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Preface

These notes were written for a half-semester introductory course of An-
alytical Mechanics addressed to an audience of undergraduate students,
who were not theoretically and mathematically minded and in a large
fraction mainly interested in experimental physics.

Now, most of the standard presentations of Analytical Mechanics
(AM) derive it as a formal development of Newtonian Mechanics, de-
volving to the latter the discussion of the underlying physical questions.
With such a choice, one risks to characterize AM essentially as a set of
formal recipes, with at most the merit of mathematical elegance.

One may even be led to think that the key pillars of AM are its
formal structure and the variational principles usually put at its basis,
whose relevance for the discussion of concrete physical problems looks
somewhat remote.

The aim of these introductory notes is to point out that, on the con-
trary, the basic structure of AM has very strong physical motivations,
qualifying it as the simplest approach to the solutions of a large class
of physical problems, with clear and complete answers.

As a matter of fact, beyond its formal aspects, the use of generalized
(or Lagrangian) coordinates is an almost inevitable choice for discussing
and solving problems, for which the methods of Newtonian Mechanics
are not suitable and equally effective.

As discussed in these notes, the important achievements of Lagrange
equations, with respect to Newton equations for Cartesian coordinates,
are that
i) they provide the most economical description of time evolution in
terms of the minimal set of variables necessary for describing the con-
figurations of the system, so that there are no redundant coordinates
and therefore no constraint forces;
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ii) they are form invariant for any choice of coordinates, including those
corresponding to non-inertial frames, so that they automatically take
care of the problem of fictitious forces; by such an invariance, under a
change of coordinates the Lagrangian transforms in the simplest pos-
sible way, i.e. by expressing in the Lagrangian function the old coordi-
nates as functions of the new ones;
iii) finally, the full dynamical problem is completely reduced to the
specification of a single (Lagrangian) function,(which for the large class
of conservative systems is simply given by the kinetic energy minus the
potential) rather than being formulated in terms of (vectorial) forces,
constraints and possible terms arising in the case of non-inertial frames.

The usefulness of such properties for the solution of concrete me-
chanical problems is displayed by the Examples discussed in Chapters
1, 2.

A similar problem of stressing the physical motivations and effective-
ness in the discussion of mechanical problems arises for the Hamiltonian
formulation of Classical Mechanics.

First, the Hamiltonian has a more direct physical interpretation than
the Lagrangian, being in general related to the energy function (for
conservative systems the sum of the kinetic energy and the potential).

Its introduction, through the formal trick of a Legendre transform
may not appeal to an experimentally minded student, if it is not mo-
tivated by the strategy of replacing the Lagrange equations, which are
of second order in the time derivative, by first order equations for the
canonical variables q, p.

Moreover, in this way, the initial conditions involve the initial values
of the coordinates and of the conjugate momenta, which in general have
a direct physical meaning (e.g., in the case of cyclic coordinates, the
corresponding conjugate momenta are constants of motion).

The delicate and important issue of the relation between the Hamil-
tonian and the energy function, identifying the cases in which they
differ, is discussed at length in Section 3.3 and in Section 5.1, with
illustrating Examples.

In our opinion, the real basic pillar of the Hamiltonian formulation
is the ensuing canonical structure, which is not only important at the
conceptual level, but it also provides very useful tools for discussing
and solving mechanical problems.

Preface



In particular, one gets:
a) the possibility of directly identifying the constants of motion through
the vanishing of their Poisson brackets with the Hamiltonian, without
having to know the solutions of the dynamical problem;
b) the relation between symmetries of the Hamiltonian and conservation
laws;
c) the use of canonical transformations for reducing the Hamiltonian to
a simpler form; the generators of infinitesimal canonical transformations
with action in terms of Poisson brackets;
d) the emergence of the canonical algebra, etc.

The recognition of the above structures at the basis of AM, provides
also a simple link with the corresponding structures in Quantum Me-
chanics, the emerging picture being essentially the same, once the role
of the Poisson brackets is replaced by commutators.

The Chapters, Sections and Examples marked with a * were not
part of the main lectures; they are not essential for the general logic
of the presentation and may be skipped in a first reading or if one is
not interested in more refined issues and/or developments of the basic
theory.

In Section 2.9, and in Section 3.4, Example 3.13 and Remark 3.1,
the problem of the non-uniqueness of the Lagrangian is discussed, com-
pletely reducing it to the addition of a total time derivative.

It is argued that such a freedom corresponds to a gauge transforma-
tion, since it does not change (the time evolution of) the Lagrangian
variables, q, q̇ and therefore it leaves invariant all the physical quan-
tities, which are functions of them. The only effect is to change the
(somewhat free) relation between the time derivative of the coordinates
and their conjugate momenta.

This freedom has also relevant consequences in the relation between
symmetries of the equations of motion and conservation laws.

By taking such a freedom into account, the Noether Theorem is
revisited both in the (usual) Lagrangian formulation as well as in the
(usually oversimplified) Hamiltonian formulation (Section 5.4).

As discussed in subsection 5.4.2, the invariance of the equations of
motion does not require the invariance of the Hamiltonian, as usually
taken for grated, but only the invariance of the Hamiltonian up to a
total derivative.

ixPreface



The consequence is that the constant of motion related to a contin-
uous symmetry of the dynamics is not the (canonical) generator of the
infinitesimal symmetry transformation of the canonical variables, as in
the oversimplified case discussed in the textbooks of Classical Mechan-
ics, but rather the sum of the canonical generator and the generator
of the gauge transformation corresponding to the occurrence of a total
derivative (“anomalous” conservation).

The relevance of the canonical structure in Classical Mechanics and
its close counterpart in Quantum Mechanics raises the conceptual ques-
tion of relating it to common underlying physical principles. This is-
sue is discussed in Chapter 7, where the Dirac proposal of a common
Poisson algebra (Dirac Poisson algebra) is critically reviewed, and an
alternative proposal is discussed, which avoids the drawbacks and math-
ematical inconsistencies of Dirac strategy.

The basic point of such an alternative is the realization that a com-
mon underlying physical property of both theories is the existence of
translations in configuration space, leading to a Lie structure and to the
Poisson algebra given by the free polynomial algebra of the coordinates
and the generators of the translations. Such a common Poisson algebra
contains a central element Z, which relates the commutator to the Lie
product.

In the irreducible representations of such a common Poisson alge-
bra Z is represented by a multiple of the identity, and the inequivalent
representations are discriminated by either the vanishing of Z, corre-
sponding to Classical Mechanics or, alternatively, by its being different
from zero, and therefore necessarily pure imaginary, Z = i ~, corre-
sponding to Quantum Mechanics.

The time limitation of the lectures forced a drastic limitation of the
arguments to be covered and, according to the general philosophy dis-
cussed above, the general mathematical aspects have been reduced to
the minimum in favor of an inductive path, starting from concrete phys-
ical problems which provide the motivations for a need of improving the
Newtonian approach to Mechanics.

For these reasons, we have refrained from encumbering the notes
with a long list of problems/exercises, as often done in textbooks of
Classical Mechanics, with the idea that working out solutions is the
best way for learning and mastering the subject.
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We rather opted for a limited number of Examples/Exercises, with
the task of displaying the basic ideas and mechanisms (variations on
the themes being left to the student hunting).

The following inevitably incomplete presentation of AM will hope-
fully turn out to be useful for the students if it will convince them of
the relevance and effectiveness of AM and possibly stimulate a deeper
grasp of the theory, including its general mathematical structure.

For the students willing to further elaborate on AM, after this primer
introduction, the following books may be useful:
L.D. Landau and E.M. Lifshitz, Mechanics, 3rd ed., Pergamon Press
1976,
H. Goldstein, C.P. Pool Jr., and J.L. Safko, Classical Mechanics, Pear-
son 2013,
A Fasano and S. Marmi, Analytical Mechanics, Oxford Graduate texts,
2006,
V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer
1978.
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1
Difficulties of Cartesian Newtonian
Mechanics

1.1 Constraint forces

In this and in the following section, on the basis of simple examples,
we shall discuss difficulties of the Newtonian formulation of Mechanics
arising from the presence of constraint forces and fictitious forces.

For simplicity, in this section we consider a single particle of mass
m; according to Newtonian Mechanics, its motion is governed and com-
pletely described by Newton equations

ma = F, (1.1)

with a the acceleration and F the sum of the forces acting on it.
From a mathematical point of view the problem is well posed and

with a unique solution (under general conditions) once the initial po-
sition and velocity are specified. However, this requires the a priori
knowledge of F, which is not the case if there are constraints.

In fact, in general eq. (1.1) may be written as

ma = f +R, (1.2)

where f is the sum of the (known) external forces and R the sum of the
constraint forces, which are not a priori known, since the constraints
exert just those forces necessary for constraining the motion at any

© Springer International Publishing AG 2018
F. Strocchi, A Primer of Analytical Mechanics, UNITEXT for Physics,
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2 1 Difficulties of Cartesian Newtonian Mechanics

given time. A simple example will shed light on the way of attacking
the general problem.

Example 1.1. Consider the case of a simple pendulum, namely a point
mass suspended from a fixed pivot through a massless inextensible rod
of length r.

In this case, eq. (1.2) becomes

m¨x = mg +R, (1.3)

all vectors lying in the x− y plane, with g the gravity acceleration and
R the constraint force exerted by the rod (rod tension).
The constraint equation x2

+ y2 = r2 is easily solved by introducing
polar coordinates, x = r sin ✓, y = r cos ✓. In order to cop with the
unknown R, two paths may be followed.
a) Since the constraint force does not do work (being always orthogonal
to the velocity of the point mass) the energy conservation equation does
not involve R and it is enough for solving the motion (since there is
only one degree of freedom). One gets

1
2
mr2 ˙✓2 +mgr(1− cos ✓) = E0, (1.4)

(E0 denotes the initial energy). The rod tension, as a function of ✓, may
be determined by using the projection of eq. (1.3) in the direction of
x/|x|, −mr ˙✓2 = −R +mg cos ✓, and eq. (1.4).
b) Another possibility is to find a combination of the components of
eqs. (1.2), mẍ = −R sin ✓, mÿ = −R cos ✓+mg, which eliminates R; in
polar coordinates the result is the well known equation for the pendu-
lum motion

r¨✓ = −g sin ✓.

This equation is the projection of eq. (1.2) along the tangent to the
trajectory (which is the standard method for the pendulum motion). It
may also be obtained by taking the time derivative of eq. (1.4).

One might also describe the motion in terms of the coordinate x; for
small oscillations x ⇠ r✓, so that the above equation for ✓ gives

ẍ = −(g/r) x. (1.5)

The lesson from this very simple example is that in general New-
ton’s equations in Cartesian coordinates are not the equations for the
variables which describe the constrained motion.
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1.2 Non-inertial frames and fictitious forces

Another source of problems for Newton’s equations is the occurrence of
fictitious forces in non-inertial frames, which may be more convenient
frames for an intrinsic characterization of the motion of the system.

In fact, Newton’s equations for coordinates relative to a non-inertial
frame take the form:

ma = R+ f
f

+ f , (1.6)

where R denote the sum of the constraint forces, f
f

the sum of the
fictitious forces and f the sum of the a priori known forces.

In general, the fictitious forces are not a priori known, e.g. for a point
mass the Coriolis force 2m! ^ v (with ! the angular velocity of the
non-inertial frame) involves the velocity of the point with respect to
the non-inertial frame.

Example 1.2. Consider a point mass constrained to move on a (verti-
cal) circle of radius r, centered at the origin. The problem is to deter-
mine the motion of the point mass on the circle, when the circle rotates
around the vertical diameter with angular velocity !.

In the Cartesian coordinates x, y, z of the non-inertial reference
frame in which the circle is at rest, with the x−axis orthogonal to
the plane of the circle, the y-axis along the horizontal diameter and the
z-axis along the vertical diameter, Newton’s equations take the form

mẍ = R2 − 2mv ! sin ✓, mÿ = −R1 cos ✓ +m!2r cos ✓,

mz̈ = −mg −R1 sin ✓, (1.7)

where R1 denotes the radial constraint force, R2 the constraint force
orthogonal to the plane of the circle, and the angular variable ✓ corre-
sponds to polar coordinates in the y − z plane, y = r cos ✓, z = r sin ✓.
In order to determine the motion, one may start by eliminating the
constraint forces. The constraint that the point mass lies on the circle
implies ẍ = 0 and R2 = 2mv ! sin ✓; then, the elimination of R1 from
the two remaining equations gives

z̈ cos ✓ − ÿ sin ✓ = −g cos ✓ − !2r sin ✓cos ✓,



4 1 Difficulties of Cartesian Newtonian Mechanics

and in polar coordinates

¨✓ + (g/r) cos ✓ + !2
sin ✓cos ✓ = 0. (1.8)

The above Examples show that the complications of the Newtonian
formulation in terms of Cartesian coordinates arise because
i) such coordinates are redundant (and in fact not independent) and a
priori unknown constraint forces appear,
ii) the Newton’s equations do not have simple transformation properties
under time dependent changes of coordinates, so that a priori unknown
fictitious forces arise in non-inertial frames.

The following natural questions arise:
1) May one find a direct formulation of mechanical problems only in
terms of the minimal number of variables necessary for describing the
motion (without having to undergo somewhat laborious computations
for eliminating the constraints)?
2) May one find a formulation based on equations of motion which are
form-invariant under changes of coordinates?
3) May one find a formulation of mechanical problems which does not
need the distinction between inertial and non-inertial frames?

As we shall see, the Lagrangian formulation overcomes the difficulties
related to the presence of constraint and fictitious forces, provides a
positive answer to the above questions 1)-3) and qualifies as a very
efficient way of solving dynamical problems.



2
Lagrange equations

2.1 Degrees of freedom and Lagrangian coordinates

Consider a mechanical system, whose positions are completely descri-
bed by N three-dimensional Cartesian coordinates x1,x2, ...xN

(for ex-
ample the position of a rigid body is completely identified by three
non-collinear points). They correspond to the 3N Cartesian compo-
nents x1, y1, z1, x2, y2, z2, ...xN

, y
N

, z
N

, which, for simplicity in the fol-
lowing shall be denoted by x

i

, i = 1, ...3N .
In general, when constraints are present, not all the x

i

’s are inde-
pendent and we denote by q1, q2, ...qn a minimal number of (in general
non-Cartesian) “coordinates” necessary for characterizing the positions
of the (constrained) system.

The number n is called the number of degrees of freedom of the
system and for brevity in the following a set of minimal coordinates q

i

’s,
i = 1, ...n, will be referred to as a set of Lagrangian coordinates;

In contrast with the Cartesian coordinates, used in Newton’s equa-
tions of motion, Lagrangian coordinates provide the most economical
description of the system and the basic question arises of directly de-
termining their time evolution without having to derive it from the
solution of the time evolution of the Cartesian coordinates.

This is the task of the Lagrangian formulation which shall be dis-
cussed below.

F. Strocchi, A Primer of Analytical Mechanics, UNITEXT for Physics,
https://doi.org/10.1007/978-3-319-73761-4_2
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6 2 Lagrange equations

If, at any time t, {q
i

} is a generic (not necessarily minimal) set of
coordinates which identify the position of the system, the Cartesian
coordinates x

i

at time t shall be expressible as functions of the q
i

’s:

x
i

(t) = x
i

(q(t), t), (2.1)

(with q denoting the set of the q
i

’s) where an explicit time dependence
may occur in those relations. Conversely, since the Cartesian coordi-
nates completely determine the position of the system, they must de-
termine the q

i

’s, implying that the above eqs. (2.1) are invertible:

q
i

(t) = q
i

(x(t), t).

In the following we shall always assume sufficient regularity to allow
for the existence of the derivatives performed below. We recall that the
total time derivative ẋ

i

of x
i

(t) gets both the contribution of the time
dependence of x

i

through the time dependence of q
i

and the contribu-
tion from the explicit time dependence of the relations (2.1):

ẋ
i

=

dx
i

dt
=

@x
i

@q
j

dq
j

dt
+

@x
i

@t
=

@x
i

@q
j

q̇
j

+

@x
i

@t
, (2.2)

where, as often in the following, summation over repeated indices is
understood.

Since @x
i

(q, t)/@q
j

is a function of q and t, but not of q̇, one has

@ẋ
i

@q̇
m

=

@x
i

@q
m

, (2.3)

a relation which will turn very useful in the following.
An explicit time dependence in the change of coordinates appears

when one considers non-inertial frames.
This is simply displayed by the system discussed in Example 1.2.

In fact, the position of the point on the circle is identified by the angle ✓
of the polar coordinates in the circle (y = r cos ✓, z = r sin ✓), i.e. there
is only one degree of freedom, and the relation between the Cartesian
coordinates x0, y0, z0 in a fixed (inertial) frame R0 and the Lagrangian
coordinate ✓ is time dependent:

x0
(t) = r sin ✓(t) cos(!t), y0(t) = r sin ✓(t) sin(!t), z0(t) = r cos ✓(t),

where we have spelled out that the correspondence x0, y0, z0 ! ✓ at time
t involves the time dependence of the variables.
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2.2 Lagrangian form of Newton’s equations

In this section we shall show that Newton’s equations in Cartesian
coordinates (whose number is denoted by N) may be written in a form
which we shall show to hold also for generic variables q

i

, in particular
for (the minimal) Lagrangian coordinates.

We consider the case of conservative forces:

m
i

ẍ
i

= F
i

= −@V (x)/@x
i

, i = 1, ...N (2.4)

(no sum over repeated indices).
Now, denoting by T the kinetic energy (T ⌘ 1

2

P
i

m
i

ẋ2
i

), one has

m
i

ẍ
i

= m
i

dẋ
i

dt
=

d

dt

@

@ẋ
i

X

j

1
2
m

j

ẋ2
j

=

d

dt

@T

@ẋ
i

, (2.5)

and eqs. (2.4) may be written as

d

dt

@T

@ẋ
i

= −@V

@x
i

, i = 1, ...N. (2.6)

Since the potential is not a function of ẋ
i

, @V/@ẋ
i

= 0, and T is only
a function of ẋ

i

, eqs. (2.4) may also be written as

d

dt

@L

@ẋ
i

=

@L

@x
i

, L ⌘ T − V, i = 1, ...N. (2.7)

L is called the Lagrangian function or Lagrangian and eqs. (2.7) are the
equations of motion in Lagrangian form, called the Lagrange equations
in Cartesian coordinates.

Up to now, this seems nothing but a formal reshuffling of the New-
ton’s equations, with no apparent advantage, but, as we shall see be-
low, the substantial gain with respect to Newton equations (in Carte-
sian coordinates) is that the Lagrange equations hold for any choice of
coordinates for describing the configurations of the system, with the
Lagrangian functions of different coordinates being defined by the con-
dition of taking the same value at corresponding points.
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2.3 Lagrange equations

The Lagrange equations we are going to derive have the important
property of not depending on the use of Cartesian coordinates, nor on
the use of coordinates of an inertial frame, i.e. they have the form for
any choice of coordinates q

i

(covariance of Lagrange equations under
arbitrary changes of coordinates).

As before, we consider the case of conservatives forces; we start by
deriving the following equations (the needed regularity/differentiability
always assumed) using eqs. (2.1), (2.2), (2.3):

@T

@q̇
j

=

X

i

m
i

ẋ
i

@ẋ
i

@q̇
j

=

X

i

m
i

ẋ
i

@x
i

@q
j

, (2.8)

d

dt

@T

@q̇
j

=

X

i

(m
i

ẍ
i

@x
i

@q
j

+m
i

ẋ
i

d

dt

@x
i

@q
j

) =

X

i

F
i

@x
i

@q
j

+

@T

@q
j

(2.9)

where, for the right hand side of eq. (2.8), we have used eq. (2.3) and
for the last equality in eq. (2.9) we have used that

d

dt

@x
i

@q
j

=

@2x
i

@q
k

@q
j

q̇
k

+

@2x
i

@t @q
j

=

@

@q
j

✓
@x

i

@q
k

q̇
k

+

@x
i

@t

◆
=

@ẋ
i

@q
j

. (2.10)

as a consequence of the allowed exchange of the order of the partial
derivatives.

Introducing the components of the generalized force

Q
j

⌘
X

i

F
i

@x
i

@q
j

, (2.11)

one has
d

dt

@T

@q̇
j

=

@T

@q
j

+Q
j

. (2.12)

The generalized forces are conservatives, (i.e. they are partial deriva-
tives of the potential with respect to the q

i

’s) if so are the F
i

:

Q
j

= −
X

i

@V

@x
i

@x
i

@q
j

= −@V

@q
j

,
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with V independent of the ẋ
j

’s, and therefore of the q̇
j

’s.
In this case, one has

d

dt

@(T − V )

@q̇
j

=

@(T − V )

@q
j

.

Thus, one obtains the Lagrange equations for the Lagrangian L:

d

dt

@L

@q̇
j

=

@L

@q
j

, L ⌘ T − V, j = 1, ...n. (2.13)

It is worthwhile to stress the crucial advantages of the Lagrange
equations with respect to the Newton equations:
a) most economical description: the time evolution of the system
may be described by the Lagrange equations for the minimal set of
variables necessary for describing the system, so that there are no re-
dundant coordinates, or constraint forces;
b) covariance or form invariance of Lagrange equations: the
Lagrange equations they have the same form, i.e. are form invariant,
for any choice of the coordinates, which may also be relative to non-
inertial frames, so that there is no problem of fictitious forces (their
effect is automatically taken care of by the expression of Lagrangian
as a function the time-dependent coordinates); quite generally, one of
the main motivations for the Lagrangian formulation of Mechanics, is
that the Lagrangian transforms as a scalar under coordinates
transformations q(t) ! q0(q(t), t), q̇(t) ! q̇0(q(t), q̇(t), t), namely

L0
(q0, q̇0, t) = L(q(q0, t), q̇(q0, q̇0, t), t); (2.14)

(for simplicity, in the above equation the time dependence of the coor-
dinates has not been spelled out;
c) the formulation of the dynamical problem in terms of equations for
the time evolution is reduced to the specification of a single scalar
function (the Lagrangian) which encodes all the relevant infor-
mation, the equations of motion being simply obtained in terms of its
derivatives.
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On the contrary, Newton’s equations (in Cartesian coordinates) are
not form invariant under coordinate transformations, in particular sub-
stantial new terms arise in the case of non-inertial frames; furthermore,
the description of the motion in terms of redundant coordinates leads
to the appearance of a priori unknown constraint forces.

* Remark 2.1. One may explicitly check that the presence of con-
straint forces due to holonomic constraints does not change eq. (2.12),
with Q

j

= −@V/@q
j

, since the choice of the Lagrangian coordinates q
j

,
j = 1, ...n, with n the number of degrees of freedom, implies that the
components Qc

j

of the generalized forces corresponding to the constraint
forces vanish.

To this purpose, we recall that holonomic constraints on the N
Cartesian coordinates which describe the position of the system are
expressible in terms of conditions of the form

f
↵

(x, t) = 0, ↵ = 1, ...k,

and the constraint forces F c

i

may be written as suitable combinations
of the vectors @f

↵

/@x
i

orthogonal to the surfaces f
↵

(x, t) = 0:

F c

i

=

kX

↵=1

λ
↵

@f
↵

@x
i

, i = 1, ...N.

