
MATLAB® Recipes
for Earth Sciences

Martin H. Trauth

Fourth Edition

MATLAB® Recipes for Earth Sciences

Martin H. Trauth

MATLAB® Recipes
for Earth Sciences

Fourth Edition

123

Martin H. Trauth
Institute for Earth and Environmental Science
University of Potsdam
Karl-Liebknecht-Str. 24-25
14476 Potsdam
Germany

E-Mail: trauth@geo.uni-potsdam.de

ISBN 978-3-662-46243-0 ISBN 978-3-662-46244-7 (eBook)
DOI 10.1007/978-3-662-46244-7

Library of Congress Control Number: 2015932246

Springer Heidelberg New York Dordrecht London
© Springer-Verlag Berlin Heidelberg 2006, 2007, 2010, 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media
(www.springer.com)

Additional material to this book can be downloaded from http://extras.springer.com.

http://extras.springer.com

 Preface to the 4th Edition

Th e book MATLAB Recipes for Earth Sciences is designed to help
undergraduate and postgraduate students, doctoral students, post-doctoral
researchers, and professionals fi nd quick solutions for common data analysis
problems in earth sciences. It provides a minimal amount of theoretical
background and demonstrates the application of all described methods
through the use of examples. Th e MATLAB soft ware is used since it not
only provides numerous ready-to-use algorithms for most methods of data
analysis but also allows the existing routines to be modifi ed and expanded,
or new soft ware to be developed. Th e book contains MATLAB scripts, or
M-fi les, that can be used to solve typical problems in earth sciences by
simple statistics, time-series analysis, geostatistics, and image processing,
and also demonstrates the application of selected advanced techniques
of data analysis such as nonlinear time-series analysis, adaptive fi ltering,
bootstrapping, and terrain analysis. Th e book’s supplementary electronic
material (available online through Springer Extras) includes recipes with all
the MATLAB commands featured in the book and the example data. Th e
MATLAB codes can be easily modifi ed for application to the reader’s own
data and projects.

Th is revised and updated Fourth Edition includes new sections on creating
graphical user interfaces with MATLAB, on hypothesis testing (including the
Kolmogorov-Smirnov test, the Mann-Whitney test and the Ansari-Bradley
test), on detecting abrupt transitions within time series, on exporting 3D
graphics to create interactive documents, on processing LANDSAT and
HYPERION satellite images, on shape-based object detection in images,
on discriminant analysis, and on multiple linear regression analysis. Many
of the pre-existing sections have also been expanded and rewritten, and
numerous new examples have been included.

In order to derive the maximum benefi t from this book the reader will
need to have access to the MATLAB soft ware and be able to execute the
recipes while reading the book. Th e MATLAB recipes display various graphs
on the screen that are not shown in the printed book. Th e tutorial-style book
does, however, contain numerous fi gures making it possible to go through
the text without actually running MATLAB on a computer. I have developed
the recipes using MATLAB 8 Release R2014b, but most of them will also
work with earlier soft ware releases. While undergraduates participating in a
course on data analysis might go through the entire book, more experienced
readers may choose to refer to only one particular method in order to solve
a specifi c problem. Th e concept of the book and the contents of its chapters

are therefore outlined below, in order to make it easier to use for readers
with a variety of diff erent requirements.

• Chapter 1 – Th is chapter introduces some fundamental concepts of
samples and populations. It also links the various types of data, and
questions to be answered from the data, to the methods described in the
succeeding chapters.

• Chapter 2 – A tutorial-style introduction to MATLAB designed for
earth scientists. Readers already familiar with the soft ware are advised
to proceed directly to the succeeding chapters. Th e Fourth Edition now
includes new sections on matrix manipulation, control fl ow, and creating
graphical user interfaces. Many passages in the older sections have been
expanded and rewritten.

• Chapters 3 and 4 – Fundamentals in univariate and bivariate statistics.
Th ese two chapters contain basic concepts in statistics and also introduce
advanced topics such as resampling schemes and cross validation.
Readers who are already familiar with basic statistics might want to skip
these chapters. Th e Fourth Edition now also includes an introduction to
hypothesis testing as well as new sections on the Kolmogorov-Smirnov
test, the Mann-Whitney test, and the Ansari-Bradley test. Furthermore,
the section on correlation coeffi cients has been expanded to include
introductions to Spearman’s correlation coeffi cient and Kendall’s
correlation coeffi cient.

• Chapters 5 and 6 – Readers who wish to work with time series are
recommended to read both of these chapters. Time-series analysis and
signal processing are closely linked. A good knowledge of statistics is
required to work successfully with these methods. Th ese two chapters
are independent of the preceding chapters. Th e Fourth Edition now also
includes a section on detecting abrupt transitions within time series.

• Chapters 7 and 8 – I recommend reading through both of these chapters
since the processing methods used for spatial data and for images have
much in common. Moreover, spatial data and images are oft en combined
in earth sciences, for instance when projecting satellite images onto digital
elevation models. Th e Fourth Edition now includes new sections on
exporting 3D graphs to create interactive documents. Th e introduction
to remote sensing using MATLAB has been expanded and now includes
sections on importing, processing and exporting LANDSAT, ASTER and
HYPERION satellite images. Chapter 8 now also includes a comprehensive
discussion of methods for image enhancement, correction and rectifi cation
as well as a new section on shape-based object detection in images.

 VI

• Chapter 9 – Data sets in earth sciences oft en have many variables and
many data points. Multivariate methods are applied to a great variety
of large data sets, including satellite imagery. Any reader particularly
interested in multivariate methods is advised to read Chapters 3 and 4
before proceeding to this chapter. Th e Fourth Edition now includes new
sections on discriminant analysis and multiple linear regression, and the
older sections have been substantially rewritten.

• Chapter 10 – Methods to analyze circular and spherical data are widely
used in earth sciences. Structural geologists measure and analyze the
orientation of slickensides (or striae) on a fault plane. Th e statistical
analysis of circular data is also used in paleomagnetic applications.
Microstructural investigations include the analysis of grain shapes and
quartz c-axis orientations in thin sections.

Th e book has benefi ted from the comments of many people, in particular my
contributing authors Robin Gebbers and Norbert Marwan, and my colleagues
Sven Borchardt, Zuze Dulanya, Th omas Ebert, Joaquim Góis, Lydia Olaka,
Eduardo Santamaría-Del-Angel, Marco Tedesco, Frederik Tilmann and
many others. I very much appreciate the expertise and patience of Elisabeth
Sillmann at blaetterwaldDesign who created the graphics and the complete
page designs of the book. I am much obliged to Ed Manning for professional
proofreading of the text. I also acknowledge Naomi Fernandes, Kate Fiore
and Dana Wright from the Book Program at Th e MathWorks, Inc., Tanja
Dorfmann, Claudia Olrogge and Annegret Schumann at Th e MathWorks
GmbH Deutschland, Annett Büttner, Chris Bendall and Christian Witschel
and their team at Springer, and Andreas Bohlen, Brunhilde Schulz and
their team at UP Transfer GmbH. I also thank Jan Danek at HUMUSOFT,
Stacey Gage and Pradeep Ramamoorthy at Th e MathWorks, Inc. for their
help in creating the animated 3D objects using Simulink 3D Animation
and with writing the corresponding section of this book. Many thanks also
to Steve Eddins for dealing with my many questions about the history of
MATLAB and for helping in the use of the Image Processing Toolbox. I
also acknowledge Pietro Cavallo, Pantelis Hadjipantelis, Giacomo Mazzi,
and Christoph Stockhammer at Th e MathWorks, Inc. for their patience in
dealing with the large number of questions that I have sent to the Support
section of Th e MathWorks, Inc. over the last few months. I think the excellent
support provided by the company more than justifi es any expenditure that I
have made on MATLAB licenses over the last 20 years or more. I also thank
the NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science
Team, and the director Mike Abrams, for allowing me to include the ASTER

PREFACE TO THE 4TH EDITION VII

images in this book. I am grateful to Stuart W. Frye at the NASA Goddard
Space Flight Center (GSFC) and his team for allowing me to include EO-1
data in the book, as well as for fruitful discussions while working on the
section about Hyperion images.

 Potsdam, December 2014
 Martin H. Trauth

VIII

 Preface to the Interactive 4th Edition

With this fourth edition the book makes its fi rst appearance as an interactive
ebook. Th is format allows the reader to follow the contents in much the
same way as they are presented in the courses that I teach at the University
of Potsdam and elsewhere. During such courses the participants interact
with the various tools by changing the input parameters of the algorithms
and exploring the subsequent modifi cations introduced to the graphics.
Th e spectral analysis of time series is demonstrated not only by examining
graphics but also by listening to audio examples of signals and noise. Using
MATLAB to visualize three-dimensional digital terrain models that can be
rotated interactively helps to understand complex topography much better
than two dimensional graphics.

Th is ebook allows the reader to interact with the book in a very similar
manner. It comes in two diff erent formats, with the fi rst being for Apple iPads
and Macs (in the form of an .ibooks fi le created with Apple’s iBooks Author
soft ware) and the second being for other platforms (as a PDF fi le created
with Adobe InDesign). Th e ebook has been designed to be read in landscape
mode; it includes movies, galleries, audios and interactive 3D displays, as
well as reviews at the end of each chapter. Th e movies demonstrate the use
of graphical user interface tools; they also help to explore the eff ect that
changing input parameters has on the output of a function and to visualize
mathematical operations. Galleries are generally used to present a series
of linked graphics, such as those displaying the various measures of the
dispersion and shape of a distribution. Audios are used to provide a striking
representation of signals and noise, as well as the eff ect of fi lters. Interactive
3D displays allow interactive rotating of digital terrain models and other
three-dimensional objects. Each chapter ends with a Review (or quiz), which
tests the reader’s understanding of its content. Th ese interactive media (or
widgets) can be explored, observed, or listened to (on Macs) using a multi-
touch trackpad or a mouse, or (on iPads) using your fi nger(s), by clicking
the Play button (to watch movies and to listen to audios), by clicking the
arrows or swiping left or right (to navigate through a gallery), or by clicking
and dragging a 3D object to rotate it. Movies, galleries and 3D objects can
be zoomed to full screen by toggling the full-screen mode in the lower right
corner (with movies), or by simply clicking on the image (with galleries and
3D objects).

Th e interactive ebook for other platforms comes as a .pdf fi le, which can
be accessed with the free Adobe Reader soft ware. Th e reader of the PDF
version of the book receives a complete package of fi les that includes the

actual ebook as well as a series of directories containing the interactive
objects, the recipes with all the MATLAB commands featured in the book
and the example data. It is important to note that the specifi ed directory tree,
especially the names of the directories, should not be changed. Th e layout

of the .pdf fi le is identical to that of the printed book with
icons outside the type area that refer to the interactive
objects. Th e interactive objects are stored outside the PDF
fi le and can be accessed from the MRES4-Index.html fi le
that can be viewed in a web browser. Th e PDF version of
the ebook contains all interactive objects included in the
ebook for iPads and Macs, except for the reviews. Th e

interactive PDF version was planned as an ebook with embedded interactive
objects such as movies, galleries, audios and reviews. During the production
process, however, it soon became clear that it is not yet possible to off er such
a product that is compatible with all platforms.

Th e fi rst edition of MATLAB Recipes of Earth Sciences, which came out in
2006, contained many small, and some (unfortunately) not so small, errors.
Th ese errors made it necessary to produce an errata fi le that was made
available for download on my webpage. Th e ebook now allows the contents
to be kept up-to-date through regular updates that is possible for the printed
book. It is thus a living book that thrives on the comments of its readers,
which I expect to receive in due course!

I hope that you enjoy using the animated objects while reading the
interactive ebook! Comments, corrections and suggestions are very welcome.

 Potsdam, December 2014
 Martin H. Trauth

X

 Contents

Preface to the 4th Edition V
Preface to the Interactive 4th Edition IX

1 Data Analysis in Earth Sciences 1

1.1 Introduction 1
1.2 Data Collection 2
1.3 Types of Data 3
1.4 Methods of Data Analysis 7
 Recommended Reading 9

2 Introduction to MATLAB 11

2.1 MATLAB in Earth Sciences 11
2.2 Getting Started 12
2.3 The Syntax 14
2.4 Array Manipulation 18
2.5 Data Structures and Classes of Objects 24
2.6 Data Storage and Handling 31
2.7 Control Flow 37
2.8 Scripts and Functions 41
2.9 Basic Visualization Tools 45
2.10 Generating Code to Recreate Graphics 48
2.11 Publishing M-Files 50
2.12 Creating Graphical User Interfaces 51
 Recommended Reading 55

3 Univariate Statistics 57

3.1 Introduction 57
3.2 Empirical Distributions 58
3.3 Examples of Empirical Distributions 64
3.4 Theoretical Distributions 74
3.5 Examples of Theoretical Distributions 82
3.6 Hypothesis Testing 88
3.7 The t-Test 89
3.8 The F-Test 93
3.9 The χ2-Test 97
3.10 The Kolmogorov-Smirnov Test 100

3.11 Mann-Whitney Test 103
3.12 The Ansari-Bradley Test 109
3.13 Distribution Fitting 115
 Recommended Reading 119

4 Bivariate Statistics 121

4.1 Introduction 121
4.2 Correlation Coeffi cients 122
4.3 Classical Linear Regression Analysis 131
4.4 Analyzing the Residuals 135
4.5 Bootstrap Estimates of the Regression Coeffi cients 137
4.6 Jackknife Estimates of the Regression Coeffi cients 138
4.7 Cross Validation 140
4.8 Reduced Major Axis Regression 141
4.9 Curvilinear Regression 143
4.10 Nonlinear and Weighted Regression 145
 Recommended Reading 148

5 Time-Series Analysis 151

5.1 Introduction 151
5.2 Generating Signals 152
5.3 Auto-Spectral and Cross-Spectral Analysis 157
5.4 Examples of Auto-Spectral and Cross-Spectral Analysis 161
5.5 Interpolating and Analyzing Unevenly-Spaced Data 170
5.6 Evolutionary Power Spectrum 175
5.7 Lomb-Scargle Power Spectrum 179
5.8 Wavelet Power Spectrum 184
5.9 Detecting Abrupt Transitions in Time Series 192
5.10 Nonlinear Time-Series Analysis (by N. Marwan) 195
 Recommended Reading 211

6 Signal Processing 215

6.1 Introduction 215
6.2 Generating Signals 217
6.3 Linear Time-Invariant Systems 218
6.4 Convolution, Deconvolution and Filtering 220
6.5 Comparing Functions for Filtering Data Series 224
6.6 Recursive and Nonrecursive Filters 226

 XII

6.7 Impulse Response 228
6.8 Frequency Response 231
6.9 Filter Design 237
6.10 Adaptive Filtering 240
 Recommended Reading 248

7 Spatial Data 249

7.1 Types of Spatial Data 249
7.2 The Global Geography Database GSHHG 250
7.3 The 1-Minute Gridded Global Relief Data ETOPO1 252
7.4 The 30-Arc Seconds Elevation Model GTOPO30 255
7.5 The Shuttle Radar Topography Mission SRTM 257
7.6 Exporting 3D Graphics to Create Interactive Documents 260
7.7 Gridding and Contouring 264
7.8 Comparison of Methods and Potential Artifacts 271
7.9 Statistics of Point Distributions 278
7.10 Analysis of Digital Elevation Models (by R. Gebbers) 285
7.11 Geostatistics and Kriging (by R. Gebbers) 295
 Recommended Reading 313

8 Image Processing 315

8.1 Introduction 315
8.2 Data Storage 316
8.3 Importing, Processing and Exporting Images 322
8.4 Importing, Processing and Exporting LANDSAT Images 326
8.5 Importing and Georeferencing TERRA ASTER Images 331
8.6 Processing and Exporting EO-1 Hyperion Images 338
8.7 Digitizing from the Screen 343
8.8 Image Enhancement, Correction and Rectifi cation 345
8.9 Color-Intensity Transects Across Varved Sediments 352
8.10 Grain Size Analysis from Microscope Images 357
8.11 Quantifying Charcoal in Microscope Images 364
8.12 Shape-Based Object Detection in Images 367
 Recommended Reading 373

9 Multivariate Statistics 375

9.1 Introduction 375
9.2 Principal Component Analysis 377

CONTENTS XIII

9.3 Independent Component Analysis (by N. Marwan) 386
9.4 Discriminant Analysis 392
9.5 Cluster Analysis 398
9.6 Multiple Linear Regression 402
 Recommended Reading 411

10 Directional Data 413

10.1 Introduction 413
10.2 Graphical Representation 415
10.3 Empirical Distributions 417
10.4 Theoretical Distributions 419
10.5 Test for Randomness of Directional Data 421
10.6 Test for the Signifi cance of a Mean Direction 422
10.7 Test for the Diff erence between Two Sets of Directions 424
 Recommended Reading 427

XIV

 1.1 Introduction

Earth scientists make observations and gather data about the natural
processes that operate on planet Earth. Th ey formulate and test hypotheses
on the forces that have acted on a particular region to create its structure and
also make predictions about future changes to the planet. All of these steps
in exploring the Earth involve the acquisition and analysis of numerical data.
An earth scientist therefore needs to have a fi rm understanding of statistical
and numerical methods as well as the ability to utilize relevant computer
soft ware packages, in order to be able to analyze the acquired data.

Th is book introduces some of the most important methods of data analysis
employed in earth sciences and illustrates their use through examples using
the MATLAB® soft ware package. Th ese examples can then be used as recipes
for the analysis of the reader’s own data, aft er having learned their application
with synthetic data. Th is introductory chapter deals with data acquisition
(Section 1.2), the various types of data (Section 1.3) and the appropriate
methods for analyzing earth science data (Section 1.4). We therefore fi rst
explore the characteristics of typical data sets and subsequently investigate
the various ways of analyzing data using MATLAB.

 1 Data Analysis in Earth
Sciences

 Taking measurements with a diff erential
GPS unit in the Suguta Valley of northern
Kenya. This device allows locations to be very
accurately determined. The locations and
altitudes of paleo-strandlines in the Suguta
Valley were measured in order to reconstruct
water-level fl uctuations in the area over the
last 15,000 years.

� Springer-Verlag Berlin Heidelberg 2015 1
M.H. Trauth, MATLAB� Recipes for Earth Sciences,
DOI 10.1007/978-3-662-46244-7_1

 1.2 Data Collection

Most data sets in earth sciences have a very limited sample size and also
contain a signifi cant number of uncertainties. Such data sets are typically
used to describe rather large natural phenomena, such as a granite body, a
large landslide or a widespread sedimentary unit. Th e methods described
in this book aim to fi nd a way of predicting the characteristics of a larger
population from a much smaller sample (Fig. 1.1). An appropriate sampling
strategy is the fi rst step towards obtaining a good data set. Th e development
of a successful strategy for fi eld sampling requires decisions on the sample
size and the spatial sampling scheme.

Th e sample size includes the sample volume, the sample weight and the
number of samples collected in the fi eld. Th e sample weights or volumes can
be critical factors if the samples are later analyzed in a laboratory and most
statistical methods also have a minimum requirement for the sample size.
Th e sample size also aff ects the number of subsamples that can be collected
from a single sample. If the population is heterogeneous then the sample
needs to be large enough to represent the population’s variability, but on
the other hand samples should be as small as possible in order to minimize
the time and costs involved in their analysis. Th e collection of smaller pilot

Fig. 1.1 Samples and populations. Deep valley incision has eroded parts of a sandstone
unit (hypothetical population). Th e remaining sandstone (available population) can only be
sampled from outcrops, i.e., road cuts and quarries (accessible population). Note the diff erence
between a statistical sample as a representative of a population and a geological sample as a
piece of rock.

2 1 DATA ANALYSIS IN EARTH SCIENCES

samples is recommended prior to defi ning a suitable sample size.
Th e design of the spatial sampling scheme is dependent on the availability

of outcrops or other material suitable for sampling. Sampling in quarries
typically leads to clustered data, whereas sampling along road cuts, shoreline
cliff s or steep gorges results in one-dimensional traverse sampling schemes.
A more uniform sampling pattern can be designed where there is 100%
exposure or if there are no fi nancial limitations. A regular sampling scheme
results in a gridded distribution of sample locations, whereas a uniform
sampling strategy includes the random location of a sampling point within a
grid square. Although these sampling schemes might be expected to provide
superior methods for sampling collection, evenly-spaced sampling locations
tend to miss small-scale variations in the area, such as thin mafi c dykes
within a granite body or the spatially-restricted occurrence of a particular
type of fossil (Fig. 1.2).

Th e correct sampling strategy will depend on the objectives of the
investigation, the type of analysis required and the desired level of
confi dence in the results. Having chosen a suitable sampling strategy, the
quality of the sample can be infl uenced by a number of factors resulting in
the samples not being truly representative of the larger population. Chemical
or physical alteration, contamination by other material or displacement by
natural and anthropogenic processes may all result in erroneous results and
interpretations. It is therefore recommended that the quality of the samples,
the method of data analysis employed and the validity of the conclusions
drawn from the analysis be checked at each stage of the investigation.

 1.3 Types of Data

Most earth science data sets consist of numerical measurements, although
some information can also be represented by a list of names such as fossils
and minerals (Fig. 1.3). Th e available methods for data analysis may require
certain types of data in earth sciences. Th ese are

• nominal data – Information in earth sciences is sometimes presented as
a list of names, e.g., the various fossil species collected from a limestone
bed or the minerals identifi ed in a thin section. In some studies, these data
are converted into a binary representation, i.e., one for present and zero
for absent. Special statistical methods are available for the analysis of such
data sets.

• ordinal data – Th ese are numerical data representing observations that
can be ranked, but in which the intervals along the scale are irregularly

1.3 TYPES OF DATA 3

Fig. 1.2 Sampling schemes. a Regular sampling on an evenly-spaced rectangular grid, b uniform
sampling by obtaining samples randomly located within regular grid squares, c random
sampling using uniformly-distributed xy coordinates, d clustered sampling constrained by
limited access in a quarry, and traverse sampling along e river valleys and f road cuts.

a b

c

e f

d

4 1 DATA ANALYSIS IN EARTH SCIENCES

Fig. 1.3 Types of earth science data. a Nominal data, b ordinal data, c ratio data, d interval
data, e closed data, f spatial data, and g-h directional data. All of these data types are described
in this book.

a b

c

e

g h

f

d

1.3 TYPES OF DATA 5

spaced. Th e hardness scale of German mineralogist Friedrich Mohs
(1773–1839) is one example of an ordinal scale. Th e hardness value
indicates the material’s resistance to scratching. Diamond has a hardness
of 10, whereas the value for talc is 1, but in terms of absolute hardness
diamond (hardness 10) is four times harder than corundum (hardness
9) and six times harder than topaz (hardness 8). Th e Modifi ed Mercalli
Scale, which attempts to categorize the eff ects of earthquakes, is another
example of an ordinal scale; it ranks earthquakes from intensity I (barely
felt) to XII (total destruction) (Richter 1958).

• ratio data – Th ese data are characterized by a constant length of successive
intervals, therefore off ering a great advantage over ordinal data. Th e zero
point is the natural termination of the data scale, and this type of data
allows for either discrete or continuous data sampling. Examples of such
data sets include length or weight data.

• interval data – Th ese are ordered data that have a constant length of
successive intervals, but in which the data scale is not terminated by
zero. Temperatures C and F represent an example of this data type even
though arbitrary zero points exist for both scales. Th is type of data may be
sampled continuously or in discrete intervals.

In addition to these standard data types, earth scientists frequently encounter
special kinds of data such as

• closed data – Th ese data are expressed as proportions and add up to a fi xed
total such as 100 percent. Compositional data represent the majority of
closed data, such as element compositions of rock samples.

• spatial data – Th ese are collected in a 2D or 3D study area. Th e spatial
distribution of a certain fossil species, the spatial variation in thickness
of a sandstone bed and the distribution of tracer concentrations in
groundwater are examples of this type of data, which is likely to be the
most important data type in earth sciences.

• directional data – Th ese data are expressed in angles. Examples include
the strike and dip of bedding, the orientation of elongated fossils or the
fl ow direction of lava. Th is is another very common type of data in earth
sciences.

6 1 DATA ANALYSIS IN EARTH SCIENCES

Most of these diff erent types of data require specialized methods of analysis,
some of which are outlined in the next section.

 1.4 Methods of Data Analysis

Data analysis uses precise characteristics of small samples to hypothesize
about the general phenomenon of interest. Which particular method is used
to analyze the data depends on the data type and the project requirements.
Th e various methods available include:

• Univariate methods – Each variable is assumed to be independent of
the others and is explored individually. Th e data are presented as a list
of numbers representing a series of points on a scaled line. Univariate
statistical methods include the collection of information about the
variable, such as the minimum and maximum values, the average, and the
dispersion about the average. Th is information is then used to attempt to
infer the underlying processes responsible for the variations in the data.
Examples are the eff ects of chemical weathering on the sodium content of
volcanic glass shards, or the infl uence of specifi c environmental factors on
the sizes of snail shells within a sediment layer.

• Bivariate methods – Two variables are investigated together to detect
relationships between these two parameters. For example, the correlation
coeffi cient may be calculated to investigate whether there is a linear
relationship between two variables. Alternatively, the bivariate regression
analysis may be used to fi nd an equation that describes the relationship
between the two variables. An example of a bivariate plot is the Harker
Diagram, which is one of the oldest methods of visualizing geochemical
data from igneous rocks and simply plots oxides of elements against SiO2
(Harker 1909).

• Time-series analysis – Th ese methods investigate data sequences as a
function of time. Th e time series is decomposed into a long-term trend,
a systematic (periodic, cyclic, rhythmic) component and an irregular
(random, stochastic) component. A widely used technique to describe
cyclic components of a time series is that of spectral analysis. Examples
of the application of these techniques include the investigation of cyclic
climatic variations in sedimentary rocks, or the analysis of seismic data.

• Signal processing – Th is includes all techniques for manipulating a signal

1.4 METHODS OF DATA ANALYSIS 7

to minimize the eff ects of noise in order to correct all kinds of unwanted
distortions or to separate various components of interest. It includes the
design and realization of fi lters, and their application to the data. Th ese
methods are widely used in combination with time-series analysis, e.g., to
increase the signal-to-noise ratio in climate time series, digital images or
geophysical data.

• Spatial analysis – Th is is the analysis of parameters in 2D or 3D space and
hence two or three of the required parameters are coordinate numbers.
Th ese methods include descriptive tools to investigate the spatial pattern
of geographically distributed data. Other techniques involve spatial
regression analysis to detect spatial trends. Also included are 2D and 3D
interpolation techniques, which help to estimate surfaces representing
the predicted continuous distribution of the variable throughout the area.
Examples are drainage-system analysis, the identifi cation of old landscape
forms and lineament analysis in tectonically active regions.

• Image processing – Th e processing and analysis of images has become
increasingly important in earth sciences. Th ese methods involve importing
and exporting, compressing and decompressing, and displaying images.
Image processing also aims to enhance images for improved intelligibility,
and to manipulate images in order to increase the signal-to-noise ratio.
Advanced techniques are used to extract specifi c features or analyze
shapes and textures, such as for counting mineral grains or fossils in
microscope images. Another important application of image processing
is in the use of satellite remote sensing to map certain types of rocks, soils
and vegetation, as well as other parameters such as soil moisture, rock
weathering and erosion.

• Multivariate analysis – Th ese methods involve the observation and
analysis of more than one statistical variable at a time. Since the graphical
representation of multidimensional data sets is diffi cult, most of these
methods include dimension reduction. Multivariate methods are widely
used on geochemical data, for instance in tephrochronology where volcanic
ash layers are correlated by geochemical fi ngerprinting of glass shards.
Another important usage is in the comparison of species assemblages in
ocean sediments for the reconstruction of paleoenvironments.

• Analysis of directional data – Methods to analyze circular and spherical
data are widely used in earth sciences. Structural geologists measure

8 1 DATA ANALYSIS IN EARTH SCIENCES

and analyze the orientation of slickensides (or striae) on a fault plane,
circular statistical methods are common in paleomagnetic studies, and
microstructural investigations include the analysis of grain shapes and
quartz c-axis orientations in thin sections.

Some of these methods of data analysis require the application of numerical
methods such as interpolation techniques. While the following text deals
mainly with statistical techniques it also introduces several numerical
methods commonly used in earth sciences.

 Recommended Reading

Araghinejad S (2014) Data-Driven Modeling: Using MATLAB® in Water Resources and
Environmental Engineering. Springer, Berlin Heidelberg New York

Borradaile G (2003) Statistics of Earth Science Data – Th eir Distribution in Time, Space and
Orientation. Springer, Berlin Heidelberg New York

Carr JR (1994) Numerical Analysis for the Geological Sciences. Prentice Hall, Englewood
Cliff s, New Jersey

Davis JC (2002) Statistics and Data Analysis in Geology, Th ird Edition. John Wiley and Sons,
New York

Gonzalez RC, Woods RE, Eddins SL (2009) Digital Image Processing Using MATLAB – 2nd
Edition. Gatesmark Publishing, LLC

Haneberg WC (2004) Computational Geosciences with Mathematica. Springer, Berlin
Heidelberg New York

Harker A (1909) Th e Natural History of Igneous Rocks, Macmillan, New York
Holzbecher E (2012) Environmental Modeling using MATLAB – 2nd Edition. Springer,

Berlin Heidelberg New York
Menke W, Menke J (2012) Environmental Data Analysis with MATLAB. Springer, Berlin

Heidelberg New York
Middleton GV (1999) Data Analysis in the Earth Sciences Using MATLAB. Prentice Hall,

New Jersey
Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical Recipes: Th e Art of

Scientifi c Computing – 3rd Edition. Cambridge University Press, Cambridge
Quarteroni A, Saleri F, Gervasio P (2014) Scientifi c Computing with MATLAB and Octave

– 4th Edition. Springer, Berlin Heidelberg New York
Richter CF (1958) Elementary Seismology. WH Freeman and Company, San Francisco
Swan ARH, Sandilands M (1995) Introduction to Geological Data Analysis. Blackwell

Sciences, Oxford
Wilks DS (2011) Statistical methods in the atmospheric sciences – 3rd Edition. Academic

Press, Elsevier, Amsterdam

RECOMMENDED READING 9

 2.1 MATLAB in Earth Sciences

MATLAB® is a soft ware package developed by Th e MathWorks, Inc.,
founded by Cleve Moler, Jack Little and Steve Bangert in 1984, which has
its headquarters in Natick, Massachusetts (http://www.mathworks.com).
MATLAB was designed to perform mathematical calculations, to analyze
and visualize data, and to facilitate the writing of new soft ware programs.
Th e advantage of this soft ware is that it combines comprehensive math and
graphics functions with a powerful high-level language. Since MATLAB
contains a large library of ready-to-use routines for a wide range of
applications, the user can solve technical computing problems much more
quickly than with traditional programming languages, such as C++ and
FORTRAN. Th e standard library of functions can be signifi cantly expanded
by add-on toolboxes, which are collections of functions for special purposes
such as image processing, creating map displays, performing geospatial data
analysis or solving partial diff erential equations.

During the last few years MATLAB has become an increasingly popular
tool in earth sciences. It has been used for fi nite element modeling,
processing of seismic data, analyzing satellite imagery, and for the generation

 2 Introduction to MATLAB

 Graphical user interface of MATLAB in typical
use. The software comes up with several
window panels. The desktop layout includes
the Current Folder panel, the Command Window,
the Command History panel and the Workspace
panel. When using MATLAB several Figure
Windows and the Editor are displayed.

� Springer-Verlag Berlin Heidelberg 2015
M.H. Trauth, MATLAB� Recipes for Earth Sciences,
DOI 10.1007/978-3-662-46244-7_2

11

of digital elevation models from satellite data. Th e continuing popularity
of the soft ware is also apparent in published scientifi c literature, and many
conference presentations have also made reference to MATLAB. Universities
and research institutions have recognized the need for MATLAB training for
staff and students, and many earth science departments across the world now
off er MATLAB courses for undergraduates. Th e MathWorks, Inc. provides
classroom kits for teachers at a reasonable price, and it is also possible for
students to purchase a low-cost edition of the soft ware. Th is student version
provides an inexpensive way for students to improve their MATLAB skills.

Th e following sections contain a tutorial-style introduction to MATLAB,
covering the setup on the computer (Section 2.2), the MATLAB syntax
(Sections 2.3 and 2.4), data input and output (Sections 2.5 and 2.6),
programming (Sections 2.7 and 2.8), and visualization (Section 2.9).
Advanced sections are also included on generating M-fi les to recreate
graphics (Section 2.10), on publishing M-fi les (Section 2.11), and on creating
graphical user interfaces (Section 2.12). Th e reader is recommended to
go through the entire chapter in order to obtain a good knowledge of the
soft ware before proceeding to the following chapters of the book. A more
detailed introduction can be found in the MATLAB Primer (MathWorks
2014a) which is available in print form, online and as PDF fi le.

In this book we use MATLAB Version 8 (Release 2014b), the Image
Processing Toolbox Version 9.1, the Mapping Toolbox Version 4.0.2, the
Signal Processing Toolbox Version 6.22, the Statistics Toolbox Version 9.1,
the Wavelet Toolbox Version 4.14, and the Simulink 3D Animation Toolbox
Version 7.2.

 2.2 Getting Started

Th e soft ware package comes with extensive documentation, tutorials and
examples. Th e fi rst three chapters of the book MATLAB Primer (MathWorks
2014a) are directed at beginners. Th e chapters on programming, creating
graphical user interfaces (GUIs) and development environments are aimed
at more advanced users. Since MATLAB Primer provides all the information
required to use the soft ware, this introduction concentrates on the most
relevant soft ware components and tools used in the following chapters of
this book.

Aft er the installation of MATLAB, the soft ware is launched either by
clicking the shortcut icon on the desktop or by typing

matlab

12 2 INTRODUCTION TO MATLAB

Fig. 2.1 Screenshot of the MATLAB default desktop layout including the Current Folder (left
in the fi gure), the Command Window (center), the Workspace (right) panels. Th is book uses
only the Command Window and the built-in Editor, which can be called up by typing edit
aft er the prompt. All information provided by the other panels can also be accessed through
the Command Window.

in the operating system prompt. Th e soft ware then comes up with several
window panels (Fig. 2.1). Th e default desktop layout includes the Current
Folder panel that lists the fi les in the directory currently being used. Th e
Command Window presents the interface between the soft ware and the
user, i.e., it accepts MATLAB commands typed aft er the prompt, >>. Th e
Workspace panel lists the variables in the MATLAB workspace, which is
empty when starting a new soft ware session. In this book we mainly use
the Command Window and the built-in Editor, which can be launched by
typing

edit

By default, the soft ware stores all of your MATLAB-related fi les in the
startup folder named MATLAB. Alternatively, you can create a personal
working directory in which to store your MATLAB-related fi les. You should
then make this new directory the working directory using the Current
Folder panel or the Folder Browser at the top of the MATLAB desktop.
Th e soft ware uses a Search Path to fi nd MATLAB-related fi les, which are

2.2 GETTING STARTED 13

organized in directories on the hard disk. Th e default search path includes
only the MATLAB_R2014b directory that has been created by the installer
in the applications folder and the default working directory MATLAB. To
see which directories are in the search path or to add new directories, select
Set Path from the Home toolstrip of the MATLAB desktop, and use the Set
Path dialog box. Th e modifi ed search path is saved in a fi le pathdef.m on your
hard disk. Th e soft ware will then in future read the contents of this fi le and
direct MATLAB to use your custom path list.

 2.3 The Syntax

Th e name MATLAB stands for matrix laboratory. Th e classic object handled
by MATLAB is a matrix, i.e., a rectangular two-dimensional array of numbers.
A simple 1-by-1 array is a scalar. Arrays with one column or row are vectors,
time series or other one-dimensional data fi elds. An m-by-n array can be
used for a digital elevation model or a grayscale image. Red, green and blue
(RGB) color images are usually stored as three-dimensional arrays, i.e., the
colors red, green and blue are represented by an m-by-n-by-3 array.

Before proceeding, we need to clear the workspace by typing

clear

aft er the prompt in the Command Window. Clearing the workspace is
always recommended before working on a new MATLAB project to avoid
name confl icts with previous projects. We can also go a step further, close
all Figure Windows using close all and clear the content of the Command
Window using clc. It is therefore recommended that a new MATLAB project
should always start with the line

clear, close all, clc

Entering matrices or arrays in MATLAB is easy. To enter an arbitrary matrix,
type

A = [2 4 3 7; 9 3 -1 2; 1 9 3 7; 6 6 3 -2]

which fi rst defi nes a variable A, then lists the elements of the array in square
brackets. Th e rows of A are separated by semicolons, whereas the elements
of a row are separated by blank spaces, or alternatively, by commas. Aft er
pressing return, MATLAB displays the array

A =
 2 4 3 7
 9 3 -1 2

14 2 INTRODUCTION TO MATLAB

Movie
2.1

 1 9 3 7
 6 6 3 -2

Displaying the elements of A could be problematic for very large arrays such
as digital elevation models consisting of thousands or millions of elements.
To suppress the display of an array or the result of an operation in general,
the line should be ended with a semicolon.

A = [2 4 3 7; 9 3 -1 2; 1 9 3 7; 6 6 3 -2];

Th e array A is now stored in the workspace and we can carry out some basic
operations with it, such as computing the sum of elements,

sum(A)

which results in the display

ans =
 18 22 8 14

Since we did not specify an output variable, such as A for the array entered
above, MATLAB uses a default variable ans, short for answer or most recent
answer, to store the results of the calculation. In general, we should defi ne
variables since the next computation without a new variable name will
overwrite the contents of ans.

Th e above example illustrates an important point about MATLAB: the
soft ware prefers to work with the columns of arrays. Th e four results of
sum(A) are obviously the sums of the elements in each of the four columns of
A. To sum all elements of A and store the result in a scalar b, we simply need
to type

b = sum(sum(A));

which fi rst sums the columns of the array and then the elements of the
resulting vector. We now have two variables, A and b, stored in the workspace.
We can easily check this by typing

whos

which is one the most frequently-used MATLAB commands. Th e soft ware
then lists all variables in the workspace, together with information about
their sizes or dimensions, number of bytes, classes and attributes (see Section
2.5 for details about classes and attributes of objects).

Name Size Bytes Class Attributes
A 4x4 128 double

2.3 THE SYNTAX 15

Movie
2.2

ans 1x4 32 double
b 1x1 8 double

Note that by default MATLAB is case sensitive, i.e., A and a can defi ne two
diff erent variables. In this context, it is recommended that capital letters be
used for arrays that have two dimensions or more and lower-case letters
for one-dimensional arrays (or vectors) and for scalars. However, it is
also common to use variables with mixed large and small letters. Th is is
particularly important when using descriptive variable names, i.e., variables
whose names contain information concerning their meaning or purpose,
such as the variable CatchmentSize, rather than a single-character variable a.
We could now delete the contents of the variable ans by typing

clear ans

Next, we will learn how specifi c array elements can be accessed or exchanged.
Typing

A(3,2)

simply yields the array element located in the third row and second column,
which is 9. Th e array indexing therefore follows the rule (row, column). We
can use this to replace single or multiple array elements. As an example we
type

A(3,2) = 30

to replace the element A(3,2) by 30 and to display the entire array.

A =
 2 4 3 7
 9 3 -1 2
 1 30 3 7
 6 6 3 -2

If we wish to replace several elements at one time, we can use the colon
operator. Typing

A(3,1:4) = [1 3 3 5]

or

A(3,:) = [1 3 3 5]

replaces all elements of the third row of the array A. Th e colon operator also
has several other uses in MATLAB, for instance as a shortcut for entering
array elements such as

16 2 INTRODUCTION TO MATLAB

c = 0 : 10

which creates a vector, or a one-dimensional array with a single row,
containing all integers from 0 to 10. Th e resultant MATLAB response is

c =
 0 1 2 3 4 5 6 7 8 9 10

Note that this statement creates 11 elements, i.e., the integers from 1 to 10
and the zero. A common error when indexing arrays is to ignore the zero
and therefore expect 10 elements instead of 11 in our example. We can check
this from the output of whos.

Name Size Bytes Class Attributes
A 4x4 128 double
ans 1x1 8 double
b 1x1 8 double
c 1x11 88 double

Th e above command creates only integers, i.e., the interval between the
array elements is one unit. However, an arbitrary interval can be defi ned, for
example 0.5 units. Th is is later used to create evenly-spaced time vectors for
time series analysis. Typing

c = 1 : 0.5 : 10

results in the display

c =
 Columns 1 through 6
 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000
 Columns 7 through 12
 4.0000 4.5000 5.0000 5.5000 6.0000 6.5000
 Columns 13 through 18
 7.0000 7.5000 8.0000 8.5000 9.0000 9.5000
 Column 19
 10.0000

which autowraps the lines that are longer than the width of the Command
Window. Th e display of the values of a variable can be interrupted by pressing
Ctrl+C (Control+C) on the keyboard. Th is interruption aff ects only the
output in the Command Window, whereas the actual command is processed
before displaying the result.

MATLAB provides standard arithmetic operators for addition, +, and
subtraction, -. Th e asterisk, *, denotes matrix multiplication involving inner
products between rows and columns. For instance, we multiply the matrix A
with a new matrix B

2.3 THE SYNTAX 17

B = [4 2 6 5; 7 8 5 6; 2 1 -8 -9; 3 1 2 3];

the matrix multiplication is then

C = A * B'

where ' is the complex conjugate transpose, which turns rows into columns
and columns into rows. Th is generates the output

C =
 69 103 -79 37
 46 94 11 34
 53 76 -64 27
 44 93 12 24

In linear algebra, matrices are used to keep track of the coeffi cients of
linear transformations. Th e multiplication of two matrices represents the
combination of two linear transformations into a single transformation.
Matrix multiplication is not commutative, i.e., A*B' and B*A' yield
diff erent results in most cases. Similarly, MATLAB allows matrix divisions
representing diff erent transformations, with / as the operator for right-hand
matrix division and \ as the operator for left -hand division. Finally, the
soft ware also allows powers of matrices, ^.

In earth sciences, however, matrices are oft en simply used as two-
dimensional arrays of numerical data rather than a matrix sensu stricto
representing a linear transformation. Arithmetic operations on such arrays
are carried out element-by-element. While this does not make any diff erence
in addition and subtraction, it does aff ect multiplicative operations. MATLAB
uses a dot, ., as part of the notation for these operations.

As an example multiplying A and B element-by-element is performed by
typing

C = A .* B

which generates the output

C =
 8 8 18 35
 63 24 -5 12
 2 3 -24 -45
 18 6 6 -6

 2.4 Array Manipulation

MATLAB provides a wide range of functions with which to manipulate
arrays (or matrices). Th is section introduces the most important functions

18 2 INTRODUCTION TO MATLAB

for array manipulation, which are used later in the book. We fi rst clear the
workspace and create two arrays, A and B, by typing

clear

A = [2 4 3; 9 3 -1]
B = [1 9 3; 6 6 3]

which yields

A =
 2 4 3
 9 3 -1

B =
 1 9 3
 6 6 3

When we work with arrays, we sometimes need to concatenate two or more
arrays into a single array. We can use either cat(dim,A,B) with dim=1 to
concatenate the arrays A and B along the fi rst dimension (i.e., along the rows).
Alternatively, we can use the function vertcat to concatenate the arrays A and
B vertically. By typing either

C = cat(1,A,B)

or

C = vertcat(A,B)

we obtain (in both cases)

C =
 2 4 3
 9 3 -1
 1 9 3
 6 6 3

Similarly, we can concatenate arrays horizontally, i.e., concatenate the arrays
along the second dimension (i.e., along the columns) by typing

D = cat(2,A,B)

or using the function horzcat instead

D = horzcat(A,B)

which both yield

D =

2.4 ARRAY MANIPULATION 19

 2 4 3 1 9 3
 9 3 -1 6 6 3

When working with satellite images we oft en concatenate three spectral
bands of satellite images into three-dimensional arrays of the colors red,
green and blue (RGB) (Sections 2.5 and 8.4). We again use cat(dim,A,B) with
dim=3 to concatenate the arrays A and B along the third dimension by typing

E = cat(3,A,B)

which yields

E(:,:,1) =
 2 4 3
 9 3 -1

E(:,:,2) =
 1 9 3
 6 6 3

Typing

whos

yields

 Name Size Bytes Class Attributes

 A 2x3 48 double
 B 2x3 48 double
 C 4x3 96 double
 D 2x6 96 double
 E 2x3x2 96 double

indicating that we have now created a three-dimensional array, as the size
2-by-3-by-2 suggests. Alternatively, we can use

size(E)

which yields

ans =
 2 3 2

to see that the array has 2 rows, 3 columns, and 2 layers in the third dimension.
Using length instead of size,

length(A)

yields

20 2 INTRODUCTION TO MATLAB

ans =
 3

which tells us the dimension of the largest array only. Hence length is
normally used to determine the length of a one-dimensional array (or
vector), such the evenly-spaced time axis c that was created in Section 2.3.

MATLAB uses a matrix-style indexing of arrays with the (1,1) element
being located in the upper-left corner of arrays. Other types of data that are
to be imported into MATLAB may follow a diff erent indexing convention.
As an example, digital terrain models (introduced in Chapter 7.3 to 7.5)
oft en have a diff erent way of indexing and therefore need to be fl ipped in an
up-down direction or, in other words, about a horizontal axis. Alternatively,
we can fl ip arrays in a left -right direction (i.e., about a vertical axis). We can
do this by using flipud for fl ipping in an up-down direction and fliplr for
fl ipping in a left -right direction

F = flipud(A)
F = fliplr(A)

yielding

F =
 9 3 -1
 2 4 3

F =
 3 4 2
 -1 3 9

In more complex examples we can use circshift(A,K,dim) to circularly shift
(i.e., rotate) arrays by K positions along the dimension dim. As an example we
can shift the array A by 1 position along the 2nd dimension (i.e., along the
rows) by typing

G = circshift(A,1,2)

which yields

G =
 3 2 4
 -1 9 3

We can also use reshape(A,[m n]) to completely reshape the array. Th e result
is an m-by-n array H whose elements are taken column-wise from A. As an
example we create a 3-by-2 array from A by typing

H = reshape(A,[3 2])

2.4 ARRAY MANIPULATION 21

which yields

H =
 2 3
 9 3
 4 -1

Another important way to manipulate arrays is to sort their elements. As an
example we can use sort(C,dim,mode) with dim=1 and mode='ascend' to sort
the elements of C in ascending order along the fi rst array dimension (i.e., the
rows). Typing

I = sort(C,1,'ascend')

yields

I =
 1 3 -1
 2 4 3
 6 6 3
 9 9 3

Th e function sortrows(C,column) with column=2 sorts the rows of C according
to the second column. Typing

J = sortrows(C,2)

yields

J =
 9 3 -1
 2 4 3
 6 6 3
 1 9 3

Array manipulation also includes the comparison of arrays, for example
by checking whether elements in A(i,j) are also found in B using ismember.
Typing

A, B

K = ismember(A,B)

yields

A =
 2 4 3
 9 3 -1

B =
 1 9 3
 6 6 3

22 2 INTRODUCTION TO MATLAB

K =
 0 0 1
 1 1 0

Th e array L(i,j) is zero if A(i,j) is not in B, and one if A(i,j) is in B. We can
also locate elements within A for which a statement is true. For example we
can locate elements with values less than zero and replace them with NaNs by
typing

L = A;
L(find(L<0)) = NaN

or, more briefl y

L(L<0) = NaN

which yields

L =
 2 4 3
 9 3 NaN

Th is is very useful when working with digital elevation models, where values
below sea level are not relevant. Alternatively, we can replace data voids other
than NaNs such as -32768, which are oft en used with digital terrain models
(Section 7.3 to 7.5). We can then determine which elements of an array are
NaNs by typing

M = isnan(L)

which yields

M =
 0 0 0
 0 0 1

where NaNs are indicated by ones and non-NaN values are indicated by zeros.
Which of the elements in array A are unique can be determined by typing

N = unique(A)

which yields

N =
 -1
 2
 3
 4
 9

2.4 ARRAY MANIPULATION 23

Th e value of 3 occurs twice in A and the number of elements in N is therefore
one less than in A.

 2.5 Data Structures and Classes of Objects

Th e default data type or class in MATLAB is double precision or double, which
stores data in a 64-bit array of fl oating-point numbers. Such fl oating-point
numbers are approximations of real numbers that allow a maximum range
of values in a limited numbers of bits. A double-precision array allows the
sign of a number to be stored (bit 63), together with the exponent (bits 62 to
52), and roughly 16 signifi cant decimal digits (bits 51 to 0). Typing

clear

realmin('double')
realmax('double')

yields the smallest and largest positive fl oating-point number in double
precision

ans =
 2.2251e-308

ans =
 1.7977e+308

Th e actual number of fl oating point numbers is therefore limited by the
number of bits available, in contrast to real numbers. Th e diff erence between
1.0 and the next largest double-precision number can be calculated using the
fl oating-point relative accuracy eps by typing

eps(1.0)

which yields

ans =
 2.2204e-16

Th e round-off error depends on the value of the real number; it is, for
example, diff erent for 5.0, as we can see by typing

eps(5.0)

which yields

ans =
 8.8818e-16

24 2 INTRODUCTION TO MATLAB

For real numbers there is, by defi nition, no such gap between consecutive
numbers. Th e use of a fi nite number of fl oating-point numbers is limited
by the number of available bits due to the fi nite precision arithmetic of a
computer. Th ere are countless examples available with which to demonstrate
this, but we will restrict ourselves to the simple example of the sine of π.
Typing

sin(pi)

yields

ans =
 1.2246e-16

and not, as would be expected, zero. Since pi is only the nearest fl oating-
point value to π, the sine of pi is not exactly zero but a value very close to
zero.

Let us now look at some examples of arrays in order to familiarize
ourselves with the diff erent data types in MATLAB. For the fi rst example we
create a 3-by-4 array of random numbers with double precision by typing

clear

rng(0)
A = rand(3,4)

We use the function rand that generates uniformly distributed pseudorandom
numbers within the open interval [0,1]. To obtain identical data values, we
use rng(0) to reset the random number generator by using the integer 0 as
seed (see Chapter 3 for more details on random number generators and types
of distributions). Since we did not use a semicolon here we get the output

A =
 0.8147 0.9134 0.2785 0.9649
 0.9058 0.6324 0.5469 0.1576
 0.1270 0.0975 0.9575 0.9706

By default, the output is in a scaled fi xed point format with 5 digits, e.g.,
0.8147 for the (1,1) element of A. Typing

format long

switches to a fi xed point format with 16 digits for double precision. Recalling
A by typing

A

2.5 DATA STRUCTURES AND CLASSES OF OBJECTS 25

yields the output

A =
 Columns 1 through 2
 0.814723686393179 0.913375856139019
 0.905791937075619 0.632359246225410
 0.126986816293506 0.097540404999410

 Columns 3 through 4
 0.278498218867048 0.964888535199277
 0.546881519204984 0.157613081677548
 0.957506835434298 0.970592781760616

which autowraps those lines that are longer than the width of the Command
Window. Th e command format does not aff ect how the computations are
carried out, i.e., the precision of the computation results remains unchanged.
Th e precision is, however, aff ected by converting the data type from double
to 32-bit single precision. Typing

B = single(A)

yields

B =
 0.8147237 0.9133759 0.2784982 0.9648885
 0.9057919 0.6323593 0.5468815 0.1576131
 0.1269868 0.0975404 0.9575068 0.9705928

Although we have switched to format long, only 8 digits are displayed. Th e
command whos lists the variables A and B with information on their sizes or
dimensions, number of bytes, and classes

Name Size Bytes Class Attributes
A 3x4 96 double
B 3x4 48 single

Th e default class double is used in all MATLAB operations in which the
physical memory of the computer is not a limiting factor, whereas single
is used when working with large data sets. Th e double-precision variable A,
whose size is 3-by-4 elements, requires 3·4·64=768 bits or 768/8=96 bytes
of memory, whereas B requires only 48 bytes and so has half the memory
requirement of A. Introducing at least one complex number to A doubles
the memory requirement since both real and imaginary parts are double
precision, by default. Switching back to format short and typing

format short
A(1,3) = 4i + 3

yields

26 2 INTRODUCTION TO MATLAB

A =
 Columns 1 through 2
 0.8147 + 0.0000i 0.9134 + 0.0000i
 0.9058 + 0.0000i 0.6324 + 0.0000i
 0.1270 + 0.0000i 0.0975 + 0.0000i

 Columns 3 through 4
 3.0000 + 4.0000i 0.9649 + 0.0000i
 0.5469 + 0.0000i 0.1576 + 0.0000i
 0.9575 + 0.0000i 0.9706 + 0.0000i

and the variable listing is now

Name Size Bytes Class Attributes
A 3x4 192 double complex
B 3x4 48 single

indicating the class double and the attribute complex.
MATLAB also works with even smaller data types such as 1-bit, 8-bit

and 16-bit data, in order to save memory. Th ese data types are used to store
digital elevation models or images (see Chapters 7 and 8). For example
m-by-n pixel RGB true color images are usually stored as three-dimensional
arrays, i.e., the three colors are represented by an m-by-n-by-3 array (see
Chapter 8 for more details on RGB composites and true color images). Such
multi-dimensional arrays can be generated by concatenating three two-
dimensional arrays representing the m-by-n pixels of an image. First, we
generate a 100-by-100 array of uniformly distributed random numbers in
the range [0,1]. We then multiply the random numbers by 255 to get values
between 0 and 255.

clear

rng(0)
I1 = 255 * rand(100,100);
I2 = 255 * rand(100,100);
I3 = 255 * rand(100,100);

Th e command cat concatenates the three two-dimensional arrays (8 bits
each) into a three-dimensional array (3·8 bits=24 bits).

I = cat(3,I1,I2,I3);

Since RGB images are represented by integer values between 0 and 255 for
each color, we convert the 64-bit double-precision values to unsigned 8-bit
integers using uint8 (Section 8.2). Th e function uint8 rounds the values in
I to the nearest integer. Any values that are outside the range [0,255] are
assigned to the nearest endpoint (0 or 255).

2.5 DATA STRUCTURES AND CLASSES OF OBJECTS 27

I = uint8(I);

Typing whos then yields

Name Size Bytes Class Attributes
I 100x100x3 30000 uint8
I1 100x100 80000 double
I2 100x100 80000 double
I3 100x100 80000 double

Since 8 bits can be used to store 256 diff erent values, this data type can be
used to store integer values between 0 and 255, whereas using int8 to create
signed 8-bit integers generates values between –128 and +127. Th e value of
zero requires one bit and there is therefore no space left in which to store
+128. Finally, imshow can be used to display the three-dimensional array as a
true color image.

imshow(I)

We next introduce structure arrays as a MATLAB data type. Structure
arrays are multi-dimensional arrays with elements accessed by textual fi eld
designators. Th ese arrays are data containers that are particularly helpful in
storing any kind of information about a sample in a single variable. As an
example we can generate a structure array sample_1 that includes the image
array I defi ned in the previous example as well as other types of information
about a sample, such as the name of the sampling location, the date of
sampling, and geochemical measurements, stored in a 10-by-10 array.

sample_1.location = 'Plougasnou';
sample_1.date = date;
sample_1.image = I;
sample_1.geochemistry = rand(10,10);

Th e fi rst layer of the structure array sample_1 contains a character array, i.e.,
a two-dimensional array of the data type char containing a character string.
We can create such an array by typing

location = 'Plougasnou';

We can list the size, class and attributes of a single variable such as location
by typing

whos location

and learn from

Name Size Bytes Class Attributes
location 1x10 20 char

28 2 INTRODUCTION TO MATLAB

that the size of this character array location corresponds to the number of
characters in the word Plougasnou. Character arrays are 16-bit arrays, i.e.,
216=65,536 diff erent characters can be stored in such arrays. Th e character
string location therefore requires 10·16=160 bits or 160/8=20 bytes of
memory. In addition, the second layer datum in the structure array sample_1
contains a character string generated by date that yields a string containing
the current date in dd-mm-yyyy format. We access this particular layer in
sample_1 by typing

sample_1.date

which yields

ans =
 27-Jun-2014

as an example. Th e third layer of sample_1 contains the image created in
the previous example, while the fourth layer contains a 10-by-10 array of
uniformly-distributed pseudorandom numbers. All layers of sample_1 can
be listed by typing

sample_1

resulting in the output

sample_1 =
 location: 'Plougasnou'
 date: '06-Oct-2009'
 image: [100x100x3 uint8]
 geochemistry: [10x10 double]

Th is represents a list of the layers location, date, image and geochemistry
within the structure array sample_1. Some variables are listed in full, whereas
larger data arrays are only represented by their size. In the list of the layers
within the structure array sample_1, the array image is characterized by its size
100x100x3 and the class uint8. Th e variable geochemistry in the last layer of
the structure array contains a 10-by-10 array of double-precision numbers.
Th e command

whos sample_1

does not list the layers in sample_1 but the name of the variable, the bytes and
the class struct of the variable.

 Name Size Bytes Class Attributes
 sample_1 1x1 31546 struct

2.5 DATA STRUCTURES AND CLASSES OF OBJECTS 29

MATLAB also has cell arrays as an alternative to structure arrays. Both
classes or data types are very similar and are containers of diff erent types
and sizes of data. Th e most important diff erence between the two is that the
containers of a structure array are named fi elds, whereas a cell array uses
numerically-indexed cells. Structure arrays are oft en used in applications
where the organization of the data is particularly important. Cell arrays
are oft en used when processing large data sets in count-controlled loops
(Section 2.7).

As an example of cell arrays we use the same data collection as in structure
arrays, with the layers of the structure array as the cells in the cell array. Th e
cell array is created by enclosing the location name Plougasnou, the date,
the image I and the 10-by-10 array of uniformly-distributed pseudorandom
numbers in curly brackets.

C = {'Plougasnou' date I rand(10,10)}

Typing

C

lists the contents of the cell array

C =
 Columns 1 through 2
 'Plougasnou' '27-Jun-2014'
 Columns 3 through 4
 [100x100x3 uint8] [10x10 double]

which contains the location name and date. Th e image and the array of
random numbers are too large to be displayed in the Command Window,
but the dimensions and class of the data are displayed instead. We access a
particular cell in C, e.g., the cell 2, by typing

C{2}

which yields

ans =
27-Jun-2014

We can also access the other cells of the cell array in a similar manner.

 2.6 Data Storage and Handling

Th is section deals with how to store, import, and export data with MATLAB.
Many of the data formats typically used in earth sciences have to be converted

30 2 INTRODUCTION TO MATLAB

before being analyzed with MATLAB. Alternatively, the soft ware provides
several import routines to read many binary data formats in earth sciences,
such as those used to store digital elevation models and satellite data.

A computer generally stores data as binary digits or bits. A bit is analogous
to a two-way switch with two states, on = 1 and off = 0. Th e bits are joined
together to form larger groups, such as bytes consisting of 8 bits, in order
to store more complex types of data. Such groups of bits are then used to
encode data, e.g., numbers or characters. Unfortunately, diff erent computer
systems and soft ware use diff erent schemes for encoding data. For instance,
the characters in the widely-used text processing soft ware Microsoft Word
diff er from those in Apple Pages. Exchanging binary data is therefore diffi cult
if the various users use diff erent computer platforms and soft ware. Binary
data can be stored in relatively small fi les if both partners are using similar
systems of data exchange. Th e transfer rate for binary data is generally faster
than that for the exchange of other fi le formats.

Various formats for exchanging data have been developed during recent
decades. Th e classic example for the establishment of a data format that can
be used with diff erent computer platforms and soft ware is the American
Standard Code for Information Interchange (ASCII) that was fi rst published
in 1963 by the American Standards Association (ASA). As a 7-bit code,
ASCII consists of 27=128 characters (codes 0 to 127). Whereas ASCII-1963
was lacking lower-case letters, in the ASCII-1967 update lower-case letters
as well as various control characters such as escape and line feed, and various
symbols such as brackets and mathematical operators, were also included.
Since then, a number of variants appeared in order to facilitate the exchange
of text written in non-English languages, such as the expanded ASCII
containing 255 codes, e.g., the Latin-1 encoding.

Th e simplest way to exchange data between a certain piece of soft ware
and MATLAB is using the ASCII format. Although the newer versions of
MATLAB provide various import routines for fi le types such as Microsoft
Excel binaries, most data arrive in the form of ASCII fi les. Consider a simple
data set stored in a table such as

SampleID Percent C Percent S
101 0.3657 0.0636
102 0.2208 0.1135
103 0.5353 0.5191
104 0.5009 0.5216
105 0.5415 -999
106 0.501 -999

Th e fi rst row contains the names of the variables and the columns provide
the percentages of carbon and sulfur in each sample. Th e absurd value -999

2.6 DATA STORAGE AND HANDLING 31

indicates missing data in the data set. Two things have to be changed to
convert this table into MATLAB format. First, MATLAB uses NaN as the
representation for Not-a-Number that can be used to mark missing data or
gaps. Second, a percent sign, %, should be added at the beginning of the fi rst
line. Th e percent sign is used to indicate nonexecutable text within the body
of a program. Th is text is normally used to include comments in the code.

%SampleID Percent C Percent S
101 0.3657 0.0636
102 0.2208 0.1135
103 0.5353 0.5191
104 0.5009 0.5216
105 0.5415 NaN
106 0.501 NaN

MATLAB will ignore any text appearing aft er the percent sign and continue
processing on the next line. Aft er editing this table in a text editor, such as
the MATLAB Editor, it can be saved as ASCII text fi le geochem.txt in the
current working directory (Fig. 2.2). Th e MATLAB workspace should fi rst
be cleared by typing

clear

aft er the prompt in the Command Window. MATLAB can now import the
data from this fi le with the load command.

load geochem.txt

MATLAB then loads the contents of the fi le and assigns the array to a variable
geochem specifi ed by the fi lename geochem.txt. Typing

whos

yields

Name Size Bytes Class Attributes
geochem 6x3 144 double

Th e command save now allows workspace variables to be stored in a binary
format.

save geochem_new.mat

MAT-fi les are double-precision binary fi les using .mat as extension. Th e
advantage of these binary MAT-fi les is that they are independent of the
computer platforms running diff erent fl oating-point formats. Th e command

save geochem_new.mat geochem

32 2 INTRODUCTION TO MATLAB

Movie
2.3

Fig. 2.2 Screenshot of MATLAB Editor showing the content of the fi le geochem.txt. Th e fi rst
line of the text needs to be commented by a percent sign at the beginning of the line, followed
by the actual data array. Th e -999 values need to be replaced by NaNs.

saves only the variable geochem instead of the entire workspace. Th e option
-ascii, for example

save geochem_new.txt geochem -ascii

again saves the variable geochem, but in an ASCII fi le named geochem_new.txt
in a fl oating-point format with 8 digits:

 1.0100000e+02 3.6570000e-01 6.3600000e-02
 1.0200000e+02 2.2080000e-01 1.1350000e-01
 1.0300000e+02 5.3530000e-01 5.1910000e-01
 1.0400000e+02 5.0090000e-01 5.2160000e-01
 1.0500000e+02 5.4150000e-01 NaN
 1.0600000e+02 5.0100000e-01 NaN

In contrast to the binary fi le geochem_new.mat, this ASCII fi le can be viewed
and edited using the MATLAB Editor or any other text editor.

Such data fi les, especially those that are produced by electronic instruments,
can look much more complicated than the example fi le geochem.txt with a
single header line. In Chapters 7 and 8 we will read some of these complicated
and extensive fi les, which are either binary or text fi les and usually have long
headers describing the contents of the fi les. At this point, let us have a look at
a variant of text fi les that contains not only one or more header lines but also
unusual data types such as date and time, in a non-decimal format. We use

2.6 DATA STORAGE AND HANDLING 33

the function textscan to perform this task. Th e MATLAB workspace should
fi rst be cleared by typing

clear

aft er the prompt in the Command Window. MATLAB can now import the
data from the fi le geochem.txt using the textscan command.

fid = fopen('geochem.txt');
C = textscan(fid,'%u %f %f','Headerlines',1,'CollectOutput',1);
fclose(fid);

Th is script opens the fi le geochem.txt for read only access using fopen and
defi nes the fi le identifi er fid, which is then used to read the text from the
fi le using textscan and to write it into the cell array C. Th e character string %u
%f %f defi nes the conversion specifi ers enclosed in single quotation marks,
where %u stands for the 32-bit unsigned integer output class and %f stands for
a 64-bit double-precision fl ointing-point number. Th e parameter Headerlines
is set to 1, which means that a single header line is ignored while reading the
fi le. If the parameter CollectOutput is 1 (i.e., is true), textscan concatenates
output cells with the same data type into a single array. Th e function fclose
closes the fi le defi ned by fid. Th e array C is a cell array, which is a data type
with indexed containers called cells (see Section 2.5). Th e advantage of this
data type is that it can store data of various types and sizes, such as character
strings, double-precision numbers, and images in a single variable such as
C. Typing

C

yields

C =
 [6x1 uint32] [6x2 double]

indicating that C contains a 6-by-1 32-bit unsigned integer array, which is
the sample ID, and a 6-by-1 double-precision array, which represents the
percentages of carbon and sulfur in each sample. We can access the contents
of the cells in C by typing

data1 = C{1}
data2 = C{2}

which yields

data1 =
 101
 102

34 2 INTRODUCTION TO MATLAB

 103
 104
 105
 106

data2 =
 0.3657 0.0636
 0.2208 0.1135
 0.5353 0.5191
 0.5009 0.5216
 0.5415 NaN
 0.5010 NaN

We now concatenate the two cells into one double-precision array data. First,
we have to change the class of C{1} into double or the class of the entire array
data will be uint32. Typing

data(:,1) = double(C{1})
data(:,2:3) = C{2}

yields

 101.0000 0.3657 0.0636
 102.0000 0.2208 0.1135
 103.0000 0.5353 0.5191
 104.0000 0.5009 0.5216
 105.0000 0.5415 NaN
 106.0000 0.5010 NaN

Th e format of the data is as expected.
Th e next examples demonstrate how to read the fi le geophys.txt, which

contains a single header line but also the date (in an MM/DD/YY format)
and time (in an HH:MM:SS.SS format). We again use textscan to read the
fi le,

clear

fid = fopen('geophys.txt');
data = textscan(fid,'%u %f %f %f %s %s','Headerlines',1);
fclose(fid);

where we skip the header, read the fi rst column (the sample ID) as a 32-bit
unsigned integer (uint32) with specifi er %u, the next three columns X, Y, and
Z as 64-bit double-precision fl oating-point numbers (double) with specifi er
%f, and then the date and time as character strings with specifi er %s. We then
convert the date and time to serial numbers, where a serial date number of 1
corresponds to Jan-1-0000. Th e year 0000 is merely a reference point and is
not intended to be interpreted as a real year.

2.6 DATA STORAGE AND HANDLING 35

data_date_serial = datenum(data{5});
data_time_serial = datenum(data{6});

Finally, we can convert the date and time serial numbers into a data and time
array by typing

data_date = datevec(data_date_serial)
data_time = datevec(data_time_serial)

which yields

data_date =
 2013 11 18 0 0 0
 2013 11 18 0 0 0
 2013 11 18 0 0 0
 2013 11 18 0 0 0
 2013 11 18 0 0 0

data_time =
 1.0e+03 *
 2.0130 0.0010 0.0010 0.0100 0.0230 0.0091
 2.0130 0.0010 0.0010 0.0100 0.0230 0.0102
 2.0130 0.0010 0.0010 0.0100 0.0230 0.0504
 2.0130 0.0010 0.0010 0.0100 0.0240 0.0051
 2.0130 0.0010 0.0010 0.0100 0.0240 0.0233

Th e fi rst three columns of the array data_date contain the year, month and
day. Th e fourth to sixth columns of the array data_time contain the hour,
minute and second.

We can also write data to a formatted text fi le using fprintf. As an example
we again load the data from geochem.txt aft er we have commented out the
fi rst line and have replaced -999 with NaN. Instead of using load geochem.txt,
we can type

clear

data = load('geochem.txt');

to load the contents of the text fi le into a double-precision array data. We
write the data to a new text fi le geochem_formatted.txt using fprintf. Since
the function fprintf writes all elements of the array data to the fi le in column
order we need to transpose the data before we save it.

data = data';

We fi rst open the fi le using the permission w for writing, and discard the
existing contents. We then write data to this fi le using the formatting
operators %u for unsigned integers and %6.4f for fi xed-point numbers with
a fi eld width of six characters and four digits aft er the decimal point. Th e

36 2 INTRODUCTION TO MATLAB

control character \n denotes a new line aft er each line of three numbers.

fid = fopen('geochem_formatted.txt','w');
fprintf(fid,'%u %6.4f %6.4f\n',data);
fclose(fid);

We can view the contents of the fi le by typing

edit geochem_formatted.txt

which opens the fi le geochem_formatted.txt

101 0.3657 0.0636
102 0.2208 0.1135
103 0.5353 0.5191
104 0.5009 0.5216
105 0.5415 NaN
106 0.5010 NaN

in the MATLAB Editor. Th e format of the data is as expected.

 2.7 Control Flow

Control fl ow in computer science helps to control the order in which computer
code is evaluated. Th e most important kinds of control fl ow statements are
count-controlled loops such as for loops and conditional statements such as
if-then constructs. Since in this book we do not deal with the programming
capabilities of MATLAB in any depth, the following introduction to the
basics of control fl ow is rather brief and omits certain important aspects of
effi cient programming, such as the pre-allocation of memory prior to using
for loops, and instructions on how the use of for loops can be avoided by
vectorization of the MATLAB code. Th is introduction is instead limited to
the two most important kinds of control fl ow statements: the aforementioned
for loops and the if-then constructs. Readers interested in MATLAB as a
programming environment are advised to read the more detailed chapters
on control fl ow in the MATLAB documentation (MathWorks 2014a and c).

Th e for loops, as the fi rst example of a MATLAB language statement,
execute a series of commands between for and end a specifi ed number of
times. As an example we use such a loop to multiply the elements of an array
A by 10, round the result to the nearest integer, and store the result in B.

clear

rng(0)
A = rand(10,1)
for i = 1 : 10
 B(i,1) = round(10 * A(i));

2.7 CONTROL FLOW 37

end
B

which yields

A =
 0.8147
 0.9058
 0.1270
 0.9134
 0.6324
 0.0975
 0.2785
 0.5469
 0.9575
 0.9649

B =
 8
 9
 1
 9
 6
 1
 3
 5
 10
 10

Th e result is as expected. We can expand the experiment by using a nested
for loop to create a 2D array B.

rng(0)
A = rand(10,3)
for i = 1 : 10
 for j = 1 : 3
 B(i,j) = round(10 * A(i,j));
 end
end
B

which yields

A =
 0.8147 0.1576 0.6557
 0.9058 0.9706 0.0357
 0.1270 0.9572 0.8491
 0.9134 0.4854 0.9340
 0.6324 0.8003 0.6787
 0.0975 0.1419 0.7577
 0.2785 0.4218 0.7431
 0.5469 0.9157 0.3922
 0.9575 0.7922 0.6555
 0.9649 0.9595 0.1712

38 2 INTRODUCTION TO MATLAB

B =
 8 2 7
 9 10 0
 1 10 8
 9 5 9
 6 8 7
 1 1 8
 3 4 7
 5 9 4
 10 8 7
 10 10 2

Th is book tries to make all of the recipes independent of the actual
dimensions of the data. Th is is achieved by the consistent use of size and
length to determine the size of the data instead of using fi xed numbers such
as the 30 and 3 in the above example (Section 2.4).

rng(0)
A = rand(10,3)
for i = 1 : size(A,1)
 for j = 1 : size(A,2)
 B(i,j) = round(10 * A(i,j));
 end
end
B

When working with larger data sets with many variables one might
occasionally wish to automate array manipulations such as those described
in Section 2.4. Let us assume, for example, that we want to replace all NaNs
in all variables in the memory with -999. We fi rst create a collection of four
variables, each of which contains a single NaN.

clear

rng(0)
A = rand(3,3); A(2,1) = NaN
BC = rand(2,4); BC(2,2) = NaN
DE = rand(1,2); DE(1,1) = NaN
FG = rand(3,2); FG(2,2) = NaN

We list the variables in the workspace using whos and store this list in variables.

variables = who;

We then use a for loop to store the content of each variable in v using eval
and then locate the NaNs in v using isnan (Section 2.4) and replace them with
-999. Th e function eval executes a MATLAB expression stored in a text string.
We assign the value of v to the variable in the base workspace and then clear
the variables i, v and variables, which are no longer needed.

2.7 CONTROL FLOW 39

for i = 1 : size(variables,1)
 v = eval(variables{i});
 v(isnan(v)==1) = -999;
 assignin('base',variables{i},v);
 eval(variables{i})
end

clear i v variables

Comparing the variables before and aft er the replacement of the NaNs
with -999 reveals that the script works well and that we have successfully
manipulated our data.

Th e second important statements to control the fl ow of a script (apart
from for loops) are if-then constructs, which evaluate an expression and
then execute a group of instructions if the expression is true. As an example
we compare the value of two scalars A and B.

clear

A = 1
B = 2
if A < B
 disp('A is less than B')
end

which yields

A is less than B

Th e script fi rst evaluates whether A is less than B and, if it is, displays the
message A is less than B in the Command Window. We can expand the if-
then construct by introducing else, which provides an alternative statement
if the expression is not true.

A = 1
B = 2
if A < B
 disp('A is less than B')
else
 disp('A is not less than B')
end

which yields

A is less than B

Alternatively, we can use elseif to introduce a second expression to be
evaluated.

A = 1

40 2 INTRODUCTION TO MATLAB

B = 2
if A < B
 disp('A is less than B')
elseif A >= B
 disp('A is not less than B')
end

Th e for loops and if-then constructs are extensively used in the following
chapters of the book. For other aspects of programming, please refer to the
MATLAB documentation (MathWorks 2014a and c).

 2.8 Scripts and Functions

MATLAB is a powerful programming language. All fi les containing
MATLAB code use .m as an extension and are therefore called M-fi les.
Th ese fi les contain ASCII text and can be edited using a standard text editor.
However, the built-in Editor color-highlights various syntax elements such
as comments in green, keywords such as if, for and end in blue, and character
strings in pink. Th is syntax highlighting facilitates MATLAB coding.

MATLAB uses two types of M-fi les: scripts and functions. Whereas scripts
are a series of commands that operate on data in the workspace, functions
are true algorithms with input and output variables. Th e advantages and
disadvantages of both types of M-fi le will now be illustrated by an example.
We fi rst start the Editor by typing

edit

Th is opens a new window named untitled. Next, we generate a simple
MATLAB script by typing a series of commands to calculate the average of
the elements of a data array x.

[m,n] = size(x);
if m == 1
 m = n;
end
sum(x)/m

Th e fi rst line of the if-then construct yields the dimensions of the variable x
using the command size. In our example x should be either a column vector,
i.e., an array with a single column and dimensions (m,1), or a row vector, i.e.
an array with a single row and dimensions (1,n). Th e if statement evaluates
a logical expression and executes a group of commands if this expression
is true. Th e end keyword terminates the last group of commands. In the
example the if-then construct picks either m or n depending on whether m==1
is false or true. Here, the double equal sign '==' makes element by element

2.8 SCRIPTS AND FUNCTIONS 41

comparisons between the variables (or numbers) to the left and right of the
equal signs and returns an array of the same size, made up of elements set to
logical 1 where the relationship is true and to logical 0 where it is not true. In
our example m==1 returns 1 if m equals 1 and 0 if m equals any other value. Th e
last line of the if-then construct computes the average by dividing the sum
of elements by m or n. We do not use a semicolon here in order to allow the
output of the result. We can now save our new M-fi le as average.m and type

clear

x = [3 6 2 -3 8];

in the Command Window to defi ne an example array x. We then type

average

without the extension .m to run our script and obtain the average of the
elements of the array x as output.

ans =
 3.2000

Aft er typing

whos

we see that the workspace now contains

Name Size Bytes Class Attributes
ans 1x1 8 double
m 1x1 8 double
n 1x1 8 double
x 1x5 40 double

Th e listed variables are the example array x and the output of the function
size, m and n. Th e result of the operation is stored in the variable ans. Since
the default variable ans might be overwritten during one of the succeeding
operations, we need to defi ne a diff erent variable. Typing

a = average

however, results in the error message

??? Attempt to execute SCRIPT average as a function.

We can obviously not assign a variable to the output of a script. Moreover,
all variables defi ned and used in the script appear in the workspace; in
our example these are the variables m and n. Scripts contain sequences of

42 2 INTRODUCTION TO MATLAB

Fig. 2.3 Screenshot of the MATLAB Editor showing the function average. Th e function
starts with a line containing the keyword function, the name of the function average, the
input variable x, and the output variable y. Th e subsequent lines contain the output for help
average, the copyright and version information, and also the actual MATLAB code for
computing the average using this function.

commands that are applied to variables in the workspace. MATLAB functions,
however, allow inputs and outputs to be defi ned. Th ey do not automatically
import variables from the workspace. To convert the above script into a
function we need to introduce the following modifi cations (Fig. 2.3):

function y = average(x)
%AVERAGE Average value.
% AVERAGE(X) is the average of the elements in the array X.

% By Martin Trauth, June 27, 2014

[m,n] = size(x);
if m == 1
 m = n;
end
y = sum(x)/m;

Th e fi rst line now contains the keyword function, the function name
average, the input x and the output y. Th e next two lines contain comments,
as indicated by the percent sign, separated by an empty line. Th e second
comment line contains the author’s name and the version of the M-fi le. Th e
rest of the fi le contains the actual operations. Th e last line now defi nes the
value of the output variable y, and this line is terminated by a semicolon to
suppress the display of the result in the Command Window. Next we type

2.8 SCRIPTS AND FUNCTIONS 43

Movie
2.4

help average

which displays the fi rst block of contiguous comment lines. Th e fi rst
executable statement (or blank line in our example) eff ectively ends the help
section and therefore the output of help. Now we are independent of the
variable names used in our function. Th e workspace can now be cleared and
a new data vector defi ned.

clear

data = [3 6 2 -3 8];

Our function can then be run by the statement

result = average(data);

Th is clearly illustrates the advantages of functions compared to scripts.
Typing

whos

results in

Name Size Bytes Class Attributes
data 1x5 40 double
result 1x1 8 double

revealing that all variables used in the function do not appear in the
workspace. Only the input and output as defi ned by the user are stored in
the workspace. Th e M-fi les can therefore be applied to data as if they were
real functions, whereas scripts contain sequences of commands that are
applied to the variables in the workspace. If we want variables such as m and
n to also appear in the memory they must be defi ned as global variables in
both the function and the workspace, otherwise they are considered to be
local variables. We therefore add one line to the function average with the
command global:

function y = average(x)
%AVERAGE Average value.
% AVERAGE(X) is the average of the elements in the array X.

% By Martin Trauth, June 27, 2014

global m n
[m,n] = size(x);
if m == 1
 m = n;
end
y = sum(x)/m;

44 2 INTRODUCTION TO MATLAB

We now type

global m n

in the Command Window. Aft er running the function as described in the
previous example we fi nd the two variables m and n in the workspace. We
have therefore transferred the variables m and n between the function average
and the workspace.

 2.9 Basic Visualization Tools

MATLAB provides numerous routines for displaying data as graphics. Th is
section introduces the most important graphics functions. Th e graphics can
be modifi ed, printed and exported to be edited with graphics soft ware other
than MATLAB. Th e simplest function producing a graph of a variable y
versus another variable x is plot. First, we defi ne two one-dimensional arrays
x and y, where y is the sine of x. Th e array x contains values between 0 and 2π
with π/10 increments, whereas y is the element-by-element sine of x.

clear

x = 0 : pi/10 : 2*pi;
y = sin(x);

Th ese two commands result in two one-dimensional arrays with 21 elements
each, i.e., two 1-by-21 arrays. Since the two arrays x and y have the same
length, we can use plot to produce a linear 2D graph of y against x.

plot(x,y)

Th is command opens a Figure Window named Figure 1 with a gray
background, an x-axis ranging from 0 to 7, a y-axis ranging from –1 to +1
and a blue line. We may wish to plot two diff erent curves in a single plot, for
example the sine and the cosine of x in diff erent colors. Th e command

x = 0 : pi/10 : 2*pi;
y1 = sin(x);
y2 = cos(x);

plot(x,y1,'--',x,y2,'-')

creates a dashed blue line displaying the sine of x and a solid red line
representing the cosine of this array (Fig. 2.4). If we create another plot, the
window Figure 1 will be cleared and a new graph displayed. Th e command
figure, however, can be used to create a new fi gure object in a new window.

2.9 BASIC VISUALIZATION TOOLS 45

Fig. 2.4 Screenshot of the MATLAB Figure Window showing two curves in diff erent colors and
line types. Th e Figure Window allows editing of all elements of the graph aft er selecting Edit
Plot from the Tools menu. Double clicking on the graphics elements opens an options window
for modifying the appearance of the graphics. Th e graphics can be exported using Save as
from the File menu. Th e command Generate Code from the File menu creates MATLAB code
from an edited graph.

plot(x,y1,'--')
figure
plot(x,y2,'-')

Instead of plotting both lines in one graph simultaneously, we can also plot
the sine wave, hold the graph and then plot the second curve. Th e command
hold is particularly important for displaying data while using diff erent plot
functions, for example if we wish to display the sine of x as a line plot and the
cosine of x as a bar plot.

plot(x,y1,'r--')
hold on
bar(x,y2)
hold off

Th is command plots y1 versus x as a dashed red line using 'r--', whereas y2
versus x is shown as a group of blue vertical bars. Alternatively, we can plot
both graphics in the same Figure Window but in diff erent plots using subplot.
Th e syntax subplot(m,n,p) divides the Figure Window into an m-by-n array
of display regions and makes the pth display region active.

46 2 INTRODUCTION TO MATLAB

subplot(2,1,1), plot(x,y1,'r--')
subplot(2,1,2), bar(x,y2)

For example the Figure Window is divided into two rows and one column.
Th e 2D linear plot is displayed in the upper half of the Figure Window and
the bar plot appears in the lower half. It is recommended that all Figure
Windows be closed before proceeding to the next example. Subsequent plots
would replace the graph in the lower display region only, or in other words,
the last generated graph in a Figure Window. Alternatively, the command

clf

clears the current fi gure. Th is command can be used in larger MATLAB
scripts aft er using the function subplot for multiple plots in a Figure Window.

An important modifi cation to graphics is the scaling of the axis. By default,
MATLAB uses axis limits close to the minima and maxima of the data.
Using the command axis, however, allows the scale settings to be changed.
Th e syntax for this command is simply axis([xmin xmax ymin ymax]). Th e
command

plot(x,y1,'r--')
axis([0 pi -1 1])

sets the limits of the x-axis to 0 and π, whereas the limits of the y-axis are set
to the default values –1 and +1. Important options of axis are

plot(x,y1,'r--')
axis square

which makes the x-axis and y-axis the same length, and

plot(x,y1,'r--')
axis equal

which makes the individual tick mark increments on the x-axis and y-axis
the same length. Th e function grid adds a grid to the current plot, whereas
the functions title, xlabel and ylabel allow a title to be defi ned and labels to
be applied to the x- and y-axes.

plot(x,y1,'r--')
title('My first plot')
xlabel('x-axis')
ylabel('y-axis')
grid

Th ese are a few examples how MATLAB functions can be used to edit the
plot in the Command Window. More graphics functions will be introduced

2.9 BASIC VISUALIZATION TOOLS 47

in the following chapters of this book.

 2.10 Generating Code to Recreate Graphics

MATLAB supports various ways of editing all objects in a graph interactively
using a computer mouse. First, the Edit Plot mode of the Figure Window
needs to be activated by clicking on the arrow icon or by selecting Edit Plot
from the Tools menu. Th e Figure Window also contains some other options,
such as Rotate 3D, Zoom or Insert Legend. Th e various objects in a graph,
however, are selected by double-clicking on the specifi c component, which
opens the Property Editor. Th e Property Editor allows changes to be made
to many features (or properties) of the graph such as axes, lines, patches and
text objects.

Th e Generate Code option enables us to automatically generate the
MATLAB code of a fi gure to recreate a similar graph with diff erent data. We
use a simple plot to illustrate the use of the Property Editor and the Generate
Code option to recreate a graph.

clear

x = 0 : pi/10 : 2*pi;
y1 = sin(x);
plot(x,y1)

Th e default layout of the graph is that of Figure 2.4. Clicking on the arrow
icon in the Figure Toolbar enables the Edit Plot mode. Th e selection handles
of the graph appear, identifying the objects that are activated. Double-
clicking an object in a graph opens the Property Editor.

As an example we can use the Property Editor to change various
properties of the graph. Double-clicking the gray background of the Figure
Window gives access to properties such as Figure Name, the Colormap used
in the fi gure, and the Figure Color. We can change this color to light blue
represented by the light blue square in the 4th row and 8rd column of the
color chart. Moving the mouse over this square displays the RGB color code
[0.68 0.92 1] (see Chapter 8 for more details on RGB colors). Activating the
blue line in the graph allows us to change the line thickness to 2.0 and select
a 15-point square marker. We can deactivate the Edit Plot mode of the Figure
Window by clicking on the arrow icon in the Figure Toolbar.

