavors in the MS-
scheme. The bare coupling constant ds is expressed by the renormalized coupling
aLVIs via
72 J—
~ M M 2
=Z, S (e, np)aMS ()

=a¥S (2 )[1 +8aMS(n 1)aMS (u?) + saM (nf)a'\"s (1 )} +0 <a

(4.33)
The coefficients in Eq. (4.33) are, [23-26] and [27, 28],
s 2
Sagi(ny)=—Po(ny), (4.34)
MS _i 2 l
dagy (ny) = 2 Bo(nyr) + Eﬂl(nf), (4.35)
with
11 4
Bo(ny) = ?CA —3Trny, (4.36)
34 5
Br(ns)= ?c/ﬁ —4 (gcA + CF) Trny. (4.37)

From the above equations, one can determine the S—function, Eq. 2.103, which
describes the running of the strong coupling constant and leads to asymptotic freedom
in case of QCD, [23, 24]. It can be calculated using the fact that the bare strong
coupling constant does not depend on the renormalization scale . Using Eq.4.4,
one obtains

d&SD d A g d 2\ 72 2y, —¢€
= d = — Z(e,ny, , 4.38
din2 ~ ding? asp dln;ﬂasw) g&nyp, WHu (4.38)
d
=>ﬁ—§as(u ) — 2a,(u* ) sInZg(e,nyp, %). (4.39)

Note that in Eq.4.39 we have not specified a scheme yet and kept a possible
pn—dependence for Z,, which is not present in case of the MS—scheme. From (4.39),
one can calculate the expansion coefficients of the f—function. Combining it with
the result for ZQ"S in Egs. 4.34, 4.35, one obtains in the ‘M S-scheme for n 7 light
flavors, cf. [23-28],

ﬁWs(nf) = — /30(nf)aLVTS2 - /31(nf)a!~\TS3 +0 (ays4)- (4.40)

Additionally, it follows
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das(W) 1 o N g e
TG = 259 ) kgoﬂkas (1. (4.41)

The factorization relation (3.16) strictly requires that the external massless parti-
cles are on—shell. Massive loop corrections to the gluon propagator violate this condi-
tion, which has to be enforced subtracting the corresponding corrections. These can
be uniquely absorbed into the strong coupling constant applying the background
field method, [29-31], to maintain the Slavnov-Taylor identities of QCD. We thus
determine the coupling constant renormalization in the MS-scheme as far as the light
flavors and the gluon are concerned. In addition, we make the choice that the heavy
quark decouples in the running coupling constant a, (?) for u? < m? and thus from
the renormalized OMEs. This implies the requirement that Iz (0, mz) =0, where
14 (p%, m?) is the contribution to the gluon self-energy due to the heavy quark
loops, [16]. Since this condition introduces higher order terms in ¢ into Z,, we left
the MS—scheme. This new scheme is a MOM-scheme. After mass renormalization
in the on—shell-scheme via Eq.4.27, we obtain for the heavy quark contributions to
the gluon self—energy in the background field formalism

v 2 2 2 A
HHabBF(p ,m 7:“* agaas)

—=i(—p2e" + p*p)oup Ty pr(p*, m>, 1%, ¢, ),
ﬁH,BF(Ov m?, u?, e, ay)

~a 00 () Pen(34(5))

aym>\e[1/ 20 32
+@2(%5) |- (=5 TrCa = 4T6Cr) = STrCa +15T6Cr
n e 3 9
86 31
e TrCa = S TrCr — 20TrCa — 0TrCy) |
(442)
with
. 4
Po.o=Ponp)= = 3TF. (4.43)

Note that Eq. 4.42 holds only up to order O (¢), although we have partially included
higher orders in ¢ in order to keep the expressions shorter. We have used the Feynman—
rules of the background field formalism as given in Ref. [32]. In the following, we
define

fle)= (%) em(i C—(—) ) (4.44)

The renormalization constant of the background field Z 4 is related to Z, via
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Za=27;". (4.45)

The light flavor contributions to Z4, Z4 ;, can thus be determined by combining
Eqgs. 4.34, 4.35, 4.45. The heavy flavor part follows from the condition

Ny pr©,m*) +Zs g =0, (4.46)

which ensures that the on—shell gluon remains strictly massless. Thus we newly
define the renormalization constant of the strong coupling with 7 ¢ light and one
heavy flavor as

1
(Zag+ Zag)'/?

ZyMe g +1, 4% m?) = (4.47)

and obtain

2
2y eony + 12 m?) = 14+ @MW) [ S (Bon ) + fo.of (o) ]

4
+a§\40M2(M2)[@ + ?(ﬁo(nf) + Bo.of(€))?
1 om?

(MmN (1) @ MOM3
+£(u2) (51,Q+eﬁ + 2B )]+0(as )
(4.48)
with
N 5
Bro=Bi1(ny)= _4(§CA +CF) TF, (4.49)
(0 32
B, 0= ?TFCA + 15Tk Cp, (4.50)
@ 86 31 5
= — —TrpCyp — —TrCFr — ~TrC TrC 4.51
Bilo 7 TFCa — 1 TrCr = 0\ 3TPCa + TrCr (4.51)
The coefficients corresponding to Eq.4.33 then read in the MOM-scheme
2Bo(ny) 2/3
361?,410M=[ ! % Qf( )] (4.52)
e
2 2
5aMOM [ﬁl(nf) ( Bo(nr) ,30Qf( ))
€
Lm?ye (1) @) 2
+5(u ) (Bro+ 28 + 2! 0)]+ 0@,
(4.53)

Since the MS—scheme is commonly used, we transform our results back from
the MOM-—description into the MS—scheme, in order to be able to compare to other



4.4 Renormalization of the Coupling 73

analyzes. This is achieved by observing that the bare coupling does not change under
this transformation and one obtains the condition

ZMS (e,ny+ 1)aMS(M2)_zMOM (e,np+1, 1%, mHaMM@?).  (4.54)

The following relations hold :

_ 2, —21
m
aMOM —MS _ g m(,ﬂ )aMS

S S
Y M | ws? MS
+[ﬁ0,an (F)—,BI,QIH(—Z) By ] +o(as )
or,

aMS — gMOM |, MOM? (5 MOM _ 5 MS - 1)) + gMoM?

(3aMOM—5a (s +1) —28aM; (nf+1)[5aM0M—5a (nf+1)])

+ 0 (a¥ov),

. (4506)
vice versa. Equation 4.56 is valid to all orders in €. Here, ab"s =aLVIS(nf + 1).
Applying the on—shell-scheme for mass renormalization and the described MOM-
scheme for the renormalization of the coupling, one obtains as general formula for

. . 3
mass and coupling constant renormalization up to O (a?"OM )

2(1) /2 4 ~(D)
Aij=8;j +aMOMA,; 4 aMOM? [A o+ sy (2 2) m-—A;; + 6aMOMA }
" dm Y

23) /2 d ()
MOM3 MOM £ MOM
+a) [Al-j + 5aX A +25a (A +8m1(M2) %AU)
m2\e/2  d 2@ m2ve d a0
2 2
4.57)

Sm* ym*\¢ dr ()
1 2
+ 2 (,uz) " dmzAij i|’
where we have suppressed the dependence on m, ¢ and N in the arguments.3

4.5 Operator Renormalization

The renormalization of the UV singularities of the composite operators is being
performed introducing the corresponding Z;;-factors, which have been defined in

3 Here we corrected a typographical error in [17], Eq.4.48.
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Eqgs.2.157, 2.106. We consider first only n ; massless flavors, cf. [14], and do then
include subsequently one heavy quark. In the former case, renormalization proceeds
in the MS—scheme via

2 p2

NS £ MS —1,NS,/, MS ANS(— vs
Aqq( e ’nf’N):Z‘M (@ nps 8 N)Agg (7’% ’”f,s,N),
(4.58)
—P2 MS p2 Vs
Ai]( IJ_2 s g N f, ) ll (as ,l’lf &, N)A[] /1.2 , Ay ,}’lf,e‘,N ,Lj=q,8,
(4.59)

with p a space-like momentum. As is well known, operator mixing occurs in the
singlet case, Eq.4.59. As mentioned before, we neglected all terms being associated to
EOM and NGI parts, since they do not contribute in the renormalization of the massive
on-shell operator matrix elements. The NS and PS contributions are separated via

Zod =2, P+ 2, IS, (4.60)
Agq = Arlzqu + Aglqs (4.61)

The anomalous dimensions y;; of the operators are defined in Egs.2.107, 2.108
and can be expanded in a perturbative series as follows

S,PS,NS
yl?,PS,NS( S FN) = ZaMS (O} (ns. N). (4.62)
=1

Here, the PS contribution starts at O(asz). In the following, we do not write the
dependence on the Mellin—variable N for the OMEs, the operator Z—factors and the
anomalous dimensions explicitly. Further, we will suppress the dependence on ¢ for
unrenormalized quantities and Z—factors. From Eqgs. 2.107, 2.108, one can determine
the relation between the anomalous dimensions and the Z—factors order by order in

=3
perturbation theory. In the general case, one finds up to O (aé',v's )

(0)
vs”i . ws?[1 (1l o o oy, L m
Zij(a) nf)—&j +aM T (2)/,, vij + Bovi )+2 Yij
1
0),,00), () 0 _,0) 2,0
H_3(6 Vil Vik J/k] + Bo 0Yi1 )/[] + '307/1] )
+i(1y<1)y(0)+ Lo, 2 2 o,
2 \6 il 7lj 3 il 7lj ij
(2)
2 on . Y
+ ,3)/,())—1— 36 ]
(4.63)
The NS and PS Z—factors are given by*

4 InEq.4.65 we corrected typographical errors contained in Eq.4.34, [17].
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ONS
1 /1 2
ZNS(aMS n=14a Ms)’qq8 +aMS {7( ONS? | 4 . NS)+ ), NS}

s 5%aq 2e Va4
1 (0) NS3 (0),NS 2. (0),NS
3\glae Yaq + ﬂo Yaq
1 0),NS_ (1),NS 1).NS 0).NS
7(2y;q) () + ﬁ () + ﬂy() )
I ©2),NS
3¢ V94 ’

(4.64)

s ws2| 1 1
PS, MS MS 0).,,(0 1),PS
Zygq (a5 ny) =aj [2 TVag Yq + 2% Vel ]

1 /1 1
MS 0),,0),,0 0),,0),,0 0),,0
+al [ ( y Oy 0y O 4 ),()V;g)),;q)JrﬂOy()yg(q))

e3\3 61
1 /1 1 1
0),,(1) 1),,(0) 0,,(1),PS
+s (3ng T gVas Yea ¥ 5%aq Yag'
,2PS
T ﬂ y(l) PS) 4 Yag ]
3e

(4.65)

All quantities in Eqs. 4.63—4.65 refer to ny light flavors and renormalize the
massless off-shell OMEs given in Egs. 4.58, 4.59.

In the next step, we consider an additional heavy quark with mass m. We keep
the external momentum artificially off—shell for the moment, in order to deal with
the UV-singularities only. For the additional massive quark, one has to account
for the renormalization of the coupling constant we defined in Eqgs. 4.52, 4.53. The
Z—factors including one massive quark are then obtained by taking Eqgs. 4.63—4.65
at (ny + 1) flavors and performing the scheme transformation given in (4.56). The
emergence of SaMOM in Z;; is due to the finite mass effects and cancels singularities

which emerge for real radiation and virtual processes at p> — 0. Thus one obtains

up to 0(aMOM3)
(0
(aMOM ny+ LMZ):(SU i\/lOM l;
mom2[ Ly 1 oy o MOM,, (0) Ll o o )
+a e 2%} V,] + 2yll J/lj + Bo yl

3flp 1 1 0
+a§v10M |:; (_57/( ) (SaMOMVls) (SaMOMyl(j ))

1 1 0 0
—2( ,303/,( )+ 28aMOMﬁ0Vl( )+ /313/,( :
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mMoM, O 0 , 1m0 1 o o
+8as 1y vy T xVa Yy T 2V Y )

3 6
+i(_‘_1ﬁz O _ g0 10 0 (0)) (4.66)
2\73 07Yij 0Yi1 Vij 6in Yik Yij )| :
and
y(O),NS
—~1,NS, MOM 2y _ MOM Yqq
qu (a, o+ 1Lu)=1—ag Y
mom2[ L/ 1 (yns MOM_,(0),NS
a0 (g )
1 1 2
+ 2 (B + 52"
€ 2
mom3[ L1 a)Ns _ ¢ MOM._ (1)NS _ 5 MOM.,0).NS
ta; g(_qu(q) = 8aiPMy gy NS = 8aiPMy )
1 /4
+ (3" + 200 P
1 1 2
1o (NS 1 (0),NS. (1),NS MOM, (0),NS
t3PYag Tt TVag T Ve F 45T Vg )
1 4 2 1 3
4 (589N = N - @) | e
Z—I,PS(aMOM ne 41 2)_aMOM2 l _l (1),PS +i l 0. (0)
aq s T L) =4 e\ 2% 22\ Yas Vsq
3[1, 1
+a§WOM [g(_qu((zi),Ps . aai\fIIOMyq(Lli),PS)
1 /1 1 1
—(Z,©@©, M0 4 20,0 4 =, 0),,0),PS
T2 (6 ag Yea + 3Vea Yag T 5Vaq Yag
4 1),PS MOM_ (0). (0
+§'30Vq(q)’ +dayg) Vq(g)yz;q))
1 1 1
(2,000 _ ~, 0,0, (0 _ 0),,00)
T3 ( 3Yaz Vea Yag — gVsq Yag Vsg — PoYag Veq )]
(4.68)
The above equations are given for n s + 1 flavors. One re-derives the expressions

for n  light flavors by setting (77 + 1) = : n s and 8aMOM = §aMS. As a next step,

we split the OME:s into a part involving only light flavors and the heavy flavor part
A 2 2 2 MOM : (=P’ MS
Aij(p™,m~, u°, ag ° ,nf+1)=Aij(7,as ,nf)

+Ag(p2,m2,,u2,a§\40M,nf + D). (4.69)
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In (4.69,4.70), the light flavor part depends on a!\TS, since the prescription adopted

for coupling constant renormalization only applies to the massive part. As denotes
any massive OME we consider. The correct UV-renormalization prescription for the
massive contribution is obtained by subtracting from Eq.4.69 the terms applying to
the light part only :

MOM

AiQ'(P2 m?, 12 aMM 4 =2 i HaMM g+ 1, 1%

MO

XAQ(p m? ,u ag Mnf+1)

2 __
- N a4
+ Z,'ll(ainM, ng+1, Mz)Aij(F,ayS, nf)

N 2

— ~ 4

=2 @S g i) A (i ). (4.70)
where
(0.¢]
- —1,(k

z; =8+ D akz; M. 4.71)

k=1

In the limit p? =0, integrals without a scale vanish within dimensional regular-
ization. Hence for the light flavor OME:s only the term §;; remains and one obtains
the UV-finite massive OMEs after expanding in a;

2
MOM(A(l)Q(M )+Z TG 1, ) — 1<1)(nf))

2
+aMoM (AE?Q(M )+ 25" Pws+ 1) = 2P

+ 25" Vg + 1, uHAG (2 2))
M
3 3 1,3 ] 3
+ oM (AEQQ(M )+ 25"+ 1w = 2" V)
+ 2" Vg + 1 )A(”Q(Mz)

+ 2 P+ 1 )A“)Q( 2)) (4.72)
m

The Z—factors at n y +1 flavors refer to Eqs. 4.66—4.68, whereas those at 7 ¢ flavors
correspond to the massless case.
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4.6 Mass Factorization

Finally, we have to remove the collinear singularities contained in A; j» which emerge
in the limit p? = 0. They are absorbed into the parton distribution functions and are
not present in case of the off—shell massless OMEs. As a generic renormalization
formula, generalizing Eqs. 4.58, 4.59, one finds

Aij=Z;" A, F,;jl. (4.73)

The renormalized operator matrix elements are obtained by

2
AZ(55. MMy 1) = A0 (%5 aMOM ny+ I (4.74)
% u?
If all quarks were massless, the identity, [16],

ij= zl.;l. (4.75)
would hold. However, due to the presence of a heavy quark Q, the transition func-
tions I'(n r) refer only to massless sub-graphs. Hence the I'—factors contribute up
to O(asz) only and do not involve the special scheme adopted for the renormaliza-
tion of the coupling. Due to Eq.4.75, they can be read off from Eqs. 4.63—4.65. The

renormalized operator matrix elements are then given by:
Q m? MOM
(Mz,aY ,nf+1)
_ MOM [ »(1).0Q LD 1 (€]
_ (Al] (M )+z (np+1)— (nf))
+ MOMz(A(Z)Q( 5)+2; o+
u
2
-1, -1, A, 0 (m
7" Pnp+ 2" Vg + DA Q(ﬁ)
+[Amg( )+z MO 1 - 2 O] 1<1>(nf))
m2
+ MOM3(A(3)Q( 3)+ 75V + 1)
u
2
-1,3 -1, ~(2),0 (M
2" Pwp + 25 Vg + l)A,((j)’Q(ﬁ)

~1.(2) 21(D),0
+ 25 Dy + DA
(Mz)

+[A(1)Q( )+Zl(])(nf+l) 2"V P o
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2 m 1,2 —-1,(2
[A()Q( 5)+ 2" P02 Y0

L7 -1, (1)(n N 1)A(l) Q(ﬁ)] —1, (1)(nf)) Lo ( MOM4) (4.76)

From (4.76) it is obvious that the renormalization of A S to O (ag’) requires the 1-loop

terms up to O (¢2) and the 2-loop terms up to O(¢), cf. [16, 17, 33-35]. These terms
are calculated in Sect. 4.6. Finally, we transform the coupling constant back into the
MS-—scheme by using Eq.4.55. We do not give the explicit formula here, but present
the individual renormalized OME:s after this transformation in the next Section as
perturbative series in aMS

2 2
o(m NS MS 4 0.(D)
Aij(?a nf—i—l)_S,]—i—a A (Mz,nf—l-l)

2
+aV A3(2)(M2,nf+l)

+a A3<3>(M2,nf+1)+0( ) @.77)

Asstated in Sect. 4.3, one has to use the same scheme when combining the massive
OMEs with the massless Wilson coefficients in the factorization formula (3.16). The
effects of the transformation between the MOM-and MS—scheme are discussed in
Sect. 4.5. The subscript Q was introduced in this Section to make the distinction
between the massless and massive OMEs explicit and will be dropped from now
on, since no confusion is expected. Comparing Eqgs. 4.76 and 4.77, one notices that
the term §;; is not present in the former because it was subtracted together with the
light flavor contributions. However, as one infers from Eq. 3.16 and the discussion
below, this term is necessary when calculating the massive Wilson coefficients in the
asymptotic limit and we therefore have re—introduced it into Eq.4.77.

4.7 General Structure of the Massive Operator
Matrix Elements

In the following, we present the general structure of the unrenormalized and renor-
malized massive operator matrix elements for the specific partonic channels. The
former are expressed as a Laurent—series in € via

(k)

20 m? M2\1e/2 & dy
A;; (F,e, N):(—z) > (4.78)
k=0

"
Additionally, we set

a. =d =

(O8] O] @I+ _ =)
ij i @ =a;;,etc. 4.79)
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The pole terms can all be expressed by known renormalization constants and
lower order contributions to the massive OMESs, which provides us with a strong
check on our calculation. In particular, the complete NLO anomalous dimensions, as
well as their Tr—terms at NNLO, contribute at O (a?). The moments of the O (e)-
terms of the unrenormalized OMEs at the 3-loop level, ai@, are a new result of
this thesis and will be calculated in Section 7, cf. [36]. The O(g) terms at the 2—
loop level, 55,2.), contribute to the non—logarithmic part of the renormalized 3—loop
OMEs and are calculated for general values of N in Section 6, cf. [17, 35]. The pole
terms and the O (80) terms, al.(jz), at 2-loop have been calculated for the first time in
Refs. [16, 34]. The terms involving the quark operator, (2.86, 2.87), were confirmed
in [33] and the terms involving the gluon operator (2.88) by the present work, cf.
[35]. In order to keep up with the notation used in [16, 34], we define the 2—loop
terms ai(.z), El@ after performing mass renormalization in the on—shell-scheme.
This we do not apply for the 3—loop terms. We choose to calculate one—particle
reducible diagrams and therefore have to include external self—energies containing
massive quarks into our calculation. Before presenting the operator matrix elements
up to three loops, we first summarize the necessary self—energy contributions in the
next Section. The remaining (Sects. 4.7.2-4.7.6), contain the general structure of the
unrenormalized and renormalized massive OMEs up to 3—loops. In these Sections,
we always proceed as follows: From Egs. 4.57, 4.76, one predicts the pole terms of
the respective unrenormalized OMEs by demanding that these terms have to cancel
through renormalization. The unrenormalized expressions are then renormalized in
the MOM-scheme. Finally, Eq.4.55 is applied and the renormalized massive OMEs

are presented in the MS—scheme.

4.7.1 Self-Energy Contributions

The gluon and quark self-energy contributions due to heavy quark lines are given by

M1 (p2. i, w2, ) =06 [ =g p® + pyopy | P22 W2 G (480)

o0

f(p?, m?, u? a0 = D" ali® (p?, m?, u?). (4.81)
k=1

S (p? %, W, 4s) = i8S (pt Mm%, 1, dy), (4.82)

A

oo
(ot pta = am Ot p). (4.83)
k=2
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Note, that the quark self—energy contributions start at 2-loop order. These self—
energies are easily calculated using MATAD, [37], cf. Section 7. The expansion coef-
ficients for p? =0 of Egs. 4.82, 4.83 are needed for the calculation of the gluonic and
quarkonic OMEs, respectively. The contributions to the gluon vacuum polarization
for general gauge parameter £ are

o 5) =1 () " (5 en(Z 5))) ash

19(0.55) =10 () (=560 faer escu) wea( o)
-ser+elan(igrie-)
ver(-5 -30)}) + 0w,
(4.85)
19 o, ';L)
=) ([T menn ) v (550

+ :2 [ig (cA _ 6cp)nf Tr + §(35CA B 48CF)

+C/2‘( 781+63§)+712C c
27 g ATF
1
4- 127(@( 101 — 182,) — 62CF)nfTF

2
+ (CA( 37 — 182y) — SOCF)TF

41 3181 & 137
12 2000 B2 0
+C; ( Bttt E 5)
1570 272 R
++CACF(16§3_7) TC ]

10 3203
+nyTr CA( &5+ §2 243)

+ CF(_QQ - lz#)}
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295 35 6361
+TF CA(——Q + ?Cz + %6 )

+Cr(-76 - lcz—zg—f)]

1969 781
+ Ci[4B4 — 2784 + BTy

42799 7 7 3577 ]

+m——§35+ sz-f—mg

—C3+—C2+8—1

1957 89 10633
+CACF<—SB4+36§4— 2 3 }

,[95. 274
+Cr ?4“3 + o5 + O(e),

(4.86)
and for the quark self—energy,

~ 2 nZ\e (2 5 19)
(0.2 ) =1rer () 1242 0(&> 487
( 2 F F(Mz) s+6+ 72+2 +0(7), (487

mz 3¢e/2 1 (32 40 8
=TFCF(*2) (33CA{1 €}+8—2{3TF(nf+2)—CA(§+4§)—§CF}
1[40 454

+- [27TF(nf+2)+CA{§z+ —czs——s} 26CF]

n T{ +64}+T{8 +604}
nglry58 Py F3é'2 31

17 5 1879 7 407
+CA{3§ *é“z-i-ﬁ-i- =036 — *Czé—ﬁg}

335
+Cp{ 843 — & — Tg}) + O (¢),

(4.88)
see also [4, 38, 39]. In Eq.4.86 the constant

5 2, 13 1
Bi=—4n’ @)+ 1@~ Su+ 16Lz4(§) ~ —1.762800087 ... (4.89)

appears due to genuine massive effects, cf. [40—44].
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NS
4.7.2 Aqq’Q

The lowest non—trivial NS—contribution is of O(af),

(2),NS ?AG)’NS

NS _ 2
A =l+asdg o T4 40

49.0 + 0(ah. (4.90)

The expansion coefficients are obtained in the MOM-scheme from the bare quanti-
ties, using Eqgs. 4.57, 4.76. After mass—and coupling constant renormalization, the
OME:s are given by

(2),NS,MOM __ 2(2),NS,MOM —1,(2),NS —1,(2),NS
Ago =AL0 +Z, AN 4+ 1) -z @NS( ), (4.91)

(3),NS,MOM __ 2(3),NS,MOM
Aqq,Q - Aqq,Q

+ 2, DNy + DA

+ 2 ONS (1) = 2 LONS

(2),NS,MOM
qq.Q

1 (2),NS,MOM —-1,(2),NS —1,(2),NS —1,(1 )
+ [Aqq,Q +Z4q Oy 1) - Zyq @ (”f)] Lyq D(ny).
(4.92)

From (4.57, 4.76, 4.91, 4.92), one predicts the pole terms of the unrenormalized
OME. At second and third order they read

N 0
2(2).NS (mz)s (50,qu(q)

Agq0 =2

)7(1)’NS (2),NS (2),NS
99 , —(2),
2 + +a +aqq’Q 8), (4.93)

&2 e 99.Q

AONS a2y Ayl B o
94.0 :(_) T 33

7
1).NS . (1).NS
1 (27/!1(11) Bo.o 47/q(q)
T2 3 3

(Bo+280.0)

[ﬂo + ﬂo,Q]

82
0
261,070
3

1 37(2)’NS (2).NS )
q49 s 0
+g( a5 | Bo+ Boo | + 1)

0
Vq(q) BoBo, o2
P

—1) A 3),NS
— Smg )yq(}[)’NS) + a;q)’Q ] (4.94)

-1
+ —26m! ’ﬂo,qu(f}))

0
— 23mi )ﬂ(), 0 J/q(g)

Note, that we have already used the general structure of the unrenormalized lower
order OME in the evaluation of the O (&f) term, as we will always do in the following.
Using Eqgs. 4.57, 4.91, 4.92, one can renormalize the above expressions. In addition,
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we finally transform back to the MS-—scheme using Eq.4.55. Thus one obtains the
renormalized expansion coefficients of Eq.4.90

_ 0) 2. 5().NS 2 (0)
A@NsMs _ Bo.0Yag ln2<m )+)/qq ln(m_2)+a(2),NS_/30,Qqu
"

4.0 4 uZ ) 9.0 L (4.95)

(3).NS,MS Vq(g)ﬂo 0 5 (m?
AQ e = Lo (,30+2,30,Q)1n (F)

1 R m2
# {2 o — 27 (0 o) + proniy ()

L 2),NS 1
# 3 7NS — (102° ~ ot or9) o+ o) + 1Y B

2 0)
m —_(2).NS 0.2  Yaq BoBo,o&3
x m(?) +dagg o (Bo+ Po.o) — Vq(q)ﬁl,Q -

6
(1),NS
Yaq  Bo,ol2 () 0 (0) ~(1),NS
- = 2emy Bo.ovsy +8my Pl
(=) (2),NS (3).NS
+28m1 A4q.0 +aqq,Q ’

(4.96)

Note that in the NS—case, one is generically provided with even and odd moments

due to a Ward—identity relating the results in the polarized and unpolarized case. The

former refer to the anomalous dimensions )/q'\ijs’Jr and the latter to yq'\ﬁis’ ", respectively,

as given in Eqs. 3.5, 3.7 and Eqs. 3.6, 3.8 in Ref. [45]. The relations above also apply

to other twist—2 non-singlet massive OMEs, as to transversity, for which the 2- and
3—loop heavy flavor corrections are given in Section 9, cf. also [46].

