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 Preface to the 4th Edition

Th e book MATLAB Recipes for Earth Sciences is designed to help 
undergraduate and postgraduate students, doctoral students, post-doctoral 
researchers, and professionals fi nd quick solutions for common data analysis 
problems in earth sciences. It provides a minimal amount of theoretical 
background and demonstrates the application of all described methods 
through the use of examples. Th e MATLAB soft ware is used since it not 
only provides numerous ready-to-use algorithms for most methods of data 
analysis but also allows the existing routines to be modifi ed and expanded, 
or new soft ware to be developed. Th e book contains MATLAB scripts, or 
M-fi les, that can be used to solve typical problems in earth sciences by 
simple statistics, time-series analysis, geostatistics, and image processing, 
and also demonstrates the application of selected advanced techniques 
of data analysis such as nonlinear time-series analysis, adaptive fi ltering, 
bootstrapping, and terrain analysis. Th e book’s supplementary electronic 
material (available online through Springer Extras) includes recipes with all 
the MATLAB commands featured in the book and the example data. Th e 
MATLAB codes can be easily modifi ed for application to the reader’s own 
data and projects.

Th is revised and updated Fourth Edition includes new sections on creating 
graphical user interfaces with MATLAB, on hypothesis testing (including the 
Kolmogorov-Smirnov test, the Mann-Whitney test and the Ansari-Bradley 
test), on detecting abrupt transitions within time series, on exporting 3D 
graphics to create interactive documents, on processing LANDSAT and 
HYPERION satellite images, on shape-based object detection in images, 
on discriminant analysis, and on multiple linear regression analysis. Many 
of the pre-existing sections have also been expanded and rewritten, and 
numerous new examples have been included.

In order to derive the maximum benefi t from this book the reader will 
need to have access to the MATLAB soft ware and be able to execute the 
recipes while reading the book. Th e MATLAB recipes display various graphs 
on the screen that are not shown in the printed book. Th e tutorial-style book 
does, however, contain numerous fi gures making it possible to go through 
the text without actually running MATLAB on a computer. I have developed 
the recipes using MATLAB 8 Release R2014b, but most of them will also 
work with earlier soft ware releases. While undergraduates participating in a 
course on data analysis might go through the entire book, more experienced 
readers may choose to refer to only one particular method in order to solve 
a specifi c problem. Th e concept of the book and the contents of its chapters 



are therefore outlined below, in order to make it easier to use for readers 
with a variety of diff erent requirements.

• Chapter 1 – Th is chapter introduces some fundamental concepts of 
samples and populations. It also links the various types of data, and 
questions to be answered from the data, to the methods described in the 
succeeding chapters.

• Chapter 2 – A tutorial-style introduction to MATLAB designed for 
earth scientists. Readers already familiar with the soft ware are advised 
to proceed directly to the succeeding chapters. Th e Fourth Edition now 
includes new sections on matrix manipulation, control fl ow, and creating 
graphical user interfaces. Many passages in the older sections have been 
expanded and rewritten.

• Chapters 3 and 4 – Fundamentals in univariate and bivariate statistics. 
Th ese two chapters contain basic concepts in statistics and also introduce 
advanced topics such as resampling schemes and cross validation. 
Readers who are already familiar with basic statistics might want to skip 
these chapters. Th e Fourth Edition now also includes an introduction to 
hypothesis testing as well as new sections on the Kolmogorov-Smirnov 
test, the Mann-Whitney test, and the Ansari-Bradley test. Furthermore, 
the section on correlation coeffi  cients has been expanded to include 
introductions to Spearman’s correlation coeffi  cient and Kendall’s 
correlation coeffi  cient.

• Chapters 5 and 6 – Readers who wish to work with time series are 
recommended to read both of these chapters. Time-series analysis and 
signal processing are closely linked. A good knowledge of statistics is 
required to work successfully with these methods. Th ese two chapters 
are independent of the preceding chapters. Th e Fourth Edition now also 
includes a section on detecting abrupt transitions within time series.

• Chapters 7 and 8 – I recommend reading through both of these chapters 
since the processing methods used for spatial data and for images have 
much in common. Moreover, spatial data and images are oft en combined 
in earth sciences, for instance when projecting satellite images onto digital 
elevation models. Th e Fourth Edition now includes new sections on 
exporting 3D graphs to create interactive documents. Th e introduction 
to remote sensing using MATLAB has been expanded and now includes 
sections on importing, processing and exporting LANDSAT, ASTER and 
HYPERION satellite images. Chapter 8 now also includes a comprehensive 
discussion of methods for image enhancement, correction and rectifi cation 
as well as a new section on shape-based object detection in images.

   VI



• Chapter 9 – Data sets in earth sciences oft en have many variables and 
many data points. Multivariate methods are applied to a great variety 
of large data sets, including satellite imagery. Any reader particularly 
interested in multivariate methods is advised to read Chapters 3 and 4 
before proceeding to this chapter. Th e Fourth Edition now includes new 
sections on discriminant analysis and multiple linear regression, and the 
older sections have been substantially rewritten.

• Chapter 10 – Methods to analyze circular and spherical data are widely 
used in earth sciences. Structural geologists measure and analyze the 
orientation of slickensides (or striae) on a fault plane. Th e statistical 
analysis of circular data is also used in paleomagnetic applications. 
Microstructural investigations include the analysis of grain shapes and 
quartz c-axis orientations in thin sections.

Th e book has benefi ted from the comments of many people, in particular my 
contributing authors Robin Gebbers and Norbert Marwan, and my colleagues 
Sven Borchardt, Zuze Dulanya, Th omas Ebert, Joaquim Góis, Lydia Olaka, 
Eduardo Santamaría-Del-Angel, Marco Tedesco, Frederik Tilmann and 
many others. I very much appreciate the expertise and patience of Elisabeth 
Sillmann at blaetterwaldDesign who created the graphics and the complete 
page designs of the book. I am much obliged to Ed Manning for professional 
proofreading of the text. I also acknowledge Naomi Fernandes, Kate Fiore 
and Dana Wright from the Book Program at Th e MathWorks, Inc., Tanja 
Dorfmann, Claudia Olrogge and Annegret Schumann at Th e MathWorks 
GmbH Deutschland, Annett Büttner, Chris Bendall and Christian Witschel 
and their team at Springer, and Andreas Bohlen, Brunhilde Schulz and 
their team at UP Transfer GmbH. I also thank Jan Danek at HUMUSOFT, 
Stacey Gage and Pradeep Ramamoorthy at Th e MathWorks, Inc. for their 
help in creating the animated 3D objects using Simulink 3D Animation 
and with writing the corresponding section of this book. Many thanks also 
to Steve Eddins for dealing with my many questions about the history of 
MATLAB and for helping in the use of the Image Processing Toolbox. I 
also acknowledge Pietro Cavallo, Pantelis Hadjipantelis, Giacomo Mazzi, 
and Christoph Stockhammer at Th e MathWorks, Inc. for their patience in 
dealing with the large number of questions that I have sent to the Support 
section of Th e MathWorks, Inc. over the last few months. I think the excellent 
support provided by the company more than justifi es any expenditure that I 
have made on MATLAB licenses over the last 20 years or more. I also thank 
the NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science 
Team, and the director Mike Abrams, for allowing me to include the ASTER 
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images in this book. I am grateful to Stuart W. Frye at the NASA Goddard 
Space Flight Center (GSFC) and his team for allowing me to include EO-1 
data in the book, as well as for fruitful discussions while working on the 
section about Hyperion images.

 Potsdam, December 2014
 Martin H. Trauth
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 Preface to the Interactive 4th Edition

With this fourth edition the book makes its fi rst appearance as an interactive 
ebook. Th is format allows the reader to follow the contents in much the 
same way as they are presented in the courses that I teach at the University 
of Potsdam and elsewhere. During such courses the participants interact 
with the various tools by changing the input parameters of the algorithms 
and exploring the subsequent modifi cations introduced to the graphics. 
Th e spectral analysis of time series is demonstrated not only by examining 
graphics but also by listening to audio examples of signals and noise. Using 
MATLAB to visualize three-dimensional digital terrain models that can be 
rotated interactively helps to understand complex topography much better 
than two dimensional graphics.

Th is ebook allows the reader to interact with the book in a very similar 
manner. It comes in two diff erent formats, with the fi rst being for Apple iPads 
and Macs (in the form of an .ibooks fi le created with Apple’s iBooks Author 
soft ware) and the second being for other platforms (as a PDF fi le created 
with Adobe InDesign). Th e ebook has been designed to be read in landscape 
mode; it includes movies, galleries, audios and interactive 3D displays, as 
well as reviews at the end of each chapter. Th e movies demonstrate the use 
of graphical user interface tools; they also help to explore the eff ect that 
changing input parameters has on the output of a function and to visualize 
mathematical operations. Galleries are generally used to present a series 
of linked graphics, such as those displaying the various measures of the 
dispersion and shape of a distribution. Audios are used to provide a striking 
representation of signals and noise, as well as the eff ect of fi lters. Interactive 
3D displays allow interactive rotating of digital terrain models and other 
three-dimensional objects. Each chapter ends with a Review (or quiz), which 
tests the reader’s understanding of its content. Th ese interactive media (or 
widgets) can be explored, observed, or listened to (on Macs) using a multi-
touch trackpad or a mouse, or (on iPads) using your fi nger(s), by clicking 
the Play button (to watch movies and to listen to audios), by clicking the 
arrows or swiping left  or right (to navigate through a gallery), or by clicking 
and dragging a 3D object to rotate it. Movies, galleries and 3D objects can 
be zoomed to full screen by toggling the full-screen mode in the lower right 
corner (with movies), or by simply clicking on the image (with galleries and 
3D objects).

Th e interactive ebook for other platforms comes as a .pdf fi le, which can 
be accessed with the free Adobe Reader soft ware. Th e reader of the PDF 
version of the book receives a complete package of fi les that includes the 



actual ebook as well as a series of directories containing the interactive 
objects, the recipes with all the MATLAB commands featured in the book 
and the example data. It is important to note that the specifi ed directory tree, 
especially the names of the directories, should not be changed. Th e layout 

of the .pdf fi le is identical to that of the printed book with 
icons outside the type area that refer to the interactive 
objects. Th e interactive objects are stored outside the PDF 
fi le and can be accessed from the MRES4-Index.html fi le 
that can be viewed in a web browser. Th e PDF version of 
the ebook contains all interactive objects included in the 
ebook for iPads and Macs, except for the reviews. Th e 

interactive PDF version was planned as an ebook with embedded interactive 
objects such as movies, galleries, audios and reviews. During the production 
process, however, it soon became clear that it is not yet possible to off er such 
a product that is compatible with all platforms.

Th e fi rst edition of MATLAB Recipes of Earth Sciences, which came out in 
2006, contained many small, and some (unfortunately) not so small, errors. 
Th ese errors made   it necessary to produce an errata fi le that was made 
available for download on my webpage. Th e ebook now allows the contents 
to be kept up-to-date through regular updates that is possible for the printed 
book. It is thus a living book that thrives on the comments of its readers, 
which I expect to receive in due course!

I hope that you enjoy using the animated objects while reading the 
interactive ebook! Comments, corrections and suggestions are very welcome.

 Potsdam, December 2014
 Martin H. Trauth
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 1.1 Introduction

Earth scientists make observations and gather data about the natural 
processes that operate on planet Earth. Th ey formulate and test hypotheses 
on the forces that have acted on a particular region to create its structure and 
also make predictions about future changes to the planet. All of these steps 
in exploring the Earth involve the acquisition and analysis of numerical data. 
An earth scientist therefore needs to have a fi rm understanding of statistical 
and numerical methods as well as the ability to utilize relevant computer 
soft ware packages, in order to be able to analyze the acquired data.

Th is book introduces some of the most important methods of data analysis 
employed in earth sciences and illustrates their use through examples using 
the MATLAB® soft ware package. Th ese examples can then be used as recipes 
for the analysis of the reader’s own data, aft er having learned their application 
with synthetic data. Th is introductory chapter deals with data acquisition 
(Section 1.2), the various types of data (Section 1.3) and the appropriate 
methods for analyzing earth science data (Section 1.4). We therefore fi rst 
explore the characteristics of typical data sets and subsequently investigate 
the various ways of analyzing data using MATLAB.

 1 Data Analysis in Earth 
Sciences

 Taking measurements with a diff erential 
GPS unit in the Suguta Valley of northern 
Kenya. This device allows locations to be very 
accurately determined. The locations and 
altitudes of paleo-strandlines in the Suguta 
Valley were measured in order to reconstruct 
water-level fl uctuations in the area over the 
last 15,000 years.

� Springer-Verlag Berlin Heidelberg 2015 1
M.H. Trauth, MATLAB� Recipes for Earth Sciences,
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 1.2 Data Collection

Most data sets in earth sciences have a very limited sample size and also 
contain a signifi cant number of uncertainties. Such data sets are typically 
used to describe rather large natural phenomena, such as a granite body, a 
large landslide or a widespread sedimentary unit. Th e methods described 
in this book aim to fi nd a way of predicting the characteristics of a larger 
population from a much smaller sample (Fig. 1.1). An appropriate sampling 
strategy is the fi rst step towards obtaining a good data set. Th e development 
of a successful strategy for fi eld sampling requires decisions on the sample 
size and the spatial sampling scheme.

Th e sample size includes the sample volume, the sample weight and the 
number of samples collected in the fi eld. Th e sample weights or volumes can 
be critical factors if the samples are later analyzed in a laboratory and most 
statistical methods also have a minimum requirement for the sample size. 
Th e sample size also aff ects the number of subsamples that can be collected 
from a single sample. If the population is heterogeneous then the sample 
needs to be large enough to represent the population’s variability, but on 
the other hand samples should be as small as possible in order to minimize 
the time and costs involved in their analysis. Th e collection of smaller pilot 

Fig. 1.1 Samples and populations. Deep valley incision has eroded parts of a sandstone 
unit (hypothetical population). Th e remaining sandstone (available population) can only be 
sampled from outcrops, i.e., road cuts and quarries (accessible population). Note the diff erence 
between a statistical sample as a representative of a population and a geological sample as a 
piece of rock.
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samples is recommended prior to defi ning a suitable sample size.
Th e design of the spatial sampling scheme is dependent on the availability 

of outcrops or other material suitable for sampling. Sampling in quarries 
typically leads to clustered data, whereas sampling along road cuts, shoreline 
cliff s or steep gorges results in one-dimensional traverse sampling schemes. 
A more uniform sampling pattern can be designed where there is 100% 
exposure or if there are no fi nancial limitations. A regular sampling scheme 
results in a gridded distribution of sample locations, whereas a uniform 
sampling strategy includes the random location of a sampling point within a 
grid square. Although these sampling schemes might be expected to provide 
superior methods for sampling collection, evenly-spaced sampling locations 
tend to miss small-scale variations in the area, such as thin mafi c dykes 
within a granite body or the spatially-restricted occurrence of a particular 
type of fossil (Fig. 1.2).

Th e correct sampling strategy will depend on the objectives of the 
investigation, the type of analysis required and the desired level of 
confi dence in the results. Having chosen a suitable sampling strategy, the 
quality of the sample can be infl uenced by a number of factors resulting in 
the samples not being truly representative of the larger population. Chemical 
or physical alteration, contamination by other material or displacement by 
natural and anthropogenic processes may all result in erroneous results and 
interpretations. It is therefore recommended that the quality of the samples, 
the method of data analysis employed and the validity of the conclusions 
drawn from the analysis be checked at each stage of the investigation.

 1.3 Types of Data

Most earth science data sets consist of numerical measurements, although 
some information can also be represented by a list of names such as fossils 
and minerals (Fig. 1.3). Th e available methods for data analysis may require 
certain types of data in earth sciences. Th ese are

• nominal data – Information in earth sciences is sometimes presented as 
a list of names, e.g., the various fossil species collected from a limestone 
bed or the minerals identifi ed in a thin section. In some studies, these data 
are converted into a binary representation, i.e., one for present and zero 
for absent. Special statistical methods are available for the analysis of such 
data sets.

• ordinal data – Th ese are numerical data representing observations that 
can be ranked, but in which the intervals along the scale are irregularly 
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Fig. 1.2 Sampling schemes. a Regular sampling on an evenly-spaced rectangular grid, b uniform 
sampling by obtaining samples randomly located within regular grid squares, c random 
sampling using uniformly-distributed xy coordinates, d clustered sampling constrained by 
limited access in a quarry, and traverse sampling along e river valleys and f road cuts.

a b

c

e f

d
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Fig. 1.3 Types of earth science data. a Nominal data, b ordinal data, c ratio data, d interval 
data, e closed data, f spatial data, and g-h directional data. All of these data types are described 
in this book.

a b

c

e

g h

f

d
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spaced. Th e hardness scale of German mineralogist Friedrich Mohs 
(1773–1839) is one example of an ordinal scale. Th e hardness value 
indicates the material’s resistance to scratching. Diamond has a hardness 
of 10, whereas the value for talc is 1, but in terms of absolute hardness 
diamond (hardness 10) is four times harder than corundum (hardness 
9) and six times harder than topaz (hardness 8). Th e Modifi ed Mercalli 
Scale, which attempts to categorize the eff ects of earthquakes, is another 
example of an ordinal scale; it ranks earthquakes from intensity I (barely 
felt) to XII (total destruction) (Richter 1958).

• ratio data – Th ese data are characterized by a constant length of successive 
intervals, therefore off ering a great advantage over ordinal data. Th e zero 
point is the natural termination of the data scale, and this type of data 
allows for either discrete or continuous data sampling. Examples of such 
data sets include length or weight data.

• interval data – Th ese are ordered data that have a constant length of 
successive intervals, but in which the data scale is not terminated by 
zero. Temperatures C and F represent an example of this data type even 
though arbitrary zero points exist for both scales. Th is type of data may be 
sampled continuously or in discrete intervals.

In addition to these standard data types, earth scientists frequently encounter 
special kinds of data such as

• closed data – Th ese data are expressed as proportions and add up to a fi xed 
total such as 100 percent. Compositional data represent the majority of 
closed data, such as element compositions of rock samples.

• spatial data – Th ese are collected in a 2D or 3D study area. Th e spatial 
distribution of a certain fossil species, the spatial variation in thickness 
of a sandstone bed and the distribution of tracer concentrations in 
groundwater are examples of this type of data, which is likely to be the 
most important data type in earth sciences.

• directional data – Th ese data are expressed in angles. Examples include 
the strike and dip of bedding, the orientation of elongated fossils or the 
fl ow direction of lava. Th is is another very common type of data in earth 
sciences.
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Most of these diff erent types of data require specialized methods of analysis, 
some of which are outlined in the next section.

 1.4 Methods of Data Analysis

Data analysis uses precise characteristics of small samples to hypothesize 
about the general phenomenon of interest. Which particular method is used 
to analyze the data depends on the data type and the project requirements. 
Th e various methods available include:

• Univariate methods – Each variable is assumed to be independent of 
the others and is explored individually. Th e data are presented as a list 
of numbers representing a series of points on a scaled line. Univariate 
statistical methods include the collection of information about the 
variable, such as the minimum and maximum values, the average, and the 
dispersion about the average. Th is information is then used to attempt to 
infer the underlying processes responsible for the variations in the data. 
Examples are the eff ects of chemical weathering on the sodium content of 
volcanic glass shards, or the infl uence of specifi c environmental factors on 
the sizes of snail shells within a sediment layer.

• Bivariate methods – Two variables are investigated together to detect 
relationships between these two parameters. For example, the correlation 
coeffi  cient may be calculated to investigate whether there is a linear 
relationship between two variables. Alternatively, the bivariate regression 
analysis may be used to fi nd an equation that describes the relationship 
between the two variables. An example of a bivariate plot is the Harker 
Diagram, which is one of the oldest methods of visualizing geochemical 
data from igneous rocks and simply plots oxides of elements against SiO2 
(Harker 1909).