Aft er having made all necessary changes to the graph, the corresponding
commands can even be exported by selecting Generate Code from the File
menu of the Figure Window. Th e generated code displays in the MATLAB
Editor.

48 2 INTRODUCTION TO MATLAB

Movie
2.5

function createfigure(X1, Y1)
%CREATEFIGURE(X1, Y1)
% X1: vector of x data
% Y1: vector of y data

% Auto-generated by MATLAB on 27-Jun-2014 13:28:13

% Create figure
figure1 = figure('Color',[0.68 0.92 1]);

% Create axes
axes1 = axes('Parent',figure1,'ColorOrderIndex',2);
box(axes1,'on');
hold(axes1,'on');

% Create plot
plot(X1,Y1,'MarkerSize',15,'Marker','square','LineWidth',2);

We can then rename the function createfigure to mygraph and save the fi le
as mygraph.m.

function mygraph(X1, Y1)
%MYGRAPH(X1,Y1)
% X1: vector of x data
% Y1: vector of y data
(cont'd)

Th e automatically-generated graphics function illustrates how graphics are
organized in MATLAB. Th e function figure fi rst opens a Figure Window.
Using axes then establishes a coordinate system, and using plot draws the
actual line object. Th e Figure section in the function reminds us that the
light-blue background color of the Figure Window is represented by the
RGB color coding [0.68 0.92 1]. Th e Plot section reveals the square marker
symbol used and the line width of 2 points.

Th e newly-created function mygraph can now be used to plot a diff erent
data set. We use the above example and

clear

x = 0 : pi/10 : 2*pi;
y2 = cos(x);
mygraph(x,y2)

Th e fi gure shows a new plot with the same layout as the previous plot.
Th e Generate Code function of MATLAB can therefore be used to create
templates for graphics that can be used to generate plots of multiple data sets
using the same layout.

Even though MATLAB provides abundant editing facilities and the
Generate Code function even allows the generation of complex templates

2.10 GENERATING CODE TO RECREATE GRAPHICS 49

for graphics, a more practical way to modify a graph for presentations or
publications is to export the fi gure and import it into a diff erent soft ware
such as CorelDraw or Adobe Illustrator. MATLAB graphics are exported by
selecting the command Save as from the File menu or by using the command
print. Th is function exports the graphics, either as a raster image (e.g., JPEG
or GIF) or as a vector fi le (e.g., EPS or PDF), into the working directory
(see Chapter 8 for more details on graphic fi le formats). In practice, the
user should check the various combinations of export fi le formats and the
graphics soft ware used for fi nal editing of the graphics. Readers interested in
advanced visualization techniques with MATLAB are directed to the sister
book MATLAB and Design Recipes for Earth Sciences (Trauth and Sillmann
2012).

 2.11 Publishing M-Files

Another useful feature of the soft ware is the option to publish reports on
MATLAB projects in various fi le formats such as HTML, XML, LaTeX and
many others. Th is feature enables you to share your results with colleagues
who may or may not have the MATLAB soft ware. Th e published code
includes formatted commentary on the code, the actual MATLAB code,
and all results of running the code including the output to the Command
Window and all graphics created or modifi ed by the code. To illustrate the
use of the publishing feature we create a simple example of a commented
MATLAB code to compute the sine and cosine of a time vector and display
the results as two separate fi gures.

We start the Editor by typing edit in the Command Window, which
opens a new window named untitled. An M-fi le to be published starts
with a document title at the top of the fi le, followed by some comments that
describe the contents and the version of the script. Th e subsequent contents
of the fi le include sections of MATLAB code and comments, separated by
the double percent signs %%. Whereas single percent signs % are known (from
Section 2.8) to initiate comments in MATLAB, we now use double percent
signs %% that indicate the start of new code sections in the Editor. Th e code
sections feature, previously also known as code cells or cell mode, is a feature
in MATLAB that enables you to evaluate blocks of commands called sections
by using the buttons Run, Run and Advance, Run Section, Advance, and Run
and Time on the Editor Toolstrip to evaluate either the entire script or parts
of the script.

%% Example for Publishing M-Files
% This M-file illustrates the use of the publishing
% feature of MATLAB.

50 2 INTRODUCTION TO MATLAB

Movie
2.6

% By Martin Trauth, June 27, 2014

%% Sine Wave
% We define a time vector t and compute the sine y1 of t.
% The results are displayed as linear 2D graph y1 against x.
x = 0 : pi/10 : 2*pi;
y1 = sin(x);
plot(x,y1)
title('My first plot')
xlabel('x-axis')
ylabel('y-axis')

%% Cosine Wave
% Now we compute the cosine y2 of the same time vector and
% display the results.
y2 = sin(x);
plot(x,y2)
title('My first plot')
xlabel('x-axis')
ylabel('y-axis')

%%
% The last comment is separated by the double percent sign
% without text. This creates a comment in a separate cell
% without a subheader.

We save the M-fi le as myproject.m and click the Publish button in the Publish
Toolstrip. Th e entire script is now evaluated and the Figure Windows pop
up while the script is running. Finally, a window opens up that shows
the contents of the published M-fi le. Th e document title and subheaders
are shown in a red font whereas the comments are in black fonts. Th e fi le
includes a list of contents with jump links to proceed to the chapters of the
fi le. Th e MATLAB commands are displayed on gray backgrounds but the
graphics are embedded in the fi le without the gray default background of
Figure Windows. Th e resulting HTML fi le can be easily included on a course
or project webpage. Alternatively, the HTML fi le and included graphics can
be saved as a PDF-fi le and shared with students or colleagues.

 2.12 Creating Graphical User Interfaces

Almost all the methods of data analysis presented in this book are in the
form of MATLAB scripts, i.e., series of commands that operate on data
in the workspace (Section 2.8). Only in a few cases are the algorithms
implemented in functions such as canc for adaptive fi ltering (Section 6.8) or
minput for digitizing from the screen (Section 8.7). Th e MATLAB commands
provided by Th e MathWorks, Inc., however, are mostly functions, i.e.,
algorithms with input and output variables. Th e most convenient variants

2.12 CREATING GRAPHICAL USER INTERFACES 51

of these functions are those with a graphical user interface (GUI). A GUI in
MATLAB is a graphical display in one or more windows containing controls
(or components) that enable the user to perform interactive tasks without
typing commands in the Command Window or writing a script in the Editor.
Th ese components include pull-down menus, push buttons, sliders, text input
fi elds and more. Th e GUI can read and write data fi les as well as performing
many types of computation and displaying the results in graphics.

Th e manual entitled MATLAB Creating Graphical User Interfaces
(MathWorks 2014b) provides a comprehensive guide to the creation of
GUIs with MATLAB. Within this manual, however, the section on Create
a Simple GUIDE GUI demonstrates a rather complex example with many
interactive elements instead of providing the simplest possible example of a
GUI. Th e following text therefore provides a very simple example of a GUI
that computes and displays a Gaussian function for a mean and a standard
deviation that can be defi ned by the user. Creating such a simple GUI with
MATLAB requires two steps: the fi rst step involves designing the layout of
the GUI, and the second step involves adding functions to the components
of the GUI. Th e best way to create a graphical user interface with MATLAB
is using the GUI Design Environment (GUIDE). We start GUIDE by typing

guide

in the Command Window. Calling GUIDE opens the GUIDE Quick Start
dialog where we can choose to open a previously created GUI or create a new
one from a template. From the dialog we choose the GUIDE template Blank
GUI (Default) and click OK, aft er which the GUIDE Layout Editor starts.
First, we enable Show names in component palette in the GUIDE Preferences
under the File menu and click OK. Second, we select Grid and Rulers from
the Tools menu and enable Show rulers. Th e GUIDE Layout Editor displays
an empty layout with dimensions of 670-by-388 pixels. We resize the layout
to 500-by-300 pixels by clicking and dragging the lower right corner of the
GUI.

Next, we place components such as static text, edit text, and axes onto the
GUI by choosing the corresponding controls from the component palette. In
our example we place two Edit Text areas on the left side of the GUI, along
with a Static Text area containing the title Mean, with Standard Deviation
above it. Double clicking the static text areas, the Property Inspector comes
up in which we can modify the properties of the components. We change the
String of the static text areas to Mean and Standard Deviation. We can also
change other properties, such as the FontName, FontSize, BackgroundColor,
and HorizontalAlignment of the text. Instead of the default Edit Text content

52 2 INTRODUCTION TO MATLAB

Movie
2.7

of the edit text areas we choose 0 for the mean and 1 for the standard
deviation text area. We then place an axis with dimensions of 250-by-200
pixels to the right of the GUI. Next, we save and activate the GUI by selecting
Run from the Tools menu. GUIDE displays a dialog box with the question
Activating will save changes ...?, where we click Yes. In the following Save As
dialog box, we defi ne a FIG-fi le name such as gaussiantool.fi g.

GUIDE then saves this fi gure fi le together with the corresponding
MATLAB code in a second fi le named gaussiantool.m. Furthermore, the
MATLAB code is opened in the Editor and the default GUI is opened in a
Figure Window with no menu or toolbar (Fig. 2.5). As we can see, GUIDE
has automatically programmed the code of our GUI layout, including an
initialization code at the beginning of the fi le that we should not edit. Th is
code is included in the main routine named gaussiantool. Th e fi le also
contains other functions called by gaussiantool, for instance the function
gaussiantool_Opening_Fcn (executed before gaussiantool is made visible),
gaussiantool_OutputFnc (sending output to the command line, not used
here), edit1_CreateFcn and edit2_CreateFcn (initializing the edit text areas
when they are created), and edit1_Callback and edit2_Callback (accepting
text input and returning this input either as text or as a double-precision
number).

We now add code to our GUI gaussiantool. First, we add initial values
for the global variables mmean and mstd in the opening function gaussiantool_
Opening_Fcn by adding the following lines aft er the last comment line marked
by % in the fi rst column:

global mmean mstd
mmean = 0;
mstd = 1;

Th e two variables must be global because they are used in the callbacks that
we edit next (as in Section 2.8). Th e fi rst of these callbacks edit1_Callback
gets three more lines of code aft er the last comment line:

global mmean
mmean = str2double(get(hObject,'String'));
calculating_gaussian(hObject, eventdata, handles)

Th e fi rst line defi nes the global variable mmean, which is then obtained by
converting the text input into double precision with str2double in the second
line. Th e function edit1_Callback then calls the function calculating_gaussian,
which is a new function at the end of the fi le. Th is function computes and
displays the Gaussian function with a mean value of mmean and a standard
deviation of mstd.

2.12 CREATING GRAPHICAL USER INTERFACES 53

Fig. 2.5 Screenshot of the graphical user interface (GUI) gaussiantool for plotting a
Gaussian function with a given mean and standard deviation. Th e GUI allows the values of
the mean and standard deviation to be changed in order to update the graphics on the right.
Th e GUI has been created using the MATLAB GUI Design Environment (GUIDE).

function calculating_gaussian(hObject, eventdata, handles)
% hObject handle to edit2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
global mmean mstd
x = -10 : 0.1 : 10;
y = normpdf(x, mmean, mstd);
plot(x,y)

Th e second callback edit2_Callback picks the value of the standard deviation
mstd from the second Edit Text area, which is then also used by the function
calculating_gaussian.

global mstd
mstd = str2double(get(hObject,'String'));
calculating_gaussian(hObject, eventdata, handles)

Aft er saving the fi le gaussiantool.m we can run the new GUI by typing

gaussiantool

in the Command Window. Th e GUI starts where we can change the values of
the mean and the standard deviation, then press return. Th e plot on the right
is updated with each press of the return key. Using

edit gaussiantool
guide gaussiantool

54 2 INTRODUCTION TO MATLAB

we can open the GUI code and Figure Window for further edits. Such GUIs
allow a very direct and intuitive handling of functions in MATLAB that can
also include animations such as the one used in canctool (Section 6.8), and
the display of an audio-video signal. On the other hand, however, GUIs
always require an interaction with the user who needs to click push buttons,
move sliders and edit text input fi elds while the data is being analyzed. Th e
automatic processing of large quantities of data is therefore usually carried
out using scripts and functions with no graphical user interface.

 Recommended Reading

Attaway S (2013) MATLAB: A Practical Introduction to Programming and Problem Solving.
Elsevier, New York

Etter DM, Kuncicky DC, Moore H (2014) Introduction to MATLAB. Prentice Hall, New
Jersey

Gilat A (2010) MATLAB: An Introduction with Applications. John Wiley & Sons, New York
Hanselman DC, Littlefi eld BL (2012) Mastering MATLAB 8. Prentice Hall, New Jersey
MathWorks (2014a) MATLAB Primer. Th e MathWorks, Inc., Natick, MA
MathWorks (2014b) MATLAB Creating Graphical User Interfaces. Th e MathWorks, Inc.,

Natick, MA
MathWorks (2014c) MATLAB Programming Fundamentals. Th e MathWorks, Inc., Natick,

MA
Palm WJ (2010) Introduction to MATLAB 7 for Engineers. McGraw-Hill, New York
Quarteroni A, Saleri F, Gervasio P (2014) Scientifi c Computing with MATLAB and Octave

– 4th Edition. Springer, Berlin Heidelberg New York
Trauth MH, Sillmann E (2012) MATLAB and Design Recipes for Earth Sciences. Springer,

Berlin Heidelberg New York

RECOMMENDED READING 55

 3.1 Introduction

Th e statistical properties of a single parameter are investigated by means
of univariate analysis. Such a parameter could, for example, be the organic
carbon content of deep-sea sediments, the sizes of grains in a sandstone layer,
or the ages of sanidine crystals in a volcanic ash. Both the number and the
size of samples that we collect from a larger population are oft en limited by
fi nancial and logistical constraints. Th e methods of univariate statistics assist
us to draw from the sample conclusions that apply to the population as a
whole. For univariate analysis we use the Statistics Toolbox (MathWorks
2014), which contains all the necessary routines.

We fi rst need to describe the characteristics of the sample using statistical
parameters, and to compute an empirical distribution (descriptive statistics)
(Sections 3.2 and 3.3). A brief introduction is provided to the most
important statistical parameters (such as the measures of central tendency
and dispersion), followed by MATLAB examples. We then select a theoretical
distribution that shows similar characteristics to the empirical distribution
(Sections 3.4 and 3.5). A suite of theoretical distributions is introduced
and their potential applications outlined prior to using MATLAB tools

 3 Univariate Statistics

 Pebbles on the beach near the Långe Erik
lighthouse, at the northern end of the island
of Öland in Sweden. The average composition
and dispersion of this deposit can be used
to determine the origin of the rocks. In this
example the rock fragments, which are mainly
of granite and gneiss, were eroded on the
Swedish mainland by the Baltic ice sheet
during the last glacial period and transported
to their present location.

� Springer-Verlag Berlin Heidelberg 2015
M.H. Trauth, MATLAB� Recipes for Earth Sciences,
DOI 10.1007/978-3-662-46244-7_3

57

to explore these distributions. We then try to draw conclusions from the
sample that can be applied to the larger population of interest (hypothesis
testing). Sections 3.6 to 3.12 introduce the most important statistical tests for
applications in earth sciences. Th e fi nal section in this chapter (Section 3.13)
introduces methods used to fi t distributions to our own data sets.

 3.2 Empirical Distributions

Let us assume that we have collected a number of measurements xi from a
specifi c object. Th e collection of data, or sample, as a subset of the population
of interest, can be written as a vector x, or one-dimensional array

containing a total of N observations. Th e vector x may contain a large
number of data points and it may consequently be diffi cult to understand its
properties. Descriptive statistics are therefore oft en used to summarize the
characteristics of the data. Th e statistical properties of the data set may be
used to defi ne an empirical distribution, which can then be compared to a
theoretical one.

Th e most straightforward way of investigating the sample characteristics
is to display the data in a graphical form. Plotting all of the data points
along a single axis does not reveal a great deal of information about the data
set. However, the density of the points along the scale does provide some
information about the characteristics of the data. A widely-used graphical
display of univariate data is the histogram (Fig. 3.1). A histogram is a bar
plot of a frequency distribution that is organized in intervals or classes. Such
histogram plots provide valuable information on the characteristics of the
data, such as the central tendency, the dispersion and the general shape of the
distribution. However, quantitative measures provide a more accurate way
of describing the data set than the graphical form. In purely quantitative
terms, the mean and the median defi ne the central tendency of the data set,
while the data dispersion is expressed in terms of the range and the standard
deviation.

 Measures of Central Tendency

Parameters of central tendency or location represent the most important
measures for characterizing an empirical distribution (Fig. 3.2). Th ese values
help locate the data on a linear scale. Th ey represent a typical or best value

58 3 UNIVARIATE STATISTICS

Fig. 3.1 Graphical representation of an empirical frequency distribution. a In a histogram,
the frequencies are organized in nbin classes and plotted as a bar plot. b Th e cumulative
distribution plot of a frequency distribution displays the totals of all observations lower than
and equal to a certain value. Th is plot is normalized to a total number of observations of one.

that describes the data. Th e most popular indicator of central tendency is the
arithmetic mean, which is the sum of all data points divided by the number
of observations:

Th e arithmetic mean can also be called the mean or the average of a univariate
data set. Th e sample mean is used as an estimate of the population mean μ
for the underlying theoretical distribution. Th e arithmetic mean is, however,
sensitive to outliers, i.e., extreme values that may be very diff erent from the
majority of the data, and the median is therefore oft en used as an alternative
measure of central tendency. Th e median is the x-value that is in the middle
of the data set, i.e., 50% of the observations are smaller than the median and
50% are larger. Th e median of a data set sorted in ascending order is defi ned
as

if N is odd and

a b

3.2 EMPIRICAL DISTRIBUTIONS 59

if N is even. Although outliers also aff ect the median, their absolute values
do not infl uence it. Quantiles are a more general way of dividing the data
sample into groups containing equal numbers of observations. For example
the three quartiles divide the data into four groups, the four quintiles divide
the observations in fi ve groups and the 99 percentiles defi ne one hundred
groups.

Th e third important measure for central tendency is the mode. Th e mode
is the most frequent x-value or – if the data are grouped in classes – the
center of the class with the largest number of observations. Th e data set has
no mode if there are no values that appear more frequently than any of the
other values. Frequency distributions with a single mode are called unimodal,
but there may also be two modes (bimodal), three modes (trimodal) or four
or more modes (multimodal) (Fig. 3.3).

Th e mean, median and mode are used when several quantities add
together to produce a total, whereas the geometric mean is oft en used if these
quantities are multiplied. Let us assume that the population of an organism
increases by 10% in the fi rst year, 25% in the second year, and then 60% in
the last year. Th e average rate of increase is not the arithmetic mean, since
the original number of individuals has increased by a factor (not a sum) of
1.1 aft er one year, 1.25 aft er the second year, and 1.6 aft er the third year. Th e
average growth of the population is therefore calculated by the geometric
mean:

Fig. 3.2 Measures of central tendency. a In an unimodal symmetric distribution, the mean,
the median and the mode are identical. b In a skewed distribution, the median lies between
the mean and the mode. Th e mean is highly sensitive to outliers, whereas the median and the
mode are little infl uenced by extremely high and low values.

a b

60 3 UNIVARIATE STATISTICS

Fig. 3.3 Dispersion and shape of a distribution. a-b, Unimodal distributions showing a
negative or positive skew. c-d, Distributions showing a high or low kurtosis. e-f, Bimodal and
trimodal distributions showing two or three modes.

a b

e f

c d

3.2 EMPIRICAL DISTRIBUTIONS 61

Th e average growth of these values is 1.3006 suggesting an approximate per
annum growth in the population of 30%. Th e arithmetic mean would result
in an erroneous value of 1.3167 or approximately 32% annual growth. Th e
geometric mean is also a useful measure of central tendency for skewed or
log-normally distributed data, in which the logarithms of the observations
follow a Gaussian or normal distribution. Th e geometric mean, however, is
not used for data sets containing negative values. Finally, the harmonic mean

is also used to derive a mean value for asymmetric or log-normally
distributed data, as is the geometric mean, but neither is robust to outliers.
Th e harmonic mean is a better average when the numbers are defi ned in
relation to a particular unit. Th e commonly quoted example is for averaging
velocities. Th e harmonic mean is also used to calculate the mean of sample
sizes.

 Measures of Dispersion

Another important property of a distribution is the dispersion. Some of the
parameters that can be used to quantify dispersion are illustrated in Figure
3.3. Th e simplest way to describe the dispersion of a data set is by the range,
which is the diff erence between the highest and lowest value in the data set,
given by

Since the range is defi ned by the two extreme data points it is very susceptible
to outliers and hence it is not a reliable measure of dispersion in most cases.
Using the interquartile range of the data, i.e., the middle 50% of the data,
attempts to overcome this problem.

A more useful measure for dispersion is the standard deviation.

62 3 UNIVARIATE STATISTICS

Th e standard deviation is the average deviation of each data point from the
mean. Th e standard deviation of an empirical distribution is oft en used as
an estimate of the population standard deviation σ. Th e formula for the
population standard deviation uses N instead of N–1 as the denominator.
Th e sample standard deviation s is computed with N–1 instead of N since it
uses the sample mean instead of the unknown population mean. Th e sample
mean, however, is computed from the data xi, which reduces the number of
degrees of freedom by one. Th e degrees of freedom are the number of values
in a distribution that are free to be varied. Dividing the average deviation of
the data from the mean by N would therefore underestimate the population
standard deviation σ.

Th e variance is the third important measure of dispersion. Th e variance is
simply the square of the standard deviation.

Although the variance has the disadvantage of not having the same
dimensions as the original data, it is extensively used in many applications
instead of the standard deviation.

In addition, both skewness and kurtosis can be used to describe the
shape of a frequency distribution (Fig. 3.3). Skewness is a measure of the
asymmetry of the tails of a distribution. Th e most popular way to compute
the asymmetry of a distribution is by Pearson’s mode skewness:

skewness = (mean – mode) / standard deviation

A negative skew indicates that the distribution is spread out more to the left
of the mean value, assuming values increasing towards the right along the
axis. Th e sample mean is in this case smaller than the mode. Distributions
with positive skewness have large tails that extend towards the right. Th e
skewness of the symmetric normal distribution is zero. Although Pearson’s
measure is a useful one, the following formula by Fisher for calculating the
skewness is oft en used instead, including in the relevant MATLAB function.

Th e second important measure for the shape of a distribution is the kurtosis.
Again, numerous formulas to compute the kurtosis are available. MATLAB

3.2 EMPIRICAL DISTRIBUTIONS 63

uses the following formula:

Th e kurtosis is a measure of whether the data are peaked or fl at relative to
a normal distribution. A high kurtosis indicates that the distribution has a
distinct peak near the mean, whereas a distribution characterized by a low
kurtosis shows a fl at top near the mean and broad tails. Higher peakedness
in a distribution results from rare extreme deviations, whereas a low kurtosis
is caused by frequent moderate deviations. A normal distribution has a
kurtosis of three, and some defi nitions of kurtosis therefore subtract three
from the above term in order to set the kurtosis of the normal distribution
to zero.

 3.3 Examples of Empirical Distributions

As an example we can analyze the data contained in the fi le organicmatter_
one.txt. Th is fi le contains the organic carbon content Corg of lake sediments
in weight percentage (wt%). In order to load the data, we type

clear

corg = load('organicmatter_one.txt');

Th e data fi le contains 60 measurements of Corg that can be displayed by

plot(corg,zeros(1,length(corg)),'o')

Th is graph shows some of the characteristics of the data. Th e organic carbon
content of the samples ranges between 9 and 15 wt%, with most of the data
clustering between 12 and 13 wt%. Values below 10 and above 14 are rare.
While this kind of representation of the data undoubtedly has its advantages,
histograms are a much more convenient way to display univariate data (Fig.
3.1). Histograms divide the range of the data into nbin equal intervals (also
called bins or classes), count the number of observations n in each bin, and
display the frequency distribution of observations as a bar plot. Th e bins
are either defi ned by their edges e or their centers v. Th ere is no fi xed rule
for the correct number of bins; the most suitable number will depend on
the application (for example the statistical method) that is used. Ideally,
the number of bins n should lie between 5 and 15; it should closely refl ect
the underlying distribution and should not result in any empty bins, i.e.,

64 3 UNIVARIATE STATISTICS

classes with no counts. In practice, the square root of the total number of
observations length(corg), rounded to the nearest integer using round, is
oft en used as the number of bins. In our example nbin can be calculated
using

nbin = round(sqrt(length(corg)))

which yields

nbin =
 8

Th e eight bin centers v are calculated by typing

vmin = min(corg) + 0.5*range(corg)/nbin;
vmax = max(corg) - 0.5*range(corg)/nbin;
vwth = range(corg)/nbin;
v = vmin : vwth : vmax;

which yields

v =
 Columns 1 through 4
 9.7383 10.3814 11.0245 11.6676
 Columns 5 through 8
 12.3107 12.9537 13.5968 14.2399

Th e smallest bin center vmin equals the minimum value in the data corg plus
half of the range of the data corg, divided by the number of bins nbin. Similarly,
the largest bin center vmin equals the maximum value of the data corg minus
half of the range of the data corg, divided by nbin. Th e bin width ewth is
calculated by dividing the range of the data corg by nbin. Th e corresponding
nine bin edges e are calculated using

emin = min(corg);
emax = max(corg);
ewth = range(corg)/nbin;
e = emin : ewth : emax;

which yields

e =
 Columns 1 through 4
 9.4168 10.0598 10.7029 11.3460
 Columns 5 through 8
 11.9891 12.6322 13.2753 13.9184
 Column 9
 14.5615

Th e smallest and largest bin edges, emin and emax, correspond to the mininum

3.3 EXAMPLES OF EMPIRICAL DISTRIBUTIONS 65

Gallery
3.1

and maximum values in corg. Th e width of the bins ewth, as defi ned by the
bin edges, is equal to vwth. Binning can be performed using a for loop in
combination with an if-then construct. Values in corg that fall exactly on
an edge e are herein assigned to the higher bin. Values falling exactly on the
edge of the last bin are assigned to the last bin.

for i = 1 : nbin
 if i < nbin
 corgb = corg(emin+(i-1)*ewth<=corg & emin+i*ewth>corg);
 n(i) = length(corgb);
 else
 corgb = corg(emin+(i-1)*ewth<=corg & emin+i*ewth>=corg);
 n(i) = length(corgb);
 end
end

Th e result of the binning is stored in the frequency distribution n, which we
can display with

n

which yields

n =
 2 2 10 7 14 9 12 4

Instead of using the above script we can also use the functions histcount and
histogram to determine the bin centers, edges and counts. Typing

histogram(corg)

displays a histogram with six classes, using an automatic binning algorithm.
Th e algorithm returns bins with a uniform width, chosen to cover the range
of elements in corg and to reveal the underlying shape of the distribution.
Th e MATLAB Help lists and explains various such methods for automatic
binning. Th e function histogram also returns a structure array h

h = histogram(corg);

which yields

h =
 Histogram with properties:
 Data: [60x1 double]
 Values: [2 6 13 20 15 4]
 NumBins: 6
 BinEdges: [9 10 11 12 13 14 15]
 BinWidth: 1
 BinLimits: [9 15]
 Normalization: 'count'

66 3 UNIVARIATE STATISTICS

 FaceColor: 'auto'
 EdgeColor: [0 0 0]

listing the properties of the histogram. As an example we can access the bin
centers v and the frequency distribution n by typing

v = h.BinWidth * 0.5 + h.BinEdges(1:end-1)
n = h.Values

while the Figure Window is still active, which yields

v =
 9.5000 10.5000 11.5000 12.5000 13.5000 14.5000

n =
 2 6 13 20 15 4

Alternatively, we can use the bin edges e defi ned above to display the bar plot
of the frequency distribution n by typing

h = histogram(corg,e);
v = h.BinWidth * 0.5 + h.BinEdges(1:end-1)
n = h.Values

which yields

v =
 Columns 1 through 4
 9.7383 10.3814 11.0245 11.6676
 Columns 5 through 8
 12.3107 12.9537 13.5968 14.2399

n =
 2 2 10 7 14 9 12 4

as well as the histogram plot, as shown in Figure 3.1 a. We can also use
the function histcount to determine n and e without plotting the histogram.
Typing

[n,e] = histcounts(corg,e)
v = diff(e(1:2)) * 0.5 + e(1:end-1)

yields

n =
 2 2 10 7 14 9 12 4

e =
 Columns 1 through 5
 9.4168 10.0598 10.7029 11.3460 11.9891
 Columns 6 through 9
 12.6322 13.2753 13.9184 14.5615

3.3 EXAMPLES OF EMPIRICAL DISTRIBUTIONS 67

Gallery
3.2

v =
 Columns 1 through 5
 9.7383 10.3814 11.0245 11.6676 12.3107
 Columns 6 through 8
 12.9537 13.5968 14.2399

Th e functions histogram and histcount provide numerous ways of binning
the data, of normalizing the data, and of displaying the histogram. In the
following sections, we oft en have to normalize the frequency distribution
such that the total number of observations sum(n) is one. Th is can be achieved
by typing

h = histogram(corg,'Normalization','probability')
v = h.BinWidth * 0.5 + h.BinEdges(1:end-1)
n = h.Values

which yields

v =
 Columns 1 through 5
 9.5000 10.5000 11.5000 12.5000 13.5000
 Column 6
 14.5000

n =
 Columns 1 through 5
 0.0333 0.1000 0.2167 0.3333 0.2500
 Column 6
 0.0667

As an alternative way of plotting the data, the empirical cumulative
distribution function can be displayed using cdfplot (Fig. 3.1 b).

cdfplot(corg)

Th e most important parameters describing the distribution are the measures
for central tendency and the dispersion about the average. Th e most popular
measure for central tendency is the arithmetic mean.

mean(corg)

ans =
 12.3448

Since this measure is very susceptible to outliers, we can take the median as
an alternative measure of central tendency,

median(corg)

68 3 UNIVARIATE STATISTICS

ans =
 12.4712

which does not diff er by very much in this particular example. However, we
will see later that this diff erence can be signifi cant for distributions that are
not symmetric. A more general parameter to defi ne fractions of the data less
than, or equal to, a certain value is the quantile. Some of the quantiles have
special names, such as the three quartiles dividing the distribution into four
equal parts, 0–25%, 25–50%, 50–75% and 75–100% of the total number of
observations. We use the function quantile to compute the three quartiles.

quantile(corg,[.25 .50 .75])

ans =
 11.4054 12.4712 13.2965

Less than 25% of the data values are therefore lower than 11.4054, 25% are
between 11.4054 and 12.4712, another 25% are between 12.4712 and 13.2965,
and the remaining 25% are higher than 13.2965.

Th e third parameter in this context is the mode, which is the midpoint
of the interval with the highest frequency. Th e MATLAB function mode to
identify the most frequent value in a sample is unlikely to provide a good
estimate of the peak in continuous probability distributions, such as the one
in corg. Furthermore, the mode function is not suitable for fi nding peaks in
distributions that have multiple modes. In these cases it is better to compute a
histogram and calculate the peak of that histogram. We can use the function
find to locate the class that has the largest number of observations.

v(find(n == max(n)))

or simply

v(n == max(n))

ans =
 12.3107

Both statements are identical and identify the largest element in n. Th e index
of this element is then used to display the midpoint of the corresponding
class v. If there are several elements in n with similar values this statement
returns several solutions, suggesting that the distribution has several modes.
Th e median, quartiles, minimum, and maximum of a data set can be
summarized and displayed in a box and whisker plot.

boxplot(corg)

3.3 EXAMPLES OF EMPIRICAL DISTRIBUTIONS 69

Th e boxes have lines at the lower quartile, the median, and the upper quartile
values. Th e whiskers are lines extending from each end of the boxes to show
the extent or range of the rest of the data.

Th e most popular measures for dispersion are range, variance and
standard deviation. We have already used the range to defi ne the midpoints
of the classes. Th e range is the diff erence between the highest and lowest
value in the data set.

range(corg)

ans =
 5.1447

Th e variance is the average of the squared deviation of each number from the
mean of a data set.

var(corg)

ans =
 1.3595

Th e standard deviation is the square root of the variance.

std(corg)

ans =
 1.1660

Note that, by default, the functions var and std calculate the sample variance
and sample standard deviation providing an unbiased estimate of the
dispersion of the population. When using skewness to describe the shape of
the distribution, we observe a slightly negative skew.

skewness(corg)

ans =
 -0.2529

Finally, the peakedness of the distribution is described by the kurtosis. Th e
result from the function kurtosis,

kurtosis(corg)

ans =
 2.4670

suggests that our distribution is slightly fl atter than a Gaussian distribution
since its kurtosis is less than three.

70 3 UNIVARIATE STATISTICS

Most of these functions have corresponding versions for data sets
containing gaps, such as nanmean and nanstd, which treat NaNs as missing
values. To illustrate the use of these functions we introduce a gap into our
data set and compute the mean using mean and nanmean for comparison.

corg(25,1) = NaN;

mean(corg)

ans =
 NaN

nanmean(corg)

ans =
 12.3371

In this example the function mean follows the rule that all operations with
NaNs result in NaNs, whereas the function nanmean simply skips the missing
value and computes the mean of the remaining data.

As a second example we now explore a data set characterized by a signifi cant
skew. Th e data represent 120 microprobe analyses on glass shards hand-
picked from a volcanic ash. Th e volcanic glass has been aff ected by chemical
weathering at an initial stage and the shards therefore exhibit glass hydration
and sodium depletion in some sectors. We can study the distribution of
sodium (in wt%) in the 120 analyses using the same procedure as above. Th e
data are stored in the fi le sodiumcontent_one.txt.

clear

sodium = load('sodiumcontent_one.txt');

As a fi rst step, it is always recommended to display the data as a histogram.
Th e square root of 120 suggests 11 classes, and we therefore display the data
by typing

h = histogram(sodium,11)
v = h.BinWidth * 0.5 + h.BinEdges(1:end-1)
n = h.Values

Since the distribution has a negative skew, the mean, the median and the
mode diff er signifi cantly from each other.

mean(sodium)

ans =
 5.6628

median(sodium)

3.3 EXAMPLES OF EMPIRICAL DISTRIBUTIONS 71

ans =
 5.9741

v(find(n == max(n)))

ans =
 6.5800

Th e mean of the data is lower than the median, which is in turn lower than
the mode. We can observe a strong negative skewness, as expected from our
data.

skewness(sodium)

ans =
 -1.1086

We now introduce a signifi cant outlier to the data and explore its eff ect on
the statistics of the sodium content. For this we will use a diff erent data set
that is better suited to this example than the previous data set. Th e new data
set contains higher sodium values of around 17 wt% and is stored in the fi le
sodiumcontent_two.txt.

clear

sodium = load('sodiumcontent_two.txt');

Th is data set contains only 50 measurements, in order to better illustrate the
eff ects of an outlier. We can use the same script used in the previous example
to display the data in a histogram with seven classes, and to compute the
number of observations n in each of the classes v.

h = histogram(sodium,7)
v = h.BinWidth * 0.5 + h.BinEdges(1:end-1)
n = h.Values

v =
 Columns 1 through 4
 13.5500 14.2500 14.9500 15.6500

 Columns 5 through 7
 16.3500 17.0500 17.7500

n =
 1 3 3 6 6 15 16

mean(sodium)

ans =
 16.6379

72 3 UNIVARIATE STATISTICS

median(sodium)

ans =
 16.9739

v(find(n == max(n)))

ans =
 17.7500

Th e mean of the data is 16.6379, the median is 16.9739 and the mode is
17.7500. We now introduce a single, very low value of 7.0 wt% in addition to
the 50 measurements contained in the original data set.

sodium(51,1) = 7.0;

h = histogram(sodium,11)
v = h.BinWidth * 0.5 + h.BinEdges(1:end-1)
n = h.Values

v =
 Columns 1 through 4
 7.5500 8.6500 9.7500 10.8500
 Columns 5 through 8
 11.9500 13.0500 14.1500 15.2500
 Columns 9 through 11
 16.3500 17.4500 18.5500

n =
 Columns 1 through 8
 1 0 0 0 0 1 3 8
 Columns 9 through 11
 9 27 2

Th e histogram of this data set using a larger number of classes illustrates
the distortion produced in the frequency distribution by this single outlier,
showing several empty classes. Th e infl uence of this outlier on the sample
statistics is also substantial.

mean(sodium)

ans =
 16.4490

median(sodium)

ans =
 16.9722

v(find(n == max(n)))

ans =
 17.4500

3.3 EXAMPLES OF EMPIRICAL DISTRIBUTIONS 73

Th e most signifi cant change observed is in the mean (16.4490), which is
substantially lower due to the presence of the outlier. Th is example clearly
demonstrates the sensitivity of the mean to outliers. In contrast, the median
of 16.9722 is relatively unaff ected.

 3.4 Theoretical Distributions

We have now described the empirical frequency distribution of our sample.
A histogram is a convenient way to depict the frequency distribution of the
variable x. If we sample the variable suffi ciently oft en and the output ranges
are narrow, we obtain a very smooth version of the histogram. An infi nite
number of measurements N→∞ and an infi nitely small class width produce
the random variable’s probability density function (PDF). Th e probability
distribution density f(x) defi nes the probability that the variable has a value
equal to x. Th e integral of f(x) is normalized to unity, i.e., the total number of
observations is one. Th e cumulative distribution function (CDF) is the sum
of the frequencies of a discrete PDF or the integral of a continuous PDF. Th e
cumulative distribution function F(x) is the probability that the variable will
have a value less than or equal to x.

As a next step, we need to fi nd appropriate theoretical distributions that
fi t the empirical distributions described in the previous section. Th is section
therefore introduces the most important theoretical distributions and
describes their application.

 Uniform Distribution

A uniform or rectangular distribution is a distribution that has a constant
probability (Fig. 3.4). Th e corresponding probability density function is

where the random variable x has any of N possible values. Th e cumulative
distribution function is

Th e probability density function is normalized to unity

74 3 UNIVARIATE STATISTICS

Fig. 3.4 a Probability density function f(x), and b cumulative distribution function F(x),
of a uniform distribution with N=6. Th e 6 discrete values of the variable x have the same
probability of 1/6.

a b

i.e., the sum of all probabilities is one. Th e maximum value of the cumulative
distribution function is therefore one.

An example is a rolling die with N=6 faces. A discrete variable such as the
faces of a die can only take a countable number of values x. Th e probability
for each face is 1/6. Th e probability density function of this distribution is

Th e corresponding cumulative distribution function is

where x takes only discrete values, x=1,2,…,6.

 Binomial or Bernoulli Distribution

A binomial or Bernoulli distribution, named aft er the Swiss scientist Jakob
Bernoulli (1654–1705), gives the discrete probability of x successes out of
N trials, with a probability p of success in any given trial (Fig. 3.5). Th e
probability density function of a binomial distribution is

3.4 THEORETICAL DISTRIBUTIONS 75

Fig. 3.5 Probability density function f(x) of a binomial distribution, which gives the probability
p of x successes out of N=6 trials, with probability a p=0.1 and b p=0.3 of success in any given
trial.

a b

Th e cumulative distribution function is

where

Th e binomial distribution has two parameters N and p. An example for the
application of this distribution is to determine the likely outcome of drilling
for oil. Let us assume that the probability of drilling success is 0.1 or 10%.
Th e probability of x=3 successful wells out of a total number of N=10 wells is

Th e probability of exactly 3 successful wells out of 10 trials is therefore 6%
in this example.

76 3 UNIVARIATE STATISTICS

Fig. 3.6 Probability density function f(x) of a Poisson distribution with diff erent values for λ:
a λ=0.5, and b λ=2.

 Poisson Distribution

When the number of trials is N→∞ and the success probability is p→0,
the binomial distribution approaches a Poisson distribution with a single
parameter λ=Np (Fig. 3.6) (Poisson 1837). Th is works well for N>100 and
p<0.05 (or 5%). We therefore use the Poisson distribution for processes
characterized by extremely low occurrence, e.g., earthquakes, volcanic
eruptions, storms and fl oods. Th e probability density function is

and the cumulative distribution function is

Th e single parameter λ describes both the mean and the variance of this
distribution.

 Normal or Gaussian Distribution

When p=0.5 (symmetric, no skew) and N→∞, the binomial distribution
approaches a normal or Gaussian distribution defi ned by the mean μ and
standard deviation σ (Fig. 3.7). Th e probability density function of a normal

a b

3.4 THEORETICAL DISTRIBUTIONS 77

Fig. 3.7 a Probability density function f(x), and b cumulative distribution function F(x), of a
Gaussian or normal distribution with a mean μ=3 and various values for standard deviation σ.

distribution is

and the cumulative distribution function is

Th e normal distribution is therefore used when the mean is both the most
frequent and the most likely value. Th e probability of deviations is equal in
either direction and decreases with increasing distance from the mean.

Th e standard normal distribution is a special member of the normal
distribution family that has a mean of zero and a standard deviation of one.
We can transform the equation for a normal distribution by substituting
z=(x–μ)/σ. Th e probability density function of this distribution is

Th is defi nition of the normal distribution is oft en called the z distribution.

a b

78 3 UNIVARIATE STATISTICS

Fig. 3.8 a Probability density function f(x), and b cumulative distribution function F(x), of a
logarithmic normal distribution with a mean μ=0 and with various values for σ.

 Logarithmic Normal or Log-Normal Distribution

Th e logarithmic normal or log-normal distribution is used when the data have
a lower limit, e.g., mean-annual precipitation or the frequency of earthquakes
(Fig. 3.8). In such cases, distributions are usually characterized by signifi cant
skewness, which is best described by a logarithmic normal distribution. Th e
probability density function of this distribution is

and the cumulative distribution function is

where x>0. Th e distribution can be described by two parameters: the mean
μ and the standard deviation σ. Th e formulas for the mean and the standard
deviation, however, are diff erent from the ones used for normal distributions.
In practice, the values of x are logarithmized, the mean and the standard
deviation are computed using the formulas for a normal distribution, and
the empirical distribution is then compared with a normal distribution.

a b

3.4 THEORETICAL DISTRIBUTIONS 79

Fig. 3.9 a Probability density function f(x), and b cumulative distribution function F(x), of a
Student’s t distribution with two diff erent values for Φ.

 Student’s t Distribution

Th e Student’s t distribution was fi rst introduced by William Gosset (1876–
1937) who needed a distribution for small samples (Fig. 3.9). Gosset was
an employee of the Irish Guinness Brewery and was not allowed to publish
research results. For that reason he published his t distribution under the
pseudonym Student (Student 1908). Th e probability density function is

where Γ is the Gamma function

which can be written as

if x>0. Th e single parameter Φ of the t distribution is the number of degrees

a b

80 3 UNIVARIATE STATISTICS

Fig. 3.10 a Probability density function f(x), and b cumulative distribution function F(x), of a
Fisher’s F distribution with diff erent values for Φ1 and Φ2.

of freedom. In the analysis of univariate data this distribution has n–1
degrees of freedom, where n is the sample size. As Φ→∞, the t distribution
converges towards the standard normal distribution. Since the t distribution
approaches the normal distribution for Φ>30, it is rarely used for distribution
fi tting. However, the t distribution is used for hypothesis testing using the
t-test (Section 3.7).

 Fisher’s F Distribution

Th e F distribution was named aft er the statistician Sir Ronald Fisher (1890–
1962). It is used for hypothesis testing using the F-test (Section 3.8). Th e F
distribution has a relatively complex probability density function (Fig. 3.10):

where x>0 and Γ is again the Gamma function. Th e two parameters Φ1 and
Φ2 are the numbers of degrees of freedom.

 χ2 or Chi-Squared Distribution

Th e χ2 distribution was introduced by Friedrich Helmert (1876) and Karl
Pearson (1900). It is not used for fi tting a distribution but has important
applications in statistical hypothesis testing using the χ2-test (Section 3.9).

a b

3.4 THEORETICAL DISTRIBUTIONS 81

Movie
3.1

Fig. 3.11 a Probability density function f(x), and b cumulative distribution function F(x), of a
χ2 distribution with diff erent values for Φ.

Th e probability density function of the χ2 distribution is

where x>0, otherwise f(x)=0; Γ is again the Gamma function. Once again, Φ
is the number of degrees of freedom (Fig. 3.11).

 3.5 Examples of Theoretical Distributions

Th e function randtool is a tool for simulating discrete data sets with statistics
similar to our data set. Th is function creates a histogram of random numbers
from the distributions in the Statistics Toolbox (MathWorks 2014). Th e
random numbers that have been generated by using this tool can then be
exported into the workspace. We start the graphical user interface (GUI) of
the function by typing

randtool

aft er the prompt. We can now create a data set similar to the one in the fi le
organicmatter_one.txt. Th e 60 measurements have a mean of 12.3448 wt%
and a standard deviation of 1.1660 wt%. Th e GUI uses Mu for μ (the mean
of a population) and Sigma for σ (the standard deviation). Aft er choosing
Normal for a Gaussian distribution and 60 for the number of samples, we get a
histogram similar to the one in the fi rst example (Section 3.3). Th is synthetic
distribution based on 60 measurements represents a rough estimate of the

a b

82 3 UNIVARIATE STATISTICS

Movie
3.2

true normal distribution. If we increase the sample size the histogram looks
much more like a true Gaussian distribution.

Instead of simulating discrete distributions we can use the probability
density function (PDF) or the cumulative distribution function (CDF) to
compute a theoretical distribution. MATLAB also provides a GUI-based
function for generating PDFs and CDFs with a specifi c statistic, which is
called disttool.

disttool

We choose Normal as the distribution and PDF as the function type, and then
defi ne the mean as mu=12.3448 and the standard deviation as sigma=1.1660.
Although the function disttool is GUI-based, it uses non-GUI functions
such as normpdf and normcdf to calculate the probability density function
and the cumulative distribution function. Th e MATLAB Help gives an
overview of the available theoretical distributions. As an example we can use
the functions normpdf(x,mu,sigma) and normcdf(x,mu,sigma) to compute the
PDF and CDF of a Gaussian distribution with mu=12.3448 and sigma=1.1660,
evaluated for the values in x, to compare the results with those from our
sample data set.

clear

mu = 12.3448;
sigma = 1.1660;

x = 5 : 0.001 : 20;
pdf = normpdf(x,mu,sigma);
cdf = normcdf(x,mu,sigma);
plot(x,pdf,x,cdf)

We can use these functions to familiarize ourselves with the properties
of distributions. Th is will be important when we deal with the testing of
hypotheses in the following sections. Th e test statistics used there follow the
theoretical frequency distributions introduced in the previous sections of
this chapter. In particular, the integral (or in the discrete case, the sum) of the
theoretical distribution within a certain range a≤x≤b is of great importance,
as it helps in calculating the probability that a measurement will fall within
this range.

As an example we can calculate the probability that a measurement
will fall within the range of μ-σ≤x≤μ+σ, where μ is the mean and σ is the
standard deviation of a Gaussian distribution. Using the PDF of the Gaussian
distribution with mu=12.3448 and sigma=1.1660, we fi nd

pdf = pdf/sum(pdf);

3.5 EXAMPLES OF THEORETICAL DISTRIBUTIONS 83

sum(pdf(find(x>mu-sigma,1,'first'):find(x<mu+sigma,1,'last')))

which yields

ans =
 0.6827

or ~68% aft er normalizing the PDF to unity. Th e expression find(x>mu-
sigma,1,'first') returns the fi rst index of x where x is larger than mu-sigma.
Similarly, find(x<mu+sigma,1,'last') returns the last index of x where x is
smaller than mu+sigma. Using

sum(pdf(find(x>mu-sigma):find(x<mu+sigma))

instead yields

ans =
 0

since the value of mu-sigma (11.1788) falls between two values of x, 11.178
and 11.179, similar to the value of mu-sigma (13.5108) falling between 13.510
and 13.511. Both, find(x==mu-sigma) and find(x==mu+sigma) return an empty
matrix and hence the sum of the μ-σ≤x≤μ+σ range is zero. Alternatively, we
can calculate the probability of the –σ≤x≤+σ range from the CDF by typing

cdf(find(x<mu+sigma,1,'last'))-cdf(find(x>mu-sigma,1,'first'))

which yields about the same probability of

ans =
 0.6825

or ~68%. Again,

cdf(find(x==mu+sigma))-cdf(find(x==mu-sigma))

yields no result

ans =
 Empty matrix: 1-by-0

for the same reason as before. Conversely, we can also calculate the x-values
of the μ±σ range of our PDF using the inverse of the cumulative normal
distribution function with norminv(p,mu,sigma) by typing

norminv((1-0.6827)/2,mu,sigma)
norminv(1-(1-0.6827)/2,mu,sigma)

which yields

84 3 UNIVARIATE STATISTICS

ans =
 11.1788
ans =
 13.5108

Here, the values for p are calculated from the complement of ~68%, which
is ~32%, halved on both tails of the Gaussian distribution, e.g., (1–0.6827)/2
and 1–(1–0.6827)/2.

Th e standard deviation σ of the Gaussian distribution is important for
the defi nition of confi dence intervals. In many examples, however, the
confi dence of one sigma (μ±1σ) or ~68% that the true value falls within
the μ±1σ range is not suffi cient and higher confi dence intervals such as two
sigma (μ±2σ) and three sigma (μ±3σ) intervals are therefore also used. We
can calculate the corresponding probabilities that the true value falls within
the μ±2σ range and the μ±3σ range by typing

sum(pdf(find(x>mu-2*sigma,1,'first'):find(x<mu+2*sigma,1,'last')))
sum(pdf(find(x>mu-3*sigma,1,'first'):find(x<mu+3*sigma,1,'last')))

which yields

ans =
 0.9545
ans =
 0.9973

or ~95% and ~99%. Again, using norminv we can calculate the upper and
lower bounds of the two sigma (μ±2σ) range

norminv(0.05/2,mu,sigma)
norminv(1-0.05/2,mu,sigma)

which yields

ans =
 10.0595
ans =
 14.6301

and the three sigma (μ±3σ) range

norminv(0.01/2,mu,sigma)
norminv(1-0.01/2,mu,sigma)

which yields

ans =
 9.3414
ans =
 15.3482

3.5 EXAMPLES OF THEORETICAL DISTRIBUTIONS 85

Instead of using normpdf and normcdf, we can use the general function makedist
to create a probability distribution object for any type of distribution. As
an example we create a probability distribution object for a Gaussian
distribution by typing

clear

mu = 12.3448;
sigma = 1.1660;

pd = makedist('normal',mu,sigma)

which yields

pd =
 NormalDistribution

 Normal distribution
 mu = 12.3448
 sigma = 1.166

When we type whos we can then see that we have created an object with name
pd and class prob.NormalDistribution. Using this object we can determine the
μ±1σ range using the probabilities (1–0.6827)/2 and 1–(1–0.6827)/2 with the
inverse cumulative distribution function icdf of the probability distribution
object pd:

y = icdf(pd,[(1-0.6827)/2,1-(1-0.6827)/2])

which yields

y =
 11.1788 13.5108

We can calculate the μ±2σ and μ±3σ ranges in a similar manner. Th e function
normspec

p = normspec(y,mu,sigma,'inside')

which yields

p =
 0.6827

plots the PDF and shades the region inside the μ±1σ range (Fig. 3.12).

86 3 UNIVARIATE STATISTICS

Fig. 3.12 Plot of a standard normal distribution between specifi ed limits. As an example, the
shaded area displays the μ±σ range of a Gaussian distribution with a mean μ=12.3448 and a
standard deviation σ=1.1660.

 3.6 Hypothesis Testing

Th e remaining sections in this chapter are concerned with methods used to
draw conclusions from the statistical sample that can then be applied to the
larger population of interest (hypothesis testing). All hypothesis tests share the
same concept and terminology. Th e null hypothesis is an assertion about the
population describing the absence of a statistically signifi cant characteristic
or eff ect, whereas an alternative hypothesis is a contrasting assertion. Th e
p-value of a hypothesis test is the probability, under the null hypothesis, of
observing larger values for the test statistic than those calculated from the
sample. Th e signifi cance level α is the threshold of probability that controls
the outcome of the tests. If the p-value is smaller than α, the null hypothesis
can be rejected; the outcome of the test is regarded as signifi cant if p<0.05, or
highly signifi cant if p<0.01.

A hypothesis test can be performed either as a one-tailed (one-sided) or
two-tailed (two-sided) test. Th e term tail derives from the tailing off the data
to the far left or far right of a probability density function as, for instance, in
the standard normal distribution used in the Mann-Whitney and Ansari-
Bradley tests (Sections 3.11 and 3.12). As an example, the Mann-Whitney
test compares the medians of two data sets. Th e one-tailed Mann-Whitney
test is used to test against the alternative hypothesis that the median of
the fi rst sample is either smaller or larger than the median of the second
sample at a signifi cance level of 5% (or 0.05). Th e two-tailed Mann-Whitney
test is used when the medians are not equal at a 5% signifi cance level, i.e.,
when it makes no diff erence which of the medians is larger. In this case, the

3.6 HYPOTHESIS TESTING 87

Fig. 3.13 Plot of a standard normal distribution with a one, or b two, critical regions shown as
shaded areas that contain a total of 5% of the area under the curve.

signifi cance level is halved, i.e., 2.5% is used instead of 5%.
We can display the standard normal distribution for the one-tailed test by

typing

clear

pd = makedist('normal',0,1)
y = icdf(pd,[0,.95]);
[p,h] = normspec(y,0,1,'outside');

and obtain a plot with one blue tail to the right, with the 5% area shaded (Fig.
3.13 a). Similarly, we can display the standard normal distribution for the
two-tailed test by typing

clear

a

b

88 3 UNIVARIATE STATISTICS

pd = makedist('normal',0,1)
y = icdf(pd,[.025,.975])
[p,h] = normspec(y,0,1,'outside');

and obtain a plot with two blue tails, one to the left and one to the right, with
the 2.5% areas shaded (Fig. 3.13 b).

Note that we cannot prove the null hypothesis, in other words not guilty
is not the same as innocent. In practice, we design hypotheses based on our
data, test them, and then continue to work with those found to be true, those
we could not show to be false. Th e inherent possibility to prove a hypothesis
to be false is therefore an important requirement for our hypotheses.

Th e next sections introduce the most important hypothesis tests for earth
science applications: the two-sample t-test to compare the means of two data
sets, the two-sample F-test to compare the variances of two data sets, and the
χ2-test and Kolmogorov-Smirnov test to compare distributions (Sections 3.7
to 3.10). Th e Mann-Whitney and Ansari-Bradley tests are alternatives to the
t-test and F-test for comparing the medians and dispersions of two data sets
without requiring a normality assumption for the underlying population
(Sections 3.11 and 3.12). Th e fi nal section introduces methods that can be
used to fi t distributions to our data sets (Section 3.13).

 3.7 The t-Test

Th e Student’s t-test by William Sealy Gosset (Student 1908) compares
the means of two distributions. Th e one-sample t-test is used to test the
hypothesis that the mean of a Gaussian-distributed population has a value
specifi ed in the null hypothesis. Th e two-sample t-test is employed to test the
hypothesis that the means of two Gaussian distributions are identical. In the
following text the two-sample t-test is introduced to demonstrate hypothesis
testing. Let us assume that two independent sets of na and nb measurements
have been carried out on the same object, for instance measurements on two
sets of rock samples taken from two separate outcrops. Th e t-test can be used
to determine whether both samples come from the same population, e.g.,
the same lithologic unit (null hypothesis) or from two diff erent populations
(alternative hypothesis). Both sample distributions must be Gaussian and the
variances for the two sets of measurements should be similar. Th e appropriate
test statistic for the diff erence between the two means is then

3.7 THE T-TEST 89

where na and nb are the sample sizes, and sa
2 and sb

2 are the variances of the
two samples a and b. Th e null hypothesis can be rejected if the measured
t-value is higher than the critical t-value, which depends on the number of
degrees of freedom Φ=na+nb–2 and the signifi cance level α. Th e one-tailed
test is used to test against the alternative hypothesis that the mean of the
fi rst sample is either smaller or larger than the mean of the second sample
at a signifi cance level of 5% (or 0.05). Th e one-tailed test would require the
modifi cation of the above equation by replacing the absolute value of the
diff erence between the means with the actual diff erence between the means.
Th e two-tailed t-test is used when the means are not equal at a 5% signifi cance
level, i.e., when it makes no diff erence which of the means is larger. In this
case, the signifi cance level is halved, i.e., 2.5% is used to compute the critical
t-value.

We can now load two example data sets from two independent series
of measurements. Th e fi rst example shows the performance of the two-
sample t-test on two distributions with means of 25.5 and 25.3 and standard
deviations of 1.3 and 1.5, respectively.

clear

load('organicmatter_two.mat');

Th e binary fi le organicmatter_two.mat contains two data sets corg1 and corg2.
First, we plot both histograms in a single graph.

histogram(corg1,'FaceColor','b'), hold on
histogram(corg2,'FaceColor','r'), hold off

We then compute the sample sizes, the means and the standard deviations.

na = length(corg1); nb = length(corg2);
ma = mean(corg1); mb = mean(corg2);
sa = std(corg1); sb = std(corg2);

Next, we calculate the t-value using the translation of the equation for the
t-test statistic into MATLAB code.

tcalc = abs((ma-mb))/sqrt(((na+nb)/(na*nb)) * ...
 (((na-1)*sa^2+(nb-1)*sb^2)/(na+nb-2)))

tcalc =
 0.7279

We can now compare the calculated tcalc value of 0.7279 with the critical
tcrit value. Th is can be accomplished using the function tinv, which yields
the inverse of the t distribution function with na-nb-2 degrees of freedom at

90 3 UNIVARIATE STATISTICS

the 5% signifi cance level. Th is is a two-sample t-test, i.e., the means are not
equal. Computing the two-tailed critical tcrit value by entering 1–0.05/2
yields the upper (positive) tcrit value, which we compare with the absolute
value of the diff erence between the means.

tcrit = tinv(1-0.05/2,na+nb-2)

tcrit =
 1.9803

Since the tcalc value calculated from the data is smaller than the critical
tcrit value, we cannot reject the null hypothesis without another cause. We
conclude therefore that the two means are identical at a 5% signifi cance
level. Alternatively, we can apply the function ttest2(x,y,alpha) to the two
independent samples corg1 and corg2 at an alpha=0.05 or a 5% signifi cance
level. Th e command

[h,p,ci,stats] = ttest2(corg1,corg2,0.05)

yields

h =
 0

p =
 0.4681

ci =
 -0.3028
 0.6547

stats =
 tstat: 0.7279
 df: 118
 sd: 1.3241

Th e result h=0 means that we cannot reject the null hypothesis without another
cause at a 5% signifi cance level. Th e p-value of 0.4681 or ~47% (which is
much greater than the signifi cance level of 0.05 or 5%) suggests that the
chances of observing more extreme t-values than the values in this example
from similar experiments would be 4,681 in 10,000. Th e 95% confi dence
interval on the mean is [–0.3028,0.6547], which includes the theoretical
(and hypothesized) diff erence between the means of 25.5–25.3=0.2.

Th e second synthetic example shows the performance of the two-sample
t-test in an example with very diff erent means of 24.3 and 25.5, while the
standard deviations are again 1.3 and 1.5, respectively.

clear

3.7 THE T-TEST 91

load('organicmatter_three.mat');

Th is fi le again contains two data sets corg1 and corg2. As before, we plot both
histograms in a single graph.

histogram(corg1,'FaceColor','b'), hold on
histogram(corg2,'FaceColor','r'), hold off

We then compute the sample sizes, the means and the standard deviations.

na = length(corg1); nb = length(corg2);
ma = mean(corg1); mb = mean(corg2);
sa = std(corg1); sb = std(corg2);

Next, we calculate the t-value using the translation of the equation for the
t-test statistic into MATLAB code.

tcalc = abs((ma-mb))/sqrt(((na+nb)/(na*nb)) * ...
 (((na-1)*sa^2+(nb-1)*sb^2)/(na+nb-2)))

tcalc =
 4.7364

We can now compare the calculated tcalc value of 4.7364 with the critical
tcrit value. Again, this can be accomplished using the function tinv at a 5%
signifi cance level. Th e function tinv yields the inverse of the t distribution
function with na-nb-2 degrees of freedom at the 5% signifi cance level. Th is is
again a two-sample t-test, i.e., the means are not equal. Computing the two-
tailed critical tcrit value by entering 1–0.05/2 yields the upper (positive)
tcrit value that we compare with the absolute value of the diff erence between
the means.

tcrit = tinv(1-0.05/2,na+nb-2)

tcrit =
 1.9803

Since the tcalc value calculated from the data is now larger than the critical
tcrit value, we can reject the null hypothesis and conclude that the means
are not identical at a 5% signifi cance level. Alternatively, we can apply the
function ttest2(x,y,alpha) to the two independent samples corg1 and corg2
at an alpha=0.05 or a 5% signifi cance level. Th e command

[h,p,ci,stats] = ttest2(corg1,corg2,0.05)

yields

h =
 1

92 3 UNIVARIATE STATISTICS

p =
 6.1183e-06

ci =
 0.7011
 1.7086

stats =
 tstat: 4.7364
 df: 118
 sd: 1.3933

Th e result h=1 suggests that we can reject the null hypothesis. Th e p-value
is extremely low and very close to zero suggesting that the null hypothesis
is very unlikely to be true. Th e 95% confi dence interval on the mean is
[0.7011,1.7086], which again includes the theoretical diff erence between the
means of 25.5–24.3=1.2.

 3.8 The F-Test

Th e two-sample F-test by Snedecor and Cochran (1989) compares the
variances sa

2 and sb
2 of two distributions, where sa

2>sb
2. An example is the

comparison of the natural heterogeneity of two samples based on replicated
measurements. Th e sample sizes na and nb should be above 30. Both the
sample and population distributions must be Gaussian. Th e appropriate test
statistic with which to compare the variances is then

Th e two variances are signifi cantly diff erent (i.e., we can reject the null
hypothesis without another cause) if the measured F value is higher than
the critical F value, which will in turn depend on the number of degrees of
freedom Φa=na–1 and Φb=nb–1, respectively, and the signifi cance level α. Th e
one-sample F-test, in contrast, virtually performs a χ2-test of the hypothesis
that the data come from a normal distribution with a specifi c variance (see
Section 3.9). We fi rst apply the two-sample F-test to two distributions with
very similar standard deviations of 1.2550 and 1.2097.

clear

load('organicmatter_four.mat');

Th e quantity F is the quotient of the larger variance divided by the smaller
variance. We can now compute the standard deviations, where

3.8 THE F-TEST 93

s1 = std(corg1)
s2 = std(corg2)

which yields

s1 =
 1.2550

s2 =
 1.2097

Th e F distribution has two parameters, df1 and df2, which represent the
number of observations in each of the distributions reduced by one, where

df1 = length(corg1) - 1
df2 = length(corg2) - 1

which yields

df1 =
 59

df2 =
 59

Next we sort the standard deviations by their absolute values,

if s1 > s2
 slarger = s1
 ssmaller = s2
else
 slarger = s2
 ssmaller = s1
end

and get

slarger =
 1.2550

ssmaller =
 1.2097

We now compare the calculated F value with the critical F value. Th is can be
accomplished using the function finv at a signifi cance level of 0.05 (or 5%).
Th e function finv returns the inverse of the F distribution function with df1
and df2 degrees of freedom, at the 5% signifi cance level. Th is is a two-tailed
test and we must therefore divide the p-value of 0.05 by two. Typing

Fcalc = slarger^2 / ssmaller^2
Fcrit = finv(1-0.05/2,df1,df2)

94 3 UNIVARIATE STATISTICS

yields

Fcalc =
 1.0762

Fcrit =
 1.6741

Since the F value calculated from the data is smaller than the critical F
value, we cannot reject the null hypothesis without another cause. We
conclude therefore that the variances are identical at a 5% signifi cance level.
Alternatively, we can apply the function vartest2(x,y,alpha) to the two
independent samples corg1 and corg2 at an alpha=0.05 or a 5% signifi cance
level. MATLAB also provides a one-sample variance test vartest(x,variance)
analogous to the one-sample t-test discussed in the previous section. Th e
one-sample variance test, however, virtually performs a χ2-test of the
hypothesis that the data in the vector x come from a normal distribution
with a variance defi ned by variance. Th e χ2-test is introduced in the next
section. Th e command

[h,p,ci,stats] = vartest2(corg1,corg2,0.05)

yields

h =
 0

p =
 0.7787

ci =
 0.6429
 1.8018

stats =
 fstat: 1.0762
 df1: 59
 df2: 59

Th e result h=0 means that we cannot reject the null hypothesis without
another cause at a 5% signifi cance level. Th e p-value of 0.7787 or ~78%
(which is much greater than the signifi cance level) means that the chances
of observing more extreme values of F than the value in this example from
similar experiments would be 7,787 in 10,000. A 95% confi dence interval
is [–0.6429,1.8018], which includes the theoretical (and hypothesized) ratio
var(corg1)/var(corg2) of 1.25502/1.20972=1.0762.

We now apply this test to two distributions with very diff erent standard
deviations, 1.8799 and 1.2939.

3.8 THE F-TEST 95

clear

load('organicmatter_five.mat');

We again compare the calculated Fcalc value with the critical Fcrit value at a
5% signifi cance level, using the function finv to compute Fcrit.

s1 = std(corg1);
s2 = std(corg2);

df1 = length(corg1) - 1;
df2 = length(corg2) - 1;

if s1 > s2
 slarger = s1;
 ssmaller = s2;
else
 slarger = s2;
 ssmaller = s1;
end

Fcalc = slarger^2 / ssmaller^2

Fcrit = finv(1-0.05/2,df1,df2)

and get

Fcalc =
 3.4967

Fcrit =
 1.6741

Since the Fcalc value calculated from the data is now larger than the critical
Fcrit value, we can reject the null hypothesis. Th e variances are therefore
diff erent at a 5% signifi cance level.

Alternatively, we can apply the function vartest2(x,y,alpha), performing
a two-sample F-test on the two independent samples corg1 and corg2 at an
alpha=0.05 or a 5% signifi cance level.

[h,p,ci,stats] = vartest2(corg1,corg2,0.05)

yields

h =
 1

p =
 3.4153e-06

ci =
 2.0887

96 3 UNIVARIATE STATISTICS

 5.8539

stats =
 fstat: 3.4967
 df1: 59
 df2: 59

Th e result h=1 suggests that we can reject the null hypothesis. Th e p-value is
extremely low and very close to zero suggesting that the null hypothesis is
very unlikely. Th e 95% confi dence interval is [2.0887,5.8539], which again in-
cludes the theoretical ratio var(corg1)/var(corg2) of 5.07172/1.45042=3.4967.

 3.9 The χ2-Test

Th e χ2-test introduced by Karl Pearson (1900) involves the comparison of
distributions, allowing two distributions to be tested for derivation from the
same population. Th is test is independent of the distribution that is being
used and can therefore be used to test the hypothesis that the observations
were drawn from a specifi c theoretical distribution.

Let us assume that we have a data set that consists of multiple chemical
measurements from a sedimentary unit. We could use the χ2-test to test the
null hypothesis that these measurements can be described by a Gaussian
distribution with a typical central value and a random dispersion around
it. Th e n data are grouped in K classes, where n should be above 30. Th e
frequencies within the classes Ok should not be lower than four and should
certainly never be zero. Th e appropriate test statistic is then

where Ek are the frequencies expected from the theoretical distribution (Fig.
3.14). Th e null hypothesis can be rejected if the measured χ2 value is higher
than the critical χ2 value, which depends on the number of degrees of freedom
Φ=K–Z, where K is the number of classes and Z is the number of parameters
describing the theoretical distribution plus the number of variables (for
instance, Z=2+1 for the mean and the variance from a Gaussian distribution
of a data set for a single variable, and Z=1+1 for a Poisson distribution for a
single variable).

As an example we can test the hypothesis that our organic carbon
measurements contained in organicmatter_one.txt follow a Gaussian
distribution. We must fi rst load the data into the workspace and compute the
frequency distribution n_obs for the data measurements using eight classes.

3.9 THE Χ2-TEST 97

Fig. 3.14 Principles of a χ2-test. Th e alternative hypothesis that the two distributions are
diff erent can be rejected if the measured χ2 is lower than the critical χ2. χ2 depends on Φ=K–Z,
where K is the number of classes and Z is the number of parameters describing the theoretical
distribution plus the number of variables. In the example the critical χ2(Φ=5, α=0.05) is
11.0705. Since the measured χ2= 5.7602 is below the critical χ2, we cannot reject the null
hypothesis. In our example we can conclude that the sample distribution is not signifi cantly
diff erent from a Gaussian distribution.

clear

corg = load('organicmatter_one.txt');

h = histogram(corg,8);
v = h.BinWidth * 0.5 + h.BinEdges(1:end-1);
n_obs = h.Values;

We then use the function normpdf to create the expected frequency distribution
n_exp with the mean and standard deviation of the data in corg.

n_exp = normpdf(v,mean(corg),std(corg));

Th e data need to be scaled so that they are similar to the original data set.

n_exp = n_exp / sum(n_exp);
n_exp = sum(n_obs) * n_exp;

Th e fi rst command normalizes the observed frequencies n_obs to a total of
one. Th e second command scales the expected frequencies n_exp to the sum
of n_obs. We can now display both histograms for comparison.

subplot(1,2,1), bar(v,n_obs,'r')
subplot(1,2,2), bar(v,n_exp,'b')

An alternative way of plotting the data in corg is to use a normal probability
plot.

98 3 UNIVARIATE STATISTICS

normplot(corg)

Th e function normplot plots the data in corg with the + symbol superimposed
by a line joining the fi rst and third quartiles of each column of corg, which
is a robust linear fi t of the sample order statistics. Th e line is extrapolated in
each direction beyond the quartiles. If the data in corg are indeed normally-
distributed, they will all fall on the line. In our example the data seem to
agree well with the line except for the tails of the normal distribution.

Visual inspection of these plots reveals that the empirical distribution is
similar to the theoretical distribution. It is, however, advisable to use a more
quantitative approach to test the hypothesis of similarity. Th e χ2-test explores
the squared diff erences between the observed and expected frequencies.
Th e quantity chi2calc is the sum of the squared diff erences divided by the
expected frequencies.

chi2calc = sum((n_obs - n_exp).^2 ./ n_exp)

chi2calc =
 5.7602

Th e critical chi2crit value can be calculated using chi2inv value. Th e χ2-test
requires the number of degrees of freedom Φ. In our example we test the
hypothesis that the data have a Gaussian distribution, i.e., we estimate the
two parameters μ and σ. Th e number of degrees of freedom is Φ=8–(2+1)=5.
We can now test our hypothesis at a 5% signifi cance level. Th e function
chi2inv computes the inverse of the χ2 CDF with parameters specifi ed by Φ
for the corresponding probabilities in p.

chi2crit = chi2inv(1-0.05,5)

chi2crit =
 11.0705

Since the critical chi2crit value of 11.0705 is well above the measured
chi2calc value of 5.7602, we cannot reject the null hypothesis without
another cause. We can therefore conclude that our data follow a Gaussian
distribution. Alternatively, we can apply the function chi2gof(x) to the
sample. Th e command

[h,p] = chi2gof(corg)

yields

h =
 0

3.9 THE Χ2-TEST 99

p =
 0.6244

stats =
 chi2stat: 2.6136
 df: 4
 edges: [1x8 double]
 O: [8 8 5 10 10 9 10]
 E: [1x7 double]

Th e function automatically bins the data into seven classes. Th e result h=0
means that we cannot reject the null hypothesis without another cause at a
5% signifi cance level. Th e p-value of 0.6244 or ~62% (which is much greater
than the signifi cance level) means that the chances of observing either the
same result or a more extreme result from similar experiments in which
the null hypothesis is true would be 6,244 in 10,000. Th e structure array
stats contains the calculated χ2 value, which is 2.6136 and diff ers from our
result of 6.2489 due to the diff erent number of classes. Th e array stats also
contains the number of degrees of freedom Φ=7–(2+1)=4, the eight edges
of the seven classes automatically defi ned by the function chi2gof, and the
observed and expected frequencies of the distribution.

 3.10 The Kolmogorov-Smirnov Test

Th e Kolmogorov-Smirnov (K-S) test introduced by Andrei N. Kolmogorow
and Nikolai W. Smirnov is similar to the χ2-test in that it also involves the
comparison of distributions, allowing two distributions to be tested for
derivation from the same population (Kolmogorow 1933, Smirnov 1939).
Th is test is independent of the type of distribution that is being used and can
therefore be used to test the hypothesis that the observations were drawn
from a specifi c theoretical distribution.

Let us again assume that we have a data set that consists of multiple
chemical measurements from a sedimentary unit. We can use the K-S test
to test the null hypothesis that these measurements can be described by a
Gaussian distribution with a typical central value (the mean) and a random
dispersion around the mean (the standard deviation). Th e appropriate test
statistic is then

where Fn(x) is the empirical distribution function of the n measurements and
F(x) is the cumulative distribution function expected from the theoretical
distribution. Th e null hypothesis can be rejected if the measured KS value is

100 3 UNIVARIATE STATISTICS

higher than the critical KS value.
As an example we can again test the hypothesis that our organic carbon

measurements contained in organicmatter_one.txt follow a Gaussian
distribution. We must fi rst load and standardize the data to have zero mean
and unit standard deviation.

clear

corg = load('organicmatter_one.txt');
corg = (corg-mean(corg))/std(corg);

We then compute the empirical distribution function cn_obs of corg evaluated
at the points x by using the function ecdf

[cn_obs,x] = ecdf(corg);

We then use the function normcdf to create the cumulative distribution
function expected from the theoretical distribution cn_exp with a mean of
zero and a standard deviation of one.

cn_exp = normcdf(x,0,1);

Th e test statistic is the maximum diff erence between the two cumulative
distribution functions cn_obs and cn_exp

kscal = max(cn_obs-normcdf(x,0,1))

which yields

kscalc =
 0.0757

We can compare the two cumulative distribution functions in a plot by typing

plot(x,cn_obs,'b'), hold on
plot(x,normcdf(x,0,1),'r')
plot(x(find((cn_obs-normcdf(x,0,1))== ...
 max(cn_obs-normcdf(x,0,1))))*ones(2,1),[0 1],'k:')

Th e vertical black line marks the location of the maximum diff erence between
the two cumulative distributions. Th e critical kscalc values are solutions of
an n-th order polynomial, which can be obtained from Table 3.1 (O’Connor
and Kleyner 2012). For sample sizes larger than 40 and a signifi cance level of
0.05 (or 5%) we calculate

kscrit = 1.36/length(corg)^0.5

which yields

3.10 THE KOLMOGOROV-SMIRNOV TEST 101

Table 3.1 Critical values of KS for the Kolmogorov-Smirnov test (O’Connor and Kleyner
2012).

kscrit =
 0.1756

Since the critical kscrit value of 0.1756 is well above the measured kscalc
value of 0.0757, we cannot reject the null hypothesis without another cause.
We can therefore conclude that our data follow a Gaussian distribution.
Alternatively, we can apply the function kstest to the sample. Typing

 Level of Signifi cance, α

N 0.10 0.05 0.02 0.01

1 0.95000 0.97500 0.99000 0.99500
2 0.77639 0.84189 0.90000 0.92929
3 0.63604 0.70760 0.78456 0.82900
4 0.56522 0.62394 0.68887 0.73424
5 0.50945 0.56328 0.62718 0.66853
6 0.46799 0.51926 0.57741 0.61661
7 0.43607 0.48342 0.53844 0.57581
8 0.40962 0.45427 0.50654 0.54179
9 0.38746 0.43001 0.47960 0.51332
10 0.36866 0.40925 0.45662 0.48893
11 0.35242 0.39122 0.43670 0.46770
12 0.33815 0.37543 0.41918 0.44905
13 0.32549 0.36143 0.40362 0.43247
14 0.31417 0.34890 0.38970 0.41762
15 0.30397 0.33760 0.37713 0.40420
16 0.29472 0.32733 0.36571 0.39201
17 0.28627 0.31796 0.35528 0.38086
18 0.27851 0.30936 0.34569 0.37062
19 0.27136 0.30143 0.33685 0.36117
20 0.26473 0.29408 0.32866 0.35241
21 0.25858 0.28724 0.32104 0.34427
22 0.25283 0.28087 0.31394 0.33666
23 0.24746 0.27490 0.30728 0.32954
24 0.24242 0.26931 0.30104 0.32286
25 0.23768 0.26404 0.29516 0.31657
26 0.23320 0.25907 0.28962 0.31064
27 0.22898 0.25438 0.28438 0.30502
28 0.22497 0.24993 0.27942 0.29971
29 0.22117 0.24571 0.27471 0.29466
30 0.21756 0.24170 0.27023 0.28987
31 0.21412 0.23788 0.26596 0.28530
32 0.21085 0.23424 0.26189 0.28094
33 0.20771 0.23076 0.25801 0.27677
34 0.20472 0.22743 0.25429 0.27279
35 0.20185 0.22425 0.26073 0.26897
36 0.19910 0.22119 0.24732 0.26532
37 0.19646 0.21826 0.24404 0.26180
38 0.19392 0.21544 0.24089 0.25843
39 0.19148 0.21273 0.23786 0.25518
40 0.18913 0.21012 0.23494 0.25205

>40 1.22/N0.5 1.36/N0.5 1.51/N0.5 1.63/N0.5

102 3 UNIVARIATE STATISTICS

[h,p,kscalc, kscrit] = kstest(corg)

yields

h =
 0

p =
 0.8562

kscalc =
 0.0757

kscrit =
 0.1723

Th e result h=0 means that we cannot reject the null hypothesis without
another cause at a 5% signifi cance level. Th e p-value of 0.8562 or ~86%
(which is much greater than the signifi cance level) means that the chances
of observing either the same result or a more extreme result from similar
experiments in which the null hypothesis is true would be 8,562 in 10,000.
Th e output variable kscalc=0.0757 corresponds to kscalc in our experiment
without using kstest. Th e output variable kscrit=1.723 diff ers slightly from
that in Table 3.1 since kstest uses a slightly more precise approximation for
the critical value for sample sizes larger than 40 from Miller (1956).

 3.11 Mann-Whitney Test

Th e Mann-Whitney test (also known as the Wilcoxon rank-sum test)
introduced by Henry B. Mann and Donald R. Whitney (1947), can be used
to determine whether two samples come from the same population, e.g.,
the same lithologic unit (null hypothesis), or from two diff erent populations
(alternative hypothesis). In contrast to the t-test, which compares the means
of Gaussian distributed data, the Mann-Whitney test compares the medians
without requiring a normality assumption for the underlying population, i.e.,
it is a non-parametric hypothesis test.

Th e test requires that the samples have similar dispersions. We fi rst combine
both sets of measurements (samples 1 and 2) and arrange them together
in ascending order. We then sum the ranks of samples 1 and 2, where the
sum of all ranks is R=n(n+1)/2 with n as the total number of measurements.
Published literature is full of diff erent versions of how to calculate the test
statistic. Here we use the version that can be found in Hedderich and Sachs
(2012, page 484):

3.11 MANN-WHITNEY TEST 103

where n1 and n2 are the sizes of samples 1 and 2, respectively, and R1 and R2
are the sums of the ranks of samples 1 and 2, respectively. Th e required test
statistic U is the smaller of the two variables U1 and U2, which we compare
with a critical U value that depends on the sample sizes n1 and n2, and on the
signifi cance level α. Alternatively, we can use the U value to calculate

if n1≥8 and n2≥8 (Mann and Whitney 1978, Hedderich and Sachs 2012, page
486). Th e null hypothesis can be rejected if the absolute measured z-value is
higher than the absolute critical z-value, which depends on the signifi cance
level α (Section 3.4).

In practice, data sets oft en contain tied values, i.e., some of the values in
the sample 1 and/or sample 2 are identical. In this case, the average ranks
of the tied values are used instead of the true ranks. Th is means that the
equation for the z-value must be corrected for tied values

where S=n1+n2, r is the number of tied values and ti is the number of
occurrences of the i-th tied value. Again, the null hypothesis can be rejected
if the absolute measured z-value is higher than the absolute critical z-value,
which depends on the signifi cance level α.

Th e MATLAB code presented here has been tested with an example
contained in the book by Hedderich and Sachs (2012, page 489). Th e example
uses the Mann-Whitney test to test whether two samples (data1 and data2),
each consisting of eight measurements with some tied values, come from
the same population (null hypothesis) or from two diff erent populations
(alternative hypothesis). We clear the workspace and defi ne two samples,

104 3 UNIVARIATE STATISTICS

each consisting of eight measurements:

clear

data1 = [5 5 8 9 13 13 13 15];
data2 = [3 3 4 5 5 8 10 16];

We concatenate the two samples horizontally and sort the measurements in
ascending order by typing

data = horzcat(data1,data2);
data = sort(data)

which yields the output

data =
 Columns 1 through 8
 3 3 4 5 5 5 5 8
 Columns 9 through 16
 8 9 10 13 13 13 15 16

autowrapping those lines that are longer than the width of the Command
Window. We then determine the number of measurements n1 and n2 in
each sample, which is eight for both of the samples in our example. Th en we
create a linearly-spaced vector L ranging from 1 to length(data).

n1 = length(data1);
n2 = length(data2);
L = 1 : length(data)

which yields

L =
 Columns 1 through 8
 1 2 3 4 5 6 7 8
 Columns 9 through 16
 9 10 11 12 13 14 15 16

We next fi nd the unique values C in the data. Th e location vectors ia and ic
help to fi nd C = data(ia) and to reconstruct data from data = C(ic).

We then search for tied values in data. Aft er we have initialized the
variables by setting them all to zero, the tied values in ic are located using
find and are then stored in dties, with the number of occurrences recorded
in nties. Having located the tied values their ranks are averaged and stored
in icf. We type

nties = 0;
dties = 0;
kties = 0;

3.11 MANN-WHITNEY TEST 105

j = 1;
for i = 1 : length(ia)
 f = find(ic==i);
 if length(f) > 1
 dties(j) = max(data(f));
 nties = nties+1;
 j = j + 1;
 end
 icf(f) = mean(L(f));
end
icf

which yields

icf =
 Columns 1 through 4
 1.5000 1.5000 3.0000 5.5000
 Columns 5 through 8
 5.5000 5.5000 5.5000 8.5000
 Columns 9 through 12
 8.5000 10.0000 11.0000 13.0000
 Columns 13 through 16
 13.0000 13.0000 15.0000 16.0000

As we can see, instead of ranks 1 and 2, the averaged ranks 1.5 and 1.5 are
used for the two duplicate values of 3 in the data set. Similarly, the averaged
rank 5.5 is used for the value of 5, which occurs four times in the data set,
instead of the ranks 4, 5, 6 and 7. Th e averaged rank 8.5 is used for the value
of 8 instead of ranks 8 and 9 and the averaged rank 13 is used for the value of
13 instead of ranks 12, 13 and 14. Instead of using the above code MATLAB
provides the function tiedrank to compute ranks adjusted for tied values:

icf = tiedrank(data);

Th e result obtained using tiedrank is icf, which is identical to that obtained
previously. Th en we count the repetitions of each tied value by typing

for i = 1 : nties
 kties(i) = sum(data == dties(i));
end

and display the values of all three variables by typing

nties
dties
kties

which yields

nties =
 4

106 3 UNIVARIATE STATISTICS

dties =
 3 5 8 13

kties =
 2 4 2 3

We see that we have four diff erent tied values (nties=4), with the actual values
stored in dties (these being the values 3, 5, 8 and 13, which occur 2, 4, 2 and 3
times in the data set, respectively). We now use ismember to locate the values
in data1 and data2 in data. Th e fi rst output from ismember for the sample in
data1 is Lia1, which contains 1 indicating that the statement that the data in
data1 are found in data is true, and the Lia1 output of ismember for the sample
in data1 contains 0 whenever data1 is not a row in data. Th e second output
from ismember is the column array locb1, which contains the lowest index
in data for each row in data1 that is also a row in data. We now collect the
corresponding ranks in icf and sum them up to R1 and R2.

