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Preface

Density functional theory (DFT) was developed to calculate the electronic states
of solids containing huge numbers of electrons. In the earliest years, DFT was,
therefore, used only for calculations of band structure and other properties of solids.
However, DFT began to be used in quantum chemistry calculations in the 1990s,
and today it has become the predominant method, accounting for more than 80 %
of all quantum chemistry calculations, after only two decades. Quantum chemistry
is aimed mainly at chemical reactions and properties. Because chemical reactions
are usually associated with electron transfers between much different electronic
states, highly sophisticated methods are required, incorporating high-level electron
correlations of well-balanced dynamical and nondynamical correlations (see Sect.
3.2) to quantitatively reproduce the reactions. Quantum chemists have, therefore,
focused on how to incorporate high-level electron correlations efficiently for several
decades. So far, various methods have been developed with the difference mainly
in the approaches for sorting out electron configurations to incorporate electron
correlations efficiently. Prior to DFT, conventional methods have required much
computational time, making it difficult to calculate the electronic states of large
molecules, even for those containing several dozen atoms in the 1990s. The
appearance of DFT altered this situation. Because DFT incorporates high-level
electron correlations of well-balanced dynamical and nondynamical correlations
simply in exchange-correlation functionals of electron density (see Sect. 4.5), it
enables us to calculate chemical reaction energy diagrams quantitatively, with
computational times equivalent or less than those for the Hartree–Fock method.

In this book, the fundamentals of DFT are reviewed from the point of view
of quantum chemistry. The fundamentals of DFT have so far been described in
many reference books. However, most DFT books explain the fundamentals of
conventional DFT methods used in solid state calculations, which are not necessarily
the same as those used in quantum chemistry calculations. In order to figure
out how to use DFT to approach quantum chemistry, it is necessary to know
the meaning of electron correlation and the strategies to incorporate high-level
electron correlations. Molecular orbital energy is one of the most reliable indicators
to test the balance of the electron correlations, which are mostly included in
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exchange-correlation functionals. Based on this concept, this book first introduces
the history and fundamentals of quantum chemistry calculations, then explains
exchange-correlation functionals and their corrections especially for incorporating
high-level electron correlations, and finally describes highly sophisticated DFT
methods to provide correct orbital energies.

The objectives and outlines of each chapter are as follows:
In Chap. 1, DFT is placed in the history of quantum chemistry, and then the

Schrödinger equation and the quantizations of molecular motions are reviewed.
First, the history of quantum chemistry is overviewed to place DFT in the history of
quantum chemistry. This chapter then reviews the backgrounds and fundamentals
of the Schrödinger equation with the meaning of the wavefunction, in accord with
the history. As the first applications in quantum chemistry, the quantizations of the
three fundamental molecular motions are discussed using simple models, especially
for the meanings of the Schrödinger equation solutions.

According to the history of quantum chemistry, the Hartree–Fock method and
its computational algorithms are introduced in Chap. 2. First, the Hartree method
and molecular orbital theory are briefly reviewed as the foundations of molecular
electronic state theories. Based on these, the Slater determinant for the wavefunction
and the Hartree–Fock method based thereon are then explained. As the computa-
tional algorithms of the Hartree–Fock method in quantum chemistry calculations,
this chapter also describes the Roothaan method, basis functions centering on
Gaussian-type functions, and high-speed computation algorithms of the Coulomb
and exchange integrals. The unrestricted Hartree–Fock method for open-shell
system calculations is also surveyed. This chapter also explains the electronic
configurations of the elements in the periodic table, confirmed by the Hartree–Fock
method to a considerable extent.

Chapter 3 reviews electron correlation, to which the highest importance has
been attached in quantum chemistry, for the meaning and previous approaches to
incorporate it. After describing the main cause for electron correlation, dynamical
and nondynamical electron correlations are introduced to clarify the details of
electron correlation. As the calculation methods for these electron correlations,
this chapter briefly reviews the configuration interaction and perturbation methods
for dynamical correlations and the multiconfigurational self-consistent field (SCF)
method for nondynamical correlations. This chapter also mentions advanced elec-
tron correlation calculation methods to incorporate high-level electron correlations.

In Chap. 4, the Kohn–Sham equation, which is the fundamental equation of
DFT, and the Kohn–Sham method using this equation are described for the basic
formalisms and application methods. This chapter first introduces the Thomas–
Fermi method, which is conceptually the first DFT method. Then, the Hohenberg–
Kohn theorem, which is the fundamental theorem of the Kohn–Sham method, is
clarified in terms of its basics, problems, and solutions, including the constrained-
search method. The Kohn–Sham method and its expansion to more general cases are
explained on the basis of this theorem. This chapter also reviews the constrained-
search-based method of exchange-correlation potentials from electron densities and
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the expansions of the Kohn–Sham method to time-dependent and response property
calculations.

Exchange-correlation functionals, which determine the reliability of Kohn–Sham
calculations, are compared in terms of the basic concepts in their development,
and for their features and problems, in Chap. 5. This chapter uses as examples the
major local density approximation (LDA) and generalized gradient approximation
(GGA) exchange-correlation functionals and meta-GGA, hybrid GGA, and semi-
empirical functionals to enhance the degree of approximation in terms of their
concepts, applicabilities, and problems.

Chapter 6 reviews physically meaningful corrections for the exchange-
correlation functionals, including their formulations and applications. As the
specific types of corrections, this chapter covers long-range corrections, enabling us
to calculate orbital energies and exchange integral kernels correctly; self-interaction
corrections, improving the descriptions of core electronic states; van der Waals
corrections, which are required in calculating van der Waals interactions; relativistic
corrections, which are needed in the electronic state calculations of heavy atomic
systems; and vector-potential corrections, which play a significant role in magnetic
calculations.

Chapter 7 focuses on orbital energy, which is the solution of the Kohn–Sham
equation and one of the best indicators to evaluate incorporated electron correla-
tions, including the various approaches to reproduce accurate orbital energies. The
physical meaning of orbital energy is first explained on the basis of the Koopmans
and Janak theorems. Then, this chapter summarizes previous discussions on the
causes of poor-quality orbital energies given in Kohn–Sham calculations and shows
highly sophisticated exchange-correlation potentials, which have been developed
to calculate accurate orbital energies. Finally, the long-range corrected Kohn–
Sham method, which reproduces accurate occupied and unoccupied orbital energies
simultaneously, is discussed, revealing the path to obtain accurate orbital energies.

This book has as its target readership the following groups: graduate students
who are beginning their study of quantum chemistry, experimental researchers who
intend to study DFT calculations from the beginning, theoretical researchers from
different fields who become attracted to DFT studies in quantum chemistry, and
quantum chemists who wish to brush up their fundamentals of quantum chemistry
and DFT or wish to have a reference book for their lectures. Therefore, this book
was designed to be useful in studying the fundamentals, not only of DFT but of
quantum chemistry itself. Unlike representative DFT books such as Parr and Yang’s
Density-Functional Theory of Atoms and Molecules (Oxford Press) and Dreizler
and Gross’s Density Functional Theory: An Approach to the Quantum Many-
Body Problem (Springer), this book explains DFT in practical quantum chemistry
calculations using the terminology of chemistry. Because this book focuses on
quantum chemistry, it basically omits DFT topics unrelated directly to quantum
chemistry calculations. The detailed derivations of formulations are also neglected
in this book, unlike many DFT books in physics, because this book is intended
to instill the comprehension of DFT fundamentals. For the details required in the
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development of specific theories and computational programs, the reader is directed
to the relevant papers that are cited.

Finally, I would like to acknowledge Prof. Donald A. Tryk (University of
Yamanashi) for supervising the English translation and for giving productive advice.
I would also like to acknowledge Prof. Andreas Savin (Université Pierre et Marie
Curie and CNRS) for giving fruitful comments and discussions of Chap. 7. This
book is basically the translation of my Japanese book, the English title of which
is Fundamentals of Density Functional Theory (Kodansha). Again, I would like
to record my thanks to Prof. Haruyuki Nakano (Kyushu University), Prof. Tetsuya
Taketsugu (Hokkaido University), Prof. Shusuke Yamanaka (Osaka University), and
Prof. Yasuteru Shigeta (Osaka University) for their detailed reviews of the Japanese
version. Finally, I would like to express my thanks to Taeko Sato and Shinichi
Koizumi (Springer, Japan) for providing the opportunity to publish my book and
for waiting for the completion of my manuscript.

Kofu, Japan Takao Tsuneda
November 2013
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Chapter 1
Quantum Chemistry

1.1 History of Quantum Chemistry

Quantum chemistry is a branch of chemistry in which chemical phenomena are
elucidated deductively on the basis of quantum mechanics. Chemistry covers a
wide range of scales, from atoms and small molecules to large systems such as
biomolecules and solids, and includes their structures, properties, and reactions.
Except for statistical–mechanical factors, quantum mechanics controls chemistry.
Actually, the electronic structure of matter is determined by solving the Schrödinger
equation precisely, except for the contributions of relativistic effects. This seems
to indicate that quantum chemistry is a subset of quantum mechanics designed
for the study of chemistry. However, it should not be overlooked that quantum
chemistry focuses on the applications of chemistry and therefore traces the progress
of experimental chemistry. In fact, quantum chemistry has been synchronized with
the progress of experimental chemistry. To make this clear, I briefly summarize the
history of quantum chemistry with a focus on density functional theory (DFT) for
electronic structure calculations below. Since this history intends to review the broad
flow of progress in quantum chemistry, I would like to emphasize beforehand that it
is neither objective nor exhaustive.

After the development of the Schrödinger equation, the main subjects of quantum
chemistry have progressed roughly in six stages (see Table 1.1). Let us review
the progress of quantum chemistry with consideration of specific major topics in
experimental chemistry for each research stage.

First Stage: Fundamental Theories of Quantum Chemistry
(1926–1937)

After the development of the Schrödinger equation (Schrödinger 1926) various sig-
nificant fundamental theories of quantum mechanics were produced in a remarkably
short period. Through the uncertainty principle (Heisenberg 1927) and Bohr’s wave-

T. Tsuneda, Density Functional Theory in Quantum Chemistry,
DOI 10.1007/978-4-431-54825-6__1, © Springer Japan 2014
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2 1 Quantum Chemistry

Table 1.1 Research stages of quantum chemistry and corresponding main subjects

Stage Period Main subject

1st 1926–1937 Fundamental theories of quantum chemistry
2nd 1950–1960 Customized theories available on computers
3rd 1961–1969 Approximate theories for calculating specific systems
4th 1970–1984 Quantum chemistry calculation programs and DFT
5th 1985–1995 Potential functionals and excited state theories
6th 1996–? Easy-to-use theories focusing on utility

particle complementarity principle (lecture in Como, Italy, 1927), the relativistic
Schrödinger equation (Dirac equation) (Dirac 1928) was developed 2 years later. A
bunch of experiments were then carried out to support these fundamental theories,
forming the concepts of quantum mechanics. Fundamental theories of quantum
chemistry were also rapidly developed in this period as approaches for clarifying
chemistry based on quantum mechanics.

The first target of quantum chemistry was how to solve the Schrödinger equation
for electronic motions in molecules. To address this challenge, the Hartree–Fock
method (Hartree 1928) and its variational method (Slater 1928), molecular orbital
theory (Hund 1926; Mulliken 1927), and the Slater determinant (Slater 1929)
were developed, resulting in the Hartree–Fock method (Fock 1930; Slater 1930),
which is accepted as the precursor of quantum chemistry. Soon afterward, the
configuration interaction (CI) method (Condon 1930), Møller–Plesset perturbation
method (Møller and Plesset 1934), and multiconfigurational SCF method (Frenkel
1934) were proposed to incorporate an effect neglected in the Hartree–Fock
method, which is “electron correlation.” The time-dependent response Hartree–Fock
method (Dirac 1930) for response property calculations and the empirical Hückel
method (Hückel 1930) for electronic structure calculations of organic molecules
were also suggested around the same period. In the field of solid state physics, the
Thomas–Fermi method (Thomas 1927; Fermi 1928), which subsequently became
the fundamental concept of DFT, was developed to solve the Schrödinger equation
for solid state systems containing enormous numbers of electrons. The first local
density approximation (LDA) was proposed for kinetic energy in this method, and
this led to the development of the first LDA exchange functional (Dirac 1930) and the
first generalized gradient approximation (GGA) for kinetic energy (von Weizsäcker
1935).

After a few test calculations of electronic structures, quantum chemistry immedi-
ately targeted ways to interpret electronic state wavefunctions in molecules. This is
exemplified by the hybrid orbital model (Pauling 1928) for clarifying atomic orbitals
in molecules, Koopmans theorem (Koopmans 1934) for giving orbitals meaning,
transition state theory (Eyring 1935) for discussing chemical reactivity, the linear
combination of atomic orbital–molecular orbitals (LCAO–MO) approximation
(Lennard-Jones 1929; Coulson 1938), for modeling molecular orbitals, and the
chemical reaction principle (Bell 1936; Evans and Polanyi 1938) for interpreting
chemical reactions. Based on all of these components, fundamental theories of
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quantum chemistry were constructed to investigate the electronic structure of
molecules.

Subsequently, the focus of many of the founders of quantum mechanics shifted to
the atomic nucleus. However, following the discovery of nuclear fission in uranium
in 1938 and the World War II from 1939 to 1945, the finest minds in physics were
diverted to the design of atomic weapons. The war drastically decreased researchers’
positions and funds, other than military-related projects, causing science to drift
through a long period of stagnation. Quantum chemistry also hardly produced any
remarkable studies except in atomic bomb-related studies until notable changes
started to occur in the 1950s.

Second Stage: Customized Theories Available on Computers
(1950–1960)

In the 1950s, the appearance of computers brought about a revolution in science
and technology. The hardware development of computers made progress during this
period: the world’s first commercial computer, UNIVAC, was built in 1950, and the
first large-scale scientific computer, the IBM701, appeared in 1952. Following the
appearance of computers, researchers in many scientific fields started to seek new
ways of applying computers to their fields. Quantum chemistry has been one of the
scientific fields most affected by these developments.

Before the appearance of computers, it was usually not realistic to solve the
Schrödinger equation for the electronic structures of molecules due to the huge
numbers of computations. Since computers were able to bring the latter into
reality, they triggered the rapid development of computational theories optimized
for computer architectures. In particular, various theories and algorithms were
proposed to make matrix operations available, because von Neumann-type com-
puters, which are in the mainstream even at present (2013), are better suited for
the matrix operations. Beginning with the development of basis functions (Boys
1950) for the matrix operations in 1950, the Roothaan method (Roothaan 1951;
Hall 1951) was developed as a Hartree–Fock method utilizing basis functions, the
unrestricted Hartree–Fock (UHF) method (Pople and Nesbet 1954) was proposed
to extend the Roothaan method to open-shell electronic structure calculations, and
the first semiempirical calculation method (Pariser and Parr 1953; Pople 1953) was
suggested to approximate the Roothaan method with semiempirical parameters to
speed up the calculations. The concept of electron correlation (Löwdin 1955) was
suggested in this context. Various major analysis approaches were also developed,
e.g., the population analysis method (Mulliken 1955) for investigating molecular
orbitals calculated with basis functions and the molecular orbital localization
method (Foster and Boys 1960) for making molecular orbitals close to hybrid
orbital pictures. Furthermore, the molecular dynamics method (Alder and Wain-
wright 1959) was proposed in this stage to simulate structural transformations by
approximating interatomic interactions with force fields.



4 1 Quantum Chemistry

Third Stage: Approximate Theories for Calculating Specific
Systems (1961–1969)

In the 1960s, performance advances in precision measurement devices induced
discoveries in many scientific fields, leading to the reconstruction of both theories
and technologies.

In quantum chemistry, various theories were developed to calculate specific
systems for making comparisons with precise experimental results. It was, how-
ever, difficult for computers at that time to obtain sufficiently accurate results
for interesting molecules. Therefore, theories were usually derived with bold
approximations available only for specific systems. The extended Hückel method
(Hoffmann 1963) was first proposed by modifying the Hückel method, suggested
30 years earlier, in order to be applicable to chemical property calculations. Then,
the orbital-based reaction analysis method of frontier orbital theory (Fukui et al.
1952) was applied to the extended Hückel method and succeeded in helping to
reveal the mechanisms of Diels–Alder reactions in 1964. This was validated a year
later by the Woodward–Hoffmann rules (Woodward and Hoffmann 1965). In this
period, Marcus theory (Marcus 1956) was developed to explain electron transfer
mechanisms in outer-sphere-type redox reactions. It is particularly worth noting in
this period that by reconsidering the Thomas–Fermi method suggested 30 years
earlier, similarly to the Hückel method, the Hohenberg–Kohn theorem (Hohenberg
and Kohn 1964), which is the fundamental theorem of DFT, was proposed, and the
Kohn–Sham method (Kohn and Sham 1965) was then suggested on the basis of this
theorem in the field of solid state physics. That is, DFT was initially generated as a
theory for calculating a specific system, i.e., that of the solid state.

As another trend in this period, it should be mentioned that major theories
for highly accurate calculations of small molecules were developed following
the increase of Gaussian basis functions for calculating polyatomic systems and
dynamical and nondynamical electron correlation analysis (Sinanoğlu 1964) for
clarifying the meaning of electron correlation. For example, the cluster expansion
theory (C̆íz̆ek 1966) and the equation-of-motion (EOM) method (Rowe 1968) were
proposed. The multiconfigurational SCF method became popular in this period and
led to the multireference configuration interaction (MRCI) method (Whitten and
Hackmeyer 1969), which uses the MCSCF wavefunction as the reference function.

Fourth Stage: Quantum Chemistry Calculation Programs
and DFT (1970–1984)

Computers began to make obvious contributions to the world’s science and tech-
nology in the 1970s due to their widespread prevalence, as symbolized by the
appearance of the first personal computer, the MITS Altair8800 (1974).
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In quantum chemistry, various quantum chemistry calculation programs,
including the Gaussian (1970) and GAMESS (1982) programs, which later
became the major commercial and free programs, were released. A number of
different frequently used algorithms were consequently developed, especially for
speeding up calculations, during this period. For instance, the Davidson matrix
diagonalization algorithm (Davidson 1975) was proposed to carry out large CI
matrix calculations. Many approaches for reducing basis functions were also
suggested for improving the efficiency of the calculations, e.g., the pseudopotential
(Heine 1970) approximating inactive orbitals by potentials, the effective core
potential (ECP) (Kahn and Goddard 1972), replacing core orbitals with potentials,
and the QM/MM method (Warshell and Levitt 1976) modeling unimportant parts
by classical molecular mechanics, are some examples of these approaches. These
algorithms and approaches made quantum chemistry calculations practical for
investigating the structural and reaction analyses of small molecules.

It is noteworthy that, during this period, DFT was expanded and strength-
ened in the field of solid state physics. The foundation of DFT was formed by
Janak’s theorem (Janak 1978), the constrained search formulation (Levy 1979), the
Runge–Gross theorem (Runge and Gross 1984) and the requirements for potential
functionals were prepared by the self-interaction correction (Perdew and Zunger
1981) and so forth. This subsequently led to the explosive growth of potential
functionals. Actually, the most frequently used LDA correlation functional (Vosko
et al. 1980) was developed during this period.

Fifth Stage: Potential Functionals and Excited State
Theories (1985–1995)

Science during this period was led by nanomaterials design, inspired by the
discovery of C60 fullerene in 1985 and by photochemistry inspired by the develop-
ment of femtosecond time-resolved spectroscopy in 1987. This scientific tide may
have had an important impact on quantum chemistry during the latter half of this
period: DFT, enabling fast calculations, rapidly grew in use, and many excited state
theories were developed for photochemical reaction calculations.

The increasing use of DFT was triggered directly by the development of the Car–
Parrinello molecular dynamic method (Car and Parrinello 1985), which became
the major first-principles molecular dynamics theories based on DFT, and the
B88 exchange functional (Becke 1988) and the LYP correlation functional (Lee
et al. 1988), which are GGA functionals giving accurate results, even for chemical
applications. Since quantum chemistry calculations of nanoscale systems were made
realistic by these factors, a great number of potential functionals were consequently
suggested to obtain higher accuracies in quantum chemistry calculations. The highly
popular B3LYP hybrid functional (Becke 1993) was also proposed in this period.
Moreover, the QM/MM method was applied to DFT for large-scale molecule
calculations and resulted in the developments of linear-scaling methods such as the
divide-and-conquer method (Yang 1991).
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Another trend of quantum chemistry during this period was that various types of
multireference theories were developed as excited state theories. Single-reference
methods such as the SAC-CI method (Nakatsuji and Hirao 1978) had thus far been
the mainstream, even in excited state theories. Actually, quantitative discussions
of the excited states of small molecules covering femtosecond photochemistry
need accurate calculations using multireference theories, which explicitly contain
both dynamical and nondynamical electron correlations. Increases in computer
performance made it possible to carry out such costly multireference calculations.
For instance, major multireference theories, including the CASPT2 (Andersson
et al. 1990), MRMP (Hirao 1992), and MCQDPT (Nakano 1993) methods were
developed during this period.

Sixth Stage: Easy-to-Use Theories Focusing on Utility (1996–?)

During the last half of the 1990s, theories and technologies in different fields have
been integrated, and experimental devices have become highly sophisticated. As a
result, various utility theories and technologies have been produced during this
period; e.g., human embryonic stem (ES) cells, able to create various human organs
(1998), and the optical frequency comb, making it possible to control both the phase
and frequency of light (1999). In quantum chemistry, although theories had thus far
been specialized for either high speed or high accuracy, utility theories containing
both aspects have been required and developed in this period.

In the field of DFT, the time-dependent response Kohn–Sham method (Casida
1996), enabling high speed, highly accurate excited state calculations, and time-
dependent current DFT, for extending the availability of DFT by introducing the
vector potential (Vignale and Kohn 1996), were proposed. Then, functionals based
on the long-range correction (LC) (Iikura et al. 2001), for recovering long-range
exchange effects in exchange functionals, and various semiempirical functionals
(Becke 1997), fitting a huge number of semiempirical parameters to reproduce
highly accurate properties, have been produced. The only common characteristic
of these functionals is high utility, so as to reproduce accurate results equivalently
for a wide variety of property and reaction calculations.

1.2 History of Theoretical Chemistry Prior to the Advent
of Quantum Chemistry

Next, let us review the history of theoretical chemistry before the development of
the Schrödinger equation (Asimov 1979), because it is also significant to consider
the historical orientation of quantum chemistry. This history is basically divided
into three stages: genesis, thermal physics–statistical-mechanics stage, and early
quantum mechanics stage. Below are brief reviews of each stage.
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First Stage: Genesis of Chemistry (–1850s)

Up to the sixteenth century, chemistry was alchemy. Alchemy was based on
mysticism originating from Grecian philosophy and expanded in Arabia after
ancient Christianity demonized science around 650. At the end of the sixteenth
century, A. Libavius changed this circumstance by publishing a chemistry textbook
“Alchemy” that avoided mysticism in 1597. R. Boyle then academized chemistry
by renaming alchemy as “chemistry” in 1661 and by suggesting the law known as
Boyle’s Law, “pressure times volume is a constant,” in 1662.

The foundation of chemistry was constructed by A. de Lavoisier, the “father
of modern chemistry.” Lavoisier proposed the law of the conservation of mass
stating “the mass of an isolated system is maintained as a result of processes acting
inside the system,” and organized the whole knowledge of earlier chemistry in his
book, “Traite elementaire de chimie (Elementary Treatise on Chemistry)” (1789).
Following the law of definite composition (1799) stating “a chemical compound
always contains exactly the same proportion of elements by mass,” suggested by
J.L. Proust, J. Dalton proposed the law of multiple proportion, stating “if two
elements form more than one compound between them, the ratios of the masses
of the second element which combine with a fixed mass of the first element will be
ratios of small whole numbers,” and called the elements “atoms” for the first time in
his book, “A New System of Chemical Philosophy” (1808). He also first suggested
the atomic weight table in this book. Based on the result of electrolysis (1800) by
W. Nicholson and A. Carlisle, J.-L. Gay-Lussac proposed the gas law of combining
volumes (1808), stating “if the mass and pressure of a gas are held constant, then the
gas volume increases linearly as the temperature rises,” which generalizes the law
of multiple proportion. A. Avogadro then suggested the law known as Avogadro’s
Law (1811), stating “under the same conditions of temperature and pressure, equal
volumes of all gases contain the same number of molecules.” This law made it
possible to distinguish molecules from atoms. Around the same time, J.J. Berzelius
expanded the law of combining volumes to non-integer ratios and suggested element
symbols and chemical reaction formulae (1807–1823), which are still in use today,
in his case, to find isomers (1830). M. Faraday also elaborated the mechanism of
electrolysis and proposed the law of electrolysis (1832), which subsequently led to
the detection of electrons. Based on the above concepts, E. Frankland set up the
ansatz of valence electrons (1852) and F.A. Kekule von Stradonitz and A.S. Couper
consequently proposed molecular structural formulae using interatomic bonds
(1861), including the benzene ring (1865). Thus, the foundations of chemistry were
laid.

Second Stage: Thermal and Statistical Mechanics (1840s–1880s)

Around the 1840s, the interest of chemists moved to thermal mechanics. G.H. Hess,
the father of thermal mechanics, proved the law known as Hess’s Law (1840),
stating “if a reaction takes place in several steps, then its reaction energy is the
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sum of the energies of the intermediate reactions into which the overall reaction
may be divided at the same temperature.” This led to the development of the
first law of thermodynamics (1842) by J.R. von Mayer, stating “the energy of an
isolated system is constant in a thermodynamic process,” and the second law of
thermodynamics (1850) by R. Clausius, stating “the entropy of an isolated system
increases in a spontaneous process of energy change.” In a study of ether synthesis,
A.W. Williamson confirmed the presence of reversible reactions and chemical
equilibration, which led to the development of chemical reaction kinetics. Following
this study, C.M. Guldberg and P. Waage proposed the law of mass action, stating
“the reaction rate is proportional to the concentration of matter surrounding the
reactant molecules,” with equilibrium equations (1863).

After the results of basic thermodynamics studies had converged, the
thermodynamics of gas molecules began to be understood in terms of the kinetics
of constituent molecules. The kinetic theory of molecules was launched by
J.C. Maxwell, who developed the velocity distribution function of gas molecules
(1860). L. Boltzmann associated this distribution function with the thermodynamics
of gases to propose the relation between entropy and probability (1877). By
applying a series of thermodynamic laws to chemistry, J.W. Gibbs organized
chemical thermodynamics theories by introducing the concepts of free energy,
chemical potential, and the phase rule. Based on these theories, F.W. Ostwald
introduced the concept of catalysis (1887) and J.H. van ’t Hoff suggested the
laws of osmotic pressure for solutions (1886). S.A. Arrhenius also clarified ionic
dissociations in electrolyte solutions (1884) and suggested the activation energies
of reactions (1889). Moreover, the first ever international conference on chemistry
was held in Karlsruhe (1860), which induced the classification of the elements
and led to the idea of the periodic table by D.I. Mendelejev (1869). To fill out
the periodic table, elements that included the lanthanides and rare gases were then
found one after another. The early period of modern chemistry prior to quantum
mechanics became nearly complete in this way.

Third Stage: Early Quantum Mechanics (1890s–1920s)

Beginning in the 1890s, it became the highest priority in chemistry to understand
atoms. Although the atomic compositions of molecules and the periodicity of the
elements had been clarified, the structures of atoms were difficult to clarify just
base on the nature of these properties. The discovery of electrons (1897) and the
suggestion of the quantum hypothesis (1900) at the end of the nineteenth century
prefaced the clue to the solution.

The quantum hypothesis was derived by M.K.E.L. Planck from a discussion on
the study of black-body radiation. A “black body” is a physical body that absorbs
all incident electromagnetic radiation and emits the so-called black-body radiation
with a spectrum depending only on temperature. For the spectrum of the black-
body radiation, Wien (W.C.W.O.F.F. Wien)’s Law (1886) and the Rayleigh-Jeans
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(J.W. Strutt, 3rd Baron Rayleigh, J.H. Jeans) Law (1900) were suggested for high
and low frequencies, respectively. However, these laws have problems: the former
is inconsistent with classical physics, and the latter yields infinity for the total
energy density. Planck proposed a formula giving quite accurate total energies by
complementing these laws and advocated the quantum hypothesis, i.e., that this
formula is explained by assuming that the energy of each radiation mode is an
integral multiple of h�. Later, the proportionality constant h was called the Planck
constant. The concept of the quantum appeared for the first time in this hypothesis.

The discovery of electrons as particles in a vacuum tube with two metal
electrodes (cathode and anode) made by J.J. Thomson also had a large impact
on chemistry. In response, P.E.A. von Lenard showed in 1902 that the loss of
electrons from metals (and other matter) leads to the photoelectric effect, which
is the decrease of electric voltage due to ultraviolet irradiation of the cathode, due to
the discharge between the electrodes, which his former supervisor H.R. Hertz had
first discovered. However, the photoelectric effect also had an aspect that conflicted
with classical electromagnetics. In the photoelectric effect, photoirradiation with
a frequency higher than a certain threshold induces current (photocurrent) pro-
portional to the light intensity and electrons (photoelectrons) with energies that
were independent of light intensity. Classical electromagnetics can explain this
phenomenon. What is unexplainable is the fact that the energies of the electrons
increase monotonically with incident light frequency �.

Einstein knew the quantum hypothesis and advocated the following photon
hypothesis (Einstein 1905):

• Light is the aggregation of photons, which are energy quanta, h�.
• Photoabsorption increases the energy of each electrons by h�.
• Electrons need “work” energies to escape from bulk metals.
• The remaining energy is transformed to the kinetic energy of the electron.

This hypothesis was later proven by the demonstration of the Compton effect
(Compton 1923).

There was also a controversy concerning the ways electrons exist in atoms.
Lenard suggested an atomistic model in which electrons are mixed and paired with
positive particles (like positrons) in atoms. Thomson disputed this model because it
cannot interpret photoelectric effects and advanced an alternative atomistic model
in which negatively charged electrons rotate freely in homogeneous positively
charged matter. In response, E. Rutherford considered the experimental result
that ˛ particles impinging on metallic foils are scattered with large angles, and
proposed an atomistic model, later called the “Rutherford model” (1908), in which
electrons circulate around positive charges localized in the center of the atom. A
similar atomistic model was also suggested by H. Nagaoka in 1904. Rutherford
also proposed that the matter in anode rays, having 1837 times the electron mass,
can be used as the fundamental unit of this positive charge (1914). However,
even this atomistic model has problems: this model cannot explain the Rydberg
(J. Rydberg) formula (1888), which clearly gives the emission spectrum of the
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hydrogen atom. Moreover, since circulating electrons are undergoing acceleration,
classical electromagnetics indicates that electrons in this model must radiate light
before eventually falling into the positive charges.

Bohr first proposed an electron motion model to solve the problems of the
Rutherford model. For the electron in a hydrogen atom, Bohr presented an atomistic
model, in which the periodic orbits of electrons are quantized, and proposed the
following hypothesis, known as the “Bohr hypothesis” (Bohr 1913):

• The electron moves in an orbit in which each electron is characterized by a
natural number multiplied by the angular momentum h=2� , and remains in a
stationary state without radiating light.

• An electron can be transferred discontinuously from one allowed orbit to another
with the absorption or emission of the energy difference,E � E 0.

This hypothesis leads to the electronic energy of the hydrogen atom and gives the
Rydberg formula for the emission spectrum. Moreover, this explains the reason
why no electron falls into the positive charge, by assuming that the electrons
can exist only in orbits. This atomistic model interpreted the electronic state of
the hydrogen atom for the first time. However, various problems remained. This
model does not make clear when the electron jumps from one orbit to another
and is applicable only to systems having cyclic orbits, like the hydrogen atom.
More importantly, this model cannot describe any electronic state for other atoms
containing multiple electrons. Heisenberg explained that this failure comes from
the introduction of classical concepts and symbols and the use of intuitive models
and abstractions (Heisenberg 1926). This impasse of early quantum mechanics
triggered the paradigm conversion to modern quantum mechanics containing only
experimentally verifiable relations.

The key for solving this problem was proposed by L.-V.P.R. de Broglie in his
doctoral thesis (1924) 10 years later. De Broglie considered that particles can be
regarded as waves, and all matter exists as matter waves having a wave-particle
duality. That is, all matter has wavelength

� D h

p
; (1.1)

where p is the momentum of the matter. This � is called the de Broglie wavelength.
The existence of matter waves explains why the angular momentum of the electron
in the hydrogen atom is quantized. Later, the concept of matter waves was confirmed
by the Davisson–Germer experiment on electron beam scattering (Davisson and
Germer 1927) and the double slit experiment using electron beams (Jönsson 1961).
In 1925, Einstein introduced this matter wave study to physicists in Germany, and it
consequently led to the development of the Schrödinger equation .
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1.3 Analytical Mechanics Underlying the Schrödinger
Equation

Before moving on to the Schrödinger equation, let us briefly review the relevant
analytical mechanics. The most significant aspects of analytical mechanics are the
least-action principle and the conservation laws based on it. In 1753, L. Euler
arranged P.-L.M. de Maupertuis’s thoughts in his paper entitled “On the least-
action principle” and proved that the kinetics of mechanical systems obey the
least-action principle, to apply this principle to general problems (Ekeland 2009).
J.-L. Lagrange proposed his original solution for general problems and named it
the variational method (1754). Euler introduced this variation method in his paper
entitled “Principle of the variation method” (1766) (Ekeland 2009).

The least-action principle leads to the Euler–Lagrange equation determining
motion paths. Suppose that a mechanical system is located at two different points
with coordinates, q1 and q2, at different times, t D t1 and t D t2, respectively. Then,
the system transfers between these points under the condition that the action

S D
Z t2

t1

L.q; Pq; t/dt; (1.2)

where q is a general coordinate and Pq is a general velocity, has a stationary value.
That is, the variation of action satisfies

ıS D ı

Z t2

t1

L.q; Pq; t/dt (1.3)
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� d

dt

@L

@ Pq
�
ıqdt D 0: (1.4)

Application of ıq.t1/ D ıq.t2/ D 0 yields the Euler–Lagrange equation (1766)

@L

@q
� d

dt

@L

@ Pq D 0; (1.5)

where the Lagrangian L is defined for independent particles having no interactions
between their masses as

L D
X
i

miv
2
i

2
� V.r1; r2; : : :/: (1.6)

For the i -th mass point, mi is the mass, vi is the velocity, and ri is the position
vector. In Eq. (1.6), the first term on the right-hand side is the kinetic energy, and V
is the potential energy which is a function depending only on the positions of the
individual masses.
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Noether proved a theorem subsequently known as Noether’s theorem, which
assures the conservation laws of energy and momentum from the Euler–Lagrange
equation with the uniformities of time and space, respectively (Noether 1918). First,
from the uniformity of time, the Lagrangian of independent particle systems does
not explicitly depend on time. The total differentiation of the Lagrangian is therefore

dL

dt
D
X
i

@L

@qi
Pqi C

X
i

@L

@ Pqi Rqi : (1.7)

Applying the Euler–Lagrange equation in Eq. (1.5) to this equation yields

dL

dt
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dt
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D
X
i

d
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�
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@ Pqi Pqi
�
: (1.8)

Since this leads to

d

dt

 X
i

@L

@ Pqi Pqi �L
!

D 0; (1.9)

it is proven that

E D
X
i

@L

@ Pqi Pqi � L (1.10)

is conserved for the motions of independent particle systems. This E is called
the energy of independent particle systems. From the uniformity of space, the
Lagrangian of independent particle systems remains unchanged for translation in
space. For the translation ri ! ri C �r in Cartesian coordinates, the microdis-
placement of the Lagrangian is derived as

ıL D
X
i

@L

@ri
�r D �r

X
i

@L

@ri
D 0: (1.11)

Since the movement distance �r is arbitrary, we obtain

X
i

@L

@ri
D 0: (1.12)

According to the Euler–Lagrange equation in Eq. (1.5), this equation yields

X
i

d

dt

@L

@Pri D d

dt

X
i

@L

@Pri D 0: (1.13)
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Therefore, the momentum of independent particle systems,

p D
X
i

@L

@Pri ; (1.14)

is also conserved. This momentum is described in terms of the general coordinate
vector qi as

pi D @L

@ Pqi ; (1.15)

which is the general momentum vector of the i -th particle.
For considering mechanics problems, the formula based on the energy, which is

a conserved quantity, is usually superior to that based on the Lagrangian mentioned
above. W.R. Hamilton formulated an EOM based on the energy, which excels in
its applicability to mechanics problems. With the general momentum pi , the total
differential of the time-independent Lagrangian is given as

dL D
X
i
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i
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Therefore, applying
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�
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to Eq. (1.16) yields

d

 X
i

pi Pqi � L

!
D �

X
i

Ppidqi C
X
i

Pqidpi : (1.18)

The representation in parentheses on the left-hand side is a formula for the energy,
which is called the Hamiltonian of the system. Equation (1.18) leads to the
canonical equation,

Pqi D @H

@pi
; Ppi D �@H

@qi
: (1.19)

Thus far, the action in Eq. (1.4) has been used as an auxiliary quantity for rep-
resenting the EOM. Let us redefine the action as a physical quantity characterizing
the least-action motion. Given ıq.t1/ D 0 and ıq.t2/ D ıq, the Euler–Lagrange
equation in Eq. (1.5) and pi D @L=@ Pqi leads to the variation of the action in
Eq. (1.4),
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ıS D
X
i

pi ıqi : (1.20)

It follows that

@S

@qi
D pi : (1.21)

From the definition of the action, the total differential of the action in terms of time
can be written as

dS

dt
D L: (1.22)

Assuming that the action is a function of coordinates and time, the Lagrangian is
given as

L D dS

dt
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From the definition of the Hamiltonian in Eq. (1.18), we therefore find

@S

@t
D L �

X
i

pi Pqi D �H: (1.24)

Since the Hamiltonian is a function of the coordinates, momenta, and time, and the
momentum is given in Eq. (1.14), we obtain

@S

@t
D �H.q; p; t/ D �H

�
q;
@S

@q
; t

�
; (1.25)

which is called the (time-dependent) Hamilton–Jacobi equation. Provided that the
Hamiltonian does not explicitly depend on time, Eq. (1.10) leads to

L D
X
i

pi Pqi � E: (1.26)

Since the action can be separated into a factor depending only on the coordinates
and a factor explicitly depending on time, it follows that

S D S0.q/ �Et: (1.27)

Substituting this into the Hamilton–Jacobi equation gives

H

�
q;
@S

@q

�
D E; (1.28)
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which is called the time-independent Hamilton–Jacobi equation or the energy
conservation equation. These Hamilton–Jacobi equations were used to develop the
Schrödinger equation.

The above equations of motion determining the motions of mechanical systems
collectively make up what is called analytical mechanics. The phrase “analytical”
was added to distinguish it from the unique mechanics using geometrical con-
figurations seen in the “Philosophia Naturalis Principia Mathematica” (1687) by
I. Newton. Note that it is usually difficult to solve the EOM for specific mechanical
systems. Solving the EOM implies that one can predict the state at a given time
in the future from the initial state. For most mechanical model systems, we cannot
analytically solve the EOM. J.-H. Poincaré proved that there are very few classical
mechanics problems, for which the EOM can be solved analytically (Ekeland 2009).
Even in the present day, the EOM is generally solved by approximate methods.
Since no computers were available in the age of Poincaré, he confined these systems
to those with periodic solutions. The least-action principle underlying the EOM
should be renamed the “stationary”-action principle, because the action is not
exclusively the least action (Ekeland 2009). For the “stationary”-action principle,
Feynman made this clear later with the idea of the path integral based on quantum
mechanics (Feynman 1948). That is, the classical paths of the stationary action are
only the paths of overwhelmingly higher probability compared to others. Theoretical
calculation results based on the path integral agree with experimental values with
quite high accuracy. Furthermore, the question still remains as to how to determine
whether the EOM has a solution or not. This problem is one of “Hilbert’s 23
problems.” In the present day, it can be determined whether a solution exists for
a given system or not (Ekeland 2009).

1.4 Schrödinger Equation

In 1926, Schrödinger published the first paper of “Quantisierung als Eigenwert
problem (Quantization as an Eigenvalue Problem)” (Schrödinger 1926). In this
paper, Schrödinger proposed a new equation combining de Broglie’s concept of
matter waves with the Hamilton–Jacobi equation, the Schrödinger equation. Later,
Dirac (Ph.D. thesis, 1926) and Jordan (Born et al. 1926) independently proved that
this equation is identical to the matrix equation suggested by Heisenberg (1925).

Schrödinger proved that a normal but somewhat mysterious quantization rule is
naturally provided by assuming the finiteness and definiteness of a spatial function
� (Schrödinger 1926). Assuming that � is a logarithmic function representing
action S , a sum of functions, as a product, he defined

S D i„ ln�; (1.29)
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where � is given as

� D exp

�
� iS„

�
: (1.30)

Since this � is regarded as the amplitude of matter waves, the finiteness and
definiteness of � can be presumed by a normalization condition,

Z
j� j2 d� D 1: (1.31)

This� is called a wavefunction. For an energy conservative system having an action
in Eq. (1.27), the variables of this � can be separated into

� D �0 exp
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� iEt„

�
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�
� iS0„

�
: (1.32)

Substituting the action S in Eq. (1.29), using this wavefunction � , into the time-
dependent and time-independent Hamilton–Jacobi equations in Eqs. (1.25) and
(1.28) gives

OH� D i„@�
@t

(1.33)

and

OH� D E�; (1.34)

respectively. Equations (1.33) and (1.34) are called the time-dependent and time-
independent Schrödinger equations, respectively. Note that the Hamiltonian is
replaced with the Hamiltonian operator OH acting on spatial functions.

As an example, let us consider a time-independent, independent-particle system.
Since Eq. (1.29) leads to

OH D
X
i

p2i
2mi

C V D
X
i

1

2mi

�
@S

@qi

�2
C V

D �
X
i

„2
2mi

1

j� j2
�
@�

@qi

�2
C V D E; (1.35)

we obtain an energy conservation equation,

�
X
i

„2
2mi

�
@�

@qi

�2
C .V �E/j� j2 D 0: (1.36)
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The stationary condition for this equation under the normalization condition of � is
derived using the variational method as

�
X
i

„2
2mi

�
@2�

@q2i

�
C .V �E/� D 0: (1.37)

For a three-dimensional system, this equation is given as the familiar Schrödinger
equation,

�
X
i

„2
2mi

r2
i � C .V �E/� D 0: (1.38)

What should be noted is that the momentum pi is transformed to a quantum operator,

pi D �i„r i : (1.39)

This momentum operator produces discrete energy levels under the boundary
condition of potential V to make the wavefunctions � finite. The discrete
energy values and the corresponding wavefunctions are called eigenvalues and
eigenfunctions, respectively.

1.5 Interpretation of the Wavefunction

Since the Schrödinger equation was developed, the interpretation of the wave-
function has been vigorously discussed. Schrödinger himself suggested a wave
interpretation for the wavefunction (Jammer 1974). From this interpretation, the
physical existence of a matter consists only of waves, and the discrete eigenvalues
are not the energies but the eigenfrequencies of the waves. He also insisted that it is
meaningless to assume discrete energy levels and quantum transitions independently
as seen in matrix mechanics. However, this wave interpretation has many serious
problems. Although a particle is taken to be a wave packet in this interpretation, this
indicates that the wave packet has to be a series expansion of the integral multiples
of normal vibrations. This wave packet is applicable only to the wavefunctions for
harmonic oscillators (see Sect. 1.7). This interpretation is also available only for
three-dimensional cases, even though the motions of n particle systems require 3n
dimensions. Moreover, this interpretation assumes that the wavefunction is real, but
this conflicts with the fact that the wavefunction is complex. Note, however, that
there is no practical problem if the Hamiltonian contains no vector potential (see
Sect. 6.5). There are various other problems, e.g., this interpretation cannot explain
why the wavefunction changes discontinuously due to a measurement.

