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Introduction

Bioelectrical signals express the electrical functionality of different organs in the human
body. The Electrocardiogram, also called ECG signal, is one important signal among all
bioelectrical signals. The ECG reflects the performance and the properties of the human
heart and conveys very important hidden information in its structure. This information
has to be extracted and analysed before any useful and meaningful interpretations can
be started. Extracting or decoding this information or feature from ECG signal has been
found very helpful in explaining and identifying various pathological conditions. The fea-
ture extraction procedure can be accomplished straightforward by analysing the ECG
visually on paper or screen. However, the complexity and the duration of ECG signals
are often quite considerable making the manual analysis a very time-consuming and lim-
ited solution. In addition, manual feature extraction is always prone to error. Therefore,
ECG signal processing has become an indispensable and effective tool for extracting clin-
ically significant information from ECG signals, for reducing the subjectivity of manual
ECG analysis and for developing advanced aid to the physician in making well-founded
decisions. Over the past few years automatic analysis of electrocardiograms (ECGs) has
gained more and more significance in the field of clinical ECG diagnosis.
ECG analysis systems are usually designed to process ECG signals measured under par-
ticular conditions, like resting ECG interpretation, stress test analysis, ambulatory ECG
monitoring, intensive care monitoring, etc...
However, preconditioning the recorded ECG signals is a common point to all these sys-
tems. In the preconditioning stage, ECG signals need to be filtered from different types
of noise, segmented, delineated with respect to their waves and complexes and prepared
for the further analysis.
The complexity of an ECG analysis algorithm depends much on the application. For
instance, the noise reduction algorithm in ambulatory monitoring is much more compli-
cated than the one in resting ECG analysis.
Furthermore, ECG analysis algorithms are designed for at least one of three major clinical
contexts, which are diagnosis, therapy and monitoring.
ECG signal processing algorithms form an important part of systems for monitoring of
patients who suffer from a life-threatening condition. Monitoring algorithms should be
able to detect the predisposition to a dangerous cardiac disorder before occuring and
provide an alarm to save the life of the patient. The life-threatening condition can be
pronounced by a drug-induced ventricular tachyarrhythmia. This kind of tachyarrhyth-
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mia is called Torsade de Pointes (TDP). TDP is a dangerous life-threatening arrhythmia,
because it can degenerate into ventricular fibrillation, leading to sudden death.
Drug evaluation with respect to effects on the heart action has become a major focus for
the determination of drug safety and cardiac safety. An undesirable property of some non-
antiarrhythmic drugs is their ability to delay cardiac repolarization. This delay creates
an electrophysiological environment that favors the development of cardiac arrhythmias,
most clearly Torsade de Pointes (TDP), but possibly other ventricular tachyarrhythmia
as well. Two main features of TDP, as observed from real ECG signals of patients before
its episode, are pronounced first with marked prolongation of the duration between ven-
tricular depolarization and repolarization, known as QT interval, and second with large
morphology changes of the T wave, respresenting the variance of ventricular repolariza-
tion in ECG signal from one cardiac cycle, also called beat, to another. In particular, QT
interval has been identified as a surrogate marker for possible proarrhythmic effects, i.e.
for clinical assessment of drug safety. In fact, QT interval is the simplest clinical measure
that is available at present. On the other hand, analysing T wave morphology (TWM)
changes in beat-to-beat manner seems to be more complicated than measuring simply QT
interval and appears to play a more important role in accessing the electrical stability of
the ventricles and furthermore in detecting predisposition to TDP. That is, analysing the
beat-to-beat variability in TWM seems to be a robust precursor to TDP as noticed in
ECG signal.

2.1 Aim and Objectives of this Thesis

The main objective of this thesis is developing methods to analyse and detect small
changes in ECG waves and complexes that indicate cardiac diseases and disorders. Detect-
ing predisposition to Torsade de Points (TDP) by analysing the beat-to-beat variability
in T wave morphology before and after TDP episode is the main core of this thesis. De-
tecting small changes in QRS complex and predicting future QRS complexes of patients
from a time series of ECG signals is the second main topic of this research thesis. The
third main point is to cluster similar ECG components, namely T waves, depending on
their morphologies in different groups and to find the main dominant T wave morphology
or morphologies for every ECG signal. In order to establish and achieve the mentioned
aims, the following objectives have to be fulfilled:

1. ECG Signal Preconditioning : Novel techniques for low-frequency and high-frequency
noise cancellation as well as ECG fiducial points detection have been developed using
the power of the time-frequency analysis, namely Wavelet transformation. Some other
new preconditioning algorithms for detecting outliers in ECG signal and for ECG wave
and complex alignment were also carried out.

2. Morphological Feature Extraction: Morphological features have been extracted from
ECG signals after applying the preconditioning stage. The extraction is based on using
Principal Component Analysis (PCA), also called Karhunen-Loève transform (KLT).
This technique is a multivariate statistical technique that allows for the identification
of key variables, or combinations of variables, in a multidimensional data set that
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best explains the small differences between individual observations. In this study, the
observations are ECG waves or complexes from all cardiac beats of an ECG signal.

3. Analysis of the Morphological Features: After extracting the morphological features
from similar ECG components, further analysis will be applied depending on the
application.

As mentioned already, this research thesis is based on using PCA as a linear transforma-
tion technique in extracting morphological features from ECG signals. More and further
investigations will be done in the future by using nonlinear techniques in addition to PCA
in order to examine any inherently nonlinear underlying structure in ECG signal.

2.2 Organization of the Thesis

The thesis is divided into four parts. The first part, including chapter 3 and chapter 4,
provides the medical and technical basics and foundations necessary for the understanding
of ECG signal, the electrophysiological processes in the heart and the terminology used
throughout the thesis. Chapter 3 describes the anatomy and the physiology of the human
heart, ECG lead systems and normal ECG signal, normal heart rhythms and different
arrhythmias as well as heartbeat morphologies. Chapter 4 addresses the technical aspects
of ECG recording including ECG electrodes, ECG artifacts and interference and ECG
amplifiers. Chapter 4 includes also the databases used in this thesis.
The second part includes chapter 5 and chapter 6. Chapter 5 describes the mathematical
background of all the methods used in this thesis including Wavelet transformation, PCA
etc... Whereas, chapter 6 provides the state of the art in ECG signal processing.
The third part of this thesis, chapter 7, includes all the ECG signal preconditioning
developed and used in this thesis.
The fourth and the last part, chapter 8 and chapter 9, addresses the methods for detecting
predisposition to Torsade de Points (TDP), T wave clustering, QRS complex temporal
and spatiotemporal analysis as well as the analysis for predicting future QRS complexes
along with their results.
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3

Medical Foundations

3.1 Heart Anatomy

The human heart is located in the chest between the lungs, behind the sternum and above
the diaphragm. It weighs between 200 to 425 grams and is a little larger than the size of
a fist [2, 3, 4]. The basis end and the apex end of the heart lie on its main axis which
is oriented from the back-top-right to the front-bottom-left of the torso . Everyday it
beats in average 100000 times pumping about 7600 liters of blood to the body [5]. Like
a sack, a double-layered membrane called the pericardium surrounds the heart. Its outer
layer covers the roots of the heart’s major blood vessels and is attached by ligaments
to the spinal column, diaphragm, and other parts of your body. The inner layer of the
pericardium is connected to the heart muscle. The layers are separated by a coating of
fluid, letting the heart move as it beats and keeping it attached to the body. The normal
periodic contractions and relaxations of the heart allow the human cells receiving the
necessary amount of oxygen and nutrients and carrying away their end product of the
metabolism.
The walls of the heart are composed of cardiac muscle, Myocardium. It is similar to
skeletal muscle, because it has striations. The cardiac muscle consists of four chambers:
the right and left atria and ventricles. The anterior aspect of the heart is the right ven-
tricle, whereas the posterior aspect is the left atrium giving the heart its orientation.
The endocardium is defined as the thin serous membrane that lines the interior of the
heart, whereas the epicardium touches the inner layer of the pericardium that is in actual
contact with the surface of the heart. The left ventricle pumps blood to the systemic
circulation, where pressure is considerably higher than for the pulmonary circulation,
which arises from right ventricular outflow. The left ventricular free wall and the septum
is much thicker than the right ventricular wall [6]. The tricuspid valve lays between the
right atrium and ventricle, and the mitral valve is between the left atrium and ventricle.
Between the right ventricle and the pulmonary artery lies the pulmonary valve, while the
aortic valve is in the outflow tract of the left ventricle controlling blood flow to the aorta.
Carried in the inferior and superior vena cava, the blood returns from the systemic circu-
lation to the right atrium [7, 8, 9]. First, it has to go through the right ventricle, then it is
ejected through the pulmonary valve and the pulmonary artery to the lungs. Oxygen-rich
blood returns from the lungs to the left atrium and to the left ventricle. Finally blood is
pumped through the aortic valve to the aorta and the systemic circulation. The left and
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Figure 3.1. The location and the orientation of the human heart in the chest [6]

right coronary arteries branch off the aorta. They are divided afterward into numerous
smaller arteries supplying oxygen and nourishments to all heart muscles.

3.1.1 Heart Structure

Anatomically, the heart consists of cardiac myocytes, pacemakers and conducting tissues,
and extracellular space. Myofibers are connected together by further strands of collagen.

3.1.1.1 Cardiac Myocytes

The cell is the basic unit of living tissue. Cells perform different tasks relating to their
anatomy and physiology, and exhibit a voltage difference across their membranes. Only
nerve and muscle cells are excitable. The working myocardium consists of muscle cells or
cardiomyocytes, which have in general a roughly cylindrical shape and are able to produce
mechanical tension. The individual contractile muscle cells account more than half of the
heart’s weight. In atria, they are quite smaller in length and diameter than in ventricles.
Each cardiac myocyte is bounded by a complex cell membrane, sarcolemma, separating
its intracellular components from the extracellular space.

1. Sarcolemma: The sarcolemma consists mostly of the phospholipid molecules, or so-
called phosphoglycerides. Each molecule has a head of a phosphoric acid and a tail
of glyceride acid (fatty acid). Since the intercellular and the interstitial media are
aqueous, the main construction of a cell membrane consists of two layers of phos-
phoglycerides where their hydrophilic heads and hydrophobic tails point outside and
inside the membrane respectively, figure 3.4. The thickness of the cell membrane
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Figure 3.2. Heart chambers, systemic and pulmonary circulations. Figure is adapted from [10]

Figure 3.3. Cut-away diagram of cardiac muscle showing several microfibrils and associated sarcoplasmic retic-

ulum and the sarcolemma and t-tubular systems [11]

ranges between 4 and 5 nm [12] and contains also various and specific proteins form-
ing macromolecular pores and enabling ionic and metabolic transportation outwards
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and inwards the cell. These proteins are specified mainly by the type of ions which can
pass through and their functions vary between ionic transporting, ionic exchanging
or ionic pumping mechanisms, e.g. the sodium channel, the potassium channels, the
calcium channels, the sodium-calcium exchanger and the sodium-potassium pump.
They are therefore responsible of the selective sarcolemmal permeability to ion types.
Several gene-coded subunits, i.e. alpha, beta and gamma, contribute effectively in
forming the molecular structure of a voltage-gated channel and furthermore in mod-
ulating its electrophysiologic properties and functions. In the cardiac myocytes, there
is mainly one kind of sodium channel, two types of calcium channels [13, 14, 15, 16]
and large variety of potassium channels [17, 18, 19, 20]. Calcium channels can be
divided into L-type calcium channels or so called dihydropyridine receptors (DHPR)
and T-type calcium channels. Whereas, potassium channels can be classified under
two classes, 2TM-1P channels with two transmembrane segments and one pore in
between and 6TM-1P channel with six transmembrane segments and one pore in be-
tween. In some places, the cell membrane invaginates forming an extensive tubular
network (T-tubules) which connects the intracellular space with the extracellular one.
The adjacent cells are connected and glued together mechanically by means of inter-
calated discs of specialized proteins called connexins [21, 22]. Having bundles shape,
these proteins are located near to the ends of cardiac myocytes [23]. They form low
resistance intercellular channels. These pores between the cells are called gap junctions
[21, 22, 24, 25]. Gap junctions allow the passage of intracellular metabolic products,
anions and cations between cells showing no kind of ion selectivity. The conductance
of the gap junctions is influenced by the intracellular ion concentration of H+, Ca2+,
Na+, and Mg2+, drugs, extracellular pH value, the genetic expression of connexins and
the trans-junctional voltage [26, 27, 28, 29].

Figure 3.4. The typical structure of the sarcolemma and the voltage-gated ion channel. Figure is adapted from

[6]
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Figure 3.5. Structure of a typical voltage-gated ion channel: (a) The α subunit of a typical voltage-gated ion

channel comprises four subunits [homologous subunits for potassium ions (K+) channels or homologous repeat

domains for sodium ion (Na+) and calcium ion Ca2+ channels]. Each domain or subunit is made up of six

transmembrane domains (S1S6); the S4 domain is charged and acts as a voltage sensor. Cations pass through

the aqueous pore between the four subunits into the cell. (b) The assembled ion channel has one a subunit plus

other auxiliary subunits (b, d, etc.) that modulate channel function. Mutations in K+ and Na+ voltage-gated ion

channels are associated with human epilepsies; mutations in Ca2+ voltage-gated ion channels are associated with

mouse models of spike-wave epilepsies. The figure has been modified from [30]

.

2. Intracellular Components : The cardiomyocyte contains one nucleus or several nuclei,
mitochondria, a sacroplasmic reticulum and many rod-like bundles of myofibrils. A
liquid solution, so-called cytosol, of carbon hydrates, salts, lipids and proteins fills up
the rest of the volume of the intracellular space. The centrally-located nucleus contains
almost all genetic information of the cell. Located between sarcolemma and myofib-
rils, many mitochondria are responsible to transfer chemical energy into ATP needed
to maintain the heart’s function and viability. This energy is actually produced by
the ribosomes inside the mitochondria in the form of adenosine triphosphate (ATP).
Microscopically, each myofibril consists of many anisotropic bands with high birefrin-
gence, namely the A-band, and isotropic bands with low birefringence, the I-band.
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The Z-disk, also called Z-line, a dense staining band, bisects every I-Band. Thus, a
sacromere is defined as the segment between two successive Z-discs. It consists of
thick myosin filaments and thin actin, troponin and tropomyosin filaments. The phys-
ical process of contraction is realized by the displacement of the thin filaments along
the thick filaments with the help of the contractile proteins (actin & myosin) and
the regulatory proteins (troponin & tropomyosin). The H-zone is located in the cen-
ter of each A-band, where there is myosin available. Every H-zone contains another
dark-protein region in its center, called M-line.

Figure 3.6. The structure of a sacromere: the actin filaments are the major component of the I-band and extend

into the A-band. Myosin filaments extend throughout the A-band and are thought to overlap in the M-band.

The giant protein titin (connectin) extends from the Z-line of the sarcomere, where it binds to the thin filament

system, to the M-band, where it is thought to interact with the thick filaments. Figure is adapted from [31]

The main function of the Sacroplasmic Reticulum (SR) is to regulate the intracellular
movements of calcium ions, that is, releasing calcium to the myofilaments in order
to establish a cardiac contraction and retrieving calcium back from them to decrease
the cytosolic calcium ion concentration and facilitate relaxation. Furthermore, the SR
plays an important role in the interaction between regulatory proteins and contractile
mechanism determining the force of cardiac contraction.

3.1.1.2 Pacemakers and Conducting Tissues

Certain cells of the heart have the ability to undergo spontaneous depolarization, so-
called automaticity. They are located in the sinoatrial node, SA or sinus node, in the
right atrium at the superior vena cave. These cells are also called pacemaker cells in the
way they are able to generate an action potential without any influence from other cells
and in the way their discharge determines the rate of the heart. Their self-extracting action
is actually controlled by sympathetic and parasympathetic autonomic nervous systems.
The sympathetic system dominates a high heart rate during activity, exercise and stress,
whereas the parasympathetic system maintains much lower heart rate during relaxation.
After the electrical wavefront is generated from SA, it propagates through both atria and
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Figure 3.7. The structure of the thick and thin filaments [32]

reaches the atrioventricular node (AV node), which is located at the boundary between
the atria and ventricles. The AV node provides the only conducting path from the atria
to the ventricles in a normal heart [6]. Moreover, it collects and delays the electrical
impulse before entering into the ventricles and allowing the atrial contraction to further
increase the blood volume in the ventricles before ventricular contraction occurs [33].
The propagation from the AV node to both ventricles is performed by the ventricular
conduction system. Located in the wall between the two ventricles, the bundle of His,
also called atrioventricular bundle, is the first component in that system, through which
the electrical propagation enters the ventricles. The pathway is then divided into rapidly
conducting bundles along each side of the septum with branches to the left and right
ventricles. The left bundle subsequently divides into an anterior and posterior branch
[6]. The system ramifies further into an extensive network of specialized conduction fibers
called Purkinje fibers diverging to the inner sides of the ventricular walls.

3.1.1.3 Vascular System and Extracellular Space

The coronary arteries, veins, and many small blood vessels, called capillaries occupy
about the half of the exctracellular space. The capillaries lie very close to the surface of
more than one third of the cardiac cells allowing diffusion of nutrients and oxygen into
the cells and facilitating the removal of metabolic waste products. The other half of the
extracellular space is filled with interstitial fluid. By means of the T-tubular system, this
fluid is able to enter into the cell. In contrast to the cytosol, the extracellular cell-bathing
fluid is rich in sodium and low in potassium.

3.1.2 Myofiber Orientation of Cardiac Muscle

The cardiac myofibers consist of groups of myocytes surrounded by collagen weaves. The
orientation of these myofibers in the heart plays a strong role in generating anisotropic
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Figure 3.8. The conduction system of the heart [6]

electrical excitation and mechanical contraction. The majority of the working cardiac
fibers in atria have a very complex orientation. In contrast the fiber of the working
ventricular fibers show better organization with continuously transmural rotation and
spiral orientation.

3.2 Electrophysiology of the Heart

3.2.1 Resting Voltage, Action Potential and Refractory Periods of a Single
Cell of Working Myocardium

3.2.1.1 The Resting Voltage

Like all living cells at rest, the cardiac muscle cell (myocyte) is polarized, so that the
potential inside the cell (intracellular space) is negative with respect to the outside (in-
terstitial space). The transmembrane potential is defined as the potential difference across
the surface membrane of the cell. It is controlled primarily by three factors. The first is the
concentration of ions on the inside and outside of the cell, particularly Na+, K+, Cl−, and
Ca2+. The second factor is the permeability of the cell membrane to those ions through
specific ion channels. The last factor is the activity of electrogenic pumps (e.g., Na+/K+

-ATPase and Ca2+ transport pumps) that maintain the ion concentrations across the cell
membrane.
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Figure 3.9. The cardiac fiber orientation for the heart demonstrated on the heart of the Visible Man, Figure is

adapted from [34]

Because K+ concentration is high inside the cell and low outside, a chemical gradient for
K+ to diffuse out of the cell is found. In opposite, Na+ and Ca2+ chemical gradients for
an inward diffusion are found. The natural tendency of sodium and potassium ions is to
diffuse across their chemical gradients to attempt to reach their respective equilibrium
potentials, with sodium diffusing into the cell and potassium diffusing out. However, the
resting cell membrane is approximately 100 times more permeable to potassium than to
sodium, so that more potassium diffuses out of the cell than sodium diffuses in. This
permeability to potassium is due to potassium channels that are open at the resting
voltage. As a result, the dominant outward leak of potassium ions produces a polarizing
current that establishes the cell’s resting potential of roughly -70 mV [35].

3.2.1.2 The Action Potential of a Single Cell of Working Myocardium

By applying an external stimulus, cells of excitable tissues can be depolarized. An action
potential can be produced by a sequence of influx and outflux of multiple cations and
anions through the cell membrane. Once a cardiac cell is getting excited, an electrical
stimulation to the cells that lie adjacent to it and furthermore to all the cells of the heart
will be propagated [36]. The action potential has five phases, numbered from zero to four.
A typical action potential for a cardiac myocyte in the left ventricle is shown in figure 3.10.
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Figure 3.10. The Action Potential of a single cell of working Myocardium. Figure is adapted from [37].

Phase 4 represents the resting transmembrane potential, in other words, this voltage can
be measured if the cell is not stimulated. This phase of the action potential is associated
with the diastole of heart chambers. Phase 0 is known as the rapid depolarization phase.
The maximum rate of depolarization of the cell, dVmax/dt, is determined by the slop of
curve corresponding to this phase. This phase is associated with opening of the fast Na+

channels, rapidly increasing the membrane conductance to Na+ (gNa) and a rapid influx
of Na+ ionic current (INa) into the cell. In fact, the fast sodium channel has two gates, the
h gate and m gate, whose interaction allows Na+ to enter the cell through this channel.
At rest, the m gate is closed and h gate is open, but when the transmembrane potential
approaches a threshold (about -60 mV), the m gate opens quickly while the h gate closes
slowly. After a very short time, both gates will be open changing the sign of the trans-
membrane voltage to positive value (round +20 mV), to the so-called overshoot. The
closure of the fast Na+ channel after a short time and the slower outflow of potassium
through the potassium channels are tending to restore the initial state of the membrane
generating the phase 1. The balance between inward movement of Ca2+ (ICa) through L-
type calcium channels and outward movement of K+ through potassium channels sustains
the phase 2 (or so-called plateau) of the action potential. Cardiac myocytes have different
characteristics of the plateau phase. During this phase the fast sodium channels are not
active keeping the cell immune to any external stimulus. Therefore, it is called refractory
period. In the phase 3 of the action potential, K+ will be accumulated in the extracellular
space leaving the intracellular space. This action is responsible for the repolarization of
the cell. The cell can be depolarized again in this period by very large stimuli, therefore
it is called refractory relative period. Finally, K+ channels close when the transmembrane
potential is set back to the resting phase and the initial concentration of ions is rapidly
restored by means of Na-K pumps and Na-Ca exchangers. The myocytes throughout the
heart have different time course of action potentials figure 3.11.
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Figure 3.11. The resting voltage and action potential electrophysiology of a single cell of working Myocardium.

Figure is adapted from [6]

3.2.2 Excitation Propagation and Cardiac Contractions

Cardiomyocytes consist of three systems: (1) a sarcolemmal excitation system that par-
ticipates in spread of action potential (AP) and functions as a switch initiating intracel-
lular events giving rise to contraction, (2) an intracellular excitation-contraction coupling
(ECC) that converts the electric excitation signal to a chemical signal and activates the
(3) contractile system, a molecular motor based on formation of chemical bridges between
actin and myosin.

1. The Excitation System: This system is responsible to maintain the resting po-
tential, create an action potential and facilitate spreading the AP. The cardiac cycle
is initiated from the excitation system of SA node. The rapid change in the volt-
age during an AP causes the activation in the excitation system. Consequently, the
neighboring cells will be depolarized. As a result, an electrical impulse, also called
the cardiac electrical wavefront, propagates through the conduction system of the
heart and spreads from cell to cell throughout the myocardium in the way that the
atrial and ventricular contraction (depolarization) and relaxation (repolarization) will
happen with the correct timing in the healthy heart [33].

2. The Excitation-Contraction Coupling System : Excitation-contraction coupling
(ECC) is established by the sarcotubular system, an arrangement of specialized sar-
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Figure 3.12. Schematic diagram of the major cellular components involved in contraction of the myocyte. Figure

is adapted from [38].

colemmal and intracellular membranes that controls and amplifies the ability of AP to
switch the contractile system on and off by creating electrochemical signals between
the sarcolemma and intracellular organelles [39]. When a myocyte is depolarized by
an AP, calcium ions enter the cell during phase 2 of the action potential through
L-type calcium channels triggering a subsequent release of calcium that is stored in
the sarcoplasmic reticulum (SR) increasing the intracellular calcium concentration
from about 10−7 to 10−5 M. The released calcium binds to troponin-C (TN-C) that
is part of the regulatory complex attached to the thin filaments. When calcium binds
to the TN-C, this induces a conformational change in the regulatory complex such
that troponin-I (TN-I) exposes a site on the actin molecule that is able to bind to the
myosin ATPase located on the myosin head. This binding results in ATP hydrolysis
that supplies energy for a conformational change to occur in the actin-myosin complex
[38].

3. The Contractile System : The building block of the contractile system is the sarco-
mare. The result of the changes made by the released calcium in ECC is a movement
between the myosin heads and the actin. The actin and myosin filaments slide past
each other thereby shortening the sarcomere length. This ratcheting cycle occurs as
long as the cytosolic calcium remains elevated. At the end of phase 2 of AP, calcium
entry into the cell slows down lowering the cytosolic calcium concentration. Cytosolic
calcium is transported out of the cell by the sodium-calcium-exchange pump. This
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Figure 3.13. The Genesis of Electrocardiogram: the waveform and timing of different action potentials from

different regions and specialized cells of the heart and the corresponding cardiac cycle of the ECG as measured

on the body surface. Figure is adapted from [6]

cycle ends when new ATP binds to the myosin head, displacing the ADP, and the
initial sarcomere length is restored.

3.2.3 The Generation of an Electrocardiogram and the Dominant Cardiac
Vector

The Electrocardiogram (ECG) represents a temporal and spatial summation of the extra-
cellular fields of the action potentials generated by millions of cardiac cell. It describes the
different electrical phases of the cardiac cycle. ECG provides a measure of the electrical
currents generated in the extracellular fluid by the changes in the APs, figure 3.13.
At any given instant, only a group of cells out of millions of individual cells in the
myocardium depolarizes simultaneously. They can be represented as an equivalent current
dipole source to which a vector is associated, describing the dipole’s time-varying position,
orientation, and magnitude [33]. The dominant vector describing the main direction of
the electrical wavefront can be defined as a summation of the vectors of all current dipoles
in the heart at a certain time instant.
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3.3 ECG Lead Systems

The electrical activity of the heart can be characterized by measurements acquired from
the cardiac cellular level (invasive) as well as from the body surface (non-invasive). Due
to the fact that this work is based on analysing the Electrocardiogram recorded from
electrodes placed on different parts of the body, only non-invasive ECG lead systems are
presented.

3.3.1 The Conventional 12-lead System

3.3.1.1 Bipolar Limb Leads

In the year 1913, Einthoven et al. developed a method of studying the electrical activity
of the heart by representing it graphically in a two-dimensional geometric figure, namely,
an equilateral triangle [40, 41]. Einthoven’s hypothesis is based on several oversimplifying
assumptions [41]: (1) the body is a homogeneous volume conductor. (2) The mean of
all electrical forces can be considered as originating in an imaginary dipole located in
the electrical center of the heart. (3) Electrodes placed on the right arm (RA), left arm
(LA) and left leg (LL) are used to pick up the potential variations on these extremities
to form an equilateral triangle, also called Einthoven’s triangle. In fact, the latter is not
a true geometric equilateral or equiangular triangle, but because the distances from the
dipole to the extremities are great enough to approach ’infinity’, the extremities do form
an equilateral triangle indeed. The three bipolar limb leads are denoted I, II, and III
and are obtained by measuring the voltage difference between RA, LA, and LL in the
following combinations:

I = φLA − φRA, (3.1)

II = φLL − φRA, (3.2)

III = φLL − φLA, (3.3)

II = I + III, (3.4)

where φLA, φRA and φLL denote the electric potential recorded on the LA, RA and
LL, respectively. The limb leads describe the cardiac electrical activity in three different
directions of the frontal plane. In that case, each direction is separated by an angle of
60o, figure 3.18.
Wilson Central Terminal (WCT) is defined as a common point, where the limb leads
are connected together, through three resistors of 5000 (Ω) each. The potential of φWCT

remains almost constant throughout the entire cardiac cycle with respect to the potential
zero at the infinity. WCT is calculated as follows:

φWCT =
φRA + φLA + φLL

3
, (3.5)
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Figure 3.14. Einthoven limb leads and Einthoven triangle. Figure is adapted from [42]

Figure 3.15 shows the generation of the ECG signal in the Einthoven limb leads along
with the time-variant cardiac dominant vector and its projections on each of the three
Einthoven limb leads.

3.3.1.2 Augmented Unipolar Extremity Leads

The main aim of these leads is to fill the 60o gaps in the directions of the bipolar limb leads.
That is, the augmented limb leads, namely aV R, aV L, and aV F , describe directions
which are shifted 30o from those of the bipolar limb leads [42], figure 3.18 . They are
defined as the differences between one corner of Einthoven’s triangle and the average of
the remaining two corners, figure 3.16 :

aV R = φRA − φLA + φLL
2

, (3.6)

aV L = φLA − φRA + φLL
2

, (3.7)

aV F = φLL − φRA + φLA
2

, (3.8)

Theoretically, Lead III as well as the augmented unipolar limb leads do not need to be
recorded, but instead they can be computed from Lead I and Lead II.
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Figure 3.15. The generation of the ECG signal in the Einthoven limb leads. Figures are adapted and adjusted

from [6]

3.3.1.3 Unipolar Precordial Leads

The unipolar precordial ECG is obtained by placing the exploring electrodes connected to
the positive pole of the ECG amplifier on the six locations of the anterior and left portions
of the chest [41], see figure 3.17(a). WCT is used in this case as the indifferent electrode,
see figure 3.17(b). The Unipolar Precordial Leads are called also Wilson Unipolar Chest
Leads. The main six precordial leads are called V1...V6. They yield a positive deflection
when facing positive charges and negative when facing negative charges according to
what Wilson called the the solid-angle concept [41]. This concept is merely an imaginary
cone, which extends from the side in the chest throughout the heart, so that a precordial
electrode is at its apex and the opposite epicardial surface at its base [41]. According
to Wilson’s scalar concept of ECG, the solid angle subtended by the corresponding lead
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Figure 3.16. The Augmented Unipolar Limb Leads, aV R, aV L, and aV F . Figure is adapted and adjusted from

[6]

(a) (b)

Figure 3.17. The unipolar precordial leads: a) The main electrode locations in Wilson chest leads defined

anatomically b) Recording the unipolar precordial leads. Figures are adapted from [6].

records the electrical activity from the regions of the heart over which the lead is placed
as well as distant regions [41]. Leads V1 and V2 record the activity of the right ventricle.
Whereas leads V3 and V4 reflect the activity of the anterior wall of the left ventricle and
leads V5 and V6 view the lateral wall of the left ventricle.



18 3. Medical Foundations

(a)

(b)

Figure 3.18. The direction of the bipolar limb leads and the augmented limb leads in the frontal plane and the

precordial leads in the transversal plane: a) The direction of the bipolar limb leads and the augmented limb leads

in the frontal plane. b) The direction of the precordial leads in the transversal plane. Figure are adapted from

[33].

3.3.1.4 Mason and Likar Lead System

In 1966, Mason and Likar published their recommendations for moving the limb elec-
trodes used to record the 12-lead ECG from the limbs to the thorax [43] for exercise
electrocardiography. Their repositioned electrodes are shown in figure 3.19. They com-
pared ECG recordings where the right and left arm electrodes were positioned in the
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Figure 3.19. The modified electrode positions for the limbs according to Mason and Likar [43] . Figure is

adapted from [46]

conventional areas of the arm to those obtained from gradually moving the electrodes
to progressively proximal positions up the arms and then over the upper anterior chest.
Finally, it was recommended that the right arm electrode be moved to a point in the
infraclavicular fossa medial to the border of the deltoid muscle and 2 cm below the lower
border of the clavicle. The corresponding position was recommended for the left arm
electrode as shown in figure 3.19. Further experimentation led to a recommendation that
the left leg electrode (denoted LL) be placed in the anterior axillary line halfway between
the costal margin and the iliac crest. They suggested that the location of this electrode
was not critical; that is, it could be varied by a few centimeters in any direction to avoid
skin folds, and so on. Some authors simply consider this reference point as being the left
iliac crest [44]. Mason and Likar initially illustrated the right leg electrode as being on
the right thigh, but for convenience it is now a matter of routine to place this electrode in
the region of the right iliac fossa as recommended by the American College of Cardiology
[45, 46].

3.3.2 The Corrected Orthogonal Leads

This lead system is known also as Frank lead system. Seven electrodes placed on the chest,
back, neck and left foot are used to view the heart from the left side, from below and from
the front. This kind of lead system reflects the electrical activity in the three perpendicular
directions X, Y, and Z and traces out a three-dimensional loop for every cardiac cycle by
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means of the time-variant cardiac dominant vector. The three projections of this loop onto
XY, XZ and YZ planes are also recorded. The morphology of the loops, their direction of
rotation and their areas are the main spatial quantities that improve ECG-based diagnosis
of some cardiac pathologies, like myocardial infarction. This particular type of recording
is referred to as a vectorcardiogram (VCG).

3.3.3 Body-Surface Mapping Lead Systems

Body-surface potential mapping, also called multichannel electrocardiography, is an ex-
tension of conventional electrocardiography aiming for refining the noninvasive character-
ization and use of cardiac generated potentials [1-5]. By increasing the spatial sampling
of body-surface electrocardiographic information, the latter characterization is improved.
The single electrocardiographic lead provides only a simple means for detecting clinically
significant cardiac pathologies. Multichannel ECG mapping, on the other hand, provides
the spatial ECG information which, on a theoretical basis, provides for identification of
localized cardiac activity and hence the opportunity for improving the utility of ECG
in clinical care of patients. A body-surface potential map (BSPM) may be defined as
the temporal sequence of potential distributions observed on the thorax throughout one
or more electrical cardiac cycles. In practice, tens or hundreds of unipolar ECGs are
recorded, either simultaneously or individually with subsequent time alignment. For each
time instant of interest, the potential measured in each lead is associated with the spatial
location at which it was measured. The spatial distribution of the set of potentials at a
particular instant in the cardiac cycle may then be displayed as isopotential contour maps
showing lines which connect all sites which have the same potential [46], figure 3.20.
Body-surface mapping was actually developed for two reasons. The first one was to permit
a study of the spread of excitation over the thorax. This allowed the normal patterns to
be studied and inferences drawn on the time of epicardial ’breakthrough’ of activation
at the right and left ventricles. Some investigators use between 16 and 240 electrodes to
map the thorax using computer techniques for plotting. The second reason for mapping
is to assess in a mathematical way the total electrical information available [46]. Barr
suggested [48] that 24 surface leads would allow the thorax to be mapped so that with
the use of a transformation, the ECG data at other points could be estimated. The aim
behind this particular study was to derive information on the equivalent cardiac generator
and so attack the inverse problem [46]. Kornreich used a 126-lead system to map the body
surface and from this concluded that nine independent leads would be adequate to retrieve
all of the clinically useful information on the body surface [49]. The group of Taccardi
used a 219 irregularly spaced electrode array [50]. Lux et al. [51] also utilized complex
mathematical techniques to reduce the number of electrodes required for mapping to a
more limited number on which they were able to calculate normal ranges and assess the
results of exercise testing. Mapping Systems used for clinical purposes, such as detecting
areas of ST elevation following acute myocardial infarction, generally consist of a small
array of unipolar chest leads. Maroko et al. in 1972 [52] suggested the use of a 5x7
electrode array for ST mapping following myocardial infarction. In 1979, Fox et al. [53]
utilized a 4x4 array of electrodes for mapping infarction and also for exercise testing. It
was subsequently suggested that this be reduced to a 4 x 3 array [54]. Monro et al. [55]
employed a 24-electrode array that mapped both the anterior and posterior chest walls.
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Figure 3.20. (a) Electrodes of the Amsterdam 62-lead body surface mapping set indicated with solid circles

and including the standard 6 precordial electrodes illustrated with open circles. (b) Example of a body surface

potential map recorded with the lead set shown in panel (a). This map displays the potential distribution,

integrated over some time interval, over the body surface, using contour lines which connect points with equal

values. Plus and minus signs indicate the extrema positions; the shaded area identifies torso sites with positive

values [47]. Figures are adapted from [47]

By the means of sophisticated mathematical interpolation methods, the potentials at any
other point on the thorax could be calculated [56, 57].

3.3.4 Ambulatory Monitoring Leads

Ambulatory ECG monitoring is used to identify patients with transient symptoms, e.g.,
palpitations, light-headedness, or syncope, which are indicative of arrhythmias. Another
group of patients are those at high risk of sudden death after infarction. Ambulatory
monitoring is also used in patients who are on antiarrhythmic drugs and whose reaction to
the therapy needs to be assessed. The ambulatory ECG recording technique is also called
Holter monitoring after its inventor Norman Holter who introduced the first portable
(analog) device to record an ECG in the late 1950s [58]. Ambulatory ECG signal is
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Figure 3.21. The recommended electrode positions for two-channel ambulatory ECG recording according to the

Committee on Electrocardiography of in the American Heart Association [44]. A+ and A- are the positive and

negative electrodes for the V5 type lead (not the same as V5 in precordial wilson chest leads) and B+ and B-

are the electrodes for the Vl type lead. The open circle denotes an electrode on the back. Figure is adapted and

adjusted from [46]

recorded during 24 hours or more of normal daily activities for the patient [46]. The
Committee on Electrocardiography in The American Heart Association (AHA) suggest
for electrode placement for two-channel recording [59]. It is based on a five-electrode
System, one of which is a ground electrode with the other two pairs each forming a bipolar
lead. The recommended electrode positions are as follows. (a) V1 type lead. The positive
electrode should be in the fourth right intercostal space, 25 mm from the sternal margin
while the negative electrode should be in the lateral third of the left infraclavicular fossa.
(b) V5 type lead. The positive electrode should be in the fifth left intercostal space at
the anterior axillary line and the negative electrode should be 25 mm below the inferior
angle of the right scapula on the posterior torso [46]. The fifth electrode, the ground
electrode, should be placed in the lateral third of the right infraclavicular fossa. The
electrode positions are illustrated in figure 3.21.
For several years, much emphasis was placed on developing algorithms for classification
of beat morphologies since it was believed that the VPB count per hour represented an
important risk factor in sudden death. Although it was later shown that this belief was
unfounded, VPB detection remains an essential part of the analysis of ambulatory ECGs.
For example, it is necessary to deal with the presence of ectopic beats when an EGG is
analyzed with respect to heart rate variability. The latter type of analysis in Holter mon-
itoring has shown great promise in predicting mortality rates in patients after myocardial
infarction [33]. A second reason for undertaking ambulatory electrocardiography may
be to evaluate Symptoms that are possibly related to myocardial ischemia, i.e. assessing
ST-segment changes. The AHA committee noted previous suggestions that a pair of leads
approximating V3 and aVF from the 12-lead ECG may detect more ST-segment shifts in
patients with unstable angina [60]. In another study [61], Quyyumi et al. utilized two
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Figure 3.22. Schematic diagram of normal sinus rhythm for a human heart as seen on ECG. Figure is adapted

from [6]

bipolar leads to assess ST changes in patients with varying severity of coronary artery
disease. Diagnosis of atrial arrhythmias using the ambulatory EGG is rendered difficult
by the fact that P waves are frequently masked by noise and artifacts. As a result of
this, it is extremely difficult to design algorithms for P wave detection that give a reliable
diagnosis [33].

3.4 The Normal ECG Waves, Time Intervals, and its Normal

Variants

The normal ECG signal represents a normal cardiac cycle. Figure 3.22 illustrates the
normal ECG of one cardiac cycle along with its components. The normal variances and
characteristics of its waves, durations and time intervals are described as follows:

3.4.1 The P Wave

Depolarization in the atria is registered as the P wave in the ECG. Duration of the P wave
should not exceed 0.10 sec in limb leads, or 0.12 sec in chest leads. Its amplitude averages
0.1-0.3 mV. P wave is normally positive in limb leads except in aVR lead, where it is always
negative. It is most pronounced in lead II. P wave is always positive in left precordial leads,
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Figure 3.23. The power spectrum of the P wave, QRS Complex and T wave: This plot gives approximately the

normal variation of the ECG spectral components. Larger variation can exist depending on lead position, ECG

morphology and subjects. Figure is adapted from [33]

often biphasic (+ -) over the right chest wall. The autonomic nervous system activity plays
a considerable role in the variation of P wave morphology. The amplitude of P wave may
increase remarkably, above all in leads II, III and aVF, when the sympathetic tone is
increased. On the other hand, when there is an increased parasympathetic tone, P wave
becomes flat in leads II, III, and aVF. The spectral characteristics of a normal P wave is
usually considered to be low-frequency, below 10-15 Hz [33], figure 3.23.

3.4.2 The QRS Complex

The ventricular complex represents the initial ventricular depolarization. It usually com-
prises a Q, R and an S wave. Every positive wave is called R. The first negative wave
preceding an R is always called Q and the first negative wave following R is always called
S. A possible second or third R wave is called R’ or R”, figure 3.24. It is also preferable
to speak of a split ventricular complex, when several waves are presented. Notation of
individual waves of the ventricular complex is different according to amplitude by using
small or large letters. The relation of the waves to each other will be the measure for
’small’ or ’large’, since there is no absolute measure for that. QRS complex is mostly high
concentrated between 10-50 Hz, figure 3.23.
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Figure 3.24. Different morphologies of QRS complex. Figure is adapted from [62]

3.4.3 The PR or PQ Interval

It is measured from the start of the P wave to the start of ventricular complex. It should
not be shorter than 0.12 sec, nor longer than 0.20 sec. Prolonged AV conduction time at
the rest which becomes normal on exercise is not necessarily a sign of abnormality.

