Springer Theses Recognizing Outstanding Ph.D. Research

Mei Yan

Development of New Catalytic Performance of Nanoporous Metals for Organic Reactions

Springer Theses

Recognizing Outstanding Ph.D. Research

For further volumes: http://www.springer.com/series/8790

Aims and Scope

The series "Springer Theses" brings together a selection of the very best Ph.D. theses from around the world and across the physical sciences. Nominated and endorsed by two recognized specialists, each published volume has been selected for its scientific excellence and the high impact of its contents for the pertinent field of research. For greater accessibility to non-specialists, the published versions include an extended introduction, as well as a foreword by the student's supervisor explaining the special relevance of the work for the field. As a whole, the series will provide a valuable resource both for newcomers to the research fields described, and for other scientists seeking detailed background information on special questions. Finally, it provides an accredited documentation of the valuable contributions made by today's younger generation of scientists.

Theses are accepted into the series by invited nomination only and must fulfill all of the following criteria

- They must be written in good English.
- The topic should fall within the confines of Chemistry, Physics, Earth Sciences, Engineering and related interdisciplinary fields such as Materials, Nanoscience, Chemical Engineering, Complex Systems and Biophysics.
- The work reported in the thesis must represent a significant scientific advance.
- If the thesis includes previously published material, permission to reproduce this must be gained from the respective copyright holder.
- They must have been examined and passed during the 12 months prior to nomination.
- Each thesis should include a foreword by the supervisor outlining the significance of its content.
- The theses should have a clearly defined structure including an introduction accessible to scientists not expert in that particular field.

Mei Yan

Development of New Catalytic Performance of Nanoporous Metals for Organic Reactions

Doctoral Thesis accepted by Tohoku University, Sendai, Japan

Author Dr. Mei Yan Key Laboratory of Microsystems and Micronanostructures Manufacturing Ministry of Education Harbin Institute of Technology Harbin China Supervisor Prof. Naoki Asao WPI Advanced Institute for Materials Research Tohoku University Sendai Japan

 ISSN 2190-5053
 ISSN 2190-5061 (electronic)

 ISBN 978-4-431-54930-7
 ISBN 978-4-431-54931-4 (eBook)

 DOI 10.1007/978-4-431-54931-4
 Springer Tokyo Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014933779

© Springer Japan 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Parts of this thesis have been published in the following journal articles:

- 1. Jin, T.; Yan, M.; Menggenbateer.; Minato, T.; Bao, M.; Yamamoto, Y. Nanoporous Copper Metal Catalyst in Click Chemistry: Nanoporosity Dependent Activity without Supports and Bases. *Adv. Synth. Catal.* **2011**, *353*, 3095–3100.
- Jin, T.; Yan, M.; Yamamoto, Y. Click Chemistry of Alkyne-Azide Cycloaddition Using Nano-structured Copper Catalysts. *ChemCatChem.* 2012, *4*, 1217–1229.
- 3. Yan, M.; Jin, T.; Ishikawa, Y.; Minato, T.; Fujita, T.; Chen, L-Y.; Bao, M.; Asao, N.; Chen, M-W.; Yamamoto, Y. Nanoporous Gold Catalyst for Highly Selective Semihydrogenation of Alkynes: Remarkable Effect of Amine Additives. J. Am. Chem. Soc. 2012, 134, 17536–17542.
- Yan, M.; Jin, T.; Chen, Q.; Ho, H. E.; Fujita, T.; Chen, L-Y.; Bao, M.; Chen, M-W.; Asao, N.; Yamamoto, Y. Unsupported Nanoporous Gold Catalyst for Highly Selective Hydrogenation of Quinolines. *Org. Lett.* **2013**, *15*, 1484–1487.

Supervisor's Foreword

Studying the catalytic properties of nanostructured metals is of major interest in the catalytic research. For example, gold nanoparticles in the range of 2–5 nm on suitable oxide supports have attracted much attention over the last two decades owing to their remarkable catalytic activities. However, they have a tendency to agglomerate under reaction conditions, and this process often leads to poor long-term stability. Furthermore, the structural complexity including interaction with supports has limited the understanding of the catalytically important factors. On the other hand, unsupported nanoporous gold has emerged as an efficient catalyst with considerable synthetic potential for several types of molecular transformations. The material can be prepared by the leaching of Ag from an Au–Ag alloy by immersion in nitric acid. The monolithic material consists of a three-dimensional network of ligaments with 10–50 nm diameters, which are dependent on the dealloying conditions. Not only gold but also other metals are available for construction of sponge-like morphology by a similar etching process with corresponding alloys.

Mei Yan focused on nanoporous gold and copper as target materials, and revealed their remarkable catalytic properties in some molecular transformations such as semihydrogenation of alkynes and click reaction. Her work has been exceptionally well received, and her doctoral thesis, entitled *Development of New Catalytic Performances of Nanoporous Metals for Molecular Transformations*, is particularly well written.

From the wealth of the obtained results, I would like to highlight just a few. One research topic was the high catalytic efficiency of nanoporous copper in click chemistry. She succeeded in fabricating nanoporous copper catalysts with tunable nanoporosity from a $Cu_{30}Mn_{70}$ alloy by controlling the dealloying temperature under free corrosion conditions. She found that the tunable nanoporosity of nanoporous copper led to a significant enhancement of catalytic activity in click chemistry without using any supports and bases. The catalyst exhibited a high reusability; it can be recycled 10 times without significant loss of activity.

A further highlight is that Dr. Yan was the first to succeed in catalyzing the highly selective semihydrogenation of alkynes by using the unsupported nanoporous gold catalyst with organosilanes and water as the hydrogen source, while nanoporous gold catalyst usually showed high catalytic efficiency for oxidative reaction in previous reports. Here, she found that the use of DMF as a solvent, which generates amines in situ, or pyridine as an additive is crucial to suppress the association of hydrogen atoms on nanoporous gold to form H_2 gas, which is unable to reduce alkynes on the unsupported gold catalysts. Under the optimized reaction conditions, this catalyst showed excellent Z-selectivity for alkenes without any over-reduced alkanes.

Mei Yan's thesis contains outstanding results that are of interest to a broad audience ranging from organic chemists to catalytic chemists. The work for the thesis was performed at Tohoku University, leading to several publications and presentations in international conferences, and was honored with the Presidential Prize for Excellence by Tohoku University.

Sendai, December 2013

Prof. Naoki Asao

Acknowledgments

The work for this thesis was carried out under the direction of Prof. Yoshinori Yamamoto and Prof. Naoki Asao in the Department of Chemistry, Graduate School of Science, Tohoku University, Japan.

I would like to express my sincere gratitude to Prof. Yamamoto for his encouragement, valuable suggestions, and strict guidance throughout this work. I also thank Prof. Asao for his valuable comments, suggestions, and probing questions, which caused me to learn much more and to know more about my work.

I am deeply grateful to Associate Professor Tienan Jin for his continuous guidance, valuable discussions, and technical advice, and also to Dr. Menggenbateer, Dr. Shirong Lu, and Dr. Fan Yang for their assistance not only with my work but also with my life.

I express my gratitude to Prof. Shaoqin Liu and Dr. Chongshen Guo (Harbin Institute of Technology, China) for their help with the revision of this thesis. I am also thankful to Dr. Qiang Chen, Mr. Yoshifumi Ishikawa, Dr. Jian Zhao, and every member of Prof. Asao's group for their kindness and constructive discussions.

I would like to thank Dr. Taketoshi Minato (Kyoto University) for assistance with the XPS experiments, and also Dr. Takeshi Fujita, Dr. Lu-Yang Chen, and Professor Ming-Wei Chen (WPI-Advanced Institute for Materials Research, Tohoku University) for their guidance in the characterization of nanoporous metals.

I am grateful to Prof. Ming Bao and Associate Professor Xiujuan Feng (Dalian University of Technology, China). Without them, I would not have been at Tohoku University for further study. I would also like to gratefully acknowledge China Scholarship Council, Global Centers of Excellence Program, and WPI-Advanced Institute of Materials Research for their financial support with my living expenses and tuition.

Last but not least, I want to express my deep appreciation to my family for their believing in my success and for their generous support.

Contents

1	The Fabrication of Nanoporous Metals (Au, Cu, Pd)						
	and	Their A	Application in Heterogeneous Molecular				
	Tra	nsforma	ations	1			
	1.1	Introdu	uction	1			
	1.2	Fabric	ation of Nanoporous Metals	2			
		1.2.1	Fabrication of Nanoporous Gold	2			
		1.2.2	Fabrication of Nanoporous Copper	3			
		1.2.3	Fabrication of Nanoporous Palladium.	5			
	1.3	Applic	ation in Heterogeneous Molecular Transformations	6			
	1.4	Summ	ary and Outlook	14			
	Refe	erences	·	14			
2	Nan	oporou	s Copper Metal Catalyst in Click Chemistry:				
	Nan	oporosi	ty Dependent Activity Without Supports and Bases	17			
	2.1	Introdu	uction	17			
	2.2	Result	s and Discussion	18			
		2.2.1	Synthesis of Nanoporous Copper	18			
		2.2.2	The Influence of CuNPore Structures on Catalytic				
			Activity in the 1,3-dipolar Cycloaddition of Terminal				
			Alkynes and Organic Azides	22			
		2.2.3	Mechanistic Investigation	25			
	2.3	Conclu	usion	28			
	2.4	Experi	mental Section	29			
		2.4.1	General Information	29			
		2.4.2	Materials	29			
		2.4.3	Calculation of TOF and TON	30			
		2.4.4	Fabrication of Cu ₃₀ Mn ₇₀ Alloy	30			
		2.4.5	Representative Fabrication Method of Nanoporous				
			Copper (CuNPore, cat-1) Under Free Corrosion	30			
		2.4.6	Representative Procedure for the CuNPore (cat-1)-				
			Catalyzed Click Reaction of Phenyl Acetylene (1a)				
			and Benzyl Azide (2a) (Tables 2.1 and 2.2)	30			

		2.4.7	Neat Reaction Procedure (Eq. 2.2).	31
		2.4.8	Leaching Experiment (Fig. 2.9).	31
		2.4.9	Reusability (Fig. 2.5)	32
		2.4.10	Formation of Nanostructured Copper Acetylide	
			(Figs. 2.10 and 2.11)	32
		2.4.11	Analytical Data	32
		2.4.12	¹ H and ¹³ C NMR Spectra	36
	Refe	erences .	•	51
_				
3	Nan	oporous	Gold Catalyst for Highly Selective	
	Sem	inyarog	enation of Alkynes: Remarkable Effect	55
	01 A	Introdu		55
	3.1 2.2	Introdu Damita		33
	3.2		and Discussion.	30 56
		3.2.1	Au Nanoporosity Characterization of Au NPore	30
		3.2.2	AunPore-Catalyzed Oxidation of Organositanes	50
		272	Optimization of AuNPore Catalyzed Semibudraenation	39
		5.2.5	of Phenyl Acetylene with Various Organosilenes	
			and Water Using DME as Solvent (Method A)	60
		371	Optimization of Amine Additives on AuNPore	00
		5.2.4	Catalyzed Semihydrogenation (Method B)	61
		325	Scope of Alkynes in AuNPore Catalyzed	01
		5.2.5	Semibydrogenation	62
		326	Control Experiments and Reaction Pathways	65
	33	Conclu	sion	68
	3.4	Experi	mental Section	69
	5.1	3 4 1	General Information	69
		342	Materials	69
		343	Fabrication of AuNPore Catalyst	69
		3.4.4	Representative Procedure for the AuNPore-Catalyzed	07
			Semihydrogenation of 1i (Table 3.4, Entry 19):	
			Method A	70
		3.4.5	Representative Procedure for the AuNPore-	
			Catalyzed Semihydrogenation of 1d	
			(Table 3.4, Entry 8): Method B	70
		3.4.6	Leaching Experiment	70
		3.4.7	Synthesis of Starting Materials	71
		3.4.8	Analytical Data of (1 and 2)	72
		3.4.9	¹ H and ¹³ C NMR Spectra	75
	Refe	erences .	-	88

4	Unsupported Nanoporous Gold Catalyst for Highly						
	Sele	ctive Hy	drogenation of Quinolines	93			
	4.1	Introdu	ction	93			
	4.2	Results	and Discussion.	94			
		4.2.1	Characterization of AuNPore	94			
		4.2.2	AuNPore-Catalyzed Hydrogenation of Quinolines	95			
		4.2.3	Proposed Reaction Pathway	99			
	4.3	Conclu	sion	101			
	4.4	Experii	mental Section	101			
		4.4.1	General Information	101			
		4.4.2	Materials	101			
		4.4.3	Fabrication of AuNPore Catalyst	102			
		4.4.4	Representative Procedure for the AuNPore-Catalyzed				
			Hydrogenation of 1a (Table 4.1, Entry 5)	102			
		4.4.5	Reaction Procedure for the Hydrogenation				
			of Isoquinoline (1k)	102			
		4.4.6	Deuterium-Labeling Experiment	103			
		4.4.7	Leaching Experiments	103			
		4.4.8	Synthesis of Starting Material (2-propylquinoline 1f)	103			
		4.4.9	Analytical Data of (1 and 2)	103			
		4.4.10	¹ H and ¹³ C NMR Spectra	106			
	Refe	erences .		117			
Cu	rricu	ılum Vit	ae	121			
Pu	blica	tions		123			

Abbreviations

Bn	Benzyl group
bz-THQ	5,6,7,8-tetrahydroquinoline
calcd	Calculated
cat.	Catalyst, catalytic amount
Conc.	Concentrated
CuAAS	Copper catalyzed cycloaddition of alkynes and azides
d	Day, doublet (spectral)
D	Deuterium (² H)
DFT	Density functional theory
DHQ	Decahydroquinoline
DMF	N, N-dimethylformamide
EDX	Energy-dispersive X-ray spectroscopy
eq	Equation
equiv	Equivalent (s)
FTIR	Fourier transform infrared spectroscopy
GC-MS	Gas chromatography-mass spectroscopy
h	Hour
HAADF-STEM	A scanning TEM mode with a high-angle annular dark-field
	detector
HRMS	High-resolution mass spectrum
HRTEM	High-resolution transmission electron microscopy
HSA	High surface area
<i>i</i> -Pr	Isopropyl group
m	Multiplet (spectral)
М	Metal, moles per liter
Me	Methyl group
min	Minute (s)
<i>n</i> -Bu	Normal butyl group
NMR	Nuclear magnetic resonance
NPore	Nanoporous
NPs	Nanoparticles
Pd/C	Palladium on charcoal
Ph	Phenyl group
Ру	Pyridine

py-THQ	1,2,3,4-tetrahydroquinoline
RT(rt)	Room temperature
S	Singlet (spectral)
SEM	Scanning electron microscopy
t	Triplet (spectral)
Т	Temperature
TEM	Transmission electron microscopy
THF	Tetrahydrofuran
TOF	Turnover frequency
TON	Turnover number
Ts	Tosyl group
XPS	X-ray photoelectron spectroscopy

Chapter 1 The Fabrication of Nanoporous Metals (Au, Cu, Pd) and Their Application in Heterogeneous Molecular Transformations

Abstract Nanoporous metals (Au, Cu, Pd) fabricated by chemical or electrochemical dealloying, possess intriguing properties towards enormous promising potentials for heterogeneous catalysis, such as unique pore structure, tunable nanoporosity, large specific surface area, high density of atomic steps and kinks, as well as high thermal stability. Here, we summarized nanoporous metals fabricated from different alloys by dealloying and their applications in heterogeneous catalysis. They showed high catalytic activity and selectivity and could be reused several times without obvious loss of activity.

Keywords Dealloying • Heterogeneous catalysis • Nanoporous gold catalyst • Nanoporous copper catalyst • Nanoporous palladium catalyst

1.1 Introduction

Nanoscience has taught us that an assembly constructed by building blocks with sizes in the range of 1–100 nm can generate superior properties in comparison to their bulk counterparts, and thus it is essential to prescribe and alter the pore structures in such a nanoporous range. As a subset of nanostructured porous materials, nanoporous metals with highly ordered networks and narrow pore-size distributions are of particular interest for a wide range of important potential applications, such as electrocatalysts, chemical sensors and energy system [1]. In spite of the growing number of studies on various electrochemical applications of nanoporous metals, the catalytic properties in chemical reactions are still less explored, although the interesting features of nanoporous metals make them potentially attractive candidates for new heterogeneous catalysts; the three-dimensional open-pore network structures and metal ligaments allow the transport of molecules and ions, a high surface-to-volume ratio in comparison with bulk metals results in outstanding catalytic efficiency; furthermore, the potentially high reusability and rather simple work-up are favorable for practical synthetic methodology.

Moreover, in contrast to the supported nanoparticles (NPs) catalyst, a nanoporous metal without supports should be an ideal catalyst system to understand the relevant catalytic mechanism more easily and to extend the catalytic application widely by elimination of the support effect problems and relaxation of aggregation. Herein, the fabrication method of nanoporous metals and application in heterogeneous molecular transformations were summarized.

1.2 Fabrication of Nanoporous Metals

Nanoporous metals (Au, Cu, Pd) could be fabricated by chemical or electrochemical dealloying, which means selective dissolution of an active component in appropriate corrosion conditions from a homogeneous, single phase alloy that consists of two or multicomponent metals with different chemical activities, leading to a porous residue [1]. To obtain uniform nanoporosity by dealloying, it is essential to select suitable alloy precursors, which satisfy two basic requirements: homogeneous single phases and a large electrochemical potential difference between the alloy components. For example, the 1.477 V difference between Cu and Mn made Mn to be a suitable alloy precursor for fabrication of nanoporous copper material [2].

1.2.1 Fabrication of Nanoporous Gold

Chemical dealloying Au–Ag alloy in nitric acid is a common method for the fabrication of nanoporous gold material. By immersing $Au_{50}Ag_{50}$ alloy in 50 % nitric acid for different time and then annealing at high temperature, Forty demonstrated that surface diffusion of gold played an important part in the corrosion process. As surface silver atoms were dissolved, the residual gold atoms reformed into gold-rich islands so that fresh silver atoms were continuously exposed to the environment layer by layer (Fig. 1.1) [3]. In 2001, Erlebacher demonstrated that nanoporosity in metals abided by an intrinsic dynamical pattern formation process. That is, pores form because the gold atoms are chemically driven to aggregate into two-dimensional clusters by a phase separation process at the solid-electrolyte interface, and the surface area continuously increase owing to etching [4].

To prepare nanoporous gold which would resist mechanical strains, Ag–Au alloy was immersed in aqueous $HClO_4$ solution. By optimizing the gold content of the Ag–Au alloy, staying below the threshold potential and increasing the temperature of the electrolyte, dealloyed membranes with a high degree of mechanical integrity have been prepared [5]. Immersing an ordered AuCu₃ intermetallic compound in 50 % HNO₃ aqueous solution at 50 °C could also fabricate fine porous gold catalyst with high catalytic activity [6].

When was chemical dealloying two-phase Al-Au alloy of Al₂Au and Al-Au intermetallic compounds under free corrosion conditions, nanoporous gold

Fig. 1.1 Gold island growth by the surface disordering, reordering mechanism

composites (NPGCs) formed. The microstructures of the NPGCs were composed of intracellular and intercellular areas which exhibited two kinds of nanoporous structures with different length scales of ligaments/channels. In addition, this length scales could be adjusted by simply changing the dealloying solution. The NPGCs showed abnormal coarsening behaviors when subjected to annealing at different temperatures. In comparison to nanoporous gold (AuNPore) with a homogeneous structure, the NPGCs exhibited higher Young's modulus and yield strength [7]. When was chemical dealloying of rapidly solidified (RS) Al_{66,6}Au_{33,4} alloys being composed of a single-phase Al₂Au intermetallic compound in the 20 wt% NaOH or 5 wt% HCl solution, nanoporous gold ribbons with an open, bicontinous interpenetrating ligament-channel structure was fabricated [8]. The dealloying behavior of Al₂Au in organic acid solutions was also investigated. As compared with those in inorganic acids, the dealloying kinetics in organic acids became much slower even at elevated temperature. In addition, only the surface region of Al₂Au ribbon with the thickness of several microns could be dealloyed, and thus finally contributed to a kind of NPGF (nanoporous gold film)/Al₂Au composite [9].

Nanoporous gold films were fabricated by electrochemical etching of gold in a solution of hydrofluoric acid and dimethylformamide (DMF). As compared with dealloyed AuNPore, the electrochemically etched AuNPore exhibited controllable pore size and etching depth by adjusting the etching conditions [10]. Electrochemical dealloying of amorphous Au-Si co-deposited films on Si substrates could also produce nanoporous gold films. As the starting concentrations of Au decreased from 41 to 9 %, the pore sizes increased from 10 to 45 nm and the porosity increased from 45 to 70 % for the nanoprous Au films. The degree of film collapse due to dealloying also increased with decreasing Au concentration [11].

1.2.2 Fabrication of Nanoporous Copper

Uniform monolithic structures of nanoporous copper (CuNPore) can be created by dealloying $Mn_{70}Cu_{30}$ via two distinct methods: potentiostatically driven dealloying and free corrosion. Both the ligament size and morphology were found to be highly dependent on the dealloying methods and conditions. Porous copper with

ligaments as small as 16 nm can be obtained when dealloyed potentiostatically in H_2SO_4 and as large as 125 nm when dealloyed under free corrosion in acid chloride [12]. Nanoporous copper with tunable nanoporosity were fabricated by electrochemical dealloying the same alloy $Mn_{70}Cu_{30}$ in hydrogen chloride. The influence of acid concentration and etching potential on the formation of nanoporosity was systematically investigated. The nanopore sizes can be tailored from about 15 to 120 nm by controlling the dealloying time (0.5 h to 32 h) in 0.025 M HCl [2].

We have shown that a large electrochemical potential difference is an important factor for selecting suitable mother alloys. The potential difference of Mg and Cu is markedly greater than that of Mn and Cu, thus the Mg–Cu alloy system were successfully developed to fabricate monolithic CuNPore ribbons and bulk CuN-Pore through chemical dealloying in a 5 wt% HCl solution. The compositions of starting Mg–Cu alloys do have an important effect on the dealloying process and microstructures of the CuNPore ribbons. The Mg–Cu alloys with 60 at. % Cu or less can be fully dealloyed, while the alloys with 67 at. % Cu or more cannot be completely dealloyed. The synergetic dealloying of Mg₂Cu and MgCu₂ in two-phase Mg–Cu alloys results in the formation of CuNPore with a homogeneous structure [13].

Monolithic CuNPore ribbons can be fabricated through chemical dealloying of melt-spun Al-Cu alloys with 33-50 at. % Cu under free corrosion conditions (in a 5 wt % HCl or 20 wt % NaOH aqueous solution). The melt-spun Al-Cu alloys with 33-50 at. % Cu were composed of one or a combination of Al₂Cu and AlCu intermetallic compounds. Both Al₂Cu and AlCu can be fully dealloyed, and the synergetic dealloying of Al₂Cu and AlCu in the two-phase Al-Cu alloys resulted in the formation of CuNPore with a homogeneous porous structure. The fast surface diffusion of Cu along alloy/solution interfaces leads to the formation of CuNPore with large length scales of ligaments/channels (100-500 nm) [14]. Synthesis of monolithic CuNPore through dealloying of Al-Cu alloys with 15-35 at. % Cu have also been successfully developed. These alloys with different composition have different percentage of three phases: α-Al, Al₂Cu and AlCu. During dealloying, Al atoms in the a-Al and Al₂Cu phases can be easily leached out, while those in the AlCu phase can hardly be eroded. Therefore, different percentage of these three phases (a-Al, Al₂Cu and AlCu) has a marked effect on dealloying process and morphology of the CuNPore ribbons. Monolithic CuNPore ribbons were fabricated by electroless dealloying of Al-Cu alloys in 10 wt% HCl and 10 wt% NaOH solution [15].

Nanoporous copper can also be fabricated from amorphous binary Ti-Cu $(Ti_{30}Cu_{70}, Ti_{40}Cu_{60}, Ti_{50}Cu_{50}, Ti_{60}Cu_{40})$ alloys in hydrofluoric acid solutions under a free corrosion condition. As-spun ribbons were dealloyed in various concentrations of HF solutions for different immersion times. An interpenetrating three-dimensional bicontinuous nanoporous structure of copper was formed after dealloying. The pore size was from tenths of nanometers to hundredths of nanometers, depending on the

alloy composition, HF concentration and the treatment time [16]. Multimodal nanoporous copper was fabricated through dealloying nanocrystallized $Ti_{50}Cu_{50}$ ribbon alloy due to the presence of Ti_3Cu_4 phase, which was co-precipitated with Ti_2Cu during the heat treatment at T = 400 °C ($T_g < T < T_x$) [17].

1.2.3 Fabrication of Nanoporous Palladium

Chen et al. have explored the synthesis of nanoporous palladium by electrochemically dealloying multicomponent $Pd_{30}Ni_{50}P_{20}$ metallic glass ribbons in 1 mol/L sulfuric acid solution. In comparison with crystalline alloys, multicomponent metallic glasses are monolithic in phase with a homogeneous composition and structure down to subnanoscale. Nanoporous palladium with a rather uniform structure has been obtained. SEM image showed a bimodal porous Pd structure with two length-scale nanopores at ~50 and 5 nm. TEM image showed that the size of the large pores was about 30–60 nm, and the ligaments among those big pores contained a large number of small pores with a size of about 5 nm. The formation mechanism of nanoporosity in the $Pd_{30}Ni_{50}P_{20}$ metallic glass was analogous to that in the crystalline systems, such as Au–Ag alloys [18].