Then, by introducing new variables:

⇠
i

⌘ f
i

(x, t), i = 1, ...k; ⇠
j+k

= q
j

, j = 1, ...N − k,

(n = N − k being the number of degrees of freedom) one obtains

Qc

j

=

X

i

F c

i

@x
i

@q
j

=

kX

↵=1

λ
↵

NX

i=1

@f
↵

@x
i

@x
i

@q
j

=

=

kX

↵=1

λ
↵

⇠
↵

@x
i

@x
i

@q
j

=

X

↵

λ
↵

@⇠
↵

@q
j

= 0.
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Remark 2.2. The covariance of the Lagrange equations under a change
of coordinates is implicit in the derivation of eqs. (2.13), where the q

i

’s
are arbitrary (regular) functions of the Cartesian coordinates and the
Lagrangian as a function of them has been defined by

L(q, q̇, t) = L
C

(x(q, t), ẋ(q, q̇, t), t),

where L
C

denotes the (Lagrangian) function of the Cartesian coordi-
nates.

Thus, eq. (2.14) states that the Lagrangians L(q, q̇, t) and L
C

(x, ẋ, t)
take the same value when their arguments describe corresponding points.

2.4 Lagrange equations at work. Examples

We shall check the effectiveness of the Lagrangian approach on some
simple examples.

Example 1.2 As a first example, we revisit the problem, which
was discussed in Section 1.2, with the Newtonian approach leading to
occurrence of constraint and fictitious forces.

In the Lagrangian approach, it is convenient to use Lagrangian co-
ordinates, i.e. a minimal set of coordinates. In this case, one may take,
e.g., the angle ✓, corresponding to the polar angle in the (y − z)-plane
of the circle, and is time derivatives. Furthermore, for describing the
preassigned motion of the circle we introduce the polar angle ↵ in the
x− y plane.
Thus, omitting the time dependence of the coordinates x, y, z, ✓ spelled
out in the previous discussion of Example 1.2, we have

x = rcos ✓ cos↵, y = rcos ✓ sin↵, z = rsin ✓, ↵̇ = !,

and

T =

1
2
m (ẋ2

+ ẏ2 + ż2) = 1
2
mr2(↵̇2

cos

2 ✓ + ˙✓2), V = mg r sin ✓.
(2.15)

The Lagrange equations immediately give eq. (1.8) without having to
worry about constraint and fictitious forces.
Indeed, as argued in Remark 2.1, the use Lagrangian coordinates elim-
inates the constraint forces from the equations of motion.
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Eventually, the strength of the constraint forces (needed for keeping
the motion constrained, e.g. the reaction of the circle in the above
Example), may be calculated at the end, once the motion has been
solved, by exploiting the relation between the Lagrangian coordinates
and the Cartesian coordinates (see eq. (1.7)).

An instructive issue is to understand what happens in general to
the fictitious forces in the Lagrangian approach, since in the Lagrange
equations only the generalized forces Q

j

, which correspond to the non-
fictitious forces, appear.

As we shall see below, the expression of the kinetic energy in terms of
coordinates related to a non-inertial frame fully accounts for the effect
of the fictitious forces. Thus, the origin of the fictitious forces is reduced
to a purely kinematical ingredient, encoded in the relation between the
Cartesian coordinates and the Lagrangian coordinates corresponding
to a non-inertial frame.

This fact is clearly displayed by the following simple Example.

Example 2.1. Consider an inertial reference frame R described by
Cartesian axes x, y, z and the non-inertial frame R0 corresponding ro-
tations of constant angular velocity ! around the z-axis.

The relation between the Cartesian coordinates of a point mass in
the two frames is

x = x0
cos!t− y0 sin!t, y = y0 cos!t+ x0

sin!t, z = z0

and a simple calculation give

T =

1
2
m (ẋ2

+ ẏ2 + ż2) =

=

1
2
m (

˙x02
+

˙y0
2
+

˙z0
2
) +m!( ˙y0 x0 − ˙x0 y0) + 1

2
m!2

(x02
+ y0

2
).

Thus, the expression of the kinetic energy in terms of the coordinates
relative to the non-inertial frame contains additional terms, beyond the
standard quadratic term in the velocities, and these terms depend also
on the coordinates x0, y0.
The result is that the fictitious forces arise in the Lagrange equations
through the derivatives of T with respect to x0, ẋ0, y0, ẏ0, a crucial role
being played by the form invariance of the Lagrangian, eq. (2.14).
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In fact, one has

@T

@x0 = m! ˙y0 +m!2x0,
d

dt

@T

@ ˙x0
= m ¨x0 −m! ˙y0.

Thus, half the x0 component of the Coriolis forces appears in the first
equation, together with a part of the centrifugal force, and the other half
in the second equation. Similar contributions appear in the derivative
of T with respect to y0, ẏ0.

By using the relation between the polar coordinates in R and in R0:

⇢0 = ⇢ ⌘
p
x2

+ y2 + z2, ✓0 = ✓, '0
= '− !t,

(with cos ✓ ⌘ z/⇢), the kinetic energy T has the following form in terms
of the polar coordinates relative to R and to R0:

L =

1
2
m (⇢̇2 + ⇢2 ˙✓2 + ⇢2 sin2 ✓ '̇2

) =

1
2
m [⇢̇2 + ⇢2 ˙✓2 + ⇢2 sin

2 ✓( ˙'0
+ !)2].

Thus, in terms of the coordinates relative to the rotating frame the
Lagrangian differs from the standard quadratic terms by the presence
of the terms

L0
z

! +

1
2
!2 ⇢2, L0

z

= m ⇢2 sin

2 ✓ '̇0.

The above expression for T in terms of the coordinates relative to the
non-inertial frame R0 may be written in vector form

T =

1
2
m ˙v02

+ ! · L0
+

1
2
m (! ^ r0)2, (2.16)

showing that in a rotating frame the kinetic energy acquires two addi-
tional terms: i) a (vector) coupling between the angular velocity ! of
the rotating frame and the vector angular momentum L0 in R0, and ii)
a centrifugal term.

In conclusion, the fictitious forces arise in the definition of the kinetic
energy in terms of non- inertial coordinates, by exploiting the form
invariance of the Lagrangian.



14 2 Lagrange equations

Example 2.2. Eastern deviation of a falling object.
Consider a falling particle of mass m from the height h at the equator.

The symmetry of the system suggests to use cylindrical coordinates
⇢,', z, with ⇢ the distance from the center of the earth, the z-axis along
the earth rotation axis, putting z = 0 at the equator.
In the non-inertial frame R0 in which the earth is at rest, with coordi-
nates given by ⇢0 = ⇢, '0

= '−!t, denoting by R the earth radius, one
has

L =

1
2
m (⇢̇2 + ⇢2 '̇2

)−mg (⇢−R) =

=

1
2
m (⇢̇2 + ⇢2( ˙'0

+ !)2)−mg(⇢−R). (2.17)
The Lagrange equations give

⇢2('̇0
+ !) = C, ⇢̈ = −g + ⇢('̇0

+ !)2.

The first equation follows from @L/@'0
= 0 and the constant C is

determined by the initial conditions ⇢(0) = ⇢0, '
0
(0) = 0, i.e. C = ⇢20 !.

Then, the second equation becomes

⇢̈ = −g + !2 ⇢40 ⇢
−3
;

since ! = 7, 3 ⇥ 10

−5 rad/sec, g >> !2⇢40/⇢
3, the second term in the

above equation may be neglected to a very good approximation, yield-
ing ⇢(t) = ⇢0 − 1

2
g t2. Hence, the equation for ' becomes

'̇0
= !(⇢20/⇢

2 − 1) ⇠ 2!(1− ⇢/⇢0) = !g t2/⇢0

and it is easily solved:

'0
=

1
3
! g t3/⇢0) ⇠ 1

3
! g/⇢0)(2h/g)

3/2 > 0,

having used that the time t needed for reaching the earth ground is
given by t =

p
2h/g.

In conclusion, the deviation from the vertical line is towards east and
to a good approximation given by

⇢0'
0
= (1/3)!g(2h/g)3/2.

Much less simple would have been the discussion in terms of Newton
equations with Cartesian coordinates, as well as the control of the ap-
proximations.
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Example 2.3. Foucault pendulum.
The problem is to determine the variation of the oscillation plane of a
pendulum due to the rotation of the earth (of angular velocity !).

In the reference frameR0 in which the earth is at rest, it is convenient
choose the z-axis along the vertical line of the pendulum and the polar
coordinates r,↵ in the orthogonal plane tangent to the earth ground.
According to eq. (2.16), neglecting !2 terms, as well as terms of order
1−(z/l)2, with l the length of the pendulum, the kinetic energy T takes
the following form

T =

1
2
m(ṙ2 + r2 (↵̇ + !0

)

2
),

with !0 the component of the angular velocity ! along the z-axis.
Furthermore, if the motion is described in terms of the coordinates of
the x− y plane, the gravitational force is described by a potential

V = − 1
2
(mg/l)r2,

(see the derivation of eq. (1.5)). This may also be explained by the fact
that the constraint force needed for balancing the gravitational force
has a component R on the x − y plane which is given by mgr/l , for
small oscillation angles; hence, R is conservative and it is described by
the above potential V .
Thus, the Lagrangian coincides with that of a two-dimensional har-
monic oscillator written in terms of polar coordinates in a rotating
frame (with angular velocity !0) and the solution is

r(t) = r0(t), ↵(t) = ↵0(t)− !0 t.

Hence, the plane of oscillations of the pendulum rotates with (constant)
angular velocity !0; at the equator !0

= 0 and there is no plane rotation,
whereas !0

= ! at the north pole.
It is worthwhile to remark that more cumbersome would be the dis-

cussion in terms of Newton equations in Cartesian coordinates, with the
occurrence of constraint and fictitious forces; in particular, the possi-
bility of easily writing the Lagrangian in different coordinates has been
of great help for the solution of the problem.
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2.5 Generalized potential

The above derivation of the Lagrange equations under the condition of
conservative forces may be generalized to the case in which there is a
function U = U(q, q̇, t), such that the generalized forces may be written
in the following form

Q
j

⌘
X

i

F
i

@x
i

@q
j

=

d

dt

@U

@q̇
j

− @U

@q
j

, (2.18)

In fact, one easily sees that the Lagrange equations hold for the La-
grangian

L ⌘ T − U, (2.19)

the case of conservative forces being included as a special case.
This apparently formal remark allows for the Lagrangian formulation

of the motion of an electron in the presence of an electromagnetic field
(E,B), whose corresponding forces are not derivable from a potential
V = V (x).

We start by showing that eq. (2.18) holds for Cartesian coordinates.
In fact, the Lorentz equations for the electron position x and velocity
v read

mẍ
i

= e(E
i

+ ✏
ijk

(v
j

/c)B
k

) ⌘ F
i

,

where c denotes the velocity of light, the sum over repeated induces is
understood and ✏

ijk

, is the totally antisymmetric (Levi-Civita) tensor,
✏123 = 1.

In terms of the scalar and vector electromagnetic potentials (φ,A),
one has

E
i

= − @φ

@x
i

+

@A
i

@t
, B

i

= (r^A)

i

= ✏
i j k

@A
k

@x
j

,

Then, introducing

U(x, ˙x, t) ⌘ e(φ(x, t) +
X

i

(ẋ
i

/c)A
i

(x, t))

and using that
dA

i

dt
=

@A
i

@t
+ ẋ

j

@A
i

@x
j
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and X

i

ẋ
i

(r ^A)

i

= ẋ
j

@A
i

@x
j

− ẋ
j

@A
j

@x
i

,

one gets

d

dt

@U

@ẋ
j

− @U

@x
j

= −e
@φ

@x
i

+

e

c

dA
i

dt
− e

c
ẋ
j

@A
j

@x
i

= F
i

.

A very important property is that eqs. (2.18) hold for any choice of
coordinates.
In fact, by eq. (2.11) one has for Q

j

= F
i

@x
i

/@q
j

(sum over the index
i is understood)

Q
j

=

✓
d

dt

@U

@ẋ
i

− @U

@x
i

◆
@x

i

@q
j

=

d

dt

✓
@U

@ẋ
i

@x
i

@q
j

◆
− @U

@ẋ
i

d

dt

@x
i

@q
j

− @U

@x
i

@x
i

@q
j

=

=

d

dt

✓
@U

@ẋ
i

@ẋ
i

@q̇
j

◆
−
✓
@U

@ẋ
i

@ẋ
i

@q
j

+

@U

@q
j

◆
=

d

dt

@U

@q̇
j

− @U

@q
j

where, in the third equality we have used eq. (2.3), eq. (2.10) and that
the dependence of U on q̇

i

is only through ẋ
i

(eq. (2.2)).

The possibility of writing the equations of motion of a charged par-
ticle in presence of an electromagnetic field in terms of arbitrary coor-
dinates and the fact that the corresponding Lagrange equations are co-
variant under coordinate transformations greatly simplifies the changes
of reference frames and consequently the treatment of electrodynamical
problems.

In particular, the transformation properties of electric and magnetic
fields under a change of reference frame are automatically taken care of
by writing the Lagrangian, in particular the electromagnetic potential
U , as a function of the new coordinates.
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2.6 Larmor theorem

A useful application of the invariance of Lagrangian equations for a
particle in electromagnetic field under a change of reference frame is
provided by the case of an electron bounded to a (heavy) nucleus in a
constant uniform magnetic field H.

Since the nucleus mass is much larger than the electron mass, in the
two body problem one may neglect the nucleus motion, considering it as
fixed. Then the Lagrangian for the electron motion takes the following
form:

L = T − V
C

(r)− (e/c)v ·A, (2.20)
with V

C

(r) the Coulomb potential, A
i

=

1
2
✏
i j k

x
j

H
k

.
The presence of the magnetic field reduces the symmetry of the

problem to a cylindrical one, and therefore it is convenient to choose the
z-axis in the direction ofH and use the following cylindrical coordinates
for the electron motion

x = ⇢ cos ✓, y = ⇢ sin ✓, r2 = x2
+ y2 + z2 = ⇢2 + z2.

Then, one has v2 = ⇢̇2 + ⇢2 ˙✓2 + ż2, v ·A =

1
2
H (−ẋ y + ẏ x) and

L =

1
2
m(⇢̇2 + ⇢2 ˙✓2 + ż2)− V (⇢, z)− 1

2
(e/c)⇢2 ˙✓H, (2.21)

where V (⇢, z) ⌘ V
C

(r).
Since @L/@✓ = 0, one has d/dt)@L/@ ˙✓ = 0, i.e.

@L

@ ˙✓
= m ⇢2 ( ˙✓ − e

2mc
H) = constant. (2.22)

Thus, the constant of motion is not the orbital angular momentum
along the z-axis, L

z

= m ⇢2 ˙✓, but rather the sum L
z

− (eH/2mc)m⇢2.
The result is that the effect of the magnetic field amounts to adding
to the orbital angular velocity ˙✓ the angular velocity !

L

⌘ eH/2mc
(Larmor frequency).

To better understand this fact, it is instructive to consider a reference
frame R0 rotating with velocity !

L

with respect to the previous one and
the corresponding change of coordinates

⇢0 = ⇢, z0 = z, ✓0 = ✓ − !
L

t.
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Thanks to the scalar transformation property of the Lagrangian under
a change of reference frame, (eq. (2.14),

L0
(⇢0, ✓0, z0) = 1

2
m(

˙⇢0
2
+ ⇢0

2
˙✓0
2
+

˙z0
2
)− V (⇢0, z0)− 1

2
m⇢0

2
!2
L

.

It is immediate to derive the equations of motion in the new frame
(not so easy would be the transformation of the Newton equations, the
transformation of the magnetic field requiring very special care):

d

dt

@L

@ ˙✓0
=

@L

@✓0
= 0 ) m ⇢0

2
˙✓0 = constant. (2.23)

Thus, in the rotating frame R0, the constant of motion is the orbital
angular momentum along the z-axis.

Furthermore, the effect of the magnetic field reduces to the appear-
ance of the term 1

2
m⇢02!2

L

, which does not depend on ✓0 and ˙✓0 and may
therefore be absorbed in the potential, by a redefinition

V
C

(⇢0, z0) ! V
C

(⇢0, z0) + 1
2
m ⇢0

2
!2
L

.

The physical explanation is simple: the fictitious Coriolis force aris-
ing in the non-inertial reference frame R0 counterbalances the effect of
the magnetic field and the centrifugal force gives rise to the centrifugal
potential V

c

= − 1
2
m ⇢02 !2

L

, leading to a redefinition of the potential
For an atomic electron, V

c

is typically very small and may be ne-
glected to a good approximation; then, in R0 the electron motion is the
same as in the absence of the magnetic field.

The fact that the introduction of a magnetic field has the effect of
changing the angular velocity even if the magnetic force has vanishing
momentum (with respect to the z axis) may be explained by noting that
switching on the magnetic field gives rise to a time dependent magnetic
flux through the electron orbit and consequently to an electric field with
non-zero momentum (with respect to the z-axis). This exactly accounts
for the change of the effective angular velocity and for the change of
the constant of motion.



20 2 Lagrange equations

2.7 Physical meaning of Lagrange equations;
conjugate momenta

For better grasping the usefulness of Lagrangian formulation, it is help-
ful to discuss the physical meaning of Lagrange equations.

In the simple case of an unconstrained system subject to conserva-
tive forces described by inertial Cartesian coordinates, the Lagrange
equations may be written as

d

dt
p
i

=

@L

@x
i

, p
i

⌘ @L

@ẋ
i

. (2.24)

Since in this case p
i

is the momentum m
i

ẋ
i

associated to the x
i

co-
ordinate, the Lagrange equations simply state that the change of p

i

is
governed by the force @L/@x

i

in the i-th direction.
In the general case, by defining the momentum conjugated to q

i

p
i

⌘ @L

@q̇
i

, (2.25)

we have an analogous interpretation: the Lagrange equations state that
the time variation of the conjugate momentum p

i

is governed by the
generalized force @L/@q

j

.
It worthwhile to remark that contributions to the generalized forces

may arise also from the kinetic term T , as we have seen in the case of
non-inertial Cartesian coordinates (Section 2.4).

In order to better appreciate the physical meaning of the conjugate
momenta we discuss a few simple examples.

Example 2.4. Consider an electron in a central potential V .
The spherical symmetry suggests to use spherical coordinates

x = r sin ✓ cos', y = r sin ✓ sin', z = r cos ✓. (2.26)

Then, the kinetic energy reads

T =

1
2
m (ṙ2 + r2 ˙✓2 + r2 sin

2 ✓ '̇2
), (2.27)

and the conjugate momenta

p
r

= m ṙ, p
✓

= mr2 ˙✓, p
'

= mr2 sin2 ✓ '̇, (2.28)
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have a simple physical interpretation:
1) p

r

represents the radial momentum, and

ṗ
r

= @L/@r;

2) p
'

is the z component of the angular momentum L
z

, which is con-
served since @L/@' = 0 (corresponding to the vanishing of the momen-
tum of the force relative to the z-axis).
It is convenient to choose the z-axis along the vector r = (x, y, z) at
time zero, so that ✓(0) = 0 and, by the conservation equation, (omitting
to spell out the time dependence of variables)

L
z

= mr2 '̇ sin

2 ✓ = L
z

(0) = 0.

If ✓(0) = 0 =

˙✓(0), then, using L
z

= 0, the Lagrange equations give

mr̈ = mr ˙✓2 − @V

@r
,

d

dt
(r2 ˙✓) = 0,

which imply r2 ˙✓ = r2(0) ˙✓(0) = 0, so that ˙✓(t) = 0 and the motion takes
place along the z-axis.
Apart from this very special case, if sin ✓(t) 6= 0, the equation L

z

= 0

implies that '̇ = 0, so that the motion takes place in the plane ' = 0.
Then, in this case, p

✓

describes the (orbital) angular momentum relative
to the plane motion of the particle, and by the Lagrange equation

d p
✓

dt
=

@L

@✓
= mr2 sin ✓ cos ✓ '̇2

= 0,

p
✓

is a constant of motion (second Kepler law).
Less direct would be the derivation of these results by using the

Newton equations in Cartesian coordinates. The advantage of the La-
grangian approach is the direct formulation of the dynamical problem
in terms of the spherical coordinates, which are the more appropriate
ones for a spherically symmetric problem.
Indeed, the corresponding Lagrangian (generalized) forces have a di-
rect physical meaning, since they describe the momenta of the forces,
respectively with respect to the z-axis (M

z

= @L/@') and with respect
to the (unit) normal n to the plane ' = constant (M

n

= @L/@✓).
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In fact, one has

@

@'
=

@x

@'

@

@x
+

@y

@'

@

@y
= −y

@

@x
+ x

@

@y
,

so that
@L

@'
= −y

@L

@x
+ x

@L

@y
= M

z

.

Furthermore, using that n = Nˆr ^ k, with ˆr ⌘ r/r, k the unit vector
in the direction of the z-axis and N = sin ✓

@/@✓ = r (cos ✓ cos'@
x

+ cos ✓ sin'@
y

− sin ✓ @
z

) = −n · (r ^r)

so that @L/@✓ = M
n

.

In conclusion, the Lagrange equations:
1) allow for the simplest description of the motion in terms of La-
grangian coordinates which take into account the symmetry properties
of the system;
2) directly give the dynamical laws for the angular momenta M

z

,M
n

,
i.e. the cardinal equations of mechanics;
3) relate the conservations laws (p

'

= constant, p
✓

= constant) to the
symmetries of the Lagrangian;

Less transparent is the picture provided by the Newton’s equation
with Cartesian coordinates, where the conservation laws are not part
of the equations of notion and have to be derived from them.

Example 2.3. It is useful to revisit the example of a charged particle in
a Coulomb potential and in a uniform constant magnetic field, discussed
in Section 2.7.

The Lagrangian (2.18) is independent of the angle ✓, so that the
vanishing of the generalized force @L/@✓ implies the conservation of
the conjugate momentum: p

✓

= m ⇢2( ˙✓ − (e/2mc)H), which is not the
orbital angular momentum of the particle, but nevertheless is a more
relevant variable for describing the whole system “particle + magnetic
field".
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2.8 Cyclic variables, symmetries and conserved conjugate
momenta

The discussion in the previous Section has shown that if the Lagrangian
is independent from the Lagrangian coordinate q

i

, which is then called a
cyclic variable, the corresponding conjugate momentum p

i

= @L/@q̇
i

is a constant of motion

ṗ
i

= @L/@q
i

= 0. (2.29)

As clearly displayed by the above examples, the existence of cyclic
variables is related to symmetry properties of the system.

Quite generally, if q
i

is a cyclic variables, the transformation

q
i

! q0
i

= q
i

+ λ, q
j

! q0
j

= q
j

, j 6= i, (2.30)

leaves the Lagrangian invariant

L0
(q0, q̇0, t) ⌘ L(q(q0, t), q̇(q0, q̇0, t), t) = L(q0, q̇0, t),

and therefore corresponds to a symmetry of the Lagrangian and of the
system.

In the Example 2.4, the cyclicity of the angle ' reflects the invariance
with respect to rotations around the z-axis and implies the conservation
of L

z

. The angle ✓ becomes a cyclic variable for the Lagrangian which
describes the motion in the plane ' = constant, reflects the invariance
with respect to rotations around the axis perpendicular to that plane
and implies the conservation of p

✓

.

In the Example 2.3 the cyclicity of the angle ✓ codifies the invariance
under rotations around the z-axis (cylindrical symmetry).