3.4.4 The T Wave

It expresses repolarization of the ventricles. Its amplitude must always be taken in relation
to the R wave. T wave is always positive in lead I and II, and it is always negative in
aVR lead.

3.4.5 The U Wave

After T wave, an ECG can sometimes show a U Wave. It is of the same deflection
as T Wave and similar to shape to P Wave. The U Wave is thought to represent late
repolarization of the Purkinje fibers in the ventricles [63].

3.4.6 The PP Interval and the RR Interval

PP interval is defined as the duration of atrial cycle. It is useful as an indicator of atrial
rate. Whereas, RR interval is defined as the distance in msec between two successive R
waves. It is an indicator of ventricular rate representing the length of a ventricular cardiac
cycle. Moreover it is very important to characterize different arrhythmias and to study
the heart rate variability.
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3.4.7 The QT Interval

Referring to Lepeschkin and Surawicz, this interval is measured from the beginning of
Q wave (if this is absent, from the beginning of R wave) to the end of the T wave as it
returns to the isoelectric line [40]. Its duration depends on the heart rate. In some cases,
determination of QT interval (Q onset, T end or both) is difficult. One of these cases
is the hypokalemia, where flattening of T wave is increased and accompanied by the U
wave. In that case, QU interval needs to be considered instead of QT interval. Although
this interval has been considered as a surrogate of action potential duration, it yields
a limited view of the complicated electrogenesis of the ventricular repolarization [64].
Nevertheless, the most important aspect of this interval is its relation with heart rate
[64]. On first sight, the task of describing the QT/RR relationship does not appear to be
too complicated. Unfortunately the problem is far from simple [65]. The standard clinical
correction is Bazett’s formula [66] calculating the heart rate corrected QT interval, QTc.
Bazett’s formula is

QTc =
QT√
RR

, (3.9)

where QT is the QT interval measured in msec and RR is the interval from R peak of one
QRS complex to R peak of the next QRS complex, measured in seconds. However, this
formula tends to not be accurate, and over-corrects at high heart rates and under-corrects
at low heart rates.
In fact, the adjustment of the QT interval to changes in rate does not occur immediately
but rather gradually. In normal subjects and even in persons with minimal myocardial
abnormalities, abrupt RR changes do not prolong the QT interval if the pauses are short
[39]. Longer pauses produce some prolongation but restitution tends to occur in the first
postpause beat [64]. This behavior can be considered as a type of cardiac memory, since
QT interval is influenced by the past history [67]. The differences between the longest
and the shortest QT intervals of the 12-lead ECG is defined as QT dispersion, QTd. It
has emerged as a noninvasive measurement for quantifying the degree of myocardial re-
polarization inhomogeneity [68]. Some other authors, do not accept this interpretation
and they claimed that the width of the T wave is in fact a direct measure for the repo-
larization inhomogeneity when T onset is clearly visible [69]. QTd can also be noticed
from the abnormal morphology of T-Loop in VCG. QT dispersion has been linked as a
risk indicator for arrhythmic cardiac death in many chronic cardiac pathological cases.

3.4.8 The ST Segment

ST segment represents the period from the end of ventricular depolarization to the be-
ginning of ventricular repolarization. The ST segment lies between the end of the QRS
complex and the initial deflection of the T-wave and is normally isoelectric. It is clinically
important if it is elevated or depressed as it can be a sign of ischemia and hyperkalemia
[70]. In order to interpret ST segment correctly, the J point should be localized precisely.
The J point, as definition, is the time instant in the ECG when the QRS complex curves
into the ST segment.
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Figure 3.25. The premature ventricular contraction (PVC). Figure is adapted from [75].

3.5 Heart Rhythms and Arrhythmias

The electrical impulses generated in the SA node control the rhythm of the heart. Any
disturbance of the normal sinus rhythm is called arrhythmia. In general, arrhythmia
may occur in the heart either when depolarization is initiated by other pacemaker cells
exhibiting accelerated automaticity as compared to the SA node, or when the conduction
of the electrical impulses is altered, that is, when the conduction of the cardiac cells is
partially or completely blocked causing a propagation delay of the impulse or conduction
failure [71, 72, 33]. Arrhythmia can be classified regarding the site of its origin.

3.5.1 Sinus Rhythm

SA node is the original source for the normal sinus rhythm with a rate between 50 and 100
beats per minute at rest. Sinus bradycardia and sinus tachycardia are defined as a rhythm
below 50 and above 100 respectively. The heart rate is influenced by external perturba-
tions like physical and mental stress and it is influenced by the continual variation of the
balance between the parasympathetic and the sympathetic activities of the autonomic
nervous system. Numerous studies on analysing the dynamics of spontaneous heart rate
variability has been done during the recent years. This research aimed for diagnosing and
predicting cardiovascular diseases and life-threatening arrhythmias [73, 74].

3.5.2 Premature Beats

The normal sinus rhythm is sometimes interrupted by a beat occurring before the expected
time of the next sinus beat and is therefore referred to as a premature beat. In addition
the terms ’ectopic beat’ and ’extrasystole’ are frequently used synonyms [33]. When the
ectopic beat is originated from the atria, it is called supraventricular premature beat
(SVPB) and when its origin is from the ventricles, it is called ventricular premature beat
(VPB). Ventricular premature beats, also known as premature ventricular contraction
(PVC) or heart palpitations, are characterized by a premature broad QRS complex with
duration greater than 120 msec, and without preceding P wave, see figure 3.25.
Bigeminy, Trigeminy and Quadrigeminy are defined as every normal beat is followed
by one, two and three premature beats respectively, see figure 3.26 as an example of
Bigeminy. Whereas, if a premature beat occurs after one, two, or three normal beats, they
will be defined as (1:1 extrasystole), (2:1 extrasystole) and (3:1 extrasystole) respectively.
Two consecutive VPBs are called a couplet, see figure 3.27; three consecutive VPBs
are called a triplet. Three or more consecutive VPBs are called a salvos or ventricular
tachycardia.
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Figure 3.26. An example of Bigeminy. Figure is adapted from [75].

Figure 3.27. An example of Couplet. Figure is adapted from [75].

In VPBs the ventricular impulses are conducted retrogradely to the atria, at least par-
tially. Therefore about 50% of them are discharging the sinus node. Monomorphic VPBs
are called also unifocal because they generate from the same focus. Whereas, Polymor-
phic VPBs generate from the several focus. Most of the VPBs have a right bundle-branch
block (RBBB)-like pattern or right bundle-branch block (RBBB)-like pattern.

3.5.3 Atrial Arrhythmia

One or multiple atrial ectopic foci are responsible for many of the various rhythm distur-
bances causing atrial arrhythmias. If the ectopic focus is located between SA node and
AV node, the P wave will be abnormal and sometimes negative in the ECG. When the ec-
topic focus is located near to the AV node the atria and the ventricles will be depolarized
at the same time making P wave coincide with QRS complex in the ECG.

3.5.3.1 Atrial Tachycardia

Increasing the automacity in the pacemaking cells of one or multiple foci within the atria,
atrial tachycardia will increase the heart rate. The P wave sometimes appears in the ECG
coinciding with the previous T wave or even the previous QRS complex [33].

3.5.3.2 Atrial Flutter and Atrial Fibrillation

In these kinds of atrial tachyarrhythmias, the atria and the ventricles are not synchronized.
The cause of both arrhythmias is a continuous reentry of an electrical impulse in the
atria. The reentry mechanism starts when an impulse depolarizes receptive myocytes
neighbouring an area of relatively longer refractory periods. When the originally inactive
area becomes activated, the impulse may propagate back towards the area which was
initially depolarized. If the latter has had time to recover and to depolarize again, the
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(a)

(b)

Figure 3.28. a) Atrial flutter. a) Atrial fibrillation. Figures are adapted from [75].

reentry circle will be repeated. The high rate of atrial contraction will lead to a slow
blood inflow through the atria increasing the chance for a clot to be produced [33]. The
clot afterwards might cause a stroke or severe damage to any other part of the body. In
case of atrial flutter, the atria beats regularly at a rate of around 300 beats per minute.
The ventricles are protected from this high rate by a refractory AV node. In the ECG, a
sawtooth-like regular waveform, also called F waves or flutter waves, appears, see figure
3.28-a. Atrial fibrillation is a faster and more chaotic rhythm than atrial flutter. This
kind of arrhythmia is produced by multiple reentry circuits within the atria producing a
high rate of atrial contraction between 400 and 700 beats per minute in a chaotic fashion.
Fibrillation waves, f waves, are multiform and irregular, see figure 3.28-b.

3.5.4 Ventricular Arrhythmia

Reentry mechanisms within the ventricles are responsible for establishing the ventricu-
lar arrhythmia which include ventricular tachycardia, ventricular flutter, and ventricular
fibrillation.

3.5.4.1 Ventricular Tachycardia

Ventricular Tachycardia (VT) defines the case of having in the ECG three consecutive
Premature Ventricular Complexes (PVCs) or more. VT is a severe arrhythmia that often
impairs heart function considerably and may be a precursor of ventricular fibrillation.
The QRS duration of the PVCs in case of VT should be 0.14 sec or greater and the heart
rate should be between 100 and 240 beats per minute. VT may be sustained, that is it
can last seconds, minutes or hours. It may be also non-sustained when it lasts less than
30 seconds. There are three type of VT that differ in morphology, clinical significance and
often in etiology:

1. Monomorphic VT : It is the most frequent type which can be sustained or non-
sustained. It is called ’Ventricular flutter’ with a rate above 200 beats per minute. The
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Figure 3.29. An example of ventricular flutter. Figure is adapted from [75].

most current etiology of monomorphic VT is a coronary heart disease (CHD). The
prognosis of VT generally depends on the type and severity of the heart disease.

2. Polymorphic VT of type ’ Torsade de Pointes’ : Torsade de points VT is char-
acterized by a special ECG morphology, where QRS complexes change their polarity
around the isoelectric line. This type of VT will usually terminate spontaneously after
several seconds or will degenerate into ventricular fibrillation in relatively rare cases.
This type of VT will be presented in details later in this chapter.

3. Polymorphic VT without ’Torsade de Pointes’ : Polymorphism of QRS com-
plexes without Torsade de Pointes is occasionally seen in patients with severe myocar-
dial damage. Degeneration into ventricular fibrillation is quite common.

3.5.4.2 Ventricular Flutter

It is an organized rapid rhythm of the ventricles. QRS complex as well as T wave and P
wave can not be seen in the ECG, see figure 3.29. Ventricular flutter can develop into
ventricular fibrillation.

3.5.4.3 Ventricular Fibrillation

It is much more chaotic rhythm than the ventricular flutter which can lead to cardiac
arrest and loss of consciousness, see figure 3.30. The condition can often be reversed by
the electric discharge of DC current from a defibrillator.

3.5.5 Wolff-Parkinson-White Syndrome

This syndrome is characterized by the presence of an accessory atrioventicular pathway
located between the wall of the right or left atria and the ventricles, known as the Bundle
of Kent. This pathway allows the impulse to bypass the AV node and activate the ven-
tricles prematurely. Consequently, an initial slur to the QRS complex, known as a delta
wave may be observed. The QRS complexes are wide, more than 0.11 sec, indicating that
the impulse did not travel through the normal conducting system. The PR is shortened,
to less than 0.12 sec, because the delay at the AV node is bypassed. Treatment would
involve surgical removal or ablation of one of the pathways [76].
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Figure 3.30. An example of ventricular flutter. Figure is adapted from [75].

3.5.6 Heart Conduction Blocks

A heart conduction block is defined as a blockage of the electrical conduction system
of the heart at any level. Blocks that occur within the sinoatrial node (SA node) are
described as SA nodal blocks. Blocks that occur within the atrioventricular node (AV
node) are described as AV nodal blocks. Blocks that occur below the AV node are known
as infra-Hisian blocks [77].

3.6 Heartbeat Morphologies

Abnormal heartbeat morphologies can be seen in many arrhythmic cases. Morphological
abnormality of the heartbeat can be reflected also by the abnormal structural conditions
of the heart, such as ischemia and myocardial infarction as well as atrial and ventricu-
lar hypertrophy (mass enlargement) and pericarditis (inflammation of the pericardium).
Furthermore, abnormalities in beat morphology can be due to the mutations in ion chan-
nels controlling cellular repolarization of the heart, such as Long QT Syndrome, Brugada
Syndrome. Other important arrhythmias, which are sometimes linked to mutations in ion
channels, are T wave alternans and polymorphic VT type Torsade de ’Pointes’, etc...

3.6.1 Ischemic Heart Disease

Ischemic Heart Disease (IHD), also known as Coronary Artery Disease (CAD), is a disease
characterized by reduced blood supply to the heart. It is usually felt as angina, especially if
a large area is affected [78]. Due to the deposition of cholesterol plaques on their walls, the
blood vessels will be narrowed or even blocked. This will reduce or stop providing oxygen
and nutrients to the myocytes leading to the death of that area of heart tissue and causing
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a possible heart attack. Electrocardiography (ECG) may be normal in several patients
at rest between the episodes of pain with a possibility for a depression or an elevation of
the ST segment and a T wave inversion in several leads. In cases of infarction, there will
be ST segment elevation in the ECG, which may gradually evolve. An exercise testing
(Treadmill Test-TMT) is often indicated in patients who have symptoms of IHD but have
normal ECG patterns [79].

3.6.2 Myocardial Infarction

Acute myocardial infarction (AMI or MI), also known as a heart attack, is a serious,
sudden heart condition. It causes sometimes loss of consciousness. It occurs when the
blood supply to a part of the heart is interrupted, causing death of the local heart tissue.
The severity of heart attacks can vary relating to the size the affected area, which disturbs
the normal propagation pathways and causes abnormal direction of the electrical impulse.
ECG waves of an individual with MI differ significally from the normal ECG waves. There
are many morphological varieties of infarction ECG waves depending on the position and
size of the infarction in the myocardium.

3.6.3 Long QT Syndromes

An abnormally long delay between the depolarization and the repolarization of the heart
ventricles is a disease defined as long QT syndrome (LQTS). Specific mutations in ion
channels controlling cellular repolarization underlie the various congenital forms of long-
QT syndrome [80, 81, 82]. Individuals with LQTS have a prolongation of the QT interval
in the ECG. The two most common types of LQTS are genetic and drug-induced. Muta-
tions to one of several genes, which are tending to prolong the duration of the ventricular
action potential (APD) and lengthening the QT interval, is the cause of genetic LQTS.
These LQTS can be inherited in an autosomal dominant or an autosomal recessive fashion.
The autosomal recessive forms of LQTS tend to have a more severe phenotype, with some
variants having associated syndactyly or congenital neural deafness [83, 84]. A number of
specific genes loci have been identified that are associated with LQTS. Because exogenous
factors such as antiarrhythmic drugs causing the acquired form of LQTS operate on the
same ion channels implicated in congenital LQTS, both forms of the disease may share
common electrophysiological mechanisms [85]. Drug induced LQT is usually a result of
treatment by anti-arrhythmic drugs such as amiodarone or a number of other drugs that
have been reported to cause this problem. Some anti-psychotic drugs, such as Haloperidol
and Ziprasidone, have a prolonged QT interval as a rare side effect. Because Long QT
syndrom can lead to ventricular arrhythmias, it can cause ventricular fibrillation which
is sometimes associated with syncope (loss of consciousness) and sudden cardiac death
(SCD) [86, 84].

1. LQT1: It is the most common type of long QT syndrome, making up about 40 to
55 percent of all cases. The LQT1 gene KCNQ1 has been isolated to chromosome
11p15.5. KCNQ1 codes for the voltage-gated potassium channel KvLQT1 that is
highly expressed in the heart. It is believed that the product of the KCNQ1 gene
produces an alpha subunit that interacts with other proteins (particularly the minK
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beta subunit) to create the IKs ion channel, which is responsible for the delayed potas-
sium rectifier current of the cardiac action potential [84]. Homozygous mutations in
KVLQT1 leads to severe prolongation of the QT interval (due to near-complete loss of
the IKs ion channel), and is associated with increased risk of ventricular arrhythmias
and congenital [87, 84].

2. LQT2: It is the second most common gene location that is affected in long QT
syndrome, making up about 35 to 45 percent of all cases. It involves a mutation
of the human ether-a-go-go related gene (HERG) on chromosome 7. The HERG gene
(also known as KCNH2) is part of the rapid component of the potassium rectifying
current (IKr), That is, the IKr current is mainly responsible for the termination of
the cardiac action potential and therefore the length of the QT interval. The normally
functioning HERG gene allows protection against early after depolarizations (EADs).
Most drugs that cause long QT syndrome do so by blocking the IKr current [87, 84].

3. LQT3: It involves a mutation of the gene that encodes the alpha subunit of the Na+

ion channel. This gene is located on chromosome 3p21-24, and is known as SCN5A
(also hH1 and NaV1.5). This mutations slows down the inactivation of the Na+ chan-
nel, causing prolongation of the Na+ influx during depolarization.

4. LQT4: It involves a mutation in an anchor protein Ankyrin B which anchors the ion
channels in the cell. This kind of LQT occurs very rarely.

5. LQT5 & LQT6: LQT5 involves a mutation in the gene KCNE1 encoding for the
potassium channel beta subunit MinK. In the same manner, LQT6 involves a mutation
in the gene KCNE2 which encodes for the potassium channel beta subunit MiRP1.

6. LQT7: It is also called Andersen-Tawil syndrome. It involves a mutation in the gene
KCNJ2 encoding for a potassium channel protein Kir 2.1. [88, 84].

7. LQT8: Also called Timothy’s syndrome. It is due to a mutation in the calcium channel
Cav1.2 encoded by the gene CACNA1c.

3.6.4 Brugada Syndrome

Brugada syndrome is due to a mutation in the gene that encodes for the sodium ion
channel in the cell membranes of the myocytes. Gain-of-function mutations in this gene
lead to elongation of the cardiac action potential [89, 90]. The pattern seen on the ECG
is persistent ST elevations in the electrocardiographic leadsV1-V3 with a right bundle
branch block (RBBB) appearance with or without the terminal S waves in the lateral
leads that are associated with a typical RBBB. A prolongation of the PR interval is also
frequently seen [89, 91]. The cause of death in Brugada syndrome is ventricular fibrillation.
The treatment is done via implantation of an implantable cardioverter-defibrillator (ICD)
continuously monitoring the heart rhythm and defibrillating an individual if ventricular
fibrillation is detected [89, 92].

3.6.5 T-Wave Alternans

T-Wave alternans (TWA) is an ECG phenomenon characterized by beat-to-beat alter-
nation or oscillations of the morphology, amplitude, and /or polarity of the T wave, see
figure 3.31.
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Figure 3.31. An example of T-wave alternans taken from an ECG tape (Pfizer Inc.).

TWA is commonly observed in the acquired and congenital and long-QT syndromes
(LQTS). Moreover, it is very important prognostic indicator in that it is commonly ob-
served just preceding episodes of Torsade de Pointes [93, 94, 95]. The study in [96]
examines the cellular and ionic basis for TWA induced by rapid pacing under condition
of mimicking the LQT3 from the congenital LQTS in an arterially perfused canine left
ventricular wedge preparation. They recorded transmembrane action potentials from epi-
cardial, M, endocardial cells and 6 to 8 intramural unipolar electrograms simultaneously
together with transmural ECG and isometric tension development. A wide spectrum of
T-wave and mechanical alternans is produced by increasing the pacing rate from cycle
length (CL) of 500 to 400 to 250 ms in presence of sea anemone toxin. Acceleration to
CLs of 400 to 300 ms produced mild to moderate beat-to-beat TWA of cells in M region.
Acceleration to CLs of 300 to 250 ms caused more pronounced beat-to-beat TWA and
APD of the M region, leading to a reversal repolarization sequence across the ventrical
wall and thus to alternation in the polarity of T-wave. Torsade de Pointes occurred after
an abrupt acceleration of CL associated with marked TWA. In almost all cases, electrical
and mechanical alternans were concordant. Both ryanodine and low [Ca2+] completely
suppressed alternans of the T wave and shortened APD, suggesting a critical role for in-
tracellular Ca2+ cycling in the maintenance of TWA. T wave alternans, observed at rapid
rates under long-QT conditions, is caused by the alternation of the M-cell action poten-
tial duration (APD), leading to exaggeration of transmural dispersion of repolarization
during alternate beats, and thus the potential for development of Torsade de Pointes. The
pathologic states with TWA are long QT syndrome, myocardial ischemia and infraction,
heart failure, sudden infant death syndrome and drug-induced Torsade de Pointes [97].
There is some evidence that TWA is linked to alternations in cellular calcium homeosta-
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sis, which significantly influences the action potential duration (APD) [98]. Potassium
channels may also play an important role in ischemia-induced TWA. The different sensi-
tivity of KATP channel activation during ischemia between epicardium and endocardium
may be linked to TWA at the cellular level [99, 100, 101, 102]. Macroscopic TWA has
been reported in patients with the long QT syndrome [94, 103, 104, 96]. Prolongation
and unstable state of the ventricular action potential may produce the macroscopic TWA
and result in the polymorphic VT known as Torsade de Pointes. The prognostic value of
microscopic TWA has not yet been assessed in patients with the long QT syndrome. In
patients with the Brugada syndrome, some reports have revealed that intravenous admin-
istration of class Ic antiarrhythmic drugs induced macroscopic TWA and resulted in VF
[105, 106]. These results suggest that in the Brugada syndrome class Ic antiarrhythmic
drugs may accentuate the underlying sodium channel abnormalities, produce an unsta-
ble state of repolarization, increase the triggering of PVC, and induce VF. On the other
hand, Ikeda et al. [107] reported a low prognostic value of microscopic TWA in patients
with the Brugada syndrome. Elevated levels of spatial heterogeneity of repolarization as
assessed by second central moment analysis in [108] appear to underlie the progression
from elevated TWA levels to more complex patterns and increased risk for VF. Detection
of T-wave heterogeneity (TWH) could prove useful in elucidating and clarifying mecha-
nisms of VF. TWH monitored in precordial leads could contribute to stratifying risk for
life-threatening arrhythmias, such as Torsade de Pointes.

3.7 Torsade de Pointes

The original name of Torsade de Pointes (TDP) comes from French language and means
’twisting of the points’, since QRS complexes wing up and down around the isoelectric
axis periodically and in a chaotic fashion changing their morphology from beat to beat, see
figure 3.32, reminding the original author of the Torsade de Pointes movement in ballet.
It is also referred to as torsade or cardiac ballet [93, 94, 95], TDP is a life-threatening
arrhythmia closely linked to abnormal cardiac repolarization [109, 110, 111]. The typical
initiation of TDP in ECG signal is after, so-called short-long-short (SLS) cycle sequences,
see figure 3.32
TDP is associated normally with marked prolongation of QT interval to 600 ms or greater.
The etiology and management of torsade are quite different from generic VT cases includ-
ing polymorphous VT, which are not associated with a prolonged QT interval. Therefore,
it is critically important to differentiate between these entities. The delay in phase III of
the action potential, which is mediated by the HERG potassium channel, is the under-
lying basis for the rhythm disturbance. The dysrhythmia is allowed to emerge because
of the prolonged period of repolarization and the inhomogeneity of repolarization time
among myocardial fibres. Although the precise mechanism of Torsade de Pointes has not
been established, recent in vivo studies [112, 113], prefused wedge studies [114, 85, 115],
and clinical observations made with monophasic AP recordings [116, 115] have pre-
sented evidence in support of the hypothesis that an early afterdepolarization-induced,
triggered response initiates Torsade de Pointes but that the arrhythmia is maintained
by a re-entrant mechanism. TDP is also characteristic of the congenital long QT syn-
drome, one form of which is caused by mutations in the HERG gene which encodes the
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Figure 3.32. The typical initiation of TDP in ECG signal after short-long-short cycle sequences. The morphology

of QRS complexes during its episode is also illustrated.

major repolarizating potassium channel Ikr. Furthermore, HERG appears to be the main
molecular target for drugs which cause QT prolongation. Cardiac safety is now a major
issue in new drug development, because there is increasing awareness that many non-
antiarrhythmic drugs can prolong the QT interval and provoke TDP [117]. Moreover,
TWA is very important prognostic indicator in that it is commonly observed just preced-
ing episodes of Torsade de Pointes [93, 94, 95]. The mechanisms by which dysfunction
at the molecular level translates into functional electrical instability leading to torsade
de points (TDP) in LQTS are poorly understood [80]. Previous clinical [94] and experi-
mental [118, 113] observations suggest two hypotheses regarding the electrophysiological
basis of TDP. One theory states that TDP arises from triggered activity in competing
ventricular foci. Evidence for the triggered activity hypothesis stems from experimental
observations [118, 113] and computer models [119] demonstrating an enhanced propen-
sity of cardiac myocytes to generate early after depolarizations (EADs) in response to
factors that prolong the action potential duration (APD). Because TDP observed in pa-
tients is associated with conditions favoring the development of EADs experimentally,
TDP was attributed to EAD-induced triggered activity. This mechanism, however, was
challenged because rapid rates accompanying the onset of TDP abruptly shorten repo-
larization, thereby eradicating the prerequisite condition for EAD-mediated TDP. The
second proposed mechanism is based on the association between dispersion of repolar-
ization (DOR) and TDP, suggesting involvement of reentrant excitation. For example,
patients with congenital LQTS manifest increased dispersion of QT interval. Moreover,
recent observations from surrogate models of LQTS suggest a role for reentrant activity
involving relatively large circuits around the cardiac chambers [113, 112]. However, focal
(ie, nonreentrant) patterns of activation were also observed in these models, raising addi-
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tional uncertainty regarding the underlying cellular mechanisms. Because the Iks current
density of the midmyocardial cells (M cells) is relatively weak, they are more sensitive
to many APD prolongation conditions than epicardial and endocardial cells [120] and
they can play an important role in arrhythmias which are dependent on delayed cardiac
repolarization, such as LQTS. Therefore, a transmural optical mapping system was de-
veloped to demonstrate a specific role of M cells in generating functional heterogeneities
of repolarization that support intramural reentry in LQTS [80]. This system is able
to measure electrical heterogeneities between hundreds of cells spanning the ventricular
wall, so that a functional topography of M cells as well as their role in promoting trans-
mural DOR and arrhythmias in the presence of cell-to-cell electrotonic interactions can
be established. Their data clearly implicate reentry as the mechanism for sustenance of
TDP. It has been found that M-cell zones produced discrete refractory borders, which
were directly responsible for conduction block and reentry that underlie TDP. It has been
exhibited that M cells can express markedly different APDs from neighbouring cells even
on multicellular tissues under conditions of normal cell-to-cell coupling, and that M cells
are not necessarily distributed uniformly across each transmural layer [80].
Despite relative normalization of the M-cell APD on subsequent beats, reentry persisted
as the leading edge of the wavefront propagated into the recovering tail of the circuit.
Such dynamic M-cell APD adaptation undoubtedly accounted for the rapidly changing
trajectories of the reentrant circuit producing the characteristic polymorphic ECG mor-
phology of TDP. The presence of uniform propagation on the epicardium may explain
the appearance of a monomorphic waveform configuration in certain ECG leads but not
others. Taken together, these findings suggest the existence of a single rotor during TDP
that initially forms in the transmural wall and subsequently meanders into deeper layers
of myocardium [80].
Reentrant Mechanism of TDP : The mechanism underlying TDP in this model is shown
in a representative example in figure 3.33. After a single premature stimulus (S2), the im-
pulse blocked in the region of most delayed repolarization (Figure A, cells c, d, m1, and
m2). The S2 wavefront, however, successfully propagated in the orthodromic direction
(along the axon direction) (Figure A, sites a’ through e’), circumventing (surrounding)
the region of delayed repolarization (Figure A, hatched area). The zone of block of the
premature beat (Figure 3.33 A) coincided with the region of most delayed repolarization
after the S1 beat (Figure 3.33 R). When the former sites of block (sites c and d) regained
excitability, the orthodromic impulse conducted from site e back to site a (Figure 3.33
B), thereby completing the first beat of reentry. A broad area of functional conduction
block was present during the initial beats of reentry; however, because of pronounced rate
adaptation of M cells [121], these refractory islands rapidly collapsed and were replaced
by functional lines of block on subsequent beats (Figures 3.33 C through F). The poly-
morphic ECG characteristics of TDP were attributable to the fact that lines of block and
trajectory of the reentrant circuit varied from beat to beat, initially within the mapped
transmural surface and subsequently meandering into deeper myocardial depths. Similar
reentrant mechanisms were observed in all experiments.
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Figure 3.33. Repolarization map during drive train S1-S1 pacing (R) and depolarization maps during single

premature S2 (A) and ensuing TDP caused by transmural reentry (B through F). S2 was applied on the epicardial

surface in the wake of the refractory barrier (R) produced by the island of M cells extending from the mid-wall

to the epicardial surface. The S2 beat failed to propagate into the region of prolonged refractoriness (cells c, d,

m1, and m2), causing block of the antidromic impulse while propagating in a counter clockwise (orthodromic)

fashion around the refractory region formed by M cells [80]. Figure is adapted from [80]
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Technical Aspects of ECG Recording and Databases

Used

4.1 The Electrode Skin Interface

There is a basic difference in the generation and representation of electrical signals in
biological tissue and metallic conductors. In biological tissue, electrical fields are gener-
ated by biochemical processes in which ions are separated, concentrated and moved on
account of thermodynamic forces, concentration gradients or impressed electrical poten-
tial gradients. From an electrical point of view, biological tissue behaves as an electrolyte.
In metallic conductors, electrical current is represented by electron impulses and electron
movement [46]. The basic problem in making electrical measurements from biological tis-
sue is therefore that potential differences to be measured reside in an electrolytic medium,
while the measurement instruments are connected by metallic wires with electron con-
duction. The transformation of electron conductivity into ion conductivity takes place by
chemical reduction and oxidation reactions:

K ↔ K+ + e− (4.1)

A− ↔ A+ e− (4.2)

Metal ions K+ go into solution leaving free electrons at the electrode or vice versa. An-
ions A− carry the electrons through the electrolyte to the respective anodic electrode.
The dynamic equilibrium of these reactions follows thermodynamic laws and depends on
the metal and electrolyte involved, as well as the temperature of the reaction and concen-
tration of the ions. Separation and concentration of charges at the electrode-electrolyte
phase boundary makes this interface itself a generator of electromagnetic fields (EMF).

4.1.1 Electrochemical Potentials

A system consisting of a metal electrode immersed in a solution of its own salt is called a
half cell. A thermodynamic equilibrium develops between the metal and the salt creating
an electrochemical potential which is characteristic of the metal involved. The potential
equals the electrical work required to bring a unit charge from infinity to the reference
point at the electrode. This is called the electrode potential or half-cell potential. Mea-
surement of this potential requires a second electrode which forms another half cell. This
electrode is called a reference electrode, whose potential is arbitrarily set to zero.
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4.1.2 Reversible and Nonreversible Electrodes

Electrode systems can be subdivided into reversible or nonpolarized and nonreversible
or polarized electrodes. Reversible electrodes allow unhindered exchange of charge across
the metal-electrolyte interface in both directions, whereas perfectly polarized electrodes
exhibit no net charge transfer. To avoid the influence of alternating current on electrode
potentials for bioelectric measurements, nonpolarizable reversible electrodes are used.

4.1.3 Electrodes of the First and Second Kind

Among the reversible electrodes, there is a distinction between electrodes of the first kind
and of the second kind. A metal electrode in contact with a solution of its own ions is
called an electrode of the first kind (e.g., silver immersed in a silver nitrate solution). The
equilibrium potential of this electrode is a function of the concentration (more correctly
of activity) of the cation of the electrode metal in the solution. Electrodes of the first kind
often cannot be applied in physiological measurements, since cations of the corresponding
electrode material are not present in the physiological preparation or because of the
toxicity of the metals. An electrode of the second kind consists of a metal that is in contact
with a sparsely soluble salt of its own, where the anion is available in the electrolyte.
Typical examples are the Ag|AgCl electrode. The Ag|AgCl electrode is preferably used
together with a chloride solution . Since the activity of Cl− anions in biological tissue is
relatively high and not related to silver oxidation, caused by current flow, the electrode
potential of Ag|AgCl electrodes is rather stable. Therefore, the Ag|AgCl electrode is most
suitable for application in routine measurement procedures such as electrocardiography.

4.1.4 Polarization or Overvoltages

Since the input impedance of any measurement device is not infinite, a relative small cur-
rent can flow during measurement. This current shifts the thermodynamic equilibrium
and some deviation from the half-cell potential occurs. This deviation is called polariza-
tion, or overvoltage.

4.1.5 Electrical Properties of the Skin

Anatomically, the skin is a multilayer system composed of the epidermis, the dermis
and the subcutaneous layer. The epidermis consists of three sublayers, namely the horny
outer layer-stratum corneum, the middle layer-stratum granulosum and the inner layer-
stratum germinativum. The epidermis is in a process of continuous regeneration. Within
the stratum germinativum, cells divide and grow, and during this process are displaced
outwards by the newly forming cells underneath them. The cells die off in the stratum
granulosum and degenerate further into layers of flat keratinous material which forms
the stratum corneum. Dermis and epidermis are interspersed with sweat ducts and hair
follicles. The horny layer of dead cells exhibits rather high impedance. Sweating moistens
this layer and increases Na+, K+ and Cl− concentration. Therefore, skin impedance
depends also on the physiological and emotional state of the subject. To obtain high-
quality ECG records it is desirable to reduce and stabilize the skin impedance as much as
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possible. Figure 12.10 shows the factors which influence the skin impedance. Ion migration
is very small in the stratum corneum, from which the major part of skin impedance results.
The most effective way to reduce skin impedance is to establish a conductive connection
between the skin surface and the deeper layers of the skin. This can be achieved by
mechanical abrasion of the stratum corneum or by preparation with electrolyte paste.
After embrocation of electrolyte paste, water molecules and ions migrate through the
horny layer thus forming a conductive bridge between surface and subcutaneous tissue.
Since this diffusion takes time, the skin impedance reaches its minimum after 15-20 min.

Figure 4.1. Factors that influence the skin impedance: besides abrasion, increased activity of sweat glands with

release of K+ , Na+ , Cl− and H2O increased blood flow reduce the skin impedance. Both effects may be caused

by increased physical load or by emotional stress. Figure is adopted and adjusted from [46]

However, measurement of the true skin impedance is not possible without involving elec-
trodes which introduce half-cell potentials, electric double layers and resistances of their
own. Various side effects must therefore be considered when measurement and interpre-
tation of skin impedance is carried out. Swanson and Webster [122] give an equivalent
electrical circuit for the skin impedance consisting of a parallel combination of a capacitor
and a leakage resistor which represent the epidermis, and a serial resistor representing the
comparatively small resistance of the dermis. The quantities of these elements depend on
skin preparation, that is, abrasion, electrolyte paste [123, 124], frequency and density
of current flow as well as the physiological state of the skin; and these vary from one
individual to another. They also depend on mechanical pressure between electrode and



42 4. Technical Aspects of ECG Recording and Databases Used

skin [122] which is of relevance in impedance plethysmography and is sometimes the
source of electrode motion artifacts.

4.1.6 Electrode Skin Impedance and Offset Voltage

An electrode-electrolyte interface can be equated to a series combination of resistance
R and capacitance C, the values of both varying inversely with frequency. A complete
electrode-skin interface considering most of the relevant effects has been described with
equivalent electric circuits by Gatzke [125] , Geddes [126], and Swanson and Webster
[122], whose models are very similar. Therefore the following discussion is based on one
of these models, namely in Gatzke [125], see figure 4.2.

Figure 4.2. A complete electrode-skin interface considering most of the relevant effects: part (a), electrical and

physical model of the skin-electrode (metal) interface. Part (b): the simplified equivalent electrical circuit. Resis-

tors and a capacitor form a frequency-dependent impedance, which only stabilizes some minutes after electrode

application. Figure is adopted and adjusted from [46]
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In figure 4.2, Rb, an ohmic resistor of a few hundred ohms, representing the body fluid.
Whereas, the voltage source Vs, the capacitance Cs and the ohmic resistance Rs describes
the skin-electrolyte interface.
The voltage Vs represents polarization voltages produced by the concentration gradient
of ions present in the electrolyte and the body fluid beneath the skin. This potential is
a function of electrolyte composition, of its concentration and of skin condition. Resis-
tance Rs is inversely proportional to the area of the electrode A, skin condition, skin
preparation and electrolyte composition. Moreover, its value decays with increasing time
after application. The rate of decay depends on the concentration of the electrolyte. The
capacitance Cs is a function of skin-electrolyte contact area, electrolyte concentration and
skin condition.
The resistance Re describes the ohmic resistance of the electrolyte itself, whose value
depends on the concentration of the mobility of the ions and the electrolyte. The voltage
Vm at the metal-electrolyte interface represents the electrode potential. Its value depends
on electrode material and the electrolyte composition. The voltage source Vm(i) represents
polarization voltages which depend strongly on current density and on the material. The
resistance Rm represents the ohmic resistance between electrode and electrolyte (less
then 500 Ω).The capacitance Cm results from the electric double layer formed by the
dissociated electrode ions in the solution and the electrode itself.
By taking into account that the frequency range of interest for bioelectric signals covers
0.05-1000 Hz, the equivalent circuit of the electrode model can be simplified as follows:
capacitance Cm shunts out Rm, whereas one equivalent resistor Req can replace Re and

Rb resistors. Similarly, if the voltages Vm and Vm(i) are combined to form V́m(i), the
simplified electrode model is depicted in figure 4.2- b.
This model sufficiently describes the effects for all metal electrodes used in electrocar-
diography, while only the magnitude of relevant parameters varies for different types. An
extensive study of the characteristic parameters of routinely used ECG electrodes has
been performed by Schmitt and Almasi [127].

4.2 Types of Electrodes

Various types of electrodes for recording of bioelectric signals have been developed ac-
cording to their specific application. In this section, only electrodes used for non-invasive
clinical electrocardiography will be discussed. Needle electrodes and microelectrodes used
for invasive measurement of intracellular and extracellular electrical activity will not be
considered. The need for handy, easy-to-apply electrodes with low offset voltage and low
impedance, low artifact pickup, high stability of electrical properties and minimal skin
irritation has resulted in the design of a number of different electrode types with varying
modes of operation. Some typical examples, and their advantages and disadvantages will
be discussed. An extensive description of theory and design of bioelectrodes can be found
in [128]. Because of the costs, almost all electrodes for routine recordings are passive.
For specific applications, for example, body-surface mapping, buffer amplifiers have been
integrated into the electrode housing. Such electrodes are then called active electrodes.
Despite the considerable progress in understanding the phenomena at the skin-electrode
interface and the progress in electrode technology, this interface is still the weakest link
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in the measurement chain. For computerized quantitative ECG analysis, much care has
to be taken at this point to obtain high fidelity reproducible ECG signals. In more detail,
some typical examples of commonly used ECG electrodes will now be discussed.

4.2.1 Plate Electrodes

Figure 4.3 shows typical plate electrodes applied in body-surface electrocardiography.
The type illustrated in 4.3-a is used for limb leads, while for chest leads (1-2 cm) the
type shown in 4.3-b is used. The large plate electrodes, which were basically introduced
in 1917 [129], are made of German silver (an alloy of nickel, copper and zinc), stainless
steel, nickel or nickel-plated steel. The metal electrode in this kind of electrode should be
separated from the skin by a film of electrolyte paste or by a wet paper in order to obtain
a stable offset voltage and low electrode-skin impedance.The smaller chest electrodes are
made of nickel, a silver alloy sometimes coated with silver chloride or sintered material
containing Ag|AgCl. Plate electrodes are usually fixed by rubber straps. This method is
well suited for limb leads, but not for chest leads.

Figure 4.3. Two examples of plate electrodes used in routine electrocardiography: (a) a typical limb-lead elec-

trode which should be applied by using a wet paper between skin and electrode; (b) a typical chest-lead electrode

which is applied with electrode gel. Each is held in place by a rubber strap. Figure is adopted and adjusted from

[46]

4.2.2 Suction Electrodes

Figure 4.4 shows two types of suction electrodes (type a and b). The suction-cup electrode
(figure 4.4- a) can be precisely located and quickly applied and it is well suited for
attachment to flat and soft surfaces and tissues. Type (a) is held by a vacuum produced
after pressing and releasing the rubber bulb, while type (b), is held by a vacuum produced
by an airstream passing through the electrode and using the principle of the Bernoulli
pump, (figure 4.4- b). The electrode material of type a is nickel or an alloy. Whereas
the electrode in type b can be made of nickel, an alloy or sintered Ag|AgCl. Because of
the small contact area, the type-a electrode impedance is high, and because of the close
electrode-skin contact, impedance and offset voltage are sensitive to motion. Since the
contact area is larger in the type (b) electrode than that of the type (a), skin impedance
is smaller. Attachment of type (b) electrodes is much more robust than for suction-cup
electrodes and is reliable even on dry or hairy skin. A disadvantage of suction electrodes
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is that they can be left on the subject only for a limited period of time in order to avoid
serious skin irritation [46].

