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Chapter 1 ®)
Introduction Check for

Markov chains are named after the Russian mathematician Andrei Markov
(1856-1922), who introduced them in 1907. Suppose we have a sequence of random
variables (X,),>1. The simplest model is the case where the random variables are
assumed to be pairwise independent. For this scenario many nice results, such as the
law of large number or the central limit theorem, are known. At the same time the
pairwise independence assumption makes the model rather restrictive.

Markov’s idea was to consider a more general dependence structure that however
is still simple enough that it can be analyzed rigorously. Informally, his idea was to
assume that the random variables (X,,),>| are ordered in a very specific way.! This
ordering implies that all the information that the random variables (X, - -+, Xx—_1)
could have about X for any k > 1 is contained in X;_;. More precisely, we require
that the collective entire past (X1, ..., Xx—») is independent of the collective entire
future (X, ...) conditioned on the present X;_;. This model has the advantage
that in order to describe X; we only need to remember X;_; and can forget about
the past (Xy, ..., Xx—2). This makes the model simple enough that we can prove
precise properties and describe its behavior for large values of n. At the same time,
the model is considerably more general than the pairwise independence assumption
which makes it suitable for many situations (see, e.g., [1-4]).

Markov chains are intensively studied and have been generalized to the quantum
mechanical setup [5] where random variables are replaced by density operators on a
Hilbert space.? Natural questions that arise are:

What are the main differences between classical and quantum Markov chains?
What do we know about sequences of random variables that approximately
form a Markov chain? Do they approximately behave as (exact) Markov
chains?

IWe then say (X,)n>1 forms a Markov chain in order X1 <> X7 <> X3 < ... .
%In Sect. 1.2 and in particular in Sect. 5.1 we introduce the concept of a quantum Markov chain.
© The Author(s) 2018 1
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2 1 Introduction

This book will answer these questions. We will first introduce the reader to quan-
tum Markov chains and explain how to define a robust version of this concept that
will be called approximate quantum Markov chains.

In the literature there exists the term “short Markov chains” which should distin-
guish the Markov chain between three random variables from infinite chains. Since
we only consider Markov chains defined for three random variables in this book we
drop the term “short”.

1.1 Classical Markov Chains

Three random variables X, Y, Z with joint distribution Pxy; form a Markov chain in
order X < Y < Z if X and Z are independent conditioned on Y. In mathematical
terms this can be expressed as

Pxyz is aMarkov chain <= Pxzy = Pxjy Pz, (L.1)

where Py denotes the probability distribution of X conditioned on Y. Bayes’
theorem directly implies that the right-hand side of (1.1) can be rewritten as
Pxyz = Pxy Pzy. Operationally, the Markov chain condition tells us that all the
information the pair (X, Y) has about Z is contained in Y. In other words, there is
no need to remember X in order to determine Z if we already know Y. Suppose we
loose the random variable Z. The Markov chain condition ensures that it is possible
to reconstruct Z by only acting on Y with a stochastic map.? More precisely,

Pxyz is a Markov chain <= 3 stochastic matrix Wzy such that Pxyy; = PxyWzy .

(1.2)

Bayes’ theorem directly implies that Wy can be always chosenas Wzy = Pzy. A
third characterization of Pyy; being a Markov chain is that the conditional mutual
information vanishes, i.e.,

Pyxyz is a Markov chain <= I(X:Z|Y)p =0, (1.3)

where
I(X:Z|]Y)p =HXY)p+HXYZ)p —HXYZ)p —HY)p (1.4)
denotes the conditional mutual information and H(X)p :=—)  _, Px(x)

log Px (x) is the Shannon entropy.

3The reconstruction refers to a stochastically indistinguishable copy which means that if we denote
the reconstructed random variable by Z’ we require that the probability law of (X, Y, Z’) is the
same as (X, 7Y, Z).
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Exercise 1.1 Verify the three characterizations (1.1), (1.2), and (1.3) for a tripartite
distribution Pyxyz being a Markov chain.

We saw above that (1.1), (1.2), and (1.3) are equivalent characterizations for a
tripartite distribution to be a Markov chain. The conditional mutual information can
be written in terms of a relative entropy, i.e.,

I(X : Z|Y)p = D(PxyzI|| Pxy Pzy) . (L.5)
where
] 0w
D(Q|IR) := { er,?l 0(x)log RO if O << R (1.6)
+00 otherwise ,

denotes the relative entropy (also known as Kullback-Leibler divergence) between
two arbitrary probability distributions Q and R on a discrete set 2 and Q <« R
means that Q is absolutely continuous with respect to R. Interestingly, there is an
exact correspondence between the conditional mutual information and the relative
entropy distance to the set of Markov chains, also known as a variational formula for
the conditional mutual information of the form

I(X . Z|Y)p = inIl{D(PXYZanyz) . QXYZ is a Markov chain} . (17)

A simple calculation reveals that Qxyz = Pxy Pzy is the optimizer to (1.7).

Exercise 1.2 Prove (1.7) and show that the optimizer is always given by Qxyz =
PxyPzy.

1.1.1 Robustness of Classical Markov Chains

Above we have seen three equivalent characterizations (1.1), (1.2), and (1.3) for a
tripartite distribution Pyy; being a Markov chain. An interesting question is whether
these characterizations remain equivalent if they are satisfied approximately. This is
indeed the case. To see this, let us recall the variational formula for the mutual
information (1.7) which implies that for any distribution Pxy

I(X:Z|Y)p=¢ <= D(PxyzI||PxyPzy) =¢. (1.8)

This shows that every distribution Pyyz such that the conditional mutual informa-
tion is small (but not necessarily vanishing), i.e., /(X : Z|Y)p = &, where € > 0 is
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small also approximately satisfies (1.1) and (1.2) and vice versa, since by Pinsker’s
inequality* we have

|Pxziy — Pxiy Pziv ||, = | Pxyz — Pxy Pziy ||, < V2D(Pxyzl Pxy Pzy) . (1.9)

Combining (1.7) with (1.8) gives
I(X : Z|Y)p = D(PxyzI||Pxy Pz)y) = inn{D(nyzlleyz) : Qxyz is a Markov chain},
(1.10)

which shows that distributions with a small conditional mutual information are always
close (in terms of the relative entropy distance) to Markov chains and vice versa.
As a result, we may define a (classical) approximate Markov chain as a tripartite
distribution Pyy 7 such that the conditional mutual information 7 (X : Z|Y) p is small.

1.2 Quantum Markov Chains

So far we considered Markov chains for classical systems that are modeled by ran-
dom variables. To describe the more general quantum mechanical setup the random
variables are replaced by density operators on a Hilbert space.

A tripartite state pspc on A ® B ® C, where A, B, and C denote Hilbert spaces,
forms a quantum Markov chain if the A and C part can be viewed independent
conditioned on the B part — for a meaningful notion of conditioning. Generalizing
the classical definition of a Markov chain to the quantum mechanical setup turns out
to be delicate since conditioning on a quantum system is delicate. Out of the three
equivalent characterizations (1.1), (1.2), and (1.3) for classical Markov chains we
have seen above, it turns out that (1.2) servers best for the definition of a quantum
Markov chain.

A tripartite state pspc on A ® B ® C is called a (quantum) Markov chain in order
A < B < C if there exists a recovery map Zp_, pc from B to B ® C such that

papc = (Fa @ Zp—pc)(pas) . (1.11)

where .#4(-) denotes the identity map on A. A recovery map is an arbitrary trace-
preserving completely positive map. The condition (1.11) says that the C part can
be reconstructed by only acting on the B part.

Petz proved an entropic characterization for the set of quantum Markov chains
[7, 8] by showing that

papc is a quantum Markov chain <<= I(A:C|B), =0, (1.12)

4Pinsker’s inequality states that ||P — Q|l; < +/2D(P| Q) where |-||; denotes the total variation
norm [6].
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where
I(A:C|B), :==H(AB),+ H(BC), — H(ABC), — H(B), (1.13)

denotes the quantum conditional mutual information and H (A), 1= —tr ps log p4 is
the von Neumann entropy. Furthermore, Petz showed that in case /(A : C|B), =0
the recovery map

1 _1 _1 1
Tsnc : Xp > phe(pp” Xpog® ®idc)ppe (1.14)

always satisfies (1.11) (we refer to Theorem 5.2 for a more precise statement). The
recovery map Jp_, pc is called Petz recovery map or transpose map. It is trace-
preserving and completely positive (see Remark 5.3).

The result (1.12) gives an entropic characterization for the set of quantum Markov
chains. Furthermore, (1.12) displays a criterion to verify easily if a certain tripartite
state is a quantum Markov chain, as evaluating the conditional mutual information
is simple. We further note that the algebraic structure of quantum Markov states has
been studied extensively [9] (see Theorem 5.4 for a precise statement). Quantum
Markov chains and their properties are discussed in more detail in Sect. 5.1.

1.2.1 Robustness of Quantum Markov Chains

A natural question that is relevant for applications is whether the above statements
are robust. Specifically, one would like to have a characterization for the set of
tripartite states that have a small (but not necessarily vanishing) conditional mutual
information, i.e., /(A : C|B), < & for & > 0. First results revealed that such states
can have a large trace distance to Markov chains that is independent of € [10, 11] (see
Proposition 5.9 for a precise statement), which has been taken as an indication that
their characterization may be difficult.’ This is discussed in more detail in Sect. 5.2.1.

As discussed above, states p4 pc suchthat / (A : C|B), is small are not necessarily
close to any Markov chain, however such states approximately satisfy (1.11). More
precisely, it was shown [12—18] that for any state p4pc there exists a recovery map
Ap_, pc such that

I(A:CIB), = Du(pascll(Fa ® Zp-5c)(0an)) (1.15)

where Dy denotes the measured relative entropy (see Definition 2.33). The measured
relative entropy Dyi(w||T) is a quantity that determines how close w and t are. It is

5 As explained in Sect. 1.1.1 above, classical tripartite distributions with a small conditional mutual
information are always close to classical Markov chains.
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nonnegative and vanishes if and only if @ = 7. The measured relative entropy and its
properties are discussed in Sect. 2.5.3. We refer to Theorem 5.5 for a more precise
statement. Inequality (1.15) justifies the definition of approximate quantum Markov
chains as states that have a small conditional mutual information, since according
to (1.15) these states approximately satisfy (1.11). In Sect. 5.2 we discuss in detail
the properties of approximate quantum Markov chains.

Unlike in the classical case where the robustness of Markov chains directly follows
from (1.7) which is simple to prove (see Exercise 1.2), Inequality (1.15) far from
trivial. A large part of this book (mainly Chaps. 3 and 4) are dedicated to the task
of developing mathematical techniques that can be applied afterwards in Chap. 5 to
prove (1.15).

1.3 Outline

The aim of this book is to introduce its readers to the concept of approximate quantum
Markov chains, i.e., a robust version of Markov chains for quantum mechanical sys-
tems. Our exposition does not assume any prior knowledge about Markov chains nor
quantum mechanics. We derive all relevant technical statements from the very begin-
ning such that the reader only needs to be familiar with basic linear algebra, analysis,
and probability theory. We believe that the mathematical techniques described in the
book, with an emphasis on their applications to understand the behavior of approx-
imate Markov chains, are of independent interest beyond the scope of this book.

The following is a brief summary of the main results obtained in each chapter:

Chapter 2 introduces the mathematical preliminaries that are necessary to follow
the book. The advanced reader may easily skip this chapter. We first explain
the notation that is summarized in Table 2.1 before introducing basic properties
of norms (Sect. 2.2), quantum mechanical evolutions (Sect. 2.4), and entropy
measures (Sect. 2.5). Section 2.3 discusses well-known properties of functions
on Hermitian operators.

Chapter 3  presents two different mathematical techniques that can be used to
overcome difficulties arising from the noncommutative nature of linear operators.
Suppose we are given two operators. Is it possible to modify one of the two oper-
ators such that it commutes with the other one without changing it by too much?

In Sect. 3.1 we present a first answer to the above question by introducing the spec-
tral pinching method. For any Hermitian operator H with spectral decomposition
H =), ATI; we can define the pinching map with respect to H as

Py X > ZH,\XH,\. (1.16)

A
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The pinching map satisfies various nice properties that are summarized in
Lemma 3.5. For example, #y(X) always commutes with H for any nonneg-
ative operator X . Furthermore, there is an operator inequality that relates & (X)
with X. We demonstrate how to use the spectral pinching method in practice by
presenting an intuitive proof for the Golden-Thompson inequality that is only
based on properties of pinching maps.

Section 3.2 discusses complex interpolation theory which oftentimes can be
used as an alternative to the pinching technique. The basic idea is the fol-
lowing: consider an operator-valued holomorphic function defined on the strip
S:={z € C:0 <Rez < 1}. Complex interpolation theory allows us to control
the behavior of the norm of the function at (0, 1) by its norm on the boundary,
i.e., at Rez = 0 and Re z = 1. This is made precise in Theorem 3.11, which is
the main result of this section. Interpolation theory is less intuitive than pinching,
however can lead to stronger results as we will demonstrate in Chap. 4.

Chapter 4 shows how to employ the techniques presented in Chap. 3 to prove
novel real-valued inequalities involving several linear operators — so-called trace
inequalities. Trace inequalities are a powerful tool that oftentimes helps us to
understand the behavior of functions of operators.

Arguably one of the most famous trace inequalities is the Golden-Thompson
inequality stating that for any Hermitian operators H; and H, we have

treM+: < refie: (1.17)

The main result of this chapter is an extension of (1.17) to arbitrarily many matrices
(see Theorem 4.10). As we will show, the intuition for this extension can be seen
from the pinching method whereas the precise result is proven using interpolation
theory, i.e., with the help of Theorem 3.11.

Besides the Golden-Thompson inequality there exists a variety of other interesting
trace inequalities. For example the Araki-Lieb-Thiring inequality states that for
any nonnegative operators By, B,, and any ¢ > 0 we have

[N
L

r 1 1
tr (B B5B})" <tr (B{B,B;)" if r e (0,1]. (1.18)

In Sect. 4.2 we prove an extension of (1.18) to arbitrarily many matrices (see
Theorem 4.7).

Finally, we consider a logarithmic trace inequality stating that for any nonnegative
operators B}, B,, and any p > 0 we have

1 P » 1 » »
—tr By log By B{ B; < tr B;(log By + log B,) < —tr By log B} BY B} .
p p
(1.19)

In Sect. 4.4 we prove an extension of the first inequality of (1.19) to arbitrarily
many matrices (see Theorem 4.15).
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Chapter 5 properly defines the concept of a quantum Markov chain (see Sect. 5.1)
as tripartite states pgc such that there exists a recovery map #Zg_, gc from B to
B ® C that satisfies

pasc = (Ia @ Zp—pc)(Par) . (1.20)

where .#, denotes the identity map on A. Alternatively, quantum Markov chains
are characterized as states p4pc such that the conditional mutual information
vanishes, i.e., I (A : C|B), = 0 (see Theorem 5.2).

With the help of the extension of the Golden-Thompson inequality to four matrices
(derived in Chap. 4) we show that for any density operator p4pc there exists an
explicit recovery map Zp_, pc that only depends on ppc such that

I(A:CIB), = Du(papcll(Fa ® Zp-pc)(pan)) = 0. (1.21)

We refer to Theorem 5 for a more precise statement. Inequality (1.21) shows
that states with a small conditional mutual information approximately satisfy the
Markov condition (1.20). This therefore justifies the definition of approximate
quantum Markov chains as states that have a small conditional mutual informa-
tion. Proposition 5.9 shows that approximate quantum Markov chains, however,
can be far from any Markov chain (with respect to the trace distance).
Inequality (1.21) shows that states p4 gc with a small conditional mutual informa-
tion can be approximately recovered from p4p by only acting on the B-system,
i.e., a small conditional mutual information is a sufficient condition that a state
reconstruction in the sense of (1.20) is approximately possible. Theorem 5.11
proves an entropic necessary condition involving the conditional mutual informa-
tion that such an approximate state reconstruction is possible. In particular, we
will see that there exist states with a large conditional mutual information such
that (1.20) still approximately holds.

Another reason why (1.21) is interesting is that it strengthens the celebrated strong
subadditivity of quantum entropy which ensures that / (A : C|B), := H(AB), +
H(BC), — H(ABC), — H(B), > 0. This entropy inequality is well-studied
and known to be equivalent to various other famous entropy inequalities such
as the data processing inequality, concavity of the conditional entropy and joint
convexity of the relative entropy. In Sect. 5.4 we show how (1.21) can be used to
prove strengthenings of the other entropy inequalities.

Appendix A  presents an example showing that there exist states pspc With an
arbitrarily large quantum conditional mutual information (i.e., I (A : C|B), is
large) that, however, can be reconstructed well in the sense that there exits a
recovery map Zp—, pc such that pspc is close to (F4 @ Zp— pc)(Pap)-
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Appendix B discusses examples showing that Theorem 5.11 is essentially tight

and therefore cannot be further improved.

Appendix C  provides solutions to the exercises stated throughout the book. The

exercises are chosen such that they can be solved rather straightforwardly. The
main purpose of the exercises is to give the reader a possibility to check if she has
understood the presented subject.
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Chapter 2 ®)
Preliminaries Becit

Our notation is summarized in Table2.1. The expert reader may directly proceed
to Chap. 3. In this book we restrict ourselves to finite-dimensional Hilbert spaces,
even though most of the results covered remain valid for separable Hilbert spaces.
As a result, linear operators on these Hilbert spaces can be viewed as matrices. We
decided to still call them operators, i.e., for example a positive semidefinite matrix
will be called a nonnegative operator on a (finite-dimensional) Hilbert space.

2.1 Notation

The notational conventions used in this book are summarized in Table 2.1. To simplify
notation we try to avoid brackets whenever possible. For example, tr A” has to be
read as tr(A?). We will usually drop identity operators from the notation when they
are clear from the context. We would thus write for example pgpappp instead of
(ida ® pp) pap (ida ® pp).

A Hermitian operator H is called nonnegative (denoted by H > 0) if all its eigen-
values are nonnegative. It is called strictly positive (denoted by H > 0) if all its
eigenvalues are strictly positive. We partially order the set of Hermitian operators
(Lowner ordering) by defining H; > H, to mean H; — H, > 0 for two Hermitian
operators H; and H,.

For f : R — C we denote its Fourier tranform by

flw) = / dt f(r)e " . (2.1)

oo

We use 1 {statement} to denote the indicator of the statement, i.c.,

1 if statement is true

0 if statement is false . 22)

1{statement} = {

© The Author(s) 2018 11
D. Sutter, Approximate Quantum Markov Chains, SpringerBriefs in Mathematical
Physics, https://doi.org/10.1007/978-3-319-78732-9_2
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Table 2.1 Overview of notational conventions

General

C, R, Ry, N Complex, real, nonnegative real, and natural numbers
[n] The set {1,2,...,n}forn € N

log Natural logarithm

CL1) Bra and ket

A, B,C,... Hilbert spaces are denoted by capital letters

dim(A) Dimension of the Hilbert space A

A, B, E, ... Mappings are denoted by calligraphic capital letters
ida, 4 Identity operator and identity map on A

tr, trg Trace and partial trace

poly(n) Arbitrary polynomial in n

conv(X) Convex hull of the set X

int(X) Interior of the set X

X Boundary of the set X

f Fourier transform of f

fxg Convolution of f and g

triy Triangular function of width «

|1 X Cardinality of the set X

1 Indicator function

Operators

L(A),L(A, B) Set of bounded linear operators on A and from A to B
H(A) Set of Hermitian operators on A

P(A), B-(A) Set of nonnegative and strictly positive operators on A
S(A) Set of density operators on A

U(A) Set of unitaries on A

V(A, B) Set of isometries from A to B

TPCP(A, B) Set of trace-preserving completely positive maps from A to B
MC(A® B® C) Set of (quantum) Markov chainson A ® B ® C
spec(A) Set of distinct singular values of the operator A
supp(A) Support of the operator A

rank (A) Rank of the operator A

AL B Support of A is contained in the support of B

[A, B] Commutator between A and B, i.e., [A, B] := AB — BA
Ay Spectral gap of the Hermitian operator H

|A] Modulus of the operator A

Af Conjugate transpose of the operator A

A Conjugate of the operator A

AT Transpose of the operator A

A®B Tensor product between operator A and B

A®B Direct sum between operator A and B

(continued)
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Table 2.1 (continued)

General

Distance measures

-1, Schatten p-norm

- Arbitrary unitarily invariant norm

F(p,o) Fidelity between p and o

A(p, o) Trace distance between p and o

Entropies

H(p) Von Neumann entropy of the density operator p
H(A|B) Conditional entropy of A given B

D(pllo) Relative entropy between p and o

Dyi(pllo) measured relative entropy between p and o

Dy (pllo) Minimal «-Rényi relative entropy between p and o
I(A:C|B) Conditional mutual information of A and C given B
X = h(x) Binary entropy function
Abbreviations

POVMs Positive operator valued measures

DPI Data processing inequality

SSA Strong subadditivity of quantum entropy

GT Golden-Thompson

ALT Araki-Lieb-Thirring

2.2 Schatten Norms

To deal with linear operators on a Hilbert space, the concept of a norm is useful.

Definition 2.1 A norm of a linear operator L € L(A) is amap |-|| : L(A) —
[0, c0) that satisfies:

1. Nonnegativity : IL|| > Oforall L € L(A)and ||L| = 0if and only if L = 0.
2. Absolute homogeneity : ||eL| = |«|||L|| foralla € C, L € L(A).

3. Triangle inequality : L1+ Lol < ILyll + | L2 |l forall Ly, Ly € L(A).

A norm |||-||| is called unitarily invariant if |HUL VT||| = ||L]|| for any isometries

U,V € V(A, B). In the following we will consider a particular family of unitarily
invariant norms the so-called Schatten p-norms. The modulus of a of a linear operator
L € L(A) is the positive semi-definite operator |L| := +~/LTL.



14 2 Preliminaries

Definition 2.2 For any L € L(A) and p > 1, the Schatten p-norm is defined
as

ILI, = (tr |L|P)7 . 2.3)

We extend this definition to all p > 0, but note that [|L||, is not a norm for
p € (0, 1) since it does not satisfy the triangle inequality.! In the limit p — oo we
recover the operator norm or spectral norm, for p = 1 we obtain the trace norm, and
for p = 2 the Frobenius or Hilbert-Schmidt norm. Schatten norms are functions of
the singular values and thus unitarily invariant. Furthermore, by definition we have

”L”[’ = HLTH]) and ”L”%P = ”LLT ”p = HLTLHP : 2.4
Schatten norms are ordered in the sense that
ILI, < IILll, for 1<g<p. (2.5)

Schatten norms are multiplicative under tensor products, i.e.,
n
1L @ Ly ® -+ @ Lyll, = [ ] I1Lll, - (2.6)
k=1

Interestingly, among all possible norms only the Schatten p-norms with p > 1
are unitarily invariant and at the same time multiplicative under tensor products
[1, Theorem 4.2].2

Exercise 2.3 Show that the Schatten p-norm defined in (2.3) is a norm for p > 1
and verify that it satisfies the properties mentioned above.