• Time-series analysis – Th ese methods investigate data sequences as a 
function of time. Th e time series is decomposed into a long-term trend, 
a systematic (periodic, cyclic, rhythmic) component and an irregular 
(random, stochastic) component. A widely used technique to describe 
cyclic components of a time series is that of spectral analysis. Examples 
of the application of these techniques include the investigation of cyclic 
climatic variations in sedimentary rocks, or the analysis of seismic data.

• Signal processing – Th is includes all techniques for manipulating a signal 
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to minimize the eff ects of noise in order to correct all kinds of unwanted 
distortions or to separate various components of interest. It includes the 
design and realization of fi lters, and their application to the data. Th ese 
methods are widely used in combination with time-series analysis, e.g., to 
increase the signal-to-noise ratio in climate time series, digital images or 
geophysical data.

• Spatial analysis – Th is is the analysis of parameters in 2D or 3D space and 
hence two or three of the required parameters are coordinate numbers. 
Th ese methods include descriptive tools to investigate the spatial pattern 
of geographically distributed data. Other techniques involve spatial 
regression analysis to detect spatial trends. Also included are 2D and 3D 
interpolation techniques, which help to estimate surfaces representing 
the predicted continuous distribution of the variable throughout the area. 
Examples are drainage-system analysis, the identifi cation of old landscape 
forms and lineament analysis in tectonically active regions.

• Image processing – Th e processing and analysis of images has become 
increasingly important in earth sciences. Th ese methods involve importing 
and exporting, compressing and decompressing, and displaying images. 
Image processing also aims to enhance images for improved intelligibility, 
and to manipulate images in order to increase the signal-to-noise ratio. 
Advanced techniques are used to extract specifi c features or analyze 
shapes and textures, such as for counting mineral grains or fossils in 
microscope images. Another important application of image processing 
is in the use of satellite remote sensing to map certain types of rocks, soils 
and vegetation, as well as other parameters such as soil moisture, rock 
weathering and erosion.

• Multivariate analysis – Th ese methods involve the observation and 
analysis of more than one statistical variable at a time. Since the graphical 
representation of multidimensional data sets is diffi  cult, most of these 
methods include dimension reduction. Multivariate methods are widely 
used on geochemical data, for instance in tephrochronology where volcanic 
ash layers are correlated by geochemical fi ngerprinting of glass shards. 
Another important usage is in the comparison of species assemblages in 
ocean sediments for the reconstruction of paleoenvironments.

• Analysis of directional data – Methods to analyze circular and spherical 
data are widely used in earth sciences. Structural geologists measure 
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and analyze the orientation of slickensides (or striae) on a fault plane, 
circular statistical methods are common in paleomagnetic studies, and 
microstructural investigations include the analysis of grain shapes and 
quartz c-axis orientations in thin sections. 

Some of these methods of data analysis require the application of numerical 
methods such as interpolation techniques. While the following text deals 
mainly with statistical techniques it also introduces several numerical 
methods commonly used in earth sciences.
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 2.1 MATLAB in Earth Sciences

MATLAB® is a soft ware package developed by Th e MathWorks, Inc., 
founded by Cleve Moler, Jack Little and Steve Bangert in 1984, which has 
its headquarters in Natick, Massachusetts (http://www.mathworks.com). 
MATLAB was designed to perform mathematical calculations, to analyze 
and visualize data, and to facilitate the writing of new soft ware programs. 
Th e advantage of this soft ware is that it combines comprehensive math and 
graphics functions with a powerful high-level language. Since MATLAB 
contains a large library of ready-to-use routines for a wide range of 
applications, the user can solve technical computing problems much more 
quickly than with traditional programming languages, such as C++ and 
FORTRAN. Th e standard library of functions can be signifi cantly expanded 
by add-on toolboxes, which are collections of functions for special purposes 
such as image processing, creating map displays, performing geospatial data 
analysis or solving partial diff erential equations.

During the last few years MATLAB has become an increasingly popular 
tool in earth sciences. It has been used for fi nite element modeling, 
processing of seismic data, analyzing satellite imagery, and for the generation 

 2 Introduction to MATLAB

 Graphical user interface of MATLAB in typical 
use. The software comes up with several 
window panels. The desktop layout includes 
the Current Folder panel, the Command Window, 
the Command History panel and the Workspace 
panel. When using MATLAB several Figure 
Windows and the Editor are displayed.

� Springer-Verlag Berlin Heidelberg 2015
M.H. Trauth, MATLAB� Recipes for Earth Sciences,
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of digital elevation models from satellite data. Th e continuing popularity 
of the soft ware is also apparent in published scientifi c literature, and many 
conference presentations have also made reference to MATLAB. Universities 
and research institutions have recognized the need for MATLAB training for 
staff  and students, and many earth science departments across the world now 
off er MATLAB courses for undergraduates. Th e MathWorks, Inc. provides 
classroom kits for teachers at a reasonable price, and it is also possible for 
students to purchase a low-cost edition of the soft ware. Th is student version 
provides an inexpensive way for students to improve their MATLAB skills.

Th e following sections contain a tutorial-style introduction to MATLAB, 
covering the setup on the computer (Section 2.2), the MATLAB syntax 
(Sections 2.3 and 2.4), data input and output (Sections 2.5 and 2.6), 
programming (Sections 2.7 and 2.8), and visualization (Section 2.9). 
Advanced sections are also included on generating M-fi les to recreate 
graphics (Section 2.10), on publishing M-fi les (Section 2.11), and on creating 
graphical user interfaces (Section 2.12). Th e reader is recommended to 
go through the entire chapter in order to obtain a good knowledge of the 
soft ware before proceeding to the following chapters of the book. A more 
detailed introduction can be found in the MATLAB Primer (MathWorks 
2014a) which is available in print form, online and as PDF fi le.

In this book we use MATLAB Version 8 (Release 2014b), the Image 
Processing Toolbox Version 9.1, the Mapping Toolbox Version 4.0.2, the 
Signal Processing Toolbox Version 6.22, the Statistics Toolbox Version 9.1, 
the Wavelet Toolbox Version 4.14, and the Simulink 3D Animation Toolbox 
Version 7.2.

 2.2 Getting Started

Th e soft ware package comes with extensive documentation, tutorials and 
examples. Th e fi rst three chapters of the book MATLAB Primer (MathWorks 
2014a) are directed at beginners. Th e chapters on programming, creating 
graphical user interfaces (GUIs) and development environments are aimed 
at more advanced users. Since MATLAB Primer provides all the information 
required to use the soft ware, this introduction concentrates on the most 
relevant soft ware components and tools used in the following chapters of 
this book.

Aft er the installation of MATLAB, the soft ware is launched either by 
clicking the shortcut icon on the desktop or by typing

matlab
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Fig. 2.1 Screenshot of the MATLAB default desktop layout including the Current Folder (left  
in the fi gure), the Command Window (center), the Workspace (right) panels. Th is book uses 
only the Command Window and the built-in Editor, which can be called up by typing edit 
aft er the prompt. All information provided by the other panels can also be accessed through 
the Command Window.

in the operating system prompt. Th e soft ware then comes up with several 
window panels (Fig. 2.1). Th e default desktop layout includes the Current 
Folder panel that lists the fi les in the directory currently being used. Th e 
Command Window presents the interface between the soft ware and the 
user, i.e., it accepts MATLAB commands typed aft er the prompt, >>. Th e 
Workspace panel lists the variables in the MATLAB workspace, which is 
empty when starting a new soft ware session. In this book we mainly use 
the Command Window and the built-in Editor, which can be launched by 
typing

edit

By default, the soft ware stores all of your MATLAB-related fi les in the 
startup folder named MATLAB. Alternatively, you can create a personal 
working directory in which to store your MATLAB-related fi les. You should 
then make this new directory the working directory using the Current 
Folder panel or the Folder Browser at the top of the MATLAB desktop. 
Th e soft ware uses a Search Path to fi nd MATLAB-related fi les, which are 
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organized in directories on the hard disk. Th e default search path includes 
only the MATLAB_R2014b directory that has been created by the installer 
in the applications folder and the default working directory MATLAB. To 
see which directories are in the search path or to add new directories, select 
Set Path from the Home toolstrip of the MATLAB desktop, and use the Set 
Path dialog box. Th e modifi ed search path is saved in a fi le pathdef.m on your 
hard disk. Th e soft ware will then in future read the contents of this fi le and 
direct MATLAB to use your custom path list.

 2.3 The Syntax

Th e name MATLAB stands for matrix laboratory. Th e classic object handled 
by MATLAB is a matrix, i.e., a rectangular two-dimensional array of numbers. 
A simple 1-by-1 array is a scalar. Arrays with one column or row are vectors, 
time series or other one-dimensional data fi elds. An m-by-n array can be 
used for a digital elevation model or a grayscale image. Red, green and blue 
(RGB) color images are usually stored as three-dimensional arrays, i.e., the 
colors red, green and blue are represented by an m-by-n-by-3 array.

Before proceeding, we need to clear the workspace by typing

clear

aft er the prompt in the Command Window. Clearing the workspace is 
always recommended before working on a new MATLAB project to avoid 
name confl icts with previous projects. We can also go a step further, close 
all Figure Windows using close all and clear the content of the Command 
Window using clc. It is therefore recommended that a new MATLAB project 
should always start with the line

clear, close all, clc

Entering matrices or arrays in MATLAB is easy. To enter an arbitrary matrix, 
type

A = [2 4 3 7; 9 3 -1 2; 1 9 3 7; 6 6 3 -2]

which fi rst defi nes a variable A, then lists the elements of the array in square 
brackets. Th e rows of A are separated by semicolons, whereas the elements 
of a row are separated by blank spaces, or alternatively, by commas. Aft er 
pressing return, MATLAB displays the array

A =
    2     4     3     7
    9     3    -1     2
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    1     9     3     7
    6     6     3    -2

Displaying the elements of A could be problematic for very large arrays such 
as digital elevation models consisting of thousands or millions of elements. 
To suppress the display of an array or the result of an operation in general, 
the line should be ended with a semicolon.

A = [2 4 3 7; 9 3 -1 2; 1 9 3 7; 6 6 3 -2];

Th e array A is now stored in the workspace and we can carry out some basic 
operations with it, such as computing the sum of elements,

sum(A)

which results in the display

ans =
    18    22     8    14

Since we did not specify an output variable, such as A for the array entered 
above, MATLAB uses a default variable ans, short for answer or most recent 
answer, to store the results of the calculation. In general, we should defi ne 
variables since the next computation without a new variable name will 
overwrite the contents of ans.

Th e above example illustrates an important point about MATLAB: the 
soft ware prefers to work with the columns of arrays. Th e four results of 
sum(A) are obviously the sums of the elements in each of the four columns of 
A. To sum all elements of A and store the result in a scalar b, we simply need 
to type

b = sum(sum(A));

which fi rst sums the columns of the array and then the elements of the 
resulting vector. We now have two variables, A and b, stored in the workspace. 
We can easily check this by typing

whos

which is one the most frequently-used MATLAB commands. Th e soft ware 
then lists all variables in the workspace, together with information about 
their sizes or dimensions, number of bytes, classes and attributes (see Section 
2.5 for details about classes and attributes of objects).

Name      Size            Bytes  Class     Attributes
A         4x4               128  double

2.3 THE SYNTAX  15



Movie 
2.2

ans       1x4                32  double
b         1x1                 8  double

Note that by default MATLAB is case sensitive, i.e., A and a can defi ne two 
diff erent variables. In this context, it is recommended that capital letters be 
used for arrays that have two dimensions or more and lower-case letters 
for one-dimensional arrays (or vectors) and for scalars. However, it is 
also common to use variables with mixed large and small letters. Th is is 
particularly important when using descriptive variable names, i.e., variables 
whose names contain information concerning their meaning or purpose, 
such as the variable CatchmentSize, rather than a single-character variable a. 
We could now delete the contents of the variable ans by typing

clear ans

Next, we will learn how specifi c array elements can be accessed or exchanged. 
Typing

A(3,2)

simply yields the array element located in the third row and second column, 
which is 9. Th e array indexing therefore follows the rule (row, column). We 
can use this to replace single or multiple array elements. As an example we 
type 

A(3,2) = 30

to replace the element A(3,2) by 30 and to display the entire array.

A =
     2     4     3     7
     9     3    -1     2
     1    30     3     7
     6     6     3    -2

If we wish to replace several elements at one time, we can use the colon 
operator. Typing

A(3,1:4) = [1 3 3 5]

or

A(3,:) = [1 3 3 5]

replaces all elements of the third row of the array A. Th e colon operator also 
has several other uses in MATLAB, for instance as a shortcut for entering 
array elements such as
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c = 0 : 10

which creates a vector, or a one-dimensional array with a single row, 
containing all integers from 0 to 10. Th e resultant MATLAB response is

c =
     0   1   2   3   4   5   6   7   8   9   10

Note that this statement creates 11 elements, i.e., the integers from 1 to 10 
and the zero. A common error when indexing arrays is to ignore the zero 
and therefore expect 10 elements instead of 11 in our example. We can check 
this from the output of whos.

Name      Size            Bytes  Class     Attributes
A         4x4               128  double
ans       1x1                 8  double
b         1x1                 8  double
c         1x11               88  double

Th e above command creates only integers, i.e., the interval between the 
array elements is one unit. However, an arbitrary interval can be defi ned, for 
example 0.5 units. Th is is later used to create evenly-spaced time vectors for 
time series analysis. Typing

c = 1 : 0.5 : 10

results in the display

c =
  Columns 1 through 6 
    1.0000    1.5000    2.0000    2.5000    3.0000    3.5000
  Columns 7 through 12 
    4.0000    4.5000    5.0000    5.5000    6.0000    6.5000
  Columns 13 through 18 
    7.0000    7.5000    8.0000    8.5000    9.0000    9.5000
  Column 19 
   10.0000

which autowraps the lines that are longer than the width of the Command 
Window. Th e display of the values of a variable can be interrupted by pressing 
Ctrl+C (Control+C) on the keyboard. Th is interruption aff ects only the 
output in the Command Window, whereas the actual command is processed 
before displaying the result.

MATLAB provides standard arithmetic operators for addition, +, and 
subtraction, -. Th e asterisk, *, denotes matrix multiplication involving inner 
products between rows and columns. For instance, we multiply the matrix A 
with a new matrix B
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B = [4 2 6 5; 7 8 5 6; 2 1 -8 -9; 3 1 2 3];

the matrix multiplication is then

C = A * B'

where ' is the complex conjugate transpose, which turns rows into columns 
and columns into rows. Th is generates the output

C =
    69   103   -79    37
    46    94    11    34
    53    76   -64    27
    44    93    12    24

In linear algebra, matrices are used to keep track of the coeffi  cients of 
linear transformations. Th e multiplication of two matrices represents the 
combination of two linear transformations into a single transformation. 
Matrix multiplication is not commutative, i.e., A*B' and B*A' yield 
diff erent results in most cases. Similarly, MATLAB allows matrix divisions 
representing diff erent transformations, with / as the operator for right-hand 
matrix division and \ as the operator for left -hand division. Finally, the 
soft ware also allows powers of matrices, ^.

In earth sciences, however, matrices are oft en simply used as two-
dimensional arrays of numerical data rather than a matrix sensu stricto 
representing a linear transformation. Arithmetic operations on such arrays 
are carried out element-by-element. While this does not make any diff erence 
in addition and subtraction, it does aff ect multiplicative operations. MATLAB 
uses a dot, ., as part of the notation for these operations.

As an example multiplying A and B element-by-element is performed by 
typing

C = A .* B

which generates the output

C =
     8     8    18    35
    63    24    -5    12
     2     3   -24   -45
    18     6     6    -6

 2.4 Array Manipulation

MATLAB provides a wide range of functions with which to manipulate 
arrays (or matrices). Th is section introduces the most important functions 
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for array manipulation, which are used later in the book. We fi rst clear the 
workspace and create two arrays, A and B, by typing

clear

A = [2 4 3; 9 3 -1]
B = [1 9 3; 6 6 3]

which yields

A =
     2     4     3
     9     3    -1

B =
     1     9     3
     6     6     3

When we work with arrays, we sometimes need to concatenate two or more 
arrays into a single array. We can use either cat(dim,A,B) with dim=1 to 
concatenate the arrays A and B along the fi rst dimension (i.e., along the rows). 
Alternatively, we can use the function vertcat to concatenate the arrays A and 
B vertically. By typing either

C = cat(1,A,B)

or

C = vertcat(A,B)

we obtain (in both cases)

C =
     2     4     3
     9     3    -1
     1     9     3
     6     6     3

Similarly, we can concatenate arrays horizontally, i.e., concatenate the arrays 
along the second dimension (i.e., along the columns) by typing

D = cat(2,A,B)

or using the function horzcat instead

D = horzcat(A,B)

which both yield

D =
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     2     4     3     1     9     3
     9     3    -1     6     6     3

When working with satellite images we oft en concatenate three spectral 
bands of satellite images into three-dimensional arrays of the colors red, 
green and blue (RGB) (Sections 2.5 and 8.4). We again use cat(dim,A,B) with 
dim=3 to concatenate the arrays A and B along the third dimension by typing

E = cat(3,A,B)

which yields

E(:,:,1) =
     2     4     3
     9     3    -1

E(:,:,2) =
     1     9     3
     6     6     3

Typing

whos

yields

  Name      Size             Bytes  Class     Attributes

  A         2x3                 48  double              
  B         2x3                 48  double              
  C         4x3                 96  double              
  D         2x6                 96  double              
  E         2x3x2               96  double              

indicating that we have now created a three-dimensional array, as the size 
2-by-3-by-2 suggests. Alternatively, we can use

size(E)

which yields

ans =
     2     3     2

to see that the array has 2 rows, 3 columns, and 2 layers in the third dimension. 
Using length instead of size, 

length(A)

yields
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ans =
     3

which tells us the dimension of the largest array only. Hence length is 
normally used to determine the length of a one-dimensional array (or 
vector), such the evenly-spaced time axis c that was created in Section 2.3.