As an alternative for the wave interpretation, Born proposed a probabilistic inter-
pretation (Jammer 1974). According to this interpretation, which originates from
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the discussion of the quantum treatment of collision processes, wavefunction-based
mechanics targets only the existence probability P of particles in a differential
volume element d� ,

P.�/d� D j� j2d�; (1.40)

and this probability is supposed to act in a classical way. Based on this interpretation,
the expectation value of a function f is calculated as

hf i D
Z
d�f .�/P.�/ D

Z
d���.�/f .�/�.�/: (1.41)

This interpretation proposes that the wavefunction indicates neither a
physical system nor its physical attributes but information on the latter. A common
misunderstanding is that this interpretation suggests that the wavefunction is an
existence probability. In this case, it is unaccountable why double slit experiments
produce spots of particles. Actually, the probabilistic interpretation denies this
explanation and states that the wavefunction is something other than the existence
probability. This interpretation only focuses attention on the existence probability
in discussions on the wave-particle relation. Eventually, the Copenhagen school, led
by Bohr, Heisenberg and Pauli, advocated Born’s probabilistic interpretation, and
the latter has become the mainstream interpretation of the wavefunction at present.
However, this probability interpretation has not solved the interpretation problem
of the wavefunction. The cause is an interpretation added to the probabilistic
interpretation by the Copenhagen school: phenomena are accountable only by
probabilities, and wave packets are reduced by observations. To counter this
additional interpretation, Einstein advocated the hidden-variable interpretation, i.e.,
that a hidden variable makes quantum mechanics accountable only by probabilities.
The famous phrase “God doesn’t play dice” emerged out of this context.
Consequently, the so-called Bohr–Einstein debates were conducted in discussions at
Solvay conferences and correspondences, in which Bohr argued against Einstein’s
counterarguments (Jammer 1974). Einstein’s main counterarguments, based on
thought experiments, and Bohr’s refutations, are summarized as follows:

• Reduced wave packets are statistical distribution functions taken to be real. )
Observations transform systems in the instance that wave packets are reduced.
Therefore, this argument is meaningless.

• In a double-slit experiment, if the kick of a momentum to the slit is measured
when a particle passes through one side of the double slit, the path of the particle
can be determined without measuring the particle itself. ) This setup of the
experiment shifts the quantum state of the particle.

• The energy of a photon can be determined in a photon-box experiment by
measuring the energy of a photon box after emission of a photon. ) This
conflicts with the uncertainty relation between energy and time.
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• In the case that a particle with spin 0 decays into two electrons, observing
the spin of one electron determines the spin of the second electron. Since this
indicates that information transmits faster than light, it violates the relativistic
theory (Einstein–Podolsky–Rosen paradox) (Einstein et al. 1935). ) Bohr could
not provide a counterargument to this. Later, this paradox was resolved by Bell’s
inequality, which limits the correlation of subsequent measurements of particles
that have interacted and then separated on the local hidden-variable theory (Bell
1964), and Aspect’s experiment, which proves the violation of this inequality
(Aspect et al. 1982).

It is widely believed that von Neumann’s no-go theorem (1932) decided the
overall outcome in the above debates. This theorem given in “Die Mathematis-
che Grundlagen der Quantenmechanik (Mathematical Foundations of Quantum
mechanics)” (von Neumann 1957) mathematically proves that the Schrödinger
equation contains no hidden variables. Although this theorem nearly led to the
end of the debates, Schrödinger was not satisfied and countered with a thought
experiment called Schrödinger’s cat (Schrödinger 1935). Suppose a box containing
a cat and a Geiger counter linked to a cyanide-gas generator when sensing an ˛
particle from a radioactive isotope. Based on the probabilistic interpretation, after
a period of time, the cat should be situated at the superposition of life and death
until getting the box is opened, despite the fact that it is actually one or the other.
Schrödinger declared this to be paradoxical. Although this thought experiment
cannot disprove the no-go theorem, it subsequently led to Everett’s many-worlds
interpretation (Everett 1957), in which observations do not reduce wave packets but
bifurcate the world. Furthermore, Bohm, who was once an assistant professor under
Einstein, indicated that the prerequisite in the proof of the no-go theorem is too strict
to be general, and derived the classical mechanics from the Schrödinger equation
by introducing “quantum-mechanical force” as a hidden variable (Bohm 1952).
However, this interpretation was also denied by Aspect’s experiment (Aspect et al.
1982) and was disproved by the Kochen–Specker theorem (Kochen and Specker
1967). The interpretation of wavefunction is still being debated. Actually, many
studies are still carried out to suggest a quantum mechanics based on a delocalized
hidden variable, because the Kochen–Specker theorem disproves only the existence
of localized hidden variable.

1.6 Molecular Translational Motion

Next, let us consider the eigenstates of molecular motions in the Schrodinger
equation. The molecular motions are classified into four types: the translational,
rotational, and vibrational motions of atomic nuclei (Fig. 1.1) and the motions of
electrons. The translational motions are the uniform motions of all nuclei with
three degrees of freedom (DOFs), the rotational motions are those with respect to
the centroids of molecules, with three DOFs (two DOFs for linear molecules), and
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Fig. 1.1 Three basic motions
of atomic nuclei in molecules
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Fig. 1.2 One-dimensional
box potential with the width
of a and the corresponding
energy eigenvalues, Ei
(i D 1; 2; : : :), and the
images of translational
eigenfunctions, �i . In the
eigenvalues, m is the mass of
the particle in the potential
and „ is the reduced Planck
constant

the vibrational motions are periodic motions centering on the equilibrium structures
of molecules with 3N�6DOFs (3N�5DOFs for linear molecules). In this chapter,
the quantum eigenstates of these motions are specifically viewed henceforth.

First, since the translational motion of molecules can be assumed to be the
particle motion of the centroid, it is usually taken as the simplest elementary
problem: the box potential problem. Concerning the method of solving this problem,
readers may easily learn about this in an elementary book on quantum mechanics.
Now, let us consider the eigenstates of the translational motions of molecules in
the box potential. For the simplest one-dimensional box potential with width a
(Fig. 1.2), the energy eigenvalues are determined as

En D „2k2
2m

D „2�2n2
2ma2

.n D 1; 2; 3; : : :/; (1.42)
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wherem is the mass of the molecule. The corresponding normalized eigenfunctions
are obtained as

�n.x/ D
�
2

a

�1=2
sin.kx/: (1.43)

These eigenvalues and eigenfunctions have the following characteristics
(Gasiorowicz 1996).

• The energy of the lowest eigenstate, called the ground state, is not zero but has
the value

E1 D „2�2
2ma2

: (1.44)

This is in contrast to the classical state of a particle at rest in a hole, for which
the sum of the kinetic energy and potential energy is zero. This nonzero energy
is called the zero-point energy.

• Given the momentum of a molecule, the expectation value of the momentum
hpi is always zero for real eigenfunctions. This is because for an arbitrary real
function R.x/,

Z
dxR.x/.�i„/dR

dx
.x/ (1.45)

is always imaginary and therefore hpi is not identical to the complex conjugate
hpi� except for hpi D 0.

• The increase in the number of nodes of an eigenfunction causes the energy
eigenvalue to increase, because the kinetic energy,

hT i D � „2
2m

Z
dx��.x/

d2�

dx2
.x/; (1.46)

increases as the curvature of the eigenfunction grows.
• Since the eigenfunctions are unit vectors, an arbitrary function is representable

as an eigenfunction expansion. This is because, based on Fourier’s theorem that
an arbitrary function can be expanded by the series expansion of trigonometrical
functions, a function is always expanded by the eigenfunctions of the transla-
tional motions, which are trigonometrical functions.

Although the box potential has so far been considered, the potential-free (V D 0)
case may be close to the readers’ image of translational motion. Such potential-free
particles are called free particles. In the one-dimensional case, the eigenfunctions
of free particles are given by

�.x/ D exp.˙ikx/ or �.x/ D fsin.kx/; cos.kx/g (1.47)

and its linear combinations. These eigenfunctions are characterized as follows
(Gasiorowicz 1996):
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• For the momentum operator Op D �i„.d=dx/, the eigenfunctions in Eq. (1.47)
give the momentum eigenvalue k and the corresponding energy eigenvalue
k2=2m. Since the momentum k is a real number, the energy eigenvalues are
continuous. The eigenstates giving continuous energy eigenvalues are called
continuum states. For the continuum states, the eigenfunctions, which are always
finite, give a quite large overlap integral with an eigenfunction with a different
momentum k0 specifically at k D k0,

Z 1

�1
dx .exp.˙ikx//� exp.˙ik0x/ D 2�ı.k � k0/: (1.48)

The function ı.k � k0/, called the delta function, gives a quite large value at
k D k0.

• The eigenfunctions in Eq. (1.47) have two forms giving the same energy eigen-
value. This situation is termed degeneracy, i.e., when there are two or more
independent eigenfunctions corresponding to the same eigenvalue. Since degen-
erate eigenfunctions are orthogonal to each other, the linear combination of
these eigenfunctions is also an eigenfunction. The degeneracy results from the
existence of another operator which is commutable (commutative) with the
operator giving the eigensolution (the Hamiltonian in the present case). In this
case, the commutative parameter is the momentum operator Op and it gives a
different eigenvalue,

Op exp.˙ikx/ D �i„ d
dx

exp.˙ikx/ D ˙k„ exp.˙ikx/; (1.49)

for each eigenfunction.
• In general, an operator depending explicitly on time is not commutative with

the Hamiltonian, and therefore it does not conserve energy, i.e., energy is not
conserved for a potential V.x; t/ that is an explicit function of time. This is
because the energy conservation law is based on the uniformity of time, as shown
in Sect. 1.3. In this case, no degenerate energy eigenvalue is therefore provided.
One of the operators that does not explicitly depend on time and is commutative
with the Hamiltonian is the parity operator, which reverses the coordinate axis.
In the eigenfunctions of Eq. (1.47), sin.kx/ and cos.kx/ are degenerate for the
parity operator and give different eigenvalues, �1 and C1, respectively.

1.7 Molecular Vibrational Motion

Next, let us consider the vibrational motions of molecules. The simplest model of
the vibrational motion is the harmonic oscillator. The harmonic oscillator, an ideal
spring motion, is represented as a potential V D kq2=2, in which k is the spring
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constant, and q is a coordinate vector centered on the equilibrium structure. For
the one-dimensional spring motion on the x axis, the energy eigenvalues of the
Schrödinger equation for the harmonic oscillator potential are given as

Ev D
�
v C 1

2

�
„
�
k

�

�1=2
D
�
v C 1

2

�
„! .v D 0; 1; 2; : : :/: (1.50)

In Eq. (1.50), the reduced mass � is calculated as � D m1m2=.m1 C m2/ for
the spring motion of the two masses m1 and m2. Despite vibrational motions
being one-dimensional, ! is called the “angular” frequency, because vibrational
motions periodically depend on time, as in exp.i!t/. It is interesting to note that
the differences in the energy eigenvalues are equal to integral multiples of „! D h�

and therefore support Planck’s hypothesis concerning black-body radiation. The
eigenfunctions corresponding to these eigenvalues are given by

� vib.y/ D h.y/ exp.�y2=2/ (1.51)

y D
��!

„
�1=2

x; (1.52)

where h is a function satisfying

d2h

dy2
.y/ � 2y dh

dy
.y/C .	 � 1/h.y/ D 0; (1.53)

which is identical to the Hermite polynomial,

Hn.y/ D .�1/n exp.y2/
dn

dyn
exp.�y2/; (1.54)

without the normalization factor (see Fig. 1.3). For the vibrational motions, the
energy eigenvalues and eigenfunctions have characteristics similar to those of the
translational motions. Let us consider the simplest harmonic oscillator model.
The lowest energy (n D 0) is not zero, as shown in Eq. (1.50) and is called the zero-
point vibrational energy. With increasing number of nodes of the eigenfunctions,
the energy eigenvalues increase. Moreover, the expectation value of momentum is
confirmed to be zero by Eq. (1.45), and the eigenfunctions can be taken as unit
vectors.

Although the harmonic oscillator model is an appropriate approximation for the
vibrational motions of molecules, despite its simplicity, we should bear in mind
that the actual potentials of molecular vibrations are dissimilar to the harmonic
oscillator for high-level eigenstates. Even for the bonds of diatomic molecules,
the potentials of the vibrational motions are in the form of the Morse potential
(Fig. 1.4), which significantly differs from the harmonic oscillator potential due to
the anharmonicity associated with large internuclear distances. For this potential,
the energy eigenvalues are given as
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Ev D
�
v C 1

2

�
„! � xanhrmnc

�
v C 1

2

�2
„! .v D 0; 1; 2; : : :/; (1.55)

where xanhrmnc is termed the anharmonic constant.
Finally, let us consider the relationship between the vibrational motions and the

infrared (IR) absorption spectra. The IR spectra show the frequencies corresponding
to the energy gaps in the transitions between vibrational eigenstates, with the
peak intensities proportional to the transition moments. The transitions between
vibrational states have rules called selection principles: for the harmonic oscillator,
transitions take place for the eigenstate pairs with �n D ˙1. This selection
principle comes from the fact that the transition moment, which is proportional to
the transition dipole moment,

�ij D
Z
d3r� vib

i ped�
vib
j ; (1.56)

is zero for even values of ji � j j and nearly zero for odd values of ji � j j � 3,
except for j D i ˙ 1. In Eq. (1.56), ped is the electric dipole moment, which is
proportional to the expectation value of the position vectors of the electrons from the
centroid of the atomic nuclei. At room temperature, since most molecules are in their
vibrational ground states, the spectral peaks are usually assigned to the transition
v D 0 ! 1, for which the spectral peaks are termed elementary bands. The spectral
peaks corresponding to the transitions v D 1 ! 2, which increasing in importance
with rising temperature (termed “hot bands”) are indistinguishable for the harmonic
oscillator. However, the large anharmonicity in vibrational potentials makes the
hot bands distinguishable and allows the overtone transitions corresponding to
v D 0 ! 2, violating the selection principle.

1.8 Molecular Rotational Motion

Regarding the motions of atomic nuclei, those that remain are the rotational motions.
In this section, rotational motion is explained in somewhat more detail, because
it is concerned with the nature of chemistry. What is important to consider is
that the energies associated with the rotational motions of molecules are part of
the kinetic energies, and therefore overlap with the translational motion energies
without operation. That is, a variable separation is required for the translational
motions, which are the motions of entire systems, and the rotational motions, which
are internal motions (Gasiorowicz 1996). In the case of diatomic molecules, the
Hamiltonian operator is given as
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OH D Op21
2m1

C Op22
2m2

C V.r/; (1.57)

wherem1 andm2 are the masses of two atoms, Op1 and Op2 are the momentum vectors
of these atoms, and r is the interatomic distance. The variable transformation can be
done for this Hamiltonian operator as

OH D
OP2
2M

C Op2
2�

C V.r/; (1.58)

where the total momentum OP and relative momentum Op are given by

OP D Op1 C Op2; Op D m2 Op1 �m1 Op2
m1 Cm2

; (1.59)

respectively. In Eq. (1.59), M D m1 C m2 is the total mass and � D m1m2=M

is the reduced mass. By this variable transformation, the rotational motion can be
taken as the central force motion of a body with reduced mass �. Since the total
momentum operator P is commutative with OH , the wavefunction can be separated
into translational and rotational motion terms such as

�.R; r/ D �P.R/�p.r/; (1.60)

where

�P.R/ D .2�„/�3=2 exp.i OP � R=„/: (1.61)

The Schrödinger equation only for the rotational motions is therefore provided as

OH�p.r/ D
� Op2
2�

C V.r/

�
�p.r/ D E�p.r/: (1.62)

The Hamiltonian operator is invariant for rotations because of the energy conserva-
tion of the rotational motion. With an infinitesimal rotation around the z axis,

�
x0
y0
�

D
�

cos 
 � sin 

sin 
 cos 


��
x

y

�
'
�
1 �


 1

��
x

y

�
; (1.63)

the Schrödinger equation in Eq. (1.62) is transformed to

OH�p.x � 
y; y C 
x; z/ D E�p.x � 
y; y C 
x; z/: (1.64)
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By expanding this equation in terms of 
 , the first-order term is given as

OH
�
x
@

@y
� y

@

@x

�
�p.x; y; z/ D E

�
x
@

@y
� y @

@x

�
�p.x; y; z/

D
�
x
@

@y
� y

@

@x

�
OH�p.x; y; z/: (1.65)

Defining the rotational operator around the z axis,

OLz D „
i

�
x
@

@y
� y

@

@x

�
D xpy � ypx; (1.66)

the relation between OH and OLz,

� OH OLz � OLz OH
�
�p.x; y; z/ D 0 (1.67)

is obtained. This indicates that OH and OLz are commutative. Similarly, OH and OLx ,
OH and OLy are also commutative. Although OLx , OLy , and OLz are noncommutative

with each other, these operators are commutative with OL2 D OL2x C OL2y C OL2z .

Therefore, OH , OLz, and OL2 are commutative and have simultaneous eigenfunctions.
This is a characteristic of the rotational motion. Using r D .x; y; z/ and p D
�i„.@=@x; @=@y; @=@z/, the angular momentum can be written as

OL2 C .r � Op/2 D r2 Op2 C i„r � Op: (1.68)

The square of the momentum is therefore

Op2 D 1

r2

� OL2 C .r � Op/2 � i„r � Op
�

D 1

r2
OL2 � „2 1

r2

�
r
@

@r

�2
� „2 1

r

@

@r
:

(1.69)

Since this reduces the angular terms of the Schrödinger equation represented in
polar coordinates .r; 
; �/ to the terms of L2, the eigenfunctions can be separated
into the angular and radial functions,

�p.r/ D Y�.
; �/Rp�.r/: (1.70)

This angular function Y� is called the spherical harmonic function. Since the
spherical harmonic function is also an eigenfunction of the rotational operator
around the z axis, Lz, it can be further separated into functions of the angles 
 and
�. Defining the rotational angle around the z axis as �, the rotation operator around
the z axis is represented as Lz D �i„@=@�. The eigenequations and eigenfunctions
of Lz are given as

@˚ml
@�

D iml˚ml .�/; (1.71)
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and

˚ml .�/ D 1

.2�/1=2
exp.iml�/; (1.72)

where ml is called the magnetic quantum number and has integral values (ml D
0;˙1;˙2; : : :). The remaining eigenfunction for 
 is the eigenfunction of L2, which
is derived to be the solution of the Legendre equation,

d

d z

�
.1 � z2/

@2�

@z2
.z/

�
C
�
�

„2 � ml
2

1 � z2

�
�.z/ D 0: (1.73)

This eigenfunction� has a solution only for � D l.lC1/„2 (l is called the azimuthal
quantum number, which is a natural number). This � is also the eigenvalue of
L2 of the spherical harmonic function. Since the magnetic quantum numbers ml

are restricted to jml j � l , i.e. �l � ml � l , the eigenstates are .2l C 1/-
fold degenerate. Therefore, the spherical harmonic function is specified as Ylml
(Fig. 1.5). For the remaining radial function, it is complicated to determine a specific
form, because the potential V significantly depends on the types of interatomic
bonds in the rotational motions of the molecules. However, the quantum nature
of the radial functions is fortunately negligible, because the interatomic bond
potentials are extremely deep in general. It is therefore reasonable to consider that
the eigenfunctions of the rotational motions are the spherical harmonic functions in
most cases. Since the Hamiltonian operator, neglecting the radial part, is
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OH D L2

2�r2
; (1.74)

the energy eigenvalues for the rotational motions are given by

E D L2

2�r2
D l.l C 1/„2

2I
; (1.75)

where I D �r2 is the moment of inertia.

1.9 Electronic Motion in the Hydrogen Atom

While the quantizations of nuclear motions in molecules have been thus far
reviewed, the eigenstates for the electronic motions in molecules are also determined
by solving the Schrödinger equation. However, the eigenstates of the electronic
motions cannot be analytically determined except for extremely simple systems such
as the hydrogen atom and hydrogen-like atoms. The cause and solution for this are
described starting in the next chapter. In this section, let us consider the eigenstate
of the electronic motion in the hydrogen atom, which is one of the simplest systems.

In the hydrogen atom, the electron is assumed to move in a circle around
the nucleus, attracted by the Coulomb electrostatic force. The eigenstate of the
electronic motion is therefore determined by the Schrödinger equation for the
rotational motion. The Hamiltonian operator is in the same form as that for
the rotational motions of molecules mentioned in the last section. Following
Eq. (1.57), the Hamiltonian operator is represented as

H D p2

2me
C V.r/; (1.76)

where me is the mass of the electron. Since the mass of the electron is extremely
small compared to that of the nucleus, the reduced mass is also assumed to be
the mass of the electron, � D me. The potential V contains only the Coulomb
interaction,

V D � e2

4�	0r
; (1.77)

where e is the charge of the electron, 	0 is the dielectric constant in a vacuum,
and r is the distance from the nucleus to the electron. Similarly to Eq. (1.70), the
eigenfunction of the electronic motion is provided as

�p.r/ D Y�.
; �/Rp�.r/; (1.78)
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where the angular function Y� is the spherical harmonic function.
The difference between the electronic and molecular rotational motions is in

the radial function Rp�. In the molecular rotation motions, the radial function
is assumed to be uninvolved in the quantum nature because of the typical deep
potentials of interatomic bonds. However, this assumption is not appropriate for
the electronic motions. Substituting Eq. (1.76) into Eq. (1.69) and (1.74) leads to the
Schrödinger equation for the radial direction in polar coordinates .r; 
; �/,

�
d2

dr2
C 2

r

d

dr

�
Rnl C 2me

„2
�
E C Ze2

r
� l.l C 1/„2

2mer2

�
Rnl D 0; (1.79)

where the radial function Rp� is a complicated function with natural numbers n
and l ,

Rnl.r/ D �
"�

2Z

n

�3
.n � l � 1/Š

2nŒ.nC l/Š3

#1=2
exp

�
�Zr
n

��
2Zr

n

�l
L2lC1nCl

�
2Zr

n

�
:

(1.80)

L2lC1nCl is Laguerre’s adjoint polynomial,

L2lC1nCl .�/ D
n�l�1X
kD0

.�1/kC2lC1 Œ.nC l/Š2�k

.n � l � 1 � k/Š.2l C 1C k/ŠkŠ
: (1.81)

It is significant to note that this polynomial is restricted to n�l�1 � 0, i.e. n � lC1.
The energy eigenvalue corresponding to this eigenfunction is given as

E D �mec
2.Z˛/2

2n2
: (1.82)

This is identical to the energy that Bohr determined by assuming the quantized
periodic orbits of electron, although such an assumption is not required for the
Schrödinger equation. Moreover, since the energy in Eq. (1.82) does not depend
on the azimuthal quantum number l , this radial function is energetically degenerate;
e.g., it is single (l D 0) for n D 1 but double (l D 0; 1) for n D 2. As mentioned
above, the spherical harmonic function Ylml is further degenerate for l in terms of
the magnetic quantum number ml .�l � m � l/; e.g., it is single (ml D 1) for
l D 0 but triple (ml D �1; 0; 1) for l D 1. In total, the number of energetically
degenerate radial functions for the azimuthal quantum number l is 2l C 1, and the
number of energetically degenerate total wavefunctions for the principal quantum
number n is n2. Figure 1.6 illustrates the density distributions of the radial functions
assigned to these quantum numbers. The figure clearly shows that the peaks of the
density distributions are situated away from the nucleus as the number of n increases
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Fig. 1.6 Density distributions of the radial functions, Rnl (n and l are principal and azimuthal
quantum numbers), for the electronic motion in the hydrogen atom

due to the centrifugal force. It also indicates that there are n� l � 1 nodes for n and
l values. As is well known, these quantum numbers specify the atomic orbitals (see
Sect. 2.9).
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Chapter 2
Hartree–Fock Method

2.1 Hartree Method

For atoms other than the hydrogen atom, as treated in Sect. 1.9, we can obtain the
quantum states of electronic motions in theory by constructing the Hamiltonian
operators in a similar fashion and solving the Schrödinger equation. However, when
we actually solve the Schrödinger equation for these atoms, we are faced with a
serious problem: the three-body problem. That is, the state of motion cannot be
solved analytically for systems in which three or more distinct masses interact. This
three-body problem is not unique to quantum mechanics but is a classic problem
in analytical physics. As described in Sect. 1.3, Poincaré proved that there are very
few classical mechanics problems for which the equations of motions can be solved
analytically. This is due to the three-body problem. Poincaré addressed this three-
body problem in classical mechanics with the idea that only periodical solutions
can be solved by the least (stationary)-action principle (Ekeland 2009). On the
other hand, Hartree suggested an idea to solve the three-body problem for atoms
containing multiple electrons.

In 1928, 2 years after the Schrödinger equation was published, Hartree proposed
a method solving this equation for multiple-electron systems, based on fundamental
physical principles: the Hartree method (Hartree 1928). Let us consider the
electronic motion of a helium atom (Fig. 2.1). The Hamiltonian operator of this
atom is given as

OH D �r 2
1

2
� r2

2

2
C Vne.r1/C Vne.r2/C Vee.r1; r2/; (2.1)

where rn is the position vector of the n-th electron and rn is the gradient vector
operator for the n-th electron. On the right-hand side of Eq. (2.1), the first two
terms are kinetic energy operators, and the next two terms are nuclear-electron
electrostatic interaction potentials. These are one-electron terms collectively called
one-electron operators. On the other hand, the last term is an electron–electron
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r1

r2 r12 e−
e−

2 e+

x
y

zFig. 2.1 Electrons in a
helium atom, where ri is the
coordinate vector of the i -th
electron, r12 is the distance
between two electrons, and
e� and eC are negative and
positive charges

electrostatic interaction potential called a two-electron operator. Notice that atomic
units are used in this equation for the first time. Atomic units are a convenient system
of units usually used in electronic property calculations. In this system, the electron
massme, electron charge e, reduced Planck constant „ D h=2� , and Coulomb force
constant 1=.4�	0/ are assumed to be 1. Henceforth, let us consider the mechanics
in atomic units for in order to reduce the complexity. In Eq. (2.1), potentials Vne and
Vee are written as

Vne.r/ D �2
r

(2.2)

and

Vee.r12/ D 1

r12
; (2.3)

where r D jrj and r12 D jr2 � r1j. That is, Hartree assumed that each electron
moves in the averaged potential of the electrostatic interactions with surrounding
electrons and suggested the independent electron approximation which approxi-
mates the averaged potential as an effective potential Veff. For this approximation,
the Hamiltonian operator is divided into terms for the different electrons, as follows:

OH D
"

�r 2
1

2
C Vne.r1/C Veff.r1/

#
C
"

�r2
2

2
C Vne.r2/C Veff.r2/

#

D Oh.r1/C Oh.r2/; (2.4)
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where h.ri / is the Hamiltonian operator for the i -th electron. In this Hamiltonian
operator, the wavefunction is represented as the product of different electronic
motion wavefunctions,

�.r1; r2/ D �1.r1/�2.r2/: (2.5)

In this case, the expectation value of the Hamiltonian operator is given as

E D
R
d3r1d 3r2��.r1; r2/ OH�.r1; r2/R
d3r1d 3r2��.r1; r2/�.r1; r2/

D
P2

iD1
R
d3ri ��

i .ri / Oh.ri /�i .ri /P2
iD1

R
d3ri ��

i .ri /�i .ri /
: (2.6)

With the variational method, the Schrödinger equation for obtaining the set of
one-electron wavefunctions f�ig, which makes this expectation value stationary, is
represented as

Oh.ri /�i .ri / D 	i�i .ri /: (2.7)

Since the eigenvalue of Eq. (2.7), 	i , is interpreted as the eigenenergy for the
motion of the i -th electron, the total wavefunction can be obtained by solving
the eigenequation for each electron. This one-electron wavefunction �i and the
corresponding eigenenergy 	i are later called the orbital and orbital energy,
respectively. This equation also indicates that the total eigenenergy is the sum of
the orbital energies corresponding to different electronic motions,

OH� D .	1 C 	2/�1�2 D 	�: (2.8)

This theory is called the Hartree method.
Although the effective potential is replaced with a virtual potential in Eq. (2.4),

this does not necessarily require such a replacement. The effective potential
corresponding to the wavefunction in Eq. (2.5) is derived as

Veff.ri / D
X
j

Z
d3rj

j�j .rj /j2
jri � rj j : (2.9)

The above discussion is applicable to the theory using this potential, because
the motions of electrons are independent for this potential. In general, a theory
using a potential derived with no semiempirical parameters is called an ab initio
theory (“ab initio” means “from the beginning” in Latin). Solving this ab initio
Hartree equation is not as straightforward as it might appear at first glance, because
the effective potential in Eq. (2.9) is represented by the wavefunctions of other
electronic motions. That is, Eq. (2.7) is a nonlinear equation in which the operator
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depends on the solution of this equation. Hartree incorporated the self-consistent
field (SCF) method to solve this equation. For the SCF method, further details are
described in Sect. 2.4. This ab initio Hartree method reproduces the shapes of atomic
orbitals reasonably close to those of state-of-the-art theories that take into account
electron correlation, as mentioned later. However, it was found that the energies
given by this method are too inaccurate to be used in the analyses of chemical
reactions and properties. It becomes clear that the inaccurate energies are mainly
attributed to the neglect of electron–electron exchange interactions (see Sect. 2.3).

2.2 Molecular Orbital Theory

What motional states do electrons have in molecules? Let us consider the case of the
hydrogen molecule (Fig. 2.2). With the Hartree method, the Hamiltonian operator
for the hydrogen molecule is given by

OH D Oh.r1/C Oh.r2/C Vnn.RAB/; (2.10)

where RAB is the distance between two atomic nuclei, A and B. Neglecting nuclear
motions is one of the most important and convenient approximations in considering
the electronic motions in molecules. Since even the lightest atomic nucleus,
hydrogen, is 1836 times heavier than the electron, electrons are considered to move
overwhelmingly faster than nuclei do. Actually, the kinetic energy of the nucleus has
already been neglected when electronic motions are considered in Eq. (2.1). The
approximation neglecting atomic nuclear motions to consider electronic motions
is called the adiabatic approximation, based on the interpretation that the absence

r1

r2

r12

e−

e−

e+
e+

RA RBRAB

r2Br2A

r1A
r1B

Fig. 2.2 Electrons in hydrogen molecule, where RI is the coordinate vector of the I -th nuclear,
riI is the distance between the i -th electron and I -th nuclear, and RAB is the distance between
nuclei A and B
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of atomic nuclear motion means that there is no heat energy interchange with the
outside environment, or also as the Born–Oppenheimer approximation, capping the
names of the developers (Born and Oppenheimer 1927). This approximation is so
efficient that it hardly affects the chemical properties of electronic ground states.
Therefore, this approximation is used by default in quantum chemical calculations.
With this adiabatic approximation, since the nuclear–nuclear interactions Vnn can be
neglected, Eq. (2.10) becomes

OH D Oh.r1/C Oh.r2/; (2.11)

which appears similar to the Hamiltonian of the helium atom. However, the equation
is more difficult to solve than it appears, because the hydrogen molecule has two
atomic nuclei. Actually, the position vectors of the electrons must be considered for
each atomic nucleus, although these are represented as rn in Eq. (2.11).

To solve this problem, the concept of the molecular orbital was introduced.
The concept of the molecular orbital was used by Hund for the first time to
explain the electronic states of molecules (Hund 1926). Mulliken summarized this
concept in English, which helped to hasten its introduction to the world at large
(Mulliken 1927). He is also the one who coined the term “orbital” in 1932 to indicate
its similarity to an orbit. In 1929, Lennard–Jones suggested an ansatz (educated
guess) that molecular eigenfunctions are representable as the linear combination of
atomic eigenfunctions, which became the basis of the linear combination of atomic
orbitals–molecular orbital (LCAO–MO) approximation for describing molecular
orbitals in terms of the atomic orbitals (Lennard-Jones 1929). Coulson reported
the variational calculation results of the hydrogen molecule using the LCAO–
MO approximation for the first time (Coulson 1938). This was the first usage of
molecular orbital theory.

Based on the LCAO–MO approximation, the molecular orbital of the hydrogen
molecule is written as

� D C1�1 C C2�2; (2.12)

as shown in Fig. 2.3, where �I is the atomic orbital centered on the I -th atomic
nucleus, and CI is the corresponding molecular orbital coefficient. In Eq. (2.12),
the atomic orbitals and molecular orbital coefficients are assumed to be real.
Substituting this molecular orbital � into Eq. (2.6) gives

	 D C2
1 h11 C C2

2 h22 C 2C1C2h12

C 2
1 C C2

2 C 2C1C2S12
; (2.13)

where hij and S12 are given by

hij D
Z
d3r�i Oh�j < 0 (2.14)
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Molecular orbital  φ = C1χ1 + C2χ2

Atomic orbital
χ1 χ2

Atomic orbital

Fig. 2.3 Molecular orbital of
the hydrogen molecule, �,
composed of the atomic
orbitals of hydrogen atoms,
�1 and �2, for the
LCAO–MO approximation

and

S12 D
Z
d3r�1�2 > 0; (2.15)

and 	 indicates the molecular orbital energy. Since the coefficients C1 and C2
minimizing this 	 are determined by

@	=@C1 D @	=@C2 D 0; (2.16)

Eq. (2.13) gives

.h11 � 	/C1 C .h12 � 	S12/C2 D 0; (2.17)

and

.h12 � 	S12/C1 C .h22 � 	/C2 D 0: (2.18)

The solutions for these equations, except for the case of C1 D C2 D 0, are
obtained by

ˇ̌
ˇ̌ h11 � 	 h12 � 	S12
h12 � 	S12 h22 � 	

ˇ̌
ˇ̌ D 0: (2.19)

By solving this equation, the orbital energies of the hydrogen molecule are given by

	˙ D h11 ˙ h12

1˙ S12
(2.20)
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and the corresponding normalized molecular orbitals are

�˙ D �1 ˙ �2p
2˙ 2S12

: (2.21)

For the orbital energies, 	C is supposed to have a lower energy, because S12 and
h12 are generally given as 0 < S12 � 1 and h12 � S12.h11 C h22/=2 < 0. The
electron occupancy of the molecular orbitals obeys the Pauli exclusion principle
(Pauli 1925). This principle indicates that the electron has spin as the fourth quantum
number, and no two electrons can have the identical set of quantum numbers
simultaneously. For a hydrogen molecule containing only two electrons, opposite-
spin electrons occupy the molecular orbital �C. Therefore, the wavefunction for the
hydrogen molecule is given by the

˚ D �C.r1/�C.r2/ (2.22)

D 1

2C 2S12
f�1.r1/C �2.r1/g f�1.r2/C �2.r2/g : (2.23)

The total electronic energy of the hydrogen molecule is calculated as

E D 2	C D 2.h11 C h12/

1C S12
: (2.24)

Notice that this is based not on the ab initio method but on the original Hartree
method. With the ab initio method, the double-counted electron–electron Coulomb
interaction must be removed from the total energy. In this way, the electronic states
of molecules can be calculated using the LCAO–MO approximation.

As described above, the binding energy of the hydrogen molecule equals the
orbital energy. However, the analysis of binding energies based on orbital energies
is applicable only to the limited case in which only two electrons are involved in
the bond, like the hydrogen molecule. Discussing other types of binding energies
requires consideration of the energy contributions from other orbitals. For instance,
it is generally difficult to evaluate molecular bond strength from the energetic
stabilities of molecular orbital energies before and after reactions. In most cases,
there is no clear relation between orbital and binding energies. However, this does
not negate the value of the conceptual reaction analysis using molecular orbital
images. Since molecular orbitals have a relatively small dependence of the shapes
on the type of calculation method, these are assumed to be correct in most cases, if
the calculated system is not so large. It is therefore possible to obtain information
on reaction sites and reactivities of molecules from electron distributions given by
molecular orbitals, as seen in the analysis on the Frontier orbital theory (Fukui
et al. 1952). Note, however, that since orbital energies significantly depend on the
calculation method, as described in Sect. 7, the order of the orbital energy levels are
easily changed, especially if there are virtual orbitals.
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2.3 Slater Determinant

In 1926, Heisenberg and Dirac independently proposed that the wavefunction of
electronic motions must be antisymmetric (the sign of the wavefunction becomes
opposite for the exchange of electrons) to satisfy the Pauli exclusion principle natu-
rally and therefore should be represented as a determinant (Heisenberg 1926; Dirac
1926). The new electron–electron interaction resulting from the antisymmetrization
is called the exchange interaction. Slater constructed a general method for solving
the Schrödinger equation based on the normalized determinant representing the
antisymmetrized wavefunction (Slater 1929). In this study, the exchange integral
was also suggested for the first time.

Let us consider the exchange of electrons by taking the helium atom as an
example. The Hamiltonian operator in Eq. (2.1) does not change by exchanging the
coordinates of two electrons:

OH.r1; r2/ D OH.r2; r1/: (2.25)

Since this leads to

OH.r1; r2/�.r2; r1/ D E�.r2; r1/; (2.26)

it is easily proven that the Hamiltonian operator is commutative with the exchange
operator replacing the positions of two electrons OP12, as follows:

OH.r1; r2/ OP12�.r1; r2/ D OP12 OH.r1; r2/�.r1; r2/; (2.27)

i.e.,
h OH; OP12

i
� D

� OH OP12 � OP12 OH
�
� D 0: (2.28)

This indicates that the Hamiltonian and exchange operators have simultaneous
eigenstates. Moreover, OP2

12 D 1 is found by considering that the positions of two
electrons are reverted by two exchanges. This leads to the eigenvalues of OP12 being
˙1. Therefore, there are two different wavefunctions for the exchange operator OP12:
the symmetric wavefunction corresponding to the C1 eigenvalue,

�.S/.r1; r2/ D 1p
2

f�.r1; r2/C �.r2; r1/g ; (2.29)

and the antisymmetric wavefunction corresponding to the �1 eigenvalue,

�.A/.r1; r2/ D 1p
2

f�.r1; r2/ � �.r2; r1/g D ��.A/.r2; r1/; (2.30)

where 1=
p
2 is the normalization constant.
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Next, let us consider the Hartree wavefunction in Eq. (2.5). The symmetric and
antisymmetric wavefunctions are given by

�.S/.r1; r2/ D 1p
2

f�1.r1/�2.r2/C �1.r2/�2.r1/g (2.31)

and

�.A/.r1; r2/ D 1p
2

f�1.r1/�2.r2/� �1.r2/�2.r1/g ; (2.32)

respectively. In these wavefunctions, only the antisymmetric wavefunction satisfies
the Pauli exclusion principle. This is because wavefunctions must be zero for the
case in which the same electron occupies the same orbital, i.e. r1 D r2. As a result,
electronic motions always have antisymmetric wavefunctions. The antisymmetric
wavefunction in Eq. (2.32) can be written as a determinant,

�.r1; r2/ D 1p
2

ˇ̌
ˇ̌�1.r1/ �1.r2/
�2.r1/ �2.r2/

ˇ̌
ˇ̌ : (2.33)

For the case of three or greater electrons, the antisymmetric wavefunction can be
described in a determinant form,

�.r1; r2; : : : ; rN / D 1p
NŠ

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

�1.r1/ �1.r2/ : : : �1.rN /
�2.r1/ �2.r2/ : : : �2.rN /
:::

:::
: : :

:::

�N .r1/ �N .r2/ : : : �N .rN /

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

(2.34)

D 1p
NŠ

det j�1.r1/�2.r2/ � � ��N .rN /j : (2.35)

This determinant is called the Slater determinant (Slater 1929).

2.4 Hartree–Fock Method

In 1930, Fock applied the Slater determinant to the Hartree method and proposed
the Hartree–Fock method, which is one of the core theories in quantum chemistry
(Fock 1930). Slater also suggested the same method independently in the same year
(Slater 1930).

For simplicity, let us consider closed-shell systems, in which n orbitals are
occupied by electrons two by two. The Slater determinants for closed-shell systems
are given by defining orbitals as functions of the spatial and spin coordinates, as
follows:
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˚.fr; � g/

D 1p
.2n/Š

det j�1.r1; ˛/�1.r2; ˇ/ � � ��n.r2n�1; ˛/�n.r2n; ˇ/j ; (2.36)

where fr; � g D fr1� 1; : : : ; r2n� 2ng. The expectation value of the corresponding
Hamiltonian operator is written instead of Eq. (2.6) as

E D 1

.2n/Š

Z
d3frgd f�g det j��

1 .r1; ˛/ � � ���
n .r2n; ˇ/j OH

� det j�1.r1; ˛/ � � ��n.r2n; ˇ/j ; (2.37)

where d3frg D d3r1 � � �d3r2n and d f� g D d� 1 � � �d� 2n. Since electrons
are indistinguishable, the integrals for the one-electron operator (one-electron
integrals) are 2n-tuplicate, and the integrals for the two-electron operator (two-
electron integrals) are f2n.2n� 1/=2g-tuplicate. Therefore, the expectation value is
transformed to

E D 1

.2n/Š

Z
d3frgd f�g det j��

1 .r1; ˛/ � � ���
n .r2n; ˇ/j OH

� det j�1.r1; ˛/ � � ��n.r2n; ˇ/j (2.38)
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r12

� det j�1.r1; ˛/ � � ��n.r2n; ˇ/j : (2.39)

The one-electron integrals in the first term of the right-hand side of Eq. (2.39) are
.2n � 1/Š-tuplicate under the following conditions:

Z
d3r�d���

k .r�; �/�l .r�; �/ D ıkl (2.40)

and
Z
d3r�d���

k .r�; �/�l .r�; �
0 ¤ �/ D 0: (2.41)

Since the same spatial orbitals are used for ˛ and ˇ spins, the one-electron integrals
are described without concern for spins as
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(One-electron integrals) D 2
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i .r/
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�1
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r 2 C Vne.r/
	
�i .r/

D 2

nX
i

hi : (2.42)

Note that �k is switched from a spin orbital �k.r; �/ to a spatial orbital �k.r/. For
the two-electron integrals of the second term in Eq. (2.39), it is not necessary to take
spin into consideration for the combinations of different spin terms, which equal
zero under the same conditions, similarly to the one-electron integrals. On the other
hand, for the spatial terms, the combinations of exchanging two electrons remain
besides those of the same spatial terms. These combinations are .n � 2/Š-tuplicate.
The two-electron integrals are summarized as

(Two-electron integrals) D
nX
i;j



2Jij �Kij

�
; (2.43)

where Jij and Kij are

Jij D
Z
d3r1d 3r2��

i .r1/�
�
j .r2/

1

r12
�i .r1/�j .r2/ D hij jij i (2.44)
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j .r2/

1

r12
�j .r1/�i .r2/ D hij jj ii: (2.45)

Attaching the stationary condition for the minimal variation of orbital �i (�i !
�i C ı�i ), ıE=ı�i D 0, to the expectation value of the Hamiltonian operator
containing one- and two-electron integrals, we obtain
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nX
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�j 	j i (2.46)
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��
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�
j i (2.47)

from the variational principle. In Eqs. (2.46) and (2.47), OJj and OKj are called
Coulomb operator and exchange operator, respectively, which are defined as

OJj .r1/�i .r1/ D
Z
d3r2��

j .r2/�j .r2/
1

r12
�i .r1/ (2.48)
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and

OKj .r1/�i .r1/ D
Z
d3r2��

j .r2/�i .r2/
1

r12
�j .r1/: (2.49)

Note that the meaningful Hamiltonian operator is a Hermitian operator, giving real
eigenenergies,

	j i D 	�
ij : (2.50)

This indicates that Eq. (2.47) is the complex conjugate of Eq. (2.46). Provided that
the Fock matrix is defined as

OF D OhC
nX
j

�
2 OJj � OKj

�
; (2.51)

the one-electron equation is derived as

OF�i D 	i�i : (2.52)

Equation (2.52) is called the Hartree–Fock equation, and the operator OF is called
the Fock operator.

Using Eq. (2.52), the orbital energy 	i is represented as

	i D
Z
d3r1��

i .r1/ OF�i.r1/ (2.53)

D hi C
nX
j



2Jij �Kij

�
: (2.54)

By this orbital energy, the total electron energy is written as

E D 2

nX
i

	i �
nX
i;j



2Jij �Kij

�
(2.55)

D
nX
i

.	i C hi / : (2.56)

Note that the total electron energy is not identical to the sum of the two orbital
energies, because the latter doubly counts the electron–electron interactions. The
total energy is calculated by adding the nucleus–nucleus repulsion energies to the
total electron energy,

Etotal D E C
X
A¤B

ZAZB

RAB
: (2.57)
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Since the Hartree–Fock equation is a nonlinear equation, similarly to the Hartree
equation, it is usually solved by the SCF method. The Hartree–Fock SCF method is
carried out via the following process:

1. Set up the information on the calculated molecular system (nuclear coordinates,
nuclear charges, and number of electrons) and initial reference molecular
orbitals f�0i g.

2. Calculate the two-electron operators of the Fock operator in Eq. (2.51) using the
reference orbitals.

3. Solve Eq. (2.52) with the calculated Fock operator.
4. Compare the given molecular orbitals with the reference orbitals to determine

if these orbitals are the eigenfunctions of this equation. The given orbitals
are taken as the eigenfunctions if the differences of all the given orbitals to
the corresponding reference orbitals are less than a given threshold value. If the
orbitals have differences greater than the threshold, return to step 2 with the given
orbitals as initial orbitals.

In general, the Hartree–Fock method indicates this SCF-based method. Despite
the simplicity of the procedure, it soon became clear that solving this equation
is not-trivial for usual molecular electronic systems. The Hartree–Fock equation
essentially cannot be solved for molecules without computers. Actually, solving
the Hartree–Fock equation for molecules had to await the appearance of general-
purpose computers.