PS PS
4.7.3 AQq and Aqq’Q

There are two different PS—contributions, cf. the discussion below Eq. 3.18,

2),PS 3),PS
ARS =a?AQ)™ +alAQN™S + 0(a)), (4.97)
3),PS
A o=alAy o + 0(d)). (4.98)

Separating these contributions is not straightforward, since the generic renor-
malization formula for operator renormalization and mass factorization, Eq.4.76,
applies to the sum of these terms only. At O(asz), this problem does not occur and
renormalization proceeds in the MOM-scheme via
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(2),PS,;MOM __ 7(2),PS,MOM ~1,(2),PS ~1,(2),PS
Ab, =AG, + 2, PPy + 1) = 2, PPy
7 (1),MO — — _
RGN+ Zg Vs 4 1) = 25V P V.
(4.99)
The unrenormalized expression is given by
AOPS ey 0,0 5(1PS
(M _ Yqg Vgq 99 2.PS | —(2),PS
Ag, _(Mz) ( S+ T — b ag) ™S +ay, s). (4.100)
The renormalized result in the MS—scheme reads
__ ~(0) . (0) ~(1),PS ~(0) (0)
A@.PSMS _ _ Yag Vsq lnz(m_z) i Yaq ln(m_z) +a@PS Yag Vgq ¢
Qq - 3 2 ) 12 Qq g °
(4.101)

The corresponding renormalization relation at third order is given by

(3),PS,MOM
AQq

+A(3),PS,MOM_A(3),PS,MOM+A(3),PS,MOM
]

qq.Q qq.Q
+ Zq—ql,(?)),PS(nf + 1) _ Zq—ql,(?!),PS(nf)

~1.() ~(2),PS,MOM —1.() ~(2),MOM
+ qu (nf + 1)AQq + qu (nf + l)qu)Q

F()H,MOM | _ _
+ [A(Q; +Zgg oy 1) - qul'(l)(”f)]rgql'(z)(”f)

+(2),PS,.MOM -1,(2),PS -1,(2),PS —1,(1
+ 4G, + Zg Oy 4+ 1) = 2o OPS ) [P V)

A@MOM | Z-1.2), -1, . —1La (1),MOM
+[AQg + 2P+ 1) = 2P np) + 2, Vg + 1) Ay,

—1.(1 (1),MOM [~—1,(1
+Z; Oy + DAY ]rgq D).

(4.102)

Taking into account the structure of the UV- and collinear singularities of the

contributing Feynman—diagrams, these two contributions can be separated. For the
bare quantities we obtain

ABLPS 2\ 3e/2[ 90 0
— ) )
AQq - (F) |: (ygg - yqq + 6:30 + 16,30,Q)

6e3

~(1),PS 0) ~ (1)
1 _‘””L[ﬁﬁﬁo ]_M
) 3 0 3

6
~(2),PS 2(2),PS
1(y,}q> 1)

- (0)
Y. N — o~
+ T ) iy om0

Z — 94 50,2 0,2
+ € 3 f 3 T Vag 9gq.0 ~ Yeq Y0g
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),PS Pas Veq &2
—4(0 + o.glalzy ™S — T2y — O 4+ 6|

16
0)50).,0) _ ¢ (=D ~(1),PS (3),PS
M Yag Veq —OMY Vg ) Tagg |
(4.103)
2(3).PS w32 [ 299,08, 5 1
_ - > - ~(1),PS 5(0) 5 (1)
Agq.0 _”f(ﬂz) 363 T 32 (quq Po.o + Vag Veq )
2(2),PS ~(0)_(0) 3).PS
1 (Vqq 4 50,0  YagVeq Bo.o%2 " %4.0
e\ 3 as%a0 4 ny
(4.104)

The renormalized terms in the MS—scheme are given by

3PSHS_ Pag Vs [0 0 3(m
Aoy =legg — Yaq +6ﬂo+16ﬂo,Q]1n (ﬁ)

1 m’
I -a).ps SO (S _ o, MY _ o, 050 42 (2
+3 [ 4Paq (ﬂo + ,30,Q> + Vge (ng Yeq ) Vsq Vag ] In (MZ)

1 "
= )es@2),PS _ =(2),PS _ 2),PS
+ 16 [8)/(1(] Snf)/qq 32aQq (/30 + ﬂOaQ)

~0) 2 o, 0,2 _ 50,0
+8%4¢ gq.0 — 8Veq 90 ~ Vag Veq £2
0 0 m?
x (v = i) +6B0 + SﬂoﬁQ)] ()
_(),PS e
+4(Bo + Po.)agy  +yvay,
(0) ~(0) ~(0) (1)
~(0)=(2) Yea Yag $3(_© _ ) Yag Vgq &2
~Vag 9gq.0 T 48 2¢ ~ Yqq T0B0)+ 16

(1) »(0) ,,(0) (0) ~(1),PS (=1 _(2),PS (3).PS
—&m; Vag Yaq + dm, Vaq + 28m, ag, ~ta .

(4.105)

[SS]

- ©) 50 P
3).PSMS | Veq Vag Bo,o | 3(m L -.ps S0 51 ) 102 (™
Aggio =01 [12 ' (7) + 5 (4745 P00 + 7407 ) (75)

1/ 4 m?
5(2),PS | 5(0) @ 0
+ 1( Yag T Vg {zagq»Q Yeq ﬂO’QQ}) ln(Mz)

0) ~(0) ~(1),PS
_ 5070 Yeq Vg Bo.ol  Vaq Po.ol2 4 a®PS
Yag %eq.0 12 4 %q,0 -

(4.106)
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The OME A, is the most complex expression. As in the PS—case, there are two
different contributions

Agg=a,Ay) +alAG) +alAG) + 0(a)). (4.107)
Aggo=alAL) + 0(a)). (4.108)

In the MOM-scheme the 1-and 2-loop contributions obey the following relations

(1),MOM ~(1),MOM —1,(1 —1,(1
Aoy = Ay, + 2 Vg +1) =2, Py, (4.109)

(2),MOM ~(2),MOM —1,(2 —1,(2
Aoy = Ao, + 2 Pp+1) -2, Py

_ ~(1),MOM — ~(1),MOM

+ Z Oy + DA TN + 2 Vny + DAY)
~(1),MOM — _ _

+[AGNM + 7 Og + D) = 2 O p et V).

(4.110)
The unrenormalized terms are given by

A2y e2pl0 O roeni
A :(—) Yas_ —’(—) , 4111
0:=(33) el 2253 @110

2@ p2\e[ PP 2D _ 25D 5©
_ _ © _ 0 as 1 Yag O
Age = (Mz) [ 72 (ygg Yaq +2Po+ 4/30.,Q) T e Tag,

5 (0)
050 _ Yas Po.ol
1

—ém a2 2

)9(0) _ ?(;g)ﬂo,géz)}
q8 12 '
(4.112)
Note that we have already made the one—particle reducible contributions to
Eq.4.112 explicit, which are given by the LO—term multiplied with the 1-loop gluon—
self energy, cf. Eq.4.84. Furthermore, Eq.4.112 already contains terms in the O (¢°)
and O (e) expressions which result from mass renormalization. At this stage of the
renormalization procedure they should not be present, however, we have included
them here in order to have the same notation as in Refs. [16, 34] at the 2—loop level.
The renormalized terms then become in the MS—scheme

—(2) (1)
+ s(an —&m,

OV Tae . (m*
AD: =—1n(—), (4.113)
Qg 2 w2
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_ ~(0) 2 ~ (1) 2
@QMS_ _ Yag | ) _ 0 2(M7N L Yas 4, (™
Agg  =— g |:Vgg ~Yqq +2B0+4Po,o |In 2 T In 02
~(0)
@ | Yag &2 ( o _ 0
Tag T g (Vgg ~ Yqq +2'30)'
(4.114)

The generic renormalization relation at the 3—loop level is given by

A(3),MOM

o +A(3),MOM=A(3),MOM 2 (3),MOM

q8,0 0g + Aqng
-1,(3 A -1,(3 ) —-1,2 i 1 (1),MOM
+Zyg Dy + 1)~ Zyg D) + Z4e ( )(”.f + DA

— 1(2),MOM — +(1),MOM
+ 2Oy + DAL M+ 2. @0y + DAY,

— 7(2),MOM
+Zg Vg + DAY

[ ~(1),MOM — - -
n _A(Q; + 2 Dng +1) - qul,(l)(nf)]rggl,(z)(,lf)

[ ~(2),MOM — -
AN+ 2y P+ 1) = 2, Png)

(1), MOM

—1,1 —1,(1
+ 2,0 Oy + DAY ]rgg D p)

~1,(1) (1), MOM
—i—qu (nf—i—l)AQg

4 A(QZZI,PS,MOM+ Zq_ql"(z)’PS(}’lf +1)— Zq—ql,(z),Ps(nf)]Fq—gl,(l)(nf)
[ 2(2),NS,MOM —1.(2).NS —~1,(2).NS -1,
+ _Aqq’Q + 24 DNy 1) - Z4q @ (nf):qug Dnyp).

(4.115)
Similar to the PS—case, the different contributions can be separated and one
obtains the following unrenormalized results

O 2\ 7Y ©) 40 , O 0 0) P
Agg= (ﬁ) [ 663 (("f + Dvgq Yag + Yaq [qu — 27ge — 6B0 — 8ﬂO,Q] +86)

0 0
+2860,0B0 + 2483 o + vig [yg(g) +6B0 + 14,30,Q])

I (.a 0 0
+ (yq(g’ (214 — 2748 — 860 — 1000

~(0)[ ~(1),PS 1),NS | ~(1),NS
+P4g. [Vq(q) (1= 2n 7} + 78" + 744

~(1 1
+ 2V§g) - Vég) —2p1 — 2,31,Q]
—1) ~(0 0 0
+ 6740 [vg — vig + 3P0+ SﬂO,Q])

1 (752 Yot O (2),PS
(M B a2 g - ey

2 0 0
+agy]vid — vée — 4Bo —460.0]
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+

~(0)
Yag 827 (0) [ () _ _(0)
16 [Vgg [zyqq —Ygg — 680 + 2/30,Q}

0) 5 (0 0 0
— (g + Dygg ag +74q {_Vq(q) + 6/30]

— 883 +4B0.0Po + 24,33’Q]
(-1)

Sm (1 —1) (0 0) (0
5 [—qu(g) + 35m§ ))/q(g) + 26m(1 )yq(g)]

0) ~(0 0 0
+ om0 p Y [yg(g) — v 1280+ 4ﬁ0,Q]

+

- smg—wp;?) + aS;]. (4.116)

23) M2\ 3e/2 ﬁq(g)
— 0) 1, (0) o _ ., 0
Ags.0 _”f(ﬁ) [ 653 (ng Yag + zﬂo’Q[Vgg Yag T Z/BOD

~(0) ~ (1)
L (Yag [5~) | ~1),PS ~(1),NS Yag Po.o
T2 (T [ZVgg TVq T T 2Weq T 4ﬂl-Q] T

2(2)
L(vag | ~of @ @.NS | o)
+g( 3 T Vag [agg»Q_aqq.Q +'BLQ]

- (0)
Yag 21 (0) 50) ©) _ ,(0)
16 [ng Yag T 2'80~Q{Vgg ~Yaq

a®

+2/30}]) + %Q]

The renormalized expressions are

4.117)

__ 50
3)MS _ Yag 0)5 (0 0 (,,0© 0
Ags = ag {(”f +D¥gq Vag +7ig (Vg(g) — 2749 +6fo + 14/30@)

2
m
+ J/q(g) (yq<2> — 680 — Sﬁo,Q) + 863 +28B0.0B0 + 24;35@] 1n3(u2)

1
S (,0) _ ., 0) _ _ 50) (D _ L, (D
T3 {ng (qu Veg — 4Po 6ﬂ04Q) BT (Vgg Yeg
~(1),PS (1),NS | »(1),NS 2 m?
(=)0 + g 4 04 = 2B _zﬂl’Q)}ln (F)

e 5@ a<Q2>
a8 a8 8 0 0
T T () 4 40)

Pag (@ s\, Tag 2 ©0)50)
q8 s q8 A
+ T(“gg.,Q g ) + 176(_(’” + D¥eq Vas

+ 79 [209 = 79 — 680 — 60,0 — 480120 + 30,0
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e [+ oo a0 m(25)

—(2) 0 0 ~ (0 —(2),PS _ —(2)
T g, (Vgsg) ~ Vg T 4o+ 4ﬁ°’Q) + 75 (”faQq - agqu)
P4 ©3 0) 50 o[, © 0
18 &3 N
522 (g + Dy 970 + v @[ — 2045 + 680~ 280.0

+ 79[ — 680] + 883 — 40fo.0 — 2483 o )

+

Pag Po.otr | Tae 1) _ AMNS _ _()NS _ ~(1),PS
+ ] 16 (Vgg “Yag T VYed T Vaqd' +2'81+2ﬁ1’9)
sm{”" @ | 5O ) M
4+ — (16an + Vyg [—248m1 —85my’ — &2fo — 9§2ﬁo,Q])
sm” | ©) 50 M50 (0 0
+ > (zyq(g) — dm, Vq(g)) +dm Vq(g) (Vq(q) - ngg) 2P0 - 4ﬁ0~Q)
+8m§0))7q(2) +a82,- (4.118)

_ ~(0) 2
GMS _ | Yag | )50 © _ 0 3(™
Ags.0 _”f[ﬂ Veq Yoz T 2B0.0\Veg = Vgq +2P0) (10 w2
o080 0 4 9O (508 _ s L 5mog V2™
g | “Vas P02 T Yag \Yaq Yaq Veg 1.0 2
(-
5(2) 50) (,(2) (2),NS (D
+ G R (agg.Q ~%q.0 +51,Q)
?(9) 0) (0 0 0 m*
=T (1072 + 280019 i +2]) | m (%)
A0 (=2,NS _ —2) _ ()
RRLT: (aqq,Q Aeg.0 'BI»Q)
Pag 0) 50 0 0
RYTRE (J{éq) )/q(g) + Zﬁo,Q[V;g) - )/q([,) + Zﬁo])
3
82 (500 51).PS | 45D %s.0
- %()’qg Yag ot 2V 'BO’Q) + ny |
4.119)
4.7.5 Agq,0
The gg—contributions start at O(asz),
2 3
Ag‘]vQZaSzA;q),Q +33Aéq),g +0(ay). (4.120)

The renormalization formulas in the MOM-scheme read
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(2),MOM __ 2(2),MOM “LQ) L@
Agrlo TAglo T Zgg gt 1) = Zp N ny)

4 (1),MOM —1,(1 1,1 ~1La
+(Agg,Q +Zgg ()(nf+1)_zgg ()(nf))rgq (), (4121)

(3),MOM __ 7(3),MOM -1.3),. -1.03),. -L(, ~(2),MOM
qu,Q _qu,Q +Zgg (np+1)—Zgg'(ny)+ Zgg (nyg +1)qu,Q
+Zg) Pny + DAG)MOM
~(1),MOM —1,(1 —1,(1 —1,2
+ AN+ 7 Vo + 1) = 2 Vi Jreg P

+[AD M + 2 P g+ 1) = 2 Pap Jrgd V)
+ [A(Z),MOM

-1.(2 —1.(2)
28.0 +Zgg (nf+1)_Zgg (nf)

t+ Zgg Vg + DAL TN + 25 Ot + DAGMOM e V),
(4.122)
while the unrenormalized expressions are
~(2) YN 260.0 );(l)
_ (" 0 0 Yea @ -
Agg.0= (Mz) [ 2 Vea T o Tqot agq»Qg}’ (4.123)

;O N2 v (a0, [0 O
Agg0= (_2) i_ 363 (ng Ygg T [qu ~ Vgg T 1060+ 24/30,Q]:30,Q)

~ (1)
1 v,
+ (v b + L [19 - 19 - 480 - opo.0]
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Yea [~().NS | ~(1).PS _ (D)
+5 [J/qq tVeq T T Vee T 2,31,Q]
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— 48m )ﬁo,ngf‘q”)

~(2)
1 (Veq (@) ) 0)
T3 (T + agq,Q[Vgg ~Vqq —6Fo.0 ~ 450]

(0)[ (2).NS 2.PS _ () (1

(0)
4gq.0 T 90q agg,Q] + V4 Pio

0)
Veq §2 R
B[94 + Po.o (s = 2 +1080)]

+Yeq
+

—1) A~ 0 3
—om{ 5 — 45m o ory ) + a3 |

(4.124)
The contributions to the renormalized operator matrix element are given by

_ (0) ~ (1) 0)
A(2),MS_ﬂO,Qng lnz(m—z)-{—yglln(m—z)—i—a(z) Bo.0Veq

8.0 T 2 ) u2 8.0 9 £, (4.125)
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2
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e Pro oa \Yea Vag T |Yag ~ Veg + 1080 | Bo.o
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— 2280022 4 2sm{Val o+ sm V5 + 4sm ooy D +al) .
(4.126)
4.7.6 Agg 0
The gg—contributions start at O(a?),
2 3
AggQ—l—I—asA(l)Q—i—azA()Q+a3A()Q—i—O(a) (4.127)
The corresponding renormalization formulas read in the MOM-scheme
AL EOM= A0 EOM 4 2 Dy +1) — 2, V), (4.128)
*(2),MOM
ALIOM = A IOM 4 28Dy +1) = Zg P (n )
+ Z L, (1)(nf + 1)A(1) ,MOM + Z—l,(l)(n 1)A(l) ,MOM
+ [Ag;;gOM + 25 V0 + 1) = Zg D [T V),
(4.129)

(3),MOM __ 7(3),MOM 1,3 -1,
AggQ AggQ + 2 ()(nf+1) ()(nf)

+7, 1, (2)(nf + 1)A(1> MOM z;, 1, (1)(nf i 1)A(z) .MOM

l,(2) 2 (1),MOM 1,(1) ~(2),MOM
T Zgg Ty + DAY, +Zgg "y + DAG,
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+[AD M + 7 Vs + 1) = 25 Vi [rgd P
+[Ag;glOM+Z e D+ 1) = 25 @Pnp)
+ Zgg Oty +10aAGMM 4z D -+1)A;2’510M] D

(2),MOM

+[AYM + 75 Py + 1) = 7 P p|rgd P,

(4.130)
The general structure of the unrenormalized 1-loop result is then given by

AR 2(Veg | ) —(1) 2=(1)
Agg»Q=(?) (_+aggQ+8aggQ+8 g, Q) (4.131)
One obtains
A1) 2\ e/2 2B0.0 G e\
Age.0= (F) (-2 e (22 (5) )- (4.132)
i=2

Using Eq.4.132, the 2-loop term is given by

2@ el 1 [ 050 ©
Age.0= (F) 22 {ng Yaz + 2Po, Q( + 20 + 4po, Q)}
7 D
+ 45m1 ﬂo 0 ®) ()
2 +a ggQ+28m IBOQ+:30 Q§2
_@) ) Bi.0%
+8[ Age o +28m; " fo.o + 6 ]i|

(4.133)

Again, we have made explicit one—particle reducible contributions and terms

stemming from mass renormalization in order to refer to the notation of Refs. [16,
34], cf. the discussion below (4.112). The 3-loop contribution becomes

203) 201 v o 0
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_ 2y4¢ Bo.o [ 4Bo,0
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(4.134)
The renormalized results are
e 2
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ADMS _ gy o1n (?) 4.135)
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~(0
. Vq(g)Q

M 4 5w 4 Pool sy 5 ) g
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Chapter 5
Representation in Different
Renormalization Schemes

As outlined in Chap. 4, there are different obvious possibilities to choose a scheme for
the renormalization of the mass and the coupling constant. Concerning the coupling
constant, we intermediately worked in a MOM-scheme, which derives from the
condition that the external gluon lines have to be kept on—shell. In the end, we
transformed back to the MS—description via., Eq. 4.55, since this is the commonly
used renormalization scheme. If masses are involved, it is useful to renormalize them
in the on—mass—shell-scheme, as it was done in the previous Section. In this scheme,
one defines the renormalized mass m as the pole of the quark propagator. In this
Section, we present the relations required to transform the renormalized results from
Sect. 4.7 into the different, related schemes. In Sect. 5.1, we show how these scheme
transformations affect the NLO results. Denoting the MS—mass by 7, there are in

addition to the {am, m}-scheme adopted in Sect. 4.7 the following schemes

{aivIOM, m} , {aivIOM, m} , [a%\/IS’ m] . (5.1

In case of mass renormalization in the MS-scheme, Eq. 4.27 becomes

= ZMm = m[l + a,m, + a28ma] + 0(@2). (5.2)

The corresponding coefficients read, [1],

e Y
i = ~Cp = : (5.3)
& &
C C 3 97 10
Sty = 875 (18Cr —22C4 + 8T (ny + 1)) + TF <Ecp + o Ca— 5 Trlng + 1))
_(-2) (D)
_om  m (5.4)
& I3
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One notices that the following relations hold between the expansion coefficients
in & of the on—shell- and MS—terms

sy = omi~", (5.5)
smy 2 = omy?, (5.6)
sms V) =omSY —sm{TVem'® +28m” (8o + Bo. ) (5.7)

One has to be careful, since the choice of this scheme also affects the renormal-
ization constant of the coupling in the MOM-scheme. This is due to the fact that in
Eq. 4.42 mass renormalization had been performed in the on-shell-scheme. Going
through the same steps as in Eqs. 4.42-4.47, but using the MS—mass, we obtain for
Z, in the MOM-scheme.

2
ZMOMZ (o 1, 2 ) = 1 +aMOM(M2)[S(ﬁo(nf)-i—ﬂo,gf(&))]

+ g + =5 (Boln ) + fo.0 f (e))?
—2\°¢
+ 2o =L fe)+ - . (mz)
"

1 2 3
< (Fro+ By + B, g)} + 0@,

MOM2, 2 /3] (l’lf) 4
; (17 [78

L (5.8)

where in the term f (¢), cf. Eq. 4.44, the MS—mass has to be used. The coefficients

differing from the on—shell-scheme in the above equation are given by, cf. Egs. 4.50
and 4.51

Bi.o = Bi.o — 2P0, Qﬁm( b (5.9)
1

Bip = B) —260.05m”, (5.10)
2

Brp =80~ ﬂo e (88 D 4 s 1);“2) (5.11)

The transformation formulas between the different schemes follow from the con-
dition that the unrenormalized terms are equal.
In order to transform from the {aS , m}—scheme to the {aMOM

inverse of Eq. 4.55

m}-scheme, the
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MS, 2 MOM m*\ \om
Cls (m ) = as 1 —+ ﬂon In F as

2 2
" {ﬁg’anz(u )ﬂ31 an(u )+ﬁ(l)} MOMZ}
(5.12)

is used. For the transformation to the {ays, m}—scheme one obtains

MS MS sm{™" (i ©
m(a;”) =ma, ) 1+ 14— 5 In MZ —om ay
sm™P _ m?
+ [ é [2,30 + 20,0 + 5m(1 1)] In? =z

1
+3 [ sm'” (2,30 +2B0.9 — 36m\” “)

—2
(12 (-1 m
+ dm — 28m, ]ln(—uz)

+5miD [8m( D _2p, —2ﬁ0,Q]

—2
+ 8m§O) [8m§_1) + 3m§°)] - 8’"%0)5} aivls ) (5.13)

Finally, the transformation to the {aMOM m} is achieved via.,

I =2
m
ays( 2) ai\/IOM |:1 ﬂO, an ( ’uz ) ai\/IOM

iz —2
1 m
{ﬁo oln (u ) (ﬂl 0 — Bo,gdm\” )ln(uz)
+ ﬁ(l) —25m§0)5og] MOM :|’ (5.14)

and

(=D —2
om m
ma MS) — 7i(a MOM)( {_ é ln<M2)—8m§0)}a£AOM
(=1 —
dm, m
. (=1)
+[ 3 [2/30 2p0,0 + 6m; ] n (—Mz)

1
+ 5[ m{” (2,30 +4po.0 — 38m| ”)
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2
+8m§71)2—28 (1)]ln( 2)
"

+5miD [3m< D _2p, —2,30,Q]

+ om© [5m§‘”+3 (O)] Sm §°>}a§“0M2) (5.15)

The expressions for the OME:s in different schemes are then obtained by inserting
the relations (5.12)—(5.15) into the general expression (4.77) and expanding in the
coupling constant.

5.1 Scheme Dependence at NLO

Finally, we would like to comment on how the factorization formulas for the heavy
flavor Wilson coefficients, (3.26)—(3.30), have to be applied to obtain a complete
description. Here, the renormalization of the coupling constant has to be carried out
in the same way for all quantities contributing. The general factorization formula
(3.16) holds only for completely inclusive quantities, including radiative corrections
containing heavy quark loops, [2].

One has to distinguish one-particle irreducible and reducible diagrams, which both
contribute in the calculation. We would like to remind the reader of the background
of this aspect. If one evaluates the heavy-quark Wilson coefficients, diagrams of
the type shown in Fig. 5.1 may appear as well. Diagram (a) contains a virtual heavy
quark loop correction to the gluon propagator in the initial state and contributes to the
terms L, ; and Hy ;, respectively, depending on whether a light or heavy quark pair is
produced in the final state. Diagrams (b), (c) contribute to LNS and contain radiative
corrections to the gluon propagator due to heavy quarks as well The latter diagrams
contribute to F(, 1, (x, Q?) in the inclusive case, but are absent in the semi-inclusive
Q Q- section. The same holds for Diagram (a) if a gg—pair is produced. In Refs.
[3, 4], the coupling constant was renormalized in the MOM-scheme by absorbing
the contributions of diagram (a) into the coupling constant, as a consequence of
which the term L, ; appears for the first time at O(ag). This can be made explicit
by considering the complete gluonic Wilson coefficient up to O(af), including one
heavy quark, cf. Egs. 3.28 and 3.30,

Coonyngp)+Lgornyng+ 1)+ Hyoy(ng+1)
MS 1),MS 1
=S [A(Qi, S+ CN, Ly + 1)]
s

—2 JE—
4GS I:A(Z),MSSZ+A(1)MSC(122NLS)( g+ 1)

(1), MS ~(1
+a0M¢ (ZL)(nf+1)+cg(2L)(nf+1)] (5.16)
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(a) (b) (c)

O

9(9) 9(9)

Fig.5.1 O(asz) virtual heavy quark corrections

The above equation is given in the MS—scheme , and the structure of the OMEs
can be inferred from Eqs. 4.113 and 4.114. Here, diagram (a) gives a contribution,
corresponding exactly to the color factor T%. The transformation to the MOM-
scheme for ay, cf. Eqgs. 4.55 and 4.56, yields

Cg,(g’[‘)(nf) + Lg,(g’L)(nf + 1)+ Hg1(2’L)(nf +1)

MOM 1),MS 1
- [A(Qi) 8 + c;zu)(nf + 1)]

_ 2 _
2 2),MS m ),MS
+aktom [MQ; 52+ﬁO,Qm(lﬂ)Ag2; 5

(1),MS ~(1),NS , (1),MS ~(1)
+AQg Cq’(sz)(i’lf‘i‘])‘f'Agg’Q Cg,(Z,L)(nf+l)

2
m
+ ﬁO’an(,ﬂ) Cotay (g + D+ Cot (g + 1)} )]

By using the general structure of the renormalized OMEs, Eqs. 4.113, 4.114 and
4.135 , one notices that all contributions due to diagram (a) cancel in the MOM-
scheme, i.e., the color factor T% does not occur at the two—loop level. Thus the
factorization formula reads

Coo(ng) +Lgoyng+ 1)+ Hgopng+1)

1), MOM 1
= gMOM [A<Qi, b+ Cy  (ng + 1)]

2 2),MOM 1),MOM ~(1),NS 2
+ gMOM [A(Q;, 52+ AQMMCEN NS g+ )+ €y (g + 1)].
(5.18)

Splitting up Eq. 5.18 into Hy ; and L ;, one observes that L, ; vanishes at O (asz)
and the term H, ; is the one calculated in Ref. [5]. This is the asymptotic expression
of the gluonic heavy flavor Wilson coefficient as calculated in Refs. [3, 4]. Note
that the observed cancellation was due to the fact that the term Ag;), 0 receives only
contributions from the heavy quark loops of the gluon—self energy, which also enters
into the definition of the MOM-scheme. It is not clear whether this can be achieved
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at the three—loop level as well, i.e., transforming the general inclusive factorization
formula (3.16) in such a way that only the contributions due to heavy flavors in the
final state remain. Therefore one should use these asymptotic expressions only for
completely inclusive analyzes, where heavy and light flavors are treated together. This
approach has also been adopted in Ref. [2] for the renormalization of the massive
OMEs, which was performed in the MS—scheme and not in the MOM-scheme,
as previously in Ref. [5]. The radiative corrections in the NS—case can be treated
in the same manner. Here the scheme transformation affects only the light Wilson
coefficients and not the OME:s at the two—loop level. In the m—scheme, one obtains
the following asymptotic expression up to O(af) from Eqs. 3.21 and 3.26.