MATLAB uses a matrix-style indexing of arrays with the (1,1) element 
being located in the upper-left  corner of arrays. Other types of data that are 
to be imported into MATLAB may follow a diff erent indexing convention. 
As an example, digital terrain models (introduced in Chapter 7.3 to 7.5) 
oft en have a diff erent way of indexing and therefore need to be fl ipped in an 
up-down direction or, in other words, about a horizontal axis. Alternatively, 
we can fl ip arrays in a left -right direction (i.e., about a vertical axis). We can 
do this by using flipud for fl ipping in an up-down direction and fliplr for 
fl ipping in a left -right direction

F = flipud(A)
F = fliplr(A)

yielding

F =
     9     3    -1
     2     4     3

F =
     3     4     2
    -1     3     9

In more complex examples we can use circshift(A,K,dim) to circularly shift  
(i.e., rotate) arrays by K positions along the dimension dim. As an example we 
can shift  the array A by 1 position along the 2nd dimension (i.e., along the 
rows) by typing

G = circshift(A,1,2)

which yields

G =
     3     2     4
    -1     9     3

We can also use reshape(A,[m n]) to completely reshape the array. Th e result 
is an m-by-n array H whose elements are taken column-wise from A. As an 
example we create a 3-by-2 array from A by typing

H = reshape(A,[3 2])
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which yields

H =
     2     3
     9     3
     4    -1

Another important way to manipulate arrays is to sort their elements. As an 
example we can use sort(C,dim,mode) with dim=1 and mode='ascend' to sort 
the elements of C in ascending order along the fi rst array dimension (i.e., the 
rows). Typing

I = sort(C,1,'ascend')

yields

I =
     1     3    -1
     2     4     3
     6     6     3
     9     9     3

Th e function sortrows(C,column) with column=2 sorts the rows of C according 
to the second column. Typing

J = sortrows(C,2)

yields

J =
     9     3    -1
     2     4     3
     6     6     3
     1     9     3

Array manipulation also includes the comparison of arrays, for example 
by checking whether elements in A(i,j) are also found in B using ismember. 
Typing

A, B

K = ismember(A,B)

yields

A =
     2     4     3
     9     3    -1

B =
     1     9     3
     6     6     3
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K =
     0     0     1
     1     1     0

Th e array L(i,j) is zero if A(i,j) is not in B, and one if A(i,j) is in B. We can 
also locate elements within A for which a statement is true. For example we 
can locate elements with values less than zero and replace them with NaNs by 
typing

L = A;
L(find(L<0)) = NaN

or, more briefl y

L(L<0) = NaN

which yields

L =
     2     4     3
     9     3   NaN

Th is is very useful when working with digital elevation models, where values 
below sea level are not relevant. Alternatively, we can replace data voids other 
than NaNs such as -32768, which are oft en used with digital terrain models 
(Section 7.3 to 7.5). We can then determine which elements of an array are 
NaNs by typing

M = isnan(L)

which yields

M =
     0     0     0
     0     0     1

where NaNs are indicated by ones and non-NaN values are indicated by zeros. 
Which of the elements in array A are unique can be determined by typing

N = unique(A)

which yields

N =
    -1
     2
     3
     4
     9
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Th e value of 3 occurs twice in A and the number of elements in N is therefore 
one less than in A.

 2.5 Data Structures and Classes of Objects

Th e default data type or class in MATLAB is double precision or double, which 
stores data in a 64-bit array of fl oating-point numbers. Such fl oating-point 
numbers are approximations of real numbers that allow a maximum range 
of values in a limited numbers of bits. A double-precision array allows the 
sign of a number to be stored (bit 63), together with the exponent (bits 62 to 
52), and roughly 16 signifi cant decimal digits (bits 51 to 0). Typing

clear

realmin('double')
realmax('double')

yields the smallest and largest positive fl oating-point number in double 
precision

ans =
  2.2251e-308

ans =
  1.7977e+308

Th e actual number of fl oating point numbers is therefore limited by the 
number of bits available, in contrast to real numbers. Th e diff erence between 
1.0 and the next largest double-precision number can be calculated using the 
fl oating-point relative accuracy eps by typing

eps(1.0)

which yields

ans =
   2.2204e-16

Th e round-off  error depends on the value of the real number; it is, for 
example, diff erent for 5.0, as we can see by typing

eps(5.0)

which yields

ans =
   8.8818e-16
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For real numbers there is, by defi nition, no such gap between consecutive 
numbers. Th e use of a fi nite number of fl oating-point numbers is limited 
by the number of available bits due to the fi nite precision arithmetic of a 
computer. Th ere are countless examples available with which to demonstrate 
this, but we will restrict ourselves to the simple example of the sine of π. 
Typing

sin(pi)

yields

ans =
   1.2246e-16

and not, as would be expected, zero. Since pi is only the nearest fl oating-
point value to π, the sine of pi is not exactly zero but a value very close to 
zero.

Let us now look at some examples of arrays in order to familiarize 
ourselves with the diff erent data types in MATLAB. For the fi rst example we 
create a 3-by-4 array of random numbers with double precision by typing

clear

rng(0)
A = rand(3,4)

We use the function rand that generates uniformly distributed pseudorandom 
numbers within the open interval [0,1]. To obtain identical data values, we 
use rng(0) to reset the random number generator by using the integer 0 as 
seed (see Chapter 3 for more details on random number generators and types 
of distributions). Since we did not use a semicolon here we get the output

A =
    0.8147    0.9134    0.2785    0.9649
    0.9058    0.6324    0.5469    0.1576
    0.1270    0.0975    0.9575    0.9706

By default, the output is in a scaled fi xed point format with 5 digits, e.g., 
0.8147 for the (1,1) element of A. Typing

format long

switches to a fi xed point format with 16 digits for double precision. Recalling 
A by typing

A
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yields the output

A =
  Columns 1 through 2
   0.814723686393179   0.913375856139019
   0.905791937075619   0.632359246225410
   0.126986816293506   0.097540404999410

  Columns 3 through 4
   0.278498218867048   0.964888535199277
   0.546881519204984   0.157613081677548
   0.957506835434298   0.970592781760616

which autowraps those lines that are longer than the width of the Command 
Window. Th e command format does not aff ect how the computations are 
carried out, i.e., the precision of the computation results remains unchanged. 
Th e precision is, however, aff ected by converting the data type from double 
to 32-bit single precision. Typing

B = single(A)

yields

B =
   0.8147237   0.9133759   0.2784982   0.9648885
   0.9057919   0.6323593   0.5468815   0.1576131
   0.1269868   0.0975404   0.9575068   0.9705928

Although we have switched to format long, only 8 digits are displayed. Th e 
command whos lists the variables A and B with information on their sizes or 
dimensions, number of bytes, and classes

Name      Size            Bytes  Class     Attributes
A         3x4                96  double              
B         3x4                48  single              

Th e default class double is used in all MATLAB operations in which the 
physical memory of the computer is not a limiting factor, whereas single 
is used when working with large data sets. Th e double-precision variable A, 
whose size is 3-by-4 elements, requires 3·4·64=768 bits or 768/8=96 bytes 
of memory, whereas B requires only 48 bytes and so has half the memory 
requirement of A. Introducing at least one complex number to A doubles 
the memory requirement since both real and imaginary parts are double 
precision, by default. Switching back to format short and typing

format short
A(1,3) = 4i + 3

yields
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A =
  Columns 1 through 2
   0.8147 + 0.0000i   0.9134 + 0.0000i
   0.9058 + 0.0000i   0.6324 + 0.0000i
   0.1270 + 0.0000i   0.0975 + 0.0000i

  Columns 3 through 4
   3.0000 + 4.0000i   0.9649 + 0.0000i
   0.5469 + 0.0000i   0.1576 + 0.0000i
   0.9575 + 0.0000i   0.9706 + 0.0000i

and the variable listing is now

Name      Size            Bytes  Class     Attributes
A         3x4               192  double    complex   
B         3x4                48  single              

indicating the class double and the attribute complex.
MATLAB also works with even smaller data types such as 1-bit, 8-bit 

and 16-bit data, in order to save memory. Th ese data types are used to store 
digital elevation models or images (see Chapters 7 and 8). For example 
m-by-n pixel RGB true color images are usually stored as three-dimensional 
arrays, i.e., the three colors are represented by an m-by-n-by-3 array (see 
Chapter 8 for more details on RGB composites and true color images). Such 
multi-dimensional arrays can be generated by concatenating three two-
dimensional arrays representing the m-by-n pixels of an image. First, we 
generate a 100-by-100 array of uniformly distributed random numbers in 
the range [0,1]. We then multiply the random numbers by 255 to get values 
between 0 and 255.

clear

rng(0)
I1 = 255 * rand(100,100);
I2 = 255 * rand(100,100);
I3 = 255 * rand(100,100);

Th e command cat concatenates the three two-dimensional arrays (8 bits 
each) into a three-dimensional array (3·8 bits=24 bits).

I = cat(3,I1,I2,I3);

Since RGB images are represented by integer values between 0 and 255 for 
each color, we convert the 64-bit double-precision values to unsigned 8-bit 
integers using uint8 (Section 8.2). Th e function uint8 rounds the values in 
I to the nearest integer. Any values that are outside the range [0,255] are 
assigned to the nearest endpoint (0 or 255).
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I = uint8(I);

Typing whos then yields

Name            Size               Bytes  Class     Attributes
I             100x100x3            30000  uint8               
I1            100x100              80000  double              
I2            100x100              80000  double              
I3            100x100              80000  double              

Since 8 bits can be used to store 256 diff erent values, this data type can be 
used to store integer values between 0 and 255, whereas using int8 to create 
signed 8-bit integers generates values between –128 and +127. Th e value of 
zero requires one bit and there is therefore no space left  in which to store 
+128. Finally, imshow can be used to display the three-dimensional array as a 
true color image.

imshow(I)

We next introduce structure arrays as a MATLAB data type. Structure 
arrays are multi-dimensional arrays with elements accessed by textual fi eld 
designators. Th ese arrays are data containers that are particularly helpful in 
storing any kind of information about a sample in a single variable. As an 
example we can generate a structure array sample_1 that includes the image 
array I defi ned in the previous example as well as other types of information 
about a sample, such as the name of the sampling location, the date of 
sampling, and geochemical measurements, stored in a 10-by-10 array.

sample_1.location = 'Plougasnou';
sample_1.date = date;
sample_1.image = I;
sample_1.geochemistry = rand(10,10);

Th e fi rst layer of the structure array sample_1 contains a character array, i.e., 
a two-dimensional array of the data type char containing a character string. 
We can create such an array by typing

location = 'Plougasnou';

We can list the size, class and attributes of a single variable such as location 
by typing

whos location

and learn from

Name          Size            Bytes  Class    Attributes
location      1x10               20  char               
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that the size of this character array location corresponds to the number of 
characters in the word Plougasnou. Character arrays are 16-bit arrays, i.e., 
216=65,536 diff erent characters can be stored in such arrays. Th e character 
string location therefore requires 10·16=160 bits or 160/8=20 bytes of 
memory. In addition, the second layer datum in the structure array sample_1 
contains a character string generated by date that yields a string containing 
the current date in dd-mm-yyyy format. We access this particular layer in 
sample_1 by typing

sample_1.date

which yields

ans =
   27-Jun-2014

as an example. Th e third layer of sample_1 contains the image created in 
the previous example, while the fourth layer contains a 10-by-10 array of 
uniformly-distributed pseudorandom numbers. All layers of sample_1 can 
be listed by typing

sample_1

resulting in the output

sample_1 = 
        location: 'Plougasnou'
            date: '06-Oct-2009'
           image: [100x100x3 uint8]
    geochemistry: [10x10 double]

Th is represents a list of the layers location, date, image and geochemistry 
within the structure array sample_1. Some variables are listed in full, whereas 
larger data arrays are only represented by their size. In the list of the layers 
within the structure array sample_1, the array image is characterized by its size 
100x100x3 and the class uint8. Th e variable geochemistry in the last layer of 
the structure array contains a 10-by-10 array of double-precision numbers. 
Th e command

whos sample_1

does not list the layers in sample_1 but the name of the variable, the bytes and 
the class struct of the variable.

  Name            Size               Bytes  Class     Attributes
  sample_1        1x1                31546  struct              
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MATLAB also has cell arrays as an alternative to structure arrays. Both 
classes or data types are very similar and are containers of diff erent types 
and sizes of data. Th e most important diff erence between the two is that the 
containers of a structure array are named fi elds, whereas a cell array uses 
numerically-indexed cells. Structure arrays are oft en used in applications 
where the organization of the data is particularly important. Cell arrays 
are oft en used when processing large data sets in count-controlled loops 
(Section 2.7).

As an example of cell arrays we use the same data collection as in structure 
arrays, with the layers of the structure array as the cells in the cell array. Th e 
cell array is created by enclosing the location name Plougasnou, the date, 
the image I and the 10-by-10 array of uniformly-distributed pseudorandom 
numbers in curly brackets.

C = {'Plougasnou' date I rand(10,10)}

Typing

C

lists the contents of the cell array

C = 
  Columns 1 through 2
    'Plougasnou'    '27-Jun-2014'
  Columns 3 through 4
    [100x100x3 uint8]    [10x10 double]

which contains the location name and date. Th e image and the array of 
random numbers are too large to be displayed in the Command Window, 
but the dimensions and class of the data are displayed instead. We access a 
particular cell in C, e.g., the cell 2, by typing

C{2}

which yields

ans =
27-Jun-2014

We can also access the other cells of the cell array in a similar manner.

 2.6 Data Storage and Handling

Th is section deals with how to store, import, and export data with MATLAB. 
Many of the data formats typically used in earth sciences have to be converted 
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before being analyzed with MATLAB. Alternatively, the soft ware provides 
several import routines to read many binary data formats in earth sciences, 
such as those used to store digital elevation models and satellite data.

A computer generally stores data as binary digits or bits. A bit is analogous 
to a two-way switch with two states, on = 1 and off  = 0. Th e bits are joined 
together to form larger groups, such as bytes consisting of 8 bits, in order 
to store more complex types of data. Such groups of bits are then used to 
encode data, e.g., numbers or characters. Unfortunately, diff erent computer 
systems and soft ware use diff erent schemes for encoding data. For instance, 
the characters in the widely-used text processing soft ware Microsoft  Word 
diff er from those in Apple Pages. Exchanging binary data is therefore diffi  cult 
if the various users use diff erent computer platforms and soft ware. Binary 
data can be stored in relatively small fi les if both partners are using similar 
systems of data exchange. Th e transfer rate for binary data is generally faster 
than that for the exchange of other fi le formats.

Various formats for exchanging data have been developed during recent 
decades. Th e classic example for the establishment of a data format that can 
be used with diff erent computer platforms and soft ware is the American 
Standard Code for Information Interchange (ASCII) that was fi rst published 
in 1963 by the American Standards Association (ASA). As a 7-bit code, 
ASCII consists of 27=128 characters (codes 0 to 127). Whereas ASCII-1963 
was lacking lower-case letters, in the ASCII-1967 update lower-case letters 
as well as various control characters such as escape and line feed, and various 
symbols such as brackets and mathematical operators, were also included. 
Since then, a number of variants appeared in order to facilitate the exchange 
of text written in non-English languages, such as the expanded ASCII 
containing 255 codes, e.g., the Latin-1 encoding.

Th e simplest way to exchange data between a certain piece of soft ware 
and MATLAB is using the ASCII format. Although the newer versions of 
MATLAB provide various import routines for fi le types such as Microsoft  
Excel binaries, most data arrive in the form of ASCII fi les. Consider a simple 
data set stored in a table such as

SampleID   Percent C     Percent S
101        0.3657        0.0636
102        0.2208        0.1135
103        0.5353        0.5191
104        0.5009        0.5216
105        0.5415        -999
106        0.501         -999

Th e fi rst row contains the names of the variables and the columns provide 
the percentages of carbon and sulfur in each sample. Th e absurd value -999 
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indicates missing data in the data set. Two things have to be changed to 
convert this table into MATLAB format. First, MATLAB uses NaN as the 
representation for Not-a-Number that can be used to mark missing data or 
gaps. Second, a percent sign, %, should be added at the beginning of the fi rst 
line. Th e percent sign is used to indicate nonexecutable text within the body 
of a program. Th is text is normally used to include comments in the code.

%SampleID  Percent C     Percent S
101        0.3657        0.0636
102        0.2208        0.1135
103        0.5353        0.5191
104        0.5009        0.5216
105        0.5415        NaN
106        0.501         NaN

MATLAB will ignore any text appearing aft er the percent sign and continue 
processing on the next line. Aft er editing this table in a text editor, such as 
the MATLAB Editor, it can be saved as ASCII text fi le geochem.txt in the 
current working directory (Fig. 2.2). Th e MATLAB workspace should fi rst 
be cleared by typing

clear

aft er the prompt in the Command Window. MATLAB can now import the 
data from this fi le with the load command.

load geochem.txt

MATLAB then loads the contents of the fi le and assigns the array to a variable 
geochem specifi ed by the fi lename geochem.txt. Typing

whos

yields

Name         Size            Bytes  Class     Attributes
geochem      6x3               144  double              

Th e command save now allows workspace variables to be stored in a binary 
format.

save geochem_new.mat

MAT-fi les are double-precision binary fi les using .mat as extension. Th e 
advantage of these binary MAT-fi les is that they are independent of the 
computer platforms running diff erent fl oating-point formats. Th e command

save geochem_new.mat geochem
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Movie 
2.3

Fig. 2.2 Screenshot of MATLAB Editor showing the content of the fi le geochem.txt. Th e fi rst 
line of the text needs to be commented by a percent sign at the beginning of the line, followed 
by the actual data array. Th e -999 values need to be replaced by NaNs.

saves only the variable geochem instead of the entire workspace. Th e option 
-ascii, for example

save geochem_new.txt geochem -ascii

again saves the variable geochem, but in an ASCII fi le named geochem_new.txt 
in a fl oating-point format with 8 digits:

   1.0100000e+02   3.6570000e-01   6.3600000e-02
   1.0200000e+02   2.2080000e-01   1.1350000e-01
   1.0300000e+02   5.3530000e-01   5.1910000e-01
   1.0400000e+02   5.0090000e-01   5.2160000e-01
   1.0500000e+02   5.4150000e-01             NaN
   1.0600000e+02   5.0100000e-01             NaN

In contrast to the binary fi le geochem_new.mat, this ASCII fi le can be viewed 
and edited using the MATLAB Editor or any other text editor.

Such data fi les, especially those that are produced by electronic instruments, 
can look much more complicated than the example fi le geochem.txt with a 
single header line. In Chapters 7 and 8 we will read some of these complicated 
and extensive fi les, which are either binary or text fi les and usually have long 
headers describing the contents of the fi les. At this point, let us have a look at 
a variant of text fi les that contains not only one or more header lines but also 
unusual data types such as date and time, in a non-decimal format. We use 
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the function textscan to perform this task. Th e MATLAB workspace should 
fi rst be cleared by typing

clear

aft er the prompt in the Command Window. MATLAB can now import the 
data from the fi le geochem.txt using the textscan command.

fid = fopen('geochem.txt');
C = textscan(fid,'%u %f %f','Headerlines',1,'CollectOutput',1);
fclose(fid);

Th is script opens the fi le geochem.txt for read only access using fopen and 
defi nes the fi le identifi er fid, which is then used to read the text from the 
fi le using textscan and to write it into the cell array C. Th e character string %u 
%f %f defi nes the conversion specifi ers enclosed in single quotation marks, 
where %u stands for the 32-bit unsigned integer output class and %f stands for 
a 64-bit double-precision fl ointing-point number. Th e parameter Headerlines 
is set to 1, which means that a single header line is ignored while reading the 
fi le. If the parameter CollectOutput is 1 (i.e., is true), textscan concatenates 
output cells with the same data type into a single array. Th e function fclose 
closes the fi le defi ned by fid. Th e array C is a cell array, which is a data type 
with indexed containers called cells (see Section 2.5). Th e advantage of this 
data type is that it can store data of various types and sizes, such as character 
strings, double-precision numbers, and images in a single variable such as 
C. Typing

C

yields

C = 
    [6x1 uint32]    [6x2 double]

indicating that C contains a 6-by-1 32-bit unsigned integer array, which is 
the sample ID, and a 6-by-1 double-precision array, which represents the 
percentages of carbon and sulfur in each sample. We can access the contents 
of the cells in C by typing

data1 = C{1}
data2 = C{2}

which yields

data1 =
    101
    102
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    103
    104
    105
    106

data2 =
    0.3657    0.0636
    0.2208    0.1135
    0.5353    0.5191
    0.5009    0.5216
    0.5415       NaN
    0.5010       NaN

We now concatenate the two cells into one double-precision array data. First, 
we have to change the class of C{1} into double or the class of the entire array 
data will be uint32. Typing

data(:,1) = double(C{1})
data(:,2:3) = C{2}

yields

  101.0000    0.3657    0.0636
  102.0000    0.2208    0.1135
  103.0000    0.5353    0.5191
  104.0000    0.5009    0.5216
  105.0000    0.5415       NaN
  106.0000    0.5010       NaN

Th e format of the data is as expected.
Th e next examples demonstrate how to read the fi le geophys.txt, which 

contains a single header line but also the date (in an MM/DD/YY format) 
and time (in an HH:MM:SS.SS format). We again use textscan to read the 
fi le,

clear

fid = fopen('geophys.txt');
data = textscan(fid,'%u %f %f %f %s %s','Headerlines',1);
fclose(fid);

where we skip the header, read the fi rst column (the sample ID) as a 32-bit 
unsigned integer (uint32) with specifi er %u, the next three columns X, Y, and 
Z as 64-bit double-precision fl oating-point numbers (double) with specifi er 
%f, and then the date and time as character strings with specifi er %s. We then 
convert the date and time to serial numbers, where a serial date number of 1 
corresponds to Jan-1-0000. Th e year 0000 is merely a reference point and is 
not intended to be interpreted as a real year.
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data_date_serial = datenum(data{5});
data_time_serial = datenum(data{6});

Finally, we can convert the date and time serial numbers into a data and time 
array by typing 

data_date = datevec(data_date_serial)
data_time = datevec(data_time_serial)

which yields

data_date =
      2013   11   18   0   0   0
      2013   11   18   0   0   0
      2013   11   18   0   0   0
      2013   11   18   0   0   0
      2013   11   18   0   0   0

data_time =
   1.0e+03 *
   2.0130   0.0010   0.0010   0.0100   0.0230   0.0091
   2.0130   0.0010   0.0010   0.0100   0.0230   0.0102
   2.0130   0.0010   0.0010   0.0100   0.0230   0.0504
   2.0130   0.0010   0.0010   0.0100   0.0240   0.0051
   2.0130   0.0010   0.0010   0.0100   0.0240   0.0233

Th e fi rst three columns of the array data_date contain the year, month and 
day. Th e fourth to sixth columns of the array data_time contain the hour, 
minute and second.

