
123

S PR I N G E R  B R I E FS  I N  M AT H E M AT I C AL  PH Y S I C S  28

David Sutter

Approximate 
Quantum Markov 
Chains



SpringerBriefs in Mathematical Physics

Volume 28

Series editors

Nathanaël Berestycki, Cambridge, UK
Mihalis Dafermos, Princeton, USA
Tohru Eguchi, Tokyo, Japan
Atsuo Kuniba, Tokyo, Japan
Matilde Marcolli, Pasadena, USA
Bruno Nachtergaele, Davis, USA



SpringerBriefs are characterized in general by their size (50–125 pages) and fast
production time (2–3 months compared to 6 months for a monograph).
Briefs are available in print but are intended as a primarily electronic publication to
be included in Springer’s e-book package.

Typical works might include:

• An extended survey of a field
• A link between new research papers published in journal articles
• A presentation of core concepts that doctoral students must understand in order

to make independent contributions
• Lecture notes making a specialist topic accessible for non-specialist readers.

SpringerBriefs in Mathematical Physics showcase, in a compact format, topics of
current relevance in the field of mathematical physics. Published titles will
encompass all areas of theoretical and mathematical physics. This series is intended
for mathematicians, physicists, and other scientists, as well as doctoral students in
related areas.

More information about this series at http://www.springer.com/series/11953

http://www.springer.com/series/11953


David Sutter

Approximate Quantum
Markov Chains

123



David Sutter
Institute for Theoretical Physics
ETH Zurich
Zürich
Switzerland

ISSN 2197-1757 ISSN 2197-1765 (electronic)
SpringerBriefs in Mathematical Physics
ISBN 978-3-319-78731-2 ISBN 978-3-319-78732-9 (eBook)
https://doi.org/10.1007/978-3-319-78732-9

Library of Congress Control Number: 2018936657

© The Author(s) 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Acknowledgements

First and foremost, I would like to thank my advisor Renato Renner for his
encouragement and support. His never-ending enthusiasm, optimism, and persis-
tency in doing research as well as his precision in thought and communication were
highly inspiring and clearly sharpened my mind. His guidance during the last years
was outstanding. I was entirely free to work on what I like most, at the same time
always knowing that he would immediately interrupt in case I drift off to analyzing
meaningless problems.

I am especially grateful to Jürg Fröhlich for introducing me to the exciting field
of mathematical physics and for carefully listening to my oftentimes vague new
ideas. Jürg’s immense knowledge about physics is extraordinary and I enormously
enjoyed our regular meetings. Furthermore, my sincere thanks go to Emre Telatar
for investing his time in studying my work and for being my co-examiner. I also
would like to thank Manfred Sigrist for interesting discussions in the early morn-
ings at the institute and for representing the physics department at my defense.

During the last couple of years, I was extremely lucky to collaborate with
various brilliant people including Mario Berta, Frédéric Dupuis, Omar Fawzi,
Aram W. Harrow, Hamed Hassani, Raban Iten, Marius Junge, John Lygeros,
Peyman Mohajerin Esfahani, Renato Renner, Joseph M. Renes, Volkher B. Scholz,
Tobias Sutter, Marco Tomamichel, Mark M. Wilde, and Andreas Winter. I would
like to thank all of them for their patience and effort to work with me.

I am very grateful to all members of the Institute for Theoretical Physics at ETH
Zurich and in particular the Quantum Information Theory Group people for their
support and the friendly atmosphere. It was an exciting and truly wonderful time.

Finally and most importantly, I would like to thank my twin brother, my sister,
and my parents for their constant support and encouragement.

Zürich, Switzerland David Sutter

v



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Classical Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Robustness of Classical Markov Chains . . . . . . . . . . . . . . 3
1.2 Quantum Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Robustness of Quantum Markov Chains . . . . . . . . . . . . . . 5
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Schatten Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Functions on Hermitian Operators . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Quantum Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Entropy Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.2 Relative Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.3 Measured Relative Entropy . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.4 Rényi Relative Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Background and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 40
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Tools for Non-commuting Operators . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1 Pinching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1 Spectral Pinching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.2 Smooth Spectral Pinching . . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.3 Asymptotic Spectral Pinching . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Complex Interpolation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Background and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 58
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

vii



4 Multivariate Trace Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Multivariate Araki-Lieb-Thirring Inequality . . . . . . . . . . . . . . . . . 65
4.3 Multivariate Golden-Thompson Inequality . . . . . . . . . . . . . . . . . . 66
4.4 Multivariate Logarithmic Trace Inequality . . . . . . . . . . . . . . . . . . 70
4.5 Background and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 72
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Approximate Quantum Markov Chains . . . . . . . . . . . . . . . . . . . . . . 75
5.1 Quantum Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Sufficient Criterion for Approximate Recoverability . . . . . . . . . . . 79

5.2.1 Approximate Markov Chains are not Necessarily
Close to Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Necessary Criterion for Approximate Recoverability . . . . . . . . . . . 82
5.3.1 Tightness of the Necessary Criterion . . . . . . . . . . . . . . . . . 86

5.4 Strengthened Entropy Inequalities . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.1 Data Processing Inequality . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.2 Concavity of Conditional Entropy . . . . . . . . . . . . . . . . . . . 94
5.4.3 Joint Convexity of Relative Entropy . . . . . . . . . . . . . . . . . 95

5.5 Background and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 96
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Appendix A: A Large Conditional Mutual Information Does Not
Imply Bad Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Appendix B: Example Showing the Optimality of the Kmax-Term . . . . . 105

Appendix C: Solutions to Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

viii Contents



Chapter 1
Introduction

Markov chains are named after the Russian mathematician Andrei Markov
(1856–1922), who introduced them in 1907. Suppose we have a sequence of random
variables (Xn)n≥1. The simplest model is the case where the random variables are
assumed to be pairwise independent. For this scenario many nice results, such as the
law of large number or the central limit theorem, are known. At the same time the
pairwise independence assumption makes the model rather restrictive.

Markov’s idea was to consider a more general dependence structure that however
is still simple enough that it can be analyzed rigorously. Informally, his idea was to
assume that the random variables (Xn)n≥1 are ordered in a very specific way.1 This
ordering implies that all the information that the random variables (X1, · · · , Xk−1)

could have about Xk for any k > 1 is contained in Xk−1. More precisely, we require
that the collective entire past (X1, . . . , Xk−2) is independent of the collective entire
future (Xk, . . .) conditioned on the present Xk−1. This model has the advantage
that in order to describe Xk we only need to remember Xk−1 and can forget about
the past (X1, . . . , Xk−2). This makes the model simple enough that we can prove
precise properties and describe its behavior for large values of n. At the same time,
the model is considerably more general than the pairwise independence assumption
which makes it suitable for many situations (see, e.g., [1–4]).

Markov chains are intensively studied and have been generalized to the quantum
mechanical setup [5] where random variables are replaced by density operators on a
Hilbert space.2 Natural questions that arise are:

What are the main differences between classical and quantumMarkov chains?
What do we know about sequences of random variables that approximately
form a Markov chain? Do they approximately behave as (exact) Markov
chains?

1We then say (Xn)n≥1 forms a Markov chain in order X1 ↔ X2 ↔ X3 ↔ . . . .
2In Sect. 1.2 and in particular in Sect. 5.1 we introduce the concept of a quantum Markov chain.

© The Author(s) 2018
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2 1 Introduction

This book will answer these questions. We will first introduce the reader to quan-
tum Markov chains and explain how to define a robust version of this concept that
will be called approximate quantum Markov chains.

In the literature there exists the term “short Markov chains” which should distin-
guish the Markov chain between three random variables from infinite chains. Since
we only consider Markov chains defined for three random variables in this book we
drop the term “short”.

1.1 Classical Markov Chains

Three random variables X,Y, Z with joint distribution PXY Z form aMarkov chain in
order X ↔ Y ↔ Z if X and Z are independent conditioned on Y . In mathematical
terms this can be expressed as

PXY Z is a Markov chain ⇐⇒ PXZ |Y = PX |Y PZ |Y , (1.1)

where PX |Y denotes the probability distribution of X conditioned on Y . Bayes’
theorem directly implies that the right-hand side of (1.1) can be rewritten as
PXY Z = PXY PZ |Y . Operationally, the Markov chain condition tells us that all the
information the pair (X,Y ) has about Z is contained in Y . In other words, there is
no need to remember X in order to determine Z if we already know Y . Suppose we
loose the random variable Z . The Markov chain condition ensures that it is possible
to reconstruct Z by only acting on Y with a stochastic map.3 More precisely,

PXY Z is a Markov chain ⇐⇒ ∃ stochastic matrix WZ |Y such that PXY Z = PXYWZ |Y .

(1.2)

Bayes’ theorem directly implies thatWZ |Y can be always chosen asWZ |Y = PZ |Y . A
third characterization of PXY Z being a Markov chain is that the conditional mutual
information vanishes, i.e.,

PXY Z is a Markov chain ⇐⇒ I (X : Z |Y )P = 0 , (1.3)

where

I (X : Z |Y )P := H(XY )P + H(Y Z)P − H(XY Z)P − H(Y )P (1.4)

denotes the conditional mutual information and H(X)P := −∑
x∈X PX (x)

log PX (x) is the Shannon entropy.

3The reconstruction refers to a stochastically indistinguishable copy which means that if we denote
the reconstructed random variable by Z ′ we require that the probability law of (X, Y, Z ′) is the
same as (X, Y, Z).
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Exercise 1.1 Verify the three characterizations (1.1), (1.2), and (1.3) for a tripartite
distribution PXY Z being a Markov chain.

We saw above that (1.1), (1.2), and (1.3) are equivalent characterizations for a
tripartite distribution to be a Markov chain. The conditional mutual information can
be written in terms of a relative entropy, i.e.,

I (X : Z |Y )P = D(PXY Z‖PXY PZ |Y ) , (1.5)

where

D(Q‖R) :=
{∑

x∈X Q(x) log Q(x)
R(x) if Q 
 R

+∞ otherwise ,
(1.6)

denotes the relative entropy (also known as Kullback-Leibler divergence) between
two arbitrary probability distributions Q and R on a discrete set X and Q 
 R
means that Q is absolutely continuous with respect to R. Interestingly, there is an
exact correspondence between the conditional mutual information and the relative
entropy distance to the set of Markov chains, also known as a variational formula for
the conditional mutual information of the form

I (X : Z |Y )P = min
Q

{D(PXY Z‖QXY Z ) : QXY Z is a Markov chain} . (1.7)

A simple calculation reveals that QXY Z = PXY PZ |Y is the optimizer to (1.7).

Exercise 1.2 Prove (1.7) and show that the optimizer is always given by QXY Z =
PXY PZ |Y .

1.1.1 Robustness of Classical Markov Chains

Above we have seen three equivalent characterizations (1.1), (1.2), and (1.3) for a
tripartite distribution PXY Z being aMarkov chain. An interesting question is whether
these characterizations remain equivalent if they are satisfied approximately. This is
indeed the case. To see this, let us recall the variational formula for the mutual
information (1.7) which implies that for any distribution PXY Z

I (X : Z |Y )P = ε ⇐⇒ D(PXY Z ||PXY PZ |Y ) = ε . (1.8)

This shows that every distribution PXY Z such that the conditional mutual informa-
tion is small (but not necessarily vanishing), i.e., I (X : Z |Y )P = ε, where ε > 0 is
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small also approximately satisfies (1.1) and (1.2) and vice versa, since by Pinsker’s
inequality4 we have

∥
∥PXZ |Y − PX |Y PZ |Y

∥
∥
1 = ∥

∥PXY Z − PXY PZ |Y
∥
∥
1 ≤ √

2D(PXY Z‖PXY PZ |Y ) . (1.9)

Combining (1.7) with (1.8) gives

I (X : Z |Y )P = D(PXY Z ||PXY PZ |Y ) = min
Q

{D(PXY Z‖QXY Z ) : QXY Z is a Markov chain} ,

(1.10)

which shows that distributionswith a small conditionalmutual information are always
close (in terms of the relative entropy distance) to Markov chains and vice versa.
As a result, we may define a (classical) approximate Markov chain as a tripartite
distribution PXY Z such that the conditionalmutual information I (X : Z |Y )P is small.

1.2 Quantum Markov Chains

So far we considered Markov chains for classical systems that are modeled by ran-
dom variables. To describe the more general quantum mechanical setup the random
variables are replaced by density operators on a Hilbert space.

A tripartite state ρABC on A ⊗ B ⊗ C , where A, B, and C denote Hilbert spaces,
forms a quantum Markov chain if the A and C part can be viewed independent
conditioned on the B part — for a meaningful notion of conditioning. Generalizing
the classical definition of a Markov chain to the quantum mechanical setup turns out
to be delicate since conditioning on a quantum system is delicate. Out of the three
equivalent characterizations (1.1), (1.2), and (1.3) for classical Markov chains we
have seen above, it turns out that (1.2) servers best for the definition of a quantum
Markov chain.

A tripartite state ρABC on A ⊗ B ⊗ C is called a (quantum)Markov chain in order
A ↔ B ↔ C if there exists a recovery map RB→BC from B to B ⊗ C such that

ρABC = (IA ⊗ RB→BC)(ρAB) , (1.11)

where IA(·) denotes the identity map on A. A recovery map is an arbitrary trace-
preserving completely positive map. The condition (1.11) says that the C part can
be reconstructed by only acting on the B part.

Petz proved an entropic characterization for the set of quantum Markov chains
[7, 8] by showing that

ρABC is a quantum Markov chain ⇐⇒ I (A : C |B)ρ = 0 , (1.12)

4Pinsker’s inequality states that ‖P − Q‖1 ≤ √
2D(P‖Q) where ‖·‖1 denotes the total variation

norm [6].
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where

I (A : C |B)ρ := H(AB)ρ + H(BC)ρ − H(ABC)ρ − H(B)ρ (1.13)

denotes the quantum conditional mutual information and H(A)ρ := −tr ρA log ρA is
the von Neumann entropy. Furthermore, Petz showed that in case I (A : C |B)ρ = 0
the recovery map

TB→BC : XB �→ ρ
1
2
BC

(
ρ

− 1
2

B XBρ
− 1

2
B ⊗ idC

)
ρ

1
2
BC (1.14)

always satisfies (1.11) (we refer to Theorem 5.2 for a more precise statement). The
recovery map TB→BC is called Petz recovery map or transpose map. It is trace-
preserving and completely positive (see Remark 5.3).

The result (1.12) gives an entropic characterization for the set of quantumMarkov
chains. Furthermore, (1.12) displays a criterion to verify easily if a certain tripartite
state is a quantum Markov chain, as evaluating the conditional mutual information
is simple. We further note that the algebraic structure of quantum Markov states has
been studied extensively [9] (see Theorem 5.4 for a precise statement). Quantum
Markov chains and their properties are discussed in more detail in Sect. 5.1.

1.2.1 Robustness of Quantum Markov Chains

A natural question that is relevant for applications is whether the above statements
are robust. Specifically, one would like to have a characterization for the set of
tripartite states that have a small (but not necessarily vanishing) conditional mutual
information, i.e., I (A : C |B)ρ ≤ ε for ε > 0. First results revealed that such states
can have a large trace distance toMarkov chains that is independent of ε [10, 11] (see
Proposition 5.9 for a precise statement), which has been taken as an indication that
their characterizationmay be difficult.5 This is discussed inmore detail in Sect. 5.2.1.

As discussed above, statesρABC such that I (A : C |B)ρ is small are not necessarily
close to any Markov chain, however such states approximately satisfy (1.11). More
precisely, it was shown [12–18] that for any state ρABC there exists a recovery map
RB→BC such that

I (A : C |B)ρ ≥ DM

(
ρABC‖(IA ⊗ RB→BC)(ρAB)

)
, (1.15)

where DM denotes themeasured relative entropy (seeDefinition 2.33). Themeasured
relative entropy DM(ω‖τ) is a quantity that determines how close ω and τ are. It is

5As explained in Sect. 1.1.1 above, classical tripartite distributions with a small conditional mutual
information are always close to classical Markov chains.
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nonnegative and vanishes if and only ifω = τ . The measured relative entropy and its
properties are discussed in Sect. 2.5.3. We refer to Theorem 5.5 for a more precise
statement. Inequality (1.15) justifies the definition of approximate quantum Markov
chains as states that have a small conditional mutual information, since according
to (1.15) these states approximately satisfy (1.11). In Sect. 5.2 we discuss in detail
the properties of approximate quantum Markov chains.

Unlike in the classical casewhere the robustness ofMarkov chains directly follows
from (1.7) which is simple to prove (see Exercise 1.2), Inequality (1.15) far from
trivial. A large part of this book (mainly Chaps. 3 and 4) are dedicated to the task
of developing mathematical techniques that can be applied afterwards in Chap. 5 to
prove (1.15).

1.3 Outline

The aim of this book is to introduce its readers to the concept of approximate quantum
Markov chains, i.e., a robust version of Markov chains for quantum mechanical sys-
tems. Our exposition does not assume any prior knowledge about Markov chains nor
quantummechanics. We derive all relevant technical statements from the very begin-
ning such that the reader only needs to be familiar with basic linear algebra, analysis,
and probability theory. We believe that the mathematical techniques described in the
book, with an emphasis on their applications to understand the behavior of approx-
imate Markov chains, are of independent interest beyond the scope of this book.

The following is a brief summary of the main results obtained in each chapter:

Chapter 2 introduces the mathematical preliminaries that are necessary to follow
the book. The advanced reader may easily skip this chapter. We first explain
the notation that is summarized in Table 2.1 before introducing basic properties
of norms (Sect. 2.2), quantum mechanical evolutions (Sect. 2.4), and entropy
measures (Sect. 2.5). Section 2.3 discusses well-known properties of functions
on Hermitian operators.

Chapter 3 presents two different mathematical techniques that can be used to
overcome difficulties arising from the noncommutative nature of linear operators.
Suppose we are given two operators. Is it possible to modify one of the two oper-
ators such that it commutes with the other one without changing it by too much?

In Sect. 3.1we present a first answer to the above question by introducing the spec-
tral pinching method. For any Hermitian operator H with spectral decomposition
H = ∑

λ λ�λ we can define the pinching map with respect to H as

PH : X �→
∑

λ

�λX�λ . (1.16)
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The pinching map satisfies various nice properties that are summarized in
Lemma 3.5. For example, PH (X) always commutes with H for any nonneg-
ative operator X . Furthermore, there is an operator inequality that relatesPH (X)

with X . We demonstrate how to use the spectral pinching method in practice by
presenting an intuitive proof for the Golden-Thompson inequality that is only
based on properties of pinching maps.
Section 3.2 discusses complex interpolation theory which oftentimes can be
used as an alternative to the pinching technique. The basic idea is the fol-
lowing: consider an operator-valued holomorphic function defined on the strip
S := {z ∈ C : 0 ≤ Re z ≤ 1}. Complex interpolation theory allows us to control
the behavior of the norm of the function at (0, 1) by its norm on the boundary,
i.e., at Re z = 0 and Re z = 1. This is made precise in Theorem 3.11, which is
the main result of this section. Interpolation theory is less intuitive than pinching,
however can lead to stronger results as we will demonstrate in Chap. 4.

Chapter 4 shows how to employ the techniques presented in Chap. 3 to prove
novel real-valued inequalities involving several linear operators— so-called trace
inequalities. Trace inequalities are a powerful tool that oftentimes helps us to
understand the behavior of functions of operators.
Arguably one of the most famous trace inequalities is the Golden-Thompson
inequality stating that for any Hermitian operators H1 and H2 we have

tr eH1+H2 ≤ tr eH1eH2 . (1.17)

Themain result of this chapter is an extensionof (1.17) to arbitrarilymanymatrices
(see Theorem 4.10). As we will show, the intuition for this extension can be seen
from the pinching method whereas the precise result is proven using interpolation
theory, i.e., with the help of Theorem 3.11.
Besides theGolden-Thompson inequality there exists a variety of other interesting
trace inequalities. For example the Araki-Lieb-Thiring inequality states that for
any nonnegative operators B1, B2, and any q > 0 we have

tr
(
B

r
2
1 B

r
2B

r
2
1

) q
r ≤ tr

(
B

1
2
1 B2B

1
2
1

)q
if r ∈ (0, 1] . (1.18)

In Sect. 4.2 we prove an extension of (1.18) to arbitrarily many matrices (see
Theorem 4.7).
Finally, we consider a logarithmic trace inequality stating that for any nonnegative
operators B1, B2, and any p > 0 we have

1

p
tr B1 log B

p
2
2 Bp

1 B
p
2
2 ≤ tr B1(log B1 + log B2) ≤ 1

p
tr B1 log B

p
2
1 Bp

2 B
p
2
1 .

(1.19)

In Sect. 4.4 we prove an extension of the first inequality of (1.19) to arbitrarily
many matrices (see Theorem 4.15).
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Chapter 5 properly defines the concept of a quantumMarkov chain (see Sect. 5.1)
as tripartite states ρABC such that there exists a recovery mapRB→BC from B to
B ⊗ C that satisfies

ρABC = (IA ⊗ RB→BC)(ρAB) , (1.20)

whereIA denotes the identity map on A. Alternatively, quantum Markov chains
are characterized as states ρABC such that the conditional mutual information
vanishes, i.e., I (A : C |B)ρ = 0 (see Theorem 5.2).
With the help of the extension of theGolden-Thompson inequality to fourmatrices
(derived in Chap. 4) we show that for any density operator ρABC there exists an
explicit recovery map RB→BC that only depends on ρBC such that

I (A : C |B)ρ ≥ DM

(
ρABC‖(IA ⊗ RB→BC)(ρAB)

) ≥ 0 . (1.21)

We refer to Theorem 5 for a more precise statement. Inequality (1.21) shows
that states with a small conditional mutual information approximately satisfy the
Markov condition (1.20). This therefore justifies the definition of approximate
quantum Markov chains as states that have a small conditional mutual informa-
tion. Proposition 5.9 shows that approximate quantum Markov chains, however,
can be far from any Markov chain (with respect to the trace distance).
Inequality (1.21) shows that states ρABC with a small conditional mutual informa-
tion can be approximately recovered from ρAB by only acting on the B-system,
i.e., a small conditional mutual information is a sufficient condition that a state
reconstruction in the sense of (1.20) is approximately possible. Theorem 5.11
proves an entropic necessary condition involving the conditional mutual informa-
tion that such an approximate state reconstruction is possible. In particular, we
will see that there exist states with a large conditional mutual information such
that (1.20) still approximately holds.
Another reasonwhy (1.21) is interesting is that it strengthens the celebrated strong
subadditivity of quantum entropywhich ensures that I (A : C |B)ρ := H(AB)ρ +
H(BC)ρ − H(ABC)ρ − H(B)ρ ≥ 0. This entropy inequality is well-studied
and known to be equivalent to various other famous entropy inequalities such
as the data processing inequality, concavity of the conditional entropy and joint
convexity of the relative entropy. In Sect. 5.4 we show how (1.21) can be used to
prove strengthenings of the other entropy inequalities.

Appendix A presents an example showing that there exist states ρABC with an
arbitrarily large quantum conditional mutual information (i.e., I (A : C |B)ρ is
large) that, however, can be reconstructed well in the sense that there exits a
recovery map RB→BC such that ρABC is close to (IA ⊗ RB→BC)(ρAB).
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Appendix B discusses examples showing that Theorem 5.11 is essentially tight
and therefore cannot be further improved.

Appendix C provides solutions to the exercises stated throughout the book. The
exercises are chosen such that they can be solved rather straightforwardly. The
main purpose of the exercises is to give the reader a possibility to check if she has
understood the presented subject.
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Chapter 2
Preliminaries

Our notation is summarized in Table2.1. The expert reader may directly proceed
to Chap. 3. In this book we restrict ourselves to finite-dimensional Hilbert spaces,
even though most of the results covered remain valid for separable Hilbert spaces.
As a result, linear operators on these Hilbert spaces can be viewed as matrices. We
decided to still call them operators, i.e., for example a positive semidefinite matrix
will be called a nonnegative operator on a (finite-dimensional) Hilbert space.

2.1 Notation

The notational conventions used in this book are summarized inTable2.1. To simplify
notation we try to avoid brackets whenever possible. For example, tr Ap has to be
read as tr(Ap). We will usually drop identity operators from the notation when they
are clear from the context. We would thus write for example ρBρABρB instead of
(idA ⊗ ρB) ρAB (idA ⊗ ρB).

A Hermitian operator H is called nonnegative (denoted by H ≥ 0) if all its eigen-
values are nonnegative. It is called strictly positive (denoted by H > 0) if all its
eigenvalues are strictly positive. We partially order the set of Hermitian operators
(Löwner ordering) by defining H1 ≥ H2 to mean H1 − H2 ≥ 0 for two Hermitian
operators H1 and H2.

For f : R → C we denote its Fourier tranform by

f̂ (ω) :=
∫ ∞

−∞
dt f (t)e−iωt . (2.1)

We use 1{statement} to denote the indicator of the statement, i.e.,

1{statement} =
{
1 if statement is true
0 if statement is false .

(2.2)

© The Author(s) 2018
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Table 2.1 Overview of notational conventions

General

C, R, R+, N Complex, real, nonnegative real, and natural numbers

[n] The set {1, 2, . . . , n} for n ∈ N

log Natural logarithm

〈·|, |·〉 Bra and ket

A, B, C, . . . Hilbert spaces are denoted by capital letters

dim(A) Dimension of the Hilbert space A

A ,B,C , . . . Mappings are denoted by calligraphic capital letters

idA, IA Identity operator and identity map on A

tr, trA Trace and partial trace

poly(n) Arbitrary polynomial in n

conv(X) Convex hull of the set X

int(X) Interior of the set X

∂ X Boundary of the set X

f̂ Fourier transform of f

f � g Convolution of f and g

triκ Triangular function of width κ

|X | Cardinality of the set X

1 Indicator function

Operators

L(A),L(A, B) Set of bounded linear operators on A and from A to B

H(A) Set of Hermitian operators on A

P(A), P+(A) Set of nonnegative and strictly positive operators on A

S(A) Set of density operators on A

U(A) Set of unitaries on A

V(A, B) Set of isometries from A to B

TPCP(A, B) Set of trace-preserving completely positive maps from A to B

MC(A ⊗ B ⊗ C) Set of (quantum) Markov chains on A ⊗ B ⊗ C

spec(A) Set of distinct singular values of the operator A

supp(A) Support of the operator A

rank(A) Rank of the operator A

A 	 B Support of A is contained in the support of B

[A, B] Commutator between A and B, i.e., [A, B] := AB − B A

�H Spectral gap of the Hermitian operator H

|A| Modulus of the operator A

A† Conjugate transpose of the operator A

Ā Conjugate of the operator A

AT Transpose of the operator A

A ⊗ B Tensor product between operator A and B

A ⊕ B Direct sum between operator A and B

(continued)
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Table 2.1 (continued)

General

Distance measures

‖·‖p Schatten p-norm

|||·||| Arbitrary unitarily invariant norm

F(ρ, σ ) Fidelity between ρ and σ

�(ρ, σ ) Trace distance between ρ and σ

Entropies

H(ρ) Von Neumann entropy of the density operator ρ

H(A|B) Conditional entropy of A given B

D(ρ‖σ) Relative entropy between ρ and σ

DM(ρ‖σ) measured relative entropy between ρ and σ

Dα(ρ‖σ) Minimal α-Rényi relative entropy between ρ and σ

I (A : C |B) Conditional mutual information of A and C given B

x �→ h(x) Binary entropy function

Abbreviations

POVMs Positive operator valued measures

DPI Data processing inequality

SSA Strong subadditivity of quantum entropy

GT Golden-Thompson

ALT Araki-Lieb-Thirring

2.2 Schatten Norms

To deal with linear operators on a Hilbert space, the concept of a norm is useful.

Definition 2.1 A norm of a linear operator L ∈ L(A) is a map ‖·‖ : L(A) →
[0,∞) that satisfies:

1. Nonnegativity : ‖L‖ ≥ 0 for all L ∈ L(A) and ‖L‖ = 0 if and only if L = 0.
2. Absolute homogeneity : ‖αL‖ = |α| ‖L‖ for allα ∈ C, L ∈ L(A).