Example 2.5. For a particle subject to a potential V , the conservation
of the momentum p1 = mẋ1 is equivalent to the independence of V
from the Cartesian coordinate x1, i.e. to the cyclicity of x1 for the
Lagrangian L = T − V . Clearly, this corresponds to the invariance of
L under translations in the x1 direction: x1 ! x1 + a.

Such a very important relation between conservation laws and in-
variance under coordinate transformations is clearly displayed by the
Lagrangian formulation, in terms of invariance properties of L.
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Example 2.6. As a further example of the relation between symmetry
properties and time independence of the conjugate momenta, consider
a particle constrained to move on a vertical cone with opening angle
2↵ subject to gravity.

The cylindrical symmetry suggests to use the distance ⇢ = (x2
+ y2)

1
2

from the cone axis, taken as the z-axis, and the angle ' in the x − y
plane as Lagrangian coordinates. The cylindrical symmetry implies that
the Lagrangian L is independent of ' and that the z component, L

z

,
of the angular momentum is a constant of motion. In fact, one has

L =

1
2
m (⇢2'̇2

+

⇢̇2

sin

2 ↵
)− mg ⇢

tan↵
,

and @L/@' = 0, gives p
'

= m ⇢2 '̇ = L
z

= constant.
The other Lagrange equation gives

(d/dt)@L/@⇢̇ = m ⇢̈/ sin2 ↵ = @L/@⇢ = m ⇢ '̇2 −mg/ tan↵.

The above equation may also be written as

⇢̈ =

L
z

m2 ⇢3
sin

2 ↵− g sin↵ cos↵.

It is worthwhile to note that '̇ = L
z

/m⇢2 is not constant in time, apart
from the special case of circular orbits corresponding to ⇢ = C1, '̇ = C2

which are solutions if the initial data satisfy L
z

(0)

2/m2 ⇢(0)2 = g cot↵.

2.9 *Non-uniqueness of the Lagrangian

The implicit prescription adopted so far was that the Lagrangian be
defined as L = T − V , possibly with V replaced by the generalized
potential. However, the question arises how unique is such a prescription
for given equations of motions.

Clearly, a rescaling L0
= λL, λ 2 R yields the same equations of

motion. More generally, apart from a rescaling, the arbitrariness reduces
to the addition of a total time derivative, L0 − L = dF (q)/dt. The
function F cannot depend on q̇ because otherwise L0 would involve q̈.
(In the action integral A =

R
t2

t1
L(q(t), q̇(t), t) dt, dF/dt amounts to a

boundary term).
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In fact, the total derivative satisfies the Euler equation as an identity,
independently of the Lagrangian L:

dF

dt
=

X

j

@F

@q
j

q̇
j

implies
@

@q̇
j

dF

dt
=

@F

@q
j

,

and
d

dt

@

@q̇
j

dF

d t
=

d

dt

@F

@q
j

=

X

k

@

@q
k

@F

@q
j

q̇
k

=

@

@q
j

dF

d t
.

Therefore, the terms involving F disappear from the Euler equations
derived from L0 and one gets the same Euler equations derived from L,
i.e. the same dynamical law.

The converse is also true, i.e. if L(q, q̇, t) and L0
(q, q̇, t) give the same

Euler equations of motion (of the form)

0 =

X

j

A
ij

(q, q̇, t)q̈
j

+ B
i

(q, q̇, t) =

=

d

dt

@L

@q̇
j

− @L

@q
j

=

d

dt

@L0

@q̇
j

− @L0

@q
j

, (2.31)

then (apart from a rescaling) L and L0 differ by a total derivative:
L0

= L+ dF (q)/dt.
In fact, putting G ⌘ L− L0, the last equality in eq. (2.31) gives

d

dt

@G

@q̇
i

− @G

@q
i

=

@2G

@q̇
i

@q̇
j

q̈
j

+

@2G

@q̇
i

@q
j

q̇
j

+

@2G

@q̇
i

@t
− @G

@q
i

.

Hence, by eq. (2.31) one has

@2G

@q̇
i

@q̇
j

q̈
j

= 0,

so that G must be of the form G =

P
i

f
i

(q, t)q̇
i

+g(q, t). Then eq. (2.31)
implies (sum over repeated indices understood)

@f
i

@q
j

q̇
j

+

@f
i

@t
− @f

j

@q
i

q̇
j

− @g

@q
i

= 0.
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Since the q’s and the q̇’s are independent Lagrangian variables, the
coefficient of q̇

j

must vanish, so that

@f
i

@q
j

− @f
j

@q
i

= 0,
@f

i

@t
− @g

@q
i

= 0. (2.32)

By a general mathematical result (called the Poincaré Lemma) the
first of eqs. (2.32) implies that (at least locally) f

i

is of the form f
i

=

@h(q, t)/@q
i

, and then the second of eqs. (2.32) implies

g(q, t)− @h(q, t)/@t = k(t).

In conclusion, one has

L− L0
=

X

i

@h(q, t)

@q
i

q̇
i

+

@h(q, t)

@t
+ k(t) =

d

dt
(h(q, t) +

Z
t

0

d⌧ k(⌧))

(2.33)
i.e. L and L0 differ by a total derivative.

Clearly, the addition of a total derivative changes the definition of
the conjugate momenta:

p0
i

⌘ @L0

@q̇
i

= p
i

+

@F (q)

@q
i

.
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3.1 Energy conservation

As discussed above, the Lagrange equations give the time evolution of
the conjugate momenta (e.g. the momentum, the angular momentum
etc.), whose conservation laws are simply related to symmetries of L.
A natural question is whether one may get a similar simple derivation
of the energy conservation for isolated systems in inertial frames.

We start by showing that the following functionH of the coordinates
q
i

, q̇
i

, called the Hamiltonian function, is a constant of motion if the
Lagrangian is not explicitly time dependent, (i.e. @L/@t = 0):

H(q, q̇, t) ⌘
X

i

p
i

q̇
i

− L, p
i

= @L/@q̇
i

. (3.1)

In fact, one has (sum over i is understood)

dH

dt
=

d

dt

@L

@q̇
i

q̇
i

+p
i

q̈
i

−@L

@q̇
i

q̈
i

−@L

@q
i

q̇
i

−@L

@t
=

✓
d

dt

@L

@q̇
i

− @L

@q
i

◆
q̇
i

−@L

@t
= 0,

as a consequence of Lagrange equations, provided that @L/@t = 0.
The next step is to recognize that the Hamiltonian is the total energy
function, H = T + V , if
i) the relation between the Cartesian coordinates and the Lagrangian
coordinates does not explicitly depend on time: q

i

= q
i

(x), i = 1, ...n,
ii) the potential does not depend on the velocities: @V/@q̇

i

= 0, i =

1, ...n.

F. Strocchi, A Primer of Analytical Mechanics, UNITEXT for Physics,
https://doi.org/10.1007/978-3-319-73761-4_3

© Springer International Publishing AG 2018
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In fact, by eq. (2.2) one has (sum over repeated indices understood)

T =

X

l

1
2
m

l

ẋ2
l

=

X

l

1
2
m

l

@x
l

@q
j

@x
l

@q
i

q̇
j

q̇
i

,

p
i

=

@T

@q̇
i

=

X

l

m
l

@x
l

@q
j

@x
l

@q
i

q̇
j

,
X

i

p
i

q̇
i

= 2T,

and H =

P
i

p
i

q̇
i

− T + V = T + V.

Example 3.1. Consider a point mass subject to an elastic force k x
(harmonic oscillator).

Then
L =

1
2
mẋ2 − 1

2
k x2, p = @L/@ẋ = mẋ,

H =

1
2
mẋ2

+

1
2
k x2

= p2/2m+

1
2
k x2

= T + V,

i.e. H is the energy function, whose conservation is a consequence of
the fact that L is not explicitly time dependent.

Example 3.2. Particle in a central potential (see Example 2.4).

By eqs. (2.25) and (2.24), one has

H = m ṙ2 +mr2 ˙✓2 +mr2 sin

2 ✓ '̇2 − L = T + V =

=

p2
r

2m
+

p2
✓

2mr
+

p2
'

2mr2 sin

2 ✓
+ V (r), (3.2)

i.e. the Hamiltonian function coincides with the particle energy T + V .

Example 3.3. Consider the case of a charged particle in presence of
an electromagnetic potential (see Section 2.5).

Then, one has (sum over i understood)

L =

1
2
m ˙x2 − e('(x)− (v/c) ·A(x)), p

i

= @L/@ẋ
i

= mẋ
i

+ (e/c)A
i

,

H = (mẋ
i

+ (e/c)A
i

)ẋ
i

− 1
2
mẋ

i

ẋ
i

+ e('(x)− (v
i

/c)A
i

) =

=

1
2
m ˙x2

+ e'(x) = ⇡
i

⇡
i

/2m+ e'(x), ⇡
i

⌘ p
i

− (e/c)A
i

.
(3.3)

Thus, H is the energy function (kinetic energy + potential energy).
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Example 3.4. A simple case in which the above conditions i), ii) do
not hold, is provided by Example 1.2. reconsidered in Section 2.4.

L =

1
2
mr2(!2

cos

2 ✓ + ˙✓2)−mg r sin ✓, p
✓

= mr2 ˙✓

H =

1
2
mr2 ˙✓2 − L = p2

✓

/2mr2 +mg r sin ✓ − 1
2
mr2 !2

cos

2 ✓ =

= T + V −mr2 !2
cos

2 ✓,

(T and V given by eq. (2.15)).
Since L does not explicitly depend on time, H is a constant of motion,
but it does not coincide with the particle energy, T + V , which is not
constant in time because the system is not isolated.
In fact, work must be done for keeping the circle at constant angular
velocity !. Indeed, the work done by the external forces in the time
interval dt is given by the variation of the kinetic energy

dW = dT = −mr2(!2
cos ✓ sin ✓ ˙✓ + ˙✓ ¨✓) dt, dW = −dV + dW 0,

where dV = mg rcos ✓ ˙✓ dt is the work done by the gravitational force
and dW 0 is the work done by the engine for keeping the angular velocity
! constant.
Then, using the equation of motion for ✓, eq. (1.8), one has dW 0

=

2mr2 !2
cos ✓ sin ✓ ˙✓ and the work done by the engine when the point

mass has moved from ✓ = −⇡/2 to ✓, is W 0
= mr2 !2

cos

2 ✓. In conclu-
sion, H describes the energy of the global system (particle + engine),
which is constant in time.

The Lagrangian formulation allows for an easy description in the
non-inertial reference frame R0, in which the circle is at rest. Then,
the particle kinetic energy in R0 is given by p2

✓

/2mr2 and the poten-
tial energy has both the contribution V due to the gravitational force
and the contribution V

c

= − 1
2
mr2!2

cos

2 ✓ due to the centrifugal force
(centrifugal potential).

Thus, in such a reference frame the total energy

ER0
= TR0

+ V + V
c

is constant in time.
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Example 3.5. A similar discrepancy between the Hamiltonian function
and the particle energy occurs in the case of a particle of mass m
which is subject to a harmonic force −kx, with corresponding potential
V =

1
2
k r2, r ⌘ |x|, and constrained to move on a horizontal rod which

rotates with constant angular velocity ! around the (vertical) z-axis.

One has

T =

1
2
m(ṙ2 + !2 r2), L = T − V, p

r

= m ṙ,

and therefore the Hamiltonian is

H =

1
2
mṙ2 − 1

2
m!2 r2 + V = T + V −mr2!2.

Since L does not explicitly dependent on time, (@L/@t = 0), the Hamil-
tonian H is a constant of motion, whereas the energy T + V is not,
because mr2!2 is time dependent.
As in the previous example, the constraint force R has a component in
the direction orthogonal to the rod, R · v 6= 0 and work is done by the
engine which rotates the rod.
This is clearly displayed in the non-inertial frame, in which the rod is
at rest, where the centrifugal force gives rise to an additional term in
the potential.

3.2 Hamilton equations

The above examples indicate that in general the conjugate momenta
p
i

’s may be more directly related to relevant physical quantities than
the q̇

i

’s. In particular, the symmetry properties related to cyclic (La-
grangian) variables have a direct implication in terms of their conjugate
momenta p

i

.
The description of the configurations of a mechanical system in terms

of the q
i

’s, p
i

’s, (called canonical variables), rather than in terms of
the Lagrangian variables q

i

’s, q̇
i

’s may therefore be more convenient.
As matter of fact, in the Examples discussed above, the Hamiltonian

turns out to be a function of the canonical variables. Furthermore, quite
generally, the Lagrangian function L = T − V does not have a direct
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physical meaning, in contrast with the Hamiltonian function, which,
as we have seen, in many interesting cases is related to the energy,
H = T + V .

One may then ask whether it is possible
i) to rewrite the Lagrange equations in a form which involves only the
canonical variables q

i

’s and p
i

’s;
ii) to base the formulation and the equations of motion on the (more
physical) Hamiltonian function, rather than on the Lagrangian func-
tion.

The positive answer to the above requirements is provided by the
Hamilton equations, which, as we shall see, have also additional advan-
tages with respect to the Lagrange equations.

To this purpose, we note that, under general conditions, the rela-
tions p

i

⌘ @L/@q̇
i

= p
i

(q, q̇, t) may be inverted, i.e. q̇
i

= q̇
i

(q, p, t), and
therefore, quite generally, the Hamiltonian function may be considered
as a function,

H(q, p, t) ⌘
X

i

p
i

q̇
i

(q, p, t)− L(q, q̇(q, p, t), t)

of the canonical variables q, p.
Then, the differential of H may be written in terms of the differen-

tials of two alternative sets of variables, q
i

, q̇
i

or q
i

, p
i

:

dH =

X

i

✓
@H

@q
i

dq
i

+

@H

@p
i

dp
i

◆
+

@H

@t
dt,

dH =

X

i

✓
q̇
i

dp
i

+ p
i

dq̇
i

− @L

@q̇
i

dq̇
i

− @L

@q
i

dq
i

◆
− @L

@t
dt.

Now, comparing the two expression for dH and using p
i

⌘ @L/@q̇
i

, and
the Lagrange equations one gets

✓
@H

@p
i

− q̇
i

◆
dp

i

+

✓
@H

@q
i

+ ṗ
i

◆
dq

i

+

✓
@H

@t
+

@L

@t

◆
dt = 0.

Since the variables q
i

, p
i

, t, and therefore their differentials, may be
considered as independent, the above equation implies the Hamilton
equations

q̇
i

=

@H

@p
i

, ṗ
i

= −@H

@q
i

,
@H

@t
= −@L

@t
. (3.4)
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Beyond the above formal manipulations, we have achieved
1) to describe the dynamics of the system by equations which involve
the (more convenient) canonical variables;
2) to replace the Lagrange equations for the n Lagrangian coordinates,
which are of second order in time and therefore require the knowledge
of 2n independent initial data, by the Hamilton equations for the 2n
independent canonical variables, which have the advantage of being of
first order in time (the relation between p

i

(t) and q̇
i

(t) is part of the
Hamilton equations, not an a priori relation);
3) to obtain a complete description of the time evolution in terms of
a single function, the Hamiltonian, which is (generically) related to
the energy function; rather than having to specify all the forces acting
on the system (some of them not a priori known), as required in the
Newtonian formulation, in the Hamiltonian formulation the whole in-
formation on the dynamical problem is encoded in the Hamiltonian as
a function of the canonical variables.

3.3 Coordinate transformations and Hamilton equations

As stressed in the previous Chapter, one of the most important and very
helpful properties of the Lagrange equations is their covariance under
changes of (Lagrangian) coordinates, as a consequence of eq. (2.14), and
it is natural to investigate the covariance properties of the Hamilton
equations, under transformations of the canonical variables.

As a first case we consider a change of coordinates, q
i

! Q
i

=

Q
i

(q, t), under which, by eq. (2.14), the Lagrangian transforms covari-
antly, L

Q

(Q, ˙Q, t) = L
q

(q(Q, t), q̇(Q,P, t), t); then, by the definition of
the conjugate momenta, one has (sum over repeated indices under-
stood)

P
i

⌘ @L
Q

@ ˙Q
i

=

@L
q

(q(Q, t), q̇(q, ˙Q, t))

@ ˙Q
i

=

@L
q

@q̇
j

@q̇
j

@ ˙Q
i

= p
j

@q̇
j

@ ˙Q
i

= p
j

@q
j

@Q
i

.

(3.5)
where we have used eq. (2.3), which clearly holds for any change of
coordinates.
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Hence, using eq. (2.2) for q̇
j

, with q
i

= q
i

(Q, ˙Q, t), one has

X

i

P
i

˙Q
i

=

X

i,j

p
j

@q
j

@Q
i

˙Q
i

=

X

j

p
j

✓
q̇
j

− @q
j

@t

◆

and for the Hamiltonian in the new canonical variables Q,P

H
Q,P

(Q,P ) =

X

i

P
i

˙Q
i

− L(q(Q, t), q̇(Q,P, t), t). (3.6)

In conclusion, one has

H
Q,P

(Q,P, t) = H
q,p

−
X

i

p
i

@q
i

(Q, t)

@t
6= H

q,p

(q(Q, t), p(Q,P, t), t).

(3.7)
Thus, unlike the Lagrangian, the Hamiltonian is not a scalar under
a change of coordinates. This result reflects the important physical
property that in general the energy of a mechanical system changes
under a change of coordinates.

We shall explicitly check this fact in some simple examples below.

Example 3.6 Consider a point mass subject to a potential V , in one
dimension.

The Lagrangian and the Hamiltonian are

L =

1
2
mẋ2 − V (x), H =

1
2
mẋ2

+ V (x) = p2/2m+ V (x),

and under the change of Lagrangian coordinates x ! x0
= x − v t,,

corresponding to a frame moving with a constant velocity v, one has

L
x

0
(x0, ẋ0, t) = L

x

(x(x0, t), ẋ(x, ẋ0, t), t) = 1
2
m (ẋ0

+ v)2 − V (x(x0, t)),

and p0 = m (ẋ0
+ v) = p = mẋ. Then, the Hamiltonian in the original

variables x, p, is H
x,p

= p2/2m+ V , and

H
x

0
, p

0
(x0, p0) = H

x,p

− p v =

1
2
p0

2
/2m+ V (x(x0, t))− p0 v.

showing that the Hamiltonian does not transform as a scalar under
such a coordinate transformation.
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Example 3.7. Consider the transformation properties of the Hamil-
tonian under the change of coordinates corresponding to a frame R0

rotating with constant angular velocity ! with respect to an inertial
frame R.

For simplicity, we consider the case of a point mass subject to a
potential V . In cylindrical coordinates ⇢,', z, with the z-axis along the
rotation axis of R0, the transformation reads

⇢0 = ⇢, '0
= '− ! t, z0 = z.

The Lagrangian in the new coordinates is

L0
(⇢,'0, z, ⇢̇, '̇, ż) = 1

2
m(⇢̇2 + ⇢2( ˙'0

+ !)2 + ż2)− V,

and p
⇢

0
= p

⇢

, p
z

0
= p

z

, p
'

0
= m ⇢2( ˙'0

+ !) = p
'

. Thus,

H(⇢,', z, p
⇢

, p
'

, p
z

) =

1

2m

✓
p2
⇢

+ p2
z

+

p2
'

⇢2

◆
+ V (⇢,', z),

H 0
(⇢,'0, z, p

⇢

, p
'

0 , p
z

) =

1

2m

✓
p2
⇢

+ p2
z

+

p2
'

⇢2

◆
+V (⇢,'0

+!t, z)−p
'

! =

= H(⇢,'('0, t), z, p
⇢

, p
'

, p
z

)− p
'

!, p
'

0
= p

'

.

Since p
'

describes the component of the angular momentum along the
z-axis, the term p

'

! may also be written as L · !.
The Hamiltonian H is constant in time, since L is not explicitly time
dependent, and describes the energy of the system in the frame R.
On the other side, H 0 is not constant in time, since is an explicitly time
dependent function of the new variables, unless V is independent of ';
in this case p

'

= L
z

is a constant of motion and clearly so is p
'

!.

Example 3.8. Electron bounded to a (heavy) nucleus in a constant
uniform magnetic field H.

The Lagrangian (2.21) may be written in the form

L =

1
2
m(⇢̇2 + ż2) + 1

2
m ⇢2( ˙✓ − !

L

)

2 − 1
2
m ⇢2 !2

L

− V, (3.8)

so that one easily gets

p
✓

= m ⇢2( ˙✓ − !
L

), p
✓

˙✓ = p
✓

(!
L

+ p
✓

/m ⇢2)
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and

H =

1

2m

✓
p2
⇢

+ p2
z

+

p2
✓

⇢2

◆
+ p

✓

!
L

+

1
2
m ⇢2 !2

L

+ V (⇢, z). (3.9)

This Hamiltonian differs from the Hamiltonian of a particle subject to
a potential V by the terms p

✓

!
L

and 1
2
m ⇢2 !2

L

.
As we have seen in Section 2.6, the first term may be eliminated by
choosing the coordinates of a rotating frame, ✓ ! ✓0 = ✓ − !

L

t. The
conjugate momenta are invariant under this change of coordinates, but
the Hamiltonian is not covariant H

✓

0 6= H
✓(✓0).

Example 3.9. A point mass is constrained to move on a bar of neg-
ligible mass, which forms an angle ↵ with respect to the vertical line
and rotates with angular velocity ! around it. Furthermore, the point
mass is subject to an elastic force − 1

2
k r, with r the distance from the

origin, and to the gravitational potential.

Clearly, the system has only one degree of freedom described by the
coordinate r and one has

T =

1
2
m(ṙ2 + r2 !2

sin

2 ↵), V =

1
2
k r2 +mg r cos↵,

L =

1
2
m(ṙ2 + r2 !2

sin

2 ↵)− 1
2
k r2 −mg r cos↵.

Then, the Hamiltonian is

H = p2
r

/2m+

1
2
k r2 +mg cos↵− 1

2
mr2 !2

sin

2 ↵ =

= T + V −mr2 !2
sin

2 ↵.

Since the Lagrangian does not explicitly depends on time the Hamilto-
nian is a constant of motion, but the energy ER = T +V of the particle
in an inertial frame R is not constant in time.
On the other side, the energy ER0 with respect to the rotating frame
R0 in which the bar is at rest, coincides with H (note the presence of
the centrifugal potential!) and it is constant.
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3.4 Canonical transformations

Since in the Hamiltonian formulation the time evolution is described
by a trajectory in the 2n-dimensional space Γ , (called phase space),
defined by the 2n independent canonical variables, it is natural to con-
sider general invertible transformations of the coordinates of the phase
space Γ , namely

q
i

(t), p
i

(t) ! Q
i

(q, p, t), P
i

(q, p, t). (3.10)

The relevant ensuing issue is then to investigate the conditions under
which, for any choice of the Hamiltonian the corresponding Hamilton
equations are (form) invariant, i.e. there is an Hamiltonian function
K(Q,P ) such that the corresponding Hamilton equations hold for the
new variables Q,P . The transformations satisfying this condition are
called canonical.