Schatten norms can be expressed in terms of a variational formula, i.e., we can
write it as the following optimization problem [2, Sect.IV.2].

Lemma 2.4 (Variational formula Schatten norm) Let L € L(A) and p > 1. Then

N 1 1
IL]l, = sup {lr LYK : IKll, =1} for —+—=1. 2.7)
Kel(A) P 4

Schatten norms are submultiplicative, i.e., for L, L, € L(A) we have

ILy1L2ll, < Ll L2, forall p > 1. (2.8)

IFor p € (0, 1) the Schatten p-norm is thus only a quasi-norm.
2These two properties are crucial for the pinching method discussed in Sect. 3.1.
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A stronger result is obtained by the generalized Holder inequality for Schatten (quasi)
norms [2, Exercise IV.2.7] (see [3, Sect. 3.3] for a precise proof).

Proposition 2.5 (Holder’s inequality) Letn € N, p, p1,...,p, € Ry anda
finite sequence (Ly);_, of linear operators. Then

n
[Tz
k=1

n n 1 1
<[Inzel, for Y —=-. 2.9)
p k=l = Pk P

The function L > ||L||, for p > 1is convex as the Schatten p-norm satisfies the
triangle inequality. This means that for any probability measure ;2 on a measurable
space (X, X') and a sequence (L,),cx of linear operators, we have

‘/ p(dx) Ly
X

Quasi-norms with p € (0, 1) are no longer convex. However, we show that these
quasi-norms still satisfy an asymptotic convexity property for tensor products of
operators in the following sense [4].

S/M(dx) ILxll, for p=T1. (2.10)
p X

Lemma 2.6 Let p € (0, 1), i be a probability measure on (X, X) and consider a
sequence (By)cecx of nonnegative operators. Then

log pol
logpoly(m) 5 11
m

1 1
—log‘/ (dx) BE"| < —log/ p(dx) | BE" |+
m X m X

P
Proof Let A denote the Hilbert space of dimension d where the nonnegative operators
B, act on. For any x € X, consider the spectral decomposition B, = Y, Alk)k|.
Let [vy) = Y, VAlk) ® [k) € A® A’ be a purification of By, i.e., trarv, {vy| =
B,. Now note that the projectors (|v,){v,|)®™" lie in the symmetric subspace of
(A ® A")®" whose dimension grows as poly(m).> Moreover, we have

f u(dx)BE" = f )ty (J03) (0B 2.12)
X X

Carathéodory’s theorem (see, e.g., [5, Theorem 18]) ensures the existence of a dis-
crete probability measure P on I C X with |I| = poly(m) such that

3This follows from the fact that the dimension of the symmetric subspace of A®” is equal to the
number of types of sequences of d symbols of length m, which is polynomial in m (as shown
in 3.39).
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/ u(dx)BE" =" P(x)B®" and / p(dx) |BE"] =" Py [ BE"], -
X

xel X xel

(2.13)

‘We thus have

1
= —log (2.14)
m

p

‘ / u(dx)BE"
X

1
— log
m

> Px)BE"
p

xel

For p € (0, 1) the Schatten p-norms only satisfy a weakened version of the tri-
angle inequality (see, e.g., [6, Eq.20]) of the form

n P n
D B <D B (2.15)
x=1 P x=1
Combining this with (2.14) gives
1 ® ! ®m || P !
—log | | u(dx)BE"| < —log (Y |Px)BE"| (2.16)
m X p m xel g
1 171 H
=—log(|I|"(— P(x)BE"|”)" ). (17
mog<| | (m;” @B |2)") . eI
As the map ¢ — t% is convex for p € (0, 1) (see Table2.2) we obtain
1 ® l 1_q ®
—log | | p(dx)B®"| < —log||I]” Z | P)BE" | (2.18)
m X , M p
xel
1 11—-p
=—1 P B&®" — log |/
o (X e 21, ) P
(2.19)
1 m log poly(m)
— ~log (/ w(dx) | B® ||p) 4 28POVI 5 50)
m X m
where the final step uses that || = poly(m). O

Combining Lemma 2.6 with (2.10) shows that for all p > 0 we have the following
quasi-convexity property

log poly(m
< logsup || Bl + g’#y{). 2.21)

1
— log
m P xeX

‘f ,bL(dx) B;@m
X
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Lemma 2.6 will be particularly useful in combination with the pinching technique
presented in Sect. 3.1.

2.3 Functions on Hermitian Operators

The set of Hermitian operators is equipped with a natural partial order, i.e., a consis-
tent way of saying that one operator is larger than another one or that two operators
are actually incomparable. For H;, H, € H(A) we say H, is larger than H,, denoted
by H; > H,ifand only if H; — H, isnonnegative,i.e., H; — H, > 0, or equivalently
H; — H, € P(A). This defines a partial order (called Lowners partial order) in the
sense that two Hermitian operators may be incomparable.

For every Hermitian operator H € H(A) we can write down its spectral decom-
position, i.e.,

H = Z AT, (2.22)

respec(H)

where [T, denotes the projector onto the eigenspace of A. For any continuous function
f : R — R we define the operator f(H) € H(A) as

fH):= Y O, (2.23)

Lespec(H)
By definition we thus have f(UHUT) = Uf(H)U" for any unitary U € U(A). If

we consider a function f : R, — R, its operator-valued version maps nonnegative
operators to Hermitian operators.

Definition 2.7 Let C R. A function f : I — Ris called operator monotone
if

H =<H, = [f(H)=f(H), (2.24)

for all Hy, H, € H(A) with spec(H,), spec(H,) € II***(#0| The function f
is operator anti-monotone if — f is operator monotone.
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Table 2.2 Examples of operator monotone, convex and concave functions

Function Domain | Op. monotone | Op. anti-monotone | Op. convex Op. concave
t— ¢ 0,00) | @ €[0,1] ae[-1,0] aec[-1,00U[1,2] | @ € (0,1]
t—>logt | (0,00) |V X X v

t— tlogr | [0,00) | X X 4 X

t> e ICR | X X X X

Note that # — ¢* is neither operator monotone, convex, nor concave for@ < —1 and o > 2

Definition 2.8 LetI C R. A function f : I — R is called operator convex if
S@H + (A —0)Hy) <tf (H) + (1 —1)f(H), (2.25)

forallt € [0, 1]andforall H,, H, € H(A) withspec(H}), spec(H,) € TlspecCHR)I
The function f is operator concave if — f is operator convex.

A two-parameter function is called jointly convex (jointly concave) if it is convex
(concave) when taking convex combinations of the input tuples. For many functions
it has been determined if they are operator convex or operator monotone. Table 2.2
summarizes a few prominent examples.

The following two propositions which can be found in [2, Theorem V.2.5] and [7,
Theorem 2.10] summarize some generic facts about the convexity and monotonicity
of certain functions on Hermitian operators.

Proposition 2.9 Let f : Ry — Ry be continuous. Then, f is operator monotone
if and only if it is operator concave.

Proposition 2.10 (Convexity and monotonicity of trace functions) Let f : R —
R be continuous. If t — f(t) is monotone, so is H(A) > H — tr f(H). Likewise,
if t = f(t) is (strictly) convex, so is H(A) > H — tr f (H).

To show that a certain function is operator convex can be difficult and sometimes
leads to deep and powerful results. We next discuss two such statements.

Theorem 2.11 (Peierls-Bogoliubov) The map
H(A) > H > logtre’ (2.26)

is convex.
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Proof The variational formula for the relative entropy (see 2.76) shows that for
t €10, 1] and H;, H, € H(A) we have

logtre =0 2 — max {tr(tHy + (1 — 1)Ha)p — D(pllida)} 2.27)
pES(A)
<t max {tr Hp — D(pllida)} + (1 — 1) max {tr Hyp — D(pllida)}
peS(A) peS(A)
(2.28)
=tlogtre® 4 (1 — 1) logtre, (2.29)
where the final step uses (2.76). [l
For H, H, € H(A) Theorem 2.11 implies that the function
0,1] >t — f(t) = logtre ™+ (2.30)
is convex and hence
f(@)— f(0)
f = fQ0O) > ————. (2.31)

t

Taking the limit # — O gives the following result which is called Peierls-Bogoliubov
inequality in the literature.

Corollary 2.12 Let Hy, H, € H(A). Then

tr e +H: I Hye™

treft = trefh

log (2.32)

The next result is a concavity theorem [8]. As we will see later this result is deeply
connected with Lieb’s triple operator inequality that is discussed in Theorem 4.9 in
Chap. 4.

Theorem 2.13 (Lieb’s concavity theorem) Let H € H(A). The map
P.(A) 5 B > treflloeB (2.33)

is concave.
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Proof The variational formula for the relative entropy (see 2.89) shows that for
t € [0, 1] and By, B, € P.(A) we have

tr eH+10g(rB1-0—(1—t)Bz)

= max {ttwH — D(wlltB; + (1 — 1) B;) + trw} (2.34)
weP.(A)
>t max {roH — D(w|By) +trow}+ (1 —1) max {troH — D(w||By) +trw} (2.35)
weP.(A) weP-(A)
=rtref 128 4 (1 — pyreflHosh: (2.36)

where penultimate step uses the joint convexity property of the relative entropy (see
Proposition 2.28). The final step follows from (2.89). (]

Another celebrated inequality for differentiable functions on nonnegative opera-
tors is due to Klein.

Theorem 2.14 (Klein’s inequality) Let By, B, € P(A) and f : (0, 00) - R
be differentiable and convex. Then

tr f(B1) —tr f(B2) > tr (B1 — Ba) f'(Ba). (2.37)

If f is strictly convex, there is equality if and only if By = B;.

Proof Define the function (0,1]>¢+ g(t) =tr f(tA; + (1 —1t)A;) which
according to Proposition 2.10 is convex. This implies that

g(1) —g0) =

g() ;g(O) . (2.38)

Taking the limit # — O shows that

—g(0 d
M = 58(1)|z:0 =tr(A; — Ay) f'(A7).

(2.39)

trf(A) —trf(Ay) > tlirglo

O

We close the discussion about functions on Hermitian operators by discussing an
operator version of Jensen’s inequality [9].
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Theorem 2.15 (Jensen’s operator inequality) Let IS R and f : 1T — R be
continuous. Then, the following are equivalent

1. f is operator convex.

2. For every n € N we have

f <Z LkaL,t) <Y Lif(HOL], (2.40)
k=1

k=1

for all H, € H(A) with spec(Hy) €I and all L; € L(A, B) such that
S LiL] =idy.

3. f(VHVD < VFH)VT for all V eV(A, B), H € H(A) such that
spec(H) € L.

4. IIf(ITHII +t(1 — II))I1 < I1f(H)II for all projectors I onto A, t €
I, H € H(A) such that spec(H) € 1.

2.4 Quantum Channels

In this section we discuss how to model time evolutions of quantum mechanical
systems. One postulate of quantum mechanics* states that any isolated evolution of
a subsystem of a composite system over a fixed time interval [fy, #;] corresponds
to a unitary operator on the state space of the subsystem. For a composite system
with state space A ® B and isolated evolutions on both subsystems described by
Us € U(A) and Up € U(B), respectively, any state pap € S(A ® B) at time 7y is
transformed into the state

Php = (Usa ® Up)pap(U} ® Up) (2.41)

at time ¢;. Since unitaries are reversible we see that isolated evolutions are reversible,
too.

It is helpful to describe the behavior of subsystems in the general case where
there is interaction between A and B. Such evolutions are no longer isolated and are
irreversible. We note that it is always possible to embed the irreversible evolution into
a larger system such that it becomes reversible. For the moment we will, however,
not follow this viewpoint and rather discuss the mathematical framework to describe
general physical evolutions. There are two equivalent ways to describe the evolution
of a quantum mechanical system, called Schrodinger and Heisenberg picture. We

4The interested reader can find more information about these postulates in [10, Sect. 2].
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will mainly work in the Schrodinger picture, the interested reader may consider [11]
for more information about the Heisenberg picture.

A map & : L(A) — L(B) describes a physical evolution in a meaningful way if it
is linear, trace-preserving, and completely positive. Such maps are called quantum
channels and describe in a most general way a physical evolution. The set of quantum
channels from A to B, i.e., trace-preserving completely positive maps from A to B,
is denoted by TPCP(A, B).

Definition 2.16 A linear map & : L(A) — L(B) is called trace-preserving if
tr & (w) = trw for all w € L(A).

Definition 2.17 A linear map & : L(A) — L(B) is called positive if & (w) €
P(B) for all w € P(A). The map & is called completely positive if for any
Hilbert space R the map & ® #x is positive.

Exercise 2.18 Construct a linear map & : L(A) — L(B) that is positive but not
completely positive.

There exist different representations of trace-preserving completely positive maps.
We briefly discuss the three most common ones: the Choi-Jamiolkowski represen-
tation [12, 13], the Stinespring dilation [14], and the operator-sum representation
(also known as Kraus representation) [15].

For any linear map & : L(A) — L(B) the corresponding Jamiolkowski state is
defined by

7o 1= (& ® Iu)(12)82]an) , (2.42)

where

dim(A)

«/dlm(A Z Ikk) an

1$2) A = (2.43)

denotes a maximally entangled state. The Jamiolkowski state fully characterizes the
map &.
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Proposition 2.19 (Choi-Jamiolkowski representation) The following provides
a one-to-one correspondence between linear maps & : L(A) — L(B) and
operators T € L(B ® A)

e = (& Q I4)(IR2XR\an), troé(c)=dimAtrtew o, (2.44)
for all w € L(B), o € L(A) and where the transpose is taken with regards to

the Schmidt basis of §2. The mappings & +— t¢ and 15 > & defined by (2.44)
are mutual inverses.

The Jamiolkowski state has a few nice properties. For example it allows us to
easily verify if a linear map is trace-preserving and completely positive, since

. . ida
& is trace-preserving <= trpTs = — , (2.45)
dim(A)
and
& is completely positive <<= 1. €P(B® A). (2.46)
We can express the map & in terms of its Jamiolkowski state as
& : X > dim(A)try 1o (idg @ XT). (2.47)

Another representation of quantum channels shows that they can be viewed as
unitary evolutions by enlarging our space.

Proposition 2.20 (Stinespring dilation) Let & : L(A) — L(B) be linear and
completely positive. Then there exists an isometry V. € V(A, B ® R) such that

E: X trgVXVT. (2.48)

This shows that any possible quantum channel corresponds to a unitary evolution
of a larger system.

We finally discuss another representation that shows that a channel can be char-
acterized by a sequence of operators.
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Proposition 2.21 (Operator-sum representation) Let & : L(A) — L(B) be
linear and completely positive. Then, there exists r < dim(A) dim(B) and
a finite sequence (Ey)ker) of operators Ey € L(A, B) such that

&: XY EXE]. (2.49)
k=1

The mapping & is trace-preserving if and only if Y, _, E ,j E; =idy.

We note that » = rank(t,), where T is the Jamiolkowski state of &, is the Kraus
rank. The operators Ej are sometimes called Kraus operators.

Exercise 2.22 Is the finite sequence (Ey)e) of Kraus operators uniquely deter-
mined by &?

2.5 Entropy Measures

Entropy measures are indispensable tools in classical and quantum information the-
ory. They characterize ultimate limits of various operational tasks such as data com-
pression or channel coding [16, 17]. In this book, we mainly use entropy measures as
mathematical objects whose properties are well studied [18—20]. We will not discuss
the operational relevance of these measures. The interested reader may consider [20—
22] for more information.

We next define the entropic quantities that are relevant for this book. For a density
operator ps € S(A) = {X € P(A) : tr X = 1} the von Neumann entropy is defined
as

H(A), = H(pa) := —trpalogps . (2.50)

For a bipartite density operator pap € S(A ® B) the conditional entropy of A given
B is

H(A|B), := H(AB), — H(B),, . (2.51)

Finally, for a tripartite density operator pagc € S(A ® B ® C) we define the con-
ditional mutual information between A and C given B as

I(A:C|B), := H(AB), + H(BC), — H(ABC), — H(B), . (2.52)
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All these entropy measures can be expressed in terms of the relative entropy. Before

defining the relative entropy we discuss another measure called fidelity that can be
used to determine how close two nonnegative operators are.

2.5.1 Fidelity

The fidelity is measure of distance between two nonnegative operators that is ubiq-
uitous in quantum information theory. Oftentimes it is defined for density operators
only, however here we define it for general nonnegative operators and discuss certain
properties.

Definition 2.23 For p, o € P(A) the fidelity between p and o is defined by

F(p,o) = |v/pva|: . (2.53)

The fidelity has various different characterizations.> One that is particularly useful
is due to Uhlmann and relates the fidelity to the notion of purifications [23].

Theorem 2.24 (Uhlmann) Let pagr = |V )XW |ar and oar = |@XP|lar be
purifications of pa € P(A) and o4 € P(A), respectively. Then

F(pa,0a) = sup [(¢l(ida ® Ur)I®)I* . (2.54)
UreU(R)

Another characterization of the fidelity is due to Alberti [24].

Theorem 2.25 (Alberti) Let p, o € P(A). Then

F(p,0)= inf (trpw)trow™ ). (2.55)
weP, (A)

One reason the fidelity plays an important role in quantum information theory is
due to the fact that it has nice properties. In the following we list some of them.

SWe would like to draw the readers attention to the fact that in certain textbooks the fidelity is
defined without the square.
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Proposition 2.26 The fidelity defined in (2.53) satisfies:

1. Multiplicativity : F(p1 ® p2,01 ® 02) = F(p1,01)F(02,02) for all py, p2, 01,02 € P(A).

2. Nonnegativity : F(p,o0) €[0,1] forall p,o € S(A). Moreover F(p,c) = 1if and only
if p=o,and F(p,0) =0if and only if po = 0.

3. Isometric invariance : F(VpV' VoVT) = F(p,0) forallV e V(A, B), p,o € P(4)
4.DPI : F(p,0) < F(&(p), &(0)) for all p,o €P(A)and all £ € TPCP(A, B).
5. Joint concavity : (p,0) +— F(p,0)is jointly concave on P(A) x P(A).

6. Orthogonal states : F(pr+ (0 —1t)p2,tor + (1 —t)on) =tF(p1,01) + (1 —1)F(p2,02)
fort €]0,1], p1 € S(A), p2» € S(B), 01 € P(A), 00 € P(B) such that
both py and oy are orthogonal to both py and 0.

Proof The multiplicativity property follows from the fact that Schatten norms are
multiplicative under the tensor product

F(p1 ® p2,01 ® 02) = |[/p1 ® p2+/01 ®02HT = ||«/E\/U_1®«/E\/U_2”?
(2.56)
= |Vervail; [Vevez|; = Fpr. o0 F(pr.02) . (2.57)

The nonnegativity follows directly from Uhlmann’s theorem. By defintion we see
that F(p, o) = 0 if and only if ﬁf = 0 which is equivalent to po = 0. Since
Schatten norms are unitarily invariant we find

F(VpV', VoVt = Hw/v,ow«/vmﬁ”1 = |VVBVIVVa Vi = F(p,a),
(2.58)
which proves that the fidelity is isometric invariant.
We first show that data-processing inequality for the partial trace, i.e., we show
that

F(pap,0ap) < F(pa,04) forall psp,04p € P(A® B). (2.59)

Let |Y)apr and |@) spr be purifications of psp and o5, respectively. Uhlmann’s
theorem shows that

F(pap,oap) = sup |(Ylidap ® Ugld)I* (2.60)
UreU(R)
and
F(pa,04) = sup  |[(Ylida ® Ugrlo)|*. (2.61)

UBREU(B®R)
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This proves (2.59). By the Stinespring dilation (see Proposition 2.20) there exists an
isometry V € V(A, B ® R) such that

F(&(p), () = F(ug VoV, g VoV = F(VoVT, VpVT) = F(p, 0),
(2.62)

where the inequality step uses the DPI for the partial trace (as shown in 2.59). The
final step follows from the isometric invariance of the fidelity.

The joint concavity property of the fidelity follows from Alberti’s theorem. For
t €10, 1] and py, 2, 01, 02 € P(A) we have

F(tp1 + (1 —)pp, toy + (1 — 1)o2)
— inf [t(trpla))(tr o1~ + (1 - 1)t pzw)(tr(rza)_l)] (2.63)
B-(4)

wer
>t inf {(tr,o]a))(tralw_l)}—l—(l—t) inf {(trpzw)(trazw_l)}
weP.(A) el (4)
(2.64)
=tF(p1,01)+ (1 —=1)F(p2,02). (2.65)

It thus remains to prove the final statement of the proposition. The joint concavity
of the fidelity implies that

F(tp1 + (1 =) pa, toy + (1 — )o2) = tF(p1,01) + (1 —1)F(p2,02) . (2.66)
For the other direction, let I7; and IT, denote the projectors onto the joint support of
p1, 01 and p,, 07, respectively. Furthermore, let p = tp; + (1 — ), and 6 = to) +
(1 — t)o,. The orthogonality assumption implies that I7, and I, are orthogonal and

tpy = I, and (1 —1)ps = [LAlls . (2.67)

Let |y/) and |¢) be purifications of p and &, respectively, such that F(p,5) =
[(¥||¢)|>. Equation (2.67) thus implies that IT;|v/) and IT,|v) are purifications of
tpy and (1 — 1) py, respectively. Similarly, IT,|$) and IT,|$) are purifications of o}
and (1 — ¢)o,. By Uhlmann’s theorem (see Theorem 2.24) we thus have

F(5,5) = |(WlI$)|* = [(F1T118) + @ TaI)|* < tF o1, 01) + (1 — ) F (2, 02) .
(2.68)

Combining this with (2.66) proves the assertion. (]
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2.5.2 Relative Entropy

Many entropy measures can be expressed in terms of the relative entropy.

Definition 2.27 For p € S(A) and o € P(A) the relative entropy between p
and o is defined as

trp(logp —logo) ifp Ko

+o00 otherwise . (@i52)

D(pllo) := {

It is immediate to verify that H(A), = —D(pallida), H(A|B), = —D(pagllida
® pp) and

I(A: C|B) = D(pasc| exp(log pap + log pgc — log pp)) . (2.70)

As a result, in order to understand the mathematical properties of these several
different entropy measures it suffices to analyze the relative entropy.