2.5 Roothaan Method

The preparation for computer-based science began following the practical use of
computers represented by the appearance of commercial computers in 1950. In the
following year (1951), Roothaan, an IBM researcher, developed a method for
solving the Hartree–Fock equation on a computer, which is called the Roothaan
method (Roothaan 1951). Since Hall independently suggested this method in the
same year (Hall 1951), this is also called Roothaan–Hall method. This method
is based on the character of von Neumann-type computer architecture, which
efficiently performs matrix operations. A year earlier (1950), the Gaussian-type
basis function was suggested by Boys (Boys 1950). Using the contracted nature
of the Gaussian basis functions (see Sect. 2.6), the Roothaan method dramatically
reduced the computational time of the Hartree–Fock calculations to realize the
electronic state calculations of general molecules. After the development of this
method, quantum chemistry began to make progress that tracked the growth of
computer power.

Based on the LCAO–MO approximation given in Sect. 2.2, molecular orbitals
f�ig can be expanded as
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�i .r/ D
nAOX
pD1

�p.r/Cpi ; (2.58)

where nAO is the number of atomic orbitals. The expansion coefficient Cpi is called
the molecular orbital (MO) coefficient. Although f�pg is essentially the set of
atomic orbitals, it is more efficient and general to use basis functions modeling
atomic orbitals (For basis sets, see Sect. 2.6). Using the expansion of molecular
orbitals, the Hartree–Fock equation is transformed to a matrix equation,

FCi D 	iSCi ; (2.59)

where the elements of matrix F and S are given as
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In these equations, nbasis is the number of basis functions, and the integrals hpq ,
.pr jqs/ and .pr jsq/ indicate
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Ppq is called the density matrix, which is defined using molecular orbital coeffi-
cients as

Ppq D 2

nX
jD1

CpjC
�
qj : (2.65)

The density matrix was first introduced by von Neumann (von Neumann 1927) and
Landau (Landau 1927) independently to describe the quantum mechanical natures
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of statistical systems. The diagonal term of the density matrix in Eq. (2.65), Ppp ,
indicates the existence probability of an electron in the p-th molecular orbital.

For Eq. (2.59), the condition

jF � 	iSj D 0 (2.66)

is required to make the coefficient matrix Ci give nonzero solutions. To solve
Eq. (2.66), a transformation is usually used for Eq. (2.59). That is, the Fock matrix
F is transformed to give matrix F0 satisfying

jF0 � 	iEj D 0; (2.67)

where E is the unit matrix. By this transformation, Eq. (2.66) is easily solved by
simply diagonalizing matrix F0. The simplest way to give Eq. (2.67) is orthonormal-
izing basis sets beforehand. Provided that basis sets giving the unit matrix E for the
overlap matrix S would be used, Eq. (2.66) is easily solved only by diagonalizing the
Fock matrix. Such a basis set transformation is actually employed in many quantum
chemistry calculation programs.

For using orthonormalized basis sets, the Roothaan equation is solved by the SCF
method as follows:

1. Set up the information for the calculated molecular system (nuclear coordi-
nates, nuclear charges, and number of electrons) and the orthonormalized basis
set, f�pg.

2. Calculate one- and two-electron integrals: hpq , hpr jqsi and hpr jsqi.
3. Determine the density matrix P with the initial molecular orbital coeffi-

cient, fCi g.
4. Compute the Fock matrix F in Eq. (2.60).
5. Diagonalize F to obtain the molecular orbital coefficients, fC0

ig, and orbital
energies, f	i g.

6. Update the density matrix, P0, with the new molecular orbital coefficients, fC0
ig.

7. Compare the given density matrix, P0, with the previous one, P, and halt the
SCF process, regarding it as convergent if the difference between these density
matrices is less than a given threshold value. If the difference is greater than the
threshold value, return to step 4 and continue with the calculation.

This SCF calculation lowers the total electronic energy by the unitary transformation
of molecular orbitals. Therefore, this can be taken as a process relaxing molecular
orbitals.

Using the density matrix P, the Fock matrix F, and the one-electron integral, the
total electronic energy can be calculated by Eqs. (2.54) and (2.57) as

E D 1

2

nbasisX
p;qD1

Ppq


hpq C Fpq

�
: (2.68)
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2.6 Basis Function

In the previous section, the Roothaan method was introduced as a method for
speeding up the Hartree–Fock calculation by expanding molecular orbitals with a
basis set. The accuracy and computational time of the Roothaan calculations depend
on the quality and number of basis functions, respectively. Therefore, it is necessary
for reproducing accurate chemical reactions and properties to choose basis functions
that give highly accurate molecular orbitals with a minimum number of functions.

The most frequently used basis function is the Gaussian-type function in quantum
chemistry calculations. This is due to the following product rule of Gaussian-type
functions (Szabo and Ostlund 1996).

exp

�˛jr � RAj2� exp


�ˇjr � RBj2�

D
�

2˛ˇ

.˛ C ˇ/�

�3=4
exp

�
� ˛ˇ

˛ C ˇ
jRA � RBj2

�
exp

��.˛ C ˇ/jr � RCj2 ; (2.69)

RC D ˛

˛ C ˇ
RA C ˇ

˛ C ˇ
RB; (2.70)

where RA is the coordinate vector of nucleus A. Based on this rule, the product
of Gaussian-type functions is given by a Gaussian-type function centered on a
different point, and this drastically speeds up the two-electron integral calculations.
However, as shown in the wavefunction of the hydrogen atom (Eq. (1.80)), actual
atomic orbitals are close to the Slater-type function, exp.��r/. It is therefore
unfavorable to use Gaussian-type functions as they are. To solve this problem, the
contracted Gaussian-type basis function, which is a linear combination of Gaussian-
type functions, was proposed by Boys (Boys 1950):

�p.r � RA/ D
X
�

c�p exp.�˛�p jr � RAj2/: (2.71)

In this equation, the original Gaussian-type functions are called primitive functions
to distinguish them from the contracted ones. The primitive functions are specified
only by the orbital exponent, ˛�p , contracted coefficient, c�p , and coordinate vector
of the center of the function, RA. By using these contracted Gaussian-type functions
as basis functions, it was expected that highly accurate results could be obtained
with far fewer basis functions.

Different from the contracted Gaussian-type basis functions mentioned later,
primitive functions usually have a standardized form to save the effort of developing
a different computational program for each basis function. The primitive functions
corresponding to s, p, d, and f atomic orbitals are represented analogically to the
spherical harmonic functions (see Sect. 1.8) as
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s function W exp.�˛r2/;
p function W .x; y; z/ exp.�˛r2/;
d function W .x2; y2; z2; xy; yz; zx/ exp.�˛r2/;
f function W .x3; y3; z3; x2y; x2z; xy2; y2z; yz2; xz2; xyz/ exp.�˛r2/; (2.72)

respectively. Note that the numbers of linear independent d and f functions are
essentially five and seven, respectively. Therefore, these primitive functions are
generally combined for d and f orbitals to provide linear independent functions:
x2 � y2 function is formed for d orbitals and x2z � y2z, 3x2y � y3 and 3xy2 � x3

functions are formed for f orbitals.
For contracted Gaussian-type basis functions, various types of functions have

been suggested. The following are several major Gaussian-type basis functions (for
further details, see, e.g., (Jensen 2006)):

• Minimal basis functions (e.g. STO-LG) contain only minimal required
contracted functions for each atom. For example, since electrons occupy atomic
orbitals up to the 2p orbital in the carbon atom, five contracted Gaussian-type
functions corresponding to 1s, 2s, 2px, 2py , and 2pz orbitals are necessary at
the minimum. The minimal basis functions approximating Slater-type orbitals
(STO) corresponding to atomic orbitals with L primitive functions are called
STO-LG basis functions.

• Split valence basis functions (e.g. 6-31G, 6-311G, DZ, TZ, and DZV) use
one type of contracted Gaussian-type function for core orbitals and multiple
contracted functions for valence orbitals. In most molecules, valence orbitals
mainly contribute to chemical bonds, while core orbitals hardly participate in
the bonds. It is therefore reasonable to use many basis functions for valence
orbitals to calculate electronic states accurately while conserving the total
number of basis functions. In this type of basis function, Pople-type basis
functions, including the 6-31G basis, are included. “6-31” indicates the extent
of the contraction and split, in which “6” means the use of contracted basis
functions of 6 primitive functions for core orbitals and “31” means the use of
doubly-split basis functions combining contracted basis functions of 3 primitive
functions with one uncontracted basis function for valence orbitals. “6-311G”
uses triply-split basis functions for valence orbitals. In this type of basis function,
the Dunning–Huzinaga-type and Ahlrichs-type basis functions are also included:
Dunning–Huzinaga-type functions are described as “DZ,” “TZ,” and “QZ” for
doubly-, triply-, and quadruply-split functions for valence orbitals, while the
Ahlrichs-type are similarly written as “DZV,” “TZV,” and “QZV.”

• Polarization function-supplemented basis functions (e.g. 6-31G*, 6-31G(d),
DZp, cc-pVXZ, and cc-pCVXZ) add polarization functions to incorporate
the anisotropic nature of molecular orbitals originating from chemical bonds.
Polarization functions usually have higher angular momenta than the highest
angular momenta of the atomic orbitals that mainly make up the molecular
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orbitals. In the Pople-type basis functions, the inclusion of polarization functions
is represented by an asterisk “*” such as “6-31G*.” For a single asterisk “*,”
one polarization function is added for all atoms except hydrogen atoms, while
for a double asterisk “**,” one p orbital function is also added to each hydrogen
atom. Recently, the form of polarization function is often written explicitly, for
example, “6-31G(d)” (for this basis function, a d orbital function is added). In
the case of the Dunning–Huzinaga-type basis functions, polarization functions
are represented by “p,” for example, “DZp” for a single polarization function and
“TZ2p” for double polarization functions. Recent highly accurate calculations
frequently use correlation consistent basis functions. Dunning et al. developed
these basis functions to create the remaining functions so that they produce
electron correlations equivalently when they are included in the valence orbitals,
such as the 4d and 4f orbitals. These basis functions are represented as “cc-
pVXZ” (X=D, T, Q, 5, 6,...). Furthermore, there are “cc-pCVXZ” basis functions,
which take into account the electron correlations of the core orbitals by adding s
and p orbital functions.

• Diffuse-function-augmented basis functions (e.g. 6-311CG(d), 6-311CCG(2df,
2pd), and aug-cc-pVXZ) employ diffuse functions to take weakly bound electrons
into consideration. In particular, these diffuse functions are requisite in the
calculations of the anions and excited states of small molecules. Adding diffuse
functions is shown by a plus “+” in Pople-type basis functions. “6-311CG(d)”
augments sp diffuse functions mixing s and p orbitals for all atoms except
hydrogen atoms, and “6-311CCG(2df, 2pd)” adds two d and one f diffuse
functions for all atoms except hydrogen and two p and one d orbital functions
for hydrogen in addition. For correlation consistent basis functions, augmenting
diffuse functions is represented by “aug-” at the head of the names and one
diffuse function is added to each angular momentum type of basis function. In the
“aug-cc-pVDZ” function, containing up to d orbital functions, diffuse functions
are added to s through d orbital functions one by one.

• Effective core potential (ECP) basis functions (e.g. LanL2DZ and Stuttgart-ECP)
approximate core orbitals, which hardly affect reactions and properties in most
systems, as effective potentials were introduced to drastically reduce the number
of basis functions. In particular, for the fourth-period atoms or later, ECP basis
functions are used in most cases, except for the reactions and properties in which
core electrons participate, and have given highly accurate results. The most
widely used ECP is the relativistic ECP (RECP), incorporating the relativistic
effects of the core electrons: The best known ECP basis functions are LanL2DZ,
of Los Alamos National Laboratory (USA), and the Stuttgart relativistic small
core (STRSC) and large core (STRLC) ECP basis functions (Germany). Among
others, there are the ab initio model potential (AIMP) basis functions, which were
developed to reproduce the ab initio potentials of core orbitals with nodes in order
to consider the indirect effects of core electrons.

These are the most frequently used basis functions in quantum chemistry
calculations. Of course, there are various basis functions in addition to the above,
and some functions have been confirmed to be efficient, especially in calculations
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for specific systems. Although the accuracies and reliabilities of calculated results
clearly depend on the basis functions used, it is usually hard to answer the question
which basis set should be used for specific systems. The only way to choose basis
functions is to contrast their features.

It is worthwhile to note that although only Gaussian-type basis functions have so
far been explained, they are not the only option in quantum chemistry calculations.
Actually, Slater-type basis functions, which reproduce the shapes of orbitals more
accurately, as mentioned above, are used in, e.g., the Amsterdam Density Functional
(ADF) program, in which numerical integral calculations are carried out with Slater-
type functions.

Finally, let us examine basis set superposition error (BSSE), which Gaussian-
type basis functions generally produce. This error is attributed to the artificial
stabilization energy coming from the overlap of nonorthogonal basis functions.
Therefore, this error has the effect of making atoms approaching closer to each other.
The attracting force from this error is called the Pulay force (Pulay 1969). To remove
this error, the counterpoise method (van Duijneveldt et al. 1994) is frequently used:
For example, if system AB is calculated with aCb basis functions, the counterpoise
method estimates the BSSE as

�E D EaCb
A C EaCb

B C Ea
A C Eb

B; (2.73)

and subtracts this �E from the total energy. In this equation, EaCb
A indicates the

energy of system A calculated with both a and b basis functions. It is well known
that BSSE is severe in calculating weak bonds. For example, van der Waals bonds
cannot be reproduced correctly without a BSSE correction (see Sect. 6.3). However,
since the overlap of basis functions is natural in chemical bonds, it is difficult to
specify the BSSE in chemical bond calculations. The BSSE is therefore neglected
in most calculations involving reactions and properties.

2.7 Coulomb and Exchange Integral Calculations

The Coulomb and exchange integral calculations of the Hartree–Fock equation
are usually the rate-determining processes in Hartree–Fock calculations. As
seen in Eqs. (2.63) and (2.64), the two-electron integrals called the two-electron
repulsion integrals are represented with basis functions and have double integrations
in terms of electronic position vectors in three-dimensional space coordinates. These
two-electron repulsion integrals are given in the fourth order of basis functions.
Since this indicates that the number of integrals drastically increases with the
number of basis functions, the integral calculations rapidly approach a limitation
on the number of electrons, unless the order is decreased. Fortunately, the two-
electron integrals contain many that are non-contributing or duplicate. It is therefore
necessary to eliminate these integrals for efficient integral calculations.
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In the field of quantum chemistry, many algorithms have been developed to
improve the efficiency of the two-electron integral calculations over the years. One
of the most frequently used algorithms is the screening based on the Schwartz
(K.H.A. Schwartz) inequality (1888). That is, based on the inequality,

ˇ̌
ˇ̌Z d3r��

p.r/�q.r/
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Z
d3r

ˇ̌
�p.r/

ˇ̌2 �
Z
d3r

ˇ̌
�q.r/

ˇ̌2
; (2.74)

negligible integrals can be screened out by calculating only the integrals of the
squared basis functions. Moreover, various sophisticated algorithms have been sug-
gested for the two-electron repulsion integral calculations. Recent major algorithms
combine various existing algorithms: the Obara–Saika recursive algorithm (Obara
and Saika 1986) for less-contracted Gaussian-type basis functions, the Rys polyno-
mial algorithm (Dupuis et al. 1976) for large angular momentum basis functions, the
Pople–Hehre axis-switching algorithm (Pople and Hehre 1978) for more-contracted
basis functions, and so forth. The major example is the PRISM algorithm (Gill and
Pople 1991), which is used in Gaussian09 and other programs. By using these
algorithms, the order of the two-electron repulsion integral calculations can be
decreased to the second to third order for the number of basis functions. However,
the calculations of large systems require further decrease of the order.

Coulomb interactions are not quantum mechanical interactions but classical
mechanical interactions between charges. Therefore, established techniques for
increasing efficiency in classical mechanics are available in Coulomb integral
calculations. So far, various techniques for classical mechanical systems have been
applied to the Coulomb integral calculations to reduce the computational order.
One of the major techniques is the fast multipole method (FMM) (Greengard and
Rokhlin 1987), which has been used to compute the gravity between stars scattered
through an astronomical body. FMM distinguishes long-range electron–electron
interactions and calculates these interactions by the multipole method and other
short-range electron–electron interactions by the usual method. For FMM, there
are different methods for distinguishing long-range interactions and expanding
multipoles (White et al. 1994). Another major technique for Coulomb integral
calculations is the use of the Poisson equation (Becke and Dickson 1988; Delley
1996; Manby et al. 2001),

Z
d3r0 r 2�.r0/

jr � r0j D �4��.r/; (2.75)

where � is the total electron density defined by
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j�i.r/j2: (2.76)
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In this equation, the Coulomb integral can be transformed into a single integral
by replacing the basis functions with the Laplacian of the auxiliary density basis
functions fr2�ag. The Coulomb integral is transformed for the combinations of the
auxiliary density basis functions as

Jab D
Z
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ˇ̌r 2
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ˇ̌
r12
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Z
d3r�a.r/r2�b.r/; (2.77)

and for the mixed basis functions with the usual basis functions f�pg as
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The auxiliary density basis functions f�ag are arbitrary electron density basis
functions that are smaller than the basis functions f�pg, spanning the model electron
density,

Q�.r/ D
X
a

ca�a.r/; (2.79)

and determines coefficient fcag by minimizing
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This technique is called electron density fitting and is employed in the DMol
program (Delley 1990). Methods combining the FMM and Poisson methods have
also been suggested (Watson et al. 2008). By using these techniques, the order
of the Coulomb integral calculations approaches the first order for the number of
basis functions. This order can be taken as the order of the electron number N ,
because the number of basis functions is nearly proportional to the number of
electrons. A method that makes a computational process approach the first order
of the calculated system is generally called a linear-scaling method or Order-N
method. In the Hartree–Fock method, most linear-scaling methods are proposed for
Coulomb integral calculations.

Exchange interactions are purely quantum-mechanical interactions, acting even
on distant electrons. Due to these interactions, total electronic energies are lowered,
stabilizing electronic states. A significant proportion of the exchange interactions
is taken up by the self-interactions of the electrons themselves. Exchange self-
interactions correspond to theKii terms in Eq. (2.45) and cancel out with Jii terms,
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as shown in Eq. (2.43). Consequently, these exchange self-interactions remove the
Coulomb potential of one electron. Exchange interactions increase the overlap
of orbitals to produce attractions between orbitals. As a result, these attractions
lead to the delocalization of the electron distribution, which causes the long-
range nature of the exchange interactions. Exchange interactions also enhance the
quantum nature of electronic states and significantly contribute to the chemical
reactions and properties of molecules. Therefore, it is difficult to discuss chemistry
even qualitatively without taking exchange interactions into consideration. Similarly
to Coulomb integral calculations, various types of linear-scaling methods have
been suggested for exchange integral calculations: e.g., the near-field exchange
(NFX) method (Burant et al. 1996), based on FMM, and the order-N exchange
(ONX) method (Schwegler et al. 1997a), which assumes the exponential decay
of the electron density for regions far from given nuclei. However, it has been
reported that both methods cannot achieve the linear scaling of exchange integral
calculations except for linearly extended long-chain systems. This may be attributed
to the long-range nature of exchange interactions (Schwegler et al. 1997b) and the
non-classical nature of long-range exchange interactions.

2.8 Unrestricted Hartree–Fock Method

Thus far, the spin-independent forms of the various calculation methods have been
described without clear notification, despite these forms being available only in the
electronic state calculations for closed-shell molecules, in which electrons occupy
molecular orbitals two by two. To take open-shell molecules containing unpaired
electrons into consideration, spin orbitals should be explicitly considered. As a
simple method for calculating the electronic states of open-shell molecules, Pople
and Nesbet developed the unrestricted Hartree–Fock (UHF) method (Pople and
Nesbet 1954), which independently deals with the spatial orbitals for ˛ and ˇ spins,
in 1954.

In the UHF method, the Hartree–Fock equation in Eq. (2.52) is transformed into
simultaneous equations for ˛- and ˇ-spin electrons,

OF˛�i˛ D 	i˛�i˛; (2.81)

and

OFˇ�iˇ D 	iˇ�iˇ: (2.82)

The spin-dependent Fock operator is given as

OF� D Oh� C
n�X
j

� OJj� � OKj�

�
C

n�0X
j

OJj� 0 ; (2.83)
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where n� is the number of �-spin electrons and � 0 ¤ � . Note that each electron has
Coulomb interactions but no exchange interactions with opposite-spin electrons.
The spin-dependent Coulomb operator OJj� and exchange operator OKj� in Eq. (2.83)
are defined as

OJj� .r1/�i� .r1/ D
Z
d3r2��

j�.r2/�j�.r2/
1

r12
�i� .r1/; (2.84)

and

OKj�.r1/�i�.r1/ D
Z
d3r2��

j� .r2/�i�.r2/
1

r12
�j�.r1/: (2.85)

These equations are called the UHF equation or the Pople–Nesbet equation (Pople
and Nesbet 1954). From the beginning, these equations have the form of the
Roothaan method given by simultaneous equations,

F˛Ci˛ D 	i˛SCi˛; (2.86)

and

FˇCiˇ D 	iˇSCiˇ; (2.87)

where the spin-dependent Fock operator F� and overlap matrix S� are given as

Fpq� D hpq� C
nbasisX
r;sD1

Psr� .hpr jqsi � hpr jsqi//C
nbasisX
r;sD1

Ppq� 0hpr jqsi; (2.88)

and

Spq� D
Z
d3r��

p� .r/�q� .r/: (2.89)

Although the solution method of this equation is similar to that of the Roothaan
method for closed-shell molecules, it includes pairs of Fock matrices, their
diagonalizations, and density matrices for the ˛- and ˇ-spins.

UHF calculations consequently give different spatial orbitals for ˛- and ˇ-spins.
This causes a problem in that UHF wavefunctions are often not eigenfunctions for
the square of the total spin operator, OS2. The total spin operator OS is the sum of the
spin angular momentum operators of the constituent electrons, Os, and is written as

OS D . OSx; OSy; OSz/ D
NX
i

Osi : (2.90)
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Defining the spin functions of molecular orbital �i as ˛i and ˇi , the spin angular
momentum operator, Os D . Osx; Osy; Osz/, gives

Osz

�
˛i
ˇi

�
D 1

2

�
˛i

�ˇi
�
; Osx

�
˛i
ˇi

�
D 1

2

�
ˇi
˛i

�
; Osy

�
˛i
ˇi

�
D i

2

�
ˇi

�˛i
�
;

(2.91)

and

Os2
�
˛i
ˇi

�
D . Osx2 C Osy2 C Osz

2
/

�
˛i
ˇi

�
D 3

4

�
˛i
ˇi

�
: (2.92)

Therefore, spin functions are the eigenfunctions of Os2 and Osz
2. Since the nonrel-

ativistic Hamiltonian operator generally does not explicitly depend on spins, it is
commutative with the Os2 and Osz operators. This indicates that the total wavefunctions
including the spatial functions, � , are the eigenfunctions of Os2 and Osz

2. Therefore,
it is easily proven that the Hamiltonian operator is commutative with the square
of total spin operator, OS2, and the z-component of the total spin operator, OSz, and
consequently, wavefunctions satisfy

OS2� D
0
@ NX

i;j

Osi � Osj
1
A� D

�
N˛ �Nˇ

2

��
N˛ �Nˇ

2
C 1

�
�; (2.93)

and

OSz� D
 

NX
i

Osz

!
� D

�
N˛ �Nˇ

2

�
�; (2.94)

where N� is the number of �-spin electrons in molecules. Since the total number of
spins is preserved, UHF wavefunctions satisfy Eq. (2.94) to be the eigenfunctions
of OSz. However, since the spatial functions of the UHF wavefunctions are different
for spins, the spins for the same number of molecular orbitals do not cancel
out, violating Eq. (2.93). Therefore, the UHF wavefunctions are generally not
eigenfunctions of OS2. Actually, for UHF wavefunctions, the expectation value of
the OS2 operator is proven to be (Szabo and Ostlund 1996)

h OS2iUHF D
�
N˛ �Nˇ

2

��
N˛ �Nˇ

2
C 1

�
CNˇ

�
NX
i;j

ˇ̌
ˇ̌
Z
d3r��

i˛.r/�jˇ.r/

ˇ̌
ˇ̌2 : (2.95)
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2.9 Electronic States of Atoms

The electronic configurations in atoms can be explained qualitatively by the
Hartree–Fock wavefunctions to some extent. Since atoms are spherically symmetric,
potentials are also taken as spherically symmetric. Therefore, similarly to the
wavefunction of the hydrogen atom in Eq. (1.78), the angular functions of the atomic
wavefunctions are spherical harmonics. On the other hand, the radial functions
are different from those for the hydrogen atom, because the degeneracy for the
azimuthal quantum number l is resolved due to the appearance of the interelectronic
potential, Vee. However, as anticipated from the fact that the eigenenergy of the
hydrogen atom in Eq. (1.82) depends only on main quantum number n, the energy
differences between the motional states of different l are much smaller than those of
different n for relatively light atoms. There are, therefore, possible motional states
for natural the numbers l (l � n � 1) in ascending n number. For the azimuthal
quantum number l , the radial functions are represented as s, p, d, f, g, h, : : : : These
radial functions are also degenerate for the magnetic quantum number m, which is
an integer �l � m � l . In this way, the electronic motional states, i.e., atomic
orbitals, with .n; l;m/ quantum numbers are determined as 1s, 2s, 2p (2p�1, 2p0,
2pC1), 3s, 3p (3p�1, 3p0, 3pC1), 3d (3d�2, 3d�1, 3d0, 3dC1, 3dC2/; : : : :

How are electrons distributed to these atomic orbitals? The atomic electron
configurations are summarized in Tables 2.1–2.3. Electrons occupy the energetically
lowest atomic orbitals two by two in closed-shell atoms such as the rare gases.
However, it is not so simple in open-shell atoms. As a practical explanation, Hund’s
rule (Hund 1925a,b) is available. This rule consists of the following two rules:

• In electron configurations with the same main and azimuthal quantum numbers,
the highest total spin configuration is the most stable.

• In the highest total spin configurations, the highest angular momentum configu-
ration is the most stable.

For example, the electron configuration of the carbon atom is .1s/2.2s/2.2p/2,
obeying Hund’s rule for the assignment of two electrons to the outermost 2p
orbitals. That is, 2p orbitals are occupied by two ˛-spin electrons to maximize the
total spin and 2pC1 and 2p0 orbitals are occupied to maximize the total angular
momentum. Exchange interactions are the underlying cause for the first rule that
the highest total spin configuration is the most stable. The second rule that the
highest angular momentum configuration is the most stable is due to Coulomb
interactions, which are minimized by allocating electrons close to the equatorial
planes of atoms, where electrons are farthest from each other. Actually, atomic
ground-state configurations cannot essentially be given by the Hartree method, but
can be reproduced by the Hartree–Fock method containing exchange interactions to
some extent. Note, however, that electron configurations containing open-shell core
orbitals such as those of rare earth atoms cannot be provided without considering
electron correlation, as described in the next chapter.
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Table 2.1 Electronic configurations of atoms up to krypton

Atomic
number

K L M N O Ground
statePeriod Element 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p

1 1 H 1 2S1=2
2 He 2 1S0

2 3 Li 2 1 2S1=2
4 Be 2 2 1S0
5 B 2 2 1 2P1=2
6 C 2 2 2 3P0
7 N 2 2 3 4S3=2
8 O 2 2 4 3P2
9 F 2 2 5 2P3=2

10 Ne 2 2 6 1S0

3 11 Na 2 2 6 1 2S1=2
12 Mg 2 2 6 2 1S0
13 Al 2 2 6 2 1 2P1=2
14 Si 2 2 6 2 2 3P0
15 P 2 2 6 2 3 4S3=2
16 S 2 2 6 2 4 3P2
17 Cl 2 2 6 2 5 2P3=2
18 Ar 2 2 6 2 6 1S0

4 19 K 2 2 6 2 6 1 2S1=2
20 Ca 2 2 6 2 6 2 1S0
21 Sc 2 2 6 2 6 1 2 2D3=2

22 Ti 2 2 6 2 6 2 2 3F2
23 V 2 2 6 2 6 3 2 4F3=2
24 Cr 2 2 6 2 6 5 1 7S3
25 Mn 2 2 6 2 6 5 2 6S5=2
26 Fe 2 2 6 2 6 6 2 5D4

27 Co 2 2 6 2 6 7 2 4F9=2
28 Ni 2 2 6 2 6 8 2 3F4
29 Cu 2 2 6 2 6 10 1 2S1=2
30 Zn 2 2 6 2 6 10 2 1S0
31 Ga 2 2 6 2 6 10 2 1 2P1=2
32 Ge 2 2 6 2 6 10 2 2 3P0
33 As 2 2 6 2 6 10 2 3 4S3=2
34 Se 2 2 6 2 6 10 2 4 3P2
35 Br 2 2 6 2 6 10 2 5 2P3=2
36 Kr 2 2 6 2 6 10 2 6 1S0

In addition, there is a third, complementary rule:

• The configuration with the lowest total angular momentum (total spin + total
orbital angular momentum) is the most stable for atoms containing less-than-half
occupied outermost orbitals, and the configuration with the highest total angular
momentum is the most stable for those containing greater-than-half occupied
outermost orbitals.
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Table 2.2 Electronic configurations of atoms from rubidium to lutetium

Atomic
number

K 1s N O P Ground
statePeriod Element - N 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d 6f

5 37 Rb [Kr] 1 2S1=2
38 Sr [Kr] 2 1S0
39 Y [Kr] 1 2 2D3=2

40 Zr [Kr] 2 2 3F2
41 Nb [Kr] 4 1 6D1=2

42 Mo [Kr] 5 1 7S3
43 Tc [Kr] 6 1 6S5=2
44 Ru [Kr] 7 1 5F5
45 Rh [Kr] 8 1 4F9=2
46 Pd [Kr] 10 1S0
47 Ag [Kr] 10 1 2P1=2
48 Cd [Kr] 10 2 3P0
49 In [Kr] 10 2 1 4S3=2
50 Sn [Kr] 10 2 2 3P2
51 Sb [Kr] 10 2 3 2P3=2
52 Te [Kr] 10 2 4 1S0
53 I [Kr] 10 2 5 2S1=2
54 Xe [Kr] 10 2 6 1S0

6 55 Cs [Kr] 10 2 6 1 2D3=2

56 Ba [Kr] 10 2 6 2 3H4

57 La [Kr] 10 2 6 1 2 4I
58 Ce [Kr] 10 2 2 6 2 5I4
59 Pr [Kr] 10 3 2 6 2 6H
60 Nd [Kr] 10 4 2 6 2 7F0
61 Pm [Kr] 10 5 2 6 2 8S7=2
62 Sm [Kr] 10 6 2 6 2 9D2

63 Eu [Kr] 10 7 2 6 2 6H15=2

64 Gd [Kr] 10 7 2 6 1 2 5I
65 Tb [Kr] 10 9 2 6 2 4I
66 Dy [Kr] 10 10 2 6 2 3H4

67 Ho [Kr] 10 11 2 6 2 2F7=2
68 Er [Kr] 10 12 2 6 2 1S0
69 Tm [Kr] 10 13 2 6 2 2D3=2

70 Yb [Kr] 10 14 2 6 2 3F2
71 Lu [Kr] 10 14 2 6 1 2 4F3=2

“[Kr]” indicates the electron configuration of krypton

This rule is based on spin–orbit interactions, which are based on relativistic effects
(see Sect. 6.4). For example, let us compare the electron configurations of silicon
and sulfur atoms. Since the outermost 3p orbitals are occupied by two and four
electrons in silicon and sulfur atoms, respectively, the silicon atom, containing less-
than-half occupancy, has a 3P0 ground state with the minimum zero total angular
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Table 2.3 Electronic configurations of atoms from hafnium to rutherfordium

Atomic
number

K 1s N O P Q Ground
statePeriod Element - N 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d 6f 7s 7p

6 72 Hf [Kr] 10 14 2 6 2 2 5D0

73 Ta [Kr] 10 14 2 6 3 2 6S5=2
74 W [Kr] 10 14 2 6 4 2 5D4

75 Re [Kr] 10 14 2 6 5 2 4F9=2
76 Os [Kr] 10 14 2 6 6 2 3D3

77 Ir [Kr] 10 14 2 6 7 2 2S1=2
78 Pt [Kr] 10 14 2 6 9 1 1S0
79 Au [Kr] 10 14 2 6 10 1 2P1=2
80 Hg [Kr] 10 14 2 6 10 2 3P0
81 Tl [Kr] 10 14 2 6 10 2 1 4S3=2
82 Pb [Kr] 10 14 2 6 10 2 2 3P2
83 Bi [Kr] 10 14 2 6 10 2 3 2P3=2
84 Po [Kr] 10 14 2 6 10 2 4 1S0
85 At [Kr] 10 14 2 6 10 2 5 2S1=2
86 Rn [Kr] 10 14 2 6 10 2 6 1S0

7 87 Fr [Kr] 10 14 2 6 10 2 6 1 2D3=2

88 Ra [Kr] 10 14 2 6 10 2 6 2 3F2
89 Ac [Kr] 10 14 2 6 10 2 6 1 2 2D3=2

90 Th [Kr] 10 14 2 6 10 2 6 2 2 3Fa

91 Pa [Kr] 10 14 2 6 10 2 2 6 1 2 4Ka

92 U [Kr] 10 14 2 6 10 3 2 6 1 2 5La

93 Np [Kr] 10 14 2 6 10 4 2 6 1 2 6La

94 Pu [Kr] 10 14 2 6 10 5 2 6 1 2 7Ka

95 Am [Kr] 10 14 2 6 10 7 2 6 2 8Sa

96 Cm [Kr] 10 14 2 6 10 7 2 6 1 2 9Da

97 Bk [Kr] 10 14 2 6 10 8 2 6 1 2 8Ha

98 Cf [Kr] 10 14 2 6 10 10 2 6 2 5Ia

99 Es [Kr] 10 14 2 6 10 11 2 6 2 4Ia

100 Fm [Kr] 10 14 2 6 10 12 2 6 2 3Ha

101 Md [Kr] 10 14 2 6 10 12 2 6 1 2 4Ka

102 No [Kr] 10 14 2 6 10 14 2 6 2 1Sa

103 Lr [Kr] 10 14 2 6 10 14 2 6 2 1 2Da

104 Rf [Kr] 10 14 2 6 10 14 2 6 2 2 3F2a

Ground states designated by “a” (Küchle et al. 1994) and “b” (Eliav et al. 1995) are the most stable
electronic states, and their electron configurations in relativistic full-electron calculations. “[Kr]”
indicates the electron configuration of krypton

momentum and the sulfur atom, containing greater-than-half occupancy, has a 3P2
ground state with the maximum two total angular momentum. It is required to
include the relativistic spin–orbit interactions to reproduce these ground states.
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Chapter 3
Electron Correlation

3.1 Electron Correlation

Although the Hartree–Fock method is a milestone of modern quantum chemistry,
it has gradually become obvious that this method has problems with chemical
calculations of various molecules. For example, the Hartree–Fock method is not
suitable for quantitative discussions even of simple chemical reactions. Quantitative
discussions of actual chemistry need chemical accuracy, with errors of about
0.1 Å for bond distances and several kcal/mol for energies, which cannot be attained
by Hartree–Fock calculations. This problem is attributed to the energy differences
neglected in Hartree–Fock calculations, which are only on the order of 1% of
the total energies. In 1955, Löwdin defined this energy difference as the electron
correlation (Löwdin 1955). That is, electron correlation is defined as the difference
between the exact and Hartree–Fock energies,

Ecorr D Eexact �EHF: (3.1)

So, why is electron correlation produced? This is clearly explained by consid-
ering the density matrix. Instead of the density matrix of electrons in molecular
orbital spaces given in Eq. (2.65), let us consider the density matrix of electrons in
a three-dimensional space. In this case, the first-order density matrix is defined for
the wavefunctions of N electron systems �.r1; r2; : : : ; rN / as

P.r0
1; r1/ D N

Z
d3r2 � � �d3rN�.r0

1; r2; : : : ; rN /�
�.r1; r2; : : : ; rN /; (3.2)

where P.r1; r1/d 3r1 is the probability of finding out one electron in a volume
element d3r1, which is integrated over the whole space to the number of electrons.
Similarly, the second-order density matrix is defined as
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˘.r0
1; r

0
2I r1; r2/

D N.N � 1/
2

Z
d3r3 � � �d3rN�.r0

1; r
0
2; : : : ; rN /�

�.r1; r2; : : : ; rN /; (3.3)

where ˘.r1; r2I r1; r2/d 3r1d 3r2 corresponds to the probability of finding one
electron in d3r1 and another electron in d3r2 simultaneously. The time-independent
Schrödinger equation for electronic motions in molecules is written as

OH� D
0
@�

NX
i

r 2
i

2
C Vne C

NX
i<j

1

rij

1
A� D E�: (3.4)

In this equation, the Hamiltonian contains the 1=rij term, giving infinity for rij D 0,
despite the fact that the energy E has a finite value. Therefore, the wavefunction �
annihilates at rij D 0,

˘.r1; r2I r1; r2/r12!0 ) ˘.r1; r1I r1; r1/ D 0: (3.5)

Note that based on the Pauli exclusion principle, this is not applicable to electron
pairs with the same quantum numbers except that of spin. This indicates that the
wavefunction � is considered to have a hole at r12 D 0, which is called a Coulomb
hole. By excluding close electrons, this Coulomb hole decreases the Coulomb
interactions, thus lowering the total energies. This energy gain corresponds to the
electron correlation.

Next, let us focus on the Hartree–Fock wavefunction at rij D 0 by considering
the Slater determinant for the electronic state of the He atom given in Eq. (2.32),

˚HF.r1; r2/ D 1p
2
Œ�1.r1/�2.r2/ � �1.r2/�2.r1/ : (3.6)

Note, however, that spin functions are not explicitly taken into consideration. In the
case that atomic orbitals, �1 and �2, have parallel spins (�1 D �2), the Hartree–Fock
wavefunction approaches

˚HF.r1; r2/r12!0 ) 1p
2
Œ�1.r1/�2.r1/ � �1.r1/�2.r1/ D 0: (3.7)

Therefore, by Eq. (3.3), the diagonal terms of the parallel-spin second-order density
matrix are given in the limit of r12 ! 0 as

˘
�1D�2
HF .r1; r2I r1; r2/r12!0 ) ˘

�1D�2
HF .r1; r1I r1; r1/ D 0: (3.8)

This indicates that the Hartree–Fock wavefunction has a hole for parallel-spin
electron pairs. This hole is called the Fermi hole or exchange hole. In contrast, for
anti-parallel spins (�1 ¤ �2), the Hartree–Fock wavefunction approaches
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˘
�1¤�2
HF .r0

1; r
0
2I r1; r2/ D ˚HF.r0

1; r
0
2/˚

�
HF.r1; r2/

D 1

2

�
P.r0

1; r1/P.r
0
2; r2/�P.r0

1; r2/P.r
0
2; r1/


: (3.9)

For �1 ¤ �2, the second term of the right-hand side is zero by Eq. (2.41).
The diagonal terms of the anti-parallel-spin second-order density matrix at r12 ! 0

are, therefore, provided as

˘
�1¤�2
HF .r1; r2I r1; r2/r12!0 D 1

2
P.r1; r1/P.r2; r2/

ˇ̌
ˇ̌
r2!r1

: (3.10)

This indicates that, for electron pairs of different spins, electronic motions are
independent and have no correlation with each other. Obviously, it is not consistent
with the above discussion that wavefunctions have Coulomb holes for close
electrons. The Coulomb holes for anti-parallel-spin electron pairs are the main cause
for electron correlation excluded in the Hartree–Fock wavefunction.

3.2 Dynamical and Nondynamical Correlations

The Coulomb hole that wavefunctions are predicted to have for close anti-parallel-
spin electrons is also called a correlation hole. As a condition for wavefunctions
containing correlation holes, Kato proposed a correlation cusp condition (Kato
1957),

�
@�

@r12

�
r12D0

D
�
�

2

�
r12D0

: (3.11)

The Hartree–Fock wavefunction violates this condition, because it gives zero for
the left-hand side of this equation. As shown in Fig. 3.1, a wavefunction satisfying
this condition contains a correlation hole, which contains a sharp dip, called a cusp,
near r12 D 0. This correlation hole causes anti-parallel-spin electrons to be further
apart, and therefore reduces Coulomb interactions, thus lowering the total electronic
energies. Sinanoğlu named this electron correlation in the correlation cusp condition
as dynamical correlation (Sinanoğlu 1964).

How does dynamical correlation stabilize electronic states? This is explained
by considering the energy of the Møller–Plesset perturbation method, which is a
perturbation method based on the Hartree–Fock wavefunction (McWeeny 1992).
In this method, by assuming the sum of the Fock operators as the nonperturbative
operator, the Hamiltonian is defined as

OH D OH0 C V D
nX
i

OFi C V: (3.12)
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Fig. 3.1 Correlation cusp in the wavefunction of the hydrogen molecule (Frye et al. 1990). The
wavefunctions of the Hartree–Fock and configuration interaction (CI) (see Sect. 3.3) methods are
compared to the wavefunction of the Hylleraas CI (HCI) method (see Sect. 3.5), which is close to
the exact wavefunction. Since x2 is set to zero in this figure, x1 corresponds to r12. Note that the
wavefunction is not zero even for r12 D 0, because there remains one electron at r12 D 0

Consequently, the second-order perturbation electron correlation for the Hartree–
Fock energy is given as (Møller and Plesset 1934)

EMP2 D �
noccX
i<j

nvirX
a<b

jhij jabi � hij jbaij2
	a C 	b � 	i � 	j : (3.13)

Note that the first-order perturbation electron correlation is always zero in this
method (see Sect. 3.4). This second-order perturbation energy originates from the
relaxation of electron pairs in orbitals. That is, it is a dynamical correlation and is
called a electron-pair correlation. What is important is that the Coulomb overlaps
(i.e., the overlaps through 1=r12) of occupied orbitals, �i and �j , and of virtual
orbitals, �a and �b , inversely relate to the differences between integrals hij jabi
and hij jbai, and consequently the numerator of Eq. (3.13). That is, electron-pair
correlations are expected to be large for, e.g., .n; �/ ! .n�; ��/ and .1s; 2p/ !
.1s�; 2p�/. Consequently, electron-pair correlation decreases the Coulomb overlap
of orbitals �i and �j , while exchange interaction contrastingly increases the
Coulomb overlap of these orbitals. It is therefore supposed that dynamical electron
correlation provides an energetical stabilization by decreasing Coulomb interac-
tions between occupied orbitals and between virtual orbitals through electron-pair
relaxations. For example, for the helium atom, which contains two electrons, thus
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giving only this electron-pair correlation, the electron correlation energy is �0:0420
atomic units, which is about 4% of the exchange energy, �1:026 atomic units.
This percentage is higher than those of other systems. In most systems, the electron
correlation energy is around 2–3% of the exchange energy.

Besides dynamical electron correlation, there is nondynamical electron
correlation, which originates from the explicit interactions between near-degenerate
electron configurations (Sinanoğlu 1964). Nondynamical electron correlation
appears most prominently in the dissociations of chemical bonds. Let us consider
the bond dissociation of the hydrogen molecule in its ground state. In the ground
state given by the Hartree–Fock method, two electrons occupy the molecular orbital,

�1 D 1p
2C 2SAB

.�A C �B/ ; (3.14)

where �A and �B are the atomic orbitals of the hydrogen atoms A and B, and SAB

is the overlap integral of the atomic orbitals,

SAB D
Z
d3r��

A.r/�B.r/: (3.15)

In this case, the wavefunction of the hydrogen molecule is represented as the Slater
determinant as

˚grd.r1; r2/ D 1p
2

det j�1.r1/�1.r2/j: (3.16)

However, at the dissociation limit of H2 !2H, this wavefunction becomes

˚grd.r1; r2/ D 1

2
p
2

det j�A.r1/�B.r2/C �B.r1/�A.r2/

C�A.r1/�A.r2/C �B.r1/�B.r2/j: (3.17)

In this equation, the overlap integral SAB is assumed to be zero at the dissociation
limit. Note that the latter two terms in this wavefunction are ionically bonded states,
in which electrons are biased to one atom, and therefore, these terms are much less
stable than the former two terms corresponding to covalently bonded states at the
dissociation limit. Actually, in the restricted Hartree–Fock method, the ground state
of the hydrogen molecule is quite unstable at the dissociation limit. This problem is
solved by linearly coupling the excited electron configuration of the anti-bonding
molecular orbital. Let us consider the Slater determinant of an excited electron
configuration,

˚exc.r1; r2/ D 1p
2

det j�2.r1/�2.r2/j; (3.18)
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which is represented using the anti-bonding molecular orbital,

�2 D 1p
2 � 2SAB

.�A � �B/ : (3.19)

At the dissociation limit, this electron configuration gives

˚.r1; r2/ D � 1

2
p
2

det j�A.r1/�B.r2/C �B.r1/�A.r2/

��A.r1/�A.r2/� �B.r1/�B.r2/j: (3.20)

Note that the signs of the ionically bonded states are reverse to those of the cova-
lently bonded states.Therefore, the linear combination of the Slater determinantsof
the ground and excited electron configurations cancels out the unstable ionically
bonded states in the wavefunction at the dissociation limit,

�.r1; r2/ D 1

2
p
2

det j�1.r1/�1.r2/ � �2.r1/�2.r2/j

D 1p
2

det j�A.r1/�B.r2/C �B.r1/�A.r2/j: (3.21)

In general, electronic states are represented as the linear combination of electron
configurations,˚I , which are given by the Slater determinants, such as

�.r1; r2; : : :/ D
X
I

CI˚I .r1; r2; : : :/: (3.22)

These CI coefficients, which are called CI coefficients, can accept a value of
neither 0 nor 1. Actually, electron configurations of both the same spatial and spin
symmetries are mixed, if these configurations have close energies. The stabilization
energy gained from the mixing of these near-degenerate electron configurations
is called nondynamical electron correlation, while the functions of these electron
configurations are called configuration state functions (CSFs).