As displayed by the above Examples, the new variables Q
i

(q, p, t),
P
i

(q, p, t) cannot be assigned as arbitrary functions of the old variables.
In fact, if the new coordinates Q

i

’s do not depend on the p
i

’s,
the transformation p

i

(t) ! P
i

= P
i

(q, p, t) is uniquely determined by
eq. (3.5), i.e. the P

i

’s must be linear functions of the p
j

’s, with coeffi-
cients @q

j

/@Q
i

, eq. (3.5). This is the condition which guarantees that
the new variables Q,P obey Hamilton equations with an Hamiltonian
H

Q,P

obtained from the Lagrangian through eq. (3.6).
It is worthwhile to note that the transformation

q
i

! Q
i

= Q
i

(q), p
i

! P
i

=

X

j

p
j

@q
j

@Q
i

(3.11)

which is not explicitly dependent on time, leads to a new Hamiltonian
function H

Q,P

which takes the same values as the old Hamiltonian H
q,p

for corresponding points, eq. (3.7), and this covariance property holds
for any (initial) Hamiltonian function H

q,p

.
For simplicity, now we consider the case of time independent trans-

formations; the discussion of transformations which are explicitly time
dependent, eq. (3.10), is more involved and it is postponed to the next
Chapter.
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For discussing the form invariance of the Hamilton equations it is
convenient to cast them in the following compact form:

˙X
i

= G
@H

@X
i

, i = 1, ...2n, G =

✓
0 1

−1 0

◆
, (3.12)

where X denotes a column with entries q1, ....qn, p1, ...pn and G is a
2n⇥2n matrix, the entries 0, 1, 0,−1 in eq. (3.12) being n⇥n matrices.

With these notations a time independent transformation of the
canonical variables q

i

, p
i

! Q
i

(q, p), P
i

(q, p), i = 1, ...n may be written
as X

i

! Y
i

(X), i = 1, ...2n. Hence, one has

˙Y
i

=

X

j

@Y
i

@X
j

˙X
j

=

X

jl

@Y
i

@X
j

G
j k

@H

@Y
l

@Y
l

@X
k

, (3.13)

i.e. in compact matrix form

˙Y = J GJT

@H

@Y
, (3.14)

where J is the Jacobian of the transformation , (J
ij

= @y
i

/@x
j

), and the
superscript T denotes the transpose, so that

(J GJT

)

i l

=

X

jk

@Y
i

@X
j

G
j k

@Y
l

@X
k

.

Thus, the transformation leaves the Hamilton equations invariant,
for any chosen Hamiltonian H, if and only if

J GJT

= G. (3.15)

This condition characterizes a canonical transformation.
As we shall see later, this condition characterizes also the time

dependent canonical transformations; in this more general case the
new Hamiltonian K differs from the old one H by a Hamiltonian-
independent term, which does only depend on the canonical transfor-
mation (see eqs. (3.7) and Examples 3.6-3.9).

It is easy to check that the condition is satisfied by the transforma-
tion (3.11).
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Example 3.10. It is easy to check that the following transformations
are canonical:
a) Q

i

= p
i

, P
i

= −q
i

b) Q
i

= λ q
i

, P
i

= µ q
i

, λµ = 1. The condition λµ = 1 is necessary
and sufficient for the transformation being canonical.

The canonicity of the transformations b), may be used to transform
the Hamiltonian of the harmonic oscillator in the following simple form:

H =

1
2
(p2/m+ k2q2) ! H =

1
2
!(P 2

+Q2
), ! ⌘ k/m,

by taking λ =

p
m!, µ = λ−1.

Example 3.11. Verify that the transformation:

Q
i

= ↵ q
i

+ β p
i

, P
i

= γ q
i

+ δ p
i

,

is canonical if and only if ↵ δ − β γ = 1.

*Example 3.12. A transformation

q ! Q(q, t), p ! P (q, p, t)

satisfies condition (3.15) if and only if P (q, p, t) is of the form

P
i

=

X

j

p
j

@q
j

@Q
i

+

@G(q)

@q
i

.

We have to exploit the condition given eq. (3.15). To this purpose,
we note that J has the form

J =

✓
@Q 0

@
q

P @
p

P

◆
,

where
(@Q)

ij

⌘ @Q
i

@q
j

, (@
q

P )

ij

⌘ @P
i

@q
j

, (@
p

P )

ij

⌘ @P
i

@p
j

.
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Then, eq. (3.15) reads

J GJT

=

✓
@Q 0

@
q

P @
p

P

◆✓
0 1

−1 0

◆✓
(@Q)

T

(@
q

P )

T

0 (@
p

P )

T

◆
=

✓
0 @Q (@

p

P )

T

−@
p

P (@Q)

T −@
p

P (@
q

P )

T

+ @
q

P (@
p

P )

T

◆
=

✓
0 1

−1 0

◆
.

First, this condition implies @
p

P = (@QT

)

−1, so that @
p

P must be
independent of p, since so is @Q; moreover, by definition

(@QT

)

ij

= @Q
j

/@q
i

, (@QT

)

−1
ij

= @q
j

/@Q
i

and therefore one has

P
i

=

X

j

p
j

(@QT

)

−1
ij

+G
i

(q) =
X

j

p
j

@q
j

/@Q
i

+G
i

(q).

Finally, −@
p

P (@
q

P )

T

+ @
q

P (@
p

P )

T

= 0 requires that

@G
j

@Q
i

− @G
i

@Q
j

= 0

and by Poincaré Lemma G
i

is of the form of a “gradient”, G
i

= @G/@Q
i

for some function G, equivalently G
i

= @G/@q
i

.

*Example 3.13 The addition of a total derivative to the Lagrangian

L ! L+ dG/dt ⌘ L0

changes the definition of the conjugate momenta but it gives rise to
equivalent Hamilton equations, i.e. the same dynamics is described in
terms of different canonical variables.

In fact, from L0 one gets

p0
j

⌘ @L0

@q̇
j

= p
j

+

@G(q)

@q
j

,
@p

k

@p0
j

|
q

= δ
kj

,

where |
q

indicates that q has to be kept fixed in performing the partial
derivative with respect to the other variables.
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Furthermore, by eqs. (5.30), q
i

(t) and q̇
i

(t) do not change. Then, (sum
over repeated indices understood)

H 0
(q, p0) = p0

j

q̇
j

− L0
= (p

j

+

@G

@q
j

) q̇
j

− L− @G

@q
j

q̇
j

= H(q, p) =

= H(q, p0 − @G(q)

@q
). (3.16)

The corresponding Hamilton equations are

dq
j

dt
=

@H 0

@p0
j

|
q

=

@H

@p
k

@p
k

@p0
j

|
q

=

@H

@p
j

|
q

,

dp0
j

dt
= −@H 0

@q
j

|
p

0
= −@H

@q
j

|
p

− @H

@p
k

@p
k

@q
j

|
p

0
= −@H

@q
j

|
p

+ q̇
k

@

@q
j

@F

@q
k

.

If, in the right hand side of the last equation p0 is replaced by its ex-
pression in terms of p, the terms involving G cancel and one reobtains
the equation for ṗ corresponding to H.

* Remark 3.1 The transformation

Q
i

(t) = q
i

(t), ˙Q
i

(t) = q̇
i

(t), P
i

(t) = p
i

(t) + @G(q)/@q
i

(3.17)

is a special case of the transformations discussed in Example 3.12, and
therefore is canonical.

It does not change the Lagrangian variables q, q̇ and therefore it
leaves all the physical quantities F (q, q̇, t) invariant. However, it changes
the relation between the canonical momentum and q̇, corresponding to
the addition of a total derivative dG(q)/d t to the Lagrangian.

For these reasons, one may call the transformation (3.17) a “gauge”
transformation.

As a matter of fact, in the simple case of a particle in the presence of
a magnetic field, see Example 3.3, the particle position x and velocity
v =

˙x are observable quantities, but the canonical momentum p
i

=

ẋ
i

+ (e/c)A
i

is not invariant under a gauge transformation A
i

! A
i

+

@⇤(x)/@x
i

. In fact, one has

x
i

! x
i

, ẋ
i

! ẋ
i

, p
i

! p
i

+ (e/c)@⇤/@x
i

,
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corresponding to the fact that under a gauge transformation the La-
grangian is invariant up to a total derivative.

Under the canonical transformation (3.17), the Hamiltonian is in-
variant up to a total derivative of a function of the q’s.

In fact, by eq. (3.16), one has:

H 0
(q, p0) = H(q, p)

and, on the other side,

H(q, p0) = q̇
i

p
i

+ q̇
i

@G(q)

@q
i

− L =

= H(q, p) +
dG(q)

dt
.

Hence, by comparing the two equations, one has

H 0
(q, p0) = H(q, p0)− dG(q)

dt
, (3.18)

i.e. the Hamiltonian is invariant up to a total derivative.



4
Poisson brackets and canonical structure

4.1 Constants of motion identified by
Poisson brackets

Since the canonical variables completely describe the state of the me-
chanical system, any physical quantity F shall be described by a func-
tion of the canonical variables: F (q, p, t), possibly with an explicit time
dependence.

A very relevant issue for the discussion of the dynamics is whether
a physical quantity F (q(t), p(t), t) is a constant of motion. In principle,
one should know the solution q(t), p(t) of the evolution equations and
then check if, correspondingly

dF

dt
=

X

i

✓
@F

@q
i

q̇
i

+

@F

@p
i

ṗ
i

◆
+

@F

@t
= 0. (4.1)

Clearly, such a procedure is not of great help since it requires the full
knowledge of the dynamics, which the constants of motion should be
instrumental to provide helpful information about.

As we have seen above, the occurrence of cyclic variables (typically
corresponding to symmetries of the Lagrangian or of the Hamiltonian)
provide immediate information, but in general one faces the problem of
checking eq. (4.1). As we shall see, the Hamiltonian formulation turns
out to be very useful, since it provides an easy solution of this problem.

F. Strocchi, A Primer of Analytical Mechanics, UNITEXT for Physics,
https://doi.org/10.1007/978-3-319-73761-4_4

© Springer International Publishing AG 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-73761-4_4&amp;domain=pdf
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In fact, by using the Hamilton equations, eq. (4.1) becomes

dF

dt
=

X

i

✓
@F

@q
i

@H

@p
i

− @F

@p
i

@H

@q
i

◆
+

@F

@t
= 0 (4.2)

and may be checked without having to know the solution q
i

(t), p
i

(t),
only the expression of the Hamiltonian function in terms of the canon-
ical variables being sufficient.

No similar simple information is provided by the Lagrangian, apart
from the case of cyclic variables, (not to speak of the Newtonian ap-
proach in Cartesian coordinates) and this adds further support to the
useful role of the Hamiltonian function.

As displayed on many occasions below, given two physical quantities
F (q, p, t), G(q, p, t) a convenient concept is their Poisson bracket

{F, G} ⌘
X

i

✓
@F

@q
i

@G

@p
i

− @F

@p
i

@G

@q
i

◆
. (4.3)

With such a notation, the time derivative of F takes the form

dF

dt
= {F, H}+ @F

@t
, (4.4)

and therefore, if F is not explicitly time dependent, its being a constant
of motion is equivalent to the vanishing of its Poisson bracket with the
Hamiltonian.

Examples The power of the Poisson brackets for checking whether a
physical quantity F (q, p, t) is a constant of motion (without having to
solve the equations of motion) may be seen by revisiting the Examples
discussed before.

In the Example 3.4, it is immediate to check that {T + V, H} 6= 0,
and therefore the energy T + V , in the inertial reference frame R, is
not a constant of motion) whereas so is TR0

+ V + V
c

.
Similarly, in Examples 3.5, 3.9, {T +V, H} 6= 0, so that again T +V

is not a constant of motion.
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Example 3.7. (See Section 3.3) By using the Poisson brackets, it is
immediate to check that the energy in the reference frame R is a con-
stant of motion, but the Hamiltonian H 0 in the non inertial reference
frame R0,

H 0
=

1

2m

✓
p2
⇢

+ p2
z

+

p2
✓

⇢2

◆
+ V (⇢,'0 − !t, z)

is not a constant of motion:

dH 0

d t
= {H 0, H 0}+ @H 0

@t
=

@V

@t
=

@V

@'
! = −ṗ

'

!,

unless V is independent of '.

Example 4.1. Consider two particles with an interaction described
by a potential V (x1,x2). Are there constants of motion of the form
F (x1,x2), F (p1,p2)?

In terms of the Poisson brackets, the condition that F (x1,x2) is a
constant of motion reads

X

i

✓
@F

@x1,i

p1,i +
@F

@x2,i

p2,i

◆
= 0.

Since, in the initial conditions, the positions and the momenta may be
assigned independently, the above equation requires @F/@

x1,i
= 0 =

@F/@
x2,i

, i.e only the constant functions are allowed.
On the other side, the condition that F (p1,p2) is a constant of motion
reads X

i

✓
@F

@p1,i

@V

@x1,i

+

@F

@p2,i

@V

@x2,i

◆
= 0.

This condition is easily solved if V (x1, x2) = V (x1 − x2), since then
@V/@x1,i = r

i

V = −@V/@x2,i, and the condition requires

@F

@p1,i
− @F

@p2,i
= 0.

Thus, the only functions allowed are all the functions of P = p1 + p2.
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4.2 General properties of Poisson brackets

The Poisson brackets define a very important algebraic structure on the
algebra of regular functions of the canonical coordinates, as discussed
below.

To avoid technical points we shall consider the algebra A of the in-
finitely differentiable (briefly C1) real functions of the canonical vari-
ables (including the possibility of a differentiable explicit dependence
on time, F (q, p, t), even if, for simplicity it shall not always spelled out
in the following).

We start by recalling that the standard algebraic operations in A are
defined by :
i) linear (vector space) structure

(λF )(q, p) ⌘ λF (q, p), 8λ 2 R; (F +G)(q, p) ⌘ F (q, p) +G(q, p);

ii) algebraic product

(F G)(q, p) ⌘ F (q, p)G(q, p), F, G 2 A.

The so defined product is clearly associative:

(F (GK)) = ((F G)K).

and therefore A is an associative algebra.
An additional "product" is defined by the Poisson brackets:

A,B ! {A, B } 2 A,

{A, B} ⌘
X

i

✓
@A

@q
i

@B

@p
i

− @A

@p
i

@B

@q
i

◆
, 8A,B 2 A. (4.5)

The Poisson brackets satisfy the following general properties, which
easily follow from the definition and turn out to be very useful for the
computations:
1) (antisymmetry)

{A, B} = − {B, A}, (4.6)

2) (linearity in both factors)

{A, B + C} = {A, B}+ {A, C}, (4.7)
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3) (Leibniz rule)

{A, B C } = {A, B}C + B {A, C}, (4.8)

4) (Jacoby identity)

{A, {B, C}}+ {C, {A, B}}+ {B, {C, A}} = 0. (4.9)

The Jacoby identity states that the sum of the trilinear Poisson brackets
obtained by cyclically permuting the three variables A,B,C vanishes.

The above properties characterize basic mathematical structures.
Given an associative algebra a bilinear map satisfying properties 1, 2,
4, is called a Lie bracket and the additional property 3 (Leibniz rule)
states that it is a derivation. A prototypic example is provided by a Lie
algebra.

In the following, a bilinear map satisfying 1-4 shall be called a Lie
product. Technically, a real associative algebra A, (i.e. with an as-
sociative product), equipped with a Lie product is called a Poisson
Algebra.

The properties 1)-4) imply the following useful result (Jacobi theo-
rem:
The Poisson bracket of two constant of motion is also a constant of
motion.

In fact, by using the Jacoby identity, one has:

d{A, B}
dt

= {{A, B}, H}+ @{A, B}
@t

=

= −{{H, A}, B}}− {{B, H}, A}+ {@A
@t

, B}+ {A, @B
@t

} =

= {dA
dt

, B}+ {A, dB
dt

} = 0. (4.10)

The result is not as trivial as it might appear, the Leibniz rule applies to
the time derivative acting on the Poisson brackets thanks to the Jacobi
identity.
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4.3 Canonical structure

For the applications is it useful to consider the Poisson brackets of some
basic physical quantities.

First, we consider the canonical variables q, p; from the definition,
eq. (4.3), one easily gets:

{q
i

, q
j

} = 0, {p
i

, p
j

} = 0, {q
i

, p
j

} = δ
ij

, (4.11)

where δ
ij

is the Kronecker symbol, δ
ij

= 1 for i = j, and zero otherwise.
The above Poisson brackets are called the canonical Poisson brack-

ets. For the polynomial algebra of canonical variables, A
P

, they encode
all the information given by the explicit definition of the Poisson brack-
ets; in fact, they may be used to define a unique Lie product satisfying
1-4, which actually coincides with the Poisson bracket explicitly defined
by eq. (4.3).

By the definition of Poisson brackets, one also has

{q
i

, B(q, p, t)} =

@B

@p
i

, {p
i

, B(q, p, t)} = −@B

@q
i

. (4.12)

For the polynomial algebra A
P

they are implies by the canonical Pois-
son brackets (4.11). It may be useful to remark that eqs. (4.11), (4.12)
have a strict counterpart in Quantum Mechanics.

Next, we consider the Poisson brackets of the angular momentum
L
i

= "
ijk

x
j

p
k

; one gets (the sum over repeated indices is understood)

{x
i

, L
j

} = ✏
ijk

x
k

, {p
i

, L
j

} = ✏
ijk

p
k

, (4.13)

{L
i

, L
j

} = ✏
ijk

L
k

, {L1, L2} = L3, {L1, L3} = −L2, {L2, L3} = L1,
(4.14)

{L2, L
i

} = L
j

{L
j

, L
i

}+ {L
j

, L
i

}L
j

= ✏
jik

(L
j

L
k

+ L
k

L
j

) = 0.
(4.15)

The following Examples illustrate the usefulness of the above canon-
ical structure, properties 1-4 and eqs. (4.11-15).

Example 4.2. If two components of the angular momentum are con-
stants of motion, so is also the third one.

In fact, if L1, L2 are constants of motion, by Jacobi theorem, (eq.
(4.10)), also L3 = {L1, L2} is a constant of motion:
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Example 4.3. Consider two harmonic oscillators with a mutual inter-
action described by a potential V (|x(1) −x(2)|). Then, the Hamiltonian
is

H =

1
2
(p2

(1) + p2
(2))/m+

1
2
(k2

(1) x
2
(1) + k2

(2) x
2
(2)) + V (|x(1) − x(2)|).

What may be said about the constants of motion?

As before, no F (x(1),x(2)
) is a constant of motion. By exploiting the

independence of the initial conditions for the positions and the mo-
menta and by arguing as before one concludes that there is no constant
of motion of the form F (p(1),p(2)

).
Interesting functions are the angular momenta of the two oscillators
L(1), L(2). By using the above eqs.(4. 11-13) one gets

{L(1)
i

, H} = ✏
ijk

p
(1)
k

p
(1)
j

/m − ✏
ijk

x
(1)
k

(k2
(1) x

(1)
j

+

@V

@x
(1)
j

=

= V 0 ✏
ijk

x
(1)
k

x
(2)
j

|x(1) − x(2)| 6= 0, {L(2)
i

, H} = V 0 ✏
ijk

x
(2)
k

x1
j

|x(1) − x(2)| 6= 0,

and {L(1)
i

+ L
(2)
i

, H} = 0.

*Example 4.4. (Spherical and cylindrical canonical variables)
It is an instructive exercise to check that the transformation from Carte-
sian to spherical or cylindrical canonical variables is canonical.

Spherical canonical variables.
It is convenient to write the transformation in matrix form, with the
coordinates written in a column:

x =

0

@
x
y
z

1

A
= r

0

@
sin ✓ cos'
sin ✓ sin'

cos ✓

1

A . (4.16)

Then, one has

v = ṙ

0

@
cos ✓ cos'
cos ✓ sin'
− cos ✓

1

A
+ r ˙✓

0

@
sin ✓ cos'
sin ✓ sin'

cos ✓

1

A
+ r sin ✓'̇

0

@
− sin'
cos'
0

1

A .
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Hence, (the superscript T denotes the transpose in the matrix multi-
plication)

T =

1
2
mv · v =

1
2
mvTv =

1
2
m (ṙ2 + (r ˙✓)2 + (r sin ✓ '̇)2); (4.17)

p
r

= m ṙ, p
✓

= mr2 ˙✓2, p
'

= mr2 sin

2 ✓ '̇,

T =

1

2m
p2
r

+

1

2mr2

✓
p2
✓

+

p2
'

sin

2 ✓

◆
. (4.18)

It is useful to express the angular momentum L = mx^ v in spherical
coordinates:

L = mr2

2

4 ˙✓

0

@
−sin'
cos'
0

1

A− sin ✓ '̇

0

@
cos ✓ cos'
cos ✓ sin'
− sin ✓

1

A

3

5
=

= p
✓

0

@
− sin'
cos'
0

1

A− p
'

sin ✓

0

@
cos ✓ cos'
cos ✓ sin'
− sin ✓

1

A , (4.19)

in particular L
z

= p
'

.
Clearly {L

z

, T} = 0, a result already obtained before. Actually, in
addition one has {L

x

, T} = 0, and therefore, by Jacobi theorem, also
{L

y

, T} = 0.

Cylindrical canonical variables.
As before, it is convenient to write the transformation from Cartesian

to cylindrical coordinates in matrix form:

x =

0

@
x
y
z

1

A
=

0

@
⇢ cos'
⇢ sin'

z

1

A
; (4.20)

v = ⇢̇

0

@
cos'
sin'
0

1

A
+ ⇢'̇

0

@
− sin'
cos'
0

1

A
+ ż

0

@
0

0

1

1

A .
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Then,

T =

1
2
m(⇢̇2 + (⇢ '̇)2 + ż2) =

1

2m

✓
p2
⇢

+

p2
'

⇢2
+ p2

z

◆
,

p
⇢

= m ⇢̇, p
'

= m ⇢2 '̇, p
z

= m ż.
For the angular momentum in cylindrical coordinates, one has

L =

0

@
⇢ sin' p

z

− z sin' p
⇢

− z cos' p
'

/⇢
−⇢ cos' p

z

+ z cos' p
⇢

− z sin' p
'

/⇢
p
'

1

A .

Clearly, the transformation: x,p ! (r, ✓,'), (p
r

, p
✓

, p
'

) defined above,
leading from Cartesian to spherical canonical variables, satisfies eq. (3.5)
(by the way the canonical momenta have been defined) and therefore
it is canonical.
The same property holds for the transformation which leads from Carte-
sian to cylindrical canonical coordinates: x,p ! (⇢,', z), (p

⇢

, p
'

, p
z

).
This implies that both the spherical and the cylindrical canonical

coordinates satisfy eqs. (4.11), (4.12).

4.4 Invariance of the Poisson brackets under
canonical transformations

Given a canonical transformation q, p ! Q(q, p, t), P (q, p, t), for any
two physical quantities A, B one may define the Poisson brackets by
using the two different canonical variables

{A, B}
q,p

=

X

i

✓
@A

@q
i

@B

@p
i

− @A

@p
i

@B

@q
i

◆
, (4.21)

{A, B}
Q,P

=

X

i

✓
@A

@Q
i

@B

@P
i

− @A

@P
i

@B

@P
i

◆
, (4.22)

where, in eqs. (4.22), as functions of the new variables A and B are
defined by A(q(Q,P, t), p(Q,P, t), t), B(q(Q,P, t), p(Q,P, t), t).