Proposition 2.28 (Properties of relative entropy) The relative entropy defined
in (2.69) satisfies

1. Additivity : D(p1 ® p2lloy ® 02) = D(p1llo1) + D(p2lloz) for all p; € S(A),

o1 € P(A), pp € S(B), 0p € P(B).
2. Nonnegativity : D(pllo) >0 for all p, o € S(A) with equality if and only if p = o.
3. Isometric invariance : D(VpV Vo V1) = D(pllo) for all V € V(A, B), p € S(A), o € P(A).
4. DPI : D(pllo)=D(E(p)IE()) for all peS(A),o €P(A),E€TPCP(A, B).
5. Joint convexity : (p,0) = D(p|lo)is jointly convex on P(A) x P(A).

6. Orthogonal states : D(tp1 + (1 —t)pplitor + (1 —t)op) = tD(p1llo1) + (1 —t)D(p2]l02)
fort €[0,1], p1 € S(A), pp € S(B), o1 € P(A), 0p € P(B) such that
bothpy and o1 are orthogonal to both py and 0.

Proof The properties of the tensor product explained in Exercise 3.10 show that

D(p1 ® p2llo) ® 02) = tr py log p; + tr pa log pp — tr py logoy — tr py log o
@2.71)

= D(pillo1) + D(p2ll02) . (2.72)

which proves the first property. The positive definiteness property of the relative
entropy follows directly from Klein’s inequality (see Theorem 2.14 with f(¢) =
tlogt which is strictly convex for ¢ € (0, 00)). The relative entropy is invariant
under isometries since log VoV’ = V (log p) V" for every isometry V and since the
trace is cyclic.
The proofs of the data processing inequality and the joint convexity of the relative
entropy require more effort. We postpone the proof of these two properties to Sect. 5.4.
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There we prove strengthened versions of the DPI (see Theorem 5.18) and the joint
convexity property (see Corollary 5.24) that immediately imply the two statements
of the Lemma.

It thus remains to prove the last assertion of the proposition. By the orthogonality
assumption we have

log (tp1 + (1 — 1)p2) = logtpy +log(l — 1)py = logt +log(l — 1) + log pj +log p2 .
(2.73)

which thus implies the desired statement. O
The relative entropy features a variational formula, i.e., it can be expressed a the

following convex optimization problem [25, 26], which will be important in Chap. 5.

Lemma 2.29 (Variational formula for relative entropy) Let p € S(A) and
o € P(A). Then

D(pllo) = sup {tr plogw — logtr elog"HOg"’} (2.74)
weR (A)

= sup {rplogw+1—treeote} (2.75)
weR (A)

Proof We first show that for H € H(A) and o € P.(A) we have

logtre® %89 — max {tr pH — D(p|lo)}. (2.76)
peS(A)
To see this define
f(p) =trpH — D(pllo). (.77

Let p = 3 cipec(py M1 denote the spectral decomposition of p. Since p € S(A) we
have erspec( ) A < 1and A > 0. We therefore can write

fl D am )= ) QuihH+rrMlogo —Alogh) . (2.78)
Arespec(p) respec(p)

Since

— 400, (2.79)
A=0

%f Z M,

Aespec(p)
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we can conclude that the minimizer of (2.76) is a strictly positive operator p with
tr p = 1. For any K € H(A) with tr K = 0 we have

d . -
0= Ef(ﬂ—f-tK)I,:o:trK(H—i-loga—logp). (2.80)

This shows that H + log o — log ¢ is proportional to the identity operator and hence

eH+loga

s Ad f(p) =logire!ter, (2.81)

p=

which proves (2.76).
We are now ready to prove (2.74). Equation (2.76) implies that for w € P.(A) the
functional

H(A) > H > logtreftloe® (2.82)
is convex.® Let H = log p — log o and consider the function
H(A) > H > g(H) :=tr pH — logtref’loeo (2.83)

which is concave as explained before. For any K € H(A) we have
d ~
ag(H +1K)li=0 =0, (2.84)

since tr p = 1 and %tr elogrt1K| o — tr pK. As a result, H is the maximizer of g
and

g(H) = trp(log p —logo) = D(pllo) . (2.85)

Recalling that every H € H(A) can be written as H = log w for some w € P.(A)
then proves (2.74).

It thus remains to show (2.75). Note that logx < x — 1 for x € R, and hence
logtrelogotloge < (relogotloze _ 1 Consequently, we have

sup {trploge — logtrelog“+log“’} > sup {trplogw+1— trelog"“‘)g"’} }
wePR (4) weP.(A)
(2.86)

Since tr plog w — log tre!°¢°+1°2 ig invariant under the substitution @ — aw for
o € R, we can assume without loss of generality that  is such that tr e!°8o+log® — 1,

OThis can be seen as follows. Let 2 3 x — f(x,y) be an affine function. Then, g(x) =
maxyey f(x,y) is convex since for ¢ € [0, 1] we have g(tx; + (1 — )x2) = maxyeq {f(tx1 +
(I =t)x2, y)} = maxyew {tf(x1,y) + (1 —1) f(x2, y)} <tg(x1) + (1 —1)g(x2).
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That is, we have

Sup {tr plogw —logtr elogvﬂogw}

weR.(4)
= sup {trplogw —logtre!®othoee ; relogotioee — 1}
w€eR.(A)
(2.87)
< sup {trplogw — 1+ tre'gotioeet (2.88)
w€eR.(A)
Combining this with (2.86) proves (2.75). O

Exercise 2.30 Verify that the optimization problem in Lemma 2.29 is convex opti-
mization problem (i.e., maximizing a concave function over a convex set [27]).

Remark 2.31 Another variational formula for the relative entropy that is similar
to (2.76) has been derived in [28]. It states that for any H € H(A) and 0 € P.(A) we
have

tref e = max {troH — D(w|lo) + trw}. (2.89)
weP.(A)

Exercise 2.32 For any B € B.(A) the trace features the following variational for-
mula [28]

tr B= max {tr X — D(X||B)}. (2.90)
XePR.(4)

Use Klein’s inequality (see Theorem 2.14) to prove (2.90) and show how (2.90) can
be used to verify (2.89).

2.5.3 Measured Relative Entropy

Another quantity that will be important in this book is the measured relative entropy
which is defined as a maximization of the classical relative entropy over all measure-
ment statistics that are attainable from two quantum states.

Definition 2.33 For p € S(A) and o € P(A) the measured relative entropy
between p and o is defined as

Dui(pllo) := sup D(P,u| Po.u), (2.91)
(X, M)

with POVMs M on the power-set of a finite set X, and P, y(x) := tr oM (x).
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At first sight this definition seems cumbersome because we cannot restrict the
size of 2" that we optimize over. Alternatively, the measured relative entropy can
be expressed as the supremum of the relative entropy with measured inputs over all
POVMs, ie.,

Du(pllo) = sup D(M(p)|M (o)), (2.92)
Men

where .7 is the set of all classical-quantum channels M (w) = )" (tr M w)|x)}x|
with (M, ) a POVM and (]x)) an orthonormal basis.

As we will see, the measured relative entropy has interesting properties. Further-
more it has a variational characterization, i.e., it can be expressed as the following
convex optimization problem [26, 29].

Lemma 2.34 (Variational formula for measured relative entropy) Let p €
S(A) and o € P(A). Then

Dyi(pllo) = sup {trplogw —logtrow} = sup {trplogw+1—trow} .
weP.(A) weR (4)

(2.93)

Proof We start by defining the projective measured relative entropy, where the
measurements are assumed to be projective, i.e.,

dim(A) tr 11 o
k
Dp(pllo) :==  sup Z tr ITy p log . (2.94)
{Tidketaiman | k=1 tr I[Tyo

where {11 }gfl(A) is a set of mutually orthogonal projectors. Without loss of generality
it can be assumed that these projectors are rank-one as any course graining of the
measurement outcomes can only reduce the relative entropy due to its data-processing
inequality (see Proposition 2.28). We now first show that

Dp(pllo) = sup {trplogw —logtrow} = sup {trplogw+1—trow} .
weP.(A) weR (4)
(2.95)

If p &« o, all expressions in (2.95) are unbounded. We therefore assume that p < o.
We can write
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sup {trplogw+ 1 —trow}
weB.(A)

dim(A)

= sup sup > (r MMep) (loghg + 1) — dgtr o) ¢
{Mi Y kerdim(a)] A dkefdima)) | k=1

(2.96)

where A, > 0 are the eigenvalues of w corresponding to the eigenvectors given by the
rank-one projectors [T, and we used that tr p = 1. Since p <K o, forall k € [dim(A)]
suchthattr IT,oc = Owealsohavetr [T, p = 0.Iftr I[Tyoc > Oandtr IT;p = 0, then the
supremum of the k-th term is sup,, .o —Atr [Ty = O which is achieved for Ay —
0. As a result, the only relevant case is tr [Tyo > 0 and tr [T p > 0. Since, A;

(tr [Ty p) (log A + 1) — Atr [To is concave with maximizer A} = g Z:Z .Combining
this with (2.96) shows that
dim(A) o Mep
sup {trplogw+1—trow} = sup Z tr [T p log = Dp(pllo).
weP.(A) (M kergimay | r=1 tr I[o
(2.97)

We note that logx < x — 1 for x € Ry and hence —logtrow > 1 — tr cw. This
shows that

sup {trplogw —logtrow} > sup {trplogw+ 1 —trow} . (2.98)
weP.(A) wePR (4)

Since tr p log w — log tr o w is invariant under the substitution v — aw for @ € R,

we can assume without loss of generality that w is such that tr cw = 1. That is, we
have

sup {trplogw —logtrow} = sup {trplogw —logtrow :trow = 1}

weP.(A) weP.(A)
(2.99)
< sup f{trplogw+1—trow} . (2.100)

weR.(A)

Combining (2.97), (2.98), and (2.100) proves (2.95).

It thus remains to show that Dp(p|lc) = Dy(pllo). We note that Dp(pllo) <
Dyi(p|lo) holds by definition and if p &« o we have Dp(p|lo) = Dy(p|lo) = +o0.
It thus suffices to prove Dp(p|lo) > Dy (pllo) for p K o.Let (2", M) be a POVM
that achieves the measured relative entropy and recall that P, j(x) := tr M (x)p. For
2 ={x € X : Pyu(x)Pysy(x) > 0} we find
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Dy (pllo) = D(Py mll Po,m) (2.101)
= Y Pyx)log S22 Pom) (2.102)
e’ oM( )
—ttp Y M(x) log T2 pM(x) (2.103)
xeZ’ ( )
=trp Yy VM) 10g< ”ME ; dA) M(x). (2.104)
xeZ’

The operator Jensen inequality (see Theorem 2.15) then shows that

P
Dyi(pllo) <trplog ( Z M(X)M> =trplogw+1—trow < Dp(pllo),

e’ P(T M(x)
(2.105)
foro =3, M(x) ”Mg)), since
p M(-x)
trow= Y Poyx ey = > Poulx)=1. (2.106)
xeZ’ xeZ’
The final step in (2.105) follows from (2.95). This proves the assertion. O

The measured relative entropy has remarkable properties. Several of them are
directly inherited from the relative entropy.

Proposition 2.35 (Properties of measured relative entropy) The measured relative

entropy defined in (2.91) satisfies

1. Submultiplicativity : Dyp(p1 ® p2llo] ® 02) > Dyi(pillor) + Dyi(e2llop) for all py € S(A),
o1 € P(A), pp € S(B), 07 € P(B).

2. Nonnegativity : Dyi(pllo) =0 forall p,o € S(A) with equality if and only ifp = o.
3. Isometric invariance : DM(VpVT”VUVT) = Dy(pllo) forall V e V(A, B), p € S(A),

o € P(A).
4.DPI : Dyi(pllo) = Dy(E()IIE(0)) for all p € S(A), o € P(A),

& € TPCP(A, B).
5. Joint convexity : (p,0) = Dy(pllo)is jointly convex on P(A) x P(A).

6. Orthogonal states : Dyi(tp1 +(1—t)p2|Itar +(1—t)op) =t Dy (p1 o) +(1—1) Dy (p2llo2)
fort €10,1], p1 € S(A), po € S(B), 01 € P(A), op € P(B) such that
both p and o1 are orthogonal to both py and 07.

Proof The submultiplicativity follows by definition of the measured relative entropy.
The nonnegativity property is directly inherited from the classical relative entropy.
The isometric invariance can be easily derived from the variational formula (2.93).
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Let w € P(B) be the optimizer for Dy (VpV ||V VT). Then,

Dyu(VpV | VoV =tr VpVTlogw — logtr Vo Viw (2.107)
= tr,olog(V#a)V) — log troVioV (2.108)
< Du(pllo), (2.109)

where the final inequality step uses that VoV € P(A). Conversely, for @ € P(A)
being the optimizer for Dy(pl||o) we find

Dy(VpVT|[VoVT) > tr VpVilog VoV —logtr Vo ViVeV’ (2.110)
=trplogw — logtrow 2.111)
= Du(pllo) . (2.112)

The joint convexity follows from the joint convexity of the relative entropy. For
t €[0,1], p1, p» € S(A), 01,00 € P(A) we have

Duyi(tor+ (1 —0)p2lltor+(1—1)02) = D(t Py, s + (1 = 1) Ppy p 1t Poy vt + (1 — 1) Poy 1)

(2.113)

< tD(Ppy 11| Poy.1t) + (1 = ) D(Ppy | Poy 1)
(2.114)

< tDy(pilloy) + (1 — 1) Dyy(o1[lo2) - (2.115)

It is well-known (see, e.g. [20, Proposition 4.2]) that the joint convexity property
(together with the unitary invariance and the submultiplicativity property) implies
the data-processing inequality.

It thus remains to verify the final statement of the proposition. Recall that the
measured relative entropy can be expressed as (2.92). Let (M) and (M;) be POVMs
such that

MGpi+ (1= 1) =1 ) e Mepilxfx| + (1 =) Y Mipaly)yl. (2.116)
* ¥

‘We thus find

Dyi(tp1 + (1 — palitor + (1 — 1)or)
> D(MGpy + (1~ 0p) Moy + (1 — 1)o2) (2.117)

—D (Zterm el | 3t Mo |x><x> +(1-nD (ZtrM;pz|y><y|H ZtrMyazym)
X X y y

where final penultimate step uses Proposition 2.28. As this is valid for all POVMs
(M,) and (M ;), we can take the supremum over those and thus obtain
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Dyi(tp1 + (1 = 1)palitor + (1 — )az) = 1 Dyi(pillo) + (1 — 1) Dyg(p2|o2) -
2.118)

The other direction follows by the joint convexity of the relative entropy (see Propo-
sition 2.28). By (2.92) there exists a POVM (M, ) such that

Dyi(tp1 + (1 — Hpzlitar + (1 — Do)

=D (Z(zterpl +(1— t)terpz)Ix)(x|H Z(m Myop + (1= t)tr anz)lx)<x|) (2.119)

X X

<D (Ztr Mxprlxel| Dt Mo |x><x|> +1=nD (ZterpzlxxxIH Zter02IX><X>

< tDy(pillor) + (1 =) Dyp(p2llo2) - (2.120)

Combining this with (2.118) proves the assertion. O

Unlike the relative entropy, the measured relative entropy is not additive under tensor
products. The following proposition states how the measured relative entropy is
related to the relative entropy and the fidelity.

Proposition 2.36 Ler p € S(A) and o € P(A). The measured relative entropy
defined in (2.91) satisfies

1. Dy(pllo) < D(pllo) with equality if and only if [p, o] = 0.
2. Dy(pllo) = —log F(p, o).
3. lim, o0 + Dy(p®"|0®") = D(p|l0).

Proof The first property of the proposition follows directly from the Golden-
Thompson inequality (see Theorem 4.1) together with the variational formulas
for the relative and measured relative entropy (see Lemma 2.29 and Lemma 2.34,
respectively). To prove the second property, we recall that by Alberti’s theorem (see
Theorem 2.25) there exists w € P.(A) such that

—log F(p,0) = —logtr,ow—logtr(mf1 (2.121)
< —logtre'ertioee _jogtrop! (2.122)
<trplogw™! —logtrow™! (2.123)
< Du(pllo), (2.124)

where the first inequality follows from the Golden-Thompson inequality. The second
inequality uses the Peierls-Bogoliubov inequality (see Corollary 2.12 applied for
H; =logp and H, = logw). The final step uses the variational formula for the
measured relative entropy (see Lemma 2.34). The third statement of the proposition
is proven in [20, Sect.4.3.3]. [l

We have seen in Proposition 2.35 that the measured relative entropy is jointly convex
in its arguments. The following lemma shows that the measured relative entropy
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also satisfies a weak form of a concavity property in its second argument [30,
Lemma 3.11].

Lemma 2.37 Let X be a compact space. For any probability measure yu on X, any
sequence (0y),cx such that o, € P(A) forall x € X, any p € S(A) and anyn € N,
we have

1
—DM(p®" /u(dx)ax‘g’")z min  Dy(pllo) . (2.125)
n X

oeconv{o, : xeX}

Proof The variational characterization for the measured relative entropy given by
Lemma 2.34 implies

Dy (p®" / ,u(dx)cr}‘?”) > sup {tr(p®" log a)®") —log tr([ /L(dx)a)?"w@”)}
X weR(A4) X
(2.126)
> sup min {ntr(p logw) — nlog tr(axa))} . (2.127)

weer(A)XEX

For x € R, clearly logx < x — 1 and thus —logtr(cw) > 1 —tr(cw) forall w €
P-(A). This implies that

DM <p®n

/ M(dx)o;@”) >n sup min {tr(,o logw) + 1 — tr(axa))} (2.128)
X

weR (A) xeX
>n sup min {tr(p logw) + 1 — tr(ca))} .
weB(A)“'ECOHV{"x (xeX}

(2.129)

The function w — tr(plogw) + 1 — tr(cw) is concave and the function o —
tr(plogw) + 1 — tr(ow) is linear. The set conv{o, : x € X} is compact and convex
and the set of strictly positive operators is convex. As a result we can apply Sion’s
minimax theorem [31] which gives

1
—DM(,O®” / p,(dx)ax‘@") > min sup {tr(plogw) + 1 —tr(cw)}
n X oeconv{o, : xeX} weP.(A)
(2.130)
= min Dy (pllo), (2.131)
oeconv{o, :xeX}

where the final step follows by the variational characterization of the measured
relative entropy given in Lemma 2.34. ]

Remark 2.38 We note that Lemma 2.37 is no longer valid if the measured relative
entropy terms in (2.125) are replaced with relative entropy terms. This can be seen by
contradiction. Suppose (2.125) is valid for relative entropies. Theorem 12 from [32]
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implies that for any papc € S(A ® B ® C) we have’

. 1 " o "
I(A: C|B), > lim sup ;D(p;‘fgcn f dtBo(t) T3 pc(pan)® )
n—o0o —00
(2.132)
> D(PABC||=@B—>BC(,0AB)) 4 (2.133)

where f is a probability density defined in (3.47), ﬁB[i gc 1s arecovery map defined
in (5.2) for all t € R, and a recovery map #p_.pc € TPCP(B, B ® C). Inequal-
ity (2.133) however is in contradiction with [33, Sect. 5] (see Remark 5.7 for further
details) which shows that (2.125) is not valid for relative entropies.

2.5.4 Rényi Relative Entropy

There exist different families of relative entropies that are useful in quantum infor-
mation theory. Among the most prominent examples are the so-called Rényi relative
entropies that are carefully discussed in several textbooks such as, e.g., [20]. In this
section, we review a specific member of this family called the minimal Rényi relative
entropy that has been introduced in [34, 35].

Definition 2.39 For o € (0,1) U (1, ), p € S(A) and o € P(A) the mini-
mal Rényi relative entropy between p and o is defined as

) ifp<Koora<l 2.134)

otherwise .

o o
o la = l-a
m]og Ha PO

Dy (pllo) := {
+00

The minimal Rényi relative entropy is also known as sandwiched Rényi relative
entropy. It satisfies many desirable properties. We will only discuss those that are
relevant for this book. The interested reader can find a more detailed treatment about
this entropy measure in [20].

The family of minimal Rényi relative entropies comprises three particularly well-
known one-shot relative entropies, i.e., the min-relative entropy [36]

2
Duin(pllo) := —log [ /pvo || = —log F(p.0) = Dy (pllo),  (2.135)

the relative entropy

TThis is explained in more detail in Remark 5.8.
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D(pllo) = lim Du(pllo), (2.136)
and the max-relative entropy [36, 37]

Drax(pllo) = inf{% € R : p < 2*0} = log Ho—%po—%

= lim D,(pllo).
00 a— 00
(2.137)

As the names suggest, the min-relative entropy cannot be larger than the max-relative
entropy, or more precisely we have

Dnin(pllo) = D(pllo) < Dmax(pllo), (2.138)

with strict inequalities in the generic case. The max-relative entropy turns out to
be the largest relative entropy measure that satisfies the data-processing inequality
and is additive under tensor products [20, Sect.4.2.4]. It is known that the minimal
a-Rényi relative entropy is monotonically increasing in o [34].

Lemma 2.40 Let p € S(A), 0 € P(A), o, o’ € (0, 00) such that o < o'. Then
Dy (pllo) < Dy (pllo) . (2.139)

The minimal Rényi divergence vanishes if and only if its two arguments coincide,
ie.,

Du(pllo) =0 for a e (},HU(,00) = p=o. (2.140)

To see this we note that Lemma 2.40 guarantees that D, (p|lo) = 0 implies D% ol
o) = 0 and hence by Proposition 2.26 we have p = o. The other direction follows
by definition of the minimal Rényi divergence.

It is well-known that the relative entropy does not satisfy the triangle inequality.
For the three (classical) qubit states p = %|O)(O| + %idg, o= %|1)(1| + %idg, and
w= %idz we have D(p|lo) > D(p|lw) + D(wl||o). The following lemma proves a
triangle-like inequality for the minimal quantum Rényi relative entropy [38, 39].

Lemma 2.41 Let p € S(A), 0, € P(A) and let a € [§, 00). Then

Dy (pllo) = Dy(pll@) + Dmax(@llo) . (2.141)

Proof For o € [%, 1), the function ¢ — 5 s operator monotone on [0, 00) (see
Table 2.2). Furthermore, according to Proposition 2.10, the function P(A) > X +—
tr X* is monotone. By definition of the max-relative entropy we find

1

Dy (pllo) = logtr(pto ' pt)" < Du(oll) + Dpu(@llo) . (2.142)

a—1
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For « € (1,00) the argument is exactly the same, where we note that
l—a . .

t +— t« 1is operator anti-monotone (see Table2.2). The case o« = 1 then follows

by continuity. O

2.6 Background and Further Reading

We refer to Bhatia’s book [2, Chap. IV] for a comprehensive introduction to matrix
norms. Functions on Hermitian operators are carefully treated in Carlen’s book [7],
Bhatia’s book about matrix analysis [2] (see also [40] for an emphasis on positive
definite operators), Hiai and Petz’ book [41], Simon’s book [42], Ohya and Petz’
book [18], and Zhang’s book [43]. An important result for operator monotone and
operator convex function is the Lowner-Heinz theorem [44] (see also [45] for a
more general version) which is summarized in Table2.2. An alternative proof for
the Peierls-Bogoliubov theorem can be found in [7, Theorem 2.12]. Lieb’s theorem
was proven in the remarkable paper [8]. Tropp showed how Lieb’s theorem can be
derived from the joint convexity of the relative entropy [28].

