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Preface

During the last few decades, the use of polymeric materials has grown so that they
form the most important class of materials if counted by volume and it can be
regarded as certain that their growth rates will remain high in the future. While at
the beginning of the era of polymers Chemistry was the predominant science,
Engineering and Physics have become more and more requisite for the successful
development of polymeric materials. Engineering, as the efficient production of
materials of good quality and their highly sophisticated processing have developed
into key factors of economic success; and Physics, as material properties have
become decisive for specific applications and the continuing innovation and
improvement of products. These requirements cannot be fulfilled without a
fundamental knowledge of polymeric materials and a profound understanding of
the relations between the molecular structure of polymers and their physical and
processing properties.

These developments and the increasing number of joint uses of various mate-
rials in highly sophisticated technical products led to the foundation of special
institutes devoted to materials science at some universities about 40 years ago.
Besides classical materials like metals, glass, and ceramics, polymers became a
central point of academic teaching and research. This book has its origin in lec-
tures for students in the field of polymeric materials within the Department of
Materials Science and Processing at the Friedrich-Alexander-University Erlangen-
Niirnberg. Its main intention is to teach the basics about polymers necessary for
everybody working with these materials. One part is based on the textbook
“Polymermechanik,” which appeared in 1990, the other stems from more recent
lectures.

The book follows two main guidelines. One is a quantitative description of the
molecular structure, though this has sometimes had to be simplified due to its
complex nature. The other presents relationships between molecular quantities and
material properties, which cover the solid and the molten state. The temperature is
the key external parameter according to which the mechanical behavior is com-
prehensively discussed. Nevertheless, this work has to be regarded neither as a
complete text book on the mechanics of polymer materials nor on their rheology.
Rather, it is meant to discuss these fields from a common viewpoint, which
encompasses the transitions between the solid and molten states.
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“Tools” are described insofar as they are believed to be necessary for a deeper
understanding of the results presented. They comprise measuring devices as well
as mathematical formalisms required for dealing with large deformations.

Much space is devoted to the linear theory of viscoelasticity as it is coherent in
itself and allows quantitative insights into relations between properties and
molecular structure. Theories covering the nonlinear viscoelastic regime which
dominates processing are not yet in a state of development enabling quantitative
descriptions of properties and processes with a generality comparable to the linear
behavior. This has to be said, although many theories have been published since
1990, the year of the appearance of “Polymermechanik.” Nevertheless, an over-
view of constitutive equations based on various models is given and some of their
predictions are compared with experimental findings.

In many parts of the book, results of investigations performed at the Institute of
Polymer Materials are presented. They are examples of how research and estab-
lished knowledge can become complementary parts of teaching. Regarding the
references, long lists, which could easily be obtained today from various electronic
bibliographies, have deliberately been avoided. Instead, a selection of original
literature is cited, which opens the door to deeper information for those who are
interested in more details.

The book is written from our experience of teaching the knowledge on poly-
meric materials, which we think to be useful for people interested and engaged in
this class of materials. We hope it will be helpful for students to consolidate and
broaden their knowledge, to researchers in the field of polymers at various insti-
tutions, and even to those working in industry, whenever they would like to get
some fundamental questions answered, which arise from dealing with polymers.

As it is obvious from the reference lists, the originality and actuality of the
results presented in this book are based, to a high degree, on the research of
doctoral students under the guidance of the authors of this book. Particularly
appreciated are the contributions from the theses of:

Dr. Dietmar Auhl Dr. Robert Greiner
Dr. Hans-Jiirgen Grief3 Dr. Joachim Kaschta
Dr. Daniela Hertel Dr. Giinther Link
Dr. Jens Hepperle Dr. Walter Pfandl
Dr. Claus Gabriel Dr. Michael Wolf
Dr. Ute Maria Kessner Dr. Franz Zahradnik

Dr. Stefan Kurzbeck
Dr. Julia Maria Resch
Dr. Martin Schwetz
Dr. Florian Stadler
Dr. Jens Stange

Dr. Thomas Steffl

Dr. Erik Wassner

Dr. Friedrich Wolff
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Chapter 1
Introduction

1.1 General Aspects of Polymeric Materials

Polymers consist of macromolecules composed of a great number of basic units
called monomers, which are connected to each other in an identical way. Polymers
that are ubiquitous in nature and can be regarded as the basis of life are called
natural polymers. Examples are proteins and polysaccharides. Proteins are the
basic elements of various nucleic acids or natural silk, for example, polysaccha-
rides of cellulose, starch, or chitin. Cellulose is the main component of the
extremely versatile material wood and starch the base of many kinds of food.
Another example is natural rubber, a cis-isoprene (cf. Table 4.4) which has found
an important technical application in tyres.

Synthetic polymers are products of modern times. Polyvinylchloride was syn-
thesized on a laboratory scale in 1913, but not industrially produced before the
1930s, the time when polystyrene and polymethylmethacrylate made their first
steps in applications. The breakthrough of synthetic polymers started in the 1950s
due to the invention of the Ziegler—Natta catalysts which made an economic
production of polyethylenes and polypropylenes possible. Ziegler and Natta
received the Nobel Prize for their inventions in 1963. Another key for the over-
whelming success of polymers as a new class of materials was the abundance of
cheap monomers based on improved and scaled-up petrochemical processes.

Synthetic polymers can be divided into materials that are able to be shaped and
those that can only be applied together with a substrate. The latter comprise
dispersions, varnishes, paints, and functional polymers. The shapeable polymers
are split into duromers, elastomers, and thermoplastics (cf. Sect. 4.1), whereby
thermoplastics have the largest market share.

Synthetic polymeric materials can be made in a great variety of modifications as
becomes evident from the schematics in Fig. 1.1. Not all thinkable combinations
of chemical moieties arranged in various structures can be synthesized, however,
and even of those feasible to make, only a few show properties interesting for
applications. Nevertheless, Fig. 1.1 gives an idea of the wide scope of products
obtainable by polymerization.
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o6800000000 High density polyethylene

Linear homopolymer (HDPE)

Low density polyethylene
(LDPE)

- Branched homopolymer

Statistical copolymer

ChE RSl Styrene acrylonitrile
& :> copolymer (SAN)

@ Styrene-butadiene
Block copolymer (SB)

- Block copolymer
Styrene-butadiene -styrene
) Multi-block copolymer  Block copolymer (SBS)
) Styrene-butadiene graft
Graft copolymer copolymer (B-g-S)

Fig. 1.1 Schematic examples of molecular architectures of synthetic polymers

Linear polymers synthesized from one special monomer, like high density
polyethylene, polypropylene, polyvinylchloride, and polystyrene, for example,
form the largest stake in the market. Besides the chemical nature of the monomer
the chain lengths and their distributions can be varied. As will be discussed later,
these changes in molar mass and molar mass distribution have a decisive influence
on properties of polymeric materials. Additionally, branches can be introduced. As
their length, concentration, and distribution along the main chain can be changed, a
great variation in the architecture and following from that the tailoring of prop-
erties become possible. Low density polyethylene is an example for such a
branched product with a broad field of applications.

The number of products becomes still more diversified if two different mono-
mers are copolymerized. As sketched in Fig. 1.1 this can be done in various ways.
The monomers can statistically be distributed along the chain or arranged in
blocks. These species are named statistical or block copolymers, respectively.
Composing a main chain of blocks of different lengths or generating branches with
one species of monomer by grafting, open up a field of macromolecules with great
chemical and structural varieties. Styrene is suitable for copolymerization with
acrylonitrile or butadiene resulting in engineering copolymers consisting of sta-
tistically arranged styrene and acrylonitrile (SAN) or styrene-butadiene blocks
(SBS), respectively. Once again one can imagine how manifold the chemical and
structural compositions of the molecules could in principle be.

Copolymerization plays an important role for polyethylenes, too. Olefinic
monomers up to eight carbon atoms (octene) are copolymerized with ethylene and
yield short-chain branches. These materials are called linear low density poly-
ethylenes (cf. Sect. 4.1). Copolymerization of ethylene and polar monomers like
vinylacetate result in grades with specific adhesion properties.
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These few examples demonstrate the diversity of polymeric materials and their
potential to get tailored for special applications. Therefore, it is not surprising that
polymers have substituted metals and natural materials like wood in many
applications. Indeed, they have reached a very important economic and technical
position within only 50 years and the industries related to them play an important
role in many countries today.

In parallel to the development of synthetic polymers on a laboratory scale,
scientific questions regarding their structure and physical properties have come up.
Three highlights among the many steps in research should be mentioned. In 1920,
H. Staudinger published his idea on the macromolecular structure of polymers [1].
His scientific achievements were honored in 1953 by the Nobel Prize. In the 1930s,
Guth and Mark [2] and Kuhn [3] postulated the coil structure of macromolecules in
solution, and starting around 1940 the statistical mechanics of coiled molecules by
Flory added an important step to a deeper understanding of the behavior of
macromolecules [4-6]. Flory was awarded the Nobel Prize in 1974. During the
1960s and 1970s a lot of experimental data was collected regarding properties of
polymers in their solid and rubber-elastic states which were complemented by
investigations in the melt later on. These results are the basis for a better under-
standing of many of the application and processing properties of polymeric
materials. Furthermore, the progress in the analytical techniques of polymers made
it possible to correlate properties with their molecular structure. This knowledge
was and is the basis of specific developments of polymeric materials.

This book tries to collect findings and expertise about the deformation and flow
of polymeric materials under the special aspects of how external parameters and
here, in particular, temperature and time, and internal parameters based on the
molecular structure influence this behavior.

1.2 Nomenclature

The generic names of polymers have been standardized by a Working Party of the
International Union of Pure and Applied Chemistry (IUPAC) [7]. Particularly, for
polymeric materials of high technical relevance acronyms are used that can be
found in [8]. For example, for polypropylene the acronym is PP, polyethere-
therketone is designated as PEEK. The generic name of some polymers, the
chemical structure of their repeat units, and their acronyms are presented in
Tables 4.2—4.4. Besides this standardized nomenclature, different trade names for
products of the same chemical structure are common. That goes back to the
intention of companies to assign brand names to their products. As norms do not
exist, only in rare cases the chemical structure or information on some basic
properties can be derived from the trade name.
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1.3 General Classification of Polymeric Materials

Synthetic polymers can be classified according to different aspects. One is the
chemical group they belong to. Polyolefins, polyamides, and polyaryletherketones
are examples. Another classification is related to the kind of chemical reaction like
polymerization (e.g., PE, PP, PS, PVC), polycondensation (e.g., PA, PET), or
polyaddition (e.g., PUR). The products belonging to the acronyms are listed in
Tables 4.2-4.4. More details on the different polymerization methods can be found
in [9], for example. A third classification aspect is related to the dynamic-mechanical
behavior as a function of temperature (cf. Sects. 4.3—4.4). Thermoplastics, which are
either totally amorphous or semicrystalline, can be melted and favorably processed
in this state, elastomers are characterized by a wide-meshed network, and duromers
by a high density of chemical crosslinks.

A very application-related classification is based on the continuous use tem-
perature T, the determination of which is standardized [10]. It defines the heat
stability of various polymer materials with respect to a chosen property like the
yield stress, for example. T, is of interest in technical applications at higher
temperatures. It is essentially determined by the chemical composition of the
macromolecular chain. In Fig. 1.2 some polymeric materials are presented and
ordered according to T,,. The different polyethylenes LDPE, LLDPE, and HDPE
(cf. Table 4.7), polystyrene (PS), and polyvinylchloride (PVC) belong to the group
of the so-called standard polymers with the largest market share. The next cate-
gory are the so-called technical or engineering polymers. They are used in
applications more demanding with respect to temperature. Some so-called high
temperature thermoplastics can be applied up to 260 °C for longer periods of time
without loosing too much of their properties. The products belonging to most of
the acronyms can be found in Tables 4.2-4.4. PAEK designates the polyaryle-
therketones which polyetheretherketone (PEEK) is a part of. LCP stands for liquid

High temperature thermoplastics
Tow = 150 — 260 °C LCEEES

PSU PEI PES

Technical polymers
T <140 °C

Standard polymers
T, <90 °C

Fig. 1.2 Polymeric materials classified according to their continuous use temperature 7,
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crystalline polymers, PSU for the amorphous polysulphone, and PEI for the
amorphous polyetherimide. Particularly, in case of the semicrystalline PEEK and
PPS the excellent temperature stability is coupled with a pronounced resistance to
a lot of chemicals and aggressive media. For PEEK and PPS, these properties lead
to the designation as high performance products which compete with metals in
some applications. However, due to their demanding prices, high temperature
resistant polymers comprise a relatively small market till now.
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Chapter 2
Physical Structure of Macromolecules

In this chapter, the structure of single macromolecules is discussed, together with
the possibilities for their internal motion. This leads to the concept of the shape
and extension of macromolecules as calculated by random walk statistics, in theta
solution, in bulk and in the melt. The chapter further contains the description of
molar mass and molar mass distribution.

2.1 Structure and Brownian Motion of Macromolecules

Let us consider the spatial shape of a molecule consisting of five consecutive
carbon atoms, i.e., of a pentane or a substituted pentane. The structural formula of
pentane

T
T
H H H HH

suggests an incorrect picture of the spatial shape of the molecule. In reality, the
four bonds of a carbon atom can never be situated in the same plane; neither will
the single bonds between successive carbon atoms form parts of the same straight
line. The four single bonds of a carbon atom build up a regular tetraeder, as
illustrated in part a of Fig. 2.1.

With the carbon atom in its center, the bonds point to the vertices of the
tetraeder. The spatial angle between each pair of bonds has the same fixed value of
¥ =109.47° (cos ¥ = —1/3). In Fig. 2.1, this structure is further illustrated by two
models of the methane molecule. The “Buechi-model” places emphasis on the
direction of the bonds, which are indicated by small tubes. This model allows the
illustration of the change of the spatial shape of a molecule by the rotation around
single carbon-carbon bonds (the conformational changes of the molecule). The

H. Miinstedt and F. R. Schwarzl, Deformation and Flow of Polymeric Materials, 7
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Fig. 2.1 a The directions of the four single bonds extending from a carbon atom b Buechi-model
of the methane molecule ¢ Stuart-model of the methane molecule. Reprinted from [1]

“Stuart-model” visualizes the occupation of space of a molecule by its outer
electron shells. The dimensions of Stuart models are mostly in proportion to the
real molecule (scale 1:108).

Next, we discuss the spatial shape and the conformations of the pentane mol-
ecule as illustrated in Fig. 2.2. The direction of the first carbon-carbon bond
(C;—C,) is assumed to be fixed. On rotation around this bond, the three further
bonds starting from atom C, will move on the surface of a cone with a generating
line, including the angle ¥ with the direction of the first bond. The next carbon
atom C3 will then be situated anywhere on the basic circle of this cone. Fixing the
position of C; for the moment, the fourth carbon atom C4 will move on the basic
circle of a cone with a generating line including the angle ¢ with the direction
(C,—C3), and so on.

If all rotations around the bonds C;—-C,, C,—C3, C5—C4 can take place inde-
pendently of each other, the last carbon atom Cs can reach a large number of
spatial positions, even if the position of C; and the direction of (C;—C,) are kept
fixed. The change in shape of the pentane molecule occurring in this manner looks
similar to the twisting of a worm and is called the “micro-Brownian motion” of the
macromolecule.

The micro-Brownian motion of the macromolecule is the conformational
change in shape of the molecule originating from the rotations around the
single C—C bonds of the main chain.

By the continuous micro-Brownian motion originating from the thermally
induced kicks of the environment, a macromolecule will pass through all its
conformations permitted by the positions of its neighbors. Most conformations will
lead to the shape of a coil. A few conformations will adapt the shape of a stretched
ellipsoid, only one will lead to the completely stretched conformation. Conse-
quently, we expect the macromolecule averaged over time to assume the shape of
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Fig. 2.2 Conformations of
the pentane molecule

a coil, whose details will continuously change with time. Description and calcu-
lation of these coils will be handled in Sect. 2.3.

The completely stretched conformation is defined by the condition that the
distance between the beginning and the end of the molecule is maximal. In
Fig. 2.3, the carbon chain with single bonds is shown in its completely stretched
conformation in the representation of a Buechi-model.

In this conformation, all bonds of the main chain are situated in one single
(horizontal) plane in the shape of a “zick-zack”. The other two bonds of the
carbon atoms emerge from this plane, one into the direction upwards and one into
the direction downwards.

The completely stretched conformation is well suited to introduce the concept
of tacticity of vinyl-polymers. The class of vinyl-polymers is characterized by a
structural unit of the following type

i
_C_
|

=—0—T

R

with R being an arbitrary side-group different from H. The spatial placement of the
side groups R plays an important role for the properties of the vinyl-polymer. This
is illustrated for the case of poly(propylene) PP (R = Me = CH3;) in Fig. 2.4.

Fig. 2.3 Buechi-model of a carbon chain in the completely stretched conformation
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Me Me Me Me
isotactic MM
H H H H
Me H Me H
syndiotactic /M M/
H Me H Me
Me H H Me H
atactic A/W
H Me Me HO Me

Fig. 2.4 Illustrating the tacticity of poly(propylene)

Consider the completely stretched conformation of the PP—chain. If all methyl-
groups are situated on the same side of the principle plane, the polymer is called
isotactic. If the methyl-groups are alternatively situated above and below the main
plane, the polymer is called syndiotactic. If the position of the methyl-groups is
irregular, the polymer is called atactic. Isotactic and syndiotactic polymers tend to
crystallization, because their molecules fit better into the crystal lattice. Stereo-
specific polymers are obtained by special coordination polymerization methods
with mixed catalysts (Ziegler and Natta).

2.2 Molar Mass and Molar Mass Distribution

Next, we deal with the molar mass of the macromolecules, which is a very
important characteristic property of polymers. The definition of the molar mass
(sometimes also called molecular weight) is reasonable only for uncrosslinked
polymers. For uncrosslinked, not branched homopolymers, the molar mass char-
acterizes the structure of the molecule, apart from its tacticity. For uncrosslinked,
branched homopolymers, this information has to be supplemented by the number,
length and the topology of the branches.

We start with the definition of Avogadro’s number. This number does not have
a physical dimension, but a unit is designated to it, called mol™', meaning
“per mol”.
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Np = 6.0225 - 10%mol ™! (2.1)

The mol is used as a unit of the amount of a material. The totality of Nu
identical items is designated as one mol of those items. Let m be the mass of a
molecule (in kg), then its molar mass is defined as

M=Ns-m (2.2)

The unit of the molar mass is kg/mol. The number N, is defined in such a way that
the molar mass of the nuclide '*C becomes exactly 0.012 kg/mol = 12 g/mol.
Consider the molecule of a non-crosslinked, unbranched homopolymer:

Ap+A+A+ - +A+Ag

The moieties Ag and Ag of the beginning and the end of the molecule respectively,
will generally differ from its center part, which consists of P repetitions of one
single group A. P is called the degree of polymerization; the repeating unit A is
called the structural unit. If My, My, and My, are the molar masses of the structural
unit, the beginning and the end moiety of the molecule, respectively, the molar
mass of the complete molecule is

M =Mg+P-My+Mg~P-M, (2.3)

The last part of this equation is valid approximately at sufficiently large values
of P. Some examples are:

H H

poly(vinylchloride) PVC —(|3—C— M, = 212+3-1+1:35= 62 g/mol
I|-I Cl
H H

poly(ethylene) PE —|C—C— M, = 212+4-1 = 28 g/mol
hon

As P has to be an integer, the molar mass can only assume a finite number of
discrete values, which are, apart from the small term Mg + Mg, multiples of M,.

We describe the distribution of the molar mass by either counting or weighing
the molecules with a certain molar mass and arrive at a scheme like that of
Table 2.1, in which the k classes are arranged in increasing order of their degree of
polymerization, i.e., P; < P;; fori=1tok — 1. Let n; be the number of molecules
with molar mass M; and let us use the abbreviation:

m; = n,'M,' (24)
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Table 2.1 Discrete values for the distribution of the molar mass arranged in k classes

Number of molecules Degree of polymerization Molar mass Mass of the fraction
n P, M, = Py M, W, =nM/N,
ny P2 M2 X P2 A/[g W2 = nzMz/NA
e P, My~ PeMy Wi = mMJ/Ny

The mass of the fraction i, W;_ is given by the equation
Wi%niM,-/NA:m,-/NA (25)

We further define the total number n, of the molecules considered, by

k
i=1

and the number distribution function of the molar mass, fiM;), as the relative
number of molecules with a molar mass equal to M.

The number distribution function obeys the normalization condition

> fM) =1 (2.8)

and constitutes a discrete distribution function, i.e., it is not defined for values
M # M; . In addition, we define the mass distribution function of the molar mass,
h(Mji), as the relative mass of molecules with a molar mass equal to M;:

Wi n;M; m;
h(M;) = - = = (2.9)

Tk Tk
Wi YoM > my
i=1 i=1 i=1

which, of course, is also normalized

> h(M;) =1 (2.10)

and also constitutes a discrete distribution function.
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For mathematical descriptions, it is often necessary to change from the discrete

distribution function f{iM;) to a continuous distribution function, which is defined
for all values of the molar mass. This is achieved in two steps:
Step 1: We extend the range of definition of the distribution function to all values
of the molar mass. Around each point M; of the M-axis, an interval [B; B;,;) is
created, which starts from the midpoint between M;_; and M;, B, = (M,_; + M})/2
and ends at the midpoint between M; and M;,, B;y; = (M; + M;,1)/2. For the first
interval we choose the bounds B, = M, — M, and B,, for the last interval the
bounds By and By, = M) + M,. The widths b; of those intervals are

bizBi+1—Bi=(Mi+1—Mi,1)/2 for i=2tok—1
b]:Mg+(M2—M])/2 and bk :Mg+(Mk—Mk_|)/2

(2.11)

As fiM) is defined as the relative number of molecules with a molar mass within
the interval [B; B;.1), we put iM) = fiM;) for B; < M < B;,,. fiM) is the proba-
bility to find a molecule within the interval [B; B;,;). If the molar masses would be
equally distributed within this interval, fAM)dM/b; would be the probability to find
a molecule with a molar mass between M and M + dM within this interval.
Consequently, we define a new distribution function

§(M) =f(Mi)/b; for Bi<M<Biy (2.12)

g(M) is a step function defined for all values of M with discontinuities at the points
B;. g(M)dM is the probability to find a molecule with a molar mass between M and
M + dM in the interval [B; B.;).

Step 2: Generally, the number of classes k will be sufficiently large to replace this
step function by a continuous function g(M) which will be approximately equal to
fiM)/b; at the points M = B; and is smooth in between. To distinguish between
fiM) and g(M), we will call the latter the number distribution density of the molar
mass. The function g(M)dM describes the relative number of molecules with a
molar mass between M and M + dM. It will occur in all integral representations of
the molar mass. Its condition of normalization reads

Biy

/ g(M)dM = Zbig(Mi) = Zf(Mi) =1 (2.13)

i

k

i=1

(o)
[ stonyan -
0
Besides the number distribution density, an other distribution function is
introduced, the mass distribution density, which describes the relative mass of the
molecules with a molar mass between M and M + dM:
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w(M) = M - g(M)/M, (2.14)

with

o Y (mi/My) Y om

The denominator M, is introduced to normalize the mass distribution density by
the condition:

M o mi ) mi (2.15)

M,

/ w(M)dM = Mi / Mg(M)dM = 1 (2.16)
0 ! 0
or
M, = [ Mg(M)dM (2.15)
/

Apart from one case, the usual methods for the determination of the molar
mass, do not yield the entire distribution function, but only certain averages of it.
The most important are

M, number average of the molar mass
M, weight average of the molar mass
M, z-average of the molar mass

M,  viscosity average of the molar mass

The number average M,, is the mean value of M calculated by using the number
distribution of the molar mass and was defined in Egs. (2.15) and (2.15"). The
weight average M,, is the mean value of M calculated by using the mass distri-
bution of the molar mass and is defined by

M, = ZE’”’M' _ %“fl (2.17)
m; niivi;

and

o0

M, = /M-W(M)szMin./MZg(M)dM (2.17")
0 0
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The second part of Eq. (2.17) is found by multiplying Eq. (2.14) with M and
integrating over M. The z-average M, is the ratio of the number average of M to
the number average of M*:

M, = = 2.18
Zn,Mlz ZmiM,' ( )
and
M, = /M3 -g(M)dM// M?* - g(M)aM (2.18)
0 0

Finally, the ath power of the viscosity average M, is defined as the mass average of
M*. a is a number between 0 and 1, whose value depends on the choice of the
system (polymer—solvent) and on the temperature (Compare also Sect. 2.4).

Agqa 1/a Aglta 1/a
M, = [ZZ’:”’MI'} _ [ZSMA} } (2.19)
m; nivt;
and
00 1/a
M, = /M”-w(M)dM (2.19)
0

If and only if, the polymer is monodisperse, (ny = ny =n;_1 = njy; = ... =
n; = 0; n; = ny), all averages of the molar mass will be equal and equal to M;. For
a polydisperse polymer the following equation always holds

My <M, <M, <M, (2.20)

M, is found between M, and M,,, generally closer to M,,. The equality M, = M,,
only holds in the (rare) special case a = 1. Equation (2.20) is not only an
experimental fact, but a mathematical consequence of the definitions of the various
averages.

The ratios M/M,, and M,/M,, increase with increasing width of the molar mass
distribution. Hence,

S
Ii
X|F
|
v
o

(2.21)

and
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Fig. 2.5 Distribution densities of the molar mass of a technical polymer and the positions of its
averages

S

—1>0 (2.22)

<

w

are introduced as measures for the width of the molar mass distribution. U is called
the nonuniformity of Schulz, U + 1 = M/M,, the polydispersity factor.

Figure 2.5 shows a schematic drawing of the number distribution density g(M),
the mass distribution density w(M) and the positions of the molar mass averages
for a technical polymer. Plotted over a linear scale of the molar mass as abscissa,
those distribution densities are mostly strongly asymmetric curves with a long tail
at the high molar masses. Their values at low molar masses are often difficult to
determine, and are, therefore, indicated by dashed lines. According to Eq. (2.14)
w(M) is shifted to higher molar masses with respect to g(M). Both curves intersect
at the abscissa M = M,,. The line of gravity of the density function g(M) passes
through M, the line of gravity of the density function w(M) passes through M.
The standard deviations of the curves g(M) and w(M) are indicated by ¢, and 7,,.
The maximum of the curve g(M) is situated left to the maximum of the curve
w(M) and both are situated left to the value of M,,.

The averages may be interpreted as statistical parameters of the distribution
densities g(M) and w(M). If the stochastic quantity M is distributed with the
density g(M), its mean value is equal to M, and its variance is given by
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Table 2.2 Parameters of the molar mass distribution of some technical polymers (M in kg/mol)

Polymer M, M., M, MM, M,/M, Lit
Poly(styrene) PS N 7000 182 385 771 2.12 2.00 [2]
Poly(styrene) Styron 666 120 250 - 2.08 - [3]
Poly(styrene) PS 158 K 120 278 - 2.30 - [4]
Poly(vinyl chloride) Solvic 38.6 84 154 2.18 1.83 [51
Poly(methyl methacrylate) Plexiglas 7 N 60 95 1.6 [6]
Poly(ethylene) HDPE HE 6914 176 284 2430 16 8.6 [7]
Poly(ethylene) LDPE Lupolen 1840 H 155 258 2740 16.6 10.6 [7]
Poly(propylene) Moplen HP 501 N 423 254 - 6.0 - [8]
Poly(carbonate) PC1 15 30 - 2.0 - [4]
(o @]
= / (M — My)’g(M)dM = MM, — M?> = UM? (2.23)
0

If the stochastic quantity M is distributed with the density w(M), its mean value is
equal to My, and its variance is given by the equation

= / (M — My)*w(M)aM = M,M,, — M? = UM? (2.24)
0

g, and o, are the standard deviations of the distribution densities g(M) and w(M),
respectively. The quotient of standard deviation to mean value is known in statistics
as the variation coefficient ¢ and constitutes a measure for the relative width of the
distribution density. From (2.23) and (2.24) we obtain the statistical meaning of the
polydispersities as the corresponding squares of the variation coefficients

02
U= 5= c? (2.25)
and
2

Equations (2.23) and (2.24) also prove the general validity of Eq. (2.20). The left-
hand side of Eq. (2.23) is nonnegative, as has to be the right-hand side, proving
that M, > M,,.

The parameters of the molar mass distribution of some technical polymers are
summarized in Table 2.2. All distributions are rather broad. Values for M,/M,
between 1.5 and 3 are quite usual, while PE shows even values as high as 17. In
cases, where U and U could be measured, U was found to be larger than U.
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Fig. 2.6 Molar mass distributions of the technical poly(styrene) PS N 7000 after Wolf [2]

Figure 2.6 shows the distribution functions of the molar mass of poly(styrene)
PS N 7000 as determined by Wolf [2] by means of gel permeation chromatog-
raphy. The distribution functions are linearly plotted in the upper part of the figure
versus a linear scale for the molar mass, and in the lower part of the figure versus a
logarithmic scale for the molar mass. Note that the distribution functions are all
very asymmetric when plotted versus a linear M-scale, but nearly symmetric, when
plotted versus a logarithmic M-scale. The measuring points represent the con-
centrations c; of the fractions, corresponding to the molar masses M;. From these
data it is possible to calculate the number and mass densities of the molar mass, as
will be explained in Sect. 3.4.


http://dx.doi.org/10.1007/978-3-642-55409-4_3
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Table 2.3 Parameters of the molar mass distribution of anionic poly(styrenes) (M in kg/mol)

Polymer M, osm. pressure M, light scattering M,/M,, M,/M, from GPC [9] /U, %

S1 1600 1800 1.12 - -
S2 773 867 1.12 1.14 37
S3 392 411 1.05 1.13 36
S4 164 173 1.05 1.12 35
S5 96.2 98.2 1.02 1.10 32
S6 49 51 1.04 1.10 32
S7 19.7 19.8 1.01 1.09 30
S8 9.7 10.3 1.06 1.10 32
S9 4.6 5.0 1.09 1.10 32

For scientific investigations it is often desirable to investigate polymers with
approximately monodisperse molar mass distributions. These may be prepared by
either fractionation of technical polymers or by special control of the polymeri-
zation process. The company Pressure Chemicals Co, Pittsburgh, USA, has sold
anionic poly(styrenes) with narrow molar mass distributions, which have been
often used for scientific investigations. Unfortunately, those polymers are rather
expensive and, therefore, only small portions of them could be investigated.
Table 2.3 shows a summary of the molecular data of some of these materials.
Parameter values in the 2nd and 3rd column are taken from the producer and were
determined by means of osmotic pressure and light scattering. The ratio M/M,,
calculated from these values is very sensitive to small experimental errors and,
therefore, not very reliable. A better estimate of those ratios is obtained from GPC-

measurements. In the last colomn, /U is listed, which describes, according to
Eq. (2.25), the variation coefficient of the number distribution density g(M).

2.3 The Random Walk Problem in Three Dimensions

As to be seen from Fig. 2.2, even a short olefin chain with five carbon atoms
(pentane) shows an enormous mobility, if the micro Brownian motion is fully
developed. If the first carbon atom is fixed, and if full rotation around the carbon-
carbon bonds can take place, the last carbon atom may occupy a very large number
of spatial positions within a sphere with a radius equal to the end point distance of
the completely stretched conformation. To answer the question on the shape of
such a chain as a time and group average, the random walk model is investigated as
a mathematical description of the real chain. This model is also called random
flight model as the steps are assumed to occur in all three dimensions of the space
(Fig. 2.7).

Starting from the origin of a Cartesian coordinate system, n steps of equal
lengths b are performed in succession, the direction of each step being at random
and independent of the directions of the previous steps. We ask for the probability



20 2 Physical Structure of Macromolecules

Fig. 2.7 The random walk
(flight) problem

w(x, y, z) dxdydz to arrive after the last step within a volume element with the
edges dx, dy, dz around the point x, y, z. As the direction of the first step was
assumed to be arbitrary, the problem has spherical symmetry and the probability
function w(x, y, z) can depend only on the distance r between the starting and
endpoint of the random walk.

w(x,y,z) =w(r) with r?=x>4y> + 7 (2.27)
The completely stretched conformation results in the stretched length, rp,.x, Which
corresponds to the product of the number and the length of the steps of the random
walk

Fmax =N+ b (2.28)
As the maximum length cannot be exceeded, we have
w(r) =0 for r > rmax (2.29)

The random walk problem can be solved exactly for all values of n and r. For
the derivation of the somewhat complicated solution see the excellent compre-
hensive presentations of Flory [10] and Yamakawa [11]. For most applications,
however, it is sufficient to use a simple approximation of the exact solution, which
is valid under the following conditions (Flory [10]):

(1) n> 1 (P islarge); n > 10 in practice
(2) We only consider conformations, which are not too close to the completely
stretched one r < ry,x in practice r < 0.8 Tpyax

Under these assumptions, the probability function of the random walk problem

is given by the Gaussian approximation

3/2
w2 () e (2.30)
— \2nnb? '
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Fig. 2.8 The Gaussian approximation for the probability density of the end point position of the
random walk chain

This function shows a maximum at the position r = 0 and decreases rapidly to
zero with increasing r. It does not fulfill, however, the condition (2.29), showing
that Eq. (2.30) cannot be valid for large values of . The probability function, w(r),
multiplied with 5°n*? is represented as function of (+/bn'’?) in Fig. 2.8. In this
representation the curve does not depend any longer on the values of n or
b explicitly. The function 5°n**w(r) shows a maximum of 0.33 at the origin, a
turning point at the abscissa 1/v/3 = 0.58 and decreases to 22 % of its maximum
value at the abscissa 1, to 0.2 % of its maximum value at the abscissa 2. In the
figure, the regions of validity [from r = 0 to r/(bn'*) = 0.8n"%] and invalidity
[from r/(bnm) =0.82"%tor = oo] of the approximation, are also indicated.

For most questions in polymer physics the conditions for the validity of the
Gaussian approximation will be fulfilled, as n will be of the order of magnitude of
P, and as completely stretched conformations do not play a significant role in most
problems. Exceptions to this rule are

The behavior of very stiff polymers

The behavior of polymers with a very low degree of polymerization

The behavior of rubbers at large deformations and near rupture

The behavior of materials with frozen stresses at high degrees of orientation

Equation (2.30) describes the probability density of the position of the endpoint
of the random walk chain in space, but not the probability of the occurrence of
chains with a certain end to end distance, independent of their orientation. The
latter is called the probability density of the end to end distance W(r). W(r)dr is the
probability to find a chain with an end to end distance between r and r + dr,
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Fig. 2.9 Gaussian approximation for the end to end distance of the random walk chain

irrespectively of the orientation of the vector connecting its beginning and end-
point. To calculate W(r), we integrate the probability w(r) over the space bound by
the spherical shells with radius r and r 4 dr around the origin. This is achieved by
introducing spherical coordinates and leads to the result

W(r) = 4nr*w(r) (2.31)

Inserting the Gaussian approximation, we find for the probability

24 1 \? >
— . —(r/rw)
W(r) © b <rw> e (2.32)

with the abbreviation

re = \/2/3-by/n (2.33)

The product bn'/? - W(r) is shown as a function of 7/r,, in Fig. 2.9.

The distribution of the end to end distance shows a maximum at the value r = r,,,
meaning that r,, is the most probable end to end distance of the chain. The function
W(r) is normalized, because

/ W(r)dr=1 (2.34)
0

as to be seen, by introducing ¢ = #/r,, as a new integration variable and solving the
integral by partial integration.
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The most important parameter of the chain statistics is not r,, but the average of
the square of the end to end distance, called the mean square distance:

0 (2.35)

Equation (2.35) is obtained by the substitution of ¢ = r/r,, and partial inte-
gration. The mean square distance is proportional to the number of steps in the
random walk n. The quantity +/(r?), which represents a measure for the mean
radius of the polymer coil, increases proportional to the square root of the number
of steps (square root of molar mass or degree of polymerization). Using (2.35), the
two distribution densities of the random walk problem may be rewritten as

3\ e
= —— /A 2.
w(r) <2n<r2>> e (2.36)
and
6 7‘2 32 2
—13. L 32
W(r)=3 pypIR ) e (2.37)

Similarly, the averages of all positive integer powers of the end to end distance
may be calculated by repeated partial integration

1:3.5- - (2k+1), 5, 1:3:5 (2k+1)

2y _ 2k _ 2%

<r >_ 3/( <V> - 2k Iy (238)
_ 62-4-6---(2k _ 2 2-4-6---(2k) 4

(2ly = \/; . ( )<r2><2k 1)/2:7%.—2]( ( )rka ' (2.39)

These formulae are valid for all positive integer values of k and for k = 0.
Equation (2.35) may be derived in another, more illustrative way, which has
been used frequently by Flory [10]. Let r;, r,,....,r,, be the connecting vectors
representing the n steps of the random walk (cf. Fig. 2.10). Each of those vectors
has the same length b, but an arbitrary direction in space.
The end to end vector of the random walk is the sum of all the connecting
vectors

K:ZI+Z2+K3+'”+ZH (240)

Its absolute value, r, which equals the end to end distance, is found as the square
root of the scalar product of the vector r with itself:
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Fig. 2.10 Definition of the
end to end distance as the
sum of the connecting vectors
and the definition of the
radius of gyration of the
random walk (flight) chain

rer= (ri 1) (2.41)
i=1 k=1

The double sum over i and k may be separated into a sum with equal indices and a
sum with different indices:

n

P o)=Yt Y =t 3 (nn)

i=1 k=1 i=1 i=1k=1 i=1 k=1
i#k i#k
(2.42)

This equation is valid for each chain of n steps of equal length, independently of
the law specifying the direction of the successive steps.

The average of the second sum will vanish for the random walk chain, as the
angle between two different connecting vectors is arbitrary and the angle 7 — o
occurs with equal probability as the angle ¥ . In the first case, the scalar product of
the two vectors will contribute with —b? cos ¥ to the sum, in the second case with
b2 cos Y, and, on the average, both terms will cancel each other, i.e.,

((ri-n))=0 for i#k (2.43)

Inserting this into Eq. (2.42), leads again to Eq. (2.35) for the random walk
chain. Though both equations are identical, their requirements are different. We
used the Gaussian approximation for deriving (2.35), but the weaker restriction of
random walk only, now.

Besides the end to end distance, a further measure is often introduced to
characterize the coil dimensions of a polymer, the so called radius of gyration s.
This is explained referring to Fig. 2.10. The random walk chain of n steps contains
n + 1 points (the starting and end points of the vectors), indicated by my, m, m,
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Fig. 2.11 End to end
distance r and radius of
gyration s of the random walk
chain

. m,. Assuming that the mass of the chain is uniformly distributed over these
(n + 1) segments, the center of gravity 0 of the segments may be calculated as
well as the distances s; (i = 0 to n) of the segments from it. The mean value of the
squares of the distances yields the square of the radius of gyration

1 n
2 2
= : 2.44
eSO .44

For the random walk chain, it is possible to calculate the expectation value of
the square of the radius of gyration (for a derivation see e.g., [10, 11]):

() =¢(") (2.45)

The radius of gyration may be considered as a measure for the dimension of the
coil. From Eq. (2.45), it is seen, however, that the radius of gyration is smaller than
half of the end to end distance. The reason for that is the fact that in the random
walk chain the concentration of segments is much higher in the center of the coil,
than in its outer regions. This is indicated in Fig. 2.11.