A very important and useful property is that the two definitions
coincide (invariance of the Poisson brackets under canonical
transformations).
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In fact, by introducing the vectors

x = (x1 = q1, ..., xn

= q
n

, x
n+1 = p1, ..., x2n = p

n

),

y = (y1 = Q1, ..., yn = Q
n

, y
n+1 = P1, ..., y2n = P

n

),

(see Section 3.4), and denoting by J the Jacobian of the transformation,
one has (sum over k understood) @A/@x

i

= @A/@y
k

J
ki

. Hence

{A, B}
q,p

=

nX

i=1

✓
@A

@q
i

@B

@p
i

− @A

@p
i

@B

@q
i

◆
=

2nX

i,j=1

✓
@A

@x
i

G
ij

@B

@x
j

◆
, (4.23)

with G defined by eq. (3.12), and thanks to eq. (3.15) (with the sum
over repeated indices understood)

{A, B}
q,p

=

@A

@y
i

J
ij

G
jk

J
lk

@B

@y
l

=

@A

@y
i

G
ik

@B

@y
k

= {A, B}
Q,P

. (4.24)

The converse is also true since we may write the Jacobian as a 2 x 2
block matrix

J =

✓
J1 J2
J3 J4

◆
,

with

(J1)ij ⌘
@Q

i

@q
j

, (J2)ij ⌘
@Q

i

@p
j

, (J3)ij ⌘
@P

i

@q
j

, (J4)ij ⌘
@P

i

@p
j

,

i, j now running from 1 to n.
Then

(J GJT

) =

✓
{Q

i

, Q
j

}
q,p

{Q
i

, P
j

}
q,p

{P
i

, Q
j

}
q,p

{P
i

, P
j

}
q,p

◆
, (4.25)

so that, if the Poisson brackets are preserved, {A, B}
q,p

= {A, B}
Q,P

,
the right hand side of eq. (4.25) isG, i.e. the transformation is canonical.

As a consequence of the above equivalence, one may adopt the fol-
lowing definition:
a transformation of the canonical variables is canonical if it
leaves the Poisson brackets invariant, i.e. if, for given q, p !
Q(q, p, t), P (q, p, t)

{Q
i

, Q
j

}
q,p

= 0, {P
i

, P
j

}
q,p

= 0, {Q
i

, P
j

}
q,p

= δ
ij

. (4.26)
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The above invariance property of the Poisson brackets may be ex-
ploited for simplifying the calculation of Poisson brackets.

Example 4.5. Using eq. (4.19), it is easy to check that {L, F (r)} = 0,
r =

p
x2.

The rather lengthy calculation in terms of Cartesian canonical vari-
ables may be replaced by a trivial one, by using canonical spherical vari-
ables for computing the Poisson bracket. In fact, in this case the only
non-vanishing contribution to the Poisson brackets of F (r) may come
to @F (r)/@r and, on the other side, from eq. (4.19) one has @L/@p

r

= 0.

Example 4.6. It easy to check that, for one particle, {L
i

, T} = 0.

The computation is trivial by using Cartesian canonical variables;
by eqs. (4.8), (4.12), (4.13) one immediately gets

{L
i

,
X

l

p
l

p
l

} =

X

lk

"
ilk

(p
k

p
l

+ p
l

p
k

) = 0.

Example 4.7. Consider the motion of a particle in a central potential
V (r) in a rotating frame R0 with constant angular velocity ! (as in
Example 3.7). Then L · ! is a constant of motion.

In fact, by using spherical variables with the z-axis in the direction
of the rotation axis, one has L · ! = p

'

! , H = T + V (r) − p
'

!, and
(by using the above result {L

i

, T} = 0})

{p
'

, H} = {p
'

, T + V − p
'

!} = 0.

Example 4.8. Consider the case of Example 4.7 and a vector physical
quantity J(x,p). Determine its time variation in the reference frame
R0.

In R0 the quantity J is described by the following function of the
coordinates of the rotating frame J0

(x0,p0
) ⌘ J(x(x0, t),p(x0,p0, t)) and

therefore
dJ0

dt
=

X

i

✓
@J0

@x0
i

ẋ0
i

+

@J0

@p0
i

ṗ0
i

◆
= {J0, H 0}

x

0
,p

0 .
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By the invariance of the Poisson brackets under canonical transforma-
tions, one may compute the above Poison brackets by using the canon-
ical variables q, p and use the fact that H 0

= H − ! · L (see Example
3.7). Then

{J0, H 0}
x

0
,p

0
= {J, H − ! · L}

x,p

= dJ/dt+ ! · {L, J}
x,p

.

An interesting special case is provided by J = L; then in a rotating
frame the time derivative of L is given by

dL0

dt
= {L, H}− ! ^ L. (4.27)

Example 4.9. Bloch equations. The Hamiltonian of a free symmet-
rical spinning top, in an inertial reference frame R, is given by

H = T = J2/2I, (4.28)

where I denotes its moment of inertia and J its angular momentum.
If the top carries a charge, a magnetic moment M = µJ is associated

to its angular momentum, so that in the presence of a uniform magnetic
field B the Hamiltonian gets an additional term −M · B. Discuss the
time evolution of J.

By using the Poisson brackets one easily gets the time evolution in

dJ
i

dt
= µB · {J, J

i

} = −µ(B ^ J)
i

.

Hence, in the reference frame R0 rotating with angular velocity ! =

−µB, with respect to R, by eq. (4.27), one has dJ 0
i

/dt = 0, i.e., in
the reference frame R, J undergoes a uniform precession, with angular
velocity ! around the axis in the direction of the magnetic field.

Remark 4.1. A similar structure arises also in the case in which one
has a physical quantity J, with components J

i

, i = 1, 2, 3, to which
are associated Poisson brackets of the same form as those of the an-
gular momentum, eqs. (4.14), {J

i

, J
j

} = ✏
ijk

J
k

, without requiring the
existence of corresponding canonical variables q, p.
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This is the case of the intrinsic angular momentum or spin S of a
particle, the only properties which enter being the Poisson brackets

{S
i

, S
j

} = "
ijk

S
k

, (4.29)

characteristic of an angular momentum.
If a magnetic moment M = µS is associated to S, in the presence

of a magnetic field one has a coupling with a magnetic field given by
µS ·B and the time evolution is given by equations of the same form
of the Bloch equations and one has a precession as above.

This further shows the power of the Hamiltonian mechanics over the
Newtonian Cartesian mechanics, covering cases which do not have an
analog in terms of Cartesian coordinates.

Remark 4.2. It is important to stress that the canonical structure, and
in particular the canonicity of a transformation, is independent of the
dynamics, i.e. of the possible choice of the Hamiltonian. It characterizes
the geometrical structure of the manifold with local coordinates q, p.



5
Generation of canonical transformations

5.1 Alternative characterization of
canonical transformations

The characterization of canonical transformations discussed in the pre-
vious Chapter, in terms of eqs. (3.15) or of the invariance of the Poisson
brackets, is on one side rather simple, but on the other side is not con-
structive.

In the following, we shall discuss a constructive strategy by charac-
terizing (generating) functions, with the property that, through simple
operations involving their derivatives, they define transformations of
the canonical variables, which are guaranteed of being canonical.

To this purpose it is convenient to have the following alternative
characterization of canonical transformations.

A transformation of the canonical variables

q, p ! Q(q, p, t), P (q, p, t)

is equivalently identified by the inverse formulas

q
i

= q
i

(Q,P, t), p
i

= p
i

(Q,P, t). (5.1)

and more generally by assigning 2n invertible relations between the new
and the old canonical variables.

F. Strocchi, A Primer of Analytical Mechanics, UNITEXT for Physics,
https://doi.org/10.1007/978-3-319-73761-4_5

© Springer International Publishing AG 2018
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For example, if the 2n coordinates q,Q are functionally indepen-
dent one may express the other coordinates in terms of them and the
canonical transformation (5.1) may be equivalently characterized by
the following 2n (invertible relations)
I)

p
i

= p
i

(q,Q, t), P
i

= P
i

(q,Q, t), i = 1, ...n. (5.2)

In fact, by inverting the second n relations one may obtain the q’s
as functions of Q,P : q

i

= q
i

(Q,P, t) and substituting such expressions
in the first n relations one obtains also the p

i

’s as functions of Q,P . In
this way one recovers the form of eq. (5.1).

In a similar way, according as the 2n coordinates (q, P ), or (p,Q),
or (p, P ), are functionally independent one may correspondingly char-
acterize the canonical transformation of eq. (5.1) by giving one of the
following set of (invertible) relations
II)

p
i

= p
i

(q, P, t), Q
i

= Q
i

(q, P, t), i = 1, ...n; (5.3)

III)
q
i

= q
i

(p,Q, t), P
i

= P
i

(p,Q, t), i = 1, ...n; (5.4)

IV)
q
i

= q
i

(p, P, t), Q
i

= Q
i

(p, P, t), i = 1, ...n. (5.5)

The crucial next step is to formulate the canonicity condition in
terms of the relations I)-IV).

We start by case I. Then, as we shall argue below, the transformation
defined by eq. (5.2) is canonical if and only if there exists a function
F
I

= F
I

(q,Q, t) such that

p
i

(q,Q, t) =
F
I

(q,Q, t)

@q
i

, P
i

(q,Q, t) = −F
I

(q,Q, t)

@Q
i

, i = 1, ...n.

(5.6)
Thus, from a constructive point of view, any regular function of 2n
independent variables q,Q, defines a canonical transformation, through
eqs. (5.6).

The function F
I

is called the generating function of the canonical
transformation.
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The function F
I

also allows to write the Hamiltonian H
Q,P

for the
new variables:

H
Q,P

(Q,P, t) = H(q(Q,P, t), p(Q,P, t), t) + @F
I

/@t. (5.7)

The canonicity conditions for the relations (5. 3)-(5.5) require the
existence of functions F

II

(q, P, t), F
III

(p,Q, t), F
IV

(p, P, t) such that
II)

p
i

(q, P, t) =
@F

II

@q
i

, Q
i

(q, P, t) =
F
II

@P
i

; (5.8)

III)

q
i

(p,Q, t) = −@F
III

@p
i

, P
i

(p,Q, t) = −F
III

@Q
i

; (5.9)

IV)

q
i

(p, P, t) = −@F
IV

@p
i

, Q
i

(p, P, t) =
@F

IV

@P
i

. (5.10)

We shall prove that any of the above set of equations, eqs. (5.6) or
(5.8) or (5.9) or (5.10), imply that the corresponding transformation is
canonical.

As discussed in Section 4.4, it is enough to show that the Poisson
brackets are invariant.

To this purpose we start by considering the case of eqs. (5.6); one
has

@P
j

@p
k

|
q

=

@P
j

@Q
l

|
q

@Q
l

@p
k

|
q

;

@P
j

@q
k

|
p

=

@P
j

@q
k

|
Q

+

@P
j

@Q
l

|
q

@Q
l

@q
k

|
p

.

where the sum over repeated indices is understood and |
q

, |
p

denote
that in the derivation the variable q, respectively p, has to be kept
fixed. Then, by using the above equations one gets

{Q
i

, P
j

} =

Q
i

@q
k

|
p

@P
j

@p
k

|
q

− Q
i

@p
k

|
q

@P
j

@q
k

|
p

= −@Q
i

@p
k

|
q

@P
j

@q
k

|
Q

=

@Q
i

@p
k

|
q

@

@q
k

|
Q

@F
I

@Q
j

|
q

=

@Q
i

@p
k

|
q

@p
k

@Q
j

|
q

= δ
ij

.

In a similar way one recovers the other canonical Poisson brackets.
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The other cases II-IV may be treated by an analogous pattern.
We skip the proof of the converse, namely that if the transformation
is canonical there are functions F

I

, F
II

, F
III

, F
IV

such that eqs. (5.6),
(5.8), (5.9), (5.10) hold.

In all cases the Hamiltonian for the new canonical variables H
Q,P

is
obtained fromH

q,p

as in eq. (5.7), with F
I

replaced by the corresponding
generating functions.

If the relations between the old and the new canonical variables
are not explicitly dependent on time, then so are also the generating
functions F and therefore the Hamiltonian (which may explicitly de-
pend on time) transforms covariantly under the transformation, as the
Lagrangian function does for a change of Lagrangian variables.

The Hamiltonian is invariant under a canonical transformation if
H

Q,P

and H
q,p

are the same function of their arguments.

*Remark 5.1 It is worthwhile to remark that the characterization
of the canonical transformations in terms of generating functions has
the advantage of providing the transformation of the Hamiltonian, an
information not directly given by the invariance of the Poisson brackets.

If the relation between the old and the new canonical variables is
explicitly time dependent the Hamiltonian is not covariant under the
transformation. In fact, by eqs. (4.12), putting K ⌘ H

Q,P

, one has

˙Q
i

= {Q
i

, K}
Q,P

= @K/@P
i

, ˙P
i

= {P
i

, K}
Q,P

= −@K/@Q
i

(5.11)

On the other hand, as functions of the old variables Q
i

, P
i

satisfy

˙Q
i

= {Q
i

, H}
q,p

+ @Q
i

/@t, ˙P
I

= {P
i

, H}
q,p

+ @P
i

/@t (5.12)

and, by the invariance of the Poisson brackets (eqs. (4.21), (4.22)),

{Q
i

, H}
q, p

= {Q
i

, H}
Q,P

= @H/@P
i

,

{P
i

, H}
q,p

= {P
i

, H}
Q,P

= −@H/@Q
i

.

Then, by comparing eqs. (5.11), (5.12), one has

@Q
i

@t
=

@(K −H)

@P
i

,
@P

i

@t
= −@(K −H)

@Q
i

(5.13)

and K−H 6= 0 if there is an explicit time dependence in the expression
of the new canonical variables in terms of the old ones.
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Moreover, the left hand sides of eqs. (5.13) depend on the functions
Q(q, p, t), P (q, p, t), which define the transformation, but not on their
dynamics, defined by the Hamiltonians H,K. Therefore, the solution
G ⌘ K −H of eqs. (5.13) is independent of the dynamics, being com-
pletely determined by the transformation q, p ! Q(q, p, t), P (q, p, t).

Now, a transformation q, p ! Q,P , with q, p treated as independent
variables defines a transformation q, q̇ ! Q, ˙Q and a corresponding
Lagrangian L0

(Q, ˙Q, t) such that K =

P
i

P
i

˙Q
i

− L0
(Q, ˙Q, t). Hence,

one has
K −H =

X

i

P
i

˙Q
i

− L0 −
X

i

p
i

q̇
i

+ L.

Since L0 and L must give the same Euler equations of motion in terms
of the variables q, q̇, by the argument of Section 2.9 they must differ by
a total derivative dF/dt. Then, if q

i

, Q
i

are functionally independent
one may express F as a function of q,Q and

K −H =

X

i

(P
i

˙Q
i

− p
i

q̇
i

) + L− L0
=

=

X

i

(P
i

˙Q
i

− p
i

q̇
i

+

@F
@q

i

q̇
i

+

@F
@Q

i

˙Q
i

) +

@F
@t

.

By the above remark, G ⌘ K − H does not depend on q̇
i

, ˙Q
i

, which
involve the dynamics of these two variables, and therefore one must
have

P
i

(q,Q, t) = −@F(q,Q, t)

@Q
i

, p
i

(q,Q, t) =
@F(q,Q, t)

@Q
i

, (5.14)

K −H =

@F(q,Q, t)

@t
. (5.15)

A comparison with eqs. (5.6) shows that F(q,Q, t) may be identified
with the generating function F

I

(q,Q, t) and eq. (5.7) follows.
A similar argument may be used by choosing q, P or p,Q or p, P as

independent variables leading to the generating functions F
II

, F
III

, F
IV

;
in this way one proves the corresponding equations for the transforma-
tion of the Hamiltonian.
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Example 5.1 Determine the canonical transformations defined by the
following generating functions:

1) F1 =

X

i

q
i

Q
i

, 2) F2 =

X

i

q
i

P
i

,

3) F3 = −
X

i

p
i

Q
i

, 4) F4 = −
X

i

q
i

P
i

.

1). For F1 one easily gets

p
i

=

@F1(q,Q)

@q
i

= Q
i

, P
i

= −@F1(q,Q)

@Q
i

= −q
i

,

i.e. the transformation exchanges the "position" variables q with the
momenta p.
2) For F2 one has

p
i

=

@F2(q, P )

@q
i

= P
i

, Q
i

=

@F2(q, P )

@P
i

= q
i

,

i.e. the F2 defines the identity transformation.
3) The same conclusion is easily obtained for the canonical transfor-
mation defined by F3.
4) For F4 the transformation amounts to changing the sign of both the
q’s and the p’s. In the case of Cartesian coordinates such a transforma-
tion has the meaning of the parity transformation.

The above canonical transformations further show that in the Hamil-
tonian formulation the canonical variables are all on the same footing,
the separation of positions and momenta being not stable under canon-
ical transformations.

Thus, whereas in the Lagrangian formulation the basic space is the
n-dimensional space of the positions (all on the same footing), in the
Hamiltonian formulation the basic space if the so-called phase space
of the 2n canonical variables q, p.
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Example 5.2. Determine the generating functions of the following
canonical transformations, for simplicity for one-particle coordinates
a) Hamiltonian Galilei transformation of the Hamiltonian variables

x0
i

= x
i

− w
i

t, p0
i

= p
i

−mw
i

, i = 1, 2, 3; (5.16)

b) rotating frame transformation, corresponding to Lagrangian coordi-
nates in the frame R0 which rotates with uniform angular velocity !
(see Example 3.7)

⇢0 = ⇢, '0
= '− !t, z0 = z; p

⇢

0
= p

⇢

, p
z

0
= p

z

, p
'

0
= p

'

. (5.17)

Case a). For simplicity we discuss the case of one single degree of
freedom, with m = 1.
Both the pairs (x, x0

) and the pair (p, p0) do not consist of function-
ally independent variables, whereas so do the pairs (x, p0) and (p, x0

);
therefore II) and III) apply.
The generating function F

II

may be determined by solving eqs. (5.8)

@F
II

(x, p0)

@x
= p = p0 + v, ) F

II

= (p0 + v)x+ f(p0)

@F
II

@p0
= x0

= x+ v t, ) f(p0) = −p0 v t.

According to eq. (5.7), H 0
(x0, p0) = H(x(x0

), p(p0))− p0v and in the free
case H 0

(x0, p0) = 1
2
(p0 + v)2 − p0 v.

The generating function F
III

(p, x0
) is obtained by solving eqs. (5.9): the

first equation gives F
III

= −p(x0
+ v t) + g(x0

) and the second implies
g(x0

) = x0v.
Case b). In this case, the pairs of functionally independent coordi-

nates are the pair (q, P ) and the pair (p,Q). It easy to prove that the
generating function corresponding to case II is

F
II

= ⇢ p
⇢

0
+ z p

z

0
+ ' p

'

0 − ! t p
'

0
= ⇢ p

⇢

+ z p
z

+ ' p
'

− ! t p
'

,

and H 0
= H − ! ' = H − ! · L.

The generating function F
III

may be determined in a similar way:

F
III

= −(p
⇢

⇢+ p
z

z + p
'

('0
+ !t)).
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Remark 5.2. It is worthwhile to note that there is a certain ambigu-
ity in identifying the transformation of the canonical variables which
correspond to changes to moving frame coordinates.

In fact, according to Section 3.3, e.g. for a free particle of unit mass,
the Galilei transformation of Lagrangian coordinates x0

i

= x
i

− w
i

t,
ẋ
i

= ẋ
i

− w
i

leads to p0
i

⌘ @L/@ẋ0
i

= p
i

= ẋ
i

.
On the other hand, the transformation to a moving frame corre-

sponds to a Hamiltonian Galilei transformation and one may represent
it as Q

i

= x
i

− w
i

t, P
i

= p
i

− w
i

.
The apparent conflict is resolved by noting that the canonical mo-

mentum is not uniquely identified, since it changes if a total time deriva-
tive is added to the Lagrangian (which does not change the equation of
motion). Both transformations are canonical, since they leave the Pois-
son brackets invariant, but the physical interpretation of the canonical
momenta is very different.

In the first case, the Hamiltonian in the new canonical variables is
H

x

0
p

0
= [

1
2
p0
i

2 − p0
i

v
i

] (see Example 3.6 or use the generator F
II

and the
equation corresponding to eq. (5.7)), so that ẋ0

i

= p0
i

− w
i

and p0
i

is not
the velocity in the moving frame.

In the second case, the Hamiltonian is H
Q,P

= [

1
2
(P

i

+ w
i

)

2 − P
i

w
i

]

and ˙Q
i

= P
i

, i.e. the canonical variables Q
i

, P
i

have the physical inter-
pretation of position and momentum in the moving frame.

Example 5.3. Determine the generating function of the canonical
transformation (3.10), (3.11)

Q
i

= Q
i

(q, t), P
i

=

X

j

p
j

@q
j

/@Q
i

. (5.18)

The relation between the p’s and the P ’s may also be written as
p
i

=

P
j

P
j

@Q
j

/@q
i

; then, by using q, P as independent variables (case
II), from the first of eqs. (5.8) one gets

F
II

=

X

j

Q
j

(q, t)P
j

+ g(P, t)

and the second gives g(P, t) = const.
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5.2 Extended canonical transformations

The characterization of transformations (q, p) ! (Q,P ) by the require-
ment that there exists a Hamiltonian function H

Q,P

, such that the
Hamilton equations hold for the new canonical variables, leaves open
the possibility of a scale factor λ in the relation between the two Hamil-
tonians.

Equivalently, one may correspondingly consider transformations of
the canonical variables which leave the Poisson brackets invariant apart
from an overall scale factor (extended canonical transformations):

{Q
i

, P
k

}
q,p

= λ δ
ik

, {Q
i

, Q
k

}
q,p

= {P
i

, P
k

}
q,p

= 0. (5.19)

It is worthwhile to see how this more general case reflects in the cor-
responding generating functions. One has the following corresponding
cases:
I.

p
i

(q,Q, t) =
@F

I

(q,Q, t)

@q
i

, P
i

= −λ
@F

I

(q,Q, t)

@Q
i

, (5.20)

H
Q,P

= λH(q(Q,P, t), p(Q,P, t)) + λ @F
I

/@t,

II).

p
i

(q, P, t) =
@F

II

@q
i

, Q
i

(q, P, t) = λ
F
II

@P
i

, (5.21)

H
Q,P

= λH(q, p, t) + λ @F
II

/@t;

III).

q
i

(p,Q, t) = −@F
III

@p
i

, P
i

(p,Q, t) = −λ
F
III

@Q
i

, (5.22)

H
Q,P

= λH(q, p, t) + λ @F
III

/@t;

IV).

q
i

(p, P, t) = −@F
IV

@p
i

, Q
i

(p, P, t) = λ
@F

IV

@P
i

, (5.23)

H
Q,P

= λH(q, p, t) + λ @F
IV

/@t.
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Example 5.4. The transformation

Q
i

= q
i

, P
i

= −p
i

, (5.24)

is not a (standard) canonical transformation, but it is an extended
canonical transformation.

In fact, one has

{Q
i

, P
j

}
q,p

= −{q
i

, p
j

}
q,p

= −δ
ij

.

This corresponds to λ = −1 in eq. (5.19).
The corresponding transformation for Cartesian variables reads:

x0
i

= x
i

, ẋ0
i

= −ẋ
i

and has the physical interpretation of time reversal.
The Lagrangian functions which are quadratic functions of the ẋ

i

are
clearly invariant under such a transformation and therefore the time
evolution of the corresponding systems is reversible.

Example 5.5. The transformation

Q
i

= s q
i

, P
i

= s p
i

, s 2 R, (5.25)

is an extended canonical transformation with λ = s2.

It follows immediately from the check of the Poisson brackets, ac-
cording to eq. (5.19).
For Cartesian coordinates the transformation has the physical meaning
of a scale transformation, corresponding to a change of the unit of
measurements of the space coordinates.