Nanoporous Pd with an average ligament size of 5-20 nm was fabricated by electrochemical dealloying Pd_{0.2}C_{0.8} in H₂SO₄ aqueous solution. Heating nanoporous Pd above 573 K coarsened the nanoporous structure through a solid stated process like recrystallization, rather than melting which was typical for metallic nanoparticles [19].

Nanoporous palladium ribbons with bimodal channel size distributions could be fabricated by dealloying of the RS (rapidly solidified) $AI_{80}Pd_{20}$ alloy in the 20 wt% NaOH solution. The RS $AI_{80}Pd_{20}$ alloy was composed of two phases: α -Al and AI_3Pd . After dealloying, only a fcc Pd phase could be identified in the as-dealloyed ribbons [8]. As compared with $AI_{80}Pd_{20}$ alloy, the RS $AI_{30}Pd_{70}$ alloy was composed of AI_3Pd and AI_3Pd_2 intermetallic compounds. Chemical dealloying of the RS $AI_{30}Pd_{70}$ alloy in 20 wt% NaOH or 5 wt% HCl aqueous solution formed nanoporous palladium composites with second phase embeddings. The resultant composites comprised the nanoporous palladium matrix dealloyed, forming AI_3Pd and the undealloyed AI_3Pd_2 embeddings [20]. Dealloying a RS $AI_{77}Pd_{23}$ alloy under free corrosion conditions could form nanoporous Pd ribbons with a typical bicontinuous interpenetrating cluster-channel structure. The clusters were composed of parallel rods, with large channels between them. The rods were also nanoporous and exhibited an ultrafine ligament/channel structure [21].

1.3 Application in Heterogeneous Molecular Transformations

Nanoporous gold foams formed through the selective leaching of silver from Au₃₀Ag₇₀ in nitric acid, has an unexpectedly high catalytic activity for CO oxidation at ambient pressures and temperatures or down to -20 °C. Sintering can inhibit the catalytic applications of gold particles; in contrast, nanoporous gold has good thermal stability, and its morphology can be easily reproduced. X-ray photoelectron spectroscopy (XPS) revealed that, in addition to gold, 4.4 % metallic silver is present at the surface of the samples used for the catalytic studies. The distribution of silver was considered to have strong influence on the high catalytic activity of nanoporous gold [22]. Bäumer's data suggested that Ag played a significant role in promoting adsorption and dissociation of molecular oxygen [23–25]. When increasing the content of Ag, the activity of the nanoporous gold catalyst can be significantly enhanced [26]. Chen et al. reported that a very high density of atomic steps and kinks could be observed on the surface of nanoporous gold (average diameter of both gold ligaments and nanopores was ~ 30 nm), comparable to 3-5 nm nanoparticles, and the residual Ag stabilized the atomic steps by suppressing {111} faceting kenetics. In situ TEM observations provided compelling evidence that the surface defects were active sites for the catalytic oxidation of CO [27].

Ding et al. employed a modified dealloying by etching Ag/Au in concentrated nitric acid under applied anodic potential forming nanoporous gold with ligament sizes less than 6 nm. This AuNPore showed high catalytic activities for CO oxidation even at low temperatures, such as -30 °C. The deactivation of the Au was observed at room temperature because of increased ligament size (around \sim 20 nm) and clogging of pores in some areas. In contrast, the structure coarsening was significantly retarded at lower temperatures, and catalytic reaction at -30 °C for over 30 h increased the pore size from the original 5 to ~8 nm. This property offered the AuNPore catalyst a unique advantage of performing at low temperatures with sustained stability. All AuNPore samples were tested as made without any activation pretreatment which was in sharp contrast to most supported Au catalysts [28]. Metallic gold atoms on AuNPore are the intrinsic active sites where the reaction of CO with O₂ occurs. The kinetic study found that the reaction rate of CO oxidation on unsupported AuNPore depended significantly on CO concentration but only slightly on O₂ concentration, consequently CO adsorption was suggested as the rate-limiting step in CO oxidation [29].

The reactivity of the alkaline pretreated nanoporous gold for the CO oxidation has been investigated. After being immersed in NaOH or ammonia solutions, the catalytic activity could be promoted dramatically for the room temperature reaction, and this promotional effect could be adjusted by varying the pH values of the alkaline solutions or immersing time. The roles of the alkaline were to provide OH⁻ anions to form Au–OH⁻ sites, which were the active sites to form hydroxyl carbonyl (Au–OCOH⁻) with CO and activated the oxygen with hydroxyl carbonyl [30].

Nanoporous gold catalysts also exhibited effective catalytic activity and high selectivity (~ 99 %) for the aerobic oxidation of D-glucose to D-gluconic acid under mild conditions. AuNPore catalyst with a ligament size of 6 nm exhibited the highest catalytic activity and was more resistant to deactivation, while the 30 nm sample was found to have better structure stability during the whole catalytic process. The presence of residual Ag atoms does not seem to contribute to the activity of AuNPore for glucose oxidation. The Au atoms on the corners and step edges, that means the low-coordinated surface Au atoms, are the reaction active sites [31].

Besides the ability of gold to catalyze oxidation reactions already at very low temperatures, AuNPore is also a highly selective catalyst [32]. It catalyzed the selective oxidative coupling of methanol to methyl formate with 100 % selectivity at 20 °C and high turnover frequencies (0.26 s⁻¹) at 80 °C (Eq. 1.1). The residual Ag in AuNPore regulated the availability of reactive oxygen on the surface and thus controlled the selectivity. However, Ag was not directly involved in the coupling activity and Au surface sites were the real reactive sites [33]. When was increasing the content of Ag, the selectivity for the oxidation of methanol was shift from partial to total oxidation, that means only the product of CO₂ was observed. Thus, in contrast to CO, in case of methanol increasing concentration of Ag were unfavorable, leading to more pronounced total oxidation and a decrease of total activity [26]. Other gas-phase aerobic oxidation and coupling of primary alcohols, ethanol and *n*-butanol, were also studied using nanoporous gold as an unsupported catalyst at ambient pressures and low temperatures [34]. The two predominant products for ethanol oxidation were acetaldehyde and ethyl acetate in a molar ratio of about 2:1, which formed at reaction temperatures as low as 40 °C (Eq. 1.2). The total oxidation of ethanol to CO_2 was found to be close to the detection limit (ca. 10^{-3} vol%). The oxidation of *n*-butanol led exclusively to the production of the aldehyde, *n*-butanal (Eq. 1.3). The formation of CO₂ was also close to the detection limit of about 10-3 vol%. One of the main intermediates was a surfacebonded carboxylate (i.e. formate, acetate; see Scheme 1.1) stemming from the oxidation of surface-bonded aldehyde. This carboxylate surface species could either desorb after reaction with water, forming the corresponding carboxylic acid, or be further oxidized to the ketene and eventually CO₂. With increasing chain length and increasing tendency to form a surface-bonded aldehyde (methanol < ethanol < n-butanol) the amount of this carboxylate species increased. Kong et al. examined the influence of Ag content, partial pressure of oxygen and temperature on the selectivity of gas-phase oxidation of ethanol over unsupported nanoporous gold. As similar with the cross-coupling of methanol, Ag in nanopprous gold promoted oxidation and so do high temperature and oxygen concentration [35].

$$2 \text{ CH}_3\text{OH} + \text{O}_2 \xrightarrow{\text{AuNPore}} \text{HCOOCH}_3 + 2 \text{H}_2\text{O}$$
 (1.1)

$$3 C_2 H_5 OH + 3/2 O_2 \xrightarrow{AuNPore} C_2 H_5 OH + CH_3 COOC_2 H_5 + 3 H_2 O$$
 (1.2)

. . .

Scheme 1.1 Pattern of reactivity for oxidation and coupling of alcohols on Au. Surface oxygen initiates scission of the alcoholic O–H bond, forming an alkoxy unit. Subsequent β -H elimination from the alkoxy by reaction with surface oxygen or an adjacent alkoxy leads to adsorbed aldehyde which is then attacked by unreacted alkoxy, forming a hemiacetal species which eliminates a hydrogen to yield the ester

$$C_4H_9OH + 1/2O_2 \xrightarrow{AuNPore} C_4H_8O + H_2O$$
 (1.3)

Our group reported the first example of nanoporous gold (AuNPore) catalyzed organic reactions [36]. It exhibited a remarkable catalytic activity in the oxidation of a wide range of organosilanes (Table 1.1). The corresponding silanols were produced in high yields under mild conditions together with the evolution of hydrogen gas without formation of the byproduct disiloxanes. In addition, aerobic oxidation of alcohols in both batch and flow systems proceeded smoothly in the presence of nanoporous gold catalys (Table 1.2). The reaction did not need any additives, such as bases, stabilizers, and ligands as well as any cumbersome work-up procedure like filtration or centrifugation [37]. Besides the above two reaction systems, the benzannulation reaction between *ortho*-alkynylbenzaldehydes and alkynes were successfully catalyzed by nanoporous gold catalyst. The catalytic

Ru Sil	I +	<i>n</i> H ₂ O	WNPore cat.	. Si(OH) +	nН	
1 (4-n)	'n '	111 <u>2</u> 0	acetone, RT	2	,,,,,	2
Entry	1	$R_{(4-n)}SiH_n$	AuNPore, mol%	Time, h	2	Yield, (%) ^a
1	1a	PhMe ₂ SiH	1	1	2a	100
2	1b	Et ₃ SiH	1	2	2b	94
3	1c	Bu ₃ SiH	3	3	2c	95
4	1d	iPr ₃ SiH	3	5	2d	88
5	1e	Ph ₃ SiH	1	5	2e	99
6	1f	Ph_2SiH_2	1	9	2f	90
7	1g	PhSiH ₃	5	6	2g	80
8	1h	(H ₂ C=CH)MePhSi	H 1	1	2h	98
9	1i	$(PhC \equiv C)Me_2SiH$	3	1.5	2i	92

Table 1.1 Scope of the oxidation of organosilane

Reactions were performed using 1 (1.0 mmol), H_2O (0.1 mL), and AuNPore (n mol%) in 1.5 mL of acetone at room temperature

^a Yield of isolated product

activity of nanoporous gold materials with different pore sizes from 25 nm to 100 nm was examined in this reaction. The results showed that the catalytic activity was highly dependent on the pore size, and the size should be less than 30 nm for this transformation, while the catalyst with larger sizes nearly inactive for this catalytic system (Table 1.3) [38]. The catalyst could be recycled several times in all above reactions and the work-up process was quite simple.

Since the hydrosilylation of terminal alkynes could possibly form three isomeric products, α -, β -(E)-, and β -(Z)-isomers (Eq. 1.4), the control of regio- and stereoselectivity in this process is highly desirable for selective preparation of these vinylsilane compounds. Recently, we were successful in selective hydrosilylation of terminal alkynes using nanoporous gold, fabricated from an Au-Al alloy by dealloying in 20 % NaOH, leading to β -(E)-products with high regio- and stereoselectivities (Table 1.4). Nanoporous gold fabricated from Au–Ag alloy by dealloying in 70 % HNO₃ showed much lower catalytic activity than that from Au-Al alloy. We found the residual silver had inhibition effect while aluminum had no special activation effect on this reaction [39].

Nanoporous gold also showed high selectivity in synthesis of formamide by aerobic oxidation of methanol in the coexistence of various oxidizable primary and

ŎН	AuNPore cat, O ₂ balloo	on	0		
$R^1 \xrightarrow{I} R^2$	MeOH, 60 °C		₹ ¹ R ² 2		
Entry	Alcohol	1	Time, h	2	Yield, (%) ^a
1	OH C ₃ H ₇	1a	10	2a	96
2		1b	10	2b	88
3 ^b		1b	24	2b	88
4 ^c	Ph´ Me OH	1c	7	2c	85
5	4-MeOC ₆ H₄∕ [°] Me OH ↓	1d	9	2d	97
6	Ph Ph OH	1e	10	2e	94
7		1f	28	2f	91
8		1g	24	2g	98
9	OH	1h	22	2h	83
10	OH N	li	22	2i	81
11 ^{c,d,e} 12 ^{c,d,e}	Ph OH Ph Me	1j 1k	24 22	2j 2k	85 82
13 ^e	OH OH	11	19	21	96

 Table 1.2
 Aerobic oxidation of alcohol with AuNPore catalyst

Reactions were carried out with 1 (0.30 mmol) and O_2 balloon in the presence of 10 mol% of AuNPore catalyst at 60 °C unless otherwise noted ^a Determined by ¹ H NMR analysis with *p*-xylene as an internal standard ^b Air ballon was used instead of O_2 balloon

^c1.4-Dioxane was used as a solvent

^dReaction temperature was used as a sorrer ^e20 mol% of catalyst was used

	$\begin{array}{c} \text{CHO} \\ & \text{+ Ph} = \frac{\text{Ar}}{\text{o-C}_{e}} \end{array}$	uNPore (20 mol%) H ₄ Cl ₂ , 150 °C, 2.5 h	Ph + (Ph
1	a 2a		3a	4a
Entry	Average pore size, nm	Yield of 3a, (%)	Yield of 4a, (%)	Recovery of 1a, (%)
1	AuNPore-1 (25)	62	14	0
2	Reuse 1	61	15	0
3	Reuse 2	60	17	0
4	AuNPore-2 (30)	61	13	0
5	AuNPore-3 (40)	12	Trace	66
6	AuNPore-4 (60)	Trace	0	83
7	AuNPore-5 (100)	0	0	93

Table 1.3 AuNPore-catalyzed benzannulation of 1a with 2a

 Table 1.4 AuNPore-catalyzed hydrosilylation with a variety of alkynes and hydrosilanes

 AuNPore cat
 SiR₃

R'—=== 1	+ R ₃ SiH ·	70 °C, 4	AcOEt R	∕SiR ₃	+ R' 4	5		
Entry	R′	R ₃ SiH			Cat,	Time,	Yield ^a , (%)	
					mol%	h	3	4
1	C ₆ H ₅	1a	Et ₃ SiH	2a	2	3	98	1
2	p-FC ₆ H ₄	1b	Et ₃ SiH	2a	2	2	97	2
3	p-MeOC ₆ H ₄	1c	Et ₃ SiH	2a	2	6	97	2
4	C ₆ H ₁₃	1d	Et ₃ SiH	2a	2	3	99	2
5	PhCH ₂	1e	Et ₃ SiH	2a	2	3	97	1
6	c-C ₆ H ₁₁	1f	Et ₃ SiH	2a	2	3	97	1
7	C ₆ H ₅	1a	PhMe ₂ SiH	2b	2	6	96	3
8	C ₆ H ₅	1a	(EtO) ₃ SiH	2c	5	12	85	3
9	C ₆ H ₅	1a	Bu ₃ SiH	2d	10	12	98	2
10	C ₆ H ₅	1a	(i-Pr) ₃ SiH	2e	20	18	80	2

Reactions were carried out with 1 (1 mmol) and 2 (1.5 mmol) in the presence of AuNPore catalyst at 70 $^{\circ}\mathrm{C}$

^a Determined by ¹ H NMR analysis with *p*-xylene as an internal standard

secondary amines under mild conditions (Table 1.5). This established a facile, direct formamide synthesis process. The current catalytic reaction can be conducted under mild conditions, such as ambient oxygen pressure and neutral solutions. The residual Ag enhanced the catalytic activity of gold through a synergistic effect with gold.

MeOH	R ∖ _{NH} + R' R' 1b	AuNPore cat. O ₂ balloon 60 °C, t [h]	O R _N ,H R' 2b	
Entry	1		Time, h	Product, yield, (%) ^a
1	1a	C ₈ H ₁₇ NH ₂	20	2a, 97
2	1b	\sim NH ₂	20	2b, 99
3	1c	NH ₂	72	2c, 67
4	1d	MeO NH ₂	72	2d, 77
5	1e	NH2	72	2e, 72
6	1f	NH ₂	72	2f, 70
7	1g	NH ₂	40	2g, 73
8	1h	, H	30	2h, 95
9	1i	Me ₂ NH	20	2i, 40
10	1j	NH	20	2j, 98
11	1k	ŇH	40	2k, 93
12	11		48	21, 91

Table 1.5 AuNPore-catalyzed N-formylation of various amines

Reaction conditions: 1 (0.30 mmol), AuNPore (0.03 mmol), MeOH (3.0 mL) a Yield was determined by 1 H NMR spectroscopy using CH₂Br₂ as an internal standard

Nanoporous metallic glass Pd, which was fabricated by dealloying of a glassy metallic alloy $Pd_{30}Ni_{50}P_{20}$, exhibited a remarkable catalytic activity for the Suzuki-coupling reaction between iodoarenes and arylboronic acids under mild conditions (Table 1.6). Leaching test indicated that dissolved Pd species existed and catalyzed the reaction but its activity was much lower than that of the solid state of the catalyst, and the leaching amount was quite small. Meanwhile, nanoporous Pd formed from a Pd-Co alloy was also used to catalyze Suzuki coupling between **1a** and **2a**. The reaction proceeded and the product **3a** was obtained in nearly quantitative yield. Leaching test indicated this was a heterogeneous process [40].

 $\label{eq:table_$

R ¹ —I	+ (HO) ₂ B	\mathbf{R}^2 –	PdNPore cat KOH, MeOH		
1	2a: 2b: 2c:	R ² = Me R ² = Cl R ² = OMe		3	
KF ₃ B´	Me	→ ^O ·B	Me		Me
	2d	2e		2f	
Entry	1	R ¹ -I	2	Condition	Product, yield, % ^a
1	1a		2a	50 °C, 3 h	3a, 99
2	1b		2a	50 °C, 4 h	3b, 95
3	1b	MeO-	2b	50 °C, 12 h	3c, 95
4	1b		2c	50 °C, 1 h	3d, 83
5	1c	MeO	2a	50 °C, 5 h	3e, 95
6	1d	OMe	2a	50 °C, 6 h	3f, 79
7	1e	но-	2a	80 °C, 12 h	3g, 89
8	1f	F-	2a	50 °C, 3 h	3h, 99
9	1g	F ₃ C-	2a	50 °C, 0.5 h	3i, 99
10	1h	Ac-	2a	50 °C, 2 h	3j, 95
11	1i		2a	50 °C, 3 h	3k, 99
12	1a	<u> </u>	2d	50 °C, 4 h ^b	3a, 87
13	1a		2e	80 °C, 3 h	3a, 78
14	1a		2f	80 °C, 4 h ^c	3a, 95

Reaction conditions: 1 (0.5 mmol), 2 (0.75 mmol), KOH (2.5 mmol), PdNPore (2 mol%), MeOH (2 mL)

^aIsolated yield

^bThe reaction was conducted in a mixture of MeOH (1.2 mL) and H_2O (0.6 mL)

^cThe reaction was conducted in the absence of KOH

1.4 Summary and Outlook

Nanoporous gold fabricated from different alloys showed distinct catalytic activity for the same reaction because of different nanostructures and synergistic effects between gold and residual metals. This means, choose a proper mother alloy is crucial for exploring high catalytic activity of nanoporous metals. In addition, for the same nanoporous metal catalyst, we can also explore new catalytic property for more reactions. Until now, nanoporous gold showed high catalytic activity for oxidation reactions, such as CO oxidation, but nanoporous copper and palladium have rarely been reported for catalyzing heterogeneous molecular transformations, especially for organic reactions. Within the reported catalyzed reactions, all of the nanoporous metals showed high selectivity and avoided the influence of stabilizer comparing with their corresponding nanoparticles. Therefore, it is necessary and promising for developing new catalytic performances of nanoporous metals for heterogeneous organic reactions.

References

- Zhang J, Li CM (2012) Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems. Chem Soc Rev 41:7016–7031
- Chen LY, Yu JS, Fujita T et al (2009) Nanoporous copper with tunable nanoporosity for SERS applications. Adv Funct Mater 19:1221–1226
- 3. Forty AJ (1979) Corrosion micromorphology of noble metal alloys and depletion gilding. Nature 282:597–598
- 4. Erlebacher J, Aziz MJ, Karma A et al (2001) Evolution of nanoporosity in dealloying. Nature 410:450–453
- 5. Senior NA, Newman RC (2006) (2006) Synthesis of tough nanoporous metals by controlled electrolytic dealloying. Nanotechnology 17:2311–2316
- Kameoka S, Tsai AP (2008) CO oxidation over a fine porous gold catalyst fabricated by selective leaching from an ordered AuCu3 intermetallic compound. Catal Lett 121:337–341
- Zhang Z, Wang Y, Qi Z (2009) Fabrication and characterization of nanoporous gold composites through chemical dealloying of two phase Al–Au alloys. J Mater Chem 19:6042–6050
- 8. Zhang Z, Wang Y, Qi Z et al (2009) Generalized fabrication of Nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying. J Phys Chem C 113:12629–12636
- Wang X, Zhang Z, Ji H et al (2012) Dealloying of single-phase Al₂Au to nanoporous gold ribbon/film with tunable morphology in inorganic and organic acidic media. Appl Surf Sci 258:9073–9079
- Fang C, Bandaru NM, Ellis AV et al (2012) Electrochemical fabrication of nanoporous gold. J Mater Chem 22:2952–2957
- 11. Gupta G, Thorp JC, Mara NA et al (2012) Morphology and porosity of nanoporous Au thin films formed by dealloying of Au_xSi_{1-x} . J Appl Phys 112:094320
- 12. Hayes JR, Hodge AM, Biener J et al (2006) Monolithic nanoporous copper by dealloying Mn–Cu. J Mater Res 21:2611–2616

- Zhao C, Qi Z, Wang X et al (2009) Fabrication and characterization of monolithic nanoporous copper through chemical dealloying of Mg–Cu alloys. Corros Sci 51:2120–2125
- 14. Qi Z, Zhao C, Wang X et al (2009) Formation and characterization of monolithic Nanoporous copper by chemical dealloying of Al–Cu alloys. J Phys Chem C 113:6694–6698
- Li M, Zhou Y, Geng H (2012) Fabrication of nanoporous copper ribbons by dealloying of Al-Cu alloys. J Porous Mater 19:791–796
- 16. Dan Z, Qin F, Sugawara Y et al (2012) Fabrication of nanoporous copper by dealloying amorphous binary Ti-Cu alloys in hydrofluoric acid solutions. Intermetallics 29:14–20
- Dan Z, Qin F, Sugawara Y et al (2013) Nanoporous copper dealloyed from a nanocrystallized Ticu alloy. Mater Sci Forum 750:72–75
- Yu J, Ding Y, Xu C et al (2008) Nanoporous metals by dealloying multicomponent metallic glasses. Chem Mater 20:4548–4550
- Hakamada M, Mabuchi M (2009) Fabrication of nanoporous palladium by dealloying and its thermal coarsening. J Alloys Compd 479:326–329
- Wang X, Wang W, Qi Z et al (2010) Fabrication, microstructure and electrocatalytic property of novel nanoporous palladium composites. J Alloys Compd 508:463–470
- Zhang C, Ji H, Sun J et al (2013) Fabrication of nanoporous Pd with superior hydrogen sensing properties by dealloying. Mater Lett 92:369–371
- 22. Zielasek V, Jürgens B, Schulz C et al (2006) Gold catalysts: nanoporous gold foams. Angew Chem Int Ed 45:8241–8244
- Wittstock A, Neumann B, Schaefer A et al (2009) Nanoporous Au: an unsupported pure gold catalyst? J Phys Chem C 113:5593–5600
- Fajín JLC, Cordeiro MNDS, Gomes JRB (2011) On the theoretical understanding of the unexpected O₂ activation by nanoporous gold. Chem Commun 47:8403–8405
- 25. Moskaleva LV, Röhe S, Wittstock A et al (2011) Silver residues as a possible key to a remarkable oxidative catalytic activity of nanoporous gold. Phys Chem Chem Phys 13:4529–4539
- 26. Wittstock A, Wichmann A, Biener J et al (2011) Nanoporous gold: a new gold catalyst with tunable properties. Faraday Discuss 152:87–98
- Fujita T, Guan P, McKenna K et al (2012) Atomic origins of the high catalytic activity of nanoporous gold. Nat Mater 11:775–780
- Xu C, Su J, Xu X et al (2007) Low temperature CO oxidation over unsupported nanoporous gold. J Am Chem Soc 129:42–43
- 29. Xu C, Xu X, Su J et al (2007) Research on unsupported nanoporous gold catalyst for CO oxidation. J Catal 252:243–248
- Han D-Q, Zhou C-Q, Yin H-M et al (2011) Reactivity of the alkaline pretreated nanoporous gold for the CO oxidation. Catal Lett 141:1026–1031
- Yin H, Zhou C, Xu C et al (2008) Aerobic oxidation of d-Glucose on support-Free nanoporous gold. J Phys Chem C 112:9673–9678
- Wittstock A, Biener J, Bäumer M (2012) Nanoporous gold: a new material for catalytic and sensor applications. Phys Chem Chem Phys 12:12919–12930
- Wittstock A, Zielasek V, Biener J et al (2010) Nanoporous gold catalysts for selective gasphase oxidative coupling of methanol at low temperature. Science 327:319–322
- 34. Kosuda KM, Wittstock A, Friend CM et al (2012) Oxygen-mediated coupling of alcohols over nanoporous gold catalysts at ambient pressures. Angew Chem Int Ed 51:1698–1701
- Kong X-M, Shen L-L (2012) Selectivity control of ethanol gas-phase oxidation over nanoporous gold. Catal Commun 24:34–37
- 36. Asao N, Ishikawa Y, Hatakeyama N et al (2010) Nanostructured materials as catalysts: nanoporous-gold-catalyzed oxidation of organosilanes with water. Angew Chem Int Ed 49:10093–10095
- 37. Asao N, Hatakeyama N, Menggenbateer et al (2012) Aerobic oxidation of alcohols in the liquid phase with nanoporous gold catalysts. Chem Commun 48:4540–4542

- 38. Asao N, Meggenbateer, Seya Y et al (2012) Nanoporous gold-catalyzed [4 + 2] benzannulation between ortho-alkynylbenzaldehydes and alkynes. Synlett 23:66–69
- 39. Ishikawa Y, Yamamoto Y, Asao N et al (2013) Selective hydrosilylation of alkynes with a nanoporous gold catalyst. Catal Sci Technol 3:2902–2905
- 40. Tanaka S, Kaneko T, Asao N et al (2011) A nanostructured skeleton catalyst: Suzukicoupling with a reusable and sustainable nanoporous metallic glass Pd-catalyst. Chem Commun 47:5985–5987

Chapter 2 Nanoporous Copper Metal Catalyst in Click Chemistry: Nanoporosity Dependent Activity Without Supports and Bases

Abstract Nanoporous copper catalysts with tunable nanoporosity were fabricated from $Cu_{30}Mn_{70}$ alloy by controlling the dealloying temperature under free corrosion conditions. The tunable nanoporosity of CuNPore led to a significant enhancement of catalytic activity in click chemistry without using any supports and bases. Characterization of CuNPore surface, high reusability, leaching experiment, and formation of nanostructured copper acetylide revealed that the click reaction occurred at the catalyst surface and the Cu(I) species was the real catalytic active sites. The CuNPore catalyst system was also applied to the three-component coupling of terminal alkynes, tosyl azide and dialkylamines to afford the corresponding aminoimines in high yields.

