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Supervisor’s Foreword

Understanding the behaviour of strongly interacting quantum many-body systems
remains a challenge for modern theoretical physics. Experimental studies of such
systems, including cold atoms in optical traps and the quark–gluon plasma created
in heavy-ion collisions at accelerators such as RHIC and LHC, have been very
successful, yet their adequate theoretical description is currently lacking. The main
difficulty is the strong presence of effects that require a non-perturbative treatment.
For the quark–gluon plasma in particular, the adequate theoretical description
should be provided by Quantum Chromodynamics (QCD), a theory of nuclear
forces, considered at finite temperature and density. In practice, however, this poses
many problems because only the high-energy regime of QCD can be treated by
means of perturbation theory, whereas the processes of interest involve both the
high- and the low-energy regimes. In recent years, a novel approach known as
gauge/string duality or holography has been successfully applied to
non-perturbative problems in quantum field theories, including theories at finite
temperature and density. It provided important insights into the physics of the
quark–gluon plasma and into condensed matter physics. One such insight is the
complete understanding of transport phenomena in a class of strongly interacting
relativistic plasmas, whose properties are argued to be similar to those of
finite-temperature QCD. Remarkably, these theoretical estimates are close to the
experimental values. This is the case, for example, for the shear viscosity to entropy
density ratio of the super-hot quark–gluon plasma created at RHIC and LHC. Even
more remarkable is the fact that qualitatively the same value of the ratio is observed
in strongly interacting ultracold atomic gases. One possible explanation for such an
enigmatic versatility is the relation, provided by the gauge/string duality, of the
viscosity entropy ratio to universal horizon properties of the dual black holes,
relating seemingly entirely different objects. In this and many other examples, the
gauge/string duality reveals its interdisciplinary nature, which makes its study truly
fascinating.

Jonas Probst wrote an excellent doctoral thesis, exploring with the help of the
gauge/string duality such diverse topics as the famous Kondo problem in condensed
matter physics and universality in second-order fluid dynamics of strongly
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correlated quantum systems. Essential ingredients of his dissertation are Chaps. 2
and 3, where he provides a brief but concise and accessible introduction to the
gauge/string duality and its main methods relevant for the rest of the thesis. New,
original results are presented in Chaps. 4 and 5.

Transport phenomena, mentioned above, are described by fluid dynamics, which
is organised as a gradient expansion of densities of conserved charges. The coef-
ficients of the charge densities are the transport coefficients of the system (shear and
bulk viscosities, conductivities and so on). At weak coupling (for example, in
systems such as dilute gases or Landau Fermi liquids described in terms of weakly
interacting quasiparticles), transport coefficients are computed by using various
versions of kinetic theory. At strong coupling, these approaches fail, but instead the
gauge/string duality provides rigorous methods for computing transport coeffi-
cients, at least for a class of theories for which the dual description is available. As
noted above, one of the first-order coefficients, the shear viscosity, exhibits
remarkable universality in the regime of strong coupling. A natural question to ask
is whether similar universality holds for other coefficients, in particular, for the
coefficients entering the second order of the fluid gradient expansion. This question
is at the core of Chap. 4 of the present thesis, where the universality of the Haack–
Yarom linear combination of second-order transport coefficients is tested for
non-conformal fluids. A special new result derived in this chapter is a set of pre-
viously unknown Kubo-type formulas for second-order transport coefficients of
non-conformal uncharged relativistic fluids. These formulas are of course insensi-
tive to the coupling regime: they are to stay in the literature irrespectively of the
goals of the particular investigation at hand. Chapter 5 is motivated by the beha-
viour of strange metals and other systems for which the traditional description in
terms of weakly interacting quasiparticles fails. It offers new ways to approach the
single- and two-impurity Kondo models.

I am confident that the dissertation of Jonas Probst will serve as a useful guide to
both experts in the field wishing to explore specific applications in depth and to
non-experts who are interested in the well-written and inspiring introductory
chapters.

Oxford, UK
April 2018

Dr. Andrei O. Starinets
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Abstract

This thesis investigates applications of the gauge/gravity duality to strongly coupled
quantum field theories. After a review of the duality and of correlators and transport
in quantum systems, we present our results on second-order non-conformal
hydrodynamics. We derive new Kubo formulae for five second-order transport
coefficients in non-conformal relativistic fluids. We then apply these Kubo formulae
to a class of non-conformal holographic fluids at infinite coupling. We find strong
evidence that the Haack–Yarom identity, known to relate second-order coefficients
in conformal holographic fluids at infinite coupling, continues to hold in holo-
graphic fluids without conformal symmetry: Within our class of models, we prove
that it still holds when leading non-conformal corrections are taken into account,
and we show numerically that it is also obeyed beyond leading order. This provides
further evidence that the identity may be a universal feature of strongly coupled
fluids. Next, we present our results on magnetic spin impurities in strongly corre-
lated systems. We build a holographic two-impurity Kondo model, identifying the
inter-impurity interaction as double-trace deformation. Our numerical results for the
phase diagram suggest a quantum phase transition between a trivial phase with
uncorrelated spins and no Kondo screening, and a non-trivial phase with
anti-ferromagnetic correlations and simultaneous Kondo screening. Computing the
spectrum in the single-impurity case, we observe Fano resonances, which at low
temperatures we identify with the Kondo resonance.
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Chapter 1
Outline

Twenty years ago, an intriguing link emerged between two very different kinds of
theories. On the one side of this link are quantum gauge theories, akin to the ones
describing the electroweak and strong forces which govern nature on themicroscopic
scales of particle physics. On the other side of this link are theories of gravity, the
force which governs nature on the macroscopic scales of cosmology and black holes.
At the time, string theory was found to contain extended objects that are described
by gauge fields in one limit and by gravity in another limit. Crucially, the limit in
which the gravity description becomes appropriate corresponds to the limit in which
the gauge theory becomes strongly coupled. The gauge/gravity duality [1–4] asserts
that these two descriptions are in fact equivalent for all values of the gauge coupling,
albeit typically only one side of the duality is tractable. At weak gauge coupling, the
gauge theory is under perturbative control, whereas the dual gravitational degrees of
freedom couple to the whole tower of string excitations and can no longer be treated
classically. Conversely, at strong gauge coupling, the gauge degrees of freedomdefy a
perturbative treatment, but they rearrange themselves into a dual description in terms
of classical gravity. Notably, the gauge/gravity duality realises the holographic prin-
ciple [5, 6]: it equates a theory of gravity in d + 1 dimensions with a quantum theory
without gravity in d dimensions. More specifically, the best-understood realisations
of the duality relate gravity on (d + 1)-dimensional anti-de Sitter (AdS) spacetime
to a conformal field theory (CFT) in d dimensions. Indeed, the gauge/gravity duali-
ty, or AdS/CFT correspondence, was originally formulated between the conformal,
maximally supersymmetric N = 4 Yang-Mills theory in 4 dimensions with gauge
group SU (N ) and type IIB string theory on AdS5 × S5, which in the strong-coupling
limit of the gauge theory effectively reduces to classical gravity on AdS5 [1].

For practical purposes, the most useful feature of the correspondence is that
it maps the perturbatively inaccessible strong-coupling regime of a quantum field
theory (QFT) to a weakly interacting gravity theory. Conventional calculations in
QFTs rely on a perturbative expansion in a small coupling constant. This perturba-
tive approach successfully describes electroweak interactions, asymptotically free

© Springer International Publishing AG, part of Springer Nature 2018
J. Probst, Applications of the Gauge/Gravity Duality,
Springer Theses, https://doi.org/10.1007/978-3-319-93967-4_1
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2 1 Outline

quantum chromodynamics (QCD) at high energies, and most condensed matter sys-
tems. It fails, however, at strong coupling and is therefore unsuitable for answering
many open questions in strongly interacting quantum systems like QCD at low and
intermediate energies, including the quark-gluon plasma, or strange metals in con-
densed matter systems. A powerful alternative is provided by lattice gauge theory,
which allows for the numerical evaluation of the quantum path integral also at strong
coupling. However, as it requires a Euclidean formulation in which the action pro-
vides a valid probability measure, lattice gauge theory is ill-suited for systems at
finite density or for computing real-time correlation functions. Gauge/gravity duali-
ty by contrast drastically simplifies such calculations at strong coupling. For instance,
it reduces the calculation of real-time correlation functions to solving linear wave
equations in classical gravity.

These simplifications, however, come at a price: QFTs with a holographic gravity
dual are veryparticular and in fact rather different from realistic theories such asQCD.
Firstly, they are typically supersymmetric and conformal. This property becomes
less distinctive at finite temperature, though, where both symmetries are broken.
Secondly, in order to suppress quantum effects on the dual gravity side one has to
take the semi-classical matrix large-N limit of the gauge group, typically SU (N )

or similar. Crucially, however, this limit still allows for non-trivial strongly coupled
dynamics in the gauge theory. Lastly and most restrictively, holographic QFTs with
a tractable gravity dual must have a sparse, gapped operator spectrum at strong
coupling. This is necessary to ensure that they can be described by just a few fields
in the dual gravity theory. Due to these restrictions, holographic gauge theories with
a gravity dual can at best serve as useful toy models for strongly coupled real-world
systems.

Applications of the gauge/gravity duality have nonetheless been valuable for at
least three reasons. One, many low-energy properties of physical systems are in-
sensitive to the details of the UV degrees of freedom. Such universal properties
only depend on the IR physics and are thus common to different theories whose
renormalisation-group (RG) flows pass close by the same IR fixed point. If we are
able to identify universal properties that are shared by a large class of holographic
theories, we may hope that these properties are generic features of strong coupling
which also apply to realistic, non-holographic theories. The most famous example is
the ratio of shear viscosity η over entropy density s which, in units of �/kB, takes the
value 1/4π in a large class of holographic systems [7]. This value is vastly different
from the one found in weakly coupled theories and, most importantly, is very close
to the experimental value observed in the quark-gluon plasma [8]. Chapter 4 of this
thesis will investigate a similar, potentially universal relation among second-order
hydrodynamic transport coefficients. Two, in many cases there simply are no oth-
er tools available that would allow for calculations in strongly interacting systems.
Moreover, the dual gravitational perspective offers a geometric language for strongly
coupled processes which could not be adequately described with concepts borrowed
from weakly interacting quasi-particles [9]. This motivated our work in Chap. 5
which, with an eye towards strange metals, investigates magnetic impurities coupled
to strongly interacting charge carriers. Three, the fresh perspective offered by the



1 Outline 3

gauge/gravity duality has often inspired results in field theory or gravity that are
valid independently of a holographic description. Such results include the discovery
of new transport coefficients in hydrodynamics [10, 11] and loopholes in no-hair
theorems for black holes [12]. Our work on second-order hydrodynamics in Chap. 4
led us to the derivation of new Kubo formulae, which are valid for any uncharged
relativistic fluid in (3 + 1) dimensions, irrespectively of whether the fluid admits a
holographic gravity dual. Similarly, seeking to build a holographic model with two
interacting spin impurities in Chap. 5, we found that the limit of large spin degener-
acy suppresses ferromagnetic spin-spin correlations compared to anti-ferromagnetic
ones, a result which also holds independently of a holographic description.

This thesis investigates some applications of the gauge/gravity duality to strongly
coupled quantum systems, and is structured as follows. Chapters 2 and 3 review
relevant background material. Chapter 2 motivates the origin of the gauge/gravity
duality within string theory and summarises the relevant entries in the holographic
dictionary, which translates between the gauge and gravity sides. Chapter 3 explains
how transport properties and excitation spectra of quantum theories can be extracted
from real-time correlation functions. Chapter 4 is based on Ref. [13] and contains our
work on second-order non-conformal hydrodynamics. We first derive five new Kubo
formulae that express second-order transport coefficients in terms of three-point cor-
relators of the stress tensor. We then apply these Kubo formulae to a large class of
non-conformal holographic fluids at infinite coupling. We find strong evidence that
the Haack–Yarom identity [14], which relates second-order coefficients in conformal
holographic fluids at infinite coupling, continues to hold for holographic fluids with-
out conformal symmetry. Within our class of models, we prove that the identity is
still obeyed when taking into account leading non-conformal corrections, and show
numerically that the identity continues to hold further away from conformal sym-
metry. Chapter 5 is based on Refs. [15–17] and presents our work on a holographic
Kondo model. This model [18] describes a magnetic impurity coupled to strongly
correlated charge carriers, which are modelled by a holographic CFT. We extend the
model by adding a second impurity and including an inter-impurity interaction. We
obtain numerical evidence for a quantum phase transition in the two-impurity phase
diagram. Computing correlation functions in the holographic single-impurity Kondo
model, we observe Fano resonances in the corresponding spectrum and identify the
Kondo resonance. We conclude with a summary of our results and suggestions for
future research in Chap. 6.

Throughout this thesis we work in units with c = � = kB = 1 and use a mostly-
plus convention for the metric, denoting theMinkowski metric by ημν = diag(−1, 1,
. . . , 1). We write spacetime points and momenta in flat space as xμ = (t, x) and
kμ = (ω, k)with kx ≡ kμxνημν = −ωt + k · x .We distinguish a function f (x) from
its Fourier transform f (k) only by the argument, f (k) = ∫

dt dx e−ikx f (x). The line
element of the n-dimensional unit sphere Sn is denoted by d�2

n .
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Chapter 2
Introduction to the Gauge/Gravity
Duality

In this chapter we introduce the gauge/gravity duality, the main topic of this the-
sis. In Sect. 2.1 we motivate the duality by reviewing its origin in string theory.
Section 2.2 describes the main entries in the holographic dictionary which we will
use in Chaps. 4–5 to compute properties of strongly coupled gauge theories from
their AdS gravity dual.

2.1 String Theory and Branes

2.1.1 Open and Closed Strings

A propagating string [1–6] swipes out a two-dimensional worldsheet in the ambient
D-dimensional target space, analogous to the one-dimensional worldline of a point
particle. The area of the worldsheet, parametrised by time and space coordinates
σα = (τ ,σ), is given by the Nambu-Goto action

S = −T
∫

d2σ
√

−det
(
∂αXμ ∂βXν ημν

)
, (2.1)

where Xμ(σ) denotes the string’s position in the flat target space and T = 1/
(
2πα′)

is the string tension with string length ls = √
α′. Classically, the Nambu-Goto action

is equivalent to the Polyakov action

S = −T

2

∫
d2σ

√−γ γαβ ∂αX
μ ∂βX

ν ημν , (2.2)
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6 2 Introduction to the Gauge/Gravity Duality

with dynamical worldsheet metric γαβ . The Polyakov action is invariant under
diffeomorphisms and underWeyl transformations of γαβ . In other words, the dynam-
ics of a string are governed by a covariant two-dimensional conformal field theory [3,
7]. The redundant two-dimensional metric γαβ has three independent components.
We can fix two of them by a diffeomorphism and the third one by a local Weyl trans-
formation. Conformal symmetry is therefore crucial in ensuring that the Polyakov
action contains no more degrees of freedom than the Nambu-Goto action and really
describes a string [5].

Strings are either closed, satisfying boundary conditions periodic in σ, or open.
The endpoints of an open string can satisfy Neumann boundary conditions, fixing
their derivative ∂σXμ = 0, or Dirichlet boundary conditions, fixing their position
Xμ = const. If the endpoint of an open string satisfies Dirichlet boundary conditions
along (D − p − 1) target-space directions, I = p + 1, . . . , D − 1, then its move-
ment is restricted to a (p + 1)-dimensional hyperplane called D(irichlet)-brane or
Dp-brane.

Quantising the Polyakov action gives rise to an infinite tower of states whose
mass is set by the inverse string length 1/ ls . The spectrum of the bosonic string
described by (2.2) contains a tachyon with negative mass, indicating the instability
of the trivial vacuum. The tachyon disappears if we add fermionic superpartners
for the bosonic coordinates Xμ and hereby extend the worldsheet symmetry to a
superconformal symmetry. There are five different consistent ways to implement
supersymmetry [4]. A common feature of all five is the requirement of a target space
with D = 10 dimensions in order to remove negative-norm states and to maintain
global Poincaré and localWeyl symmetry [5]. The bosonicmassless excitations of the
closed superstring consist of the scalar dilaton�, the gravitonGμν , and formfieldsCq

(with q = 1, 3 and q = 0, 2, 4 for the type IIA and type IIB superstring respectively,
see Sect. 2.1.2). The massless excitations of an open string whose endpoints lie on a
Dp-brane contain scalar fields φI , I = p + 1, . . . , D − 1, which describe transverse
fluctuations of the brane, and a photon Aa , a = 0, . . . , p. The Dirichlet boundary
conditions on a D-brane preserve half of the supercharges of the open superstring [7].

2.1.2 Low-Energy Effective Actions

The massless bosonic states of string theory can form large coherent excitations that
behave like classical fields, much like a classical electromagnetic field emerges from
coherent photon excitations. These classical background fields appear as local cou-
plings for a probe string that moves in such a non-trivial background. For instance, a
probe string moving on a curved target-space metric Gμν , formed by coherent gravi-
ton excitations, is described by the natural generalisation of the Polyakov action (2.2):

S = −T

2

∫
d2σ

√−γ γαβ ∂αX
μ ∂βX

ν Gμν(x) . (2.3)
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The requirement that the theory remain conformal at the quantum level means that
the renormalisation process must not introduce a scale dependence for worldsheet
couplings like Gμν . In other words, their beta functions, which one can compute
perturbatively in the string coupling α′, must vanish. The resulting conditions serve
as equations of motion for the classical background fields and, to leading order in
α′, include Einstein’s equations for the target-space metric Gμν .1 The dilaton �

couples to the Euler density of the string worldsheet so that its value at infinity sets
the string coupling gs ≡ exp (�X→∞), which controls the perturbative expansion in
worldsheet topologies, i.e. the loop expansion in the target space.

For the type IIA and IIB superstring, supersymmetry uniquely extends the equa-
tions for the bosonic fields to the equations of type IIA and IIB supergravity respec-
tively [4, 6]. One can consistently set all fields except the dilaton, the graviton, and a
single (q − 1)-formCq−1 to zero [8]. The relevant equations ofmotion in the Einstein
frame gμν ≡ e−�/2Gμν follow from the target-space action

S = 1

2κ2
10

∫
d10x

√−g

(
R − 1

2
(∂�)2 − bq

2
e(5−q)�/2

∣∣Fq ∣∣2
)

, (2.4)

where bq = 1/2 if q = 5 and bq = 1 otherwise, and Fq = dCq−1. The spectra
of type IIA and IIB contain q = 2, 4 and q = 1, 3, 5 respectively. For q = 5 we
furthermore need to impose the self-duality condition F5 = ∗F5 [4, 6]. One can fix
the value of the gravitational coupling κ10 by equating the tree-level amplitude for
closed-string graviton scattering with the corresponding result from the low-energy
effective action (in the string frame) [5]. Omitting factors of 2 and π (indicated in
this section by the symbol ∼) and denoting the Planck length by l p one finds

κ2
10 = 16πl8p ∼ g2s l

8
s . (2.5)

The equations of motion satisfied by the open-string background fields Aa and φI

follow from the Dirac-Born-Infeld (DBI) action [9, 10]

S = −Tp

∫
dp+1ξ

√−det (�ab + 2πα′Fab) , �ab = ∂a X
μ ∂bX

ν ημν , (2.6)

on the worldvolume of the Dp-brane with inducedmetric�ab andU (1) field strength
F = dA. One can parametrise the worldvolume by the target-space coordinates par-
allel to the brane, ξa = Xa . The brane’s transverse position is then described by the

1Note that all background equations of motion, including Einstein’s equations, receive corrections
order by order in the string coupling α′.
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scalar fields, X I = 2πα′φI [5]. To leading order in α′, the DBI action reduces to the
Maxwell action plus free scalars φI . For N coincident Dp-branes, there are N 2 ways
to attach the endpoints of an open stringwith zero length. The gauge fields and scalars
thus become N × N matrices and theU (1) Maxwell action is extended to theU (N )

Yang-Mills action, with the gauge field and scalars in the adjoint representation.
Supersymmetry extends the Yang-Mills action to the maximally supersymmetric
Yang-Mills (SYM) action in d = p + 1 dimensions [11].

2.1.3 Open/Closed String Duality

References [12, 13] realised that Dp-branes, described by the open strings ending
on them, are in fact dynamical ingredients of type II closed string theory. Consider
two parallel Dp-branes with an open string stretching between them and let this open
string go around in a circle on the branes. By exchanging τ and σ on the worldsheet,
we can view this as a closed string propagating from one brane to the other [7, 13].
Isolating the leading IR contributions, which come from the graviton and the Cp+1

boson, reveals that Dp-branes have a solitonic tension

Tp ∼ 1

gs l
p+1
s

(2.7)

and carry a fundamental unit of Cp+1 charge [13]. Remarkably, the gravitational
attraction and the Cp+1 repulsion between the two Dp-branes cancels exactly
so that the proposed coupling of the branes to the closed-string sector does not com-
promise the branes’ stability, as indeed required by supersymmetry. Note that, from
relations (2.5) and (2.7), the strength with which N coincident Dp-branes couple to
the closed-string sector is controlled by [14]

κ2
10 N Tp ∼ Ngs (2.8)

in units of ls . The description of Dp-branes in terms of open strings in a flat closed-
string background is hence only valid if Ngs 	 1.

Type II closed string theory also contains a seemingly very different class of
solutions which are charged under Cp+1, namely black p-brane solutions to the
relevant part (2.4) of the supergravity action:
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gμνdx
μdxν = H(r)

p−7
8

(
− f (r)dt2 + dx2

)
+ H(r)

p+1
8

(
dr2

f (r)
+ r2d�2

8−p

)
, (2.9a)

e�(r) = H(r)
3−p
4 , H(r) = 1 +

(
L

r

)7−p
, f (r) = 1 −

(rH
r

)7−p
, (2.9b)

Fp+2 = (p − 7)
L

7−p
2

√
L7−p + r7−p

H

H(r)2 r8−p

(
1 + δp,3 ∗)

dr ∧ dt ∧ dx1 ∧ . . . ∧ dxp . (2.9c)

A string moving in this background sees the string-frame metric Gμν = e�/2gμν

and observes N units of Cp+1 charge. At zero Hawking temperature, rH = 0, the
p-brane solution is called extremal and preserves half of the superstring’s super-
charges [8]. In terms of fields in the Einstein frame, Eq. (2.9), N is in the extremal
case given by

N ∼ 1

l7−p
s

∫

S8−p

1

gs
e(3−p)�/2 ∗ Fp+2 ∼

(
L

ls

)7−p 1

gs
. (2.10)

Reference [13] identified extremal p-brane solutions as the appropriate descrip-
tion of N coincident Dp-branes in the limit Ngs � 1, in which, according to
Eq. (2.10), the supergravity approximation holds, L � ls .

2.2 The AdS/CFT Correspondence

2.2.1 The Near-Horizon Limit of D3-Branes

We saw in the previous section that N coincident Dp-branes admit two
different descriptions in type II string theory. For small Ngs 	 1, they appear as
hypersurfaces in a flat closed-string background with open strings ending on them.
For large Ngs � 1, they source the curved p-brane solutions of type II closed string
theory. Branes with p = 3 dimensions are special in that they source a constant
dilaton field, Eq. (2.9), so that the string coupling is constant throughout the 3-
brane geometry. In both descriptions we will now take the limit of small energies
E in units of ls [15]. In the open-string picture, the D3-branes are in this limit
effectively described by the maximally supersymmetric U (N ) Yang-Mills theory
in d = 3 + 1 dimensions with N = 4 supercharges (see Sect. 2.1.2). Moreover, the
ambient closed-string background decouples from the branes and reduces to free
supergravity in ten-dimensional flat space as, from Eq. (2.5), κ10 E4 ∼ gs (ls E)4 [8].
The Yang-Mills coupling gYM appears as prefactor 1/g2YM in the worldvolume action
and, from Eqs. (2.6) and (2.7), is given by
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1

g2YM
∼ T3 α′2 ∼ 1

gs
. (2.11)

Note that SYM in four dimensions is special in that it is a conformal field theory.
In the closed-string picture, excitations in the asymptotic flat region r → ∞ also

reduce to free supergravity in the low-energy limit. However, a small energy E at
r → ∞ gets blue-shifted to a higher energy Er = H(r)1/4E at a finite distance r .
For small r this becomes, from Eq. (2.9), Er ∼ (L/r) E , so that even in the limit
E ls → 0, arbitrarily high energies Er ls can be observed in the near-horizon region
r/L → 0 with geometry AdS5 × S5:

ds2 = L2

r2
dr2 + r2

L2

(−dt2 + dx2
) + L2d�2

5 . (2.12)

Moreover, low-energy excitations cannot overcome the gravitational barrier
between the near-horizon region and the asymptotic flat region so that the two decou-
ple [8].2 We thus haveN = 4 SYMplus free gravity in flat space for Ngs 	 1, and all
excitations of type IIB string theory on AdS5 × S5 plus free gravity in flat space for
Ngs � 1.Assuming that the variation in Ngs and the low-energy limit commute [14],
Maldacena conjectured the equivalence of type IIB string theory on AdS5 × S5 and
the superconformalN = 4 SYM gauge theory for all values of Ngs [15]. This is the
canonical realisation of the AdS/CFT correspondence or gauge/gravity duality.

Let us now examine the limits in which either side of the correspondence becomes
tractable. In order to suppress string interactions, i.e. loops in the target space, we
need gs → 0.Keeping Ngs fixed, sending gs → 0 amounts to letting N → ∞. On the
AdS side, this limit suppresses quantum gravity effects as, fromEqs. (2.5) and (2.10),
N ∼ (

L/ l p
)1/4

. On the CFT side, this corresponds to the limit of infinite colours. In
this limit, only planar Feynman diagrams survive, whose perturbative expansion is
controlled by the ’t Hooft coupling [8, 18, 19]

λ ≡ Ng2YM ∼ Ngs , (2.13)

where we used relation (2.11). The strong coupling limit λ → ∞ of the large-N
CFT is thus captured by the supergravity limit Ngs ∼ (L/ ls)

1/4 → ∞ of classical
string theory onAdS.We obtain corrections to the infinite coupling limit by including
massive string states in AdS, which are suppressed by powers of ls/L = √

α′/L . In
the effective target-space description these are taken into account by α′ corrections
to the supergravity action [20, 21].

2One can compute the potential barrier, as for instance seen by a minimally coupled massless scalar,
explicitly by bringing the relevant equation of motion into Schrödinger form, e.g. along the lines
of Ref. [16] or Appendix D in Ref. [17].
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2.2.2 Top-Down and Bottom-Up Models

Other brane constructions in string theory or M-theory also lead to explicit
realisations of the AdS/CFT correspondence for which both the (closed-string) AdS
gravity description and the (open-string) gauge theory description are known (see
e.g. [8, 22]). These so-called top-down constructions tell us that certain large-N gauge
theories at strong coupling are adequately described in terms of classical gravity in
AdS spacetimes. Onemay hope that this relation can be turned upside down, i.e. that a
sensible classical gravity theory in AdS describes the strong coupling regime of some
large-N gauge theory [22, 23]. This is the idea behind so-called bottom-up models,
simple gravity theories in AdS which only retain the minimum bulk matter content
required to model relevant features of a dual field theory (see e.g. [24–27]). The
obvious disadvantage of bottom-up models is that we do not know the Lagrangian
of the hypothetic field theory dual, if it exists at all. The advantage is that bottom-up
models are simpler, more versatile, and that they allow us to fully focus on relevant
features of the strongly coupled field theory dual.

The remainder of this section describes the main entries in the gauge/gravity
dictionary, which translates between the two sides of the duality. Though we will
not tie the discussion to specific realisations of the AdS/CFT correspondence, we
will often draw on the duality between AdS5 × S5 and N = 4 SYM as a guiding
example.

2.2.3 The Field/Operator Correspondence and the GKPW
Formula

We now describe how we can put the AdS/CFT correspondence to work and extract
properties of the strongly coupled CFT from its AdS dual. In order to relate the two
sides, recall the open-string description of D3-branes. The stress tensor of theN = 4
CFT on the branes couples to perturbations of the ambient metric around flat space,
ημν → gμν = ημν + δgμν , through the branes’ induced metric �ab, Eq. (2.6). In the
closed-string picture, metric perturbations in the asymptotic flat region of the 3-brane
geometry (2.9) should therefore couple to the stress tensor ofN = 4 SYM at strong
coupling. However, the only effect a low-energy gravity wave from the far region
has on the decoupled near-horizon region AdS5 × S5 is to prescribe the value of the
gravity wave at the boundary of AdS [8, 28].3 The realisation that boundary values

3One can verify this explicitly e.g. for the absorption of gravitons hxy(r)e−iωt by 3-branes [29].
The cross section σ is proportional to the s-wave absorption probability P [30], given by the ratio
of flux FH ingoing at the horizon to the flux Fin incoming from r → ∞, σ = |K |2 P . The only
effect of Fin and |K |2 is to normalise the wave to 1 at the AdS boundary and to express σ in
units of the AdS5 coupling κ2

5 ≡ κ2
10/L

5Vol(S5), ωσ/2κ2
10 = − (

FH /L5
)
/2κ2

5. From the optical
theorem [8], ωσ/2κ2

10 equals the imaginary part of the branes’ stress-tensor correlator [31, 32], in
exact agreement with the AdS/CFT prescription [33].
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of fields in AdS couple to (are dual to) operators in the CFT led Gubser, Klebanov,
Polyakov [28] and Witten [34] to the GKPW formula:

Zgravity [φ0(x)] =
∫

φ→φ0

Dφ e−S[φ] = ZCFT [φ0(x)] =
〈
e
∫
dd x O(x)φ0(x)

〉
CFT

. (2.14)

Here, Zgravity denotes the Euclidean partition function of the quantum gravity theory
on AdS, subject to the bulk fields φ assuming the value φ0 at the AdS boundary.
ZCFT is the Euclidean generating functional for operators O in the CFT, coupled to
sources φ0. For this reason, one often says that the field theory lives on the boundary
of the AdS bulk. In the classical supergravity limit, the GKPW formula states that
the classical gravity on-shell action S is the generating functional for connected
correlators in the strongly coupled large-N CFT.

The correspondence between fields and operators implies that large gauge trans-
formations in theAdSbulk act as global symmetry transformations in theCFT [8, 34].
In particular, the isometries of AdS5 and S5 correspond to the conformal symmetry
SO(2, 4) and the R-symmetry SU (N = 4) ∼ SO(6) ofN = 4 SYM respectively.4

Indeed, the Kaluza–Klein (KK) compactification of type IIB supergravity on S5 con-
tains the AdS5 metric, dual to the CFT stress tensor, and an SU (4) gauge field, dual
to the R-current. Together with the other lowest KK modes they formN = 8 super-
gravity on AdS5 [36, 37], which is believed to be a consistent truncation of the full
KK tower [8].

To further illustrate the field/operator correspondence consider a minimally cou-
pled scalar field φ with mass m and a U (1) gauge field A in AdSd+1 with metric

ds2 = gmndx
mdxn = L2

z2
(
dz2 + ημνdx

μdxν
)

. (2.15)

The fields φ and A are dual to a scalar operator O and a global U (1) current J
respectively. Near the AdS boundary z = 0, the local Frobenius solutions [38] to the
bulk equations of motion,

∂m
(√−ggmn∂nφ

) − √−gm2φ = 0 , (2.16a)

∂m
(√−g f mn

) = 0 , fmn = ∂m An − ∂n Am , (2.16b)

take the form

φ(x, z) = φ0(x)z
d−�+ + · · · + v(x)z�+ + · · · , (2.17a)

Aμ(x, z) = aμ(x) + · · · + jμ(x)z
d−2 + · · · , (2.17b)

4The isometry group SO(2, d) of AdSd+1 is most easily identified by embedding AdSd+1 as
hyperboloid in R2,d [8, 34, 35].
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where �+ is the larger root of �(� − d) = m2L2 and we chose a gauge Az = 0.
The solutions to the second-order differential equations are each specified by two
modes φ0(x), v(x) and aμ(x), jμ(x). When we refer to the boundary values of the
fields φ and Aμ we really mean the leading modes φ0 and aμ.

We shall now determine the (mass) dimension of the CFT operator O and confirm
that aμ has the correct dimension [aμ] = 1 to couple to a conserved current Jμ with
dimension [Jμ] = d − 1. For this purpose let us see how φ0 and aμ transform under
a scale transformation xμ → x̃μ = λxμ. This scaling is implemented by the bulk
diffeomorphism (xμ, z) → (λxμ,λz), which leaves theAdSmetric (2.15) invariant.5

Under this diffeomorphism the scalar φ and the vector Aμ transform as

φ(x, z) → φ̃(λx,λz) = φ̃0(λx) (λz)d−�+ + · · · + ṽ(λx) (λz)�+ . . .

= φ(x, z) , (2.18a)

Aμ(x, z) → Ãμ(λx,λz) = ãμ(λx) + · · · + j̃μ(λx) (λz)d−2 . . .

= ∂xm

∂ x̃μ
Am(x, z) = 1

λ
Aμ(x, z) . (2.18b)

This demonstrates that

[φ0] = d − �+ , [v] = �+ , [aμ] = 1 , [ jμ] = d − 1 , (2.19)

and implies that φ0 couples to an operator O with dimension d − (d − �+) = �+.
Moreover, an application of the GKPW formula (2.14) shows that the expectation
values 〈O〉 and 〈Jμ〉 correspond to the sub-leading modes v and jμ, as suggested by
their mass dimensions [39–41].

Note that the roots of �(� − d) = m2L2 are only real if

m2L2 ≥ −d2

4
. (2.20)

This is the Breitenlohner-Freedman (BF) bound, below which scalar fields in AdS
have negative energies and become unstable [22, 42, 43].

2.2.4 Holography

Inspired by the fact that the Bekenstein–Hawking entropy of black holes is propor-
tional to their area rather than to their volume, the authors of Refs. [44, 45] suggested
that any theory of quantum gravity in d + 1 dimensions should admit a holographic

5Note that we are ignoring the gravitational backreaction of φ and A on the AdS metric. The
dual statement is that we are ignoring the fact that sourcing the operators O and Jμ introduces an
energy scale and breaks conformal invariance. The backreaction, however, has no effect on one-
and two-point functions of O and Jμ.
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description in terms of a non-gravitational theory in d dimensions. Gauge/gravity
duality provides the first explicit realisation of this holographic principle and is thus
often simply referred to as holography, while field theories with a gravity dual are
called holographic. The extra dimension z on the gravity side of the duality is inter-
preted as an energy scale in the dual field theory. This interpretation is motivated by
the fact that UV divergences in the field theory appear on the gravity side as diver-
gences near the AdS boundary z → 0 [34, 46–48]. In order to obtain finite results,
we have to renormalise the field theory, which involves the following steps on the
gravity side: first we need to regulate the theory by introducing a near-boundary cut-
off z = ε, then remove all divergences in the gravity action by adding counterterms
defined on the cut-off surface, and finally remove the cut-off [40, 41, 49–52]. The
GKPW formula (2.14) has to be modified in the sense that functional derivatives
of the generating functional must be taken with respect to the fields defined on the
cut-off surface.6 It is convenient to keep in mind that the derivative of the on-shell
action with respect to a field on a constant slice z = ε is equal to the field’s canonical
momentum with respect to z, evaluated on the slice z = ε [53–56].

The interpretation of the radial coordinate z as an energy scale offers a geometric
picture of RG flows in the dual field theory [57]. Starting from a CFT in the UV, we
can induce an RG flow by sourcing a relevant operator. In the gravity picture, this
means that we turn on the boundary value for the corresponding bulk field. Close
to the boundary, the geometry remains asymptotically AdS, dual to the UV fixed
point. Away from the boundary, however, the field’s backreaction on the metric will
deform the bulk geometry and break scale invariance. Following Ref. [57], Ref. [58]
combined the holographic description of RG flows with gravity energy conditions
to prove that the central charge of holographic theories is monotonically decreasing
along RG flows.