3. Triangle inequality : ‖L1 + L2‖ ≤ ‖L1‖ + ‖L2‖ for all L1, L2 ∈ L(A).

A norm |||·||| is called unitarily invariant if
∣∣∣∣∣∣U LV †

∣∣∣∣∣∣ = |||L||| for any isometries
U, V ∈ V(A, B). In the following we will consider a particular family of unitarily
invariant norms the so-called Schatten p-norms. Themodulus of a of a linear operator
L ∈ L(A) is the positive semi-definite operator |L| := √

L†L .



14 2 Preliminaries

Definition 2.2 For any L ∈ L(A) and p ≥ 1, the Schatten p-norm is defined
as

‖L‖p := (tr |L|p
) 1

p . (2.3)

We extend this definition to all p > 0, but note that ‖L‖p is not a norm for
p ∈ (0, 1) since it does not satisfy the triangle inequality.1 In the limit p → ∞ we
recover the operator norm or spectral norm, for p = 1 we obtain the trace norm, and
for p = 2 the Frobenius or Hilbert-Schmidt norm. Schatten norms are functions of
the singular values and thus unitarily invariant. Furthermore, by definition we have

‖L‖p = ∥∥L†
∥∥

p and ‖L‖22p = ∥∥L L†
∥∥

p = ∥∥L†L
∥∥

p . (2.4)

Schatten norms are ordered in the sense that

‖L‖p ≤ ‖L‖q for 1 ≤ q ≤ p . (2.5)

Schatten norms are multiplicative under tensor products, i.e.,

‖L1 ⊗ L2 ⊗ · · · ⊗ Ln‖p =
n∏

k=1

‖Lk‖p . (2.6)

Interestingly, among all possible norms only the Schatten p-norms with p ≥ 1
are unitarily invariant and at the same time multiplicative under tensor products
[1, Theorem 4.2].2

Exercise 2.3 Show that the Schatten p-norm defined in (2.3) is a norm for p ≥ 1
and verify that it satisfies the properties mentioned above.

Schatten norms can be expressed in terms of a variational formula, i.e., we can
write it as the following optimization problem [2, Sect. IV.2].

Lemma 2.4 (Variational formula Schatten norm) Let L ∈ L(A) and p ≥ 1. Then

‖L‖p = sup
K∈L(A)

{|tr L†K | : ‖K‖q = 1} for
1

p
+ 1

q
= 1 . (2.7)

Schatten norms are submultiplicative, i.e., for L1, L2 ∈ L(A) we have

‖L1L2‖p ≤ ‖L1‖p ‖L2‖p for all p ≥ 1 . (2.8)

1For p ∈ (0, 1) the Schatten p-norm is thus only a quasi-norm.
2These two properties are crucial for the pinching method discussed in Sect. 3.1.

https://doi.org/10.1007/978-3-319-78732-9_3
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A stronger result is obtained by the generalized Hölder inequality for Schatten (quasi)
norms [2, Exercise IV.2.7] (see [3, Sect. 3.3] for a precise proof).

Proposition 2.5 (Hölder’s inequality) Let n ∈ N, p, p1, . . . , pn ∈ R+ and a
finite sequence (Lk)

n
k=1 of linear operators. Then

∥∥∥∥∥
n∏

k=1

Lk

∥∥∥∥∥
p

≤
n∏

k=1

‖Lk‖pk
for

n∑
k=1

1

pk
= 1

p
. (2.9)

The function L �→ ‖L‖p for p ≥ 1 is convex as the Schatten p-norm satisfies the
triangle inequality. This means that for any probability measure μ on a measurable
space (X,Σ) and a sequence (Lx )x∈X of linear operators, we have

∥∥∥∥
∫

X
μ(dx) Lx

∥∥∥∥
p

≤
∫

X
μ(dx) ‖Lx‖p for p ≥ 1 . (2.10)

Quasi-norms with p ∈ (0, 1) are no longer convex. However, we show that these
quasi-norms still satisfy an asymptotic convexity property for tensor products of
operators in the following sense [4].

Lemma 2.6 Let p ∈ (0, 1), μ be a probability measure on (X,Σ) and consider a
sequence (Bx)x∈X of nonnegative operators. Then

1

m
log

∥∥∥∥
∫

X
μ(dx) B⊗m

x

∥∥∥∥
p

≤ 1

m
log
∫

X
μ(dx)

∥∥B⊗m
x

∥∥
p + log poly(m)

m
. (2.11)

Proof Let A denote theHilbert space of dimensiond where the nonnegative operators
Bx act on. For any x ∈ X , consider the spectral decomposition Bx =∑k λk |k〉〈k|.
Let |vx 〉 =∑k

√
λk |k〉 ⊗ |k〉 ∈ A ⊗ A′ be a purification of Bx , i.e., trA′ |vx 〉〈vx | =

Bx . Now note that the projectors (|vx 〉〈vx |)⊗m lie in the symmetric subspace of
(A ⊗ A′)⊗m whose dimension grows as poly(m).3 Moreover, we have

∫
X

μ(dx)B⊗m
k =

∫
X

μ(dx) trA′⊗m (|vx 〉〈vx |)⊗m . (2.12)

Carathéodory’s theorem (see, e.g., [5, Theorem 18]) ensures the existence of a dis-
crete probability measure P on I ⊂ X with |I | = poly(m) such that

3This follows from the fact that the dimension of the symmetric subspace of A⊗m is equal to the
number of types of sequences of d symbols of length m, which is polynomial in m (as shown
in 3.39).

https://doi.org/10.1007/978-3-319-78732-9_3
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∫
X

μ(dx)B⊗m
x =

∑
x∈I

P(x)B⊗m
x and

∫
X

μ(dx)
∥∥B⊗m

x

∥∥
p =

∑
x∈I

P(x)
∥∥B⊗m

x

∥∥
p .

(2.13)

We thus have

1

m
log

∥∥∥∥
∫

X
μ(dx)B⊗m

x

∥∥∥∥
p

= 1

m
log

∥∥∥∥∥
∑
x∈I

P(x)B⊗m
x

∥∥∥∥∥
p

. (2.14)

For p ∈ (0, 1) the Schatten p-norms only satisfy a weakened version of the tri-
angle inequality (see, e.g., [6, Eq. 20]) of the form

∥∥∥∥∥
n∑

x=1

Bx

∥∥∥∥∥
p

p

≤
n∑

x=1

‖Bx‖p
p . (2.15)

Combining this with (2.14) gives

1

m
log

∥∥∥∥
∫

X
μ(dx)B⊗m

x

∥∥∥∥
p

≤ 1

m
log

(∑
x∈I

∥∥P(x)B⊗m
x

∥∥p

p

) 1
p

(2.16)

= 1

m
log

(
|I | 1

p

( 1

|I |
∑
x∈I

∥∥P(x)B⊗m
x

∥∥p

p

) 1
p

)
. (2.17)

As the map t �→ t
1
p is convex for p ∈ (0, 1) (see Table2.2) we obtain

1

m
log

∥∥∥∥
∫

X
μ(dx)B⊗m

x

∥∥∥∥
p

≤ 1

m
log

(
|I | 1

p −1
∑
x∈I

∥∥P(x)B⊗m
x

∥∥
p

)
(2.18)

= 1

m
log

(∑
x∈I

P(x)
∥∥B⊗m

x

∥∥
p

)
+ 1

m

1 − p

p
log |I |

(2.19)

= 1

m
log

(∫
X

μ(dx)
∥∥B⊗m

x

∥∥
p

)
+ log poly(m)

m
, (2.20)

where the final step uses that |I | = poly(m). �

Combining Lemma 2.6 with (2.10) shows that for all p > 0 we have the following
quasi-convexity property

1

m
log

∥∥∥∥
∫

X
μ(dx) B⊗m

x

∥∥∥∥
p

≤ log sup
x∈X

‖Bx‖p + log poly(m)

m
. (2.21)
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Lemma 2.6 will be particularly useful in combination with the pinching technique
presented in Sect. 3.1.

2.3 Functions on Hermitian Operators

The set of Hermitian operators is equipped with a natural partial order, i.e., a consis-
tent way of saying that one operator is larger than another one or that two operators
are actually incomparable. For H1, H2 ∈ H(A) we say H1 is larger than H2, denoted
by H1 ≥ H2 if and only if H1 − H2 is nonnegative, i.e., H1 − H2 ≥ 0, or equivalently
H1 − H2 ∈ P(A). This defines a partial order (called Löwners partial order) in the
sense that two Hermitian operators may be incomparable.

For every Hermitian operator H ∈ H(A) we can write down its spectral decom-
position, i.e.,

H =
∑

λ∈spec(H)

λΠλ , (2.22)

whereΠλ denotes the projector onto the eigenspace of λ. For any continuous function
f : R → R we define the operator f (H) ∈ H(A) as

f (H) :=
∑

λ∈spec(H)

f (λ)Πλ . (2.23)

By definition we thus have f (U HU †) = U f (H)U † for any unitary U ∈ U(A). If
we consider a function f : R+ → R, its operator-valued version maps nonnegative
operators to Hermitian operators.

Definition 2.7 Let I ⊆ R. A function f : I → R is called operator monotone
if

H1 ≤ H2 =⇒ f (H1) ≤ f (H2) , (2.24)

for all H1, H2 ∈ H(A) with spec(H1), spec(H2) ∈ I
|spec(Hk )|. The function f

is operator anti-monotone if − f is operator monotone.

https://doi.org/10.1007/978-3-319-78732-9_3
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Table 2.2 Examples of operator monotone, convex and concave functions

Function Domain Op.monotone Op. anti-monotone Op. convex Op. concave

t �→ tα (0,∞) α ∈ [0, 1] α ∈ [−1, 0] α ∈ [−1, 0) ∪ [1, 2] α ∈ (0, 1]
t �→ log t (0,∞) ✓ ✗ ✗ ✓

t �→ t log t [0,∞) ✗ ✗ ✓ ✗

t �→ et
I ⊆ R ✗ ✗ ✗ ✗

Note that t �→ tα is neither operator monotone, convex, nor concave for α < −1 and α > 2

Definition 2.8 Let I ⊆ R. A function f : I → R is called operator convex if

f (t H1 + (1 − t)H2) ≤ t f (H1) + (1 − t) f (H2) , (2.25)

for all t ∈ [0, 1] and for all H1, H2 ∈ H(A)with spec(H1), spec(H2) ∈ I
|spec(Hk )|.

The function f is operator concave if − f is operator convex.

A two-parameter function is called jointly convex (jointly concave) if it is convex
(concave) when taking convex combinations of the input tuples. For many functions
it has been determined if they are operator convex or operator monotone. Table2.2
summarizes a few prominent examples.

The following two propositions which can be found in [2, Theorem V.2.5] and [7,
Theorem 2.10] summarize some generic facts about the convexity and monotonicity
of certain functions on Hermitian operators.

Proposition 2.9 Let f : R+ → R+ be continuous. Then, f is operator monotone
if and only if it is operator concave.

Proposition 2.10 (Convexity and monotonicity of trace functions) Let f : R →
R be continuous. If t �→ f (t) is monotone, so is H(A) � H �→ tr f (H). Likewise,
if t �→ f (t) is (strictly) convex, so is H(A) � H �→ tr f (H).

To show that a certain function is operator convex can be difficult and sometimes
leads to deep and powerful results. We next discuss two such statements.

Theorem 2.11 (Peierls-Bogoliubov) The map

H(A) � H �→ log tr eH (2.26)

is convex.
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Proof The variational formula for the relative entropy (see 2.76) shows that for
t ∈ [0, 1] and H1, H2 ∈ H(A) we have

log tr et H1+(1−t)H2 = max
ρ∈S(A)

{tr(t H1 + (1 − t)H2
)
ρ − D(ρ‖idA)} (2.27)

≤ t max
ρ∈S(A)

{tr H1ρ − D(ρ‖idA)} + (1 − t) max
ρ∈S(A)

{tr H2ρ − D(ρ‖idA)}
(2.28)

= t log tr eH1 + (1 − t) log tr eH2 , (2.29)

where the final step uses (2.76). �

For H1, H2 ∈ H(A) Theorem 2.11 implies that the function

(0, 1] � t �→ f (t) = log tr eH1+t H2 (2.30)

is convex and hence

f (1) − f (0) ≥ f (t) − f (0)

t
. (2.31)

Taking the limit t → 0 gives the following result which is called Peierls-Bogoliubov
inequality in the literature.

Corollary 2.12 Let H1, H2 ∈ H(A). Then

log
tr eH1+H2

tr eH1
≥ tr H2eH1

tr eH1
. (2.32)

The next result is a concavity theorem [8]. As we will see later this result is deeply
connected with Lieb’s triple operator inequality that is discussed in Theorem 4.9 in
Chap.4.

Theorem 2.13 (Lieb’s concavity theorem) Let H ∈ H(A). The map

P+(A) � B �→ tr eH+log B (2.33)

is concave.

https://doi.org/10.1007/978-3-319-78732-9_4
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Proof The variational formula for the relative entropy (see 2.89) shows that for
t ∈ [0, 1] and B1, B2 ∈ P+(A) we have

tr eH+log(t B1+(1−t)B2)

= max
ω∈P+(A)

{tr ωH − D
(
ω‖t B1 + (1 − t)B2

)+ tr ω} (2.34)

≥ t max
ω∈P+(A)

{tr ωH − D(ω‖B1) + tr ω} + (1 − t) max
ω∈P+(A)

{tr ωH − D(ω‖B2) + tr ω} (2.35)

= t tr eH+log B1 + (1 − t)tr eH+log B2 , (2.36)

where penultimate step uses the joint convexity property of the relative entropy (see
Proposition 2.28). The final step follows from (2.89). �

Another celebrated inequality for differentiable functions on nonnegative opera-
tors is due to Klein.

Theorem 2.14 (Klein’s inequality) Let B1, B2 ∈ P(A) and f : (0,∞) → R

be differentiable and convex. Then

tr f (B1) − tr f (B2) ≥ tr (B1 − B2) f ′(B2) . (2.37)

If f is strictly convex, there is equality if and only if B1 = B2.

Proof Define the function (0, 1] � t �→ g(t) = tr f (t A1 + (1 − t)A2) which
according to Proposition 2.10 is convex. This implies that

g(1) − g(0) ≥ g(t) − g(0)

t
. (2.38)

Taking the limit t → 0 shows that

tr f (A1) − tr f (A2) ≥ lim
t→∞

g(t) − g(0)

t
= d

dt
g(t)|t=0 = tr(A1 − A2) f ′(A2) .

(2.39)

�

We close the discussion about functions on Hermitian operators by discussing an
operator version of Jensen’s inequality [9].
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Theorem 2.15 (Jensen’s operator inequality) Let I ⊆ R and f : I → R be
continuous. Then, the following are equivalent

1. f is operator convex.

2. For every n ∈ N we have

f

(
n∑

k=1

Lk Hk L†
k

)
≤

n∑
k=1

Lk f (Hk)L†
k , (2.40)

for all Hk ∈ H(A) with spec(Hk) ∈ I and all Lk ∈ L(A, B) such that∑n
k=1 Lk L†

k = idA.

3. f (V H V †) ≤ V f (H)V † for all V ∈ V(A, B), H ∈ H(A) such that
spec(H) ∈ I.

4. Π f (Π HΠ + t (1 − Π))Π ≤ Π f (H)Π for all projectors Π onto A, t ∈
I, H ∈ H(A) such that spec(H) ∈ I.

2.4 Quantum Channels

In this section we discuss how to model time evolutions of quantum mechanical
systems. One postulate of quantum mechanics4 states that any isolated evolution of
a subsystem of a composite system over a fixed time interval [t0, t1] corresponds
to a unitary operator on the state space of the subsystem. For a composite system
with state space A ⊗ B and isolated evolutions on both subsystems described by
UA ∈ U(A) and UB ∈ U(B), respectively, any state ρAB ∈ S(A ⊗ B) at time t0 is
transformed into the state

ρ ′
AB = (UA ⊗ UB)ρAB(U †

A ⊗ U †
B) (2.41)

at time t1. Since unitaries are reversible we see that isolated evolutions are reversible,
too.

It is helpful to describe the behavior of subsystems in the general case where
there is interaction between A and B. Such evolutions are no longer isolated and are
irreversible.We note that it is always possible to embed the irreversible evolution into
a larger system such that it becomes reversible. For the moment we will, however,
not follow this viewpoint and rather discuss the mathematical framework to describe
general physical evolutions. There are two equivalent ways to describe the evolution
of a quantum mechanical system, called Schrödinger and Heisenberg picture. We

4The interested reader can find more information about these postulates in [10, Sect. 2].
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will mainly work in the Schrödinger picture, the interested reader may consider [11]
for more information about the Heisenberg picture.

A map E : L(A) → L(B) describes a physical evolution in a meaningful way if it
is linear, trace-preserving, and completely positive. Such maps are called quantum
channels and describe in amost general way a physical evolution. The set of quantum
channels from A to B, i.e., trace-preserving completely positive maps from A to B,
is denoted by TPCP(A, B).

Definition 2.16 A linear map E : L(A) → L(B) is called trace-preserving if
tr E (ω) = tr ω for all ω ∈ L(A).

Definition 2.17 A linear map E : L(A) → L(B) is called positive if E (ω) ∈
P(B) for all ω ∈ P(A). The map E is called completely positive if for any
Hilbert space R the map E ⊗ IR is positive.

Exercise 2.18 Construct a linear map E : L(A) → L(B) that is positive but not
completely positive.

There exist different representations of trace-preserving completely positivemaps.
We briefly discuss the three most common ones: the Choi-Jamiolkowski represen-
tation [12, 13], the Stinespring dilation [14], and the operator-sum representation
(also known as Kraus representation) [15].

For any linear map E : L(A) → L(B) the corresponding Jamiolkowski state is
defined by

τE := (E ⊗ IA′)(|Ω〉〈Ω|AA′) , (2.42)

where

|Ω〉AA′ := 1√
dim(A)

dim(A)∑
k=1

|kk〉AA′ (2.43)

denotes a maximally entangled state. The Jamiolkowski state fully characterizes the
map E .
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Proposition 2.19 (Choi-Jamiolkowski representation)The following provides
a one-to-one correspondence between linear maps E : L(A) → L(B) and
operators τ ∈ L(B ⊗ A)

τE = (E ⊗ IA′)(|Ω〉〈Ω|AA′), tr ωE (σ ) = dim(A)tr τE ω ⊗ σ T , (2.44)

for all ω ∈ L(B), σ ∈ L(A) and where the transpose is taken with regards to
the Schmidt basis of Ω . The mappings E �→ τE and τE �→ E defined by (2.44)
are mutual inverses.

The Jamiolkowski state has a few nice properties. For example it allows us to
easily verify if a linear map is trace-preserving and completely positive, since

E is trace-preserving ⇐⇒ trB τE = idA

dim(A)
, (2.45)

and

E is completely positive ⇐⇒ τε ∈ P(B ⊗ A) . (2.46)

We can express the map E in terms of its Jamiolkowski state as

E : X �→ dim(A)trA τE (idB ⊗ XT) . (2.47)

Another representation of quantum channels shows that they can be viewed as
unitary evolutions by enlarging our space.

Proposition 2.20 (Stinespring dilation) Let E : L(A) → L(B) be linear and
completely positive. Then there exists an isometry V ∈ V(A, B ⊗ R) such that

E : X �→ trR V X V † . (2.48)

This shows that any possible quantum channel corresponds to a unitary evolution
of a larger system.

We finally discuss another representation that shows that a channel can be char-
acterized by a sequence of operators.
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Proposition 2.21 (Operator-sum representation) Let E : L(A) → L(B) be
linear and completely positive. Then, there exists r ≤ dim(A) dim(B) and
a finite sequence (Ek)k∈[r ] of operators Ek ∈ L(A, B) such that

E : X �→
r∑

k=1

Ek X E†
k . (2.49)

The mapping E is trace-preserving if and only if
∑r

k=1 E†
k Ek = idA.

We note that r = rank(τE ), where τE is the Jamiolkowski state of E , is the Kraus
rank. The operators Ek are sometimes called Kraus operators.

Exercise 2.22 Is the finite sequence (Ek)k∈[r ] of Kraus operators uniquely deter-
mined by E ?

2.5 Entropy Measures

Entropy measures are indispensable tools in classical and quantum information the-
ory. They characterize ultimate limits of various operational tasks such as data com-
pression or channel coding [16, 17]. In this book, wemainly use entropy measures as
mathematical objects whose properties are well studied [18–20]. We will not discuss
the operational relevance of these measures. The interested reader may consider [20–
22] for more information.

We next define the entropic quantities that are relevant for this book. For a density
operator ρA ∈ S(A) = {X ∈ P(A) : tr X = 1} the von Neumann entropy is defined
as

H(A)ρ = H(ρA) := −tr ρA log ρA . (2.50)

For a bipartite density operator ρAB ∈ S(A ⊗ B) the conditional entropy of A given
B is

H(A|B)ρ := H(AB)ρ − H(B)ρ . (2.51)

Finally, for a tripartite density operator ρABC ∈ S(A ⊗ B ⊗ C) we define the con-
ditional mutual information between A and C given B as

I (A : C |B)ρ := H(AB)ρ + H(BC)ρ − H(ABC)ρ − H(B)ρ . (2.52)
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All these entropy measures can be expressed in terms of the relative entropy. Before
defining the relative entropy we discuss another measure called fidelity that can be
used to determine how close two nonnegative operators are.

2.5.1 Fidelity

The fidelity is measure of distance between two nonnegative operators that is ubiq-
uitous in quantum information theory. Oftentimes it is defined for density operators
only, however here we define it for general nonnegative operators and discuss certain
properties.

Definition 2.23 For ρ, σ ∈ P(A) the fidelity between ρ and σ is defined by

F(ρ, σ ) := ∥∥√ρ
√

σ
∥∥2
1 . (2.53)

The fidelity has various different characterizations.5 One that is particularly useful
is due to Uhlmann and relates the fidelity to the notion of purifications [23].

Theorem 2.24 (Uhlmann) Let ρAR = |ψ〉〈ψ |AR and σAR = |φ〉〈φ|AR be
purifications of ρA ∈ P(A) and σA ∈ P(A), respectively. Then

F(ρA, σA) = sup
UR∈U(R)

|〈ψ |(idA ⊗ UR)|φ〉|2 . (2.54)

Another characterization of the fidelity is due to Alberti [24].

Theorem 2.25 (Alberti) Let ρ, σ ∈ P(A). Then

F(ρ, σ ) = inf
ω∈P+(A)

(tr ρω)(tr σω−1) . (2.55)

One reason the fidelity plays an important role in quantum information theory is
due to the fact that it has nice properties. In the following we list some of them.

5We would like to draw the readers attention to the fact that in certain textbooks the fidelity is
defined without the square.
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Proposition 2.26 The fidelity defined in (2.53) satisfies:

1. Multiplicativi t y : F(ρ1 ⊗ ρ2, σ1 ⊗ σ2) = F(ρ1, σ1)F(ρ2, σ2) f or all ρ1, ρ2, σ1, σ2 ∈ P(A).

2. Nonnegativi t y : F(ρ, σ ) ∈ [0, 1] f or all ρ, σ ∈ S(A). Moreover F(ρ, σ ) = 1 i f and only
i f ρ = σ, and F(ρ, σ ) = 0 i f and only i f ρσ = 0.

3. I sometric invariance : F(VρV †, V σ V †) = F(ρ, σ ) f or all V ∈ V(A, B), ρ, σ ∈ P(A)

4. D P I : F(ρ, σ ) ≤ F
(
E (ρ),E (σ )

)
f or all ρ, σ ∈P(A) and all E ∈TPCP(A, B).

5. Joint concavi t y : (ρ, σ ) �→ F(ρ, σ ) is jointly concave on P(A) × P(A).

6. Orthogonal states : F(tρ1 + (1 − t)ρ2, tσ1 + (1 − t)σ2) = t F(ρ1, σ1) + (1 − t)F(ρ2, σ2)

f or t ∈ [0, 1], ρ1 ∈ S(A), ρ2 ∈ S(B), σ1 ∈ P(A), σ2 ∈ P(B) such that
both ρ1 and σ1 are orthogonal to both ρ2 and σ2.

Proof The multiplicativity property follows from the fact that Schatten norms are
multiplicative under the tensor product

F(ρ1 ⊗ ρ2, σ1 ⊗ σ2) = ∥∥√ρ1 ⊗ ρ2
√

σ1 ⊗ σ2

∥∥2
1 = ∥∥√ρ1

√
σ1 ⊗ √

ρ2
√

σ2

∥∥2
1
(2.56)

= ∥∥√ρ1
√

σ1

∥∥2
1

∥∥√ρ2
√

σ2

∥∥2
1 = F(ρ1, σ1)F(ρ2, σ2) . (2.57)

The nonnegativity follows directly from Uhlmann’s theorem. By defintion we see
that F(ρ, σ ) = 0 if and only if

√
ρ
√

σ = 0 which is equivalent to ρσ = 0. Since
Schatten norms are unitarily invariant we find

F(VρV †, V σ V †) =
∥∥∥√VρV †

√
V σ V †

∥∥∥2
1

= ∥∥V
√

ρV †V
√

σ V †
∥∥2
1 = F(ρ, σ ) ,

(2.58)

which proves that the fidelity is isometric invariant.
We first show that data-processing inequality for the partial trace, i.e., we show

that

F(ρAB, σAB) ≤ F(ρA, σA) for all ρAB, σAB ∈ P(A ⊗ B) . (2.59)

Let |ψ〉AB R and |φ〉AB R be purifications of ρAB and σAB , respectively. Uhlmann’s
theorem shows that

F(ρAB, σAB) = sup
UR∈U(R)

|〈ψ |idAB ⊗ UR|φ〉|2 (2.60)

and

F(ρA, σA) = sup
UB R∈U(B⊗R)

|〈ψ |idA ⊗ UB R|φ〉|2 . (2.61)
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This proves (2.59). By the Stinespring dilation (see Proposition 2.20) there exists an
isometry V ∈ V(A, B ⊗ R) such that

F
(
E (ρ),E (σ )) = F(trR VρV †, trR VρV †) ≥ F(VρV †, VρV †) = F(ρ, σ ) ,

(2.62)

where the inequality step uses the DPI for the partial trace (as shown in 2.59). The
final step follows from the isometric invariance of the fidelity.

The joint concavity property of the fidelity follows from Alberti’s theorem. For
t ∈ [0, 1] and ρ1, ρ2, σ1, σ2 ∈ P(A) we have

F
(
tρ1 + (1 − t)ρ2, tσ1 + (1 − t)σ2

)
= inf

ω∈P+(A)

{
t (tr ρ1ω)(tr σ1ω

−1) + (1 − t)(tr ρ2ω)(tr σ2ω
−1)
}

(2.63)

≥ t inf
ω∈P+(A)

{
(tr ρ1ω)(tr σ1ω

−1)
}

+ (1 − t) inf
ω∈P+(A)

{
(tr ρ2ω)(tr σ2ω

−1)
}

(2.64)

= t F(ρ1, σ1) + (1 − t)F(ρ2, σ2) . (2.65)

It thus remains to prove the final statement of the proposition. The joint concavity
of the fidelity implies that

F
(
tρ1 + (1 − t)ρ2, tσ1 + (1 − t)σ2

) ≥ t F(ρ1, σ1) + (1 − t)F(ρ2, σ2) . (2.66)

For the other direction, let Π1 and Π2 denote the projectors onto the joint support of
ρ1, σ1 and ρ2, σ2, respectively. Furthermore, let ρ̄ = tρ1 + (1 − t)ρ2 and σ̄ = tσ1 +
(1 − t)σ2. The orthogonality assumption implies that Π1 and Π2 are orthogonal and

tρ1 = Π1ρ̄Π1 and (1 − t)ρ2 = Π2ρ̄Π2 . (2.67)

Let |ψ̄〉 and |φ̄〉 be purifications of ρ̄ and σ̄ , respectively, such that F(ρ̄, σ̄ ) =
|〈ψ̄ ||φ̄〉|2. Equation (2.67) thus implies that Π1|ψ̄〉 and Π2|ψ̄〉 are purifications of
tρ1 and (1 − t)ρ2, respectively. Similarly, Π1|φ̄〉 and Π2|φ̄〉 are purifications of tσ1

and (1 − t)σ2. By Uhlmann’s theorem (see Theorem 2.24) we thus have

F(ρ̄, σ̄ ) = ∣∣〈ψ̄ ||φ̄〉∣∣2 = ∣∣〈ψ̄ |Π1|φ̄〉 + 〈ψ̄ |Π2|φ̄〉∣∣2 ≤ t F(ρ1, σ1) + (1 − t)F(ρ2, σ2) .