3.3 Configuration Interaction

As shown in the previous section, electron correlation can be essentially
incorporated by a method that linearly combines excited CSFs with the ground CSF.
This method is called the configuration interaction (CI) method (McWeeny 1992).
Slater indicated the lack of CI in the Hartree–Fock method, before the Hartree–
Fock SCF method was developed. In his paper published in 1929, in which he
described how the formulation of the Hartree–Fock method is derived with the
Slater determinant, he pointed out the problem of exchanging only occupied orbital
electrons in the Slater determinants of wavefunctions and suggested a CI method
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that would take the exchanges with unoccupied orbital electrons into account (Slater
1929). Condon developed the CI method by proposing the Slater–Condon rule for
the set of contributing electron configurations (Condon 1930). In the CI method, the
wavefunction is represented as the linear combination of the Slater determinants for
the Hartree–Fock wavefunction as the ground CSF and the excited CSFs of single
excitations ˚i!a, double excitations ˚ij!ab , and so on,

�.fxg/ D CHF˚HF.fxg/

C
noccX
i

nvirX
a

Ci!a˚i!a.fxg/C
noccX
i;j

nvirX
a;b

Cij!ab˚ij!ab.fxg/

C � � � ; (3.23)

where fxg is a spin-space coordinate vector ffrg; f�gg. Based on this CI wavefunc-
tion, the CI Hamiltonian matrix elements,

HIJ D
Z
d3fxg˚�

I .fxg/ OH˚J .fxg/; (3.24)

are calculated, and then the CI determinant,

jH � EIj D 0; (3.25)

where I is the unit matrix, is solved by diagonalizing the Hamiltonian matrix H.
Since the full-CI method incorporating all electron configurations can include all
possible electron correlations, exact calculations can be performed by this method,
in theory. However, the exactness is practically limited by the finite number of
basis functions. Full-CI calculations are also unrealistic except for quite small
molecules, because the number of CSFs increases exponentially with respect to
the number of electrons. To solve this problem, CI methods that take into account
only the excitations of a few electrons, e.g., CI singles and doubles (SDCI) method,
have been developed. However, these methods violate size-consistency (Pople et al.
1977), which establishes that the energy of a system should equal the energy sum of
the separate subsystems at the bond dissociation limit.

The multiconfigurational SCF (MCSCF) method (Frenkel 1934) is one of the CI
methods that have been developed to efficiently reduce the number of CSFs. In the
MCSCF method, the CI calculations are carried out using CSFs restricted to the
exchanges of valence orbitals, and then the SCF calculations are performed using
the given CI wavefunctions to provide the electronic structures (McWeeny 1992).
The MCSCF wavefunction is represented as the linear combination of the CSFs
generated from the active space, which is spanned by the electron configurations of
excitations from specific occupied to virtual orbitals and the ground configuration,

� D
nactive CSFX

I

CI˚I : (3.26)
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Using this wavefunction, the MCSCF equation,

X
s

OFrs�s D
X
s

	sr�s (3.27)

is solved instead of the Hartree–Fock equation in Eq. (2.52). In this equation, the
Fock operator OFrs is given as

OFrs D
 
nactive CSFX
I;J

C �
I CJA

IJ
sr

!
OhC

norbX
t;u

 
nactive CSFX
I;J

C �
I CJB

IJ
su;rt

!
V ee
tu ;

(3.28)

where AIJsr , BIJ
su;rt , and V ee

tu are represented as

AIJsr D 1

N Š

Z
d3fxg˚�

I .fxg/˚s!r
J .fxg/; (3.29)

BIJ
su;rt D 1

N Š

Z
d3fxg˚�

I .fxg/˚sr!ut
J .fxg/; (3.30)

and

V ee
tu D

Z
d3r2��

t .r2/
1

r12
�u.r2/: (3.31)

This equation is practically solved as follows: first, the CI Hamiltonian matrix
elements in Eq. (3.24) are calculated for an MCSCF wavefunction in Eq. (3.26).
Then, the matrix is diagonalized to obtain the CI coefficients. Using the CI
coefficients, the Fock operator in Eq. (3.28) is calculated, and then the MCSCF
equation in Eq. (3.27) is solved by the SCF method. After constructing the CSFs,
using the given orbitals called natural orbitals, the CI Hamiltonian matrix in
Eq. (3.24) is diagonalized to obtain the CI coefficients. These processes are repeated
to achieve self-consistent CI coefficients. In actual MCSCF calculations, the density
matrix is used without explicitly determining the natural orbitals. Natural orbitals
can be obtained by diagonalizing the density matrix in the CASSCF method
mentioned later, although these orbitals cannot be given in general MCSCF methods
using specific excited configurations due to the lack of the degrees of freedom in the
unitary transformations of the natural orbitals. Although the electron correlation
given in MCSCF calculations is frequently interpreted as nondynamical electron
correlation, the dynamical type of electron correlation is included to a greater
extent than the nondynamical type. Therefore, nondynamical correlation should
be interpreted as the energy difference between a single-reference calculation,
which uses the Hartree–Fock wavefunction as the reference function, and the
corresponding multireference calculation (see Sect. 3.5), which uses the MCSCF
wavefunction as the reference function. This nondynamical correlation, which
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is also called the near-degeneracy effect, comes from the interaction between
near-degenerate electron configurations.

The cause of large electron correlations between near-degenerate electron
configurations can be recognized by considering the MP2 energy, i.e., second-order
Møller–Plesset, in Eq. (3.13),

EMP2 D EHF C
nD�CSFX
I

j R d3fxg˚�
HF.fxg/ OH˚I .fxg/j2
EHF � EI

; (3.32)

where nD�CSF is the number of doubly-excited CSFs. In the case in which an
excited configuration has an energy close to that of the ground configuration,
the denominator of the perturbation term in Eq. (3.32) approaches zero, giving a
large second-order perturbation energy. The above-mentioned bond dissociation of
the hydrogen molecule is a good example. Since the ground configuration of the
bonding orbital comes close to the excited configuration of the anti-bonding orbital,
the electronic energy is stabilized by mixing these configurations.

The most famous MCSCF method is the complete active-space (CAS) SCF
method (Roos et al. 1980), which incorporates all possible excited CSFs in the set of
specific valence orbitals. Since the CASSCF method may be the simplest way to take
into account the nondynamical electron correlation, this method has been applied
to a wide variety of systems from small molecules to biomolecules. However, this
method still has various problems: e.g., the number of excited CSFs exponentially
increases as the size of active space increases, the SCF process is usually converged
poorly in comparison with that of the Hartree–Fock calculation, and the electron
correlation is ill-balanced due to the insufficient dynamical correlation.

3.4 Brillouin Theorem

By considering configuration interaction, the characteristics of the Hartree–Fock
method become clear. The Brillouin theorem (Brillouin 1934) establishes that the
Hartree–Fock ground electron configuration has no direct interaction with singly-
excited electron configurations (McWeeny 1992). Let us consider the nondiagonal
term of the CI Hamiltonian matrix, which consists of the ground configuration
and the singly-excited configurations from occupied orbital �i to virtual orbital �a.
Similarly to the diagonal term in Eq. (2.37), this nondiagonal term is written as

h˚HFj OH j˚i!ai D 1

N Š

Z
d3frg det j��

1 .r1/ � � ���
i .ri / � � ���

N .rN /j OH

� det j�1.r1/ � � ��a.ri / � � ��N .rN /j : (3.33)
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Following the derivation to Eqs. (2.42) and (2.43), the one-electron integral in
Eq. (3.33) is found to remain

(One-electron integral)

D
Z
d3r��

i .r/
�

�1
2

r2 C Vne

	
�a.r/ D hi jhjai: (3.34)

This derivation uses the following assumptions: the one-electron operator itself is
independent of the orbitals, this integral is not affected by the exchanges of every
orbital pair excluding �i and �a, and this integral is zero for exchanges of �i and
other orbitals. Considering that the exchanges of �i and other orbitals are allowed,
the two-electron integral is similarly found to remain

(Two-electron integral)

D 1

2

nX
j¤i

�Z
d3r1d 3r2��

i .r1/�
�
j .r2/

1

r12

�
�j .r1/�a.r2/� �a.r1/�j .r2/



�
Z
d3r1d 3r2��

j .r1/�
�
i .r2/

1

r12

�
�a.r1/�j .r2/ � �j .r1/�a.r2/

	

D
nX
j

Œhij jaj i � hij jjai : (3.35)

Note that the condition of j ¤ i is deleted in the sum due to the cancellation for
j D i . Therefore, the nondiagonal term becomes

h˚HFj OH j˚i!ai D hi jhjai C
nX
j

Œhij jaj i � hij jjai : (3.36)

Using Eq. (2.51), it can be shown that this nondiagonal term corresponds to the
nondiagonal term of the Fock matrix,

Z
d3r��

i .r/ OF�a.r/ D hi jhjai C
nX
j

hi j2 OJj � OKj jai

D h˚HFj OH j˚i!ai: (3.37)

However, this nondiagonal term should be zero in Hartree–Fock SCF calculations,
because by multiplying ��

a to both sides of Eq. (2.52) and integrating them with
respect to the electron coordinate, the right-hand side is shown to give zero due
to the orthonormalization condition for orbitals. This indicates that the ground
electron configurations given by solving the one-electron SCF equations such as the
Hartree–Fock SCF equation imply the configuration interactions with singly-excited
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electron configurations. Therefore, it is essentially unnecessary to mix singly-
excited configurations with the Hartree–Fock wavefunctions. This is called the
Brillouin theorem. Note that if doubly-excited electron configurations are taken into
consideration, singly-excited electron configurations should be mixed due to their
indirect configuration interactions.

3.5 Advanced Correlation Theories

Thus far, several major theories for incorporating electron correlations have been
introduced. However, each theory has some problems, e.g., long computational
times required and ill-balanced electron correlations included. This has long been
one of the most significant subjects, i.e., how to incorporate electron correlations
efficiently and elegantly. In this section, several theories developed to address this
issue are briefly reviewed.

The coupled cluster method is a major theory developed to efficiently accumulate
electron correlations (McWeeny 1992). This method was developed by C̆íz̆ek based
on the ansatz of the cluster expansion in statistical mechanics (C̆íz̆ek 1966) and
became used in quantum chemistry calculations in the 1980s. In this method, the
wavefunction is expanded as

�CC D exp. OT /˚ D
�
1C OT C 1

2
OT 2 C � � �

�
˚; (3.38)

where ˚ is the Slater determinant of the ground electron configuration. OT in
Eq. (3.38) is the operator summing all excitations and similarly to Eq. (3.23), it is
written as

OT˚ D OT1˚ C OT2˚ C � � � (3.39)

D
noccX
i

nvirX
a

ci!a˚i!a C 1

4

noccX
i;j

nvirX
a;b

cij!ab˚ij!ab C � � � ; (3.40)

where OT1, OT2, : : : are the operators of single, double, : : : excitations, respectively.
Using these operators, Eq. (3.38) is represented as

�CC Dexp. OT /˚ D
�
1C OT1 C OT2 C 1

2
OT 21 C OT1 OT2 C 1

2
OT 22 C � � �

�
˚: (3.41)

The coupled cluster method is the CI method based on this wavefunction. One of
the main advantages of this method is to ensure size consistency (see Sect. 3.3)
in the selection of electron configurations. In coupled cluster methods, the coupled-
cluster singles and doubles (CCSD) method terminates OT up to the double excitation
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operator OT2 ( OT D OT1 C OT2), and the CCSD with perturbative triples (CCSD(T))
method supplements the perturbation effect coming from the triple excitation
operator to the CCSD operator. The CCSD(T) method has even been called the
golden theory, because this method is known to give well-balanced electron cor-
relations in practical computational times. The well-balanced electron correlations
are interpreted to come from the partial inclusion of nondynamical electron cor-
relations in the perturbation terms of triple excitations besides dynamical electron
correlations from single and double excitation operators. The symmetry-adapted
cluster (SAC) CI method is an application of this coupled cluster method to excited
states (Nakatsuji and Hirao 1978). This method incorporates electron correlations
of excited states based on those of ground states to shorten the computational time
required in excited state calculations.

The multireference theory is a significant theory for considering the char-
acteristics of electron correlation. In this method, a dynamical correlation is
supplemented into an MCSCF method to balance dynamical and nondynamical
electron correlations. This method incorporates excited configurations from a
multiconfigurational reference wavefunction to estimate configuration interactions.
Whitten and Hackmeyer proposed the multireference CI (MRCI) method as the first
multireference theory (Whitten and Hackmeyer 1969). However, MRCI calculations
are impractical even with present-day computational resources (2014) except for
calculations on quite small molecules. For shortening the computational time, the
most frequently used multireference theories may be the multireference perturba-
tion methods: e.g., CAS second-order perturbation theory (CASPT2) (Andersson
et al. 1990), the multireference Møller–Plesset perturbation (MRMP) method (Hirao
1992), and multiconfigurational quasi-degenerate perturbation theory (MCQDPT)
(Nakano 1993). Multireference methods are well suited especially for excited state
calculations, in which well-balanced electron correlations are requisite, and are
highly accurate to such an extent that the calculated results are used to establish the
validities of other excited state calculations and even experiments. Note, however,
that even these methods are available only for the calculations on relatively small
molecules due to their long computational times. On that note, in the CASSCF
method giving the reference function, the number of excited CSFs exponentially
increases with the number of active valence orbitals, as indicated in Sect. 3.3. To
solve this problem, the density matrix renormalization group (DMRG) method,
which was developed to calculate the quantum lattice model in solid state physics
(White 1992; White and Martin 1999), has recently been applied to the CASSCF
method. This DMRG method contracts the multielectron basis representation, which
corresponds to the eigenvector of the density matrix, for basis functions separated
by distances greater than a given correlation length by using renormalization group
transformations. Applying this method to the CASSCF method drastically reduces
the computational times for CASSCF calculations while maintaining their accuracy
(Yanai and Chan 2006). This method has recently been applied to multireference
perturbation theories (Kurashige and Yanai 2009) to perform highly accurate
calculations of large systems, which have never been targetted in multireference
calculations.
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Finally, as an efficient correlation method, let us examine the explicitly correlated
method (Klopper et al. 2006), which drastically enhances the convergence to basis
set limit. This method is grounded in the concept of the Hylleraas CI (HCI) method
(Hylleraas 1929), in which electron correlation is efficiently incorporated by adding
a term explicitly dependent on the interelectron distance r12. Although this method
has been forgotten for many years, Kutzelnigg revived it as a sophisticated method
for efficiently incorporating electron correlation (Kutzelnigg 1985). Kutzelnigg
and Klopper developed the linear R12 method, which improves the basis-set
convergence of the CI method based on the wavefunction expansion of the linear r12
term (Kutzelnigg 1991). Ten-no proposed the F12 method, which further enhances
the convergence by replacing this linear r12 term with the exp.��r12/ term (Ten-no
2004). These linear R12 and F12 methods have been applied to the above-mentioned
coupled cluster method and have succeeded in achieving high convergence of
electron correlation to the basis-set limit.
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Chapter 4
Kohn–Sham Method

4.1 Thomas–Fermi Method

In the field of quantum chemistry, theories on electronic motion states commencing
with the Hartree–Fock method have intended to incorporate electron correla-
tion more efficiently. However, due to the long computational times required,
quantum chemistry calculations had been mostly restricted to trial applications
by theoreticians until the 1980s. In the 1990s, density functional theory (DFT)
appeared in quantum chemistry to resolve this situation. After this, DFT has become
widespread, so that is now the main theory, which is used in more than 80% of
quantum chemistry papers in 2014.

The basic concept of DFT is to make it possible to perform high-speed
calculations of many-electron systems by representing the potential as the functional
not of the orbitals but of the electron density. The name “functional” indicates the
function of a function, which is the electron density in this case. This basic concept
was suggested in 1927, only one year after the Schrödinger equation was developed
and the same year that the Hartree method was proposed. To solve the Schrödinger
equation for the electronic motion states of solid crystals, Thomas suggested this
basic concept of DFT (Thomas 1927). In his theory, an electronic state of a uniform
electron gas is assumed to be a solution of the Schrödinger equation based on
electron density. That is, for electronic motions in solid crystals, electrons are
distributed uniformly at a proportion of two per unit cell, which is taken to be a cube
with each edge length equal to Planck’s constant in six-dimensional phase space.
It is also assumed that the external potential, which corresponds to the nuclear–
electron interaction potential (see Sect. 2.1) in the absence of an electromagnetic
field, depends only on the distances from the nuclei and is therefore determined by
the nuclear charge and electron density. Based on these assumptions, the kinetic
energy functional of the electron density � in Eq. (2.76) is formulated as

T TF D CF

Z
d3r�5=3.r/; (4.1)
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where

CF D 3

10
.3�2/2=3: (4.2)

This kinetic energy functional was the first local density approximation (LDA).
In the next year (1928), Fermi independently derived the same kinetic energy
functional as Thomas’s functional using Fermi statistics at the absolute zero point,
completing what is now known as the Thomas–Fermi method, on the basis of the
Hartree method (see Sect. 2.1) (Fermi 1928).

Although the Thomas–Fermi method is an interesting theory representing
the Hamiltonian operator as the functional only of the electron density, even
qualitative discussions cannot be contemplated based on this method in actual
electronic state calculations. Dirac considered that this problem may be attributed
to the lack of exchange energy (see Sect. 2.4), which was proposed in the same year
(Fock 1930), and proposed the first exchange functional of electron density � (Dirac
1930),

ELDA
x D �3

4

�
3

�

�1=3 Z
d3r�4=3.r/: (4.3)

This functional is found to be the exact LDA exchange functional. Furthermore, von
Weizsäcker proposed a correction term using the gradient of electron density for the
Thomas–Fermi kinetic energy functional (von Weizsäcker 1935),

TW D 1

8

Z
d3r

jr�.r/j2
�.r/

: (4.4)

The 1/9 value of this term was later proven to be the exact correction term for the
Thomas–Fermi kinetic energy functional (Parr and Yang 1994). Since this correction
term contains the gradient of electron density r�, it is taken as the first generalized
gradient approximation (GGA).

Although various attempts have been made to modify the Thomas–Fermi
method, all of these attempts have failed to make the method reliable, because it has
no physical background establishing the uniqueness of solutions and the existence of
density functionals, and it also cannot reproduce even chemical bonds qualitatively.
As a consequence, this method had been forgotten until the mid-1960s.

4.2 Hohenberg–Kohn Theorem

In 1964, the concept of the Thomas–Fermi method was revived by a theorem called
the Hohenberg–Kohn theorem (Hohenberg and Kohn 1964). This theorem consists
of the following two subsidiary theorems for nondegenerate ground electronic
states:
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1. External potentials, which correspond to the nuclear–electron interaction
potentials in the absence of an electromagnetic field, are determined by the
electron density.

2. The energy variational principle is always established for any electron density.

Since these theorems were also proven mathematically, establishing the validity of
the concept (Kutzelnigg 2006), they can be interpreted as the basic theorems of a
quantum theory based on electron density.

The first theorem establishes that external potentials can be represented not by
the wavefunction (orbitals in the independent electron approximation) but by the
electron density. That is, it confirms that external potentials and consequently the
Hamiltonian operator of ground electronic states can be uniquely determined only
by the electron density. This indicates that all of the information for the Hamiltonian
operator of a ground electronic state is included in the electron density (Kutzelnigg
2006). Note, however, that this theorem proves neither the existence of universal
density functionals for external potentials nor the uniqueness of electron densities
corresponding to external potentials (Kutzelnigg 2006). This theorem was proven by
a reductio ad absurdem argument (Hohenberg and Kohn 1964). The proof assumes
that there are two different external potentials corresponding to the same electron
density, and then confirms that this assumption is not consistent with the variational
principle for a wavefunction. However, this proof remains a severe problem: it
implicitly assumes the unproven one-to-one correspondence of the electron density
to the wavefunction. It became clear that this problem, which is called the V -
representability problem, has a serious implication for the concept of DFT, as
mentioned later.

The second theorem proves the variational principle that the Hamiltonian
operator represented by the electron density definitely has a solution of (local) min-
imum energy. In the proof of this theorem, it is required to assume the establishment
both of the first theorem and the variational principle for the wavefunction. That is,
if there is an exact energy functional with an external potential, it can be proven that
the electron density is uniquely determined to give a (local) minimum energy for this
external potential on the basis of this assumption. The proof of this theorem also still
contains two problems. One problem is implicitly assuming the N -representability
of the electron density. The N -representability of the electron density indicates the
following: the electron density is always greater than or equal to zero, the sum of
the electron density is the number of electrons N , and the square of the gradient
of the square root of the electron density jr�1=2j2 has a finite total sum. However,
this N -representability of the electron density had not been proven. In general, the
energy variation principle is violated unless the Hamiltonian operator is written in
terms of N -representable variables. This problem is called the N -representability
problem. It has already been proven that the electron density in Eq. (2.76) is an N -
representable variable (Gilbert 1975). Furthermore, as mentioned in the next section,
since DFT calculations are mostly based not on an N -electron wavefunction but on
a Slater determinant, which is obviouslyN -representable, it is rare to discuss theN -
representability problem of variables. Instead, it is often seen as a problem that the
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variational principle is generally not assured in DFT calculations due to approximate
density functionals being used, which are usually not based on a Slater determinant
(Kutzelnigg 2006).

The above-mentioned V -representability problem is also solved. This problem
indicates that the one-to-one correspondence between electron density and wave-
function is essentially not proven. Naturally, the wavefunction has a one-to-one
correspondence to the Hamiltonian operator of the ground electronic state. It is also
trivial that the wavefunction uniquely determines the electron density. However,
the wavefunction is generally not determined uniquely by the electron density.
The first theorem is not established without solving this problem. To solve this
problem, Levy suggested the constrained search formulation (Levy 1979) based
on the variational principle for energy. The Hamiltonian operator contains the
kinetic energy operator, OT , and the electron–electron interaction operator, OVee, in
addition to the external potential. Therefore, for determining the external potential
uniquely from the electron density, it is required only to find the wavefunction
giving the lowest energy expectation value of the other two operators for the electron
density. That is, it requires the existence of a universal functional, Euniv, which is
represented as

EunivŒ� D min
�!�

Z
d3r��

� OT C OVee
�
�: (4.5)

Conversely, the existence of the universal functional establishes the one-to-one
correspondence of the electron density with the wavefunction, which is searched
to give the lowest energy expectation value for the sum of the kinetic energy and
electron–electron interaction operators. The “constrained” designation represents
a constraint for the wavefunction, � , to that giving a specific electron density, �.
For the universal functional, the existence of the lowest energy was proven by
Lieb (Lieb 1983). Note that this search removes the restriction to “nondegenerate”
electronic states for the Hohenberg–Kohn theorem. Therefore, this constrained
search formulation confirms the one-to-one correspondence between the electron
density and the wavefunction for every system, and consequently, it solves the
V -representability problem.

The constrained search formulation has important implications in DFT. This
requires the energy density functional, which gives the lowest energy expectation
value for the sum of the kinetic energy and electron–electron interaction operators.
Note that this energy density functional is independent of the external potential. This
indicates that the universal energy density functionals of the kinetic and electron–
electron interaction operators are required, independent of the nuclear coordinates,
i.e., target systems. Therefore, the remaining subject in DFT is to develop universal
density functionals giving the lowest energy expectation value for the sum of
the kinetic and electron–electron interaction operators. Since the development of
density functionals has actually been the main subject in the field of DFT since the
1980s, it is no exaggeration to say that the idea of the constrained search formulation
dictates the subsequent policy of DFT studies.
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4.3 Kohn–Sham Method

Although the Hohenberg–Kohn theorem is established as the fundamental theorem
of quantum chemistry based on electron density, it is not in itself sufficient to
calculate actual electronic motion states. In the next year, Kohn and Sham developed
an electronic state calculation method derived from this theorem, which is called
the Kohn–Sham method (Kohn and Sham 1965). The Kohn–Sham method is a
variational approach using the electron–electron interaction potential of the density
functional to give the lowest energy and the corresponding molecular orbitals and
orbital energies. From a practical viewpoint, the most significant characteristic of
this method is the use of the independent-electron approximation of kinetic energy,
similarly to the Hartree–Fock method, instead of the kinetic energy functional in the
Thomas–Fermi method. This simple replacement solved the weakest point of the
Thomas–Fermi method, as mentioned in Sect. 4.1. Later, the Kohn–Sham method,
using the independent-electron kinetic energy, made it possible to carry out high-
speed quantitative electronic state calculations in chemistry and solid state physics
through the development of sophisticated exchange-correlation functionals. This
has led to an explosion in the use of DFT. Note, however, that, the Kohn–Sham
method is not a pure DFT in the spirit of the Thomas–Fermi method. Nevertheless,
it should be emphasized that the Kohn–Sham method is an exact formulation of
the Hohenberg–Kohn theorem (Eschrig 2003) in the sense that electronic structures
are determined using the one-to-one correspondence between external potential and
electron density on the basis of the variational principle.

In practical calculations making use of the Kohn–Sham method, the Kohn–Sham
equation is used. This equation is a one-electron SCF equation applying the Slater
determinant to the wavefunction of the Hartree method, similarly to the Hartree–
Fock method. Therefore, in the same manner as the Hartree–Fock equation, this
equation is derived to determine the lowest energy by means of the Lagrange
multiplier method, subject to the normalization of the wavefunction (Parr and Yang
1994). As a consequence, it gives a similar Fock operator for the nonlinear equation,

OF D OhC 2

nX
j

OJj C Vxc: (4.6)

The difference between this Fock operator and the Hartree–Fock counterpart
in Eq. (2.51) is only the exchange-correlation potential functional, Vxc, which
substitutes for the exchange operator in the Hartree–Fock operator. That is, in
the electron–electron interaction potential, only the exchange operator is replaced
with the approximate potential density functionals of the exchange interactions
and electron correlations, while the remaining Coulomb operator, OJj , which
is represented as the interaction of electron densities, is used as is. The point is
that the electron correlations, which are incorporated as the interactions between
electron configurations in wavefunction theories (see Sect. 3.3), are simply included
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as a potential density functional. Using this Fock operator, orbitals, �i , and orbital
energies, 	i are calculated by solving the one-electron equation,

OF�i D 	i�i ; (4.7)

similarly to the Hartree–Fock equation. The orbital energies are represented as

	i D
Z
d3r1��

i .r1/ OF�i .r1/

D hi C 2

nX
j

Jij C
Z
d3r1�i .r1/Vxc; (4.8)

where �i is the electron density of the i -th orbital and is summed to be the total
electron density,

� D
nX
i

�i D 2

nX
i

j�i j2: (4.9)

Differently to the Hartree–Fock method, the total electronic energy in the Kohn–
Sham method is generally calculated using not the exchange-correlation potential
functional but the exchange-correlation energy functional,Exc, as

E D
nX
i

0
@hi C 2

nX
j

Jij

1
AC Exc: (4.10)

The exchange-correlation potential functional, Vxc, is the first derivative of this
exchange-correlation energy functional with respect to electron density,

Vxc D ıExc

ı�
: (4.11)

Similarly to the Hartree–Fock method, the Kohn–Sham method is solved by the
SCF method for solving nonlinear equations through the following steps:

1. Set up the information on the calculated molecular system (nuclear coordinates,
nuclear charges, and number of electrons) and initial reference molecular
orbitals.

2. Calculate the two-electron operators of the Fock operator in Eq. (4.6) using the
reference orbitals.

3. Solve Eq. (4.7) with the calculated Fock operator.
4. Calculate the exchange-correlation energy using the given orbitals, and then the

total electronic energy in Eq. (4.10).
5. Compare the given molecular orbitals and total energy with the previous ones,

and take them as the solution if the differences are less than preset thresholds.
If the differences are greater than the thresholds, return to process 2 with the
given orbitals as the initial orbitals.
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Note that the difference of the Kohn–Sham SCF method from the Hartree–Fock
one is only in the points that the total electronic energy is separately calculated
in process 4 and it is used as a determining factor in process 5. This difference
is attributed to the problem that the total electronic energy in the Kohn–Sham
method is generally not represented using orbital energies. This is because, in the
Kohn–Sham method that uses approximate exchange-correlation potential function-
als, the expectation value of the exchange-correlation potential is not identical to the
exchange-correlation energy, i.e.,

Exc ¤
nX
i

Z
d3r1��

i .r1/Vxc�i .r1/ D
Z
d3r1�.r1/Vxc: (4.12)

Therefore, as shown in Eq. (4.10), the total electronic energy in the Kohn–Sham
method is separately calculated using the exchange-correlation energy functionals.
Note, however, that no such difference should be included in a universal functional,
and there is a possibility in the future to develop an exchange-correlation functional
giving no difference. In this case, process 4 is not necessary.

The Kohn–Sham equation is also transformed into a matrix equation on the
basis of the Roothaan method in Sect. 2.5. Similar to the Hartree–Fock equation,
the Kohn–Sham–Roothaan equation is written as

FCi D 	iSCi : (4.13)

The elements of matrix F are

Fpq D hpq C
nbasisX
r;sD1

Prshpr jqsi C .Vxc/pq; (4.14)

where

.Vxc/pq D
Z
d3r��

p.r/Vxc�q.r/: (4.15)

Terms other than the exchange-correlation potential are the same as those in
Sect. 2.5. In this method, the total electronic energy is separately calculated as
different to that in the Roothaan method.

4.4 Generalized Kohn–Sham Method

Although the Kohn–Sham method has been the basic procedure in DFT calculations,
many exchange-correlation functionals used in conventional DFT calculations have
no strict theoretical basis upon which to be used in the Kohn–Sham method.
Since the Kohn–Sham method is based on the constrained search formulation, it
is proven to be applicable to pure exchange-correlation energy density functionals,
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which are formed only from the electron density. However, non-pure functionals
such as hybrid functionals (see Sect. 5.5) and long-range corrected functionals (see
Sect. 6.1) are not appropriate in the original Kohn–Sham method. For example,
it is not strictly correct to use the most widely used B3LYP functional within
the framework of the Kohn–Sham method, because it contains the Hartree–Fock
exchange integral, which is not formed from the electron density. To solve this
problem, Levy and coworkers extended the constrained search formulation to that
using functionals containing the Hartree–Fock exchange integral, and suggested
the generalized Kohn–Sham method as an extension of the Kohn–Sham method
(Seidl et al. 1986). In this method, the action, S , is defined as a functional summing
terms given by not the N -electron wavefunction but the Slater determinant, ˚ : the
kinetic and Coulomb energies with the Hartree–Fock exchange integral term, which
is partly included in hybrid and long-range corrected functionals, such as

SŒ˚ D
Z
d3r˚� OT˚ C

nX
i;j

�
2Jij .f�ig/�K

HF-part
ij .f�i g/

�
: (4.16)

The first Hohenberg–Kohn theorem for this method is established if there is a
universal functional, F S , that uniquely determines the electron density, giving the
least action:

F SŒ� D min
˚!�.r/

SŒ˚ D min
f�i g!�.r/

SŒf�i g: (4.17)

Using this S , the total electronic energy is defined as

ESŒf�i gIVeff D SŒf�igC
Z
d3r�.r/VeffŒ�.r/; (4.18)

and the corresponding one-electron equation is given as

OOSŒf�i g�j C Veff�j D 	j �j .j D 1; � � � ; N /; (4.19)

where OOS is the orbital-dependent operator in the Fock operator and Veff is the
effective potential functional for the remaining orbital-independent part, which is
usually the density functional part of the exchange-correlation potential functionals.
The advantages of this method are the wide applicabilities to density function-
als, which accept various types of S functionals, and the minimal effect of the
density functional part on the electron density. In particular, the latter reduces
the importance of the variational principle problem resulting from the use of
approximate functionals, as mentioned in the previous section. On the other hand,
this method produces another problem: this method assumes the existence of a
universal functional, F S , which gives a one-to-one correspondence between the
Slater determinant and the electron density. Actually, the S functional is invariant
for the unitary transformation of orbitals, because it is formed from the Slater
determinant. Since the unitary transformation of orbitals changes the electron



4.5 Constrained Search Method for Constructing Kohn–Sham Potentials 87

density, it is difficult to uniquely determine the electron density that minimizes S .
Nevertheless, the remaining effective potential functional of the electron density,
Veff, has no degrees of freedom for the unitary transformation to uniquely determine
the electron density. This functional, consequently, has a one-to-one correspondence
with the electron density. Therefore, the generalized Kohn–Sham method is a
theory that formulates the Hohenberg–Kohn theorem more comprehensively than
the Kohn–Sham method, which targets only pure electron density functionals.
Henceforth, “the Kohn–Sham method” in which functions other than electron
density can be mixed in the functionals, is assumed, in this book, to be within the
framework of the generalized Kohn–Sham method, without explicitly including the
“generalized” designation.

4.5 Constrained Search Method for Constructing
Kohn–Sham Potentials

The one-to-one correspondence between electron density and effective potential,
which is proven on the basis of the constrained search formulation, suggests that
the effective potential can be determined directly from the electron density. Parr
and coworkers developed a procedure for determining highly accurate exchange-
correlation potentials from electron densities, which are calculated by high-level
ab initio correlation wavefunction theories. This procedure is called the Zhao–
Morrison–Parr (ZMP) method (Zhao et al. 1994). In this method, the effective
potential is given by the Lagrange undetermined multiplier method with a potential,

V �
constr.r/ D �

Z
�.r0/� �0.r/

jr � r0j d3r0; (4.20)

which is zero for the given electron density, as the constraint, such as
2
4 OhC 2
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5��i D 	�i �

�
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where OJ �j indicates the Coulomb potential, OJj , in which the electron density
corresponding to each � is employed. This equation is solved by an iterative
approach to provide the effective potential at � D 1, as mentioned later. At � D 1,
this equation becomes the Kohn–Sham equation. Note that the .1 � 1=n/ term is
multiplied by the Coulomb operator. This term comes from the Fermi–Amaldi self-
interaction correction (Fermi and Amaldi 1934) (see Sect. 6.2). By use of this term,
the given effective potential can be interpreted as the exchange-correlation potential,

Vxc D lim
�!1

2
4V �

constr.r/ � 2

n

nX
j

OJ �j

3
5 : (4.22)
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This also makes a finite � available and upgrades the convergence and accuracy of
the SCF method.

The ZMP method is carried out according to the following procedure:

1. First, calculate the terms in Eq. (4.21) using the exact electron density, �0.
2. Setting an appropriate �, solve Eq. (4.21) by an SCF calculation.
3. If � does not reach the preset limit value, set a larger � and then return to

process 2 with the given orbitals and orbital energies. If � reaches the preset
limit value, the calculated orbitals and orbital energies correspond to the exact
electron density.

4. Using the calculated orbitals and orbital energies, determine the exchange-
correlation potential in Eq. (4.22).

Since it is generally difficult to obtain the exact electron density in actual calcu-
lations, this method uses the calculated electron densities of advanced correlation
wavefunction theories such as multireference theories (see Sect. 3.5). Consequently,
Parr et al. succeeded in obtaining a highly accurate exchange-correlation potential,
and found that the exchange-correlation potential corresponding to the Kohn–Sham
method is neither uniform nor local. This result justifies the use of functionals
combining nonuniform nonlocal potentials such as the Hartree–Fock exchange
potential with (semi-)local exchange-correlation potential functionals.

One of the most significant findings to which the ZMP method contributes
is the comprehension of the reasons why the Kohn–Sham method can accu-
rately reproduce chemical behavior. Baerends and coworkers compared highly
accurate exchange-correlation energies, which are calculated by multiplying the
ZMP potential of the MRCI electron density (for MRCI, see Sect. 3.5) by the
electron density, with exchange-correlation energy functionals (Fig. 4.1) (Schipper
et al. 1998). The figure shows that, even though correlation functionals are much
different from the correlation energy density of the MRCI calculation, exchange-
correlation functionals behave similarly to the MRCI exchange-correlation energy
density. Actually, conventional correlation functionals usually contain only dynam-
ical electron correlation, stemming from the short-range interelectron correlation
cusp (see Sect. 5.3). In Sect. 3.2, it is explained that this electron correlation
is classified into dynamical and nondynamical electron correlations. This figure
reveals that exchange-correlation functionals include dynamical correlations in
correlation functionals and nondynamical correlations in exchange functionals,
and consequently provide accurate energy densities, similar to those of MRCI as
a whole. Reproducing chemical properties and chemical reactions quantitatively
requires incorporating well-balanced electron correlations. Therefore, this leads to
a clear indication of a reason for the high reproducibility of the Kohn–Sham method
in calculations of chemical phenomena.
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Fig. 4.1 The highly accurate exchange, correlation and exchange-correlation energy densities,
	x, 	c, and 	xc, of the F2 molecule (emp), which are determined by the ZMP method from
the MRCI electron density, and the corresponding GGA energy functionals (LDA, Becke 1988
(B) and Perdew–Wang (PW) exchange with the LDA and Lee–Yang–Parr (LYP) correlation
functionals mentioned in Chap. 5) for correlation (upper left), exchange (upper right), and
exchange-correlation (lower) energies (Schipper et al. 1998)
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4.6 Time-Dependent Kohn–Sham Method

Thus far, discussions of the Kohn–Sham method have targeted stationary electronic
motion states, i.e., time-independent electronic states. However, actual studies of
chemical phenomena need to analyze the time propagation of molecular electronic
states induced by nuclear motion, light irradiation, and so forth. In particular,
chemists have recently been drawing attention to observing or controling the time
propagation of photochemical reactions as observed in time-resolved experiments
using ultra-short pulsed-laser beams. It is, therefore, significant, in order to increase
its usefulness, to make the Kohn–Sham method available for investigations of
time-dependent electronic states.

For this purpose, Runge and Gross proposed the fundamental DFT theorem
for periodically time-dependent electronic states, which is called the Runge–Gross
theorem (Runge and Gross 1984). This theorem is based on the following two
assumptions for the external potential, Vext:

1. Vext.r; t/ depends on time periodically.
2. Vext.r; t/ consists of a time-independent stationary part, V stat

ext , and a slightly
time-dependent perturbation part, V pert

ext .

Under these assumptions, the following four theorems are derived:

1. The first time-dependent Hohenberg–Kohn theorem. For Vext expansible in terms
of time, define that the Vext.r; t/ ! �.r; t/ transformation corresponds to solving
the time-dependent Schödinger equation. Based on this definition, the inverse
transformation, � ! Vext, can be performed in the case of the second assumption
above.

2. The time-derivative of the current density, j, (see Sect. 6.5) is represented as a
density functional,˝Œ�.r; t/,

@j.r; t/
@t

D ˝Œ�.r; t/; (4.23)

where j is defined as

@�.r; t/
@t

D �r � j.r; t/: (4.24)

3. The second time-dependent Hohenberg–Kohn theorem. The action integral in an
arbitrary time interval from t0 to t1,

S D
Z t1

t0

dt��Œ�
�
i
@

@t
� OH

�
�Œ�; (4.25)
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is representable as a density functional, SŒ�, and is decomposable to

SŒ� D
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dt��Œ�
�
i
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�
� OT C OVee

��
�Œ�

�
Z t1

t0

dt

Z
d3r�.r; t/Vext.r; t/; (4.26)

where �Œ� is a wavefunction giving the electron density, �. The first term on
the right-hand side is a universal functional, because it does not depend on
the external potential, Vext. This action density functional, SŒ�, satisfies the
variational principle to give the stationary value at the exact density.

4. Time-dependent orbitals, f�i .r; t/g, satisfy the time-dependent Schödinger
equation,

i
@

@t
�i .r; t/ D

�
�1
2

r2 C VeffŒr; t I �.r; t/
�
�i.r; t/; (4.27)

where the effective potential, Veff, is represented as

VeffŒr; t I �.r; t/ D VextŒr; t C
Z
d3r

�.r0; t/
jr � r0j � ıSxcŒ�

ı�.r; t/
: (4.28)

Note that Sxc is the exchange-correlation part of the action integral and is
approximated on the basis of the adiabatic approximation (see Sect. 2.2) as

ıSxcŒ�

ı�.r; t/
� VxcŒ�.r; t/ D ıExcŒ�

ı�.r; t/
: (4.29)

Equation (4.27) using the effective potential in Eq. (4.28) is called the time-
dependent Kohn–Sham equation (Runge and Gross 1984).

The Runge–Gross theorem has a severe problem in the use of the wavefunction
giving electron density in the third theorem (Gross et al. 1995): Since time-
dependent wavefunctions contain time-dependent phase terms, the one-to-one
correspondence of the wavefunction and electron density is established only for
a specific phase. This problem can be avoided by representing the wavefunction
as a functional of the external potential, �ŒVext, for which the one-to-one corre-
spondence with electron density is established. However, this approach leads to the
denial of the concept of the universal functional. Even if it would be accepted, the
one-to-one correspondence of the time-derivative of the wavefunction, ı� and that
of the potential, ıVext, is not assured. Therefore, differently to the time-independent
case, the variational principle is not strictly established in the time-dependent case
(van Leeuwen 2006). Even though one-to-one correspondence can be proven to exist
if the external potential is Taylor-expandable in time (Ullrich 2012), it can also be
proven that no such Taylor-expandable potential exists (Yang and Burke 2013). This
dilemma has been resolved by taking relativistic effects into account, because the
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Rajagopal–Callaway theorem, which is the relativistic expansion of the Hohenberg–
Kohn theorem, establishes the time-dependent case of the latter (see Sect. 6.4).