[Lia1,locb1] = ismember(data1,data);
r1 = icf(locb1);
R1 = sum(r1)

[Lia2,locb2] = ismember(data2,data);
r2 = icf(locb2);
R2 = sum(r2)

which yields

R1 =
 83.5000

R2 =
 52.5000

We then calculate the test static U of the Mann-Whitney test, which is the
smaller of U1 and U2

U1 = n1*n2 + n1*(n1+1)/2 - R1
U2 = n1*n2 + n2*(n2+1)/2 - R2
U = min([U1 U2])

which yields

U1 =
 16.5000

U2 =
 47.5000

U =
 16.5000

3.11 MANN-WHITNEY TEST 107

We use U to calculate the measured z-value, corrected for tied values, by
typing

t = 0;
S = n1 + n2;
for i = 1 : nties
 t(i) = (kties(i)^3 - kties(i)) / 12;
end
T = sum(t);
zcal = abs(U - n1*n2/2) / ...
 sqrt((n1*n2/(S*(S-1))) * ((S^3-S)/12 - T))

which yields

zcalc =
 1.6473

Th is is a two-tailed Mann-Whitney test, i.e., the alternative hypothesis is
that the medians are not equal, no matter which is larger. Computing the
two-tailed critical zcrit value using the function norminv for the standard
normal distribution (with a mean of zero and a standard deviation of one) by
entering 1–0.05/2 yields the upper (positive) zcrit value, which we compare
with the calculated zcalc value

zcrit = norminv(1-0.05/2,0,1)

which yields

zcrit =
 1.9600

Since the absolute measured zcalc value is 1.6473, which is smaller than
the critical zcrit value of 1.9600, we cannot reject the null hypothesis. We
can therefore conclude that our samples come from the same population.
Alternatively, we can use the function ranksum to perform a Mann-Whitney
test on the same samples:

[p,h,stats] = ranksum(data1,data2)

which yields

P =
 0.1071

H =
 0

STATS =
 ranksum: 83.5000

108 3 UNIVARIATE STATISTICS

Th e result h=0 means that we cannot reject the null hypothesis at a 5%
signifi cance level. Th e p-value of 0.1071 or ~11% (which is larger than the
signifi cance level) means that the chances of observing either the same
result or a more extreme result, from similar experiments in which the null
hypothesis is true, would be 11 in 100.

We can use the same script to test whether the two samples in organicmatter_
two.mat come from the same lithological unit (null hypothesis) or from
two diff erent units (alternative hypothesis) without requiring a normality
assumption for the underlying population. We clear the workspace and load
the data.

clear

load('organicmatter_two.mat');

Alternatively, we can use the function ranksum to perform a Mann-Whitney
test on the same samples:

[P,H,STATS] = ranksum(corg1,corg2)

which yields

P =
 0.5906

H =
 0

STATS =

 zval: 0.5380
 ranksum: 3733

Th e result h=0 means that we cannot reject the null hypothesis at a 5%
signifi cance level without another cause. Th e p-value of 0.5906 or ~59%
(which is much larger than the signifi cance level) means that the chances
of observing either the same result or a more extreme result from similar
experiments in which the null hypothesis is true would be 5,906 in 10,000.

 3.12 The Ansari-Bradley Test

Th e Ansari-Bradley test introduced by Abdur R. Ansari and Ralph A.
Bradley (1960) can be used to determine whether two samples come from
the same distribution (null hypothesis), or whether the samples come from
distributions with the same median and shape but diff erent dispersions
(e.g., variances) (alternative hypothesis). In contrast to the F-test, which

3.12 THE ANSARI-BRADLEY TEST 109

compares the dispersions of normally-distributed data, the Ansari-Bradley
test compares dispersions without requiring a normality assumption for the
underlying population, i.e., it is a non-parametric hypothesis test.

Th e test requires that the samples have similar medians, which can be
achieved by subtracting the medians from the samples. Th e test combines
both sets of measurements (samples 1 and 2) and arranges them together
in ascending order. Th ere are diff erent ways to calculate the test statistic An.
Here we use the one given by Hedderich and Sachs (2012, page 463)

where the value of the indicator function Vi is 1 for values from sample 1
and 0 for values from sample 2. Th e test statistic is therefore equal to the
sum of the absolute values of the deviations from the mean value (n +1)/2
(Hedderich and Sachs 2012). For this the data are concatenated and sorted, as
in the Mann-Whitney test (Section 3.11), and the smallest and largest values
are then assigned rank 1, the second smallest and second largest values are
assigned rank 2, and so forth. Th e smaller An, the larger the dispersion of the
values between the two samples 1 and 2. Again, the ranking of the data may
also be corrected for tied values, as was previously carried out in the Mann-
Whitney test. For n≤20 we can fi nd the critical values for the text statistic An
in Table 1 in the open-access article by Ansari and Bradley (1960). For larger
values of n we use the standard normal distribution

with

110 3 UNIVARIATE STATISTICS

again from Hedderich and Sachs (2012, page 463). Th e null hypothesis can
be rejected if the absolute measured z-value is higher than the absolute
critical z-value, which depends on the signifi cance level α.

Our fi rst example uses the Ansari-Bradley test to test whether two samples
data1 and data2, each consisting of eight measurements, come from the same
distribution (null hypothesis), or from distributions with the same median
and shape but diff erent dispersions (alternative hypothesis). We fi rst clear the
workspace and defi ne two samples.

clear

data1 = [7 14 22 36 40 48 49 52];
data2 = [3 5 6 10 17 18 20 39];

We next subtract the medians from both data sets as the method requires the
medians to be similar.

data1 = data1 - median(data1);
data2 = data2 - median(data2);

We then concatenate the two samples horizontally and sort the measurements
in ascending order by typing

data = horzcat(data1,data2);
data = sort(data)

which yields

data =
 Columns 1 through 5
 -31.0000 -24.0000 -16.0000 -10.5000 -8.5000
 Columns 6 through 10
 -7.5000 -3.5000 -2.0000 2.0000 3.5000
 Columns 11 through 15
 4.5000 6.5000 10.0000 11.0000 14.0000
 Column 16
 25.5000

We determine the sample sizes for data1 and data2 and then calculate the size
n of the concatenated samples.

n1 = length(data1);
n2 = length(data2);
n = n1 + n2;

We then determine the positions of the measurements in data1 and data2
within the concatenated and sorted vector data using ismember. Th e function
ismember returns an array of the same size as data containing 1 (true) where
the elements of data1 are in data, or 0 (false) where they are not. We type

3.12 THE ANSARI-BRADLEY TEST 111

V1 = ismember(data,data1)
V2 = ismember(data,data2)

which yields

V1 =
 Columns 1 through 8
 1 1 1 0 0 0 0 1
 Columns 9 through 16
 1 0 0 0 1 1 1 0

V2 =
 Columns 1 through 8
 0 0 0 1 1 1 1 0
 Columns 9 through 16
 0 1 1 1 0 0 0 1

Th en we create a linearly-spaced vector L ranging from 1 to length(data).

L = 1 : length(data);

We then calculate the test static An of the Ansari-Bradley test by typing

An = sum(((n+1)/2 - abs(L - (n+1)/2)).* V1)

which yields

An =
 31

According to Table 1 in Ansari and Bradley (1960), the critical value for n1=8
and n2=8 is 45 at a signifi cance level of 5%. Alternatively, we can use the
function ansaribradley to perform the Ansari-Bradley test by typing

[h,p,stats] = ansaribradley(data1,data2)

which yields

h =
 0

p =
 0.3507

stats =
 W: 31
 Wstar: -1.0564

Th e result h=0 means that we cannot reject the null hypothesis without another
cause at a 5% signifi cance level. Th e p-value of 0.3507 or ~35% (which is
greater than the signifi cance level) means that the chances of observing

112 3 UNIVARIATE STATISTICS

either the same result or a more extreme result from similar experiments in
which the null hypothesis is true would be 3,507 in 10,000.

Th e second example demonstrates the handling of tied values in a data set
with a large sample size (>50 measurements). We create such a data set of
100 measurements by using a random number generator:

data1 = 3.4 + rand(1,100);
data2 = 4.3 + rand(1,100);

We then replace some values in data1 and data2 to introduce replicate (or
tied) values.

data1(1,50:55) = 2.5;
data2(1,25:28) = 2.5;

We fi rst subtract the medians from both data sets as the method requires the
medians to be similar.

data1 = data1 - median(data1);
data2 = data2 - median(data2);

Th e two samples are then concatenated horizontally and sorted in ascending
order by typing

data = horzcat(data1,data2);
data = sort(data);

For the Ansari-Bradley test we now use the function tiedrank with (data,0,1),
which computes the ranks from each end so that the smallest and largest
values are assigned rank 1, the next smallest and largest are assigned rank 2,
and so forth.

icf = tiedrank(data,0,1);

Th en, we calculate the test statistic of the Ansari-Bradley test, which is the
sum of the ranks of those measurements that are members of data1.

An = sum(icf(ismember(data,data1)))

which yields

An =
 4903

Alternatively, we can again use the equation introduced above by typing

n1 = length(data1);
n2 = length(data2);

3.12 THE ANSARI-BRADLEY TEST 113

n = n1 + n2;

V1 = ismember(data,data1)
V2 = ismember(data,data2)

An = sum(((n+1)/2 - abs(icf - (n+1)/2)).* V1)

which also yields

An =
 4903

Finally, we calculate the z-value using the equations introduced above by
typing

if mod(n,2) == 0
 display('n is even')
 muAn = 0.25 * n1 * (n+2);
 siAn = n1*n2*(n^2-4)/((48*(n-1)));
else
 display('n is odd')
 muAn = 0.25 * n1 * (n+1)^2/n;
 siAn = n1*n2*(n+1)*(n^2+3)/(48*n^2);
end

zcalc = (An - muAn)/sqrt(siAn)

which yields

zcalc =
 -0.7184

Since the critical z-value

zcrit = norminv(1-0.05/2,0,1)

which yields

zcrit =
 1.9600

is larger than the calculated z-value, we cannot reject the null hypothesis
without another cause. Using

[h,p,stats] = ansaribradley(data1,data2)

yields a similar result

h =
 0

p =

114 3 UNIVARIATE STATISTICS

 0.4725

stats =
 W: 4903
 Wstar: -0.7184

We can use the same script to test whether the two samples in organicmatter_
four.mat come from the same distribution (null hypothesis), or from
distributions with the same median and shape but diff erent dispersions
(alternative hypothesis). We clear the workspace and load the data.

clear

load('organicmatter_four.mat');

We use the function ansaribradley to perform the Ansari-Bradley test by
typing

[h,p,stats] = ansaribradley(corg1,corg2)

which yields

h =
 0

p =
 0.7448

stats =
 W: 1861
 Wstar: 0.3254

Th e result h=0 means that we cannot reject the null hypothesis without another
cause at a 5% signifi cance level. Th e p-value of 0.7448 or ~74% (which is
greater than the signifi cance level) means that the chances of observing
either the same result or a more extreme result from similar experiments in
which the null hypothesis is true would be 7,448 in 10,000.

 3.13 Distribution Fitting

In Section 3.9 we computed the mean and standard deviation of our sample
and designed a normal distribution based on these two parameters. We then
used the χ2-test to test the hypothesis that our data indeed follow a Gaussian or
normal distribution. Distribution fi tting functions contained in the Statistics
Toolbox provide powerful tools for estimating the distributions directly from
the data. Distribution fi tting functions for supported distributions all end
with fit, as in binofit, or expfit. Th e function to fi t normal distributions to

3.13 DISTRIBUTION FITTING 115

the data is normfit. To demonstrate the use of this function we fi rst generate
100 synthetic Gaussian-distributed sets of values with a mean of 6.4 and a
standard deviation of 1.4.

clear

rng(0)
data = 6.4 + 1.4*randn(100,1);

We then defi ne the midpoints v of nine histogram intervals with the edges e,
display the results, and calculate the frequency distribution n.

e = 1.5 : 10.5;
h = histogram(data,e);
v = h.BinWidth * 0.5 + h.BinEdges(1:end-1);
n = h.Values;

Th e function normfit yields estimates of the mean, muhat, and standard
deviation, sigmahat, of the normal distribution for the observations in data.

[muhat,sigmahat] = normfit(data)

muhat =
 6.5723

sigmahat =
 1.6274

Th ese values for the mean and the standard deviation are similar to the
ones that we defi ned initially. We can now calculate the probability density
function of the normal distribution with the mean muhat and standard
deviation sigmahat, scale the resulting function y to same total number of
observations in data, and plot the result.

x = 2 : 1/20 : 10;
y = normpdf(x,muhat,sigmahat);
y = trapz(v,n) * y/trapz(x,y);
bar(v,n), hold on, plot(x,y,'r'), hold off

Alternatively, we can use the function mle to fi t a normal distribution (and
also other distributions such as binomial or exponential distributions) to
the data. Th e function mle(data,'distribution',dist) computes parameter
estimates for the distribution specifi ed by dist. Acceptable strings for dist
can be obtained by typing help mle.

phat = mle(data,'distribution','normal');

Th e variable phat contains the values of the parameters describing the type of
distribution fi tted to the data. As before, we can now calculate and scale the

116 3 UNIVARIATE STATISTICS

probability density function y, and display the result.

x = 2 : 1/20 : 10;
y = normpdf(x,phat(:,1),phat(:,2));
y = trapz(v,n) * y/trapz(x,y);

bar(v,n), hold on, plot(x,y,'r'), hold off

In earth sciences we oft en encounter mixed distributions. Examples are
multimodal grain size distributions (Section 8.8), multiple preferred
paleocurrent directions (Section 10.6), and multimodal chemical ages in
monazite refl ecting multiple episodes of deformation and metamorphism
in a mountain belt. Fitting Gaussian mixture distributions to the data aims
to determine the means and variances of the individual distributions that
combine to produce the mixed distribution. Th e methods described in this
section help to determine the episodes of deformation in a mountain range,
or to separate the diff erent paleocurrent directions caused by tidal fl ow in an
ocean basin.

As a synthetic example of Gaussian mixture distributions we generate
two sets of 100 random numbers ya and yb with means of 6.4 and 13.3,
respectively, and standard deviations of 1.4 and 1.8, respectively. We then
vertically concatenate the series using vertcat and store the 200 data values
in the variable data.

clear

rng(0)
ya = 6.4 + 1.4*randn(100,1);
yb = 13.3 + 1.8*randn(100,1);
data = vertcat(ya,yb);

Plotting the histogram reveals a bimodal distribution. We can also determine
the frequency distribution n using histogram.

e = -0.5 : 30.5;
h = histogram(data,e);
v = h.BinWidth * 0.5 + h.BinEdges(1:end-1);
n = h.Values;

We use the function mgdistribution.fit(data,k) to fi t a Gaussian mixture
distribution with k components to the data. Th e function fi ts the model by
maximum likelihood, using the Expectation-Maximization (EM) algorithm.
Th e EM algorithm introduced by Arthur Dempster, Nan Laird and Donald
Rubin (1977) is an iterative method alternating between performing an
expectation step and a maximization step. Th e expectation step computes an
expectation of the logarithmic likelihood with respect to the current estimate

3.13 DISTRIBUTION FITTING 117

of the distribution. Th e maximization step computes the parameters that
maximize the expected logarithmic likelihood computed in the expectation
step. Th e function mgdistribution.fit creates an object of the gmdistribution
class (see Section 2.5 and MATLAB Help on object-oriented programming
for details on objects and classes). Th e function gmdistribution.fit treats
NaN values as missing data: rows of data with NaN values are excluded from
the fi t. We can now determine the Gaussian mixture distribution with two
components in a single dimension.

gmfit = gmdistribution.fit(data,2)

Gaussian mixture distribution with 2 components in 1 dimensions
Component 1:
Mixing proportion: 0.513162
Mean: 13.0942

Component 2:
Mixing proportion: 0.486838
Mean: 6.4730

Th us we obtain the means and relative mixing proportions of both
distributions. In our example both normal distributions with means of
6.4730 and 13.0942 contribute ~50% (~0.49 and ~0.51, respectively) to the
mixture distribution. Th e object gmfit contains several layers of information,
including the mean gmfit.mu and the standard deviation gmfit.Sigma that we
use to calculate the probability density function y of the mixed distribution.

x = 0 : 1/30 : 20;
y1 = normpdf(x,gmfit.mu(1,1),gmfit.Sigma(:,:,1));
y2 = normpdf(x,gmfit.mu(2,1),gmfit.Sigma(:,:,2));

Th e object gmfit also contains information on the relative mixing proportions
of the two distributions in the layer gmfit.PComponents. We can use this
information to scale y1 and y2 to the correction proportions relative to each
other.

y1 = gmfit.PComponents(1,1) * y1/trapz(x,y1);
y2 = gmfit.PComponents(1,2) * y2/trapz(x,y2);

We can now superimpose the two scaled probability density functions y1
and y2, and scale the result y to the same integral of 200 as the original data.
Th e integral of the original data is determined using the function trapz to
perform a trapezoidal numerical integration.

y = y1 + y2;
y = trapz(v,n) * y/trapz(x(1:10:end),y(1:10:end));

118 3 UNIVARIATE STATISTICS

Fig. 3.15 Fitting Gaussian mixture distributions. As a synthetic example of Gaussian mixture
distributions we generate two sets of 100 random numbers, with means of 6.4 and 13.3,
and standard deviations of 1.4 and 1.8, respectively. Th e Expectation-Maximization (EM)
algorithm is used to fi t a Gaussian mixture distribution (solid line) with two components to
the data (bars).

Finally, we can plot the probability density function y on the bar plot of the
original histogram of data.

bar(v,n), hold on, plot(x,y,'r'), hold off

We can then see that the Gaussian mixture distribution closely matches the
histogram of the data (Fig. 3.15).

 Recommended Reading

Ansari AR, Bradley RA (1960) Rank-Sum Tests for Dispersion. Annals of Mathematical
Statistics, 31:1174–1189. [Open access]

Bernoulli J (1713) Ars Conjectandi. Reprinted by Ostwalds Klassiker Nr. 107–108. Leipzig
1899

Dempster AP, Laird NM, Rubin DB (1977) Maximum Likelihood from Incomplete Data via
the EM Algorithm. Journal of the Royal Statistical Society, Series B (Methodological)
39(1):1–38

Fisher RA (1935) Design of Experiments. Oliver and Boyd, Edinburgh
Helmert FR (1876) Über die Wahrscheinlichkeit der Potenzsummen der Beobachtungsfehler

und über einige damit im Zusammenhang stehende Fragen. Zeitschrift für Mathematik
und Physik 21:192–218

Kolmogorov AN (1933) On the Empirical Determination of a Distribution Function. Italian
Giornale dell’Istituto Italiano degli Attuari 4:83–91

Mann, HB, Whitney, DR (1947) On a Test of Whether one of Two Random Variables is
Stochastically Larger than the Other. Annals of Mathematical Statistics 18:50–60

Miller LH (1956) Table of Percentage Points of Kolmogorov Statistics. Journal of the American
Statistical Association 51:111–121

O’Connor PDT, Kleyner A. (2012) Practical Reliability Engineering, Fift h Edition. John Wiley
& Sons, New York

RECOMMENDED READING 119

MathWorks (2014) MATLAB Statistics Toolbox – User’s Guide. Th e MathWorks, Inc., Natick,
MA

Pearson ES (1990) Student – A Statistical Biography of William Sealy Gosset. In: Plackett RL,
with the assistance of Barnard GA, Oxford University Press, Oxford

Pearson K (1900) On the criterion that a given system of deviations from the probable in the
case of a correlated system of variables is such that it can be reasonably supposed to have
arisen from random sampling. Philosophical Magazine 50:157–175

Poisson SD (1837) Recherches sur la Probabilité des Jugements en Matière Criminelle et
en Matière Civile, Précédées des Regles Générales du Calcul des Probabilités. Bachelier,
Imprimeur-Libraire pour les Mathematiques, Paris

Popper K (1959) Th e Logic of Scientifi c Discovery. Hutchinson & Co., London
Hedderich J, Sachs L (2012) Angewandte Statistik: Methodensammlung mit R, 14. Aufl age.

Springer, Berlin Heidelberg New York
Smirnov NV (1939) On the Estimation of the Discrepency between Empirical Curves of

Distribution for Two Independent Samples. Bulletin of Moscow 2:3–16
Spiegel MR (2011) Schaum’s Outline of Statistics, 4nd Edition. Schaum’s Outlines, McGraw-

Hill Professional, New York
Student (1908) On the Probable Error of the Mean. Biometrika 6:1–25
Taylor JR (1997) An Introduction to Error Analysis: Th e Study of Uncertainties in Physical

Measurements, Second Edition. University Science Books, Sausalito, California
Wilcoxon F (1945) Individual Comparisons by Ranking Methods. Biometrics Bulletin 1:80–

83

120 3 UNIVARIATE STATISTICS

 4.1 Introduction

Bivariate analysis aims to understand the relationship between two variables,
x and y. Examples are the length and width of a fossil, the sodium and
potassium content of volcanic glass, and the organic matter content along
a sediment core. When the two variables are measured on the same object,
x is usually identifi ed as the independent variable and y as the dependent
variable. If both variables have been generated in an experiment, the variable
manipulated by the experimenter is described as the independent variable.
In some cases neither variable is manipulated and neither is independent.

Th e methods of bivariate statistics aim to describe the strength of the
relationship between the two variables, either by a single parameter such
as Pearson’s correlation coeffi cient for linear relationships or by an equation
obtained by regression analysis (Fig. 4.1). Th e equation describing the
relationship between x and y can be used to predict the y-response from any
arbitrary x within the range of the original data values used for the regression
analysis. Th is is of particular importance if one of the two parameters is
diffi cult to measure. In such a case, the relationship between the two variables
is fi rst determined by regression analysis on a small training set of data. Th e

 4 Bivariate Statistics

 Middle Pleistocene lake-sediment sequence in
the Suguta Valley of northern Kenya, consisting
mostly of diatomite, clays and silts with
intercalated volcanic ashes. The dating of the
ash layers and the typical sedimentation rates
of deposits can be used to create an age-depth
model for the sequence. This age model is in
turn required to reconstruct environmental,
and hence climatic, variations through time
within the area.

� Springer-Verlag Berlin Heidelberg 2015
M.H. Trauth, MATLAB� Recipes for Earth Sciences,
DOI 10.1007/978-3-662-46244-7_4

121

regression equation can then be used to calculate the second parameter.
Th is chapter fi rst introduces correlation coeffi cients (Section 4.2), and then

explains the widely-used methods of linear and nonlinear regression analysis
(Sections 4.3, 4.9 and 4.10). A selection of other methods that are also used
to assess the uncertainties in regression analysis are also explained (Sections
4.4 to 4.8). All methods are illustrated by means of synthetic examples since
these provide an excellent means of assessing the fi nal outcome. We use
the Statistics Toolbox (MathWorks 2014), which contains all the necessary
routines for bivariate analysis.

 4.2 Correlation Coeffi cients

Correlation coeffi cients are oft en used in the early stages of bivariate
statistics. Th ey provide only a very rough estimate of a rectilinear trend in
a bivariate data set. Unfortunately, the literature is full of examples where
the importance of correlation coeffi cients is overestimated, or where outliers
in the data set lead to an extremely biased estimation of the population
correlation coeffi cient.

Fig. 4.1 Display of a bivariate data set. Th e thirty data points represent the age of a sediment
(in kiloyears before present) at a certain depth (in meters) below the sediment-water interface.
Th e combined distribution of the two variables suggests a linear relationship between age and
depth, i.e., the rate of increase in the sediment age with depth is constant. A Pearson’s correlation
coeffi cient (explained in the text) of r=0.96 supports a strong linear interdependency between
the two variables. Linear regression yields the equation age=21.2+5.4 depth, indicating an
increase in sediment age of 5.4 kyrs per meter of sediment depth (the slope of the regression
line).

122 4 BIVARIATE STATISTICS

Th e most popular correlation coeffi cient is Pearson’s linear product-
moment correlation coeffi cient ρ (Pearson 1895) (Fig. 4.2). We estimate the
population’s correlation coeffi cient ρ from the sample data, i.e., we compute
the sample correlation coeffi cient r, which is defi ned as

where n is the number of pairs xy of data points, sx and sy are the univariate
standard deviations. Th e numerator of Pearson’s correlation coeffi cient is
known as the corrected sum of products of the bivariate data set. Dividing the
numerator by (n–1) yields the covariance

which is the summed products of deviations of the data from the sample
means, divided by (n–1). Th e covariance is a widely-used measure in
bivariate statistics although it has the disadvantage of being dependent on the
dimensions of the data. Dividing the covariance by the univariate standard
deviations removes this dependency and leads to Pearson’s correlation
coeffi cient.

A popular way to test the signifi cance of Pearson’s correlation coeffi cient
is to determine the probability of an r-value for a random sample from a
population with a ρ=0. Th e signifi cance of the correlation coeffi cient can be
estimated using a t-statistic

Th e correlation coeffi cient is signifi cant if the calculated t is greater than the
critical t (n-2 degrees of freedom, α=0.05). Th is test is, however, only valid if
both variables are Gaussian distributed.

Pearson’s correlation coeffi cient is very sensitive to disturbances in
the bivariate data set. Several alternatives exist to Pearson’s correlation
coeffi cient, such as Spearman’s rank correlation coeffi cient proposed by the
English psychologist Charles Spearman (1863–1945). Spearman’s coeffi cient
can be used to measure statistical dependence between two variables without
requiring a normality assumption for the underlying population, i.e., it is a

4.2 CORRELATION COEFFICIENTS 123

a b

c

e f

d

Fig. 4.2 Pearson’s correlation coeffi cent r for various sample data sets. a-b Positive and
negative linear correlation, c random scatter with no linear correlation, d an outlier causing a
misleading value of r, e curvilinear relationship causing a high r since the curve is close to a
straight line, f curvilinear relationship clearly not described by r.

124 4 BIVARIATE STATISTICS

non-parametric measure of correlation (Spearman 1904, 1910). Furthermore,
since it uses the ranks of the values in x and y rather than their numerical
values, it can be used to fi nd correlations in nonlinear data, and even in non-
numerical data such as fossil names or rock types in stratigraphic sequences.
Having replaced the numerical values in x and y by their ranks (whereby
multiple values in x and y are replaced by their respective average ranks) the
sample Spearman’s rank correlation coeffi cient is defi ned as

where di is the diff erence between the ranks of the two variables. Since this
correlation coeffi cient is based on ranks rather than numerical values it is
less sensitive to outliers than Pearson’s correlation coeffi cient.

Another alternative to Pearson’s correlation coeffi cient is the Kendall’s
tau rank correlation coeffi cient proposed by the British statistician Maurice
Kendall (1907–1983). Th is is also a non-parametric measure of correlation,
similar to the Spearman’s rank correlation coeffi cient (Kendall 1938). Th e
Kendall’s tau rank correlation coeffi cient compares the ranks of the numerical
values in x and y, which means a total of 0.5 n(n–1) pairs to compare. Pairs
of observations (xi,yi) and (xj,yj) are said to be concordant if the ranks for
both observations are the same, and discordant if they are not. Th e sample
Kendall’s tau rank correlation coeffi cient is defi ned as

where P is the number of concordant pairs and Q is the number of discordant
pairs. Kendall’s correlation coeffi cient typically has a lower value than Spear-
man’s correlation coeffi cient.

Th e following example illustrates the use of the correlation coeffi cients
and highlights the potential pitfalls when using these measures of linear
trends. It also describes the resampling methods that can be used to explore
the confi dence level of the estimate for ρ. Th e synthetic data consist of two
variables, the age of a sediment in kiloyears before present and the depth
below the sediment-water interface in meters. Th e use of synthetic data sets
has the advantage that we fully understand the linear model behind the data.

Th e data are represented as two columns contained in fi le agedepth_1.

4.2 CORRELATION COEFFICIENTS 125

txt. Th ese data have been generated using a series of thirty random levels
(in meters) below the sediment surface. Th e linear relationship age=5.6
meters+20 was used to compute noise-free values for the variable age. Th is
is the equation of a straight line with a slope of 5.6 and an intercept with
the y-axis of 20. Some Gaussian noise with a mean of zero and a standard
deviation of 10 has been added to the age data.

clear

rng(0)
meters = 20 * rand(30,1);
age = 5.6 * meters + 20;
age = age + 10.* randn(length(meters),1);

plot(meters,age,'o')
axis([0 20 0 140])

agedepth(:,1) = meters;
agedepth(:,2) = age;
agedepth = sortrows(agedepth,1);

save agedepth_1.txt agedepth -ascii

Th e synthetic bivariate data set can be loaded from the fi le agedepth_1.txt.

clear

agedepth = load('agedepth_1.txt');

We then defi ne two new variables, meters and age, and generate a scatter plot
of the data.

meters = agedepth(:,1);
age = agedepth(:,2);

plot(meters,age,'o')
axis([0 20 0 140])

In the plot, we can observe a strong linear trend suggesting some
interdependency between the two variables, meters and age. Th is trend can
be described by Pearson’s correlation coeffi cient r, where r=1 indicates a
perfect positive correlation (i.e., age increases with meters), r=0 suggests no
correlation, and r=–1 indicates a perfect negative correlation. We use the
function corrcoef to compute Pearson’s correlation coeffi cient.

corrcoef(meters,age)

which results in the output

ans =

126 4 BIVARIATE STATISTICS

 1.0000 0.9563
 0.9563 1.0000

Th e function corrcoef calculates a matrix of Pearson’s correlation coeffi cients
for all possible combinations of the two variables age and meters. Th e value
of r=0.9563 suggests that the two variables age and meters are dependent on
each other.

Pearson’s correlation coeffi cient is, however, highly sensitive to outliers,
as can be illustrated by the following example. Let us generate a normally-
distributed cluster of thirty data with a mean of zero and a standard deviation
of one. To obtain identical data values, we reset the random number generator
by using the integer 10 as seed.

clear

rng(10)
x = randn(30,1); y = randn(30,1);

plot(x,y,'o'), axis([-1 20 -1 20]);

As expected, the correlation coeffi cient for these random data is very low.

corrcoef(x,y)

ans =
 1.0000 0.0302
 0.0302 1.0000

Now we introduce a single outlier to the data set in the form of an exceptionally
high (x,y) value, in which x=y. Th e correlation coeffi cient for the bivariate
data set including the outlier (x,y)=(5,5) is much higher than before.

x(31,1) = 5; y(31,1) = 5;

plot(x,y,'o'), axis([-1 20 -1 20]);

corrcoef(x,y)

ans =
 1.0000 0.5022
 0.5022 1.0000

Increasing the absolute (x,y) values for this outlier results in a dramatic
increase in the correlation coeffi cient.

x(31,1) = 10; y(31,1) = 10;

plot(x,y,'o'), axis([-1 20 -1 20]);

corrcoef(x,y)

4.2 CORRELATION COEFFICIENTS 127

ans =
 1.0000 0.7981
 0.7981 1.0000

and reaches a value close to r=1 if the outlier has a value of (x,y)=(20,20).

x(31,1) = 20; y(31,1) = 20;

plot(x,y,'o'), axis([-1 20 -1 20]);

corrcoef(x,y)

ans =
 1.0000 0.9403
 0.9403 1.0000

We can compare the sensitivity of Pearson’s correlation coeffi cient with that
of Spearman’s correlation coeffi cient and Kendall’s correlation coeffi cient
using the function corr. In contrast to corrcoef, this function does not
calculate correlation matrices that we can later use (e.g., in Chapter 9) for
calculating correlations within multivariate data sets. We type

r_pearson = corr(x,y,'Type','Pearson')
r_spearman = corr(x,y,'Type','Spearman')
r_kendall = corr(x,y,'Type','Kendall')

which yields

r_pearson =
 0.9403

r_spearman =
 0.1343

r_kendall =
 0.0753

and observe that the alternative measures of correlation result in reasonable
values, in contrast to the absurd value for Pearson’s correlation coeffi cient
that mistakenly suggests a strong interdependency between the variables.
Although outliers are easy to identify in a bivariate scatter, erroneous values
can easily be overlooked in large multivariate data sets (Chapter 9).

Various methods exist to calculate the signifi cance of Pearson’s correlation
coeffi cient. Th e function corrcoef also includes the possibility of evaluating
the quality of the result. Th e p-value is the probability of obtaining a
correlation as large as the observed value by random chance, when the true
correlation is zero. If the p-value is small, then the correlation coeffi cient r
is signifi cant.

128 4 BIVARIATE STATISTICS

[r,p] = corrcoef(x,y)

r =
 1.0000 0.9403
 0.9403 1.0000

p =
 1.0000 0.0000
 0.0000 1.0000

In our example the p-value is close to zero suggesting that the correlation
coeffi cient is signifi cant. We conclude from this experiment that this
particular signifi cance test fails to detect correlations attributed to an outlier.
We therefore try an alternative t-test statistic to determine the signifi cance
of the correlation between x and y. According to this test, we can reject the
null hypothesis that there is no correlation if the calculated t is larger than
the critical t (n-2 degrees of freedom, α=0.05).

tcalc = r(2,1) * ((length(x)-2)/(1-r(2,1)^2))^0.5
tcrit = tinv(0.95,length(x)-2)

tcalc =
 14.8746

tcrit =
 1.6991

Th is result indeed indicates that we can reject the null hypothesis and therefore
there is no correlation. As an alternative to detecting outliers, resampling
schemes or surrogates such as the bootstrap or jackknife methods represent
powerful tools for assessing the statistical signifi cance of the results. Th ese
techniques are particularly useful when scanning large multivariate data sets
for outliers (see Chapter 9). Resampling schemes repeatedly resample the
original data set of n data points, either by choosing n–1 subsamples n times
(the jackknife), or by picking an arbitrary set of subsamples with n data
points with replacement (the bootstrap). Th e statistics of these subsamples
provide better information on the characteristics of the population than the
statistical parameters (mean, standard deviation, correlation coeffi cients)
computed from the full data set. Th e function bootstrp allows resampling of
our bivariate data set, including the outlier (x,y)=(20,20).

rng(0)
rhos1000 = bootstrp(1000,'corrcoef',x,y);

Th is command fi rst resamples the data a thousand times; it then calculates
the correlation coeffi cient for each new subsample and stores the result in
the variable rhos1000. Since corrcoef delivers a 2-by-2 matrix (as mentioned

4.2 CORRELATION COEFFICIENTS 129

above), rhos1000 has the dimensions of 1000-by-4, i.e., 1000 values for each
element of the 2-by-2 matrix. Plotting the histogram of the 1000 values for
the second element, i.e., the correlation coeffi cient of (x,y), illustrates the
dispersion of this parameter with respect to the presence or absence of the
outlier. Since the distribution of rhos1000 contains many empty classes, we
use a large number of bins.

histogram(rhos1000(:,2),30)

Th e histogram shows a cluster of correlation coeffi cients at around r=0.1
that follow the normal distribution, and a strong peak close to r=1 (Fig. 4.3).
Th e interpretation of this histogram is relatively straightforward. When the
subsample contains the outlier the correlation coeffi cient is close to one, but
subsamples without the outlier yield a very low (close to zero) correlation
coeffi cient suggesting the absence of any strong interdependence between
the two variables x and y.

Bootstrapping therefore provides a simple but powerful tool for either
accepting or rejecting our fi rst estimate of the correlation coeffi cient for the
population. Th e application of the above procedure to the synthetic sediment
data yields a clear unimodal Gaussian distribution for the correlation
coeffi cients of the subsamples.

Fig. 4.3 Bootstrap result for Pearson’s correlation coeffi cient r from 1000 subsamples. Th e
histogram shows a roughly normally-distributed cluster of correlation coeffi cients at around
r=0, suggesting that these subsamples do not include the outlier. Th e strong peak close to r=1,
however, suggests that an outlier with high values for the two variables x and y is present in
the corresponding subsamples.

130 4 BIVARIATE STATISTICS

clear

agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

corrcoef(meters,age)

ans =
 1.0000 0.9563
 0.9563 1.0000

rng(0)
rhos1000 = bootstrp(1000,'corrcoef',meters,age);

histogram(rhos1000(:,2),30)

Most of the values for rhos1000 fall within the interval [0.92,0.98]. Since the
correlation coeffi cients for the resampled data sets (in our example) have
an approximately normal distribution, we can use their mean as a good
estimate for the true correlation coeffi cient.

mean(rhos1000(:,2))

ans =
 0.9557

Th is value is similar to our fi rst result of r=0.9557, but now we have confi dence
in the validity of this result. In our example, however, the distribution of
the bootstrap estimates of the correlations from the age-depth data is quite
skewed, as the upper limited is fi xed at one. Nevertheless, the bootstrap
method is a valuable tool for assessing the reliability of Pearson’s correlation
coeffi cient for bivariate analysis.

 4.3 Classical Linear Regression Analysis

Linear regression off ers another way of describing the relationship between
the two variables x and y. Whereas Pearson’s correlation coeffi cient provides
only a rough measure of a linear trend, linear models obtained by regression
analysis allow the prediction of arbitrary y-values for any given value of
x within the data range. Statistical testing of the signifi cance of the linear
model provides some insights into the accuracy of these predictions.

Classical regression assumes that y responds to x and that the entire
dispersion in the data set is contained within the y-value (Fig. 4.4). Th is
means that x is then the independent variable (also known as the predictor
variable, or the regressor). Th e values of x are defi ned by the experimenter

4.3 CLASSICAL LINEAR REGRESSION ANALYSIS 131

and are oft en regarded as being free of errors. An example is the location x
within a sediment core from which the variable y has been measured. Th e
dependent variable y contains errors as its magnitude cannot be determined
accurately. Linear regression minimizes the deviations Δy between the data
points xy and the value y predicted by the best-fi t line y=b0+b1x using a least-
squares criterion. Th e basic equation for a general linear model is

where b0 and b1 are the regression coeffi cients. Th e value of b0 is the intercept
with the y-axis and b1 is the slope of the line. Th e squared sum of the Δy
deviations to be minimized is

Partial diff erentiation of the right-hand term in the equation and setting it to
zero yields a simple equation for the regression coeffi cient b1:

Fig. 4.4 Linear regression. Whereas classical regression minimizes the Δy deviations, reduced
major axis regression minimizes the triangular area 0.5*(ΔxΔy) between the data points and
the regression line, where Δx and Δy are the distances between the predicted and the true
x- and y-values. Th e intercept of the line with the y-axis is b0, and the slope is b1. Th ese two
parameters defi ne the equation of the regression line.

132 4 BIVARIATE STATISTICS

Th e regression line passes through the data centroid defi ned by the sample
means, and we can therefore compute the other regression coeffi cient b0,

using the univariate sample means and the slope b1 computed earlier.
As an example let us again load the synthetic age-depth data from the

fi le agedepth_1.txt. We can defi ne two new variables, meters and age, and
generate a scatter plot of the data.

clear

agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

A signifi cant linear trend in the bivariate scatter plot, together with
a correlation coeffi cient greater than r=0.9, suggests a strong linear
dependence between meters and age. In geological terms, this implies that
the sedimentation rate was constant through time. We now try to fi t a linear
model to the data that will help us predict the age of the sediment at levels for
which we have no age data. Th e function polyfit computes the coeffi cients
of a polynomial p(x) of a specifi c degree that fi ts the data y in a least-squared
sense. In our example we fi t a fi rst degree (linear) polynomial to the data

p = polyfit(meters,age,1)

p =
 5.3667 21.7607

where p is a row vector containing the polynomial coeffi cients in descending
powers. Since we are working with synthetic data we know the values for
the slope and the intercept with the y-axis. Th e estimated slope (5.3667) and
the intercept with the y-axis (21.7607) are in good agreement with the true
values of 5.6 and 20, respectively. Both the data and the fi tted line can be
plotted on the same graph.

plot(meters,age,'o'), hold on
plot(meters,p(1)*meters+p(2),'r'), hold off

4.3 CLASSICAL LINEAR REGRESSION ANALYSIS 133

Movie
4.1

Instead of using the equation for the regression line we can also use the
function polyval to calculate the y-values.

plot(meters,age,'o'), hold on
plot(meters,polyval(p,meters),'r'), hold off

Both of the functions polyfit and polyval are incorporated in the GUI
function polytool.

polytool(meters,age)

Th e coeffi cients p(x) and the equation obtained by linear regression can
now be used to predict y-values for any given x-value. However, we can only
do this within the depth interval for which the linear model was fi tted, i.e.,
between 0 and 20 meters. As an example the age of the sediment at a depth
of 17 meters is given by

polyval(p,17)

ans =
 112.9946

Th is result suggests that the sediment at 17 meters depth has an age of ca.
113 kyrs. Th e goodness-of-fi t of the linear model can be determined by
calculating error bounds. Th ese are obtained by using an additional output
parameter s from polyfit as an input parameter for polyconf to calculate the
95% (alpha=0.05) prediction intervals.

[p,s] = polyfit(meters,age,1);
[p_age,delta] = polyconf(p,meters,s,'alpha',0.05);

plot(meters,age,'o',meters,p_age,'g-',...
 meters,p_age+delta,'r--',meters,p_age-delta,'r--')
axis([0 20 0 140]), grid on
xlabel('Depth in Sediment (meters)')
ylabel('Age of Sediment (kyrs)')

Th e variable delta provides an estimate for the standard deviation of the
error in predicting a future observation at x by using p(x). Since the plot
statement does not fi t on one line we use an ellipsis (three periods, i.e., ...)
followed by return or enter to indicate that the statement continues on the
next line. Th e plot now shows the data points, and also the regression line
and the error bounds of the regression (Fig. 4.5). Th is graph already provides
some valuable information on the quality of the result. However, in many
cases a better understanding of the validity of the model is required and
more sophisticated methods for testing the confi dence in the results are
therefore introduced in the following sections.

134 4 BIVARIATE STATISTICS

 4.4 Analyzing the Residuals

When we compare how much the predicted values vary from the actual or
observed values, we are performing an analysis of the residuals. Th e statistics
of the residuals provide valuable information on the quality of a model fi tted
to the data. For instance, a signifi cant trend in the residuals suggests that
the model does not fully describe the data. In such cases a more complex
model, such as a polynomial of a higher degree, should be fi tted to the data.
Residuals are ideally purely random, i.e., they are Gaussian distributed
with a mean of zero. We therefore test the hypothesis that our residuals are
Gaussian distributed by visual inspection of the histogram and by employing
a χ2-test, as introduced in Chapter 3.

clear

agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

p = polyfit(meters,age,1);

res = age - polyval(p,meters);

Fig. 4.5 Th e result of linear regression. Th e plot shows the original data points (circles), the
regression line (solid line), and the error bounds (dashed lines) of the regression. Note that
the error bounds are actually curved although they seem to be almost straight lines in the
example.

4.4 ANALYZING THE RESIDUALS 135

Since plotting the residuals does not reveal any obvious pattern of behavior,
no more complex model than a straight line should be fi tted to the data.

plot(meters,res,'o')

An alternative way to plot the residuals is as a stem plot using stem.

subplot(2,1,1)
plot(meters,age,'o'), hold on
plot(meters,p(1)*meters+p(2),'r'), hold off

subplot(2,1,2)
stem(meters,res);

To explore the distribution of the residuals we can choose six classes and
display the corresponding frequencies.

histogram(res,6)

Th e χ2-test can be used to test the hypothesis that the residuals follow a
Gaussian distribution (Section 3.9). We use chi2gof to perform the χ2-test

[h,p,stats] = chi2gof(res)

which yields

h =
 0

p =
 NaN

stats =
 chi2stat: 0.0099
 df: 0
 edges: [-28.2530 -1.0404 3.4950 17.1012]
 O: [14 5 11]
 E: [13.7940 5.1876 11.0184]

Th e result h=0 means that we cannot reject the null hypothesis without
another cause at a 5% signifi cance level. However, the quality of the result
is not very good because the sample size of 30 measurements is very small.
In such an example, pooling the data could yield very low (or even zero)
expected counts. Th e function chi2gof then displays a warning that the χ2
approximation may not be accurate. In our example we have not defi ned
the number of bins and therefore (according to the documentation) chi2gof
should use a default of 10 bins for pooling the data. According to Section
3.9, the corresponding number of degrees of freedom should be 10-(2+1)=7
but the output of chi2gof indicates df=NaN instead. However, if there are not

136 4 BIVARIATE STATISTICS

enough degrees of freedom to conduct the test, chi2gof returns a p-value of
NaN, as in our example. Alternatively, we use chi2gof with 6 bins

[h,p,stats] = chi2gof(res,'NBins',6)

which yields

h =
 0

p =
 0.1481

stats =
 chi2stat: 2.0922
 df: 1
 edges: [-28.2530 -5.5759 1.9832 9.5422 17.1012]
 O: [11 7 5 7]
 E: [8.8282 8.4603 7.3927 5.3187]

As indicated by df=1 and the number of edges (edges), chi2gof now uses 4
bins instead of 6 bins defi ned by NBins=6 in chi2gof in order to avoid bins with
very low (or even zero) expected counts. Th e function chi2gof then yields a
p-value of 0.1481 indicating that the result is signifi cant and we cannot reject
the null hypothesis that the residuals follow a Gaussian distribution.

 4.5 Bootstrap Estimates of the Regression Coeffi cients

In this section we use the bootstrap method to obtain a better estimate of
the regression coeffi cients. As an example we use the function bootstrp with
1000 samples (Fig. 4.6).

clear

agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

p = polyfit(meters,age,1);

rng(0)

p_bootstrp = bootstrp(1000,'polyfit',meters,age,1);

Th e statistic of the fi rst coeffi cient, i.e., the slope of the regression line is

histogram(p_bootstrp(:,1),15)

median(p_bootstrp(:,1))

4.5 BOOTSTRAP ESTIMATES OF THE REGRESSION COEFFICIENTS 137

ans =
 5.3855

We use the median instead of the mean since we cannot expect the bootstrap
results to be Gaussian distributed. In contrast, the statistic of the second
coeffi cient shows a signifi cant dispersion.

histogram(p_bootstrp(:,2),15)

median(p_bootstrp(:,2))

ans =
 21.5374

Th e true values, as used to simulate our data set, are 5.6 for the slope and
20 for the intercept with the y-axis, whereas the corresponding coeffi cients
calculated using polyfit were 5.3667 and 21.7607 (Section 4.3).

 4.6 Jackknife Estimates of the Regression Coeffi cients

Th e jackknife method is a resampling technique that is similar to the
bootstrap method. From a sample with n data points, n subsamples with
n–1 data points are taken. Th e parameters of interest, e.g., the regression
coeffi cients, are calculated for each of the subsamples. Th e mean and
dispersion of the coeffi cients are then computed. Th e disadvantage of this
method is the limited number of n subsamples: a jackknife estimate of the
regression coeffi cients is therefore less precise than a bootstrap estimate.
Th e relevant code for the jackknife is easy to generate:

Fig. 4.6 Histogram of a, the fi rst (slope of the regression line) and b, the second (y-axis
intercept of the line) regression coeffi cient, as estimated from bootstrap resampling. Th e fi rst
coeffi cient is well constrained, but the second coeffi cient shows a broad scatter.

a b

138 4 BIVARIATE STATISTICS

clear

agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

p = polyfit(meters,age,1);

for i = 1 : 30
 j_meters = meters;
 j_age = age;
 j_meters(i) = [];
 j_age(i) = [];
 p(i,:) = polyfit(j_meters,j_age,1);
end

Th e jackknife for subsamples with n–1=29 data points can be obtained by
a simple for loop. Th e ith data point within each iteration is deleted and
regression coeffi cients are calculated for the remaining data points. Th e mean
of the i subsamples gives an improved estimate of the regression coeffi cients.
As with the bootstrap result, the slope of the regression line (fi rst coeffi cient)
is well defi ned, whereas the intercept with the y-axis (second coeffi cient) has
a large uncertainty:

median(p(:,1))

ans =
 5.3663

compared to 5.3855 calculated by the bootstrap method and

median(p(:,2))

ans =
 21.7964

compared to 21.5374 from the bootstrap method (Section 4.5). Th e true
values, as before, are 5.6 and 20. Th e histograms of the jackknife results from
30 subsamples (Fig. 4.7)

subplot(1,2,1), histogram(p(:,1)), axis square
subplot(1,2,2), histogram(p(:,2)), axis square

do not display such clear distributions for the coeffi cients as the histograms
of the bootstrap estimates. As an alternative to the above method, MATLAB
provides the function jackknife with which to perform a jackknife
experiment.

p = jackknife('polyfit',meters,age,1);

4.6 JACKKNIFE ESTIMATES OF THE REGRESSION COEFFICIENTS 139

Fig. 4.7 Histogram of a, the fi rst (slope of the regression line) and b, the second (y-axis
intercept of the line) regression coeffi cient, as estimated from jackknife resampling. Note that
the parameters are not as well defi ned as those from bootstrapping.

median(p(:,1))
median(p(:,2))

ans =
 5.3663

ans =
 21.7964

subplot(1,2,1), histogram(p(:,1)), axis square
subplot(1,2,2), histogram(p(:,2)), axis square

Th e results are identical to those obtained using the code introduced
above. We have seen therefore that resampling using either the jackknife
or the bootstrap method is a simple and valuable way to test the quality of
regression models. Th e next section introduces an alternative approach for
quality estimation, which is much more commonly used than the resampling
methods.

 4.7 Cross Validation

A third method to test the quality of the result of a regression analysis involves
cross validation. Th e regression line is computed by using n–1 data points.
Th e nth data point is predicted and the discrepancy between the prediction
and the actual value is computed. Th e mean of the discrepancies between the
actual and predicted values is subsequently determined.

In this example the cross validation is computed for n=30 data points.

a b

140 4 BIVARIATE STATISTICS

Th e resulting 30 regression lines, each computed using n–1=29 data points,
display some dispersion in their slopes and y-axis intercepts.

clear

agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

p = polyfit(meters,age,1);

for i = 1 : 30
 j_meters = meters;
 j_age = age;
 j_meters(i) = [];
 j_age(i) = [];
 p(i,:) = polyfit(j_meters,j_age,1);
 plot(meters,polyval(p(i,:),meters),'r'), hold on
 p_age(i) = polyval(p(i,:),meters(i));
 p_error(i) = p_age(i) - age(i);
end
hold off

Th e prediction error is – in the ideal case – Gaussian distributed with a mean
of zero.

mean(p_error)

ans =
 -0.0487

Th e standard deviation is an unbiased mean of the deviations of the true data
points from the predicted straight line.

std(p_error)

ans =
 10.9757

Cross validation gives valuable information on the goodness-of-fi t of the
regression result and can also be used for quality control in other fi elds, such
as those of temporal and spatial prediction (Chapters 5 and 7).

 4.8 Reduced Major Axis Regression

In some examples neither variable is manipulated and both can therefore be
considered to be independent. In such cases several methods are available to
compute a best-fi t line that minimizes the distance from both x and y. As an
example the method of reduced major axis (RMA) minimizes the triangular

4.8 REDUCED MAJOR AXIS REGRESSION 141

area 0.5*(ΔxΔy) between the data points and the regression line, where Δx
and Δy are the distances between the predicted values of x and y and the
true values of x and y (Fig. 4.4). Although this optimization appears to be
complex, it can be shown that the fi rst regression coeffi cient b1 (the slope) is
simply the ratio of the standard deviations of y and x.

As with classical regression, the regression line passes through the data
centroid defi ned by the sample mean. We can therefore compute the second
regression coeffi cient b0 (the y-intercept),

using the univariate sample means and the slope b1 computed earlier. Let us
again load the age-depth data from the fi le agedepth_1.txt and defi ne two
variables, meters and age. It is assumed that both of the variables contain
errors and that the scatter of the data can be explained by dispersions of
meters and age.

clear

agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

Th e above formula is used for computing the slope of the regression line b1.

p(1,1) = std(age)/std(meters)

p =
 5.6117

Th e second coeffi cient b0, i.e., the y-axis intercept, can therefore be computed
by

p(1,2) = mean(age) - p(1,1) * mean(meters)

p =
 5.6117 18.7037

Th e regression line can be plotted by

plot(meters,age,'o'), hold on
plot(meters,polyval(p,meters),'r'), hold off

142 4 BIVARIATE STATISTICS

Th is linear fi t diff ers slightly from the line obtained from classical regression.
Note that the regression line from RMA is not the bisector of the lines
produced by the x-y and y-x classical linear regression analyses, i.e., those
produced using either x or y as an independent variable while computing
the regression lines.

 4.9 Curvilinear Regression

It is apparent from our previous analysis that a linear regression model
provides a good way of describing the scaling properties of the data. However,
we may wish to check whether the data could be equally well described by a
polynomial fi t of a higher degree, for instance by a second degree polynomial:

To clear the workspace and reload the original data, we type

clear

agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

A second degree polynomial can then be fi tted by using the function polyfit.

p = polyfit(meters,age,2)

p =
 0.0589 4.1087 26.0381

Th e fi rst coeffi cient is close to zero, i.e., has little infl uence on predictions.
Th e second and third coeffi cients are similar to those obtained by linear
regression. Plotting the data yields a curve that resembles a straight line.

plot(meters,age,'o'), hold on
plot(meters,polyval(p,meters),'r'), hold off

Let us compute and plot the error bounds obtained by using an optional
second output parameter from polyfit as an input parameter to polyval.

[p,s] = polyfit(meters,age,2);
[p_age,delta] = polyval(p,meters,s);

As before, this code uses an interval of ±2s, corresponding to a 95% confi dence
interval. Using polyfit not only yields the polynomial coeffi cients p, but also
a structure s for use with polyval to obtain error bounds for the predictions.

4.9 CURVILINEAR REGRESSION 143

Th e variable delta is an estimate of the standard deviation of the prediction
error of a future observation at x by p(x). We then plot the results:

plot(meters,age,'o',meters,p_age,'g-',...
 meters,p_age+2*delta,'r', meters,p_age-2*delta,'r')
axis([0 20 0 140]), grid on
xlabel('Depth in Sediment (meters)')
ylabel('Age of Sediment (kyrs)')

We now use another synthetic data set that we generate using a quadratic
relationship between meters and age.

clear

rng(0)
meters = 20 * rand(30,1);
age = 1.6 * meters.^2 - 1.1 * meters + 50;
age = age + 40.* randn(length(meters),1);

plot(meters,age,'o')

agedepth(:,1) = meters;
agedepth(:,2) = age;

agedepth = sortrows(agedepth,1);

save agedepth_2.txt agedepth -ascii

Th e synthetic bivariate data set can be loaded from the fi le agedepth_2.txt.

clear

agedepth = load('agedepth_2.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

plot(meters,age,'o')

Fitting a second order polynomial yields a convincing regression result.

p = polyfit(meters,age,2)

p =
 1.8356 -7.0653 74.1526

As shown above, the true values for the three coeffi cients are +1.8, –7.1 and
+74.2, which means that there are some discrepancies between the true
values and the coeffi cients estimated using polyfit. Th e regression curve and
the error bounds can be plotted by typing (Fig. 4.8)

plot(meters,age,'o'), hold on

144 4 BIVARIATE STATISTICS

plot(meters,polyval(p,meters),'r'), hold off

[p,s] = polyfit(meters,age,2);
[p_age,delta] = polyval(p,meters,s);

plot(meters,age,'o',meters,p_age,'g',meters,...
 p_age+2*delta,'r--',meters,p_age-2*delta,'r--')
axis([0 20 -50 700]), grid on
xlabel('Depth in Sediment (meters)')
ylabel('Age of Sediment (kyrs)')

Th e plot shows that the quadratic model for this data is a good one. Th e quality
of the result could again be tested by exploring the residuals, by employing
resampling schemes, or by cross validation. Combining regression analysis
with one of these methods provides a powerful tool in bivariate data analysis,
whereas Pearson’s correlation coeffi cient should be used only as a preliminary
test for linear relationships.

 4.10 Nonlinear and Weighted Regression

Many bivariate data in earth sciences follow a more complex trend than a
simple linear or curvilinear trend. Classic examples for nonlinear trends are
the exponential decay of radionuclides, or the exponential growth of algae
populations. In such cases, MATLAB provides various tools to fi t nonlinear

Fig. 4.8 Curvilinear regression from measurements of barium content. Th e plot shows the
original data points (circles), the regression line for a polynomial of degree n=2 (solid line),
and the error bounds (dashed lines) of the regression.

4.10 NONLINEAR AND WEIGHTED REGRESSION 145

models to the data. An easy-to-use routine to fi t such models is nonlinear
regression using the function nlinfit. To demonstrate the use of nlinfit we
generate a bivariate data set where one variable is exponentially correlated
with a second variable. We fi rst generate evenly-spaced values between
0.3 and 3 at intervals of 0.1 and add some Gaussian noise with a standard
deviation of 0.2 to make the data unevenly spaced. Th e resulting 26 data
points are stored in the fi rst column of the variable data.

clear

rng(0)
data(:,1) = 0.3 : 0.1 : 3;
data(:,1) = data(:,1) + 0.2*randn(size(data(:,1)));

We can then compute the second variable, which is the exponent of the fi rst
variable multiplied by 0.2 and increased by 3. We again add Gaussian noise,
this time with a standard deviation of 0.5, to the data. Finally, we can sort the
data with respect to the fi rst column and display the result.

data(:,2) = 3 + 0.2 * exp(data(:,1));
data(:,2) = data(:,2) + 0.5*randn(size(data(:,2)));
data = sortrows(data,1);
plot(data(:,1),data(:,2),'o')
xlabel('x-Axis'), ylabel('y-Axis')

Nonlinear regression aims to estimate the two coeffi cients of the exponential
function, i.e., the multiplier 0.2 and the summand 3. Th e function
p=nlinfit(data(:,1),data(:,2),fun,p0) returns a vector p of coeffi cient
estimates for a nonlinear regression of the responses in data(:,2) to the
predictors in data(:,1) using the model specifi ed by fun. Here, fun is a
function handle to a function of the form hat=modelfun(b,X), where b is a
coeffi cient vector. A function handle is passed in an argument list to other
functions, which can then execute the function using the handle. A function
handle uses the at sign, @, before the function name. Th e variable p0 is a
vector containing initial values for the coeffi cients and is the same length
as p. We can design a function handle model representing an exponential
function with an input variable t and the coeffi cients phi. Th e initial values
of p are [0 0]. We can then use nlinfit to estimate the coeffi cients p using the
data data, the model model, and the initial values p0.

model = @(phi,t)(phi(1)*exp(t) + phi(2));
p0 = [0 0];
p = nlinfit(data(:,1),data(:,2),model,p0)

p =
 0.2121 2.8306

146 4 BIVARIATE STATISTICS

We can now use the resulting coeffi cients p(1) and p(2) to calculate the
function values fittedcurve using the model and compare the results with
the original data in a graphics.

fittedcurve_1 = p(1)*exp(data(:,1)) + p(2);

plot(data(:,1),data(:,2),'o')
hold on
plot(data(:,1),fittedcurve_1,'r')
xlabel('x-Axis'), ylabel('y-Axis')
title('Unweighted Fit')
hold off

As we can see from the output of p and the graphics, the fi tted red curve
describes the data reasonably well. We can now also use nlinfit to perform
a weighted regression. Let us assume that we know the one-sigma errors of
the values in data(:,2). We can generate synthetic errors and store them in
the third column of data.

data(:,3) = abs(randn(size(data(:,1))));
errorbar(data(:,1),data(:,2),data(:,3),'o')
xlabel('x-Axis'), ylabel('y-Axis')

We can now normalize the data points so that they are weighted by the inverse
of the relative errors. We therefore normalize data(:,3) so that the total of
all errors in data(:,3) is one, and store the normalized errors in data(:,4).

data(:,4) = sum(data(:,3))./data(:,3);

To make a weighted fi t, we defi ne the model function model, and then use
nlinfit with the parameter Weights.

model = @(phi,t)(data(:,4).*(phi(1)*exp(t) + phi(2)));
p0 = [0 0];
p = nlinfit(data(:,1),data(:,5),model,p0,'Weights',data(:,4))

p =
 0.2191 2.3442

As before, nlinfit will compute weighted parameter estimates p. We again
use the resulting coeffi cents p(1) and p(2) to calculate the function values
fittedcurve using the model and compare the results with the original data.

fittedcurve_2 = p(1)*exp(data(:,1)) + p(2);
errorbar(data(:,1),data(:,2),data(:,3),'o')
hold on
plot(data(:,1),fittedcurve_2,'r')
xlabel('x-Axis'), ylabel('y-Axis')
title('Weighted Fit')
hold off

4.10 NONLINEAR AND WEIGHTED REGRESSION 147

Comparing the coeffi cients p and the red curves from the weighted regression
with the previous results from the unweighted regression reveals slightly
diff erent results (Fig. 4.9):

errorbar(data(:,1),data(:,2),data(:,3),'o')
hold on
plot(data(:,1),fittedcurve_1,'r--')
plot(data(:,1),fittedcurve_2,'r-')
xlabel('x-Axis'), ylabel('y-Axis')
title('Comparison of Unweighted and Weighted Fit')
hold off

As an example, in the unweighted regression the fi tted curved is moved
towards the fi rst two data points (x=0.24823 and x=0.60753) with a large
error, while in the weighted experiment it is moved towards the third data
point (x=0.73846) with a small error.

 Recommended Reading

Albarède F (2002) Introduction to Geochemical Modeling. Cambridge University Press,
Cambridge

Davis JC (2002) Statistics and Data Analysis in Geology, Th ird Edition. John Wiley and Sons,
New York

Fig. 4.9 Comparison of unweighted (dashed line) and weighted (solid line) regression result
from synthetic data. Th e plot shows the original data points (circles), the error bars for all
data points, and the regression line for an exponential model function. In the unweighted
regression, the fi tted curved is moved towards the fi rst two data points (x=–0.24823 and
x=0.60753) with a large error, while in the weighted regression it is moved towards the third
data point (x=0.73846) with a small error.

148 4 BIVARIATE STATISTICS

Draper NR, Smith, H (1998) Applied Regression Analysis. Wiley Series in Probability and
Statistics, John Wiley and Sons, New York

Efron B (1982) Th e Jackknife, the Bootstrap, and Other Resampling Plans. Society of
Industrial and Applied Mathematics CBMS-NSF Monographs 38

Fisher RA (1922) Th e Goodness of Fit of Regression Formulae, and the Distribution of
Regression Coeffi cients. Journal of the Royal Statistical Society 85:597–612

Kendall M (1938) A New Measure of Rank Correlation. Biometrika 30:81–89
MacTavish JN, Malone PG, Wells TL (1968) RMAR; a Reduced Major Axis Regression

Program Designed for Paleontologic Data. Journal of Paleontology 42/4:1076–1078
MathWorks (2014) Statistics Toolbox – User’s Guide. Th e MathWorks, Inc., Natick, MA
Pearson K (1894–98) Mathematical Contributions to the Th eory of Evolution, Part I to IV.

Philosophical Transactions of the Royal Society 185–191
Pearson K (1895) Notes on regression and inheritance in the case of two parents. Proceedings

of the Royal Society of London 58:240–242
Spearman C (1904) Th e proof and measurement of association between two things. American

Journal of Psychology 15:72–101
Spearman C (1910) Correlation calculated from faulty data. British Journal of Psychology

3:271–295

RECOMMENDED READING 149

 5.1 Introduction

Time-series analysis aims to investigate the temporal behavior of a variable
x(t). Examples include the investigation of long-term records of mountain
uplift , sea-level fl uctuations, orbitally-induced insolation variations and
their infl uence on the ice-age cycles, millennium-scale variations in the
atmosphere-ocean system, the eff ect of the El Niño/Southern Oscillation on
tropical rainfall and sedimentation (Fig. 5.1), and tidal infl uences on noble
gas emissions from bore holes. Th e temporal pattern of a sequence of events
can be random, clustered, cyclic, or chaotic. Time-series analysis provides
various tools with which to detect these temporal patterns. Understanding
the underlying processes that produced the observed data allows us to
predict future values of the variable. We use the Signal Processing and
Wavelet Toolboxes, which contain all the necessary routines for time-series
analysis (MathWorks 2014a and b).

Section 5.2 discusses signals in general and contains a technical
description of how to generate synthetic signals for time-series analysis.
Th e use of spectral analysis to detect cyclicities in a single time series (auto-
spectral analysis) and to determine the relationship between two time series

 5 Time-Series Analysis

 Alternations of clayey and silty layers in the
Upper Triassic sediments near Heilbronn
in Germany, indicating cyclic changes in
environmental conditions. Time-series analysis
aims to investigate the temporal behavior of
a variable such as grainsize. Together with
age determinations, this method can be used
to determine the period of the cycles and to
speculate about the mechanism that caused
the rhythmic changes in grain size.

� Springer-Verlag Berlin Heidelberg 2015
M.H. Trauth, MATLAB� Recipes for Earth Sciences,
DOI 10.1007/978-3-662-46244-7_5

151

as a function of frequency (cross-spectral analysis) is then demonstrated in
Sections 5.3 and 5.4. Since most time series in earth sciences have uneven
time intervals, various interpolation techniques and subsequent methods
of spectral analysis are required, and these are introduced in Section 5.5.
Evolutionary power spectra to map changes in cyclicity through time
are demonstrated in Section 5.6. An alternative technique for analyzing
unevenly-spaced data is explained in Section 5.7. Section 5.8 introduces
the very popular wavelet power spectrum, which is able to map temporal
variations in the spectra in a similar way to the method demonstrated in
Section 5.6. Section 5.9 then introduces a non-parametric method to detect
abrupt transitions in central tendency and dispersion within time series.
Th is chapter closes with an overview of nonlinear techniques, in particular
the method of recurrence plots (Section 5.10).

 5.2 Generating Signals

A time series is an ordered sequence of values of a variable x(t) at certain
times tk.

a b

Fig. 5.1 a Photograph of ca. 30 kyr-old varved sediments from a lake in the Andes of
Northwest Argentina. Th e distribution of the source rocks and the interannual precipitation
pattern in the area suggest that the reddish-brown layers refl ect cyclic recurrences of enhanced
precipitation, erosion, and sediment input into the lake. b Th e power spectrum of a red-
color intensity transect across 70 varves is dominated by signifi cant peaks at frequencies of
ca. 0.076, 0.313, 0.455 and 1.0 yrs-1. Th ese cyclicities suggest a strong infl uence of the tropical
Atlantic sea-surface temperature (SST) variability, the El Niño/Southern Oscillation (ENSO),
and the annual cycle that occurred 30 kyrs ago, similar to today’s cyclicities (Trauth et al.
2003).

152 5 TIME-SERIES ANALYSIS

If the time interval between any two successive observations x(tk) and x(tk+1)
is constant, the time series is said to be equally spaced and the sampling
interval is

Th e sampling frequency fs is the inverse of the sampling interval Δt. We
generally try to sample at regular time intervals or constant sampling
frequencies, but in many earth science examples this is not possible. As an
example, imagine deep-sea sediments sampled at fi ve-centimeter intervals
along a sediment core. Radiometric age determinations at certain levels in
the sediment core revealed signifi cant fl uctuations in the sedimentation
rates. Despite the samples being evenly spaced along the sediment core they
are not equally spaced on the time axis. Here, the quantity

where T is the full length of the time series and N is the number of data
points, represents only an average sampling interval. In general, a time series
x(tk) can be represented as the linear sum of a periodic component xp(tk), a
long-term component or trend xtr(tk), and random noise xn(tk).

Th e long-term component is a linear or higher-degree trend that can be
extracted by fi tting a polynomial of a certain degree and subtracting the
values of this polynomial from the data (see Chapter 4). Noise removal will
be described in Chapter 6. Th e periodic – or cyclic in a mathematically less
rigorous sense – component can be approximated by a linear combination of
sine (or cosine) waves that have diff erent amplitudes Ai, frequencies fi, and
phase angles ψi.

Th e phase angle ψ helps to detect temporal shift s between signals of the same
frequency. Two signals x and y with the same period are out of phase unless
the diff erence between ψx and ψy is equal to zero (Fig. 5.2).

Th e frequency f of a periodic signal is the inverse of the period τ. Th e
Nyquist frequency fnyq is half the sampling frequency fs and represents the
maximum frequency the data can produce. As an example audio compact

5.2 GENERATING SIGNALS 153

disks (CDs) are sampled at frequencies of 44,100 Hz (Hertz, where 1 Hz=1
cycle per second), but the corresponding Nyquist frequency is 22,050 Hz,
which is the highest frequency a CD player can theoretically produce. Th e
performance limitations of anti-alias fi lters used by CD players further
reduce the frequency band and result in a cutoff frequency of around 20,050
Hz, which is the true upper frequency limit of a CD player.

We can now generate synthetic signals to illustrate the use of time-series
analysis tools. When using synthetic data we know in advance which features
the time series contains, such as periodic or random components, and we can
introduce a linear trend or gaps in the time series. Th e user will encounter
plenty of examples of the possible eff ects of varying the parameter settings,
as well as potential artifacts and errors that can result from the application
of spectral analysis tools. We will start with simple data and then apply the

a

b

Fig. 5.2 a Periodic signal x a function of time t defi ned by the amplitude A, and the period
τ which is the inverse of the frequency f. b Two signals x and y of the same period are out of
phase if the diff erence between ψx and ψy is not equal to zero.

154 5 TIME-SERIES ANALYSIS

Audio
5.1

methods to more complex time series. Th e fi rst example illustrates how to
generate a basic synthetic data series that is characteristic of earth science
data. First, we create a time axis t running from 1 to 1000 in steps of one unit,
i.e., the sampling frequency is also one. We then generate a simple periodic
signal y: a sine wave with a period of fi ve and an amplitude of two by typing

clear

t = 1 : 1000;
x = 2*sin(2*pi*t/5);

plot(t,x), axis([0 200 -4 4])

Th e period of τ=5 corresponds to a frequency of f=1/5=0.2. Natural data
series, however, are more complex than a simple periodic signal. Th e slightly
more complicated signal can be generated by superimposing several periodic
components with diff erent periods. As an example we compute such a signal
by adding three sine waves with the periods τ1=50 (f1=0.02), τ2=15 (f2≈0.07)
and τ3=5 (f3=0.2). Th e corresponding amplitudes are A1=2, A2=1 and A3=0.5.

t = 1 : 1000;
x = 2*sin(2*pi*t/50) + sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);

plot(t,x), axis([0 200 -4 4])

By restricting the t-axis to the interval [0,200], only one fi ft h of the original
data series is displayed (Fig. 5.3 a). It is, however, recommended that long
data series be generated, as in the example, in order to avoid edge eff ects
when applying spectral analysis tools for the fi rst time.

In contrast to our synthetic time series, real data also contain various
disturbances, such as random noise and fi rst or higher-order trends. In order
to reproduce the eff ects of noise, a random-number generator can be used to
compute Gaussian noise with mean of zero and standard deviation of one.
Th e seed of the algorithm should be set to zero using rng(0). One thousand
random numbers are then generated using the function randn.

rng(0)
n = randn(1,1000);

We add this noise to the original data, i.e., we generate a signal containing
additive noise (Fig. 5.3 b). Displaying the data illustrates the eff ect of noise
on a periodic signal. Since in reality no record is totally free of noise it is
important to familiarize oneself with the infl uence of noise on power spectra.

xn = x + n;

plot(t,x,'b-',t,xn,'r-'), axis([0 200 -4 4])

5.2 GENERATING SIGNALS 155

a

c

b

Fig. 5.3 a Synthetic signal with the periodicities τ1=50, τ2=15 and τ3=5, with diff erent
amplitudes, and b the same signal overprinted with Gaussian noise. c Th e time series shows
a signifi cant linear trend.

156 5 TIME-SERIES ANALYSIS

Audio
5.2

Signal processing methods are oft en applied to remove a major part of
the noise, although many fi ltering methods make arbitrary assumptions
concerning the signal-to-noise ratio. Moreover, fi ltering introduces artifacts
and statistical dependencies into the data, which may have a profound
infl uence on the resulting power spectra.

Finally, we introduce a linear long-term trend to the data by adding a
straight line with a slope of 0.005 and an intercept with the y-axis of zero (Fig.
5.3 c). Such trends are common in earth sciences. As an example, consider
the glacial-interglacial cycles observed in marine oxygen isotope records,
overprinted on a long-term cooling trend over the last six million years.

xt = x + 0.005*t;

plot(t,x,'b-',t,xt,'r-'), axis([0 200 -4 4])

In reality, more complex trends exist, such as higher-order trends or trends
characterized by variations in gradient. In practice, it is recommended that
such trends be eliminated by fi tting polynomials to the data and subtracting
the corresponding values. Our synthetic time series now contains many
characteristics of a typical earth science data set. It can be used to illustrate
the use of the spectral analysis tools that are introduced in the next section.

 5.3 Auto-Spectral and Cross-Spectral Analysis

Auto-spectral analysis aims to describe the distribution of variance contained
in a single signal x(t) as a function of frequency or wavelength. A simple
way to describe the variance in a signal over a time lag k is by means of
the autocovariance. An unbiased estimator of the autocovariance covxx of the
signal x(t) with N data points sampled at constant time intervals Δt is

Th e autocovariance series clearly depends on the amplitude of x(t).
Normalizing the covariance by the variance σ2 of x(t) yields the autocorrelation
sequence. Autocorrelation involves correlating a series of data with itself as
a function of a time lag k.

5.3 AUTO-SPECTRAL AND CROSS-SPECTRAL ANALYSIS 157

A popular method used to compute power spectra in earth sciences is the
method introduced by Blackman and Tukey (1958). Th e Blackman-Tukey
method uses the complex Fourier transform Xxx(f) of the autocorrelation
sequence corrxx(k),

where M is the maximum lag and fs the sampling frequency. Th e Blackman-
Tukey auto-spectrum is the absolute value of the Fourier transform of the
autocorrelation function. In some fi elds, the power spectral density is used
as an alternative way of describing the auto-spectrum. Th e Blackman-Tukey
power spectral density PSD is estimated by

where X*xx(f) is the conjugate complex of the Fourier transform of the
autocorrelation function Xxx(f) and fs is the sampling frequency. Th e actual
computation of the power spectrum can only be performed at a fi nite
number of diff erent frequencies by employing a Fast Fourier Transformation
(FFT). Th e FFT is a method of computing a discrete Fourier transform with
reduced execution time. Most FFT algorithms divide the transform into
two portions of size N/2 at each step of the transformation. Th e transform
is therefore limited to blocks with dimensions equal to a power of two. In
practice, the spectrum is computed by using a number of frequencies that is
close to the number of data points in the original signal x(t).

Th e discrete Fourier transform is an approximation of the continuous
Fourier transform. Th e continuous Fourier transform assumes an infi nite
signal but discrete real data are limited at both ends, i.e., the signal amplitude
is zero beyond either end of the time series. In the time domain, a fi nite signal
corresponds to an infi nite signal multiplied by a rectangular window that has
a value of one within the limits of the signal and a value of zero elsewhere. In
the frequency domain, the multiplication of the time series by this window
is equivalent to a convolution of the power spectrum of the signal with the
spectrum of the rectangular window (see Section 6.4 for a defi nition of
convolution). Th e spectrum of the window, however, is a sin(x)/x function,
which has a main lobe and numerous side lobes on either side of the main
peak, and hence all maxima in a power spectrum leak, i.e., they lose power
on either side of the peaks (Fig. 5.4).

158 5 TIME-SERIES ANALYSIS

A popular way to overcome the problem of spectral leakage is by
windowing, in which the sequence of data is simply multiplied by a smooth
bell-shaped curve with positive values. Several window shapes are available,
e.g., Bartlett (triangular), Hamming (cosinusoidal) and Hanning (slightly
diff erent cosinusoidal) (Fig. 5.4). Th e use of these windows slightly modifi es
the equation for the Blackman-Tukey auto-spectrum to

where w(k) is the windowing function. Th e Blackman-Tukey method
therefore performs auto-spectral analysis in three steps: calculation of the
autocorrelation sequence corrxx(k), windowing and, fi nally, computation of
the discrete Fourier transform. MATLAB allows power spectral analysis to be
performed with a number of modifi cations to the above method. One useful
modifi cation is the Welch method (Welch 1967) (Fig. 5.5). Th is method
involves dividing the time series into overlapping segments, computing the
power spectrum for each segment, and then averaging the power spectra.
Th e advantage of averaging the spectra is obvious: it simply improves the
signal-to-noise ratio of a spectrum. Th e disadvantage is a loss of resolution
in the spectra.

Cross-spectral analysis correlates two time series in the frequency domain.

a b
Fig. 5.4 Spectral leakage. a Th e amplitudes of the side lobes relative to that of the main lobe
are reduced by multiplying the corresponding time series by b a smooth bell-shaped window
function. A number of diff erent windows with advantages and disadvantages are available for
use instead of the default rectangular window, including Bartlett (triangular) and Hanning
(cosinusoidal) windows. Graph generated using the function wvtool.

5.3 AUTO-SPECTRAL AND CROSS-SPECTRAL ANALYSIS 159

Th e cross-covariance is a measure of the variance between two signals over a
time lag k. An unbiased estimator of the cross-covariance covxy of two signals,
x(t) and y(t), with N data points sampled at constant time intervals Δt, is

Fig. 5.5 Principle of Welch’s power spectral analysis. Th e time series is fi rst divided into
overlapping segments; the power spectrum for each segment is then computed and all spectra
are averaged to improve the signal-to-noise ratio of the power spectrum.

160 5 TIME-SERIES ANALYSIS

Th e cross-covariance series again depends on the amplitudes of x(t) and y(t).
Normalizing the covariance by the standard deviations of x(t) and y(t) yields
the cross-correlation sequence.

Th e Blackman-Tukey method uses the complex Fourier transform Xxy(f) of
the cross-correlation sequence corrxy(k)

where M is the maximum lag and fs the sampling frequency. Th e absolute
value of the complex Fourier transform Xxy(f) is the cross-spectrum while
the angle of Xxy(f) represents the phase spectrum. Th e phase diff erence is
important in calculating leads and lags between two signals, a parameter
oft en used to propose causalities between two processes documented by the
signals. Th e correlation between two spectra can be calculated by means of
the coherence:

Th e coherence is a real number between 0 and 1, where 0 indicates no
correlation and 1 indicates maximum correlation between x(t) and y(t) at the
frequency f. A signifi cant degree of coherence is an important precondition
for computing phase shift s between two signals.

 5.4 Examples of Auto-Spectral and Cross-Spectral Analysis

Th e Signal Processing Toolbox provides numerous methods for computing
spectral estimators for time series. Th e introduction of object-oriented
programming with MATLAB has led to the launch of a new set of functions
performing spectral analyses. Type help spectrum for more information
about object-oriented spectral analysis. Th e non-object-oriented functions
to perform spectral analyses, however, are still available. One of the oldest
functions in this toolbox is periodogram(x,window,nfft,fs) which computes
the power spectral density Pxx of a time series x(t) using the periodogram

5.4 EXAMPLES OF AUTO-SPECTRAL AND CROSS-SPECTRAL ANALYSIS 161

method. Th is method was invented by Arthur Schuster in 1898 for studying
the climate and calculates the power spectrum by performing a Fourier
transform directly on a sequence without requiring prior calculation of
the autocorrelation sequence. Th e periodogram method can therefore be
considered a special case of the Blackman and Tukey (1958) method, applied
with the time lag k set to unity (Muller and Macdonald 2000). At the time
of its introduction in 1958, the indirect computation of the power spectrum
via an autocorrelation sequence was faster than calculating the Fourier
transformation for the full data series x(t) directly. Aft er the introduction
of the Fast Fourier Transform (FFT) by Cooley and Tukey (1965), and
subsequent faster computer hardware, the higher computing speed of the
Blackman-Tukey approach compared to the periodogram method became
relatively unimportant.

For this next example we again use the synthetic time series x, xn and xt
generated in Section 5.2 as the input:

clear

t = 1 : 1000; t = t';
x = 2*sin(2*pi*t/50) + sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);

randn('seed',0)
n = randn(1000,1);
xn = x + n;

xt = x + 0.005*t;

We then compute the periodogram by calculating the Fourier transform of
the sequence x. Th e fastest possible Fourier transform using fft computes
the Fourier transform for nfft frequencies, where nfft is the next power of
two closest to the number of data points n in the original signal x. Since the
length of the data series is n=1000, the Fourier transform is computed for
nfft=1024 frequencies, while the signal is padded with nfft-n=24 zeros.

Xxx = fft(x,1024);

If nfft is even, as in our example, then Xxx is symmetric. For example, as the fi rst
(1+nfft/2) points in Xxx are unique, the remaining points are symmetrically
redundant. Th e power spectral density is defi ned as Pxx2=(abs(Xxx).^2)/Fs,
where Fs is the sampling frequency. Th e function periodogram also scales the
power spectral density by the length of the data series, i.e., it divides by Fs=1
and length(x)=1000.

Pxx2 = abs(Xxx).^2/1000;

162 5 TIME-SERIES ANALYSIS

We now drop the redundant part in the power spectrum and use only the
fi rst (1+nfft/2) points. We also multiply the power spectral density by two
to keep the same energy as in the symmetric spectrum, except for the fi rst
data point.

Pxx = [Pxx2(1); 2*Pxx2(2:512)];

Th e corresponding frequency axis runs from 0 to Fs/2 in Fs/(nfft-1) steps,
where Fs/2 is the Nyquist frequency. Since Fs=1 in our example, the frequency
axis is

f = 0 : 1/(1024-1) : 1/2;

We then plot the power spectral density Pxx in the Nyquist frequency range
from 0 to Fs/2, which in our example is from 0 to 1/2. Th e Nyquist frequency
range corresponds to the fi rst 512 or nfft/2 data points. We can plot the
power spectral density over the frequency by typing

plot(f,Pxx), grid

Th e graphical output shows that there are three signifi cant peaks at the
positions of the original frequencies of the three sine waves (1/50, 1/15,
and 1/5). Alternatively, we can also plot the power spectral density over the
period by typing

plot(1./f,Pxx), axis([0 100 0 1000]), grid

where we observe the three periods 50, 15, and 5, as expected. Since the
values on the x-axis of this plot are not evenly spaced (in constrast to those
on the frequency axis), we fi nd the long periods poorly resolved and a broad
peak at a period of 50 in this graphics. Th e code for the power spectral
density can be rewritten to make it independent of the sampling frequency,

Fs = 1;

t = 1/Fs :1/Fs : 1000/Fs; t = t';
x = 2*sin(2*pi*t/50) + sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);

nfft = 2^nextpow2(length(t));
Xxx = fft(x,nfft);

Pxx2 = abs(Xxx).^2 /Fs /length(x);
Pxx = [Pxx2(1); 2*Pxx2(2:512)];
f = 0 : Fs/(nfft-1) : Fs/2;

plot(f,Pxx), grid
axis([0 0.5 0 max(Pxx)])

5.4 EXAMPLES OF AUTO-SPECTRAL AND CROSS-SPECTRAL ANALYSIS 163

where the function nextpow2 computes the next power of two closest to
the length of the time series x(t). Th is code allows the sampling frequency
to be modifi ed and the diff erences in the results to be explored. We
can now compare the results with those obtained using the function
periodogram(x,window,nfft,fs).

[Pxx,f] = periodogram(x,[],1024,1);

Th is function allows the windowing of the signals with various window
shapes to overcome spectral leakage. However, we use the default rectangular
window by choosing an empty vector [] for window to compare the results
with the above experiment. Th e power spectrum Pxx is computed using an
FFT of length nfft=1024, which is the next power of two closest to the length
of the series x(t) and which is padded with zeros to make up the number
of data points to the value of nfft. A sampling frequency fs of one is used
within the function in order to obtain the correct frequency scaling for the
f-axis. We display the results by typing

plot(f,Pxx), grid
xlabel('Frequency')
ylabel('Power')
title('Auto-Spectrum')

or alternatively

plot(1./f,Pxx), axis([0 100 0 1000]), grid
xlabel('Period')
ylabel('Power')
title('Auto-Spectrum')

Th e graphical output is almost identical to our Blackman-Tukey plot and
again shows that there are three signifi cant peaks at the positions of the
original frequencies (or periods) of the three sine waves. Th e same procedure
can also be applied to the noisy data:

[Pxx,f] = periodogram(xn,[],1024,1);

plot(f,Pxx), grid
xlabel('Frequency')
ylabel('Power')
title('Auto-Spectrum')

Let us now increase the noise level by introducing Gaussian noise with a
mean of zero and a standard deviation of fi ve.

rng(0)
n = 5 * randn(size(x));
xn = x + n;

164 5 TIME-SERIES ANALYSIS

[Pxx,f] = periodogram(xn,[],1024,1);

plot(f,Pxx), grid
xlabel('Frequency')
ylabel('Power')
title('Auto-Spectrum')

Th is spectrum now resembles a real data spectrum in the earth sciences and
the spectral peaks are set against a signifi cant background noise level. Th e
peak of the highest frequency even disappears into the noise and cannot be
distinguished from maxima that are attributed to noise. Both spectra can be
compared on the same plot (Fig. 5.6):

[Pxx,f] = periodogram(x,[],1024,1);
[Pxxn,f] = periodogram(xn,[],1024,1);

subplot(1,2,1)
plot(f,Pxx), grid
xlabel('Frequency')
ylabel('Power')

subplot(1,2,2)
plot(f,Pxxn), grid
xlabel('Frequency')
ylabel('Power')

Next, we explore the infl uence of a linear trend on a spectrum. Long-term
trends are common features in earth science data. We will see that this trend
is misinterpreted as a very long period by the FFT, producing a large peak

a b

Fig. 5.6 Comparison of the auto-spectra for a the noise-free, and b the noisy synthetic signals
with the periods τ1=50 (f1=0.02), τ2=15 (f2≈0.07) and τ3=5 (f3=0.2). Th e highest frequency
peak disappears completely into the background noise and cannot be distinguished from
peaks attributed to the Gaussian noise.

5.4 EXAMPLES OF AUTO-SPECTRAL AND CROSS-SPECTRAL ANALYSIS 165

a b

with a frequency close to zero (Fig. 5.7).