Example 5.5’ More generally, the transformation

Q
i

= ⇤
ij

q
j

, P
i

= ⌃
ij

p
j

,

with ⇤ a real, symmetric, strictly positive matrix, is an extended canon-
ical transformation if ⇤⌃T

= λ1, λ 2 R and a standard canonical
transformation if λ = 1.
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5.3 Generators of continuous groups of
canonical transformations

Clearly, the canonical transformations form a group and it is instructive
to analyze the continuous (Lie) subgroups connected with the identity.

The corresponding generating functions may be written in the form
II) or III), since then their being connected with the identity may be
described by an additional (continuous) dependence on the group pa-
rameters ↵, with the property that for ↵ = 0 one obtains the identity
transformation:

F
II

(q, P,↵), F
II

(q, P,↵ = 0) =

X

i

q
i

P
i

;

F
III

(p,Q,↵), F
III

(p,Q,↵ = 0) = −
X

i

p
i

Q
i

.

We further assume that the above generating functions admit a power
series expansion in a small neighborhood N of ↵ = 0.
E. g., for a one-parameter group one has

F
II

(q, P,↵) '
X

i

q
i

P
i

+ ↵G(q, P ), ↵ 2 N . (5.26)

Hence, the corresponding transformation is

Q
i

=

F
II

@P
i

= q
i

+ ↵
@G(q, P )

@P
i

,

p
i

=

@F
II

@q
i

= P
i

+ ↵
@G(q, P )

@q
i

) P
i

= p
i

− ↵
@G

@q
i

. (5.27)

The above considerations may be extended to the continuous groups
of extended canonical transformations connected with the identity.

Example 5.6. The generating functions of the following continuous
transformations
1) the translations of the i-th coordinate:

Q
i

= q
i

+ ↵, Q
j

= q
j

, j 6= i, P
k

= p
k

, 8k (5.28)
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2) the infinitesimal euclidean rotations around the x3- axis,

x0
1 = x1 − ↵x2, x0

2 = x2 + ↵x1, x0
3 = x3,

P
x

= p
x

− ↵p
y

, P2 = p2 + ↵p1, P3 = p3, (5.29)

may be written in the form (5.26).

In fact, the corresponding generating functions are, respectively,

F
II

(q, P ) =

X

j

q
j

P
j

+ ↵P
i

=

X

j

q
j

P
j

+ ↵p
i

,

F
II

(x,P) = (x1 − ↵x2)P1 + (x2 + ↵x1)P2 + x3 P3 =

=

X

i

x
i

P
i

+ ↵(x1 p2 − x2 p1),

Example 5.7. The scale transformations considered in Example 5.5,
eq. (5.25), with s = e↵, ↵ 2 R, define a (one-parameter) continuous
group of extended canonical transformations, with group parameter ↵,
the identity corresponding to ↵ = 0.

In fact, according to eqs. (5.26) the generating function F
II

(q, P ) =P
i

e−↵q
i

P
i

generates the transformation

Q
i

= e↵ q
i

, P
i

= e↵ p
i

, ↵ 2 R,

in agreement with eqs. (5.19), with λ = e2↵. Moreover, for ↵ in a neigh-
borhood of ↵ = 0, the generating function it is of the form of eq. (5.26).
Clearly, a similar construction of the generating functions may easily be
done for the (one-parameter) continuous group of standard canonical
transformations

Q
i

= e↵ q
i

, P
i

= e−↵ p
i

, ↵ 2 R;

in fact, the corresponding generating function is of the form of eq. (5.26)

F
II

(q, P,↵) = e↵
X

i

q
i

P
i

, F
II

(q, P,↵) '
X

i

q
i

P
i

+ ↵
X

i

q
i

P
i

.
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Given a continuous group of canonical transformations, for each one-
parameter subgroup, the infinitesimal variations of the canonical vari-
ables is obtained by expanding the corresponding generating function in
the neighborhood of the identity of the group parameter, as implicitly
given by eqs. (5.27).

In fact, the group structure implies that the equations for p
i

and Q
i

may be inverted to first order in ↵ = " << 1 and one has

p
i

' P
i

+ "
@G(q, P )

@q
i

= P
i

+ "
@G(q, p)

@q
i

+O("2), (5.30)

Q
i

' q
i

+ "
@G(q, P )

@P
i

= Q
i

+ "
@G(q, p)

@p
i

+O("2), (5.31)

where we have expanded @G(q, P )/@q
i

and
P

j

(@G(q, P )/@p
j

) @p
j

/@P
i

in the neighborhood of P
k

= p
k

, 8k, keeping only the first orders in ".
The function G(q, p) which appears in eqs. (5.30), (5.31), is called

the generator of the infinitesimal transformation.

The above somewhat laborious derivation may be greatly simplified
by using the Poisson brackets; actually in this way one may easily ob-
tain the infinitesimal variation of any physical quantity described by a
(regular) function of the canonical variables, A(q, p).

To this purpose we note that (to first order in ") eqs. (5.30), (5.31)
may be written in the following form

δp
i

= P
i

− p
i

= "{p
i

, G }
q,p

; δq
i

= Q
i

− q
i

= "{q
i

, G }
q,p

, (5.32)

i.e. the infinitesimal variations of q, p are respectively given by their
Poisson brackets with the generator G(q, p).

Actually, any (regular) function G(q, p) generates an infinitesimal
canonical transformation through eqs. (5.32).

To this purpose, we have to check that, up second order in ", the
Poisson brackets of the variables

Q
i

⌘ q
i

+ " {q
i

, G }
q,p

P
i

⌘ p
i

+ " {p
i

, G }
q,p

are canonical.
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In fact, by using eqs. (4.12), to first order in " one has

{Q
i

, Q
j

} = {q
i

+ " {q
i

, G }, q
j

+ " {q
j

, G }} = O("2),

{P
i

, P
j

} = {p
i

+ " {p
i

, G }, p
j

+ " {p
j

, G }} = O("2),

{Q
i

, P
j

} = {q
i

+ " {q
i

, G }, p
j

+ "{p
i

, G }} =

= {q
i

, p
j

}+ "({ {q
i

, G}, p
j

}+ {q
i

, {p
j

, G}}) +O("2) = δ
ij

+O("2).

The important role of the generator of a canonical transformation,
G(q, p), will be further displayed below and it is useful to note that
its identification does not necessarily requires the determination of the
generating function and of its first order expansion in the group pa-
rameter, being possible to directly obtaining it from the infinitesimal
transformation of the canonical variables; in fact, it may be identified
as the function of the canonical variables q, p, whose Poisson brackets
give δq

i

, δp
i

, according to eqs. (5.32).
In fact, a function of the canonical variables A(q, p) is uniquely deter-

mined by its Poisson brackets with q, p, apart from a constant: if A(q, p),
B(q, p) have the same Poisson brackets with the canonical variables. i.e.

{A(q, p), q
i

} = F
i

(q, p) = {B(q, p), q
i

},

{A(q, p), p
i

} = G
i

(q, p) = {B(q, p), p
i

}, 8i,
then, by eqs. (4.12), A(q, p) − B(q, p) is independent of p

i

and of q
i

,
and therefore is a constant.

*Example 5.8 By using the condition of invariance of the Poisson
brackets, rather than eqs. (5.30), (5.31), show that the infinitesimal
canonical transformations are of the form (5.32).

δq
i

= "
@F (q, p)

@p
i

, δp
i

= −"
@F (q, p)

@q
i

,

with a suitable F (q, p), which is therefore the generator of the trans-
formations.

In fact, quite generally, infinitesimal transformations are of the form

q0
i

= q
i

+ "F
i

(q, p), p0
i

= p
i

+ "E
i

(q, p).
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The canonicity condition {q0
i

, q0
j

} = 0 gives

@ F
j

@p
i

− @ F
i

@p
j

= 0,

and by Poincaré Lemma, there exists a function F , such that (locally)
F
i

= @F/@p
i

. Similarly, the condition {p0
i

, p0
j

} = 0 gives E
i

= @E/@q
i

.
Finally, the condition {q0

i

, p0
j

} = δ
i j

gives

@2
(F + E)

@q
j

@p
i

= 0,

which implies F+E = f(q)+g(p) and by a redefinition F ! F 0
= F−f ,

E ! E 0
= E − g, which does not change the equations for q0

i

, p0
i

, in
terms of q

i

, p
i

, one obtains E 0
= −F 0

In terms of the Poisson brackets one may also determine the in-
finitesimal variation of the generic function A(q, p).

In fact, one has (with the sum over repeated indices understood)

δA =

@A

@q
i

δq
i

+

@A

@p
i

δp
i

=

"
@A

@q
i

{q
i

, G }+ "
@A

@p
i

{p
i

, G } = "{A, G }, (5.33)

so that the Poisson bracket with the generator G(q, p) give the infinites-
imal variation of a (regular) function A(q, p).

In particular, A is invariant under an infinitesimal transformation
if its Poisson bracket with the corresponding generator vanishes. The
(Lie) group structure implies that in this case A is invariant under the
full (one parameter Lie) group of transformations, since any finite trans-
formation may be obtained by iterating infinitesimal transformations.

A very relevant physical consequence it that the invariance of the
Hamiltonian under a (one-parameter) continuous group of canonical
transformations implies the vanishing of its infinitesimal variation and
by eq. (5.33) of its Poisson bracket {H, G} = 0 with the generator
G. Hence, if G = G(q, p), with no explicit time dependence, G is a
constant of motion, (strict relation between symmetries of the
Hamiltonian and constants of motion).
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Example 5.9. It is instructive to determine the generators of the fol-
lowing important canonical transformations of the Cartesian coordi-
nates of a system of N particles.
a) Space translations

We denote by x↵ the position of the ↵-th particle in R3 and by x↵

i

,
i = 1, 2, 3, its Cartesian components; a space translation in the i-th
direction is defined by

δx↵

i

= a, δx↵

j

= 0, j 6= i, δp↵
k

= 0; 8↵.

According to Example 5.6, the generating function is

F
II

=

X

↵,j

x↵

j

P↵

j

+ a
X

↵

P↵

i

.

Then, according to eqs. (5.30), (5.31), the generator is the i-th compo-
nent of the total moment

P
↵

P↵

i

=

P
↵

p↵
i

. This generator may also be
directly identified as the function whose Poisson brackets with x↵,p↵

give δx↵, δp↵.
Then, if the Hamiltonian is invariant under all translations, the total
momentum is a constant of motion

0 = δH = {H, P} = −dP/dt.

b) Rotations in R3

For each particle coordinates the infinitesimal rotations around the
third axis are defined by eqs. (5.29), which identify the third component
of the (total) angular momentum as the generator. This is also a direct
consequence of the Poisson brackets (4.13)

δx
i

= ↵ "
ijk

x
k

= ↵ {x
i

, L
j

}.

The angular momentum J is also the generator of rotations for a free
symmetrical top (see Example 4.9). This follows from the transfor-
mation of the angular momentum under infinitesimal rotations and
eq. (4.14)

δJ
i

= " "
ijk

J
k

= " {J
i

, J
j

}.
The invariance of the Hamiltonian under rotations implies that the

(total) angular momentum is a constant of motion.
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c) Time translations
Infinitesimal time translations, ↵ = ∆t << 1, are defined by

δq
i

= ∆t q̇
i

= ∆t {q
i

, H}, δp
i

= ∆t ṗ
i

= ∆t {p
i

, H},

where eq. (4.4) has been used.
Thus, the Hamiltonian is the generator of time translations.

d) Galilei transformations
As discussed in Remark 5.2, one may consider the following transfor-

mation of the canonical variables as describing Galilei Transformations

x0
1 = x1 − w1 t, x0

2 = x2 − w2 t, x0
3 = x3 − w3 t, , δx

i

= −w
i

t

p01 = p1 −mw1, p02 = p2 −mw2, , p03 = p3 −mw3, , δp
i

= −mw
i

,

since they may be interpreted as relating canonical variables in an in-
ertial frame R to those in a frame R0 moving with constant velocity w
with respect to R.
By using the Poisson brackets, it is easy to check that

G = −p t+mx, (5.34)

is the generator of the above (Galilei) transformations.

Example 5.10. The invariance of the Hamiltonian under rotations
implies that the angular momentum is a constant of motion.

For concreteness we consider the Hamiltonian of one particle subject
to a central potential V = V (r).
The obvious invariance under rotations may be explicitly checked by
computing the Poisson brackets with the generators L

i

; in fact, by the
computations of Examples 4.5, 4.6, one has

{H, L
i

} = 0,

and L
i

is a constant of motion.
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5.4 Symmetries and conservation laws. Noether theorem

The deep discovery of Emmy Noether was that to each continuous
symmetry of the dynamics there corresponds a conserved quantity. This
relation between symmetries and conservations laws has become one of
the cornerstone of modern theoretical physics.

5.4.1 Noether theorem: Lagrangian formulation

In the Lagrangian formulation, according to the discussion of Section
2.9 we are led to consider as symmetries of the dynamics those trans-
formations of the Lagrangian coordinates q ! Q, q̇ ! ˙Q, such that the
Lagrangian is invariant up to a total derivative:

L0
(Q, ˙Q, t) ⌘ L(q(Q), q̇(Q, ˙Q), t) = L(Q, ˙Q, t)− dG0

(Q)

d t
. (5.35)

Equivalently, one has (G(q) ⌘ G0
(Q(q)))

L(Q(q, t), ˙Q(q, q̇, t), t)− L(q, q̇, t) =
dG(q)

dt
. (5.36)

When one has a one-parameter continuous group of transformations
the invariance of the Lagrangian up to a total derivative, eq.(5.36),
may checked at the infinitesimal level (omitting the possible time de-
pendence of F,G and using G(q, ") = "G(q) +O("2)):

δq
i

= "F
i

(q, t), δq̇
i

= "
dF

i

(q, t)

dt
, (5.37)

δL ⌘ L(q + δq, q̇ + δq̇, t)− L(q, q̇, t) = "
dG(q)

dt
. (5.38)

Theorem 5.4.1 (Noether theorem). To each one-parameter group
G of symmetries of the dynamics, which therefore, in the Lagrangian
formulation, define infinitesimal transformations satisfying eqs. (5.37),
(5.38), there corresponds a conserved quantity

Q(q, q̇, t) ⌘
X

i

@L

@q̇
i

F
i

(q)−G(q). (5.39)
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Proof. By eqs. (5.37), (5.38) one has

"

 
X

i

@L

@q
i

F
i

(q) +
X

i

@L

@q̇
i

dF
i

(q)

dt
− dG

dt

!
= 0.

By using the Lagrange equations (2.13) one may cast the above equa-
tion in the following form, with Q defined by eq. (5.39),

d

dt

 
X

i

@L

@q̇
i

F
i

(q)−G

!
=

dQ
dt

= 0. (5.40)

Example 5.11. Consider a system of N particles interacting via a
potential V ; by Noether theorem, the invariance properties of the La-
grangian yield the following constants of motion.
1) If the potential V depends only on the relative positions

V (x1, ...,xN

) = V (x↵

i

− xβ

i

; ↵, β = 1, ...N ; i = 1, 2, 3),

then, the Lagrangian is invariant under arbitrary space translations:
δx↵

i

= " a
i

, δẋ↵

i

= 0.
Hence, by eq. (5.39), one derives the conservation of the total momen-
tum

P
i

=

X

↵

@L

@ẋ↵

i

=

X

↵

p↵
i

.

2) If furthermore the potential depends only on the modulus of the
relative positions, then the Lagrangian is invariant under arbitrary in-
finitesimal space rotations, with axes denoted by the unit vectors n:

δx↵

i

= " "
i j k

n
j

x↵

k

, δẋ↵

i

= " "
i j k

n
j

ẋ↵

k

,

(the sum over repeated indices j, k being understood).
Hence, by Noether theorem one derives the conservation of the total
angular momentum:

L
i

=

X

↵

@L

@ẋ↵

i

=

X

↵

"
i j k

x↵

j

p↵
k

.
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3) If the potential depends on the relative positions, under the infinites-
imal (Galilei) transformations of the Lagrangian variables:

δx↵

i

= "w
i

t, δẋ↵

i

= "w
i

,

the Lagrangian is invariant up to a total derivative:

δL = δT = "
X

↵

d (m↵ x↵

i

w
i

)

dt
+O("2) = "

d(MX
i

w
i

)

dt
,

where M ⌘
P

↵

m↵ is the total mass and X
i

⌘
P

↵

m↵x↵

i

/M , i = 1, 2, 3
denote the position of the center of mass.
Then, from eq. (5.40) one gets that P t−M X is a constant of motion,
say −MX0. This is the statement that the center of mass moves with
constant velocity P/M .

5.4.2 *Noether theorem: Hamiltonian formulation

As argued in the previous Chapters, the Hamiltonian formulation qual-
ifies as a more efficient and physically motivated strategy for discussing
the dynamics of a mechanical system. In fact, the characterization of a
mechanical system is customarily done by directly specifying the Hamil-
tonian, without passing through the Lagrangian.

The simplest version of the relation between symmetries and conser-
vation laws in the Hamiltonian formulation, adopted in most textbooks,
has already been discussed in Section 5.3, namely that the invariance of
the Hamiltonian under a one-parameter continuous group G of canon-
ical transformations, which do not explicitly depend on time, implies
the constancy of the corresponding generator. This connection shall be
referred to as the standard relation between symmetries and conserva-
tion laws.

However, in this way, two important aspects, covered by Noether
theorem in the Lagrangian formulation, as discussed above, are left out.

First, the symmetry of the dynamics is not equivalent to the invari-
ance of the Hamiltonian (as discussed in Remark 3.1), due to the pos-
sible occurrence of boundary terms corresponding to the invariance of
the Lagrangian up to a total derivative.

The second issue is the case of explicit time dependence of the canon-
ical transformations.
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Time independent transformations
In order to discuss the implications of the first issue, we start by

discussing the Hamiltonian version of the invariance of the Lagrangian
up to a total derivative, under G transformations which do not explicitly
depend on time.

The (canonical) transcription of the infinitesimal transformation of
the Lagrangian variables, eqs. (5.37), to the canonical (Hamiltonian)
variables q, p is given by

δq
i

= "F
i

(q), δp
i

= −"
X

j

p
j

@F
j

(q)

@q
i

, (5.41)

since, by eq. (3.5), to first order in ",

p0
i

=

X

j

p
j

@q
j

@q0
i

=

X

j

p
j

✓
δ
i j

− "
@F

j

@q
i

◆
.

The generator of such a transformation is Q
c

⌘
P

i

p
i

F
i

and, if the
transformation does not explicitly depend on time, the Hamiltonian is
invariant up to a total derivative; in fact, one has

δH = "{H, Q
c

} = −"
dQ

c

d t
= −"

dG(q)

d t
, (5.42)

where eq. (5.40) has been used for the last equality.
Thus, a symmetry of the dynamics, eqs. (5.37), (5.38), requires the

invariance of the Hamiltonian only up to a total derivative.
On the other side, the function

˜Q(q, p) ⌘ Q(q, q̇(q, p)) =
X

j

p
j

F
j

−G(q),

with Q(q, q̇) defined by eq. (5.39), is the generator of the following in-
finitesimal transformation of the canonical variables, (see eqs. (5.32),
(4.12)):

˜δq
i

= "{q
i

, ˜Q} = "F
i

, ˜δp
i

= "{p
i

, ˜Q} = "

 
X

j

−p
j

@F
j

@q
i

+

@G

@q
i

!
.

(5.43)
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If, as assumed, the G transformations do not explicitly depend on time
(so that @ ˜Q/@t = 0), the Hamiltonian is invariant under such transfor-
mations:

˜δH = "{H, ˜Q} = −"
d ˜Q
d t

= −"
dQ
d t

= 0, ˜Q = Q
c

−G,

the conservation of ˜Q corresponding to eq. (5.40).
As discussed in Remark 3.1, G(q) may be regarded as the genera-

tor of a ”gauge” transformation and therefore the constant of motion
˜Q is the sum of the ”canonical” generator, Q

c

, and the generator G(q)
of a gauge transformation,. The invariance of the Hamiltonian may be
obtained by combining the transformation (5.41) with a gauge trans-
formation. Thus, in a rather rudimentary form, we encounter the need
of adding a gauge term to the canonical generator in order to get con-
servation, a phenomenon that in modern theoretical physics goes under
the name of anomaly. The check of the invariance of the Hamiltonian
up to a total derivative, eq. (5.42), requires the construction of Q

c

and
the question arises of a more direct check.

To this purpose, we first note that, since the dynamics is described
by the time evolution of the coordinates q

i

(t), (as discussed in Chapter
3, Remark 3.1), a non-trivial symmetry of the dynamics must acts non
trivially on the q

i

(t)’s, i.e. δq
i

6= 0.
Thus, a one-parameter group of non-trivial symmetries of the dy-

namics is described by canonical transformations q, p ! q0, p0, with
q0 6= q, under which the new Hamiltonian function H 0 differs from the
original function H by a total derivative

H 0
(q0, p0) = H(q0, p0)− dG0/dt. (5.44)

Now, under transformations which do not-explicitly depend on time,
the Hamiltonian transforms covariantly, as it does the Lagrangian, i.e.
H 0

(q0, p0, t) = H(q(q0, p0), p(q0, p0), t) and the above eq. (5.44) is equiva-
lent to

H(q0, p0, t)−H(q, p, t) =
dG(q)

d t
, (5.45)

the strict analogs of eqs. (5.35), (5.36). This provides a direct char-
acterization of the time independent canonical transformations which
correspond to symmetries of the dynamics and for infinitesimal trans-
formations one has δH = " dG/dt, the analog of eq. (5.38).
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Time dependent transformations
For transformations which explicitly depend on time, the Hamilto-

nian does not transform covariantly (in contrast with the covariance of
the Lagrangian), but rather according to eq. (5.15)

H 0
(q0, p0, t) = H(q, p, t) +

@F
@t

,

so that eq. (5.44) is equivalent to

H(q0, p0, t)−H(q, p, t)− @F
@t

=

dG(q)

dt
. (5.46)

In order to derive the conservation laws following from eq. (5.46), it is
convenient to use its infinitesimal form.

Proposition 5.4.2 Under an infinitesimal time-dependent change of
the canonical variables, q, p ! q0, p0,

δq
i

= "
@F (q, p, t)

@p
i

, δp
i

= −"
@F (q, p, t)

@q
i

, (5.47)

one has for q0 = q + δq, p0 = p+ δp

∆H ⌘ H 0
(q0, p0, t)−H(q(q0, p0, t), p(q0, p0, t), t) = "

@F

@t
. (5.48)

Proof. In fact, since @q
i

/@t = 0 = @p
i

/@t, eq. (5.13) gives

@δq
i

@t
=

@(q0
i

− q
i

)

@t
=

@(H 0 −H)

@p0
i

=

@(H 0 −H)

@p
i

+O("2).

On the other side, eq. (5.47) gives

@δq
i

@t
= "

@{q
i

, F}
@t

= "{q
i

,
@F

@t
},

so that {q
i

,∆H − "@F/@t} = 0.
Similarly, one gets {p

i

,∆H − "@F/@t} = 0. Hence, ∆H − " @F/@t
has vanishing Poisson brackets with the whole set of canonical variables
and therefore must be a constant (which does not contribute to the
dynamics).
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As a consequence of the above Proposition, a one-parameter group
of symmetries of the dynamics implies that the Hamiltonian is in-
variant under the corresponding infinitesimal canonical transformation,
eqs. (5.47), up to a total derivative according to eqs. (5.46), (5.48), i.e.