By applying the time-dependent Kohn–Sham equation to linear response theory,
excitation energies can be calculated and assigned to the corresponding transitions
(Gross and Burke 2006). Following the Runge–Gross theorem, assume that only a
weak perturbation, ıVext, is added to the external potential. Under this assumption,
it is interpreted that the electron density also undergoes an infinitesimal change,
ı�.r; t/, in the stationary part, �stat. The exchange-correlation potential, Vxc, is,
therefore, represented as

VxcŒ�.r1; t1/ DV stat
xc Œ�.r1/

C
ZZ

dt2d
3r2fxcŒ�stat.r1; r2; t2 � t1/ı�.r2; t2/ (4.30)

fxcŒ�stat.r1; r2; t2 � t1/ D ıVxc.r1; t1/
ı�.r2; t2/

ˇ̌
ˇ̌
�D�stat

: (4.31)

The derivative of the exchange-correlation potential in terms of electron density, fxc,
is called the exchange-correlation integral kernel. Define the response function of
the electron density, �KS, for the infinitesimal change in the Kohn–Sham potential,
ıVKS, as

ı�.r1; t1/ D
ZZ

dt2d
3r2�KSŒ�stat.r1; r2; t2 � t1/ıVKS.r2; t2/: (4.32)

In this definition, the response function is given by Green function theory as

�KS.r1; r2; !/ D 2 lim
�!0C

noccX
i

nvirX
a

�
��
i .r1/�a.r1/�i .r2/�

�
a .r2/

! � .	a � 	i /C i�

��i.r1/�
�
a .r1/�

�
i .r2/�a.r2/

! C .	a � 	i / � i�
�
: (4.33)

Note that this response function is Fourier-transformed (t ! !). What is important
is that this response function has poles in the excitation energies (see Fig. 4.2).
Casida proposed that the pole energies of the response function in Eq. (4.33), i.e.,
excitation energies, can be calculated by solving the following simultaneous matrix
equations (Casida 1996):

X
jb�

h
ı��ıij ıab .	a� � 	i� C !/CK��

ia;jb

i
X�
jb CK��

ia;bjX
�
bj D 0; (4.34)
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Fig. 4.2 Excitation spectra of the ethane molecule, which were calculated directly from the Kohn–
Sham response functions, �KS, of LDA and PBE exchange-correlation functionals, compared to the
experimental one (Exp.) (Marques et al. 2001)

and
X
jb�

h
ı�� ıij ıab .	a� � 	i� C !/CK��

ai;bj

i
X�
bj CK��

ai;jbX
�
jb D 0: (4.35)

In these equations, the spins of the orbitals (� , � , � 0 ¤ �) are explicitly displayed
for purposes of accuracy. The simultaneous matrix equations are also represented
for singlet and triplet excitations as follows:

˝Fia� D !2iaFia� ; (4.36)

˝
singlet
ia�;jb� D ı�� ıij ıab .	a� � 	i� /2

C2 .	a� � 	i� /1=2
�
K��
ia;jb CK�� 0

ia;jb

� 

	b� � 	j�

�1=2
; (4.37)

and

˝
triplet
ia�;jb� D ı�� ıij ıab .	a� � 	i� /2

C2 .	a� � 	i� /
1=2
�
K��
ia;jb �K�� 0

ia;jb

� 

	b� � 	j�

�1=2
; (4.38)

where Fia� is the response coefficient matrix given by

Fia� D .	a� � 	i� /
�1=2 .Xia� � Xai� / ; (4.39)

Xia� .!/ D �1
! C .	a� � 	i� /

�
Z
d3r��

i� .r/ı

 
2

nX
i

OJi C Vxc

!
.r; !/�a� .r/; (4.40)
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	i is the i -th orbital energy, and K��
ia;jb is provided as

K��
ia;jb D hibjaj i��

C
ZZ

d3r1d 3r2��
i� .r1/�

�
b� .r2/fxc.r1; r2/�a� .r1/�j�.r2/: (4.41)

The first term on the right-hand side of Eq. (4.41) is the Hartree integral, written as

hibjaj i�� D
ZZ

d3rd3r0��
i� .r1/�

�
b� .r2/

1

r12
�a� .r1/�j�.r2/: (4.42)

For the exchange-correlation integral kernel, fxc, the local form,

fxc.r1; r2/ D fxc.r1/ı.r1 � r2/; (4.43)

is used. Solving Eq. (4.36) gives the sets of excitation energies f!iag and
corresponding response coefficient matrices, Fia� . Equation (4.36) is called the
time-dependent response Kohn–Sham equation and the method using this equation
is called the time-dependent response Kohn–Sham method. In excitation energy
calculations, the “time-dependent Kohn–Sham (TDKS) method” usually indicates
this method. On the other hand, there is a time-dependent propagator Kohn–Sham
method, which does not use the linear response theory but instead uses Eq. (4.27)
for analyzing the time propagation of electronic states. Note that excitation energies
can also be calculated using this method (Yabana and Bertsch 1996). What we
should notice is that the time-dependent response Kohn–Sham method is applicable
only to single excitations. Although this method can be extended to a form that
is applicable to double and more excitations, this is too time-consuming to be
practical at present. Fortunately, in large and low-symmetry systems such as those
found naturally, significant excitations tend to be occupied by charge transfer ones,
which are correctly represented by single excitations. This contributes to the fact
that this time-dependent response Kohn–Sham method is used in more than half of
published excited state calculations (as of 2013). Note, however, that using most
functionals, the time-dependent Kohn–Sham method significantly underestimates
charge transfer excitation energies. This underesimation is solved by the long-
range correction for exchange functionals (see Sect. 6.1).

4.7 Coupled Perturbed Kohn–Sham Method

Next, let us consider how to calculate chemical properties other than excitation
energies. The key is that most spectroscopic properties are response properties,
which are proportional to the derivatives of energy in terms of various perturbations
(Jensen 2006),
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Table 4.1 Major response properties assigned by nF , nB , nI , and nR in Eq. (4.44) (excerpt
from (Jensen 2006))

nF nB nI nR Response property

0 0 0 0 Energy
1 0 0 0 Electric dipole moment
0 1 0 0 Magnetic dipole moment
0 0 1 0 Hyperfine coupling constant
0 0 0 1 Energy gradient
2 0 0 0 Electric polarizability
0 2 0 0 Magnetizability
0 0 2 0 Nuclear spin–spin coupling
0 0 0 2 Harmonic frequency
3 0 0 0 Hyperpolarizability
0 3 0 0 Hypermagnetizability
0 0 0 3 Anharmonic corrections
1 0 0 1 Infrared (IR) absorption intensity
1 1 0 0 Optical rotation circular dichloism (CD)
0 1 1 0 Nuclear magnetic shielding
2 0 0 1 Raman intensity
3 0 0 1 Hyper-Raman effect
2 1 0 0 Magnetic CD (Faraday effect)
1 0 0 2 IR intensity for overtone and combination bands
2 0 0 2 Raman intensity for overtone and combination bands
2 2 0 0 Cotton–Mouton effect

Response property / @nFCnBCnICnRE
@FnFfld @BnBfld @InIfld@RnR

; (4.44)

where Ffld, Bfld, Ifld, and R are the perturbations of electric field, external magnetic
field, internal magnetic field, and nuclear-coordinate vector, and nX is the order
of X perturbation. In Table 4.1, the orders of several major chemical properties
are listed. As shown in the table, although many response properties are mixed
derivatives depending on multiple perturbations, most properties can be described
as energy derivatives up to the second order for each perturbation. Therefore, the
energy derivatives are required only up to the second order to obtain these major
response properties.

Energy derivatives are represented as perturbation terms. Assume the perturbed
Hamiltonian operator of the Kohn–Sham method as

OH D OHKS C �V1 C �2V2: (4.45)
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Based on the Rayleigh–Schrödinger perturbation theory (Schrödinger 1926), the
first and second energy derivatives are written using the notation in Sect. 3.4 as

@EKS

@�

ˇ̌
ˇ̌
�D0

D h�KS jV1j�KSi C 2

�
@�KS

@�

ˇ̌
ˇ OHKS

ˇ̌
ˇ�KS

�

D h�KS jV1j�KSi ; (4.46)

and

1

2

@2EKS

@�2

ˇ̌
ˇ̌
�D0

D
�
@�KS

@�
jV1j�KS

�
C h�KS jV2j�KSi ; (4.47)

respectively. The Hellmann–Feynman theorem (Feynman 1939) is used in
Eq. (4.46). In these equations, only the first derivative of the Kohn–Sham
wavefunction in terms of a perturbation, @�KS=@�, is not prepared in advance
to calculate the energy derivatives up to the second order. It is also proven that
higher than third energy derivatives are also represented with the wavefunction
derivatives up to the first order. Therefore, only the first wavefunction derivatives
are required to calculate the response properties. Based on perturbation theory, the
first derivative of the Kohn–Sham wavefunction is represented as

@�KS

@�
D

nexc: CSFX
I

CI�I ; (4.48)

where

CI D h�I jV1j�KSi
EKS �EI (4.49)

However, it seems impossible to obtain the derivative exactly, because Eq. (4.48)
contains the sum for all excitations created from a Kohn–Sham electron
configuration. What makes it possible is the coupled perturbed Kohn–Sham method.

In the coupled perturbed Kohn–Sham method, the first wavefunction derivatives
are given by calculating the first derivatives of the orbitals in terms of perturbations.
The Kohn–Sham method is based on the Slater determinant. Therefore, since
the Kohn–Sham wavefunction is represented with orbitals, the corresponding first
wavefunction derivatives are also described by the first derivatives of the orbitals.
For simplicity, let us consider the Kohn–Sham–Roothaan equation in Eq. (4.13),
which is a matrix equation using basis functions based on the Roothaan method,

FC D SC�; (4.50)

and

CtSC D 1: (4.51)
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The first derivative of Eq. (4.51) is given as

F0C C FC0 D S0C� C SC0� C SC�0; (4.52)

where

F0 D h0 C 

P0J C PJ0�C Vxc

0; (4.53)

In these equations, the prime, “0”, indicates the first derivative in terms of a
perturbation and P is the density matrix. J is the Coulomb potential matrix
containing

Jpq D
nbasisX
r;s

hpr jqsi: (4.54)

The first-order perturbation expansion of Eq. (4.52) is written as

�
F0 � S�


C0 D ��F0 C S0� C S�0C; (4.55)

under the orthonormalization condition,



CtSC

�0 D 0: (4.56)

This equation gives the first derivatives of the orbital cofficients, C0, for calculating
the first derivatives of the orbitals.

Considering the rotation (unitary transformation) of the orbitals makes it straight-
forward to solve the first derivatives of these orbitals. In the Kohn–Sham method,
the orbitals and orbital energies are obtained by diagonalizing the Fock matrix.
Therefore, the nondiagonal terms of the Fock matrix are zero for the oribtals, f�ig,

Fia D
Z
d3r��

i .r/ OF�a.r/

D hia C
norbX
j

hij jaj i C .Vxc/ia D 0; (4.57)

where

.Vxc/ia D
Z
d3r��

i .r/Vxc�a.r/: (4.58)

Since the Kohn–Sham method is based on the Slater determinant, orbital variation
under perturbation is represented by the unitary transformation,

�0
i D

nbasisX
j

U 0
j i�j : (4.59)
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This is also represented as the variation of the orbital coefficient matrix, C, such as

C0 D U0C: (4.60)

Substituting Eq. (4.59) into the first derivative of Eq. (4.57) leads to an equation
similar to the time-dependent Kohn–Sham equation,

AU0 D F0; (4.61)

where matrix A contains

Aia;jb D ıij ıab .	a � 	i /CKia;jb: (4.62)

Kia;jb corresponds to K��
ia;jb in Eq. (4.41), while neglecting spins. Note that this

equation is based on the Tamm–Dancoff approximation (Hirata and Head-Gordon
1999), which is usually used in this method for simplicity. In Eq. (4.61), F0 is the
first derivative matrix of the Fock operator, which is usually derived as the first
derivative of the one-electron parts, h0 (McWeeny 1992). For the perturbation of a
uniform electric field, Ffld D �Ffldr, this is given as the matrix containing (Lee and
Colwell 1994)

F 0
ia D h0

ia D
�
@h
@Ffld

�
ia

D �
Z
d3r��

i .r/r�a.r/: (4.63)

Using Eqs. (4.61) and (4.63), matrix U0 is calculated to give the response properties
in terms of the uniform electric field: dipole moments, polarizabilities, hyperpolar-
izabilities, and so forth. Equation (4.61) is called the coupled perturbed Kohn–Sham
equation. Other response properties are calculated by solving Eq. (4.61) after setting
the first derivative of the Fock operator, F0, in terms of each perturbation. Note,
however, that this method has problems in actual calculations similarly to the time-
dependent response Kohn–Sham method. For example, using most functionals, this
method tends to overestimate the electric field response properties of long-chain
polyenes.

As another major method for calculating response properties, the finite-field
method provides a useful example. This method directly estimates response prop-
erties by numerically calculating the infinitesimal energy variation resulting from
adding a minite perturbation to a field. Although this direct method is more
primitive than the coupled perturbed Kohn–Sham method, it is much used due
to its equivalent results and easy-to-understand procedure. However, this method
also overestimates the electric field response properties, similarly to the coupled
perturbed Kohn–Sham method. Interestingly, this overestimation is also solved by
the long-range correction for exchange functionals (see Sect. 6.1), analogously to
the underestimation of charge transfer excitation energies mentioned in the previous
section.
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Chapter 5
Exchange-Correlation Functionals

5.1 Classification of Exchange-Correlation Functionals

In the previous chapter, the fundamentals of the Kohn–Sham method and its
derivative theories have been explained without referring to the specific forms of
exchange-correlation functionals used. The Kohn–Sham method is an established
quantum theory based not only on electron density but also on a rigorous exchange-
correlation functional. It is therefore difficult to assess the reliability of the
Kohn–Sham method and its derivative theories without specifically considering the
exchange-correlation functional used. In this chapter, let us examine the exchange-
correlation functionals that have thus far been developed, with their features and
problems.

As shown in Eq. (4.6), the exchange-correlation functional is the only part
that is approximated in the Kohn–Sham equation. Therefore, the reliability of
the Kohn–Sham method depends on the validity of this approximated functional.
A variety of exchange-correlation functionals have thus far been developed on the
basis of different physical models. In Fig. 5.1, exchange-correlation functionals are
classified based on their characteristics.

• Local density approximation (LDA) functionals: Functionals of only electron
density �.

• Generalized gradient approximation (GGA) functionals: Functionals correcting
LDA functionals with the density gradient r�.

• Meta-GGA functionals: Functionals correcting GGA functionals with the kinetic
energy density � .

• Hybrid functionals: Functionals mixing the Hartree–Fock exchange integral
(EHF

x ) at a constant ratio.
• Semiempirical functionals: Functionals that are developed to reproduce accurate

properties with many semiempirical parameters.
• Progressive functionals: Functionals transforming in accordance with combined

functionals.

T. Tsuneda, Density Functional Theory in Quantum Chemistry,
DOI 10.1007/978-4-431-54825-6__5, © Springer Japan 2014
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Fig. 5.1 Classification of major exchange-correlation functionals. The suffix “X” and “C” indicate
exchange and correlation functionals, respectively

Although there are exchange-correlation functionals that do not fall into this
classification, they are mostly functionals correcting the above functionals for
some sort of physical factor. Such physical factors for functionals are introduced
in Chap. 6. In this chapter, let us focus on functionals conforming to a standard
paradigm in which LDA and GGA functionals are expanded by additional terms.
These standard functionals are often arranged hierarchically, as in Jacob’s ladder
(“the ladder to Heaven” in the Old Testament, Book of Genesis, Fig. 5.2) (Perdew
et al. 2006).

In past developments of exchange-correlation functionals, the following two
criteria have been emphasized:

1. Satisfying fundamental physical conditions. Functionals have been physically
assessed on the degree to which they satisfy fundamental physical conditions
for each energy component (see Chap. 8).

2. Accurately reproducing various reactions and properties for a wide range of
molecules. Functionals have been numerically assessed on the reproducibility
of reaction diagrams and spectroscopic constants of molecules.

These two clear criteria have contributed to the active development of functionals.
However, as a trade-off, brought about by overemphasizing these criteria for
many years, we find an enormous number of functionals that attempt to enhance
the physical validity with artificial additional terms or to improve the numerical
accuracies with many semiempirical parameters. To solve this problem, we need
the following new criteria for developing functionals:

3. Simplicity, with a minimum number of parameters. This clarifies the physical
meaning of the functionals and makes it straightforward to explain the calculated
results.
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Universal functional

unocc. Generalized RPA

Hybrid GGA

Meta GGA

LDA

GGA

Fig. 5.2 Jacob’s ladder in the
development of functionals
(Perdew et al. 2006)

4. Containing no artificial terms added only to satisfy specific fundamental
conditions or physical properties. Improvements by superficial operations
narrow the versatility and applicability of functionals by contrast.

5. Taking into account physical corrections with no additional operation.
If functionals lack the versatility to take into account all physical corrections,
like those given in Chap. 6 without modifying parameters, they would fade out
in a short time.

In this chapter, exchange-correlation functionals are classified by their
formulations, and the features and problems of these functionals are considered
on the basis of the above criteria. In particular, the numbers of semiempirical
parameters are mentioned. Since an enormous number of exchange-correlation
functionals have been developed thus far, it is difficult to introduce all of them
encyclopaedically. I therefore focus on the major functionals, which have taken
into account the physical corrections given in Chap. 6 and are implemented in the
predominantly used quantum chemistry calculation programs, e.g., Gaussian09 and
GAMESS (current 2014).

5.2 LDA and GGA Exchange Functionals

The LDA exchange functional has the exact form in Eq. (4.3), which is the Dirac
LDA exchange functional. Although this functional was developed to be used in the
Thomas–Fermi method, it had been forgotten for many years. In 1951, Slater used
this LDA exchange functional as an approximation for the exchange integral in the
Hartree–Fock method (Slater 1951). Similarly to the usual exchange integral, this
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functional was first employed as an exchange potential of the Fock operator, and as a
consequence it had significantly underestimated the exchange energies. To improve
this underestimation, he suggested the X˛ method, which multiplies a semiempirical
parameter ˛ by the exchange potential. This X˛ method has been used in DFT in
the field of solid state physics. On the other hand, the exact form of the Dirac LDA
exchange functional is usually used in the Kohn–Sham method. Since the Dirac
LDA exchange functional is also the exact local density approximation of exchange
energy, it is usually used as the local density limit of exchange functionals (see
Chap. 8).

GGA exchange functionals traditionally have a general form using a
dimensionless coefficientK� , which is defined by

Ex D �1
2

X
�

Z
�4=3� K�d

3r: (5.1)

This K� is usually expressed with the dimensionless parameter x� ,

x� D jr�� j
�
4=3
�

: (5.2)

Although various forms of GGA exchange functionals have been developed, the
differences in the best-known functionals are found only in the dependence of K�

on x� . Figure 5.3 illustrates the dependence of K� on x� . The figure clearly shows
that remarkable differences in GGA exchange functionals exist for large x� . That
is, GGA exchange functionals are characterized by their differences in the region
of low electron density and/or high density gradient. This remarkable difference is
attributed to the lack of fundamental physical conditions for exchange energy in the
low density/high density gradient region, in contrast to the exact local density and
the generalized gradient approximation limits of exchange energy, which control the
high density/low density gradient regions (see Chap. 8). Since this indicates that the
exchange energy in the low density/high density gradient region is restricted by
no fundamental physical condition, the exchange functional forms in these regions
have been determined to improve the reproducibilities of properties. As mentioned
above, there are many kinds of GGA exchange functionals. It is therefore difficult
even to introduce only characteristic functionals. Figure 5.3 compares K� values
for representative exchange functionals: the Becke 1988 (B88) functional (Becke
1988), the Perdew–Wang 1991 (PW91) functional (Perdew 1991; Perdew and Wang
1992), the Perdew–Burke–Ernzerhof (PBE) functional (Perdew et al. 1996), and the
revised PBE (revPBE) functional (Zhang and Yang 1998).

The B88 exchange functional (Becke 1988) is the most popular GGA exchange
functional in quantum chemistry calculations at present. This functional was derived
for the form in the low density/high density gradient region to satisfy the far-from-
nucleus (long-range) asymptotic interaction condition (see Chap. 8) such as

KB88
� D KLDA

� C 2�x2�

1C 6�x� sinh�1 x�
; (5.3)
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Fig. 5.3 The plot of K� , defined in Eq. (5.1), in terms of x� in Eq. (5.2) for major GGA exchange
functionals

where

KLDA
� D 3

�
3

4�

�1=3
; (5.4)

and the only parameter is � D 0:0042. The feature of this functional is in the
high reproducibility of the exchange energies. In particular, this functional yielded
much more accurate exchange energies of atoms and molecules than those of other
functionals that had been developed previously. The high accuracy of this functional
led to the explosive expansion in the use of DFT in quantum chemistry calculations.
However, since this functional takes no fundamental physical condition other than
the long-range (far-nucleus) asymptotic interaction condition into consideration, the
physical validity of this functional is not so high (see Sect. 8).

The PW91 exchange functional (Perdew 1991; Perdew and Wang 1992) is
a reformulation of the B88 exchange functional designed to satisfy as many
fundamental physical conditions as possible:

KPW91
� D KLDA

�

"
1C 6�x� sinh�1 x�

1C 6�x� sinh�1 x� C 0:004x4�=.48�
2/4=3

C .0:2743� 0:1508 expŒ�100x2�=.48�2/2=3/x2�=.48�2/2=3
1C 6�x� sinh�1 x� C 0:004x4�=.48�

2/4=3

�
:

(5.5)
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This functional contains an additional term and four parameters to satisfy
fundamental physical conditions and one parameter � originally from the B88
functional. Notice that the parameters fitted to satisfy fundamental physical
conditions are called fundamental constants and are often regarded as being
intrinsically different from semiempirical parameters, despite the fact they are not
included in the original universal physical constants such as the Planck constant.
The feature of this functional is to obey more fundamental physical conditions
than the B88 functional does. However, in exchange, it has a complicated form.
As shown in Fig. 5.3, this functional also produces an exchange energy close to
zero for large x� in Eq. (5.2). This behavior often causes problems in property
calculations.

The PBE exchange functional (Perdew et al. 1996) simplifies the PW91 exchange
functional by restricting applied fundamental physical conditions to significant ones
and by using only two fundamental constants. The K� of this functional is

KPBE
� D KLDA

�

�
1C � � �

1C �x2�=.48�
2/2=3�

�
; (5.6)

where the fundamental constants are � D 0:21951 and � D 0:804. As shown in
Fig. 5.3, since this K� approaches a constant, this functional hardly contributes
to the exchange energy for large x� (i.e., in the low density/high density gradient
region). Although this behavior may not be correct from a physical viewpoint, it
seems efficient for weakly bonded and high-spin systems. The revPBE exchange
functional (Zhang and Yang 1998) only modifies the parameters of this PBE
exchange functional (� D 0:967 and � D 0:235), and therefore it has the same
characteristics as those of this PBE functional.

As described thus far, the mainstream GGA exchange functionals are the B88
exchange functional and its modifications for satisfying fundamental physical
conditions at present. Now let us examine an exchange functional that was
developed from a different standpoint, the parameter-free (PF) exchange functional
(Tsuneda and Hirao 2000). This functional is directly derived from a density matrix
expansion at the Fermi momentum (Negele and Vautherin 1972),

P�.r1; r2/

D 3j1.kF� r12/

kF� r12
�� .r/C 35j3.kF� r12/

2k3F� r12

�r2�� .r/
4

� 2��.r/C 3

5
k2F��� .r/

�

C � � � ; (5.7)

where r D .r1 C r2/=2, jn is the spherical Bessel function, and

kF� D .6�2�� /
1=3 (5.8)

is the Fermi momentum that indicates the largest momentum of electronic motions
in momentum space. In the derivation of this functional, the Fermi momentum is
calculated using the kinetic energy density �� such as
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kF� D
s
10��

3��
: (5.9)

As a result, this functional is in a form containing the kinetic energy density,

KPF
� D 27�

10��
�5=3�

 
1C 7x2��

5=3
�

216��

!
: (5.10)

Since this functional has neither semiempirical parameters nor fundamental
constants, the kinetic energy density is the only adjustable part. If the exact
independent electron approximation kinetic energy density is used for this kinetic
energy density part, this functional usually gives a divergent energy. However, if
the Thomas–Fermi–Weizsäcker (TFW) GGA kinetic energy functional, which is
the exact density gradient expansion of kinetic energy, is applied, this functional
reproduces values of the atomic exchange energies that are on average 97.8%
(mean absolute error 0.154 atomic units) of the exact values for the elements H
through Ar, in spite of its parameterless form (Tsuneda and Hirao 2000). Even more
surprisingly, it was proved that this functional satisfies most fundamental physical
conditions if the fundamental physical conditions for kinetic energy are applied to
the kinetic energy density part (see Chap. 8). Notice that although this functional is
explained in the section on GGA exchange functionals, it is actually a progressive
functional, transforming in accordance with a combined kinetic energy functional,
for which any type of functional is available.

5.3 LDA and GGA Correlation Functionals

In contrast to exchange functionals, there is no exact LDA correlation functional.
The analytical derivation of the exact LDA correlation functional has been
examined for many years. Consequently, the high density limit (Gell-Mann and
Bruecker 1957), low density limit (Carr 1961), and random phase approximation
(RPA) expression (Hedin and Lundqvist 1971) have been suggested for the LDA
correlation functional. However, the high and low density limits provide no
information on the LDA correlation functional in the realistic mid-range density
regions, and the RPA expression does not give these limits. As alternates, various
approximate LDA correlation functionals have been suggested: The most-used
LDA correlation functionals are the Vosko–Wilk–Nusair (VWN) functional, (Vosko
et al. 1980) mainly used in quantum chemistry calculations and the Perdew–Wang
functional (Perdew and Wang 1992), mainly used in solid state calculations.

The VWN LDA correlation functional (Vosko et al. 1980) was developed to make
the RPA expression converge to the high and low density limits. This functional was
inductively derived on the basis of the Padè interpolation by fitting parameters to
the exact correlation energy of a uniform density gas given by the quantum Monte
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Carlo method, such as

EVWN
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D
Z
d3r

˚
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(5.11)

where 	VWN
0 is expressed as
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and f1Œ� and � are given by

f1Œ� D .1C �/4=3 C .1 � �/4=3
2

(5.13)

and

� D �˛ � �ˇ

�˛ C �ˇ
: (5.14)

In Eq. (5.12), rs is Wigner–Seitz radius defined by

4

3
�r3s D 1

�
: (5.15)

The VWN LDA correlation functional has 12 parameters in total: x0i , ai , bi , ci for
i D 1 � 3. Notice that there are five combinations for these parameters (ver. 5 is
usually employed. For the parameter values, see Vosko et al. 1980).
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The PW LDA correlation functional (Perdew and Wang 1992) reforms the VWN
LDA correlation functional to simplify it, to reduce the number of parameters, and
to satisfy more fundamental physical conditions. The functional form is

EPW-LDA
c Œ�

D �2a
Z
d3r� .1� ˛rs/ ln

2
41C 1

2a
�
ˇ1r

1=2
s C ˇ2rs C ˇ3r

3=2
s C ˇ4r2s

�
3
5 ;

(5.16)

where the parameters are 6 in total: a D 0:031097, ˛ D 0:21370, ˇ1 D 7:5957,
ˇ2 D 3:5876, ˇ3 D 1:6382, and ˇ4 D 0:49294.

These LDA correlation functionals have been used in various property
calculations, especially in solid state calculations. However, we should recall that
these LDA correlation functionals are not exact functionals but are inductively
derived approximative functionals. Actually, even though the exact correlation
energy of a uniform electron gas in a quantum Monte Carlo calculation has O.�/
and O.�4=3/ density dependences at the high and low density limits, respectively
(Ceperley and Alder 1980), these LDA correlation functionals have been proven to
violate at least one of these limits (Tsuneda et al. 2001).

GGA correlation functionals are mainly classified into the density gradient
approximation-types and the Colle–Salvetti (CS)-type functionals.

The density gradient approximation-type correlation functionals have been
developed in a similar manner to the GGA exchange functionals. This type of
correlation functional is generally derived by determining a basic form to satisfy
some fundamental physical conditions of the correlation energy (see Chap. 8) and
then fitting parameters to reproduce other conditions. In these types of functionals,
the PW91 and PBE correlation functionals are most frequently used. These density
gradient approximation-type correlation functionals have the feature of satisfying
many fundamental physical conditions, but with the problem of complicated forms,
with many fitted parameters (fundamental constants).

The PW91 correlation functional (Perdew and Wang 1992) augments the PW
LDA correlation functional with a GGA term using parameters fitted to satisfy
as many fundamental physical conditions of the correlation energy as possible.
The resulting functional has a very complicated form,

EPW91
c Œ�; s; t  D EPW-LDA

c Œ�C
Z
d3r�HŒ�; s; t  (5.17)

HŒ�; s; t  D ˇ2
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1C 2˛
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C1 C C2 C C3rs C C4r

2
s

1C C5rs C C6r2s C C7r3s
� Cc1

�

� t2 exp.�100s2/; (5.18)
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where the coefficient A is

A D 2˛

ˇ

"
exp

 
�2˛ NEPW-LDA

c Œ�

ˇ2�

!
� 1

#�1
; (5.19)

and the dimensionless parameters s and t are

s D jr�j
2kF�

and t D jr�j
2ks�

; (5.20)

in which kF D .3�2�/1=3 and ks D .4kF=�/
1=2. NEPW-LDA

c is the integral kernel
of the PW LDA correlation functional. In the GGA term of this functional, there
are 11 fundamental constants in total, ˛, ˇ, Cc0 , Cc1 and Ci for i D 1 � 7, which
are determined to satisfy fundamental physical conditions (for parameter values,
see Perdew et al. 1996). Although this functional satisfies a certain number of
fundamental physical conditions, several problems have been indicated. One of
the problems comes from the large number of parameters (fundamental constants),
Perdew, a developer of this functional, suggests that this can cause problems in
property calculations (Perdew et al. 1996). As a more severe essential problem,
the fundamental physical condition of correlation energy for the low density/high
density gradient limit (Ma and Brueckner 1968) (see Chap. 8), which is used in the
derivation of this functional, is found to have a density dependence of the exchange
energy by dimensional analysis. This is because this condition was derived based
on the LDA exchange functional and therefore supplements the deficient exchange
energy in this correlation functional. As a result, the PW91 correlation functional
contains the effect of exchange interactions. It is expected as a counterargument that
this effect can be interpreted as a nondynamical electron correlation. However, since
the nondynamical electron correlation is usually included in exchange functionals
(see Sect. 4.5), this interpretation may cause a new, awkward problem, i.e., doubly-
counted electron correlations.

The PBE correlation functional (Perdew et al. 1996) was developed to solve
various problems in the PW91 correlation functional by drastically reducing the
parameters, from 11 to 2, and by focusing on three significant fundamental physical
conditions to be satisfied. The functional form is expressed as

EPBE
c Œ�; �; t  D EPW-LDA

c Œ�C
Z
d3r�HŒ�; �; t  (5.21)
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i
; (5.24)
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Fig. 5.4 Form of the correlation function for the Colle–Salvetti-type correlation functionals.
�uncorr is a wavefunction containing no electron correlation effect

where � is given in Eq. (5.14). This functional is clearly superior to the PW91
correlation functional, because it is much simpler, with only two fundamental
constants (� D .1 � ln 2/=�2 D 0:031091 and ˇ D 0:066725) in addition to
those in the PW LDA functional. However, this functional also contains exchange
effects due to the use of the low density/high density gradient limit condition (Ma
and Brueckner 1968) mentioned above in the derivation. Since this limit condition
is also inconsistent with the uniform coordinate scaling condition (see Chap. 8), this
functional has an unnatural form to overcome this inconsistency.

The CS-type correlation functional (Colle and Salvetti 1975) is derived
from a correlation wavefunction that multiplies an uncorrelated wavefunction
with a correlation function, giving a correlation hole satisfying the correlation
cusp condition for short-range electron–electron interactions, as mentioned in
Sect. 3.2. Figure 5.4 illustrates the general form of the correlation function. In the
CS-type functionals, the Lee–Yang–Parr (LYP) functional (Lee et al. 1988) and the
one-parameter progressive (OP) functional (Tsuneda et al. 1999) are included. For
these functionals, the features are their simple physical models, multiplying only
correlation functions and their resulting highly accurate correlation energies for
molecules. On the other hand, the CS-type functionals, except for the OP functional
hardly satisfy fundamental physical conditions, in contrast to the density gradient
approximation-type ones, for which these conditions are used in the derivations.

The original CS correlation functional was proposed as an electron correlation
correction for the Hartree–Fock method in 1975. Assuming that the volume of the
region where electrons are excluded (excluded volume) is proportional to Wigner’s
excluded volume (Wigner 1934; Wigner and Seitz 1933), the following equation
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was derived:

ECS
c Œ�;r 2

rP2HF D �
Z
d3r
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1C dˇ
� Œ1C bW exp.�c=ˇ/ ; (5.25)

where
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h
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2
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�i
sD0

; (5.26)

and

ˇ D q�1=3: (5.27)

In this functional, five semiempirical parameters, a D 0:04918, b D 0:06598,
c D 0:58, d D 0:8, and q D 2:29, are used with no fundamental constant. This
functional accurately reproduces the correlation energies of atoms and small
molecules. However, the parameters, which are fitted to the Hartree–Fock wave-
function, should be modified for combining with an exchange functional in the
Kohn–Sham method. The time-consuming second derivative term of the diagonal
term of the second-order density matrix in Eq. (5.26) may also be a problem from
the practical point of view.

The LYP correlation functional (Lee et al. 1988) made the CS functional
suitable for practical use. In this functional, the second derivative term in Eq. (5.26)
is approximated by use only of a density gradient to obtain a GGA functional
containing only the density and density gradient. This approximation made it
facile to implement this functional in computational programs and reduced the
computational time. This functional is in the following form:

ELYP
c Œ�;r�;r2�
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Z
d3r
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1C d��1=3
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�Cb��2=3

�
CF�
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r 2�

��
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where

tW D 1

8

 
jr�j2
�

� r 2�

!
(5.29)

and ˇ and CF are given in Eqs. (5.27) and (4.2), respectively. In this functional, five
semiempirical parameters, a D 0:04918, b D 0:7628, c D 0:58, d D 0:8, and q D
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2:29 are contained, with no fundamental constant. Since this LYP correlation func-
tional gives very accurate correlation energies in molecular property calculations, it
is the most used correlation functional in quantum chemistry calculations (current
2014). Notice that this functional contains a term including a density Laplacian term
r2� and therefore seems not to be a GGA correlation functional. However, this
density Laplacian term is easily transformed to a density gradient term via a partial
integral. This functional has another severe problem that has been neglected: the
sign of the second derivative term is opposite to that of the CS functional (Tsuneda
et al. 1999). Although this opposite sign may be incorporated to obtain accurate
correlation energies, it clearly undermines the physical validity of this functional.
Actually, this functional hardly satisfies fundamental physical conditions, as shown
in Chap. 8. This may be one of the main reasons for the fact that the LYP functional
is hardly used in solid state calculations.

The OP correlation functional (Tsuneda et al. 1999) determines the
exclusion volume of the correlation hole, by assuming that it is proportional to
the exclusion volume of the exchange hole coming from the combined exchange
functional, in order to enhance the physical validity of the CS-type correlation
functional. In this functional, only electron correlations of opposite-spin pairs
are explicitly incorporated, while electron correlations of parallel-spin pairs
are secondary effects from the combined exchange functional. It has only one
semiempirical parameter, which is the minimum required for adapting to the
exchange functional. As a result, a simple correlation functional was derived:

EOP
c D �

Z
d3r�˛�ˇ

1:5214ˇ˛ˇ C 0:5764

ˇ4˛ˇ C 1:1284ˇ3˛ˇ C 0:3183ˇ2˛ˇ
; (5.30)

where

ˇ˛ˇ D q˛ˇ

�
��1=3
˛ K�1

˛ C �
�1=3
ˇ K�1

ˇ

��1
; (5.31)

and K� is the exchange functional term defined in Eq. (5.1). The semiempirical
parameter is only q˛ˇ , and no fundamental constant is included. The parameter
q˛ˇ is determined for each exchange functional combined: e.g., q˛ˇ D 2:367 if
this functional is combined with the B88 and PBE exchange functionals. Since the
OP functional contains no density gradient term, except for that in the exchange
functional termK� , it is an LDA correlation functional for combining with the LDA
exchange functional and a GGA correlation functional for combining with a
GGA exchange functional. That is, the OP functional is a progressive functional
transforming in accordance with a combined exchange functional. In spite of the
OP functional being simple, with only one parameter, it gives correlation energies
similar to those of the LYP correlation functional. Furthermore, the OP functional
satisfies the most fundamental physical conditions in all correlation functionals,
although it uses no such condition in the derivation, differently from density gradient
approximation-type functionals (see Chap. 8).
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In the CS-type correlation functionals, there are the Lap-series meta-GGA
correlation functionals (see Sect. 5.4), among others.

5.4 Meta-GGA Functionals

The meta-GGA functional improves the approximation of the GGA functional by
using the kinetic energy density � . In the density matrix expansion around the
Fermi momentum given in Eq. (5.7), the kinetic energy density, � , and the density
Laplacian, r2�, are included in the term following the density gradient term
(Negele and Vautherin 1972). Since the exchange energy is represented by the
density matrix, the kinetic energy density appears in the next correction. Note that
the density Laplacian term follows the Thomas–Fermi (TF) LDA kinetic energy
functional and the Weizsäcker correction term (see Sect. 4.1) in the kinetic energy
density,

� D
X
�

�� D 1

2

X
�

X
i

jr�i� j2 (5.32)

D
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"
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5=3
� C 1
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6
r2�� CO.r 4/

#
; (5.33)

where CF is the coefficient of the spin-dependent TF LDA kinetic energy functional
(Eq. (4.2)),

CF D 3

10
.6�2/2=3: (5.34)

Therefore, the effect of the density Laplacian is included implicitly in the kinetic
energy density. It is natural that the next step in density gradient correction is
the kinetic energy density correction on Jacob’s ladder (see Sect. 5.1). Major
meta-GGA functionals include the van Voorhis–Scuseria 1998 (VS98) meta-GGA
exchange-correlation (van Voorhis and Scuseria 1998), the Perdew–Kurt–Zupan–
Blaha (PKZB) meta-GGA exchange-correlation (Perdew et al. 1999), and the
Tao–Perdew–Staroverov–Scuseria (TPSS) meta-GGA exchange-correlation (Tao
et al. 2003) functionals.

As far as I know, the first meta-GGA functional was the Lap-series meta-
correlation functional (Proynov et al. 1995). This functional is also a CS-type
correlation functional (see Sect. 5.3). In this functional, the size of the exclusion
volume is represented by a momentum, which is written by the kinetic energy
density to derive a CS-type correlation functional that depends on the kinetic energy
density,

E
Lap1
c˛ˇ D

Z
d3r�˛�ˇQ˛ˇ; (5.35)
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and

ELap1
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k�� 0 D 2k�k� 0
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s
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3��
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In these equations, n� is the number of �-electrons and eight semiempirical
parameters are used: bi (i D 1 � 6), ˛e, and Cp (for the parameter values, see
Proynov et al. 1995). This is called the Lap1 correlation functional. Later, the Lap3
correlation functional (Proynov et al. 1997) was developed to enhance the Lap1
functional using the second-order density matrix. These functionals are of great
significance in being the first to incorporate the kinetic energy density. However,
they hardly satisfy fundamental conditions, similarly to most CS-type correlation
functionals and contain many semiempirical parameters.

The VS98 meta-GGA exchange-correlation functional (van Voorhis and Scuseria
1998) is the first exchange functional incorporating the kinetic energy density.
Similarly to the PF exchange functional (see Sect. 5.2), this functional is derived
from the analytical expansion of the density matrix in Eq. (5.7) (Negele and
Vautherin 1972),
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where

h�.x� ; z� / D a
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C bx2� C cz�
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C dx4� C ex2� z� C f z2�
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and

��.x� ; z� / D 1C ˛.x2� C z� /: (5.44)

OELDA
c�1�2 is the integral kernel of the �1�2-pair LDA correlation functional. Both x�

and z� are dimensionless parameters: x� is given in (5.2) and z� is defined using the
kinetic energy density as

z� D �� � �TF
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This functional contains 7 semiempirical parameters (a through f and ˛) for
each exchange, parallel-spin or opposite-spin pair correlation functional, and
consequently has 21 semiempirical parameters in total (for the parameter values,
see van Voorhis and Scuseria 1998). Therefore, this functional is also classified as
a semiempirical functional (see Sect. 5.6) and is actually taken as the first meta-
GGA semiempirical functional using z� : This functional is also characteristic in
associating the correlation functional with the exchange one through the same h� .

The term, “meta-GGA functional,” first appeared in the PKZB meta-GGA
exchange-correlation functional (Perdew et al. 1999). The PKZB exchange
functional intends to enhance the PBE-GGA functional using the kinetic energy
density on the basis of the fundamental conditions extended to the density Laplacian,
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In this functional, two semiempirical parameters, D D 0:113 and � D 0:804,
are included. The PKZB correlation functional removes the self-interaction error
(see Sect. 6.2) of the PBE-GGA correlation functional to reproduce the one-electron
self-correlation energy in the case that electrons interact only with themselves (i.e.,
�� D �W

� ),
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where one semiempirical parameter, C D 0:53, is included. In Eq. (5.50), �W
� is

the von Weizsäcker kinetic energy density, which is defined by the von Weizsäcker
kinetic energy in Eq. (4.4) as
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The feature of the PKZB meta-GGA exchange-correlation functional is that it is the
expansion of the PBE-GGA exchange-correlation functional based on a physical
background. This makes it possible not only to produce more accurate exchange-
correlation energies but also to estimate the contribution of the kinetic energy terms.
However, the semiempirical parameters included have led to the avoidance of the
use of this functional in solid state calculations.

The TPSS meta-GGA exchange-correlation functional (Tao et al. 2003) intends
to remove the semiempirical parameters from the PKZB functional to construct a
nonempirical meta-GGA functional,
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where

C.�; �/ D 0:53C 0:87�2 C 0:50�4 C 2:26�6˚
1C �2
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.1C �/�4=3 C .1 � �/�4=3 =2�4 ; (5.54)

NEmax
c D max̊ NEPBE

c Œ�� ; 0;r�� ; 0; NEPBE
c Œ�˛; �ˇ;r�˛;r�ˇ

�
; (5.55)

� D jr�j=2.3�2�/1=3, � D .�˛ � �ˇ/=�, C.0; 0/ D 0:53, and d D 2:8. Although
this functional contains no semiempirical parameters, it uses six fitted fundamental
constants, including four constants in C.�; �/ to remove the self-interaction error
(see Sect. 6.2).

For meta-GGA functionals, correlation functionals have been chiefly developed:
e.g., the Filatov–Thiel 1998 (FT98) (Filatov and Thiel 1998) and the Krieger–Chen–
Iafrate–Savin (KCIS) (Krieger et al. 1999) meta-GGA correlation functionals.

5.5 Hybrid Functionals

Hybrid functionals mix the Hartree–Fock exchange integral with GGA exchange
functionals at a constant ratio, based on the concept of the adiabatic connection,
which makes the Kohn–Sham energies of the independent electron model link to
those of the fully interacting electron one. That is, hybrid functionals are constructed
by connecting exchange functionals, which are assumed as the exchange energies
of the independent electron systems, to the Hartree–Fock exchange integral, which
are taken as the exchange energies for the fully interacting systems,
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EHF

x �EGGA
x

�
; (5.56)

where � is termed the coupling strength parameter. Equation (5.56) is different
from the usual adiabatic connection, because in this particular case, the adiabatic
connection is not between non-interacting and interacting systems but between
non-correlated and correlated systems. In these functionals, the electron correlation
term, which is individually calculated, does not necessarily obey the concept of
the adiabatic connection. Note that many publications mistakenly state that the
term “hybrid functionals” is a collective designation of functionals combining
the Hartree–Fock exchange integral with exchange functionals. Correctly, hybrid
functionals are defined as being based on the ansatz that the exact exchange energy
is situated between the GGA exchange energy functional and the Hartree–Fock
exchange integral. This indicates that the mixing of the Hartree–Fock exchange
integral is not a correction for exchange functionals. As hybrid functionals, various
types of functionals have been developed, depending on the mixing ratios and the
number of parameters, including the functionals mentioned in this section: The
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B3LYP hybrid functional (Becke 1993), the PBE0 hybrid functional (Adamo and
Barone 1999), and the Heyd–Scuseria–Ernzerhof (HSE) hybrid functional (Heyd
et al. 2003).

The B3LYP hybrid functional (Becke 1993), the first hybrid functional, is the
most frequently used functional (or method) in all functionals (or all theories)
in quantum chemistry calculations. This functional uses three parameters as the
mixing ratios to form the adiabatic connections between the Hartree–Fock exchange
integral and the LDA exchange functional and between the LYP-GGA correlation
functional and the LDA correlation functional, and to combine with the attenuated
GGA term of the B88 exchange functional,

EB3LYP
xc D ELDA

xc C a1


EHF

x �ELDA
x

�C a2�E
B88
x

Ca3


ELYP

c �EVWN-LDA
c

�
(5.57)

These mixing ratios are fitted to optimize the chemical properties of the G2
benchmark set (Curtiss et al. 1991), containing several dozen atoms and small
molecules. Besides the parameters in the exchange and correlation functionals,
the semiempirical parameters are a1 D 0:2, a2 D 0:72, and a3 D 0:81. For the
mixing of the Hartree–Fock exchange integral, it is often interpreted that it intends
to supplement the insufficient exchange interactions in the LDA functional, which
causes the overestimations of binding energies, with the partial replacement of this
functional with the Hartree–Fock exchange integral. Since this functional frequently
gives surprisingly accurate chemical properties for small molecules, it has often
been used even to justify the results of time-consuming ab initio wavefunction
methods. Note, however, that various problems have recently been reported for
this functional, especially in the calculations of chemical reactions and chemical
properties of large systems (Pieniazek et al. 2008; Wheeler et al. 2009; Grimme and
Korth 2007; Dreuw et al. 2003; Champagne et al. 2000).