Entropy measures are carefully discussed in various books, such as the one
by Ohya and Petz [18], Nielsen and Chuang [10], Wilde [21], Hayashi [46, 47],
Tomamichel [20], and Holevo [22]. The fidelity was introduced by Uhlmann [23]
and later popularized in quantum information theory by Josza [48]. The fidelity fea-
tures another characterization that is not discussed here. It can be expressed as a
semidefinite program [49]. Appendix B of [50] discussed further interesting prop-
erties of the fidelity. The relative entropy was introduced by Umegaki [51] and then
used in mathematical physics by Lindblad [52]. Recently it was shown [53] that
the DPI for the relative entropy is valid even for trace-preserving positive maps.
The measured relative entropy was first studied by Donald [54] as well as Hiai and
Petz [55]. More information about quantum channels can be found in Wolf’s lecture
notes [11] and Holevo’s book [22].
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Chapter 3 ®)
Tools for Non-commuting Operators e

One eminent difference between classical physics and quantum mechanics is the
principle of complementarity. This phenomenon arises from the fact that quantum
mechanical operators (unlike classical ones) do not commute in general. Complemen-
tarity summarizes different purely quantum mechanical features such as uncertainty
relations [1, 2] or the wave-particle duality [3].

On a more technical level, the complementarity aspect of quantum mechanics
displays a major hurdle in the rigorous understanding of the behavior of quantum
mechanical systems. To name one example, consider the conditional mutual infor-
mation. Let Pxyz denote a classical tripartite distribution. It is straightforward to
verify that the conditional mutual information defined in (1.4) is nonnegative, i.e.,
I(X : Z|Y)p > 0.! For quantum mechanical systems this gets more complicated.
The celebrated strong subadditivity of quantum entropy (SSA) [4, 5] ensures that for
any tripartite density operator p,pc wWe have

I(A:C|B), := H(AB), + H(BC), — H(ABC), — H(B), =0.  (3.1)

Unlike the classical case, this result is far from being trivial which is mainly due to
the fact that density operators and their marginals do not commute. We will discuss
the proof of SSA in Sect. 5.2.

To understand the properties of quantum mechanical systems, we need tools to deal
with non-commuting operators. In this chapter, we will discuss two techniques that
can be useful for this purpose — the method of pinching and complex interpolation
theory. Another tool that is helpful are trace inequalities which are discussed in
Chap. 4.

IThis follows for example immediately from the variational formula for the (classical) conditional
mutual information given in (1.7).
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3.1 Pinching

Any Hermitian operator H € H(A) has a spectral decomposition, i.e., it can be written
as

H = Z AT, (3.2)

Lespec(H)
where A € spec(H) C R are unique eigenvalues and [T, are mutually orthogonal

projectors. For k¥ > 0, let us define the following family of probability densities on
R

12 Kt
o) = — <3 + cos(kt) — 4cos (7)> . (3.3)

Its Fourier transform /i, turns out to be a convolution of two centered triangular
functions of width «, i.e.,

R 3 . .
e (@) = ;(tﬂx * tri, ) (w) , (3.4
where
o 1=y <k
tri (x) = {O ‘ otherwise . (3.5

We immediately see that /1, satisfies the following properties:
e (0) = 1.

e (w) = 0 if and only if |w| > «.

w > (1, (w) is a real valued even function.

o +— [1,(w) is monotonically decreasing for w € R.

e (@) € [0, 1].

M S

Exercise 3.1 Verify that u, is a probability distribution on R for all ¥ > 0 and its
Fourier transform [1, satisfies the properties given above.

3.1.1 Spectral Pinching

The motivation for studying the spectral pinching method arises from the following
(vague) question: Given two Hermitian operators H; and H, that do not commute.
Does there exist a method to modify one of the two operators such that they commute
without completely destroying the structure of the original operator? The spectral
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pinching method achieves this task. Before explaining this method in detail we have
to introduce the pinching map.

Definition 3.2 Let H € H(A) with a spectral decomposition given in (3.2).
The pinching map with respect to H is defined as

Py HA) > X > Z 1, X1, . (3.6)
respec(H)

Pinching maps have several nice properties. They are trace-preserving, completely
positive, unital, self-adjoint, and can be viewed as dephasing operations that remove
off-diagonal blocks of an operator.” As a result, if we pinch a Hermitian operator
H, with respect to another Hermitian operator H,, the resulting operator Zy, (H,)
commutes with H,. This will be explained more carefully in Lemma 3.5.

Exercise 3.3 Verify that the pinching map is trace-preserving, completely positive
and unital.

The pinching map features an alternative representation. It can be written as an
average over commuting unitaries. The spectral gap of a Hermitian operator H with
eigenvalues (1;); is defined as the smallest distance of two distinct eigenvalues, i.e.,
Ag i=min{|Ay — A @ Ag # A}

Lemma 3.4 (Integral representation of pinching map) Let H € H(A) and 1, as
defined in (3.3). Then

(o]

Pu(X) = / drpn, (1) e Xe " forall X e H(A). (3.7)
—00
Proof We start by recalling the spectral decomposition of H, i.e.,

H = Z AT, (3.8)

respec(H)

and the fact that eigenvectors corresponding to distinct eigenvalues of Hermitian
operators are orthogonal. We thus have for any 1 € R

eitH — Z eit)\n)\ (39)
respec(H)
and
efixe ™ = N MWL X, (3.10)

A, M espec(H)

2Hence the name pinching map, as it pinches the off-diagonal blocks.
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With this we obtain

o0 o0
/ dtpa, (1) e Xe 1 = / dtpn, (1) Z e VNI X, (3.11)

o0 X\ espec(H)

= ) ILXIyjia, (' =4, (3.12)
A, M espec(H)

where in the final step we used the linearity of the integral to interchange the integral
and the summation. Employing Property 1 and Property 2 of /i, and the definition
of the spectral gap Ay we obtain

oo
f dtpa, (e Xe ™ = N ILXIT, = Py(X), (3.13)
I Ar€spec(H)
which proves the assertion.? (]

As mentioned at the beginning of this chapter, the pinching map can be used to
modify one Hermitian operator such that it commutes with another Hermitian oper-
ator. Pinching maps are user-friendly since they fulfill several nice properties. The
following lemma summarizes the most important ones. In Sect.3.1.3.1, we demon-
strate how pinching maps can be used to prove the Golden-Thompson inequality (see
Theorem 4.1) in an intuitive and transparent way.

Lemma 3.5 (Properties of pinching map) Let H € H(A). Then

1. [Zy(X),H] =0 forall X € H(A).

Py (X) > mX forall X € P(A). (Pinching inequality)
tr Py(X)H = tr XH forall X € H(A).

f(ZPy(X)) < Py(f(X)) forall X € H(A) and f(-) operator convex.

N2 (XN < X for all X € H(A) and any unitarily invariant norm
M-111

“n R BN

Proof Since eigenvectors corresponding to distinct eigenvalues of Hermitian opera-
tors are orthogonal we find

Py(X)H = Z I, XTI\ T, = Z AT, X IT, (3.14)
A\ espec(H) Lespec(H)
= Z NI I, XTI, = HPy(X), (3.15)

A\ espec(H)

3We note that every probability measure whose Fourier transform satisfies Property 3.1 and Prop-
erty 3.1 would work for Lemma 3.4.
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which proves the first statement of the lemma.
The pinching inequality follows since

[spec(H)| 1
Pu(X)= ) ILXIT, = Z U, XU} > ————X
N |spec(H)| = Ispec(H)|
(3.16)
for all X € P(A), where spec(H) 1= {Ay, ..., Ajgpec(a)} and
|spec(H)| .
12mwyz
U, = exp (—) 1T, (3.17)
! ; Ispec(H)I )~
are unitaries and we used the fact that
[spec(H)| . /
2ry(z —z ,
3 exp <M> — |spec(H)|1{z = 7'} (3.18)
[spec(H)|

y=1

The inequality step in (3.16) follows form the facts that U, X U;, > 0and Uspec(ry) =
idy.

The third property of the lemma follows from the cyclic property of the trace and
the fact that e# commutes with H for all 7 € R. Lemma 3.4 shows that

tr @H(X)H=/ dmAH(t)trei’”Xe—””Hz/ dtpa, Ot XH =tr XH .
—0oQ —00
(3.19)

The fourth property of the lemma follows form Jensen’s operator inequality (see
Theorem 2.15) which shows that in case f is operator convex we have

F(@u0)=f( Y MXM)= Y MfOOM = 2u(fx).

respec(H) Lespec(H)

(3.20)

Finally it remains to prove the fifth property of the lemma. Lemma 3.4 shows that

o0 o0
'H/ dtpey, (t)e™ xe 11 5/ dtpa, () ||| xe || (3.21)
—0Q —0Q0
o0
- / dia, () X (3.22)
—00
= X1, (3.23)
itH

where the penultimate step uses that e”" is unitary for all ¢ € R. (I
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3.1.2 Smooth Spectral Pinching

The pinching map can change an operator considerably. More precisely, there exist
Hermitian operators H;, H, € H(A) such that &y, (H,) is far from H;. To see this
let 6 € (0, 1) and consider the following two-dimensional operators H; = |0)0|
and H, = (1 — (S)idT2 + §|+)+|, where |+) := JLE(|O) + |1)). A simple calculation
reveals that Py, (H)) = i%z and hence || H, — ngz(Hl)”oo = % for any § € (0, 1).

We next discuss a smooth version of the pinching method which guarantees that
the pinching does not change the operator too much at the cost that Property 1 of
Lemma 3.5 no longer holds.

Definition 3.6 Let H € H(A) with a spectral decomposition given in (3.2)
and k > 0. The k-smooth pinching map with respect to H is defined as

oo
Pt HA) 3 X > / drpu (t)e™ xe 1H | (3.24)
—00
with probability density u, defined in (3.2).

For any k < Ay the k-smooth pinching map coincides with the regular pinching
map given in Definition 3.2. This can be easily seen from the proof of Lemma 3.4. As
a result, whenever k < Ay, we write &y instead of &7};. The k-smooth pinching
map fulfills several nice properties that are summarized in the following lemma.

Lemma 3.7 (Properties of smooth pinching map) Let k > 0, H, X € H(A),
and |||-||| @ unitarily invariant norm. Then

- ItH, 25 Col|| < WA, x1i.
NItH, 20N < € XN e > Ag).

3. Let |h), |h') be eigenvectors of H with corresponding eigenvalues h, h’
such that |h — I'| > k. Then, (h| 25, (X)|h') = 0.

X = 250 < IH, Xl 12222,
- lzsoll = nxi.

N~

[ N

Properties 2 and 4 suggest that there is a tradeoff between reducing the commutator
to zero (by choosing k < Ap) and increasing the distance between X and 27}, (X).
Before proving the lemma we state a technical result that is used in the proof, and
which shows that the complex matrix exponential is operator Lipschitz continuous.

Lemma 3.8 Let L € L(A), H € H(A) andt € R. Then

L. ™|, < It IL, H]llo - (3.25)
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Proof Since H is Hermitian it can be decomposed into H = UAU T where A is a
diagonal matrices containing the eigenvalues of H and U is a unitary matrix whose
rows consist of the eigenvectors of H. Since the operator norm is unitarily invariant
we obtain

[z e =|wirvety| <mfwiio.al| =wfiw vavt| =iz, Hi
o0 o0 o0 o0

(3.26)
where the inequality step uses the fact that the function f : x > ei™*
continuous with constant |¢| and the fact that A is diagonal. As a result A +— e
is operator Lipschitz continuous on the set of diagonal matrices with constant [¢].
Theorem 3.1 in [6] then implies the assertion. ([l

is Lipschitz
i A

Proof (Lemma 3.7) Since H and X are Hermitian and u, is an even function it

follows that 2%, (X) is Hermitian. By using the triangle inequality and the fact that
e commutes with H, we find

a2, 25 conll| = ‘H[H, / drpu,c(n)e ! e M) ’ (3.27)
< / drpe () ||| [H, 7 Xe " | (3.28)
- / At (1) IILH. X)) (3.29)
= lICH, XTI (330)

which proves Property 1 of the lemma.
We next prove Property 2 of the lemma. Note that in case k < Ay we have a
perfect pinching and hence [H, &};(X)] = 0. For k > Ay we find

IlH, 2501 = 'H[H/ drpue (t)e™ X e ‘ (3.31)
= Zw)(nl(M = M) (€ X |n) e (e — ) ‘ (3.32)
¢,n

where we expressed the term inside the norm in the eigenbasis of H. Properties 2
and 5 of i, now imply that

ltH. 25 CON| <« (1D 10 nlie1X|n)

in

‘ — kI - (3.33)

We next prove Property 3 of the lemma. Let |#) and |h’) be two eigenvectors of H
such that the corresponding eigenvalues 4 and A’ satisfy |h — h’| > k. By definition
of the Fourier transform together with Property 2 of /i, mentioned at the beginning
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of this chapter, we find

[e.¢]

0= (h —h) = / di e (1)e" =" (3.34)

—00

This can be used to show that Property 3 of the lemma indeed holds. By definition
of the x-smooth pinching map, we have

(h 25 OW) = / " Ao () (bl XTI H R = (X Ry / " e et =0,
” - (3.35)

where the final step follows from (3.34).
We next prove Property 4 of the lemma. The triangle inequality together with the
fact that the operator norm is unitarily invariant give

oo . .
|X - 2500]| < / dipuy (6) | X — &' xe~ 1A
—00

= L Z dipu ) 1. €|

‘ oo

(3.36)
Lemma 3.8 then implies that
o - 0 121og?2
/ Ao (1) X, 1] < / Qe )11 11X, Hlloo = 11X, g 22
—00 —00 K
(3.37)

It thus remains to prove Property 5 of the lemma. By the triangle inequality we
have

750l < / depe (@) [l Xe [ = X1 (3.38)

which thus completes the proof. ]

3.1.3 Asymptotic Spectral Pinching

The spectral pinching method explained in Sect.3.1.1 is particularly powerful if we
apply it in an asymptotic setting. To understand what we mean by that let us first
recall two basic statements (given by Remark 3.9 and Exercise 3.10).

Remark 3.9 Let B € P(A). The number of distinct eigenvalues of B®", i.e.,
|spec(B®™)| grows polynomially in m. This is due to the fact that the number of
distinct eigenvalues of B®" is bounded by the number of different types of sequences
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of dim(A) symbols of length m, a concept widely used in information theory [7].
More precisely [8, Lemma II.1] gives

@m m + dim(A) — 1 (m + dim(A) — 1)dmA)-1 dim(A)—1
[spec(B=™)| < ( dim(A) — 1 ) < @m(A) — D1 <(m+1) (3.39)
= 0(p01y(m)) , (3.40)
where poly(m) denotes a polynomial in m.

Exercise 3.10 Let L; € L(A), L, € L(B) and C; € P(A), C, € P(B). Verify the
following identities for the tensor product:

1. tr Ly ® Ly = (tr Ly)(tr L»).
2. logC; ® C; = (logC)) ®idp +id4 ® (log C»).
3. exp(L)) ®exp(Ly) =exp(L; ®idp +ids ® L»).

With this preliminary knowledge in mind let us explain what we mean by the
asymptotic spectral pinching method. We apply this technique to prove a famous
trace inequality — the so-called Golden-Thompson (GT) inequality which states that
any two Hermitian operators H;, H, € H(A) satisfy

treM+: < refigh: (3.41)

We refer to Theorem 4.1 and the subsequent paragraph for more details about this
inequality. We next present a proof of the GT inequality based on the asymptotic
spectral pinching method.

3.1.3.1 An Intuitive Proof of the Golden-Thompson Inequality
Let By, B, € P(A) be such that B; = exp(H;) and B, = exp(H;). The identities

for the tensor product of the exponential, logarithm and trace function given in
Exercise 3.10 show that

1
log trexp(log By + log By) = — log trexp(log BE™ + log BE™) (3.42)
m
1 1 1
< — logtrexp (log <@B£®m (BE™) + log B<28)m> + log poly(m)
m
(3.43)
1 1 i
= Liogtr 2 yen (BEm pom 4 0EPY(M) (3.44)
m p m
1 1
— logtr By By 4 2EPOYM) (3.45)
m

where (3.43) follows by the pinching inequality (see Lemma 3.5), together with the
fact that the logarithm is operator monotone (see Table 2.2) and H +— trexp H is
monotone (see Proposition 2.10). Furthermore we use the observation presented in
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Remark 3.9, i.e., that the number of distinct eigenvalues of B grows polynomially
in m. Equality (3.44) uses Lemma 3.5 which ensures that @Bé@m (B1®’") commutes
with BF™ and hence log Pgen (BP™) + log BY" = log Pyen (BY™) BY" . Equal-
ity (3.45) uses again Lemma 3.5 and the properties of the exponential, logarithm and
trace function under the tensor product given by Exercise 3.10. Considering the limit
m — oo finally implies the GT inequality (3.41). ]
We believe that the proof of the GT inequality presented above is intuitive and
transparent. The high-level intuition may be summarized as follows: We know that
the GT inequality is trivial if the operators commute. The spectral pinching method
forces our operators to commute. At the same time the pinching should hopefully not
destroy the operator which it acts on too much. This is indeed the case (guaranteed
by the pinching inequality) if we lift our problem to high dimensions, i.e., if we
consider an m-fold tensor product of our operators and the limit m — 0o.*

3.2 Complex Interpolation Theory

Consider a sufficiently well-behaved holomorphic function defined on the strip
S:={z € C:0 < Rez < 1}. Complex interpolation theory allows us to control the
behavior of the function at (0, 1) by its value on the boundary, i.e., at Re z = 0 and
Re z = 1. Complex interpolation theory is an established technique that is vast and
extensive. In this section we review a specific interpolation theorem for Schatten
norms, commonly attributed to Stein [10], and based on Hirschman’s improvement
of the Hadamard three-lines theorem [11]. In Chap. 4 we will use this interpolation
result to prove multivariate extensions of known trace inequalities.

Before stating the main result let us define a family of probability densities on R

sin(m6)

Po(t) = 26/(cosh(rt) + cos(6))

for 6 €(0,1). (3.46)

These densities are depicted in Fig. 3.1. Furthermore, the following limits hold:
. T -1
=1 = —(cosh 1 4
Po(t) := lim By (dr) = = (cosh(mr) + 1) (3.47)
and

i) == gi;r; Bo(t) =68(1). (3.48)

Here B is another probability density on R and § denotes the Dirac §-distribution.

“4This phenomenon is known as the tensor power trick and is described, e.g., in [9].
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1.6

1.2

0.8

0.4

Fig. 3.1 This plot depicts the probability density Sy defined in (3.46) for 6 € {0, %, % %}

Theorem 3.11 (Stein-Hirschman) Let pg, p; € [1, 00], 6 € (0, 1), By given
in (3.46), define py by ﬁ = lp;of’ + %, and S :={z € C:0 <Rez < 1}. For
any function F : S — L(A) that is holomorphic in int(S), continuous on 95,

and z — || F(2) |y, . is uniformly bounded on S we have

]

dr (B1-o (1) og IF G113, + o (1) log I F(1 +in), ).
(3.49)

log|FO)Il,, < /

We note that the assumption that z > || F(2) || ,, . is uniformly bounded on § can
be relaxed to

sup exp(—a Im z) log || F (2)|| <y forsomeconstants o« <7 and y < o0.

zes

PRe ¢

(3.50)

In order to prove Theorem 3.11 we first recall Hirschman’s strengthening [11] (see
also [12, Lemma 1.3.8]) of Hadamard’s three line theorem.

Lemma 3.12 (Hirschman) Let S :={z € C: 0 <Rez < 1} and let f(z) be holo-
morphic onint(S), continuous on d.S and uniformly bounded on S. Then for6 € (0, 1)
and By given in (3.46), we have

o0

loglf(O)IS/ dt (Bi—o () log | FGOI'"™ + Bo(t) log | F (1 +in)|?) . (3.51)

—00

We note that the assumption that the function is uniformly bounded in the lemma
just above can be relaxed to

sup exp ( — o|Im z|) log|f(z)|] <y forsomeconstants o <m and y < 00.
z€S

(3.52)
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Proof We start by recalling Poisson’s integral formula [13, p. 258] which ensures
that any harmonic function’ u defined on the unit disk D = {z € C : |z| < 1} can
written as

1 " i ‘12 —r? i
u(z) = — dpu(gey————— where z=re"?, r<g<1. (3.53)
27 J_, |gel? — rei?|

Consider a subharmonic function® v on D that is continuous on the circle || = g < 1
and coincides with u on the circle. In case u = v on the circle |§|, the right-hand side
of (3.53) defines a harmonic function on {z € C : |z| < ¢} that coincides with v on
the circle |£| = ¢g. Since subharmonic functions obey the maximum principle [13,
p- 362] we find for |z| < g < 1

1 T . q2 — 2 .
v(z) < 3 / dg u(qe"p)m where z =re'?. (3.54)
T J n qge¥ —re!

This is valid for all subharmonic functions on D that are continuous on the circle
E|=qgforr <q < 1.
‘We note that

1 1
D>&— g(&) ::;log(iljg

) € (0,1) xiR (3.55)

is aconformal map. Since f o g isaholomorphic function on D we know thatlog | f o
g| is asubharmonic function on D. Applying the maximum principle (see 3.54) yields
for|z| =r <gq

1 ke ) q2_r2
o —_ o ¢
loz(f 0 @1 = 5= [ delogl(f 0 e 5Ll

(3.56)

where z = rel”. In case || = 1 and £ # 41 we have Re g(£) € {0, 1}. By assump-
tion of the lemma (see 3.52) we have

log |(f 0 9)(®)] < y MOl — p marlos(i5)l <) xroelEfl (357

This shows that log |(f o g)(£)] is bounded by a multiple of |1 + El77 + |1 —&
which is integrable of the set || = 1 asa < 7. Letz = re'? withr < ¢ and consider
q — 11in (3.56). By the dominated convergence theorem we find

3 Afunction f : X — R where X is an open subset of R” is called harmonic if itis twice continuously
differentiable and satisfies the Laplace equation everywhere on X, i.e., Af = 0.