δH ⌘ H(q0, p0, t)−H(q, p, t) = "
@F

@t
+ "

dG(q)

dt
. (5.49)

Theorem 5.4.3 Noether theorem. Hamiltonian form.
(F.Strocchi, arXiv : 1711.10390v1[physics.class− ph])

To each one-parameter group G of (non-trivial) symmetries of the
dynamics, so that in the Hamiltonian formulation the corresponding
infinitesimal transformations of the canonical variables, eq. (5.47), with
δq

i

6= 0, yield the invariance of the Hamiltonian up to a total derivative,
eq. (5.49), there corresponds a conserved quantity

Q ⌘ F +G.
Proof. One one side, one has

δH = "

✓
@H

@q
i

@F

@p
i

− @H

@p
i

@F

@q
i

◆
= " {H, F} = −"

✓
dF

dt
− @F

@t

◆
,

and, on the other side, by eq. (5.49), one has

δH = "
@F

@t
+ "

dG(q)

dt
.

Hence, it follows that

− dF

dt
=

dG(q)

dt
.

i.e. Q = F +G is a constant of motion.
The non triviality of Q follows from the assumption δq

i

= "{q
i

, F} 6= 0,
whereas {q

i

, G} = 0.
The above Theorem generalizes the result discussed after eq. (5.43)

for transformations which do not explicitly depend on time.
Quite generally, the constant of motion corresponding to the in-

variance of the Hamiltonian up to a total derivative dG/dt, under in-
finitesimal transformations of the canonical variables generated by F ,
eqs. (5.47), is the sum of F and the generator G of the “gauge“ trans-
formation (see Remark 3.1)

q
i

! q
i

, p
i

! p
i

− @G/@q
i

.
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This is clearly displayed by Example 3.6, considering for simplicity
the case with V = 0. The transformations

q0 = p− wt =, p0 = p,

are generated by F = −pt, and by applying eq. (5.47) one gets

∆H = H(q0, p0)−H(q(q0, p0, t), p(q0, p0, t)) + "w p = "w p = "w
d(mq)

dt
.

Hence, the Hamiltonian is invariant up to the total derivative d(mq)/dt
and the constant of motion is

Q = −pt+mq.

Clearly for the case of N particles in R3, with an interaction poten-
tial which depends only on the relative positions, one obtains the same
constants of motion derived in Example 5.11, using the Lagrangian for-
mulation. In fact, the canonical generators F = −P t of the infinitesimal
canonical transfromations are not conserved and constants of motion
are obtained by adding the generators M X of gauge transformations.

It is worthwhile to remark that Q
i

= −P
i

t + M X
i

generates the
following Hamiltonian Galilei transformations of the canonical variables

δx↵

i

= −w
i

t, δp↵
i

= −w
i

.



6
Small oscillations

6.1 Equilibrium configurations. Stability

In the following, we consider conservative systems interacting with a
continuous (regular) potential.

A configuration point Q0 = (q01, ..., q
0
n

) is an equilibrium point if the
forces vanish at this point, i.e. if @V/@q

i

|
Q=Q0 = 0 (and the initial

velocities vanish).
Q0 is a stable equilibrium point if configuration points initially close

to Q0 remain close to Q0 under time evolution, if the initial velocities
are sufficiently small.

More precisely, if for any given δ > 0, there is a correspondent " > 0,
such that for all initial configurations Q(0), ˙Q(0), with |Q(0)−Q0| < ",
| ˙Q(0)| < ", one has |Q(t)−Q0| < δ, | ˙Q(t)| < δ, 8t.

This is very simply illustrated by a point mass in one space dimen-
sions subject to a positive quadratic potential V (x) =

1
2
!2

(x − x0)
2.

Clearly, if the initial energy E =

1
2
mẋ2

+ V (x) is smaller than ", by
energy conservation, since both the kinetic energy and the potential are
positive definite, one has for all times

ẋ(t)2 < 2E/m < 2"/m, (x(t)− x0)
2 < 2E/!2 < 2"/!2.

More generally, the equilibrium points are stationary points of the
potential and the stability is decided by the positivity of the second
derivative of the potential in that equilibrium point.

F. Strocchi, A Primer of Analytical Mechanics, UNITEXT for Physics,
https://doi.org/10.1007/978-3-319-73761-4_6

© Springer International Publishing AG 2018

https://doi.org/10.1007/978-3-319-73761-4_8
The original version of this chapter was revised: Display equation has been corrected.
An erratum to this chapter can be found at

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-73761-4_6&amp;domain=pdf
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Actually, as stated by Dirichlet theorem the local (isolated) min-
ima of the potential are stable equilibrium points.

In fact, if Q0 is a local isolated minimum of the potential, there is
a sufficiently small neighborhood N of Q0, such that V (Q) ≥ V (Q0),
8Q 2 N . Moreover, by the continuity of V , for an initial position Q(0)

sufficiently close to Q0, one may obtain 0 < V (Q(0))−V (Q0) < "/2. On
the other hand, at any later time t, by the conservation of the energy,
one has

T ( ˙Q(t)) + V (Q(t))− V (Q0) = T ( ˙Q(0)) + V (Q(0))− V (Q0).

Hence, if the initial velocities are taken sufficiently small, one may have
T ( ˙Q(0)) < "/2, so that T ( ˙Q(t)) + [V (Q(t)) − V (Q0)] < ". Since both
terms are positive, this implies T (Q(t)) < ", and therefore V (Q(t)) −
V (Q0) < ". This indicates that Q(t) remains close to Q0.

For a more precise argument, consider the open ball B
"

of radius "
in the configuration space of the Lagrangian coordinates Q, ˙Q, centered
in the point Q0, ˙Q = 0.

Since the boundary @B
"

is a compact set, by Weierstrass theorem,
the (continuous positive) energy function E(Q, ˙Q) defined there, has a
(positive) absolute minimum λ, i.e. E(Q, ˙Q) ≥ λ, 8Q, ˙Q 2 @B

"

.
Then, if B

δ

⇢ B
"

denotes the ball on which E(Q, ˙Q) < λ, the initial
data in B

δ

cannot give rise to trajectories which get out of B
"

, since by
energy conservation E(Q(t), ˙Q(t)) = E(Q(0), ˙Q(0)) < λ and therefore
the trajectory Q(t), ˙Q(t) cannot cross @B

"

, on all the points of which
E ≥ λ.
Example 6.1 Consider the system described in Example 1.2 and fur-
ther discussed at the beginning of Section 2.4.

Choosing now z = 0 at the bottom of the circle and as Lagrangian
coordinate the angle φ, so that z = r (1− cosφ), one has

L =

1
2
mr2 ˙φ2

+

1
2
mr2 !2

sin

2 φ−mg r(1− cosφ) = T 0
+ V

eff

,

T 0 ⌘ 1
2
mr2 ˙φ2, V

eff

⌘ − 1
2
mr2 !2

sin

2 φ+mg r (1− cosφ).

Thus, the equilibrium points are the solutions of

0 = dV
eff

/dφ = mr sinφ (−!2r cosφ+ g),

i.e. φ = 0, ⇡, and φ = arccos(g/!2r), which has solutions only if
g/!2r  1.
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The stability is decided by

d2 V
eff

/dφ2
= mr[cosφ(−!2 r cosφ) + !2 r sin

2 φ].

The point φ = arccos(g/!2 r) is stable, since at this point d2V
eff

/dφ2
=

!2
sin

2 φ > 0. If g/!2 r > 1, the point φ = 0 is a stable point since then
d2V

eff

/dφ2|
φ=0 = mr(−!2 r + g) > 0. The point φ = ⇡ is always

unstable since d2V
eff

/dφ2|
φ=⇡

= −mr(!2r + g) < 0.

* Example 6.2. The spherical pendulum.
In spherical coordinates (see eq. (2.27)) the Lagrangian for the spher-

ical pendulum reads

L =

1
2
ml2( ˙✓2 + sin

2 ✓'̇2
) +mg l cos ✓. (6.1)

The angular momentum p
'

= ml2 sin

2 ✓ '̇ is conserved. If at the initial
time p

'

= 0, then the motion takes place in a plane ' = constant and
one recovers the case of the plane pendulum. We then consider the case
µ ⌘ p

'

/(ml2) 6= 0. Then the effective Lagrangian becomes

L
eff

=

1
2
ml2 ˙✓2 − V

eff

, V
eff

⌘ −ml(g cos ✓ + 1
2
µ2

sin ✓).

The equilibrium points are the solutions of

dU
eff

/d✓ = (g/l) sin ✓ − µ2
cos ✓/ sin3 ✓ = 0, U

eff

⌘ V
eff

/ml2.

This equation reduces to a quartic equation for x ⌘ sin

2 ✓ of the form
ax4

+ x − 1 = 0 and an acceptable solution (0 < x  1) exists, corre-
sponding to ✓ = ✓

m

, with 0 < ✓
m

< ⇡/2. (In the simplest case a = 1,
the solution is x ' 0.5654, ✓

m

= 0.8510). Such an equilibrium point is
stable because

d2U
eff

d✓2
|
✓=✓m =

g

l
cos ✓

m

+

µ2

sin

2 ✓
m

✓
1 + 3

cos ✓
m

sin

2 ✓
m

◆
> 0,

since cos ✓
m

= (g/l)µ−2
sin

4 ✓
m

> 0.
For initial data with energy E > V

eff

(✓
m

) the angle ✓(t) may oscillate
between the two values ✓1, ✓2 corresponding to the solutions of the
equation E − V

eff

(✓) = 0, corresponding to the points where ˙✓(t) = 0.

ml l −2
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6.2 Small oscillations

As discussed above, the motion in the neighborhood of a stable equi-
librium point is approximately governed by the second derivatives of
the potential. Thus, we are led to consider the motion described by
quadratic Lagrangians:

L =

1
2

NX

i=1

M
ij

q̇
i

q̇
j

− V
ij

q
i

q
j

, (6.2)

whereM
ij

is a positive definite symmetric matrix and V
ij

is a symmetric
matrix.

There are two possible approaches to the analysis of the motion
corresponding to the above Lagrangian.

The first method consists in transforming the above Lagrangian
to a diagonal form, i.e. involving only terms of the form q̇2

i

and q2
i

.
To this purpose, we may make a linear orthogonal transformation

T of the Lagrangian variables Q = (q1, ...qN) ! T Q, ˙Q ! T ˙Q, such
that, in terms of the new variables ˙QT ⌘ T ˙Q, the kinetic energy takes
a diagonal form

T =

1
2

NX

i=1

⌧
i

(

˙QT
i

)

2.

Such a transformation exists because M is a real symmetric matrix
and the ⌧

i

are positive numbers because M is strictly positive (i.e.
TrM > 0, detM > 0).

The next step is to rescale the new variables QT ! cQT ⌘ SQT ,
with (SQT

)

i

⌘ p
⌧
i

QT
i

⌘ cQT
i

, so that

T =

1
2

X

i

(

ċQT
i

)

2.

Finally, we make an orthogonal transformation cQT ! ˜Q ⌘ VcQT which
brings V to diagonal form

V =

1
2

X

i

k
i

(

˜Q
i

)

2,

and obviously does not affect the form of the kinetic energy.
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In conclusion, in terms of the new variables the Lagrangian describes
N uncoupled systems

L =

1
2

X

i

[(

˙

˜Q
i

)

2
+ k

i

˜Q2
i

]. (6.3)

Clearly, the time evolution of ˜Q is immediately given by the eigenvalues
k
i

of the matrix defined by V (

cQT
) and the corresponding eigenvectors

allow to determine the time evolution of the original Q
i

’s as linear
combinations of the ˜Q

i

(t)’s

Q(t) = T −1S−1V−1
˜Q(t). (6.4)

If k
i

> 0, ˜Q
i

(t) describes an harmonic oscillator, with frequency
!
i

⌘
p
k
i

, and it is called a normal mode.
If k

i

= 0, ˜Q
i

(t) describes a free evolution
If k

i

< 0, one has ˜Q
i

= Ae−!it
+Be+!it, with !

i

= ±i
p
|k

i

|, and the
constants A,B are determined by the initial conditions.

Example 6.3 Consider a triatomic molecule, e.g. H2S (hydrogen-
sulfide). The equilibrium configuration is a linear one with the sulfur
atom in the central point and the two hydrogen atoms at the two ends.
Discuss the corresponding small oscillations.

It is a good approximation to neglect transverse motion (i.e. to as-
sume that the configuration of the three atoms keeps being linear) and
to describe the motion around the equilibrium point in the quadratic
harmonic approximation of the potential, neglecting a direct interaction
between the two hydrogen atoms:

V (x1, x2, x3) =
1
2
k[(x1 − x3)

2
+ (x2 − x3)

2
], (6.5)

where x1, x2, x3 denote the displacements from the equilibrium positions
of the two hydrogen atoms and of the sulfur atom.
The kinetic energy matrix is already in diagonal form (so that according
to the first method discussed above T = 1) and it is reduced to the
identity by the following rescaling x3 ! ↵−1x3 ⌘ X, ↵ ⌘

p
m/M ,

where M denotes the mass of the sulfur atom and m the mass of the
hydrogen atom.
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Then, the matrix defined by V (x1, x2, X) has the following form (the
overall factor k/2 is omitted)

ˆV =

0

@
1 0 −↵
0 1 −↵
−↵ −↵ 2↵

1

A

Its eigenvalues are the solutions of

0 = det(

ˆV − λ1) = (1− λ)λ(λ− 2↵2 − 1),

i.e. λ0 = 0, λ1 = 1, λ = 1 + 2↵2.
The corresponding eigenvectors are, respectively, (omitting normaliza-
tion constants)

v0 =

0

@
1

1

↵−1

1

A
; v1 =

0

@
1

−1

0

1

A
; v1+2↵2

=

0

@
1

1

−2↵

1

A ⌘ v3.

Clearly, the time evolution of v0 is a free evolution (no harmonic force
acting); it corresponds to a variable ˜Q0 which is the following combi-
nation of the original variables:

˜Q0 = x1 + x2 + ↵−1X = x1 + x2 + (M/m)x3,

i.e. (apart to an overall normalization constant) to the position x
G

of
the center of mass. In fact, it is easy to directly check by using the
Lagrange equations that ẍ

G

= 0.
The time evolution of v1 is an harmonic oscillation with frequency !̃1 =

1; it corresponds to the linear combination ˜Q1 = x1−x2, which oscillates
with frequency !1 =

p
k/m. This means that the two hydrogen atoms

move with 180 degrees out of phase, while the sulfur atom remains
fixed.
Finally, the harmonic oscillation of v3 describes the time evolution of
the variable ˜Q3 = x1 + x2 − 2x3. Such a linear combination of the orig-
inal variables corresponds to the two hydrogen atoms moving in phase
and the sulfur atom moving in the opposite direction; the oscillation
frequency is

p
k/m(1 + 2m/M).
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An alternative second method is to directly find the oscillation
frequencies by using the Lagrange equations (sum over repeated indices
is understood). From the Lagrangian (6.2) one has:

M
ij

q̈
j

= V
ij

q
j

, (6.6)

and then one looks for solutions of the form q̃↵
i

= ReA↵

i

ei!↵t.
By the linearity of the equations, one may start with A↵

i

ei!
↵
t and take

the real part at the end. The existence of non-trivial solutions of this
form requires that the corresponding frequencies !

↵

are such that

det(−!2
↵

M + V ) = 0. (6.7)

Once the frequencies !
↵

are found the corresponding modes are ob-
tained as solutions of the following eigenvalue equation (sum over j)

(−!2
↵

M
ij

+ V
ij

)A↵

j

= 0. (6.8)

Example 6.3. We adopt the second method for solving the problem
of Example 6.3.

The mass matrix M and the potential matrix V are

M =

0

@
m 0 0

0 m 0

0 0 M

1

A
; V =

0

@
k 0 −k
0 k −k
−k −k −2k

1

A
;

and correspondingly eq. (6.7) gives

(−!2
↵

m+ k)!2
↵

(!2
↵

mM − kM − 2 km) = 0.

The frequencies !
↵

which solve such an equation are:

!2
0 = 0, !2

1 = k/m, !2
2 = (k/m)(1 + 2m/M).

For each !2
↵

, ↵ = 0, 1, 2, is easy to solve the eigenvalue equation (6.8),
and in this way, as expected, one recovers all the results obtained by
the previous method.
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Example 6.4. (Double pendulum) Consider a pendulum with mass
m2 attached to another pendulum with mass m1, both attached to
rigid massless wires of length l and discuss the plane motion in the
approximation of small oscillations.

Denoting by '1, '2 the angles describing the deviations of the two
wires from the vertical line, the velocities v1, v2 of the two masses are
given by v1 = l '̇1, v2 = l ('̇2 + '̇1). The (gravitational) potential V of
the two masses is given by

V ('1,'2) = l m1g cos'1 + l m2g(cos'1 + cos'2) '

' 1
2
l g[(m1 +m2)'

2
1 +m2'

2
2],

the last equality corresponding to the approximation of small oscilla-
tions.
Then the mass and potential matrices are

M =

1
2
l2
✓
m1 +m2 m2

m2 m2

◆
; V =

1
2
l g

✓
m1 +m2 0

0 m2

◆
.

By applying the (first) method of successive diagonalizations, it is con-
venient to first reduce the matrix V to a multiple of the identity by the
following transformationof the Lagrangian variables

q1 =
p
m1 +m2 l'1, q2 =

p
m2 l'2,

which leads to the following form of the Lagrangian:

L =

1
2
(q̇21 + q̇22) +

p
(m2/m1 +m2)q̇1 q̇2 − 1

2
(g/l) (q21 + q22).

Next, one may diagonalize the mass matrix, by the following transfor-
mation p

2Q1 = q1 + q2,
p
2Q2 = q1 − q2,

leading to

L =

1
2
(µ1

˙Q2
1+µ2

˙Q2
2)− 1

2
(g/l) (Q2

1+Q2
2), µ1,2 = 1±

p
m2/(m1 +m2).

Thus, the frequencies of oscillations are

!2
1 = (g/l)/µ1, !2

2 = (g/l)/µ2.
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By the alternative (second) method, one applies eq. (6.7), which in this
case gives the following equation for the frequencies !

↵

, ↵ = 1, 2,

!4
↵

m2 = (!2
↵

+ (g/l))2(m1 +m2).

The solutions are

!2
± = ±g

l

r
m1 +m2

m2

✓
1⌥

r
m1 +m2

m2

◆−1

which coincide with !2
1,2 given above.



7

*The common Poisson algebra of classical
and quantum mechanics

7.1 Dirac Poisson algebra

As discussed in Chapters 4, 5, the algebra of canonical variables with
the (Lie) product defined by the Poisson bracket provides the general
structure for the formulation of Hamiltonian classical mechanics and
may be considered as its backbone.

Actually, most of the general issues, like time evolution, transforma-
tions of canonical variables, symmetries and constants of motion etc.
have a simple and neat formulation in terms of such an algebraic struc-
ture.

Clearly, Dirac must have had in mind the power and effectiveness of
the classical canonical structure in formulating the quantization rules
in such a way to reproduce as closely as possible the general algebraic
properties of Hamiltonian mechanics (canonical quantization).

In fact, in this way, important physical quantities, like e.g. the Hamil-
tonian, the momentum and the angular momentum keep being the gen-
erators of, respectively, time translations, space translations and space
rotations, provided that their action is given by commutators rather
then by the Poisson brackets.

F. Strocchi, A Primer of Analytical Mechanics, UNITEXT for Physics,
https://doi.org/10.1007/978-3-319-73761-4_7

© Springer International Publishing AG 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-73761-4_7&amp;domain=pdf
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Amazingly, as it may a posteriori appear, at a formal level the quan-
tum revolution may be reduced and fully accounted for, merely by
the replacement of the classical Poisson brackets { , } by commutators
(Dirac canonical quantization)

[q̂
i

, q̂
j

] = 0 = [p̂
i

, p̂
j

], [q̂
i

, p̂
j

] = i~{q
i

, p
j

} = i~δ
i j

, (7.1)

where [ , ] denotes the commutator and q̂, p̂ the quantum version of the
classical canonical variables q, p.

The issue of further understanding and justifying such a strong re-
lation between classical and quantum mechanics was of great concern
for Dirac, as discussed in Chapter IV of his book The Principles of
Quantum Mechanics.

Dirac suggested to explain the above relation between classical and
quantum mechanics by abstracting the following algebraic structure as
common to both classical and quantum mechanics.

To this purpose, Dirac starts by considering the (real regular) func-
tions f(q, p) of the canonical variables and the corresponding real asso-
ciative algebra A, with identity 1, (see Section 4.2), i.e. the real vector
space with a (not necessarily commutative) product

f, g ! f g, (f g)(q, p) ⌘ f(q, p) g(q, p), 1 f = f1 = f, (7.2)

which is clearly associative: f (g h) = (f g)h. Hereafter, such a product
will be called the basic product.

Dirac further equips such an algebra with a Lie product

f, g ! {f, g}
L

⌘ {f, g}
PB

, (7.3)

where {. , .}
PB

denotes the classical Poisson brackets.
In this way A becomes a Poisson algebra, briefly called the Dirac

Poisson algebra and as abstract algebra is denoted by A
D

. .
If, one considers the abstract algebra A

D

as the common Poisson
algebra of classical and quantum mechanics, respectively defined by
the classical canonical variables and by the corresponding quantum
canonical variables, the only distinctive feature is that in the classical
realization/representation of such an abstract algebra the basic product
(7.2) is commutative, whereas it is not commutative in the quantum
case.
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A priori, it would seem that the commutativity of the basic product
is largely free and one may ask which additional ingredients have to
added in order to fix the commutator.

The very important property discovered by Dirac is that in a Pois-
son algebra A the following algebraic identity (called Dirac identity)
holds, which establishes a link between the Lie product {. , .} and the
commutator [A, B] ⌘ AB − BA (defined in terms of the basic prod-
uct), for any A, B 2 A.

Proposition 7.1.1 If A is Poisson algebra the following properties
hold:
1) (Dirac identity)

[A, C] {B, D} = {A, C} [B, D], 8A,B,C,D 2 A; (7.4)

2) the commutator and the Lie product commute

[A, B] {A, B} = {A, B} [A, B]; (7.5)

3) if there exists a pair C,D, such that {C, D} is invertible, as assumed
in the following, then,

[ [C, D], {C, D}−1
] = 0,

[ [C, D]{C, D}−1, {A, B} ] = 0, 8A,B 2 A; (7.6)

4) if also {A, B} is invertible, then

[A, B] {A, B}−1
= [C, D] {C, D}−1

= {C, D }−1
[C, D ] ⌘ Z, (7.7)

5) Z relates the commutator to the Lie product, in the sense that
8E, F, G, H 2 A

[E, F ] = Z {E, F}, [Z, {G, H} ] = 0 = [Z, [G, H] ]. (7.8)

6) Z commutes with all the elements of A, i.e. it is a central variable:

[Z, A ] = 0, 8A 2 A. (7.9)
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Proof.
1) The proof cleverly exploits the Leibniz rule satisfied by the Lie prod-
uct, with respect to the basic product. In fact, by applying it first to
the product AB and then to the product CD, one has, respectively,

{AB, CD} = {A, CD}B + A{B, CD} =

= {A, C}DB + C{A, D}B + A{B, C}D + AC{B, D}; (7.10)

{AB, CD} = {AB, C}+ C{AB, D} =

{A, C}BD + A{B, C}D + C{A, D}B + CA{B, D}. (7.11)

Then, by subtracting eq. (7.10) from eq. (7.11) one gets eq. (7.4)

{A, C} [B, D ] + [C, A ] {B, D } = 0.