(2.68)

Combining this with (2.66) proves the assertion. �
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2.5.2 Relative Entropy

Many entropy measures can be expressed in terms of the relative entropy.

Definition 2.27 For ρ ∈ S(A) and σ ∈ P(A) the relative entropy between ρ

and σ is defined as

D(ρ‖σ) :=
{
tr ρ(log ρ − log σ) if ρ 	 σ

+∞ otherwise .
(2.69)

It is immediate to verify that H(A)ρ = −D(ρA‖idA), H(A|B)ρ = −D(ρAB‖idA

⊗ ρB) and

I (A : C |B) = D
(
ρABC‖ exp(log ρAB + log ρBC − log ρB)

)
. (2.70)

As a result, in order to understand the mathematical properties of these several
different entropy measures it suffices to analyze the relative entropy.

Proposition 2.28 (Properties of relative entropy) The relative entropy defined
in (2.69) satisfies

1. Additivi t y : D(ρ1 ⊗ ρ2‖σ1 ⊗ σ2) = D(ρ1‖σ1) + D(ρ2‖σ2) f or all ρ1 ∈ S(A),

σ1 ∈ P(A), ρ2 ∈ S(B), σ2 ∈ P(B).

2. Nonnegativi t y : D(ρ‖σ) ≥ 0 f or all ρ, σ ∈ S(A) wi th equali t y i f and only i f ρ = σ.

3. I sometric invariance : D(VρV †‖V σ V †) = D(ρ‖σ) f or all V ∈ V(A, B), ρ ∈ S(A), σ ∈ P(A).

4. D P I : D(ρ‖σ)≥ D
(
E (ρ)‖E (σ )

)
f or all ρ ∈S(A),σ ∈P(A),E∈TPCP(A, B).

5. Joint convexi ty : (ρ, σ ) �→ D(ρ‖σ) is jointly convex on P(A) × P(A).

6. Orthogonal states : D(tρ1 + (1 − t)ρ2‖tσ1 + (1 − t)σ2) = t D(ρ1‖σ1) + (1 − t)D(ρ2‖σ2)
f or t ∈ [0, 1], ρ1 ∈ S(A), ρ2 ∈ S(B), σ1 ∈ P(A), σ2 ∈ P(B) such that
bothρ1 and σ1 are orthogonal to both ρ2 and σ2.

Proof The properties of the tensor product explained in Exercise 3.10 show that

D(ρ1 ⊗ ρ2‖σ1 ⊗ σ2) = tr ρ1 log ρ1 + tr ρ2 log ρ2 − tr ρ1 log σ1 − tr ρ2 log σ2

(2.71)

= D(ρ1‖σ1) + D(ρ2‖σ2) , (2.72)

which proves the first property. The positive definiteness property of the relative
entropy follows directly from Klein’s inequality (see Theorem 2.14 with f (t) =
t log t which is strictly convex for t ∈ (0,∞)). The relative entropy is invariant
under isometries since log VρV † = V (log ρ)V † for every isometry V and since the
trace is cyclic.

The proofs of the data processing inequality and the joint convexity of the relative
entropy requiremore effort.Wepostpone theproof of these twoproperties toSect. 5.4.

https://doi.org/10.1007/978-3-319-78732-9_3
https://doi.org/10.1007/978-3-319-78732-9_5
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There we prove strengthened versions of the DPI (see Theorem 5.18) and the joint
convexity property (see Corollary 5.24) that immediately imply the two statements
of the Lemma.

It thus remains to prove the last assertion of the proposition. By the orthogonality
assumption we have

log
(
tρ1 + (1 − t)ρ2

) = log tρ1 + log(1 − t)ρ2 = log t + log(1 − t) + log ρ1 + log ρ2 ,

(2.73)

which thus implies the desired statement. �

The relative entropy features a variational formula, i.e., it can be expressed a the
following convex optimization problem [25, 26], which will be important in Chap. 5.

Lemma 2.29 (Variational formula for relative entropy) Let ρ ∈ S(A) and
σ ∈ P(A). Then

D(ρ‖σ) = sup
ω∈P+(A)

{
tr ρ logω − log tr elog σ+logω

}
(2.74)

= sup
ω∈P+(A)

{
tr ρ logω + 1 − tr elog σ+logω

}
. (2.75)

Proof We first show that for H ∈ H(A) and σ ∈ P+(A) we have

log tr eH+log σ = max
ρ∈S(A)

{tr ρH − D(ρ‖σ)} . (2.76)

To see this define

f (ρ) = tr ρH − D(ρ‖σ) . (2.77)

Let ρ =∑λ∈spec(ρ) λΠλ denote the spectral decomposition of ρ. Since ρ ∈ S(A)we
have

∑
λ∈spec(ρ) λ ≤ 1 and λ ≥ 0. We therefore can write

f

⎛
⎝ ∑

λ∈spec(ρ)

λΠλ

⎞
⎠ =

∑
λ∈spec(ρ)

(λtrΠλ H + λtrΠλ log σ − λ log λ) . (2.78)

Since

∂

∂λ
f

⎛
⎝ ∑

λ∈spec(ρ)

λΠλ

⎞
⎠
∣∣∣∣
λ=0

= +∞ , (2.79)

https://doi.org/10.1007/978-3-319-78732-9_5
https://doi.org/10.1007/978-3-319-78732-9_5
https://doi.org/10.1007/978-3-319-78732-9_5
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we can conclude that the minimizer of (2.76) is a strictly positive operator ρ̃ with
tr ρ̃ = 1. For any K ∈ H(A) with tr K = 0 we have

0 = d

dt
f (ρ̃ + t K )|t=0 = tr K (H + log σ − log ρ̃) . (2.80)

This shows that H + log σ − log ρ̃ is proportional to the identity operator and hence

ρ̃ = eH+log σ

tr eH+log σ
and f (ρ̃) = log tr eH+log σ , (2.81)

which proves (2.76).
We are now ready to prove (2.74). Equation (2.76) implies that for ω ∈ P+(A) the

functional

H(A) � H �→ log tr eH+logω (2.82)

is convex.6 Let H̃ = log ρ − log σ and consider the function

H(A) � H �→ g(H) := tr ρH − log tr eH+log σ , (2.83)

which is concave as explained before. For any K ∈ H(A) we have

d

dt
g(H̃ + t K )|t=0 = 0 , (2.84)

since tr ρ = 1 and d
dt tr e

log ρ+t K |t=0 = tr ρK . As a result, H̃ is the maximizer of g
and

g(H̃) = tr ρ(log ρ − log σ) = D(ρ‖σ) . (2.85)

Recalling that every H ∈ H(A) can be written as H = logω for some ω ∈ P+(A)

then proves (2.74).
It thus remains to show (2.75). Note that log x ≤ x − 1 for x ∈ R+ and hence

log tr elog σ+logω ≤ tr elog σ+logω − 1. Consequently, we have

sup
ω∈P+(A)

{
tr ρ logω − log tr elog σ+logω

} ≥ sup
ω∈P+(A)

{
tr ρ logω + 1 − tr elog σ+logω

}
.

(2.86)

Since tr ρ logω − log tr elog σ+logω is invariant under the substitution ω → αω for
α ∈ R+ we can assumewithout loss of generality thatω is such that tr elog σ+logω = 1.

6This can be seen as follows. Let X � x �→ f (x, y) be an affine function. Then, g(x) =
maxy∈Y f (x, y) is convex since for t ∈ [0, 1] we have g(t x1 + (1 − t)x2) = maxy∈Y { f (t x1 +
(1 − t)x2, y)} = maxy∈Y {t f (x1, y) + (1 − t) f (x2, y)} ≤ tg(x1) + (1 − t)g(x2).
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That is, we have

sup
ω∈P+(A)

{
tr ρ logω − log tr elog σ+logω

}

= sup
ω∈P+(A)

{
tr ρ logω − log tr elog σ+logω : tr elog σ+logω = 1

}

(2.87)

≤ sup
ω∈P+(A)

{
tr ρ logω − 1 + tr elog σ+logω

}
. (2.88)

Combining this with (2.86) proves (2.75). �

Exercise 2.30 Verify that the optimization problem in Lemma 2.29 is convex opti-
mization problem (i.e., maximizing a concave function over a convex set [27]).

Remark 2.31 Another variational formula for the relative entropy that is similar
to (2.76) has been derived in [28]. It states that for any H ∈ H(A) and σ ∈ P+(A) we
have

tr eH+log σ = max
ω∈P+(A)

{tr ωH − D(ω‖σ) + tr ω} . (2.89)

Exercise 2.32 For any B ∈ P+(A) the trace features the following variational for-
mula [28]

tr B = max
X∈P+(A)

{tr X − D(X‖B)} . (2.90)

Use Klein’s inequality (see Theorem 2.14) to prove (2.90) and show how (2.90) can
be used to verify (2.89).

2.5.3 Measured Relative Entropy

Another quantity that will be important in this book is the measured relative entropy
which is defined as a maximization of the classical relative entropy over all measure-
ment statistics that are attainable from two quantum states.

Definition 2.33 For ρ ∈ S(A) and σ ∈ P(A) the measured relative entropy
between ρ and σ is defined as

DM(ρ‖σ) := sup
(X,M)

D
(
Pρ,M

∥∥Pσ,M
)
, (2.91)

with POVMs M on the power-set of a finite set X , and Pρ,M(x) := tr ρM(x).
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At first sight this definition seems cumbersome because we cannot restrict the
size of X that we optimize over. Alternatively, the measured relative entropy can
be expressed as the supremum of the relative entropy with measured inputs over all
POVMs, i.e.,

DM(ρ‖σ) = sup
M∈M

D
(
M(ρ)‖M(σ )

)
, (2.92)

where M is the set of all classical-quantum channels M(ω) =∑x (tr Mxω)|x〉〈x |
with (Mx ) a POVM and (|x〉) an orthonormal basis.

As we will see, the measured relative entropy has interesting properties. Further-
more it has a variational characterization, i.e., it can be expressed as the following
convex optimization problem [26, 29].

Lemma 2.34 (Variational formula for measured relative entropy) Let ρ ∈
S(A) and σ ∈ P(A). Then

DM(ρ‖σ) = sup
ω∈P+(A)

{tr ρ logω − log tr σω} = sup
ω∈P+(A)

{tr ρ logω + 1 − tr σω} .

(2.93)

Proof We start by defining the projective measured relative entropy, where the
measurements are assumed to be projective, i.e.,

DP(ρ‖σ) := sup
{Πk }k∈[dim(A)]

{
dim(A)∑

k=1

trΠkρ log
trΠkρ

trΠkσ

}
, (2.94)

where {Πk}dim(A)
k=1 is a set ofmutually orthogonal projectors.Without loss of generality

it can be assumed that these projectors are rank-one as any course graining of the
measurement outcomes can only reduce the relative entropy due to its data-processing
inequality (see Proposition 2.28). We now first show that

DP(ρ‖σ) = sup
ω∈P+(A)

{tr ρ logω − log tr σω} = sup
ω∈P+(A)

{tr ρ logω + 1 − tr σω} .

(2.95)

If ρ �	 σ , all expressions in (2.95) are unbounded. We therefore assume that ρ 	 σ .
We can write
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sup
ω∈P+(A)

{tr ρ logω + 1 − tr σω}

= sup
{Πk }k∈[dim(A)]

sup
{λk }k∈[dim(A)]

⎧⎨
⎩
dim(A)∑

k=1

((trΠkρ) (log λk + 1) − λk trΠkσ)

⎫⎬
⎭ ,

(2.96)

where λk > 0 are the eigenvalues ofω corresponding to the eigenvectors given by the
rank-one projectorsΠk and we used that tr ρ = 1. Since ρ 	 σ , for all k ∈ [dim(A)]
such that trΠkσ = 0wealso have trΠkρ = 0. If trΠkσ > 0 and trΠkρ = 0, then the
supremum of the k-th term is supλk>0 −λk trΠkω = 0 which is achieved for λk →
0. As a result, the only relevant case is trΠkσ > 0 and trΠkρ > 0. Since, λk �→
(trΠkρ) (log λk + 1) − λk trΠkσ is concavewithmaximizerλ�

k = trΠkρ

trΠkσ
. Combining

this with (2.96) shows that

sup
ω∈P+(A)

{tr ρ logω + 1 − tr σω} = sup
{Πk }k∈[dim(A)]

⎧⎨
⎩
dim(A)∑

k=1

trΠkρ log
trΠkρ

trΠkσ

⎫⎬
⎭ = DP(ρ‖σ) .

(2.97)

We note that log x ≤ x − 1 for x ∈ R+ and hence − log tr σω ≥ 1 − tr σω. This
shows that

sup
ω∈P+(A)

{tr ρ logω − log tr σω} ≥ sup
ω∈P+(A)

{tr ρ logω + 1 − tr σω} . (2.98)

Since tr ρ logω − log tr σω is invariant under the substitution ω → αω for α ∈ R+
we can assume without loss of generality that ω is such that tr σω = 1. That is, we
have

sup
ω∈P+(A)

{tr ρ logω − log tr σω} = sup
ω∈P+(A)

{tr ρ logω − log tr σω : tr σω = 1}
(2.99)

≤ sup
ω∈P+(A)

{tr ρ logω + 1 − tr σω} . (2.100)

Combining (2.97), (2.98), and (2.100) proves (2.95).
It thus remains to show that DP(ρ‖σ) = DM(ρ‖σ). We note that DP(ρ‖σ) ≤

DM(ρ‖σ) holds by definition and if ρ �	 σ we have DP(ρ‖σ) = DM(ρ‖σ) = +∞.
It thus suffices to prove DP(ρ‖σ) ≥ DM(ρ‖σ) for ρ 	 σ . Let (X , M) be a POVM
that achieves the measured relative entropy and recall that Pρ,M (x) := tr M(x)ρ. For
X ′ := {x ∈ X : Pρ,M(x)Pσ,M (x) > 0} we find
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DM(ρ‖σ) = D(Pρ,M‖Pσ,M) (2.101)

=
∑

x∈X ′
Pρ,M (x) log

Pρ,M(x)

Pσ,M(x)
(2.102)

= tr ρ
∑

x∈X ′
M(x) log

Pρ,M(x)

Pσ,M(x)
(2.103)

= tr ρ
∑

x∈X ′

√
M(x) log

(
Pρ,M (x)

Pσ,M(x)
idA

)√
M(x) . (2.104)

The operator Jensen inequality (see Theorem 2.15) then shows that

DM(ρ‖σ) ≤ tr ρ log

(∑
x∈X ′

M(x)
Pρ,M (x)

Pσ,M(x)

)
= tr ρ logω + 1 − tr σω ≤ DP(ρ‖σ) ,

(2.105)

for ω =∑x∈X ′ M(x)
Pρ,M (x)

Pσ,M (x)
, since

tr σω =
∑

x∈X ′
Pσ,M(x)

Pρ,M(x)

Pσ,M(x)
=
∑

x∈X ′
Pρ,M(x) = 1 . (2.106)

The final step in (2.105) follows from (2.95). This proves the assertion. �

The measured relative entropy has remarkable properties. Several of them are
directly inherited from the relative entropy.

Proposition 2.35 (Properties of measured relative entropy) The measured relative
entropy defined in (2.91) satisfies

1. Submultiplicativi t y : DM(ρ1 ⊗ ρ2‖σ1 ⊗ σ2) ≥ DM(ρ1‖σ1) + DM(ρ2‖σ2) f or all ρ1 ∈ S(A),

σ1 ∈ P(A), ρ2 ∈ S(B), σ2 ∈ P(B).

2. Nonnegativi t y : DM(ρ‖σ) ≥ 0 f orall ρ, σ ∈ S(A) wi th equali t y i f and only i fρ = σ.

3. I sometric invariance : DM(VρV †‖V σ V †) = DM(ρ‖σ) f or all V ∈ V(A, B), ρ ∈ S(A),

σ ∈ P(A).

4. D P I : DM(ρ‖σ) ≥ DM

(
E (ρ)‖E (σ )

)
f or all ρ ∈ S(A), σ ∈ P(A),

E ∈ TPCP(A, B).

5. Joint convexi ty : (ρ, σ ) �→ DM(ρ‖σ) is jointly convex on P(A) × P(A).

6. Orthogonal states : DM(tρ1+(1−t)ρ2‖tσ1+(1−t)σ2)= t DM(ρ1‖σ1)+(1−t)DM(ρ2‖σ2)
f or t ∈ [0, 1], ρ1 ∈ S(A), ρ2 ∈ S(B), σ1 ∈ P(A), σ2 ∈ P(B) such that
both ρ1 and σ1 are orthogonal to both ρ2 and σ2.

Proof The submultiplicativity follows by definition of themeasured relative entropy.
The nonnegativity property is directly inherited from the classical relative entropy.
The isometric invariance can be easily derived from the variational formula (2.93).
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Let ω ∈ P(B) be the optimizer for DM(VρV †‖V σ V †). Then,

DM(VρV †‖V σ V †) = tr VρV † logω − log tr V σ V †ω (2.107)

= tr ρ log(V †ωV ) − log tr σ V †ωV (2.108)

≤ DM(ρ‖σ) , (2.109)

where the final inequality step uses that V †ωV ∈ P(A). Conversely, for ω ∈ P(A)

being the optimizer for DM(ρ‖σ) we find

DM(VρV †‖V σ V †) ≥ tr VρV † log V ωV † − log tr V σ V †V ωV † (2.110)

= tr ρ logω − log tr σω (2.111)

= DM(ρ‖σ) . (2.112)

The joint convexity follows from the joint convexity of the relative entropy. For
t ∈ [0, 1], ρ1, ρ2 ∈ S(A), σ1, σ2 ∈ P(A) we have

DM

(
tρ1+(1−t)ρ2‖tσ1+(1−t)σ2

) = D
(
t Pρ1,M + (1 − t)Pρ2,M‖t Pσ1,M + (1 − t)Pσ2,M

)
(2.113)

≤ t D(Pρ1,M‖Pσ1,M ) + (1 − t)D(Pρ2,M‖Pσ2,M )

(2.114)

≤ t DM(ρ1‖σ1) + (1 − t)DM(σ1‖σ2) . (2.115)

It is well-known (see, e.g. [20, Proposition 4.2]) that the joint convexity property
(together with the unitary invariance and the submultiplicativity property) implies
the data-processing inequality.

It thus remains to verify the final statement of the proposition. Recall that the
measured relative entropy can be expressed as (2.92). Let (Mx ) and (M ′

y) be POVMs
such that

M(tρ1 + (1 − t)ρ2) = t
∑

x

tr Mxρ1|x〉〈x | + (1 − t)
∑

y

tr M ′
yρ2|y〉〈y| . (2.116)

We thus find

DM

(
tρ1 + (1 − t)ρ2‖tσ1 + (1 − t)σ2

)
≥ D

(
M(tρ1 + (1 − t)ρ2)‖M(tσ1 + (1 − t)σ2)

)
(2.117)

= t D

(∑
x

tr Mx ρ1|x〉〈x |
∥∥∥∑

x
tr Mx σ1|x〉〈x |

)
+ (1 − t)D

⎛
⎝∑

y
tr M ′

yρ2|y〉〈y|
∥∥∥∑

y
tr Myσ2|y〉〈y|

⎞
⎠

where final penultimate step uses Proposition 2.28. As this is valid for all POVMs
(Mx ) and (M ′

y), we can take the supremum over those and thus obtain
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DM

(
tρ1 + (1 − t)ρ2‖tσ1 + (1 − t)σ2

) ≥ t DM(ρ1‖σ1) + (1 − t)DM(ρ2‖σ2) .

(2.118)

The other direction follows by the joint convexity of the relative entropy (see Propo-
sition 2.28). By (2.92) there exists a POVM (M̄x ) such that

DM

(
tρ1 + (1 − t)ρ2‖tσ1 + (1 − t)σ2

)

= D

(∑
x

(t tr M̄x ρ1 + (1 − t)tr M̄x ρ2)|x〉〈x |
∥∥∥∑

x
(t tr M̄x σ1 + (1 − t)tr M̄x σ2)|x〉〈x |

)
(2.119)

≤ t D

(∑
x

tr M̄x ρ1|x〉〈x |
∥∥∥∑

x
tr M̄x σ1|x〉〈x |

)
+ (1 − t)D

(∑
x

tr M̄x ρ2|x〉〈x |
∥∥∥∑

x
tr M̄x σ2|x〉〈x |

)

≤ t DM(ρ1‖σ1) + (1 − t)DM(ρ2‖σ2) . (2.120)

Combining this with (2.118) proves the assertion. �

Unlike the relative entropy, the measured relative entropy is not additive under tensor
products. The following proposition states how the measured relative entropy is
related to the relative entropy and the fidelity.

Proposition 2.36 Let ρ ∈ S(A) and σ ∈ P(A). The measured relative entropy
defined in (2.91) satisfies

1. DM(ρ‖σ) ≤ D(ρ‖σ) with equality if and only if [ρ, σ ] = 0.
2. DM(ρ‖σ) ≥ − log F(ρ, σ ).
3. limn→∞ 1

n DM(ρ⊗n‖σ⊗n) = D(ρ‖σ).

Proof The first property of the proposition follows directly from the Golden-
Thompson inequality (see Theorem 4.1) together with the variational formulas
for the relative and measured relative entropy (see Lemma 2.29 and Lemma 2.34,
respectively). To prove the second property, we recall that by Alberti’s theorem (see
Theorem 2.25) there exists ω ∈ P+(A) such that

− log F(ρ, σ ) = − log tr ρω − log tr σω−1 (2.121)

≤ − log tr elog ρ+logω − log tr σω−1 (2.122)

≤ tr ρ logω−1 − log tr σω−1 (2.123)

≤ DM(ρ‖σ) , (2.124)

where the first inequality follows from the Golden-Thompson inequality. The second
inequality uses the Peierls-Bogoliubov inequality (see Corollary 2.12 applied for
H1 = log ρ and H2 = logω). The final step uses the variational formula for the
measured relative entropy (see Lemma 2.34). The third statement of the proposition
is proven in [20, Sect. 4.3.3]. �

We have seen in Proposition 2.35 that the measured relative entropy is jointly convex
in its arguments. The following lemma shows that the measured relative entropy

https://doi.org/10.1007/978-3-319-78732-9_4
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also satisfies a weak form of a concavity property in its second argument [30,
Lemma 3.11].

Lemma 2.37 Let X be a compact space. For any probability measure μ on X, any
sequence (σx )x∈X such that σx ∈ P(A) for all x ∈ X, any ρ ∈ S(A) and any n ∈ N,
we have

1

n
DM

(
ρ⊗n

∥∥∥
∫

X
μ(dx)σ⊗n

x

)
≥ min

σ∈conv{σx : x∈X} DM(ρ‖σ) . (2.125)

Proof The variational characterization for the measured relative entropy given by
Lemma 2.34 implies

DM

(
ρ⊗n

∥∥∥
∫

X
μ(dx)σ⊗n

x

)
≥ sup

ω∈P+(A)

{
tr
(
ρ⊗n logω⊗n)− log tr

(∫
X

μ(dx)σ⊗n
x ω⊗n

)}

(2.126)

≥ sup
ω∈P+(A)

min
x∈X

{
ntr(ρ logω) − n log tr(σxω)

}
. (2.127)

For x ∈ R+, clearly log x ≤ x − 1 and thus − log tr(σω) ≥ 1 − tr(σω) for all ω ∈
P+(A). This implies that

DM

(
ρ⊗n

∥∥∥
∫

X
μ(dx)σ⊗n

x

)
≥ n sup

ω∈P+(A)

min
x∈X

{
tr(ρ logω) + 1 − tr(σxω)

}
(2.128)

≥ n sup
ω∈P+(A)

min
σ∈conv{σx : x∈X}

{
tr(ρ logω) + 1 − tr(σω)

}
.

(2.129)

The function ω �→ tr(ρ logω) + 1 − tr(σω) is concave and the function σ �→
tr(ρ logω) + 1 − tr(σω) is linear. The set conv{σx : x ∈ X} is compact and convex
and the set of strictly positive operators is convex. As a result we can apply Sion’s
minimax theorem [31] which gives

1

n
DM

(
ρ⊗n

∥∥∥
∫

X
μ(dx)σ⊗n

x

)
≥ min

σ∈conv{σx : x∈X} sup
ω∈P+(A)

{
tr(ρ logω) + 1 − tr(σω)

}

(2.130)

= min
σ∈conv{σx : x∈X} DM(ρ‖σ) , (2.131)

where the final step follows by the variational characterization of the measured
relative entropy given in Lemma 2.34. �

Remark 2.38 We note that Lemma 2.37 is no longer valid if the measured relative
entropy terms in (2.125) are replaced with relative entropy terms. This can be seen by
contradiction. Suppose (2.125) is valid for relative entropies. Theorem 12 from [32]
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implies that for any ρABC ∈ S(A ⊗ B ⊗ C) we have7

I (A : C |B)ρ ≥ lim sup
n→∞

1

n
D
(
ρ⊗n

ABC‖
∫ ∞

−∞
dtβ0(t)T

[t]
B→BC(ρAB)⊗n

)

(2.132)
≥ D

(
ρABC‖RB→BC(ρAB)

) � (2.133)

where β0 is a probability density defined in (3.47),T
[t]

B→BC is a recovery map defined
in (5.2) for all t ∈ R, and a recovery map RB→BC ∈ TPCP(B, B ⊗ C). Inequal-
ity (2.133) however is in contradiction with [33, Sect. 5] (see Remark 5.7 for further
details) which shows that (2.125) is not valid for relative entropies.

2.5.4 Rényi Relative Entropy

There exist different families of relative entropies that are useful in quantum infor-
mation theory. Among the most prominent examples are the so-called Rényi relative
entropies that are carefully discussed in several textbooks such as, e.g., [20]. In this
section, we review a specific member of this family called the minimal Rényi relative
entropy that has been introduced in [34, 35].

Definition 2.39 For α ∈ (0, 1) ∪ (1,∞), ρ ∈ S(A) and σ ∈ P(A) the mini-
mal Rényi relative entropy between ρ and σ is defined as

Dα(ρ‖σ) :=
{

α
α−1 log

∥∥∥σ 1−α
2α ρσ

1−α
2α

∥∥∥
α

if ρ 	 σ or α < 1

+∞ otherwise .
(2.134)

The minimal Rényi relative entropy is also known as sandwiched Rényi relative
entropy. It satisfies many desirable properties. We will only discuss those that are
relevant for this book. The interested reader can find a more detailed treatment about
this entropy measure in [20].

The family of minimal Rényi relative entropies comprises three particularly well-
known one-shot relative entropies, i.e., the min-relative entropy [36]

Dmin(ρ‖σ) := − log
∥∥√ρ

√
σ
∥∥2
1 = − log F(ρ, σ ) = D 1

2
(ρ‖σ) , (2.135)

the relative entropy

7This is explained in more detail in Remark 5.8.

https://doi.org/10.1007/978-3-319-78732-9_3
https://doi.org/10.1007/978-3-319-78732-9_5
https://doi.org/10.1007/978-3-319-78732-9_5
https://doi.org/10.1007/978-3-319-78732-9_5
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D(ρ‖σ) = lim
α→1

Dα(ρ‖σ) , (2.136)

and the max-relative entropy [36, 37]

Dmax(ρ‖σ) := inf{λ ∈ R : ρ ≤ 2λσ } = log
∥∥∥σ− 1

2 ρσ− 1
2

∥∥∥∞
= lim

α→∞ Dα(ρ‖σ) .