2.4 Macromolecules in Solution

Molar masses are determined in dilute solution. Therefore, solubility is an essential
requirement for the determination of molar masses of polymers. The methods most
frequently used are presented in Table 2.4:

In order to understand why the determination of molar masses is to be per-
formed in dilute solution, we consider the shape of the polymer in solution. Micro-
Brownian motion is excited in solution, therefore macromolecules which are not
extremely stiff will assume the shape of coils with the radius 4 depending on

molar mass
interaction with the solvent
internal mobility of the macromolecule
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Table .2.4 .Methods of Method
determination of molar
masses and their range of

Average Range of
obtained applicability, kg/mol

applicability Osmotic pressure M, 5-1000
Viscometry M, 0.1-1000
Light scattering M, 0.1-1000
Ultracentrifuge M, 10-2000

Gel permeation chromatography c(M) 0.1-1000

A large number of solvent molecules, however, is included within one macro-
molecular coil. Therefore d,,,, the average density of the macromolecule in the coil

mass of the macromolecule
=

(2.46)

volume of the coil

will be small. The properties of the isolated coils can be determined in dilute
solution only, as the coils should not penetrate, not even touch, each other.
Therefore, the weight concentration of the polymer in the solution

mass of the polymer
= 2.47
¢ volume of the solution ( )

should be chosen adequately small, viz., ¢ &~ 1-50 g/l. On the other side, the
dilution should not be too extreme, as the properties of the solution should sig-
nificantly differ from those of the pure solvent to be able to measure their dif-
ference. This requirement often constitutes an experimental difficulty.

For a better understanding of the properties of a polymer solution, some basic
concepts of its thermodynamic properties are to be discussed, especially the
question of the characterization of the quality of the solvent. We consider solution
or mixing at constant temperature 7' and constant pressure p, i.e., an isothermal-
isobaric dissolving process. The thermodynamic potential under these circum-
stances is the free enthalpy

G=U+pV—TS (2.48)

where U designates the internal energy, p the pressure, V the volume, T the
absolute temperature and S the entropy. Under isothermal-isobaric conditions, a
system tends to achieve a state with minimum free enthalpy.

We solve n, mol of the polymer into n; mol of the solvent and designate

(G), the free enthalpy of the solvent before the process of solution
(G), the free enthalpy of the polymer before the process of solution
(G),. the free enthalpy of the system after the process of solution

The free enthalpy of mixing Gy, is the difference of the enthalpies after and before
the dissolving process and may be decomposed into its energetic part Uy, its
entropic part 7S, and its volumetric part pV,,
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Table 2.5 Quality of the
solvent and heat balance of
the solution process

Quality of the solvent Heat balance of the
dissolving process

Un<0 Very good Exothermal
Un=0 Good Athermal
Un>0 Moderate to poor Endothermal

Gm = (G);—(G);—(G)y = Uy + pVm — TS, (2.49)

Sm is the always positive mixing entropy, V, the change in volume during the
mixing process (which may be neglected for condensed phases) and U, the mixing
energy, which may be positive or negative. The dissolving process is classified
according to the sign of Uy, (Table 2.5).

For the characterization of the properties of the solution we need an intensive
quantity (which depends on 7, p, and the composition of the solution, but not on its
mass). We describe the composition of the solution by the ratio of the mole
numbers

z=m/n (2.50)
or by their mole fractions
np 1
x| = =— 2.51
! m+n 14z ( )
and
ny <
= —-— 2-52
e ny +ny 1+z ( )

It is shown in thermodynamics that every extensive quantity may be written as
sum of the corresponding intensive quantities multiplied with their mole numbers

Gm(T7P7”lan2) = nllLll(T’p’ Z) + ”2H2(T7P72) (253)

Ky and , are intensive quantities and may be calculated by partial differentiation
of the extensive quantity G, with respect to their respective mole numbers:

3Gy,
1 (T,p,z) = <a—m> (2.54)
ny,T.p

and

(T, p,z) = (—)Tp (2.55)
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Fig. 2.12 Potential energy of
two (parts) of molecules
versus their distance

—_—

— [
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W is called the chemical potential of the solvent (or the free enthalpy of dilution),
L the chemical potential of the solute (or the free enthalpy of solution). A further
intensive quantity may be used for the characterization of the solution, called the
average molar free enthalpy of mixing and is defined by the equation:

- G T>p7nlan2
Gu(T,p,z2) %’h)

= x114(T,p,2) +x205(T, p, 2) (2.56)

We turn to the molecular interpretation of the mixing energy. The energy of
interaction of two solvent molecules or parts of two macromolecules as a function
of their distance r is sketched in Fig. 2.12.

At the distance ry both molecular parts are in equilibrium, at smaller distance
(r < rg) strong repelling forces occur due to the interaction of the electron shells,
at larger distance weak attractive forces occur. The depth of the energy minimum
w at r = ry depends on the chemical composition of both partners involved (note
that w is always negative!).

Solvent molecule—solvent molecule Wi
Structural unit of the polymer—structural unit of the polymer Woo
Structural unit of the polymer—solvent molecule Wio

During the process of dissolving the contact of two solvent molecules is broken
up, as well as the contact of two parts of macromolecules, and two new contacts of
parts of the macromolecule and a solvent molecule are created. The change in
energy due to this process will be

w = 2W12 — W11 — W22 (257)

As the sign of U, is the same as that of w, three cases can be regarded:

1. w< 0 and U,, <0 : very good solvent; The process of dissolving is driven
energetically, too, and is exothermal; the macromolecule is soluble at all
temperatures, the solvent molecules are driven into the coil, which is inflated,
i.e., its radius & becomes large.
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2. w =0 and U, = 0: athermal solvent; the process of dissolving is driven by
entropy changes, only; the macromolecule is soluble at all temperatures, the
coil is inflated.

3. w> 0 and Uy, > 0: poor solvent; the process of dissolving is a competition
between the entropy effect, driving the molecule into solution, and the energy
effect, driving the molecule to precipitate. The process of dissolving is endo-
thermal, the solubility of the polymer will increase with increasing tempera-
ture. The solvent molecules are squeezed out of the coil, the radius of the coil
h will become small.

Flory [12] and Huggins [13] have proposed the following simple expression as
an approximation for the free enthalpy of mixing

Gy = RT(ny lnvy + npInvy + ynyv;) (2.58)

Here, v; und v, are the volume concentrations of solvent and polymer,
Ving

V= 2.59
! V1I’l1 + V2]’l2 ( )

and
Vany

V)= — 2.60
: Ving + Vony ( )

with V; and V, being their molar volumes. R is the gas constant and k the
Boltzmann constant

R =k-Ny = 8.3143 J/K mol (2.61)
k =1.3805 - 107> J/K (2.62)

% is the “Flory-Huggins parameter”, which characterizes the interaction between
polymer and solvent. It consists of a contribution, 7y, to the mixing entropy and a
contribution, which is proportional to the mixing energy w

w
v =) - 2.63
1=%+Fr (2.63)

Yo is positive and f§ is a coordination number of the order of unity. If Eq. (2.58) is
applied to the description of the free enthalpy of polymer solutions, y is experi-
mentally found not to be constant but to be slightly depending on 7, M, and the
concentration v, Using (2.54), (2.58), (2.59), and (2.60), we find after some ele-
mentary calculations, the following expression for the free enthalpy of dilution

Vv
u; =RT <1n v+ (1 - 71) vy + xlvg) (2.64)
2
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Table 2.6 Solvents, precipitants, and Theta-solutions of some polymers

Polymer  Solvent (T, °C)* Theta-solution (T, °C) Precipitants

PE-HD Hydrocarbon (>80) n-hexane (133) All organic solvents
Hydrogenated At room temperature
Hydrocarbon (>80)

PE-LD Hydrocarbon (>60) Same as for PE-HD Same as for PE-HD
Hydrogenated
Hydrocarbon (>60)

PP atactic Hydrocarbon i-amylacetate (34) Polar organic solvents
Hydrogenated Cyclohexanone (92)
Hydrocarbon

PA 6.6 Phenols 2.3 mol KClI in 90 % Hydrocarbons
Formic acid Formic acid (25) Chloroform

PIB Hydrocarbons Benzene (22.8) Butanol
Tetrahydrofuran (THF) Methanol

PMMA  Benzene Butanon/isopropanol 50/50 (23)  Hexene
Xylene m-xylene (24) Cyclohexane
Chloroform Methanol

PS Chloroform Cyclohexane (34) Saturated hydrocarbons
Benzene alcohols

PVC THF THF/H,0 89/11 (30) Hydrocarbons
Cyclohexanone Alcohols

PC Benzene Chloroform/ethanol 74.5/25.5 (18) Aliphatic hydrocarbons
Chloroform Acetone

¢ No indication of a temperature: soluble at room temperature

x1 is a new Flory-Huggins parameter, related to by the equation

n

L 1 (O _ 574
Al - X + — a - X — Vi a
M/ mTp 2/ 1p

V

2

(2.65)

If y is independent of v,, we have simply y; = %. As in poor solvents the

solubility increases with temperature, a temperature will be found, at which the
influence of the occupied volume of the polymer molecules is just compensated by
the influence of the polymer-solvent interaction. This temperature is called the
“Theta-temperature” and plays an important role in polymer physics. At the ©-
temperature the shape of polymer molecules may be calculated by statistics without
taking into account the influence of the occupied volume or the polymer-solvent
interaction. This solution is called a ®-solution. The concept of the occupied
volume and the ®-temperature will be explained in more detail in the Sect. 3.1.
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For a very large number of polymers, extensive tables have been given of
solvents and precipitants by Bloch [14] and of ®-solutions by Elias [15]. A few
examples of solvents, precipitants and @-solutions for some polymers are given in
Table 2.6.

Experimental methods to determine thermodynamic properties of polymer
solutions and @-temperatures will be described in the next chapter. The reader can
find extensive tables for the Flory-Huggins parameters for many polymers, sol-
vents and temperatures in [16].

2.5 Statistical Shape of Linear Macromolecules
in @-Solution

The linear macromolecule in theta-solution may not be directly identified with the
random walk chain. Though the influence of the excluded volume and the inter-
action with the solvent molecules may be neglected in a theta-solution, the detailed
molecular structure of the molecule in question determines the degrees of freedom
for the internal motions and has to be considered in each case separately. The
presence of fixed valence bonds and the partially hindered rotation around these
bonds enlarge the coil dimensions. Nevertheless, it is possible in many cases to
calculate the mean square end to end distance. Most of these calculations have
been performed and presented by Flory [10].

The simplest case is the valence bond chain with free rotation. Consider a linear
not branched chain of a vinyl polymer, for which all bonds of the main chain are
single carbon-carbon bonds. The molecule consists of ny + 1 carbon atoms, con-
nected by ng bond vectors ry, r,,... 1, . Let the length of each bond vector be b, its
bond angle . Apart from movements of side groups, the shape of the main chain
(its conformation) is fixed, if the ny—1 rotational angles around the main bonds,
P15 Qs - - @y, are fixed. The definition of such an angle is illustrated in Fig. 2.13
for the first two bond vectors and for the first rotational angle ¢,.

The zero points of the rotational angles are chosen in such a way, that the set
Q1= @3 =...,_1 =0 corresponds to the completely stretched conformation.
The fixed angle between successive valence bonds has an effect on the value of (7).
Equation (2.42) remains valid, but the average values of the second term on the
right-hand side of this equation do not longer vanish. The averages of the scalar
products of two different bond vectors may be evaluated as shown by Flory [10] in a
very elegant manner. For the scalar product of two successive bond vectors one finds

(ry - 1y) = b} cos(n — 9) = —b% cos ) (2.66)

The scalar product (r; - r;)depends on the value of the second rotational angle ¢,
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Fig. 2.13 The definition of

the rotational angle ¢, Q o] ,/';
1 S X :1, /
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Fig. 2.14 Potential energy as  y (9)
a function of the rotational
angle T
1 1 I8
1 T 1
0 n 2n
—_ 0
(ry - r3) = b§(cos> ¥ + sin> ¥ cos @) (2.67)

As all values of ¢, are equally probable (free rotation), we have to integrate over
all values of ¢, and to divide by 2w in forming the average ((r, - r3)). In similar
way all terms of the double sum of Eq. (2.42) may be calculated with the result

(2.68)

For vinyl polymers cos¢ = —1/3 and the quotient in Eq. (2.68) becomes 2.

The valence bond chain with hindered rotation.
If the rotation around valence bonds is hindered by the presence of side groups, the
angles @y, @5, ...¢,,_; are no longer equally probable.

If only side groups of neighbored C—atoms hinder each other, the hindering
effect may be described by the potential energy of a part of the chain as a function
of the rotational angle V = V(@) as shown in Fig. 2.14.

To calculate the expectation value of the scalar products at the right-hand side
of Eq. (2.42), each term has to be weighed with the probability of occurrence of
the corresponding rotational angle. Instead of (2.68), one obtains [10]
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1 —cos? 1—(cosep)
2 2

= . . 2.69
() o= noby 1 +cosd 1+ (cosq) (2.69)
The expectation value (cos @) has to be calculated using the Boltzmann factor
(notice the symmetry of V with respect to ¢ = m !):

(cos @) = /cos (pev(‘F)/deq)// e VO g (2.70)
0 0

More complicated macromolecules

If the macromolecule is more complicated, e.g., if short parts of the main chain are
not movable, or if the interactions extend further than between neighbored side
groups, a calculation of the end to end distance is still possible. As long as the
interactions occur only between side groups of carbon atoms which are not too far
apart from each other in the completely stretched conformation, a result of the
following form is obtained [10]

(rP)g=no-bg-C (2.71)

where b is the distance of the singular C—C bond, n, the number of bonds in the
principal chain and C is a constant depending on the detailed structure of the
molecule. In many cases, it is possible to calculate C [16]; in very complicated
cases, C may be determined experimentally by osmotic pressure or light scattering
measurements (Compare Table 3.2 for examples of the values of C).

The statistical equivalent random walk chain

So far, we have considered the values of the average of the mean square distance
(r*) o» only. If this quantity may be described by Eq. (2.71), being proportional to
the number of bonds, n,, the probability of the end point position will be Gaussian.
Inserting the values found in Egs. (2.6), (2.68) or (2.69) into (2.36) and (2.37) the
probability densities of the end point position and the end to end distance remains
valid for linear macromolecules in @-solution.

To each linear macromolecule in theta-solution a statistical equivalent
random walk chain with n steps of length b may be attributed, which
behaves equal with regard to their distribution in space. Their completely
stretched lengths and their mean square distances, as well correspond to each
other.

The length and number of steps of the statistical equivalent random walk chain
may be defined by the equations:
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Fig. 2.15 The
macromolecule and its
statistical equivalent random

walk chain
b
n- b2 = <r2>@: no - b(z) .C (272)
and
b = T (2.73)
Or vice versa:
_ /.2 _ 2
b= <r >@/rmax - nObOC/rmax (274)
and
n= (rmax)2/<r2>@ (2.75)

b is called Kuhn’s statistical segment length; ry.x is the completely stretched
length of the molecule, which may be calculated from its structural formula. The
manner, in which the statistical equivalent random walk chain may follow the
shape of the real chain, has been indicated in Fig. 2.15.

For the special case of a vinyl polymer we have two C-C bonds in one
structural unit, the bond length by = 0.154 nm, and the bond angle ¥ = 109.47°
(cos ¥ = —1/3) and therefore

2 2 8 M
Fmax = b()l’lo COS((TC — 19)/2) = \/; b()l’lo = \/;2b0 -P= \/;bo ﬁ (276)
8

with /8/3by = 0.251 nm. Inserting Eq. (2.76) into Egs. (2.74), (2.72), and
(2.45), yields the following expressions for Kuhn’s statistical segment, the mean
square end to end distance and the mean square radius of gyration in theta
solution:
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b= \/gc - by (2.77)

()= %P (2.78)
(o= Fo P (2.79)

with
o =by- V2 C (2.80)

and
Bo = %0/V6 =by-\/C/3 (2.81)

Some values for C, b/by, and /by will be given in Table 3.3.

2.6 Statistical Shape of Macromolecules in Good Solvents

In good solvents the interaction between macromolecules and solvent molecules
has to be considered. This interaction influences the shape of the macromolecule
and the statistical distribution of its segments. The mathematical problem becomes
much more complicated and is still unsolved (cf. [10]). However, it should be
mentioned, that the coils will be widened in good solvents, i.e.,

() >(r)g and () > ("),

Neither Eq. (2.45) nor Eq. (2.71) remain valid in this case. Instead, the mean
square values of the end to end distance and of the radius of gyration increase
more than proportional to the degree of polymerization P:

(r*) = o P (2.82)
and

(s*) = p*- P'*r (2.83)
with ¢ and p being positive numbers. Though power laws of the form of
Egs. (2.82) and (2.83) have not been derived theoretically up to now, their validity

can be checked experimentally. Using gel permeation chromatography (GPC)
coupled with multi-angle laser light scattering (MALLS) it is possible to investigate
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Table 2.7 Parameter values of the relation (2.83) between the mean square radius of gyration
and the degree of polymerization for the linear vinyl polymers poly(propylene) and poly(ethyl-
ene) in the good solvent trichlorbenzene (TCB)

Polymer, solvent, T °C B, 107" m p Range for P, kg/mol Lit.
PP TCB 140 1.52 0.17 2510° <P <10° [8, 17]
PE TCB 140 1.66 0.16 10° <P <210* [8, 17]
80 .
linear PE 7
60 1,2,4-TCB g
2_0.5 e e

<s™>",nm ¢t T=140"C .

v
_'_35%9 = mLLDPE2
20 |- 180 v mLLDPE 3
. o mLLDPE 4
///
1 1 1 M R | 1 1 1 1 1 MR |
102 10°

Mw,LS’ kg/mol

Fig. 2.16 Square root of the mean square radius of gyration versus the absolute weight average
molar mass My, 1 s determined by GPC-MALLS for three linear PE. The dashed line represents
the square root of Eq. (2.83) with the parameter values given in Table 2.7. Reproduced from [7]

the relation between (sz> and M,, for polymer solutions in good solvents. For some
linear vinyl polymers, power laws of the form of Eq. (2.83) have been found to be
valid, as summarized in Table 2.7.

Two examples of measurements of this kind, taken from [8] are given in
Figs. 2.16 and 2.17.

Figure 2.16 shows the square root of the mean square radius of gyration versus
the weight average molar mass measured by light scattering for GPC-fractions of
three linear low density PE in trichlorobenzene (TCB) at 140 °C, [8]. The broken
line represents the square root of Eq. (2.83) with the parameter values given in
Table 2.7. The three polymers, designated as mLLDPE 2—4 are metallocene linear
low density poly(ethylenes), which are assumed to contain no long chain branches.
They have similar molar mass distributions and similar values of My, but slightly
different comonomer composition. Their values of (s*)"? lie on or closely to the
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Fig. 2.17 Square root of the mean square radius of gyration versus the absolute weight average
molar mass My, 1 s determined by GPC-MALLS for two linear PP. The dashed line represents the
square root of Eq. (2.83) with the parameter values given in Table 2.7. Reproduced from [7]

(dashed) reference line for linear PE. This result confirms, that not branched
polymers show a power law relation between <52> 2 and M,,. It is well known that
this is no longer true, if the polymer contains long chain branches. Moreover,
(s*)!"% is then found to be smaller than the radius of gyration of a linear molecule
with the same M, (c.f. Sect. 2.7).

Figure 2.17 shows the square root of the mean radius of gyration versus the
weight average of the molar mass M,, for two linear PP in TBC at 140 °C,
designated as PP 1 and PP 9 [8]. The dashed line represents the square root of
Eq. (2.83) with the parameter values given in Table 2.7. The polymers are
assumed to be linear with similar molar mass distributions but different weight
average of the molar mass measured by light scattering. Again, the values of <s2> 172
lie closely to the (dashed) reference line for linear PP, which differs slightly from
the reference line for linear PE.

2.7 Analysis of Branched Macromolecules

As any branching within a polyolefin chain means a change of the mobility of the
carbon atom it is attached to, the melt-state C" nuclear magnetic resonance, in
principle, is a suitable method to detect branches. Its elegance lies in the fact that a
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Fig. 2.18 Mean square radius of gyration (s°) as a function of the absolute weight average molar
mass M,, s measured by light scattering for polyethylenes of various branching structures [7]

quantitative picture of the branching sites can be obtained without any model
assumptions. But according to [18] the analytical power of this technique is
restricted insofar as it is able to merely discriminate between attached molecules
up to 6 carbon atoms. Longer molecules which are typical of long-chain branches
do not give particular signals. This physical fact has two consequences. A reliable
information on short-chain branching can be obtained, only, if any long-chain
branches are absent and, the other way round, conclusions with respect to long-
chain branching can be drawn from NMR-measurements under the precondition
that no short-chain branches longer than 6 C—atoms are present. Particularly the
last requirement is very difficult to fulfill in the case of technically produced
materials. It is well established, for example, that low density polyethylenes may
contain a respectable number of short-chain besides long-chain branches.

Similar arguments hold for results from infrared-spectroscopy which is easy to
perform. In the case of polyethylenes the number of CHj3-groups obtained by this
method can belong to short-chain or long-chain branches as well.

Therefore, the gel-permeation chromatography coupled with multi-angle laser-
light scattering (GPC-MALLS) as sketched in Sect. 3.4 is a very valuable method
to get an insight into the long-chain branching structure of a polymer. This
potential is demonstrated by Fig. 2.18 which displays in a double-logarithmic plot
the mean squared radius of gyration of a low density polyethylene (LDPE) which
is well known for its long-chain branching as a function of the absolute value of
the weight average molar mass determined by light scattering in comparison to the
corresponding curve for a linear polyethylene. It is obvious that the coil
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dimensions of the LDPE are significantly smaller than those of the linear coun-
terpart. This finding can be explained by the assumption that the branches are able
to at least partly fill the free space between the segments of the backbone of the
molecules. According to Fig. 2.18 the differences of the coil dimensions between
linear and long-chain branched molecules become the more pronounced the higher
the molar mass indicating an increasing effect of branching.

A distinctly different result is found from Fig. 2.18 for the long-chain branched
metallocene-catalyzed linear low density polyethylene (LCB-mLLDPE 1). Only at
higher molar masses a deviation from the straight line of the linear material occurs.
This finding can be interpreted in a way that the existence of long-chain branches
is restricted to the longer molecules and the shorter ones behave linear although
they contain short-chain branches according to their chemical structure. As a side
effect this result demonstrates that the influence of comonomers on the coil
dimension cannot be detected by GPC-MALLS at least for the compositions
commonly found with LLDPE.

For a more quantitative discussion of the differences in coil size between linear
and branched molecules the so-called branching index

(b (2.84)

is defined. The index “br” denotes the mean square radius of gyration of the
branched, the index “lin” that of the linear species taken at the same molar mass.

Although clearly defined and very descriptive there have been only very few
theories up to now which try to correlate the branching index with the branching
structure [19, 20]. For example, for monodisperse star polymers the conformation
of which can be described by the theory of undisturbed chain statistics the
relationship

g=0f-2)/f (2.85)

between g and the functionality f of a branching point is given by Zimm and
Stockmayer in [19].

Furthermore, in [19] the following relationship between g and the number of
statistically distributed trifunctional branching centers m per molecule is derived
for monodisperse polymers:

g~ [(1 +m/7)* + 4m/97r} o (2.86)

From m, the number of branching points per monomer unit M, can be assessed
as



40 2 Physical Structure of Macromolecules

)= mMgy/M (2.87)

with M being the molar mass. Under the assumption of equal lengths of the
segments between the branching points their molar mass M; follows as

My =M/(2m+1) (2.88)

The prerequisite of monodispersity for the application of the Zimm-Stockmayer
theory is fulfilled for an evaluation of the GPC-MALLS measurements as the
fractions obtained are very narrowly distributed. The requirement of trifunction-
ality is very difficult to assess, however, as the branching structure depends on the
polymerization conditions. Therefore, Egs. (2.85) to (2.88) are of a very limited
value for the description of real long-chain branched polymers, but in some cases
they may be helpful for a qualitative comparison of various products.

2.8 Size of Macromolecules in the Glassy and Molten State

The large importance of the @-solution is due to the fact that shape and extension of
linear macromolecules may be experimentally determined and calculated by means
of Gaussian statistics. Moreover, the coil dimensions of linear macromolecules in
the glassy state and in the melt are similar to those in @-solution. This has been
assumed since long [10], but the experimental proof was conducted by Fischer and
Dettenmaier in 1978 [21]. Their experiment is based on the strong difference in
neutron-scattering between molecules containing hydrogen or deuterium atoms. If
for a small part of the molecules present in the solid polymer hydrogen atoms are
replaced by deuterium, it is possible to detect these molecules by small-angle
neutron scattering similar to the characterization of ordinary macromolecules in
dilute solution by means of light scattering. In both cases the radius of gyration of
the coil is obtained.

For linear vinyl polymers in @-solution the relation (2.89) between the radius of
gyration and the degree of polymerization

(s*)=Bg - P (2.89)

holds with f, being a constant only weakly depending on temperature. This
relation remains valid with the same value of the constant f§ for macromolecular
coils in the solid and molten state as proven by Fischer and Dettenmaier [21]. The
values from their publication are given in Table 2.8. The coefficients f§ as deter-
mined by light scattering or viscometry in &-solution are compared with results of
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Table 2.8 f# = \/(s?)/P for polymers in the solid and molten state and in @-solution

Polymer Range of molar mass Bin 107 m Bin 107 m
in kg/mol solid or molten in @-solution

PMMA 6-1000 2.56 2.20

PS 20-1000 2.81 2.76

SI 200 2.28 2.24

PVC 70-200 3.24 2.93

PE 10-80 2.33 2.28
60-400 2.44 2.28

neutron scattering in the solid and molten state of various polymers in a wide range
of molar masses. The agreement of the results in @-solution and in the bulk is very
good.
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Chapter 3
Experimental Methods to Determine
Molecular Quantities

In this chapter, experimental methods are described which are used to determine the
molar mass and the interaction between macromolecules and solvent molecules.

3.1 Osmometry

Measurements of osmotic pressures are performed with an apparatus, whose
principle is sketched in Fig. 3.1. The cell with the solution is separated by a semi-
permeable diaphragm from the vessel, which contains the pure solvent. The dia-
phragm is permeable for the solvent molecules, but not permeable for the much
larger polymer molecules. After some time, a constant pressure difference is
reached between both reservoirs which is called the osmotic pressure m.

The occurrence of the osmotic pressure may be explained either by molecular
or thermodynamic reasoning.

(I) The osmotic pressure results from the impact of the polymer molecules
bouncing against the walls of the inner cell.

(IT) The solution tries to get diluted until the decrease in free enthalpy is bal-
anced by the repulsing pressure difference.

Ad 1. If we consider the osmotic pressure as a result of the impact of the
polymer molecules on the walls of the inner cell, we may expect in analogy to the
law for ideal gasses

pV =nRT (3.1)
the equation
nV=mRT (3.2)

with V being the volume of the inner cell and n, the mole number of the solute.
Introducing the mass concentration c of the polymer in the solution

H. Miinstedt and F. R. Schwarzl, Deformation and Flow of Polymeric Materials, 43
DOI: 10.1007/978-3-642-55409-4_3, © Springer-Verlag Berlin Heidelberg 2014
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Fig. 3.1 Determination of
the osmotic pressure
osmotic
J pressure
v/ LvJ
l solution J solvent
Te=====___ diaphragm

c=mM/V (3.3)
into Eq. (3.2), we find Van’t Hoff’s law for the osmotic pressure
n=RTc/M (3.4)

For polydisperse polymers, M in Eq. (3.4) has to be replaced by the number
average molar mass M,

n=RTc/M, (3.5)

The proof rests upon the following arguments: The partial pressure due to the
species with the molar mass M; is given by m; = n; R T/V and the sum of all partial
pressures forms the osmotic pressure

n=(RT/V)- Zn (3.6)

For the species i Eq. (3.3) reads ¢; = n;M;/V and for the mass concentration of all
polymer molecules

CZZCI' :%ZniMi (3.7)

Inserting 1/V from Eq. (3.7) into Eq. (3.6) and using Eq. (2.15), yields Eq. (3.5).

Equations (3.4) or (3.5) may be applied to solutions of low-molar mass mate-
rials, but fail for polymer solutions. This is shown with reference to Fig. 3.2, in
which the ratio between osmotic pressure and mass concentration is plotted versus
the concentration ¢ for solutions of fractions of poly(isobutylene) in two solvents
after Flory [1].

Instead of being constant, the ratio n/c depends significantly on the polymer
concentration c. Therefore, an expansion after powers of the concentration
¢ should be used
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n=RT[c/M, + B> +Cc® + -] (3.8)

to describe the course of the osmotic pressure with polymer concentration. B is
called the second virial coefficient, C the third virial coefficient etc. To determine
the molar mass, the ratio n/c is plotted versus ¢ and, from the intersection with the
abscissa at ¢ = 0, a measure of the reciprocal value of the molar mass M for
monodisperse polymers or for the reciprocal value of the number average molar
mass M, for polydisperse polymers is obtained.

The influence of the higher powers of ¢ in Eq. (3.8) manifests itself in an
increase of the ratio n/c with increasing c. In the good solvent (cyclohexane) the
ratio m/c strongly increases with increasing ¢, showing that the second virial
coefficient B is large and positive in this case. In the @-solvent (benzene) the ratio
7/c remains independent of ¢ in the region of smaller concentrations, showing that
in this case B = 0. Hence, the value of the second virial coefficient constitutes a
measure for the quality of the solution.

The second virial coefficient can be interpreted by the excluded volume concept,
applied to a real gas. While for an ideal gas Eq. (3.1) is valid, for a real gas the
influence of the excluded volume b is taken into account leading to the equation

p(V—b)=nRT (3.9)

The excluded volume is the volume, which is not for disposal for the molecule
under consideration. The excluded volume, however, will consist of two terms

b =b; + by with by >0 and b, > 0or b, <0 (3.10)

b, is the volume occupied by the other molecules of the real gas and is therefore
always positive. The sign of b, will depend on the interaction of the gas molecules
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with each other. If the gas molecules attract each other, they will stay longer in the
neighborhood of other gas molecules than in the neighborhood of the walls, and
the volume for disposal will appear to be larger, therefore b, will be negative. If
the gas molecules repulse each other, they will stay longer in the neighborhood of
the walls, than in the neighborhood of the other gas molecules, and the volume for
disposal will appear to be smaller, therefore, b, will be positive.

A relation between the excluded volume b and the second virial coefficient B for
solutions of monodisperse polymers is obtained as follows: We replace in the
equation for the real gas Eq. (3.9) p by n, n by n, and V by the value following
from Eq. (3.4), with the result:

nM/c=RT+nb/n,

In this equation, the second term on the right-hand side is small compared with the
first one. Therefore, we may replace 7 in the second term by the approximation

n 2 RTc/M + 0(c?)

and obtain

c ¢ b

=RT - |—+—-—+--- 3.11
” M T (3.11)
From a comparison of Eq. (3.11) with Eq. (3.8), in which M,, is substituted by
M one gets:

or with
np =cV/M —=c-M-B (3.13)

A very important special case is the @-solution, for which the effects of the
attractive forces between the coils and those of their occupied volume just com-
pensate each other, i.e.,

by=-b, b=0 B=0 (3.14)

is valid for the @-solution.

Similarly to the decomposition of the excluded volume into a contribution from
the occupied volume b, and a contribution from the energetic interaction b,, it is
possible to decompose the second virial coefficient into an enthalpy term By and an
entropy term Bg. As shown in thermodynamics (see, e.g., [2]), we have
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Fig. 3.3 Temperature
dependence of the second B
virial coefficient for solvents
of different quality T \
very good solvent
athermal
%: poor
0
/L 0 - temperature —» T
B = By + By (3.15)
with
OB
and
OB
Bs=B+T(ﬁ> (3.17)

By describes the energetic interaction between the coils and Bg the influence of
their occupied volume. As a consequence, in a very good solution By will be
positive, and therefore (OB/OT) negative; in an athermal solution B will be inde-
pendent of the temperature and therefore B = By; in a moderate or poor solution
By will be negative, and therefore (OB/0T) positive; at the @-temperature we have
By = —Bgs. The temperature dependence for these three cases is presented sche-
matically in Fig. 3.3.

Ad II: In thermodynamics [2] it is shown that the osmotic pressure is related
directly to the free enthalpy of dilution by means of the equation

n=—u/Vi (3.18)

If the osmotic pressure has been measured as a function of the polymer concen-
tration c, the dependence of the free enthalpy of dilution may be calculated. From
n = n(c) it follows p; = uy(v,), when the mass concentration c is replaced by the
volume concentration d, by means of

C:dg'\/z (319)
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Table 3.1 Properties of dilute solutions

Quality of  Shape of the Heat exchange B OB/OT By U, w 71
the solution coil
Very good Inflated Exothermal Large >0 <0 >0 <0 0.0-04
Good Athermal Large>0 =0 =0 =0 0.40-045
Moderate Squeezed Endothermal Small >0 >0 <0 >0 045-00.5
to poor

®-solution  Undisturbed Endothermal 0 >0 =-Bs >0 0.50

statistical

shape
Precipitation <0 71k > 0.5
with

d, = M/V2 (3.20)

d, is the density of the polymer in the solution (= density of the polymer in the
unsolved state). The following relation between the Flory—Huggins parameter y; and
the second virial coefficient may be derived by inserting Eq. (2.61) into Eq. (3.18),
developing the result into powers of ¢ and v,, respectively, and comparing the coef-
ficients of ¢*:

1 1
B=—1y|-—) 3.21

and

1 0y,
By = Tl — 3.22
"7V <6T) (3-22)

Large positive values of B (good solutions) correspond to small positive values
of y; for the @-solution we have B = 0 and y; = 1/2. An overview of the
properties of dilute solutions is given in Table 3.1. y; is the value of the Flory—
Huggins parameter, at which precipitation occurs.

Some experimental results for B are given in the Fig. 3.4. Figure 3.4 shows the
temperature dependence of the second virial coefficient of solutions of poly(vinyl
chloride) of different molar masses in toluene after Schulz et al. [3]. In this very
good solution, the second virial coefficient shows large positive values, which
weakly increase with temperature.

A completely different behavior was reported for solutions in bad or moderate
solvents by Schulz et al. [4]. They investigated the temperature dependence of the
second virial coefficient of solutions of PMMA in six bad solvents. Values for
B were found which were ten times smaller than for good solvents and partially
negative. For low temperatures B was negative and increased strongly with
increasing temperature. For each system, a temperature was observed, at which the
second virial coefficient vanished, the ®@-temperature.
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Fig. 3.4 Second virial PS in toluene
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As already mentioned in Sect. 2.4, the @-solution is of large significance for
theoretical considerations and molecular interpretations in polymer physics.
Normally, two effects will disturb the simple calculation of the shape of the
macromolecular chain structure. First, other parts of the considered chain end or
other chains may occupy the place, where the chain end could otherwise find a
place in the diffusion process. This restriction is called the occupied volume effect
as discussed before. Second, in bad solutions, the interaction between parts of the
macromolecule and solvent molecules may squeeze the solvent molecules out of
the macromolecular coils, bringing them closer together. In the @-solution both
effects just compensate each other, leaving the end of the macromolecule the
freedom to diffuse undisturbed to each place in its vicinity.

In the @-solution the effects of the attractive forces between macromolecular
coils and those of their occupied volume just compensate each other, and
therefore, the wundisturbed chain statistics may be applied to the
macromolecules.

3.2 Viscometry

The measurement of the viscosity of dilute macromolecular solutions is a con-
venient and often used method to determine molar masses of polymers. For the
definition of the viscosity of liquids we consider the laminar shear flow between
two parallel flat plates of large extension, one being fixed, the other being moved
with the constant velocity V in the x-direction (cf. Fig. 3.5).

If the liquid sticks to the walls, a flow field with a constant velocity gradient
will develop. Its velocity components are:
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Fig. 3.5 Simple shear flow F >

-

|

[ y
d L
W fixed ?

=gy vww=v,=0 ¢g=V/d (3.23)

uuu

't

We define the (velocity) gradient q, the shear stress o, and the (shear) viscosity
n by the equations

_ dv,

q= @ (3.24)
oc=F/A (3.25)
n=oa/q (3.26)

d is the distance between the two plates, A the surface of the upper plate moved by
the shearing force F. 5 is not necessarily constant, but may depend on the mag-
nitude of the gradient g. If # is independent of g, the liquid is called Newtonian, if
not, it is called non-Newtonian. For example, water is a Newtonian fluid with a
viscosity of # ~ 107> Pas at 20 °C. Examples of non-Newtonian liquids are
polymer solutions and polymer melts. The unit of the velocity gradient is s~ ', the
unit of the viscosity is Pas.

Sometimes, the velocity gradient is also called the shear rate y. As velocity
gradient and shear rate are two different concepts, defined by different experi-
ments, we prefer for the present to use the designation velocity gradient. In a later
stage (in Sect. 8.7) we return to the question of the relationship between both
concepts and prove their identity. But this has to be postponed until the discussion
of large deformations.

The measurement of the viscosity of low-viscous liquids (1073210 Pas) is
usually performed by a capillary viscometer. The fluid is forced by a pressure
difference Ap through a circular capillary with the radius R and the length L. The
law of Hagen—Poiseuille," valid for Newtonian liquids, predicts for the amount of
liquid Q passing through the capillary during the time ¢

Q 7nR* 4Ap
x_-0 2 3.27
t 8L 7 ( )

! For derivation of this formula see for instance [5] or Sect. 15.1 of this book.
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Fig. 3.6 The Ubbelohde 12 3
viscometer

For the measurement of the viscosity of dilute polymer solutions, the Ubbelohde-
viscometer is often used (cf. Fig. 3.6).

The Ubbelohde-viscometer is a 3-armed vessel, whose arms—designated as
1, 2, 3—may be closed on the upper end. For the measurement one proceeds as
follows:

(1) Filling of the store vessel a

(2) Closing of 2 and sucking up the liquid through the capillary 3 up to a level
above the mark m;

(3) Closing of 3 and opening of 2, which results into separating the liquid at the
joint of 2 and 3. A hanging level is created in 3.

(4) Opening of 3 and measuring the time necessary for the liquid to sink from the
mark m, at the level h; to the mark m, at the level h,.

With g as the acceleration of gravity and p the density of the liquid, the driving
pressure during the measurement becomes

Ap = (hi +ha) - gp/2 (3.28)
Inserting Eq. (3.28) into Eq. (3.27) yields for the viscosity
n=Ap-t (3.29)
with the specific constant A of the instrument:

. 77.'R4(]’l1 + hz)g

1610 (3.30)

which is determined in practice by calibration.

Polymer solutions are non-Newtonian fluids and may show a flow behavior as
sketched in Fig. 3.7.

For small values of the gradient, a constant value of the viscosity is reached, the
Newtonian viscosity ny. Then, the viscosity strongly decreases with increasing
gradient. For the pure solvent, the lowest value of the viscosity, the solvent
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Fig. 3.7 Non-Newtonian flow behavior of polymer solutions, schematically
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Fig. 3.8 Viscosity functions of solutions of an anionic poly(styrene) with a very high-molar
mass in toluene for various polymer concentrations after Kulicke and Kniewske [6]

viscosity 1, is found, which is independent of the gradient. The ratio n/y; strongly
increases with increasing polymer concentration.