Keywords Click chemistry \cdot Nanoporous copper catalyst \cdot Heterogeneous catalysis \cdot High reusability

2.1 Introduction

Nanoporous metals are promising materials for catalysis [1–9], sensing [10–12], and actuation [13, 14] applications due to their interesting structural, optical and surface properties. In spite of the growing number of studies on various applications of nanoporous metals, the catalytic properties in chemical reactions are still less explored, although the interesting features of nanoporous metals make them potentially attractive candidates for new heterogeneous catalysts [1–9]; the three-dimensional open-pore network structures and metal ligaments allow the transport of molecules and ions, a high surface-to-volume ratio in comparison with bulk metals results in outstanding catalytic efficiency; furthermore, the potentially high reusability and rather simple work-up are favorable for practical synthetic methodology. Moreover, in contrast to the supported nanoparticles (NPs) catalyst, a nanoporous metal without supports should be a challenging catalyst system to understand the relevant catalytic mechanism more easily and to extend the catalytic application widely by elimination of the support effect problems and

relaxation of aggregation. In this regard, we have focused on the study of the catalytic properties of unsupported nanoporous metals in organic molecular transformations under liquid phase conditions [15, 16]. Nanoporous gold exhibited a remarkable catalytic efficiency and reusability in the oxidation of organosilanes into silanoles with water [15], and non-porous palladium without ligands and supports showed high catalytic activity and reusability in the Suzuki coupling [16]. Therefore, the design and synthesis of new and efficient nanoporous metal catalytic systems for development of molecular transformations are highly desirable.

In 2002, Sharpless [17] and Meldal [18] reported independently the Huisgen [3 + 2] cycloaddition of terminal alkynes and organic azides catalyzed by homogeneous Cu(I) salts, the so-called click reaction. This methodology has been emerged as the most powerful tool for connecting the two useful functional groups. During the last few years, numerous applications of the click reaction have been reported in the field of material sciences, bio- and medicinal chemistry [19–21]. The click reaction can be catalyzed also by heterogeneous copper(I), such as immobilized copper nanoclusters and copper/cuprous oxide NPs, copper-in-charcoal NPs, copper zeolites, and copper nitride NPs supported on mesoporous SiO_2 with or without bases [22-30]. Copper metal alone also has been reported to catalyze this click reaction, while the reaction is relatively slow and requires high catalyst loading [31]. Recyclability of these heterogeneous copper catalysts was rarely reported [30]. Recently, it has been reported that the monolithic CuNPore is a promising high strength/low density material, which can be synthesized through the chemical or electrochemical de-alloying of various single-phase Cu/M (M = Al, Mg, Mn) alloys [32-36]. Herein, we report an efficient approach for the synthesis of CuNPore with tunable nanoporosity and its remarkable catalytic properties in click chemistry without using any supports and bases (Eq. 2.1). To the best of our knowledge, this is the first report on a monolithic CuNPore-catalyzed molecular transformation, while the non-monolithic CuNPore in the form of Raney copper is a well known catalyst in the water-gas shift reaction [37, 38].

$$R^{1} \longrightarrow R^{2} - N_{3} \xrightarrow{\text{cat. CuNPore}} N_{\tilde{N}}^{1} N_{\tilde{N}}^{2} \qquad (2.1)$$

$$1 \qquad 2 \qquad 65 \, {}^{\circ}\text{C} \qquad 3$$

2.2 Results and Discussion

2.2.1 Synthesis of Nanoporous Copper

Nanoporous metals with ideal bicontinuous structures can be synthesized by chemical or electrochemical dealloying of binary or ternaryl alloys by selective dissolution of one or more of the components of the alloy. To obtain uniform

Scheme 2.1 Synthesis of Cu₃₀Mn₇₀ alloy and CuNPore by chemical dealloying

nanoporosity upon dealloying, an alloy system is usually required to be in monolithic phase because the nanoporosity is formed by a self-assembly process through surface diffusion, not by the simple excavation of one phase from a preseparated multiphase system. Surface diffusion of the less reactive component across the alloy/solution interface plays a key role in the formation of nanoporous metals and has a significant influence on size of ligament/pore. Furthermore, the electrochemical activities of elements in an alloy may be significantly different from the environment, which can strongly affect dissolution process and dealloying morphology; this relationship indicates that the compositions of starting alloys also have a significant influence on the nanostructure of porous metals.

CuNPore is a promising, high strength/low density material, because of its high porosity and yield strength of 86 \pm 10 MPa. Recently, it has been reported that monolithic CuNPores can be synthesized through the chemical or electrochemical dealloying of various Cu/M (M = Al, Mg, Mn, etc.) alloys [32-36]. Hayes et al. [32] and Chen et al. [36] reported the synthesis of monolithic CuNPores by chemical/electrochemical dealloying of a single-phase Cu₃₀Mn₇₀ alloy under acidic conditions with ligaments of length 10-125 nm. Zhang et al. have also synthesized monolithic CuNPores with a ligament length of several hundred nanometers from dual-phase Cu/Al and Cu/Mg alloys by chemical dealloying in HCl solution [33, 34]. Most recently, Liu et al. succeeded in synthesis of CuNPres with ligament lengths from 20-200 nm through chemical dealloying in an alkaline solution by altering the Cu/Al ratio of the initial alloys [45, 46]. In view of the industrial applications of these products, widespread use of the dealloying technique to make CuNPores is frequently hindered by the high cost of such unreactive metals and by the limited range of alloy systems. To date, little attention has been paid to the synthesis of CuNPores with tunable nanoporosity by means of changing the dealloying conditions; although it has been proved that materials with smaller nanostructure will offer higher surface area, which may significantly enhance catalytic properties. The Cu alloy that best fits these requirements is $Cu_{30}Mn_{70}$. Recently, Chen et al. obtained CuNPores with tunable nanopore sizes from Cu/Mn ribbons by controlling chemical dealloying time in a diluted HCl solution [36]. However, the small dimensions (thickness $\approx 20 \ \mu m$; width $\approx 1 \ mm$) of the ribbon used would cause it to be brittle during the catalytic transformations. Investigation of the synthesis of CuNPore catalysts with suitable dimensions and smaller pore/ ligament size is highly desirable.

The alloy $Cu_{30}Mn_{70}$ was synthesized from pure Cu (99.99 wt%) and Mn (99.99 wt%) at 1300 °C in a high-frequency induction furnace. The Cu/Mn alloy, sealed in quartz tube under vacuum, was heated at 900 °C for 72 h and then

Fig. 2.1 SEM images of CuNPore synthesized by dealloying of $Cu_{30}Mn_{70}$ in 1 _M (NH₄)₂SO₄ and 0.01 _M MnSO₄ at 25 °C from rolled alloys with thicknesses of **a** 200 µm (cat-1), **b** 250 µm (cat-2), **c** 300 µm (cat-3)

Fig. 2.2 SEM images of CuNPore synthesized by dealloying of $Cu_{30}Mn_{70}$ (200 µm thickness) in 1 _M (NH₄)₂SO₄ and 0.01 _M MnSO₄ at **a** 0 °C (cat-4), **b** 10 °C (cat-5), **c** 25 °C (cat-1), **d** 40 °C (cat-6), **e** 60 °C (cat-7)

quenched into water (Scheme 2.1). The resulting alloy was sectioned using a diamond saw into samples approximately 1 mm in thickness. The samples were rolled into films of thicknesses of about 200, 250, and 300 μ m for dealloying.

Various CuNPores with versatile ligament scales and morphologies were synthesized by chemical dealloying with two kinds of electrolytes following Hayes' method [32] 5×5 mm pieces of the three thickness of rolled Cu₃₀Mn₇₀ were placed directly in pre-prepared electrolyte 1 _M (NH₄)₂SO₄ and 0.01 _M MnSO₄ at room temperature for 6 days. SEM imaging (Fig. 2.1) showed that ligament and nanopore channels were formed uniformly. The average ligament diameters were estimated as ≈ 40 nm for the 200 µm thickness alloy (cat-1), ≈ 35 nm for both the 250 and 300 µm thickness alloys (cat-2 and cat-3). EDX analysis showed that the residual Mn composition of CuNPores remains approximately constant at 1–2 at. %. In the same electrolytes, the rolled Cu₃₀Mn₇₀ alloy with a thickness of ≈ 200 µm was treated at different temperatures, producing CuNPores with a tunable diameter; ≈ 25 nm at 0 °C (cat-4), ≈ 30 nm at 10 °C (cat-5), ≈ 50 nm at 40 °C (cat-6), ≈ 70 nm at 60 °C (cat-7) (Fig. 2.2). EDX analysis showed that the residual Mn composition of the 0 °C dealloyed sample (cat-4) is ≈ 4 at. %, and

Fig. 2.3 SEM images of CuNPore fabricated by dealloying of $Cu_{30}Mn_{70}$ (200 µm thickness) in HCl solution with pH a 1.3 (cat-8), b 1.5 (cat-9), c 1.7 (cat-10)

Fig. 2.4 EDX spectra of **a** cat-4 made at 0 °C, $Cu_{96}Mn_4$, **b** cat-5 made at 10 °C, $Cu_{98}Mn_2$, **c** cat-1 made at 25 °C, $Cu_{98}Mn_2$, **d** cat-6 made at 40 °C, $Cu_{98}Mn_2$, **e** cat-7 made at 60 °C, $Cu_{98}Mn_2$

Ph—∹	== + Bn−N ₃	CuNPore (2 mo 	$\frac{N}{PC}, 2 h$ $\frac{Pn}{N N}$	Bn	
1;	a 2a		3a		
Entry	CuNpore catalyst	Ligament size, nm	Alloy thickness, μm	Electrolyte ^a	Yield 3a, ^b (%)
1	cat-1	40	200	A (25 °C)	99 ^c
2	cat-2	35	250	А	83
3	cat-3	35	300	А	40
4	cat-4	25	200	A (0 °C)	42
5	cat-5	35	200	A (10 °C)	51
6	cat-6	50	200	A (40 °C)	69
7	cat-7	70	200	A (60 °C)	48
8	cat-8	60	200	B (Ph 1.3)	85
9	cat-9	70	200	B (pH 1.5)	60
10	cat-10	-	200	B (pH 1.7)	69
11	Cu30Mn70	-	200	-	0
12	Cu ₂ O	-	-	-	3
13	CuO	-	-	-	3

 Table 2.1 Influence of ligament size and initial alloys on CuNPore catalytic activity in the CuAAC reaction

The reaction of phenylacetylene and benzyl azide was carried out in the presence of 2 mol% of Cu catalyst in toluene at 65 °C, for 2 h

 $^{a}\,$ A: 1 $_{M}$ (NH₄)₂SO₄ and 0.01 $_{M}$ MnSO₄; B: HCl solution

^b ¹ H NMR yield determined using CH_2Br_2 as an internal standard

c Isolated yield

remains approximately constant at ≈ 2 at. % for cat-5 to cat-7 (Fig. 2.4). Dealloying of the 200 µm thickness Cu₃₀Mn₇₀ alloy in HCl solution resulted in large ligaments with an average diameter of 60–70 nm (Fig. 2.3a, b, cat-8 and cat-9); in the reduced concentration, a non-nanopore structure was observed (Fig. 2.3c, cat-10). These results indicate that the dealloying conditions and the nature of initial alloys significantly influence the nanopore/ligament size and morphology in dealloyed CuNPores.

2.2.2 The Influence of CuNPore Structures on Catalytic Activity in the 1,3-dipolar Cycloaddition of Terminal Alkynes and Organic Azides

Various CuNPore materials were used as catalysts in the CuAAC reaction of phenylacetylene and benzyl azide in toluene at 65 °C for 2 h and the influence on catalytic activity of their ligament sizes and morphology was examined (Table 2.1). CuNPore catalysts synthesized from alloys of different thickness were also tested; cat-1 showed the highest activity (entries 1–3). Of the CuNPore
D 1	$+$ $D^2 N$	2 mol% cat-1		
R'—	τ R ² -Ν ₃	toluene (2 M), 65 °C	N N R2	
1	2		3	
Entry	R^1 1	$R^2 2$	Time, h	Yield, (%) ^a
1	2-pyridyl 1b	Bn 2a	4.5	3b, 96
2	3-thienyl 1c	Bn 2a	7	3c, 99
3	n-pentyl 1d	Bn 2a	6	3d, 99
4	c-hexyl 1e	Bn 2a	4	3e, 97
5	t-Bu 1f	Bn 2a	22	3f, 99
6	HOCH ₂ 1g	Bn 2a	19	3 g, 94
7 ^b	Ph 1a	Ph 2b	22	3 h, 95
8 ^b	Ph 1a	Cinnamyl 2c	19	3i, 99
9	Ph 1a	EtO ₂ CCH ₂ 2d	3	3j, 99
10	BnNHCH ₂ 1h	Ph 2b	3.5	3k, 95
11 ^c	TsNHCH ₂ 1i	Ph 2b	6	31, 98

D1

Table 2.2 CuNPore (cat-1)-catalyzed synthesis of various substituted triazoles

To a toluene (2 M) solution of cat-1 (2 mol%) was added alkyne 1 and azide 2 (1 equiv.). The mixture was stirred at 65 °C for the time shown in the table

^a Isolated yield

^b 2 equiv. azide were used

^c 1.2 equiv. azide were used

catalysts with controlled ligament sizes, cat-1, with a ligament size of about 40 nm, showed the greatest activity, affording the corresponding 1,2,3-triazoles in almost quantative yield (entry 1 vs. entries 4–7). It is well known that nanocatalysts of smaller sizes exhibit greater catalytic activity as a result of their high surface areas; however, these results were unprecedented. The specific surface area of cat-3 was measured by the BET method to be 14 m²/g, the turnover frequency (TOF) thus reached to 0.26 s^{-1} . It should be noticed that the reaction can be catalyzed by cat-3 at ambient temperature, although it required a longer reaction time (30 h). Cu-Mn alloy was totally inactive as a catalyst (entry 11). These results indicate that the tunable nanoporosity of CuNPore has a strong influence on catalytic activity in the click reaction, however the reason for this remains unresolved. Further examination of the dealloyed Cu catalysts synthesized in HCl solution (cat-8–10), revealed them to be less active (entries 8–10).

The catalytic activity of CuNPore (cat-1, 2 mol%) was further examined with various terminal alkynes and organic azides in toluene (2 M) at 65 °C (Table 2.2). Not only aromatic and heteroaromatic alkynes but also alkylalkynes were catalyzed regioselectively, affording 1,2,3-triazoles in excellent yields (entries 1–7). Various functional groups, such as alkene, ester, and protected amines were tolerated under the present heterogeneous conditions (entries 8–11). Under neat conditions, the catalytic loading can be decreased to 0.1 mol% without any significant influence on the reaction efficiency, and the TOF was increased up to 5.2 s⁻¹ (Eq. 2.2).

Fig. 2.6 SEM images of catl after tenth cycle. **a** Surface was not clear, **b** Crosssectional nanostructure remained well

The CuNPore (cat-1) catalyst was reused for multiple cycles without significant loss of catalytic activity in the reaction of **1a** and **2a**; the yield was still 98 % in the tenth cycle (Fig. 2.5). After simple filtration of the reaction mixture, the catalyst was washed with acetone and reused without further purification. The product was produced almost quantitatively in every cycle and the turnover number (TON) reached up to 8200. It is noteworthy that the nanostructure of the recovered catalyst did not show significant changes after the fifth cycle, however, the nanostructure on surface was not clear after the tenth cycle while the cross-sectional nanostructure survived well (Fig. 2.6).

The CuNPore catalyst system can be further applied to the three-component coupling of terminal alkynes, tosyl azide and dialkylamines to afford the corresponding aminoimines in high yields; this was previously reported for homogeneous Cu catalysts (Scheme 2.2) [47]. The reactions tolerated different functional groups and the catalyst could be reused at least once without loss of catalytic activity. In addition, the three-component coupling gave an excellent yield, whereas the reaction over the reported homogeneous Cu catalyst afforded a mixture of products. This result implies that CuNPore catalysts can be applied to a range of other transformations with high activity and selectivity.

$$R^{1} - = + T_{s}N_{3} + R^{2}{_{2}}NH \xrightarrow{\text{cat-1 (10 mol%)}}{\text{THF, 65 °C, 3 h}} R^{1} \prod_{NTs}^{NR^{2}} NR^{2}$$

$$R^{1} = Ph, R^{2} = i \cdot Pr \qquad 1st: 78\%; 2nd: 83\%$$

$$R^{1} = Ph, R^{2} = allyl \qquad 98\%$$

Scheme 2.2 Application of a CuNPore catalyst to the three-component coupling of terminal alkynes, tosyl azide, and dialkylamines

Fig. 2.7 XPS spectra of CuNPore catalyst (cat-1) surface before reaction and after reaction

2.2.3 Mechanistic Investigation

A number of homogeneous and heterogeneous examples proved that the click reaction was catalyzed by Cu(I) species [17–30]. X-ray photoelectron spectroscopy (XPS) spectra showed that the fresh CuNPore (cat-1) surface is composed of Cu(0), Cu(I), and Cu(II) species, while Cu(I) is a predominant component (Fig. 2.7) [41]. The Cu 2p peaks at 932 and 953 eV and Cu LMM Auger peak at 568 eV were assigned to Cu(0); peaks at 570, 932, and 953 eV were ascribed to Cu(I); several satellite peaks at 935 eV, 944 eV, 955 eV, and 963 eV correspond to Cu(II). The Cu(I) and Cu(II) ions exist as the native Cu₂O and CuO on CuNPore surface. The XPS spectra of cat-1, cat-4 to cat-7 having different ligament sizes did not show a significant difference on the surface component (Fig. 2.8). Moreover, after reaction, the satellite peaks of Cu(II) were almost disappeared while Cu(I)

Fig. 2.8 XPS spectra of CuNPore materials with different ligament sizes

Fig. 2.9 Leaching test of CuNPore for the reaction of phenylacetylene and benzylazide with cat-1 at 65 °C a in toluene, b in THF

remained predominantly (Fig. 2.7). This result suggested that some amounts of Cu metal might be leached to the organic solvent. Indeed, the inductively coupled plasma (ICP-AES) analysis showed that only 0.2 ppm of Cu was leached after reaction. To clarify whether the leached Cu metal catalyzes the present reaction or not, we monitored the reaction with or without catalyst. The reaction of **1a** and **2a** was carried out by using 5 mol% of cat-1 in toluene (0.5 M) at 65 °C. After 3 h, CuNPore catalyst was removed from the reaction vessel and **3a** was produced in

Fig. 2.10 SEM images of nanostructured copper acetylide a grass-like material on surface, b magnified surface, c cross sectional structure image

Fig. 2.11 XPS spectra of nanostructured copper acetylide

38 % ¹H NMR yield at this time (Fig. 2.9a, ■ symbols). The reaction mixture was continuously heated in the absence of the catalyst for 1 h, affording **3a** in 40 % yield, while the reaction was completely stopped in the next 1 h. The reaction restarted when cat-1 was put back into the mixture and finally gave **3a** in 99 % yield within 4 h. On the other hand, the control reaction without removal of catalyst was complete in 6 h, giving **3a** in 98 % yield (Fig. 2.9a, ● symbols). These results indicated that the leached copper was mainly Cu(II) species which was unable to catalyze the present click reaction, suggesting that the reaction is catalyzed by Cu(I) ions on the CuNPore surface. It should be noted that Cu₂O or CuO powder cannot catalyze this reaction without a base (Table 2.1, entries 12 and 13). These results further support that the nanoporous structure plays a crucial

role in the current catalysis. In contrast, when THF was used as solvent instead of toluene in the same control reaction, the reaction slowed down after removal the catalyst, but did not stop, implying that leached Cu^{I} species are stabilized by THF preventing easy oxidization to Cu^{II} (Fig. 2.9b). ICP analysis showed that only a negligible amounts of Cu were leached in the reaction in toluene and THF, 0.2 and 0.11 ppm, respectively.

Involvement of copper(I) acetylide species in the click reaction is well demonstrated by computational study and kinetic experiments [42-44]. During this study of the catalytic properties of CuNPore materials, we found that when cat-1 was treated with an excess amount of phenylacetylene in toluene without organic azides at room temperature, the CuNPore catalyst surface was turned to yellow after washing with acetone and dichloromethane. The SEM image showed that cat-1 surface was covered with a uniform grass-like material (Fig. 2.10). A binding energy peak appeared in between those of CuO and Cu₂O, and peaks of Cu(II) and Cu(0) were not detected in the XPS spectra, suggesting that the new peaks (marked by *) of the grass-like material surface should be assigned to Cu(I) species (Fig. 2.11). However, treatment of cat-1 with benzyl azide without phenylacetylene did not change the nanoporous structure of the catalyst. These results prompted us to examine the possibility of the nanostructured copper acetylide formation. When the grass-like material (Fig. 2.10) was treated with benzyl azide at 65 °C for 2 h, the grass-like material disappeared from the surface, and the nanoporous structure of cat-1 was recovered, and a very small amount of the corresponding triazole **3a** was detected by ¹H NMR and GC-MS. Moreover, the recovered CuNPore remained its high catalytic activity in the reaction of 1a and 2a (99 % of 3a), although the reaction with the grass-like material as a catalyst gave 58 % of **3a**. These results implied that the grass-like material should be the nanostructured *polymeric* copper acetylide which was less active than the copper acetylides with lower order aggregates generated in situ. The results were in good agreement with the previous DFT studies and experimental investigation reported by Fokin [42, 43] and Straub [44]. It is noteworthy that the nanostructured copper acetylide was very stable in air compared to the air-sensitive fresh CuNPore, suggesting that the polymeric copper acetylide can be used as a CuNPore metal storage to protect the nanoporosity of CuNPore from air.

2.3 Conclusion

we have developed an efficient approach for the fabrication of nanoporous copper materials with tunable nanoporosity, and demonstrated that CuNPore has an outstanding catalytic activity for the click chemistry without using any supports and bases. The catalytic activity was highly in dependence on the ligament (or pore) sizes of the CuNPore materials; ligament size about ~ 40 nm significantly enhanced the catalytic efficiency. Characterization of the catalyst surface, leaching experiments, and the formation of nanostructured copper acetylide revealed that the present click reaction is catalyzed by Cu(I) species on the CuNPore surface. The CuNPore catalyst exhibited a high reusability; it can be recycled for ten times without significant loss of activity. A wide range of alkynes and azides can be tolerated, giving the corresponding triazoles in excellent yields. The CuNPore catalyst system can also be applied to the three-component coupling of terminal alkynes, tosyl azide and dialkylamines to afford the corresponding aminoimines in high yields. Further studies on exploring new catalytic activities of CuNPore materials and extension of its utility to organic synthesis are in progress.

2.4 Experimental Section

2.4.1 General Information

¹H NMR and ¹³C NMR spectra were recorded on JEOL JMTC-270/54/SS (JAS-TEC, 300, 400, 500 MHz) spectrometers. ¹H NMR spectra are reported as follows: chemical shift in ppm (δ) relative to the chemical shift of CDCl₃ at 7.26 ppm, integration, multiplicities (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet and br = broadened), and coupling constants (Hz). 13 C NMR spectra reported in ppm (δ) relative to the central line of triplet for CDCl₃ at 77 ppm. IR spectra were recorded on JASCO FT/IR-4100 spectrometer; absorptions are reported in cm^{-1} . High-resolution mass spectra were obtained on a BRUKER APEXIII spectrometer. The XPS measurements were carried out using a VG ESCALAB 250 spectrometer (Thermo Fisher Scientific K.K.) employing monochromatic Al K X-ray radiation. The system was operated at 15 kV and 200 W. The base pressure of the analysis chamber was less than 10 to 8 Pa. SEM observation was carried out using HITACHI FE-SEM S4300 operated at an accelerating voltage of 10 kV. EDX analysis was carried out using EDAX Genesis with HITACHI FE-SEM S4300 operated at an accelerating voltage of 20 kV. ICP-MS analysis was performed with Shimadzu ICPS-7510. Column chromatography was carried out employing Slica gel 60 N (spherical, neutral, 40 \sim 100 μ m, KANTO Chemical Co.). Analytical thin-layer chromatography (TLC) was performed on 0.2 mm precoated plate Kieselgel 60 F₂₅₄ (Merk).