2.2.5 Thermodynamics

If we work in the classical supergravity limit and compactify Euclidean time on
circle of radius β, the GKPW formula (2.14) tells us that the gravity on-shell action
equals β times the free energy of the field theory [59]. Finite temperature states of
the field theory are thus described by finite temperature solutions in gravity where
temperature and entropy are the same on both sides. In particular, field theories
in flat space are dual to AdS black-brane geometries with a planar horizon [15].7

We can switch between thermodynamic ensembles by adding finite boundary terms

6Note that this means that potential contributions from the interior of the bulk (e.g. from a horizon)
are discarded.
7The AdS black-brane metric can e.g. be obtained as the near-horizon limit rH < r 	 L of near-
extremal (rH 	 L) black 3-branes (2.9).
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to the gravity action, which implement the desired Legendre transformation in the
generating functional [60].8

2.2.6 Correlators

In order to find solutions to the second-order bulk equations of motion, we need
to impose two boundary conditions. The first boundary condition is to pick the
dual source which fixes the leading mode φ0 in the near-boundary expansion. In
Euclidean signature (and for static solutions in Lorentzian signature) the second
boundary condition is simply regularity at the horizon in the interior of the bulk.
For time-dependent fields in Lorentzian signature, however, we do not find irregular
and regular solutions at the horizon but incoming and outgoing waves. In order
to obtain the causal (retarded) response of the system to the source φ0, we have to
impose incoming-wave boundary conditions at the horizon [33, 62]: the energy that is
dissipated into the systemby the external sourceφ0 (see Sect. 3.4) is dual to the energy
absorbed by the black brane. A solution to the boundary value problem (BVP) in
AdS will determine the sub-leading mode v in terms of the leading mode φ0, in other
words, it will determine the one-point function of the dual operator in the presence
of the source φ0. We can compute higher-point functions by taking derivatives of v

with respect to φ0. If we are only interested in two-point functions, it is sufficient to
solve the BVP for linearised bulk equations of motion. These solutions will capture
the correct linear dependence of v on the source, v ∼ −GR φ0, whereGR denotes the
retarded two-point function of the dual operator (see Sect. 3.1). This implies that the
quasi-normal modes of the black-brane background, i.e. the complex eigenmodes of
plane-wave solutions to the linearised equations of motion which satisfy incoming-
wave boundary conditions at the horizon and Dirichlet boundary conditions φ0 = 0
at the boundary, correspond to poles of GR in momentum-space [33, 63].

The computation of correlators was central to early checks of the correspondence
between N = 4 SYM and supergravity on AdS5 × S5. Many of these checks were
based on comparing anomalies, which are fully determined at one-loop and are thus
the same at weak and at strong coupling [8]. Both the conformal symmetry and the
R-symmetry of N = 4 SYM are anomalous when the theory is coupled to external
sources. The holographic results for the conformal anomaly [49–52], which shows up
in the one-point function of the stress-energy tensor’s trace, and for the R-symmetry
anomaly, which shows up in the non-conservation of the R-symmetry current Jμ [34]
and in three-point functions of Jμ [64, 65], agree perfectly with the weak-coupling
results in the planar limit.

8If both near-boundary modes of a bulk field are normalisable, which is the case if the sub-leading
mode’s mass dimension is above the CFT’s unitarity bound, then performing the Legendre trans-
formation does not only change the ensemble but also which operator is quantised in the dual
theory [61].
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2.2.7 Other Entries in the Holographic Dictionary

Other important entries in the holographic dictionary includeWilson loops and probe
strings [46, 66, 67], flavour degrees of freedom and probe branes [68], and chiral
symmetry breaking (see e.g. [22, 69–71]). As they are not of immediate relevance to
this thesis wewill not discuss them further. One itemwewould like to brieflymention
though before concluding this chapter is the holographic description of entanglement
entropy (EE) [72]. In holographic field theories, the EE between a sub-regionA and
its complement is given by the area of the minimal bulk surface with the same
boundary as A, divided by 4GN [73, 74]. Holographic theories therefore allow for
a simple computation of EE and can serve as useful toy models in which we can test
supposedly general properties of quantum entanglement. This was the approach we
followed inRef. [75], wherewe studied time-dependent systems far from equilibrium
in which a variant of the first law of EE, i.e. the proportionality of changes in energy
and EE, was still obeyed.
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Chapter 3
Correlators and Transport

The thermal equilibrium of a macroscopic system is fully characterised by a ther-
modynamic potential, which only depends on a few charges. In order to probe the
dynamical properties of a system, we need to perturb it out of static equilibrium, e.g.
by stirring itwith a spoon, by applying an electric field, or by sending in a gravitational
wave. At low energies and for small external perturbations, themacroscopic response
of a system will still be characterised by only a few effective parameters known as
transport coefficients. As we show in Sect. 3.1, the linear response of a system is
described by the retarded Green’s functions of its underlying microscopic degrees
of freedom. In Sects. 3.2 and 3.3 we use this relation to express the shear viscosity
of a fluid and the electrical conductivity of a material in terms of retarded Green’s
functions. This serves to illustrate the connection between transport coefficients and
retarded Green’s functions, which is central to our investigation of second-order
hydrodynamics in Chap.4. In Sect. 3.4 we explain that retarded Green’s functions
not only capture the transport properties of a system, but contain information on
the whole excitation spectrum, and we review Fano resonances, observed in the
holographic Kondo model in Chap.5.

The relation between transport properties and retarded correlators largely accounts
for the practical power of the gauge/gravity duality, which allows for the straight-
forward computation of retarded Green’s functions in strongly coupled holographic
theories as explained in Sect. 2.2. Lattice calculations in strongly coupled theories,
by contrast, rely on a formulation in Euclidean time and hence do not give us access
to causal real-time correlators such as retarded Green’s functions.
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3.1 Linear Response

3.1.1 Classical Example: Damped Harmonic Oscillator

Let us introduce some basic concepts using the classical example of a damped har-
monic oscillator, coupled to an external driving force F(t):

ẍ(t) + γ ẋ(t) + ω2
0 x(t) = F(t) , γ > 0 . (3.1)

The response of the system to the source F(t)will be captured by theGreen’s function
G R(t, t ′):

x(t) = −
∫

dt ′ G R(t, t ′)F(t ′) . (3.2)

We can easily solve Eq. (3.1) for the Fourier transform x(ω):

x(ω) =
∫

dt eiωt x(t) = −G R(ω)F(ω) , (3.3)

where

G R(ω) = − 1

−ω2 − iγω + ω2
0

= 1

(ω − ω+) (ω − ω−)
, (3.4a)

ω± ≡ −i
γ

2
± ωR , ωR ≡

√
ω2
0 − γ2/4 . (3.4b)

The fact that the response (3.3) is local in frequency space is a consequence of
translational invariance and implies that G R(t, t ′) = G R(t − t ′) only depends on
t − t ′. The poles ω = ω± of G R(ω) are located at the complex eigenfrequencies of
the free linear equation of motion. The fact that all poles lie in the lower half of the
complex plane ensures that

G R(t − t ′) =
∫

dω

2π
e−iω(t−t ′)G R(ω) (3.5)

vanishes for t − t ′ < 0 (in which case the contour can be closed in the upper half
plane): the response of the system is causal. For this reason, one refers to G R as
retarded Green’s function.

In the neighbourhood of the poles ω = ω±, G R(ω) is dominated by

G R(ω) ∼ Z±
ω − ω±

(3.6)

with real residues Z± ≡ ±1/ (2ωR). The real part of G R(ω) becomes
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Re G R(ω) ∼ Z±
ω ∓ ωR

(ω ∓ ωR)2 + γ2/4
(3.7)

near the poles, while the imaginary part takes the form of a Lorentzian:

Im G R ∼ −π Z±
γ/2

π
[
(ω ∓ ωR)2 + γ2/4

] . (3.8)

In the frictionless limit γ → 0+, the simple poles of the real part move to ±ω0,

Re G R(ω) ∼ Z±
1

ω ∓ ω0
, (3.9)

while the Lorentzian peaks in the imaginary part narrow down to delta peaks:

Im G R ∼ −π Z± δ(ω ∓ ω0) . (3.10)

3.1.2 Time-Dependent Perturbations in Quantum Mechanics

Formally, the (undamped) harmonic oscillator from the previous subsection can
be coupled to the external source F(t) by adding the time-dependent perturbation
δH(t) = −x(t)F(t) to the Hamiltonian. This is analogous to how quantum sys-
tems are coupled to external sources (see e.g. [1, 2]). Consider a quantum system
with operators {Oi } and Hamiltonian H0. We are interested in its response to the
perturbation

δHS(t) = −
∫

dx Oi
S(x)φi (t, x) , (3.11)

with external (classical) sources φi (x) and all operators in the Schrödinger picture
(denoted by subscript S). The response is most easily found by switching to the
interaction picture (denoted by subscript I ),

|ψ(t)〉I = U0(t)
†|ψ(t)〉S , OI (t) = U0(t)

†OSU0(t) , (3.12)

where

U0(t) = T exp

⎛
⎝−i

t∫

0

dt ′ H0(t
′)

⎞
⎠ (3.13)

is the time-evolution operator of the unperturbed system H0, and T denotes time-
ordering. The Schrödinger equation shows that states in the interaction picture evolve
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as

|ψ(t)〉I = U (t, t0)|ψ(t0)〉I , U (t, t0) = T exp

⎛
⎝−i

t∫

t0

dt ′ δHI (t
′)

⎞
⎠ , (3.14)

that is, their time-evolution is solely governed by the perturbation δHI . We will from
now on drop the subscript I . According to Eq. (3.14), an initial mixed state with
density matrix ρ0 ≡ ρ(t = −∞) evolves in the interaction picture as

ρ(t) = U (t)ρ0U (t)† , U (t) ≡ U (t,−∞) . (3.15)

This allows us to compute the response of the expectation value
〈
Oi (t)

〉
to the per-

turbation (3.11):

〈
Oi (x)

〉 = Tr
(
ρ Oi (x)

) = Tr
(
ρ0U (t)†Oi (x)U (t)

)

= Tr
(
ρ0Oi (x)

) + i

t∫

−∞
dt ′ Tr

(
ρ0

[
δH(t ′), Oi (x)

]) + O(φ2)

= 〈
Oi (x)

〉
0 −

∫
dd x ′ Gi j

R (x − x ′)φ j (x ′) + O(φ2) , (3.16)

where we defined the retarded Green’s function or retarded correlator as

Gi j
R (x; x ′) ≡ −iθ(t − t ′)

〈[
Oi (x), O j (x ′)

]〉
0 . (3.17)

Crucially, the expectation value in (3.17) is computed in the unperturbed system H0.
As in the classical case, the response of the system is causal, i.e. Gi j

R (t, x; t ′, x ′)
vanishes for t < t ′. If the unperturbed system is translationally invariant, then
Gi j

R (x; x ′) = Gi j
R (x − x ′) only depends on x − x ′ and the linear response is local

in momentum space:

δ
〈
Oi (k)

〉 =
∫

dd x e−ikxδ
〈
Oi (x)

〉 = −Gi j
R (k)φ j (k) . (3.18)

Causality implies that Gi j
R (ω, k) is analytic in the upper half of the complex ω-plane.

Of course, there is nothing preventing us from going beyond linear response and
considering quadratic and higher contributions in the perturbative series (3.16), as
we will in fact do in Chap.4.
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3.1.3 Kubo Formulae

In order to complete the analogy with the classical example, we still need to show
that the eigenmodes of a quantum system, too, show up as poles of G R(k). To do
so, we first need to identify which equations of motion these eigenmodes should
correspond to. Because we are ultimately interested in observable low-energy phe-
nomena, we will consider the (classical) equations of motion that are provided by the
appropriate effective or phenomenological low-energy description. Such a descrip-
tion will depend on a couple of parameters known as transport coefficients, which
ideally can be measured in the laboratory. A simple example to keep in mind is
the diffusion of a charge density fluctuation ρ(x) ≡ δ 〈n(x)〉, effectively described
by the equation ∂tρ − D ∇2ρ = 0. It depends on a single transport coefficient, the
diffusion constant D. The idea is to compute the linear response of the one-point
function to an external source within the effective theory, and equate the result with
the general expression (3.16). On the one hand, this allows us to derive so-called
Kubo formulae which express transport coefficients such as D in terms of retarded
Green’s functions at low energies [3, 4]. On the other hand, it serves to demonstrate
that the eigenmodes of the effective equations appear as poles of G R(k). Indeed,
if the effective equations explicitly contain the operator source, we can solve them
directly with a Green’s function, just as we did in the case of the classical oscillator,
and any eigenmode will automatically appear as a pole of G R(k). This will be the
case in Sects. 3.2 and 3.3. Yet, even if the source does not explicitly show up in the
effective equation, as in the case of the diffusion example, it is possible to show that
the eigenmodes appear as poles of G R by adiabatically preparing an initial charge
fluctuation and letting it evolve freely afterwards [1, 5].

3.2 Kubo Formula for Shear Viscosity

3.2.1 First-Order Hydrodynamics

Hydrodynamics [5, 6], the subject of Chap.4, is the effective theory for low-energy
fluctuations around thermal equilibrium. The equilibrium state of a fluid is fully
characterised by the expectation values of global charge densities such as energy and
momentum density, or equivalently by their conjugate variables such as temperature
T andfluid velocityuμ,uμuμ = −1 [7].Hydrodynamics assumes that slowly-varying
fluctuations around thermal equilibrium are still fully governed by the conservation
equations for charge densities: the relevant degrees of freedom are local charge den-
sities (or their conjugates), representing the expectation values of charge densities in
patches of local equilibrium. These fluid patches are small compared to macroscopic
scales like temperature, but large compared to all microscopic interaction scales. An
uncharged relativistic fluid on a four-dimensional background with metric g(0)μν can
thus be described in terms of a local temperature field T (x) and a local fluid-velocity
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field uμ(x). Its dynamics are governed by the conservation of stress-energy:

∇μ 〈T μν(x)〉 = 0 . (3.19)

Constitutive relations, which express 〈T μν(x)〉 in terms of the fluid variables T (x)

and uμ(x), are constructed as an effective low-energy expansion in derivatives of the
fluid variables [5]. To zeroth orderO(∂0), one neglects interactions between patches
of local equilibrium and 〈T μν(x)〉 can be parametrised as a perfect fluid,

〈T μν(x)〉 = ε(x) uμ(x)uν(x) + p(x)
[
uμ(x)uν(x) + g

μν
(0)(x)

]
+ O(∂) , (3.20)

with local energy density ε(x) and local pressure p(x), related by the equilibrium
equation of state. Dissipation between local equilibrium patches is incorporated by
adding a symmetric tensor �μν that depends on derivatives of the fluid variables and
themetric.Wemay shift the fluid variables by derivatives as long as 〈T μν(x)〉 remains
unchanged. We can use this gauge-like freedom to ensure that uμ(x) 〈T μν(x)〉 =
ε(x)uν(x) is obeyed to all orders in the gradient expansion, i.e. uμ�

μν = 0 (Landau
frame) [5, 8]. To construct �μν to first order in derivatives, it is convenient to go to a
local rest frame at x , where uμ(x) = (

u0(x), v(x)
) = (

1, 0
)
and hence�0ν(x) = 0 at

x [9]. Translational invariance (i.e.�i j = 0 if v is constant) and rotational invariance
(i.e. �i j = 0 for uniform spatial rotations v = � × x) require that [6]

�i j = −η

(
∂i u j + ∂ j ui − 2

3
δi j ∂kuk

)
− ζ δi j ∂kuk (3.21)

on a flat background g(0)μν = ημν . The transport coefficients η and ζ are the shear and
bulk viscosity respectively. Generalising to a curved background g(0)μν and going
back to an arbitrary frame by introducing the projector �μν(x) ≡ uμuν + g

μν
(0), the

stress-tensor takes the form [9]

〈T μν(x)〉 = ε(x) uμ(x)uν(x) + p(x)
[
uμ(x)uν(x) + g

μν
(0)(x)

]
+ �μν(x) + O(∂2) ,

(3.22a)

�μν = −η �μρ

(
∇ρuσ + ∇σuρ − 2

3
g(0)ρσ ∇λuλ

)
�σν − ζ �μν ∇λuλ . (3.22b)

3.2.2 Metric Perturbation

To illustrate how linear response theory, introduced in Sect. 3.1, can be used to com-
pute transport coefficients, we shall derive the Kubo formula for the shear viscosity
η. The source of the stress tensor, namely the external background metric, explicitly
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enters the hydro equations of motion (3.19) through the covariant derivative. Unlike
in the example of the diffusion equation we can therefore compute the response of
〈T μν〉 to an external source directly from the equations of motion. Starting from a
fluid in equilibrium in flat space, it is convenient to only turn on the transverse-tensor
perturbation hxy(t, z), as such a perturbation couples neither to longitudinal sound
fluctuations nor to transverse shear fluctuations of the fluid variables: to linear order
in hxy , the equations of motion reduce to the unsourced equations ∂μ 〈T μν(x)〉 = 0
and the fluid remains at rest [9]. Plugging the perturbedmetric and the trivial solution
for the fluid variables into the constitutive relation (3.22), we find that the response
of the transverse-tensor component, with equilibrium pressure p, is given by

〈
T xy(x)

〉 = (−p − η ∂t ) hxy(t, z) . (3.23)

Comparing this with the linear response result, Eq. (3.16), we can read off the low-
momentum expansion of the retarded correlator between T xy and T xy ,

Gxy,xy
R (ω, 0, 0, q) = p − iωη + O(ω2, q2) , (3.24)

from which the Kubo formula for shear viscosity follows:

η = − lim
ω→0

1

ω
Im Gxy,xy

R (ω, k = 0) . (3.25)

3.2.3 Hydrodynamic Transport from Holography

Kubo formulae like (3.25) allow us to compute measurable transport coefficients
such as η from quantum correlators. In particular, we can compute the transport
coefficients in theories with a holographic gravity dual by the methods described
in Sect. 2.2. References [10–12] were the first to study hydrodynamic transport in
holographic theories, see Ref. [9] for an early review. Chapter4 will discuss the
hydrodynamic properties of holographic theories in greater detail.

3.3 Electrical Conductivity

3.3.1 Ohm’s Law

Ohm’s law can be viewed as another straightforward application of linear response
theory. Consider a quantum systemwith a conservedU (1) current Jμ(x), sourced by
an external U (1) gauge field Aμ(x). In a static gauge At = 0, turning on the source
Ai (t) is equivalent to turning on a time-dependent electric field Ei (t):
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Ei (t) = Fti (t) = −∂t Ai (t) =⇒ Ei (ω) = iωAi (ω) . (3.26)

Plugging this into the linear response result (3.16) yields

〈
J i (ω)

〉 = 〈
J i (ω)

〉
0 − G J i J j

R

iω
E j (ω) . (3.27)

For this expression to take the form of Ohm’s law,
〈
J i

〉 = σi j E j , we need to show
that the expectation value of the current in the unperturbed state,

〈
J i

〉
0, is indeed

linear in E j .

3.3.2 Minimal Coupling

The current density operator J i is itself linear in Ai because the charge carriers
are minimally coupled to the gauge field Ai . To illustrate this statement consider a
complex scalar field φ in flat space with action

S = −
∫

dd x
(
(Dμφ)

† (
Dμφ

) + m2φ†φ
)

, (3.28)

minimally coupled to Aμ via the covariant derivative Dμ = ∂μ − ieAμ. Because the
action contains a term quadratic in Aμ, the conserved electric current

Jμ = −ie
(
φ†∂μφ − (

∂μφ
)†

φ
)

− 2e2φ†φAμ (3.29)

contains a term linear in Aμ. Note that the Hamiltonian, unlike the Lagrangian,
contains a perturbation of the form (3.11):

H =
∫

dx
(− (Dμφ)

† (
Dμφ

) + m2φ†φ
) + δH , δH = −

∫
dx Jμ Aμ . (3.30)

In the non-relativistic limit,

φ = e−imt

√
2m

ψ , |i∂tψ| 
 m |ψ| , (3.31)

in which the minimally coupled Klein-Gordon equation reduces to the minimally
coupled Schrödinger equation, the current (3.29) becomes

J 0 = eψ†ψ , J i = − ie

2m

(
ψ†∂iψ − (

∂iψ
)†

ψ
)

− e2

m
ψ†ψAi . (3.32)

In a static equilibrium state we thus find
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〈
J i

〉
0 = −e ρAi , (3.33)

where the charge density ρ is given by ρ = 2e
〈
φ†φ

〉
0 in the relativistic and ρ =

e
〈
ψ†ψ

〉
0 /m in the non-relativistic case. While Eq. (3.33) holds more generally, the

explicit expressions for ρ rely on weakly coupled quasiparticles [13, 14]. Combined
with Eq. (3.27) and with Ei = iωAi , Eq. (3.33) yields Ohm’s law, together with the
Kubo formula for the optical or alternating current (AC) conductivity σi j (ω) [13,
14]:

σi j (ω) = − 1

iω

(
eρ δi j + G J i J j

R (ω, 0)
)

. (3.34)

3.3.3 London Equation

In most systems, the pole in the imaginary part of σ(ω), Eq. (3.34), is cancelled by
terms in the retarded current-current correlator [14]. If, however, a singular contri-
bution of the form

σ(ω) ∼ − νs

iω
(3.35)

persists, in other words, if

J (ω) ≡ 〈
J (ω)

〉 ∼ −νs A(ω) , (3.36)

then this has two important consequences. First, the pole in the imaginary part ofσ(ω)

requires, via the Kramers-Kronig relations, that the real part contains a delta peak,
Re σ(ω) ∼ νs π δ(ω): The direct current (DC) conductivity σ(ω → 0) is therefore
infinite. This happens both in normal conductors without momentum dissipation and
in superconductors [15]. Equation (3.36) is known as London equation and provides
a phenomenological description of superconductivity [16, 17].

Second, if the source Ai is itself dynamical and satisfies Maxwell’s equations,
as it does in the case of a superconductor, then Eq. (3.36) implies that the material
expels magnetic fields B, which effectively acquire a mass [17]:

νs B = νs ∇ × A = −∇ × J = −∇ × (∇ × B − ∂t E
) = (∇2 − ∂2

t

)
B . (3.37)

How the absence of momentum dissipation leads, independently of superconduc-
tivity, to a singular conductivity of the form (3.35) can be illustrated in the Drude
model [18]. In this model, conduction electrons move at an average velocity v which
satisfies the phenomenological equation of motion
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m
dv

dt
= −m

v

τ
+ eE , (3.38)

where the relaxation time τ is the average time between collisions. Equation (3.38)
is solved by

v(ω) = e

m

(
τ

1 − iωτ

)
E(ω) , (3.39)

resulting in a current density J (ω) = e n v(ω) and AC conductivity given by

σ = ν
τ

1 − iωτ
, ν ≡ e2n

m
, (3.40)

where n denotes the density of the conduction electrons. In the limit of vanishing
dissipation, τ → ∞, the imaginary part of the Drude conductivity acquires a pole of
the form (3.35) and the Lorentzian in the real part narrows down to a delta peak:

Im σ(ω)
τ→∞−−−→ ν

ω
, Re σ(ω)

τ→∞−−−→ ν πδ(ω) . (3.41)

3.3.4 Holographic Superconductors

One of the main motivations to study condensed matter systems using holographic
methods is the desire to understand the strongly coupled critical theory which is
believed to govern the strange metal phase in high-Tc superconductors [2, 19–22].
Building on the results from [23], the authors of Refs. [24, 25] showed that it is indeed
possible to realise superconductivity in strongly coupled theories with a gravity dual.

Superconductivity is characterised by the spontaneous breaking of the electromag-
netic U (1) symmetry: Below a critical temperature, a charged operator O condenses
and the photon Aμ effectively acquires a mass term ∼ ν Aμ Aμ. This produces a dia-
magnetic current of the London form (3.36) [2]. We therefore expect the minimal
bulk ingredients for a holographic superconductor to be Einstein-Maxwell gravity
coupled to a charged field ψ dual to O [2]. In order to distinguish high and low
temperatures T , we also need at least one more energy scale to which T can be com-
pared. The simplest way is to source a charge density J t by turning on a chemical
potential μ, given by the boundary value of the bulk Maxwell field At . Finally, the
microscopic bulk dynamics must be such that ψ vanishes at high T while a non-
trivial profile for ψ is thermodynamically preferred below a critical value of T/μ,
indicating that the dual operator O acquires an expectation value 〈O〉. For simplicity,
let us focus on s-wave superconductors with a scalar order parameter 〈O〉 so that ψ
is a scalar field. The trivial solution ψ = 0 for a scalar field becomes unstable if its
effective mass m2

eff becomes sufficiently tachyonic. In an Ad Sd+1 space with radius
L this means that m2

eff has to violate the BF bound (2.19), i.e. m2
eff L

2 < −d2/4. The
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effective mass of the charged scalar ψ is composed of the quadratic term m2 from
its bulk potential and of a negative contribution from the non-trivial Maxwell field
At , m2

eff = m2 + gt t At At [19]. As At becomes bigger, i.e. as T/μ is lowered, m2
eff

becomes smaller. Eventually, below a critical value of T/μ, it violates the BF bound.
If this violation persists in a sufficiently large region of the bulk, ψ spontaneously
develops a non-trivial profile [2, 15, 19].

The same condensation mechanism is at work in the holographic Kondo model
discussed in Chap. 5. There, the Maxwell field is confined to a two-dimensional
bulk, however, as it is dual to the charge of a localised impurity rather than to an
electromagnetic current. Consequently, no electrical conductivity can be associated
with it.

In higher dimensions on the other hand, a perturbation by an electromagnetic field
Ax (t) indeed results in a current of the London form Jx ∼ −ν Ax below the critical
temperature, with ν ∼ 〈O〉 [19, 24, 25]. If the holographic theory has translational
invariance, that is, if the charge carriers’ momentum is conserved, then ν receives
another T -independent contribution unrelated to superconductivity, as expected from
our discussion in the previous subsection. The simplest albeit crude way to break
translational symmetry, i.e. to break the dual diffeomorphism invariance of the bulk,
is to ignore the backreaction of Aμ and ψ on the bulk metric and work in a fixed AdS
black-brane background [2, 15]. This effectively allows the charged probe sector
dual to Aμ and ψ to dissipate momentum into the uncharged degrees of freedom.
The same effect can be seen in probe-brane systems [26].

We should note that the photon in holographic superconductors is not dynamical:
the U (1) gauge field in the bulk couples to a global U (1) current in the dual field
theory. Technically, we therefore cannot distinguish between holographic supercon-
ductors and holographic superfluids [2, 15, 19]. However, for the production of a
diamagnetic London current (3.36), and in fact formany condensedmatter processes,
interactions of the photon do not play an important role [2].

3.4 Spectral Function and Dissipation

3.4.1 Classical Dissipation

In Sect. 3.1 we saw that the eigenfrequencies of the damped harmonic oscillator show
up as peaks in Im G R(ω). Indeed, we will now see that Im G R(ω) generally describes
a system’s spectrum of energy absorption, i.e. it controls how much energy can be
dissipated into the system by a periodic driving force with frequency ω. The work
done on a classical system per unit time by an external force F(t) is
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dW

dt
= F(t) ẋ(t)

= −
∫

dω

2π
e−iωt F(ω)

∫
dω′

2π

(−iω′) e−iω′t G R(ω′)F(ω′) . (3.42)

Specifying to a periodic force

F(t) = 2F0 cos(�t) (3.43)

and averaging over a cycle we find

�

2π

2π/�∫

0

dt
dW

dt
= i F2

0 �(G R(�) − G R(−�))

= F2
0 �(−2 Im G R(�)) . (3.44)

In the last line, we used that the Green’s function G R(t), which relates a real source
F(t) to a real response x(t), must itself be real, hence G R(ω)∗ = G R(−ω).

The average energy dissipated by F into the system over a full cycle cannot be
negative. The spectral function

ρ(ω) ≡ −2 Im G R(ω) (3.45)

must therefore satisfy

ω ρ(ω) ≥ 0 . (3.46)

3.4.2 Quantum Dissipation

Wewill now show that Im G R(k) also controls the absorption in quantum systems [1,
2]. For simplicity, we will perturb the system by a single Hermitian operator O(x) =
O(x)†, coupled to a real source φ(x). Working in the Schrödinger picture, the energy
dissipated into the system by φ is

dW

dt
= d

dt
Tr (ρ H) = Tr

(−i[H, ρ]H + ρ ˙δH
)

= −Tr

(
ρ

∫
dx O(x) ∂tφ(x)

)

= −
∫

dx 〈O(x)〉 ∂tφ(x) . (3.47)
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Only taking into account the linear response (3.18) of 〈O〉 to φ, choosing a periodic
source

φ(x) = 2Re
(
φ0(x)e−i�t

)
, (3.48)

and averaging over a cycle yields

�

2π

2π/�∫

0

dt
dW

dt
= i �

∫
dk

(2π)d−1

∣∣φ0(k)
∣∣2 (

G R(�, k) − G R(−�,−k)
)

. (3.49)

A Hermitian operator O(x) has a real expectation value 〈O(x)〉 and, if the Hamil-
tonian is to be Hermitian, must be coupled to a real source φ(x).1 The associated
Green’s functionG R(x)must hence be real too,G R(k)∗ = G R(−k), and the absorbed
energy (3.49) is again controlled by the spectral function

ρ(k) ≡ −2 Im G R(k) , (3.50)

which must satisfy

ω ρ(ω, k) ≥ 0 . (3.51)

Other useful properties of causal Green’s functions and spectral functions are sum-
marised in AppendixA.

In quantum systemswith a discrete energy spectrum, the spectral function reduces
to a sum of delta functions, much like the spectrum ρ(w) = −2 Im G R(ω) of the
classical harmonic oscillator in the frictionless, “unitary” limit γ → 0+, Eq. (3.10).
This can be seen explicitly in the spectral representation of G R(k) in terms of energy
eigenstates [1, 2, 27]. If a system contains unstable states with a finite lifetime τ
and accordingly with an “uncertain” energy, then these states will show up in the
spectrum as smooth poles with width∼ 1/τ , analogous to the resonances with width
γ in the spectrum of the damped harmonic oscillator.

3.4.3 Fano Resonances

We saw in Sect. 3.1 that a low-lying pole of G R with a real residue, Eq. (3.6), leads
to a symmetric Lorentzian peak in the spectral function ρ = −2 Im G R , Eq. (3.8).
What happens near a pole at ω = ω∗, G R ∼ Z/ (ω − ω∗), with a complex residue Z?

1There is nothing preventing us from coupling a Hermitian operator O (such as T μν ) to a conve-
nient complex source (such as hμν ∼ Hμνeikx ) if we are only interested in computing G R(k). The
response δ 〈O(x)〉 will not be real in that case, but G R(k) itself is a property of the unperturbed
state alone and as such is unaffected by our choice of source.
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Defining ω̃ ≡ Reω∗ and �/2 ≡ −Im ω∗, and introducing the asymmetry parameter

q ≡ −Re Z +
√

(ReZ )2 + (Im Z)2

Im Z
, (3.52)

the spectral function ρ = −2 Im G R takes the form of a Fano resonance, that is, it
can be written as

ρ = − Im Z

q (�/2)
(ρFano − 1) (3.53)

with the Fano spectral function

ρFano(ω) ≡ (ω − ω̃ + q�/2)2

(ω − ω̃)
2 + (�/2)2

= 1 + (
q2 − 1

) (�/2)2

(ω − ω̃)
2 + (�/2)2

+ 2q
(�/2) (ω − ω̃)

(ω − ω̃)
2 + (�/2)2

. (3.54)

The last line reveals that ρFano is the sumof a constant piece (representing a featureless
continuum), aLorentzian resonance, and amixing term. Indeed, Fano resonances [28]
arise when a continuum of energy states couples to a resonance. Incoming scattering
states, from the continuum, then have two paths through the system: They can either
scatter off the resonant state (resonant scattering) or they can bypass the resonant
state (non-resonant scattering) [29]. For generic q, ρFano(ω) is asymmetric with
respect to ω̃, with a minimum ρFano = 0 atω = ω̃ − q (�/2) and amaximum ρFano =
1 + q2 at ω = ω̃ + 1

q (�/2). In the limit q → ±∞, the minimum disappears and
ρFano(ω) reduces to a symmetric Lorentzian centred around ω = ω̃. For q → 0, the
maximum disappears and ρFano(ω) becomes a symmetric dip or anti-resonance. This
suggests that |q|measures the amount of resonant scattering. Indeed, q2, as originally
introduced by Fano, is proportional to the ratio of probabilities for resonant versus
non-resonant scattering [28].

One obtains a simple classical realisation of a Fano resonance by weakly coupling
a classical damped harmonic oscillator x(t) (providing a continuous spectrum) to a
second undamped oscillator (providing a sharp resonance) [30]:

ẍ(t) + γ ẋ(t) + ω2
0 x(t) + κ y(t) = 0 , (3.55a)

ÿ(t) + �2
0 y(t) + κ x(t) = 0 . (3.55b)

Coupling the damped oscillator x to an external driving source, we find that its
retarded Green’s function is given by

G R(ω) = ω2 − �2
0(

ω2 + iγω − ω2
0

) (
ω2 − �2

0

) − κ2
. (3.56)
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Note that it vanishes at the eigenfrequency ω = ±�0 of the sharp resonance as
a result of perfect destructive interference between the coupled sharp resonance
and the external source [29]. This destructive interference is also responsible for
the minimum in ρFano. Constructive interference, by contrast, results in a modified
resonant state, corresponding to a pole in G R(ω) at the slightly shifted position

ω∗ = �0 + δ�+ , (3.57)

and similarly around −�0. To leading order in the coupling κ we find

δ�+ = κ2

2�0
(
�2

0 + iγ�0 − ω2
0

) . (3.58)

Assuming that�0 and ω0 are well separated so that the damped oscillator contributes
a more or less featureless continuum around Reω∗, we find that G R(ω) indeed takes
the form Z/ (ω − ω∗) near the resonant state ω = ω∗, with a complex residue

Z = κ2

2�0

1(
�2

0 + iγ�0 − ω2
0

)2 + O
(
κ4

)
. (3.59)

Accordingly, the spectrum ρ = −2 Im G R exhibits an asymmetric Fano resonance.
We also observe Fano resonances in the holographic Kondo model in Chap.5.

This model describes a holographic RG flow at a magnetic impurity localised in
(0 + 1) dimensions. At low temperatures, a scalar operatorO condenses, represent-
ing the formation of a Kondo cloud of charge carriers bound to the impurity. The
spectral function of O inherits (0 + 1)-dimensional scale invariance from the UV
fixed point, which results in a continuous spectrum. However, the Kondo coupling,
which triggers the RG flow, introduces a dynamically generated energy scale and
produces a resonance. The interference of this resonance with the continuum creates
a Fano resonance in O’s spectral function.
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Chapter 4
Second-Order Hydrodynamics
and Universality in Non-conformal
Holographic Fluids

4.1 Introduction and Summary

In Sect. 3.2 we introduced hydrodynamics [2, 3] as the low-energy effective theory
for slowly varying fluctuations around thermal equilibrium. Considering the sim-
plest case of an uncharged relativistic fluid in (3 + 1) dimensions, we obtained the
constitutive relation of the fluid stress tensor to first order in the gradient expansion
in Eq. (3.23). At second order, the constitutive relation features another fifteen trans-
port coefficients [4, 5]. Kubo formulae, which tell us which correlators exactly to
look at in order to compute a specific transport coefficient [3, 6], are known for both
first-order coefficients η and ζ, for the five second-order coefficients already present
in conformal fluids [7], and for six of the ten second-order coefficients only present
in non-conformal fluids [8].

In recent years, hydrodynamics has been successfully applied to describe the
early-stage evolution of the quark-gluon plasma (QGP) created in heavy-ion col-
lisions at RHIC [9–13]. Hydrodynamics captures the evolution of the QGP from
surprisingly early times onwards. Simulating the QGP only with first-order viscous
hydrodynamics, however, is plagued by superluminal modes which violate causality.
In order to get rid of thesemodes, it is necessary to also take into account second-order
terms [4]. Because the temperature of the QGP is not too far from the confinement
scale of QCD, the QGP falls into the intermediate-coupling regime and its trans-
port coefficients cannot be computed by perturbative methods. Lattice calculations
are not well-suited to computations of transport coefficients either: computations of
real-time correlators face the formidable problem of analytic continuation whereas
indirect methods are plagued with uncertainties [14].

The only currently available tool that allows for the computation of real-time cor-
relators in strongly interacting field theories is gauge/gravity duality [15–20]. The
duality reduces computing stress-tensor correlators in the hydrodynamic regime to

This chapter is based on P. Kleinert and J. Probst, Second-Order Hydrodynamics and Universality
in Non-Conformal Holographic Fluids, JHEP 12 (2016) 091, [1610.01081] (Ref. [1]).
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solving classical Einstein’s equations on an AdS background in a small-momentum
expansion. Applying the appropriate Kubo formulae, one can read off the transport
coefficients in the strongly coupled holographic field theory from the gravity solu-
tion [21–23]. Apart from its relevance for strongly coupled field theories, a hydrody-
namic interpretation of solutions to Einstein’s equations is interesting in its own right
because it extends the analogy between thermodynamics and black-hole mechanics
beyond thermal equilibrium to a more general correspondence between fluids and
gravity [24].

At present, the construction of the exact holographic dual of realistic theories such
as QCD is beyond reach. The best one can hope for when trying to make connections
with experiment is to identify and investigate properties that hold for a large class
of holographic models: being insensitive to the microscopic details of the dual field
theory, such properties are potentially shared by many or even all QFTs in the strong
coupling limit, including the ones realised in nature. The most prominent example
of such a universal property is the ratio of shear viscosity η over entropy density
s [25] which is known to obey η/s = 1/4π for any strongly coupled theory with a
two-derivative gravity dual and unbroken SO(3) rotational symmetry [23, 26–33].
Current estimates for the value of η/s in the QGP extracted from heavy ion collision
data are indeed close to 1/4π [34–40].