[Pxx,f] = periodogram(x,[],1024,1);
[Pxxt,f] = periodogram(xt,[],1024,1);

subplot(1,2,1)
plot(f,Pxx), grid
xlabel('Frequency')
ylabel('Power')

subplot(1,2,2)
plot(f,Pxxt), grid
xlabel('Frequency')
ylabel('Power')

To eliminate the long-term trend, we use the function detrend. Th is function
removes linear trends, defi ned as either a single straight-line fi t from the
vector x, or a continuous, piecewise linear trend from x with one or more
breakpoints defi ned by the user.

xdt = detrend(xt);

subplot(2,1,1)
plot(t,x,'b-',t,xt,'r-'), grid
axis([0 200 -4 4])

subplot(2,1,2)
plot(t,x,'b-',t,xdt,'r-'), grid
axis([0 200 -4 4])

Fig. 5.7 Comparison of the auto-spectra for a the original noise-free signal with the periods
τ1=50 (f1=0.02), τ2=15 (f2≈0.07) and τ3=5 (f3=0.2), and b the same signal overprinted on a
linear trend. Th e linear trend is misinterpreted by the FFT as a very long period with a high
amplitude.

166 5 TIME-SERIES ANALYSIS

Th e resulting spectrum no longer shows the low-frequency peak.

[Pxxt,f] = periodogram(xt,[],1024,1);
[Pxxdt,f] = periodogram(xdt,[],1024,1);

subplot(1,2,1)
plot(f,Pxx), grid
xlabel('Frequency')
ylabel('Power')

subplot(1,2,2)
plot(f,Pxxdt), grid
xlabel('Frequency')
ylabel('Power')

Some data contain a high-order trend that can be removed by fi tting a higher-
order polynomial to the data and subtracting the corresponding x(t) values.

We now use two sine waves with identical periodicities τ=5 (equivalent
to f=0.2) and amplitudes equal to two to compute the cross-spectrum of two
time series. Th e sine waves show a relative phase shift of t=1. In the argument
of the second sine wave this corresponds to 2π/5, which is one fi ft h of the full
wavelength of τ=5.

clear

t = 1 : 1000;
x = 2*sin(2*pi*t/5);
y = 2*sin(2*pi*t/5 + 2*pi/5);

plot(t,x,'b-',t,y,'r-')
axis([0 50 -2 2]), grid

Th e cross-spectrum is computed by using the function cpsd, which uses
Welch’s method for computing power spectra (Fig. 5.8). Pxy is complex and
contains both amplitude and phase information.

[Pxy,f] = cpsd(x,y,[],0,1024,1);

plot(f,abs(Pxy)), grid
xlabel('Frequency')
ylabel('Power')
title('Cross-Spectrum')

Th e function cpsd(x,y,window,noverlap,nfft,fs) specifi es the number of
FFT points nfft used to calculate the cross power spectral density, which is
1024 in our example. Th e parameter window is empty in our example and the
default rectangular window is therefore used to obtain eight sections of x and
y. Th e parameter noverlap defi nes the number of overlapping samples, which
is zero in our example. Th e sampling frequency fs is 1 in this example. Th e

5.4 EXAMPLES OF AUTO-SPECTRAL AND CROSS-SPECTRAL ANALYSIS 167

a b

coherence of the two signals is one for all frequencies, since we are working
with noise-free data.

[Cxy,f] = mscohere(x,y,[],0,1024,1);

plot(f,Cxy), grid
xlabel('Frequency')
ylabel('Coherence')
title('Coherence')

We use the function mscohere(x,y,window,noverlap,nfft,fs) which specifi es
the number of FFT points nfft=1024, the default rectangular window
(window=[]), and no overlapping data points (noverlap=0). Th e complex part
of Pxy is required for computing the phase shift between the two signals
using the function angle.

phase = angle(Pxy);

plot(f,phase), grid
xlabel('Frequency')
ylabel('Phase Angle')
title('Phase Spectrum')

Th e phase shift at a frequency of f=0.2 (period τ=5) can be interpolated from
the phase spectrum

interp1(f,phase,0.2)

Fig. 5.8 Cross-spectrum of two sine waves with identical periodicities of τ=5 (equivalent to
f=0.2) and amplitudes of 2. Th e sine waves show a relative phase shift of t=1. In the argument
of the second sine wave this corresponds to 2π/5, which is one fi ft h of the full wavelength of
τ=5. a Th e magnitude shows the expected peak at f=0.2. b Th e corresponding phase diff erence
in radians at this frequency is 1.2566, which equals (1.2566.5)/(2.π) = 1.0000, which is the
phase shift of 1 that we introduced initially.

168 5 TIME-SERIES ANALYSIS

which produces the output

ans =
 -1.2566

Th e phase spectrum is normalized to one full period τ=2π and the phase
shift of –1.2566 therefore equals (–1.2566.5)/(2.π)=–1.0000, which is the
phase shift of one that we introduced initially.

We now use two sine waves with diff erent periodicities to illustrate cross-
spectral analysis. Both signals, x and y, have a periodicity of 5 but a phase
shift of 1.

clear

t = 1 : 1000;
x = sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);
y = 2*sin(2*pi*t/50) + 0.5*sin(2*pi*t/5+2*pi/5);

plot(t,x,'b-',t,y,'r-')
axis([0 100 -3 3]), grid

We can now compute the cross-spectrum Pxy, which clearly shows the
common period of τ=5 (or frequency of f=0.2).

[Pxy,f] = cpsd(x,y,[],0,1024,1);

plot(f, abs(Pxy)), grid
xlabel('Frequency')
ylabel('Power')
title('Cross-Spectrum')

Th e coherence shows a high value that is close to one at f=0.2.

[Cxy,f] = mscohere(x,y,[],0,1024,1);

plot(f,Cxy), grid
xlabel('Frequency')
ylabel('Coherence')
title('Coherence')

Th e complex part of the cross-spectrum Pxy is required for calculating the
phase shift between the two sine waves.

[Pxy,f] = cpsd(x,y,[],0,1024,1);
phase = angle(Pxy);

plot(f,phase), grid

Th e phase shift at a frequency of f=0.2 (period τ=5) is

interp1(f,phase,0.2)

5.4 EXAMPLES OF AUTO-SPECTRAL AND CROSS-SPECTRAL ANALYSIS 169

which produces the output of

ans =
 -1.2572

Th e phase spectrum is normalized to one full period τ=2π and the phase
shift of –1.2572 therefore equals (–1.2572.5)/(2.π)=–1.0004, which is again
the phase shift of one that we introduced initially.

 5.5 Interpolating and Analyzing Unevenly-Spaced Data

We can now use our experience in analyzing evenly-spaced data to run a
spectral analysis on unevenly-spaced data. Such data are very common in
earth sciences, for example in the fi eld of paleoceanography, where deep-sea
cores are typically sampled at constant depth intervals. Th e transformation
of evenly-spaced length-parameter data to time-parameter data in an
environment with changing length-time ratios results in unevenly-spaced
time series. Numerous methods exist for interpolating unevenly-spaced
sequences of data or time series. Th e aim of these interpolation techniques for
x(t) data is to estimate the x-values for an equally-spaced t vector from the
irregularly-spaced x(t) actual measurements. Linear interpolation predicts
the x-values by eff ectively drawing a straight line between two neighboring
measurements and by calculating the x-value at the appropriate point
along that line. However, this method has its limitations. It assumes linear
transitions in the data, which introduces a number of artifacts including the
loss of high-frequency components of the signal and the limiting of the data
range to that of the original measurements.

Cubic-spline interpolation is another method for interpolating data that are
unevenly spaced. Cubic splines are piecewise continuous curves requiring at
least four data points for each step. Th e method has the advantage that it
preserves the high-frequency information contained in the data. However,
steep gradients in the data sequence, which typically occur adjacent to
extreme minima and maxima, could cause spurious amplitudes in the
interpolated time series. Since all these (and other) interpolation techniques
might introduce artifacts into the data, it is always advisable to (1) keep the
total number of data points constant before and aft er interpolation, (2) report
the method employed for estimating the evenly-spaced data sequence, and
(3) explore the eff ect of interpolation on the variance of the data.

Following this brief introduction to interpolation techniques we can
apply the most popular linear and cubic spline interpolation techniques
to unevenly-spaced data. Having interpolated the data we can then use
the spectral tools that have previously been applied to evenly-spaced data

170 5 TIME-SERIES ANALYSIS

(Sections 5.3 and 5.4). We must fi rst load the two time series:

clear

series1 = load('series1.txt');
series2 = load('series2.txt');

Both synthetic data sets contain a two-column matrix with 339 rows. Th e fi rst
column contains ages in kiloyears, which are unevenly spaced. Th e second
column contains oxygen-isotope values measured on calcareous micro-
fossils (foraminifera). Th e data sets contain 100, 40 and 20 kyr cyclicities
and they are overlain by Gaussian noise. In the 100 kyr frequency band, the
second data series has shift ed by 5 kyrs with respect to the fi rst data series.
To plot the data we type

plot(series1(:,1),series1(:,2))
figure
plot(series2(:,1),series2(:,2))

Th e statistics for the spacing of the fi rst data series can be computed by

intv1 = diff(series1(:,1));

plot(intv1)

Th e plot shows that the spacing varies around a mean interval of 3 kyrs, with
a standard deviation of ca. 1 kyr. Th e minimum and maximum values for the
time axis

min(series1(:,1))
max(series1(:,1))

of tmin=0 and tmax=997 kyrs provide some information about the temporal
range of the data. Th e second data series

intv2 = diff(series2(:,1));

plot(intv2)

min(series2(:,1))
max(series2(:,1))

has a similar range, from 0 to 997 kyrs. We see that both series have a mean
spacing of 3 kyrs and range from 0 to ca. 1000 kyrs. We now interpolate the
data to an evenly-spaced time axis. While doing this, we follow the rule that
the number of data points should not be increased. Th e new time axis runs
from 0 to 996 kyrs, with 3 kyr intervals.

t = 0 : 3 : 996;

5.5 INTERPOLATING AND ANALYZING UNEVENLY-SPACED DATA 171

We can now interpolate the two time series to this axis with linear and spline
interpolation methods, using the function interp1.

series1L = interp1(series1(:,1),series1(:,2),t,'linear');
series1S = interp1(series1(:,1),series1(:,2),t,'spline');

series2L = interp1(series2(:,1),series2(:,2),t,'linear');
series2S = interp1(series2(:,1),series2(:,2),t,'spline');

In the linear interpolation method the linear interpolant is the straight line
between neighboring data points. In the spline interpolation the interpolant
is a piecewise polynomial (the spline) between these data points. Th e
method spline with interp1 uses a piecewise cubic spline interpolation, i.e.,
the interpolant is a third-degree polynomial. Th e results are compared by
plotting the fi rst series before and aft er interpolation.

plot(series1(:,1),series1(:,2),'ko'), hold on
plot(t,series1L,'b-',t,series1S,'r-'), hold off

We can already observe some signifi cant artifacts at ca. 370 kyrs. Whereas
the linearly-interpolated points are always within the range of the original
data, the spline interpolation method produces values that are unrealistically
high or low (Fig. 5.9). Th e results can be compared by plotting the second
data series.

plot(series2(:,1),series2(:,2),'ko'), hold on
plot(t,series2L,'b-',t,series2S,'r-'), hold off

In this series, only a few artifacts can be observed. Th e function interp1 also
provides an alternative to spline, which is pchip. Th e name pchip stands for

Fig. 5.9 Interpolation artifacts. Whereas the linearly interpolated points are always within
the range of the original data, the spline interpolation method results in unrealistic high and
low values.

172 5 TIME-SERIES ANALYSIS

Piecewise Cubic Hermite Interpolating Polynomial and this method performs
a shape-preserving piecewise cubic interpolation. Th e function avoids
the typical artifacts of the splines as it preserves the original shape of the
data series. We can apply the function used above to calculate the power
spectrum, computing the FFT for 256 data points with a sampling frequency
of 1/3 kyr–1.

[Pxx,f] = periodogram(series1L,[],256,1/3);

plot(f,Pxx)
xlabel('Frequency')
ylabel('Power')
title('Auto-Spectrum')

Signifi cant peaks occur at frequencies of approximately 0.01, 0.025 and 0.05,
corresponding approximately to the 100, 40 and 20 kyr cycles. Analysis of
the second time series

[Pxx,f] = periodogram(series2L,[],256,1/3);

plot(f,Pxx)
xlabel('Frequency')
ylabel('Power')
title('Auto-Spectrum')

also yields signifi cant peaks at frequencies of 0.01, 0.025 and 0.05 (Fig. 5.10).
We now compute the cross-spectrum for both data series.

[Pxy,f] = cpsd(series1L,series2L,[],128,256,1/3);

plot(f,abs(Pxy))
xlabel('Frequency')
ylabel('Power')
title('Cross-Spectrum')

Th e correlation, as indicated by the high value for the coherence, is quite
convincing.

[Cxy,f] = mscohere(series1L,series2L,[],128,256,1/3);

plot(f,Cxy)
xlabel('Frequency')
ylabel('Magnitude Squared Coherence')
title('Coherence')

We can observe a fairly high coherence at frequencies of 0.01, 0.025 and 0.05.
Th e complex part of Pxy is required for calculating the phase diff erence for
each frequency.

phase = angle(Pxy);

5.5 INTERPOLATING AND ANALYZING UNEVENLY-SPACED DATA 173

a b

c d

plot(f,phase)
xlabel('Frequency')
ylabel('Phase Angle')
title('Phase spectrum')

Th e phase shift at a frequency of f=0.01 is calculated using

interp1(f,phase,0.01)

which produces the output of

ans =
 -0.2796

Th e phase spectrum is normalized to a full period τ=2π and the phase

Fig. 5.10 Result from cross-spectral analysis of the two linearly-interpolated signals: a signals
in the time domain, b cross-spectrum of both signals, c coherence of the signals in the
frequency domain, and d phase spectrum in radians.

174 5 TIME-SERIES ANALYSIS

Movie
5.1

shift of –0.2796 therefore equals (–0.2796.100 kyrs)/(2.π)=–4.45 kyrs. Th is
corresponds roughly to the phase shift of 5 kyrs introduced to the second
data series with respect to the fi rst series.

Th e Signal Processing Toolbox also contains a GUI function named sptool
(for Signal Processing Tool), which is a more convenient tool for spectral
analysis but is not described in any detail herein.

 5.6 Evolutionary Power Spectrum

Th e amplitude of spectral peaks usually varies with time. Th is is particularly
true for paleoclimate time series. Paleoclimate records usually show trends,
not only in the mean and variance but also in the relative contributions of
rhythmic components such as the Milankovitch cycles in marine oxygen-
isotope records. Evolutionary power spectra have the ability to map such
changes in the frequency domain. Th e evolutionary or windowed power
spectrum is a modifi cation of the method introduced in Section 5.3, which
computes the spectrum of overlapping segments of the time series. Th ese
overlapping segments are relatively short compared to the windowed
segments used by the Welch method (Section 5.3), which is used to increase
the signal-to-noise ratio of power spectra. Th e evolutionary power spectrum
method therefore uses the Short-Time Fourier Transform (STFT) instead of
the Fast Fourier Transformation (FFT). Th e output from the evolutionary
power spectrum is the short-term, time-localized frequency content of the
signal. Th ere are various methods to display the results. For instance, time
and frequency can be plotted on the x- and y-axes, respectively, or vice versa,
with the color of the plot being dependent on the height of the spectral peaks.

As an example we use a data set that is similar to those used in Section
5.5. Th e data series contains three main periodicities of 100, 40 and 20 kyrs
and additive Gaussian noise. Th e amplitudes, however, change through
time and this example can therefore be used to illustrate the advantage of
the evolutionary power spectrum method. In our example the 40 kyr cycle
appears only aft er ca. 450 kyrs, whereas the 100 and 20 kyr cycles are present
throughout the time series. We fi rst load from the fi le series3.txt and display
the data (Fig. 5.11).

clear

series3 = load('series3.txt');
plot(series3(:,1),series3(:,2))
xlabel('Time (kyr)')
ylabel('d18O (permille)')
title('Signal with Varying Cyclicities')

5.6 EVOLUTIONARY POWER SPECTRUM 175

Audio
5.3

Since both the standard and the evolutionary power spectrum methods
require evenly-spaced data, we interpolate the data to an evenly-spaced time
vector t, as demonstrated in Section 5.5.

t = 0 : 3 : 1000;
series3L = interp1(series3(:,1),series3(:,2),t,'linear');

We then compute a non-evolutionary power spectrum for the full length of
the time series (Fig. 5.12). Th is exercise helps us to compare the diff erences
between the results of the standard and the evolutionary power spectrum
methods.

[Pxx,f] = periodogram(series3L,[],1024,1/3);
plot(f,Pxx)
xlabel('Frequency')
ylabel('Power')
title('Power Spectrum')

Th e auto-spectrum shows signifi cant peaks at 100, 40 and 20 kyr cyclicities,
as well as some noise. Th e power spectrum, however, does not provide any

Fig. 5.11 Synthetic data set containing three main periodicities of 100, 40, and 20 kyrs and
additive Gaussian noise. Whereas the 100 and 20 kyr cycles are present throughout the time
series, the 40 kyr cycle only appears at around 450 kyrs before present.

176 5 TIME-SERIES ANALYSIS

information about fl uctuations in the amplitudes of these peaks. Th e non-
evolutionary power spectrum simply represents an average of the spectral
information contained in the data.

We now use the function spectrogram to map the changes in the power
spectrum with time. By default, the time series is divided into eight segments
with a 50% overlap. Each segment is windowed with a Hamming window
to suppress spectral leakage (Section 5.3). Th e function spectrogram uses
similar input parameters to those used in periodogram in Section 5.3. We then
compute the evolutionary power spectrum for a window of 64 data points
with a 50 data point overlap. Th e STFT is computed for nfft=256. Since the
spacing of the interpolated time vector is 3 kyrs, the sampling frequency is
1/3 kyr–1.

spectrogram(series3L,64,50,256,1/3)
title('Evolutionary Power Spectrum')
xlabel('Frequency (1/kyr)')
ylabel('Time (kyr)')
colormap(jet)

Fig. 5.12 Power spectrum for the complete time series. showing signifi cant peaks at 100, 40
and 20 kyrs. Th e plot, however, does not provide any information on the temporal behavior
of the cyclicities.

5.6 EVOLUTIONARY POWER SPECTRUM 177

Movie
5.2

Fig. 5.13 Evolutionary power spectrum using spectrogram, which computes the short-time
Fourier transform STFT of overlapping segments of the time series. We use a Hamming
window of 64 data points and 50 data points overlap. Th e STFT is computed for nfft=256.
Since the spacing of the interpolated time vector is 3 kyrs the sampling frequency is 1/3 kyr-1.
Th e plot shows the onset of the 40 kyr cycle at around 450 kyrs before present.

Th e output from spectrogram is a color plot (Fig. 5.13) that displays red ver-
tical stripes representing signifi cant maxima at frequencies of 0.01 and 0.05
kyr–1 (i.e., every 100 and 20 kyrs). Th ere is also a 40 kyr cycle (corresponding
to a frequency of 0.025 kyr–1), but this only occurs aft er ca. 450 kyrs, as
documented by the vertical red stripe in the lower half of the graph.

To improve the visibility of the signifi cant cycles, the colors used in the
graph can be modifi ed using the colormap editor.

colormapeditor

Th e colormap editor displays the colormap of the fi gure as a strip of
rectangular cells. Th e nodes that separate regions of uniform slope in the RGB
colormap can be shift ed by using the mouse, which introduces distortions
in the colormap and results in modifi cation of the spectrogram colors. For
example shift ing the yellow node towards the right increases the contrast
between the vertical peak areas at 100, 40 and 20 kyrs, and the background.

178 5 TIME-SERIES ANALYSIS

 5.7 Lomb-Scargle Power Spectrum

Th e power spectrum methods introduced in the previous sections require
evenly-spaced data. In earth sciences, however, time series are oft en unevenly
spaced. Although interpolating the unevenly-spaced data to a grid of evenly-
spaced times is one way to overcome this problem (Section 5.5), interpolation
introduces numerous artifacts into the data, in both the time and frequency
domains. For this reason an alternative method of time-series analysis has
become increasingly popular in earth sciences, the Lomb-Scargle algorithm
(e.g., Scargle 1981, 1982, 1989, 1990, Press et al. 1992, Schulz et al. 1998).

Th e Lomb-Scargle algorithm only evaluates the data of the time series
at the times ti that are actually measured. Assuming a series y(t) of N data
points, the Lomb-Scargle normalized periodogram Px, as a function of
angular frequency ω=2πf > 0, is given by

where

and

are the arithmetic mean and the variance of the data (Section 3.2). Th e
constant τ, which is defi ned by the relationship

is an off set that makes Px(ω) independent of shift ing the ti values by any

5.7 LOMB-SCARGLE POWER SPECTRUM 179

constant amount. Scargle (1982) showed that this particular choice of the
off set τ has the consequence that the solution for Px(ω) is identical to a least-
squares fi t of sine and cosine functions to the data series y(t):

Th e least-squares fi t of harmonic functions to data series in conjunction
with spectral analysis had previously been investigated by Lomb (1976), and
hence the method is called the normalized Lomb-Scargle Fourier transform.
Th e term normalized refers to the factor s2 in the dominator of the equation
for the periodogram.

Scargle (1982) has shown that the Lomb-Scargle periodogram has an
exponential probability distribution with a mean equal to one, assuming that
the noise is Gaussian distributed. Th e probability that Px(ω) will be between
some positive quantity z and z+dz is exp(–z)dz. If we scan M independent
frequencies, the probability of none of them having a value larger than z is
(1–exp(–z))M. We can therefore compute the false-alarm probability of the
null hypothesis (i.e., the probability that a given peak in the periodogram is
not signifi cant) using

Press et al. (1992) suggested using the Nyquist criterion (Section 5.2) to
determine the number of independent frequencies M, assuming that the
data were evenly spaced. In this case, the appropriate value for the number of
independent frequencies is M=2N, where N is the length of the time series.

More detailed discussions of the Lomb-Scargle method are given in Scargle
(1989) and Press et al. (1992). An excellent summary of the method and a
TURBO PASCAL program to compute the normalized Lomb-Scargle power
spectrum of paleoclimatic data have been published by Schulz and Stattegger
(1998). A convenient MATLAB algorithm lombscargle for computing the
Lomb-Scargle periodogram has been published by Brett Shoelson (Th e
MathWorks, Inc.) and can be downloaded from File Exchange at

http://www.mathworks.de/matlabcentral/fileexchange/993-lombscargle-m

Th e following MATLAB code is based on the original FORTRAN code
published by Scargle (1989). Signifi cance testing uses the methods proposed
by Press et al. (1992) explained above.

We fi rst load the synthetic data that were generated to illustrate the use
of the evolutionary or windowed power spectrum method in Section 5.6.

180 5 TIME-SERIES ANALYSIS

Th e data contain periodicities of 100, 40 and 20 kyrs, as well as additive
Gaussian noise, and are unevenly spaced about the time axis. We defi ne two
new vectors t and x that contain the original time vector and the synthetic
oxygen-isotope data sampled at times t.

clear

series3 = load('series3.txt');
t = series3(:,1);
x = series3(:,2);

We then generate a frequency axis f. Since the Lomb-Scargle method is not
able to deal with the frequency of zero (i.e., with an infi nite period) we start
at a frequency value that is equivalent to the spacing of the frequency vector.
Th e variable ofac is the oversampling parameter that infl uences the resolution
of the frequency axis about the N(frequencies)=N(datapoints) case. We also
need the highest frequency fhi that can be analyzed by the Lomb-Scargle
algorithm: the Nyquist frequency fnyq that would be obtained if the N data
points were evenly spaced over the same time interval is commonly used for
fhi. Th e following code uses the input parameter hifac, which is defi ned by
Press et al. (1992) as hifac=fhi/fnyq.

int = mean(diff(t));
ofac = 4; hifac = 1;
f = ((2*int)^(-1))/(length(x)*ofac): ...
 ((2*int)^(-1))/(length(x)*ofac): ...
 hifac*(2*int)^(-1);

where int is the mean sampling interval. We normalize the data by subtracting
the mean.

x = x - mean(x);

We can now compute the normalized Lomb-Scargle periodogram px as a
function of the angular frequency wrun using the translation of Scargle’s
FORTRAN code into MATLAB code.

for k = 1:length(f)
 wrun = 2*pi*f(k);
 px(k) = 1/(2*var(x)) * ...
 ((sum(x.*cos(wrun*t - ...
 atan2(sum(sin(2*wrun*t)),sum(cos(2*wrun*t)))/2))).^2) ...
 /(sum((cos(wrun*t - ...
 atan2(sum(sin(2*wrun*t)),sum(cos(2*wrun*t)))/2)).^2)) + ...
 ((sum(x.*sin(wrun*t - ...
 atan2(sum(sin(2*wrun*t)),sum(cos(2*wrun*t)))/2))).^2) ...
 /(sum((sin(wrun*t - ...
 atan2(sum(sin(2*wrun*t)),sum(cos(2*wrun*t)))/2)).^2));
end

5.7 LOMB-SCARGLE POWER SPECTRUM 181

Th e signifi cance level for any peak in the power spectrum px can now be
computed. Th e variable prob indicates the false-alarm probability for the null
hypothesis: a low prob therefore indicates a highly signifi cant peak in the
power spectrum.

prob = 1-(1-exp(-px)).^(2*length(x));

We now plot the power spectrum and the probabilities (Fig. 5.14):

plot(f,px)
xlabel('Frequency')
ylabel('Power')
title('Lomb-Scargle Power Spectrum')

figure
plot(f,prob)
xlabel('Frequency')
ylabel('Probability')
title('Probabilities')

Th e two plots suggest that all three peaks are highly signifi cant since the
errors are extremely low at the cyclicities of 100, 40 and 20 kyrs.

An alternative way of displaying the signifi cance levels was suggested by
Press et al. (1992). In this method the equation for the false-alarm probability
of the null hypothesis is inverted to compute the corresponding power of
the signifi cance levels. As an example we choose a signifi cance level of 95%.
However, this number can also be replaced by a vector of several signifi cance
levels such as signif=[0.90 0.95 0.99]. We can now type

m = floor(0.5*ofac*hifac*length(x));
effm = 2*m/ofac;
signif = 0.95;
levels = log((1-signif.^(1/effm)).^(-1));

where m is the true number of independent frequencies and effm is the
eff ective number of frequencies using the oversampling factor ofac. Th e
second plot displays the spectral peaks and the corresponding probabilities.

plot(f,px)
hold on
for k = 1:length(signif)
 line(f,levels(:,k)*ones(size(f)),'LineStyle','--')
end
xlabel('Frequency')
ylabel('Power')
title('Lomb-Scargle Power Spectrum')
hold off

All three spectral peaks at frequencies of 0.01, 0.025 and 0.05 kyr–1 exceed the

182 5 TIME-SERIES ANALYSIS

Fig. 5.14 a Lomb-Scargle power spectrum and b the false-alarm probability of the null
hypothesis. Th e plot suggests that the 100, 40 and 20 kyr cycles are highly signifi cant.

a

b

5.7 LOMB-SCARGLE POWER SPECTRUM 183

95% signifi cant level, suggesting that they represent signifi cant cyclicities.
We have therefore obtained similar results to those obtained using the
periodogram method. However, the Lomb-Scargle method has the advantage
that is does not require any interpolation of unevenly-spaced data, as well as
permitting quantitative signifi cance testing.

 5.8 Wavelet Power Spectrum

Section 5.6 demonstrated the use of a modifi cation to the power spectrum
method for mapping changes in cyclicity through time. A similar modifi cation
could, in theory, be applied to the Lomb-Scargle method, which would have
the advantage that it could then be applied to unevenly-spaced data. Both
methods, however, assume that the data are composites of sine and cosine
waves that are globally uniform in time and have infi nite time spans. Th e
evolutionary power spectrum method divides the time series into overlapping
segments and computes the Fourier transform of these segments. To avoid
spectral leakage, the data are multiplied by windows that are smooth bell-
shaped curves with positive values (Section 5.3). Th e higher the temporal
resolution of the evolutionary power spectrum the lower the accuracy of
the result. Moreover, short time windows contain a large number of high-
frequency cycles whereas the low-frequency cycles are underrepresented.

In contrast to the Fourier transform, the wavelet transform uses base
functions (wavelets) that have smooth ends per se (Lau and Weng 1995,
Mackenzie et al. 2001). Wavelets are small packets of waves; they are defi ned
by a specifi c frequency and decay towards either end. Since wavelets can
be stretched and translated in both frequency and time, with a fl exible
resolution, they can easily map changes in the time-frequency domain.
We use the functions for wavelet analysis that are included in the Wavelet
Toolbox (MathWorks 2014b). Th ere is also, however, a very popular wavelet
toolbox produced by Christopher Torrence and Gilbert P. Compo (1998),
which is freely available online from

http://paos.colorado.edu/research/wavelets/

A wavelet transformation mathematically decomposes a signal y(t) into
elementary functions ψa,b(t) derived from a mother wavelet ψ(t), by dilation
and translation,

184 5 TIME-SERIES ANALYSIS

where b denotes the position (translation) and a (>0) the scale (dilation) of
the wavelet (Lau and Weng 1995). Th e wavelet transform of the signal y(t)
about the mother wavelet ψ(t) is defi ned as the convolution integral

where ψ* is the complex conjugate of ψ. Th ere are many mother wavelets
available in the literature, such as the classic Haar wavelet, the Morlet wavelet,
or the Daubechies wavelet. Th e most popular wavelet in geosciences is the
Morlet wavelet introduced by French geophysicist Jean Morlet (1931–2007),
which is defi ned by

where η is the time and ω0 is the wave number (Torrence and Compo
1998). Th e wave number is the number of oscillations within the wavelet
itself. We can easily compute a discrete version of the Morlet wavelet wave
by translating the above equation into MATLAB code, where eta is the non-
dimensional time and w0 is the wave number. Changing w0 produces wavelets
with diff erent wave numbers. Note that it is important not to use i for index
in for loops, since it is used here for imaginary unit (Fig. 5.15).

clear

eta = -10 : 0.1 : 10;
w0 = 6;
wave = pi.^(-1/4) .* exp(i*w0*eta) .* exp(-eta.^2/2);

plot(eta,wave)
xlabel('Position')
ylabel('Scale')
title('Morlet Mother Wavelet')

In order to familiarize ourselves with wavelet power spectra, we use a pure
sine wave with a period fi ve and additive Gaussian noise.

clear

rng(0)
t = 0 : 0.5 : 50;
x = sin(2*pi*t/5) + randn(size(t));

As a fi rst step, we need to defi ne the mother wavelet and its wave number w0.

mother = 'morl';
w0 = 6;

5.8 WAVELET POWER SPECTRUM 185

We then need to defi ne the values of the scales for which the wavelet
transform will be computed. Th ese values defi ne how much a wavelet is
stretched or compressed to map the variability of the time series at diff erent
wavelengths. Scales with smaller values correspond to higher frequencies
and can therefore map rapidly-changing details, whereas those with higher
values can map the long-term variations. Th e defi nition of the scales fi rst
requires the sampling interval dt of our time series x. We then use the
default spacing ds of 0.4875 for a Morlet wavelet, following the instructions
contained in the Wavelet Toolbox manual (MathWorks 2014b). Th e smallest
value for the scales s0 is usually chosen to be twice the sampling interval, i.e.,
2*dt. We next calculate the number of scales nb, which depends on the length
of the time series and the spacing of the scales. Finally, we calculate the scales
scales themselves depending on the smallest scale, the number of scales, and
the spacing of the scales, using equations provided in the Wavelet Toolbox
manual (MathWorks 2014b).

dt = 0.5;
ds = 0.4875;
s0 = 2*dt;
nb = fix(log2(length(x))/ds)+1;
scales = s0*2.^((0:nb-1)*ds);

Fig. 5.15 Morlet mother wavelet with wave number 6.

186 5 TIME-SERIES ANALYSIS

In the next step we compute the real or complex continuous wavelet
coeffi cients using the function cwt contained in the Wavelet Toolbox.

coefs = cwt(x,scales,mother);

Th e function scal2frq converts scales scales to pseudo-frequencies, using
the mother wavelet mother and the sampling period dt.

f = scal2frq(scales,mother,dt);

We use a fi lled contour plot to portray the power spectrum, i.e., the absolute
value of the wavelet coeffi cients (Fig. 5.16 a).

contour(t,f,abs(coefs),...
 'LineStyle','none',...
 'LineColor',[0 0 0],...
 'Fill','on')
xlabel('Time')
ylabel('Frequency')
title('Wavelet Power Spectrum')
set(gcf,'Colormap',jet)
set(gca,'YLim',[0 0.9],...
 'XGrid','On',...
 'YGrid','On')

Alternatively, we can compute the wavelet transform using the fast Fourier
transform (FFT) algorithm implemented in the function cwtft. Th is approach
is used in the freely available wavelet toolbox produced by Torrence and
Compo (1998). We fi rst defi ne the scales using the values for the smallest
scales s0, the sampling interval ds of the scales, and the number of scales nb
from above, merged into a structure array sc.

sc.s0 = s0;
sc.ds = ds;
sc.nb = nb;

Th en, we create a structure array sig that contains the signal x, the sampling
interval (or period) dt, the mother wavelet mother, and the scales sc.

sig = struct('val',x,...
 'period',dt,...
 'wavelet',mother,...
 'scales',sc);

Th e output from cwtft is a structure array cwtstruct that includes the wavelet
coeffi cients cfs and the scales scales. Th e default mother wavelet is the
Morlet wavelet.

cwtstruct = cwtft(sig);

5.8 WAVELET POWER SPECTRUM 187

We convert the scales to pseudo-frequencies using the equation for the
Morlet wavelet, which we fi nd in the wavelet defi nitions in the cwtft help
section.

f = 1./(4*pi*cwtstruct.scales/(w0+sqrt(2+w0^2)));

Fig. 5.16 Wavelet power spectrum showing a signifi cant period at 5 cycles that persists
throughout the full length of the time vector. Th e wavelet power spectrum has been calculated
using a the continuous 1D wavelet transform cwt and b the continuous wavelet transform
using the FFT algorithm cwtft.

a

b

188 5 TIME-SERIES ANALYSIS

We again use a fi lled contour plot to portray the power spectrum, i.e., the
absolute value of the wavelet coeffi cients (Fig. 5.16 b).

contour(t,f,abs(cwtstruct.cfs),...
 'LineStyle','none',...
 'LineColor',[0 0 0],...
 'Fill','on')
xlabel('Time')
ylabel('Frequency')
title('Wavelet Power Spectrum Using FFT Algorithm')
set(gcf,'Colormap',jet)
set(gca,'YLim',[0 0.9],...
 'XGrid','On',...
 'YGrid','On')

As we can see, the wavelet power spectrum derived using cwtft is much
smoother than that computed with cwt, since cwtft uses sinusoids to smooth
the coeffi cients. However, the smoothing causes a signifi cant loss of detail in
the contour plot.

We now apply this concept to the synthetic data from the example to
demonstrate the windowed power spectrum method and load the synthetic
data contained in fi le series3.txt, remembering that the data contain
periodicities of 100, 40, and 20 kyrs as well as additive Gaussian noise, and
that they are unevenly spaced about the time axis.

clear

series3 = load('series3.txt');

As for the Fourier transform and in contrast to the Lomb-Scargle algorithm,
the wavelet transform requires evenly-spaced data, and we therefore
interpolate the data using interp1.

t = 0 : 3 : 1000;
series3L = interp1(series3(:,1),series3(:,2),t,'linear');

Again, we fi rst need to defi ne the mother wavelet and its wave number w0.

mother = 'morl';
w0 = 6;

We then defi ne the scales, as demonstrated in the fi rst example. Unlike the
previous example the sampling interval dt of our time series is now 3.

dt = 3;
ds = 0.4875;
s0 = 2*dt;
nb = fix(log2(length(series3L))/ds)+1;
scales = s0*2.^((0:nb-1)*ds);

5.8 WAVELET POWER SPECTRUM 189

We compute the wavelet coeffi cients using cwt.

coefs = cwt(series3L,scales,mother);

We convert the scales scales to pseudo-frequencies using the mother wavelet
mother and the sampling period dt.

f = scal2frq(scales,mother,dt);

We use a fi lled contour plot to portray the power spectrum (Fig. 5.17 a).

contour(t,f,abs(coefs),...
 'LineStyle','none',...
 'LineColor',[0 0 0],...
 'Fill','on')
xlabel('Time')
ylabel('Frequency')
title('Wavelet Power Spectrum')
set(gcf,'Colormap',jet)
set(gca,'YLim',[0 0.04],...
 'XGrid','On',...
 'YGrid','On')

Th e graph shows horizontal clusters of peaks at around 0.01 and 0.025 kyr–1,
corresponding to 100 and 40 kyr cycles. Th e 40 kyr cycle (a frequency of
0.025 kyr–1) only appears at ca. 450 kyrs before present. Using cwtft instead
of cwt again creates a much smoother result (Fig. 5.17 b).

sc.s0 = s0;
sc.ds = ds;
sc.nb = nb;
sig = struct('val',series3L,...
 'period',dt,...
 'wavelet',mother,...
 'scales',sc);
cwtstruct = cwtft(sig);
scales = cwtstruct.scales

f = 1./(4*pi*cwtstruct.scales/(w0+sqrt(2+w0^2)));

contour(t,f,abs(cwtstruct.cfs),...
 'LineStyle','none',...
 'LineColor',[0 0 0],...
 'Fill','on')
xlabel('Time')
ylabel('Frequency')
title('Wavelet Power Spectrum Using FFT Algorithm')
set(gcf,'Colormap',jet)
set(gca,'YLim',[0 0.04],...
 'XGrid','On',...
 'YGrid','On')

Compared to the windowed power spectrum method, the wavelet power

190 5 TIME-SERIES ANALYSIS

a

b

Fig. 5.17 Wavelet power spectrum for the synthetic data series contained in series_3.txt.
Th e plot clearly shows signifi cant periodicities at frequencies of 0.01, 0.025, and 0.05 kyr-1
corresponding to the 100, 40, and 20 kyr cycles. Th e 100 kyr cycle is present throughout the
entire time series, whereas the 40 kyr cycle only appears at around 450 kyrs before present.
Th e 20 kyr cycle is relatively weak but is probably present throughout the entire time series.
Th e wavelet power spectrum has been calculated using a the continuous 1D wavelet transform
cwt and b the continuous wavelet transform using FFT algorithm cwtft.

5.8 WAVELET POWER SPECTRUM 191

spectrum clearly shows a much higher resolution on both the time and
the frequency axes. Instead of dividing the time series into overlapping
segments and computing the power spectrum for each segment, the wavelet
transform uses short packets of waves that better map temporal changes
in the cyclicities. Th e disadvantage of both the windowed power spectrum
and the wavelet power spectrum is, however, the requirement for evenly-
spaced data. Th e Lomb-Scargle method overcomes this problem but (as with
the power spectrum method) has limitations in its ability to map temporal
changes in the frequency domain.

 5.9 Detecting Abrupt Transitions in Time Series

A number of methods are available to detect abrupt changes in time series in
the time domain. An example of such such methods for use in climate time
series is the rampfi t method (Mudelsee and Stattegger 1997, Mudelsee 2000),
and examples suitable for use in the frequency domain are the evolutionary
power spectrum and the wavelet power spectrum (e.g., Lau and Weng 1995,
Mackenzie et al. 2001). In most cases, trends and events in both time and
frequency domains are detected by computing the statistical parameters of
the data (e.g., measures of central tendency and dispersion) contained in
a sliding window of length L. Th e precision of these parameters depends
on the length of the window, i.e., an accurate value for the mean and the
variance is obtained if L is large. However, a larger window reduces the
accuracy of the estimated changes in these parameters. Th is problem is
oft en referred to as Grenander’s uncertainty principle of statistics (Grenander
1958). Performing a statistical test to assess diff erences in central tendency
and dispersion between two diff erent sliding windows, however, partly
overcomes this problem, provided only the location of a sharp transition in
statistical parameters is required.

Th e classic t-test and F-test statistics are oft en used to compare the means
and variances of two sets of measurements and could therefore be used to
detect changes in the location and dispersion between two sliding windows.
Th ese two tests, however, make the basic assumption that the samples came
from a population with a Gaussian distribution (Sections 3.7 and 3.8). Th e
non-parametric Mann-Whitney and Ansari-Bradley tests provide a solution
to this problem that is independent of the distribution (Sections 3.11 and
3.12). Th e Mann-Whitney test (Mann and Whitney 1947, Lepage 1971)
performs a two-sided rank sum test of the null hypothesis that two samples
come from identical continuous distributions with identical medians, against
the alternative that they do not have identical medians. Th e Ansari-Bradley
test performs a two-sided test that two independent samples come from the

192 5 TIME-SERIES ANALYSIS

same distribution, against the alternative that they come from distributions
that have the same median and shapes but diff erent dispersions (Ansari and
Bradley 1960, Lepage 1971).

Th e example below demonstrates the Mann-Whitney and Ansari-Bradley
tests on two synthetic records that contain signifi cant changes in the central
tendency (mean, median, mode) and dispersion (range, variance, quantiles)
in the middle of the time series (Fig. 5.18). Th e time axis runs from 0.1 to 500
kyr at sampling intervals of 0.1 kyr. At 250 kyr the mean of the log-normal
distributed data changes abruptly from 1.0 to 1.5 and the standard deviation
changes from 0.5 to 1.3 (Fig. 5.18 a).

clear
rng(0)
t = 0.1 : 0.1 : 500;
y1 = 0.1 * random('logn',1, 0.5, 1, length(t),1);
y2 = 0.1 * random('logn',1.5, 1.3, 1, length(t),1);
y = y1(1:length(t)/2);
y(length(t)/2+1:length(t)) = y2(length(t)/2+1:length(t));

We fi rst use a Mann-Whitney test with paired sliding windows of three
diff erent lengths, in order to detect any abrupt change in the mean. We
choose sliding window lengths of 300, 500, and 1,000 data points, i.e., in each
step we apply the Mann-Whitney test to two samples of 150 data points, two
samples of 250 data points, and two samples of 500 data points. Note that
when running a Mann-Whitney test on diff erent sets of data the length of
the window needs to be adjusted to the length of the time series, and to the
required accuracy with which the transition in the mean is to be identifi ed.

w = [300 500 1000];

We use the function ranksum introduced in Section 3.11 to perform the
Mann-Whitney test.

for j = 1:length(w)
na = w(j);
nb = w(j);
for i = w(j)/2+1:length(y)-w(j)/2
 [p,h] = ranksum(y(i-w(j)/2:i-1),y(i+1:i+w(j)/2));
 mwreal(j,i) = p;
end
mwreal(j,1:w(j)/2) = mwreal(j,w(j)/2+1) * ones(1,w(j)/2);
mwreal(j,length(y)-w(j)/2+1:length(y)) = ...
 mwreal(j,length(y)-w(j)/2) * ones(1,w(j)/2);
end

We then display the results.

subplot(2,1,1)

5.9 DETECTING ABRUPT TRANSITIONS IN TIME SERIES 193

a

b

c

Fig. 5.18 Mann-Whitney and Ansari-Bradley tests on synthetic dust fl ux record. a Lognormal
distributed noise. Aft er 250 kyrs the mean and variance of the data shift s towards a lower
value. b Result of a Mann-Whitney test for three diff erent lengths of the paired sliding
windows (150, 250 and 500 data points, equivalent to 15, 25 and 50 kyrs). Th e length of the
window clearly infl uences the amplitudes and widths of the parameter maxima, whereas the
location of the transition in the mean is well defi ned. c Result of a Ansari-Bradley test for
three diff erent lengths of the paired sliding windows (150, 250 and 500 data points, equivalent
to 15, 25 and 50 kyrs). Th e length of the window clearly infl uences the amplitudes and widths
of the parameter maxima, and the location of the transition in the dispersion is well defi ned.

194 5 TIME-SERIES ANALYSIS

plot(t,y)
title('Synthetic signal of lognormal distributed noise')
subplot(2,1,2)
plot(t,log(mwreal))
title('Results from Mann-Whitney U-test')

Th e result from the Mann-Whitney test reveals that the length of the window
infl uences the amplitudes and widths of the maxima of the test parameter,
whereas the location of the transition in the means is well defi ned (Fig.
5.18 b). We next use an Ansari-Bradley test for the same three diff erent
lengths of paired sliding windows (150, 250 and 500 data points) to detect any
abrupt change in the standard deviation. We use the function ansaribradley
introduced in Section 3.12 to perform the Ansari-Bradley test.

for j = 1:length(w)
df1 = w(j) - 1;
df2 = w(j) - 1;
for i = w(j)/2+1:length(y)-w(j)/2
 [h,p] = ansaribradley(y(i-w(j)/2:i-1),y(i+1:i+w(j)/2));
 abreal(j,i) = p;
end
abreal(j,1:w(j)/2) = abreal(j,w(j)/2+1) * ones(1,w(j)/2);
abreal(j,length(y)-w(j)/2+1:length(y)) = ...
 abreal(j,length(y)-w(j)/2) * ones(1,w(j)/2);
end

We then display the results.

subplot(2,1,1)
plot(t,y)
title('Synthetic signal of lognormal distributed noise')
subplot(2,1,2)
plot(t,log(abreal))
title('Results from Ansari-Bradley test')

Th e length of the window again clearly infl uences the amplitudes and widths
of the maxima of the test parameters, and the location of the transition in
the dispersion is again well defi ned (Fig. 5.18 c). Th is method has been
successfully applied to records of terrigenous dust fl ux preserved in marine
sediments off shore subtropical West Africa, the eastern Mediterranean Sea,
and the Arabian Sea, in order to detect trends, rhythms and events in the
African Plio-Pleistocene climate (Trauth et al. 2009).

 5.10 Nonlinear Time-Series Analysis (by N. Marwan)

Th e methods described in the previous sections detect linear relationships
in the data. However, natural processes on the earth oft en show a more
complex and chaotic behavior, and methods based on linear techniques may

5.10 NONLINEAR TIME-SERIES ANALYSIS (BY N. MARWAN) 195

therefore yield unsatisfactory results. In recent decades, new techniques for
nonlinear data analysis derived from chaos theory have become increasingly
popular. Such methods have been employed to describe nonlinear behavior
by, for example, defi ning the scaling laws and fractal dimensions of natural
processes (Turcotte 1997, Kantz and Schreiber 1997). However, most
methods of nonlinear data analysis require either long or stationary data
series and these requirements are rarely satisfi ed in the earth sciences. While
most nonlinear techniques work well on synthetic data, these methods are
unable to describe nonlinear behavior in real data.

During the last decades, recurrence plots have become very popular
in science and engineering as a new method of nonlinear data analysis
(Eckmann 1987, Marwan 2007). Recurrence is a fundamental property of
dissipative dynamical systems. Although small disturbances in such systems
can cause exponential divergence in their states, aft er some time the systems
will return to a state that is close to a former state and then pass again
through a similar evolution. Recurrence plots allow such recurrent behavior
of dynamical systems to be visually portrayed. Th e method is now widely
accepted as a useful tool for the nonlinear analysis of short and nonstationary
data sets.

 Phase Space Portrait

Th e starting point for most nonlinear data analyses is the construction of a
phase space portrait for a system. Th e state of a system can be described by its
state variables x1(t), x2(t), …, xd(t). As an example, suppose the two variables
temperature and pressure are used to describe the thermodynamic state of
the earth’s mantle as a complex system. Th e d state variables at time t form
a vector in a d-dimensional space, which is known as the phase space. Th e
state of a system typically changes with time and the vector in the phase space
therefore describes a trajectory representing the temporal evolution (i.e., the
dynamics) of the system. Th e trajectory provides essential information on
the dynamics of the system, such as whether systems are periodic or chaotic.

In many applications the observation of a natural process does not yield
all possible state variables, either because they are not known or because
they cannot be measured. However, due to coupling between the system’s
components, we can reconstruct a phase space trajectory from a single
observation ui:

where m is the embedding dimension and τ is the time delay (index based;

196 5 TIME-SERIES ANALYSIS

the real time delay is τ=Δt). Th is reconstruction of the phase space is called
time delay embedding. Th e reconstruction of the phase space is not exactly the
same as the original phase space, but its topological properties are preserved
provided that the embedding dimension is suffi ciently large. In practice,
the embedding dimension must be more than twice the dimension of the
attractor (i.e., m>2d+1). Th e reconstructed trajectory is then suffi ciently
accurate for subsequent data analysis.

As an example we now explore the phase space portrait of a harmonic
oscillator such as an undamped pendulum. We fi rst create the position
vector x1 and the velocity vector x2

clear

t = 0 : pi/10 : 3*pi;
x1 = sin(t);
x2 = cos(t);

Th e phase space portrait

plot(x1,x2)
xlabel('x_1')
ylabel('x_2')

is a circle, suggesting an exact recurrence of each state aft er one complete
cycle (Fig. 5.19). Using the time delay embedding we can reconstruct this
phase space portrait using only a single observation, e.g., the velocity vector,
and a time delay of fi ve, which corresponds to a quarter of the period of our
pendulum.

tau = 5;
plot(x2(1:end-tau),x2(1+tau:end))
xlabel('x_1')
ylabel('x_2')

As we can see, the reconstructed phase space is almost the same as the
original phase space. Next, we compare this phase space portrait with one
for a typical nonlinear system, the Lorenz system (Lorenz 1963). Weather
patterns oft en to not change in a predictable manner. In 1963, Edward
Lorenz introduced a simple three-dimensional model to describe the
chaotic behavior exhibited by turbulence in the atmosphere. Th e variables
defi ning the Lorenz system are the intensity of atmospheric convection, the
temperature diff erence between ascending and descending currents, and the
distortion of the vertical temperature profi les from linearity. Small variations
in the initial conditions can cause dramatically divergent weather patterns, a
behavior oft en referred to as the butterfl y eff ect. Th e dynamics of the Lorenz

5.10 NONLINEAR TIME-SERIES ANALYSIS (BY N. MARWAN) 197

Fig. 5.19 a Original, and b reconstructed phase space portrait for a periodic system. Th e
reconstructed phase space is almost the same as the original phase space.

system are described by three coupled nonlinear diff erential equations:

Integrating the diff erential equation yields a simple MATLAB code for
computing the xyz triplets of the Lorenz system. As system parameters
controlling the chaotic behavior we use s=10, r=28 and b=8/3; the time delay
is dt=0.01. Th e initial values for the position vectors are x1=8, x2=9 and x3=25.
Th ese values, however, can be changed to any other values, which of course
will then change the behavior of the system.

clear

dt = .01;
s = 10;
r = 28;
b = 8/3;
x1 = 8; x2 = 9; x3 = 25;
for i = 1 : 5000
 x1 = x1 + (-s*x1*dt) + (s*x2*dt);
 x2 = x2 + (r*x1*dt) - (x2*dt) - (x3*x1*dt);
 x3 = x3 + (-b*x3*dt) + (x1*x2*dt);
 x(i,:) = [x1 x2 x3];
end

a b

198 5 TIME-SERIES ANALYSIS

Typical traces of a variable (such as the fi rst variable) can be viewed by
plotting x(:,1) over time (Fig. 5.20).

t = 0.01 : 0.01 : 50;
plot(t,x(:,1))
xlabel('Time')
ylabel('Temperature')

We next plot the phase space portrait for the Lorenz system (Fig. 5.21).

plot3(x(:,1),x(:,2),x(:,3))
grid, view(70,30)
xlabel('x_1')
ylabel('x_2')
zlabel('x_3')

In contrast to the simple periodic system described above, the trajectories of
the Lorenz system obviously do not precisely follow the previous course, but
recur very close to it. Moreover, if we follow two very close segments of the
trajectory, we see that they run into diff erent regions of the phase space with
time. Th e trajectory is obviously circling around a fi xed point in the phase
space and then, aft er a random time period, circling around another. Th e
curious orbit of the phase states around fi xed points is known as the Lorenz
attractor.

Th ese observed properties are typical of chaotic systems. While small
disturbances in such a system cause exponential divergences in its state, the
system returns approximately to a previous state through a similar course.
Th e reconstruction of the phase space portrait using only the fi rst state and
a time delay of six

Fig. 5.20 Th e Lorenz system. As system parameters we use s=10, r=28 and b=8/3; the time
delay is dt=0.01.

5.10 NONLINEAR TIME-SERIES ANALYSIS (BY N. MARWAN) 199

Movie
5.3

tau = 6;
plot3(x(1:end-2*tau,1),x(1+tau:end-tau,1),x(1+2*tau:end,1))
grid, view([100 60])
xlabel('x_1'), ylabel('x_2'), zlabel('x_3')

reveals a similar phase portrait with the two typical ears (Fig. 5.21). Th e
characteristic properties of chaotic systems can also be observed in this
reconstruction.

Th e time delay and embedding dimension need to be chosen from a
previous analysis of the data. Th e delay can be estimated with the help of the
autocovariance or autocorrelation function. For our example of a periodic
oscillation,

clear

t = 0 : pi/10 : 3*pi;
x = sin(t);

we compute and plot the autocorrelation function

for i = 1 : length(x) - 2
 r = corrcoef(x(1:end-i),x(1+i:end));
 C(i) = r(1,2);
end

plot(C)

Fig. 5.21 a Th e phase space portrait for the Lorenz system. In contrast to the simple periodic
system, the trajectories of the Lorenz system obviously do not follow precisely the previous
course, but recur very close to it. b Th e reconstruction of the phase space portrait using only
the fi rst state and a time delay of 6 reveals a topologically similar phase portrait to a, with the
two typical ears.

a b

200 5 TIME-SERIES ANALYSIS

xlabel('Delay'), ylabel('Autocorrelation')
grid on

We now choose a delay such that the autocorrelation function for the fi rst
time period equals zero. In our case this is fi ve, which is the value that we have
already used in our example of phase space reconstruction. Th e appropriate
embedding dimension can be estimated using the false nearest neighbors
method, or more simple, using recurrence plots, which are introduced in the
next subsection. Th e embedding dimension is gradually increased until the
majority of the diagonal lines are parallel to the line of identity.

Th e phase space trajectory or its reconstruction is the basis of several
measures defined in nonlinear data analysis, such as Lyapunov exponents,
Rényi entropies, or dimensions. Th e book on nonlinear data analysis by Kantz
and Schreiber (1997) is recommended for more detailed information on
these methods. Phase space trajectories or their reconstructions are also
necessary for constructing recurrence plots.

 Recurrence Plots

Th e phase space trajectories of dynamic systems that have more than three
dimensions are diffi cult to portray visually. Recurrence plots provide a way
of analyzing systems with higher dimensions. Th ey can be used, e.g., to
detect transitions between diff erent regimes, or to detect interrelationships
or synchronisations between diff erent systems (Marwan 2007). Th e method
was fi rst introduced by Eckmann and others (1987). Th e recurrence plot is a
tool that displays the recurrences of states in the phase space through a two-
dimensional plot.

If the distance between two states, i and j , on the trajectory is smaller than
a given threshold ε, the value of the recurrence matrix R is one; otherwise it
is zero. Th is analysis is therefore a pairwise test of all states. For N states we
compute N2 tests. Th e recurrence plot is then the two-dimensional display
of the N-by-N matrix, where black pixels represent Ri,j=1 and white pixels
indicate Ri,j=0, with a coordinate system representing two time axes. Such
recurrence plots can help to fi nd a preliminary characterization of the
dynamics of a system or to fi nd transitions and interrelationships within a
system (cf. Fig. 5.22).

5.10 NONLINEAR TIME-SERIES ANALYSIS (BY N. MARWAN) 201

As a fi rst example we load the synthetic time series containing 100 kyr, 40
kyr and 20 kyr cycles already used in the previous sections. Since the data are
unevenly spaced, we need to linearly interpolate the data to an evenly-spaced
time axis.

clear

series1 = load('series1.txt');
t = 0 : 3 : 996;
series1L = interp1(series1(:,1),series1(:,2),t,'linear');

We start with the assumption that the phase space is only one-dimensional.
Calculating the distances between all points of the phase space trajectory
produces the distance matrix S.

N = length(series1L);

Fig. 5.22 Recurrence plots representing typical dynamical behaviors: a stationary uncorrelated
data (white noise), b periodic oscillation, c chaotic data (Roessler system), and d non-
stationary data with abrupt changes.

a

c

b

d

202 5 TIME-SERIES ANALYSIS

S = zeros(N, N);

for i = 1 : N,
 S(:,i) = abs(repmat(series1L(i), N, 1) - series1L(:));
end

We can now plot the distance matrix

imagesc(t,t,S)
colormap jet
colorbar
xlabel('Time'), ylabel('Time')
axis xy

for the data set, where a colorbar provides a quantitative measure of the
distances between states (Fig. 5.23). We now apply a threshold ε to the
distance matrix to generate the black/white recurrence plot (Fig. 5.24).

imagesc(t,t,S<1)
colormap([1 1 1;0 0 0])
xlabel('Time'), ylabel('Time')
axis xy

Both plots reveal periodically recurring patterns. Th e distances between
these periodically recurring patterns represent the cycles contained in the
time series. Th e most signifi cant periodic patterns have periods of 200
and 100 kyrs. Th e 200 kyr period is the most signifi cant because of the
superposition of the 100 and 40 kyr cycles, which are common divisors of
200 kyrs. Moreover, there are smaller substructures within the recurrence
plot that have periods of 40 and 20 kyrs.

As a second example we now apply the method of recurrence plots to the
Lorenz system. We again generate xyz triplets from the coupled diff erential
equations.

clear

dt = .01;
s = 10;
r = 28;
b = 8/3;
x1 = 8; x2 = 9; x3 = 25;
for i = 1 : 5000
 x1 = x1 + (-s*x1*dt) + (s*x2*dt);
 x2 = x2 + (r*x1*dt) - (x2*dt) - (x3*x1*dt);
 x3 = x3 + (-b*x3*dt) + (x1*x2*dt);
 x(i,:) = [x1 x2 x3];
end

We then choose the resampled fi rst component of this system and reconstruct
a phase space trajectory by using an embedding of m=3 and τ=2.

5.10 NONLINEAR TIME-SERIES ANALYSIS (BY N. MARWAN) 203

Fig. 5.23 Display of the distance matrix from the synthetic data, providing a quantitative
measure for the distances between states at particular times; blue colors indicate small
distances and red colors represent large distances.

t = 0.01 : 0.05 : 50;
y = x(1:5:5000,1);
m = 3; tau = 2;

N = length(y);
N2 = N - tau*(m - 1);

Th e original data series had a length of 5,000 data points, reduced to 1,000
data points (equivalent to 50 seconds), but because of the time delay method
the reconstructed phase space trajectory has a length of 996 data points. We
can create the phase space trajectory with

for mi = 1:m
 xe(:,mi) = y([1:N2] + tau*(mi-1));
end

We can accelerate the pair-wise test between each pairs of points on the

204 5 TIME-SERIES ANALYSIS

Fig. 5.24 Th e recurrence plot for the synthetic data derived from the distance matrix, as
shown in Fig. 5.23, aft er applying a threshold of ε=1.

trajectory with a fully vectorized algorithm supported by MATLAB. For this
we need to transfer the trajectory vector into two test vectors whose element-
wise test will provide the pair-wise test of the trajectory vector:

x1 = repmat(xe,N2,1);
x2 = reshape(repmat(xe(:),1,N2)',N2*N2,m);

From these vectors we calculate the recurrence plot using the Euclidean norm
without any FOR loop (see Section 9.4 for details on Euclidean distances).

S = sqrt(sum((x1 - x2).^ 2,2));
S = reshape(S,N2,N2);

imagesc(t(1:N2),t(1:N2),S<10)
colormap([1 1 1;0 0 0])
xlabel('Time'), ylabel('Time')
axis xy

Th is recurrence plot reveals many short diagonal lines (Fig. 5.25). Th ese

5.10 NONLINEAR TIME-SERIES ANALYSIS (BY N. MARWAN) 205

Movie
5.4

Fig. 5.25 Th e recurrence plot for the Lorenz system using a threshold of ε=2. Th e regions with
regular diagonal lines reveal unstable periodic orbits, typical of chaotic systems.

lines represent periods of time during which the phase space trajectory runs
parallel to earlier or later sequences in this trajectory, i.e., periods of times
during which the states and dynamics were similar. Th e distances between
these diagonal lines represent the periods of the cycles, which vary and are
not constant, in contrast to those for a harmonic oscillation (Fig. 5.22).

 Recurrence Quantifi cation

Th e structure of recurrence plots can also be described by a suite of
quantitative measures. Several measures are based on the distribution of
the lengths of diagonal or vertical lines, as well as on the local proximity
confi guration. Th ese measures can be used to trace hidden transitions within
a process. As an example we will consider two measures: the recurrence
rate and the transitivity coeffi cient. Th e recurrence rate is the density of
points in the recurrence plot and corresponds to the recurrence probability

206 5 TIME-SERIES ANALYSIS

Fig. 5.26 Time series of the synthetic data used in the example of quantitative measures of
recurrence plots.

of the system. Th e transitivity coeffi cient has its roots in graph theory and
characterizes the regularity or complexity of the system.

We load the synthetic time from the fi le series3.txt, interpolate the data
to an annual time axis, and reconstruct its phase space trajectory using an
embedding dimension of 5 and a time delay of 3 (Fig. 5.26).

clear

series3 = load('series3.txt');

t = 0 : 1 : 996;
series3L = interp1(series3(:,1),series3(:,2),t,'linear');
plot(t,series3L)
xlabel('Time')

N = length(series3L);
tau = 3; m=5;
N2 = N - tau*(m - 1);

xe = zeros(N2,m);
for mi = 1:m
 xe(:,mi) = series3L([1:N2] + tau*(mi-1));
end

Using the vectorized approach we calculate the recurrence plot by applying
a threshold of 1.2 to the distance matrix (Fig. 5.27).

x1 = repmat(xe,N2,1);
x2 = reshape(repmat(xe(:),1,N2)',N2*N2,m);

S = sqrt(sum((x1 - x2).^ 2,2));
S = reshape(S,N2,N2);

5.10 NONLINEAR TIME-SERIES ANALYSIS (BY N. MARWAN) 207

R = S<1.2;

imagesc(t(1:N2),t(1:N2),R)
colormap([1 1 1;0 0 0])
xlabel('Time'), ylabel('Time')
axis square xy

To calculate the recurrence rate we can simply compute the mean of the
matrix R

RR = mean(R(:))

which yields

RR =
 0.1399

Th e probability that the system returns to a randomly selected previous state
is therefore about 14%.

Th e transitivity coeffi cient is a graph-theoretical measure of the probability
that three connected network nodes (triples) are completely interconnected,

Fig. 5.27 Recurrence plot for the synthetic data in Fig. 5.26, using an embedding of m=5 and
τ = 3 and applying a threshold of ε=1.2.

208 5 TIME-SERIES ANALYSIS

i.e., that they form a closed triangle:

Th is measure can be intuitively understood with respect to recurrences in
the phase space. We identify a recurrence of states by a network link: close
points on the phase space trajectory are connected by a link. Th ree connected
points form a triple, but only if all three points recur closely to each other,
thus forming a triangle. Such a triangular confi guration will remain along
the phase space trajectory if the dynamic is very regular (recurring states
remain recurring over a long period of time). However, if the dynamic is
chaotic, then parts of the phase space trajectory that were initially close
will subsequently diverge and the triangular confi guration will break down,
although the corresponding triple nodes might remain interconnected for
some time. Th e probability of fi nding triangles is therefore higher for regular
dynamics but lower for chaotic dynamics. Th is explanation is, of course,
rather simplifi ed but a theoretically substantiated explanation can be found
in Donner et al. (2011).

In order to calculate the probability that triples also form triangles we need
to compute the number of connected triples and the number of triangles,
which can be achieved directly from the recurrence plot but excluding the
main diagonal.

A = R - eye(size(R));

Th e number of triangles and triples is then

numTripl = sum(sum(A * A));
numTria = trace(A * A * A);

and fi nally, the transitivity coeffi cient is the fraction

Trans = numTria/numTripl

which yields

Trans =
 0.5930

Th is number means that the system does not have regular dynamics (which
would yield a transitivity coeffi cient close to one).

Changes in the dynamics, such as transition points and regime changes,

5.10 NONLINEAR TIME-SERIES ANALYSIS (BY N. MARWAN) 209

Movie
5.5

Fig. 5.28 Recurrence rate and transitivity coeffi cient for the synthetic data in Fig. 5.26, using
a moving window of 150 data points and an overlap of 20%.

are oft en of interest. Recurrence analysis can be used to detect diff erent types
of such transitions. Applying moving windows along the main diagonal of
the recurrence plot, we divide it into sub-recurrence plots and calculate the
recurrence measures of these sub-plots. In our example we choose a moving
window length of 150 and an overlap of 20%

w = 150;

We then calculate the recurrence rate and transitivity coeffi cient within these
moving windows (Fig. 5.28).

w = 150;
Trans = zeros(length(R)-w,1);
RR = zeros(length(R)-w,1);
for i = 1:w/5:length(R)-w
 subR = R(i:i+w,i:i+w);
 RR(i) = mean(subR(:));
 subA = A(i:i+w,i:i+w);
 numTripl = sum(sum(subA * subA));
 numClosTria = trace(subA * subA * subA);
 Trans(i) = numClosTria/numTripl;
end

plot(t(round(w/2) + (1:w/5:length(RR))), RR(1:w/5:end),...
 t(round(w/2) + (1:w/5:length(RR))), Trans(1:w/5:end))
xlabel('Time')
legend('recurrence rate','transitivity coeff',4)

Th e results suggest slight changes in the dynamics with respect to recurrence
probability (due to the visible amplitude variations in the time series) and
regularity. For a reliable interpretation of the variations in the recurrence

210 5 TIME-SERIES ANALYSIS

measures, a statistical test should be applied (Marwan 2011). Other more
complex measures that quantify other aspects of the dynamics (e.g.,
predictability, or laminar phases) are included in the Cross Recurrence Plot
Toolbox for MATLAB, available from

http://tocsy.pik-potsdam.de/CRPtoolbox/

Bivariate and multivariate extensions of recurrence plots allow nonlinear
correlation tests and synchronization analyses to be carried out. A detailed
introduction to methods based on recurrence plots can be found on the
following web site:

http://www.recurrence-plot.tk

Th e analysis of recurrence plots has already been applied to many problems
in earth sciences. Th e comparison of the dynamics of modern precipitation
data with paleo-rainfall data inferred from annual-layered lake sediments in
the northwestern Argentine Andes provides a good example of such analyses
(Marwan et al. 2003). In this instance the recurrence plot method was applied
to red-color intensity transects across varved lake sediments that were
approximately 30 kyrs old (Section 8.7). Comparing the recurrence plots
from the sediments with those from modern precipitation data revealed that
the reddish layers document the more intense rainy seasons that occurred
during La Niña years. Th e application of linear techniques was, however,
not able to link the increased fl ux of reddish clays with either the El Niño or
La Niña phase of the El Niño/Southern Oscillation. Moreover, recurrence
plots helped to prove the hypothesis that longer rainy seasons, enhanced
precipitation, and the stronger infl uence of the El Niño/Southern Oscillation
caused an increase in the number of landslides 30 kyrs ago (Marwan et al.
2003, Trauth et al. 2003).

 Recommended Reading

Ansari AR, Bradley RA (1960) Rank-Sum Tests for Dispersion. Annals of Mathematical
Statistics, 31:1174–1189. [Open access]

Blackman, RB, Tukey, JW (1958) Th e Measurement of Power Spectra. Dover NY
Cooley JW, Tukey JW (1965) An Algorithm for the Machine Calculation of Complex Fourier

Series. Mathematics of Computation 19(90):297–301.
Donner RV, Heitzig J, Donges JF, Zou Y, Marwan N, Kurths J (2011) Th e Geometry of Chaotic

Dynamics – A Complex Network Perspective. European Physical Journal B, 84:653–672
Eckmann JP, Kamphorst SO, Ruelle D (1987) Recurrence Plots of Dynamical Systems.

Europhysics Letters 5:973–977
Grenander U (1958) Bandwidth and variance in estimation of the spectrum. Journal of the

Royal Statistical Society Series B 20:152–157

RECOMMENDED READING 211

Holschneider M (1995) Wavelets, an Analysis Tool. Oxford University Press, Oxford
Kantz H, Schreiber T (1997) Nonlinear Time Series Analysis. Cambridge University Press,

Cambridge
Lau KM, Weng H (1995) Climate Signal Detection Using Wavelet Transform: How to make a

Time Series Sing. Bulletin of the American Meteorological Society 76:2391–2402
Lepage Y (1971) A combination of Wilcoxon’s and Ansari-Bradley’s statistics. Biometrika

58:213–271
Lomb NR (1972) Least-Squared Frequency Analysis of Unequally Spaced Data. Astro-physics

and Space Sciences 39:447–462
Lorenz EN (1963) Deterministic Nonperiodic Flow. Journal of Atmospheric Sciences 20:130–

141
Mackenzie D, Daubechies I, Kleppner D, Mallat S, Meyer Y, Ruskai MB, Weiss G (2001)

Wavelets: Seeing the Forest and the Trees. Beyond Discovery, National Academy of
Sciences, December 2001, available online at http://www.beyonddiscovery.org

Mann, HB, Whitney, DR (1947) On a Test of Whether one of Two Random Variables is
Stochastically Larger than the Other. Annals of Mathematical Statistics 18:50–60

Marwan N, Th iel M, Nowaczyk NR (2002) Cross Recurrence Plot Based Synchronization of
Time Series. Nonlinear Processes in Geophysics 9(3/4):325–331

Marwan N, Trauth MH, Vuille M, Kurths J (2003) Nonlinear Time-Series Analysis on
Present-Day and Pleistocene Precipitation Data from the NW Argentine Andes. Climate
Dynamics 21:317–332

Marwan N, Romano MC, Th iel M, Kurths J (2007) Recurrence Plots for the Analysis of
Complex Systems. Physics Reports, 438: 237–329

Marwan N (2011) How to avoid potential pitfalls in recurrence plot based data analysis.
International Journal of Bifurcation and Chaos 21:1003–1017

MathWorks (2014a) Signal Processing Toolbox – User’s Guide. Th e MathWorks, Inc., Natick,
MA

MathWorks (2014b) Wavelet Toolbox – User’s Guide. Th e MathWorks, Inc., Natick, MA
Mudelsee M, Stattegger M (1997) Exploring the structure of the mid-Pleistocene revolution

with advanced methods of time-series analysis. International Journal of Earth Sciences
86:499–511

Mudelsee M (2000) Ramp function regression: A tool for quantifying climate transitions.
Computers and Geosciences 26:293–307

Muller RA, MacDonald GJ (2000) Ice Ages and Astronomical Causes – Data, Spectral
Analysis and Mechanisms. Springer Verlag, Berlin Heidelberg New York

Press WH, Teukolsky SA, Vetterling WT (2007) Numerical Recipes: Th e Art of Scientifi c
Computing – Th ird Edition. Cambridge University Press, Cambridge

Romano M, Th iel M, Kurths J, von Bloh W (2004) Multivariate Recurrence Plots. Physics
Letters A 330(3–4):214–223

Scargle JD (1981) Studies in Astronomical Time Series Analysis. I. Modeling Random
Processes in the Time Domain. Th e Astrophysical Journal Supplement Series 45:1–71

Scargle JD (1982) Studies in Astronomical Time Series Analysis. II. Statistical Aspects of
Spectral Analysis of Unevenly Spaced Data. Th e Astrophysical Journal 263:835–853

Scargle JD (1989) Studies in Astronomical Time Series Analysis. III. Fourier Transforms,
Autocorrelation Functions, and Cross-Correlation Functions of Unevenly Spaced Data.
Th e Astrophysical Journal 343:874–887

Schulz M, Stattegger K (1998) SPECTRUM: Spectral Analysis of Unevenly Spaced
Paleoclimatic Time Series. Computers & Geosciences 23:929–945

Schuster A (1898) On the investigation of hidden periodicities with application to a supposed

212 5 TIME-SERIES ANALYSIS

26 day period of meteorological phenomena. Terrestrial Magmetism and Atmospheric
Electricity 3:13–41

Takens F (1981) Detecting Strange Attractors in Turbulence. Lecture Notes in Mathematics,
898:366–381

Torrence C, Compo GP (1998) A Practical Guide to Wavelet Analysis. Bulletin of the
American Meteorological Society 79:61–78

Trulla LL, Giuliani A, Zbilut JP, Webber Jr CL (1996) Recurrence Quantifi cation Analysis of
the Logistic Equation with Transients. Physics Letters A 223(4):255–260

Turcotte DL (1992) Fractals and Chaos in Geology and Geophysics. Cambridge University
Press, Cambridge

Trauth MH, Bookhagen B, Marwan N, Strecker MR (2003) Multiple Landslide Clusters
Record Quaternary Climate Changes in the NW Argentine Andes. Palaeogeography
Palaeoclimatology Palaeoecology 194:109–121

Trauth MH, Larrasoaña JC, Mudelsee M (2009) Trends, rhythms and events in Plio-
Pleistocene African climate. Quaternary Science Reviews 28:399–411

Weedon G (2003) Time-Series Analysis and Cyclostratigraphy – Examining Stratigraphic
Records of Environmental Change. Cambridge University Press, Cambridge

Welch PD (1967) Th e Use of Fast Fourier Transform for the Estimation of Power Spectra:
A Method Based on Time Averaging over Short, Modifi ed Periodograms. IEEE Trans.
Audio Electroacoustics AU-15:70–73

RECOMMENDED READING 213

 6.1 Introduction

Signal processing involves techniques for manipulating a signal in order to
minimize the eff ects of noise, to correct all kinds of unwanted distortions,
and to separate out various components of interest. Most signal processing
algorithms include the design and realization of fi lters. A fi lter can be
described as a system that transforms signals. System theory provides the
mathematical background for fi lter design and realization. A fi lter has an
input and an output, with the output signal y(t) being modifi ed with respect
to the input signal x(t) (Fig. 6.1). Th e signal transformation can be carried
out through a mathematical process known as convolution or, if fi lters are
involved, as fi ltering.

Th is chapter deals with the design and realization of digital fi lters with
the help of a computer. Many natural processes, however, resemble
analog fi lters that act over a range of spatial dimensions. A single rainfall
event is not recorded in lake sediments because short and low-amplitude
events are smeared over a longer time span. Bioturbation also introduces
serious distortions, for instance in deep-sea sediment records. In addition
to such natural fi lters, the fi eld collection and sampling of geological data

 6 Signal Processing

 Trace fossils several centimeters long in
Cambrian sediments exposed in the Äleklinta
cliff on the island of Öland, Sweden. Such
benthic mixing (or bioturbation) causes
signifi cant distortions in sedimentary records
as it changes both the amplitude and the
phase of environmental signals. In order to
reconstruct the original signal such records
need to be deconvolved, i.e., the eff ect of the
bioturbation fi lter needs to be reversed.

� Springer-Verlag Berlin Heidelberg 2015
M.H. Trauth, MATLAB� Recipes for Earth Sciences,
DOI 10.1007/978-3-662-46244-7_6

215

alters and smoothes the data with respect to its original form. For example
a fi nite sized sediment sample is integrated over a certain period of time
and therefore smoothes the natural signal. Similarly, the measurement of
magnetic susceptibility in a sediment core with the help of a loop sensor
introduces signifi cant smoothing since the loop response is integrated over
a section of the core.

Th e characteristics of these natural fi lters are oft en diffi cult to determine,
whereas numerical fi lters are designed with well-defi ned characteristics. In
addition, artifi cial fi lters are time invariant in most cases, whereas natural
fi lters, such as mixing within the water body of a lake or bioturbation at the
water-sediment interface, may vary with time. An easy way to describe or
predict the eff ect of a fi lter is to explore the fi lter output from a simple input
signal as a sine wave, a square wave, a sawtooth function, a ramp function,
or a step function. Although there is an endless variety of such input signals,
most systems or fi lters are described by their impulse response, i.e., the
output resulting from the input of a unit impulse.

Th is chapter starts with a technical section (Section 6.2) on generating
periodic signals, trends, and noise, following on from Section 5.2 of the
previous chapter. Section 6.3 then considers linear time-invariant systems,
providing the mathematical background for fi lters. Th e succeeding sections
(6.4 to 6.9) deal with the design, the realization, and the application of linear
time-invariant fi lters. Section 6.10 then considers the use of adaptive fi lters
originally developed for use in the telecommunication industry. Adaptive
fi lters automatically extract noise-free signals from duplicate measurements
on the same object. Such fi lters can be used in a large number of applications,
for example to remove noise from duplicate paleoceanographic time series,
or to improve the signal-to-noise ratio of parallel color-intensity transects
across varved lake sediments (see Chapter 5, Fig. 5.1). Adaptive fi lters
are also widely used in geophysics for noise canceling. We use the Signal

Fig. 6.1 Schematic of a linear time-invariant (LTI) system. Th e input signal is transformed
into an output signal.

216 6 SIGNAL PROCESSING

Processing Toolbox (MathWorks 2014), which contains all the necessary
routines for time-series analysis.

 6.2 Generating Signals

MATLAB provides numerous tools for generating basic signals that can be
used to illustrate the eff ects of fi lters. In Chapter 5 we generated a signal by
adding together three sine waves with diff erent amplitudes and periods. In
the following example the time vector is transposed in order to generate
column vectors.

clear

t = (1:100)';
x = 2*sin(2*pi*t/50) + sin(2*pi*t/10) + 0.5*sin(2*pi*t/5);

plot(t,x), axis([0 100 -4 4])

Frequency-selective fi lters are very common in earth sciences. Th ey are used
to remove specifi c frequency bands from the data. As an example we can
design a fi lter to suppress that portion of the signal that has a periodicity
of τ=10, leaving the other two cycles unaff ected. Th e eff ects of such fi lters
on simple periodic signals can also be used to predict signal distortions of
natural fi lters.

A step function is another basic input signal that can be used to explore
fi lter characteristics. It describes the transition from a value of one towards
a value of zero at a specifi c time. Th e function stairs draws a stairstep graph
of the elements of x.

t = (1:100)';
x = [ones(50,1);zeros(50,1)];

stairs(t,x), axis([0 100 -2 2])

Th is signal can be used to study the eff ects of a fi lter on a sudden transition.
An abrupt climate change could be regarded as an example. Most natural
fi lters tend to smooth such a transition and smear it over a longer time period.

A unit impulse is a third important signal type that we will use in the
following examples. Th is signal equals zero at all times except at a single
data point, where it equals one. Th e function stem plots the data sequence x
as stems from the t-axis, using circles for the data values.

t = (1:100)';
x = [zeros(49,1);1;zeros(50,1)];

stem(t,x), axis([0 100 -4 4])

6.2 GENERATING SIGNALS 217

Th e unit impulse is the most popular synthetic signal used to study the
performance of a fi lter. Th e output of the fi lter, i.e., the impulse response,
describes the characteristics of a fi lter very well. Moreover, the output of a
linear time-invariant fi lter can be described by the superposition of impulse
responses that have been scaled by multiplying the output of the fi lter by the
amplitude of the input signal.

 6.3 Linear Time-Invariant Systems

Filters can be described as systems with an input x(t) and output y(t). We will
therefore fi rst describe the characteristics of systems in general before then
considering fi lters. Important characteristics of a system are

• Continuity – A system with continuous inputs x(t) and outputs y(t) is a
continuous system. Most natural systems are continuous. However, aft er
sampling natural signals we obtain discrete data series and model these
natural systems as discrete systems, with discrete inputs and outputs.

• Linearity – For linear systems, the output y(t) of the linear combination of
several input signals xi(t), where

 is the same as the linear combination of the outputs yi(t):

 Important properties of linearity are scaling and additivity (superposition),
which allow the input and output to be multiplied by a constant ki, either
before or aft er transformation. Superposition allows additive components
of the input to be extracted and transformed separately. Fortunately,
many natural systems follow a linear pattern of behavior. Complex linear
signals such as additive harmonic components can be separated out and
transformed independently. Milankovitch cycles provide an example of
linear superposition in paleoclimate records, although there is an ongoing
debate about the validity of this theory. Numerous nonlinear systems
also exist in nature, which do not possess the properties of scaling and
additivity. An example of a linear system is

x = (1:100)';
y = 2*x;

218 6 SIGNAL PROCESSING

plot(x,y)

 where x is the input signal and y is the output signal. An example of a
nonlinear system is

x = (-100:100)';
y = x.^2;

plot(x,y)

• Time invariance – Th e system output y(t) does not change as a result of a
delay in the input x(t+i): the system characteristics are constant with time.
Unfortunately, natural systems oft en change their characteristics with
time. For instance, benthic mixing or bioturbation depends on various
environmental parameters such as nutrient supply, and the system’s
properties consequently vary signifi cantly with time. In such a case it is
diffi cult to determine the actual input of the system from the output, e.g.,
to extract the actual climate signal from a bioturbated sedimentary record.

• Invertibility – An invertible system is a system in which the original input
signal x(t) can be reproduced from the system’s output y(t). Th is is an
important property if unwanted signal distortions are to be corrected, in
which case the known system is inverted and the output then used to
reconstruct the undisturbed input. For example, a core logger measuring
magnetic susceptibility with a loop sensor integrates the signal over a
specifi c core interval, with the sensitivity highest at the position of the
loop and decreasing down-core and up-core. Th is system is invertible,
i.e., we can compute the input signal x(t) from the output signal y(t) by
inverting the system. Th e inverse of the above linear system is

x = (1:100)';
y = 0.5*x;

plot(x,y)

 where x is the input signal and y is the output signal. A nonlinear system

x = (-100:100)';
y = x.^2;

plot(x,y)

 is not invertible. Since this system yields equal responses for diff erent
inputs, such as y=4 for inputs x=–2 and x=+2, the input x cannot be
reconstructed from the output y. A similar situation can also occur in
linear systems, such as

6.3 LINEAR TIME-INVARIANT SYSTEMS 219

x = (1:100)';
y = zeros(size(x));

plot(x,y)

 Th e output y is zero for all inputs x, and the output therefore does not
contain any information about the input.

• Causality – Th e system response only depends on present and past inputs
x(0), x(–1), …, whereas future inputs x(+1), x(+2), … have no eff ect on
the output y(0). All real-time systems, such as telecommunication systems,
must be causal since they cannot have future inputs available to them. All
systems and fi lters in MATLAB are indexed as causal. In earth sciences,
however, numerous non-causal fi lters are used. Th e fi ltering of images
and signals extracted from sediment cores are examples where the future
inputs are available at the time of fi ltering. Output signals have to be
delayed aft er fi ltering in order to compensate for the diff erences between
causal and non-causal indexing.

• Stability – A system is stable if the output y(t) of a fi nite input x(t) is
also fi nite. Stability is critical in fi lter design, where fi lters oft en have
the disadvantage of provoking divergent outputs. In such cases, the fi lter
design has to be revised and improved.

Linear time-invariant (LTI) systems are very popular as a special type of
fi lter. Such systems have all the advantages that have been described above,
as well as being easy to design and use in many applications. Th e following
Sections 6.4 to 6.9 describe the design, realization and application of LTI-
type fi lters to extract specifi c frequency components from signals. Th ese
fi lters are mainly used to reduce the noise level in signals. Unfortunately,
however, many natural systems do not behave as LTI systems in that the
signal-to-noise ratio oft en varies with time. Section 6.10 describes the
application of adaptive fi lters that automatically adjust their characteristics
in a time-variable environment.

 6.4 Convolution, Deconvolution and Filtering

Convolution is a mathematical description of a system transformation.
Filtering is an application of the convolution process. A running mean of
length fi ve provides an example of such a simple fi lter. Th e output of an
arbitrary input signal is

220 6 SIGNAL PROCESSING

Th e output y(t) is simply the average of the fi ve input values x(t–2), x(t–1),
x(t), x(t+1) and x(t+2). In other words, all the fi ve consecutive input values
are multiplied by a factor of 1/5 and summed to form y(t). In this example all
input values are multiplied by the same factor, i.e., they are equally weighted.
Th e fi ve factors used in the above operation are therefore called fi lter weights
bk. Th e fi lter can be represented by the vector

b = [0.2 0.2 0.2 0.2 0.2]

consisting of the fi ve identical fi lter weights. Since this fi lter is symmetric,
it does not shift the signal on the time axis: the only function of this fi lter
is to smooth the signal. Running means of a given length are oft en used to
smooth signals, mainly for cosmetic reasons. Modern spreadsheet soft ware
usually contains running means as a function for smoothing data series. Th e
eff ectiveness of a smoothing fi lter increases with the fi lter length.

Th e weights that a fi lter of arbitrary length uses can be varied. As an
example let us consider an asymmetric fi lter of fi ve weights.

b = [0.05 0.08 0.14 0.26 0.47]

Th e sum of all of the fi lter weights is one and therefore it does not introduce
any additional variance into the signal. However, since it is highly asymmetric,
it shift s the signal along the time axis, i.e., it introduces a phase shift .