A function f : X — R where X is an open subset of R” is called subharmonic if it is twice
continuously differentiable and satisfies Af > 0.
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. | : 1—r?
1 ) < — dol ip .
o 1( 0 0)re)| = o [ dplogl(f o s
(3.58)
For x := g(reiW) we obtain
e — ) e%rrx _% _ cos.(n'x) _ COS.(JTX) 1T (3.50)
ey +1 1 + sin(mx) 1 + sin(mwx)
from which we see that in case x € (0, %] we have r = lj_o:lﬁl’zl) and @ = —7 and in
case x € (%, 1) we have r = — l:f:g;l) and 6 = 7. In both cases we find
1-r _ sinGrxy) (3.60)
1 —2rcos(p —¢@)+r2 1+ cos(mrx)sin(p)
Plugging this into (3.58) shows that
1 T sin(mwx) .
1 < — d 1 Y. 3.61
og|f(x)| < . /n (pl-l—cos(rrx)sin((p) og|(f o))l (3.61)

To conclude we change variables. In case ¢ € [—7, 0] we introduce y such
that iy = h(e'%) or equivalently e'¥ = — tanh(rry) — ey - Since ¢ € [—, 0] we
obtain y € (—oo, 00) and dp = ————dy. As a result we find

cosh(n y)

0 .
i/ dp — TN 401 o g)@)) = &

© sin(7rx) .
27 J_, 14 cos(mx)sin(p) 2 _/ dy log /G-

—  cosh(mwy) — cos(mx)
(3.62)

In case ¢ € [0, 7] we define y such that 1+4iy =h(e'¥) or equivalently
el¥ = —tanh(y) + Since ¢ € [0, 7] we obtain y € (—o0, 00) and dp =

cosh(rry)
Cosh(ny) —T—dy. As aresult we find
o /ﬂ ‘ O tog(f 0 )] = 5 /oo ay g1+ i)
27 Jo ¢ 1 4 cos(mx) sin(gp) g 8 T2 ) s Y cosh(ry) — cos(mx) g W
(3.63)
Combining (3.61) (3.62) and (3.63) proves the assertion. U

Proof (Theorem 3.11) By assumption, the operator F(0) is bounded for any fixed
0 € (0, 1). Consequently, F'(0) has a polar decomposition [14, Theorem VI.10], i.e.,
F(0) = V B, where B is positive semi-definite and V is a partial isometry satisfying
BVYV = VTVB = B. Let x € [0, 1] and define ¢, as the Holder conjugate of p,
such that p.! + ¢! = 1. By definition of p, (see Theorem 3.11), we have
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1 _l=x x (3.64)
qx q0 q1

We next define X (z) by

x@) = (&5 pr (S0 v wih ko= IBl,, = IF@)Il,, <oo.
(3.65)

It is easy to see that z — X (z) is anti-holomorphic on S and

1

IX(x +iplE =tr (K”B)p"‘h( o

X

+W) = tr (Kle)Pe =1. (3.66)

Asaresult f(z) :=tr X @) F(2)is holomorphic and bounded on S since by Holder’s
inequality (see, e.g., [15, Theorem 7.8]) we have

lfx+i] = IXx+ iy, 1FG&+ipl, = I1F&+inl,, - (3.67)
Consequently, our assumptions on F(z) imply that f(z) satisfies the assumptions of

Lemma 3.12.
By definition of X (z) we find

FO)=twX(@) F©O) =k uwB? 'VIVB =i!"PuBr = IF @), -

(3.68)

Furthermore, according to (3.67) we have
lfGD| < IFGn)ll,, and [f(1+in)] < [[F(1 410l - (3.69)
Plugging this into Lemma 3.12 yields the desired result. ]

3.3 Background and Further Reading

A question that is related to the topics discussed in this chapter is whether Hermitian
operators that almost commute are close to Hermitian operators that commute (with
respect to the operator norm). This question has a long history that dates back to the
1950s or earlier (see, e.g., [16, 17]). It has been finally solved in [18] (see also [19]
for a simplified proof). Recent progress has been obtained in [20, 21], where [20]
uses the concept of smooth pinching. Lemma 3.7 is similar to Lemma 1 in [20].
The pinching inequality (given in Lemma 3.5) was proven in [22]. More information
about the spectral pinching method can be found in [23, 24].

Complex interpolation theory is an established technique that is frequently used
by mathematical physicists. Epstein [25] showed how interpolation theory can be
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utilized in matrix analysis. Recently, the technique attracted attention in quantum
information theory for proving entropy inequalities. Beigi [26] and Dupuis [27] used
variations of the Riesz-Thorin theorem based on Hadamard’s three line theorem to
show properties of the minimal Rényi relative entropy and conditional Rényi entropy,
respectively. Wilde [28] first used complex interpolation theory to prove remain-
der terms for the monotonicity of quantum relative entropy. Extensions and further
applications of this approach are discussed by Dupuis and Wilde [29]. Hirschmann’s
refinement was first studied in this context by Junge et al. [30].
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Chapter 4 ®)
Multivariate Trace Inequalities oo

Trace inequalities are mathematical relations between different multivariate trace
functionals. Oftentimes these relations are straightforward equalities if the involved
matrices commute—and can be difficult to prove for the non-commuting case.

4.1 Motivation

Arguably one of the most powerful trace inequalities is the celebrated Golden-
Thompson (GT) inequality [1, 2]. It relates the trace of the exponential of a sum
of two matrices with the trace of the product of the individual exponentials.

Theorem 4.1 (Golden-Thompson) Let H,, H, € H(A). Then
trefi T < refligh 4.1)

with equality if and only if [H,, Hy] = 0.

We note that the GT inequality is relating two nonnegative real numbers.
To see this, we note that the right-hand side can be rearranged as tr exp(%) exp(H;)
exp(%), using the cyclic property of trace, which is always nonnegative since
exp(‘) exp(H,) exp(F) € P(A).

The GT inequality has found applications ranging from statistical physics [2],
random matrix theory [3-5], and linear system theory [6] to quantum information
theory [7, 8].

There exists a variety of different proofs for the GT inequality. In Sect.3.1.3.1 we
presented an intuitive proof that is based on the spectral pinching method discussed
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in Sect.3.1. The motivation for the use of the pinching technique comes from the
fact that (4.1) is trivial if A, and H, commute.

Proof (Theorem 4.1) Inequality (4.1) has been proven in Sect.3.1.3.1 based on the
asymptotic spectral pinching method. It is immediate to see that (4.1) holds with

equality in case [H;, H,]=0. The converse statement is proven in
[9, Theorem 2.1]. O

As we will see later, the proof presented in Sect. 3.1.3.1 already suggests an extension
of the GT inequality to n matrices by iterative pinching.

Exercise 4.2 Apply the asymptotic spectral pinching method (as shown in the proof
given in Sect. 3.1.3.1) to prove the following extension of the GT inequality to three
matrices

1—it

ez 4.2)

1+iz
iHZ H3

Hie™y Mg

tref At < qup tre
teR

and compare it to (4.28) that we will prove later. [Hint: use the integral representation
of the pinching map given by Lemma 3.4]

The GT inequality can be derived from the more general Araki-Lieb-Thirring
(ALT) inequality [10, 11], which relates the trace of a product of two positive oper-
ators with a global and a local power.

Theorem 4.3 (Araki-Lieb-Thirring) Let By, B, € P(A) and g > 0. Then
r ro g 1 1 q
tr (BEByB})" <tr(BlB,B})" if re€(0,1], (4.3)

with equality if and only if [ By, Bz] = 0. The inequality holds in the opposite
direction forr > 1.

Proof We present a proof based on the asymptotic spectral pinching method that
is similar as the proof for the GT inequality explained in Sect.3.1.3.1. Using basic
properties of the tensor product that are stated in Exercise 3.10 we find for r € (0, 1]
andm e N
r roq 1 r r 4
logtr (BS B}B})" = — logtr ((Blz )®'"(B;)®’"(Bf)®'”) (4.4)
m
T logpoly(m
. log poly(m) ’
m

IA

1 :
—logtr (B P50 ((B=") (B *")
4.5)

where the final step uses the pinching inequality (see Lemma 3.5), the monotonicity
of the function X — tr X* for o > 0 (see Proposition 2.10) and the fact that the
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number of distinct eigenvalues of Bf@”" grows polynomially on m (see Remark 3.9).
Since t > t* for o € (0, 1] is operator concave Lemma 3.5 shows that

r [N 1 r . a | 1
logtr (B ByB)" < —logtr ((Blz)®my3?,,l(B§m)r(BIZ)®m) . log poly(m)
(4.6)
1 3 1 9 logpoly(m
= —logtr (32316%((Blz)®mB§’m(BIZ)®m)) + g poly(m)
" m
4.7)
1 ! 1 log pol
< —logtr ((Blz)®mB§am(Blz)®m>‘f | logpolym) o
m m
1o o1 log pol
= logtr (Blz BzBf)q 4 908Po y(m) ’ “49)
m

where (4.7) uses that &g, (B,) commutes with B;. The penultimate step uses
Lemma 2.6 (see also (2.21)) together with the integral representation of the pinching
map (Lemma 3.4) and the fact that p-norms are unitarily invariant for all p > 0.
The final step uses basic properties of the tensor product described in Exercise 3.10.
Considering the limit m — oo then proves (4.3). The fact that (4.3) holds in the oppo-
site direction in case » > 1 follows from the substitution B; < By for k € {1, 2},
‘7’ <« ¢g,and % < r. That (4.3) is an equality if and only if the two matrices commute

is proven in [9, Theorem 2.1]. U

The GT inequality is implied by the ALT inequality. To see this we recall the Lie
product formula for operators (see, e.g., [12, Problem [X.8.5]).

Lemma 4.4 (Lie product formula) Let n € N and (Ly)j_, be a finite sequence of
linear operators on A. Then

lim (He%> = exp (Zl‘k> . (4.10)
k=1 k=1

We note that for » — 0 the Lie product formula shows that the ALT inequality (4.3)
simplifies to

1 1
tr (el BrtloeByd < v (B By B7 )Y, (4.11)

which for ¢ = 1 gives the GT inequality (4.1)
The straightforward logarithmic analog of the GT inequality is a relation between

trlog By B, and trlog By + trlog B, for By, B, € P(A). As the determinant is mul-
tiplicative and since tr log B; = logdet By we find that

1 1
trlog By +trlog B, = trlog By By B; . 4.12)

This trivially extends to n matrices.
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Exercise 4.5 Show that tr log B = logdet B for all B € P(A).

The following theorem states a more interesting logarithmic trace inequality [13,
14]. In particular it provides an upper and lower bound for the relative entropy defined
in Definition 2.27.

Theorem 4.6 (Logarithmic trace inequality) Let By, B, € P(A) and p > 0.
Then

L
2

1 1
—tr By log By BPBZ < tr By(log B; + log B;) < —tr By log B} BPBI ,
P P

(4.13)

with equalities in the limit p — 0.

Proof First, note that both inequalities are invariant under multiplication of the oper-
ators Bj, B, with positive scalars by, b, > 0 and hence additional constraints on the
norms of the matrices can be introduced without loss of generality. We thus assume
without loss of generality that tr B} = 1.

We start by proving the first inequality. Using the variational formula for the
relative entropy given by Lemma 2.29 we find for any p > 0

tr By (log B; + log B,) = D(B,||B,") (4.14)
= sup {tr Bilogw + 1 —tr elog‘”_k’ng} (4.15)
w=>0
_p _P2N\P
zsup{trBlloga)+1—tr<BzZa)szz) } (4.16)
>0
1 [N
> —tr By log B B{ B} , (4.17)
p

where the first 1nequa11ty follows form the GT inequality given in (4.11). The final
step uses that w = (B2 B”B2 )5 > 0.

The second inequality is proven in [13]. A simplified argument for the case p = 1
can be found in [15, Sect.3.5.1]. U

All the trace inequalities presented in this section involve two operators. It is a
natural question if they feature extensions to arbitrarily many operators—so-called
multivariate trace inequalities. The remaining part of this chapter deals with this
question.
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4.2 Multivariate Araki-Lieb-Thirring Inequality

The ALT inequality presented in Theorem 4.3 has been extended in various directions
(see, e.g., [14, 16—18]). Recently, an extension of the ALT inequality to arbitrarily
many operators has been proven [19] which was further generalized in [20].

Theorem 4.7 (rn-matrix extension of ALT) Let p >0, r € (0, 1], B, as
definedin (3.46), n € N, and consider a finite sequence (By)j;_, of nonnegative
operators. Then

1
r

log (4.18)

n
1+ir
[15

k=1

< / " 41, (1) log

[15
k=1

P

Proof The case r = 1 holds trivially with equality, so suppose r € (0, 1). We prove
the result for strictly positive operators and note that the generalization to nonnegative
operators follows by continuity. Furthermore, we assume in a first step that p > 1.
The idea is to prove the assertion by using complex interpolation theory. To do so,
we define the function

F(z) =[] B; =[] exp(zlog By). (4.19)
k=1 k=1

which satisfies the regularity assumptions of the Stein-Hirschman theorem (see The-
orem 3.11). Furthermore we pick 6 = r, py = oo and p; = p such that py = £. A
simple calculation reveals that

log | F(1 +in)]l% = rlog ]_[ B! (4.20)
k=1 p
and
log | F(in)l}* = (1 —r) log ]_[ B'l =0, 4.21)
k=1 00
since the operators B}’ are unitary. Moreover, we have
n n i
log [ F ), =log |[ [ Bi| =rlog||[]B5: (4.22)
k=1 r k=1
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Substituting this into Theorem 3.11 yields the desired inequality for p > 1. The case
0 < p <1 follows from a standard technique called antisymmetric tensor power
calculus. This is explained in detail in [20]. O

Remark 4.8 Using antisymmetric tensor power calculus it can be shown that (4.18)
is true for any unitarily invariant norm (see [20] for more information).

Let us now comment on various aspects of (4.18). For g € R, r € (0, 1], and
the substitution p < 2q and By < /By we can rewrite (4.18) as

q
¥

logtr (B B} -+ B ByB., -+ B; B} )

n—12nPp-1"

n—1

0 1l it 1=it e 1\4
5/ dtB, (1) logtr <312322 ---B,>ByB,> ---B,” Bl .
o0

For n = 2 this simplifies to the original ALT inequality given by Theorem 4.3.
By Jensen’s inequality we can remove the logarithm in (4.18). Furthermore, for
q €[0,1] we may shift the integral inside the quasi-norm using the fact that
X — log || X][, is concave for p € [0, 1]," which yields

1By BiBY)

oI

nPn—1"

(BiB; - BB

q

% 1 L i 1

< H/ dtp,(t)B{ By*> ---B,>B,B,2, ---B,*> B}
—00

4.3 Multivariate Golden-Thompson Inequality

Given the usefulness of the GT inequality presented in Theorem 4.1, it is natural to
ask if the GT inequality can be extended to more than two operators. In 1973, Lieb
proved a three operator extension of the GT inequality [21] that attracted a lot of
interest and raised the question if the GT inequality can be extended to more than
three matrices. This has been an open question until recently (see Theorem 4.10).

Theorem 4.9 (Lieb’s triple operator inequality) Let H,, H,, H; € H(A). Then

o0
treffitihrih < / dstref (e 4+ sidy) e (e +5ida) . (425)
0

Lieb’s triple operator inequality has been shown to be equivalent to many other
interesting statements such as Lieb’s concavity theorem (see Theorem 2.13) or strong

I'This follows from Proposition 2.10.
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subadditivity of quantum entropy [7, 8] (see (5.29)).2 We postpone the proof of
Theorem 4.9 to the end of this section. It can be verified easily that in case H, =
0 (4.25) simplifies to the original GT inequality (4.1).

The n-operator extension of the ALT inequality presented in Theorem 4.7 implies
(via the Lie product formula given by Lemma 4.4) an extension of the GT inequality
to arbitrarily many operators.

Theorem 4.10 (n-matrix extension of GT) Let p > 0, By as defined in (3.47),
n € N and consider a finite sequence (Hy)y;_, of Hermitian operators. Then

oo 50

k=1

]_[ exp((1 +it) Hy)

k=1

log . (4.26)

‘ < / ™ dtBo(t) log
» )

p

Proof Follows from Theorem 4.7 together with the Lie product formula (see
Lemma 4.4) when considering the limit » — 0. O

Remark 4.11 Using antisymmetric tensor power calculus it can be shown that (4.26)
is true for any unitarily invariant norm (see [20] for more details).

If we evaluate (4.26) for n = 3 and p = 2 using the substitution H; <— %Hk we
obtain

1-+it 1—it
2

o0
log tr el M < / dtBo(1) logtrefie 2 Methe™2 2 4.27)

[e¢]

By the concavity of the logarithm we can further simplify this inequality to

o0

1—it
treH1+H2+H3 </

Lt 1=it
diBy(t) trefe 2 Metie™ 2 (4.28)
o0

As it happens this inequality coincides with Lieb’s triple operator inequality (4.25).
To see this we consider the following lemma.

Lemma 4.12 Let B € P(A) and H € H(A). Then, the following two expressions
for the Fréchet derivative of the logarithm are equivalent:

d o0
a 0log(B +rH) = / ds (B+sidy) "H(B + sidA)_] (4.29)
rr=l 0
e 14ir 1—it
=f dtBy(t) B2 HB™ 7 . (4.30)

2The reason why all these statements are equivalent is explained in [21] (see also [22]).
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Proof The first equality in the lemma is well-known and can be derived using integral
representations of the operator logarithm (see, e.g., [23]). To see why the second
equality step is true we expand both terms in the eigenbasis of B. More precisely,
for B =), Alk) (k| we find

| s 4 sian T @ +sian T = SwHOmE [ a0 k0
0 kot 0

@31
A simple calculation shows that

it

/mcl(x.+)—1<x+>—1 L gt = ! ‘/wﬂmn(“)z
s N S = 0g — = - .
0 ¢ ¢ Ao — A & A A Joso 0 Ak

4.32)

As a result we have

f ds (B +sida) " "H(B +sida)~! =/ dzﬂo(z)Zx,j%’%xﬁ+%(k|f1|z>\k)<z| (4.33)
0 —00 Kl

:/ dtfo(t) B-3- 3 HB—+% (4.34)
which proves the second equality of the lemma. U

Lemma 4.12 presents two alternative expressions for the Fréchet derivative of the
operator logarithm, one in terms of resolvents and the other one in terms of an
average over unitaries. The lemma also provides further insight in the probability
density By which we obtain from Hirschman’s interpolation theorem. Lieb’s triple
operator inequality (see Theorem 4.9) thus follows directly by combining (4.28) with
Lemma 4.12.

Remark 4.13 Recently it was shown that the right-hand side of (4.26) features an
alternative representation without any unitaries, however in terms of resolvents [24]
as in Theorem 4.9 for the special case of three matrices.

The multivariate GT inequality presented by Theorem 4.10 is valid for Hermitian
operators. The following theorem proves an n-operator extension of the GT inequality
for general linear operators.

Theorem 4.14 Let p > 0, By as defined in (3.47), n € N and consider a finite
sequence (Ly);_, of linear operators. Define the real part of Ly by Re(Ly) :=
YLy + L}). Then

wn(50)

k=1

[ Jexp((1 +inRe(Ly))

k=1

log (4.35)

s/wmman%

p P
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Proof We define the imaginary part of L; by Im(Ly) := %(L K — LZ). Note that
L, = Re(Ly) +1iIm(Ly) and that both Re(L;) and Im(L;) are Hermitian. The idea
is to prove the assertion of the Theorem via complex interpolation theory. Therefore
we consider the function

F(z) .= 1_[ exp (z Re(Ly) + 16 Im(Lk)), (4.36)
k=1

which satisfies the regularity assumption of Theorem 3.11. We first suppose that
p > landpickf =r € (0, 1), po = ocoand p; = psuchthat py = %.Theorem&ll
thus gives

1
rlog =log | F(0)ll pg 4.37)

p

n
exp <r Z Lk>
k=1

< [ atpw oglrainn, (438)

:r[ dr B, (¢t) log

l—[ exp ((1 +inRe(Ly) + r Im(Ly)) H ,
k=1 »

(4.39)

where in the inequality step we used that log || F'(it)|| = 0 as F(it) is unitary.
Dividing by r and taking the limit » — O then yields the desired result via the
Lie product formula (see Lemma 4.4). As before, the case 0 < p < 1 follows from
antisymmetric tensor power calculus which is described in detail in [20]. [

We note that (4.39) can be viewed as an ALT inequality for linear operators. For
n = 1and p = 2, Theorem 4.14 simplifies to

trelel’ < treltt’, (4.40)
which was derived in [6]. We further note that for the case of normal operators N,
the matrices Re(N) and Im(/N) commute, which allows us to slightly simplify the
above formula by employing the fact that exp(Re(N)) = | exp(N) | For two normal
operators the result then reads

llexp (N1 + N2)ll, < |[[exp(VD)||exp(No)] ], . (4.41)

generalizing an inequality derived in [25].
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4.4 Multivariate Logarithmic Trace Inequality

The extension of the GT inequality presented in Theorem 4.10 can be used to derive
an extension of the logarithmic trace inequality given in Theorem 4.6 to arbitrarily
many operators [26].

Theorem 4.15 Letq > 0, By as defined in (3.47), n € N, and consider a finite
sequence (By);_, of nonnegative operators. Then, we have

oo 1 g(1+ir) q(1+ir) q q q(1—=it) q(1—it)
%

dtfo(t)—tr BjlogB, > ---By > B;B{B}B; > .- B,
00 q

)

n
ZtI‘B] log By 2/

k=1 -

(4.42)

with equality in the limit g — 0.

For two matrices (i.e., n = 2) (4.42) simplifies to the first inequality of (4.13).

Proof First, note that the statement that we aim to show is invariant under multipli-
cation of the operators By, By, ..., B, with positive scalars by, b, ..., b, > 0, and
hence additional constraints on the norms of the matrices can be introduced without
loss of generality.