Universality in hydrodynamic transport is most likely to be observed among
transport coefficients that can be measured without considering sound perturbations,
which would necessarily excite the model-specific matter content [41].1 There exists
one particular relation between second-order transport coefficients which promises
to exhibit such universal behaviour:

H ≡ 2ητπ − 4λ1 − λ2 = 0 . (4.1)

Prompted by the observation in Ref. [42], Haack and Yarom [43] showed that the
combination H vanishes for conformal holographic theories with a two-derivative
gravity dual, and with any number of U (1)-charges at finite density. It has further
been demonstrated that H remains zero when taking into account leading correc-
tions to the infinite coupling limit, both in planarN = 4 [44] and in the hypothetical
fluid dual to Gauss-Bonnet gravity [45–47]. A simple example of non-conformal
holographic transport was studied in Ref. [48]: employing the method developed in
Ref. [49] and working to linear order in 1/3 − c2s with speed of sound cs , the authors
showed that H also vanishes for the non-conformal Chamblin-Reall background.
This background, however, can simply be viewed as the analytic continuation of
higher-dimensional AdS compactified on a torus [50]. While the values of the trans-
port coefficients in this special non-conformal model do differ from the conformal
values, they are nonetheless completely dictated by the higher-dimensional confor-
mal theory [49]. In particular, the five coefficients that are already present in the
conformal case are simply multiplied by a common factor so that relations that hold
between coefficients in the conformal case, such as H = 0, trivially apply to this

1Essentially because all (non-topological) matter couples to the volume element
√−g.
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non-conformal compactification as well. The only holographic model in which non-
conformal corrections to H have been taken into account beyond leading order are
the compactified D4-branes of Ref. [51], where the relation H = 0 was also found
to hold.2 Note that neither the Chamblin-Reall background studied in Ref. [48] nor
the compactified branes of Ref. [51] admit an asymptotically AdS region.3 Their
holographic duals therefore do not have an obvious UV fixed point.

Whether H = 0 holds more generally in holographic theories without conformal
symmetry remains an open question which we want to address in this chapter, based
on Ref. [1]. To this end we compute the second-order transport coefficients entering
H for a large class of non-conformal holographic models from three-point functions
of the stress tensor. The precise type ofmodels we consider are holographic RGflows
in asymptotically AdS5, induced by an arbitrary scalar operator of dimension� = 3.
We prove analytically that H vanishes for this class of models even when leading
non-conformal corrections to the transport coefficients are included.We subsequently
study two specific families of RG flows from that class and show numerically that
H vanishes along both, also beyond leading deviations from conformal symmetry.

This chapter is structured as follows: in Sect. 4.2 we derive new Kubo formulae
for the five second-order coefficients

κ , η τπ + κ∗ , λ1 + κ∗

2
, λ2 , λ3 − 2κ∗ (4.2)

by considering the response of the stress tensor to shear perturbations of the external
metric. The coefficients (4.2) are combinations of the five coefficients present in con-
formal fluids and the non-conformal coefficient κ∗. The combination H , Eq. (4.1),
can be obtained as a linear combination of these coefficients. The Kubo formulae
we derive are valid for any uncharged relativistic fluid in four dimensions, with or
without conformal symmetry. We end Sect. 4.2 with a brief explanation of how they
can be applied specifically to theories with a holographic dual. In Sect. 4.3 we intro-
duce the class of strongly coupled non-conformal models studied in this chapter.
These are four-dimensional holographic theories with a UV fixed point, deformed
by a relevant scalar operator of dimension � = 3. The dual description of such RG
flows is provided by Einstein gravity in asymptotically AdS5, coupled to a scalar
field with mass m2L2 = �(� − 4) = −3 but with an otherwise arbitrary potential.
We derive the relevant bulk equations of motion for black-brane backgrounds and
for metric perturbations. In Sect. 4.4 we solve Einstein’s equations for bulk met-
ric perturbations around a general black-brane background. Section4.5 contains our
analytic results on second-order transport in the class of non-conformal holographic
models that we investigate. We present formulae for the five second-order coeffi-
cients (4.2) for a given background solution in Sect. 4.5.1. The coefficients always
satisfy the relation H̃ ≡ 2ητπ − 2 (κ − κ∗) − λ2 = 0. In Sect. 4.5.2we prove analyt-

2Other recent holographic and non-holographic studies of second-order transport in non-conformal
relativistic fluids include Refs. [52–58].
3In both cases the bulk geometry can be viewed as a compactification of AdS and one can essentially
borrow the higher dimensional AdS/CFT dictionary [59, 60].
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ically that H remains zero when leading non-conformal corrections to the transport
coefficients are taken into account. Section4.6 contains our numerical results. Treat-
ing the bulk scalar field as a small perturbation, we obtain, in Sect. 4.6.1, the leading
non-conformal corrections to the transport coefficients in the vicinity of the UV fixed
point. These leading corrections only depend on the mass term in the scalar poten-
tial and therefore apply to all holographic RG flows induced by a scalar operator of
dimension� = 3. In Sect. 4.6.2we introduce two specific families of bulk potentials:
the first one describes RG flows to a fixed point in the IR, the second one describes
flows to a non-conformal IR. We present our numerical results for the five trans-
port coefficients in Sect. 4.6.3. Our main result is that the combination H , Eq. (4.1),
vanishes for both families of flows, even when the individual transport coefficients
deviate from their conformal values by factors of two and more. We mention how
our results are extended to eight second-order coefficients by employing relations
that must hold if the local entropy production is to be non-negative under all circum-
stances. We conclude with a summary of our results and propose future directions of
research in Sect. 4.7. We attach technical details of our calculations in Appendix B.

4.2 New Kubo Formulae for Non-conformal Second-Order
Hydrodynamics

We derive a set of new Kubo formulae (4.26) for five second-order transport coef-
ficients in Sect. 4.2.1. These Kubo formulae are valid for any uncharged relativistic
fluid in (3 + 1) dimensions, with or without conformal symmetry, and constitute
one of the main results of this chapter. In Sect. 4.2.2 we outline how the results of
Sect. 4.2.1, which hold independently of the gauge/gravity duality, can be applied
specifically to strongly coupled fluids with a holographic gravity dual.

4.2.1 Sourced Fluid Stress Tensor and Kubo Formulae

The constitutive relations for an uncharged relativistic fluid are known up to third
order in gradients [4, 5, 61]. Up to second order, seventeen independent tensor struc-
tures can be constructed from the fluid variables and the background metric g(0)μν ,
each multiplied by a transport coefficient such as shear viscosity (see Appendix B.1
for the explicit expressions). These transport coefficients are the free input parameters
of the effective hydrodynamic description. In order to compute their values, we have
to match the hydro result for appropriate correlators of 〈T μν〉with the corresponding
result in the underlying microscopic theory (see discussion in Sect. 3.2).

A suitable quantity to match is the response of 〈T μν〉 to an external metric pertur-
bation around flat space. Let us start from an unperturbed fluid in equilibrium. In the
fluid rest frame, energy density and velocity are simply ε(x) = ε̄ and uμ = (1, 0),

https://doi.org/10.1007/978-3-319-93967-4_3
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respectively. Turning on the metric perturbation hμν , the perturbed fluid variables on
the background g(0)μν(x) = ημν + hμν(x) will now take the form

ε(x) = ε̄ + δε(x) , uμ(x) = (1, v) (−g(0)t t − 2g(0)tiv
i − g(0)i jv

iv j
)−1/2

. (4.3)

The fluctuations δε(x) and v(x) describe the response of the fluid to the perturba-
tion and need to be determined by solving the fluid equations of motion (3.20). It is
convenient to use δε(x) and v(x) as fluid variables as this allows for an expansion in
fluctuations around static global equilibrium sourced by hρσ. This is a second, inde-
pendent expansion on top of the hydro gradient expansion. Writing the equilibrium
stress tensor as

T̄ μν ≡ 〈T μν〉 [δε = v = hρσ = 0
]

, (4.4)

the off-shell stress tensor of the perturbed fluid assumes the following form to first
order O(δ) in fluctuations:

〈T μν〉 [δε, v; hρσ

] = T̄ μν +
[
∂T̄ μν

∂ δε
δε + ∂T̄ μν

∂vi
vi

]
+ ∂T̄ μν

∂hρσ
hρσ + O(δ2) . (4.5)

Here, we defined

∂T̄ μν

∂ δε
≡ ∂ 〈T μν〉

∂ δε

∣
∣∣∣
δε=v=hρσ=0

(4.6)

and similarly for ∂T̄ μν/∂vi and ∂T̄ μν/∂hρσ . Linearising the conservation Eq. (3.20)
around equilibrium yields the equations of motion for the fluid variables δε and v in
the presence of the metric perturbation hρσ. Defining

δT μν
(δε,v) ≡ ∂T̄ μν

∂ δε
δε + ∂T̄ μν

∂vi
vi , δT μν

(h) ≡ ∂T̄ μν

∂hρσ
hρσ , (4.7)

these equations read

∂μδT
μν
(δε,v) = −∂μδT

μν
(h) − δ�μ

μρT̄
ρν − δ�ν

μρT̄
μρ + O(δ2) , (4.8)

where δ�μ
νρ denotes theO(h) contribution to the Christoffel symbols of the perturbed

background g(0)μν . Because the unperturbed fluid is in static equilibrium, we impose
the boundary condition that δε = v = 0 for h = 0. Thismeans thatwedonot consider
the usual free hydro modes that solve Eq. (4.8) in the absence of the source terms on
the right-hand side.

There exists a particularly simple subset of non-trivial metric perturbations in four
dimensions xμ = (t, x, y, z) that do not source any fluctuations of the fluid variables
to first order. Explicitly, if we only turn on

https://doi.org/10.1007/978-3-319-93967-4_3
https://doi.org/10.1007/978-3-319-93967-4_3
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{
hxy(t, z), htx (z), hty(z), hxz(t), hyz(t)

}
, (4.9)

then the right-hand side of Eq. (4.8) vanishes at O(h), and the hydro equations are
solved by δε(h), v(h) = O(h2). In that case, the on-shell stress tensor takes the
following form to second order in the source O(h2):

〈T μν〉 [hρσ

] = T̄ μν + ∂T̄ μν

∂hρσ
hρσ + 1

2

∂2T̄ μν

∂hρσ∂hκλ
hρσhκλ

+
(

∂T̄ μν

∂ δε
δε(h) + ∂T̄ μν

∂vi
vi (h)

)
+ O(h3) . (4.10)

This expression simplifies even further if we focus on the transverse-tensor com-
ponent 〈T xy(t, z)〉 because to first order O(δ) this component is independent of the
scalars δε, vz and of the transverse-vector components vx , vy :

∂T̄ xy

∂ δε
= ∂T̄ xy

∂vi
= 0 . (4.11)

The on-shell response of 〈T xy〉 is therefore simply given by

〈
T xy
〉 [
hρσ

] = ∂T̄ xy

∂hρσ
hρσ + 1

2

∂2T̄ xy

∂hρσ∂hκλ
hρσhκλ + O(h3) (4.12)

and can be found by plugging the metric perturbations (4.9) into the constitutive
relation (4.9) for 〈T xy〉, and expanding the result to O(h2):

〈
T xy
〉 =
[
− p̄ − η ∂t − κ

2
∂2
z +

(
η τπ − κ

2
+ κ∗

)
∂2
t

]
hxy(t, z)

+
[
p̄ hxz hyz + η

(
hxz ∂t hyz + ∂t hxz hyz

)+
(

λ1 − η τπ − κ∗

2

)
∂t hxz ∂t hyz

+
(κ

2
− η τπ − κ∗

) (
hxz ∂2

t hyz + ∂2
t hxz hyz

)]

+
[
− p̄ htx hty +

(
λ3

4
− κ∗

2

)
∂zhtx ∂zhty − κ

2

(
htx ∂2

z hty + ∂2
z htx hty

)
]

+
[
1

2
η τπ − λ2

4
+ κ∗

2

] (
∂zhtx ∂t hyz + ∂zhty ∂t hxz

)+ O(h3, ∂3) . (4.13)

Here, p̄ denotes the pressure in global equilibrium. The linear response sourced by
the tensor perturbation hxy (first line in (4.13)) was derived in Ref. [4]. The quadratic
response sourced by the transverse-vector perturbations (lines two to five in (4.13))
was computed in Ref. [7], but only for a conformal fluid (i.e. with κ∗ = 0). To our
knowledge, the response (4.13) of a non-conformal fluid has not appeared in the
literature before. Note in particular that κ∗ turned out to be the only non-conformal

https://doi.org/10.1007/978-3-319-93967-4
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second-order coefficient to be present in Eq. (4.13). A priori, any of the ten non-
conformal second-order coefficients could have appeared.

Equation (4.13) shows that the response of 〈T xy〉 to the perturbations (4.9) allows
us to extract five independent linear combinations of second-order transport coeffi-
cients,4

κ , η τπ + κ∗ , λ1 + κ∗

2
, λ2 , λ3 − 2κ∗ . (4.14)

Crucially, these five linear combinations include the combination H = 2η τπ −
4λ1 − λ2. Even for a non-conformal fluid, the perturbations (4.9) give us access
to H without “contamination” by any non-conformal second-order coefficient like
κ∗. This suggests that H remains a meaningful quantity in the non-conformal case.

In Eq. (4.13), the response to hxy provides no additional information and all
five coefficients (4.14) can be obtained by turning on plane-wave excitations for{
hxz(t), hyz(t)

}
,
{
htx (z), hty(z)

}
, and

{
hty(z), hxz(t)

}
, one after another.

Turning on
{
hxz(t), hyz(t)

}
: Perturbing the metric by

1

2
hμνdx

μdxν = ε
(
H (b)

xz e
−iq0tdxdz + H (b)

yz e
−i p0tdydz

)
, (4.15)

with plane-wave amplitudes H (b)
xz and H (b)

yz , sources the response

〈
T xy(x)

〉 =
[
p̄ − i (q0 + p0) η − q0 p0

(
λ1 − η τπ − κ∗

2

)

−
(
q20 + p20

) (κ

2
− η τπ − κ∗)] ε2H (b)

xz H (b)
yz e

−i(q0+p0)t + O(ε3, ∂3) , (4.16)

corresponding to the second and third line in Eq. (4.13).

Turning on
{
htx (z), hty(z)

}
: erturbing the metric by

1

2
hμνdx

μdxν = ε
(
H (b)

t x eiqz zdtdx + H (b)
t y eipz zdtdy

)
, (4.17)

with plane-wave amplitudes H (b)
t x and H (b)

t y , sources the response

〈
T xy(x)

〉 =
[
− p̄ − qz pz

(
λ3

4
− κ∗

2

)
+ (q2

z + p2z
) κ

2

]
ε2H (b)

t x H (b)
t y ei(qz+pz)z

+ O(ε3, ∂3) , (4.18)

corresponding to the fourth line in Eq. (4.13).

4Note that if wewanted to extract all fifteen second-order coefficients wewould have to turn onmet-
ric perturbations in the scalar sound channel, too. Such perturbations, however, would necessarily
source fluctuations of δε and v.
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Turning on
{
hty(z), hxz(t)

}
: Perturbing the metric by

1

2
hμνdx

μdxν = ε
(
H (b)

t y eipz zdtdy + H (b)
xz e

−iq0tdxdz
)

, (4.19)

with plane-wave amplitudes H (b)
t y and H (b)

xz , sources the response

〈
T xy(x)

〉 = q0 pz

(
1

2
η τπ − λ2

4
+ κ∗

2

)
ε2H (b)

t y H (b)
xz e

−iq0t+i pz z + O(ε3, ∂3) , (4.20)

corresponding to the last line in Eq. (4.13).

Kubo formulae: Comparing Eqs. (4.16), (4.18), (4.20) with the general form of the
stress-tensor responsewritten in termsof retarded correlators inmomentumspace [7],

〈
Tμν(x = 0)

〉 = Gμν(0) − 1

2

∫
d4 p

(2π)4
Gμν,ρσ(p)hρσ(p)

+ 1

8

∫
d4q

(2π)4
d4 p

(2π)4
Gμν,ρσ,κλ(q; p)hρσ(q)hκλ(p) + O(h3) , (4.21)

one can readoff the low-momentumexpansionof the corresponding three-point func-
tions Gxy,xz,yz , Gxy,t x,t y , Gxy,xz,t y .5 For instance, plugging the perturbation (4.19)
into the general expansion (4.21) yields

〈
T xy(x = 0)

〉 = Gxy(0) − ε
[
Gxy,t y(0, 0, 0, pz)H (b)

t y + Gxy,xz(q0, 0)H
(b)
xz

]

+ 1

2
ε2
[
Gxy,t y,t y(0, 0, 0, pz; 0, 0, 0, pz)H (b)

xz H (b)
xz

+Gxy,xz,xz(q0, 0; q0, 0)H (b)
xz H (b)

xz

+2Gxy,xz,t y(q0, 0; 0, 0, 0, pz)H (b)
xz H (b)

t y

]
+ O(ε3) . (4.22)

Comparing this with the hydro result (4.13) implies that, up to O(ε2) included,

Gxy(0) = Gxy,t y(0, 0, 0, pz) = Gxy,xz(q0, 0)

= Gxy,t y,t y(0, 0, 0, pz; 0, 0, 0, pz) = Gxy,xz,xz(q0, 0; q0, 0) = 0 (4.23)

5Eq. (4.21) constitutes the extension of the linear-response result (3.17) to quadratic-response. The
factor of 1

2 in the first line of Eq. (4.21) avoids double-counting of the symmetric hρσ = hσρ. The
factor of 1

8 = 1
2 · 1

2 · 1
2 in the second line avoids double-counting of the symmetric hρσ = hσρ and

hκλ = hλκ, and accounts for the term representing the second-order expansion.

https://doi.org/10.1007/978-3-319-93967-4_3
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as well as

Gxy,xz,t y(q0, 0; 0, 0, 0, pz) = q0 pz

(
1

2
η τπ − λ2

4
+ κ∗

2

)
, (4.24)

and hence

∂q0∂pzG
xy,xz,t y(q; p) |q=p=0 = 1

2
η τπ − λ2

4
+ κ∗

2
. (4.25)

Performing the same calculation for the other two perturbations (4.15) and (4.17),
we can derive the following Kubo formulae:6

κ = ∂2
qzG

xy,t x,t y(q; p)∣∣
q=p=0

, (4.26a)

ητπ + κ∗ = κ

2
+ 1

2
∂2
q0G

xy,xz,yz(q; p)∣∣
q=p=0

, (4.26b)

λ1 + κ∗

2
= (ητπ + κ∗)− ∂q0∂p0G

xy,xz,yz(q; p)∣∣q=p=0 , (4.26c)

λ2 = 2
(
ητπ + κ∗)− 4 ∂q0∂pzG

xy,xz,t y(q; p)∣∣q=p=0 , (4.26d)

λ3 − 2κ∗ = −4 ∂qz∂pzG
xy,t x,t y(q, p)

∣∣
q=p=0 . (4.26e)

4.2.2 Holographic Calculation

We now turn to the specific kind of microscopic theories that we will be studying
throughout the remainder of this chapter: strongly coupled non-conformal QFTs
with a holographic dual in asymptotically AdS5 [16, 62, 63]. In order to extract their
second-order transport coefficients, we follow the strategy laid out in the previous
subsection. We first compute the response of the stress-tensor component 〈T xy〉 to
second orderO(ε2) in the perturbations (4.15), (4.17), (4.19) of the field-theory met-
ric. We then match the result with the effective hydro results (4.16), (4.18), (4.20),
and read off the transport coefficients (4.14) [23, 64, 65]. As discussed in Sect. 2.2,
perturbations of the external field-theorymetric act as boundary sources for perturba-
tions of the dynamical bulk metric gmn in the dual gravity theory. The perturbations’
backreaction on the bulk can be computed perturbatively in ε. In view of univer-
sality it is encouraging that, even for non-conformal fluids, H can be measured by
considering shear perturbations of the fluid. Shear perturbations only couple to the
gravity sector of the dual bulk, which is common to all holographic theories. Sound

6Ref. [7] defines the Fourier-transformed three-point functions with the opposite sign for the two
momenta. In our convention, the shear viscosity is given by η = i ∂q0G

xy,xz,yz(q, p)
∣∣
q=p=0, as

opposed toEq. (21) inRef. [7],η = −i ∂q0G
xy,xz,yz(q, p)

∣∣
q=p=0.We further believe that the factors

of 2 in their Eqs. (22) and (23) should be absent, in agreement with their Eq. (26).

https://doi.org/10.1007/978-3-319-93967-4_2
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perturbations, on the other hand, also couple to the model-specific matter content.
We therefore only expect to find universal behaviour in the shear sector [41].

According to the holographic dictionary [17, 18], the field-theory stress tensor
〈T xy〉 equals, up to a scaling factor, the quasi-local gravity stress tensor T μν of the
dual AdS bulk [66] (see also AppendixC of Ref. [1] for more details). The latter
measures the response of the on-shell gravity action to changes in the induced AdS
boundary metric. Explicitly, variations of the induced AdS boundary metric γμν lead
to the following variation in the (appropriately renormalised) bulk action,

δSren = − 1

16πGN

∫
d5x

√−g EOMmnδgmn

+ 1

2

∫

∂AdS5

d4x
√−γ T μνδγμν , (4.27)

where EOMmn denote Einstein’s equations in the bulk. The holographic calculation
of T xy , and thus 〈T xy〉, amounts to computing the variation

(
2/

√−γ
) (

δSren/δγxy
)

of the AdS gravity action. In order for this variation to yield the correct result up to
O(ε2) included, EOMxy must be satisfied to second order O(ε2) [64].7 This means
that even though we are effectively computing three-point correlators as required by
the Kubo formulae (4.26), we need to solve Einstein’s equations only to quadratic
order in the perturbations.

To summarise, our strategy to compute the transport coefficients will be the fol-
lowing: we turn on the boundary metric perturbations (4.15), (4.17), (4.19), one after
another, solve the xy-component of Einstein’s equations in the bulk to second order
in amplitudes O(ε2) and in momenta O(∂2) of the perturbations, compute the xy-
component of the field-theory stress tensor according to the holographic dictionary,
and finally compare it with the general hydro results (4.16), (4.18), (4.20).

4.3 A Class of Non-conformal Holographic Models

In this section we introduce the specific class of strongly coupled non-conformal
field theories, described by a holographic gravity dual, whose transport properties
we are going to study: holographic RG flows [67–76] which, starting from a four-
dimensional CFT in the UV, are induced by a relevant field-theory deformation of
the form

∫
d4x
√−g(0) �(x)O(x) . (4.28)

7Given that the bulk metric will be diagonal to leading order, gmn ∝ δmn , we can ensure that
EOMxy = O(ε3) by solving the usual form of Einstein’s equations with lower indices, EOMmn , to
O(ε) and EOMxy to O(ε2).
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Here, O(x) is a scalar operator of dimension� = 3.8 The dual gravity description of
such RG flows is provided by five-dimensional Einstein gravity coupled to a scalar
field,

S = 1

16πGN

∫
d5x

√−g

[
R − 1

2
(∂φ)2 − V (φ)

]
, (4.29)

with potentials of the form

V (φ) = 1

L2

[
−12 − 3

2
φ2 + O(φ4)

]
. (4.30)

For vanishing scalar field φ = 0, the potential reduces to V = 2
(−6/L2

)
with nega-

tive cosmological constant −6/L2. Solutions to the bulk equations of motion there-
fore approach AdS5 with radius L in the near-boundary region φ → 0,

ds2 → L2

ζ2
(
dζ2 + dx · dx) . (4.31)

The scale-invariant AdS5 near-boundary geometry is dual to the field theory’s UV
fixed point. The leading near-boundary mode of the bulk scalar with mass m2L2 =
�(� − 4) = −3 is φ(x, ζ) ∼ �(x)ζ, where � is interpreted as the source of the
dual operator O(x) (see Eq. (2.17a) and the surrounding discussion).

4.3.1 Background Equations of Motion

Thermal equilibrium states in flat space are holographically described by black-brane
solutions to (4.29) that preserve Euclidean symmetry in the spatial directions [15,
77]. Choosing a convenient gauge for the radial coordinate, such solutions can be
written as

ds2 = g(0)
mndx

mdxn = e2A(u)
[− f (u)dt2 + dx2

]+ L2

4u2 f (u)
du2 , (4.32)

where f (u) has a simple zero at the horizon. The residual scaling symmetry, inherited
from the UV CFT, can be used to set the horizon position to u = 1, effectively
expressing all dimensionful quantities in units of temperature.

The Bekenstein-Hawking entropy of the geometry equals its horizon area A
divided by 4GN . Equation (4.32) yieldsA = ∫ dx√−γ̃ with induced horizon metric
γ̃i jdxidx j = e2A(u=1)dx2, resulting inA = e3A

∣∣
u=1 V3, with volume V3 in the spatial

8We restrict ourselves to operators of dimension � = 3 because the holographic renormalisation
has already been done for this class of holographic RG flows. See AppendixC of Ref. [1] for details.

https://doi.org/10.1007/978-3-319-93967-4_2
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field-theory directions. The geometry’s Hawking temperature T can be obtained by
demanding that the Euclideanised near-horizon geometry,

ds2 = L2

4 f ′|u=1 (u − 1)
du2 + e2A f ′∣∣

u=1 (u − 1)dt2E + . . . , tE ≡ i t , (4.33)

be regular. Switching to the radial coordinate ρ = (L/
√− f ′∣∣

u=1

)√
1 − u so that

the near-horizon geometry reads

ds2 = dρ2 + e2A
(− f ′)2

L2

∣∣∣∣
∣
u=1

ρ2dt2E + . . . , (4.34)

the absence of a conical singularity requires that the period of theEuclidean time tE be
(2πL) /

(− f ′eA
)
u=1. The black branes’ entropy density s and Hawking temperature

T are thus given by

s = e3A(u)

4GN

∣∣∣
∣
u=1

, T = − f ′(u) eA(u)

2πL

∣∣∣
∣
u=1

. (4.35)

The equations of motion that follow from the action (4.29) take the following
form in the gauge (4.32) (primes denote derivatives with respect to u):

φ′′ +
(
4A′ + 1

u

)
φ′ + f ′

f
φ′ − L2

4u2 f

(
dV

dφ

)
= 0 , (4.36a)

A′′ + 1

u
A′ + 1

6

(
φ′)2 = 0 , (4.36b)

f ′′ +
(
4A′ + 1

u

)
f ′ = 0 , (4.36c)

6A′ f ′ + f
[
24
(
A′)2 − (φ′)2

]
+ L2

2u2
V = 0 . (4.36d)

The system is partly redundant in the sense that the constraint (4.36d) and its deriva-
tive are algebraically given in terms of the other three equations:

(
d

du
+ 2

u

)
(4.36d) = − 2 f

dφ

du
(4.36a)

+ (48 f A′ + 6 f ′) (4.36b) + 6A′(4.36c) . (4.37)

For vanishing scalar, φ = 0, Eq.4.36 are solved by the AdS5 black-brane back-
ground:9

9Inserting (4.38) into (4.32) and switching to the radial coordinate z = √
u/ (πT ), the AdS5 black-

brane geometry takes the more familiar form ds2 = L2

z2

(
dz2
f − f dt2 + dx2

)
(see e.g. Eq. (2.15)).

https://doi.org/10.1007/978-3-319-93967-4_2


4.3 A Class of Non-conformal Holographic Models 49

A(u) = 1

2
log

[
(πT L)2

u

]
, f (u) = 1 − u2 . (4.38)

4.3.2 Equations for Metric Perturbations

We will now present the dual gravity description of the (field-theory) metric pertur-
bations we discussed in Sect. 4.2. Generally, the external metric g(0)μν of QFTs with
a holographic dual prescribes the value of the dual dynamical bulk metric gmn at the
AdS boundary [18]. Perturbations hμν of the field-theory metric source changes in
the bulkmetric, which in turn encode the response of theQFT stress tensor 〈T μν〉 [66,
78]. Denoting the field-theory directions by xμ = (t, x, y, z) andmaintaining a radial
gauge guμ = 0, we will write the perturbed bulk metric as

ds2 = gmndx
μdxn

= g(0)
mndx

mdxn + ε g(1)
μν dx

μdxν + ε2 g(2)
μν dx

μdxν + O(ε3) , (4.39)

where g(0)
mn is the background metric (4.32), ε g(1)

μν contains the sourced metric pertur-
bations at the boundary, and ε2 g(2)

μν describes their O(ε2) backreaction on the bulk.
The form of g(1)

μν and g(2)
μν varies depending on which of the three metric perturba-

tions (4.15), (4.17), (4.19) we turn on. None of these perturbations, however, source
linear fluctuations of the scalar, as we will now explain. The equations of motion that
follow from the action (4.29) for scalar fluctuations δφ around φ(u) are

∂ν

(√
−g(0)g(0)νμ∂μδφ

)
−
√

−g(0)
∂2V

∂φ2
δφ

= −∂ν

(√
−g(0) δgνu∂uφ

)
− ∂ν

((
δ
√−g

)
g(0)νu∂uφ

)+ (δ√−g
) ∂V

∂φ
. (4.40)

The radial gauge imposes δgνu = 0. Because δ
√−g = 1

2

√−g(0)g(0)μνδgμν has a lin-
ear O(ε) contribution only for sound perturbations of the metric, Eq. (4.40) shows
that none of the transverse-vector perturbations (4.15), (4.17), (4.19) source fluctu-
ations δφ at linear order O(ε).10 Fluctuations of the scalar at quadratic order O(ε2)
do not affect g(2)

xy , as can be seen from the relevant Einstein’s equation,

10It is for this technical reason that we restrict ourselves to perturbations in the transverse shear
channel and do not consider metric perturbations in the scalar sound channel. The drawback of this
restriction is that we only gain access to five independent combinations of transport coefficients,
Eq. (4.2), as explained in Sect. 4.2.1.
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Rxy − 1

2
Rgxy = 1

2
(∂xδφ)

(
∂yδφ

)− 1

2
gxy

(
1

2
(∂φ)2 + V (φ) + O(ε)

)

= −1

2
gxy

(
1

2
(∂φ)2 + V (φ)

)
+ O(ε3) , (4.41)

recalling that gxy itself is O(ε2).

Turning on
{
hxz(t), hyz(t)

}
: The metric perturbation (4.15) corresponds to

1

2
g(1)

μν dx
μdxν = e2A(u)

[
H (b)

xz e
−iq0t H (1t)(u, q0) dxdz

+H (b)
yz e

−i p0t H (1t)(u, p0) dydz
]

, (4.42)

where Einstein’s equations at order O(ε) reduce to a frequency-dependent equation
for the function H (1t),

H (1t)′′(u, ω) +
(
1

u
+ 4A′ + f ′

f

)
H (1t)′(u, ω) + e−2AL2 ω2

4u2 f 2
H (1t)(u, ω) = 0 , (4.43)

normalised to H (1t)(u = 0) = 1 at the boundary. The xy-component of the resulting
backreaction at O(ε2) is conveniently parametrised as

g(2)
xy = e2A(u) H (b)

xz H (b)
yz e−i p0t−iq0t H (2t t)(u, q0, p0) (4.44)

so that the xy-component of Einstein’s equations at O(ε2) becomes

H (2t t)′′(u) +
(
1

u
+ 4A′ + f ′

f

)
H (2t t)′(u) + e−2AL2(q0 + p0)2

4u2 f 2
H (2t t)(u, q0, p0)

= e−2AL2q0 p0
4u2 f 2

H (1t)(u, q0)H
(1t)(u, p0) + H (1t)′(u, q0)H

(1t)′(u, p0) . (4.45)

The fluctuation H (2t t) is not sourced by an explicit deformation of the boundary met-
ric, H (2t t)(u = 0) = 0, but only by the backreaction of the first-order perturbations
g(1)

μν .

Turning on
{
htx (z), hty(z)

}
: The metric perturbation (4.17) corresponds to

1

2
g(1)
μν dx

μdxν = e2A(u)
[
H (b)
t x eiqz z H (1z)(u, qz) dtdx + H (b)

t y eipz z H (1z)(u, pz) dtdy
]

, (4.46)

where Einstein’s equations at orderO(ε) reduce to a momentum-dependent equation
for the function H (1z),

H (1z)′′(u,ω) +
(
1

u
+ 4A′

)
H (1z)′(u,ω) − e−2AL2 ω2

4u2 f
H (1z)(u,ω) = 0 , (4.47)
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normalised to H (1z)(u = 0) = 1 at the boundary. The xy-component of the resulting
backreaction at O(ε2) is conveniently parametrised as

g(2)
xy = e2A(u) H (b)

t x H (b)
t y eiqz z+i pz z H (2zz)(u, qz, pz) (4.48)

so that the xy-component of Einstein’s equations at O(ε2) becomes

H (2zz)′′(u) +
(
1

u
+ 4A′ + f ′

f

)
H (2zz)′(u) − e−2AL2 (qz + pz)

2

4u2 f
H (2zz)(u, qz, pz)

= e−2AL2qz pz
4u2 f 2

H (1z)(u, qz)H
(1z)(u, pz) − 1

f
H (1t)′(u, qz)H

(1z)′(u, pz) . (4.49)

The fluctuation H (2zz) is not sourced by an explicit deformation of the boundary
metric, H (2zz)(u = 0) = 0.

Turning on
{
hty(z), hxz(t)

}
: The metric perturbation (4.19) corresponds to

1

2
g(1)

μν dx
μdxν

= e2A(u)
[
H (b)

t y eipz z H (1z)(u, pz) dtdy + H (b)
xz e

−iq0t H (1t)(u, q0) dxdz
]

, (4.50)

where Einstein’s equations at order O(ε) reduce to Eqs. (4.43) and (4.47) for H (1t)

and H (1z) respectively.11 The xy-component of the resulting backreaction at O(ε2)
is conveniently parametrised as

g(2)
xy = e2A(u) H (b)

t y H (b)
xz e−iq0t+i pz z H (2t z)(u, q0, pz) (4.51)

so that the xy-component of Einstein’s equations at O(ε2) becomes

H (2t z)′′(u) +
(
1

u
+ 4A′ + f ′

f

)
H (2t z)′(u) − e−2AL2

(−q20 + f p2z
)

4u2 f 2
H (2t z)(u, q0, pz)

= e−2AL2q0 pz
4u2 f 2

H (1t)(u, q0)H
(1z)(u, pz) . (4.52)

The fluctuation H (2t z) is not sourced by an explicit deformation of the boundary
metric, H (2t z)(u = 0) = 0.

11Moreover, H (1t) and H (1z) are again normalised to 1 at the boundary and, as we will discuss in
Sect. 4.4.2, are subject to the same boundary conditions at the horizon as they are in cases (4.42)
and (4.46). Hence H (1t) and H (1z) here are indeed the same as in perturbations (4.42) and (4.46).
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4.4 Solving Einstein’s Equations

In the previous section we introduced a class of non-conformal holographic mod-
els and presented the corresponding equations of motion for static black-brane
backgrounds (Sect. 4.3.1) and for metric fluctuations around these backgrounds
(Sect. 4.3.2), sourced by perturbations (4.15), (4.17), (4.19) of the field-theory met-
ric. Our next goal is to determine the response of the field-theory stress tensor 〈T μν〉
to these perturbations. To this end, we need to find solutions to the bulk equations of
motion which satisfy the appropriate boundary conditions at the AdS boundary and
at the horizon. The stress tensor is then encoded in the near-boundary expansion of
the bulk metric [78, 79].

In this section we want to see how far we can get in solving for fluctuations of the
bulk metric around an arbitrary black-brane background solution of the form (4.32)
without specifying the scalar potential (4.30) beyond the mass term. The results of
this section will therefore apply to all holographic RG flows triggered by a scalar
operator of dimension � = 3, at any value of the temperature.12 We begin by writ-
ing down the near-horizon and near-boundary expansion of a general black-brane
background in Sect. 4.4.1. The near-horizon expansion is needed in order to iden-
tify which boundary conditions to impose on metric fluctuations at the horizon. The
background’s near-boundary expansion is necessary for the computation of 〈T μν〉.
In Sect. 4.4.2 we turn to fluctuations of the bulk metric: we impose the appropriate
boundary conditions, perform the hydro expansion up to second order in momenta,
determine local solutions near horizon and boundary, and try to find global solutions
connecting the two. We managed to find analytic solutions for all but five of the
hydro metric fluctuations, and we found integral expressions for another four.13

We appreciate that this is a rather technical section. For practical purposes, the
main result we will refer to in subsequent sections are integrals (4.75), which yield
the sub-leading boundary modes for four hydro metric fluctuations.