(2.137)

As the names suggest, the min-relative entropy cannot be larger than themax-relative
entropy, or more precisely we have

Dmin(ρ‖σ) ≤ D(ρ‖σ) ≤ Dmax(ρ‖σ) , (2.138)

with strict inequalities in the generic case. The max-relative entropy turns out to
be the largest relative entropy measure that satisfies the data-processing inequality
and is additive under tensor products [20, Sect. 4.2.4]. It is known that the minimal
α-Rényi relative entropy is monotonically increasing in α [34].

Lemma 2.40 Let ρ ∈ S(A), σ ∈ P(A), α, α′ ∈ (0,∞) such that α ≤ α′. Then

Dα(ρ‖σ) ≤ Dα′(ρ‖σ) . (2.139)

The minimal Rényi divergence vanishes if and only if its two arguments coincide,
i.e.,

Dα(ρ‖σ) = 0 for α ∈ ( 12 , 1) ∪ (1,∞) ⇐⇒ ρ = σ . (2.140)

To see this we note that Lemma 2.40 guarantees that Dα(ρ‖σ) = 0 implies D 1
2
(ρ‖

σ) = 0 and hence by Proposition 2.26 we have ρ = σ . The other direction follows
by definition of the minimal Rényi divergence.

It is well-known that the relative entropy does not satisfy the triangle inequality.
For the three (classical) qubit states ρ = 1

2 |0〉〈0| + 1
4 id2, σ = 1

2 |1〉〈1| + 1
4 id2, and

ω = 1
2 id2 we have D(ρ‖σ) > D(ρ‖ω) + D(ω‖σ). The following lemma proves a

triangle-like inequality for the minimal quantum Rényi relative entropy [38, 39].

Lemma 2.41 Let ρ ∈ S(A), σ, ω ∈ P(A) and let α ∈ [ 12 ,∞). Then

Dα(ρ‖σ) ≤ Dα(ρ‖ω) + Dmax(ω‖σ) . (2.141)

Proof For α ∈ [ 12 , 1), the function t �→ t
1−α
α is operator monotone on [0,∞) (see

Table2.2). Furthermore, according to Proposition 2.10, the function P(A) � X �→
tr Xα is monotone. By definition of the max-relative entropy we find

Dα(ρ‖σ) = 1

α − 1
log tr

(
ρ

1
2 σ

1−α
α ρ

1
2

)α ≤ Dα(ρ‖ω) + Dmax(ω‖σ) . (2.142)
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For α ∈ (1,∞) the argument is exactly the same, where we note that
t �→ t

1−α
α is operator anti-monotone (see Table2.2). The case α = 1 then follows

by continuity. �

2.6 Background and Further Reading

We refer to Bhatia’s book [2, Chap. IV] for a comprehensive introduction to matrix
norms. Functions on Hermitian operators are carefully treated in Carlen’s book [7],
Bhatia’s book about matrix analysis [2] (see also [40] for an emphasis on positive
definite operators), Hiai and Petz’ book [41], Simon’s book [42], Ohya and Petz’
book [18], and Zhang’s book [43]. An important result for operator monotone and
operator convex function is the Löwner-Heinz theorem [44] (see also [45] for a
more general version) which is summarized in Table2.2. An alternative proof for
the Peierls-Bogoliubov theorem can be found in [7, Theorem 2.12]. Lieb’s theorem
was proven in the remarkable paper [8]. Tropp showed how Lieb’s theorem can be
derived from the joint convexity of the relative entropy [28].

Entropy measures are carefully discussed in various books, such as the one
by Ohya and Petz [18], Nielsen and Chuang [10], Wilde [21], Hayashi [46, 47],
Tomamichel [20], and Holevo [22]. The fidelity was introduced by Uhlmann [23]
and later popularized in quantum information theory by Josza [48]. The fidelity fea-
tures another characterization that is not discussed here. It can be expressed as a
semidefinite program [49]. Appendix B of [50] discussed further interesting prop-
erties of the fidelity. The relative entropy was introduced by Umegaki [51] and then
used in mathematical physics by Lindblad [52]. Recently it was shown [53] that
the DPI for the relative entropy is valid even for trace-preserving positive maps.
The measured relative entropy was first studied by Donald [54] as well as Hiai and
Petz [55]. More information about quantum channels can be found in Wolf’s lecture
notes [11] and Holevo’s book [22].
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Chapter 3
Tools for Non-commuting Operators

One eminent difference between classical physics and quantum mechanics is the
principle of complementarity. This phenomenon arises from the fact that quantum
mechanical operators (unlike classical ones) donot commute in general.Complemen-
tarity summarizes different purely quantum mechanical features such as uncertainty
relations [1, 2] or the wave-particle duality [3].

On a more technical level, the complementarity aspect of quantum mechanics
displays a major hurdle in the rigorous understanding of the behavior of quantum
mechanical systems. To name one example, consider the conditional mutual infor-
mation. Let PXY Z denote a classical tripartite distribution. It is straightforward to
verify that the conditional mutual information defined in (1.4) is nonnegative, i.e.,
I (X : Z |Y )P ≥ 0.1 For quantum mechanical systems this gets more complicated.
The celebrated strong subadditivity of quantum entropy (SSA) [4, 5] ensures that for
any tripartite density operator ρABC we have

I (A : C |B)ρ := H(AB)ρ + H(BC)ρ − H(ABC)ρ − H(B)ρ ≥ 0 . (3.1)

Unlike the classical case, this result is far from being trivial which is mainly due to
the fact that density operators and their marginals do not commute. We will discuss
the proof of SSA in Sect. 5.2.

Tounderstand the properties of quantummechanical systems,weneed tools to deal
with non-commuting operators. In this chapter, we will discuss two techniques that
can be useful for this purpose — the method of pinching and complex interpolation
theory. Another tool that is helpful are trace inequalities which are discussed in
Chap. 4.

1This follows for example immediately from the variational formula for the (classical) conditional
mutual information given in (1.7).
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46 3 Tools for Non-commuting Operators

3.1 Pinching

AnyHermitianoperator H ∈ H(A)has a spectral decomposition, i.e., it canbewritten
as

H =
∑

λ∈spec(H)

λΠλ , (3.2)

where λ ∈ spec(H) ⊆ R are unique eigenvalues and Πλ are mutually orthogonal
projectors. For κ > 0, let us define the following family of probability densities on
R

μκ(t) = 12

πκ3t4

(
3 + cos(κt) − 4 cos

(κt

2

))
. (3.3)

Its Fourier transform μ̂κ turns out to be a convolution of two centered triangular
functions of width κ , i.e.,

μ̂κ(ω) = 3

κ
(triκ � triκ)(ω) , (3.4)

where

triκ(x) :=
{
1 − 2|x |

κ
|x | ≤ κ

0 otherwise .
(3.5)

We immediately see that μ̂κ satisfies the following properties:

1. μ̂κ(0) = 1.

2. μ̂κ(ω) = 0 if and only if |ω| ≥ κ .

3. ω �→ μ̂κ(ω) is a real valued even function.

4. ω �→ μ̂κ(ω) is monotonically decreasing for ω ∈ R+.
5. μ̂κ(ω) ∈ [0, 1].
Exercise 3.1 Verify that μκ is a probability distribution on R for all κ > 0 and its
Fourier transform μ̂κ satisfies the properties given above.

3.1.1 Spectral Pinching

The motivation for studying the spectral pinching method arises from the following
(vague) question: Given two Hermitian operators H1 and H2 that do not commute.
Does there exist a method to modify one of the two operators such that they commute
without completely destroying the structure of the original operator? The spectral
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pinching method achieves this task. Before explaining this method in detail we have
to introduce the pinching map.

Definition 3.2 Let H ∈ H(A) with a spectral decomposition given in (3.2).
The pinching map with respect to H is defined as

PH : H(A) � X �→
∑

λ∈spec(H)

ΠλXΠλ . (3.6)

Pinchingmaps have several nice properties. They are trace-preserving, completely
positive, unital, self-adjoint, and can be viewed as dephasing operations that remove
off-diagonal blocks of an operator.2 As a result, if we pinch a Hermitian operator
H1 with respect to another Hermitian operator H2, the resulting operator PH2(H1)

commutes with H2. This will be explained more carefully in Lemma 3.5.

Exercise 3.3 Verify that the pinching map is trace-preserving, completely positive
and unital.

The pinching map features an alternative representation. It can be written as an
average over commuting unitaries. The spectral gap of a Hermitian operator H with
eigenvalues (λk)k is defined as the smallest distance of two distinct eigenvalues, i.e.,
ΔH := min{|λk − λ j | : λk 	= λ j }.
Lemma 3.4 (Integral representation of pinching map) Let H ∈ H(A) and μκ as
defined in (3.3). Then

PH (X) =
∫ ∞

−∞
dtμΔH (t) eit H Xe−it H for all X ∈ H(A) . (3.7)

Proof We start by recalling the spectral decomposition of H , i.e.,

H =
∑

λ∈spec(H)

λΠλ , (3.8)

and the fact that eigenvectors corresponding to distinct eigenvalues of Hermitian
operators are orthogonal. We thus have for any t ∈ R

eit H =
∑

λ∈spec(H)

eitλΠλ (3.9)

and

eit H Xe−it H =
∑

λ,λ′∈spec(H)

e−it (λ′−λ)ΠλXΠλ′ . (3.10)

2Hence the name pinching map, as it pinches the off-diagonal blocks.
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With this we obtain
∫ ∞

−∞
dtμΔH (t) eit H Xe−it H =

∫ ∞

−∞
dtμΔH (t)

∑

λ,λ′∈spec(H)

e−it (λ′−λ)ΠλXΠλ′ (3.11)

=
∑

λ,λ′∈spec(H)

ΠλXΠλ′ μ̂ΔH (λ′ − λ) , (3.12)

where in the final step we used the linearity of the integral to interchange the integral
and the summation. Employing Property 1 and Property 2 of μ̂ΔH and the definition
of the spectral gap ΔH we obtain

∫ ∞

−∞
dtμΔH (t) eit H Xe−it H =

∑

λ∈spec(H)

ΠλXΠλ = PH (X) , (3.13)

which proves the assertion.3 �
As mentioned at the beginning of this chapter, the pinching map can be used to

modify one Hermitian operator such that it commutes with another Hermitian oper-
ator. Pinching maps are user-friendly since they fulfill several nice properties. The
following lemma summarizes the most important ones. In Sect. 3.1.3.1, we demon-
strate how pinching maps can be used to prove the Golden-Thompson inequality (see
Theorem 4.1) in an intuitive and transparent way.

Lemma 3.5 (Properties of pinching map) Let H ∈ H(A). Then

1. [PH (X), H ] = 0 for all X ∈ H(A).

2. PH (X) ≥ 1
|spec(H)| X for all X ∈ P(A). (Pinching inequality)

3. trPH (X)H = tr XH for all X ∈ H(A).

4. f (PH (X)) ≤ PH ( f (X)) for all X ∈ H(A) and f (·) operator convex.
5. |||PH (X)||| ≤ |||X ||| for all X ∈ H(A) and any unitarily invariant norm

|||·|||.

Proof Since eigenvectors corresponding to distinct eigenvalues of Hermitian opera-
tors are orthogonal we find

PH (X)H =
∑

λ,λ′∈spec(H)

ΠλXΠλλ
′Πλ′ =

∑

λ∈spec(H)

λΠλXΠλ (3.14)

=
∑

λ,λ′∈spec(H)

λ′Πλ′ΠλXΠλ = HPH (X) , (3.15)

3We note that every probability measure whose Fourier transform satisfies Property 3.1 and Prop-
erty 3.1 would work for Lemma 3.4.
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which proves the first statement of the lemma.
The pinching inequality follows since

PH (X) =
∑

λ∈spec(H)

ΠλXΠλ = 1

|spec(H)|
|spec(H)|∑

y=1

UyXU
†
y ≥ 1

|spec(H)| X ,

(3.16)

for all X ∈ P(A), where spec(H) := {λ1, . . . , λ|spec(H)|} and

Uy :=
|spec(H)|∑

z=1

exp

(
i2πyz

|spec(H)|
)

Πλz (3.17)

are unitaries and we used the fact that

|spec(H)|∑

y=1

exp

(
i2πy(z − z′)
|spec(H)|

)
= |spec(H)|1{z = z′} . (3.18)

The inequality step in (3.16) follows form the facts thatUyXU †
y ≥ 0 andU|spec(H)| =

idA.
The third property of the lemma follows from the cyclic property of the trace and

the fact that eit H commutes with H for all t ∈ R. Lemma 3.4 shows that

trPH (X)H =
∫ ∞

−∞
dtμΔH (t)tr eit H Xe−it H H =

∫ ∞

−∞
dtμΔH (t)tr XH = tr XH .

(3.19)

The fourth property of the lemma follows form Jensen’s operator inequality (see
Theorem 2.15) which shows that in case f is operator convex we have

f
(
PH (X)

) = f
( ∑

λ∈spec(H)

ΠλXΠλ

)
≤

∑

λ∈spec(H)

Πλ f (X)Πλ = PH
(
f (x)

)
.

(3.20)

Finally it remains to prove the fifth property of the lemma. Lemma 3.4 shows that

∣∣∣∣

∣∣∣∣

∣∣∣∣
∫ ∞

−∞
dtμΔH (t)eit H Xe−it H

∣∣∣∣

∣∣∣∣

∣∣∣∣ ≤
∫ ∞

−∞
dtμΔH (t)

∣∣∣∣∣∣eit H Xe−it H
∣∣∣∣∣∣ (3.21)

=
∫ ∞

−∞
dtμΔH (t) |||X ||| (3.22)

= |||X ||| , (3.23)

where the penultimate step uses that eit H is unitary for all t ∈ R. �
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3.1.2 Smooth Spectral Pinching

The pinching map can change an operator considerably. More precisely, there exist
Hermitian operators H1, H2 ∈ H(A) such that PH2(H1) is far from H1. To see this
let δ ∈ (0, 1) and consider the following two-dimensional operators H1 = |0〉〈0|
and H2 = (1 − δ) id22 + δ|+〉〈+|, where |+〉 := 1√

2
(|0〉 + |1〉). A simple calculation

reveals that PH2(H1) = id2
2 and hence

∥∥H1 − PH2(H1)
∥∥∞ = 1

2 for any δ ∈ (0, 1).
We next discuss a smooth version of the pinching method which guarantees that

the pinching does not change the operator too much at the cost that Property 1 of
Lemma 3.5 no longer holds.

Definition 3.6 Let H ∈ H(A) with a spectral decomposition given in (3.2)
and κ > 0. The κ-smooth pinching map with respect to H is defined as

Pκ
H : H(A) � X �→

∫ ∞

−∞
dtμκ(t)e

it H Xe−it H , (3.24)

with probability density μκ defined in (3.2).

For any κ ≤ ΔH the κ-smooth pinching map coincides with the regular pinching
map given in Definition 3.2. This can be easily seen from the proof of Lemma 3.4. As
a result, whenever κ ≤ ΔH , we write PH instead of Pκ

H . The κ-smooth pinching
map fulfills several nice properties that are summarized in the following lemma.

Lemma 3.7 (Properties of smooth pinching map) Let κ > 0, H, X ∈ H(A),
and |||·||| a unitarily invariant norm. Then
1.

∣∣∣∣∣∣[H,Pκ
H (X)]∣∣∣∣∣∣ ≤ |||[H, X ]|||.

2.
∣∣∣∣∣∣[H,Pκ

H (X)]∣∣∣∣∣∣ ≤ κ |||X |||1{κ > ΔH }.
3. Let |h〉, |h′〉 be eigenvectors of H with corresponding eigenvalues h, h′

such that |h − h′| ≥ κ . Then, 〈h|Pκ
H (X)|h′〉 = 0.

4.
∥∥X − Pκ

H (X)
∥∥∞ ≤ ‖[H, X ]‖∞

12 log 2
πκ

.

5.
∣∣∣∣∣∣Pκ

H (X)
∣∣∣∣∣∣ ≤ |||X |||.

Properties 2 and 4 suggest that there is a tradeoff between reducing the commutator
to zero (by choosing κ ≤ ΔH ) and increasing the distance between X and Pκ

H (X).
Before proving the lemma we state a technical result that is used in the proof, and
which shows that the complex matrix exponential is operator Lipschitz continuous.

Lemma 3.8 Let L ∈ L(A), H ∈ H(A) and t ∈ R. Then

∥∥[L , eit H ]∥∥∞ ≤ |t | ‖[L , H ]‖∞ . (3.25)
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Proof Since H is Hermitian it can be decomposed into H = U�U †, where � is a
diagonal matrices containing the eigenvalues of H and U is a unitary matrix whose
rows consist of the eigenvectors of H . Since the operator norm is unitarily invariant
we obtain
∥∥∥[L , eit H ]

∥∥∥∞ =
∥∥∥[U†LU, eit�]

∥∥∥∞ ≤ |t |
∥∥∥[U†LU,�]

∥∥∥∞ = |t |
∥∥∥[L ,U�U†]

∥∥∥∞ = |t | ‖[L , H ]‖∞ ,

(3.26)

where the inequality step uses the fact that the function f : x �→ eit x is Lipschitz
continuous with constant |t | and the fact that � is diagonal. As a result � �→ eit�

is operator Lipschitz continuous on the set of diagonal matrices with constant |t |.
Theorem 3.1 in [6] then implies the assertion. �

Proof (Lemma 3.7) Since H and X are Hermitian and μκ is an even function it
follows that Pκ

H (X) is Hermitian. By using the triangle inequality and the fact that
eit H commutes with H , we find

∣∣∣∣∣∣[H,Pκ
H (X)]∣∣∣∣∣∣ =

∣∣∣∣

∣∣∣∣

∣∣∣∣[H,

∫ ∞

−∞
dtμκ(t)e

it H Xe−it H ]
∣∣∣∣

∣∣∣∣

∣∣∣∣ (3.27)

≤
∫ ∞

−∞
dtμκ(t)

∣∣∣∣∣∣[H, eit H Xe−it H ]∣∣∣∣∣∣ (3.28)

=
∫ ∞

−∞
dtμκ(t) |||[H, X ]||| (3.29)

= |||[H, X ]||| , (3.30)

which proves Property 1 of the lemma.
We next prove Property 2 of the lemma. Note that in case κ ≤ ΔH we have a

perfect pinching and hence [H,Pκ
H (X)] = 0. For κ > ΔH we find

∣∣∣∣∣∣[H,Pκ
H (X)]∣∣∣∣∣∣ =

∣∣∣∣

∣∣∣∣

∣∣∣∣[H,

∫ ∞

−∞
dtμκ(t)e

it H Xe−it H ]
∣∣∣∣

∣∣∣∣

∣∣∣∣ (3.31)

=
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
∑

�,n

|�〉〈n|(λ� − λn)〈�|X |n〉μ̂κ(λ� − λn)

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ (3.32)

where we expressed the term inside the norm in the eigenbasis of H . Properties 2
and 5 of μ̂κ now imply that

∣∣∣∣∣∣[H,Pκ
H (X)]∣∣∣∣∣∣ ≤ κ

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
∑

�,n

|�〉〈n|〈�|X |n〉
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ = κ |||X ||| . (3.33)

We next prove Property 3 of the lemma. Let |h〉 and |h′〉 be two eigenvectors of H
such that the corresponding eigenvalues h and h′ satisfy |h − h′| ≥ κ . By definition
of the Fourier transform together with Property 2 of μ̂κ , mentioned at the beginning
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of this chapter, we find

0 = μ̂κ(h
′ − h) =

∫ ∞

−∞
dtμκ(t)e

it (h−h′) . (3.34)

This can be used to show that Property 3 of the lemma indeed holds. By definition
of the κ-smooth pinching map, we have

〈h|Pκ
H (X)|h′〉 =

∫ ∞

−∞
dtμκ(t)〈h|eit H Xe−it H |h′〉 = 〈h|X |h′〉

∫ ∞

−∞
dtμκ(t)eit (h−h′) = 0 ,

(3.35)

where the final step follows from (3.34).
We next prove Property 4 of the lemma. The triangle inequality together with the

fact that the operator norm is unitarily invariant give

∥∥X − Pκ
H (X)

∥∥∞ ≤
∫ ∞

−∞
dtμκ(t)

∥∥∥X − eit H Xe−it H
∥∥∥∞ =

∫ ∞

−∞
dtμκ(t)

∥∥∥[X, eit H ]
∥∥∥∞ .

(3.36)

Lemma 3.8 then implies that

∫ ∞

−∞
dtμκ(t)

∥∥[X, eit H ]∥∥∞ ≤
∫ ∞

−∞
dtμκ(t)|t | ‖[X, H ]‖∞ = ‖[X, H ]‖∞

12 log 2

πκ
.

(3.37)

It thus remains to prove Property 5 of the lemma. By the triangle inequality we
have

∣∣∣∣∣∣Pκ
H (X)

∣∣∣∣∣∣ ≤
∫ ∞

−∞
dtμκ(t)

∣∣∣∣∣∣eit H Xe−it H
∣∣∣∣∣∣ = |||X ||| , (3.38)

which thus completes the proof. �

3.1.3 Asymptotic Spectral Pinching

The spectral pinching method explained in Sect. 3.1.1 is particularly powerful if we
apply it in an asymptotic setting. To understand what we mean by that let us first
recall two basic statements (given by Remark 3.9 and Exercise 3.10).

Remark 3.9 Let B ∈ P(A). The number of distinct eigenvalues of B⊗m , i.e.,
|spec(B⊗m)| grows polynomially in m. This is due to the fact that the number of
distinct eigenvalues of B⊗m is bounded by the number of different types of sequences
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of dim(A) symbols of length m, a concept widely used in information theory [7].
More precisely [8, Lemma II.1] gives

|spec(B⊗m)| ≤
(
m + dim(A) − 1

dim(A) − 1

)
≤ (m + dim(A) − 1)dim(A)−1

(dim(A) − 1)! ≤ (m + 1)dim(A)−1 (3.39)

= O
(
poly(m)

)
, (3.40)

where poly(m) denotes a polynomial in m.

Exercise 3.10 Let L1 ∈ L(A), L2 ∈ L(B) and C1 ∈ P(A),C2 ∈ P(B). Verify the
following identities for the tensor product:

1. tr L1 ⊗ L2 = (tr L1)(tr L2).
2. logC1 ⊗ C2 = (logC1) ⊗ idB + idA ⊗ (logC2).
3. exp(L1) ⊗ exp(L2) = exp(L1 ⊗ idB + idA ⊗ L2).

With this preliminary knowledge in mind let us explain what we mean by the
asymptotic spectral pinching method. We apply this technique to prove a famous
trace inequality— the so-calledGolden-Thompson (GT) inequalitywhich states that
any two Hermitian operators H1, H2 ∈ H(A) satisfy

tr eH1+H2 ≤ tr eH1eH2 . (3.41)

We refer to Theorem 4.1 and the subsequent paragraph for more details about this
inequality. We next present a proof of the GT inequality based on the asymptotic
spectral pinching method.

3.1.3.1 An Intuitive Proof of the Golden-Thompson Inequality

Let B1, B2 ∈ P(A) be such that B1 = exp(H1) and B2 = exp(H2). The identities
for the tensor product of the exponential, logarithm and trace function given in
Exercise 3.10 show that

log tr exp(log B1 + log B2) = 1

m
log tr exp

(
log B⊗m

1 + log B⊗m
2

)
(3.42)

≤ 1

m
log tr exp

(
logPB⊗m

2
(B⊗m

1 ) + log B⊗m
2

)
+ log poly(m)

m
(3.43)

= 1

m
log trPB⊗m

2
(B⊗m

1 )B⊗m
2 + log poly(m)

m
(3.44)

= log tr B1B2 + log poly(m)

m
, (3.45)

where (3.43) follows by the pinching inequality (see Lemma 3.5), together with the
fact that the logarithm is operator monotone (see Table 2.2) and H �→ tr exp H is
monotone (see Proposition 2.10). Furthermore we use the observation presented in
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Remark 3.9, i.e., that the number of distinct eigenvalues of B⊗m
2 grows polynomially

in m. Equality (3.44) uses Lemma 3.5 which ensures that PB⊗m
2

(B⊗m
1 ) commutes

with B⊗m
2 and hence logPB⊗m

2
(B⊗m

1 ) + log B⊗m
2 = logPB⊗m

2
(B⊗m

1 )B⊗m
2 . Equal-

ity (3.45) uses again Lemma 3.5 and the properties of the exponential, logarithm and
trace function under the tensor product given by Exercise 3.10. Considering the limit
m → ∞ finally implies the GT inequality (3.41). �

We believe that the proof of the GT inequality presented above is intuitive and
transparent. The high-level intuition may be summarized as follows: We know that
the GT inequality is trivial if the operators commute. The spectral pinching method
forces our operators to commute. At the same time the pinching should hopefully not
destroy the operator which it acts on too much. This is indeed the case (guaranteed
by the pinching inequality) if we lift our problem to high dimensions, i.e., if we
consider an m-fold tensor product of our operators and the limit m → ∞.4

3.2 Complex Interpolation Theory

Consider a sufficiently well-behaved holomorphic function defined on the strip
S := {z ∈ C : 0 ≤ Re z ≤ 1}. Complex interpolation theory allows us to control the
behavior of the function at (0, 1) by its value on the boundary, i.e., at Re z = 0 and
Re z = 1. Complex interpolation theory is an established technique that is vast and
extensive. In this section we review a specific interpolation theorem for Schatten
norms, commonly attributed to Stein [10], and based on Hirschman’s improvement
of the Hadamard three-lines theorem [11]. In Chap. 4 we will use this interpolation
result to prove multivariate extensions of known trace inequalities.

Before stating the main result let us define a family of probability densities on R

βθ(t) := sin(πθ)

2θ
(
cosh(π t) + cos(πθ)

) for θ ∈ (0, 1) . (3.46)

These densities are depicted in Fig. 3.1. Furthermore, the following limits hold:

β0(t) := lim
θ↘0

βθ(dt) = π

2

(
cosh(π t) + 1

)−1
(3.47)

and

β1(t) := lim
θ↗1

βθ(t) = δ(t) . (3.48)

Here β0 is another probability density on R and δ denotes the Dirac δ-distribution.

4This phenomenon is known as the tensor power trick and is described, e.g., in [9].
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Fig. 3.1 This plot depicts the probability density βθ defined in (3.46) for θ ∈ {0, 1
4 , 1

2 , 3
4 }

Theorem 3.11 (Stein-Hirschman) Let p0, p1 ∈ [1,∞], θ ∈ (0, 1), βθ given
in (3.46), define pθ by 1

pθ
= 1−θ

p0
+ θ

p1
, and S := {z ∈ C : 0 ≤ Re z ≤ 1}. For

any function F : S → L(A) that is holomorphic in int(S), continuous on ∂S,
and z �→ ‖F(z)‖pRe z

is uniformly bounded on S we have

log ‖F(θ)‖pθ
≤

∫ ∞

−∞
dt

(
β1−θ (t) log ‖F(it)‖1−θ

p0 + βθ(t) log ‖F(1 + it)‖θ
p1

)
.

(3.49)

We note that the assumption that z �→ ‖F(z)‖pRe z
is uniformly bounded on S can

be relaxed to

sup
z∈S

exp(−α Im z) log ‖F(z)‖pRe z
≤ γ for some constants α < π and γ < ∞ .

(3.50)

In order to prove Theorem 3.11 we first recall Hirschman’s strengthening [11] (see
also [12, Lemma 1.3.8]) of Hadamard’s three line theorem.

Lemma 3.12 (Hirschman) Let S := {z ∈ C : 0 ≤ Re z ≤ 1} and let f (z) be holo-
morphic on int(S), continuous on ∂S anduniformly bounded on S. Then for θ ∈ (0, 1)
and βθ given in (3.46), we have

log | f (θ)| ≤
∫ ∞

−∞
dt

(
β1−θ (t) log | f (it)|1−θ + βθ(t) log | f (1 + it)|θ) . (3.51)

We note that the assumption that the function is uniformly bounded in the lemma
just above can be relaxed to

sup
z∈S

exp
( − α|Im z|) log | f (z)| ≤ γ for some constants α < π and γ < ∞ .