Let us first show the inequality for ¢ > 0, where we suppose that tr B; = 1. By
definition of the relative entropy we have

n n
"t By log B = D(B1 H exp (Z log B,;1>) (4.43)
k=1 k=2

= sup {tr Bilogw + 1 —trexp (loga) — Zlog Bk>} , (4.44)
>0 k=2

where we used the variational formula for the relative entropy given in Lemma 2.29.
Now note that the n-operator extension of the GT inequality (Theorem 4.10) can for
pHy =log By and p = 5 be relaxed to

n o] q q+in)  g(1+in) g(—in  g(—in) a\ g
tr exp ZIOgBk 5/ diBo(n)tr (B,,Z By? B, BB, ? B’ ...3”2>
k=1 -

using the concavity of the logarithm and Jensen’s inequality. Applying this to (4.44)
we find
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o0
ZtrBl log B > sup { / drBo(tH)trBy logw + 1

k=1
g qU+in q(+in _qU=in _gqU-in g 5
tr<32233 T ...By ® B, ® ---B; ? Bz~) }
(4.45)
Now since
q(14ir) q(+in) q 7i1) q(1—ir) q
w:=|B,* ---By° BBqBB .-+ B, ? (4.46)

is anonnegative operator we can insert this into (4.45), which then proves the assertion
forg > 0.

Next, we show that in the limit ¢ — 0 the inequality in Theorem 4.15 also holds
in the opposite direction. For the following we suppose that A, > 1 for all k €
{1,2,...,n}. Weuse that log X > 1 — X! for X > 0 and hence

g(1+it) q q q(1—in —q(1—in) _4q _4q _g(+it)
wBilogh, * BiB{B; B, * zuB(1-B, © B BBy c-B ) (447)
=:1Z,(1). (4.48)
By assumption on our operators we have that Bfl <1foralli € {1,2,...,n}and

thus Z,(¢) > O for all # € R. By Fatou’s lemma (see, €.g., [27]), we further find

q(t)

l1m 1nf / Bo (dt) / Bo(dt) hm 1nf

Moreover, since Zy(t) = 0 and

= Ztr Bilog By forall reR,
=0 =1

dZ(t)
dg 1

an application of 1’Hopital’s rule yields

Z,(t
lim inf =2 @)
q—0 q

n
= ZtrBl log By, .
k=1

Since fy is normalized this proves the assertion. (]
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4.5 Background and Further Reading

The GT inequality was proven independently by Golden [1] and Thompson [2] for
an application in statistical physics. It has been generalized in various directions
(see, e.g., [13, 16, 25, 28-32]). For example, it has been shown that it remains valid
by replacing the trace with any unitarily invariant norm [33-35] and an extension
to three non-commuting matrices was suggested in [21]. An interesting topic that is
not covered here is the question for reverse GT inequalities [13, 36, 37] in terms of
matrix means [38].

The ALT inequality was first proven by Lieb and Thirring [10] and then gener-
alized by Araki [11]. It has also been extended in various directions (see, e.g., [14,
16-18]). Similarly as with the GT inequality it is interesting to study reverse ALT
inequalities [39, 40].

Lieb’s triple operator inequality (Theorem 4.9) is important as it can be used to
prove many interesting statements such as strong subadditivity of quantum entropy,
the monotonicity of the relative entropy, the joint convexity of the relative entropy, or
Lieb’s concavity theorem [21] (see also [41, 42]). Lieb’s concavity theorem is partic-
ularly useful to derive tail bounds for sums of independent random matrices [4, 43]
that can be better than if you derive them via the original GT inequality, as done in [3].
The multivariate GT inequality (Theorem 4.10) has been used to derive concentra-
tion bounds for expander walks [44]. Recently, Lemma 4.12 was a key ingredient to
prove remainder terms for the superadditivity of the relative entropy [45].
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Chapter 5
Approximate Quantum Markov Chains e

In Chap.1 we informally discussed the concept of a Markov chain and the
differences between the classical and quantum case. Here we formally introduce
quantum Markov chains and discuss their properties before explaining which prop-
erties remain valid in the approximate case.

5.1 Quantum Markov Chains

We start with the formal definition of a quantum Markov chain.

Definition 5.1 A tripartite state pypc € S(A ® B ® C) is called a quantum
Markov chain in order A <> B <> C if there exists a recovery map Zp_, gc €
TPCP(B, B ® C) such that

pasc = Zp—pc(pap) - 5.1

Informally the definition above states that the C-part can be reconstructed by
only acting on the B-part. It is interesting to further study the structure of Markov
chains—in particular, if there exists an entropic and an algebraic characterization.
The following theorem presents an entropic characterization of quantum Markov
chains [1, 2].
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Theorem 5.2 A tripartite state papc € S(A ® B ® C) is a quantum Markov
chain in order A <> B < C ifand only if I (A : C|B), = 0. Furthermore, in
case 1 (A : C|B), = 0 the rotated Petz recovery map

Lir 1+|t —it
93[ch : X = pge (pB Xp pg = ®1dc>pBC for teR (5.2)

satisfies (5.1), i.e., ,?B[ch(pAB) = papc forallt € R.

Proof One direction of the theorem is almost trivial. Suppose pspc is a Markov
chain. The data-processing inequality then shows that

I(A:C|B), = H(A|B), — H(A|BC), < H(A|BC) — H(A|BC), =0. (5.3)

T we(oan)
The inequality step is justified by
—H(A|BC), = D(pagcllida ® ppc) (5.4)
> D(pagllida @ pp) (5.5)
> D(Z" pe(pan)lids ® T3 pc(op)) (5.6)
= —H(A|BC)qn oan) (5.7)

where we used that tr 4 L?B[iBC (pap) = <7B[iBC(IOB)' The final step in (5.3) uses that
papc is a Markov chain and hence pspc = ﬁB'ﬂ) sc(Pap). Together with the strong
subadditivity of quantum entropy (see 3.1) this implies that /(A : C|B), = 0.

The other direction, i.e., that /(A : C|B), = 0 implies that pspc is a Markov
chain and that in such a case every rotated Petz recovery maps satisfies (5.1) is more
complicated to show. We postpone this proof to Sect.5.4.1 (see Remark 5.22). [

Remark 5.3 The rotated Petz recovery map 93[1 gc defined in (5.2) is trace-
preserving and completely positive for all # € R. That the map is completely positive
is immediate. It is also trace preserving as

r 71 e (Xp) = trppe(op * Xupy * @ide) = tr Xy, (5.8)

where the first step uses the cyclic invariance of the trace and the final step uses two
basic properties of the partial trace, i.e., for X4p € L(A ® B) and Y, € L(A) we
have tr XAB =1tratrp XAB and trp XAB(YA ® ldB) = tI'B(XAB)YA.

Theorem 5.2 is interesting as it links quantum Markov chains that are defined in
an operational way (i.e., that parts of a composite system can be recovered by only
acting on other parts) with an entropic quantity, the conditional mutual information.
Entropy measures are well studied and obey many nice properties (as discussed in
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Sect.2.5). More concretely, Theorem 5.2 can be helpful in practice: Suppose you are
given a tripartite state p4 pc and want to determine if it is a quantum Markov chain or
not. Theorem 5.2 tells us that all we need to do is to calculate the conditional mutual
information /(A : C|B),.

Theorem 5.2 links Markov chains and the conditional mutual information. The
following result further deepens our understanding of Markov chains. It presents an
algebraic characterization of quantum Markov chains [3].

Theorem 5.4 A state pppc € S(A ® B ® C)isaMarkov chaininorder A <>
B < C if and only if there exists a decomposition of the B system as

B = @bf ® bf (5.9)
J

such that

pasc = D P(oat ® prec (5.10)
J

with Papt € S(A® bJL), Pokc € S(b;e ® C) and a probability distribution P.

Proof One direction is trivial. If p4 p¢ has the form (5.10) wehave I (A : C|B), = 0.
Theorem 5.2 then shows that ppc is a Markov chain. It thus remains to show that
any Markov chain can be written as (5.10). For the channel Zp_.p = tr¢c o Zp_. ¢
the Markov condition (5.1) implies

Zp—p(PAB) = PAB - (5.11)

Let My € P(A) such that M, < id, and define a state op € S(B) by
pop =1trg pap(Ms ®1idp) with p =tr pap(M4 ® idp) . (5.12)
In case p # 0, (5.11) implies that Zp_, g(0p) = op. Varying M, gives a family

M(B) of states on B that are invariant under Zg_, p.
Apply Theorem 9 from [3] (see also [4]) gives a decomposition

B=Prt bt (5.13)
J
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such that every o € M(B) can be written

o5 =P P(j,0)pj(0) @ w;, (5.14)

J

with p;(0) € S(bf ), wj € S(bj-e ) and a probability distribution P. By definition of
op this now implies '

pan =D P(Dpar ® wyr . (5.15)
J

To see this, we define the map

Fp: Xp > Py (X1 @ ), (5.16)
J

where I is the orthogonal projector onto the subspace bJL ® bf. We then find for
M, € P(A) such that M4 < id4 and N € P(B) such that Nz < idp

tr pap(Ma ® Np) = ptrogNg = ptr Fp_5(0)Np = ptrogFy_ 5(Np)

(5.17)
= tr pap(Ms ® Fjy_ y(Np)) = tr Fp. 5(0a5) (M4 ® N) .
(5.18)
By linearity this is valid for all operators M4 ® Np such that we obtain
oap = Fp-p(PaB) . (5.19)
This now implies (5.15) since
Fp_p(Xp) = @trb}z(anan)®a)j. (5.20)

J

Let E be a environment such that by the Stinespring dilation (see Proposition 2.20)
we can express the recovery map Zg—, gc as

R pc © Xp > ttgUpce(Xp ®10) (Olc ® t2)Ujep » (5.21)

fOI'UBCE € U(B RC® E) andrE € S(E).Since%BeBc(pAB) = PABC and(511)
we see that the unitary Upcp must be of the form

Usce = Pidy ® U, (5.22)

J
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forU; € U(bje ® C ® E). Combining (5.15) (5.21), and (5.22) shows that

papc = XZp—pc(PaB) (5.23)
= trg Upce(pap ® |0) Olc ® Tp)Ujep (5.24)
=P Ppar ®trz Uj(wpr ® [0) (Olc ® T6)U; (5.25)
J
=P P()ow ® prec (5.26)
J
which proves the assertion. (]

5.2 Sufficient Criterion for Approximate Recoverability

This section deals with the question whether the properties of quantum Markov
chains discussed in the previous section are robust. In particular we are interested in
the question if the entropic characterization of Markov chains given by Theorem 5.2
is robust. That is, we would like to understand the entropic structure of tripartite
density operators that have a small conditional mutual information. In particular, if it
is possible to relate the conditional mutual information with a measure of how well
the C-system can be recovered by only acting on the B-system with a recovery map.

The following theorem [5—11] shows that whenever the conditional mutual infor-
mation /(A : C|B), of a quantum state pspc is small, then the Markov condi-
tion (5.1) approximately holds, i.e., there exists a recovery map from B to B® C
that approximately reconstructs pspc from p4p. This therefore justifies the defini-
tion of approximate quantum Markov chains as tripartite states p4pc such that the
conditional mutual information /(A : C|B), is small.

Theorem 5.5 Let pspc € S(A® B ® C). Then
I(A:C|B), = DM(PABC”jB»BC(PAB))9 (5.27)

with the rotated Petz recovery map

Fyne = / o) T e (5.28)

oo

where By and 9B[i pc are defined in (3.47) and (5.2), respectively.

Proof This theorem follows from Theorem 5.18 by choosing p = papc, 0 =ids ®
pBc,and & = trc. O
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The recovery map T pc defined in (5.28) that satisfies (5.27) fulfills several nice
properties:

1. Tt is trace-preserving and completely positive (see Remark 5.3).
2. Itis explicit.

3. Itis universal, i.e., it depends on ppc only.

4. It satisfies %*}Bc(pB) = pBC-

Theorem 5.5 is of interest for various reasons. First and foremost, it shows that all
tripartite density operators p4pc with a small conditional mutual information / (A :
C|B), are approximately recoverable in the sense that f_gﬁ sc(papc) = papc forthe
recovery map Ty pc defined in (5.28). This justifies the definition of approximate
quantum Markov chains as state that have a small conditional mutual information. In
Sect.5.2.1 we will see that approximate Markov chains can be far from any Markov
chain, with respect to the trace distance.

Second, Theorem 5.5 immediately implies the celebrated strong subadditivity of
quantum entropy [12, 13], i.e.

I(A:C|B), =0, (5.29)
by recalling the nonnegativity of the measured relative entropy (see Proposition 2.35).

Theorem 5.5 thus is a strengthening of SSA.

Remark 5.6 Inequality (5.27) is tight in the classical case. To see this, we recall that
according to (1.7)

pagc isclassical = I(A:C|B), = D(papcllTp-pc(pan)) . (5.30)

‘We recall that the state p4pc is classical if it can be written as

pasc =y Papc(a,b,c)la) (als @ Ib) (bls ® |c) (clc (5.31)

a,b,c

for some probability distribution P4pc. Since for classical states the measured rela-
tive entropy coincides with the relative entropy and since the rotated Petz recovery
map _, pc defined in (5.28) simplifies to the Petz recovery map F_, gc defined
in (1.14), we see that (5.27) holds with equality if pspc is a classical state.

Remark 5.7 Theorem 5.5 is essentially optimal. It has been shown [14, Sect. 5] that
there exist tripartite density operators papc € S(A ® B ® C) such that
I(A:C|B), < ﬁmin {D(papcllZs—pc(pap)) : Zp—pc € TPCP(B, B® C)}.
¢ B—BC
(5.32)
This shows that Theorem 5.5 is no longer valid when replacing the measured relative

entropy in (5.27) with a relative entropy—even if we optimize over all possible
recovery maps.
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Remark 5.8 Remark 5.7 just above shows that it is not possible to bound the condi-
tional mutual information of a tripartite state p4 pc from below by the relative entropy
between papc a arecovered state Zp_, pc (p4p)- This, however, becomes possible if
we consider a multi-letter formula. More precisely, it was shown [15, Theorem 12]
(see also [6, Theorem 1] and [9, Proposition 3.1]) that

1 on
I(A:CIB), = lim sup D (pGhcll | drﬁoa)%%c(pAB) ). 633

n—o00

where Sy and 93[2 gc are defined in (3.47) and (5.2), respectively.

5.2.1 Approximate Markov Chains are not Necessarily Close
to Markov Chains

Approximate Markov chains are tripartite states p4 pc with a small conditional mutual
information. Theorem 5.5 shows that such states are approximately recoverable in the
sense that there exists a recovery map Zp_, pc such that (5.1) approximately holds.
Surprisingly, approximate quantum Markov chains are, however, not necessarily
close in trace distance to any Markov chain [16, 17]. To see this, let

1
Alp,0) =5 lle = ol (5.34)

denote the trace distance between p and o.

Proposition 5.9 For any d > 1, there exist states pspc € S(AQ® B ® C)
with dim(A) = dim(C) = d such that

2 . 1
I(A:C|B), < 71 logd and ;Ielb% A(papc, LaBc) = 5 (5.35)

Proposition 5.9 shows that there exist tripartite density operators with an arbitrarily
small conditional mutual information, whose distance to any Markov chain, however,
is large. This shows that approximate quantum Markov chains are not close to Markov
chains.

Proof Let ps,. s, = |¥) (¥ls,..s, on $1 ®@ --- ® Sg with dim Sy =d > 1 for all
k=1,...,d, where

V)si...s0 = a1 Z sign()|7(1)) ® ... ® | (d)) (5.36)

: JTECVd
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is the Slater determinant, .#,; denotes the group of permutations of d objects, and
sign(m) := (—1)%, where L is the number of transpositions in a decomposition of
the permutation 7. The chain rule for the mutual information shows that

d
I(S1:82...8)p =Y 1(S1:8S...S1), <2logd, (5.37)
k=2

where the final step follows by the trivial upper bound for the conditional mutual infor-
mation. By the nonnegativity of the mutual information, there exists k € {2, ..., d}
such that

2
I(Sy: SklSy... Skfl)p < P logd s (5.38)

1

which can be arbitrarily small as d gets large. The density operator pg, s, is chosen
such that the reduced state pg, s, is the antisymmetric state on S| @ Sy that is far from
separable [18, p. 53]. More precisely, for any separable state og,5, on S; ® S; we
have A(ps,s,. 0s,5,) = 5

Theorem 5.4 ensures that for any state s, s, on S| ® -+ ® S that forms a
Markov chain in order S| <> S, ® ... ® Si_1 <> Sy, it follows that its reduced state
is,s, on Sy ® Sy is separable. The monotonicity of the trace distance under trace-
preserving completely positive maps [19, Theorem 9.2] then implies

1
A(PS, -85 1S,-5) = A(Ps, 5,5 s, 5.) = ok (5.39)

This shows that the state ps,..s,, despite having a conditional mutual information
that is arbitrarily small (see 5.38), is far from any Markov chain. Relabeling A = S,
C=S,and B=295 ®...Q St finally completes the proof. O

5.3 Necessary Criterion for Approximate Recoverability

Theorem 5.5 shows that a small conditional mutual information is a sufficient con-
dition for a state to be approximately recoverable. In other words, (5.27) gives an
entropic characterization for the set of tripartite states that can be approximately
recovered. In this section, we are interested in an opposite statement. This corre-
sponds to an inequality that bounds the distance between p4 pc and any reconstructed
state Zp_, pc (pap) from below with an entropic functional of p4 g¢ and the recovery
map Zp-» gc that involves the conditional mutual information. Such an inequality is
the converse to (5.27), and gives a necessary condition for approximate recoverabil-
ity. Furthermore it gives an entropic characterization for the set of tripartite states
that cannot be approximately recovered [20].
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For any & € TPCP(A, A) we denote by Inv(&) the set of density operators T €
S(A) which are left invariant under the action of &, i.e.,

Inv(&) :={t € S(A) : &(t) =1}. (5.40)
We may now quantify the deviation of any state p € S(A) from the set Inv(&’) by

new entropic quantity.

Definition 5.10 For o € (%, 1)U (1, 00), p € S(A), & € TPCP(A, A) and
Inv(&’) given by (5.40), we define

Aa(pl&) = re}.?vlzg) Dy (pll7) - (5.41)

‘We further denote the limit cases

Ana(plI6) = lim inf Dy(plr) = inf Duw(plD). (542

a—00 telnv(&)

where in the final step we are allowed to interchange the infimum and the limit as
the sequence {D, (p]|T)}y is monotonically increasing (due to Proposition 2.40) and
hence by Dini’s theorem [21] it converges uniformly in t. By the same arguments
we also see that

Ap||&) = li inf D, = inf D } 5.43
(pll&) alinlfei?v(g) (pllt) fe}ffv@ (pllt) (5.43)

The A,-quantity has the property that it is zero if and only if & leaves p invariant
(see 2.140), i.e.,

Ag(PIE) =0 = &) =p. (5.44)

We can now state the main result of this section which gives a necessary criterion
for approximate recoverability [20].

Theorem 5.11 Letpspc € S(A® B® C)andZp_.gc € TPCP(B, B® C).
Then

D(papcl|Zp—5c(pap)) = I(A: CIB), — Amux(pap|Zp—5), (5.45)

where Xpg_.p :=trc o Zp_pc is the reduction of Zp_ pc to the output
space B.
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Before commenting on this result let us prove it. To do so we recall that the
conditional mutual information of a tripartite density operator is bounded from above
by the smallest relative entropy distance to Markov chains. More precisely, we have
the following upper bound for the conditional mutual information [17, Theorem 4].

Lemma 5.12 Lef pspc € S(AQ® B Q® C). Then

I(A:C|B), < MIEI(IQIQCD(,OABCHMABC)- (5.46)

Proof (Lemma 5.12) By definition of the relative entropy and the conditional mutual
information we find forall pspc € S(A® B ® C)andall wapc € MC(A® B® C)

D(pagclinase) + D(ppllus) — D(pagllwas) — D(ppcllusc) = I1(A: C|B), +v, (5.47)

where

v :=trpapcloguapc +trpplogup —tr paploguap —tr ppclog upc . (5.48)

The algebraic structure of Markov chains predicted by Theorem 5.4 shows that

pasc = P P ® myre for B=EPbi @by, (5.49)
j J

with e € S(A® bf) and e € S(bf ® C). A simple calculation then shows
that v = 0 and thus '

I(A:C|B), = D(pascllasc) + D(ppllus) — D(pasllieas) — D(pscllnsc) -
(5.50)

The nonnegativity of the relative entropy (see Proposition 2.28) guarantees that
D(ppclltsc) = 0 and by the DPI (see Proposition 2.28) we have D(pp|unp) <
D(papllap). This then proves the assertion. U

For the proof of Theorem 5.11 we require one more lemma that relates the distance
to Markov chains with the Ap.x-quantity defined in (5.41).

Lemma 5.13 Let pap € S(A ® B) ai’ld%[g_ﬂgc € TPCP(B, B ® C). Then

Mlelllvlfc Dunax (Z5—pc(pap) | tasc) < Amax(Pas| Zp—5) . (5.51)

where XBp_.p ;= trc o Zp_ pc is the reduction of Zp_, pc to the output space B.
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Proof (Proof of Lemma 5.13) The DPI for the max-relative entropy [22, 23] implies
that

IEBEC{Dmax(«%BABC(pAB)“MABC) . napc € MC}

< _E:E{Dmax(EGZB%BC(pAB)HpZB%BC(TAB)) : #p—pc(tap) € MC, 145 € S(A ® B)}
(5.52)
< _iti‘lﬂf{Dmax(ﬂAB”fAB) : #p-pc(tap) € MC, 145 € S(A® B)}. (5.53)

The strong subadditivity of quantum entropy (see 5.29) implies that
H(AIBC)%, . pe(zap) = H(A|B),,, forany 745 € S(A ® B) and hence

tap € IW(%pp) = H(A|BC), > H(A|B), for papc =%p-pc(tap). (5.54)

The strong subadditivity of quantum entropy together with the inequality on the
right-hand side of (5.54) implies that /(A : C|B), = 0 which means that © € MC
and hence

Tap € InV(%Zp—p) = Hp—pc(tap) € MC. (5.55)

This implication now shows that

Amax (pAB %8 B) = irlgg{Dmax(pABllfAB) : Tap € Inv(Zp- )} (5.56)
Z Inf{Dinax (paBITaB) + #5—pc(TaB) € MC, tap € S(A ® B)}.
(5.57)
Combining this with (5.53) completes the proof. O

Proof (Theorem 5.11) Let uapc € MC(A ® B ® C). Combining Lemma 5.12 with
Lemma 2.41 applied fora = 1, p = papc, 0 = papc and w = Zp_, pc(pap) gives
D(pascllZs—psc(pap)) = I1(A: C|B), — ieﬂhﬁc Dunax (Z5—c(pap) I itasc) -

m
(5.58)

Lemma 5.13 then proves the assertion of Theorem 5.11. We note that (5.58) is
stronger than (5.45) and therefore may be of independent interest. ([

The remaining part of this section is dedicated to comments on Theorem 5.11. In
particular we will discuss the tightness of (5.45) and the role of the Apx-term.