Figure 4.4. Two examples of suction electrodes: the older model (in (a)) is very frequently used in clinical

routine. This type of electrode is often the source of artifacts and poor-quality ECGs since it loses contact and

slips during ECG recording. The newer model (in (b)) has two significant advantages: the electrode is reliably

held in place, easily attached and detached. The other advantages are a larger electrode area. Figure is adopted

and adjusted from [46]

4.2.3 Fluid-Column Electrodes

Figure 4.5 depicts the principle of fluid-column (floating or liquid junction) electrodes.
The electrode elements, which are metal disk and Ag|AgCl sinter element, are recessed so
that it does not come in contact with the skin itself. The cavity could be filled with elec-
trode paste which provides the electrolytic bridge between electrode and skin is provided
by filling the electrode cavity with electrode paste or by placing an open foam disk placed
over the contact area and saturated with electrolyte paste maintaining the distance be-
tween the skin and the electrode. In the event of a slight motion of the electrode relative
to the body surface, the double layer of charge at the electrode-electrolyte interface is not
significantly changed and therefore motion artifacts are minimized. The electrode can be
fixed on the skin by a double-sided adhesive tape ring or by a vacuum as shown in figure
4.5.

4.2.3.1 Dry Electrodes

The use of electrode paste in routine clinical electrocardiography is a cumbersome pro-
cedure. Skin preparation and paste application on each patient for each electrode is time
consuming, and multiple-use electrodes have to be cleaned regularly to maintain low noise
and low electrode-skin impedance. In long-term applications, paste tends to dry out or
may irritate the skin. Efforts have been made to develop pasteless electrodes which could
be directly put onto the skin. There are two types of dry electrode: metal-plate electrodes
which pick up the ECG in a conductive way; and insulated electrodes, where the metal-
electrode surface is coated with a dielectric and the body acts as the other plate of a
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Figure 4.5. The principle of fluid-column electrodes : The figure shows an example of an adhesive electrode,

where the (Ag|AgCl) electrode element is recessed to provide a gap between electrode housing and skin. The

gap is filled with electrolytic gel. The reduction of relative movement and stabilization of pressure between the

electrode and skin is achieved by implementing a fluid electrolyte column. Figure is adopted and adjusted from

[46]

capacitor, so that the signal is picked up capacitively [46]. The problem with both types
of electrode is the high input impedance and its instability. The dry metal electrodes,
as well as the insulated electrodes, require impedance-transforming amplifiers directly
attached to the electrode. So far, the instability and large variation of characteristic elec-
tric properties of conductive (impedance, leakage resistance and capacitance) as well as
insulated dry electrodes outweigh the advantage of simple attachment of these electrodes.

4.2.4 Active Electrodes

Because of the high and unstable impedance of conventional ECG electrodes and because
of the existing problem of cable shielding between the electrode and the preamplifier
unit, a buffer amplifier should be attached directly to the electrode. Microelectronics now
allows the integration of amplifiers into the electrode housing. These electrodes are then
called active electrodes.

4.3 Electrode Pastes

Electrode jellies and pastes were developed after the introduction of the string galvanome-
ter in order to replace the cumbersome immersion electrodes, which required that the
subject be seated with both hands and feet in buckets full of saline solution. Electrode
pastes are applied to reduce and stabilize the electrode-skin impedance. Furthermore, the
electrochemical equilibrium at the electrode-skin interface develops more quickly when
pastes are used. Reduction of electrode-skin impedance is obtained by enrichment with
Cl− ions, by moistening the horny layer of the epidermis and by enlargement of the ef-
fective contact area. An electrolytic paste layer of 0.1 cm thickness with an area of l
cm2 would result in 0.6-12 Ω, which is negligible compared to the impedance of the epi-
dermis. The following characteristics are desirable for an ideal electrode paste: (a) good
reduction of electrode-skin impedance,(b) quick stabilization of the electrical parameters
of the electrode-skin interface,(c) simple and quick application,(d) no toxic effects or ten-
dency to irritate the skin, and (e) low costs. Most important is the presence of Cl ions,
particularly if Ag|AgCl electrodes are applied [46].
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4.4 ECG Artifacts and Interference

4.4.1 Motivation

A typical configuration for an ECG acquisition system and the equivalent electrical circuit
are shown in figures 4.6 and 4.7 respectively. Via the electrode impedances ZA, ZB and
the connecting cables to the ECG amplifier, ECG signal is fed. The displacement current
ID arising from electrical fields may flow through the patient to ground, because of stray
capacity CD (see figure 4.6). Magnetic fields induce voltages within the connecting cables.
A DC offset voltage may be generated at the electrode-skin interface. The magnitude of
the offset voltage and interference noise may far exceed that of the ECG signal to be
measured. Electrical and mechanical properties of electrodes, cables and ECG amplifiers
are usually carefully adjusted to each other. A discussion on interference and noise sources
and how to reduce their influence in is presented in this section. The following descrip-
tion is based on papers by [125, 126, 46] and some other works which will be referred
accordingly in the text.

Figure 4.6. The typical configuration for ECG acquisition System: the ECG picked up from the body surface

may be distorted by internal, muscle tremor for instance, and external noise. Through capacitive coupling to the

subject, electric fields from the mains system produce displacement currents . Magnetic fields induce emfs within

the lead cables. Figure is adopted and adjusted from [46]

The components of the signal at the input of the differential amplifier will now be discussed
as a quantitative estimation of noise components:

• V1, potential difference appearing at the amplifier input (V)
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• VECG, ECG signal to be measured (V)
• VOFA,B, DC offset voltage at electrodes A, B (V)
• ID, displacement current produced by an alternating electric field (μA)
• CD, capacitance coupling electric fields to the subject under investigation (μF )
• B̂ magnitude of the alternating magnetic flux density (Wbm−2)
• f , frequency of the interfering magnetic flux (usually line frequency from mains power

(50-60 Hz)
• ZA, ZB, ZG, skin-electrode impedance (Ω)
• ZI”

internal body impedance (Ω)
• ZIN , amplifier input impedance (Ω)
• K1, K2, constants
• VCM , common-mode potential (V )
• VD, interference potential from electric fields (V )
• VM , interference potential from magnetic fields (V )
• VEM HF or RF electromagnetic interference voltage (V )
• VAEQ equivalent amplifier noise voltage (V rms)

Figure 4.7. The equivalent electric circuit of the typical configuration for ECG acquisition system in figure 4.6:

depending on impedance magnitudes and amplifier characteristics, interference effects can be reduced. Figure is

adopted and adjusted from [46]

For the measurement configuration depicted in Fig. 4.6, the differential voltage obtained
at the amplifier input results from the ECG, offset voltages at electrodes A and B, arti-
fact potentials, electric and magnetic interference potentials, a common-mode potential
arising from electrode impedance imbalance and amplifier CMRR, electromagnetic HF
interference and amplifier noise voltage is as follows:



4.4. ECG Artifacts and Interference 49

V1 = VECG+(VOFA−VOFB)+VD+VM+VCM

[
ZA − ZB
ZIN

+
1

CMRR

]
+VEM+VAEQ, (4.3)

4.4.2 Artifact Potentials

ECG can be heavily distorted by the artifact potentials. Sometimes artifacts closely resem-
ble QRS complexes in shape. Large-amplitude artifacts cannot be eliminated by averaging
or filtering. The only way of handling artifact-contaminated data sections is to exclude
them from further processing. Artifact potentials have the following sources:

4.4.2.1 Myoelectric Activity

It is associated with muscle tremor or other mechanical activity resulting from insufficient
relaxation of the patient or from recording in a cold environment, for instance. Myoelectric
signals exhibit amplitudes up to 500 μV with a frequency spectrum from 30 Hz up to
several kilohertz, thus overlapping the ECG in amplitude and frequency domains. They
cannot, therefore, be completely filtered out.

4.4.2.2 Skin Artifacts

These kind of artifacts result from changing potential differences between the inner and
outer layer of the skin. This potential difference depends on mechanical pressure on the
skin. Movement of the patient or of the lead cables do induce also artifacts. Abrading the
horny surface layer of epidermis results in reduction of both potential difference across
the skin as well as skin impedance. Skin abrading is a very effective method of improving
the quality of ECG recording, since the magnitude of the electrode impedance as well as
the imbalance between several electrodes can be reduced [46].

4.4.2.3 Electrode Motion Artifacts

If the electrode-electrolyte-skin interface is mechanically disturbed, the double layers of
charge present may be disrupted. Movement of the electrode produces disturbance of ion
distributions, which causes changes in the half-cell potentials. As a result, low-frequency
baseline shifts in the ECG record will be pronounced as the segment between P wave
offset and QRS complex onset does not lie on the isoelectric line of zero amplitude.
Consequently, the isoelectric line of the ECG under study will not be well-defined and
the clinical interpretation of the ECG becomes inaccurate and misleading. This wander
of the baseline represents a low-frequency component, usually in a range below 0.1 Hz in
rest ECG and 0.65 Hz during stress test, within the bandwidth of the ECG. In addition,
electrode-motion baseline wander artifact may result from a variety of sources during
ECG acquisition presented as follows:

• Coughing or breathing with large chest movement for chest-lead ECGs.
• Moving of an arm or a leg in case of limb-lead ECG acquisition.
• Poor contact and polarization of electrodes.
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Furthermore, baseline wander can be caused by the movement of shielded and unshielded
ECG cables (it will be presented in details in the following section). Floating electrodes
with a liquid bridge between electrode and skin are less sensitive to motion than electrodes
with just a thin film of electrolyte paste but mechanical contact to the skin. Motion
sensitivity can be further reduced by the application of electrodes with large adhesive
mountings which mechanically stabilize the entire region in the vicinity of the electrode
[46].

4.4.2.4 Cable Motion Artifacts

If an unshielded cable is moved in the presence of an electric field, a displacement current
is generated which flows through the electrode impedances ZA or ZB and ZG to ground
(figure 4.6). Depending on the velocity of cable movement, the frequency of such an
artifact can be expected to lie in the range 0.1-10 Hz; and a baseline disturbance will result
as well. Movement of this cable in a static magnetic field, for example the earth’s magnetic
field, is associated with induction of an electromagnetic field. In addition, movement of
shielded cables can produce artifacts. Differential movement between shield, insulator
and the central conductor generates displacement currents, since the capacitance between
shield and conductor changes [125]. Low cable capacitance and a low dielectric constant
of the insulator reduce this effect. Electrostatic fields may also be generated by the ECG
technician. Large quantities of synthetic materials with good insulating qualities invite
the accumulation of charge in the vicinity of the measurement subject [125]. Movement
of the charged material or the subject relative to each other causes a displacement current
to flow in the subject. This current returns to earth via the grounding electrode and the
associated grounding impedance ZG. (If the patient is not grounded, this current has to
flow through the amplifier input resistors ZIN .) Electrostatic artifact voltages may cause
large baseline spikes at the amplifier output [46].

4.4.3 Electromagnetic Field Interference

Interference is defined as the effect of coupling external electrical energy into the mea-
surement circuit. Normally, it is not caused by galvanic interconnections between external
sources and the measurement circuit, but instead either by capacitive coupling with elec-
tric fields or inductive coupling with magnetic fields. The most common high-frequency
interference, electric as well as magnetic, is from the line frequency (50 Hz or 60 Hz). The
later cannot be filtered out without slight distortion of the ECG, since these frequencies
lie within the frequency spectrum of ECG signals. Electric fields arise between two points
of different electric potential. Electric fields are produced electrostatically or by mains-
power wiring, and so on. Magnetic fields are produced by alternating currents and are
particularly strong in the neighborhood of mains-power cables with high current density
(elevators, transformers, motors, and so on).

4.4.3.1 Electric Fields

Interference from electric fields is produced by the mains-power wiring and also by equip-
ment plugged into an outlet but turned off. The AC potentials of the power-supply cable
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will still generate an electric field to ground. Coupling of electric fields to the subject
from whom an ECG is to be recorded takes place via stray capacity CD of the subject
with respect to the environment (see figure 4.6 and 4.7).
The differential voltage VD caused by the displacement current ID, traversing the body
impedance ZI in the same direction of the path between electrodes A and B is defined
as follows :

VD = K1IDZI , (4.4)

where K1 is a constant, with value between zero and one, including the geometric influ-
ences.

4.4.3.2 Magnetic Fields

According to Faraday’s law, an electromagnetic field (EMF) in any conductive loop,
such as that formed by ECG leads A and B is generated by alternating magnetic fields
of alternating currents, for example in the mains-power system. The magnitude of this
EMF is proportional to the magnitude of the magnetic flux density B̂, the frequency f of
the magnetic flux (frequency of the field generating AC), the loop area S and a constant
K2 which considers the relative orientation of field and loop in space. The magnitude of
magnetically induced interference voltage is obtained from

VM = K2B̂Sf , (4.5)

Since this voltage appears as a differential potential at the amplifier input, the magnetic
induction area S should be kept as small as possible by twisting the lead cables and
running them close to the body [46].

4.4.3.3 Electromagnetic High-Frequency Fields

High-frequency (HF) fields can come from radio and television signals, brush motors,
electric switches, other spark generating equipment, electrosurgery and diathermy. Due
to the low HF impedance of the coupling capacitance CD, the interference voltages VCM
can be very high. Continuous and periodic HF signals are not difficult to deal with as
long as amplifiers will not be saturated. However, the HF signal is often modulated with
low-frequency components matching the ECG spectrum. These components are fed into
the measurement circuit by rectification of the HF signal if there are nonlinearities in
the amplifier input circuit. Since these interference components, which are causing spikes
in the ECG record, cannot easily be filtered out, the best way to reduce this type of
interference is by removal or reduction at source. Bypassing capacitors and HF filters at
motors with commutator noise and at the power supply of the electrocardiograph itself
often help. Other measures that can be taken include positioning the ECG couch at
another place and the use of shielded ECG cables, which should be as short as possible
since the HF signal pickup increases with length. If not built in, appropriate HF filters
in the input stage of the ECG amplifier should be applied [46].
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4.5 ECG Amplifiers

ECG amplifiers can be clustered into conventional ECG amplifiers used in various clinical
purposes and multi-channel high resolution ECG amplifiers for research applications. The
conventional ECG amplifiers are required to drive the write-out system, which may be
a paper-strip recorder, an oscilloscope, a magnetic tape unit, a telephone coupling unit
or an analog-to-digital converter system for computer processing. Figure 4.8 depicts the
basic layout of ECG amplifiers. A buffer amplifier is implemented for transformation of
the high and often unbalanced electrode impedance to a low level. The gain of this stage
is usually one, but there are systems which use a preamplifier unit between the electrodes
and the ECG main amplifier. This stage amplifies the signal by a factor of 5-10.

Buffer
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R L
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Network
for WCT Preamplifier Notch

filter
Power

amplifier

Floating input

Impedance
transformer
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Tremor
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Figure 4.8. The basic layout of ECG amplifiers. Figure is adopted and adjusted from [46]

The network following the buffer amplifier is used to obtain the Wilson central terminal
(WCT) for the unipolar chest leads and to derive the Goldberger augmented limb leads.
The network is followed by a differential amplifier or an instrumental amplifier. This
amplifier stage usually has a gain between 10 and 100. For patient safety, the input part
of the amplifier is galvanically separated from the mains power supply by linking via a
DC-DC transformer. An RC high-pass filter, coming after the amplifier, removes offset
potentials arising from electrodes and other parts of the preceding circuit. The time
constant should be not less than 3.2 s to make sure that low frequencies of the ECG
signal, particularly of the ST-T segment, are transferred without serious distortion. In
some amplifiers, the time constant can be switched to lower values. This removes excessive
baseline shift. The succeeding filters assist the removal of line frequency interference and
muscle-tremor noise. Actually, they can optionally be switched on or bypassed. However,
line frequency interference notch filters in any case distort the ECG, since they also
remove components of the QRS complex with the same line frequency.
The final power amplifier provides the necessary current to drive any coupling device as a
writing system or an analog-to-digital converter (ADC) system for computer processing.



4.5. ECG Amplifiers 53

The gain factor is again of the order of magnitude 10-100 in order to obtain a total gain
of the amplifier of approximately 500-1000 which results in 500-1500 mV output voltage .
The choice of gain factors for the different stages of the amplifier has to be a compromise
between high gain in the preamplifier stage which results in high common-mode rejection
and the risk of amplifier saturation by large DC offset voltages. A reasonable compromise,
therefore, is to have approximately equal gain factors in the preamplifier and driver-
amplifier stages. In order to provide further off-line or on-line digital ECG analysis, the
signal from the final power amplifier should be fed into an analog-to-digital converter
(ADC) and then to a digital signal processor (DSP) unit allowing the implementation for
various digital filters and any other sort of on-line processing. The converted digital ECG
signals may then be transmitted by various ways to a computer system [46].

4.5.1 Differential and Instrumentation Amplifiers

Differential amplifiers are applied for amplification of small biosignals. They allow direct
connection of the amplifier input with the measurement points under investigation in-
stead of measuring potentials with reference to ground or to infinity. By the means of
differential amplifiers, large noise voltages present at each of the measurement locations
can be reduced markedly without filtering, taking into account that the noise is often
exceed the biosignal of interest by several orders of magnitude. In principle, a differential
amplifier is a composition of two identical single-ended amplifiers with inputs A and B
operating in opposition to a common reference, figure 4.9.

Figure 4.9. Differential amplifier schematic. Figure is adopted from [130]

Given two inputs V +
in and V −

in (see figure 4.9), a practical differential amplifier gives an
output Vout:
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Vout = Ad(V
+
in − V −

in ) + Ac

(
V +

in + V −
in

2

)
, (4.6)

where Ad is the differential-mode gain and Ac is the common-mode gain.
The ability to suppress signals which are common to both inputs is called common-mode
rejection (CMR). The CMR ratio (CMRR), measured in positive decibels, is defined by
the following equation:

CMRR = 20 log10

(
Ad

As

)
, (4.7)

An instrumentation amplifier is a type of differential amplifier that has been specifically
designed to have characteristics suitable for use in specific measurements, like biopotential
measurements including ECG measurements. These characteristics include very low DC
offset, low drift, low noise, very high open-loop gain, very high common-mode rejection
ratio, and very high input impedances. They are used where great accuracy and stability
of the circuit both short- and long-term are required, [131].
The most commonly used instrumentation amplifier circuit is shown in figure 4.10. The
gain of the circuit is

Vout
Vin

= −
(

1 +
2R1

Rgain

)
R3

R2
, (4.8)

Figure 4.10. Differential amplifier schematic. Figure is adopted from [132]

4.5.2 Amplifier Specification

4.5.2.1 Input Voltage Range and Gain

The voltage to be amplified ranges from micro volts to milli volts. For direct measurement
of cellular or myocardial potentials, the input voltage can be expected to lie in a range
±100mV . For body-surface ECG measurements, the input voltage reaches ±10mV . An
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offset voltages of up to several hundred milli volts may arise because of electrode poten-
tials. Thus, the amplifier must be capable of handling such offset voltages.

4.5.2.2 Input Impedance

The input impedance is a key figure for the performance of the amplifier. The sup-
pression of interference voltages becomes better as the input impedance becomes larger
with respect to electrode impedance. [133] have shown that because of voltage division,
the measured amplitudes depend on the ratio of electrode impedance to amplifier input
impedance. Recalling figure 4.7, depicting the equivalent circuit diagram, the voltage at
the amplifier input VI can be calculated from the source voltage VECG to be measured as
follows:

VI =

(
2ZIN

2ZIN + ZA + ZB

)
VECG. (4.9)

When (ZA + ZB) is zero or is negligible with respect to ZIN , the voltage at the amplifier
input VI is equal to the source voltage VECG.

4.5.2.3 Frequency Response

An amplifier can transfer and amplify a signal only within a limited bandwidth, i.e. the
difference between the highest and the lowest frequency component to be transferred. The
deviation of the magnitude of the transfer function (amplitude response) from unity is
also called linear distortion. The range between the lower and upper cutoff frequency of an
amplifier is defined as the bandwidth. The transfer function consists of two components:
the amplitude response and the phase response. High-fidelity reproduction of a signal also
requires an adequate phase response; that is, a linear relationship between frequency and
phase angle. Usually this relationship changes at the cutoff frequencies and causes signal
distortion. In order to reduce this influence, the bandwidth can be expanded. The figures
given here for the bandwidth of ECG amplifiers approximately resemble those given in the
AHA recommendations [134]. For the lower cutoff frequency, 0.05 Hz is recommended,
and for the upper cutoff frequency, 2500 Hz is advised.

4.5.2.4 Common-Mode Voltage Rejection (CMR), Driven-Ground and
Driven-Shield Techniques

It was shown that common-mode voltages can be introduced from the mains-power Sys-
tem flowing through the patient via stray capacitances. It may be reduced by grounding
the patient, through high amplifier input impedance, by good matching between elec-
trode impedances and by reducing the impedance of the grounding electrode [46]. By
feeding back the average part of the common-mode voltage picked up by some electrodes
and connecting this inverted signal with the grounding electrode, its impedance will be
reduced and the common-mode noise level will be further attenuated. This is called the
driven-ground technique, see figure 4.11.
Another way of reducing the effect of the common-mode voltage is called the driven-
shield technique. It is done by feeding a non inverted part of the averaged common-mode
voltage from several electrodes to the shielding of the lead cables.
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Figure 4.11. Increasing the common-mode voltage rejection by the driven-ground technique: Differential ampli-

fier schematic. Figure is adopted from [132]

4.5.2.5 Amplifier Noise and Drift Stability

Each amplifier, including its passive elements like resistors, capacitors and so on, produces
a noise signal, whose level depends on bandwidth. It is called white noise when it is a
random signal with a flat power spectral density and has zero autocorrelation, pink noise(
also known as 1/f noise) when the noise signal shows frequency spectrum such that the
power spectral density is proportional to the reciprocal of the frequency or brown/red
noise when its spectral density is proportional to 1/f 2. Normal ECG amplifiers exhibit
a noise level of the order of 1-10 μV with a bandwidth from DC up to 1000 Hz.
The term drift stability refers to constancy of the baseline. A stable baseline is necessary
to avoid saturation of the write-out system as well as of any other data storage systems
connected.

4.6 IBT Multi-Channel ECG Acquisition System

All multi-channel ECG signals used in this work have been measured and recorded with
the two multi-channel ECG acquisition systems available in the Institut für Biomedizinis-
che Technik (IBT) at Universität Karlsruhe (TH) by the author. Both system are able
to measure up to 64 ECG signals simultaneously. The first one is actually a system of
adjusted EEG amplifier(s) employed to record ECG signals from the body torso. The
second system, which is better and even newer, is a high resolution biopotential mea-
surement system designed for research applications. More detailed information on both
system is presented as follows:
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4.6.1 The First System ’SynAmps’

This system is called SynAmps, a trade mark of the company NeuroScan [135]. The
system is a AC/DC amplifier designed to record a wide variety of multichannel neuro-
physiological signals up to 32 channels simultaneously. A SynAmps contains the analog
components needed to amplify low level neurophysiological signals and the digital com-
ponents needed to digitize, DC correct, digitally filter, log external events, and transfer
data to a host computer. This design allows for high speed acquisition of signals from
multiple electrode sites without burdening the host computer which is controlling, dis-
playing, and storing the acquired data. Having two SynAmps systems, we are able at our
institute to record up to 64 (32+32) channels simultaneously by connecting both of them
and enabling the high performance recording synchronization between them.

4.6.1.1 The Electrodes and Cables

Passive disposable dry electrodes with (Ag|AgCl) electrode elements are used with the
SynAmps system after performing skin preparation. The electrodes are attached to a set
of shielded cables, see figure 4.12, which are assembled by the author to allow higher
fidelity and more clinical flexibility for the multi-channel ECG recording than the original
EEG cables provided with the systems. The new cables are connected from one side to the
electrodes and from the other end to the pre-amplifier box, also called headbox, through
one input multi-pin connector provided on the headbox by the manufacture, whereas the
original cables can be only connected to their corresponding predetermined locations on
the headbox. It has been noticed that the monopolar montage with the original cables is
very time consuming and very sensitive to noise. Therefore, the new designed shielded
cable set was used in this work.

Figure 4.12. The shielded cables assembled to be used with SynAmps system

4.6.1.2 The headbox and the Main Unit

The first stage amplification in the DC/AC headbox has a fixed gain factor of 150 and
should be placed near to the subject to reduce noise pickup. The amplified signals are
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then transferred to the main unit, which has 32 second-stage main amplifiers and 32
successive approximation register (SAR) 16-bit ADC converter with resolution up to
0.007 μV /bit and tracking anti-aliasing filters as well as an analog filter stage for each
channel and a digital processing unit, see figure 4.13. Sampling rates are between 100
Hz to 20 kHz. Four high speed digital signal processors (DSPs) are used to control data
acquisition and a processor and an electronic flash disk are dedicated to managing the
DSPs and communicating with the host computer. Real-time digital filtering performed
by the DSPs provides a wide range of filter settings from DC to 10 kHz. A SCSI interface
is used to link the SynAmps and computer. All ECG signal recorded by the author using
this system is AC coupled and sampled with 1000 Hz and a bandwidth from 0.05 Hz to
400 Hz. CNT is the file format used to save the measured data from the 16-bit-resolution
SynAmps. Full specifications and differences of the CNT file formats can be found in
[136].
The main drawback of this system was discovered during the first six multi-channel ECG
recordings by noticing high degree distortions in the ST segment of ECG beats, see figure
4.14. After investigation, the reason was the 50/60 Hz digital notch filter implemented
in the digital processing unit. By disabling the function of this notch filter, relative high
level powerline interference, depending on the measurement place, appeared in the ECG
recording. Therefore, a simple and effective method was developed to eliminate this 50/60
Hz interference in this regards. This method is presented in detail in section 7.2.1.4.

Figure 4.13. Two SynAmps main units and two headboxes placed on one of the main unit

4.6.2 The Second System ’ActiveTwo’

This system is called ActiveTwo, which is the newest high resolution, DC amplifier and 24-
bit resolution biopotential measurement system (including ECG measurements) provided



4.6. IBT Multi-Channel ECG Acquisition System 59

500 1000 1500 2000 2500 3000
−600

−400

−200

0

200

400

600

800

1000

1200

Sample

A
m

pl
itu

de
 (

μV
)

Figure 4.14. ST segment distortion due to the 50/60 Hz digital notch filter in the SynAmps system

by the company BioSemi [131]. With this system, we are able to record up to 64 ECG
channels along with a respiration signal simultaneously. Because the ECG main amplifier
box, also called the front-end, is battery powered, remarkable elimination of the powerline
interference is accomplished.

4.6.2.1 ActiveTwo Electrodes

There are indeed a number of practical problems with the current passive electrodes.
Unshielded electrode wires are usually the major source of powerline interference [137].
By integrating the first amplifier stage with a sintered Ag|AgCl electrode, ActiveTwo
electrodes, which are actually active electrodes, provide at solution for all problems as-
sociated with high electrode impedance’s and cable shielding. They allow for low-drift
DC measurement, extremely low-noise and interference measurements without any skin
preparation. All artifacts by cable and connector movements as well as all problems with
regards to capacitive coupling between the cable and sources of interference are highly
eliminated by these low-output-impedance active electrodes. They have also noise levels
as low as the thermal noise level of the electrode impedance [131]. The input impedance
of an active electrode is 300 MΩ at 50 Hz

1. Flat-Type Active Electrodes : This electrode consists of the electrode metal, gel cavity
and the built-in preamplifier in the electrode housing, figure 4.15. The gel cavity of
each electrode is designed to reduce motion artifacts. The electrode has a sintered
Ag|AgCl electrode pallet (4mm in diameter), providing very low noise, low offset
voltages and very stable DC performance.
Both kind of electrodes are attached to the skin by the means of double-sided adhesive
tape rings.
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Figure 4.15. The Flat-Type Active Electrodes for Multi-channel ECG ActiveTwo System. Figure is adopted

from [131]

2. Active BSPM Carbon Strips : Flexible rubber strips with integrated carbon electrodes,
carbon electrode wire and a preamplifier integrated into the end of the strip is the
structure of this kind of electrodes, which are actually designed for BSPM applications,
figure 4.16. By choosing different combinations of Panel 4x8 and Panel 4x12 sets,
various electrode layouts can be configured.

Figure 4.16. The Active BSPM Carbon Strips for Multi-channel ECG ActiveTwo System. Figure is adopted

from [131]

4.6.2.2 ActiveTwo AD-box

The ActiveTwo AD-box forms an ultra compact, low power galvanically isolated front-
end (close to the subject) in which up to 256 sensor-signals are digitized with 24 bit
resolution and 31 nV digital resolution, see figure 4.17. One AD-box channel consists of
a low noise DC coupled post-amplifier, with a first order anti-aliasing filter, followed by
a Delta-Sigma modulator with an oversampling rate of 64, and decimation filter with a
steep fifth order Sinc response and high resolution 24-bit output. The digital outputs of
all the AD converters (up to 256) are multiplexed and sent to a personal computer via a
single optical fiber without any compression or other form of data reduction [131].
There is a chain of three basic noise sources in the ActiveTwo system: the input buffer
in the active electrode, the amplifier in the AD-box, and the analog-to-digital converter
(ADC), (quantization noise). The dynamic range of ActiveTwo is approximately 110 dB,
which means that it has 19 effective bits, and that the 5 least significant bits are noise.
Nevertheless, the performance is still impressive since the dynamic range of this 24-bit
ADC is a factor of 8 larger than the best 16 bit successive approximation register (SAR)
types. All ECG signal recorded by the author using ActiveTwo system is sampled with 2
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Figure 4.17. Multi-channel ECG ActiveTwo AD-box with battery. Figure is adopted from [131]

kHz, which gives 400 Hz bandwidth since the analog bandwidth of this system is always
1/5th of the sample rate.
The BioSemi Data Format (BDF) is the file format used to save the measured data from
the 24-bit-resolution ActiveTwo. BDF is a 24 bit version of the popular 16 bit European
Data Format. Full specifications and differences of the BDF/EDF file formats can be
found [136].
Furthermore, a full description on the specifications for the biopotential measurement
system, type ActiveTwo with two-wire active electrodes, can be found in [138].

4.6.2.3 The Respiration Belt

The ActiveTwo system used in our institute is able to record the respiration signal si-
multaneously along with the 64-channel ECG signal. The respiration signal is obtained
by using a respiration belt directly plugged into the ActiveTwo AD-box.

4.7 IBT Multi-Channel ECG Lead System

The conventional 12-lead ECG and VCG techniques were developed from empirical con-
siderations and from the representation of the electrical activity of the heart as a simple
dipole. In contrast, the objective of electrocardiographic body-surface potential mapping
is to measure ’all’ available ECG Information, which requires extensive spatial sampling.
Multi-channel ECG lead systems have been characterized as ’complete’ or ’limited’. The
former implying the actual sampling of ’all’ data (most of the thoracic surface) and the
latter implying the sampling of a small number of sites for approximating and optimizing
complete distributions to a pre-specified level of accuracy [46].
There have never been standards for lead systems since mapping has been relegated
primarily to research laboratories. Using recordings with ’complete’ leads (about 200),
estimates can be made of the minimum number of leads that is needed to obtain the
same accuracy [47]. Zywietz determined this to be approximately 33 by applying the
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spatial sampling theorem to data sets of 209 leads [139]. A two 32-lead (limited-lead)
recording array was designed on the basis of initially recorded complete 192-lead data on
132 subjects by Lux et al. [140, 51]. In their complete lead, electrodes were evenly spaced
in 16 vertical columns of 12 recording sites with the latter also being equally spaced
between the sternal notch and the umbilicus. The first 32-limited-lead set, known as the
Lux limited has 6 electrodes on the back (see figure 4.18), whereas the second set, known
as Lux anterior does not have any posterior electrode sites (see figure 4.19).
Lux limited is basically used to develop a 64-channel ECG lead system in our institute,
called IBT Multi-Channel ECG Lead System, because it is expected from this set to pro-
vide about the same information as 192 equally distributed leads (complete lead system)
with some posterior electrodes on the back.
32 electrodes were added to Lux limited in order to provide IBT Multi-Channel ECG
Lead System. These additional electrodes are shown in figure 4.20, whereas the labels of
all electrodes in IBT Multi-Channel ECG Lead System are illustrated in figure 4.21. The
electrodes added allow the following:

1. ability to derive the bipolar and the augmented unipolar limb leads using the electrodes
A13, C13 and C24 shown in the figure 4.21 and referring to Mason and Likar Lead
System explained in section 3.3.1.4.

2. ability to derive the unipolar precordial leads using the electrodes A7, B5, B18, C6,
C18 and A2 shown in the figure 4.21.

3. more compatibility and effectivity to place the Active BSPM Carbon Strips of the
ActiveTwo system very fast with minimal error as illustrated in figure 4.21, where
four Active BSPM Carbon Strips with twelve electrodes each can cover completely the
left anterior part of the torso.

The reference and the ground electrode, denoted as RF and GN (right-leg electrode)
respectively in the figure 4.21 , are placed in the region of the right iliac fossa as mentioned
in Mason and Likar Lead System explained in section 3.3.1.4.

4.8 ECG Databases

In this section, a complete description about all ECG databases used in this work is given.
These databases can be differentiated between multi-channel ECG databases, annotated
ECG databases and ECG databases recorded during some pharmaceutical studies.

4.8.1 Multi-Channel ECG Databases

As mentioned before, all multi-channel ECG signals used in this work have been mea-
sured and recorded with the already-presented two IBT Multi-channel ECG acquisition
systems by the author. All measurements, done with ActiveTwo system, were recorded
with respiration signal.

4.8.1.1 64-Channel ECG Databases from the SynAmps System

Since the powerline interference of the first system, the SynAmps system, is relatively
high, efforts were made to develop a suitable method to filter this noise out. Therefore,
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Figure 4.18. The 32-lead Lux limited recording array estimating the complete 192-lead data on 132 subjects by

Lux et al with 6 electrodes on the back

the 64-channel ECG signals measured by this system were used only to develop that
method and were not used as input to any other method in this work avoiding any
additional possible error. In details, four 64-channel ECG signals were recorded from
young volunteers, who did not suffer from any cardiac problems (see figure 4.22 as an
example). A screen-shot during one of these ECG recordings is illustrated in the figure
4.23.

4.8.1.2 64-Channel ECG Databases from ActiveTwo system

64-channel ECG measurement along with one channel respiration signal recording were
done on five young volunteers, who also did not suffer from any cardiac problems. The
quality of these recorded ECG signals were remarkably better than the ECG recorded
by SynAmps system (see figure 4.22 as an example). The duration of these signals
varies between one and five minutes. A screen-shot during one of these ECG recordings
is illustrated in the figure 4.25.

4.8.2 Annotated ECG Databases

Several different standard databases are stored at Physionet.org, which are recorded
and analysed to allow comparison between different ECG signal processing approaches,
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Figure 4.19. The 32-lead Lux anterior recording array estimating the complete 192-lead data on 132 subjects

by Lux et al without any electrodes on the back

namely automatic ECG segmentation algorithms. One of these database is the MIT/BIH
arrhythmia database, which has been used in this thesis. The MIT/BIH arrhythmia
database contains 48 half-hour excerpts of two-channel ambulatory ECG recordings, ob-
tained from 47 subjects studied by the Boston’s Beth Israel Hospital (BIH) Arrhythmia
Laboratory between 1975 and 1979. Twenty-three recordings (records number Ixx) were
chosen at random from a set of 4000 24-hour ambulatory ECG recordings collected from
a mixed population of inpatients (about 60%) and outpatients (about 40%) at the BIH.
The remaining 25 recordings (records number 200 and above) were selected from the
same set to include less common but clinically significant arrhythmias that would not be
well-represented in a small random sample. The recordings were digitized at 360 samples
per second with 11-bit resolution over a 10 mV range. Two or more cardiologists inde-
pendently annotated each record. Disagreements were resolved to obtain the computer-
readable reference annotations for each beat included with the database, namely the lo-
cation R peaks. Altogether there are over 100000 QRS-complexes in this database. While
some records contain clear QRS-complexes and few artifacts (e.g., records 100-107), for
some records the detection of QRS complexes is very difficult due to abnormal shapes,
noise, and artifacts (e.g., records 108 and 207) [141, 142].
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Figure 4.20. The IBT 64-Channel ECG Lead System based on Lux limited

4.8.3 Clinical-Trials ECG Databases

60 normal and 10 Torsade-de-Pointes two-channel tapes from different studies recorded
during Dofetilide clinical trials (Pfizer, Inc.) are used in this Thesis. All tapes are 24-
hour ambulatory Holter recordings. All Torsade-de-Pointes tapes have non-sustained TDP
episodes. Atrial Fibrillation (AF) is reported in eight Torsade-de-Pointes tapes.
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Figure 4.21. The IBT 64-Channel ECG Lead positions on the human torso with the corresponding electrode

labels

Figure 4.22. The IBT Multi-Channel ECG electrode set applied on a young volunteer during one measurement

with the SynAmps system
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Figure 4.23. A screen-shot during one of the IBT 64-Channel ECG recordings with the SynAmps system: it is

important to note that the signal appearing on the screen is digitally notch-filtered, whereas the recorded signal

is not passed to any powerline interference notch filter

Figure 4.24. The IBT Multi-Channel ECG electrode set and the respiration belt attached to a young volunteer

during one measurement with the ActiveTwo system
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Figure 4.25. A screen-shot during one of the IBT 64-Channel ECG recordings with the ActiveTwo system and

the acquisition program provided by the manufacture
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Applied Methods and Mathematics

5.1 Mathematical Basics

5.1.1 Expected Value

The Expected Value, also called mathematical expectation or ensemble average, of a
function f(x) in a single continuous variable x is denoted as E [f(x)] or 〈f(x)〉 and given
by the first-order moment of its probability density function (PDF) as follows:

E [f(x)] =

∫
f(x)P (x).dx, (5.1)

where P (x) is the probability function. For a single discrete variable, it is defined by

E [f(x)] = x = μx =
∑
x

f(x)P (x), (5.2)

When the PDFs of the random processes of concern are not know and when dealing
with random processes that are observed as function of time or stochastic processes, like
biosignals, it is common to approximate the statistical expectation operation by averages
computed using a collection or ensemble average at every point of time. Suppose we have
M observations of the random process x(n) as function of time. We may estimate the
mean of the process at a particular instant of time n1 as:

x(n1) = μx(n1) = lim
M→∞

1

M

M∑
k=1

xk(n1), (5.3)

and then we obtain an averaged function of time x, also called mean value, as

x(n) = μx(n) = E [X] =
1

M

M∑
k=1

xk(n), (5.4)

5.1.2 Variance and Covariance

The variance function contains for each sample the ensemble average of the squared
deviation from the mean value for that sample. The variance function V arx is given by
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V arx(n) = σ2
x(n) = E

[|x(n)−E [x(n)]|2]
V arx(n) = E

[|x(n)− μx(n)|2] =
1

M

M∑
k=1

(xk(n)− μx(n))2
(5.5)

where σx(n) is the standard deviation, also denoted as SD, and M is the number of ob-
servations of the variable x. The covariance function, also called autocovariance function,
describes the average joint deviation from the mean value for two samples n1 and n2 is
defined by

cx(n1, n2) = E [(x(n1)− μx(n1))(x(n2)− μx(n2))] , (5.6)

A positive covariance value indicates that the deviations from the mean value for these
two samples, in average, have the same sign, while a negative value indicates that the
deviations tend to have opposite sign. The covariance matrix Cx is defined in vector form
as follows:

Cx = E
[
(X−Mx)

T (X−Mx)
]
, (5.7)

Cx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E[(X1 − μ1)(X1 − μ1)] · · · E[(X1 − μ1)(Xn − μn)]

E[(X2 − μ2)(X1 − μ1)] · · · E[(X2 − μ2)(Xn − μn)]
...

. . .
...

E[(Xn − μn)(X1 − μ1)] · · · E[(Xn − μn)(Xn − μn)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.8)

which is symmetric. Suppose a training set with N samples and each sample can be
expressed by a row vector with the size of L, Si = [Si1, Si2, · · · , SiL] , then the average
vector S of the training set S and the covariance matrix Cs can be computed as follow:

S =
1

N

N∑
i=1

Si, Cs =
1

N − 1

N∑
i=1

(Si − S)(Si − S)T , (5.9)

5.1.3 Correlation

Mathematically, the correlation function rx for a random stochastic process x(n) is defined
by

rx(n1, n2) = E [x(n1)x(n2)] . (5.10)

Although the correlation function does not reflect deviations from the mean value, its
interpretation is similar to that of the covariance function. The correlation matrix is
defined by

Rx = E
[
XTX

]
, (5.11)
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Rx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E[(X1)(X1)] · · · E[(X1)(Xn)]

E[(X2)(X1)] · · · E[(X2)(Xn)]

...
. . .

...