2.4.2 Materials

Anhydrous toluene (WAKO), Cu (99.99 %, MITSUWA), Mn (99.99 %, MITS-UWA), alkynes (1) and azides (2) were purchased and used as received. The structure of products were identified according to the reported literatures [48–52].

2.4.3 Calculation of TOF and TON

The surface area of CuNPore (cat-1, ligament size: ~40 nm) dealloying at room temperature was measured by BET method to be 14 m²/g, and the density of surface atoms for the energetically most stable Cu(111) surface is 1.77×10^{19} atoms/m². The reaction time was 2 h as shown in Table 2.1. Using these values the TOF was calculated to be 936 h⁻¹ (Table 2.1, entry 1). On the other hand, TON was calculated to be 8200 by the number of the Cu atoms on the catalyst surface with the number of the product **3a** as shown in Fig. 2.5 [6].

2.4.4 Fabrication of Cu₃₀Mn₇₀ Alloy

 $Cu_{30}Mn_{70}$ alloys was fabricated from pure Cu (99.99 wt%) and Mn (99.99 wt%) at 1300 °C by high-frequency induction furnace. The Cu–Mn alloy sealed in quartz tube under vacuum was heated at 900 °C for 72 h, and quenched into water [32]. The resulting alloy was sectioned, using a diamond saw, into samples approximately 1 mm thick. The alloy samples were rolled to about 200 μ m thickness.

2.4.5 Representative Fabrication Method of Nanoporous Copper (CuNPore, cat-1) Under Free Corrosion

The rolled alloy sample with 200 μ m thickness and 5×5 mm size was placed directly in 1 M (NH₄)₂SO₄ and 0.01 M MnSO₄ electrolytes at room temperature (25 °C) for 6 days [32]. All electrolytes were prepared with deionized (DI) water and reagent grade chemicals. After dealloying, the sample was removed from electrolytes and rinsed in DI water for few minutes. The sample was then washed with acetone and dried on vacuum. The dried CuNPore was stored in glove box (Fig. 2.12).

Under same electrolytes, cat-4 and cat-5 were fabricated at 0 and 10 °C for 6 days, respectively. Cat-6 and cat-7 were dealloyed at 40 and 60 °C for 4 days. Cat-2 and cat-3 were fabricated at 25 °C for 6 days.

Under HCl solution, cat-8, cat-9 and cat-10 were fabricated at 25 °C for 6 days.

2.4.6 Representative Procedure for the CuNPore (cat-1)-Catalyzed Click Reaction of Phenyl Acetylene (1a) and Benzyl Azide (2a) (Tables 2.1 and 2.2)

To a toluene (2 M, 0.5 mL) solution of CuNPore (cat-1, 2 mol%, 1.3 mg) was added phenyl acetylene **1a** (1 mmol, 112 μ L) and benzyl azide **2a** (1 mmol, 125 μ L) in a V-shape reactor vial. The reaction mixture was stirred at 65 °C for 2 h by using a bulky round-shape magnetic stirring bar. After consumption of **1a** and **2a**

2.4 Experimental Section

Fig. 2.12 CuNPore (cat-3)

(thickness)×5 mm×5 mm

size: 175 µm

Table 2.3 Dougsbility of out 1

Table 2.5 Reusability of cat-1											
Run	Fresh	1	2	3	4	5	6	7	8	9	10
3a, yield (%) ^a	99	99	99	99	99	99	99	98	99	99	98

^a ¹H NMR yield of **3a** determined using dibromomethane as an internal standard

which were monitored by TLC, the reaction mixture was cooled to room temperature. The mixture was filtered and washed with dichloromethane. The recovered CuNPore catalyst was washed with acetone and dried under vacuum. After concentration of the filtrate, the white solid was purified with a short silica gel chromatography, by using a 3:1 mixture of hexane and ethyl acetate as an eluent, to afford 233 mg of 1-benzyl-4-phenyl-1H-1,2,3-triazole **3a** (99 %) as a white solid.

2.4.7 Neat Reaction Procedure (Eq. 2.2)

The reaction of **1a** (14.2 mmol, 1.59 mL) and **2a** (14.2 mmol, 1.77 mL) performed using 0.1 mol% of cat-1 (0.9 mg) in the absence of solvent at 65 °C for 2 h. The work-up procedure is same to above. **3a** was obtained in 99 % yield (3.33 g)

2.4.8 Leaching Experiment (Fig. 2.9)

Figure 2.9a, leaching experiment for the reaction of 1a and 2a was carried out by using 5 mol% of cat-1 in toluene (0.5 M) at 65 °C. Cat-1 was removed from reaction vial after 3 h, giving 3a in 38 % NMR yield. The reaction was continuously heated for 1 h in the absence of cat-1, producing 3a in 40 %. After being heated another 1 h, the yield of 3a was not changed (40 %). Then, cat-1 was put

back into the reaction mixture and heated for 1 h gave 3a in 53 % yield. The reaction was finally complete within 3 h produced 3a in 99 % yield.

On the other hand, under same reaction conditions, the controlled reaction without removal of cat-1 was complete in 6 h, giving 3a in 98 % yield.

Figure 2.9b, leaching experiment for the reaction of **1a** and **2a** was carried out by using 5 mol% of cat-1 in THF (2 M) at 65 °C. Cat-1 was removed from reaction vial after 2.5 h, giving **3a** in 24 % NMR yield. The reaction was continuously heated for 1.5 h in the absence of cat-1, producing **3a** in 37 %. Then, cat-1 was put back into the reaction mixture and heated for 1 h gave **3a** in 66 % yield. The reaction was finally complete within 1 h produced **3a** in 99 % yield.

2.4.9 Reusability (Fig. 2.5)

The reaction of **1a** and **2a** for the recycle was carried out in toluene (0.5 M) at 65 °C for 6 h in the presence of cat-1 catalyst. After filtration, cat-1 was washed with acetone and dried on vacuum. The recovered cat-1 was continuously used for 10 times. The ¹H NMR yield of **3a** for every cycle is shown in Table 2.3.

2.4.10 Formation of Nanostructured Copper Acetylide (Figs. 2.10 and 2.11)

A toluene (2 M, 0.7 mL) solution of cat-1 (2 mol%, 1.7 mg) and phenyl acetylene **1a** (1.34 mmol, 150 μ L) was stirred for 3.5 h, the cat-1 surface was turned to yellow (Fig. 2.11). The SEM image showed that the surface was covered with a uniform grass-like material. When the grass-like material was treated with an excess amount of benzyl azide **2a**, the grass-like material was disappeared from SEM image. The nanoporous structure of cat-1 surface was recovered and a small amount of **3a** was observed from ¹H NMR and GC-MS. The grass-like material should be the nanostructured copper acetylide.

2.4.11 Analytical Data

1-Benzyl-4-phenyl-1*H*-1,2,3-triazole (3a) [48]

^{>h} N_{≦N}N∼Bn

White solid; ¹H NMR (500 MHz, CDCl₃) δ 7.77–7.75 (m, 2H), 7.64 (s, 1H), 7.36–7.30 (m, 5H), 7.28–7.22 (m, 3H), 5.49 (s, 2H); ¹³C NMR (125 MHz,

CDCl₃) δ 148.0, 134.6, 130.4, 128.9, 128.6, 128.5, 128.0, 127.8, 125.5, 119.5, 54.0; HRMS (ESI positive) calcd for C₁₅H₁₃N₃ [M + Na]⁺: 258.1002, found: 258.1001.

2-(1-Benzyl-1H-1,2,3-triazol-4-yl)pyridine (3b) [49]

White solid; ¹H NMR (300 MHz, CDCl₃) δ 8.45–8.42 (m, 1H), 8.10–8.06 (m, 1H), 7.97 (s, 1H), 7.68–7.63 (m, 1H), 7.27–7.21 (m, 5H), 7.12–7.07 (m, 1H), 5.48 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 150.0, 149.2, 148.5, 136.7, 134.2, 129.0, 128.6, 128.1, 122.7, 121.8, 120.0, 54.2; HRMS (ESI positive) calcd for C₁₄H₁₂N₄ [M + Na]⁺: 259.0954, found: 259.0954.

1-Benzyl-4-(thiophen-3-yl)-1*H*-1,2,3-triazole (3c) [49]

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.61-7.60 (m, 1H), 7.54 (s, 1H), 7.38-7.23 (m, 7H), 5.50 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 144.2, 134.6, 131.7, 129.0, 128.6, 127.9, 126.2, 125.6, 120.9, 119.2, 54.0; HRMS (ESI positive) calcd for C₁₃H₁₁N₃S [M + Na]⁺: 264.0566, found: 264.0566.

1-Benzyl-4-pentyl-1*H*-1,2,3-triazole (3d) [50]

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.24 (m, 3H), 7.17-7.15 (m, 2H), 7.12 (s, 1H), 5.39 (s, 2H), 2.59 (t, J = 7.6 Hz, 2H), 1.57-1.53 (m, 2H), 1.24-1.21 (m, 4H), 0.79 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.7, 134.9, 128.8, 128.4, 127.7, 120.3, 53.7, 31.2, 28.9, 25.5, 22.2, 13.8; HRMS (ESI positive) calcd for C₁₄H₁₉N₃ [M + Na]⁺: 252.1471, found: 252.1471.

1-Benzyl-4-cyclohexyl-1H-1,2,3-triazole (3e) [51]

White solid; ¹H NMR (300 MHz, CDCl₃) δ 7.31-7.20 (m, 3H), 7.18-7.15 (m, 2H), 7.09 (s, 1H), 5.40 (s, 2H), 2.69-2.62 (m 1H), 1.95-1.94 (m, 2H), 1.71-1.60 (m, 3H), 1.37-1.10 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 154.0, 134.9, 128.8, 128.3,

127.8, 119.0, 53.7, 35.1, 32.8, 25.9, 25.8; HRMS (ESI positive) calcd for $C_{15}H_{19}N_3$ [M + Na]⁺: 264.1471, found: 264.1471.

1-Benzyl-4-(tert-butyl)-1H-1,2,3-triazole (3f) [48]

White solid; ¹H NMR (500 MHz, CDCl₃) δ 7.35-7.32 (m, 3H), 7.26-7.24 (m, 2H), 7.19 (s, 1H), 5.46 (s, 1H), 1.31 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 157.9, 134.9, 128.8, 128.3, 127.8, 118.2, 53.6, 30.5, 30.1; HRMS (ESI positive) calcd for C₁₃H₁₇N₃ [M + Na]⁺: 238.1315, found: 238.1314.

(1-Benzyl-1H-1,2,3-triazol-4-yl)methanol (3g) [51]

White solid; ¹H NMR (300 MHz, CDCl₃) δ 7.40 (s, 1H), 7.28-7.26 (m, 3H), 7.19-7.16 (m, 2H), 5.39 (s, 2H), 4.64 (d, J = 5.1 Hz, 2H), 4.20 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 148.1, 134.4, 128.9, 128.5, 127.9, 121.7, 55.8, 53.9; HRMS (ESI positive) calcd for C₁₀H₁₁N₃O [M + Na]⁺: 212.0794, found: 212.0793.

1,4-Diphenyl-1*H*-1,2,3-triazole (3h) [48]

$$\stackrel{\mathsf{Ph}}{\stackrel{}{\underset{\mathsf{N}_{\tilde{N}}}{\sim}}} N_{\tilde{N}}$$

White solid; ¹H NMR (300 MHz, CDCl₃) δ 8.19 (s, 1H), 7.91 (d, J = 7.2 Hz, 2H), 7.79 (d, J = 7.8 Hz, 2H), 7.56-7.51 (m, 2H), 7.48-7.43 (m, 3H), 7.39-7.34 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 148.3, 137.0, 130.2, 129.7, 128.8, 128.7, 128.3, 125.8, 120.4, 117.5; HRMS (ESI positive) calcd for C₁₄H₁₁N₃ [M + Na]⁺: 244.0845, found: 244.0845.

1-Cinnamyl-4-phenyl-1*H*-1,2,3-triazole (3i) [52]

Light yellow solid; ¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, *J* = 7.5 Hz, 2H), 7.76 (s, 1H), 7.38-7.35 (m, 4H), 7.33-7.21 (m, 4H), 6.30 (d, *J* = 16.0 Hz, 1H), 6.31 (dt, *J* = 16.0 Hz, 6.5 Hz, 1H), 5.09-5.08 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 147.9, 135.3, 135.1, 130.5, 128.7, 128.6, 128.4, 128.0, 126.5, 125.5, 121.8, 119.3, 52.2; HRMS (ESI positive) calcd for C₁₇H₁₅N₃ [M + Na]⁺: 284.1158, found: 284.1158.

Ethyl 2-(4-phenyl-1H-1,2,3-triazol-1-yl)acetate (3j) [51]

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.82 (d, J = 7.2 Hz, 2H), 7.40 (t, J = 7.6 Hz, 2H), 7.32 (t, J = 7.6 Hz, 1H), 5.17 (s, 2H), 4.24 (q, J = 7.2 Hz, 2H), 1.27 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 148.0, 130.2, 128.7, 128.1, 125.6, 120.9, 62.3, 50.8, 13.9; HRMS (ESI positive) calcd for C₁₂H₁₃N₃O₂ [M + Na]⁺: 254.0900, found: 254.0900.

N-Benzyl-1-(1-phenyl-1*H*-1,2,3-triazol-4-yl)methanamine (3k)

Bn

Brown solid; ¹H NMR (300 MHz, CDCl₃) δ 7.66-7.62 (m, 2H), 7.46-7.39 (m, 2H), 7.37-7.16 (m, 6H), 3.93 (s, 2H), 3.81 (s, 2H), 1.86 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 147.4, 137.0, 129.5, 128.4, 128.3, 128.1, 126.9, 124.6, 120.3, 119.8, 53.2, 43.9; HRMS (ESI positive) calcd for C₁₆H₁₆N₄ [M + Na]⁺: 287.1267, found: 287.1266.

4-Methyl-N-((1-phenyl-1*H*-1,2,3-triazol-4-yl)methyl)benzenesulfonamide (3l)

Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.73 (d, J = 8.4 Hz, 2H), 7.62-7.59 (m, 2H), 7.50-7.47 (m, 2H), 7.44-7.40 (m, 1H), 7.26-7.23 (m, 2H), 5.72 (s, 1H), 4.35 (d, J = 6.0 Hz, 2H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.4, 143.6, 136.7, 129.7, 129.6, 128.8, 127.1, 124.8, 120.5, 120.3, 38.6, 21.3; HRMS (ESI positive) calcd for C₁₆H₁₆N₄O₂S [M + Na]⁺: 351.0886, found: 351.0885.

N,N-diisopropyl-2-phenyl-N'-tosylacetimidamide

White solid; ¹H NMR (300 MHz CDCl₃) δ 7.85 (d, J = 8.1 Hz, 2H), 7.32-7.20 (m, 7H), 4.42 (s, 2H), 4.06-3.97 (m, 1H), 3.51-3.42 (m, 1H), 2.40 (s, 3H), 1.41 (d, J = 6.6 Hz, 6H), 0.88 (d, J = 6.6 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 163.3, 141.4, 141.4, 134.8, 128.9, 128.6, 127.8, 126.6, 126.0, 50.3, 47.9, 38.5, 21.3, 19.6, 19.6; HRMS (ESI positive) calcd for C₂₁H₂₈N₂O₂S [M + Na]+: 395.1764, found: 395.1764.

2-cyclohexyl-N,N-diisopropyl-N'-tosylacetimidamide

White solid; ¹H NMR (300 MHz CDCl₃) δ 7.81 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H), 4.17-4.09 (m, 1H), 3.54-3.45 (m, 1H), 2.94 (d, J = 7.2 Hz, 2H), 2.40 (s, 3H), 1.77-1.67 (m, 6H), 1.31-1.28 (m, 7H), 1.23-1.21 (m, 10H); ¹³C NMR (75 MHz, CDCl₃) δ 164.7, 142.0, 141.1, 128.8, 125.9, 50.2, 47.8, 38.6, 37.1, 32.5, 26.4, 25.9, 21.3, 20.5, 20.1; HRMS (ESI positive) calcd for C₂₁H₃₄N₂O₂S [M + Na]+: 401.2233, found: 401.2233.

N,N-diallyl-2-phenyl-N'-tosylacetimidamide

Yellow liquid; ¹H NMR (300 MHz CDCl₃) δ 7.80 (d, J = 8.1 Hz, 2H), 7.30-7.14 (m, 7H), 5.85-5.72 (m, 1H), 5.54-5.41 (m, 1H), 5.14 (dd, J = 10.2 Hz, 17.1 Hz, 4H), 4.42 (s, 2H), 4.11 (d, J = 6.3 Hz, 2H), 3.77 (d, J = 4.8 Hz, 2H), 2.38 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 165.6, 141.7, 140.9, 133.9, 131.2, 131.1, 128.9, 128.8, 127.8, 126.7, 126.1, 118.4, 118.0, 50.6, 50.1, 36.5, 21.2; HRMS (ESI positive) calcd for C₂₁H₂₄N₂O₂S [M + Na]+: 391.1451, found: 391.1451.

2.4.12 ¹H and ¹³C NMR Spectra

References

- 1. Zielasek V, Jürgens B, Schulz C et al (2006) Gold catalysts: nanoporous gold foams. Angew Chem Int Ed 45:8241–8244
- Xu C, Su J, Xu X et al (2007) Low temperature CO oxidation over unsupported nanoporous gold. J Am Chem Soc 129:42–43
- 3. Xu C, Xu X, Su J et al (2007) Research on unsupported nanoporous gold catalyst for CO oxidation. J Catal 252:243–248
- Wittstock A, Neumann B, Schaefer A et al (2009) Nanoporous Au: an unsupported pure gold catalyst? J Phys Chem C 113:5593–5600
- Yin H, Zhou C, Xu C et al (2008) Aerobic oxidation of d-Glucose on support-free nanoporous gold. J Phys Chem C 112:9673–9678
- Wittstock A, Zielasek V, Biener J et al (2010) Nanoporous gold catalysts for selective gasphase oxidative coupling of methanol at low temperature. Science 327:319–322
- Zhang J, Liu P, Ma H et al (2007) Nanostructured porous gold for methanol electrooxidation. J Phys Chem C 111:10382–10388
- 8. Yu C, Jia F, Ai Z et al (2007) Direct oxidation of methanol on self-supported nanoporous gold film electrodes with high catalytic activity and stability. Chem Mater 19:6065–6067
- Zeis R, Lei T, Sieradzki K et al (2008) Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold. J Catal 253:132–138
- Biener J, Nyce GW, Hodge AM et al (2008) Nanoporous plasmonic metamaterials. Adv Mater 20:1211–1217
- 11. Bonroy K, Friedt JM, Frederix F et al (2004) A comparative plasmonic study of nanoporous and evaporated gold films. Anal Chem 76:4299–4306
- 12. Hieda M, Garcia R, Dixon M et al (2004) Ultrasensitive quartz crystal microbalance with porous gold electrodes. Appl Phys Lett 84:628–630
- Kramer D, Viswanath RN, Wiessmueller J et al (2004) Surface-stress induced macroscopic bending of nanoporous gold cantilevers. Nano Lett 4:793–796
- Biener J, Wittstock A, Zepeda-Ruiz LA et al (2009) Surface-chemistry-driven actuation in nanoporous gold. Nat Mater 8:47–51

- 15. Asao N, Ishikawa Y, Hatakeyama N et al (2010) Nanostructured materials as catalysts: nanoporous-gold-catalyzed oxidation of organosilanes with water. Angew Chem Int Ed 49:10093–10095
- Anaka S, Kaneko T, Asao N et al (2011) A nanostructured skeleton catalyst: Suzuki-coupling with a reusable and sustainable nanoporous metallic glass Pd-catalyst. Chem Commun 47:5985–5987
- 17. Rostovtsev VV, Green LG, Fokin VV et al (2002) Stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective "Ligation" of azides and terminal alkynes. Angew Chem Int Ed 41:2596–2599
- Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3062
- Tron GC, Pirali T, Billington RA et al (2008) Regioselective intramolecular dipolar cycloaddition of azides and unsymmetrical alkynes. Med Res Rev 28:278–308
- Melda M, Tornøe CW (2008) Cu-catalyzed azide-alkyne cycloaddition. Chem Rev 108:2952–3015
- Amblard F, Cho JH, Schinazi RF (2009) Cu(I)-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in nucleoside, nucleotide, and oligonucleotide chemistry. Chem Rev 109:4207–4220
- 22. Pachon LD, van Maarseven JH, Rothenberg G (2005) Click chemistry: copper clusters catalyse the cycloaddition of azides with terminal alkynes. Adv Synth Catal 347:811–815
- 23. Molteni G, Bianchi CL, Marinoni G et al (2006) Cu/Cu-oxide nanoparticles as catalyst in the "click" azide–alkyne cycloaddition. New J Chem 30:1137–1139
- 24. Lipshutz BH, Taft BR (2006) Terogeneous copper-in-charcoal-catalyzed click chemistry. Angew Chem Int Ed 45:8235–8238
- 25. Chassaing S, Kumarraja M, Sani Souna Sido A et al (2007) Click chemistry in cuI-zeolites: the Huisgen [3 + 2]-cycloaddition. Org Lett 9:883–886
- 26. Chassaing S, Sani Souna Sido A, Alix A et al (2008) "Click chemistry" in zeolites: copper(I) zeolites as new heterogeneous and ligand-free catalysts for the Huisgen [3+2] cycloaddition. Chem Eur J 14:6713–6721
- 27. Alix A, Chassaing S, Pale P et al (2008) 'Click chemistry' in cuI-zeolites: a convenient access to glycoconjugates. Tetrahedron 64:8922–8929
- Miao T, Wang L (2008) Regioselective synthesis of 1,2,3-triazoles by use of a silicasupported copper(I) catalyst. Synthesis 2008:363–368
- 29. Sharghi H, Khalifeh R, Mahdi Doroodmand M (2009) Copper nanoparticles on charcoal for multicomponent catalytic synthesis of 1,2,3-triazole derivatives from benzyl halides or alkyl halides, terminal alkynes and sodium azide in water as a "green" solvent. Adv Synth Catal 351:207–218
- Lee BS, Yi M, Chu SY et al (2010) Copper nitride nanoparticles supported on a superparamagnetic mesoporous microsphere for toxic-free click chemistry. Chem Commun 46:3935–3937
- Himo F, Lovell T, Hilgraf R et al (2005) Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J Am Chem Soc 127:210–216
- Hayes JR, Hodge AM, Biener J et al (2006) Monolithic nanoporous copper by dealloying Mn–Cu. J Mater Res 21:2611–2616
- 33. Qi Z, Zhao C, Wang X et al (2009) Formation and characterization of monolithic nanoporous copper by chemical dealloying of Al–Cu alloys. J Phys Chem C 113:6694–6698
- 34. Zhao C, Qi Z, Wang X et al (2009) Fabrication and characterization of monolithic nanoporous copper through chemical dealloying of Mg–Cu alloys. Corros Sci 51:2120–2125
- 35. Zhang Z, Wang Y, Qi Z et al (2009) Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying. J Phys Chem C 113:12629–12636
- 36. Chen LY, Yu JS, Fujita T et al (2009) Nanoporous copper with tunable nanoporosity for SERS applications. Adv Funct Mater 19:1221–1226

- 37. Mellor JR, Coville NJ, Sofianos AC et al (1997) Raney copper catalysts for the water-gas shift reaction: I. preparation, activity and stability. Appl Catal A 164:171–183
- Mellor JR, Coville NJ, Durbach SH et al (1998) Acid leached Raney copper catalysts for the water-gas shift reaction. Appl Catal A 171:273–281
- Liu WB, Zhao S, Li N et al (2010) Microstructure evolution of monolithic nanoporous copper from dual-phase Al 35 atom % Cu alloy. J Electrochem Soc 157:D666–D670
- 40. Liu WB, Zhang SC, Li N et al (2011) Influence of phase constituent and proportion in initial Al–Cu alloys on formation of monolithic nanoporous copper through chemical dealloying in an alkaline solution. Corros Sci 53:809–814
- Bae I, Han H, Chang S (2005) Highly efficient one-pot synthesis of N-sulfonylamidines by Cu-catalyzed three-component coupling of sulfonyl azide, alkyne, and amine. J Am Chem Soc 127:2038–2039
- 42. Moulder JF, Stickle WF, Sobol PE et al (1995) Handbook of X ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Physical Electronics, Minnesota
- 43. Ahlquist M, Fokin VV (2007) Enhanced reactivity of dinuclear copper(I) acetylides in dipolar cycloadditions. Organometallics 26:4389–4391
- 44. Hein JE, Fokin VV (2010) Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. Chem Soc Rev 39:1302–1315
- 45. Straub BF (2007) m-Acetylide and m-alkenylidene ligands in "click" triazole syntheses. Chem Commun 3868–3870
- 46. Zhou Y, Lecourt T, Micouin L (2010) Direct synthesis of 1,4-disubstituted-5-alumino-1,2,3triazoles: copper-catalyzed cycloaddition of organic azides and mixed aluminum acetylides. Angew Chem Int Ed 49:2607–2610
- 47. Wang D, Li N, Zhao M et al (2010) Solvent-free synthesis of 1,4-disubstituted 1,2,3-triazoles using a low amount of Cu(PPh₃)₂NO₃ complex. Green Chem 12:2120–2123
- 48. Fletcher JT, Keeney ME, Walz SE (2010) 1-allyl- and 1-benzyl-3-methyl-1,2,3-triazolium salts via tandem click transformations. Synthesis 19:3339–3345
- 49. Alonso F, Moglie Y, Radivoy G (2010) Unsupported copper nanoparticles in the 1,3-dipolar cycloaddition of terminal alkynes and azides. Eur J Org Chem 10:1875–1884
- 50. Kamijo S, Jin T, Huo Z et al (2004) Highly N₂-selective palladium-catalyzed arylation of 1,2,3-triazoles. J Org Chem 69:2386–2393
- Qian LH, Yan XQ, Fujita T et al (2007) Surface enhanced Raman scattering of nanoporous gold: smaller pore sizes stronger enhancements. Appl Phys Lett 90:153120–153123
- 52. Mohanty A, Garg N, Jin R (2010) A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties. Angew Chem Int Ed 49:4962–4966

Chapter 3 Nanoporous Gold Catalyst for Highly Selective Semihydrogenation of Alkynes: Remarkable Effect of Amine Additives

Abstract The unsupported nanoporous gold catalyst was firstly been reported for catalyzing the highly selective semihydrogenation of alkynes with organosilanes and water as the hydrogen source. Under the optimized reaction conditions, the present semihydrogenation of various terminal- and internal alkynes affords the corresponding alkenes in high chemical yields and excellent Z-selectivity without any over-reduction products. The use of DMF as solvent, which generates amines in situ, or pyridine as an additive is crucial to suppress the association of hydrogen atoms on AuNPore to form H₂ gas, which is unable to reduce alkynes on the unsupported gold catalysts. The AuNPore catalyst can be readily recovered and reused without any loss of catalytic activity. In addition, the SEM and TEM characterization of nanoporosity show that the AuNPore catalyst has a bicontinuous 3D structure and a high density of atomic steps and kinks on ligament surfaces, which should be one of the important origins of catalytic activity.