2) Eq. (7.4) trivially implies that, for any pair A, B 2 A, their commu-
tator and the Lie product commute

[A, B] {A, B} = {A, B} [A, B].

3) Since {C, D } is invertible, eq. (7.4) applied to C,D,C,D, gives

[C,D] = {C, D}[C,D] {C, D}−1
= [C, D]+{C, D}[ [C, D], {C, D}−1

].

Hence, {C, D}[ [C, D], {C, D}−1
] = 0 and, since {C, D} is invertible,

[ [C, D], {C, D}−1
] = 0.

Furthermore, from eq. (7.4) applied to A,B,C,D and to C,D,A,B,
using that {C, D} is invertible, one respectively gets

[A, B] = {A, B} [C, D] {C, D}−1,

{C, D}−1
[C, D] {A, B} = [A, B].

Then, subtracting one equation from the other and using that [C, D ]

and {C, D }−1 commute, one obtains eq. (7.6).
4) Equation (7.7) follows from eq. (7.4) applied to A,B,C,D, using
that both {A, B }−1 and {C, D}−1 commute with the corresponding
commutators.
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5) The first of eqs. (7.8) follows from eq. (7.4) applied to E,F,C,D,
using that {C, D} is invertible and eq. (7.6).
Furthermore, Z commutes with the basic product, since, by eq. (7.6) it
commutes with the Lie product, to which the basic product is related
by eq. (7.8):

[Z, [E, F ] ] = [Z, Z {E, F } ] = Z [Z, {E, F } ] = 0.

6) Quite generally, by applying eq. (7.4) to A,B,EC,D, and using the
Leibniz rule, one has

[A, B] {EC, D} = {A, B}[EC, D] = {A, B}(E [C, D] + [E, D]C),

On the other hand, by the Leibniz rule

[A, B] {EC, D} = [A, B](E {C, D}+ {E, D}C),

so that, by comparing the right hand sides of the two equations and
using eq. (7.4), one has

[A, B]E {C, D} = {A, B}E [C, D], (7.12)

and, by using eqs. (7.8)

{A, B}Z E {C, D} = {A, B}E Z {C, D}.

Choosing A = C, B = D, by the existence of {C, D}−1, one gets
[Z, E] = 0, 8E 2 A.

Equation (7.5) was proved by Dirac, (in his book The Principles of
Quantum Mechanics, Chapter IV), who also provided (semi-heuristic)
arguments for the validity of eqs. (7.8), (7.9), without specifying the
(mathematical) conditions for their validity, clearly pointed out in the
above Proposition.

Actually, eqs. (7.8, (7.9) do not hold for general Poisson algebras. In
particular, the existence of pairs C,D such that {C, D} is invertible
fails if the Poisson algebra is generated by C1 functions of compact
support.

Equation (7.9) was proved by Farkas and Letzter for prime Poisson
algebras (D. R. Farkas and G. Letzter, J. Pure Appl. Algebra, 125,
155-190,(1998)).
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The next step, in Dirac attempt to explain the relation between clas-
sical and quantum mechanics, on the basis of a common (underlying)
algebraic structure, was to consider irreducible representations of the
Dirac Poisson algebra, so that the central variable Z gets represented
by a multiple of the identity.

Then, the deep structural relation between classical and quantum
mechanics is that they both correspond to irreducible representations
of the same Dirac Poisson algebra, being distinguished by the represen-
tative values taken by the central variable Z, respectively Z = 0 and
Z = i~.

More precisely, according to Dirac strategy, denoting by f, g the rep-
resentative of elements of A

D

in the classical representations, actually
given by functions f(q, p), g(q, p) of the classical canonical variables,
and by u

f

, u
g

the corresponding elements in the quantum mechani-
cal representation, one obtains the following algebraic relation between
classical an quantum canonical variables

u
f+g

= u
f

+ u
g

, u1 = 1, (7.13)

[u
f

, u
g

] = i~u{f, g}PB
. (7.14)

Unfortunately, eq. (7.14) is incompatible with the so-called Von Neu-
mann rule u

g(f) = g(u
f

); it is even incompatible with linearity, if irre-
ducibility of the resulting algebra, or related conditions, are assumed
(for the detailed discussion of such inconsistencies see S.T. Ali and M.
Englis, Rev. Math. Phys. 17, 391 (2005), Section 1).

In conclusion, Dirac argument for explaining the deep relation be-
tween classical and quantum mechanics at the level of the canonical
structure is mathematically inconsistent and the Lie algebraic struc-
ture of the quantum variables cannot be defined by eq. (7.14).

A modified Dirac strategy is discussed in the next Section, following
G. Morchio and F. Strocchi, Lett. Math. Phys. 86, 135-150 (2008); Rep.
Math. Phys. 64, 33-48 (2009).
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7.2 A common Poisson algebra of classical and quantum
mechanics

The above inconsistencies indicate that the Dirac Poisson algebra en-
codes too much structure of the classical case, not shared by the algebra
of quantum canonical variables. Therefore, for the identification of an
algebra common to classical and quantum mechanics, one must start
with the minimal requirements expected to be shared by both.

To this purpose, as a first step, one may argue that in both cases one
may introduce an (abstract) algebra which describes the "positions" of
the system. More precisely, one may consider the polynomial associative
algebra A

q

generated by the C1 real functions of the "coordinates" q,
including the identity function 1.

The vector space relations are the (obvious) standard ones and the
(basic) associative product is defined as before (see eq. (7.2)):
8 f, g 2 A

q

f, g ! f g, (f g)(q) ⌘ f(q) g(q), 1 f = f1 = f.

For simplicity, in the following we shall consider RN as the position
space (even if one may consider a general C1 manifold M).

The next step it to realize that on such an algebra one may define
infinitesimal translations, and that their action define real vector fields
and a corresponding Lie structure:

δ
i

f = @f/@q
i

= {f, p
i

}, 8f 2 A
q

(7.15)

where p
i

denotes the vector field in the i-th direction.
These premises allow to introduce the abstract free polynomial (real)

associative algebra A generated by the coordinates q
i

and by the p
i

’s.
The Lie product is extended to A, exclusively by assuming the Leib-

niz rule, the linearity in both arguments of the product and antisym-
metry, never using commutativity of the (basic) associative product.

Since, the Lie product is meant to be related to translations, its
extension to A is done by posing

{q
i

, q
j

} = 0. (7.16)
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In this way, one obtains a Poisson algebra (still denoted by) A,
which is different from the Dirac Poisson algebra A

D

. Our proposal is
that the so defined A may be taken as a common Poisson algebra of
classical and quantum mechanics.

Since {q
i

, p
i

} = 1, 8i, the Lie product of all such pairs is invertible,
so that the conditions of Proposition 7.1.1 are satisfied and, as a con-
sequence, the commutator is related to the Lie product by a central
variable (no summation over repeated indices is understood):

Z ⌘ [q
i

, p
i

]{q
i

, p
i

}−1
= [q

i

, p
i

] = [ q
j

, p
j

]. (7.17)

Hence,
[q

i

, q
j

] = 0, [q
i

, p
j

] = Z {q
i

, p
j

} = Z δ
ij

. (7.18)

In the irreducible representations of A, more generally in the repre-
sentations in which the central variables are represented by multiples
of the identity (the so called factorial representations), Z = λ1, λ a
complex number.

Then, Z = 0 gives the commutative classical case, whereas Z 6= 0

corresponds to the non-commutative quantum case; these are the only
kinds of factorial representations of A (the scale of Z being clearly
undetermined).

The intrinsic geometric meaning of the algebraic structure of A,
namely the existence of translations in the space of coordinates, re-
places the somewhat ad hoc assumptions by Dirac, eqs. (7.13), (7.14),
on the basis of a claimed classical analogy. No such a classical analogy
may be invoked for relating classical and quantum mechanics; the only
relation is that they correspond to inequivalent realizations of the Pois-
son algebra A defined above, which consists of free polynomials of the
coordinates q

i

and the generators of translations p
i

.
The inequivalence of the two realizations precludes the existence of

a mapping between them (as for inequivalent representations of a Lie
algebra) and explains the obstructions for Dirac strategy.

By construction, the Poisson algebra A is generated by elements
which are real, i.e. they satisfy a reality or hermiticity condition

q⇤
i

= q
i

, p⇤
i

= p
i

.
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The ⇤ operation has a unique extension to A satisfying (AB)

⇤
= B⇤ A⇤

and {A, B}⇤ = {A⇤, B⇤}, 8A,B 2 A. Thus,

[A, B]

⇤
= −[A⇤, B⇤

], Z⇤
= −Z. (7.19)

Z 6= 0, equivalently the non-commutativity of the basic product re-
quires a complex structure,, i.e. Z = i ~1, ~ a real number. This ex-
plains on general grounds the origin and need of a complex structure
in the formulation of quantum mechanics, in contrast with the real
realization of classical mechanics.

Similar results may be obtained in the general case of a configuration
space corresponding to a C1 manifold M.

In this case, the basic ingredient is the existence of local translations
defined by vector fields of compact support in M, acting on C1

0 (M),
the C1 functions of compact support in M,. Such an action defines
a Lie structure and a Lie product. The common Poisson algebra is
generated by C1

0 (M), by the identity function and by the polynomials
of vector fields (for details see G. Morchio and F. Strocchi, refs. above).
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A
Appendix. Problems with solutions

One of the main lesson from the following problems is to convince the
reader that the Lagrange formulation (with minimal Lagrangian coor-
dinates) greatly simplify the solutions with respect to the Newtonian
approach in Cartesian coordinates, with the occurrence of constraint
forces.

The reader is strongly invited to explicitly check the advantage of
the Lagrangian approach by comparing the two methods of solutions
in the various problems below.

1. A box of mass m slides on a frictionless inclined plane of mass M ,
which forms an angle ✓ with respect to the horizontal plane. The in-
clined plane is the upper surface of a body P of mass M which rests
on the frictionless horizontal plane. Describe the motion and determine
the constraint force on the box.

Solution. Clearly, the problem reduces to a two dimensional problem
in the plane defined by the horizontal line, x-axis, and the vertical line
z-axis (the y coordinate is not relevant). The body P is assumed to lie
on the horizontal plane, with its wedge on the left; its position may be
conveniently described by the position X of the wedge, initially put at
the origin of the x-axis.
Without loss of generality, the box may be considered as pointlike with
coordinates x, z (related to the position of its center of mass) and define
s ⌘ x − X, so that z = s tan ✓; X, s may be taken as (minimal) La-
grangian coordinates, so that one does not need to introduce constraint
forces.

F. Strocchi, A Primer of Analytical Mechanics, UNITEXT for Physics,
https://doi.org/10.1007/978-3-319-73761-4

© Springer International Publishing AG 2018
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Then, the Lagrangian is

L =

1
2
M ˙X2

+

1
2
m(ẋ2

+ ż2)−mg z =

=

1
2
M ˙X2

+

1
2
m[(ṡ+ ˙X)

2
+ ṡ2 tan2 ✓]−mg s tan ✓.

One Lagrange equation is

d

dt

@L

@ ˙X
=

d

dt

⇣
(M +m)

˙X +m ṡ
⌘
=

@L

@X
= 0,

which implies the momentum conservation law, so that if both the box
and the plane are initially at rest

(M +m)

˙X +m ṡ = 0. (A.1)

The second Lagrange equation is

d

dt

@L

@ṡ
= m [(1 + tan

2 ✓)s̈+ ¨X] =

@L

@s
= −mg tan ✓.

The momentum conservation law allows to express ¨X in terms of s̈;
then one obtains

✓
M

M +m
+ tan

2 ✓

◆
s̈ = −g tan ✓.

Equivalently, since x = s + X, by the momentum conservation ẍ =

M s̈/(M +m),

ẍ = −gM sin ✓ cos ✓/(M +m sin

2 ✓).

The time evolution of s is therefore a uniformly accelerated motion,
with initial conditions s(0) = s0, ṡ(0) = 0. The time evolution of X is
derived by the above conservation law.
The reaction R of the plane on the box is derived from the Newton
equation for the box acceleration along the x-axis

mẍ = −R sin ✓.

Hence,
R = −mM g cos ✓/(M +m sin

2 ✓).
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It is worthwhile to remark that when there are easily available as
many constants of motion as the Lagrangian degrees of freedom, one
may simply exploit them to solve the dynamical problem; to this pur-
pose one has to by express the constants of motion in terms of the
(minimal) Lagrangian coordinates, so that the possible (holonomic)
constraints do not enter in the conservation laws.
This is the case of the problem discussed above, where one has both
the momentum conservation

(M +m)

˙X +m ṡ = 0,

and the energy conservation

1
2
M ˙X2

+

1
2
m[(ṡ+ ˙X)

2
+ ṡ2 tan2 ✓] +mg s tan ✓ = mg s0 tan ✓.

The momentum conservation allows to express ˙X in terms of ṡ in the
equation of the energy conservation

1

2

✓
M

M +m
+ tan

2

◆
ṡ2 + g s tan ✓ = g s0 tan ✓.

This is the energy of a one-dimensional particle initially at rest under
the action of a positive linear potential.
Indeed, the time derivative of the above energy conservation immedi-
ately gives the equation of motion derived before for s̈.

2. A homogeneous rope of length l and of total mass m may slide on a
table and initially a fraction z0 of the rope hangs over the edge of the
table. Determine the motion of the rope.

Solution. We denote by z the fraction of the rope which hangs over the
edge of the table at time t and by ⇢ = m/l the density of the rope.
Then, the kinetic energy has the two contributions corresponding to
the fraction of the rope which slides on the table and to the fraction
hanging over the edge:

T =

1
2
(l − z)⇢ż2 + 1

2
z⇢ ż2.

The potential is

V = ⇢ g

Z 0

z

sds = − 1
2
⇢g z2.
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Hence, the Lagrangian is

L = T − V =

1
2
m ż2 + 1

2
⇢gz2,

and the Lagrange equation is

d

dt

@L

@ż
= m z̈ =

@L

@z
= z ⇢ g.

The general solution is

z(t) = Aet g/l + Be−t g/l,

and the initial conditions z(0) = z0, ż(0) = 0, give

z(t) = z0(e
t g/l

+ e−t g/l

).

Again, since one has only one degree of freedom, the energy conservation
immediately provides the dynamical law:

0 =

d

dt
(T + V ) = ż[m z̈ − z ⇢ g] = 0.

3. Determine the equation of motion of a pendulum, whose support un-
dergoes a preassigned horizontal motion. Discuss the conditions under
which one may consider the small oscillations of the pendulum.

Consider the case in which the support on mass M may move freely
on an horizontal line and determine the frequencies of the small oscil-
lations.

Solution. We denote by X(t) the horizontal preassigned time evolu-
tion of the support, by l the length of the (massless) rod to which a
point mass m is hanged and by x(t), z(t) the horizontal and vertical
coordinates of the mass point.
Denoting by ✓ the angle formed by the rod with respect to the vertical
line, one has

x(t) = X(t) + l sin ✓, z(t) = l cos ✓;

ẋ =

˙X + l cos ✓ ˙✓, ẏ = −l sin ✓ ˙✓.
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The Lagrangian is

L =

1
2
m(l2 ˙✓2 + ˙X2

+ 2 l ˙✓ ˙X cos ✓)−mg l (1− cos ✓).

The Lagrange equation of motion is

d

dt

@L

@ ˙✓
= ml

d

dt
(l ˙✓ + ˙X(t) cos ✓) = ml (l¨✓ + ¨X cos ✓ − ˙✓ ˙X sin ✓) =

@L

@✓
= −ml ( ˙✓ ˙X sin ✓ + g sin ✓),

i.e.
l ¨✓ + ¨X cos ✓ + g sin ✓ = 0.

Thus, if the support moves with a constant velocity, so that ¨X(t) = 0,
one recovers the usual equation of motion of the pendulum.
More generally, if ¨X(t) << g, one may try a small angle approximation,
leading to

¨✓ + ¨X/l + (g/l) ✓ = 0.

This is the equation for a driven oscillator.
A simple case is when the preassigned motion of the support is periodic.
The above condition ¨X(t) << g requires X(0)!2/l << g/l ⌘ !2

0, where
! is the frequency of the periodic motion of the support and !0 =

p
g/l

is the frequency of the pendulum, in the familiar case of fixed support.
In this problem the energy is not conserved and one cannot exploit the
corresponding conservation equation to directly derive the equation of
motion, as in the previous problems.

If the support is free, one must add to the Lagrangian the kinetic
energy of the support, with motion X(t) to be determined.
Then, one gets the same Lagrange equation for ¨✓

l ¨✓ + ¨X cos ✓ + g sin ✓ = 0,

and the following equation for X(t)

d

dt
[(M +m)

˙X +ml ˙✓ cos ✓] = 0,

i.e.
d

dt
[X(t) +

m

M +m
l sin ✓] = constant.
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Then, if initially both the support and the pendulum are at rest, and
X(0) = 0 one has

X(t) = − ml

M +m
sin ✓.

For small oscillations, sin ✓ ⇠ ✓ and ¨X = −l m/(M +m)

¨✓. Thus,

¨✓ + !2 ✓ = 0, !2 ⌘ M +m

m

g

l
.

Thus, both masses oscillate with the same frequency !, moving in op-
posite directions.
A limiting case is when ✓(0) = 0 =

˙✓(0), X(0) = 0, ˙X(0) 6= 0; then
both the support and the point mass m move with the same velocity,
in the same direction.

4. A particle of mass m is initially at rest on the top of a vertical circle
and later starts sliding on the circle. Find the equation of motiuon and
determine when it starts flying off the circle.

Solution. We denote by ✓ the angle which the position of the parti-
cle on the circle forms with horizontal x-axis, so that the Cartesian
coordinates of the particles are x = R cos ✓, z = R sin ✓. Then, the
Lagrangian is

L =

1
2
mR2

˙✓2 −mgR sin ✓

and the Lagrange equations are

R¨✓ = −g cos ✓.

Putting ✓ = ⇡/2− φ, one has

'̈ = (g/R) sin'

and the initial motion for '(0) = 0, '̇(0) << 2

p
g/R, as long as '(t)

keeps being small, is given by

'(t) = 1
2

s
R

g
'̇(0)[e

p
g/R t − e−

p
g/R t

].

The particle will start flying off when the reaction R of the circle will
vanish.
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From the equation for the acceleration normal to the circle a
n

= −R2
˙✓2,

ma
n

= R−mgR sin ✓,

R = 0 when R ˙✓2 + g sin ✓ = 0.
Since the energy conservation (for the initial data ✓(0) = 0, ˙✓(0) = 0)
reads

R ˙✓2 = 2g − g sin ✓,

the above equation R ˙✓2 + g sin ✓ = 0 becomes 2 − 3 sin ✓ = 0, which
yields sin ✓ = 2/3, ✓ = 41.8o.

5. (Atwood machine) Two masses, m1 and m2 are connected by an
inextensible massless string of length l over an ideal massless pulley.
Determine the motion and the tension of the string.

Consider the case in which the pulley has radius R and moment of
inertia I.

Solution. Putting the origin of the vertical z-axis such that the (vertical)
position of the pulley is l and denoting by z1, z2 the positions of the
two masses, one has z1 + z2 = l and the Lagrangian is

1
2
(m1 +m2)ż

2
1 − g(m1 −m2) z1 − g m2 l.

Hence, the Lagrange equation is

d

dt

@L

@ż1
= (m1 +m2)z̈1 =

@L

@z1
= (m2 −m1) z1

and the time evolution corresponds to a uniformly accelerated motion.
The tension T may be derived from the Newton equation for z1:

m1z̈1 = −g m1 + T, T = 2 gm1 m2/(m1 +m2).

Taking into account the moment of inertia of the pulley amounts to an
additional term in the kinetic energy, corresponding to the rotational
energy of the pulley, namely 1

2
I !2, ! = ż1/R.

Hence, the Lagrange equation becomes

(m+ 1 +m2 + I/R2
)z̈1 = (m2 −m1)z1.
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6. A homogeneous disc of mass m and radius R is hanging form a
(horizontal) plane through a string which is wrapped around it and it
is allowed to fall. Determine the motion and the string tension, under
the assumption that the string always keeps being vertical (a sort of
Yo-Yo motion).

Consider the case in which the support undergoes a preassigned
vertical motion.

Solution. The configuration of the disc is described by the (vertical)
position z of its center of mass and we denote by ✓ the rotation angle
of the disc, so that ✓ = z/R. Therefore, the kinetic energy is

1
2
m ż2 + 1

2
I ˙✓2, I =

1
2
mR2,

and the Lagrangian is

L = (3/4)mż2 +mgz.

Hence, the Lagrange equation is

(3/2)mz̈ = mg,

describing a uniformly acceleration motion. The tension T may be de-
termined by the Newton equation for the center of mass

mz̈ = mg + T.

It is instructive to solve the problem by using the Newton equations
for z and ✓ as well as by exploiting the energy conservation.
If the support undergoes a preassigned vertical motion Z(t), then the
vertical position of the disc is now z0 = z + Z, with z = R✓, as above.
Then, the Lagrangian is

1
2
m(ż + ˙Z)2 + (1/4)mż2 +mg (z + Z),

and the Lagrange equation is

z̈ =

2

3

(g − ˙Z).
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7. A sphere of radius r and mass m subject to gravity is rolling without
slipping inside a hollow fixed cylinder of radius R. Assume that the
motion takes place in the plane orthogonal to the axis of the cylinder
and passing through the center of mass of the sphere.

Discuss the motion and determine the period for small oscillations.
Consider the case in which the sphere may also roll in the direction of
the axis of the cylinder.

Solution. We choose Cartesian coordinates x, y on plane of motion, with
origin on the cylinder axis and we denote by ✓ the angle such that the
position of the center of mass of the sphere is given by the Cartesian
coordinates x = (R − r) sin ✓, y = (R − r) cos ✓. The rotation angle of
the sphere is denoted by ' and its moment of inertia by I = 2mr2/5.

Then, the Lagrangian is

L =

1
2
I'̇2

+

1
2
m ((R− r) ˙✓)2 −mg(R− (R− r) cos ✓) =

= (7/10)m (R− r)2 ˙✓2 −mg(R− (R− r) cos ✓).

The Lagrange equation is

(7/5)m (R− r)2¨✓ = −mg(R− r) sin ✓,

i.e.
¨✓ = − 5g

7(R− r)
sin ✓.

Hence, the motion is similar to that of a pendulum and the frequency
! of small oscillations is

! =

✓
5g

7(R− r)

◆1/2

.

If the sphere may also move in the z-direction, one has two addi-
tional terms in the kinetic energy corresponding to the velocity in the
z-direction of the center of mass, 1

2
m ż2, and to the rotational energy

1
2
Iw2 associated to the angular velocity w orthogonal to the cylinder

axis, so that ż = r w.
Since the potential is independent of z, one has

d

dt

@L

@ż
= (7/5)m z̈ = 0,

i.e. the motion in the z-direction is a free motion.
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non-inertial frames, 3

particle in a central potential, 53
point mass on a rotating circle, 3
Poisson algebra, 47, 93, 94

common to classical and quantum
mechanics, 100

Poisson bracket, 44
Poisson brackets, 43

canonical transformations, 51
general structure, 46
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