Th e general mathematical representation of the fi ltering process is the
convolution:

where bk is the vector of fi lter weights, and N1+N2 is the order of the fi lter,
which is the length of the fi lter reduced by one. Filters with fi ve weights, as in
our example, have an order of four. In contrast to this format, MATLAB uses
the engineering standard for indexing fi lters, i.e., fi lters are always defi ned as
causal. Th e convolution used by MATLAB is therefore

6.4 CONVOLUTION, DECONVOLUTION AND FILTERING 221

Movies
6.1-6.4

where N is the order of the fi lter. A number of the frequency-domain tools
provided by MATLAB cannot simply be applied to non-causal fi lters that
have been designed for applications in earth sciences. Hence, it is common
to carry out phase corrections in order to simulate non-causality. For
example frequency-selective fi lters, as will be introduced in Section 6.9, can
be applied using the function filtfilt, which provides zero-phase forward
and reverse fi ltering.

Th e functions conv and filter that provide digital fi ltering in MATLAB
are best illustrated in terms of a simple running mean. Th e n elements of
the vector x(t1), x(t2), x(t3), …, x(tn) are replaced by the arithmetic means of
subsets of the input vector. For instance, a running mean over three elements
computes the mean of inputs x(tn–1), x(tn), x(tn+1) to obtain the output y(tn).
We can illustrate this simply by generating a random signal

clear

t = (1:100)';
rng(0)
x1 = randn(100,1);

designing a fi lter that averages three data points of the input signal

b1 = [1 1 1]/3;

and convolving the input vector with the fi lter

y1 = conv(x1,b1);

Th e elements of b1 are the weights of the fi lter. In our example all fi lter weights
are the same and equal to 1/3. Note that the conv function yields a vector that
has a length of n+m–1, where m is the length of the fi lter.

m1 = length(b1);

We can explore the contents of our workspace to check the length of the
input and output of conv. Typing

whos

yields

Name Size Bytes Class Attributes
b1 1x3 24 double
m1 1x1 8 double
t 100x1 800 double
x1 100x1 800 double
y1 102x1 816 double

222 6 SIGNAL PROCESSING

Here, we see that the actual input series x1 has a length of 100 data points,
whereas the output y1 has two additional elements. Convolution generally
introduces (m–1)/2 data points at each end of the data series. To compare
input and output signals, we therefore clip the output signal at either end.

y1 = y1(2:101,1);

A more general way to correct the phase shift s of conv is

y1 = y1(1+(m1-1)/2:end-(m1-1)/2,1);

which of course only works for an odd number of fi lter weights. An alternative
is to use same for the shape parameter in conv(a,b,shape) in order to return
the most central 100 data points of the convolution that have the same size
as the input signal x1.

y1 = conv(x1,b1,'same');

We can then plot both input and output signals for comparison, using legend
to display a legend for the plot.

plot(t,x1,'b-',t,y1,'r-')
legend('x1(t)','y1(t)')

Th is plot illustrates the eff ect that the running mean has on the original input
series. Th e output y1 is signifi cantly smoother than the input signal x1. If we
increase the length of the fi lter we obtain an even smoother signal output y2.

b2 = [1 1 1 1 1]/5;
m2 = length(b2);

y2 = conv(x1,b2,'same');

plot(t,x1,'b-',t,y1,'r-',t,y2,'g-')
legend('x1(t)','y1(t)','y2(t)')

Th e reverse of convolution is deconvolution, which is oft en used in signal
processing to reverse the eff ects of a fi lter. We use the fi rst example of a
random signal x1, design a fi lter that averages three data points of the input
signal, and convolve the input vector with the fi lter, which yields the output
y1.

clear

t = (1:100)';
rng(0)
x1 = randn(100,1);

6.4 CONVOLUTION, DECONVOLUTION AND FILTERING 223

b1 = [1 1 1]/3;
y1 = conv(x1,b1);

We use deconv to reverse the convolution and compare the deconvolution
result x1d with the original signal x1.

x1d = deconv(y1,b1);

plot(t,x1,'b:',t,x1d,'r')

As we can see, there is no diff erence. Th ere is a diff erence, however, if we add
noise to the signal and deconvolve the result by typing

y1n = y1 + 0.05*randn(size(y1));
x1nd = deconv(y1n,b1);

plot(t,x1,'b:',t,x1nd,'r')

Th e next section provides a broader defi nition of fi lters.

 6.5 Comparing Functions for Filtering Data Series

Th e fi lters described in the previous section were very simple examples of
nonrecursive fi lters, in which the fi lter output y(t) depends only on the fi lter
input x(t) and the fi lter weights bk. Prior to introducing a broader description
of linear time-invariant fi lters, we replace the function conv by filter, which
can also be used for recursive fi lters. In this case, the output y(tn) depends not
only on the fi lter input x(t), but also on previous elements of the output y(tn–1),
y(tn–2), y(tn–3) and so on (Section 6.6). We will fi rst use conv for nonrecursive
fi lters in order to compare the results of conv and filter.

clear

t = (1:100)';
rng(0)
x3 = randn(100,1);

We design a fi lter that averages fi ve data points of the input signal.

b3 = [1 1 1 1 1]/5;
m3 = length(b3);

Th e input signal can be convolved using the function conv.

y3 = conv(x3,b3,'same');

We next follow a similar procedure with the function filter and compare the
result with that obtained using the function conv. In contrast to the function

224 6 SIGNAL PROCESSING

conv without using same, the function filter yields an output vector with the
same length as the input vector. Unfortunately, the function filter assumes
that the fi lter is causal. Th e fi lter weights are indexed n, n–1, n–2 and so on,
and therefore no future elements of the input vector, such as x(n+1), x(n+2)
etc. are needed to compute the output y(n). Th is is of great importance in
electrical engineering, the classic fi eld of MATLAB application, where fi lters
are oft en applied in real time. In earth sciences, however, the entire signal is,
in most applications, available at the time of processing the data. Th e data
series is fi ltered by

y4 = filter(b3,1,x3);

and the phase correction is then carried out using

y4 = y4(1+(m3-1)/2:end-(m3-1)/2,1);
y4(end+1:end+m3-1,1) = zeros(m3-1,1);

which works only for an odd number of fi lter weights. Th is command simply
shift s the output by (m–1)/3 towards the lower end of the t-axis, and then
fi lls the data to the end with zeros. Comparing the ends of both outputs
illustrates the eff ect of this correction, where

y3(1:5,1)
y4(1:5,1)

yields

ans =
 0.0225
 0.1950
 0.2587
 -0.1103
 -0.5638

ans =
 0.0225
 0.1950
 0.2587
 -0.1103
 -0.5638

Th is was the lower end of the output. We can see that both vectors y3 and y4
contain the same elements. We now explore the upper end of the data vector,
where

y3(end-5:end,1)
y4(end-5:end,1)

6.5 COMPARING FUNCTIONS FOR FILTERING DATA SERIES 225

yields the output

ans =
 0.5491
 0.0181
 -0.5868
 -0.8124
 -0.8498
 -0.8333

ans =
 0.5491
 0.0181
 0
 0
 0
 0

Th e vectors are identical up to element y(end–m3+1), but then the second
vector y4 contains zeros instead of true data values. Plotting the results with

subplot(2,1,1), plot(t,x3,'b-',t,y3,'r-')
subplot(2,1,2), plot(t,x3,'b-',t,y4,'r-')

or in one single plot,

plot(t,x3,'b-',t,y3,'g-',t,y4,'r-')

shows that the results from using conv are identical with those from using
filter, except at the upper end of the data vector. Th ese observations are
important for our next steps in signal processing, particularly if we are
interested in leads and lags between various components of signals.

 6.6 Recursive and Nonrecursive Filters

We now expand the nonrecursive fi lters by a recursive component, such that
the output y(tn) depends not only on the fi lter input x(t), but also on previous
output values y(tn–1), y(tn–2), y(tn–3), and so on. Th is fi lter requires not only
the nonrecursive fi lter weights bi, but also the recursive fi lters weights ai (Fig.
6.2), and can be described by the diff erence equation:

Although this is a non-causal version of the diff erence equation, MATLAB
again uses the causal indexing,

226 6 SIGNAL PROCESSING

Fig. 6.2 Schematic of a linear time-invariant fi lter with an input x(t) and an output y(t). Th e
fi lter is characterized by its weights ai and bi. and the delay elements T. Nonrecursive fi lters
require only nonrecursive weights bi whereas recursive fi lters also require the recursive fi lter
weights ai.

with the known problems in the design of zero-phase fi lters. Th e larger of the
two quantities M, and N1+N2 or N, is the order of the fi lter.

We use the same synthetic input signal x5 as in the previous example to
illustrate the performance of a recursive fi lter.

clear

t = (1:100)';
rng(0)
x5 = randn(100,1);

Th is input is then fi ltered using a recursive fi lter with a set of weights a5 and
b5,

b5 = [0.0048 0.0193 0.0289 0.0193 0.0048];
a5 = [1.0000 -2.3695 2.3140 -1.0547 0.1874];

m5 = length(b5);

y5 = filter(b5,a5,x5);

and the output y5 corrected for the phase

y5 = y5(1+(m5-1)/2:end-(m5-1)/2,1);
y5(end+1:end+m5-1,1) = zeros(m5-1,1);

We can now plot the results.

plot(t,x5,'b-',t,y5,'r-')

6.6 RECURSIVE AND NONRECURSIVE FILTERS 227

a b

Th is fi lter clearly changes the signal dramatically. Th e output contains only
low-frequency components and all higher frequencies have been eliminated.
A comparison of the periodograms for the input and the output reveals that
all frequencies above f=0.1 (corresponding to a period of τ=10) have been
suppressed.

[Pxx,f] = periodogram(x5,[],128,1);
[Pyy,f] = periodogram(y5,[],128,1);

plot(f,Pxx,f,Pyy)

We have now designed a frequency-selective fi lter, i.e., a fi lter that eliminates
certain frequencies while leaving other frequencies relatively unaff ected. Th e
next section introduces tools that are used to characterize a fi lter in the time
and frequency domains and to predict the eff ect of a frequency-selective
fi lter on arbitrary signals.

 6.7 Impulse Response

Th e impulse response is a very convenient way of describing the characteristics
of a fi lter (Fig. 6.3). Th e impulse response h is useful in LTI systems where
the convolution of the input signal x(t) with h is used to obtain the output
signal y(t).

Fig. 6.3 Transformation of a a unit impulse to compute b the impulse response of a system.
Th e impulse response is oft en used to describe and predict the performance of a fi lter.

228 6 SIGNAL PROCESSING

It can be shown that the values of the impulse response h are identical to the
fi lter weights in nonrecursive fi lters, but not in recursive fi lters. Th e above
convolution equation is oft en written in a short form:

In many examples convolution in the time domain is replaced by a simple
multiplication of the Fourier transforms H(f) and X(f) in the frequency
domain.

Th e output signal y(t) in the time domain is then obtained by a reverse Fourier
transform of Y(f). Signals are oft en convolved in the frequency domain rather
than the time domain because of the relative simplicity of the multiplication.
However, the Fourier transformation itself introduces a number of artifacts
and distortions, and convolution in the frequency domain is therefore not
without problems. In the following examples we apply the convolution only
in the time domain.

First, we generate a unit impulse:

clear

t = (0:20)';
x6 = [zeros(10,1);1;zeros(10,1)];

stem(t,x6), axis([0 20 -4 4])

Th e function stem plots the data sequence x6 as stems from the x-axis,
terminated with circles for the data value. Th is can be a better way to plot
digital data than using the continuous lines generated by plot. We now
feed this into the fi lter and explore the output y6. Th e impulse response is
identical to the weights of nonrecursive fi lters.

b6 = [1 1 1 1 1]/5;
m6 = length(b6);

y6 = filter(b6,1,x6);

We again correct this for the phase shift of the function filter, although this
might not be important in this example.

y6 = y6(1+(m6-1)/2:end-(m6-1)/2,1);
y6(end+1:end+m6-1,1) = zeros(m6-1,1);

6.7 IMPULSE RESPONSE 229

We obtain an output vector y6 of the same length and phase as the input
vector x6. We now plot the results for comparison.

stem(t,x6)
hold on
stem(t,y6,'filled','r')
axis([0 20 -2 2])
hold off

In contrast to plot, the function stem accepts only one data series and the
second series y6 is therefore overlaid on the same plot using the function
hold. Th e eff ect of the fi lter is clearly seen on the plot: it averages the unit
impulse over a length of fi ve elements. Furthermore, the values of the output
y6 equal the fi lter weights of a6; in our example these values are 0.2 for all
elements of a6 and y6.

For a recursive fi lter, however, the output y6 does not match the fi lter
weights. Once again, we fi rst generate an impulse:

clear

t = (0:20)';
x7 = [zeros(10,1);1;zeros(10,1)];

An arbitrary recursive fi lter with weights of a7 and b7 is then designed.

b7 = [0.0048 0.0193 0.0289 0.0193 0.0048];
a7 = [1.0000 -2.3695 2.3140 -1.0547 0.1874];

m7 = length(b7);

y7 = filter(b7,a7,x7);

y7 = y7(1+(m7-1)/2:end-(m7-1)/2,1);
y7(end+1:end+m7-1,1) = zeros(m7-1,1);

Th e stem plot of the input x2 and the output y2 shows an interesting impulse
response:

stem(t,x7)
hold on
stem(t,y7,'filled','r')
axis([0 20 -2 2])
hold off

Th e signal is smeared over a broader area, and is also shift ed towards the
right. Th is fi lter therefore not only aff ects the amplitude of the signal, but
also shift s the signal towards lower or higher values. Such phase shift s are
usually unwanted characteristics of fi lters, although in some applications
shift s along the time axis might be of particular interest.

230 6 SIGNAL PROCESSING

Fig. 6.4 a Magnitude and b phase response of a running mean over eleven elements.

a b

 6.8 Frequency Response

We next investigate the frequency response of a fi lter, i.e., the eff ect of a fi lter
on the amplitude and phase of a signal (Fig. 6.4). Th e frequency response
H(f) of a fi lter is the Fourier transform of the impulse response h(t). Th e
absolute value of the complex frequency response H(f) is the magnitude
response of the fi lter A(f).

Th e argument of the complex frequency response H(f) is the phase response
of the fi lter.

Since MATLAB fi lters are all causal it is diffi cult to explore the phase of
signals using the corresponding functions included in the Signal Processing
Toolbox. Th e user’s guide for this toolbox simply recommends that the fi lter
output be delayed in the time domain by a fi xed number of samples, as we
have done in the previous examples. As another example a sine wave with a
period of 20 and an amplitude of 2 is used as an input signal.

clear

t = (1:100)';
x8 = 2*sin(2*pi*t/20);

6.8 FREQUENCY RESPONSE 231

A running mean over eleven elements is designed and this fi lter applied to
the input signal x8.

b8 = ones(1,11)/11;
m8 = length(b8);

y8 = filter(b8,1,x8);

Th e phase of the output y8 is corrected for causal indexing.

y8 = y8(1+(m8-1)/2:end-(m8-1)/2,1);
y8(end+1:end+m8-1,1) = zeros(m8-1,1);

Both input and output of the fi lter are plotted.

plot(t,x8,t,y8)

Th e fi lter clearly reduces the amplitude of the sine wave. Whereas the input
signal x8 has an amplitude of 2, the output y8 has an amplitude of

max(y8)

ans =
 1.1480

Th e fi lter reduces the amplitude of a sine with a period of 20 by

1-max(y8(40:60))/2

ans =
 0.4260

i.e., by approximately 43%. Th e elements 40 to 60 are used for computing the
maximum value of y8, in order to avoid edge eff ects. Nevertheless, the fi lter
does not aff ect the phase of the sine wave, i.e., both input and output are in
phase.

Th e same fi lter, however, has a diff erent impact on a diff erent input signal.
Let us design another sine wave x9, with a similar amplitude but with a
diff erent period of 15.

clear

t = (1:100)';
x9 = 2*sin(2*pi*t/15);

Applying a similar fi lter and correcting the output y9 for the phase shift of the
function filter yields

b9 = ones(1,11)/11;
m9 = length(b9);

232 6 SIGNAL PROCESSING

Movie
6.5

y9 = filter(b9,1,x9);

y9 = y9(1+(m9-1)/2:end-(m9-1)/2,1);
y9(end+1:end+m9-1,1) = zeros(m9-1,1);

Th e output y9 is again in phase with the input x9, but the amplitude is
dramatically reduced compared to that of the input.

plot(t,x9,t,y9)

1-max(y9(40:60))/2

ans =
 0.6768

Th e running mean over eleven elements reduces the amplitude of this signal
by ~68%. More generally, the fi lter response clearly depends on the frequency
of the input. Th e frequency components of a more complex signal containing
multiple periodicities are aff ected in a diff erent way. Th e frequency response
of a fi lter

clear

b10 = ones(1,11)/11;

can be computed using the function freqz.

[h,w] = freqz(b10,1,512);

Th e function freqz returns the complex frequency response h of the digital
fi lter b10. Th e frequency axis is normalized to π. We transform the frequency
axis w to the true frequency values f. Th e true frequency values f are w times
the sampling frequency (which is one in our example) divided by 2*pi.

f = 1*w/(2*pi);

Next, we calculate and display the magnitude of the frequency response.

magnitude = abs(h);

plot(f,magnitude)
xlabel('Frequency'), ylabel('Magnitude')
title('Magnitude')

Th is plot can be used to predict the eff ect of the fi lter for any frequency of
an input signal. We can interpolate the magnitude of the frequency response
to calculate the increase or reduction in a signal’s amplitude for a specifi c
frequency. As an example the interpolation of magnitude for a frequency of
1/20

6.8 FREQUENCY RESPONSE 233

1-interp1(f,magnitude,1/20)

ans =
 0.4260

results in the expected ~43% reduction in the amplitude of a sine wave with
a period of 20. Th e sine wave with a period of 15 experiences an amplitude
reduction of

1-interp1(f,magnitude,1/15)

ans =
 0.6751

i.e., approximately 68%, which is similar to the value observed previously. It
is very important that such a running mean wipes out certain frequencies,
e.g., those for which magnitude=0. As an example, applying the fi lter to a
signal with a period of approximately 1/0.09082 completely eliminates
that signal. Furthermore, since the magnitude of the frequency response
is the absolute value of the complex frequency response h, the magnitude
response is actually negative between ~0.09082 and ~0.1816, between ~0.2725
and ~0.3633, and between ~0.4546 and the Nyquist frequency. All signal
components having frequencies within these intervals are mirrored on the
t-axis. As an example we try a sine wave with a period of 7 (e.g., a frequency
of approximately 0.1429), which is within the fi rst interval with a negative
magnitude response:

t = (1:100)';
x10 = 2*sin(2*pi*t/7);

b10 = ones(1,11)/11;
m10 = length(b10);

y10 = filter(b10,1,x10);

y10 = y10(1+(m10-1)/2:end-(m10-1)/2,1);
y10(end+1:end+m10-1,1) = zeros(m10-1,1);

plot(t,x10,t,y10)

Th e sine wave with a period of 7 experiences an amplitude reduction of

1-interp1(f,magnitude,1/7)

ans =
 0.7957

i.e., approximately 80%, but also changes the sign as we can see from the
plot. Th e elimination of certain frequencies and fl ipping of the signal have

234 6 SIGNAL PROCESSING

important consequences when interpreting causality in earth sciences.
Th ese fi lters should therefore be avoided completely, even though they are
off ered as standards in spreadsheet programs. As an alternative, fi lters with
a specifi c frequency response should be used, such as a Butterworth lowpass
fi lter (Section 6.9).

Th e frequency response can be calculated for all kinds of fi lters. It is a
valuable tool for predicting the eff ects of a fi lter on signals in general. Th e
phase response can also be calculated from the complex frequency response
h of the fi lter (Fig. 6.4):

phase = 180*angle(h)/pi;

plot(f,phase)
xlabel('Frequency'), ylabel('Phase in degrees')
title('Phase')

Th e phase angle phase is plotted in degrees. We observe frequent jumps in
this plot that are an artifact of the function arctangent within the function
angle. We can unwrap the phase response to eliminate those jumps that are
equal to or larger than 180°, with the help of the function unwrap.

plot(f,180*unwrap(angle(h))/pi)
xlabel('Frequency'), ylabel('Phase in degrees')
title('Phase')

In our example this has no eff ect since no jumps occur that are equal to or
larger than 180°. Since the fi lter has a linear phase response phase, no shift s
occur in the frequency components of the signals relative to each other. We
would therefore not expect any distortions of the signal in the frequency
domain. Th e phase shift of the fi lter on a specifi c period can be computed
using

interp1(f,180*unwrap(angle(h))/pi,1/20) * 20/360

ans =
 -5.0000

and

interp1(f,180*unwrap(angle(h))/pi,1/15) * 15/360

ans =
 -5.0000

for the sine waves with periods of 20 and 15, respectively. Since MATLAB
uses causal indexing for fi lters, the phase needs to be corrected in a similar
way to the delayed output of the fi lter. In our example we used a fi lter with

6.8 FREQUENCY RESPONSE 235

a length of eleven. We therefore have to correct the phase by (11–1)/2=5,
which suggests a zero phase shift for the fi lter for both frequencies.

Th is also works for recursive fi lters. Consider a simple sine wave with a
period of 8 and the previously employed recursive fi lter.

clear

t = (1:100)';
x11 = 2*sin(2*pi*t/8);

b11 = [0.0048 0.0193 0.0289 0.0193 0.0048];
a11 = [1.0000 -2.3695 2.3140 -1.0547 0.1874];

m11 = length(b11);

y11 = filter(b11,a11,x11);

We correct the output for the phase shift introduced by causal indexing and
plot both input and output signals.

y11= y11(1+(m11-1)/2:end-(m11-1)/2,1);
y11(end+1:end+m11-1,1) = zeros(m11-1,1);

plot(t,x11,t,y11)

Th e magnitude is reduced by

1-max(y11(40:60))/2

ans =
 0.6465

which is also supported by the magnitude response

[h,w] = freqz(b11,a11,512);

f = 1*w/(2*pi);

magnitude = abs(h);

plot(f,magnitude)
xlabel('Frequency'), ylabel('Magnitude')
title('Magnitude Response')

1-interp1(f,magnitude,1/8)

ans =
 0.6462

Th e phase response

phase = 180*angle(h)/pi;

236 6 SIGNAL PROCESSING

f = 1*w/(2*pi);

plot(f,180*unwrap(angle(h))/pi)
xlabel('Frequency'), ylabel('Phase in degrees')
title('Magnitude Response')

interp1(f,180*unwrap(angle(h))/pi,1/8) * 8/360

ans =
 -5.0557

must again be corrected for causal indexing. Since the sampling interval was
one and the fi lter length is fi ve, we have to add (5–1)/2=2 to the phase shift
of –5.0557. Th is suggests a corrected phase shift of –3.0557, which is exactly
the delay seen on the plot.

plot(t,x11,t,y11), axis([30 40 -2 2])

Th e next section gives an introduction to the design of fi lters with a desired
frequency response. Th ese fi lters can be used to amplify or suppress diff erent
components of arbitrary signals.

 6.9 Filter Design

We now aim to design fi lters with a specifi c frequency response. We fi rst
generate a synthetic signal x12 with two periods, 50 and 5. Th e power
spectrum of the signal shows the expected peaks at frequencies of 0.02 and
0.20.

clear

t = 0 : 1000;
x12 = 2*sin(2*pi*t/50) + sin(2*pi*t/5);

plot(t,x12), axis([0 200 -4 4])

[Pxx,f] = periodogram(x12,[],1024,1);

plot(f,Pxx)
xlabel('Frequency')
ylabel('Power')

Th e Butterworth fi lter design technique is widely used in order to create fi lters
of any order with a lowpass, highpass, bandpass and bandstop confi guration
(Fig. 6.5). In our example we would like to design a fi ve-order lowpass
fi lter with a cutoff frequency of 0.10. Th e inputs of the function butter are
the order of the fi lter and the cutoff frequency normalized to the Nyquist

6.9 FILTER DESIGN 237

a b

c d

frequency, which in our example is 0.5 (i.e., half of the sampling frequency).
Th e outputs from butter are the fi lter weights a12 and b12.

[b12,a12] = butter(5,0.1/0.5);

Th e frequency characteristics of the fi lter show a relatively smooth transition
from the passband to the stopband, but the advantage of the fi lter is its low
order.

[h,w] = freqz(b12,a12,1024);

Fig. 6.5 Frequency responses for the fundamental types of frequency-selective fi lters. a
Lowpass fi lter to suppress the high-frequency component of a signal. In earth sciences, such
fi lters are oft en used to suppress high-frequency noise in a low-frequency signal. b Highpass
fi lters to remove all low frequencies and trends in natural data. c-d Bandpass and bandstop
fi lters to extract or suppress a certain frequency band. Th e solid line in all graphics depicts
the ideal frequency response of a frequency-selective fi lter, while the gray band shows the
tolerance for a low-order design of such a fi lter. In practice, the frequency response lies within
the gray band.

238 6 SIGNAL PROCESSING

Movie
6.6

f = 1*w/(2*pi);

plot(f,abs(h)), grid
xlabel('Frequency')
ylabel('Magnitude')

We can again apply the fi lter to the signal by using the function filter.
Frequency-selective fi lters such as lowpass, highpass, bandpass and bandstop
fi lters are designed to suppress certain frequency bands, but phase shift s
should be avoided. Th e function filtfilt provides zero phase-shift forward
and reverse digital fi ltering. Aft er fi ltering in the forward direction, the
fi ltered sequence is reversed and runs back through the fi lter. Th e magnitude
of the signal is not aff ected by this operation, since it is either 0 or 100% of the
initial amplitude, depending on the frequency. Any phase shift s introduced
by the fi lter are canceled out by the forward and reverse application of the
same fi lter. Th is function also helps to overcome the problems with causal
indexing of fi lters in MATLAB by eliminating the phase diff erences between
the causal and non-causal versions of the same fi lter. Filtering, and then
plotting the results clearly illustrates the eff ects of the fi lter.

xf12 = filtfilt(b12,a12,x12);

plot(t,x12,'b-',t,xf12,'r-')
axis([0 200 -4 4])

We might now wish to design a new fi lter with a more rapid transition from
passband to stopband. Such a fi lter requires a higher order, i.e., it needs
a larger number of fi lter weights a12 and b12. We now create a 15-order
Butterworth fi lter as an alternative to the above fi lter.

[b13,a13] = butter(15,0.1/0.5);

[h,w] = freqz(b13,a13,1024);

f = 1*w/(2*pi);

plot(f,abs(h)), grid
xlabel('Frequency')
ylabel('Magnitude')

Th e frequency response is clearly improved. Th e entire passband is relatively
fl at at a value of 1.0, whereas the stopband is approximately zero everywhere.
We next modify our input signal by introducing a third period of 5. Th is
signal is then used to illustrate the operation of a Butterworth bandstop fi lter.

clear

t = 0 : 1000;

6.9 FILTER DESIGN 239

Audio
6.1

x14 = 2*sin(2*pi*t/50) + sin(2*pi*t/10) + 0.5*sin(2*pi*t/5);
plot(t,x14), axis([0 200 -4 4])

[Pxx,f] = periodogram(x14,[],1024,1);

plot(f,Pxx)

Th e new Butterworth fi lter is a bandstop fi lter. Th e stopband of the fi lter is
between the frequencies 0.05 and 0.15. It can therefore be used to suppress
the period of 10, corresponding to a frequency of 0.1.

rng(0)
xn14 = x14 + randn(1,length(t));

[b14,a14] = butter(5,[0.05 0.15]/0.5,'stop');
xf14 = filtfilt(b14,a14,x14);

[Pxx,f] = periodogram(xf14,[],1024,1);

plot(f,Pxx)

figure
plot(t,xn14,'b-',t,xf14,'r-'), axis([0 200 -4 4])

Th e plots show the eff ect of this fi lter. Th e frequency band between 0.05 and
0.15, and therefore also the frequency of 0.1, have been successfully removed
from the signal.

 6.10 Adaptive Filtering

Th e fi xed fi lters used in the previous sections make the basic assumption that
the signal degradation is known and does not change with time. However,
a priori knowledge of the signal and noise statistical characteristics is not
usually available in most applications. In addition, both the noise level and
the variance of the genuine signal can be highly nonstationary with respect
to time, e.g., stable isotope records during a glacial-interglacial transition.
Fixed fi lters cannot thus be used in a nonstationary environment without
any knowledge of the signal-to-noise ratio.

Adaptive fi lters, widely used in the telecommunication industry, could
help to overcome these problems. An adaptive fi lter is an inverse modeling
process that iteratively adjusts its own coeffi cients automatically without
requiring any a priori knowledge of the signal and the noise. Th e operation
of an adaptive fi lter includes (1) a fi ltering process, the purpose of which is
to produce an output in response to a sequence of data, and (2) an adaptive
process, providing a mechanism for the adaptive control of the fi lter weights
(Haykin 1991).

240 6 SIGNAL PROCESSING

In most practical applications the adaptive process is oriented towards
minimizing an estimation error e. Th e estimation error e at an instant i is
defi ned by the diff erence between the desired response di and the actual fi lter
output yi, which is the fi ltered version of a signal xi, as shown by

where i=1, 2, …, N and N is the length of the input data vector. In the case
of a nonrecursive fi lter characterized by a vector of fi lter weights W with f
elements, the fi lter output yi is given by the inner product of the transposed
vector W and the input vector Xi.

Th e choice of desired response d that is used in the adaptive process depends
on the application. Traditionally, d is a combination signal that is comprised
of a signal s and random noise n0. Th e signal x contains noise n1 that is
uncorrelated with the signal s but correlated in some unknown way with
the noise n0. In noise canceling systems the practical objective is to produce
a system output y that is a best fi t in the least-squares sense to the desired
response d.

Diff erent approaches have been developed to solve this multivariate
minimum error optimization problem (e.g., Widrow and Hoff 1960, Widrow
et al. 1975, Haykin 1991). Th e selection of one algorithm over another is
infl uenced by various factors including the rate of convergence (the number
of adaptive steps required for the algorithm to converge closely enough to
an optimum solution), the misadjustment (the measure of the amount by
which the fi nal value of the mean-squared error deviates from the minimum
squared error of an optimal fi lter, e.g., Wiener 1945, Kalman and Bucy
1961), and the tracking (the capability of the fi lter to work in a nonstationary
environment, i.e., to track changing statistical characteristics of the input
signal) (Haykin 1991).

Th e simplicity of the least-mean-squares (LMS) algorithm, originally
developed by Widrow and Hoff (1960), has made it the benchmark against
which other adaptive fi ltering algorithms are tested. For applications in
earth sciences we use this fi lter to extract the noise from two signals S
and X, both containing the same signal s, but with uncorrelated noise n1
and n2 (Hattingh 1988). As an example, consider a simple duplicate set of
measurements on the same material, e.g., two parallel stable isotope records
from the same foraminifera species. You would expect two time-series, each

6.10 ADAPTIVE FILTERING 241

with N elements, containing the same desired signal overlain by diff erent,
uncorrelated noise. Th e fi rst record is used as the primary input S

and the second record as the reference input X.

As demonstrated by Hattingh (1988), the desired noise-free signal can be
extracted by fi ltering the reference input X using the primary input S as the
desired response d. Th e minimum error optimization problem is solved by
the least-mean-square norm. Th e mean-squared error ei

2 is a second-order
function of the weights in the nonrecursive fi lter. Th e dependence of ei

2 on
the unknown weights W may be seen as a multidimensional paraboloid
with a uniquely defi ned minimum point. Th e weights corresponding to
the minimum point on this error performance surface defi ne the optimal
Wiener solution (Wiener 1945). Th e value computed for the weight vector
W using the LMS algorithm represents an estimator whose expected value
approaches the Wiener solution as the number of iterations approaches
infi nity (Haykin 1991). Gradient methods are used to reach the minimum
point on the error performance surface. To simplify the optimization
problem, Widrow and Hoff (1960) developed an approximation for the
required gradient function that can be computed directly from the data. Th is
leads to a simple relationship for updating the fi lter-weight vector W.

Th e new parameter estimate Wi+1 is based on the previous set of fi lter weights
Wi plus a term that is the product of a bounded step size u, a function of the
input state Xi and a function of the error ei. In other words, error ei calculated
from the previous step is fed back into the system to update fi lter coeffi cients
for the next step (Fig. 6.6). Th e fi xed convergence factor u regulates the
speed and stability of adaption. A low value of u ensures a higher level of
accuracy, but more data are needed to enable the fi lter to reach the optimum
solution. In the modifi ed version of the LMS algorithm by Hattingh (1988),
this problem is overcome by feeding the data back so that the fi lter can have
another chance to improve its own coeffi cients and adapt to the changes in
the data.

242 6 SIGNAL PROCESSING

In the following example introducing the use of the function canc, each
of these loops is called an iteration, and many of these loops are required
if optimal results are to be achieved. Th is algorithm extracts the noise-
free signal from two vectors, x and s, containing the correlated signals and
uncorrelated noise. As an example we generate two signals yn1 and yn2
containing the same sine wave but diff erent Gaussian noise.

clear

x = 0 : 0.1 : 100; x = x';
y = sin(x);
rng(0)
yn1 = y + 0.5*randn(size(y));
yn2 = y + 0.5*randn(size(y));

plot(x,yn1,x,yn2)

Th e algorithm canc formats both signals, feeds them into the fi lter loop,
corrects the signals for phase shift s, and formats the signals for the output.
Th e required inputs are the signals x and s, the step size u, the fi lter length l
and the number of iterations iter. In our example the two noisy signals are
yn1 and yn2. We make an arbitrary choice of a fi lter with l=5 fi lter weights. A
value of u in the range of 0 <u< l/λmax, where λmax is the largest eigenvalue of
the autocorrelation matrix for the reference input, leads to reasonable results
(Haykin 1991) (Fig. 6.7). Th e value of u is computed using

k = kron(yn1,yn1');
u = 1/max(eig(k))

where kron returns the Kronecker tensor product of yn1 and yn1' (which is
a matrix formed by taking all possible products between the elements of yn1

Fig. 6.6 Schematic of an adaptive fi lter. Each iteration involves a new estimate of the fi lter
weights Wi+1 based on the previous set of fi lter weights Wi plus a term that is the product of
a bounded step size u, a function of the fi lter input Xi, and a function of the error ei. In other
words, error ei calculated from the previous step is fed back into the system to update fi lter
coeffi cients for the next step (modifi ed from Trauth 1998).

6.10 ADAPTIVE FILTERING 243

a

c

b

d

and yn1'), and eig returns the eigenvector of k. Th is yields

u =
 0.0019

We now run the adaptive fi lter canc for 20 iterations and use the above value
of u.

[z,e,mer,w] = canc(yn1,yn2,0.0019,5,20);

Th e output variables from canc are the fi ltered primary signal z, the extracted
noise e, the mean-squared error mer for the number of iterations it performed
with stepsize u, and the fi lter weights w for each data point in yn1 and yn2. Th e

Fig. 6.7 Output of the adaptive fi lter. a Th e duplicate records corrupted by uncorrelated
noise are fed into the adaptive fi lter with 5 weights with a convergence factor of 0.0019. Aft er
20 iterations, the fi lter yields b the learning curve, c the noise-free record, and d the noise
extracted from the duplicate records.

244 6 SIGNAL PROCESSING

plot of the mean-squared error mer

plot(mer)

illustrates the performance of the adaptive fi lter, although the chosen
step size u=0.0019 clearly results in a relatively rapid convergence. In most
examples a smaller step size decreases the rate of convergence but improves
the quality of the fi nal result. We therefore reduce u and run the fi lter again
with further iterations.

[z,e,mer,w] = canc(yn1,yn2,0.0001,5,20);

Th e plot of the mean-squared error mer against the iterations

plot(mer)

now converges aft er about six iterations. In practice, the user should vary the
parameters u and l to obtain the optimum result. We can now compare the
fi lter output with the original noise-free signal.

plot(x,y,'b',x,z,'r')

Th is plot shows that the noise level of the signal has been reduced dramatically
by the fi lter. Next, the plot

plot(x,e,'r')

shows the noise extracted from the signal. Using the last output from canc we
can calculate and display the mean fi lter weights of the fi nal iteration from w

wmean = mean(w)
plot(wmean)

Th e frequency characteristic of the fi lter provides a more illustrative
representation of the eff ect of the fi lter.

[h,w] = freqz(www,1,1024);
f = 1*w/(2*pi);
plot(f,abs(h))

which clearly shows that the fi lter is a lowpass fi lter with a relatively smooth
transition band. Th is means that it does not have the quality of a recursive
fi lter designed, for example, using the Butterworth approach. However, the
fi lter weights are calculated in an optimization process rather than chosen
arbitrarily.

Th e strength of an adaptive fi lter is in fi ltering a time series with a variable
signal-to-noise ratio along the time axis. Since the fi lter-weight vector W is

6.10 ADAPTIVE FILTERING 245

Audio
6.2

updated for each individual data point, these fi lters are even used in real-time
applications such as telecommunication systems. We examine this behavior
through an example in which the signal-to-noise ratio in the middle of the
time series (x=500) is reduced from about 10% to zero.

clear

x = 0 : 0.1 : 100; x = x';
y = sin(x);
rng(0)
yn1 = y + 0.5*randn(size(y));
yn2 = y + 0.5*randn(size(y));

yn1(501:1001) = y(501:1001);
yn2(501:1001) = y(501:1001);

plot(x,yn1,x,yn2)

Th e value of u is again computed by

k = kron(yn1,yn1');
u = 1/max(eig(k))

which yields

u =
 0.0016

We now run the adaptive fi lter canc for 20 iterations and use the above value
of u.

[z,e,mer,w] = canc(yn1,yn2,0.0016,5,20);

Th e plot of the mean-squared error mer versus the number of performed
iterations it with stepsize u

plot(mer)

illustrates the performance of the adaptive fi lter, although the chosen step
size u=0.0016 clearly results in a relatively rapid convergence. Again, we can
now compare the fi lter output with the original noise-free signal.

plot(x,y,'b',x,z,'r')

Th is plot shows that the fi lter output y is almost the same as the noise-free
signal x. Th e plot

plot(x,e,'r')

shows the noise extracted from the signal. Here we can observe some signal

246 6 SIGNAL PROCESSING

Movie
6.7

components that have been removed by the fi lter in error, from within the
noise-free segment of the time series beyond x=500. Using the last output
of canc, we can calculate and display the fi lter weights w of the fi nal iteration

surf(w(3:999,:)), shading interp

which shows nicely the adaptation of the fi lter weights before and aft er the
change in the signal-to-noise ratio. We plot only the middle part of w, as the
edges 1:(l-1)/2 and end-(l-1)/2:end are all zero due to the length of the fi lter
l. We can also use this example to demonstrate the eff ect that the values of
u and l have on the performance of the adaptive fi lter. In theory, a smaller u
leads to more accurate results, but the rapid adaptation to a changing signal-
to-noise ratio does not work well. Larger values of l also give better results
but the number of data points lost through the fi ltering process increases by
(l-1)/2.

Th e graphical user interface (GUI) version canctool can be used as an
alternative to canc. We use the same example data set as before; this function
was created using the GUI Design Environment (GUIDE) (see Section 2.10).
We again generate two signals, yn1 and yn2, containing the same sine wave
but diff erent Gaussian noise.

clear

x = 0 : 0.1 : 100; x = x';
y = sin(x);

rng(0)
yn1 = y + 0.5*randn(size(y));
yn2 = y + 0.5*randn(size(y));

We next run canctool

canctool(yn1,yn2)

and watch the fi lter iteratively adjusting its fi lter weights. Th e function
canctool accepts the primary and reference signals as inputs. Th e GUI
provides default values for the fi lter length, the convergence rate, and the
number of iterations. Th e user must adjust these values to the specifi c data,
for example, using the formula for a suitable convergence rate that has been
described above. As an example, we choose a fi lter length of 11, a convergence
rate of 0.00001, and 30 iterations. Once the calculation is complete, canctool
exports the fi ltered primary signal yy, the fi ltered reference signal zz (using
the same set of fi lter weights), the noise ee extracted from the primary signal,
and the mean-squared error mer for each iteration, to the workspace using the
function assignin. Th e application of this algorithm has been demonstrated

6.10 ADAPTIVE FILTERING 247

on duplicate oxygen-isotope records from ocean sediments (Trauth 1998).
Th is work by M.H. Trauth illustrates the use not only of the modifi ed LMS
algorithm, but also of another type of adaptive fi lter, the recursive least-
squares (RLS) algorithm, in various diff erent environments (Haykin 1991,
Trauth 1998).

 Recommended Reading

Alexander ST (1986) Adaptive Signal Processing: Th eory and Applications. Springer, Berlin
Heidelberg New York

Buttkus B (2000) Spectral Analysis and Filter Th eory in Applied Geophysics. Springer, Berlin
Heidelberg New York

Cowan CFN, Grant PM (1985) Adaptive Filters. Prentice Hall, Englewood Cliff s, New Jersey
Grünigen DH (2004) Digitale Signalverarbeitung, mit einer Einführung in die kontinuierlichen

Signale und Systeme, Dritte bearbeitete und erweiterte Aufl age. Fachbuchverlag Leipzig,
Leipzig

Hattingh M (1988) A new Data Adaptive Filtering Program to Remove Noise from
Geophysical Time- or Space Series Data. Computers & Geosciences 14(4):467–480

Haykin S (2003) Adaptive Filter Th eory. Prentice Hall, Englewood Cliff s, New Jersey
Kalman R, Bucy R (1961) New Results in Linear Filtering and Prediction Th eory. ASME Tans.

Ser. D Jour. Basic Eng. 83:95–107
MathWorks (2014) Signal Processing Toolbox – User’s Guide. Th e MathWorks, Inc., Natick,

MA
Sibul LH (1987) Adaptive Signal Processing. IEEE Press
Trauth MH (1998) Noise Removal from Duplicate Paleoceanographic Time-Series: Th e Use

of adaptive Filtering Techniques. Mathematical Geology 30(5):557–574
Weeks, M (2007) Digital Signal Processing Using MATLAB and Wavelts. Infi nity Science

Press, Jones and Bartlett Publishers, Boston Toronto London Singapor
Widrow B, Hoff Jr. M (1960) Adaptive Switching Circuits. IRE WESCON Conv. Rev. 4:96–104
Widrow B, Glover JR, McCool JM, Kaunitz J, Williams CS, Hearn RH, Zeidler JR, Dong E,

Goodlin RC (1975) Adaptive Noise Cancelling: Principles and Applications. Proc. IEEE
63(12):1692–1716

Wiener N (1949) Extrapolation, Interpolation and Smoothing of Stationary Time Series, with
Engineering Applications. MIT Press, Cambridge, Mass (reprint of an article originally
issued as a classifi ed National Defense Research Report, February, 1942)

248 6 SIGNAL PROCESSING

 7.1 Types of Spatial Data

Most data in earth sciences are spatially distributed, either as vector data,
(points, lines, polygons) or as raster data (gridded topography). Vector data
are generated by digitizing map objects such as drainage networks or outlines
of lithologic units. Raster data can be obtained directly from a satellite
sensor output, but gridded data can also, in most cases, be interpolated from
irregularly-distributed fi eld samples (gridding).

Th e following section introduces the use of vector data by using coastline
data as an example (Section 7.2). Th e acquisition and handling of raster data
are then illustrated using digital topographic data (Sections 7.3 to 7.5). Th e
availability and use of digital elevation data has increased considerably since
the early 90s. With a resolution of 5 arc minutes (about 9 km), ETOPO5
was one of the fi rst data sets for topography and bathymetry. In October
2001 it was replaced by ETOPO2, which has a resolution of 2 arc minutes
(about 4 km), and in March 2009 the ETOPO1 became available, which has a
resolution of 1 arc minutes (about 2 km). Th ere is also a data set for topography
called GTOPO30 completed in 1996 that has a horizontal grid spacing of 30
arc seconds (about 1 km). More recently, the 30 and 90 m resolution data

 7 Spatial Data

 Braided river system at the northern end of
the Suguta Valley in northern Kenya. The
spatio-temporal analysis of these river systems,
together with their sediment compositions
and provenances (especially in the older
sediments) helps in the reconstruction of
paleoenvironmental conditions.

� Springer-Verlag Berlin Heidelberg 2015
M.H. Trauth, MATLAB� Recipes for Earth Sciences,
DOI 10.1007/978-3-662-46244-7_7

249

from the Shuttle Radar Topography Mission (SRTM) have replaced the older
data sets in most scientifi c studies. Section 7.6 demonstrates how to export
3D graphics objects such as digital terrain models to create interactive
documents such as Apple iBooks Author documents or interactive Adobe
PDF documents, in particular for use with tablet computers.

Th e second part of this chapter deals with the estimation of continuous
surfaces from unevenly-spaced data and the statistics of spatial data
(Sections 7.7 to 7.8). In earth sciences, most data are collected in an irregular
pattern. Access to rock samples is oft en restricted to natural outcrops such
as shoreline cliff s and the walls of a gorge, or anthropogenic outcrops such
as road cuttings and quarries. Th e sections on interpolating such unevenly-
spaced data illustrate the use of the most important gridding routines and
outline the potential pitfalls when using these methods. Sections 7.9 to 7.11
introduce various methods for statistically analyzing spatial data, including
the application of statistical tests to point distributions (Section 7.9), the
spatial analysis of digital elevation models (Section 7.10), and an overview of
geostatistics and kriging (Section 7.11).

Th is chapter requires the Mapping Toolbox (MathWorks 2014a), although
most graphics routines used in our examples can be easily replaced by
standard MATLAB functions. Section 7.6 requires Simulink 3D Animation
to create animated 3D graphics objects (MathWorks 2014b). An alternative
and useful mapping toolbox by Rich Pawlowicz (Earth and Ocean Sciences,
at the University of British Columbia) is available from

http://www.eos.ubc.ca/~rich/

Th e handling and processing of large spatial data sets requires a computing
system with at least 4 GB physical memory.

 7.2 The Global Geography Database GSHHG

Th e Global Self-consistent, Hierarchical, High-resolution Geography
(GSHHG) database is an amalgamation of two public domain databases by
Paul Wessel (SOEST, University of Hawaii, Honolulu, HI) and Walter Smith
(NOAA Laboratory for Satellite Altimetry, Silver Spring, MD) (Wessel and
Smith 1996). Th e GSHHG database combines the older GSHHS database
(Soluri and Woodson 1990, Wessel and Smith 1996), which is a shoreline
database, with the poor quality Antarctica data replaced by the more accurate
data from Bohlander and Scambos (2007), together with rivers and borders
from the CIA World Data Bank II (WDBII) (Gorny 1977). Th e GSHHG data
can be downloaded from the web page of the US National Geophysical Data
Center (NGDC):

250 7 SPATIAL DATA

http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html

As an example we use the data from the fi le coastline.txt, which contains an
excerpt from the older GSHHG shoreline database. Th e two columns in this
fi le represent the longitude/latitude coordinates of NaN-separated polygons or
coastline segments.

NaN NaN
42.892067 0.000000
42.893692 0.001760
NaN NaN
42.891052 0.001467
42.898093 0.007921
42.904546 0.013201
42.907480 0.016721
42.910414 0.020828
42.913054 0.024642
42.915987 0.028749
42.918921 0.032562
42.922441 0.035789
(cont'd)

Th e NaNs perform two functions: they provide a means of identifying break
points in the data and they serve as pen-up commands when the Mapping
Toolbox plots vector maps. Th e shorelines can be displayed by using

clear

data = load('coastline.txt');

plot(data(:,1),data(:,2)), axis equal
xlabel('Longitude'), ylabel('Latitude')

More advanced plotting functions that are contained in the Mapping Toolbox
(MathWorks 2014a) allow an alternative version of this plot to be generated
(Fig. 7.1).

axesm('MapProjection','lambert', ...
 'MapLatLimit',[0 15], ...
 'MapLonLimit',[35 55], ...
 'Frame','on', ...
 'MeridianLabel','on', ...
 'ParallelLabel','on');
plotm(data(:,2),data(:,1));

Note that the input for plotm must be in the correct order, with the latitude
entered fi rst, followed by the longitude (i.e., the second column of the data
matrix must be entered fi rst). In contrast, the function plot requires an xy
input, i.e., input must be in the opposite order, with the fi rst column of the
matrix entered fi rst. Th e function axesm defi nes the map axis and sets various

7.2 THE GLOBAL GEOGRAPHY DATABASE GSHHG 251

Fig. 7.1 Shoreline display from the GSHHS data set. Th e map shows an area between latitudes
0° and 15° north, and longitudes 40° and 50° east. Th is simple map is made using the function
plot, with equal axis aspect ratios (data from Wessel and Smith 1996).

map properties such as the map projection, the map limits, and the axis
labels.

 7.3 The 1-Minute Gridded Global Relief Data ETOPO1

ETOPO1 is a global data base of topographic and bathymetric data on a
regular 1 arc-minute grid (about 2 km) (Amante and Eakins 2009). Older
ETOPO2v2 and ETOPO5 global relief grids have been superseded but are
still available. ETOPO1 is a compilation of data from a variety of sources. It
can be downloaded from the US National Geophysical Data Center (NGDC)
web page

http://www.ngdc.noaa.gov/mgg/global/

As an example we use the data from the fi le grid01-258.asc that has the
following content:

252 7 SPATIAL DATA

NCOLS 1801
NROWS 2401
XLLCENTER 30.0000000000
YLLCENTER -20.0000000000
CELLSIZE 0.016666666667
NODATA_VALUE -32768
 294 299 293 288 285 282 ...
 294 294 289 291 281 276 ...
 288 285 285 283 280 272 ...
 280 276 277 277 283 279 ...
 271 272 271 274 280 283 ...
 267 270 268 272 272 276 ...
(cont'd)

Th e headers document the size of the data matrix (e.g., 1801 columns and
2401 rows in our example), the coordinates of the lower-left corner (e.g., x=30
and y=–20), the cell size (e.g., ~0.0167=1/60 degree latitude and longitude),
and the –32768 fl ag for data voids. We comment the header by typing % at the
beginning of the fi rst six lines

%NCOLS 1801
%NROWS 2401
%XLLCENTER 30.0000000000
%YLLCENTER -20.0000000000
%CELLSIZE 0.016666666667
%NODATA_VALUE -32768
 294 299 293 288 285 282 ...
 294 294 289 291 281 276 ...
 288 285 285 283 280 272 ...
 280 276 277 277 283 279 ...
 271 272 271 274 280 283 ...
 267 270 268 272 272 276 ...
(cont'd)

and load the data into the workspace.

clear

ETOPO1 = load('grid01-258.asc');

We fl ip the matrix up and down. Th e –32768 fl ag for data voids must then be
replaced by the MATLAB representation for Not-a-Number NaN.

ETOPO1 = flipud(ETOPO1);
ETOPO1(find(ETOPO1 == -32768)) = NaN;

Finally, we check whether the data are now correctly stored in the workspace
by printing the minimum and maximum elevations for the area.

max(ETOPO1(:))
min(ETOPO1(:))

7.3 THE 1-MINUTE GRIDDED GLOBAL RELIEF DATA ETOPO1 253

In this example the maximum elevation for the area is 5,677 m and the
minimum elevation is –5,859 m. Th e reference level is the sea level at 0 m.
We now defi ne a coordinate system using the information that the lower-left
corner is latitude 20° south and longitude 30° east. Th e resolution is 1 arc
minute, corresponding to 1/60 of a degree.

[LON,LAT] = meshgrid(30:1/60:60,-20:1/60:20);

We now generate a colored surface from the elevation data using the function
surf.

surf(LON,LAT,ETOPO1)
colormap jet

Fig. 7.2 Display from the ETOPO1 elevation data set. Th e map uses the function surf to
generate a colored surface. Th e colorbar provides information on the colormap used to
portray the topographic and bathymetric variations (data from Amante and Eakins 2009).

254 7 SPATIAL DATA

Interactive
7.1

shading interp
axis equal, view(0,90)
colorbar

Th is script opens a new fi gure window and generates a colored surface. Th e
surface is highlighted by a set of color shades, and is displayed in an overhead
view (Fig. 7.2). Additional display methods will be described in the section
on SRTM elevation data (Section 7.5).

 7.4 The 30-Arc Seconds Elevation Model GTOPO30

Th e 30 arc second (about 1 km) global digital elevation data set GTOPO30
contains only elevation data, not bathymetry. Th e data set has been developed
by the Earth Resources Observation System Data Center and is available
from the U.S. Geological Survey web page

https://lta.cr.usgs.gov/GTOPO30

Th e model uses a variety of international data sources but is mainly based
on raster data from the Digital Terrain Elevation Model (DTEM) and vector
data from the Digital Chart of the World (DCW). Th e GTOPO30 data set has
been divided into 33 tiles. Th e tile names refer to the longitude and latitude
of the upper-left (northwest) corner of the tile. Th e tile name e020n40
refers to the coordinates of the upper-left corner of the tile, i.e., longitude
20 degrees east and latitude 40 degrees north. As an example we select and
download the tile e020n40, which is provided as a 24.9 MB compressed tar
fi le. Aft er decompressing the fi le we obtain eight fi les containing the raw data
and header fi les in various formats. Th e tar fi le also provides a GIF image of
a shaded relief display of the data.

Importing the GTOPO30 data into the workspace is simple. Th e Mapping
Toolbox provides an import routine gtopo30 that reads the data and stores it
onto a regular data grid. We import only a subset of the original matrix:

clear

latlim = [-5 5]; lonlim = [30 40];
GTOPO30 = gtopo30('E020N40',1,latlim,lonlim);

Th is script reads the data from the tile e020n40 (without fi le extension) at full
resolution (scale factor =1) into the matrix GTOPO30, which has the dimensions
of 1,200 by 1,200 cells. Th e coordinate system is defi ned by using the lon/lat
limits listed above. Th e resolution is 30 arc seconds, corresponding to 1/120
of a degree.

[LON,LAT] = meshgrid(30:1/120:40-1/120,-5:1/120:5-1/120);

7.4 THE 30-ARC SECONDS ELEVATION MODEL GTOPO30 255

Interactive
7.2

We need to reduce the limits by a factor of 120, in order to obtain a matrix
of similar dimensions to the GTOPO30 matrix. A grayscale image can be
generated from the elevation data using the function surf. Th e fourth power
of the colormap gray is fl ipped vertically in order to obtain dark colors for
high elevations and light colors for low elevations.

surf(LON,LAT,GTOPO30)
shading interp
colormap(flipud(gray.^4))
axis equal, view(0,90)
colorbar

Th is script opens a new fi gure window and generates the gray surface using
interpolated shading, displayed in an overhead view (Fig. 7.3).

Fig. 7.3 Display from the GTOPO30 elevation data set. Th e map uses the function surf to
generate a gray surface. Th e fourth power of the colormap gray is used to intensify the gray
shades of the map at higher elevations and the colormap is then fl ipped vertically in order to
obtain dark colors for high elevations and light colors for low elevations (data from the U.S.
Geological Survey).

256 7 SPATIAL DATA

 7.5 The Shuttle Radar Topography Mission SRTM

Th e Shuttle Radar Topography Mission (SRTM) was a radar system on board
the Space Shuttle Endeavour during an 11-day mission in February 2000
(Farr et al. 2000, 2007). SRTM was an international project spearheaded
by the National Geospatial-Intelligence Agency (NGA) and the National
Aeronautics and Space Administration (NASA). Detailed information on
the SRTM project, including a gallery of images and a user’s forum, can be
accessed through the NASA web page:

http://www2.jpl.nasa.gov/srtm/

Th e data were processed at the Jet Propulsion Laboratory. Th ey are distributed
through the United States Geological Survey’s (USGS) National Map Viewer
and Download Platform:

http://viewer.nationalmap.gov/viewer/

Alternatively, the raw data fi les can be downloaded from

http://dds.cr.usgs.gov/srtm/

Th is directory contains zipped fi les of SRTM DEMs from various areas of the
world, processed by the SRTM global processor and sampled at resolutions of
1 arc second (SRTM-1, 30 meter grid) and 3 arc seconds (SRTM-3, 90 meter
grid). As an example we download the 1.7 MB fi le s01e036.hgt.zip from

http://dds.cr.usgs.gov/srtm/version2_1/SRTM3/Africa/

containing SRTM-3 data for the Kenya Rift Valley in East Africa. All elevations
are in meters referenced to the WGS84 EGM96 geoid, as documented at

http://earth-info.nga.mil/GandG/wgs84/index.html

Th e name of this fi le refers to the longitude and latitude of the lower-left
(southwest) pixel of the tile, i.e., latitude one degree south and longitude
36 degrees east. SRTM-3 data contain 1,201 lines and 1,201 samples, with
similar numbers of overlapping rows and columns. Aft er having downloaded
and unzipped the fi le we save s01e036.hgt in our working directory. Th e
digital elevation model is provided as 16-bit signed integer data in a simple
binary raster. Th e bit order is big-endian (Motorola’s standard) with the most
signifi cant bit fi rst. Th e data are imported into the workspace using

clear

7.5 THE SHUTTLE RADAR TOPOGRAPHY MISSION SRTM 257

fid = fopen('S01E036.hgt','r');
SRTM = fread(fid,[1201,inf],'int16','b');
fclose(fid);

Th is script opens the fi le s01e036.hgt for read only access using fopen and
defi nes the fi le identifi er fid, which is then used to read the binaries from
the fi le (using fread) and to write them into the matrix SRTM. Function fclose
closes the fi le defi ned by fid. Th e matrix fi rst needs to be transposed and
fl ipped vertically.

SRTM = SRTM'; SRTM = flipud(SRTM);

Th e –32768 fl ag for data voids can be replaced by NaN, which is the MATLAB
representation for Not-a-Number.

SRTM(find(SRTM == -32768)) = NaN;

Th e SRTM data contain numerous gaps that might cause spurious eff ects
during statistical analysis or when displaying the digital elevation model
in a graph. A popular way to eliminate gaps in digital elevation models is
by fi lling gaps with the arithmetic means of adjacent elements. We use the
function nanmean since it treats NaNs as missing values and returns the mean
of the remaining elements that are not NaNs. Th e following double for loop
averages SRTM(i-1:i+1,j-1:j+1) arrays, i.e., averages over three-by-three
element wide areas of the digital elevation model.

for i = 2 : 1200
 for j = 2 : 1200
 if isnan(SRTM(i,j)) == 1
 SRTM(i,j) = nanmean(nanmean(SRTM(i-1:i+1,j-1:j+1)));
 end
 end
end
clear i j

If there are still NaNs in the data set (as in our example) causing errors when
importing the data set into a Virtual Reality Modeling Language (VRML)
client, the double for loop can be run a second time. Finally, we check
whether the data are now correctly stored in the workspace by printing the
minimum and maximum elevations of the area.

max(SRTM(:))

ans =
 3992

min(SRTM(:))

258 7 SPATIAL DATA

Interactive
7.3

ans =
 1504

In our example the maximum elevation of the area is 3,992 m above sea level
and the minimum is 1,504 m. A coordinate system can be defi ned using
the information that the lower-left corner is s01e036. Th e resolution is 3 arc
seconds, corresponding to 1/1,200 of a degree.

[LON,LAT] = meshgrid(36:1/1200:37,-1:1/1200:0);

A shaded grayscale map can be generated from the elevation data using
the function surfl. Th is function displays a shaded surface with simulated
lighting.

surfl(LON,LAT,SRTM)
shading interp
colormap gray
view(0,90)

Th is script opens a new fi gure window and generates the shaded-relief
map using interpolated shading, as well as a gray colormap, displayed in an
overhead view. Since SRTM data contain a large amount of noise, we fi rst
smooth the data using an arbitrary 9-by-9 pixel moving average fi lter. Th e
new matrix is then stored in the matrix SRTM_FILTERED.

B = 1/81 * ones(9,9);
SRTM_FILTERED = filter2(B,SRTM);

Th e corresponding shaded-relief map is generated by

surfl(LON,LAT,SRTM_FILTERED)
shading interp
colormap gray
view(0,90)

Aft er having generated the shaded-relief map (Fig. 7.4), the plot must be
exported to a graphics fi le. For instance, the fi gure may be written into a
JPEG format with a 70% quality level and 300 dpi resolution.

print -djpeg70 -r300 srtmimage

Th e new fi le srtmimage.jpg has a size of 320 KB; the decompressed image
has a size of 16.5 MB. Th is fi le can now be imported into another soft ware
package such as Adobe Photoshop.

7.5 THE SHUTTLE RADAR TOPOGRAPHY MISSION SRTM 259

 7.6 Exporting 3D Graphics to Create Interactive Documents

Since the introduction of electronic devices with touch controls, interactive 3D
graphics objects have become increasingly popular in multimedia electronic
books (ebooks). Th e Simulink 3D Animation available from Th e MathWorks,
Inc. provides the necessary tools to create and export 3D graphics objects for
inclusion in documents such as multimedia ebooks, interactive webpages,
and presentations (MathWorks 2014b). Th e VRML fi les are text fi les with the
fi le extension .wrl for world, short for Virtual Reality World. Opening such
a fi le in, for example, the MATLAB editor reveals that it contains vertices
and edges for 3D polygons, together with parameters such as surface colors,
textures, transparency and so on. Th e VRML fi les can be viewed using a
browser plugin (of which there are many diff erent types available online), or
using 3D soft ware such as the open-source MeshLab soft ware

http://meshlab.sourceforge.net

Fig. 7.4 Display from the fi ltered SRTM elevation data set. Th e map uses the function surfl
to generate a shaded-relief map with simulated lighting, using interpolated shading and a gray
colormap, displayed in an overhead view (data from Farr et al. 2000, 2008).

260 7 SPATIAL DATA

or the free Blender soft ware available at

http://www.blender.org

Th ese tools (as well as others) can be used to convert the VRML format
into other 3D graphics object fi le formats such as the Universal 3D .u3d
and COLLADA .dae formats. As an example the U3D format is the format
required to place a 3D graphics object onto a PDF page with Adobe Acrobat.
Th e DAE format is used to include 3D graphics objects in Apple iBooks
Author fi les, for use with Apple iPads and other iOS devices with touch
controls.

Th e digital terrain models created in previous sections are great examples
for such interactive 3D objects. We use a modifi ed script to import and
display an SRTM data set from the previous section as an example. Th e data
are imported into the workspace using

clear

fid = fopen('S01E036.hgt','r');
SRTM = fread(fid,[1201,inf],'int16','b');
fclose(fid);

Th e matrix fi rst needs to be transposed and fl ipped vertically.

SRTM = SRTM'; SRTM = flipud(SRTM);

Th e SRTM data contain numerous gaps that might cause spurious eff ects
during statistical analysis or when displaying the digital elevation model in a
graph. We can use the method described in the previous section to eliminate
the gaps. In this case, however, we have to search the data set for additional
possible NaNs, even aft er having searched for NaNs and replaced them with the
means of the surrounding pixels, because the VRML clients cannot handle
the character string NaN and therefore produces an error message when
importing the fi le into soft ware such as MeshLab. Since it is for display only
we can also use a simplifi ed method of replacing the gaps marked by -32768
with the mean of the entire DEM.

SRTM(find(SRTM == -32768)) = mean(SRTM(:));

A coordinate system can then be defi ned using the information that the
lower-left corner is s01e036. Th e resolution is 3 arc seconds, corresponding
to 1/1,200 of a degree.

[LON,LAT] = meshgrid(36:1/1200:37,-1:1/1200:0);

7.6 EXPORTING 3D GRAPHICS TO CREATE INTERACTIVE DOCUMENTS 261

We also need to reduce the size of the array by a factor of 10 because most
VRML clients limit the number of vertices in a VRML fi le. You can run an
experiment with a larger number of vertices and see whether it works with
your VRML soft ware.

LON = LON(1:10:end,1:10:end);
LAT = LAT(1:10:end,1:10:end);
SRTM = SRTM(1:10:end,1:10:end);

We also eliminate the edges of the data set, as these may cause problems
when writing the VRML fi les.

LON = LON(2:end-1,2:end-1);
LAT = LAT(2:end-1,2:end-1);
SRTM = SRTM(2:end-1,2:end-1);

3D graphics can be generated from the elevation data using the function
trimesh following Delaunay triangulation of the data set using delaunay.

tri = delaunay(LON,LAT);
trimesh(tri,LON,LAT,SRTM)
axis([35.5 37.5 -1.5 0.5 -500 4500]), axis off

Next, we determine the size of the array SRTM and reshape the 119-by-119
array SRTM to a n-by-1 array, where n=xdim*ydim=14161.

[xdim ydim] = size(SRTM);
SRTM = SRTM(:);

We then determine the range of the z-values and defi ne the spacing in x and
y directions.

zrange = range(SRTM);
xspace = 10;
yspace = 10;

We again use the colormap demcmap to display the SRTM data set.

cmap = demcmap(SRTM,256);

Alternatively, we can use any other colormap, even one that we have created
ourselves, to display the digital terrain model. We then normalize the
elevation data to the [1,length(cmap)] range.

cmap = cmap(round((SRTM-min(SRTM)) ...
 .*(size(cmap,1)-1)./zrange)+1,:);

Th e Simulink 3D Animation User’s Guide (MathWorks 2014b) contains a
great introduction in its chapter Interact with Virtual Reality Worlds, which

262 7 SPATIAL DATA

explains the following steps in greater detail than provided here. We fi rst
need to make sure that all virtual reality worlds are closed and deleted.

out = vrwho;
for i=1:length(out)
 while (get(out(i),'opencount')~=0)
 close(out(i));
 end
 delete(out(i));
end

We then create a new virtual reality world myworld using vrworld.

myworld = vrworld('');
open(myworld)

Our world then needs a shape and a grid. We create the shape newShape with
the name Landscape and the grid newGrid using vrnode. Th e function vrnode
creates a handle to either an existing or a new node.

shapeName = ['Landscape'];
newShape = vrnode(myworld,shapeName,'Shape');
newGrid = vrnode(newShape,'geometry','DEM','ElevationGrid');

We can access the contents of the variable newShape from the vrworld class in
a similar manner to structure arrays, e.g., by typing

getfield(newShape.geometry)

which lists a number of the defi ning parameters of newShape such as, for
example, the color. Th e nodes of the world can be accessed using one of the
two commands

nodes(myworld)
mynodes = get(myworld,'Nodes')

We can access the fi elds of the node Landscape using one of the two commands

fields(myworld.Landscape)
fields(mynodes.DEM)

and the DEM using

fields(myworld(1))
fields(mynodes(2))

both with a detailed output of all the parameter settings of the nodes. We can
also list the fi elds in newShape and newGrid using

fields(newShape)

7.6 EXPORTING 3D GRAPHICS TO CREATE INTERACTIVE DOCUMENTS 263

Interactive
7.4

fields(newGrid)

and modify the values of the various parameters of newShape and newGrid. As
an example we can reduce the height values to 20% of the original SRTM
values in order to change the proportions of the 3D graphics.

setfield(newGrid, ...
 'xDimension',xdim,...
 'zDimension',ydim,...
 'xSpacing',xspace,...
 'zSpacing',yspace,...
 'height',0.2*SRTM);

We then use the same colormap cmap that was created previously (before
using demcmap) based on elevation

GridColor = vrnode(newGrid,...
 'color','TerrainColor',...
 'Color');
GridColor.color = cmap;
getfield(newGrid,'color')

and save the world myworld created with Simulink 3D Animation to a new
VRML fi le srtm_2.wrl.

save(myworld,'srtm.wrl')
close(myworld)
delete(myworld)

We then close and delete the world myworld. Importing the resulting VRML
fi le into a VRML client such as MeshLab or Blender reveals the terrain model
does indeed have colors, as defi ned by demcmap. We can use the fi le in the
VRML format to create an interactive document. However, the soft ware to
create such interactive documents, such as Adobe Acrobat or Apple iBooks
Author, may require diff erent fi le formats; these can easily be converted with
the MeshLab or Blender soft ware.

 7.7 Gridding and Contouring

Th e previous data sets were all stored in evenly-spaced two-dimensional
arrays. Most data in earth sciences, however, are obtained from irregular
sampling patterns. Th e data are therefore unevenly-spaced and need to
be interpolated in order to allow a smooth and continuous surface to be
computed from our measurements in the fi eld. Surface estimation is typically
carried out in two major steps (Fig. 7.5). Firstly, the number of control
points needs to be selected, and secondly, the value of the variable of interest

264 7 SPATIAL DATA

Fig. 7.5 Methods for selecting the control points to use for estimating the values at grid
points. a Construction of a circle around the grid point (plus sign) with a radius defi ned by
spatial autocorrelation of the z-values at the control points (small circles). b Triangulation: the
control points are selected from the vertices of the triangle surrounding the grid point, with
the option of also including the vertices of the adjoining triangles.

needs to be estimated for the grid points. Control points are the unevenly-
spaced fi eld measurements, such as the thicknesses of sandstone units at
diff erent outcrops or the concentrations of a chemical tracer in water wells.
Th e data are generally represented as xyz triplets, where x and y are spatial
coordinates and z is the variable of interest. In such cases most gridding
methods require continuous and unique data. However, spatial variables in
earth sciences are oft en discontinuous and not spatially unique: for example,
the sandstone unit may be faulted or folded. Furthermore, gridding requires
spatial autocorrelation, i.e., the neighboring data points should be correlated
with each other through a specifi c relationship. Th ere is no point in making a
surface estimation if the z variables are random and have no autocorrelation.
Having selected the control points, a number of diff erent methods are
available for calculating the z-values at the evenly-spaced grid points.

Various techniques exist for selecting the control points. Most methods
make arbitrary assumptions on the autocorrelation of the z-variable. Th e
nearest-neighbor criterion includes all control points within a circular
neighborhood of the grid point, where the radius of the circle is specifi ed
by the user (Fig. 7.5 a). Since the degree of spatial autocorrelation is likely to
decrease with increasing distance from the grid point, considering too many
distant control points is likely to lead to erroneous results when computing
values for the grid points. On the other hand, using radii that are too small
may limit the number of control points used in calculating the grid point
values to a very small number, resulting in a noisy estimate of the modeled
surface.

a b

7.7 GRIDDING AND CONTOURING 265

It is perhaps due to these diffi culties that triangulation is oft en used as
an alternative method for selecting the control points (Fig. 7.5 b). In this
technique, all control points are connected in a triangular network. Every
grid point is located within the triangular area formed by three control points.
Th e z-value of the grid point is computed from the z-values of the three grid
points. A modifi cation of this form of gridding also uses the three points
at the apices of the three adjoining triangles. Th e Delauney triangulation
method uses a triangular net in which the acuteness of the triangles is
minimized, i.e., the triangles are as close as possible to equilateral.

Kriging, introduced in Section 7.11, is an alternative approach to select
control points. It is oft en regarded as the ultimate method of gridding. Some
people even use the term geostatistics synonymously with kriging. Kriging is
a method for quantifying the spatial autocorrelation and hence the circle’s
dimension. More sophisticated versions of kriging use an elliptical area
instead of a circle.

As mentioned above, the second step in surface estimation is the actual
computation of the z-values for the grid points. Th e arithmetic mean of the
measured z-values at the control points

provides the easiest way of computing the values at the grid points. Th is is
a particularly useful method if there are only a limited number of control
points. If the study area is well covered by control points and the distance
between these points is highly variable, the z-values of the grid points should
be computed using a weighted mean. Th is involves weighting the z-values at
the control points by the inverse of the distance di from the grid points.

Depending on the spatial scaling relationship of the variable z, the inverse of
the square root of the distance may be used to weight the z-values, rather than
simply the inverse of distance. Th e fi tting of 3D splines to the control points
off ers another method for computing the grid point values that is commonly
used in the earth sciences. Most routines used in surface estimation involve
cubic polynomial splines, i.e., a third-degree 3D polynomial is fi tted to at

266 7 SPATIAL DATA

least six adjacent control points. Th e fi nal surface is a composite comprising
diff erent portions of these splines. MATLAB has, from the start, provided a
biharmonic spline interpolation method, which was developed by Sandwell
(1987). Th is gridding method is particularly well suited for producing smooth
surfaces from noisy data sets with unevenly-distributed control points. As an
example we use synthetic xyz data representing the vertical distance between
the surface of an imaginary stratigraphic horizon that has been displaced
by a normal fault, and a reference surface. Th e foot wall of the fault shows
roughly horizontal strata, whereas the hanging wall is characterized by the
development of two large sedimentary basins. Th e xyz data are irregularly
distributed and so need to be interpolated onto a regular grid. Th e xyz data
are stored as a three-column table in a fi le named normalfault.txt.

4.3229698e+02 7.4641694e+01 9.7283620e-01
4.4610209e+02 7.2198697e+01 6.0655065e-01
4.5190255e+02 7.8713355e+01 1.4741054e+00
4.6617169e+02 8.7182410e+01 2.2842172e+00
4.6524362e+02 9.7361564e+01 1.1295175e-01
4.5526682e+02 1.1454397e+02 1.9007110e+00
4.2930233e+02 7.3175896e+01 3.3647807e+00
(cont'd)

Th e fi rst and second column contain the coordinates x (between 420 and 470
of an arbitrary spatial coordinate system) and y (between 70 and 120), while
the third column contains the vertical z-values. Th e data are loaded using

clear

data = load('normalfault.txt');

Initially, we wish to create an overview plot of the spatial distribution of the
control points. In order to label the points in the plot, numerical z-values of
the third column are converted into character string representations with a
maximum of two digits.

labels = num2str(data(:,3),2);

Th e 2D plot of our data is generated in two steps. Firstly, the data are
displayed as empty circles using the plot command. Secondly, the data are
labeled using the function text(x,y,'string'), which adds text contained in
string to the xy locations. Th e value 1 is added to all x coordinates in order
to produce a small off set between the circles and the text.

plot(data(:,1),data(:,2),'o'), hold on
text(data(:,1)+1,data(:,2),labels), hold off

7.7 GRIDDING AND CONTOURING 267

Th is plot helps us to defi ne the axis limits for gridding and contouring:
xlim=[420 470] and ylim=[70 120]. Th e function meshgrid transforms the
domain specifi ed by vectors x and y into arrays XI and YI. Th e rows of the
output array XI are copies of the vector x and the columns of the output array
YI are copies of the vector y. We choose 1.0 as the grid interval.

x = 420:1:470; y = 70:1:120;
[XI,YI] = meshgrid(x,y);

Th e biharmonic spline interpolation is used to interpolate the irregular-
spaced data at the grid points specifi ed by XI and YI.

ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

Th e option v4 selects the biharmonic spline interpolation, which was the sole
gridding algorithm available until MATLAB4 was replaced by MATLAB5.
MATLAB provides various tools with which to display the results. Th e
simplest way to display the gridding results is as a contour plot using contour.
By default, the number of contour levels and the values of the contour levels
are chosen automatically. Th e choice of the contour levels depends on the
minimum and maximum values of z.

contour(XI,YI,ZI)

Alternatively, the number of contours can be chosen manually, e.g., ten
contour levels.

contour(XI,YI,ZI,10)

Contouring can also be performed at values specifi ed in a vector v. Since the
maximum and minimum values of z are

min(data(:,3))

ans =
 -27.4357

max(data(:,3))

ans =
 21.3018

we choose

v = -40 : 10 : 20;

Th e command

[c,h] = contour(XI,YI,ZI,v);

268 7 SPATIAL DATA

yields contour matrix c and a handle h that can be used as input to the
function clabel, which labels contours automatically.

clabel(c,h)

Alternatively, the plot can be labeled manually by selecting the manual option
in the function clabel. Th is function places labels onto locations that have
been selected with the mouse. Labeling is terminated by pressing the return
key.

[c,h] = contour(XI,YI,ZI,v);
clabel(c,h,'manual')

Filled contours are an alternative to the empty contours used above. Th is
function is used together with colorbar, which displays a legend for the plot.
In addition, we can plot the locations (small circles) and z-values (contour
labels) of the true data points (Fig. 7.6).

contourf(XI,YI,ZI,v), colorbar, hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels), hold off

A pseudocolor plot is generated using the function pcolor. Black contours
are also added at the same levels as in the above example.

pcolor(XI,YI,ZI), shading flat, hold on
contour(XI,YI,ZI,v,'k'), hold off

Th e third dimension is added to the plot using the mesh command. We can
also use this example to introduce the function view(az,el) to specify the
direction of viewing, where az is the azimuth or horizontal rotation and el
is the elevation (both in degrees). Th e values az=–37.5 and el=30 defi ne the
default view for all 3D plots,

mesh(XI,YI,ZI), view(-37.5,30)

whereas az=0 and el=90 is directly overhead and the default 2D view:

mesh(XI,YI,ZI), view(0,90)

Th e function mesh provides one of many methods available in MATLAB for
3D presentation, another commonly used function being surf. Th e fi gure may
be rotated by selecting the Rotate 3D option on the Edit Tools menu. We also
introduce the function colormap, which uses predefi ned color look-up tables
for 3D graphics. Typing help graph3d lists a number of built-in colormaps,
although colormaps can also be arbitrarily modifi ed and generated by the
user. As an example we use the colormap hot, which is a black-red-yellow-

7.7 GRIDDING AND CONTOURING 269

Interactive
7.7

Fig. 7.6 Contour plot with the locations (small circles) and z-values (contour labels) of the
true data points.

white colormap.

surf(XI,YI,ZI), colormap('hot'), colorbar

Using Rotate 3D only rotates the 3D plot, not the colorbar. Th e function
surfc combines both a surface and a 2D contour plot in one graph.

surfc(XI,YI,ZI)

Th e function surfl can be used to illustrate an advanced application for 3D
visualization, generating a 3D colored surface with interpolated shading
and lighting. Th e axis labeling, ticks, and background can be turned off by
typing axis off. In addition, black 3D contours can be added to the surface,
as above. Th e grid resolution is increased prior to data plotting in order to
obtain smooth surfaces (Fig. 7.7).

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

surf(XI,YI,ZI), shading interp, light, axis off, hold on
contour3(XI,YI,ZI,v,'k'), hold off

270 7 SPATIAL DATA

Fig. 7.7 Th ree-dimensional colored surface with interpolated shading and simulated lighting.
Th e axis labeling, ticks and background are turned off . Th e plot also contains 3D contours,
in black.

Th e biharmonic spline interpolation described in this section provides a
solution to most gridding problems. It was therefore, for some time, the only
gridding method that came with MATLAB. However, diff erent applications
in earth sciences require diff erent methods of interpolation, although they
all have their problems. Th e next section compares biharmonic spline
interpolation with other gridding methods and summarizes their strengths
and weaknesses.

 7.8 Comparison of Methods and Potential Artifacts

Th e fi rst example in this section illustrates the use of the bilinear interpolation
technique for gridding irregular-spaced data. Bilinear interpolation is
an extension of the one-dimensional technique of linear interpolation
introduced in Section 5.5. In the two-dimensional case, linear interpolation is
fi rst performed in one direction, and then in the other direction. Th e bilinear
method would appear to be one of the simplest interpolation techniques,
which might intuitively not be expected to produce serious artifacts or
distortions in the data. Th e opposite is true, however, as this method has a
number of disadvantages and other methods are therefore preferred in many
applications.

Th e sample data used in the previous section can again be loaded to study
the eff ects of a bilinear interpolation.

7.8 COMPARISON OF METHODS AND POTENTIAL ARTIFACTS 271

clear

data = load('normalfault.txt');
labels = num2str(data(:,3),2);

We now choose the option linear while using the function griddata to
interpolate the data.

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'linear');

Th e results are plotted as contours. Th e plot also includes the locations of the
control points.

v = -40 : 10 : 20;
contourf(XI,YI,ZI,v), colorbar, hold on
plot(data(:,1),data(:,2),'o'), hold off

Th e new surface is restricted to the area that contains control points: by
default, bilinear interpolation does not extrapolate beyond this region.
Furthermore, the contours are rather angular compared to the smooth
shape of the contours from the biharmonic spline interpolation. Th e most
important character of the bilinear gridding technique, however, is illustrated
by a projection of the data in a vertical plane.

plot(XI,ZI,'k'), hold on
plot(data(:,1),data(:,3),'ro')
text(data(:,1)+1,data(:,3),labels)
title('Linear Interpolation'), hold off

Th is plot shows the projection of the estimated surface (vertical lines) and
the labeled control points. Th e z-values at the grid points never exceed the
z-values of the control points. As with the linear interpolation of time series
(Section 5.5), bilinear interpolation causes signifi cant smoothing of the data
and a reduction in high-frequency variations.

Biharmonic spline interpolations are, in many ways, the other extreme.
Th ey are oft en used for extremely irregular-spaced and noisy data.

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

v = -40 : 10 : 20;
contourf(XI,YI,ZI,v), colorbar, hold on
plot(data(:,1),data(:,2),'o'), hold off

Th e contours suggest an extremely smooth surface. Th is solution is very
useful in many applications but the method also produces a number of
artifacts. As we can see from the next plot, the estimated values at the grid

272 7 SPATIAL DATA

points are oft en beyond the range of the measured z-values.

plot(XI,ZI,'k'), hold on
plot(data(:,1),data(:,3),'o')
text(data(:,1)+1,data(:,3),labels)
title('Biharmonic Spline Interpolation'), hold off

Th is can sometimes be appropriate and does not smooth the data in the
way that bilinear gridding does. However, introducing very close control
points with diff erent z-values can cause serious artifacts. As an example we
introduce one reference point with a z-value of +5 close to a reference point
with a negative z-value of around –26.

data(79,:) = [450 105 5];
labels = num2str(data(:,3),2);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

v = -40 : 10 : 20;
contourf(XI,YI,ZI,v), colorbar, hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels), hold off

Th e extreme gradient at the location (450,105) results in a paired low and
high (Fig. 7.8). In such cases, it is recommended that one of the two control
points be deleted and the z-value of the remaining control point be replaced
by the arithmetic mean of both z-values.

Extrapolation beyond the area supported by control points is a common
feature of spline interpolation (see also Section 5.5). Extreme local trends
combined with large areas with no data oft en result in unrealistic estimates.
To illustrate these edge eff ects we eliminate all control points in the upper-
left corner.

[i,j] = find(data(:,1)<435 & data(:,2)>105);
data(i,:) = [];

labels = num2str(data(:,3),2);

plot(data(:,1),data(:,2),'ko'), hold on
text(data(:,1)+1,data(:,2),labels), hold off

We again use the biharmonic spline interpolation technique.

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

v = -40 : 10 : 40;
contourf(XI,YI,ZI,v)
caxis([-40 40])
colorbar
hold on

7.8 COMPARISON OF METHODS AND POTENTIAL ARTIFACTS 273

Fig. 7.8 Contour plot of a data set gridded using a biharmonic spline interpolation. At the
location (450,105), very close control points with diff erent z-values have been introduced.
Interpolation causes a paired low and high, which is a common artefact in spline interpolation
of noisy data.

plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels)
hold off

As can be seen from the plot, this method extrapolates the gradients beyond
the area with control points, up to the edge of the map (Fig. 7.9). Such an eff ect
is particular undesirable when gridding closed data, such as percentages, or
data that have only positive values. In such cases, it is recommended that
the estimated z-values be replaced by NaN. For instance, we delete the areas
with z-values larger than 20, which are regarded as unrealistic values. Th e
resulting plot now contains a sector with no data.

ZID = ZI;
ZID(find(ZID > 20)) = NaN;

contourf(XI,YI,ZID,v)
caxis([-40 40])
colorbar
hold on
plot(data(:,1),data(:,2),'ko')

274 7 SPATIAL DATA

Fig. 7.9 Contour plot of a data set gridded using a biharmonic spline interpolation. No control
points are available in the upper left corner. Th e spline interpolation then extrapolates beyond
the area with control points using the gradients at the map edges, resulting in unrealistic z
estimates at the grid points.

text(data(:,1)+1,data(:,2),labels)
hold off

Alternatively, we can eliminate a rectangular area with no data.

ZID = ZI;
ZID(131:201,1:71) = NaN;

contourf(XI,YI,ZID,v)
caxis([-40 40])
colorbar
hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels)
hold off

In some examples the area with no control points is simply concealed by
placing a legend over this part of the map.

Other interpolation methods available with griddata are the cubic (cubic),
natural neighbor (natural), and nearest neighbor (nearest) interpolation
methods. Th e cubic option interpolates the data in two dimensions using

7.8 COMPARISON OF METHODS AND POTENTIAL ARTIFACTS 275

a spline, i.e., a third-degree 3D polynomial is fi tted to at least six adjacent
control points, resulting in a surface (and its fi rst derivative) that is continuous.
Th e resulting surface is much smoother than those calculated using linear
(linear), natural (natural), or nearest neighbor (nearest) techniques but not
as smooth as that resulting from a biharmonic spline interpolation (v4). For
this reason the typical artifacts of splines do not occur to the same extent.
We can compare all of these methods in the next example. We fi rst clear the
workspace and reload the data from normalfault.txt.

clear

data = load('normalfault.txt');
data(79,:) = [450 105 5];
labels = num2str(data(:,3),2);

We then create titles for the results from the diff erent interpolation methods.

titles = ['linear ';'nearest';'natural';'cubic ';'biharmo'];

Since we store the titles in a single character array, we use spaces to expand
the names of the methods so that they are all the same length. We again defi ne
the axis limits for gridding and contouring: xlim=[420 470] and ylim=[70
120]. Th e function meshgrid transforms the domain specifi ed by vectors x
and y into arrays XI and YI. Th e rows of the output array XI are copies of the
vector x and the columns of the output array YI are copies of the vector y. We
choose 1.0 as the grid interval.

x = 420:1:470; y = 70:1:120;
[XI,YI] = meshgrid(x,y);

We then use griddata with all available options and store the results in a
three-dimensional array ZI.