The non-Newtonian viscosity of solutions of anionic poly(styrene) in toluene
[6], is shown in the Figs. 3.8 and 3.9. The polymers used in this study were
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Fig. 3.9 Viscosity functions of 3 wt. % solutions of anionic poly(styrenes) of different molar
masses in toluene, after Kulicke and Kniewske [6]

commercial products from Pressure Chemical Company (Pittsburgh, USA) and
Polymer Laboratories Ltd. (Church Stretton, UK). Figure 3.8 presents the influ-
ence of the polymer concentration on the viscosity of solutions of a poly(styrene)
with a very high molar mass. The Newtonian region of the viscosity curve, #,, can
be observed only at small values of the gradient, and only for solutions with low-
polymer concentrations. As to be seen from Fig. 3.8, the transition from the
Newtonian to the non-Newtonian region shifts to higher gradients with decreasing
concentration of the polymer.

Figure 3.9 demonstrates the influence of the molar mass of the solute on the
viscosity of solutions with a concentration of 30 g/l. The lower the molar mass, the
more extended is the Newtonian region and the lower the value of the Newtonian
viscosity #j.

For the determination of the molar mass of the solute, the limit of the viscosity
of the solution for small shear rates, the Newtonian viscosity of the solution, is
required. The latter may be developed into a power series of the polymer
concentration:

no=m{l+oc+pc+...} (3.31)

where 7; denotes the solvent viscosity. The coefficient of the first power in this
series characterizes the property of the isolated (¢ — 0), undeformed (¢ — 0)
macromolecular coil. This coefficient is called viscosity number, intrinsic viscosity
or Staudinger index and is designated by [n]. The ratio
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Fig. 3.10 Relative viscosity for solutions of anionic poly(styrene) in bromo-benzene at 25 °C
after Daum [7]. The anionic PS used are those listed in Table 2.3

Mo
Neel = — 3.32)
L (

is called the relative viscosity and the expression

_ Mo

nspec - (333)

the specific viscosity, though both quantities do not have the dimension of a vis-
cosity, but are pure numbers. The viscosity number—which is not a pure number,
but has the dimension of an inverse mass concentration with the unity m>/kg
= 1/g,—may be determined by one of the following limiting expressions

T nspec
(] _35%[7 } (3.34)
or
] = Tim |11 (3.35
n = clj% c N ey . )

An example for the concentration dependence of solutions of anionic
poly(styrene’s) in bromo-benzene at 25 °C is shown in Fig. 3.10 [7].

The left-hand side of the figure shows the relative viscosity as a function of the
mass concentration, the right-hand side displays the same values, but in a
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Fig. 3.11 Illustration of the
convergence of the both I
limits Eqgs. (3.34) and (3.35). 9
Measurements on S3 in Sk
bromo-benzene after Daum
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logarithmic scale for 7, over a larger range of concentrations. The convergence of
the two limits in Eqs. (3.34) and (3.35) at ¢ — O is illustrated in Fig. 3.11,
showing #spe/c and (In 1,e1)/c versus ¢ for solutions of the anionic polystyrene S3.
The quantity #gpe/c becomes smaller with ¢ and converges to the limit [ ] for
¢ — 0. The function (In n,)/c grows with decreasing ¢ and attains the same limit
[#] for ¢ — 0. Because of the inequality

1 n
g <[] < (330)

the two functions represent upper and lower bounds for the error in the extrapo-
lation to the value at ¢ — 0.

The large importance of the Staudinger index originates from the existence of a
simple relation with the molar mass, which is experimentally found for linear
macromolecules:

=K M (3.37)

K and a are constants, which depend on the combination chosen for the solute and
solvent and on the temperature. This power law is called the Mark—Houwink
equation. It is valid in the form of Eq. (3.37) for nearly monodisperse polymers.
For polymers with a broader distribution of the molar mass, M has to be replaced
by the viscosity average of the molar mass, M,, as defined in Eq. (2.19) or (2.19").
The proof of this statement is based on the assumption, that the contributions of the
various fractions to the increment of the specific viscosity behave additive, and
was given by Flory [8]. The constant a is found to be between
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05<a<l (3.38)

and becomes larger with the increasing quality of the solvent. For @-solutions,
a = 0.5 is obtained. K and a are determined experimentally by fractionation of the
polymer, determination of the molar masses of the fractions by osmometry or by
light scattering (see next section), and measurement of the Staudinger index of the
solutions of the fractions.

The Mark-Houwink equation is sometimes inconvenient to handle because of
the complicated dimensions of the quantity K in cases for which a is an irrational
number. This difficulty may be avoided by the introduction of the molar mass of
the structural unit M, and the degree of polymerization P into Eq. (3.37), which
then reads

m=L-(M/My)=L-P* (3.39)
with
L=K- M, (3.40)
for linear, monodisperse polymers and
] =L (My/Mp)" = L-P} (3.41)

for linear, polydisperse polymers. Some examples for values of K, L, and a are
summarized in Table 3.2. For each polymer, at least two different solvents were
chosen, one being a @-solvent, the other being a good solvent. Very compre-
hensive tables of K and a—values have been given by Kurata and Tsunashima [9].

In Fig. 3.12 the viscosity numbers are shown as a function of the molar mass in
a double-logarithmic plot for fractions of poly(styrene) in three different solvents
[29]. For a clearer representation of the accuracy of the measurements, different
scales for [n] were chosen. The three curves have been shifted relatively to each
other in the y-direction by a factor 10. This picture demonstrates that Eq. (3.37) is
valid only for molar masses, which exceed a certain value (here M > 30 kg/mol).
Above this value the exponent in Eq. (3.37) increases with increasing quality of
the solvent (cf. the different slopes for the three solvents).

Figure 3.13 shows the Staudinger index as a function of the molar mass for PS
in five different solvents, over a still broader range of the molar mass than in
Fig. 3.12. For the matter of clarity, the measuring points have been deleted in this
picture and replaced by average lines.

Above a certain value of the molar mass, the curves fan out as straight lines
with double logarithmic slopes between 0.5 (for the @-solvent cyclohexane) and
0.73 (for chloroform).

Next, we consider an illustrative interpretation of the Mark—Houwink equation.
Einstein [31] derived the following simple equation for the viscosity of a dis-
persion of hard spheres in a fluid:
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Table 3.2 Parameters of the Mark-Houwink-equation for some combinations of solvent and

polymer
Polymer solvent T,°C 10°-K a L, 10* 1/g Range of Lit.
molar masses, kg/mol
Poly(styrene) in
Chloroform 25 1.74 0.73 33 70-3730 [10]
Benzene 20 1.78 0.72 3.5 6-5200 [11]
Toluene 25 2.00 0.69 4.2 10-1040 [12]
Methylethylketone 20 2.15 0.58 5.8 10-10000 [12]
Cyclohexane 345 2.68 0.50 8.6 30-2000 [13]
Poly(methyl methacrylate)
Chloroform 20 1.22 0.80 1.9 80-2000 [14]
Benzene 25 1.05 0.76 1.8 20-7400 [15]
Toluene 25 1.10 0.73 2.1 40-3300 [16]
Acetone 25 0.82 0.70 1.5 20-7800 [15]
4-heptanone 338 1.52 0.50 4.8 10-1720 [17]
Poly(isobutene)
Cyclohexane 30 3.24 0.69 4.4 40-710 [18]
Benzene 24 3.38 0.50 8.0 180-1880 [18]
Poly(vinylchloride)
Tetrahydrofuran (THF) 25 3.24 0.77 39 20-300 [19]
Benzyl alcohol 1554 493 0.50 123 40-350 [20]
Poly(carbonate)
THF 25 5.02 0.766 19.3 10-270 [21]
Butyl-benzyl-ether 170 6.64 0.50 335 40-310 [22]
Poly(ethylene) low pres
Tetralin 130 7.63 0.725 5.73 40-500 [23]
Diphenyl 130 9.55 0.50 16.0 57-270 [24]
Poly(propylene) atac
Decalin 135 2.76 0.80 2.2 20-620 [25]
Phenyl ether 153 3.79 0.50 7.8 37-210 [26]
Poly(amide 6.6)
M-cresole 25 16.2 0.61 655 14-50 [27]
90 % formic acid +
2.3 mol KClI 25 8.00 0.50 38.0 14-50 [28]

* The unit for K has been chosen in such a way, that [#] is obtained in 1/g, if M is inserted in kg/mol

o =m(1+25¢)

(3.42)

where 7 is the viscosity of the dispersion, 7, the viscosity of the pure fluid and ¢
the volume concentration of the spheres in the dispersion. Assuming that the
solution of the macromolecular coils behaves just as a dispersion of hard spheres
with radius h, Eq. (3.42) can be compared with the linear part of Eq. (3.31), i.e.,
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Fig. 3.12 Staudinger index, [5], in cm®/g, as function of the molar mass, M, in kg/mol for
solutions of poly(styrene) in three solvents after Meyerhoff [29]
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Fig. 3.13 Staudinger index, [#], in I/g as function of the molar mass, M,,, in kg/mol for solutions
of poly(styrene) in five different solvents after Hoffmann. Reproduced from [30] by permission

from Hiithig and Wepf, Basel
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no = m(1+ [n] - )
this comparison yields

¢ 25
=25-=— 4
[n] 5 ¢ d, (3.43)

where d,, is the average density of the macromolecule in the coil . The latter is
equal to the ratio of the mass of one macromolecule to the volume of one coil

C M/NA
= — = 3.44
@ 4rmh’/3 (3.44)
and therefore
] = IOnN 5 (3.45)
m="3My '

From the Staudinger index an estimate for the coil radius in dilute solution is
obtained. We insert for the radius of the coil, &, the square root of the mean square

of the radius of gyration & = (?)"/ and use Eq. (2.45) with the result

2\3/2 2\3/2
[W]ZIOnNA<r> :¢/.<r>
18v6 M M

The evaluation of the numerical factor yields ¢’ ~ 4.3 x 10** mol~'. The con-
sideration above is very simplified, as the macromolecular coils are not hard
spheres, but are partially penetrated by the solvent and are flexible.

In two famous publications, Flory [32] and Fox and Flory [33] have calculated
the resistance of the single segments of a pearl string model in the flow field and
arrived at a similar result, but with a different numerical factor

2\3/2
n=a&- <rA>4 with & 22 2.6 x 10% mol ™ (3.46)

This equation by Fox and Flory yields a correlation between the viscosity number,
the end to end mean square distance and the molar mass. Though it was originally
derived under the assumption of a random walk chain, Flory later argued, that it

could also be valid for solutions of good quality [8]. If <r2>3/ ? is resubstituted by

<s2>3/ 2 via Eq. (2.45), Eq. (3.46) could even describe the Staudinger index for
branched polymers.
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For the ©@-solution the Mark—Houwink equation becomes

(o = KoM'* = LoP'? (3.47)

with
Lo =Ko - M) (3.48)

and the Fox and Flory equation reduces to

%(@Zz (3.49)

e = KeM"? =

From the right side of this equation, we obtain the following expressions for the
mean square end to end distance and the mean square radius of gyration

Ko\ 23
2 o 2
(r) o= <3> M = ag P (3.50)
with
Ko\ /3
0o = /M, - (f) (3.51)
and
(s*) o= BoP (3.52)
with
i Ko 1/3
Bo = Fg- (3> (3.53)

We calculate brmg,/P from Eq. (2.74) and substitute (r*), from Eq. (3.50) to
obtain an expression for Kuhn’s statistical segment, b.

Ko\ 2/
b _ g, (—@) (3.54)

P P

The ratio (r,,x/P) can be calculated from the geometry of the molecule, the ratio
Ko/® can be measured over a wide range of molar masses. Finally, from
Egs. (3.51) and (2.80), we obtain expressions for the constants Kg and Lg of the
Mark-Houwink equation for linear vinyl polymers
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Table 3.3 The parameters K¢ and Lg of the Mark-Houwink equation and the value of the
molecular parameters C, b/by and f/b, for some polymers in @-solution. The values for C and Kg
have been taken from Flory [34]. Values for Lg, b and fig were calculated using Egs. (3.53),
(3.56) and (3.57). (“at” stands for “atactic”)

Polymer Solvent T,°C Ky Ly C by Belbo
Poly(ethylene) Dodecanol-1 138 97.1 163 6.6 81 149
Diphenylmethane 142 99.6 167 6.7 83 1.50
Poly(styrene) at Cyclohexane 348 259 84 102 12 1.84
Diethyl malonate 359 243 79 98 12 1.80
Poly(propylene) at Cyclohexane 92.0 544 112 67 83 150
Diphenyl ether 153 379 78 53 65 133
Poly(isobutylene) Benzene 240 338 80 65 80 148
Poly(vinyl acetate) i-pentanon hexane 25.0 27.8 82 88 11 1.71
Poly(methyl methacrylate) at Various solvents 4-70 152 48 69 85 1.52
Poly(dimethyl siloxane) Butanone 200 247 67 62 - 1.44
Poly(vinylchloride) Benzyl alcohol 155 493 123 94 105 1.77
Poly(carbonate) Butyl-benzyl-ether 170  66.4 335 - - 3.93
Poly(amide 6.6) 90 % HCOOH 250 80.0 380 68 - 3.62
+ 2.3 mol KCl

" Ko in 107 m® mol'? kg™?, Lg in 107* /g, by = 1.54 x 107'° m, ap = v6f¢

o3 20\
Ko =@ = @b} (—) (3.55)
PN,
and
_ o’ _ 3/2,3
Lo = @4 = ®(2C)" by /M, (3.56)
8

and, from Eq. (3.54) with Eq. (2.76), for b, Kuhn’s statistical segment

2/3
b_ [3Me(Ke)¥ (3.57)
bo 803 \ @ '

We conclude, that the combination of the unperturbated chain statistics with the
Fox-Flory equation results in

e The correct expression for the Mark-Houwink equation for theta-solutions,

e expressions for b, o, and f from the results of viscosity measurements,

e and, for vinyl polymers, expressions for Kg and Lg in terms of the molecular
parameter C.

By the measurement of the viscosity numbers of linear polymers with known
molar mass in theta-solution, it is possible to determine the molecular parameters
b, C, o, and . Some examples are given in Table 3.3, taken from Flory [34] and
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completed with the calculation of the Lg-, fo- and b-values. Comprehensive tables
of Kg, C, b, have been published by Kurata and Tsunashima [9].

3.3 Light Scattering

The principle of the measurement of light scattering is sketched in Fig. 3.14. A
laser beam with the wave length A travels through a semi-permeable mirror,
which splits it into two branches. One part of the light falls on a reference photo
cell, the other part reaches the cuvette filled with the polymer solution. The light
scattered at the various angles 1) is measured by a second photo cell. [Modern
instruments use a larger number of photocells mounted at fixed angles (multiangle
laser-light scattering (MALLS)).]

Let i(", ¢) be the intensity of the light scattered by the solution with the con-
centration ¢ under the angle ¢, i(J,0) the intensity of the light scattered into the
same direction by the pure solvent and i the intensity of the incident beam. The
intensity of the light scattered under the angle ¥, minus the intensity of the light
scattered by the pure solvent into the same direction, divided by the intensity of the
incident beam is proportional to the scattering volume V of the cuvette and inverse
proportional to the square of the distance r between cuvette and photo cell.

10.€) Z 100 _ Y gy e v, n/0.B)
io r

The scattering volume of the solution depends on the scattering angle ¥
V = V,y/sind

with Vj being the scattering volume at the scattering angle ¢ = n/2. Therefore, the
measurement yields

light source lens mirror cuvette with the solution

o+

J

blends blends

—~—— photo cells ——=

electronic bridge for
the measurement of
the scattered light

Fig. 3.14 Schematic arrangement for the measurement of light scattering
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i(0,¢) —i(9,0) _ Vp
. = 5 R(0,c,M.h/1,B) (3.58)

The quantity R is called Rayleigh’s ratio. It depends on the scattering angle ¥,
the wave length of the light in the solution 4, and the properties of the solution as
the polymer concentration c, the molar mass of the polymer M, the radius of the
macromolecular coils h,2 and the second virial coefficient B. R has the dimension
of a reciprocal length, and is determined as a function of the scattering angle ¢ and
of the concentration c of the solution.

We consider first the most simple case, that the dimensions are small in
comparison to the wave length of the light (in the solution) and that the solution is
very diluted:

2h < Ahighly diluted; incident light unpolarized

Due to the condition 2 & < A, the entire coil may be considered as one single
dipole which is excited by the incident light wave. The dipole oscillates with the
frequency of the incident light in the direction of its polarization. It emits light of
the same frequency with an intensity depending on the angle between the direction
of the dipole and the direction of the irradiation. After summation over all
directions of dipoles and over all coils in the scattering volume one finds for
unpolarized light (for a derivation of this formula see [35] and also [36])

1 29
R(9,c,M) = J’C%KcM (3.59)
with
An’n}  (dn\’
K=" (2 (3.60)
NA A dc
The quantities occurring in this equation are
n The refractive index of the solvent
n The refractive index of the solution
dn/dc The refractive index increment of the solution
A = lo/n The wave length of the light in the solution
Ao The wave length of the light in the vacuum
Ny Avogadro’s number

2 h is used as an abbreviation for the square root of the mean square radius of gyration

h= ()",
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The molar mass is obtained by an extrapolation of the measured data to the
scattering angle ¥ = 0 and to the concentration ¢ = 0. For a monodisperse poly-
mer one gets from Eq. (3.59)

lim @

9—=0 ¢
c—0

=K-M (3.62)

and for a polydisperse polymer

lim k()

9—=0 ¢
c—0

=K M, (3.63)

The proof that the molar mass in Eq. (3.63) is the weight average molar mass M,,
is based on the additivity of the contributions to R(«, ¢, M) of coils with different
molar masses.

Next, we consider the case of a moderate dilution, for which the coil dimen-
sions are still small in comparison to the wave length:

2h <« A : moderate dilution.

At higher concentrations, the light waves scattered from the single coils do not
longer behave additive, but interfere with each other. Consequently, the intensity
of the scattered light increases less than proportional to the concentration.
A theoretical treatment [35] yields instead of Eq. (3.59):

1 + cos?® c 1
2 R(Y,c,M,B) M,

+2Bc+ - (3.64)

with B being the second virial coefficient.

In order to determine B and M,,, the data are presented in the so-called Zimm-
diagram (cf. Fig. 3.15). The quantity (1 + cos?9)Kc/2R(9) is plotted against an
abscissa, which is composed additively of the values of sin’®/2 and x-c. The
proportionality factor k may be chosen arbitrarily. It has the dimension of //g and
is introduced only to separate measuring points, which belong to different con-
centrations but to equal values of the scattering angle or vice versa.

Points indicated by circles are obtained directly from the measurement, those
indicated by crosses are obtained by extrapolations to either ¢ — 0 or ¢ — 0. The
intersection of the two extrapolated lines lies on the ordinate and corresponds to
the value //M,,. From the slope of the line with constant scattering angle © = 0, the
second virial coefficient B is obtained, from the slope of the line with the con-
centration ¢ = 0, a measure for the coil dimension follows according to Eq. (3.68).
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Fig. 3.15 Zimm diagram for the determination of M,,, B, and h?/ 2, schematically. The diagram
was constructed, using Eq. (3.65) and the parameter values M,, = 400 kg/mol, B = 4.10*
S.L units and A/Z = 0.3

In the case of a moderately diluted solution, for which the coil dimensions are
no longer small in comparison to the wave length, the method yields direct
information on the magnitude of the macromolecular coils:

2h =2 A; moderate dilution.

If the dimensions of the coils become comparable with the wave length
(2 h = 0.1 A), it is not allowed any longer, to add the intensities of the light
scattered from different parts of the macromolecule. Vibrations of the dipoles from
different parts of the molecule show phase differences. This leads to interferences,
which magnify the light scattered into the direction of the incidence of the original
beam, and attenuate the light scattered into the backward direction. While the
scattering curve is symmetrical with respect to the position ¥ = 90° for small
coils, it becomes asymmetrical for larger ones. This dissymmetry forms a measure
for the coil dimensions. Instead of Eq. (3.64), the following relation holds for large
coils in moderately diluted solutions [35]:

1 + cos?¥ Kc 1 1

2 R(W,e,M,h/i,B) M, J(V)

+2Bc (3.65)
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The function J(¢) depends on the shape and the size of the scattering particles.
J(¥) = 1 for small particles and J(0) = 1 for particles of all sizes. J(¢) has been
calculated for rigid spheres, for rigid rods and for macromolecular coils.’

The result for coils is:

2 —u
JW) == [e" =144 (3.66)
with
hZ
u=16m" -?sinz(ﬁﬂ) (3.66a)

h? = (s?) is the mean square radius of gyration, which may directly be determined
from the initial slope of the curve (1 4 cos?¥)Kc/2R("9) against sin®(1/2) for
¢ = 0, as by developing J(¢) into a power series of u, the slope is found as:

1 +cos’>9 Kc . _len* 1 K?

This slope may easily be obtained from the extrapolated line ¢ — 0 of the Zimm
diagram, which thus offers a measure for the coil dimensions, viz., the mean
square radius of gyration.

A further possibility for the measurement of the coil dimensions is the dis-
symmetry of the scattering curve. One determines the ratio of the intensity of the
light scattered at the scattering angles 45 and 135° in the limit of ¢ — 0. This ratio
is called the dissymmetry factor z and is easily calculated from Egs. (3.65) and
(3.66).

R(9=45°¢c—0) J(I=45) 8v2m* h?
— — =1 —+0|—|+-- (3.68
CTRO=135,c = 0) J( = 135) T3 22 * ya T (368)

The dissymmetry factor z, calculated as a function of the ratio of the mean
square radius of gyration to the square of the wave length, is presented in Fig. 3.16

The dissymmetry factor increases linearly with (4/4)° at small values of the
abscissa, with a slope of 37.2 and exceeds unity by more than 30 % already for
values of 2/A = 0.1. As examples, in Figs. 3.17 and 3.18 Zimm diagrams of a
technical poly(styrene) in a good solvent and in a theta solution are shown.

In a good solvent, B has high-positive values. Therefore, the line obtained by
extrapolation to ¢+ — 0 with the slope B increases stronger with increasing abscissa

3 Rigid spheres and macromolecular coils scatter differently, as spheres are uniformly filled with
scattering matter, while coils show the density distribution of the random walk chain.
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Fig. 3.16 Dissymmetry factor z as a function of the relative coil dimension A/4

l1+cos’$ . ¢
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—— sin*$/2+kx-c
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Fig. 3.17 Zimm diagram of PS in toluene at 20 °C after Jolk [37]. Measuring points at the
scattering angles 9 = 30, 37.5, 45, 60, 75, 90, 105, 120, 135, 142, and 150° and at the
concentrations ¢ = 0.53, 1.0, 1.56, 1.94, 2.98, 4.14, 5.06, and 6.0 g/l and k = 0.1 /g

than the line extrapolated to ¢ — 0. The first line forms the left boundary of the
rhombus of the Zimm diagram, the latter its lower boundary.

In a theta solution, the line extrapolated to ¥ — 0 with the slope B = 0 forms
the lower boundary of the rhombus of the diagram, the line extrapolated to ¢ — O,
its left boundary.

In conclusion it may be stated, that light scattering is one of the most powerful
methods of molecular characterization. Besides the measurement of M,, and B, it is
the only method which yields direct information about the mean square radius of
gyration. Furthermore, light scattering in combination with gel permeation chro-
matography is a very important tool of molecular characterization, as it allows a
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2
- 1+cos" 8 Kc , 10°mol/kg PSN-7000
: 2 R(9) cyclohexane 34°C
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i\
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Fig. 3.18 Zimm diagram of PS in cyclohexane at 34 °C after Jolk [37] (&-solution).
Kk = 0.05//g. Scattering angles as in Fig. 3.18, concentrations ¢ = 0.66, 1.18, 2.0 g/l

direct determination of the molar mass and the radius of gyration of the molecules
within the various fractions obtained.

3.4 Gel Permeation Chromatography

Gel permeation chromatography (GPC) or size exclusion chromatography (SEC)
has attained a great importance during the last decennia as a tool for the charac-
terization of polymers. By means of GPC it is possible to determine not only
various averages of the molar mass distribution, but also the shape of the distri-
bution functions, which is of special interest in dealing with bi- or multimodal
distributions, and cannot be obtained by other methods.

A schematic setup for gel permeation chromatography is given in Fig. 3.19.
The solvent is pumped from a container through a sampling valve, and then further
through a number of separating columns into the detector. The purpose of the
sampling valve is to inject at a certain time Av = 0.1 ml of the polymer solution
into of the solvent which is continuously pumped through the columns at a con-
stant flow rate.

While the solution passes the separating columns, it is fractionated. The different
columns are filled with gels of different pore sizes. Frequently used are styrene-
divinylbenzene gels. Polymer coils which fit into the pores are retained there for
longer times, while larger coils pass the column faster. By this process larger
macromolecules arrive earlier at the end of the last column and are measured first
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separating
columns
solvent [—{ Pump
A
A
J
sampling valve
Rl-detector IR-Detector — MALLS
G (Vi branching <s>1? M,.1s

Fig. 3.19 Schematic setup for gel permeation chromatography. As solvent THF is frequently
used. The numbers on the columns designate the average pore sizes 107, 10* and 10 cm

by the differential refractometer or other probes. In the refractometer the polymer
concentration of the solution is measured as a function of the elution volume by
comparing its refractive index with that of the pure solvent.

The polymer concentration c;, as a function of time or the elution volume (Ve),-,
respectively, already represents a good qualitative picture of the molar mass dis-
tribution. In order to arrive at quantitative results, it is necessary either to deter-
mine the absolute molar mass of the fractions by means of laser light scattering or
to calibrate the chromatogram using nearly monodisperse samples.

As an example for the latter method, Fig. 3.20 shows the gel permeation
chromatograms of three polystyrene standards with known narrow molar mass
distributions. The elution volumes at the concentration maxima are assigned to the
corresponding molar masses. In this way the calibration curve shown in Fig. 3.21
was obtained.

The result of the chromatograms of ten PS-standards with molar masses
between 1 and 2500 kg/mol is shown in the calibration curve in Fig. 3.21.

The closed circles represent the ten PS-standards, the open circle is ascribed to
the styrene monomer. The relation between the logarithm of the molar mass (in kg/
mol) and the elution volume v, (in ml) may be described by the following cali-
bration curve
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Fig. 3.20 Gel permeation chromatogram of three anionic poly(styrenes) after Wolf [38]

log(M/(kg/mol)) = a + bv, + cv? +dv +ev? 4 - (3.69)
with
a=506 b=-585¢c=0273 d=-576-107 e =4.47-107°

In a very coarse approximation, the calibration curve of Fig. 3.21 may be
replaced by a straight line, meaning that only the first two terms of Eq. (3.69) are
retained:

log(M/(kg/mol)) = a + bv, (3.69a)

The concentration ¢; of the ith fraction is measured at the elution volume (v.);,
to which the molar mass M, is assigned by the calibration function Eq. (3.69). The
measurement is performed every 12 s, corresponding to an increase of the elution
volume by Av = 0.1 ml. The width f; of the interval of the ith fraction with
respect to the elution volume is (in analogy to the derivation of Eq. (2.11)) the
same for all fractions, viz.,

Bi= ((Ve)i+1_("e)i—1>/2 =4y (3.70)

Assuming that the fractionating columns separate ideally, i.e., that the fraction
i contains only molecules of the molar mass M; the mass fraction W; of the
molecules with a molar mass M; in the solution is the product of the concentration
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Fig. 3.21 Calibration curve of the GPC-setup after Wolf [38]. Circles indicate calibration points,
the drawn line shows the calibration curve according to Eq. (3.69)

¢; measured at the elution volume (v,); and the width f; of the interval around this
elution volume, i.e.,

W; = ciff; = ¢;idv (3.71)
Due to Eq. (2.5) this should be equal to
Wi = niM; /Ny
from which one obtains
m; = niM; = c;NyAv (3.72)
We insert Eq. (3.72) into the definitions of the number average Eq. (2.15),
the weight average Eq. (2.17), the z-average Eq. (2.18) and the viscosity average

Eq. (2.19) of the molar mass and find the corresponding expressions in terms of
the measured concentrations c;:

CmM Y

My = S50 = < (3.73)
_ XaM; (3.75)

Y aM;

and
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Lo " (376)

D¢

Though the width f3; of the interval of the ith fraction is independent of i, when
measured on the scale of the elution volume, it is not independent of i, when
measured on a scale of the molar mass. By Taylor development of Eq. (3.70) we
find for the width b; of the interval of the ith GPC-fraction (on the scale related to
the molar mass)

p = Vel =0edioy _ <dV€) M, = —0.43M, / M (legM) (3.77)

|

2 M dv,

whereas the size of the classes in the linear molar mass scale is chosen as Mg.4
The derivative occurring in this equation follows from Eq. (3.69) as

log(M/(k [
dlog( fzi 8/MOD) _ gy vy + 3 + dev? 4 - (3.78)
or from Eq. (3.69a) as
dlog(Mil(kg/mol)) ~b (3.782)
Ve

Inserting the latter into Eq. (3.77), we arrive at

_0.43M,
T M

(3.79)

For the calculation of the mass and number densities of the molar mass dis-
tribution we have to use the definitions Egs. (2.7) and (2.9) of the mass and
number distribution functions of the molar mass and to insert for n; and m; the
values following from Eq. (3.72). We find for the number distribution function

n; ci/M;
f(M) = = (3.80)
om0 (ci/Mi)
and for the mass distribution function
hM;) = =1 = & (3.81)

Smi Y

* If the size were chosen as a fixed multiple of M,, this would only multiply the width with a
constant factor, independent of i, and would not change the following argument. The minus sign
is required, because log M is a decreasing function of v, and b; should be positive.
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Fig. 3.22 Concentration c¢;, mass distribution density w(M) and number distribution density
g(M) of a technical poly(styrene), PS N 7000, after Wolf [38]

The number and mass distribution densities are found by multiplying
Egs. (3.80) or (3.81) with the ratio b/f; and renormalizing the distribution
densities

_ci/Mi(dlogM/dv), _ c;/M}
Mg M) = = T dlog Mdv), = 5 /M7 55

i

and

\_ ci/(dlogM/dv); _  ci/M;
Mo (M) = S~ e o MTdv), = 35 (erf M) (383)

Figure 3.22 shows the elution chromatogram of a technical poly(styrene) for a
calibrated logarithmic molar mass scale as determined by Wolf [38].

Measured c;-values have been indicated by filled circles. From these, the values
of single points of the curve of the mass distribution density (open squares) have
been calculated by means of Eq. (3.83) and the values of single points of the curve
of the number distribution density (open circles) have been calculated by means of
Eq. (3.82). Note, that the c-values represent a discrete distribution function, while
w(M) and g(M) are continuous distribution functions, (distribution densities). This
also explains the difference of the units for these quantities.
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Comparing the formulae (3.81), (3.83), and (3.82) explains, why the curves in
Fig. 3.22 for the concentrations of the GPC-fractions, for the mass distribution
density and for the number distribution density are similar over a logarithmic
molar mass scale, but, respectively, shifted into the direction of smaller molar
masses each.

It is seen, that the c;-data are not sufficient to determine the complete curve of
g(M). A significant part of this density remains undetermined due to the lack of c-
data at low-molar masses. Moreover, in the region, where g(M) is to be calculated,
the corresponding c-values are very low, and therefore show a considerable
experimental error. This makes the calculation of the number distribution density
from GPC-measurements rather tedious and uncertain. Though, if Eqs. (3.73) or
(3.74) are used to calculate M,, and M,, from the GPC-data shown in Fig. 3.22, the
correct values of 188 kg/mol and 386 kg/mol are obtained.

Recently, the GPC-equipment has been completed by a very useful tool which
has enlarged its significance considerably. It has been coupled with a multiangle
laser light scattering apparatus (MALLS), which offers the possibility to determine
the absolute value of the weight average molar mass, M,,; s for each fraction

separately, as well as the square root of its mean square radius of gyration <52>0‘5
evaluating the Zimm-diagram. This substitutes, partially the tedious calibration of
the elution volume. Moreover, by separating a polymer in well defined fractions,

and measuring (s2>0'5 and M,, ;s simultaneously, the relationship between the
mean square radius of gyration and the molar mass can directly be determined
even in the case of non-theta solvents, where calculations are not available. The
method also works for branched polymers.

In the case that a MALLS equipment is not available and for special polymers
where well-defined narrowly distributed samples for setting up a calibration curve
are difficult to obtain, the so-called universal calibration is applied making use of
commercial polystyrene standards (cf. Fig. 3.21).

This method is based on the physical fact that the molecules are separated by
the gel of the GPC-columns according to their hydrodynamic volume. Use is made
of the Mark-Houwink equation

(] = KM* (3.37)

with [i7] being the intrinsic viscosity and a and K quantities depending on the
polymer, its solvent and the temperature of the viscosity measurement. Specific
values of the Mark-Houwink equation are listed in Table 3.2, for example.
According to Eq. (3.45), [n] is proportional to the coil volume and inversely
proportional to the molar mass M. Therefore, at the same elution time or elution
volume, respectively, the following relation holds between two species 1 and 2

[’7}1M1 = [’7]2M2

or with Eq. (3.37)
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KlMClllJrl — KzMélerl
and therefore
My = (K /Ky)"/ D pgfet D/t (3.84)

For example, for the elution volume v, of species 1 with an unknown molar
mass distribution the corresponding molar mass M, of polystyrene can be deter-
mined according to the calibration curve of Fig. 3.21. The molar mass M, of the
unknown species follows then from Eq. (3.84) making use of the adequate
parameters a;, a,, K, and K5. In this way calibration curves for polymers based on
the well established one of polystyrene can be obtained.

References

1. Flory PJ (1941) J Amer Chem Soc 65:372

2. Miinster A (1953) Statistische Thermodynamik hochpolymerer Losungen in Stuart HA Die
Physik der Hochpolymeren Bd.2. Springer, Berlin

. Schulz GV, Baumann H, Darskus R (1966) J Phys Chem B 70:3647

. Schulz GV, Inagaki H, Kirste R (1960) Z F Phys Chemie 24:390

. Joos G (1977) Lehrbuch der theor. Physik. Akad. Verlagsges, Wiesbaden

. Kulicke WM, Kniewske R (1984) Rheol Acta 23:75

. Daum U (1970) Centraal laboratorium TNO, Delft, private communication

. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, New York

. Kurata M, Tsunashima J (1999) Viscosity-molecular weight relationships and unperturbated
dimensions of linear chain molecules. In: Brundrup J, Immergut EM, Grulke EA (eds)
Polymer handbook, 4th edn. Wiley, New York

10. Bawn CEH, Freeman RFJ, Kamaliddin AR (1950) Trans Farad Soc 46:1107

11. Meyerhoff G (1955) Z Phys Chem 4:355

12. Meyerhoff G, Apelt B (1979) Macromolecules 12:968, (1980) 13:657

13. Inagaki H, Suzuki H, Fujii M, Matsuo T (1966) J Phys Chem 70:1718

14. Meyerhoff G, Schulz GV (1951) Makromol Chem 7:294

15. Cantow HJ, Schulz GV (1954) Z Physik Chem 2:117

16. Chinai SN, Matlak JD, Resnik AL, Samuels RJ (1955) J Pol Sci. 17:391

17. Fox TG (1962) Polymer 3:111

18. Kriegbaum WR, Flory PJ (1953) J Pol Sci 11:37

19. Freeman WR, Manning PP (1964) J Pol Sci A2:2017

20. Sato M, Koshiish Y, Asahina M (1963) J Pol Sci B1:233

21. Schulz GV, Hornnbach A (1959) Makromol Chem 29:93

22. Berry GC, Nomura H, Mayhan KD (1967) J Pol Sci A2(5):1

23. Kaufmann HS, Walsh EK (1957) J Pol Sci A2(26):124

24. Williamson GR, Cervenka A (1974) Eur Polym J 10:295

25. Kinsinger JB, Hughes RE (1959) J Phys Chem 63:2002

26. Kinsinger JB, Hughes RE (1963) J Phys Chem 67:1922

27. Burke JJ, Orfino TA (1969) J Pol Sci A2(7):1

28. Elias HG, Schumacher R (1964) Makromol Chem 76:23

29. Meyerhoff G (1961) Fortschr. Hochpol. Forschung 3:59

30. Hoffmann M (1957) Makromol Chemie 24(222):245

NelieoBEN Be NI SN



76

31

37.
38.

3 Experimental Methods to Determine Molecular Quantities

. Einstein A (1906) Ann Phys 19:289; (1911) Ann Phys 34:591
32.
33.
34.
35.
36.

Flory PJ (1949) J Chem Phys 17:303

Fox T, Flory PJ (1950) J Polymer Sci 5:745

Flory PJ (1969) Statistical mechanics of chain molecules. Wiley, New York

Elias HG (1984) Macromolecules 1. Plenum Press, New York

Casassa EF (1999) Particle scattering factors in Rayleigh scattering. In: Brundrup J,
Immergut EM, Grulke EA (eds) Polymer handbook, 4th edn. Wiley, New York

Jolk W (1982) Diploma thesis, University Erlangen-Niirnberg

Wolf M (1982) Diploma thesis, University Erlangen-Niirnberg



Chapter 4
Structure and States of Polymers

In this chapter, a short description of the molecular structure of polymeric sub-
stances and their states at various temperatures is given. Polymers may be clas-
sified according to their application or to their molecular structure. Mechanical
properties in the various structural states are addressed.

4.1 Classification of Polymeric Materials

Polymer materials are either totally amorphous or semicrystalline species in the
temperature range of their applications. The morphological structures are of great
importance for the end-use properties. A special feature in comparison to other
materials is that amorphous and semicrystalline polymeric materials as well can be
cross-linked up to various degrees. If in addition one considers the great number of
variations with respect to chemical composition and molecular structure the
immense scale of polymer species becomes evident. The two most important
features for the understanding of the structural states of polymers are crystallinity
and cross-linking. Based on these two properties a classification into the five basic
types of polymers, summarized in Table 4.1, can be made.

Amorphous and semicrystalline uncross-linked polymers are used as plastics.
Because of the absence of chemical cross-links they can be molten and may easily
be processed in this state by extrusion, injection molding or fiber spinning. Both
types of polymers are soluble in organic solvents. The amorphous materials can be
dissolved in a great number of ingredients. The more difficult dissolution of the
semicrystalline species has advantages and disadvantages. On the one hand they
are more resistant against certain environmental influences than their amorphous
counterparts, on the other they have to be handled at temperatures well above room
temperatures if solutions are needed as in the cases of molecular characterization
or solution spinning. Both species can repeatedly be molten and solidified by
thermal treatments, and are therefore called thermoplastics.

Amorphous, weakly cross-linked polymers are used as elastomers. Because of
the presence of chemical cross-links, they cannot be molten. In contact with
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Table 4.1 Basic types of polymers, their processing, and some properties [1]

Structure Melting behavior solubility Processing Type

Amorphous Meltable Extrusion Thermoplastic
uncross-linked easy to dissolve injection molding

Semicrystalline Meltable Extrusion, injection molding Thermoplastic
uncross-linked difficult to dissolve fiber spinning

Amorphous Not meltable, insoluble Shaping before Elastomer
cross-linked swellable vulcanization

Amorphous dense Not meltable, insoluble Shaping before hardening ~ Duromer
networks hardly swellable

Semicrystalline Not meltable Shaping before cross-linking Cross-linked
cross-linked insoluble polymer

swelling agents, they may swell without dissolving. Processing of those materials
is performed in a state at which chemical cross-links are not yet present. By the
cross-linking process, which is called vulcanization in the case of rubbers, the
shape is stabilized. This may be done also during injection molding. This process
is then called reaction injection molding (RIM).