4.4.1 Local Analysis of Background Solutions

Near-horizon expansion: The fields A(u), f (u) and φ(u) satisfy a system of three
second-order equations (4.36a)–(4.36c) and one first-order equation (4.36d). The
coefficients in the local series solution around the horizon are not constrained
by (4.36d) thanks to the redundancy (4.37). The general local near-horizon solu-
tion therefore contains six integration constants. Demanding that A and φ be regular
at the horizon and that the horizon position be at u = 1 amounts to three bound-
ary conditions. The near-horizon expansions of A, f , and φ thus depend on three

12Provided the holographic RG flow is indeed described by a black-brane geometry with a horizon,
Eq. (4.32) (rather than by a confining geometry, for example).
13Curiously, it turns out that the one hydro metric fluctuation for which we did not find a solution
cancels out in the expression for 〈T μν〉 presented in Sect. 4.5.1.
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near-horizon modes AH , fH , φH and assume the form

A(u) = AH +
∑

k≥1

bA
k (1 − u)k , (4.53a)

f (u) = (1 − u)

[

fH +
∑

k≥1

b f
k (1 − u)k

]

, (4.53b)

φ(u) = φH + L2 V ′(φH )

4 fH
(1 − u) +

∑

k≥2

bφ
k (1 − u)k . (4.53c)

The series coefficients {bA
k≥1, b

f
k≥1, b

φ
k≥2} are fully determined by the three near-

horizon modes and by the given potential V (φ).

Near-boundary expansion: The general local near-boundary solution to (4.36) con-
tains six integration constants. Demanding that the spacetime (4.32) be asymptoti-
cally AdS5,

ds2
u→0−−→ const

u

[−dt2 + dx2
]+ L2

4u2
du2 = L2

ζ2
[−dt2 + dx2

]+ L2

ζ2
dζ2 , (4.54)

requires that

A(u) = −1

2
log(u) + O

(
u0
)

, f (u) = 1 + O(u) , (4.55)

which fixes two of the six integration constants. The redundancy (4.37) implies that at
each order in u, the four equations of motion (4.36) only provide three independent
algebraic equations. These algebraic equations determine the corresponding three
series coefficients of A, f and φ in the near-boundary expansion. When we reach the
order of one of the remaining four integration constants (the sub-leading modes of A
and f , and the two modes of the scalar φ), then one of the three algebraic equations
fails to fix the corresponding integration constant. This can happen in two ways. One
way is that only two of the three algebraic equations are independent. In that case
the equations only fix two of the three series coefficients and leave the third one as
an undetermined integration constant. Another way is that, instead of fixing the third
series coefficient, one of the three algebraic equations further restricts the form of
the potentials V (φ), Eq. (4.30).

Explicitly, one finds that near-boundary solutions take the form

A(u) = 1

2
log

(
Ab

u

)
− φ2

L

24
u +

∑

k≥2

cAk u
k , (4.56a)

f (u) = 1 + fb u
2 + u2

∑

k≥1

c f
k u

k , (4.56b)
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φ(u) = φL
√
u + φSL u

3/2 + u3/2
∑

k≥1

cφ
k u

k , (4.56c)

where the series coefficients {cAk≥2, c
f
k≥1, c

φ
k≥1} are fully determined by V (φ) and by

the four boundarymodes Ab, fb,φL ,φSL . Furthermore, potentials that are compatible
with the requirement of asymptotically AdS5 must satisfy14

4! d
4V

dφ4
= − 1

12L2
. (4.57)

Because the local near-boundary solution cannot depend on more than four free
parameters, the equations of motion (4.36) must succeed in fixing the three corre-
sponding series coefficients of A, f , andφ to all orders beyond the fields’ sub-leading
modes. This means in particular that no further constraints on the potential V (φ) can
arise.

4.4.2 Solutions for Metric Perturbations

Boundary conditions: In order to compute the retarded response of the stress tensor,
time-dependent perturbations of the bulk metric need to represent incoming waves
at the horizon [19, 20]. Static perturbations, on the other hand, which can be Wick-
rotated to Euclidean signature, are simply required to be regular at the horizon. Let
us define momenta in Fraktur as the dimensionless combination

w ≡ L ω

2 fH eAH
= ω

4πT
, (4.58)

where we used expression (4.35) for the temperature. The incoming-wave solution
to Eq. (4.43) and the regular solution to Eq. (4.47) take the form

H (1t)(u,ω) = (1 − u)−iw K (1t)(u,ω) , (4.59a)

H (1z)(u,ω) = (1 − u) K (1z)(u,ω) , (4.59b)

where the functions K (1α), α ∈ {t, z}, are analytic at the horizon and normalised to
1 at the boundary. The first-order perturbations dictate the form of the second-order
fluctuations they source. Investigating Eqs. (4.45), (4.49), (4.52) shows that

14Note that potentials L2 V = −12 − (3/2) φ2 + O (φ4
)
which follow from an appropriate super-

potential L W = − (3/2) − φ2/8 + O (φ4
)
via V = 8

(
(∂W/∂φ)2 − (2/3)W 2

)
automatically sat-

isfy condition (4.57). We believe that condition (4.57) was overlooked in Ref. [50].
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H (2t t)(u, q0, p0) = (1 − u)−iq0−ip0 K (2t t)(u, q0, p0) , (4.60a)

H (2zz)(u, qz, pz) = K (2zz)(u, qz, pz) , (4.60b)

H (2t z)(u, q0, pz) = (1 − u)−iq0 K (2t z)(u, q0, pz) , (4.60c)

where K (2β), β ∈ {t t, zz, t z}, are analytic at the horizon and vanish at the boundary.
Hydrodynamic gradient expansion: To match the holographic result for 〈T xy〉
with the general hydro form discussed in Sect. 4.2.1, we need to turn on sources that
admit an expansion in small gradients/momenta. We therefore expand the metric
fluctuations as

K (1α)(u, ω) = K (1α)
0 (u) + K (1α)

1 (u) ω + K (1α)
2 (u)ω2 + O(w3) , α ∈ {t, z} , (4.61)

K (2β)(u, q, p) = K (2β)

(0,0)(u) +
[
K (2β)

(1,0)(u) q + K (2β)

(0,1)(u) p
]

+
[
K (2β)

(2,0)(u) q2 + K (2β)

(1,1)(u) q p + K (2β)

(0,2)(u) p2
]

+ (O(q, p))3 , β ∈ {t t, zz, t z} .

To simplify the discussion we shall use a to label the different metric fluctuations
and j to denote the order in the hydro expansion, i.e. j ∈ {0, 1, . . . } for a ∈ {1t, 1z}
and j ∈ {(0, 0), (1, 0), (0, 1), . . . } for a ∈ {2t t, 2zz, 2t z}.

Expanding the equations of motion (4.43), (4.47), (4.45), (4.49), (4.52) in
momenta reveals that not all of the K (a)

j are independent. Firstly, K (2t t)
(1,0) and K (2t t)

(0,1)
satisfy the same equation and the same boundary conditions and are thus identical.
As a consequence, the same is true for K (2t t)

(2,0) and K (2t t)
(0,2): both functions satisfy the

same equation of motion and the same boundary conditions and are thus identical.
Furthermore, K (1z)

1 satisfies a linear and homogeneous equation. The unique solution
that is regular at the horizon and vanishes at the boundary is identically zero. The
same is then true for K (2zz)

(1,0) , K
(2zz)
(0,1) , K

(2t z)
(0,0) , K

(2t z)
(1,0) , K

(2t z)
(0,1) , K

(2t z)
(2,0) , and K (2t z)

(0,2) which all

vanish identically. Finally, K (2zz)
(2,0) and K (2zz)

(0,2) are also both subject to the same equa-
tion and boundary conditions and are therefore identical. These identities essentially
follow from simple symmetry properties and the fact that the considered boundary
metric perturbations (4.15), (4.17), (4.19) do not source all 24 possible bulk fluctu-
ations K (a)

j .15 For now, we are left with thirteen fluctuations K (a)
j that we need to

solve for.

Local solutions: The K (a)
j have been defined to be analytic at the horizon where the

local solution thus depends on a single near-horizon mode Z (a)
j :

K (a)
j (u) = Z (a)

j +
∑

s≥1

λ(a)
j,s (1 − u)s . (4.62)

15There are two first-order fluctuations a ∈ {1t, 1z}, each with three relevant hydro series coeffi-
cients j ∈ {0, 1, 2}, as well as three second-order fluctuations a ∈ {2t t, 2zz, 2t z}, each with six
relevant hydro series coefficients j ∈ {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)}.
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The equations of motion (4.43), (4.47), (4.45), (4.49), (4.52) also show that solutions
can be expanded near the boundary as

K (a)
j = X (a)

j + k(a)
j,1 u + Y (a)

j u2 +
∑

s≥3

k(a)
j,s u

s + log u
∑

s≥2

l(a)
j,s u

2 , (4.63)

with leading mode X (a)
j and sub-leading mode Y (a)

j . The boundary conditions dis-
cussed around Eqs. (4.59) and (4.60) amount to

X (1α)
0 = 1 , X (1α)

j≥1 = 0 , α ∈ {t, z} ,

X (2β)

j = 0 , β ∈ {t t, zz, t z} . (4.64)

Global solutions: We can solve for some of the K (a)
j (u) analytically. Using the

constraint (4.36d) on the background, ∂uK
(1t)
0 and ∂uK

(2t t)
(0,0) are found to satisfy

homogeneous linear first-order equations. Together with regularity at the horizon
this requires that ∂uK

(1t)
0 and ∂uK

(2t t)
(0,0) vanish identically. Recalling that K (1t)

0 and

K (2t t)
(0,0) are normalised to 1 and 0 at the boundary respectively, we thus find

K (1t)
0 = 1 , K (2t t)

(0,0) = 0 . (4.65)

This in turn renders the equations satisfied by K (2t t)
(1,0) and K (2t t)

(2,0) homogeneous. The
unique solutions that are regular at the horizon and vanish at the boundary are iden-
tically zero,

K (2t t)
(1,0) = 0 , (4.66)

K (2t t)
(2,0) = 0 . (4.67)

Likewise, employing the constraint (4.36d) and replacing A′(u) using Eq. (4.36c)
one can successively solve for K (1z)

0 , K (2zz)
(0,0) , and K (1t)

1 :

K (1z)
0 = f (u)

1 − u
, K (2zz)

(0,0) = 1 − f (u) , (4.68)

K (1t)
1 = − i

4πT
log

(
f (u)

1 − u

)
. (4.69)

Finally, comparing the equations of motion for K (2zz)
(2,0) , K

(1z)
2 , K (2t z)

(1,1) reveals that

K (2zz)
(2,0) = − (1 − u) K (1z)

2 + K (2t z)
(1,1) . (4.70)

This leaves us with five only of the initial 24 functions K (a)
j still undetermined:
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K (1z)
2 , K (1t)

2 , K (2t t)
(1,1) , K (2zz)

(1,1) , K (2t z)
(1,1) . (4.71)

We did not manage to find a solution for K (1z)
2 , but we can make some more progress

with the other four functions. Owing to the residual gauge symmetry at second order
O(ε2) inmetric perturbations, their equations ofmotion only dependon the functions’
derivatives and take the form

d

du

[
u f (u) e4A(u) d

du
K (a)

j (u)

]
= u f (u) e4A(u) ϒ

(a)
j (u) , (4.72)

where

K (a)
j ∈ {K (1t)

2 , K (2t t)
(1,1), K (2zz)

(1,1) , K (2t z)
(1,1)

}
. (4.73)

The explicit expressions for the four ϒ
(a)
j are written in Eq. (B.4) in AppendixB.2.

Crucially, they only depend on the black-brane background solution. Using that the
four K (a)

j at hand are zero at the boundary and that the regularity condition (4.62)
implies that the square bracket in Eq. (4.72) vanishes at the horizon, we can formally
integrate Eq. (4.72) to

K (a)
j (u) =

u∫

0

dv
1

v f (v) e4A(v)

v∫

1

dw w f (w) e4A(w) ϒ
(a)
j (w) . (4.74)

Expanding the solution near the boundary (see AppendixB.2 for details), we can
read off the corresponding sub-leading modes,

Y (a)
j = 1

8π2T 2

(
f 2H e2AH

4Ab

){
±
(
1 − φ2

L

8

)

−
1∫

0

dw

[

4w f (w) e4A(w)
ϒ

(a)
j (w)

Ab L2
∓ 1

w2

(
1 − φ2

L

12
w

)]
⎫
⎬

⎭
, (4.75)

where the upper signs refer to K (a)
j ∈ {K (2t t)

(1,1), K (2zz)
(1,1) , K (2t z)

(1,1)

}
and the lower signs to

K (a)
j = K (1t)

2 . In the conformal case φ = 0, Eq. (4.38), the integrals can be performed
analytically, resulting in

(
Y (1t)
2 , Y (2t t)

(1,1) , Y (2zz)
(1,1) , Y (2t z)

(1,1)

)
φ→0−−−→

(−5 + 4 log 2

32π2T 2 ,
1 − log 2

8π2T 2 , 0,
1

8π2T 2

)
. (4.76)

https://doi.org/10.1007/978-3-319-93967-4
https://doi.org/10.1007/978-3-319-93967-4
https://doi.org/10.1007/978-3-319-93967-4
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4.5 Analytic Results for Second-Order Transport

This section contains our analytic results for second-order transport in the class of
non-conformal holographic models introduced in Sect. 4.3. We provide explicit for-
mulae for the five second-order coefficients (4.2) in Sect. 4.5.1. They apply to all
holographic RG flows triggered by a scalar operator of dimension � = 3, at any
value of the temperature.16 Notably, we find that the particular combination H̃ ≡
2ητπ − 2 (κ − κ∗) − λ2 vanishes identically in this class of models. In Sect. 4.5.2
we prove that the Haack-Yarom identity H = 2ητπ − 4λ1 − λ2 = 0, which is uni-
versally satisfied by infinitely strongly coupled holographic fluids with conformal
symmetry [43], still holds when taking into account leading non-conformal correc-
tions to the transport coefficients.

4.5.1 Formulae for Transport Coefficients

To compute the transport coefficients we need to match the effective hydro result
for the field-theory stress tensor 〈T μν〉 with the corresponding holographic result.
After a suitable renormalisation procedure, the latter can be read off from the near-
boundary expansion of the dual bulk metric [78, 79]. Details on this calculation can
be found in AppendixC of Ref. [1]. Once we insert the solutions for the bulk met-
ric perturbations from the previous section, the result for the transport coefficients
will depend on the near-boundary modes

{
Ab, fb,φL ,φSL

}
of the background, on

the temperature T which sets the unit of momenta, and on the sub-leading modes{
Y (1z)
2 ,Y (1t)

2 ,Y (2t t)
(1,1) , Y

(2zz)
(1,1) ,Y (2t z)

(1,1)

}
of the metric perturbations (4.71) without closed-

form solutions. We can somewhat simplify the result by writing the near-boundary
modes in terms of more physical quantities, namely the entropy density s and tem-
perature T as well as the scalar operator’s source � and expectation value 〈O〉. First
we make use of the fact that f ′(u) satisfies the first-order equation (4.36c), which
integrates to

f ′(u) = const
e−4A(u)

u
. (4.77)

Combined with the requirement of asymptotically AdS5, Eq. (4.56),

e−4A(u) = u2

A2
b

(1 + O(u)) , (4.78a)

f ′(u) = 2 fb u (1 + O(u)) , (4.78b)

16Provided the RG flow is holographically described by a black-brane geometry with a horizon,
Eq. (4.32).
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we obtain

f ′(u) = 2 fb
A2
b e

−4A(u)

u
. (4.79)

Evaluating this at the horizon u = 1 and using expressions (4.35) for entropy density
s and temperature T reveals that

A2
b = −

(
4πGN L

fb

)
s T . (4.80)

Finally, we can re-express the scalar’s leading- and sub-leading modes φL and φSL

in terms of � and 〈O〉, by employing the following relations:

� =
√
Ab

L
φL , 〈O〉 = L3

8πGN

(√
Ab

L

)3

φSL + O(ε2) . (4.81)

The first relation in Eq. (4.81) is most easily obtained by switching to the
ζ-coordinate, Eq. (4.31), in terms of which the leading behaviour of the near-
boundary metric reads

ds2 ∼ L2

ζ2
(−dt2 + dx2

)+ L2

ζ2
dζ2 . (4.82)

Together with Eq. (4.32) this implies A ∼ log (L/ζ). From Eq. (2.17a), the leading
solution of the scalar takes the form φ ∼ � ζ, and so we find

A ∼ 1

2
log

(
(� L)2

φ2

)
. (4.83)

Inserting φ ∼ φL
√
u, from Eq. (4.56c), and comparing with Eq. (4.56a),

A ∼ 1

2
log

(
Ab

u

)
, (4.84)

we obtain

Ab = (� L)2

φ2
L

. (4.85)

The second relation in Eq. (4.81) is a result of the holographic renormalisation and
is specific to the dimension � = 3 of the operator O considered. We refer the reader
to AppendixC in Ref. [1] for further details.

We are ready at last to present the holographic result for 〈T μν〉 in units of the
field-theory quantities T , s,�, and 〈O〉. The background stress tensor atO(ε0) takes
the ideal-fluid form

https://doi.org/10.1007/978-3-319-93967-4_2
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T̄ μν =

⎛

⎜⎜
⎝

ε̄
p̄
p̄
p̄

⎞

⎟⎟
⎠ (4.86)

with energy density

ε̄ = 3

4
sT − 1

4
� 〈O〉 (4.87)

and pressure17

p̄ = 1

4
sT + 1

4
� 〈O〉 . (4.88)

For each of the perturbations (4.15), (4.17), (4.19), the leading response of the trans-
verse-tensor component 〈T xy〉 occurs at order O(ε2) and takes indeed the expected
hydro form (4.16), (4.18), (4.20). The fact that 〈T xy〉 assumes the form dictated
by hydrodynamics is in itself a non-trivial check on our computations. Identi-
ties (4.65) and (4.68) in particular are essential to ensuring that the second-order
responses (4.16) and (4.18) both reproduce the same pressure as the background
stress tensor (4.86) does. Owing to identities (4.66) and (4.69) and to relation (4.80),
the shear viscosity correctly assumes its universal value in units of s [23, 26–33]

η = 1

4π
s , (4.89)

which provides another important check on our calculation. The second-order coef-
ficients are given by the following expressions:

κ = − 2

fb
Y (2t z)

(1,1) sT , (4.90a)

η τπ + κ∗ = 1

fb

(
1

32π2T 2
+ Y (1t)

2 − Y (2t z)
(1,1)

)
sT , (4.90b)

λ1 + κ∗

2
= 1

fb

(
1

32π2T 2
+ Y (1t)

2 − Y (2t z)
(1,1) + Y (2t t)

(1,1)

)
sT , (4.90c)

λ2 = 2

fb

(
1

32π2T 2
+ Y (1t)

2 + Y (2t z)
(1,1)

)
sT , (4.90d)

λ3 − 2κ∗ = 4

fb
Y (2zz)

(1,1) sT . (4.90e)

The solutions for the Y (a)
j that appear in Eq. (4.90) are stated in Eq. (4.75).

17In the conformal case φ = 0, Eq. (4.38), this reduces to ε̄ = 3 p̄ = 3π3L3

16GN
T 4 or, forN = 4 specif-

ically where l8P = GN L5Vol(S5) = (π4L8
)
/
(
2N 2

)
, ε̄ = 3 p̄ = 3π2

8 N 2T 4 [80].
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We further note that the dependence of the second-order coefficients (4.90) on
Y (1z)
2 cancels out as a consequence of relation (4.70). The five a-priori independent

combinations (4.90) hence only depend on the four sub-leading modes Y (1t)
2 , Y (2t t)

(1,1) ,

Y (2zz)
(1,1) , Y

(2t z)
(1,1) given by Eq. (4.75). This means in particular that there exists one linear

combination of second-order coefficients that is independent of the Y (a)
j :

H̃ ≡ 2η τπ − 2
(
κ − κ∗)− λ2 = 0 . (4.91)

Moreover, this identity is independent of any particular background solution and
therefore holds for all holographic RG flows triggered by a scalar operator of dimen-
sion � = 3, at any value of the temperature. We would also like to emphasise that
it crucially relies on the global solutions (4.65)–(4.70) we found for some of the
metric perturbations. Accordingly, identity (4.91) cannot just be a consequence
of Ward identities because Ward identities rely only on the local near-boundary
solutions [78, 81]. To our knowledge, the only holographic theories in which all
transport coefficients entering H̃ have been computed are planar N = 4 (at infinite
’t Hooft coupling [4, 24, 25] as well as including leading finite coupling correc-
tions [44, 82–87]) and the non-conformal Chamblin-Reall background [48]. In both
cases H̃ vanishes in the infinite coupling limit, but it becomes non-zero when tak-
ing into account finite coupling corrections in N = 4. It is worth noting that iden-
tity (4.91), H̃ = 0, is similar to but different from the Haack-Yarom identitiy (4.1),
H = 0:

H̃ = H + 2
(
κ − κ∗ − 2λ1

)
. (4.92)

We conclude this subsection by illustrating the usability of Eq. (4.90). They allow
for the straightforward computation of the second-order coefficients (4.2) for any
given background solution A(u), f (u), φ(u) of Einstein’s equations 4.36 coupled
to a scalar with potential V , Eq. (4.30): simply extract horizon and boundary modes
of the background according to Eqs. (4.53) and (4.56), perform integrals (4.75) over
the background to compute the four Y (a)

j , and plug the result into Eq. (4.90). In the

conformal case (4.38) for instance, the values (4.76) of the Y (a)
j readily reproduce the

known results for all second-order transport coefficients in conformal holographic
fluids (κ∗ = 0) [4, 24],

{
κ, ητπ, λ1, λ2, λ3

} =
( s

8π2T

) {
2, 2 − log 2, 1, −2 log 2, 0

}
, (4.93)

where for N = 4 specifically s/T = π2N 2T 2/2 [80].
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4.5.2 Proof that H = 0 to Leading Order Away
from Conformality

We will now prove that, to leading order in the deviation from conformality, the
Haack-Yarom identity H = 2ητπ − 4λ1 − λ2 = 0 holds for any uncharged holo-
graphic CFT4 deformed by a relevant scalar operator of dimension � = 3. From
Eq. (4.90), H takes the form

H = − 4

fb

(
1

32π2T 2
+ Y (1t)

2 + Y (2t t)
(1,1)

)
, (4.94)

where Y (1t)
2 and Y (2t t)

(1,1) are given by expression (4.75), combined with Eq.B.4. A

priori, Y (1t)
2 and Y (2t t)

(1,1) depend on both background fields A(u), f (u) and on their
boundary and horizon modes

{
Ab, fb

}
and

{
AH , fH

}
. The explicit dependence on

Ab and AH cancels, however, if we replace A(u)with its analytic solution, Eq. (4.79),

A(u) = 1

4
log

(
2 fb A2

b

u f ′(u)

)
. (4.95)

Thus H becomes a function of fb and f (u) only, though it depends on the latter
through a complicated integral over a rational functional of f (u) and its derivatives.
Yet, close to the UV fixed point we can expand the integrand in the deviation δ f (u)

from the conformal solution (4.38),

f (u) = 1 − u2 + δ f (u) , (4.96a)

f (u → 0) ∼ 1 + (−1 + δ fb) u
2 , f (u → 1) ∼ (2 + δ fH ) (1 − u) . (4.96b)

To linear order in δ f , the result for H becomes

H = 1

2π2T 2

(
− 1

4 fb
+ 1

4
+

+
1∫

0

du
[
P(u)δ f ′′(u) + Q(u)δ f ′(u) + (Q′(u) − P ′′(u)

)
δ f (u)

]
⎞

⎠ , (4.97)

where we defined

P(u) ≡ (1 + u) log (1 + u)

8u2
, (4.98a)

Q(u) ≡ u
(
1 + 2u − 3u2

)− (1 + u)2 (2 − 3u) log (1 + u)

8u3
(
1 − u2

) . (4.98b)

Integrating Eq. (4.97) by parts yields

https://doi.org/10.1007/978-3-319-93967-4
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H = 1

2π2T 2

(
1 + δ fb

4
+ 1

4
+

+ [
P(u)δ f ′(u) + (Q(u) − P ′(u)

)
δ f (u)

]u=1
u=0

)
(4.99)

and, inserting the near-boundary and near-horizon behaviour of δ f (u) from
Eq. (4.96b), one finds that H indeed vanishes to first order in δ f .

This proves that, evenwhen taking into account the leading non-conformal correc-
tions to second-order transport caused by an arbitrary scalar operator of dimension
� = 3, the combination H = 2ητπ − 4λ1 − λ2 remains zero in strongly coupled
holographic fluids.

4.6 Numerical Results for Second-Order Transport

This section contains our numerical results on second-order transport within the class
of non-conformal holographic fluids introduced in Sect. 4.3. In Sect. 4.6.1 we present
the leading non-conformal corrections to the second-order hydro coefficients (4.2).
These corrections only depend on the mass term in the scalar potential and are there-
fore common to all holographic RG flows triggered by a scalar operator of dimension
� = 3. In Sect. 4.6.2 we introduce two specific examples of holographic RG-flow
families. We plot and discuss our numerical results for the transport coefficients
along these flows in Sect. 4.6.3.

4.6.1 Leading Non-conformal Correction to Second-Order
Coefficients

All holographic RG flows described by (4.29) and (4.30) share the same UV fixed
point, dual to the AdS5 black-brane geometry (4.38) with vanishing scalar φ = 0.
At high temperatures (compared to the scalar source �), φ remains close to zero
and can be treated as a small perturbation of the conformal background. Its leading
backreaction on the geometry occurs at quadratic orderO(φ2) and can be computed
analytically as we show in AppendixB.3. The result only depends on the quadratic
mass term in the bulk potential V (φ) and is therefore the same for all holographic
RG flows induced by a scalar operator of dimension � = 3.

Taking the result for the backreaction (Eqs. (B.13), (B.14), (B.20), (B.22),(B.23)),
and plugging it into integrals (4.75) to compute the deviation of the Y (a)

j from their
conformal values (4.76), we obtain the leading non-conformal corrections to the
transport coefficients via Eq. (4.90). We were not able to perform the required inte-
grals over the backreaction analytically, but they are easily evaluated numerically.

We showed in Eq. (4.91) that H̃ = 2ητπ − 2 (κ − κ∗) − λ2 = 0, and we proved
in Sect. 4.5.2 that H = 2ητπ − 4λ1 − λ2 = 0 still holds when taking into account

https://doi.org/10.1007/978-3-319-93967-4
https://doi.org/10.1007/978-3-319-93967-4
https://doi.org/10.1007/978-3-319-93967-4
https://doi.org/10.1007/978-3-319-93967-4
https://doi.org/10.1007/978-3-319-93967-4
https://doi.org/10.1007/978-3-319-93967-4
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leading non-conformal corrections. Thanks to these two identities, to leading order
in the non-conformal corrections only three of the five transport coefficients (4.2)
are independent. The results for κ, λ2, and λ1 + λ3/4 are18

κ = 2
( s

8π2T

) (
1 − 4.5979 · 10−3 (�/T )2

)+ O ((�/T )4
)

, (4.100a)

λ2 = −2 log 2
( s

8π2T

) (
1 + 4.9253 · 10−3 (�/T )2

)+ O ((�/T )4
)

, (4.100b)

λ1 + λ3/4 =
( s

8π2T

) (
1 + 2.5506 · 10−3 (�/T )2

)+ O ((�/T )4
)

, (4.100c)

while two other independent combinations of transport coefficients are given by

ητπ + κ∗ = κ + λ2/2 , λ1 + κ∗/2 = κ/2 . (4.101)

The numerical integration over the backreaction can be done to very high accuracy,
butwe chose to only display thefirst five digits inEq. (4.100).By checking the identity
H = 0 and by comparing results obtained when writing cancelling divergences in
the integrands in different ways, we could estimate the absolute numerical error to
be smaller than 10−14.

We conclude this subsection by emphasising again that the leading non-conformal
corrections (4.100) are common to all holographic RG flows triggered by a scalar
operator of dimension � = 3.

4.6.2 Two Simple Families of Holographic RG Flows

Potential V(1): The first family V(1) of potentials that we are going to investigate was
recently introduced in Ref. [88]. It derives from a family of quartic superpotentials
W

L W = −3

2
− φ2

8
+ φ4

16φ2
m

, (4.102)

yielding

V(1) = 8

[(
∂W

∂φ

)2

− 2

3
W 2

]

= 1

L2

[
−12 − 3

2
φ2 − 1

12
φ4 + 6 + φ2

m

12φ4
m

φ6 − 1

48φ4
m

φ8

]
. (4.103)

18We chose to explicitly state the result for λ1 + λ3/4 (rather than for λ1 + κ∗/2 or λ3 − 2κ∗)
because λ3, contrary to κ∗, does not vanish for conformal fluids in general [7, 64] and thus allows
for a more meaningful comparison with the conformal case. It does, however, vanish in conformal
holographic theories at strictly infinite coupling [24].
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The potential V(1) has a maximum at φ = 0 and a minimum at the free parameter
φm . Close to the minimum, V(1) takes the form

L2 V(1) = −12
L2

L2
IR

+ m2
IRL

2

2
(φ − φm)2 + O

(
(φ − φm)3

)
, (4.104)

resulting in a second asymptotically AdS5 region, dual to an IR fixed point, with a
smaller AdS radius

L IR ≡
(
1 + φ2

m

24

)−1

L , (4.105)

and a positive mass

m2
IRL

2 = 12 + φ2
m

3
. (4.106)

The potential V(1) thus represents a family of RG flows from a UV CFT, deformed
by a relevant operator of dimension � = 3, to an IR CFT, deformed by an irrelevant
operator of dimension [17, 18]

�IR = 2 + 2

√

1 + m2
IRL

2
IR

4

= 4 + 48

24 + φ2
m

∈ (4, 6) , (4.107)

satisfying �IR (�IR − 4) = m2
IRL

2
IR (see also discussion around Eq. (2.17)). The

number of degrees of freedom of the IR CFT is smaller by a factor of (L IR/L)3

compared to the UV CFT [81, 89].19 For smaller φm , the number of degrees of free-
dom in the IR increases and the operator becomes more irrelevant in the IR. In this
sense, the RG flow is happening more quickly. In the opposite limit φm → ∞, the
potential becomes quartic,

V(1)
φm→∞−−−−→ 1

L2

[
−12 − 3

2
φ2 − 1

12
φ4

]
, (4.108)

the number of degrees of freedom in the IR goes to zero ((L IR/L)3 → 0), and the
IR operator becomes marginally irrelevant (�IR → 0+). In this sense, the RG flow
is happening infinitely slowly.

19The fact that the number of degrees of freedom at an AdSd+1 fixed point with AdS radius � scales
with �d−1 can be seen from the Weyl anomaly [81]. The holographic Weyl anomaly

〈
T μ

μ

〉
is given

by a surface contribution of dimension d, multiplied by 1/GN times the appropriate power �d−1 of �
to ensure that theWeyl anomaly has the correct dimension d. Because

〈
T μ

μ

〉
is directly proportional

to the central charge, the number of degrees of freedom, too, scales with the AdS radius as �d−1.

https://doi.org/10.1007/978-3-319-93967-4_2
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Potential V(2): The second family V(2) of potentials that we are going to study is

V(2) = 1

L2

[
−12 −

(
3

2
− 1

γ2

)
φ2 + 2

γ4
(1 − cosh(γφ))

]

= 1

L2

[
−12 − 3

2
φ2 − 1

12
φ4 − γ2

360
φ6 + O(φ8)

]
. (4.109)

The potential V(2) is monotonically decreasing for any value of the free parameter γ
and hence represents an RG flow from a UV CFT towards a non-conformal IR (there
is no second AdS region in the IR).

For large φ, V(2) asymptotically approaches an exponential potential, L2 V(2) →
−eγφ/γ4, for which the finite-temperature solution is given by the analytically known
Chamblin-Reall background [50, 90]. In the deep IR, i.e. for large values of φH ,
the near-horizon region φ → φH of solutions to our model V(2) is thus asymptoti-
cally described by the Chamblin-Reall background. In particular, temperature T and
entropy density s take the following form in the limit of large φH [50]:

log (LT ) =
(

γ

2
− 1

3γ

)
φH + (const inφH ) , (4.110a)

log (4GNs) = −φH

γ
+ (const inφH ) . (4.110b)

This implies that the speed of sound cs in the deep IR is20

c2s = d p̄

dε̄
= d log T

d log s
T→0−−→ 1

3
− γ2

2
. (4.111)

Importantly, black-brane solutions to V(2) thus remain stable for arbitrarily small tem-
peratures only if c2s > 0, i.e. if |γ| <

√
2/3.21 Note that for γ → 0, V(2) approaches

the same quartic potential as V(1) does in the limit φm → ∞, Eq. (4.108):

V(2)
γ→0−−→ 1

L2

[
−12 − 3

2
φ2 − 1

12
φ4

]
. (4.112)

20The fact that c2s = d p̄/dε̄ can be written as c2s = (d log T ) / (d log s) follows from standard ther-
modynamic relations. The first law for an uncharged system with energy E and entropy S reads
dE = T dS − p̄ dV . Using the extensivity of E , S, and V , combined with the homogeneous func-
tion theorem, gives E = T S − p̄ V . This yields 0 = S dT − V d p̄, implying d p̄ = s dT , as well
as ε̄ + p̄ = T s. Combining the last two relations gives dε̄ = T ds, hence d p̄/dε̄ = (s dT ) / (T ds).
21Note that this implies that the GPPZ flow [69] with superpotential W = − 3

4

(
1 + cosh(φ/

√
3)
)

does not admit stable black-brane solutions below a certain minimum temperature because its
potential asymptotes to V → − (3/8) exp(2φ/

√
3) for large φ.
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Background solutions: For both families V(1) and V(2) we used the method devised
in Ref. [50] to construct numerical background solutions. The essential steps are
summarised in AppendixB.4. Figure4.1 shows our numerical results for the speed
of sound along the two RG flows for a few representative values of the respective
parameters �IR and γ.

4.6.3 Second-Order Coefficients Along Examples of RG
Flows

This section contains our numerical results for the second-order coefficients (4.2)
along the two families of holographic RG flows introduced in Sect. 4.6.2. For each of
the two families V(1) and V(2), we looked at around 20 parameter values covering the
range 4.1 ≤ �IR ≤ 5.9 and 0 ≤ γ ≤ √

2/3 respectively. For each of these flows we
then constructed numerical background solutions at about 40 different temperatures
(see AppendixB.4) and computed the second-order coefficients from Eq. (4.90) (see
discussion above Eq. (4.93)).

Our main result is that the combination H = 2ητπ − 4λ1 − λ2 vanishes in all
cases considered, even when the individual transport coefficients deviate from their
conformal values by factors of two and more. More precisely, the absolute values
we obtained for H all lie below our numerical accuracy of order 10−5. For details
on the numerics see the end of AppendixB.4. Our result suggests that the Haack-
Yarom identity H = 0 does not only hold for holographic fluids with conformal
symmetry [43–47] or close to a fixed point (see Ref. [48] and our Sect. 4.5.2) but
is in fact universally satisfied by all holographic fluids at infinite coupling, with or
without conformal symmetry.

Combined with the analytic identity H̃ = 2ητπ − 2 (κ − κ∗) − λ2 = 0, the
numerical result H = 0 implies that only three of the five coefficients (4.2) are inde-
pendent. In Figs. 4.2 and 4.3 we plot the second-order coefficients κ, λ2, λ1 + λ3/4
and the speed of sound squared c2s versus�/T . The plots show our numerical results
for V(1) and V(2), each with the largest parameter value considered, i.e.�IR = 5.9 and
γ = √

2/3.Our results for smaller parameter values all lie between these two extreme
curves and vary smoothly with �IR and γ.22 The plots confirm that the behaviour
of the transport coefficients close to the UV fixed point, i.e. for small �/T , is well
described by the leading non-conformal correction discussed in Sect. 4.6.1. If we
compare Figs. 4.2 and 4.3 with Fig. 4.1, the difference in the considered range of
(�/T )-values stands out. While Fig. 4.1 follows the speed of sound all the way from
the UV to the IR, Figs. 4.2 and 4.3 only contain results for relatively high tempera-
tures and do not capture the IR properties of V(1) and V(2). This is because we used
different radial coordinates to compute the transport coefficients and to compute ther-
modynamic quantities such as c2s . Thermodynamic quantities were obtained using
the scalar φ itself as radial coordinate, as required by the method we employed to

22Recall that V(1) [�IR → 4+] = V(2) [γ → 0+], see Eqs. (4.108) and (4.112).

https://doi.org/10.1007/978-3-319-93967-4
https://doi.org/10.1007/978-3-319-93967-4
https://doi.org/10.1007/978-3-319-93967-4
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Fig. 4.1 The speed of sound squared c2s plotted versus operator source � over temperature T . The
upper plot shows our numerical results for potential V(1) for three different IR operator dimensions
�IR, Eq. (4.107). The lower plot shows our numerical results for potential V(2) for four values of the
parameter γ, which determines the value of c2s in the deep IR via Eq. (4.111), c2s → 1/3 − γ2/2.
Each curve represents a holographic RG flow induced by a different operator
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Fig. 4.2 The second-order coefficients κ and λ2 in units of s/
(
8π2T 2

)
plotted versus �/T . The

plots show our numerical results for V(1) and V(2) with �IR = 5.9 and γ = √
2/3 respectively.