The PBE0 hybrid functional (Adamo and Barone 1999) intends to physically
enhance the PBE-GGA exchange-correlation functional. Based on the adiabatic
approximation, using the PBE functional as the reference function, it expands this
functional using the energy difference between the exchange functional and the
Hartree–Fock exchange integral as the perturbation and replaces 1=4 of the PBE
exchange functional with the Hartree–Fock exchange integral to be the third-order
expansion term,

EPBE0
xc D EPBE

xc C 1

4



EHF

x �EPBE
x

�
: (5.58)

Although it is often interpreted that this functional has no parameter (“0” indicates
no parameter), it contains, at least, fundamental constants in the PBE exchange-
correlation functional. The advantages of this functional are its simple form, small
number of parameters, and high reproducibility of chemical properties. However,
this functional also has problems similar to those of the B3LYP functional.
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The HSE hybrid functional (Heyd et al. 2003) extends the PBE exchange-
correlation functional by mixing the Hartree–Fock exchange integral only for the
short-range part. As explained in Sect. 6.1, it is confirmed that the lack of long-
range exchange interactions is one of the major problems of GGA exchange
functionals. However, it has been reported that the long-range correction for GGA
exchange functionals yields much larger HOMO–LUMO gaps for semiconductors
than the corresponding experimental band gaps, which solid state physicists have
believed can be approximated by the HOMO–LUMO gaps. In this functional, only
the short-range part of the Hartree–Fock exchange integral is mixed in the GGA
exchange functionals to make the HOMO–LUMO gaps of semiconductors approach
the corresponding band gaps, which should be calculated intrinsically in excited
state calculations such as time-dependent Kohn–Sham calculations,

EHSE
xc D aESR-HF

x C .1� a/EPBE
x C EPBE

c ; (5.59)

where ESR-HF
x is the short-range part of the Hartree–Fock exchange integral,

which is separated by the error function (see Sect. 6.1). This functional uses
a D 1=4 for the same reason as that used for the PBE0 functional, mentioned
in Sect. 5.5. Of course, the main advantage of this functional is the accuracy in
band calculations of semiconductors. It is actually confirmed that this functional
significantly improves the properties of semiconductors, such as lattice constants,
which have been seen as problems for the LDA functional, while maintaining or
improving the accuracies in the calculated band energies of the LDA functional.
On the other hand, the disadvantage is that the inclusion of only the short-range
Hartree–Fock exchange integral cannot be easily justified. This is because the large
effect of the long-range Hartree–Fock exchange integral on band energies indicates
the significance of long-range exchange interactions, even for semiconductors.

Among other hybrid functionals, there are the BHHLYP functional, combining
the B88 exchange functional and the Hartree–Fock exchange interaction in a
one-to-one ratio, and the mPW1PW91 functional (Adamo and Barone 1998),
modifying the B3LYP functional to enhance its physical validity on the basis of
the PW91 exchange-correlation functional.

5.6 Semiempirical Functionals

Semiempirical functionals intend to reproduce accurate properties using as many
semiempirical parameters as needed. The concept of these functionals may be
based on the force fields of molecular mechanics, for example, CHARmm (Brooks
et al. 1983) and Amber (Pearlman et al. 1995), which have been established to
determine the structures of biomacromolecules such as folded proteins. In most
cases, the development of such force fields focuses only on constructing potentials
to yield highly accurate molecular structures. Likewise, semiempirical functionals
have been developed to provide highly accurate properties. Note, however, that
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there are guidelines for developing semiempirical functionals. That is, these func-
tionals are represented using only dimensionless parameters, x� (Eq. (5.2)) and
z� (Eq. (5.45)), and the functional forms are the expansions or modifications of
conventional semiempirical functionals. Semiempirical functionals include the B97
(Becke 1997) and the Hamprecht–Cohen–Tozer–Handy (HCTH) semiempirical
functionals (Hamprecht et al. 1998), and their derivatives: the B97-series and the
Mx-series semiempirical functionals.

The B97 semiempirical functional (Becke 1997) is the first semiempirical
functional and has become the basis for conventional semiempirical functionals,

EB97
xc D EB97

x C EB97
c C cxE

HF
x ; (5.60)
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where �x� D 0:004, �c�� D 0:2, and �c˛ˇ D 0:006. Besides these three
parameters, this functional contains ten parameters: cx, cx� i , cc�� i , and cx˛ˇi for
i D 0; 1; 2 (for the parameter values, see Becke 1997). Since this functional mixes
the Hartree–Fock exchange integral at a constant ratio, it is a hybrid functional.
The HCTH semiempirical functional (Hamprecht et al. 1998) removes cx and
increases the numbers of cx� i , cc�� i , and cx˛ˇi to i D 0 to 4 in the B97 func-
tional. Consequently, it contains 15 parameters in total. This functional is a GGA
functional, because it mixes no Hartree–Fock exchange integral. The B97-series
semiempirical functionals are modifications of these functionals. For example, the
B97-1 functional is different only in terms of the values of the semiempirical
parameter. The B97-D functional (Antony and Grimme 2006) corrects the B97
functional for dispersions (see Sect. 6.3), and the !B97 functional (Chai and Head-
Gordon 2008) uses the long-range correction for the B97 functional (see Sect. 6.1).
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The Mx-series semiempirical functionals (Zhao and Truhlar 2006, 2008) are
hybrid meta-GGA functionals, which combine the PBE exchange functional with
the B97 correlation functional and correct them using the kinetic energy density
terms (“M” in Mx suggests a meta-GGA functional, and “x” is replaced by the last
two digits of the year of developing the functional). For instance, the M06 functional
combines the M05 functional, which is the correction of the PBE exchange
functional for the kinetic energy density, and the above B97 correlation functional
with the VS98 exchange-correlation functional (Sect. 5.4) and the Hartree–Fock
exchange integral,

EM06
x D X

100
EHF

x C
�
1 � X

100

�
EM06-DFT

x ; (5.66)

EM06-DFT
x D E revM05

x C E revVS98
x ; (5.67)

EM06
c D E revB97-SIC

c�� C E revVS98-SIC
c�� CE revB97

c˛ˇ C E revVS98
c˛ˇ ; (5.68)
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 NE revB97-SIC
c�� C NE revVS98-SIC

c��

�
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and

D� D 1 � x2�
4 .z� C CF/

; (5.72)

where �LDA
� D CF�

5=3
� and “rev” indicates the revision of the semiempirical

parameters. D� is the self-interaction correction term. This functional contains 36
semiempirical parameters in total:X , �c�� , �c˛ˇ,Cx� i (i D 0�11), cc�� i (i D 0�4),
cx˛ˇi (i D 0 � 4), di (i D 0 � 2), dc�� i (i D 0 � 4), and dc˛ˇi (i D 0 � 4)
(for the parameter values, see Zhao and Truhlar 2008). The M06-2x functional
removes the VS98 exchange functional part from the M06 exchange functional
and consequently uses 35 semiempirical parameters, in which di (i D 0 � 2) are
decreased (for the parameter values, see Zhao and Truhlar 2008). Other Mx-series
functionals are the M06-L functional, which excludes the Hartree–Fock exchange
integral (38 parameters) and the M06-HF functional (38 parameters), which uses
the Hartree–Fock exchange integral in the exchange part. The Bose–Martin kinetic
(BMK) functional (Boese and Martin 2004) is also a semiempirical functional.

As easily presumed from the concept, the above semiempirical functionals are
often superior to other types of functionals in terms of the ability to reproduce
chemical properties and reactions. Nevertheless, it has recently been reported that
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several chemical reactions are poorly reproduced (Jacquemin et al. 2010; Song et al.
2010). These functionals also depend on the benchmark sets used for determining
the semiempirical parameters and the values and combinations of these parameters.
Since these dependences obscure the contributory levels of constituent interactions,
it would be difficult to justify the calculated results of properties that have never been
experimentally observed. In the future, various types of semiempirical functionals
will be developed to reproduce properties and reactions more accurately. It is,
therefore, reasonable to suppose that all conventional semiempirical functionals
are inherently transitional functionals until the development of more sophisticated
functionals.

Finally, it should be emphasized that conventional functionals have their own
advantages and disadvantages and have been used to trade off these characteristics,
depending on the calculated systems. It is, therefore, too optimistic to consider that
functionals steadily approach the universal functional, as if climbing Jacob’s ladder
(Fig. 5.2) year by year, and consequently that the latest, state-of-the-art functionals
are superior to the conventional ones.
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Chapter 6
Corrections for Functionals

6.1 Long-Range Correction

In this chapter, various types of corrections for incorporating physical effects
neglected in exchange-correlation functionals are discussed. Since the corrections
reviewed in this chapter have clear physical meanings in common with each other,
they are distinctly different from empirical terms that are added simply to enhance
the ability to reproduce a particular physical property. It is, therefore, possible to
determine whether the corresponding physical effect is included in an exchange-
correlation functional in advance and to carry out a correction for the functional if
it has not already been included.

Long-range correction indicates the correction of exchange functionals for
long-range electron–electron exchange interactions, which are insufficiently
incorporated in conventional exchange functionals. Since exchange functionals
usually depend only on the electron distribution, they essentially contain no explicit
electron–electron interactions. As shown in Eq. (5.1), exchange functionals are
generally represented in the form of a one-electron coordinate integral. Therefore, it
is reasonable to suppose that exchange functionals always require a long-range
correction. On the other hand, long-range exchange interactions are naturally
incorporated in the Hartree–Fock exchange integral, which is an explicit two-
electron coordinate integral in Eq. (2.45). The present author and coworkers have
developed a long-range correction in which exchange interactions are divided
into short-range and long-range parts, and then a general exchange functional
and the Hartree–Fock exchange integral are adopted in the calculations of the
short-range and long-range parts, respectively (Iikura et al. 2001). For the local
density approximation (LDA) exchange functional (Dirac 1930), Savin suggested
the formulation of the long-range correction (LC) scheme (Savin 1996). The long-
range correction makes it applicable to general functionals to be useful in quantum
chemistry calculations. In this correction, the two-electron operator, 1=r12, is
divided by the standard error function as
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1

r12
D 1 � erf.�r12/

r12
C erf.�r12/

r12
; (6.1)

where � is a parameter for determining the division ratio. However, it is difficult
to divide exchange functionals by Eq. (6.1) in most cases, because these function-
als are generally not derived from a density matrix. The long-range correction,
therefore, assumes that all of the features of exchange functionals are comprised
in the momentum, k� . Based on this assumption, the short-range part of general
exchange functionals in Eq. (5.1) is derived as
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where a� , b� , and c� are given as
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2
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Note that momentum k� is correctly derived to provide the Fermi momentum, kF� in
Eq. 5.8, for the LDA exchange functional in Eq. (4.3),KLDA

� D 3 .3=4�/1=3, such as

k� D
�
9�

K�

�1=2
�1=3� : (6.6)

Using this momentum, Eq. (6.2) is identical to the previously proposed long-range
correction for the LDA functional (Savin 1996). The long-range part of the Hartree–
Fock exchange integral is simply given by multiplying the standard error function
by the two-electron operator in Eq. (2.45) as
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Fig. 6.1 Calculated lowest charge transfer excitation energy, !CT, of the ethylene–
tetrafluoroethylene dimer with respect to the intermolecular distance, R, in eV. The excitation
energy at the distance of 5 Å is set to be zero. The DFT (LC-BOP, BOP, and B3LYP) results were
obtained by the time-dependent Kohn–Sham method (see Sect. 4.6), while the HF result is given
by the time-dependent Hartree–Fock method. For the SAC-CI method, see Sect. 3.5. Rigorously,
the excitation energy should be slightly above the curve of �1=R. The augmented Sadlej pVTZ
basis functions are used. See Tawada et al. (2004)

In the above formulation, the only parameter � naturally depends on the exchange
functional corrected. For example, it has been confirmed that the � value of the B88
and PBE exchange functionals is optimized as � D 0:47 for electronic ground states
at around equilibrium geometries (Song et al. 2007a) and as � D 0:33 for others
(Iikura et al. 2001).

The long-range correction has solved a wide variety of problems that have
been reported in previous Kohn–Sham calculations. So far, the most remarkable
problems that have been resolved with the long-range correction have been
the van der Waals binding energies, electronic excitation spectra, optical response
properties, and orbital energies. The reproducibilities of van der Waals binding
energies and orbital energies are detailed in Sects. 6.3 and 7.9, respectively. Here,
let us examine only electronic excitation spectra and optical response properties.
For the electronic excitation spectra, it has been reported that the time-dependent
Kohn–Sham method (see Sect. 4.6) underestimates charge transfer (Dreuw et al.
2003; Dreuw and Head-Gordon 2004) and Rydberg (Tozer and Handy 1998)
excitation energies and oscillator strengths (van Gisbergen et al. 1998). It has
also been reported that optical response properties such as hyperpolarizability are
significantly overestimated for long-chain polyenes as the chains are lengthened in
the coupled perturbed Kohn–Sham method or the finite-field method (see Sect. 4.7)
(Champagne et al. 2000). As shown in Figs. 6.1 and 6.2, the long-range correction
solves the problems in the electronic excitation spectrum and optical response
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Fig. 6.2 Calculated longitudinal hyperpolarizability, ˇzzz, of ˛,!-nitro,amino-polyacetylene
O2N(C2H2)nNH2 with respect to the number of units n. The DFT (LC-BOP, BOP, and B3LYP)
results were obtained by the coupled-perturbed Kohn–Sham method (see Sect. 4.7), the HF result
was given by the coupled-perturbed Hartree–Fock method, and the ab initio results were provided
by the finite-field method (see Sect. 4.7). The aug-cc-pVDZ basis functions are used. See Kamiya
et al. (2005)

property calculations (Tawada et al. 2004; Kamiya et al. 2005). This indicates
that the problems are attributed to the reproducibilities of the orbital energies and
exchange-correlation integral kernel. Notably, both the time-dependent and coupled
perturbed Kohn–Sham methods perform response property calculations by using the
orbital energy gaps in Eqs. (4.37), (4.38), and (4.62) and the integrals containing
the exchange-correlation integral kernel in matrix K of Eq. (4.41). As explained in
detail in Chap. 7, without the long-range correction, the Kohn–Sham method using
any conventional functional significantly underestimates either the orbital energy
gaps or the exchange-correlation integral kernel. However, since the exchange-
correlation integral kernel is negative, in contrast to the positive orbital energy
gaps, the calculated excitation energies often approach the correct values by the
error cancellation as a whole. The most prominent example is the valence excitation
energies of small molecules. For the valence excitations of small molecules, the
orbital shapes before and after excitations are similar to each other. The excitation
energies seem accurately reproduced without the long-range correction by the error
cancellation in such cases. However, for charge transfer and Rydberg excitations, the
exchange-correlation integral kernel is very small because of the obviously different
orbital shapes before and after excitations. This causes the underestimations of
the orbital energy gaps to appear directly as errors in the calculated excitation
energies. In the case of optical response properties, the Kohn–Sham calcula-
tions provide plausible results for small molecules due to the error cancellation.
However, significant errors are obtained for long-chain molecules, which contain
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near-degenerate, considerably different orbitals. The oscillator strengths are also
determined by the underestimated orbital energy gaps. As mentioned in Sect. 4.7,
most spectroscopic constants are response properties, similar to excitation energies
and optical properties. It is, therefore, clear that the long-range correction plays a
significant role in the calculations of spectroscopic constants.

The high applicability of the long-range correction has been conducive to the
developments of various other long-range corrected functionals. Let us briefly
examine the formulations, advantages, and disadvantages of major long-range
corrected functionals in this section.

The CAM-B3LYP functional (Yanai et al. 2004) is a long-range corrected hybrid
functional using

1

r12
D 1 � Œ˛ C ˇ � erf.�r12/

r12
C ˛ C ˇ � erf.�r12/

r12
; (6.8)

as a substitute for Eq. (6.1) to perform the long-range correction for the B3LYP
hybrid functional (see Sect. 5.5). Although various ˛ and ˇ have been employed,
˛ D 0:19 and ˇ D 0:46 seem to be the most used. The main feature of this
functional is the inclusion of the short-range Hartree–Fock exchange integral at
a constant ratio, instead of the incomplete long-range exchange integral. For the
correlation functional, the sum of the factor 0.19 times the VWN LDA functional
and 0.81 times the LYP GGA functional is used similarly to the B3LYP functional.
The CAM-B3LYP functional was developed based on the concept that the poor
atomization energies, which have been reported as the only critical problem in
the benchmark set calculations of the original long-range corrected functional,
are attributable to the uncorrected short-range exchange functional. As a result,
the calculated atomization energies are improved while maintaining the features of
the original version in the benchmark set of calculations.

Contrastingly to the momentum transformation of the original long-range
correction in Eq. (6.6), the LC-!PBE functional (Vydrov et al. 2006) is derived by
using the exchange hole corresponding to the Perdew–Burke–Ernzerhof exchange
functional (Ernzerhof and Perdew 1998) (see Sect. 3.1) as

ELC-!PBE.sr/
x .!/ D 2�

Z
d3r�.r/

Z 1

0

dr12 Œ1�erf.!r12/ r12hPBE
x .r; r12/; (6.9)

where !, which is identical to the � of the original one, is given as ! D 0:4.
The advantage of this functional is the better physical validity for the short-range
exchange part than that of the original one.

The long-range correction has also been applied to a semiempirical functional
(see Sect. 5.6). The first long-range corrected semiempirical functional is the
!B97X functional (Chai and Head-Gordon 2008a) in the form,

E!B97X
xc D ELC.lr/

x C cxE
HF.sr/
x C EB97.sr/

x C EB97
c : (6.10)
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where B97 indicates the B97 semiempirical functional. For cx D 0, it is simply
called the “!B97” functional. This functional contains many semiempirical
parameters: 17 parameters in !B97X and 16 parameters in !B97. Partly for
that reason, it frequently yields more accurate results for properties, including
atomization energies, than the original ones in benchmark set calculations. The
!B97XD functional is a van der Waals correction for the !B97X functional, in
which a parametrized classical dispersion term is combined (see Sect. 6.3).

In the LC-PR functional (Nakata and Tsuneda 2013; Nakata et al. 2010), a
self-interaction correction (see Sect. 6.2) is performed for the short-range exchange
part of long-range corrected functionals. Based on the regional self-interaction
correction (RSIC) (Tsuneda et al. 2003), the short-range exchange part is corrected
using the pseudospectral (PS) technique (Orszag 1972), such as

EPR
x D Œ1 � fRS.t/ E

DF
x C fRS.t/E

SI
x ; (6.11)

ESI
x D �1
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����

Z
d3rP��P����

� .r/��.r/
Z
d3r0��

� .r
0/��.r0/

jr0 � rj : (6.12)

In Eq. (6.11), fRS is a region-separation function for clipping the self-interaction
regions (see Sect. 6.2). This functional drastically improves the calculated core
excitation energies of long-range corrected functionals in TDKS calculations, while
maintaining the accuracy in the core ionization energies, and valence, Rydberg, and
charge transfer excitation energies (Nakata et al. 2010). It is also reported that this
functional provides accurate orbital energies simultaneously for core and valence
orbitals (see Sect. 7.9) (Nakata and Tsuneda 2013).

Other long-range corrected functionals have been developed: e.g., the LCgau
(Song et al. 2007b), Mori-Sanchez–Cohen–Yang (MCY) (Cohen et al. 2007), and
Baer–Neuhauser–Livshits (BNL) (Livshits and Baer 2007) functionals. In most
cases, long-range corrected functionals have common features, especially in the
high reproducibility of van der Waals bonds, electronic spectra, optical response
properties, and valence orbital energies.

6.2 Self-interaction Correction

The most familiar correction for functionals may be the self-interaction correction,
which removes the self-interaction error of exchange functionals. In density
functional theory, the self-interaction error indicates Coulomb self-interactions,
which should cancel out with the exchange self-interactions but remain due to the
use of exchange functionals as a substitute for the Hartree–Fock exchange integral
in the exchange part of the Kohn–Sham equation,

�ESIE D
nX
i

.Ji i C ExcŒ�i / : (6.13)
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The self-interaction correction was first developed for atoms by Hartree in the early
days of quantum mechanics (Hartree 1928). Then, Fermi and Amaldi suggested
a self-interaction correction for the Thomas-Fermi theory (see Sect. 4.1) as a
correction for the Coulomb interactions (Fermi and Amaldi 1934). The well-known
form of this correction is that for the Coulomb potential,

V FA
J Œ� D 2

�
1 � 1

n

� nX
j

OJj Œ�: (6.14)

In this correction, assuming homogeneously distributed electrons like those in
a uniform electron gas, the self-interaction error is removed by eliminating the
Coulomb potential of one electron. Although this potential correction is based on
a quite rough assumption, it is used even in chemistry, for example, to derive an
exchange-correlation potential from the electron density in the ZMP method (see
Sect. 4.5).

So far, the most frequently used is the Perdew–Zunger self-interaction correction
(Perdew and Zunger 1981), which simply removes the self-interaction errors from
total electronic energies,

E D EKS �
nX
i

.Ji i C ExcŒ�i / : (6.15)

The self-interaction errors are also eliminated from the exchange potential,

Vx.r/ D ıEx

ı�
�

nX
i

�
OJi C ıEx

ı�
Œ�i .r/

�
: (6.16)

Note that this correction has the problem that the Kohn–Sham equation is not
invariant for the unitary transformation of occupied orbitals, even after the
correction, differently from the Hartree–Fock equation. In the Hartree–Fock
equation, the variations of the Coulomb self-interaction energy and its potential
for the unitary transformations of occupied orbitals cancel out with those of
the exchange self-interaction, while these are not compensated, even after the
correction in the Kohn–Sham equation. Therefore, the effect of the self-interaction
correction depends on the difference in occupied orbitals before and after the
unitary transformation. For removing this difference, it is usual to localize the
orbitals before the self-interaction correction (Johnson et al. 1994). Note, however,
that there are various types of orbital localization methods, and the effect of the self-
interaction correction inevitably depends on them. Combining with the optimized
effective potential (OEP) method (see Sect. 7.5) may be one of the most efficient
ways to solve this problem. This combination enables us to consistently obtain
localized potentials with no self-interaction error.
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Often, self-interaction errors are also included in correlation functionals.
The self-interaction errors in correlation functionals can be revealed by calculating
the correlation energies of one-electron systems, which essentially must be zero. For
example, LDA correlation functionals (see Sect. 5.3) generally contain parallel-spin
electron correlation terms, which give correlation energies for one-electron systems,
i.e., self-interaction errors. Since many GGA correlation functionals contain LDA
correlation functionals, these functionals also include self-interaction errors with no
self-interaction correction. The LYP correlation functional in Eq. (5.28) produces
electron correlations for one-electron systems. However, a prefactor is multiplied
to this functional in order to yield no electron correlation for one-electron systems.
The OP correlation functional in Eq. (5.30) has no self-interaction error, at least
explicitly, because it contains only opposite-spin electron correlations. Note,
however, that since an exchange functional term is involved in the OP functional, it
is possible for the OP functional to have self-interaction errors implicitly, although
these errors would be negligible. As mentioned above, correlation functionals
usually contain self-interaction errors. Nevertheless, the self-interaction correction
for correlation functionals has rarely been used, because the errors are assumed to
be much smaller than those in exchange functionals.

The self-interaction correction has chiefly been applied to solid state physics
calculations. In particular, many band calculations have used self-interaction
corrections to improve the discrepancies in band gaps, i.e., excitation energies,
and orbital energy gaps in Kohn–Sham calculations using pure functionals. This
is because the self-interaction correction tends to enlarge the exchange energies of
occupied orbitals. Actually, it has been reported that the self-interaction correction
clearly leads to underestimated band gaps of LDA functional, close to the exper-
imental values (Svane and Gunnarsson 1990). However, recent calculations using
atom-centered basis sets for core orbitals have shown that the band gaps of semicon-
ductors are well reproduced by pure functionals without self-interaction correction
(Gerber et al. 2007) and that this correction instead leads to the overestimation of
band gaps. It has also been found that the band gaps of insulators are overestimated
by using the self-interaction correction (Arai and Fujiwara 1995). In fact, it is
accepted that the lack of long-range exchange interactions causes the underestima-
tion of the band gaps of insulators at least (see Sect. 7.9) (Gerber et al. 2007).

Self-interaction errors are more serious for core orbitals than for valence
orbitals. For �-spin self-interacting electrons, which have no electron-electron
interaction, the density matrix is represented as

P�.r1; r2/ D �1=2� .r1/�1=2� .r2/: (6.17)

Using this density matrix, the kinetic energy density, � , becomes the Weizsäcker
one, �W, in Eq. (4.4) (Dreizler and Gross 1990), such as

� D �1
2
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�

r 2P�.r1; r2/
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: (6.18)
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Fig. 6.3 Ratio of the Weizsäcker kinetic energy density to the total one, �W=�total in Eq. (6.18), in
the formaldehyde molecule with three regions of electrons

The exchange energy density meets the far-from-nucleus (long-range) asymptotic
behavior condition in Eq. (8.26) of Chap. 8 on the basis of this density matrix,
such as

NEx� .r/ D �1
2

Z
d3r0 jP�.r; r0/j2

jr � r0j
r!1���! ��� .r/

2r
: (6.19)

Furthermore, the parallel-spin correlation energy density is assumed to be zero for
self-interacting electrons, because the pair density matrix (the diagonal term of the
second-order density matrix) using this density matrix becomes zero for parallel-
spin electrons,

P2�� .r1; r2/D 1

2

�
��.r1/�� .r2/�jP�.r1; r2/j2

D0 H) NEc�� D0: (6.20)

Using the relation in Eq. (6.18), self-interaction regions, where electrons have no
electron-electron interaction, can be identified (Tsuneda et al. 2001). That is, those
regions where the Weizsäcker kinetic energy density is close to the total one, are self-
interaction regions. Note that the Weizsäcker kinetic energy density is the minimum
of the total one. Therefore, the ratio of the Weizsäcker kinetic energy density to
the total is suitable to specify the self-interaction regions in molecules. Figure 6.3
illustrates this ratio in the formaldehyde molecule (Tsuneda et al. 2003). As shown
in this figure, the self-interaction regions are localized only in the regions near
the atomic nuclei and around the hydrogen atoms opposite to the chemical bonds.
That is, the self-interacting electrons are present only in the core orbitals and the
nonbonding regions of valence 1s orbitals. Other regions are classified into those
around bonds, where the ratio is far less than 1, and the closely situated regions,
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where the ratio is not so far from 1. In regions where the ratio is far less than
1, the electrons are assumed to be in motion, like the free electrons in transition
metals. Therefore, these regions are interpreted as free-electron regions (Tsuneda
et al. 2001). The exchange-correlation potential in these regions is considered to be
well described as a density functional. Actually, since the electron distributions vary
slowly in these regions, the kinetic, exchange, and correlation energy components
can be described as the expansions of dimensionless parameters in Eq. (5.2), and
consequently, it is revealed that the kinetic, exchange, and correlation energies
have a transversing physical connection (Tsuneda et al. 2001). It is appropriate
to interpret the remaining intermediate regions, where the ratio is not so far from
1, as long-range interaction regions, in which widely separated electrons interact
with each other. In Fig. 6.3, these regions are located far from the core orbitals.
This is consistent with the calculated results that the long-range correction hardly
affects core orbitals (see Sect. 6.1). Moreover, this is supported by the analysis
result that the long-range exchange and correlation interactions are required besides
the self-interaction correction to describe chemical bonds accurately (Gräfenstein
et al. 2004). The above overview, therefore, suggests that both the long-range and
self-interaction corrections are needed in exchange-correlation functionals (Nakata
et al. 2010).

6.3 van der Waals Correction

The van der Waals interaction is one of the most significant types of electron
correlations, even though it has been neglected in the development of most
correlation functionals. By definition, the van der Waals interaction is a collective
term that includes dipole–dipole, dipole-induced dipole, and dispersion interactions
(Israelachvili 1992). The dipole–dipole interaction is the electrostatic interaction
between permanent dipoles in polar systems. For the interactions between systems
A and B , the corresponding potential is given classically as

V�-�.r/ D ��A�B

RAB
3
; (6.21)

where �X is the permanent dipole of system X and RAB is the distance between
systemsA and B . In the Kohn–Sham equation, this interaction is contained as a part
of the Coulomb interactions. The dipole-induced dipole interaction is the interaction
between polar and nonpolar systems. Assuming the permanent dipole moment of
polar system A as �A and the polarizability, the linear response for an electric field
producing an induced dipole moment of nonpolar system B as ˛B, the classical
potential of this interaction is given as (Israelachvili 1992)

V�-˛.r/ D ��
2
A˛B

RAB
6
: (6.22)
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Since this interaction is very weak, it causes the low solubility of polar molecules
in nonpolar solvents. This interaction is also incorporated in Kohn–Sham SCF
calculations. The dispersion interaction is a universal interaction, which acts
even between bodies with neither charge nor multipole moment. As a classi-
cal expression, the potential function between two heterogeneous bodies, which
London developed using perturbation theory, is used (London 1930),

V London
disp .r/ D �3

2

˛A˛B

RAB
6

IAIB

IA C IB
; (6.23)

where IX is the ionization potential of partial system X. This dispersion interaction
is interpreted as the interaction between an instantaneous dipole moment, which
is caused by a fluctuation of the electron distribution, and an induced dipole
moment, due to the electric field formed by the instantaneous dipole moment. That
is, two spatially separated electron distributions fluctuate around their equilibrium
distributions by electron correlation to produce interactions between the two bodies.
Therefore, the dispersion interaction is a pure electron correlation between two
bodies, which cannot be incorporated in the one-body mean-field approximation,
and it is a long-range correlation explicitly acting between distant electrons. This
dispersion interaction is the only van der Waals interaction that is not incorporated
in Kohn–Sham calculations using conventional correlation functionals.

Even though the dispersion interaction should be included in correlation
functionals, it has usually not been taken into consideration. Most conventional
GGA correlation functionals have been developed by density gradient corrections
for the LDA correlation functional or by incorporating the dynamical correlation
coming from the correlation cusp. Since these functionals contain only short-range
correlation resulting from correlation holes, long-range correlations, including
dispersion interactions, are neglected in these functionals. Naturally, Kohn–Sham
calculations using these GGA correlation functionals have almost always failed,
with no dispersion interaction, to give van der Waals bonds even qualitatively. It is,
therefore, reasonable to consider that dispersion interactions should be explicitly
supplemented in conventional correlation functionals. So far, various types of
dispersion corrections have been suggested. These dispersion corrections are
generally classified into five types: classical dispersion corrections, combinations
with perturbation theories, linear-response theories, van der Waals (dispersion)
functionals, and semiempirical dispersion-corrected functionals. In addition to these
dispersion corrections, long-range exchange interactions and correlation functionals
are also significant in calculating van der Waals bonds.

The simplest dispersion correction may be the empirical correction for the Kohn–
Sham energy using the London classical interatomic dispersion energy,

ELondon
disp D �

X
A>B

CAB
6

RAB
6
fdamp.RAB/; (6.24)
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where A and B are usually the labels of atoms and CAB
6 is a parameterized

interatomic dispersion coefficient, and fdamp is a damping function for cutting off
unnecessary short-range interactions. The special feature of this correction method
is the much shorter computational time required in dispersion calculations compared
to those of other dispersion corrections. Since this classical correction also accu-
rately reproduces experimental results with well-calibrated dispersion coefficients, it
is the most widely used dispersion correction in classical molecular dynamics (MD)
simulations. It is, however, difficult to apply this correction to the calculations of new
systems about which little is known, due to the empirically parameterized dispersion
coefficient and it has been reported that this correction gives much different results,
depending on the exchange-correlation functionals combined. Therefore, the right-
hand side of Eq. (6.24) is usually multiplied by adjusted parameters that are
dependent on the exchange-correlation functional that is combined, as seen in DFT-
D functionals, mentioned later. However, these methods are too empirical to be
appropriate for a wide variety of systems. To solve this problem, Becke developed
the exchange-hole dipole moment (XDM) method (Becke and Johnson 2005a,b), in
which the CAB

6 coefficient in Eq. (6.24) is calculated by

CAB
6 D
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˝
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Although this method is also empirical, it has a physical meaning, at least in the
dispersion coefficient, and gives more accurate dispersion interactions than those of
the London classical dispersion energy.

Perturbation theories such as the MP2 method (McWeeny 1992) (see Sect. 3.2)
have been appreciated as ab initio wavefunction theories reproducing dispersion
interactions with relatively short computational times. Therefore, dispersion inter-
actions can be incorporated in the Kohn–Sham method by combining with such
perturbation theories, in principle. One of the methods based on this concept is the
DFT symmetry-adapted perturbation theory (DFT–SAPT), which uses Kohn–Sham
orbitals to calculate the perturbation energies (Williams and Chabalowski 2001). In
contrast to ab initio SAPT, in which both intermolecular and intramolecular electron
correlations are calculated, only intermolecular electron correlations are calculated
as a dispersion correction for the Kohn–Sham method in DFT–SAPT. Consequently,
this drastically reduces the computational cost, typically by one or two orders of
magnitude, compared to an ab initio SAPT calculation, with similar accuracies.
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Although DFT–SAPT is a promising dispersion calculation method for clearly
separated systems, it cannot reproduce intramolecular dispersion interactions.
Moreover, despite the drastically reduced computational time, DFT–SAPT calcu-
lations need much more computational time than those of Kohn–Sham calculations,
even for the lowest order DFT–SAPT2. Consequently, this approach is applicable
to systems containing only up to several dozens of atoms with currently available
computer performance. As another method combining DFT with perturbation
theories, there are double-hybrid functionals, which mix perturbation energies in
correlation functionals at a constant ratio (Schwabe and Grimme 2007). That is,
these functionals extend hybrid functionals by mixing correlation functionals with
MP2 perturbation energies, for example,

Exc D .1� ax/Ex C axEHF C .1 � ac/Ec C acEMP2; (6.28)

where EMP2 is the MP2 electron correlation energy. The B2PLYP functional
(Grimme 2006) is one of these double-hybrid functionals. Although this method
gives middle-range electron correlations, it is not appropriate for dispersion
calculations because of the incomplete dispersion interactions incorporated.

By using linear-response theories, dispersion interactions can be calcu-
lated directly in the framework of the Kohn–Sham method. The adiabatic
connection/fluctuation-dissipation theorem (AC/FDT) method is a linear-response
theory for exactly calculating dispersion interactions within the framework
of the Kohn–Sham method (Langreth and Perdew 1975). In this AC/FDT
method, electron correlation is calculated as the energy response quantity for the
spontaneous fluctuations of electronic motions coming from the perturbation of the
interelectronic interactions, as follows:
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where r and r0 are the position vectors of electrons. In this equation, �� and �0 are
density response functions for interacting and independent electrons, respectively,
and these are obtained by solving the Dyson equation:
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where f �
xc is the exchange-correlation integral kernel for interacting systems.

Since the electron correlation in Eq. (6.29) contains dispersion interactions as the
long-range correlation, the long-range part of this correlation energy is often used as
a dispersion correction, which is termed a “RPAx” dispersion correction (Zhu et al.
2010). Analogously to the TDKS method (see Sect. 4.6), the correlation energy is
calculated by solving the TDKS matrix equation. This AC/FDT correlation energy
has also been found to contain a certain amount of nondynamical correlation effects
(Bleiziffer et al. 2012). Although this AC/FDT method is clearly the most superior
dispersion correction from a physical point of view, it requires an enormous
amount of computational time, at least three orders of magnitude greater than the
time needed in Kohn–Sham calculations, unless drastic approximations were to be
adopted.

Van der Waals (dispersion) functionals have been developed to reduce the
enormous computational time required in the AC/FDT method while maintaining
accuracy and ease of use, as in the London classical potential. Lundqvist and
coworkers proposed a dispersion functional, called the Andersson–Langreth–
Lundqvist (ALL) functional by using a local density approximation for the electron
density response function of the AC/FDT method (Andersson et al. 1996),
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As almost the same functional, Dobson and coworkers independently suggested
a dispersion functional based on the local response approximation in the same
year (Dobson and Dinte 1996). Note that explicit numerical two-electron integrals,
which usually require long computational times, are included in the formulations of
these functionals. However, in actual calculations, the computational time is usually
less than that of the Kohn–Sham calculation, because spatial regions of small
momentum variations and core regions can be neglected in the integral calculations.
On the other hand, these functionals are applicable only to two-body systems having
well-separated electron distributions and need damping functions fdamp shown in
Eq. (6.24) for short-range electron–electron distances. To solve this problem, many
researchers have attempted to develop dispersion functionals applicable to regions
of overlapping electron distributions. Lundqvist and coworkers also proposed a
dispersion functional available for such electronic regions (Dion et al. 2004). This
functional has a complicated form using the �.r1; r2/ function, containing the
spatial coordinates of two electrons and the electron density and its gradient at these
coordinates,
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In Eq. (6.37), q0 is given using the Fermi momentum, kF D .3�2�/1=3, as

q0.r/ D kF.r/

"
1C 0:09434

� r�.r/
2kF.r/�.r/

�2#
: (6.38)

This functional requires no damping function, because it naturally approaches
zero for short electron–electron distances. Therefore, this functional can reproduce
intramolecular dispersion interactions. This dispersion functional is used, for
example, in the vdW-DF method, (Dion et al. 2004) combining with the revPBE
functional or other GGA functionals. As other interesting dispersion functionals,
Vydrov–van Voorhis 2009 (VV09) functional (Vydrov and van Voorhis 2009),
which uses the dielectric model smoothing the real-space cutoff, and local response
dispersion (LRD) functional (Sato and Nakai 2009), which combines the local
response approximation functional of Dobson and coworkers (Dobson and Dinte
1996) with the real-space cutoff (Vydrov and van Voorhis 2009), are also suggested.
Combining with long-range corrected DFT, this LRD functional has succeeded to
reproduce various kind of reaction energy diagrams and photochemistries, which
have been poorly given by conventional DFTs.

Finally, the semiempirical dispersion-corrected functionals are a modification of
conventional semiempirical functionals (see Sect. 5.6) for dispersion effects. DFT-D
functionals such as the BLYP-D, B3LYP-D, and B97-D functionals (Antony and
Grimme 2006) and several Mx-series functionals such as the M05-2x and M06-2x
functionals (Zhao and Truhlar 2008) are included in these semiempirical dispersion-
corrected functionals. In the DFT-D functionals, there are three versions, DFT-D1,
DFT-D2, and DFT-D3, based on the level of dispersion corrections. For a deep
understanding of the dispersion corrections, it is interesting to examine the highest
level DFT-D3 functional (Grimme et al. 2010),
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where A, B, and C are atomic labels, 
a, 
b , and 
c are the internal angles of the
ABC triangles, and NRABC are geometrically averaged radii. The damping functions
are given by

f n
damp.RAB/ D 1

1C 6


RAB=.sr;nR

AB
0 /

��˛n ; (6.42)

and

f
.3/

damp.
NRABC/ D 1

1C 6

 NRABC=.4R

ABC
0 =3/

��16 ; (6.43)

All of the remaining parameters are semiempirical: RAB
0 and RABC

0 are cutoff radii
adjusted to each pair and trio of atoms. Coefficients sn (n D 8; 10; � � � ) are fitted in
benchmark calculations depending on the functionals combined, while s6 is unity
or an adjusted value less than unity. For dispersion coefficients, CAB

n and CABC
9 , the

TDKS method and recursion relations are used to determine the values for each
atomic pair and trio. The lowest-order CAB

6 is expressed in the Casimir–Polder
formula (Casimir and Polder 1948),

CAB
6 D 3

�

Z 1

0

d!˛A.i!/˛B.i!/; (6.44)

where ˛A.i!/ is the averaged dipole polarizability of atom A at an imaginary
frequency. OtherCAB

n coefficients are derived by the recursion relations (Starkschall
and Gordon 1972) as

CAB
8 D 3CAB

6

p
QAQB; (6.45)

CAB
10 D 49

40

.CAB
8 /2

CAB
6

; (6.46)

and

CAB
nC4 D CAB

n�2

 
CAB
nC2
CAB
n

!3
; (6.47)
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with

QA D
p
ZA

hr4iA

hr2iA
; (6.48)

where ZA is the nuclear charge of atom A and hr4iA and hr2iA are the expectation
values derived from the electron density of atom A. The remaining triple–dipole
CABC
9 coefficient is given by

CABC
9 D 3

�

Z 1

0

d!˛A.i!/˛B.i!/˛C.i!/ � �
q
CAB
6 C BC

6 C CA
6 : (6.49)

These coefficients are determined by the TDKS calculation for each atomic
pair and trio. Since these values are fixed after one TDKS calculation, these
dispersion calculations are not a bottleneck in the DFT-D3 calculations. For
DFT-D3 functionals, the BLYP-D3 and B2PLYP-D3 functionals have recently
been suggested (Grimme et al. 2010). In the Mx-series and other semiempiri-
cal dispersion-corrected functionals, dispersion interactions are incorporated in a
similar manner, although only the CAB

6 term is usually retained. This type of
dispersion correction is clearly efficient, because dispersion interactions are easily
incorporated with high accuracy by using only functionals. However, it has been
reported that the calculated results depend on the parameters used and the R�6
decay of the dispersion interaction cannot be reproduced.

Although only dispersion corrections have so far been presented in this section,
we should note that repulsions balanced with dispersion attractions are equivalently
significant in dispersion calculations. As seen in the r�12 repulsion term of the
Lennard-Jones potential (Lennard-Jones 1924), the repulsions have been interpreted
to come from long-range exchange interactions. Nevertheless, long-range exchange
interactions have been neglected in conventional exchange functionals, similarly to
dispersion interactions in conventional correlation functionals. Figure 6.4 displays
dissociation potential energy curves for the Ar dimer, which are calculated using
various exchange functionals (Kamiya et al. 2002). It is well known that the bond
in the Ar dimer consists only of dispersion interactions. This figure clearly indicates
that the dissociation potentials of van der Waals bonds are significantly affected by
the exchange functionals used. In contrast, the right-hand panel of the figure shows
that the long-range correction (see Sect. 6.1) clearly makes these potential energy
curves approach each other. This result reveals that the differences in the potential
energy curves for the GGA functionals mainly come from the lack of long-range
exchange interactions. Therefore, this suggests that long-range exchange repulsions
balanced with dispersion attractions are required to give accurate dispersion
bonds.

The Kohn–Sham method, when it incorporates both long-range corrected
exchange and dispersion correlation effects, can reproduce accurate dispersion
bonds. Figure 6.4 also illustrates the potential energy curves of the LCCvdW method
(Kamiya et al. 2002), in which a long-range corrected functional is combined
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Fig. 6.4 Calculated potential energy curves of Ar2 in terms of the inter-atomic distance: Kohn–
Sham potential energy curves of pure GGA and LC-GGA functionals (left) and of dispersion-
corrected functionals (right). For comparison, the curve of the CCSD(T) method (see Sect. 3.5) is
also illustrated. The 6-311CCG(3df, 3pd) basis functions are used. See Tsuneda and Sato (2009)

with a dispersion functional, the ALL functional in Eq. (6.31). As shown in the
figure, LC functionals give very accurate potential energy curves, which are close
to the results of an ab initio CCSD(T) calculation (see Sect. 3.5) (Giese et al.
2003), in contrast to those of other dispersion-corrected functionals. In addition,
it has been suggested that long-range exchange interactions play a determining
role in the van der Waals bond angles (Sato et al. 2007). Besides the ALL
dispersion functional, LC functionals have been combined with various dispersion
corrections mentioned above: e.g., the LRD dispersion functional, semiempirical
AC/FDT dispersion energy functionals such as !B97X-D (Chai and Head-Gordon
2008b), and perturbation energies such as !B97X-2 (Chai and Head-Gordon 2009).
Actually, LC functionals can be combined easily with any dispersion correction.

In Kohn–Sham calculations of dispersion interactions, the choice of correlation
functional is also important. Figure 6.4 also compares the dissociation potential
energy curves for the Ar dimer using the OP and LYP correlation functionals,
which are both Colle–Salvetti-type correlation functionals (see Sect. 5.3). As shown
in the figure, a bond is formed when using the LYP functional, while repulsive
PESs are produced when using the OP functional. Since these Colle–Salvetti-type
functionals essentially neglect long-range electron correlations, including dispersion
interactions (see Sect. 5.3), it does not make sense that a functional using the
LYP functional would provide a dispersion bond with no dispersion correction.
This is attributed to the inappropriate behavior of the LYP functional. To produce
appropriate weak bonds such as van der Waals bonds, correlation functionals
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Table 6.1 Mean absolute deviations (MAD) of Kohn–Sham
calculations using various types of dispersion corrections for the
S22 benchmark set in ascending order in kcal/mol

Method Type of correction(s) MAD

!B97X-Da LC C semiempirical 0.22
BLYP-D3b Semiempirical 0.23
!B97X-2c LC C perturbation 0.26
LC-BOPCLRDd LC C vdW functional 0.27
B2PLYP-D3b Semiempirical C perturbation 0.29
RSHCRPAx-SO2e LC C AC/FDT 0.41
M06-2xf Semiempirical 0.44
BLYP-Dg Semiempirical 0.55
B97-Dg Semiempirical 0.61
B3LYP-Dg Semiempirical 0.70
MP2/CBSb Perturbation 0.78
HFCVV09h vdW functional 0.89
M05-2xf Semiempirical 0.90
vdW-DF(rPW86)h vdW functional 1.03
rPW86CVV09h vdW functional 1.20
vdW-DF(revPBE)h vdW functional 1.44
vdW-DF(HF)h vdW functional 2.80

The MAD of the MP2 method at the CBS limit is also displayed
for comparison
aChai and Head-Gordon (2008b), bGrimme et al. (2010), cChai
and Head-Gordon (2009), dSato and Nakai (2009), eToulouse
et al. (2011), fPernal et al. (2009), gAntony and Grimme (2006),
hVydrov and Van Voorhis (2010)

must obey the high-density-gradient-low-density (HDGLG) limit condition for
correlation energy in Eq. (8.8) of Chap. 8. However, the LYP functional does not
meet this condition, differently from the OP functional. The Kohn–Sham method,
when using a correlation functional violating this condition, usually overstabilizes
van der Waals bonds. Therefore, a correlation functional meeting the HDGLG
limit condition should be carefully chosen in Kohn–Sham calculations of dispersion
interactions.