A very high cross-link density can be achieved by certain chemical reactions of
oligomers. In such cases the formation of macromolecular chains and cross-links
run in parallel and dense networks are formed. These materials are called duro-
mers. Shaping occurs during the hardening process, after which duromers no
longer can be molten, are insoluble, and resistant against a wide spectrum of
ingredients. This property and low viscosity and good wettability of the oligomers
before curing are the basic features for their importance as the polymeric com-
ponent of modern fiber-reinforced composites.

Cross-linked semicrystalline polymers like polyethylenes have their largest
applications in the field of cable jacketing and pipe manufacturing. The cross-
linking is initiated after extrusion either by thermal treatment or by electron-beam
irradiation.

In Table 4.2 some amorphous thermoplastics are listed, which have achieved
larger practical importance. The first column of this table gives the official
chemical designation as defined by various international standards committees [2],
the second column the acronym, which is used in the literature. The third column
gives the molar mass of the structural unit in g/mol and the fourth shows the
structural unit.

PVC is an important mass product with a wide field of applications. Common
PVC contains a large portion (about 65 %) of syndiotactic chain parts. Its prop-
erties are typical of an amorphous thermoplastic. However, sometimes a tendency
to crystallization in the melt can be observed. The melting temperatures are below
the usual processing temperatures and the crystallization rates are so low that
crystallinity does not affect the transparency of items manufactured from PVC.
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Table 4.2 Some amorphous thermoplastics [1]

Chemical name Acronym M, g/mol  Structural unit
Poly(vinyl chloride) PVC 62.5 Iil
[~CH;-C-]
C1

Poly(styrene) PS 104.2 I;I
[-CH,—C—]

Poly(methyl methacrylate) ~ PMMA 100.1 CH,
Poly(methyl acrylate) PMA 86.1 H

Poly(vinyl acetate) PVAC 86.1 H

Poly(carbonate) PC 2543 CH,

Poly(ether sulphone) PES 232.1 : (I? : E|
(e}

Nearly half of the PVC is used unmodified. Due to its high stiffness it is often
called “hard-PVC” (PVC-U). PVC can be plasticized by adding phthalates or
special esters of fatty acids. This “plasticized PVC” (PVC-P) has found a lot of
applications as the glass temperature and consequently the viscosity can be varied
in a rather wide range. Moreover, the modulus goes down but the impact strength
can remarkably be increased. A disadvantage of these versatile materials is the
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gradual diffusion of the plasticizer out of a manufactured item and following from
that the loss of flexibility and toughness.

PS produced by radical polymerization is an atactic product being amorphous.
By stereospecific catalysts it is possible to produce isotactic or syndiotactic
polystyrenes that are able to partly crystallize and show melting temperatures
distinctly above 200 °C. However, the inferior mechanical properties of these
materials have prevented their commercial success up to now. Common PS is a
translucent brilliant product, especially appropriate for the manufacturing of
injection molded parts. It is, however, very brittle and may break already when
falling on a hard floor or being clamped too tight. Its low impact strength is
overcome by copolymers on the base of styrene and butadiene (high impact
polystyrene (HIPS)) or materials using particles of a polystyrene butadiene
copolymer attached to a matrix of polyacrylonitrile by grafting ABS. The loss of
transparency of these copolymers can be compensated for by reducing the buta-
diene domains to sizes smaller than the wavelengths of the visible light and
suppressing its scattering by this modification. Such materials offer good impact
strength combined with transparency.

A translucent amorphous thermoplastic with good mechanical properties is
PMMA which, when polymerized under normal conditions, contains 60 % syn-
diotactic moieties. It is applied as a polymeric glass.

The excellent transparency of polycarbonate PC is the base for optical appli-
cations. Moreover, it has relatively high temperature resistance and excellent
impact strength.

PES is transparent and belongs to the class of high temperature resistant poly-
mers. It is distinguished by a glass transition temperature of 220 °C and also by a
continuous use temperature of about 180 °C due to its excellent chemical stability.

Table 4.3 lists some important semicrystalline thermoplastics. Essential con-
ditions for crystallization are the symmetry of the structural units and the strength
of the interactive forces between different molecules. Structural units with large
symmetries will fit into a crystal lattice if their side groups are not too bulky.
Examples of very symmetrical molecules are the first four materials in Table 4.3.

Usually, for homopolymers, the structural unit is defined as the smallest
repeating unit of the polymer chain. Exceptions to this rule are PE and PTFE, for
which the double of the smallest repeating unit is defined as the structural unit.

Polyethylenes are polymers of the greatest economic importance. They are
divided into several subgroups formally classified according to their density.
HDPE stands for high-density polyethylene with densities between 0.935 and
0.960 g/cm® at ambient temperatures. The density allows some conclusions with
respect to the structure of the polymer. HDPE reaches crystallinities up to 70 %
due to the prevalent linear molecules that are able to form ordered segments.
LDPE, the acronym for low density polyethylene, covers the density range adja-
cent to the lower values of the HDPE and further down to around 0.918 g/cm’. The
smaller densities point to a lower crystallinity due to the existence of long-chain
branches. In case of short-chain branches that can reach up to six carbon atoms in
commercial products one still speaks of linear materials, but as the side groups
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Table 4.3 Some semicrystalline thermoplastics [1]

Chemical name Acronym M,, g/mol Structural unit
Poly(ethylene) PE 28.1 [—-CH,—-CH, -]
Poly(tetrafluoroethylene) PTFE 100.0 {—CF,—CF,—-]
Poly(oxymethylene) POM 30.0 {—CH,—-0-]
Poly(vinylidene chloride) PVDC 96.9 [-CH,—CCl,—]
Poly(acrylonitrile) PAN 53.1 [-CH, —]CH -]
C=N
Poly(propylene) PP 42.1 - CH;!CH—]
CH,
Poly(vinyl alcohol) PVAL 44.1 [—CHz—(ITH—]
OH
Poly(ethyl hthal PET 192.
oly(ethylene terephthalate) 92.9 [_O_(CHz)ZwO_(II:@%_]
(0]
Poly(amide) PA [-%—(CH2)4—$%~ITJ—(CH2)G—ITJ—]
PA-6.6 226.3 O O H H
PA-6.10 282.4 [—<"3~(CH2)8—€~1TI—(CH2)6—ITI—]
(o) O H H
PA-6 113.2 [—(”?—(CHZ)S-IIJ—]

O H
Poly(phenylene sulfide) PPS 108.1 ‘ : %
S
Poly(ether ether ketone) PEEK 298.0
aWasWs:

O

hinder a close packing of molecules the densities are smaller than those of HDPE.
The densities are determined by the concentration of the comonomers built in and
can reach values still lower than for the LDPE. According to their properties these
products are called linear low density polyethylenes (LLDPE). HDPE and LLDPE
are polymerized under relatively low pressures and moderate temperatures using
catalysts, whereas LDPE is synthesized without any catalyst under pressures up to
3,000 bars and temperatures up to 300 °C. The main field of application for the
various polyethylenes is the packaging sector, but tubes of different kinds and
cable insulations are also their domains.
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Most of the polypropylenes on the markets are linear products. Their moduli are
larger than those of the polyethylenes and due to their smaller crystallinity and low
crystallization rate the transparency can be rather good. Similar to polyethylenes of
higher densities they are synthesized at moderate pressures and temperatures.
Copolymers of propylene and ethylene are distinguished by a better impact strength
than PP homopolymers and a higher modulus than PE. These two properties can be
adjusted within certain limits by the ratio of the two components. Though PP has
better temperature resistance than PE (it may be used up to temperatures of
120-130 °C), it is, however, less resistant against UV-light, as the hydrogen atoms
bound to the tertiary C-atoms are the weak points for UV-disintegration. Big
markets for such products are the automotive and appliance industries.

PTFE is a highly crystalline polymer for special purposes. It is chemically and
especially thermally resistant, has a high melting temperature, low dielectric losses,
high electric resistance, low friction coefficient, and good abrasion resistance. Its
main applications are in the chemical, electrical, and electronics industries.

POM is a highly crystalline polymer. It has a special hardness and good form
stability. It is used in technical products and replaces metals there.

A complete symmetry of the molecules is not unconditionally necessary for
crystallization. If the molecule contains polar groups with strong interaction, even
less symmetrical molecules will tend to crystallize. Examples are PA, PET, and
PAN. The strongly polar groups are in these cases C=0, N-H, and C=N.

PA and PET have a wide range of applications. Special grades are used for
spinning of synthetic fibers. PET is the preferred material for soft-drink bottles.
Although semicrystalline, this material is suitable for applications requiring some
degree of transparency as the rate of crystallization is low enough to keep it in the
amorphous state during cooling after processing. The modulus is sufficiently high
to reach a satisfactory stiffness of items at wall thicknesses making the use of PET
very economical. Furthermore, the excellent toughness prevents breakage even
under large mechanical stresses.

PA is a versatile material as the chemical structure of its basic unit can be
altered resulting in a change of properties. In Table 4.3 three modifications are
presented. The numbers denote the C-atoms of the diamine and the dicarboxylacid,
respectively. The low viscosities of polyamides are favorable for processing by
injection molding; their good mechanical properties open up the widespread use in
demanding technical applications. To enhance their moduli at higher temperatures,
many grades of PA are filled with up to 50 wt. % short glass fibers. These fillers
reduce the water uptake of the unmodified grades by several percent. Water
improves the impact strength but is of disadvantage for the dimensional stability of
manufactured items.

Polyphenylenesulfide (PPS) has a rather high modulus, particularly in combina-
tion with various fillers that are necessary to improve the inherent notch sensitivity.
Due to the low viscosity of the basic resin even the compounds are suitable for
injection molding. Continuous use temperatures up to 230 °C can be reached with
special fillers. This property is the basis for its classification as a high temperature
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resistant polymer. Similar to other materials of this class, it possesses high resistance
to inflammability and low smoke gas density. These properties have opened up
demanding applications of PPS in the electrical, electronics, and appliance
industries.

Polyaryletherketones are the top products among thermoplastic polymers. The
largest market share has polyetheretherketone (PEEK) which is listed in Table 4.3.
In spite of its high melting temperature of 330 °C, this material can be processed
by common extruders or injection molding machines. Outstanding are the con-
tinuous use temperature of about 250 °C, high resistance against chemicals and
mechanical abrasion, and low inflammability and smoke gas density. PEEK is used
for items applied in harsh environments. Due to its excellent mechanical properties
and stability against bodily fluids, PEEK has found its entrance into medical fields
like bone replacement and orthopedic surgery.

Table 4.4 lists some polymers used for the preparation of elastomers (rubbers).

PIB may be prepared as an uncross-linked polymer with rather sharp molar
mass distributions and widely different molar masses. Therefore, it has often been

Table 4.4 Some elastomers (rubbers) [1]

Chemical name Acronym M,, g/mol Structural unit
Poly(isobutene) PIB 56.0 (’3H 3
(~CH,~C-]
CH,
Poly(dimethyl siloxane) PDMS 74.1 (FH 3
[~ 0~§i -]
CH,
Poly(cis-isoprene) (natural rubber) NR 68.0 [—-CHZ—C=(’3 —CH,—}
H
CH,
Poly(butadiene) PB 54.0 [-CH,—CH=CH-CH,—]
Styrene-Butadiene SBR - [—CHZ—CH=CH _CHz'"]
co [—CH,—CH-]
Poly(chloroprene) CR 88.0 [—CH 2_(I:=(I:_CH2 -]
H Cl
Polyurethane rubber PUR - [—ICI-—PII-—R—]TI—IC]—O—R’*O -]

O H
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used for investigations into the influence of the molar mass on physical properties.
In the uncross-linked state PIB is applied as adhesive and sealant. After copoly-
merizing isobutylene with small amounts (1-3 %) of isoprene, the product con-
tains some double bonds and may be vulcanized with sulfur. In this way butyl
rubber (BR) is obtained which is less sensitive against oxidation than natural
rubber. Because of its small gas permeability butyl rubber is used for the pro-
duction of gas hoses.

The rubbers with the largest economical significance are natural rubber (NR)
and styrene-butadiene rubber (SBR). They are mainly used for the production of
tires. Natural rubber is produced from poly(cis-isoprene), which is harvested as the
latex of the hevea tree. It is cross-linked with sulfur (vulcanized). Some of the
double bonds of the polyisoprene are replaced by sulfur bridges with length
between 2 and 8 atoms. Lightly vulcanized NR contains about one sulfur bridge
per 300 structural units of the polyisoprene molecule. NR is an amorphous, cross-
linked polymer with large elongations at rupture and large strengths at break.
Under elongation NR crystallizes. This process is mainly responsible for the large
strength at break of this material.

The most important application of butadiene is its copolymer with 20 % sty-
rene. This copolymer cross-linked with sulfur is the basis of styrene-butadiene
rubber (SBR), which does not crystallize under stretching and is, therefore, much
weaker than NR. For this reason, it is filled with carbon black for most applica-
tions. Nevertheless, more than half of all rubbers produced today are SBR, as it is
cheaper.

From poly(chloroprene) (CR), a rubber is produced with large resistance
against oils and fats. It is used for special purposes, e.g., sealings.

Polyurethanes (PUR) are versatile materials for many industrial applications. If
cross-linked with trimethylolpropane and toluene diisocyanate (TDI) they form
networks of adjustable mesh widths, which are decisive for mechanical properties
of a manufactured item. Foaming and cross-linking in parallel lead to lightweight
materials with a wide spectrum of applications.

All polymers listed in Table 4.4 emerge during the polymerization process as
uncross-linked polymers and are vulcanized afterwards. In this way, mostly net-
works are formed with wide meshes leading to materials that are soft and strong at
higher temperatures.

Among plastics, there are also materials with a molecular structure consisting of
very narrow meshes. Examples are the polycondensation products phenol form-
aldehyde resin (PF), urea formaldehyde resin (UF), and melamine formaldehyde
resin (MF). They are called thermohardening polymers, thermosets, or duromers.

Duromers are often applied in combination with fillers of different composition
and used in the electrical industry. Epoxy resins (EP) and unsaturated polyester
resins (UP) are of great technical importance as matrix materials for glass-fiber
filled and carbon-fiber filled plastics. These materials have gained much impor-
tance because of their high strength to weight ratio and their high stiffness to
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Fig. 4.1 Illustrating the

concept of isotropy :]

weight ratio. They are on the way to replace more and more metallic construc-
tional materials in the airplane and automobile industries. More detailed infor-
mation on thermo hardening polymers can be found in [3].

By changing their states, many physical properties of polymers as electrical
conductivity, dielectric behavior, heat conductivity, density, specific heat, and so
on are altered. The strongest changes, however, occur in the mechanical defor-
mation behavior. In order to describe these changes, some basic concepts are
needed, which are introduced shortly in the following. A more exact definition
with regard to the frequency dependence of moduli and loss tangent is given in
Chap. 5.

We will consider the mechanical properties of isotropic materials. A material is
called isotropic when its properties do not depend on the direction in which the
specimen investigated was cut from the plate or block of the material.

An illustration is given in Fig. 4.1, which represents a plate of a polymer
material from which three samples oriented in different directions were cut (or
machined). If those specimens show identical properties the material is called
isotropic with respect to this particular property.

During the following discussion, we use three characteristic quantities to
describe the mechanical properties of materials, the shear modulus, the com-
pressive or bulk modulus, and the loss tangent. The shear modulus is a measure of
the resistance of a material against a change in shape at constant volume, the bulk
modulus is a measure of the resistance of a material against a change in volume at
constant shape, and the loss tangent is a measure for the dissipation of mechanical
energy into heat during a deformation cycle.

For the definition of the shear modulus we consider Fig. 4.2. A small cube,
oriented in parallel to a right-handed Cartesian coordinate system, is deformed into
a thomboid by shearing forces. The tangential forces act in x-direction on the two
surfaces that are perpendicular to the y-direction. Their magnitude, divided by the

Fig. 4.2 Definition of simple o
shear and shear stress /
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surface area on which they act, is called the trangential stress or shear stress and is
designated as o.

The cube is deformed into a rhomboid with the same height and width. The
edges, which were originally parallel to the y-axis, form an angle o with the y-axis
after deformation. This angle is used as a measure for the magnitude of defor-
mation and its tangent

y =tano (4.1)

is called the shear deformation or shear strain. The type of deformation illustrated
in Fig. 4.2 is designated as simple shear. The quotient ¢/y defines the shear
modulus.

G=o/y (4.2)

The definition of the loss rangent relates to an experiment with a harmonic
simple shear strain:

p(t) = y, sin wt (4.3)

with y, being the shear amplitude, w = 27nv the angular frequency, v the frequency
of the shear oscillation, and ¢ the time. The shear stress is, under certain conditions,
also a harmonic function of time and precedes the shear strain by a phase angle §

a(t) = ag sin(wt + 0). (4.4)

The tangent of ¢ is called the loss tangent and describes the ratio of the mechanical
energy dissipated during one period of the oscillation to the maximum mechanical
energy stored during one period.

For the definition of the bulk modulus we refer to Fig. 4.3. A cube with volume
Vo is deformed under a hydrostatic pressure p, acting on all six surfaces of the
cube, into a smaller cube with volume V, — AV.

Fig. 4.3 Defintion of p
isotropic compression and
bulk modulus
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The bulk modulus or compression modulus is defined as
K =p/(AV/Vo) (4.5)

The type of deformation illustrated in Fig. 4.3 is designated as isotropic
compression.

For elastic materials, G and K are independent of the duration of the acting
stresses and of the frequency in case of an oscillatory experiment. The loss tangent
is zero. Examples of almost elastic materials are glass, ceramics, and metals below
their limits of plasticity. However:

Polymers are viscoelastic materials, i.e., their moduli G, K, and their loss
tangent tan 6 depend on the frequency of the oscillation in case of an
oscillatory experiment, or on the duration of the stresses applied.

For the following discussion of the relations between the states of polymers and
the temperature dependence of their mechanical properties we therefore consider
an oscillatory experiment with the fixed frequency of 1 Hz and discuss the tem-
perature dependence of the quantities Gy, (T), K, (T), and tan 0y,(7).

4.2 Molecular Structure of Amorphous Polymers

We look at the structure of amorphous uncross-linked polymers. In solution and in
the melt the single macromolecule has the shape of a coil. We assume that this
structure persists during the process of cooling and solidification. The apparent
density of the macromolecule in the coil is small (compare Eq. 3.44 of Sect. 3.2)
viz., of the order of 0.01 g/cm?, while the density of the polymer in the solid state is
about 1 g/cm® To reach this value, we have to assume that different coils penetrate
each other. Consequently, entanglements have to occur between them. Chemical
bonds between the different molecules do not exist. This consideration leads to the
picture of Fig. 4.4 for the molecular structure of an amorphous uncross-linked
polymer.

interpenetrating coils
with entanglements

IS

examples: PVC, PS, PMMA, PC

Fig. 4.4 Molecular structure of an amorphous uncross-linked thermoplastic
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isotropic: preferential direction:
no internal stresses frozen internal stresses
tension «—»
R\a\

pressure

Fig. 4.5 Illustration of the distribution of preferential directions for the molecular segments and
the occurrence of internal stresses

With respect to the orientation of the different molecular segments, the fol-
lowing remark should be made. If the polymer is isotropic, all directions of the
molecular segments will occur with an equal probability. If however, preferential
directions for the segments exist, the material is called oriented or non-isotropic;
stresses are frozen, and specifically
tensile stresses in the direction of the orientation and
compressive stresses  in the direction perpendicular to the orientation.

Whether a polymer contains frozen stresses depends on the conditions during the
processing phase. The degree of orientation increases in the succession casting,
pressing, extrusion, injection molding (Fig. 4.5).

If the polymer is heated above its glass transition temperature (compare
Sect. 4.3), it will shrink in the direction of frozen internal stresses and extend in the
perpendicular direction.

The molecular structure of an amorphous cross-linked polymer can be assumed
to be similar to the structure of an amorphous thermoplastic with the difference
that the various coils are connected by valence bonds between different chains,
which are called cross-links. The distribution of the directions of the segments will
be isotropic if the process of cross-linking has been performed in the isotropic non-
oriented state.

The topography indicated in Fig. 4.6 corresponds to natural rubber, lightly
cross-linked with sulfur. In this case, the short sulfur bridges connect the two
halves of neighboring polymer molecules. This may be designated as a 4-func-
tional cross-linking point, as indicated in Fig. 4.7a. Contrarily, the cross-links of
poly(urethane) rubber are formed by the reaction of TDI with trimethylol propane
(TMP) and connect three chain parts with each other, forming a 3-functional cross-
linking point (cf. Fig. 4.7b). The functionality of the cross-linking points plays a
part in the theory of rubber elasticity and determines together with the number of
cross-links the modulus of the cross-linked rubber.

The cross-linking density may differ widely. For a lightly cross-linked rubber, it
amounts to one cross-linking point for about 1,000 atoms of the main chain, and
for a well hardened duromer it can achieve up to one cross-linking point for about
20 atoms of the main chain. Besides the cross-links, entanglements will exist. But
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interpenetrating coils
with cross-links

examples: NR, SBR, PUR

Fig. 4.6 Molecular structure of an amorphous lightly cross-linked elastomer

(b) (c)

Fig. 4.7 Connections between different polymer molecules: a 4-functional cross-link (sulfur
bridges in NR), b 3-functional cross-link (PUR cross-linked with TMP and TDI), ¢ entanglement
(uncross-linked polymer)

they play a significant role for the mechanical behavior only, if the number of
cross-links is low.

Entanglements may be classified as 4-functional connection points (cf.
Fig. 4.7¢). They are not fixed at a position, but can slip along the entangled chains.
In the rubbery plateau of the thermoplastics, entanglements play a role similar to
that of cross-links for elastomers.

4.3 States of Order of Uncross-Linked Amorphous
Polymers

Amorphous uncross-linked polymers show three states of order and two transition
regions connecting them. They are listed in Table 4.5 together with a molecular
interpretation.

At temperatures below the glass transition temperature Tg, the polymer is
found in the glassy state. The micro-Brownian motion is frozen and no change in
the shape of the molecular chains between adjacent entanglements occurs. The
shape of the parts between entanglements is fixed. At very low temperatures the
thermal motion only effects a vibration of the molecules around the equilibrium
positions of valence bonds and angles. Additionally, vibrations around the
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Table 4.5 States, transitions and molecular motions for amorphous uncross-linked polymers

State or transition Micro-Brownian motion Entanglements

Glassy state Frozen Have the effect of fixed network points
Glass-rubber transition Starts developing Have the effect of fixed network points
Rubber elastic plateau Fully developed Have the effect of fixed network points
Flow region Fully developed Are continuously formed and loosened
Melt Fully developed Are continuously formed and loosened

equilibrium positions of van der Waals bonds between neighboring parts of dif-
ferent macromolecules occur. No conformational changes or rotations of side
groups occur.

Under the action of external forces, distances between and angles around
equilibrium positions are changed and twisted elastically. At low temperatures this
results into a high value of the shear modulus, a high value for the strength at
break a7}, a small value for the elongation at break ¢&,, and a low value for the loss
tangent

G~ 3—4-10°Pa, tand ~ 0.001—0.01
& ~0.1-1% oy ~ 50 — 100N/mm?(MPa)

The material is hard and brittle.

At somewhat higher temperatures, but still in the glassy state, motions of small
parts of the molecules may start and contribute to deformation. These consist of
either motions of small parts of the main chain or of changes in conformation or
rotations of side groups of the principle chain. These regions in the glassy state are
called secondary transition regions as the moduli are not changed remarkably
there. The higher the temperature, at which these motions occur, the larger are the
parts of the molecules involved in them. The contribution of these motions to the
deformation manifests itself in a dispersion step of the shear modulus decreasing
to quantities between three quarters and one half of its original value and in a
maximum of the loss tangent between 0.01 and 0.1. The occurrence, the temper-
ature position, and height of these secondary transitions are material specific. As
the material becomes tougher, after passing the secondary transitions, these effects
have some technological significance. Polymers with pronounced secondary dis-
persions possess an improved impact resistance in comparison to those without
secondary dispersions, which are mostly brittle. We consider this aspect in detail in
Sect. 6.4.

In Fig. 4.8 we have sketched thermal motions and deformation mechanism in
the glassy state.

Around the glass transition temperature T, we find a temperature region of
30-60 °K, the so-called glass-rubber transition, in which the micro-Brownian
motion starts to develop. This region is also called softening region or freezing
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region, depending on the direction in which it is passed. For the development of
micro-Brownian motion, two conditions have to be fulfilled

(1) The internal rotation around the C—C bonds of the principle chain should be
possible.

(2) There should be enough free volume next to the principle chain to enable the
segments to rotate.

In the glassy state, at least one of both conditions is not fulfilled. Recent inves-
tigations support the opinion that in the glassy state the lack in free volume hinders
the rotation of the single segments. Their rotation around the internal hindering
potentials of the C—C bonds would be possible, if there were enough space.

As seen from Fig. 4.11 (on page 94), the changes in mechanical properties by
passing the glass-rubber transition are enormous. The shear modulus decreases to a
value of about 1/1,000 to 1/10,000 of that in the glassy state, the loss tangent runs
through a broad maximum with values between 1 and 7. The bulk modulus, on the
other hand, decreases only relatively weakly, showing a dispersion step of a factor
between 2 and 3. The elongation at break passes through a maximum, and the
strength at break decreases to about one-tenth of its value in the glassy state. In the
softening region the relaxation phenomena are remarkable. The moduli depend
strongly on the duration of the applied stresses or on the frequency in case of an
oscillatory measurement, and on the temperature. Therefore, the materials are not
appropriate for use in the glass transition region.

After the softening region, the rubber-elastic plateau follows. There, the micro-
Brownian motion is fully developed. The parts of the chains between adjacent still
fixed entanglements change their shape continuously under the thermally induced
motion. The entanglements, however, are not yet loosened. Only the chain parts
between entanglements are able to move (cf. Fig. 4.9).

Under the influence of forces, the parts of the chains between adjacent entan-
glements are oriented. As the oriented state of these chains is less probable than
their isotropic state, the reduction in entropy yields repulsive forces which are
proportional to the absolute temperature T. From the theory of rubber elasticity
based on chain statistics the shear modulus in the rubber-elastic plateau follows as:
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Fig. 4.9 Degrees of freedom and mechanism of deformation in the rubbery plateau

G~n, kT =N, - pkT = pRT /2M, (4.6)

with n, being the number of entanglements per unit volume, p the density of the
polymer, N, the number of entanglements per unit mass of the polymer, and M, the
average molar mass of the parts of the chain between adjacent entanglements. For
the second part of Eq. (4.6) we used the fact that for entanglements (4-functional
movable cross-links) the number of chain parts is just the double of the number of
entanglements.

The value of the shear modulus in the rubbery plateau is of the order of
G =~ 10° Pa. In contrast to Eq. (4.6) it decreases with increasing temperature. This
experimental result is explained by a gradual decrease of the number of effective
entanglements with increasing temperature. For cross-linked elastomers, however,
the number of cross-links does not change with temperature and the resulting shear
modulus increases proportional to the absolute temperature as expected from
formula (4.6). The loss tangent runs through a minimum at the beginning of the
rubber-elastic plateau with values that depend on molar mass and molar mass
distribution. The extensibility at rupture is high.

At the flow temperature T the thermally induced motion becomes so strong that
many entanglements disappear and the polymer changes to the molten state. There,
entanglements are periodically destroyed and formed again by the thermal motion.
That means, each entanglement possesses a finite lifetime, which decreases with
increasing temperature. Under the influence of stresses, disentangled molecules
may change their spatial position and shift with their center of gravity into the
direction of the external forces. Such behavior will lead to irreversible flow
together with the setup of elastic stresses from molecules that have been moved,
but not yet slipped out of their entanglements completely. This is indicated in
Fig. 4.10.

Under external stresses, polymer molecules will be uncoiled and oriented. The
orientation is the source of elastic stresses in the melt. The flow of polymer melts
will therefore always be connected with the occurrence of elastic stresses. The
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Fig. 4.10 Degrees of freedom and mechanism of deformation in the molten state

flow of polymer melts is viscoelastic, part of the deformation energy is dissipated
as heat and part of it is stored by the orientation of the chain segments.

In the molten state, the shear modulus decreases steeply with increasing tem-
perature. The proper quantity to describe the rheological behavior of a polymer
melt is the viscosity, which is of the order of 1 ~ 10* Pa s, and also decreases
with increasing temperature. The loss tangent goes up with temperature in the
molten state and reaches values between 1 and 20.

A survey of the shear modulus, the bulk modulus and the loss tangent for an
uncross-linked amorphous polymer, is given in Fig. 4.11. The moduli and loss
tangent are plotted logarithmically versus a linear temperature scale.

The bulk modulus does not exhibit such steep transition steps as the shear
modulus. Indeed, also the bulk modulus shows small transitions in the regions,
where the transitions in shear occur, but they remain much smaller, and the
compression modulus stays within the limits

10°Pa <K < 10'°Pa (4.7)

in the entire temperature region covered in Fig. 4.11. It follows that for all tem-
peratures above the glass transition temperature G < K, i.e., the thermoplastic
behaves there like an incompressible material. If shear stresses and compressive
stresses are of the same order of magnitude, the changes in volume will be about
1000 times smaller than the changes in shape and may be neglected.

Two other quantities are important for the description of the deformation
behavior of isotropic materials, the modulus of elasticity, also called Young’s
modulus E, and Poisson’s ratio u. They are defined by simple extension in one
direction under the action of a tensile stress. E is defined as the ratio of the tensile
stress to the longitudinal strain, u as the ratio of the lateral contraction of the
sample to its longitudinal deformation. If two of the four quantities E, G, K, u are
known, the other two may be calculated.



94 4 Structure and States of Polymers

log (K/Pa) secondary dispersion regions log (tan &)
10
log (G/Pa) logK
9} 17
T \\ Tg(}"\
<«—— glassy state —
8 | 1 40
I ——
] 1
7t log tan & 4 -7
|
| rulb bery melt —»
6 | plateau 1.,
N
| ]
s | | glass- ! -3
—! transi- —
| tion
s b ' !
| | —T
] :
Tg Tf

Fig. 4.11 Logarithmic plot of the shear modulus G, the bulk modulus K, and the loss tangent
tan 0, at a constant frequency of 1 Hz versus the temperature 7 for an uncross-linked amorphous
polymer (schematically). The positions of the secondary dispersion regions, the glass transition
temperature T, and the flow temperature Ty are indicated

If G and K are known as functions of temperature, the temperature dependence
of the other two is easily given. The course of E with T is similar to that of G with
T. In the glassy state E < 3G. At the glass transition temperature E approaches 3
times G and keeps this value in the rubbery plateau and in the melt. Poisson’s ratio
is about 1/3 at low temperatures, grows with increasing temperature, and abruptly
attains 0.5 at 7 = T,.

4.4 Influence of Molar Mass and Cross-Linking Density

In the glassy state (T' < T,), cross-linking density and molar mass only weakly
influence G, K, E, and tan é of amorphous polymers. These parameters do not
affect the glass transition temperature except in cases of low molar masses or of
high cross-linking densities.

For T > T,, however, the influence of cross-linking density and molar mass on
the temperature dependence of the shear modulus is significant, as demonstrated in
Fig. 4.12. The effect of the molar mass for uncross-linked polymers becomes
obvious from the three curves designated by (1), (2), and (3) corresponding to a
decreasing order of the molar mass. The larger the molar mass, the more
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Fig. 4.12 Logarithm of the shear modulus as a function of temperature for cross-linked and
uncross-linked amorphous polymers and for duromers

entanglements a single molecule contains. On average, the number of entangle-
ments per molecule Ny will be proportional to its molar mass M

No = M/M, (4.8)

M, the average molar mass between two adjacent entanglements does not depend,
in a first approximation, on the molar mass of the molecules. The larger the
number N, the more difficult it will be for a complete molecule to get rid of all the
restrictions by the entanglements, and the higher becomes the value of the flow
temperature Ty The extension of the rubber-elastic plateau will therefore increase
with the number of entanglements per molecule N,. For the special case M < M,
of curve (3), a rubber-elastic plateau will not exist at all and the modulus goes
down directly from the glassy level to very low values of the molten material.
Curve (1) designates a material with a high molar mass and curve (2) one with a
moderate molar mass. M, is called entanglement molar mass, and has been found
for different polymers between M, ~ 1 and 20 kg/mol.

For cross-linked polymers (elastomers), cross-links connect the molecules with
each other, besides entanglements. As the cross-links are not loosened even at very
high temperatures, the rubber-elastic state persists up to the temperature at which a
chemical decomposition of the molecular structure starts to occur. Consequently,
neither a flow temperature nor a molten state is observed for elastomers. Therefore,
one speaks of a rubber-elastic state and not of a rubber-elastic plateau as in the
case of thermoplastics.
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Fig. 4.13 Logarithm of the shear modulus G, the bulk modulus K and the loss tangent tan ¢ at a
constant frequency of 1 Hz, versus the temperature 7 for a lightly cross-linked amorphous
polymer (elastomer), schematically. The positions of the secondary dispersion regions and the
glass transition temperature T, are indicated

For the rubber-elastic state the shear modulus becomes
G=>n. kT (4.9)

with n. being the number of cross-linking points per unit volume. Consequently,
G depends strongly on the cross-linking density in the rubber-elastic state and
increases proportional to the absolute temperature 7.

The case of very high degrees of cross-linking is represented by the duromers,
which show a small dispersion step at their glass temperature only and high
modulus in their “rubbery state.”

Figure 4.13 displays schematically the shear modulus, bulk modulus, and loss
tangent as a function of the temperature for a lightly cross-linked amorphous
polymer. Below the glass transition, the temperature dependence of these quantities
is principally the same as in Fig. 4.11. Above the glass transition in the rubber-
elastic state, the shear modulus increases proportional to the absolute temperature.
The loss tangent passes through a high maximum at the glass-rubber transition and
then, decreases with increasing temperature to very low values (down to 0.01).

The difference between an amorphous thermoplastic and an elastomer is pre-
sented in Fig. 4.14. Instead of the shear modulus as a function of temperature
Young’s modulus E is plotted. For a thermoplastic, the temperature region of
usage is in its glassy state, for an elastomer in its rubber-elastic state. Conse-
quently, for thermoplastics, the glass transition temperature forms the upper limit
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Fig. 4.14 Logarithm of Young’s modulus as a function of temperature 7, for an amorphous
thermoplastic and an elastomer (schematically). T, represents the upper temperature limit for the
use of an amorphous thermoplastic and the end of the glass-rubber transition represents the lower
temperature limit for the use of an elastomer

of the usage temperature region, for elastomers, the end of the glass transition
region is the lower temperature limit for its usage. Each thermoplastic reaches its
rubbery plateau region at high temperatures at which it loses the stiffness necessary
for applications. Each rubber attains its glassy state at low temperatures at which it
cannot be used as a rubber any longer.

Figures 4.15 and 4.16 show measurements of various materials at a fixed fre-
quency of 0.64 Hz. Figure 4.15 displays the shear moduli of two elastomers and
three amorphous thermoplastics as a function of temperature and Fig. 4.16 the loss
tangent of the same materials. All three thermoplastics exhibit a secondary dis-
persion region, PS a weak one at low temperatures, PVC at —60 °C, and PMMA at
+30 °C. The latter two are responsible for the good impact resistance of PVC and
PMMA. The glass transition temperatures may be recognized by the sharp tran-
sition steps in the moduli and by the high maxima of the loss tangent. Their
temperature positions increase in the order of NR, PUR, PVC, PS, and PMMA.

As already mentioned, the behavior in the rubber-elastic plateau and in the melt
does not only depend on the chemical nature of the polymer, but also on its molar
mass and molar mass distribution. The measurements in the rubbery plateau of
PMMA shown in Figs. 4.15 and 4.16 were performed by Masuda et al. [4] on a
sample with M,, = 350 kg/mol and M, /M, = 1.5. This material shows a signifi-
cant and broad rubber-elastic plateau. The PS is the commercial product Styron
678 with M,, = 240 kg/mol and M,/M,, = 2.5. Its rubber-elastic plateau is much
less pronounced than that of the PMMA.

Concerning the loss tangent shown in Fig. 4.16, it should be mentioned that the
different maxima of an amorphous polymer are generally designated with Greek
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letters. Starting with the maximum at the glass transition temperature which is
designated as the o-maximum, the further maxima are numbered as f-, y-, J-
maximum in the order of decreasing temperature. The secondary maxima shown in
Fig. 4.16 are known as the f-maximum of PMMA, the f-maximum of PVC, etc.
This procedure has been generally adopted. It is of great advantage for describing
and identifying relaxation processes in the literature, which are not yet interpreted
molecularly. By this practice it is possible to speak of and discuss a molecular
process, which still lacks molecular interpretation. Also, the corresponding
molecular process is often named by the same letter. Thus, one speaks about the -
process of an amorphous polymer, meaning the molecular causes for its glass-
rubber transition.

4.5 Semicrystalline Polymers
4.5.1 Features of Crystallinity

Crystallinity is distinguished by a special order of atoms or molecules that can be
transformed into a disordered state by heat. This process is called melting. Metals
are prototypes of crystalline materials. In the field of polymers, crystalline species
often show a distinct glass transition in addition to the melting point, i.e., they
contain amorphous parts and are called, therefore, semicrystalline. An interesting
but not easy task is to get an insight into the structure of the ordered molecular
regions. Even an evident quantity like the degree of crystallinity is not easy to
determine with high accuracy as amorphous and crystalline regions can penetrate
each other.

The simplest assumption is, the so-called two phase model, i.e., the mass m of
the polymer is additively composed of the mass of the amorphous portion m, and
the mass of the crystalline portion m,.

m=m, + m, (4.10)
For the volumes, a corresponding relation
V=V, +V, (4.11)

is assumed to hold. From this model two different degrees of crystallinity may be
defined. One is based on the mass of the crystalline portion related to the total
mass, i.e.,

Xy = me/m (4.12)
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and the other on the volume of the crystalline phase related to the total volume
x, =V, /V (4.13)

Introducing the specific volume v of the bulk material and v, and v, as the specific
volumes of the crystalline and amorphous phases, respectively, Eq. (4.11) reads
using Eq. (4.10)

mv = mgv, + meve = (m—me)v, + mev, (4.14)
or
Xm=me/m= vy —v)/(va — V) (4.15)

A corresponding relation exists between the volume-based degree of crystallinity
x, and the densities p, p., p, of the bulk, the crystalline and the amorphous phases,
namely

X =%ne = (0= p)/(pe = o) (4.16)

The two measures of crystallinity differ. x,,/x, becomes the higher, the larger the
ratio between the density p,.. of the crystalline phase and the density of the sample.
A helpful tool for getting an insight into the degree of crystallinity is the
classical small-angle X-ray scattering technique (SAXS). A typical schematic
diagram of a semicrystalline polymer is shown in Fig. 4.17. The peaks indicate a
molecular order, the non-structured region below them is due to the scatter of the
amorphous regions. The so-called amorphous halo is determined from a totally
amorphous sample that may be obtained by a fast quenching from the melt.

—

Fig. 4.17 Schematics of a small-angle X-ray scattering diagram of a semicrystalline polymer. /
is the intensity and ¢ the scattering angle
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Subtracting the area below the curve of the amorphous halo from that of the
entire curve and relating this difference to the total area gives a value for the
crystallinity. Due to the fact that the crystallinity follows from the areas under
the measured curves and no calibration is necessary, SAXS is a direct method
to determine the crystallinity of a material, which is designated as the X-ray
crystallinity x,.

In contrast to SAXS, the easy and often applied method to obtain the crystal-
linity from differential scanning calorimetry (DSC) is an indirect one. The amount
of crystallinity is proportional to the melting enthalpy obtained from a DSC dia-
gram as shown in Fig. 4.22. To draw any quantitative conclusions the enthalpy has
to be related to the amount of crystallinity. For such a calibration SAXS could be
used.