E[(Xn)(X1)] · · · E[(Xn)(Xn)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.12)

Because a close relation exists between the correlation and covariance matrices, a zero-
mean process will have identical covariance and correlation matrices.

Cx = Rx −mxm
T
x , (5.13)

In probability theory and statistics, correlation, also called Pearson product-moment cor-
relation coefficient, indicates the strength and direction of a linear relationship between
two different random variables or stochastic processes, x(n) and y(n) for instance.

ρxy(n1, n2) = E [x(n1)y(n2)] =
E[(x(n1)− μx(n1))(y(n2)− μy(n2))]

σx(n1)σy(n2)
, (5.14)

ρxy =
1

(n− 1)σxσy

n∑
i=1

(xi − x̄)(yi − ȳ), (5.15)

The corresponding correlation matrix is defined by

Rxy = E[XTY], (5.16)

5.2 Principal Component Analysis (PCA)

PCA is a linear transformation that transforms the data to a new coordinate system
such that the greatest variance by any projection of the data comes to lie on the first
coordinate (called the first principal component), the second greatest variance on the
second coordinate, and so on. PCA can be used for dimensionality reduction in a dataset
while retaining those characteristics of the dataset that contribute most to its variance,
by keeping lower-order principal components and ignoring higher-order ones. Such low-
order components often contain the ’most important’ aspects of the data, but this is
not necessarily the case, depending on the application. PCA is also called the (discrete)
Karhunen-Loève transform (or KLT, named after Kari Karhunen and Michel Loève) or
the Hotelling transform (in honor of Harold Hotelling). PCA has the distinction of being
the optimal linear transformation for keeping the subspace that has largest variance. This
advantage, however, comes at the price of greater computational requirement if compared,
for example, to the discrete cosine transform. Unlike other linear transforms, the PCA
does not have a fixed set of basis vectors. Its basis vectors depend on the data set [143].
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5.2.1 Orthogonal and Orthonormal Series Expansions

A biosignal xi can be composed of useful noise-free signal si and pure noise signal vi:

xi = si + vi, (5.17)

On the other hand, xi can be represented by a linear combination, or so-called series
expansion, of basics functions ϕk.

xi =

N∑
k=1

wi,kϕk = ΦWi, (5.18)

where

Φ =
[
ϕ1 ϕ2 . . . ϕN

]
and Wi =

⎡⎢⎢⎢⎣
wi,1
wi,2
...

wi,N

⎤⎥⎥⎥⎦
The coefficient vector wi, also called weighting vector, is the representation of xi in terms
of the basis ϕ1, ϕ2, . . . , ϕN . If the basis functions are mutually orthogonal, the representa-
tion of xi in 5.2.1 will be called an orthogonal series expansion and if they are orthonormal,
i.e. orthogonal and their energy normalized to one, the representation will be called then
an orthonormal series expansion [33]. In case of orthonormality we will have the following:

ϕTkϕl =

{
1, k = l;
0, k �= l.

→ ΦTΦ = ΦΦT = I → Wi = ΦTxi

Thus, each weight wi,k results from a correlation operation, or inner product, between xi
and the basis function

wi,k = ϕTk xi =

N−1∑
n=0

ϕk(n)xi(n), (5.19)

5.2.2 Truncated Orthonormal Series Expansions

Since the orthonormal series expansion in 5.18 represent the sum of the useful signal si
and the noise as well vi, it is very necessary to apply a good separation between both signal
components in order to get an acceptable estimation for the useful signal. In other words,
we need to find a subset of basis functions that can provide an adequate representation
of the useful part of the original signal si. This can be done through a truncated series
expansion [33]. One possibility to achieve this goal is to decompose the matrix Φ into two
matrices, Φs and Φv whose columns represent the signal and the noise parts, respectively,

Φ =
[
Φs Φv

]
, (5.20)
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where the size of Φs is N ×K and of Φv is N × (N −K); K is a natural number which is
smaller than N and denotes the number of the basis function that approximate the signal
si with minimum error. Depending on the equation 5.20 we can write xi as follows:

xi =

K∑
k=1

wi,kϕk +

N∑
k=K+1

wi,kϕk, (5.21)

The left-hand side sum in the equation 5.21 represents the best approximation for the
noise-free signal ŝ, whereas the right-hand side sum represents the best approximation for
the noise v̂ providing that the best K is taken with the smallest level of approximation
error. The space χ is defined by the set of all vectors which can be represented by linear
combinations of the basis {ϕ1, ϕ2, . . . , ϕN}, denoted

χ = span {ϕ1, ϕ2, . . . , ϕN} , (5.22)

In terms of vector spaces, truncation may be related to what is called decomposition of
the space χ into χs and χv as follows,

χ = χs ⊕ χv, (5.23)

where

χs = span {ϕ1, ϕ2, . . . , ϕK} , χv = span {ϕK+1, ϕ2, . . . , ϕN} ,

and ⊕ denotes the direct sum of the two subspaces.

5.2.3 Karhunen-Loève Expansion

The Karhunen-Loève expansion is actually the best and optimal truncated orthonormal
series expansion compared to any other. Karhunen-Loève method implies the mean-square
error (MSE) to minimize the error in estimating the noise signal v̂ in the following equa-
tion:

x =
K∑
k=1

wkϕk +
N∑

k=K+1

wkϕk = s+ v = ŝ+ v̂, (5.24)

The aim is to find the set of ϕk’s that makes ŝ resemble s as closely as possible. This can
be done by minimizing the noise power ε estimate in the MSE sense,

ε = E
[
v̂T v̂

]
, (5.25)

By assuming that the signal and the noise are uncorrelated and that the noise is white,
the error ε can be written as
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ε =

N∑
k=K+1

ΦTkRxΦk, (5.26)

where Rx is the correlation matrix characterizing the ensemble of original signals x. In
order to solve the minimizing problem, a Lagrange multiplier technique will be used and
the new function L to be minimized is defined by

L =
N∑

k=K+1

ΦTkRxΦk +
N∑

k=K+1

λk
(
1− ΦTkΦk

)
, (5.27)

where λk’s are Lagrange multipliers related to each of the constraints. By taking the
gradient of L with respect to Φk and setting the result to zero ∇ΦkL = 0, we will yield

RxΦk = λkΦk, (5.28)

By inserting 5.28 into 5.26 the final MSE will be expressed as

ε =
N∑

k=K+1

λk, (5.29)

and thus ε is minimized when the N −K smallest Lagrange multipliers are chosen.
The equation 5.29 establishes the very important finding that the basis functions Φk
should be chosen as the eigenvectors of the correlation matrix Rx and that Lagrange
multipliers λk are in fact the corresponding eigenvalues.
λk are positive- or zero-valued and they are arranged in decreasing order

λ1 > λ2 > . . . > λN , (5.30)

The equation in 5.28 can be expressed in a compact matrix form as follows:

RxΦ = ΦΛ, (5.31)

where Λ is a diagonal matrix whose diagonal elements are equal to the eigenvalues
λ1, λ2, . . . , λN . Since Φ is orthogonal, Rx can be expressed as follows:

Rx = ΦTΛΦ, (5.32)

The average energy associated with each coefficient W after using the equation 5.18 and
5.32 is denoted as

E
[
WW T

]
= ΦTE

[
xxT

]
Φ = ΦTRxΦ = Λ, (5.33)

because the coefficients of W are mutually uncorrelated,

E [wkwl] =

{
λk, k = l;
0, k �= l.

,(5.34)
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the average energy associated with each coefficient wk will thus be equal to λk [33].
Furthermore, in energy terms, a performance index RK can be defined to reflect how well
the truncated series expansion approximates the ensemble:

RK =

K∑
k=1

λk

N∑
k=1

λk

, (5.35)

In the case when x is the zero-mean signal of the signal y for example

x = y −E [y] , (5.36)

the correlation matrix Rx of the zero-centered signal x will be in fact the covariance
matrix Cy of the signal y as follows:

Rx = E
[
xxT

]
= E

[
(y −E [y]) (y − E [y])T

]
= Cy, (5.37)

5.2.4 Methods to Calculate PCA

5.2.4.1 The Covariance Matrix Method

The goal is to transform a given data set X of dimension M to an alternative data set
Y of smaller dimension L. Equivalently, we are seeking to find the matrix Y , where Y is
the Karhunen-Loève transform (KLT) of matrix X:

Y = KLT{X}, (5.38)

1. Organizing the data set : Suppose a training set X with N samples and each sample
Xi can be expressed by a row vector with the size of M as follows:

Xi = [Xi1, Xi2, · · · , XiM ], (5.39)

The training set is placed into a single matrix X of dimensions N ×M , so that N are
the number of observations and M is the dimension of the observation vector.

X =

Dimension of Observation Vector︷ ︸︸ ︷⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X11X12 · · · X1M

X21X22 · · · X2M

...
. . .

...

XN1XN2 · · · XNM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
}

Number of Observations, (5.40)

2. Calculate the empirical mean raw vector : The empirical mean along each dimension
m = 1...M is calculated. Afterward, all computed mean values are placed into an
empirical mean row vector u of dimension M .
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u(m) =
1

N

N∑
n=1

X(n,m), m = 1, 2, · · · ,M (5.41)

3. Calculate the deviations from the mean: The empirical mean row vector u is subtracted
from each row of the data matrix X. Then a new mean-subtracted data matrix B(N×
M) is derived.

B = X− h · u, (5.42)

where h is a column vector of ones and size of N x1 :

h(n) = 1 for n = 1 . . . N , (5.43)

4. Find the covariance matrix : As illustrated before, the M ×M empirical covariance
matrix C is calculated from the outer product of the zero-centered matrix B with
itself:

C = E [B⊗B] = E [B ·B∗] =
1

N − 1
B ·B∗, (5.44)

where E is the expected value operator, ⊗ is the outer product operator, and ∗ is the
conjugate transpose operator.

5. Find the eigenvectors and eigenvalues of the covariance matrix : This step will typically
require the use of a computer-based algorithm for computing the eigenvalue matrix D
and the eigenvector matrix V of the covariance matrix C:

C ·V = V ·D, (5.45)

The matrix D will take the form of an M × M diagonal matrix, where D[p, q] =
λm for p = q = m is the mth eigenvalue of the covariance matrix C, and
D[p, q] = 0 for p �= q.

The matrix V , also of dimension M ×M , contains M column vectors, each of length
M , which represent the M eigenvectors of the covariance matrix C.

The eigenvalues and eigenvectors are ordered and paired. The mth eigenvalue corre-
sponds to the mth eigenvector.

6. Rearrange the eigenvectors and eigenvalues: The columns of the eigenvector matrix
V and eigenvalue matrix D are sorted out in order of decreasing eigenvalues thereby
maintaining the correct pairings between the columns in each matrix.

7. Compute the cumulative energy content for each eigenvector : The eigenvalues repre-
sent the distribution of the source data’s energy among each of the eigenvectors, where
the eigenvectors form a basis for the data. The cumulative energy content g for the
mth eigenvector is the sum of the energy content across all of the eigenvectors from 1
through m:
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g[m] =

m∑
q=1

D[p, q] for p = q and m = 1...M , (5.46)

8. Select a subset of the eigenvectors as basis vectors: Save the first L columns of V as
the M × L matrix W :

W [p, q] = V [p, q] for p = 1...M q = 1...L, (5.47)

where 1 ≤ L ≤M . The vector g is used as a guide in choosing an appropriate value for
L. The goal is to choose as small a value of L as possible while achieving a reasonably
high value of g on a percentage basis. For example, one may want to choose L so that
the cumulative energy g is above a certain threshold, like 95 percent. In this case,
choose the smallest value of L such that

g(m = L) ≥ 95%.

9. Compute PCA scores : The projected PCA-scores or the reconstruction parameter vec-
tors (RPV) are the columns of the matrix Z(N×M), namely Zi1, Zi2 and ZiM , where
i = 1...N . The matrix Z is calculated by multiplying the eigenvector matrix with the
zero-mean data matrix from the left as follows:

Z = B ·V = KLT{X} =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z11z12 · · · z1M

z21z22 · · · z2M
...

. . .
...

zN1zN2 · · · zNM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.48)

The rows of Z correspond to the observations, whereas the columns refer to the com-
ponents or dimensions.
In fact, the projected PCA-scores or vectors represent the Karhunen-Loève transform
(KLT) of the data vectors in the columns of matrix X, equation 5.48.

5.2.4.2 The Singular Value Decomposition (SVD)

SVD does not employ any covariance or correlation matrix in its calculation. The goal of
SVD is also to transform a given data set X of dimension M to an alternative data set
Y of smaller dimension L as follows:

Y = KLT{X}, (5.49)

1. Organizing the data set : Suppose a training set with N samples and each sample Xi

can be expressed by a row vector with the size of M as follows:

Xi = [Xi1, Xi2, · · · , XiM ], (5.50)

The training set is placed into a single matrix X of dimensions N ×M , so that N are
the observations and M are the dimensions.
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X =

DIMENSIONS︷ ︸︸ ︷⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X11X12 · · · X1M

X21X22 · · · X2M

...
. . .

...

XN1XN2 · · · XNM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
}
Observations, (5.51)

2. Calculate the empirical mean raw vector : The empirical mean along each dimension
m = 1...M is calculated. Afterward, all computed mean values are placed into an
empirical mean row vector u of dimensions M .

u(m) =
1

N

N∑
n=1

X(n,m), m = 1, 2, · · · ,M (5.52)

3. Calculate the deviations from the mean: The empirical mean row vector u is subtracted
from each row of the data matrix X. Then a new mean-subtracted data matrix B(N×
M) is derived.

B = X− h · u, (5.53)

where h is a column vector of ones and size of N x1 :

h(n) = 1 for n = 1 . . . N , (5.54)

4. Find the matrix A: The matrix A has the size of M ×N and is calculated as follows:

A =
1√

N − 1
B, (5.55)

5. Apply Singular Value Decomposition on the matrix A: SVD performs a factorization
on the matrix A of the following form:

A = UΣV ∗, (5.56)

where U is an N×M unitary matrix, the matrix Σ is of size M×M with nonnegative
numbers on the diagonal and zeros off the diagonal, and V ∗ denotes the conjugate
transpose of V . In fact, The matrix V contains a set of orthonormal input or analysing
basis vector directions for A. In other words, the matrix V is equal to the matrix V in
the section 5.2.4.1 on page 75. It contains also M column vectors, each of length M ,
which represent exactly the M eigenvectors of the covariance matrix C. The matrix Σ
contains the singular values, which can be thought of as scalar gain controls by which
each corresponding input is multiplied to give a corresponding output. The matrix
U contains a set of orthonormal output basis vector directions for A. The diagonal
eigenvector matrix D of the covariance matrix C in the section 5.2.4.1 can be derived
here by applying an array multiplication (element-by-element product) of the diagonal
matrix Σ with itself as follows:
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D = Σ. ∗Σ, (5.57)

Afterward, the steps 6 through 9 in the section 5.2.4.1 are applied exactly in the same
manner on the matrices V and D in this section. Similar results are finally obtained
from both methods, i.e. the covariance matrix and SVD methods.

5.2.4.3 The Correlation Matrix Method

The big drawback of PCA based on covariance matrices is the sensitivity of the principal
components (PCs) to the units of measurement used in the data matrix X. If there are
large differences between the variances of the elements of X, then those variables whose
variances are largest will tend to dominate the first few PCs. Therefore, a major argument
for using correlation, rather than covariance, matrices to define principal components
is that the results of analysis for different sets of random variables are more directly
comparable than for analysis based on covariance matrices.
If all the elements of X are measured in the same units, like the work in this thesis, the
covariance matrix method will be entirely appropriate. This method is applied on the data
set by calculating the eigenvectors and the corresponding eigenvalues of the correlation
matrix derived from the original data or of the covariance matrix of the standardized
data matrix from the original data matrix. The standardized data matrix is denoted as
Xsta and defined as follows:

Xsta =

DIMENSIONS︷ ︸︸ ︷⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(X11 − u(1))/σ(1) · · · (X1M − u(M))/σ(M)

(X21 − u(1))/σ(1) · · · (X2M − u(M))/σ(M)

...
. . .

...

(XN1 − u(1))/σ(1) · · · (XNM − u(M))/σ(M)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
}
Observations (5.58)

where

σ(m) =

√√√√ 1

N

N∑
i=1

(X(n,m)− u(m))2, m = 1, 2, · · · ,M (5.59)

and u is the empirical mean of the original data matrix X as defined in 5.42.

5.2.5 Hotelling’s T Squared Statistics

Hotelling’s T-square statistic, T2, is defined as follows:

T2
i =

M∑
k=1

z2
ik

λk
, i = 1..N (5.60)

where N is the number of observations, M is the number of the dimension of the matrix
X, defined in 5.39 and in 5.40. zik is the PCA score corresponding to the ith observation
and the kth dimension of the matrix Z defined in 5.48.
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zik ∈ Z, (5.61)

The matrix Z contains the PCA scores, also called the reconstruction parameter vectors.
λk ∈ D is the kth eigenvalue of the covariance C derived from the zero-centred data
matrix of the original data matrix X.
T2 is also defined as the squared Mahalanobis distance, D2

i ,

D2
i = T2 = (Xi −X)C−1(Xi −X)T . (5.62)

From equation 5.45, C and C−1 can be re-written as follows:

C = VDVT and C−1 = VD−1VT . (5.63)

And from equation 5.48, (Xi −X) and (Xi −X)T can be re-calculated as follows:

(Xi −X) = ZVT and (Xi −X)T = VZT (5.64)

Using the equations 5.63 and 5.64 in 5.65, T2 will be derived as,

T2 = ZD−1ZT = T 2
i =

M∑
k=1

z2
ik

λk
. (5.65)

Hotelling’s T squared is defined as an overall measure of variability in a dataset. It
is actually a quantity indicating the overall conformance of an individual observation
vector to its mean or an established standard [144]. In other words, Hotelling’s T 2 is a
measure of the multivariate distance of each observation from the center of the data set
[1]. Because the use of PCA and Hotelling’s T squared shows high efficiency, they are
applied extensively in Statistical Process Control (SPC), finding outliers and measures of
quality control [145].

5.3 Finite & Infinite Impulse Response Filters

5.3.1 Z-Transform

In mathematics and signal processing, the Z-transform converts a discrete time domain
signal, which is a sequence of real numbers, into a complex frequency domain represen-
tation. The Z-transform, like many other integral transforms, can be defined as either a
one-sided or two-sided transform.

• Bilateral Z-Transform: The bilateral or two-sided Z-transform of a discrete-time signal
x[n] is the function X(z) defined as:

X(z) = Z{x[n]} =
∞∑

n=−∞
x[n]z−n, (5.66)

where n is an integer and z is, in general, a complex number:

z = Aejφ, (5.67)
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where A is the magnitude of z, and φ is the angular frequency (in radians per sample).
• Unilateral Z-Transform: Alternatively, in cases where x[n] is defined only for n ≥ 0,

the single-sided or unilateral Z-transform is defined as

X(z) = Z{x[n]} =

∞∑
n=0

x[n]z−n, (5.68)

In signal processing, this definition is used when the signal is the output of a causal
system with output and internal states that depend only on the current and previous
input values.

5.3.2 Laplace Transform

The Laplace transform of a function f(t), defined for all real numbers t ≥ 0, is the
function F (s), defined by:

F (s) = L{f(t)} =

∫ ∞

0−
e−stf(t) dt., (5.69)

The parameter s is in general complex:

s = σ + jω , (5.70)

This integral transform has a number of properties that make it useful for analysing
linear dynamical systems. The most significant advantage is that differentiation and in-
tegration become multiplication and division, respectively, with s. (This is similar to
the way that logarithms change an operation of multiplication of numbers to addition of
their logarithms.) This changes integral equations and differential equations to polynomial
equations, which are much easier to solve.
The Laplace transform can be alternatively defined as the bilateral Laplace transform or
two-sided Laplace transform by extending the limits of integration to be the entire real
axis. If that is done the common unilateral transform simply becomes a special case of the
bilateral transform where the definition of the function being transformed is multiplied
by the Heaviside step function. The bilateral Laplace transform is defined as follows:

F (s) = L{f(t)} =

∫ +∞

−∞
e−stf(t) dt., (5.71)

The Z-transform is simply the Laplace transform of an ideally sampled signal with the
substitution of

z = esT =
2 + sT

2− sT and s =
2

T

z − 1

z + 1
, (5.72)

where T = 1/fs is the sampling period (in units of time e.g. seconds) and fs is the
sampling rate in Hertz.
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5.3.3 LTI System Theory

LTI system theory investigates the response of a linear system, time-invariant system to
an arbitrary input signal. The defining properties of any linear time-invariant system are,
of course, linearity and time invariance:

• Linearity means that the relationship between the input and the output of the system
satisfies the scaling and superposition properties. Formally, a linear system is a system
which exhibits the following property: if the input of the system is

x(t) = Ax1(t) +Bx2(t), (5.73)

then the output of the system will be

y(t) = Ay1(t) +By2(t), (5.74)

for any constants A and B, where yi(t) is the output when the input is xi(t).
• Time invariance means that whether we apply an input to the system now or T seconds

from now, the output will be identical, except for a time delay of the T seconds. More
specifically, an input affected by a time delay should effect a corresponding time delay
in the output, hence time-invariant.
The fundamental result in LTI system theory is that any LTI system can be character-
ized entirely by a single function called the system’s impulse response. The output of
the system is simply the convolution of the input to the system with the system’s im-
pulse response. This method of analysis is often called the time domain point-of-view.
The same result is true in case of discrete-time linear shift-invariant systems, in which
signals are discrete-time samples, and convolution is defined on sequences. Equiva-
lently, any LTI system can be characterized in the frequency domain by the system’s
transfer function, which is the Laplace transform of the system’s impulse response (or
Z transform in the case of discrete-time systems). As a result of the properties of these
transforms, the output of the system in the frequency domain is the product of the
transfer function and the transform of the input. In other words, convolution in the
time domain is equivalent to multiplication in the frequency domain.

5.3.4 Finite Impulse Response Filter (FIR)

A finite impulse response (FIR) filter is a type of digital filter. It is ’finite’ because its
response to a Kronecker delta impulse ultimately settles to zero. This is in contrast to
infinite impulse response filters which have internal feedback and may continue to respond
indefinitely.
The difference equation defining how the input signal is related to the output signal of
an FIR filter is as follows:

y (n) = b0x (n) + b1x (n− 1) + ... + bPx (n− P ) , (5.75)

where P is the filter order, x(n) is the input signal, y(n) is the output signal and bi are
the filter coefficients. The previous equation can also be expressed as
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y (n) =

P∑
i=0

bix (n− i) , (5.76)

To find the impulse response we set x(n) = δ(n) where δ(n) is the Kronecker delta
impulse. The impulse response for an FIR filter follows as

h (n) =

P∑
i=0

biδ (n− i) , (5.77)

The Z-transform of the impulse response yields the transfer function of the FIR filter

H(z) = Z{h(n)} =

∞∑
n=−∞

h(n)z−n, (5.78)

We note that Z{δ(n)} = 1 then with the definition of the impulse response and the time
shift property of the Z-transform follows

H (z) =

P∑
i=0

biz
−i, (5.79)

The transfer function allows us to judge whether or not a system is bounded-input,
bounded-output stability (BIBO) stable. To be specific the BIBO stability criterion re-
quires all poles of the transfer function to have an absolute value smaller than one. In
other words all poles must be located within a unit circle in the z − plane. To find the
poles of the transfer function we have to extend it with zP

zP
and arrive at

H (z) =

∑P
i=0 biz

P−i

zP
, (5.80)

The FIR transfer function contains P poles for z = 0. Since all poles are at the origin,
all zeros are located within the unit circle of the z − plane; therefore all FIR filters are
stable.

5.3.5 Infinite Impulse Response Filter (IIR)

IIR (infinite impulse response) is a property of signal processing systems. Systems with
that property are known as IIR systems or if we are dealing with electronic filter systems
IIR filters. They have an impulse response function which is non-zero over an infinite
length of time. This is in contrast to finite impulse response filters (FIR) which have
fixed-duration impulse responses.
Recursive filters are signal processing filters which re-use one or more output(s) of the
filter as inputs. This feedback results in an unending impulse response characterized by
either exponentially growing, decaying, or sinusoidal signal output components.
IIR filters may be implemented as either analog or digital filters. In digital IIR filters, the
output feedback is immediately apparent in the equations defining the output. Note that
unlike with FIR filters, in designing IIR filters it is necessary to carefully consider ’time
zero’ case in which the outputs of the filter have not yet been clearly defined.



84 5. Applied Methods and Mathematics

Design of digital IIR filters is heavily dependent on that of their analog counterparts which
is because there are plenty of resources, and straightforward design methods concerning
analog feedback filter design while there are hardly any for digital IIR filters. As a result,
mostly, if a digital IIR filter is going to be implemented, first, an analog filter (e.g.
Chebyshev filter, Butterworth filter, Elliptic filter) is designed and then it is converted
to digital by applying discretization techniques such as Bilinear transform or Impulse
invariance.
The difference equation of an IIR filter defining how the input signal is related to the
output signal is as follows:

y(n) = b0x(n)+b1x(n−1)+ · · ·+bPx(n−P )+a1y(n−1)+a2y(n−2)+ · · ·+aQy(n−Q),
(5.81)

where P is the forward filter order, bi are the forward filter coefficients, Q is the feedback
filter order, ai are the feedback filter coefficients, x(n) is the input signal and y(n) is the
output signal. A more condensed form of the difference equation is

y(n) =

P∑
i=0

bix(n− i) +

Q∑
k=1

aky(n− k), (5.82)

To find the impulse response we set x(n) = δ(n) where δ(n) is the Kronecker delta
impulse. The impulse response for an IIR filter follows as

h(n) =
P∑
i=0

biδ(n− i) +

Q∑
k=1

akh(n− k), (5.83)

The Z-transform of the impulse response yields the transfer function of the IIR filter

H(z) = Z{h(n)} =
∞∑

n=−∞
h(n)z−n, (5.84)

We note that Z{δ(n)} = 1. Then with the definition of the impulse response and the
time shift property of the Z-transform follows

H(z) =

P∑
i=0

biz
−i +

Q∑
k=1

akz
−kH(z), (5.85)

Stating all H(z) on the left hand side delivers:

H(z)−
Q∑
k=1

akz
−kH(z) =

P∑
i=0

b(i)z−i, (5.86)

Isolating H(z) on the left hand side leads to the desired format of the transfer function

H(z) =

∑P
i=0 biz

−i

1−∑Q
k=1 akz

−k , (5.87)
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The transfer function allows us to judge whether or not a system is Bounded-input,
bounded-output stability (BIBO) stable. To find the poles of the transfer function, we
can write equation 5.87 as follows:

H(z) =

∑P
i=0 biz

0−i

z0 −∑Q
k=1 akz

0−k , (5.88)

The poles of the IIR filter transfer function are the zeros of the denominator polynomial
of the transfer function. The poles are evaluated as

z0 −
Q∑
k=1

akz
0−k = 0. (5.89)

Clearly, if any ak �= 0 then the poles are not located on the origin of the z-plane. This is
in contrast to the Finite Impulse Response (FIR) filter where all poles are located on the
origin of z-plane.
IIR filters are sometimes preferred over FIR filters because an IIR filter can achieve a
much sharper transition region roll-off than an FIR filter of the same order.

5.3.6 Butterworth Filter

The Butterworth filter is one type of digital and electronic filter design. It is designed to
have a frequency response which is as flat as mathematically possible in the passband.
Another name for them is ’maximally flat magnitude’ filters. The Butterworth type filter
was first described by the British engineer Stephen Butterworth.
The frequency response of the Butterworth filter is maximally flat with no ripples in the
passband, and rolls off toward zero in the stopband. When viewed on a logarithmic Bode
plot, the response slopes off linearly toward negative infinity. For a first-order filter, the
response rolls off at -6 dB per octave (-20 dB per decade). For a second-order Butterworth
filter, the response decreases at -12 dB per octave, a third-order at -18 dB, and so on.
Butterworth filters have a monotonically decreasing magnitude function with w. The
Butterworth is the only filter that maintains this same shape for higher orders (but with a
steeper decline in the stopband) whereas other varieties of filters (Bessel filter, Chebyshev
filter, elliptic filter) have different shapes at higher orders. Compared with a Chebyshev
Type I/Type II filter or an elliptic filter, the Butterworth filter has a slower roll-off,
and thus will require a higher order to implement a particular stopband specification.
However, Butterworth filter will have a more linear phase response in the passband than
the Chebyshev Type I/Type II and elliptic filters.
Like all filters, the typical prototype is the low-pass filter, which can be modified into a
high-pass filter, or placed in series with others to form band-pass and band-stop filters,
and higher order versions of these.
The gain G(ω) of an n-order Butterworth low pass filter is given in terms of the transfer
function H(s) as:

G2(ω) = |H(jω)|2 =
G2

0

1 +
(
ω
ωc

)2n , (5.90)
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where n = order of filter, c = cutoff frequency (approximately the -3dB frequency) and
G0 is the DC gain at zero frequency, figure 5.3.
It can be seen that for infinite values of n, the gain becomes a rectangle function and
frequencies below ωc will be passed with gain G0, while frequencies above ωc will be
suppressed. For finite values of n the cutoff will be less sharp.
We wish to determine the transfer function H(s) where s = σ + jω. Since H(s)H(−s)
evaluated at s = jω is simply equal to |H(ω)|, it follows that:

H(s)H(−s) =
G2

0

1 +
(

−s2
ω2
c

)n , (5.91)

Figure 5.1. The gain of Butterworth low-pass filters of orders 1 through 5. The slope is 20 dB/decade where n

is the filter order. Figure is adapted from [146]

The poles of this expression occur on a circle of radius ωc at equally spaced points. The
transfer function itself will be specified by just the poles in the negative real half-plane
of s. The kth pole is specified by:

− s
2
k

ω2
c

= (−1)
1
n = e

j(2k−1)π
n k = 1, 2, 3, . . . , n, (5.92)

and hence,

sk = ωce
j(2k+n−1)π

2n k = 1, 2, 3, . . . , n k = 1, 2, 3, . . . , n, (5.93)

The transfer function may be written in terms of these poles as:
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H(s) =
G0∏n

k=1(s− sk)/ωc
, (5.94)

The denominator is a Butterworth polynomial in s.
The Butterworth polynomials may be written in complex form as above, but are usually
written with real coefficients by multiplying pole pairs which are complex conjugates,
such as s1 and sn. The polynomials are normalized by setting ωc = 1. The normalized
Butterworth polynomials then have the general form:

Bn(s) =

n
2∏

k=1

[
s2 − 2s cos

(
2k + n− 1

2n
π

)
+ 1

]
, for n even (5.95)

Bn(s) = (s+ 1)

n−1
2∏

k=1

[
s2 − 2s cos

(
2k + n− 1

2n
π

)
+ 1

]
, for n odd (5.96)

Assuming ωc = 1 and G0 = 1, the derivative of the gain with respect to frequency can be
shown to be:

dG

dω
= −nG3ω2n−1, (5.97)

which is monotonically decreasing for all ω since the gain G is always positive. The
gain function of the Butterworth filter therefore has no ripple. Furthermore, the series
expansion of the gain is given by:

G(ω) = 1− 1

2
ω2n +

3

8
ω4n + . . . , (5.98)

In other words, all derivatives of the gain up to but not including the 2n-th derivative are
zero, resulting in maximal flatness.
Again assuming ωc = 1, the slope of the log of the gain for large ω is:

lim
ω→∞

d log(G)

d log(ω)
= −n, (5.99)

In decibels, the high frequency roll off is therefore 20n dB/decade. (The factor of 20 is
used because the power is proportional to the square of the voltage gain.)
Here is an image showing the Butterworth filter next to other common kind of filters
obtained with the same number of coefficients:
As is clear from the image, the Butterworth filter rolls off more slowly than all the others
but it shows no ripples.

5.4 Wavelets

5.4.1 Development of Wavelet Theory

Mathematical transformations are applied to a signal to obtain further information, which
is not readily available in its original time-domain form and which is more useful to the
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Figure 5.2. A Comparison between Butterworth filter and other linear filters. Figure is adapted from [146]

application at hand. For example, in case of signal denoising, the best representation is the
one in which the signal and the noise are easily separated. Fourier Transform (FT) is the
oldest and the first of all transforms used in the history of signal processing. Joseph Fourier
(1770-1830) first introduced the remarkable idea of expansion of a function in terms of a
trigonometric series. In other word, he presented a new technique to decompose a signal
into complex exponential functions of different frequencies. For a continuous signal x(t),
The Fourier Transformation is defined as follows:

X(f) =

∫ ∞

−∞
x(t)e−i2πft dt, (5.100)

The analysis coefficients, also called spectra X(f), are computed as inner products of the
signal with sinusoidal basis functions of infinite duration. The trigonometric kernel exp
(−i2πft), used here, oscillates indefinitely, and hence, the localized information contained
in the signal x(t) gets lost. While the spectrum X(f) shows the overall strength with
which any frequency f is contained in the signal x(t), it does not generally provide easy-
to-interpret information about the time-localization of spectral components. The analysis
coefficients X(f) define the notion of global frequency f in a signal. However, time domain
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and frequency domain constitute two alternative ways of looking at a signal. Although
FT allows a passage from one domain to the other, it does not allow a combination
of the two. This method enables us to investigate problems either in the time domain
or in the frequency domain, but not simultaneously in both. Fourier transform theory
has been very useful for analysing harmonic signals, or signals for which there is no
need for local information. Fourier analysis is therefore an effective tool for studying
stationary signals, that is, signals with time-independent frequency content. However,
many of the practically encountered signals, like the ECG and most of the physiological
signals, are non-stationary. A complete analysis of non-stationary signals requires a joint
time-frequency representation. The basic idea of time-frequency representations of signals
is to map a one-dimensional signal of time, x(t), into a two-dimensional function of time
and frequency. Thus, they combine time-domain and frequency-domain analysis to yield
a potentially more revealing picture of the temporal localization of a signal’s spectral
components. In order to incorporate both time and frequency localization properties in
FT, Dennis Gabor in 1946 first introduced the windowed Fourier Transform or Short
Time Fourier Transform (STFT). His major idea was to use a time-localization window
function g(t− τ) for extracting local information from the Fourier transform of a signal.
The parameter τ corresponds to the position of the window in time. τ is kept on varying
to translate the window until the whole of time-domain is covered. The width of this
window must be less or equal to the segment of the signal where stationarity is valid,
that is, the distribution of the samples in that segment is similar to the distribution of
the samples in any other segment.

STFTg
x(τ, f) =

∫ ∞

−∞
x(t)g(t− τ)e−i2πft dt, (5.101)

Although STFT overcomes the drawback of Fourier Transform apparently, it has got a
serious problem related to the resolution in time and frequency. The root of this problem
is related to Heisenberg’s Uncertainty Principle, according to which exact time-frequency
representation of a signal is not possible. Therefore, we can never know precisely which of
the spectral components exists at what instants of time. What we can know is the time
interval during which a certain band of frequency exists. A broader window gives better
frequency resolution and poor time resolution. On the contrary, the time resolution can
be improved at the cost of frequency resolution with shorter window. Once the window is
chosen for STFT , the resolution in time and frequency domain gets fixed. However, many
signals encountered in our practical life, especially in our case the ECG, requires a more
flexible approach regarding this resolution. Wavelet transform (WT) was developed to
overcome this fixed resolution problem of STFT . The Multiresolution Approach (MRA)
in time and frequency domain, also called Multiresolution Signal Analysis, is the heart
of WT. The basis of FT is sinusoidal waves of infinite, periodic smooth and predictable
duration. On the other hand, WT decomposes signal into a set of compactly supported
basis functions called wavelets or small waves, obtained from a single prototype mother
wavelet by means of dilation and translation. On the contrary to FT, wavelets are a peri-
odic, irregular and localized waves of finite energy. They have their energy concentrated
in time or space and are suited to analyse a transient signal, which contains a high degree
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of nonperiodic components and a higher magnitude of high frequencies than its harmonic
contents, like ECG signals.

5.4.2 Multiresolution Signal Analysis

A signal can be viewed as the sum of a coarse part and a detailed part. The smooth part
reflects the main features of the signal, therefore called the approximation signal, whereas
the faster fluctuations represent the details of the signal. The separation of a signal into
two parts is determined by the resolution, with which the signal is analyzed, i.e., by the
scale below which no details can be discerned. A progressively better approximation of the
signal is obtained by increasing the resolution so that finer and finer details are included
in the smooth part [33]. The approximation of a signal x(t) at scale j is de-noted xj(t).
At the next scale j + l, the approximation signal xj+i(t) is composed of xj(t) and the
details yj(t) at that level such that

xj+1(t) = xj(t) + yj(t). (5.102)

By adding more and more detail to xj(t) we arrive, as the resolution approaches infinity,
at a dyadic multiresolution representation of the original signal x(t) which involves a
smooth part and the sum of different details,

x(t) = xj(t) +
∞∑
k=j

yk(t), (5.103)

Unlike STFT which has a constant resolution at all times and frequencies, WT uses a
Multi-Resolutional Approach (MRA), i.e. varying temporal resolution for different spec-
tral components, which can be clarified as follows. Lower or narrower scales (higher fre-
quencies) mean lesser ambiguity in time, i.e. good time resolution. Higher scales (lower
frequencies) have wider support, leading to more ambiguity in time, or in other words,
poor temporal resolution. The following figure compares the resolution for four different
representations of the same signal.
The original time-domain signal has got no time resolution problem, since we know the
value of the signal at every instant of time. In the Fourier transformed version, there is
no resolution problem in the frequency domain, i.e. we know precisely what frequencies
exist. Conversely, the frequency resolution in time domain and time resolution in Fourier
domain are zero, since we have no information about them. For the two bottom diagrams,
each box represents an equal area of the time-frequency plane, but different sized boxes
giving different proportion to time and frequency.
All the boxes are of same size for STFT , i.e. the time and frequency resolutions are
constant all over the time-frequency plane. For wavelet transform, at low frequencies
(high scales), the height of the boxes are shorter (which corresponds to better frequency
resolution, since there is less ambiguity regarding the value of the exact frequency), but
their widths are longer (which correspond to poor time resolution, since there is more
ambiguity regarding the value of the exact time). At higher frequencies (low scales), the
width of the boxes decreases, i.e. the time resolution gets better, and height of the boxes
increases, i.e. the frequency resolution gets poorer.
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Figure 5.3. Time-Frequency Resolution at different signal representations. Figure is adapted from [146]

5.4.3 Continuous Wavelet Transform (CWT)

We start our exposition by recalling that the fundamental operation in orthonormal basis
function analysis is the correlation, i.e. inner product, between the observed signal x(n)
and the basis functions ϕk(n), equation 5.19.

wk =
N−1∑
n=0

x(n)ϕk(n), (5.104)

The resulting coefficients wk define the series expansion of basis functions that describe
x(n). In wavelet analysis, the two operations of scaling and translation in time are most
simply introduced when the continuous-time description is adopted. Therefore, we men-
tion the continuous-time version of the correlation in 5.104,

wk =

∫ ∞

−∞
x(t)ϕk(t)dt, (5.105)

A family of wavelets ψs,r(t) is defined by scaling and translating the mother wavelet ψ(t)
with the continuous-valued parameters s (> 0) and τ

ψs,r(t) =
1√
s
ψ(
t− τ
s

), (5.106)

where the factor 1√
s

serves the purpose of energy normalisation of the wavelet across
various scales, that is, assuring that all scaled functions have equal energy. Thus, the
wavelet is contracted for s < l, whereas it is expanded for s > 1 [33]. The contraction
of a wavelet to a smaller scale makes it more localized in time, while the corresponding
frequency response is shifted to higher frequencies and the bandwidth is increased to
become less localized in frequency; the reverse behavior is obtained when the wavelet is
expanded in time.
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The continuous wavelet transform (CWT) w(s, T ) of a continuous-time signal x(t) is
defined by the inner product of the signal x(t) and a scaled and translated version of a
single prototype mother wavelet ψ(t), also called basis wavelet function,

w(s, τ) =

∫ ∞

−∞
x(t)

1√
s
ψ(
t− τ
s

)dt, (5.107)

thus constituting a two-dimensional mapping onto the time-scale domain.
The CWT can be interpreted as a linear filtering Operation since 5.107 defines the con-
volution between the signal x(t) and a filter whose impulse response is 1√

s
ψ(−t

s
). The term

translation is related to the location of the wavelet, as it is shifted through the signal
x(t). This term corresponds to time information in the transform domain. Translating
or shifting a wavelet means hastening or delaying its onset. The parameter scale in the
wavelet analysis is similar to that used in maps. High scale gives a gross or global picture
of the signal, whereas low scale corresponds to a detailed view. Similarly, in terms of
frequency, low frequencies correspond to global information of a signal that usually spans
the entire signal, whereas high frequencies correspond to detailed information of a tran-
sient pattern in the signal having relatively short duration. That is why scaling conveys
a notion of something reciprocal to the frequency. Scaling, as a mathematical operation,
either dilates or compresses a signal [33].
The function x(t) can be exactly recovered from w(s, τ) using the reconstruction equation
[147]

x(t) =
1

Cψ

∫ +∞

−∞

∫ +∞

−∞
w(s, τ)ψ

(
t− τ
s

)
dτ

ds

|s|2 , (5.108)

where

Cψ =

∫ +∞

−∞

∣∣∣Ψ̂(Ω)
∣∣∣2

|Ω| dΩ, (5.109)

and Ψ (Ω) denotes the Fourier transform of ψ(t). For the integral in 5.109 to exist, Ψ (0)
must equal zero, i.e., the DC gain must be zero,

Ψ (0) =

∫ +∞

−∞
ψ(t)dt = 0, (5.110)

Another requirement is that |Ψ (Ω)| must decrease to zero for |Ω →∞|. These two re-
quirements imply that the wavelet function ψ(t) must have bandpass characteristics.
Since the above requirements on the mother wavelet are relatively modest, it turns out
to be a highly adjustable function which can be designed to suit various signal problems
(this stands in sharp contrast to the Fourier transform where the basis functions are fixed
once and for all).