We can also write data to a formatted text fi le using fprintf. As an example 
we again load the data from geochem.txt aft er we have commented out the 
fi rst line and have replaced -999 with NaN. Instead of using load geochem.txt, 
we can type

clear

data = load('geochem.txt');

to load the contents of the text fi le into a double-precision array data. We 
write the data to a new text fi le geochem_formatted.txt using fprintf. Since 
the function fprintf writes all elements of the array data to the fi le in column 
order we need to transpose the data before we save it.

data = data';

We fi rst open the fi le using the permission w for writing, and discard the 
existing contents. We then write data to this fi le using the formatting 
operators %u for unsigned integers and %6.4f for fi xed-point numbers with 
a fi eld width of six characters and four digits aft er the decimal point. Th e 
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control character \n denotes a new line aft er each line of three numbers.

fid = fopen('geochem_formatted.txt','w');
fprintf(fid,'%u %6.4f %6.4f\n',data);
fclose(fid);

We can view the contents of the fi le by typing

edit geochem_formatted.txt

which opens the fi le geochem_formatted.txt

101   0.3657   0.0636
102   0.2208   0.1135
103   0.5353   0.5191
104   0.5009   0.5216
105   0.5415      NaN
106   0.5010      NaN

in the MATLAB Editor. Th e format of the data is as expected.

 2.7 Control Flow

Control fl ow in computer science helps to control the order in which computer 
code is evaluated. Th e most important kinds of control fl ow statements are 
count-controlled loops such as for loops and conditional statements such as 
if-then constructs. Since in this book we do not deal with the programming 
capabilities of MATLAB in any depth, the following introduction to the 
basics of control fl ow is rather brief and omits certain important aspects of 
effi  cient programming, such as the pre-allocation of memory prior to using 
for loops, and instructions on how the use of for loops can be avoided by 
vectorization of the MATLAB code. Th is introduction is instead limited to 
the two most important kinds of control fl ow statements: the aforementioned 
for loops and the if-then constructs. Readers interested in MATLAB as a 
programming environment are advised to read the more detailed chapters 
on control fl ow in the MATLAB documentation (MathWorks 2014a and c).

Th e for loops, as the fi rst example of a MATLAB language statement, 
execute a series of commands between for and end a specifi ed number of 
times. As an example we use such a loop to multiply the elements of an array 
A by 10, round the result to the nearest integer, and store the result in B.

clear

rng(0)
A = rand(10,1)
for i = 1 : 10
    B(i,1) = round(10 * A(i));   
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end    
B
    

which yields

A =
    0.8147
    0.9058
    0.1270
    0.9134
    0.6324
    0.0975
    0.2785
    0.5469
    0.9575
    0.9649

B =
     8
     9
     1
     9
     6
     1
     3
     5
    10
    10

Th e result is as expected. We can expand the experiment by using a nested 
for loop to create a 2D array B.

rng(0)
A = rand(10,3)
for i = 1 : 10
    for j = 1 : 3
        B(i,j) = round(10 * A(i,j));  
    end
end    
B

which yields

A =
    0.8147    0.1576    0.6557
    0.9058    0.9706    0.0357
    0.1270    0.9572    0.8491
    0.9134    0.4854    0.9340
    0.6324    0.8003    0.6787
    0.0975    0.1419    0.7577
    0.2785    0.4218    0.7431
    0.5469    0.9157    0.3922
    0.9575    0.7922    0.6555
    0.9649    0.9595    0.1712
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B =
     8     2     7
     9    10     0
     1    10     8
     9     5     9
     6     8     7
     1     1     8
     3     4     7
     5     9     4
    10     8     7
    10    10     2

Th is book tries to make all of the recipes independent of the actual 
dimensions of the data. Th is is achieved by the consistent use of size and 
length to determine the size of the data instead of using fi xed numbers such 
as the 30 and 3 in the above example (Section 2.4).

rng(0)
A = rand(10,3)
for i = 1 : size(A,1)
    for j = 1 : size(A,2)
        B(i,j) = round(10 * A(i,j));  
    end
end    
B

When working with larger data sets with many variables one might 
occasionally wish to automate array manipulations such as those described 
in Section 2.4. Let us assume, for example, that we want to replace all NaNs 
in all variables in the memory with -999. We fi rst create a collection of four 
variables, each of which contains a single NaN.

clear

rng(0)
A = rand(3,3); A(2,1) = NaN
BC = rand(2,4); BC(2,2) = NaN
DE = rand(1,2); DE(1,1) = NaN
FG = rand(3,2); FG(2,2) = NaN

We list the variables in the workspace using whos and store this list in variables.

variables = who;

We then use a for loop to store the content of each variable in v using eval 
and then locate the NaNs in v using isnan (Section 2.4) and replace them with 
-999. Th e function eval executes a MATLAB expression stored in a text string. 
We assign the value of v to the variable in the base workspace and then clear 
the variables i, v and variables, which are no longer needed.
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for i = 1 : size(variables,1)
    v = eval(variables{i});
    v(isnan(v)==1) = -999;
    assignin('base',variables{i},v);
    eval(variables{i})
end

clear i v variables

Comparing the variables before and aft er the replacement of the NaNs 
with -999 reveals that the script works well and that we have successfully 
manipulated our data.

Th e second important statements to control the fl ow of a script (apart 
from for loops) are if-then constructs, which evaluate an expression and 
then execute a group of instructions if the expression is true. As an example 
we compare the value of two scalars A and B.

clear

A = 1
B = 2
if A < B
    disp('A is less than B')
end

which yields

A is less than B

Th e script fi rst evaluates whether A is less than B and, if it is, displays the 
message A is less than B in the Command Window. We can expand the if-
then construct by introducing else, which provides an alternative statement 
if the expression is not true. 

A = 1
B = 2
if A < B
    disp('A is less than B')
else
    disp('A is not less than B')
end

which yields

A is less than B

Alternatively, we can use elseif to introduce a second expression to be 
evaluated.

A = 1

40  2 INTRODUCTION TO MATLAB



B = 2
if A < B
    disp('A is less than B')
elseif A >= B
    disp('A is not less than B')
end

Th e for loops and if-then constructs are extensively used in the following 
chapters of the book. For other aspects of programming, please refer to the 
MATLAB documentation (MathWorks 2014a and c).

 2.8 Scripts and Functions

MATLAB is a powerful programming language. All fi les containing 
MATLAB code use .m as an extension and are therefore called M-fi les. 
Th ese fi les contain ASCII text and can be edited using a standard text editor. 
However, the built-in Editor color-highlights various syntax elements such 
as comments in green, keywords such as if, for and end in blue, and character 
strings in pink. Th is syntax highlighting facilitates MATLAB coding.

MATLAB uses two types of M-fi les: scripts and functions. Whereas scripts 
are a series of commands that operate on data in the workspace, functions 
are true algorithms with input and output variables. Th e advantages and 
disadvantages of both types of M-fi le will now be illustrated by an example. 
We fi rst start the Editor by typing

edit

Th is opens a new window named untitled. Next, we generate a simple 
MATLAB script by typing a series of commands to calculate the average of 
the elements of a data array x.

[m,n] = size(x);
if m == 1
   m = n;
end
sum(x)/m

Th e fi rst line of the if-then construct yields the dimensions of the variable x 
using the command size. In our example x should be either a column vector, 
i.e., an array with a single column and dimensions (m,1), or a row vector, i.e. 
an array with a single row and dimensions (1,n). Th e if statement evaluates 
a logical expression and executes a group of commands if this expression 
is true. Th e end keyword terminates the last group of commands. In the 
example the if-then construct picks either m or n depending on whether m==1 
is false or true. Here, the double equal sign '==' makes element by element 
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comparisons between the variables (or numbers) to the left  and right of the 
equal signs and returns an array of the same size, made up of elements set to 
logical 1 where the relationship is true and to logical 0 where it is not true. In 
our example m==1 returns 1 if m equals 1 and 0 if m equals any other value. Th e 
last line of the if-then construct computes the average by dividing the sum 
of elements by m or n. We do not use a semicolon here in order to allow the 
output of the result. We can now save our new M-fi le as average.m and type

clear

x = [3 6 2 -3 8];

in the Command Window to defi ne an example array x. We then type

average

without the extension .m to run our script and obtain the average of the 
elements of the array x as output.

ans =
    3.2000

Aft er typing 

whos

we see that the workspace now contains

Name         Size            Bytes  Class     Attributes
ans          1x1                 8  double              
m            1x1                 8  double              
n            1x1                 8  double              
x            1x5                40  double              

Th e listed variables are the example array x and the output of the function 
size, m and n. Th e result of the operation is stored in the variable ans. Since 
the default variable ans might be overwritten during one of the succeeding 
operations, we need to defi ne a diff erent variable. Typing

a = average

however, results in the error message

??? Attempt to execute SCRIPT average as a function.

We can obviously not assign a variable to the output of a script. Moreover, 
all variables defi ned and used in the script appear in the workspace; in 
our example these are the variables m and n. Scripts contain sequences of 
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Fig. 2.3 Screenshot of the MATLAB Editor showing the function average. Th e function 
starts with a line containing the keyword function, the name of the function average, the 
input variable x, and the output variable y. Th e subsequent lines contain the output for help 
average, the copyright and version information, and also the actual MATLAB code for 
computing the average using this function.

commands that are applied to variables in the workspace. MATLAB functions, 
however, allow inputs and outputs to be defi ned. Th ey do not automatically 
import variables from the workspace. To convert the above script into a 
function we need to introduce the following modifi cations (Fig. 2.3):

function y = average(x)
%AVERAGE    Average value.
%    AVERAGE(X) is the average of the elements in the array X. 

% By Martin Trauth, June 27, 2014

[m,n] = size(x);
if m == 1
   m = n;
end
y = sum(x)/m;

Th e fi rst line now contains the keyword function, the function name 
average, the input x and the output y. Th e next two lines contain comments, 
as indicated by the percent sign, separated by an empty line. Th e second 
comment line contains the author’s name and the version of the M-fi le. Th e 
rest of the fi le contains the actual operations. Th e last line now defi nes the 
value of the output variable y, and this line is terminated by a semicolon to 
suppress the display of the result in the Command Window. Next we type
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help average

which displays the fi rst block of contiguous comment lines. Th e fi rst 
executable statement (or blank line in our example) eff ectively ends the help 
section and therefore the output of help. Now we are independent of the 
variable names used in our function. Th e workspace can now be cleared and 
a new data vector defi ned. 

clear

data = [3 6 2 -3 8];

Our function can then be run by the statement

result = average(data);

Th is clearly illustrates the advantages of functions compared to scripts. 
Typing

whos

results in

Name        Size            Bytes  Class     Attributes
data        1x5                40  double              
result      1x1                 8  double              

revealing that all variables used in the function do not appear in the 
workspace. Only the input and output as defi ned by the user are stored in 
the workspace. Th e M-fi les can therefore be applied to data as if they were 
real functions, whereas scripts contain sequences of commands that are 
applied to the variables in the workspace. If we want variables such as m and 
n to also appear in the memory they must be defi ned as global variables in 
both the function and the workspace, otherwise they are considered to be 
local variables. We therefore add one line to the function average with the 
command global:

function y = average(x)
%AVERAGE    Average value.
%    AVERAGE(X) is the average of the elements in the array X. 

% By Martin Trauth, June 27, 2014

global m n
[m,n] = size(x);
if m == 1
   m = n;
end
y = sum(x)/m;

44  2 INTRODUCTION TO MATLAB



We now type

global m n

in the Command Window. Aft er running the function as described in the 
previous example we fi nd the two variables m and n in the workspace. We 
have therefore transferred the variables m and n between the function average 
and the workspace.

 2.9 Basic Visualization Tools

MATLAB provides numerous routines for displaying data as graphics. Th is 
section introduces the most important graphics functions. Th e graphics can 
be modifi ed, printed and exported to be edited with graphics soft ware other 
than MATLAB. Th e simplest function producing a graph of a variable y 
versus another variable x is plot. First, we defi ne two one-dimensional arrays 
x and y, where y is the sine of x. Th e array x contains values between 0 and 2π 
with π/10 increments, whereas y is the element-by-element sine of x.

clear

x = 0 : pi/10 : 2*pi;
y = sin(x);

Th ese two commands result in two one-dimensional arrays with 21 elements 
each, i.e., two 1-by-21 arrays. Since the two arrays x and y have the same 
length, we can use plot to produce a linear 2D graph of y against x.

plot(x,y)

Th is command opens a Figure Window named Figure 1 with a gray 
background, an x-axis ranging from 0 to 7, a y-axis ranging from –1 to +1 
and a blue line. We may wish to plot two diff erent curves in a single plot, for 
example the sine and the cosine of x in diff erent colors. Th e command

x = 0 : pi/10 : 2*pi;
y1 = sin(x);
y2 = cos(x);

plot(x,y1,'--',x,y2,'-')

creates a dashed blue line displaying the sine of x and a solid red line 
representing the cosine of this array (Fig. 2.4). If we create another plot, the 
window Figure 1 will be cleared and a new graph displayed. Th e command 
figure, however, can be used to create a new fi gure object in a new window.
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Fig. 2.4 Screenshot of the MATLAB Figure Window showing two curves in diff erent colors and 
line types. Th e Figure Window allows editing of all elements of the graph aft er selecting Edit 
Plot from the Tools menu. Double clicking on the graphics elements opens an options window 
for modifying the appearance of the graphics. Th e graphics can be exported using Save as 
from the File menu. Th e command Generate Code from the File menu creates MATLAB code 
from an edited graph.

plot(x,y1,'--')
figure
plot(x,y2,'-')

Instead of plotting both lines in one graph simultaneously, we can also plot 
the sine wave, hold the graph and then plot the second curve. Th e command 
hold is particularly important for displaying data while using diff erent plot 
functions, for example if we wish to display the sine of x as a line plot and the 
cosine of x as a bar plot.

plot(x,y1,'r--')
hold on
bar(x,y2)
hold off

Th is command plots y1 versus x as a dashed red line using 'r--', whereas y2 
versus x is shown as a group of blue vertical bars. Alternatively, we can plot 
both graphics in the same Figure Window but in diff erent plots using subplot. 
Th e syntax subplot(m,n,p) divides the Figure Window into an m-by-n array 
of display regions and makes the pth display region active.

46  2 INTRODUCTION TO MATLAB



subplot(2,1,1), plot(x,y1,'r--')
subplot(2,1,2), bar(x,y2)

For example the Figure Window is divided into two rows and one column. 
Th e 2D linear plot is displayed in the upper half of the Figure Window and 
the bar plot appears in the lower half. It is recommended that all Figure 
Windows be closed before proceeding to the next example. Subsequent plots 
would replace the graph in the lower display region only, or in other words, 
the last generated graph in a Figure Window. Alternatively, the command

clf

clears the current fi gure. Th is command can be used in larger MATLAB 
scripts aft er using the function subplot for multiple plots in a Figure Window.

An important modifi cation to graphics is the scaling of the axis. By default, 
MATLAB uses axis limits close to the minima and maxima of the data. 
Using the command axis, however, allows the scale settings to be changed. 
Th e syntax for this command is simply axis([xmin xmax ymin ymax]). Th e 
command

plot(x,y1,'r--')
axis([0 pi -1 1])

sets the limits of the x-axis to 0 and π, whereas the limits of the y-axis are set 
to the default values –1 and +1. Important options of axis are 

plot(x,y1,'r--')
axis square

which makes the x-axis and y-axis the same length, and

plot(x,y1,'r--')
axis equal

which makes the individual tick mark increments on the x-axis and y-axis 
the same length. Th e function grid adds a grid to the current plot, whereas 
the functions title, xlabel and ylabel allow a title to be defi ned and labels to 
be applied to the x- and y-axes.

plot(x,y1,'r--')
title('My first plot')
xlabel('x-axis')
ylabel('y-axis')
grid

Th ese are a few examples how MATLAB functions can be used to edit the 
plot in the Command Window. More graphics functions will be introduced 
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in the following chapters of this book.

 2.10 Generating Code to Recreate Graphics

MATLAB supports various ways of editing all objects in a graph interactively 
using a computer mouse. First, the Edit Plot mode of the Figure Window 
needs to be activated by clicking on the arrow icon or by selecting Edit Plot 
from the Tools menu. Th e Figure Window also contains some other options, 
such as Rotate 3D, Zoom or Insert Legend. Th e various objects in a graph, 
however, are selected by double-clicking on the specifi c component, which 
opens the Property Editor. Th e Property Editor allows changes to be made 
to many features (or properties) of the graph such as axes, lines, patches and 
text objects.

Th e Generate Code option enables us to automatically generate the 
MATLAB code of a fi gure to recreate a similar graph with diff erent data. We 
use a simple plot to illustrate the use of the Property Editor and the Generate 
Code option to recreate a graph.

clear

x = 0 : pi/10 : 2*pi;
y1 = sin(x);
plot(x,y1)

Th e default layout of the graph is that of Figure 2.4. Clicking on the arrow 
icon in the Figure Toolbar enables the Edit Plot mode. Th e selection handles 
of the graph appear, identifying the objects that are activated. Double-
clicking an object in a graph opens the Property Editor.

As an example we can use the Property Editor to change various 
properties of the graph. Double-clicking the gray background of the Figure 
Window gives access to properties such as Figure Name, the Colormap used 
in the fi gure, and the Figure Color. We can change this color to light blue 
represented by the light blue square in the 4th row and 8rd column of the 
color chart. Moving the mouse over this square displays the RGB color code 
[0.68 0.92 1] (see Chapter 8 for more details on RGB colors). Activating the 
blue line in the graph allows us to change the line thickness to 2.0 and select 
a 15-point square marker. We can deactivate the Edit Plot mode of the Figure 
Window by clicking on the arrow icon in the Figure Toolbar.