As Fig. 4.18 shows for polyethylenes, there exists a linear relationship between
the crystallinity x,, measured by X-ray scattering and the specific volume v, which
can be described by the equation

Xr = (va =)/ (va — ve) (4.17)

whose right-hand side is identical to that of Eq. (4.15).
This finding has two consequences:

1. The X-ray crystallinity x, can be identified with the degree of crystallinity
based on the mass portions at least in the case of the polyethylenes investigated.

2. The simple measurement of a specific volume allows quantitative conclusions
with respect to the crystallinity of a sample, which decisively determines many
mechanical properties. That is the reason for the important role of specific
volume or density in specifications of semicrystalline polymers.
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Fig. 4.18 Relationship between the crystallinity x, determined by SAXS and the specific volume
v for various polyethylenes [5]
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In detail, it follows from Fig. 4.18 that v. = 1 cm®/g and v, = 1.17 cm’/g.
Particularly, the extrapolated specific volume of the crystalline phase is a quantity
that can be used for checking the compatibility of structural parameters for
polyethylene. Already in 1939, the parameters of the unit cell of crystalline
polyethylene presented in Fig. 4.19 were determined by X-ray scattering [6]. Five
chains that lie parallel to each other belong to one unit cell. Four chains form the
vertices of a rectangle, the fifth lies in its center and is shifted by one carbon bond.
From the distances between the chains the volume of the unit cell can easily be
determined and from the molar masses of the chain segments its mass follows. The
resulting specific volume of 0.99 cm®/g is in excellent agreement with the
extrapolated value of 1.00 cm®/g in Fig. 4.18 for the crystalline phase.

As the mobility of polymer segments is different in the amorphous and crys-
talline regions of a material, methods that are able to measure this property can be
used, in principle, to get insight into its crystallinity. Raman-spectroscopy, e.g., [7]
and nuclear magnetic resonance, e.g., [8] have been used for this purpose.

As the methods applied for the determination of the degree of crystallinity are
based on different physical properties and as the morphology may not be uniform
across a sample and between different specimens, it is evident that the crystallinity
belongs to the quantities that can be determined with a limited accuracy, only.
Nevertheless, even approximate values are frequently discussed as they allow
some conclusions with respect to the structure of a polymeric material and the
assessment of certain application properties.

Besides the degree of crystallinity, details on the structure of the crystalline
regions are of interest. Investigations of this kind are rather complex, mainly
because of two reasons. First, the expected dimensions of the crystallites are so
small that transmission electron microscopy (TEM) has to be applied and,
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Fig. 4.20 TEM pictures of selectively stained ultrathin sections of an LDPE [9] (By permission
of Carl Hanser Verlag, Miinchen)

therefore ultrathin cuts have to be available. Second, as the amorphous and
crystalline regions consist of the same kind of atoms their interactions with the
electrons of the beam are indistinguishable and differences between various
regimes of order are not obvious. Staining with osmiumtetroxide, for example, is a
well-known technique to generate contrasts within polymeric materials but it needs
a lot of experience to make sure that the microscopic images of treated organic
materials reflect the reality. In the case of polyethylenes it is assumed that the
osmiumtetroxide attacks the amorphous regions, only, but leaves the crystalline
ones unaffected. To what degree this assumption is fulfilled and how the regions
have to be assessed which do consist of imperfect crystals are still questions of
actual relevance.

Figure 4.20 shows TEM micrographs of selectively stained ultrathin sections of
an LDPE in two different magnifications that were taken from [9]. The bright areas
are interpreted as the crystalline regions not affected by the staining agent. They
are called lamella. Their thickness is around 10 nm and lengths up to 1,000 nm
can be found. As the left picture demonstrates, the lamellas are arranged in some
order. Starting from a center they expand like a fan. This supramolecular feature,
which can be observed for many semicrystalline polymers, is called spherulites.
They are not discussed in detail here. More information on spherulites and their
role for the deformation of semicrystalline polymers can be found in [9].

The question of how a lamella is built up does not seem to be unambiguously
answered up to now. Two models are still under discussion. The so-called bundle-,
fibril-, or fringe-model is based on the parallel arrangement of segments of dif-
ferent macromolecules (cf. left part of Fig. 4.21). The other model postulates sharp
folds of the macromolecules leading to parallel parts of the same molecule as
sketched in the right part of Fig. 4.21. So-called tie molecules may be able to
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Fig. 4.21 Schematic pictures of the lamellar structures. a Bundle-, fibril- or fringe-model,
b Chain folding

connect ordered regions. None of these two models is able, however, to describe
all the features found for semicrystalline polymers. The majority of recent
investigations assigns the folded chain to polymer molecules crystallized from the
quiescent melt. Polyethylenes and polypropylenes are typical examples. Fibril
structures are found for more rigid or highly extended macromolecules.

4.5.2 States of Order

The fact that semicrystalline polymers consist of an amorphous and a crystalline
phase leads to a greater number of states than in the case of amorphous materials.
In calorimetric measurements a melting peak is found in addition to the step in
heat flow connected with the glass transition.

In Fig. 4.22 an example of such a measurement is presented for a polyethyl-
eneterephthalate (PET) in the temperature range from —150 to 300 °C. At around
80 °C a distinct step of the heat flow is found that can be related to the glass-
transition. Its value is listed in Table 4.7. The endothermic peak starting above
200 °C indicates the melting process of the crystallites. The peak temperature is
denominated as the melting temperature 7,,. Its value obtained under the experi-
mental conditions is given in Table 4.7. Between T, and T,, a flat exothermic
maximum around 170 °C is found which is due to a recrystallization process
taking place (designated as T,.). From its occurrence it can be concluded that the
crystallization rate of the PET investigated is smaller than the chosen cooling rate
of 10 K/min of the crystallization process following the first heating run.

The range between the two characteristic temperatures 7, and T, is of partic-
ular importance for properties of semicrystalline polymers. Above T, the mole-
cules of the amorphous region attain high mobility, but due to the crystallites that
are still effective up to temperatures around the melting point 7}, the material is not
able to flow and preserves a certain level of mechanical properties. The existence
of this state of order has the effect that the stiffness goes down but the toughness
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Fig. 4.22 Heat flow H as a function of temperature 7 for a PET measured by DSC at a heating
rate of 10 K/min (Second heating)

Table 4.6 States of order in semicrystalline polymers

T Polymer Amorphous phase Crystallites
T<T, Rigid state Glassy state Non-molten
T <T<Ty Leatherlike state Rubber-elastic state Non-molten
T>T, Melting region Rubber-elastic state Melting
T>Tn, Melt Melt Molten

increases. Such a behavior is found more or less pronounced for all semicrystalline
polymer materials. In comparison to amorphous products one has to distinguish
and to discuss this additional state of order which is commonly called the leather-
like state as it combines certain stiffness with some kind of toughness typical of the
natural product leather. These relations are summarized in Table 4.6.

For T < T, the amorphous phase of the polymeric material is in its glassy state,
i.e., it possesses the highest stiffness. For T, < T' < T,, the rubber-elastic state of
the molecules of the amorphous part contributes to the toughness of the material as
long as the crystallites are intact. Above T, the crystallites are molten.

For many polymers the picture of molecular processes and states based on
calorimetric measurements has to be sharpened as follows from the dynamic-
mechanical experiments (DMA) schematically presented in Fig. 4.23.

Characteristic is the steep decrease in the modulus at the melting temperature
T,,, which is correlated with a distinct increase in tan 6 corresponding to growing
energy dissipation. The sharp kink schematically indicates that at the temperature
at which the melting has come to an end the molecules still may be in their rubber-



106 4 Structure and States of Polymers

G’ [Pa] tan 6
I B
10°
100
107 10°
-102
10° 1 10

10° -

—> T

Fig. 4.23 Schematic diagram of the storage modulus G’ and the loss tangent tan ¢ as a function
of temperature 7 for a semicrystalline polymer

elastic state so that a further temperature increase is necessary to reach the state of
flow. Such a situation is met for materials of high molar mass, only. In practice,
ultrahigh molecular weight polyethylene (UHMWPE) is one of the rare examples.
In reality such a transition is difficult to measure, however, due to the immense
change in the modulus around the melting temperature.

For T < T,, several dispersion steps denominated o, f, and y are marked similar
to the classification chosen for amorphous polymers in Sect. 4.4.

As measurements in Fig. 4.24 on a PP, LDPE, and HDPE demonstrate, these
dispersion steps of the modulus can be difficult to distinguish and often super-
impose each other in the case of real products.

From the representation of the corresponding loss tangents in Fig. 4.25 it is
obvious that the maxima of tan § are more distinct than the steps of the modulus
and that is the reason why they are discussed in the following. The o-maximum
that has been observed for a great number of semicrystalline polymers to be close
to the melting point has been related to changes within the crystalline structure the
exact origin of which is still a matter of discussion, however. Regarding the - and
y-maximum there is a dispute in the literature which one should be related to the
glass transition. In spite of this formal uncertainty it can be taken for granted that
the low temperature maxima give an important hint to the impact strength of a
semicrystalline polymer in the same way as discussed for amorphous materials
(cf. Sect. 6.6). A maximum of tan J indicates an energy dissipating process due to
an increased mobility of molecule segments, which improves the impact strength.

From Fig. 4.25 it is obvious that the HDPE and the LDPE also exhibit a distinct
y-maximum around —100 °C. For PP, a sharp maximum at low temperatures is not
found, but the flat maximum at around —60 °C can be interpreted as an indication
of broad molecular transition processes that are not as pronounced, however, as in
the case of the PE. This finding may be related to the distinctly higher low-
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Fig. 4.24 Shear modulus G as a function of temperature 7" for a polypropylene (PP), a high
density polyethylene (HDPE), and a low density polyethylene (LDPE) measured at a frequency of
1 Hz. The measurements represented by the full lines are taken from [10]
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Table 4.7 Transition temperatures of various semicrystalline polymers

Polymer T, °C DSC T, °C DSC T, °C DMA Tg °C DMA T, °C DMA
HDPE 126-136 n.m ~90 n.m. —110
LDPE 105-118 n.m. 70 ~—10 —100

i-PP 160 n.m. 100 0 ~=50
POM 160-170 n.m. 130 n.m. -70

PA 6 (dry) 225 55 n.a. 50 —80

PET 250-260 84 n.a. 90 —-80

PEEK 340 143 n.a. 150 -80

T,, Melting temperature, T, Glass transition temperature, T, Tp, T, Transition temperatures from
DMA according to Fig. 4.23. n.m. not found with the method applied, n.a. not achieved within
the temperature range investigated. 7,,, and T, were obtained from the second heating run of DSC
measurements at a heating rate of 10 K/min after a preceding cooling from the molten state at a
rate of 10 K/min. The DMA was performed at frequencies of around 1 Hz and at equilibrium
temperatures

temperature impact strength of HDPE and LDPE in comparison to PP. The PP
shows a distinct f-maximum around 0 °C. That of the LDPE can be assumed to lie
at a slightly lower temperature. For HDPE, a f-maximum is not seen. This finding
may be due to the high degree of crystallinity of the HDPE resulting in small
contributions of the amorphous phase only. Calorimetric measurements on PE do
not show any step in the heat flow from which conclusions with respect to a glass
transition could be drawn. Clearly visible is the melting peak only, which is listed
in Table 4.7. But copolymers of ethylene with about 10 % of propylene, hexane,
or octane exhibit an acceptable agreement between temperatures of the glass
transition found by differential scanning calorimetry (DSC) and those of the
f-maximum determined by DMA [11]. Therefore, it can be concluded that the
f-maximum of the LDPE hidden under the plateau of tan  at around —10 °C
indicates the glass transition and as the chemical components of LDPE and HDPE
are the same this value can be also assumed for HDPE

Regarding the f-maximum of PP at about O °C there are two experimental
findings that support its correlation with the glass transition. First, the heat flow of
a PP previously cooled down from the melt with 10 K/min shows a minute but
significant endothermic step around 0 °C, second, from dynamic-mechanical
measurements on various PP in [12] it follows that the distinct maximum of tan o
close to 0 °C markedly increased with the decrease in density. These examples
demonstrate that calorimetric measurements and the dynamic-mechanical analysis
have to be used together to get a comprehensive insight into the different transi-
tions of polymeric materials.

Melting and crystallization are thermodynamic processes with high relevance
for the application of polymeric materials. The melting process of semicrystalline
polymers is relatively sharp and, therefore, the melting temperature is a distinct
quantity for the assessment of the transition between solid-state and rheological
properties. The melting temperature 7, significantly depends on the chemical
structure of a material, but experimental parameters like heating rate influence its
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determination within certain limits. In Table 4.7 values for T, of some engineering
polymers are given. Data from various sources differ, which may be due to the
experimental methods used and slight variations in the chemical composition of
the materials.

In the case of HDPE, for example, a minute comonomer content may be the
reason for deviations, for LDPE differences in long-chain branching may change
T,,.. Nevertheless, the clear differences between the melting behavior of some
products allow an assessment of some of their properties. In addition, T, is given in
Table 4.7, too. For PA 6, PET, and PEEK clear distinctions are possible according
to a pronounced step in heat flow. The differences found in the literature can either
be due to experimental conditions not comparable or to traces of impurities within
a sample. It is well known for polyamides, for example, that a few percent of water
can lower T, by several degrees.

For the two polyethylenes and in some way for the polypropylene DSC mea-
surements are not sensitive enough to monitor the heat input connected with the
glass transition of the amorphous phase. DMA is more suitable in some cases to
detect these processes but as discussed above the assignment of the different peaks
to the glass transition may not be evident and needs supplementary considerations.
From the above discussion it is probable that the B-transition corresponds to the
glass transition.

The difficulties arising from a correct interpretation of data from the DMA
exemplarily become evident from the results of POM, PA 6, and PET presented in
Fig. 4.26 in comparison to HDPE. The values of T of PET and PA 6 are in
reasonable agreement with 7, if one assumes that the o-maximum was not

15
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Fig. 4.26 Loss tangent tan 0 as a function of the temperature T for four different polymer
materials measured at a frequency around 1 Hz and a small heating rate [10]
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achieved at the highest temperatures applied. The same holds for the f-transition
of PEEK [13] (data not presented in Fig. 4.26). These assignments are not so
obvious in the case of POM. One reason is that its glass transition cannot clearly be
determined thermodynamically, the other that the difference between the melting
point and the highest maximum temperature of 130 °C is close to that between 7,
and T, of the HDPE. Postulating similar relations for the POM investigated, only
an o- and a y-transition may be defined. The f-process can perhaps be assumed to
be hidden under the plateau in the region around —10 °C, but such an interpre-
tation is somewhat speculative, of course.

Much clearer is the determination of the y-maxima that come to lie around
—80 °C for the non-olefinic polymers (cf. Table 4.7). This low transition tem-
perature is decisive for the good impact strength of these polymeric materials. In
the case of the polyamide a second low-temperature maximum is found at about
—140 °C the origin of which is not understood till now. Another still open
question is the specific molecular motions underlying the y-maximum.

4.5.3 Crystallization

Crystallization takes place in a wide temperature region between 7, and T.
Around T,, first nuclei are formed but their lifetime is short as the difference
between the free enthalpies of the melt and the crystal are small. Around 7, the
crystal nuclei are thermally more stable, indeed, but the molecular motion is too
small for an effective formation of ordered regions.

The crystallization rates of semicrystalline polymers are thermodynamic
properties interesting from fundamental and application points of view. The
quantitative agreement between various sources of the literature is still much
worse than for T, or T,. Significant differences allow some interesting conclu-
sions, however. The extremely high crystallization rate of HDPE makes it
impossible to get amorphous samples even by quenching in liquid nitrogen. In the
case of the distinctly lower crystallization rate of polypropylene a wide variety of
crystallinity can be obtained depending on the cooling conditions chosen. Fur-
thermore, the size of the crystallites can be influenced. At high cooling rates the
crystallites are generally smaller than at lower ones. As the size and, particularly,
the amount of crystals significantly affect optical and mechanical properties of a
polymeric material the cooling conditions can become decisive for properties of
items processed from the molten state.

From the low crystallization rate of the PET as demonstrated in Fig. 4.22 by the
occurrence of recrystallizaton, it becomes clear that this material is suitable for the
manufacture of optical transparent bottles widely used in the beverage industry.
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4.6 The Specific Volume of Polymers
4.6.1 The Specific Volume of Amorphous Polymers

Polymers possess densities between 0.8 and 2.5 g/cm® at room temperature, values
of about 1 g/cm® are most frequent ranging them as light construction materials.
Their thermal expansion behavior differs from that of classical construction
materials. Let v be the specific volume and p = 1/v the density, then

a:%(g—;)p (4.18)

is called the (volume) expansion coefficient at constant pressure. Normally, o is
measured at an atmospheric pressure of 1 bar.

For many classical construction materials, the expansion coefficient depends
only weakly on the temperature. In contrast, polymers show a rather high volume
expansion, which, moreover, changes significantly at the glass-transition temper-
ature T,. Below T, the expansion coefficient amounts to about one-third of the
value beyond T,. Table 4.8 lists the volume expansion coefficients of some
materials.

From this table it may be seen that the expansion coefficient of steel is only
about 1/5 of that of polymers in the glassy state. Consequently, we have to expect
the occurrence of strong thermal stresses in all technical applications where steel
and plastics are attached to each other.

The specific volume of amorphous polymers as a function of temperature
depends on the conditions of the experiment (heating or cooling). On cooling a
sample with a constant cooling rate f§ from the rubber-elastic plateau or state down
to the glassy state, a contraction behavior is found as sketched in Fig. 4.27. The
specific volume decreases linearly with the temperature, i.e., the expansion coef-
ficient' «, in the rubber-elastic plateau or state is constant.

The expansion coefficient in the glassy state o, is significantly lower. At the
temperature T, the slope of the v—T curve changes rather abruptly. The intersection

Table 4.8 The volume expansion coefficient of some materials in 107> K™

Quartz glass  0.16 | Ice 11 Amorphous Polymers
Glass 2.5 H,0, 20 °C 21 Glassy state T < T, o =0, = 10-20
Steel 3.5 Various fluids ~ 20-60 | Rubbery state T > T, [ o = o, = 50-60

' According to the measuring technique, the designation “contraction coefficient” would be
more appropriate. For the matter of simplicity, the notation expansion coefficient is used here,
too.
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Fig. 4.27 Specific volume of
amorphous polymers versus
the temperature during
cooling and the definition of
the glass-transition
temperature

plateau

Fig. 4.28 Specific volume as
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of the two extrapolated straight lines defines the volumetric glass-transition
temperature T,. Such measurement was the method by which the glass-transition
temperature was introduced first. If the experiment is repeated with larger cooling
rates, neither o, nor o, change significantly, but the point of intersection shifts
linearly with the logarithm of the cooling rate to higher temperatures and the level of
the specific volume in the glassy state that is reached, becomes higher (cf. Fig. 4.28).

The following relation between the volumetric glass-transition temperature and
the cooling rate is found for amorphous polymers

Ty =Ty, +a - log(B/Boy) (4.19)

with T,, and Ty being the glass-transition temperatures at the cooling rates f§ and
Po, respectively. Coefficient a is about 3 K (cf. Table 4.9).
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Table 4.9 Some dilatometric data of amorphous polymers [14]
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Polymer T, °C, B = 1 K/min Olg, 1074 K™ Oy, 1074 K! a, K
PS 95 2.30 5.73 3.3
PMMA 110 2.57 6.06 3.2
PVC 69 2.06 5.54 32
PC 141 2.15 6.04 2.5
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Fig. 4.29 Specific volume versus temperature for a PS at various rates of cooling after Greiner
[15]

As an example, the specific volume of PS is shown in Fig. 4.29 as a function of
the temperature in the vicinity of the glass-transition temperature over a wide
range of cooling rates [15]. The measurements were performed by means of Hg-
dilatometers that were immersed in a bath filled with silicone oil in a thermostat
with transparent walls. The temperature of the thermostatic fluid was programmed
to decrease with constant rate or regulated to constant temperature. The level of
the mercury column was photographed.

Figure 4.30 shows the glass-transition temperatures as functions of the cooling
rates for four different technical polymers. Note that for each polymer a different
temperature scale had to be used, which is indicated by arrows in the figure, which
proves the validity of Eq. (4.19) for the four polymers over a wide range of cooling
rates.
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Fig. 4.30 Volumetric glass transition temperatures for four amorphous polymers versus the rate
of cooling after Greiner [15]

In Fig. 4.31 the thermal expansion behavior is shown of four polymers at a
cooling rate of 2 K/min. The measurements on polystyrene extend from the rubber-
elastic plateau down to the temperature of liquid He (4 °K). The measurements
indicated by filled circles have been performed by Hartwig using a helium cryostat
and a laser dilatometer [16]. Measurements indicated by crosses were performed
using a dilatometer especially constructed in which the length of a specimen was
determined by transducers. The thermostatic medium was nitrogen gas of regulated
temperatures [17]. Measurements indicated by open circles were performed by
means of mercury dilatometers using the technique described above [17].

The change of the slope at the glass-transition temperature is clearly seen for all
four polymers. The thermal expansion coefficient decreases somewhat in the
glassy state of the polymers. For polystyrene, the thermal expansion coefficient
shows a further obvious change at about —210 °C. Approximating the absolute
zero, the thermal expansion vanishes completely.
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Fig. 4.31 Specific volume versus temperature at a rate of cooling of f = 2 K/min for the four
amorphous polymers PMMA, PC, PS, and PVC after Greiner [16]

4.6.2 The Free Volume Theory

The expansion behavior of amorphous polymers may be explained by the theory of
free volume. The specific volume of an amorphous polymer or a liquid may be
assumed to be composed of three terms

Vv ="Vo + Vi + Vr. (420)

The “Eigen” volume vy is the volume taken by the molecules themselves and is,
therefore, independent of the temperature. The vibrational volume vy, arises from
the thermal vibrations around the equilibrium positions of the van der Waals bonds
between neighboring molecules. As the potentials of van der Waals bonds are
asymmetric (cf. Fig. 2.12), the average distance between neighboring molecules
will become larger with increasing amplitudes of the thermal vibrations, i.e., with
increasing temperature. Consequently, the vibrational volume will increase with
the temperature.

The thermal motion can sometimes move parts of different molecules so far that
holes or vacancies occur, which form the free volume vy Each additional vacancy
increases the internal energy of the polymer by the surface energy of the vacancies
formed, but also contributes essentially to its entropy. The increase in free volume
with temperature is stronger than that of the vibrational volume. In the thermo-
dynamic equilibrium the course of the free volume with temperature might be as
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Fig. 4.32 Freezing of the

free volume at the glass mobility m cease of micro-
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indicated in the lower part of Fig. 4.32. Above T, the thermodynamic value of v,is
assumed to increase linearly with the temperature.

The mobility and thus the micro-Brownian motion strongly depend on the
presence of sufficient free volume. If the free volume falls short of a certain critical
value, the mobility decreases suddenly and steeply and the micro-Brownian
motion ceases, as is indicated in the upper part of Fig. 4.32. This figure, like the
following illustrative example taken from all days life, is due to LCE Struik [18]:
During the rush hours, getting on or getting off a bus or an underground car may
become impossible due to overcrowding and the absence of free space.

When an amorphous polymer is cooled down from the rubber-elastic state or
the rubber-elastic plateau to the glassy state, the free volume will decrease as long
as it is able to adopt its thermodynamic value by means of the diffusion of surplus
vacancies out of the material. If the free volume falls short of its critical value, the
micro-Brownian motion ceases and diffusion of vacancies can no longer take
place. The free volume will be frozen within the material, which had just been
present at passing the critical temperature, the glass-transition temperature 7,. The
temperature at which the freezing process occurs depends on the rate of cooling.
The specific volume composed as the sum of v, vy, and v will show a change in
slope at the glass-transition temperature. The course of the real value of the free
volume is indicated in the lower part of Fig. 4.32.
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The sudden decrease in the mobility m with decreasing free volume may be
described by the Doolittle-equation [19] which was successfully used to explain
the temperature dependence of the viscosity of liquids of low molar mass.

B(v — 1
lnr]ozlnao—&—w:lnao—FB(]—l) (4.21)
!

In this formula 7, is the viscosity of the liquid with the fractional free volume
f = vy /v, ay the viscosity of a liquid with the—hypothetical—free volume fraction
unity and B is a constant of the order unity. If m is defined as the logarithm of the
ratio ay/o, it will show a course similar to that in Fig. 4.32. It should be men-
tioned, however, that the shape of the curve m versus f strongly depends on the
chosen value for B.

The real value of the fractional free volume as a function of temperature (c.f.
lower part of Fig. 4.32) may be approximated by the equation

f=2fo for T<T,

(4.22)

f2fo+u(T—-T,) for T>T,
with o being the expansion coefficient of the free volume and f, the unknown
value of the free volume fraction frozen at T,. The temperature 7, shown in
Fig. 4.32 is the temperature at the point of intersection of the extended straight line
of the equilibrium value of the free volume fraction with the temperature axis at
the level, where the free volume fraction would vanish. Under the assumption that
the difference in the volume expansion in the rubbery and glassy state is com-
pletely due to the increase in free volume, and that o, and o, remain constant
within the considered temperature interval, we obtain

of = Oy — Ol (4.23)

However, as the value of f; is not known, the relevance of Egs. (4.21)-(4.23)
remains limited.

4.6.3 Volume Relaxation and Physical Aging

As polymers in the glassy state normally are not in their thermodynamic equi-
librium, their specific volume will be too high. After quenching, they tend to
assume their equilibrium-specific volume, without being able to reach it. This
process is called volume-relaxation. It was studied intensively first by Kovacs [20].
An example for volume relaxation after quenching to various constant
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Fig. 4.33 Volume relaxation of PS after quenching from 7, = 115 °C to various temperatures
T, in the glassy state, after Greiner [15]. Plotted is the specific volume versus the aging time ¢

temperatures is shown for PS in Fig. 4.33. Plotted is the specific volume of the
polymer versus the logarithm of the time elapsed after the quenching step.

If the temperature at which the quenching was performed is only a few degrees
below T, an equilibrium value of the specific volume is reached after some time.
But already 25 °C below the glass-transition temperature, the equilibrium is not
reached within reasonable times. The specific volume continues to decrease
approximately proportional to the logarithm of the aging time.

Volume relaxation is accompanied by the change in various physical properties
of the polymer, a process called physical aging and intensively studied by Struik
[18]. The specific and the free volume of a polymer depend on its age (Age = the
time elapsed between the last quenching into the glassy state and the time of
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Fig. 4.34 Volume relaxation
and physical aging

——

equilibrium value

ageing:

decrease of free volume
decrease of mobility
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decrease strain at rupture

observation). Some important physical and technological properties of the polymer
change during aging, as indicated in Fig. 4.34.

Especially the viscoelastic behavior is influenced by physical aging. The time-
position of the glass-transition is no longer a function of the temperature only, but
depends on the age too. In particular, shortly after the quenching the proceeding
aging during a creep measurement changes the shape of the creep compliance,
with the effect that the shifting law is violated and the compliance curves not only
shift, but also get flatter.

Struik [21] has presented a theory to describe this effect by introducing the
dependence of the retardation times on aging. Though this theory is clear and
straightforward, its presentation would be outside the scope of this book. We
recommend the reader the monograph of Struik [21] for this purpose.
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Chapter 5
Linear Viscoelastic Deformation Behavior
in Simple Shear

5.1 Theoretical Description of the Deformation Behavior
of Polymers

A general phenomenological theory of the mechanical deformation behavior of
polymers does not exist up to now, as the various states of polymers are very
different and demanding with regard to their description. Such a theory would ask
for the proper description of large deformations in combination with the influence
of the history of stress and temperature, without any simplifications as superpo-
sition principle, linearity, elasticity, or even isotropy. As this task cannot be
accomplished by a mathematical scheme sufficiently simple to be useful in prac-
tice, the setup of a general theory is not pursued further. Instead one looks at the
various states of polymers, and tries to setup theoretical descriptions, dealing with
the essential features, which polymers show in the corresponding states. In each
case simplifications are made, in order to come to manageable relations.
The most important ones are

(I) The material is linear; i.e., in the most simple case ¢ = G - y with G being
independent of deformation. For viscoelastic materials, there exists a
simple and very useful generalization, the superposition principle of
Boltzmann which will be treated in extension in this chapter. This principle
forms the basis of the technical mechanics of polymeric materials, in their
linear range.

(II) The material is elastic; this means that the stress is a unique function of the
strain at the same time, independent of the time history of the strain:
o = f(y), where f denotes an arbitrary function of the strain. In this case,
there is no energy dissipation.

() The deformations are infinitesimal, i.e., y < 1 and therefore y? = 0.

H. Miinstedt and F. R. Schwarzl, Deformation and Flow of Polymeric Materials, 121
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Some of the theories, based on the postulates mentioned above, are

(1) The Hookean theory of elasticity, which forms the basis of the technical
mechanics of classical construction materials: (I), (I), (IIT) are assumed to be
valid. This theory is useful for metals below their limits of plasticity, for
glass, ceramics, concrete, etc.

(2) The theory of large elastic deformations: (II) is valid, (I) and (III) are not
needed. This theory is useful for the description of the deformation behavior
of cross-linked rubbers.

(3) The theory of the linear viscoelastic deformation behavior at small defor-
mations: In this theory postulate (I) is assumed to be valid in the form of the
superposition principle and the postulate (III) is used. The assumption (II) is
not needed. This theory forms the basis of the technical mechanics of plastics
in the glassy state, and partially also in the rubbery state. In the case of
polymer melts, however, this theory can offer only a rough picture of the
mechanical behavior, as one of the most important assumptions, the infini-
tesimal deformations are not met by most applications.

(4) For the description of polymer melts one starts with the description of the
kinematics of large deformations, and then tries to set up rheological relations
based on more or less simple molecular concepts.

5.2 Creep, Creep Recovery, and Stress Relaxation

The theory of the linear visco-elastic behavior describes the mechanical behavior
of polymers in all states under the restriction of small deformations and low
stresses. Therefore it is valid within certain limits of the strain, ¢; and the stress o,
which are called limits of linearity. They will be discussed in more detail in
Sect. 5.3. The basis for the theory of linear viscoelasticity is the superposition
principle of Boltzmann, which will be introduced in Sect. 5.3.

The theory finally offers a correlation between a three dimensional state of
stress and strain for isotropic and anisotropic materials. We will start with the
consideration of one type of deformation, namely simple shear. Later in Chap. 7,
we will generalize the theory to three dimensional states of stress.

The definition of simple shear follows from the Fig. 4.2. A cube, oriented
parallel to a right-handed Cartesian coordinate system, is deformed into a rhom-
boid by shearing forces. The tangential forces act in x-direction on the two surfaces
which are perpendicular to the y-direction. Their magnitude, divided by the surface
on which they act, is called the tangential stress or shear stress and is designated
as oy, The cube is deformed into a rhomboid, which has the same height and
width as the cube. The edges which were originally parallel to the y-axis, form an
angle o with the y-axis after the deformation. This angle is used as a measure for
the magnitude of the deformation and its tangent is defined as shear strain
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For a discussion of the relations between oy, and y,, in simple shear the indices
y and x are omitted in this chapter. Furthermore, we will neglect the influence of
the inert mass of the sample on the movements of the specimen.

For an illustration of the concepts elastic, viscous, and visco-elastic we consider
the creep and creep recovery experiment, as defined by the stress history

=0 fort <0
o =o0p=const for0<r<t (5.1)
=0 for t >t

and sketched in part a of the Fig. 5.1. Under the constant stress o, the shear
deformation as a function of time is measured in a creep experiment. After
unloading of the sample at the time ¢ = f, the recovery of the deformation is
observed in the recovery experiment.

An elastic deformation behavior exists, if the deformation is a unique function
of the stress at the same time ¢, i.e., if
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7 =F(o) (5.2)

Consequently, y has to be constant as long as ¢ remains constant and y has to
become zero if ¢ = 0. An elastic material does not creep and shows complete and
instantaneous recovery in the recovery experiment. (Compare Fig. 5.1b). The
special case, in which y is proportional to g, defines the linear elastic or Hookean
deformation behavior:

y=0/Go=1Jy-0 (5.3)

Gy is called the elastic shear modulus and Jy = 1/Gy the elastic shear compliance.
Classical construction materials as steel, glass, ceramics or concrete behave linear
elastic under small stresses and may be described by the classical theory of
elasticity in good approximation.

Viscous flow means that the rate of deformation is a unique function of the
stress, i.e.,

L =9 =F(o) (5.4)

From ¢ = constant, it follows y = constant or y = at 4+ b. Consequently, a vis-
cous material shows a linear increase of the deformation in creep with time and no
recovery at all during the recovery period. A viscous deformation is completely
irreversible (see Fig. 5.1c). The special case

dy .
EZ)’ZU/”IOZ(PO"7 (5.5)
defines the linear viscous or Newtonian flow behavior. The constant 5 is called
Newtonian viscosity and its reciprocal ¢ the Newtonian fluidity. Gases and low
molecular liquids behave linear viscous and may be described by classical fluid
mechanics.

Polymeric substances may not even approximately be described as elastic or
viscous, but show a visco-elastic deformation behavior (Fig. 5.1d). Under a con-
stant stress, one part of the deformation occurs instantaneously, another part of the
deformation develops under the action of the stress (creep). In the recovery
experiment one part of the deformation recovers instantaneously at the time ¢ = 1,
a further part with some retardation during the recovery period, and a third part
does not recover at all, but remains permanent.

In the special case of a linear viscoelastic behavior, y(t) in Fig. 5.1d is pro-
portional to the magnitude of the constant stress ¢, during the creep period. The
deformation in the creep experiment may then be simply written as
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Fig. 5.2 Schematic example vy
of a creep experiment (full
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with J(¢) being a time function independent of the magnitude of the stress. Creep
curves under different constant stresses coincide if dividing them by the values of
the corresponding stresses. The function J(f) describes the creep behavior of a
linear viscoelastic material completely. It is called the creep function or the time-
dependent creep compliance.

The creep function is a positive, monotonously increasing function of the time,
defined for positive arguments only.

J(t) >0 and %%Qz]mzo forall 0<r<oo (5.7)

The limit of this function for ¢+ — +0 is designated as J, and called the

instantaneous creep compliance.

Jo = lim J(t) > 0 (5.8)

t—+40

To avoid mathematical difficulties we assume J, to be always larger than zero.
That means we exclude materials, which behave infinitely stiff directly after
loading. This is no restriction, as no materials are known, which are infinitely stiff.
Even diamond shows a shear compliance of J, > 10~'* Pa™'. It should be men-
tioned, however, that Eq. (5.8) does not offer a realistic possibility to determine J,
experimentally. So far, we have neglected the influence of the inert mass of the
sample on its deformation behavior. This is not correct directly after loading, as
the specimen has to be accelerated first and then will oscillate around the creep
curve, until the initial vibrations have been damped out. Only then, the description
by means of Eq. (5.6) is admitted. To determine J, one has to extrapolate, which in
most cases will not be possible (compare Fig. 5.2).



126 5 Linear Viscoelastic Deformation Behavior in Simple Shear

Fig. 5.3 The stress
relaxation experiment,
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The counterpart of the creep experiment is the stress relaxation experiment,
shown in Fig. 5.3: Upon the sample, which had been free of stress before t = 0, a
sudden deformation is enforced at the time + = O and kept constant further.

p(t) =0 for t<0 and y(t) =7y, for t>0 (5.9)

The stress necessary to keep up this deformation is measured. For a linear
viscoelastic material the stress is the product of the constant strain and a time-
dependent function

(o, 1) =70 - G(t) for t=0 (5.10)

called the relaxation modulus G(t). The relaxation modulus is a positive, monot-
onously decreasing function of the time,

dG .
G(t) >0 and #EG(I)ﬁO forall 0<r<oo (5.11)

Its limit for small positive times

Go = lim G(1) > 0 (5.12)

t—40

is designated as the instantaneous relaxation modulus. Similar to Jy, also G is not
directly measurable. It will be shown later, that
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Fig. 5.4 Decomposition of (&)
the stress history into
horizontal sectors

———= running time

Jo-Go =1 (5.13)

Therefore, from the condition that J, remains finite, also follows that G, remains
finite.

5.3 The Principle of Superposition

The basis of the theory of the linear viscoelastic behavior is the superposition
principle of Boltzmann, formulated already in 1874 [1]. Its statement is about the
following: Let o(¢) be an arbitrary, time-dependent stress, causing a strain history
y1(f) on the sample, and let o,(f) be another, time-dependent stress, causing the
strain history 7,(f) on the sample, then the sum of both stress histories
a1(t) + a,(t) will just effect the sum of both strain histories () + (7).

Cast in mathematical shape, this principle allows the calculation of the strain at
the present time ¢, if the stress history from the past up to the time ¢ is known. The
stress history in the time interval (—oo, ¢] is given by

(&) for —oo<é<y

Stress and strain are assumed to vanish both at the time & = —oo. Further we
assume (&) to be continuous and piecewise differentiable in the complete interval.
For deriving the mathematical form of the superposition principle, we approximate
the stress history by a stepwise curve with step widths A&, as indicated in Fig. 5.4.

The area under the stress-time curve may be built up by narrow horizontal
sectors. The hatched sector starting at the time & has the step height 6(&)AE," its

! & indicates here and in the following the derivative of the function ¢ with respect to its

argument.
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effect on the deformation will be that of a creep experiment starting at the time ¢
under the stress 6(£)A&. At the time ¢, its contribution to the deformation will be

Ay = 6(2) - J(1 - AL

Adding all contributions between time —oo and ¢ and proceeding to the limit
A& — 0 yields the following expression for the deformation at time ¢

t

2e) = / It — &)6(2)de (5.14)

—00

By partial integration of (5.14) one obtains the following form for the superpo-
sition principle

1

10 = ot + [ - ol (5.15)

—00

with J(7 — ) representing an abbreviation for the expression (dJ(y)/dy),_, .

In the form of Eq. (5.15), the principle of superposition may also be applied to a
stress history, which is only stepwise differentiable and contains a limited number
of finite discontinuities.

The dual form of the superposition principle, in which the deformation is
considered as the “stimulus” and the stress as the “response”, allows in a similar
way the calculation of the stress at time ¢, if the strain history between — oo and 7 is
known. Let y(&) be the deformation history for —oo < ¢ < ¢ . Then, the stress at

the time ¢ is given by the integral

1

o(t) = / Gl — &)i(2)de (5.16)

—00

Partial integration again yields a form for the superposition principle

1

o(t) = Goylt) + / Gt — Eyp(e)de (5.17)

—00

in which the prescribed strain history may be piecewise differentiable and may
contain a limited number of finite discontinuities. As before, G(f — &) represents
an abbreviation for the expression (dG(y)/dy),_, :.

The Egs. (5.15) and (5.17) contain all essential features of the theory of linear
viscoelastic behavior in shear. The two functions J(f) and G(¢) are called
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Fig. 5.5 Non-linear creep behavior of PVC at 60 °C under different tensile stresses

characteristic functions, as they describe the viscoelastic behavior in shear com-
pletely. It is seen that for the calculation of the strain at time ¢, the complete history
of the stress up to the time ¢ is involved. The form of the function J(f) determines
how long the memory has an effect or, after which time lag the history has been
forgotten.