5.4.4 The Dyadic Wavelet Transform (DyWT)

The CWT is a two-dimensional function W (s, τ) which is highly redundant. That is,
CWT assigns a value to the continuum of points on the translation-scale plane taking a
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long computing time. Therefore, it is necessary to discretize the scaling and translation
parameters s and τ according to a suitably chosen sampling grid. Dyadic Wavelet Trans-
form (DyWT) is based on sampling the translation-scale plane by using dyadic sampling
of the two parameters,

s = 2−j ,τ = k2−j , (5.111)

where j and k are both integer. Accordingly, the discretized wavelet function is defined
by

ψj,k(t) = 2j/2ψ(2jt− k). (5.112)

Inserting 5.112 into the CWT in 5.107, we obtain the dyadic wavelet transform (DyWT)

DyWT ψx (j, k) = wj,k =

∫ +∞

−∞
x(t)ψj,k(t)dt = 2j/2

∫ +∞

−∞
x(t)ψ(2jt− k)dt. (5.113)

It can be shown that with dyadic sampling it is still possible to exactly reconstruct x(t)
from the coefficients wj,k resulting from discretization of the CWT; a coarser sampling
grid cannot reconstruct x(t) [147]. From Nyquist’s rule, we know that at higher scale (i.e.
lower frequencies) the sampling rate can be reduced. In other words, if the translation-
scale plane needs to be sampled with a sampling rate of N1 at scale s1, the same plane
can be sampled with a sampling rate of N2 at scale s2, where s1 < s2 (corresponding to
frequencies f1 > f2) and N1 < N2 [148]. The actual relationship between N1 and N2 is,

N2 =
s1

s2
N1, or N2 =

f2

f1
N1 (5.114)

Therefore, at lower frequencies, the sampling rate can be reduced saving a considerable
amount of computation time. The original signal is retrieved by the inverse DyWT, or
the wavelet series expansion

x(t) =

∞∑
j=−∞

∞∑
−∞

wj,kψj,k(t) =

∞∑
j=−∞

∞∑
−∞

2j/2wj,kψ(2jt− k), (5.115)

where ψj,k(t) is a set of orthonormal basis functions. In contrast to the series expansion of
basis functions in 5.18, defined as the sum over one index, the wavelet series expansion
is more flexible since it is the sum over two indices which are related to scaling and trans-
lation of the basis functions ψj,k(t). Although DyWT has got computational efficiency
over CWT, still it provides a high degree of redundancy as far as data reconstruction is
concerned. This redundancy, on the other hand consumes a significant amount of compu-
tational resources. That is why we move on in this work to wavelet implementation based
on digital filters, i.e. the Discrete Wavelet Transform (DWT), for discrete time signals,
which is amazingly faster in operation.

5.4.5 Discrete Wavelet Transform (DWT)

Discrete Wavelet Transform (DWT) is described and implemented using the multireso-
lution signal approach which is expressed in equation 5.103 as follows:
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x(t) = xj(t) +
∞∑
k=j

yk(t)

The scaling function ϕ(t) is introduced for the purpose of efficiently representing the
approximation signal xj(t) at different resolution. On the other hand, it is desirable to
introduce the function ψ(t), which complements the scaling function by accounting for
the details of a signal, rather than its approximations.

5.4.5.1 The Scaling Function

This function can be used to generate a set of scaling functions defined by different
translations,

ϕ0,k(t) = ϕ(t− k), (5.116)

where the index ’0’ indicates that no time scaling is performed. The design of a scaling
function ϕ(t) must be such that translations of ϕ(t) constitute an orthonormal set of
functions,∫ ∞

−∞
ϕ0,k(t)ϕ0,n(t)dt =

∫ ∞

−∞
ϕ(t− k)ϕ(t− n)dt =

{
1, k = n;

0, k �= n.
, (5.117)

Therefore, the scaling functions ϕ0,k(t) are said to span a subspace χ0 of the whole space
of square integral functions denoted L2(R),

χ0 = spank {ϕ0,k(t)} , (5.118)

This subspace allows us to approximate x(t) to a signal x0(t) described as a linear com-
bination of ϕ(t) at different translations ϕ(t− n),

x0(t) =

∞∑
n=−∞

c0(n)ϕ(t− n), (5.119)

As before, the coefficients of the series expansion result from computing the inner product

c0(k) =

∫ ∞

−∞
x(t)ϕ0,k(t)dt, (5.120)

Analogously to dyadic sampling of the wavelet function ϕ(t), the scaling function in the
equation 5.116 can be generalized through dyadic sampling to generate a set of orthonor-
mal scaling functions for approximations at different resolution,

ϕj,k(t) = 2j/2ϕ(2jt− k), (5.121)

where the factor 2j/2 assures that the norm of ϕj,k(t) is one for all indices j and k,√∫ ∞

−∞
|ϕj,k(t)|2 dt = 1, (5.122)
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Orthonormality applies only to different translation indices k for a fixed scale j, and the
scaling functions are thus not required to be orthonormal between different scales. With
these basis functions, the approximation signal xj(t) is given by

xj(t) =
∞∑

n=−∞
cj(n)ϕj,n(t) = 2j/2

∞∑
n=−∞

cj(n)ϕ(2jt− n), (5.123)

where

cj(k) =

∫ ∞

−∞
x(t)ϕj,k(t)dt, (5.124)

It is important to realize that, for j > 0, the span increases since ϕj,k(t) contracts in time,
thereby allowing details of x(t) to be better represented by the approximation signal xj(t).
On the other hand, only the coarser information can be represented for j < 0 since ϕj,k(t)
then expands [33].
The subspace χj is spanned by ϕj,k(t)

χj = spank {ϕj,k(t)} , (5.125)

which has a time resolution only half as good as that of χj+1 since the scaling function in
χj+1 is contracted by a factor of two, i.e., ϕ(2j+1t) in relation to ϕ(2jt). As a result, the
orthonormal basis functions that span χj are also part of χj+1, and the multiresolution
property is consequently described by a set of nested signal subspaces,

← coarser . . . χ−1 ⊂ χ0 ⊂ χ1 . . .finer→ , (5.126)

Each subspace is spanned by a different set of basis functions ϕj,k(t) , offering progressively
better approximations such that xj(t) approaches x(t) in the limit as j →∞,

lim
j→∞

xj(t) = x(t), (5.127)

where x(t) belongs to the space L2(R). An important relation is the refinement equation
which relates ϕ(t), spanning χ0, to ϕ(2t), spanning χ1. Since these two signal subspaces
are such that χ0 ⊂ χ1, it is possible to express ϕ(t) as a linear combination of the shifted
versions ϕ(2t),

ϕ(t) =
∞∑

n=−∞
hϕ(n)ϕ1,n(t) =

√
2

∞∑
n=−∞

hϕ(n)ϕ(2t− n), (5.128)

where hϕ(n) is a sequence of scaling coefficients. As we will see later, the design of a
wavelet function is synonymous with the selection of the coefficients hϕ(n). The relation
between scaling functions at different scales, as expressed by the refinement equation,
will be used to develop a technique with which the series expansion coefficients can be
calculated.

5.4.5.2 The Wavelet Function

A set of orthonormal basis functions at scale j is given by
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ψj,k(t) = 2j/2ψ(2jt− k), (5.129)

which spans the difference between the two subspaces χj and χj+1. The functions ψj,k(t)
are related to the mother wavelet, introduced in the equation 5.106, and subjected to
dyadic sampling. At scale j + l, the subspace describing signal details is given by

ξj = spank {ψj,k(t)} , (5.130)

where the wavelet functions that span ξj are required to be orthonormal to the scaling
functions of χj , ∫ ∞

−∞
ϕj,k(t)ψj,k(t)dt = 0, (5.131)

for all indices j and k. As before, orthonormality is advantageous since it simplifies the
calculation of the series expansion coefficients.
In the subspace χj+1, χj is said to constitute an orthogonal complement to χj which is
denoted

χj+1 = χj ⊕ ξj, (5.132)

where ⊕ denotes the direct sum between two subspaces. Since 5.132 is valid for an
arbitrary value of j, we also have that

χj = χj−1 ⊕ ξj−1, (5.133)

which, when continued until a certain value j0(≤ j) is reached, yields the decomposition

χj+1 = χj0 ⊕ ξj0 ⊕ ξj0+1 ⊕ . . .⊕ ξj, (5.134)

As j approaches infinity, the subspace decomposition can be expressed as

x(t) = xj0(t) +
∞∑
j=j0

yk(t), (5.135)

where the detail signal yj(t) is determined by the detail coefficients dj(k), calculated as
the inner product of x(t) and ψj,k(t),

yj(t) =

∞∑
n=−∞

dj(n)ψj,n(t) = 2j/2
∞∑

n=−∞
dj(n)ψ(2jt− n), (5.136)

where

dj(k) =

∫ ∞

−∞
x(t)ψj,k(t)dt. (5.137)

Just as the scaling function ϕ(t) can be expressed as a linear combination of the shifted
scaling functions with half the width, i.e., using the refinement equation in 5.128, the
wavelet function ψ(t) can be similarly expressed by the wavelet equation
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ψ(t) =

∞∑
n=−∞

hψ(n)ψ1,n(t) =
√

2

∞∑
n=−∞

hψ(n)ψ(2t− n), (5.138)

The wavelet equation results from the property that ξj ⊂ χj+1, which allows us to express
ψ(t) in terms of shifted versions of ϕ(2t) similar to the procedure applied to ϕ(t) in 5.128.
The coefficients hψ(n) constitute a sequence of wavelet coefficients that differ from the
scaling coefficients hϕ(n). However, it can be shown that hψ(n) can be determined from
hϕ(n) such that when the number of coefficients Nϕ is finite and even [149],

hψ(n) = (−1)nhϕ(Nϕ − 1− n), (5.139)

where, n = 0, . . . , Nψ − 1. The two types of coefficients are thus the same except that
every other coefficient has the opposite sign.

5.4.5.3 Discrete Wavelet Series Expansion

At the scale j0, the signal x(t) can be expressed as a wavelet series expansion in terms of
the scaling coefficients cj(k) and the wavelet coefficients dj(k),

x(t) =

∞∑
n=−∞

cj0(n)ϕj0,n(t) +

∞∑
j=j0

∞∑
n=−∞

dj(n)ψj,n(t), (5.140)

Hence, x(t) can be decomposed into a signal xj0(t), being a lowpass approximation of x(t),
and a set of signals yj(t) which gives varying degrees of high-resolution details of x(t).
Furthermore, since the series expansion in 5.140 is expressed in terms of basis functions
being mutually orthonormal, the coefficients cj0(k) and dj(k) are easily calculated by
their corresponding inner products in 5.124 and 5.137, respectively. DWT is defined by
the coefficients of the wavelet series expansion in 5.140. These coefficients can be viewed
as the counterpart of the Fourier series coefficients; although their interpretation is no
longer equally simple (i.e., no frequency interpretation) and the basis functions remain
to be specified before the DWT can be calculated [33].

5.4.6 Implementation of the DWT Using Filter Banks

5.4.6.1 Analysis Filter Bank

An important reason for the popularity of multi-resolution analysis is the efficient cal-
culation of the scaling and wavelet coefficients. This can be done with a set of recursive
equations whose implementation involves well-known, basic signal processing operations
(i.e., filtering and down- or upsampling). Starting with the refinement equation in 5.128,

ϕ(t) =
√

2
∞∑

n=−∞
hϕ(n)ϕ(2t− n),

we have for an arbitrary scale j,

ϕ(2jt− k) =
√

2
∞∑

n=−∞
hϕ(n− 2k)ϕ(2j+1t− n). (5.141)
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The equation 5.141 can be written also as:

ϕj,k(t) =
∞∑

n=−∞
hϕ(n− 2k)ϕj+1,n(t), (5.142)

A recursive relation can be derived for the scaling coefficients cj(k) by multiplying both
sides of 5.142 by x(t) and integrating to obtain the inner products,∫ ∞

−∞
x(t)ϕj,k(t) =

∫ ∞

−∞
x(t)

∞∑
n=−∞

hϕ(n− 2k)ϕj+1,n(t), (5.143)

which yield the convolution,

cj(k) =

∞∑
n=−∞

hϕ(n− 2k)cj+1(n) = hϕ(−n) ∗ cj+1(n)|n=2k, (5.144)

In an analogous manner, the wavelet coefficients dj(k) can be calculated by convolving
the time-reversed coefficients hψ(−n) with cj+i(n) and subsequent downsampling of the
filtered output by a factor of two:

dj(k) =

∞∑
n=−∞

hψ(n− 2k)cj+1(n) = hψ(−n) ∗ cj+1(n)|n=2k, (5.145)

The calculation of the coefficients cj(k) and dj(k) can be implemented using the two-
channel analysis filter bank shown in figure 5.4- a , with which the coefficients at scale
j are calculated from those at scale j + 1. By repeatedly combining two-channel analysis
filter banks to the output of hϕ(−n), we obtain a dyadic tree structure which efficiently
implements the DWT, see figure 5.4- b. It is important to realize that the scaling and
wavelet functions do not explicitly appear in the calculation of the DWT, but only the
scaling and wavelet coefficients are required. As a result, the output of the filter bank is a
set of coefficients used to calculate the approximation and detail signals with 5.123 and
5.136, respectively [33].
A frequency domain interpretation comes naturally for the filter parts of 5.144 and 5.145,
which are defined by the scaling and wavelet coefficients, respectively. Although the filter
hϕ(n) is lowpass and hψ(n) is highpass, but both filters have FIR filter structures. Having
established these two filter characteristics, we realize that the analysis filter bank with
its dyadic tree structure produces output signals which range from being highpass to
lowpass, with various degrees of bandpass in between. The detail coefficients that result
from bandpass filtering involve filters, whose center frequency gradually decreases due to
the increasing number of lowpass filters hϕ(n) being cascaded to the highpass filter to
form the overall filter. The coefficients c0(k) which describe the approximation signal in
subspace χ0 are obtained by cascaded lowpass filters only.
With the requirement of hϕ(n) being lowpass, the relation between the scaling and wavelet
coefficients in 5.139 leads to the frequency function Hϕ(e

jw) of hϕ(n) being translated
by π in order to yield Hψ(ejw),
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Figure 5.4. The calculation of the DWT coefficients implemented using the two-channel analysis filter bank: a)

A two-channel analysis filter bank for calculating the coefficients of the wavelet series expansion. b) The discrete

wavelet transform based on the filter bank in (a), which, in this case, produces the coefficients that decompose

the space χ3 into χ0, ψ0, ψ1, and ψ2. Figures are adopted and adjusted from [33]

∣∣Hψ(ejw)
∣∣ =

∣∣Hϕ(e
j(w+π))

∣∣ , (5.146)

and is thus a highpass filter. Because hϕ(n) and hψ(n) satisfy the condition in 5.146, they
are called Quadrature Mirror Filters (QMF). Before the set of recursive equations can be
used to produce cj(k) and dj(k), we must devise a technique for their initialization. It
is, of course, necessary that x(t) enters the calculations; this applies in particular to its
sampled counterpart x(n), invariably constituting the signal to be analyzed. For a fine
enough scale j, one may argue that the scaling function has become so very narrow that
the coefficients cj(k), which initialize the recursion, result from an inner product in which
x(t] is multiplied by a delta function,

cj(k) ≈
∫ ∞

−∞
x(t)δ(t− k)dt = x(k). (5.147)

Consequently, the signal samples x(n) themselves would serve as good approximations
of the coefficients cj(k), provided that the signal x(t) has been sampled well above the
Nyquist rate. Although this initialization procedure is the one which is normally used,
other procedures exist which offer certain advantages [149]. Hence, the recursion is initial-
ized with the sampled signal x(n), whose length is finite and given by N. Due to the very
dyadic nature of the algorithm, it is natural to assume that the length is a power of two,
i.e., N = 2J . Accordingly, J + l different scales can be analyzed, of which the finest scale
is j = J and described by N coefficients (i.e., the signal itself), while the coarsest scale is
j = 0 with only one coefficient. The calculation of the DWT through successive decompo-
sition of the approximation coefficients is illustrated in figure 5.5, where the finest resolu-
tion is given by the scale j = 3. The procedure is initialized by setting the approximation
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coefficients c3(k) equal to the signal samples x(n). In this example where x(n) has a length
of N = 8, the DWT is given by the coefficients c0(0), d0(0), d1(0), d1(1), d2(0), d2(1), d2(2),
and d2(3). Thus, the resulting number of coefficients is identical to the length of the signal
[33].

c3(0), c3(1), c3(2), c3(3), c3(4), c3(5), c3(6), c3(7)j = 3

c2(0), c2(1), c2(2), c2(3) d2(0), d2(1), d2(2), d2(3)j = 2

c1(0), c1(1) d1(0), d1(1) d2(0), d2(1), d2(2), d2(3)j = 1

j = 0 c0(0) d0(0) d1(0), d1(1) d2(0), d2(1), d2(2), d2(3)

Figure 5.5. The calculation of the DWT through successive decomposition of the approximation coefficients:

the calculation of the DWT coefficients implemented using the two-channel analysis filter bank: Calculation of

the DWT for a signal of length N = 8. The final result is given by the coefficients at the bottom for j = 0. The

vertical arrows indicate that the coefficients are simply copied down from the previous scale. The calculation is

initialized by setting the coefficients c3(k) equal to the signal samples x(k). Figure is adopted and adjusted from

[33]

5.4.6.2 Synthesis Filter Bank

While the analysis filter bank decomposes the signal into a set of coefficients at different
resolution, the purpose here is to perform the reverse operation of merging the coefficient
sequences so as to implement the inverse DWT. The inverse transform can also be imple-
mented with a filter bank, but with a structure that differs slightly from the one which
implements the DWT. In order to derive a set of equations which recursively determine
cj+(k) from cj(k) and dj(k), we start by expressing the approximation signal xj+1(t) as
a linear expansion of the scaling function at scale j + l

xj+1(t) = 2(j+1)/2
∞∑

n=−∞
cj+1(n)ϕ(2j+1t− n), (5.148)

Relying on the decomposition in 5.132, stating that χj+1 = χj ⊕ ξj, we can alternatively
express xj+1(t) at scale j,

xj+1(t) = 2j/2
∞∑

n=−∞
cj(n)ϕ(2jt− n) + 2j/2

∞∑
n=−∞

dj(n)ψ(2jt− n), (5.149)
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Now, making use of the scaling and wavelet equations in 5.128 and 5.138, respectively,
we obtain

xj+1(t) =
∞∑

n=−∞
cj(n)

∞∑
l=−∞

hϕ(l)2
(j+1)/2ϕ(2j+1t− 2n− l)+

∞∑
n=−∞

dj(n)
∞∑

l=−∞
hψ(l)2(j+1)/2ψ(2j+1t− 2n− l)

(5.150)

By multiplying both sides of 5.150 by ϕj+1,k(t) and integrating to obtain the inner
products, the following recursion is obtained for c(k),

cj+1(k) =

∞∑
n=−∞

cj(n)hϕ(k − 2n) +

∞∑
n=−∞

dj(n)hψ(k − 2n), (5.151)

Alternatively, this equation can be expressed as

cj+1(k) = cuj (k) ∗ hϕ(k) + duj (k) ∗ hψ(k), (5.152)

where

cuj (k) =

{
cj(k), k even;

0, k odd
, (5.153)

and duj (k) is defined analogously to cuj (k). Hence, the two sums in 5.151 can be interpreted
in terms of upsampling by a factor of two, i.e., by inserting zeros as every other input
sample, and filtering so that the calculation of the coefficients cj+1(k) is implemented by
the two-channel synthesis filter bank shown in figure 5.6- a. By repeatedly combining
two-channel synthesis filter banks to merge signals at different resolutions, we obtain a
dyadic tree structure which implements the inverse DWT, see figure 5.6- b. The filters
involved in the synthesis filter bank are the same as those used in the analysis filter bank,
but with their impulse response reversed in time. In practice, there is always a maximum
scale J with a resolution so fine that the wavelet (detail) coefficients can be neglected.
Therefore, the wavelet series expansion in 5.140 may be replaced by

x(t) =

∞∑
n=−∞

cj0(n)ϕj0,n(t) +

J∑
j=j0

∞∑
n=−∞

dj(n)ψj,n(t), (5.154)

thus indicating the coefficients that must be calculated with 5.151 to obtain x(t) (recall
from the equation 5.147 that x(k) ≈ cj(k) for a sufficiently fine scale).
Finally, we note that x(t) can be expressed as a series expansion solely in terms of the
wavelet functions when cj0 → −∞ for j0 → −∞

x(t) =

J∑
J=−∞

∞∑
n=−∞

dj(n)ψj,n(t), (5.155)
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hϕ(n)2
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Figure 5.6. The dyadic tree structure implementing the inverse DWT: a) A two-channel synthesis filter bank. b)

The inverse discrete wavelet transform based on the filter bank in (a) which, in this case, produces the coefficients

of the space χ3 based on χ0, ψ0, ψ1, and ψ2. Figures are adopted and adjusted from [33]

which becomes the definition of the inverse DWT in 5.115, but with truncation of scales
with negligible coefficients [33].

5.4.6.3 Subband Coding and DWT

DWT decomposition halves the time resolution, since only half the number of samples now
characterizes the entire signal. However, this operation doubles the frequency resolution,
since the frequency band of the signal now spans only half the previous frequency band,
effectively reducing the uncertainty in the frequency by half. This procedure, which is
also known as the subband coding, can be repeated for further decomposition. At every
level, the filtering and subsampling will result in half the number of samples (and hence
half the time resolution) and half the frequency band spanned (and hence doubles the
frequency resolution).
The frequency band of the signal is always from zero to the highest frequency in the
signal fmax, which is equal to the half of the sampling frequency fs referring to Nyquist
Shannon sampling theorem as follows:

fs ≥ 2fmax (5.156)

By normalizing the sampling frequency fs to 1. The maximum angular frequency, which
corresponds to fmax, is equal to π (rad/s) in the frequency domain and the subband
coding algorithm will span the frequency band of zero to π (rad/s). At the first decom-
position level, the signal is passed through the highpass and lowpass filters, followed by
subsampling by 2. The output of the highpass filter has half the time resolution, but it
only spans the frequencies π/2 to π (rad/s), hence doubling the frequency resolution. The
output of the lowpass filter also has half the time resolution, but it spans the other half of
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the frequency band, frequencies from 0 to π/2 (rad/s). This signal is then passed through
the same lowpass and highpass filters for further decomposition. The output of the second
lowpass filter followed by subsampling has half the time resolution of the previous level
spanning a frequency band of 0 to π/4 (rad/s), and the output of the second highpass
filter followed by subsampling has also half the time resolution of the previous level, but
spanning a frequency band of π/4 to π/2 (rad/s). The second highpass filtered signal
constitutes the second level of DWT coefficients. This signal has half the time resolution,
but twice the frequency resolution of the first level signal. In other words, time resolution
has decreased by a factor of 4, and frequency resolution has increased by a factor of 4
compared to the original signal. The lowpass filter output is then filtered once again for
further decomposition. This process continues until two samples are left. The DWT of
the original signal is then obtained by concatenating all coefficients starting from the last
level of decomposition. The DWT will then have the same number of coefficients as the
original signal.

5.4.7 Properties of DWT Orthogonal Wavelet

Although the scaling function ϕ(t) is not explicitly required for calculation of the DWT,
it is nevertheless important to assess whether its properties are suitable or not. One
approach to calculating ϕ(t) from hϕ(n) is to insert the scaling coefficients into the re-
finement equation, but now modified into an iterative algorithm,

ϕ(i+1)(t) =
√

2

Nψ−1∑
n=0

hϕ(n)ϕi(2t− n), (5.157)

where i denotes the iteration index. This algorithm, known as the cascade algorithm,
produces successive approximations of ϕ(t) so that ϕi(t) approaches ϕ(t) as the iteration
index i increases. If the algorithm converges, the Fourier transform Φ(Ω) of ϕ(t) can be
related to the scaling coefficients hϕ(n) by iteratively applying the Fourier transform to
5.157,

Φ(Ω) = Φ(0)
∞∏
l=1

1√
2
Hϕ(e

jΩ/2l), (5.158)

where Hϕ(e
jΩ) denotes the discrete-time Fourier transform of hϕ(n) and is a periodic

function. Using the wavelet equation in 5.138, the Fourier transform Ψ (Ω) of the wavelet
ϕ(t) can be expressed as

Ψ (Ω) = Φ(0)
1√
2
Hψ(ejΩ/2)

∞∏
l=2

1√
2
Hϕ(e

jΩ/2l), (5.159)

Since ϕ(t) is assumed to have lowpass characteristics, the factor Φ(0) can be normalized
such that

Φ(0) =

∫ ∞

−∞
ϕ(t)dt = 1, (5.160)
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Hence, the outcome of the cascade algorithm in 5.157 depends only on the properties of
the scaling coefficients and not on the shape of the initial ϕ(0)(t), except the factor Φ(0)
which is invariant over the iterations.

5.4.7.1 Smoothness and Vanishing Moments

The moments of an orthogonal wavelet mk, defined by

mk =

∫ ∞

−∞
tkψ(t)dt, (5.161)

vanish up to a certain value k = Kψ. Alternatively, the moment definition in 5.161 can
be expressed in terms of its Fourier transform

mk = (−j)−k ∂
kΨ (Ω)

∂Ωk
|Ω=0, (5.162)

which establishes that vanishing moments are synonymous with Kψ derivatives of Ψ (Ω)
at DC, i.e., Ω = 0, being equal to zero. This requirement implies that ψ(t) is smooth and
may, if desired, be extended to embrace ϕ(t) as well. Another consequence of vanishing
wavelet moments is that the inner product between a polynomial signal x(t) =

∑
k akt

k

and ψ(t) is zero, and thus the detail coefficients are zero. As a result, polynomial signals
are well-represented by the approximation coefficients, and the detail coefficients can be
discarded.
The smoothness of wavelets plays an important role in compression applications. Com-
pression is usually achieved by setting small coefficients to zero and thus leaving out a
component from the original function. If the original function represents an image for
instance, and the wavelet is not smooth, the error can easily be detected visually.

μk =

Nψ−1∑
n=0

nkhψ(n), (5.163)

5.4.7.2 Compact Support

The scaling function and wavelet function have compact support, when hϕ(n) and hψ(n)
are finite impulse response filters (FIR), so that they are trigonometric polynomials. In
other words, wavelets will have compact support, when its scaling function and wavelet
function have a duration which is limited in time. If the scaling function and wavelet are
symmetric then their filters have linear phase. The absence of this property can lead to
phase distortion, which is important in signal processing applications.

5.4.7.3 Orthogonal Wavelet Bases

• The Daubechies wavelets : Each wavelet in Daubechies family has a number of zero mo-
ments or vanishing moments, μk, equal to half the number of coefficients, Kψ = Nψ/2
moments [150]. As Kψ increases, both the wavelet function and the scaling func-
tion become increasingly smooth. A disadvantage of the members of this family is
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their highly asymmetric shape. Daubechies orthogonal wavelets D2-D20 (even index
numbers only) are commonly used. The index number refers to the number N of
coefficients. For example D2, the Haar wavelet, has one vanishing moment, D4 has
two moments, etc. Daubechies filters length is equal to 2Nψ, whereas support width
is 2Nψ − 1. A vanishing moment refers to the wavelets ability to represent polyno-
mial behaviour or information in a signal. For example, D2, with one moment, easily
encodes polynomials of one coefficient, i.e. constant signal components. D4 encodes
polynomials of two coefficients, i.e. constant and linear signal components. The Haar
wavelets offer the advantage of being very well-localized in time (compact support).
Haar wavelets constitute a set of shifted and scaled square wave functions, suitable
for defining scaling and wavelet functions [151]. The Haar scaling function is defined
as

ϕ(t) =

{
1, 0 ≤ t < 1,

0, otherwise.
(5.164)

Haar scaling functions span different subspaces and satisfy the orthonormality con-
dition. Furthermore, they are solutions of the refinement equation with two nonzero
coefficients,

[hϕ(0)hϕ(1)] =

[
1√
2

1√
2

]
. (5.165)

The corresponding Haar wavelet function, shown in figure 5.7, is required to be

ψ(t) =

⎧⎪⎨⎪⎩
1, 0 ≤ t < 1/2,

−1, 1/2 ≤ t < 1,

0, otherwise.

(5.166)

with two nonzero coefficients

[hψ(0)hψ(1)] =

[
1√
2

−1√
2

]
(5.167)

The scaling and wavelet functions are orthonormal.
Daubechies proposes modifications of her wavelets that increase their symmetry
while retaining great simplicity. The modified Daubechies wavelets are called Sym-
let wavelets. The other properties of Symlet wavelets are similar to those of the
Daubechies wavelets.

• The Coiflets wavelets: They constitute another wavelet family with compact support,
but designed such that Nψ/3− 1 moments of the scaling function and Kψ = Nψ/3 of
the wavelet vanish. Coiflets filters length is equal to 6Nψ, whereas their support width
is 6Nψ − 1. Coiflets filters length and support width are obviously larger than those
of Daubechies wavelets. Coiflets are more symmetric than the Daubechies wavelets, a
property that comes at the price of an increased filter length. Therefore, it is obvious
that Coiflets are superior in producing smooth approximations when compared to
Daubechies wavelets.
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Figure 5.7. The Haar Wavelet Function. Figure is adapted from [152]

There are many other types of wavelets available in addition to those mentioned here,
with each exhibiting its particular advantages.

5.4.7.4 Biorthogonal Wavelet Bases

In biomedical signal processing, it is often desirable to have symmetric wavelets. How-
ever, scaling functions and wavelets cannot, in general, accommodate this property since
they are required to be orthogonal with exception to the Haar wavelet. By softening
the orthogonality requirement between analysis and synthesis filters to, what is called,
biorthogonality [153], it is possible to design symmetric wavelets which still implement
the DWT and its inverse (IDWT).

5.4.8 Discrete Stationary Wavelet Transform (SWT)

In fact, the classical DWT is not a time-invariant transform. Therefore, the stationary
wavelet transform (SWT) restores the translation invariance as a desirable property lost
by the classical DWT. The signal is never downsampled or upsampled at any decomposi-
tion level when using SWT decomposition and ISWT reconstruction; so that each set of
coefficients (details or approximation) contains the same number of samples as the input
signal. The general step j, for example, convolves the approximation coefficients at level
j − 1, with upsampled versions of the appropriate original filters by the factor of 2, to
produce the approximation and detail coefficients at level j. Although the main applica-
tion of the SWT is de-noising [154], SWT do have other several useful applications such
as breakdown points detection. SWT can be only defined for signals of length divisible
by 2J , where J is the maximum decomposition level.

5.4.9 Discrete Wavelet Packets Transform (DWPT)

DWPT represents a powerful generalization of the DWT [155]. While the DWT succes-
sively decomposes the scaling coefficients cj(k) which define the approximation signals
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at different scales, the DWPT successively decomposes both the scaling coefficients cj(k)
and the wavelet coefficients dj(k) which define the detail signals. As a result, the DWPT
produces N coefficients at each scale, whereas the DWT produces a total of N coeffi-
cients. From the different scales of the wavelet packet decomposition, a total of K, out of
N , coefficients are selected to represent the signal in the transform domain.
Like the DWT, the DWPT can be implemented by the filter bank with highpass and
lowpass filters. However, decomposition of both scaling and wavelet coefficients means
that the output of each branch of the filter bank is split into lowpass and highpass filters.
Therefore, the dyadic tree structure of the DWT is replaced by a binary structure with
one two-channel filter bank at the first stage, two two-channel filter banks at the second
stage, four two-channel filter banks at the third stage, and so on. The selection of DWPT
coefficients is often based on an information measure, like entropy, which concentrates
as much information in as few coefficients as possible. Another approach is to select the
coefficients so that a distortion measure does not exceed a certain error tolerance [156].





6

State of the Art In ECG Signal Processing

6.1 Baseline Wander

Several methods have been proposed in the literature to eliminate baseline wander. The
first is ensemble averaging. However, this approach is not a realistic one as the ECG signal
exhibits beat-to-beat variations. A second widely used method is the polynomial inter-
polation as a linear and time-variant filtering technique. Linear interpolation introduces
significant distortions. A third order approximation called cubic spline [157] is proved to
give better results. Interpolation techniques make use of a previous knowledge of the ECG
namely isoelectric levels estimated from the PR intervals, also called knots. Therefore,
the performance of this technique depends highly on the knots determination accuracy
and gets degraded as the knots become more separated in time, like the case with low
heart rate. To overcome the above problem, another group proposed digital narrow-band
linear-phase time-invariant filtering [158]. This method can be implemented in real time,
but has two major draw-backs. First, the filter needs to be a FIR filter with a long impulse
response, which means a large number of coefficients. Secondly, given that ECG and base-
line wander spectra usually overlap, it is not possible to remove baseline wander without
distorting ECG. Another technique has been proposed in [159] which uses a time-varying
linear filter that selects different cut-off frequencies as a function of the heart rate or the
baseline level. This filter improves the time invariant FIR filter performance, but can yet
distort the ST components of ECG and has high computational requirements. Another
group employed Short Time Fourier Transform (STFT) to get rid of baseline drift [160].
Within every window, they search for a spectral component in the range of DC to 1.0
Hz. Only the ECG segments containing frequency components in the specified range are
high-pass filtered to cancel baseline wander. However, it is not possible to have optimal
frequency and time resolution at the same time with STFT. Adaptive filtering has also
been proposed to cancel the baseline drift [161]. An adaptive transversal filter with only
one weight is used, where the reference input is a constant with a value of 1 and the pri-
mary input is the ECG signal. This filter, using the Least Mean Square (LMS) Algorithm
in the adaptation process, is equivalent to a linear notch filter, that takes the advantage of
adaptive implementation, but still modifies the ST segment. In [162], a cascade adaptive
filter has been used. The first stage of the filter is exactly similar to that mentioned above.
In the second stage, the primary input is the output from the first stage and the reference
input is a unit impulse sequence correlated with each QRS complex. This method needs



110 6. State of the Art In ECG Signal Processing

a QRS detector in order to generate the impulse sequence. However, in our application
baseline wander cancellation is accomplished as a pre-conditioning of ECG signal before
delineation. The last group proposed a new algorithm for the removal of the baseline
wander in ECG signal based on the wavelet packets method. The energy of the signal
for both the coarse and detail levels is calculated in each scale. These energies represent
the energy of the decomposed signal in assumed scale. The next step is to compare them
and then choose the branch of the wavelet binary tree that has the higher energy. The
higher energy branches will be followed until a point is reached where energy difference
exceeds a preset threshold level. At this point the binary tree is complete, and the baseline
wander signal is identified. Using the wavelet coefficients obtained, the inverse wavelet
transform is calculated. In wavelet domain the baseline wander is subtracted from origi-
nal data record and a baseline wander free ECG signal is identified [163]. It is actually
very crucial to define a suitable and precise threshold that can find the optimal wavelet
tree, since both ECG and baseline wander signals have various number of morphologies
and since baseline wander may include different forms of electrode drift signal in different
amplitude. Furthermore, it is a very time-consuming method, particularly when we deal
with high-resolution, multi-channel and ambulatory monitoring ECG signals.

6.2 ECG Segmentation and Fiducial Points Detection

Automatic ECG segmentation methods, ECG delineation techniques or QRS detection
algorithms, have been and still are subject of major importance in research for more
than 30 years. ECG segmentation, also called fiducial points detection, is very important
in computer-aided ECG analysis, especially in case of arrhythmia. A usual arrhythmia
system consists of the following steps: 1) the removal of noise and artifacts 2) fiducial
points detection 3) morphological classification 4) the rhythm analysis and medical inter-
pretation. One can find in the literature many different QRS complex detection and ECG
delineation approaches based on mathematical models, like Pan Tompkins algorithm,
adaptive filters, artificial neural networks or hidden Markov models, wavelet transform,
signal envelope, matched filters, ECG slope criteria, second-order derivatives, the , non-
linear time-scale decomposition. They will be described in details in the following sections.

6.2.1 QRS Complex Detection Algorithms

In order to be clinically useful and able to follow both sudden and gradual changes of
QRS morphology, a QRS detector must be able to detect a large number of different QRS
morphologies and it must not be limited to certain types of rhythm. A QRS detector is
designed to detect heart-beats. QRS complex is generally used as a reference within the
cardiac cycle. Most QRS detectors consists, in general terms, of three main blocks as
follows [164]:

1)The linear filter : it is designed to have bandpass characteristics such that the essential
spectral content of the QRS complex is preserved, while unwanted EGG components such
as the P and the T waves are suppressed. The center frequency of the filter varies from
10 to 25 Hz and the bandwidth from 5 to 10 Hz [165]. Therefore, the linear filtering in
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the preprocessing stage of the QRS detection algorithms generally consists of a high-pass
filter in order to attenuate other signal components and artifacts, such as P-wave, T-wave
and baseline drift whereas uncoupling noise is usually suppressed with a low-pass filter.
In contrast to other types of ECG filtering, waveform distortion is not a critical issue
in QRS detection. The focus is instead on improving the SNR to achieve good detector
performance [33].
2)The nonlinear transformation: It transforms each QRS complex into a single positive
peak better suited for threshold detection.
3)The decision rule: it takes the output of the nonlinear transformation or the linear
filter and checks whether a QRS complex is present or not. The decision rule can be
implemented as a fixed or adaptive amplitude threshold procedure, but may also include
additional tests. A wide diversity of algorithms has been proposed in the literature for
QRS-complex detection using different decision rules for the reduction of false-positive
detections.
Pan Tompkins algorithm [166], also called the low-pass differentiation algorithm (LPD),
consists of two major stages, i.e. the preprocessing and the decision levels. In the prepro-
cessing stage, the ECG signal is first filtered with a bandpass filter in the range 5-15 Hz
reducing the high-frequency and the low-frequency interference. The slope information
of the QRS complex is provided then by applying a derivative procedure or operator.
Afterward, a squaring operator is employed making all data points positive. The nonlin-
ear amplification is emphasizing the large values from QRS complexes and suppressing
the small values from P and T-waves. The output of the squaring operation has multi-
ple peaks. Therefore a moving-window integration filter is applied on that output. The
window size should be approximately in the same length of QRS complex in order to
prevent peaky result in case of narrow window and to prevent T wave to merge with QRS
complex in case of wide window. The decision stage in Pan Tompkins algorithm employ-
ees two thresholds to detect R peaks. The first threshold is calculated from the adaptive
average value of noise peaks and QRS peaks as well as a threshold factor. Whereas, the
second search-back threshold is a proportion of the first one. In this stage, a search-back
procedure is developed in order to decrease the number of missed QRS complexes. His
adaptive and a refractory time rule is used to decide between two QRS complexes or more,
which are within a physiologically impossible short distance of each other. Pan Tompkins
algorithm has serious difficulties guaranteeing a reliable detection of R position in normal
QRS complex and in PVCs. The time-domain bandpass filter in this algorithm needs to
follow hard conditions, namely a linear phase response and long impulse response with
large number of coefficients, to provide a good subbanding for QRS complex detection.