(3.52)
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Proof We start by recalling Poisson’s integral formula [13, p. 258] which ensures
that any harmonic function5 u defined on the unit disk D = {z ∈ C : |z| < 1} can
written as

u(z) = 1

2π

∫ π

−π

dϕ u(qeiϕ)
q2 − r2

|qeiϕ − reiφ| where z = reiφ, r < q < 1 . (3.53)

Consider a subharmonic function6 v on D that is continuous on the circle |ξ | = q < 1
and coincides with u on the circle. In case u = v on the circle |ξ |, the right-hand side
of (3.53) defines a harmonic function on {z ∈ C : |z| < q} that coincides with v on
the circle |ξ | = q. Since subharmonic functions obey the maximum principle [13,
p. 362] we find for |z| < q < 1

v(z) ≤ 1

2π

∫ π

−π

dϕ u(qeiϕ)
q2 − r2

|qeiϕ − reiφ| where z = reiφ . (3.54)

This is valid for all subharmonic functions on D that are continuous on the circle
|ξ | = q for r < q < 1.

We note that

D � ξ �→ g(ξ) := 1

π i
log

(
i
1 + ξ

1 − ξ

)
∈ (0, 1) × iR (3.55)

is a conformalmap. Since f ◦ g is a holomorphic function on Dweknow that log | f ◦
g| is a subharmonic function on D. Applying themaximumprinciple (see 3.54) yields
for |z| = r < q

log |( f ◦ g)(z)| ≤ 1

2π

∫ π

−π

dϕ log |( f ◦ g)(qeiϕ)| q2 − r2

q2 − 2rq cos(φ − ϕ) + r2
.

(3.56)

where z = reiϕ . In case |ξ | = 1 and ξ 	= ±1 we have Re g(ξ) ∈ {0, 1}. By assump-
tion of the lemma (see 3.52) we have

log |( f ◦ g)(ξ)| ≤ γ eα|Im h(ξ)| = γ e
α|Im 1

π i log
(

1+ξ

1−ξ

)
| ≤ γ e

α
π

| log | 1+ξ

1−ξ
||
. (3.57)

This shows that log |( f ◦ g)(ξ)| is bounded by a multiple of |1 + ξ |− α
π + |1 − ξ |− α

π

which is integrable of the set |ξ | = 1 as α < π . Let z = reiφ with r < q and consider
q → 1 in (3.56). By the dominated convergence theorem we find

5A function f : X → Rwhere X is an open subset ofRn is calledharmonic if it is twice continuously
differentiable and satisfies the Laplace equation everywhere on X , i.e., Δ f = 0.
6A function f : X → R where X is an open subset of Rn is called subharmonic if it is twice
continuously differentiable and satisfies Δ f ≥ 0.
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log |( f ◦ g)(reiφ)| ≤ 1

2π

∫ π

−π

dϕ log |( f ◦ g)(eiϕ)| 1 − r2

1 − 2r cos(φ − ϕ) + r2
.

(3.58)

For x := g(reiϕ) we obtain

reiϕ = g−1(x) = eiπx − i

eiπx + i
= −i

cos(πx)

1 + sin(πx)
=

(
cos(πx)

1 + sin(πx)

)
e−i π

2 , (3.59)

from which we see that in case x ∈ (0, 1
2 ] we have r = cos(πx)

1+sin(πx) and θ = −π
2 and in

case x ∈ ( 12 , 1) we have r = − cos(πx)
1+sin(πx) and θ = π

2 . In both cases we find

1 − r2

1 − 2r cos(φ − ϕ) + r2
= sin(πx)

1 + cos(πx) sin(ϕ)
. (3.60)

Plugging this into (3.58) shows that

log | f (x)| ≤ 1

2π

∫ π

−π

dϕ
sin(πx)

1 + cos(πx) sin(ϕ)
log |( f ◦ g)(eiϕ)| . (3.61)

To conclude we change variables. In case ϕ ∈ [−π, 0] we introduce y such
that iy = h(eiϕ) or equivalently eiϕ = − tanh(πy) − i

cosh(πy) . Since ϕ ∈ [−π, 0] we
obtain y ∈ (−∞,∞) and dϕ = − π

cosh(πy)dy. As a result we find

1

2π

∫ 0

−π

dϕ
sin(πx)

1 + cos(πx) sin(ϕ)
log |( f ◦ g)(eiϕ)| = 1

2

∫ ∞

−∞
dy

sin(πx)

cosh(πy) − cos(πx)
log | f (iy)| .

(3.62)

In case ϕ ∈ [0, π ] we define y such that 1 + iy = h(eiϕ) or equivalently
eiϕ = − tanh(πy) + i

cosh(πy) . Since ϕ ∈ [0, π ] we obtain y ∈ (−∞,∞) and dϕ =
π

cosh(πy)dy. As a result we find

1

2π

∫ π

0
dϕ

sin(πx)

1 + cos(πx) sin(ϕ)
log |( f ◦ g)(eiϕ)| = 1

2

∫ ∞
−∞

dy
sin(πx)

cosh(πy) − cos(πx)
log | f (1 + iy)| .

(3.63)

Combining (3.61) (3.62) and (3.63) proves the assertion. �

Proof (Theorem 3.11) By assumption, the operator F(θ) is bounded for any fixed
θ ∈ (0, 1). Consequently, F(θ) has a polar decomposition [14, Theorem VI.10], i.e.,
F(θ) = V B, where B is positive semi-definite and V is a partial isometry satisfying
BV †V = V †V B = B. Let x ∈ [0, 1] and define qx as the Hölder conjugate of px
such that p−1

x + q−1
x = 1. By definition of px (see Theorem 3.11), we have
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1

qx
= 1 − x

q0
+ x

q1
. (3.64)

We next define X (z) by

X (z)† = κ
−pθ

(
1−z
q0

+ z
q1

)

B
pθ

(
1−z
q0

+ z
q1

)

V † with κ := ‖B‖pθ
= ‖F(θ)‖pθ

< ∞ .

(3.65)

It is easy to see that z �→ X (z) is anti-holomorphic on S and

‖X (x + iy)‖qxqx = tr
(
κ−1B

)pθqx
(

1−x
q0

+ x
q1

)

= tr
(
κ−1B

)pθ = 1 . (3.66)

As a result f (z) := tr X (z)†F(z) is holomorphic and bounded on S since byHölder’s
inequality (see, e.g., [15, Theorem 7.8]) we have

| f (x + iy)| ≤ ‖X (x + iy)‖qx ‖F(x + iy)‖px ≤ ‖F(x + iy)‖px . (3.67)

Consequently, our assumptions on F(z) imply that f (z) satisfies the assumptions of
Lemma 3.12.

By definition of X (z) we find

f (θ) = tr X (θ)†F(θ) = κ
−pθ

1
qθ tr Bpθ −1V †V B = κ1−pθ tr Bpθ = ‖F(θ)‖pθ

.

(3.68)

Furthermore, according to (3.67) we have

| f (it)| ≤ ‖F(it)‖p0 and | f (1 + it)| ≤ ‖F(1 + it)‖p1 . (3.69)

Plugging this into Lemma 3.12 yields the desired result. �

3.3 Background and Further Reading

A question that is related to the topics discussed in this chapter is whether Hermitian
operators that almost commute are close to Hermitian operators that commute (with
respect to the operator norm). This question has a long history that dates back to the
1950s or earlier (see, e.g., [16, 17]). It has been finally solved in [18] (see also [19]
for a simplified proof). Recent progress has been obtained in [20, 21], where [20]
uses the concept of smooth pinching. Lemma 3.7 is similar to Lemma 1 in [20].
The pinching inequality (given in Lemma 3.5) was proven in [22]. More information
about the spectral pinching method can be found in [23, 24].

Complex interpolation theory is an established technique that is frequently used
by mathematical physicists. Epstein [25] showed how interpolation theory can be
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utilized in matrix analysis. Recently, the technique attracted attention in quantum
information theory for proving entropy inequalities. Beigi [26] and Dupuis [27] used
variations of the Riesz-Thorin theorem based on Hadamard’s three line theorem to
show properties of theminimal Rényi relative entropy and conditional Rényi entropy,
respectively. Wilde [28] first used complex interpolation theory to prove remain-
der terms for the monotonicity of quantum relative entropy. Extensions and further
applications of this approach are discussed by Dupuis andWilde [29]. Hirschmann’s
refinement was first studied in this context by Junge et al. [30].
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Chapter 4
Multivariate Trace Inequalities

Trace inequalities are mathematical relations between different multivariate trace
functionals. Oftentimes these relations are straightforward equalities if the involved
matrices commute—and can be difficult to prove for the non-commuting case.

4.1 Motivation

Arguably one of the most powerful trace inequalities is the celebrated Golden-
Thompson (GT) inequality [1, 2]. It relates the trace of the exponential of a sum
of two matrices with the trace of the product of the individual exponentials.

Theorem 4.1 (Golden-Thompson) Let H1, H2 ∈ H(A). Then

tr eH1+H2 ≤ tr eH1eH2 , (4.1)

with equality if and only if [H1, H2] = 0.

We note that the GT inequality is relating two nonnegative real numbers.
To see this, we note that the right-hand side can be rearranged as tr exp( H2

2 ) exp(H1)

exp( H2
2 ), using the cyclic property of trace, which is always nonnegative since

exp( H2
2 ) exp(H1) exp(

H2
2 ) ∈ P(A).

The GT inequality has found applications ranging from statistical physics [2],
random matrix theory [3–5], and linear system theory [6] to quantum information
theory [7, 8].

There exists a variety of different proofs for the GT inequality. In Sect. 3.1.3.1 we
presented an intuitive proof that is based on the spectral pinching method discussed

© The Author(s) 2018
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in Sect. 3.1. The motivation for the use of the pinching technique comes from the
fact that (4.1) is trivial if H1 and H2 commute.

Proof (Theorem 4.1) Inequality (4.1) has been proven in Sect. 3.1.3.1 based on the
asymptotic spectral pinching method. It is immediate to see that (4.1) holds with
equality in case [H1, H2] = 0. The converse statement is proven in
[9, Theorem 2.1]. �

Aswewill see later, the proof presented in Sect. 3.1.3.1 already suggests an extension
of the GT inequality to n matrices by iterative pinching.

Exercise 4.2 Apply the asymptotic spectral pinching method (as shown in the proof
given in Sect. 3.1.3.1) to prove the following extension of the GT inequality to three
matrices

tr eH1+H2+H3 ≤ sup
t∈R

tr eH1e
1+it
2 H2eH3e

1−it
2 H2 (4.2)

and compare it to (4.28) that we will prove later. [Hint: use the integral representation
of the pinching map given by Lemma 3.4]

The GT inequality can be derived from the more general Araki-Lieb-Thirring
(ALT) inequality [10, 11], which relates the trace of a product of two positive oper-
ators with a global and a local power.

Theorem 4.3 (Araki-Lieb-Thirring) Let B1, B2 ∈ P(A) and q > 0. Then

tr
(
B

r
2
1 B

r
2B

r
2
1

) q
r ≤ tr

(
B

1
2
1 B2B

1
2
1

)q
if r ∈ (0, 1] , (4.3)

with equality if and only if [B1, B2] = 0. The inequality holds in the opposite
direction for r ≥ 1.

Proof We present a proof based on the asymptotic spectral pinching method that
is similar as the proof for the GT inequality explained in Sect. 3.1.3.1. Using basic
properties of the tensor product that are stated in Exercise 3.10 we find for r ∈ (0, 1]
and m ∈ N

log tr
(
B

r
2
1 B

r
2B

r
2
1

) q
r = 1

m
log tr

(
(B

r
2
1 )⊗m(Br

2)
⊗m(B

r
2
1 )⊗m

) q
r

(4.4)

≤ 1

m
log tr

(
(B

r
2
1 )⊗mPB⊗m

1

(
(Br

2)
⊗m

)
(B

r
2
1 )⊗m

) q
r + log poly(m)

m
,

(4.5)

where the final step uses the pinching inequality (see Lemma 3.5), the monotonicity
of the function X �→ tr Xα for α ≥ 0 (see Proposition 2.10) and the fact that the
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number of distinct eigenvalues of B⊗m
1 grows polynomially on m (see Remark 3.9).

Since t �→ tα for α ∈ (0, 1] is operator concave Lemma 3.5 shows that

log tr
(
B

r
2
1 B

r
2B

r
2
1

) q
r ≤ 1

m
log tr

(
(B

r
2
1 )⊗mPB⊗m

1
(B⊗m

2 )r (B
r
2
1 )⊗m

) q
r + log poly(m)

m
(4.6)

= 1

m
log tr

(
PB⊗m

1

(
(B

1
2
1 )⊗mB⊗m

2 (B
1
2
1 )⊗m

))q + log poly(m)

m
(4.7)

≤ 1

m
log tr

(
(B

1
2
1 )⊗mB⊗m

2 (B
1
2
1 )⊗m

)q + log poly(m)

m
(4.8)

= log tr
(
B

1
2
1 B2B

1
2
1

)q + log poly(m)

m
, (4.9)

where (4.7) uses that PB1(B2) commutes with B1. The penultimate step uses
Lemma 2.6 (see also (2.21)) together with the integral representation of the pinching
map (Lemma 3.4) and the fact that p-norms are unitarily invariant for all p ≥ 0.
The final step uses basic properties of the tensor product described in Exercise 3.10.
Considering the limitm → ∞ then proves (4.3). The fact that (4.3) holds in the oppo-
site direction in case r ≥ 1 follows from the substitution Br

k ← Bk for k ∈ {1, 2},
q
r ← q, and 1

r ← r . That (4.3) is an equality if and only if the twomatrices commute
is proven in [9, Theorem 2.1]. �

The GT inequality is implied by the ALT inequality. To see this we recall the Lie
product formula for operators (see, e.g., [12, Problem IX.8.5]).

Lemma 4.4 (Lie product formula) Let n ∈ N and (Lk)
n
k=1 be a finite sequence of

linear operators on A. Then

lim
m→∞

(
n∏

k=1

e
Lk
m

)m

= exp

(
n∑

k=1

Lk

)

. (4.10)

We note that for r → 0 the Lie product formula shows that the ALT inequality (4.3)
simplifies to

tr (elog B1+log B2)q ≤ tr (B
1
2
1 B2B

1
2
1 )q , (4.11)

which for q = 1 gives the GT inequality (4.1)
The straightforward logarithmic analog of the GT inequality is a relation between

tr log B1B2 and tr log B1 + tr log B2 for B1, B2 ∈ P(A). As the determinant is mul-
tiplicative and since tr log B1 = log det B1 we find that

tr log B1 + tr log B2 = tr log B
1
2
2 B1B

1
2
2 . (4.12)

This trivially extends to n matrices.
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Exercise 4.5 Show that tr log B = log det B for all B ∈ P(A).

The following theorem states a more interesting logarithmic trace inequality [13,
14]. In particular it provides an upper and lower bound for the relative entropy defined
in Definition 2.27.

Theorem 4.6 (Logarithmic trace inequality) Let B1, B2 ∈ P(A) and p > 0.
Then

1

p
tr B1 log B

p
2
2 Bp

1 B
p
2
2 ≤ tr B1(log B1 + log B2) ≤ 1

p
tr B1 log B

p
2
1 Bp

2 B
p
2
1 ,

(4.13)

with equalities in the limit p → 0.

Proof First, note that both inequalities are invariant under multiplication of the oper-
ators B1, B2 with positive scalars b1, b2 > 0 and hence additional constraints on the
norms of the matrices can be introduced without loss of generality. We thus assume
without loss of generality that tr B1 = 1.

We start by proving the first inequality. Using the variational formula for the
relative entropy given by Lemma 2.29 we find for any p > 0

tr B1(log B1 + log B2) = D(B1‖B−1
2 ) (4.14)

= sup
ω>0

{
tr B1 logω + 1 − tr elogω−log B2

}
(4.15)

≥ sup
ω>0

{
tr B1 logω + 1 − tr

(
B

− p
2

2 ωp B
− p

2
2

)p}
(4.16)

≥ 1

p
tr B1 log B

p
2
2 Bp

1 B
p
2
2 , (4.17)

where the first inequality follows form the GT inequality given in (4.11). The final

step uses that ω = (B
p
2
2 Bp

1 B
p
2
2 )

1
p > 0.

The second inequality is proven in [13]. A simplified argument for the case p = 1
can be found in [15, Sect. 3.5.1]. �

All the trace inequalities presented in this section involve two operators. It is a
natural question if they feature extensions to arbitrarily many operators—so-called
multivariate trace inequalities. The remaining part of this chapter deals with this
question.
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4.2 Multivariate Araki-Lieb-Thirring Inequality

TheALT inequality presented in Theorem4.3 has been extended in various directions
(see, e.g., [14, 16–18]). Recently, an extension of the ALT inequality to arbitrarily
many operators has been proven [19] which was further generalized in [20].

Theorem 4.7 (n-matrix extension of ALT) Let p > 0, r ∈ (0, 1], βr as
defined in (3.46), n ∈ N, and consider a finite sequence (Bk)

n
k=1 of nonnegative

operators. Then

log

∥∥∥∥∥∥

∣∣∣∣∣

n∏

k=1

Br
k

∣∣∣∣∣

1
r

∥∥∥∥∥∥
p

≤
∫ ∞

−∞
dtβr (t) log

∥∥∥∥∥

n∏

k=1

B1+it
k

∥∥∥∥∥
p

. (4.18)

Proof The case r = 1 holds trivially with equality, so suppose r ∈ (0, 1). We prove
the result for strictly positive operators and note that the generalization to nonnegative
operators follows by continuity. Furthermore, we assume in a first step that p ≥ 1.
The idea is to prove the assertion by using complex interpolation theory. To do so,
we define the function

F(z) :=
n∏

k=1

Bz
k =

n∏

k=1

exp(z log Bk) , (4.19)

which satisfies the regularity assumptions of the Stein-Hirschman theorem (see The-
orem 3.11). Furthermore we pick θ = r , p0 = ∞ and p1 = p such that pθ = p

r . A
simple calculation reveals that

log ‖F(1 + it)‖θ
p1 = r log

∥∥
∥∥∥

n∏

k=1

B1+it
k

∥∥
∥∥∥
p

(4.20)

and

log ‖F(it)‖1−θ
p0 = (1 − r) log

∥∥∥∥
∥

n∏

k=1

B it
k

∥∥∥∥
∥

∞
= 0 , (4.21)

since the operators B it
k are unitary. Moreover, we have

log ‖F(θ)‖pθ
= log

∥∥∥∥∥

n∏

k=1

Br
k

∥∥∥∥∥
p
r

= r log
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∥

∣∣∣∣∣

n∏

k=1

Br
k

∣∣∣∣∣

1
r

∥∥∥∥∥
∥
p

. (4.22)
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Substituting this into Theorem 3.11 yields the desired inequality for p ≥ 1. The case
0 < p ≤ 1 follows from a standard technique called antisymmetric tensor power
calculus. This is explained in detail in [20]. �
Remark 4.8 Using antisymmetric tensor power calculus it can be shown that (4.18)
is true for any unitarily invariant norm (see [20] for more information).

Let us now comment on various aspects of (4.18). For q ∈ R+, r ∈ (0, 1], and
the substitution p ← 2q and Bk ← √

Bk we can rewrite (4.18) as

log tr
(
B

r
2
1 B

r
2
2 · · · B

r
2
n−1B

r
n B

r
2
n−1 · · · B

r
2
2 B

r
2
1

) q
r

≤
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−∞
dtβr (t) log tr
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B
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2
1 B

1+it
2

2 · · · B
1+it
2

n−1 Bn B
1−it
2

n−1 · · · B
1−it
2

2 B
1
2
1

)q

.

(4.23)

For n = 2 this simplifies to the original ALT inequality given by Theorem 4.3.
By Jensen’s inequality we can remove the logarithm in (4.18). Furthermore, for
q ∈ [0, 1] we may shift the integral inside the quasi-norm using the fact that
X �→ log ‖X‖p is concave for p ∈ [0, 1],1 which yields

∥∥
∥∥
∥
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B

r
2
1 B

r
2
2 · · · B

r
2
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r
n B

r
2
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2
2 B
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2
1

) 1
r

∥∥
∥∥
∥
q

≤
∥
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∥

∫ ∞
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dtβr (t) B

1
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1 B

1+it
2

2 · · · B
1+it
2

n−1 Bn B
1−it
2

n−1 · · · B
1−it
2

2 B
1
2
1

∥
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∥
q
.

(4.24)

4.3 Multivariate Golden-Thompson Inequality

Given the usefulness of the GT inequality presented in Theorem 4.1, it is natural to
ask if the GT inequality can be extended to more than two operators. In 1973, Lieb
proved a three operator extension of the GT inequality [21] that attracted a lot of
interest and raised the question if the GT inequality can be extended to more than
three matrices. This has been an open question until recently (see Theorem 4.10).

Theorem 4.9 (Lieb’s triple operator inequality) Let H1, H2, H3 ∈ H(A). Then

tr eH1+H2+H3 ≤
∫ ∞

0
ds tr eH1

(
e−H2 + s idA

)−1
eH3

(
e−H2 + s idA

)−1
. (4.25)

Lieb’s triple operator inequality has been shown to be equivalent to many other
interesting statements such as Lieb’s concavity theorem (see Theorem 2.13) or strong

1This follows from Proposition 2.10.
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subadditivity of quantum entropy [7, 8] (see (5.29)).2 We postpone the proof of
Theorem 4.9 to the end of this section. It can be verified easily that in case H2 =
0 (4.25) simplifies to the original GT inequality (4.1).

The n-operator extension of the ALT inequality presented in Theorem 4.7 implies
(via the Lie product formula given by Lemma 4.4) an extension of the GT inequality
to arbitrarily many operators.

Theorem 4.10 (n-matrix extension of GT) Let p > 0, β0 as defined in (3.47),
n ∈ N and consider a finite sequence (Hk)

n
k=1 of Hermitian operators. Then

log

∥∥
∥∥∥
exp

(
n∑

k=1

Hk

)∥∥
∥∥∥
p

≤
∫ ∞

−∞
dtβ0(t) log

∥∥
∥∥∥

n∏

k=1

exp
(
(1 + it)Hk

)
∥∥
∥∥∥
p

. (4.26)

Proof Follows from Theorem 4.7 together with the Lie product formula (see
Lemma 4.4) when considering the limit r → 0. �

Remark 4.11 Using antisymmetric tensor power calculus it can be shown that (4.26)
is true for any unitarily invariant norm (see [20] for more details).

If we evaluate (4.26) for n = 3 and p = 2 using the substitution Hk ← 1
2Hk we

obtain

log tr eH1+H2+H3 ≤
∫ ∞

−∞
dtβ0(t) log tr e

H1e
1+it
2 H2eH3e

1−it
2 H2 . (4.27)

By the concavity of the logarithm we can further simplify this inequality to

tr eH1+H2+H3 ≤
∫ ∞

−∞
dtβ0(t) tr e

H1e
1+it
2 H2eH3e

1−it
2 H2 . (4.28)

As it happens this inequality coincides with Lieb’s triple operator inequality (4.25).
To see this we consider the following lemma.

Lemma 4.12 Let B ∈ P(A) and H ∈ H(A). Then, the following two expressions
for the Fréchet derivative of the logarithm are equivalent:

d

dr

∣
∣∣
r=0

log(B + r H) =
∫ ∞

0
ds (B + s idA)

−1H(B + s idA)
−1 (4.29)

=
∫ ∞

−∞
dtβ0(t) B

− 1+it
2 HB− 1−it

2 . (4.30)

2The reason why all these statements are equivalent is explained in [21] (see also [22]).
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Proof The first equality in the lemma iswell-known and can be derived using integral
representations of the operator logarithm (see, e.g., [23]). To see why the second
equality step is true we expand both terms in the eigenbasis of B. More precisely,
for B = ∑

k λk |k〉〈k| we find
∫ ∞

0
ds (B + s idA)−1H(B + s idA)−1 =

∑

k,�

〈k|H |�〉|k〉〈�|
∫ ∞

0
ds(λk + s)−1(λ� + s)−1 .

(4.31)

A simple calculation shows that

∫ ∞

0
ds(λk + s)−1(λ� + s)−1 = 1

λ� − λk
log

λ�

λk
= 1√

λkλ�
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−∞
β0(dt)
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λ�

λk

) it
2

.

(4.32)

As a result we have

∫ ∞

0
ds (B + s idA)−1H(B + s idA)−1 =

∫ ∞

−∞
dtβ0(t)

∑

k,�

λ
− 1

2 − it
2

k λ
− 1

2 + it
2

� 〈k|H |�〉|k〉〈�| (4.33)

=
∫ ∞

−∞
dtβ0(t) B

− 1
2 − it

2 HB− 1
2 + it

2 , (4.34)

which proves the second equality of the lemma. �

Lemma 4.12 presents two alternative expressions for the Fréchet derivative of the
operator logarithm, one in terms of resolvents and the other one in terms of an
average over unitaries. The lemma also provides further insight in the probability
density β0 which we obtain from Hirschman’s interpolation theorem. Lieb’s triple
operator inequality (see Theorem 4.9) thus follows directly by combining (4.28) with
Lemma 4.12.

Remark 4.13 Recently it was shown that the right-hand side of (4.26) features an
alternative representation without any unitaries, however in terms of resolvents [24]
as in Theorem 4.9 for the special case of three matrices.

The multivariate GT inequality presented by Theorem 4.10 is valid for Hermitian
operators. The following theoremproves ann-operator extension of theGT inequality
for general linear operators.

Theorem 4.14 Let p > 0, β0 as defined in (3.47), n ∈ N and consider a finite
sequence (Lk)

n
k=1 of linear operators. Define the real part of Lk by Re(Lk) :=

1
2 (Lk + L†

k). Then

log
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exp
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p

. (4.35)
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Proof We define the imaginary part of Lk by Im(Lk) := 1
2i (Lk − L†

k). Note that
Lk = Re(Lk) + i Im(Lk) and that both Re(Lk) and Im(Lk) are Hermitian. The idea
is to prove the assertion of the Theorem via complex interpolation theory. Therefore
we consider the function

F(z) :=
n∏

k=1

exp
(
z Re(Lk) + iθ Im(Lk)

)
, (4.36)

which satisfies the regularity assumption of Theorem 3.11. We first suppose that
p ≥ 1 and pick θ = r ∈ (0, 1), p0 = ∞ and p1 = p such that pθ = p

r . Theorem3.11
thus gives

r log
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= log ‖F(θ)‖pθ (4.37)

≤
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−∞
dt βr (t) log ‖F(1 + it)‖rp (4.38)

= r
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dt βr (t) log
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exp
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(1 + it)Re(Lk) + r Im(Lk)
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∥
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∥
∥
p

,

(4.39)

where in the inequality step we used that log ‖F(it)‖∞ = 0 as F(it) is unitary.
Dividing by r and taking the limit r → 0 then yields the desired result via the
Lie product formula (see Lemma 4.4). As before, the case 0 < p ≤ 1 follows from
antisymmetric tensor power calculus which is described in detail in [20]. �

We note that (4.39) can be viewed as an ALT inequality for linear operators. For
n = 1 and p = 2, Theorem 4.14 simplifies to

tr eLeL
† ≤ tr eL+L†

, (4.40)

which was derived in [6]. We further note that for the case of normal operators N ,
the matrices Re(N ) and Im(N ) commute, which allows us to slightly simplify the
above formula by employing the fact that exp(Re(N )) = ∣∣ exp(N )

∣∣. For two normal
operators the result then reads

‖exp (N1 + N2)‖p ≤ ∥∥∣∣ exp(N1)
∣∣∣∣ exp(N2)

∣∣∥∥
p , (4.41)

generalizing an inequality derived in [25].
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4.4 Multivariate Logarithmic Trace Inequality

The extension of the GT inequality presented in Theorem 4.10 can be used to derive
an extension of the logarithmic trace inequality given in Theorem 4.6 to arbitrarily
many operators [26].

Theorem 4.15 Let q > 0, β0 as defined in (3.47), n ∈ N, and consider a finite
sequence (Bk)

n
k=1 of nonnegative operators. Then, we have

n∑

k=1

tr B1 log Bk ≥
∫ ∞

−∞
dtβ0(t)

1

q
tr B1 log B

q(1+it)
2

n · · · B
q(1+it)

2
3 B

q
2
2 Bq

1 B
q
2
2 B

q(1−it)
2

3 · · · B
q(1−i t)

2
n ,

(4.42)

with equality in the limit q → 0.