For smaller values of �IR and γ, the orange and blue curve move closer to each other until they
coincide for �IR → 4 and γ = 0, see Eqs. (4.108) and (4.112). The solid line describes the leading
non-conformal corrections (4.100) from Sect. 4.6.1
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Fig. 4.3 The second-order coefficient λ1 + λ3/4 in units of s/
(
8π2T 2

)
and the speed of sound

squared c2s plotted versus �/T . The plots show our numerical results for V(1) and V(2) with �IR =
5.9 and γ = √

2/3 respectively. For smaller values of �IR and γ, the orange and blue curve move
closer to each other until they coincide for �IR → 4 and γ = 0, see Eqs. (4.108) and (4.112). The
solid line describes the leading non-conformal corrections (4.100) from Sect. 4.6.1
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Fig. 4.4 The deviation of the speed of sound squared c2s and the second-order coefficients λ1 +
λ3/4, λ2, κ in units of s/

(
8π2T

)
from their conformal values (4.93), versus �/T . The solid line

shows our numerical results for V(2) with γ = √
2/3, the dashed line refers to V2 with γ = 0. Results

for intermediate values of γ interpolate smoothly between the two lines

construct background solutions [50], see AppendixB.4 for details. However, φ is not
a suitable coordinate in the UV, where it becomes small everywhere. In particular,
it does not lend itself to a perturbative treatment like the one in Sect. 4.6.1 and it
is ill-defined in the conformal limit φ → 0. For this reason, we switched to the u-
coordinate when dealing with metric fluctuations around the background. While u is
well-defined in the UV, however, it becomes problematic in the IR because the region
φ ∈ (0,φH ) is mapped onto the same interval u ∈ (0, 1) for all values of φH . At low
T , i.e. for large φH , the modes in the u-coordinate become very large and render
the numerics unstable. Nonetheless, we decided to work in the u-coordinate for two
reasons: firstly, it allowed us to obtain independent results from the perturbative treat-
ment of the scalar and secondly, we could compare every step of our calculations with
the conformal case. The drawback of using u is that reliable results for the transport
coefficients could only be obtained for relatively small values of �/T . In particular,
we cannot observe how the transport coefficients return to their conformal values
in the case of V(1) or begin to approach the values assumed in the Chamblin-Reall
background in the case of V(2) (see AppendixF of Ref. [1]). We leave the numerical
investigation of second-order coefficients in the deep IR for future research.

https://doi.org/10.1007/978-3-319-93967-4
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Let us take another look at Fig. 4.1. It indicates that for V(2) the influence of the
IR becomes dominant only if �/T � 10. We found that the same is true for V(1)

with �IR � 5.2. In these cases it was therefore possible to obtain reliable numerical
results for larger values of �/T . Figure4.4 shows the deviations of c2s , κ, λ2, and
λ1 + λ3/4 from their conformal values for V(2) with γ = √

2/3 and γ = 0, plotted
against �/T . Results for V(2) with 0 < γ <

√
2/3 lie between these two curves.

Results for V(1) with �IR � 5.2 closely follow the curve for V(2)|γ=0, in agreement

with V(1)
�IR→4−−−−→ V(2)|γ=0 from Eqs. (4.108) and (4.112).

Finally, let us briefly mention the constraints from the local entropy current. By
demanding that the entropy current’s gradient expansion only contain terms that
always lead to non-negative entropy production, Refs. [5, 91] obtained five relations
between second-order coefficients.23 We employed these five relations in Sect. 6.4 of
Ref. [1] to extend our numerical results from three to eight second-order coefficients,
see Fig. 5 therein.

4.7 Summary and Outlook

In this chapter we studied second-order hydrodynamics in strongly interacting non-
conformal field theories. We derived newKubo formulae for five second-order trans-
port coefficients that are valid for all uncharged non-conformal fluids in (3 + 1)
dimensions. We applied these Kubo formulae to holographic RG flows induced by
a relevant scalar operator of dimension � = 3 and found expressions for the five
second-order transport coefficients at infinite coupling in terms of the holographically
dual gravitational background solution. Within the considered class of holographic
RG flows we proved two relations between second-order coefficients. Firstly, we
showed that

H̃ = 2ητπ − 2
(
κ − κ∗)− λ2 = 0 . (4.113)

Secondly, we proved that the Haack-Yarom identity [42, 43]

H = 2ητπ − 4λ1 − λ2 = 0 , (4.114)

which is known to hold for conformal holographic fluids at infinite coupling, also
holds when leading-order non-conformal corrections are included. We studied two
specific families of RG flows numerically and found that the Haack-Yarom identity
continued to hold beyond perturbative non-conformal corrections. This provides
further evidence that the identity may be universally satisfied by strongly coupled
fluids [44–48, 51].

We derived the new set of Kubo formulae in Sect. 4.2, Eq. (4.26), and showed how
they can be applied to strongly coupled fluids with a gravity dual. In Sect. 4.3 we

23The same relations were found in Ref. [92] by coupling the fluid to external sources.
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introduced a class of strongly coupled non-conformal field theories, namely holo-
graphic RG flows induced in the UV by a scalar operator of dimension � = 3. We
derived the bulk equations of motion for asymptotically AdS backgrounds of the dual
Einstein-scalar models and for the metric fluctuations that are relevant for the Kubo
formulae. In Sect. 4.4 we solved the fluctuation equations in a hydrodynamic deriva-
tive expansion and derived explicit integral expressions for the sub-leading modes in
terms of background data, Eq. (4.75). In Sect. 4.5 we presented our analytic results
on second-order transport. We determined the expressions (4.90) for five transport
coefficients in terms of the dual background data and proved that a certain linear
combination of second-order transport coefficients, H̃ = 2η τπ − 2 (κ − κ∗) − λ2,
vanishes identically along any RG flow in the considered class. We further showed
that the Haack-Yarom identity H = 0, Eq. (4.1), is obeyed to leading order in the
deviation from conformality for any holographic RG flow induced by a relevant
scalar operator of dimension � = 3. In Sect. 4.6 we presented our numerical results
on second-order transport. Firstly, we computed the leading non-conformal correc-
tions to the second-order coefficients. Secondly, we introduced two specific families
of � = 3 operators and numerically found the Haack-Yarom identity to be obeyed
along both corresponding families of RG flows. Thirdly, we plotted the independent
combinations of second-order coefficients along both families of RGflows and found
agreement with the perturbative results in the appropriate high-temperature regime.

Ourworkpoints to a number of openquestions. For technical reasons,we restricted
our bulk computations to transverse-vector and transverse-tensor perturbations of
the metric. If scalar sound perturbations were included as well and an appropri-
ate extended set of Kubo formulae were derived, it would be possible to compute
all fifteen second-order non-conformal transport coefficients. The major technical
obstacle is that scalar sound perturbations would necessarily source fluctuations of
the bulk scalar field. If, despite this challenge, one managed to compute all fifteen
second-order coefficients, one would be able to check the five relations which were
derived from the positivity of the local entropy production [5, 91, 92].

In presenting our numerical results in Sect. 4.6.3 we pointed out that our choice of
the radial coordinate u made it impossible to numerically access the deep IR of the
considered RG flows. As we explain in AppendixB.4, the IR region would become
accessible if one used the scalar φ as radial coordinate instead. We have precise
expectations as to what such a numerical study would reveal. For the first family of
potentials the transport coefficients have to return to their conformal values. For the
second family of potentials they are expected to approach the values they assume in
the Chamblin-Reall background, which are listed in Appendix F of Ref. [1].

Another open question is whether our proof in Sect. 4.5.2 that H vanishes when
taking into account leading non-conformal corrections caused by an operator of
dimension � = 3 can be generalised to relevant operators of arbitrary dimension
2 < � < 4. Since the computation of H does not involve fluctuations of the bulk
scalar, a change in the dual operator dimension would require a different set of
holographic counterterms, but itwould not affect the relevant bulkmetric fluctuations.

What our results entail for the entropy current is another direction for future
research. Fluids with simple gravity duals at strong coupling have been conjectured

https://doi.org/10.1007/978-3-319-93967-4
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to obey a principle of minimal dissipation [44, 93]. The observation that the lower
bound on the shear viscosity over entropy density ratio is universally satisfied by a
large class of holographic theories [23, 26–33] is a first hint in this direction, since
this ratio appears as coefficient of the leading contribution to the entropy production.
At second order in gradients, the entropy current of a conformal fluid contains two
terms [5]: the coefficient of the first one vanishes if 2λ1 = κ, which is indeed true
for conformal holographic fluids at infinite coupling [4], while the coefficient of
the second term remains unknown. The relations H̃ = 0 and H = 0 found in this
work are equivalent to 2λ1 = κ − κ∗ and H = 0. It would be interesting to explore
whether they lead to similar cancellations in the divergence of the non-conformal
entropy current. This would provide further evidence in favour of the principle of
minimal dissipation. A strong indication that thismight indeed be the case is provided
the effective-action approach to adiabatic hydrodynamics: Ref. [94] showed that the
relations 2λ1 = κ − κ∗ and H = 0 must indeed hold for perfect fluids, i.e. for fluids
that do not produce entropy. Finally, we would like to remark that the Haack-Yarom
identity H = 0 seems to require either adiabaticity or infinite coupling. Even for
conformal fluids, the identity is violated in examples of weakly coupled systems
in the kinetic regime [95] and when finite coupling corrections are included in the
hypothetical dual of Gauss-Bonnet gravity [44, 46, 47].24
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Chapter 5
A Holographic Kondo Model

5.1 Introduction and Summary

Wementioned in Sect. 3.3 that the ill-understood strange metal phase, which is most
likely controlled by a strongly coupled critical theory, provides one of the main
incentives to apply the gauge/gravity duality to condensed matter systems. Strange
metal phases, whose characteristic feature is a resistivity ρ ∝ T [4], are observed in
cuprate superconductors and in many heavy fermions. The latter are rare-earth or
actinide based alloys, many of which exhibit a continuous quantum phase transition
from an anti-ferromagnetic (AFM) phase to a Landau Fermi Liquid (LFL) phase1

with quasi-particles hundreds of times heavier than those of normal metals, hence the
name ‘heavy fermions’ [4, 6–10]. The quantum critical degrees of freedom appear
to be strongly interacting [11] and, when heated up, give rise to a strange metal.

Doniach [12] proposed the Kondo lattice as a theoretical description of heavy fer-
mions. The rare-earth or actinide atoms’ f -orbital electrons form a lattice of localised
spin impurities Si , while the other atoms provide conduction electrons that form a
LFL. The Kondo lattice Hamiltonian thus includes a LFL kinetic term plus two
types of interactions: Kondo interactions λK Si · J between the impurities Si and the
spin current J of the LFL (see Eq. (5.1)), and Heisenberg interactions λRKKY Si · Sj

between neighbouring impurities, called Ruderman-Kittel-Kasuya-Yosida (RKKY)

This chapter is based on A. O’Bannon, I. Papadimitriou and J. Probst, A Holographic Two-
Impurity Kondo Model, JHEP 01 (2016) 103, [1510.08123] (Ref. [1]), on J. Erdmenger, C. Hoyos,
A. O’Bannon, I. Papadimitriou, J. Probst and J. M. S. Wu, Holographic Kondo and Fano Reso-
nances, Phys. Rev. D96 (2017) 021901, [1611.09368] (Ref. [2]), and on J. Erdmenger, C. Hoyos,
A. O’Bannon, I. Papadimitriou, J. Probst and J. M. S. Wu, Two-point Functions in a Holographic
Kondo Model, JHEP 03 (2017) 039, [1612.02005] (Ref. [3]).

1A LFL describes weakly interacting fermionic quasi-particles (‘dressed electrons’) whose exci-
tations are in one-to-one correspondence with and have the same quantum numbers as their free
counterparts (‘bare electrons’), but whose mass and other couplings assume different, renormalised
values [5].

© Springer International Publishing AG, part of Springer Nature 2018
J. Probst, Applications of the Gauge/Gravity Duality,
Springer Theses, https://doi.org/10.1007/978-3-319-93967-4_5
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interactions (see Eq. (5.10)). A solution to the Kondo lattice Hamiltonian is only
known in simplifying limits. The simplest limits just ignore one or the other type of
interaction. If the Kondo interactions can be neglected, then AFM RKKY couplings
(λRKKY > 0) trivially lead to an AFM metal. Conversely, suppose the impurities are
sufficiently dilute so that the RKKY interactions can be neglected. In that limit, the
relevant dynamics is captured by the Kondo coupling of the LFL to a single spin.
The corresponding single-impurity Kondo Hamiltonian [13] (see Sect. 5.2.1) has
been realised experimentally in metals doped with a dilute concentration of mag-
netic impurities [13–15] and in quantum dots [16–18]. Most famously, in doped
metals the single-impurity Kondo model successfully describes the logarithmic rise
of the resistivity ρ with decreasing temperature T [13]. The single-impurity Kondo
model has been studied using a variety of complementary techniques, such as numer-
ical RG [19–21], integrability [22–29], large-N limits [4, 6, 30–33], and CFT [33–
39]. Many of these are reviewed in Refs. [40, 41]. The solution is most succinctly
described as an RG flow. AnAFMKondo coupling (λK > 0) flows to larger values in
the IR and eventually diverges at a dynamically generated scale, the Kondo tempera-
ture TK. At low T , the impurity is screened by a Kondo cloud [42] of LFL fermions,
the fermionic spectral function exhibits a Kondo resonance at the Fermi level, and
the fermions acquire an s-wave phase shift of π/2 [40, 41]. The term ‘Kondo effect’
is used to refer to all of these phenomena.2

Clearly, simplifying limits of the Kondo lattice Hamiltonian that ignore either the
Kondo or the RKKY interaction cannot describe the quantum critical point, which
arises from a competition between the two. As a first step towards the Kondo lattice,
the two-impurity Kondo model [31, 43–60] (see Sect. 5.2.2) provides the simplest
example that features the competition between Kondo and RKKY interactions. It
has not been solved in full generality, but substantial progress has been made using
a combination of methods, including large-N [31, 55, 59] and CFT [43, 44, 48–50,
56]. For example, a quantum phase transition has been found to occur for an SU (2)
spin symmetry [53, 58]. In that case, a large ferromagnetic (FM) RKKY coupling
forces the spins to lock into a spin-1 triplet, which at low T is screened in a multi-
stage Kondo effect. For large AFM RKKY coupling, the spins lock into a singlet
and decouple from the LFL. The LFL fermions thus acquire a π/2 phase shift in the
FM phase where the Kondo effect occurs, but no phase shift in the AFM phase. At
T = 0, particle-hole symmetry only allows phase shifts of π/2 or 0 so that the phase
shift must jump discontinuously at a quantum phase transition [59], which turns out
to be second-order [53, 54, 56, 58, 60].

Yet many open questions remain about the single- and two-impurity Kondo mod-
els, in particular regarding the fate of the Kondo effect in the case of strongly cor-
related electrons, e.g. in a Luttinger liquid [61–65] or in the Hubbard model [66,
67]. These questions are of particular relevance in view of the strongly coupled
nature of the strange metal, but cannot be reliably answered with existing tech-
niques. We thus turn to an alternative approach using the gauge/gravity duality or

2Intuitively, a conduction electron locks with the impurity into a spin singlet, which makes the
impurity location impenetrable for other conduction electrons due to Pauli exclusion.
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holography [68–70]. This approach replaces the global SU (2) spin symmetry by
gauged SU (N ) and effectively replaces the LFL of the original Kondo model by a
strongly coupled CFT with a holographic gravity dual, which can serve as a use-
ful toy model for strongly correlated electrons. Various holographic single-impurity
Kondo models exist, see e.g. Refs. [71–85]. In all cases, the SU (2) spin symmetry
is replaced by a gauged SU (N ) symmetry, followed by the limits of large N and
infinite gauge coupling. Magnetic impurities are then described by an SU (N ) Wil-
son line [86–91].3 Various attempts to build holographic lattices of impurities can be
found in Refs. [78–80, 84, 85, 93]. However, these include neither the Kondo nor
the RKKY coupling, so it is unclear whether they really describe the strange metal
state that arises from heavy fermion quantum criticality. Among holographic single-
impurity Kondo models, only the model of Ref. [73] includes a Kondo coupling at
all. It also describes many essential single-impurity Kondo phenomena such as the
appearance of TK and a phase shift.

In this chapter, based on Refs. [1–3], we further the analysis of the latter model
in two ways. Firstly, we extend it to a holographic two-impurity Kondo model with
RKKY inter-impurity coupling, and study the corresponding phase diagram [1].
Secondly, we consider time-dependent fluctuations in the single-impurity case and
compute the corresponding spectral functions [2, 3]. The holographic model from
Ref. [73] is based on the CFT and the large-N approaches to the Kondo model.
In the CFT description, the Kondo model consists of chiral fermions ψ in (1 + 1)
dimensions (representing radial electron s-waves), coupled to an impurity at the ori-
gin. The impurity is in a totally anti-symmetric representation of the SU (N ) spin
symmetry and can be represented in terms of Abrikosov pseudo-fermions χ, which
transform under an auxiliaryU (1) symmetry. Two impurities introduce two flavours
of χ and enhance the auxiliary symmetry to U (2). At large N , the Kondo effect
appears as condensation of the operator O = ψ†χ in a mean-field phase transition
below a critical temperature. Our holographic model gauges the SU (N ) spin sym-
metry and employs the limit of large gauge coupling, thereby replacing the free UV
fixed point of the original Kondo model by a strongly coupled CFT with a gravity
dual in AdS3. The electric current of the chiral ψ is dual to a Chern-Simons gauge
field in AdS3. The auxiliary current of the χ and the impurity operator O are dual
to a Yang-Mills (YM) gauge field a and a scalar field � on an AdS2 defect at the
impurity’s location.

We have six main results. One, we find that the RKKY interaction between totally
anti-symmetric SU (N ) impurity spins can be written as a double-trace deformation
at large N . This result holds independently of holography. Two, we identify the
Kondo and RKKY couplings in our holographic model as boundary conditions on
the fields � and a in the dual AdS gravity bulk. This is the first identification of
an inter-impurity coupling in holography. Three, we demonstrate that, at large N
and for totally anti-symmetric SU (N ) impurity spins, FM spin-spin correlations
are suppressed relative to AFM spin-spin correlations. This result is only based on

3A different approach, using a delta-function source to describe a point-like impurity, is followed
in Ref. [92].
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SU (N ) representation theory and is valid independently of a holographic description.
Four, a numerical investigation of the phase diagram in our model suggests that a
quantum phase transition occurs at a non-trivial AFM value of the RKKY coupling,
from a trivial phase with uncorrelated impurities and no Kondo screening to a non-
trivial phase with AFM spin-spin correlations and simultaneous Kondo screening.
Five, studying correlation functions in the single-impurity case, we observe a Fano
resonance inO’s spectral function,whichwe identifywith theKondo resonance in the
Kondo-screened low-temperature phase. Fano resonances occur because a symmetric
resonance, in our case produced by the marginally relevant Kondo coupling, couples
to a continuous spectrum, in our case provided by the impurity’s (0 + 1)-dimensional
scale invariance in theUV. Six,we propose that, following the samemechanism, Fano
resonances should be a generic feature of RG flows between effectively (0 + 1)-
dimensional fixed points.

The remainder of this chapter is organised as follows: In Sect. 5.2 we review
relevant aspects of the original single-and two-impurity Kondo model and show
that the RKKY interaction takes the form of a double-trace deformation at large N .
Section 5.3 describes our holographic gravity model. In Sect. 5.4 we identify the
Kondo and RKKY couplings as boundary conditions on fields in AdS. Section 5.5
contains our results for the two-impurity phase diagram. Section 5.6 discusses corre-
lation functions in the single-impurity case.We conclude in Sect. 5.7 with a summary
of our results and suggestions for future research.

5.2 The Single- and Two-Impurity Kondo Models

In this section we review the details of the single- and two-impurity Kondo models
that we will need for our holographic model.

5.2.1 The Single-Impurity Kondo Model

The single-impurity Kondo model describes the interaction of a LFL with a single
localised quantum impurity spin [40, 41]. It has been realised experimentally in
quantum dots [16–18] and in metals doped with a dilute concentration of magnetic
impurities [13–15]. In many of these cases, multiple conduction bands or ‘channels’
couple to the same impurity, and in many cases the impurity has a spin degeneracy
greater than two [4, 6, 30, 31, 40, 41]. To describe these cases, the generalised
Kondo model contains k fermion channels, each in the fundamental representation
of an SU (N ) spin symmetry, and an impurity SA in a general representation ρUV of
SU (N ) with dimension dim(ρUV). The symmetry group that leaves the Hamiltonian
density invariant is then SU (N ) × SU (k) ×U (1), with channel symmetry SU (k)
and electromagnetic symmetry U (1). The single-impurity Kondo problem has been
solved for general N , k and ρUV using a number of complementary techniques,



5.2 The Single- and Two-Impurity Kondo Models 83

including numerical RG [19–21], integrability [22–29], large-N techniques [4, 6,
30–33], and CFT techniques [34–39]. Many of these are reviewed in Refs. [40, 41].

The single-impurity Kondo model is spherically symmetric about the impurity
so that only s-waves couple to the impurity. The CFT approach [34–39] begins
by discarding all higher partial waves (in real space), followed by linearising the
dispersion relation about the Fermi momentum. The result is a (1 + 1)-dimensional
relativistic model on the positive real axis, representing the radial distance to the
impurity, with left- and right-moving fermions (in-coming and out-going s-waves)
interacting with the impurity at the origin. The Fermi velocity plays the role of the
speed of light, which we will henceforth set to one. After extending the positive real
axis to negative values, reflecting the right-movers about the origin and re-labelling
them as left-movers, we obtain the simplest description of the single-impurity Kondo
model: left-movers alone,moving on the entire real line, interactingwith the impurity
at the origin. The resulting (1 + 1)-dimensional Hamiltonian density is (suppressing
SU (k) channel indices)

HK = 1

2π
ψ†

αi∂xψα + λKδ(x)SAJ A, J A = ψ†
αT

A
αβψβ, (5.1)

where ψ†
α creates a left-moving fermion with spin α, λK is the classically marginal

Kondo coupling, and T A
αβ are the generators of SU (N ) (A = 1, . . . , N 2 − 1), in

the fundamental representation. The free left-moving fermions form a chiral CFT,
invariant under a single Virasoro algebra.

The beta function for the Kondo coupling is negative to one-loop order in pertur-
bation theory [40, 41]. Consequently, a FM Kondo coupling, λK < 0, is marginally
irrelevant in the IR. On the other hand, an AFM Kondo coupling, λK > 0, is asymp-
totically free in the UV, but in the IR appears to diverge at a dynamically generated
scale, the Kondo temperature, TK. In the high-temperature regime, T � TK, pertur-
bation theory in λK is thus reliable for calculating observables, including (at one
loop) the characteristic − ln(T/TK) contribution to the resistivity [13]. At low tem-
peratures, the renormalisation of AFM λK to large values is the main obstacle to
solving the Kondo problem, but we can reach a basic understanding of its solution
as follows. Let us assume that, starting from the LFL in the UV, the RG flow takes
us all the way to λK → +∞ in the IR. In that case, the ground state must minimise
the Kondo interaction SAJ A. Concretely, among all the eigenstates of SA + J A that
can be formed by the impurity ρUV and the LFL fermions, subject to Pauli exclusion
and SU (k) channel symmetry, the ground state will have the minimal eigenvalue of
SAJ A [32, 33]. Let ρIR denote the corresponding SU (N ) representation of any impu-
rity remaining in the IR, with dimension dim(ρIR). The λK → ∞ fixed point must
fall into one of the following three classes, depending on how dim(ρIR) compares to
dim(ρUV):

1. Critical Screening: If ρIR is a singlet of SU (N ), dim(ρIR) = 0, then the impurity
has been screened completely. This occurs for instance in the original single-
channel SU (2) Kondo model: the Kondo cloud has net spin 1/2, which locks
with the impurity spin into the anti-symmetric singlet of SU (2).
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2. Underscreening: If 0 < dim(ρIR) ≤ dim(ρUV), then the impurity is either par-
tially screened or unscreened. The net impurity spin that remains in the IR inter-
acts with the LFL via a marginally irrelevant FM Kondo coupling [32, 94].

3. Overscreening: If dim(ρIR) > dim(ρUV), then the naïve fixed point λK → ∞
cannot be the actual IR fixed point, since that would lead to a greater number of
impurity degrees of freedom in the IR than in the UV, which is impossible for
a physical RG flow [33, 39]. In fact, the overscreened impurity interacts with
neighbouring LFL fermions via a marginally relevant AFM Kondo coupling,
rendering the naïve IR fixed point unstable. The true IR fixed point is at a non-
trivial value of λK [94, 95] and gives rise to non-Fermi liquid behaviour.

With critical or underscreening, the excitations about the ground state arrange them-
selves again into a LFL. However, the LFL fermions in the IR are subject to special
boundary conditions: their wave function must vanish at the location of the impurity.
Intuitively, the reason is that, due to Pauli exclusion, a LFL fermion can penetrate
that location only by destroying the screened impurity in representation ρIR, whose
binding energy is∝ λK → ∞ [35]. The vanishing of the wave function is equivalent
to an s-wave π/2 phase shift in the IR relative to the UV.

Large-N Techniques: Our holographic model will employ a large-N limit [4, 6,
30–33], in which the Kondo effect appears as symmetry breaking at the impurity’s
location [25, 31, 96, 97]. That description begins by representing the impurity spin
SA in terms of Abrikosov pseudo-fermions in the fundamental representation of
SU (N ):

SA = χ†
αT

A
αβχβ . (5.2)

Here, χ†
α and χα are creation and annihilation operators for an Abrikosov pseudo-

fermion. The χα obey fermionic anti-commutation relations, which ensures that
SA indeed obeys the SU (N ) algebra. The Hilbert space on which SA acts is built
by acting on the vacuum with the χ†

α. Because the χ†
α anti-commute, the states in

the Hilbert space form totally anti-symmetric tensor products of the fundamental
representation of SU (N ), with the rank of a tensor given by the total number q of
Abrikosov pseudo-fermions in a particular state (so q ranges from zero to N ). To
obtain an irreducible representation, we must fix the rank q of the anti-symmetric
tensor by imposing a constraint on the states in the Hilbert space:

χ†
αχα = q. (5.3)

Note that we would obtain totally symmetric representations of SU (N ) if we repre-
sented SA via Schwinger bosons rather than Abrikosov pseudo-fermions
[32, 98, 99].

Using the completeness relation satisfied by the fundamental-representation
SU (N ) generators,
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T A
αβT

A
γδ = 1

2

(
δαδδβγ − 1

N
δαβδγδ

)
, (5.4)

and χα’s anti-commutation relations, we can re-write the Kondo interaction in
Eq. (5.1) as, after dropping an unimportant constant ∝ q,

λKS
Aψ†

γT
A

γδψδ = λK
(
χ†

αT
A

αβχβ

) (
ψ†

γT
A

γδψδ

)
= −1

2
λK

(
O†O + q

N

(
ψ†

αψα

))
, (5.5)

where we have defined the scalar operator O ≡ ψ†
αχα, which is a function of time t

only, because χα cannot propagate away from the impurity’s location x = 0. Clearly,
O is a singlet of the spin SU (N ) symmetry, has the same channel SU (k) and electro-
magnetic U (1) representation as ψ†

α, and has the same auxiliary U (1) charge as χα.
Classically ψα has dimension 1/2 and χα has dimension zero, so O has dimension
1/2. TheKondo interaction Eq. (5.5) is then classicallymarginal, i.e.λK is classically
dimensionless.

So far our discussion has been valid for any value of N , but let us now consider the
large-N limit: we take N → ∞, keeping both NλK and q/N fixed and of order one.
In that limit, the (q/N )ψ†

αψα termEq. (5.5) is sub-leading andwe find that the Kondo
interaction is a classically-marginal ‘double-trace’ interaction, of the form−λKO†O.
We put ‘double-trace’ in quotation marks becauseO is not the trace of a matrix in the
adjoint of SU (N ), but a contraction of a field in the anti-fundamental representation
of SU (N ), ψ†

α, with a field in the fundamental representation, χα. In what follows
we will drop the quotation marks. The double-trace form of the Kondo interaction
will be extremely useful for our holographic model: a double-trace interaction will
be realised holographically by a simple linear boundary condition on the complex
scalar field dual to O, as we will discuss in Sect. 5.4.

The solution of the large-N saddle point equations reveals a second-order mean-
field phase transition at a critical temperature, on the order of but distinct from
TK, below which O acquires a non-zero expectation value 〈O〉 
= 0 [25, 31, 96,
97]. Intuitively, the condensation of O represents the formation of a Kondo cloud
around x = 0, screening the impurity spin. Corrections in 1/N will change the phase
transition to a smooth cross-over [25], as observed in experimental realisations of the
single-impurity Kondo effect [13–18]. In the large-N limit, all equilibrium physics
above the critical temperature, where 〈O〉 = 0, reduces to that of the UV chiral
CFT. Nevertheless, the large-N limit captures much of the essential single-impurity
Kondo physics at low T , including low-T scaling exponents and the phase shift [4,
6, 30–33].

To summarise: at low T and large N , the single-impurity Kondo effect can be
described as a (1 + 1)-dimensional chiral CFT, deformed by a marginally-relevant,
double-trace coupling to an impurity spin.
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5.2.2 The Two-Impurity Kondo Model

The two-impurity Kondo model [31, 43–60] is the simplest model that features the
competition between the Kondo and RKKY interactions and is a natural first step
towards building a Kondo lattice. It consists of two localised impurity spins SA

I and
SA
II , both in the same representation ρUV of SU (N ), separated by a distance �, and

interacting with a LFL via two AFM Kondo couplings of equal strengths. The two
impurities are coupled by the Heisenberg-type RKKY interaction λRKKYSA

I S
A
II .

4 The
two-impurity Kondo problem has only been solved for certain values of N , k and
ρUV.

At low energy or equivalently at large distances where � is negligible, a CFT
description of the two-impurity Kondo model becomes reliable [43, 44]. The CFT
approach begins with spatial averages over the momentum directions of the LFL
fermion wave function, leading to a (1 + 1)-dimensional description, analogous to
the s-wave reduction in the single-impurity Kondo model [43, 44]. However, now
two modes per channel participate in the interactions, namely modes with even and
odd parity about the mid-plane between the two impurities, leading to an effective
doubling of the number of channels in (1 + 1) dimensions from k to K = 2k. In the
IR, the difference in the Kondo couplings of even and odd channels become irrele-
vant [43, 44]. The CFT description thus involves K channels of (1 + 1)-dimensional
left-moving fermions interacting with identical Kondo couplings to two identical
impurity spins at the origin.

The original two-impurity Kondo model with N = 2, K = 2, and ρUV the funda-
mental representation of SU (2), has been studied using a combination of numerical
RG [53, 54, 56–58, 60] and CFT techniques [43, 44, 48–50, 56]. The results con-
form to intuition. In the FM RKKY limit, λRKKY/TK → −∞, the two impurities
lock into the triplet of SU (2), in order to minimise the RKKY interaction. Upon
lowering T , this effective spin-1 impurity is completely screened in a two-stage
Kondo effect by the two fermion channels. The IR fixed point is a LFL with a π/2
phase shift. In the AFM RKKY limit, λRKKY/TK → +∞, the two impurities lock
into the singlet of SU (2) and effectively disappear from the spectrum. Consequently,
no impurity remains that could be screened by the LFL, so the IR fixed point is a
LFL with no phase shift. At T = 0 particle-hole symmetry allows only two values of
the phase shift, π/2 and zero, so the FM and AFM RKKY limits must be separated
by a quantum phase transition where the phase shift jumps discontinuously [44, 59].
Numerical RG and CFT techniques show that the transition occurs at a non-zero
AFM value λRKKY/TK ≈ 2.2 and is second-order and hence gives rise to a quantum

4Strictly speaking, the term ‘RKKY interaction’ only refers to a Heisenberg interaction that is
induced by Friedel oscillations in the LFL at order λ2

K in perturbation theory [4, 52]. In the large-
N limit, however, the RKKY interaction is sub-leading in N and we need to add a Heisenberg
interaction by hand [55]. In a (standard) abuse of terminology we will still call it RKKY coupling.
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critical point [53, 54, 56, 58, 60]. However, no change of symmetry occurs at the
critical point: the ground state on both sides of the transition is a singlet of SU (2).5

Although we lack a complete solution for general N , k and ρUV, the results for the
original two-impurity Kondo problem suggests the following intuition for the general
case. In the limit of infinitely strong FM RKKY coupling, λRKKY/TK → −∞, or
AFM RKKY coupling, λRKKY/TK → +∞, the ground state should be an eigenstate
of SA

I S
A
II with maximum or minimum eigenvalue, respectively. We shall denote the

corresponding SU (N ) representations by ρFM and ρAFM, respectively. For general
values of λRKKY/TK, the ground state will be a superposition of the eigenstates of
SA
I S

A
II that appear in the tensor product ρUV ⊗ ρUV. In the AFM or FMRKKY limits,

λRKKY/TK → ±∞, the system effectively reduces to a K -channel SU (N ) Kondo
model with a single impurity in a representation ρAFM or ρFM, respectively. In the
AFM case, in some special cases ρUV is such that the two impurity spins can lock into
a singlet. In those cases, no Kondo screening will occur, and the IR fixed point will
be a LFL with no phase shift. On the other hand, in the more general case that ρAFM
is non-trivial the residual impurity spin will be Kondo screened to the extent possible
by the K channels. The coexistence of inter-impurity and Kondo screening is thus
generic in the AFM limit. The AFM IR fixed point will then be either a non-LFL
(overscreening) or a phase-shifted LFL (under- or critical-screening), depending on
the values of N , K and ρAFM. By contrast, in the FM case, ρFM is always non-trivial:
Kondo screening will occur and the IR fixed point will again be either a non-LFL or
a phase-shifted LFL. In the special case that the IR fixed point in the AFM limit does
not have a phase shift while that in the FM limit does, the two must be separated by
a quantum phase transition [59], while in the more general case that both limits have
phase shifts the evolution from one limit to the other may or may not be continuous.

Large-N results for the two-impurityKondo problemwith K = 2 channels appear
in Refs. [31, 55, 59]. The authors of Refs. [55, 59] carefully chose a totally anti-
symmetric ρUV whose Young tableau had exactly q = N/2 boxes to ensure that the
two spins can lock into a singlet. Indeed, their large-N saddle-point solution reveals
a first-order quantum phase transition between an AFM phase with no phase shift
and a FM phase with a π/2 phase shift, indicating Kondo screening.

Our holographic model will also contain two totally anti-symmetric SU (N ) spin
impurities. However, it will be too crude to allow us to identify the exact number
of boxes q in the corresponding Young tableau. We will only know that q ∝ N .
As a result, the AFM ground state will typically not be a singlet of SU (N ) and
hence Kondo screening and a phase shift will occur. The coexistence of Kondo
and inter-impurity screening is also widely believed to occur in the Kondo lattice
[8, 9, 54].