ZI(:,:,1) = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'linear');
ZI(:,:,2) = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'nearest');
ZI(:,:,3) = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'natural');
ZI(:,:,4) = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'cubic');
ZI(:,:,5) = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

We compare the results in fi ve diff erent graphics in separate fi gure windows,
slightly off set on the computer display, using figure. Th e data are displayed
as fi lled contours at values specifi ed in a vector v.

v = -40 : 10 : 20;

for i = 1 : 5
 figure('Position',[50 i*100-50 500 300])
 contourf(XI,YI,ZI(:,:,i),v), colorbar, hold on

276 7 SPATIAL DATA

 plot(data(:,1),data(:,2),'ko')
 text(data(:,1)+1,data(:,2),labels), hold off
 title(titles(i,:))
end

According to the MATLAB documentation, Th e MathWorks, Inc. has now
decided to move the linear (linear), the natural (natural) and the nearest
neighbor (nearest) techniques to the new function scatteredInterpolant, while
the biharmonic (v4) and cubic spline (cubic) options remain in the griddata
function. In fact the code of griddata invokes the new scatteredInterpolant
function instead of the original codes of linear, natural, or nearest. Th e new
function works in a very similar manner to griddata, as we can easily explore
by typing

FLIN = scatteredInterpolant(data(:,1),data(:,2),data(:,3),...
 'linear','linear');
FNEA = scatteredInterpolant(data(:,1),data(:,2),data(:,3),...
 'nearest','nearest');
FNAT = scatteredInterpolant(data(:,1),data(:,2),data(:,3),...
 'natural','none');

ZI(:,:,6) = FLIN(XI,YI);
ZI(:,:,7) = FNEA(XI,YI);
ZI(:,:,8) = FNAT(XI,YI);

titles(6:8,:) = ['scatlin';'scatnea';'scatnat'];

for i = 6:8
 figure('Position',[350 (i-5)*100-50 500 300])
 contourf(XI,YI,ZI(:,:,i),v), colorbar, hold on
 plot(data(:,1),data(:,2),'ko')
 text(data(:,1)+1,data(:,2),labels), hold off
 title(titles(i,:))
end

Another very useful MATLAB gridding method is splines with tension
by Wessel and Bercovici (1998), available for download from the author’s
webpage:

http://www.soest.hawaii.edu/wessel/tspline/

Th e tsplines use biharmonic splines in tension t, where the parameter t
can vary between 0 and 1. A value of t=0 corresponds to a standard cubic
spline interpolation. Increasing t reduces undesirable oscillations between
data points, e.g., the paired lows and highs observed in one of the previous
examples. Th e limiting situation t→1 corresponds to linear interpolation.

7.8 COMPARISON OF METHODS AND POTENTIAL ARTIFACTS 277

 7.9 Statistics of Point Distributions

Th is section is about the statistical distribution of objects within an area,
which may help explain the relationship between these objects and
properties of the area. For instance, the spatial concentration of hand-axes in
an archaeological site may suggest that a larger population of hominins lived
in that part of the area, the clustered occurrence of fossils may document
environmental conditions that were favorable to those particular organisms,
the alignment of volcanoes may oft en help in mapping tectonic structures
concealed beneath the surface.

Various methods for the statistical analysis of point distributions are
introduced below. We fi rst consider a test for a uniform spatial distribution
of objects, followed by a test for a random spatial distribution and fi nally, a
simple test for a clustered distributions of objects.

 Test for Uniform Distribution

In order to illustrate the test for a uniform distribution we fi rst need to
compute some synthetic data. Th e function rand computes uniformly-
distributed pseudo-random numbers drawn from a uniform distribution
within the interval [0,1]. We compute xy data using rand and multiply the
data by ten to obtain data within the interval [0,10].

clear

rng(0)
data = 10 * rand(100,2);

We can use the χ2–test introduced in Section 3.8 to test the hypothesis that
the data have a uniform distribution. Th e xy data are now organized into 25
classes that are square subareas with dimensions of 2-by-2. Th is defi nition
of the classes ignores the rule of thumb that the number of classes should be
close to the square root of the number of observations (see Section 3.3). Our
choice of classes, however, does not result in any empty classes, which should
be avoided when applying the χ2–test. Furthermore, 25 classes produce
integer values for the expected number of observations that are easier to
work with. We display the data as blue circles in a plot of y versus x. Th e
rectangular areas are outlined with red lines (Fig. 7.10).

plot(data(:,1),data(:,2),'o')
hold on
x = 0:10; y = ones(size(x));
for i = 1:4, plot(x,2*i*y,'r-'), end
for i = 1:4, plot(2*i*y,x,'r-'), end

278 7 SPATIAL DATA

Fig. 7.10 Two-dimensional plot of a point distribution. Th e distribution of objects in the fi eld
is tested for uniform distribution using the χ2–test. Th e xy data are organized into 25 classes
that are subareas with dimensions of 2-by-2.

hold off

A three-dimensional version of a histogram hist3 is used to display the
spatial data, organized in classes (Fig. 7.11).

hist3(data,[5 5]), view(30,70)

As with the equivalent two-dimensional function, the function hist3 can be
used to compute the frequency distribution n_obs of the data.

n_obs = hist3(data,[5 5]);
n_obs = n_obs(:);

For a uniform distribution, the theoretical frequencies for the diff erent
classes are identical. Th e expected number of objects in each square area
is the size of the total area 10∙10=100 divided by the 25 subareas or classes,
which comes to four. To compare the theoretical frequency distribution with
the actual spatial distribution of objects, we generate a 5-by-5 array with an
identical number of objects.

n_exp = 4 * ones(25,1);

7.9 STATISTICS OF POINT DISTRIBUTIONS 279

Fig. 7.11 Th ree-dimensional histogram displaying the numbers of objects for each subarea.
Th e histogram was created using hist3.

Th e χ2-test explores the squared diff erences between the observed and
expected frequencies (Section 3.9). Th e quantity χ2 is defi ned as the sum of
the squared diff erences divided by the expected frequencies.

chi2_data = sum((n_obs - n_exp).^2 ./n_exp)

chi2 =
 22.5000

Th e critical χ2 can be calculated using chi2inv. Th e χ2-test requires the
degrees of freedom Φ. In our example we test the hypothesis that the data
are uniformly distributed, i.e., we estimate only one parameter (Section 3.5).
Th e number of degrees of freedom is therefore Φ=25–(1+1)=23. We test the
hypothesis at a p=95% signifi cance level. Th e function chi2inv computes the
inverse of the χ2 CDF with parameters specifi ed by Φ for the corresponding
probabilities in p.

chi2_theo = chi2inv(0.95,25-1-1)

ans =
 35.1725

Since the critical χ2 of 35.1725 is well above the measured χ2 of 22.5000, we
cannot reject the null hypothesis and therefore conclude that our data follow
a uniform distribution.

280 7 SPATIAL DATA

 Test for Random Distribution

Th e following example illustrates the test for random distribution of objects
within an area. We use the uniformly-distributed data generated in the
previous example and display the point distribution.

clear

rng(5)
data = 10 * rand(100,2);
plot(data(:,1),data(:,2),'o')
hold on
x = 0:10; y = ones(size(x));
for i = 1:9, plot(x,i*y,'r-'), end
for i = 1:9, plot(i*y,x,'r-'), end
hold off

We then generate the three-dimensional histogram and use the function
hist3 to count the objects per class. In contrast to the previous test, we now
count the subareas containing a certain number of observations. Th e number
of subareas is larger than would normally be used for the previous test. In
our example we use 49 subareas or classes.

hist3(data,[7 7])
view(30,70)

counts = hist3(data,[7 7]);
counts = counts(:);

Th e frequency distribution of those subareas that contain a specifi c number
of objects follows a Poisson distribution (Section 3.5) if the objects are
randomly distributed. First, we compute a frequency distribution of the
subareas containing N objects. In our example we count the subareas with 0,
…, 5 objects. We also display the histogram of the frequency distribution as a
two-dimensional histogram using histogram, aft er having fi rst calculated the
bin edges E from the bin centers N (Section 3.3) (Fig. 7.12).

N = 0 : 5;
E = -0.5 : 1 : 5.5;

h = histogram(counts,E);
title('Histogram')
xlabel('Number of observations N')
ylabel('Subareas with N observations')

v = h.BinWidth * 0.5 + h.BinEdges(1:end-1);
n_obs = h.Values;

7.9 STATISTICS OF POINT DISTRIBUTIONS 281

Here, the midpoints of the histogram intervals v correspond to the N=0, …, 5
objects contained in the subareas. Th e expected number of subareas Ej with
a certain number of objects j can be computed using

where n is the total number of objects and T is the number of subareas. For
j=0, j! is taken to be 1. We compute the expected number of subareas, i.e., the
theoretical frequency distribution n_exp, using the equation shown above,

for i = 1 : 6
 n_exp(i) = 49*exp(-100/49)*(100/49)^N(i)/factorial(N(i));
end
n_exp = sum(n_obs)*n_exp/sum(n_exp);

and display both the empirical and theoretical frequency distributions in a
single plot.

h1 = bar(v,n_obs);
hold on
h2 = bar(v,n_exp);
hold off

set(h1,'FaceColor','none','EdgeColor','r')
set(h2,'FaceColor','none','EdgeColor','b')

Th e χ2-test is again used to compare the empirical and theoretical
distributions. Th e test is performed at a p=95% signifi cance level. Since the

Fig. 7.12 Frequency distribution of subareas with N objects. In our example the subareas with
0, …, 5 objects are counted. Th e histogram of the frequency distribution is displayed as a two-
dimensional histogram, using histogram.

282 7 SPATIAL DATA

Poisson distribution is defi ned by only one parameter (Section 3.4), the
number of degrees of freedom is Φ=6–(1+1)=4. Th e measured χ2 of

chi2 = sum((n_obs - n_exp).^2 ./n_exp)

chi2 =
 3.7615

is well below the critical χ2, which is

chi2inv(0.95,6-1-1)

ans =
 9.4877

We therefore cannot reject the null hypothesis and conclude that our data
follow a Poisson distribution and the point distribution is random.

 Test for Clustering

Point distributions in geosciences are oft en clustered. We use a nearest-
neighbor criterion to test a spatial distribution for clustering. Davis (2002)
has published an excellent summary of the nearest-neighbor analysis,
summarizing the work of a number of other authors. Swan and Sandilands
(1996) presented a simplifi ed description of this analysis. Th e test for
clustering computes the distances di separating all possible pairs of nearest
points in the fi eld. Th e observed mean nearest-neighbor distance is

where n is the total number of points or objects in the fi eld. Th e arithmetic
mean of all distances between possible pairs is related to the area covered
by the map. Th is relationship is expressed by the expected mean nearest-
neighbor distance, which is

where A is the area covered by the map. Small values for this ratio then
suggest signifi cant clustering, whereas large values indicate regularity or
uniformity. Th e test uses a Z statistic (Section 3.5), which is

7.9 STATISTICS OF POINT DISTRIBUTIONS 283

where se is the standard error of the mean nearest-neighbor distance, which
is defi ned as

Th e null hypothesis randomness is tested against two alternative hypotheses,
clustering and uniformity or regularity. Th e Z statistic has critical values of
1.96 and –1.96 at a signifi cance level of 95%. If –1.96<Z<+1.96, we cannot
reject the null hypothesis that the data are randomly distributed. If Z<–1.96,
we reject the null hypothesis and accept the fi rst alternative hypothesis of
clustering. If Z>+1.96, we also reject the null hypothesis, but accept the
second alternative hypothesis of uniformity or regularity.

As an example we again use the synthetic data analyzed in the previous
examples.

clear

rng(5)
data = 10 * rand(100,2);
plot(data(:,1),data(:,2),'o')

We fi rst compute the pairwise Euclidian distance between all pairs of
observations using the function pdist (Section 9.5). Th e resulting distance
matrix distances is then converted into a symmetric, square format, so that
distmatrix(i,j) denotes the distance between i and j objects in the original
data.

distances = pdist(data,'Euclidean');
distmatrix = squareform(distances);

Th e following for loop fi nds the nearest neighbors, stores the nearest-
neighbor distances and computes the mean distance.

for i = 1 : 100
 distmatrix(i,i) = NaN;
 k = find(distmatrix(i,:) == min(distmatrix(i,:)));
 nearest(i) = distmatrix(i,k(1));
end
observednearest = mean(nearest)

284 7 SPATIAL DATA

observednearest =
 0.5078

In our example the mean nearest distance observednearest comes to 0.5078.
We next calculate the area of the map. Th e expected mean nearest-neighbor
distance is half the square root of the map area divided by the number of
observations.

maparea = (max(data(:,1)-min(data(:,1)))) ...
 *(max(data(:,2)-min(data(:,2))));
expectednearest = 0.5 * sqrt(maparea/length(data))

expectednearest =
 0.4875

In our example the expected mean nearest-neighbor distance expectednearest
is 0.4875. Finally, we compute the standard error of the mean nearest-
neighbor distance se

se = 0.26136/sqrt(length(data).^2/maparea)

se =
 0.0255

and the test statistic Z.

Z = (observednearest - expectednearest)/se

Z =
 0.7954

Since –1.96<Z<+1.96, we cannot reject the null hypothesis and conclude that
the data are randomly distributed, but not clustered.

 7.10 Analysis of Digital Elevation Models (by R. Gebbers)

Digital elevation models (DEMs) and their derivatives (e.g., slope and aspect)
can indicate surface processes such as lateral water fl ow, solar irradiation, or
erosion. Th e simplest derivatives of a DEM are the slope and the aspect. Th e
slope (or gradient) is a measure of the steepness, the incline or the grade of a
surface measured in either percentages or degrees. Th e aspect (or exposure)
refers to the direction in which a slope faces.

We use the SRTM data set introduced in Section 7.5 to illustrate the
analysis of a digital elevation model for slope, aspect and other derivatives.
Th e data are loaded by

clear

7.10 ANALYSIS OF DIGITAL ELEVATION MODELS (BY R. GEBBERS) 285

fid = fopen('S01E036.hgt','r');
SRTM = fread(fid,[1201,inf],'int16','b');
fclose(fid);

SRTM = SRTM';
SRTM = flipud(SRTM);
SRTM(find(SRTM==-32768)) = NaN;

Th ese data are elevation values in meters above sea level, sampled on a 3
arc second or 90 meter grid. Th e SRTM data contain small-scale spatial
disturbances and noise that could cause problems when computing a drainage
pattern. We therefore fi lter the data with a two-dimensional moving-average
fi lter, using the function filter2. Th e fi lter calculates a spatial running mean
of 3-by-3 elements. We use only the subset SRTM(400:600,650:850) of the
original data set, in order to reduce computation time. We also remove the
data at the edges of the DEM to eliminate fi lter artifacts.

F = 1/9 * ones(3,3);
SRTM = filter2(F, SRTM(750:850,700:800));
SRTM = SRTM(2:99,2:99);

Th e DEM is displayed as a pseudocolor plot using pcolor and the colormap
demcmap included in the Mapping Toolbox. Th e function demcmap creates and
assigns a colormap appropriate for elevation data since it relates land and sea
colors to hypsometry and bathymetry.

h = pcolor(SRTM);
demcmap(SRTM), colorbar
set(h,'LineStyle','none')
axis equal
title('Elevation [m]')
[r c] = size(SRTM);
axis([1 c 1 r])
set(gca,'TickDir','out');

Th e DEM indicates a horseshoe-shaped mountain range surrounding a
valley that slopes down towards the south-east (Fig. 7.15 a).

Th e SRTM subset is now analyzed for slope and aspect. When we are
working with DEMs on a regular grid, slope and aspect can be estimated
using centered fi nite diff erences in a local 3-by-3 neighborhood. Figure 7.13
shows a local neighborhood using the MATLAB cell indexing convention.
For calculating slope and aspect, we need two fi nite diff erences in the DEM
elements z, in x and y directions:

286 7 SPATIAL DATA

Fig. 7.13 Local neighborhood showing the MATLAB cell number convention.

and

where h is the cell size, which has the same units as the elevation. Using the
fi nite diff erences, the slope is then calculated by

Other primary relief attributes such as the aspect, the plan, the profi le and the
tangential curvature can be derived in a similar way using fi nite diff erences
(Wilson and Galant 2000). Th e function gradientm in the Mapping Toolbox
calculates the slope and aspect of a data grid z in degrees above the horizontal
and degrees clockwise from north. Th e function gradientm(z,refvec) requires
a three-element reference vector refvec. Th e reference vector contains the
number of cells per degree as well as the latitude and longitude of the upper-
left (northwest) element of the data array. Since the SRTM digital elevation
model is sampled on a 3 arc second grid, 60∙60/3=1200 elements of the DEM
correspond to one degree of longitude or latitude. For simplicity we ignore
the actual coordinates of the SRTM subset in this example and use the indices
of the DEM elements instead.

refvec = [1200 0 0];
[asp, slp] = gradientm(SRTM, refvec);

We display a pseudocolor map of the DEM slope in degrees (Fig 7.15 b).

h = pcolor(slp);
colormap(jet), colorbar

7.10 ANALYSIS OF DIGITAL ELEVATION MODELS (BY R. GEBBERS) 287

set(h,'LineStyle','none')
axis equal
title('Slope [°]')
[r c] = size(slp);
axis([1 c 1 r])
set(gca,'TickDir','out');

Flat areas are common on the summits and on the valley fl oors. Th e south-
eastern and south-south-western sectors are also relatively fl at. Th e steepest
slopes are concentrated in the center of the area and in the south-western
sector. Next, a pseudocolor map of the aspect is generated (Fig. 7.15 c).

h = pcolor(asp);
colormap(hsv), colorbar
set(h,'LineStyle','none')
axis equal
title('Aspect')
[r c] = size(asp);
axis([1 c 1 r])
set(gca,'TickDir','out');

Th is plot displays the aspect in degrees, clockwise from north. For instance,
mountain slopes facing north are displayed in red and east-facing slopes in
green.

Th e aspect changes abruptly along the ridges of the mountain ranges
where neighboring drainage basins are separated by watersheds. Th e Image
Processing Toolbox includes the function watershed to detect these drainage
divides and to ascribe numerical labels to each catchment area, starting with
1.

watersh = watershed(SRTM);

Th e catchment areas are displayed in a pseudocolor plot in which each area
is assigned a color from the color table hsv (Fig. 7.15 d), according to its
numerical label.

h = pcolor(watersh);
colormap(hsv), colorbar
set(h,'LineStyle','none')
axis equal
title('Watershed')
[r c] = size(watersh);
axis([1 c 1 r])
set(gca,'TickDir','out');

Th e watersheds are represented by a series of red pixels. Th e largest
catchment area corresponds to the medium blue region in the center of the
map. To the north-west, this large catchment area appears to be bordered by

288 7 SPATIAL DATA

three catchments areas (represented by green colors) with no outlets. As in
this example, watershed oft en generates unrealistic results since watershed
algorithms are sensitive to local minima that act as spurious sinks. We can
detect such sinks in the SRTM data using the function imregionalmin. Th e
output of this function is a binary image in which pixels containing local
maxima are marked by a value of one and all other pixels are marked by a
zero.

sinks = 1*imregionalmin(SRTM);

h = pcolor(sinks);
colormap(gray)
set(h,'LineStyle','none')
axis equal
title('Sinks')
[r c] = size(sinks);
axis([1 c 1 r])
set(gca,'TickDir','out');

Th e pseudocolor plot of the binary image shows twelve local sinks,
represented by white pixels, that are potential locations for spurious areas
of internal drainage and should be borne in mind during any subsequent
computation of hydrological characteristics from the DEM.

Flow accumulation, also called specifi c catchment area or upslope
contributing area, is defi ned as the number of cells (or area) contributing
runoff to a particular cell (Fig. 7.14). In contrast to the local parameters
of slope and aspect, fl ow accumulation can only be determined from the
global neighborhood. Th e principal operation is to add cell infl ows from
topographically higher neighboring cells, starting from the specifi ed cell
and working up to the watersheds. Before adding together the outfl ows from
each cell we need to determine the gradient of each individual cell towards
each neighboring cell, indexed by N. Th e array N contains indices for the eight
adjacent cells, according to the MATLAB convention, as shown in Figure
7.13. We make use of the circshift function to access the neighboring cells.
For a two-dimensional matrix Z, the function circshift(Z,[r c]) circularly
shift s the values in the matrix Z by r rows and c columns. For example
circshift(Z,[1 1]) will circularly shift Z one row down and one column to
the right. Th e individual gradients are calculated by

for the eastern, southern, western, and northern neighbors (known as the
rook’s case) and by

7.10 ANALYSIS OF DIGITAL ELEVATION MODELS (BY R. GEBBERS) 289

for the diagonal neighbors (known as the bishop’s case). In these formulae,
h is the cell size, zr,c is the elevation of the central cell, and zr+y,c+x is the
elevation of the neighboring cells. Th e cell indices x and y are obtained from
the matrix N. Th e gradients are stored in a three-dimensional matrix grads,
where grads(:,:,1) contains the gradient towards the neighboring cells to
the east, grads(:,:,2) contains the gradient towards the neighboring cells
to the south-east, and so on. Negative gradients indicate outfl ow from the
central cell towards the relevant neighboring cell. To obtain the surface fl ow
between cells, gradients are transformed using the inverse tangent of grads
divided by 0.5π.

N = [0 -1;-1 -1;-1 0;+1 -1;0 +1;+1 +1;+1 0;-1 +1];
[a b] = size(SRTM);
grads = zeros(a,b,8);
for c = 2 : 2 : 8
 grads(:,:,c) = (circshift(SRTM,[N(c,1) N(c,2)]) ...
 -SRTM)/sqrt(2*90);
end
for c = 1 : 2 : 7
 grads(:,:,c) = (circshift(SRTM,[N(c,1) N(c,2)]) ...
 -SRTM)/90;
end
grads = atan(grads)/pi*2;

Since a central cell can have several downslope neighbors, water can fl ow
in several directions. Th is phenomenon is called divergent fl ow. Early fl ow
accumulation algorithms were based on the single-fl ow-direction method
(known as the D8 method, Fig. 7.14), which allows fl ow to only one of the cell’s
eight neighboring cells. Th is method cannot, however, model divergences in
ridge areas and tends to produce parallel fl ow lines in some situations. In our
example we illustrate the use of a multiple-fl ow-direction method, which
allows fl ow from a central cell to multiple neighboring cells. Th e proportion
of the total outfl ow that is assigned to a neighboring cell is dependent on
the gradient between the central cell and that particular neighboring cell.
Even though multiple-fl ow methods produce more realistic results in most
situations, they tend to result in dispersion in valleys, where the fl ow should
be more concentrated. A weighting factor w is therefore introduced, which
controls the relationship between the outfl ows.

290 7 SPATIAL DATA

A recommended value for w is 1.1; higher values would concentrate the fl ow
in the direction of the steepest slope, while w=0 would result in extreme
dispersion. In the following sequence of commands, we fi rst select those
gradients that are less than zero and then multiply the gradients by the
weighting.

w = 1.1;
flow = (grads.*(-1*grads<0)).^w;

We then sum up the upslope gradients along the third dimension of the flow
matrix. Replacing all upslope gradient values of 0 by a value of 1 avoids the
problems created by trying to divide by zero.

upssum = sum(flow,3);
upssum(upssum==0) = 1;

We divide the fl ows by upssum to obtain fractional weights that add up to a
total of one. Th is is achieved separately for each layer of the 3D flow matrix
using a for loop:

Fig. 7.14 Schematic of calculation of fl ow accumulation by the D8 method.

7.10 ANALYSIS OF DIGITAL ELEVATION MODELS (BY R. GEBBERS) 291

for i = 1:8
 flow(:,:,i) = flow(:,:,i).*(flow(:,:,i)>0)./upssum;
end

Th e 2D matrix inflowsum will store the intermediate infl ow totals for each
iteration. Th ese intermediate totals are then summed to reach a fi gure for the
total accumulated fl ow flowac at the end of each iteration. Th e initial values
for inflowsum and flowac are obtained through upssum.

inflowsum = upssum;
flowac = upssum;

Another 3D matrix inflow is now needed, in which to store the total
intermediate infl ow from all neighbors:

inflow = grads*0;

Flow accumulation is terminated when there is no infl ow or, translating
this into MATLAB code, we use a conditional while loop that terminates
if sum(inflowsum(:))==0. Th e number of non-zero entries in inflowsum will
decrease during each loop. Th is is achieved by alternately updating inflow
and inflowsum. Here, inflowsum is updated with the intermediate inflow of
the neighboring cells weighted by flow, under the condition that all of the
neighboring cells are contributing cells, i.e., where grads are positive. Where
not all neighboring cells are contributing cells, the intermediate inflowsum is
reduced, as also is inflow. Th e fl ow accumulation flowac increases through
consecutive summations of the intermediate inflowsum.

while sum(inflowsum(:))>0
 for i = 1:8
 inflow(:,:,i) = circshift(inflowsum,[N(i,1) N(i,2)]);
 end
 inflowsum = sum(inflow.*flow.*grads>0,3);
 flowac = flowac + inflowsum;
end

We display the result as a pseudocolor map with log-scaled values (Fig.
7.15 e).

h = pcolor(log(1+flowac));
colormap(flipud(jet)), colorbar
set(h,'LineStyle','none')
axis equal
title('Flow accumulation')
[r c] = size(flowac);
axis([1 c 1 r])
set(gca,'TickDir','out');

292 7 SPATIAL DATA

Fig. 7.15 Display of a subset of the SRTM data set used in Section 7.5 and primary and
secondary attributes of the digital elevation model; a elevation, b slope, c aspect, d watershed,
e fl ow accumulation, and f wetness index (data from Farr et al. 2000, 2008).

c

d

d

e

a b

7.10 ANALYSIS OF DIGITAL ELEVATION MODELS (BY R. GEBBERS) 293

Th e plot displays areas with high fl ow accumulation in shades of blue and
areas with low fl ow accumulation, usually corresponding to ridges, in shades
of red. We used a logarithmic scale for mapping the fl ow accumulation
in order to obtain a better representation of the results. Th e simplifi ed
algorithm introduced here for calculating fl ow accumulation can be used to
analyze sloping terrains in DEMs. In fl at terrains, where the slope approaches
zero, no fl ow direction can be generated by our algorithm and thus fl ow
accumulation stops. Such situations require more sophisticated algorithms
to perform analyses on completely fl at terrain. Th ese more advanced
algorithms also include sink-fi lling routines to avoid spurious sinks that
interrupt fl ow accumulation. Small depressions can be fi lled by smoothing,
as we did at the beginning of this section.

Th e fi rst part of this section was about primary relief attributes. Secondary
attributes of a DEM are functions of two or more primary attributes. Examples
of secondary attributes are the wetness index and the stream power index.
Th e wetness index for a cell is the log of the ratio between the area of the
catchment for that particular cell and the tangent of its slope:

Th e term 1+fl owac avoids the problems associated with calculating the
logarithm of zero when flowac=0. Th e wetness index is used to predict the
soil water content (saturation) resulting from lateral water movement. Th e
potential for waterlogging is usually highest in the lower parts of catchments,
where the slopes are more gentle. Flat areas with a large upslope area have
a high wetness index compared to steep areas with small catchments. Th e
wetness index weti is computed and displayed by

weti = log((1+flowac)./tand(slp));

h = pcolor(weti);
colormap(flipud(jet)), colorbar
set(h,'LineStyle','none')
axis equal
title('Wetness index')
[r c] = size(weti);
axis([1 c 1 r])
set(gca,'TickDir','out');

In this plot, blue colors indicate high values for the wetness index while red
colors represent low values (Fig. 7.15 f). In our example soils in the south-
east are the most likely to have a high water content due to the runoff from

294 7 SPATIAL DATA

the large central valley and the fl atness of the terrain.
Th e stream power index is another important secondary relief attribute that

is frequently used in hillslope hydrology, geomorphology, soil science, and
related disciplines. As a measure of stream power it provides an indication
of the potential for sediment transport and erosion by water. It is defi ned as
the product of the catchment area for a specifi c cell and the tangent of the
slope of that cell:

Th e potential for erosion is high when large quantities of water (calculated by
fl ow accumulation) are fast fl owing due to an extreme slope. Th e following
series of commands compute and display the stream power index:

spi = flowac.*tand(slp);

h = pcolor(log(1+spi));
colormap(jet), colorbar
set(h,'LineStyle','none')
axis equal
title('Stream power index')
[r c] = size(spi);
axis([1 c 1 r])
set(gca,'TickDir','out');

Th e wetness and stream power indices are particularly useful in high
resolution terrain analysis, i.e., digital elevation models sampled at intervals
of less than 30 meters. In our terrain analysis example we have calculated
weti and spi from a medium resolution DEM, and must expect a degree of
scale dependency in these attributes.

Th is section has illustrated the use of basic tools for analyzing digital
elevation models. A more detailed introduction to digital terrain modeling
is given in the book by Wilson & Galant (2002). Furthermore, the article
by Freeman (1991) provides a comprehensive summary of digital terrain
analysis, including an introduction to the use of advanced algorithms for
fl ow accumulation.

 7.11 Geostatistics and Kriging (by R. Gebbers)

Geostatistics describes the autocorrelation of one or more variables in 1D,
2D, or 3D space, or even in 4D space-time, in order to make predictions
for unobserved locations, to obtain information on the accuracy of the
predictions, and to reproduce spatial variability and uncertainty. Th e
shape, range, and direction of the spatial autocorrelation are described by

7.11 GEOSTATISTICS AND KRIGING (BY R. GEBBERS) 295

a variogram, which is the main tool in linear geostatistics. Th e origins of
geostatistics can be traced back to the early 1950s when the South African
mining engineer Daniel G. Krige fi rst published an interpolation method
based on the spatial dependency of samples. In the 60s and 70s, the French
mathematician George Matheron developed the theory of regionalized
variables, which provides the theoretical foundations for Krige’s more
practical methods. Th is theory forms the basis of several procedures for the
analysis and estimation of spatially dependent variables, which Matheron
called geostatistics. Matheron also coined the term kriging for spatial
interpolation by geostatistical methods.

 Theorical Background

A basic assumption in geostatistics is that a spatiotemporal process is
composed of both deterministic and stochastic components (Fig. 7.16).
Th e deterministic components can be global and local trends (sometimes
called drift s). Th e stochastic component comprises a purely random part
and an autocorrelated part. Th e autocorrelated component suggests that
on average, closer observations are more similar to each other than more
widely separated observations. Th is behavior is described by the variogram
in which squared diff erences between observations are plotted against their
separation distances. Krige’s fundamental idea was to use the variogram
for interpolation, as a means of determining the amount of infl uence that
neighboring observations have when predicting values for unobserved
locations. Basic linear geostatistics includes two main procedures:
variography for modeling the variogram, and kriging for interpolation.

 Preceding Analysis

Because linear geostatistics as presented herein is a parametric method, the
underlying assumptions need to be checked by a preceding analysis. As with
other parametric methods, linear geostatistics is sensitive to outliers and
deviations from a normal distribution. We fi rst open the data fi le geost_dat.
mat containing xyz data triplets, and then plot the sampling locations. Th is
allows us to check the point distribution and detect any major errors in the
data coordinates, x and y.

clear

load geost_dat.mat

plot(x,y,'.')

296 7 SPATIAL DATA

c

d

d

e

a b

Fig. 7.16 Components of a spatiotemporal process and the variogram; a spatiotemporal
process, b global trend component, c local trend component, d random component, e
autocorrelation component, and f variogram. Th e variogram should only be derived from the
autocorrelated component.

7.11 GEOSTATISTICS AND KRIGING (BY R. GEBBERS) 297

Th e range of the observations z can be checked by

min(z)

ans =
 3.7199

max(z)

ans =
 7.8460

For linear geostatistics, the observations z should be Gaussian distributed.
Th is is usually only tested by visual inspection of the histogram because
statistical tests are oft en too sensitive if the number of samples exceeds about
100. One can also calculate the skewness and kurtosis of the data.

histogram(z)

skewness(z)

ans =
 0.2568

kurtosis(z)

ans =
 2.5220

A fl at-topped or multiple-peaked distribution suggests that there is more
than one population present in the data set. If these populations can be
related to particular areas they should be treated separately. Another reason
for multiple peaks can be preferential sampling of areas with high and/or low
values. Th is usually happens as a result of some a priori knowledge and is
known as a cluster eff ect. Dealing with a cluster eff ect is described in Deutsch
and Journel (1998) and in Isaaks and Srivastava (1998).

Most problems arise from positive skewness, i.e., if the distribution
has a long tail to the right. According to Webster and Oliver (2001), one
should consider root transformation if the skewness is between 0.5 and
1, and logarithmic transformation if the skewness exceeds 1. A general
transformation formula is:

298 7 SPATIAL DATA

for min(z)+m>0. Th is is known as the called Box-Cox transform, with the
special case k=0 when a logarithm transformation is used. In the logarithm
transformation, m should be added if z is zero or negative. Interpolation
results of power-transformed values can be back-transformed directly aft er
kriging. Th e back-transformation of log-transformed values is slightly
more complicated and will be explained later. Th e procedure is known as
lognormal kriging. It can be important because lognormal distributions are
not uncommon in geology.

 Variography with the Classical Variogram

A variogram describes the spatial dependency of referenced observations in
a unidimensional or multidimensional space. Since the true variogram of the
spatial process is usually unkown, it has to be estimated from observations.
Th is procedure is called variography. Variography starts by calculating the
experimental variogram from the raw data. In the next step, the experimental
variogram is summarized by the variogram estimator. Th e variography then
concludes by fi tting a variogram model to the variogram estimator. Th e
experimental variogram is calculated as the diff erences between pairs of
observed values and is dependent on the separation vector h (Fig. 7.17). Th e
classical experimental variogram is defi ned by the semivariance,

where zx is the observed value at location x and zx+h is the observed value at
another point at a distance h from x. Th e length of the separation vector h
is called the lag distance, or simply the lag. Th e correct term for γ(h) is the
semivariogram (or semivariance), where semi refers to the fact that it is half
of the variance in the diff erences between zx and zx+h. It is, nevertheless, the
variance per point when points are considered in pairs (Webster and Oliver
2001). Conventionally, γ(h) is termed a variogram instead of a semivariogram,
a convention that we shall follow for the rest of this section. To calculate the
experimental variogram we fi rst need to group pairs of observations. Th is is
achieved by typing

[X1,X2] = meshgrid(x);
[Y1,Y2] = meshgrid(y);
[Z1,Z2] = meshgrid(z);

Th e matrix of separation distances D between the observation points is

D = sqrt((X1 - X2).^2 + (Y1 - Y2).^2);

7.11 GEOSTATISTICS AND KRIGING (BY R. GEBBERS) 299

Fig. 7.17 Separation vector h between two points.

We then obtain the experimental variogram G, as half the squared diff erences
between the observed values:

G = 0.5*(Z1 - Z2).^2;

In order to speed up the processing we use the MATLAB capability to
vectorize commands instead of using for loops to run faster. However, we
have computed n2 pairs of observations although only n(n–1)/2 pairs are
required. For large data sets (e.g., more than 3,000 data points) the soft ware
and physical memory of the computer may become limiting factors. In
such cases, a more effi cient method of programming is described in the
user manual for the SURFER soft ware (SURFER 2002). Th e plot of the
experimental variogram is called the variogram cloud (Fig. 7.18), which we
obtain by extracting the lower triangular portions of the D and G arrays.

indx = 1:length(z);
[C,R] = meshgrid(indx);
I = R > C;

plot(D(I),G(I),'.')
xlabel('lag distance')
ylabel('variogram')

Th e variogram cloud provides a visual impression of the dispersion of values
at the diff erent lags. It can be useful for detecting outliers or anomalies, but it is
hard to judge from this presentation whether there is any spatial correlation,
and if so, what form it might have and how we could model it (Webster and
Oliver 2001). To obtain a clearer view and to prepare a variogram model the
experimental variogram is now replaced by the variogram estimator.

Th e variogram estimator is derived from the experimental variograms in
order to summarize their central tendency (similar to the descriptive statistics
derived from univariate observations, Section 3.2). Th e classical variogram

300 7 SPATIAL DATA

Fig. 7.18 Variogram cloud: plot of the experimental variogram (half the squared diff erence
between pairs of observations) versus the lag distance (separation distance between the two
components of a pair).

estimator is the averaged empirical variogram within certain distance
classes or bins defi ned by multiples of the lag interval. Th e classifi cation of
separation distances is illustrated in Figure 7.19. Th e variogram estimator is
calculated by:

where N(h) is the number of pairs within the lag interval h.
We fi rst need to decide on a suitable lag interval h. If sampling has been

carried out on a regular grid, the length of a grid cell can be used. If the
samples are unevenly spaced, as in our case, the mean minimum distance
of pairs is a good starting point for the lag interval (Webster and Oliver
2001). To calculate the mean minimum distance of pairs we need to replace
the zeros in the diagonal of the lag matrix D with NaNs, otherwise the mean
minimum distance will be zero:

7.11 GEOSTATISTICS AND KRIGING (BY R. GEBBERS) 301

Fig. 7.19 Classifi cation of separation distances for observations that are equally spaced. Th e
lag interval is h1, and h2, h3 etc. are multiples of the lag interval.

D2 = D.*(diag(x*NaN)+1);
lag = mean(min(D2))

lag =
 8.0107

Since the estimated variogram values tend to become more erratic with
increasing distances, it is important to place a maximum distance limit
on the calculation. As a rule of thumb, half of the maximum distance is a
suitable limit for variogram analysis. We obtain the half maximum distance
and the maximum number of lags by:

hmd = max(D(:))/2

hmd =
 130.1901

max_lags = floor(hmd/lag)

max_lags =
 16

Th e separation distances are then classifi ed and the classical variogram
estimator is calculated:

LAGS = ceil(D/lag);

for i = 1 : max_lags
 SEL = (LAGS == i);
 DE(i) = mean(mean(D(SEL)));
 PN(i) = sum(sum(SEL == 1))/2;
 GE(i) = mean(mean(G(SEL)));
end

where SEL is the selection matrix defi ned by the lag classes in LAG, DE is the

302 7 SPATIAL DATA

mean lag, PN is the number of pairs, and GE is the variogram estimator. We
can now plot the classical variogram estimator (variogram versus mean
separation distance), together with the population variance:

plot(DE,GE,'.')
var_z = var(z);
b = [0 max(DE)];
c = [var_z var_z];
hold on

plot(b,c, '--r')
yl = 1.1 * max(GE);
ylim([0 yl])
xlabel('Averaged distance between observations')
ylabel('Averaged semivariance')
hold off

Th e variogram in Figure 7.20 exhibits a typical pattern of behavior. Values
are low at small separation distances (near the origin), they increase with
increasing distance until reaching a plateau (sill), which is close to the
population variance. Th is indicates that the spatial process is correlated over
short distances but there is no spatial dependency over longer distances. Th e
extent of the spatial dependency is called the range and is defi ned as the
separation distance at which the variogram reaches the sill.

Th e variogram model is a parametric curve fi tted to the variogram
estimator. Th is is similar to frequency distribution fi tting (see Section 3.5),
where the frequency distribution is modeled by a distribution type and its
parameters (e.g., a normal distribution with its mean and variance). For
theoretical reasons, only functions with certain properties should be used
as variogram models. Common authorized models are the spherical, the
exponential, and the linear model (more models can be found in the relevant
published literature).

Spherical model:

Exponential model:

7.11 GEOSTATISTICS AND KRIGING (BY R. GEBBERS) 303

Fig. 7.20 Th e classical variogram estimator (blue circles) and the population variance (dashed
line).

Linear model:

where c is the sill, a is the range, and b is the slope (for a linear model).
Th e parameters c and either a or b must be modifi ed if a variogram model
is fi tted to the variogram estimator. Th e nugget eff ect is a special type of
variogram model. In practice, when extrapolating the variogram towards a
separation distance of zero we oft en observe a positive intercept on the y-axis.
Th is is called the nugget eff ect and it is explained by measurement errors
and by small scale fl uctuations (nuggets) that are not captured due to the
sampling intervals being too large. We sometimes have expectations about
the minimum nugget eff ect from the variance of repeated measurements in
the laboratory, or from other prior knowledge. More details concerning the
nugget eff ect can be found in Cressie (1993) and Kitanidis (1997). If there is
a nugget eff ect, it can be added into the variogram model. An exponential
model with a nugget eff ect looks like this:

304 7 SPATIAL DATA

where c0 is the nugget eff ect.
We can even combine variogram models, e.g., two spherical models with

diff erent ranges and sills. Th ese combinations are called nested models. During
variogram modeling the components of a nested model are regarded as
spatial structures that should be interpreted as being the results of geological
processes. Before we discuss further aspects of variogram modeling let us
just fi t some models to our data. We begin with a spherical model with no
nugget eff ect, and then add an exponential model and a linear model, both
with nugget variances:

plot(DE,GE,'o','MarkerFaceColor',[.6 .6 .6])
var_z = var(z);
b = [0 max(DE)];
c = [var_z var_z];
hold on
plot(b,c,'--r')
xlim(b)
yl = 1.1*max(GE);
ylim([0 yl])

% Spherical model with nugget
nugget = 0;
sill = 0.803;
range = 45.9;
lags = 0:max(DE);
Gsph = nugget + (sill*(1.5*lags/range - 0.5*(lags/...
 range).^3).*(lags<=range) + sill*(lags>range));
plot(lags,Gsph,':g')

% Exponential model with nugget
nugget = 0.0239;
sill = 0.78;
range = 45;
Gexp = nugget + sill*(1 - exp(-3*lags/range));
plot(lags,Gexp,'-.b')

% Linear model with nugget
nugget = 0.153;
slope = 0.0203;
Glin = nugget + slope*lags;
plot(lags,Glin,'-m')
xlabel('Distance between observations')
ylabel('Semivariance')
legend('Variogram estimator','Population variance',...
 'Sperical model','Exponential model','Linear model')
hold off

7.11 GEOSTATISTICS AND KRIGING (BY R. GEBBERS) 305

Th e techniques of variogram modeling are still very much under discussion.
Some advocate objective variogram modeling by automated curve fi tting,
using a weighted least squares, maximum likelihood, or maximum entropy
method. In contrast, it is oft en argued that geological knowledge should be
included in the modeling process and visual fi tting is therefore recommended.
In many cases the problem with variogram modeling is much less a question
of whether the appropriate procedure has been used than a question of the
quality of the experimental variogram. If the experimental variogram is
good, both procedures will yield similar results.

Another important question in variogram modeling is the intended use
of the model. In our case the linear model does not at fi rst appear to be
appropriate (Fig. 7.21). Following a closer look, however, we can see that the
linear model fi ts reasonably well over the fi rst three lags. Th is can be suffi cient
if we use the variogram model only for kriging, because in kriging the
nearby points are the most important points for the estimate (see discussion
of kriging below). Diff erent variogram models with similar fi ts close to the
origin will therefore yield similar kriging results if the sampling points are
regularly distributed. If, however, the objective is to describe the spatial
structures then the situation is quite diff erent. It then becomes important to
fi nd a model that is suitable over all lags and to accurately determine the sill
and the range. A collection of geological case studies in Rendu and Readdy
(1982) show how process knowledge and variography can be interlinked.
Good guidelines for variogram modeling are provided by Gringarten and
Deutsch (2001) and Webster and Oliver (2001).

We will now briefl y discuss a number of other aspects of variography:

• Sample size – As in any statistical procedure, as large a sample as possible
is required in order to obtain a reliable estimate. For variography it is
recommended that the number of samples should be in excess of 100 to
150 (Webster and Oliver 2001). For smaller sample numbers a maximum
likelihood variogram should be computed (Pardo-Igúzquiza and Dowd
1997).

• Sampling design – In order to obtain a good estimation close to the origin
of the variogram, the sampling design should include observations
over small distances. Th is can be achieved by means of a nested design
(Webster and Oliver 2001). Other possible designs have been evaluated by
Olea (1984).

• Anisotropy – Th us far we have assumed that the structure of spatial
correlation is independent of direction. We have calculated omnidirectional

306 7 SPATIAL DATA

variograms ignoring the direction of the separation vector h. In a more
thorough analysis, the variogram should be discretized not only in
distance but also in direction (directional bins). Plotting directional
variograms, usually in four directions, we are sometimes able to observe
diff erent ranges (geometric anisotropy), diff erent scales (zonal anisotropy),
and diff erent shapes (indicating a trend). Th e treatment of anisotropy
requires a highly interactive graphical user interface, which is beyond the
scope of this book (see the VarioWin soft ware by Panatier 1996).

• Number of pairs and the lag interval – When calculating the classical
variogram estimator it is recommended that more than 30 to 50 pairs of
points be used per lag interval (Webster and Oliver 2001). Th is is due to
the sensitivity to outliers. If there are fewer pairs, the lag interval should
be increased. Th e lag spacing does not necessarily need to be uniform but
can be chosen individually for each distance class. It is also possible to
work with overlapping classes, in which case the lag width (lag tolerance)
must be defi ned. However, increasing the lag width can cause unnecessary

Fig. 7.21 Variogram estimator (blue circles), population variance (solid line), and spherical,
exponential, and linear models (dotted and dashed lines).

7.11 GEOSTATISTICS AND KRIGING (BY R. GEBBERS) 307

smoothing, with a resulting loss of detail. Th e separation distance and the
lag width must therefore be chosen with care. Another option is to use
a more robust variogram estimator (Cressie 1993, Deutsch and Journel
1998).

• Calculation of separation distance – If the observations cover a large area,
for example more than 1,000 km2, spherical distances should be calculated
instead of Pythagorean distances from a planar Cartesian coordinate
system.

 Kriging

We will now interpolate the observations onto a regular grid by ordinary
point kriging, which is the most popular kriging method. Ordinary point
kriging uses a weighted average of the neighboring points to estimate the
value of an unobserved point:

where λi are the weights that have to be estimated. Th e sum of the weights
should be equal to one in order to guarantee that the estimates are unbiased:

Th e expected (average) error for the estimation must be zero. Th at is:

where zx0 is the true, but unknown value. We can use the above equations
to compute algebraically the mean-squared error in terms of the variogram:

where E is the estimation or kriging variance (which must be minimized),
γ(xi, x0) is the variogram (semivariance) between the data points and the
unobserved points, γ(xi, xj) is the variogram between the data points xi and
xj, and λi and λj are the weights of the ith and jth data points.

308 7 SPATIAL DATA

For kriging we must minimize this equation (a quadratic objective
function), satisfying the condition that the sum of the weights should be
equal to one (linear constraint). Th is optimization problem can be solved
using a Lagrange multiplier ν, resulting in a linear kriging system of N+1
equations and N+1 unknowns:

Aft er obtaining the weights λi, the kriging variance is given by

Th e kriging system can be presented in a matrix notation:

where

is the matrix of the coeffi cients: these are the modeled variogram values for
the pairs of observations. Note that on the diagonal of the matrix, where
separation distance is zero, the value of γ disappears.

is the vector of the unknown weights and the Lagrange multiplier.

7.11 GEOSTATISTICS AND KRIGING (BY R. GEBBERS) 309

is the right-hand-side vector. To obtain the weights and the Lagrange
multiplier the matrix G_mod is inverted:

Th e kriging variance is given by

For our calculations using MATLAB we need the matrix of coeffi cients
derived from the distance matrix D and a variogram model. D was calculated
in the variography section above and we use the exponential variogram
model with a nugget, sill, and range from the previous section:

G_mod = (nugget + sill*(1 - exp(-3*D/range))).*(D>0);

We then take the number of observations and add a column and row vector
of all values of one to the G_mod matrix and a zero in the lower left corner:

n = length(x);
G_mod(:,n+1) = 1;
G_mod(n+1,:) = 1;
G_mod(n+1,n+1) = 0;

Th e G_mod matrix now has to be inverted:

G_inv = inv(G_mod);

A grid with the locations of the unknown values is needed. Here we use a
grid cell size of fi ve within a quadratic area ranging from 0 to 200 in x and y
directions. Th e coordinates are created in matrix form by:

R = 0 : 5 : 200;
[Xg1,Xg2] = meshgrid(R,R);

and converted to vectors by:

Xg = reshape(Xg1,[],1);

310 7 SPATIAL DATA

Yg = reshape(Xg2,[],1);

We then allocate memory for the kriging estimates Zg and the kriging
variance s2_k by:

Zg = Xg * NaN;
s2_k = Xg * NaN;

We now krige the unknown values at each grid point:

for k = 1 : length(Xg)
 DOR = ((x - Xg(k)).^2 + (y - Yg(k)).^2).^0.5;
 G_R = (nugget + sill*(1 - exp(-3*DOR/range))).*(DOR>0);
 G_R(n+1) = 1;
 E = G_inv * G_R;
 Zg(k) = sum(E(1:n,1).*z);
 s2_k(k) = sum(E(1:n,1).*G_R(1:n,1))+E(n+1,1);
end

Th e fi rst command computes the distance between the grid points (Xg,Yg)
and the observation points(x,y). We then create the right-hand-side
vector of the kriging system using the variogram model G_R and adding
one to the last row. We next obtain the matrix E with the weights and the
Lagrange multiplier. Th e estimate Zg at each point k is the weighted sum
of the observations z. Finally, the kriging variance s2_k of the grid point is
computed and we can plot the results. We fi rst create a grid of the kriging
estimate and the kriging variance:

r = length(R);
Z = reshape(Zg,r,r);
SK = reshape(s2_k,r,r);

A subplot on the left presents the kriged values:

subplot(1,2,1)
h = pcolor(Xg1,Xg2,Z);
set(h,'LineStyle','none')
axis equal
ylim([0 200])
title('Kriging Estimate')
xlabel('x-Coordinates')
ylabel('y-Coordinates')
colormap(jet)
colorbar

Th e left hand subplot presents the kriging variance:

subplot(1,2,2)
h = pcolor(Xg1,Xg2,SK);
set(h,'LineStyle','none')
axis equal

7.11 GEOSTATISTICS AND KRIGING (BY R. GEBBERS) 311

ylim([0 200])
title('Kriging Variance')
xlabel('x-Coordinates')
ylabel('y-Coordinates')
colormap(jet)
colorbar
hold on

and we overlay the sampling positions:

plot(x,y,'ok')
hold off

Th e kriged values are shown in Figure 7.22 a. Th e kriging variance depends
only on the distance from the observations and not on the observed values
(Fig. 7.22 b). Kriging reproduces the population mean when observations
are beyond the range of the variogram; at the same time, the kriging variance
increases (lower right corner of the maps in Figure 7.22). Th e kriging
variance can be used as a criterion to improve sampling design and it is
needed for back-transformation in lognormal kriging. Back-transformation
for lognormal kriging is achieved by:

Fig. 7.22 Values interpolated on a regular grid by ordinary point kriging using a an
exponential variogram model, and b the kriging variance as a function of the distance from
the observation (empty circles).

a b

312 7 SPATIAL DATA

 Discussion of Kriging

Point kriging as presented here is an exact interpolator. It reproduces exactly
the values at an observation point, even though a variogram with a nugget
eff ect is used. Smoothing can be achieved by including the variance of
the measurement errors (see Kitanidis 1997), and by block kriging, which
averages the observations within a certain neighborhood (or block). While
kriging variance depends only on the distance between the observed and the
unobserved locations, it is primarily a measure of the density of information
(Wackernagel 2003). Th e accuracy of kriging is better evaluated by cross-
validation using a resampling method or a surrogate test (Sections 4.6
and 4.7). Th e infl uence of the neighboring observations on the estimation
depends on their confi guration, as summarized by Webster and Oliver
(2001): "Near points carry more weight than more distant ones; the relative
weight of a point decreases when the number of points in the neighborhood
increases; clustered points carry less weight individually than isolated ones
at the same distance; data points can be screened by ones lying between them
and the target." Sampling design for kriging is diff erent from the design that
might be optimal for variography. A regular grid, triangular or quadratic,
can be regarded as optimal.

Th e MATLAB code presented here is a straightforward implementation
of the above formulae. In professional programs the number of data points
entering the G_mod matrix is restricted and the inversion of G_mod
is avoided by working with the covariances instead of the variograms
(Webster and Oliver 2001, Kitanidis 1997). For those who are interested in
programming and in a deeper understanding of algorithms, the publication
by Deutsch and Journel (1992) is essential reading. Th e best internet source
is the homepage for AI-GEOSTATISTICS:

http://www.ai-geostats.org

 Recommended Reading

Amante C, Eakins BW (2009) ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data
Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24

Bohlander, J, Scambos T (2007) Antarctic coastlines and grounding line derived from MODIS
Mosaic of Antarctica (MOA). National Snow and Ice Data Center, Boulder, Colorado

Cressie N (1993) Statistics for Spatial Data, Revised Edition. John Wiley & Sons, New York
Davis JC (2002) Statistics and Data Analysis in Geology, third edition. John Wiley & Sons,

New York
Deutsch CV, Journel AG (1998) GSLIB – Geostatistical Soft ware Library and User’s Guide,

Second edition. Oxford University Press, Oxford

RECOMMENDED READING 313

Farr TG, Rosen P, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E,
Roth L, Seal D, Shaff er S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf
D (2008) Th e Shuttle Radar Topography Mission. Reviews in Geophysics 45, RG2004

Farr TG, Kobrick M (2000) Shuttle Radar Topography Mission produces a wealth of data.
American Geophysical Union Eos 81:583–585

Freeman TG (1991) Calculating Catchment Area with Divergent Flow Based on a Regular
Grid. Computers and Geosciences 17:413–422

Gorny AJ (1977) World Data Bank II General User Guide Rep. PB 271869. Central Intelligence
Agency, Washington DC

Gringarten E, Deutsch CV (2001) Teacher’s Aide Variogram Interpretation and Modeling.
Mathematical Geology 33:507–534

Isaaks E, Srivastava M (1989) An Introduction to Applied Geostatistics. Oxford University
Press, Oxford

Kitanidis P (1997) Introduction to Geostatistics – Applications in Hydrogeology. Cambridge
University Press, Cambridge

Olea RA (1984) Systematic Sampling of Spatial Functions. Kansas Series on Spatial Analysis
7, Kansas Geological Survey, Lawrence, KS

MathWorks (2014a) Mapping Toolbox – User’s Guide. Th e MathWorks, Inc., Natick, MA
MathWorks (2014b) Simulink 3D Animation – User’s Guide. Th e MathWorks, Inc., Natick,

MA
Pannatier Y (1996) VarioWin – Soft ware for Spatial Data Analysis in 2D, Springer, Berlin

Heidelberg New York
Pardo-Igúzquiza E, Dowd PA (1997) AMLE3D: A Computer Program for the Interference

of Spatial Covariance Parameters by Approximate Maximum Likelihood Estimation.
Computers and Geosciences 23:793–805

Rendu JM, Readdy L (1982) Geology and Semivariogram – A Critical Relationship. In:
Johnson TB, Barns RJ (eds) Application of Computer & Operation Research in the
Mineral Industry. 17th Intern. Symp. American Institute of Mining. Metallurgical and
Petroleum Engineers, New York, pp. 771–783

Sandwell DT (1987) Biharmonic Spline Interpolation of GEOS-3 and SEASAT Altimeter
data. Geophysical Research Letters 2:139–142

Soluri EA, Woodson VA (1990), World Vector Shoreline. International Hydrographic Review
LXVII(1):27–35

Swan ARH, Sandilands M (1995) Introduction to Geological Data Analysis. Blackwell
Sciences, Oxford

Golden Soft ware, Inc. (2002) Surfer 8 (Surface Mapping System). Golden, Colorado
Wackernagel H (2003) Multivariate Geostatistics: An Introduction with Applications. Th ird,

completely revised edition. Springer, Berlin Heidelberg New York
Webster R, Oliver MA (2001) Geostatistics for Environmental Scientists. John Wiley & Sons,

New York
Wessel P, Bercovici D (1998) Gridding with Splines in Tension: A Green Function Approach.

Mathematical Geology 30:77–93
Wessel P, Smith WHF (1996) A Global Self-consistent, Hierarchical, High-resolution

Shoreline Database. Journal of Geophysical Research 101 B4: 8741-8743.
Wilson JP, Gallant JC (2000) Terrain Analysis, Principles and Applications. John Wiley &

Sons, New York

314 7 SPATIAL DATA

 8.1 Introduction

Computer graphics are stored and processed as either vector or raster data.
Most of the data types that were encountered in the previous chapter were
vector data, i.e., points, lines and polygons. Drainage networks, the outlines
of geologic units, sampling locations, and topographic contours are all
examples of vector data. In Chapter 7, coastlines are stored in a vector format
while bathymetric and topographic data are saved in a raster format. Vector
and raster data are oft en combined in a single data set, for instance to display
the course of a river on a satellite image. Raster data are oft en converted to
vector data by digitizing points, lines or polygons. Conversely, vector data
are sometimes transformed to raster data.

Images are generally represented as raster data, i.e., as a 2D array of color
intensities. Images are everywhere in geosciences. Field geologists use aerial
photos and satellite images to identify lithologic units, tectonic structures,
landslides and other features within a study area. Geomorphologists use
such images to analyze drainage networks, river catchments, and vegetation
or soil types. Th e analysis of images from thin sections, the automated
identifi cation of objects, and the measurement of varve thicknesses all make

 8 Image Processing

 Pollen grains, mostly Asteraceae and less
abundant Caesalpiniaceae and Lamiaceae
pollen, in a microscope image of Argentine
honey. The methods of image processing have
been used to enhance the quality of the image.
Image analysis is then used to determine the
number of pollen grains in such an image.

� Springer-Verlag Berlin Heidelberg 2015
M.H. Trauth, MATLAB� Recipes for Earth Sciences,
DOI 10.1007/978-3-662-46244-7_8

315

use of a great variety of image processing methods.
Th is chapter is concerned with the analysis and display of image data. Th e

various ways that raster data can be stored on the computer are fi rst explained
(Section 8.2). Th e main tools for importing, manipulating and exporting
image data are then presented in Section 8.3. Th is knowledge is then used
to process and to georeference satellite images (Sections 8.4 to 8.6). On-
screen digitization techniques are discussed in Section 8.7. Sections 8.8 and
8.9 deal with importing, enhancing, and analyzing images from laminated
lake sediments, including color-intensity measurements on transects across
the laminae. Finally, Sections 8.10 to 8.12 deal with automated grain size
analysis, charcoal quantifi cation in microscope images, and the detection
of objects in microscope images on the basis of their shapes. Th e Image
Processing Toolbox is used for the specifi c examples throughout this chapter
(MathWorks 2014). While the MATLAB User’s Guide to the Image Processing
Toolbox provides an excellent general introduction to the analysis of images,
this chapter provides an overview of typical applications in earth sciences.

 8.2 Data Storage

Vector and raster graphics are the two fundamental methods for storing
pictures. Th e typical format for storing vector data has already been introduced
in the previous chapter. In the following example the two columns in the fi le
coastline.txt represent the longitudes and latitudes of the points of a polygon.

NaN NaN
42.892067 0.000000
42.893692 0.001760
NaN NaN
42.891052 0.001467
42.898093 0.007921
42.904546 0.013201
42.907480 0.016721
42.910414 0.020828
42.913054 0.024642
(cont'd)

Th e NaNs help to identify break points in the data (Section 7.2).
Th e raster data are stored as 2D arrays. Th e elements of these arrays

represent variables such as the altitude of a grid point above sea level, the
annual rainfall or, in the case of an image, the color intensity values.

174 177 180 182 182 182
165 169 170 168 168 170
171 174 173 168 167 170
184 186 183 177 174 176
191 192 190 185 181 181

316 8 IMAGE PROCESSING

189 190 190 188 186 183

Raster data can be visualized as 3D plots. Th e x and y fi gures are the indices
of the 2D array or any other reference frame, and z is the numerical value
of the elements of the array (see also Chapter 7). Th e numerical values
contained in the 2D array can be displayed as a pseudocolor plot, which is a
rectangular array of cells with colors determined by a colormap. A colormap
is an m-by-3 array of real numbers between 0.0 and 1.0. Each row defi nes a
red, green, or blue (RGB) color. An example is the above array, which could
be interpreted as grayscale intensities ranging from 0 (black) to 255 (white).
More complex examples include satellite images that are stored in 3D arrays.

As previously discussed, a computer stores data as bits that have one of
two states, represented by either a one or a zero (Chapter 2). If the elements
of the 2D array represent the color intensity values of the pixels (short for
picture elements) of an image, 1-bit arrays contain only ones and zeros.

0 0 1 1 1 1
1 1 0 0 1 1
1 1 1 1 0 0
1 1 1 1 0 1
0 0 0 0 0 0
0 0 0 0 0 0

Th is 2D array of ones and zeros can be simply interpreted as a black-and-
white image, where the value of one represents white and zero corresponds
to black. Alternatively, the 1-bit array could be used to store an image
consisting of any two diff erent colors, such as red and blue.

In order to store more complex types of data, the bits are joined together
to form larger groups, such as bytes consisting of eight bits. Since the earliest
computers could only process eight bits at a time, early computer code was
written in sets of eight bits, which came to be called bytes. Each element of
the 2D array or pixel therefore contains a vector of eight ones or zeros.

 1 0 1 0 0 0 0 1

Th ese 8 bits (or 1 byte) allow 28=256 possible combinations of the eight
ones or zeros, and are therefore able to represent 256 diff erent intensities,
such as grayscales. Th e 8 bits can be read in the following way, reading from
right to left : a single bit represents two numbers, two bits represent four
numbers, three bits represent eight numbers, and so forth up to a byte (or
eight bits), which represents 256 numbers. Each added bit doubles the count
of numbers. Here is a comparison of binary and decimal representations of
the number 161:

8.2 DATA STORAGE 317

128 64 32 16 8 4 2 1 (value of the bit)
 1 0 1 0 0 0 0 1 (binary)

128 + 0 + 32 + 0 + 0 + 0 + 0 + 1 = 161 (decimal)

Th e end members of the binary representation of grayscales are

 0 0 0 0 0 0 0 0

which is black, and

 1 1 1 1 1 1 1 1

which is pure white. In contrast to the above 1-bit array, the 1-byte array
allows a grayscale image of 256 diff erent levels to be stored. Alternatively,
the 256 numbers could be interpreted as 256 discrete colors. In either case,
the display of such an image requires an additional source of information
concerning how the 256 intensity values are converted into colors. Numerous
global colormaps for the interpretation of 8-bit color images exist that allow
the cross-platform exchange of raster images, while local colormaps are
oft en embedded in a graphics fi le.

Th e disadvantage of 8-bit color images is that the 256 discrete colorsteps
are not enough to simulate smooth transitions for the human eye. A 24-bit
system is therefore used in many applications, with 8 bits of data for each
RGB channel giving a total of 2563=16,777,216 colors. Such a 24-bit image
is stored in three 2D arrays, or one 3D array, of intensity values between 0
and 255.

195 189 203 217 217 221
218 209 187 192 204 206
207 219 212 198 188 190
203 205 202 202 191 201
190 192 193 191 184 190
186 179 178 182 180 169

209 203 217 232 232 236
234 225 203 208 220 220
224 235 229 214 204 205
223 222 222 219 208 216
209 212 213 211 203 206
206 199 199 203 201 187

174 168 182 199 199 203
198 189 167 172 184 185
188 199 193 178 168 172
186 186 185 183 174 185
177 177 178 176 171 177
179 171 168 170 170 163

318 8 IMAGE PROCESSING

Compared to the 1-bit and 8-bit representations of raster data, 24-bit storage
certainly requires a lot more computer memory. In the case of very large
data sets such as satellite images and digital elevation models the user should
therefore think carefully about the most suitable way to store the data. Th e
default data type in MATLAB is the 64-bit array, which allows storage of
the sign of a number (bit 63), the exponent (bits 62 to 52) and roughly 16
signifi cant decimal digits between approximately 10-308 and 10+308 (bits 51 to
0). However, MATLAB also works with other data types such as 1-bit, 8-bit
and 24-bit raster data, to save memory.

Th e amount of memory required for storing a raster image depends on the
data type and the image’s dimensions. Th e dimensions of an image can be
described by the number of pixels, which is the number of rows multiplied
by the number of columns of the 2D array. Let us assume an image of 729-
by-713 pixels, such as the one we will use in the following section. If each
pixel needs 8 bits to store a grayscale value, the memory required by the data
is 729∙713∙8=4,158,216 bits or 4,158,216/8=519,777 bytes. Th is number is
exactly what we obtain by typing whos in the command window. Common
prefi xes for bytes are kilo-, mega-, giga- and so forth.

bit = 1 or 0 (b)
8 bits = 1 byte (B)
1024 bytes = 1 kilobyte (KB)
1024 kilobytes = 1 megabyte (MB)
1024 megabytes = 1 gigabyte (GB)
1024 gigabytes = 1 terabyte (TB)

Note that in data communication 1 kilobit=1,000 bits, while in data storage 1
kilobyte=1,024 bytes. A 24-bit or true color image then requires three times the
memory required to store an 8-bit image, or 1,559,331 bytes=1,559,331/1,024
kilobytes (KB)≈1,523 KB≈1,559,331/1,0242=1.487 megabytes (MB).

However, the dimensions of an image are oft en given, not by the
total number of pixels, but by the length and height of the image and its
resolution. Th e resolution of an image is the number of pixels per inch (ppi)
or dots per inch (dpi). Th e standard resolution of a computer monitor is 72
dpi although modern monitors oft en have a higher resolution such as 96
dpi. For instance, a 17 inch monitor with 72 dpi resolution displays 1,024-
by-768 pixels. If the monitor is used to display images at a diff erent (lower,
higher) resolution, the image is resampled to match the monitor’s resolution.
For scanning and printing, a resolution of 300 or 600 dpi is enough in most
applications. However, scanned images are oft en scaled for large printouts
and therefore have higher resolutions such as 2,400 dpi. Th e image used in
the next section has a width of 25.2 cm (or 9.92 inches) and a height of 25.7
cm (10.12 inches). Th e resolution of the image is 72 dpi. Th e total number of

8.2 DATA STORAGE 319

pixels is therefore 72∙9.92≈713 in a horizontal direction, and 72∙10.12≈729
in a vertical direction.

Numerous formats are available for saving vector and raster data into a
fi le, each with their own particular advantages and disadvantages. Choosing
one format over another in an application depends on the way the images
are to be used in a project and whether or not the images are to be analyzed
quantitatively. Th e most popular formats for storing vector and raster data
are:

• Compuserve Graphics Interchange Format (GIF) – Th is format was
developed in 1987 for raster images using a fi xed 8-bit colormap of 256
colors. Th e GIF format uses compression without loss of data. It was
designed for fast transfer rates over the Internet. Th e limited number of
colors means that it is not the right format for the smooth color transitions
that occur in aerial photos or satellite images. It is, however, oft en used for
line art, maps, cartoons and logos (http://www.compuserve.com).

• Portable Network Graphics (PNG) – Th is is an image format developed in
1994 that is used as an alternative to the GIF. It is similar to the GIF in that
it also uses a fi xed 8-bit colormap of 256 colors. Alternatively, grayscale
images of 1 to 16 bits can be stored, as well as 24 and 48 bit color images.
Th e PNG format uses compression without loss of data, with the method
employed being better than that used for GIF images.

• Microsoft Windows Bitmap Format (BMP) – Th is is the default image
format for computers running Microsoft Windows as the operating
system. However, numerous converters also exist to read and write BMP
fi les on other platforms. Various modifi cations of the BMP format are
available, some of them without compression and others with eff ective
and fast compression (http://www.microsoft .com).

• Tagged Image File Format (TIFF) – Th is format was designed by the Aldus
Corporation and Microsoft in 1986 to become an industry standard for
image-fi le exchange. A TIFF fi le includes an image fi le header, a directory,
and the data in all available graphics and image fi le formats. Some TIFF
fi les even contain vector and raster versions of the same picture, as well
as images at diff erent resolutions and with diff erent colormaps. Th e main
advantage of TIFF fi les was originally their portability. A TIFF should
perform on all computer platforms; unfortunately, however, numerous
modifi cations of the TIFF have evolved in subsequent years, resulting in
incompatibilities. Th e TIFF is therefore now oft en called the Th ousands of
Incompatible File Formats.

320 8 IMAGE PROCESSING

• PostScript (PS) and Encapsulated PostScript (EPS) – Th e PS format was
developed by John Warnock at PARC, the Xerox research institute.
Warnock was also co-founder of Adobe Systems, where the EPS format
was created. Th e PostScript vector format would never have become an
industry standard without Apple Computers. In 1985 Apple needed a
typesetter-quality controller for the new Apple LaserWriter printer and
the Macintosh operating system and adopted the PostScript format. Th e
third partner in the history of PostScript was the company Aldus, the
developer of the soft ware PageMaker and now a part of Adobe Systems.
Th e combination of Aldus PageMaker soft ware, the PS format and the
Apple LaserWriter printer led to the creation of Desktop Publishing.
Th e EPS format was then developed by Adobe Systems as a standard fi le
format for importing and exporting PS fi les. Whereas a PS fi le is generally
a single-page format containing either an illustration or a text, the purpose
of an EPS fi le is to also allow the inclusion of other pages, i.e., a fi le that
can contain any combination of text, graphics and images (http://www.
adobe.com).

• In 1986 the Joint Photographic Experts Group (JPEG) was founded for
the purpose of developing various standards for image compression.
Although JPEG stands for the committee, it is now widely used as the
name for an image compression and a fi le format. Th is compression
involves grouping pixel values into 8-by-8 blocks and transforming each
block with a discrete cosine transform. As a result, all unnecessary high-
frequency information is deleted, which makes this compression method
irreversible. Th e advantage of the JPEG format is the availability of a
three-channel, 24-bit, true color version. Th is allows images with smooth
color transitions to be stored. Th e new JPEG-2000 format uses a wavelet
transform instead of the cosine transform (Section 5.8) (http://www.jpeg.
org).

• Portable Document Format (PDF) – Th e PDF designed by Adobe Systems
is now a true self-contained cross-platform document. PDF fi les contain
the complete formatting of vector illustrations, raster images and text, or
a combination of all these, including all necessary fonts. Th ese fi les are
highly compressed, allowing a fast internet download. Adobe Systems
provides the free-of-charge Acrobat Reader for all computer platforms to
read PDF fi les (http://www.adobe.com).

8.2 DATA STORAGE 321

 8.3 Importing, Processing and Exporting Images

We fi rst need to learn how to read an image from a graphics fi le into the
workspace. As an example we use a satellite image showing a 10.5 km by 11
km subarea in northern Chile:

http://asterweb.jpl.nasa.gov/gallery/images/unconform.jpg

Th e fi le unconform.jpg is a processed TERRA-ASTER satellite image that can
be downloaded free-of-charge from the NASA web page. We save this image
in the working directory. Th e command

clear

I1 = imread('unconform.jpg');

reads and decompresses the JPEG fi le, imports the data as a 24-bit RGB
image array and stores it in a variable I1. Th e command

whos

shows how the RGB array is stored in the workspace:

Name Size Bytes Class Attributes
I1 729x713x3 1559331 uint8

Th e details indicate that the image is stored as a 729-by-713-by-3 array,
representing a 729-by-713 array for each of the colors red, green and blue. Th e
listing of the current variables in the workspace also gives the information
uint8 array, i.e., each array element representing one pixel contains 8-bit
integers. Th ese integers represent intensity values between 0 (minimum
intensity) and 255 (maximum). As an example, here is a sector in the upper-
left corner of the data array for red:

I1(50:55,50:55,1)

ans =
 174 177 180 182 182 182
 165 169 170 168 168 170
 171 174 173 168 167 170
 184 186 183 177 174 176
 191 192 190 185 181 181
 189 190 190 188 186 183

We can now view the image using the command

imshow(I1)

322 8 IMAGE PROCESSING

which opens a new Figure Window showing an RGB composite of the image
(Fig. 8.1). In contrast to the RGB image, a grayscale image needs only a single
array to store all the necessary information. We therefore convert the RGB
image into a grayscale image using the command rgb2gray (RGB to gray):

I2 = rgb2gray(I1);

Th e new workspace listing now reads

Name Size Bytes Class Attributes
I1 729x713x3 1559331 uint8

Fig. 8.1 RGB true color image contained in the fi le unconform.jpg. Aft er decompressing and
reading the JPEG fi le into a 729-by-713-by-3 array, MATLAB interprets and displays the RGB
composite using the function imshow. See detailed description of the image on the NASA
TERRA-ASTER webpage: http://asterweb.jpl.nasa.gov. Original image courtesy of NASA/
GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team.

8.3 IMPORTING, PROCESSING AND EXPORTING IMAGES 323

I2 729x713 519777 uint8
ans 6x6 36 uint8

in which the diff erence between the 24-bit RGB and the 8-bit grayscale arrays
can be observed. Th e variable ans for Most recent answer was created above
using I1(50:55,50:55,1), without assigning the output to another variable.
Th e commands

imshow(I2)

display the result. It is easy to see the diff erence between the two images in
separate Figure Windows. Let us now process the grayscale image. First, we
compute a histogram of the distribution of intensity values.

imhist(I2)

A simple technique to enhance the contrast in such an image is to transform
this histogram to obtain an equal distribution of grayscales.

I3 = histeq(I2);

We can view the diff erence again using

imshow(I3)

and save the results in a new fi le.

imwrite(I3,'unconform_gray.jpg')

We can read the header of the new fi le by typing

imfinfo('unconform_gray.jpg')

which yields

ans =
 Filename: [1x40 char]
 FileModDate: '18-Dec-2013 11:26:53'
 FileSize: 138419
 Format: 'jpg'
 FormatVersion: ''
 Width: 713
 Height: 729
 BitDepth: 8
 ColorType: 'grayscale'
 FormatSignature: ''
 NumberOfSamples: 1
 CodingMethod: 'Huffman'
 CodingProcess: 'Sequential'
 Comment: {}

324 8 IMAGE PROCESSING

Hence, the command imfinfo can be used to obtain useful information
(name, size, format, and color type) concerning the newly-created image fi le.

Th ere are many ways of transforming the original satellite image into
a practical fi le format. Th e image data could, for instance, be stored as an
indexed color image, which consists of two parts: a colormap array and a
data array. Th e colormap array is an m-by-3 array containing fl oating-point
values between 0 and 1. Each column specifi es the intensity of the red, green
and blue colors. Th e data array is an x-by-y array containing integer elements
corresponding to the lines m of the colormap array, i.e., the specifi c RGB
representation of a certain color. Let us transfer the above RGB image into
an indexed image. Th e colormap of the image should contain 16 diff erent
colors. Th e result of

[I4,map] = rgb2ind(I1,16);
imshow(I1), figure, imshow(I4,map)

saved as another JPEG fi le using

imwrite(I4,map,'unconform_ind.jpg')

clearly shows the diff erence between the original 24-bit RGB image (2563 or
about 16.7 million diff erent colors) and a color image of only 16 diff erent
colors. Th e display of the image uses the default colormap of MATLAB.
Typing

imshow(I4,map)
cmap = colormap

actually retrieves the 16-by-3 array of the current colormap

cmap =
 0.0588 0.0275 0.0745
 0.5490 0.5255 0.4588
 0.7373 0.7922 0.7020
 0.3216 0.2706 0.2667
 0.6471 0.6784 0.6157
 0.7961 0.8549 0.9176
 0.4510 0.3922 0.3333
 0.2000 0.1451 0.1451
 0.4824 0.5412 0.5843
 0.4039 0.4078 0.4784
 0.6667 0.7020 0.7451
 0.8980 0.8745 0.7255
 0.2824 0.2902 0.4039
 0.9569 0.9647 0.9608
 0.1765 0.1686 0.2902
 0.5843 0.5843 0.6078

8.3 IMPORTING, PROCESSING AND EXPORTING IMAGES 325

Gallery
8.1

We can replace the default colormap by any other built-in colormap. Typing

help graph3d

lists the available colormaps. As an example we can use

imshow(I4,map)
colormap(hot)

to display the image with a black-red-yellow-white colormap. Typing

edit hot

reveals that hot is a function creating the m-by-3 array containing fl oating-
point values between 0 and 1. We can also design our own colormaps, either
by manually creating an m-by-3 array or by creating another function similar
to hot. As an example the colormap precip.m (which is a yellow-blue colormap
included in the book’s fi le collection) was created to display precipitation
data, with yellow representing low rainfall and blue representing high
rainfall. Alternatively, we can also use random numbers

rng(0)
map = rand(16,3);
imshow(I4,map)

to display the image with random colors. Finally, we can create an indexed
color image of three diff erent colors, displayed with a simple colormap of full
intensity red, green and blue.

[I5,map] = rgb2ind(I1,3);
imshow(I5,[1 0 0;0 1 0;0 0 1])

Typing

imwrite(I4,map,'unconform_rgb.jpg')

saves the result as another JPEG fi le.

 8.4 Importing, Processing and Exporting LANDSAT Images

Th e Landsat project is a satellite remote sensing program jointly managed
by the US National Aeronautics and Space Administration (NASA) and the
US Geological Survey (USGS), which began with the launch of the Landsat 1
satellite (originally known as the Earth Resources Technology Satellite 1) on
23rd July 1972. Th e latest in a series of successors is the Landsat 8 satellite,
launched on 11th February 2013 (Ochs et al. 2009, Irons et al. 2011). It has
two sensors, the Operational Land Imager (OLI) and the Th ermal Infrared

326 8 IMAGE PROCESSING

Sensor (TIRS). Th ese two sensors provide coverage of the global landmass at
spatial resolutions of 30 meters (visible, NIR, SWIR), 100 meters (thermal),
and 15 meters (panchromatic) (Ochs et al. 2009, Irons et al. 2011). General
information concerning the Landsat program can be obtained from the
webpage

http://landsat.gsfc.nasa.gov/?page_id=7195

Landsat data, together with data from other NASA satellites, can be obtained
from the webpage

http://earthexplorer.usgs.gov

On this webpage we fi rst select the desired map section in the Search Criteria,
either by entering the coordinates of the four corners of the map or by
zooming into the area of interest and selecting Use Map. As an example we
enter the coordinates 4°42'40.72"N 36°51'10.47"E of the Chew Bahir Basin in
the Southern Ethiopian Rift . We then choose L8 OLI/TIRS from the Landsat
Archive as the Data Set and click Results. Clicking Results produces a list
of records, together with a toolbar for previewing and downloading data.
By clicking the Show Browse Overlay button we can examine the images for
cloud cover. We fi nd the cloud-free image

Entity ID: LC81690572013358LGN00
Coordinates: 4.33915,36.76225
Acquisition Date: 24-DEC-13
Path: 169
Row: 57

taken on 24th December 2013. We need to register with the USGS website,
log on, and then download the Level 1 GeoTIFF Data Product (897.5 MB),
which is then stored on the hard drive in the fi le LC81690572013358LGN00.
tar.gz. Th e .tar.gz archive contains separate fi les for each spectral band as
well as a metadata fi le containing information about the data. We use band 4
(Red, 640–670 nm), band 3 (Green, 530–590 nm) and band 2 (Blue, 450–510
nm), each of which has a 30 m resolution. We can import the 118.4 MB TIFF
fi les using

clear

I1 = imread('LC81690602013150LGN00_B4.TIF');
I2 = imread('LC81690602013150LGN00_B3.TIF');
I3 = imread('LC81690602013150LGN00_B2.TIF');

Typing

8.4 IMPORTING, PROCESSING AND EXPORTING LANDSAT IMAGES 327

whos

reveals that the data are in a unsigned 16-bit format uint16, i.e., the maximum
range of the data is from 0 to 216=65,536.

 I1 7771x7611 118290162 uint16
 I2 7771x7611 118290162 uint16
 I3 7771x7611 118290162 uint16

For quantitative analyses these digital number (DN) values need to be
converted to radiance and refl ectance values, which is beyond the scope of
the book. Th e radiance is the power density scattered from the earth in a
particular direction and has the units of watts per square meter per steradian
(Wm-2 sr-1) (Richards 2013). Th e radiance values need to be corrected for
atmospheric and topographic eff ects to obtain earth surface refl ectance
percentages. Th e Landsat 8 Handbook provides the necessary information
on these conversions:

https://landsat.usgs.gov/Landsat8_Using_Product.php

We will instead use the Landsat 8 data to create an RGB composite of bands
4, 3, and 2 to be used for fi eldwork. Since the image has a relatively low
level of contrast, we use adapthisteq to perform a contrast-limited adaptive
histogram equalization (CLAHE) (Zuiderveld 1994). Unlike histeq used in
the previous section, the adapthisteq algorithm works on small regions (or
tiles) of the image, rather than on the entire image. Th e neighboring tiles are
then combined using bilinear interpolation to eliminate edge eff ects.

I1 = adapthisteq(I1,'ClipLimit',0.1,'Distribution','Rayleigh');
I2 = adapthisteq(I2,'ClipLimit',0.1,'Distribution','Rayleigh');
I3 = adapthisteq(I3,'ClipLimit',0.1,'Distribution','Rayleigh');

Using ClipLimit with a real scalar between 0 and 1 limits the contrast
enhancement, while higher numbers result in increased contrast; the default
value is 0.01. Th e Distribution parameter sets the desired histogram shape
for the tiles by specifying a distribution type, such as Uniform, Rayleigh, or
Exponential. Using a ClipLimit of 0.1 and a Rayleigh distribution yields good
results. Th e three bands are concatenated to a 24-bit RGB images using cat.

I = cat(3,I1,I2,I3);

We only display that section of the image containing the Chew Bahir Basin
(using axes limits) and hide the coordinate axes. We scale the images to 10%
of the original size to fi t the computer screen.

axes('XLim',[3000 5000],'YLim',[1000 4000],'Visible','Off'), hold on

328 8 IMAGE PROCESSING

imshow(I,'InitialMagnification',10)

Exporting the processed image from the Figure Window, we only save the
image at the monitor’s resolution. To obtain an image of the basins at a higher
resolution, we use the command

imwrite(I(1000:4000,3000:5000,:),'chewbahirbasin.tif','tif')

Th is command saves the RGB composite as a TIFF-fi le chewbahirbasin.tif
(about 36.3 MB) in the working directory, which can then be processed
using other soft ware such as Adobe Photoshop.

According to the USGS Landsat webpage, Landsat data are amongst
the most geometrically and radiometrically corrected data available. Data
anomalies do occasionally occur, however, of which the most common types
are listed on the USGS webpage:

http://landsat.usgs.gov/science_an_anomalies.php

We explore one of these types of anomaly as an example, i.e., artifacts
known as Single Event Upsets (SEUs) that cause anomalously high values in
the image, similar to the Impulse Noise (IN) that is also described on the
same webpage. Th ese anomalies occur in some, but not all, Landsat images
and similarly anomalous high or low values can also occur in other satellite
images. We therefore use a part of a Landsat 7 image covering an area in
the southern Ethiopian Rift , acquired by the Enhanced Th ematic Mapper
(ETM+) instrument of that satellite. We can load and display the image using

clear

I1 = imread('ethiopianrift_blue.tif');
imshow(I1,'InitialMagnification',200), title('Original Image')

Th e parameter InitialMagnification is a numeric scalar that scales the
image to, as an example, 200% magnifi cation. Th e image I1 shows numerous
randomly-distributed anomalously high or low values, as well as a parallel
track of paired anomalies in the right half of the image. We fi rst apply a 10-
by-10 pixel median fi lter to the image (see Section 8.8):

I2 = medfilt2(I1,[10,10],'symmetric');
imshow(I2,'InitialMagnification',200)
title('Median Filtered Image')

Using the option symmetric with the function medfilt2 extends I2
symmetrically at the image boundaries by refl ecting it across its boundaries,
instead of padding the image with zeros at the boundaries (by default). Th e

8.4 IMPORTING, PROCESSING AND EXPORTING LANDSAT IMAGES 329

median-fi ltered version of the I2 image is, of course, very smooth compared
to the original I1 image. We would, however, lose a lot of detail if we used
this version of the image. We next subtract the median-fi ltered image I2
from original image I1, which yields the image I3.

I3 = imsubtract(I1,I2);
imshow(I3,'InitialMagnification',200)
title('I1-I2')

We then subtract the original image I1 from the median-fi ltered image I2,
which yields the image I4.

I4 = imsubtract(I2,I1);
imshow(I4,'InitialMagnification',200)
title('I2-I1')

We next replace the original pixels with their median-fi ltered versions if the
diff erence between the median-fi ltered image I2 and the original image I1 is
great than 10 in both directions (as it is in our example).