For two matrices (i.e., n = 2) (4.42) simplifies to the first inequality of (4.13).

Proof First, note that the statement that we aim to show is invariant under multipli-
cation of the operators B1, B2, . . . , Bn with positive scalars b1, b2, . . . , bn > 0, and
hence additional constraints on the norms of the matrices can be introduced without
loss of generality.

Let us first show the inequality for q > 0, where we suppose that tr B1 = 1. By
definition of the relative entropy we have

n∑

k=1

tr B1 log Bk = D
(
B1

∥
∥∥ exp

( n∑

k=2

log B−1
k

))
(4.43)

= sup
ω>0

{

tr B1 logω + 1 − tr exp
(
logω −

n∑

k=2

log Bk

)}

, (4.44)

where we used the variational formula for the relative entropy given in Lemma 2.29.
Now note that the n-operator extension of the GT inequality (Theorem 4.10) can for
pHk = log Bk and p = 1

q be relaxed to

tr exp

(
n∑

k=1

log Bk

)

≤
∫ ∞

−∞
dtβ0(t)tr

(
B

q
2
n · · · B

q(1+it)
2

3 B
q(1+it)

2
2 Bq

1 B
q(1−it)

2
2 B

q(1−it)
2

3 · · · B
q
2
n

) 1
q

using the concavity of the logarithm and Jensen’s inequality. Applying this to (4.44)
we find
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n∑

k=1

trB1 log Bk ≥ sup
ω>0

{∫ ∞

−∞
dtβ0(t)trB1 logω + 1

− tr
(
B

− q
2

2 B
− q(1+it)

2
3 · · · B− q(1+it)

2
n ωq B

− q(1−it)
2

n · · · B− q(1−it)
2

3 B
− q

2
2

) 1
q
}

.

(4.45)

Now since

ω :=
(
B

q(1+it)
2

n · · · B
q(1+it)

2
3 B

q
2
2 Bq

1 B
q
2
2 B

q(1−it)
2

3 · · · B
q(1−it)

2
n

) 1
q

(4.46)

is a nonnegative operatorwe can insert this into (4.45),which thenproves the assertion
for q > 0.

Next, we show that in the limit q → 0 the inequality in Theorem 4.15 also holds
in the opposite direction. For the following we suppose that Ak ≥ 1 for all k ∈
{1, 2, . . . , n}. We use that log X ≥ 1 − X−1 for X > 0 and hence

tr B1 log B
q(1+it)

2
n · · · B

q
2
2 Bq

1 B
q
2
2 · · · B

q(1−it)
2

n ≥ tr B1

(
1 − B

−q(1−it)
2

n · · · B− q
2

2 B−q
1 B

− q
2

2 · · · B− q(1+it)
2

n

)
(4.47)

=: Zq (t) . (4.48)

By assumption on our operators we have that B−1
i ≤ 1 for all i ∈ {1, 2, . . . , n} and

thus Zq(t) ≥ 0 for all t ∈ R. By Fatou’s lemma (see, e.g., [27]), we further find

lim inf
q→0

∫ ∞

−∞
β0(dt)

Zq(t)

q
≥

∫ ∞

−∞
β0(dt) lim inf

q→0

Zq(t)

q
.

Moreover, since Z0(t) = 0 and

d

dq
Zq(t)

∣
∣∣∣
q=0

=
n∑

k=1

tr B1 log Bk for all t ∈ R,

an application of l’Hopital’s rule yields

lim inf
q→0

Zq(t)

q
=

n∑

k=1

tr B1 log Bk .

Since β0 is normalized this proves the assertion. �
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4.5 Background and Further Reading

The GT inequality was proven independently by Golden [1] and Thompson [2] for
an application in statistical physics. It has been generalized in various directions
(see, e.g., [13, 16, 25, 28–32]). For example, it has been shown that it remains valid
by replacing the trace with any unitarily invariant norm [33–35] and an extension
to three non-commuting matrices was suggested in [21]. An interesting topic that is
not covered here is the question for reverse GT inequalities [13, 36, 37] in terms of
matrix means [38].

The ALT inequality was first proven by Lieb and Thirring [10] and then gener-
alized by Araki [11]. It has also been extended in various directions (see, e.g., [14,
16–18]). Similarly as with the GT inequality it is interesting to study reverse ALT
inequalities [39, 40].

Lieb’s triple operator inequality (Theorem 4.9) is important as it can be used to
prove many interesting statements such as strong subadditivity of quantum entropy,
the monotonicity of the relative entropy, the joint convexity of the relative entropy, or
Lieb’s concavity theorem [21] (see also [41, 42]). Lieb’s concavity theorem is partic-
ularly useful to derive tail bounds for sums of independent random matrices [4, 43]
that can be better than if you derive them via the original GT inequality, as done in [3].
The multivariate GT inequality (Theorem 4.10) has been used to derive concentra-
tion bounds for expander walks [44]. Recently, Lemma 4.12 was a key ingredient to
prove remainder terms for the superadditivity of the relative entropy [45].
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Chapter 5
Approximate Quantum Markov Chains

In Chap.1 we informally discussed the concept of a Markov chain and the
differences between the classical and quantum case. Here we formally introduce
quantum Markov chains and discuss their properties before explaining which prop-
erties remain valid in the approximate case.

5.1 Quantum Markov Chains

We start with the formal definition of a quantum Markov chain.

Definition 5.1 A tripartite state ρABC ∈ S(A ⊗ B ⊗ C) is called a quantum
Markov chain in order A ↔ B ↔ C if there exists a recovery mapRB→BC ∈
TPCP(B, B ⊗ C) such that

ρABC = RB→BC(ρAB) . (5.1)

Informally the definition above states that the C-part can be reconstructed by
only acting on the B-part. It is interesting to further study the structure of Markov
chains—in particular, if there exists an entropic and an algebraic characterization.
The following theorem presents an entropic characterization of quantum Markov
chains [1, 2].

© The Author(s) 2018
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Theorem 5.2 A tripartite state ρABC ∈ S(A ⊗ B ⊗ C) is a quantum Markov
chain in order A ↔ B ↔ C if and only if I (A : C |B)ρ = 0. Furthermore, in
case I (A : C |B)ρ = 0 the rotated Petz recovery map

T [t]
B→BC : XB �→ ρ

1+it
2

BC

(
ρ

− 1+it
2

B XB ρ
− 1−it

2
B ⊗ idC

)
ρ

1−it
2

BC for t ∈ R (5.2)

satisfies (5.1), i.e., T [t]
B→BC(ρAB) = ρABC for all t ∈ R.

Proof One direction of the theorem is almost trivial. Suppose ρABC is a Markov
chain. The data-processing inequality then shows that

I (A : C |B)ρ = H(A|B)ρ − H(A|BC)ρ ≤ H(A|BC)
T

[t]
B→BC (ρAB )

− H(A|BC)ρ = 0 . (5.3)

The inequality step is justified by

−H(A|BC)ρ = D(ρABC‖idA ⊗ ρBC) (5.4)

≥ D(ρAB ||idA ⊗ ρB) (5.5)

≥ D
(
T [t]

B→BC(ρAB)‖idA ⊗ T [t]
B→BC(ρB)

)
(5.6)

= −H(A|BC)T [t]
B→BC (ρAB ) , (5.7)

where we used that trAT
[t]
B→BC(ρAB) = T [t]

B→BC(ρB). The final step in (5.3) uses that
ρABC is a Markov chain and hence ρABC = T [t]

B→BC(ρAB). Together with the strong
subadditivity of quantum entropy (see 3.1) this implies that I (A : C |B)ρ = 0.

The other direction, i.e., that I (A : C |B)ρ = 0 implies that ρABC is a Markov
chain and that in such a case every rotated Petz recovery maps satisfies (5.1) is more
complicated to show. We postpone this proof to Sect. 5.4.1 (see Remark 5.22). �

Remark 5.3 The rotated Petz recovery map T [t]
B→BC defined in (5.2) is trace-

preserving and completely positive for all t ∈ R. That the map is completely positive
is immediate. It is also trace preserving as

trT [t]
B→BC(XB) = tr ρBC

(
ρ

− 1+it
2

B XBρ
− 1−it

2
B ⊗ idC

) = tr XB , (5.8)

where the first step uses the cyclic invariance of the trace and the final step uses two
basic properties of the partial trace, i.e., for XAB ∈ L(A ⊗ B) and YA ∈ L(A) we
have tr XAB = trA trB XAB and trB XAB(YA ⊗ idB) = trB(XAB)YA.

Theorem 5.2 is interesting as it links quantum Markov chains that are defined in
an operational way (i.e., that parts of a composite system can be recovered by only
acting on other parts) with an entropic quantity, the conditional mutual information.
Entropy measures are well studied and obey many nice properties (as discussed in
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Sect. 2.5). More concretely, Theorem 5.2 can be helpful in practice: Suppose you are
given a tripartite state ρABC and want to determine if it is a quantumMarkov chain or
not. Theorem 5.2 tells us that all we need to do is to calculate the conditional mutual
information I (A : C |B)ρ .

Theorem 5.2 links Markov chains and the conditional mutual information. The
following result further deepens our understanding of Markov chains. It presents an
algebraic characterization of quantum Markov chains [3].

Theorem 5.4 A stateρABC ∈ S(A ⊗ B ⊗ C) is aMarkov chain in order A ↔
B ↔ C if and only if there exists a decomposition of the B system as

B =
⊕
j

bLj ⊗ bR
j (5.9)

such that

ρABC =
⊕
j

P( j)ρAbLj
⊗ ρbR

j C
, (5.10)

with ρAbLj
∈ S(A ⊗ bLj ), ρbR

j C
∈ S(bR

j ⊗ C) and a probability distribution P.

Proof One direction is trivial. If ρABC has the form (5.10) we have I (A : C |B)ρ = 0.
Theorem 5.2 then shows that ρABC is a Markov chain. It thus remains to show that
any Markov chain can be written as (5.10). For the channel RB→B = trC ◦ RB→BC

the Markov condition (5.1) implies

RB→B(ρAB) = ρAB . (5.11)

Let MA ∈ P(A) such that MA ≤ idA and define a state σB ∈ S(B) by

pσB = trA ρAB(MA ⊗ idB) with p = tr ρAB(MA ⊗ idB) . (5.12)

In case p �= 0, (5.11) implies that RB→B(σB) = σB . Varying MA gives a family
M(B) of states on B that are invariant under RB→B .

Apply Theorem 9 from [3] (see also [4]) gives a decomposition

B =
⊕
j

bLj ⊗ bR
j , (5.13)
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such that every σB ∈ M(B) can be written

σB =
⊕
j

P( j, σ )ρ j (σ ) ⊗ ω j , (5.14)

with ρ j (σ ) ∈ S(bLj ), ω j ∈ S(bR
j ) and a probability distribution P . By definition of

σB this now implies

ρAB =
⊕
j

P( j)ρAbLj
⊗ ωbR

j
. (5.15)

To see this, we define the map

FB→B : XB �→
⊕
j

trbR
j
(Π j X BΠ j ) ⊗ ω j , (5.16)

where Π j is the orthogonal projector onto the subspace bLj ⊗ bR
j . We then find for

MA ∈ P(A) such that MA ≤ idA and NB ∈ P(B) such that NB ≤ idB

tr ρAB(MA ⊗ NB) = p tr σBNB = p trFB→B(σB)NB = p tr σBF
†
B→B(NB)

(5.17)

= tr ρAB(MA ⊗ F †
B→B(NB)) = trFB→B(ρAB)(MA ⊗ NB) .

(5.18)

By linearity this is valid for all operators MA ⊗ NB such that we obtain

ρAB = FB→B(ρAB) . (5.19)

This now implies (5.15) since

FB→B(XB) =
⊕
j

trbR
j

(
Π j X BΠ j

) ⊗ ω j . (5.20)

Let E be a environment such that by the Stinespring dilation (see Proposition 2.20)
we can express the recovery map RB→BC as

RB→BC : XB �→ trEUBCE (XB ⊗ |0〉 〈0|C ⊗ τE )U †
BCE , (5.21)

forUBCE ∈ U(B ⊗ C ⊗ E) and τE ∈ S(E). SinceRB→BC (ρAB) = ρABC and (5.11)
we see that the unitary UBCE must be of the form

UBCE =
⊕
j

idbLj ⊗Uj , (5.22)
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for Uj ∈ U(bR
j ⊗ C ⊗ E). Combining (5.15) (5.21), and (5.22) shows that

ρABC = RB→BC(ρAB) (5.23)

= trE UBCE (ρAB ⊗ |0〉 〈0|C ⊗ τE )U †
BCE (5.24)

=
⊕
j

P( j)ρAbLj
⊗ trE U j (ωbR

j
⊗ |0〉 〈0|C ⊗ τE )U †

j (5.25)

=
⊕
j

P( j)ρAbLj
⊗ ρbR

j C
, (5.26)

which proves the assertion. �

5.2 Sufficient Criterion for Approximate Recoverability

This section deals with the question whether the properties of quantum Markov
chains discussed in the previous section are robust. In particular we are interested in
the question if the entropic characterization of Markov chains given by Theorem 5.2
is robust. That is, we would like to understand the entropic structure of tripartite
density operators that have a small conditional mutual information. In particular, if it
is possible to relate the conditional mutual information with a measure of how well
the C-system can be recovered by only acting on the B-system with a recovery map.

The following theorem [5–11] shows that whenever the conditional mutual infor-
mation I (A : C |B)ρ of a quantum state ρABC is small, then the Markov condi-
tion (5.1) approximately holds, i.e., there exists a recovery map from B to B ⊗ C
that approximately reconstructs ρABC from ρAB . This therefore justifies the defini-
tion of approximate quantum Markov chains as tripartite states ρABC such that the
conditional mutual information I (A : C |B)ρ is small.

Theorem 5.5 Let ρABC ∈ S(A ⊗ B ⊗ C). Then

I (A : C |B)ρ ≥ DM

(
ρABC‖T̄B→BC(ρAB)

)
, (5.27)

with the rotated Petz recovery map

T̄B→BC =
∫ ∞

−∞
dtβ0(t)T

[t]
B→BC , (5.28)

where β0 and T [t]
B→BC are defined in (3.47) and (5.2), respectively.

Proof This theorem follows from Theorem 5.18 by choosing ρ = ρABC , σ = idA ⊗
ρBC , and E = trC . �
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The recovery map T̄B→BC defined in (5.28) that satisfies (5.27) fulfills several nice
properties:

1. It is trace-preserving and completely positive (see Remark 5.3).
2. It is explicit.
3. It is universal, i.e., it depends on ρBC only.
4. It satisfies T̄B→BC(ρB) = ρBC .

Theorem 5.5 is of interest for various reasons. First and foremost, it shows that all
tripartite density operators ρABC with a small conditional mutual information I (A :
C |B)ρ are approximately recoverable in the sense that T̄B→BC (ρABC) ≈ ρABC for the
recovery map T̄B→BC defined in (5.28). This justifies the definition of approximate
quantumMarkov chains as state that have a small conditional mutual information. In
Sect. 5.2.1 we will see that approximate Markov chains can be far from any Markov
chain, with respect to the trace distance.

Second, Theorem 5.5 immediately implies the celebrated strong subadditivity of
quantum entropy [12, 13], i.e.

I (A : C |B)ρ ≥ 0 , (5.29)

by recalling the nonnegativity of themeasured relative entropy (see Proposition 2.35).
Theorem 5.5 thus is a strengthening of SSA.

Remark 5.6 Inequality (5.27) is tight in the classical case. To see this, we recall that
according to (1.7)

ρABC is classical =⇒ I (A : C |B)ρ = D(ρABC‖TB→BC(ρAB)) . (5.30)

We recall that the state ρABC is classical if it can be written as

ρABC =
∑
a,b,c

PABC(a, b, c)|a〉 〈a|A ⊗ |b〉 〈b|B ⊗ |c〉 〈c|C , (5.31)

for some probability distribution PABC . Since for classical states the measured rela-
tive entropy coincides with the relative entropy and since the rotated Petz recovery
map T̄B→BC defined in (5.28) simplifies to the Petz recovery map TB→BC defined
in (1.14), we see that (5.27) holds with equality if ρABC is a classical state.

Remark 5.7 Theorem 5.5 is essentially optimal. It has been shown [14, Sect. 5] that
there exist tripartite density operators ρABC ∈ S(A ⊗ B ⊗ C) such that

I (A : C |B)ρ < min
R B→BC

{D(
ρABC‖RB→BC(ρAB)

) : RB→BC ∈ TPCP(B, B ⊗ C)} .

(5.32)

This shows that Theorem 5.5 is no longer valid when replacing the measured relative
entropy in (5.27) with a relative entropy—even if we optimize over all possible
recovery maps.
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Remark 5.8 Remark 5.7 just above shows that it is not possible to bound the condi-
tionalmutual information of a tripartite state ρABC from below by the relative entropy
between ρABC a a recovered stateRB→BC(ρAB). This, however, becomes possible if
we consider a multi-letter formula. More precisely, it was shown [15, Theorem 12]
(see also [6, Theorem 1] and [9, Proposition 3.1]) that

I (A : C |B)ρ ≥ lim sup
n→∞

1

n
D

(
ρ⊗n
ABC‖

∫ ∞

−∞
dtβ0(t)T

[t]
B→BC(ρAB)⊗n

)
, (5.33)

where β0 and T [t]
B→BC are defined in (3.47) and (5.2), respectively.

5.2.1 Approximate Markov Chains are not Necessarily Close
to Markov Chains

ApproximateMarkov chains are tripartite statesρABC with a small conditionalmutual
information. Theorem5.5 shows that such states are approximately recoverable in the
sense that there exists a recovery map RB→BC such that (5.1) approximately holds.
Surprisingly, approximate quantum Markov chains are, however, not necessarily
close in trace distance to any Markov chain [16, 17]. To see this, let

Δ(ρ, σ ) := 1

2
‖ρ − σ‖1 (5.34)

denote the trace distance between ρ and σ .

Proposition 5.9 For any d > 1, there exist states ρABC ∈ S(A ⊗ B ⊗ C)

with dim(A) = dim(C) = d such that

I (A : C |B)ρ ≤ 2

d − 1
log d and min

μ∈MC
Δ(ρABC , μABC ) ≥ 1

2
. (5.35)

Proposition 5.9 shows that there exist tripartite density operatorswith an arbitrarily
small conditional mutual information, whose distance to anyMarkov chain, however,
is large. This shows that approximate quantumMarkov chains are not close toMarkov
chains.

Proof Let ρS1,...Sd = |ψ〉 〈ψ |S1,...Sd on S1 ⊗ · · · ⊗ Sd with dim Sk = d > 1 for all
k = 1, . . . , d, where

|ψ〉S1,...Sd :=
√

1

d!
∑

π∈Sd

sign(π)|π(1)〉 ⊗ . . . ⊗ |π(d)〉 (5.36)
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is the Slater determinant, Sd denotes the group of permutations of d objects, and
sign(π) := (−1)L , where L is the number of transpositions in a decomposition of
the permutation π . The chain rule for the mutual information shows that

I (S1 : S2 . . . Sd)ρ =
d∑

k=2

I (S1 : Sk |S2 . . . Sk−1)ρ ≤ 2 log d , (5.37)

where thefinal step followsby the trivial upper bound for the conditionalmutual infor-
mation. By the nonnegativity of the mutual information, there exists k ∈ {2, . . . , d}
such that

I (S1 : Sk |S2 . . . Sk−1)ρ ≤ 2

d − 1
log d , (5.38)

which can be arbitrarily small as d gets large. The density operator ρS1,...Sd is chosen
such that the reduced state ρS1Sk is the antisymmetric state on S1 ⊗ Sk that is far from
separable [18, p. 53]. More precisely, for any separable state σS1Sk on S1 ⊗ Sk we
have Δ(ρS1Sk , σS1Sk ) ≥ 1

2 .
Theorem 5.4 ensures that for any state μS1...Sk on S1 ⊗ · · · ⊗ Sk that forms a

Markov chain in order S1 ↔ S2 ⊗ . . . ⊗ Sk−1 ↔ Sk , it follows that its reduced state
μS1Sk on S1 ⊗ Sk is separable. The monotonicity of the trace distance under trace-
preserving completely positive maps [19, Theorem 9.2] then implies

Δ(ρS1···Sk , μS1···Sk ) ≥ Δ(ρS1Sk , μS1Sk ) ≥ 1

2
. (5.39)

This shows that the state ρS1···Sk , despite having a conditional mutual information
that is arbitrarily small (see 5.38), is far from any Markov chain. Relabeling A = S1,
C = Sk , and B = S2 ⊗ . . . ⊗ Sk−1 finally completes the proof. �

5.3 Necessary Criterion for Approximate Recoverability

Theorem 5.5 shows that a small conditional mutual information is a sufficient con-
dition for a state to be approximately recoverable. In other words, (5.27) gives an
entropic characterization for the set of tripartite states that can be approximately
recovered. In this section, we are interested in an opposite statement. This corre-
sponds to an inequality that bounds the distance between ρABC and any reconstructed
stateRB→BC(ρAB) from belowwith an entropic functional of ρABC and the recovery
mapRB→BC that involves the conditional mutual information. Such an inequality is
the converse to (5.27), and gives a necessary condition for approximate recoverabil-
ity. Furthermore it gives an entropic characterization for the set of tripartite states
that cannot be approximately recovered [20].
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For any E ∈ TPCP(A, A) we denote by Inv(E ) the set of density operators τ ∈
S(A) which are left invariant under the action of E , i.e.,

Inv(E ) := {τ ∈ S(A) : E (τ ) = τ } . (5.40)

We may now quantify the deviation of any state ρ ∈ S(A) from the set Inv(E ) by
new entropic quantity.

Definition 5.10 For α ∈ ( 12 , 1) ∪ (1,∞), ρ ∈ S(A), E ∈ TPCP(A, A) and
Inv(E ) given by (5.40), we define

Λα(ρ‖E ) := inf
τ∈Inv(E )

Dα(ρ‖τ) . (5.41)

We further denote the limit cases

Λmax(ρ‖E ) := lim
α→∞ inf

τ∈Inv(E )
Dα(ρ‖τ) = inf

τ∈Inv(E )
Dmax(ρ‖τ) , (5.42)

where in the final step we are allowed to interchange the infimum and the limit as
the sequence {Dα(ρ‖τ)}α is monotonically increasing (due to Proposition 2.40) and
hence by Dini’s theorem [21] it converges uniformly in τ . By the same arguments
we also see that

Λ(ρ‖E ) := lim
α→1

inf
τ∈Inv(E )

Dα(ρ‖τ) = inf
τ∈Inv(E )

D(ρ‖τ) . (5.43)

The Λα-quantity has the property that it is zero if and only if E leaves ρ invariant
(see 2.140), i.e.,

Λα(ρ‖E ) = 0 ⇐⇒ E (ρ) = ρ . (5.44)

We can now state the main result of this section which gives a necessary criterion
for approximate recoverability [20].

Theorem 5.11 LetρABC ∈ S(A ⊗ B ⊗ C)andRB→BC ∈ TPCP(B, B ⊗ C).
Then

D
(
ρABC‖RB→BC(ρAB)

) ≥ I (A : C |B)ρ − Λmax(ρAB‖RB→B) , (5.45)

where RB→B := trC ◦ RB→BC is the reduction of RB→BC to the output
space B.
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Before commenting on this result let us prove it. To do so we recall that the
conditional mutual information of a tripartite density operator is bounded from above
by the smallest relative entropy distance to Markov chains. More precisely, we have
the following upper bound for the conditional mutual information [17, Theorem 4].

Lemma 5.12 Let ρABC ∈ S(A ⊗ B ⊗ C). Then

I (A : C |B)ρ ≤ min
μ∈QMC

D(ρABC‖μABC) . (5.46)

Proof (Lemma 5.12) By definition of the relative entropy and the conditional mutual
informationwefind for allρABC ∈ S(A ⊗ B ⊗ C) and allμABC ∈ MC(A ⊗ B ⊗ C)

D(ρABC‖μABC ) + D(ρB‖μB) − D(ρAB‖μAB) − D(ρBC‖μBC ) = I (A : C |B)ρ + ν , (5.47)

where

ν := tr ρABC logμABC + tr ρB logμB − tr ρAB logμAB − tr ρBC logμBC . (5.48)

The algebraic structure of Markov chains predicted by Theorem 5.4 shows that

μABC =
⊕
j

P( j)μAbLj
⊗ μbR

j C
for B =

⊕
j

bLj ⊗ bR
j , (5.49)

with μAbLj
∈ S(A ⊗ bLj ) and μbR

j C
∈ S(bR

j ⊗ C). A simple calculation then shows
that ν = 0 and thus

I (A : C |B)ρ = D(ρABC‖μABC) + D(ρB‖μB) − D(ρAB‖μAB) − D(ρBC‖μBC) .

(5.50)

The nonnegativity of the relative entropy (see Proposition 2.28) guarantees that
D(ρBC‖μBC ) ≥ 0 and by the DPI (see Proposition 2.28) we have D(ρB‖μB) ≤
D(ρAB‖μAB). This then proves the assertion. �

For the proof of Theorem5.11we require onemore lemma that relates the distance
to Markov chains with the Λmax-quantity defined in (5.41).

Lemma 5.13 Let ρAB ∈ S(A ⊗ B) and RB→BC ∈ TPCP(B, B ⊗ C). Then

inf
μ∈MC

Dmax
(
RB→BC(ρAB)‖μABC

) ≤ Λmax(ρAB‖RB→B) , (5.51)

where RB→B := trC ◦ RB→BC is the reduction ofRB→BC to the output space B.
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Proof (Proof of Lemma 5.13) The DPI for the max-relative entropy [22, 23] implies
that

inf
μABC

{Dmax
(
RB→BC (ρAB)‖μABC

) : μABC ∈ MC}
≤ inf

τAB
{Dmax

(
RB→BC (ρAB)‖RB→BC (τAB)

) : RB→BC (τAB) ∈ MC, τAB ∈ S(A ⊗ B)}
(5.52)

≤ inf
τAB

{Dmax(ρAB‖τAB) : RB→BC (τAB) ∈ MC, τAB ∈ S(A ⊗ B)} . (5.53)

The strong subadditivity of quantum entropy (see 5.29) implies that
H(A|BC)R B→BC (τAB ) ≥ H(A|B)τAB for any τAB ∈ S(A ⊗ B) and hence

τAB ∈ Inv(RB→B) =⇒ H(A|BC)μ ≥ H(A|B)μ for μABC = RB→BC (τAB) . (5.54)

The strong subadditivity of quantum entropy together with the inequality on the
right-hand side of (5.54) implies that I (A : C |B)μ = 0 which means that μ ∈ MC
and hence

τAB ∈ Inv(RB→B) =⇒ RB→BC(τAB) ∈ MC . (5.55)

This implication now shows that

Λmax(ρAB‖RB→B) = inf
τAB

{Dmax(ρAB‖τAB) : τAB ∈ Inv(RB→B)} (5.56)

≥ inf
τAB

{Dmax(ρAB‖τAB) : RB→BC (τAB) ∈ MC, τAB ∈ S(A ⊗ B)} .

(5.57)

Combining this with (5.53) completes the proof. �

Proof (Theorem 5.11) Let μABC ∈ MC(A ⊗ B ⊗ C). Combining Lemma 5.12 with
Lemma 2.41 applied for α = 1, ρ = ρABC , σ = μABC and ω = RB→BC(ρAB) gives

D
(
ρABC‖RB→BC(ρAB)

) ≥ I (A : C |B)ρ − inf
μ∈MC

Dmax
(
RB→BC(ρAB)‖μABC

)
.

(5.58)

Lemma 5.13 then proves the assertion of Theorem 5.11. We note that (5.58) is
stronger than (5.45) and therefore may be of independent interest. �

The remaining part of this section is dedicated to comments on Theorem 5.11. In
particular we will discuss the tightness of (5.45) and the role of the Λmax-term.