As in the single-impurity case, the Abrikosov pseudo-fermion representation
allows us to write the Kondo couplings of the two impurity spins as double-trace

5Surprisingly, numerical RG techniques reveal that the spin-spin correlator 〈SA
I SA

II 〉 decreases
smoothly and monotonically as λRKKY/TK increases from the FM limit, λRKKY/TK → −∞,
where 〈SA

I SA
II 〉 = 1/4, the triplet value, to the AFM RKKY limit λRKKY/TK → +∞, where

〈SA
I SA

II 〉 = −3/4, the singlet value [53, 54, 56, 58].
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couplings with respect to SU (N ). It also allows us to write the RKKY coupling as
a double-trace coupling of SU (N ), as we will now describe. To our knowledge the
following results are novel. We introduce two species of pseudo-fermions, one for
each spin:

SA
i = χ†

iαT
A

αβχiβ, i = I, II. (5.6)

We can then define OI ≡ ψ†
αχIα, which in the large-N limit produces double-trace

Kondo couplings of the form −λI
KO†

IOI, and similarly for OII and λII
K. In our holo-

graphic model, we will always take λI
K = λII

K = λK, following the CFT approach, in
which the difference λI

K − λII
K is irrelevant in the IR [43, 44]. Generically, pseudo-

fermions introduce an auxiliaryU (1) at each impurity site: eachU (1) acts by shifting
the phase of the pseudo-fermions at that site. However, if the impurities are coinci-
dent and the RKKY coupling vanishes, then the auxiliary U (1) ×U (1) is enhanced
to U (2), under which χIα and χIIα combine into a doublet. The two scalars OI and
OII thus also combine into a doublet of that U (2), O ≡ (OI,OII)

T. We use U (2)
generators

τ b = 1

2
(1,σ1,σ2,σ3), b = 0, . . . , 3, (5.7)

withσ1,σ2, andσ3 the Pauli matrices. The components of the auxiliaryU (2)Noether
charges are then

Rb ≡ χ†
iατ b

i jχ jα, (5.8)

which obey the (0 + 1)-dimensional conservation equation ∂t Rb = 0. The con-
straint (5.3) on the auxiliary charge in the single-impurity case is generalised in
the two-impurity case to constraints on the elements of Rb in the Cartan of the aux-
iliaryU (2): if SA

I and SA
II have qI and qII boxes in their Young tableaux, respectively,

we must impose

R0 = 1

2
(qI + qII), R3 = 1

2
(qI − qII). (5.9)

If the two impurities are identical, qI = qII = q, we have R0 = q and R3 = 0. Using
the completeness relation in Eq. (5.4) and χiα’s anti-commutation relations, the
RKKY interaction can be recast as a double-trace interaction with respect to SU (N ),

λRKKYS
A
I S

A
II = −1

2
λRKKY

(
(R1)2 + (R2)2 − 1

2
(qI + qII) + qIqII

N

)
. (5.10)

Upon dropping the insignificant constants (qI + qII)/2 and qIqII/N , we thus find that
the RKKY interaction is a classically-relevant double-trace interaction, of the form
−λRKKY((R1)2 + (R2)2). It explicitly breaks the auxiliary U (2) symmetry down to
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the subgroup that commutes with (R1)2 + (R2)2, namely to the Cartan of U (2).
The double-trace form of the RKKY interaction will be extremely useful for our
holographic model: a double-trace interaction will be realised holographically by a
boundary condition on the U (2) YM gauge field dual to Rb, as we will discuss in
Sect. 5.4.

To summarise: At large distances compared to � and at large N , the two-impurity
Kondo model reduces to a (1 + 1)-dimensional chiral CFT consisting of K channels
of left-moving fermions with one marginally-relevant, double-trace Kondo coupling
for each impurity spin and a relevant, double-trace RKKY coupling between the
impurity spins. As in the single-impurity case, we expect the Kondo effect to appear
as condensation of OI and OII below some critical temperature. Via large-N fac-
torisation, 〈SA

I S
A
II 〉 ∝ −〈(R1)2 + (R2)2〉 ∝ −〈R1〉2 − 〈R2〉2, so we expect non-zero

spin-spin correlations, 〈SA
I S

A
II 〉 
= 0, to appear as condensation of R1 and/or R2. Both

effects will indeed appear in our holographic model.

5.3 A Holographic Two-Impurity Model

In this section we present a holographic two-impurity Kondo model, extending the
single-impurity model from Ref. [73]. In order to reach a holographic description
of the Kondo model, we need to introduce additional degrees of freedom in the
adjoint representation of the SU (N ) spin symmetry, including in particular SU (N )

gauge fields. This introduces an additional coupling besides the Kondo and RKKY
couplings, namely the ’t Hooft coupling. We then take the ’t Hooft large-N limit and
the limit of large ’t Hooft coupling. We choose the adjoint degrees of freedom such
that, in these limits, we obtain a CFT holographically dual to Einstein-Hilbert gravity
in AdS3. For a specific example of such a construction, see Ref. [73]. Effectively,
our holographic model replaces the free chiral fermions in the UV with a strongly
coupled CFT.

Following Ref. [73], we will work with a ‘bottom-up’ model, built from the
minimal ingredients that must be present in any holographic Kondo model, but with
enough structure to describe the essential phenomena. Each SU (N )-invariant, single-
trace, operator with dimension of order N 0 is holographically dual to a field in
the gravity description. The stress-energy tensor of the (1 + 1)-dimensional CFT
is dual to the metric in AdS3. The channel and electromagnetic SU (K )N ×U (1)
currents of the chiral fermions are dual to a SU (K )N ×U (1) Chern-Simons gauge
field [100], which in form notation we call A. The auxiliary U (2) charges Rb at the
impurities’ location x = 0 are dual to aU (2)YMgauge field, which in form notation
we call a = abτ b, localised to the AdS2 subspace at x = 0. The complex scalar
O = (OI,OII)

T at the impurities’ location is bi-fundamental under SU (K )N ×U (1)
and the auxiliaryU (2), and is dual to a complex scalar field� = (�I,�II)

T, localised
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to the AdS2 subspace and bi-fundamental under the SU (K )N ×U (1)Chern-Simons
and U (2) YM gauge fields.6

We will work in a probe limit, i.e. when N → ∞ we keep K fixed and compute
all expectation values only to order N . In our holographic model, that means the
Einstein-Hilbert action will scale as N 2, but the matter action will scale as N . The
matter fields’ contribution to the Einstein equation can then be neglected in the large-
N limit and we only need to solve the matter fields’ equations of motion in a fixed
background metric. To describe a (1 + 1)-dimensional CFT on the real line with
non-zero T , we must use the AdS3-Schwarzschild, or BTZ, black brane metric,

ds2BTZ = 1

z2

(
1

h(z)
dz2 − h(z)dt2 + dx2

)
, h(z) = 1 − z2

z2H
, (5.11)

where z is the holographic radial coordinate, with the boundary at z = 0 and the
horizon at z = zH , while t and x are the CFT time and space directions. We have
chosen units inwhich the AdS3 radius is unity. TheHawking temperature of the black
brane, T = 1/(2πzH ), is equal to the temperature of the dual CFT. The impurity is
located at the x = 0 subspace with induced metric

gmndx
mxn = 1

z2

(
1

h(z)
dz2 − h(z)dt2

)
, m, n = z, t. (5.12)

For simplicity, we henceforth take K = 1. In that case, SU (K )N ×U (1) reduces
to U (1), so our Chern-Simons gauge field A is Abelian with field strength F = dA.
For a discussion of the generalisation to K > 1 see the end of Sect. 3 in Ref. [1].

Following Ref. [73] we choose the simplest two-derivative action S quadratic in
the fields for our holographic two-impurity Kondo model. The action splits into two
terms, one for the Chern-Simons gauge field, SCS, and one for the fields a and � in
the AdS2 subspace, SAdS2 ,

S = SCS + SAdS2 , (5.13a)

SCS = − N

4π

∫
BTZ

A ∧ dA, (5.13b)

6Our choices of spin and charge for O indicate unambiguously that our model describes a Kondo
rather than an Anderson model, and that the impurity spins are in totally anti-symmetric repre-
sentations of SU (N ). Totally symmetric representations, for example, would involve Schwinger
bosons rather than Abrikosov pseudo-fermions [32, 98, 99], in which case O would be fermionic.
In the Anderson model, the impurity is a bi-linear of two physical f electrons which are charged
under the U (1) of electromagnetism, in contrast to the pseudo-fermions which are neutral under
that U (1) [4]. The Anderson model would thus require a complex scalar similar to ourO, but built
from a chiral fermion ψ and the f electron and hence neutral under the electric U (1).
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SAdS2 = −N
∫

x=0

dzdt
√−g

[
1

2
tr
(
f mn fmn

)

+ (
Dm�

)†
(Dm�) + M2�†�

]
, (5.13c)

where fmn is the field strength of the AdS2 YM field, while Dm is the U (2) gauge-
covariant derivative, which acts on fmn and � as

Dm f np = ∇m f np − i[am, f np], Dm� = (∂m + i Am − iam)�. (5.14)

Wewill fix the value of�’smass-squaredM2 in Sect. 5.4.Wewill see in Sect. 5.5 that
the action in Eq. (5.13) is sufficient to capture the basic physics of the large-N two-
impurity Kondomodel and can thus serve as a foundation for further model-building,
for example by adding terms higher-order in derivatives or in the fields.

If we define the U (2) gauge current

J b
m ≡ −i

(
�†τ b(Dm�) − (Dm�)†τ b�

)
, (5.15)

then the equations of motion that follow from the action in Eq. (5.13) are

εnμνFμν = −8πδ (x)
√−g gnm J 0

m, Fzt = 0, (5.16a)

(
Dm f mn

)b = −gnm J b
m, (5.16b)

(DmD
m − M2)� = 0, (5.16c)

where μ, ν = z, t, x , and we choose (z, t, x) to be a right-handed coordinate chart,
εzt x = 1. We will work in radial gauge for both gauge fields, Az = 0 and abz = 0.

We recover the single-impurity case from Ref. [73] if we only retain the U (1)
component a0m of the YM field, and correspondingly only a single component of the
scalar doublet. We will discuss correlators in the single-impurity case in Sect. 5.6.

In the two-impurity case, discussed in Sects. 5.4 and 5.5, we will restrict ourselves
to an investigation of the phase diagram. This means that we are only concerned with
time-independent solutions, for which the Eq. (5.16a) for the Chern-Simons field A
simplify to

∂x At = 4πδ(x)
√−g gzz J 0

z , (5.17a)

∂z Ax = 4πδ(x)
√−g gt t J 0

t , (5.17b)

∂z At = 0, (5.17c)

while the equation (5.16b) for the U (2) YM field a simplifies to J 0
z = 0, plus a

constraint (first order in derivatives)
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εbcdgt t act ∂za
d
t = J b

z , b, c, d = 1, 2, 3, (5.18)

and a dynamical equation (second order in derivatives)

1√−g
∂z

(√−ggzzgt t∂za
b
t

) = −gt t J b
t . (5.19)

Eqs. (5.17a) and (5.17c) together with J 0
z = 0 imply that At is a constant. Regularity

requires At = 0 to vanish at z = zH , hence At = 0 everywhere. The only remaining
non-trivial component of the Chern-Simons field is then Ax , which does not appear
in the equations of motion for a and �. In particular, Eq. (5.16c) simplifies to

1√−g
∂z

(√−ggzz∂z�
) − (M2 + gt t abt a

c
t τ

bτ c)� = 0. (5.20)

We can thus solve for a and �, and then plug those solutions into Eq. (5.17b) to find
Ax . However, we will not present explicit solutions for Ax in the following. We will
only need to know that non-trivial solutions for Ax exist.

5.4 Kondo and RKKY Couplings from Boundary
Conditions

In this section we present the holographic renormalisation [101–104] of our holo-
graphic two-impurity Kondo model. This will allow us to identify the Kondo and
RKKY couplings in our model and to compute the free energy, which we will use to
study the phase diagram of our model in Sect. 5.5.

In our case, holographic renormalisation is non-trivial because ourmodel includes
a gauge field abm in an AdS2 subspace. As is well-known (see e.g. [73, 105, 106]),
a solution of the YM equations in AdS2 typically diverges near the boundary, in
contrast to YM gauge fields in higher-dimensional AdS spacetimes. Indeed, solving
Eqs. (5.18) and (5.19) around the AdS2 boundary, z = 0, we find abt = Qb/z + . . .,
where . . . denotes terms sub-leading as z → 0. The constants Qb are the fluxes at
the boundary,

lim
z→0

� f b = lim
z→0

√−g gzz gt t f bzt = Qb, (5.21)

with � the Hodge star of AdS2. The fluxes Qb determine the expectation values of the
conservedU (2) charges Rb. If our model was top-down, we could in principle derive
an exact relation between Qb and Rb. However, in our bottom-up model we can only
assume that the relation between the two ismonotonic.As discussed belowEq. (5.10),
two identical impurity spins, each in a totally anti-symmetric representation with q
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boxes, must obey R0 = q and R3 = 0. In our holographic model, we will therefore
consider various values of Q0, but will always take Q3 = 0.7

Although the leading solution Qb/z diverges as z → 0, it is nevertheless nor-
malisable according to the criteria of Refs. [107, 108], as shown in the appendix of
Ref. [1]. Even so, the divergence of Qb/z can affect the asymptotics of other fields
coupled to abm such as our charged �. In �’s equation of motion (5.20) the coupling
to the YM field asymptotically approaches a constant, limz→0 gt t abt a

c
t = −QbQc,

which is the same order in z as M2. The YM field thus effectively shifts �’s mass-
squared matrix from M2 times the U (2) identity matrix to M2 − QbQcτ bτ c. The
powers of z that appear in �’s asymptotic expansion will thus be determined by
M2 − QbQcτ bτ c. Those powers determine the dimension of �’s dual operatorO at
the UV fixed point. As a result, fixing M2 and changing the Qb will changeO’s UV
dimension and thus change the UV fixed point. This does not happen in the original
two-impurity Kondo model, where O’s UV dimension is always 1/2, regardless of
the choice of Rb (or equivalently of ρUV). In otherwords, this is a special feature of the
holographic model, which by process of elimination must be due to the additional,
strongly interacting degrees of freedom we introduced. The same effect appeared
in the holographic single-impurity Kondo model of Ref. [73] and the holographic
Bose-Hubbard model of Ref. [106].

However, a theory in asymptotically AdS requires a well-defined boundary value
problem,whichmeans that wemust fix the asymptotics of all fields.Wewill therefore
take an unusual step: when Qb changes we will change M2 in order to maintain �’s
asymptotics. Specifically,wewill demand thatO always has dimension1/2 in theUV,
so that the Kondo couplings in our model are always classically marginal. Something
similar was done in the holographic single-impurity Kondo model of Ref. [73].

We fix �’s asymptotics as follows. We diagonalise �’s mass matrix,

M2 − QbQcτ bτ c = S
(
M2−

M2+

)
S†, (5.22)

using the unitary matrix

S = 1√
2

(
sgn(Q0) Q1−i Q2√

(Q1)2+(Q2)2
−sgn(Q0) Q1−i Q2√

(Q1)2+(Q2)2

1 1

)
(5.23)

and eigenvalues

M2
∓ = M2 − 1

4

(∣∣Q0
∣∣ ±

√
(Q1)2 + (Q2)2

)2
. (5.24)

7Our choice K = 1 then guarantees, based on SU (N ) representation theory arguments and Pauli
exclusion alone, that overscreening cannot occur in our model [33].
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The modes with these eigenvalues are the components φ− and φ+ of S−1� ≡
(φ−,φ+)T, whose asymptotic expansions are thus determined byM2− andM2+ respec-
tively.

Our Kondo interactions are of the form O†
IOI and O†

IIOII, where OI and OII

are dual to �I and �II, the components of � = (�I,�II)
T. To obtain classically

marginal Kondo couplings we want both OI and OII to have dimension 1/2. That
requires �I and �II to have asymptotic powers of z identical to those of a scalar field
that saturates the BF bound (2.20), which in AdS2 means leading asymptotic terms√
z and

√
z ln(z). The components�I and�II are linear combinations of φ− and φ+.

We guarantee that�I and�II each has the asymptotics of a scalar at the BF bound as
follows. First, we set M2− to the AdS2 BF bound, M2− = −1/4, which via Eq. (5.24)
fixes M2 in terms of Q0, Q1, and Q2. Second, we choose an ansatz in which φ+
vanishes identically.8

Setting φ+ = 0 is only consistent if φ+ is not sourced by other fields in its equa-
tion of motion, Eq. (5.20) multiplied by S−1. That leads to three constraints. First,
a3t = 0, which is indeed a solution of a3t ’s equation of motion, Eq. (5.19) with b = 3,
when φ+ = 0. Moreover, a3t = 0 implies Q3 = 0 as required for two identical impu-

rities. Second, a1t = Q1

Q2 a2t . However, Eq. (5.19) implies that Q1

Q2 a2t satisfies a
1
t ’s equa-

tion of motion if and only if Q1 = Q2. We therefore take Q1 = Q2 and a1t = a2t .
Third, Reφ− ∝ Imφ−, which comes from the U (2) constraint in Eq. (5.18). Equa-
tions (5.19) and (5.20) then imply Reφ− = ±Imφ−.Wewill choose Reφ− = Imφ−
and define

φ ≡ Reφ− = Imφ−. (5.25)

In summary, our ansatz includes

S−1� ≡ φ

(
1 + i
0

)
, a3t = 0, a1t = a2t . (5.26)

A non-trivial solution for φ breaksU (2) down to a singleU (1) generated by τ 0 − τ 3.
We will discuss the symmetry breaking in our model in more detail in Sect. 5.5.

For the ansatz in Eq. (5.26), a straightforward exercise shows that φ = |�I| =
|�II|. Therefore, our two Kondo couplings will be equal, λI = λII = λK, and the
strengths of the Kondo screening clouds will be equal, 〈|OI|〉 = 〈|OII|〉, as desired.
The ansatz (5.26) simplifies the equations of motion dramatically. It is convenient to
define a rescaled a1t ,

At ≡ √
2 sgn(Q0Q1) a1t , (5.27)

which is holographically dual to

R ≡ √
2 sgn(Q0Q1) R1 (5.28)

8We do not setM2+ = −1/4, because thenM2− would violate the BF bound, producing an instability.
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and which has an asymptotic expansion

At = Q
z

+ μ + . . . , Q ≡ √
2 sgn(Q0Q1)Q1, μ ≡ √

2 sgn(Q0Q1)μ1. (5.29)

We then define

A±
t ≡ 1

2
(a0t ± At ), (5.30)

which are dual toR± ≡ 1
2

(
R0 ± R)

and which have the asymptotic expansions

A±
t = Q±

z
+ μ± + . . . , Q± = 1

2
(Q0 ± Q). (5.31)

Inserting Q+ into Eq. (5.24) we find that our choice M2− = −1/4 implies M2 =
−1/4 + (Q+)2. The equations of motion, Eqs. (5.19) and (5.20), then reduce to

∂z
(√−g gzzgt t∂zA−

t

) = 0, (5.32a)

∂z
(√−g gzzgt t∂zA+

t

) = √−g gt t2A+
t φ2, (5.32b)

∂z
(√−g gzz∂zφ

) − √−g
(
M2 + gt t (A+

t )2
)
φ = 0. (5.32c)

ClearlyA−
t decouples fromA+

t and φ, and is trivial to solve for:A−
t = Q−/z + μ−.

On the other hand, A+
t and φ remain coupled and we have been able to solve their

equations of motion (5.32b) and (5.32c) only numerically, as we will discuss in
Sect. 5.5.9

5.4.1 Holographic Renormalisation

In order to renormalise our model we switch to a Fefferman-Graham gauge [101,
102, 109] with radial coordinate

r = ln

⎛
⎝1 +

√
1 − z2/z2H

2z

⎞
⎠ , (5.33)

in terms of which the AdS2 defect (5.12) takes the form

9Equations (5.32b) and (5.32c) are actually identical in form to the equations of motion in the
holographic single-impurity Kondo model of Ref. [73], but where Ref. [73] had a0t and φ we have
A+

t and φ. However, we will see that the boundary conditions on A+
t and φ in our two-impurity

model are very different from those inRef. [73] and that theywill effectively coupleA−
t toA+

t andφ.



96 5 A Holographic Kondo Model

gmndx
mdxn = dr2 + γ(r)dt2. (5.34)

At the AdS2 boundary r → ∞, r is related to z as r = − ln(z) + . . ., and γ(r)
diverges as−e2r . The asymptotic solutions of the equations ofmotion (5.32a), (5.32b)
and (5.32c) for our choice M2 = −1/4 + (Q+)2 are

A−
t = erQ− + μ− + . . . , (5.35a)

A+
t = erQ+ − 2Q+

(
1

3
α2r3 + (α2 − αβ)r2 + (2α2 − 2αβ + β2)r

)

+ μ+ + . . . , (5.35b)

φ = e−r/2 (−α r + β) + . . . , (5.35c)

where α, β, Q−, and μ± are integration constants.
We determine the required counterterms as follows. We first produce a regulated

action Sreg(r)by integrating only up to a large but finite value of r .We then identify the
diverging terms by asymptotically solving the radial Hamilton-Jacobi (HJ) equation
for the regulated on-shell action Sreg(r) [103, 110–112], using the covariant ansatz

Sreg = 2N
∫

dt
√−γ

(
F(u, v) − u − 1

2
γ−1(A−

t )2
)

,

u ≡ 1

2
γ−1(A+

t )2, v ≡ φ2. (5.36)

As mentioned above, we need M2 − (Q+)2 = −1/4 in order for φ’s asymptotic
behaviour to be well-defined. This implies that u satisfies a constraint asymptotically
as r → ∞,

2u + M2 + 1

4
= O (

r3e−r
)
. (5.37)

Reference [113] showed that in this case the solution F(u, v) to the HJ equation
takes the form of a Taylor-expansion in the constraint,

F(u, v) =
∑
k≥0

fk(v)

(
u + M2 + 1/4

2

)k

. (5.38)

While only the k = 0 term contributes to the divergences of the on-shell action, we
must keep all terms up to and including order k to renormalise correlators with k
insertions of the operator dual toA+

t [3]. We will only consider correlators involving
at most one insertion of this operator so that wewill only need to determine f0(v) and
f1(v). Asymptotically solving the HJ equation then yields the required counterterms:
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Sct = −2N
∫

dt
√−γ

{
φ2

(
1

2
− 1

r

)
− 1

2
γ−1(A+

t )2 − 1

2
γ−1(A−

t )2

−2

3
φ2

(
r − β

α

)(
1

2
γ−1

(A+
t

)2 + M2 + 1/4

2

)}
. (5.39)

We refer the reader to Refs. [1, 3] for many more details on the renormalisation
of our model. The explicit dependence on the cutoff r in Eq. (5.39) reflects the
conformal anomaly induced by the scalar operator at the BF bound [114–116].
The counterterms also explicitly depend on the ratio β/α of φ’s asymptotic coef-
ficients. We will shortly show that β/α is held fixed by φ’s boundary condition so
that this counterterm is well-defined.10 We can now define the subtracted and renor-
malised actions as Ssub(r) ≡ Sreg + Sct and Sren ≡ limr→∞ Ssub. The renormalised
one-point functions for Dirichlet boundary conditions are then

δSren
δα

≡ lim
r→∞

[
− er/2r√−γ

δSsub
δφ

]
= −4Nβ, (5.40)

δSren
δQ0 ≡ lim

r→∞

[
e2r√−γ

δSsub
δa0t

]
= −Nμ0 − 2NQ+

(
2α2 − 2αβ + β2 − 1

3

β3

α

)
, (5.41)

δSren
δQ ≡ lim

r→∞

[
e2r√−γ

δSsub
δAt

]
= −Nμ − 2NQ+

(
2α2 − 2αβ + β2 − 1

3

β3

α

)
, (5.42)

where we used A±
t = 1

2

(
a0t ± At

)
, Q± = 1

2

(
Q0 ± Q

)
, and μ± = 1

2

(
μ0 ± μ

)
from

Eqs. (5.29)–(5.31).

5.4.2 Double-Trace Kondo and RKKY Couplings

As discussed in Sect. 5.2, introducing Abrikosov fermions allows us to write the Kondo and
RKKY interactions as double-trace deformations of the Hamiltonian with respect to SU (N )

spin, Eqs. (5.5) and (5.10). In the large-N limit, they take the form

HK = −1

2
N · NλK

(
O†
IOI

N2 + O†
IIOII

N2

)
, (5.43a)

HRKKY = −1

2
N · NλRKKY

⎛
⎜⎝
(
R1

)2
N2 +

(
R2

)2
N2

⎞
⎟⎠ , (5.43b)

where both impurities have equal Kondo couplings λK. We keep NλK and NλRKKY fixed
as N → ∞ so that HK and HRKKY are O(N ). Our ansatz (5.26) only allows us to describe

10References [117, 118] observed the same in holographic counterterms for irrelevant operators:
they depend on sub-leading modes, but are well-defined for boundary conditions dual to multi-trace
couplings.
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states with OI = OII and R1 = R2. Within that subspace, Eq. (5.43) becomes

HK = −N · NλK
|OI|2
N2 , HRKKY = −1

2
N · NλRKKY

R2

N2 , (5.44)

recalling from Eq. (5.28) thatR2 = 2
(
R1

)2 = 2
(
R2

)2
.

Let us start with the marginally relevant Kondo interaction. To leading order in N , it simply
adds to the generating functional the term

SK = −N · NλK

∫
dt

〈|OI|〉2
N2 , (5.45)

thanks to large-N factorisation [119]. Such a deformation is therefore implemented holograph-
ically by adding SK as a finite boundary term to the dual gravity action [119, 120]. Using from
Eq. (5.40) that 〈|OI|〉 = −4Nβ, we can write SK as

SK = 2N
∫

dt κβ2 , κ ≡ −8NλK. (5.46)

A variation of the generating functional in the deformed theory gives

δ (Sren + SK) =
∫

dt (−4Nβ) δ (α − κβ) , (5.47)

showing that the expectation value 〈|OI|〉 = −4 N β remains unchanged, while the source
for |OI| changes as α −→ α − κβ. As a result, states that include the double-trace Kondo
deformation but no single-trace deformationwill be described bybulk solutions forφ satisfying
the boundary condition α = κβ with fixed κ.11

Let us now turn to the relevant RKKY interaction. The chargeR has conformal dimension
zero, and hence its expectation value 〈R〉 must be determined byAt ’s leading modeQ rather
than by its sub-leading mode μ. The generating functional for R must thus be given by the
Legendre transform of Sren + SK,

Ŝ =
∫

dt N Q
(πA

N

)
− (Sren + SK), πA ≡ δSren

δQ , (5.48)

whose variation

δ Ŝ =
∫

dt N Q δπA
N

+
∫

dt 4Nβ δ (α − κβ) (5.49)

reveals the source πA/N and expectation value

11In the holographic single-impurity Kondo model of Ref. [73], the finite boundary term involving
the scalar field was different from our SK: it had the same form as our SK, but with β → α and
κ → 1/κ. In that case, the linear combination of α and β held fixed in the variational principle
would not be α − κβ. Nevertheless, α − κβ was held fixed in Ref. [73]. Those two wrongs made
a right, in the following sense: the finite boundary term in Ref. [73], when evaluated on α = κβ,
actually agrees with our SK, so the solutions for the scalar and the value of the on-shell action
of Ref. [73] actually agree with those obtained using our SK. Similarly, the one-point function
identified as 〈O〉 ∝ Nα in Ref. [73] agrees with our 〈O〉 ∝ Nβ when evaluated on α = κβ.
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〈R〉 = N Q (5.50)

To leading order in N , the RKKY interaction in Eq. (5.44) thus amounts to adding to Ŝ the
finite boundary term

SRKKY = −N
∫

dt
1

2
λQ2, λ ≡ NλRKKY. (5.51)

A variation of the generating functional in the deformed theory gives

δ
(
Ŝ + SRKKY

)
=

∫
dt N Q δ

(πA
N

− λQ
)

+
∫

dt 4Nβ δ (α − κβ) , (5.52)

indicating that 〈R〉 = N Q remains unchanged, while the source forR changes as πA/N −→
πA/N − λQ. As a result, states that include the double-trace RKKY deformation but no
single-trace deformation will be described by bulk solutions for At satisfying the boundary
condition πA/N − λQ = 0 with fixed λ,12 that is, from Eq. (5.42),

λ = − 1

Q

[
μ + 2Q+

(
2α2 − 2αβ + β2 − 1

3

β3

α

)]
. (5.53)

We have thus determined the boundary terms in the action and the boundary conditions on
φ and At that implement the double-trace Kondo and RKKY couplings in our holographic
model. As for the third field in our ansatz, a0t , we fix its leading mode Q0, which in the dual
field theory fixes the representation of the impurities, as mentioned below Eq. (5.21).

5.4.3 RG Transformations

Wewill now check that the holographic Kondo and RKKY couplings identified in the previous
subsection behave correctly under RG transformations, and give a precise definition of the
Kondo temperature TK. In holography, RG transformations can be implemented in the bulk by
so-called Penrose-Brown-Henneaux (PBH) diffeomorphisms [121, 122], which in our case
reduce to translations of the radial coordinate (5.33),

r −→ r + ln(L), (5.54)

where L is an arbitrary renormalisation length scale.13 This changes the induced asymptotic
metric: −e2r dt2 → −e2r L−2dt2. Sending L → 0 thus amounts to ‘zooming in’ on the UV
of the field theory, while sending L → ∞ amounts to ‘zooming out’ to the IR.

The scalar φ(r) and A±
t in radial gauge are both invariant under (5.54), implying

12We show in the appendix of Ref. [1] that both Dirichlet and Neumann, and hence also mixed
boundary conditions lead to normalisable solutions for a gauge field in AdS2.
13The argument of the logarithm in Eq. (5.54) is made dimensionless by the unit AdS3 radius.
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α → L1/2α, β → L1/2 (β + α ln(L)) , (5.55a)

Q− → L−1Q−, Q+ → L−1Q+, μ− → μ−, (5.55b)

μ+ → μ+ + 2

3
Q+[(

(ln(L))2 − 3 ln(L) + 6
)
α2

−3(2 − ln(L))αβ + 3β2] ln(L). (5.55c)

Using the identifications of our holographicKondo andRKKYcouplings from the previous
subsection, κ = α/β and λ in Eq. (5.53), Eqs. (5.55) give us the RG transformations

κ = α

β
−→ κ(L) ≡ κ

1 + κ ln(L)
, (5.56a)

λ =
−μ − 2Q+ (

2α2 − 2αβ + β2 − 1
3

β3

α

)
Q −→ Lλ. (5.56b)

Note that the inhomogeneousRG transformations ofμ = μ+ − μ− andβ conspire in precisely
the right way to produce a homogeneous RG transformation for λ. Equation (5.56a) confirms
that κ is marginally relevant or irrelevant if in the UV κ < 0 (AFMKondo coupling) or κ > 0
(FM Kondo coupling), respectively.14 Equation (5.56b) confirms that λ is a relevant coupling
of dimension one. The beta function for κ, βκ = −L∂Lκ(L) = κ2(L), shows that an AFM
Kondo coupling is asymptotically free and diverges in the IR at a dynamically generated scale:
Fixing the value of κ at a fixed but arbitrary length scale L ′, we find from Eq. (5.56a) that

κ(L) = κ(L ′)
1 + κ(L ′) ln(L/L ′) (5.57)

diverges at the length scale L ′e−1/κ(L ′), which is a physical quantity, being invariant under
re-scalings of L ′. We then define the Kondo temperature as

TK ≡ 1

2π

1

L ′ e
1/κ(L ′), (5.58)

where the factor of 1/(2π) will be convenient in Sect. 5.5.

5.5 The Two-Impurity Phase Diagram

In this section we determine the phase diagram of our two-impurity model in the plane of
λ/(2πTK) versus T/TK, with our holographic RKKY coupling λ defined in Eq. (5.51) and
the Kondo temperature TK defined in Eq. (5.58). To do so we will solve the equations of
motion (5.32), subject to the boundary conditions discussed in Sect. 5.4.2.

14In contrast, if we had started with a Neumann boundary condition for φ instead of Dirichlet, then
κ’s RG transformation would be κ −→ (1 + κ ln(L)) /κ, which is always marginally relevant since
κ grows in the IR, L → ∞, for both κ < 0 and κ > 0 in the UV.
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Weknowone exact solutionwhich exists for all values ofQ0,λ/(2πTK), andT/TK, namely
the trivial solution a0t = A+

t + A−
t = Q0/z + μ0 with φ(z) = 0 and At (z) = A+

t (z) −
A−
t (z) = 0. It is dual to a trivial state with 〈|OI|〉 = 〈|OII|〉 = 0 and 〈R1〉 = 〈R2〉 = 0,

where via Eq. (5.10) the latter implies 〈SAI SAII 〉 = 0, so the two impurity spins are neither
Kondo screened nor correlated with one another. To describe non-trivial states with non-zero
〈|OI|〉 = 〈|OII|〉 and/or non-zero 〈R1〉 = 〈R2〉, we must construct non-trivial solutions for
a0t , At , and φ. Moreover, to determine whether a non-trivial state has lower free energy than
the trivial state we must determine whether the non-trivial solutions have smaller on-shell
Euclidean action than the trivial solution.

The equations of motion are second order, so we need two boundary conditions for each
field, a0t ,At , and φ. As summarised at the end of Sect. 5.4.2, fixing the impurities’ represen-
tation and the Kondo and RKKY couplings in the UV gives us three conditions at the AdS2
boundary. We impose the remaining three conditions at the horizon z = zH . First, we demand
regularity of the Abelian one-form a0t at the horizon, which requires a0t (zH ) = 0. Second, we
require regularity of φ at the horizon. In a near-horizon expansion of φ, the leading modes are
ln(z − zH ) and a constant. Regularity requires the ln(z − zH ) term to vanish, which in turn
impliesA+

t (zH ) = 0. That implies, via the definitions in Eq. (5.30),A−
t (zH ) = 0 and hence

At (zH ) = 0.
We have only been able to construct non-trivial solutions numerically. However, in

Sects. 5.5.1 and 5.5.2 we will constrain their properties as much as we can without numer-
ics. We then resort to numerics in Sect. 5.5.3, where we discuss our main numerical results,
including the phase diagram of our model.

5.5.1 Properties of Non-trivial Solutions

In the trivial solution,φ = 0 and hence J0t = 0. In that case, a0t ’s equation ofmotion, Eq. (5.19)
with b = 0, requires the flux of a0t to be constant in z. In other words, in the absence of
charged sources Gauss’s law requires the flux to be a constant, fixed by the flux Q0 at the
AdS2 boundary. Translating to the dual field theory, the impurities are unscreened in the trivial
state. By contrast, a non-trivial solution has φ 
= 0 and J0t 
= 0, so that φ removes flux from
a0t as z increases, representing the screening of the impurities in the IR in a non-trivial state.

For our model we can prove that φ = 0 if and only if a1t = a2t = 0, and conversely that
φ 
= 0 if and only if a1t = a2t 
= 0, as follows. First supposeφ = 0. In that case, the equations of
motion of all the gauge fields can be solved exactly, in particularAt = Q/z + μ. The condition
At (zH ) = 0 implies μ = −Q/zH . However, when φ = 0 the boundary condition (5.53) for
the RKKY coupling reduces to μ = −λQ. Clearly, in the generic case λ 
= 1/zH , the only
consistent solution has μ = Q = 0 and henceAt = 0. Eqs. (5.26) and (5.27) then imply a1t =
a2t = 0. Conversely, suppose φ 
= 0. In that case, the solution forA+

t is notQ+/z + μ+ and
so μ+ 
= −Q+/zH . Using A−

t = Q−/z + μ− with μ− = −Q−/zH and A−
t = A+

t − At ,
we findμ+ − μ = −(Q+ − Q)/zH . As a result,μ+ 
= −Q+/zH impliesμ 
= −Q/zH . That
condition forbids At = 0, which has μ = Q = 0 and hence trivially has μ = −Q/zH . We
thus learn thatφ 
= 0 impliesAt 
= 0. This completes our proof. Translating to the field theory,
we have learned that, for our model and within our ansatz, if either of OI = OII or R1 = R2

has vanishing expectation value then so does the other, while if either acquires a non-zero
expectation value then so must the other. In other words, the absence of Kondo screening is
always accompanied by the absence of correlations between the two impurity spins and vice
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versa, while Kondo screening is always accompanied by non-zero correlations between the
two impurity spins and vice versa.

Our model thus admits two possible phases, distinguished by their symmetries. The RKKY
interaction explicitly breaks the auxiliary U (2) down to U (1)0 ×U (1)3, where U (1)0 and
U (1)3 are generated by τ0 and τ3, respectively. The trivial solution preservesU (1)0 ×U (1)3

and the Chern-Simons U (1), dual to the electromagnetic U (1), while a non-trivial solution
breaks U (1)0 ×U (1)3 ×U (1) to a subgroup. Specifically, both φ 
= 0 and At 
= 0 break
U (1)3 completely, and φ 
= 0 breaks U (1)0 ×U (1) to the diagonal. In field theory terms,
the two possible phases in our system are the trivial phase, where 〈|OI|〉 = 〈|OII|〉 = 0 and
〈R1〉 = 〈R2〉 = 0 and so U (1)0 ×U (1)3 ×U (1) is preserved, and the non-trivial phase,
where 〈|OI|〉 = 〈|OII|〉 
= 0 and 〈R1〉 = 〈R2〉 
= 0 spontaneously break U (1)3 completely
and break U (1)0 ×U (1) to the diagonal.15

We can constrain the possible phases in our model even further, as follows. In the probe
limit, we compute only the leadingO(N ) contributions to 〈|OI|〉 = 〈|OII|〉 and 〈R1〉 = 〈R2〉.
In this limit the spin-spin correlator is thus, via Eqs. (5.10) and (5.50),

〈SAI SAII 〉 = −1

2
N2Q2 + O(N ), (5.59)

where Q is O(N0). Equation (5.59) shows that we will have access only to the order N2

contribution of AFM spin-spin correlations, 〈SAI SAII 〉 < 0.

5.5.2 Group-Theory Results

In fact we can show, using group theory alone, that at large N the leading contribution to
〈SAI SAII 〉 in FM eigenstates is always order N and in AFM eigenstates is order N2, and that
the vast majority of eigenstates are AFM. To our knowledge, the following results have never
before appeared in the literature about the Kondo effect.