As a benchmark set for the quantitative validation of dispersion corrections,
Hobza and coworkers suggested the S22 set (Jurecka et al. 2006), which contains
22 weakly bonded dimers. This S22 benchmark set provides interaction ener-
gies of hydrogen-bonded, dispersion-bonded and mixed complexes, which are the
calculated results of the CCSD(T) method at the complete basis set (CBS) limit
(Riley et al. 2010). Due to its convenience, this benchmark set has been used not
only in testing the accuracies of dispersion corrections but also in determining the
adjustable parameters of semiempirical dispersion-corrected functionals. Table 6.1
displays the mean absolute deviations (MAD) of various dispersion-corrected DFT
calculations for the S22 benchmark set in ascending order. This table shows clearly
that, independent of the dispersion corrections combined, the LC+vdW methods
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provide higher accuracies than those of semiempirical functionals. In particular,
relatively poor results are produced by the vdW-DF methods, which combine
pure functionals such as revPBE or the Hartree–Fock exchange integral with a
vdW functional. Therefore, this table supports the idea that long-range exchange
interactions play a crucial role in van der Waals bonds.

6.4 Relativistic Corrections

Relativistic effects are crucial for investigating chemistry. Although these effects
have been neglected thus far, the electronic structures of molecules containing heavy
atoms, i.e., the third row of the periodic table or lower, cannot be reproduced without
them. In quantum chemistry, the relativistic effect indicates a relativity theory-based
effect on electronic motions. Relativity theory is a collective term that includes both
the special relativity (Einstein 1905) and general relativity (Einstein 1916) theories:
The special relativity theory is based on the principle of relativity establishing the
invariance of physical laws for the Lorentz transformation and the principle of the
constancy of the speed of light for coordinate systems moving at a constant speed,
in Minkovski’s four-dimensional space-time coordinates. On the other hand, general
relativity theory introduces the equivalence principle, establishing the equivalence
of gravity and inertia to extend the special relativity theory to include accelerated
systems. This theory is founded in Riemann space coordinates with a metric tensor,
which is the solution of the gravity equation. Although electrons are accelerated
under central forces, these are assumed to move uniformly. Therefore, the special
relativity theory is usually more significant than the general theory in chemistry.
The Lorentz transformation, on which the special relativity theory is based, was sug-
gested by J. Larmor and H. A. Lorentz to solve the inconsistency of electrodynamics
and classical mechanics. In this transformation, the motional states of systems are
considered in space-time coordinates, which equate the variance of space coordinate
.x; y; z/ and time coordinate (ct): .cdt/2�.dx/2�.dy/2�.d z/2 D 0. Assuming that
the speed of light is constant, independent of the coordinate system, Einstein proved
that the distance between two points decreases in coordinate systems moving at high
velocity. For example, the time-space coordinate of an inertia system S, .t; x; y; z/,
is correlated with the time-space coordinate of another inertia system S0 moving
with relative velocity v along the x coordinate, .t 0; x0; y0; z0/, as

.t 0; x0; y0; z0/ D
 
t � vx=c2p
1 � v2=c2

;
x � vtp
1 � v2=c2

; y; z

!
: (6.50)

What is important is that the Schrödinger equation is relativistically incorrect.
Let us consider the time-dependent Schrödinger equation,
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@t
: (6.51)

In this equation, the kinetic energy on the left-hand side is the second derivative
in terms of the space coordinate, while the right-hand side is the first derivative in
terms of time. That is, the space and time coordinates are not equivalent to each
other in this equation. This indicates that the Schrödinger equation is not invariant
for the Lorentz transformation, and therefore it is relativistically incorrect.

The Dirac equation makes the kinetic energy part of the Schrödinger equation
invariant for the Lorentz transformation (Dirac 1928):

OHD� D �
c˛ � Op C ˇmc2 C V


� D i

@�

@t
; (6.52)

ˇ D
�

I 0
0 �I

�
; I D

�
1 0

0 1

�
; (6.53)

˛w D
�

0 � w

� w 0

�
.w D x; y; z/; (6.54)

� x D
�
0 1

1 0

�
; � y D

�
0 �i
i 0

�
; and � z D

�
1 0

0 �1
�
: (6.55)

In order to understand the physical meaning of the equation, the electron mass m
and the speed of light c, which are both unity in atomic units, are explicitly written
in this and the next sections. The � in Eq. (6.55) is called the Pauli spin matrix
(Pauli 1925). This equation is invariant for the Lorentz transformation, because the
momentum p D �ir is the first derivative in terms of space. More importantly, this
equation requires four-component wavefunctions,

� D

0
BBB@
�L
˛

�L
ˇ

� S
˛

� S
ˇ

1
CCCA : (6.56)

Note that the ˇ term on the left-hand side of the Dirac equation, in Eq. (6.52) whose
rest energy is 5:11� 105 eV, is inconveniently large compared to chemical energies,
which are on the order of several eV. Therefore, ˇ is replaced with

ˇ0 D
�

0 0
0 �2I

�
: (6.57)

Even using this ˇ0, there must be continuum states below �2mc2 in energy.
Dirac interpreted that these continuum states are occupied by an infinite number
of positrons. Although this interpretation, which is called vacancy theory, was
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subsequently disproven by quantum electrodynamics, the presence of positrons
was confirmed in later experiments. Based on this, in Eq. (6.56), it is often
interpreted that �L, which is called the large-component wavefunction, indicates
the wavefunction of electronic motions, while � S, which is called the small-
component wavefunction, implies an electronic wavefunction affected by positronic
motions. Note, however, that both of these components are actually mixtures of
these wavefunctions and that the degree of mixing increases as the systems become
heavier.

It is interesting to compare the time-independent limit of the Dirac equation with
the Schrödinger equation. The time-independent Dirac equation is given as

�
c˛ � Op C ˇ0mc2 C V


� D E� (6.58)

Since this equation is written as

c.� � Op/� S C V �L D E�L (6.59)

c.� � Op/�L C .�2mc2 C V /� S D E� S; (6.60)

the small-component wavefunction is represented by the large-component one, �L,
using Eq. (6.60) such as

� S D .E C 2mc2 � V /�1c.� � Op/�L D OK � � � Op
2mc

�L; (6.61)

where OK is

OK D
�
1C E � V

2mc2

��1
: (6.62)

Based on Eq. (6.61), the time-independent Dirac equation is obtained as
�
1

2m
.� � Op/ OK.� � Op/C V

�
�L D E�L: (6.63)

Assuming that the speed of light would be infinity and using OK D 1 and .� � Op/
.� � Op/ D Op2, this equation gives the (nonrelativistic) Schrödinger equation,

� Op2
2m

C V

�
�L D E�L: (6.64)

As clearly shown by comparing Eqs. (6.63) and (6.64), the difference between the
Dirac and Schrödinger equations appears only in the momentum.

Even though the Dirac equation makes only the kinetic energy part of the
Schrödinger equation relativistic, the potential part of the latter equation is also
relativistically incorrect. The electrostatic potential (nuclear-electron potential
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1=r and electron–electron potential 1=r12) depends only on space, and therefore it
is not invariant for the Lorentz transformation. This implies that the electrostatic
force acts instantaneously, faster than the speed of light. However, long-range
interactions should inherently act later in time compared to short-range interactions.
Taking into consideration this retardation effect of interactions requires a quite
complicated QED formulation that includes photon exchange between charged
particles. The relatively simple formulation derived from the Taylor expansion of
the electron–electron interaction potential in terms of the fine structure constant,
1=c, is therefore usually used:

Vee.r12/ D 1

r12
� 1

r12

�
˛1 � ˛2 C .˛1 � r12/.˛1 � r12/

r212

�
(6.65)

D 1

r12
� 1

2r12

�
˛1 � ˛2 C .˛1 � r12/.˛1 � r12/

r212

�
; (6.66)

where ˛i is the ˛ matrix in Eq. (6.54) for the i -th particle. For the nuclear–electron
potential, the relativistic correction is usually neglected, because it is on the order
of 1=c3. The relativistic correction for the electron–electron interaction potential is
called the Breit interaction (Breit 1929), in which �˛1 � ˛2=r12 is separately called
the Gaunt interaction (Gaunt 1929). This Breit interaction has the order of 1=c2,
because it contains no .1=c/-order term. Even for this Breit interaction, the high-
order perturbation terms are considerably complicated. Although these terms also
require long computational times, they have a minimal effect on chemical reactions
and properties. Therefore, these terms are usually neglected in quantum chemistry
calculations, even for heavy atoms.

The relativistic correction for the kinetic energy in the Dirac equation is naturally
applicable to the Kohn–Sham equation. This relativistic Kohn–Sham equation is
called the Dirac–Kohn–Sham equation (Rajagopal 1978; MacDonald and Vosko
1979). The Dirac–Kohn–Sham equation is founded on the Rajagopal–Callaway
theorem, which is the relativistic expansion of the Hohenberg–Kohn theorem on
the basis of QED (Rajagopal and Callaway 1973). In this theorem, two theorems
are contained: The first theorem proves that the four-component external potential,
which is the vector-potential-extended external potential, is determined by the
four-component current density, which is the current-density-extended electron
density. On the other hand, the second theorem establishes the variational principle
for every four-component current density. See Sect. 6.5 for vector potential and
current density. Consequently, the solution of the Dirac–Kohn–Sham equation is
represented by the four-component orbital. This four-component orbital is often
called a “molecular spinor.” However, this name includes no indication of “orbital,”
which is the solution of one-electron SCF equations; moreover, the targets of the
calculations are not restricted to molecules. Therefore, in this book, this four-
component orbital is called an orbital spinor. The Dirac–Kohn–Sham wavefunction
is represented by the Slater determinant of orbital spinors (see Sect. 2.3). Following
the Roothaan method (see Sect. 2.5), orbital spinors are represented by a linear
combination of the four-component basis spinor functions, f�pg,
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Similarly to the Kohn–Sham equation, in Eq. (4.13). the Dirac–Kohn–Sham
equation is given using the above basis spinor function representation by

FCi D 	iSCi ; (6.68)

where Ci is the expansion coefficient of the basis spinor functions and 	i is the i -th
orbital spinor. In this equation, the Fock matrix, F, and the overlap matrix, S, have
the following elements (Nakajima 2009):

Fpq D
 
hLL
pq C J LL

pq C .Vxc/
LL
pq hLS

pq C .Vxc/
LS
pq;

hSL
pq C .Vxc/

SL
pq hSS

pq C J SS
pq C .Vxc/

SS
pq

!
; (6.69)

and

Spq D
 
SLL
pq 0

0 SSS
pq

!
: (6.70)

Assuming that X and X0 indicate the large-component (L) and small-component (S)
wavefunctions, the terms in the matrix elements are given as follows: For one-
electron terms,

hLL
pq D V LL

pq ; (6.71)

hSL
pq D c˘SL

pq D hLS�

pq ; (6.72)

and

hSS
pq D V SS

pq � 2c2SSS
pq ; (6.73)

where the elements of the overlap integral matrix, SXX, the nuclear–electron
potential integral matrix, VXX, and the kinetic energy integral matrix, ˘ XX 0

, are

SXX
pq D

Z
d3r�X�

p .r/�
X
q .r/ (6.74)

V XX
pq D

Z
d3r�X�

p .r/Vne�
X
q .r/ (6.75)

and

˘XX0

pq D
Z
d3r�X�

p .r/.� � Op/�X0

q .r/: (6.76)
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Remaining are the Coulomb interaction and exchange-correlation potential
integrals:

J XX
pq D

nbasisX
r;sD1

�
P XX
pq J

XX
pqrs C P X0X0

pq J XX0

pqrs

�
; (6.77)

J XX0

pqrs D
Z
d3r1d 3r2�X�

p .r1/�X0�
q .r2/

1

r12
�X
r .r1/�

X0

s .r2/; (6.78)

and

.Vxc/
XX0

pq D
Z
d3r�X�

p .r/Vxc�
X0

q .r/; (6.79)

and the density matrix:

P XX0

pq D
X
i

CX�
pi C

X0

qi : (6.80)

The Dirac–Kohn–Sham equation in Eq. (6.68) is solved using the above elements.
However, the most stable electronic states are not obtained by directly solving this
equation, because the variational principle for electronic states is not established due
to the contribution of positronic states. To solve this problem, the large-component
and small-component basis spinor functions are balanced using

�S D � � Op
2c

�L; (6.81)

which is called the kinetic balance condition (McLean and Lee 1982). This
condition also contributes to the acceptance of the use of conventional basis
functions for the basis spinor functions of the whole four-component wavefunction.
However, the basis spinor functions of the small-component wavefunction requires
double basis functions: the derivatives of the basis functions in addition to the
basis functions themselves. The numbers of two-electron integrals for the large–
small and small–small combinations are 8 and 16 times larger than that of the
large–large combination. Consequently, a Dirac–Kohn–Sham integral calculation
requires a computational time that is approximately 25 times longer than that of the
Kohn–Sham one. Note that the relativistic effect is significant in heavy molecules
containing many electrons. For this reason, calculations using the four-component
Dirac–Kohn–Sham equation mostly target single-atom or several-atom systems,
even at present.

The huge computational time of the Dirac–Kohn–Sham equation calculations is
attributable to the use of the small-component wavefunction, producing the coupling
of the large-component and small-component wavefunctions. Two-component
relativistic approximations have been suggested to solve this problem and have
now become mainstream. Breit applied the expansion of OK for electronic motions
sufficiently slower than the speed of light, as usual,
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�
1C E � V

2mc2

��1
� 1 � E � V

2mc2
C � � � (6.82)

up to the order of 1=c2 to the Dirac equation, such as

"
Op2
2m

C V � Op4
8m3c2

C ZOs � Ol
2m2c2r3

C Z�ı.r/
2m2c2

#
�L D E�L; (6.83)

where Ol is the orbital angular momentum operator and ı is the delta function. Since
this equation was first suggested by Pauli, it is called the Breit–Pauli equation
(Breit 1929). This equation contains only the large-component wavefunction.
On the left-hand side of Eq. (6.64), the additional terms compared to those of
the Schrödinger equation, are, in sequence, the mass velocity correction, which is
the effect of velocity on mass, the spin–orbit interaction, which is the magnetic
interaction between electronic spin and the orbital, and the Darwin correction,
which comes from the high-frequency vibrational electronic motion around the
equilibrium geometry. The mass velocity and Darwin corrections are collectively
called the scalar relativistic correction. However, the expansion of this OK is often
inappropriate due to the divergence of the potential (V ! 1) near nuclei. To avoid
this divergence, OK is frequently replaced with OK 0 defined by

.E C 2mc2 � V /�1 D .2mc2 � V /�1
�
1C E

2mc2 � V

��1

D .2mc2 � V /�1 OK 0: (6.84)

This enables us to avoid the divergence of the expansion due toE=.2mc2�V / � 1.
Moreover, it is usually appropriate to approximate OK 0 as unity. This approximation
is called the zeroth-order regular approximation (ZORA).

Another major two-component approximation is the Foldy–Wouthuysen trans-
formation (Foldy and Wouthuysen 1950), which makes the large-component and
small-component submatrices of the Dirac Hamiltonian matrix, OHD, linear indepen-
dent by a unitary transformation such as

OHFW D U OHDU � D
� OH L 0

0 OH S

�
: (6.85)

AlthoughU D exp.�imc2/ is used as the unitary operator in the original method, it
does not work well in the use of potential V due to the presence of singular points.
The application of the original transformation is limited to the case of free electrons
(V D 0). For free electrons, this transformation is written as

U0 D Ap.1C ˇRp/; (6.86)
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Ap D
�
Ep Cmc2

2Ep

�1=2
; (6.87)

Ep D 
 Op2c2 Cm2c4
�1=2

; (6.88)

and

Rp D c˛ � Op
Ep Cmc2

: (6.89)

This transformation leads to the Hamiltonian operator for using a potential as

OHFW D U0 OHDU
�
0 D E0 C E1 C O1; (6.90)

E0 D ˇEp �mc2; (6.91)

E1 D Ap.V CRpVRp/Ap; (6.92)

and

O1 D ˇAp
�
Rp; V


Ap: (6.93)

This formulation includes the lowest-order off-diagonal term of the Hamiltonian
matrix, O1, which leads to the production of singular points. However, these singular
points can be eliminated by further appropriate unitary transformations. In this
strategy, the Douglas–Kroll transformation solves the singular point problem of the
Foldy–Wouthuysen transformation (Douglas and Kroll 1974):

OHDK D U OHDU � D � � �U4U3U2U1 OHFWU
�
1 U

�
2 U

�
3 U

�
4 � � �

D
1X
iD0

Ei : (6.94)

Since it is actually impossible to sum the infinite series, this summation is terminated
at particular numbers of unitary transformations: 2 in DK2, 3 in DK3 and so forth.
This method is also called the Douglas–Kroll–Hess transformation, because it was
revised by Hess and coworkers (Jansen and Hess 1989).

Finally, let us summarize the relativistic effects on the electronic states of atoms
and molecules. 1s orbitals contract, because 1s orbital electrons moving at velocities
close to that of light become much heavier. This causes the contraction of higher
s orbitals, which are orthogonal to the 1s orbitals, and leads to more shielded nuclear
charges. Moreover, the shielding of the nuclear charge leads to the expansion in
the sizes of the d, f, and higher-angular-momentum orbitals, while the p orbitals
do not become so large, due to spin–orbit interactions with s orbitals. This spin–
orbit interaction transforms ˛-spin and ˇ-spin orbitals to orbital spinors having
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mixed spin. The shapes of the orbitals are also transformed by the small-component
wavefunction, coming from the interactions with positronic states. Furthermore,
the finite velocity of electronic motions changes the electron–electron interaction
potentials: e.g., it produces the Breit interaction.

6.5 Vector Potential Correction and Current Density

As shown in the previous section, several magnetic effects, such as the spin–orbit
effect are included in the relativistic effect. To consider the effect of an external
magnetic field, however, the vector potential, A, should be incorporated in the
momentum operator (Jensen 2006),

O� D Op C A; (6.95)

where O� is called the generalized momentum operator. Since the vector potential is
related to the external magnetic field, B, as

B D r � A; (6.96)

it is represented as

A D 1

2
B � .r � RG/; (6.97)

where RG is the center of the vector potential, called the gauge center, which
is usually set at the center of mass. Note that although the vector potential
does not depend on the position of the gauge center in principle, it always does
so in approximate calculations. The time-independent Dirac equation using the
generalized momentum operator is given as

�
1

2m
.� � O�/ OK.� � O�/C V

�
�L D E�L: (6.98)

At the nonrelativistic limit (c ! 0), this equation becomes

�
1

2m

h
O�2 C i� � .� � O�/

i
C V

	
�L D E�L: (6.99)

Since the term in parentheses in the imaginary term on the left-hand side is
derived as

. O� � O�/�L D . Op � A C A � Op/ �L

D �ir � .A�L/ � iA � .r�L/ D �iB�L; (6.100)



6.5 Vector Potential Correction and Current Density 153

the Dirac equation at the nonrelativistic limit is given by

 
O�2

2m
C V C � � B

2m

!
�L D E�L: (6.101)

The extended magnetic term on the left-hand side, which is called the Zeeman
interaction term, leads to the Zeeman effect, which is a splitting of spectral lines
under the influence of a magnetic field. Meanwhile, it is easily proven for non-
hybridized electron spins in the nonrelativistic case that the Pauli spin matrix, � , in
Eq. (6.55) is just twice the spin operator, Os, in Eq. (2.91). The Zeeman interaction
term is, therefore, written as

� � B
2m

D ge�BOs � B; (6.102)

where �B D 1=2m is called the Bohr magneton. In Eq. (6.102), ge, called the
Landé g factor is simply 2, although it is actually found to shift slightly to 2.0023
due to the quantum field fluctuation effect in quantum electrodynamics. This term
causes the spin splitting observed in the spectra of nuclear magnetic resonance
(NMR) and electron spin resonance (ESR).

Next, let us consider the kinetic energy in the first term on the left-hand side of
Eq. (6.101). The square of the generalized momentum operator, O�, is derived as

O�2 D Op2 C Op � A C A � Op C A2; (6.103)

. Op � A/ �L D �i.r � A/�L D �i �A � .r�L/C �L.r � A/

; (6.104)

A � Op D
�
1

2
B � .r � RG/

�
� Op D 1

2
B � .r � RG/ � Op; (6.105)

and

A2 D
�
1

2
B � .r � RG/

�2

D 1

4

n
B2 � .r � RG/2 � �

B � .r � RG/
2o

: (6.106)

Fortunately, the Zeeman interaction term in Eq. (6.102) can be assembled with the
inner product of the vector potential and the momentum in Eq. (6.105) by using the
magnetization density operator, Om, corresponding to the magnetic dipole moment,
m, whose expectation value is the reverse sign of the first energy derivative in terms
of magnetic field, as

�
ge�BOs C 1

4m
.r � RG/ � Op

�
� B D �

Z
d3r Om � B: (6.107)
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For usual nonrelativistic wavefunctions represented by the Slater determinant, the
right-hand side of Eq. (6.104) is derived using the paramagnetic current density,

jp.r/ D i

2m

X
n

�
��
n .r/r�n.r/� �n.r/r��

n .r/

; (6.108)

as

. Op � A/
2m

�L D �
�Z

d3r jp.r/ � A.r/
�
�L (6.109)

(see, e.g., Rajagopal and Callaway 1973). This paramagnetic current density, jp, is
not the total current density, j. Actually, the total current density also contains the
diamagnetic current density, jd, and magnetization current density, jm, such as

j.r/ D jp.r/C jd.r/C jm.r/

D jp.r/ � 1

m
�.r/A.r/C r � m.r/: (6.110)

In summary, the Dirac equation under the influence of an external magnetic field is
written at the nonrelativistic limit as

� Op2 C A2

2m
C V �

Z
d3r



jp � A C Om � B

��
�L D E�L: (6.111)

Vignale and Rasolt derived the Dirac–Kohn–Sham equation incorporating the
vector potential from the nonrelativistic Dirac equation neglecting the magnetic
effect, i.e., the Zeeman interaction term, in Eq. (6.101) as (Vignale and Rasolt 1987,
1988)

2
4 . Op C A C Axc/

2

2m
C Vext C

nX
j

OJj C Vxc

3
5 �i D 	i�i : (6.112)

In this equation, the exchange-correlation energy functional, Exc, is assumed to
be a functional of the electron density and paramagnetic current density, and the
corresponding exchange-correlation potential, Vxc, and vector potential, Axc, are
represented as

Vxc D ıExcŒ�; jp

ı�.r/

ˇ̌
ˇ̌
ıjpD0

; (6.113)

and

Axc D ıExcŒ�; jp

ıjp.r/

ˇ̌
ˇ̌
ı�D0

; (6.114)
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respectively. The theory based on Eq. (6.112) is called (strictly) the current density
functional theory. Note that this equation is not invariant for the gauge transfor-
mation of the vector potential (Takada 2009). In quantum mechanics, the gauge
transformation indicates the transformation of potential, which is commutative with
the Hamiltonian operator. According to quantum electrodynamics, the transforma-
tion of the vector potential,

A ! A C r� (6.115)

is a gauge transformation. The arbitrary scalar function, �, and its derivative,
r�, are called gauge. However, for the gauge transformation in Eq. (6.115), the
paramagnetic current density, jp, is not invariant, because it creates a diamagnetic
current density in Eq. (6.110) such as

jp.r/ ! jp.r/C 1

m
�.r/r�.r/: (6.116)

Exchange-correlation functionals using current density are, therefore, also not
invariant for the gauge transformation. To ensure gauge invariance, the gauge-
invariant vorticity,

�.r/ D �r �
�

jp.r/
�.r/

�
! �r �

�
jp.r/
�.r/

C 1

m
r�.r/

�
D �.r/; (6.117)

is often used in exchange-correlation functionals, instead of the paramagnetic
current density. Using the vorticity, the exchange-correlation potential and vector
potential are given as

Vxc D ıExcŒ�;�

ı�.r/

ˇ̌
ˇ̌
ı�D0

� Axc � jp.r/
�.r/

; (6.118)

and

Axc D r
�.r/

� ıExcŒ�;�

ı�.r/

ˇ̌
ˇ̌
ı�D0

: (6.119)

So far, the current density functional has attracted attention, not in the context of the
response to a magnetic field, as mentioned above, but to an electric field. The time-
dependent Kohn–Sham equation in Eq. (4.27) incorporating the time-dependent
vector potential, Aeff, is written as

i
@

@t
�i .r; t/D

�
�1
2
.�ir CAeff.r; t//

2 C VeffŒr; t I �.r; t/
�
�i .r; t/: (6.120)

Vignale and Kohn proved that this time-dependent vector potential is Fourier-
transformed (t ! !) using the current density j, which is usually the paramagnetic
current density jp, to
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Aeff D Aext C Axc; (6.121)

Axc.r; !/ D
Z
d3r0fxc.r; r0; !/ � j.r0; !/; (6.122)

where fxc is the exchange-correlation integral kernel in Eq. (4.31), and suggested
that the problems in the response property calculations (see Sect. 6.1), which are
presumed to come from the locality of functionals, might be solved by using this
time-dependent vector potential (Vignale and Kohn 1996). Even considering the
time-dependent vector potential, the time-dependent Kohn–Sham equation has the
same form as Eq. (4.36),

˝Fia� D !2ia�Fia� ; (6.123)

˝
singlet
ia�;jb� D ı��ıij ıab .	a� � 	i� /2

C2 .	a� � 	i� /
1=2
�
K��
ia;jb CK�� 0

ia;jb

� 

	b� � 	j�

�1=2
; (6.124)

and

˝
triplet
ia�;jb� D ı��ıij ıab .	a� � 	i� /2

C2 .	a� � 	i� /
1=2
�
K��
ia;jb �K�� 0

ia;jb

� 

	b� � 	j�

�1=2
: (6.125)

However, the response matrix, Fia� , in Eq. (4.39) is replaced with

Fia� D .	a� � 	i� /�1=2 .Xia� � Xai�/ ; (6.126)

Xia�.!/ D �1
! C .	a� � 	i� /

"Z
d3r��

i� .r/ı

 
nX
i

OJi C Vxc

!
.r; !/�a� .r/

C !

	a� � 	i�

Z
d3r��

i� .r/Oj�a� .r/ıAeff;� .r; !/
�
; (6.127)

andK��
ia;jb is substituted by

K��
ia;jb D hibjaj i��

C
ZZ

d3r1d 3r2��
i� .r1/�

�
b� .r2/f

��
xc .r1; r2/�a� .r1/�j� .r2/

C
�

!

	a� � 	i�

�2ZZ
d3r1d 3r2��

i� .r1/Oj�a� .r1/

�f ��
xc .r; r

0; !/�j� .r2/Oj��
b� .r2/: (6.128)
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By the calculations of the time-dependent current density functional theory using
this equation, accurate excitation energies are obtained for some � ! ��
excitations (van Faassen and de Boeij 2004). Meanwhile, however, it has been found
that quite poor excitation energies are produced for the excitations of some types
of molecules. On the other hand, calculations of the adiabatic excitation energy
benchmark set, containing 109 molecules, show that the vector potential correction
hardly affects the calculated excitation energies (Bates and Furche 2012).

The vector potential is also incorporated in the coupled-perturbed Kohn–Sham
method. In this method, the following term is supplemented to matrix .F0/ in
Eq. (4.61):

.F0/vector
ia D 1

2

Z
d3r��

a .r/
�Oj � Aviscoel

xc .r; !/C Aviscoel
xc .r; !/ � Oj

�
�i .r/;

(6.129)

where the current density operator, Oj, is given as

Oj D � i
2


r � r�
�
; (6.130)

and Aviscoel
xc is called the exchange-correlation vector potential in a viscoelastic field.

For a detailed formulation of the vector potential incorporating the viscoelasticity
of the electron liquid, see, e.g., van Faassen et al. (2003). By applying this coupled
perturbed current density functional theory to the polarizability calculations of long-
chain molecules, it has been found that the overestimation of these polarizabilities is
significantly improved. However, other optical response properties have so far never
been calculated, differently from the long-range corrected Kohn–Sham calculations
(see Sect. 6.1).

As an interesting application of the current density correction, let us finally
examine the orbital energies of atoms. A Kohn–Sham calculation incorrectly
produces different orbital energies for degenerate atomic orbitals, depending on
the magnetic quantum numbers. Becke suggested that this degeneracy breaking
is improved by incorporating the current density in functionals (Becke 2002). In
Table 6.2, the calculated orbital energy differences in the outermost p orbitals, which
should be degenerate, are displayed for each atom (Becke 2002; Maximoff et al.
2004). The functionals with a “j”-prefix are current-density-corrected, having been
explicitly corrected by a j2=� term. In this table, the current-density-corrected func-
tionals give much smaller orbital energy differences than those of the uncorrected
ones. This result has attracted attention, because it had so far been unclear why these
orbitals are not degenerate. However, the transition energies between atomic orbitals
were calculated by the exact time-dependent current density functional theory
thereafter, as shown in Table 6.3. This table indicates that the current density terms
in the exact theory have the effect of overestimating the 2s ! 2p orbital transition
energies. Therefore, even though the current density certainly affects the degenerate
p orbital energies of atoms, it is open to question whether the lack of current density
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Table 6.2 Atomic orbital energy differences in the outermost p orbitals of magnetic quantum
numbers ml D 1 and 0 (E.ml D 1/� E.ml D 0/) in kcal/mol

Atom LDAXC B88XC PBEXC jBRX jPBEXC

B 1:0 2.7 2.9 0.6 0:1

C 0:3 2.5 2.7 0.4 �0:2
O 1:6 4.6 6.1 0.9 �0:7
F 0:6 4.1 5.5 0.7 �0:7
Al 0:4 1.1 1.7 0.2 0:3

Si �0:2 0.6 1.3 0.0 �0:1
S 0:2 1.3 2.8 0.1 0:2

Cl �0:5 0.8 2.2 0.0 �0:2
The “jBRX” indicates the use of the Becke–Roussel (BR) functional (Becke and Roussel 1989)
containing a current density term (j). Excerpt from Becke (2002)

Table 6.3 Calculated transition energies between the orbitals of the Be atom in eV

Transition Expt. ALDA1 jALDA1 ALDA2 jALDA2

2s ! 2p 5.27 5.07 6.24 4.86 5.62
2s ! 3s 6.77 5.62 5.67 5.65 5.63

The “jALDA1” indicates the first-version adiabatic LDA (ALDA) functional corrected by incor-
porating vector potentials (j). The ET-pVQZ basis functions are used. Excerpt from van Faassen
and de Boeij (2004)

effects causes the orbital degeneracy breaking in the usual Kohn–Sham method. In
addition, the breaking of gauge invariance mentioned above might also affect the
calculated transition energies, because none of the methods mentioned above uses
the vorticity in Eq. (6.117).
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Chapter 7
Orbital Energy

7.1 Koopmans Theorem

Orbital energies are the solutions of the Kohn–Sham and Hartree–Fock equations,
which form the basis of electronic state theories. In the field of chemistry, orbitals
have been employed as a significant tool for analysis. For example, frontier orbital
theory (Fukui et al. 1952) uses the electronic distributions of the HOMO and
LUMO to specify reaction sites and reactivities. Orbital energies were also used
as important tools for analyzing reactions in early reaction theories, including the
frontier orbital theory. Even now, orbital energies are often applied to the analyses
of experimental results in considering reaction mechanisms. However, hypothetical
orbital energies are employed instead of the calculated ones in such analyses.
This is because accurate orbital energies are not capable of being reproduced by
the Kohn–Sham and Hartree–Fock equations. Actually, orbital energies have been
considered skeptically, even for their physical meaning. Nevertheless, orbitals have
been physically established as the electronic motion states of systems. So, what do
the corresponding orbital energies represent?

The physical meaning of orbital energies is clarified by Koopmans theorem
(Koopmans 1934). For orbital �i , the orbital energy of the Hartree–Fock equation is
represented by

	i D
Z
d3r��

i .r/ OF�i.r/ D hi C
nX
j



2Jij �Kij

�
; (7.1)

where hi , Jij and Kij are the one-electron and two-electron integrals given in
Eqs. (2.42) and (2.44), respectively. In this case, the total energy is provided as

E0 D
nX
i

hi C
nX
i<j



2Jij �Kij

� D
nX
i

	i �
nX
i<j



2Jij �Kij

�
: (7.2)
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Moreover, the energy after removing one electron from orbital �i is derived as

E 0 D E0 � hi �
nX
j



2Jij �Kij

�
: (7.3)

The ionization potential, which is the energy difference fromE0 to E 0, is, therefore,
proven to be

IP D E 0 � E0 D �hi �
nX
j



2Jij �Kij

� D �	i : (7.4)

This indicates that the occupied orbital energies are the corresponding negative of
the ionization potentials. This is the more narrowly defined version of Koopmans’
theorem. Note that the proof of this theorem mentioned above neglects the SCF
process, which is executed in standard calculations. In fact, the Hartree–Fock
SCF method violates the Koopmans theorem. The calculated Hartree–Fock orbital
energies resulting from SCF calculations are actually much more negative than the
negative of the corresponding vertical ionization potentials, which are the ionization
potentials for fixed structures of the systems.

It is easily proven that the Koopmans theorem is established for unoccupied
orbitals (Szabo and Ostlund 1996). The energy after adding one electron to an
unoccupied orbital �a is derived from Eq. (7.2) as

E 00 D E0 C ha C
nX
j



2Jaj �Kaj

�
: (7.5)

Therefore, the electron affinity, which is the energy difference from E 00 to E0, is
proven to be

EA D E0 �E 00 D �ha �
nX
j



2Jaj �Kaj

� D �	a: (7.6)

That is, the unoccupied orbital energies are the corresponding negative of the
electron affinities. Differently from the occupied orbitals, the Hartree–Fock SCF
method is found to give accurate LUMO energies, close to the negative of the
corresponding vertical electron affinities, which again are the electron affinities
for fixed structures. This may be because the effect of the SCF process, which
is supposed to be an orbital relaxation effect, is small for unoccupied orbitals in
Hartree–Fock calculations.

In connection with the Koopmans theorem, there is a method based on the
extended Koopmans theorem, in which the ionization potentials of specific orbitals
can be estimated without calculating the ionized electronic states, for which the
electrons would have to be removed from the orbitals. The extended Koopmans
theorem was independently proven by Day et al. (1974) and Morrell et al.
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(1975), although Feynman (1954) also used a similar theorem in superfluid state
calculations. In this method, vertical ionization potentials are calculated using
the electron configuration energies after removing an electron from the occupied
orbitals by solving

FIPn D � C�; (7.7)

where � is the metric matrix, in which the diagonal terms are the occupation
numbers and the off-diagonal terms are zeros, and � are the vertical ionization
potentials. The transition matrix elements are given as

F IP
j i D h˚ j Oa�j

h OH; Oai
i

j˚i; (7.8)

where Oai is the annihilation operator for an electron in the i -th orbital. Since this
method gives the ionization potentials and electron affinities of specific orbitals
(Piris et al. 2012) even for non-one-electron-SCF methods such as the MP2 method
(Bozkaya 2013), the orbital energies of these orbital-free methods can be discussed
virtually on the basis of the extended Koopmans theorem.

7.2 Janak’s Theorem

Janak’s theorem (Janak 1978) is also one of the most significant theorems having to
do with orbital energy. It is noteworthy that the Janak theorem is established not only
for the Kohn–Sham and Hartree–Fock equations but also for overall one-electron
SCF equations in the form of Eq. (4.7). Let us consider the Kohn–Sham equation
in Eqs. (4.6) and (4.10). Introducing the occupation numbers of orbitals, fni g, the
Kohn–Sham equation is written as

0
@�1

2
r2 C Vext C 2

nX
j

OJj C Vxc

1
A�i D 	i�i (7.9)

E D T C EextŒ�C J Œ�C ExcŒ�; (7.10)

where T , Eext, and J are the kinetic, external field, and Coulomb interaction
energies, respectively, which are given by

T D
nX
i

ni

Z
d3r��

i .r/
�

�1
2

r2

�
�i.r/ D

X
i

ni ti ; (7.11)

EextŒ� D
Z
d3r�.r/Vext; (7.12)
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and

J Œ� D 1

2

Z
d3r1d 3r2

�.r1/�.r2/
r12

: (7.13)

In this case, the electron density, �, is represented by

� D
nX
i

ni j�i j2 : (7.14)

The variation of electronic energyE in terms of the occupation number is, therefore,
given by

@E

@ni
D @T

@ni
C @ .Eext C J C Exc/

@ni
� @�
@ni

(7.15)
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1
A : (7.16)

Since using Eqs. (7.9) and (7.11),

ti D 	i �
Z
d3r

0
@2

nX
j

OJj C Vxc

1
A j�i j2 : (7.17)

is provided, substituting this into Eq. (7.16) leads to
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By substituting

@tj
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Z
d3r��
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�
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2

r2

�
@��

j

@ni
(7.19)

from Eq. (7.11) into Eq. (7.18), the energy derivative in terms of the occupation
number is derived for an arbitrary orbital �i as
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D 	i C
nX
j

nj 	j

�
@

@ni

Z
d3r j�i j2

�
D 	i : (7.22)

Therefore, the relationship between the total electronic energy and orbital energy is
proven to be

@E

@ni
D 	i : (7.23)

This equation indicates that the derivative of the total electronic energy with respect
to the occupation number of an orbital is identical to the orbital energy. This
is called Janak’s theorem. Numerically, the Janak theorem is easily confirmed
by calculating the total electronic energies of systems with fractionally occupied
electronic states. That is, the gradient of the total electronic energy as a function
of the occupation number is equal to the outermost orbital energy for each method.
It is interesting to note that the total electronic energy can be calculated using the
outermost orbital energies on the basis of Eq. (7.23) as follows:

E D
nX
iD1

Z 1

0

	outermost
i .ni /dni : (7.24)

This equation, called the Slater–Janak theorem (Slater 1978; Janak 1978), produces
very accurate total electronic energies (Elkind and Staroverov 2012).

In addition to the Janak theorem, there is an additional theorem deeply related to
orbital energies. Perdew et al. (1982) proved that the total electronic energy varies
linearly as a function of its fractional occupation number, i.e.,

E

�
nC p

q

�
D p

q
E.nC 1/C q � p

q
E.n/: (7.25)

For this theorem, which is called the energy linearity theorem for fractional
occupations, Yang et al. also proved the same equation based on the concepts
of size consistency (see Sect. 3.3) and the translational invariance of energy
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E(n)

IP

EA

0
Δn

−1 +1

∂n
(Δn=+0)

= eLUMO

∂E

∂n
(Δn=−0)

= eHOMO

∂E

Fig. 7.1 Schematic diagram of total electronic energy as a function of fractional occupation
number variation, �n. Ionization potential (IP) and electron affinity (EA) are defined as E.�n D
�1/� E.�n D 0/ and E.�n D 0/� E.�n D C1/, respectively. Based on the Janak theorem,
the gradient of the total energy is HOMO energy for �n D �0 and LUMO energy for �n D C0.
The linearly varied total energies also indicate that the outermost orbital energies are kept constant
for the fractional occupation

(Yang et al. 2000). This theorem establishes the physical meaning of orbital energies
by combining with the Janak theorem. In Fig. 7.1, a schematic diagram of the total
electronic energy as a function of the fractional occupation number is illustrated.
This figure clearly indicates that if the total electronic energy meets the energy
linearity theorem, it is proven by the Janak theorem that the HOMO and LUMO
energies are identical to the corresponding negative of the ionization potential and
the electron affinity, respectively (Perdew et al. 1982). Since this is equivalent to the
Koopmans theorem (see Sect. 7.1), this combined theorem is taken as the Koopmans
theorem for general one-electron SCF equations. This energy linearity theorem has
been used to test functionals for the reproducibilities of orbital energies, because it
can be a requisite condition to reproduce correct orbital energies (see Sect. 7.9 for
the concrete verification).

7.3 The Indispensability of Producing Accurate
Orbital Energies

The conventional exchange-correlation functionals used in the Kohn–Sham
equation contain electron correlations to some extent (see Sect. 4.5). Nevertheless, it
has been recognized that the Kohn–Sham method is not able to reproduce accurate
orbital energies. The cause for the inaccurate orbital energies has been investigated
for many years in solid state physics from the viewpoint of the underestimation
of band gaps. Let us consider the Kohn–Sham equation in Eq. (7.9). Perdew et al.
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proved by the Janak and energy linearity theorems, as discussed in the previous
section that the underestimation of band gaps, which are assumed to be identical
to the HOMO–LUMO gaps, can be attributed to the constant discontinuity of
exchange-correlation potentials (Perdew et al. 1982; Sham and Schlüter 1985),

V nC�n
xc � V n��n

xc D const. > 0; (7.26)

where V n˙�n
xc is the exchange-correlation potential for occupation number n˙�n

(�n ! 0). This discontinuity leads to the energy error (Perdew et al. 1982),

�xc D fIP � EAg � f	nC1.n/ � 	n.n/g: (7.27)

In this equation, IP and EA are the ionization potential and electron affinity,
respectively, and 	m.n/ is the m-th orbital energy of the system containing n

electrons. Sham and Schlüter (1985) established that this energy error corresponds
to the orbital energy variation for increasing numbers of electrons in the outermost
orbitals,

�xc D 	nC1.nC 1/� 	nC1.n/: (7.28)

This outermost orbital energy invariance theorem is often used as a criteria for
evaluating the reproducibility of orbital energies (see Sect. 7.9). It is also proven
that this energy error is related to the exchange-correlation potentials as

�xc D
Z
d3r



V nC�n

xc � V n��n
xc

�
�nC1.r/: (7.29)

Note that Eq. (7.28) is derived by assuming that the number of electrons n is
sufficiently large, as seen in the electronic structures of solid state materials, i.e.,
	nC1.nC1/�	nC1.n/ D O.n�1/ ! 0, in the original paper. However, this equation
is easily proven by applying the Janak theorem to the energies of fractionally
occupied systems.

Let us consider the exchange and correlation parts of the energy error separately.
Perdew (1985) and Görling and Levy (1995) proved that the energy error in the
exchange part is attributable to the error only for the HOMO and LUMO,

�x D
Z
d3rd3r0 ���

nC1.r/�nC1.r0/� ��
n .r/�n.r

0/

V nl

x .r; r
0/

�
Z
d3r Œ�nC1.r/� �n.r/ Vx.r/; (7.30)

where V nl
x is the nonlocal exchange potential,

V nl
x .r/ D

nX
i

d 3r0��
i .r/

1

jr � r0j�i .r
0/: (7.31)
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Görling and Levy (1995) also showed that the energy error in the correlation part
comes from the differences in the perturbations of n-electron systems with those of
.n � 1/- or .nC 1/-electron systems and in correlation potential functionals at the
� ! 1 limit of the uniform coordinate-scaling (see Chap. 8) for the HOMO and
LUMO, i.e.,
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�KS.nC 1/

ˇ̌
ˇ OVpert

ˇ̌
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Z
d3r Œ�nC1.r/ � �n.r/ V unif

c Œ�n; (7.32)

where�KS.m/ and �I .m/ indicate the ground electron configuration represented by
the Slater determinant of the Kohn–Sham wavefunction of anm-electron system and
its excited-state configuration, respectively, and EKS.m/ and EI .m/ are the corre-
sponding total electronic energies. “SD exc.” indicates the sum of singly-excited and
doubly-excited configurations from the Kohn–Sham wavefunction. Moreover, the
perturbation potential, OVpert, and the correlation potential functional at the � ! 1
limit of the uniform coordinate scaling, V unif

c , are given as

OVpert D OVee �
0
@2

nX
j

OJj C Vx

1
A ; (7.33)

and

V unif
c D lim

�!1VcŒ��; (7.34)

respectively. What is significant is that provided that a correlation functional
satisfying the uniform coordinate scaling is used, the energy error coming from
correlation functionals disappears due to zero V unif

c in Eq. (8.13). The remaining
perturbation terms are considered to come from the difference in the orbital
relaxation effects due to the discrepancy in the number of electrons. That is, these
terms come from the disagreement of the configuration interactions with singly-
excited electron configurations, because dynamical correlations, which account for
the greater part of configuration interactions with doubly-excited configurations,
must be included in the correlation functionals (see Sect. 4.5). Qian and Sahni
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(2000) concluded that this energy error is attributable to the kinetic energy part of the
correlation energies by considering the error for the Hartree–Fock approximation,
in which no�x is included. This supports the above explanation, because the kinetic
energy part of the correlation energies is due mainly to orbital relaxation effects.