MS ~(1),NS
CX g + LY np+1) =1+ ai“scg’zz’m(nf +1)

) —
+ @S [0S g+ s+ O g + D). (5.19)

Transformation to the MOM-scheme yields

NS NS MOM ~(1).NS MOM?2
Cloyp) + L% )y + 1) =1+a) c[([,g“)(nf +1)+a)
2
(2).NS,MOM m (1),NS (2).NS
X |:Aqq,Q (ny+1)é + 'BOlen(Mz)Cq,(Z,L)(”f + 1)+ Cq,(z,L)("f +1)
(5.20)

Note that A(z)"NS, Eq. 4.95, is not affected by this scheme transformation. As
is obvious from Fig. 5.1, the logarithmic term in Eq. 5.20 can therefore only be
attributed to the massless Wilson coefficient. Separating the light from the heavy
part one obtains

2
(2),NS,MOM (2),NS,MOM m
Loown s+ D=4,0 (ny + 12 + fo,gln (H_)
(1).NS ~(2),NS
X Cy oy +1D+Crip(np). (5.21)

This provides the same results as Eqs. 4.23-4.29 of Ref. [5]. These are the asymp-
totic expressions of the NS heavy flavor Wilson coefficients from Refs. [3, 4], where
only the case of Q Q—production in the final state has been considered. Hence the
logarithmic term in Eq. 5.21 just cancels the contributions due to diagrams (b), (c)
in Fig.5.1.
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Chapter 6
Calculation of the Massive Operator Matrix
Elements up to O (afe)

The quarkonic 2-loop massive OMEs A(z) A(z) PS and A(z) have been calculated
for the first time in Ref. [1] to construct asymptotlc express1ons for the NLO heavy
flavor Wilson Coefficients in the limit Q% >> m?, cf. Sect.3.2. The corresponding

gluonic OMEs A% and Ai,z) o were calculated in Ref. [2], where they were used
within a VENS deécription of heavy flavors in high-energy scattering processes,
see Sect. 3.3. In these calculations, the integration-by-parts technique, [3], has been
applied to reduce the number of propagators occurring in the momentum integrals.
Subsequently, the integrals were calculated in z-space, which led to a variety of
multiple integrals of logarithms, partially with complicated arguments. The final
results were given in terms of polylogarithms and Nielsen-integrals, see Appendix
C.4. The quarkonic terms have been confirmed in Ref. [4], cf. also [5], where a
different approach was followed. The calculation was performed in Mellin-N space
and by avoiding the integration-by-parts technique. Using representations in terms
of generalized hypergeometric functions, the integrals could be expressed in terms
of multiple finite and infinite sums with one free parameter, N. The advantage of this
approach is that the evaluation of these sums can be automatized using various tech-
niques, simplifying the calculation. The final result is then obtained in Mellin-space
in terms of nested harmonic sums or Z-sums, cf. [6, 7] and Appendix C.4. An addi-
tional simplification was found since the final result, e.g., for A2 canbe expressed
in terms of two basic harmonic sums only, using algebraic, [8], and structural rela-
tions, [9, 10], between them. This is another example of an observation which has
been made for many different single scale quantities in high-energy physics, namely
that the Mellin-space representation is better suited to the problem than the Z-space
representation.

As has been outlined in Chap.4 , the O(e)-terms of the unrenormalized 2-loop
massive OMEs are needed in the renormalization of the 3-loop contributions. In this
section, we calculate these terms based on the approach advocated in Ref. [4], which
is a new result, [11, 12]. Additionally, we re-calculate the gluonic OMEs up to the
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(89,Q) (g8,Q)

Fig.6.1 Examples for 2-loop diagrams contributing to the massive OMEs. Thick lines heavy quarks,
curly lines gluons, full lines quarks

constant term in ¢ for the first time, cf. [2, 11]. Example diagrams for each OME are
shown in Fig.6.1.

In Sect. 6.1, we explain how the integrals are obtained in terms of finite and infinite
sums using representations in terms of generalized hypergeometric functions, cf.
[13-15] and Appendix C.2. For the calculation of these sums we mainly used the
MATHEMATICA-based program Sigma, [16, 17], which is discussed in Sect.6.2.
The results are presented in Sect. 6.3. Additionally, we make several remarks on the
MOM-scheme, which has to be adopted intermediately for the renormalization of
the coupling constant, cf. Sect.4.4. In Sect. 6.4, different checks of the results are
presented.

6.1 Representation in Terms of Hypergeometric Functions

All diagrams contributing to the massive OMEs are shown in Figures 1-4 in
Ref. [1] and in Figures 3,4 in Ref. [2], respectively. They represent 2-point functions
with on-shell external momentum p, p? = 0. They are expressed in two parameters,
the heavy quark mass m and the Mellin-parameter N. Since the mass can be factored
out of the integrals, the problem effectively contains a single scale. The parameter N
represents the spin of the composite operators, (2.86—2.88), and enters the calculation
via the Feynman-rules for these objects, cf. Appendix B.

Since the external momentum does not appear in the final result, the corresponding
scalar integrals reduce to massive tadpoles if one sets N = 0. In order to explain our
method, we consider first the massive 2-loop tadpole shown in Fig. 6.2, from which
all OMEs can be derived at this order, by attaching two outer legs and inserting the
composite operator in all possible ways, i.e., both on the lines and on the vertices.

In Fig. 6.2, the wavy line is massless and the full lines are massive. Here v; labels
the power of the propagator. We adopt the convention v; _; = v; + ...+ v; etc.
The corresponding dimensionless momentum integral reads in Minkowski-space

Il://deldez @Am)H (1=l p2ynin-p 6.1)

(Am)*0 (k2 — m2yvi (k2 — k3)2 (k3 — m2)»s’

where we have attached a factor (47)*(—1)"123—1 for convenience. Using standard
Feynman-parametrization and Eq.4.3 for momentum integration, one obtains the
following Feynman-parameter integral
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Fig.6.2 Basic 2-loop
massive tadpole
vy v3

L =T Vi3 —4—¢ ld d xl+8/27v2(1 - x)“23*3*8/2yv371(1 _ y)v127378/2

=5 v, o, xay T — vovvi—d—c ,
1, V2,3 0 (4m)E(l —xy)

(6.2)

which belongs to the class of the hypergeometric function 3 F> with argument z =1,
see Appendix C.2. Applying Eq.C.19, one obtains

00
) Si i viz —4—¢6,24+¢/2—vy,v3 —2—¢/2,vip —2—¢/2
Iy =S¢ exp 'Zzis F[l—g,vl,vz,V3,v123—2—8/Z
i =

vio3 —4—¢&,2+4+¢€/2—vy,v
x3F [V;?1123—2—8/2/ ’ 3;1]’

(6.3)
where we have used Eq. 4.8. The term v3 in the argument of the 3 ;> cancels between
nominator and denominator and thus one can use Gauss’s theorem, Eq. C.16, to write
the result in terms of I'-functions

o
—4—g24e/2— —2— /2 3 —2—¢/2 -
I]:F[Vm £,2+¢/2 = vy, v12 £/2, 123 e/ ]Sezexp 3 %81

1—¢2+4+¢/2,v,v3,vi23+vy —4—¢ "
I =

(6.4)

This calculation is of course trivial and Eq.6.4 can be easily checked using
MATAD, cf. Ref. [18] and Sect. 7.2. Next, let us consider the case of arbitrary moments
in presence of the complete numerator structure. Since the final result contains the
factor (A.p)", one cannot set p to zero anymore. This increases the number of prop-
agators and hence the number of Feynman-parameters in Eq.6.2. Additionally, the
terms (A.¢g)? in the integral lead to polynomials in the Feynman-parameters to a
symbolic power in the integral, which can not be integrated trivially. Hence neither
Eq.C.19 nor Gauss’s theorem can be applied anymore in the general case.

However, the structure of the integral in Eq. 6.2 does not change. For any diagram
deriving from the 2-loop tadpole, a general integral of the type

1 acl — b, 1— d 1 1
12=C2// dxdy)C ( )y ( Y) / dZ1.../ dziP (x,y,z1...2i, N)
0 (1 —xy)° 0 0
(6.5)

is obtained. Here P is a rational function of x,y and possibly more parameters zi . . . z;.
N denotes the Mellin-parameter and occurs in some exponents. Note that operator
insertions with more than two legs give rise to additional finite sums in P, see
Appendix B. For fixed values of N, one can expand P and the integral /5 turns
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into a finite sum over integrals of the type I1. The terms v; in these integrals might
have been shifted by integers, but after expanding in ¢, the one-fold infinite sum can
be performed, e.g., using the FORM-based code Summer, [7].

To illustrate the sophistication occurring once one keeps the complete dependence
on N in an example, we consider the scalar integral contributing to A(QZ;, shown in
Fig.6.1. After momentum integration, it reads

_(ApN I —e) (1= u)=*/272 (1 — /2!
“"mm“ﬂmhha/ﬂvﬁw”@”x (I —u+us) =)
x [y + 21 =2V = (1 = wx +upN (6.6)

where we have performed the finite sum already, which stems from the operator
insertion. Here and below, the Feynman-parameter integrals are carried out over
the respective unit-cube. This integral is of the type of Eq.6.5 and the term x-y in
the denominator cancels for fixed values of N. Due to the operator insertion on an
internal vertex, it is one of the more involved integrals in the 2-loop case. For almost
all other integrals, all but two parameters can be integrated automatically, leaving
only a single infinite sum of the type of Eq. 6.3 with N appearing in the parameters
of the hypergeometric function, cf. e.g. [4, 5, 19]. In order to render this example
calculable, suitable variable transformations, as, e.g., given in Ref. [20], are applied,
[4, 5]. Thus one arrives at the following double sum

_ SHAap)N2 g, 2t (N ;
b= Gt ™ 27 W};[(;)“” “ain|

A rori+1-3) __BU—§J+J)F[1—a;j+11]
PG +2=alG+1+5) j L4250

SZ( A )N -2

= @i (B + B+ 0ed].
(6.7)
Note that in our approach no expansion in ¢ is needed until a sum-representation
of the kind of Eq. 6.7 is obtained. Having performed the momentum integrations, the
expressions of almost all diagrams were given in terms of single generalized hyperge-
ometric series 3 F at z = 1, with possibly additional finite summations. These infinite
sums could then be safely expanded in ¢, leading to different kinds of sums depending
on the Mellin-parameter N. The summands are typically products of harmonic sums
with different arguments, weighted by summation parameters and contain hyperge-
ometric terms,1 like binomials or Beta-function factors B(N,i), cf. Eq.C.9. Here i is
a summation-index. In the most difficult cases, double sums as in Eq.6.7 or even
triple sums were obtained, which had to be treated accordingly. In general, these
sums can be expressed in terms of nested harmonic sums and ¢-values. Note that
sums containing Beta-functions with different arguments, e.g. B(i, i), B(N + i, 1),

1 f(k) is hypergeometric in k iff f(k + 1)/f (k) = g(k) for some fixed rational function g(k).
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usually do not lead to harmonic sums in the final result. Some of these sums can be
performed by the existing packages [7, 21, 22]. However, there exists so far no auto-
matic computer program to calculate sums which contain Beta-function factors of
the type B(N,i) and single harmonic sums in the summand. These sums can be calcu-
lated applying analytic methods, as integral representations, and general summation
methods, as encoded in the Sigma package [23-26, 16, 17]. In the next section, we
will present details on this.

Before finishing this section, we give the result in terms of harmonic sums for the
double sum in Eq. 6.7 applying these summation methods. The O (£°) of Eq.6.7 is

needed for the constant term a(ng, cf. Refs. [4, 19]. The linear term in & reads

21— — — =5 (6.8)

1 4N + 1 s 4
13(1)=N[_252*1+253+ S2- NN }

where we adopt the notation to take harmonic sums at argument N, if not stated
otherwise.

6.2 Difference Equations and Infinite Summation

Single scale quantities in renormalizable quantum field theories are most simply
represented in terms of nested harmonic sums, cf. [6, 7] and Appendix C.4, which
holds at least up to 3-loop order for massless Yang—Mills theories and for a wide
class of different processes. This includes the anomalous dimensions and massless
Wilson coefficients for unpolarized and polarized space- and time-like processes to
3-loop order, the Wilson coefficients for the Drell-Yan process and pseudoscalar and
scalar Higgs—boson production in hadron scattering in the heavy quark mass limit,
as well as the soft- and virtual corrections to Bhabha scattering in the on-mass-
shell-scheme to 2-loop order, cf. [27-34]. The corresponding Feynman-parameter
integrals are such that nested harmonic sums appear in a natural way, working in
Mellin space, [9, 10]. Single scale massive quantities at 2 loops, like the unpolarized
and polarized heavy-flavor Wilson coefficients in the region Q% >> m? as considered
in this thesis, belong also to this class, [1, 4, 19, 35-40]. Finite harmonic sums obey
algebraic, cf. [8], and structural relations, [9], which can be used to obtain simplified
expressions and both shorten the calculations and yield compact final results. These
representations have to be mapped to momentum-fraction space to use the respective
quantities in experimental analyzes. This is obtained by an Mellin inverse transform
which requires the analytic continuation of the harmonic sums w.r.t. the Mellin index
N e€C, [9, 10, 41, 42].

Calculating the massive OMEs in Mellin space, new types of infinite sums occur
if compared to massless calculations. In the latter case, summation algorithms as
Summer, [7], Nestedsums, [21], and Xsummer, [22], may be used to calculate the
respective sums. Summer and Xsummer are based on FORM, while Nestedsums
is based on GiNaC, [43]. The new sums which emerge in [4, 12, 37, 19, 39, 40] can
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be calculated in different ways. In Ref. [4, 37], we chose analytic methods and in the
former reference all sums are given which are needed to calculate the constant term of
the massive OMEs. Few of these sums can be calculated using general theorems, as
Gauss’ theorem, (C.16), Dixon’s theorem, [13], or summation tables in the literature,
cf. [7, 44, 45] (Bliimlein, Collection of Polylog-Integrals, unpublished).

In order to calculate the gluonic OMEs as well as the O (g)-terms, many new
sums had to be evaluated. For this we adopted a more systematic technique based on
difference equations, which are the discrete equivalent of differential equations, cf.
[46, 47]. This is a promising approach, since it allowed us to obtain all sums needed
automatically and it may be applied to entirely different single-scale processes as
well. It is based on applying general summation algorithms in computer algebra.
A first method is Gosper’s telescoping algorithm, [48], for hypergeometric terms.
For practical applications, Zeilberger’s extension of Gosper’s algorithm to creative
telescoping, [49, 50], can be considered as the breakthrough in symbolic summation.
The recent summation package Sigma, [23-26, 16, 17], written in MATHEMATICA
opens up completely new possibilities in symbolic summation. Based on Karr’s T[T -
difference fields, [51], and further refinements, [23-25, 52], the package contains
summation algorithms, [53], that allow to solve not only hypergeometric sums, like
Gosper’s and Zeilberger’s algorithms, but also sums involving indefinite nested sums.
In this algebraic setting, one can represent completely algorithmically indefinite
nested sums and products without introducing any algebraic relations between them.
Note that this general class of expressions covers as special cases the harmonic
sums or generalized nested harmonic sums, cf. [54-57]. Given such an optimal
representation, by introducing as less sums as possible, various summation principles
are available in Sigma. In this work, we applied the following strategy which has
been generalized from the hypergeometric case, [50, 58], to the I1X-field setting.

1. Given a definite sum that involves an extra parameter N, we compute a recurrence
relation in N that is fulfilled by the input sum. The underlying difference field
algorithms exploit Zeilberger’s creative telescoping principle, [50, 58].

2. Then we solve the derived recurrence in terms of the so-called d’Alembertian
solutions, [50, 58]. Since this class covers the harmonic sums, we find all solutions
in terms of harmonic sums.

3. Taking the initial values of the original input sum, we can combine the solutions
found from step 2 in order to arrive at a closed representation in terms of harmonic
sums.

In the following, we give some examples on how Sigma works. A few typical
sums we had to calculate are listed in Appendix D and a complete set of sums needed
to calculate the 2-Loop OMEs up to O (g) can be found in Appendix B of Refs. [4,
12]. Note that in this calculation also more well-known sums are occurring which
can, e.g., be easily solved using Summer.
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6.2.1 The Sigma-Approach

As a first example we consider the sum

ee]

B(N,
Ty (N) = Z +(N Jlr)zs (i)S1 (N + i). (6.9)

We treat the upper bound of the sum as a finite integer, i.e., we consider the
truncated version

a

B(N, i) . .
Tiy(a,N) = E ———=S1(O)S1(N + 1),
Pl +N+2

fora € N. Given this sum as input, we apply Sigma’s creative telescoping algorithm
and find a recurrence for 77 (a, N) of the form

co(N)T(a, N)+...cq(N)T(a, N +d)=¢q(a, N) (6.10)

with order d =4. Here, the ¢;(N) and g(a, N) are known functions of N and a.
Finally, we perform the limit a — oo and we end up at the recurrence
— N(N + (N +2)%{4N> + 68N* + 455N3 + 1494N? + 2402N + 1510}T; (N)
— (N + 1)(N +2)(N 4 3){16N°> 4 260N* + 1660N> + 5188N2 + 7912N + 4699}
X Ti(N 4+ 1) + (N +2)(N +4)(2N + 5){4N® + 74N + 542N* 4+ 1978N> + 3680N?
+3103N + 767}T1 (N +2) + (N + 4)(N + 5){16N° + 276 N> + 1928 N* + 6968 N>
+ 13716N? + 13929N + 5707}T} (N + 3) — (N + 4)(N + 5)*(N + 6){4N°> + 48N*
+223N3 + 497N? + 527N + 211}T1 (N + 4) = P (N) + P»(N)S1(N)

where

Pi(N)= (32N18 +1232N"7 4+ 21512N"0 + 223472N15 + 1514464N 14

+6806114N "3 + 18666770N 2 + 15297623 N — 116877645N1°
— 641458913N° — 1826931522N% — 3507205291 N
— 4825457477N°® — 4839106893 N> — 3535231014N*

—1860247616N> — 684064448 N> — 160164480N — 17395200)

/ (N3(N F D3N + 23N +3)2(N + 4)(N + 5))

and
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Py(N)= —4(4N" + 150N"3 +2610N "2 +27717N " 4 199197N1°
+1017704N° + 3786588 N® + 10355813N7 + 20779613 N
+30225025N° + 31132328N* + 21872237N> + 9912442 N2
+2672360N + 362400)

J(N*(N + D*(N +2)*(N +3)(N +4)(N +9)).

In the next step, we apply Sigma’s recurrence solver to the computed recurrence
and find the four linearly independent solutions

hi(N)=——, hy(N)= DY

W=y PV=ga TN
_SiIN) v EWN DS

N =y M= N T e 12

of the homogeneous version of the recurrence and the particular solution

2=V
PN = N TS [zs_z,l (N) = 38_3(N) — 25_2(N)S1 (N) — {251 (N)

251(N)

25N+ SN -8 SH2(N)—¢
N+1 N +2 N +2
2+7N+7N2+5N3+N4S(N)+22+7N+9N2+4N3+N4
NIN+ D3N +2) ! N*N + 1)3(N +2)

of the recurrence itself. Finally, we look for constants cy, ..., ¢4 such that
T1(N)=c1hi(N) + c2h2(N) + c3h3(N) + c4ha(N) + p(N).
The calculation of the necessary initial values for N =0, 1, 2, 3 does not pose

a problem for Sigma and we conclude that ¢; = ¢y = ¢3 =c¢4 =0. Hence the final
result reads

_2(=DVN
N = S T3 [zs_g,l(zv) — 35_3(N) — 252 (NS (N) — 2251 (N)
L 25N+ Ez} L S3(N) — ¢33
3 N+1 N+2
SN -0 2+ 7N +7N?*+5N* + N*

S1(N) +

N+2 VNI DN T2 @)

2+ 7N +9N2 +4N3 + N4

+2 N4(N + 1)3(N +2)

(6.11)
Using more refined algorithms of Sigma, see e.g. [59, 60], even a first order
difference equation can be obtained
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(N+2Ti(N) = (N+3)Ti(N+ 1)

(=N (_ 3N 44
NN+2)\ (N+ DN +2)

(&2 + 28 2(N)) — 223 — 25_3(N)

—2081(N) — 451,2(1\’))

N NO + 8N3 +31N* + 66N3 + 88N2 + 64N + 16
N3(N + 1)2(N +2)3

S1(N)

SH(N) — N3+ 5N*+21N3 +38N%2 4+ 28N + 8
n 2(N) §2+2 + + + + + . 6.12)
N+1 N4(N + 1)2(N +2)2

However, in deriving Eq. 6.12, use had to be made of further sums of less complexity,
which had to be calculated separately. As above, we can easily solve the recurrence
and obtain again the result (6.11). Here and in the following we applied various

algebraic relations between harmonic sums to obtain a simplification of our results,
cf. [8].

6.2.2 Alternative Approaches

As a second example we consider the sum

< S?i+ N
L) = > —l(liz ), 6.13)
i=1

which does not contain a Beta-function. In a first attempt, we proceed as in the
first example T (N). The naive application of Sigma yields a fifth order difference
equation, which is clearly too complex for this sum. However, similar to the situation
T1(N), Sigma can reduce it to a third order relation which reads

To(N)(N + 1)2 = Ty(N + 1)(3N? + 10N +9)

+ To(N +2)3N? + 14N + 17) — To(N + 3)(N + 3)?
_ONT+48NY + 143N+ ISGNP +8IN — 12, AN?4IN+T )
N (N + D2(N +23(N +3)2 N+ DN +22(N+3)°!

N —2N® — 24N> — 116 N* — 288N3 — 386N% — 264N — 72

(N + DZ(N +2)3(N +3)2

£.

(6.14)

Solving this recurrence relation in terms of harmonic sums gives a closed form,

see (6.20) below. Still (6.14) represents a rather involved way to solve the problem.

It is of advantage to map the numerator S ]2 (i + N) into a linear representation, which
can be achieved using Euler’s relation
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Sg(N):ZSa,a(N) — S24(N),a > 0. (6.15)

This is realized in Summer by the basis-command for general-type harmonic
sums,

T>(N) = Z 251,1(i+N)._52(i+N)'

= (6.16)

i=1

As outlined in Ref. [7], sums of this type can be evaluated by considering the
difference

. . . o SIG+) < 1
Dy(N=Ta()—T(j - =2 ———=> ——0 (617
= i i=112(]+1)2

The solution is then obtained by summing (6.17) to

N

T(N)= D D2(j) + T2(0). (6.18)
j=1

The sums in Eq.6.17 are now calculable trivially or are of less complexity than
the original sum. In the case considered here, only the first sum on the left hand
side is not trivial. However, after partial fractioning, one can repeat the same proce-
dure, resulting into another difference equation, which is now easily solved. Thus
using this technique, the solution of Eq.6.13 can be obtained by summing two first
order difference equations or solving a second order one. The above procedure is
well known and some of the summation-algorithms of Summer are based on it. As a
consequence, infinite sums with an arbitrary number of harmonic sums with the same
argument can be performed using this package. Note that sums containing harmonic
sums with different arguments, see e.g Eq. 6.21, can in principle be summed automat-
ically using the same approach. However, this feature is not yet built into Summer.
A third way to obtain the sum (6.13) consists of using integral representations for
harmonic sums, [6]. One finds

o0

b XN /In(1 = x) o XV ) o
s [0 (22) (450
i=1 ;

=1
[(ln(l—x)) . ]
=2M|(——=) Lix(x)|(N+1)
+

1—x
_ (M [ i“ixi Liz(x)j| (N+1)+ ;22) .

(6.19)

Here the Mellin-transform is defined in Eq. 2.65. Equation 6.19 can then be easily

calculated since the corresponding Mellin-transforms are well-known, [6]. Either of
these three methods above lead to
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17
T>(N) = Ec% +4S1(N)E3 + SN — S2(N)Ea — 281 (N)S2, 1 (N) — S2.2(N).

(6.20)
As a third example we would like to evaluate the sum

0 o2 .
rw= 3 NS 621)

A l
i=1

Note that (6.21) is divergent. In order to treat this divergence, the symbol o7,
cf. Eq.C.35, is used. The application of Sigma to this sum yields a fourth order
difference equation

(N + 1D2(N +2)T»(N) — (N +2) (41\72 + 15N + 15) (N + 1)
+ (N +5) (31\12 + 15N + 20) To5(N +2) — (N +3) (4N2 125N +40) To(N +3)

+ (N +3)(N +4)°To(N +4)
6N> + 73N + 320N3 + 684N% + 645N + 215
- (N + DZ(N +2)2(N + 3)2
6N% + 19N +9
(N + DN +2)(N +3)

S1(N),

(6.22)
which can be solved. As in the foregoing example the better way to calculate the sum
is to first change 512 (i + N) into a linear basis representation

X 281G+ N)—SG+N
T3(N)=Z 1,10 + )i 2 (i + )S1

@0). (6.23)

i=1

One may now calculate 73(N) using telescoping for the difference

. . . o Sii + NS <  Si()
3()=T3(j) = T3(j — 1) i; T Ez(iﬂ-)z (6.24)
with
N
Ty(N)= > Da(j) + T3(0). (6.25)
ji=1
One finally obtains
ol 43 3SF(N) — S$2(N)
T3(N) = ZF + 3563 + 581 (N)Gs + — =02
— 281(N)S2,1(N) + ST(N)S2(N) + S1(N)S3(N)
2 4
_5W) S (6.26)

4 4
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6.3 Results

For the singlet contributions, we leave out an overall factor

1+ (=DY

5 (6.27)

in the following. This factor emerges naturally in our calculation and is due to the
fact that in the light-cone expansion, only even values of N contribute to F, and
Fp, cf. Sect.2.3. Additionally, we do not choose a linear representation in terms of
harmonic sums as was done in Refs. [28—30], since these are non-minimal w.r.t. to the
corresponding quasi-shuffle algebra, [61, 62]. Due to this a much smaller number
of harmonic sums contributes. Remainder terms can be expressed in polynomials
P;(N). Single harmonic sums with negative index are expressed in terms of the
function S(N + 1), cf. Appendix C.4. For completeness, we also give all pole terms
and the constant terms of the quarkonic OME:s. The latter have been obtained before in
Refs. [1, 4]. The pole terms can be expressed via the LO—, [63-65], and the fermionic
parts of the NLO, [66-72], anomalous dimensions and the 1-loop B-function, [73,
74], (' Hooft, 1972, unpublished) [75].

We first consider the matrix element A(in,, which is the most complex of the
2-loop OME:s. For the calculation we used the projector given in Eq.4.22 and there-
fore have to include diagrams with external ghost lines as well. The 1-loop result
is straightforward to calculate and has already been given in Eqs.4.111, 4.113. As
explained in Chap. 4, we perform the calculation accounting for 1-particle reducible
diagrams. Hence the 1-loop massive gluon self-energy term, Eq.4.84, contributes.
The unrenormalized 2-loop OME is then given in terms of 1-particle irreducible and
reducible contributions by

o - A )
AQ) _ p@uirr 2 F() m
AQg_AQg Ale'I (O, _Mz) . (6.28)

Using the techniques described in the previous sections, the pole-terms predicted
by renormalization in Eq.4.112 are obtained, which have been given in Refs. [1, 4]
before. Here, the contributing 1-loop anomalous dimensions are

3N24+3N +2
O _gqcplpg, -2 "7 T~ 6.29
Yoo TN T NN+ ) (629)
NZ4+N+2
7O — _ T 6.30
Yag FNNF DOV 12) (6:30)
2(N>4+ N +1)
O —gc, s — -2 6.31
Veg A[ ! (N—l)N(N+1)(N+2)] Po. (631)


http://dx.doi.org/10.1007/978-3-642-23286-2_2
http://dx.doi.org/10.1007/978-3-642-23286-2_4
http://dx.doi.org/10.1007/978-3-642-23286-2_4
http://dx.doi.org/10.1007/978-3-642-23286-2_4
http://dx.doi.org/10.1007/978-3-642-23286-2_4
http://dx.doi.org/10.1007/978-3-642-23286-2_4
http://dx.doi.org/10.1007/978-3-642-23286-2_4

6.3 Results 117

and the 2-loop contribution reads

N24+N+2 4 P
> — Ty |2 [S —52] 85—
Yag F F[ NN+DOWN +2 22 T N T s s s N 1 2)

N>+ N +2
16CAT [s §2_2p — ]
+ AFIN(N+1)(N+2) 25T =26 6
42N +3)S8, P
(N+D2N+2)2 (N—DN3IN+D3N+2)3]|"
(6.32)
P =5N%+ 15N + 36N* + 51N> + 25N? + 8N + 4,
P, =N°% +6N® + 15N7 +25N° + 36N + 85N* + 128N
+ 104N? 4 64N + 16. (6.33)

These terms agree with the literature and provide a strong check on the calculation.
The constant term in € in Eq. 4.112 is determined after mass renormalization, [1, 4, 5].