Keywords Nanoporous gold catalyst · Semihydrogenation of alkynes · Heterogeneous catalysis · Amine additives

3.1 Introduction

Catalysis using unsupported nanoporous gold (AuNPore) materials has attracted increasing attentions due to their fascinating green and sustainable catalytic properties [1–12]. The monolithic AuNPore can be fabricated by selective leaching of Ag from Au-Ag alloy [13, 14]. The outstanding merits of AuNPore, such as three-dimensional (3D) bicontinuous open pore network structure, high surface-to-volume ratio in comparison with bulk metals, distinguished electronic property, nontoxic nature, high recyclability and rather simple recovery, endow it to be an attractive candidate for upcoming heterogeneous catalyst. Moreover, in contrast to the supported gold nanoparticles (AuNPs) [15–19], thus, it is not surprising that the AuNPore free of supports should be an ideal catalyst system to

understand the intrinsic catalytic mechanism more easily and to extend the catalytic application widely by elimination of the support-effect problems and relaxation of aggregation [20].

Recent advances on catalytic reactions using AuNPore catalyst, such as gasphase CO oxidation and MeOH oxidation, liquid-phase oxidation of alcohols and glucose, as well as electrochemical oxidation of MeOH, demonstrated its excellent activity for selective oxidation reactions [1–12]. However, AuNPore catalyst has not been used for selective hydrogenation so far because of the limited ability of H₂ dissociation on gold as compared to its counterpart of the Pd-group metals [21, 22]. The HD formation studies using the TiO₂ supported AuNPs indicated that the small size of AuNPs and the gold/metal oxide interface play an important role for H₂ dissociation [23]; thus, it is not surprising that the hydrogenation reaction using the unsupported AuNPore as a catalyst is still unsuccessful.

Although some efficient homogenous catalytic systems are known for the semihydrogenation of alkynes [24-27], the development of a highly active and selective heterogeneous catalyst for these reactions would be very desirable from the viewpoint of organic synthesis and industrial interest. Heterogeneous catalysis based on Pd and Ni metals has been studied extensively to reduce alkynes to Z-alkenes with H_2 but suffer from E/Z isomerization and over-reduction of alkenes [28-37]. It was reported that the supported AuNPs catalysts are unique in the gasphase hydrogenation of alkynes with H₂, producing the corresponding alkenes with almost perfect selectivity due to the stronger adsorption of the alkynes as compared to the alkenes, but the activity was poor than PdNPs [38-42]. Most recently, our group reported that AuNPore was an effective catalyst for oxidation of organosilanes with water without any additives, producing organic silanols in high yields along with the vigorous liberation of H_2 gas (Scheme 3.1, path b) [43]. In the continuation of our interest in the development of new catalyst properties of nanoporous metals [7, 43-49], in this chapter, we report for the first time the highly selective semihydrogenation of alkynes catalyzed by the unsupported nanoporous gold using amines as an additive and organosilanes with water as a hydrogen source, affording the corresponding alkenes in excellent Z-selectivity without any over-reduced alkanes (Scheme 3.1, path a).

3.2 Results and Discussion

3.2.1 Nanoporosity Characterization of AuNPore

The unsupported AuNPore catalyst was prepared by dealloying of a homogeneous $Au_{30}Ag_{70}$ alloy with thickness of 40 µm in 70 wt % of nitric acid as an electrolyte at room temperature for 18 h [43]. The scanning electron microscopy (SEM) image in Fig. 3.1a shows that ligaments and nanopore channels are formed uniformly across the entire AuNPore, and the average ligament size is around 30 nm.

Scheme 3.1 AuNPore-catalyzed selective semihydrogenation of alkynes using hydrosilanes and H_2O as H_2 source

Fig. 3.1 a SEM image of AuNPore, b representative bright-field TEM image, c HRTEM image with stepped surface, and d HAADF-STEM image with stepped surface

Energy dispersive X-ray (EDX) study shows that only elements of Au and Ag are observed in the spectra and the residual Ag composition in AuNPore is only 2 % (Fig. 3.2a). Figure 3.1b shows the representative bright-field transmission electron microscopy (TEM) image of AuNPore, which clearly reveals the multiple layers of gold ligaments with convex and concave columnar curvatures, indicating that the nanoporous structure is a bicontinuous 3D network. Moreover, the ligament size is

Fig. 3.2 a EDX spectra of fresh AuNPore, Au₉₈Ag₂. b SEM image of after reaction

determined to be about 30 nm, which is consistent with the values estimated from the SEM image. Characterization of a convex region of ligament with high-resolution TEM (HRTEM) and scanning TEM (STEM) mode with high-angle annular dark-field (HAADF) detector shows a very high density of atomic steps and kinks at curved surfaces (Fig. 3.1c and d), implying the presence of a high concentration of low-coordination surface atoms. As the most recent observations on CO oxidation with AuNPore catalyst analyzed by in situ environmental HRTEM clearly indicated that the high density of low-coordination atoms on surface are the catalytically active sites [20], we predict that the obvious surface defects of AuNPore might be one of the most important origins of the catalytic activity in the present hydrogenation [50–52].

To gain more insight into the origin of catalytic property, the chemical state of AuNPore was measured by X-ray photoelectron spectroscopy (XPS). Analysis of AuNPore shows that AuNPore is composed of Au and Ag, while Au is predominant component. The difference of binding energy of Au 4f 7/2 between AuNPore (84.1 eV) and Au mica (84.0 eV) is very small, from which it can be concluded

$R_{(4-n)}SiH_n$	+ H ₂ O aceto	H ₂		
Entry	$R_{(4-n)}SiH_n$	AuNPore, mol%	t, h	$R_{(4-n)}Si(OH)_n$ yield, % ^a
1	Et ₃ SiH	1	2	94
2	Bu ₃ SiH	3	3	95
3	(i-Pr) ₃ SiH	3	5	88
4	PhMe ₂ SiH	1	1	100
5	Ph ₃ SiH	1	5	99
6	Ph ₂ SiH ₂	1	9	90
7	PhSiH ₃	5	6	80

 Table 3.1 AuNPore-catalyzed oxidation of organosilanes with water

 AuNPore (1~5 mol%)

Reaction conditions Organosilanes (1 mmol), H_2O (0.1 mL), and AuNPore (1 \sim 5 mol%) in 1.5 mL acetone at room temperature

^a Isolated yield

that the electronic states of AuNPore and Au mica are nearly the same (Fig. 3.3a vs. b). This suggests that AuNPore is metallic gold(0) that is playing as the catalytic species in the present reaction.

3.2.2 AuNPore-Catalyzed Oxidation of Organosilanes with Water

As aforementioned, recently, we observed that AuNPore has a remarkable catalytic activity in the oxidation of organosilanes with water, forming the corresponding silanols together with the evolution of hydrogen gas [43]. The reaction proceeds efficiently at room temperature without any formation of disiloxanes, and a wide range of organosilanes are compatible with the mild reaction systems. For examples, as shown in Table 3.1, not only aromatic silanes but also sterically less-hindered and hindered trialkylsilanes were oxidized effectively. The AuNPore catalyst was also applicable to the oxidations of tri-, di-, and mono-phenylsilanes, and the corresponding oxygenated products were obtained in high yields, respectively.

Taking the mechanism into consideration, we assumed that H_2 gas should be produced through the association of the in situ generated hydrogen atoms on AuNPore (Scheme 3.1, path b). If this is the case, we can imagine that the catalytic hydrogenation of the unsaturated multiple bonds such as alkynes by the hydrogen atoms on AuNPore should be achieved through the suppression of the quick association of these hydrogen atoms (Scheme 3.1, path a).
Ph	>		
1a	R₃SiH, H₂O, DMF 35 °C, 2 h	2a	
Entry	Catalyst	R ₃ SiH	2a yield/% ^a
1	AuNPore	$H_2 (1 \text{ atm})^b$	0
2	AuNPore	PhMe ₂ SiH	96 (96, ^c 98 ^d)
3	AuNPore	HMe ₂ SiOSiMe ₂ H	85
4	AuNPore	Et ₃ SiH	79
5	AuNPore	(n-Bu) ₃ SiH	47
6	AuNPore	(i-Pr) ₃ SiH	9
7	AuCl	PhMe ₂ SiH	18
8	Au ₃₀ Ag ₇₀ alloy	PhMe ₂ SiH	0
9	none	PhMe ₂ SiH	0
10 ^e	PdNPore	PhMe ₂ SiH	54
11 ^f	Pd/C	PhMe ₂ SiH	20

 Table 3.2 Screening of the reaction conditions using DMF as solvent catalyst (2 mol%)

Conditions To a DMF solution (0.5 mL) of AuNPore (2 mol%) were added **1a** (0.5 mmol), H₂O (1 mmol) and PhMe₂SiH (0.75 mmol). The resulting mixture was stirred at 35 °C for 2 h ^{a1} H NMR yield determined using anisole as an internal standard. For the yields lower than 96 %, some amounts of **1a** remained without formation of the over-reduced alkane

^b H₂ gas (1 atm) was used instead of PhMe₂SiH

^c The yield of second use

^d The yield of third use

^e PdNPore was prepared from PdAl alloy

^f The particle size was 5 nm

3.2.3 Optimization of AuNPore-Catalyzed Semihydrgenation of Phenyl Acetylene with Various Organosilanes and Water Using DMF as Solvent (Method A)

In the preliminary experiment, we found that the hydrogenation of phenylacetylene **1a** with H₂ in organic solvents by using AuNPore as a catalyst did not proceed at all (Table 3.2, entry 1). On the basis of the organosilane oxidation conditions and the new hypothesis, initially **1a** was treated with AuNPore catalyst, PhMe₂. SiH, and water in the presence of various organic solvents including acetone, CH₂Cl₂, THF (tetrahydrofuran), toluene, acetonitrile, and DMF (dimethylforamide). Surprisingly, only the use of DMF as solvent afforded the corresponding styrene **2a** in high yield (entry 2), and other solvents were almost ineffective, giving **2a** in less than 10 % yield. The AuNPore catalyst was recovered by simply picking the skeleton catalyst up and was reused for another two runs without any loss of catalytic activity (entry 2, in parenthesis). In addition, the SEM image in Fig. 3.2b showed that no significant changes of the nanoporous structure of AuNPore were observed after the third run. Further examination of other organosilanes using DMF as solvent showed that the steric hindrance of substituents on silicon exhibited a significant influence on reaction efficiency; for examples, 1,1,3,3-tetramethyldisiloxane was still active, giving **2a** in 85 % yield, whereas with the use of triethylsilane, tributylsilane and triisopropylsilane, respectively, the yield of **2a** was decreased dramatically (entries 3–6). The homogeneous gold catalyst such as AuCl did not show a good catalytic activity (entry 7). It was noted that the reaction with the AuNPore precursor, $Au_{30}Ag_{70}$ alloy as a catalyst, or without catalyst did not proceed (entries 8 and 9). Other catalysts such as nanoporous palladium (PdNPore) and Pd/C are also active, but the yields are much lower than that with AuNPore (entries 10 and 11).

3.2.4 Optimization of Amine Additives on AuNPore-Catalyzed Semihydrogenation (Method B)

The remarkable solvent effect in the present reaction led us to investigate the detailed role of DMF. During the reaction in DMF, we observed a foul odor from reaction mixture, which seems to be Me₃N or Me₂NH [53-55]. Consequently, Nmethyl-N-phenylforamide (Ph(Me)NCHO) was used instead of DMF under method A. The ¹H NMR and gas chromatography (GC-MS) analysis showed the formation of a mixture of N-methyl-N-phenylamine (PhNHMe) and N,N-dimethyl-N-phenylamine (PhNMe₂), which clearly indicated that amines generated in situ from DMF might play an important role in the semihydrogenation of alkynes. To gain further insight into the role of amines, we examined various amines (0.5 equiv) in the absence of DMF (Table 3.3). As expected, semihydrogenation of the dodec-1-yne **1b** with PhNHMe or PhNMe₂ as a base in acetonitrile at 80 °C gave the corresponding dedec-1-ene 2b in 72 % and 57 % yields, respectively (entries 1 and 2). It seems that amines with a lower basicity exhibit a higher activity; for examples, the use of Et_2NH gave a higher yield of **2b** than did Et_3N (entries 3 and 4). Finally, we found that when pyridine was used, the yield of **2b** was increased up to 84 % yield together with a small amount of the recovered 1b without formation of the over-reduced alkane (entry 5). Interestingly, we did not observe an obvious H₂ evolution in the presence of amines, but in the absence of amines, the reaction liberated a vigorous gas, giving 2b in a very poor yield (entry 6), indicating the use of amines effectively suppressed the formation of H₂ gas, resulting in a significantly increased reaction efficiency. To investigate the influence of the amount of pyridine on reaction efficiency, further optimization was performed by changing the equivalent of pyridine. Reducing the equivalents of pyridine from 0.5 to 0.2 resulted in a lower yield of **2b** from 84 to 78 % (entries 5 and 7). Increasing the equivalent of pyridine to 1.0 afforded 2b in 98 % yield, while the use of 1.5 equivalent of pyridine resulted in a decreased yield (entries 8 and 9). These results indicate that the use of proper amounts of pyridine efficiently suppress the association of hydrogen atoms, which are able to reduce alkyne to alkene in high yield. The catalytic loading can be reduced to 0.2 mol% without any influence on chemical yield and chemoselectivity of 2a, while the prolonged reaction time is needed (45 h, entry 10).

<i>n</i> -C ₁₀ H ₂₁ —==		n-G40H24		
1b	PhMe ₂ SiH, H ₂ O, <i>amine</i> CH ₃ CN, 80 °C, 10 h	2b		
Entry	Amine	Amount of amine, equiv	2b, % ^a	
1	PhNHMe	0.5	72	
2	PhNMe ₂	0.5	57	
3	Et ₂ NH	0.5	69	
4	Et ₃ N	0.5	11	
5	Pyridine	0.5	84	
6	None	0	7	
7	Pyridine	0.2	78	
8	Pyridine	1	98	
9	Pyridine	1.5	81	
10 ^b	Pyridine	1	98	

 Table 3.3 Screening of the amine additives for semihydrogenation of dodec-1-yne 1b

 AuNPore (2 mol%)

Reaction conditions To a CH₃CN solution (0.5 mL) of AuNPore (2 mol%) were added **1b** (0.5 mmol), H_2O (1 mmol), base (0.25 mmol), and PhMe₂SiH (0.75 mmol). The resulting mixture was stirred at 80 °C for 10 h

 a1 H NMR yield determined using anisole as an internal standard. For the yields lower than 84 %, some amounts of **1b** remained without formation of the over-reduced alkane

^b AuNPore (0.2 mol%) was used, and the reaction time was 45 h

3.2.5 Scope of Alkynes in AuNPore-Catalyzed Semihydrogenation

The catalytic activity of AuNPore was further examined with various terminal and internal alkynes under the aforementioned two methods: DMF as solvent (method A) and pyridine (0.5 equiv) in CH₃CN (method B), except where noted (Table 3.4). The efficiency and chemoselectivity toward alkynes over alkenes of the present semihydrogenation are highly dependent on the used methods (A or B) and substituents at the alkynyl terminus. Relative to the high yield and no overreduction for semihydrogenation of phenyl acetylene (1a) under method A, a 9 % of over-reduced alkane was obtained together with the desired styrene 2a under method B (entries 1 and 2). In contrast, the aliphatic terminal alkyne, dodec-1-yne (1b), gave a poor conversion with evolution of H_2 gas under the method A, while an excellent yield and chemoselectivity of the desired alkene 2b were observed under method B (80 °C) (entries 3 and 4). Among the other terminal alkynes tested, both methods A and B (55 °C) are suitable for chemoselective semihydrogenation of the *N*-tosyl-protected propargylamine **1c**, giving the corresponding alkene 2c in high yields without formation of any over-reducd product (entries 5 and 6). Although the biphenyl-substituted acetylene 1d reacted selectively under method B to give the desired alkene 2d in 90 % isolated yield, a high proportion of over-reduced alkane was observed with method A (entries 7 and 8).

p1 — p2	AuNPore (2 mol%)	$R^1 R^2$
R'R-	PhMe ₂ SiH, H ₂ O	НН
1	Method A: DMF as solvent Method B: pyridine, CH ₃ CN as solver	2 nt
Ph-===	"C ₁₀ H ₂₁	TsHN
1a	1b	1c
() 1d	PhPh 1e	Ph NHTs 1f
ⁿ C ₅ H ₁₁	Ph OBn 1h	ⁿ C ₄ H ₉ COCH ₃
ⁿ C ₆ H ₁₃ ———CO ₂ Me	PhCO ₂ Et	MeO ₂ CCO ₂ Me
1j	1k	11

Table 3.4	AuNPore-catalyzed	semihydrogenation	of various	alkynes
		AuNPore (2 mol%)		D 1

Entry	1	Method	T/°C	Time/	2	Conversion/	Yield/	Z/E ^b
1	1a	А	35	3	2a	100	(96)	
2	1a	В	35	6	2a 2a	100	(91) ^c	
3	1b	Ā	80	1	2b	<10	trace	
4	1b	В	80	8	2b	100	$(98)^{d}$	
5	1c	А	55	8	2c	100	93	
6	1c	В	55	8	2c	100	91	
7	1d	А	55	8	2d	100	$(67)^{\rm e}$	
8	1d	В	55	8	2d	100	90	
$9^{\rm f}$	1e	А	80	5	2e	100	(86)	100/0
10 ^{g,h}	1e	В	80	5	2e	100	85	100/0
$11^{\rm f}$	1f	А	55	5	2f	100	96	100/0
12 ^f	1f	В	55	32	2f	92	(92)	100/0
13 ^f	1g	А	80	8	2g	100	81	100/0
14 ^g	1g	В	80	3	2g	40	(40)	100/0
15 ^f	1h	А	80	2.5	2h	78	(78)	100/0
16 ^g	1h	В	80	12	2h	60	(60)	100/0
17	1i	А	80	3	2i	100	(93)	100/0
18	1i	В	80	3	2i	100	98	100/0

(continued)

_

Entry	1	Method	T/°C	Time/ h	2	Conversion/ %	Yield/ % ^a	Z/E ^b
19	1j	А	35	5	2j	100	95	100/0
20	1j	В	35	11	2j	100	(85)	100/0
21 ^g	1k	А	35	10	2k	100	90	>99/ 1
22 ^g 23 ^f	1k 11	B B ⁱ	35 25	15 1.5	2k 21	100 100	90 (80)	100/0 100/0

Table 3.4 (continued)

Conditions AuNPore (2 mol%), alkyne (0.5 mmol), PhMe₂SiH (0.75 mmol), H₂O (1 mmol); method A, DMF (1 M); method B, pyridine (0.25 mmol), CH₃CN (1 M)

^a Isolated yield. ¹H NMR yield determined using CH_2Br_2 as an internal standard is shown in parenthesis

 b E/Z ratio was determined by H NMR spectroscopy

^c Over-reduced product was obtained in 9 % yield

^d Pyridine (0.5 mmol) was used

e Over-reduced product was obtained in 33 % yield

 $^{\rm f}$ PhMe_2SiH (1.5 mmol) and H_2O (1.75 mmol) were used

^g PhMe₂SiH (1.0 mmol) and H₂O (1.25 mmol) were used

^h Pyridine (0.35 mmol) was used

ⁱ The reaction was carried out in the absence of pyridine

To further explore the stereoselectivity, we examined several simple and functionalized internal alkynes. 1,2-Dipheylethyne (1e) is a suitable substrate for the present hydrogenation, providing the exclusive (Z)-stilbene (2e) in 85 % yield under the method A or B at 80 °C, which was difficult to obtain in high Z-selectivity in the case of Pd catalysts (entries 9 and 10) [56]. Note that 1,2dialkyl-substituted internal alkyne such as dodec-6-yne did not participate in the present reaction conditions. During further investigation of other hydrosilanes having a strong hydride source, we found that the use of (EtO)₃SiH instead of PhMe₂SiH under both methods A and B gave almost quantitative yield of (Z)dodec-6-ene. However, there is a problem on reproducibility of the reaction, probably due to the formation of an unknown turbid emulsion mixture during the reaction; sometimes the yield of (Z)-dodec-6-ene decreased dramatically. Hydrogenations of the functionalized alkynes were also tested. The reactions of N-tosylprotected propargylamines bearing phenyl (1f) or *n*-pentyl (1g) substituent at the alkynyl terminus afforded the corresponding Z-alkenes 2f and 2g as a sole product in good to high yield under method A, respectively (entries 11 and 13), while the relatively lower conversion yields were observed under method B, especially for the reaction of 1g (entries 12 and 14). Benzyl ethers are known to undergo hydrogenolysis of benzyl group in the presence of H₂/Pd-C [57]. Our methods A and B show a remarkable selectivity at the alkyne moiety for reducing the benzylprotected propargyl alcohol 1h without cleavage of benzyl group, giving the desired Z-alkene 2h in 78 % and 60 % yields, respectively (entries 15 and 16). A remarkable chemoselectivity toward semihydrogenation of the alkyne group only has been observed with the alkyne **1i** bearing a ketone functional group on benzene ring, which produced the desired Z-alkene 2i in excellent yield without reduction of carbonyl group (entries 17 and 18) [52]. It is known that the hydrogenation of α , β -unsaturated alkynyl esters gave the high amounts of the thermodynamically more stable *E*-alkenes in the presence of Pd catalysts [58]. Our method exhibits excellent Z-selectivity with hydrogenation of α , β -unsaturated alkynyl esters. The reaction of 1j having *n*-hexyl group at the alkynyl terminus proceeded at 35 °C, giving the Z-alkene 2j in high yield with 100 % Z-selectivity under method A, while a lower conversion was observed under method B (entries 19 and 20). Methyl 3-phenylpropiolate (1k) was also successfully hydrogenated to afford the desired Z-alkene 2k in 90 % isolated yield under methods A and B (entries 21 and 22). It is noteworthy that the electron-poor alkyne dimethyl butynedioate (11) is highly reactive; the reaction proceeded in the absence of pyridine under method B to afford the desired dimethyl maleate (21) as a sole product in 80 % yield (entry 23), while 1 l was decomposed in the presence of pyridine in method B or under method A. For the examples with less than 90 % yield in Table 3.4, ¹H NMR and GC-MS of the crude reaction mixture showed no byproduct formation unless otherwise noted.

3.2.6 Control Experiments and Reaction Pathways

Several control experiments were conducted to understand the catalytic activity and selectivity that may support our proposed mechanism. As shown in Eq. (3.1), the reaction of a 1:1 mixture of diphenylethyne (**1e**) and *E*-stilbene under method B gave the corresponding *Z*-stilbene **2e** in 84 % yield along with the recovered *E*stilbene in quantitative yield without any formation of over-reduced alkane. This result indicates that the AuNPore catalyst has a preferential chemoselectivity for alkynes over alkenes, which is consistent with the reported theoretical and experimental results that Au leads to the exothermic absorption for alkynes and endothermic absorption for alkenes [38, 59].

To clarify whether the AuNPore catalyst leached to the reaction mixture or not, we carried out the following leaching experiments (Eq. 3.2). Phenyl acetylene **1a** was treated with PhMe₂SiH and water in the presence of AuNPore catalyst (2 mol%) in DMF at 35 °C (method A). After 40 min, a part of the supernatant was transferred to the other reaction vessel, and **2a** was produced in 72 % yield at

this time. The supernatant was continuously heated at 35 °C in the absence of the catalyst for 2 h, affording **2a** in 72 % yield. In contrast, the residual containing the AuNPore catalyst was completed in 2 h, giving **2a** in 90 % yield. These results clearly indicated that the present hydrogenation was catalyzed by the solid state of AuNPore without any leaching of gold.