I5 = I1;
I5(I3>10 | I4>10) = I2(I3>10 | I4>10);
imshow(I5,'InitialMagnification',200)
title('Despeckled Image')

Th e image I5 obtained using this approach is the despeckled version of the
image I1. We can also explore the pixel values of both versions of the image
(I1 and I5) in a 3D surface plot, using

subplot(1,2,1)
I1S = im2double(I1);
surface(I1S), colormap jet, caxis([0 1])
shading interp, view(120,33), axis off
axis([1 size(I1,1) 1 size(I1,2) min(I1S(:)) max(I1S(:))])

subplot(1,2,2)
I5S = im2double(I5);
surface(I5S), colormap jet, caxis([0 1])
shading interp, view(120,33), axis off
axis([1 size(I1,1) 1 size(I1,2) min(I1S(:)) max(I1S(:))])

We need convert the image data to class double using im2double in order to be
able to display the data using surface. Finally, we can display both images in
the same fi gure window

subplot(1,2,1), imshow(I1), title('Original Image')
subplot(1,2,2), imshow(I5), title('Despeckled Image')

to see the result of despeckling the image I1 (Fig. 8.2).

330 8 IMAGE PROCESSING

 8.5 Importing and Georeferencing TERRA ASTER Images

In Section 8.3 we used a processed ASTER image that we downloaded from
the ASTER webpage. In this section we will use raw data from this sensor.
Th e ASTER sensor is mounted on the TERRA satellite launched in 1999,
part of the Earth Observing System (EOS) series of multi-national NASA
satellites (Abrams and Hook 2002). ASTER stands for Advanced Spaceborne
Th ermal Emission and Refl ection Radiometer, providing high-resolution (15
to 90 meter) images of the earth in 14 bands, including three visible to near
infrared bands (VNIR bands 1 to 3), six short-wave infrared bands (SWIR
bands 4 to 9), and fi ve thermal (or long-wave) infrared bands (TIR bands 10
to 14). ASTER images are used to map the surface temperature, emissivity,
and refl ectance of the earth’s surface. Th e 3rd near infrared band is recorded
twice: once with the sensor pointing directly downwards (band 3N, where

Fig. 8.2 Despeckled section of the blue band of a Landsat image covering the Chew Bahir
catchment in Southern Ethiopia; a original image, b despeckled image, c surface plots of the
original image, and d surface plot of the image aft er despeckling. Original image courtesy of
the Landsat Program of the US National Aeronautics and Space Administration (NASA) and
the US Geological Survey (USGS).

ba

c d

8.5 IMPORTING AND GEOREFERENCING TERRA ASTER IMAGES 331

N stands for nadir from the Arabic word for opposite), as it does for all other
channels, and a second time with the sensor angled backwards at 27.6° (band
3B, where B stands for backward looking). Th ese two bands are used to
generate ASTER digital elevation models (DEMs).

Th e ASTER instrument produces two types of data: Level-1A (L1A) and
Level-1B (L1B) data (Abrams and Hook 2002). Whereas the L1A data are
reconstructed, unprocessed instrument data, the L1B data are radiometrically
and geometrically corrected. Any data that ASTER has already acquired are
available; they can be located by searching the Japan Space Systems GDS
ASTER/PALSAR Unifi ed Search Site and can be ordered from

http://gds.ersdac.jspacesystems.or.jp/?lang=en

or from NASA Reverb

http://reverb.echo.nasa.gov/reverb/

As an example we process an image from an area in Kenya showing Lake
Naivasha (0°46'31.38"S 36°22'17.31"E). Th e Level-1A data are stored in two
fi les

AST_L1A_003_03082003080706_03242003202838.hdf
AST_L1A_003_03082003080706_03242003202838.hdf.met

Th e fi rst fi le (116 MB) contains the actual raw data, whereas the second fi le
(102 KB) contains the header, together with all sorts of information about
the data. We save both fi les in our working directory. Since the fi le name
is very long, we fi rst save it in the filename variable and then use filename
instead of the long fi le name. We then need to modify only this single line of
MATLAB code if we want to import and process other satellite images.

filename = 'AST_L1A_003_03082003080706_03242003202838.hdf';

Th e Image Processing Toolbox contains various tools for importing and
processing fi les stored in the hierarchical data format (HDF). Th e graphical
user interface (GUI) based import tool for importing certain parts of the raw
data is

hdftool('filename')

Th is command opens a GUI that allows us to browse the content of the
HDF-fi le naivasha.hdf, obtains all information on the contents, and imports
certain frequency bands of the satellite image. Alternatively, the command
hdfread can be used as a quicker way of accessing image data. Th e vnir_
Band3n, vnir_Band2, and vnir_Band1 typically contain much information

332 8 IMAGE PROCESSING

about lithology (including soils), vegetation and water on the earth’s surface.
Th ese bands are therefore usually combined into 24-bit RGB images. We fi rst
read the data

I1 = hdfread(filename,'VNIR_Band3N','Fields','ImageData');
I2 = hdfread(filename,'VNIR_Band2','Fields','ImageData');
I3 = hdfread(filename,'VNIR_Band1','Fields','ImageData');

Th ese commands generate three 8-bit image arrays, each representing the
intensity within a certain infrared (IR) frequency band of a 4200-by-4100
pixel image. We are not using the data for quantitative analyses and therefore
do not need to convert the digital number (DN) values into radiance and
refl ectance values. Th e ASTER User Handbook provides the necessary
information on these conversions (Abrams and Hook 2002). Instead, we will
process the ASTER image to create a georeferenced RGB composite of bands
3N, 2 and 1, to be used in fi eldwork. We fi rst use a contrast-limited adaptive
histogram equalization method to enhance the contrast in the image by
typing

I1 = adapthisteq(I1);
I2 = adapthisteq(I2);
I3 = adapthisteq(I3);

and then concatenate the result to a 24-bit RGB image using cat.

naivasha_rgb = cat(3,I1,I2,I3);

As with the previous examples, the 4200-by-4100-by-3 array can now be
displayed using

imshow(naivasha_rgb,'InitialMagnification',10)

We set the initial magnifi cation of this very large image to 10%. MATLAB
scales images to fi t the computer screen. Exporting the processed image
from the Figure Window, we only save the image at the monitor’s resolution.
To obtain an image at a higher resolution, we use the command

imwrite(naivasha_rgb,'naivasha.tif','tif')

Th is command saves the RGB composite as a TIFF-fi le naivasha.tif (ca. 52
MB) in the working directory, which can then be processed using other
soft ware such as Adobe Photoshop. Th e processed ASTER image does not
yet have a coordinate system and therefore needs to be tied to a geographical
reference frame (georeferencing). Th e HDF browser

hdftool('naivasha.hdf')

8.5 IMPORTING AND GEOREFERENCING TERRA ASTER IMAGES 333

can be used to extract the geodetic coordinates of the four corners of the
image. Th is information is contained in the header of the HDF fi le. Having
launched the HDF tool, we select on the uppermost directory called
naivasha.hdf and fi nd a long list of fi le attributes in the upper right panel of
the GUI, one of which is productmetadata.0, which includes the attribute
scenefourcorners. We collect the coordinates of the four scene corners into a
single array inputpoints:

inputpoints(1,:) = [36.214332 -0.319922]; % upper left corner
inputpoints(2,:) = [36.096003 -0.878267]; % lower left corner
inputpoints(3,:) = [36.770406 -0.400443]; % upper right corner
inputpoints(4,:) = [36.652213 -0.958743]; % lower right corner

It is important to note that the coordinates contained in productmetadata.0
need to be fl ipped in order to have x=longitudes and y=latitudes. Th e four
corners of the image correspond to the pixels in the four corners of the
image, which we store in a variable named basepoints.

basepoints(1,:) = [1,1]; % upper left pixel
basepoints(2,:) = [1,4200]; % lower left pixel
basepoints(3,:) = [4100,1]; % upper right pixel
basepoints(4,:) = [4100,4200]; % lower right pixel

Th e function fitgeotrans now takes the pairs of control points, inputpoints
and basepoints, and uses them to infer a spatial transformation matrix tform.

tform = fitgeotrans(inputpoints,basepoints,'affine');

We next determine the limits of the input for georeferencing (i.e., of
the original image naivasha_rgb) using size, which yields xLimitsIn and
yLimitsIn. Adding a value of 0.5 to both xLimitsIn and yLimitsIn prevents the
edges of the image from being truncated during the affi ne transformation.
We then determine the limits of the output (i.e. of the georeferenced image,
which is subsequently called newnaivasha_rgb) using outputLimits, which
yields XBounds and YBounds.

xLimitsIn = 0.5 + [0 size(naivasha_rgb,2)];
yLimitsIn = 0.5 + [0 size(naivasha_rgb,1)];
[XBounds,YBounds] = outputLimits(tform,xLimitsIn,yLimitsIn);

We then use imref2d to reference the image to a world (or global) coordinate
system.

Rout = imref2d(size(naivasha_rgb),XBounds,YBounds);

An imref2d object encapsulates the relationship between the intrinsic
coordinates anchored to the rows and columns of the image, and the spatial

334 8 IMAGE PROCESSING

Fig. 8.3 Geoferenced RGB composite of a TERRA-ASTER image using the infrared bands
vnir_Band3n, 2 and 1. Th e result is displayed using imshow. Original image courtesy of
NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team.

location of the same row and column locations within a world coordinate
system. Finally, the affi ne transformation can be applied to the original RGB
composite naivasha_rgb in order to obtain a georeferenced version of the
satellite image newnaivasha_rgb with the same size as naivasha_rgb.

newnaivasha_rgb = imwarp(naivasha_rgb,tform,'OutputView',Rout);

An appropriate grid for the image can now be computed. Th e grid is
typically defi ned by the minimum and maximum values for the longitude
and latitude. Th e vector increments are then obtained by dividing the ranges
of the longitude and latitude by the array’s dimensions and then subtracting
one from the results. Note the diff erence between the MATLAB numbering
convention and the common coding of maps used in published literature.
Th e north/south suffi x is generally replaced by a negative sign for south,

8.5 IMPORTING AND GEOREFERENCING TERRA ASTER IMAGES 335

whereas MATLAB coding conventions require negative signs for north.

X = 36.096003 : (36.770406 - 36.096003)/4100 : 36.770406;
Y = -0.958743 : (0.958743 - 0.319922)/4200 : -0.319922;

Th e georeferenced image is displayed with coordinates on the axes and a
superimposed grid (Fig. 8.3). By default, the function imshow inverts the
latitude axis when images are displayed by setting the YDir property to
Reverse. To invert the latitude axis direction back to normal, we need to set
the YDir property to Normal by typing

imshow(newnaivasha_rgb,'XData',X,'YData',Y,'InitialMagnification',10)
axis on, grid on, set(gca,'YDir','Normal')
xlabel('Longitude'), ylabel('Latitude')
title('Georeferenced ASTER Image')

Exporting the image is possible in many diff erent ways, for example using

print -djpeg70 -r600 naivasha_georef.jpg

to export it as a JPEG fi le naivasha_georef.jpg, compressed to 70% and with
a resolution of 600 dpi.

In the previous example we used the geodetic coordinates of the four
corners to georeference the ASTER image. Th e Image Processing Toolbox
also includes functions to automatically align two images that are shift ed
and/or rotated with respect to each other, cover slightly diff erent areas, or
have a diff erent resolutions. We use two ASTER images of the Suguta Valley
in the Northern Kenya Rift as an example. Th e images have been processed
in the same way as described for the image of Lake Naivasha and exported
as TIFF fi les using imwrite. Th e image in the fi le sugutavalley_1.tif was taken
on 20th February 2003 and the second image in sugutavalley_2.tif was taken
on 31st August 2003, both just aft er 8 o’clock in the morning. Lake Logipi,
in the center of the images, is much larger in the second image than in the
fi rst image. Th e original images are otherwise almost identical, except for
the second image being shift ed slightly towards the east. To demonstrate
the automatic alignment of the images, the second image has been rotated
counterclockwise by fi ve degrees. Furthermore, both images have been
cropped to the area of the Suguta Valley, including a small section of the rift
shoulders to the west and to the east. We import both images using

clear

image1 = imread('sugutavalley_1.tif');
image2 = imread('sugutavalley_2.tif');

336 8 IMAGE PROCESSING

Fig. 8.4 Automatically aligned TERRA-ASTER images of the Suguta Valley in the Northern
Kenya Rift ; a fi rst image taken on 20th February 2003, b second image taken on 31st August
2003, and c overlay of the second image aligned with the fi rst image. Original image courtesy
of NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team.

Th e size of image1 is 666-by-329-by-3, while image2 is slightly smaller: 614-by-
270-by-3. We display the images by typing

subplot(1,2,1), imshow(image1)
subplot(1,2,2), imshow(image2)

Th e function imregconfig creates optimizer and metric confi gurations that
we transfer into imregister to perform intensity-based image registration,

[optimizer, metric] = imregconfig('monomodal');

where monomodal assumes that the images were captured by the same sensor.
We can use this confi gurations to calculate the spatial transformation matrix
tform using the transformation type affine, as in the previous example.

tform = imregtform(image2(:,:,1),image1(:,:,1), ...
 'affine',optimizer,metric);

Th is transformation can be applied to image2 in order to automatically align
it with image1.

a b c

8.5 IMPORTING AND GEOREFERENCING TERRA ASTER IMAGES 337

image2_reg = imwarp(image2,tform,'OutputView', ...
 imref2d(size(image1)));

We can compare the result with the original images using

subplot(1,3,1), imshow(image1)
subplot(1,3,2), imshow(image2)
subplot(1,3,3), imshowpair(image1,image2_reg,'blend')

print -djpeg70 -r600 sugutavalley_aligned.jpg

As we can see, the second image is now nicely aligned with the fi rst image
(Fig. 8.4). Th e two images can now be used to map changes in the area (e.g.,
in the size of the lake) between 20th February and 31st August 2003. Th is
script can also be used to automatically align other images, in particular
those captured by diff erent sensors.

 8.6 Processing and Exporting EO-1 Hyperion Images

Th e Earth Observing-1 Mission (EO-1) satellite is part of the New Millennium
Program of the US National Aeronautics and Space Administration (NASA)
and the US Geological Survey (USGS), which began with the launch of this
satellite on 21st November 2000. EO-1 has two sensors: the Advanced Land
Image (ALI) has nine multispectral bands with a 30 m spatial resolution and
a panchromatic band with a 10-m resolution, and the hyperspectral sensor
(Hyperion) has 220 bands between 430 and 2,400 nm (Mandl et al. 2002,
Line 2012). General information about the EO-1 program can be obtained
from the webpage

http://eo1.gsfc.nasa.gov

Hyperion data (together with data from of other NASA satellites) are freely
available from the webpage

http://earthexplorer.usgs.gov

On this webpage we fi rst select the desired map section in the Search
Criteria, either by entering the coordinates of the four corners of the map or
by zooming into the area of interest and selecting Use Map. As an example
we enter the coordinates 2°8'37.58"N 36°33'47.06"E of the Suguta Valley in
the Northern Kenya Rift . We then choose Hyperion from the EO-1 collection
as the Data Set and click Results. Clicking Results produces a list of records,
together with a toolbar for previewing and downloading data. Clicking the
Show Browse Overlay button allows us to examine the images for cloud cover.
We fi nd the cloud-free image

338 8 IMAGE PROCESSING

 Entity ID: EO1H1690582013197110KF_PF2_01
 Acquisition Date: 16-JUL-13
 Target Path: 169
 Target Row: 58

taken on 16th July 2013. As before, we need to register with the USGS
website, log on, and then download the radiometrically corrected (but not
geometrically corrected) Level 1R (L1R) product (215.3 MB), which is then
stored on the hard drive in the fi le LEO1H1690582013197110KF_1R.ZIP.
Th e .ZIP archive consists of a metadata fi le (.MET), a Federal Geographic
Data Committee (FGDC) metadata fi le (.fgdc), an HDF data set fi le (.L1R),
and multiple auxiliary fi les. Th e EO-1 User’s Guides provides some useful
information on the data formats of these fi les (Barry 2001, Beck 2003). We
can import the data from the EO1H1690582013197110KF.L1R fi le using

clear

HYP = hdfread('EO1H1690582013197110KF.L1R',...
 '/EO1H1690582013197110KF.L1R', ...
 'Index', {[1 1 1],[1 1 1],[3189 242 256]});

Th e parameter Index is a three-element cell array, {start,stride,edge},
specifying the location, range, and values to be read from the data set.
Th e value of start specifi es the position in the fi le to begin reading. In our
example it starts reading at the beginning of the fi le, i.e., starting from the [1
1 1] element. Th e value of stride defi nes the interval between the values to
be read, which in our example is [1 1 1], i.e., every element of the data set
is to be read. Th e value of edge specifi es the size of the data in the fi le; in our
example the dimensions of the data are 3,189-by-242-by-256. Typing

whos

shows how the hyperspectral image is stored in the workspace:

HYP 3189x242x256 395129856 int16

Th e details indicate that the image is stored as a 3,189-by-242-by-256 array,
representing a 3,189-by-256 array for each of the 242 spectral bands. Th e
listing of the current variables in the workspace also gives the information
int16 array, i.e., each array element representing one pixel contains signed
16-bit integers. We need to permute the array to move the bands to the third
dimension by typing

HYP = permute(HYP,[1 3 2]);

We next need to determine the radiance values from the digital number

8.6 PROCESSING AND EXPORTING EO-1 HYPERION IMAGES 339

(DN) values in HYP. Th e radiance is the power density scattered from the
earth in a particular direction and has the units of watts per square meter
per steradian (Wm-2 sr-1) (Richards 2013). Th e EO-1 User Guide (v. 2.3)
provides the necessary information on these conversions in its Frequently
Asked Questions (FAQ) section (Beck 2003). According to this document,
the radiance HYPR for the visible and near-infrared (VNIR) bands (bands 1
to 70) is calculated by dividing the digital number in HYP by 40. Th e radiance
for the shortwave infrared (SWIR) bands (bands 71 to 242) is calculated by
dividing HYP by 80.

HYPR(:,:,1:70) = HYP(:,:,1:70)/40;
HYPR(:,:,71:242) = HYP(:,:,71:242)/80;

For quantitative analyses, the radiance values HYPR need to be corrected for
atmospheric and topographic eff ects. Th is correction, which yields earth
surface refl ectance values (in percentages), is beyond the scope of the book.
Th e EO-1 User Guide (v. 2.3) again explains several methods to convert
radiance to refl ectance values (Beck 2003). A simple way to convert radiance
to refl ectance for relatively clear Hyperion images is given in

https://eo1.usgs.gov/faq/question?id=21

We will instead process the Hyperion image to create a georeferenced RGB
composite of bands 29, 23 and 16, to be used in fi eldwork. Th e header
fi le O1H1690582013197110KF.HDR contains (among other things) the
wavelengths corresponding to the 242 spectral bands. We can read the
wavelengths from the fi le using textscan:

fid = fopen('EO1H1690582013197110KF.hdr');
C = textscan(fid,'%f %f %f %f %f %f %f %f',...
 'Delimiter',',','Headerlines',257,'CollectOutput',1)
fclose(fid);

Th is script opens the header fi le for read only access using fopen and defi nes
the fi le identifi er fid, which is then used to read the text from the fi le with
textscan, and to write it into the array C. Th e character string %f %f %f %f
%f %f %f %f defi nes the conversion specifi ers enclosed in single quotation
marks, where %f stands for the double-precision fl oating-point 64-bit output
class. Th e parameter Headerlines is set to 257, which means that the fi rst 257
lines are ignored when reading the fi le. If the parameter CollectOutput is 1
(true), textscan concatenates output cells of the same data type into a single
array. Function fclose closes the fi le defi ned by the fi le identifi er fid. Th e
array C is a cell array, which is a data type with indexed containers called
cells. We can easily obtain the wavelengths from C using

340 8 IMAGE PROCESSING

wavelengths = C{1};
wavelengths = wavelengths';
wavelengths = wavelengths(isnan(wavelengths(:))==0);

We can now plot the radiance HYPR of the VNIR bands (blue) and SWIR
bands (in red) in a single plot.

plot(wavelengths(1:60),squeeze(HYPR(536,136,1:60)),'b',...
 wavelengths(71:242),squeeze(HYPR(536,136,71:242)),'r')

According to v. 2.3 of the EO-1 User Guide (Beck 2003), Hyperion records
220 unique spectral channels collected from a complete spectrum covering
357 to 2,576 nm. Th e L1R product has 242 bands but 198 bands are calibrated.
Because of an overlap between the VNIR and SWIR focal planes, there are
only 196 unique channels. Calibrated channels are 8–57 for the VNIR, and
77–224 for the SWIR. Th e bands that are not calibrated are set to zero in
those channels.

In order to create an RGB composite of bands 29, 23 and 16, we can extract
the bands from the radiance values data HYPR by typing

HYP1 = HYPR(:,:,29);
HYP2 = HYPR(:,:,23);
HYP3 = HYPR(:,:,16);

To display the data with imshow we need convert the signed integer 16-bit
(int16) data to unsigned integer 8-bit data (uint8). For this purpose, we fi rst
obtain an overview of the range of the data using a histogram plot with 100
classes.

subplot(1,3,1), histogram(double(HYP1(:)),100), title('Band 29')
subplot(1,3,2), histogram(double(HYP2(:)),100), title('Band 23')
subplot(1,3,3), histogram(double(HYP3(:)),100), title('Band 16')

As we see, the radiance values of most pixels from the spectral bands 29, 23
and 16 lie between 0 and 200 Wm-2 sr-1. Several functions are available for
converting the data from int16 to uint8. Th e function im2uint8 rescales the
data to the range [0,255] and off sets it if necessary. Th e function uint8 simply
rounds all values in the range [0,255] to the nearest integer; all values less
than 0 are set to 0 and all values greater than 255 are set to 255. Th e function
mat2gray(A,[AMIN AMAX]) converts an arbitrary array A to an intensity image
I containing values in the range 0 (black) to 1.0 (full intensity or white),
where [AMIN AMAX] can be used to limit the range of the original data, which
is scaled to the range [0,1]. Since most of our radiance values are within the
range [0,255], we use uint8 to convert our data to the uint8 data type without
losing much information.

8.6 PROCESSING AND EXPORTING EO-1 HYPERION IMAGES 341

Fig. 8.5 RGB composite of an EO-1 Hyperion image using VNIR bands 29, 23 and 16, showing
the Barrier Volcanic Complex in the Suguta Valley of the Northern Kenya Rift . Th e image was
acquired on 16th July 2013. Original image courtesy of NASA EO-1 Mission.

HYP1 = uint8(HYP1);
HYP2 = uint8(HYP2);
HYP3 = uint8(HYP3);

Again, displaying the radiance values of the three bands in a histogram using

subplot(1,3,1), histogram(single(HYP1(:)),30), title('Band 29')
subplot(1,3,2), histogram(single(HYP2(:)),30), title('Band 23')
subplot(1,3,3), histogram(single(HYP3(:)),30), title('Band 16')

reveals that most radiance values are actually within the range [20,80].
Instead of using histogram we can also use imhist to display the uint8 data.

subplot(1,3,1), imhist(HYP1(:)), title('Band 29')
subplot(1,3,2), imhist(HYP2(:)), title('Band 23')
subplot(1,3,3), imhist(HYP3(:)), title('Band 16')

We then use histeq to enhance the contrast in the image and concatenate the
three bands to a 3,189-by-242-by-3 array.

HYP1 = histeq(HYP1);
HYP2 = histeq(HYP2);
HYP3 = histeq(HYP3);

subplot(1,3,1), imhist(HYP1(:)), title('Band 29')
subplot(1,3,2), imhist(HYP2(:)), title('Band 23')
subplot(1,3,3), imhist(HYP3(:)), title('Band 16')

HYPC = cat(3,HYP1,HYP2,HYP3);

342 8 IMAGE PROCESSING

Finally, we can display the entire image using

imshow(HYPC)

or, as an alternative, that part of the image showing the Barrier Volcanic
Complex in the northern Suguta Valley (Fig. 8.5).

imshow(HYPC(900:1100,:,:))

Exporting the image is possible in many diff erent ways, for example using

print -r600 -dtiff barrier.tif

to export it as a TIFF fi le barrier.tif with a resolution of 600 dpi.

 8.7 Digitizing from the Screen

On-screen digitizing is a widely-used image processing technique. While
practical digitizer tablets exist in all formats and sizes, most people prefer
digitizing vector data from the screen. Examples of this type of application
include the digitizing of river networks and catchment areas on topographic
maps, of the outlines of lithologic units on geological maps, of landslide
distributions on satellite images, and of mineral grain distributions in
microscope images. Th e digitizing procedure consists of the following
steps. Th e image is fi rst imported into the workspace. A coordinate system
is then defi ned, allowing the objects of interest to be entered by moving a
cursor or cross hair onto it and clicking the mouse button. Th e result is a
two-dimensional array of xy data, such as longitudes and latitudes of the
corner points of a polygon, or the coordinates of the objects of interest in a
particular area.

Th e function ginput included in the standard MATLAB toolbox allows
graphical input from the screen, using a mouse. It is generally used to
select points, such as specifi c data points, from a fi gure created by an
arbitrary graphics function such as plot. Th e function ginput is oft en used
for interactive plotting, i.e., the digitized points appear on the screen aft er
they have been selected. Th e disadvantage of the function is that it does not
provide coordinate referencing on an image. We therefore use a modifi ed
version of the function, which allows an image to be referenced to an
arbitrary rectangular coordinate system. Save the following code for this
modifi ed version of the function ginput in a text fi le minput.m.

function data = minput(imagefile)
% Specify the limits of the image
xmin = input('Specify xmin! ');

8.7 DIGITIZING FROM THE SCREEN 343

xmax = input('Specify xmax! ');
ymin = input('Specify ymin! ');
ymax = input('Specify ymax! ');

% Read image and display
B = imread(imagefile);
a = size(B,2); b = size(B,1);
imshow(B);

% Define lower left and upper right corner of image
disp('Click on lower left and upper right corner, then <return>')
[xcr,ycr] = ginput;
XMIN = xmin-((xmax-xmin)*xcr(1,1)/(xcr(2,1)-xcr(1,1)));
XMAX = xmax+((xmax-xmin)*(a-xcr(2,1))/(xcr(2,1)-xcr(1,1)));
YMIN = ymin-((ymax-ymin)*ycr(1,1)/(ycr(2,1)-ycr(1,1)));
YMAX = ymax+((ymax-ymin)*(b-ycr(2,1))/(ycr(2,1)-ycr(1,1)));

% Digitize data points
disp('Click on data points to digitize, then <return>')
[xdata,ydata] = ginput;
XDATA = XMIN + ((XMAX-XMIN)*xdata/size(B,2));
YDATA = YMIN + ((YMAX-YMIN)*ydata/size(B,1));
data(:,1) = XDATA; data(:,2) = YDATA;

Th e function minput has four stages. In the fi rst stage the user enters the limits
of the coordinate axes as reference points for the image. Th e image is then
imported into the workspace and displayed on the screen. Th e third stage
uses ginput to defi ne the upper left and lower right corners of the image. In
the fourth stage the relationship between the coordinates of the two corners
on the fi gure window and the reference coordinate system is then used to
compute the transformation for all of the digitized points.

As an example we use the image stored in the fi le naivasha_georef.jpg and
digitize the outline of Lake Naivasha in the center of the image. We activate
the new function minput from the Command Window using the commands

clear

data = minput('naivasha_georef.jpg')

Th e function fi rst asks for the coordinates of the limits of the x-axis and the
y-axis, for the reference frame. We enter the corresponding numbers and
press return aft er each input.

Specify xmin! 36.1
Specify xmax! 36.7
Specify ymin! -1
Specify ymax! -0.3

Th e function then reads the fi le naivasha_georef.jpg and displays the image.
We ignore the warning

344 8 IMAGE PROCESSING

Warning: Image is too big to fit on screen; displaying at 33%

and wait for the next response

Click on lower left and upper right corner, then <return>

Th e image window can be scaled according to user preference. Clicking on
the lower left and upper right corners defi nes the dimensions of the image.
Th ese changes are registered by pressing return. Th e routine then references
the image to the coordinate system and waits for the input of the points we
wish to digitize from the image.

Click on data points to digitize, then <return>

We fi nish the input by again pressing return. Th e xy coordinates of our
digitized points are now stored in the variable data. We can now use these
vector data for other applications.

 8.8 Image Enhancement, Correction and Rectifi cation

Th is section introduces some fundamental tools for image enhancement,
correction and rectifi cation. As an example we use an image of varved
sediments deposited around 33 kyrs ago in a landslide-dammed lake in the
Quebrada de Cafayate of Argentina (25°58.900'S 65°45.676'W) (Trauth et al.
1999, 2003). Th e diapositive was taken on 1st October 1996 with a fi lm-based
single-lens refl ex (SLR) camera. A 30-by-20 cm print was made from the
slide, which has been scanned using a fl atbed scanner and saved as a 394 KB
JPEG fi le. We use this as an example because it demonstrates some problems
that we can solve with the help of image enhancement (Fig. 8.6). We then use
the image to demonstrate how to measure color-intensity transects for use in
time series analysis (Section 8.9).

We can read and decompress the fi le varves_original.jpg by typing

clear

I1 = imread('varves_original.jpg');

which yields a 24-bit RGB image array I1 in the MATLAB workspace. Typing

whos

yields

Name Size Bytes Class Attributes
I1 1096x1674x3 5504112 uint8

8.8 IMAGE ENHANCEMENT, CORRECTION AND RECTIFICATION 345

a b

c d

revealing that the image is stored as an uint8 array of the size 1,096-by-1,674-
by-3, i.e., 1,096-by-1,674 arrays for each color (red, green and blue). We can
display the image using the command

imshow(I1)

which opens a new Figure Window showing an RGB composite of the image.
As we see, the image has a low level of contrast and very pale colors, and the
sediment layers are not exactly horizontal. Th ese are characteristics of the
image that we want to improve in the following steps.

First, we adjust the image intensity values or colormap. Th e function
imadjust(I1,[li; hi],[lo ho]) maps the values of the image I1 to new values
in I2, such that values between li and hi are adjusted to values between
lo and ho. Values below li and above hi are clipped, i.e., these values are
adjusted to lo and ho, respectively. We can determine the range of the pixel

Fig. 8.6 Results of image enhancements; a original image, b image with intensity values
adjusted using imadjust, Gamma=1.5, c image with contrast enhanced using adapthisteq,
d image aft er fi ltering with a 20-by-20 pixel fi lter with the shape of a Gaussian probability
density function with a mean of zero and a standard deviation of 10, using fspecial and
imfilter.

346 8 IMAGE PROCESSING

values using

lh = stretchlim(I1)

which yields

lh =
 0.3255 0.2627 0.2784
 0.7020 0.7216 0.7020

indicating that the red color ranges from 0.3255 to 0.7020, green ranges from
0.2627 to 0.7216, and blue ranges from 0.2784 to 0.7020. We can utilize this
information to automatically adjust the image with imadjust by typing

I2 = imadjust(I1,lh,[]);

which adjusts the ranges to the full range of [0,1], and then display the result.

imshow(I2)

We can clearly see the diff erence between the very pale image I1 and the more
saturated image I2. Th e parameter gamma in imadjust(I1,[li;hi],[lo;ho],
gamma) specifi es the shape of the curve describing the relationship between I1
and I2. If gamma<1 the mapping is weighted toward higher (brighter) output
values. If gamma>1 the mapping is weighted toward lower (darker) output
values. Th e default value of gamma=1 causes linear mapping of the values in I1
to new values in I2.

I3 = imadjust(I1,lh,[],0.5);
I4 = imadjust(I1,lh,[],1.5);

subplot(2,2,1), imshow(I1), title('Original Image')
subplot(2,2,2), imshow(I2), title('Adjusted Image, Gamma=1.0')
subplot(2,2,3), imshow(I3), title('Adjusted Image, Gamma=0.5')
subplot(2,2,4), imshow(I4), title('Adjusted Image, Gamma=1.5')

We can use imhist to display a histogram showing the distribution of intensity
values for the image. Since imhist only works for two-dimensional images,
we examine the histogram of the red color only.

subplot(2,2,1), imhist(I1(:,:,1)), title('Original Image')
subplot(2,2,2), imhist(I2(:,:,1)), title('Adjusted Image, Gamma=1.0')
subplot(2,2,3), imhist(I3(:,:,1)), title('Adjusted Image, Gamma=0.5')
subplot(2,2,4), imhist(I4(:,:,1)), title('Adjusted Image, Gamma=1.5')

Th e result obtained using imadjust diff ers from that obtained using histeq
(which we used in Section 8.3 to enhance the contrast in the image). Th e
function histeq(I1,n) transforms the intensity of image I1, returning in

8.8 IMAGE ENHANCEMENT, CORRECTION AND RECTIFICATION 347

I5 an intensity image with n discrete levels. A roughly equal number of
pixels is ascribed to each of the n levels in I5, so that the histogram of I5
is approximately fl at. Histogram equalization using histeq has to carried
out separately for each color, since histeq only works for two-dimensional
images. We use n=50 in our exercise, which is slightly below the default value
of n=64.

I5(:,:,1) = histeq(I1(:,:,1),50);
I5(:,:,2) = histeq(I1(:,:,2),50);
I5(:,:,3) = histeq(I1(:,:,3),50);

subplot(2,2,1), imshow(I1), title('Original Image')
subplot(2,2,3), imhist(I1(:,:,1)), title('Original Image')
subplot(2,2,2), imshow(I5), title('Enhanced Image')
subplot(2,2,4), imhist(I5(:,:,1)), title('Enhanced Image')

Th e resulting image looks quite disappointing and we therefore use the
improved function adapthisteq instead of histeq. Th is function uses the
contrast-limited adaptive histogram equalization (CLAHE) by Zuiderveld
(1994). Unlike histeq and imadjust, the algorithm works on small regions (or
tiles) of the image, rather than on the entire image. Th e neighboring tiles are
then combined using bilinear interpolation to eliminate edge eff ects.

I6(:,:,1) = adapthisteq(I1(:,:,1));
I6(:,:,2) = adapthisteq(I1(:,:,2));
I6(:,:,3) = adapthisteq(I1(:,:,3));

subplot(2,2,1), imshow(I1), title('Original Image')
subplot(2,2,3), imhist(I1(:,:,1)), title('Original Image')
subplot(2,2,2), imshow(I6), title('Enhanced Image')
subplot(2,2,4), imhist(I6(:,:,1)), title('Enhanced Image')

Th e result looks slightly better than that obtained using histeq. However, all
three functions for image enhancement, imadjust, histeq and adapthisteq,
provide numerous ways to manipulate the fi nal outcome. Th e Image
Processing Toolbox – User’s Guide (MathWorks 2014) and the excellent book
by Gonzalez and others (2009) provide more detailed introductions to the
use of the various parameters available and the corresponding values of the
image enhancement functions.

Th e Image Processing Toolbox also includes numerous functions for 2D
fi ltering of images. Many of the methods we have looked at in Chapter 6
for one-dimensional data also work with two-dimensional data, as we have
already seen in Chapter 7 when fi ltering digital terrain models. Th e most
popular 2D fi lters for images are Gaussian fi lters and median fi lters, as well
as fi lters for image sharpening. Both Gaussian and median fi lters are used
to smooth an image, mostly with the aim of reducing the amount of noise.

348 8 IMAGE PROCESSING

In most examples the signal-to-noise ratio is unknown and adaptive fi lters
(similar to those introduced in Section 6.10) are therefore used for noise
reduction. A Gaussian fi lter can be designed using

h = fspecial('gaussian',20,10);
I7 = imfilter(I1,h);

where fspecial creates predefi ned 2D fi lters, such as moving average,
disk, or Gaussian fi lters. Th e Gaussian fi lter weights h are calculated using
fspecial('gaussian',20,10), where 20 corresponds the size of a 20-by-20
pixel fi lter following the shape of a Gaussian probability density function
with a standard devation of 10. Next, we calculate I8, which is a median-
fi ltered version of I1.

I8(:,:,1) = medfilt2(I1(:,:,1),[20 20]);
I8(:,:,2) = medfilt2(I1(:,:,2),[20 20]);
I8(:,:,3) = medfilt2(I1(:,:,3),[20 20]);

Since medfilt2 only works for two-dimensional data, we again apply the fi lter
separately to each color (red, green and blue). Th e fi lter output pixels are the
medians of the 20-by-20 neighborhoods around the corresponding pixels in
the input image.

Th e third fi lter example deals with sharpening an image using imsharpen.

I9 = imsharpen(I1);

Th is function calculates the Gaussian lowpass fi ltered version of the image
that is used as an unsharp mask, i.e., the sharpened version of the image is
calculated by subtracting the blurred fi ltered version from the original image.
Th e function comes with several parameters that control the ability of the
Gaussian fi lter to blur the image and the strength of the sharpening eff ect,
and a threshold specifying the minimum contrast required for a pixel to be
considered an edge pixel and sharpened by unsharp masking. Comparing
the results of the three fi ltering exercises with the original image

subplot(2,2,1), imshow(I1), title('Original Image')
subplot(2,2,2), imshow(I7), title('Gaussian Filter')
subplot(2,2,3), imshow(I8), title('Median Filter')
subplot(2,2,4), imshow(I9), title('Sharpening Filter')

clearly demonstrates the eff ect of the 2D fi lters. As an alternative to these
time-domain fi lters, we can also design 2D fi lters with a specifi c frequency
response, such as the 1D fi lters described in Section 6.9. Again, the book by
Gonzalez and others (2009) provides an overview of 2D frequency-selective
fi ltering for images, including functions used to generate such fi lters. Th e
authors also demonstrate the use of a 2D Butterworth lowpass fi lter in image

8.8 IMAGE ENHANCEMENT, CORRECTION AND RECTIFICATION 349

processing applications.
We next rectify the image, i.e., we correct the image distortion by

transforming it to a rectangular coordinate system using a script that is
similar to that used for georeferencing satellite images in Section 8.5. Th is
we achieve by defi ning four points within the image, which are actually at the
corners of a rectangular area (which is our reference area). We fi rst defi ne the
upper left , lower left , upper right, and lower right corners of the reference area,
and then press return. Note that it is important to pick the coordinates of the
corners in this particular order. In this instance we use the original image
I1, but we could also use any other enhanced version of the image from the
previous exercises. As an example we can click the left side of the ruler at 1.5
cm and at 4.5 cm, where two thin white sediment layers cross the ruler, for
use as the upper-left and lower-left corners. We then choose the upper-right
and lower-right corners, further to the right of the ruler but also lying on the
same two white sediment layers,

imshow(I1)
basepoints = ginput

and click return which yields

basepoints =
 517.0644 508.9059
 511.5396 733.5792
 863.2822 519.9554
 859.5990 739.1040

or any similar values. Th e image and the reference points are then displayed
in the same fi gure window.

close all
imshow(I1)
hold on
line(basepoints(:,1),basepoints(:,2),...
 'LineStyle','none',...
 'Marker','+',...
 'MarkerSize',48,...
 'Color','b')
hold off

We arbitrarily choose new coordinates for the four reference points, which
are now on the corners of a rectangle. To preserve the aspect ratio of the
image, we select numbers that are the means of the diff erences between the
x- and y-values of the reference points in basepoints.

dx = (basepoints(3,1)+basepoints(4,1))/2- ...
 (basepoints(1,1)+basepoints(2,1))/2

350 8 IMAGE PROCESSING

dy = (basepoints(2,2)+basepoints(4,2))/2- ...
 (basepoints(1,2)+basepoints(3,2))/2

which yields

dx =
 347.1386

dy =
 221.9109

We therefore choose

inputpoints(1,:) = [0 0];
inputpoints(2,:) = [0 dy];
inputpoints(3,:) = [dx 0];
inputpoints(4,:) = [dx dy];

Th e function fitgeotrans now takes the pairs of control points, inputpoints
and basepoints, and uses them to infer a spatial transformation matrix tform
using the transformation type projective.

tform = fitgeotrans(inputpoints,basepoints,'projective');

We next need to estimate the spatial limits for the output, XBounds and
YBounds, corresponding to the projective transformation tform, and a set of
spatial limits for the input xLimitsIn and yLimitsIn.

xLimitsIn = 0.5 + [0 size(I1,2)]
yLimitsIn = 0.5 + [0 size(I1,1)]

[XBounds,YBounds] = outputLimits(tform,xLimitsIn,yLimitsIn)

Th en we use imref2d to reference the image to world coordinates.

Rout = imref2d(size(I1),XBounds,YBounds)

An imref2d object Rout encapsulates the relationship between the intrinsic
coordinates anchored to the rows and columns of the image and the spatial
location of the same row and column locations in a world coordinate system.
Finally, the projective transformation can be applied to the original RGB
composite I1 in order to obtain a rectifi ed version of the image (I10).

I10 = imwarp(I1,tform,'OutputView',Rout);

We now compare the original image I1 with the rectifi ed version I10.

subplot(2,1,1), imshow(I1), title('Original Image')
subplot(2,1,2), imshow(I10), title('Rectified Image')

8.8 IMAGE ENHANCEMENT, CORRECTION AND RECTIFICATION 351

We see that the rectifi ed image has black areas at the corners. We can remove
these black areas by cropping the image using imcrop.

I11 = imcrop(I10);

subplot(2,1,1), imshow(I1), title('Original Image')
subplot(2,1,2), imshow(I11), title('Rectified and Cropped Image')

Th e function imcrop creates displays of the image with a resizable rectangular
tool that can be interactively positioned and manipulated using the mouse.
Aft er manipulating the tool into the desired position, the image is cropped
by either double clicking on the tool or choosing Crop Image from the tool’s
context menu. Th e result of our image enhancement experiment can now be
used in the next section to analyze the colors of individual sediment layers.

 8.9 Color-Intensity Transects Across Varved Sediments

High-resolution core logging has, since the early 1990s, become popular as
an inexpensive tool for investigating the physical and chemical properties of
marine and lacustrine sediments. During the early days of nondestructive
core logging, magnetic susceptibility and grayscale intensity transects were
measured on board research vessels to generate a preliminary stratigraphy
of marine cores, since the cyclic recurrence of light and dark layers seemed
to refl ect glacial-interglacial cycles during the Pleistocene. Paleolimnologists
adopted these techniques to analyze annually-layered (varved) lake sediments
and to statistically detect short-term variabilities such as the 11 year sunspot
cycle, the 3-7 year El Niño cycle, or the 78 year Gleissberg cycle. Modern
multi-sensor core loggers are now designed to log a great variety of physical
and chemical properties using optical scanners, radiograph imaging, and
x-ray fl uorescence elemental analyzers.

As an example we explore varved sediments deposited around 33 kyrs
ago in a landslide-dammed lake in the Quebrada de Cafayate of Argentina
(Trauth et al. 1999, 2003). Th ese lake sediments have been intensively studied
for paleoclimate reconstructions since they document episodes of a wetter
and more variable climate that eventually fostered mass movements in the
NW Argentine Andes during the Late Pleistocene and Holocene. Aside from
various sedimentological, geochemical and micropaleontological analyses,
the colors of the sediments have been studied as a proxy for rainfall intensities
at the time of deposition. Color-intensity transects were analyzed to detect
interannual variations in precipitation caused by the El Niño/Southern
Oscillation (ENSO, 3–7 year cycles) and the Tropical Atlantic Sea-Surface
Temperature Variability (TAV, 10–15 year cycles) using linear and nonlinear

352 8 IMAGE PROCESSING

methods of time-series analysis (e.g., Trauth et al. 2000, Marwan et al. 2003).
Th e El Paso section in the Quebrada de Cafayate contains well-developed

annual layers in most parts of the profile (Fig. 8.7). Th e base of each of these
mixed clastic and biogenic varves consists of reddish silt and clay, with a
sharp lower boundary. Towards the top of the varves, reddish clay and silt are
gradually replaced by light-brown to greenish clay. Th e change from reddish
hues correlates with a slight decrease in grain size. Th is clastic portion of
the varves is capped by a thin layer of pure white diatomite. Diatomites are
sediments comprised mainly of porous siliceous skeletons of single-cell
algae, i.e. diatoms. Th is internal structure of the laminae is typical of annual-
layered sediments. Th e recurrence of these layers and the distribution of
diatoms, together with the sediment coloration and provenance, all provide
additional evidence that rhythmic sedimentation in this region was controlled
by a well-defi ned annual cycle. Th e provenance of the sediments contained
in the varved layers can be traced using index minerals characteristic of the
various possible source areas within the catchment. A comparison of the
mineral assemblages in the sediments with those of potential source rocks
within the catchment area indicates that Fe-rich Tertiary sedimentary rocks

Fig. 8.7 Photograph of varved lake sediments from the Quebrada de Cafayate in the Santa
Maria Basin, with cyclic occurrences of intense dark-red coloration refl ecting enhanced
precipitation and sediment input during ENSO- and TAV-type periodicities (350 cm above
the base of the El Paso section). Th e solid blue line denotes the course of the digitized color-
intensity transect. Th e red circles note the position of the diatomite layers, representing
annual layers.

8.9 COLOR-INTENSITY TRANSECTS ACROSS VARVED SEDIMENTS 353

exposed in the Santa Maria Basin were the source of the red-colored basal
portion of the varves. In contrast, metamorphic rocks in the mountainous
parts of the catchment area were the most likely source of the drab-colored
upper part of the varves.

In nearly every second to fift h, and every tenth to fourteenth varve,
the varve thickness increases by a factor of 1.5 to 2 and the basal reddish
coloration is more intense, suggesting a greater fluvial input of Fe-rich Tertiary
material. Exceptionally well-preserved sections containing 70–250 varves
were used for more detailed statistical analysis of the observed cyclicities
(see Chapter 5). High-quality photographs from these sections were scanned
and subjected to standardized color and illumination corrections. Pixel-
wide representative red-color intensities were subsequently extracted from
transects across the images of these varves. Th e resolution of these time
series was of the order of ten intensity values per varve.

We will now analyze a 22-year package of varved lake sediments from the
Quebrada de Cafayate as an example (Fig. 8.6). Th e photo was taking during
a fi eld expedition in the late 1990s using an analog camera. It was then
scanned and the contrast levels adjusted to heighten details using standard
photo processing soft ware. We import the image from the fi le varves_original.
tif as a 24-bit RGB image array and store the data in a variable I.

clear

I = imread('varves_original');

We display the image using imshow and turn the axis labeling, tick marks and
background back on.

imshow(I), axis on

Th e image is scaled to pixel indices or coordinates, so we fi rst need to scale
the image to a centimeter scale. While keeping the fi gure window open we
use ginput to count the number of pixels per centimeter. Th e function ginput
provides a crosshair with which to gather an unlimited number of points
forming a polygon, until the return key is pressed. We place the crosshair
at 1 cm and 6 cm on the scale in the image and click to gather the pixel
coordinates of the 5-cm interval.

[x,y] = ginput;

Th e image is size(I,2)=1830 pixels wide and size(I,1)=1159 pixels high. We
convert the width and the height of the image into centimeters using the
conversion 5/sqrt((y(2,1)-y(1,1))^2+(x(2,1)-x(1,1))^2), where 5 corres-

354 8 IMAGE PROCESSING

ponds to the 5 cm interval equivalent to the sqrt((y(2,1)-y(1,1))^2+(x(2,1)
-x(1,1))^2) pixels gathered using ginput.

ix = 5 * size(I,2) / sqrt((y(2,1)-y(1,1))^2+(x(2,1)-x(1,1))^2);
iy = 5 * size(I,1) / sqrt((y(2,1)-y(1,1))^2+(x(2,1)-x(1,1))^2);

We can now display the image using the new coordinate system where ix and
iy are the width and height of the image, respectively (in centimeters).

imshow(I,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')

We now digitize the color-intensity transect from the top of the image to
bottom. Th e function improfile determines the RGB pixel values C along line
segments defi ned by the coordinates [CX,CY].

[CX,CY,C] = improfile;

Th e scaled image and the polygon are displayed in the same fi gure window.
Th e three color-intensity curves are plotted in a separate window.

imshow(I,'XData',[0 ix],'YData',[0 iy]), hold on
plot(CX,CY), hold off

figure
plot(CY,C(:,1),'r',CY,C(:,2),'g',CY,C(:,3),'b')
xlabel('Centimeters'), ylabel('Intensity')

Th e image and the color-intensity profi les are on a centimeter scale. To detect
the interannual precipitation variability, as recorded in the color intensity of
the sediments, we need to convert the length scale to a time scale. We use the
22 white diatomite layers as time markers to defi ne individual years in the
sedimentary history. We again use ginput to mark the diatomite layers from
top to bottom along the color-intensity transect and store the coordinates of
the laminae in the new variable laminae.

imshow(I,'XData',[0 ix],'YData',[0 iy]), hold on
plot(CX,CY), hold off
laminae = ginput;

To inspect the quality of the age model we plot the image, together with the
polygon and the marked diatomite layers.

imshow(I,'XData',[0 ix],'YData',[0 iy])
hold on
plot(CX,CY)
plot(laminae(:,1),laminae(:,2),'ro')
xlabel('Centimeters'), ylabel('Centimeters')
hold off

8.9 COLOR-INTENSITY TRANSECTS ACROSS VARVED SEDIMENTS 355

We defi ne a new variable newlaminae that contains the vertical y-component
of laminae as the fi rst column and the years 1 to 22 (counting backwards
in time) as the second colum. Th e 22 years are equivalent to the length
of laminae. Th e function interp1 is used to interpolate the color-intensity
transects over an evenly-spaced time axis stored in the variable age.

newlaminae(:,1) = laminae(:,2);
newlaminae(:,2) = 1 : length(laminae(:,2));
age = interp1(newlaminae(:,1),newlaminae(:,2),CY);

We complete the analysis by plotting the color-intensity curves on both a
length and a time scale for comparison (Fig. 8.8).

subplot(2,1,1), plot(CY,C(:,1),CY,C(:,2),CY,C(:,3))
xlabel('Centimeters'), ylabel('Intensity'), title('Color vs. Length')
subplot(2,1,2), plot(age,C(:,1),age,C(:,2),age,C(:,3))
xlabel('Years'), ylabel('Intensity'), title('Color vs. Age')

Th e interpolated color-intensity transects can now be further analyzed
using the time-series analysis tools. Th e analysis of a representative red-
color intensity transect across 70–250 varves during the project described

Fig. 8.8 Color-intensity curves (red, green and blue) plotted against a depth and b age.

a

b

356 8 IMAGE PROCESSING

above revealed significant peaks at about 13.1, 3.2, 2.2 and 1.0 yrs, suggesting
both ENSO and TAV infl uences in the area at around 33,000 years ago (see
Chapter 5 and Fig. 5.1).

 8.10 Grain Size Analysis from Microscope Images

Identifying, measuring and counting particles in an image are the classic
applications of image analysis. Examples from the geosciences include
grain size analysis, counting pollen grains, and determining the mineral
composition of rocks from thin sections. For grain size analysis the task is to
identify individual particles, measure their sizes, and then count the number
of particles per size class. Th e motivation to use image analysis is the ability to
perform automated analyses of large sets of samples in a short period of time
and at relatively low costs. Th ree diff erent approaches are commonly used to
identify and count objects in an image: (1) region-based segmentation using
the watershed segmentation algorithm, (2) object detection using the Hough
transform, and (3) thresholding using color diff erences to separate objects.
Gonzalez, Woods and Eddins (2009) describe these methods in great detail
in the 2nd edition of their excellent book, which also provides numerous
MATLAB recipes for image processing. Th e book has a companion webpage
at

http://www.imageprocessingplace.com/

that off ers additional support in a number of important areas (including
classroom presentations, M-fi les, and sample images) as well as providing
numerous links to other educational resources. We will use two examples
to demonstrate the use of image processing for identifying, measuring, and
counting particles. In this section we will demonstrate an application of
watershed segmentation in grain size analysis and then in Section 8.9 we will
introduce thresholding as a method for quantifying charcoal in microscope
images. Both applications are implemented in the MATLAB-based RADIUS
soft ware developed by Klemens Seelos from the University of Mainz (Seelos
and Sirocko 2005). RADIUS is a particle-size measurement technique, based
on the evaluation of digital images from thin sections that off ers a sub-mm
sample resolution and allows sedimentation processes to be studied within
the medium silt to coarse sand size range. It is coupled with an automatic
pattern recognition system for identifying sedimentation processes within
undisturbed samples. Th e MATLAB code for RADIUS can be downloaded
from

http://www.particle-analysis.info/

8.10 GRAIN SIZE ANALYSIS FROM MICROSCOPE IMAGES 357

Th e following example for object segmentation illustrates the segmentation,
measuring, and counting of objects using the watershed segmentation
algorithm (Fig. 8.9). We fi rst read an image of coarse lithic grains of diff erent
sizes and store it in the variable I1. Th e size of the image is 284-by-367 pixels
and, since the width is 3 cm, the height is 3 cm∙284/367=2.32 cm.

clear

I1 = imread('grainsize.tif');
ix = 3; iy = 284 * 3 / 367;
imshow(I1,'XData',[0 ix],'YData',[0 iy])
title('Original Image')

Here, ix and iy denote the coordinate axes used to calibrate the image I1 to
a centimeter scale. Th e true number of objects counted in this image is 236,
including three grains that overlap the borders of the image and will therefore
be ignored in the following exercise. We reject the color information of the
image and convert I1 to grayscale using the function rgb2gray.

I2 = rgb2gray(I1);
imshow(I2,'XData',[0 ix],'YData',[0 iy])
title('Grayscale Image')

Th is grayscale image I2 has a relatively low level of contrast. We therefore
use the function imadjust to adjust the image intensity values. Th e function
imadjust maps the values in the intensity image I2 to new values in I3, such
that 1% of the data is saturated at low and high intensities. Th is increases the
contrast in the new image I3.

I3 = imadjust(I2);
imshow(I3,'XData',[0 ix],'YData',[0 iy])
title('Adjusted Intensity Values')

We next determine the background of the I3 image, which means basically
the texture of the black foil on which the grains are located. Th e function
imopen(im,se) determines objects in an image im with a specifi c shape se
(a fl at structuring element such as a circular disk) and size (expressed as a
specifi c number of pixels), as defi ned by the function strel. We then produce
a background-free image, I4.

I4 = imopen(I3,strel('disk',1));
imshow(I4,'XData',[0 ix],'YData',[0 iy])
title('No Background')

We subtract the background-free image I4 from the original grayscale image
I3 to observe the background I5 that has been eliminated.

358 8 IMAGE PROCESSING

Fig. 8.9 Results from automated grain size analysis of a microscope image; a original
grayscale image, b image aft er removal of background, c image aft er conversion to binary
image, d image aft er eliminating objects overlapping the image border, e image with objects
detected by tracing the boundaries of connected pixels, and f image with objects detected
using a watershed segmentation algorithm.

a b

c

e f

d

8.10 GRAIN SIZE ANALYSIS FROM MICROSCOPE IMAGES 359

I5 = imsubtract(I3,I4);
imshow(I5,'XData',[0 ix],'YData',[0 iy])
title('Background')

Th e function im2bw converts the background-free image I4 to a binary
image I6 by thresholding. If the threshold is 1.0 the image is all black,
corresponding to the pixel value of 0. If the threshold is 0.0 the image is all
white, corresponding to a pixel value of 1. We manually change the threshold
value until we get a reasonable result and fi nd 0.2 to be a suitable threshold.

I6 = im2bw(I4,0.2);
imshow(I6,'XData',[0 ix],'YData',[0 iy])
title('Binary Image')

We next eliminate objects in I6 that overlap the image border, since they are
actually larger than shown in the image and will result in false estimates. We
eliminate these using imclearborder and generate image I7.

I7 = imclearborder(I6);
himage1 = imshow(I6,'XData',[0 ix],'YData',[0 iy]); hold on
set(himage1, 'AlphaData', 0.7);
himage2 = imshow(imsubtract(I6,I7),'XData',[0 ix],'YData',[0 iy]);
set(himage2, 'AlphaData', 0.4);
title('Image Border'), hold off

We then trace the boundaries using bwboundaries in a binary image where
non-zero pixels belong to an object and zero pixels are background. By
default, the function also traces the boundaries of holes in the I7 image.
We therefore choose the option noholes to suppress the tracing of the holes.
Function label2grb converts the label matrix L resulting from bwboundaries
to an RGB image. We use the colormap jet, the zerocolor w for white,
and the color order shuffle (which simply shuffl es the colors of jet in a
pseudorandom manner).

[B,L] = bwboundaries(I7,'noholes');
imshow(label2rgb(L,@jet,'w','shuffle'),...
 'XData',[0 ix],'YData',[0 iy])
title('Define Objects')

Th e function bwlabeln is used to obtain the number of connected objects
found in the binary image. Th e integer 8 defi nes the desired connectivity,
which can be either 4 or 8 in two-dimensional neighborhoods. Th e elements
of L are integer values greater than or equal to 0. Th e pixels labeled 0 are the
background. Th e pixels labeled 1 make up one object, the pixels labeled 2
make up a second object, and so on.

[labeled,numObjects] = bwlabeln(I7,8);

360 8 IMAGE PROCESSING

numObjects

In our example the method identifi ed 192 grains, which is signifi cantly less
than the 236 grains counted manually, reduced by the three objects that
overlap the borders of the image. Visual inspection of the color-coded image
generated by bwboundaries reveals the reason for the underestimated number
of grains. Two large grains in the middle of the image have been observed as
being connected, giving a single, very large grain in the fi nal result. Reducing
the disk size with strel from disk=1 to disk=5 can help separate connected
grains. Larger disks, on the other hand, reduce the number of grains because
smaller grains are lost by fi ltering. We now determine the areas of each of
the grains.

graindata = regionprops(labeled,'basic');
grainareas= [graindata(:).Area];
objectareas = 3^2 * grainareas * 367^(-2);

We then fi nd the maximum, minimum and mean areas for all grains in the
image, in cm2.

max_area = max(objectareas)
min_area = min(objectareas)
mean_area = mean(objectareas)

Th e connected grain in the middle of the image has a size of 0.16 cm2, which
represents the maximum size of all grains in the image. Finally, we plot the
histogram of all the grain areas.

clf
e = 0 : 0.0005 : 0.15;
histogram(objectareas,e)
xlabel('Grain Size in Millimeters^2')
ylabel('Number of Grains')
axis([0 0.1 0 30])

Several methods exist that partly overcome the artifact of connected
grains in grain size analyses. Th e most popular technique for region-based
segmentation is the watershed segmentation algorithm. Watersheds in
geomorphology are ridges that divide areas contributing to the hydrological
budget of adjacent catchments (see Section 7.10). Watershed segmentation
applies to grayscale images the same methods used to separate catchments
in digital elevation models. In this application, the grayscale values are
interpreted as elevations in a digital elevation model, where the watershed
then separates the two objects of interest.

Th e criterion commonly used to identify pixels that belong to one object
is the nearest-neighbor distance. We use the distance transform performed

8.10 GRAIN SIZE ANALYSIS FROM MICROSCOPE IMAGES 361

by bwdist, which assigns to each pixel a number that is the distance between
a pixel and the nearest non-zero pixel in I7. In an image in which objects
are identifi ed by pixel values of zero and the background by pixel values of
one, the distance transform has zeros in the background areas and non-zero
values that increase progressively with increasing distances from the edges
of the objects. In our example however, the objects have pixel values of one
and the background has pixels with with values of zero. We therefore have
to apply bwdist to the complement of the binary image I7 instead of to the
image itself.

D = bwdist(~I7,'cityblock');

Th e function bwdist provides several methods for computing the nearest-
neighbor distances, including Euclidean distances, cityblock distances,
chessboard distances and quasi-Euclidean distances. We choose the cityblock
option in this particular example, but other methods might be more
appropriate for separating objects in other images. Th e distance matrix now
contains positive non-zero values in the object pixels and zeros elsewhere.
We then complement the distance transform, and ascribe a value of -Inf to
each pixel that does not belong to an object.

D = -D;
D(~I7) = -Inf;

We compute the watershed transform for the distance matrix, and display
the resulting label matrix.

L2 = watershed(D);
imshow(label2rgb(L2,@jet,'w','shuffle'),...
 'XData',[0 ix],'YData',[0 iy])
title('Watershed Segmentation')

Aft er having displayed the results from watershed segmentation, we
determine the number of pixels for each object using the recipe from above,
except for index i running from 2 to max(objects) since the value 1 denotes
the background and 0 denotes the boundaries of the objects. Th e fi rst true
object is therefore marked by the value of 2.

objects = sortrows(L2(:),1);
max(objects)
clear objectsizes
for i = 2 : max(objects)
 clear individualobject
 individualobject = objects(objects == i);
 objectsizes(i) = length(individualobject);
end
objectsizes = objectsizes';

362 8 IMAGE PROCESSING

objectsizes = sortrows(objectsizes,1);
objectsizes = objectsizes(objectsizes~=0);

We have now recognized 205 objects, i.e., more objects than were identifi ed
in the previous exercise without watershed segmentation. Visual inspection
of the result, however, reveals some oversegmentation (due to noise or other
irregularities in the image) in which larger grains are divided into smaller
pieces. On the other hand, very small grains have been eliminated by fi ltering
the image with the morphological structuring element strel. We scale the
object sizes. Th e area of one pixel is (3 cm/367)2.

objectareas = 3^2 * objectsizes * 367^(-2);

We now determine the areas for each of the grains. We again fi nd the
maximum, minimum and mean areas for all grains in the image, in cm2.

max_area = max(objectareas)
min_area = min(objectareas)
mean_area = mean(objectareas)

Th e largest grain in the center of the image has a size of 0.09 cm2, which
represents the maximum size of all grains in the image. Finally, we plot the
histogram of all the grain areas.

clf
e = 0 : 0.0005 : 0.15;
histogram(objectareas,e)
xlabel('Grain Size in Millimeters^2'),...
 ylabel('Number of Grains')
axis([0 0.1 0 70])

As a check of the fi nal result we digitize the outline of one of the larger grains
and store the polygon in the variable data.

figure
imshow(I1,'XData',[0 ix],'YData',[0 iy])
data = ginput;

We close the polygon by copying the fi rst row of coordinates to the end of the
array. We then display the polygon on the original image.

data(end+1,:) = data(1,:)

imshow(I1,'XData',[0 ix],'YData',[0 iy]), hold on
plot(data(:,1),data(:,2)), hold off

Th e function polyarea yields the area of the large grain.

polyarea(data(:,1),data(:,2))

8.10 GRAIN SIZE ANALYSIS FROM MICROSCOPE IMAGES 363

ans =
 0.0951

Th e calculated area corresponds approximately to the result from the
grain size analysis. If oversegmentation is a major problem when using
segmentation to count objects in an image, the reader is referred to the book
by Gonzalez, Woods and Eddins (2009) that describes marker-controlled
watershed segmentation as an alternative method to avoid oversegmentation.

 8.11 Quantifying Charcoal in Microscope Images

Quantifying the composition of substances in geosciences, such as the
mineral composition of a rock in thin sections, or the amount of charcoal
in sieved sediment samples, is facilitated by the use of image processing
methods. Th resholding provides a simple solution to segmenting objects
within an image that have diff erent coloration or grayscale values. During the
thresholding process, pixels with an intensity value greater than a threshold
value are marked as object pixels (e.g., pixels representing charcoal in an
image) and the rest as background pixels (e.g., all other substances). Th e
threshold value is usually defi ned manually through visual inspection of the
image histogram, but numerous automated algorithms are also available.

As an example we analyze an image of a sieved lake-sediment sample
from Lake Nakuru, Kenya (Fig. 8.10). Th e image shows abundant light-gray
oval ostracod shells and some mineral grains, as well as gray plant remains
and black charcoal fragments. We use thresholding to separate the dark
charcoal particles and count the pixels of these particles aft er segmentation.
Aft er having determined the number of pixels for all objects distinguished
from the background by thresholding, we use a lower threshhold value to
determine the ratio of the number of pixels representing charcoal to the
number of pixels representing all particles in the sample, i.e., to determine
the percentage of charcoal in the sample.

We read the image of size 1500-by-1500 pixels and assume that the width
and the height of the square image are both one centimeter.

clear

I1 = imread('lakesediment.jpg');
ix = 1; iy = 1;
imshow(I1,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeter'), ylabel('Centimeter')
title('Original Image')

Th e RGB color image is then converted to a grayscale image using the
function rgb2gray.

364 8 IMAGE PROCESSING

I2 = rgb2gray(I1);
imshow(I2,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')
title('Grayscale')

Since the image contrast is relatively low, we use the function imadjust to
adjust the image intensity values. Th e function imadjust maps the values
in the intensity image I1 to new values in I2, such that 1% of the data is
saturated at low and high intensities of I2. Th is increases the contrast in the
new image I2.

I3 = imadjust(I2);
imshow(I3,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')
title('Better Contrast')

We next determine the background of the lithic grains, which basically
means the texture of the black foil on which the grains are located. Th e
function imopen(im,se) determines objects in an image im below a certain
pixel size and a fl at structuring element se, such as a disk with a radius of 5
pixels generated by the function strel. Th e variable I4 is the background-
free image resulting from this operation.

I4 = imopen(I3,strel('disk',5));
imshow(I4,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')
title('W/O Background')

We subtract the background-free image I4 from the original grayscale image
I3 to observe the background I5 that has been eliminated.

I5 = imsubtract(I3,I4);
imshow(I5,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')
title('Background')

Th e function im2bw converts the I4 image to a binary image (I6) by
thresholding. If the threshold is 1.0 the image is all black, corresponding to
a pixel value of 0. If the threshold is 0.0 the image is all white, corresponding
to a pixel value of 1. We manually change the threshold value until we get a
reasonable result. In our example a threshold of 0.03 gives good results for
identifying charcoal fragments.

I6 = im2bw(I4,0.03);
imshow(I6,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')
title('Only Charcoal')

8.11 QUANTIFYING CHARCOAL IN MICROSCOPE IMAGES 365

Fig. 8.10 Display of results from automatic quantifi cation of charcoal in a microscope image;
a original color image, b grayscale image, c image aft er enhancement of contrast, d image aft er
removal of background, e image aft er thresholding to separate charcoal particles, and f image
aft er thresholding to separate all objects.

a b

c

e f

d

366 8 IMAGE PROCESSING

Since we know the size of a pixel we can now simply count the number of
pixels to estimate the total amount of charcoal in the image. Finally, we
compute the area of all objects, including charcoal.

I7 = im2bw(I4,0.6);
imshow(I7,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')
title('All Objects')

We are not interested in the absolute areas of charcoal in the image but in the
percentage of charcoal in the sample.

100*sum(sum(I6==0))/sum(sum(I7==0))

ans =
 13.4063

Th e result suggests that approximately 13% of the sieved sample is charcoal.
As a next step, we could quantify the other components in the sample, such
as ostracods or mineral grains, by choosing diff erent threshold values.

 8.12 Shape-Based Object Detection in Images

Th e counting of objects within images on the basis of their shapes is a very
time-consuming task. Examples of where this is carried out for round objects
include the counting of planktonic foraminifera shells to infer past sea-
surface temperatures, of diatom frustules to infer past chemical composition
of lake water, and of pollen grains to determine assemblages that can be used
to reconstruct regional air temperature and precipitation. Linear objects that
are determined include faults in aerial photos and satellite images (to derive
the present-day stress fi eld of an area) and annual layers (varves) in thin
sections (to establish an annually-resolved sedimentary history).

Th e Hough transform, named aft er the related 1962 patent of Paul VC
Hough, is a popular technique with which to detect objects within images,
based on their shapes. Th e Hough transform was orginally used to detect
linear features, but soon aft er being patented it was generalized to identify
objects of any shape (Duda and Hart 1972, Ballard 1981). Th e book by
Gonzalez and others (2009) contains a comprehensive introduction to the
Hough transform and its applications for detecting objects within images.
According to their introduction to the method, the Hough transform is
performed in two steps. In the fi rst step an edge detector is used to extract
edge features, such as distinct sediment layers or the outlines of pollen grains,
from an image (Fig. 8.13). In the second step lines (or objects of any other
shape) that trace these edge features are identifi ed. Th e Image Processing

8.12 SHAPE-BASED OBJECT DETECTION IN IMAGES 367

Toolbox (MathWorks 2014) contains functions that use the Hough transform
to detect lines or circular objects.

Th e classic Hough transform is used to detect lines in images. Aft er
applying an edge detector of any kind we end up with a binary image that
has black pixels on the edges and white pixels in between. We next describe
the lines through a given black pixel by the Euklidean distance ρ between the
line and the origin, and by the angle θ of the vector from the origin to the
closest point on the line (Fig. 8.11 a):

Th e family of all lines passing through this particular pixel (xi,yi) of an edge
feature are displayed as a sinusoidal curve in the (θ,ρ) parameter space
(Fig. 8.11 b). Th e intersection point (θ',ρ') of two such sinusoidal curves
corresponds to the line that passes through two diff erent pixels, (x1,y1) and
(x2,y2), of an edge feature. Next, we search for n points (xi,yi) in the Hough
transform where many lines intersect, since these are points defi ning the line
tracing an edge feature. Detecting circles instead of lines works in a similar
manner, using the coordinates of the center of the circle and its radius instead
of ρ and θ.

For our a fi rst example we use these functions to detect the thin layers of
pure white diatomite within varved sediments exposed in the Quebrada de
Cafayate of Argentina, which have already been used as examples in previous
sections (Trauth et al. 1999, 2003) (Fig. 8.12). Th e quality of the image is not
perfect, which is why we can not expect optimal results. We fi rst read the
cropped version of the laminated sediment from Section 8.8 and store it in
the variable I1. Th e size of the image is 1,047-by-1,691 pixels, consisting of
three colors (red, green and blue).

clear

I1 = imread('varves_cropped.tif');
imshow(I1,'InitialMagnification',30)

We reject the color information of the image and convert I1 to grayscale
using the function rgb2gray.

I2 = rgb2gray(I1);
imshow(I2,'InitialMagnification',30)

We then use adapthisteq to perform a contrast-limited adaptive histogram
equalization (CLAHE), in order to enhance the contrast in the image
(Zuiderveld 1994).

368 8 IMAGE PROCESSING

Fig. 8.11 Th e concept of the Hough transform: a parametrization of lines in the xy-plane, and
b sinusoidal curves in the pθ parameter space, with the point of intersection corresponding to
the line that passes through two diff erent pixels of an edge feature (modifi ed from Gonzales
et al. 2009).

a b

I3 = adapthisteq(I2,'ClipLimit',0.1,'Distribution','Rayleigh');
imshow(I3,'InitialMagnification',30)

Here, ClipLimit limits the contrast enhancement using a real scalar from 0 to
1, with higher numbers resulting in greater contrast; the default value is 0.01.
Th e Distribution parameter defi nes the desired histogram shape for the tiles
by specifying a distribution type, such as Uniform, Rayleigh and Exponential.
Using a ClipLimit of 0.1 and a Rayleigh distribution yields good results.
Using the function im2bw then converts the I3 image to a binary image (I4) by
thresholding. If the threshold is 1.0 the image is all black, corresponding to
the pixel value of 0. If the threshold is 0.0 the image is all white, corresponding
to a pixel value of 1. We manually change the threshold value until we get a
reasonable result and fi nd 0.55 to be a suitable threshold.

I4 = im2bw(I3, 0.55);
imshow(I4,'InitialMagnification',30)

Th e function hough implements the Hough transform, houghpeaks fi nds
the high-count accumulator cells in the Hough transform, and houghlines
extracts lines in the original image, based on the other two functions. We
determine the n=15 lines corresponding to the fi rst 15 maxima of the Hough
transform and store fi ft een of the lines (lines 1 to 5, 6 to 10, and 11 to 15) in
three separate variables lines1, lines2 and lines3.

[H,theta,rho] = hough(I4);
peaks = houghpeaks(H,15);

8.12 SHAPE-BASED OBJECT DETECTION IN IMAGES 369

a b

c

e

d

Fig. 8.12 Automated detection of thin layers of pure white diatomite within varved sediments
exposed in the Quebrada de Cafayate of Argentina, using houghlines (Trauth et al. 1999,
2003); a grayscale image, b enhanced image, c binary image, d image with diatomite layers
marked by red lines, and e Hough transform of the image.

370 8 IMAGE PROCESSING

lines1 = houghlines(I4,theta,rho,peaks(1:5,:));
lines2 = houghlines(I4,theta,rho,peaks(6:10,:));
lines3 = houghlines(I4,theta,rho,peaks(11:15,:));

We then display the Hough transform and mark the 15 maxima of the Hough
transform with blue squares.

imshow(imadjust(mat2gray(H)),[], ...
 'XData',theta, ...
 'YData',rho, ...
 'InitialMagnification','fit')
colormap(hot), axis square, hold on
plot(theta(peaks(:,2)),rho(peaks(:,1)), ...
 'LineStyle','none', ...
 'Marker','s', ...
 'Color','b')
xlabel('\theta')
ylabel('\rho')
title('Hough Transform')

Th e variables lines1, lines2 and lines3 can now be used to display the
lines on the image, with the line thickness decreasing from lines3 to lines1
depending on the rank of the lines in the Hough transform.

imshow(I1,'InitialMagnification',30), hold on
for k = 1:length(lines1)
xy = [lines1(k).point1; lines1(k).point2];
plot(xy(:,1),xy(:,2),'LineWidth',3,'Color',[1 0 0]);
end
hold on
for k = 1:length(lines2)
xy = [lines2(k).point1; lines2(k).point2];
plot(xy(:,1),xy(:,2),'LineWidth',2,'Color',[1 0 0]);
end
for k = 1:length(lines3)
xy = [lines3(k).point1; lines3(k).point2];
plot(xy(:,1),xy(:,2),'LineWidth',1,'Color',[1 0 0]);
end

Th e result shows that the clearly recognizable white layers are well detected
whereas the less pronounced layers are not identifi ed. Th e method also
mistakenly marks non-existing lines on the image because of the low
quality of the image. Using a better quality image and carefully adjusting the
parameters used with the Hough transform will yield better results.

In the second example the Hough transform is used to automatically
count pollen grains in a microscope image of Argentine honey (Fig. 8.13).
Th e quality of the image is again not perfect, which is why we can not expect
optimum results. In particular, the image of three-dimensional objects was
taken with a very large magnifi cation, so it is slightly blurred. We fi rst read
the pollen image and store it in the variable I1. Th e size of the image is 968-

8.12 SHAPE-BASED OBJECT DETECTION IN IMAGES 371

by-1,060 pixels of three colors (red, green and blue). Since the image is
relatively large, we reduce the image size by a factor of two.

clear

I1 = imread('pollen.jpg');
I1 = I1(1:2:end,1:2:end,:);
imshow(I1,'InitialMagnification',100)

We reject the color information of the image and use the red color only.

I2 = I1(:,:,1);
imshow(I2,'InitialMagnification',100)

Next, we use adapthisteq to perform a contrast-limited adaptive histogram
equalization (CLAHE) in order to enhance the contrast in the image
(Zuiderveld 1994).

I3 = adapthisteq(I2);
imshow(I3,'InitialMagnification',100)

Th e function imfindcircles implements the Hough transform and extracts
circles from the original image.

[centers,radii] = imfindcircles(I3,[12 20],...
 'Method','TwoStage',...
 'ObjectPolarity','Bright',...
 'Sensitivity',0.92,...
 'EdgeThreshold',0.20);
num = length(centers);
nstr = ['Number of Pollen Grains: ',num2str(num)];

Herein we use the TwoStage detection method for a two-stage circular Hough
transform, following the procedure described by Yuen et al. (1990) and
Davies (2005). Th e object polarity is set to bright as we are looking for bright
rather than dark objects in our image. Th e sensitivity of 0.92 and the edge
threshold of 0.20 are found by trial and error. We then use viscircles to
display the circles on the grayscale image I2

imshow(I2,'InitialMagnification',100)
viscircles(centers, radii,'EdgeColor','b')
title(nstr)

using the output centers and radii from imfindcircles. Th e edge color of
the circles in the graphics is set to b for blue. Th e result shows that we have
counted 884 pollen grains with the method. Th e algorithm identifi es the
majority of the objects, but some are not recognized and some of the larger
objects are mistakenly identifi ed as two or more pollen grains. Using a better

372 8 IMAGE PROCESSING

quality image and carefully adjusting the parameters used with the Hough
transform will yield better results. Plotting the histogram of the pollen radii
using histogram

histogram(radii)

reveals that most of the grains have a radius of around 15 pixels.

 Recommended Reading

Abrams M, Hook S (2002) ASTER User Handbook – Version 2. Jet Propulsion Laboratory
and EROS Data Center, Sioux Falls

Ballard DH (1981) Generalizing the Houghtransform to detectarbitraryshapes. Pattern
Recognition 13:111–122

Barry P (2001) EO-1/Hyperion Science Data User’s Guide. TRW Space, Defense & Information
Systems, Redondo Beach, CA

Beck R (2003) EO-1 User Guide. USGS Earth Resources Observation Systems Data Center
(EDC), Sioux Falls, SD

Campbell JB (2002) Introduction to Remote Sensing. Taylor & Francis, London
Davies ER (2005) Machine Vision: Th eory, Algorithms, Practicalities – 3rd Edition. Morgan

Kauff man Publishers, Burlington MA
Duda RO, Hart PE (1972) Use of the Hough transform to Detect Lines and Curves in Pictures.

Communications of the ACM 15:11–15
Francus P (2005) Image Analysis, Sediments and Paleoenvironments – Developments in

Paleoenvironmental Research. Springer, Berlin Heidelberg New York

a b

Fig. 8.13 Automated detection of pollen grains (mostly Asteraceae and less abundant
Caesalpiniaceae and Lamiaceae pollen) in a microscope image of Argentine honey, using
imfindcircles (original image courtesy K Schittek and F Flores); a original RGB image, b
pollen grains detected using the Hough transform.

RECOMMENDED READING 373

Gonzalez RC, Woods RE, Eddins SL (2009) Digital Image Processing Using MATLAB – 2nd
Edition. Gatesmark Publishing, LLC

Hough PVC (1962) Method and Means for Recognizing Complex Patterns. US Patent No.
3069654

Irons J, Riebeek H, Loveland T (2011) Landsat Data Continuity Mission – Continuously
Observing Your World. NASA and USGS (available online)

Jensen JR (2013) Remote Sensing of the Environment: Pearson New International Edition.
Pearson, London

Lein JK (2012) Environmental Sensing – Analytical Techniques for Earth Observation.
Springer, Berlin Heidelberg New York

Mandl D, P Cruz, S Frye, Howard, J (2002) A NASA/USGS Collaboration to Transform Earth
Observing-1 Into a Commercially Viable Mission to Maximize Technology Infusion.
SpaceOps 2002, Houston, TX, October 9–12, 2002

Marwan N, Trauth MH, Vuille M, Kurths J (2003) Nonlinear time-series analysis on present-
day and Pleistocene precipitation data from the NW Argentine Andes. Climate Dynamics
21:317–326

MathWorks (2014) Image Processing Toolbox – User’s Guide. Th e MathWorks, Inc., Natick,
MA

Ochs B., Hair D, Irons J, Loveland T (2009) Landsat Data Continuity Mission, NASA and
USGS (available online)

Richards JA (2013) Remote Sensing Digital Image Analysis – 4th Edition. Springer, Berlin
Heidelberg New York

Seelos K, Sirocko F (2005) RADIUS – Rapid Particle Analysis of digital images by ultra-high-
resolution scanning of thin sections. Sedimentology 52:669–681

Trauth MH, Bookhagen B, Marwan N, Strecker MR (2003) Multiple landslide clusters
record Quaternary climate changes in the NW Argentine Andes. Palaeogeography
Palaeoclimatology Palaeoecology 194:109–121

Trauth MH, Alonso RA, Haselton KR, Hermanns RL, Strecker MR (2000) Climate change
and mass movements in the northwest Argentine Andes. Earth and Planetary Science
Letters 179:243–256

Trauth MH, Strecker MR (1999) Formation of landslide-dammed lakes during a wet
period between 40,000–25,000 yr B.P. in northwestern Argentina. Palaeogeography
Palaeoclimatology Palaeoecology 153:277–287

Yuen HK, Princen J, Illingworth J, Kittler J (1990) Comparative study of Hough transform
methods for circle fi nding. Image and Vision Computing 8:71–77

Zuiderveld K (1994) Contrast Limited Adaptive Histograph Equalization. Graphic Gems IV.
San Diego: Academic Press Professional, 474–485

374 8 IMAGE PROCESSING

 9.1 Introduction

Multivariate analysis aims to understand and describe the relationships
between an arbitrary number of variables. Earth scientists oft en deal
with multivariate data sets such as microfossil assemblages, geochemical
fi ngerprints of volcanic ash layers, or the clay mineral content of sedimentary
sequences. Such multivariate data sets consist of measurements of p variables
on n objects, which are usually stored in n-by-p arrays:

Th e rows of the array represent the n objects and the columns represent the
p variables. Th e characteristics of the 2nd object in the suite of samples are
described by the vector in the second row of the data array:

 9 Multivariate Statistics

 Miocene sedimentary rocks near the village
of Nachola, to the east of the Suguta Valley in
northern Kenya. Unmixing the composition
of such deposits using multivariate statistical
methods helps to determine the provenance
of the sediments and their temporal variations,
and hence changes in the relief, the drainage
network and the rainfall patterns.

� Springer-Verlag Berlin Heidelberg 2015
M.H. Trauth, MATLAB� Recipes for Earth Sciences,
DOI 10.1007/978-3-662-46244-7_9

375

As an example consider a set of microprobe analyses on glass shards from
volcanic ash layers in a tephrochronology project. Th e variables then
represent the p chemical elements and the objects are the n ash samples.
Th e aim of the study is to correlate ash layers by means of their geochemical
fi ngerprints.

Most multi-parameter methods simply try to overcome the main diffi culty
associated with multivariate data sets, which relates to data visualization.
Whereas the character of univariate or bivariate data sets can easily be
explored by visual inspection of a 2D histogram or an xy plot (Chapter
3), the graphical display of a three variable data set requires a projection
of the 3D distribution of data points onto a two-dimensional display. It is
impossible to imagine or display a higher number of variables. One solution
to the problem of visualization of high-dimensional data sets is to reduce
the number of dimensions. A number of methods group together highly-
correlated variables contained within the data set and then explore the
reduced number of groups.

Th e classic methods for reducing the number of dimensions are principal
component analysis (PCA) and factor analysis (FA). Th ese methods seek the
directions of maximum variance in a data set and use these as new coordinate
axes. Th e advantage of replacing the variables by new groups of variables is
that the groups are uncorrelated. Moreover, these groups can oft en assist in
the interpretation of a multivariate data set since they oft en contain valuable
information on the processes responsible for the distribution of the data
points. In a geochemical analysis of magmatic rocks the groups defi ned by
the method usually contain chemical elements with similar sized ions in
similar locations within the lattices of certain minerals. Examples include
Si4+ and Al3+, and Fe2+ and Mg2+, in silicates.

A second important suite of multivariate methods aims to group objects by
their similarity. As an example cluster analysis (CA) is oft en used to correlate
volcanic ash layers such as that used in the above example. Tephrochronology
attempts to correlate tephra by means of their geochemical fi ngerprints.
When combined with a few radiometric age determinations from the key
ash layers this method allows correlation between diff erent sedimentary
sequences that contain these ash layers (e.g., Westgate 1998, Hermanns et
al. 2000). Cluster analysis is also used in the fi eld of micropaleontology, for
example, to compare the pollen, foraminifera, or diatom content of diff erent
microfossil assemblages (e.g., Birks and Gordon 1985).

A third group of methods is concerned with the classifi cation of
observations. Humans tend to want to classify the things around them,

376 9 MULTIVARIATE STATISTICS

even though nature rarely falls into discrete classes. Classifi cation (or
categorization) is useful as it can, for example, help decision makers to take
necessary precautions to reduce risk, to drill an oil well, or to assign fossils
to a particular genus or species. Most classifi cation methods make decisions
based on Boolean logic with two options, true or false; an example is the use
of a threshold value for identifying charcoal in microscope images (Section
8.11). Alternatively, fuzzy logic (which is not explained in this book) is a
generalization of the binary Boolean logic with respect to many real world
problems in decision-making, where gradual transitions are reasonable
(Zadeh 1965, MathWorks 2014a).

Th e following sections introduce the most important techniques of
multivariate statistics: principal component analysis (PCA) and cluster
analysis (CA) in Sections 9.2 and 9.5, and independent component analysis
(ICA), which is a nonlinear extension of PCA, in Section 9.3. Section
9.4 introduces discriminant analysis (DA), which is a popular method
of classifi cation in earth sciences. Section 9.6. introduces multiple linear
regression. Th ese sections fi rst provide an introduction to the theory behind
the various techniques and then demonstrate their use for analyzing earth
sciences data, using MATLAB functions (MathWorks 2014b).

 9.2 Principal Component Analysis

Principal component analysis (PCA) detects linear dependencies between
variables and replaces groups of correlated variables with new, uncorrelated
variables referred to as the principal components (PCs). PCA was introduced
by Karl Pearson (1901) and further developed by Harold Hotelling (1931).
Th e performance of PCA is better illustrated with a bivariate data set than
with a multivariate data set. Figure 9.1 shows a bivariate data set that exhibits
a strong linear correlation between the two variables x and y in an orthogonal
xy coordinate system. Th e two variables have their individual univariate
means and variances (Chapter 3). Th e bivariate data set can be described by
the bivariate sample mean and the covariance (Chapter 4). Th e xy coordinate
system can be replaced by a new orthogonal coordinate system, where the
fi rst axis passes through the long axis of the data scatter and the new origin
is the bivariate mean. Th is new reference frame has the advantage that the
fi rst axis can be used to describe most of the variance, while the second axis
contributes only a small amount of additional information. Prior to this
transformation two axes were required to describe the data set, but it is now
possible to reduce the dimensions of the data by dropping the second axis
without losing very much information, as shown in Figure 9.1.