4N2+N+2) 3N +2
@ 3 2
=T, T (453 —38:85 — S} — 68 4~ "~ g
age=Tr F{3N(N+1)(N+2)( 3 281 =8 102) + TR
N*+17N3 + 17TN?2 —5N -2 (BN2 43N +2)(N2+N +2)
+4 5 3 Sy +2 3 7 @)
N2(N +1D*(N +2) N2(N + 1D?(N +2)
N* — N3 —20N%2 — 10N — 4 2P;
+4 2 2 Si+ 47 4
N2(N +1D*(N +2) N*(N + D*(N +2)
2(N>+ N +2)
TrCp | ————— = (—245_ 6B+ 16853 — 24B'S) + 185,85 + 283 — 9
+ FA[3N(N+1)(N+2)( 21+ 687+ 1683 B'S1 + 188281 + 255 {3)

16 N2—N—4 ﬂ,_47N5+21N4+13N3+21N2+18N+16
(N + 1)2(N +2)? (N — )N2(N + 1)2(N +2)2

N>+ 8N2+1IN+2 , _N*—2N34+5N?+2N +2

TN TPV 122 T SN S DNE(N + 12N £ 2) 2

_ 4Py s 4Ps

NNA DN+ T NS DM N+ PN+ 2 |

2

(6.34)
where the polynomials in Eq.6.34 are given by

Py=12N% + 52N7 4+ 132N® + 216N° + 191N*
+54N3 —25N2 — 20N — 4, (6.35)

Py=N®+ 8N’ +23N* + 54N> + 94N? + 72N + 8, (6.36)
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Ps=2N"? 4+ 20N'"" +86N'" + 192N° + 199N — N7 — 297N
— 495N° — 514N* — 488N> — 416N? — 176N — 32. (6.37)

The newly calculated O (¢) contribution to A(in,, [12], reads after mass renormal-
ization

N2+ N +2

4 1

—(2) 2
=TpCpl—— "% (168,11 — 8851 — 85,181 + 354 — =38 — =S
an F F{N(N+])(N+2) ( 2,1,1 3,1 2,191 4 3 391 ) 2

N?—-3N -2
N VATV T
N2(N + 1)(N +2)
2 3N+2 5 23N*+48N3+43N? 22N -8

1 8
8,87 — gs;‘ +208 — 2087 — 5(331) -8

L e S
3NN+ T3 NZ(N + D2(N +2) ’
3N +2 S 2 (N?2+ N +2)3N? +3N +2)
22— 58 +4— =
R T T R YA S Y670 VNS D7) VaNID S
Ps N* —5N3 —32N? - 18N -4 ,

S S
tverev Ot T My

22N5 —2N* — 1IN3 — 1I9N%2 — 44N — 125
N2(N + 1)3(N +2) 1
5NO 4+ 15N + 36N* + 51N> +25N% + 8N + 4

N3(N + 1)3(N +2)

§)

P
N3(N + D5(N +2)
N24+N+2

FIrCa {N(N O 12

(165724,1,1 —482,1,1 — 8531 — 852,

2 40 1
— 483 — 5,3’// +984 — 1655181 + ?51 S3+ 4818, —88'S) + Esg

8BS} 455052+ S~ D815~ 250 2510 — 4B - 15—7422)
N2+ N -1 4(N2—N —4)
2 36251+ 2 2
(N +1=(N +2) (N +1D*(N +2)
2N3+8N2+1IN+2 5 16 N>+ 10N*+ 9N +3N2+7N +6
T3 NWH+D2WN+22 T 3 (N = 1N2(N 4 D2(N +2)?
N* 4+ 2N3 +IN2 422N 420 , _3N3®—12N%? —27N -2
(N + 1)3(N +2)3 pt2 N(N + 1D2(N +2)?
29N — ION* — 11N3 4 68N? 4 24N + 16
3 (N — )N2(N + 1)2(N +2)?
PS» PioS?
T (N=DN3(N+ 13N +2)>3 NN+ D3N +2)3

(—4S_0,1 + 81— 4p'S1)

3

+38

3

2P11 S
+ NIV Y
NN+ D*(N +2)
2P0 2P

B (N =DN3(N+1)3(N+2?2 (N—=1DNN+ D3N +2)° (6.38)
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with the polynomials
Ps=3N°® + 30N> + 15N* — 64N> — 56N> — 20N — 8, (6.39)

P;=24N"0 4 136N° + 395N® + 704N7 + 739N® + 407N°
+ 87N* + 27N> + 45N? + 24N + 4, (6.40)

Ps=N’ + 21N + 85N7 + 105N® + 42N> + 290N*

+ 600N + 456 N? + 256N + 64, 6.41)
Po=(N>+3N>+ 12N +4)(N° — N* +5N> + N +2), (6.42)
Pio=N®+6N> +7N* +4N? + 18N + 16N — 8, (6.43)

P11 =2N% +22N7 + 117N° + 386N° + 759N*
+ 810N + 396N? + 72N + 32, (6.44)

Pio=4N" 4+ 50N + 267N +765N'% + 1183N ! + 682N1°
—826N° — 1858N® — 1116 N7 + 457N° + 1500N°> + 2268N*
+ 2400N3 + 1392N2 + 448N + 64. (6.45)

Note that the terms o ¢3 in Eq. 6.34 and o< ;22 in Eq. 6.38 are only due to the repre-
sentation using the B©)-functions and are absent in representations using harmonic
sums. The results for the individual diagrams contributing to A(QZZ, can be found up
to 0(80) in Ref. [4] and at O(¢) in Ref. [12].

Since harmonic sums appear in a wide variety of applications, it is interesting
to study the pattern in which they emerge. In Table 6.1, we list the harmonic sums
contributing to each individual diagram.> The B-function and their derivatives can
be traced back to the single non-alternating harmonic sums, allowing for half-integer
arguments, cf. [6] and Appendix C.4. Therefore, all single harmonic sums form an
equivalence class being represented by the sum S;, from which the other single
harmonic sums are easily derived through differentiation and half-integer relations
Additionally, we have already made use of the algebraic relations, [8], between
harmonic sums in deriving Eqs. 6.34, 6.38. Moreover, the sums S_» 7 and 3,1 obey
structural relations to other harmonic sums, i.e., they lie in corresponding equiv-
alence classes and may be obtained by either rational argument relations and/or
differentiation w.r.t. N. Reference to these equivalence classes is useful since the
representation of these sums for N ¢ C needs not to be derived newly, except of
straightforward differentiations. All functions involved are meromorphic, with poles

2 Cf. Ref. [1] for the labeling of the diagrams.
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Table 6.1 Complexity of the results for the individual diagrams contributing to A(ng

Diagram S; S S3 S4 S S—3 S—4 So1 S—21 S22 S350 S31 S0 Sz
A + +

B + 4+ + 4+ + + +

C + +

D + + + +

E + 4+ o+ +

F + + + + + +

G + + + +

H + 4+ o+ +

I + + + + o+ + + + + + + + + +
J + +

K +  +

L + + + + + + +

M + +

N + + + + o+ + + + + + + + + +
O + + + 4+ + + +

P + + + + + + +

S + +

T + +

at the non-negative integers. Thus the O (g”)-term depends on two basic functions
only, S and S_2 4 3 This has to be compared to the Z-space representation used in
Ref. [1], in which 48 different functions were needed. As shown in [6], various of
these functions have Mellin transforms containing triple sums, which do not occur
in our approach even on the level of individual diagrams. Thus the method applied
here allowed to compactify the representation of the heavy flavor matrix elements
and Wilson coefficients significantly.
The O (¢)-term consists of six basic functions only, which are given by

{S1,82, 83, 84, 82,83, 54}, 52,1, S—2.1, S-3,1, S2,1,1, S—2, 1,1,

S_22 :dependson S_2 1, S-31

S3.1 :dependson S . (6.46)

The absence of harmonic sums containing {—1} as index was noted before for all
other classes of space- and time-like anomalous dimensions and Wilson coefficients,
including those for other hard processes having been calculated so far, cf. [27, 32-34].
This can not be seen if one applies the Z-space representation or the linear represen-
tation in Mellin-space, [76].

Analytic continuation, e.g., for S_» 1 proceeds via the equality,

Li >
M [—lli(’; )} (N +1) = BN + 1) = (V! |:S—2,1 (V) + 5:3} (6.47)

3 The associated Mellin transform to this sum has been discussed in Ref. [68] first.
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with similar representations for the remaining sums, [6].%

Asdiscussed in [35], the result for a agrees with thatin Z-space given in Ref. [1].
However, there is a difference concermng the complete renormalized expression for
A(zg, This is due to the scheme-dependence for the renormalization of the coupling
constant, which has been described in Sects. 4.4, 5.1 and emerges for the first time at
O(az) Comparing Eq.4.114 for the renormalized result in the MS-scheme for the
coupling constant with the transformation formula to the MOM-scheme, Eq.5.12,
this difference is given by

(2),MS (2),MOM ?q(g) 2 m?
AGM =AG) — Bo.o L In (u_) (6.48)

As an example, the second moment of the massive OME up to 2-loops reads in
the MS-scheme for coupling constant renormalization

_ _ 4 m2
MS _ _MS
A = |5 (7))
T2 22 16 16 m?
MS
Tr|==Cs— —Cp— —Tp |In*(—
I [F[9 SR 9F] (Mz)

+T 7OC @C In m—z zC T, +—1352C T
Fl=570a = 57CF 2 gCalr gp CFlFy
(6.49)

and in the MOM-scheme

4 m? 2 22 16 m?
AMOM ai,VIOM ’—gTF‘]H (E)} —+ ai\/IOM [TF |:3CA — ECF] 1112 (F)

are |, 8 m? Tente + B2 ¢,

——Cp— — n - = .

Fl|=57Ca— 57CF P gCaTF q] CFTF
(6.50)

As one infers from the above formulas, this difference affects at the 2-loop level
only the double logarithmic term and stems from the treatment of the 1-particle-
reducible contributions. In Ref. [1], these contributions were absorbed into the
coupling constant, applying the MOM-scheme. This was motivated by the need to
eliminate the virtual contributions due to heavier quarks (b, t) and was also extended
to the charm-quark, thus adopting the same renormalization scheme as has been
used in Refs. [77-79] for the exact calculation of the heavy flavor contributions to
the Wilson coefficients. Contrary, in Ref. [2], the MS-description was applied and
the strong coupling constant depends on n ¢ +1 flavors, cf. the discussion in Sect. 5.1.

The remaining massive OMEs are less complex than the term A(zz, and depend
only on single harmonic sums, i.e. on only one basic function, S;. In the PS-case,
the LO and NLO anomalous dimensions

4 Note that the argument of the Mellin-transform in Eq. 6.36, Ref. [35], should read (N + 1).
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N2+ N+2
= —4C 6.51
Vaa FNZ DN+ 1) (651)
5 4 3 2
SOPS _ _ jeo g, SN+ 32N+ 49N 4 38N 4 28N + 8 o5
as P IN=DNAN + D3N +2)2 (6.52)

contribute. The pole-terms are given by Eq.4.100 and we obtain for the higher order
terms in &

[_ 4N?+N+2?2Q2SH+0) 4Pi3 ]

(N =DN*(N+ D3N +2) (N = DNYN + DHN +2)°
(6.53)

Pi3=N'""48N° + 29N + 49N7 — 11N® — 131N
—161N* — 160N> — 168N? — 80N — 16, (6.54)

(5N3 +7N? +4N +4)(N?> 4+ 5N +2)
(N — )N3(N + 1)3(N +2)2

4(N> 4+ N +2)? (3853 + ¢3)

"~ 3(N — NN + D(N +2)

2Py

282+ 5)

E(QZZ'PS =CrTF H—Z

, 6.55
TN DNS(N + SN 127 (053
Pia=5N" + 62N + 250N + 374N — 400N® + 38N7 — 473N?

— 682N* —904N> — 592N? — 208N — 32. (6.56)

Since the PS-OME emerges for the first time at O(asz), there is no difference
between its representation in the MOM- and the MS-scheme. The renormalized
OME A(QZ;PS is given in Eq.4.101 and the second moment reads

I . 2 2 J—
PS.MS _ MS?2 16, (m 80 m MS>
AQq =dyg [—3111 (E) — EIH ﬁ —4 CFTF+0 ag .

(6.57)
The flavor non-singlet NLO anomalous dimension is given by
4 3 2
A(l),NS=4cFTF gs —@S 3N*+6N>+47N-+ 20N — 12 6.58
99 3 2oyt 3NZ(N + 1) - (6.58)

The unrenormalized OME is obtained from the 1-particle irreducible graphs and
the contributions of heavy quark loops to the quark self-energy. The latter is given
at 0(a?) in Eq.4.87. One obtains
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2 A -2
A(2).NS _ 2(2).NSiirred & (2) I’H_
Agq.0 =440 20, Mz)- (6.59)

Our result is of the structure given in Eq.4.93 and the higher order terms in ¢ read

2
@, NS CrTFr 40 3N“ +3N +2 224
=) 88 -80S + =S +20———— TS
Qa0 3 3 4“21+3 2+ NN 193 5 51
+219N6+657N5+1193N4+763N3—40N2—48N+72
18N3(N + 1)3 ’
(6.60)
_@,NS _ CrTF 8 112 3N* 4+ 6N3 +47N%2 + 20N — 12
= 454 4+ 480 — =8 —=5
440’0 3 4+ 485280 3 183 + 5 2+ SNZN 1 1) o
20S 20S 656S +23N2~|—3N—|—2 N Pis
3o g H T s NN+ D BTN £ )¢ |
(6.61)

Pis = 1551N8 + 6204N7 + 15338 N° + 17868 N> + 8319N*
+944N3 + 528N? — 144N — 432. (6.62)

The anomalous dimensions in Eqs.6.51, 6.52, 6.58 agree with the literature.
Egs. 6.53, 6.60, cf. Ref. [4], were first given in Ref. [1] and agree with the results
presented there. Egs. 6.55, 6.61, [12], are new results of this thesis. As in the PS case,
the NS OME emerges for the first time at O(af). The corresponding renormalized

OME qu):gs is given in Eq.4.95 and the second moment reads
s ws2| 16 2\ 128 2\ 128
ANSHS _ s 16,0 (7 128 () 128
9 7 27 7 27

a3
x CpTr 4 O <a§"3 ) : (6.63)

Note that the first moment of the NS-OME vanishes, even on the unrenormalized
level up to O(¢). This provides a check on the results in Eqs. 6.60, 6.61, because this
is required by fermion number conservation.

At this point an additional comment on the difference between the MOM and the
MS-scheme is in order. The MOM-scheme was applied in Ref. [1] for two different
purposes. The first one is described below Eq.6.50. It was introduced to absorb
the contributions of one-particle reducible diagrams and heavier quarks into the
definition of the coupling constant. However, in case of A(zg’ renormalization in the
MOM-scheme and the scheme transformation from the MOM-scheme to the MS-

scheme accidentally commute. This means, that one could apply Eq.4.110 in the
MS-scheme, i.e., set
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8aMOM — (n r+1) (6.64)

from the start and obtain Eq.4.114 for the renormalized result. This is not the case for

A(z)’NS. As mentioned earlier, the scheme transformation does not have an effect on
this term at 2-loop order. This means that Eq. 4.91 should yield the same renormalized
result in the MOM- and in the MS-scheme. However, in the latter case, the difference
of Z-factors does not contain the mass. Thus a term

1 m?
x —In — (6.65)
e \u

which stems from the expansion of the unrenormalized result in Eq.4.93, can not

be subtracted. The reason for this is the following. As pointed out in Ref. [1], the

term qu)’gs is only UV-divergent. However, this is only the case if one imposes

the condition that the heavy quark contributions to the gluon self-energy vanishes
for on-shell momentum of the gluon. This is exactly the condition we imposed for
renormalization in the MOM-scheme, cf. Sect. 4.4. Hence in this case, the additional
divergences absorbed into the coupling are of the collinear type, contrary to the term
in Ag;. By applying the transformation back to the MS-scheme, we treat these two
different terms in a concise way. This is especially important at the three-loop level,
since in this case both effects are observed for all OMEs and the renormalization
would not be possible if not applying the MOM-scheme first.

Let us now turn to the gluonic OMEs A(z) A(z) 7.0 which are not needed for
the asymptotic 2-loop heavy flavor Wilson coefﬁc1ents They contribute, however, in
the VFNS-description of heavy flavor parton densities, cf. Ref. [2] and Sect. 3.3. The
1-loop term A;{; 0 has already been given in Eqs.4.132, 4.135. In case of Ag’ 0 the
part

(D) N®+4N7 +8N® 4+ 6N —3N* —22N? — 10N* — 8N — 38
Veg =8CFTF
88 (N —1N3(N + 13N +2)
32CATF 3NO + 9N + 22N* +29N3 +41N? + 28N + 6
+ 22158 +

9 (N — DN2(N + D2(N +2)

(6.66)
of the 2-loop anomalous dimension is additionally needed. As for AS) , the massive
parts of the gluon self-energy contribute, Eqs. 4.84, 4.85. The unrenormalized OME
at the 2-loop level is then given in terms of reducible and irreducible contributions
via

2o _ d@umed _ 2w (o 7Y qo (o
AD = ADmed {40 (o,?)—n (O,F). (6.67)

In the unrenormalized result, we observe the same pole structure as predicted in

Eq.4.133. The constant and O (¢) contributions al g) 0 and a; ) o are
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8 16(N? + N + )&, 56N + 47
(2)
= TrCa |\ =208 -
Qg0 = 1F A{ 3T SN ONN A DN +2) oI N+ D!
+ 2P16
27(N — DN3(N + D3(N +2)
4N 4+ N +2)?%0 Py7
+TrCF - ,
(N—=1DNEN+1)2(N+2) (N—1DN*N+DHN +2)
(6.68)
@ 8 .20 16(N?+ N + 1) 2N +1
gg.0=TrCa { oSN GRSt S T NN v 12 2 T A 2
s 2328N4 4 256N3 — 247N? — 175N + 54
3(N+ 1) 81(N — DN(N + 1)2 :
n 4P 185 n Prg
9N — H)N2(N + D2(N +2) 8I(N — HN*(N + D*(N +2)
4N2+ N +2)%g P&
TrC
+1IrCrF { 3N —DN2(N+ D2(N+2) (N—DNS(N+ D3(N +2)
+ Py
4N-DNS(N+1DS(N+2) ]’
(6.69)
Pig = 15N% + 60N7 4 572N° + 1470N° + 2135N*
+1794N3 + 722N% — 24N — 72, (6.70)
P17 =15N"" +75N° + 112N% + 14N7 — 61N% + 107N°
+ 170N* + 36N> — 36N> — 32N — 16, 6.71)
Pig=3N® +9N° + 22N* + 29N3 + 41N% + 28N +6, (6.72)
P1o=3N'"0 4+ 15N° + 3316N® + 12778N7 + 22951 N° + 23815N°
+ 14212N* + 3556 N3 — 30N? + 288N + 216, (6.73)
Pyo=N®+4N7 +8N® + 6N° —3N* —22N3 — 10N? — 8N — 8, (6.74)
Py =31N"2 + 186N 4+ 435N10 + 438N° — 123N% — 1170N7
— 1527N® — 654N° + 88N* — 136 N> — 96N — 32. (6.75)

We agree with the result for ag,),Q given in [2], which is presented in Eq.6.68.

—(2)

The new term a 22,0 Eq. 6.69, contributes to all OMEs A 1(13) through renormalization.



126 6 Calculation of the Massive Operator Matrix Elements

The renormalized OME is then given by Eq.4.136. Since this OME already emerges
at LO, the O (a?) term changes replacing the MOM- by the MS-scheme. The second
moment in the MS-scheme reads

4 m2
MS WS
e 20, 100, 100 Ty (2
a - — n?
e | ey + B m’ ey - B2cr
F 27 A 27 F ,bL2 9 ALF FLF

+0 ().

(6.76)
In the MOM-scheme it is given by
AMOM _ MoMm | 4, m?
28,0 =% 3P 2
MOM? 22 16 m?
+ag {TF [—ECA—I— 9 Cr ln ﬁ
+T 70C =+ 148C In m—z + 7C Tr — —BSZC T,
Fly7¢at 5CF 2 gCalF gl CFIF
+0 (o).
(6.77)
The difference between the schemes reads
2
(2),MS (2),MOM 2 2(Mm
AggQ —AggQ + Bo.on (F) (6.78)

The need for applying intermediately the MOM-scheme for renormalization

becomes obvious again for the term A;,z; 0

in the MS-scheme for the coupling constant does not cancel all singularities. The
remaining term is Ai,zq) 0 which emerges for the first time at O(asz) and the same

. As in the NS-case, renormalization

result is obtained in the MS- and MOM-schemes. The corresponding NLO anom-
alous dimension is given by

sy 32CFTr [ (N*4+N+2)S; | 8N’ 4+ 13N> +27N 416
Veg = - + . (6.79)
8 3 (N=DN®N+1) 3N = DN +1)?

Again, we obtain the pole terms as predicted in Eq.4.123. The constant and O (¢)

(@) ()

contributions a 20,0 and a a, then read
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4 N2 4N+2

3(N—=1N(N+1)
8 8N3 + 13N2 + 27N + 16
9 (N—1N(N+1)2
8 P

+_
27 (N — )N(N + 1)3

(2) _
Aeq,0= TFCF[

(202+ 5 +5})

1

(6.80)

e 2 N?+N+2
0=TrCF

Teq. 9 (N —)N(N + 1)

+28N3+13N2+27N+16
9 (N —1N(N+1)?

(—253 — 38,8 — 83 + 4¢3 — 6§251)

(2(2 + S + S]2)

4 P»n S n 4 P
27(N—1DN(N +1)3 " 81 (N — HN(N + 1)*
(6.81)
with
Pyy =43N* + 105N> + 224N? + 230N + 86 (6.82)
Py3 =248N° + 863N* + 1927N3 + 2582N2 + 1820N + 496. (6.83)
The second moment of the renormalized result, cf. Eq.4.125, reads
AMS 3212 m? +2081 m? +236CT+0
— Ny — .
84, Q 9 2 77 12 77 F
(6.84)

We agree with the result for al? g glven in [2], which is presented in (6.80).

Let us summarize so far. In thls section, we newly calculated the O(¢g) terms
of the 2-loop massive OMEs. We additionally recalculated for the first time the
terms a;?,Q, Eq.6.68, and ag;’Q, Eq.6.80, which were given in Ref. [2] and find

full agreement. For completeness, we showed as well the terms afq)’gs, (QZ; PS and

(2), which have been calculated for the first time in Ref. [1] and were recalculated

in Refs. [4, 5]. The latter terms contribute to the heavy flavor Wilson coefficients in
deeply inelastic scattering to the non power-suppressed contributions at O (asz). Inthe
renormalization of the heavy flavor Wilson coefficients to 3-loop order, all these terms
contribute together with lower order single pole terms. The O(aszs) contributions
form parts of the constant terms of the 3-loop heavy flavor unpolarized operator
matrix elements needed to describe the 3-loop heavy flavor Wilson coefficients in
the region Q2 >> m?.

The mathematical structure of our results is as follows. The terms Eg) can be
expressed in terms of polynomials of the basic nested harmonic sums up to weight
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w =4 and derivatives thereof. They belong to the complexity-class of the general
two-loop Wilson coefficients or hard scattering cross sections in massless QED and
QCD and are described by six basic functions and their derivatives in Mellin space.
Their analytic continuation to complex values of N is known in explicit form. The
package Sigma, [23-26, 16, 17], proved to be a useful tool to solve the sums occurring
in the present problem and was extended accordingly by its author.

6.4 Checks on the Calculation

There are several checks which we can use for our results. First of all, the terms up
to 0(80) have been calculated in Refs. [1, 2] and we agree with all unrenormalized
results. As described in Sects. 6.1, 6.2, we keep the complete e-dependence until we
expand the summand of the finite or infinite sums, which serves as a consistency
check on the O (e) results.

Another test is provided by the sum rules in Eqgs. 3.37, 3.38 for N =2, which are
fulfilled by the renormalized OMEs presented here and in Refs. [1, 2]. These rules
are obeyed regardless of the renormalization scheme. We observe that they hold on
the unrenormalized level as well, even up to O (¢).

For the term A(Qz) , we evaluated fixed moments of N for the contributing unrenor-
malized diagrams using the Mellin—Barnes method, [80-85], cf. also Appendix C.3.
Here, we used an extension of a method developed for massless propagators in Ref.
[86] to massive on-shell operator matrix elements, [87, 19, 40]. The Mellin—Barnes
integrals are then evaluated numerically using the package MB, [88]. Using this
method, we calculated the even moments N =2, 4, 6, 8 and agree with the corre-
sponding fixed moments of our all-N result.

For the first moment of the Abelian part of the unrenormalized term A® , there
exists even another check. After analytic continuation from the even values of N to
N ¢ C is performed, one may consider the limit N — 1. In this procedure the term
(14+(=1N)/2equalsto 1. At O(asz) the terms o< T C 4 contain 1/z contributions in
momentum fraction space and their first moment diverges. For the other contributions
to the unrenormalized operator matrix element, after mass renormalization to 2-loop
order, the first moment is related to the Abelian part of the transverse contribution to
the gluon propagator ITy (p2, m?)| p? = 0> except the term o T,% which results from
wave function renormalization. Thiswas shown in [1] up to the constant term in &.
One obtains

fy (p?, m») =a,Tr 01 (p2, m?) + &2 CrTr1Y (p2, m?) + 0@2),  (6.85)

with

5 InTable?2 of Ref. [12], the moments N =2 and N = 6 for the more difficult 2-loop diagrams are
presented.
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o 1= _
. 1 ,N=1
plzlgony(pz, m?) = EAZ);N (6.86)
o 1z _
. 2 2),N=1
plgony(pz, m?) = §A<Q;N oy (6.87)

Here, we extend the relation to the linear terms in &. For the first moment the double
pole contributions in ¢ vanish in Eq. 6.87. We compare with the corresponding QED-
expression for the photon-propagator, H‘T/’(k), which has been obtained in Ref. [89].
Due to the transition from QED to QCD, the relative color factor at the 2—loop level
has to be adjusted to 1/4 =1/(CrCa). After asymptotic expansion in m?/p?, the
comparison can be performed up to the linear term in ¢. One obtains

lim Lﬁ””(p2 m2)=Lﬁ“>’N:1= (™ ” 3 ‘o (6.88)
oo p? T ' 2T 98 wu? 3¢ 3 '

&
L avi), 2 o I fon=1 m? 4 31
lim — Tl ym*) =AY (=) |-=+15-(= ,
pzlglo 2 o (pT,m%) 3Ty 0s lcr P + 1 +o)e

Additionally, we notice that the renormalized results do not anymore contain
{>-terms. The renormalized terms in Eqs.4.95, 4.101, 4.114, 4.125, 4.136 contain
expressions proportional to > in the non-logarithmic contributions, which just cancel
the corresponding ¢>-terms in al.(jz), cf. Egs. 6.34, 6.53, 6.60, 6.68, 6.80. For explicit
examples of this cancellation, one may compare the second moments of the renor-
malized OMEs presented in Egs. 6.49, 6.50, 6.57, 6.63, 6.76, 6.77, 6.84. The latter
provides no stringent test, but is in accordance with general observations made in
higher loop calculations, namely that even ¢-values cancel for massless calcula-
tions in even dimensions in the renormalized results if presented in the MS-scheme,
(Broadhurst, 2009, private communication). In the present work, this observation
holds for the {>-terms in a single-scale massive calculation as well.