To gain further insight into reaction details, we carried out the deuterium labeling experiments. The reaction of alkyne **1i** with PhMe₂SiH and D₂O in the presence of AuNPore catalyst in DMF gave a 4:1 mixture of the corresponding α -D- and β -D-incorporated Z-alkenes **2j-d**_{α} and **2j-d**_{β} in 80 % yield (Eq. 3.3). The hydrogen derived from PhMe₂SiH and deuterium derived from D₂O are preferentially attached to the β - and α -positions of α , β -unsaturated alkenyl ester to give **2j-d**_{α} as a major product and the hydrogen and deuterium exchanged alkene **2j-d**_{β} as a minor product. When PhMe₂SiD and D₂O were used, the corresponding **2j-d**_{α} - **d**_{β} having two D atoms at both α - and β -positions was obtained in 76 % yield (Eq. 3.4). These results clearly indicate that the hydrogen atoms on Z-alkene moiety in product **2** were derived from PhMe₂SiH and water, and the product proportion of **2j-d**_{α} and **2j-d**_{β} suggests the two reaction pathways; ionic and atomic hydrogenations (vide infra) [60, 61].

To investigate the interaction between pyridine and AuNPore, the pyridinetreated AuNPore was characterized using XPS analysis as shown in Fig. 3.3b versus c. The XPS of Au 4f 7/2 is slightly shifted to the higher binding energy as compared to the fresh AuNPore. However, this difference is very small, indicating

Fig. 3.4 FTIR spectra of **a** pyridine and water in acetonitrile, **b** water in acetonitrile, **c** pyridine in acetonitrile

that the interaction between pyridine and AuNPore surface is weak. Furthermore, we found that, when pyridine was treated with water in acetonitrile solution, a strong broad band appeared at 3594 cm⁻¹ in the FTIR spectrum which is assigned as stretching vibration of -OH in the pyridine-water complex [62]. However, the water in acetonitrile and pyridine in acetonitrile did not show clear vibration in the same region (Fig. 3.4). These results suggest the strong interaction between pyridine and water through hydrogen bond formation.

On the basis of these experimental observations, two reaction pathways, ionic and atomic hydrogenations, are conceivable for the present catalytic semihydrogenation as shown in Scheme 3.2. Initially, PhMe₂SiH and H₂O get absorbed onto the low-coordinated Au atoms on the stepped surface of AuNPore catalyst. In path a, the hydrogen bond forms between pyridine and water followed by the reaction of hydrosilane and water to give [AuNPore-H]⁻ and [HPy]⁺ species. Next, the adsorbed alkyne reacts subsequently with [AuNPore-H]⁻ and [HPy]⁺ to form the corresponding Z-alkene. In contrast, as shown in path b, the reaction of the adsorbed hydrosilane and H₂O forms hydrogen atom on AuNPore surface. In the absence of amines, the hydrogen atom may rapidly associated together to liberate H₂ gas, which inhibits the hydrogenation of alkyne to afford low yield of the desired alkene. Note that in the case of method A, the formed hydrogen atoms may reduce DMF to produce some amounts of Me₂NH or/and Me₃N, which act as

Scheme 3.2 Reaction pathways for the AuNPore-catalyzed semihydrogenation of alkynes

amine base. We conclude that the ionic hydrogenation (path a) is the predominant pathway in the present semihydrogenation, which suppresses H_2 formation sufficiently in the presence of amines. In addition, the lower adsorption ability of the alkene on gold catalyst as compared to the alkyne inhibits its further hydrogenation to the alkane, leading to high chemoselectivity.

3.3 Conclusion

In summary, we have shown for the first time that the unsuppored AuNPore catalyst is an efficient heterogeneous catalyst for the selective semihydrogenation of alkynes, whereas the unsuported gold was known to be inactive for hydrogenation so far. The labeling experiments clearly indicated that organosilanes and water were the hydrogen source. The use of DMF as a solvent that generates amines in situ, or pyridine as an additive, is required to suppress the formation of H_2 , leading to the efficient semihydrogenation. A wide range of terminal and internal alkynes can be reduced to the Z-alkenes in high yields with excellent chemo- and stereoselectivity. Moreover, the AuNPore catalyst is easily recoverable and can be reused several times without leaching and loss of activity. TEM characterization revealed that the AuNPore catalyst has a bicontinuous 3D structure and atomic steps and kinks on ligament surfaces with a high concentration of low-coordinated Au atoms, which should be one of the important origins of catalytic activity. Further extension of this hydrogenation method to other unsaturated multiple bonds is in progress.

3.4 Experimental Section

3.4.1 General Information

GC-MS analysis was performed on an Agilent 6890 N GC interfaced to an Agilent 5973 mass-selective detector (30×0.25 mm capillary column, HP-5MS). Scanning electron microscope (SEM) observation was carried out using a JEOL JSM-6500F instrument operated at an accelerating voltage of 30 kV. ¹H NMR and ¹³C NMR spectra were recorded on JEOL JNM AL 400 (400 MHz) spectrometers. ¹H NMR spectra are reported as follows: chemical shift in ppm (δ) relative to the chemical shift of CDCl₃ at 7.26 ppm, integration, multiplicities (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet and br = broadened), and coupling constants (Hz). ¹³C NMR spectra were recorded on JEOL JNM AL 400 (100.5 MHz) spectrometers with complete proton decoupling, and chemical shift reported in ppm (δ) relative to the central line of triplet for CDCl₃ at 77 ppm. IR spectra were recorded on JASCO FT/IR-4100 spectrometer; absorptions are reported in cm⁻¹. High-resolution mass spectra were obtained on a BRUKER APEXIII spectrometer and JEOL JMS-700 MStation operator. Column chromatography was carried out employing silica gel 60 N (spherical, neutral, $40 \sim 100 \ \mu m$, KANTO Chemical Co.). Analytical thin-layer chromatography (TLC) was performed on 0.2 mm precoated plate Kieselgel 60 F254 (Merck).

3.4.2 Materials

The hydrosilanes and alkynes are commercially available, which are used as received. Au (99.99 %) and Ag (99.99 %) are purchased from Tanaka Kikinzoku Hanbai K.K. and Mitsuwa's Pure Chemicals, respectively. Alkyne 1f was prepared following the reported literature [63, 64]. 2a was identified by ¹H NMR comparing with the commercially available styrene. Structures of 2b [65], 2c [66], 2d [67], 2e [68], 2f [69], 2h [70], 2i [71], 2k [72], and 2l [73] were determined by comparing with the reported authentic compounds. Products 2g and 2j were confirmed by ¹H, ¹³C NMR and HRMS.

3.4.3 Fabrication of AuNPore Catalyst

Au (99.99 %) and Ag (99.99 %) were melted with electric arc-melting furnace under Ar atmosphere to form Au/Ag alloy (30:70, in at. %), which was rolled down to thickness of 0.04 mm. The resulting foil was annealed at 850 °C for 20 h. The foil was cut into small pieces (5×2 mm square). Treatment of the resulting chips (67.1 mg) with 70 wt% nitric acid (3.77 mL) for 18 h at room temperature in

a shaking apparatus resulted in the formation of the nanoporous structure by selective leaching of silver. The material was washed with a saturated aqueous solution of NaHCO₃, pure water, and acetone, successively. Drying of the material under reduced pressure gave the nanoporous gold (30.2 mg), and its composition was found to be $Au_{98}Ag_2$ from EDX analysis.

3.4.4 Representative Procedure for the AuNPore-Catalyzed Semihydrogenation of 1j (Table 3.4, Entry 19): Method A

To a DMF solution (1 M, 0.5 mL) of AuNPore (2 mol%, 2.0 mg) were added **1j** (84 mg, 0.5 mmol), H₂O (18 μ l, 1.0 mmol) and PhMe₂SiH (116 μ l, 0.75 mmol) subsequently at room temperature. The reaction mixture was stirred at 35 °C for 5 hours and was monitored by GC-MS analysis. The AuNPore catalyst was recovered by filtration, and the solution was extracted with diethyl ether and washed by water. The recovered AuNPore catalyst was washed with acetone and dried under vacuum. After concentration, the residue was purified with a silica gel chromatography to afford **2j** (81 mg, 95 %) as a yellow solid.

3.4.5 Representative Procedure for the AuNPore-Catalyzed Semihydrogenation of 1d (Table 3.4, Entry 8): Method B

To a MeCN solution (1 M, 0.5 mL) of AuNPore (2 mol%, 2.0 mg) were added **1d** (89 mg, 0.5 mmol), H₂O (18 μ l, 1.0 mmol), pyridine (20 μ l, 0.25 mmol) and PhMe₂SiH (116 μ l, 0.75 mmol). The reaction mixture was stirred at 55 °C for 8 hours. The reaction was monitored by GC-MS analysis. The mixture was filtered and washed by diethyl ether. The recovered AuNPore catalyst was washed with acetone and dried under vacuum. After concentration of the filtrate, the residue was purified with silica gel chromatography, to afford **2d** (81 mg, 90 %) as a white solid.

3.4.6 Leaching Experiment

Phenyl acetylene **1a** was treated with PhMe₂SiH and water in the presence of AuNPore catalyst (2 mol%) in DMF at 35 °C (method A). After 40 min, a part of supernatant was transferred to the other reaction vessel and **2a** was produced in 72 % ¹H NMR yield at this time. The supernatant was continuously heated at 35

°C in the absence of the catalyst for 2 h, affording **2a** in 72 % ¹H NMR yield. In contrast, the residual containing the AuNPore catalyst was completed in 2 h, giving **2a** in 90 % ¹H NMR yield.

3.4.7 Synthesis of Starting Materials

3.4.7.1 Synthesis of PhMe₂SiD

To a Et_2O solution (0.22 M) of $LiAlD_4$ (3 mmol) under argon atmosphere were added PhMe₂SiCl (9 mmol). The reaction mixture was heated to reflux for 10 hours. Aqueous sodium hydroxide (10 ml, 10 wt %) was added to the reaction mixture, and extracted by Et_2O and dried over anhydrous sodium sulfate. Filtration and evaporation of the solvent gave the crude product which was purified by silica gel column chromatography to give PhMe₂SiD in 65 % yield.

3.4.7.2 4-Methyl-N-(3-phenylprop-2-yn-1-yl)benzenesulfonamide (1f) [63, 64]

CBr₄ (1.2 equiv) was added in one portion to a solution of 3-phenylprop-2-yn-1-ol (1 equiv) in dry CH₂Cl₂ (0.6 M) at 0 °C, and the reaction was stirred at 0 °C. After 10 min, a solution of Ph₃P (1.5 equiv) in CH₂Cl₂ (1.5 M) was added via cannula and stirred at 0 °C for 10 min. Then the reaction mixture was allowed to warm at rt and further stirred for 2 h. After reaction completed, the mixture was evaporated in vacuo. The residue was purified by silica gel column chromatography to give (3-bromoprop-1-yn-1-yl)benzene, 82 % yield.

To a 50 mL round-bottom flask was added 2.07 g (15 mmol) of K_2CO_3 , TsNHBOC (*N*-(2,2-Dimethyl-propionyl)-4-methyl-benzenesulfonamide) 2.71 g (10 mmol) and DMF (12 mL). The solution was stirred at room temperature for 4 h. Then (3-bromoprop-1-yn-1-yl)benzene 1.95 g (10 mmol) was added in one portion. The reaction was monitored by TLC, after completion, Et_2O (100 mL) was added. The solution was washed with 3 times of 15 mL portions of water. Then the solvent was removed at reduced pressure, leaving a yellow solid. The crude was dissolved in CH_2Cl_2 (8 mL), then CF_3COOH (3 mL) was added. The solution was stirred for overnight. The solvent was evaporated and the residue was purified by silica gel column chromatography to give 4-methyl-*N*-(3-phenylprop-2-yn- 1-yl) benzenesulfonamide (**1f**) 2.6 g, 90 % yield.

3.4.7.3 4-Methyl-N-(oct-2-yn-1-yl)benzenesulfonamide (1g)

4-Methyl-*N*-(oct-2-yn-1-yl)benzenesulfonamide (**1g**) was prepared according to the method of **1h** from 2.0 g (10 mmol) of 1-bromo-oct-2-yne. Yield: 2.0 g (71 %) of **1g** after purification of the crude product by silica gel column chromatography.

3.4.7.4 1-(4-(Hex-1-yn-1-yl)phenyl)ethanone (1i)

A mixture of 1-(4-bromophenyl)ethanone (995 mg, 10 mmol), $Pd(PPh_3)_2Cl_2$ (140 mg, 0.2 mmol), CuI (19 mg, 0.1 mmol) and hex-1-yne (2.5 g, 30 mmol) in triethylamine (40 mL) was heated to reflux for 4 h. After then, the mixture was cooled to room temperature. Filtration through celite and evaporation of the solvent gave the crude product which was purified by silica gel column chromatography to give 1-(4-(hex-1-yn-1-yl)phenyl) ethanone (1i) 1.7 g, 85 % yield.

3.4.8 Analytical Data of (1 and 2)

3.4.8.1 PhMe₂SiD

Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.26–7.54 (m, 2H), 7.38–7.36 (m, 3H), 0.35 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 137.3, 133.9, 129.1, 127.8, -3.8

3.4.8.2 N-Allyl-4-methylbenzenesulfonamide (2c)

TsHN

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 5.70–5.62 (m, 1H), 5.13–4.96 (m, 3H), 3.53–3.49 (m, 2H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 136.7, 132.7, 129.5, 126.9, 117.4, 45.6, 21.4; HRMS (ESI positive) calcd for C₁₀H₁₃NO₂S [M + Na]+: 234.0559, found: 234.0559.

3.4.8.3 4-Phenylstyrene (2d)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.67–7.62 (m, 4H), 7.55–7.47 (m, 4H), 7.42–7.38 (m, 1H), 6.82 (dd, *J* = 17.6 Hz, 11.2 Hz, 1H), 5.86 (d, *J* = 17.6 Hz, 1H), 5.34 (d, *J* = 11.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 140.5, 140.4, 136.4, 136.2, 128.6, 127.2, 127.1, 126.8, 126.5, 113.8; HRMS (APCI positive) calcd for C₁₄H₁₂ [M + H]⁺: 181.1012, found: 181.1011.

3.4.8.4 (Z)-1,2-Diphenylethene (2e)

Ph Ph

Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.28–7.18 (m, 10H), 6.61 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 137.1, 130.1, 128.7, 128.1, 126.9

3.4.8.5 4-Methyl-N-(3-phenylprop-2-yn-1-yl)benzenesulfonamide (1f)

Light yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 7.2 Hz, 2H), 7.29–7.12 (m, 5H), 7.11 (d, J = 8.4 Hz, 2H), 5.02 (t, J = 6.0 Hz, 1H), 4.06 (d, J = 6.0 Hz, 2H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 136.7, 131.4, 129.5, 128.3, 127.9, 127.3, 121.9, 84.5, 83.2, 33.7, 21.4.

3.4.8.6 (Z)-4-Methyl-N-(3-phenylallyl)benzenesulfonamide (2f)

Ph____NHTs

Colorless viscous liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 8.0 Hz, 2H), 7.28–7.24 (m, 5H), 7.08 (d, J = 8.0 Hz, 2H), 6.51 (d, J = 11.6 Hz, 1H), 5.58–5.52 (m, 1H), 4.63 (bs, 1H), 3.84 (dd, J = 7.2, 6.4 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.4, 136.6, 135.6, 132.5, 129.6, 128.4, 128.2, 127.3, 127.0, 126.3, 41.3, 21.5; HRMS (ESI positive) calcd for C₁₆H₁₇NO₂S [M + Na]⁺: 310.0872, found: 310.0872.

3.4.8.7 4-Methyl-N-(oct-2-yn-1-yl)benzenesulfonamide (1g)

Yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 4.96 (s, 1H), 3.75 (d, J = 6.0 Hz, 2H), 2.37 (s, 3H), 1.87 (t, J = 6.8 Hz, 2H), 1.25–1.14 (m, 6H), 0.81 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 136.7, 129.3, 127.2, 85.3, 73.9, 33.3, 30.8, 27.9, 22.0, 21.4, 18.3, 13.8.

3.4.8.8 (Z)-4-Methyl-N-(oct-2-en-1-yl)benzenesulfonamide (2g)

Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 5.45–5.39 (m, 1H), 5.23–5.17 (m, 1H), 4.45 (s, 1H), 3.52 (t, *J* = 6.8 Hz, 2H), 2.37 (s, 3H), 1.84 (q, *J* = 6.8 Hz, 2H), 1.24–1.11 (m, 6H), 0.80 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 136.7, 134.6, 129.5, 127.0, 123.5, 40.1, 31.3, 28.9, 27.2, 22.4, 21.5, 14.0; HRMS (ESI positive) calcd for C₁₅H₂₃NO₂S [M + Na]⁺: 304.1342, found: 304.1341.

3.4.8.9 1-(4-(Hex-1-yn-1-yl)phenyl)ethanone (1i)

Brown liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.0 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 2.57 (s, 3H), 2.42 (t, J = 7.2 Hz, 2H), 1.61–1.44 (m, 4H), 0.94 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 135.4, 131.5, 129.0, 128.0, 94.2, 80.0, 30.6, 26.5, 22.0, 19.2, 13.6.

3.4.8.10 (Z)-1-(4-(hex-1-en-1-yl)phenyl)ethanone (2i)

Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 6.42 (d, J = 12.0 Hz, 1H), 5.80–5.74 (m, 1H), 2.58 (s, 3H), 2.36–2.30 (m, 2H), 1.48–1.30 (m, 4H), 0.89 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 142.5, 135.4, 134.8, 128.6, 128.1, 127.7, 31.9, 28.4, 26.5, 22.3, 13.9; HRMS (ESI positive) calcd for C₁₄H₁₈O [M + Na]⁺: 225.1250, found: 225.1249.

3.4.8.11 (Z)-Methyl non-2-enoate (2j)

Yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 6.23–6.17 (m, 1H), 5.74 (d, J = 11.6 Hz, 1H), 3.68 (s, 3H), 2.65–2.60 (m, 2H), 1.43–1.38 (m, 2H), 1.33–1.27 (m,

6H), 0.86 (t, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 150.8, 118.9, 50.8, 31.6, 29.0, 28.9, 28.9, 22.5, 14.0; HRMS (ESI positive) calcd for C₁₀H₁₈O₂ [M + Na]⁺: 193.1199, found: 193.1199.

3.4.8.12 (Z)-Ethyl 3-phenylacrylate (2k)

Ph__CO₂Et

Yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.55–7.53 (m, 2H), 7.33–7.27 (m, 3H), 6.90 (d, *J* = 12.4 Hz, 1H), 5.91 (d, *J* = 12.4 Hz, 1H), 4.13 (q, *J* = 7.2 Hz, 2H), 1.20 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 142.8, 134.7, 129.5, 128.8, 127.8, 119.7, 60.2, 14.0; HRMS (ESI positive) calcd for C₁₀H₁₂O₂ [M + Na]⁺: 199.0730, found: 199.0729.

3.4.9 ¹H and ¹³C NMR Spectra

References

- 1. Zielasek V, Jürgens B, Schulz C et al (2006) Gold catalysts: nanoporous gold foams. Angew Chem Int Ed 45:8241–8244
- Xu C, Su J, Xu X et al (2007) Low temperature CO oxidation over unsupported nanoporous gold. J Am Chem Soc 129:42–43
- Xu C, Xu X, Su J et al (2007) Research on unsupported nanoporous gold catalyst for CO oxidation. J Catal 252:243–248
- Wittstock A, Neumann B, Schaefer A et al (2009) Nanoporous Au: an unsupported pure gold catalyst? J Phys Chem C 113:5593–5600
- 5. Wang LC, Jin HJ, Widmann D et al (2011) Dynamic studies of CO oxidation on nanoporous Au using a TAP reactor. J Catal 278:219–227
- Wittstock A, Zielasek V, Biener J et al (2010) Nanoporous gold catalysts for selective gasphase oxidative coupling of methanol at low temperature. Science 327:319–322
- 7. Asao N, Hatakeyama N, Menggenbateer et al (2012) Aerobic oxidation of alcohols in the liquid phase with nanoporous gold catalysts. Chem Commun 48:4540–4542
- Yin H, Zhou C, Xu C, Liu P et al (2008) Aerobic oxidation of d-Glucose on Support-free nanoporous gold. J Phys Chem C 112:9673–9678
- 9. Kosuda KM, Wittstock A, Friend CM et al (2012) Oxygen-mediated coupling of alcohols over nanoporous gold catalysts at ambient pressures. Angew Chem Int Ed 51:1698–1701
- Zhang J, Liu P, Ma H et al (2007) Nanostructured porous gold for methanol electrooxidation. J Phys Chem C 111:10382–10388
- 11. Yu C, Jia F, Ai Z et al (2007) Direct oxidation of methanol on self-supported nanoporous gold film electrodes with high catalytic activity and stability. Chem Mater 19:6065–6067
- 12. Zeis R, Lei T, Sieradzki K et al (2008) Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold. J Catal 253:132–138
- Forty AJ (1979) Corrosion micromorphology of noble metal alloys and depletion gilding. Nature 282:597–598

- 14. Erlebacher J, Aziz MJ, Karma A et al (2001) Evolution of nanoporosity in dealloying. Nature 410:450–453
- 15. Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Che Int Ed 45:7896-7936
- 16. Pina CD, Falletta E, Prati L et al (2008) Selective oxidation using gold. Chem Soc Rev 37:2077–2095
- Corma A, Garcia H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev 37:2096–2126
- Matsumoto T, Ueno M, Wang N et al (2008) Recent advances in immobilized metal catalysts for environmentally benign oxidation of alcohols. Chem-Asian J 3:196–214
- Corma A, Leyva-Pérez A, Sabater MJ (2011) Gold-Catalyzed Carbon–Heteroatom Bond-Forming Reactions. Chem Rev 111:1657–1712
- Fujita T, Guan P, McKenna K et al (2012) Atomic origins of the high catalytic activity of nanoporous gold. Nature Mater 11:775–780
- Bond GC, Louis C, Thompson DT (2006) Catalysis by gold. Imperial College Press, London, Chapter 9, p. 244
- 22. McEwan L, Julius M, Roberts S et al (2010) A review of the use of gold catalysts in selective hydrogenation reactions Lynsey McEwana. Gold Bull 43:298–306
- 23. Fujitani T, Nakamura I, Akita T et al (2009) Hydrogen dissociation by gold clusters. Angew Chem Int Ed 48:9515–9518
- 24. Hauwert P, Maestri G, Sprengers J et al (2008) Transfer semihydrogenation of alkynes catalyzed by a zero-valent palladium N-heterocyclic carbene complex. Angew Chem Int Ed 47:3223–3226
- 25. La Pierre HS, Arnold J, Toste FD (2011) Selective semihydrogenation of alkynes catalyzed by a cationic vanadium bisimido complex. Angew Chem Int Ed 50:3900–3903
- 26. Gianetti TL, Tomson NC, Arnold J et al (2011) Z-selective, catalytic internal alkyne semihydrogenation under H2/CO mixtures by a niobium(III) imido complex. J Am Chem Soc 133:14904–14907
- 27. Shen R, Chen T, Zhao Y et al (2011) Facile regio- and stereoselective hydrometalation of alkynes with a combination of carboxylic acids and group 10 transition metal complexes: selective hydrogenation of alkynes with formic acid. J Am Chem Soc 133:17037–17044
- Lindlar H (1952) Ein neuer katalysator f
 ür selektive hydrierungen. Helv Chim Acta 35:446–450
- 29. Savoia D, Tagliavini E, Trombini C et al (1981) Active metals from potassium-graphite. Highly dispersed nickel on graphite as a new catalyst for the stereospecific semihydrogenation of alkynes. J Org Chem 46:5340–5343
- Brunet JJ, Caubere P (1984) Activation of reducing agents. Sodium hydride containing complex reducing agents. 20. Pdc, a new, very selective heterogeneous hydrogenation catalyst. J Org Chem 49:4058–4060
- Gruttadauria M, Noto R, Deganello G et al (1999) Efficient semihydrogenation of the C-C triple bond using palladium on pumice as catalyst. Tetrahedron Lett 40:2857–2858
- Gruttadauria M, Liotta LF, Noto R et al (2001) Palladium on pumice: new catalysts for the stereoselective semihydrogenation of alkynes to (Z)-alkenes. Tetrahedron Lett 42:2015–2017
- 33. Alonso F, Osante I, Yus M (2006) Highly stereoselective semihydrogenation of alkynes promoted by nickel(0) nanoparticles. Adv Synth Catal 348:305–308
- 34. Hori J, Murata K, Sugai T et al (2009) Highly active and selective semihydrogenation of alkynes with the palladium nanoparticles-tetrabutylammonium borohydride catalyst system. Adv Synth Catal 351:3143–3149
- Venkatesan R, Prechtl MH, Scholten JD et al (2011) Palladium nanoparticle catalysts in ionic liquids: synthesis, characterisation and selective partial hydrogenation of alkynes to Zalkenes. J Mater Chem 21:3030–3036
- 36. Wu J, Wang K, Li Y et al (2011) Semihydrogenation of phenylacetylene catalyzed by palladium nanoparticles supported on organic group modified silica. Adv Mater Res 233–235:2109–2112