7.4 Electron Correlation Effects on Orbital Energies

Since the self-interaction error has been proven to cause the energy error in the
exchange part, the poor quality of the orbital energies calculated by the Hartree–
Fock method after the SCF process must be due to the insufficient electron
correlations. Using Green function theory, Pickup and Goscinski determined the
effect of electron correlations on orbital energies (Pickup and Goscinski 1973;
Szabo and Ostlund 1996). According to this study, the difference of the orbital
energy,�k , which is found as the pole of the Green function using the Fock operator,
and the corresponding ionization potential for removing one electron from this
orbital is given as

�	k D 	k C IP

D
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i¤k

nvirX
a

jhki jkai � hki jakij2
	a � 	i

C 1

2
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i;j¤k

nvirX
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jhij jkai � hij jakij2
	a C 	k � 	i � 	j

�1
2

noccX
i¤k

nvirX
a;b

jhabjkii � habjikij2
	a C 	b � 	i � 	k : (7.35)

On the right-hand side of this equation, the first term sums the SCF-induced orbital
relaxation effects of ionized molecules, the second term sums the electron-pair
relaxation effects coming from the electron correlations between newly occupied
molecular orbitals, f�ig and f�j g, after the ionization and unoccupied orbitals,
f�kg, and the third term sums the electron-pair removal effects coming from
the electron correlations between the electron pairs before the ionization and
occupied orbitals, f�kg (Pickup and Goscinski 1973; Szabo and Ostlund 1996).
That is, the discrepancy between the occupied Hartree–Fock orbital energies and the
corresponding negative of the ionization potentials is concluded to result from the
SCF-induced orbital relaxations and the differences of electron correlations (second-
order perturbation effects) in the presence or absence of electrons, both of which are
given as a result of the ionizations.

Pickup and Goscinski also proposed the cause for the poor quality of the
unoccupied orbital energies of the Hartree–Fock method (Pickup and Goscinski
1973; Szabo and Ostlund 1996). For the case in which an electron occupies a virtual
orbital, �c , the difference between its orbital energy, which is a pole of the Green
function, and the corresponding negative of the electron affinity is given as
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: (7.36)

Similarly to the occupied orbitals, the first term of the right-hand side sums the
orbital relaxation effects after the ionizations, the second term sums the electron-
pair removal effects after the ionizations, and the third term sums the electron-pair
relaxation effects before the ionizations (Pickup and Goscinski 1973; Szabo and
Ostlund 1996). The discrepancy is, therefore, attributed to the SCF-induced orbital
relaxations after the ionizations and the differences in the electron correlations
(second-order perturbation effects) in the presence or absence of electrons.

Note, however, that by supplementing Eqs. (7.35) and (7.36), the orbital energies
are improved to a lesser extent than expected in providing the corresponding
negative of the ionization potentials and electron affinities. This indicates that
the orbital energies cannot be accurately reproduced by adding the second-order
perturbation-level electron correlations. That is, highly sophisticated electron
correlations are required to reproduce accurate orbital energies.

7.5 Optimized Effective Potential Method

Thus far, various methods have been developed to produce correct orbital energies.
The optimized effective potential (OEP) method is a representative example. In
the OEP method, orbital-dependent effective exchange-correlation potentials are
obtained by solving an integral equation, which enables any potential to calculate
the corresponding energy in a straightforward fashion. As shown in Eq. (4.12),
the expectation values of usual exchange-correlation potential functionals are
not the corresponding exchange-correlation energies. Talman and Shadwick (1976)
assumed that this inconsistency causes the poor quality of the orbital energies
and developed the OEP method in order to obtain orbital-dependent effective
exchange-correlation potentials. Similarly to the usual Kohn–Sham equation, the
OEP equation is written as

�
�1
2

r2 C VOEP

�
�i D 	i�i ; (7.37)

VOEP D Vext C 2

nX
j

OJj C V eff
xc : (7.38)

In the OEP method, the effective exchange-correlation potential, V eff
xc , is given by

solving the integral equation,
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This method is an extension of the Sharp–Hornton method for producing the local
effective Hartree–Fock exchange potential (Sharp and Hornton 1953),
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x D �
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�j .n/�j .r0/
jr0 � rj : (7.42)

For the OEP method, several practical problems have been reported. Two types
of solutions are known to solve the OEP equation: the quadrature method using
numerical grids and the analytical method using basis functions. The quadrature
method is better suited for calculating spherical systems such as atoms. However,
it is unsuited to calculate molecules and solids. On the other hand, although the
analytical method is applicable to the calculations of molecules and solids, it
usually cannot produce correct, convergent results. The Krieger-Li-Iafrate (KLI)
approximation was suggested to solve these practical problems (Krieger et al. 1992).
In the KLI approximation, exchange potentials are obtained by solving
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where the integral part on the right-hand side of Eq. (7.43) is calculated using
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Mij D
Z
d3r

�j .r/�i .r/
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: (7.46)

This integral equation simply produces the same effect as the localization of the
nonlocal Hartree–Fock exchange potential.

Electron correlations are required to reproduce accurate orbital energies. There
are two approaches to incorporating electron correlations in the OEP–KLI method:
constructing perturbation potentials and using correlation potential functionals
(Grabo and Gross 1996; Tong and Chu 1997). The details of these approaches
have not been included in this book. In short, the difference between them is the
correction for VHF

x in Eq. (7.41) or Eq. (7.43), which is a perturbation potential in the
former and a correlation potential functional in the latter. Moreover, the perturbation
potential approach has two types, assuming the invariance of the perturbation for
exchange-correlation potentials (Holleboom et al. 1988) and of the electron density
corresponding to the exchange-correlation potentials (Sham and Schlüter 1983).
There are only a few examples of orbital energy calculations using the OEP–KLI
method. In particular, no orbital energy calculation has been carried out for the
perturbation potential case. Table 7.1 summarizes some examples of calculated
orbital energies compared to the corresponding negatives of the ionization potentials
(Hamel et al. 2002; Kim et al. 1999). “C�” indicates the addition of an energy
shift to the potential. This table shows that orbital energies are not quantitatively
reproduced by LDA, even using an empirical energy shift, and the reproducibility
worsens as the molecular size increases, even using the exact exchange potential
(see Sect. 7.6 for the details of this potential). Actually, there appears to be no
example of the OEP method reproducing accurate orbital energies with no empirical
correction. In addition, since the OEP method has the serious problems of poor
SCF convergence and long computational time, the target systems of orbital energy
calculations using this method have been restricted to atoms and small molecules.

7.6 Highly Correlated Correlation Potentials

As mentioned above, higher-order electron correlations are required in exchange-
correlation potentials to reproduce correct orbital energies. For incorporating
higher-order electron correlations, one of the best strategies is to use the existing
knowledge base on ab initio wavefunction theories. A representative method
following this strategy is the ab initio DFT (Bartlett et al. 2005a). Bartlett et al.
developed this method setting five conditions: (1) all calculations are performed
using the analytical integrations of basis functions as in ab initio methods, (2) a
rigorous orbital-dependent exchange-correlation energy functional is taken from
ab initio wave-function theories, (3) there is convergence to the right answer in
the basis set and correlation limit, (4) the Slater determinant is consistent with
the corresponding exchange-correlation potential functional, and (5) the exchange-
correlation potentials are multiplicative but nonlocal.
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Table 7.1 HOMO energies calculated by the OEP–KLI method compared to the corresponding
negative ionization potentials in eV

Molecule LDAXC LDAXC +� �IP EXX LDAC EXX PBEC �IP Expt.

H2 �11:2 �16:1 �16:2 �16.3 �15.8 �15:4
LiH �2:3 �8:2 �7:7 �7:7
Li2 �6:3 �5:0 �5:1 �5:0
Na2 �0:3 �4:6 �4:9
K2 �1:4 �3:6 �4:0
HF �51:6 �17:7 �16:0
F2 �10:1 �18:2 �17:4 �15:7
CO �96:3 �15:1 �14:5 �16.6 �16.1 �14:0
N2 �17:9 �17:2 �14:1 �18.8 �18.2 �15:6
P2 �4:2 �10:1 �15:5 �10:5
H2O �23:8 �13:9 �15:2 �17.7 �12:6
CH3 �9:2 �10:8 �13:7
NH3 �48:6 �13:2 �10:7
CH4 �44:0 �14:8 �11:6 �16.3 �15.8 �14:3
CH2O 16:1 �12:0 �14:1 �10:9
C2H4 7:8 �10:2 �10:7
C6H6 2:2 �11:3
C5H5N �0:5 �9:5 �9:6
The “C�” indicates the addition of an energy shift to the functional potential. Auxiliary basis
functions for the density fitting technique (see Sect. 2.7) are used. Excerpt from Hamel et al. (2002)
and Kim et al. (1999)

In the ab initio DFT, the exact exchange (EXX) potential and frequently its
hybridization with the Hartree–Fock exchange potential is used as the exchange
potential. The EXX potential that Görling and Levy developed is a Kohn–Sham
orbital-dependent potential (Görling and Levy 1994; Ivanov et al. 1999),

Vx.r/ D ıExŒ�.r/
ı�.r/

D 4

noccX
i

noccX
j

nvirX
a

Z
d3r0

�
Kij

�a.r0/�i .r0/
	i � 	a

�
ıVKS.r0/
ı�.r/

; (7.47)

where Kij is the exchange energy in Eq. (7.31), in which the orbitals are the
Kohn–Sham ones. In this equation, ıVKS=ı�.r/ is the inverse of the linear response
function, �KS,

�KS.r; r0/ D ı�.r/
ıVKS.r0/

D 4

noccX
i

nvirX
a

�i .r/�a.r/�a.r0/�i .r0/
	i � 	a

: (7.48)

This equation is based on the OEP method, as recognized from its similarity to
Eq. (7.40). Even though the EXX potential produces valence orbital energies that
are exactly similar to those of the Hartree–Fock exchange potential, it provides core
orbital energies that are much different from the Hartree–Fock ones. Combining
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the EXX potential with a correlation potential mentioned later produces errors in
the calculated core orbital energies that have opposite signs to the Hartree–Fock
ones, crossing the exact values. Therefore, in ab initio DFT, the EXX potential
is often mixed with the Hartree–Fock exchange potential, similarly to the hybrid
functionals (see Sect. 5.5),

Vx D �V HF
x C .1 � �/V EXX

x : (7.49)

This hybridization drastically improves the results of core orbital energies.
For correlation potentials, the PT2H and PT2SC correlation potentials, which

are modified second-order perturbation potentials incorporating advanced electron
correlations of the CCSDT method (see Sect. 3.5), are often used (Schweigert and
Bartlett 2008). The PT2H correlation potential is derived for the above-mentioned
hybrid exchange potential from the following orbital-dependent energy expression
(Schweigert et al. 2006),

Ec D
noccX
i

nvirX
a

tai fia C 1

4

noccX
i;j

nvirX
a;b

�
tabij � tai t

b
j � tbi t

a
j

�
.hij jabi � hij jbai/ ;

(7.50)

tai D Kia � R
d3r�i .r/V EXX

x �a.r/
	i � 	a .1 � �/; (7.51)

tabij D hij jabi � hij jbai
	i C 	j � 	a � 	b ; (7.52)

where fia D h˚i!a

ˇ̌
ˇ OH
ˇ̌
ˇ˚KSi. Even though this fia is always zero in standard one-

electron SCF methods containing the diagonalization of the Fock matrix according
to the Brillouin theorem (see Sect. 3.4), it is not zero in the ab initio DFT due to
the use of the Brueckner determinant (Brueckner 1954; Nesbet 1958), which has
the maximum overlap with the Slater determinant for the ground state. Moreover,
hij jabi is the integral in Eq. (4.42). The “SC” in the PT2SC correlation poten-
tial indicates “semicanonical.” The PT2H potential uses the perturbation energy,
including the first-order perturbation terms, which are given by the diagonalization
of the Fock matrix, violating the Brillouin theorem. On the other hand, the PT2SC
potential contains only the occupied–virtual orbital pairs in the perturbation terms
by diagonalizing the Fock matrix separately for the occupied–occupied and virtual–
virtual orbital pairs (Bartlett et al. 2005b). The difference between PT2H and PT2SC
is confirmed to be negligible.

Using the exchange-correlation potential (HF C EXX + PT2SC) mentioned
above, the valence occupied orbital energies are obtained with considerable
accuracies for the first time. Table 7.2 displays the calculated results of orbital
energies (Schweigert and Bartlett 2008). This method reproduces orbital energies
with chemical accuracy: the mean absolute errors are less than 0.2 eV for valence
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Table 7.2 Calculated occupied and virtual orbital energies of H2 and CO molecules compared to
the negative of the ionization potentials and electron affinities in eV

Orbital HF+PT2H EXX+PT2SC HF+EXX+PT2SC �IPExpt.

H2O
1b1 �13.06 (�0.44) �12.75 (�0.13) �12.80 (�0.18) �12.62
1a1 �15.14 (�0.40) �14.94 (�0.20) �14.94 (�0.20) �14.74
1b2 �18.69 (�0.18) �18.62 (�0.11) �18.56 (�0.05) �18.51
2a1 �30.07 (2.54) �34.54 (�1.93) �32.21 (0.40) �32.61
1a1 �518.8 (20.9) �562.3 (�22.6) �540.6 (�0.9) �539.7
CO
5� �13.60 (0.41) �13.63 (0.38) �13.59 (0.42) �14.01
1� �17.48 (�0.57) �16.75 (0.16) �17.04 (�0.13) �16.91
4� �18.83 (0.89) �20.04 (�0.32) �19.36 (0.36) �19.72
3� �36.96 (1.34) �41.98 (�3.68) �39.37 (�1.07) �38.30
2� �282.40 (13.80) �313.10 (�16.90) �297.80 (�1.60) �296.20
1� �521.1 (21.5) �565.0 (�22.4) �543.1 (�0.5) �542.6

The triple-zeta set of atomic natural orbitals are used as basis functions. Errors are shown in
parentheses. Excerpt from Schweigert and Bartlett (2008)

occupied orbitals and less than 1 eV for core orbitals. Note, however, that no
accurate core orbital energy is given using only the EXX potential without
mixing with the Hartree–Fock exchange integral. This result clarifies the fact that
highly correlated potentials, at the level of coupled-cluster expansion theory, can
give valence occupied orbital energies quantitatively, although even such highly
correlated functionals cannot give core orbital energies accurately.

7.7 Constrained Search for Exact Potentials

As another interesting method for obtaining highly correlated potentials, there is
the constrained search method for determining potentials directly from the highly
accurate electron densities of ab initio wavefunction theories, which is mentioned
in Sect. 4.5. Wu and Yang developed a method for producing kinetic-exchange-
correlation potentials from accurate electron densities by combining the OEP
method for constructing local potentials from exchange-correlation energies (see
Sect. 7.5) and the ZMP method for determining exchange-correlation potentials
from highly accurate electron densities (see Sect. 4.5) (Wu and Yang 2003). In this
method, the kinetic energy is obtained by maximizing

TWY D
nX
i

Z
d3r�i.r/

�
�1
2

r2

�
�a.r/

C
Z
d3r Œ�.r/� �int.r/ VWY.r/; (7.53)
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where

VWY.r/ D Vext.r/C
�
1 � 1

n

�Z
d3r0 �0.r/

jr � r0j C
X
p

Cp�p.r/; (7.54)

and �0 and �int correspond to the calculated electron density of higher-level ab
initio wavefunction theories and an initial electron density, respectively. The point
is to represent the exchange-correlation potential as the linear combination of basis
functions, �p , which are usually Gaussian-type basis functions (see Sect. 2.6).
Consequently, the exchange-correlation potential is given as

V WY
xc .r/ D

X
p

Cp�p.r/C
�
1 � 1

n

�Z
d3r0 �0.r/

jn � r0j �
Z
d3r0 �.r/

jr � r0j :

(7.55)

Orbital energies can be calculated using the kinetic, exchange, and correlation
potentials in Eqs. (7.53) and (7.55). Actually, HOMO energies are calculated to
be close to the negative of the experimental ionization potentials for atoms and
small molecules. Tozer et al. also calculated LUMO energies by combining this
constrained search method with the condition on the energy error found in Eq. (7.27)
(Teale et al. 2008). In Table 7.3, the HOMO and LUMO energies of small molecules,
in which the “WY” results are calculated by the combined method, are excerpted.
These calculations use the highly accurate electron densities determined by the
CCSD(T) method (see Sect. 3.5). As shown in the table, accurate HOMO energies
are obtained using the potentials determined directly from the highly accurate
electron densities. This result supports the conclusion in the previous section that
highly correlated potentials at the level of coupled-cluster theory can provide
valence orbital energies quantitatively. However, these potentials give negative
LUMO energies, which are clearly inconsistent with experimental results. The
errors in the calculated LUMO energies are much larger even than those of typical
pure functionals. Therefore, this indicates that LUMO energies cannot be accurately
reproduced, even using the potentials determined from highly correlated electron
densities.

7.8 Corrections for Orbital Energy Gaps in Solids

Thus far, in calculations of solid state systems, orbital energy calculations have been
conventionally carried out as an approximation to the energy bands, which are then
used to discuss photoexcitation. However, in this sense, the energy bands should
be thought of as the excited states of solids, and therefore, the band gaps should
be taken as the excitation energies of the solids and should be calculated with
TDDFT. Nevertheless, the orbital energy gaps have been assumed to be identical
to the excitation energies, without clear evidence. Based on this assumption, many
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Fig. 7.2 Calculated total electronic energies (left) and orbital energies (right) of the carbon
atom with respect to the fractional occupation number. The Perdew–Zunger (PZ) self-interaction
corrected (SIC) PBE functional provides irregular behaviors for both the Kohn–Sham energies and
orbital energies especially near integer occupation numbers. Reprinted from Vydrov et al. (2007)

studies have been carried out to attempt to make the orbital energy gaps between
valence and conduction bands approach the experimental band gaps.

As mentioned in Sect. 7.3, the errors in exchange functionals have been accepted
to cause the errors in orbital energies. Therefore, the self-interaction correction
for exchange-correlation potential functionals has been examined with the aim of
reproducing accurate orbital energies, as a natural result. However, conventional
studies have not focused on the orbital energies of molecules for many years. Using
the Perdew–Zunger self-interaction correction (see Sect. 6.2),

E D EKS �
nX
i

.Ji i C ExcŒ�i / ; (7.56)

Vydrov et al. (2007) explored the reproducibility of Kohn–Sham orbital energies.
Figure 7.2 shows the calculated total electronic energies and orbital energies
of the self-interaction-corrected PBE functional with respect to the fractional
occupation number of the outermost orbitals of the carbon atom to check whether
this functional obeys the energy linearity theorem. In this figure, it is shown that
the functional using this self-interaction correction meets neither the outermost
orbital energy invariance theorem in Eq. (7.25) nor the energy linearity theorem in
Eq. (7.28). Therefore, the self-interaction corrected Kohn–Sham method does not
give accurate orbital energies. Note, however, that this method affects the GGA
exchange-correlation functionals, which violate these theorems, in the direction of
improvement, although these are overcorrected, so that there is no improvement
in the behavior. This result clearly suggests that the self-interaction error is not
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the main cause for the poor quality of the orbital energies, even restricted to the
exchange functional part, although it may be partially responsible.

Let us examine the self-energy correction based on the GW approximation as
an approach in band calculations for reproducing accurate orbital energies. The
self-energy,˙ , is defined as

0
@�1

2
r2 C Vext C 2

nX
j

OJj
1
A�i C

Z
d3r0˙.r; r0I 	i /�i .r0/ D 	i�i ; (7.57)

and it is described using the GW approximation (Hedin 1965; Szabo and Ostlund
1996) as

˙.r; r0I 	i / D i

2�

Z
d!0G.r; r0I ! � !0/W.r; r0I !0/ exp.�i�!0/: (7.58)

In Eq. (7.58), the Green function, G, is given as

G.r; r0I !/ D
X
k

�k.n/�
�
k .r

0/
! � 	k C i�

; (7.59)

andW , the screened Coulomb interaction, is written as

W.r; r0I !/ D
Z
d3r00��1

de .r; r
0I !/v.r00 � r0/: (7.60)

Moreover, 	de is a frequency-dependent dielectric function and v, called the bond
number, is a specific number of the calculated system. Although the details have not
been included in this book, Johnson and Achcroft (1998) assumed that the energy
error is attributable to the difference in the self-energy of exchange-correlation
functionals from that of the Hartree–Fock exchange integral and suggested the
form of the discontinuity, which is represented using the dielectric function for
zero frequency, 	de;0, and the electron density, for the LDA exchange-correlation
potential,

�V LDA
xc D �˛�1=3

 
1

	de;0
� ˇ�	

	2de;0

!
; (7.61)

where �	 is the orbital energy gap between the valence and conduction bands and
˛ D 1:14 and ˇ D 6:12 are semiempirical parameters. Using this correction, it
has been reported that the orbital energy gaps of semiconductors approach the band
gaps.

The LDA+U method (Liechtenstein et al. 1995) is one of the most frequently used
corrections for orbital energy gaps in band calculations. In the LDA+U method, the
difference of the Coulomb-exchange interactions from their averaged value is added
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to the total electronic energy of the LDA functional. Since this correction intends
to incorporate spin-fluctuation effects, it is performed only for d–d and f –f orbital
interactions. This correction has been reported to increase the orbital energy gaps of
insulators by appropriate energies.

What should be noted is that, since the corrections in the band calculations of
solids are usually specialized to make the orbital energy gaps close to the band gaps,
these are not available to improve the orbital energy calculations of molecules.

7.9 Orbital Energy Reproduction by Long-Range
Corrected DFT

Is it possible to develop a theory that accurately and comprehensively reproduces
the orbital energies of molecules? Actually, there already exists a theory that
quantitatively gives valence orbital energies. The Kohn–Sham method using long-
range corrected functionals (see Sect. 6.1) quantitatively reproduces valence orbital
energies (Tsuneda et al. 2010). Table 7.4 summarizes the calculated HOMO
energies of atoms and small molecules compared to the corresponding negative
ionization potentials. As clearly shown in the table, the long-range correction lowers
the errors of the HOMO energies from the negative ionization potentials by an order
of magnitude, to the level of quantitative values: the MAE values for LC-BOP are
ca. 0.84 eV for typical molecules. Compared to the results of the pure (BOP) and
hybrid (B3LYP) functionals, the outstanding accuracy of the LC functional becomes
apparent. What is more important is the results of the LUMO energies. In Table 7.5,
the calculated LUMO energies of atoms and small molecules are compared with
the corresponding negatives of the electron affinities. This table indicates that the
long-range correction drastically improves the LUMO energies, to an MAE of just
0.14 eV. Note that no additional semiempirical parameter is introduced in order
to accurately reproduce the orbital energies. The original long-range corrected
functionals contain only one parameter, �, which is fixed at a value fitted for each
functional that is corrected: e.g., for the B88 exchange functional, � D 0:47 is used
for equilibrium electronic state calculations and � D 0:33 for response property
calculations, including excited state calculations (see Sect. 6.1). In this chapter, it
has thus far been described that no LUMO energy can be accurately reproduced,
even using extremely highly correlated potential functionals. Furthermore, as far as
the author knows, even in advanced ab initio wavefunction methods incorporating
higher-level electron correlations, there is no other theory that can quantitatively
reproduce HOMO and LUMO energies simultaneously. It is, therefore, surprising
that highly accurate HOMO and LUMO energies are reproduced by the Kohn–Sham
method only using long-range corrected functionals.

To confirm the reasonableness of the quantitative orbital energies of long-
range corrected functionals, it is meaningful to examine the achievement of the
energy linearity theorem, which is a necessary condition for providing correct
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Fig. 7.3 Calculated total electronic energy of the ethylene molecule with respect to the variation
of the occupation number of the outermost orbitals; the energy of the electroneutral state is set to
be zero. The number of electrons decreases from the neutral state in the left panel and increases
in the right panel. Calculated total electronic energies should vary linearly to give correct orbital
energies. The aug-cc-pVQZ basis functions are used. See Tsuneda et al. (2010)

orbital energies (Yang et al. 2000). Figure 7.3 shows the total electronic energy
of the ethylene molecule as a function of the degree of fractional occupation. In
this figure, it is found that a linearly varying total electronic energy is produced,
regardless of whether the number of electrons is increasing or decreasing, only
for the use of a long-range corrected functional in the Kohn–Sham calculations.
Meanwhile, pure and hybrid functionals give concave-shaped curves for the total
electronic energies, independent of the increase or decrease of electrons. Although
not mentioned in detail, it is numerically proven that the Janak theorem (see
Sect. 7.2) is established for all one-electron SCF methods (Tsuneda et al. 2010).
Since the gradients of the total electronic energies, which are discontinuous at the
electroneutral state, are, therefore, equal to the HOMO and LUMO energies, the
concave-type variation of the total electronic energies for the fractional occupations
indicates that there is an underestimation of the absolute values of the orbital
energies. In contrast, the absolute values of the orbital energies are overestimated
by the Hartree–Fock method, which yields a convex-type variation of the total
electronic energies. This discussion is consistent with the results of the calculated
orbital energies in the Tables 7.4 and 7.5. Similar total electronic energy variances
have been found for all of the systems thus far examined. That is, only the long-
range corrected functional meets the energy linearity theorem of total electronic
energies for fractional occupations, as expected.

The fractional occupation number dependence of the outermost orbital energies
is also significant to test the validity of the orbital energies. As mentioned in
Sect. 7.3, the outermost orbital energy invariance theorem should be satisfied in
order to give correct orbital energies (Sham and Schlüter 1985). Figure 7.4 illustrates
the fractional occupation number dependence of the outermost orbital energies
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Fig. 7.4 Calculated outermost orbital energies of the ethylene molecule with respect to the
fractional occupation number variance. The aug-cc-pVQZ basis functions are used. Calculated
orbital energies should be kept constant to give correct orbital energies. See Tsuneda et al. (2010)

of ethylene. As shown in the figure, using a long-range corrected functional,
the Kohn–Sham method gives a near-constant outermost orbital energy. That is,
it nearly perfectly meets the outermost orbital energy invariance theorem. In
contrast, the Kohn–Sham method using other functionals produces monotonically
increasing orbital energies, and the Hartree–Fock method contrastingly produces
monotonically decreasing orbital energies. Similar tendencies have also been found
for other systems. This supports the idea that accurate orbital energies of long-range
corrected functionals are produced in a reasonable and versatile fashion.

Why does the Kohn–Sham method accurately reproduce orbital energies only
with the use of long-range corrected functionals? The cause is clarified by looking
into the dependence of orbital energies on the occupation number. It is established
that Kohn–Sham orbital energies have the dependence on the occupation number
(Tsuneda et al. 2010),

ı	i

ıni
D
ZZ

d3rd3r0��
i .r/�

�
i .r

0/
�

1

jr � r0j C ıvxc

ı�

�
�i.r/�i .r0/: (7.62)

That is, the dependence of orbital energies on their occupation numbers
is attributable to the self-interaction errors in the sum of the Coulomb self-
interactions with the exchange-correlation self-interactions, through the integral
kernels, fxc D ıvxc=ı�. Therefore, orbital energies cannot be correctly reproduced
provided that self-interaction errors are included in the exchange integral kernel.
It may, however, be reasonable to consider that the inclusion of self-interaction
errors in the exchange-correlation energies and potentials inevitably causes the
errors in the exchange-correlation integral kernels and consequently makes it
difficult to produce correct orbital energies. Figure 7.5 compares the energy
distributions of the Coulomb self-interactions with those of the exchange-correlation
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Fig. 7.5 Energy distributions of the Coulomb and exchange-correlation self-interactions through
their integral kernels for (a) the HOMO of the hydrogen atom, (b) the components of (a), (c) the
HOMO of the helium atom, and (d) the LUMO of the helium atom. See Tsuneda et al. (2010)

integral kernels through the integral kernels. For the HOMO of the hydrogen atom
(Fig. 7.5a), the long-range correction clearly makes the self-interaction energy
through the exchange-correlation integral kernel approach the Coulomb self-
interaction energy, compared with the non-long-range corrected ones. Comparing
the short-range and long-range component energies (Fig. 7.5b) shows that the long-
range component energy (LR) is much larger than the short-range one (SR) for the
self-interaction through the exchange-correlation integral kernel. Furthermore, by
making a comparison between the results of the HOMO and LUMO of the helium
atom (Fig. 7.5c and d), for which long-range corrected functionals give poor and
accurate orbital energies, respectively, it is found that the self-interaction energy of
the HOMO is insufficiently produced, even by a long-range corrected functional,
while this functional produces a sufficiently large energy for that of the LUMO.
The poor quality of the HOMO energy of the helium atom is, therefore, attributed
to the considerable self-interaction error in the short-range part of the long-range
corrected functional because of the large contribution of the short-range exchange
part in this orbital.

What causes the poor-quality HOMO energies for hydrogen and the rare gases?
As shown in Table 7.6, similar problems are also found in the calculations of core
orbital energies. Note that even ab initio density functional theory using highly
correlated correlation potentials also provides poor-quality core orbital energies
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without mixing the Hartree–Fock exchange integral (see Sect. 7.6). Actually, it
has been confirmed that these poor-quality orbital energies, including the HOMO
energies of hydrogen and the rare gases are drastically improved by a self-
interaction-corrected functional. This functional, called the LC-PR functional
(Nakata and Tsuneda 2013; Nakata et al. 2010) (see Sect. 6.1), replaces the exchange
energy in the self-interaction regions (see Sect. 6.2) with the exchange integral of
the pseudospectral method only for the short-range part of the long-range corrected
functionals. Tables 7.4 and 7.6 reveal that the core orbital energies and HOMO
energies of hydrogen and the rare gases are quantitatively reproduced using this
functional. What is important is that this functional maintains or even improves
the accuracy of the molecular valence orbital energies of the long-range corrected
functionals, as shown in Tables 7.4 and 7.5. It is, therefore, concluded that the
long-range correction is required to produce valence orbital energies quantitatively
in the Kohn–Sham method, and an appropriate self-interaction correction is also
required in order to reproduce core orbital energies and HOMO energies of rare
gases accurately.
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Chapter 8
Appendix: Fundamental Conditions

Fundamental conditions indicate the conditions that should be met by the energy
components such as the kinetic, exchange, and correlation energies. As described in
Sect. 5.1, fundamental conditions have been used as significant criteria for assessing
the physical validities of functionals developed. Actually, in solid state physics, in
which extreme electronic states are often investigated, it appears to be conventional
to use functionals that meet these conditions. In this chapter, let us briefly review
major fundamental conditions.

1. Kinetic, exchange, and correlation energies have constant signs for nonzero
electron density, � ¤ 0, as follows:

T Œ� > 0; (8.1)

ExŒ� < 0; (8.2)

and

EcŒ� � 0: (8.3)

That is, for electrons, the kinetic energies are positive definite and the exchange
and correlation energies are negative definite. Moreover, as far as an electron
exists, the kinetic and exchange energies are nonzero due to the zero-point
vibrational frequencies for kinetic energies and the self-interactions for exchange
energies (see Sect. 6.2). In contrast, correlation energies are zero in one-electron
systems. Note, however, that electron correlations are not necessarily zero for
unoccupied orbitals, even in the hydrogen atom (Nakata and Tsuneda 2013).

2. In slowly varying electron density regions, where the density gradient r� is
much smaller than the electron density �, the kinetic, exchange, and correlation
energies are expanded using a dimensionless parameter x� D jr�� j=�4=3� in
Eq. (5.2) and x D jr�j=�4=3 as (von Weizsäcker 1935; Kleinman and Lee 1988)
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lim
x�!0

T D
X
�

Z
d3nn�5=3�

�
3

5
.6�2/2=3 C x2�

36
CO.x4� /

�
; (8.4)

lim
x�!0

Ex D �3
�
3

4�

�1=3X
�

Z
d3r�4=3�

�
1C 5x2�

81.6�2/2=3
CO.x4� /

�
;

(8.5)

and

lim
x!0

Ec D
Z
d3r

˚
c1Œ�C c2Œ�x

2 CO.x4/
�
: (8.6)

These equations are called the generalized-gradient-approximation (GGA) limit
conditions, and, in particular, the x� D 0 values of these energies are called
the local density approximation (LDA) limit conditions. Here, it should be noted
that the coefficient of the x2� term in the exchange energy expansion in Eq. (8.5)
is twice the conventional value (Kleinman and Lee 1988). The reason for this
difference is mentioned later.

3. For rapidly varying (high-density-gradient-low-density) electron density regions,
where the density gradient is much larger than the electron density, the kinetic
and correlation energies behave as (Ma and Brueckner 1968; Dreizler and Gross
1990)

lim
x�!1T D 1

4

X
�

Z
d3r�5=3� x2� ; (8.7)

and

lim
x!1 ��1 NEc D 0; (8.8)

where NEc is the integral kernel of the correlation energy. It is interesting to
note that the right-hand side of Eq. (8.7) is equivalent to the von Weizsäcker
kinetic energy in Eq. (4.4). This indicates that the kinetic energy at the
low-density-high-gradient limit is the von Weizsäcker kinetic energy. Moreover,
the lack of a condition for the exchange energy at this limit has led to the
development of various GGA exchange functionals, which are much different for
large x� (see Sect. 5.2). This limit appears prominently in small electron density
regions. In such regions, dispersion forces usually determine the character of
the interatomic bonds. Actually, van der Waals bonds cannot be accurately
reproduced using correlation functionals that violate Eq. (8.8). For example,
the LYP correlation functional, which violates this condition, overestimates
the correlation energies in van der Waals calculations of rare gas dimers (see
Sect. 6.3) (Kamiya et al. 2002).
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4. Coordinate-scaling conditions are also often used in fundamental conditions.
In these conditions, the order of each energy component is regulated for the
scaling of the electron density, which corresponds to the scaling of coordinates
(see references in Tsuneda et al. 2001). There is the uniform coordinate-scaling
for cubic coordinates .x; y; z/, the second-order nonuniform coordinate
scaling for planar coordinates .x; y/, and the first-order nonuniform coor-
dinate scaling for linear coordinates x. The following are established for
uniform coordinate-scaling (�.x; y; z/ ! �� D �3�.�x; �y; �z/):

T Œ�� D �2T Œ�; (8.9)

ExŒ�� D �ExŒ�; (8.10)

EcŒ�� < �EcŒ� .� < 1/; (8.11)

EcŒ�� > �EcŒ� .� > 1/; (8.12)

lim
�!1EcŒ�� D const: ¤ 0; (8.13)

and

lim
�!0

1

�
EcŒ�� D const: ¤ 0: (8.14)

For the nonuniform coordinate-scaling, the following conditions are also estab-
lished: in the second-order scaling (�.x; y; z/ ! �

xy

�� D �2�.�x; �y; z/):

lim
�!1

1

�
ExŒ�

xy

�� D const: ¤ 0; (8.15)

lim
�!0

1

�
ExŒ�

xy

�� D const: ¤ 0; (8.16)

lim
�!1EcŒ�

xy

�� D 0; (8.17)

and

lim
�!0

1

�2
EcŒ�

xy

�� D const: ¤ 0; (8.18)

and in the first-order scaling (�.x; y; z/ ! �x� D ��.�x; y; z/):

lim
�!1ExŒ�

x
� D const: ¤ 0; (8.19)

lim
�!0

ExŒ�
x
� D const: ¤ 0; (8.20)

lim
�!1�EcŒ�

x
� D const: ¤ 0; (8.21)
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and

lim
�!0

1

�
EcŒ�

x
� D 0: (8.22)

There is no nonuniform coordinate scaling condition for kinetic energy. It is
interesting to evaluate the density dependence of the exchange and correlation
energies at the scaling limit. For the exchange energy, the density dependences
are given for three forms of density as

• O.�/ for linearly scaled density,
• O.�3=2/ for planarly scaled density, and
• O.�4=3/ for spherically scaled density.

A hypothesis is proposed by comparing these density dependences with the
electron number dependences of the Hartree–Fock exchange integral given in
conventional linear-scaling calculations. By lengthening a linear alkane, the
computational time of the exchange integral calculations linearly increase with
the number of electrons (Lambrecht and Ochsenfeld 2005). On the other hand,
the electron number dependence of the computational time deviates signifi-
cantly from linearity for the planar extension of a graphene sheet (Schwegler
and Challacombe 1999). Interestingly, extending the size of a water cluster
spherically leads to computational times that are slightly closer to linearity
than that of graphene (Schwegler and Challacombe 1999). Comparing these
with the density dependences of the exchange energy mentioned above, it is
found that the computational time of the exchange integral correlates with the
coordinate scalings of the exchange energy. Similarly, the density dependences
of the correlation energy are provided as

• O.1/ for linearly extended density,
O.�n/ .n > 2/ for linearly contracted density,

• O.�m/ .m < 1/ for planarly extended density,
O.�2/ for planarly contracted density,

• O.�/ for spherically extended density, and
O.�4=3/ for spherically contracted density.

By comparing these with the density dependences of the exchange energy, the
ratio of the correlation energy to the exchange energy can be evaluated for
expanding systems. Lengthening calculated systems linearly leads to a ratio
approaching O.��1=3/, while extending systems planarly or spherically leads to
a ratio approaching O.��1/. This suggests that the correlation energy becomes
less significant as the electron density increases in large systems, but it has a
different significance for linear molecules and others.

5. As another significant fundamental condition, there is a condition on the self-
interaction error. The self-interaction error is the Coulomb self-interaction, which
should inherently cancel with the exchange self-interaction but remains due to
the use of the exchange functional (see Sect. 6.2). Since one-electron systems
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contain only the exchange self-interaction in two-electron interactions, the self-
interaction-free conditions for one-electron systems have been suggested for
determining whether or not the kinetic, exchange, and correlation energies are
self-interaction-free (Zhang and Yang 1998):

T Œq�1 D O.q/; (8.23)

ExŒq�1 D q2ExŒ�1; (8.24)

and

E˛ˇ
c Œq�1 D 0; (8.25)

where �1 is the electron density of one-electron systems. Interestingly, Eq. (8.25)
is derived from the density matrix of self-interacting electrons, similarly to
the far-from-nucleus (long-range) asymptotic behavior condition for exchange
energy (Levy et al. 1984),

lim
r!1��1 NEx D � 1

2r
(8.26)

(see Sect. 6.2). For the same reason, the kinetic energy becomes the Weizsäcker
one in Eq. (8.7) for one-electron systems. Therefore, the self-interaction
error leads to the fact that most GGA exchange functionals violate the
far-from-nucleus asymptotic behavior condition. There is also the self-
interaction-free condition for N electrons (Mori-Sanchez et al. 2006). In this
condition, the energy linearity theorem for fractional occupations (see Sect. 7.2)
is used as the criterion. Note that long-range-corrected functionals meet this
condition. Instead, there is thus far no example that this condition is met without
the long-range correction (see Sect. 7.9). This suggests that the long-range
correction is required to remove the self-interaction errors from multiple electron
systems.

6. In addition, the Lieb–Oxford bound condition (Lieb and Oxford 1981),

ExŒ� � �1:679
Z
d3r�4=3: (8.27)

has been often used to evaluate the validity of exchange functionals. Although
this condition sets the upper limit of exchange energy, it is applicable only
to GGA exchange functionals. Actually, the Hartree–Fock exchange integral
violates this condition. Using the density functional prefactor, ˇŒ�, a GGA
correlation functional is also established to be the difference of the LDA
exchange functional, ELDA

x , and the exact exchange energy, Eexact
x , on the basis

of this condition as follows (Odashima and Capelle 2009):

EcŒ� D ˇŒ�


�ELDA

x � Eexact
x

�
; (8.28)
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Table 8.1 Fundamental conditions for exchange energy and the comparison of GGA exchange
functionals for their validities

Condition LDA PW91 PBE B88 PFTFW

Negative exchange energy Yes Yes Yes Yes Yes
LDA limit Yes Yes Yes Yes Yes
Slowly varying density limit – Yes? Yes? No Yes?
Uniform coordinate scaling Yes Yes Yes Yes Yes
Nonuniform coordinate scaling No No No No No
Lieb–Oxford bound Yes Yes Yes No Yes
Self-interaction-free for 1 electron No No No No No
Far-from-nucleus asymptotic behavior No No No Y/N No

Table 8.2 Fundamental conditions for the correlation energy and validity comparison of GGA
correlation functionals

Condition LDA PW91 PBE LYP OPB88

Negative correlation energy Yes No Yes No Yes
LDA limit No No No No Yes
Slowly varying density limit – Yes Yes No Yes
Rapidly varying density limit No Yes Yes No Yes
Uniform coordinate scaling No No Yes No Yes
Nonuniform coordinate scaling No Yes No No No
Self-interaction-free for 1 electron No No No Yes Yes

where � D 1:679=


.3=4/.3=�/1=3

� D 2:273. Since this equation is trivial for an
arbitrary ˇŒ�, it is given using the LDA and GGA limit as

EcŒ� D EGGA
c Œ�

�ELDA
x Œ� � EGGA

x Œ�



�ELDA

x Œ� �Eexact
x

�
; (8.29)

where EGGA
x Œ� is a GGA exchange functional satisfying Eq. (8.5) and EGGA

c Œ�

is a GGA correlation functional satisfying Eq. (8.6). Note that conventional
correlation functionals violate this condition (Haunschild et al. 2012). However,
this is still controversial, because the exact exchange energy, which violates
Eq. (8.27), is applied to the condition for correlation functionals.

Next, let us examine to what extent conventional GGA functionals meet the
fundamental conditions mentioned above. Tables 8.1 and 8.2 summarize the funda-
mental conditions of exchange and correlation energies, respectively, to show which
conditions are obeyed by various GGA exchange and correlation functionals.

As shown in Table 8.1, GGA exchange functionals meet the fundamental condi-
tions equivalently. PFTFW indicates the parameter-free (PF) exchange functional in
Eq. (5.10), in which the Thomas–Fermi–Weizsäcker (TFW) GGA kinetic energy
functional is applied to the kinetic energy density part. This table shows that
all of the GGA exchange functionals examined meet both the negative exchange
energy and LDA limit conditions, while only the B88 exchange functional violates
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the slowly varying density limit and the Lieb–Oxford bound conditions. For the
coordinate-scaling conditions, all of these functionals meet the uniform condi-
tions but violate the nonuniform ones. The far-from-nucleus asymptotic behavior
condition is met only for the Slater-type wavefunctions by the B88 functional.
What should be noticed is the question mark for the slowly varying density limit
condition. In the conventional slowly varying limit condition, the coefficient of x2�
is 5=Œ162.6�2/2=3 (Kleinman and Lee 1988), which is just half of the coefficient
in Eq. (8.5). This is because the coefficient of the PFTFW is proven to be just twice
the original one (Tsuneda and Hirao 2000). Since the original coefficient is actually
known to be too small to use in practical calculations, conventional GGA exchange
functionals have been modified to use approximately doubled coefficients: e.g.,
0:003612, which is 1.78 times the original one, in the PBE exchange functional.
Therefore, the correct coefficient must be 5=Œ81.6�2/2=3. However, the question
mark is appended to the “Yes,” because it has not yet been proven definitely.

Finally, let us consider the fundamental conditions for the correlation energy.
OPB88 is the OP correlation functional in Eq. (5.30) using the B88 exchange func-
tional in the exchange functional part in Eq. (5.31). For the correlation energy, the
PW91 and LYP functionals violate even the negative correlation energy condition.
Surprisingly, even major the LDA correlation functionals, the VWN LDA and
the PW LDA functionals, violate the LDA limit condition. The PW91 and PBE
functionals containing the PW LDA functional as the LDA limit, therefore, also
disobey this condition. In contrast, the OP functional, containing no LDA functional,
meets these conditions. Only the LYP functional violates the slowly varying and
rapidly varying density limit conditions in GGA functionals. For coordinate-scaling
conditions, only the PBE and OP functionals meet the uniform condition, and only
the PW91 functional obeys the nonuniform ones. The self-interaction-free condition
is met only by the LYP and OP functionals, which are both Colle–Salvetti-type
functionals. What should be emphasized is the high physical validity of the OP
functional, which meets all conditions except for the nonuniform coordinate-scaling
conditions. Considering that the OP functional was developed without taking any
fundamental conditions into account, its physical validity must have important
implications.
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