The superposition principle in the form of Egs. (5.15) and (5.17) represents the
fundamentals of the technical mechanics of polymeric materials in the linear range
of deformation. Therefore, the important question regarding the limits of validity
of the superposition principle arises. Generally, it is assumed, that the superpo-
sition principle offers a correct description of the mechanical behavior of poly-
meric materials, as long as the applied stresses are not too high, and as long as the
occurring deformations are not too large, that means as long as |¢| <g; and |y| <y,
The limits of the range of validity of the superposition principle ¢; and y, are called
linearity limits. Their values can only be determined approximately and will
depend, amongst others on the accuracy of the measuring techniques. The fol-
lowing estimates are given under the assumption of an experimental error of about
3 %. This is the accuracy, which at present may be reached for the determination
of moduli or compliances. The value of the limits of linearity will also depend on
the type of the experiment, which is considered. The following data refer to
uniaxial extension. The limits of linearity in shear can be expected to be of the
same order of magnitude.

The change from the linear to the non-linear creep behavior in tension is shown
in Fig. 5.5 for a PVC at 60 °C. This figure shows the creep compliances in
extension as a function of the logarithm of the creep time, under the various
constant tensile stresses indicated. In the case of a linear creep behavior, all
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Table 5.1 Linearity limits &, and € under uniaxial stress in creep and stress relaxation

Amorphous polymers T, °C T °C o;in MPa € in % opinMPa  Lit.
NR cross-linked 35 4.7 150 [3]
=72 70 5.6 150 [3]
100 1.5 100 [4, 5]
PIB uncross-linked —=70 —70 0.8 10 [6]
—45 0.4 50 [6]
30 0.27 100 [7]
PC 149 23 25 1.2 [2]
85 22.7 1.2 [2]
100 17.7 1.1 [2]
120 12.8 0.85 [2]
130 10 0.80 [2]
167 0.2 25 [8]
PVC 80 20 15 0.5 54 [9]
PMMA 105 20 17 0.6 74 [9]
Semicrystalline polymers
LDPE 20 2.0 1.0 11 [9]
PP 20 4.9 0.4 32 [9]
PA 6.6 20 28 0.9 59 [9]
POM 20 17 0.6 67 [9]

compliances should coincide at one common curve. As can be seen that is only the
case up to tensile stresses of 67 - 10° Pa. Under higher stresses, the compliance
curves shift systematically into the direction of shorter times. We conclude that the
linearity limit for this material is about 5 - 10° Pa. This result is in agreement with
the direction of the deviation from linearity in the case of dispersion regions: The
transitions are shifted to shorter times by higher stresses.

A systematic survey on the limits of linearity has been reported by Yannas [2],
who has performed creep and relaxation measurements on NR, PIB, and PC. In the
glassy state, the limits of linearity were found for the stresses between 10 and
20 N/mm?, for the strains at about 1 %.

Table 5.1 lists some limits of linearity from the literature. The table also
contains in some cases, the tensile stresses g, for rupture after 100 s creep time. A
comparison between g, and g; shows, that only a small part of the deformation of
the polymer fulfils the conditions for the description by means of the theory of
linear viscoelasticity. For PVC, for instance, the stress limit of linearity only
amounts to one fourth of the stress to rupture.

5.4 Relaxation and Retardation Spectra

Considering the time dependences of the creep compliance and the relaxation
modulus, two cases may be distinguished:
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Fig. 5.6 Creep compliance and stress relaxation modulus, case A viscoelasticity without flow
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Fig. 5.7 Creep compliance and stress relaxation modulus, case B viscoelasticity with flow

(A) viscoelastic behavior without flow and
(B) viscoelastic behavior with flow.

The creep compliance J(¢) is a positive function, which increases monotonously in
the entire positive time interval. Its slope is maximal at the time ¢ = 0 and decreases
monotonously with increasing time. After long measuring times, J(¢) either attains a
straight line with positive slope (case B Fig. 5.7) or reaches a horizontal saturation
value (case A Fig. 5.6). In both cases we define the slope of the creep compliance
after infinite long-creep times as fluidity ¢ and its reciprocal as viscosity 1.

lim J(t) = @y = 1/n, (5.18)
—00

Difficulties may arise with the determination of the limiting slope in Eq. (5.18),
as very often it is not possible to measure long enough to decide with which one of
the cases A or B one has to deal. In those cases, apparent values for ¢, and 74 are
found, which depend on the duration of the creep measurement.

The relaxation modulus is a positive, monotonously decreasing function of time.
Its slope has the strongest negative value at t = 0 and increases monotonously until,
after infinite times, the slope reaches the value zero. After long times, G(f) relaxes
either to zero (case B) or to a positive limit (case A). In both cases we define

tlim G(t) = G (5.19)
and call G, the equilibrium value of the modulus.
Fluidity and equilibrium value of the modulus are related to each other, as for
viscoelastic behavior without flow ¢y =0 and G, >0 and for viscoelastic
behavior with flow ¢¢ > 0 and G, = 0 or
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@0 Goo = Goo /1) =0 (5.20)

is valid in both cases.

The functions J(¢) and G(¢) and their derivatives play an important role in the
following. They are shown in Fig. 5.8 schematically. The left half of the figure
shows the compliance and its derivatives in the case B, the right-half the modulus
and its derivatives in the case A. The first derivative of the creep compliance is a
positive, monotonously decreasing function of time, the second derivative will be
negative everywhere and tends to zero with increasing time, the third derivative is
again positive, etc.

It is assumed as a postulate, that the alternating monotony of the derivatives
remains valid, also for all higher orders, i.e.,

J(t) G(t)
+
l6e
0 —t 0 —t
' 0 —t
? e
) _,( |
Gt
+ 1
} 4. ‘
0 —=t '
' ]
0 —» t ,
- Git)
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0 —t
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Fig. 5.8 Creep compliance (case B), relaxation modulus (case A) and their time derivatives
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J(1) >0, J(t) >0, J(t)<0, J(t) >0, or

_ (5.21)

(="' (1) > 0 for 0<r<oo and for n=1,2,3,...
whereby J™(r) denotes an abbreviation for the nth derivative of the function J(r).
A positive function whose derivatives change its sign with its order, is called
totally monotonous. The postulate (5.21) expresses the demand that J(¢) should be
a totally monotonous function.

The first time derivative of the relaxation modulus is a negative, monotonously
increasing function of time and tends to zero for long times. The second derivative
is positive, monotonously decreasing. Again, we postulate that, in this case,
G(t) itself should be a totally monotonous function of the time

(=1)"G"™(t) > 0 for 0<r<oco and for n=0,1,2,3,... (5.22)

Because of the superposition principle, the two postulates (5.21) and (5.22) are
not independent of each other, from the validity of one of them follows the validity
of the other and vice versa. Of course, the validity of a postulate of the form (5.21)
can never be proven by a finite number of experiments. All what may be stated is
that the consequences of these postulates have been checked in a very large
number of experiments with polymers, and so far never have been found to be
violated. Therefore, we assume their validity.

From the postulates of the total monotony, far reaching consequences may be
drawn concerning the mathematical form of creep compliance and relaxation
modulus. The simplest example for a totally monotonous function is the expo-
nential function

G(t) = ae”'*
with positive values for the constants @ and 7. A finite sum of exponential func-

tions with positive constants a; and t; also constitutes a totally monotonous
function of .

G(t) = Goo + »_aze™"/" (5.23)
i=1

A further possibility to create a totally monotonous function is to replace the
finite sum in (5.23) by an integral

G(t) = G + / g(t)e " dr (5.24)
0

The integration variable 7 has the dimension of a time and is called the
relaxation time and g(t) is a nonnegative function of the relaxation time and is
called the relaxation spectrum.
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Vice versa, it has been shown by Bernstein [10], that each totally monotonous
function may either be written in a unique manner in the form (5.23) or (5.24) or as
a sum of both, with a nonnegative relaxation spectrum. In the case of the repre-
sentation in the form of Eq. (5.23) one speaks of a line spectrum or discrete
spectrum, and ty,71,,73,... are called relaxation times, the nonnegative coeffi-
cients ay, a,, as, relaxation strengths and the entity of the n couples (a;, t;) and G,
is the line spectrum or the discrete relaxation spectrum. The function g(t) is
designated as continuous relaxation spectrum.

The difference between a discrete spectrum and a continuous spectrum is a matter
of mathematical formality. Though, a mathematical proof can be given, that each
completely known totally monotonous function may be represented uniquely by
either (5.23) or (5.24), this is not true for experimentally obtained moduli. These
functions are always known only for a limited time interval, and only with finite
accuracy. For those functions a discrete spectral representation is always even
accurate as a continuous representation. Moreover, by the finite accuracy of the
measurement, the uniqueness of the representation by the spectrum is lost. Each
experimentally measured relaxation function may be represented by an infinite
number of different spectra, which all describe the experiment within a given small,
but finite, experimental error. This is meant, when one speaks about the determi-
nation of spectra from experiments as an ill-defined mathematical problem.

For the mathematical description of the creep compliance, we start from the
postulate, that J (¢) should be a totally monotonous function and, therefore, can be
presented as

: ji 1
J(r) = / s(t)e *dr + —
; Mo

with a nonnegative function s(t). Integration of this equation with respect to r and
designating the function 7s(t) by f(t) leads to the formula

J(0) = I+ / PO = e dz + 1/ (5.25)
0

The integration constant J, turns out to be the instantaneous compliance of
Eq. (5.8). The integration variable 7 is called here the retardation time and the
nonnegative function f{t) the retardation spectrum. In the case of a line spectrum
we obtain instead of (5.25)

T = o+ > bl — e+ 1/ng (5.26)
i=1
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Fig. 5.9 Decomposition of Jit)

the creep compliance into its

three components |

T1,72,73,... are called retardation times, the nonnegative coefficients by, b, bs,

the retardation strengths and the entity of the m couples (b;, 7;) and Jy and 7 is the
line spectrum or the discrete retardation spectrum.

Equations (5.25) and (5.26) suggest a decomposition of the creep compliance
into three components, which behave differently in a creep and a recovery
experiment.

J(t) =Jo+ (1) +1/n9 (5.27)

with
/ fO)[1 — e dr (5.28)

or

m

W)= bl — e/ (5.29)

i=1

Jo is the instantaneous creep compliance, which is time independent and
mechanically reversible, y(¢) the retarded viscoelastic compliance, which is time
dependent and mechanically reversible, and /5, is the flow term, which is time
dependent and mechanically irreversible.

If the creep compliance has been measured completely, i.e., if Jy and 7y both
have been determined, this decomposition may be performed as explained in
Fig. 5.9. First, the constant value of J, is subtracted from the compliance. Then a
straight line with the slope 1/1, is drawn through the point (0, Jy). The remainder
J(t) — Jo — t/ng is the retarded viscoelastic compliance y/(¢). In practice, often not
sufficient experimental information is available to perform this decomposition of
the creep compliance reliably.
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Lr,
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Fig. 5.10 Left side The generalized Maxwell model, showing viscoelastic behavior without flow
and right side: Its mechanically equivalent Kelvin model with m = n

The viscoelastic deformation behavior is often described by mechanical circuit
diagrams, consisting of linear springs and linear dashpots, which are linked
together, the so-called mechanical viscoelastic models. The elongation of the
model represents the resulting strain, the force on the upper and lower end the
resulting stress. A spring and a dashpot arranged in series is called a Maxwell
model, their parallel link a Kelvin model.

Figure 5.10 shows, on its left-hand side, the so-called generalized Maxwell
model, which consists of n Maxwell-models and one single spring linked in
parallel.

It is easily seen that the stress relaxation modulus of the generalized Maxwell
model is given by Eq. (5.23), if we assume the following relations between the
constants of the model and the discrete relaxation spectrum

ai=fi; tu=r/f for i=1,23,..n and Gu = foi1 (5.30)

This model shows viscoelastic behavior without flow (case A).

The right-hand side of Fig. 5.10 shows a model composed of n Maxwell ele-
ments and one spring linked in series. This model may show the same viscoelastic
behavior as the model on the left-hand side, on condition that a number of relations
is valid between the constants of the generalized Maxwell model (f;, ;) and those
of the model on the right-hand side (]_‘,-,?i). In this case we call the two models
mechanically equivalent. For a detailed description of the models and of the
mentioned relations, we refer to the contributions in [11-13].

Figure 5.11 shows the so-called generalized Kelvin model, which consists of
m Kelvin elements, one spring and one dashpot, all linked in series. The creep
compliance of the generalized Kelvin model is seen to be identical with Eq. (5.26),
if we assume the following relations between its constants and the discrete
retardation spectrum
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Fig. 5.11 Left side The generalized Kelvin model, showing viscoelastic behavior with flow and
right side: its mechanical equivalent Maxwell model with n = m + 1

Jo=1/fo;bi =1/fi; T =7/f; for i=1,2,...m and 1y =Fury;  (5.31)

This model describes viscoelastic behavior with flow (case B).

The generalized Kelvin model shown on the left-hand side of Fig. 5.11 behaves
under stress exactly as a generalized Maxwell model without the last spring, as
shown on the right-hand side of the Fig. 5.11. Again, a number of relations have to
be valid between the constants of both models, and n = m + 1.

5.5 The Creep Recovery Experiment

Figure 5.12 shows the stress and strain during a creep recovery experiment.
Between t = 0 and ¢ = ¢, the sample is loaded with a constant stress g, and its
strain is measured. At t = 1, the load is suddenly removed and the residual strain
of the sample during the recovery period, y(t,, t') is measured as a function of the
recovery time t'.

The residual strain depends on both, the creep time ty and the recovery time t'.
Its magnitude is found by inserting the definition of the creep recovery experiment
(5.1) into the superposition principle (5.15) as

P(to, 1) = a0 - [J(t) = J(t —10)] = 00 - [J(to +1') — J(1')] (5.32)

The retraction y,(ty, t) of the specimen during the recovery period is found by
subtracting the residual strain y(z, ¢') from the strain which had been reached just
before unloading ooJ(ty). The retraction (the recoverable strain) during the
recovery phase is found as
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Fig. 5.12 The creep recovery experiment, the retraction v, (fof') and the residual strain (o t")

7, (to, 1) = a0 - [J(t0) +J(') — J(to + 1)) (5.33)

Introducing the decomposition (5.27) into these equations yields
y(to, 1) = a0 - [t + 1) — ()] + aoto/ng (5.32a)
Pelto, 1) = o0 - [Jo + Y(to) +(r) = Y(to + )] (5.33a)

Expressing s by the retardation spectrum (5.28) leads to the following formulae
for the retraction and for the residual strain divided by the creep stress

V(t0, ) /00 = / FE)e 1 — e dz + 19 /n, (5.34)
0
0,10, 7)) 50 = Jo + / FO = e[ — e1de (5.35)
0

7,(t0,7) /00 is a monotonously increasing function of both times, the creep time #,
and the recovery time 7. It will therefore reach its maximum value after infinitely
long creep times and infinitely long recovery times. This maximum value is called
the stationary recoverable compliance J° and has attracted considerable attention
of experimentalists, recently, as its value offers information about the deformation
and orientation of the macromolecules during stationary flow.”

% The stationary recoverable compliance is designated here and throughout Chaps. 5 and 6 by
either J, or by JO. Later, in considering non-linear creep behavior, the designation J. will be used
only for the non-linear stationary recoverable compliance.
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oo

5= fim 3l 0) /o0 = o+ [ (o)t (5.36)
' —o00 0

In the case of a discrete retardation spectrum, the stationary recoverable compli-
ance becomes instead of (5.36)

B =Jo+> b (5.37)
i=1

Especially the question, whether 7z, and ¢ have been chosen long enough to
guarantee sufficient accuracy in the approximation of the limit in Eq. (5.36) or
(5.37) has been a matter of interest. This however, is a very delicate question, as it
depends on the detailed structure of the retardation spectrum in the long-time
region. For, the error in the determination of J, will be equal to

IO =9, (to, 1) )00 = / F(o)e /" 4 e/t — g0t )7 g (5.38)
0

which may be written in the case of a discrete retardation spectrum as

Je = 1:t0,1) /a0 = [Y(00) = W (t0)] + [Y(00) = ()] = [(o0) — Y(to +1)]
(5.38a)

In replacing the negative exponential function by a unit step function, which drops
from unity to zero at the time t = 7;, the differences of the retarded viscoelastic
compliance may be approximated as follows:

Y(oo) —y(t) = bie = " by (5.39)
i=1

i=r+1

if 7, <t <7,,1. Introducing this approximation into Eq. (5.38a) yields the fol-
lowing approximation for the error in the determination of the stationary recov-
erable compliance under the assumption 7 <

IO — 9, (t0,0)/00 2 byyy - A by +2bg iy 4+ 2by + byyy + -+ by (5.40)

where the indices are defined by the equations T, <t' <7T,,|, Ty <fg<Ts.; and
T,<ty+ 1 <T,y1. Every retardation strength, whose retardation time exceeds
either 1y or ¢/, will contribute once or twice to an error in the determination of the
limits in Eq. (5.36) and (5.37). The calculated limits will always be too small.

If the creep time #y has been chosen long enough, the first bracket in (5.35) will
reduce to unity, and the retraction per unit stress will tend to the limit
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o0

Jim [7,(10')/o0] = Ju(e) = 2 + / FEN = e Fde =a(t) ~ 1 fny (5.41)
0

Jr(?') is called the recoverable compliance, which is equal to the creep compliance,
without the flow term. The problem in reaching the limit in Eq. (5.41) is similar to
that of the limit in (5.36).

After long-creep times and long-recovery times, the residual strain (5.34) will
have decreased to its lower limit

limy(to,) = doto/no (5.42)

to— 00,1’ —00

which equals the viscous contribution of the strain during the creep period. This
equation is sometimes used to determine the viscosity by means of a recovery
experiment. Again, difficulties in connection with the limiting process in (5.42)
will arise.

Finally, a further way for the determination of the viscosity is to plot the creep
compliance, divided by the creep time, versus the logarithm of the creep time.
After creep times long enough a lower limit for the quotient will be reached, which
is equal to the inverse viscosity

lim [J(1)/1] = 1/no = @ (5.43)

1—00

It is highly recommended, in this limiting process as in the other mentioned
cases, to use logarithmic time scales for the abscissa, to elucidate whether the
limiting value was really attained.

5.6 The Creep Compliance of Amorphous Polymers

Summarizing the considerations on the decomposition of creep compliance and
relaxation modulus, we state: The quantities Jo, Go, @9 = 1/no, G, J, (Or Jg) and the
function (¢) are defined by mathematical extrapolation processes, and, therefore,
apart from exceptional cases not directly accessible by the experiment. Quantities,
which may be always determined, are the creep compliance and the relaxation
modulus as a function of the time, but within a limited time interval, only,

J(t), G(1) for Fonin <t <tmax

with t,,;, being the time needed between loading of the specimen and getting the
first reliable measuring point, while 7.,,, depends on the patience of the experi-
mentalist, the stability of the measuring system and of the material. In favorable
cases, for creep or stress relaxation #,;, = 0.1 s and f,,x & 3 X 107 s (1 year).
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Fig. 5.13 Schematic dependence of the creep compliance on time in a double-logarithmic plot
for amorphous, uncross-linked polymers (full line) and for amorphous cross-linked polymers
(dashed line)

Though more than 8 decades of the time scale will be accessible as experimental
window, this is this still insufficient to cover all relaxation processes which may
occur in an amorphous polymer at one single temperature.

The creep compliance of amorphous polymers changes in such a wide range and
within such a wide time region, that a comprehensive survey can be presented only
in a double logarithmic plot. A schematic picture is given in Fig. 5.13. A scale for
the logarithmic time axis is not given for reasons which will become clear soon.

In the double-logarithmic plot, the creep compliance shows a number of dis-
persion steps. Each step represents a relaxation phenomenon, which just develops
in the corresponding time region and starts there to contribute to the deformation
process. From left to right, in the Fig. 5.13, the size of the parts of the molecules,
which participate in these processes, increase.

At very short creep times, the compliance of the order of J, =~ 3-5 x 107'°
Pa~! is very low. On loading, only van der Waals’ bonds, valence bonds and
valence angles are distorted. The material behaves stiff, elastic, and brittle. As van
der Waals’ bonds are much weaker than covalent bonds, the van der Waals’ bonds
will chiefly determine the value of the short-time compliance.

At somewhat longer creep times, dispersion regions are found, which lead to a
moderate increase in the compliance (the compliances increase there to the 1.5-2
fold of their value before the process). These dispersions are related to the motion
of small parts of the macromolecules: Either rotations or changes in the confor-
mation of side groups or of small parts of the principle chains are involved. These
dispersions are called secondary dispersions in the glassy state, indicating their
moderate influence on the change of mechanical properties in comparison to the
much stronger influence of the glass-transition. Secondary transitions are material
specific; various polymers show different secondary transitions, according to their
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chemical structure. The material is still in the glassy state, though, it may loose
some of its brittleness after having passed through one of the secondary transitions.

After the glassy state, a very strong dispersion region is observed, which is
common to all amorphous polymers, though the details of the dispersion may
change with the molecular structure. This dispersion region is called the glass-
rubber transition or the softening region, as it leads from the glassy state to the
much softer rubbery state or rubbery plateau with a shear compliance which is
about a factor 1000-10000 times higher than the compliance in the glassy state.
The glass-rubber transition extends over 6—8 decades in the logarithmic time scale,
the slope of J(f) versus ¢ in the double-logarithmic plot is approximately constant
and reaches values, which differ from polymer to polymer, but generally are found
between 0.50 and 0.90. An approximate description of the compliance- time
relation in the glass-rubber transition is therefore

logJ~m-logt+C or J(t)xoa-t" (5.44)

The molecular process responsible for the glass-rubber transition is the uncoiling
and change in shape of the polymer chains between adjacent entanglements or
cross-links, leading to much higher extensibilities of the chains and therefore to
much higher values of the compliance (cf. Fig. 4.9).

After the glass-rubber transition follows the rubber-elastic plateau (for uncross-
linked polymers) or the rubber-elastic state (for cross-linked polymers). There, the
values for the compliance increase much less with creep time than in the glass-
rubber transition and are of the order of

J 2 1/(nkT) 2 107 %to 10-5Pa~! (5.45)

with n being explained below.

For amorphous cross-linked polymers (the dashed line in Fig. 5.13), the com-
pliance remains approximately constant as a function of time and approaches the
limiting value J(o0) = J,, because those polymers do not show any viscous flow.
The molecular process governing the deformation in the rubber-elastic state is the
change in shape of the macromolecules under the influence of mechanical forces.
The magnitude of the deformation is limited by the entropic forces of the tem-
perature kicks, which drive the molecules back into their isotropic shape. These
forces may be calculated by means of the theory of rubber elasticity and are found
to be proportional to the absolute temperature and to the number of cross-links per
unit volume, n = n, (cf. Eq. (5.45)).

Also uncross-linked polymers with sufficiently high-molar masses show rubber-
elastic behavior in a certain time region, which we call the rubber-elastic plateau
in this case. The reason for it is the presence of entanglements, which—for some
time—have a similar effect as cross-links. In this case Eq. (5.45) is applicable too,
with n = n, being the number of effective entanglements per unit volume.

At longer times, however, the macromolecules will slip out of the entangle-
ments and will move into the direction of the shear forces, giving rise to viscous
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Fig. 5.14 Creep compliances (full lines) and recoverable creep compliances (dashed lines) as a
function of the time, for uncross-linked polymers with a narrow and a broad molar mass
distribution

flow behavior. At the end of the flow region, the shear behavior of the melt may be
approximated by

J(1) = J° +t/n, (5.46)

and the double logarithmic slope of J versus ¢ finally approaches the value unity.

The picture of Fig. 5.13 is a simplification, as between the rubber-elastic pla-
teau and the flow region at least one additional dispersion region occurs, which has
been called the entanglement transition, as it is supposed to be connected with
some change of the structure of the entanglement network. If only the creep
compliance is observed, this transition is often masked by the flow term which has
already reached a considerable magnitude there. It may be clearly observed,
however, if the recoverable creep compliance, Jg(f), which does not contain the
flow term, is measured instead of the creep compliance.

In Fig. 5.14, the quantities J(f) and Jg(7) are sketched in a double logarithmic
representation from the beginning of the rubber-elastic plateau to the flow region.
The curves describe the behavior of two uncross-linked polymers with about the
same weight average molar mass, one with a narrow molar mass distribution and the
other with a broad molar mass distribution. The step height of the transition depends
on the molar mass distribution. While the compliance starts at the beginning of the
plateau with a value of about J,,, it reaches at the end of the plateau a value J,. The
ratio J/J,, may amount to a factor 2-3 for narrowly distributed polymers, it may
increase however, for broadly distributed polymers up to values of 10-100. In the
creep behavior this difference is reflected by the width of the entanglement transi-
tion, which is much more pronounced for the broadly distributed polymers.
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Figure 5.13 describes the compliance as a function of time at one fixed tem-
perature. The influence of the temperature consists in a shift of the position of the
various dispersion regions on the logarithmic time scale without changing much
the heights of the dispersion steps and their shape. This empirical finding is called
the time-temperature superposition principle which will be discussed in more
detail in Chap. 6. An increase in temperature shifts all relaxation phenomena to
shorter times on the logarithmic timescale. The magnitude of this shift is about
equal for the softening region and for the flow transition. For secondary transitions
this shift is smaller. Figure 5.15 shows the influence of the temperature on the time
dependence of the compliances for an amorphous uncross-linked polymer.
Because of the different amounts in the shift for the glass-rubber transition and the
secondary transitions, the dispersion steps come closer together with higher tem-
peratures. In the same figure, we have exemplarily indicated the width of the
experimental window [7in, fmax], Which covers only a small part of the interesting
time scale. It is therefore impossible, to measure the curves which were presented
in Fig. 5.13, at one single temperature. On the contrary, different parts of the
curves have been determined at different temperatures and these parts have been
composed to one single curve, using the time-temperature superposition principle.

In the following, the creep compliance of a technical polystyrene with a broad
molar mass distribution, which has been presented in Fig. 2.6, is discussed.
Figure 5.16 shows its creep compliance at different temperatures as a function of
the creep time in a double-logarithmic plot in all the various states of this polymer
from extremely low temperatures up to the melt and the limit of thermal
decomposition. The picture shows the compliance over a logarithmic time axis of
7 decades, while the value of the measured compliance itself changes by about 9
decades.

In order to obtain reliable results within such a broad experimental window and
within all states of consistency, an extreme experimental effort was necessary.
Measurements in shear on materials which are able to keep their shape under the
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Fig. 5.16 Shear creep compliance versus creep time for PS N 7000 at various temperatures in a
double-logarithmic representation

forces of gravity (the measurement of compliances with a value below 107° Pa™ ),
can best be performed accurately by the torsion of cylindrical rods with a length to
diameter ratio of about 10. For this purpose a specially developed torsional creep
apparatus was used [14]. Furthermore, for measurements within the glass-rubber
transition, a very accurate and stable thermostating system is necessary. This was
constructed based on the recirculation of heated nitrogen gas [15]. Its long-term
stability and reproducibility is about 0.2 °K with respect to the absolute value of
the temperature.
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Fig. 5.17 Compliance on a linear scale versus the creep time on a logarithmic scale for PS N
7000 in the glassy state

Measurements on materials which are unable to keep their shape against the
forces of gravity (measurements within the rubber-elastic plateau or in the melt)
were performed by means of a dynamic viscometer with a Couette geometry by
Pfandl [16] and with an apparatus originally developed by Plazek [17] and
reproduced by Link [18, 19]. The latter apparatus was equipped with a magnetic
bearing in order to minimize the friction and the disturbing moments of the
bearing. This apparatus was especially constructed for the direct determination of
the recoverable compliance in the rubber-elastic plateau. It uses the torsion of a
disk and an electric heating system for the temperature control.

The dependence of the compliance on time and temperature is very different in
the various states of the polymer. The creep behavior in the glassy state is once
more shown in Fig. 5.17, but now on a linear scale for the compliance. The weak
dependence of the compliance on creep time and temperature in the glassy state
becomes obvious. From —170 °C to the beginning of the glass-transition (+80 °C)
the creep compliance does not depend on the creep time and only weakly depends
on temperature. The PS may be described there as an approximately elastic
material with a small temperature dependence. This is due to the fact that PS does
not show secondary transitions in this temperature range. A value for the com-
pliance at —268 °C, has been indicated [20].

The compliance in the glass-rubber transition is well documented in Fig. 5.16.
The complete dispersion step extends over 7 decades of the time axis, the step
height amounts to 3.6 decades of the compliance. The double-logarithmic slope of
the compliance versus time reaches a maximum value of 0.89. The time-temper-
ature shift is the strongest here. A change in temperature of 3 K shifts the creep
compliance curves by a factor of ten on the time axis. In this region, the com-
pliance of the material strongly depends on temperature and creep time, i.e., the
viscoelastic character of the material is especially pronounced there.
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Fig. 5.18 J(#)/t versus ¢ in double logarithmic representation for PS N 7000 in the rubber-elastic
plateau and in the melt, after Pfandl [16]

The creep behavior in the rubber-elastic plateau and in the melt becomes also
obvious from Fig. 5.16. The rubber-elastic plateau is not very pronounced for the
polystyrene measured, however, J(#) in the plateau region is not constant, but
slightly increases with time. As already mentioned, this behavior is related to the
broad molar mass distribution. For approximately monodisperse polymers, a much
more distinct rubber-elastic plateau is found.

At high temperatures and at long creep times, the polymer is in the so-called
molten state. There the compliance is represented in a double-logarithmic scale by
a straight line with the slope one. The viscosity may be obtained by making use of
the extrapolation based on Eq. (5.43). In Fig. 5.18 the quotient J(#)/¢ is shown in a
double-logarithmic representation versus the creep time for PS N 7000 in the
rubber-elastic plateau and in the melt. J(f)/t is a monotonously decreasing function
of the creep time, which finally reaches a constant horizontal plateau indicating
that the stationary state of flow has been reached. The viscosity may be calculated
in the temperature range between 126 and 290 °C using Eq. (5.43). Figure 5.18 is
a very convincing illustration of the time scale needed to get reliable viscosity data
from the application of Eq. (5.43).

The recoverable compliance Jg(f) as a function of the recovery time ¢ has been
measured using the creep apparatus with magnetic bearing and is shown for the
PS N 7000 in a double-logarithmic representation in Fig. 5.19 [18]. A direct
measurement was possible only for temperatures above 140 °C.
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Fig. 5.19 Recoverable compliance versus the recovery time for PS at various temperatures in a
double-logarithmic representation, after Link [18]

For lower temperatures the so-called Leaderman technique [21] has been used.
The stationary state of flow has been realized by performing a creep experiment at
the temperature of 170 °C, than the specimen was cooled to the desired temper-
ature and the retraction of the unloaded specimen was measured. The basis of this
technique is the assumption that a stationary state which had been reached at
higher temperatures, remains undisturbed through cooling, as long as the specimen
stays under constant stress. If this hypothesis is true it is possible to reach a
stationary state of flow within a reasonable time and to determine afterward
the viscosity from the shear rate and the recoverable compliance at lower
temperatures.

At temperatures below 126 °C just the creep compliance has been measured as
a function of the creep time, as in this temperature region the contribution of the
flow term to the creep compliance is negligible and therefore Jx(f) equals J(?).
Consequently, in Fig. 5.19 the recovery time has been used as abscissa for the
representation of J; and designated by ¢, while for the measurements below 126 °C
the creep compliance is plotted as a function of the creep time.

Figure 5.19 shows the existence of a further distinct relaxation process between
the glass-rubber transition and the flow transition for the recoverable compliance
Jr(?), the entanglement transition. The time-temperature shifts of the three tran-
sitions shown in Figs. 5.16 and 5.19 will be discussed in detail in Chap. 6.
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Fig. 5.20 Entanglement transition for PS in semi-logarithmic representation after Link [18]. The
curves on the /eft represent a tenfold magnification of the curves on the right

This transition becomes still more pronounced if it is represented in a semi-
logarithmic plot, as in Fig. 5.20. From this figure, the very large step height of this
transition becomes evident, as well as the temperature-independent level of the
limiting value Jg(o0) = J,. The enlarged section of this figure shows the beginning
of the entanglement transition and the end of the glass transition.

5.7 Relations Between Creep and Stress Relaxation

As the two equations of the superposition principle (5.15) and (5.17) which
express a relation between the stress history and the strain history, have to be
consistent with each other, the two characteristic functions J() and G(¢), cannot be
independent. They are related by an integral equation which is derived as follows.
Equation (5.17) is used to calculate the stress which belongs to a creep experiment
under the constant stress g after the deformation history y(#) = 0 for + < 0 and
y(t) = o - J(@) for t > 0. Inserting o(¢#) = 6o and y(f) = a¢ - J() in (5.17) and
division by the constant stress g lead to

t

1 =GoJ(t) + / G(t — &)J(&)d¢ (5.47)

0
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By partial integration and introduction of a new integration variable t — £ = { we
obtain the equation

t t

1 = 1G(1) + / It - OG(E)dE = IG(1) + / JOG - ade  (5.47a)

0 0

in which the creep compliance and the relaxation modulus are interchanged with
each other. Both equations may be integrated with respect to 7 and one obtains the
symmetrical relation

t t

/ Gt — &)J(E)dé = / Ji—OGE)dE =1 for 0<i<oo  (548)

0 0

Differentiating of (5.48) with respect to ¢ yields either (5.47) or (5.47a). The four
Egs. (5.47), (5.47a), and both sides of (5.48) are equivalent. Each relation repre-
sents an integral equation, from which the creep compliance may be derived, if the
relaxation modulus is known and vice versa. If the creep compliance is known in
an analytical form, the stress relaxation modulus may sometimes be calculated
using one of these equations, but an analytic solution is known only in very simple
cases. Two useful examples are given below.

For t = 0, Eq. (5.47) reads 1 = Gy - Jy, which is the relation between the
instantaneous values of creep compliance and modulus (cf. Eq. (5.13)). Adding the
identity

t

—J()G(t) = —JoG(t) — / G(1)J(&)d¢

0

to Eq. (5.47a), we find

t

1 J(0)G(1) = / HOIG(— &) — Glr)de (5.49)

0

As the creep compliance is a monotonously increasing function of time and the
relaxation modulus is a monotonously decreasing function of the time, both factors
of the integrand in Eq. (5.49) are positive, and therefore the integral in Eq. (5.49)
cannot be negative. From this relation the inequality of Zener [22] follows for the
product of creep compliance and relaxation modulus.
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0<J() -G(r)<1forall >0 (5.50)

Deviations of this product from unity may occur only in one direction. It will be
shown that such deviations occur in the dispersion and flow regions.

In the glass transition region, the creep compliance may be approximated by the
expression J () (5.44):

J(t) 2 Ju(t) = o 1" (5.44a)

with o being a positive constant and 0 < m < 1 (cf. Fig. 5.13). It is shown in the
following, that the modulus in the same interval can be described then by the
approximation

Gt)=2Gy()y=p-t7" (5.51)

For the proof we insert (5.44) and (5.51) into Eq. (5.48) and obtain after the
substitution £ = ¢ - y

t

t= /JA(t— &) - Ga(&)dé _toz/i/ y)"dy

0
The integral is the product of two I'-functions and may be written as (see [23])

1

/y (1=y)"dy=T(1+mI(1 —m)=

mT

sin(mm)

The integral Eq. (5.48) is satisfied, if we set aff = sin(mmn)/(mm). Therefore in the
glass-transition region the approximation follows

J(t) - G(t) = s1nn(1n;n) for the glass transition (5.52)

For the slopes m = 0.5, 0.7, 0.9 which are found in practice within glass transi-
tions, this product will be equal to 0.64, 0.37, 0.11.

As an approximation, this equation may also be used in cases, for which the
double-logarithmic slope of the creep compliance stays only nearly constant within
a dispersion region. This is often the case for secondary dispersions, for which the
slope m is small compared to unity. We then find by the development of the sin-
function

J(t)-G(f) =1 —1.6m? for secondary dispersion regions (5.53)

From this equation it follows that in the glassy state the product G(¢)-J(f) may
deviate only slightly from unity, as for m = 0.1 we find G - J == 0.98.
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A further important application of Eq. (5.48) is the approximation of J(¢) in the
flow region of uncross-linked polymers. There the following approximation for the
creep compliance is found

J(t) 2 Ju(t) =0+ t/ny = J[1 +1t/7,] for the flow region (5.46a)

In the right-hand side of this equation we used the definition for the longest
relaxation time 1,

1, =J%, (5.54)

In terms of the generalized Maxwell model of Fig. 5.11a, 1, is equal to t,, = r,/f,, if
the Maxwell elements are arranged in the order of increasing relaxation times. The
corresponding stress relaxation modulus is found to be

1
G(t) = Gu(1) = ﬁe”/rf for the flow region (5.55)

e

as may be seen by inserting (5.46) and (5.55) into (5.48). While the creep com-
pliance as a function of time approaches a straight line with the slope unity in a
double logarithmic plot in the flow region, the relaxation modulus decreases to
zero with an ever growing negative slope which tends to minus infinity with
increasing time. Therefore the product G(#)-J(f) will vanish very quickly in the
flow region with increasing time.

A schematic representation of the relaxation modulus as a function of time in a
double-logarithmic plot is given in Fig. 5.21. The relaxation modulus is approx-
imately the mirror picture of the creep compliance, apart from the behavior in the
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Fig. 5.21 Relaxation modulus versus time in a double-logarithmic representation for an amorphous
uncross-linked polymer (full line) and for an amorphous cross-linked polymer (dashed line)
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Fig. 5.22 The “Zener product” J(¢)-G(f) versus time, in a double-logarithmic representation for
amorphous uncross-linked polymers (full line) and for amorphous cross-linked polymers (dashed
line)

flow region (cf. Fig. 5.13). To each dispersion step of the compliance, there cor-
responds a dispersion step of the modulus. On the double-logarithmic scale, the
heights and the positions of the corresponding dispersion steps are approximately
equal. At very short times, the modulus attains constant values of the order Gy == 2
to 3 x 10° Pa. At longer times, one can observe the dispersion steps of the sec-
ondary transitions. After the glassy state, the softening region follows, in which the
modulus decreases in a double-logarithmic representation approximately with a
constant slope of —m. After the glass-rubber transition, the rubber-elastic plateau
or the rubber-elastic state is found. For cross-linked amorphous polymers, the
modulus remains constant at the level of G, = 1/J,, which depends on the
absolute temperature and the cross-linking density. For amorphous uncross-linked
polymers, the flow region follows with the modulus steeply falling to zero.

According to the foregoing considerations, the Zener product in a double-
logarithmic representation follows as given in Fig. 5.22. This product is always
smaller or at most equal to unity. At very short times, G()-J(#) = Gy-Jp = 1. At
the secondary transitions in the glassy state, small minima occur, which only
deviate by some percent from unity (5.53). In the glass-rubber transition, the Zener
product assumes values, which are significantly lower than unity (between 0.1 and
0.6). After this region, the product increases again and tends to unity. For cross-
linked polymers it stays there, for uncross-linked polymers, however, the Zener
product falls steeply to zero with increasing time.

Stress relaxation measurements in linear extension have been performed by
Tobolsky and coworkers [24-26]. The relaxation modulus in extension behaves
similar to the relaxation modulus in shear.



154 5 Linear Viscoelastic Deformation Behavior in Simple Shear

Fig. 5.23 Extensional
modulus versus time in a
double-logarithmic
representation for PMMA at
various temperatures, after
Mc Loughlin and Tobolsky,
reproduced from [24] by
permission from Elsevier, UK
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Figure 5.23 shows the modulus in extension as a function of the time, in a
double-logarithmic representation, for PMMA. In this figure, all four states of
order are present, the glassy state, the glass-rubber transition, the rubber-elastic
plateau and the molten state. The extensional modulus for a PIB with a high-molar
mass is presented in Fig. 5.24. Using the time-temperature shift, Tobolsky con-
structed from these data E(f) over a wide range of time at 7 = 25 °C. In Fig. 5.25
these data are shown for three PIB with different molar masses. In the glassy
region and in the glass-rubber transition, no influence of the molar mass on the
moduli is visible. The width of the rubber-elastic plateau however, increases with
increasing molar mass.