The most powerful test is provided by the FORM-based program MATAD, [18],
which we used to calculate fixed moments of the 2-loop OMEs up to O (¢). The setup
is the same as in the 3-loop case and is explained in the next section. At the 2-loop
level we worked in general R:-gauges and explicitly observe the cancellation of the

gauge parameter. For the terms A(Qz;);’ Ag,? we used both projection operators given
in Eqgs.4.22, 4.23, which serves as another consistency check. In the singlet case,
we calculated the even moments N =2, 4, ..., 12 and found full agreement with the
results presented in this section up to O (¢). The same holds in the non-singlet case,
where we calculated the odd moments as well, N =1,2,3, ..., 12.
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Chapter 7
Calculation of Moments at O (ag’)

Sebastian Klein

In this Chapter, we describe the computation of the 3-loop corrections to the massive
operator matrix elements in detail, cf. [1]. Typical Feynman diagrams contributing
for the different processes are shown in Fig. 7.1, where ® denotes the corresponding
composite operator insertions, cf. Appendix B. The generation of these diagrams with
the FORTRAN-based program QGRAF [2], is described in Sect. 7.1 along with the
subsequent steps to prepare the input for the FORM-based program MATAD [3].
The latter allows the calculation of massive tadpole integrals in D dimensions up
to three loops and relies on the MINCER algorithm [4, 5]. The use of MATAD and
the projection onto fixed moments are explained in Sect.7.2. Finally, we present our
results for the fixed moments of the 3-loop OMEs and the fermionic contributions
to the anomalous dimensions in Sect. 7.3. The calculation is mainly performed using
FORM programs while in a few cases codes have also been written in MAPLE.

7.1 Generation of Diagrams

QGRAF is a quite general program to generate Feynman diagrams and allows to
specify various kinds of particles and interactions. Our main issue is to generate dia-
grams which contain composite operator insertions, cf. (2.86-2.88) and Appendix B,
as special vertices. To give an example, let us consider the contributions to A(Ql).
Within the light-cone expansion, Sect.2.3, this term derives from the Born dia-
grams squared of the photon—gluon fusion process shown in Fig.7.2, cf. Sect.3.1
and Fig.3.2.

After expanding these diagrams with respect to the virtuality of the photon, the
mass effects are given by the diagrams in Fig.7.3. These are obtained by contracting
the lines between the external photons.

Thus, one may think of the operator insertion as being coupled to two exter-
nal particles, an incoming and an outgoing one, which carry the same momentum.
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NS)  (Psy)  (PS)) &) () |

(agy) (ag1)

ghost
Fig.7.1 Examples for 3-loop diagrams contributing to the massive operator matrix elements: NS
non-singlet, P Sy pure-singlet, singlet ggn. 1, g9, 8¢ and ghost contributions. Here the coupling

of the gauge boson to a heavy or light fermion line is labeled by H and |, respectively. Thick lines
heavy quarks, curly lines gluons, full lines quarks, dashed lines ghosts

YW, r . H‘Ki}{‘j
A & e

Fig.7.2 Diagrams contributing to H ; 122 1) via the optical theorem. Wavy lines photons; curly lines
gluons; full lines quarks

O O G O

Fig.7.3 Diagrams contributing to A(le,

Fig.7.4 Generation of the
operator insertion

Therefore, one defines in the model file of QGRAF vertices which resemble the
operator insertions in this manner, using a scalar field ¢, which shall not propagate
in order to ensure that there is only one of these vertices for each diagram. For the
quarkonic operators, one defines the vertices

¢+o+q+qg+ng, 0=n=<3, (7.1)

which is illustrated in Fig.7.4.
The same procedure can be used for the purely gluonic interactions and one defines
in this case

o+¢o+ng, 0<n=<4 (7.2)

The Green’s functions we have to consider and their relation to the respective OMEs
were given in Eqs. 4.18-4.21. The number of diagrams we obtain contributing to
each OME is shown in Table 7.1.
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Table7.1 Number of diagrams contributing to the 3-loop massive OMEs

Term # Term # Term # Term #
3) 3) (3),PS (3),PS

A<Q3‘3’7Ns 1358 A?%,Q 140 A(Q3§1 125 Aqq.Q

Aqq;Q 129 qu.Q 89 Agg,Q 886

Fig.7.5 2-Loop topologies P

for MATAD, indicating
labeling of momenta P @ P
N 2

pPs3

Fig.7.6 Master 3-loop
topology for MATAD,

P4
indicating labeling of
momenta
P2 Pe
Ps

The next step consists in rewriting the output provided by QGRAF in such a
way, that the Feynman rules given in Appendix B can be inserted. Thus, one has to
introduce Lorentz and color indices and align the fermion lines. Additionally, the
integration momenta have to be written in such a way that MATAD can handle them.
For the latter step, all information on the types of particles, the operator insertion
and the external momentum are irrelevant, leading to only two basic topologies to
be considered at the 2-loop level, which are shown in Fig.7.5.

Note, that in the case at hand the topology on the right-hand side of Fig.7.5
always yields zero after integration. At the 3-loop level, the master topology is given
in Fig.7.6.

From this topology, five types of diagrams are derived by shrinking various lines.
These diagrams are shown in Fig.7.7. Finally the projectors given in Egs. 4.22,
4.24 are applied to project onto the scalar massive OMEs. We only use the physical
projector (4.23) as a check for lower moments, since it causes a significant increase
of the computation time. To calculate the color factor of each diagram, we use the
program provided in Ref. [6] and for the calculation of fermion traces we use MATAD.
Up to this point, all operations have been performed for general values of Mellin N
and the dimensional parameter €. The integrals do not contain any Lorentz or color
indices anymore. In order to use MATAD, one now has to assign to N a specific value.
Additionally, the unphysical momentum A has to be replaced by a suitable projector,
which we define in the following section.
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p2 | p2 @ p6

Py
2
Ps D Dy
Py Ps Ps

Fig.7.7 Additional 3-loop topologies for MATAD

7.2 Calculation of Fixed 3-Loop Moments Using MATAD

We consider integrals of the type

dPk, dPy
li(p,m,ny...nj) =

=] @op ) aop (Ag)"™ ... (Agp)" flky ... k. p.m).

(7.3)

Here p denotes the external momentum, p> = 0, m is the heavy quark mass, and

A is a light-like vector, A> = 0. The momenta g; are given by any linear combination
of the loop momenta k; and external momentum p. The exponents n; are integers or

possibly sums of integers, see the Feynman rules in Appendix B. Their sum is given
by

J

E:nizzN. (7.4)

i=1

The function fin Eq.7.3 contains propagators, of which at least one is massive,
dot-products of its arguments and powers of m. If one sets N = 0, (7.3) is given by

dPk dPk
! /ﬁ Lty kym). (1.5

Il(p,m,O...O)_Il(m)—/(Zn)D... 2D

From p? = 0 it follows, that the result can not depend on p anymore. The above
integral is a massive tadpole integral and thus of the type MATAD can process.
Additionally, MATAD can calculate the integral up to a given order as a power series
in p?/m?. Let us return to the general integral given in Eq.7.3. One notes, that for
fixed moments of N, each integral of this type splits up into one or more integrals
of the same type with the n; having fixed integer values. At this point, it is useful to
recall that the auxiliary vector A has only been introduced to get rid of the trace terms
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of the expectation values of the composite operators and has no physical significance.
By undoing the contraction with A, these trace terms appear again. Consider as an
example

dPk
@m)b’

dPiy 2
I(pm.2,1) = [ S b A aan s pom (7.6)

dPrk dPk
:AmAuzMs/ oD / Gy DL s KL o).
(1.7)

One notices that the way of distributing the indices in Eq. 7.7 is somewhat arbitrary,
since after the contraction with the totally symmetric tensor A*!' A#2 A#3 only the
completely symmetric part of the corresponding tensor integral contributes. This
is made explicit by distributing the indices among the ¢g; in all possible ways and
dividing by the number of permutations one has used. Thus Eq. 7.7 is written as

1 [ dPk dPk
Ii(p,m,2,1) = AMTAF2 AN —
1(p,m,2,1) 3] @oyp )P (91,291,392, (78)
+ 91,191, 1392, 10 + ql,u1q1,uzq2,u3)f(kl e k[, D m)
Generally speaking, the symmetrization of the tensor resulting from
J
[Ta g (7.9)

i=1

can be achieved by shuffling indices, [7-12], and dividing by the number of terms.
The shuffle product is given by

Clki,.... k) Wik ... ko). L (kyy e ko) |, (7.10)
———

ny nz ny

where C is the normalization constant

N —1
C:( ) . (7.11)
ny,...,ny

As an example, the symmetrization of

91,191, 1292, 143 (712)

can be inferred from Eq.7.8. After undoing the contraction with A in (7.3) and
shuffling the indices, one may make the following ansatz for the result of this integral,
which follows from the necessity of complete symmetry in the Lorentz indices
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[N/2]+1 Jj—1 N
Ripy.un) = Z Aj (H g{MZkMZkl)( H Pm})- (7.13)
=1 k=1 1=2j—-1

In the above equation, [ ] denotes the Gauss-bracket and {} symmetrization with
respect to the indices enclosed and dividing by the number of terms, as outlined
above. The first few terms are then given by

Ry =1, (7.14)

Ry = A1puys (7.15)
Rippa) = APy Py + A28 1105 (7.16)
Ry pops) = A1Ppy Pus Prs + A28{ui o Prus)- (7.17)

The scalars A; have in general different mass dimensions. By contracting again
with A, all trace terms vanish and one obtains

I[(p,m,nl...nj)ZA’“...A”NR{MWMN} (7.18)
=A(a-p)V (7.19)

and thus the coefficient A in Eq.7.13 gives the desired result. To obtain it, one
constructs a different projector, which is made up only of the external momentum p
and the metric tensor. By making a general ansatz for this projector, applying it to
Eq.7.13 and demanding that the result shall be equal to A, the coefficients of the
different Lorentz structures can be determined. The projector reads

[N/2]+1 [N/2]—i+1 N

My =FN) D .M ] guzzfzmzz I1 p_il-zk

i=1 =1 p k=2[N/2]-2i+3 p
(7.20)

For the overall pre-factors F(N) and the coefficients C(i,N), one has to distinguish
between even and odd values of N,

YN/ 2 22%k=N/2=3/2D(N + 1)[(D/2 4+ N/2 + k — 3/2)

Cco%k, N) = (—1
I'(N/2 —k+3/2T QKT (D/2+ NJ/2 — 1/(%)2

’

1y

232=N21r(D/2+1/2)

Fodd(N) — ,
(D—DI(N/2+D/2—1)

(7.22)
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2%=N2=2P(N + DI(D/2 + N/2 =2+ k)

Ceven(k’ N) — (_1)N/2+k+1 ,
T(N/2—k+2)T2k— DHI(D/2+N/2—1)
(7.2

3)

21=N2P(D/2 4+ 1)2)

Feven(Ny = . (7.24)
(D-DI'(N/24+D/2 —-1/2)
The projector obeys the normalization condition
Ty REVHY = Ay, (7.25)
which implies
Iy P pf =1, (7.26)
As an example for the above procedure, we consider the case N = 3,
1 8uima P Pui Pua Pu3
Maypons = 5= (-3 M 4 (D 4 ) EERES )- (7.27)
Applying this term to (7.8) yields
1 dPr dP )
Li(p,m,2,1) = / / (—2p q1-92p-91
(D —1)p® ) @m)P @2m)P (7.28)

- p*aip.gp+ (D + 2)(Q1.p)2qz.p)f(k1 ook, pom).

Up to 3-loop integrals of the type (7.28) can be calculated by MATAD as a Taylor
series in p?/m?. It is important to keep p artificially off-shell until the end of the
calculation. By construction, the overall result will not contain any term o< 1/p?,
since the integral one starts with is free of such terms. Thus, at the end, these terms
have to cancel. The remaining constant term in p? is the desired result.

The above projectors are similar to the harmonic projectors used in the MINCER-
program, cf. [5, J.LA.M. Vermaseren, The Form version of MINCER, unpublished].
These are, however, applied to the virtual forward Compton-amplitude to determine
the anomalous dimensions and the moments of the massless Wilson coefficients up
to 3-loop order.

The calculation was performed in Feynman gauge in general. Part of the calcu-
lation was carried out keeping the gauge parameter in Rg-gauges, in particular for
the moments N = 2, 4 in the singlet case and for N = 1, 2, 3, 4 in the non-singlet
case, yielding agreement with the results being obtained using Feynman-gauge. In
addition, for the moments N = 2, 4 in the terms with external gluons, we applied
the physical projector in Eq.4.23, which serves as another verification of our results.
The computation of the more complicated diagrams was performed on various 32/64
Gb machines using FORM and for part of the calculation TFORM, [13], was used.
The complete calculation required about 250 CPU days.
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7.3 Results

We calculated the unrenormalized operator matrix elements treating the

1PI-contributions explicitly. They contribute to A Si, , Agg)’ 0 and A((fq)gs One obtains

the following representations

2(3) 23T @I, 2 NON 2
_ W ™\ _ @ ™
AQg_AQg _AQg 1 (O’ 2) AQgH (O’ 2)
u u (7.29)
2D L N (2 '
+ A0 (0. %)M (0. %),
w ®
NE) A3 (3)( ,;12) NOR (1)( 2
A —A -0, —)-A n{o, —
88.0 88,0 w 88,0 Mz
NOA M2 NORER M2\ - 2
—24,, ,J1? (o, —) +A,, ,J00 (0, —)n<1> (0, —),
88.0 Mz 88.0 w Mz
(7.30)
~(3),NS A3),NSirT 3 2
Ao =Awo —2(0 p) (7.31)

The self-energies are given in Eqs. (4.84—4.86, 4.88). The calculation of the one-
particle irreducible 3-loop contributions is performed as described in the previous
Section. ! The amount of moments, which could be calculated, depended on the
available computer resources w.r.t. memory and computational time, as well as the
possible parallelization using TFORM. Increasing the Mellin moment from N —
N +2 demands both a factor of 68 larger memory and CPU time. We have calculated
the even moments N = 2, ..., 10 for AS;, A(3) and A(S) for AS;’PS up to

88.0° q8.0°
N = 12, and for A;Z)gs A;Z)"gs, ASq) o up to N = 14. In the NS-case, we also

calculated the odd moments N = 1, ..., 13, which correspond to the NS~ -terms.

7.3.1 Anomalous Dimensions

The pole terms of the unrenormalized OMEs emerging in the calculation agree with
the general structure we presented in Eqs. 4.94, 4.103, 4.104, 4.116, 4.117, 4.124,
4.134. Using lower order renormalization coefficients and the constant terms of the
2-loop results, [16—19], allows to determine the fixed moments of the 2-loop anom-
alous dimensions and the contributions o TF of the 3-loop anomalous dimensions,

I Partial results of the calculation were presented in [14, 15].
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cf. Appendix E. All our results agree with the results of Refs. [20-25]. The anom-
alous dimensions y, () and )/,}?’PS are obtained completely. The present calculation
is fully independent both in the algorithms and codes compared to Refs. [21-24, 26]
and thus provides a stringent check on these results.

7.3.2 The Constant Terms al.(J3.)(N ):

The constant terms at O(af), cf. Eqs.4.94,4.103,4.104,4.116,4.117,4.124, 4.134,
are the new contributions to the non-logarithmic part of the 3-loop massive operator
matrix elements, which can not be constructed by other renormalization constants
calculated previously. They are given in Appendix F. All other contributions to the
heavy flavor Wilson coefficients in the region Q2 >> m? are known for general values
of N, cf. Sect.4.7 and Chap. 6. The functions al.(;) (N) still contain coefficients o ¢,
and we will see below, under which circumstances these terms will contribute to the
heavy flavor contributions to the deep-inelastic structure functions. The constant By,
(4.89), emerges as in other massive single-scale calculations, [26-30].

7.3.3 Moments of the Constant Terms of the 3-loop
Massive OMEs

The logarithmic terms of the renormalized 3-loop massive OMEs are determined
by known renormalization constants and lower order contributions to the massive
OME:s. They can be inferred from Eqgs. 4.96, 4.105,4.106,4.118,4.119,4.126,4.137.
In the following, we consider as examples the non-logarithmic contributions to the
second moments of the renormalized massive OMEs. We refer to coupling constant
renormalization in the MS-scheme and compare the results performing the mass
renormalization in the on-shell-scheme (m) and the MS-scheme (m), cf. Chap. 5.
For the matrix elements with external gluons, we obtain :

AOMS 2 _ ) (174055 88 29431
,2)=T Toey —
Agg i =m2) FCA( 374 9 BT G
18002 208 2186
+TrCrCa(———= + == By — 10424 +—§3——§2+64g21n(2)
729 "9
8879 64 70
+TrCH( =25 — By +32¢4 — —g; + 802y — 12822 In(2)
729 9
2 (21586, 3605 N o (55672 889 128
Fea\" 2187 T 102 © FOP\" g T8t 372
we2e (L7054 704 N s (22526 1024 64
n —_— - n -t —03-=0).
IECA\ "257 ~ 51 8 FIFCR\ =09 T 51 B~ 32

(7.32)
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HME, 2 o ( 174055 88 20431
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ge0 =12 FCA( a7 T TR TG

123113 208B 4104 2330
729 g B4 ta 9 &3

+TFCFCA(

729 9

12, (21386 3605\ o (9340 889
FEA\ 2187 ~ 162 FYF\ 729 ~ 81 %3

2 57226 1408 6904 2048
+nfTpCal — C3 +ng FCF ——28).
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+TrC% (— + — By —3204 + —;3)

2187 729 8l
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Comparing the operator matrix elements in case of the on-shell-scheme and MS-
scheme, one notices that the terms In(2) ¢, and ¢, are absent in the latter. The ¢, terms,
which contribute to a (] ), are canceled by other contributions through renormalization.

Although the present process is massive, this observation resembles the known result
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that ¢>-terms do not contribute in space-like massless higher order calculations in
even dimensions, [D. Broadhurst, private communication (2009)]. This behavior is
found for all calculated moments. The occurring {4-terms may partly cancel with
those in the 3-loop light Wilson coefficients, [31]. Note, that Eq. 7.34 is not sensitive
to mass renormalization due to the structure of the contributing diagrams.

An additional check is provided by the sum rule (3.38), which is fulfilled in all
renormalization schemes and also on the unrenormalized level.

Unlike the operator matrix elements with external gluons, the second moments
of the quarkonic OMEs emerge for the first time at O(asz). To 3-loop order, the
renormalized quarkonic OMEs do not contain terms & ¢>. Due to their simpler
structure, mass renormalization in the on-shell-scheme does not give rise to terms
X &2, 1In(2)¢>. Only the rational contribution in the color factor o TFCIZ, turns out

to be different compared to the on-mass-shell-scheme and A@’S% (7.39), is not
affected at all. This holds again for all moments we calculated. The non-logarithmic
contributions are given by

3),PS,MS, 2 2 830 64 1280
A nw =m=,2) =TpCprCa|l —— + — B4 — 64
Qq ( ) FCF A(2187 9 4 Ca 77 &}

95638 128 9536 )

702 =20 - Z22B, + 6404 — =
+1F F( 729 9 4+ 6484 31 &}

e 53144_35844_
F=F\ 2187 ~ 81 °°

— &

) 34312 1024
T TECr =S T e )
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(3),PSMS, 2 2 _ 2 52168 1024
Agglo W =m"2) =nsTpCr (_W + WQ . (7.39)


http://dx.doi.org/10.1007/978-3-642-23286-2_3#Equ38

144

S. Klein

A;?:SS!MS(“Z =m?,2) =TrCrCy (_% + 69_434 — 6404 + %Q)
+ TFC%(M @B + 64cy — %4’3)
2187 9 5
+TECr (@ @43)
2187 8l
+nsTCr (_@ %53)- (7.40)
‘ 2187 ' 81
A;S‘I):gS’MS(“Z =m?,2) = TrCrChy (_ 121234 * %34 — 6454 + %53)
+ Tpci(zomo Sy eag - %Q)
2187 9 9
25024 1792
+ T2Cy (W TQ)
+n TECE (_@ N %Q)_
2187 81
(7.41)
A;Z),’RQAS(MZ =m?,2) = TrCrCay (% a %34 + 12844 — %Q)
+TrC} (_M L B0 oge s 17168§3)
2187 9 Tl
N nngcF(44272 - %43).
729 27
(7.42)
AQ S (P =7, 2) = TrCrCa (% - 19£B4 1280 — 8%4“3)
n TFC%(_436094 B0 o8+ 1716843)
2187 9 o0
+ T%CF(_@ @Q)
729 27
2. (44272 1024
+nfTFcF(W _ 743)_

(7.43)



7 Calculation of Moments at O(af ) 145

Finally, the sum rule (3.38) holds on the unrenormalized level, as well as for the
renormalized expressions in all schemes considered.

FORM-codes for the constant terms al.(f), Appendix F, and the corresponding
moments of the renormalized massive operator mtrix elements, both for the mass
renormalization carried out in the on-shell- and MS-scheme, are attached to Ref. [1]
and can be obtained upon request. Phenomenological studies of the 3-loop heavy fla-
vor Wilson coefficients in the region Q2 >> m? will be given elsewhere, (J. Bliimlein,
S. Klein, in preparation).
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Chapter 8
Heavy Flavor Corrections to Polarized
Deep-Inelastic Scattering

The composition of the proton spin in terms of partonic degrees of freedom has
attracted much interest after the initial experimental finding, [1-5], that the polar-
ization of the three light quarks alone does not add to the required value 1/2. Subse-
quently, the polarized proton structure functions have been measured in great detail by
various experiments [6-19].! To determine the different contributions to the nucleon
spin, both the flavor dependence as well as the contributions due to gluons and angular
excitations at virtualities Q2 in the perturbative region have to be studied in more
detail in the future. As the nucleon spin contributions are related to the first moments
of the respective distribution functions, it is desirable to measure to very small values
of x at high energies, cf. [23-25].

A detailed treatment of the flavor structure requires the inclusion of heavy flavor.
As in the unpolarized case, this contribution is driven by the gluon and sea-quark
densities. Exclusive data on charm-quark pair production in polarized deep-inelastic
scattering are available only in the region of very low photon virtualities at present
[26, 27]. However, the inclusive measurement of the structure functions g (x, Q2)
and g>(x, Q%) contains the heavy flavor contributions for hadronic masses w2 >
m + M)?.

The polarized heavy flavor Wilson coefficients are known to first order in the
whole kinematic range [28—30]. In these references, numerical illustrations for the
LO contributions were given as well, cf. also [31]. The polarized parton densities
have been extracted from deep-inelastic scattering data in [32-37]. Unlike the case
for photo-production, [38], the NLO Wilson coefficients have not been calculated
for the whole kinematic domain, but only in the region Q2 > m?, [39], applying
the same technique as described in Sect. 3.2. As outlined in the same section, the
heavy flavor contributions to the structure function F>(x, Q?) are very well described
by the asymptotic representation for Q2/m? > 10, i.e., Q% > 22.5GeV?, in case
of charm. A similar approximation should hold in case of the polarized structure
function g (x, Q?).

1" For theoretical surveys see [20-22].
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In this chapter, we re-calculate for the first time the heavy flavor contributions to
the longitudinally polarized structure function g (x, Q%) to O (af) in the asymptotic
region Q% > m? [39]. The corresponding contributions to the structure function
g2(x, Q2) can be obtained by using the Wandzura—Wilczek relation, [40], at the
level of twist-2 operators, as has been shown in Refs. [26, 41-44] within the covariant
parton model.

In the polarized case, the twist-2 heavy flavor Wilson coefficients factorize in
the limit Q2 > m? in the same way as in the unpolarized case, cf. Sect. 3.2 and
[39]. The corresponding light flavor Wilson coefficients were obtained in Ref. [45].
We proceed by calculating the two-loop polarized massive quarkonic OMEs, as has
been done in Ref. [39]. Additionally, we newly calculate the O (¢) terms of these
objects, which will be needed to evaluate the O(as3) corrections, cf. Chap. 4.

The calculation is performed in the same way as described in Chap. 6 and we
therefore only discuss aspects that are specific to the polarized case. The notation
for the heavy flavor Wilson coefficients is the same as in Eq. 3.2 and below, except
that the index (2, L) has to be replaced by (g1, g2). The polarized massive operator
matrix elements are denoted by AA;; and obey the same relations as in Chaps. 3 and
4, if one replaces the anomalous dimensions, cf. Eq. 2.107, 2.108, by their polarized
counterparts, Ay;;.

The asymptotic heavy flavor corrections for polarized deeply inelastic scattering
to O(af), [39], were calculated in a specific scheme for the treatment of y5 in
dimensional regularization. This was done in order to use the same scheme as has
been applied in the calculation of the massless Wilson coefficients in [45]. Here,
we refer to the version prior to an Erratum submitted in 2007, which connected the
calculation to the MS-scheme. In this chapter we would like to compare to the results
given in Ref. [39], which requires to apply the conventions used there.

In Sect. 8.1, we summarize main relations such as the differential cross sections
for polarized deeply inelastic scattering and the leading order heavy flavor correc-
tions. We give a brief outline on the representation of the asymptotic heavy flavor
corrections at NLO. In Sects. 8.2.1-8.2.3, the contributions to the operator matrix

@),NS AA(QZZ, and AA'Z;’(Z) are calculated up to the linear terms in €.

elements AAqq’Q ,

8.1 Polarized Scattering Cross Sections

We consider the process of deeply inelastic longitudinally polarized charged lepton
scattering off longitudinally (L) or transversely (T) polarized nucleons in case of
single photon exchange.” The differential scattering cross section is given by
o yo?

— = —L"W,,, 8.1

dxdydo — Q* v @1
cf. [21, 44]. Here, 6 is the azimuthal angle of the final state lepton. One may define an
asymmetry between the differential cross sections for opposite nucleon polarization

2 For the basic kinematics of DIS, see Sect. 2.1.


http://dx.doi.org/10.1007/978-3-642-23286-2_3
http://dx.doi.org/10.1007/978-3-642-23286-2_4
http://dx.doi.org/10.1007/978-3-642-23286-2_6
http://dx.doi.org/10.1007/978-3-642-23286-2_3
http://dx.doi.org/10.1007/978-3-642-23286-2_3
http://dx.doi.org/10.1007/978-3-642-23286-2_4
http://dx.doi.org/10.1007/978-3-642-23286-2_2
http://dx.doi.org/10.1007/978-3-642-23286-2_2
http://dx.doi.org/10.1007/978-3-642-23286-2_2

8.1 Polarized Scattering Cross Sections 149

Ay, 0yg = or _ oLy (8.2)
LT = dyde  dxdydd’ '

which projects onto the asymmetric part of both the leptonic and hadronic tensors,
Lﬁv and W}fv. The hadronic tensor is then expressed by two nucleon structure
functions

)»Sg q)\(PqSG—SqPU)

. q
W,fu = i€y |:P—_qgl(x, 0% + P a2 g (x, Q2)i| . (8.3)

Here S denotes the nucleon’s spin vector

Sr =1(0,0,0, M)

- (8.4)
St = M(0, cos(#), sin(9), 0),

with 4 a fixed angle in the plane transverse to the nucleon beam. g, is the Levi-
Civita symbol. The asymmetries A(x, y, ) 7 read

2 2 M2
A(x,y>L=4A§ [(2—y— ”S )81(X,Q PELL )} (8.5)

_ M2 )cyM2
Alx, v,8,0)r = —SA— <

x cos (7 — ) |:yg1 (x, Q2) +2g (x, QZ):|, (8.6)

where A is the degree of polarization. In case of A(x, y)r, the azimuthal angle was
integrated out, since the differential cross section depends on it only through phase
space.

The twist-2 heavy flavor contributions to the structure function gp(x, 0?) are
calculated using the collinear parton model. This is not possible in case of the structure
function g>(x, Q2). As has been shown in Ref. [31], the Wandzura—Wilczek relation
holds for the gluonic heavy flavor contributions as well

1

_ dz
&7 (x, 0% = —¢17%(x, Q )+/ 8 =2(z, 0%, (8.7)

X

from which g (x, Q%) can be calculated for twist T = 2. At leading order the heavy
flavor corrections are known for the whole kinematic region, [28-30],

Yo) X
¢2%x, 0% m?) =4e2QaS Hélg,l ( Q2) AG(z,nys, Q) (8.8)

ax
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and are of the same structure as in the unpolarized case, cf. Eq. 3.12. Here, AG is
the polarized gluon density. The LO heavy flavor Wilson coefficient then reads

v
)} . (8.9)
v

The support of Hé}gl (. m2/Q2) is T e [0, 1/a]. As is well known, its first
moment vanishes

HY (+ m? =4TF |v(3 — 47) + (1 — 27)In 1=
8,81 ’ Q2 1+

1/a )

m
/dng(ll) (r, @) =0, (8.10)
0

which has a phenomenological implication on the heavy flavor contributions to polar-
ized structure functions, resulting in an oscillatory profile [31]. The unpolarized
heavy flavor Wilson coefficients, [46-55], do not obey a relation like (8.10) but
exhibit a rising behavior towards smaller values of x.