Aft er having made all necessary changes to the graph, the corresponding 
commands can even be exported by selecting Generate Code from the File 
menu of the Figure Window. Th e generated code displays in the MATLAB 
Editor.
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function createfigure(X1, Y1)
%CREATEFIGURE(X1, Y1)
%  X1:  vector of x data
%  Y1:  vector of y data

%  Auto-generated by MATLAB on 27-Jun-2014 13:28:13

% Create figure
figure1 = figure('Color',[0.68 0.92 1]);

% Create axes
axes1 = axes('Parent',figure1,'ColorOrderIndex',2);
box(axes1,'on');
hold(axes1,'on');

% Create plot
plot(X1,Y1,'MarkerSize',15,'Marker','square','LineWidth',2);

We can then rename the function createfigure to mygraph and save the fi le 
as mygraph.m.

function mygraph(X1, Y1)
%MYGRAPH(X1,Y1)
%  X1:  vector of x data
%  Y1:  vector of y data
(cont'd)

Th e automatically-generated graphics function illustrates how graphics are 
organized in MATLAB. Th e function figure fi rst opens a Figure Window. 
Using axes then establishes a coordinate system, and using plot draws the 
actual line object. Th e Figure section in the function reminds us that the 
light-blue background color of the Figure Window is represented by the 
RGB color coding [0.68 0.92 1]. Th e Plot section reveals the square marker 
symbol used and the line width of 2 points.

Th e newly-created function mygraph can now be used to plot a diff erent 
data set. We use the above example and 

clear

x = 0 : pi/10 : 2*pi;
y2 = cos(x);
mygraph(x,y2)

Th e fi gure shows a new plot with the same layout as the previous plot. 
Th e Generate Code function of MATLAB can therefore be used to create 
templates for graphics that can be used to generate plots of multiple data sets 
using the same layout.

Even though MATLAB provides abundant editing facilities and the 
Generate Code function even allows the generation of complex templates 
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for graphics, a more practical way to modify a graph for presentations or 
publications is to export the fi gure and import it into a diff erent soft ware 
such as CorelDraw or Adobe Illustrator. MATLAB graphics are exported by 
selecting the command Save as from the File menu or by using the command 
print. Th is function exports the graphics, either as a raster image (e.g., JPEG 
or GIF) or as a vector fi le (e.g., EPS or PDF), into the working directory 
(see Chapter 8 for more details on graphic fi le formats). In practice, the 
user should check the various combinations of export fi le formats and the 
graphics soft ware used for fi nal editing of the graphics. Readers interested in 
advanced visualization techniques with MATLAB are directed to the sister 
book MATLAB and Design Recipes for Earth Sciences (Trauth and Sillmann 
2012).

 2.11 Publishing M-Files

Another useful feature of the soft ware is the option to publish reports on 
MATLAB projects in various fi le formats such as HTML, XML, LaTeX and 
many others. Th is feature enables you to share your results with colleagues 
who may or may not have the MATLAB soft ware. Th e published code 
includes formatted commentary on the code, the actual MATLAB code, 
and all results of running the code including the output to the Command 
Window and all graphics created or modifi ed by the code. To illustrate the 
use of the publishing feature we create a simple example of a commented 
MATLAB code to compute the sine and cosine of a time vector and display 
the results as two separate fi gures. 

We start the Editor by typing edit in the Command Window, which 
opens a new window named untitled. An M-fi le to be published starts 
with a document title at the top of the fi le, followed by some comments that 
describe the contents and the version of the script. Th e subsequent contents 
of the fi le include sections of MATLAB code and comments, separated by 
the double percent signs %%. Whereas single percent signs % are known (from 
Section 2.8) to initiate comments in MATLAB, we now use double percent 
signs %% that indicate the start of new code sections in the Editor. Th e code 
sections feature, previously also known as code cells or cell mode, is a feature 
in MATLAB that enables you to evaluate blocks of commands called sections 
by using the buttons Run, Run and Advance, Run Section, Advance, and Run 
and Time on the Editor Toolstrip to evaluate either the entire script or parts 
of the script.

%% Example for Publishing M-Files
% This M-file illustrates the use of the publishing
% feature of MATLAB.
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% By Martin Trauth, June 27, 2014

%% Sine Wave
% We define a time vector t and compute the sine y1 of t.
% The results are displayed as linear 2D graph y1 against x.
x = 0 : pi/10 : 2*pi;
y1 = sin(x);
plot(x,y1)
title('My first plot')
xlabel('x-axis')
ylabel('y-axis')

%% Cosine Wave
% Now we compute the cosine y2 of the same time vector and
% display the results.
y2 = sin(x);
plot(x,y2)
title('My first plot')
xlabel('x-axis')
ylabel('y-axis')

%%
% The last comment is separated by the double percent sign
% without text. This creates a comment in a separate cell
% without a subheader.

We save the M-fi le as myproject.m and click the Publish button in the Publish 
Toolstrip. Th e entire script is now evaluated and the Figure Windows pop 
up while the script is running. Finally, a window opens up that shows 
the contents of the published M-fi le. Th e document title and subheaders 
are shown in a red font whereas the comments are in black fonts. Th e fi le 
includes a list of contents with jump links to proceed to the chapters of the 
fi le. Th e MATLAB commands are displayed on gray backgrounds but the 
graphics are embedded in the fi le without the gray default background of 
Figure Windows. Th e resulting HTML fi le can be easily included on a course 
or project webpage. Alternatively, the HTML fi le and included graphics can 
be saved as a PDF-fi le and shared with students or colleagues.

 2.12 Creating Graphical User Interfaces

Almost all the methods of data analysis presented in this book are in the 
form of MATLAB scripts, i.e., series of commands that operate on data 
in the workspace (Section 2.8). Only in a few cases are the algorithms 
implemented in functions such as canc for adaptive fi ltering (Section 6.8) or 
minput for digitizing from the screen (Section 8.7). Th e MATLAB commands 
provided by Th e MathWorks, Inc., however, are mostly functions, i.e., 
algorithms with input and output variables. Th e most convenient variants 
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of these functions are those with a graphical user interface (GUI). A GUI in 
MATLAB is a graphical display in one or more windows containing controls 
(or components) that enable the user to perform interactive tasks without 
typing commands in the Command Window or writing a script in the Editor. 
Th ese components include pull-down menus, push buttons, sliders, text input 
fi elds and more. Th e GUI can read and write data fi les as well as performing 
many types of computation and displaying the results in graphics.

Th e manual entitled MATLAB Creating Graphical User Interfaces 
(MathWorks 2014b) provides a comprehensive guide to the creation of 
GUIs with MATLAB. Within this manual, however, the section on Create 
a Simple GUIDE GUI demonstrates a rather complex example with many 
interactive elements instead of providing the simplest possible example of a 
GUI. Th e following text therefore provides a very simple example of a GUI 
that computes and displays a Gaussian function for a mean and a standard 
deviation that can be defi ned by the user. Creating such a simple GUI with 
MATLAB requires two steps: the fi rst step involves designing the layout of 
the GUI, and the second step involves adding functions to the components 
of the GUI. Th e best way to create a graphical user interface with MATLAB 
is using the GUI Design Environment (GUIDE). We start GUIDE by typing

guide

in the Command Window. Calling GUIDE opens the GUIDE Quick Start 
dialog where we can choose to open a previously created GUI or create a new 
one from a template. From the dialog we choose the GUIDE template Blank 
GUI (Default) and click OK, aft er which the GUIDE Layout Editor starts. 
First, we enable Show names in component palette in the GUIDE Preferences 
under the File menu and click OK. Second, we select Grid and Rulers from 
the Tools menu and enable Show rulers. Th e GUIDE Layout Editor displays 
an empty layout with dimensions of 670-by-388 pixels. We resize the layout 
to 500-by-300 pixels by clicking and dragging the lower right corner of the 
GUI.

Next, we place components such as static text, edit text, and axes onto the 
GUI by choosing the corresponding controls from the component palette. In 
our example we place two Edit Text areas on the left  side of the GUI, along 
with a Static Text area containing the title Mean, with Standard Deviation 
above it. Double clicking the static text areas, the Property Inspector comes 
up in which we can modify the properties of the components. We change the 
String of the static text areas to Mean and Standard Deviation. We can also 
change other properties, such as the FontName, FontSize, BackgroundColor, 
and HorizontalAlignment of the text. Instead of the default Edit Text content 

52  2 INTRODUCTION TO MATLAB



Movie 
2.7

of the edit text areas we choose 0 for the mean and 1 for the standard 
deviation text area. We then place an axis with dimensions of 250-by-200 
pixels to the right of the GUI. Next, we save and activate the GUI by selecting 
Run from the Tools menu. GUIDE displays a dialog box with the question 
Activating will save changes ...?, where we click Yes. In the following Save As 
dialog box, we defi ne a FIG-fi le name such as gaussiantool.fi g.

GUIDE then saves this fi gure fi le together with the corresponding 
MATLAB code in a second fi le named gaussiantool.m. Furthermore, the 
MATLAB code is opened in the Editor and the default GUI is opened in a 
Figure Window with no menu or toolbar (Fig. 2.5). As we can see, GUIDE 
has automatically programmed the code of our GUI layout, including an 
initialization code at the beginning of the fi le that we should not edit. Th is 
code is included in the main routine named gaussiantool. Th e fi le also 
contains other functions called by gaussiantool, for instance the function 
gaussiantool_Opening_Fcn (executed before gaussiantool is made visible), 
gaussiantool_OutputFnc (sending output to the command line, not used 
here), edit1_CreateFcn and edit2_CreateFcn (initializing the edit text areas 
when they are created), and edit1_Callback and edit2_Callback (accepting 
text input and returning this input either as text or as a double-precision 
number).

We now add code to our GUI gaussiantool. First, we add initial values 
for the global variables mmean and mstd in the opening function gaussiantool_
Opening_Fcn by adding the following lines aft er the last comment line marked 
by % in the fi rst column:

global mmean mstd
mmean = 0;
mstd = 1;

Th e two variables must be global because they are used in the callbacks that 
we edit next (as in Section 2.8). Th e fi rst of these callbacks edit1_Callback 
gets three more lines of code aft er the last comment line:

global mmean
mmean = str2double(get(hObject,'String'));
calculating_gaussian(hObject, eventdata, handles)

Th e fi rst line defi nes the global variable mmean, which is then obtained by 
converting the text input into double precision with str2double in the second 
line. Th e function edit1_Callback then calls the function calculating_gaussian, 
which is a new function at the end of the fi le. Th is function computes and 
displays the Gaussian function with a mean value of mmean and a standard 
deviation of mstd.
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Fig. 2.5 Screenshot of the graphical user interface (GUI) gaussiantool for plotting a 
Gaussian function with a given mean and standard deviation. Th e GUI allows the values of 
the mean and standard deviation to be changed in order to update the graphics on the right. 
Th e GUI has been created using the MATLAB GUI Design Environment (GUIDE).

function calculating_gaussian(hObject, eventdata, handles)
% hObject    handle to edit2 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called
global mmean mstd
x = -10 : 0.1 : 10;
y = normpdf(x, mmean, mstd);
plot(x,y)

Th e second callback edit2_Callback picks the value of the standard deviation 
mstd from the second Edit Text area, which is then also used by the function 
calculating_gaussian.

global mstd
mstd = str2double(get(hObject,'String'));
calculating_gaussian(hObject, eventdata, handles)

Aft er saving the fi le gaussiantool.m we can run the new GUI by typing

gaussiantool

in the Command Window. Th e GUI starts where we can change the values of 
the mean and the standard deviation, then press return. Th e plot on the right 
is updated with each press of the return key. Using

edit gaussiantool
guide gaussiantool
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we can open the GUI code and Figure Window for further edits. Such GUIs 
allow a very direct and intuitive handling of functions in MATLAB that can 
also include animations such as the one used in canctool (Section 6.8), and 
the display of an audio-video signal. On the other hand, however, GUIs 
always require an interaction with the user who needs to click push buttons, 
move sliders and edit text input fi elds while the data is being analyzed. Th e 
automatic processing of large quantities of data is therefore usually carried 
out using scripts and functions with no graphical user interface.
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 3.1 Introduction

Th e statistical properties of a single parameter are investigated by means 
of univariate analysis. Such a parameter could, for example, be the organic 
carbon content of deep-sea sediments, the sizes of grains in a sandstone layer, 
or the ages of sanidine crystals in a volcanic ash. Both the number and the 
size of samples that we collect from a larger population are oft en limited by 
fi nancial and logistical constraints. Th e methods of univariate statistics assist 
us to draw from the sample conclusions that apply to the population as a 
whole. For univariate analysis we use the Statistics Toolbox (MathWorks 
2014), which contains all the necessary routines.

We fi rst need to describe the characteristics of the sample using statistical 
parameters, and to compute an empirical distribution (descriptive statistics) 
(Sections 3.2 and 3.3). A brief introduction is provided to the most 
important statistical parameters (such as the measures of central tendency 
and dispersion), followed by MATLAB examples. We then select a theoretical 
distribution that shows similar characteristics to the empirical distribution 
(Sections 3.4 and 3.5). A suite of theoretical distributions is introduced 
and their potential applications outlined prior to using MATLAB tools 

 3 Univariate Statistics
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and dispersion of this deposit can be used 
to determine the origin of the rocks. In this 
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during the last glacial period and transported 
to their present location.
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to explore these distributions. We then try to draw conclusions from the 
sample that can be applied to the larger population of interest (hypothesis 
testing). Sections 3.6 to 3.12 introduce the most important statistical tests for 
applications in earth sciences. Th e fi nal section in this chapter (Section 3.13) 
introduces methods used to fi t distributions to our own data sets.

 3.2 Empirical Distributions

Let us assume that we have collected a number of measurements xi from a 
specifi c object. Th e collection of data, or sample, as a subset of the population 
of interest, can be written as a vector x, or one-dimensional array

containing a total of N observations. Th e vector x may contain a large 
number of data points and it may consequently be diffi  cult to understand its 
properties. Descriptive statistics are therefore oft en used to summarize the 
characteristics of the data. Th e statistical properties of the data set may be 
used to defi ne an empirical distribution, which can then be compared to a 
theoretical one.

Th e most straightforward way of investigating the sample characteristics 
is to display the data in a graphical form. Plotting all of the data points 
along a single axis does not reveal a great deal of information about the data 
set. However, the density of the points along the scale does provide some 
information about the characteristics of the data. A widely-used graphical 
display of univariate data is the histogram (Fig. 3.1). A histogram is a bar 
plot of a frequency distribution that is organized in intervals or classes. Such 
histogram plots provide valuable information on the characteristics of the 
data, such as the central tendency, the dispersion and the general shape of the 
distribution. However, quantitative measures provide a more accurate way 
of describing the data set than the graphical form. In purely quantitative 
terms, the mean and the median defi ne the central tendency of the data set, 
while the data dispersion is expressed in terms of the range and the standard 
deviation.

 Measures of Central Tendency

Parameters of central tendency or location represent the most important 
measures for characterizing an empirical distribution (Fig. 3.2). Th ese values 
help locate the data on a linear scale. Th ey represent a typical or best value 
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Fig. 3.1 Graphical representation of an empirical frequency distribution. a In a histogram, 
the frequencies are organized in nbin classes and plotted as a bar plot. b Th e cumulative 
distribution plot of a frequency distribution displays the totals of all observations lower than 
and equal to a certain value. Th is plot is normalized to a total number of observations of one.

that describes the data. Th e most popular indicator of central tendency is the 
arithmetic mean, which is the sum of all data points divided by the number 
of observations:

Th e arithmetic mean can also be called the mean or the average of a univariate 
data set. Th e sample mean is used as an estimate of the population mean μ 
for the underlying theoretical distribution. Th e arithmetic mean is, however, 
sensitive to outliers, i.e., extreme values that may be very diff erent from the 
majority of the data, and the median is therefore oft en used as an alternative 
measure of central tendency. Th e median is the x-value that is in the middle 
of the data set, i.e., 50% of the observations are smaller than the median and 
50% are larger. Th e median of a data set sorted in ascending order is defi ned 
as

if N is odd and

a b
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if N is even. Although outliers also aff ect the median, their absolute values 
do not infl uence it. Quantiles are a more general way of dividing the data 
sample into groups containing equal numbers of observations. For example 
the three quartiles divide the data into four groups, the four quintiles divide 
the observations in fi ve groups and the 99 percentiles defi ne one hundred 
groups.

Th e third important measure for central tendency is the mode. Th e mode 
is the most frequent x-value or – if the data are grouped in classes – the 
center of the class with the largest number of observations. Th e data set has 
no mode if there are no values that appear more frequently than any of the 
other values. Frequency distributions with a single mode are called unimodal, 
but there may also be two modes (bimodal), three modes (trimodal) or four 
or more modes (multimodal) (Fig. 3.3).

Th e mean, median and mode are used when several quantities add 
together to produce a total, whereas the geometric mean is oft en used if these 
quantities are multiplied. Let us assume that the population of an organism 
increases by 10% in the fi rst year, 25% in the second year, and then 60% in 
the last year. Th e average rate of increase is not the arithmetic mean, since 
the original number of individuals has increased by a factor (not a sum) of 
1.1 aft er one year, 1.25 aft er the second year, and 1.6 aft er the third year. Th e 
average growth of the population is therefore calculated by the geometric 
mean:

Fig. 3.2 Measures of central tendency. a In an unimodal symmetric distribution, the mean, 
the median and the mode are identical. b In a skewed distribution, the median lies between 
the mean and the mode. Th e mean is highly sensitive to outliers, whereas the median and the 
mode are little infl uenced by extremely high and low values.

a b
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Fig. 3.3 Dispersion and shape of a distribution. a-b, Unimodal distributions showing a 
negative or positive skew. c-d, Distributions showing a high or low kurtosis. e-f, Bimodal and 
trimodal distributions showing two or three modes.

a b

e f

c d

3.2 EMPIRICAL DISTRIBUTIONS  61



Th e average growth of these values is 1.3006 suggesting an approximate per 
annum growth in the population of 30%. Th e arithmetic mean would result 
in an erroneous value of 1.3167 or approximately 32% annual growth. Th e 
geometric mean is also a useful measure of central tendency for skewed or 
log-normally distributed data, in which the logarithms of the observations 
follow a Gaussian or normal distribution. Th e geometric mean, however, is 
not used for data sets containing negative values. Finally, the harmonic mean

is also used to derive a mean value for asymmetric or log-normally 
distributed data, as is the geometric mean, but neither is robust to outliers. 
Th e harmonic mean is a better average when the numbers are defi ned in 
relation to a particular unit. Th e commonly quoted example is for averaging 
velocities. Th e harmonic mean is also used to calculate the mean of sample 
sizes.

 Measures of Dispersion

Another important property of a distribution is the dispersion. Some of the 
parameters that can be used to quantify dispersion are illustrated in Figure 
3.3. Th e simplest way to describe the dispersion of a data set is by the range, 
which is the diff erence between the highest and lowest value in the data set, 
given by

Since the range is defi ned by the two extreme data points it is very susceptible 
to outliers and hence it is not a reliable measure of dispersion in most cases. 
Using the interquartile range of the data, i.e., the middle 50% of the data, 
attempts to overcome this problem.

A more useful measure for dispersion is the standard deviation.
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Th e standard deviation is the average deviation of each data point from the 
mean. Th e standard deviation of an empirical distribution is oft en used as 
an estimate of the population standard deviation σ. Th e formula for the 
population standard deviation uses N instead of N–1 as the denominator. 
Th e sample standard deviation s is computed with N–1 instead of N since it 
uses the sample mean instead of the unknown population mean. Th e sample 
mean, however, is computed from the data xi, which reduces the number of 
degrees of freedom by one. Th e degrees of freedom are the number of values 
in a distribution that are free to be varied. Dividing the average deviation of 
the data from the mean by N would therefore underestimate the population 
standard deviation σ.