For amorphous polymers, E(f) equals about 2.5-2.7 times the shear modulus
G(1) in the glassy state, while in the softening region, in the rubber-elastic plateau
and in the molten state E(¢) is exactly three times G(7).
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Fig. 5.24 Extensional
modulus versus time, in a
double-logarithmic
representation for PIB with
M, = 6.60 x 10° kg/mol at
various temperatures after
Tobolsky and Catsiff,
reproduced from [25] by
permission from John Wiley
and Sons, New York

Fig. 5.25 Extensional
modulus versus time in a
double-logarithmic
representation after a
temperature shift to 25 °C

for three PIB of different
molar masses

(DM, = 1.36 x 10° kg/mol,
@M, = 2.80 x 10* kg/mol,
M, = 6.60 x 10° kg/mol,
after Tobolsky and

Mc Loughlin, reproduced
from [26] by permission

from John Wiley and Sons,
New York
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5.8 Oscillatory Experiments

It is possible to enlarge the experimental window considerably, if besides creep
and stress relaxation, also oscillatory experiments are used for the characterization
of the viscoelastic behavior. The measuring techniques known today extend over
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Fig. 5.26 The position and the experimental window of various mechanical measuring
techniques for the determination of the viscoelastic behavior. (Ref 1 from Chap. 4)

14 decades of the time or frequency scale, as shown in Fig. 5.26. In this figure, the
extensions of the experimental windows for the different measuring techniques are
presented over a logarithmic time or frequency axis, respectively. The relation
between the time (in seconds) in a creep or stress relaxation experiment and the
frequency v in s~ in an oscillatory experiment has been set by the equation

w=2nm =1/t (5.56)

w is the angular frequency, the number of oscillations in 27 s. The relation (5.56)
is an arbitrary one and has no direct connection with the duration of one period of
the oscillation, which is 1/v. It is shown later that this relation yields good
agreements between the results of oscillatory experiments and those of creep and
stress relaxation.

We may distinguish between four different types of vibration experiments, if we
compare the wavelength of the oscillation with the dimensions of the specimen. As
wavelength and frequency of an oscillation are reciprocal quantities, this division
is at the same time one after the frequency of the measuring technique considered.

Forced Oscillations Below the Resonance Frequency

If the wave length of the oscillation is large against all dimensions of the specimen, the
latter does not form an oscillating system. However, the behavior of the material under
harmonic oscillations may be investigated by exciting the specimen to vibrations with
a frequency below the resonance frequency. The harmonic strain and stress occurring
are compared with each other with respect to their amplitude and phase. In this
experiment, the frequencies have to be chosen low enough that the inertia moments of
the specimen or of moving parts of the instrument do not play any role.
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Free Damped Vibrations with Additional Mass or Inertia Moment

For this type of measurements an additional mass or an additional moment of
inertia is added to the specimen. The system is deflected out of its equilibrium
position and then released. It returns by means of damped free vibrations into its
initial position. The eigenfrequency and the logarithmic decrement of the free
damped vibration are measured. For an evaluation of this experiment, the inertia
forces of the additional mass have to be considered.

Resonance of Standing Waves

If the wave length of the elastic waves is of the order of the largest dimension of
the specimen, the system will form an oscillation system without any need for
additional masses or moments of inertia. The specimen can be excited to torsional,
bending or longitudinal vibrations by a wave generator with variable frequency,
and the amplitude of the occurring vibration is determined. If the exciting fre-
quency attains the resonance frequency, the latter is determined together with the
half width of the resonance curve.

Wave Propagation
If the wave length of the excited vibration is small compared to all dimensions of
the specimen, elastic waves propagate through the sample. The velocity of prop-
agation and the attenuation of the wave amplitude are measured. For evaluating
this experiment, one needs the density of the material, just as in the case of
evaluating the resonance of standing waves.

All those experiments yield the magnitude of a modulus or a compliance,
respectively, and an internal damping expressed by the tangent of a phase angle,
which will be introduced in detail below.

Evaluation of the Forced Oscillation Experiment
The experiment of a forced oscillation may be started as follows. The specimen
free of any stress until the time ¢ = 0, is excited by a harmonic stress of an
amplitude oy and an angular frequency  at the time zero. The prescribed stress
history reads as

a(t)=0 for <0
a(t) = apcos(wt) for t>0 (5-57)
The deformation as a function of the time is obtained by inserting (5.57) into the
superposition principle (5.15) and making use of the decomposition according to
(5.27). One gets

(1) = ao[A’(w, t) cos(wt) + A" (w, t) sin(wt)] for t>0 (5.58)

with A" and A” being abbreviations for the following integrals

Al(w, 1) Jo+/np ) cos(wé)d (5.59)
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H(0.) = ot [ sin(wi)a (5.60)
0

The deformation (5.58) is not a harmonic function of the time, as long as the
quantities A’ and A’ still depend on the time ¢. If one waits long enough,
the integrals tend to limits, which are independent of the time ¢ and depend on the
parameter w, only.

J' (o )—tllmA Jo+/lﬁ cos(w&)dé (5.61)
0
J' (w) = lim A" (w,1) = L—i— /Oczp(é) sin(w¢)d¢ (5.62)
100 @l )

The existence of these limits follows from the fact that 1//(5) is a monotonously
decreasing function of & which becomes zero for ¢ — oo (cf. Fig. 5.8). If these
limiting values have been reached with sufficient accuracy, one says that the
stationary state of the harmonic oscillation has been attained. In this case, the
shear strain reads as

(t) = a0l (@) cos(or) +J" (@) sin(e)] (5.63)
or

1) = Goda(w) - cos(or — ) (5.64)

with
Ji@) = (@) + ()] (5.65)

and
tan 3(w) = J" (@) /7' (@) (5.66)
J(@) = Jg(w) cos d (5.67)
J"() = Jy(@)sind (5.68)

The quantities J'(w) and J''(w) are called storage compliance and loss compliance,
J () the absolute (value of the) dynamic compliance and tan 6(w) the internal
damping or the loss tangent. All these quantities are functions of the angular
frequency o of the prescribed stress, but independent of its amplitude o¢. J () is
also often designated as |[J*(w)l, the magnitude of the complex compliance J*.
Figure 5.27 shows just one and a half period of stress and strain as functions of the
time in the stationary state of a harmonic oscillation. The deformation may be
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Fig. 5.27 Decomposition of the stationary harmonic deformation in an oscillatory experiment
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described according to (5.64) as a harmonic oscillation with the same angular fre-
quency as the stress, which lags behind it by a phase angle o. J(w) is the ratio of the
amplitude of the deformation to the amplitude of the stress. Due to (5.63) the defor-
mation may be decomposed into a sum of two harmonic oscillations of the same
angular frequency, one of them being in phase with the stress and having the
amplitude a¢J' (w), the other lagging behind by 90° and having the amplitude oo (w).

A complex quantity can be defined whose real part is the storage compliance
and whose negative imaginary part the loss compliance

T () = J' (@) — il (@) = Ja(w)e™™ (5.69)

which is called the complex compliance.
An oscillatory experiment started under harmonic strain at the time ¢t = 0 is
defined by

() =0 for <0

p(t) = ypsin(wt) for >0 (5.70)

The stress as a function of the time is obtained by inserting (5.70) into (5.17)
a(t) = y[B' (w, 1) sin(wt) + B" (w, t) cos(wt)] for t>0 (5.71)

B’ and B" are abbreviations for the following integrals
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B'(w,1) = Gy + / G(&) cos(mé)dé (5.72)
0

B'(w,1) G(&) sin(wé)dé (5.73)
[

(5.71) is not a harmonic function as long as B’ and B" are time-dependent. A
stationary state of harmonic oscillation can be reached as these integrals tend to
limits which are independent of the time, i.e.,

o0

G (o )*thmB Go+/G cos(wé)d¢ (5.74)
0

G (o )—Ihm B"(w,1) /G ) sin(w&)dé (5.75)
0

The convergence of these integrals follows from the fact that G (&) is a monotonously
increasing negative function of £ which becomes zero for & — oo (cf. Fig. 5.8). Due
to the minus sign in the Eq. (5.75), G” becomes a positive quantity. In the stationary
state the harmonic stress can then be written as

o(1) = 10/G () sin(wr) + G (@) cos(w) (5.76)
or

a(t) = yoGq(w) - sin(wt + 3) (5.77)

with
Ga(0) =/ [G(0) + 6" (@) (5.78)
tan 8() = 6" (0)/C/()] (5.79)

and
G' (@) = Gy(w) cos d (5.80)

G'(w) = G4(w) sind (5.81)
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The quantities G'(w) and G”(w) are called storage modulus and loss modulus, the
quantity G4(w) the absolute dynamic modulus. The latter is also designated as
|G*(w)|, the magnitude of the complex modulus G*. The identity of the quantity
defined in (5.79) with the loss tangent defined in (5.66) will be shown after Eq. (5.82).

The stress in the stationary state of a harmonic oscillatory strain may be
described according to (5.77) as a harmonic function with the same angular fre-
quency as the strain, which precedes the strain by a phase angle . Gy (w) is the
ratio of the amplitude of the stress to the amplitude of the strain. According to
(5.76) the stress may be decomposed into a sum of two harmonic components with
the same angular frequency, one of them being in phase with the stress and having
an amplitude 7,G’(w), the other preceding the stress by 90° and having an
amplitude yoG" ().

A complex dynamic modulus is defined by the equation

G*(w) = G'(0) + iG" () = Gy(w)e™™ (5.82)

Relations between the compliances and moduli in forced oscillations can be
derived from the following consideration. The stationary state of harmonic
oscillations, which occurs after some time has to be the same, independent of the
way in which this state was reached, viz., by prescribing a harmonic stress at the
time ¢t = 0 or by prescribing a harmonic strain at the time # = 0. In both cases, the
resulting expressions for stress and strain should be the same, apart from a phase
shift in the time scale. Therefore, the phase angle between stress and strain has to
be the same, as well as the ratio of their amplitudes, i.e.,

tand = J"(w)/J (w) = G"(w) /G () (5.83)
00/70 = Ga(®) = 1/Ja(w) (5.84)

Comparing (5.69) with (5.82) shows that complex modulus and complex com-
pliance are inverse quantities

J(w) -G (w)=1 (5.85)

Separating the real and imaginary parts of this equation yields

G =J]/J; (5.86)
G =J")J3 (5.87)
J =G/G (5.88)

J'=G"/G; (5.89)
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Fig. 5.28 Representation of the complex compliance (left) and the complex modulus (right) in
the complex plane

Equations (5.65)—(5.68) and (5.78)—(5.81) can geometrically be interpreted.
Consider the representation of the complex compliance and the complex modulus
in the complex plane as shown in the left and right half of Fig. 5.28.

In the representation of the complex compliance, J' and J” are the abscissa and
the negative value of the ordinate of the point J*, in the representation of the
complex modulus, G’ and G’ are the abscissa and the ordinate of the point G*. The
corresponding rectangular triangles include the angle ¢ between their adjacent leg
and hypotenuse, while J; and G, form their hypotenuses.

The characteristic quantities as functions of time or angular frequency,
respectively, are compared in Fig. 5.29 in a region in which a new molecular
process develops and starts to contribute to the deformation. The shape of the
curves J(1), J'(w), and J; (w) in the dispersion region is similar. Prior to the
relaxation process, J(f) shows a more or less horizontal plateau, in the dispersion
region J(f) increases to another plateau which is reached after a full development
of the new process. J; (w) and J'(w) show the same plateau values before and after
the relaxation process. Within the dispersion region the validity of the inequality

T () <Jx(1) <J(1) (5.90)

can be shown from the corresponding inequality of their intensity functions (cf.
(5.119) and (5.120)) and from Eq. (5.41). Regarding the order of J4w) and J(¢) no
general statement can be made. J,(w) running below J(¢) as indicated in this figure
does not pretend to have any general validity. J''(w) passes through a maximum in
the middle of the dispersion step, fan d(w) also passes through a maximum which
is situated left to that of J”'(w).

The dispersion steps of the modulus functions appear as mirror pictures of the
dispersion steps of the compliances. The dispersion steps start at high values of the
moduli and end at low values. For the moduli, the inequality
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Fig. 5.29 Development of a molecular process and its contribution to the compliance functions
(above) and to the modulus functions (below). The position on the time or frequency axis is the
same for tan ¢ in both representations, the positions of the maxima in J”/(®) and G"(®) are,
respectively, right and left of the maximum of tan ¢

G(1) < G'(0) < Ga(w) (5.91)

is valid everywhere. The maximum of the loss modulus is located at lower times
(higher frequencies) than the maximum of the loss tangent and the latter is situated
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at lower times than the maximum of the loss compliance. The height and the shape
of the dispersion steps may strongly differ for various molecular processes.

A molecular process with characteristic functions which are completely dif-
ferent from those shown in Fig. 5.29, is the flow transition. There, the approxi-
mations for the creep compliance and for the relaxation modulus are using the
Eq. (5.54).

Ja(t) = J% + /5, (5.46b)
~ 1 —t/7,
GA([) = Fe ¢ (5553)

e

As (5.46b) contains only a constant term and a flow term, we find from Egs. (5.61)
and (5.62)

T\ (w) = J, (5.92)
and
Jy () = 1/on, (5.93)

and from (5.65), (5.66), (5.86) and (5.87)

tan J4(w) =2 1/(wr,) (5.94)
Jaa(0) 2 I\ /1 + 1/ (wz,)? (5.95)
G () 2= T (5.96)

:J_Sl—szrg

| Y
Gi(0) = Tt oe (5.97)
In the flow region, the storage compliance tends with decreasing angular frequency
to the stationary recoverable compliance, the loss compliance and the loss tangent
grow proportional to the inverse angular frequency and the storage modulus and
the loss modulus are in the limit wt, < 1 proportional to the second, respectively,
first power of the angular frequency.

Finally, the storage and loss components of the dynamic compliances are
represented as integral transforms of the retardation spectrum f{t). We differentiate
(5.28) with respect to ¢ and insert the result into (5.61) and (5.62). Changing the
order of the differentiations after ¢ and t and making use of the relations (see [27])



5.8 Oscillatory Experiments 165

o0 o0 2
[ eostoe iz = ana [ sintog)e ids = 20 (598)
0 0
yields
J (o) = Jo + 7 FO)——dr (5.99)
=7 1+ o2e '
0
v — [ ey T B
J'(w) = /f(r) 1 erzrzdr—i—wno (5.100)
0

The corresponding equations for the storage and loss modulus in terms of the
relaxation spectrum are found by differentiating (5.24) with respect to ¢ and
inserting the result into (5.74) and (5.75). One gets

i 1
0
o0
wT
0

Equation (5.101) may be written in a slightly different form. From Eq. (5.24) it
follows for t — 0

Gy — Gy = / g(v)dr (5.103)
0

Inserting (5.103) into (5.101) yields

’ r COZ‘Ez
0

From (5.102) and (5.104), the limiting slopes of G’ and G’ for @ — 0 follow as

w—0

lim [G"(w)/w] = / 1g(t)dt =1,/J° = n, (5.105)
0
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Fig. 5.30 The structure and the interconnections of the theory of the linear viscoelastic behavior

lim [G'(w)/w?*] =

w—0

o0
/ g(t)dtr =2 /J° = nyte = 3 J? (5.106)
0

The second parts of these equations follow from (5.96) and (5.97) considering
(5.54).

If oscillatory measurements are performed on polymer melts, instead of the
complex modulus, a complex viscosity n* is often used for the description of the
results, which is defined by

G ()

' (w) = in"(w) (5.107)

i
with 1’ (w) being the real part and " (w) being the negative of the imaginary part
of the complex viscosity. Comparison with Eq. (5.82) yields the positive quantities

n'(w)=G"(w)/w (5.108)

and

n"(w) =G (w)/o (5.109)

In Fig. 5.30 an overview of the links between different characteristic functions
and quantities of the theory of linear viscoelastic behavior is given. A charac-
teristic function characterizes the viscoelastic behavior completely, so that
knowing it makes the calculation of all other viscoelastic functions possible. For
instance, the retardation spectrum alone does not constitute a characteristic
function, as one needs the additional information of Jy and 74 to calculate J(¢).



5.8 Oscillatory Experiments 167

Thus the entity of f(t), Jo and 5, together, forms the characteristic function.
Relations between the characteristic functions are marked by connecting lines. The
corresponding equation number is indicated on this line. If the number is missing,
there exists a relation, which, however, has not been discussed in this context. For
this case we refer the reader to [12, 13].

5.9 Approximate Relations Between Measurable
Viscoelastic Functions

Most of the equations cited in Fig. 5.30 are integral transforms and may be used
only, if an analytic expression for the function under the integral exists, which
describes the experimental results with sufficient accuracy and is simple enough to
allow the explicit performance of the integral transformation in a closed form. In
practice, this is very seldom the case. A further complication of the problem are
the truncation errors. For executing the transformations, the function under the
integral has to be known theoretical within its complete region of definition, e.g.,
from ¢ = 0 to t = oo in the case of Eq. (5.61) or (5.62), or fromw = 0to w = o
in the case of the calculation of J(f) from J'(w) and J’(w). (The corresponding
equations are not shown here.) As measurements can only be performed over a
finite time or frequency scale, experimental information may sometimes be lacking
for the complete evaluation of the integrals. This deficiency may lead to the so-
called truncation errors, which can be large in some cases. Thus, it will often be
necessary to evaluate the integral transforms by numerical methods and to estimate
the possible influence of truncation errors on the result.

Therefore, the question arises whether it is possible to develop numerical
approximate equations for the calculation of values of a measurable characteristic
quantity, if a number of data points of the starting function are known. The most
simplest of those equations are summarized in Table 5.2.

These are so-called two point approximations. Two points of the starting
function are needed to calculate one point of the function which is to be deter-
mined. The arguments of the starting points have to differ by a factor 2 which
corresponds to a constant logarithmic distance log 2. This system may be used in
recursive form and allows to calculate n — 1 successive points of the desired
function from n successive points of the starting function in a simple way. Starting,
for instance, from n successive points of the creep compliance which differ on the
time axis by a factor of 2, Eq. (5.110.1) may be used to calculate n — 1 successive
points of the storage compliance, which have a constant logarithmic distance
corresponding to a factor of 2 for the angular frequency, and Eq. (5.111.1) may be
used to calculate n — 1 successive points of the loss compliance, which however
are shifted by the factor 2 on the angular frequency axis in comparison to the
calculated points of the storage compliance. From the n — 2 data for J'(w) and
J"(w), which are known at the same angular frequencies, using the exact
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Table 5.2 Some simple approximations for the conversion of viscoelastic functions

Approximate equation (® = 1/t) Bounds for the relative error, % Equation
J(w) = J(®) — 0.86 [J(2f) — J(D)] +15 tan o (5.110.1)
J'(w) 22 2.12 [J(H) — J(#/2)] Uncertain (5.111.1)
Jt) =2 J(0) + 0.57 J'(0/2) — 0.20 J"(w) +8 tan 9; +7.6 (5.112.2)
G'(0) = G(®) + 0.86 [G(1) — G(21)] +15 tan o (5.113.1)
G'(w) = 2.12 [G(t/2) — G(1)] Uncertain (5.114.1)
G(t) = G'(®) — 0.57G"(®/2) + 0.20G" (w) +8 tan 6/(1—tand) (5.115.2)

Egs. (5.86) and (5.87), n — 2 logarithmic equidistant points of storage and loss
modulus may be calculated. Finally, using the latter set together with Eq. (5.115.2)
it is possible to arrive at n — 3 logarithmically equidistant points for the relaxation
modulus G(t).

The equations of Table 5.2 are sometimes used in a slightly different form. By a
Taylor development it is possible to show that

_dldl  d(logl)
J(2t)—J(f)ZI'E—d(lnt)_J'd(logt)

Inserting this approximation into the conversion formulae (5.110.1) and
(5.111.1) of Table 5.2, one gets

J(0)=J(1)|1-0.86- ‘jl((ll‘;i{)) (5.116)
J" (@) = 1.06 d(‘fit) - 0.4661(]‘(1;g 5 (5.117)

If the double-logarithmic slope of the creep compliance is small against unity,
we further have

N d(logJ)
70 = % G00e (5.118)

From these equations we conclude

(1) J'(w) is always somewhat smaller than J(z); the difference J(r) — J'(w)
increases proportional to the double logarithmic slope of the creep compli-
ance as a function of time and is maximal in the dispersion regions.

(2) J'(w) is proportional to the slope of J(z) as a function of the logarithm of the
creep time and is maximal in the dispersion regions.

(3) if d(logJ)/d(logt) < 1, tan d(w) is proportional to the double logarithmic
slope of J(#) versus t and is maximal in the dispersion regions.
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For the derivation and error bounds of these formulae we refer to the original
literature [28, 30—33]. Here we want to mention only that the representation of the
measurable characteristic functions by means of the spectra is the basis for all
approximations. For instance, for the derivation of Eq. (5.110.1) we use the
abbreviation #/7 = x and write (5.25), (5.99), and (5.100) as integral transforms of
the retardation spectrum f(t) and a known intensity function, which is a function of
x only, as follows:

J(1/1) _Jo+0/oof(r)%dr_Jo+0/oof(r)x’(x)dr (5.119)
J(0) = Jo + 07 f(r)[l—e’x]dr—kn—tozlo—k ocf(r)qo(x)dr—knto (5.120)
726~ J(0) = /OO O R /m O+ (5121

J”(l/t):o/ocf( )1+ 2dr+ /f ¥ (x)d +—O (5.122)

Instead of an approximation for J'(1/¢) in terms of J(f) and J(2f), we derive
an approximation for the difference J(t) — J'(1/f) in terms of the difference
J(2) — J(t). For this purpose, the intensity function ¢(x) — 7'(x) = 1/(1 +x?) —e™*
which is positive everywhere and increases as x for small x, decreases as 1/x* for large
x and shows a maximum around x = 0.46, is approximated by the intensity function
Y (x) = p(2x) — p(x) = e (1 — e™*) which is positive everywhere. It increases as
x for small x, decreases as e for large x and shows a maximum around x =~ 0.69 We
arrive at the following approximation for the intensity function ¢(x) — y'(x) =
0.86 - Y(x) from which the approximation (5.110.1) follows by multiplying with f(z)
and integrating over t. The error bound of the formula follows from an estimate of the
error of this formula in terms of the intensity function of J”'(1/7), ¥ (x) = x/(1 + x?)
and the fact that f{t) is a nonnegative function of the retardation time. The coefficient
0.86 is obtained by trial and error in trying to minimize the error bound. This pro-
cedure for the derivation of approximation formulae has been first introduced by
Ninomiya and Ferry [29]. The derivation of formulae (5.110.1) and (5.111.1) is
explained in full detail in [30].

Despite its simplicity, the approximate formula (5.110.1) may be very useful in
cases of low damping. If tan 6 < 0.1 (a condition which is fulfilled in the complete
glassy state and in the rubber-elastic state of cross-linked elastomers), formula
(5.110.1) may be applied, as its error bound is +1.5 % at the maximum. Similar
remarks apply to formulae (5.112.2), (5.113.1), and (5.115.2).
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Table 5.3 Coefficients of the approximations for the calculation of the storage compliance from
the creep compliance with Eq. (5.110)

a b c d e f h Bounds for the Equation
relative error %
0.855 +14.6 tan 0 (5.110.1)
—14.6 tan 0
0.445 — 0.376 +7.8 tan 0 (5.110.2)
—17.7 tan 6
—0.099 0.608 — 0.358 +7.5 tan 9; 5.2 (5.110.3)
—7.5 tan 0; —9.1
—0.119 0.680 — 0.225 0.0429 +2.1 tan ;5.9 (5.110.4)
—2.1 tan 0; —2.0
0.0108 —0.168 0.734 — 0.235 +8.8 tan 9; 1.5 (5.110.5)
—1.9 tan 0; —1.5
0.0109 —0.169 0.739 — 0.214 0.0451 +2.3 tan ;1.6 (5.110.6)
—23 tan 0; —1.6
—0.000715 0.0185 —0.197 0.778 - 0.181 0.0494 +3.1 tan J; 0.8 (5.110.7)
—3.1 tan 0; —0.8

If tan 6 > 0.1, the accuracy of formula (5.110.1) is no longer sufficient. One of
the more complicated formulae of Table 5.3 has to be selected then. For the
calculation of the storage compliance from the creep compliance, formulae of the
following type may be used

¢

J(0) 2 J(1) — alJ(321) — J(161)] — blI(161) — J(81)]
— c[J(8r) = J(41)] — d[J(41) = J(21)] — elJ (21) — J (1)] (5.110)
—fl(0) = J(t/2)] = h[J(t/4) — I (1/8)]

where a, b, c, . . . are constant coefficients which have been chosen to minimize the
relative error of the corresponding approximation, and are listed in Table 5.3.
This table shows seven different conversion formulae, indicated by formula
numbers which are double indexed. The first part of the number, viz., (5.110) refers
to the type of the conversion problem, the increasing end digit of the number relates
to the increasing accuracy of the formula. The column before last lists upper and
lower bounds for the relative error of the formula. Equations (5.110.1) and (5.110.2)
only have bounds for the relative error, which depend on the value of zan § at the
angular frequency w = 1/¢, for which J'(w) is to be calculated. The other conversion
formulae have error bounds which are proportional to fan é and those, which are
independent of the value of tan J. In these cases, of course, the more favorable one is
to be used. Formulae with a higher number of each table are more accurate, but
require more experimental information (extend over a wider experimental window).
As to be seen from Table 5.3, it is always possible to find a conversion formula
with an error bound smaller than 1 %. It should be noticed that a possible error
originating from truncation is already included in the given error bounds. The
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Table 5.4 Coefficients of the approximations for the calculation of the loss compliance from the
creep compliance with Eq. (5.111)

d e f g h ] 1 n Bounds for the Equation

relative error, %
2.12 8[1 + 1/tan §]; 26 (5.111.1)

—8[1 + 1/tan 9]

—-0470 1.715 - 0.902 0.7[1 + 1/tan 6]; 2.3 (5.111.2)
—4.6/tan o

—0.505 1.807 - 0.745 - 0.158 1.1[1 4 1/tan J]; 3.5 (5.111.3)
—1.3/tan ¢

—0.470 1.674 0.196 0.627 - 0.194 0.7[1 + 1/tan 6]; 1.3 (5.111.4)
—2.5[1 + 0.5/tan 6]

—0.470 1.674 0.197 0.621 0.011 0.172 0.0475 0.7[1 + 1/tan 6]; 2.3 (5.111.5)

—2.5[1 + 0.12/tan 3]
—0.470 1.674 0.198 0.620 0.012 0.172 0.0430 0.0122 0.7[1 + 1/tan 6]; 2.7 (5.111.6)
—2.5[1 + 0.03/tan J]
—0.470 1.674 0.198 0.620 0.012 0.172 0.0433 0.0108 0.7[1 + 1/tan 6]; 2.7 (5.111.7)
—2.7; —2.7/tan o

conclusion can be drawn, that the problem of the conversion from J(¢) to J' (w) is
solved in a simple way. At low damping, the problem is especially easy, at higher
damping, at the utmost, an experimental window from #8 to 32 ¢ is needed to apply
a conversion formula which is better than 1 %.

There is, however, one regime for which the conversion will be very difficult.
This is the flow region of polymers, in which the double-logarithmic slope of the
creep compliance as a function of time approaches unity. Then the conversion
(5.110.7) requires the addition and subtraction of terms of equal order in order to
arrive finally at a result for J'(w), which is one or two orders of magnitude smaller.
In this case, the propagation of the experimental error will prohibit the conversion
(cf. Fig. 5.34, on page 180).

Equation (5.110) and its error bounds remain valid, if the creep compliance
J(?) is substituted by the recoverable creep compliance Jx(f). Then, the calculation
may be performed without problems, presuming the recoverable compliance is
known accurately enough from the experiment.

The conversion of J(¢) into J”(w) is much more difficult. The approximate
equations are given in formula (5.111).

J”(w)%d[J( 1) —J(2t)] +elJ (2t) = J(O)] + fI (1) — I (2/2)]
+8lJ(t/2) = J(t/4)] + hlJ(t/4) — J(1/8)] + [(t/S)— (1/16)]
I (t/32) — J(1/64)] + n[J(1/128) — J(1/256)] + (5.111)

The constant coefficients d, e, f, . . . have been chosen to optimize the error bounds
of the formulae. Their values, together with the error bounds are given in
Table 5.4.
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Fig. 5.31 The creep J(v)

compliance in the vicinity of B 4
a dispersion region and the T 1 ¢
truncation problem in the

calculation of J'() at the
points A, B, and C

A
v
—> logt
The most simplest of these equations, viz.,
J" () 22.12[J(t) — J(t/2)] (5.111.1)

provides only a rough estimate of the loss compliance. Even at the favorable case
of high damping (tan 6 = 1), the error bounds for this approximation will be as
high as 16 %. In order to arrive at higher accuracies, more complicated formulae
have to be used. If we ask for bounds of £3 % for the relative error, we may use
the approximation (5.111.2) in the tan J-region [1.5 < tan § < 0], the formula
(5.111.3) in the region [0.45 < tan § < oo], the formula (5.111.5) in the region
[0.2 < tan ¢ < oo] and the formula (5.111.6) in the region [0.075 < tan < o0].

There exists a formula which is accurate for all values of tan §, viz., (5.111.7).
This formula is an infinite series. After the term with the coefficient 0.0108 an
infinite number of further terms follow whose coefficients are smaller by a factor 4
and which are shifted to shorter times by a factor 4. In this equation J”(w = 1/¢) is
controlled by the logarithmic slope of the creep compliance within the entire time
interval left from the point of calculation, ¢. The influence of those terms decreases
only weakly with their distance, namely inverse proportional to their distance from
the point of calculation. In this formula, the short time truncation problem occurs
explicitly in its structure. The relative error of this formula is limited between
—2.7 % and +2.7 % for all values of tan o. It is not necessary in all cases, to know
the complete behavior of the creep compliance for times smaller than the point of
calculation. Sometimes it will be sufficient to know upper limits for the loga-
rithmic derivatives of the creep compliance of the short-time tail to limit the
possible truncation error. In those cases, the short-time tail of the formula (5.111.7)
may be omitted in the calculation.

How many terms of the formula have to be taken into account, depends on the
special conditions for the conversion. This is illustrated by Fig. 5.31, in which
J(1) is shown in a dispersion region. For the calculation of J”(w) at the beginning
or in the middle of the dispersion region (points A or B) only a few terms of the
conversion formula will be necessary for a reliable result. However, at the point C
at the end of a dispersion region the calculation will be especially troublesome, as
the principal term J(f) — J(#/2) will be small there, while the terms of the short-
time tail in the formula will contribute extraordinarily much to the result.
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Table 5.5 Coefficients of the approximations for the calculation of the creep compliance from
the storage compliance and the course of the loss compliance with Eq. (5.112)

b c d e f g h Bounds for the Equation
relative error %
0.446 22.3 tan 0; 7.9 (5.112.1)
—10.8 tan J; —1.0
0.566 —0.203 8.0 tan 9; 7.6 (5.112.2)
—7.9 tan J; —7.0
0482 - —0.0920 8.2 tan 9; 8.7 (5.112.3)
—8.2 tan 9; —8.2
0.0872 0319 - —0.0532 7.5 tan 0; 3.9 (5.112.4)
—7.5 tan 9; —3.9
0.103 0.278 - - - —0.0166 3.5 tan J; 3.6 (5.112.5)
—3.3 tan 0; —3.6
0.0198 0.0375 0339 - -0.0122 - —0.0152 3.6 tan J; 2.1 (5.112.6)
—3.6 tan o; —2.1
0.0509 —0.116 0.635 —0.254  0.0383 0.0547 —0.0404 1.3 tano; 1.3 (5.112.7)
—1.3 tan 9; —1.3

If there is not enough information about the short-time behavior available, it
is not possible to apply the complete formula (5.111.7). In those cases, one of
the shorter formulae, the choice of which depends on the extension of the
experimental window, has to be chosen. As those formulae were obtained by
skipping the short-time tail, they will fail if the truncated part exceeds the error
bound. This is the reason, why for all formulae but one of Table 5.3 the lower
bound for the relative error tends to —100 % with vanishing tan 9.

We conclude that the calculation of J” () from the creep compliance constitutes a
problem, which is the more difficult, the lower the damping at the point of calculation
is. The most simple of the formulae of Table 5.3 does not yield values for J"’(w)
which are much too high, it may, however, yield values which are much too low.

The calculation of the creep compliance from the dynamic compliances con-
stitutes an easier problem. In cases, for which the simplest formulae (5.112.1) and
(5.112.2) in Table 5.2 are not sufficient, conversions based on the following
equation may be used

J(t) = J (o) +bJ"(0/8) + cJ(w/4) + dI" (w/2) (5.112)

+eJ"(w) + 1" 2w) + gJ" (4w) + hJ" (8w) '
with b, c,d, ... being constant coefficients, which have been chosen to minimize
the relative error of the corresponding approximation. They are listed in Table 5.5
[30]. It is seen that a formula with error bounds around 1 % may always be found.
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Table 5.6 Coefficients of the approximations for the calculation of the storage modulus from the
relaxation modulus with Eq. (5.113)

a b c d e f g k bounds for the Equation
relative error, %
0.855 14.6 tan 0; 21 (5.113.1)
—14.6 tan o
0.444 - 0.378 7.8 tan 9; 17.7 (5.113.2)
—7.8 tan o
-0.138  0.690 0.119 - 0.161 3.2 tan 9; 26 (5.113.3)
—3.2tan o
-0.142  0.718 0.044 0.102 0.101 - 0.00855 1.0 tan 0; 6.4 (5.113.4)
— 1.0 tan o
-0.142  0.717 0.046 0.099 0.103 0.001 0.00716 0.000451 1.0 tan ; 6.9 (5.113.5)
—-10tan 0; -6 .9

The calculation of the creep compliance from the storage compliance and the
course of the loss compliance is a simple problem, especially simple at low
damping. No problems arise, neither with the width of the experimental window,
nor with a propagation of the experimental error.

A simple and accurate equation should be mentioned here, which uses the values
of J'(w) and J”(w) at two frequencies [31] (bounds for the relative error 3 %.)

J(1) = J' () + 04857 (0/2) + 0.200[)' (0/2) — J' ()] (5.123)

This formula is especially appropriate for cases of high damping, at which other
approximations with a narrow experimental window fail.

Formulae for the calculation of the storage modulus from the stress relaxation
modulus have the following form [32]

G () = G(t) + a[G(4t) — G(81)] + b[G(2t) — G(41)]
+ ¢[G(t) — G(21)] + d[G(t/2) — G(1)] + €[G(t/4) — G(t/2)]
+f[G(t/8) — G(1/4)] + g|G(1/16) — G(t/8)] + k|G(t/64) — G(¢/32)] + ...
(5.113)

The coefficients together with the error bounds are listed in Table 5.6.

The formula (5.113.1) is dual to the formula (5.110.1). The other formulae of
the Table 5.6 are not dual to the formulae of Table 5.3.° In deriving Eqgs. (5.113.1
to 4), it was tried to minimize the error bounds in terms of tan 6. For those

> Two equations, approximate equations or inequalities are designated as dual, if they turn into
each other by the following simultaneous substitutions a¢(t) < y(z),7(r) < a(),J(t) <
-G(1);V (0) & —G'(w); V'(w) < + G"(w).
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formulae, no absolute bounds for the relative error exist. The formula (5.113.5) is
an infinite series. After the term with the coefficient k follow further terms, each
being shifted by a factor 4 to smaller times and having a coefficient, which is
smaller by a factor 16. This formula has apart from the bounds proportional to tan
Jd, the absolute bounds +6.9 %. It is a second example for a formula for which the
short time truncation shows up explicitly.

The calculation of the storage modulus from the stress relaxation modulus
constitutes a simple problem. Very troublesome, on the contrary, is the calculation
of the loss modulus from the stress relaxation modulus. The only formula for
which bounds for the relative error may be given is the one which is dual to
Eq. (5.111.7) [33].

G'(w) = —0.470 - [G(21) — ( 0] + 1.674 - [G(r) — G(21)]
+0.198 - [G(t/2) — G(1)] + 0.620 - [G(t/4) — G(t/2))]
+0.012 - [G(1/8) — G(t/4)] + 0.172 - [G(1/16) — G(1/8)]
+0.0433 - [G(1/64) — G(1/32)] + 0.0108 - [G(2/256) — G(1/128)] +
(5.114.7)

The bounds for the relative error of this formula, which again represents an
infinite series, are £2.7 %. For the application of this formula, the same remarks
about the truncation error apply which have been discussed in case of
Eq. (5.111.7).

If the value of the storage modulus is known at one frequency together with the
course of the loss modulus, it is possible to calculate the stress relaxation modulus
by means of the following formulae [33]:

G(t) =2 G (w) —aG"(w/16) — bG" (w/8) — cG"(w/4) 5 115
—dG" (w/2) — fG" 2w) — ¢G" (4w) — hG" (8w) (5.115)

The constants a, b, c, . .. are listed in Table 5.7. The column before last of this
table contains upper and lower bounds for the absolute error, expressed in percents
of the quantity G”(w). It is also possible to present upper bounds for the ratio
G" (w)/G(r) as a function of tan . For details see [33].

A discussion of the error bounds of the formulae of Table 5.7 shows that the
calculation of the relaxation modulus from dynamic measurements is an easy
problem for low values of tan J. For higher values of tan ¢, however, the problem
gets more and more difficult. This becomes especially obvious if one tries to apply
these formulae to the flow region of polymers. The problem is additionally
complicated there by the propagation of the experimental error: A large value of
G"(w) has to be subtracted from a large value of G'(w) in order to arrive at a small
value for G(7).
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Table 5.7 Coefficients of the approximations for the calculation of the relaxation modulus from
one value of the storage modulus and the course of the loss modulus with Eq. (5.115)

a b c d e f g h Bounds for  Equation
the absolute
error %
0.400 20 G” (5.115.1)
-20G"
0.566  —0.203 8 G” (5.115.2)
78 G//
0478 - —0.0783 8 G” (5.115.3)
78 G//
0.528 —0.112 —0.0383 8 G (5.115.4)
78 G//
0.0825 0.369 —0.169  0.167 —0.0828 4 G"” (5.115.5)
-4 G"
0.123  0.179  0.186 —0.168  0.0788 -0.0317 3G” (5.115.6)
_3 G//
0.00378 0.0309 —0.068 0.564  —0.186 —0.0017  0.0677 —0.0428 1G” (5.115.7)
_1 G//

The stress relaxation modulus may also be calculated, if only the frequency
dependence of the storage modulus is known. For details we refer to [33].

A summary of the problems occurring at the conversion of viscoelastic func-
tions is given in Table 5.8. Examples for the numerical conversion of viscoelastic
functions will be given in Figs. 6.6, 6.7 and 6.8 in the next chapter.

Table 5.8 Problems occurring at the conversion of viscoelastic functions

J@) — J(o) Simple; somewhat more complicated at higher damping; at very
high damping great difficulties due to the propagation of the
experimental error. Solution: replace J(¢) by Jg(?)