The tensor product of two identical anti-symmetric representations ρUV, eachwith aYoung
tableau consisting of a single column with q boxes, is

ρUV ⊗ ρUV =
pmax∑
p=0

ρp, (5.60)

where the irreducible representation ρp has a Young tableau with two columns, the first with
(q + p) boxes and the second with (q − p) boxes, and where

pmax =
{
q, q ≤ N/2,

N − q, q > N/2.
(5.61)

15These twophases are also distinguished by their phase shifts.As in the holographic single-impurity
Kondo model of Ref. [73], in our model the phase shift that accompanies Kondo screening appears
holographically as a Wilson line of the Chern-Simons field in the x direction: if we compactify
the x direction then the phase shift is ∝ ∮

x A. Equation (5.17b) shows that if A+
t 
= 0, φ 
= 0 then

Ax 
= 0, while if A+
t = φ = 0 then Ax = 0. Translating to the field theory, we find that a phase

shift occurs in non-trivial states but not in the trivial state. In fact, the Chern-Simons field’s only
role is to implement the phase shift and it will play no further role in the remainder of this section.
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For a given representation ρp , we can express 〈SAI SAII 〉 in terms of the quadratic Casimir of
that representation, C(ρp):

〈SAI SAII 〉
∣∣∣
ρp

= 1

2

(
(SI + SII)

A(SI + SII)
A − SAI SAI − SAII S

A
II

)∣∣∣
ρp

= 1

2
C(ρp) − 1

2

(
SAI SAI + SAII S

A
II

)∣∣∣
ρp

. (5.62)

Using [123]

C(ρp) = N (N + 2)
q

N

(
1 − q

N

)
− p(p + 1), (5.63)

as well as, for any of the ρp ,

〈SAI SAI 〉 = 1

2
(N + 1) χ†

IαχIα

(
1 − χ†

IαχIα

N

)
= 1

2
N (N + 1)

q

N

(
1 − q

N

)
, (5.64)

we find for our identical impurity spins, SAI SAI = SAII S
A
II :

〈SAI SAII 〉
∣∣∣
ρp

= 1

2
N

q

N

(
1 − q

N

)
− 1

2
p(p + 1). (5.65)

Clearly, 〈SAI SAII 〉
∣∣∣
ρp

decreases monotonically as p increases. As a result, the FM ground state,

whichmaximizes 〈SAI SAII 〉, has p = 0, while theAFMground state, whichminimises 〈SAI SAII 〉,
has p = pmax. In fact, in the large-N limit with q/N of order one, Eq. (5.65) shows that for
any FM representation the leading contribution to 〈SAI SAII 〉 is order N . Moreover, 〈SAI SAII 〉 > 0
only for p up to a critical value,

pcrit = 1

2

(√
1 + 4N

q

N

(
1 − q

N

)
− 1

)
, (5.66)

which scales as
√
N when N → ∞ with q/N of order one. The total number of represen-

tations in Eq. (5.60) scales as N as N → ∞ (pmax scales as N ), so only a small fraction
of representations of order

√
N/N = 1/

√
N are FM. For an AFM ground state, using pmax

from Eq. (5.61), we find

〈SAI SAII 〉
∣∣∣
ρpmax

=
{

− 1
2 N (N + 1)

( q
N

)2
, q ≤ N/2,

− 1
2 N (N + 1)

(
1 − q

N

)2
, q > N/2,

(5.67)

which clearly scales as N2 as N → ∞ with q/N of order one. Moreover, inserting p =
P pmax with 0 ≤ P ≤ 1 into Eq. (5.65) reveals 〈SAI SAII 〉 with 〈SAI SAII 〉 < 0 scales linearly in

N only for the small fraction of eigenstates for which P is order 1/
√
N . In other words, for

the vast majority of AFM eigenstates 〈SAI SAII 〉 scales as N2.
We have thus shown that, in the large-N limit with q/N order one, the leading contribution

to 〈SAI SAII 〉 is order N in FM eigenstates and order N2 in the vast majority of AFM eigenstates,
and that the latter vastly outnumber the former.
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In our holographic model, according to Eq. (5.59) we will only be able to distinguish
between superpositions of AFM eigenstates with 〈SAI SAII 〉 
= 0 of order N2 and uncorrelated

spins, 〈SAI SAII 〉 = 0.We thus expect to find non-trivial solutions only for AFMRKKYcoupling

λ/TK > 0 and only the trivial solution for FM RKKY coupling λ/TK < 0.16 Therefore, only
one quantum phase transition is possible in our model: a transition from the trivial phase
with uncorrelated spins and no Kondo screening to the non-trivial phase with AFM spin-spin
correlations of order N2 and Kondo screening. Although our numerical results will not extend
down to exactly T = 0, we will find highly suggestive evidence for such a quantum phase
transition in our model.

In contrast, as reviewed in Sect. 5.2.2 the original large-N two-impurity Kondo model
of Refs. [55, 59] exhibits a quantum phase transition from a FM ground state with Kondo
screening to an AFM ground state without Kondo screening. The difference in the phase
diagram can be traced back to two crucial differences in the model. First, Refs. [55, 59]
employ a vector-like large-N limit, which allows access to O(N ) FM spin-spin correlations.
We instead employ a matrix-like large-N limit, which only allows access to theO(N2) AFM
spin-spin correlations. Second,Refs. [55, 59] considered the very special case of two impurities
in totally anti-symmetric representations with exactly q = N/2 boxes. In that special case,
the two impurities lock into a singlet in the AFM limit and no Kondo screening occurs. Our
bottom-up model, however, is too crude to allow fine-tuning to that special case: generically,
even at strongAFMRKKYcoupling our ground statewill not be a singlet andKondo screening
will occur.

5.5.3 Numerical Results

We now turn to the numerical solution of the equations of motion (5.32) and to the numerical
evaluation of the Euclidean on-shell action. We first re-scale all quantities by appropriate
powers of zH = 1/(2πT ) to obtain dimensionless coordinates and fields,

(z/zH , t/zH ) → (z, t), zHA±
t → A±

t , φ → φ. (5.68)

After these re-scalings, the AdS3 boundary is at z = 0 while the horizon is at z = 1. The
dimensionless φ now has the asymptotic expansion

φ = √
z (αT ln(z) + βT ) + . . . , (5.69)

where αT and βT are related to the original α and β in Eq. (5.35) as

αT ≡ √
zH α, βT ≡ √

zH (β + α ln(zH )) . (5.70)

We then define κT ≡ αT /βT , which is related to κ = α/β as

16The appearance of non-trivial solutions for only one sign of a double-trace coupling is in fact
generic in large-N field theory and in holography [107, 119, 120]. Adding a double-trace coupling
shifts the quantum effective potential and generically will change the ground state only for one sign
of the double-trace coupling constant, much the way a mass term added to a scalar field theory with
quartic interaction will trigger scalar condensation only for negative mass-squared.
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κT ≡ αT

βT
= κ

1 + κ ln(zH )
. (5.71)

Comparing Eq. (5.71) to Eq. (5.56a) reveals that κT is κ(L) evaluated at the length scale
L = zH = 1/(2πT ). Using our definition (5.58) of TK, we can write κT as

κT = 1

ln(TK/T )
, (5.72)

whose simple form justifies the choice of the 1/(2π) factor in Eq. (5.58). The dimensionless
A+
t has an asymptotic expansion

A+
t = Q+

z
+ Q+ [

c(3)T (ln(z))3 + c(2)T (ln(z))2 + c(1)T ln(z)
]

+ μ+
T + . . . , (5.73a)

μ+
T ≡ zHμ+ + Q+ [

c(3)T (ln(zH ))3 − c(2)T (ln(zH ))2 + c(1)T ln(zH )
]
, (5.73b)

c(3)T ≡ 2

3
α2
T , c(2)T ≡ −2α2

T + 2αT βT , c(1)T ≡ 4α2
T − 4αT βT + 2β2

T . (5.73c)

After the re-scalings in Eq. (5.68), the boundary condition λ = πA/(NQ) becomes

λ

2πT
= 1

2πT

πA
NQ = − 1

Q

[
μT + 2Q+

(
2α2

T − 2αT βT + β2
T − 1

3

β3
T

αT

)]
, (5.74a)

μT ≡ μ+
T − zH μ−. (5.74b)

As mentioned below Eq. (5.32),A−
t decouples fromA+

t and φ, and can be solved for exactly:
the solution obeying the boundary condition A−

t (z = 1) = 0 is

A−
t = Q−

z
+ μ−, μ− = −Q−

zH
. (5.75)

We have been able to obtain only numerical solutions for A+
t and φ, using the following

numerical shooting procedure. First, we fix Q0, and then choose a target value for Q+.
We then know Q− = Q0 − Q+ and Q = 2Q+ − Q0 from Eq. (5.31). Choosing Q+ also
fixes M2 = −1/4 + (Q+)2, so that φ’s equation of motion is fixed. We then demand that
the ln(z − 1) term in φ’s near-horizon expansion vanish and that A+

t (z = 1) = 0. Two free
parameters then remain at the horizon, φ(z = 1) ≡ φH and ∂zA+

t (z = 1). We fix φH and dial
through ∂zA+

t (z = 1) values, for each value obtaining numerical solutions forA+
t and φ, but

retaining only those solutions with the target value of Q+. We then extract αT and βT from
the asymptotics of φ’s numerical solution, which gives us κT = αT /βT and, via Eq. (5.70),
〈|OI|〉 = 〈|OII|〉 = −4Nβ. We also extract μT from the solution for At = A+

t − A−
t using

Eqs. (5.73)–(5.75), which gives us λ/(2πT ) via Eq. (5.74a). Using T/TK = e−1/κT from
Eq. (5.72) we then also find T

TK
λ

2πT = λ
2πTK

. We thus obtain all the one-point functions for

a given point (λ/(2πTK), T/TK) in the phase diagram. We then change φH and repeat the
process of dialing through ∂zA+

t (z = 1) values to obtain the same target value ofQ+, but now
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obtaining newvalues of T/TK andλ/(2πTK). In thisway,we generate the phase diagram in the
(λ/(2πTK), T/TK) plane by moving along curves of constantQ+, or equivalently of constant
Q = 2Q+ − Q0, which via Eqs. (5.50) and (5.59) means curves of constant 〈R1〉 = 〈R2〉 and
〈SAI SAII 〉.

We also numerically compute the renormalised free energy F of each non-trivial solution.
If we Wick-rotate to Euclidean signature and then compactify our dimensionless Euclidean
time direction into a circle of circumference 2π, thenF is T times the renormalised Euclidean
on-shell action. Because all of our solutions are static,F is simply 2πT times an integral over
z in the Euclidean on-shell action, which we performed numerically, plus the boundary terms
described in Sect. 5.4.2. The Chern-Simons gauge field’s contribution to F vanishes.

The trivial solution, a0t = Q0( 1z − 1) with all other fields vanishing, exists everywhere

in the (λ/(2πTK), T/TK) plane and has F = −(Q0)2/2. If we define �F as −(Q0)2/2
minus the value ofF for a non-trivial solution, then �F > 0 means the non-trivial solution is
thermodynamically preferred over the trivial solution, and vice-versa for �F < 0. However,
our numerical results were not always sufficiently accurate to determine the sign of�F . After
a large number of iterations of our numerical shooting, the change in our results for αT , βT ,
and μT between iterations stabilized to roughly 10−7. Assuming convergence to the actual
values, we thus took 10−7 as the uncertainty in our numerical results for αT , βT , and μT .
Numerically, we found that obtaining λ/(2πTK) of order one required Q+ ≥ 10−3. These
two bounds together imply, via Eq. (5.74a), an uncertainty in our results for λ/(2πTK) of
roughly 10−4. The on-shell action includes a boundary term ∝ λ/(2πTK), Eq. (5.51), so our
numerical results for �F were also accurate up to a threshold of only 10−4. In some cases,
our numerical result for |�F | was less than 10−4, so that we could not determine the sign of
�F and hence not conclude if the non-trivial solution was preferred over the trivial solution.

The equations of motion (5.32) and the bulk integral over z in �F are invariant under
independent sign flips of A−

t , A+
t , and φ. The boundary terms in �F , from the Kondo and

RKKY double-trace deformations, are invariant under two of these Z2 symmetries. First,
taking φ → −φ withA−

t ,A+
t unchanged will take φH → −φH , αT → −αT , βT → −βT .

However, κT ≡ αT /βT and λ/(2πT ) in Eq. (5.74a) will be invariant, and hence the boundary
terms in�F will be invariant.Without loss of generalitywe thus restricted toφH > 0. Second,
takingA−

t → −A−
t ,A+

t → −A+
t withφ unchanged sendsμT → −μT , Q

0 → −Q0,Q →
−Q with αT , βT unchanged. Again, κT and λ/(2πT ) will be unchanged, and hence the
boundary terms in �F will be unchanged. Without loss of generality we thus restricted to
Q0 < 0.

Our main result is Fig. 5.1, the phase diagrams of our model in the (λ/(2πTK),

T/TK) plane, for Q0 = −1, −1.2, and −1.4. In Fig. 5.1, each black dot represents a non-
trivial numerical solution. As anticipated in Sect. 5.5.1, every non-trivial solution had both
φ 
= 0 and a1t = a2t 
= 0. As anticipated in Sect. 5.5.2 we found non-trivial solutions only for
AFM RKKY coupling λ/(2πTK) > 0. In fact, we found non-trivial solutions only inside the
regions bounded by the dotted lines in each of Fig. 5.1a–d. In each case, the dotted diagonal
line is T/TK = λ/(2πTK), while the horizontal dotted line was determined by a linearised
stability analysis, as follows.

As mentioned before, in our model a fluctuation of φ about the trivial solution obeys the
same equation of motion and boundary conditions as in the holographic single-impurity model
of Ref. [73], but withA+

t replacing a0t . A central result of Ref. [73] was that the fluctuation of
φ became unstable below a critical T that depended on Q0.Moreover, that critical T decreased
as |Q0| increased, intuitively because an impurity spin in a larger-dimensional representation
is more difficult to screen. The linearised analysis thus guaranteed that a phase transition must
occur. The same result applies in our model, but with Q+ replacing Q0. However, because
fluctuations of φ and A+

t decouple at the linearised order, the instability of φ is independent
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Fig. 5.1 Phase diagrams of our model for a Q0 = −1 with λ/(2πTK) ∈ (−0.5, 10), b Q0 = −1
again but zooming in on λ/(2πTK) ∈ (−0.5, 2.5), c Q0 = −1.2 with λ/(2πTK) ∈ (−0.3, 1.6),
and d Q0 = −1.4 with λ/(2πTK) ∈ (−0.2, 1.0). Each black dot represents a non-trivial numerical
solution, which we found only inside the regions bounded by the dotted lines. In the light grey
region, within our numerical accuracy we could not determine whether the non-trivial solutions
were thermodynamically preferred. In the dark grey region, the non-trivial solutions were thermo-
dynamically preferred, while in the white region they were not. In each phase diagram, a solid black
line denotes the boundary between the dark grey and white regions

of λ/(2πTK), so it tells us nothing about the values of λ/(2πTK) where the trivial phase will

become unstable. Given Q+ = 1
2

(
Q0 + Q

)
, the minimal value of |Q+| is |Q0/2|, which

determines the maximal critical T/TK above which the trivial phase must be stable. In each
of Fig. 5.1 the horizontal dotted lines denote that maximal critical T/TK. As we increase
|Q0|, going from Fig. 5.1b–d, the horizontal dotted line moves to smaller T/TK, as expected.
Figure 5.1 shows that for sufficiently large λ/(2πTK), non-trivial solutions appear already
at the maximal critical T/TK. In contrast, for smaller λ/(2πTK), and specifically along the
diagonal dotted line, non-trivial solutions only appear at T/TK below the maximal critical
value.

In each phase diagram in Fig. 5.1, we have divided the region bounded by the dotted lines
into three sub-regions, coded by shading: light grey, dark grey, and white, with a solid black
line separating the dark grey and white regions. In the light grey regions, we found non-
trivial solutions, but |�F | was smaller than our numerical accuracy threshold of 10−4, hence
we could not conclude whether the non-trivial solutions were thermodynamically preferred
over the trivial solution. In the dark grey region, the non-trivial solutions had |�F | > 10−4

and �F > 0, so the non-trivial solutions were thermodynamically preferred over the trivial
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solution. In the white region, |�F | > 10−4 but �F < 0, so the trivial solution was thermo-
dynamically preferred.

The solid black line separating the dark grey and white regions is an interpolation between
thermodynamically preferred solutions: to the left of that line, towards smaller λ/(2πTK),
the next nearest numerical solution that we obtained was not thermodynamically preferred.
The actual boundary between thermodynamically favoured and dis-favoured solutions is thus
either at the solid black line, or somewhere between the solid black line and the first black
dots to its left.

In any of the phase diagrams in Fig. 5.1, imagine moving down along a vertical line
in the phase diagram. Our results demonstrate that for sufficiently large AFM λ/(2πTK) a
phase transition will occur, from the trivial state with no Kondo screening and zero spin-
spin correlations to the non-trivial state with Kondo screening and non-zero AFM spin-spin
correlations of order N2. As discussed in Sect. 5.5.1, in our model and with our ansatz, these
are the only two possible states.

The order of these phase transitions depends on λ/(2πTK). For example, in any of the
phase diagrams in Fig. 5.1, suppose we move down along a vertical line such that we hit
the diagonal dotted line. In that case, as we reduce T/TK non-trivial solutions appear at
the diagonal dotted line, but are not thermodynamically preferred. The non-trivial solutions
become thermodynamically preferred only at the critical T/TK where our vertical line hits the
dark grey region. As a result, as T/TK drops below the critical T/TK all one-point functions
will jump from zero to non-zero values, indicating a first-order transition. Suppose we then
increase λ/(2πTK) and repeat the process, such that now as we reduce T/TK we hit the
horizontal dotted line. In that case, although we cannot say for certain due to our limited
numerical accuracy, our numerical results are consistent with the non-trivial solutions being
thermodynamically preferred as soon as they appear. In those cases, we expect the one-point
functions to increase smoothly from zero, indicating a continuous transition.

Our results for the one-point functions are consistent with such an interpretation. Figure 5.2

shows our numerical results for κ
4N

〈|OI|〉√
TK

= −αT
√
2πT/TK as a function of T/TK for Q0 =

−1.2, with λ/(2πTK) = 0.45 in Fig. 5.2a and λ/(2πTK) = 1.4 in Fig. 5.2b. In each figure,
each black dot represents a non-trivial numerical solution, the dotted curve is a numerical fit to
our data in the form of a second-order mean-field transition with critical exponent 1/2, and the
heavy grey line segment at 〈|OI|〉 = 0 represents the trivial solution for T/TK values where
the non-trivial solution is preferred. In other words, in Fig. 5.2a the heavy grey line segment
extends to the value of T/TK of the solid black line at λ/(2πTK) = 0.45 in Fig. 5.1c, while in
Fig. 5.2b the heavy grey line segment extends down to the T/TK value of the horizontal dotted
line in Fig. 5.1c. For λ/(2πTK) = 0.45, the phase diagram in Fig. 5.1c suggests a first-order
transition, and indeed Fig. 5.2a suggests that the transition cannot be continuous: the fit to
our data suggests that 〈|OI|〉 jumps from 〈|OI|〉 = 0 to 〈|OI|〉 
= 0 when the transition occurs.
On the other hand, for λ/(2πTK) = 1.4, the phase diagram in Fig. 5.1c suggests a continuous
transition as indeed implied by Fig. 5.2b: the fit to our data suggests that 〈|OI|〉 rises smoothly
from zero starting at the transition with second-order mean-field exponent.

Figure 5.3 shows our numerical results for the order N2 contribution to the spin-spin
correlator (5.59), 〈SAI SAII 〉/N2 = −Q2/2, as a function of T/TK for Q0 = −1.2, with
λ/(2πTK) = 0.45 in Fig. 5.3a and λ/(2πTK) = 1.4 in Fig. 5.3b. As in Fig. 5.2, the black
dots in Fig. 5.3 represent non-trivial numerical solutions and the heavy grey line represents
the trivial solutionwith 〈SAI SAII 〉/N2 = 0 for T/TK values where the trivial solution is thermo-
dynamically preferred. Our numerical results in Fig. 5.3a for λ/(2πTK) = 0.45 suggest that
〈SAI SAII 〉/N2 jumps from 〈SAI SAII 〉/N2 = 0 to 〈SAI SAII 〉/N2 
= 0 when the transition occurs,
consistent with a first-order transition, while Fig. 5.3b for λ/(2πTK) = 1.4 suggests that
〈SAI SAII 〉/N2 rises smoothly from zero through the transition, consistent with a continuous
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Fig. 5.2 Our numerical results for κ
4N

〈|OI|〉√
TK

= −αT
√
2πT/TK as a function of T/TK for Q0 =

−1.2, with a λ/(2πTK) = 0.45, and b λ/(2πTK) = 1.4. In each figure, the black dots are our
numerical data, the dotted line is a numerical fit to a second-order mean-field transition with critical
exponent 1/2, and the heavy grey line segment at 〈|OI|〉 = 0 represents the trivial solution where
thermodynamically preferred. As we decrease T/TK a phase transition occurs approximately where
the heavy grey line segment ends. Our results suggest a first-order transition in a and a second-order
mean-field transition in b, consistent with our expectations from Fig. 5.1c

Fig. 5.3 Our numerical results for 〈SA
I SA

II 〉/N 2 = −Q2/2 as a function of T/TK for Q0 = −1.2,
with a λ/(2πTK) = 0.45 and b λ/(2πTK) = 1.4. In each figure, the black dots are our numerical
data and the heavy grey line segment at 〈SA

I SA
II 〉/N 2 = 0 represents the trivial solution where

thermodynamically preferred. As we decrease T/TK a phase transition occurs approximately where
the heavy grey line segment ends. Our results suggest a first-order transition in a and a continuous
transition in b, consistent with our expectations from Fig. 5.1c

transition. These results conform to our expectations from the corresponding phase diagram,
Fig. 5.1c.

Most importantly, the phase diagrams in Fig. 5.1 strongly suggest that in our model a
quantum phase transition occurs as a function of increasing λ/(2πTK), from the trivial state to
the non-trivial state. Moreover, Fig. 5.1 suggests that such putative quantum phase transitions
occur at non-zero AFM values of λ/(2πTK). For example, when Q0 = −1, Fig. 5.1b suggests
that a transition may occur approximately where the solid black line hits the horizontal axis,
λ/(2πTK) ≈ 0.4. The putative quantum phase transitions in our model also appear to be first-
order: aswe increaseλ/(2πTK) through the critical value, all one-point functions and the phase
shift will jump from zero (white region) to non-zero values (dark grey region). Similarly, the
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quantum phase transition in the original large-N two-impurity Kondo model of Refs. [55, 59]
occurred at a non-zero AFM value of λRKKY/TK and was first-order.

However, we were unable to obtain non-trivial numerical solutions at exactly T = 0. In
general, as T/TK decreases our numerical solutions for φ tend to grow, apparently without
bound. Such growth is typical for scalar fields in the probe limit when the scalar potential
includes only amass term, see for exampleRef. [124].Most likely, obtaining reliable numerical
solutions at T = 0 will require leaving the probe limit, i.e. including the back-reaction of the
matter fields on the metric. For the holographic single-impurity Kondo model of Ref. [73]
this was studied in Ref. [125]. We leave the analogous study for our model and the fate of our
model at T = 0 for future research.

5.6 Holographic Kondo and Fano Resonances

In this section we briefly summarise our results from Refs. [2, 3] on correlators in the holo-
graphic single-impurity Kondo model from Ref. [73].

As mentioned in Sect. 5.3, we recover the single-impurity from the two-impurity model
if we only retain the U (1) component of the YM field, and correspondingly only a single
component of the scalar doublet.More precisely, we obtain the single-impurity action from the
two-impurity action (5.13c) if we let (�I, �II)

T → (�, �)T, aamτa → am1, tr
(
f mn fmn

) →
f mn fmn with f = da, and divide the action by a factor of two.

We continue to work in a radial gauge, az = 0. For static background solutions, conserva-
tion of theU (1) current requires that the phase of the complex scalar� be a constant, whichwe
can set to zerowith a residualU (1) gauge transformation. The background equations ofmotion
for φ(z) ≡ |�(z)| and at (z) are then the same as Eqs. (5.32b)–(5.32c) withA+

t → at (z). As
before, we fix the leading mode Q in at ’s near-boundary expansion, at (z) = Q/z + . . ., to fix
the size of the dual impurity. Next recall that the operator O dual to � must have dimension
1/2 so that the Kondo interaction − 1

2λKO†O is classically marginal. The near-boundary

expansions of � and �† must therefore take the form

� = α
√
z log z + β + . . . , �† = α†√z log z + β† + . . . , (5.76)

which requires choosing M2 such that �′s effective mass is M2 − Q2 = −1/4, as discussed
in Sect. 5.4. In this section,α andβ denote the complexmodes of the complex field�, unlike in
the previous sections, where they referred to the real modes of the real field φ. Accordingly, in
the single-impurity case the variation of the undeformed renormalised on-shell action gives [3]

δSren = −N
∫

dt
(
β† δα + β δα†

)
=⇒

〈O〉 = −Nβ†,
〈
O†

〉
= −Nβ, (5.77)

analogous to the two-impurity result (5.40), which had δα = δα† and β = β†. Likewise,
the Kondo double-trace deformation becomes SK = Nκ

∫
dt β†β with holographic Kondo

coupling κ, analogous to Eq. (5.46). The Kondo interaction SK leaves 〈O〉 and
〈
O†

〉
invariant,

but it changes the sources of O and O† to α − κβ and α† − κβ† respectively. States that
include theKondo double-trace deformation but no single-trace deformation are thus described
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by bulk solutions that satisfy the boundary conditions κ = α/β = α†/β†. The dependence

of 〈O〉,
〈
O†

〉
on variations of the sources α − κβ, α† − κβ† is captured by the retarded

correlators, as explained in Chap. 3:

δ 〈O(ω)〉 = −GOO(ω) δ(α − κβ) − GOO† (ω) δ(α† − κβ†), (5.78a)

δ
〈
O†(ω)

〉
= −GO†O(ω) δ(α − κβ) − GO†O† (ω) δ(α† − κβ†). (5.78b)

In order to compute these correlators we need to consider fluctuations δ�(t), δ�†(t) of �,
�†. Linearising the equations of motion around a static background solution φ(z), at (z) and
Fourier transforming via ∂t → −iω, we find that δ�(ω), δ�†(ω) obey

∂z
(√−ggzz∂zδ�

) +
[

(ω + at )2

h
− M2

z2

]
δ� = − (ω + 2at )

h
φ δat , (5.79a)

∂z

(√−ggzz∂zδ�
†
)

+
[

(−ω + at )2

h
− M2

z2

]
δ�† = − (−ω + 2at )

h
φ δat . (5.79b)

We will not need the equation of motion satisfied by a fluctuation δat of the gauge field in
the following discussion. In order to obtain the retarded response of the system we impose
incoming-wave boundary conditions on δ�, δ�† at the horizon z = zH [126, 127].

Single-impurity phase diagram: The phase diagram of the holographic single-impurity
model, studied in Ref. [73], depends on a single dimensionless parameter, T/TK, which is
related to the holographic Kondo coupling via Eq. (5.72). At high temperatures T/TK, only the
trivial solution at (z) = Q(1/z − 1/zH ), φ(z) = 0 exists, dual to a trivial state without Kondo
screening, 〈O〉 = 0. The trivial solution becomes unstable at a critical temperature Tc/TK,
and non-trivial solutions with φ(z) 
= 0 are thermodynamically preferred below Tc/TK: 〈O〉
condenses in a second-order mean-field transition to a low-temperature phase with Kondo
screening and a phase shift.

Correlators in the unscreened phase: The equations of motion (5.79) for δ� and δ�†

decouple in the unscreened phase φ = 0, at = Q(1/z − 1/zH ), and can in fact be solved
exactly in terms of hypergeometric functions.17 In particular, the solution fixes the sub-leading
modes δβ, δβ† in terms of the leading modes δα, δα†:

δβ = R(ω; Q) δα, δβ† = R(ω; −Q) δα†, (5.80a)

R(ω, Q) ≡ H

(
−1

2
+ i Q − iωzH

)
+ H

(
−1

2
− i Q

)
− ln

( zH
2

)
. (5.80b)

Here, H(n) denotes the n-th harmonic number and the argument of the logarithm is made
dimensionless by the unit AdS radius. The decoupling of δ� and δ�† implies that variations
of the one-point functions, Eqs. (5.77) and (5.78), become

17The explicit solutions can be found in Eqs. (3.23)–(3.27) in Ref. [3], where δ� and δ�† are
referred to as y+ and y− respectively.
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δ 〈O〉 = −Nδβ† = −Nδα† δβ†

δα† = −GOO† δα†

(
1 − κ

δβ†

δα†

)
, (5.81a)

δ
〈
O†

〉
= −Nδβ = −Nδα

δβ

δα
= −GO†O δα

(
1 − κ

δβ

δα

)
, (5.81b)

from which we obtain GO†O† = GOO = 0 and

GO†O = N
δβ/δα

1 − κ δβ/δα
, GOO† = N

δβ†/δα†

1 − κ δβ†/δα† , (5.82)

Inserting the result (5.80) and using Eqs. (5.71)–(5.72), we can re-write Eq. (5.82) as

GO†O = − N

κ

(
1 + 1

κ D(ω; Q)

)
,

GOO† = − N

κ

(
1 + 1

κ D(ω;−Q)

)
, (5.83a)

D(ω; Q) ≡ H

(
−1

2
+ i Q − i

ω

2πT

)
+ H

(
−1

2
− i Q

)
+ ln

(
2T

TK

)
. (5.83b)

The correlators (5.82) have poles located at the quasi-normal modes of the scalar, that is, at
the eigenfrequencies of incoming-wave solutions to Eqs. (5.79) which satisfy the appropriate
boundary conditions κ = δα/δβ = δα†/δβ†. Because D(ω; −Q) = D(−ω∗; Q)∗, the poles
ofGO†O andGOO† come in pairs mirrored about the imaginary axis in the complex ω-plane.
At sufficiently high T , we find that all quasi-normal modes lie in the lower half of the complex
plane, demonstrating the stability of the unscreened phase [2]. As we lower T , the quasi-
normal modes move closer to the real axis, until the two lowest-lying modes cross the real
axis at Tc, indicating the onset of the phase transition to the screened phase. From Eq. (5.83),
we find that the two lowest-lying poles meet at the origin ω = 0 at T = Tc and obtain an exact
expression for Tc:

Tc = 1

2
TK exp

(
−2Re

[
H

(
−1

2
+ i Q

)])
. (5.84)

The spectral functions ρO†O(ω) ≡ −2 Im(GO†O), ρOO† (ω) ≡ −2 Im(GOO†) with ω
real are dominated by the lowest-lying poles ω± of the correlators (5.83). Crucially, the
corresponding residues Z± are complex. For instance, near T = Tc, expanding D(ω; Q) for
small ω/T shows that GO†O ∼ Z+/ (ω − ω+) and GOO† ∼ Z−/ (ω − ω−) with

Z± = −i
N

κ2
2πTc

H ′ (−1/2 ± i Q)
, ω± = −i

2π (T − Tc)

H ′(−1/2 ± i Q)
, (5.85)

to leading order in T/Tc − 1. Following our discussion in Sect. 3.4.3, the fact that the residues
are complex and not real implies that the spectral functions in the unscreened phase display
asymmetric Fano resonances. In particular, unless Q = 0, in which case Z± become purely
imaginary, ρO†O and ρOO† are not anti-symmetric under ω → −ω, i.e. they break particle-
hole symmetry.
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Correlators in the screened phase: In the screened phase φ 
= 0, the equations (5.79) for
δ� and δ�† are coupled. However, in this case fluctuations of the scalar’s phase δψ conspire
with fluctuations δat of the gauge field to form the gauge invariant combination δat + iωδψ.
Because we do not want to change the impurity’s representation we demand that fluctuations
of the gauge field vanish, hence δat + iωδψ = 0. We are therefore only left with fluctuations
of the modulus δφ ≡ δ|�|. As a result, variations of the one-point functions (5.77) take the
form

δ 〈O〉 = −Nδβ† = −N
δ|β|
δ|α|δ|α|, δ

〈
O†

〉
= −Nδβ = −N

δ|β|
δ|α|δ|α|. (5.86)

Comparing this to Eq. (5.78) shows that in the screened phase

G ≡ GOO = GOO† = GO†O = GO†O† = N

2

δ|β|/δ|α|
1 − κ δ|β|/δ|α| . (5.87)

We have only been able to find numerical solutions for δφ and δ|β|/δ|α| in
Refs. [2, 3].

Equation (5.79) shows that the equation of motion for δφ = δ� + δ�† is invariant under
ω → −ω. We expect solutions to δ|β| for given δ|α| to respect this symmetry and be either
even or odd underω → −ω. However, δ|β|/δ|α| cannot be an even function ofω as in that case
the spectral function ρ ≡ −2 Im(G) would violate the positivity property ωρ(ω) ≥ 0.18 We
therefore expect δ|β|/δ|α| to be an odd function of ω, leading to an anti-symmetric spectral
function. This is indeed confirmed by our numerical analysis in Refs. [2, 3]. At T = Tc,
the poles of G in the screened phase coincide with the quasi-normal modes in the unscreened
phase. In particular, the lowest-lying pole ω∗ sits at the origin at T = Tc. As we lower T below
Tc, the poles of G move down in the complex plane. In particular, ω∗ moves straight down the
imaginary axis and grows as ω∗ ∝ −i 〈O〉2 as 〈O〉 condenses. This is a characteristic feature
of the Kondo resonance at large N [128], demonstrating that our holographic model realises
a genuine Kondo effect. Moreover, the Kondo resonance appears in ρ as an anti-symmetric
Fano resonance and particle-hole symmetry, ρ(−ω) = −ρ(ω), is restored for T ≤ Tc.
Origin of Fano resonances: As reviewed in Sect. 3.4.3, a Fano resonance arises when a
Lorentzian resonance is immersed in a continuum of energy states. In our Kondo model, O’s
spectrum inherits scale invariance from the UV fixed point and is therefore continuous. The
marginally relevant Kondo coupling then triggers an RG flow, breaks scale invariance, and
produces a resonance. In (0 + 1) dimensions, the resonance cannot escape the continuum and
hence must lead to a Fano resonance. This mechanism, to our knowledge new, predicts Fano
resonances in any RG flow between (0 + 1) dimensional fixed points such as Sachdev-Ye-
Kitaev fixed points [129–132].

5.7 Summary and Outlook

This chapter investigated inter-impurity interactions and correlation functions in a holographic
Kondo model.

18We discuss the positivity property satisfied by spectral functions of non-Hermitian operators such
as our O in Appendix A.
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In Sect. 5.2, we reviewed the single- and two-impurity Kondo models. The single-impurity
model consists of free chiral fermionsψ in (1 + 1)dimensions (representing electron s-waves),
coupled to an impurity spin S at the origin. Impurities in totally anti-symmetric representations
of the SU (N ) spin group admit a description in terms of Abrikosov pseudo-fermions χ, which
introduces an auxiliaryU (1) acting onχ. At large N , the anti-ferromagnetic Kondo interaction
between ψ and S takes the form of a marginally relevant double-trace deformation of the free
UV fixed point. This induces a (0 + 1)-dimensional RG flow at the impurity. The large-N
Kondo effect appears as condensation ofO = ψ†χ below a critical temperature Tc, indicating
the screening of the impurity, χ, by the electrons, ψ. The operator O is invariant under the
SU (N ) spin group, but is charged under both the electromagnetic U (1) of the chiral ψ and
under the auxiliary U (1) of the χ. The two-impurity model admits a similar description
at sufficiently large distances, where the impurity separation can be ignored. In that case,
the ψ interact with two identical impurities at the origin. The two impurity spins introduce
two flavours of pseudo-fermions and the auxiliary U (1) is enhanced to U (2). Moreover, the
impurities are coupled to each other by the Heisenberg-type RKKY interaction. At large N ,
the RKKY interaction takes the form of a relevant double-trace deformation, Eq. (5.10). This
is the first main result of this chapter and is valid independently of a holographic description.

Section 5.3 introduced our holographic two-impurity model, extending the holographic
single-impurity model from Ref. [73]. In order to obtain a holographic description, we effec-
tively replaced the free UV fixed point of the original Kondo model with a strongly coupled
holographic CFT. More precisely, we gauged the SU (N ) spin group, which introduced addi-
tional adjoint degrees of freedom, and took the limits of large N and strong coupling, producing
a holographic CFT with a gravity dual in AdS3. Our holographic bottom-up model contains
the AdS3 metric, dual to the CFT stress-tensor, and aU (1) Chern-Simons field A, dual to the
U (1) current of the chiral ψ. On an AdS2 defect at the impurity location, our model further
contains aU (2) Yang-Mills field a, dual to theU (2) current of the χ, and a charged scalar �,
dual to the charged scalar operatorO. We employed a probe limit and ignored the backreaction
of the fundamental degrees of freedom A, a,O, whose action scales linearly in N , on the AdS
metric, whose action scales quadratically in N .