At asymptotic values Q2 >> m? one obtains

H(D.as m? _ Q2 1—-1
2,21 t,@ =4Tr |3 —41) — (1 —27)In P . (8.11)

The factor in front of the logarithmic term ln(Q2 / m?) in (8.11) is the leading
order splitting function A Py, (7), [56—59],3

APy(r) = 8Tp [ = (1 = )?| = 8Tp [20 — 1]. (8.12)
The sum-rule (8.10) also holds in the asymptotic case extending the range of
integration to T € [0, 1],

1

/dtH(l)’as (r m—z) =0 (8.13)
8,81 ’ Q2 - :

0

8.2 Polarized Massive Operator Matrix Elements

The asymptotic heavy flavor Wilson coefficients obey the same factorization relations
in the limit Q2 >> m? as in the unpolarized case, Egs. 3.21-3.25, if one replaces all
quantities by their polarized counterparts.

3 Early calculations of the leading order polarized singlet splitting functions in Refs. [57-59] still
contained some errors.
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The corresponding polarized twist-2 composite operators, cf. Eqs. 2.86-2.88, are
given by

.....

_ A
0qN§ gy =101 I:wysymDuz . DMN?W} — trace terms, (8.14)

Oqszm,...,/m = iN_IS[Wysyul Dy, ...Dy, ] — trace terms, (8.15)

0S = 2iV-28Sp [zemaﬂy Fg D#2 .. DMN-1 Folfg] — trace terms.

(8.16)
The Feynman rules needed are given in Appendix B. The polarized anomalous dimen-
sions of these operators are defined in the same way as in Eqs. 2.107 and 2.108, as
is the case for the polarized massive OMEs, cf. Eq. 3.17 and below.

In the subsequent investigation, we will follow Ref. [39] and calculate the
quarkonic heavy quark contributions to O(asz). The diagrams contributing to the
corresponding massive OMEs are the same as in the unpolarized case and are shown
in Figs. 1-4 in Ref. [49]. The formal factorization relations for the heavy flavor
Wilson coefficients can be inferred from Eqs. 3.26, 3.29, 3.30. Here, we perform the
calculation in the MOM-scheme, cf. Sect. 5.1, to account for heavy quarks in the final
state only. The same scheme has been adopted in Ref. [39]. Identifying 1> = Q2,
the heavy flavor Wilson coefficients in the limit Q2 > m? become, [39],

2 2
o (2 _ 1 50 Y )
H), (WN) —5 A7 1n(m )+cggl, (8.17)
2 2
@ (2 I s A,0 y© Y
He, (W’ N) _[gqug [quq 2'30] In’ (mz)

LT sm ) .(1) 0’
_E[AV + AV c qgl]ln )

m

+[ar® - ar +260)

~(0)
A 2 .
xy‘fT"qu §2>gl+Aa<Qz;], (8.18)
2 2
@.psf Q _ ~(0) (0) 0 A(])PS 0
Ha &1 (mz’N)—{‘gA A7, l(mz) 3074 (mz
A(O)
AVyo A
+ g rig 3 +a,§2;]PS+Aag;’PS}, (8.19)
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0 Q2 .
ézé.NS( z’N) { ﬂOQAy(O)ln( 2)_[2A (NS g C((}lél}
«In Q2 713 oA (O)_’_é(Z) NS+A (2) NS . (820
m? 0.0522%4q9 T €q.51.0

cfk) are the kth order non-logarithmic terms of the polarized coefficient functions.

As has been described in [39], the relations (8.18)—(8.20) hold if one uses the same
scheme for the description of y5 in dimensional regularization for the massive OMEs
and the light flavor Wilson coefficients. This is the case for the massive OMEs as
calculated in [39], to which we refer, and the light flavor Wilson coefficients as
calculated in Ref. [45].

(2),NS
8.2.1 AA_ ",

The non-singlet operator matrix element AAPNS has to be the same as in the
unpolarized case due to the Ward-Takahashi idenfity [60, 61]. Since it is obtained as
zero-momentum insertion on a graph for the transition (p| — |p), one may write
it equivalently in terms of the momentum derivative of the self-energy. The latter
is independent of the operator insertion and yields therefore the same in case of

AAA - PV and AAys(A - p)V=!. Hence, AAL TS reads, cf. Eq. (4.95),

2 2
(2),NS m (2),NS m
s (v 5) = At (N’ )

~(1),NS
:30 Qqu P0.0Yqq | 2 m? n Yaq
4 ,u2 2

2
m 2),NS VA
xIn (ﬁ) +agp "" LBy 022, (8.21)

where the constant term in ¢ of the unrenormalized result, Eq. 4.93, is given in
Eq. 6.60 and the O (¢)-term in Eq. (6.61).

)
8.2.2 AAQg

To calculate the OME AAg, up to O(af), the Dirac-matrix ys is represented in
D = 4 + ¢ dimensions via, [39, 62-66],

i
Ay’ = < Eupo AV Yy (8.22)
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The Levi-Civita symbol will be contracted later with a second Levi-Civita symbol
emerging in the general expression for the Green’s function, cf. Eq. 4.18,

A ntlz ab B
AGQW_AAQg 2 , &, N )& (A - p) gwaﬁA pP, (8.23)

by using the following relation in D-dimensions, [67],

guvstauy = — Det [gf,] )

8.24
/3:05,)\71',)/, w=M,Vv,p,0. ( )

In particular, anti-symmetry relations of the Levi-Civita tensor or the relation
y52 = 1, holding in four dimensions, are not used. The projector for the gluonic
OME then reads

A 84b 1
AAg, =
9T N2_1(D-2)(D-3)

(A-p) NTMPIANGY  Appo. (825)

In the following, we will present the results for the operator matrix element using
the above prescription for ys. This representation allows a direct comparison to
Ref. [39] despite the fact that in this scheme even some of the anomalous dimensions
are not those of the MS-scheme. We will discuss operator matrix elements for which
only mass renormalization was carried out, cf. Sect. 4.3. Due to the crossing relations
of the forward Compton amplitude corresponding to the polarized case, only odd
moments contribute. Therefore the overall factor

1 N
5[1_(_1) | wew, (8.26)
is implied in the following. To obtain the results in x-space the analytic continuation

to complex values of N can be performed starting from the odd integers. The O (ay)
calculation is straightforward

N m? e & g3
A - 2 ) 3
AAQg = (—2) i + _8 + = Y i| Ay + 0(&”) (8.27)

2N\ €/2
1
- (’"_2) SAT Aay) +eATY) + ¢ A_Qg] +0(E.  (828)

The matrix element contains the leading order anomalous dimension qu(g),

1 2
AA“) ~APQ In , (8.29)
2 e
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where
APO = —8TFN—_1. (8.30)
s N(N +1)
The leading order polarized Wilson coefficient c(gl,i,l reads, [30, 45, 68],
N -1 N -1
1
Coor = _4TFN(N D [51 + N ] . (8.31)

The Mellin transform of Eq. 8.11 then yields the same expression as one obtains
from Eq. (8.17)

(s (v ™M Loy, (2 a
I‘Ig’g1 N, @ = _sz‘fg In W + Cg’gl , (832)
for which the proportionality

H-as (N m—z) x (N —=1) (8.33)
8,81 ’ Q2 :

holds, leading to a vanishing first moment.

At the two-loop level, we express the operator matrix element AA(QZ) , after mass
renormalization, in terms of anomalous dimensions, cf. [49-55], by

A 2\ A7 O A/
AAD) —('") [ 298 Lavgy) — arQ — 260} + 2L + Aa)

Qs —\ u2 262 e Qg
2\¢/? 2 3 .
) ]2 m € £ Q) 2
+ Adge] - Zhoo (Mz) (1 +ght 2453)AAQg + 0@,
(8.34)
The remaining LO anomalous dimensions are
3N?+3N +2
Ay = —Cp(-881 +2—~ "), 8.35
Yaq F 1+ NNV 1D (8.35)
IIN? + 1IN +24) 8
Ay =—Ca (881 +2 ~Trny. 8.36
Yeg A 1+ NNV ED +3Trny (8.36)

The renormalized expression in the MOM-scheme is given by

A (0
AVq(g)

/(2).MOM __
AA) =—

0 0 5 m2 J;’(l)
[qu(q) —Ayg - 2'80] In (ﬁ) + qu

2 ~(0)
m (0) (0) Yqg n2)
xIn (MZ) + (Aygg — AYyg +2P0) —g-62+ Aagy. (837)
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The LO anomalous dimensions which enter the double pole term in Eq. 8.34
and the In’(m?/u?) term in Eq. 8.37, respectively, are scheme-independent. This
is not the case for the remaining terms, which depend on the particular scheme we
adopted in Eqgs. 8.42, 8.22 and are therefore denoted by a prime. The NLO anomalous
dimension we obtain is given by

A/(l) N — N-1 o, N -1
APl = —TpCp —167524—16751— — 5
N(N +1) NN +1) N2(N + 1)
gV = 1)(5N* + 10N3 + 8N2 + 7N +2)
N3(N + 1)3
Ty (32N = B +16 o=l o 16Nl g2
FtaA N(N+1) NN+D 2T PN+ !
N-1 645,
;2_ 2
N(N +1) N(N +1)
NS>+ N*—4N3 +3N2—7N -2
_ et + . (8.38)
N3(N +1)3

It differs from the result in the M_S-scherne, [69-71], by a finite renormalization.
This is due to the fact that we contracted the Levi-Civita symbols in D dimensions.
The correct NLO splitting function is obtained by

-1

ALY = AP + 644 Cp—s .
Yag = 2V FEENA(N + 1)2

(8.39)

In an earlier version of Ref. [45], %g) was used as the anomalous dimension

departing from the MS scheme. Therefore, in Ref. [39] the finite renormalization
(8.39), as the corresponding one for Cﬁ?gn , [45], was not used for the calculation of

AA(sz,. For the higher order terms in ¢ in Eq. (8.34) we obtain

4N — 1)
Adl) = —TrCr [73N(N+1) (—483 + 87 435152+ 65102)
4B3N?+3N —2)S7  N* 4+ 17N> +43N? +33N 42
N2(N + D(N +2) NZ(N + 12(N +2) :
(N —1)(BN?>+3N +2) N3 —2N% - 22N —36
R e T

2P }
+

N4(N 4+ D*(N +2)

Trcala—N =1 (oM [E29 )y 1) 1357 — 85y — 53 —os,s
FA1"3Nv + 1) T+x 3701 192

N —1

— 12858 — 12B¢ — 3(3) - 16mﬁ
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N? 4+ 4N +5 2, TN3 4 24N? + 15N — 16
NN+ 1DXN +2)"! N2(N + D2(N +2)

(N=1(N+2) N* +4N3 — N2 — 10N +2
2

+4

2

+38

M

N2(N + 1)2 N(N + 1)3(N +2)
4P ]
N4(N +D*N +2) |’ (8.40)
AT? = T | N7 (1685, — 885 — 855181 435 — 25351 — L53— Lgd
0g N(N +1) o ’ ’ 3 2 6
8 ) ) $5.1 3N24+3N -2
— 2815 — K82 4280 — 282, ) -8l 2 T %
30168 7 9251 20k IQ) N TNMNT DN T2
2 3N* +48N3 + 123N2 + 98N + 8
2581+ =83 ) +2
X( 251+ 3 1)+ INZN + D22+ N) 3
4N = 1) 2 (N —1@BN?2+3N +2)
A ¢ Z
tvewino'2ts NZ(N + 1)2 &
N P3S, N N3 —6N? —22N—36S2
N3N+ 13N+2) NN+DWN+2) !
Pilr 22N4 —4N3 —3N? 4+ 20N + 12
N3N +1)3 N2(N + D2(N +2) !
Ps
+ e —
N5(N+1)5(N+2)]
+rrea] =L (16s 48 8S 8 4S5 + 2"
FLA N(N+1) -2,1,1 2,1,1 3,1 —-2,2 3,1 3
" / 7 a2 40 1 2
— 168521851 —4B"S1 +8B'S> +88'S7 + 9S54 + ?5331 + ESZ
1 10 17
+ 55,87 + 651‘ +40B — 208 — 208 - ?5153 - ?4“22)
N-—1 16 N3 4+7N2+8N —6

(16S_.1 +4B" — 16p'S)) — 3

T NN+ 1)? 3 N2(N 4+ D2(N +2)
2(3N2 — 13)5,5) 2(N?+4N +5) 80,81
NN+ D2(N+2) 3N(N+D2(N+2)"' (N+1)2

2 (N —1)O9N +38) 8(N2+3) PsS>
B R R T S S E S )
N*+2N3—5N2 - 12N +2 , 2P 2P8S,
NN+ 13(N+2) PNV D3 T NN+ DAV +2)
2Py

NSNS+ |
(8.41)
with the polynomials

Py =4N® + 12N7 + 4N — 32N —55N* — 30N> —3N? —8N —4,  (8.42)

Py =2N8 + 10N7 + 22N® + 36N> + 29N* + 4N3 + 33N? + 12N +4, (8.43)
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P3 = 3N°® 4+ 30N> + 107N* + 124N3 + 48N? + 20N + 8, (8.44)
Py = (N — 1)(IN* + 14N> + 4N? — TN —2), (8.45)

Ps =8N+ 24N% —11N® —160N7 —311N® —275N° — 11IN* —TN3 + 1IN + 12N +4,

(8.46)
Po = N°+ 18N> 4+ 63N* 4 84N> + 30N — 64N — 16, (8.47)
P;=N>— N*—4N3 —3N? - TN -2, (8.48)
Pg = 2N’ + 10N* 4+ 29N> + 64N? + 67N + 8, (8.49)

Py = 4N'0422 N +45N8+36 N7 —11N°—15N>+25N*—41N3—21 N2 —16N —4.

(8.50)
The Mellin-transform in Eq. 8.40 is given in Eq. 6.47 in terms of harmonic sums.
As a check, we calculated several lower moments (N = 1, ...,9) of each individual

diagram contributing to A(ng 4 using the Mellin-Barnes method [54, 72]. In Table
8.1, we present the numerical results we obtain for the moments N = 3,7 of the
individual diagrams. We agree with the results obtained for general values of N. The
contributions from the individual diagrams are given in [73]. Our results up to O (80),
Eqgs. 8.34, 8.40, agree with the results presented in [39], which we thereby confirm
for the first time. Eq. 8.41 is a new result.

In this calculation extensive use was made of the representation of the Feynman-
parameter integrals in terms of generalized hypergeometric functions, cf. Chap. 6.
The infinite sums, which occur in the polarized calculation, are widely the same as
in the unpolarized case [50-55]. The structure of the result for the higher order terms
in ¢ is completely the same as in the unpolarized case as well, see Eq. 6.34 and the
following discussion. Especially, the structural relations between the finite harmonic
sums, [74-77], allow to express Aa/Q(? by only two basic Mellin transforms, 1 and
S_>.1. This has to be compared to the 24 functions needed in Ref. [39] to express the
constant term in z-space. Thus we reached a more compact representation. AG?
depends on the six sums S1(N), S+2.1(N), S—3.1(N), S+2,1,1(N), after applying
the structural relations. The O (%) term has the same complexity as the two-loop
anomalous dimensions, whereas the complexity of the O (¢) term corresponds to the
level observed for two-loop Wilson coefficients and other hard scattering processes
which depend on a single scale, cf. [78-80].

4 These are shown in Fig. 2 of Ref. [49].
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Table8.1 Numerical values for moments of individual diagrams of AA(QZE,

Order 1/62 1/e 1 & g2

A N=3 —0.22222 0.06481 —0.13343 —0.15367 —0.06208
N=17 —0.03061 0.00409 —0.01669 —0.01900 —0.00639

B N=3 4.44444 —1.07407 4.45579 0.515535 3.13754
N=7 5.46122 0.74491 6.09646 2.97092 5.35587

C N=3 1.33333 —8.14444 0.13303 —6.55515 —2.64601
N=17 0.85714 —5.12329 0.14342 —4.10768 —1.59526

D N=3 2.66666 —0.02222 2.19940 1.03927 1.69331
N=1 1.71428 0.85340 1.78773 1.56227 1.80130

E N=3 —2.66667 5 —-2.27719 4.89957 0.73208
N=7 —1.71429 2.97857 —1.3471 2.83548 0.44608

F N=3 0 0.77777 —5.80092 —2.63560 —6.57334
N=17 0 1.40105 —3.54227 —0.78565 —3.72466

L N=3 —9.33333 0.25000 —8.83933 —3.25228 —6.84460
N=17 —6.73878 —1.86855 —7.09938 —4.56051 —6.501

M N=3 —0.22222 0.71296 —0.41198 0.69938 —0.11618
N=1 —0.03061 0.11324 —0.05861 0.11969 —0.01207

N N=3 —2.22222 1.26851 —1.37562 0.69748 —0.36030
N=17 —3.19184 —0.50674 —3.39832 —1.7667 —2.97339

(2),PS
8.2.3 AA 04

The operator matrix element AAPPS i5 obtained from the diagrams shown in

Fig. 3 of Ref. [49]. In this calculation, we did not adopt any specific scheme for
ys, but calculated the corresponding integrals without performing any traces or
(anti)commuting ys.

The result can then be represented in terms of three bi-spinor structures

Ci(e) = Tr{dpy"y vs}Avuys = iMs (8.51)
A-p KV 7316 '

Cae) = Tr{&y"y" vy ys} vurvvy, = 244 ys (8.52)
1 v

Ci(e) = — Tr {f&py"y" vs} #ruvo. (8.53)

m2
These are placed between the states (p|...|p), with

P#lp) = molp) (8.54)

and m the light quark mass. Therefore, the contribution due to C3(¢) vanishes in the
limit mo — 0. The results for C; »2(¢) in the r.h.s. of Egs. 8.51, 8.52 can be obtained
by applying the projector
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-3
2D — 1)(D —2)(D -3

)Tr[ﬁySCi] (8.55)

and performing the trace in D-dimensions using relations (8.22, 8.24). Note that
the result in four-dimensions is recovered by setting ¢ = 0. One obtains from the

truncated two-loop Green’s function AG’&Q)

S

AGE?D = NAGITKyse'l (A - pN T, (8.56)

the following result for the massive OME

2

A ¢ 1 2N -1 I N3 4+2N +1
ARG ys = (%) C()8(N +2) { Sk

CE2NXN+1)?2 e N3N +1)
(N — (¢ +2S8)  4N3—4N?—3N -1

IN2(N + 1)2 IN4(N + 1)*
" |:(1V3 + 2N+ (5 +28)
4N3(N +1)3
(N —=1D)(&5 +353)
6N2(N + 1)2
N3 —TN* + 6N3 + TN? + 4N + 1 )
+ NN T + 0(g%),
(8.57)
where
Ci(e) - (N — 1)+ Ca(e) 3(N+2+¢)
C(e) = =Ays——
8(N +2) (N+2)3+¢)
N —1 g2 &
=l+— (—e+=—Z)+0(E"h. 8.58
+3(N+2)(8+3 9)+ € (8.58)

Comparing our result, Eq. 8.57, to the result obtained in [39], one notices that
there the factor C (&) was calculated in four-dimensions, i.e. C(¢) = 1. Therefore,
we do the same and obtain

~ 2\ ¢ ~(0) 0) ~(1),PS
TQPS _ M AVqg AVgq AYqq ).PS —(2),PS
Aoy~ =5; (?) |:_ 22 T 2¢ +tAag, "+ Ay, e
(8.39)
with
N+2
AyO — 4o, N2 8.60
ng FN(N+1) ( )
N +2)(N3+2N +1
a7Pe = 67pc, TN L2NEL), (8.61)

N3(N + 1)3
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Ag?-PS (N—=1)(&+2S)) 4N3—4N?-3N -1
a = — _

= , 8.62
Qq 2N2(N + 1)2 2N4(N + 14 (8.62)
AZOPS _ (N — 1)(¢3 +3S3) (N? +2N + 1)(&2 +252)
Qg 6N2(N + 1)2 AN3(N + 1)3
N> —TN* +6N3 +7N? +4N + 1
+ + ravt (8.63)
4NS(N + 1)5

Here, we agree up to 0(8_0) with Ref. [39] and Eq. 8.63 is a new result. Note,
that Eq. 8.61 is already the MS anomalous dimension as obtained in Refs. [69-71].
Therefore any additional scheme dependence due to ys can only be contained in the
higher order terms in . As a comparison the anomalous dimension A%E;)’PS which
is obtained by calculating C(¢) in D dimensions, is related to the MS one by

16(N — 1)2

FININ £ 12 (8.64)

~(1),PS _ ~/(1),PS _
Aveq "~ = AVqq TrC
The renormalized result becomes

8 uz 2 uz 8
(8.65)
The results in this section constitute a partial step towards the calculation of the
asymptotic heavy flavor contributions at O(as2) in the MS-scheme, thereby going
beyond the results of Ref. [39]. The same holds for the O(aszs)-terms, which we
calculated for the first time, using the same description for ys as has been done in
[39]. The correct finite renormalization to transform to the MS-scheme remains to

be worked out and will be presented elsewhere [73].

50) A (0) 2 5 (1),PS 2 50) A (0)
AV Ay, m A m A A
AAQHTS = _DVag 2Veq 42 ( ) TRl (U ( ) +AagrPS + ~Yag “Vea )
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Chapter 9
Heavy Flavor Contributions to Transversity

The transversity distribution Az f(x, Q%) is one of the three possible quarkonic
twist-2 parton distributions besides the unpolarized and the longitudinally polarized
quark distribution, f(x, Q%) and Af(x, Q?), respectively. Unlike the latter distri-
bution functions, it cannot be measured in inclusive deeply inelastic scattering in
case of massless partons since it is chirally odd. However, it can be extracted from
semi-inclusive deep-inelastic scattering (SIDIS) studying isolated meson produc-
tion [1-4], and in the Drell-Yan process, [4-9], off transversely polarized targets.'
Measurements of the transversity distribution in different polarized hard scattering
processes are currently performed or in preparation [11-16]. In the past, phenom-
enological models for the transversity distribution were developed based on bag-like
models, chiral models, light-cone models, spectator models, and non-perturbative
QCD calculations, cf. Chap. 8 of Ref. [10]. The main characteristics of the transver-
sity distributions are that they vanish by some power law both at small and large
values of Bjorken-x and exhibit a shifted bell-like shape. Recent attempts to extract
the distribution out of data were made in Refs. [17, 18]. The moments of the transver-
sity distribution can be measured in lattice simulations, which help to constrain it ab
initio, where first results were given in Refs. [19-24] ( D. Renner, private communi-
cation, 2009). From these investigations there is evidence, that the up-quark distri-
bution is positive while the down-quark distribution is negative, with first moments
between {0.85, ...,1.0} and {—0.20, ..., —0.24}, respectively. This is in qualitative
agreement with phenomenological fits.

Some of the processes which have been proposed to measure transversity contain
k1 — and higher twist effects, cf. [10]. We will limit our considerations to the class
of purely twist-2 contributions, for which the formalism to calculate the heavy flavor
corrections is established, cf. Chap.3. As for the unpolarized flavor non-singlet
contributions, we apply the factorization relation of the heavy flavor Wilson coeffi-
cient (3.21) in the region 0% > m2.

As physical processes one may consider the SIDIS process IN — I'h + X off
transversely polarized targets in which the transverse momentum of the produced

I For a review see Ref. [10].
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final state hadron £ is integrated. The differential scattering cross section in case of
single photon exchange reads
Co_ 41 s 2 AL 2, 095y 0% — (= ySLIShL|
= eix = - i (x, i (2, - (-
dxdydz ny2 ot i 2 y i i (Z YIS LIBdRL

x cos (ps + ¢s,) A7 Fi(x, 0% A7 Dj(z, Qz)} .

9.1)
Here, in addition to the Bjorken variables x and y, the fragmentation variable z
occurs. S and Sy are the transverse spin vectors of the incoming nucleon N and
the measured hadron /4. The angles ¢g s, are measured in the plane perpendicular
to the y*N (z-) axis between the x-axis and the respective vector. The transversity
distribution can be obtained from Eq.9.1 for a transversely polarized hadron % by
measuring its polarization.
The functions Fj, ﬁi, AT F;, Ar D,- are given by

Fi(x, Q%) =Ci(x, 0*) ® fi(x, 0*) 92)
Di(z, 0*) = Ci(z, 0*) ® Di(z, Q%) (93)
ArFi(x, Q%) = ArCi(x, Q%) ® At fi(x, Q%) 94)
ArDi(z, 0*) = ArCi(z, Q%) ® ArDi(z, Q7). 9.5)

Here, D;, At D; are the fragmentation functions and @, ArCi, ATéi are the
corresponding space- and time-like Wilson coefficients. The functions C; are the
Wilson coefficients as have been considered in the unpolarized case, cf. Chaps.2
and 3. The Wilson coefficient for transversity, A7C;(x, Q%), contains light- and
heavy-flavor contributions, cf. Eq. (3.3),

ArCi(x, Q%) = ArCi(x, Q*) + AT Hi(x, 0%). (9.6)

A7C; denotes the light flavor transversity Wilson coefficient and A7 H; (x, Q?)
the heavy flavor part. We dropped arguments of the type n r, m?, u? for brevity,
since they can all be inferred from the discussion in Chap. 3.

Equation9.1 holds for spin-1/2 hadrons in the final state, but the transversity
distribution may also be measured in the leptoproduction process of spin-1 hadrons,
[25]. In this case, the Py, | -integrated Born cross section reads

d3o dra? | 5 oA 2
Trdydz = g2 S (05 T bsir) ISLIISLTIC — ) D GxATFi(x, Q) H L1z, 07).
i=q,q

9.7)
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Here, the polarization state of a spin-1 particle is described by a tensor with five
independent components, [26]. ¢ 7 denotes the azimuthal angle of S 7, with

ISerl = (Sir)” + (Si7)”. 9.8)

I:I\a, 1.L7(2, Q2) is a T- and chirally odd twist-2 fragmentation function at vanishing
k1. The process (9.7) has the advantage that the transverse polarization of the
produced hadron can be measured from its decay products.

The transversity distribution can also be measured in the transversely polarized
Drell-Yan process, see Refs. [27-29]. However, the SIDIS processes have the advan-
tage that in high luminosity experiments the heavy flavor contributions can be tagged
like in deep-inelastic scattering. This is not the case for the Drell-Yan process,
where the heavy flavor effects appear as inclusive radiative corrections in the Wilson
coefficients only.

The same argument as in Sect. 3.2 can be applied to obtain the heavy flavor Wilson
coefficients for transversity in the asymptotic limit O > m?. Since transversity is
a NS quantity, the relation is the same as in the unpolarized NS case and reads up
to O(a}), cf. Eq.(3.26),

NS A
OBy + 1+ ArCP )]

(3),NS
qq,0

ATHM™(np + 1) = a [ATA

(2),NS

+a [ATA @n

nf+1)+A7AD DS+ 1) (9.9)

x ArC(ng+ 1) + ATé;S)(nj~)] .