Adaptive filters have been used to give an estimate of the current ECG sample as a
weighted sum of previous ECG samples. The weights in the sum are updated according
to the changing signal statistics. Sharp changes in the weights and in the errors of the
current ECG sample estimate were used as features for QRS complex detection [167].
Neural networks, trained to be adaptive non-linear predictors of the ECG signal, have
been used in [168, 169] for QRS complex detection.
In [170, 171, 172, 173], Dyadic Wavelet Transform (DyWT) has been proposed. In [172],
only the QRS complex detection is accomplished as they are more interested in the heart
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rate variability. They made use of the property that the absolute value of DyWT has lo-
calized maxima across several consecutive scales at the instant of occurrence of transients.
Applying a definite threshold criterion, the peaks are located in a particular scale. Then
the next higher scale is scanned in the same way. If the number of peaks in both cases does
not agree, computation is carried out for the next scale. Finally, for acceptance as QRS
locations, three consecutive scales should agree on the same number of peaks and also the
corresponding peak locations in different scales must be within tolerable time deviation.
In [173], an on-line QRS detection algorithm was developed based on the Haar Wavelet
and implemented as a recursive filter. They also use magnitude threshold to determine
the location of R peaks. In [170, 171, 172], a spline wavelet, a derivative of the Gaussian
smoothing function, has been used as the prototype mother wavelet. The implementation
is carried out by means of digital filters, also called filter banks. The WT at a particular
scale is proportional to the derivative of the filtered version of the signal with a smoothing
impulse response at that scale. Therefore, the zero-crossings of the WT correspond to the
local maxima or minima of the smoothed signal at different scales, and the maximum
absolute values of the WT are associated with maximum slopes in the filtered signal. In
[170], modulus maximum lines corresponding to R waves are first searched across four dif-
ferent scales, namely, 21, 22 ,23 and 24, using different threshold for different scales , which
is based on the corresponding RMS value. For a valid R wave, the Lipschitz regularity
[165] must be greater than zero. Also, the R wave corresponds to a positive-maximum
negative-minimum pair at each characteristic scale. After applying certain definite cri-
teria, the isolated and redundant modulus maximum lines were rejected. Finally the R
peaks were located at the zero-crossing points between the positive maximum-negative
minimum pairs at scale 21. In [170, 171], protection rules, like refractory period or search
back routine, are included. Other approaches include cross-correlation methods, where a
QRS complex template is aligned to the ECG signal [174]. Other syntactic approaches
are used, where the ECG signal is represented as a piecewise linear approximation, and is
analysed using syntactic rules [175, 176]. An extensive review of QRS complex detection
approaches proposed in the last decade can be found in [165]. The large variation in the
QRS complex morphologies as well as the various form and level of noise challenge all
automatic detection algorithms, so that further performance improvements are still an
important goal of current research.

6.2.2 Delineation Algorithms

Goal of the delineation algorithms is to find the QRS, P and T-wave boundaries to allow
some quantitative measurements. There is so far no universal and clear rule to define the
onset and the offset of ECG waves and complexes, but the hope of automatic delineation
algorithms is still in getting a new standard in locating the boundaries of those waves and
complexes. Delineation algorithms usually depart from a previous detected QRS location,
namely R peak. Lots of work has been done in the field of ECG delineation using Wavelet
Transform .
The QRS delineator in [170, 171] before and after the result of the QRS detector, the R
peak, in the second scale for significant maxima and minima that can exceed a ’significant
threshold’. The zero crossings between these significant slopes are assigned to wave peaks,
and labeled depending on the sign and the sequence of the maximum - minimum pairs.
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The onset of the QRS complex is considered before the first significant slope, whereas the
offset is after the last significant slope. Possible onset and offset positions are determined
by two criteria. The first considers the position of onset and offset of QRS complex
where the signal is below a certain threshold taken with respect to the amplitude of the
maximum. The next criterion localizes the boundaries of the QRS complex where the
position of a local minimum before the first peak and after the last peak associated with
the QRS complex. Finally the QRS onset and end are selected as the candidates that
supply the nearest sample to the QRS complex. New in the algorithm described by [171]
with respect to [170] is the detection and identification of the QRS individual waves.
Any possible QRS morphology with three or less waves (QRS, RSR’, QR, RS, R and
QS complexes) are considered. The method includes protection measures based on time
interval and sign rules, to reject notches in waves and anomalous deflections in the EGG
signal.
The algorithm of T-wave detection and delineation in [170, 171] begins with defining
a search window for each beat, relative to the QRS position and depending on the RR-
interval. Within this window, local maxima and minima are detected in the fourth scale.
If at least two exceed the threshold for T-wave detection, a T-wave is considered to be
present. In this case, the local maxima and minima with amplitude greater than a second
threshold (significant threshold) are considered as significant slopes of the wave and the
zero crossings between them as the wave peaks. Depending on the number and polarity of
the found extrema, in [171] one out of six possible T-wave morphologies were assigned.
The possible waves are positive monophasic, negative monophasic, only upwards, only
downwards, positive/negative biphasic or negative/positive biphasic.
If the T-wave is not found in the first chosen scale the above process is repeated over the
next higher scale. To identify the wave limits, the same criteria as used for detecting the
QRS onset and offset, with a third kind of thresholds were used. The P-wave detection and
delineation algorithm is similar to the T-wave algorithm, except that the possible P-wave
morphologies that the delineator can work with are four, including positive monophasic,
negative monophasic , positive/negative biphasic or negative/positive biphasic.
In total there are 16 different thresholds which are used for the QRS complex, P and
T-wave delineation. They can be grouped into three types. Six thresholds to decide if
a pair of extrema with opposite sign can account for a wave (4 for QRS detection and
one for T and one for P-wave delineation). These thresholds are proportional to the root
mean square (RMS) value of the DyWT at the corresponding scales where the RMS is
measured in each interval between two consecutive QRS complexes.
The second type of thresholds contains 4 thresholds and they are used to determine if
the amplitude of the local maximum and minimum are significant. These thresholds are
related to the amplitude of the global extrema within the corresponding search window.
The last six thresholds belonging to the third group and are used to determine the onsets
and offsets of QRS complex, T and P waves and are proportional to the amplitude of the
DyWT at the first (last) maximum (minimum) of the complex or wave.
In [171], the same procedure of [170] is extended and evaluated on several manually
annotated databases. They also generalize the filter coefficients (for DyWT) for different
sampling frequencies of the ECG. Moreover, they considered more morphological varia-
tions for T wave in addition to those listed in [170].
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The localization of wave onsets and ends is difficult, because the signal amplitude is low
at the wave boundaries and the noise level will be higher than the signal itself. Therefore
[177] suggested to improve the T and U-wave (TU-complex) delineation in a two stage
process, where the ECG segment after the QRS-complex is first modeled by a mathemati-
cal model. The mathematical model consist of four ’action potential models’ (AP-models),
where the modeling of the APs is limited to the second half of the AP, because only the
TU-complex is modeled. Once the model parameters for both waves are determined, the
wave boundaries are determined using the derivative and thresholds.

A description of an LPD delineation algorithm has been given in [178]. The preprocessing
stage of the LPD delineation algorithm always processes the ECG signal with a low pass
filter and a differentiator. For the QRS start boundary detection the ECG signal after
the low pass filter and the first differentiator is taken. The R-peak is assumed to occur at
a maximum in the ECG signal and otherwise, the signal is inverted. The R-peak is thus a
zero crossing of the derivative signal. First step is finding the next large local maximum
to the left of the R-peak as well as the next local minimum to the left of this maximum.
Determination of the start of the QRS-complex is depending on the relative positions of
the first zero crossing and the first local minimum to the left of the maximum. The QRS
end boundary detection is done similar except that maxima and minima are looked for in
the second derivative. T-wave detection and delineation is done in a search window after
a detected QRS-complex. The boundaries of the window are calculated depending on the
actual heart rate. The maximum and minimum of the differentiated signal are found in
the window of interest. Depending on the combination of the extrema and their sizes,
four possibilities of different T-wave shapes are considered: upward-downward shape,
downward-upward shape, downward shape and upward shape. The P-wave is searched
for within a window before a detected QRS-complex. The maximum and minimum of
the differentiated signal are found in the window of interest. In the implemented system,
it is assumed that the P-wave is ’upward-downward’ in shape. The left boundary is the
position where the differentiated signal drops below a fraction offset max value, and the
right boundary is the position where the differentiated signal rises above a fraction offset
min value. If this does not happen in the window, no P-wave will be found.
In fact, the LPD delineation algorithm has serious technical and structural drawbacks.
A bad threshold update and a too simple R peak detection method as well as only sup-
porting for the standard QRS morphology are some of the technical drawbacks. The
delineator shows structural problems by missing the detection of low frequency compo-
nent QRS complex (PVCs for example), by dealing with different morphologies and by
facing difficulties optimizing the algorithm parameter. The work in [141] has improved the
performance of the LPD delineation algorithm by adjusting the technical and structural
cores of the delineator. In this work, every new detected complex or wave is compared to
the already detected complexes or waves by means of the cross-correlation coefficients in
a so-called verification system section. The new method adjusted the threshold update
rules in a better way than the conventional Pan Tompkins algorithm and it allowed more
accurate peak detection, namely R peaks, by considering different QRS morphologies.
Improvements in P and T-wave delineation are also noticed. However, problems and diffi-
culties still exist in the verification system part due to the amount of possibilities how the
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waves and complexes can vary within one morphology group. Beside the different possible
morphologies the waves can vary in amplitude as well as in width. In order to fix this
problem, implementing a modulation of the templates in term of width and amplitude
was suggested, but it would further increase the computational load. Another main draw-
back is the long computational time needed, especially when dealing with ambulatory or
multi-channel ECG signals.

A completely different approach using artificial neural networks can be found in [179],
where a 2-layer perception neural network is trained, to determine T offsets. The weights
of the network are estimated during the Bayesian motivated training process. Another
approach which contains a training phase is the use of hidden Markov models which
has been used in [180, 181]. The hidden Markov model comprises out of the following
sates: P-wave, QRS-complex, T-wave, U-wave and Baseline. The model is trained in a
supervised manner, where the transition matrix parameters were computed using the
maximum likelihood estimates.
A new, computationally quite simple algorithm for T wave end location in the ECG is
proposed in [182]. It mainly consists of the computation of an indicator related to the
area covered by the T-wave curve, which can be implemented as a simple finite impulse
response (FIR) filter. Based on simple assumptions, essentially on the concavity of the
T-wave form, it has been proved that the maximum of the computed indicator inside each
cardiac cycle coincides with the T-wave end.
Further delineation approaches one can find in the literature are referenced in [171] and
include the signal envelope [183], matched filters [184], ECG slope criteria [185, 186,
187], second-order derivatives [188], non-linear time-scale decomposition [189], adaptive
filtering [190] and dynamic time warping [191].
Not all of the algorithms presented above are able to localize all ECG characteristic
points.

6.3 PCA Applications on ECG Signal

In 1981 Lux et al. has used the Karhunen-Loève Transform (KLT), which is equivalent to
PCA, as a method of quantitatively characterizing 192 lead body surface potential maps
from 124 normal subjects and 97 patients [140]. Each map frame in QRS and ST-T of
34 maps in a test set was represented as a linear sum of orthonormal distributions (PCA
coefficients) derived from the covariance matrix and estimated from all QRS frames in
the 221 training maps. Results suggested that 12 independent waveforms, derived from
the 192 measured ECGs, may be used in place of those 192 ECGs. In the literature, PCA
has also been used to reduce the data dimensionality while performing ECG data com-
pression, either alone or combined with other techniques as Self-Organizing Maps (SOM)
[192, 193, 194, 195]. Furthermore, It is applied as a powerful tool for pattern recognition
and linear feature extraction of QRS complex and ST-T morphology [196, 197, 198, 199],
as well as ECG data clustering [200, 201]. Moreover, PCA ratio, which is quantified by
the ratio of the second to the first eigenvalue of PCA, has been defined as an index of
complexity of T wave loop morphology in 12-lead ECG and used as predictor of cardio-
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vascular mortality [202, 203].

M. Zabel et al. derived five aspects from Singular-Value-Decomposition (SVD) of the T-
wave in vector cardiography. The latter is a technique based on at least 12 electrodes and
therefore not directly comparable to the ones used in the present thesis. Their intention
was to quantify the susceptibility to sudden cardiac death in a population of post my-
ocardiac infarction subjects. The following parameter turned out as the most promising:
The two paths described by the heart vector during QRS complex and later T-wave may
be interpreted as loops in a 3D space. Connecting the two furthest points on each loop
will provide two vectors including an angle. Referring to the authors the value of this
angle is related to the risk of interest [204].

In year 2000, Okin et al. compared two criteria for the susceptibility to ventricular ar-
rhythmia: the commonly used QT-dispersion and the relations of the first principal com-
ponents of PCA applied on the reconstructed T-wave vector loop. The latter is described
as superior, since it is more robust against fluctuations of T-wave offset markers [205]. It
provides a measure for the quality of ventricular repolarisation.

A similar approach was proposed by M. Kesek et al. [206]. They employed PCA to divide
the dipolar portion of the T-wave loop from the rest. The second is used to characterize
the excitation propagation.



7

ECG Signal Preconditioning

7.1 ECG Signal Low-Frequency Filtering

7.1.1 Motivation

The frequency of the baseline wander, as stated before, is usually in a range below 0.1
Hz in rest ECG and 0.65 Hz during stress test. Therefore, its presence will be reflected in
the higher level DWT approximation coefficients. This is actually the basic phenomenon
behind this approach aiming to eliminate the distortion of baseline wander in measured
ECG signals. This elimination is accomplished by decomposing the noisy ECG signal, con-
taminated with baseline wander into a certain number of levels n using Discrete Wavelet
Transform (DWT). The highest level , i.e. the nth level, approximation coefficients (AC)
are supposed to represent the low frequency baseline variation signal. In the filtering
algorithm proposed here, the nth level AC are set to zeros. Finally, the ECG signal is
reconstructed following the same procedure as mentioned in section 4.1.7.
When a mother wavelet, e.g. coifflet 4, is arbitrarily chosen and DWT decomposition is
carried out on one ECG signal with a sample frequency equal to 1 kHz, it was noticed
that each of the 8th, 9th and 10th level approximation coefficients, when time-aligned to
the original ECG, resemble the baseline wander. Figure 7.1 shows this resemblance.
It is not very clear, as we see from figure 7.1, which level approximation coefficients
represent the baseline wander signal the best in general. However, the following two
issues need to be further investigated:

1. Which mother wavelet should be applied for DWT analysis on the noisy ECG to
achieve the best results?

2. What value of n should be chosen? In other words, up to which level the ECG signal
needs to be decomposed?

In order to answer these two questions, the following simulation is carried out.

7.1.2 Simulation

Before dealing with real ECGs, artificial signals were chosen for experimentation. These
artificial signals are in fact mixtures of artificial free-of-noise ECG signals and artificial
baseline variation signals. Thus, with a clear knowledge of the component signals, the
performance of filtering could be judged.
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Figure 7.1. The 8th, 9th and 10th level approximation coefficients for an ECG signal with a sample frequency

equal to 1 kHz and using Symlet4 as mother wavelet: (a) the ECG signal (b) the 8th level approximation coefficients

(c) the 9th level approximation coefficients (d) the 10th level approximation coefficients

.

Artificial noise-free ECG beats were generated by means of the algorithm used to gener-
ate noise-free ECG for Savitzky-Golay filter simulator and filter in Matlab Environment
((Signal Processing Toolbox)). Figure 7.2 shows an example of the generated noise-free
ECG .
The sampling frequency was assumed to be 1 kHz, or in other words the span of 1000
samples is 1 second. The data length was taken to be 25000 samples, i.e. 25 seconds. In
this case each beat should have a span of 1000 samples for 60 bpm (beats per minute)
ECG and hence there would be 25 beats in total. For different bpm, the span of ECG
beat was varied accordingly and hence the total number of ECG beats. To find out the
suitable mother wavelet and the decomposition level n, tests were carried out on 650
artificially generated noisy ECG signals. Thirteen noise-free ECG signals in the range of
60 to 180 bpm (increment step value of 10 bpm) were created as discussed above. At the
same time, a set of fifty sinusoidal signals with frequencies ranging from 0.01-0.5 Hz (with
increment step value of 0.01 Hz) were created in order to simulate the baseline wander.
Thereafter, as result, 650 test signals in total were synthesized by mixing the artificial
ECG signals with artificial baseline wander signals in one to one correspondence.
Now, on each of the 650 test signals, the mixture signals, DWT analysis was carried out
taking a total of 29 mother wavelets under consideration, i.e. symlet1, symlet2, ... sym-
let12, coiflet1, coiflet2, ... coiflet5, Daubechies1 (Haar), Daubechies2, ..., Daubechies12.
By applying DWT decomposition a symmetric boundary value replication of the signal
under decomposition in each level is employed during the convolution with analysis filters
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Figure 7.2. An example of the noise-free ECG generated by Savitzky-Golay filter simulator in Matlab environ-

ment. The sample frequency is 1kHz and the heart rate is 120 beats per minute

or synthesis filters in order to deal with border distortions. The extension is done on both
sides with the length of the half of the low-pass filter or high-pass filter.
On every test signal, for each of the mother wavelets, the following procedure was adopted.

1. Initialise n=1; i.e. no. of decomposition levels for DWT.
2. Decompose the test signal till n levels (maximal n here is chosen equal to 12) and get

the DWT coefficients An, Dn, Dn−1, Dn−2,...,D1, where Ai = ith level approximation
coefficients and Di = ith level details coefficients.

3. Perform the following two reconstructions:

• First Reconstruction: With An to be all zeros, reconstruct the signal as in Figure
4.11. The signal, reconstructed in this way is called the ECG reconstruction. It
should resemble the original noise-free ECG (with which the test signal is synthe-
sized) for higher values of n.

• Second Reconstruction: Set all the coefficients other than An (i.e. the details coeffi-
cients, Dn, ..., D1) to zeros, reconstruct the signal as depicted in Figure 4.11. The
signal, reconstructed in this way is called the Baseline Reconstruction. It should
resemble the original baseline variation signal (with which the test signal is syn-
thesized) for higher values of n.

4. Judge the resemblance between the original and reconstructed signals by means of
correlation. Two correlation coefficients (CE & CB) were calculated, where CE is
the percentage result correlation between the original noise-free ECG and the ECG
reconstruction, or First Reconstruction and CB= correlation between original baseline
variation signal (low frequency sinusoid) and the ’baseline Reconstruction’.

5. Repeat steps 2 to 4 for n = 1, . . . , 12.
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Furthermore, the whole above-mentioned process from step 1 to 5 was repeated for 29
different mother wavelets applied on the same test signal. Finally, for each test signal,
two matrices were constructed, the first one includes all CE values and the other one
includes all CB values. Each matrix is of size 12× 29 and has the structure illustrated in
figure 7.3.

Figure 7.3. The structure of each matrix derived from the baseline simulation process: C denotes either CE or

CB. The 1st to 12th column represents Symlet Wavelets of 1st to 12th order (sym1, sym2, ... sym12), the 13th

to 17th column represents Coiflet Wavelets of 1st to 5th order (coif1, coif2, ... coif5) and the remaining 18th to

12th column represents Daubechies Wavelets of 1st to 12th order (db1, db2, ..., db12).

For 650 test signals, there were 1300 correlation matrices in total, half for CEs and
half for CBs. In addition two more matrices were computed, the first one is denoted as
CEmean and represents the mean matrix of the 650 CE matrices, whereas the second one
is denoted as CBmean and represents the mean matrix of the 650 CB matrices

7.1.3 Simulation Result

At this stage, the positions of the first L greatest elements in both matrices, CEmean
and CEmean, were identified. The value of L was taken in this case equal to five, L = 5,
because only the five greatest values in both matrices were greater than 99.99% . The
positions are found to be exactly the same in both matrices, that is, the highest element
occurs in the same position (same row and column number) in both matrices . The same
is also true for 2nd highest and so on. All of these five highest elements are found at the
row corresponding to n = 9.

7.1.4 Discussion

From the simulation result, the baseline wander signal can be located perfectly at the 9th

level approximation coefficients of Daubechies11 mother wavelet from a baseline-wander-
distorted ECG signal sampled at 1000 Hz. Depending on subband theory in DWT, the 9th

level approximation coefficients of a signal sampled at 1000 Hz represents the signal in the
[0-0.9766] Hz range. Therefore, some adaptation procedures are required for the system
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Order No. Mother Wavelet n mean CE% mean CB%
1 db11 9 99.9924 99.9150%
2 sym12 9 99.9913 99.9011%
3 sym10 9 99.9909 99.8962%
4 db10 9 99.9906 99.8925%
5 coif5 9 99.9904 99.8894%

Table 7.1. Results obtained from the baseline simulation done on 650 artificial test signals

to be able to handle equivalently ECG signals with different sampling frequencies. One of
these procedures is simply to resample the signal under study to 1000 Hz. This procedure
is actually a time-demanding solution, especially in the case of multi-channel ECG or
long-time ECG. The second possible solution is to calculate the frequency band for all
possible approximation coefficients decomposition levels of Daubechies11 mother wavelet,
and then choose the frequency band nearest to the one obtained with our simulation,
namely the [0-0.9766] Hz range. The corresponding decomposition level to that chosen
band is indeed the level whose approximation coefficients need to be canceled.
This method is able to eliminate the baseline drift without any distortion of ST segment
(see figure 7.5) as observed with conventional high pass filters, namely the second order
Butterworth filter with 0.5 Hz cut off frequency (see figure 7.4). Moreover, it can be
applied equally well to short and long duration ECG signals. The conventional filtered
ECG showed only around 97% similarity to the noise-free ECG, whereas our wavelet-
based technique showed a similarity greater than 99.9%.

7.1.5 Proposed Method

In order to reach a high elimination of the baseline wander artifact in a corrupted ECG
signal and to ensure least distortion in the ECG waveform, the results from the already-
illustrated simulation are used to propose the following procedure:

1. Choose Daubechies11 as a first-best-choice mother wavelet (see the table 7.1).
2. Calculate the level of decomposition n, whose approximation coefficients need to be

canceled. n is equal to nine when the sample frequency is equal to 1kHz, otherwise
the method illustrated in the last section need to be implemented to calculate n.

3. Carry out DWT decomposition on the noisy ECG under study till the nth level.
4. Set the nth level approximation coefficients to zeros.
5. Reconstruct the ECG back using Inverse Discrete Wavelet Transformation (IDWT).

7.1.6 Results of Application on Real ECG

Our algorithm was applied on Multi-Channel ECG data recorded at our institute, as well
as on signals taken from MIT- Arrhythmia Database. Figures 7.6 and 7.7 demonstrate
the success of our method.
After eliminating the low frequency baseline wander, the next stage is filtering of high
frequency disturbance in ECG.
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Figure 7.4. The influence of using the conventional high-pass filter to remove the baseline wander on the ECG

morphology and ST segment: In blue: the original noise-free ECG signal sampled at 1kHz and added to artificial

0.1 Hz baseline wander sin signal. In red: the filtered ECG obtained using the second order Butterworth filter

with 0.5 Hz cut off frequency. The similarity (percentage correlation coefficients) between the noise-free and the

filtered ECG signals is equal to 96.9 % and a large distortion in ST segment and the ECG morphology is noticed.

7.2 ECG Signal Denoising

7.2.1 Single-Channel ECG Denoising

7.2.1.1 Motivation

By analysing the approximation and details coefficients after applying DWT or SWT on
any noisy ECG, it has been seen that the coefficients of the signal are confined to coarser
scales, while those of the noise are observed in finer scales. In this case, denoising can
be viewed as a nonlinear filtering operation in which the pattern of detail coefficients is
exploited in order to produce a smoother signal. This operation involves three main steps,
namely, calculating the SWT for the noisy signal, zeroing or modifying certain coefficients
by a suitable rule, and reconstructing the signal from the modified coefficients.
Linear time-variant and linear time-invariant filtering has a limitation with noisy signals
having fast changes. This limitation is that noise reduction can only be achieved at
the price of considerable smoothing of the fast changes. On the other hand, the detail
coefficients of the SWT can be subjected to nonlinear processing so that denoising is
achieved without having to sacrifice too much of the fast changes in the signal.
Nonlinear techniques remove coefficients of the SWT below a certain threshold. The
inverse SWT of the thresholded coefficients is then performed to produce a denoised signal.
Suppose that CD are the details coefficients, denoising is achieved by hard thresholding
on CD. This is defined by
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Figure 7.5. In blue: the original noise-free ECG signal sampled at 1kHz and added to artificial 0.1 Hz baseline

wander sin signal. In red: the filtered ECG obtained using our wavelet-based technique and canceling the 9th

level approximation coefficients of Daubechies11 mother wavelet. The similarity between the noise-free and the

filtered ECG signals is equal to 99.991% and no distortion in ST segment or in the ECG morphology is noticed
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Figure 7.6. Baseline cancellation result on record number 113, channel1, from MIT- Arrhythmia Database using

our wavelet-based baseline filter: (a) the ECG signal corrupted with baseline wander artifact (b) the extracted

baseline wander (c) the final filtered ECG signal
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Figure 7.7. Baseline cancellation result on an arbitrary ECG segment from a recorded multi-channel signal

using our wavelet-based baseline filter: (a) an ECG segment from a recorded multi-channel signal corrupted with

baseline wander artifact (b) the extracted baseline wander (c) the final filtered ECG signal

C̃D =

{
CD, |CD| ≥ Tr;

0, |CD| < Tr
, (7.1)

where C̃D is the filtered details coefficients CD and Tr is the threshold. On the other
hand, denoising by soft thresholding on CD is performed by thresholding the coefficients
and shrinking them depending on the distance to the threshold Tr [207],

C̃D =

{
sign(CD)(|CD| − Tr), |CD| ≥ Tr;

0, |CD| < Tr
, (7.2)

The threshold Tr may be chosen as fixed, with a value based on some prior information
that may exist on the signal. Under the assumption that the noise is white with variance
σ2
w, a fixed threshold Tr, as derived in [147], is defined as:

Tr = σw
√

2 lnN , (7.3)

where the factor
√

2 lnN is the expected maximum value of a white noise sequence of
length N and σw is the standard deviation of the noise. Since σw is unknown in practice,
it is often estimated using the median of the absolute deviation,

σ̃w = 1.483.median(CD), (7.4)

which avoids the influence of outliers values. The factor 1.483 is introduced to calibrate
the median estimator with the standard deviation of a Gaussian PDF. In order to denoise
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an ECG signal, a full SWT decomposition is applied first. Then, the global Tr is calculated
as illustrated in the equations 7.3 and 7.4 using only the first level details coefficient to
estimate σ̃w of the noise, since this scale is the least influenced by the signal and most
influenced by noise. The details coefficients of all levels will be afterward thresholded
with the soft thresholding equation 7.2. The soft thresholding choice is the optimal one
for any signal corrupted with white noise [155]. Finally, the final filtered ECG signal is
obtained by performing ISWT using the original approximation coefficients of the last
level and the modified detail coefficients of all levels. By applying SWT decomposition
periodic boundary value replication of the signal under decomposition in each level is
employed during the convolution with analysis filters or synthesis filters in order to deal
with border distortions. The extension is done on both sides with the length of the half
of the low-pass filter or high-pass filter at that level. In order to find the optimal mother
wavelet to be used for SWT and ISWT in this ECG denoising method, the simulation
presented in the following section was carried out.

7.2.1.2 Simulation

Thirty one conventional noise-free simulated 12-lead ECG signals of 10 seconds duration
were generated by the simulator phantom 320 EKG-Simulator from the company Müller
& Sebastiani Elektronik GmbH, (ms-gmbh.de). The simulator was connected to the MAC
5000 Resting ECG System from GE Healthcare, (gehealthcare.com), in order to record
the simulated signals and save them in a digital readable form. All signals were taken
with 500 Hz sample rate. The signal acquisition was supported by the company nabios
GmbH 1. These signals represent various physiological and pathological ECGs. A total
number of 31x12 ECG segments are derived forming a database with 372 ECGs. The
next step was to generate white Gaussian noise of 15 different levels. Starting at a signal-
to-noise ratio (SNR) equal to 4, the SNR first increased by steps of 2 until an SNR of
24 (11 levels), then by steps of 4 until SNR = 40. The noise was added to every signal.
Thereafter, all noise-free ECG segments have been mixed with the 15 noise signals in
one to one correspondence, so that a final set of 15x372=5580 noisy ECG signals were
obtained. A total number of 29 mother wavelets, i.e. Daubechies1 (Haar), Daubechies2,
..., Daubechies12, coiflet1, coiflet2, ... coiflet5,symlet1, symlet2, ... ,symlet12, were taken
under consideration for the simulation. The aim of this simulation is to find the best
mother wavelet for the ECG denoising method presented above. The simulation steps are
presented as follows:

1. A mother wavelet was first chosen.
2. A full SWT decomposition is applied on one of the final noisy signal.
3. The global Tr is calculated as illustrated in the equations 7.3 and 7.4 using the first

level details coefficient only.
4. The details coefficients of all levels are thresholded with the soft thresholding tech-

nique, equation 7.2.

1 nabios GmbH (Munich, Germany) is an internationally operating ECG core lab providing ECG processing

and evaluation services to pharmaceutical companies.
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5. The final filtered ECG signal is obtained by performing ISWT using the original
approximation coefficients of the last level and the modified detail coefficients of all
levels.

6. The similarity between the filtered ECG signal obtained in the last step and its cor-
responding original noise-free ECG, before the noise was added to it, is determined.
This similarity was measured as the percentage result of the correlation coefficients
between both signals.

7. The steps 3 to 6 were repeated for all noisy ECG signals.
8. The mean value of all similarity results for all noisy ECG signal and the mother

wavelet chosen in step 1 was calculated.
9. The steps 2 to 8 were repeated for all mother wavelets under study.

7.2.1.3 Simulation Results

The optimal mother wavelet to be implemented in our wavelet-based denoising technique
is chosen corresponding to the mother wavelet having the highest similarity result. The
table 7.2 shows the best ten mother wavelet with their highest similarity results from
the simulation. In a stem plot, figure 7.8 shows also the similarity results for all mother
wavelets employed.

Order Mother Wavelet Percentag Similarity Result %
1 symlet2 99.092
2 daubechies2 99.091
3 symlet4 99.066
4 coiflet1 99.052
5 coiflet2 99.050
6 symlet6 99.023
7 symlet5 99.012
8 symlet1 99.007
9 Haar 99.007
10 symlet7 99.002

Table 7.2. Results obtained from the wavelet-based denoising simulation done on 5580 artificial test noisy ECGs

and having values greater than 99% similarity

Figure 7.8 illustrates the result of applying our wavelet-method illustrated above with
the best mother wavelet found, Symlet2, on a real ECG signal taken from one research
study of Pfizer LTD.

7.2.1.4 Multi-Channel ECG Denoising

As mentioned in section 4.8.1.1, a new method was developed to filter the noisy 64-
channel ECG signal recorded with the SynAmps system. The method is based on improv-
ing the common-mode rejection ratio (CMRR) for the multichannel ECG measurement
mathematically by changing the reference point on the right iliac fossa to Wilson Central
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Figure 7.8. The percentage similarity results for all mother wavelets employed in the denoising simulation.
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Figure 7.9. The result of applying our wavelet-method with coiflet2 on a real ECG signal taken from one research

study of Pfizer LTD : In red, the original measured ECG signal. In blue, the filtered ECG signal

Terminal (WCT). In our measurements, ECG signal of a channel is actually the differ-
ential potential between the corresponding electrode of that channel and the reference
electrode on the right iliac fossa. Recalling equation 3.5 and figure 4.21, the equation
3.5 can be re-written as follows:
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φWCT =
φA13 + φC13 + φC24

3
, (7.5)

where φA13, φC13 and φC24 are the potential of the right arm, left arm and left leg respec-
tively referring to the ground electrode GN, see figure 4.21. In order to calculate the new
ECG signals referring to WCT, we start to present the equation of ECG signals referring
to the reference electrode RF as follows:

Vn = φn − φRF , (7.6)

where Vn is the measured nth-ECG signal from the electrode n, φn is the potential of the
electrode n referring to the ground and φRF is the potential of the reference electrode RF
referring to the ground, see figure 4.21.
From equation 7.5 and equation 7.6, we can write,

Vn + φWCT = φn − φRF + φWCT = φn +
(φA13 − φRF ) + (φC13 − φRF ) + (φC24 − φRF )

3
,

(7.7)

Vn + φWCT = φn +
(VA13 + VC13 + VC24)

3
, (7.8)

After arranging equation 7.8, the differential potential between the electrode n and WCT,
V n
wct, can be calculated as follows:

V n
WCT = φn − φWCT = Vn − (VA13 + VC13 + VC24)

3
. (7.9)

From the equation 7.9, it can be noticed that the new ECG signal at the electrode n can
be derived by subtracting the average signal between A13, C13 and C24 from the mea-
sured ECG signal at the electrode n. By performing this subtraction, the common-mode
rejection ratio (CMRR) for the new ECG signals will be much improved compared to
the measured ECGs. Figure 7.10 shows the improvement of the common-mode rejection
ratio (CMRR) for the new ECG signal ( 7.10 -b) compared to the measured one ( 7.10-
a).

7.3 ECG Noise Estimation

7.3.1 Introduction

A robust low- and high-frequency noise estimation method in ECG signals will be pre-
sented in this section. As illustrated already, low-frequency noise in ECG signals is repre-
sented in the baseline wander signal and the high-frequency noise is defined as the high-
frequency interference, the power-line interference (50/60 Hz) or the moving artefacts in
the ECG signal. The noise estimation will be applied to know the overall indication of
the ECG signal quality or to annotate the noise level in runs of beats or intervals.
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Figure 7.10. The improvement of the common-mode rejection ratio (CMRR) for the new ECG signal (b)

referring to WCT compared to the measured one (a) with the SynAmps system

7.3.2 ECG Low-Frequency Estimation

The level of low-frequency noise in an ECG signal can be estimated by canceling the
baseline wander in the signal using the method presented in section 7.1 and comparing
the similarity between the original signal x and filtered signal y by means of correlation
coefficients technique. Finally, the ECG Low-Frequency Noise Estimation ELFE will be
calculated as follows:
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ELFE% = 100− 100

N∑
i=1

(xi − x̄)(yi − ȳ)
(N − 1)σxσy

, (7.10)

where N is the number of samples of the original signal x and the filtered signal y, x̄ and
ȳ are the sample means of x and y respectively, and finally σx and σy are the standard
deviation of x and y, respectively.

7.3.3 ECG High-Frequency Estimation

The high-frequency noise in an ECG signal can be estimated by filtering the signal using
the method presented in section 7.2.1 and using ’Symlet2’ as mother wavelet, derive the
noise signal, and finally calculate the root mean square (RMS) of the original signal x
and the noise signal z. The High-Frequency Noise Estimation EHFE will be calculated
then as follows:

ELFE% =
frms

srms
=

√
1
N

∑N
i=1 z

2
i√

1
N

∑N
i=1 x

2
i

, (7.11)

where xi and zi are the ith sample in the original signal and the noise signal, respectively.
The high-frequency noise estimation is a measure that represents how large the noise
signal is in relation to bio-signal, which is ECG signal in this case.

7.3.4 Applications

7.3.4.1 Provide Quality Measure for Long-Time ECG Signals

The first use of the ECG noise estimation is to provide a quality measure for long-time
ECG signals, i.e. Holter ECG tapes. The noise estimation will be able in this case to
detect the runs of beats or intervals in the long-time ECG, where the signal includes high
level of distortions due to high- or low-frequency noise. Detecting and annotating these
segments will enable us to exclude them from any further analysis, like fiducial points
detection, etc...
Excluding these segments will also reduce the processing and computation time on noisy
tapes and will ensure high confidence level to the further process. ECG noise estimation
on multi-channel long-time ECG signals will help also to provide a quality measure for
each channel and therefore choose the best of them for the further analysis.
Figure 7.11 illustrates an original 30-minute ECG segment in red from the first channel of
a 2-channel long-time ECG tape. The signal in blue is the filtered segment of the original
red one after canceling the baseline wander effect and the electrode offset. In figure 7.11,
three sbusegments, A, B and C are noticed. The subsegment ’A’ represents the part of the
original signal where there is no ECG signal. The ’no ECG’ segments can be due to an off
status in the Holter device or to an off status in the electrode from the chest of the patient,
known as ’electrode-off’. The subsegment ’B’ represents the calibration signal from the
Holter with some small electrode-off parts. Whereas, segment ’C’ represents the useful
readable ECG signal. Figure 7.13 shows the baseline wander estimation of a 2-hour ECG
signal whose first quarter is shown in figure 7.11. Each ELFE value is calculated from
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a window of 1000 samples from the original signal. In figure 7.13, the baseline wander
distortion, i.e. ELFE values, in the subsegment ’A’ and a small part of ’B’ is very high.
Whereas the baseline wander distortion in the subsegment ’C’ is variable. Depending on
the application and on the confidence of the further analysis, a threshold can be defined
to accept all ECG segments, whose ELFE values are below it and reject the other ECG
segments, whose ELFE values are above it, see figure 7.13. The threshold Threshold,
provided in this example, is calculated as follows:

Threshold = mean(ELFE) + 3std(ELFE), (7.12)

where, mean(ELFE) and std(ELFE) are the mean value and the standard deviation of
the ELFE vector.
Furthermore, the threshold could be set manually or automatically and depending on the
further applications and the intended level of the confidence.
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Figure 7.11. Baseline wander cancellation in a real 30-minute ECG segments from the first channel of a 2-channel

long-time ECG tape. The original signal is in red, whereas the filtered one is shown in blue.

Figure 7.13 illustrates the high-frequency noise elimination in the ECG signal filtered
from the effect of baseline wander illustrated in figure 7.11. In figure 7.13, the noisy
ECG signal is plotted in red, whereas the clean one is plotted in blue. Furthermore, the
three subsegments, ’A’, ’B’ and ’C’, shown in figure 7.11, are still mentioned here as well.
Figure 7.14-a, 7.14-b and 7.14-c illustrate a zooming out of the high-frequency noise
elimination result in the three subsegments, ’A’, ’B’ and ’C’, shown in figure 7.13, re-
spectively.
Figure 7.15 shows the high-frequency noise estimation of a 2-hour ECG signal whose
first quarter is shown in figure 7.13. Each EHFE value is calculated from a window of
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Figure 7.12. The baseline wander estimation signal ELFE of the ECG signal shown in figure 7.11. The

threshold is calculated with equation 7.12.

1000 samples from the original signal. In figure 7.13, the high-frequency noise distortion,
i.e. EHFE values, in the subsegment ’A’ and a small part of ’B’ is very high, since the
energy of high-frequency noise components are very high in these subsegments compared
to the energy of the original signal. Whereas the high-frequency noise distortion in the
subsegment ’C’ is variable. Depending also on the application and on the confidence of the
further analysis, a threshold can be defined to accept all ECG segments, whose EHFE
values are below it and reject the other ECG segments, whose EHFE values are above
it, see figure 7.15. The threshold Threshold, provided in this example, is calculated as
follows:

Threshold = mean(EHFE) + std(EHFE), (7.13)

where, mean(EHFE) and std(EHFE) are the mean value and the standard deviation
of the EHFE vector.
As in case of low-frequency noise estimation, also here, the threshold could be set manually
or automatically and depending on the further applications and the level of the confidence.

7.3.4.2 Provide Quality Measure for Huge Databases of Short-Time ECG
Signals

Electrocardiogram core laboratory, abbreviated as ’ECG core lab’, provides expert, ob-
jective and accurate review of pre-specified, study-related ECG variables. An ECG core
lab also processes a large number of ECG signals centrally to guarantee a systematic and
high quality evaluation of the electrocardiograms. For a proper evaluation of electrocar-
diograms, a high signal quality of the recordings is essential. One responsibility of the ECG
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Figure 7.13. the high-frequency noise elimination in the ECG signal filtered from the effect of baseline wander

illustrated in figure 7.11.

core lab is to provide the ECG recording units (in general specialized ’Phase I’ clinics or
hospitals) with a feedback of their ability to record ECG signals. Therefore, the quality of
ECG signals needs to be assessed accurately and retrospectively. Furthermore, it needs to
be monitored during or after a certain study. Each study usually includes a huge number
of short-time ECG signals. The company nabios GmbH has implemented the methods
developed by the author of this thesis and described in section 7.3.2 and in section 7.3.3
to assess the effect of baseline wander distortion and the high-frequency noise in the
study-related short-time ECG signals, respectively. After applying these noise estimat-
ing methods, an accurate overall quality assessment and a retrospective noise evaluation
feedback can be obtained. Figure 7.16 illustrates the result of a retrospective baseline
wander analysis on 1246 ECG signals from a Phase I study done by nabios GmbH using
the algorithm provided in section 7.3.2. The respective correlation coefficient between
the original signal and the baseline corrected signal for each tracing was obtained. Figure
7.16 displays a two-dimensional landscape of the ordered baselines (highest correlation
coefficient first, lowest correlation coefficient, last). As can be seen the landscape evolves
from flat lines (no baseline wander) to large baseline wander in the background.