Remark 5.14 In this remark we discuss cases where the A, -term vanishes. A
recovery map #Zp_, gc generally not only reads the content of system B in order to
generate C, but also disturbs it. Ay« quantifies the amount of this disturbance of
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B, taking system A as a reference. This is the operational significance of the A -
quantity. In particular, (5.44) directly implies that A, (04| Zp—p) = 0if Zp_. Bc
is “read only” on B, i.e., if pap = Zp_. p(pap). Inequality (5.45) then simplifies to

D(PABC”%B»BC([)AB)) >I1(A:C|B),. (5.59)

We further note that in case %, pc is a recovery map that is “read only” on B its
output state oapc ‘= Zp_pc(pap) is a Markov chain since

H(A|B), < H(A|BC), < H(A|B), = H(A|B), , (5.60)

where the two inequality steps follow from the DPI applied for Z5_, pc and tr¢,
respectively and hence I (A : C|B), = H(A|B), — H(A|BC), = 0.
5.3.1 Tightness of the Necessary Criterion

It is legitimate to ask if Theorem 5.11 is tight. To answer this question we need to
have a better understanding about the A ,,x-term. Combining (5.27) with (5.45) gives

Dui(pascl| Ts—pc(pan)) < 1(A:C|B), (5.61)
< min {D(pasclZs—Bc(PaB)) + Amax(PAB|ZB—B)} ,
% B—BC
(5.62)

where the recovery map T pc on the left-hand side is given by (5.28) and the min-
imum is over all recovery maps Zp_, gc € TPCP(B, B ® C). The main difference
between the lower and upper bound for the conditional mutual information given
by (5.61) and (5.62), respectively, is the Ayax-term. In the following we will show
that this term is necessary (i.e., we cannot drop it) as well as optimal (i.e., we cannot
replace it by a similar term that is strictly smaller).

5.3.1.1 Classical Case

Inequalities (5.61) and (5.62) hold with equality in case pspc is a classical state,
i.e., it can be written as in (5.31). To see this, we first note that if pspc is classical
(in which case pspc and all its marginals commute pairwise) a simple calculation
(see 5.30) gives

I(A:C|B), = D(pascll-Ts—psc(pap)) . (5.63)
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for the Petz recovery map 73, pc defined in (1.14). Furthermore, if p4 ¢ is classical

Ts—pc(pap) = ppcpy pap. We further see that trc T pc (0ap) = Tp—5(Pas)
= pap and hence

Amax (P48 Tp—5) = 0. (5.64)

This shows that in the classical case (5.62) is an equality and that the Petz recovery
map Jp_, pc minimizes the right-hand side of (5.62). Remark 5.6 explains why (5.61)
holds with equality in the classical case.

5.3.1.2 Necessity of the A ,x-Term

It is natural to ask if tripartite states with a large conditional mutual information
cannot be recovered approximately. Alternatively this can be phrases as the question
if Theorem 5.11 remains valid when removing the A,.c-term. Just above we saw that
this is the case for classical states. We next show, however, that the A,x-quantity is
necessary in general, i.e., (5.45) is false when dropping the A,-term.

More precisely, in Appendix A we construct a generic example showing that for
any constant k < oo there exists a classical state p4 g¢ (i.., a state of the form (5.31))
such that

i Dimax(0a8c | Z5—5c(paB)) < I1(A: C|B),, (5.65)

for some recovery map %Zp_,pc € TPCP(B, B ® C) that satisfies Z5_. pc(pp) =
ppc. A similar construction (also given in Appendix A) shows that there exists
another classical state p4pgc such that

K Dinax (25— pc (pan)lpasc) < 1(A: C|B),, (5.66)

for some recovery map Zp_,.pc € TPCP(B, B ® C) that satisfies Z5_. pc(pp) =
PBC-

These constructions (which are explained in detail in Appendix A) reveal the
following interesting observations:

1. The term A (papllZ5— ), Which measures the deviation from a “read only”
map on B, is necessary to obtain a lower bound on the relative entropy between a
state and its reconstruction version. The example has an even stronger impli-
cation. It shows that the Ap,s-term is necessary even if one tries to bound
the max-relative entropy between a state and its reconstruction version, i.e.,
Dinax(Pasc | Z5— e (pag))from below.! The two strict inequalities (5.65) and
(5.66) show that the A,x-term is also necessary if one would allow for swapping

I'The max-relative entropy and its properties are discussed in more detail in Sect.2.5.4. It is the
largest sensible relative entropy measure.
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the two arguments of the relative (or even max-relative) entropy. Furthermore,
restricting the set of recovery maps such that they satisty Zg_. pc(pB) = p5C
still requires the Ap,x-term.

2. The Petz recovery map can be far from being optimal—even in the classical case.
To see this we recall that for classical states (5.63) holds. Inequality (5.65) shows
that there exists a recovery map that recovers p4pc much better from p4p than
the Petz recovery map.

3. Considering recovery maps that leave the B system invariant (i.e., they only
“read” the B-part) is a considerable restriction.’

We refer to Appendix A for more information about these examples.

5.3.1.3 Optimality of the A,c-Term

In the previous section we saw that the Ax-term in (5.45) cannot be dropped. This
raises the question if it is possible to replace this term by a strictly smaller term that
has similar properties. The purpose of this section is to present two arguments why
this is not the case. As a result, (5.45) is close to optimal.

First, we show that the A.-term cannot be replaced by a A,-term for any
a < 0o. More precisely, for any ¢ < 0o, we construct a tripartite density operator
pasc € S(A® B ® C) and arecovery map Zp_, pc € TPCP(B, B ® C) such that

D(pac||Zs—5c(pap)) < 1(A: C|B), — Au(pasllZ5—5) . (5.67)

The construction is explained in Appendix B.

Second, we show that the Ap.c-term in (5.45) cannot be defined as a dis-
tance between pap and Zp . p(pap). Recall that A (0| %Zp-s p) quantifies the
(max-relative entropy) distance between p,p and its closest state that is invari-
ant under Zp_, g. A natural question is if (5.45) remains valid if the Aj.c-term
is replaced by the (max-relative entropy) distance between psp and Zp_, p(paB),
i.e., Dmax (04| %5 (pag)). This however is ruled out. To see this we recall that
by the example presented above in (5.65) there exists a tripartite state pspc €
S(A ® B ® C) and a recovery map Zp_.pc € TPCP(B, B ® C) such that

2Dumax(pasc | Zs—pc(pas)) < I1(A:C|B),. (5.68)

The data-processing inequality for the max-relative entropy [22, 23] and the fact that
the max-relative entropy cannot be smaller than the relative entropy (see 2.138) then
imply

D(pascllZs—psc(pap)) < I(A: C|B)y — Dmax (048l Z5—5(pan)). (5.69)

2Recall that for recovery maps that leave the B system invariant the A pax-term vanishes as explained
above.
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which shows that (5.45) is no longer valid for the modified Apax-term described
above.

5.4 Strengthened Entropy Inequalities

It is well-known that several fundamental entropy inequalities useful in quantum
information theory are intrinsically related. For example, it was shown that the fol-
lowing statements

. strong subadditivity of quantum entropy (see 5.29)

. data processing inequality (see Proposition 2.28)

. concavity of conditional entropy (i.e., pag — H(A|B), is concave)

. joint convexity of relative entropy (i.e., (p, o) +— D(p|lo) is convex)
. Lieb’s triple operator inequality (see Theorem 4.9)

. Lieb’s concavity theorem (see Theorem 2.13)

AN N AW =

are all equivalent [24-26].3 The main result of this section, i.e., Theorem 5.5, presents
a strengthening of SSA in terms of recovery maps. It is therefore natural to ask if the
other equivalent statements listed above can also be improved. This is the purpose
of this section.

5.4.1 Data Processing Inequality

The data processing inequality (DPI), also known as monotonicity of the relative
entropy, is one of the very fundamental entropy inequalities. It states that the rela-
tive entropy between two density operators cannot increase by applying a quantum
channel to both operators [27, 28]. More precisely, for any p € S(A), o € P(A),
and & € TPCP(A, B) we have

D(pllo) = D(E()IE(@)). (5.70)

Remark 5.15 For p = papc, o =idy ® ppc and & = tre, (5.70) simplifies to
I(A:C|B), =0, (5.71)

which is the celebrated SSA, presented in Sect.5.1. This substitution provides a
useful link between Sect. 5.1 and this section.

3Equivalent means that every statement can be derived from every other one by simple manipulations
only.
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With this in mind the careful reader will notice that some inequalities discussed next
are generalized versions of inequalities from Sect.5.1.

The DPI is well studied. The following proposition gives necessary and sufficient
conditions under which (5.70) holds with equality.

Proposition 5.16 Let p € S(A), o € P(A) and & € TPCP(A, B). Then the fol-
lowing are equivalent

1. D(pllo) = D(&(P)|I& (o))
2. 3%, s € TPCP(B, A) such that (%5 o &)(p) = p and (%y.5 0 &)(0) = 0.

In particular, Z5 s can always be chosen to be the rotated Petz recovery map, i.e.,

1—it

F . Xp s o' T8 (g(a)—iz“x,g é@(a)—%) o' (5.72)

Proof Toseethat2 = 1issimple. The DPIshowsthat D(p|lo) > D(&(p)||&(0)).
The other direction also follows from the DPI since

D(E(INE(0) = D(Zos 0 E)PI(Hoe 0 E)(0)) = D(pllo),  (5.73)

where the final step uses 2.
It thus remains to show that | = 2. This is more complicated. Note that it is
immediate to verify that (.7 [l;) o &)(0) = o hence the nontrivial part is to show that

(,Z[’(]@ o &)(p) = p which is done in Remark 5.22. O
Exercise 5.17 Convince yourself that Proposition 5.16 implies Theorem 5.2.

The following theorem is the main result of this chapter. It is a strengthening of
the data processing inequality and a robust version of Proposition 5.16.

Theorem 5.18 Letp € S(A), 0 € P(A) suchthat p << o,and& € TPCP(A, B).
Then

D(pllo) — D (E(P)|1E(©)) = Dyt (p|| Toe 0 E(p)) (5.74)

with the rotated Petz recovery map

o8 = / dto(r) 71}, (5.75)

oo

where By and Zr[ga are defined in (3.47) and (5.72), respectively.



5.4 Strengthened Entropy Inequalities 91

Proof We first prove a slightly restricted version of Theorem 5.18 where we suppose
that & is a partial trace. In a second step we then show how this statement can be
generalized (using the Stinespring dilation) to an arbitrary channel &'

Let pap € S(A® B)andoap € P(A ® B)besuchthat psp < o4p.Letusrecall
the multivariate GT inequality (see Theorem 4.10) applied for n =4 and p = 2.
Using the concavity of the logarithm and Jensen’s inequality, it yields

[e¢]

tr e+ttt 5/ diBy(r) treflie ™ He s hethe 5 Hig 5 i (5.76)
—00

for H, € H(A ® B) and k € [4]. Moreover, by definition of the relative entropy for
positive definite operators psp and 045, we have

D(paglioas) — D(palloa) = D(pagllexplogosp +log pa ® idp —logos ®idp)). (5.77)

For positive semi-definite operators p4p and o4, the Hermitian operators log o4,
log p4 and log o4 are well-defined under the convention log 0 = 0. Under this con-
vention, the above equality (5.77) also holds for positive semi-definite operators as
long as pap <K 04p, which is required by the theorem. By the variational formula
for the relative entropy (see Lemma 2.29) we thus find

D(paglloas) — D(palloa)

= sup {trpaplogwap+1—trexp(logoap+logps ®idp—logos ® idp+logwap)}
wsp€P-(AQB)
(5.78)

oo 14ir _ 1+ir _ 1=t 1—it
> sup ){trpAgloga)AB—H—/ drBo() tro,p (O’A 7 pao, ®idB)JA§ a)AB}
wap€P (A®B )

(5.79)
0 Lir _ l4ir 1 . 1—ir
= Dy (,OAB / diBo(1) 0,5 (UA > ppoy ®1d3) aAg) (5.80)
—00
= Dui(pancll Topp s (P4)) s (5.81)

where the single inequality step follows by the four matrix extension of the GT
inequality in (5.76). The penultimate step uses the variational formula for the mea-
sured relative entropy given in Lemma 2.34.

Let us introduce the Stinespring dilation of &, denoted V, and the states psp =
VoVT, 045 = Vo VTsuchthat £(p) = p4 and & (o) = o4. Then, using the fact that
the relative entropy is invariant under isometries (see Proposition 2.28), we have

D(pllo) — D(E(P)IE(0)) = D(paslloas) — D(pallo) (5.82)
> Dui(0a8 | oyyir (P4)) (5.83)
= Du(p(Z.s 0 E)(p)). (5.84)
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where the inequality is due to (5.81) and the last equality uses again invariance under
isometries and the fact that for allr € R and X4 € P(A)

—it

VITH ey X0V = VIVe SV (6@ (X0 @ids) VoI VTV

oA,y
A (5.85)
=06 (60 XnE@) )0 (5.86)
= T (Xa). (5.87)
This therefore completes the proof. (]

Exercise 5.19 Convince yourself that Theorem 5.5 follows immediately from The-
orem 5.18 by choosing P = PABC,O = idy ® PBC» and & = tre.

The recovery map 9:,; from Theorem 5.18 satisfies many desirable properties [8,
10, 29]:

It is trace-non-increasing and completely positive.*

It is explicit.

It is universal, i.e., it depends on o and & only. (It is independent of p.)

It satisfies (ﬁ_(,p o &)(o) = o, i.e., it perfectly recovers o from & (o).

It features a normalization property. For & = .# we have jg,y () =1I,(-)I1,,
where I1, denotes the projector onto the support of o. Thus, in case o has full
support .7,  is the identity map.

6. It has a stabilization property. For any @ € P.(R), where R denotes a reference
system we have T, g4 .c0.7, = To.c @ Fk.

Al

Exercise 5.20 Verify the six properties stated above.

Using similar techniques as in the proof of Theorem 5.18, we can derive another
strengthening of the data processing inequality [10].

Proposition 5.21 Ler p, o0 € P(A) such that p < o, trp =1, & € TPCP(A, B),
and By defined in (3.47). Then

oo

D(pllo) = D(E ()€ () = — f dio(t) log F(p, (T4 0 £)(p)), (5.88)

—0Q

with the rotated Petz recovery map 90[1]0 given by (5.72).

We note that the main difference between this proposition and Theorem 5.18 is that
in (5.88) the integral is at the very outside, however we have a log-fidelity measure
whereas in (5.74) we have a measured relative entropy with the integral inside (see
Proposition 2.36 for the relation between these two quantities).

“In case £(o) € P.(B) the recovery map .7, ¢ is trace-preserving.
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Proof We first show the assertion of the proposition for the case where & is a partial
trace and then explain how this result can be lifted to arbitrary quantum channels
using the Stinespring dilation (see Proposition 2.20).

Let pag,oup € P(A® B) suchthat ppp < oap andtr pap = 1. Letus recall the
multivariate GT inequality given in Theorem 4.10 forn = 4 and p = 1. By Jensen’s
inequality this reads as

o0
tr eH|+H2+H3+H4 S / dtﬂo(t) ”eHl e(1+it)Hze(1+it)ngH4 H - (589)
—00

Furthermore the Peierls-Bogoliubov inequality (see Theorem 2.11) ensures that

tr efistHs _u Hges

trefs T trefs

log (5.90)

For Hs =logpsp and Hg = %(—logpAB +logoap —logos ®idp + log pa
® idp) this simplifies to

2log tre%(log,omz;+logUAB—loga,\®id3+log,oA®idB)

> trpap (—log pap +1logoap —logos ®idp +log pa @ idp) .
(5.91)

We thus find

D(paglloap) — D(palloa) = tr pap (log pap —logoap +logos ® idp — log pa ® idp)
(5.92)

> —2logtr e%(logPAB+10g0AB—logUA®idB+log pA®idp) (593)

Applying the four operator extension of the GT inequality given in (5.89) then gives

D(paglloas) — D(palloa)

o0 1 L b1 2
>~ [ atpoo) [odori (o1 T i @ian)| (5.94)
—0Q0
e Lt _ Lt _ 1t . =it
= —/ drBy(1) logF(,oMg,aAf3 (aA > paoy ®1d3)aA§)
—00
(5.95)
[o¢]
=- / diBo(t) 10g F(pans Ty ey (P4)) (5.96)

where the penultimate step follows by definition of the fidelity.

Let V be the Stinespring dilation of & and let pyp = Vp VT, o4 = Vo VT such
that &(p) = pa and &(0) = o4. Then, using the fact that the relative entropy is
invariant under isometries (see Proposition 2.28), we have
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D(pllo) — D(E() (@) = D(paglloas) — D(palloa) (5.97)

>~ [ atpue) g Fpan 78 0, (00) - (599

=— / dtBo(t) log F(p. ('} 0 £)(p)). (5.99)

o0

where the penultimate step uses (5.96) and the final step uses that the fidelity is
invariant under isometries (see Proposition 2.26) together with (5.87). This then
completes the proof. (I

Remark 5.22 Since the mapping R > ¢ — 90[’}5 is continuous, Proposition 5.21

shows that D(p|0) = D(&(p)||&€ (o)) implies that (7'} o £)(p) = pforallt € R,
where we used the nonnegativity property of the fidelity discussed in Proposi-
tion 2.26.

5.4.2 Concavity of Conditional Entropy

Itis well-known that the conditional entropy is concave, i.e., the function S(A ® B) >
p +— H(A|B), is concave. In the following we show that Theorem 5.5 implies a
stronger version of this concavity result.

Corollary 5.23 Let i be a probability measure on a measurable space (X, X) and
(paB.x)xex be a sequence of density operators on A ® B. Then

H(A|B), — / W) H(A|B),, > / (@) Da(a50 | Fosnn(pp)) = 0.
X X
(5.100)

where pap = [ 1(dx)papx and Ty ap(-) := Ty, 1, () defined in (5.75).

Proof Consider the classical-quantum state

Oxan = / H(@x)[x) (Xlx ® pags (5.101)
X

Theorem 5.5 implies that

5Choosing p = papc, 0 =idy ® ppc, and & = trc we obtain that I(A : C|B), =0 implies
TN wc(pan) = panc for 7Y ;. defined in (5.2).
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H(A|B); —f u(dx)H(A|B),, = H(A|B), — H(A|BX), (5.102)
) =1(X:A|B), (5.103)
> Dyi(wxasll T an(@xp)) (5.104)
= [ 1@ Dst(pan.c1 T anpa.0).
(5.105)

where the final step uses Proposition 2.35.

Since Jp_, ap is trace-preserving and completely positive (as discussed in
Sect.5.4.1), Proposition 2.35 implies DM(pAB,xHjB—)AB(,OB,x) >0forall x e X
which completes the proof. O

Results that strengthen the concavity of a function can be extremely useful. For
example in optimization theory the concept of a strict or even strongly concave
function turns out to be important and powerful [30, 31]. For this reason we believe
that Corollary 5.23 may be of interest.

5.4.3 Joint Convexity of Relative Entropy

As discussed in Proposition 2.28, the relative entropy is jointly convex in its two
arguments. As we show next, Theorem 5.18 implies a strengthened version of this
convexity property.

Corollary 5.24 Let v be a probability measure on a measurable space (X, X),
(pa.x)xex be a sequence of density operator on A with py = fx p(dx)pa x and
(0a.x)xex be a sequence of nonnegative operators on A with o5 = fx n(dx)oy .
Then

/ 1w(dx)D(paxlloas) — D(palloa) = Du(pxall Zasxalpa)) =0,  (5.106)
X

where  pya = [ p(d0)|x) (x[x ® pax, oxa = [y n(d0)lx) (x|x ® 0ar, and
Ta-xa() = Touy () defined in (5.75).

Proof Proposition 2.35 shows that

/ u(dx)D(paxlloax) — D(palloa) = D(pxalloxa) — D(palloa)  (5.107)
X

> Dui(oxall Za—xa(pa)) (5.108)
>0, (5.109)
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where the penultimate step uses Theorem 5.18. The final step follows from Propo-
sition 2.35 together with the fact that the recovery map 74, x4 is trace-preserving
and completely positive. (]

5.5 Background and Further Reading

Quantum Markov chains were introduced in [32] and their properties were studied
carefully [1-3]. This raised the question how to characterize states with a small
conditional mutual information. In [17] (see [16] for a simplified argument), it was
realized that such states are not necessarily close to any Markov chain. This fact has
been taken as an indication that the characterization of states with a small conditional
mutual information may be difficult. Subsequently, it has been realized that a more
appropriate measure instead of the distance to a Markov chain is to consider how
well (5.1) is satisfied [33—36]. This was made precise by the breakthrough result of
Fawzi and Renner [5]. This result generated a sequence of papers [6—11, 37] which
finally led to Theorems 5.5 and 5.18 which were conjectured in [33].

A lower bound that is different to Theorem 5.5 has been obtained by [38, 39],
where it was shown that

I(A:C|B — 2 11
( C| )p =T aACrsEg)gable loac GAC”LOCC (5.110)
1 2
> ———  max —0 , 5.111
Z S 532 one X e loac —oacll; ( )

where |- |lLocc is the so-called LOCC norm.

Theorem 5.5 already found various applications that we do not discuss in the
book. To name a few, it has been used to solve problems in thermodynamics [40,
41] where for example it was shown that approximate quantum Markov chains are
approximately thermal [41]. This means that forany p4pc suchthat I (A : C|B), < ¢
there exists a local Hamiltonian H = hp + hpc, where hp and hgc only act on
A ® B and B ® C, respectively, such that

e—H
D (,;ABC H ) <3e. (5.112)
tre

Theorem 5.5 is also potentially useful in computational physics as it implies that
systems satisfying a certain locality assumption can be represented efficiently. More
precisely, consider a one-dimensional system consisting of n subsystems S, ..., S,
that feature a certain locality assumption in the sense that for all k € [n] we have

I(S],...,Sk_QZSHSk_])p58. (5.113)
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Theorem 5.5 implies that the state pg, s, describing such a system can be rep-
resented efficiently as we can sequentially build it up. To see this let us start with the
marginal pg,s,. Theorem 5.5 implies that there exists a recovery map s, s, s, such
that

p5152S3 ~ ’7_52%3253(105152) . (5‘114)
By Theorem 5.5 there exists a recovery map 9_53% 555, such that

p51525354 ~ %3%;9334(10515253) . (5'1 15)

By continuing like this we can reconstruct the full state ps, . s, . All we need to store
in order to represent ps, . s, is a sequence of recovery maps that only takes linear
space. To summarize, one-dimensional systems that satisfy the locality assump-
tion (5.113) can be efficiently represented by a finite sequence of recovery maps
given by Theorem 5.5.

Theorem 5.5 has been successfully applied in other areas such as high energy
physics [42-44], solid state physics [45—47], quantum error correction [48, 49],
quantum information theory [50-55], and foundations of quantum mechanics [56].