Th e variance is the third important measure of dispersion. Th e variance is 
simply the square of the standard deviation.

Although the variance has the disadvantage of not having the same 
dimensions as the original data, it is extensively used in many applications 
instead of the standard deviation.

In addition, both skewness and kurtosis can be used to describe the 
shape of a frequency distribution (Fig. 3.3). Skewness is a measure of the 
asymmetry of the tails of a distribution. Th e most popular way to compute 
the asymmetry of a distribution is by Pearson’s mode skewness:

skewness = (mean – mode) / standard deviation

A negative skew indicates that the distribution is spread out more to the left  
of the mean value, assuming values increasing towards the right along the 
axis. Th e sample mean is in this case smaller than the mode. Distributions 
with positive skewness have large tails that extend towards the right. Th e 
skewness of the symmetric normal distribution is zero. Although Pearson’s 
measure is a useful one, the following formula by Fisher for calculating the 
skewness is oft en used instead, including in the relevant MATLAB function.

Th e second important measure for the shape of a distribution is the kurtosis. 
Again, numerous formulas to compute the kurtosis are available. MATLAB 
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uses the following formula:

Th e kurtosis is a measure of whether the data are peaked or fl at relative to 
a normal distribution. A high kurtosis indicates that the distribution has a 
distinct peak near the mean, whereas a distribution characterized by a low 
kurtosis shows a fl at top near the mean and broad tails. Higher peakedness 
in a distribution results from rare extreme deviations, whereas a low kurtosis 
is caused by frequent moderate deviations. A normal distribution has a 
kurtosis of three, and some defi nitions of kurtosis therefore subtract three 
from the above term in order to set the kurtosis of the normal distribution 
to zero.

 3.3 Examples of Empirical Distributions

As an example we can analyze the data contained in the fi le organicmatter_
one.txt. Th is fi le contains the organic carbon content Corg of lake sediments 
in weight percentage (wt%). In order to load the data, we type

clear

corg = load('organicmatter_one.txt');

Th e data fi le contains 60 measurements of Corg that can be displayed by

plot(corg,zeros(1,length(corg)),'o')

Th is graph shows some of the characteristics of the data. Th e organic carbon 
content of the samples ranges between 9 and 15 wt%, with most of the data 
clustering between 12 and 13 wt%. Values below 10 and above 14 are rare. 
While this kind of representation of the data undoubtedly has its advantages, 
histograms are a much more convenient way to display univariate data (Fig. 
3.1). Histograms divide the range of the data into nbin equal intervals (also 
called bins or classes), count the number of observations n in each bin, and 
display the frequency distribution of observations as a bar plot. Th e bins 
are either defi ned by their edges e or their centers v. Th ere is no fi xed rule 
for the correct number of bins; the most suitable number will depend on 
the application (for example the statistical method) that is used. Ideally, 
the number of bins n should lie between 5 and 15; it should closely refl ect 
the underlying distribution and should not result in any empty bins, i.e., 
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classes with no counts. In practice, the square root of the total number of 
observations length(corg), rounded to the nearest integer using round, is 
oft en used as the number of bins. In our example nbin can be calculated 
using

nbin = round(sqrt(length(corg)))

which yields

nbin =
     8

Th e eight bin centers v are calculated by typing

vmin = min(corg) + 0.5*range(corg)/nbin;
vmax = max(corg) - 0.5*range(corg)/nbin;
vwth = range(corg)/nbin;
v = vmin : vwth : vmax;

which yields

v =
  Columns 1 through 4
    9.7383   10.3814   11.0245   11.6676
  Columns 5 through 8
   12.3107   12.9537   13.5968   14.2399

Th e smallest bin center vmin equals the minimum value in the data corg plus 
half of the range of the data corg, divided by the number of bins nbin. Similarly, 
the largest bin center vmin equals the maximum value of the data corg minus 
half of the range of the data corg, divided by nbin. Th e bin width ewth is 
calculated by dividing the range of the data corg by nbin. Th e corresponding 
nine bin edges e are calculated using

emin = min(corg);
emax = max(corg);
ewth = range(corg)/nbin;
e = emin : ewth : emax;

which yields

e =
  Columns 1 through 4
    9.4168   10.0598   10.7029   11.3460
  Columns 5 through 8
   11.9891   12.6322   13.2753   13.9184
  Column 9
   14.5615

Th e smallest and largest bin edges, emin and emax, correspond to the mininum 
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and maximum values in corg. Th e width of the bins ewth, as defi ned by the 
bin edges, is equal to vwth. Binning can be performed using a for loop in 
combination with an if-then construct. Values in corg   that fall exactly on 
an edge e are herein assigned to the higher bin. Values falling exactly on the 
edge of the last bin are assigned to the last bin.

for i = 1 : nbin
   if i < nbin
   corgb = corg(emin+(i-1)*ewth<=corg & emin+i*ewth>corg);
   n(i) = length(corgb);
   else
   corgb = corg(emin+(i-1)*ewth<=corg & emin+i*ewth>=corg);
   n(i) = length(corgb);
   end         
end

Th e result of the binning is stored in the frequency distribution n, which we 
can display with

n

which yields

n =
     2     2    10     7    14     9    12     4

Instead of using the above script we can also use the functions histcount and 
histogram to determine the bin centers, edges and counts. Typing

histogram(corg)

displays a histogram with six classes, using an automatic binning algorithm. 
Th e algorithm returns bins with a uniform width, chosen to cover the range 
of elements in corg and to reveal the underlying shape of the distribution. 
Th e MATLAB Help lists and explains various such methods for automatic 
binning. Th e function histogram also returns a structure array h

h = histogram(corg);

which yields

h = 
  Histogram with properties:
             Data: [60x1 double]
           Values: [2 6 13 20 15 4]
          NumBins: 6
         BinEdges: [9 10 11 12 13 14 15]
         BinWidth: 1
        BinLimits: [9 15]
    Normalization: 'count'
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        FaceColor: 'auto'
        EdgeColor: [0 0 0]

listing the properties of the histogram. As an example we can access the bin 
centers v and the frequency distribution n by typing

v = h.BinWidth * 0.5 + h.BinEdges(1:end-1)
n = h.Values

while the Figure Window is still active, which yields

v =
    9.5000   10.5000   11.5000   12.5000   13.5000   14.5000

n =
     2     6    13    20    15     4

Alternatively, we can use the bin edges e defi ned above to display the bar plot 
of the frequency distribution n by typing

h = histogram(corg,e);
v = h.BinWidth * 0.5 + h.BinEdges(1:end-1)
n = h.Values

which yields

v =
  Columns 1 through 4
    9.7383   10.3814   11.0245   11.6676
  Columns 5 through 8
   12.3107   12.9537   13.5968   14.2399

n =
     2     2    10     7    14     9    12     4

as well as the histogram plot, as shown in Figure 3.1 a. We can also use 
the function histcount to determine n and e without plotting the histogram. 
Typing

[n,e] = histcounts(corg,e)
v = diff(e(1:2)) * 0.5 + e(1:end-1)

yields

n =
     2     2    10     7    14     9    12     4

e =
  Columns 1 through 5
    9.4168   10.0598   10.7029   11.3460   11.9891
  Columns 6 through 9
   12.6322   13.2753   13.9184   14.5615
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v =
  Columns 1 through 5
    9.7383   10.3814   11.0245   11.6676   12.3107
  Columns 6 through 8
   12.9537   13.5968   14.2399

Th e functions histogram and histcount provide numerous ways of binning 
the data, of normalizing the data, and of displaying the histogram. In the 
following sections, we oft en have to normalize the frequency distribution 
such that the total number of observations sum(n) is one. Th is can be achieved 
by typing

h = histogram(corg,'Normalization','probability')
v = h.BinWidth * 0.5 + h.BinEdges(1:end-1)
n = h.Values

which yields

v =
  Columns 1 through 5
    9.5000   10.5000   11.5000   12.5000   13.5000
  Column 6
   14.5000

n =
  Columns 1 through 5
    0.0333    0.1000    0.2167    0.3333    0.2500
  Column 6
    0.0667

As an alternative way of plotting the data, the empirical cumulative 
distribution function can be displayed using cdfplot (Fig. 3.1 b).

cdfplot(corg)

Th e most important parameters describing the distribution are the measures 
for central tendency and the dispersion about the average. Th e most popular 
measure for central tendency is the arithmetic mean.

mean(corg)

ans =
    12.3448

Since this measure is very susceptible to outliers, we can take the median as 
an alternative measure of central tendency,

median(corg)
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ans =
    12.4712

which does not diff er by very much in this particular example. However, we 
will see later that this diff erence can be signifi cant for distributions that are 
not symmetric. A more general parameter to defi ne fractions of the data less 
than, or equal to, a certain value is the quantile. Some of the quantiles have 
special names, such as the three quartiles dividing the distribution into four 
equal parts, 0–25%, 25–50%, 50–75% and 75–100% of the total number of 
observations. We use the function quantile to compute the three quartiles.

quantile(corg,[.25 .50 .75])

ans =
    11.4054   12.4712   13.2965

Less than 25% of the data values are therefore lower than 11.4054, 25% are 
between 11.4054 and 12.4712, another 25% are between 12.4712 and 13.2965, 
and the remaining 25% are higher than 13.2965.

Th e third parameter in this context is the mode, which is the midpoint 
of the interval with the highest frequency. Th e MATLAB function mode to 
identify the most frequent value in a sample is unlikely to provide a good 
estimate of the peak in continuous probability distributions, such as the one 
in corg. Furthermore, the mode function is not suitable for fi nding peaks in 
distributions that have multiple modes. In these cases it is better to compute a 
histogram and calculate the peak of that histogram. We can use the function 
find to locate the class that has the largest number of observations.

v(find(n == max(n)))

or simply

v(n == max(n))

ans =
    12.3107

Both statements are identical and identify the largest element in n. Th e index 
of this element is then used to display the midpoint of the corresponding 
class v. If there are several elements in n with similar values this statement 
returns several solutions, suggesting that the distribution has several modes. 
Th e median, quartiles, minimum, and maximum of a data set can be 
summarized and displayed in a box and whisker plot.

boxplot(corg)
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Th e boxes have lines at the lower quartile, the median, and the upper quartile 
values. Th e whiskers are lines extending from each end of the boxes to show 
the extent or range of the rest of the data.

Th e most popular measures for dispersion are range, variance and 
standard deviation. We have already used the range to defi ne the midpoints 
of the classes. Th e range is the diff erence between the highest and lowest 
value in the data set.

range(corg)

ans =
    5.1447

Th e variance is the average of the squared deviation of each number from the 
mean of a data set.

var(corg)

ans =
    1.3595

Th e standard deviation is the square root of the variance.

std(corg)

ans =
    1.1660

Note that, by default, the functions var and std calculate the sample variance 
and sample standard deviation providing an unbiased estimate of the 
dispersion of the population. When using skewness to describe the shape of 
the distribution, we observe a slightly negative skew.

skewness(corg)

ans =
    -0.2529

Finally, the peakedness of the distribution is described by the kurtosis. Th e 
result from the function kurtosis,

kurtosis(corg)

ans =
    2.4670

suggests that our distribution is slightly fl atter than a Gaussian distribution 
since its kurtosis is less than three.
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Most of these functions have corresponding versions for data sets 
containing gaps, such as nanmean and nanstd, which treat NaNs as missing 
values. To illustrate the use of these functions we introduce a gap into our 
data set and compute the mean using mean and nanmean for comparison.

corg(25,1) = NaN;

mean(corg)

ans =
    NaN

nanmean(corg)

ans =
    12.3371

In this example the function mean follows the rule that all operations with 
NaNs result in NaNs, whereas the function nanmean simply skips the missing 
value and computes the mean of the remaining data.

As a second example we now explore a data set characterized by a signifi cant 
skew. Th e data represent 120 microprobe analyses on glass shards hand-
picked from a volcanic ash. Th e volcanic glass has been aff ected by chemical 
weathering at an initial stage and the shards therefore exhibit glass hydration 
and sodium depletion in some sectors. We can study the distribution of 
sodium (in wt%) in the 120 analyses using the same procedure as above. Th e 
data are stored in the fi le sodiumcontent_one.txt.

clear

sodium = load('sodiumcontent_one.txt');

As a fi rst step, it is always recommended to display the data as a histogram. 
Th e square root of 120 suggests 11 classes, and we therefore display the data 
by typing

h = histogram(sodium,11)
v = h.BinWidth * 0.5 + h.BinEdges(1:end-1)
n = h.Values

Since the distribution has a negative skew, the mean, the median and the 
mode diff er signifi cantly from each other.

mean(sodium)

ans =
    5.6628

median(sodium)
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ans =
    5.9741

v(find(n == max(n)))

ans =
    6.5800

Th e mean of the data is lower than the median, which is in turn lower than 
the mode. We can observe a strong negative skewness, as expected from our 
data.

skewness(sodium)

ans =
    -1.1086

We now introduce a signifi cant outlier to the data and explore its eff ect on 
the statistics of the sodium content. For this we will use a diff erent data set 
that is better suited to this example than the previous data set. Th e new data 
set contains higher sodium values of around 17 wt% and is stored in the fi le 
sodiumcontent_two.txt.

clear

sodium = load('sodiumcontent_two.txt');

Th is data set contains only 50 measurements, in order to better illustrate the 
eff ects of an outlier. We can use the same script used in the previous example 
to display the data in a histogram with seven classes, and to compute the 
number of observations n in each of the classes v.

h = histogram(sodium,7)
v = h.BinWidth * 0.5 + h.BinEdges(1:end-1)
n = h.Values

v =
  Columns 1 through 4
   13.5500   14.2500   14.9500   15.6500

  Columns 5 through 7
   16.3500   17.0500   17.7500

n =
     1     3     3     6     6    15    16

mean(sodium)

ans =
   16.6379
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median(sodium)

ans =
   16.9739

v(find(n == max(n)))

ans =
   17.7500

Th e mean of the data is 16.6379, the median is 16.9739 and the mode is 
17.7500. We now introduce a single, very low value of 7.0 wt% in addition to 
the 50 measurements contained in the original data set.

sodium(51,1) = 7.0;

h = histogram(sodium,11)
v = h.BinWidth * 0.5 + h.BinEdges(1:end-1)
n = h.Values

v =
  Columns 1 through 4
    7.5500    8.6500    9.7500   10.8500
  Columns 5 through 8
   11.9500   13.0500   14.1500   15.2500
  Columns 9 through 11
   16.3500   17.4500   18.5500

n =
  Columns 1 through 8
     1     0     0     0     0     1     3     8
  Columns 9 through 11
     9    27     2

Th e histogram of this data set using a larger number of classes illustrates 
the distortion produced in the frequency distribution by this single outlier, 
showing several empty classes. Th e infl uence of this outlier on the sample 
statistics is also substantial.

mean(sodium)

ans =
   16.4490

median(sodium)

ans =
   16.9722

v(find(n == max(n)))

ans =
   17.4500
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Th e most signifi cant change observed is in the mean (16.4490), which is 
substantially lower due to the presence of the outlier. Th is example clearly 
demonstrates the sensitivity of the mean to outliers. In contrast, the median 
of 16.9722 is relatively unaff ected.

 3.4 Theoretical Distributions

We have now described the empirical frequency distribution of our sample. 
A histogram is a convenient way to depict the frequency distribution of the 
variable x. If we sample the variable suffi  ciently oft en and the output ranges 
are narrow, we obtain a very smooth version of the histogram. An infi nite 
number of measurements N→∞ and an infi nitely small class width produce 
the random variable’s probability density function (PDF). Th e probability 
distribution density f(x) defi nes the probability that the variable has a value 
equal to x. Th e integral of f(x) is normalized to unity, i.e., the total number of 
observations is one. Th e cumulative distribution function (CDF) is the sum 
of the frequencies of a discrete PDF or the integral of a continuous PDF. Th e 
cumulative distribution function F(x) is the probability that the variable will 
have a value less than or equal to x.

As a next step, we need to fi nd appropriate theoretical distributions that 
fi t the empirical distributions described in the previous section. Th is section 
therefore introduces the most important theoretical distributions and 
describes their application.

 Uniform Distribution

A uniform or rectangular distribution is a distribution that has a constant 
probability (Fig. 3.4). Th e corresponding probability density function is

where the random variable x has any of N possible values. Th e cumulative 
distribution function is

Th e probability density function is normalized to unity
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Fig. 3.4 a Probability density function f(x), and b cumulative distribution function F(x), 
of a uniform distribution with N=6. Th e 6 discrete values of the variable x have the same 
probability of 1/6.

a b

i.e., the sum of all probabilities is one. Th e maximum value of the cumulative 
distribution function is therefore one.

An example is a rolling die with N=6 faces. A discrete variable such as the 
faces of a die can only take a countable number of values x. Th e probability 
for each face is 1/6. Th e probability density function of this distribution is

Th e corresponding cumulative distribution function is

where x takes only discrete values, x=1,2,…,6.

 Binomial or Bernoulli Distribution

A binomial or Bernoulli distribution, named aft er the Swiss scientist Jakob 
Bernoulli (1654–1705), gives the discrete probability of x successes out of 
N trials, with a probability p of success in any given trial (Fig. 3.5). Th e 
probability density function of a binomial distribution is
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Fig. 3.5 Probability density function f(x) of a binomial distribution, which gives the probability 
p of x successes out of N=6 trials, with probability a p=0.1 and b p=0.3 of success in any given 
trial.

a b

Th e cumulative distribution function is

where

Th e binomial distribution has two parameters N and p. An example for the 
application of this distribution is to determine the likely outcome of drilling 
for oil. Let us assume that the probability of drilling success is 0.1 or 10%. 
Th e probability of x=3 successful wells out of a total number of N=10 wells is

Th e probability of exactly 3 successful wells out of 10 trials is therefore 6% 
in this example.
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Fig. 3.6 Probability density function f(x) of a Poisson distribution with diff erent values for λ: 
a λ=0.5, and b λ=2.

 Poisson Distribution

When the number of trials is N→∞ and the success probability is p→0, 
the binomial distribution approaches a Poisson distribution with a single 
parameter λ=Np (Fig. 3.6) (Poisson 1837). Th is works well for N>100 and 
p<0.05 (or 5%). We therefore use the Poisson distribution for processes 
characterized by extremely low occurrence, e.g., earthquakes, volcanic 
eruptions, storms and fl oods. Th e probability density function is

and the cumulative distribution function is

Th e single parameter λ describes both the mean and the variance of this 
distribution.

 Normal or Gaussian Distribution

When p=0.5 (symmetric, no skew) and N→∞, the binomial distribution 
approaches a normal or Gaussian distribution defi ned by the mean μ and 
standard deviation σ (Fig. 3.7). Th e probability density function of a normal 

a b
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Fig. 3.7 a Probability density function f(x), and b cumulative distribution function F(x), of a 
Gaussian or normal distribution with a mean μ=3 and various values for standard deviation σ.

distribution is

and the cumulative distribution function is

Th e normal distribution is therefore used when the mean is both the most 
frequent and the most likely value. Th e probability of deviations is equal in 
either direction and decreases with increasing distance from the mean. 

Th e standard normal distribution is a special member of the normal 
distribution family that has a mean of zero and a standard deviation of one. 
We can transform the equation for a normal distribution by substituting 
z=(x–μ)/σ. Th e probability density function of this distribution is

Th is defi nition of the normal distribution is oft en called the z distribution.

a b
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Fig. 3.8 a Probability density function f(x), and b cumulative distribution function F(x), of a 
logarithmic normal distribution with a mean μ=0 and with various values for σ.