Remark 5.14 In this remark we discuss cases where the Λmax-term vanishes. A
recovery map RB→BC generally not only reads the content of system B in order to
generate C , but also disturbs it. Λmax quantifies the amount of this disturbance of
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B, taking system A as a reference. This is the operational significance of the Λmax-
quantity. In particular, (5.44) directly implies thatΛmax(ρAB‖RB→B) = 0 ifRB→BC

is “read only” on B, i.e., if ρAB = RB→B(ρAB). Inequality (5.45) then simplifies to

D
(
ρABC‖RB→BC(ρAB)

) ≥ I (A : C |B)ρ . (5.59)

We further note that in case RB→BC is a recovery map that is “read only” on B its
output state σABC := RB→BC(ρAB) is a Markov chain since

H(A|B)ρ ≤ H(A|BC)σ ≤ H(A|B)σ = H(A|B)ρ , (5.60)

where the two inequality steps follow from the DPI applied for RB→BC and trC ,
respectively and hence I (A : C |B)σ = H(A|B)σ − H(A|BC)σ = 0.

5.3.1 Tightness of the Necessary Criterion

It is legitimate to ask if Theorem 5.11 is tight. To answer this question we need to
have a better understanding about theΛmax-term. Combining (5.27) with (5.45) gives

DM

(
ρABC‖T̄B→BC (ρAB)

) ≤ I (A : C |B)ρ (5.61)

≤ min
R B→BC

{
D

(
ρABC‖RB→BC (ρAB)

) + Λmax(ρAB‖RB→B)
}

,

(5.62)

where the recovery map T̄B→BC on the left-hand side is given by (5.28) and the min-
imum is over all recovery maps RB→BC ∈ TPCP(B, B ⊗ C). The main difference
between the lower and upper bound for the conditional mutual information given
by (5.61) and (5.62), respectively, is the Λmax-term. In the following we will show
that this term is necessary (i.e., we cannot drop it) as well as optimal (i.e., we cannot
replace it by a similar term that is strictly smaller).

5.3.1.1 Classical Case

Inequalities (5.61) and (5.62) hold with equality in case ρABC is a classical state,
i.e., it can be written as in (5.31). To see this, we first note that if ρABC is classical
(in which case ρABC and all its marginals commute pairwise) a simple calculation
(see 5.30) gives

I (A : C |B)ρ = D
(
ρABC‖TB→BC(ρAB)

)
, (5.63)
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for the Petz recovery mapTB→BC defined in (1.14). Furthermore, if ρABC is classical
TB→BC(ρAB) = ρBCρ−1

B ρAB . We further see that trCTB→BC(ρAB) = TB→B(ρAB)

= ρAB and hence

Λmax(ρAB‖TB→B) = 0 . (5.64)

This shows that in the classical case (5.62) is an equality and that the Petz recovery
mapTB→BC minimizes the right-hand side of (5.62). Remark 5.6 explainswhy (5.61)
holds with equality in the classical case.

5.3.1.2 Necessity of the Λmax-Term

It is natural to ask if tripartite states with a large conditional mutual information
cannot be recovered approximately. Alternatively this can be phrases as the question
if Theorem 5.11 remains valid when removing theΛmax-term. Just above we saw that
this is the case for classical states. We next show, however, that the Λmax-quantity is
necessary in general, i.e., (5.45) is false when dropping the Λmax-term.

More precisely, in Appendix A we construct a generic example showing that for
any constant κ < ∞ there exists a classical state ρABC (i.e., a state of the form (5.31))
such that

κ Dmax
(
ρABC‖RB→BC(ρAB)

)
< I (A : C |B)ρ , (5.65)

for some recovery map RB→BC ∈ TPCP(B, B ⊗ C) that satisfies RB→BC(ρB) =
ρBC . A similar construction (also given in Appendix A) shows that there exists
another classical state ρABC such that

κ Dmax
(
RB→BC(ρAB)‖ρABC

)
< I (A : C |B)ρ , (5.66)

for some recovery map RB→BC ∈ TPCP(B, B ⊗ C) that satisfies RB→BC(ρB) =
ρBC .

These constructions (which are explained in detail in Appendix A) reveal the
following interesting observations:

1. The term Λmax(ρAB‖RB→B), which measures the deviation from a “read only”
map on B, is necessary to obtain a lower bound on the relative entropy between a
state and its reconstruction version. The example has an even stronger impli-
cation. It shows that the Λmax-term is necessary even if one tries to bound
the max-relative entropy between a state and its reconstruction version, i.e.,
Dmax(ρABC‖RB→BC(ρAB))from below.1 The two strict inequalities (5.65) and
(5.66) show that theΛmax-term is also necessary if one would allow for swapping

1The max-relative entropy and its properties are discussed in more detail in Sect. 2.5.4. It is the
largest sensible relative entropy measure.
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the two arguments of the relative (or even max-relative) entropy. Furthermore,
restricting the set of recovery maps such that they satisfy RB→BC(ρB) = ρBC

still requires the Λmax-term.
2. The Petz recovery map can be far from being optimal—even in the classical case.

To see this we recall that for classical states (5.63) holds. Inequality (5.65) shows
that there exists a recovery map that recovers ρABC much better from ρAB than
the Petz recovery map.

3. Considering recovery maps that leave the B system invariant (i.e., they only
“read” the B-part) is a considerable restriction.2

We refer to Appendix A for more information about these examples.

5.3.1.3 Optimality of the Λmax-Term

In the previous section we saw that the Λmax-term in (5.45) cannot be dropped. This
raises the question if it is possible to replace this term by a strictly smaller term that
has similar properties. The purpose of this section is to present two arguments why
this is not the case. As a result, (5.45) is close to optimal.

First, we show that the Λmax-term cannot be replaced by a Λα-term for any
α < ∞. More precisely, for any α < ∞, we construct a tripartite density operator
ρABC ∈ S(A ⊗ B ⊗ C) and a recovery mapRB→BC ∈ TPCP(B, B ⊗ C) such that

D
(
ρABC‖RB→BC(ρAB)

)
< I (A : C |B)ρ − Λα(ρAB‖RB→B) . (5.67)

The construction is explained in Appendix B.
Second, we show that the Λmax-term in (5.45) cannot be defined as a dis-

tance between ρAB and RB→B(ρAB). Recall that Λmax(ρAB‖RB→B) quantifies the
(max-relative entropy) distance between ρAB and its closest state that is invari-
ant under RB→B . A natural question is if (5.45) remains valid if the Λmax-term
is replaced by the (max-relative entropy) distance between ρAB and RB→B(ρAB),
i.e., Dmax(ρAB‖RB→B(ρAB)). This however is ruled out. To see this we recall that
by the example presented above in (5.65) there exists a tripartite state ρABC ∈
S(A ⊗ B ⊗ C) and a recovery map RB→BC ∈ TPCP(B, B ⊗ C) such that

2Dmax
(
ρABC‖RB→BC(ρAB)

)
< I (A : C |B)ρ . (5.68)

The data-processing inequality for the max-relative entropy [22, 23] and the fact that
the max-relative entropy cannot be smaller than the relative entropy (see 2.138) then
imply

D
(
ρABC‖RB→BC(ρAB)

)
< I (A : C |B)ρ − Dmax

(
ρAB‖RB→B(ρAB)

)
, (5.69)

2Recall that for recoverymaps that leave the B system invariant theΛmax-term vanishes as explained
above.
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which shows that (5.45) is no longer valid for the modified Λmax-term described
above.

5.4 Strengthened Entropy Inequalities

It is well-known that several fundamental entropy inequalities useful in quantum
information theory are intrinsically related. For example, it was shown that the fol-
lowing statements

1. strong subadditivity of quantum entropy (see 5.29)
2. data processing inequality (see Proposition 2.28)
3. concavity of conditional entropy (i.e., ρAB �→ H(A|B)ρ is concave)
4. joint convexity of relative entropy (i.e., (ρ, σ ) �→ D(ρ‖σ) is convex)
5. Lieb’s triple operator inequality (see Theorem 4.9)
6. Lieb’s concavity theorem (see Theorem 2.13)

are all equivalent [24–26].3 Themain result of this section, i.e., Theorem5.5, presents
a strengthening of SSA in terms of recovery maps. It is therefore natural to ask if the
other equivalent statements listed above can also be improved. This is the purpose
of this section.

5.4.1 Data Processing Inequality

The data processing inequality (DPI), also known as monotonicity of the relative
entropy, is one of the very fundamental entropy inequalities. It states that the rela-
tive entropy between two density operators cannot increase by applying a quantum
channel to both operators [27, 28]. More precisely, for any ρ ∈ S(A), σ ∈ P(A),
and E ∈ TPCP(A, B) we have

D(ρ‖σ) ≥ D
(
E (ρ)‖E (σ )

)
. (5.70)

Remark 5.15 For ρ = ρABC , σ = idA ⊗ ρBC and E = trC , (5.70) simplifies to

I (A : C |B)ρ ≥ 0 , (5.71)

which is the celebrated SSA, presented in Sect. 5.1. This substitution provides a
useful link between Sect. 5.1 and this section.

3Equivalentmeans that every statement can be derived fromevery other one by simplemanipulations
only.
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With this in mind the careful reader will notice that some inequalities discussed next
are generalized versions of inequalities from Sect. 5.1.

The DPI is well studied. The following proposition gives necessary and sufficient
conditions under which (5.70) holds with equality.

Proposition 5.16 Let ρ ∈ S(A), σ ∈ P(A) and E ∈ TPCP(A, B). Then the fol-
lowing are equivalent

1. D(ρ‖σ) = D(E (ρ)‖E (σ ))

2. ∃Rσ,E ∈ TPCP(B, A) such that (Rσ,E ◦ E )(ρ) = ρ and (Rσ,E ◦ E )(σ ) = σ .

In particular, Rσ,E can always be chosen to be the rotated Petz recovery map, i.e.,

T [t]
σ,E : XB �→ σ

1+it
2 E †

(
E (σ )−

1+it
2 XB E (σ )−

1−it
2

)
σ

1−it
2 . (5.72)

Proof Tosee that 2 =⇒ 1 is simple.TheDPI shows thatD(ρ‖σ) ≥ D(E (ρ)‖E (σ )).
The other direction also follows from the DPI since

D(E (ρ)‖E (σ )) ≥ D((Rσ,E ◦ E )(ρ)‖(Rσ,E ◦ E )(σ )) = D(ρ‖σ) , (5.73)

where the final step uses 2.
It thus remains to show that 1 =⇒ 2. This is more complicated. Note that it is

immediate to verify that (T [t]
σ,E ◦ E )(σ ) = σ hence the nontrivial part is to show that

(T [t]
σ,E ◦ E )(ρ) = ρ which is done in Remark 5.22. �

Exercise 5.17 Convince yourself that Proposition 5.16 implies Theorem 5.2.

The following theorem is the main result of this chapter. It is a strengthening of
the data processing inequality and a robust version of Proposition 5.16.

Theorem 5.18 Letρ ∈ S(A),σ ∈ P(A) such thatρ �σ , andE ∈ TPCP(A, B).
Then

D(ρ‖σ) − D (E (ρ)‖E (σ )) ≥ DM

(
ρ
∥∥T̄σ,E ◦ E (ρ)

)
, (5.74)

with the rotated Petz recovery map

T̄σ,E :=
∫ ∞

−∞
dtβ0(t)T

[t]
σ,E , (5.75)

where β0 and T [t]
σ,E are defined in (3.47) and (5.72), respectively.
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Proof We first prove a slightly restricted version of Theorem 5.18 where we suppose
that E is a partial trace. In a second step we then show how this statement can be
generalized (using the Stinespring dilation) to an arbitrary channel E .

Let ρAB ∈ S(A ⊗ B) and σAB ∈ P(A ⊗ B) be such that ρAB � σAB . Let us recall
the multivariate GT inequality (see Theorem 4.10) applied for n = 4 and p = 2.
Using the concavity of the logarithm and Jensen’s inequality, it yields

tr eH1+H2+H3+H4 ≤
∫ ∞

−∞
dtβ0(t) tr e

H1e
1+it
2 H2e

1+it
2 H3eH4e

1−it
2 H3e

1−it
2 H2 , (5.76)

for Hk ∈ H(A ⊗ B) and k ∈ [4]. Moreover, by definition of the relative entropy for
positive definite operators ρAB and σAB , we have

D(ρAB‖σAB) − D(ρA‖σA) = D
(
ρAB‖ exp(log σAB + log ρA ⊗ idB − log σA ⊗ idB)

)
. (5.77)

For positive semi-definite operators ρAB and σAB , the Hermitian operators log σAB ,
log ρA and log σA are well-defined under the convention log 0 = 0. Under this con-
vention, the above equality (5.77) also holds for positive semi-definite operators as
long as ρAB � σAB , which is required by the theorem. By the variational formula
for the relative entropy (see Lemma 2.29) we thus find

D(ρAB‖σAB) − D(ρA‖σA)

= sup
ωAB∈P+(A⊗B)

{tr ρAB logωAB+1−tr exp(log σAB+log ρA ⊗ idB−log σA ⊗ idB+logωAB)}
(5.78)

≥ sup
ωAB∈P+(A⊗B)

{
tr ρAB logωAB+1−

∫ ∞

−∞
dtβ0(t) tr σ

1+it
2

AB

(
σ

− 1+it
2

A ρAσ
− 1−it

2
A ⊗ idB

)
σ

1−it
2

AB ωAB

}

(5.79)

= DM

(
ρAB

∥∥∥∥
∫ ∞

−∞
dtβ0(t) σ

1+it
2

AB

(
σ

− 1+it
2

A ρAσ
− 1−it

2
A ⊗ idB

)
σ

1−it
2

AB

)
(5.80)

= DM

(
ρABC‖T̄σAB ,trB (ρA)

)
, (5.81)

where the single inequality step follows by the four matrix extension of the GT
inequality in (5.76). The penultimate step uses the variational formula for the mea-
sured relative entropy given in Lemma 2.34.

Let us introduce the Stinespring dilation of E , denoted V , and the states ρAB =
VρV †, σAB = VσV † such that E (ρ) = ρA and E (σ ) = σA. Then, using the fact that
the relative entropy is invariant under isometries (see Proposition 2.28), we have

D(ρ‖σ) − D
(
E (ρ)‖E (σ )

) = D(ρAB‖σAB) − D(ρA‖σA) (5.82)

≥ DM

(
ρAB‖T̄σAB ,trB (ρA)

)
(5.83)

= DM

(
ρ‖(T̄σ,E ◦ E )(ρ)

)
, (5.84)
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where the inequality is due to (5.81) and the last equality uses again invariance under
isometries and the fact that for all t ∈ R and XA ∈ P(A)

V †T [t]
σAB ,trB (XA)V = V †Vσ

1+it
2 V †

(
E (σ )−

1+it
2 (XA)E (σ )−

1−it
2 ⊗ idB

)
Vσ

1−it
2 V †V

(5.85)

= σ
1+it
2 E †

(
E (σ )−

1+it
2 (XA)E (σ )−

1−it
2

)
σ

1−it
2 (5.86)

= T̄ [t]
σ,E (XA) . (5.87)

This therefore completes the proof. �

Exercise 5.19 Convince yourself that Theorem 5.5 follows immediately from The-
orem 5.18 by choosing ρ = ρABC , σ = idA ⊗ ρBC , and E = trC .

The recoverymap T̄σ,E fromTheorem 5.18 satisfiesmany desirable properties [8,
10, 29]:

1. It is trace-non-increasing and completely positive.4

2. It is explicit.
3. It is universal, i.e., it depends on σ and E only. (It is independent of ρ.)
4. It satisfies (T̄σ,E ◦ E )(σ ) = σ , i.e., it perfectly recovers σ from E (σ ).
5. It features a normalization property. For E = I we have T̄σ,I (·) = Πσ(·)Πσ ,

where Πσ denotes the projector onto the support of σ . Thus, in case σ has full
support T̄σ,I is the identity map.

6. It has a stabilization property. For any ω ∈ P+(R), where R denotes a reference
system we have T̄σ⊗ω,E ⊗I R = T̄σ,E ⊗ IR .

Exercise 5.20 Verify the six properties stated above.

Using similar techniques as in the proof of Theorem 5.18, we can derive another
strengthening of the data processing inequality [10].

Proposition 5.21 Let ρ, σ ∈ P(A) such that ρ � σ , tr ρ = 1, E ∈ TPCP(A, B),
and β0 defined in (3.47). Then

D(ρ‖σ) − D
(
E (ρ)‖E (σ )

) ≥ −
∫ ∞

−∞
dtβ0(t) log F

(
ρ, (T [t]

σ,E ◦ E )(ρ)
)
, (5.88)

with the rotated Petz recovery map T [t]
σ,E given by (5.72).

We note that the main difference between this proposition and Theorem 5.18 is that
in (5.88) the integral is at the very outside, however we have a log-fidelity measure
whereas in (5.74) we have a measured relative entropy with the integral inside (see
Proposition 2.36 for the relation between these two quantities).

4In case E (σ ) ∈ P+(B) the recovery map T̄σ,E is trace-preserving.
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Proof We first show the assertion of the proposition for the case where E is a partial
trace and then explain how this result can be lifted to arbitrary quantum channels
using the Stinespring dilation (see Proposition 2.20).

Let ρAB, σAB ∈ P(A ⊗ B) such that ρAB � σAB and tr ρAB = 1. Let us recall the
multivariate GT inequality given in Theorem 4.10 for n = 4 and p = 1. By Jensen’s
inequality this reads as

tr eH1+H2+H3+H4 ≤
∫ ∞

−∞
dtβ0(t)

∥∥eH1e(1+it)H2 e(1+it)H3eH4
∥∥
1 . (5.89)

Furthermore the Peierls-Bogoliubov inequality (see Theorem 2.11) ensures that

log
tr eH5+H6

tr eH5
≥ tr H6eH5

tr eH5
. (5.90)

For H5 = log ρAB and H6 = 1
2 (− log ρAB + log σAB − log σA ⊗ idB + log ρA

⊗ idB) this simplifies to

2 log tr e
1
2 (log ρAB+log σAB−log σA⊗idB+log ρA⊗idB )

≥ tr ρAB (− log ρAB + log σAB − log σA ⊗ idB + log ρA ⊗ idB) .

(5.91)

We thus find

D(ρAB‖σAB) − D(ρA‖σA) = tr ρAB (log ρAB − log σAB + log σA ⊗ idB − log ρA ⊗ idB)

(5.92)

≥ −2 log tr e
1
2 (log ρAB+log σAB−log σA⊗idB+log ρA⊗idB ) . (5.93)

Applying the four operator extension of the GT inequality given in (5.89) then gives

D(ρAB‖σAB) − D(ρA‖σA)

≥ −
∫ ∞

−∞
dtβ0(t)

∥∥∥ρ
1
2
ABσ

1+it
2

AB

(
σ

− 1+it
2

A ρ
1
2
A ⊗ idB

)∥∥∥
2

1
(5.94)

= −
∫ ∞

−∞
dtβ0(t) log F

(
ρAB, σ

1+it
2

AB

(
σ

− 1+it
2

A ρAσ
− 1−it

2
A ⊗ idB

)
σ

1−it
2

AB

)

(5.95)

= −
∫ ∞

−∞
dtβ0(t) log F

(
ρAB,T [t]

σAB ,trB (ρA)
)
, (5.96)

where the penultimate step follows by definition of the fidelity.
Let V be the Stinespring dilation of E and let ρAB = VρV †, σAB = VσV † such

that E (ρ) = ρA and E (σ ) = σA. Then, using the fact that the relative entropy is
invariant under isometries (see Proposition 2.28), we have
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D(ρ‖σ) − D
(
E (ρ)‖E (σ )

) = D(ρAB‖σAB) − D(ρA‖σA) (5.97)

≥ −
∫ ∞

−∞
dtβ0(t) log F

(
ρAB,T [t]

σAB ,trB (ρA)
)

(5.98)

= −
∫ ∞

−∞
dtβ0(t) log F

(
ρ, (T [t]

σ,E ◦ E )(ρ)
)
, (5.99)

where the penultimate step uses (5.96) and the final step uses that the fidelity is
invariant under isometries (see Proposition 2.26) together with (5.87). This then
completes the proof. �

Remark 5.22 Since the mapping R � t �→ T [t]
σ,E is continuous, Proposition 5.21

shows that D(ρ‖σ) = D(E (ρ)‖E (σ )) implies that (T [t]
σ,E ◦ E )(ρ) = ρ for all t ∈ R,

where we used the nonnegativity property of the fidelity discussed in Proposi-
tion 2.26.5

5.4.2 Concavity of Conditional Entropy

It iswell-known that the conditional entropy is concave, i.e., the functionS(A ⊗ B) �
ρ �→ H(A|B)ρ is concave. In the following we show that Theorem 5.5 implies a
stronger version of this concavity result.

Corollary 5.23 Let μ be a probability measure on a measurable space (X,Σ) and
(ρAB,x )x∈X be a sequence of density operators on A ⊗ B. Then

H(A|B)ρ̄ −
∫

X
μ(dx)H(A|B)ρx ≥

∫

X
μ(dx) DM

(
ρAB,x‖T̄B→AB(ρB,x )

) ≥ 0 ,

(5.100)

where ρ̄AB := ∫
X μ(dx)ρAB,x and T̄B→AB(·) := T̄ρAB ,trA(·) defined in (5.75).

Proof Consider the classical-quantum state

ωX AB :=
∫

X
μ(dx)|x〉 〈x |X ⊗ ρAB,x . (5.101)

Theorem 5.5 implies that

5Choosing ρ = ρABC , σ = idA ⊗ ρBC , and E = trC we obtain that I (A : C |B)ρ = 0 implies

T
[t]
B→BC (ρAB) = ρABC for T [t]

B→BC defined in (5.2).
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H(A|B)ρ̄ −
∫

X
μ(dx)H(A|B)ρx = H(A|B)ω − H(A|BX)ω (5.102)

= I (X : A|B)ω (5.103)

≥ DM

(
ωX AB‖T̄B→AB(ωXB)

)
(5.104)

=
∫

X
μ(dx)DM

(
ρAB,x‖T̄B→AB(ρB,x )

)
,

(5.105)

where the final step uses Proposition 2.35.
Since T̄B→AB is trace-preserving and completely positive (as discussed in

Sect. 5.4.1), Proposition 2.35 implies DM

(
ρAB,x‖T̄B→AB(ρB,x ) ≥ 0 for all x ∈ X

which completes the proof. �

Results that strengthen the concavity of a function can be extremely useful. For
example in optimization theory the concept of a strict or even strongly concave
function turns out to be important and powerful [30, 31]. For this reason we believe
that Corollary 5.23 may be of interest.

5.4.3 Joint Convexity of Relative Entropy

As discussed in Proposition 2.28, the relative entropy is jointly convex in its two
arguments. As we show next, Theorem 5.18 implies a strengthened version of this
convexity property.

Corollary 5.24 Let μ be a probability measure on a measurable space (X,Σ),
(ρA,x )x∈X be a sequence of density operator on A with ρA = ∫

X μ(dx)ρA,x and
(σA,x )x∈X be a sequence of nonnegative operators on A with σA = ∫

X μ(dx)σA,x .
Then

∫

X
μ(dx)D(ρA,x‖σA,x ) − D(ρA‖σA) ≥ DM

(
ρX A‖T̄A→X A(ρA)

) ≥ 0 , (5.106)

where ρX A := ∫
X μ(dx)|x〉 〈x |X ⊗ ρA,x , σX A := ∫

X μ(dx)|x〉 〈x |X ⊗ σA,x , and
T̄A→X A(·) := T̄σAX ,trX (·) defined in (5.75).

Proof Proposition 2.35 shows that

∫

X
μ(dx)D(ρA,x‖σA,x ) − D(ρA‖σA) = D(ρX A‖σX A) − D(ρA‖σA) (5.107)

≥ DM

(
ρX A‖T̄A→X A(ρA)

)
(5.108)

≥ 0 , (5.109)
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where the penultimate step uses Theorem 5.18. The final step follows from Propo-
sition 2.35 together with the fact that the recovery map T̄A→X A is trace-preserving
and completely positive. �

5.5 Background and Further Reading

Quantum Markov chains were introduced in [32] and their properties were studied
carefully [1–3]. This raised the question how to characterize states with a small
conditional mutual information. In [17] (see [16] for a simplified argument), it was
realized that such states are not necessarily close to any Markov chain. This fact has
been taken as an indication that the characterization of states with a small conditional
mutual information may be difficult. Subsequently, it has been realized that a more
appropriate measure instead of the distance to a Markov chain is to consider how
well (5.1) is satisfied [33–36]. This was made precise by the breakthrough result of
Fawzi and Renner [5]. This result generated a sequence of papers [6–11, 37] which
finally led to Theorems 5.5 and 5.18 which were conjectured in [33].

A lower bound that is different to Theorem 5.5 has been obtained by [38, 39],
where it was shown that

I (A : C |B)ρ ≥ 1

8 ln 2
max

σAC separable
‖ρAC − σAC‖2LOCC (5.110)

≥ 1

8
√
153 ln 2

max
σAC separable

‖ρAC − σAC‖22 , (5.111)

where ‖·‖LOCC is the so-called LOCC norm.
Theorem 5.5 already found various applications that we do not discuss in the

book. To name a few, it has been used to solve problems in thermodynamics [40,
41] where for example it was shown that approximate quantum Markov chains are
approximately thermal [41]. Thismeans that for anyρABC such that I (A : C |B)ρ ≤ ε

there exists a local Hamiltonian H = hAB + hBC , where hAB and hBC only act on
A ⊗ B and B ⊗ C , respectively, such that

D

(
ρABC

∥∥∥ e−H

tr e−H

)
≤ 3ε . (5.112)

Theorem 5.5 is also potentially useful in computational physics as it implies that
systems satisfying a certain locality assumption can be represented efficiently. More
precisely, consider a one-dimensional system consisting of n subsystems S1, . . . , Sn
that feature a certain locality assumption in the sense that for all k ∈ [n] we have

I (S1, . . . , Sk−2 : Sk |Sk−1)ρ ≤ ε . (5.113)
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Theorem 5.5 implies that the state ρS1,...,Sn describing such a system can be rep-
resented efficiently as we can sequentially build it up. To see this let us start with the
marginal ρS1S2 . Theorem 5.5 implies that there exists a recovery map T̄S2→S2S3 such
that

ρS1S2S3 ≈ T̄S2→S2S3(ρS1S2) . (5.114)

By Theorem 5.5 there exists a recovery map T̄S3→S3S4 such that

ρS1S2S3S4 ≈ T̄S3→S3S4(ρS1S2S3) . (5.115)

By continuing like this we can reconstruct the full state ρS1,...,Sn . All we need to store
in order to represent ρS1,...,Sn is a sequence of recovery maps that only takes linear
space. To summarize, one-dimensional systems that satisfy the locality assump-
tion (5.113) can be efficiently represented by a finite sequence of recovery maps
given by Theorem 5.5.

Theorem 5.5 has been successfully applied in other areas such as high energy
physics [42–44], solid state physics [45–47], quantum error correction [48, 49],
quantum information theory [50–55], and foundations of quantum mechanics [56].

We note that Theorem5.5 has been extended to separableHilbert spaces [10] (with
the caveat that the measured relative entropy is replaced with min-relative entropy).
It is an open question if Theorem 5.5 or Theorem 5.18 remain valid in the more
general algebraic setting. For this purpose the interested reader may have a look at
Araki’s Gibbs conditions [57] (see also [58]) and the Tomita-Takesaki theory [59].
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Appendix A
A Large Conditional Mutual Information
Does Not Imply Bad Recovery

Abstract In this appendix we construct a state ρABC that has a large conditional
mutual information I (A : C |B)ρ , however there exists a recovery map RB→BC

that approximately reconstructs ρABC from ρAB . More precisely, this example justi-
fies (5.65) and (5.66).