Jit) - J'(w) Difficult; much information about the short-time behavior is

requested; solution: Estimation of the magnitude of the short time
tails.
No problems with the propagation of the experimental error

V(), J'(w) = (1)

Easys; little information is sufficient for all values of the damping.
no problems with the propagation of the experimental error

G(t) > G'(o)

Somewhat more difficult than J(f) — J'(®); no problems with the
propagation of the experimental error

G(t) > G'(®)

Very difficult; the short-time tail of G(¢) has to be known. No
difficulties with the propagation of the experimental error

G'(0), G"(@) > G(1)

Easy for low values of the damping; difficult or even impossible
for high values of the damping; Great difficulties with the
propagation of the experimental error for high values of the
damping



http://dx.doi.org/10.1007/978-3-642-55409-4_6
http://dx.doi.org/10.1007/978-3-642-55409-4_6
http://dx.doi.org/10.1007/978-3-642-55409-4_6

5.10 The Viscoelastic Behavior of Amorphous Polymers in Shear 177

5.10 The Viscoelastic Behavior of Amorphous Polymers
in Shear

The characteristic viscoelastic functions of amorphous cross-linked polymers are
shown in the Figs. 5.32 and 5.33. Figure 5.32 is a double-logarithmic repre-
sentation of the creep compliance as a function of the creep time, and the storage
compliance, the loss compliance, and the loss tangent, as functions of the angular
frequency, at a fixed temperature. The relation between the creep time ¢ and the
angular frequency is given by Eq. (5.56). Creep compliance and storage com-
pliance show a similar behavior. To each dispersion step of the creep compliance
corresponds one of the storage compliance. Outside the dispersion regions, both
compliances coincide, within the dispersion regions the storage compliance is
lower than the creep compliance. The difference between the two is maximal in
the glass-rubber transition region. The limit of J(¢) for + — 0 is the same as the
limit of J'(w) for @ — oo, viz., the instantaneous compliance Jy. The limit of
J(t) for t - oo is finite and the same as the limit of J'(w) for ® — 0, viz., the
stationary recoverable compliance J,. J,(w) has not been shown in the picture. It

cross-linked amorphous polymer

-4
log (J-Pa), log (J"-Pa), log (J"-Pa)
rubber-elastic state
glass-rubber transition
-6 F d
glassy state y :_:_ log J'(ew) log (Jo-Pa)
. \.\‘
~.
1 4
0 4
-2 4
-3 4
log w +——— (w = 1/t) ——[ogt

Fig. 5.32 Schematic double-logarithmic representation of the creep compliance, storage
compliance, loss compliance and the loss tangent as functions of the time or angular frequency
for cross-linked amorphous polymers at a fixed temperature
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glassy state cross-linked amorphous polymer
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glass-rubber transition

rubber-¢elastic state
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log G"(wl——>‘\ 21
.\.\
4LF ~, 71 1
\.
\.\' 0
2= «——log tan 8 ]
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-3
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Fig. 5.33 Schematic double-logarithmic representation of the relaxation modulus, storage
modulus, loss modulus, and the loss tangent as functions of time or angular frequency for cross-
linked amorphous polymers at a fixed temperature

would even be closer to J(¢) than to J'(w). To each dispersion step of J(¢) or
J'(®) corresponds a maximum of the loss compliance and the loss tangent.
According to Eq. (5.118), tan ¢ is approximately proportional to the double-
logarithmic slope of J(¢) resp. J'(w). In the dispersion regions of the glassy state,
J(©) and J'(w) differ only by a few percent, while the loss tangent shows there
maxima between 0.05 and 0.1.

The half widths of those maxima may differ considerably between two decades
on the angular frequency axis for a sharp relaxation process and six decades for a
very broad one. In the glass transition, the value of J(r) may exceed that of J'(w)
between 60 % and some 100 %, depending on the double-logarithmic slope of
J(). The maximum of the loss tangent reaches values between 1 and 6 in this
region. The half width of the damping maximum achieves three to five decades of
the frequency axis. In the rubbery state, J(f) and J'(w) proceed approximately
horizontally and tan 6 decreases to values of the order of 0.001.

The moduli are shown in Fig. 5.33, again in a double-logarithmic plot at one
fixed temperature. This picture is a mirror image of Fig. 5.32, apart from the run of
the quantity log tan d, which is the same in both figures. Again G(¢) and G'(w) show
a similar shape, but now according to Eq. (5.91) G(¢) is lower than G'(w). In the
secondary dispersion regions, G(¢) and G'(w) differ by a few percents only. The
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uncross-linked amorphous polymer viscous
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Fig. 5.34 Schematic double-logarithmic representation of the creep compliance, storage
compliance, loss compliance, and the loss tangent as functions of the time or angular frequency
for uncross-linked amorphous polymers at a fixed temperature

limit of G(¢) for t — 01is the same as the limit of G'(w) for ® — 0, viz., Gy = 1/J,.
G(¢) shows a finite limit for t — oo, viz., G, = 1//..

The compliances of uncross-linked amorphous polymers are sketched in
Fig. 5.34. The principal differences between Figs. 5.32 and 5.34 are the broader
glass-rubber transition, the less extended rubbery plateau, and especially the flow
region of the uncross-linked polymer. In the flow region, the creep compliance
increases again, and finally becomes proportional to the creep time, according to
Eq. (5.46). The storage compliance J'(w) approaches a horizontal plateau with the
limit J,.. The loss compliance at the beginning of the rubber-elastic plateau is lower
than the storage compliance, but strongly increases in the flow region and
approaches there asymptotically the creep compliance. In the limit of large ¢ or
small o, the difference J(rf) — J'(w) becomes small compared to the values of
J(®) or J'(w). The loss tangent tan § shows a minimum in the rubber-elastic
plateau. In the flow region the loss tangent increases again and finally tends to oo
with 1/w. In practice, values larger than 1000 for tan ¢ have not been reached, as
chemical decomposition occurs before under the influence of the high tempera-
tures due to the high-energy dissipation.
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Fig. 5.36 Storage modulus and loss modulus of poly(cyclohexylmethacrylate) (PCHMA) as a
function of the reduced frequency at the reference temperature Ty = —80 °C after Heijboer [34].
The broken line indicates the loss modulus for a process with one single relaxation time

The moduli are shown in Fig. 5.35. In the whole range G(¢) < G'(w) and in
some parts of the glass-transition even G'(w) < G”(w) is valid. At the beginning
of the rubber-elastic plateau, the loss modulus is lower than the storage modulus
and the relaxation modulus. At the end of the rubber-elastic plateau, however,
G'(w) and G(¢) decrease so strongly with increasing time (decreasing frequency),
that G”(w) intersects the curves of G'(w) and of G(z). In the flow region, finally,
the moduli scale according to G(1) < G'(w) < G"(w). G"(w) decreases to zero
with @ — 0 as now (cf. Eq. (5.105), while G'(w) decreases to zero with & — 0 as
n(z}lewz (cf. Eq. (5.106), and G(f) decreases to zero as J;I-exp(—l/ane) (cf.
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Fig. 5.37 Storage modulus versus angular frequency for a PIB in the glass-transition, reproduced
from [35] by permission from AIP Publishing LLC

Eq. (5.55). With w — 0 the ratio G”(w)/®w approaches the limit 7o, and the ratio
G'(w)/w?* approaches nyt, = y3J,. Consequently, the ratio G'(w)/[G" (w)]* reaches
the finite limit J,.

An example for a relaxation process in the glassy state is shown in the
Fig. 5.36. Storage and loss modulus of a poly(cyclohexylmethacrylate) (PCHMA)
are plotted as a function of the reduced frequency in a double-logarithmic repre-
sentation after Heijboer [34].
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Fig. 5.38 Loss modulus versus angular frequency for a PIB in the glass-transition [35] by
permission from AIP Publishing LLC

This dispersion process is caused by the change of the cyclohexyl ring from the
one chair position into the other [34]. It is the sharpest relaxation phenomenon in
polymers known today. Notwithstanding, it cannot be described by one single
relaxation time, as demonstrated by the broken line in the figure, which indicates
the loss modulus for a process with one single relaxation time. The half width of
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Fig. 5.39 Storage modulus versus angular frequency for PS N 7000 in the rubber-elastic plateau
and in the flow region at different temperatures, after Lampel [36]

the G”-maximum of PCHMA extends to two decades on the frequency axis. The
step height of the dispersion of G'(w) corresponds to a factor of 2.

As an example for a dispersion step in the glass-rubber transition region, results
of Fitzgerald, Grandine, and Ferry on poly(isobutene) are shown in Figs. 5.37 and
5.38 [35]. Storage and loss modulus are plotted versus the angular frequency in
double-logarithmic representations. Comparing these curves with the presentations
in Fig. 5.35, one should consider the other direction of the logarithmic frequency
axis in the two latter figures. The maximum of the double logarithmic slope of
G'(w) and G"(w) versus o amounts to 0.64.

As an example for a measurement in the rubber-elastic plateau and in the flow
region, in Figs. 5.39 and 5.40 the storage and loss modulus of PS N 7000 are
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Fig. 5.40 Loss modulus versus angular frequency for PS N 7000 in the rubber-elastic plateau
and in the flow region at different temperatures, after Lampel [36]

presented. In the limit of low frequencies, G’ (w) and G'(®) are proportional to the
first and second power of w, respectively, i.e., on the double-logarithmic scale the
curves approximate straight lines with the slope 1 and 2, respectively.

From these measurements, the values of J'(w) were calculated according to
Eq. (5.88) and are presented in Fig. 5.41. While for G'(w) and G”(w) the entan-
glement transition is masked due to the great influence of the flow term, it clearly
shows up as a dispersion step of the storage compliance, which does not contain
the flow term. The broad entanglement transition extends from the beginning of
the rubber-elastic plateau nearly to the steady state value J, at low frequencies.
This is the same molecular process which had been observed for the recoverable
compliance in Figs. 5.19 and 5.20.
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Fig. 5.41 Storage compliance calculated from the data shown in Figs. 5.39 and 5.40 versus
angular frequency for PS N 7000 in the rubber-elastic plateau and in the flow region, after Lampel
[36]
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Chapter 6
Time-Temperature Shift of Mechanical
Properties

6.1 The Significance of the Time-Temperature Shift
for the Description of the Deformation Behavior
of Polymers

It was already shown in the last chapter that the experimental time or frequency
window at one single temperature is not broad enough to cover the complete
dispersion step from the beginning to the end of a molecular process. Therefore,
it would not have been possible to discuss the complete shape of most of the
dispersion processes of amorphous polymers if not making use of the time-tem-
perature shift phenomenon. Moreover, the overviews given in the Figs. 5.32-5.35
could never have been constructed without the application of this principle.
Most chemical, physicochemical and physical molecular processes are very sen-
sitive to temperature changes. In many cases an increase in temperature enhances the
rate of all molecular processes involved in a certain viscoelastic dispersion process by
the same factor. That means, a change in temperature can be described by multiplying
all relaxation times or retardation times of the process with the same constant factor.
In a representation of the process over a logarithmic time scale or a logarithmic
frequency scale, the characteristic functions of this process then shift without a change
of their shape. In some cases, other minor alterations may take place by varying the
temperature as a slight change in the step height or in the shape of the dispersion curve.
But these effects are of subordinate importance and are often neglected—or over-
seen—when applying the time-temperature shift. If a pure shift of the characteristic
functions in the logarithmic time or frequency-axis occurs without a change of their
shape, the corresponding dispersion process is called a thermorheologically simple
process [1]. Otherwise, it is called a thermorheologically complex process.
Furthermore, molecular processes as the various secondary dispersions in the
glassy region, the glass-rubber transition or the flow transition are differently
influenced by a temperature change and show, therefore, dissimilar shifts along the
logarithmic time scale with a change of temperature, though each of them may
shift without a change in shape of its “own” characteristic dispersion. That means
the characteristic functions as given in Fig. 5.32, for example, never shift as a

H. Miinstedt and F. R. Schwarzl, Deformation and Flow of Polymeric Materials, 189
DOI: 10.1007/978-3-642-55409-4_6, © Springer-Verlag Berlin Heidelberg 2014


http://dx.doi.org/10.1007/978-3-642-55409-4_5
http://dx.doi.org/10.1007/978-3-642-55409-4_5
http://dx.doi.org/10.1007/978-3-642-55409-4_5

190 6 Time-Temperature Shift of Mechanical Properties

whole with temperature, but changes according to the molecular process being
dominant in the particular temperature range. Consequently, a characteristic
function, governed by more than one single molecular process may not be
expected to behave thermorheologically simple.

In general, the smaller the parts of the molecules are, which are involved in a
certain relaxation process, the shorter is the time at which the dispersion region
occurs and the smaller its shift with temperature. Therefore, the shape of charac-
teristic functions as shown in Fig. 5.32 changes with temperature, but this change can
be predicted, when the temperature shifts for the different processes are known.

First, the mathematical formalisms of the thermorheologically simple processes
will be described and then the time-temperature shifts of the various molecular
processes of amorphous and semicrystalline polymers.

6.2 The Time-Temperature Shift Principle

So far, only measurements at one fixed temperature have been discussed. If a
measurement is repeated on the same material at higher temperatures, dispersion
regions are shifted to shorter times. Some important examples have already been
shown in Figs. 5.16, 5.19, 5.20, 5.23, 5.24, and 5.37-5.41. For a great number of
materials, experimental evidence proved the validity of the time-temperature shift
principle for which synonymously the expression time-temperature superposition
principle is in use.

By an increase in temperature, the positions of dispersion regions of poly-
mers shift to shorter times or higher frequencies, respectively. By this shift,
the shape of the curves of J(¢) or G(¢) versus log 7, respectively, J'(w) and
J"'(w) or G'(w) and G”'(w) versus log w is preserved. One has to deal with a
simple parallel shift of these curves along the logarithmic time or frequency
axis, only.

The mathematical description of this principle is illustrated by Fig. 6.1, which
shows two creep compliance curves as a function of the logarithm of the creep
time, one at the temperature 7, and the other at the temperature 7, whereby
To > T.

A parallel shifting is described by the equation

J(t,T) = J(x, To) (6.1)

The distance log ar between the corresponding points log ¢ and log x does not
depend on the creep time ¢, but on the temperatures chosen. Ty is called the
reference temperature, af(T,Ty) the time-temperature shift factor, log a(T,T,) the
time-temperature shift function and x the reduced time. From Fig. 6.1, one gets
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J(t.T)

T

To

— logt

log x logt

Fig. 6.1 Illustration of the time-temperature shift of the creep compliance for 7' < T

logar(T,Ty) = logt — logx (6.2)
or
X = t/aT(T, T()) (63)

The direction of the shift along the logarithmic time axis is determined by the
sign of the temperature difference (T — Ty). For T < T, it follows ¢ > x, ar > 1,
and log ar > 0. For an application of the time-temperature shift to oscillatory
experiments, a reduced angular frequency y is defined by the equation

y=ar(T,Tp) (6.4)

The mathematical description of the time-temperature shifting principle is then
expressed by the set of equations:

J(t,T) =J(x,To) = Jr,(x) = I, (t/ar) G(t,T) = G(x,To) = Gr,(t/ar)
J(,T) =J'(y, Ty) = Jy, (arw) G'(0,T)=G'(y,To) = Gy, (arw)
"0, T) =J"(y,To) = J7,(arw) G"(,T) = G"(y,To) = Gy, (arw)

tan o(w, T) = tan 6(y, Tp) = tan o7, (arw) (6.5)

In these equations the creep compliance at the reference temperature is des-
ignated as Jr, (x), whereby x is the creep time at the temperature 7. The function
Jr,(x) is called the master (curve of the) creep compliance, Gr,(x) the master
(curve of the) relaxation modulus, J’T(J (v) the master (curve of the) storage com-
pliance, Gy, (v) the master (curve of the) storage modulus, etc.

The existence of a time-temperature superposition makes an essential simpli-
fication of the description of the shear behavior of polymers possible. Instead of
one function which depends on the two independent variables temperature and
time or frequency, respectively, it is sufficient to handle two functions, each of
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Fig. 6.2 Application of the time-temperature superposition principle to construct a master curve

them depending on one of the two variables, only. In the case of the creep com-
pliance these are the master creep compliance Jz, (x) at the reference temperature
Ty and the temperature-dependent shift factor a(7,Tp).

If the time-temperature superposition has been proven to be valid for one of the
characteristic functions, it will be applicable to all the others. This is a consequence
of the Boltzmann superposition principle presented by Eqgs. (5.15) or (5.17).

The application of the time-temperature superposition principle to construct a
so-called “master curve” is illustrated in Fig. 6.2 for the creep compliance as an
example. Within the experimental window, creep compliances at a number of
different temperatures were measured. One of those curves, preferably in the
middle of the experimental window is selected as a master curve and the corre-
sponding temperature as the reference temperature 7. Then, the creep compli-
ances measured at the other temperatures are shifted until they overlap smoothly
with the reference curve. From the shift in time, a;(T,T;) is obtained. The master
curve constructed by the superposition of the creep compliances at various tem-
peratures with respect to time extends the time window accessible.

The consequence of the validity of the time-temperature superposition is that
knowing the shift factor and the time or frequency dependence of a material
function at one temperature, the corresponding curves at other temperatures can be
determined in a simple way.

If the shift function is known from an independent source, it is possible to plot
the data measured at different temperatures versus the reduced time x in order to
obtain the master curve. The time-temperature shift function for a certain process
at the reference temperature T, can easily be changed to its equivalent at the
reference temperature T, by the equation:
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logar (T, Ty) = logar(T, Ty) — logar(Ty, To) (6.6)

6.3 The Time-Temperature Shift of the Glass-Rubber
Transition

The logarithm of the creep compliance as a function of the logarithm of the time in
the glass-rubber transition has already been shown in the Figs. 5.16 and 5.19 for
PS. Similar results have been obtained for PC, PMMA, PVC, NR, and for a
cross-linked polyurethane rubber (PUR) [2].

As an example for a cross-linked polymer with a low glass transition temperature,
the data for the PUR are shown in Fig. 6.3. Crosses indicate data points obtained by
the technique of free damped torsional vibrations, circles those from a measuring
device for forsional creep, which automatically registered compliance data at loga-
rithmically equidistant creep times of a factor two. Such data are especially appro-
priate for evaluations by means of the conversion techniques described in Sect. 5.9.
The agreement between the results of the two measuring techniques is convincing and
yields an accurate picture of the strong dependence of the creep compliance on time
and temperature in the glass transition region. Figure 6.3 shows the compliance
within an experimental window of five decades on the logarithmic time scale.

It is obvious that the larger the experimental window of the original data, the more
accurate are the results after the time-temperature superposition. Moreover, shifting
the curves in the center of the transition results in a higher accuracy of the determi-
nation of the time-temperature shift function and of the master compliance than
shifting the data in one of the flanks of the transition where the compliance runs flatter.

The strong influence of time and temperature on the value of the compliance in
the glass transition is evident for all amorphous polymers investigated. This effect is
particularly pronounced for polystyrene, for which an increase in temperature by
3 °C magnifies the compliance to the ninefold, or shifts it to shorter times by about
one decade. Though the general course of the creep compliance with time is similar
for all amorphous polymers in the glass transition region, significant differences
exist with respect to a more quantitative description. The double-logarithmic slope
m = dlog J(t)/dlog t in the center of the glass transition and the step height H of the
transition significantly differ as documented in Table 6.1 on page 194.

The measurements of Fig. 6.3 and those in the glass transition of other amor-
phous polymers permit a time-temperature superposition with a shift function of
the following form

CI(T — T())

logar(T,To) = Tt T T,

(6.7)

This relation has first been proposed by Williams, Landel, and Ferry [3] and is well
known in the literature as the WLF-equation. It is a function of the temperature
difference T—Ty, only. T, is an arbitrary reference temperature, and ¢, and ¢, are
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Fig. 6.3 Creep compliance in shear as a function of the creep time, in a double-logarithmic plot,

for a cross-linked polyurethane rubber at various temperatures in the glass-rubber transition
region reproduced from [2]

Table 6.1 Characteristic properties of the glass transition of some amorphous polymers

Polymer H, m T, °C i K ¢ T, °C T, °C Lit.
decades o
PS 3.6 0.88 105 89 36 320 64 91 [25]
PMMA 2.8 0.65 123.5 80 36 288 87.5 107 [2]
pPvC 2.4 053 735 11.2 346 388 40 66 [2]
PC 2.7 0.70 146 12.7 445 566 101.5 141 [25]
PUR 3.1 048  —45 125 425 531 —87.5 —54 [2]
NR 3.0 072 —-62 114 378 431 —99.8 - [2]

two specific material constants. For a given material, the values of ¢; and c,
depend on the reference temperature chosen. If a temperature T, different from the
reference temperature 7, is selected, the shift function keeps the same form as
(6.7), but with two different constants ¢; and ¢, which are related to ¢, and ¢, by

To —Cy) = TO —C = Too (68)
and
E‘] . E‘z =C1-C (69)

These two combinations of the WLF parameters are independent of the choice
of the reference temperature and are therefore called the invariants of the WLF
equation.
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Fig. 6.4 Creep compliance after 16 s creep time versus the temperature for 6 amorphous

polymers in the glass-rubber transition

Equation (6.7) may be written in an alternative form, which is obtained by
adding and subtracting the term c;.co/(c; + T — Ty) to Eq. (6.7) resulting in

c1Cy
T—Ty'

1Ong(T7ﬂﬂ = —Cc| + (610)

This equation has been used for the description of the temperature dependence of
the viscosity of low molar mass liquids by Vogel [4], Fulcher [5], and Tammann
and Hesse [6] and is therefore called the VFTH-equation. The temperature T, is
called the Vogel temperature. It is the temperature at which the shift factor tends to
infinity.

For the characterization and comparison of the glass transition of various poly-
mers, we choose a reference temperature in the following way. In Fig. 6.4, the
logarithm of the creep compliance after 16 s creep time is plotted as a function of
the temperature for four thermoplastics and two rubbers. On the logarithmic scale of
the compliance, the glass transition occurs for all polymers as a pronounced step from
the glassy to the rubbery level. The temperature of the middle of the logarithmic step
height of the compliance is defined as the softening temperature T;. The softening
temperatures are indicated in Fig. 6.4 by arrows. They are chosen as the reference
temperatures for the WLF-time-temperature shift of the corresponding polymer.

Table 6.1 lists the logarithmic step height H of J versus T, the maximum
double-logarithmic slope m = d logJ/d logt, the softening temperature T, the WLF
constants ¢ and c5 corresponding to the reference temperature T, and the two
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invariants c;-c; and T,,. For some polymers, the dilatometric glass transition
temperature T, as measured at a cooling rate of 1 K/min has been listed, too.

It is not only possible to describe the temperature shift of the glass transition,
but also its absolute position on the temperature scale. Let us designate the creep
time necessary to reach the logarithmic middle of the glass transition as #y,g in
seconds. Then, conform to our definition of the softening temperature, the glass
time at the softening temperature equals 16 s

log tg1ass (T5) = log(16) = 1.20 (6.11)

and the glass time at the arbitrary temperature 7, in seconds, follows from the shift
relation as

ce
108 ttass (T) = 108 tatass (T5) + log ar (T, Ty) = co + T - ; (6.12)

with
co =1.20 — ¢} (6.13)

The application of this very useful rule of thumb only requires the knowledge of
the WLF constants.

A similar rule of thumb holds for the temperature position of the frequency of
the fan d-maximum. The half of the logarithmic step height of the compliance
J(t,T) and the maximum of the loss tangent tan é(w,T) are situated for the glass
transition at the same position, if w is set equal to //z. This may be seen from
Fig. 6.6 and also follows from Eq. 5.118. Therefore, the frequency position of the
maximum of the loss tangent at the temperature 7 may be derived from Eq. (6.12)
as

(102 V)4 5. max = (108 @/27) 15 max = —2.00 — log ar (T, Ty) with v in Hz
(6.14)

For a more detailed discussion of the glass transition the data of the glass-
rubber transition of PS in Fig. 5.16 were shifted to a master curve at the reference
temperature of 7, = 105 °C. The experimentally obtained shift factors marked by
open triangles are shown in Fig. 6.5. The full line through these points represents
the WLF-equation with the parameters indicated in the figure. The parameters
were determined by plotting —(T — Ty)/og a(T,T,) against (T — Ty) and fitting the
best straight line through these points. The WLF equation describes the experi-
mentally obtained shift function with good accuracy.

The figure also demonstrates the significance of the two parameters of the
WLF-equation, which constitutes a hyperbola. Its vertical asymptote is situated at
the temperature T, and has the distance ¢5 from the ordinate axis. Its horizontal
asymptote has the ordinate —c}. The invariant c;-c, is a measure for its curvature.
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Fig. 6.5 The time-temperature shift function for the glass transition of PS and the significance of
the WLF equation and its coefficients

The master curve of the creep compliance is shown versus the reduced creep
time (#ar) in Fig. 6.6. The master curve has been smoothed and the values of the
compliance at logarithmically equidistant time positions corresponding to a
factor 2 have been determined by interpolation. They are shown as closed circles
in Fig. 6.6. From the latter, the other characteristic functions were determined
using the conversion equations of Sect. 5.9. In these calculations the formulae
were used for which the experimental window of the starting data was just wide
enough.

The various compliances are shown in Fig. 6.6, the moduli in Fig. 6.7 and the
products G’'(a;w)-J'(azw) and G(t/ar)-J(t/ay) together with the loss tangent in
Fig. 6.8. The creep compliance shows the well-known shape in the glass transition
with a maximum double-logarithmic slope of 0.88. J'(ar w) deviates significantly
from J(t/a7). In the glassy flank of the transition, J'(a; ) is considerably lower
than J(#/ar), but then increases steeper in the transition region, before it almost
catches up with the value of J(#/ar) at the end of the transition. It shows a max-
imum double-logarithmic slope of 1.28. At the beginning of the rubber-elastic
plateau, J'(ar w) approaches J(t/ar), but runs closely below it.

The loss compliance comes very close to the creep compliance within the
transition and then bends off to a flat maximum at the beginning of the rubber-
elastic plateau. After a flat minimum at the end of the rubber-elastic plateau, it
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Fig. 6.6 Double-logarithmic plot of the smoothed experimental master curve of the creep
compliance of PS in the glass transition versus the reduced creep time together with the

calculated values of the storage compliance, the loss compliance, and the loss tangent versus the
reduced angular frequency

g | G(t/ar), G'(arw), G'(arw), Pa PS N-7000 tan &(ar ®) 3
1071 T\\\ T,=105°C T 10
\ \'\ —— Git/ar)
, AN - Gy |
4 - —— arw L
10 \ \-—\\ . tan 8(ar o) 10
AN
N "\
: . L
\\Q:\\\‘\\\‘\
SN T
10°4 T e
\l
~.
—> t/ay, 1/(arw), s

102 10° 102 10

Fig. 6.7 Double-logarithmic plot of the calculated values of the relaxation modulus versus the
reduced time and the storage modulus, the loss modulus, and the loss tangent versus the reduced
angular frequency for PS in the glass-rubber transition

starts increasing again. The loss tangent shows a maximum of 6.2 at the position,
at which the double-logarithmic slope of J(#/ay) attains its largest value.

The moduli are shown in Fig. 6.7. By the conversion, a part of the experimental
window is lost; therefore, the experimental window of Fig. 6.7 (about six decades)



6.3 The Time-Temperature Shift of the Glass-Rubber Transition 199

PS N-70000 T,=105°C

10'
tan d(ar ®) x— X
x/x/ \x\x\
x/ x\x
v S~
100 4--——-- s e e = - S
=% —
- .\o ! '/:/
.\.\. J(tar).G(t/ar) /- /./
. AN e
10 1 . N~ o
AN 4
V(@ 0) G (ar ) '\_\/
—> t/ar, 1/(aro), s
10-2 A T ¥ L]

10" 10° 10' 102 103

Fig. 6.8 Double-logarithmic plot of the calculated values of the Zener product J(t/at)-G(t/at)
versus the reduced time, the product J'(ar ®)-G'(ar ®), and the calculated loss tangent versus the
reduced angular frequency for PS in the glass-rubber transition

is much smaller than that of Fig. 6.6 (about 10 decades). The window for G(#/ar)
even extends over four decades, only. The differences between G(#/ar) and G'(ar )
are much less than the differences between J(#/ar) and J'(a; w). The decrease of the
moduli in the transition region is steeper than the increase of the compliances. The
minimum values of the double-logarithmic slopes are —1.4 for G(¢/a7), —1.3 for
G'(ar w), and —0.9 for G (a; w).

In Fig. 6.8 the Zener product G(#/ar)-J(t/ay) and the corresponding dynamic
quantity G'(ar w)-J'(ar w) are compared with the loss tangent. The Zener product
has a minimum value of 0.10 at a time somewhat shorter than the time position of
the maximum of fan 6 which amounts to 6.2. This result demonstrates, how much
in error the “elastic” approximation G-J =~ 1 would be, viz., by a full order of
magnitude. Even more the product G'(ay w)-J'(a; w) deviates from unity with a
minimum value of 0.025. The maximum of tan § and the minimum of G’-J' have
about the same position on the time and the reciprocal angular frequency scale,
respectively.

So far, the characteristic functions in the glass transition in dependence on the
logarithm of time or angular frequency were discussed. It was found that their
shape is independent of the temperature at least within the accuracy of the shift
procedures applied. Changing the temperature only shifts these curves on the
logarithmic time or frequency scale.

Considering the glass transition as a function of the temperature at a constant
creep time or angular frequency, does not leave the shape of the transition
unchanged if the creep time or angular frequency are altered. This is demonstrated
in Fig. 6.9.
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Fig. 6.9 The position of the glass transition in a time-temperature plane (upper part) and
sections through a three-dimensional relief of the value of the logarithm of the compliance for
three fixed values of the temperature (below left) and three fixed values of the creep time (below
right). Notice the equal shape of the curves and following from that the validity of the time-
temperature shifting law on the left, but the significant differences in the steepness of the curves
on the right-hand side of the lower part of the figure

The figure shows, in its upper part, the position of the glass-rubber transition in
a time-temperature plane. A coordinate system on this plane displays the tem-
perature T as abscissa and the logarithm of the creep time ¢ as ordinate. Above this
plane, we imagine the built-up of a three-dimensional relief of the logarithm of the
compliance within and around the glass transition region. The glass transition will
show up in this relief as a steep increase from the low glassy level (left below) to
the high rubber-elastic level (right above).

The position of the logarithmic middle of the glass transition is described by the
VFTH-equation and shows the same shape as in Fig. 6.5. The temperature
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positions of the beginning and the end of the glass transition are given by curves
which run in parallel to the curve for the middle of the glass transition and
originate by a parallel shift of the VFTH-curve in the direction of the logarithmic
time axis. These positions have been indicated in Fig. 6.9. The projections of three
sections through the relief at constant temperatures (7; < T, < T3) on the basic
plane are sketched, as well as the projections of three sections through the relief at
constant creep times (¢; > t, > t3). The lengths of the projections of the sections at
constant temperatures are clearly equal, while the lengths of the projections of the
sections at constant creep times increase significantly with decreasing creep time.
This is a direct consequence of the positive curvature of the VFTH-equation.

Therefore, the sections through the relief at constant temperatures run parallel
to each other as shown in the left lower part of Fig. 6.9, i.e., the time-temperature
shifting law is fulfilled. On the contrary, log J(f) as a function of T at constant
creep time runs more steeply through the transition with higher creep times
(cf. Fig. 6.9 below right). This leads to the conclusion that the curve of the logarithm
of the compliance as a function of temperature cannot simply be constructed by a
shift along the temperature scale, but requires additional changes in shape.

In Sect. 4.6.2 we introduced the concept of the free volume fraction and the
Doolittle-equation (4.21). It has been proposed by Williams et al. [3] that the
time-temperature shift of the glass transition might be explained by the decrease in
the real value of the free volume fraction above the glass transition temperature 7,
(compare Fig. 4.32) together with the relation between the mobility m and the free
volume fraction

— =B (6.15)

where f = v, /v is the fractional free volume, m, = ¢” the maximum mobility for
the hypothetical case that the total volume is free volume (f= 1) and B is a
parameter of the order of and nearby to unity.

Assuming that the mobility in the glass-rubber transition is determined by the
free volume, i.e., by Eq. (4.21) and (6.15), respectively, one obtains for the
time-temperature shift of the glass transition in the temperature region T > T,

log ar(T, Ty) = 0.43B [% - l] (6.16)
Jo

with f and f; being the free volume fractions at the temperatures 7 and T,
respectively. Inserting Eq. (4.22) for the free volume fraction above 7, yields

043B  (T—T,)

logar(T,Ty) = — fo (fo/o)+ (T —T,)

(6.17)

This is the WLF-equation (6.7) with the reference temperature 7, and the
coefficients
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Table 6.2 The constants of the Doolittle equation if applied to the glass transition of some
amorphous polymers

¢ ¢ K ap, 1074 K™! B T T... K fo, 1072
PS 403 3.43 3.21 27 0.92
PMMA 288 3.49 233 19.5 0.68
PVC 388 3.48 3.13 26 0.90
PC 431 3.89 3.89 29 1.14
cp = 043B/f0 (618)
and
e =fo/o (6.19)

Its invariants are

0.43B
C1C) = —— (620)
O(f
and
T, —c :Tg—@:Too (6.21)
%

For the proof of the right-hand side of Eq. (6.21) we insert T = T, into Eq. (4.22).
This yields f = 0 and therefore the following estimate for the frozen free volume
fraction

Using these equations andthe results of the measurements on the glass transition, it
is possible to check the feasibility of the application of the free volume concept to
the mobility at the glass transition.

From Table 4.9, we obtain the expansion coefficients and the expansion coef-
ficient of the free volume fraction using (4.23), and from Table 6.1 we obtain the
invariants. The results are summarized in Table 6.2.

These results are not very encouraging. The constant of the Doolittle equation
B was shown due to calculations by Gibbs and Dimarzio [7] to be close to unity,
while the experimental values are three times as large. The frozen free volume
fraction, on the other hand is much lower, than expected, viz., 1 % instead of
2.5-3 vol% as estimated for instance by Ferry [8]. This leads to the conclusion that
the free volume theory is either not the right explanation for the time-temperature
shift of the glass transition, or at least there may be other molecular processes
involved.
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A different more promising proposal to explain the WLF-equation was given by
Struik, who assumed an energy barrier described by the Arrhenius equation to be
the cause of the time-temperature shift, but with a temperature-dependent acti-
vation energy [9]. With increasing temperature the mean distance between adja-
cent molecules increases, leading to a strong decrease of the energy barrier.
Estimates by Struik of the temperature dependence of the corresponding activation
energy led to the conclusion that the time-temperature shift function takes the
shape of the WLF-equation at temperatures near the glass transition temperature,
but the form of the Arrhenius equation at temperatures far above 7.

6.4 The Time-Temperature Shift in the Flow Region
of Amorphous Polymers

The time-temperature shift of the characteristic functions in the flow region differs
from that in the glass-rubber transition region not only by the shift function itself
but by the much wider temperature range it covers. Therefore, the contributions of
the configurational entropy of the macromolecules to the moduli are expected to
play a role. They are proportional to pT according to the statistical theory of rubber
elasticity with p being the density and T the absolute temperature. Consequently,
within the scope of this theory, shifting laws are to be expected for G(t,7)/pT,
pT-J(t,T) and other functions, correspondingly.
For example, instead of the equations

J(t,T)=J(x,Tp) and G(t,T) = G(x,Tp) (6.1)
the relations
pTJ(t,T) = pyToJ(x,Ty) and G(t,T)/pT = G(x,Ty)/poTo

are regarded for the shift procedures. Accordingly, the reduced creep compliance
and the reduced relaxation modulus are introduced by means of the definitions

Jr(ta T) = b(Tv TO)J(tv TO)
G/ () = G(t.To) /b(T, To) (6:23)
with

b(T.To) = T/ poTh (6.24)

The time-temperature shifting law in the flow region then reads
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J.(t,T) =b(T,Tp) - J(t,T) = Jg,(x) = Jr,(t/ar)
Ji(@,T) =b(T,To) - J' (0, T) = Jg, (arw)
T} (0,T) =b(T,Tp) - J" (0, T) = Jg, (are)
G/(1,T) = G{t, T)/b(T, To) = Gr,(t/ar) (625)
G.(0,T) = G'(,T)/b(T, To) = Gy, (arw)
G/(0,T) = G"(»,T)/b(T, Ty) = G, (arw)
tan d(w, T) = tan o7, (y) = tan oz, (arw)

In these definitions, the time-temperature shift factor ar (7,7,) for the flow
region is to be inserted, which is different from the shift factor for the glass
transition (cf. Fig. 6.13 on page 209).

The factor b(T,Ty) = pT/poTy, which distinguishes the shifting laws (6.5) and
(6.25) from each other, is near to one in most cases. In the case of the PS whose
flow properties may be determined within a temperature interval from 7 = 140 °C
to T = 290 °C the factor b(T,Ty) related to Ty = 210 °C changes with increasing
temperature from 0.89 to 1.11, i.e., by 22 %. In the same temperature interval,
however, the shift factor a(T) changes from 1 to 10°. Thus, a horizontal shift of
five decades is accompanied by a vertical shift of less than one-tenth of a decade.

For the glass transition, the factor b(7,T;) plays a still minor role. The shift of
the glass transition may be investigated for PS between T'= 90 and 7' = 120 °C.
Within this window and with a reference temperature of 105 °C, the factor
b changes from 0.97 to 1.03, i.e., by 6 %. The horizontal shift in this region
amounts to more than seven decades.

As an example for the validity of the time-temperature shift of an amorphous
polymer above the glass transition, the creep behavior of a technical polystyrene,
which was studied in detail by Pfandl [10], Link [11], and Kaschta [12]), is discussed.
Pfandl’s data are presented in Fig. 6.10, which shows the reduced creep compliance
as a function of the creep time in a double-logarithmic representation over a wide
temperature range which covers the rubber-elastic plateau and the flow region.

The data in the flow region (compliances above 10~* Pa™') of Fig. 6.10 can be
brought to an excellent coincidence by a parallel shift along the logarithmic time
axis and result in a master curve of the compliance covering four orders of
magnitude of the reduced time as shown in Fig. 6.11. If, however, the shifting
procedure is extended to the data within the rubber-elastic plateau (compliances
between 107> and 10~* Pa™"), the superposition of the shifted curves becomes less
good than in the flow region. Curves which could be brought to very good
superposition in the flow region, fan out, when shifted down to the rubber-elastic
plateau. The reason for this is that in the rubber-elastic plateau a further transition,
the entanglement transition, occurs which follows a different time-temperature
shifting law and disturbs the superposition there.

The superposition in the flow region was performed by the horizontal shifts at a
compliance level of J, (f) = 1072 Pa~'. This level is reached at the reference
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Table 6.3 Shift data for the three transitions of PSN 7000 [27, 29]

PSN 7000

Glass co = —7.68 c; =289 ¢, = 36.0 c1 ¢, =320 TE = 69.0
transition

Entanglement eg = —4.45 e; = 3.96 e, = 153 e, e, = 606 TS, = 57.0
transition

Flow transition dy = —1.86 d =43 d, = 164 d,; d, = 706 T, =457

temperature of 210 °C after a creep time of 250 s. As the shifting law again a WLF
equation is found, but with other parameters as for the glass-rubber transition.
Therefore, the parameters of the shifting law in the flow region have to be dis-
tinguished from those valid for the glass transition, and are designated by d;, d,,
and T/_. They are listed in Table 6.3.

The time-temperature shifting law in the flow region reads

L &(T-T) &(T-Tp) did,
logar(T,To