 Logarithmic Normal or Log-Normal Distribution

Th e logarithmic normal or log-normal distribution is used when the data have 
a lower limit, e.g., mean-annual precipitation or the frequency of earthquakes 
(Fig. 3.8). In such cases, distributions are usually characterized by signifi cant 
skewness, which is best described by a logarithmic normal distribution. Th e 
probability density function of this distribution is

and the cumulative distribution function is

where x>0. Th e distribution can be described by two parameters: the mean 
μ and the standard deviation σ. Th e formulas for the mean and the standard 
deviation, however, are diff erent from the ones used for normal distributions. 
In practice, the values of x are logarithmized, the mean and the standard 
deviation are computed using the formulas for a normal distribution, and 
the empirical distribution is then compared with a normal distribution.

a b
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Fig. 3.9 a Probability density function f(x), and b cumulative distribution function F(x), of a 
Student’s t distribution with two diff erent values for Φ.

 Student’s t Distribution

Th e Student’s t distribution was fi rst introduced by William Gosset (1876–
1937) who needed a distribution for small samples (Fig. 3.9). Gosset was 
an employee of the Irish Guinness Brewery and was not allowed to publish 
research results. For that reason he published his t distribution under the 
pseudonym Student (Student 1908). Th e probability density function is

where Γ is the Gamma function

which can be written as

if x>0. Th e single parameter Φ of the t distribution is the number of degrees 

a b
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Fig. 3.10 a Probability density function f(x), and b cumulative distribution function F(x), of a 
Fisher’s F distribution with diff erent values for Φ1 and Φ2.

of freedom. In the analysis of univariate data this distribution has n–1 
degrees of freedom, where n is the sample size. As Φ→∞, the t distribution 
converges towards the standard normal distribution. Since the t distribution 
approaches the normal distribution for Φ>30, it is rarely used for distribution 
fi tting. However, the t distribution is used for hypothesis testing using the 
t-test (Section 3.7).

 Fisher’s F Distribution

Th e F distribution was named aft er the statistician Sir Ronald Fisher (1890–
1962). It is used for hypothesis testing using the F-test (Section 3.8). Th e F 
distribution has a relatively complex probability density function (Fig. 3.10):

where x>0 and Γ is again the Gamma function. Th e two parameters Φ1 and 
Φ2 are the numbers of degrees of freedom.

 χ2 or Chi-Squared Distribution

Th e χ2 distribution was introduced by Friedrich Helmert (1876) and Karl 
Pearson (1900). It is not used for fi tting a distribution but has important 
applications in statistical hypothesis testing using the χ2-test (Section 3.9). 

a b
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Fig. 3.11 a Probability density function f(x), and b cumulative distribution function F(x), of a 
χ2 distribution with diff erent values for Φ.

Th e probability density function of the χ2 distribution is

where x>0, otherwise f(x)=0; Γ is again the Gamma function. Once again, Φ 
is the number of degrees of freedom (Fig. 3.11).

 3.5 Examples of Theoretical Distributions

Th e function randtool is a tool for simulating discrete data sets with statistics 
similar to our data set. Th is function creates a histogram of random numbers 
from the distributions in the Statistics Toolbox (MathWorks 2014). Th e 
random numbers that have been generated by using this tool can then be 
exported into the workspace. We start the graphical user interface (GUI) of 
the function by typing

randtool

aft er the prompt. We can now create a data set similar to the one in the fi le 
organicmatter_one.txt. Th e 60 measurements have a mean of 12.3448 wt% 
and a standard deviation of 1.1660 wt%. Th e GUI uses Mu for μ (the mean 
of a population) and Sigma for σ (the standard deviation). Aft er choosing 
Normal for a Gaussian distribution and 60 for the number of samples, we get a 
histogram similar to the one in the fi rst example (Section 3.3). Th is synthetic 
distribution based on 60 measurements represents a rough estimate of the 

a b
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true normal distribution. If we increase the sample size the histogram looks 
much more like a true Gaussian distribution.

Instead of simulating discrete distributions we can use the probability 
density function (PDF) or the cumulative distribution function (CDF) to 
compute a theoretical distribution. MATLAB also provides a GUI-based 
function for generating PDFs and CDFs with a specifi c statistic, which is 
called disttool.

disttool

We choose Normal as the distribution and PDF as the function type, and then 
defi ne the mean as mu=12.3448 and the standard deviation as sigma=1.1660. 
Although the function disttool is GUI-based, it uses non-GUI functions 
such as normpdf and normcdf to calculate the probability density function 
and the cumulative distribution function. Th e MATLAB Help gives an 
overview of the available theoretical distributions. As an example we can use 
the functions normpdf(x,mu,sigma) and normcdf(x,mu,sigma) to compute the 
PDF and CDF of a Gaussian distribution with mu=12.3448 and sigma=1.1660, 
evaluated for the values in x, to compare the results with those from our 
sample data set.

clear

mu = 12.3448;
sigma = 1.1660;

x = 5 : 0.001 : 20;
pdf = normpdf(x,mu,sigma);
cdf = normcdf(x,mu,sigma);
plot(x,pdf,x,cdf)

We can use these functions to familiarize ourselves with the properties 
of distributions. Th is will be important when we deal with the testing of 
hypotheses in the following sections. Th e test statistics used there follow the 
theoretical frequency distributions introduced in the previous sections of 
this chapter. In particular, the integral (or in the discrete case, the sum) of the 
theoretical distribution within a certain range a≤x≤b is of great importance, 
as it helps in calculating the probability that a measurement will fall within 
this range. 

As an example we can calculate the probability that a measurement 
will fall within the range of μ-σ≤x≤μ+σ, where μ is the mean and σ is the 
standard deviation of a Gaussian distribution. Using the PDF of the Gaussian 
distribution with mu=12.3448 and sigma=1.1660, we fi nd

pdf = pdf/sum(pdf);
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sum(pdf(find(x>mu-sigma,1,'first'):find(x<mu+sigma,1,'last')))

which yields

ans =
    0.6827

or ~68% aft er normalizing the PDF to unity. Th e expression find(x>mu-
sigma,1,'first') returns the fi rst index of x where x is larger than mu-sigma. 
Similarly, find(x<mu+sigma,1,'last') returns the last index of x where x is 
smaller than mu+sigma. Using 

sum(pdf(find(x>mu-sigma):find(x<mu+sigma))

instead yields

ans =
   0

since the value of mu-sigma (11.1788) falls between two values of x, 11.178 
and 11.179, similar to the value of mu-sigma (13.5108) falling between 13.510 
and 13.511. Both, find(x==mu-sigma) and find(x==mu+sigma) return an empty 
matrix and hence the sum of the μ-σ≤x≤μ+σ range is zero. Alternatively, we 
can calculate the probability of the –σ≤x≤+σ range from the CDF by typing

cdf(find(x<mu+sigma,1,'last'))-cdf(find(x>mu-sigma,1,'first'))

which yields about the same probability of

ans =
    0.6825

or ~68%. Again,

cdf(find(x==mu+sigma))-cdf(find(x==mu-sigma))

yields no result

ans =
   Empty matrix: 1-by-0

for the same reason as before. Conversely, we can also calculate the x-values 
of the μ±σ range of our PDF using the inverse of the cumulative normal 
distribution function with norminv(p,mu,sigma) by typing

norminv((1-0.6827)/2,mu,sigma)
norminv(1-(1-0.6827)/2,mu,sigma)

which yields
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ans =
   11.1788
ans =
   13.5108

Here, the values for p are calculated from the complement of ~68%, which 
is ~32%, halved on both tails of the Gaussian distribution, e.g., (1–0.6827)/2 
and 1–(1–0.6827)/2.

Th e standard deviation σ of the Gaussian distribution is important for 
the defi nition of confi dence intervals. In many examples, however, the 
confi dence of one sigma (μ±1σ) or ~68% that the true value falls within 
the μ±1σ range is not suffi  cient and higher confi dence intervals such as two 
sigma (μ±2σ) and three sigma (μ±3σ) intervals are therefore also used. We 
can calculate the corresponding probabilities that the true value falls within 
the μ±2σ range and the μ±3σ range by typing

sum(pdf(find(x>mu-2*sigma,1,'first'):find(x<mu+2*sigma,1,'last')))
sum(pdf(find(x>mu-3*sigma,1,'first'):find(x<mu+3*sigma,1,'last')))

which yields

ans =
    0.9545
ans =
    0.9973

or ~95% and ~99%. Again, using norminv we can calculate the upper and 
lower bounds of the two sigma (μ±2σ) range

norminv(0.05/2,mu,sigma)
norminv(1-0.05/2,mu,sigma)

which yields

ans =
   10.0595
ans =
   14.6301

and the three sigma (μ±3σ) range

norminv(0.01/2,mu,sigma)
norminv(1-0.01/2,mu,sigma)

which yields

ans =
    9.3414
ans =
   15.3482
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Instead of using normpdf and normcdf, we can use the general function makedist 
to create a probability distribution object for any type of distribution. As 
an example we create a probability distribution object for a Gaussian 
distribution by typing

clear

mu = 12.3448;
sigma = 1.1660;

pd = makedist('normal',mu,sigma)

which yields

pd = 
  NormalDistribution

  Normal distribution
       mu = 12.3448
    sigma =   1.166

When we type whos we can then see that we have created an object with name 
pd and class prob.NormalDistribution. Using this object we can determine the 
μ±1σ range using the probabilities (1–0.6827)/2 and 1–(1–0.6827)/2 with the 
inverse cumulative distribution function icdf of the probability distribution 
object pd:

y = icdf(pd,[(1-0.6827)/2,1-(1-0.6827)/2])

which yields

y =
   11.1788   13.5108

We can calculate the μ±2σ and μ±3σ ranges in a similar manner. Th e function 
normspec

p = normspec(y,mu,sigma,'inside')

which yields

p =
    0.6827

plots the PDF and shades the region inside the μ±1σ range (Fig. 3.12).
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Fig. 3.12 Plot of a standard normal distribution between specifi ed limits. As an example, the 
shaded area displays the μ±σ range of a Gaussian distribution with a mean μ=12.3448 and a 
standard deviation σ=1.1660.

 3.6 Hypothesis Testing

Th e remaining sections in this chapter are concerned with methods used to 
draw conclusions from the statistical sample that can then be applied to the 
larger population of interest (hypothesis testing). All hypothesis tests share the 
same concept and terminology. Th e null hypothesis is an assertion about the 
population describing the absence of a statistically signifi cant characteristic 
or eff ect, whereas an alternative hypothesis is a contrasting assertion. Th e 
p-value of a hypothesis test is the probability, under the null hypothesis, of 
observing larger values for the test statistic than those calculated from the 
sample. Th e signifi cance level α is the threshold of probability that controls 
the outcome of the tests. If the p-value is smaller than α, the null hypothesis 
can be rejected; the outcome of the test is regarded as signifi cant if p<0.05, or 
highly signifi cant if p<0.01.

A hypothesis test can be performed either as a one-tailed (one-sided) or 
two-tailed (two-sided) test. Th e term tail derives from the tailing off  the data 
to the far left  or far right of a probability density function as, for instance, in 
the standard normal distribution used in the Mann-Whitney and Ansari-
Bradley tests (Sections 3.11 and 3.12). As an example, the Mann-Whitney 
test compares the medians of two data sets. Th e one-tailed Mann-Whitney 
test is used to test against the alternative hypothesis that the median of 
the fi rst sample is either smaller or larger than the median of the second 
sample at a signifi cance level of 5% (or 0.05). Th e two-tailed Mann-Whitney 
test is used when the medians are not equal at a 5% signifi cance level, i.e., 
when it makes no diff erence which of the medians is larger. In this case, the 
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Fig. 3.13 Plot of a standard normal distribution with a one, or b two, critical regions shown as 
shaded areas that contain a total of 5% of the area under the curve.

signifi cance level is halved, i.e., 2.5% is used instead of 5%.
We can display the standard normal distribution for the one-tailed test by 

typing

clear

pd = makedist('normal',0,1)
y = icdf(pd,[0,.95]);
[p,h] = normspec(y,0,1,'outside');

and obtain a plot with one blue tail to the right, with the 5% area shaded (Fig. 
3.13 a). Similarly, we can display the standard normal distribution for the 
two-tailed test by typing

clear

a

b
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pd = makedist('normal',0,1)
y = icdf(pd,[.025,.975])
[p,h] = normspec(y,0,1,'outside');

and obtain a plot with two blue tails, one to the left  and one to the right, with 
the 2.5% areas shaded (Fig. 3.13 b).

Note that we cannot prove the null hypothesis, in other words not guilty 
is not the same as innocent. In practice, we design hypotheses based on our 
data, test them, and then continue to work with those found to be true, those 
we could not show to be false. Th e inherent possibility to prove a hypothesis 
to be false is therefore an important requirement for our hypotheses.

Th e next sections introduce the most important hypothesis tests for earth 
science applications: the two-sample t-test to compare the means of two data 
sets, the two-sample F-test to compare the variances of two data sets, and the 
χ2-test and Kolmogorov-Smirnov test to compare distributions (Sections 3.7 
to 3.10). Th e Mann-Whitney and Ansari-Bradley tests are alternatives to the 
t-test and F-test for comparing the medians and dispersions of two data sets 
without requiring a normality assumption for the underlying population 
(Sections 3.11 and 3.12). Th e fi nal section introduces methods that can be 
used to fi t distributions to our data sets (Section 3.13).

 3.7 The t-Test

Th e Student’s t-test by William Sealy Gosset (Student 1908) compares 
the means of two distributions. Th e one-sample t-test is used to test the 
hypothesis that the mean of a Gaussian-distributed population has a value 
specifi ed in the null hypothesis. Th e two-sample t-test is employed to test the 
hypothesis that the means of two Gaussian distributions are identical. In the 
following text the two-sample t-test is introduced to demonstrate hypothesis 
testing. Let us assume that two independent sets of na and nb measurements 
have been carried out on the same object, for instance measurements on two 
sets of rock samples taken from two separate outcrops. Th e t-test can be used 
to determine whether both samples come from the same population, e.g., 
the same lithologic unit (null hypothesis) or from two diff erent populations 
(alternative hypothesis). Both sample distributions must be Gaussian and the 
variances for the two sets of measurements should be similar. Th e appropriate 
test statistic for the diff erence between the two means is then
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where na and nb are the sample sizes, and sa
2 and sb

2 are the variances of the 
two samples a and b. Th e null hypothesis can be rejected if the measured 
t-value is higher than the critical t-value, which depends on the number of 
degrees of freedom Φ=na+nb–2 and the signifi cance level α. Th e one-tailed 
test is used to test against the alternative hypothesis that the mean of the 
fi rst sample is either smaller or larger than the mean of the second sample 
at a signifi cance level of 5% (or 0.05). Th e one-tailed test would require the 
modifi cation of the above equation by replacing the absolute value of the 
diff erence between the means with the actual diff erence between the means. 
Th e two-tailed t-test is used when the means are not equal at a 5% signifi cance 
level, i.e., when it makes no diff erence which of the means is larger. In this 
case, the signifi cance level is halved, i.e., 2.5% is used to compute the critical 
t-value.

We can now load two example data sets from two independent series 
of measurements. Th e fi rst example shows the performance of the two-
sample t-test on two distributions with means of 25.5 and 25.3 and standard 
deviations of 1.3 and 1.5, respectively.

clear

load('organicmatter_two.mat');

Th e binary fi le organicmatter_two.mat contains two data sets corg1 and corg2. 
First, we plot both histograms in a single graph.

histogram(corg1,'FaceColor','b'), hold on
histogram(corg2,'FaceColor','r'), hold off

We then compute the sample sizes, the means and the standard deviations.

na = length(corg1); nb = length(corg2);
ma = mean(corg1); mb = mean(corg2);
sa = std(corg1); sb = std(corg2);

Next, we calculate the t-value using the translation of the equation for the 
t-test statistic into MATLAB code.

tcalc = abs((ma-mb))/sqrt(((na+nb)/(na*nb)) * ...
   (((na-1)*sa^2+(nb-1)*sb^2)/(na+nb-2)))

tcalc =
    0.7279

We can now compare the calculated tcalc value of 0.7279 with the critical 
tcrit value. Th is can be accomplished using the function tinv, which yields 
the inverse of the t distribution function with na-nb-2 degrees of freedom at 
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the 5% signifi cance level. Th is is a two-sample t-test, i.e., the means are not 
equal. Computing the two-tailed critical tcrit value by entering 1–0.05/2 
yields the upper (positive) tcrit value, which we compare with the absolute 
value of the diff erence between the means.

tcrit = tinv(1-0.05/2,na+nb-2)

tcrit =
    1.9803

Since the tcalc value calculated from the data is smaller than the critical 
tcrit value, we cannot reject the null hypothesis without another cause. We 
conclude therefore that the two means are identical at a 5% signifi cance 
level. Alternatively, we can apply the function ttest2(x,y,alpha) to the two 
independent samples corg1 and corg2 at an alpha=0.05 or a 5% signifi cance 
level. Th e command

[h,p,ci,stats] = ttest2(corg1,corg2,0.05)

yields

h =
    0

p =
    0.4681

ci =
   -0.3028
    0.6547

stats = 
    tstat: 0.7279
       df: 118
       sd: 1.3241

Th e result h=0 means that we cannot reject the null hypothesis without another 
cause at a 5% signifi cance level. Th e p-value of 0.4681 or ~47% (which is 
much greater than the signifi cance level of 0.05 or 5%) suggests that the 
chances of observing more extreme t-values than the values in this example 
from similar experiments would be 4,681 in 10,000. Th e 95% confi dence 
interval on the mean is [–0.3028,0.6547], which includes the theoretical 
(and hypothesized) diff erence between the means of 25.5–25.3=0.2.

Th e second synthetic example shows the performance of the two-sample 
t-test in an example with very diff erent means of 24.3 and 25.5, while the 
standard deviations are again 1.3 and 1.5, respectively.

clear
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load('organicmatter_three.mat');

Th is fi le again contains two data sets corg1 and corg2. As before, we plot both 
histograms in a single graph.

histogram(corg1,'FaceColor','b'), hold on
histogram(corg2,'FaceColor','r'), hold off

We then compute the sample sizes, the means and the standard deviations.

na = length(corg1); nb = length(corg2);
ma = mean(corg1); mb = mean(corg2);
sa = std(corg1); sb = std(corg2);

Next, we calculate the t-value using the translation of the equation for the 
t-test statistic into MATLAB code.

tcalc = abs((ma-mb))/sqrt(((na+nb)/(na*nb)) * ...
   (((na-1)*sa^2+(nb-1)*sb^2)/(na+nb-2)))

tcalc =
    4.7364

We can now compare the calculated tcalc value of 4.7364 with the critical 
tcrit value. Again, this can be accomplished using the function tinv at a 5% 
signifi cance level. Th e function tinv yields the inverse of the t distribution 
function with na-nb-2 degrees of freedom at the 5% signifi cance level. Th is is 
again a two-sample t-test, i.e., the means are not equal. Computing the two-
tailed critical tcrit value by entering 1–0.05/2 yields the upper (positive) 
tcrit value that we compare with the absolute value of the diff erence between 
the means.

tcrit = tinv(1-0.05/2,na+nb-2)

tcrit =
    1.9803

Since the tcalc value calculated from the data is now larger than the critical 
tcrit value, we can reject the null hypothesis and conclude that the means 
are not identical at a 5% signifi cance level. Alternatively, we can apply the 
function ttest2(x,y,alpha) to the two independent samples corg1 and corg2 
at an alpha=0.05 or a 5% signifi cance level. Th e command

[h,p,ci,stats] = ttest2(corg1,corg2,0.05)

yields

h =
     1
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p =
    6.1183e-06

ci =
    0.7011
    1.7086

stats = 
    tstat: 4.7364
       df: 118
       sd: 1.3933

Th e result h=1 suggests that we can reject the null hypothesis. Th e p-value 
is extremely low and very close to zero suggesting that the null hypothesis 
is very unlikely to be true. Th e 95% confi dence interval on the mean is 
[0.7011,1.7086], which again includes the theoretical diff erence between the 
means of 25.5–24.3=1.2.