The operator matrix elements ATA(Z'%’ NS are—as in the unpolarized case—
universal and account for all mass contributions but power corrections. The respec-
tive asymptotic heavy flavor Wilson coefficients are obtained in combination with
the light flavor process-dependent Wilson coefficients.> In the following, we will
concentrate on the calculation of the massive operator matrix elements. The twist-2

local operator in case of transversity has a different Lorentz-structure compared to
Eqs.2.86-2.88 and is given by

— A
oRNS = iNTIS[yo i DHe D“N?’xp] — trace terms,  (9.10)

with o"* = (i/2) [yv Yu — Yu yv] and the definition of the massive operator matrix
element is the same as in Sect. 3.2. Since (9.10) denotes a twist-2 flavor non-singlet
operator, it does not mix with other operators. After multiplying with the external
source Jy, cf. Eq.4.10 and below, the Green’s function in momentum space corre-
sponding to the transversity operator between quarkonic states is given by

2 Apparently, the light flavor Wilson coefficients for SIDIS were not yet calculated even at O (ay),
although this calculation and the corresponding soft-exponentiation should be straightforward. For
the transversely polarized Drell-Yan process the O (ay) light flavor Wilson coefficients were given
in [28] and higher order terms due to soft resummation were derived in [29].
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ij, TR,NS

m T TR.N -
@(p, )G 6 o hu(p. ) = In(Ti(P)O] NS, W (po.  (9.11)

It relates to the unrenormalized transversity OME via

NS /72
Aij, TR.NS N—1 A m
Glao  =8i(A-p) (ApUWATAqq,Q (pv £, N)

+ c1 A* + o pt + e3P+ cafp AT + CSMP“) :

(9.12)
The Feynman rules for the operators multiplied with the external source are given
in Appendix B. The projection onto the massive OME is found to be

NS /52
ATAqq,Q (F, &, N)

i8 ~ij.TRINS ~ij.TR.NS
_ wAiTR, _ w A TR,
= " IN.Ap)XD D [Tr [Ayp G,luo ] A.pTr [p G40 ]

+iA.pTr [Gﬂpppéz”z’%’\ls] ] .
(9.13)
Renormalization for transversity proceeds in the same manner as in the NS-case.
The structure of the unrenormalized expressions at the 2- and 3-loop level are the
same as shown in Egs. 4.93, 4.94, if one inserts the respective transversity anomalous

dimensions. The expansion coefficients of the renormalized OME then read up to
O(a?) in the MS-scheme, cf. Egs. (4.95, 4.96),

_ 0), TR 2 ~(1), TR 2 0), TR
ApAQNSTS _ Fo.0Yeq” " o (m)+yqq 1n(m )+a(2),TR_ﬁo,quq

99,0 4 2 B w2 ) aa.0 4 &2,
(9.14)
o ©),TR 2
(3),NS,MS Yaq ' Po,0 3f(m
ArAylo == 6 (Bo +2Po.0) In (Mz)

4
2 (m? (.o @).TR ©).TR
X In 2 T {qu T (4aqq,Q — 0B0.0Yqq )

1
x (Bo + Bo,0) + J/q(g)’mﬂf,)g}

1 A
+ - IZV,,(;)’TRﬁo,Q—Z ,,(},)’TR (Bo + Bo.o) + ﬁl,qu(S)’TR]
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2
2), TR 2
- ln(u )+4al(1q)Q (Bo + o.0) = Vjq B1'p

0),TR 1),TR
Vc;q) Pobo.ol3 Yo' Bo.o&2
6 4
(1 (0) TR ©) ~(1),TR ( l) 2),TR (3),TR
+28my " Bo,ovy T Omy Yy 28my Cag o tag, o
(9.15)
Here, y(k) TR ,{k =0, 1, 2}, denote the transversity quark anomalous dimensions

at 0(ak+1) and (%1 2 TR, E‘(Iz) TR are the constant and O (g) terms of the massive

operator matrix element at 2- and 3-loop order, respectively, cf. the discussion in
Chap. 4. At LO the transversity anomalous dimension was calculated in [5, 30-34],3
and at NLO in [28, 36, 37].* At three-loop order the moments N = 1,...,8 are
known, [41-44].

The 2-loop calculation for all N proceeds in the same way as described in Chap. 6.
We also calculated the unprojected Green’s function to check the projector (9.13).
Fixed moments at the 2- and 3-loop level were calculated using MATAD as described

in Chap.7.

From the pole terms of the unrenormalized 2-loop OMEs, the leading and next-
to-leading order anomalous dimensions y(o) TR and y(l) ‘TR can be determined.
We obtain

Vag' TN =2Cr [=3+481], (9.16)
and
32 3
(1), TR _
Yaq 9 —CfrTF |:352—551+ 8:| 9.17)

confirming earlier results [28, 36, 37]. The finite and O (¢) contributions are given
by

3 972 ’

2
@OTR _ o SS 4OS 224 { S1 42 (24+73N—|—73N)
a = -

142 Fr 3 27 2|t 2 I8N (N + 1)

(9.18)

3 The small x limit of the LO anomalous dimension was calculated in [35].

4 For calculations in the non-forward case, see [34, 38—40].
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TR _ _ |6, 0, .8
dgq.0 = CFTF [81 tghtgn|s

LU, 4 1, 200 4l 12
77 3C2 2= 9% 304 6(2 353
(—144 — 48N + 75TN2 + 1034N3 + 5171v4)

n (9.19)

216N2 (N + 1)2

The renormalized 2-loop massive OME (9.14) reads

— 2
(2).NS,MS _ 8 2f m
ATAqq,Q —CFTF{[—3S] +2]1n (,u,z)

|80 2 181 m’
80 2 160 (7
IR T T 2

8 40 224 24 + 73N + 73N?
RN R T I Ty v b
( (9.20)

3 9 27

Using MATAD, we calculated the moments N =1, ..., 13 at O(asz) and O(ag).
At the 2-loop level, we find complete agreement with the results presented in
Eqs.9.16-9.19. At O(a‘?), we also obtain )?(](?,)’TR, which can be compared to the
Tr-terms in the calculation [41-44] for N = 1, ..., 8. This is the first re-calculation
of these terms and we find agreement. For the moments N = 9, ..., 13 this contri-
bution to the transversity anomalous dimension is calculated for the first time. We
list the anomalous dimensions in Appendix G. There, also the constant contribu-
tions a(3)’TR are given for N = 1, ..., 13, which is a new result. Furthermore, we
obtain in the 3-loop calculation the moments N = 1, ..., 13 of the complete 2-loop
anomalous dimensions. These are in accordance with Refs. [28, 36, 37].

Finally, we show as examples the first moments of the MS—renormalized O(af)
massive transversity OME. Unlike the case for the vector current, the first moment
does not vanish, since there is no conservation law to enforce this.

2
(3),NS,MS _ 44 16 3 m
ATA([(],Q (1)_CFTFl(7CA_ETF(nf+2) In ﬁ

27
+(2Zcp 10, J 19 Y12 " (22 160 cr+ (22 ~1653) €
3 er —Ca— 57 IF 2 9 &) Cr 31 {3 ) Ca
604 496 7 (m’ (18 g, 28, TSN
e m- _16 _ 28, pl
g1 ST R 2 3 et Gt o
8 437 34135 6556 128
Crt(ZBy— 24z + By - 3135 0 (L0360 128 9.21)
* F+(34 SREETRE 729) A+( 729+27C3)

2746 224
x Tpny + 29 —?Q TF ¢,
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(3),NS,MS .\ 44 16 3 m? 34
ArAL o (2)—CFTF[(?CA—?TF(I1_)€+2) In " 4 —?CASTF

196 496 ]

—In? mfz + | (15 +48¢3) Cr + —E—48§"; CA——nfTF——TF
u? 9 ) 9 27

27

n 533 s6) 4+ 1988 n 128 T n 338 224 T
9 & A 31 9 &) Trny 77 9 G)Try.

2
310 4133
% In (m—z) + (—16B4 + 720 - -t + —) Cr+ (834 — 7204
"

(9.22)

The structure of the result and the contributing numbers are the same as in the

unpolarized case, cf. Eq.7.41. We checked the moments N = 1, ..., 4 keeping the
complete dependence on the gauge-parameter £ and find that it cancels in the final
result. Again, we observe that the massive OMEs do not depend on {3, cf. Sect.7.3.

Since the light flavor Wilson coefficients for the processes from which the transver-

sity distribution can be extracted are not known to 2- and 3-loop order, phenomeno-
logical studies on the effect of the heavy flavor contributions cannot yet be performed.
However, the results of this Section can be used in comparisons with upcoming
lattice simulations with (2+1+1)-dynamical fermions including the charm quark.
More details on this calculation are given in [45].
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Chapter 10
First Steps Towards a Calculation of AS.)
for all Moments

In Chap.7, we described how the various massive OMEs are calculated for fixed
integer values of the Mellin variable N at 3-loop order using MATAD. The ultimate
goal is to calculate these quantities for general values of N. So far no massive single
scale calculation at O (a}) has been performed. In the following we would like to
present some first results and a general method, which may be of use in later work
calculating the general N-dependence of the massive OMEs Ag).

In Sect.10.1, we solve, as an example, a 3-loop ladder graph contributing to
A(Q?’;, for general values of N by direct integration, avoiding the integration-by-parts
method. In Sect. 10.2, Refs. [1, 2], we discuss a general algorithm which allows to
determine from a sufficiently large but finite number of moments for a recurrent
quantity its general N-dependence. This algorithm has been successfully applied
in [2] to reconstruct the 3-loop anomalous dimensions, [3, 4], and massless 3-loop
Wilson coefficients, [5], from their moments. These are the largest single scale quan-
tities known at the moment and are well suited to demonstrate the power of this
formalism. Similarly, one may apply this method to new problems of smaller size
which emerge in course of the calculation of the OMEs AS.) for general values of N.

10.1 Results for all-N Using Generalized Hypergeometric
Functions

In Sect. 6.1, we showed that there is only one basic 2-loop massive tadpole which
needs to be considered. From it, all diagrams contributing to the massive 2-loop
OMEs can be derived by attaching external quark-, gluon- and ghost-lines, respec-
tively, and including one operator insertion according to the Feynman rules given in
Appendix B. The corresponding parameter-integrals are then all of the same structure,
Eq.6.5. If one knows a method to calculate the basic topology for arbitrary integer
powers of the propagators, the calculation of the 2-loop OMEs is straightforward
for fixed values of N. In the general case, we arrived at infinite sums containing the
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DORAT

(b) (c)

Fig.10.1 Basic 3-loop topologies. Straight lines: quarks, curly lines: gluons. The gluon loop in
a can also be replaced by a ghost loop; e 3-loop ladder graph

(e)

parameter N. To calculate these sums, additional tools are needed, e.g. the program
Sigma, cf. Sect.6.2.

We would like to follow the same approach in the 3-loop case. Here, five basic
topologies need to considered, which are shown in Fig. 10.1. Diagram (a) and (b)—if
one of the quark loops corresponds to a massless quark—can be reduced to 2-loop
integrals, because the massless loop can be integrated trivially. For the remaining
terms, this is not the case. Diagrams (c) and (d) are the most complex topologies,
the former giving rise to the number B4, Eq.4.89, whereas the latter yields single
¢-values up to weight 4, cf. e.g. [6]. Diagram (b)—if both quarks are massive—and
(e) are ladder topologies and of less complexity. Let us, as an example, consider
diagram (e).

Our notation is the same as in Sect. 6.1. The scalar D-dimensional integral corre-
sponding to diagram (e) reads for arbitrary exponents of the propagators

qudele i(_l)U12345 (m2)v|2345_3D/2(47'[)3D/2
Te= /// @m)3P (k)1 (k= D> —m2)2 (12 —m?)V3((g — D? —m?)4(g?)’s

(10.1)

Again, we have attached suitable normalization factors for convenience. After
loop-by-loop integration of the momenta &, ¢, [ (in this order) using Feynman-
parameters, one obtains after a few steps the following parameter integral

1 1

| vi2zas — 6 —3¢/2 o

T _F|:V1,V2»V3»V47V5 dwi... | dws6(1 —w; — wy)
0 0

—3—¢/2 —3—¢/2
3—¢/ +v12w23 e/ +V45(1 _

w) wy — wy)"!
w3 w4 v —6—3¢/2
(1+w117w3 +w2]7w4) 12345 /
14+¢/2— —v 1He/2— -
o w3+5/ M) = w3)1+g/2 V2w4+a/ vs(l _ w4)l+s/2 v (10.2)

The 6-function enforces w1 +wy < 1.Inorder to perform the {w, w>}integration,
one considers

1 1
I =/dwl/dw29(l—w1—wz)w}l’_lwg,_l(l—wl—wz)c_b_b,_l(l—wlx—wzy)_“.
0

0
(10.3)
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The parameters a, b, b’, ¢ shall be such that this integral is convergent. It can be
expressed in terms of the Appell function Fy via, [7] !

=t [h ret b/} i @ (D) (B Xty (10.4)
‘ m,n=0 (D (Dn(©)m +n
P N N
=F|:lcjab,c b—b ]Fl [a;b,b; c;x, y). (10.5)

The parameters x, y correspond to w3/(1 — w3) and wa/(1 — wy) in Eq.10.2,
respectively. Hence the integral over these variables would yield a divergent sum.
Therefore one uses the following analytic continuation relation for Fp, [7],

F [a;b, Ry L] = (1=0)?(1=y)! File—a; b, b'; ¢; x, 1. (10.6)
x—1 y—1
Finally one arrives at an infinite double sum

7|72 8/2+ v, =2 —¢/2+vs, =6 = 38/2 + vidass
T | va, s, —4 — e+ vioaas

5 i p[2+m+e/2—vi24n+e/2-vs
l+m,1+n24+m+e¢e/2,24+n+¢/2

m,n=0
y Q+e/Dnim(=2—¢&/2 +vi)m (=2 — &/2 + v45),
(=4 — & 4+ v12345)n+m ’

Here, we have adopted the notation for the I'-function defined in (C.8) and (a);
is Pochhammer’s symbol, Eq.C.14. As one expects, Eq. 10.7 is symmetric w.r.t.
exchanges of the indices {vi, 12} <> {v4, vs}. For any values of v; of the type
vi = a; + bje, with a; € N, b; € C, the Laurent-series in ¢ of Eq.10.7 can be
calculated using e.g. Summer, [8]. We have checked Eq. 10.7 for various values of
the v; using MATAD, cf. Sect.7.2.

Next, let us consider the diagram shown in Fig. 10.2, which contributes to AS;, and
derives from diagram (e). We treat the case where all exponents of the propagators
are equal to one.

Including the factor i(m2)2=3¢/2(47)3P/2 and integrating ¢, k, [ (in this order),
we obtain

(10.7)

wl_g/zwz_s/z(l —w] — W)

1—w3 1=w4\2-3¢/2
(1 + w52 + wp =) 23/

1
I, =TQ2—- 38/2)/dw,-9(1 —w; — w)
0

xwy T = wy) P (- g

x (1 —wswy — wewy — (1 —wy — wy)wy),
(10.8)

1" Note that Eq.8.2.2 of Ref. [7] contains typos.,
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Fig.10.2 Example 3-loop graph

where all parameters wj ... w7 have to be integrated from 0. .. 1. As in the 2-loop
case, (6.5), one observes that the integral-kernel given by the corresponding massive
tadpole integral (10.2) is multiplied with a polynomial containing various integration
parameters to the power N. The same holds true for the remaining 3-loop diagrams.
Hence, if a general sum representation for the corresponding tadpoles integrals is
known and one knows how to evaluate the corresponding sums, at least fixed moments
of the 3-loop massive OMEs can be calculated right away. The presence of the
polynomial to the power N (which may also involve a finite sum, cf. the Feynman-
rules in Appendix B,) complicates the calculation further. One has to find a suitable
way to deal with this situation, which depends on the integral considered. For I,
we split it up into several finite sums, rendering the integrals calculable in the same
way as for T,. We obtain

B -T2 —3¢/2)
T (N4 D(N +2)(N +3)

e} N+2
34 NY (= €/2m@+ N +6/DusnB— 1+ N — /2,
2 [Z( ' ) G+ N = Onem

ex

m,n=0 L r=1

r t,t—e/2,1+m+¢e/2,1+n+¢/2,3—t+N,3—t+N —¢/2
44+N—-el+m1+nl1+t+m+e/2,4—t+n+N+¢/2

_Nz”i‘ S (3N gy 2 5 4 e/ D =1 = /D

r s 14+s—¢e)yp+m

s=1 r=1

r r,r—e/2,s—r,14+m+¢e/2,1+n+¢/2,s—r—¢/2
Il+m,l4+nl4+r+m+e/2,1+s—r+n+e/2,1+s—c¢ :

(10.9)

After expanding in &, the summation can be performed using Sigma and the
summation techniques explained in Sect. 6.2. The result reads

4N+ 1)S; +4 1

Tp= — TR 26 1 (N 4 2)(N +3
N+ DA 128 T2 N A DN 3+ e N v+ )

S1* 4N +1)S; —4N
—2BN+58% - —+ —m—F————
X (BN +5)83, 1 + N+l

SN+6
S 2{ (2N +3)S S
2.1+ (( +)1+N+1)3
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9+4N _, TN +11 5N 5 2) 2(3N +5)8;2
S2+(2 Si—2852) Sy - TP
* 2 ( NrDwNio TN T2 )T T o o
N 42N +3)S 2N +3)S. 2N +3
n s;3 @N+3)S1 (@N+3)% + + 0,
N+1 (N+DXN+2) 2 (N + 13N +2)
(10.10)

which agrees with the fixed moments N = 1, ..., 10 obtained using MATAD, cf.
Sect.7.2.

We have shown that in principle one can be apply similar techniques as on the
2-loop level, Sect. 6.1, to calculate the massive 3-loop OMEs considering only the
five basic topologies. In this approach the integration-by-parts method is not used. We
have given the necessary formulas for one non-trivial topology (e) and showed for one
of the cases there how the calculation proceeds keeping the all-N dependence. In order
to obtain complete results for the massive OME:s, suitable integral representations
for diagrams (b), (c) and (d) of Fig. 10.1 have to be derived first. This will allow for
a calculation of fixed moments not relying on MATAD. Next, an automatization of
the step from (10.8) to (10.9) has to be found in order to obtain sums which can be
handled e.g. by Sigma. The latter step is not trivial, since it depends on the respective
diagram and the flow of the outer momentum p through it.

10.2 Reconstructing General-N Relations from a Finite
Number of Mellin-Moments

Higher order calculations in Quantum Field Theories easily become tedious due to
the large number of terms emerging and the sophisticated form of the contributing
Feynman parameter integrals. This applies already to zero scale and single scale
quantities. Even more this is the case for problems containing at least two scales.
While in the latter case the mathematical structure of the solution of the Feynman
integrals is widely unknown, it is explored to a certain extent for zero- and single scale
quantities. Zero scale quantities emerge as the expansion coefficients of the running
couplings and masses, as fixed moments of splitting functions, etc.. They can be
expressed by rational numbers and certain special numbers as multiple zeta-values
(MZVs), [9, 10] and related quantities.

Single scale quantities depend on a scale z which may be given as a ratio of
Lorentz invariants s’ /s in the respective physical problem. One may perform a Mellin
transform over z, Eq. 2.65. All subsequent calculations are then carried out in Mellin
space and one assumes N € N, N > 0. By this transformation, the problem at hand
becomes discrete and one may seek a description in terms of difference equations,
[11, 12]. Zero scale problems are obtained from single scale problems treating N as
a fixed integer or considering the limit N — oo.

A main question concerning zero scale quantities is: do the corresponding
Feynman integrals always lead to MZVs? In the lower orders this is the case.
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However, starting at some order, even for single-mass problems, other special num-
bers will occur, [13—15]. Since one has to known the respective basis completely,
this makes it difficult to use methods like PSLQ, [16], to determine the analytic
structure of the corresponding terms even if one may calculate them numerically at
high enough precision. Zero scale problems are much easier to calculate than single
scale problems. In some analogy to the determination of the analytic structure in
zero scale problems through integer relations over a known basis (PSLQ) one may
think of an automated reconstruction of the all-N relation out of a finite number of
Mellin moments given in analytic form. This is possible for recurrent quantities. At
least up to 3-loop order, presumably even to higher orders, single scale quantities
belong to this class. Here we report on a general algorithm for this purpose, which
we applied to the problem being currently the most sophisticated one: the anomalous
dimensions and massless Wilson coefficients to 3-loop order for unpolarized DIS,
[3, 4, 5]. Details of our calculation are given in Refs. [1, 2].

10.2.1 Single Scale Feynman Integrals as Recurrent Quantities

For a large variety of massless problems single scale Feynman integrals can be
represented as polynomials in the ring formed by the nested harmonic sums, cf.
Appendix C.4, and the MZVs ¢, ... 4, which we set equal to the o-values defined
in Eq. C.35. Rational functions in N and harmonic sums obey recurrence relations.
Thus, due to closure properties, [17, 18], also any polynomial expression in such
terms is a solution of a recurrence. Consider as an example the recursion

sign(a)NV+t!

F(N+1)—F(N) = N D

(10.11)

It is solved by the harmonic sum S, (). Corresponding difference equations hold
for harmonic sums of deeper nestedness. Feynman integrals can often be decomposed
into a combination containing terms of the form

1 1

N1 (N1

dz——"H;(2), | dz——"—"F—7—H;(2), (10.12)
-z 1+z

0 0

with Hj(z) being a harmonic polylogarithm, [19]. This structure also leads to recur-
rences, [20]. Therefore, itis very likely that single scale Feynman diagrams do always
obey difference equations.

10.2.2 Establishing and Solving Recurrences

Suppose we are given a finite array of rational numbers,
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q17q29""qK7

which are the first terms of an infinite sequence F(N), i.e., F (1) = q1 F(2) = qa,
etc. Let us assume that F(N) represents a physical quantity and satisfies a recurrence
of type

1 d
Z(Zci,ka)F(NJrk) =0, (10.13)

k=0 \i=0

which we would like to deduce from the given numbers g;,. In a strict sense, this is
not possible without knowing how the sequence continues for N> K. One thing we
can do is to determine the recurrence equations satisfied by the data we are given.
Any recurrence for F(N) must certainly be among those.

To find the recurrence equations of F(N) valid for the first terms, the simplest way
to proceed is by making an ansatz with undetermined coefficients. Let us fix an order
! € N and a degree d € N and consider the generic recurrence (10.13), where the
¢; x are unknown. For each specific choice N = 1,2, ..., K — [, we can evaluate
the ansatz, because we know all the values of F'(N + k) in this range, and we obtain
a system of K — [ homogeneous linear equations for (/ + 1)(d + 1) unknowns ¢; ;.

IfK—1> (I4+1)(d+1), this system is under-determined and is thus guaranteed
to have nontrivial solutions. All these solutions will be valid recurrences for F(N)
for N =1,..., K — I, but they will most typically fail to hold beyond. If, on the
other hand, K —1 < (I+1)(d + 1), then the system is overdetermined and nontrivial
solutions are not to be expected. But at least recurrence equations valid for all N, if
there are any, must appear among the solutions. We therefore expect in this case that
the solution set will precisely consist of the recurrences of F(N) of order / and degree
d valid for all N.

As an example, let us consider the contribution to the gluon splitting function
o Cy4 at leading order, Pég)(N ). The first 20 terms, starting with N=23, of the
sequence F'(N) are

14 21 181 83 4129 319 26186 18421 752327 71203 811637 128911 29321129

2508266 292886261 7045513 611259269 1561447 4862237357 988808455
255255 7 29099070 * 684684 ° 58198140 * 145860 ° 446185740 ~ 89237148

Making an ansatz for a recurrence of order 3 with polynomial coefficients of
degree 3 leads to an overdetermined homogeneous linear system with 16 unknowns
and 17 equations. Despite of being overdetermined and dense, this system has two
linearly independent solutions. Using bounds for the absolute value of determinants
depending on the size of a matrix and the bit size of its coefficients, one can very
roughly estimate the probability for this to happen “by coincidence” to about 10763
And in fact, it did not happen by coincidence. The solutions to the system correspond
to the two recurrence equations
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(TN3 4+ 113N? + 494N + 592) F(N) — (12N> + 233N? + 1289N + 2156)F(N + 1)
+ BN3 4+ 118N? + 1021N + 2476)F(N +2) + N> 4+ 2N? — 226N —912)F(N +3) =0
(10.14)
and

(4N3 + 64N2 + 278N + 332) F(N) — (TN + 134N2 + 735N + 1222) F(N + 1)

+ N3 +7IN? + 595N + 1418) F(N +2) + (N3 — N? — 138N — 528) F(N +3) =0,

(10.15)

which both are valid for all N > 1. If we had found that the linear system did not

have a nontrivial solution, then we could have concluded that the sequence F(N)

would definitely (i.e. without any uncertainty) not satisfy a recurrence of order 3 and

degree 3. It might then still have satisfied recurrences with larger order or degree,
but more terms of the sequence had to be known for detecting those.

The method of determining (potential) recurrence equations for sequences as
just described is not new. It is known to the experimental mathematics community as
automated guessing and is frequently applied in the study of combinatorial sequences.
Standard software packages for generating functions such as gfun [17] for MAPLE or
GeneratingFunctions.m [18] for MATHEMATICA provide functions which take as
input a finite array of numbers, thought of as the first terms of some infinite sequence,
and produce as output recurrence equations that are, with high probability, satisfied
by the infinite sequence.

These packages apply the method described above more or less literally, and this
is perfectly sufficient for small examples. But if thousands of terms of a sequence are
needed, there is no way to solve the linear systems using rational number arithmetic.
Even worse, already for medium sized problems from our collection, the size of the
linear system exceeds by far typical memory capacities of 16—64 Gb. Let us consider
as an example the difference equation associated to the contribution of the color factor
C;’; for the 3-loop Wilson coefficient CS; in unpolarized deeply inelastic scattering.
11Tb of memory would be required to establish (10.13) in a naive way. Therefore
refined methods have to be applied. We use arithmetic in finite fields together with
Chinese remaindering, [21-23], which reduces the storage requirements to a few Gb
of memory. The linear system approximately minimizes for / & d. If one finds more
than one recurrence the different recurrences are joined to reduce / to a minimal
value. It seems to be a general phenomenon that the recurrence of minimal order is
that with the smallest integer coefficients, cf. also [24]. For even larger problems than
those dealt with in the present analysis, a series of further technical improvements
may be carried out, [25, 26].

For the solution of the recurrence low orders are clearly preferred. It is solved
in depth-optimal ITX fields, [27-34]; here we apply advanced symbolic summation
methods as: efficient recurrence solvers and refined telescoping algorithms. They are
available in the summation package Sigma, [28, 35].

The solutions are found as linear combinations of rational terms in N combined
with functions, which cannot be further reduced in the I1X fields. In the present
application they turn out to be nested harmonic sums, cf. Appendix C.4. Other or
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higher order applications may lead to sums of different type as well, which are
uniquely found by the present algorithm.

10.2.3 Determination of the 3-Loop Anomalous
Dimensions and Wilson Coefficients

We apply the method to determine the unpolarized anomalous dimensions and mass-
less Wilson coefficients to 3-loop order. Here we apply the above method to the
contributions stemming from a single color/¢;-factor. These are 186 terms. As input
we use the respective Mellin moments, which were calculated by a MAPLE-code
based on the harmonic sum representation calculated in Refs. [3-5]. We need very
high moments and calculate the input recursively. As an example, let us illustrate the
size of the moments for the C%-contribution to the Wilson coefficient Cf; . The high-
est moment required is N = 5114. It cannot be calculated simply using Summer,
[8], and we used a recursive algorithm in MAPLE for it.

The corresponding difference equations (10.13) are determined by a recurrence
finder. Furthermore, the order of the difference equation is reduced to the smallest
value possible. The difference equations are then solved order by order using the

summation package . For the C%—term in CS%, the recurrence was established after
20.7days of CPU time. Here 4h were required for the modular prediction of the
dimension of the system, 5.8 days were spent on solving modular linear systems,
and 11 days for the modular operator GCDs. The Chinese remainder method and
rational reconstruction took 3.8 days. 140 word size primes were needed. As output
one obtains a recurrence of 31 Mb, which is of order 35 and degree 938, with a
largest integer of 1,227 digits. The recurrence was solved by Sigma after 5.9 days.
We reached a compactification from 289 harmonic sums needed in [3-5] to 58 har-
monic sums. The determination of the 3-loop anomalous dimensions is a much
smaller problem. Here the computation takes only about 18 h for the complete result.

For the three most complicated cases, establishing and solving of the difference
equations took 3 + 1 weeks each, requiring <10 Gb on a 2 GHz processor. This led
to an overall computation time of about sixteen weeks.

In the final representation, we account for algebraic reduction, [36]. For this task
we used the package HarmonicSums, [37], which complements the functionality
of Sigma. One observes that different color factor contributions lead to the same, or
nearly the same, amount of sums for a given quantity. This points to the fact that the
amount of sums contributing, after the algebraic reduction has been carried out, is
governed by topology rather than the field- and color structures involved. The linear
harmonic sum representations used in [3-5] require many more sums than in the
representation reached by the present analysis. A further reduction can be obtained
using the structural relations, which leads to maximally 35 different sums up to the
level of the 3-loop Wilson coefficients, [20, 38, 39].It is not unlikely that the present
method can be applied to single scale problems in even higher orders. As has been
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found before in [40-50], representing a large number of 2- and 3-loop processes in
terms of harmonic sums, the basis elements emerging are always the same.