3 Nanoporous Gold Catalyst for Highly Selective Semihydrogenation of Alkynes

- 37. Takahashi Y, Hashimoto N, Hara T et al (2011) Highly efficient Pd/SiO₂-dimethyl sulfoxide catalyst system for selective semihydrogenation of alkynes. Chem Lett 40:405-407
- Segura Y, López N, Pérez-Ramíez J (2007) Origin of the superior hydrogenation selectivity of gold nanoparticles in alkyne+alkene mixtures: Triple- versus double-bond activation. J Catal 247:383–386
- Jia J, Haraki K, Kondo JN et al (2000) Selective hydrogenation of acetylene over Au/Al2O3 catalyst. J Phys Chem B 104:11153–11156
- Choudhary TV, Sivadinarayana C, Datye AK et al (2003) Acetylene hydrogenation on Aubased catalysts. Catal Letters 86:1–8
- 41. Azizi Y, Petit C, Pitchon V (2008) Formation of polymer-grade ethylene by selective hydrogenation of acetylene over Au/CeO₂ catalyst. J Catal 256:338–344
- 42. Nikolaev SA, Smirnov VV (2009) Synergistic and size effects in selective hydrogenation of alkynes on gold nanocomposites. Catal Today 147S:S336–S341
- 43. Asao N, Ishikawa Y, Hatakeyama N et al (2010) Nanostructured materials as catalysts: nanoporous-gold-catalyzed oxidation of organosilanes with water. Angew Chem Int Ed 49:10093–10095
- 44. Tanaka S, Kaneko T, Asao N et al (2011) A nanostructured skeleton catalyst: suzuki-coupling with a reusable and sustainable nanoporous metallic glass Pd-catalyst. Chem Commun 47:5985–5987
- 45. Kaneko T, Tanaka S, Asao N et al (2011) Reusable and sustainable nanostructured skeleton catalyst: heck reaction with nanoporous metallic glass Pd (PdNPore) as a support, stabilizer and ligand-free catalyst. Adv Synth Catal 353:2927–2932
- 46. Jin T, Yan M, Menggenbateer et al (2011) Nanoporous copper metal catalyst in click chemistry: nanoporosity-dependent activity without supports and bases. Adv Synth Catal 353:3095–3100
- 47. Asao N, Meggenbateer SY et al (2012) Nanoporous gold-catalyzed [4+2] benzannulation between ortho-alkynylbenzaldehydes and alkynes. Synlett 23:66–69
- 48. Asao N, Jin T, Tanaka S et al (2012) From molecular catalysts to nanostructured materials skeleton catalysts. Pure Appl Chem 84:1771–1784
- 49. Jin T, Yan M, Yamamoto Y (2012) Click chemistry of alkyne-azide cycloaddition using nanostructured copper catalysts. ChemCatChem 4:1217–1219
- 50. Mohr C, Hofmeister H, Radnik J et al (2003) Identification of active sites in gold-catalyzed hydrogenation of acrolein. J Am Chem Soc 125:1905–1911
- Corma A, Boronat M, Gonzalez S et al (2007) On the activation of molecular hydrogen by gold: a theoretical approximation to the nature of potential active sites. Chem Commun 32:3371–3373
- 52. Zhu Y, Qian H, Drake BA et al (2010) Atomically precise Au25(SR)18 nanoparticles as catalysts for the selective hydrogenation of α , β -unsaturated ketones and aldehydes. Angew Chem Int Ed 49:1295–1298
- 53. Schreiner S, Yu JY, Vaska L (1988) Carbon dioxide reduction via homogeneous catalytic synthesis and hydrogenation of *N*,*N*-dimethylformamide. Inorg Chim Acta 147:139–141
- 54. Sharma HK, Panel KH (2009) The photochemical irradiation of R3SiH in the presence of $[(\eta 5-C5H5)Fe(CO)2CH3]$ in DMF leads to disiloxanes not disilanes. Angew Chem Int Ed 48:7052–7054
- 55. Itazaki M, Ueda K, Nakazawa H et al (2009) Iron-catalyzed dehydrogenative coupling of tertiary silanes. Angew Chem Int Ed 48:3313–3316
- 56. Brunet JJ, Caubere P (1984) Activation of reducing agents. Sodium hydride containing complex reducing agents. 20. Pdc, a new, very selective heterogeneous hydrogenation catalyst. J Org Chem 49:4058–4060
- 57. Heathcock CH, Ratcliffe R (1971) Stereoselective total synthesis of the guaiazulenic sesquiterpenoids.alpha.-bulnesene and bulnesol. J Am Chem Soc 93:1746–1757
- Hönig H, Seufer-Wasserthal P, Weber H (1990) Chemo-enzymatic synthesis of all isomeric 3-phenylserines and –isoserines. Tetrahedron 46:3841–3850

90

- 59. Bridier B, López N, Pérez-Ramírez J (2010) Molecular understanding of alkyne hydrogenation for the design of selective catalysts. Dalton Trans 39:8412–8419
- 60. Noujima A, Mitsudome T, Mizugaki T et al (2011) Selective deoxygenation of epoxides to alkenes with molecular hydrogen using a hydrotalcite-supported gold catalyst: a concerted effect between gold nanoparticles and basic sites on a support. Angew Chem Int Ed 50:2986–2989
- 61. Fang M, Machalaba N, Sánchez-Delgado RA (2011) Hydrogenation of arenes and Nheteroaromatic compounds over ruthenium nanoparticles on poly(4-vinylpyridine): a versatile catalyst operating by a substrate-dependent dual site mechanism. Dalton Trans 40:10621–10632
- Goethals M, Zeegers-Huyskens T (1995) FT-IR Study of the interaction between H₂O, D₂O, HOD, and pyridines. Spectrosc Lett 28:1125–1135
- 63. Okitsu T, Sato K, Potewar TM et al (2011) Iodocyclization of hydroxylamine derivatives based on the control of oxidative aromatization leading to 2,5-dihydroisoxazoles and isoxazoles. J Org Chem 76:3438–3449
- 64. Zhao L, Lu X, Xu W (2005) Palladium(II)-catalyzed enyne coupling reaction initiated by acetoxypalladation of alkynes and quenched by protonolysis of the carbon–palladium bond. J Org Chem 70:4059–4063
- Huang JM, Lin JQ, Chen DS (2012) Electrochemically supported deoxygenation of epoxides into alkenes in aqueous solution. Org Lett 14:22–25
- 66. Woolven H, González-Rodríguez Č, Marco I et al (2011) DABCO-bis(sulfur dioxide), DABSO, as a convenient source of sulfur dioxide for organic synthesis: utility in sulfonamide and sulfamide preparation. Org Lett 13:4876–4878
- 67. Yu JY, Kuwano R (2009) Rhodium-catalyzed cross-coupling of organoboron compounds with vinyl acetate. Angew Chem Int Ed 48:7217–7220
- 68. Shen R, Chen T, Zhao Y et al (2011) Facile regio- and stereoselective hydrometalation of alkynes with a combination of carboxylic acids and group 10 transition metal complexes: selective hydrogenation of alkynes with formic acid. J Am Chem Soc 133:17037–17044
- 69. Oppolzer W, Stammen B (1997) On the faciality of intramolecular palladium(0)-catalysed "metallo-ene-type" cyclisations. Tetrahedron 53:3577–3586
- 70. Kim IS, Dong GR, Jung YH (2007) Palladium(II)-catalyzed isomerization of olefins with tributyltin hydride. J Org Chem 72:5424–5426
- Littke AF, Fu GC (2001) A versatile catalyst for heck reactions of aryl chlorides and aryl bromides under mild conditions. J Am Chem Soc 123:6989–7000
- 72. Walter C, Oestreich M (2008) Catalytic asymmetric C-Si bond formation to acyclic α , β unsaturated acceptors by RhI-catalyzed conjugate silyl transfer using a Si-B linkage. Angew Chem Int Ed 47:3818–3820
- 73. Belger C, Neisius NM, Plietker BA (2010) Selective Ru-catalyzed semireduction of alkynes to Z olefins under transfer-hydrogenation conditions. Chem Eur J 16:12214–12220

Chapter 4 Unsupported Nanoporous Gold Catalyst for Highly Selective Hydrogenation of Quinolines

Abstract We report for the first time the highly efficient and regioselective hydrogenation of quinoline derivatives to 1,2,3,4-tetrahydroquinolines using unsupported nanoporous gold as the catalyst and organosilane with water as the hydrogen source. The AuNPore catalyst can be readily recovered and reused without any loss of catalytic activity.

Keywords Nanoporous gold catalyst • Hydrogenation of quinolines • Heterogeneous catalysis

4.1 Introduction

Nanoporous gold (AuNPore) being of the three dimensional (3D) bicontinuous network structure, high surface area, nontoxic nature, high fabrication reproducibility, high recyclability, and rather simple recovery, is an attractive candidate as fascinating heterogeneous catalyst [1-14]. In contrast to gold nanoparticles loaded on the carrier [15-19], the unsupported AuNPore catalysts are more close to investigate the intrinsic catalytic acitivity, selectivity and mechanism as elimination of the supporting effect and to extend the catalytic area widely through relaxation of aggregation. Although recent advances on catalytic applications of AuNPore demonstrated that AuNPore possessed excellent catalytic performance on selective oxidation reactions [1-14], such as CO oxidation and alcohol oxidations as well as organosilane oxidation, it has not been employed for selective hydrogenation up to now due to the weak ability of H₂ dissociation of gold as compared to its counterpart of the Pd group metals [20, 21]. Recently, we have demonstrated for the first time that AuNPore was able to be used as a robust catalyst for the semihydrogenation of alkynes to alkenes with excellent Z-selectivity without over-reduced alkanes by using organosilane and water as a hydrogen source, and appropriate amine as an additive (Eq. 4.1a) [22].

M. Yan, Development of New Catalytic Performance of Nanoporous Metals for Organic Reactions, Springer Theses, DOI: 10.1007/978-4-431-54931-4_4, © Springer Japan 2014

1,2,3,4-Tetrahydroquinoline (py-THQ) is an important framework exists in numerous biologically active natural products and pharmacologically relevant therapeutic agents [23]. Direct hydrogenation of qunoline is regarded as an efficient and straightforward approach to access py-THQ. Both homogeneous and heterogeneous catalysis based on Ru, Rh, Pd, Pt and Ir have been studied extensively with H₂ but suffer from either high H₂ pressures (>1 atm) or high temperatures (>100 °C) [24–37]. Moreover, the strong adsorption of quinolines and their hydrogenated products on heterogeneous catalysts strongly inhibit catalytic activity and selectivity [30–37]. In contrast, gold metallic catalyst has attracted less attention for this reaction owing to its low adsorption ability toward quinoline [38, 39]. As a continuation of our research in the nanoporous metal catalysis [8, 40–45], in this chapter, it turns to present the highly regioselective hydrogenation of quinolines catalyzed by the unsupported AuNPore using organosilane and water to produce *in situ* hydrogen, affording the corresponding py-THQs in high yields (Eq. 4.1b).

4.2 Results and Discussion

4.2.1 Characterization of AuNPore

The unsupported AuNPore catalyst was prepared by dealloying a homogeneous $Au_{30}Ag_{70}$ alloy with a thickness of 40 µm in 70 wt % of nitric acid as an electrolyte at room temperature for 18 h [22]. SEM image shown in Fig. 4.1 vividly reveals that ligament and nanopore channel are formed uniformly across the entire AuNPore with an average ligament size around 30 nm. The representative bright-field TEM image of AuNPore shows the multilayers of golds ligaments with convex and concave columnar curvatures, indicating the bicontinuous 3D network nanoporous structure (Fig. 4.2b). Ligament size is seen to be about 30 nm, which is consistent with the values estimated from the SEM image. The EDX analysis on fresh AuNPore shows that the residual Ag composition of AuNPore is 2 % indicating that most of silver is removed after dealloying (Fig. 4.2a).

Fig. 4.1 a SEM image of AuNPore. b Representative bright-field TEM image of AuNPore

Fig. 4.2 a EDX analysis of fresh AuNPore, Au₉₈Ag₂. b SEM image of AuNPore after 5th cycle

4.2.2 AuNPore-Catalyzed Hydrogenation of Quinolines

Recently we found that AuNPore was an effective catalyst for oxidation of organosilanes with water to produce organic silanols in high yields along with the vigorous liberation of H₂ gas [14]. In addition, as aforementioned in Eq. (4.1a), we have confirmed that the use of pyridine as an additive together with organosilane and water as a hydrogen source in the AuNPore-catalyzed semihydrogenation of alkynes, suppressed the evolution of H₂, giving the corresponding alkenes in high selectivity [22]. During the screening of amine additives, it was found that py-THQ was produced as a by-product in 30 % yield when quinoline was used as an additive. This result encouraged us to further optimize the reaction conditions to achieve an efficient and selective hydrogenation of quinolines by using AuNPore as catalyst. Initially, quinoline (1a) was treated with AuNPore catalyst, PhMe₂SiH and water in the presence of various organic solvents as shown in Table 4.1. The use of dimethylforamide (DMF) and acetonitrile (CH₃CN), which were employed successfully in the previous alkyne hydrogenation, afforded the corresponding 1,2,3,4-tetrahydroquinoline (2a) as the only product but the yields were low

	AuNPore (2 mol%) ► PhMe ₂ SiH, H ₂ O solvent, 80 °C	N 2a ^H	
Entry	Solvent		2a, Yield, % ^a
1	DMF		12
2	CH ₃ CN		30
3	THF		26 ^b
4	EtOH		38
5	Toluene		91
6	Toluene		0^{c}
$7^{\rm d}$	Toluene		0

 Table 4.1 Screening of solvents for selective hydrogenation of quinoline (1a) to 1,2,3,4-tetrahydroquinoline (2a)

Reaction conditions: quinoline (1a, 0.5 mmol), PhMe₂SiH (1.25 mmol), H₂O (1.5 mmol), solvent (0.5 mL), AuNPore (2 mol%), 80 °C for 24 h

^{a 1} H NMR yield determined using anisole as an internal standard

^b Reaction temperature was 60 °C

^c H₂ (1 atm) balloon was used instead of PhMe₂SiH and H₂O

^d 2 mol% of AgNPore was used instead of AuNPore

(entries 1 and 2). Further examination with tetrahydrofuran (THF) and ethanol did not improve the yield of **2a** (entries 3 and 4). Fortunately, the use of nonpolar solvent such as toluene gave **2a** in high yield without formation of 5,6,7,8-tetrahydroquinoline (bz-THQ) and decahydroquinoline (DHQ) by-products (entry 5). It was noted that the hydrogenation of **1a** with H₂ in toluene by using AuNPore as a catalyst did not proceed at all (entry 6). It is noteworthy that a nanoporous silver (AgNPore) catalyst was totally inactive for the present hydrogenation of quinoline. AgNPore was fabricated by the dealloying of Ag₂₃Al₇₇ alloy under basic conditions following the reported method (Fig. 4.3) [46]. When the reaction was treated with the AgNPore catalyst instead of AuNPore as shown in entry 7 in Table 4.1, the reaction did not proceed and **1a** was recovered in quantitative yield. This result implied that gold was a real catalytic species in the AuNPore catalyst for the present hydrogenation of quinoline and the residual Ag component in AuNPore was inactive.

To clarify whether the AuNPore catalyst leached to the reaction mixture or not, we carried out the leaching experiments in which (Eq. 4.2) **1a** was treated with PhMe₂SiH and water in the presence of AuNPore catalyst (2 mol%) in toluene at 80 °C. After 8 h, the part of supernatant was transferred to the other reaction vessel and **2a** was produced in 51 % yield at this time. The supernatant was continuously heated at 80 °C in the absence of the catalyst for another 16 h, affording **2a** in 51 % yield as well. In contrast, the residual containing the AuNPore catalyst was completed in 16 h, giving **2a** in 90 % yield. These results, together with our previous X-ray photoelectron spectroscopy (XPS) analysis in

Fig. 4.3 a SEM image of fresh AgNPore. b EDX analysis of fresh AgNPore, Ag₈₈Al₁₂

which the binding energies of AuNPore and Au mica are almost same, clearly indicate that the present hydrogenation catalyzed by metallic gold(0) without any leaching of gold.

The catalytic activity of AuNPore was further examined with various substituted quinolines under the aforementioned conditions (Table 4.2). Mono-methylsubstituted quinolines were hydrogenated regioselectively to give the corresponding py-THQ in high isolated yields regardless of methyl substituent at benzene or pyridine ring (entries 2-4). Quinolines bearing 2,6-dimethyl (1e), 2-propyl (1f), and 2-phenyl (1g) were also the suitable substrates for the present hydrogenation, providing the corresponding py-THQs (2e-g) in high yields with exclusive regioselectivity (entries 5-7). Remarkably, AuNPore catalyst exhibited excellent selectivity with hydrogenation of 6-chloroquinoline (1h), affording the desired 2h in high yield without formation of dehalogenated product (entry 8). When the 2,3-dimethyl-ginoline **1i** was employed in the standard conditions, the corresponding product 2i was obtained in 78 % yield with a 2.5:1 mixture of syn and *anti* isomers, in which syn-isomer was obtained as a major product (entry 9). However, it should be noted that, quinoline derivatives with hydroxy or carbonyl group, such as quinoline-4-ol (poor solubility in toluene) or 2-quinolinecarbaldehyde was not compatiable under the standard conditions, resulting in total recovery of substrates. Quinoline derivatives with alkynyl or alkenyl moiety did not show good chemoselectivity; 2-(oct-1-yn-1-yl)quinoline produced a mixture of products with alkyne-reduced quinoline⁷ and alkynyl-tetrahydroquinoline as major

	$\overset{R^{2}}{\underset{N}{\overset{\text{AuNPore (2 mol%)}}{\overset{\text{PhMe}_{2}\text{SiH, H}_{2}\text{O}}}} \overset{R^{1}}{\underset{\text{toluene, 80 °C}}{\overset{R^{2}}{\overset{\text{PhMe}_{2}\text{SiH, H}_{2}\text{O}}}} \overset{R^{2}}{\underset{\text{PhMe}_{2}\text{SiH, H}_{2}\text{O}}}$				
Entry	Substrate	1	Time, h	2	Yield, % ^a
1		1a	24	2a	86 ^b
2		1b	7	2b	91
3	Me	1c	18	2c	96
4		1d	6	2d	83
5	Me Me N to N Me N Me	le	7	2e	98
6		1f	3	2f	97
7		1g	10	2g	98
8		1h	39	2h	97
9	Me	1i	24	2i	78 ^c
10		1j	18	2j	85 ^d

Table 4.2 AuNPore-catalyzed hydrogenation of various quinolines

Reaction conditions: quinoline (1, 0.5 mmol), PhMe_2SiH (2.0 mmol), H_2O (2.0 mmol), toluene (0.5 mL), AuNPore (2 mol%), 80 $^\circ C$

^a Isolated yield

^b PhMe₂SiH (1.25 mmol) and H₂O (1.5 mmol) were used

^c A 2.5:1 mixture of syn and anti isomers

^d The product is 2-phenethyl-1,2,3,4-tetrahydroquinoline

products, and 2-styryquinoline (**1j**) afforded the both alkene and pyridine moieties reduced 2-phenethyl-1,2,3,4-tetrahydroquinoline(**2j**) in 85 % yield by using excess amounts of organosilane and water (entry 10). Note that isoquinoline (**1k**) showed a relatively lower reactivity compared with quinoline, affording the corresponding 1,2,3,4-tetrahydroisoquinoline (**2k**) in 70 % yield along with some amounts of recovered **1k** (Eq. 4.3). It was noted that no trace of bz-THQs or DHQs was detected in the present hydrogenation.

Table 4.3 Reusability ofAuNPore catalyst

N Me 1b	AuNPore (2 mol%) PhMe ₂ SiH, H ₂ O toluene, 80 °C, 7 h	N Me
Run	2b, Yield,	$\%^{\mathrm{a}}$
1st	95	
2nd	98	
3rd	98	
4th	97	
5th	98	

^{a 1} H NMR yield determined using CH₂Br₂ as an internal standard

 a Yield was determined by ^1H NMR spectra using CH_2Br_2 as an internal standard.

The AuNPore catalyst was reused for five cycles without any loss of catalytic activity and selectivity in the hydrogenation of 2-methylquinoline (**1b**) under the standard conditions; the yield was still 98 % even in the fifth cycle (Table 4.3). The catalyst was recovered through the simple filtration of the reaction mixture washing with acetone and reused without further purification. It is noteworthy that, the nanoporous structure of the recovered catalyst did not show the structural changes after the fifth cycle (Fig. 4.2b).

4.2.3 Proposed Reaction Pathway

To gain further insight into the reaction details, we carried out the deuterium labeling experiments. The reaction of quinoline **1a** with PhMe₂SiH and D₂O in the presence of the AuNPore catalyst in toluene gave the corresponding 3-D-tetra-hydroquinoline **2a'** as the sole product in 60 % yield containing 100 % one deuterium atom and **1a** was recovered in 28 % yield (Eq. 4.4 and Fig. 4.4). This result clearly indicated that both PhMe₂SiH and water are the hydrogen source in the present reaction.

Fig. 4.4 1 H NMR chart of Deuterium-labeling experiment for the reaction of quinoline with PhMe₂SiH and D₂O under standard conditions

Scheme 4.1 Reaction pathway for the AuNPore-catalyzed hydrogenation of quinoline

standard.

On the basis of the present results and our previous study of the amine effect on the hydrogenation of alkynes [22], the ionic hydrogenation pathway is proposed as shown in Scheme 4.1. Due to the moderate adsorption energy of quinoline on Au [39], the hydrogen bond forms preferably between quinoline and water. The reaction of adsorbed PhMe₂SiH and water may produce [AuNPore-H]⁻ and [H-quinoline]⁺ species, in which the later reacts subsequently with hydride on

AuNPore to form the corresponding py-THQ. Although the detailed way of the following hydride addition into [H-quinoline]⁺, such as 1,4-addition or 1,2-addition, remains unclear at this stage, the formation of hydrogen bond between quinoline and water is crucial for suppressing the vigorous liberation of H₂ gas which is inactive toward the unsupported AuNPore catalyst.

4.3 Conclusion

We have demonstrated in this chapter that the unsupported AuNPore can catalyze the hydrogenation of quinolines. By using reaction between organosilane and water as a hydrogen source, various quinoline derivatives were hydrogenated to give the py-THQs in high yields with excellent regioselectivity. AuNPore catalyst can be easily recycled and reused for several times without any loss of catalytic activity and leaching. Further extension of this hydrogenation method to other unsaturated multiple bonds is in progress.

4.4 Experimental Section

4.4.1 General Information

GC-MS analysis was performed on an Agilent 6890 N GC interfaced to an Agilent 5973 mass-selective detector (30 m × 0.25 mm capillary column, HP-5MS). Scanning electron microscope (SEM) observation was carried out using a JEOL JSM-6500F instrument operated at an accelerating voltage of 30 kV. ¹H NMR and ¹³C NMR spectra were recorded on JEOL JNM AL 400 (400 MHz) spectrometers. ¹H NMR spectra are reported as follows: chemical shift in ppm (δ) relative to the chemical shift of CDCl₃ at 7.26 ppm, integration, multiplicities (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet and br = broadened), and coupling constants (Hz). ¹³C NMR spectra were recorded on JEOL JNM AL 400 (100.5 MHz) spectrometers with complete proton decoupling, and chemical shift reported in ppm (δ) relative to the central line of triplet for CDCl₃ at 77 ppm. Column chromatography was carried out employing silica gel 60 N (spherical, neutral, 40 ~ 100 µm, KANTO Chemical Co.). Analytical thin-layer chromatography (TLC) was performed on 0.2 mm precoated plate Kieselgel 60 F254 (Merck).

4.4.2 Materials

The hydrosilanes and substituted quinolines are commercially available, which are used as received. Au (99.99 %) and Ag (99.99 %) are purchased from Tanaka Kikinzoku Hanbai K.K. and Mitsuwa's Pure Chemicals, respectively.

2-Propylquinoline **1f**, [47] **1i** [48] and **1j** [49] were prepared following the reported literature. **2i** was identified by ¹H NMR comparing with the literature reported [50]. Structures of **2a**, [51] **2b**, [51] **2c**, [51] **2d**, [51] **2e**, [49] **1f**, [52] **2f**, [50] **2g**, [50] **2h**, [53] **2i**, [50] and **2j** [54] were determined by comparing with the reported authentic compounds. Nanoporous gold (AuNPore) [22] and nanoporous silver (AgNPore) [46] was fabricated following the reported method.

4.4.3 Fabrication of AuNPore Catalyst

Au (99.99 %) and Ag (99.99 %) were melted with electric arc-melting furnace under Ar atmosphere to form Au/Ag alloy (30:70, in at. %), which was rolled down to thickness of 0.04 mm. The resulting foil was annealed at 850 °C for 20 h. The foil was cut into small pieces (5×2 mm square). Treatment of the resulting chips (67.1 mg) with 70 wt % nitric acid (3.77 mL) for 18 h at room temperature in a shaking apparatus resulted in the formation of the nanoporous structure by selective leaching of silver. The material was washed with a saturated aqueous solution of NaHCO₃, pure water, and acetone, successively. Drying of the material under reduced pressure gave the nanoporous gold (30.2 mg), and its composition was found to be Au₉₈Ag₂ from EDX analysis.

4.4.4 Representative Procedure for the AuNPore-Catalyzed Hydrogenation of 1a (Table 4.1, Entry 5)

To a toluene solution (1 M, 0.5 mL) of AuNPore (2 mol%) were added **1a** (0.5 mmol), H_2O (1.5 mmol) and PhMe₂SiH (1.25 mmol) subsequently at room temperature. The reaction mixture was stirred at 80 °C for 24 h and was monitored by GC-MS analysis. The AuNPore catalyst was recovered by filtration, and washed by diethyl ether. The recovered AuNPore catalyst was washed with acetone and dried under vacuum. After concentration, the residue was purified with a silica gel chromatography to afford **2a** in 86 % yield.

4.4.5 Reaction Procedure for the Hydrogenation of Isoquinoline (1k)

To a toluene solution (1 M, 0.5 mL) of AuNPore (2 mol%) were added 1k (0.5 mmol), H_2O (2.0 mmol) subsequently at room temperature. The reaction mixture was stirred at 80 °C for 26 h and was monitored by GC-MS analysis. The AuNPore catalyst was recovered by filtration, and washed by diethyl ether. The recovered AuNPore catalyst was washed with acetone and dried under vacuum. After concentration, the residue showed that the corresponding 2k [16] was

observed in 73 % ¹H NMR yield using CH₂Br₂ as an internal standard together with small amount of the recovered isoquinoline in 10 % yield.