7.4 ECG Delineation

7.4.1 Motivation

The first level details coefficients obtained from the Haar wavelet-based SWT decompo-
sition of ECG signal are analysed in our method. In this section, we will try to discover
the utility of Haar wavelet in ECG delineation. As depicted already in figure 5.7, Haar
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Figure 7.14. High-frequency noise elimination result in the three subsegments, ’A’, ’B’ and ’C’, shown in figure

7.13. a) zooming out of the high-frequency noise elimination result in the subsegment ’A’. b) zooming out of

the high-frequency noise elimination result in the subsegment ’B’. c) zooming out of the high-frequency noise

elimination result in the subsegment ’C’.

function has a step nature. This is found to be very sensitive to any slope change in the
original signal. Before going to the real ECG signal, the Haar wavelet is applied on some
signals with specific clear shape (e.g. a straight line with a constant slope, a triangular
wave, a cosine wave etc). Every signal is decomposed into first level approximation A1 and
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Figure 7.15. The high-frequency noise estimation of a 2-hour ECG signal whose first quarter is shown in figure

7.13. Each EHFE value is calculated from a window of 1000 samples from the original signal.
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Figure 7.16. The result of a retrospective baseline wander analysis on 1246 ECG signals from a Phase I study

done by nabios GmbH using the algorithm provided in section 7.3.2.

details coefficient D1. The reconstruction is performed with A1 set to all zeros. The signal,
which is reconstructed back with setting A1 all to zeros, is referred to as the First Level
Details Signal (FLDS) throughout this chapter. Figure 7.17 shows the FLDS obtained
from a straight line signal with constant slope, where all FLDS samples are noticed to be
of the same amplitude and of alternating signs.
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Figure 7.17. The First Level Details Signal (FLDS) obtained from a straight line signal with constant slope:

(a) the straight line signal (b) the corresponding First Level Details Signal (FLDS). The samples of FLDS are of

the same amplitude and of alternating signs.

In the same manner, figure 7.18 shows FLDS calculated from a symmetric triangular
wave. It illustrates the following points:

1. Samples of FLDS are of the same amplitude and alternating signs as long as the slope
remains constant.

2. When the slope of the signal is zero, FLDS samples have zero magnitude.
3. When there is a direction change, or sign change in slope, in the original signal, e.g. at

the peak of a triangle, two consecutive samples of FLDS are of same sign. Here, when
the slope changes its sign from positive to negative (i.e. direction of signal changing
from +ve to -ve signifying a positive peak), this reflects two consecutive positive
samples in FLDS, where the first one is marking the instant of direction change (or
in other words, occurrence of peak).

4. The slope magnitude is the same on either side of the triangle, only the sign is different.
This owes to the symmetry of the triangle. So, all the samples of FLDS falling under
the span of the triangle are of same absolute magnitude.

It can be seen also that when there is a negative peak (signifying direction change of the
signal from negative to positive sign), two consecutive samples in FLDS with negative
sign can be detected. The first sample marks the instant of that peak, see figure 7.19.
The following two characteristics are computed from the FLDS, on the basis of observa-
tions made so far:

1. Direction Change Mark (DCM) : This is a time vector comprising the same number
of elements as the original signal or FLDS. All elements of this vector will have zero
magnitude except at the direction changing points. Whenever there are two positive
consecutive samples in FLDS, the element of DCM corresponding to the first sample
will be ’+1’. On the other hand, two consecutive negative samples of FLDS will reflect
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Figure 7.18. The First Level Details Signal (FLDS) obtained from a symmetric triangular pulse: (a) the sym-

metric positive triangular pulse (b) The corresponding samples of First Level Details Signal FLDS. The two

consecutive positive samples in FLDS mark the instant of direction change.
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Figure 7.19. The First Level Details Signal (FLDS) obtained from a symmetric triangular pulse: (a) the sym-

metric positive triangular pulse (b) The corresponding samples of First Level Details Signal FLDS. The two

consecutive negative samples in FLDS mark the instant of direction change.

a ’-1’ in the corresponding element of DCM. Therefore, a ’+1’ in DCM will signify a
positive peak in the original signal and a ’-1’ will represent a negative peak.

2. Direction Change Sharpness (DCM) : This is also a time vector having exactly the
same span as DCM. All the elements of DCS will be zero except at those positions
where DCM has a non-zero value. If DCM has a ’+1’, the corresponding sample of
FLDS is tracked. The absolute difference in magnitude between this sample and the
next sample of FLDS is calculated and this value is put at the corresponding position
of DCS. If DCM has a ’-1’, again the corresponding sample of FLDS is tracked. The
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absolute difference in magnitude between this sample and the next sample of FLDS
is calculated like before. Now, this difference is multiplied with -1 and the resulting
negative value is put at the corresponding position of DCS. Therefore, the samples of
DCS will be a replica of those of DCM as far as the sign is concerned.

• If the DCM sample is zero, corresponding DCS sample will also be zero.
• If the DCM sample is positive (i.e. +1) , the corresponding DCS sample will also

be positive (but can have any magnitude depending on FLDS).
• If the DCM sample is negative (i.e. -1) , the corresponding DCS sample will also

be negative (but can have any magnitude depending on FLDS).

The next step is to see how the values of FLDS, DCM and DCS change corresponding
to the signal under study. Therefore, a cosine signal will be presented as an example,
figure 7.20. The slope of the cosine signal varies continuously and obviously the samples
of FLDS follows the pattern of slope change closely. We have a collection of ordered pairs
of consecutive samples, that is, elements belonging to the same ordered pair will have the
same magnitude but opposite sign. This leads to the symmetrical positive and negative
halves of FLDS. Moreover, two consecutive samples of FLDS (belonging or not belonging
to the same ordered pair) are always of opposite signs. The only exceptions are found at
the local extrema or maxima of the original signal ( where the slope changes its sign).
However, DCM is only sensitive to the change in ’sign’ of slope (i.e. a direction change
in the signal) while DCS provides the change in ’magnitude’ of slope at every sample of
DCM.
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Figure 7.20. Deriving FLDS, DCM and DCS from a cosine signal : (a) the cosine signal (b) the correspond-

ing FLDS (c) DCM showing three direction change points (d) the DCS, showing the steepness change of the

corresponding DCM

In the same way, FLDS, DCM and DCS are derived for QRS complex signal, P wave
and T wave. A QRS complex, shown in figure 7.21, has five direction changing points,
namely, Q onset, Q peak, R peak, S peak and S offset (also called J point). Whereas,
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either P wave or T wave has three direction changing points, two points representing
the wave boundaries and one point localizing the apex or the peak. Figure 7.21 shows
the ability of DCM to detect and localize all the direction changing points in the given
QRS complex signal. Furthermore, DCS illustrates the corresponding steepness value
for every DCM value. Similarly, figure 7.22 and figure 7.23 show the ability of DCM
to detect and localize all the direction changing points along with their corresponding
DCS steepness values in the given measured P wave and T wave respectively. The whole
direction changing points for an ECG beat are called the fiducial points or the significant
points of that beat. Figure 7.24 shows the fiducial points of one ECG cycle detected by
DCM and DCS values.
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Figure 7.21. Deriving FLDS, DCM and DCS from a QRS complex: (a) a QRS complex signal (b) the corre-

sponding FLDS (c) DCM showing five direction change points, namely QRS complex onset, Q peak, R peak, S

peak and QRS complex offset (d) the DCS, showing the steepness change of the corresponding five DCM values.

In this example, the R peak has the highest steepness among the all points

7.4.2 Single Channel Delineation Strategy

A single channel ECG delineation strategy is developed and presented in this section.
This delineator is able to detect all fiducial points of every beat in the single channel.

7.4.2.1 R Peak and QRS Complex Detection

All the R peaks from the ECG data are detected first, after proper conditioning. For this
purpose, we take help of a running window of adaptive length. The procedure can be
described step by step as follows:
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Figure 7.22. Deriving FLDS, DCM and DCS from a real P wave: (a) a P wave signal (b) the corresponding

FLDS (c) DCM showing three direction change points, namely P onset, P peak and P offset (d) the DCS, showing

the steepness change of the corresponding three DCM values.
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Figure 7.23. Deriving FLDS, DCM and DCS from a real T wave: (a) a P wave signal (b) the corresponding

FLDS (c) DCM showing three direction change points, namely T onset, T peak and T offset (d) the DCS, showing

the steepness change of the corresponding three DCM values.
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Figure 7.24. Detecting the fiducial points of a real ECG cycle using DCM and DCS values: (a) a real ECG

beat (b) the corresponding FLDS (c) DCM showing eleven direction change points (fiducial points) (d) the DCS,

showing the steepness change of the corresponding eleven DCM values. The names of the fiducial points are

defined as follows: 1 ≡ Pon, 2 ≡ Ppk, 3 ≡ Poff, 4 ≡ Qon , 5 ≡ Qpk, 6 ≡ Rpk, 7 ≡ Spk, 8 ≡ Soff, 9 ≡ Ton, 10 ≡
Tpk, 11 ≡ Toff

1. Window Length Selection : The R peak detection process uses an adaptive window
length (WL) strategy in order to ensure high sensitivity for all QRS complex and
R peaks in the ECG signal under study. The mean RR interval of all RR intervals
already detected is taken care of while deciding on the window length (WL) for the
whole data. The WL should satisfy the following two conditions:

• It should be less than the mean RR interval. This will prevent false negative de-
tection (see section 7.4.5).

• It should be larger than half of the RR interval, to prevent false positive detection
(see section 7.4.5).

After optimizing the QRS complex detection algorithm with many long-time ECG
signals and with many multi-channel ECG signals, The best WL is found to be between
55% and 60% of the actual mean RR interval calculated.

2. Extending Data Length : The ECG data-length is extended at the end by a set of
samples of zero amplitude spanning WL. Provided the ECG length is equal to L, the
new length will be (L+WL). This is done so that even the last data sample can be
analysed properly. The window translation is carried out the signal of length (L+WL).
Translation is stopped when the remaining data length is found to be less than WL.

3. Running the Adaptive Length Window : The window is made to run over the whole
data set ,spanning L+WL, in steps. A small incremental step (IS) will take longer
computation time. However, a long incremental step might introduce errors in detec-
tion (the reason will be clear in the next section). The optimal incremental step (IS)
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of ECG, sampled in the range of 250-1000Hz, is found to be between 5 msec and 20
msec. IS should be chosen in such a way that WL is always divisible by it. In order
to explain the following steps effectively, we suppose that the morphology of the ECG
under study is similar to the ECG morphology in lead II. The instant of occurrence
of the max value of DCS inside each window is noted. If the window encompasses any
R peak, then it will cause the sharpest direction change in the ECG, and hence the
max value in the corresponding sample of DCS. The time of occurrence of the highest
DCS value for each and every window will be accumulated in a vector called Extreme
Direction Change Sharpness (EDCS). If the ECG channel contains negative R peaks,
the time of occurrence of the lowest values of DCS will be accumulated in EDCS.
Figure 7.25 shows an ECG channel consisting of positive R peaks. Hence, the instant
of occurrence of the highest DCS value inside each window is saved in EDCS. Also it
is seen that in each ECG beat, the DCS corresponding to the positive R peak is the
highest. If the same R peak is enveloped by n consecutive windows, the same value
will occur consecutively n times in the EDCS vector, see figure 7.25.
All windows enveloping and tracking the same R peak will reflect the same value in
EDCS. Assuming that the first window enveloping this R peak in figure 7.25 is the
ith running window, so the last window tracking the same R peak and giving the same
EDCS value in this case will be the (i+ n− 1)th running window. From the (i+ n)th

onwards, this R peak will not be encompassed. The end of the ith window and the
start of the (i+ n)th one are exactly coincident. This is ensured by the divisibility of
WL by IS. Hence we can easily interpret that,

n =
WL

IS
, (7.14)

4. Identification of R peaks from EDCS Value : when the elements in EDCS occur n times
consecutively, the location of R peak will be detected as the last element (sample) of
the first window covering the highest DCS value. For larger IS, the total number
of window positions (in course of translation) will be smaller and that will lead to
smaller accumulation of each individual R peak in EDCS. Under such circumstances,
the accumulation of R peak might become comparable with that of P or T peaks. This
is why IS should be kept as small as possible depending on the computation time that
can be allowed and the memory resources. The mean RR interval obtained from the
previous segments is taken care of to determine the window length WL for the next
segment.

5. Enhancement of DCS : It is clear that the success of R peak localization solely depends
on the elements of EDCS, which are in turn determined by the samples of DCS. If
some mechanism can be devised which will enhance the DCS samples corresponding
to R peak locations, that will surely be an improvement in our methodology. With
this aim, three different sets of DCS are calculated:

1. DCSup : ECG signal (after extending by WL) is up-sampled by a factor of 2 and
the DCS corresponding to this upsampled ECG is computed. Now, in order to
achieve the same length (L+WL) as the normal ECG, this DCS is downsampled
by 2.
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Figure 7.25. Detecting R peak: a) a real ECG beat. d) the corresponding DCS signal.

2. DCSnormal : The DCS obtained from the ECG signal (after extending by WL)
with normal sampling rate.

3. DCSdown : Original ECG Signal (after extending by WL) is down-sampled by a
factor of 2 and the DCS corresponding to this down-sampled ECG is calculated.
Now, in order to achieve the same length (L+WL) as the ECG, this DCS is up-
sampled by 2.

Therefore, all the three, namely, DCSup, DCSnormal and DCSdown are time aligned
with the normal ECG signal (originally recorded). We calculate the modified DCS as
follows,

DCSmodified = DCSup +DCSnormal +DCSdown, (7.15)

The window translation is carried out DCSmodified . EDCS formation and thereafter
R peak detection is now made considering the modified DCS. Up-sampling is done
by means of interpolation and down-sampling, by discarding every alternate sample.
Figure 7.26 shows the enhancement of DCSmodified in comparison to DCSnormal
corresponding to R peak locations.
The vertical scales should be noted while comparing DCSnormal and DCSmodified in
the above figure. This modified DCS is only used for R peak detection. For delineation
of P,Q,S and T waves we use only DCSnormal (referred to as DCS).

7.4.2.2 P & Q Waves Detection

After detecting all R peaks in the ECG, we now zoom into each and every beat. A search
window, spanning half of the previous RR interval is taken prior to each detected R peak.
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Figure 7.26. Enhancement of R Peak and QRS complex detection: (a) ECG segment (b) the corresponding DCS

signal (c) the corresponding modified DCS, DCSmodified, using the equation 7.15. It is shown in DCSmodified
the improvement in amplitude of the DCS coefficients corresponding to the inverted R peaks in to the original

signal (a).

Figure 7.27 shows an example of a positive R peak, negative Q peak and positive P peak,
reflecting ’+1’, ’-1’ and ’+1’ in DCM respectively. The ’-1’ in DCM immediately prior
to the R peak is the location of Q peak. The ’+1’ just before the Q peak is the onset
of Q wave. Had the Q peak been positive, it would have caused a ’+1’ in DCM and the
corresponding Q-onset a ’-1’.
Now after detecting the Q onset, the highest positive DCS value prior to it is located.
This is the P peak. The two ’-1’ in DCM surrounding the P peak are its onsets and offsets.
Had the P wave been negative, search should have been made for the lowest negative DCS
value to locate the peak and the two surrounding ’+1’ in DCM for the onset and offset.

7.4.2.3 T & S Waves Detection

In a similar method to P and Q waves detection, S and T waves are detected and delin-
eated in each and every beat after detecting all the R peaks in the filtered ECG. Here,
for each beat, a search window spanning half of the next RR interval is taken next to
each detected R peak.
Figure 7.28 shows an example of positive R peak, negative S peak and positive T peak,
causing ’+1’, ’ -1’ and ’+1’ in DCM respectively. The ’-1’ in DCM immediately next to
the R peak is the location of S peak. The ’+1’ in DCM immediately after the S peak is
the offset of S wave. Had the S peak been positive, it would have reflected a ’+1’ in DCM
and the corresponding S-offset a ’-1’. On the right of S offset, the T wave peak, onset and
offset are determined in the same manner as it is for P wave.
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Figure 7.27. Detection and delineation of P and Q waves: (a) ECG signal in a search window taken prior to

the detected R peak, ending at R peak and and spanning half of the previous RR interval (b) the corresponding

FLDS signal(c) the corresponding DCM signal(d) the corresponding DCS signal
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Figure 7.28. Detection and delineation of T and S waves: (a) ECG signal in a search window taken after the

detected R peak, starting at R peak and spanning half of the following RR interval (b) the corresponding FLDS

signal(c) the corresponding DCM signal(d) the corresponding DCS signal
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7.4.3 Multi-Channel ECG Delineation

When there are many different channel data pertaining to the same ECG record, it is
reasonable to take into consideration the delineation results obtained from a number of
channels to reach the final decision aiming to reduce the delineation errors. The delin-
eation errors are mainly due to the high noise level and artifacts in the single-channel
ECG under delineation process. The R peak detection is carried out simultaneously on
several channels. The selected channels for this purpose should have a morphology similar
to that illustrated in figure 7.24 -a, or in figure 7.26 -a. The number of the ECG channels
having similar morphology according to our 64-channel ECG electrode set is round 25
channels. The multi-channel ECG delineation detection strategy will start with single-
channel ECG delineation for each individual channel as described before. Afterward, the
final delineation results will be obtained by the means of a histogram-based method.
That is, a histogram for the available detected results of a similar significant point in the
ECG signal will be used to have the final overall position of that significant point. The
same procedure will be done and repeated on all detected points available in the ECG
signal under consideration. The general rule for choosing the final position is to find out
the detected point with the highest frequency of occurrence value in the histogram. If
more than one value is found to satisfy the same condition, the mean of them is taken as
the final decision. In order to illustrate the last histogram-based criterion, the following
example is considered. Supposing that 10 R peak results are detected in 10 channels for
the same cardiac beat. A histogram plot of these values is given in figure 7.29.
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Figure 7.29. A histogram plot of 10 R peak results detected in 10 channels for an ECG cycle

It is seen from the histogram in figure 7.29 that the values 100 and 99 are having
the highest frequency of occurrence. Therefore, the final decision regarding this R peak
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location will be the sample number, obtained as the integral mean of 100 and 99 ( i.e.
100).
The number of false positive or false negative detections (defined in section 7.4.5) can be
reduced considering multiple channel results. In order to be accepted as a final decision,
the same R peak needs to be detected at least in half the number of selected channels.
This way, false positive detection is reduced. On the other hand, if there is any false
negative detection in one channel, the same can be corrected considering delineation
results from other channels. This way, our delineation algorithm becomes more robust
and independent of single channel errors.
After computing the final decision regarding the R peak location in multi-channel ECG,
next step is the delineation of P,Q,S and T waves. Again simultaneous detection is per-
formed on selected number of channels. The channels selected for P/T wave delineation
should have a prominent unipolar P/T wave (negative or positive peak). Channels selected
for Q/S delineation should show prominent Q/S spikes. The same kind of histogram-based
method is used to get the final delineation result for P peak, P onset, P offset, QRS onset,
Q peak, S peak, J point, T onset, T peak and T offset. Each delineation stage is depen-
dent of the previous stage. The channels for delineation should be selected judiciously so
as to ensure prominent wave-shapes.

7.4.4 Multi-Channel ECG Delineation Results

Figure 7.30 shows a lead II heart cycle derived from a 64-channel ECG signal along with
its corresponding delineation results computed by means of the multi-lead delineation
approach, described in section 7.4.3. Figure 7.31 shows a heart cycle measured from a
single channel of a 64-channel ECG signal along with its corresponding delineation results
computed by means of the multi-lead delineation approach, described in section 7.4.3.

7.4.5 Single ECG Delineation Validation

The performance of the delineation algorithm, namely for R peak, was evaluated by
comparing our automatic delineation results against manually annotated delineation re-
sults. That is, the algorithm of single-channel R peak detection was tested on several
randomly chosen records taken from MIT-Arrhythmia database. The performance of the
delineation algorithm was evaluated by comparing the output of our algorithm with the
manual annotation provided with each record.
This comparison was done on the basis of the mean error ME and standard deviation
SD between our and their annotations as well as the sensitivity Se and the positive
predictivity P+ of our result compared with the MIT reference.
ME along with SD represent together the delineation success of the automatic segmen-
tation algorithm. High SD and ME values indicate high instability and low accuracy for
the automatic delineator compared to the manual annotation and vice versa in case of
low SD and ME values. ME and SD are usually calculated in msec.
The sensitivity Se and the positive predictivity P+ are defined and calculated as follows:

Se =
TP

TP + TN
, (7.16)
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Figure 7.30. a lead II heart cycle derived from a 64-channel ECG signal along with its corresponding delineation

results computed by means of the multi-lead delineation approach, described in section 7.4.3.
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Figure 7.31. a heart cycle measured from a single channel of a 64-channel ECG signal along with its corre-

sponding delineation results computed by means of the multi-lead delineation approach, described in section

7.4.3.

P+ =
TP

TP + FP
, (7.17)
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where TP , TN and FP are the abbreviations of True Positive, True Negative and False
Positive respectively.
If the automatic method is able to detect truly a point within a specified tolerance around
its corresponding manual annotation, the TP counter will be increased by one. On the
other hand, FP counter will be increased by one, when the automatic method is able to
detect a point outside the mentioned specified tolerance around its corresponding manual
annotation. In case of the inability for the automatic method to detect any point within
or outside the corresponding manual annotation, FN counter will be increased by one.

Rec. No. Ch. No. No. of Sample FN FP TP Se % P+ % ME msec SD msec
’100’ 1 650000 0 1 2271 100 99.96 -1.9 2.46
’101’ 1 650000 3 4 1863 99.84 99.78 -0.48 1.18
’103’ 1 650000 0 0 2084 100 100 -2.23 2.31
’113’ 1 650000 3 4 1791 99.83 99.78 -1.74 1.38
’115’ 1 650000 1 6 1953 99.95 99.69 -3.16 3.54
’122’ 1 650000 6 5 2469 99.75 99.8 -3.95 5.87
’234’ 1 650000 20 1 2732 99.27 99.96 -1.43 1.26
’100’ 2 650000 1 0 2271 99.95 100 0.736 2.4
’103’ 2 650000 0 0 1294 100 100 -2.97 3.08

Table 7.3. Validation of the single-channel delineation method, presented in section 7.4.2, on MIT-Arrhythmia

database.

Table 7.3 shows the validation of the single-channel delineation method, presented in
section 7.4.2, on MIT-Arrhythmia database.
The overall sensitivity Se and the positive predictivity P+ obtained for MIT-Arrhythmia
database are found to be 99.84% and 99.89%, respectively. Furthermore, the overall mean
error and standard deviation are -1.96175 msec and 2.7775 msec, respectively.
The overall sensitivity Se, obtained by [170] and [141], are found to be 99.89% and
99.88%, respectively. Whereas, the positive predictivity P+, obtained by [170], is found
to be 99.94%. As noticed, these values are slightly higher than ours. However, as presented
already, the result of Se and P+ depends very much on the tolerance period taken when
calculating TP , TN and FP . The value chosen in this analysis is ±10msec. The value
in the literature is not explicitly given.
The overall mean error and standard deviation values, obtained by our method, show
the best result among all other methods providing high stability and accuracy to our
automatic R peak delineator. The detection of other important fiducial points using our
delineator, like Qon and Toff , needs to be carried out in the future.

7.4.6 Discussion and Conclusion

This method is based on the simplest Wavelet prototype and dealing only with the first
level details coefficients allowing a relatively fast delineation process for multi-channel
ECG. Furthermore, it provides an accurate detection for the significant points with-
out using any kind of threshold techniques. Haar Discrete Wavelet transform and the
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histogram-based technique used in this approach allow for perfect P, QRS and T detec-
tion and delineation either in multi-channel ECG data or even in single-channel ECG.

7.5 ECG-Complex and ECG-Wave Extraction

The aim of ECG-complex and ECG-wave extraction is to create the input data matrix
for the further analysis with Principal Component Analysis (PCA). It is done through
four main steps. For a better understanding, we suppose that the QRS complexes of a
particular ECG single-channel need to be extracted into a matrix. The main steps are
illustrated as follows:

1. Determining the longest QRS span : The QRS interval is defined as the time
length between the Q wave onset until the S wave offset. The longest QRS span
is determined and a safety factor is added to it in order to take care of errors in
delineation. If this comes to be an even number, we make it odd by adding 1 to it.

2. Initialising the Signal Extraction Matrix (SEM) : This matrix should have as
many number of rows as the number of detected beats in the corresponding ECG data
set. The number of columns should be the longest QRS span, defined in the first step.

3. Positioning of R peak : Although the delineation is carried on the ECG after two
stages of filtering, QRS complexes are extracted from the first-stage filtered ECG (i.e.
only after canceling baseline wander but without high frequency filtering). R peaks
detected by the delineator are copied to the middle column of SEM.

4. Copying the QRS complex : After positioning the R peak in the middle column
of the respective row, the ECG sample magnitudes are copied from both sides of the
R peak into SEM.

Figure 7.32 shows three extracted QRS complexes as an example from the final result
obtained from extracting QRS complexes of a particular ECG single-channel. The same
steps are followed in case of P waves or T waves extraction. In case of QRST complexes,
the longest QRST complex span is first determined and the corresponding SEM Matrix
will be then created. Afterward, QRST complexes are copied to SEM starting from their
detected QRS complexes (Q onsets). Copying QRST complexes does start at the first
column of SEM, but after some columns as safety factor. The value of the samples before
and after the QRST complexes inside SEM are considered zeros.

7.6 Detecting Outliers in the Automatic ECG Segmentation

7.6.1 Introduction

One of the most important problems in ECG analysis is the accurate measurement and
assessment of ECG intervals, waves and complexes. QT interval and its changes, for
instance, give a clear indication for many abnormalities. Therefore, high level of accu-
racy should be associated with QT interval measurements to prevent false evaluation.
In that regard, manual and automatic measurements are used. Manual measurement is
very time-consuming, especially when analyzing long-term Holter ECGs. Moreover, it is



7.6. Detecting Outliers in the Automatic ECG Segmentation 151

QRS n

QRS n+1

QRS n+2

.

.

.

.

Figure 7.32. Three extracted QRS complexes (row vectors) as an example from the final Signal Extraction

Matrix (SEM). Due to a possible delineation error, QRS complexes are not always perfectly aligned. However,

the misalignment error is normally very small. In order to provide better explanation, the misalignment in this

example is presented much larger than the real situation.

not immune to errors related to observer fatigue and lapses of attention. On the other
hand, semi- or fully-automated methods offer advantages in terms of efficiency and cost
considerations. However, no automated system can achieve the same level of accuracy as
an expert ECG analyst [180]. In fact, unusual, ectopic and noisy ECG morphologies very
often contribute so much effectively in producing many unreliable results in automated
techniques. Therefore, an effective tool to eliminate wrong results will provide a high level
of confidence and improve the performance of the whole automatic systems. Relatively
little has been published on using confidence measures in ECG automatic segmentation
system. One paper described the use of a Hidden Markov Model (HMM) in automated QT
interval analysis as a confidence measure. They assess the confidence measure for an ECG
waveform by considering both the log likelihood value for the waveform and its length.
In order to determine the range of confidence measures for normal ECG waveforms, the
Hidden Markov Model needs to be trained using 100 clean ECG waveforms measured
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over a range of different heart rates. Thereafter, the confidence measure for each wave-
form in the data set will be evaluated [180]. In this section, a new and effective method
for providing measures of confidence for automated ECG segmentation process will be
presented [208]. It is based on Principal Component Analysis (PCA) and Hotellings T
squared. As defined, Hotelling’s T squared is actually a quantity indicating the overall
conformance of an individual observation vector to its mean or an established standard
[144]. In other words, it is a measure of the multivariate distance of each observation from
the center of the data set [1]. Because the use of PCA and Hotellings T squared shows
high efficiency, they are applied extensively in Statistical Process Control (SPC), finding
outliers and measures of quality control [145].

7.6.2 Method

1. Construct a Mean-Subtracted Data Matrix B: The SEM matrix, obtained as described
in section 7.5, will be used as an input matrix in this method. SEM matrix, denoted
as SEM, is a training set with N samples (observations) and each sample SEMi can
be expressed by a row vector with the size of M (dimensions) as follows:

SEMi = [SEMi1, SEMi2, · · · , SEMiM ]. (7.18)

Thereafter, the empirical mean along each dimension m = 1...M is calculated. After-
ward, all computed mean values are placed into an empirical mean row vector u of
dimensions M .

u(m) =
1

N

N∑
n=1

X(n,m), m = 1, 2, · · · ,M . (7.19)

Afterwards, The empirical mean row vector u is subtracted from each row of the data
matrix SEM. Then a new mean-subtracted data matrix B(N ×M) is derived.

B = SEM− h · u, (7.20)

where h is a column vector of ones and size of N x 1 : h(n) = 1 for n =
1 . . . N ,

2. Find the covariance matrix : The empirical covariance matrix C is calculated from the
outer product of the zero-centered matrix B with itself:

C = E [B⊗B] = E [B ·B∗] =
1

N − 1
B ·B∗. (7.21)

item Calculate the Eigenvalues and Eigenvectors of the Matrix C: The eigenvalue
matrix D and the eigenvector matrix V of the covariance matrix C

C ·V = V ·D, (7.22)

and the columns of the eigenvector matrix V and eigenvalue matrix D are sorted
out in order of decreasing eigenvalues maintaining the correct pairings between the
columns in each matrix.
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3. Compute PCA Scores: The projected PCA-scores or the reconstruction parameter
vectors (RPV) are the columns of the matrix Z(N ×M), namely Zi1, Zi2, · · · , ZiM ,
where i = 1...N . The matrix Z is calculated by multiplying the eigenvector matrix
with the zero-mean data matrix from the left as follows:

Z = B ·V =

⎡⎢⎣ z11 · · · z1M
...
. . .

...
zN1 · · · zNM

⎤⎥⎦ , (7.23)

The rows of Z correspond to the observations, whereas the columns refer to the com-
ponents or dimensions.

4. Calculate Hotelling’s T Squared Vector : Hotelling’s T Squared Vector, denoted as T2,
is a column vector of size (M × 1). It is calculated as follows:

T2 = [T 2
1 , · · · , T 2

i , · · · , T 2
N ]T , i = [1, · · · , N ] (7.24)

where

T 2
i =

M∑
k=1

z2
ik

λk
. (7.25)

The equation 7.25 is a weighted sum of all squared values of PCA scores (Reconstruc-
tion Parameter Vectors). Since all λk are sorted with falling size, larger indices k are
weighted stronger. Thus, deviations from mean are measured with stronger increasing
values in case of larger deviations.

5. Set a Threshold for the Values of Hotellings T squared Vector : By setting a certain
threshold, only the Hotellings T squared values lying below it along with their cor-
responding original row signal in SEM matrix will be kept as reliable results. The
threshold could be set automatically or manually.

7.6.3 Results

This method has been tested on 60 normal and 10 TDP 24-hour two-channel recordings
from different studies recorded during Dofetilide clinical trials (Pfizer, Inc.). Figure 7.33
shows an example of an 8000-QRS complex SEM matrix. It illustrates also that there is
a number of outliers.
After calculating Hotelling’s T square measure for every beat (QRS complex) of the SEM
presented in figure 7.33 using the method presented in this section, a certain threshold
is defined, (see figure 7.34). The threshold is calculated in this example by adding the
mean value of Hotelling’s T square vector mean(T2) to its standard deviation std(T2),

Threshold = mean(T2) + std(T2). (7.26)

Thereafter, only beats with Hotellings T squared values lying below the chosen threshold
along with their corresponding original row signal in the 8000-QRS complex SEM matrix
will be kept as reliable results, see figure 7.35.
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Figure 7.33. 8000-QRS complex Signal Extracted Matrix (SEM). The matrix contains useful QRS complexes

as well as a number of outliers.

7.6.4 Discussion and Conclusion

The method presented in this section is able to detect outliers and ectopic beats in a data
set by comparing the morphology derivation of all input signals to their overall mean
value in form of beat-to-beat analysis. Furthermore, it can be applied automatically or
semi-automatically depending on the way of choosing the threshold and canceling the
outliers. Furthermore, it produces reliable cancellation of unusual ECG segments without
any need for a training or learning phase prior to application.

7.7 ECG-Complex and ECG-Wave Fine Alignment

If the delineation process is made perfectly, then the extracted signals will be perfectly
time-aligned. However, if there is any small error in delineation result, it will lead to an
undesirable misalignment. Hence, an improved alignment of the extracted useful signals
needs to be performed. In other words, the aim of ECG-complex and ECG-wave alignment
is to eliminate any small misalignment error before further analysis with PCA. Here,
different variables mean different QRS complexes. The total no. of observations should
be taken so that even the longest QRS interval is taken care of. A fine-alignment method,
based on correlation technique, has been employed on the signals extracted into the SEM
Matrix after removing the outliers. The procedure of this method is described as follows:
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Figure 7.34. Hotelling’s T square vector of the signal presented in figure 7.33. The threshold is calculated using

the equation 7.26

1. Calculate the mean vector of all extracted signals by taking the mean of all rows
of free-of-outliers SEM. This mean vector is considered as the template of the fine-
alignment method. The idea of using the mean vector as a template for our method
was adapted from [209, 210].

2. Calculate the correlation coefficient between each of the signal extracted and the
template.

3. Shift each of the extracted signal by a number of steps (samples) toward left and
toward right (+3 and -3 samples for example) from the template and go on calculating
the correlation coefficient between the template and the signal at that position.

4. Each extracted signal is finally aligned at the position corresponding to the highest
correlation coefficient. The final matrix containing aligned extracted signals is referred
to as the PCA Input Matrix (PIM).

Before applying the alignment method described above on real extracted signals, its per-
formance has been tested and validated. Hundred shifted Meyer wavelet scaling functions
were generated and considered as testing input signals. Due to its morphology similar-
ity with QRS complex, Meyer wavelet scaling function ϕm was chosen for this testing
purpose. It is defined in the frequency domain as follows:

ϕm(ω) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2π1/2, if |ω| ≤ 2π
3

2π1/2 cos
(
π
2
v
(

3
2π
|ω| − 1

))
, if 4π

3
≥ |ω| ≤ 4π

3

0, if |ω| > 4π
3

, (7.27)
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Figure 7.35. The result after applying the alignment algorithm on 8000 measured QRS complexes. It shows

effective cancellation of outliers.

where
v(a) = a4

(
35− 84a+ 70a2 − 20a3

)
, a ∈ [0, 1] . (7.28)

In order to generate the hundred shifted wavelet scaling functions, the lower and the
upper border of the angular frequency |ωn| for the Meyer scaling function number n was
chosen as follows:

−8π

3
− n

1000
≥ |ωn| ≤ 8π

3
− n

1000
, where n = [1, 2, · · · , 100] , (7.29)

For every Meyer wavelet scaling function, 1024 samples with sampling step δ equal to
16π

3×1024
were chosen.

Figure 7.36 shows the 1st, the 50th and the 100th Meyer wavelet scaling functions and
figure 7.37 illustrates the result after applying our alignment method on these hundred
functions. The result shows 100% overlapping for all of the hundred signals.
Figure 7.38-a shows a real 60-beat misaligned QRST complexes from a single-channel
ECG signal of a IBT 64-channel ECG databases from ActiveTwo system and 7.38-b
shows the aligned complexes after applying our method.
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Figure 7.36. The 1st, the 50th and the 100th out of hundred shifted wavelet Meyer functions with 1024 samples

each.
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Figure 7.37. The result after applying the alignment algorithm on the hundred shifted wavelet Meyer functions.

It shows 100% overlapping for all of the hundred signals.
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Figure 7.38. Alignment of 60-beat QRST complexes from a single-channel ECG signal of an IBT 64-channel

ECG databases from ActiveTwo system: a) The misaligned QRST complexes. b) The aligned QRST complexes
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T-Wave Morphology Analysis

8.1 Detecting Predisposition to ’Torsad de Points’

8.1.1 Introduction

In fact, cardiac safety is now a major issue in new drug development, because there is
increasing awareness that many non-antiarrhythmic drugs can prolong the QT interval
and provoke Torsade de Pointes (TDP) [117]. In particular the duration of the ventricular
depolarization and repolarization has been identified as a surrogate marker for possible
proarrhythmic effects of cardiovascular and non-cardiovascular agents. The European,
the Canadian, and the American regulatory authorities have published independently
’guidance’ documents for studies and evaluations of electrocardiograms targeted at the
preclinical and clinical assessment of drug safety. All documents emphasize the importance
of the analysis of possible QT interval prolonging effects.
Therefore, inevitably, QTc interval prolongation has come to be recognized as a surrogate
marker of the risk of TDP. Although it is the best and the simplest clinical measure that
is available at present, QTc interval is not a reliable surrogate of TDP. Intramyocardial
dispersion of repolarization appears to play a more important role both in electrical
stability of the ventricles and in arrhythmogenesis. Although the concept of QT dispersion
is the best known and most widely investigated, it has also proved to be the least successful
in predicting the risks of drug-induced TDP [211]. It is of major importance to mention
again that the ’classical’ concepts of QT dispersion do not determine the dispersion of
repolarization times.
Monitor carefully the T wave morphology (TWM) changes in beat-to-beat manner ap-
pears to play a more important role in access the electrical stability of the ventricles and in
detecting predisposition to TDP. Changes of T wave morphology are a much better mea-
sure of changes in repolarization times as compared to QT dispersion. That is, analysing
the beat-to-beat changes and variability in TWM seems to be a robust precursor to TDP
as seen in figure 8.1, where TWM variation are noticed clearly in a random segment of
ECG signal taken round 6 hours before TDP episode.
In this chapter, Principal Component Analysis (PCA) was applied on T waves of 60
normal and 10 TDP two-channel tapes from different studies recorded during Dofetilide
clinical trials (Pfizer, Inc.). PCA is the optimal linear technique which retains the maxi-
mum amount of variance within the projected feature spaces. PCA is employed to extract
morphological features represented by its scores for T waves. The beat-to-beat fluctuation
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Figure 8.1. T wave morphology variation in an ECG recorded round 6 hours before TDP episode

of the first PCA scores represents the deviation of T wave morphology. The first PCA
scores, accounting for as much of the variability in the data as possible, are then analysed
in order to assess the degree of variation for all T waves compared to their mean T wave,
i.e. the beat-to-beat T-wave morphology variation throughout the whole channel. The
procedure is presented in details in this chapter.

8.1.2 Methods

8.1.2.1 Data Preconditioning

First of all, the baseline wander correction method presented in section 7.1 is used to
filter out the whole data set under studies, see figure 8.2.
The next step is to localize QRS complex onset, R peak and T wave offset for every beat
in the whole 24-hour two-channel healthy and TDP tapes. The single-channel delineation
method, presented in section 7.4.2, is employed, see figure 8.3.
In order to get rid of unusual, ectopic and noisy detected beats and outliers, the method
described in section is used as an effective tool to eliminate the wrong results. It provides
a high level of confidence in the data to be analysed further. Figures 8.4 and 8.5 show
scatter plots between RR interval and QT interval of one healthy ECG and one TDP
ECG respectively.
After localizing QRST complexes, free of outliers or ectopic beats, in each channel, QRST
complexes belonging to the same channel are extracted and assembled in one matrix, so
that they represent the rows of the matrix SEM (see section 7.5), see figure 8.6.
Afterward, each QRST complex in this matrix is shifted toward right and left a certain
small number of samples and finally aligned at the position corresponding to the highest
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Figure 8.2. The location and the orientation of the human heart in the chest [6]
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Figure 8.3. Localizing QRS complex onset, R peak and T wave offset for every beat in the whole 24-hour

two-channel healthy and TDP tapes.

correlation coefficient between this QRST complex and a chosen template signal, which
is in this case the average of all QRST complexes. The aim of this fine alignment is to
correct for any tiny misalignment between the extracted QRST complexes to their R
peaks in order to provide a suitable input for the further analysis (see section 7.7), see
figure 8.7.
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Figure 8.4. A scatter plot between RR interval and QT interval of a healthy ECG with 80079 beats included.
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Figure 8.5. A scatter plot between RR interval and QT interval of a TDP ECG

Thereafter, a low-pass second-order Butterworth filter with cut-off frequency of 20 Hz
was applied on each QRST complex in the matrix, see figure 8.8 and figure 8.9.
The input matrix for the next step, denoted as T, is a submatrix of QRST-complex
matrix. It has the same number of rows (signals), but it has smaller number of columns
as it starts from a chosen common point on ST segments from the QRST complexes and
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Figure 8.6. Extracted QRST complexes belonging to the same channel and assembled in one matrix
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Figure 8.7. Aligned QRST complexes to their R peaks

has the same end of the bigger matrix covering and including only T waves, see figure
8.10.

8.1.2.2 Morphological Feature Extraction Using PCA

1. Organizing the data set : Suppose that the matrix T, plotted in figure 8.10, is a training
set with N samples and each sample Ti can be expressed by a row vector with the size
of M as follows:



164 8. T-Wave Morphology Analysis

0 40 80 120 160 200 240
−100

−50

0  

50

100

150

200

250

Time (msec)

A
m

pl
itu

de
 (

μV
)

Original T wave
Filtered T wave
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after applying a low-pass second-order Butterworth filter with cut-off frequency of 20 Hz
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Figure 8.9. Aligned QRST complexes after applying a low-pass second-order Butterworth filter with cut-off

frequency of 20 Hz and rejection of outliers (Hotelling’s T squared).

Ti = [Ti1, Ti2, · · · , TiM ]. (8.1)

The training set is placed into a single matrix T of dimensions N ×M , so that N
are the observations (number of beats) and M are the dimensions (number of time
samples).
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Figure 8.10. A submatrix of QRST-complex matrix containing all T waves of one channel

2. Calculate the empirical mean raw vector :The empirical mean along each dimension m
= 1...M is calculated, see figure 8.11. Afterward, all computed mean values are placed
into an empirical mean row vector u of dimensions M .

u(m) =
1

N

N∑
n=1

X(n,m), m = 1, 2, · · · ,M . (8.2)
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Figure 8.11. An example of the empirical mean raw vector of the data matrix T
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3. Calculate the deviations from the mean: The empirical mean row vector u is subtracted
from each row of the data matrix T. Then a new mean-subtracted data matrix B(N×
M) is derived, see figure 8.12.