Th is process is now expanded to an arbitrary number of variables and

9.2 PRINCIPAL COMPONENT ANALYSIS 377

Fig. 9.1 Principal component analysis (PCA) illustrated for a bivariate scatter. Th e original xy
coordinate system is replaced by a new orthogonal system, where the fi rst axis passes through
the long axis of the data scatter and the new origin is the bivariate mean. We can now reduce
the number of dimensions by dropping the second axis with little loss of information.

samples. Assume a data set that consists of measurements of p variables on n
samples, stored in an n-by-p array.

Th e columns of the array represent the p variables and the rows represent the
n samples. Aft er rotating the axis and moving the origin, the new coordinates
Yj can be computed by

378 9 MULTIVARIATE STATISTICS

Th e fi rst principle component (PC1), which is denoted by Y1, contains the
highest variance, PC2 contains the second highest variance, and so forth.
All the PCs together contain the full variance of the data set. Th is variance
is, however, largely concentrated in the fi rst few PCs, which include most of
the information content of the data set. Th e last PCs are therefore generally
ignored to reduce the dimensions of the data. Th e factors aij in the above
equations are the principal component loads; their values represent the
relative contributions of the original variables to the new PCs. If the load
aij of a variable Xj in PC1 is close to zero then infl uence of this variable is
low, whereas a high positive or negative aij suggests a strong contribution.
Th e new values Yj of the variables computed from the linear combinations
of the original variables Xj, weighted by the loads, are called the principal
component scores.

PCA is commonly used as a method for unmixing (or separating) variables
X, which are a linear combination of independent source variables S

where A is the mixing matrix. PCA tries to determine (although not
quantitatively) both the source variables S (represented by the principal
components scores) and the mixing matrix A (represented by the principal
component loads). Unmixing such variables works best if the probability
distribution of the original variables X is a Gaussian distribution, and only in
such cases are the principal components completely decorrelated. However,
data in earth sciences are oft en not Gaussian distributed and alternative
methods, such as independent component analysis (ICA), should therefore
be used instead (Section 9.3). For example, radiance and refl ectance values
from hyperspectral data are oft en not Gaussian distributed and ICA is
therefore widely used in remote sensing applications to decorrelate the
spectral bands, rather than PCA. Examples in which PCA is used include
the assessment of sediment provenance (as described in the example below),
the unmixing of peridotite mantle sources of basalts, and multispectral
classifi cation of satellite images.

In the following example a synthetic data set is used to illustrate the use
of the function pca included in the Statistics Toolbox. Th irty samples were
taken from thirty diff erent levels in a sedimentary sequence containing
varying proportions of the three diff erent minerals stored in the columns
of the array x. Th e sediments were derived from three distinct rock types
(with unknown mineral compositions) whose relative contributions to each
of the thirty sediment samples are represented by s1, s2 and s3. Variations in
these relative contributions (as represented by the thirty values in s1, s2 and

9.2 PRINCIPAL COMPONENT ANALYSIS 379

s3) could, for example, refl ect climatic variability within the catchment area
of the sedimentary basin. It may therefore be possible to use the sediment
compositions in the array x (from which we calculate s1, s2 and s3 using a
PCA) to derive information on past variations in climate

We need to create a synthetic data set consisting of three measurements
representing the proportions of each of the three minerals in the each of
the thirty sediment samples. We fi rst clear the workspace, reset the random
number generator with rng(0) and create thirty values s1, s2 and s3. We use
random numbers with a Gaussian distribution generated using randn, with
means of zero and standard deviations of 10, 7 and 12.

clear

rng(0)
s1 = 10*randn(30,1);
s2 = 7*randn(30,1);
s3 = 12*randn(30,1);

We then calculate the varying proportions of each of the three minerals in
the thirty sediment samples by summing up the values in s1, s2 and s3, aft er
fi rst multiplying them by a weighting factor.

x(:,1) = 15.4+ 7.2*s1+10.5*s2+2.5*s3;
x(:,2) = 124.0-8.73*s1+ 0.1*s2+2.6*s3;
x(:,3) = 100.0+5.25*s1- 6.5*s2+3.5*s3;

Th e weighting factors, which together represent the mixing matrix in our
exercise, refl ect not only diff erences in the mineral compositions of the source
rocks, but also diff erences in the weathering, mobilization, and deposition of
minerals within sedimentary basins. Hence if two minerals have weighting
factors with diff erent signs, one could be (for example) the weathering
product of the other mineral, which would explain why their proportions in
the thirty sediment samples were anti-correlated. Alternatively, the diff erent
signs could indicate a dilution eff ect, i.e., if the proportions of one of the
minerals in the sediment samples remain constant but the proportions of
all other minerals vary in a similar way, they will be anti-correlated with
the proportions of the fi rst mineral. To complete the generation of the data
set, we add some Gaussian noise with a standard deviation of 3.8 to the
proportions of the minerals and save the result as sediment_1.txt.

x = x + 3.8*randn(size(x));

save sediments_1.txt x -ascii

Having seen how the sedimentary record was created and the dependencies

380 9 MULTIVARIATE STATISTICS

that exist within the data set, we will now pretend that we do not know the
relative contributions that the three source rocks made to the thirty sediment
samples. Instead, we have a record of the mineral contents of thirty sediment
samples stored in the fi le sediment_1.txt.

clear

x = load('sediments_1.txt');

Th e aim of the PCA is now to decipher the statistically independent
contribution of the three source rocks to the sediment compositions. We can
display the histograms of the data and see that they are not perfectly Gaussian
distributed, which means that we cannot expect a perfect unmixing result.

subplot(1,3,1), histogram(x(:,1))
subplot(1,3,2), histogram(x(:,2))
subplot(1,3,3), histogram(x(:,3))

We display the proportions of the three minerals in the thirty samples along
the sedimentary section. In this graphic we can see weak correlations and
anti-correlations between the proportions of the three minerals.

plot(x(:,1:3)), grid
legend('Min1','Min2','Min3')
xlabel('Sample ID')
ylabel('Quantity')

Before running the PCA we defi ne labels for the various graphics created
during the exercise. We number the samples 1 to 30, with the minerals being
identifi ed by four-character abbreviations Min1, Min2 and Min3.

for i = 1 : 30
 samples(i,:) = [sprintf('%02.0f',i)];
end
minerals = ['Min1';'Min2';'Min3'];

We can explore the correlations between the minerals in pairwise bivariate
scatter plots. We observe a strong negative correlation between the fi rst
and second mineral, a weak positive correlation between the fi rst and third
mineral, and a moderate negative correlation between the second and third
mineral.

subplot(1,3,1),
plot(x(:,1),x(:,2),'o')
xlabel('Mineral 1')
ylabel('Mineral 2')
subplot(1,3,2),
plot(x(:,1),x(:,3),'o')

9.2 PRINCIPAL COMPONENT ANALYSIS 381

Fig. 9.2 Correlation matrix containing Pearson’s correlation coeffi cients for each pair of
variables (for example, minerals in a sediment sample). Light colors represent strong positive
linear correlations, while dark colors represent negative correlations. Orange suggests no
correlation.

xlabel('Mineral 1')
ylabel('Mineral 3')
subplot(1,3,3),
plot(x(:,2),x(:,3),'o')
xlabel('Mineral 2')
ylabel('Mineral 3')

Th e correlation matrix provides a technique for exploring such dependencies
between the variables in the data set (i.e., the three minerals in our example).
Th e elements of the correlation matrix are Pearson’s correlation coeffi cients
(Chapter 4) for each pair of variables, as shown in Figure 9.2.

corrmatrix = corrcoef(x);
corrmatrix = flipud(corrmatrix);

imagesc(corrmatrix), colormap(hot), caxis([-1 1])
title('Correlation Matrix')
axis square, colorbar, hold
set(gca,'XTick',[1 2 3],...
 'XTickLabel',minerals,...
 'YTick',[1 2 3],...
 'YTickLabel',flipud(minerals))

Th is pseudocolor plot of the correlation coeffi cients confi rms the correlations

382 9 MULTIVARIATE STATISTICS

between the minerals revealed in the pairwise bivariate scatter plots, again
showing a strong negative correlation between the fi rst and second mineral
(r=–0.8184), a weak positive correlation between minerals 1 and 3 (r=0.3483),
and a moderate negative correlation between minerals 2 and 3 (r=–0.5557).
Th ese observed dependencies would lead us to expect interesting results
from the application of a PCA.

Various methods exist for scaling the original data before applying a PCA,
such as mean centering (using a mean equal to zero) or standardizing (using a
mean equal to zero and a standard deviation equal to one). We will, however
use the original data for computing the PCA. Th e output of the function
pca includes the principal component loads pcs, the scores newx, and the
variances variances. Th e loads pcs are weights (or weighting factors) that
indicate the extent to which the old variables (the minerals) contribute to the
new variables (the principal components, or PCs). Th e principal component
scores are the coordinates of the thirty samples in the new coordinate system
defi ned by the three principal components, PC1 to PC3 (stored in the three
columns of pcs), which we interpret as the three source rocks.

[pcs,newx,variances] = pca(x);

Th e loads of the three principal components PC1 to PC3 can be shown by
typing

pcs(:,1:3)

ans =
 0.6342 -0.5085 0.5825
 -0.6215 0.1130 0.7753
 0.4600 0.8536 0.2444

We observe that PC1 (fi rst column) has high positive loads in variables 1
and 3 (fi rst and third rows), and a high negative load in variable 2 (second
row). PC2 (second column) has a high negative load in variable 1 and a high
positive load in variable 3, while the load in variable 2 is close to zero. PC3
(third column) has high loads in variables 1 and 2, with the load in variable 3
being relatively low but also positive. We create a number of plots to visualize
the PCs:

subplot(1,3,1)
plot(1:3,pcs(:,1),'o'), axis([0.5 3.5 -1 1])
text((1:3)+0.2,pcs(:,1),minerals,'FontSize',14), hold
plot(0.5:3.5,zeros(4,1),'r'), title('PC 1')
subplot(1,3,2)
plot(1:3,pcs(:,2),'o'), axis([0.5 3.5 -1 1])
text((1:3)+0.2,pcs(:,2),minerals,'FontSize',14), hold
plot(0.5:3.5,zeros(4,1),'r'), title('PC 2')

9.2 PRINCIPAL COMPONENT ANALYSIS 383

subplot(1,3,3)
plot(1:3,pcs(:,3),'o'), axis([0.5 3.5 -1 1])
text((1:3)+0.2,pcs(:,3),minerals,'FontSize',14), hold
plot(0.5:3.5,zeros(4,1),'r'), title('PC 3')

Th e loads of the minerals and their relationships to the PCs can be used to
interpret the relative (not absolute) infl uences of the diff erent source rocks.
PC1 is characterized by strong positive contributions of minerals 1 and 3,
refl ecting a relatively strong infl uence of the fi rst rock type as a source of the
sediments. An opposite sign for the contribution of mineral 2 to the sediment
refl ects either diff erent mobilization processes for this mineral within
the catchment area, or a dilution eff ect. Th e second principal component
PC2 is also dominated by minerals 1 and 3, but with opposite signs, while
mineral 2 has relatively little infl uence. Th e third principal component PC3
is infl uenced by all three minerals, with the same sign. An alternative way to
plot of the loads is as a bivariate plot of two principal components. We ignore
PC3 at this point and concentrate on PC1 and PC2. Remember to either close
the fi gure window before plotting the loads or clear the fi gure window using
clf, in order to avoid integrating the new plot as a fourth subplot in the
previous fi gure window.

plot(pcs(:,1),pcs(:,2),'o'), hold on
text(pcs(:,1)+0.02,pcs(:,2),minerals,'FontSize',14)
plot([-1 1],[0 0],'r')
plot([0 0],[-1 1],'r')
xlabel('First Principal Component Loads')
ylabel('Second Principal Component Loads')
hold off

We can now observe in a single plot the same relationships that have
previously been shown in several graphics (Fig. 9.3). It is also possible to plot
the data set as functions of the new variables (the source rocks). Th is requires
the second output of pca, containing the principal component scores.

plot(newx(:,1),newx(:,2),'+'), hold on
text(newx(:,1)+2,newx(:,2),samples,'FontSize',14)
plot([-400 400],[0 0],'r')
plot([0 0],[-150 300],'r')
xlabel('First Principal Component Scores')
ylabel('Second Principal Component Scores')
hold off

Th is plot clearly defi nes groups of samples with similar infl uences, e.g.,
samples 19, 20 and 26, and possibly also sample 18. We next use the third
output from the function pca to compute the variances of the PCs.

percent_explained = 100*variances/sum(variances)

384 9 MULTIVARIATE STATISTICS

Fig. 9.3 Principal component loads suggesting that the PCs are infl uenced by diff erent
minerals. See text for detailed interpretation of the PCs.

percent_explained =
 72.4362
 22.7174
 4.8463

We see that more than 72% of the total variance is contained in PC1, and
about 22% is contained in PC2, while PC3 contributes very little to the total
variance of the data set (~5%). Th is means that most of the variability in the
data set can be described by just two new variables. As would be expected,
the two new variables do not correlate with each other, as illustrated by a
correlation coeffi cient between newx(:,1) and newx(:,2) that is close to zero.

corrcoef(newx(:,1),newx(:,2))

ans =
 1.0000 0.0000
 0.0000 1.0000

We can therefore plot the time series of the thirty samples as two independent
variables, PC1 and PC2, in a single plot.

plot(1:30,newx(:,1),1:30,newx(:,2))
grid, legend('PC1','PC2')
xlabel('Sample ID'), ylabel('Value')

Th is plot displays approximately 94% (72%+22%) of the variance contained
in the multivariate data set. According to our interpretation of PC1 and

9.2 PRINCIPAL COMPONENT ANALYSIS 385

PC2, this plot shows the variability in the relative contributions from the
two sources to the sedimentary column under investigation. Since we have
worked with a synthetic data set and the actual contribution of the three
source rocks to the sediment is known from

rng(0)
s1 = 10*randn(30,1);
s2 = 7*randn(30,1);
s3 = 12*randn(30,1);

we can estimate the quality of the result by comparing the initial variations
in s1, s2 and s3 with the (more or less) independent variables PC1, PC2 and
PC3 stored in the three columns of newx.

subplot(3,1,1)
plotyy(1:30,newx(:,1),1:30,s1), title('PC1')
subplot(3,1,2)
plotyy(1:30,-newx(:,2),1:30,s2), title('PC2')
subplot(3,1,3)
plotyy(1:30,newx(:,3),1:30,s3), title('PC3')

Th e sign and the amplitude cannot be determined quantitatively and
therefore, in this case, we change the sign of the second PC and use plotyy to
display the data on diff erent axes in order to compare the results. As we can
see, we have successfully unmixed the varying contributions of the source
rocks s1, s2 and s3 to the mineral composition of the sedimentary sequence.

Th e approach described above has been used to study the provenance of
the varved lake sediments described in the previous chapter (Section 8.9),
which were deposited around 33 kyrs ago in a landslide-dammed lake in
the Quebrada de Cafayate (Trauth et al. 2003). Th e provenance of the
sediments contained in the varved layers can be traced using index minerals
characteristic of the various possible source areas within the catchment.
A comparison of the mineral assemblages in the sediments with those of
potential source rocks within the catchment area indicates that Fe-rich
Tertiary sedimentary rocks exposed in the Santa Maria Basin were the source
of the red-colored basal portion of the varves. In contrast, metamorphic
rocks in the mountainous parts of the catchment area were the most likely
source of the relatively drab-colored upper part of the varves.

 9.3 Independent Component Analysis (by N. Marwan)

Principal component analysis (PCA) is the standard method for unmixing
(or separating) mixed variables (Section 9.2). Such analyses produce signals
that are linearly uncorrelated, and this method is also called whitening since

386 9 MULTIVARIATE STATISTICS

this property is characteristic of white noise. Although the separated signals
are uncorrelated, they can still be interdependent, i.e., they may retain a
nonlinear correlation. Th is phenomenon arises when, for example, the data
are not Gaussian distributed and the PCA consequently does not yield good
results. Th e independent component analysis (ICA) was developed for this
type of task; it separates the variables X into independent variables S, which
are then nonlinearly uncorrelated. Th e basis of an ICA, according to the
central limit theorem, is that the mixture of standardized random numbers
is Gaussian distributed. Th e ICA algorithms therefore use a criterion that
estimates how Gaussian the combined distribution of the independent
components is (Hyvärinen 1999). Th e less Gaussian this distribution, the
more independent the individual components.

According to the linear mixing model, p independent variables X are
linearly mixed in n measurements,

in which we are interested in the source variables S and the mixing matrix
A (see Section 9.2). For example we can imagine that we are at a party in
which a lot of people are carrying on independent conversations. We can
hear a mixture of these conversations but perhaps cannot distinguish them
individually. We could install some microphones and use these to separate
out the individual conversations: hence, this dilemma is sometimes known
as the cocktail party problem. Its correct term is blind source separation,
which is defi ned by

where WT is the separation matrix required to reverse the mixing and obtain
the original signals. In earth sciences we encounter similar problems, for
example, if we want to determine the relative contributions of diff erent
source rocks to basin sediments, as we did with the PCA but this time with
the possibility that there are nonlinear dependencies in the data and that
these are not Gaussian distributed (Section 9.2).

We again create a synthetic data set consisting of thirty measurements (the
proportions of each of the three minerals) from each of the thirty sediment
samples. In contrast to the PCA example, however, the temporal variation
in the source rocks is not Gaussian distributed but is uniformly distributed,
since we use rand instead of randn to create the pseudorandom numbers.

clear

9.3 INDEPENDENT COMPONENT ANALYSIS (BY N. MARWAN) 387

Fig. 9.4 Sample input for the independent component analysis. Th e relative proportions of
three minerals in 30 sediment samples refl ect temporal variations in the contributions from
three source rocks within the catchment of a sedimentary basin.

rng(0)
s1 = 10*rand(30,1);
s2 = 7*rand(30,1);
s3 = 12*rand(30,1);

We use the same mixing equation as in the PCA example to create the three
columns of x (corresponding to the three minerals) by linearly mixing the
source rocks s1, s2 and s3

x(:,1) = 15.4+ 7.2*s1+10.5*s2+2.5*s3;
x(:,2) = 124.0-8.73*s1+ 0.1*s2+2.6*s3;
x(:,3) = 100.0+5.25*s1- 6.5*s2+3.5*s3;

x = x + 3.8*randn(size(x));

save sediments_2.txt x -ascii

and save the data in the fi le sediments_2.txt (Fig. 9.4). Having created the
synthetic data set, the data stored in sediment_2.txt are loaded by typing

clear

x = load('sediments_1.txt');

We can display the histograms of the data to see that they are not Gaussian
distributed.

388 9 MULTIVARIATE STATISTICS

subplot(1,3,1), hist(x(:,1))
subplot(1,3,2), hist(x(:,2))
subplot(1,3,3), hist(x(:,3))

We then display the proportions of the minerals in the thirty samples as a
time series, in two separate plots.

plot(x(:,1:3)), grid
legend('Min1','Min2','Min3')
xlabel('Sample ID')
ylabel('Quantity')

We begin with the unmixing of the variables using the PCA. We calculate
the principal components pcs, the mixing matrix a_pca, and the whitening
matrix w_pca using

[pcs,newx,variances] = pca(x);
newx = newx./repmat(std(newx),length(newx),1);

a_pca = pcs*sqrt(diag(variances));
w_pca = inv(sqrt(diag(variances)))*pcs';

Th e pre-whitening reduces the unmixing into independent components (S)
to a problem of fi nding a suitable rotation matrix B that can be applied to the
variables XPC:

We need to fi nd a rotation matrix B such that the variables S have a completely
non-Gaussian distribution. Th ere are several possibilities for implementing
such a non-Gaussian criterion, such as minimizing or maximizing the excess
kurtosis,

because the excess kurtosis γ for normally distributed data is zero. Please
note that the excess kurtosis diff ers from the kurtosis: the excess kurtosis is
the kurtosis minus three, since the kurtosis of Gaussian-distributed data is
three (Section 3.2) but the excess kurtosis of such a distribution is zero. To
fi nd a B that ensures a minimum or maximum excess kurtosis, a learning
algorithm can be used that fi nds the fi xed points of the learning rule

9.3 INDEPENDENT COMPONENT ANALYSIS (BY N. MARWAN) 389

Th e FastICA algorithm by Hyvärinen (1999), which is based on a fi xed-
point iteration scheme, is an effi cient algorithm for solving this problem.
Th e learning rule is reduced in this example to the form

We begin with an initial rotation matrix B, which consists only of random
numbers.

B = orth(rand(3,3)-0.5);
BOld = zeros(size(B));

Th e iteration is continued until a divergence criterion div is reached. We
choose a value of zero for this criterion.

div = 0;

Th e fi xed-point iteration scheme consists of two steps: a symmetric
orthogonalization, and the application of the learning rule. Th e divergence
criterion div is updated with each iteration step and checked in order to stop
the iteration process as soon as the divergence criterion is reached. Since
MATLAB works with fl oating-point numbers, div will not actually reach
zero and we therefore allow (1-div) to fall below the fl oating-point relative
accuracy eps(1), or eps without input parameter 1 (since the default input for
eps is 1) which is about 2.2204e-16 and therefore close to zero (see Section
2.5).

while (1-div) > eps
 B = B*real(inv(B'*B)^(1/2));
 div = min(abs(diag(B'*BOld)));
 BOld = B;
 B = (newx'*(newx*B).^3)/length(newx)-3*B;
 sica = newx*B;
end

Finally, we compare the synthetic source rocks s1, s2 and s3 with the unmixed
variables IC1, IC2 and IC3 (Fig. 9.5).

rng(0)
s1 = 10*rand(30,1);
s2 = 7*rand(30,1);
s3 = 12*rand(30,1);

subplot(3,1,1)
plotyy(1:30,-sica(:,3),1:30,s1)
title('IC1')
subplot(3,1,2)
plotyy(1:30,sica(:,2),1:30,s2)

390 9 MULTIVARIATE STATISTICS

Fig. 9.5 Independent component analysis output. Th e ICA has identifi ed the source signals
almost perfectly, as the pairwise similarity of the original inputs and the independent
components suggests.

a

b

c

9.3 INDEPENDENT COMPONENT ANALYSIS (BY N. MARWAN) 391

title('IC2')
subplot(3,1,3)
plotyy(1:30,sica(:,1),1:30,s3)
title('IC3')

Th e ICA has identifi ed the source signals almost perfectly. We notice that the
descending order of the ICs is diff erent from the initial order of s1, s2 and
s3, which is due to the commutativity of addition. In real-world examples, of
course, the order of the ICs is not relevant. Furthermore, the exact sign and
amplitude does not match the original values and the ICA therefore yields
only semi-quantitative results, as was also the case for the PCA. Finally, we
can actually compute the mixing matrix a_ica and the separation matrix w_
ica using

a_ica = a_pca*B;
w_ica = B'*w_pca;

Th e mixing matrix a_ica can be used to estimate the proportions of the
separated variables in our measurements. Th e components aij of the mixing
matrix a_ica correspond to the principal component loads, as introduced in
Section 9.2. Th e FastICA package is available for MATLAB and can be found
on A. Hyvärinen’s webpage:

http://research.ics.aalto.fi/ica/fastica/

 9.4 Discriminant Analysis

Discriminant analysis helps to assign objects to established categories or
groups. Examples include the assignment of fossil specimens to established
genera or species, the identifi cation of rock types following mineralogical
(or chemical) analysis, and the mapping of vegetation types from satellite
images. Discriminant analysis is diff erent from simple classifi cation, which
does not defi ne the number of groups or categories prior to the analysis.

Th e classic example of a discriminant analysis in petrography is the QAPF
or Streckeisen diagram (Streckeisen 1974, 1976). Th is diagram categorizes
igneous rocks (especially plutonic rocks) by their percentages of quartz (Q),
alkali feldspar (including albite) (A), plagioclase (P), and feldsparthoids (F),
normalized a total of 100%. Th e QAPF diagram displays the percentages of
the four minerals in a double ternary plot, with QAP percentages in the upper
half of the graphics and FAP percentages in the lower half. Th e QAPF diagram
is commonly used by the International Union of Geological Sciences (IUGS)
to classify plutonic rocks: e.g., a plutonic rock with 50% quartz, 30% alkali
feldspar, 20% plagioclase and 0% feldsparthoids is termed a granite. Whereas
Albert Streckeisen’s defi nition of plutonic rocks represents compromises

392 9 MULTIVARIATE STATISTICS

between established usages in diff erent parts of the world (Streckeisen 1974,
1976), discriminant analysis is based solely on mathematical constraints for
the classifi cation of objects. Furthermore, discriminant analysis assumes
normality for the measured values within a class, which is probably not
a valid assumption for the Streckeisen classifi cation. Since normality is
important for the success of the method, the user must be careful to ensure
that this condition is actually met, especially when analyzing compositional
(closed) data (see also Section 9.5).

Discriminant analysis was fi rst introduced by Sir Ronald A. Fisher (1936)
to discriminate between two or more populations of fl owering plant. Th e fi rst
step involves determining the discriminant function Yi that best separate two
groups of objects described by the normally-distributed variables Xi

Th e parameters ai are determined to maximize the distance between the
multivariate means of the individual groups. In other words, we determine
ai such that the ratio of the distances between the means of the groups to
the distances between group members is high. In the second step, having
determined the discriminant function from a training set of objects, new
objects can be assigned to one group or the other. Using the Streckeisen
diagram, a rock sample is assigned to an established rock type such as granite
on the basis of the percentages of Q, A, P and F.

As an example we fi rst create a synthetic data set of granite rock samples,
described by two variables, x1 and x2. Th ese two variables could represent the
percentages of two chemical elements expressed as oxides (in weight percent).
Let us assume that we know from preliminary studies that these rock samples
come from three diff erent granites that were formed at diff erent times during
three separate magmatic events. Apart from natural inhomogeneities within
a granite intrusion, we can assume that the measured values from the granite
samples are normally distributed. In this example we will fi rst determine
the discriminant functions separating the three groups (or types of granite).
We then use the discriminant functions to assign rock samples (which were
collected during a subsequent fi eld campaign) to one of the three types of
granite.

We fi rst clear the workspace.

clear

We then reset the random number generator.

rng(0)

9.4 DISCRIMINANT ANALYSIS 393

Next, we generate a data set from the chemical compositions of the three
types of granite. Sixty granite samples were collected from each rock type
and chemically analyzed. Th e percentages of two chemical elements, x1 and
x2, we store in three variables data1, data2 and data3.

data1 = randn(60,2);
data1(:,1) = 3.4 + 1.2*data1(:,1);
data1(:,2) = 1.7 + 0.4*data1(:,2);

data2 = randn(60,2);
data2(:,1) = 5.5 + 1.8*data2(:,1);
data2(:,2) = 2.9 + 0.6*data2(:,2);

data3 = randn(60,2);
data3(:,1) = 3+ 1.8*data2(:,1);
data3(:,2) = 0.3 + 1.2*data2(:,2);

In order to defi ne the established categories (or classes) we create a character
array containing the labels for each pair of measurements using remap, which
creates 60 copies of each string Granite_1, Granite_2, and Granite_3 and stores
them in classes.

classes(1:60,1:9) = repmat('Granite_1',60,1);
classes(61:120,1:9) = repmat('Granite_2',60,1);
classes(121:180,1:9) = repmat('Granite_3',60,1);

We then vertically concatenate the three variables data1, data2 and data3 to
a single variable data.

data = [data1(:,1:2);data2(:,1:2);data3(:,1:2)];

We save the resulting synthetic data set in the binary fi le granite.mat.

save granite.mat

We have thus generated a synthetic data set from three groups of normally
distributed data. We can load the data set (as we would with any other real
data set) from the fi le granite.mat by typing

clear

load granite.mat

We then create a linear discriminant analysis classifi er using Classification
Discriminant.fit.

cls = ClassificationDiscriminant.fit(data,classes);

Th e function returns a discriminant analysis model for predictors data and

394 9 MULTIVARIATE STATISTICS

class labels classes. Th e layers of cls can be listed by typing

cls

resulting in the output

cls =
 ClassificationDiscriminant
 PredictorNames: {'x1' 'x2'}
 ResponseName: 'Y'
 ClassNames: [3x9 char]
 ScoreTransform: 'none'
 NObservations: 180
 DiscrimType: 'linear'
 Mu: [3x2 double]
 Coeffs: [3x3 struct]

Th e meaning of most fi elds in this output is obvious, except for ScoreTransform
which is either a function handle for transforming scores or a string
representing a built-in transformation function. We are not using the score
transform which is why it is set to none. Th e fi eld Mu contains the means of
the two variables from the three classes. Th e 3-by-3 structure Coeffs of the
three classes contains the coeffi cients of the linear classifi cation boundaries
between classes 1 and 2, and between classes 2 and 3. Typing

cls.Coeffs

results in the output

ans =
3x3 struct array with fields:
 DiscrimType
 Const
 Linear
 Class1
 Class2

which lists the discriminant type (linear in our example), the class names
of the pairs of classes i and j, and the two parameters Const and Linear
describing the classifi cation boundaries separating the two pairs of classes.
We can extract the parameters of the classifi cation boundaries by typing

K1 = cls.Coeffs(2,3).Const;
L1 = cls.Coeffs(2,3).Linear;
K2 = cls.Coeffs(1,2).Const;
L2 = cls.Coeffs(1,2).Linear;

and store them in new variables K1, L1, K2 and L2. We then store the bivariate
means by typing

9.4 DISCRIMINANT ANALYSIS 395

Mu1 = cls.Mu(1,:);
Mu2 = cls.Mu(2,:);
Mu3 = cls.Mu(3,:);

Finally, we display the result in a graphic using

h1 = axes('Box','On');
hold on

line(data1(:,1),data1(:,2),...
 'Marker','.','MarkerSize',8,...
 'LineStyle','None','MarkerEdgeColor','r')
line(data2(:,1),data2(:,2),...
 'Marker','.','MarkerSize',8,...
 'LineStyle','None','MarkerEdgeColor','b')
line(data3(:,1),data3(:,2),...
 'Marker','.','MarkerSize',8,...
 'LineStyle','None','MarkerEdgeColor','m')

line(Mu1(:,1),Mu1(:,2),...
 'Marker','o','MarkerEdgeColor','k',...
 'MarkerSize',8,'MarkerFaceColor','k')
line(Mu2(:,1),Mu2(:,2),...
 'Marker','o','MarkerEdgeColor','k',...
 'MarkerSize',8,'MarkerFaceColor','k')
line(Mu3(:,1),Mu3(:,2),...
 'Marker','o','MarkerEdgeColor','k',...
 'MarkerSize',8,'MarkerFaceColor','k')

h2 = legend('Granite 1','Granite 2','Granite 3',...
 'Location','SouthEast');

set(h2,'Box','Off')

f1 = @(x1,x2) K1 + L1(1)*x1 + L1(2)*x2;
h3 = ezplot(f1,[-5 12 0 5]);
set(h3,'Color','k')

f2 = @(x1,x2) K2 + L2(1)*x1 + L2(2)*x2;
h4 = ezplot(f2,[-5 10 0 5]);
set(h4,'Color','k')

title('Discriminant Analysis')

hold off

Th e graphic shows the members of the three classes (or types of granite) in
three diff erent colors, the two red lines separating the three classes and the
bivariate means of the classes (marked as red plus signs) (Fig. 9.6). A new
sample with the composition x1=5.2 and x2=3.5 can easily be assigned to the
class Granite 2.

h1 = axes('XLim',[-5 25],'YLim',[0 5],...

396 9 MULTIVARIATE STATISTICS

Fig. 9.6 Result of linear discriminant analysis, separating three types of granites (1, 2 and 3).

 'Box','On');
hold on

line(5.2,3.5,...
 'Marker','o','MarkerEdgeColor','b',...
 'MarkerSize',8,'MarkerFaceColor','b')

f1 = @(x1,x2) K1 + L1(1)*x1 + L1(2)*x2;
h3 = ezplot(f1,[-5 12 0 5]);
set(h3,'Color','k')

f2 = @(x1,x2) K2 + L2(1)*x1 + L2(2)*x2;
h3 = ezplot(f2,[-5 10 0 5]);
set(h3,'Color','k')

text(0,2,'Granite 1','Color','r')
text(-0.5,4,'Granite 2','Color','b')
text(10,4.5,'Granite 3','Color','m')

title('Discriminant Analysis')

hold off

Th e function ClassificationDiscriminant.fit also allows a quadratic
classifi er to be fi tted instead of the linear classifi er used in the example with
three types of granite (MathWorks 2014b).

9.4 DISCRIMINANT ANALYSIS 397

 9.5 Cluster Analysis

Cluster analysis creates groups of objects that are very similar to each other,
compared to other individual objects or groups of objects. It fi rst computes
the similarity or (alternatively) the dissimilarity (or distance) between all
pairs of objects and then ranks the groups according to their similarity or
distance, fi nally creating a hierarchical tree visualized as a dendrogram. Th e
grouping of objects can be useful in the earth sciences, for example when
making correlations within volcanic ash layers (Hermanns et al. 2000) or
comparing diff erent microfossil assemblages (Birks and Gordon 1985).

Th ere are numerous methods for calculating the similarity or (alternatively)
the dissimilarity (or distance) between two data vectors. Let us defi ne two
data sets consisting of multiple measurements on the same object. Th ese data
can be described by vectors:

Th e most popular measures of dissimilarity (or distance) between the two
sample vectors are:

• the Euclidian distance – Th is is simply the shortest distance between the
two points describing two measurements in the multivariate space:

 Th e Euclidian distance is certainly the most intuitive measure for
similarity. However, in heterogeneous data sets consisting of a number of
diff erent types of variables, a better alternative would be

• the Manhattan (or city block) distance – In the city of Manhattan, one must
follow perpendicular avenues rather than crossing blocks diagonally. Th e
Manhattan distance is therefore the sum of all diff erences:

Measures of similarity include

• the correlation similarity coeffi cient – Th is uses Pearson’s linear product-
moment correlation coeffi cient to compute the similarity of two objects:

398 9 MULTIVARIATE STATISTICS

 Th is measure is used if one is interested in the ratios between the variables
measured on the objects. However, Pearson’s correlation coeffi cient is
highly sensitive to outliers and should be used with care (see also Section
4.2).

• the inner-product similarity index – Normalizing the length of the data
vectors to a value of one and computing their inner product yields
another important similarity index that is oft en used in transfer function
applications. In this example a set of modern fl ora or fauna assemblages
with known environmental preferences is compared with a fossil sample,
in order to reconstruct past environmental conditions.

 Th e inner-product similarity varies between 0 and 1. A zero value suggests
no similarity and a value of one represents maximum similarity.

Th e second step in performing a cluster analysis is to rank the groups by
their similarity and to build a hierarchical tree, visualized as a dendrogram.
Most clustering algorithms simply link the two objects with the highest
level of similarity or dissimilarity (or distance). In the following steps, the
most similar pairs of objects or clusters are linked iteratively. Th e diff erence
between clusters, each made up of groups of objects, is described in diff erent
ways depending on the type of data and the application:

• K-means clustering uses the Euclidean distance between the multivariate
means of a number of K clusters as a measure of the diff erence between
the groups of objects. Th is distance is used if the data suggest that there is
a true mean value surrounded by random noise. Alternatively,

• K-nearest-neighbors clustering uses the Euclidean distance of the nearest
neighbors as measure of this diff erence. Th is is used if there is a natural
heterogeneity in the data set that is not attributed to random noise.

9.5 CLUSTER ANALYSIS 399

It is important to evaluate the data properties prior to the application of
a clustering algorithm. Th e absolute values of the variables should fi rst be
considered. For example a geochemical sample from volcanic ash might
show an SiO2 content of around 77% and a Na2O contents of only 3.5%, but
the Na2O content may be considered to be of greater importance. In such
a case the data need to be transformed so that they have means equal to
zero (mean centering). Diff erences in both the variances and the means are
corrected by standardizing, i.e., the data are standardized to means equal
to zero and variances equal to one. Artifacts arising from closed data, such
as artifi cial negative correlations, are avoided by using Aitchison’s log-ratio
transformation (Aitchison 1984, 1986). Th is ensures data independence
and avoids the constant sum normalization constraints. Th e log-ratio
transformation is

where xtr denotes the transformed score (i=1, 2, 3, …, d–1) of some raw
data xi. Th e procedure is invariant under the group of permutations of the
variables, and any variable can be used as the divisor xd.

As an exercise in performing a cluster analysis, the sediment data stored in
sediment_3.txt are loaded. Th is data set contains the percentages of various
minerals contained in sediment samples. Th e sediments are sourced from
three rock types: a magmatic rock containing amphibole (amp), pyroxene
(pyr) and plagioclase (pla), a hydrothermal vein characterized by the
presence of fl uorite (fl u), sphalerite (sph) and galena (gal), some feldspars
(plagioclase and potassium feldspars, ksp) and quartz, and a sandstone unit
containing feldspars, quartz and clay minerals (cla). Ten samples were taken
from various levels in this sedimentary sequence, each containing varying
proportions of these minerals. First, the distances between pairs of samples
can be computed. Th e function pdist provides many diff erent measures of
distance, such as the Euclidian or Manhattan (or city block) distance. We use
the default setting which is the Euclidian distance.

clear

data = load('sediments_3.txt');
Y = pdist(data);

Th e function pdist returns a vector Y containing the distances between
each pair of observations in the original data matrix. We can visualize the
distances in another pseudocolor plot.

imagesc(squareform(Y)), colormap(hot)

400 9 MULTIVARIATE STATISTICS

title('Euclidean distance between pairs of samples')
xlabel('First Sample No.')
ylabel('Second Sample No.')
colorbar

Th e function squareform converts Y into a symmetric, square format, so that
the elements (i,j) of the matrix denote the distance between the i and j
objects in the original data. We next rank and link the samples with respect
to the inverse of their separation distances using the function linkage.

Z = linkage(Y)

Z =
 2.0000 9.0000 0.0564
 8.0000 10.0000 0.0730
 1.0000 12.0000 0.0923
 6.0000 7.0000 0.1022
 11.0000 13.0000 0.1129
 3.0000 4.0000 0.1604
 15.0000 16.0000 0.1737
 5.0000 17.0000 0.1764
 14.0000 18.0000 0.2146

In this 3-column array Z, each row identifi es a link. Th e fi rst two columns
identify the objects (or samples) that have been linked, while the third
column contains the separation distance between these two objects. Th e fi rst
row (link) between objects (or samples) 1 and 2 has the smallest distance,
corresponding to the greatest similarity. In our example samples 2 and 9
have the smallest separation distance of 0.0564 and are therefore grouped
together and given the label 11, i.e., the next available index higher than the
highest sample index 10. Next, samples 8 and 10 are grouped to 12 since
they have the second smallest separation diff erence of 0.0730. Th e next row
shows that the new group 12 is then grouped with sample 1, which have
a separation diff erence of 0.0923, and so forth. Finally, we visualize the
hierarchical clusters as a dendrogram, which is shown in Figure 9.7.

dendrogram(Z);
xlabel('Sample No.')
ylabel('Distance')
box on

Clustering fi nds the same groups as the principal component analysis. We
observe clear groups consisting of samples 1, 2, 8, 9 and 10 (the magmatic
source rocks), samples 3, 4 and 5 (the hydrothermal vein), and samples 6 and
7 (the sandstone). One way to test the validity of our clustering result is to
use the cophenet correlation coeffi cient:

cophenet(Z,Y)

9.5 CLUSTER ANALYSIS 401

Fig. 9.7 Cluster analysis output. Th e dendrogram shows clear groups consisting of samples 1,
2, 8, 9 and 10 (the magmatic source rocks), samples 3, 4 and 5 (the magmatic dyke containing
ore minerals), and samples 6 and 7 (the sandstone unit).

ans =
 0.7579

Th e result is convincing since the closer this coeffi cient is to one, the better
the cluster solution.

 9.6 Multiple Linear Regression

In Chapter 4 linear regression models were introduced as a way of describing
the relationship between a dependent variable y and an independent variable
x. Th e dependent variable is also known as the response variable, and the
independent variable as the predictor variable. A multiple linear regression
model describes the relationship between a dependent (or response) variable
y, and n independent (or predictor) variables xi

where bi are the n+1 regression coeffi cients of the linear model. Th e linearity
in the term multiple linear regression refers to the fact that the response
variable is a linear function of the predictor variables. Th e regression
coeffi cients are estimated by minimizing the mean-squared diff erence
between the predicted and true values of the response variable y. As an
example that is commonly used in the earth sciences is the quality of crude
oil, which is assumed to be linearly dependent on the age of the sediment, the

402 9 MULTIVARIATE STATISTICS

burial depth, and temperature. In practice, the plausibility of the assumption
of linearity must fi rst be examined. If this assumption is probably true then
there are several methods of multiple linear regression available, some of
which are included in the Statistics Toolbox (Mathworks 2014b).

As a fi rst example we create a noise-free synthetic data set with three
variables Var1, Var2 and Var3. We wish to fi nd the infl uence of variables
Var1 and Var2 on variable Var3. Th e variables Var1 and Var2 are therefore the
predictor variables and the variable Var3 is the response variable. Th e linear
relationship between the response variable and the predictor variables is
Var3=0.2-52.0*Var1+276.0*Var2. Th e three variables Var1, Var2 and Var3 are
stored as columns 1, 2 and 3 in a single array data.

clear

rng(0)
data(:,1) = 0.3 + 0.03*randn(50,1);
data(:,2) = 0.2 + 0.01*randn(50,1);
data(:,3) = 0.2 ...
 - 52.0*data(:,1) ...
 + 276.0*data(:,2);

We create labels for the names of the samples and the names of the variables,
as we did in Section 9.2.

for i = 1 : size(data,1)
 samples(i,:) = [sprintf('%02.0f',i)];
end

variables = ['Var1';
 'Var2';
 'Var3'];

Th en we calculate the coeffi cients beta of the multiple linear regression
model using fitlm.

beta = fitlm(data(:,1:2),data(:,3),...
 'ResponseVar',variables(3,:),...
 'PredictorVars',variables(1:2,:))

Th e function fitlm uses a least mean-squares criterion to calculate beta. Th e
method calculates an F-statistic to test the null hypothesis that all regression
coeffi cients are zero and there is no relationship between the response and
predictor variables. Th e output of the function fitlm

beta =

Linear regression model:
 Var3 ~ 1 + Var1 + Var2

9.6 MULTIPLE LINEAR REGRESSION 403

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ __ _____ ______

 (Intercept) 0.2 0 Inf 0
 Var1 -52 0 -Inf 0
 Var2 276 0 Inf 0

Number of observations: 50, Error degrees of freedom: 47
Root Mean Squared Error: 0
R-squared: 1, Adjusted R-Squared 1
F-statistic vs. constant model: Inf, p-value = 0

fi rst recalls the linear regression model using the names of the response
variable and the predictor variables. It then displays a table with the regression
coeffi cient estimates for each predictor variable in the fi rst column, the
standard error, the F-statistic, and the p-values of the coeffi cient estimates.
Th e quality of the model is excellent as the p-value of the constant model, i.e.,
with no infl uence of predictor variables on the response variable, is zero, as
suggested in the last line of the comments below the table.

Since we have only three variables we can display the results in a three-
dimensional plot. We fi rst create a rectangular grid for the fi rst two variables
and then calculate the predicted values for the second variable using the
estimated regression coeffi cients. We then use surf to display the linear
regression plane of the model and line to plot the measurements as red
points, with a marker size of 30 points.

[Var1,Var2] = meshgrid(0.20:0.01:0.45,0.17:0.01:0.23);
Var3 = beta.Coefficients.Estimate(1) + ...
 beta.Coefficients.Estimate(2)*Var1 + ...
 beta.Coefficients.Estimate(3)*Var2;

surf(Var1,Var2,Var3,'FaceAlpha',0.2), hold on
line(data(:,1), data(:,2), data(:,3),...
 'LineStyle','none',...
 'Marker','.',...
 'MarkerSize',30)
grid on
view(70,30)
hold off

Since the data set is noise free the data points all lie on the linear regression
plane. Th is changes if we introduce normally-distributed noise with a
standard deviation of 2.4.

clear

rng(0)

404 9 MULTIVARIATE STATISTICS

data(:,1) = 0.3 + 0.03*randn(50,1);
data(:,2) = 0.2 + 0.01*randn(50,1);
data(:,3) = 0.2 ...
 - 52.0*data(:,1) ...
 + 276.0*data(:,2) ...
 + 2.4*randn(50,1);

for i = 1 : size(data,1)
 samples(i,:) = [sprintf('%02.0f',i)];
end

variables = ['Var1';
 'Var2';
 'Var3'];

Using fitlm again

beta = fitlm(data(:,1:2),data(:,3),...
 'ResponseVar',variables(3,:),...
 'PredictorVars',variables(1:2,:))

we see from the output

beta =

Linear regression model:
 Var3 ~ 1 + Var1 + Var2

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ ______ _______ __________

 (Intercept) 5.0222 6.9235 0.72538 0.47181
 Var1 -45.307 9.1424 -4.9557 9.7694e-06
 Var2 239.8 33.273 7.2071 3.969e-09

Number of observations: 50, Error degrees of freedom: 47
Root Mean Squared Error: 2.41
R-squared: 0.596, Adjusted R-Squared 0.579
F-statistic vs. constant model: 34.6, p-value = 5.68e-10

that the estimates of the regression coeffi cients (5.0222, -45.307, and 239.8)
do not exactly match those that were used to create the synthetic data
(0.2, -52.0, and 276.0). Furthermore, the p-value of the constant model
is signifi cantly higher than in the previous example, although it is still
very good, as suggested in the last line of the comments below the table.
Th e p-values of the individual regression coeffi cient remain low, however,
suggesting that both predictor variables Var1 and Var2 contribute equally to
the response variable Var3 at a 5% signifi cance level. We can again display the
results in a three-dimensional plot (Fig. 9.8)

9.6 MULTIPLE LINEAR REGRESSION 405

Movie
9.1

Fig. 9.8 Linear regression model for a synthetic data set with three variables and random
noise.

[Var1,Var2] = meshgrid(0.20:0.01:0.45,0.17:0.01:0.23);
Var3 = 5.0222 - 45.307*Var1 + 239.8*Var2;

surf(Var1,Var2,Var3,'FaceAlpha',0.2), hold on
line(data(:,1), data(:,2), data(:,3),...
 'LineStyle','none',...
 'Marker','.',...
 'MarkerSize',30)
grid on
view(70,30)
hold off

and observe some diff erences between the data and the regression plane if
we rotate the graph in three dimensions using the Rotate 3D tool on the
toolbar of the Figure Window.

As a second example we use laboratory data from the Sherwood Sandstone,
England, that suggest that intergranular permeability (as response variable)
is mainly infl uenced by porosity and matrix conductivity (as predictor
variables), while other variables have less infl uence. Th is example has been
previously discussed in detail in an article by Olorunfemi (1985) and was
used as an example in the textbook by Swan and Sandilands (1995). Th e data
for 40 rock samples from the Sherwood Sandstone were taken from M.O.
Olorunfemi’s publication and are stored in the fi le sherwoodsandstone.txt.
We load the data from the fi le by typing

406 9 MULTIVARIATE STATISTICS

clear

data = load('sherwoodsandstone.txt');

Th e fi ve columns of the array data contain the numerical values of the
petrophysical parameters permeability (in m/s), porosity (without physical
unit), matrix conductivity (in S/m), true formation factor (without physical
unit), and induced polarization (in %). We also load the sample IDs (from
Olorunfemi 1985) from the fi le sherwoodsandstone_samples.txt using
textscan:

fid = fopen('sherwoodsandstone_samples.txt');
samples = textscan(fid,'%s','Headerlines',8);
fclose(fid);

Th e sherwoodsandstone_samples.txt fi le contains 40 sample IDs, each with
fi ve characters including spaces that are used to make the length of the
sample IDs identical so that they fi t into the cell array samples. Th is cell
array contains only one cell, samples{1}, which in turn contains a 40-by-5
character array of the sample IDs. We next create another character array
that contains the variable names: Perm for permeability, Poro for porosity, MaCo
for matrix conductivity, TrFF for true formation factor, and InPo for induced
polarization.

variables = ['Perm';
 'Poro';
 'MaCo';
 'TrFF';
 'InPo'];

We then display the variables in a plot that includes a legend and has the
data points labeled with the sample IDs. We use random colors for the data
points, with the random number generator fi rst set to a seed value of 0. Since
the values of the variables are very small we plot the logarithm of the values
instead of the true values.

rng(0)
for i = 1:size(data,2)
 rcolor = rand(1,3);
 line(log(data(:,i)),1:40,...
 'Marker','Square','MarkerEdgeColor',rcolor,...
 'MarkerSize',8,'MarkerFaceColor',rcolor,...
 'LineStyle',':','Color',rcolor)
 text(log(data(:,i))+0.1,1:40,samples{1})
end
legend(variables)

We then calculate the coeffi cients beta of the multiple linear regression

9.6 MULTIPLE LINEAR REGRESSION 407

model using fitlm.

beta = fitlm(data(:,2:5),data(:,1),...
 'ResponseVar',variables(1,:),...
 'PredictorVars',variables(2:5,:))

Th e function fitlm uses a least mean-squares criterion to calculate beta. Th e
output of the function fitlm

beta =

Linear regression model:
 Perm ~ 1 + Poro + MaCo + TrFF + InPo

Estimated Coefficients:
 Estimate SE tStat pValue
 ________ _______ ________ ________

 (Intercept) 0.15868 7.5546 0.021005 0.98336
 Poro 50.636 18.714 2.7058 0.010458
 MaCo -330.9 150.51 -2.1986 0.034609
 TrFF -0.17857 0.18537 -0.96329 0.34201
 InPo -0.45263 0.50101 -0.90344 0.37247

Number of observations: 40, Error degrees of freedom: 35
Root Mean Squared Error: 2.68
R-squared: 0.483, Adjusted R-Squared 0.424
F-statistic vs. constant model: 8.18, p-value = 9.07e-05

fi rst recalls the linear regression model using the names of the response
variable and the predictor variables. It then displays a table with the regression
coeffi cient estimates for each predictor variable in the fi rst column, the
standard error, the t-statistic, and the p-values of the coeffi cient estimates.
Th e quality of the model is good as the p-value of the constant model (i.e.,
with no infl uence of predictor variables on the response variable) is very low,
as the last line of the comments below the table suggests. Th e p-values of the
individual regression coeffi cient estimates suggests that only the porosity and
matrix conductivity infl uence the permeability of the Sherwood Sandstone,
at a 5% signifi cance level.

Th ere are multiple ways to examine the quality of the result. Th e Statistics
Toolbox includes several functions for displaying diagnostic plots to identify
and remove outliers from the data set. We can, for instance, produce a
leverage plot of the data and the model by typing

plotDiagnostics(beta)

Th e leverage plot displays the leverage that an individual measurement has
when added to the regression model, assuming that all other measurements

408 9 MULTIVARIATE STATISTICS

are already in the model. Th e plot also displays a horizontal dashed line that
is not explained in the User’s Guide of the Statistics Toolbox (MathWorks
2014b). Information regarding this dashed line can, however, be found in the
R2013 Release Notes and the M-fi le of the function LinearModel

edit LinearModel.fit

where the regression diagnostics are explained in detail from line 126
onward. According to this information, the average value of leverage is
the ratio between the number of regression coeffi cients and the number of
measurements

size(data,2)/size(data,1)

which in this particular example yields

ans =
 0.1250

Observations with leverage values larger than twice this ratio

2*size(data,2)/size(data,1)

which yields

ans =
 0.2500

are considered to have high leverage, and are all measurements above the
dashed line at 0.250. In our example there are two points with leverages
greater than 0.250, one in row 11 of the array and the other in row 22. We
can obtain the IDs of these samples by typing

samples{1}(11)
samples{1}(22)

which yields

ans =
 'HF14'

ans =
 'HF49'

Th e leverage plot does not reveal whether or not the high-leverage points
are outliers. We can instead calculate and display the Cook’s distance of each
data point

plotDiagnostics(beta,'cookd')

9.6 MULTIPLE LINEAR REGRESSION 409

which is the change in the residuals of a model if this specifi c data point is
removed. Th e larger the Cook’s distance of a particular data point the more
likely it is to be an outlier. Th e diagnostic plot again displays a dashed line,
which marks a recommended threshold of three times the mean Cook’s
distance

3*mean(mdl.Diagnostics.CooksDistance)

which yields

ans =
 0.1144

According to this plot there are three data points above the critical value
marked by the dashed line, one each in rows 22, 27 and 35. Since the data
point HF49 in the 22nd row also has a high leverage on the model it should
be removed as an outlier and the improved model then run. We can also
examine the residuals of the model using

plotResiduals(beta)

which suggests that the measurements above 9 are outliers. As the last
diagnostic plot in this exercise we display the normal probability plot of the
residuals

plotResiduals(beta,'probability')

where the black line represents the probability of the residuals in the case
of an ideal normal distribution. In our example, the tails of the normal
distribution plot of the residuals do not match a normal distribution and
our linear regression model is therefore good (but not perfect) without
having removed the outliers. Th e regression coeffi cients calculated from the
regression analysis (including the outliers) are, however, similar to those
reported on page 347 of Swan and Sandilands (1995).

Th e linear regression model can now be used to predict the permeability
of a new sample from the values of the other petrophysical parameters. Th e
eff ect that each predictor variable has on the model can be examined using
one of several functions included in the Statistics Toolbox. As an example

plotSlice(beta)

yields a slice plot of the responses displaying each predictor variable separately.
Within this plot we can drag the lines or insert values for the individual
predictor variables and examine the resulting value of the response variable.

410 9 MULTIVARIATE STATISTICS

 Recommended Reading

Aitchison J (1984) Th e Statistical Analysis of Geochemical Composition. Mathematical
Geology 16(6):531–564

Aitchison J (1999) Logratios and Natural Laws in Compositional Data Analysis. Mathematical
Geology 31(5):563–580

Birks HJB, Gordon AD (1985) Numerical Methods in Quaternary Pollen Analysis. Academic
Press, London

Brown CE (1998) Applied Multivariate Statistics in Geohydrology and Related Sciences.
Springer, Berlin Heidelberg New York

Fisher RA (1936) Th e use of multiple measurements in taxonomic problems. Annals of
Eugenics 7:179–188

Härdle WK, Simar L (2012) Applied Multivariate Statistical Analysis. Springer, Berlin
Heidelberg New York

Hermanns R, Trauth MH, McWilliams M, Strecker M (2000) Tephrochronologic Constraints
on Temporal Distribution of Large Landslides in NW-Argentina. Journal of Geology
108:35–52

Hotelling H (1931) Analysis of a Complex of Statistical Variables with Principal Components.
Journal of Educational Psychology 24(6):417–441

Hyvärinen A (1999) Fast and Robust Fixed-Point Algorithms for Independent Component
Analysis. IEEE Transactions on Neural Networks 10(3):626–634

MathWorks (2014a) Fuzzy Logic Toolbox – User’s Guide. Th e MathWorks, Inc., Natick, MA
MathWorks (2014b) Statistics Toolbox – User’s Guide. Th e MathWorks, Inc., Natick, MA
Olorunfemi MO (1985) Statistical Relationships Among Some Formation Parameters for

Sherwood Sandstone, England. Mathematical Geology 17:845–852
Pawlowsky-Glahn V (2004) Geostatistical Analysis of Compositional Data – Studies in

Mathematical Geology. Oxford University Press, Oxford
Pearson K (1901) On lines and planes of closest fi t to a system of points in space. Philosophical

Magazine and Journal of Science 6(2):559–572
Reyment RA, Savazzi E (1999) Aspects of Multivariate Statistical Analysis in Geology. Elsevier

Science, Amsterdam
Streckeisen A (1976) To each plutonic rock its proper name. Earth-Science Reviews 12:1–33
Swan ARH, Sandilands M (1995) Introduction to Geological Data Analysis. Blackwell

Sciences, Oxford
Trauth MH, Bookhagen B, Mueller A, Strecker MR (2003) Erosion and climate change in

the Santa Maria Basin, NW Argentina during the last 40,000 yrs. Journal of Sedimentary
Research 73 (1):82–90

Westgate JA, Shane PAR, Pearce NJG, Perkins WT, Korisettar R, Chesner CA, Williams MAJ,
Acharyya SK (1998) All Toba Tephra Occurrences Across Peninsular India Belong to the
75,000 yr BP Eruption. Quaternary Research 50:107–112

Zadeh L (1965) Fuzzy sets. Information Control 8:338–353

RECOMMENDED READING 411

 10.1 Introduction

Methods for analyzing circular and spherical data are widely used in earth
sciences. For instance, structural geologists measure and analyze the
orientation of slickensides (or striae) on fault planes. Circular statistics is
also common in paleomagnetic applications. Microstructural investigations
include the analysis of grain shapes and quartz c-axis orientations in thin
sections. Paleoenvironmentalists also reconstruct paleocurrent directions
from fossil alignments (Fig. 10.1). Th ere are theoretically two types of
directional data in earth sciences: directional data sensu stricto, and oriented
data. Directional data, such as the paleocurrent direction of a river as
documented by fl ute marks, or the fl ow direction of a glacier as indicated by
glacial striae, have a true polarity. Oriented data describe axial data and lines,
such as the orientation of joints, without any sense of direction.

Th ere are a number of useful publications available on the statistical
analysis of directional data, such as the books by Fisher (1993) and Mardia
and Jupp (2000), and the chapters on the subject in books by Swan and
Sandilands (2000), Davis (2002), and Borradaile (2003). Furthermore,
Chapter 9 of the book by Middleton (1999) and two journal articles by

 10 Directional Data

 Orthoceras fossils from an outcrop at Neptuni
Acrar near Byxel krok on Öland, Sweden.
Orthoceras is a cephalopod with a straight
shell that lived in the Ordovician era, about
450 million years ago. A statistical analysis of
cephalopod orientations at Neptuni Acrar has
revealed a signifi cant southerly paleocurrent
direction, which is in agreement with
paleogeographic reconstructions.

� Springer-Verlag Berlin Heidelberg 2015
M.H. Trauth, MATLAB� Recipes for Earth Sciences,
DOI 10.1007/978-3-662-46244-7_10

413

Fig. 10.1 Orthoceras fossils from an outcrop at Neptuni Acrar near Byxelkrok on Öland,
Sweden. Orthoceras is a cephalopod with a straight shell that lived in the Ordovician era, about
450 million years ago. Such elongated, asymmetric objects tend to orient themselves in the
hydrodynamically most stable position and therefore indicate paleocurrent directions. Th e
statistical analysis of cephalopod orientations at Neptuni Acrar reveals a signifi cant southerly
paleocurrent direction, which is in agreement with the paleogeographic reconstructions.

Jones (2006a, b) discuss the use of MATLAB® for the statistical analysis of
directional data. MATLAB is not the fi rst choice for analyzing directional
data since it does not provide the relevant functions, such as algorithms to
compute the probability distribution function of a von Mises distribution,
or to run a Rayleigh’s test for the signifi cance of a mean direction. Earth
scientists have therefore developed numerous stand-alone programs with
which to analyze such data, e.g., the excellent soft ware developed by Rick
Allmendinger:

http://www.geo.cornell.edu/geology/faculty/RWA/programs.html

Th e following tutorial on the analysis of directional data is independent of
these tools. It provides simple MATLAB codes to display directional data, to
compute the von Mises distribution, and to run simple statistical tests. Th e
fi rst section introduces rose diagrams as the most widely used method to
display directional data (Section 10.2). With a similar concept to Chapter

414 10 DIRECTIONAL DATA

Fig. 10.2 Rose diagram to display directional data using the function rose. Th e radii of
the area segments are proportional to the frequencies for each class. We using rose with
view(90,-90), so that 0° points due north and 90° points due east, i.e., the angles increase in
a clockwise direction.

3 on univariate statistics, the next sections are then on the use of empirical
and theoretical distributions to describe directional data (Sections 10.3 and
10.4). Th e last three sections then describe the three most important tests
for directional data, these being the tests for randomness of directional data
(Section 10.5), for the signifi cance of a mean direction (Section 10.6), and for
the diff erence between two sets of directional data (Section 10.7).

 10.2 Graphical Representation

Th e classic way to display directional data is the rose diagram. A rose
diagram is a histogram for measurements of angles. In contrast to a bar
histogram with the height of the bars proportional to frequency, the rose
diagram comprises segments of a circle, with the radius of each sector being
proportional to the frequency. We use synthetic data to illustrate two types
of rose diagram that are used to display directional data. We load a set of
directional data from the fi le directional_1.txt.

clear

data_degrees_1 = load('directional_1.txt');

10.2 GRAPHICAL REPRESENTATION 415

Fig. 10.3 Modifi ed rose diagram to display directional data using the function rose_sqrt.
Th e plot scales the rose diagram to the square root of the class frequency. Th e area of the arc
segments then increases with frequency.

Th e data set contains forty measurements of angles, in degrees. We use
the function rose(az,nb) to display the data. Th e function plots an angle
histogram for the angles az in radians, where nb is the number of classes.
However, since the original data are in degrees we need to convert all
measurements to radians before we plot the data.

data_radians_1 = pi*data_degrees_1/180;
rose(data_radians_1,12)

Th e function rose counts in a counterclockwise direction, with zero degrees
lying along the x-axis of the coordinate graph. In geosciences, however, 0°
points due north, 90° points due east, and the angles increase in a clockwise
direction. Th e command view rotates the plot by +90° (the azimuth) and
mirrors the plot by –90° (the elevation) (Fig. 10.2).

rose(data_radians_1,12)
view(90,-90)

Th e area of the arc segments increases with the square of the frequency. In
a modifi cation the rose diagram is therefore scaled to the square root of the
class frequency. Th e function rose does not allow plotting of the square root
of the frequencies by default, but the corresponding fi le rose.m can be easily

416 10 DIRECTIONAL DATA

Movie
10.1

modifi ed as follows. Aft er the histogram of the angles is computed in line 57
using the function histc, add a line with the command nn = sqrt(nn), which
computes the square root of the frequencies nn. Save the modifi ed function
as fi le rose_sqrt.m and apply the new function to the data set.

rose_sqrt(data_radians_1,12)
view(90,-90)

Th is plot satisfi es all conventions in geosciences (Fig. 10.3).

 10.3 Empirical Distributions

Th is section introduces statistical measures used to describe empirical
distributions of directional data. Th e characteristics of directional data
are described by measures of central tendency and dispersion, similar to
the statistical characterization of univariate data sets (Chapter 3). Assume
that we have collected a number of angular measurements such as fossil
alignments. Th e collection of data can be written as

containing N observations θi. Sine and cosine values are computed for each
direction θi to compute the resultant or mean direction for the set of angular
data (Fisher 1993, Mardia and Jupp 2000).

Th e resultant direction of the data set is

θ = −tan (/)1 x yr r

Th e length of the resultant is

Th e resultant length clearly depends on the dispersion of the data.
Normalizing the resultant length to the number of observations yields the
mean resultant length.

10.3 EMPIRICAL DISTRIBUTIONS 417

Movie
10.2

Fig. 10.4 Th e resultant length R of a sample decreases with increasing dispersion of the data
θi.

Th e value of the mean resultant length decreases with increasing dispersion
(Fig. 10.4). Th e diff erence between one and the mean resultant length is
therefore oft en used as a measure of dispersion for directional data,

which is the circular variance.
Th e following example illustrates the use of these parameters by means of

synthetic directional data. We fi rst load the data from the fi le directional_1.
txt and convert all measurement to radians.

clear

data_degrees_1 = load('directional_1.txt');
data_radians_1 = pi*data_degrees_1/180;

We now calculate the resultant vector R. Firstly, we compute the x and y
components of the resultant vector.

x_1 = sum(sin(data_radians_1))
y_1 = sum(cos(data_radians_1))

x_1 =
 -24.3898

y_1 =
 -25.9401

Th e mean direction is the inverse tangent of the ratio of x and y.

mean_radians_1 = atan(x_1/y_1)
mean_degrees_1 = 180*mean_radians_1/pi

418 10 DIRECTIONAL DATA

mean_radians_1 =
 0.7546

mean_degrees_1 =
 43.2357

Th is result suggests that the resultant vector R is around 0.75 radians or 43°.
However, since both x and y are negative, the true value of mean_degrees is
located in the third quadrant and we therefore add 180°

mean_degrees_1 = mean_degrees_1 + 180

mean_degrees_1 =
 223.2357

which results in a mean direction of around 223°. Th e length of this vector is
the absolute value of the vector, which is

R_1 = sqrt(x_1^2 + y_1^2)

R_1 =
 35.6055

Th e resultant length depends on the dispersion of the directional data.
Normalizing the resultant length to the sample size yields the mean resultant
length Rm of

Rm_1 = R_1 / (length(data_radians_1))

Rm_1 =
 0.8901

A high Rm value suggests less variance. We then compute the circular variance
sigma, which is

sigma_1 = 1 - Rm_1

sigma_1 =
 0.1099

 10.4 Theoretical Distributions

As in Chapter 3, the next step in a statistical analysis is to fi nd a suitable
theoretical distribution that we fi t to the empirical distribution visualized
and described in the previous section. Th e classic theoretical distribution
to describe directional data is the von Mises distribution, named aft er
the Austrian mathematician Richard Edler von Mises (1883–1953). Th e
probability density function of a von Mises distribution is

10.4 THEORETICAL DISTRIBUTIONS 419

Fig. 10.5 Probability density function f(x) of a von Mises distribution with μ=0 and fi ve
diff erent values for κ.

where μ is the mean direction and κ is the concentration parameter (Mardia
and Jupp 2000) (Fig. 10.5). I0(κ) is the modifi ed Bessel function of fi rst
kind and order zero. Th e Bessel functions are solutions of a second-order
diff erential equation (Bessel’s diff erential equation) and are important in
many problems of wave propagation in a cylindrical waveguide, and of
heat conduction in a cylindrical object. Th e von Mises distribution is also
known as the circular normal distribution since it has similar characteristics
to a normal distribution (Section 3.4). Th e von Mises distribution is used
when the mean direction is the most frequent direction. Th e probability of
deviations is equal on either side of the mean direction and decreases with
increasing distance from the mean direction.

As an example let us assume a mean direction of mu=0 and fi ve diff erent
values for the concentration parameter kappa.

clear

420 10 DIRECTIONAL DATA

mu = 0; kappa = [0 1 2 3 4]';

We fi rst defi ne an angle scale for a plot that runs from –180 to 180 degrees,
with intervals of one degree.

theta = -180:1:180;

All angles are converted from degrees to radians.

mu_radians = pi*mu/180;
theta_radians = pi*theta/180;

We then compute the von Mises distribution for these values. Th e formula
uses the modifi ed Bessel function of fi rst kind and order zero that can be
calculated using the function besseli. We compute the probability density
function for the fi ve values of kappa.

for i = 1:5
 mises(i,:) = (1/(2*pi*besseli(0,kappa(i))))* ...
 exp(kappa(i)*cos(theta_radians-mu_radians));
 theta(i,:) = theta(1,:);
end

Th e results are plotted by

for i = 1:5
 plot(theta(i,:),mises(i,:))
 axis([-180 180 0 max(mises(i,:))])
 hold on
end

Th e mean direction and concentration parameters of such theoretical
distributions can be easily modifi ed for comparison with empirical
distributions.

 10.5 Test for Randomness of Directional Data

Th e fi rst test for directional data compares the data set with a uniform
distribution. Directional data following a uniform distribution are purely
random, i.e., there is no preference for any direction. We use the χ2-test
(Section 3.8) to compare the empirical frequency distribution with the
theoretical uniform distribution. We fi rst load our sample data.

clear

data_degrees_1 = load('directional_1.txt');

We then use the function histogram to count the number of observations

10.5 TEST FOR RANDOMNESS OF DIRECTIONAL DATA 421

within 12 classes, each with a width of 30 degrees.

h = histogram(data_degrees_1,0:30:360);
counts = h.Values;

Th e expected number of observations is 40/12, where 40 is the total number
of observations and 12 is the number of classes.

expect = 40/12 * ones(1,12);

Th e χ2-test explores the squared diff erences between the observed and
expected frequencies. Th e quantity χ2 is defi ned as the sum of these squared
diff erences divided by the expected frequencies.

chi2 = sum((counts - expect).^2 ./expect)

chi2 =
 102.8000

Th e critical χ2 value can be calculated using chi2inv. Th e χ2-test requires
the degrees of freedom Φ. In our example we test the hypothesis that the
data are uniformly distributed, i.e., we estimate one parameter, which
is the number of possible values N. Since the number of classes is 12, the
number of degrees of freedom is Φ=12–1–1=10. We test our hypothesis
on a p=95% signifi cance level. Th e function chi2inv computes the inverse
of the cumulative distribution function (CDF) of the χ2 distribution with
parameters specifi ed by Φ for the corresponding probabilities in p.

chi2inv(0.95,12-1-1)

ans =
 18.3070

Since the critical χ2 of 18.3070 is well below the measured χ2 of 102.8000 we
reject the null hypothesis and conclude that our data do not follow a uniform
distribution, i.e., they are not randomly distributed.

 10.6 Test for the Signifi cance of a Mean Direction

Having measured a set of directional data in the fi eld, we may wish to know
whether there is a prevailing direction documented in the data. We use
the Rayleigh’s test for the signifi cance of a mean direction (Mardia 1972,
Mardia and Jupp 2000). Th is test uses the mean resultant length introduced
in Section 10.3, which increases as the preferred direction becomes more
signifi cant.

422 10 DIRECTIONAL DATA

Th e data show a preferred direction if the calculated mean resultant length is
below the critical value (Mardia 1972). As an example we again load the data
contained in the fi le directional_1.txt.

clear

data_degrees_1 = load('directional_1.txt');
data_radians_1 = pi*data_degrees_1/180;

We then calculate the mean resultant vector Rm.

Table 10.1 Critical values of mean resultant length for Rayleigh’s test for the signifi cance of a
mean direction of N samples (Mardia 1972).

 Level of Signifi cance, α

N 0.100 0.050 0.025 0.010 0.001

5 0.677 0.754 0.816 0.879 0.991
6 0.618 0.690 0.753 0.825 0.940
7 0.572 0.642 0.702 0.771 0.891
8 0.535 0.602 0.660 0.725 0.847
9 0.504 0.569 0.624 0.687 0.808

10 0.478 0.540 0.594 0.655 0.775
11 0.456 0.516 0.567 0.627 0.743
12 0.437 0.494 0.544 0.602 0.716
13 0.420 0.475 0.524 0.580 0.692
14 0.405 0.458 0.505 0.560 0.669

15 0.391 0.443 0.489 0.542 0.649
16 0.379 0.429 0.474 0.525 0.630
17 0.367 0.417 0.460 0.510 0.613
18 0.357 0.405 0.447 0.496 0.597
19 0.348 0.394 0.436 0.484 0.583

20 0.339 0.385 0.425 0.472 0.569
21 0.331 0.375 0.415 0.461 0.556
22 0.323 0.367 0.405 0.451 0.544
23 0.316 0.359 0.397 0.441 0.533
24 0.309 0.351 0.389 0.432 0.522

25 0.303 0.344 0.381 0.423 0.512
30 0.277 0.315 0.348 0.387 0.470
35 0.256 0.292 0.323 0.359 0.436
40 0.240 0.273 0.302 0.336 0.409
45 0.226 0.257 0.285 0.318 0.386

50 0.214 0.244 0.270 0.301 0.367
100 0.150 0.170 0.190 0.210 0.260

10.6 TEST FOR THE SIGNIFICANCE OF A MEAN DIRECTION 423

x_1 = sum(sin(data_radians_1));
y_1 = sum(cos(data_radians_1));

mean_radians_1 = atan(x_1/y_1);
mean_degrees_1 = 180*mean_radians_1/pi;
mean_degrees_1 = mean_degrees_1 + 180;

Rm_1 = 1/length(data_degrees_1) .*(x_1.^2+y_1.^2).^0.5

Rm_1 =
 0.8901

Th e mean resultant length in our example is 0.8901. Th e critical Rm (α=0.05,
n=40) is 0.273 (Table 10.1 from Mardia 1972). Since this value is lower than
the Rm from the data we reject the null hypothesis and conclude that there is
a preferred single direction, which is

theta_1 = 180 * atan(x_1/y_1) / pi

theta_1 =
 43.2357

Th e negative signs of the sine and cosine, however, suggest that the true
result is in the third sector (180–270°), and the correct result is therefore
180+43.2357=223.2357.

 10.7 Test for the Diff erence between Two Sets of Directions

Let us consider two sets of measurements in two fi les directional_1.txt and
directional_2.txt. We wish to compare the two sets of directions and test the
hypothesis that these are signifi cantly diff erent. We use the Watson-William
test to test the similarity between two mean directions

where κ is the concentration parameter, RA and RB are the resultant lengths
of samples A and B, respectively, and RT is the resultant lengths of the
combined samples (Watson and Williams 1956, Mardia and Jupp 2000). Th e
concentration parameter can be obtained from tables using RT (Batschelet
1965, Gumbel et al. 1953, Table 10.2). Th e calculated F is compared with
critical values from the standard F tables (Section 3.8). Th e two mean
directions are not signifi cantly diff erent if the calculated F-value is less than
the critical F-value, which depends on the degrees of freedom Φa=1 and
Φb=n–2, and also on the signifi cance level α. Both samples must follow a von

424 10 DIRECTIONAL DATA

Mises distribution (Section 10.4).
We use two synthetic data sets of directional data to illustrate the

application of this test. We fi rst load the data and convert the degrees to
radians.

clear

data_degrees_1 = load('directional_1.txt');
data_degrees_2 = load('directional_2.txt');

data_radians_1 = pi*data_degrees_1/180;
data_radians_2 = pi*data_degrees_2/180;

We then compute the lengths of the resultant vectors.

x_1 = sum(sin(data_radians_1));
y_1 = sum(cos(data_radians_1));
x_2 = sum(sin(data_radians_2));
y_2 = sum(cos(data_radians_2));

mean_radians_1 = atan(x_1/y_1);
mean_degrees_1 = 180*mean_radians_1/pi;
mean_radians_2 = atan(x_2/y_2);
mean_degrees_2 = 180*mean_radians_2/pi;

mean_degrees_1 = mean_degrees_1 + 180
mean_degrees_2 = mean_degrees_2 + 180

R_1 = sqrt(x_1^2 + y_1^2);
R_2 = sqrt(x_2^2 + y_2^2);

mean_degrees_1 =
 223.2357

mean_degrees_2 =
 200.8121

Th e orientations of the resultant vectors are approximately 223° and 201°.
We also need the resultant length for both samples combined, so we combine
both data sets and again compute the resultant length.

data_radians_T = [data_radians_1;data_radians_2];

x_T = sum(sin(data_radians_T));
y_T = sum(cos(data_radians_T));

mean_radians_T = atan(x_T/y_T);
mean_degrees_T = 180*mean_radians_T/pi;

mean_degrees_T = mean_degrees_T + 180;

R_T = sqrt(x_T^2 + y_T^2)
Rm_T = R_T / (length(data_radians_T))

10.7 TEST FOR THE DIFFERENCE BETWEEN TWO SETS OF DIRECTIONS 425

R_T =
 69.5125

Rm_T =
 0.8689

We apply the test statistic to the data for kappa=4.177 for Rm_T=0.8689 (Table
10.2). Th e computed value for F is

n = length(data_radians_T);

F = (1+3/(8*4.177)) * (((n-2)*(R_1+R_2-R_T))/(n-R_1-R_2))

F =
 12.5844

Using the F-statistic, we fi nd that for 1 and 80–2 degrees of freedom and
α=0.05, the critical value is

finv(0.95,1,78)

ans =
 3.9635

Table 10.2 Maximum likelihood estimates of concentration parameter κ for calculated mean
resultant length R (adapted from Batschelet 1965 and Gumbel et al. 1953).

R κ R κ R κ R κ
0.000 0.000 0.260 0.539 0.520 1.224 0.780 2.646
0.010 0.020 0.270 0.561 0.530 1.257 0.790 2.754
0.020 0.040 0.280 0.584 0.540 1.291 0.800 2.871
0.030 0.060 0.290 0.606 0.550 1.326 0.810 3.000
0.040 0.080 0.300 0.629 0.560 1.362 0.820 3.143
0.050 0.100 0.310 0.652 0.570 1.398 0.830 3.301
0.060 0.120 0.320 0.676 0.580 1.436 0.840 3.479
0.070 0.140 0.330 0.700 0.590 1.475 0.850 3.680
0.080 0.161 0.340 0.724 0.600 1.516 0.860 3.911
0.090 0.181 0.350 0.748 0.610 1.557 0.870 4.177
0.100 0.201 0.360 0.772 0.620 1.600 0.880 4.489
0.110 0.221 0.370 0.797 0.630 1.645 0.890 4.859
0.120 0.242 0.380 0.823 0.640 1.691 0.900 5.305
0.130 0.262 0.390 0.848 0.650 1.740 0.910 5.852
0.140 0.283 0.400 0.874 0.660 1.790 0.920 6.539
0.150 0.303 0.410 0.900 0.670 1.842 0.930 7.426
0.160 0.324 0.420 0.927 0.680 1.896 0.940 8.610
0.170 0.345 0.430 0.954 0.690 1.954 0.950 10.272
0.180 0.366 0.440 0.982 0.700 2.014 0.960 12.766
0.190 0.387 0.450 1.010 0.710 2.077 0.970 16.927
0.200 0.408 0.460 1.039 0.720 2.144 0.980 25.252
0.210 0.430 0.470 1.068 0.730 2.214 0.990 50.242
0.220 0.451 0.480 1.098 0.740 2.289 0.995 100.000
0.230 0.473 0.490 1.128 0.750 2.369 0.999 500.000
0.240 0.495 0.500 1.159 0.760 2.455 1.000 5000.000
0.250 0.516 0.510 1.191 0.770 2.547

426 10 DIRECTIONAL DATA

which is well below the observed value of F=12.5844 (Section 3.8). We
therefore reject the null hypothesis and conclude that the two samples could
not have been drawn from populations with the same mean direction.

 Recommended Reading

Batschelet E (1965) Statistical Methods for the Analysis of Problems in Animal Orientation
and Certain Biological Rhythms. American Institute of Biological Sciences Monograph,
Washington DC

Borradaile G (2003) Statistics of Earth Science Data – Th eir Distribution in Time, Space and
Orientation. Springer, Berlin Heidelberg New York

Davis JC (2002) Statistics and Data Analysis in Geology, Th ird Edition. John Wiley and Sons,
New York

Fisher NI (1993) Statistical Analysis of Circular Data. Cambridge University Press, New York
Gumbel EJ, Greenwood JA, Durand D (1953) Th e Circular Normal Distribution: Tables and

Th eory. Journal of the American Statistical Association 48:131–152
Jones TA (2006a) MATLAB functions to analyze directional (azimuthal) data–I: Single

sample inference. Computers and Geosciences 32:166–175
Jones TA (2006b) MATLAB functions to analyze directional (azimuthal) data–II: Correlation.

Computers and Geosciences 32:176–183
Mardia KV (1972) Statistics of Directional Data. Academic Press, London
Mardia KV, Jupp PE (2000) Directional Statistics. Wiley, Chichester
Middleton GV (1999) Data Analysis in the Earth Sciences Using MATLAB. Prentice Hall,

New Jersey
Swan ARH, Sandilands M (1995) Introduction to geological data analysis. Blackwell Sciences,

Oxford
Watson GS, Williams EJ (1956) On the construction of signifi cance tests on a circle and the

sphere. Biometrika 43:344–352

RECOMMENDED READING 427

	Preface to the 4th Edition
	Preface to the Interactive 4th Edition
	Contents
	1 Data Analysis in Earth Sciences
	1.1 Introduction
	1.2 Data Collection
	1.3 Types of Data
	1.4 Methods of Data Analysis
	Recommended Reading

	2 Introduction to MATLAB
	2.1 MATLAB in Earth Sciences
	2.2 Getting Started
	2.3 The Syntax
	2.4 Array Manipulation
	2.5 Data Structures and Classes of Objects
	2.6 Data Storage and Handling
	2.7 Control Flow
	2.8 Scripts and Functions
	2.9 Basic Visualization Tools
	2.10 Generating Code to Recreate Graphics
	2.11 Publishing M-Files
	2.12 Creating Graphical User Interfaces
	Recommended Reading

	3 Univariate Statistics
	3.1 Introduction
	3.2 Empirical Distributions
	Measures of Central Tendency
	Measures of Dispersion

	3.3 Examples of Empirical Distributions
	3.4 Theoretical Distributions
	Uniform Distribution
	Binomial or Bernoulli Distribution
	Poisson Distribution
	Normal or Gaussian Distribution
	Logarithmic Normal or Log-Normal Distribution
	Student’s t Distribution
	Fisher’s F Distribution
	χ2 or Chi-Squared Distribution

	3.5 Examples of Theoretical Distributions
	3.6 Hypothesis Testing
	3.7 The t-Test
	3.8 The F-Test
	3.9 The χ2-Test
	3.10 The Kolmogorov-Smirnov Test
	3.11 Mann-Whitney Test
	3.12 The Ansari-Bradley Test
	3.13 Distribution Fitting
	Recommended Reading

	4 Bivariate Statistics
	4.1 Introduction
	4.2 Correlation Coefficients
	4.3 Classical Linear Regression Analysis
	4.4 Analyzing the Residuals
	4.5 Bootstrap Estimates of the Regression Coefficients
	4.6 Jackknife Estimates of the Regression Coefficients
	4.7 Cross Validation
	4.8 Reduced Major Axis Regression
	4.9 Curvilinear Regression
	4.10 Nonlinear and Weighted Regression
	Recommended Reading

	5 Time-Series Analysis
	5.1 Introduction
	5.2 Generating Signals
	5.3 Auto-Spectral and Cross-Spectral Analysis
	5.4 Examples of Auto-Spectral and Cross-Spectral Analysis
	5.5 Interpolating and Analyzing Unevenly-Spaced Data
	5.6 Evolutionary Power Spectrum
	5.7 Lomb-Scargle Power Spectrum
	5.8 Wavelet Power Spectrum
	5.9 Detecting Abrupt Transitions in Time Series
	5.10 Nonlinear Time-Series Analysis (by N. Marwan)
	Phase Space Portrait
	Recurrence Plots
	Recurrence Quantification

	Recommended Reading

	6 Signal Processing
	6.1 Introduction
	6.2 Generating Signals
	6.3 Linear Time-Invariant Systems
	6.4 Convolution, Deconvolution and Filtering
	6.5 Comparing Functions for Filtering Data Series
	6.6 Recursive and Nonrecursive Filters
	6.7 Impulse Response
	6.8 Frequency Response
	6.9 Filter Design
	6.10 Adaptive Filtering
	Recommended Reading

	7 Spatial Data
	7.1 Types of Spatial Data
	7.2 The Global Geography Database GSHHG
	7.3 The 1-Minute Gridded Global Relief Data ETOPO1
	7.4 The 30-Arc Seconds Elevation Model GTOPO30
	7.5 The Shuttle Radar Topography Mission SRTM
	7.6 Exporting 3D Graphics to Create Interactive Documents
	7.7 Gridding and Contouring
	7.8 Comparison of Methods and Potential Artifacts
	7.9 Statistics of Point Distributions
	Test for Uniform Distribution
	Test for Random Distribution
	Test for Clustering

	7.10 Analysis of Digital Elevation Models (by R. Gebbers)
	7.11 Geostatistics and Kriging (by R. Gebbers)
	Theorical Background
	Preceding Analysis
	Variography with the Classical Variogram
	Kriging
	Discussion of Kriging

	Recommended Reading

	8 Image Processing
	8.1 Introduction
	8.2 Data Storage
	8.3 Importing, Processing and Exporting Images
	8.4 Importing, Processing and Exporting LANDSAT Images
	8.5 Importing and Georeferencing TERRA ASTER Images
	8.6 Processing and Exporting EO-1 Hyperion Images
	8.7 Digitizing from the Screen
	8.8 Image Enhancement, Correction and Rectification
	8.9 Color-Intensity Transects Across Varved Sediments
	8.10 Grain Size Analysis from Microscope Images
	8.11 Quantifying Charcoal in Microscope Images
	8.12 Shape-Based Object Detection in Images
	Recommended Reading

	9 Multivariate Statistics
	9.1 Introduction
	9.2 Principal Component Analysis
	9.3 Independent Component Analysis (by N. Marwan)
	9.4 Discriminant Analysis
	9.5 Cluster Analysis
	9.6 Multiple Linear Regression
	Recommended Reading

	10 Directional Data
	10.1 Introduction
	10.2 Graphical Representation
	10.3 Empirical Distributions
	10.4 Theoretical Distributions
	10.5 Test for Randomness of Directional Data
	10.6 Test for the Significance of a Mean Direction
	10.7 Test for the Difference between Two Sets of Directions
	Recommended Reading