We note that Theorem 5.5 has been extended to separable Hilbert spaces [10] (with
the caveat that the measured relative entropy is replaced with min-relative entropy).
It is an open question if Theorem 5.5 or Theorem 5.18 remain valid in the more
general algebraic setting. For this purpose the interested reader may have a look at
Araki’s Gibbs conditions [57] (see also [58]) and the Tomita-Takesaki theory [59].
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Appendix A
A Large Conditional Mutual Information
Does Not Imply Bad Recovery

Abstract In this appendix we construct a state pspc that has a large conditional
mutual information /(A : C|B),, however there exists a recovery map Zp_. pc
that approximately reconstructs p4pc from p4 . More precisely, this example justi-
fies (5.65) and (5.66).

Since the example is purely classical we also use classical notation (i.e., we
will speak for example about a distribution instead of a density operator). Let
Z ={1,2,...,2"forn € N, p,q € [0, 1] such that p 4+ ¢ < 1, and consider two
independent random variables E; and Ey on {0, 1} and {0, 1, 2}, respectively, such
that

P(Ez=0=p+gq, P(Ey=0)=p, and P(Ey=1)=gq. (A1)

Let X ~ % (X)), where % (%) denotes the uniform distribution on 2" and define
two random variables by

X if Ey=0
and Y:={Z if Ey=1 (A2)

7. {x if Ez=0
Uy otherwise,

Uy otherwise

where Uy ~ % (Z") and Uy ~ % (%) are independent. This defines a tripartite
distribution Pyxyz. A simple calculation reveals that

H(X|YEyEz) = pH(X|XEz) + qH(X|ZEz) + (1 — p — @) H(X|Uy Ez) (A3)
=q((p+HXIX)+ U -p—)HXU))+U-p—HX) (A4)
=n(l-p—g)1+q). (A.S)
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Similarly we find

H(X|YZEyE7) =q(1—p—q)HX|Uz)+ (1 —p—q)(1 — p—q)H(X|Uy)

(A.6)
=n(l-p-—q)1-p). (A7)
We thus obtain
I(X:Z|Y)p=HX|Y)—- HX|YZ) (A.8)
> H(X|YEyEz) — HX|YZEyEz) — I(X : EYEZ|YZ) (A.9)
>n(l— p—q)(p+q) —logb. (A.10)

We next define a recovery map Zy_.y z that creates a tuple of random variables
(Y’, Z") out of Y such that

1 1
Y. Z):=(p*+q+po)(¥.Y) + (1= p*—q—pq)(Y.U) + (1= p*—q—pq)U.Y),

where U, U’ are independent uniformly distributed on .Z". Let
Qxyz = RAy-yz(Pxy) (A.1D)

denote the distribution that is generated when applying the recovery map (described
above) to Pyy. In the following we will assume that n is sufficiently large. It can be
verified easily that Qyz = Pyz. Since Pxyz and Qxy 2 are classical distributions
we have Do (Pxyz||Qxy z/) = max, , . log Porz(3.9) . \We pote that PX=Y)=

Oxyz/(x.y.2)

p + pg + g* according to the distribution Pxy and hence

B (p+q)* (I1-p—q)q
Dinax (Pxy 20 Quxyrz) = max ylog i 5 m s 108 o 2
P+ —p—q) (d-p—qp

,log s
PX=Y)i0-p2—q—pg) ~PX=Y)i(1-p>—q—pg

(1—p—q)* } A.12
PR Z V(-7 —q - o) A12)

and
P(X = Y)(p? P(X #Y)(p2+q+
D.m.x(Qxyeranyn:max{log K=V 49+ p) 4o PXZ XN+ F pg)
(p+q) (I—=p—q)q
1 PX=Y)31-p*—q—pg)  PX=Y)51-p>—q—pq)
og ,log
(p+qo)(l—p—q) (I=p—qp
P(xw)(lfpzqupq)}
1 . A.13
o8 1—-p—q)? ( )
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Fork < oo, p = %, q = 0, and n sufficiently large we find by combining (A.10)
with (A.12)

n
K Dimax (Pxyz|| Zy—yz(Pxy)) = Kk < i log6 < I(X : Z|Y)p, (A.14)

which justifies (5.65). For k <00, p=¢q = i, and n sufficiently large (A.10)
and (A.13) imply

15 n
K Diax(Zy—yz(Pxy)|| Pxyz) = K10g§ <1 log6 < I(X:Z|Y)p, (A.I5)
justifying (5.66).

These examples show that there exist classical tripartite distributions Pxy, with
a large conditional mutual information /(X : Y|Z)p and a recovery map Zy_.yz
such that Zy_,yz(Pxy) is close to Pxyz and Zy_,yz(Py) = Pyz. The closeness is
measured with respect to the max-relative entropy.
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Appendix B

Example Showing the Optimality
of the A ax-Term

Abstract In this appendix, we construct a classical example showing that (5.45) is
essentially tight in the sense that it is no longer valid if the max-relative entropy in the
definition of Ay (0ap | % ) isreplaced with Ay (pap|| % p) forany a < co.In
other words, for any & < co we construct a density operator papc € S(A® B ® C)
and a recovery map Zp_, pc € TPCP(B, B ® C) that satisfy (5.67).

Our construction is purely classical which is the reason that we switch to the
classical notation. Let . = {0, ...,2" — 1} and consider a tripartite distribution
Q xyz defined via the random variables X ~ % () and X =Y = Z. Let Q' , be
the distribution defined via the random variables X ~ % (.¥), Y ~ % () where
X and Y are independent, % (%) denotes the uniform distribution on . and
Z = (X +Y)mod 2". For p € [0, 1] we define a binary random variable E such
that P(E = 0) = p. Consider the distribution

Oxyz if E=0

Qlyy, ifE=1. ®.D

Pxyz = {

We next define two recovery maps ,@yﬁ y'z and c%_’y_m 7 that create the tuples
(Y', Z") out of Y such that

(Y',Z)=(,Y) and (Y,Z)=(U,(Y —U)mod?2"), (B.2)
where U ~ 7% (.¥), respectively. We then define another recovery map as

Ry yz = P@Y»Y'z' +d - p)t@YaY’Z’ . (B.3)
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We note that the recovery map satisfies Zy_.y'z/(Py) = Pyz. A simple calculation
shows that

HX|YE)p = pH(X[Y)o + (1 = p)H(X[Y)o = (1 = p)n (B.4)

and
HX|YZE)p = pH(X|YZ)p + (1 — p)H(X|YZ)o = 0. (B.5)
‘We thus find
I(X:Z|Y)p=HX|Y)—- HX|YZ) (B.6)
> H(X|YE)— H(X|YZE) — I(X : E|YZ) (B.7)
> (1 —pn—nh(p). (B.8)

The distribution Zy _,y 7 (Pxy) generated by applying the recovery map to Pyy can
be decomposed as

Ry sy z/(Pxy) =p (PSXYZ + - P)gxyz) +1-p) (ng(yz +0 - P)S;(YZ> . (B.9)

Where_gxyz = By oy 2(Qxv)s Sxyz = By—v 7z (Oxy), Shyz = e%?y—n”z’(Q/Xy),

and Sy,, = Zy-yvz(Q%y). The joint convexity of the relative entropy
[1, Theorem 2.7.2] then implies

D(Pxyz||Zy—y'z (Pxy))
< pD(OxyzlIpSxyz + (1 — p)Sxyz) + (1 — p)D(QxyzIpSkyz + 1 — p)Skyz)

(B.10)
A simple calculation shows that
s 3 Oxyz(x,y,2)
D Sxyz + 1 —p)S = (x,y.2) log — E
(OxyzIpSxyz P)Sxyz) x;\)jz Qxyz(x,y.2)log PixrzCr o+ (= Pixyz iy
<2 gl (B.11)
p2 P
and
D(QyzpSkyz + (1= p)Skyz)
’ ! X, ¥, Z
= Z Qxyz(x,y,z)IOg = QXYZ( > )—/
X.y,z=x+ymod 21 PSyyz(x,y,2) + (= p)Syy,(x,¥,2)
(B.12)
272 1
=log —. (B.13)

<
T p2 p
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We thus have
1
D(Pxyz||Zy—yz (Pxy)) < log IR (B.14)

We note that the recovery map Zy_,y» = trz o Zy_.y 7z leaves the uniform distri-
bution Q' invariant, i.e., Zy_y (QY,) = Q. As aresult we find

Ao (Pxy | Zy—y) < Do(Pxy || Qyy) (B.15)
1
= ——log (27 (1 = )@ = ) +27(1 = p+ p2')"),
(B.16)

where the final step follows by definition of the «-Rényi relative entropy and a
straightforward calculation.
Recall that we need to prove (5.67), which in the classical notation reads as

D(Pxyz|%#y—yz (Pxy)) + Aa(Pxy | Ry—y) < 1(X : Z|Y)p, (B.17)

for all « < co. As mentioned in (2.139), the «-Rényi relative entropy is monotone
in o which shows that it suffices to prove (B.17) for all « € («, 00), where og > 0
can be arbitrarily large.

Combining (B.14) and (B.15) shows that for any « € («g, 00) where « is suffi-
ciently large, p = a2 andn =«

1
D(Pxyz| Ry 17/ (Pxy)) + Aa(Pxy | #y y) = 2loga + —— log (14277 (1 +a 22" ) .

o

where we used that (1 — a=2)¥(2% — 1) < 2% fora > 1. Using the simple inequality
log(1 4+ x) <logx + % for x > 1 gives

D(Pxyz| %y —y 7/ (Pxy)) + Aa(Pxy | Zy_y’)

a a 2 2 . 20\ 7«
<2loga — —— + log{1+— |+ 271+ —
o o

a—1 a-—1 a—1
(B.18)

20[
<2loga — r 4 ° log|(1+ = )+27¢%, (B.19)
a—1 o-—1 a?

where the final step is valid since « is assumed to be sufficiently large. Using once
more log (1 + x) < logx + )% for x > 1 gives
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D(Pxyz||Zy—yz (Pxy)) + Aa(Pxy || Zy—y')

o 202 _
<2loga + oa—2loga —1+— ) +27¢
oa—1 2%
(B.20)
2 _
=a— 7 loga + 27 %poly() , (B.21)

where poly(«) denotes an arbitrary polynomial in «. As a result, we obtain for a
sufficiently large o

2
D(Pxyz||Zy—yz (Pxy)) + Aa(Pxy | Zy—y) < a — 5 (B.22)
<a—a'—h@? (B23)
<I(X:Z|Y)p. (B.24)

The two steps (B.22) and (B.23) are both valid because « is sufficiently large. The
final step uses (B.8).



Appendix C
Solutions to Exercises

Abstract In this appendix we give solutions to the exercises stated throughout the
book. The exercises are chosen such that they can be solved without major difficulties.
They serve the purpose of a verification possibility for the reader to check if she has
understood the presented subject.

Solution to Exercise 1.1

We view statement (1.1) as the definition of a (classical) Markov chain. It thus remains
to show that (1.2) and (1.3) are both equivalent to (1.1). Bayes’ theorem ensures that
PXYZ = PXZlY Py and PXY = PX|y Py. As a result we find that

Pxziy = PxiyPzy <=  Pxyz = PxyPyy, (C.1)

which shows that (1.1) is equivalent to (1.2). By definition of the relative entropy
and the conditional mutual information we have

I(X : Z|Y)p = D(Pxziyl| Pxjy Pz)y) - (C2)

Recalling that D(P||Q) = 0 if and only if P = Q shows that (1.1) is equivalent
to (1.3).

Solution to Exercise 1.2

This solution follows the arguments presented in [2, 3]. A simple calculation shows
that

Pzixy (z]xy)

I(X:Z|Y)p = Z Pyyz(x,y, z)log Py (zly)

X2

(C.3)
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The distribution Pyy7 can be decomposed as Pxy; = Py Pzy Px|yz and any Markov
chain Qxyz can be written as Qxyz = Qy Qz)y Qx|y. We thus find

P, P P
D(PxyzIQxyz) =Y Pxvz(x,y,2) (log QI:’(();)) +log QZZI‘I;((ZJ‘J;)) log g;igllij))
N (C4)
P 4
= D(PyllQy) + D(PZ|Y”QZ\Y) + Z Pxyz(x,y, z)log M
Xyt Oxy (x]y)
(C.5)

= D(Py|Qy) + D(Pzy|Qz)y) + D(Pxiy1Qxjy) + 1(X : Z|Y)p, (C.6)

where the final step uses (C.3). Since the relative entropy is nonnegative and zero if
and only if the two arguments coincide this proves the assertion.

Solution to Exercise 2.3

That the Schatten p-norm satisfies the nonnegativity and absolute homogeneity prop-
erty is obvious from its definition. It thus remains to prove the triangle inequality.
The Schatten p-norm can be written as the £,-norm of the singular values, i.e., for
L € L(A) we have

dim(L) 717
LI, = ( > Gk(L)”> : (C.7)

k=1

where (o} (L))zizml(“ denote the singular values of L. The Minkowski inequality (see,
e.g., [4, Theorem III.1]) then implies the triangle inequality for Schatten norms.

The identiy (C.7) shows that ||L||, = H Lt || as singular values are invariant under
conjugate transposition. The singular value d{écomposition ensures that there exist
unitaries U, V € U(A) suchthat L = UAVT, where A isa diagonal matrix contain-
ing the singular values of L. Using the fact that Schatten norms are unitarily invariant
gives

dim(L)

|lzLf|, =|z'L], = 141, = ( 3 aku)zf’) = L3, . (C¥

k=1

The fact that Schatten p-norms are monotone in p follows directly from the
monotonicity of £,-norms via (C.7). To see this let 0 # x € Cland1 < p < g and
define y := . Since |y;| < 1 and [ y||, = 1 we find

T, -

. vy o,
Iyll, = (Z |yk|‘f> < (me) =yl =1. (C.9)
k=1 k=1
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As aresult we have
lxll, = | IIXIlpy||q = llxll, Iylly < llxll, - (C.10)

If (ak(L]))zizml(L‘) and (ak(Lz))zizml(Lz) denote the singular values of L; and L,
respectively, then the dim (L) dim(L,) singular values of L; ® L, are given by all
possible multiplications of a singular values of L, with a singular values of L,. This
directly implies that Schatten norms are multiplicative under tensor products.

Solution to Exercise 2.18

Consider the transpose map .7 : L(A) — L(A) that is given by .7 : X > X7,
where XT denotes the transpose of X with respect to some fixed basis. The transpose
map is clearly positive, since for any state |{) we have

WIX ) = WIXT|Y) = (YIX|y) = (YIX]¥) > 0. (C.11)

The transpose map is however not completely positive. To see this it suffices to
consider a two-dimensional system, i.e., dim(A) = 2. For the computational basis
{10), |1)} and the maximally entangled state

1

|p)an = 7

(100) 45 + 111)4B) (C.12)

we find that

1
(T4 ® I)(19) ($las) = 5 (100){00]ap + [10)(10[4p + [01){(01|ap + [11)(11]4B) . (C.13)

which is not a positive operator as it has eigenvalues :I:%.

Solution to Exercise 2.22

The finite sequence (Ey )¢ of Kraus operators is not uniquely determined by &
It can be shown [5, Theorem 2.1] that two sets of Kraus operators (Ey) and (E;)
represent the same map & if and only if there is a unitary U such that By = ) ;UGE ;
(where the smaller set is padded with zeros). A proof of this statement can be found
in [5, Theorem 2.1].

Solution to Exercise 2.30

Since the two optimization problems in Lemma 2.29 are equivalent it suffices to
show that one of them is a convex optimization problem. We do so for the first
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optimization problem. Since every Hermitian operator can be written as the logarithm
of a nonnegative operator we can rewrite (2.74) as

D(pllo) = sup {irpH —logtre' e ™#} (C.14)
HeH(A)

The set of Hermitian operators is clearly convex. Furthermore, the function H +—
log tr elogo+H js convex on the set of Hermitian operators. To see this, we recall the
variational formula given in (2.76) which shows that for any ¢ € [0, 1] and H;, H, €
H(A) we have

tlogtre®eo il 4 (1 — p)logtrelogo T > max {tr (tHy + (1 = ) H2)p — D(pllo)}
pe )
(C.15)

— log tr eloga+(tH1+(1—r)H2) . (C16)

This shows that H — logtr elogo+H s 3 convex function and hence (C.14) is a
convex optimization problem.

Solution to Exercise 2.32

We first prove (2.90). Klein’s inequality for f(¢) = ¢ log ¢ (which is strictly convex
for ¢ > 0) implies that

trB>trX —trXlogX +trXlogB, (C.17)

where equality holds if and only if X = B. This already proves (2.90). Apply-
ing (2.90) for B = ef*1°27 gives (2.89).

Solution to Exercise 3.1

A simple calculation shows that for any k > 0, u, is a probability distribution on R,
i.e., u(t) > 0forallr € R and f_oooo W (dt) = 1. Furthermore

e (@) 1= / h e (d)e @ = E(mk * trig ) (@) . (C.18)
_ K

o0
This then straightforwardly implies the five properties mentioned in Sect.3.1.

Solution to Exercise 3.3

By the operator-sum representation of quantum channels (see Proposition 2.21) the
pinching map defined by (3.6) is trace-preserving and completely positive since

Z 0,17, = Z I, =idy, . (C.19)

Lespec(H) Aespec(H)

This also shows that the pinching maps is unital, i.e., @y (ids) = idg.
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Solution to Exercise 3.10

Let (£x¢) denote the entries of the operator L (if we view it as a matrix). By definition
of the tensor product we find

trL; ® L, = ZtrﬁkkLz = ngk tr Ly = (tr Ly)(tr Ly), (C.20)
k k

which proves the first identity.

Every nonnegative operator can be diagonalized, i.e., there exist unitaries U; €
U(A) and U, € U(B) such that C| = U1A1U1T and C; = U2A2U; for diagonal
matrices A and A, with nonnegative entries. We then find

log C; ® Cy = log(U; ® Up)(A; ® Ay)(U; ® UJ) (C21)
= (U1 ® Uy)(log A1 ® 42) (U ® U;) (C22)
= (U ® Ua)((log Ay) ® idp +ids ® (log A2)) (U ® Uy) (C.23)
= (log C)) ®idp +ids ® (log C2), (C.24)

which proves the second identity.
The third identity follows from a known relation between the tensor product and
the direct sum, i.e.,

exp(L1) ® exp(L2) = exp(L1 @ Ly) = exp(L; ® idp +ids ® Ly).  (C.25)

Solution to Exercise 4.2

Let By, By, B3 € P(A) be such that By := log Hy for k € {1, 2, 3}. Essentially the
same steps as in the proof presented in Sect.3.1.3.1 show that

log trexp(log B + log B, + log B3)
1
= — logtrexp(log B®™ + log BY" + log BY™) (C.26)
m
log poly(m)

(C.27)
4 log poly (m)

" (C.28)

1

< —logtrexp (log B®™ + log BS" + log P pon (BY™)) +
m
1 1 1

= — logtrexp (log B®" + log B} o P o (BE™ B} ®m)
m

where the first step uses Exercise 3.10. The inequality step follows from the pinch-

ing inequality (see Lemma 3.5), together with the fact that the logarithm is operator
monotone (see Table 2.2) and H — tre’ is monotone (see Proposition 2.10). Fur-
thermore we use the observation presented in Remark 3.9, i.e., that the number of
distinct eigenvalues of BS™ grows polynomially in m. The final step uses that Z¢ (B)
always commutes with C (see Lemma 3.5).
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Repeating the same arguments gives

log tr exp(log B + log B> + log B3)

1 1 1 1 )\

< —logtrexp (log B®™ + log ;@B?m(Bzz om 932@",(3;@”1)3226%)) + log poly (m)
m - m

(C.29)

1 1 1 It 1

= — logtr BY" 2 pou (B; " 7 pon (BE™) B ") + log poly(m) (C.30)
m h m
1 1 1 It 1

= — logtr BY" By " 200 (BE™) B, " + logpoly(m) (C31)
m m

where the final step uses Lemma 3.5. The integral representation for pinching maps
given by Lemma 3.4 shows that

log trexp(log B + log B, + log B3)
1 o Lom . pem o pem L 1 1
- IOg/ LA om (db)tr Bl®m Bzz®me”B£® Bg@me—ltli‘i® Bzz®’" + 0g po Y(m)
m o B m
(C.32)
(C.33)

1+ir 1—it 1 1
<logsuptr BiB,® ByB,® + SEPO(M)
teR m

where the final step uses Exercise 3.10 and that for any B € P(A) and any r € R
there exists a s € R such that e"!°¢8 = ¢i8_ Considering the limit m — oo finally
gives
1+it 1—it
2

trexp(log B + log B> + log B3) < suptr B1B,” B3B,” , (C.34)
teR

which proves the desired inequality.

Solution to Exercise 4.5

Every positive definite matrix can be diagonalized, i.e., there exists a unitary U €
U(A) such that B = U AU where A is a diagonal matrix containing the eigenvalues
(Ar)r of B. We thus have

trlogB =trU(log A)U" =tr log A = Zlogkk = lognkk = logdet B.
k k

(C.35)

Solution to Exercise 5.17

If we choose p = papc, o =ids ® ppc and &(-) = tr¢(+), Proposition 5.16 simpli-
fies to the statement that the following are equivalent

1. I(A:C|B), =0

2. AXp_pc such that Zp_, gc(pap) = papc and Zp_, pc(pp) = PBC
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In particular the recovery map can be chosen to be the rotated Petz recovery map
given in (5.2). This is exactly the statement of Theorem 5.2.

Solution to Exercise 5.19

This exercise is so simple that it does not require a solution. If we evaluate Theo-
rem 5.18 for p = papc, o = ids ® ppc, and & = tre we immediately obtain The-
orem 5.5.

Solution to Exercise 5.20

The recovery map 7, ¢ is clearly completely positive. It is also trace-non-increasing
as forany r e R

w7 (X) =wo N (E0) F XE©0) ) (C.36)
= &(0)E(0) 2 XE(0) (C.37)
=1tr Hg(g)X (C.38)
<uX, (C.39)

where the final inequality step is an identity in case &'(o) has full support. The
recovery map 7, ¢ clearly is explicit, universal and perfectly recovers o from & (o).
For & = . we find

%,ﬂ('):/ dtfo() 115 ()15 =I5 ()15 (C.40)

o0

which proves the normalization property.
Finally for w € P.(R) we have

To@w,60.7 ()

- / difoo ¥ @0 (£ @ S (£0) @0 T ()60 @w T
0T R0 = (Jhs ® IR, (C.41)

which proves the last property and thus completes the exercise.
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