In Sect. 5.4, we identified the Kondo coupling and the RKKY inter-impurity coupling as
boundary conditions on � and a respectively. This was the first identification of an inter-
impurity coupling in holography and constitutes our second main result.

Section 5.5 discussed the two-impurity phase diagram. We showed in Sect. 5.5.2 that
ferromagnetic correlations between totally anti-symmetric SU (N ) spins scale at most linearly
in N and, at large N , are suppressed compared to anti-ferromagnetic correlations which scale
as N2. This result is based only on SU (N ) representation theory and constitutes the third
main finding of this chapter. It holds independently of holography and may have implications
for other large-N descriptions of magnetism. Because of the probe limit, our holographic
model could thus only distinguish order N2 anti-ferromagnetic spin-spin correlations from
uncorrelated spins. In fact, our model was only able to describe two different phases: a trivial
phase with uncorrelated spins and no Kondo screening, and a non-trivial phase with anti-
ferromagnetic spin-spin correlations and simultaneousKondo screening.Our numerical results
in Sect. 5.5.3 showed that only the trivial state exists for ferromagnetic RKKY coupling, while
at sufficiently strong anti-ferromagnetic RKKY coupling a phase transition to the non-trivial
phase occurs at low temperatures. Moreover, our numerical results suggest that the transition
between the two phases persists at T = 0 as a first-order quantumphase transition at a non-zero
anti-ferromagnetic value of the RKKY coupling. This is the fourth main result of this chapter.
Our phase diagram is consistent with field theory expectations. For one thing, the quantum
phase transition in the large-N two impurity Kondo model of Refs. [55, 59] also occurred
at a non-zero AFM value of the RKKY coupling and was first-order. For another thing, the
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coexistence of Kondo and inter-impurity screening is generic in two-impurity Kondo models
and is believed to occur in the Kondo lattice too [8, 9, 54].

Section 5.6 summarised our results on holographic correlators ofO in the single-impurity
case. We found that the spectrum of O exhibits a Fano resonance at all temperatures. In the
high-temperature phase, where the impurity is unscreened, the Fano resonance is asymmetric
and breaks particle-hole symmetry. In the low-temperature phase, whereO condenses and the
impurity is screened, particle-hole symmetry is restored and the Fano resonance can be identi-
fied with the Kondo resonance, caused by a frequency pole ω∗ ∝ −i 〈O〉2 inO’s correlators.
The identification of the Kondo resonance constitutes the fifth main result of this chapter.
Fano resonances occur when a Lorentzian resonance, in our case produced by the marginally
relevant Kondo coupling, is immersed in a continuum, in our case provided by the impurity’s
(0 + 1)-dimensional scale invariance in the UV. The sixth main result of this chapter is our
proposal that, following the same mechanism, Fano resonances should be a generic feature of
RG flows between (0 + 1)-dimensional fixed points.

The appearance of the Kondo resonance confirms that our holographic model indeed
describes a strongly coupled Kondo model, as opposed to some other impurity physics, and
demonstrates that the Kondo effect can survive strong correlations essentially intact. More-
over, the phase diagram of our holographic two-impuritymodel shows that holographic Kondo
models can capture essential two-impurity Kondo phenomena, including most importantly a
quantum phase transition, and can thus provide a foundation for future model-building. Of
course, much work must still be done to reach the ultimate goal of building and solving a
holographic Kondo lattice.

In particular, to describe a Kondo lattice we must separate the impurities in space. In the
two-impurity case, this will break the auxiliary U (2) down to U (1) ×U (1) and will render
the RKKY interaction non-local. The only way to couple the two separated impurity spins,
then, is to connect them with a non-local gauge-invariant operator, i.e. with an open Wilson
line of the gauged SU (N ) spin group. In holographic models, an open Wilson line is dual to
an open string in the bulk [133].

However, separating the impurities in our holographic model would radically change the
field theory interpretation. In particular, we could no longer interpret the dual field theory as a
(1 + 1)-dimensional CFT description of a two-impurity Kondo system, since that description
is based on the limit that the separation between the impurities is negligible. Instead, ourmodel
would be more similar to a genuinely (1 + 1)-dimensional Luttinger liquid coupled to two
separated impurities. For separated Kondo impurities, and in particular for the Kondo lattice,
a (1 + 1)-dimensional description must thus be abandoned. To build a holographic Kondo
lattice one should commit to holographic models in which the field theory has two or more
spatial dimensions, and introduce an infinite number of impurities. As mentioned in Ref. [78]
though, an infinite number of impurities renders the probe limit by definition invalid.

A different issue, which our model has in common with non-holographic large-N Kondo
models [30], is that the spin group SU (N ) makes it difficult to describe anti-ferromagnetic
ordering at large N . The problem is that two impurity spins can only lock into a singlet
of SU (N ) if they are in a representation whose Young tableau has exactly N/2 boxes. An
alternative is the symplectic large-N limit: instead of replacing SU (2) with SU (N ) and tak-
ing N → ∞, the symplectic large-N limit is based on identifying SU (2) � Sp(1), replacing
Sp(1) with Sp(N ), and then taking N → ∞ [134, 135]. The symplectic large-N limit allows
for two impurity spins in the fundamental representation to lock into a singlet and hence
allows for a genuine anti-ferromagnetic phase. Top-down holographic duals of strongly cou-
pled theories with symplectic gauge groups can be realised by introducing orientifolds in the
bulk [136].

Perhaps the most fundamental problem with all holographic quantum impurity models to
date [71–85], however, is that the spin group is gauged. Because holography only provides
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access to gauge-invariant operators, important quantities that are not spin singlets, such as
the magnetic susceptibility, cannot be calculated. The obvious route to address this issue is to
develop holographic quantum impurity models in which spin is a global symmetry. In that case
the large-N strongly coupled gauge theory sector would merely provide a classical gravity
dual.

We believe that the long-term goal of solving a (holographic) Kondo lattice provides
sufficient motivation to pursue solutions to all of the problems above, using our holographic
model as a starting point.
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Chapter 6
Conclusion

This thesis investigated applications of the gauge/gravity duality to strongly interact-
ing quantum systems. Chapter2 motivated the duality’s origin within string theory
and reviewed the holographic dictionary, which translates between the gauge theory
and its gravity dual. In particular, we described how the computation of real-time
correlators in the strongly coupled gauge theory reduces to obtaining classical wave
solutions in AdS gravity. Chapter3 reviewed real-time correlators and spectral func-
tions in quantum systems. We explained how transport coefficients such as viscosity
or conductivity can be obtained from low-energy correlators, and we discussed the
origin of Fano resonances.

Chapter4 contained our results on second-order hydrodynamics in non-conformal
fluids. We derived new Kubo formulae for five second-order transport coefficients
in terms of three-point correlators of the stress-tensor, valid for any uncharged rela-
tivistic fluid in (3 + 1) dimensions. We then applied these Kubo formulae to a large
class of non-conformal holographic fluids at infinite coupling. We showed that a spe-
cific linear combination of second-order coefficients, H̃ = 2ητπ − 2 (κ − κ∗) − λ2,
vanishes in this class of models. We found strong evidence that the Haack-Yarom
identity, H = 2ητπ − 4λ1 − λ2 = 0, which had been known to hold in conformal
holographic fluids at infinite coupling, continues to hold in holographic fluidswithout
conformal symmetry: Within our class of models, we proved that H vanishes when
leading non-conformal corrections are taken into account, and we showed numeri-
cally that H remains zero also beyond leading non-conformal deformations. Results
for adiabatic fluids [1] and for the entropy current in conformal fluids [2] suggest
that H̃ = 0 and H = 0 may indicate the suppression of entropy production at strong
coupling. It would be desirable to find a more general proof that H̃ = 0 and H = 0
hold universally in non-conformal holographic fluids at infinite coupling, ideally
bringing these second-order relations on an equal footing with the first-order rela-
tion η/s = 1/4π. First, one would need to identify which conditions the bulk matter
stress tensor must satisfy to ensure that it decouples from the metric fluctuations
which enter H̃ and H . Given that both H̃ and H are independent of sound pertur-
bations we expect the appropriate conditions to be satisfied by most ordinary bulk
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matter, though dilatons might pose a challenge. Next, one would have to solve for the
relevant metric fluctuations on a general RG-flow geometry, repeating our steps in
Sect. 4.4, hopefully to find H̃ = 0 and to recast H as an integral over the background.
In order to demonstrate that this integral vanishes, our experience with the proof of
H = 0 to linear order suggests it might be helpful to use the emblackening factor f
as radial coordinate throughout the whole calculation.

Chapter5 presented our results on a holographic Kondo model, which described
impurity spins coupled to strongly correlated charge carriers. We extended the exist-
ing holographic single-impurity model to a two-impurity Kondo model with double-
trace inter-impurity coupling. Using SU (N ) representation theory, we showed that
ferromagnetic correlations between totally anti-symmetric SU (N ) spins are sup-
pressed compared to anti-ferromagnetic ones at large N . Indeed, our model could
only describe a trivial phase with uncorrelated spins and no Kondo screening, and
a non-trivial phase with anti-ferromagnetic spin-spin correlations and simultaneous
Kondo screening. Our numerical results suggest a first-order quantum phase transi-
tion between these two phases. We then computed correlators in the single-impurity
case. The interference between a resonance, produced by the marginally relevant
Kondo coupling, and a continuous spectrum, provided by the (0 + 1)-dimensional
scale invariance of the impurity in the UV, resulted in a Fano resonance, which we
identified at low temperatures with the Kondo resonance. We proposed that, follow-
ing the same mechanism, Fano resonances should be a generic feature of RG flows
between (0 + 1)-dimensional fixed points. As next step towards a holographic Kon-
do lattice we suggest building a higher-dimensional holographic model in which the
impurities can be separated in space.
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Appendix A
Some Properties of Causal Correlators

In this appendix we will summarise a few useful properties of causal correlators,
see e.g. Refs. [1–3]. The retarded and advanced Green’s functions of two operators
A(t, x) and B(t ′, x ′) are defined as

GR
A,B(x; x ′) = −iθ(t − t ′)

〈[A(x),B(x ′)]〉 , GA
A,B(x; x ′) = iθ(t ′ − t)

〈[A(x),B(x ′)]〉 ,

respectively. From now on we will assume translational invariance, i.e. GR/A
A,B(x; x ′)

= GR/A
A,B(x − x ′). The Fourier transforms then satisfy

GR
A,B(−k) = GA

B,A(k) , GR
A,B(k)∗ = GR

A†,B†(−k) = GA
B†,A†(k) . (A.1)

One can show [2] that correlators in a state with time-reversal symmetry satisfy

GR
A,B(ω, k) = ηAηB GR

B†,A†(ω,−k) , (A.2)

where ηA, ηB = ±1 are the time-reversal eigenvalues of A, B.
The spectral function is defined as

ρA,B(k) =
∫

ddk

(2π)d
eikx 〈[A(x), B(0)]〉 = i

(
GR

A,B(k) − GA
A,B(k)

)
. (A.3)

Using properties (A.1), ρA,B can be written as

ρA,B(k) = i
(
GR

A,B(k) − GR
B†,A†(k)∗

)
. (A.4)

If all operators are Hermitian,A(x)† = A(x), B(x)† = B(x), then the spectral func-
tion can be viewed as a matrix in the space of Hermitian operators and is given by i
times the anti-Hermitian part of the matrix

(
GR

A,B
)
:

ρA,B(k) = i
(
GR

A,B(k) − GR
B,A(k)∗

)
. (A.5)
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The positivity property (3.52) for a single Hermitian operator translates into the
requirement that ω ρA,B(ω, k) be a positive semi-definite matrix. This property can
be deduced from the spectral representation of ρA,B(k) [1].

Let us now consider the case of a single complex operator O like the one we
encounter in Chap.5. We can build two Hermitian operators from O:

R ≡ O + O† , I ≡ i
(O − O†

)
. (A.6)

The (real) source term
(O� + O†�†

)
in the generating functional for O then reads

(RRe� + I Im�). Using the chain rule for functional derivatives, we can write a
generic correlator G of O, O† in terms of correlators of the Hermitian operators R,
I:

GOO = 1

4

(
GR,R − GI,I − i

(
GR,I + GI,R

))
, (A.7a)

GO†O† = 1

4

(
GR,R − GI,I + i

(
GR,I + GI,R

))
, (A.7b)

GOO† = 1

4

(
GR,R + GI,I + i

(
GR,I − GI,R

))
, (A.7c)

GO†O = 1

4

(
GR,R + GI,I − i

(
GR,I − GI,R

))
. (A.7d)

In Sect. 5.6 we find that in the normal phase of the holographic KondomodelGR
OO =

GR
O†O† = 0 so that GR

I,I = GR
R,R and GR

I,R = −GR
R,I . The spectral functions ρ in

the space of Hermitian operators R, I,

(ρ) =
(

ρR,R ρR,I
ρI,R ρI,I

)
, (A.8)

then become

(ρ) =
(

ρR,R ρR,I
−ρR,I ρR,R

)
(A.9)

with eigenvalues ρR,R − i ρR,I = 2ρO†O and ρR,R + i ρR,I = 2ρOO† . The posi-
tivity property of ρ, namely the requirement that ωρ be positive semi-definite, thus
becomes

ω ρO†O(ω) = ω
(
−2 ImGR

O†O(ω)
)

≥ 0 , ω ρOO† (ω) = ω
(
−2 ImGR

OO† (ω)
)

≥ 0 .

In the condensed phase of the holographicKondomodelwe obtainGR
OO = GR

O†O† =
GR

OO† = GR
O†O = GR

R,R. The positivity property is therefore simply

ω ρO†O(ω) = ω
(−2 ImGR

O†O(ω)
) ≥ 0 . (A.10)
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Appendix B
A Class of Non-conformal Holographic Fluids

B.1 Second-Order Constitutive Relations

This appendix contains the explicit constitutive relations for the stress tensor of an
uncharged relativistic fluid up to second order in the gradient expansion that were
used to derive Eqs. (4.9) and (4.13). We define the 4-velocity as the unit timelike
eigenvector of 〈T μν〉 and ε as the corresponding eigenvalue to all orders in the gradi-
ent expansion (Landau frame) [1–3]. We further define the projection to symmetric,
traceless tensors that are transverse to the fluid motion,


μν(x) ≡ uμ(x)uν(x) + gμν

(0)(x) , A<μν> ≡ 1

2

μρ

(
Aρσ + Aσρ

)

σν − 1

3

μν

(

σρ Aσρ

)
,

and we define the shear tensor σμν ≡ 2∇<μuν> and the vorticity tensor

�μν ≡ 1

2

μρ

(∇ρuσ − ∇σuρ

)

σν .

The constitutive relation for 〈T μν〉 can then be written as

〈T μν(x)〉 =ε(x)uμ(x)uν(x) + p(x)
μν(x) + 

μν
conf.(x)

+ 

μν
non−conf.(x) + O(∂3) (B.1)

where



μν
conf.(x) ≡ −η σμν

+ η τπ

[(
uλ∇λσ

)<μν> + 1

3
σμν (∇ · u)

]

+ κ
[
R<μν> − 2uλR

λ<μν>κuκ

]

+ λ1σλ
<μσ ν>λ + λ2σλ

<μ�ν>λ − λ3�λ
<μ�ν>λ (B.2)
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is present in conformal and non-conformal fluids and was first derived in Ref. [4],
and where



μν
non−conf.(x) ≡ −ζ 
μν (∇ · u)

+ η τ ∗
π

1

3
σμν (∇ · u) + κ∗ 2uλR

λ<μν>κuκ + λ4∇<μ log s∇ν> log s

+ (
ζ τ
 uλ∇λ (∇ · u) + ξ1 σκλσκλ + ξ2 (∇ · u)2 + ξ3 �κλ�κλ

+ ξ4 
κ
λ (∇λ log s) 
κρ

(∇ρ log s
) + ξ5 R + ξ6 u

κuλRκλ

)

μν , (B.3)

was constructed in Ref. [3] and vanishes for conformal fluids. Transport coefficients
entering H and H̃ , Eqs. (4.1) and (4.92), are highlighted in blue in Eqs. (B.2)–(B.3).

B.2 Sub-Leading Modes of Metric Perturbations

The functionals ϒ
(a)
j that appear in Eq. (4.72) are

ϒ
(2t t)
(1,1)(u) = L2

4 f (u)2

(
1

u2 e2A(u)
− f ′(u)2

f 2H e2AH

)

, (B.4a)

ϒ
(2zz)
(1,1) (u) = L2

4u2 f (u) e2A(u)
(2 − f (u)) , (B.4b)

ϒ
(2t z)
(1,1) (u) = L2

4u2 f (u) e2A(u)
, (B.4c)

ϒ
(1t)
2 (u) = − L2

4 f (u)

{
1

u2 f (u) e2A(u)

+
f + 2 (1 − u) f ′ − log

(
1−u
f

) [
f
u + 4 (1 − u) A′ f + (1 − u) f ′

]

(1 − u)2 f 2H e2AH

⎫
⎬

⎭
. (B.4d)

In all four cases the near-boundary expansion of the first integrand in Eq. (4.74)
reads

w f (w) e4A(w) ϒ
(a)
j (w) = ± Ab L2

4

(
1

w2
− φ2

L

12

1

w

)
+ O(w0) , (B.5)

where upper signs in this appendix refer to a ∈ {2t t, 2zz, 2t z}, j = (1, 1), and lower
signs refer to a = 1t , j = 2. The first integral in Eq. (4.74) thus admits the expansion

v∫

1

dw w f (w) e4A(w) ϒ
(a)
j = ∓ Ab L2

4

(
1

v
+ φ2

L

12
log v

)
+ c(a)

j + O(v) , (B.6)
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where the v-independent contribution c(a)
j can be extracted via

c(a)
j = ± Ab L2

4
+

0∫

1

dw

[
w f e4A ϒ

(a)
j ∓ Ab L2

4w2

(
1 − φ2

L

12
w

)]
. (B.7)

Plugging this into Eq. (4.74), together with

1

v f (v)e4A(v)
= v

A2
b

(
1 + φ2

L

6
v + O(v2)

)
, (B.8)

one finally obtains the near-boundary expansion of the four K (a)
j ,

K (a)
j = ∓ L2

4Ab
u

(
1 + φ2

L

24
u log u

)

+ 1

2A2
b

(
c(a)
j ∓ Ab L2 φ2

L

32

)
u2 + o(u2) , (B.9)

from which one can read off the sub-leading modes

Y (a)
j = 1

2A2
b

(
c(a)
j ∓ Ab L2 φ2

L

32

)
, (B.10)

yielding Eq. (4.75) (recall expression (4.35) for the temperature).

B.3 Leading Backreaction of the Scalar on AdS Black
Branes

This appendix describes the computation of the scalar’s leading backreaction on the
background metric used in Sect. 4.6.1. The calculation goes along the lines presented
in Ref. [5]. Just this once we will be keeping the operator dimension 
 general,
2 < 
 < 4, as this can be done without difficulty and the general form of the results
might be useful in other contexts. We thus consider potentials of the form

V (φ) = − 12

L2
+ 
(
 − 4)

2L2
φ2 + O(φ3) . (B.11)

At zeroth order, φ = 0, the background equations of motion (4.36) are solved by
the AdS5 black-brane metric (4.38), dual to the UV CFT. To first order in φ, the

https://doi.org/10.1007/978-3-319-93967-4_4
https://doi.org/10.1007/978-3-319-93967-4_4
https://doi.org/10.1007/978-3-319-93967-4_4
https://doi.org/10.1007/978-3-319-93967-4_4
https://doi.org/10.1007/978-3-319-93967-4_4
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regular solution to the scalar equation of motion, Eq. (4.36a), linearised around the
black-brane background is given by

φ(u) = δφ(u) ≡ φH 2F1(1 − 
/4,
/4; 1; 1 − 1/u2)

= δφL u
(4−
)/2

2F1(1 − 
/4, 1 − 
/4; 2 − 
/2; u2)
+ δφSL u


/2
2F1(
/4,
/4;
/2; u2) (B.12)

with near-boundary modes

δφL = φH
�(
/2 − 1)

�(
/4)2
, δφSL = φH

tan(π
/4)

2π

�(
/4)2

�(
/2)
. (B.13)

At second order, the scalar itself remains unchanged, but it backreacts on the back-
ground metric. Generally, the scalar backreacts on the geometry at even orders while
φ itself receives corrections to its linearised solution (B.12) at odd orders. There
is a minor complication concerning the boundary conditions: full non-perturbative
solutions to the background equations of motion (4.36) depend on the single inte-
gration constant φH which parameterises the single physical parameter T/�. In the
perturbative solution, on the other hand, we need to pick the value of the scalar at the
horizon at each order in the perturbative series. This apparent ambiguity is resolved
by the requirement that a chosen physical observable remain unchanged order by
order. We simply choose to hold φH fixed, meaning that sub-leading corrections to
φ(u) need to vanish at the horizon. Other possible, albeit more complicated, choices
include fixing AH or T/�.

A related subtlety is constituted by the fact that A(u) only enters the equations
of motion (4.36) via its derivative A′(u). This is most conveniently dealt with by
separating from the full non-perturbative A(u) = 1

2 log (Ab/u) + O(u) the part Ã(u)

which vanishes at the boundary u = 0, i.e. we write

A(u) = 1

2
log

(
Ab

u

)
+ Ã(u)

= 1

2
log

(
Ab

u

)
+

u∫

0

dv Ã′(v) . (B.14)

The constant Ab is fixed by the full global solution of the scalar as follows. In terms
of the dimensionful ζ -coordinate, Eq. (B.35), close to the AdS5 boundary we have
φ ∼ (�ζ)4−
 and A ∼ log(L/ζ ), hence

A ∼ log
(
�Lφ−1/(4−
)

)
(B.15)

or, changing back to the u-coordinate,

https://doi.org/10.1007/978-3-319-93967-4_4
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A = 1

2
log

⎛

⎜
⎝

(
� L φ

−1/(4−
)

L

)2

u

⎞

⎟
⎠ + O(u) , (B.16)

and hence

Ab =
(
� L φ

−1/(4−
)

L

)2
. (B.17)

Thevalueof A(u), Eq. (B.14), at the horizon and theHawking temperature,Eq. (4.35),
are therefore given by

AH = log
(
� L φ

−1/(4−
)

L

)
+ I , T = �

(
fH eI

2π φ
1/(4−
)

L

)

, (B.18)

where we defined

I ≡
1∫

0

du Ã′(u) . (B.19)

We emphasise again that these relations fix the observables AH and T/� in terms of
the full solutions for φL and Ã(u). In the particular case of a perturbative solution,
they determine AH and T/� order by order in the expansion parameter φH .

Let us now compute the leading, quadratic backreaction of the scalar on the
geometry, which takes the form

Ã(u) = δA(u) , f (u) = 1 − u2 + δ f (u) . (B.20)

The corrections δA and δ f are both of order O(φ2
H ) and, from Eqs. (4.36b) and

(4.36d), satisfy the two independent equations

δA′′ + 1

u
δA′ = − 1

6

(
δφ′)2 , (B.21a)

δ f ′ − 2

u
δ f = − 4

(
2 − u2

)
δA′ − 
(4 − 
)

12u
(δφ)2

− u
(
1 − u2

)

3

(
δφ′)2 . (B.21b)

The second-order equation (4.36c) for f is redundant as it follows from the remaining
three Eqs. (4.36a), (4.36b) and (4.36d). Demanding that δA vanish at the boundary
u = 0 we can integrate equation (B.21a) twice and obtain

https://doi.org/10.1007/978-3-319-93967-4_4
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δA(u) = −
u∫

0

dv
1

v

v∫

0

dw w
1

6

(
δφ′(v)

)2
(B.22)

u→0−−→ −φ2
L

24
u4−
 ,

in accordance with Eq. (4.56a). Requiring that δ f vanish at the horizon u = 1 we can
now integrate equation (B.21b) to get

δ f (u) = −u2
u∫

1

dv
1

v2

[
4
(
2 − v2

)
δA′(v) + 
(4 − 
)

12v
(δφ(v))2

+v
(
1 − v2

)

3

(
δφ′(v)

)2
]

(B.23)

The corresponding change in fH = − f ′(u = 1) can be read off from Eq. (B.21b):

δ fH = 
 (4 − 
)

12
φ2
H + 4 δA′(u = 1) (B.24)

= 
 (4 − 
)

12
φ2
H

⎛

⎝1 − 
 (4 − 
)

8

1∫

0

dv v−5
[
2F1(2 − 
/4, 1 + 
/4; 2; 1 − 1/v2)

]2
⎞

⎠ .

Defining δ I ≡ ∫ 1
0 du δA′(u), we obtain the following expressions for temperature T

and entropy density s from (B.18):

4GNs = e3AH = (� L)3

φ
3/(4−
)

L

(
1 + 3δ I + O(φ4

H )
)

, (B.25a)

T/� = (2 + δ fH ) (1 + δ I ) + O(φ4
H )

2πφ
1/(4−
)

L

. (B.25b)

Note that sub-leading corrections to the scalar,

φL = δφL + O(φ3
H ) = �(
/2 − 1)

�(
/4)2
φH

(
1 + O(φ2

H )
)

, (B.26)

enter expressions (B.25) at the same order as δ fH and δ I do, so

(
�

πT

)4−


= �(
/2 − 1)

�(
/4)2
φH

(
1 + O(φ2

H )
)

. (B.27)

https://doi.org/10.1007/978-3-319-93967-4_4
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The sub-leading corrections to φL cancel, however, in the expression for the speed
of sound, which becomes1

c2s = d p̄

dε̄
= d log T

d log s
= 1

3
[1 − (4 − 
) δ fH ] + O (

φ4
H

)
. (B.28)

B.4 Numerical Construction of RG-Flow Geometries

In this appendix we outline our construction of numerical background solutions to
the action (5.13) for the scalar potentials V(1) and V(2) discussed in Sect. 4.6. For that
purpose it is convenient to use the scalar φ as radial coordinate [6], which is assumed
to increase monotonically from the boundary φ = 0 to the horizon φ = φH > 0.
Defining

eB(φ) ≡ L

2u

du

dφ
, (B.29)

the background metric (4.32) takes the form

ds2 = g(0)
mndx

mdxn = e2A(φ)
[− f (φ)dt2 + dx2

] + e2B(φ)

f (φ)
dφ2 . (B.30)

The residual scaling symmetry, inherited from the UV CFT, can be used to fix the
value of the scalar source to � = 1/L as the temperature is varied, knowing that all
observables can only depend on the dimensionless ratio T/�.

The equations of motion (4.36) become

4
dA

dφ
− dB

dφ
+ 1

f

(
d f

dφ

)
− e2B

f

(
dV

dφ

)
= 0 , (B.31a)

d2A

dφ2
−
(
dA

dφ

)(
dB

dφ

)
+ 1

6
= 0 , (B.31b)

d2 f

dφ2
+
[
4
dA

dφ
− dB

dφ

]
d f

dφ
= 0 , (B.31c)

6

(
dA

dφ

)(
d f

dφ

)
+ f

[

24

(
dA

dφ

)2

− 1

]

+ 2e2BV = 0 , (B.31d)

composed of a first-order equation for B (B.31a), two second-order equations
(B.31b)–(B.31c) for A and f , and the first-order constraint (B.31d). The system
is partly redundant in the sense that the constraint (B.31d) and its derivative are

1The result for c2s agrees with the one computed in Ref. [5] using a different radial coordinate. Note
that the leading correction to the conformal value 1/3 is negative for all 
, 2 < 
 < 4.
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algebraically given in terms of the other three equations:

(
d

dφ
− 2

dB

dφ

)
(B.31d) = −2 f (B.31a) +

(
48 f

dA

dφ
+ 6

d f

dφ

)
(B.31b)

+ 6
dA

dφ
(B.31c) (B.32)

This redundancy prevents the constraint from restricting the series coefficients in
the local near-horizon and near-boundary solutions which thus each involve five
integration constants.

Imposing regularity on A and B, the near-horizon expansion depends on three

modes
{
AH , f φ

H , φH

}
and reads

A(φ) = AH − 1

3

V (φH )

V ′(φH )
(φ − φH ) +

∑

k≥2

bA,φ

k (φ − φH )k , (B.33a)

f (φ) = (φ − φH )

[

f φ

H +
∑

k≥1

b f,φ
k (φ − φH )k

]

, (B.33b)

B(φ) = 1

2
log

(
f φ

H

V ′(φH )

)

+
∑

k≥1

bB
k (φ − φH )k , (B.33c)

with all series coefficients fixed in terms of the near-horizon modes and the cho-
sen potential V (φ). Inserting the near-horizon expansions of φ(u), Eq. (4.53c), into
(B.33) and equating the result with the near-horizon solution of A(u) and B(u),
Eq. (4.53), relates f φ

H to the near-horizon mode fH in the u-coordinate, ensuring that
near-horizon solutions satisfy Eq. (B.29). In particular, it follows fromEq. (B.29) and
φ(u)’s near-horizon expansion, Eq. (4.53c), that

fH = − L2 V ′(φH )

2

eB(φH )

L
. (B.34)

In order to determine which boundary conditions we must impose on the fields
for the spacetime to be asymptotically AdS5, let us switch to a radial coordinate ζ

in terms of which the line element (4.32) reads

ds2 = g(0)
mndx

mdxn = e2A
[− f dt2 + dx2

] + L2

ζ 2 f
dζ 2 . (B.35)

For this metric to approach AdS5 as ζ → 0, Eq. (4.31), A and f need to behave as

A ∼ log

(
L

ζ

)
, f ∼ 1 . (B.36)
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Combining this with the leading near-boundary behaviour of the scalar, φ ∼ �ζ ,
one finds that

A = − logφ + log (� L) + o(1) , f = 1 + o(1) . (B.37)

Imposing these boundary conditions and setting the sub-leading mode log (� L) of
A to zero by scaling the operator source � to � = 1/L , near-boundary solutions to
(B.31) assume the form

A′(φ) = − logφ + O(φ2) , f (φ) = 1 + O(φ4) , B(φ) = log

(
L

φ

)
+ O(φ2) .

(B.38)

Matching Eq. (B.37) with the near-boundary expansions of A(u) and φ(u), Eq.
(4.56a), provides the relation2

Ab =
(

� L

φL

)2

= 1

φ2
L

. (B.39)

To construct global solutions that connect the local solutions (B.33) and (B.38),
we employed the method developed in Ref. [6]. The key step is the realisation that a
decoupled non-linear second-order equation for G(φ) ≡ A′(φ) can be derived from
Eq. (B.31)3:

G ′(φ)

G + V/ (3V ′(φ))
= d

dφ
log

(
G ′(φ)

G(φ)
+ 1

6G(φ)
− 4G(φ) − G ′(φ)

G + V/ (3V ′(φ))

)
. (B.40)

Imposing regularity at the horizon, Eq. (B.33a), global solutions to Eq. (B.40) depend
on the single integration constant φH and can readily be produced numerically. Solu-
tions for A(φ), B(φ) and f (φ) are then obtained by simple integrations of the equa-
tions of motion (B.31). They depend on four additional integration constants which
are fixed by requiring that the spacetime be asymptotically AdS5, Eq. (B.38), and
that f (φ) vanish at the horizon:

A(φ) = − logφ +
φ∫

0

dϕ

(
G(ϕ) + 1

ϕ

)
, (B.41a)

B(φ) = log

(
L

φ

)
+

φ∫

0

dϕ

(
G ′(ϕ) + 1/6

G(ϕ)
+ 1

ϕ

)
, (B.41b)

2Compare with Eq. (B.17).
3This possibility is hinted at by the observation that A(φ)’s near-horizon expansion turns out to be
independent of the mode f φ

H , and by the fact that A(φ) enters Eq. (B.31) only through its derivative.

https://doi.org/10.1007/978-3-319-93967-4_4
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f (φ) =
∫ φH

φ
dϕ exp [−4A(ϕ) + B(ϕ)]

∫ φH

0 dϕ exp [−4A(ϕ) + B(ϕ)]
. (B.41c)

These solutions depend on the single constant φH which parameterises the single
physical parameter T/� = T L .

Ultimately, we are looking for global solutions A(u), f (u), φ(u) in terms of
the u-coordinate, which we found to be a lot more convenient when dealing with
perturbations of the metric. For this purpose, we first determine the expansion of a
global solution (B.41) near the horizon u = 1 by computing themodes AH = A(φH )

and fH from relation (B.34), and plugging the result into the near-horizon expansions
(4.53) of A(u), f (u), andφ(u).We obtain a global solutionwithout further numerical
integrations bymatching this near-horizon expansion directlywith the near-boundary
expansion (4.56) at an intermediate value of u where both local solutions are valid.
The fact that the near-horizon modes stem from a global solution to the connection
problem ensures that these solutions indeed display the appropriate near-boundary
behaviour, which can be verified by checking relation (B.39).

For the computation of fH it is helpful to use

G(φH ) = −1

3

V (φH )

V ′(φH )
, φ G(φ) = φ A′(φ)

φ→0−−→ −1 , (B.42)

which follow from Eqs. (B.33a) and (B.38), in order to re-write expression (B.34):

fH = − L2 V ′(φH )

2

eB(φH )

L

=
(
L2 V (φH )

6G(φH )

)
1

φH
exp

⎧
⎪⎨

⎪⎩
lim
φ→0

[
log

(−G(φH )

−G(φ)

)
+ log

(
φH

φ

)]
+

φH∫

0

dϕ
1

6G(ϕ)

⎫
⎪⎬

⎪⎭

= − L2 V (φH )

6
exp

⎧
⎪⎨

⎪⎩

φH∫

0

dϕ
1

6G(ϕ)

⎫
⎪⎬

⎪⎭
. (B.43)

Hawking temperature T and entropy density s, Eq. (4.35), are then given by

T L = fH eAH

2π
= − L2 V (φH )

12π

1

φH
exp

⎧
⎨

⎩

φH∫

0

dϕ

(
G(ϕ) + 1

ϕ
+ 1

6G(ϕ)

)
⎫
⎬

⎭
, (B.44a)

4GNs = e3AH = 1

φ3
H

exp

⎧
⎨

⎩
3

φH∫

0

dϕ

(
G(φH ) + 1

ϕ

)
⎫
⎬

⎭
. (B.44b)
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The leading high-temperature asymptotics of (B.44) are obtained by taking the limit
φH → 0, recalling that V (0) = −12/L2,

T L
φH→0−−−→ 1

πφH
exp

⎧
⎨

⎩
lim

φH→0

⎛

⎝
φH∫

0

dϕ G(ϕ)

⎞

⎠

⎫
⎬

⎭
, (B.45a)

4GNs
φH→0−−−→ 1

φ3
H

exp

⎧
⎨

⎩
3 lim

φH→0

⎛

⎝
φH∫

0

dϕ G(ϕ)

⎞

⎠

⎫
⎬

⎭
. (B.45b)

The limit of the remaining integral does not vanish, by virtue of the fact that G(φ),
whose equation of motion (B.40) has regular singular points at φ = 0 and φ = φH ,
does not behave smoothly in the limit φH → 0.4 However, the limiting value can
be computed by comparison with the perturbative high-T solution, Eqs. (B.13) and
(B.25):

T/� = T L
φH→0−−−→ 1

πφH

�(3/4)2√
π

, 4GNs
φH→0−−−→

(
�(3/4)2

φH
√

π

)3

. (B.46)

Details on the numerics For integrals (B.41)–(B.44) in the φ-coordinate, a near-
horizon expansion of G(φ) to eleventh order was used in the region φH − φ <

10−2. We verified that the dependence of AH and fH on φ4
H , which is sub-leading

compared to the φ2
H -contribution from AppendixB.3 but completely dictated by

the quartic term (4.57) common to all potentials, is the same for all solutions. The
local solutions (4.53) and (4.56) in the u-coordinate were expanded to sixteen orders
beyond horizon and boundary modes. Inverting the near-boundary expansion, we
extracted the boundary modes Ab, fb, φL , φSL by matching the two local solutions
at u = 0.5. The numerical error due to the truncation of the two series is of order
0.517 ∼ 8 · 10−6. We checked that relations (4.81) and (B.39) between horizon and
boundarymodeswere indeed satisfiedwith a numerical error smaller than 10−5 by all
considered solutions. Directly matching the two local solutions in the u-coordinate,
rather than numerically integrating from the horizon towards the boundary, involved
the somewhat tedious inversion of the near-boundary expansion to sixteen orders.
However, it greatly simplified the computation of the transport coefficients because
the integrals (4.75) over the global background solution split into two simple integrals
over the near-horizon and the near-boundary series solutions.

4We believe that this point was overlooked in Ref. [6].
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