4.4.6 Deuterium-Labeling Experiment

To a toluene solution (1 M, 0.5 mL) of AuNPore (2 mol%) were added **1a** (0.5 mmol), D₂O (1.5 mmol) and PhMe₂SiH (1.25 mmol) subsequently at room temperature. The reaction mixture was stirred at 80 °C for 24 h and was monitored by GC-MS analysis. The AuNPore catalyst was recovered by filtration, and washed by diethyl ether. After concentration, the residue showed that the 3-position deuterated corresponding product **2a**' was obtained in 60 % NMR yield containing 100 % D and **1a** was recovered in 28 % yield.

4.4.7 Leaching Experiments

Quinoline **1a** was treated with PhMe₂SiH and water in the presence of AuNPore catalyst (2 mol%) in toluene at 80 °C. After 8 h, a part of supernatant was transferred to the other reaction vessel and **2a** was produced in 51 % ¹H NMR yield at this time. The supernatant was continuously heated at 80 °C in the absence of the catalyst for 16 h, affording **2a** in 51 % ¹H NMR yield. In contrast, the residual containing the AuNPore catalyst was completed in 16 h, giving **2a** in 90 % ¹H NMR yield.

4.4.8 Synthesis of Starting Material (2-propylquinoline 1f)

To a stirred solution of 2-methylquinoline (10.0 mmol) in ether at 0 °C was added n-BuLi (12.0 mmol, 1.62 M in hexane). After stirring 1.5 h at room temperature, CH₃CH₂I (15.0 mmol) was added at 0 °C. The resulting mixture was stirred at room temperature for 3 h. Water (10 mL) was added, and the product was extracted with ethyl acetate (30 mL \times 3). The combined organic layer was dried over sodium sulfate, and concentrated in vacuo. Silica gel column purification afforded 2-propylquinoline [47].

4.4.9 Analytical Data of (1 and 2)

1,2,3,4-tetrahydroquinoline (2a)

¹H NMR (400 MHz, CDCl₃) δ 7.00–6.95 (m, 2H), 6.64–6.60 (m, 1H), 6.50-6.48 (m, 1H), 3.81 (br, 1H), 3.31 (t, *J* = 5.6 Hz, 2H), 2.79 (t, *J* = 6.4 Hz, 2H), 1.99–1.93 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 144.6, 129.3, 126.6, 121.3, 116.8, 114.0, 41.9, 26.9, 22.1 [51];

2-methyl-1,2,3,4-tetrahydroquinoline (2b) [51]

¹H NMR (400 MHz, CDCl₃) δ 7.02–6.99 (m, 2H), 6.66–6.63 (m, 1H), 6.51 (d, J = 8.4 Hz, 1H), 3.72 (br, 1H), 3.47–3.40 (m, 1H), 2.92–2.74 (m, 2H), 2.00–1.94 (m, 1H), 1.68–1.58 (m, 1H), 1.25 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.6, 129.1, 126.5, 120.9, 116.8, 113.8, 47.1, 30.1, 26.6, 22.6;

3-methyl-1,2,3,4-tetrahydroquinoline (2c) [51]

¹H NMR (400 MHz, CDCl₃) δ 7.00-6.95 (m, 2H), 6.62 (t, J = 7.2 Hz, 1H), 6.50 (d, J = 8.0 Hz, 1H), 3.84 (br, 1H), 3.30–3.26 (m, 1H), 2.91 (t, J = 10.4 Hz, 1H), 2.82–2.72 (m, 1H), 2.48–2.42 (m, 1H), 2.12–2.04 (m, 1H), 1.07 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 129.4, 126.5, 121.0, 116.8, 113.7, 48.8, 35.5, 27.2, 19.0;

8-methyl-1,2,3,4-tetrahydroquinoline (2d) [51]

¹H NMR (400 MHz, CDCl₃) δ 6.95 (dd, J = 8.0 Hz, 10.0 Hz, 2H), 6.64 (t, J = 7.2 Hz, 1H), 3.71 (br, 1H), 3.45 (t, J = 5.6 Hz, 2H), 2.88 (t, J = 6.4 Hz, 2H), 2.16 (s, 3H), 2.06–2.00 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 142.5, 127.6, 127.2, 121.0, 120.6, 116.2, 42.2, 27.2, 22.1, 17.1;

2,6-dimethyl-1,2,3,4-tetrahydroquinoline (2e) [49]

¹H NMR (400 MHz, CDCl₃) δ 6.79 (d, *J* = 7.6 Hz, 2H), 6.42 (d, *J* = 7.6 Hz, 1H), 3.42–3.34 (m, 1H), 2.88–2.68 (m, 2H), 2.22 (s, 3H), 1.96–1.90 (m, 1H), 1.65–1.55 (m, 1H), 1.22 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 129.7, 127.1, 126.1, 121.1, 114,1, 47.3, 30.4, 26.6, 22.6, 20.4;

2-propylquinoline (1f) [52]

¹H NMR (400 MHz, CDCl₃) δ 8.04–8.00 (m, 2H), 7.72 (d, J = 8.0 Hz, 1H), 7.66–7.62 (m, 1H), 7.46–7.43 (m, 1H), 7.27–7.24 (m, 1H), 2.95–2.90 (m, 2H), 1.86–1.77 (m, 2H), 0.99 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.7, 147.7, 136.0, 129.1, 128.7, 127.3, 126.6, 125.5, 121.2, 41.3, 23.3, 14.0;

2-propyl-1,2,3,4-tetrahydroquinoline (2f) [50]

¹H NMR (400 MHz, CDCl₃) δ 7.03–6.99 (m, 2H), 6.67–6.63 (m, 1H), 6.52 (dd, J = 8.4 Hz, 1.2 Hz, 1H), 3.64 (br, 1H), 3.32–3.27 (m, 1H), 2.91–2.75 (m, 2H), 2.04–1.98 (m, 1H), 1.70–1.45 (m, 5H), 1.02 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 129.1, 126.5, 121.2, 116.7, 113.9, 51.2, 38.8, 28.1, 26.4, 18.9, 14.2;

2-phenyl-1,2,3,4-tetrahydroquinoline (2g) [50]

¹H NMR (400 MHz, CDCl₃) δ 7.36–7.20 (m, 5H), 6.99–6.95 (m, 2H), 6.61 (t, *J* = 7.6 Hz, 1H), 6.49 (d, *J* = 8.4 Hz, 1H), 4.40 (d, *J* = 9.2 Hz, 1H), 4.00 (s, 1H), 2.93–2.85 (m, 1H), 2.73–2.68 (m, 1H), 2.11–2.06 (m, 1H), 2.00–1.91 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 144.6, 144.6, 129.1, 128.4, 127.3, 126.7, 126.4, 120.7, 117.0, 113.8, 56.2, 31.0, 26.4;

6-chloro-1,2,3,4-tetrahydroquinoline (2h) [53]

¹H NMR (400 MHz, CDCl₃) δ 6.93–6.90 (m, 2H), 6.38 (d, J = 8.4 Hz, 1H), 3.71 (br, 1H), 3.28 (t. J = 5.6 Hz, 2H), 2.73 (t, J = 6.4 Hz, 2H), 1.95–1.89 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 143.1, 128.8, 126.3, 122.6, 120.8, 114.9, 41.7, 26.8, 21.7;

2,3-Methyl-1,2,3,4-tetrahydroquinoline (2i) [50]

Syn : anti = 2.5 : 1; ¹H NMR (400 MHz, CDCl₃) δ 7.00–6.96 (m, 2H, for syn and anti isomers), 6.64–6.60 (m, 1H), 6.49 (d, J = 8.0 Hz, 1H, for syn and anti isomers), 3.71 (br, 1H, for syn and anti isomers), 3.55 (bs, 1H, for syn and anti isomers), 3.46 (dq, J = 6.4, 3.2 Hz, 1H, for syn isomer), 3.01 (m, 1H, for anti

isomer), 2.92 (dd, J = 16.5, 5.2 Hz, 1H, for *syn* isomer), 2.75 (dd, J = 16.0, 4.8 Hz, 1H, for *anti* isomer), 2.50 (dd, J = 5.6 Hz, 1H, for *syn* isomer), 2.50 (m, 1H, for *anti* isomer), 2.10–2.00 (m, 1H, for *syn* isomer), 1.70–1.58 (m, 1H, for *anti* isomer), 1.22 (d, J = 6.4 Hz, 3H, for *anti* isomer), 1.13 (d, J = 6.8 Hz, 3H, for *syn* isomer), 1.04 (d, J = 6.4 Hz, 3H, for *anti* isomer), 0.96 (d, J = 6.8 Hz, 3H, for *syn* isomer); ¹³C NMR (100 MHz, CDCl₃) *syn* isomer: δ 143.7, 128.9, 126.4, 121.1, 116.6, 113.3, 49.9, 33.8, 30.5, 18.1, 14.4; *anti* isomer: 144.3, 128.9, 126.5, 121.2, 116.6, 113.3, 53.2, 35.5, 33.5, 20.8, 18.3;

2-Phenethyl-1,2,3,4-tetrahydroquinoline (2j) [54]

¹H NMR (400 MHz, CDCl₃) δ 7.32–7.19 (m, 5H), 6.98–6.94 (m, 2H), 6.61 (dd, J = 7.6, 7.6 Hz, 1H), 6.46 (d, J = 8.4 Hz, 1H), 3.81 (bs, 1H), 3.33–3.28 (m, 1H), 2.82–2.73 (m, 4H), 2.04–1.97 (m, 1H), 1.87–1.82 (m, 2H), 1.73–1.66 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 141.7, 129.1, 128.4, 128.2, 126.6, 125.8, 121.2, 116.9, 114.0, 51.1, 38.2, 32.2, 28.0, 26.2;

4.4.10 ¹H and ¹³C NMR Spectra

References

- 1. Zielasek V, Jürgens B, Schulz C et al (2006) Gold catalysts: nanoporous gold foams. Angew Chem Int Ed 45:8241–8244
- Xu C, Su J, Xu X et al (2007) Low temperature CO oxidation over unsupported nanoporous gold. J Am Chem Soc 129:42–43
- 3. Xu C, Xu X, Su J et al (2007) Research on unsupported nanoporous gold catalyst for CO oxidation. J Catal 252:243–248
- Wittstock A, Neumann B, Schaefer A et al (2009) Nanoporous Au: an unsupported pure gold catalyst? J Phys Chem C 113:5593–5600
- 5. Wang LC, Jin HJ, Widmann D et al Dynamic studies of CO oxidation on nanoporous Au using a TAP reactor. J Catal 278:219–227
- Fujita T, Guan P, McKenna K et al (2012) Atomic origins of the high catalytic activity of nanoporous gold. Nat Mater 11:775–780
- Wittstock A, Zielasek V, Biener J et al (2010) Nanoporous gold catalysts for selective gasphase oxidative coupling of methanol at low temperature. Science 327:319–322
- Asao N, Hatakeyama N, Menggenbateer et al (2012) Aerobic oxidation of alcohols in the liquid phase with nanoporous gold catalysts. Chem Commun 48:4540–4542
- Yin H, Zhou C, Xu C et al (2008) Aerobic oxidation of d-glucose on support-free nanoporous gold. J Phys Chem C 112:9673–9678
- 10. Kosuda KM, Wittstock A, Friend CM et al (2012) Oxygen-mediated coupling of alcohols over nanoporous gold catalysts at ambient Pressures. Angew Chem Int Ed 51:1698–1701
- Zhang J, Liu P, Ma H et al (2007) Nanostructured porous gold for methanol electrooxidation. J Phys Chem C 111:10382–10388
- 12. Yu C, Jia F, Ai Z et al (2007) Direct oxidation of methanol on self-supported nanoporous gold film electrodes with high catalytic activity and stability. Chem Mater 19:6065–6067
- 13. Zeis R, Lei T, Sieradzki K et al (2008) Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold. J Catal 253:132–138

- 14. Asao N, Ishikawa Y, Hatakeyama N et al (2010) Nanostructured materials as catalysts: nanoporous-gold-catalyzed oxidation of organosilanes with water. Angew Chem Int Ed 49:10093–10095
- 15. Hashmi ASK, Hutchings (2006) Gold catalysis. Angew Che Int Ed 45:7896-7936
- 16. Pina CD, Falletta E, Prati L et al (2008) Selective oxidation using gold. Chem Soc Rev 37:2077–2095
- Corma A, Garcia H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev 37:2096–2126
- Matsumoto T, Ueno M, Wang N et al (2008) Recent advances in immobilized metal catalysts for environmentally benign oxidation of alcohols. Chem-Asian J 3:196–214
- C Corma A, Leyva-Pérez A, Sabater MJ (2011) Gold-catalyzed carbon-heteroatom bondforming reactions. Chem Rev 111:1657–1712
- 20. Bond GC, Louis C, Thompson DT (2006) Catalysis by gold. Imperial College Press, London, p 244
- McEwan L, Julius M, Roberts S et al (2010) A review of the use of gold catalysts in selective hydrogenation reactions Lynsey McEwana. Gold Bull 43:298–306
- 22. Yan M, Jin T, Ishikawa Y et al (2012) Nanoporous gold catalyst for highly selective semihydrogenation of alkynes: remarkable effect of amine additives. J Am Chem Soc 134:17536–17542
- Sridharan V, Suryavanshi P, Menendez JC (2011) Advances in the chemistry of tetrahydroquinolines. Chem Rev 111:7157–7259
- 24. Fish RH, Tan JL, Thormodsen AD (1984) Homogeneous catalytic hydrogenation. 2. Selective reductions of polynuclear heteroaromatic compounds catalyzed by chlorotris(triphenylphosphine)rhodium(I). J Org Chem 49:4500–4505
- 25. Fish RH, Tan JL, Thormodsen AD (1985) Homogeneous catalytic hydrogenation. 4. Regioselective reduction of polynuclear heteroaromatic compounds catalyzed by hydridochlorotris (triphenylphosphine)ruthenium(II). Organometallics 4:1743–1747
- Wang WB, Lu SM, Yang PY et al (2003) Highly enantioselective iridium-catalyzed hydrogenation of heteroaromatic compounds, quinolones. J Am Chem Soc 125:10536–10537
- 27. Zhu G, Pang K, Parkin G (2008) New modes for coordination of aromatic heterocyclic nitrogen compounds to molybdenum: catalytic hydrogenation of quinoline, isoquinoline, and quinoxaline by Mo(PMe3)4H4. J Am Chem Soc 130:1564–1565
- 28. Zhou H, Li Z, Wang Z et al (2008) Hydrogenation of quinolines using a recyclable phosphine-free chiral cationic ruthenium catalyst: enhancement of catalyst stability and selectivity in an ionic liquid. Angew Chem Int Ed 47:8464–8467
- Dobereiner GE, Nova A, Schley ND (2011) Iridium-catalyzed hydrogenation of nheterocyclic compounds under mild conditions by an outer-sphere pathway. J Am Chem Soc 133:7547–7562
- Fache F (2004) Solvent dependent regioselective hydrogenation of substituted quinolines. Synlett 15:2827–2829
- Zhandarev VV, Goshin ME, Kazin VN et al (2006) Catalytic synthesis of new halogencontaining tetrahydroquinolin-8-ols. J Org Chem 42:1093–1094
- 32. Sánchez-Delgado RA, Machalaba N, Ng-a-qui N (2007) Hydrogenation of quinoline by ruthenium nanoparticles immobilized on poly(4-vinylpyridine). Catal Commun 8:2115–2118
- 33. Hashimoto N, Takahashi Y, Hara T et al Fine tuning of Pd0 nanoparticle formation on hydroxyapatite and its application for regioselective quinoline hydrogenation. Chem Lett 39:832–834
- 34. Sun YP, Fu HY, Zhang DL et al (2010) Complete hydrogenation of quinoline over hydroxyapatite supported ruthenium catalyst. Catal Commun 12:188–192
- 35. Fang M, Machalaba N, Sánchez-Delgado RA (2011) Hydrogenation of arenes and Nheteroaromatic compounds over ruthenium nanoparticles on poly(4-vinylpyridine): a versatile catalyst operating by a substrate-dependent dual site mechanism. Dalton Trans 40:10621–10632

- 36. Mao H, Chen C, Liao X et al (2011) Catalytic hydrogenation of quinoline over recyclable palladium nanoparticles supported on tannin grafted collagen fibers. J Mol Catal A: Chem 341:51–56
- 37. Rueping M, Koenigs RM, Borrmann R et al (2011) Size-selective, stabilizer-free, hydrogenolytic synthesis of iridium nanoparticles supported on carbon nanotubes. Chem Mater 23:2008–2010
- 38. Cao Y and co-authors reported the quinoline hydrogenation using Au/HAS-TiO2 catalyst under high pressure of H2 (2 MPa), see: Ren D, He L, Yu L et al (2012) An Unusual Chemoselective Hydrogenation of Quinoline Compounds Using Supported Gold Catalysts. J Am Chem Soc 134:17592–17598 (During our manuscript in preparation)
- 39. Ferri D, Burgi T, Baiker A (2001) Pt and Pt/Al2O3 thin films for investigation of catalytic solid-liquid interfaces by ATR-IR spectroscopy: CO adsorption, H2-induced reconstruction and surface-enhanced absorption. J Phys Chem B 105:3187–3195
- 40. Tanaka S, Kaneko T, Asao N et al (2011) A nanostructured skeleton catalyst: Suzukicoupling with a reusable and sustainable nanoporous metallic glass Pd-catalyst. Chem Commun 47:5985–5987
- 41. Kaneko T, Tanaka S, Asao N et al (2011) Reusable and sustainable nanostructured skeleton catalyst: heck reaction with nanoporous metallic glass Pd (PdNPore) as a support, stabilizer and ligand-free catalyst. Adv Synth Catal 353:2927–2932
- 42. Jin T, Yan M, Menggenbateer et al (2011) Nanoporous copper metal catalyst in click chemistry: nanoporosity-dependent activity without supports and bases. Adv Synth Catal 353:3095–3100
- 43. Asao N, Meggenbateer, Seya Y et al (2012) Nanoporous Gold-Catalyzed [4+2] Benzannulation between ortho-alkynylbenzaldehydes and alkynes. Synlett 23:66–69
- 44. Asao N, Jin T, Tanaka S et al (2012) From molecular catalysts to nanostructured materials skeleton catalysts. Pure Appl Chem 84:1771–1784
- 45. Jin T, Yan M, Yamamoto Y (2012) Click chemistry of alkyne-azide cycloaddition using nanostructured copper catalysts. ChemCatChem 4:1217–1229
- 46. Xu C, Li Y, Tian F et al (2010) Dealloying to nanoporous silver and its implementation as a template material for construction of nanotubular mesoporous bimetallic nanostructures. ChemPhysChem 11:3320–3328
- 47. Qian B, Guo S, Shao J et al (2010) Palladium-catalyzed benzylic addition of 2-methyl azaarenes to N-sulfonyl aldimines via C–H bond activation. J Am Chem Soc 132:3650–3651
- Wang DW, Wang XB, Wang DS et al (2009) Highly enantioselective iridium-catalyzed hydrogenation of 2-benzylquinolines and 2-functionalized and 2,3-disubstituted quinolines. J Org Chem 74:2780–2787
- 49. Wang T, Zhou LG, Li Z et al (2011) Highly enantioselective hydrogenation of quinolines using phosphine-free chiral cationic ruthenium catalysts: scope, mechanism, and origin of enantioselectivity. J Am Chem Soc 133:9878–9891
- 50. Wu J, Wang C, Tang W et al (2012) The remarkable effect of a simple ion: iodide-promoted transfer hydrogenation of heteroaromatics. Chem Eur J 18:9525–9529
- 51. Hashimoto N, Takahashi Y, Hara T et al (2010) Fine tuning of Pd0 nanoparticle formation on hydroxyapatite and its application for regioselective quinoline hydrogenation. Chem Lett 39:832–834
- 52. Parekh V, Ramsden JA, Wills M et al (2010) Asymmetric transfer hydrogenation of quinolines using tethered Ru(II) catalysts. Tetrahedron Asymmetry 21:1549–1556
- 53. Mccall JM, Romero DL (2012) PCT Int Appl WO 2012094462:A2
- 54. Patil NT, Wu H, Yamamoto YA (2007) Route to 2-substituted tetrahydroquinolines via palladium-catalyzed intramolecular hydroamination of anilino-alkynes. J Org Chem 72:6577–6579

Curriculum Vitae

Mei Yan Harbin 150080, P. R. China Key Laboratory of Microsystems and Micronanostructures Manufacturing, Ministry of Education, Harbin Institute of Technology Tel.: +86-451-86403493 Fax: +86-451-86403483 e-mail: yanmei@hit.edu.cn Web: http://homepage.hit.edu.cn/pages/meiyan

Education

Tohoku University Sendai, Japan

Degree: Ph.D. March 2013 Thesis advisor: Naoki Asao Thesis topic: Development of New Catalytic Performances of Nanoporous Metals for Molecular Transformations

Dalian Institute of Technology Dalian, China

Degree: M.S. July 2009

Daqing Petroleum Institute Daqing, China

Degree: B.S. July 2006

M. Yan, Development of New Catalytic Performance of Nanoporous Metals for Organic Reactions, Springer Theses, DOI: 10.1007/978-4-431-54931-4, © Springer Japan 2014 121

Major Honors and Awards

- The Presidential Prize, 2013.
- Aoba Society for the Promotion of Science Award, 2013.
- Research assistant (RA) in WPI-Advanced Institute for Materials Research, 2012–2013.
- The Scholarship supported by China Scholarship Council, 2009–2013.

Research Interests

I am interested in novel nano-metal materials especially high catalytic nanocatalysts for heterogeneous molecular transformations. Recently, I have largely focused on nanoporous metals and their application in heterogeneous organic reactions. What excites me most is the high catalytic activity and selectivity of nanoporous gold for the semihydrogenation of alkynes affording the corresponding alkenes in high chemical yields and excellent Z-selectivity without any overreduced alkanes. Moreover, in contrast to the supported metal nanoparticles, nanoporous metals without supports are challenging catalyst systems to understand the intrinsic catalytic activity more easily and to extend the catalytic application widely by elimination of the support-effect problems and relaxation of aggregation. These make me to explore new catalytic performances of nanoporous metals for molecular transformations.

Relevant Employment History

July 2013-present. Harbin Institute of Technology

Lecturer

Nano-metal catalysts and their application in catalysis.

Publications

- Yan, M.; Jin, T.; Ishikawa, Y.; Minato, T.; Fujita, T.; Chen, L-Y.; Bao, M.; Asao, N.; Chen, M-W.; Yamamoto, Y. Nanoporous Gold Catalyst for Highly Selective Semihydrogenation of Alkynes: Remarkable Effect of Amine Additives. *J. Am. Chem. Soc.* 2012, *134*, 17536–17542.
- Yan, M.; Jin, T.; Chen, Q.; Ho, H. E.; Fujita, T.; Chen, L-Y.; Bao, M.; Chen, M-W.; Asao, N.; Yamamoto, Y. Unsupported Nanoporous Gold Catalyst for Highly Selective Hydrogenation of Quinolines. *Org. Lett.* **2013**, *15*, 1484–1487.
- Jin, T.; Yan, M.; Menggenbateer.; Minato, T.; Bao, M.; Yamamoto, Y. Nanoporous Copper Metal Catalyst in Click Chemistry: Nanoporosity Dependent Activity without Supports and Bases. *Adv. Synth. Catal.* 2011, 353, 3095–3100.
- Jin, T.; Yan, M.; Yamamoto, Y. Click Chemistry of Alkyne-Azide Cycloaddition Using Nano-structured Copper Catalysts. *ChemCatChem.* 2012, *4*, 1217–1229.
- Feng, X.; Yan, M.; Zhang, X.; Bao, M. Preparation and application of SBA-15-supported palladium catalyst for Heck reaction in supercritical carbon dioxide. *Chinese Chemical Letters.* 2011, 22, 643–646.
- Feng, X.; Yan, M.; Zhang, T.; Liu, Y.; Bao, M. Preparation and application of SBA-15supported palladium catalyst for Suzuki reaction in supercritical carbon dioxide. *Green Chem.* 2010, 12, 1758–1766.
- Guo, C.; Wu, X.; Yan, M.; Dong, Q.; Yin, S.; Sato, T.; Liu, S. The visible-light driven photocatalytic destruction of NOx using mesoporous TiO2 spheres synthesized via a "watercontrolled release process". *Nanoscale*. 2013, 5, 8184–8191.
- Guo, C.; Yin, S.; Yan, M.; Kobayashi, M.; Kakihana, M.; Sato, T. Morphology-controlled Synthesis of W18O49 Nanostructures and Their Near-infrared Absorption Properties. *Inorganic Chemistry.* 2012, *51*, 4763–4771.
- Guo, C.; Yin, S.; Yan, M.; Sato, T. Facile synthesis of homogeneous CsxWO3 nanorods with excellent low-emissivity and NIR shielding property by a water controlled-release process. J. Mater. Chem. 2011, 21, 5099–5105.
- Guo, C.; Yin, S.; Zhang, P.; Yan, M.; Adachi, K.; Chonan, T.; Sato, T. Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process. J. Mater. Chem. 2010, 20, 8227–8229.
- 11. Liu, P.; Yan, M.; He, R. Bis(imino)pyridine palladium(II)complexes as efficient catalysts for the Suzuki–Miyaura reaction in water. *Appl. Organometal. Chem.* **2010**, *24*, 131–134.