In practice no method does yet exist to calculate such a high number of moments
ab initio as required for the determination of the all-N formulas in the 3-loop case.
On the other hand, a proof of existence has been delivered of a quite general and
powerful automatic difference-equation solver, standing rather demanding tests. It
opens up good prospects for the development of even more powerful methods, which
can be applied in establishing and solving difference equations for single scale quan-
tities such as the classes of Feynman-parameter integrals contributing to the massive
operator matrix elements for general values of N.
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Chapter 11
Conclusions

In this thesis, we extended the description of the contributions of a single heavy quark
to the unpolarized Wilson coefficients C(Sq’gi’zN 5 to O(as). In upcoming precision
analyzes of deep-inelastic data, this will allow more precise determinations of parton
distribution functions and of the strong coupling constant. We applied a factorization
relation for the complete inclusive heavy flavor Wilson coefficients, which holds in
the limit 0% > 10m? in case of F>(x, 0?), [1], at the level of twist-2. It relates the
asymptotic heavy flavor Wilson coefficients to a convolution of the corresponding
light flavor Wilson coefficients, which are known up to O(af), [2], and describe all
process dependence, with the massive operator matrix elements. The latter are process
independent quantities and describe all mass-dependent contributions but the power-
suppressed terms ((m2/0H%, k = 1). They are obtained from the unpolarized
twist-2 local composite operators stemming from the light-cone expansion of the
electromagnetic current between on-shell partonic states, including virtual heavy
quark lines. The first calculation of fixed moments of all three-loop massive OMEs
is the main result of this thesis.

In Sect. 3.2, we applied the factorization formula at the O (a?)-level. It holds for
the inclusive heavy flavor Wilson coefficients, including radiative corrections due
to heavy quark loops. In order to describe the production of heavy quarks in the
final states only, further assumptions have to be made. This description succeeded
at the two-loop level in Ref. [1] because of the possible comparison with the exact
calculation in Refs. [3—5] and since the contributing virtual heavy flavor corrections
are easily identified, cf. Sect. 5.1. At O (as3) this is not possible anymore and only the
inclusive description should be used, as has been done in Ref. [6] in order to derive
heavy flavor parton densities. These are obtained as convolutions of the light flavor
densities with the massive OMEs, cf. Sect. 3.3.

In Chap. 4, we derived and presented in detail the renormalization of the massive
operator matrix elements up to O(as). This led to an intermediary representation
in a defined MOM-scheme to maintain the partonic description required for the
factorization of the heavy flavor Wilson coefficients into OMEs and the light fla-
vor Wilson coefficients. Finally, we applied the MS-scheme for coupling constant
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renormalization in order to refer to the inclusive heavy flavor Wilson coefficients
and to be able to combine our results with the light flavor Wilson coefficients, which
have been calculated in the same scheme. For mass renormalization we chose the
on-mass-shell-scheme and provided in Chap. 5 all necessary formulas to transform
between the MOM and the on-shell-scheme, respectively, and the MS-scheme.

For renormalization at O(ag’), all O(asz) massive OMEs Ag,, A’Q)g, A;vqs’ 0
Agg,0, Agq,0 are needed up to O(¢) in dimensional regularization. In Chap. 6,

we newly calculated all the corresponding O(¢g) contributions in Mellin space for
general values of N. This involved a first re-calculation of the complete terms A;i,)’ 0

and Ai,zq), 0 in which we agree with the literature [6]. We made use of the represen-
tation of the Feynman-parameter integrals in terms of generalized hypergeometric
functions. The O (g)-expansion led to new infinite sums which had to be solved by
analytic and algebraic methods. The results can be expressed in terms of polynomials
of the basic nested harmonic sums up to weight w = 4 and derivatives thereof. They
belong to the complexity-class of the general two-loop Wilson coefficients or hard
scattering cross sections in massless QED and QCD and are described by six basic
functions and their derivatives in Mellin space. The package Sigma, [7-12], proved
to be a useful tool to solve the sums occurring in the present problem, leading to
extensions of this code by the author.

The main part of the thesis was the calculation of fixed moments of all three-loop
massive operator matrix elements A g, Agg 0. AIQDg, A(qu’Q, A;Vq“TQ, Agq.0, Agg. 0>
cf. Chap. 7. These are needed to describe the asymptotic heavy flavor Wilson coef-
ficients at O(af) and to derive massive quark-distributions at the same level [6].
We developed computer algebra codes which allow based on QGRAF, [13], the
automatic generation of three-loop Feynman diagrams with local operator inser-
tions. These were then projected onto massive tadpole diagrams for fixed values of
the Mellin variable N. For the final calculation of the diagrams, use was made of
the FORM-code MATAD [14]. The representation of the massive OMEs is avail-

able for general values of N in analytic form, apart from the constant terms ai(;) of
the unrenormalized three-loop OMEs. This is achieved by combining our general
expressions for the renormalized results, the all-N results up to O(aszs) and results
given in the literature. A number of fixed Mellin moments of the terms ai(?) were
calculated, reaching up to N = 10, 12, 14, depending on the complexity of the cor-
responding operator matrix element. The computation required about 250 CPU days
on 32/64 Gb-machines.

Through the renormalization of the massive OMEs, the corresponding moments
of the complete two-loop anomalous dimensions and the Tr-terms of the three-
loop anomalous dimensions were obtained, as were the moments of the complete
anomalous dimensions yq([zl)’PS and yq(? , in which we agree with the literature. This
provides a first independent check of the moments of the fermionic contributions to
the three-loop anomalous dimensions, which have been obtained in Refs. [15, 16].

In Chap. 8, we presented results on the effects of heavy quarks in polarized deep-
inelastic scattering, using essentially the same description as in the unpolarized case.

We worked in the scheme for y5 in dimensional regularization used in Ref. [17] and
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could confirm the results given there for the two-loop massive OMEs AAZS and
AAg,. Additionally, we newly presented the O(¢) contributions of these terms.

We calculated the two-loop massive OME:s of transversity for all-N and the three-
loop terms for the moments N = 1, ..., 13 in Chap. 9. This calculation is not yet
of phenomenological use, since the corresponding light flavor Wilson coefficients
have not been calculated so far. However, these results could be obtained by making
only minor changes to the computer programs written for the unpolarized case. We
confirmed for the first time the moments N = 1, ..., 8 of the fermionic contributions
to the three-loop transversity anomalous dimension obtained in Refs. [18-21]. Our
results can, however, be used in comparison with lattice calculations.

Several steps were undertaken towards an all-N calculation of the massive OMEs.
Four non-trivial three-loop massive topologies contribute. We presented in an exam-
ple a first all-N result for a ladder-topology in Sect. 10.1.

In Sect. 10.2, we described a general algorithm to calculate the exact expression
for single scale quantities from a finite (suitably large) number of moments, which
are zero scale quantities. The latter are much more easily calculable than single scale
quantities. We applied the method to the anomalous dimensions and massless Wilson
coefficients up to three-loop order [22-24]. Solving three-loop problems in this way
directly is not possible at present, since the number of required moments is too large
for the methods available. Yet this method constitutes a proof of principle and may
find application in medium-sized problems in the future.
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Appendix A
Conventions

We use natural units
h=1, c=1, ¢=1, (A.1)
where % denotes Planck’s constant, ¢ the vacuum speed of light and ¢, the
permittivity of vacuum. The electromagnetic fine-structure constant o is given by
2 2

/2 e e 1
= = 0 = — ) .
=l = 0) = e = 4 ™ 137.03599911(46)

(A.2)

In this convention, energies and momenta are given in the same units, electron
volt (eV).

The space-time dimension is taken to be D = 4 + ¢ and the metric tensor g, in
Minkowski-space is defined as

go=1 gi=-1, i=1..D-1 g;=0, i#] (A3)

Einstein’s summation convention is used, i.e.
D—1
. i
Xyt = E Xyt (A4)
u=0

Bold-faced symbols represent (D — 1)-dimensional spatial vectors:
x = (x0,X). (AS5)

If not stated otherwise, Greek indices refer to the D-component space—time vector
and Latin ones to the D — 1 spatial components only. The dot product of two
vectors is defined by

D—1

P 4= podo — ) Didi- (A.6)
i=1
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The y-matrices 7, are taken to be of dimension D and fulfill the anti-commutation

relation
{V,u"/v} = Zguv- (A7)
It follows that
70" =D (A.8)
Tr(’yﬂyv) = 4guv (A9)
Tr(VvaVﬂﬂ) = 4[8uv8up + 8up&vr — uu8vpl- (A.10)

The slash-symbol for a D-momentum p is defined by

P=y.r" (A.11)
The conjugate of a bi-spinor u of a particle is given by

7= u'y,, (A.12)

where 1 denotes Hermitian and * complex conjugation, respectively. The
bi-spinors u and v fulfill the free Dirac-equation,

# —mu(p) =0, u(p)(p—m)=0 (A.13)
#+m)v(p) =0, v(p)$+m)=0. (A.14)
Bi-spinors and polarization vectors are normalized to
> u(p,o)i(p,o) =p+m (A.15)
Zv(p,a)i(p,o) =p—m (A.16)
> ek, A€ (k, 2) = —g", (A.17)

2

where 4 and ¢ represent the spin.

TR

The commonly used caret to signify an operator, e.g. 0, is omitted if
confusion is not to be expected.

The gauge symmetry group of QCD is the Lie-Group SU(3)... We consider the
general case of SU(N.). The non-commutative generators are denoted by #*, where
aruns from 1 to N> — 1. The generators can be represented by Hermitian, traceless
matrices [1]. The structure constants f“bC and d° of SU (N.) are defined via the

commutation and anti-commutation relations of its generators [2],

[t 1) = i fere (A.18)

1
Sab- (A.19)

a (b abc ¢
0 =d7 + —
{1} N
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The indices of the color matrices, in a certain representation, are denoted by

i,J,k,l,... The color invariants most commonly encountered are
dunCa = foe! fre!
0;jCr = 11
S Tr = 1517,

These constants evaluate to

N2 —1
Ca= N, Cp=— )
A F 2N,

1
TF :E

(A.20)
(A21)

(A.22)

(A.23)

At higher loops, more color-invariants emerge. At 3-loop order, one additionally

obtains
d"d,p. = (N* — 1)(N* — 4)/N..

In case of SU(3),,Ca =3,Cr = 4/3,d"d . = 40/3 holds.

(A.24)



Appendix B
Feynman Rules

For the QCD Feynman rules, Fig. B.1, we follow Ref. [2], cf. also Refs. [3, 4].
D-dimensional momenta are denoted by p; and Lorentz-indices by Greek letters.
Color indices are a,b,... and i, j are indices of the color matrices. Solid lines
represent fermions, wavy lines gluons and dashed lines ghosts. Arrows denote the
direction of the momenta. A factor (—1) has to be included for each closed
fermion—or ghost loop.

The Feynman rules for the quarkonic composite operators are given in Fig. B.2.
Up to O(g?) they can be found in Ref. [5] and also in [6]. Note that the O(g) term
in the former reference contains a typographical error. We have checked these
terms and agree up to normalization factors, which may be due to other
conventions being applied there. We newly derived the rule with three external
gluons. The terms y, refer to the unpolarized (+) and polarized (—) case,
respectively. Gluon momenta are taken to be incoming.

The Feynman rules for the unpolarized gluonic composite operators are given
in Fig. B.3. Up to O(g?), they can be found in Refs. [7, 8]. We have checked these
terms and agree up to O(g°). At O(g), we agree with [7], but not with [8].
At O(gz), we do not agree with either of these results, which even differ from each
other.’

' We would like to thank J. Smith for the possibility to compare with their FORM-code used in
Refs. [9-12], to which we agree.
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19s7ut5;

T
M, a, py
_gsfabc[(pl - pZ)pg,uV + (p2 - p3),ugup + (p3 - pl)ugyp}
v, b, pa P 6 P3
1 !
u,a
_ abc
95" Py
AN
1 a o.d _Zgz Ze{fabedee [guﬂgun - g;m'gyp]
_,’_facefbde [g/wgpo - guo’gup]
b e +fadefd}e [gupgua - g/u/gﬂrr}}
A F—m+i0ii
. 9 i
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i
c et

Fig. B.1 Feynman rules of QCD
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)

b, p;J

Sy (A-p)NTt, N >1

GEEA Ry SR (A (A )V T2, N >2

!]2A‘“AU4AViZ P ]+1(Ap2) (Apy)N 2
[(tutb)ji(Apl + Apg)! T+ (810) ju(Apy + Api‘)lijil] ’

Papsa pyw,b N=>3
e I AN S S S (A ()N
[ (t4°°)ji(Aps + Aups + Apr) 7 H(Aps + Apy)m !
D3, Ms0 py,v,b o D5, psC +(t"tt") ji(Aps + Aps + Apy) T Apy + Apy )

) )
+(t71) j(A.ps + Aps + Apr)' I (Aps + Apy)m !
+() i (A.ps + Aps + Apy) A ps + Apy )
(") ji(Aps + Aps + Apr) T (Apy + Apy)
+(t79) ji(Aps + Apa + Ap)) T (Aps + Ap)™ 1]

N >4
v+ =1, ~_=75. For transversity, one has to replace: Ayx — o"’A,.

Fig. B.2 Feynman rules for quarkonic composite operators. A denotes a light-like four-vector,
A? = 0; N is a suitably large positive integer
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Ly @ 1+(=nN _
v, b Dy s a +(2) J(A-p)N2

[gHV(A : p)Z - (AﬂpV + AVPM)A ‘p+ pQAuA,, , N>2

—

bys ks @ D3, A, € ; 1+( ny fabc
([(A,,g,\u = Angu)A - py + Au(prAy — pl,AA»)] (A-p)N2
Py i b +Ax {A DDy A pyp A= A p A DG — Py 'pQAuAu]
X3 (A P (A )N
B e R et }) N
gHGE (f P LOumre Py Dy P 2y)

JFchfdeO,u/\ua (p1 s P35, P25 p4) + fadcfbcco,uaw\ (p1 s PasPos p3)> s

p27l/7b p3*,>‘76

O,W(zamz,pg,m)—AVAA{—gW(Amg+A~P4)N2

e = A Guo] DL (A -y + A p ) (A - p )V

—[p o = AP Guo] DL (A ) (A py + A )N

HA DA P Go + 1 DA = A oAy — APy D]
(= A~p1)N‘4‘i(A-pg+A~p4)i‘j(A~p4)’}

(- {xon}+ {rmany . N2

Fig. B.3 Feynman rules for gluonic composite operators. A denotes a light-like four-vector,
A’ = 0; N is an integer



Appendix C
Special Functions

In the following we summarize for convenience some relations for special
functions which occur repeatedly in quantum field theory and are used in this
thesis.

C.1 The I'-Function

The I'-function, cf. [13, 14], is analytic in the whole complex plane except at
single poles at the non-positive integers. Its inverse is given by Euler’s infinite

product
<1 + f) exp(z/i)] . (C.1)

The residues of the I'-function at its poles are given by

1 o0
ﬁz) = zexp(yxz) E

(="
Res[I'(z)],__y = N N e NUO. (C.2)

In case of Re(z) > 0, it can be expressed by Euler’s integral

o0
I'(z) = / exp(—1)£dt, (C.3)
0
from which one infers the well known functional equation of the I'-function
[(z+1) =zI(z2), (C.4)
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which is used for analytic continuation. Around z = 1, the following series
expansion is obtained

I'(1 —¢) =exp(eyg) exp{ili%i}, (C5)

le] < 1. (C.6)
Here and in (C.1), y; denotes the Euler—-Mascheroni constant, see Eq. 4.7. In C.5
Riemann’s {-function is given by

i

|
L= 4 2<keN. (C.7)
i=1

A shorthand notation for rational functions of I'-functions is

al, ..., 4q;

oo,

Functions closely related to the I'-function are the function (x), the Beta-function
B(A, C) and the function f(x).
The Beta-function can be defined by Eq. C.8

A,C
B(A,C)=T Arc| (C.9)
If Re(A),Re(C) > 0, the following integral representation is valid
1
B(A,C) = /dxxA”u —x) (C.10)
0

For arbitrary values of A and C, (C.10) can be continued analytically using
Egs. C.1, C.9. Its expansion around singularities can be performed via Eqs. C.2,
C.5. The y-function and f(x) are defined as derivatives of the I'-function via

1 d

U(x) :TX)EF(X). (C.11)

()0 e
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C.2 The Generalized Hypergeometric Function

The generalized hypergeometric function pFy is defined by, cf. [15-17],

i

ap,...,ap . i G (al),‘-“(aP)i <
PFQ{bl,...,bQ’Z} = Z(bl)i...(bg)l.r(ijL 1) (C.13)

Here (c),, is Pochhammer’s symbol
I'(c+n)
= C.14
(C)n F(C) ) ( )
for which the following relation holds
(=1
(N+1), = , NeN. (C.15)
(=N);

In (C.13), there are P numerator parameters a;...ap, Q denominator parameters
by...bp and one variable z, all of which may be real or complex. Additionally, the
denominator parameters must not be negative integers, since in that case (C.13) is
not defined. The generalized hypergeometric series pF are evaluated at a certain
value of z, which in this thesis is always z = 1 for the final integrals.

Gauss was the first to study this kind of functions, introducing the Gauss
function , F, and proved the theorem, cf. [15],

c,c—a—>b

2F1[a,b;c;1] :F[c_am_b

}, Re(c —a—5b)>0 (C.16)
which is called Gauss’ theorem. An integral representation for the Gauss function
is given by the integral, cf. [15],

1
ab+1 | c+b+2 _ _ a
o F {C+b+2’z}_r{c+l,b+l]/dxx (1—x)(1—2zx)",  (C.17)
0

provided that the conditions
lz]<1, Re(c+1),Re(b+1) >0, (C.18)

are obeyed. Applying Eq. C.17 recursively, one obtains the following integral
representation for a general p, Fp-function

ap,dy,...,ap b],...,bp
pr1Fp 2| =T
b[, b ap, ..,ap,b]—CI],...,bp—ap

1 1
X/dx1 /dx,:xa‘ P —x) o x4 1 —xp)? ™ (1= zxy. . xp) ™,
0 0

(C.19)
under similar conditions as in Eq. C.18.



198 Appendix C: Special Functions
C.3 Mellin-Barnes Integrals

For the Gauss function, there exists a representation in terms of a complex contour
integral over I'-functions. It is given by, cf. [15],

ioo+o
a,b - I'(c) C(a+s)T(b+ s)[(—s) .
2F1[ c ;z} _Wa)r(w / T(c+s) (—z)'ds, (C.20)

under the conditions
lz| <1, |arg(—z)|<m. (C.21)

(C.20) only holds if one chooses the integration contour in the complex plane and
the positive constant o in such a way that the poles of the I'-functions containing
(+s) are separated from those arising from the I'-functions containing (—s) and
closes the contour to the right.

Setting b = 1,¢ = 1 in (C.20) one obtains

Fola; z] = C.22
1 O[avZ] (1_Z)av ( )
which yields the Mellin—Barnes transformation, cf. [18-22],
+ioo+u
b1 dsT( + $)T(—s)— (C.23)
(X +v)" 2ml(2) y y X '

—ioo+0o

The contour has to be chosen as in (C.20) and the conditions
0<a<Re(1),|arg(Y/X)|<n have to be fulfilled.

C.4 Harmonic Sums and Nielsen-Integrals

Expanding the I'-function in e, its logarithmic derivatives, the W(k)-functions,
emerge. In many applications of perturbative QCD and QED, harmonic sums
occur, cf. [23, 24], which can be considered as generalization of the y/-function and
the f-function. These are defined by

Nm—1

Z Z Z (sign(ap))" (sign(az))™  (sign(a,))™
..... am ‘“I n\zaz\ n\”al,,, | )

ni=1n,= ny,=1

NeN, Vg € Z\ 0, (C.24)
Sy=1. (C.25)
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We adopt the convention
Sar,.oan = Say,...an(N), (C.26)

i.e. harmonic sums are taken at argument (N), if no argument is indicated. Related
quantities are the Z-sums defined by

3 [Ti_, [sign(my))"
Zl‘ﬂ],.“-,mk (N) = = ] . (C'27)
N>iy >0y >0 >0 ll

The depth d and the weight w of a harmonic sum are given by

d=m, (C.28)

wi=Yla. (C.29)
i=1

Harmonic sums of depth d =1 are referred to as single harmonic sums.
The complete set of algebraic relations connecting harmonic sums to other
harmonic sums of the same or lower weight is known [25], see also [24] for an
implementation in FORM. Thus the number of independent harmonic sums can be
reduced significantly, e.g., for w =3 the 18 possible harmonic sums can be
expressed algebraically in terms of 8 basic harmonic sums only. One introduces a
product for the harmonic sums, the shuffle product LLI, cf. [25]. For the product of
a single and a general finite harmonic sum it is given by

..........

(C.30)

For sums Sy, .4, (N) and Sp, . 5, (N) of arbitrary depth, the shuffle product is then
the sum of all harmonic sums of depth m + n in the index set of which a; occurs
left of a; for i < j, likewise for by and b; for k < [. Note that the shuffle product is
symmetric. One can show that the following relation holds, cf. [25],

Sa,(N) - Spy... b, (N) = Sg, (N) LLISp, . 1, (N) — Say nby o,y (N)
= = Sby sy (N), (C31)
where the A symbol is defined as
a A b = sign(a)sign(b)(|a| + |b]). (C.32)

Due to the additional terms containing wedges (A) between indices, harmonic
sums form a quasi-shuffle algebra [26, 27]. By summing (C.31) over permutations,
one obtains the symmetric algebraic relations between harmonic sums. At depth 2
and 3 these read, [23],

Sm,n + Sn,m = SmSn + Sm/\na (C33)
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Z Sl,m,n = SlSm Sn + Z SlSm/\n + 2S1Am/\n7 (C34)

perm{l,m,n} inv perm{/,m,n}

which we used extensively to simplify our expressions. In (C.33, C.34), “perm”
denotes all permutations and “inv perm” invariant ones.

The limit N — oo of finite harmonic sums exists only if a; # 1 in (C.24).
Additionally, one defines all g-values symbolically as

,.u,k1 == I\}i—r}go Sal,...,aI(N)- (C'SS)

The finite o-values are related to multiple {-values, [23, 24, 28-30], Eq. C.7.
Further we define the symbol

o= 1. (C.36)

It is useful to include these g-values into the algebra, since they allow to treat parts
of sums individually, accounting for the respective divergences, cf. also [24].
These divergent pieces cancel in the end if the overall sum is finite.

The relation of single harmonic sums with positive or negative indices to the

xp(k)-functions is then given by

Si(N) = (N +1) + 7, (C.37)
_ (71)[171 a—1
) YOUN+ D+, a2, (C.38)
S_1(N) = (—=1)VB(N +1) —In(2), (C.39)
S_4(N) = —%ﬁ“‘”u\w 1) —(1-2"9¢, a>2. (C.40)

Thus single harmonic sums can be analytically continued to complex values of
N by these relations. At higher depths, harmonic sums can be expressed in terms of
Mellin-transforms of polylogarithms and the more general Nielsen-integrals
[31-34]. The latter are defined by

B (_])n+p—l dx -
Sn.p(2) = = Dip! — log"(x) log”(1 — zx) (C41)
0
and fulfill the relation
dS, p(x)

Tosl) = Sp1.p(x). (C.42)
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If p = 1, one obtains the polylogarithms
Li,(x) = Sp—1.1(x), (C.43)

where

X
T 1-x

Lig(x) (C.44)
These functions do not suffice for arbitrary harmonic sums, in which case the
harmonic polylogarithms have to be considered [35]. The latter functions obey a
direct shuffle algebra, cf. [25, 28]. The representation in terms of Mellin-
transforms then allows an analytic continuation of arbitrary harmonic sums to
complex N, cf. [36-39]. Equivalently, one may express harmonic sums by
factorial series, [14, 40, 41], up to polynomials of S;(N) and harmonic sums of
lower degree, and use this representation for the analytic continuation to N € C,
cf. [42, 43].



Appendix D
Finite and Infinite Sums

In this appendix, we list some examples for infinite sums which were needed in the
present analysis and are newly calculated. The calculation was done using the
Sigma-package as explained in Sect. 6.2. A complete set of sums contributing to
the calculation of the 2-loop massive OMEs can be found in Appendix B of
Refs. [44, 45].

i B N -2, l ( 1)N4SI.,72 +28 34208 +20:—65, — 30

~~ (i +N)’ (N—2)(N—-1)N
1
D.1
TNC)IN— DA (D-1)
zoc:B S +N-2)= (=)™
i N 7
- i (N=2)(N—1)N
X <8S17_2 — 45_3 — 4S15_2 — ZC3 + 2C2S1 — 105_2 — 5C2>
N?>—-3N+3 —5N+3
+ S — (D.2)
(N=2)(N—1’N>"  (N-— 2)( —1)°N
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Appendix D: Finite and Infinite Sums

)N

>\ B(N,i) N (—1
Z: +N+2S1()SI(N+1)_N(N+1)(N+2)

X <4SQ71 — 6S,3 — 457251 — 2@3

& S,
— 208 —2 4
251 (N+1) (N+1)
=28 = 518 + 581 + 283

N+2
247N+ 7TN>+5N3+ N*

N3 (N+1)*(N +2)
247N +9N? + 4N? + N* (D3)
NYN+1)3(N+2) '

1

S> S3
3— -2 2— — S4. D4
+ 8 < N+S2’1 S3> + N+S3’1 Sy ( )

3
e 3 1
> (Sl(i +N) — Sl(i)> = —Esf -8 - 552+ 3N — NS; + NG5 (D.5)
i=1

2S o+ 0§

‘f:B(kJr;/iliVJr D _ (—1)"

k=1

(=D | ~G+ 68+ 2810 — 25—2,1]

B ™

& N[22
+Z(_1) §C2 — 381+ 08

2{5171,2 + 8211 — S1-2.1 H

L

+ (=Y

St—2,10 +St—2—S—211,1 — 51,1,2,11
+ 4

+ 0(e"). (D.6)
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An example for a double infinite sum we encountered is given by

Sl S] l+]+N) 4S3 S4
N =485 —28 Si| =38 — | ——=
Z i+ )+ N) 21,1 31+ 51 2,1+ 3 )

S4
— 85+ 515, +€1+ 6515+ G (25% + Sz)-
(D.7)

A detailed description of the method to calculate this sum can be found in
Appendix B of Ref. [45].



Appendix E
Moments of the Fermionic Contributions
to the 3-Loop Anomalous Dimensions

The pole terms of the unrenormalized OMEs in our calculation agree with the
general structure we presented in Eqs. 4.94, 4.103, 4.104, 4.116, 4.117, 4.124,
4.134. Using the lower order renormalization coefficients and the constant terms of
the 2-loop results, Egs. 6.34, 6.53, 6.60, 6.68, 6.80, allows to determine the
Tp-terms of the 3-loop anomalous dimensions for fixed values of N. All our results

agree with the results of Refs. [46-51]. Note that in this way we obtain the

complete expressions for the terms y(ﬁ,) and y(qz)’PS, since they always involve an

overall factor Tr. For them we obtain

N ~(2
(i) 952 :
8464 1384
522 2n )T, -
Jag (2)=Tr | (1+2n;) F<243C 243CF>
4 R )\ 7178 , 556 8620
= —41 2 12 —
+5 6CACr+288C, +128C] | ——rChi+5-CaCr—52C5 |,
(E.1)
4481539 9613841
32 (4) = Tp |(1 + 20 /)T
Yag ) = Tr| (1420 )Tk | 352755C4 + 3037500 F
Cs 2 2
25 2832C;, — 3876C4Cr + 1044C5
B 295110931C2 n 278546497 - 757117001C2 (E2)
3037500 4 2025000 12150000 F|’
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126223052 3872
—(1—|—2nf)TF + (CF—CA>C3
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lag " (6) = TrCr 72930375 ' 735

| 1988624681 _ 11602048711 , )
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For the remaining terms, only the projection onto the color factor 7 can be

obtained : (iii) §ie ™"
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1792 256
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12512 13648
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The O(¢’) Contributions to AAS)

Finally, we present all moments we calculated. We only give the constant term in ¢
of the unrenormalized result, cf. Eqgs. 4.94, 4.103, 4.104, 4.116, 4.117, 4.124,
4.134. These terms have to be inserted into the general results on the renormalized
level, cf. Egs. 4.96, 4.105, 4.106, 4.118, 4.119, 4.126, 4.137. We obtain
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3-loop Moments for Transversity

We obtain the following fixed moments of the fermionic contributions to the

3-loop transversity anomalous dimension yf,%,)’TR(N )

. 8 2008
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These moments (N = 1..8) agree with the corresponding terms obtained in [52].
The newly calculated moments read
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The fixed moments of the constant terms aéi{gR(N ) of the unrenormalized OME,

see Eq. 9.15, are given by
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