Since the example is purely classical we also use classical notation (i.e., we
will speak for example about a distribution instead of a density operator). Let
X = {1, 2, . . . , 2n} for n ∈ N, p, q ∈ [0, 1] such that p + q ≤ 1, and consider two
independent random variables EZ and EY on {0, 1} and {0, 1, 2}, respectively, such
that

P(EZ = 0) = p + q, P(EY = 0) = p, and P(EY = 1) = q . (A.1)

Let X ∼ U (X ), where U (X ) denotes the uniform distribution on X and define
two random variables by

Z :=
{
X if EZ = 0
UZ otherwise

and Y :=
⎧⎨
⎩

X if EY = 0
Z if EY = 1
UY otherwise ,

(A.2)

where UY ∼ U (X ) and UZ ∼ U (X ) are independent. This defines a tripartite
distribution PXY Z . A simple calculation reveals that

H(X |Y EY EZ ) = pH(X |XEZ ) + qH(X |ZEZ ) + (1 − p − q)H(X |UY EZ ) (A.3)

= q
(
(p + q)H(X |X) + (1 − p − q)H(X |UZ )

) + (1 − p − q)H(X) (A.4)
= n(1 − p − q)(1 + q) . (A.5)
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Similarly we find

H(X |Y ZEY EZ ) = q(1 − p − q)H(X |UZ ) + (1 − p − q)(1 − p − q)H(X |UY )

(A.6)

= n(1 − p − q)(1 − p) . (A.7)

We thus obtain

I (X : Z |Y )P = H(X |Y ) − H(X |Y Z) (A.8)

≥ H(X |Y EY EZ ) − H(X |Y ZEY EZ ) − I (X : EY EZ |Y Z) (A.9)

≥ n(1 − p − q)(p + q) − log 6 . (A.10)

We next define a recovery map RY→Y ′Z ′ that creates a tuple of random variables
(Y ′, Z ′) out of Y such that

(Y ′, Z ′) := (p2 + q + pq)(Y, Y ) + 1

2

(
1 − p2 − q − pq

)
(Y,U ) + 1

2

(
1 − p2 − q − pq

)
(U ′, Y ) ,

where U,U ′ are independent uniformly distributed on X . Let

QXY ′Z ′ := RY→Y ′Z ′(PXY ) (A.11)

denote the distribution that is generated when applying the recovery map (described
above) to PXY . In the following we will assume that n is sufficiently large. It can be
verified easily that QY ′Z ′ = PY Z . Since PXY Z and QXY ′Z ′ are classical distributions
we have Dmax(PXY Z‖QXY ′Z ′) = maxx,y,z log

PXY Z (x,y,z)
QXY ′ Z ′ (x,y,z) . We note that P(X = Y ) =

p + pq + q2 according to the distribution PXY and hence

Dmax(PXY Z‖QXY ′Z ′ ) = max

{
log

(p + q)2

P(X = Y )(p2 + q + pq)
, log

(1 − p − q)q

P(X 	= Y )(p2 + q + pq)
,

log
(p + q)(1 − p − q)

P(X = Y ) 12 (1 − p2 − q − pq)
, log

(1 − p − q)p

P(X = Y ) 12 (1 − p2 − q − pq)
,

log
(1 − p − q)2

P(X 	= Y )(1 − p2 − q − pq)

}
(A.12)

and

Dmax(QXY ′Z ′ ‖PXY Z ) = max

{
log

P(X = Y )(p2 + q + pq)

(p + q)2
, log

P(X 	= Y )(p2 + q + pq)

(1 − p − q)q
,

log
P(X = Y ) 12 (1 − p2 − q − pq)

(p + q)(1 − p − q)
, log

P(X = Y ) 12 (1 − p2 − q − pq)

(1 − p − q)p
,

log
P(X 	= Y )(1 − p2 − q − pq)

(1 − p − q)2

}
. (A.13)
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For κ < ∞, p = 1
2 , q = 0, and n sufficiently large we find by combining (A.10)

with (A.12)

κ Dmax
(
PXY Z‖RY→Y Z (PXY )

) = κ <
n

4
− log 6 ≤ I (X : Z |Y )P , (A.14)

which justifies (5.65). For κ < ∞, p = q = 1
4 , and n sufficiently large (A.10)

and (A.13) imply

κ Dmax
(
RY→Y Z (PXY )‖PXY Z

) = κ log
15

8
<

n

4
− log 6 ≤ I (X : Z |Y )P , (A.15)

justifying (5.66).
These examples show that there exist classical tripartite distributions PXY Z with

a large conditional mutual information I (X : Y |Z)P and a recovery map RY→Y Z

such that RY→Y Z (PXY ) is close to PXY Z and RY→Y Z (PY ) = PY Z . The closeness is
measured with respect to the max-relative entropy.

https://doi.org/10.1007/978-3-319-78732-9_5
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Appendix B
Example Showing the Optimality
of the Λmax-Term

Abstract In this appendix, we construct a classical example showing that (5.45) is
essentially tight in the sense that it is no longer valid if the max-relative entropy in the
definition ofΛmax(ρAB‖RB→B) is replacedwithΛα(ρAB‖RB→B) for anyα < ∞. In
other words, for any α < ∞we construct a density operator ρABC ∈ S(A ⊗ B ⊗ C)

and a recovery map RB→BC ∈ TPCP(B, B ⊗ C) that satisfy (5.67).

Our construction is purely classical which is the reason that we switch to the
classical notation. Let S = {0, . . . , 2n − 1} and consider a tripartite distribution
QXY Z defined via the random variables X ∼ U (S ) and X = Y = Z . Let Q′

XY Z be
the distribution defined via the random variables X ∼ U (S ), Y ∼ U (S ) where
X and Y are independent, U (S ) denotes the uniform distribution on S and
Z = (X + Y )mod 2n . For p ∈ [0, 1] we define a binary random variable E such
that P(E = 0) = p. Consider the distribution

PXY Z =
{
QXY Z if E = 0
Q′

XY Z if E = 1 .
(B.1)

We next define two recovery maps R̃Y→Y ′Z ′ and R̄Y→Y ′Z ′ that create the tuples
(Y ′, Z ′) out of Y such that

(Y ′, Z ′) = (Y,Y ) and (Y ′, Z ′) = (
U, (Y −U )mod 2n

)
, (B.2)

where U ∼ U (S ), respectively. We then define another recovery map as

RY→Y ′Z ′ := pR̃Y→Y ′Z ′ + (1 − p)R̄Y→Y ′Z ′ . (B.3)
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We note that the recovery map satisfies RY→Y ′Z ′(PY ) = PY Z . A simple calculation
shows that

H(X |Y E)P = pH(X |Y )Q + (1 − p)H(X |Y )Q′ = (1 − p)n (B.4)

and

H(X |Y ZE)P = pH(X |Y Z)Q + (1 − p)H(X |Y Z)Q′ = 0 . (B.5)

We thus find

I (X : Z |Y )P = H(X |Y ) − H(X |Y Z) (B.6)

≥ H(X |Y E) − H(X |Y ZE) − I (X : E |Y Z) (B.7)

≥ (1 − p)n − h(p) . (B.8)

The distributionRY→Y ′Z ′(PXY ) generated by applying the recovery map to PXY can
be decomposed as

RY→Y ′Z ′ (PXY ) = p
(
pS̃XY Z + (1 − p)S̄XY Z

)
+ (1 − p)

(
pS̃′

XY Z + (1 − p)S̄′
XY Z

)
, (B.9)

where S̃XY Z = R̃Y→Y ′Z ′(QXY ), S̄XY Z = R̄Y→Y ′Z ′(QXY ), S̃′
XY Z = R̃Y→Y ′Z ′(Q′

XY ),
and S̄′

XY Z = R̄Y→Y ′Z ′(Q′
XY ). The joint convexity of the relative entropy

[1, Theorem 2.7.2] then implies

D
(
PXY Z‖RY→Y ′Z ′ (PXY )

)
≤ pD

(
QXY Z‖pS̃XY Z + (1 − p)S̄XY Z

) + (1 − p)D
(
Q′

XY Z‖pS̃′
XY Z + (1 − p)S̄′

XY Z

)
(B.10)

A simple calculation shows that

D
(
QXY Z ‖pS̃XY Z + (1 − p)S̄XY Z

) =
∑

x=y=z
QXY Z (x, y, z) log

QXY Z (x, y, z)

pS̃XY Z (x, y, z) + (1 − p)S̄XY Z (x, y, z)

≤ 2−n

p2−n = log
1

p
(B.11)

and

D
(
Q′

XY Z‖pS̃′
XY Z + (1 − p)S̄′

XY Z

)

=
∑

x,y,z=x+ymod 2n
Q′

XY Z (x, y, z) log
Q′

XY Z (x, y, z)

pS̃′
XY Z (x, y, z) + (1 − p)S̄′

XY Z (x, y, z)

(B.12)

≤ 2−2n

p2−2n = log
1

p
. (B.13)



Appendix B: Example Showing the Optimality of the Λmax-Term 107

We thus have

D
(
PXY Z‖RY→Y ′Z ′(PXY )

) ≤ log
1

p
. (B.14)

We note that the recovery map RY→Y ′ = trZ ′ ◦ RY→Y ′Z ′ leaves the uniform distri-
bution Q′

XY invariant, i.e.,RY→Y ′(Q′
XY ) = Q′

XY . As a result we find

Λα(PXY‖RY→Y ′) ≤ Dα(PXY‖Q′
XY ) (B.15)

= 1

α − 1
log

(
2−n(1 − p)α(2n − 1) + 2−n(1 − p + p2n)α

)
,

(B.16)

where the final step follows by definition of the α-Rényi relative entropy and a
straightforward calculation.

Recall that we need to prove (5.67), which in the classical notation reads as

D
(
PXY Z‖RY→Y ′Z ′(PXY )

) + Λα(PXY‖RY→Y ′) < I (X : Z |Y )P , (B.17)

for all α < ∞. As mentioned in (2.139), the α-Rényi relative entropy is monotone
in α which shows that it suffices to prove (B.17) for all α ∈ (α0,∞), where α0 ≥ 0
can be arbitrarily large.

Combining (B.14) and (B.15) shows that for any α ∈ (α0,∞) where α0 is suffi-
ciently large, p = α−2, and n = α

D
(
PXY Z ‖RY→Y ′Z ′ (PXY )

) + Λα(PXY ‖RY→Y ′ ) ≤ 2 logα + 1

α − 1
log

(
1 + 2−α(1 + α−22α)α

)
,

where we used that (1 − α−2)α(2α − 1) ≤ 2α for α ≥ 1. Using the simple inequality
log(1 + x) ≤ log x + 2

x for x ≥ 1 gives

D
(
PXY Z‖RY→Y ′Z ′(PXY )

) + Λα(PXY ‖RY→Y ′)

≤ 2 logα − α

α − 1
+ α

α − 1
log

(
1 + 2α

α2

)
+ 2

α − 1
2α

(
1 + 2α

α2

)−α

(B.18)

≤ 2 logα − α

α − 1
+ α

α − 1
log

(
1 + 2α

α2

)
+ 2−α , (B.19)

where the final step is valid since α is assumed to be sufficiently large. Using once
more log (1 + x) ≤ log x + 2

x for x ≥ 1 gives

https://doi.org/10.1007/978-3-319-78732-9_5
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D
(
PXY Z‖RY→Y ′Z ′(PXY )

) + Λα(PXY‖RY→Y ′)

≤2 logα + α

α − 1

(
α − 2 logα − 1 + 2α2

2α

)
+ 2−α

(B.20)

= α − 2

α − 1
logα + 2−αpoly(α) , (B.21)

where poly(α) denotes an arbitrary polynomial in α. As a result, we obtain for a
sufficiently large α

D
(
PXY Z‖RY→Y ′Z ′(PXY )

) + Λα(PXY‖RY→Y ′) < α − 2

α
(B.22)

≤ α − α−1 − h(α−2) (B.23)

≤ I (X : Z |Y )P . (B.24)

The two steps (B.22) and (B.23) are both valid because α is sufficiently large. The
final step uses (B.8).



Appendix C
Solutions to Exercises

Abstract In this appendix we give solutions to the exercises stated throughout the
book. The exercises are chosen such that they can be solvedwithoutmajor difficulties.
They serve the purpose of a verification possibility for the reader to check if she has
understood the presented subject.

Solution to Exercise 1.1

Weview statement (1.1) as the definition of a (classical)Markov chain. It thus remains
to show that (1.2) and (1.3) are both equivalent to (1.1). Bayes’ theorem ensures that
PXY Z = PXZ |Y PY and PXY = PX |Y PY . As a result we find that

PXZ |Y = PX |Y PZ |Y ⇐⇒ PXY Z = PXY PZ |Y , (C.1)

which shows that (1.1) is equivalent to (1.2). By definition of the relative entropy
and the conditional mutual information we have

I (X : Z |Y )P = D(PXZ |Y‖PX |Y PZ |Y ) . (C.2)

Recalling that D(P‖Q) = 0 if and only if P = Q shows that (1.1) is equivalent
to (1.3).

Solution to Exercise 1.2

This solution follows the arguments presented in [2, 3]. A simple calculation shows
that

I (X : Z |Y )P =
∑
x,y,z

PXY Z (x, y, z) log
PZ |XY (z|xy)
PZ |Y (z|y) . (C.3)
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The distribution PXY Z can be decomposed as PXY Z = PY PZ |Y PX |Y Z and anyMarkov
chain QXY Z can be written as QXY Z = QY QZ |Y QX |Y . We thus find

D(PXY Z‖QXY Z ) =
∑
x,y,z

PXY Z (x, y, z)

(
log

PY (y)

QY (y)
+ log

PZ |Y (z|y)
QZ |Y (z|y) + log

PX |Y Z (x |yz)
QX |Y (x |y)

)

(C.4)

= D(PY ‖QY ) + D(PZ |Y ‖QZ |Y ) +
∑
x,y,z

PXY Z (x, y, z) log
PX |Y Z (x |yz)
QX |Y (x |y)

(C.5)

= D(PY ‖QY ) + D(PZ |Y ‖QZ |Y ) + D(PX |Y ‖QX |Y ) + I (X : Z |Y )P , (C.6)

where the final step uses (C.3). Since the relative entropy is nonnegative and zero if
and only if the two arguments coincide this proves the assertion.

Solution to Exercise 2.3

That the Schatten p-norm satisfies the nonnegativity and absolute homogeneity prop-
erty is obvious from its definition. It thus remains to prove the triangle inequality.
The Schatten p-norm can be written as the �p-norm of the singular values, i.e., for
L ∈ L(A) we have

‖L‖p =
(
dim(L)∑
k=1

σk(L)p

) 1
p

, (C.7)

where (σk(L))
dim(L)
k=1 denote the singular values of L . The Minkowski inequality (see,

e.g., [4, Theorem III.1]) then implies the triangle inequality for Schatten norms.
The identiy (C.7) shows that ‖L‖p = ∥∥L†

∥∥
p
as singular values are invariant under

conjugate transposition. The singular value decomposition ensures that there exist
unitariesU, V ∈ U(A) such that L = UΛV †, where Λ is a diagonal matrix contain-
ing the singular values of L . Using the fact that Schatten norms are unitarily invariant
gives

∥∥LL†
∥∥
p = ∥∥L†L

∥∥
p = ‖ΛΛ‖p =

(
dim(L)∑
k=1

σk(L)2p

) 2
2p

= ‖L‖22p . (C.8)

The fact that Schatten p-norms are monotone in p follows directly from the
monotonicity of �p-norms via (C.7). To see this let 0 	= x ∈ C

d and 1 ≤ p ≤ q and
define y := x

‖x‖p
. Since |yk | ≤ 1 and ‖y‖p = 1 we find

‖y‖q =
(

d∑
k=1

|yk |q
) 1

q

≤
(

d∑
k=1

|yk |p
) 1

q

= ‖y‖
p
q
p = 1 . (C.9)

https://doi.org/10.1007/978-3-319-78732-9_2
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As a result we have

‖x‖q = ∥∥‖x‖p y
∥∥
q

= ‖x‖p ‖y‖q ≤ ‖x‖p . (C.10)

If (σk(L1))
dim(L1)
k=1 and (σk(L2))

dim(L2)
k=1 denote the singular values of L1 and L2,

respectively, then the dim(L1) dim(L2) singular values of L1 ⊗ L2 are given by all
possible multiplications of a singular values of L1 with a singular values of L2. This
directly implies that Schatten norms are multiplicative under tensor products.

Solution to Exercise 2.18

Consider the transpose map T : L(A) → L(A) that is given by T : X �→ XT,
where XT denotes the transpose of X with respect to some fixed basis. The transpose
map is clearly positive, since for any state |ψ〉 we have

〈ψ |XT|ψ〉 = 〈ψ |X̄†|ψ〉 = 〈ψ |X̄ |ψ〉 = 〈ψ̄ |X |ψ̄〉 ≥ 0 . (C.11)

The transpose map is however not completely positive. To see this it suffices to
consider a two-dimensional system, i.e., dim(A) = 2. For the computational basis
{|0〉, |1〉} and the maximally entangled state

|φ〉AB = 1√
2

(|00〉AB + |11〉AB) (C.12)

we find that

(TA ⊗ IB)(|φ〉 〈φ|AB) = 1

2
(|00〉〈00|AB + |10〉〈10|AB + |01〉〈01|AB + |11〉〈11|AB) , (C.13)

which is not a positive operator as it has eigenvalues ± 1
2 .

Solution to Exercise 2.22

The finite sequence (Ek)k∈[r ] of Kraus operators is not uniquely determined by E .
It can be shown [5, Theorem 2.1] that two sets of Kraus operators (Ek) and (E ′

k)

represent the samemapE if and only if there is a unitaryU such that Ek = ∑
j Uk j E ′

j
(where the smaller set is padded with zeros). A proof of this statement can be found
in [5, Theorem 2.1].

Solution to Exercise 2.30

Since the two optimization problems in Lemma 2.29 are equivalent it suffices to
show that one of them is a convex optimization problem. We do so for the first

https://doi.org/10.1007/978-3-319-78732-9_2
https://doi.org/10.1007/978-3-319-78732-9_2
https://doi.org/10.1007/978-3-319-78732-9_2
https://doi.org/10.1007/978-3-319-78732-9_2


112 Appendix C: Solutions to Exercises

optimization problem. Since everyHermitian operator can bewritten as the logarithm
of a nonnegative operator we can rewrite (2.74) as

D(ρ‖σ) = sup
H∈H(A)

{
tr ρH − log tr elog σ+H

}
. (C.14)

The set of Hermitian operators is clearly convex. Furthermore, the function H �→
log tr elog σ+H is convex on the set of Hermitian operators. To see this, we recall the
variational formula given in (2.76) which shows that for any t ∈ [0, 1] and H1, H1 ∈
H(A) we have

t log tr elog σ+H1 + (1 − t) log tr elog σ+H2 ≥ max
ρ∈S(A)

{
tr

(
t H1 + (1 − t)H2

)
ρ − D(ρ‖σ)

}
(C.15)

= log tr elog σ+(t H1+(1−t)H2) . (C.16)

This shows that H �→ log tr elog σ+H is a convex function and hence (C.14) is a
convex optimization problem.

Solution to Exercise 2.32

We first prove (2.90). Klein’s inequality for f (t) = t log t (which is strictly convex
for t > 0) implies that

tr B ≥ tr X − tr X log X + tr X log B , (C.17)

where equality holds if and only if X = B. This already proves (2.90). Apply-
ing (2.90) for B = eH+log σ gives (2.89).

Solution to Exercise 3.1

A simple calculation shows that for any κ > 0, μκ is a probability distribution on R,
i.e., μκ(t) ≥ 0 for all t ∈ R and

∫ ∞
−∞ μκ(dt) = 1. Furthermore

μ̂κ(ω) :=
∫ ∞

−∞
μκ(dt)e

−iωt = 3

κ
(triκ � triκ)(ω) . (C.18)

This then straightforwardly implies the five properties mentioned in Sect. 3.1.

Solution to Exercise 3.3

By the operator-sum representation of quantum channels (see Proposition 2.21) the
pinching map defined by (3.6) is trace-preserving and completely positive since

∑
λ∈spec(H)

ΠλΠλ =
∑

λ∈spec(H)

Πλ = idA . (C.19)

This also shows that the pinching maps is unital, i.e.,PH (idA) = idA.

https://doi.org/10.1007/978-3-319-78732-9_2
https://doi.org/10.1007/978-3-319-78732-9_2
https://doi.org/10.1007/978-3-319-78732-9_2
https://doi.org/10.1007/978-3-319-78732-9_2
https://doi.org/10.1007/978-3-319-78732-9_2
https://doi.org/10.1007/978-3-319-78732-9_2
https://doi.org/10.1007/978-3-319-78732-9_2
https://doi.org/10.1007/978-3-319-78732-9_3
https://doi.org/10.1007/978-3-319-78732-9_3
https://doi.org/10.1007/978-3-319-78732-9_3
https://doi.org/10.1007/978-3-319-78732-9_2
https://doi.org/10.1007/978-3-319-78732-9_3
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Solution to Exercise 3.10

Let (�k�) denote the entries of the operator L1 (if we view it as amatrix). By definition
of the tensor product we find

tr L1 ⊗ L2 =
∑
k

tr �kk L2 =
∑
k

�kk tr L2 = (tr L1)(tr L2) , (C.20)

which proves the first identity.
Every nonnegative operator can be diagonalized, i.e., there exist unitaries U1 ∈

U(A) and U2 ∈ U(B) such that C1 = U1Λ1U
†
1 and C2 = U2Λ2U

†
2 for diagonal

matrices Λ1 and Λ2 with nonnegative entries. We then find

logC1 ⊗ C2 = log(U1 ⊗U2)(Λ1 ⊗ Λ2)(U
†
1 ⊗U †

2 ) (C.21)

= (U1 ⊗U2)
(
logΛ1 ⊗ Λ2

)
(U †

1 ⊗U †
2 ) (C.22)

= (U1 ⊗U2)
(
(logΛ1) ⊗ idB + idA ⊗ (logΛ2)

)
(U †

1 ⊗U †
2 ) (C.23)

= (logC1) ⊗ idB + idA ⊗ (logC2) , (C.24)

which proves the second identity.
The third identity follows from a known relation between the tensor product and

the direct sum, i.e.,

exp(L1) ⊗ exp(L2) = exp(L1 ⊕ L2) = exp(L1 ⊗ idB + idA ⊗ L2) . (C.25)

Solution to Exercise 4.2

Let B1, B2, B3 ∈ P(A) be such that Bk := log Hk for k ∈ {1, 2, 3}. Essentially the
same steps as in the proof presented in Sect. 3.1.3.1 show that

log tr exp(log B1 + log B2 + log B3)

= 1

m
log tr exp(log B⊗m

1 + log B⊗m
2 + log B⊗m

3 ) (C.26)

≤ 1

m
log tr exp

(
log B⊗m

1 + log B⊗m
2 + logPB⊗m

2
(B⊗m

3 )
) + log poly(m)

m
(C.27)

= 1

m
log tr exp

(
log B⊗m

1 + log B
1
2 ⊗m
2 PB⊗m

2
(B⊗m

3 )B
1
2 ⊗m
2

) + log poly(m)

m
,

(C.28)

where the first step uses Exercise 3.10. The inequality step follows from the pinch-
ing inequality (see Lemma 3.5), together with the fact that the logarithm is operator
monotone (see Table 2.2) and H �→ tr eH is monotone (see Proposition 2.10). Fur-
thermore we use the observation presented in Remark 3.9, i.e., that the number of
distinct eigenvalues of B⊗m

2 grows polynomially inm. The final step uses thatPC (B)

always commutes with C (see Lemma 3.5).

https://doi.org/10.1007/978-3-319-78732-9_3
https://doi.org/10.1007/978-3-319-78732-9_4
https://doi.org/10.1007/978-3-319-78732-9_3
https://doi.org/10.1007/978-3-319-78732-9_3
https://doi.org/10.1007/978-3-319-78732-9_3
https://doi.org/10.1007/978-3-319-78732-9_2
https://doi.org/10.1007/978-3-319-78732-9_2
https://doi.org/10.1007/978-3-319-78732-9_3
https://doi.org/10.1007/978-3-319-78732-9_3


114 Appendix C: Solutions to Exercises

Repeating the same arguments gives

log tr exp(log B1 + log B2 + log B3)

≤ 1

m
log tr exp

(
log B⊗m

1 + logPB⊗m
1

(B
1
2 ⊗m
2 PB⊗m

2
(B⊗m

3 )B
1
2 ⊗m
2 )

) + log poly(m)

m
(C.29)

= 1

m
log tr B⊗m

1 PB⊗m
1

(B
1
2 ⊗m
2 PB⊗m

2
(B⊗m

3 )B
1
2 ⊗m
2 ) + log poly(m)

m
(C.30)

= 1

m
log tr B⊗m

1 B
1
2 ⊗m
2 PB⊗m

2
(B⊗m

3 )B
1
2 ⊗m
2 + log poly(m)

m
, (C.31)

where the final step uses Lemma 3.5. The integral representation for pinching maps
given by Lemma 3.4 shows that

log tr exp(log B1 + log B2 + log B3)

= 1

m
log

∫ ∞

−∞
μΔ

B⊗m
2

(dt)tr B⊗m
1 B

1
2 ⊗m
2 eit B

⊗m
2 B⊗m

3 e−it B⊗m
2 B

1
2 ⊗m
2 + log poly(m)

m
(C.32)

≤ log sup
t∈R

tr B1B
1+it
2

2 B3B
1−it
2

2 + log poly(m)

m
, (C.33)

where the final step uses Exercise 3.10 and that for any B ∈ P(A) and any t ∈ R

there exists a s ∈ R such that eit log B = eisB . Considering the limit m → ∞ finally
gives

tr exp(log B1 + log B2 + log B3) ≤ sup
t∈R

tr B1B
1+it
2

2 B3B
1−it
2

2 , (C.34)

which proves the desired inequality.

Solution to Exercise 4.5

Every positive definite matrix can be diagonalized, i.e., there exists a unitary U ∈
U(A) such that B = UΛU † whereΛ is a diagonal matrix containing the eigenvalues
(λk)k of B. We thus have

tr log B = trU (logΛ)U † = tr logΛ =
∑
k

log λk = log
∏
k

λk = log det B .

(C.35)

Solution to Exercise 5.17

If we choose ρ = ρABC , σ = idA ⊗ ρBC and E (·) = trC(·), Proposition 5.16 simpli-
fies to the statement that the following are equivalent

1. I (A : C |B)ρ = 0
2. ∃ RB→BC such that RB→BC(ρAB) = ρABC and RB→BC(ρB) = ρBC

https://doi.org/10.1007/978-3-319-78732-9_3
https://doi.org/10.1007/978-3-319-78732-9_3
https://doi.org/10.1007/978-3-319-78732-9_3
https://doi.org/10.1007/978-3-319-78732-9_4
https://doi.org/10.1007/978-3-319-78732-9_5
https://doi.org/10.1007/978-3-319-78732-9_5
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In particular the recovery map can be chosen to be the rotated Petz recovery map
given in (5.2). This is exactly the statement of Theorem 5.2.

Solution to Exercise 5.19

This exercise is so simple that it does not require a solution. If we evaluate Theo-
rem 5.18 for ρ = ρABC , σ = idA ⊗ ρBC , and E = trC we immediately obtain The-
orem 5.5.

Solution to Exercise 5.20

The recovery map T̄σ,E is clearly completely positive. It is also trace-non-increasing
as for any t ∈ R

trT [t]
σ,E (X) = tr σE †(E (σ )−

1+it
2 XE (σ )−

1−it
2

)
(C.36)

= tr E (σ )E (σ )−
1
2 XE (σ )−

1
2 (C.37)

= trΠE (σ )X (C.38)

≤ tr X , (C.39)

where the final inequality step is an identity in case E (σ ) has full support. The
recovery map T̄σ,E clearly is explicit, universal and perfectly recovers σ from E (σ ).

For E = I we find

T̄σ,I (·) =
∫ ∞

−∞
dtβ0(t)Πσ (·)Πσ = Πσ(·)Πσ , (C.40)

which proves the normalization property.
Finally for ω ∈ P+(R) we have

T̄σ⊗ω,E ⊗I R (·)
=

∫ ∞

−∞
dtβ0(t)σ

1+it
2 ⊗ ω

1+it
2 (E ⊗ IR)†

(
E (σ )−

1+it
2 ⊗ ω− 1+it

2 (·)E (σ )−
1−it
2 ⊗ ω− 1−it

2
)

σ
1−it
2 ⊗ ω

1−it
2 = (T̄σ,E ⊗ IR)(·) , (C.41)

which proves the last property and thus completes the exercise.
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