B = T− h · u, (8.3)

where h is a column vector of ones and size of N x 1 : h(n) = 1 for n =
1 . . . N ,
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Figure 8.12. An example of the mean-subtracted data matrix of the original data matrix T

4. Find the covariance matrix : As illustrated before, the M ×M empirical covariance
matrix C is calculated from the outer product of the zero-centered matrix B with
itself:

C = E [B⊗B] = E [B ·B∗] =
1

N − 1
B ·B∗, (8.4)

where E is the expected value operator,⊗ is the outer product operator, and ∗ is the
conjugate transpose operator.

5. Find the eigenvectors and eigenvalues of the covariance matrix : This step will typically
require the use of a computer-based algorithm for computing the eigenvalue matrix D
and the eigenvector matrix V of the covariance matrix C:

C ·V = V ·D, (8.5)

Matrix D will take the form of an M × M diagonal matrix, where D[p, q] =
λm for p = q = m is the mth eigenvalue of the covariance matrix C, and
D[p, q] = 0 for p �= q.
Matrix V, also of dimension M ×M , contains M column vectors, each of length M ,
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which represent the M eigenvectors of the covariance matrix C.
The eigenvalues and eigenvectors are ordered and paired. The mth eigenvalue corre-
sponds to the mth eigenvector.

6. Rearrange the eigenvectors and eigenvalues: The columns of the eigenvector matrix V
and eigenvalue matrix D are sorted out in order of decreasing eigenvalues maintaining
the correct pairings between the columns in each matrix.

7. Convert the source data to the new basis : The new basis is denoted as PCA-scores or
the reconstruction parameter vectors (RPV). The projected vectors are the columns
of the matrix Z(N ×M), namely Zi1, Zi2, · · · , ZiM , where i = 1...N . The matrix Z
is calculated by multiplying the eigenvector matrix with the zero-mean data matrix
from the left as follows:

Z = B ·V = KLT{T} =

⎡⎢⎣ z11 · · · z1M
...
. . .

...
zN1 · · · zNM

⎤⎥⎦ , (8.6)

The rows of Z correspond to the observations (number of beats), whereas the columns
refer to the components or dimensions (number of time samples). The first PCA scores,
corresponding the first column vector of the matrix Z, represent the deviation of T
wave morphology to the mean T wave. Figure 8.13 shows the first PCA scores (or first
RPV) versus T wave beat number representing the observations.
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Figure 8.13. The first PCA scores (or first RPV) versus T wave beat number.

In fact, the projected PCA-scores or vectors represent the Karhunen-Loève transform
(KLT) of the data vectors in the columns of matrix T.
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As next, the first PCA scores are analysed in order to assess the degree of variation for
all T waves compared to their mean T wave, i.e. the beat-to-beat T-wave morphology
variation throughout the whole channel.

8.1.2.3 Analysing the First PCA Scores

Since the first PCA scores represented in the first column vector of the matrix Z accounts
for most of the variance in the data, analysis was carried out only on these scores so far.
Standard deviation (SD) was used and applied on the first PCA scores as a simple linear
measure to assess the beat-to-beat morphology variation. As the length of the first PCA
score vector is N , the number of T waves in one channel, a window of length 60 with zero
overlapping was chosen to scan this vector calculating the SD for the scores inside this
window at each step. Finally, a series of SD values will come out and form a new vector
called ’SD Vector’. High SD value represents high beat-to-beat PCA score variation , i.e.
high beat-to-beat T-wave morphology variation, and vice versa for the low SD value. In
order to get an overall measure of variation for each channel, the mean of the derived SD
values was calculated.

8.1.3 Results

The method illustrated above for calculating the overall measure of variation was applied
on every channel of all healthy subjects, see figure 8.14 and figure 8.15.
Furthermore, this overall measure of variation was calculated twice on every channel of
TDP subjects. The first one measures T-wave overall variation from the beginning of the
tape until TDP episode, see figure 8.16.
Whereas, the second one measures T-wave overall variation starting after TDP episode
until the end of the tape, see figure 8.17.
The overall measure of variation for 84 useful channels from the healthy tapes are
presented in table A.1, see Appendix A. Furthermore, the overall measure of variation
before and after TDP episode for 20 TDP channels from the TDP tapes are presented
in table A.2 and table A.3, respectively, see Appendix A.
The average value of the overall measure of variation for 84 useful channels from the
healthy tapes was equal to 73.8119 ± 12.4222 and the average value of the overall
measure of variation for T waves before TDP episode of 20 useful channels from the
TDP tapes was equal to 241.9493 ± 168.3503, whereas the average value of the overall
measure of variation for T waves after TDP episode of 20 useful channels from the
TDP tapes was equal to 145.7783 ± 86.3924, see figure 8.18.
Since the SD values for all TDP tapes before and after the episode are available, it is
useful to employ them in order to have a closer and more detailed information about
the beat-to-beat T wave morphology variation before and after TDP episode. Therefore,
the mean of SD values for all channels before and after TDP episode was calculated.
Because every channel has a different number of SD windows before and after TDP, the
SD windows for all channels before TDP were rearranged, so that they are right aligned
to the last window just before TDP episode. On the other hand, the SD windows for all
channels after TDP were kept left aligned to the first window just after TDP episode. The
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calculation of the final mean SD values of similar windows did not take into calculation
any possible missing SD values, i.e. missing windows . Figure 8.19 shows the final results.

8.1.4 Discussion and Conclusions

Figure 8.19 shows that the beat-to-beat morphology T-wave variation before TDP episode
is remarkably higher than the normal level, more chaotic and increased by approaching
the TDP episode. Figure 8.19 illustrates also that the T-wave beat-to-beat morphology
variation after TDP episode is not as high as before TDP episode and is decreasing by
receding away from TDP episode until it reaches the normal variation level. Referring to
our results, detecting predisposition to TDP is possible some hours prior to TDP episode
employing the normal level of T-wave variation derived by our calculation.

8.2 T-Wave Morphology Clustering

8.2.1 Introduction

The diagnosis of some cardiac diseases, like certain cardiac arrhythmias which occur
occasionally, is often not reliable in short-time ECG recordings. In these cases the patient’s
ECG will therefore be recorded over a day-long period. Taking into account an average
long-term recording of 24 hours, nearly 100000 ECG complexes have to be analysed [212].
Accomplishing this task manually is time-consuming, cumbersome and susceptible to fail-
ures. During otherwise constant periods, ectopic beats might be overlooked. Furthermore,
the identification of similar signals spread over such a large time span is difficult for the
human observer. Finally the results retrieved from different physicians sometimes show a
significant variety.
Cluster analysis, also called segmentation analysis or taxonomy analysis, is a way to
create groups of objects, or clusters, in such a way that the profiles of objects in the same
cluster are very similar and the profiles of objects in different clusters are quite distinct
[1].
The clustering techniques are designed to break the data set into two or more homoge-
neous groups. PCA is often used to reduce the data to a smaller number of transformed
variables before the clustering is carried out. This is done partly to reduce the size of
the computing problem and because the use of PCA scores help also to identify the
characteristics of the clusters.
Figure 8.20 shows a scatter plot between the first three principal PCA scores respec-
tively, extracted from T waves of the same long-time ECG signal, as described in section
8.1.2.2. In this plot, three main different ’clouds’ are noticed. Since PCA scores represent
descriptive parameters for T wave forms, these visible ’clouds’ in figure 8.20 represent
different T wave morphologies, i.e. different clusters.
For a human observer, detecting these three clusters is trivial, but computer algorithm
has to apply rules that have to be worked out. Therefore, a computer-based method
to detect different clusters from the first principal PCA scores was developed and is
presented here in this section. The PCA scores are derived from T waves of a long-time
ECG signal, as described in section 8.1.2.2. The number of principal PCA scores used for
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the morphological feature extraction is chosen to be three, since they account for most of
the variance from the input T wave signals.
Previous work on this subject has been done by Cuesta-Frau et al., who amongst other
techniques incorporated wavelet-transformation and polygonal approximation coefficients
to describe and cluster the individual QRST-complexes [213, 214].
Furthermore, Jankoswki et al. [215] developed a self-learning system, that tried to sort
every QRST-complex of a certain Holter recording into one of four bins. The decision was
based on 30 parameters that served as coefficients for a template function.
In general, data clustering algorithms can be hierarchical or partitional. Hierarchical
algorithms find successive clusters using previously established clusters, whereas parti-
tional algorithms determine all clusters at once, i.e. a single level of clusters. K-means
algorithm is the typical algorithm for partitional clustering. It assigns each point to the
cluster whose center, also called centroid, is nearest. The centroid is the point to which
the sum of distances from all objects in that cluster is minimized and calculated as the
arithmetic mean for each dimension separately over all the points in the cluster. In order
to find the final centroids along with their corresponding clusters, a certain number of
points should be first picked up from the data as primarily centroids. As the next step, the
remaining elements have to be assigned to their nearest centroids. Subsequently, the cen-
troids will get recalculated based on the new distribution. This may be repeated several
times to improve the assignments. There are several ways to choose the starting centroids.
More details on the first selection can be found in [216]. In fact, the result of partitional
clustering depends to a large extent on the first selection of the points. Moreover, the
partitional clustering algorithm is very time-consuming especially for long database, like
long-time ECG. In contrast, hierarchical clustering algorithms can be much faster and
provide much more stable results, which are independent on any primarily manually- or
automatically-chosen centroids. Therefore, a hierarchical clustering algorithm was used
on PCA scores in this work aiming to detect the different clusters of T waves in every
single-channel ECG signal.

8.2.2 Method

8.2.2.1 Calculating the first three principal PCA scores

The first three principal PCA scores, corresponding to the first three column vectors of
the matrix Z, as described in section 8.1.2.2, are computed from T waves of a long-time
ECG signal. It should be mentioned that the alignment is carried out using the R peak of
every heart beat. In this may also we ensured that changes of QT interval are detected.
Figure 8.13 shows a 3D scatter plot for the first three PCA scores (or first three RPVs).
The number of the points in this scatter plot is equal to the number of T waves and
the length of every RPV. Every point in the plot represents one T wave and is called
an object. In order to validate this step, 200 noisy half-sinus signals from 0 to π, with
90 samples each, were generated in four different groups regarding their amplitude, see
figure 8.21. The first three principal PCA scores were computed afterward as described in
section 8.1.2.2. Figure 8.22 is a 3D scatter plot of first three PCA scores corresponding
to the input 200 sinus signals. Four groups of objects can be noticed from figure 8.22.
These groups correspond in fact to the original half-sinus groups. In the following steps,
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the procedure to cluster all objects in the 3D scatter PCA scores in different groups will
be described.

8.2.2.2 Find the Similarity or Dissimilarity Between Every Pair of Objects

There are many ways to calculate a ’distance’ between the heart beats, also called prox-
imity. The two most popular methods to calculate the distance between group of points
are the Euclidean distance and the city block metric.

1. Euclidean distance: It is similar to a line of sight. It’s the shortest distance between two
elements. Determining this distance for a pair of items −→x and −→y in an n-dimensional
space is given as:

de =

√√√√ n∑
i=1

(xi − yi)2 (8.7)

2. City block metric: This method simply sums up the way, that has to be covered to get
from element −→x to −→y when only paths parallel to the axes of the coordinate system
are permitted.

dm =

n∑
i=1

|xi − yi| (8.8)

The distances between the objects in our method have been computed using the Euclidean
distance.

8.2.2.3 Defining the Links Between Objects

Once the proximity between the objects has been computed, every pairs of objects, that
are close together, will be linked into binary clusters, i.e. clusters made up of two objects.
Afterward, these newly formed clusters will be linked to other objects to create bigger
clusters until all the objects in the original 3D scatter PCA scores space are linked together
in a hierarchical tree. In order to define if two subgroups are near enough to be combined
to one bigger group, certain threshold on the distance between the centroids of these
subgroups needs to be defined.
The hierarchical tree can be plotted in a so-called dendrogram, see figure 8.24.
In figure 8.24, the numbers along the horizontal axis represent the indices of the objects
in the original 3D scatter PCA scores space. The links between objects are represented
as upside down U-shaped lines. The height of the U indicates the distance between the
objects.

8.2.2.4 Verifying the Cluster Tree

If the clustering is valid, the linking of objects in the cluster tree should have a strong
correlation with the distances between objects. The cophenet function compares these
two sets of values and computes their correlation, returning a value called the cophenetic
correlation coefficient. The closer the value of the cophenetic correlation coefficient is
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to 1, the better the clustering solution [1]. The cophenetic correlation coefficient ccc
is usually used to compare the results of clustering the same data set using different
distance calculation methods or clustering algorithms. Suppose Y is a vector containing
the output of the distances between the objects and Z is a vector containing the links of
these objects, ccc will be defined then as follows:

ccc =

∑
i<j(Yij − y)(Zij − z)√∑
i<j(Yij − y)2(Zij − z)2

, (8.9)

where Yij is the distance between objects i and j in Y , Zij is the distance between objects
i and j in Z, and where y and z are the average of Y and Z, respectively.

8.2.2.5 Creating Clusters

In order to define the final clusters, a certain threshold Thr needs to be chosen:

Thr < MaxL, (8.10)

where MaxL is the maximum distance between the objects in the dendrogram.
Afterward, an imaginary horizontal line with the height of Thr will be drawn across the
dendrogram. This line will bisect n number of vertical U-shaped lines. The number n is
then the number of clusters defined by this threshold and all the objects below one line
will then belong to the same cluster.
This can be particularly evident in a dendrogram diagram where groups of objects are
densely packed in certain areas and not in others. The inconsistency coefficient of the
links in the cluster tree can identify these points where the similarities between objects
change.

8.2.3 Result

The clustering method illustrated above was applied on T waves of 60 normal and 10
TDP two-channel tapes from different studies recorded during Dofetilide clinical trials
(Pfizer, Inc.). Figure 8.25 shows a 3D colored scatter plot of the first three PCA scores
of the figure 8.20. The objects with the same color in figure 8.25 belong to the same
cluster. Figure 8.26 and 8.27 illustrate the result of clustering mapped back to real T
waves, where similar T waves are plotted together and assigned with the similar color.

8.2.4 Discussion and Conclusion

In this section, a new method for feature extraction and clustering of occurring T-wave
morphologies in long-term ECGs is presented. The use of PCA for the first task and
hierarchical clustering for the latter has shown promising results. In order to apply this
clustering method on long-time ECG signal, namely 24-hour long or longer, some tech-
niques need to be implemented to split ECG signal into number of shorter ECG segments
and then apply our clustering method on every segment and finally rearrange all results
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together providing the final result for the complete ECG signal. From the dominant clus-
ters representative examples may be obtained to characterize the whole dataset. More-
over, a significant reduction of data to be analysed is achieved by employing PCA and
scores. Further evaluation is required to improve automatic threshold adjustment and
the method should be applied to a larger number of datasets including more different
pathological signals to verify the functionality.
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Figure 8.14. The overall measure of variation from a healthy ECG (first channel): a) The healthy ECG signal.

b) The corresponding first PCA scores. c) The corresponding SD vector and mean SD (the overall measure of

variation).
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Figure 8.15. The overall measure of variation from a healthy ECG (second channel): a) The healthy ECG signal.

b) The corresponding first PCA scores. c) The corresponding SD vector and mean SD (the overall measure of

variation).
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Figure 8.16. The overall measure of variation from a TDP ECG (before TDP episode): a) ECG signals before

TDP episode. b) The corresponding first PCA scores. c) The corresponding SD vector and mean SD (the overall

measure of variation).
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Figure 8.17. The overall measure of variation from a TDP ECG (after TDP episode): a) ECG signals after

TDP episode. b) The corresponding first PCA scores. c) The corresponding SD vector and mean SD (The overall

measure of variation).
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Figure 8.20. The first three principal Reconstruction Parameter Vectors (RPV) or PCA-scores plot as an

example for cluster formation.
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Figure 8.21. Two hundred noisy half-sinus signals from 0 to π with 90 samples each.
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Figure 8.22. 3D scatter plot of the first three PCA scores, the first RPVs, corresponding to the 200 input Sinus

signals shown in figure 8.21.
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Figure 8.23. a) Euclidean distance. b) City block metric.
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Figure 8.25. Clustering result of the figure 8.20. The objects with the same color are belong to the same cluster
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Figure 8.26. Clustering result of the figure 8.20 mapped back to real T waves. Similar T waves are plotted

together and assigned with the similar color.

Figure 8.27. A top view of figure 8.26 showing the clustering result mapped back to real T waves. Here also,

similar T waves are plotted together and assigned with the similar color.
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QRS Complex Morphology Analysis

9.1 Temporal & Spatio-Temporal Analysis of QRS Complex

9.1.1 Introduction

In order to provide information on heart function, ECG signal and its components have
been extensively analysed and used as powerful diagnostic tools. The morphology, ampli-
tude and time of occurrence of QRS complex provide much information about the current
contractile activity and state of the ventricles. The method, described in this section, is
aimed to detect small changes in QRS morphology temporally and spatio-temporally as
well as to examine the relationship between the these morphology changes and the heart
rate as well as the respiration signal.

9.1.2 Databases Used

Six 64-channel IBT measured ECG signals are used. Their duration varies between one
and five minutes. Table 9.1 shows more details about these signals, i.e. the number of
beats (QRS complexes) in every signal and the number of channels used in the analysis.

Table 9.1: 64-channel IBT measured ECG signals along
with their number of beats and channels used in the anal-
ysis

Signal No. No. of Channels Used No. of QRSs in each Channel

1 64 332
2 64 106
3 64 57
4 64 59
5 64 69
6 64 64

9.1.3 Defining Respiration & Heart Rate Vectors

The respiration column vector is defined as follows:
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R = [r1, · · · , rN ]T , (9.1)

where N represents the total number of heart beats. The respiration vector is computed
from the acquired discrete respiration signal S(n):

rp =

n=offp∑
n=onp

S(n), (9.2)

where p is the beat number index and onp as well as offp are the corresponding QRS
onset and offset instants. The heart rate column vector Hr = [h1, · · · , hN ]T is computed
from the R-R intervals derived from the delineation result as follows:

hp =
60000

Rp+1 −Rp

, (9.3)

where Rp is the time location (in ms) of pth R peak, [217].

9.1.4 Data Preconditioning

First of all, the baseline wander is removed from every channel of every 64-channel ECG
signal using the method presented in section 7.1. The next step is to localize the QRS
complex boundaries and R peak for every beat in every channel. The single-channel
delineation method, presented in section 7.4, is employed.
Afterward, QRS complexes of the same channel are extracted and assembled into one
matrix, so that they represent the rows of that matrix. Furthermore, they are shifted
toward right and left a certain small number of samples and finally aligned at the position
corresponding to the highest correlation coefficient between this QRS complexes and a
chosen template signal, which is in this case the average of all QRS complexes.

9.1.5 Temporal Analysis of QRS Complex

1. Assembling the input matrix for PCA: The input matrix for this analysis is the matrix
obtained from a single channel of the databases described in section 9.1.2 after ap-
plying the preconditioning method. The input matrix is denoted here as QRS, which
can be considered as a training set with N samples and each sample QRSi and can
be expressed by a row vector with the size of M as follows:

QRSi = [QRSi1, QRSi2, · · · , QRSiM ]. (9.4)

The training set is placed into a single matrix QRST of dimensions N ×M , so that
N are the observations (number of beats) and M are the dimensions number of time
samples), see figure 9.1.

2. Calculate the empirical mean raw vector : The empirical mean along each dimension m
= 1...M is calculated, see figure 9.2. Afterward, all computed mean values are placed
into an empirical mean row vector u of dimension M .

u(m) =
1

N

N∑
n=1

X(n,m), m = 1, 2, · · · ,M . (9.5)
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Figure 9.1. An example of an input matrix QRST containing all QRS complexes (57 complexes in this case) of

one channel for a certain 64-channel ECG signal.
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Figure 9.2. An example of the empirical mean of the data matrix QRST presented in figure 9.1.

3. Calculate the deviations from the mean: The empirical mean row vector u is subtracted
from each row of the data matrix QRST . Then a new mean-subtracted data matrix
B(N ×M) is derived, see figure 9.3.

B = T− h · u, (9.6)
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where h is a column vector of ones and size of N x 1 : h(n) = 1 for n =
1 . . . N ,
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Figure 9.3. An example of the mean-subtracted data matrix of the original data matrix T presented in figure

9.1.

4. Find the covariance matrix : As illustrated before, the M ×M empirical covariance
matrix C is calculated from the outer product of the zero-centered matrix B with
itself:

C = E [B⊗B] = E [B ·B∗] =
1

N − 1
B ·B∗, (9.7)

where E is the expected value operator, ⊗ is the outer product operator, and ∗ is the
conjugate transpose operator.

5. Find the eigenvectors and eigenvalues of the covariance matrix : This step will typically
require the use of a computer-based algorithm for computing the eigenvalue matrix D
and the eigenvector matrix V of the covariance matrix C:

C ·V = V ·D, (9.8)

Matrix D will take the form of an M × M diagonal matrix, where D[p, q] =
λm for p = q = m is the mth eigenvalue of the covariance matrix C, and
D[p, q] = 0 for p �= q.
Matrix V, also of dimension M ×M , contains M column vectors, each of length M ,
which represent the M eigenvectors of the covariance matrix C.
The eigenvalues and eigenvectors are ordered and paired. The mth eigenvalue corre-
sponds to the mth eigenvector.
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6. Rearrange the eigenvectors and eigenvalues: The columns of the eigenvector matrix
V and eigenvalue matrix D are sorted out in order of decreasing eigenvalues while
maintaining the correct pairings between the columns in each matrix.

7. Compute the cumulative energy content for each eigenvector : The eigenvalues rep-
resent the distribution of the source data’s energy among each of the eigenvectors,
where the eigenvectors form a linear algebra basis for the data. The cumulative en-
ergy content g for the mth eigenvector is the sum of the energy content across all of
the eigenvectors from 1 through m:

g[m] =

m∑
q=1

D[p, q] for p = q and m = 1...M , (9.9)

From all the 64-channel ECG signals under study, it is found that the first three eigen-
values account for most of the variance and cumulative energy content, i.e. between
84% and 95% variance, see figure 9.4. Therefore, only the principal three eigenvectors
and eigenvalues, m = 3, are taken into consideration for all channels under study in
this analysis.

8. Select a subset of the eigenvectors as basis vectors: Save the first L = 3 columns of V
as the M × 3 matrix W :

W [p, q] = V [p, q] for p = 1...M q = 1...3, (9.10)
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Figure 9.4. The energy content for the first three eigenvectors of the mean-subtracted data matrix from the

original data matrix QRST presented in figure 9.1. The cumulative energy content for the first three eigenvalues

here is equal to 91.6%.

Figure 9.5, figure 9.6 and figure 9.7 show the influence of the first, the second and
the third eigenvetors (or principal components), namely PC1, PC2 and PC3, on the
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empirical mean raw QRS vector u respectively. In other words, every principal compo-
nent is first weighted by the factor of -100 and +100, and then added to the empirical
mean raw QRS vector. Normally, the absolute values for the weighting factors used
to reconstruct the QRS complexes back from the principal components and the em-
pirical mean vector are much smaller than 100 in this study. However, the value ’100’
is used here just to show the direction of change and the influence of these principal
components. Figure 9.5 illustrates that the first principal component tends to change
the amplitude of the empirical mean raw QRS vector. Whereas, figure 9.6 and figure
9.7 show that PC2 and PC3 tend to shift the empirical mean raw QRS vector toward
right and left and to move the isoelectric line of the empirical mean raw QRS vector
upwards and downwards respectively. The direction of changes, shown in figure 9.5,
figure 9.6 and figure 9.7, are observed in most of the ECG channels under study, i.e
presented in section 9.1.2.
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Figure 9.5. The influence of the first principal component, PC1, on the empirical mean raw QRS vector. This

figure illustrates that the first principal component tends to change the amplitude of the empirical mean raw

QRS vector.

9. Calculate PCA scores from the matrix W : The projected PCA scores are the columns
of the matrix Z(N ×3), namely Zi1, Zi2, Zi3 in this case, where i = 1...N . The matrix
Z is calculated by multiplying the eigenvector matrix with the zero-mean data matrix
from the left as follows:
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Figure 9.6. The influence of the second principal component, PC2, on the empirical mean raw QRS vector. This

figure illustrates that the second principal component tends to shift the empirical mean raw QRS vector toward

right and left.
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Figure 9.7. The influence of the third principal component, PC3, on the empirical mean raw QRS vector. This

figure illustrates that the third principal component tends to move the isoelectric line of the empirical mean raw

QRS vector upwards and downwards.

Z = B ·V = KLT{X} =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z11 z12 z13

z21 z22 z2M

...
...

...

zN1 zN2 zN3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (9.11)
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The rows of Z correspond to the observations, whereas the columns refer to the number
of eigenvalues taken.

10. Define a new extended data matrix : A new matrix, CM = [Z R Hr], combining Z
with respiration column vector R and and heart rate column vector Hr, is assembled.
The matrix CM has the size of (N × 5). Figure 9.8 shows the first three PCA scores
along with the corresponding normalized respiration signal and heart rate signal for
one channel of an ECG signal under study.
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Figure 9.8. The first three PCA scores along with the corresponding normalized respiration signal and heart

rate signal for one channel of an ECG signal under study.

11. Calculating the correlation matrix of the matrix CM : The correlation matrix of the
matrix CM of every channel in the ECG signal is calculated in order to discover
all possible dependencies between the PCA scores and the respiration signal and the
heart rate.

12. Calculating the average matrix CMaveT from all CM matrices : The average matrix
CMaveT is calculated by averaging all CM matrices corresponding to all channels of
the databases used and presented in section 9.1.2. Figure 9.9-a shows the correlation
between the first three PCA scores and the respiration vector taken from the matrix
CMaveT , whereas 9.9-b shows the correlation between the first three PCA scores and
the heart rate vector also taken from the matrix CMaveT . It can be noticed from figure
9.9 that the first PCA has relatively a high correlation with both the heart rate and
the respiration compared with the second and the third PCA scores.

9.1.6 Spatio-Temporal Analysis of QRS Complex

The only difference between the spatio-temporal analysis of QRS complex, denoted as
QRSST , and the temporal one is the PCA input data matrix. There is only one spatio-
temporal analysis matrix for every 64-channel ECG signal, whereas there are obviously 64
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Figure 9.9. The correlation between the first three PCA scores with both the respiration signal and the heart

rate vector taken from the matrix CMaveT in terms of the temporal analysis

temporal matrices for the same dataset. The spatio-temporal analysis matrix is obtained
by concatenating horizontally all temporal analysis matrices for the ECG signal under

study, so that it will have the size of N ×M ′, where, M ′ =
n=ch∑
n=1

Mn, ch is the number of

channels (here ch = 64) and Mn is the number of columns (dimensions) in the temporal
matrix QRST for the channel number n. After defining the new spatio-temporal analysis
input matrix for PCA, the steps 2 to 11, illustrated in section 9.1.5, will be applied on
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Figure 9.10. The correlation between the first three PCA scores with both the respiration signal and the heart

rate vector taken from the matrix CMaveST in terms of the spatio-temporal analysis

it. It was found here also that the first three eigenvalues account for most of the variance
and cumulative energy content for all the 64-channel ECG signals used. After calculating
the correlation matrix for every ECG signal, as described in step 11 of section 9.1.5, the
average matrix CMaveST from all correlation matrices will be computed. Figure 9.10-a
shows the correlation between the first three PCA scores and the respiration vector taken
from the matrix CMaveST , whereas 9.10-b shows the correlation between the first three
PCA scores and the heart rate vector also taken from the matrix CMaveST .
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9.1.7 Discussion and Conclusion

The first PCA scores, corresponding to the first eigenvector, show a high degree of corre-
lation with the heart rate and respiration pattern, as evident from the results of temporal
and spatio-temporal analysis. Therefore, we can conclude that any change in heart rate,
i.e. heart rate variability, or in respiration pattern will definitely lead to changes in QRS
complex amplitude referring to the influence of the first principal component. The influ-
ences of the second and the third principal components might be based on the very small
and tiny baseline wander cancellation error and the fine alignment error left in the signal
during the preprocessing analysis. Based on the temporal analysis and spatio-temporal
analysis presented so far, more research on QRS complex morphology fluctuations should
carried out in the future. For example, the analysis could be extended to discover how
the ECG pattern typically changes with blood pressure or any other useful entries, like
QT interval, QTc interval, etc...
Furthermore, the same method could be also applied on ECG signals of patients, having
different types of cardiac disorders (case of Ischemia, Ventricular Tachycardia, etc..),
aiming to extract any diagnostic pattern typical to those diseases. More investigations
could be done during higher levels of heart rate variability and during ECG stress test
measurements. It is also important to mention that the beat-to-beat variation of QRS
complex obtained with this analysis for different heart diseases is carrying also very useful
diagnostic information, especially when analysing Atrial Fibrillation (AF) ECG signals.

9.2 Predicting QRS Complex

9.2.1 Introduction

In this section a novel method for estimating future QRS complexes of patients from the
existing ones in their ECG signals is presented. It is based on using and investigating the
scores of PCA. The aim of this analysis is to predict and estimate how the morphology of
the future QRS complexes of an individual might appear, i.e. prediction for the ventricular
electrical activity of the patient in the future. In other words, any trend, leading to long
term changes that are dangerous for the patient, can be detected in a very early phase.
That is, any sudden change can be immediately detected and can lead to a very fast
alarm. The method is based on the temporal analysis procedure presented in section
9.1.5, therefore it can be applied on any single-channel ECG signal.

9.2.2 Single-Channel ECG Signal Preconditioning

First of all, the baseline wander is removed from the ECG signal using the method
presented in section 7.1. Then, QRS complex boundaries and R peak for every beat
will be localized using the single-channel delineation method, presented in section 7.4.
Afterwards, QRS complexes are extracted and assembled in one matrix, so that they
represent the rows of that matrix. Furthermore, the fine alignment method, presented in
section 7.7, will be applied on the extracted QRS complexes generating the input matrix
QRST for the further analysis using PCA. This input matrix has the size of N ×M , as
described already, where N are the observations and M are the dimensions.
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9.2.3 Method

1. Calculate PCA scores: The procedural steps 2 to 9, illustrated in section 9.1.5, will
be applied here on the input matrix QRST in order to calculate PCA scores. The
number of PCA scores is equal to L, i.e. the number of selected eigenvalues, (see
section 9.1.5). In the method, only the principal L eigenvalues, whose cumulative
energy content account for at least 97% variance, is chosen, (see figure 9.11 as an
example).
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Figure 9.11. The energy content for the first six eigenvectors, whose cumulative energy content accounts

97.8517% from the whole variance. The eigenvectors are calculated from the matrix QRST of a single-channel

ECG from the database presented in section 9.1.2.

2. first degree polynomial fitting for every PCA scores: each chosen PCA scores will un-
dergo a first-order polynomial fitting technique in a least-squares sense [218]. Finally,
two polynomial coefficients, representing a line, will be obtained for every PCA scores.
The function, characterizing one line corresponding one PCA scores, is called estimated
function. The number of samples used to calculate every estimated function is equal
to N , the number of QRS complexes (observations) in the channel, see section 9.1.5).
Figure 9.12

3. Estimating future QRS complex : First of all, let us suppose that we need to estimate
the (N+1)th QRS complex and that six eigenvalues and six eigenvectors are chosen L =
6, i.e. six PCA scores, namely Zi1, · · · , Zi6, and six estimated functions, denoted as f1,
· · · , f6 respectively. The six eigenvectors represent actually the column vectors of the
submatrix W of size M ×6, see section 9.1.5. In order to calculate the (N +1)th QRS
complex, denoted as the row vector ˆQRSN+1, the values of the estimation functions
at N + 1 are first calculated, i.e. f1(N + 1), · · · , f6(N + 1), and put in a row vector
F of size 1× 6. Afterwards, the following equation is used:
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Figure 9.12. The first degree polynomial fitting for the first PCA scores. The first PCA scores, plotted in blue

stars, are calculated from a matrix QRST of a single-channel ECG from the database presented in section 9.1.2.

The corresponding estimated function is plotted in red.

ˆQRSN+1 = u+ FW T , (9.12)

where u is the empirical mean row vector, described in section 9.1.5. The equation
9.12 is derived from the equation 5.48. The same procedure will be repeated, when
needed, for ˆQRSN+2, ˆQRSN+3, and so on...

9.2.4 Validation

The QRS complex prediction method is evaluated using the 64-channel ECG signals de-
scribed in section 9.1.2. Only half of the QRS complexes from each channel are taken
under consideration for our PCA-based estimator. In other words, the first half of QRS
complexes in every channel builds the input matrix QRST of that channel. Afterward,
the other half of QRS-complexes of every channel were predicted using the method de-
scribed above. Thereafter, the similarity between every real measured QRS complex and
the corresponding predicted one is calculated by means of the correlation coefficients tech-
nique as well as the absolute value of the error and the RMS error. The average value of
similarities and errors along the predicted QRS complexes in every channel is computed.
Table 9.2 illustrates the mean similarity values as well as the mean error values taken
for each ECG signal.
Furthermore, the average similarity, absolute error and RMS error for all of the six
databases, are found to be 99.3256 %, 20.7452 μV and 22.4705 μV respectively.
Figure 9.13 shows an example of a real QRS complex taken from one of the ECG signals
used and its corresponding predicted one.
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Signal QRS No. QRS Taken Predicted QRS Similarity Error RMS Error
1 332 First 166 last 166 98.9742 % 16.6729 μV 17.5875 μV
2 106 First 53 Last 53 98.5571 % 32.4993 μV 39.3256 μV
3 57 First 29 Last 28 99.7507 % 19.7252 μV 19.6019 μV
4 59 First 30 Last 29 99.641 % 23.0615 μV 25.8759 μV
5 69 First 35 Last 34 99.3577 % 16.7292 μV 17.4826 μV
6 64 First 32 Last 32 99.673 % 15.7831 μV 14.9497 μV

Table 9.2. The average value of similarities and errors along the predicted QRS complexes in every channel for

each ECG signal, described in section 9.1.2.
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Figure 9.13. An example of a real QRS complex plotted in blue line and taken from one of the ECG signals

used and its corresponding predicted or estimated one plotted in red dots.

9.2.5 Discussion and Conclusion

This novel approach shows a very high similarity in morphology between the estimated
QRS complexes and the corresponding real signals as well as relatively small reconstruc-
tion errors. The method was evaluated on different QRS complex morphologies, since
64-channel ECG signals were used. Therefore, the high efficiency, accuracy, and authen-
ticity can be considered as properties of this new method. On the other hand, this method
could be improved by applying more ECG signals of healthy people as well as patients
and by comparing the results in both cases. The method may be evaluated also on longer
ECG signal, like Holter ECG signal. Breathing effects and heart rate were not included
in this study, but it will be considered as one of the improvements of this technique in
the future. This technique may allow for some useful clinical implications. The output
signals of our estimator could be used to predict the changes in ECG that the patient
might have in the near future. Another application of this new method is to analyse the
morphology of the input signals by observing the PCA scores. When all input signals



9.2. Predicting QRS Complex 199

look similar relatively to each other and to the mean signal, PCA scores will have values
around zero with certain positive and negative limits (see Figure 5). On the other hand,
when one input signal or look more different to the mean signal, its or their correspond-
ing PCA scores will have relative higher values compared to the others. Therefore, by
analyzing PCA scores obtained from a short-term ECG signal (few minutes) and after
setting corresponding individual thresholds for every patient and channel, our method
will be able to detect any input signal that looks different to the previous inputs and
their mean. Moreover, an alarm could be generated if any serious change in the waveform
is detected. A continuous update of this ECG analysis allows for immediate warning in
case of any small change in the state of the heart.
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Table A.1: The overall measure of variation for 84 useful
channels from the healthy tapes

Normal signal (QT103 study Pfizer Inc.) Overall measure of variation
rnd-03-1-c1 65.9815
rnd-03-1-c2 67.0296
rnd-03-3-c2 95.2607
rnd-03-5-c1 73.5684
rnd-03-5-c2 61.2363
rnd-04-1-c1 77.1577
rnd-04-1-c2 94.9152
rnd-04-3-c1 89.0863
rnd-04-3-c2 84.0749
rnd-04-5-c1 75.4639
rnd-04-5-c2 84.3077
rnd-05-3-c1 63.8235
rnd-13-1-c1 84.3759
rnd-13-1-c2 79.3576
rnd-13-3-c1 91.854
rnd-13-3-c2 98.3884
rnd-14-1-c1 54.6886
rnd-14-1-c2 75.7053
rnd-14-3-c1 62.0313
rnd-15-1-c1 84.7752
rnd-15-1-c2 77.18
rnd-15-3-c1 70.4363
rnd-15-3-c2 96.5308
rnd-16-1-c1 84.0083
rnd-16-1-c2 80.7156
rnd-16-3-c1 70.2716
rnd-17-3-c1 88.3706

Continued on next page
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Normal Signal (QT103 study Pfizer Inc.) Overall measure of variation
rnd-17-3-c2 67.3121
rnd-18-5-c1 67.6
rnd-18-5-c2 98.9605
rnd-19-1-c1 61.8506
rnd-19-1-c2 84.6877
rnd-19-3-c1 60.908
rnd-19-5-c1 70.2042
rnd-24-1-c1 63.699
rnd-24-1-c2 68.9028
rnd-24-3-c1 64.6461
rnd-24-3-c2 58.7963
rnd-24-5-c1 61.2528
rnd-24-5-c2 56.2113
rnd-26-1-c1 54.2149
rnd-26-3-c1 57.3143
rnd-26-3-c2 95.2085
rnd-26-5-c1 75.007
rnd-26-5-c2 84.5494
rnd-27-1-c1 69.8521
rnd-27-3-c1 71.4082
rnd-27-5-c1 59.4461
rnd-28-1-c1 72.165
rnd-28-1-c2 69.2988
rnd-28-3-c1 68.3608
rnd-28-3-c2 57.6045
rnd-28-5-c1 66.6989
rnd-28-5-c2 53.9872
rnd-29-1-c1 52.0676
rnd-29-3-c1 64.479
rnd-29-3-c2 89.3713
rnd-29-5-c1 73.2251
rnd-29-5-c2 93.619
rnd-31-1-c1 77.0803
rnd-31-1-c2 57.2647
rnd-31-3-c1 67.147
rnd-31-3-c2 57.3003
rnd-31-5-c1 88.2159
rnd-31-5-c2 62.1303
rnd-32-1-c1 70.6327
rnd-32-1-c2 91.23
rnd-32-3-c1 55.4798
rnd-32-3-c2 73.6067

Continued on next page
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Normal Signal (QT103 study Pfizer Inc.) Overall measure of variation
rnd-32-5-c1 61.2699
rnd-32-5-c2 76.7639
rnd-34-1-c1 88.655
rnd-34-5-c1 76.9953
rnd-35-1-c1 92.7715
rnd-35-1-c2 78.62
rnd-35-3-c1 75.561
rnd-35-3-c2 68.1398
rnd-36-1-c2 78.4533
rnd-36-3-c1 77.9659
rnd-36-3-c2 80.9563
rnd-36-5-c1 79.0237

MEAN ALL 73.8119

SD ALL 12.4222

Table A.2: the overall measure of variation before TDP
episode for 20 TDP channels from the TDP tapes

TDP signal (different study Pfizer Inc.) Overall measure of variation

CL-c1 210.071
CL-c2 157.9961

EBP-c1 136.8848
EBP-c2 164.9001
H-B-c1 744.2185
H-B-c2 294.4614
JF-c1 195.0624
JF-c2 200.3871
MD-c1 118.0064
MD-c2 125.4703
MS-c1 572.7986
MS-c2 259.9428
R-B-c1 222.1837
R-B-c2 276.3737

R-B-c-c1 149.4096
R-B-c-c2 133.9066
SBA-c1 179.2311
SBA-c2 476.9143
VL-c1 120.6299
VL-c2 100.1384

MEAN ALL 241.9493

SD ALL 168.3503
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Table A.3: The overall measure of variation after TDP
episode for 20 TDP channels from the TDP tapes

TDP signal (different study Pfizer Inc.) Overall measure of variation

CL-c1 189.3195
CL-c2 127.2207

EBP-c1 191.0931
EBP-c2 150.5855
H-B-c1 173.2156
H-B-c2 95.6541
JF-c1 96.8325
JF-c2 90.4643
MD-c1 70.3808
MD-c2 93.274
MS-c1 149.8096
MS-c2 62.4312
R-B-c1 158.0772
R-B-c2 195.7204

R-B-c-c1 66.2288
R-B-c-c2 118.0365
SBA-c1 198.492
SBA-c2 460.1189
VL-c1 109.0898
VL-c2 119.5221

MEAN ALL 145.7783

SD ALL 86.3924
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