 3.8 The F-Test

Th e two-sample F-test by Snedecor and Cochran (1989) compares the 
variances sa

2 and sb
2 of two distributions, where sa

2>sb
2. An example is the 

comparison of the natural heterogeneity of two samples based on replicated 
measurements. Th e sample sizes na and nb should be above 30. Both the 
sample and population distributions must be Gaussian. Th e appropriate test 
statistic with which to compare the variances is then

Th e two variances are signifi cantly diff erent (i.e., we can reject the null 
hypothesis without another cause) if the measured F value is higher than 
the critical F value, which will in turn depend on the number of degrees of 
freedom Φa=na–1 and Φb=nb–1, respectively, and the signifi cance level α. Th e 
one-sample F-test, in contrast, virtually performs a χ2-test of the hypothesis 
that the data come from a normal distribution with a specifi c variance (see 
Section 3.9). We fi rst apply the two-sample F-test to two distributions with 
very similar standard deviations of 1.2550 and 1.2097.

clear

load('organicmatter_four.mat');

Th e quantity F is the quotient of the larger variance divided by the smaller 
variance. We can now compute the standard deviations, where
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s1 = std(corg1)
s2 = std(corg2)

which yields

s1 =
    1.2550

s2 =
    1.2097

Th e F distribution has two parameters, df1 and df2, which represent the 
number of observations in each of the distributions reduced by one, where

df1 = length(corg1) - 1
df2 = length(corg2) - 1

which yields

df1 =
    59

df2 =
    59

Next we sort the standard deviations by their absolute values,

if s1 > s2
  slarger  = s1
  ssmaller = s2
else
  slarger  = s2
  ssmaller = s1
end

and get

slarger =
    1.2550

ssmaller =
    1.2097

We now compare the calculated F value with the critical F value. Th is can be 
accomplished using the function finv at a signifi cance level of 0.05 (or 5%). 
Th e function finv returns the inverse of the F distribution function with df1 
and df2 degrees of freedom, at the 5% signifi cance level. Th is is a two-tailed 
test and we must therefore divide the p-value of 0.05 by two. Typing

Fcalc = slarger^2 / ssmaller^2
Fcrit = finv(1-0.05/2,df1,df2)
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yields

Fcalc =
    1.0762

Fcrit =
    1.6741

Since the F value calculated from the data is smaller than the critical F 
value, we cannot reject the null hypothesis without another cause. We 
conclude therefore that the variances are identical at a 5% signifi cance level. 
Alternatively, we can apply the function vartest2(x,y,alpha) to the two 
independent samples corg1 and corg2 at an alpha=0.05 or a 5% signifi cance 
level. MATLAB also provides a one-sample variance test vartest(x,variance) 
analogous to the one-sample t-test discussed in the previous section. Th e 
one-sample variance test, however, virtually performs a χ2-test of the 
hypothesis that the data in the vector x come from a normal distribution 
with a variance defi ned by variance. Th e χ2-test is introduced in the next 
section. Th e command

[h,p,ci,stats] = vartest2(corg1,corg2,0.05)

yields

h =
     0

p =
    0.7787

ci =
    0.6429
    1.8018

stats = 
    fstat: 1.0762
      df1: 59
      df2: 59

Th e result h=0 means that we cannot reject the null hypothesis without 
another cause at a 5% signifi cance level. Th e p-value of 0.7787 or ~78% 
(which is much greater than the signifi cance level) means that the chances 
of observing more extreme values of F than the value in this example from 
similar experiments would be 7,787 in 10,000. A 95% confi dence interval 
is [–0.6429,1.8018], which includes the theoretical (and hypothesized) ratio 
var(corg1)/var(corg2) of 1.25502/1.20972=1.0762.

We now apply this test to two distributions with very diff erent standard 
deviations, 1.8799 and 1.2939.
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clear

load('organicmatter_five.mat');

We again compare the calculated Fcalc value with the critical Fcrit value at a 
5% signifi cance level, using the function finv to compute Fcrit.

s1 = std(corg1);
s2 = std(corg2);

df1 = length(corg1) - 1;
df2 = length(corg2) - 1;

if s1 > s2
  slarger  = s1;
  ssmaller = s2;
else
  slarger  = s2;
  ssmaller = s1;
end

Fcalc = slarger^2 / ssmaller^2

Fcrit = finv(1-0.05/2,df1,df2)

and get

Fcalc =
    3.4967

Fcrit =
    1.6741

Since the Fcalc value calculated from the data is now larger than the critical 
Fcrit value, we can reject the null hypothesis. Th e variances are therefore 
diff erent at a 5% signifi cance level.

Alternatively, we can apply the function vartest2(x,y,alpha), performing 
a two-sample F-test on the two independent samples corg1 and corg2 at an 
alpha=0.05 or a 5% signifi cance level.

[h,p,ci,stats] = vartest2(corg1,corg2,0.05)

yields

h =
     1

p =
   3.4153e-06

ci =
    2.0887
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    5.8539

stats =
    fstat: 3.4967
      df1: 59
      df2: 59

Th e result h=1 suggests that we can reject the null hypothesis. Th e p-value is 
extremely low and very close to zero suggesting that the null hypothesis is 
very unlikely. Th e 95% confi dence interval is [2.0887,5.8539], which again in-
cludes the theoretical ratio var(corg1)/var(corg2) of 5.07172/1.45042=3.4967.

 3.9 The χ2-Test

Th e χ2-test introduced by Karl Pearson (1900) involves the comparison of 
distributions, allowing two distributions to be tested for derivation from the 
same population. Th is test is independent of the distribution that is being 
used and can therefore be used to test the hypothesis that the observations 
were drawn from a specifi c theoretical distribution.

Let us assume that we have a data set that consists of multiple chemical 
measurements from a sedimentary unit. We could use the χ2-test to test the 
null hypothesis that these measurements can be described by a Gaussian 
distribution with a typical central value and a random dispersion around 
it. Th e n data are grouped in K classes, where n should be above 30. Th e 
frequencies within the classes Ok should not be lower than four and should 
certainly never be zero. Th e appropriate test statistic is then

where Ek are the frequencies expected from the theoretical distribution (Fig. 
3.14). Th e null hypothesis can be rejected if the measured χ2 value is higher 
than the critical χ2 value, which depends on the number of degrees of freedom 
Φ=K–Z, where K is the number of classes and Z is the number of parameters 
describing the theoretical distribution plus the number of variables (for 
instance, Z=2+1 for the mean and the variance from a Gaussian distribution 
of a data set for a single variable, and Z=1+1 for a Poisson distribution for a 
single variable).

As an example we can test the hypothesis that our organic carbon 
measurements contained in organicmatter_one.txt follow a Gaussian 
distribution. We must fi rst load the data into the workspace and compute the 
frequency distribution n_obs for the data measurements using eight classes.
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Fig. 3.14 Principles of a χ2-test. Th e alternative hypothesis that the two distributions are 
diff erent can be rejected if the measured χ2 is lower than the critical χ2. χ2 depends on Φ=K–Z, 
where K is the number of classes and Z is the number of parameters describing the theoretical 
distribution plus the number of variables. In the example the critical χ2(Φ=5, α=0.05) is 
11.0705. Since the measured χ2= 5.7602 is below the critical χ2, we cannot reject the null 
hypothesis. In our example we can conclude that the sample distribution is not signifi cantly 
diff erent from a Gaussian distribution.

clear

corg = load('organicmatter_one.txt');

h = histogram(corg,8);
v = h.BinWidth * 0.5 + h.BinEdges(1:end-1);
n_obs = h.Values;

We then use the function normpdf to create the expected frequency distribution 
n_exp with the mean and standard deviation of the data in corg.

n_exp = normpdf(v,mean(corg),std(corg));

Th e data need to be scaled so that they are similar to the original data set.

n_exp = n_exp / sum(n_exp);
n_exp = sum(n_obs) * n_exp;

Th e fi rst command normalizes the observed frequencies n_obs to a total of 
one. Th e second command scales the expected frequencies n_exp to the sum 
of n_obs. We can now display both histograms for comparison.

subplot(1,2,1), bar(v,n_obs,'r')
subplot(1,2,2), bar(v,n_exp,'b')

An alternative way of plotting the data in corg is to use a normal probability 
plot.
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normplot(corg)

Th e function normplot plots the data in corg with the + symbol superimposed 
by a line joining the fi rst and third quartiles of each column of corg, which 
is a robust linear fi t of the sample order statistics. Th e line is extrapolated in 
each direction beyond the quartiles. If the data in corg are indeed normally-
distributed, they will all fall on the line. In our example the data seem to 
agree well with the line except for the tails of the normal distribution.

Visual inspection of these plots reveals that the empirical distribution is 
similar to the theoretical distribution. It is, however, advisable to use a more 
quantitative approach to test the hypothesis of similarity. Th e χ2-test explores 
the squared diff erences between the observed and expected frequencies. 
Th e quantity chi2calc is the sum of the squared diff erences divided by the 
expected frequencies.

chi2calc = sum((n_obs - n_exp).^2 ./ n_exp)

chi2calc =
    5.7602

Th e critical chi2crit value can be calculated using chi2inv value. Th e χ2-test 
requires the number of degrees of freedom Φ. In our example we test the 
hypothesis that the data have a Gaussian distribution, i.e., we estimate the 
two parameters μ and σ. Th e number of degrees of freedom is Φ=8–(2+1)=5. 
We can now test our hypothesis at a 5% signifi cance level. Th e function 
chi2inv computes the inverse of the χ2 CDF with parameters specifi ed by Φ 
for the corresponding probabilities in p.

chi2crit = chi2inv(1-0.05,5)

chi2crit = 
    11.0705

Since the critical chi2crit value of 11.0705 is well above the measured 
chi2calc value of 5.7602, we cannot reject the null hypothesis without 
another cause. We can therefore conclude that our data follow a Gaussian 
distribution. Alternatively, we can apply the function chi2gof(x) to the 
sample. Th e command

[h,p] = chi2gof(corg)

yields

h =
     0
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p =
    0.6244

stats = 
    chi2stat: 2.6136
          df: 4
       edges: [1x8 double]
           O: [8 8 5 10 10 9 10]
           E: [1x7 double]

Th e function automatically bins the data into seven classes. Th e result h=0 
means that we cannot reject the null hypothesis without another cause at a 
5% signifi cance level. Th e p-value of 0.6244 or ~62% (which is much greater 
than the signifi cance level) means that the chances of observing either the 
same result or a more extreme result from similar experiments in which 
the null hypothesis is true would be 6,244 in 10,000. Th e structure array 
stats contains the calculated χ2 value, which is 2.6136 and diff ers from our 
result of 6.2489 due to the diff erent number of classes. Th e array stats also 
contains the number of degrees of freedom Φ=7–(2+1)=4, the eight edges 
of the seven classes automatically defi ned by the function chi2gof, and the 
observed and expected frequencies of the distribution.

 3.10 The Kolmogorov-Smirnov Test

Th e Kolmogorov-Smirnov (K-S) test introduced by Andrei N. Kolmogorow 
and Nikolai W. Smirnov is similar to the χ2-test in that it also involves the 
comparison of distributions, allowing two distributions to be tested for 
derivation from the same population (Kolmogorow 1933, Smirnov 1939). 
Th is test is independent of the type of distribution that is being used and can 
therefore be used to test the hypothesis that the observations were drawn 
from a specifi c theoretical distribution.

Let us again assume that we have a data set that consists of multiple 
chemical measurements from a sedimentary unit. We can use the K-S test 
to test the null hypothesis that these measurements can be described by a 
Gaussian distribution with a typical central value (the mean) and a random 
dispersion around the mean (the standard deviation). Th e appropriate test 
statistic is then

where Fn(x) is the empirical distribution function of the n measurements and 
F(x) is the cumulative distribution function expected from the theoretical 
distribution. Th e null hypothesis can be rejected if the measured KS value is 
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higher than the critical KS value.
As an example we can again test the hypothesis that our organic carbon 

measurements contained in organicmatter_one.txt follow a Gaussian 
distribution. We must fi rst load and standardize the data to have zero mean 
and unit standard deviation.

clear

corg = load('organicmatter_one.txt');
corg = (corg-mean(corg))/std(corg);

We then compute the empirical distribution function cn_obs of corg evaluated 
at the points x by using the function ecdf

[cn_obs,x] = ecdf(corg);

We then use the function normcdf to create the cumulative distribution 
function expected from the theoretical distribution cn_exp with a mean of 
zero and a standard deviation of one.

cn_exp = normcdf(x,0,1);

Th e test statistic is the maximum diff erence between the two cumulative 
distribution functions cn_obs and cn_exp

kscal = max(cn_obs-normcdf(x,0,1))

which yields

kscalc =
    0.0757

We can compare the two cumulative distribution functions in a plot by typing

plot(x,cn_obs,'b'), hold on
plot(x,normcdf(x,0,1),'r')
plot(x(find((cn_obs-normcdf(x,0,1))== ...
    max(cn_obs-normcdf(x,0,1))))*ones(2,1),[0 1],'k:')

Th e vertical black line marks the location of the maximum diff erence between 
the two cumulative distributions. Th e critical kscalc values are solutions of 
an n-th order polynomial, which can be obtained from Table 3.1 (O’Connor 
and Kleyner 2012). For sample sizes larger than 40 and a signifi cance level of 
0.05 (or 5%) we calculate

kscrit = 1.36/length(corg)^0.5

which yields
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Table 3.1 Critical values of KS for the Kolmogorov-Smirnov test (O’Connor and Kleyner 
2012).

kscrit =
    0.1756

Since the critical kscrit value of 0.1756 is well above the measured kscalc 
value of 0.0757, we cannot reject the null hypothesis without another cause. 
We can therefore conclude that our data follow a Gaussian distribution.
Alternatively, we can apply the function kstest to the sample. Typing

 Level of Signifi cance,  α

N 0.10 0.05 0.02 0.01

1 0.95000 0.97500 0.99000 0.99500
2 0.77639 0.84189 0.90000 0.92929
3 0.63604 0.70760 0.78456 0.82900
4 0.56522 0.62394 0.68887 0.73424
5 0.50945 0.56328 0.62718 0.66853
6 0.46799 0.51926 0.57741 0.61661
7 0.43607 0.48342 0.53844 0.57581
8 0.40962 0.45427 0.50654 0.54179
9 0.38746 0.43001 0.47960 0.51332
10 0.36866 0.40925 0.45662 0.48893
11 0.35242 0.39122 0.43670 0.46770
12 0.33815 0.37543 0.41918 0.44905
13 0.32549 0.36143 0.40362 0.43247
14 0.31417 0.34890 0.38970 0.41762
15 0.30397 0.33760 0.37713 0.40420
16 0.29472 0.32733 0.36571 0.39201
17 0.28627 0.31796 0.35528 0.38086
18 0.27851 0.30936 0.34569 0.37062
19 0.27136 0.30143 0.33685 0.36117
20 0.26473 0.29408 0.32866 0.35241
21 0.25858 0.28724 0.32104 0.34427
22 0.25283 0.28087 0.31394 0.33666
23 0.24746 0.27490 0.30728 0.32954
24 0.24242 0.26931 0.30104 0.32286
25 0.23768 0.26404 0.29516 0.31657
26 0.23320 0.25907 0.28962 0.31064
27 0.22898 0.25438 0.28438 0.30502
28 0.22497 0.24993 0.27942 0.29971
29 0.22117 0.24571 0.27471 0.29466
30 0.21756 0.24170 0.27023 0.28987
31 0.21412 0.23788 0.26596 0.28530
32 0.21085 0.23424 0.26189 0.28094
33 0.20771 0.23076 0.25801 0.27677
34 0.20472 0.22743 0.25429 0.27279
35 0.20185 0.22425 0.26073 0.26897
36 0.19910 0.22119 0.24732 0.26532
37 0.19646 0.21826 0.24404 0.26180
38 0.19392 0.21544 0.24089 0.25843
39 0.19148 0.21273 0.23786 0.25518
40 0.18913 0.21012 0.23494 0.25205

>40 1.22/N0.5  1.36/N0.5 1.51/N0.5 1.63/N0.5
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[h,p,kscalc, kscrit] = kstest(corg)

yields

h =
     0

p =
    0.8562

kscalc =
    0.0757

kscrit =
    0.1723

Th e result h=0 means that we cannot reject the null hypothesis without 
another cause at a 5% signifi cance level. Th e p-value of 0.8562 or ~86% 
(which is much greater than the signifi cance level) means that the chances 
of observing either the same result or a more extreme result from similar 
experiments in which the null hypothesis is true would be 8,562 in 10,000. 
Th e output variable kscalc=0.0757 corresponds to kscalc in our experiment 
without using kstest. Th e output variable kscrit=1.723 diff ers slightly from 
that in Table 3.1 since kstest uses a slightly more precise approximation for 
the critical value for sample sizes larger than 40 from Miller (1956).

 3.11 Mann-Whitney Test

Th e Mann-Whitney test (also known as the Wilcoxon rank-sum test) 
introduced by Henry B. Mann and Donald R. Whitney (1947), can be used 
to determine whether two samples come from the same population, e.g., 
the same lithologic unit (null hypothesis), or from two diff erent populations 
(alternative hypothesis). In contrast to the t-test, which compares the means 
of Gaussian distributed data, the Mann-Whitney test compares the medians 
without requiring a normality assumption for the underlying population, i.e., 
it is a non-parametric hypothesis test.

Th e test requires that the samples have similar dispersions. We fi rst combine 
both sets of measurements (samples 1 and 2) and arrange them together 
in ascending order. We then sum the ranks of samples 1 and 2, where the 
sum of all ranks is R=n(n+1)/2 with n as the total number of measurements. 
Published literature is full of diff erent versions of how to calculate the test 
statistic. Here we use the version that can be found in Hedderich and Sachs 
(2012, page 484):
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where n1 and n2 are the sizes of samples 1 and 2, respectively, and R1 and R2 
are the sums of the ranks of samples 1 and 2, respectively. Th e required test 
statistic U is the smaller of the two variables U1 and U2, which we compare 
with a critical U value that depends on the sample sizes n1 and n2, and on the 
signifi cance level α. Alternatively, we can use the U value to calculate

if n1≥8 and n2≥8 (Mann and Whitney 1978, Hedderich and Sachs 2012, page 
486). Th e null hypothesis can be rejected if the absolute measured z-value is 
higher than the absolute critical z-value, which depends on the signifi cance 
level α (Section 3.4).

In practice, data sets oft en contain tied values, i.e., some of the values in 
the sample 1 and/or sample 2 are identical. In this case, the average ranks 
of the tied values are used instead of the true ranks. Th is means that the 
equation for the z-value must be corrected for tied values

where S=n1+n2, r is the number of tied values and ti is the number of 
occurrences of the i-th tied value. Again, the null hypothesis can be rejected 
if the absolute measured z-value is higher than the absolute critical z-value, 
which depends on the signifi cance level α.

Th e MATLAB code presented here has been tested with an example 
contained in the book by Hedderich and Sachs (2012, page 489). Th e example 
uses the Mann-Whitney test to test whether two samples (data1 and data2), 
each consisting of eight measurements with some tied values, come from 
the same population (null hypothesis) or from two diff erent populations 
(alternative hypothesis). We clear the workspace and defi ne two samples, 
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each consisting of eight measurements:

clear

data1 = [5 5 8 9 13 13 13 15];
data2 = [3 3 4 5 5 8 10 16];

We concatenate the two samples horizontally and sort the measurements in 
ascending order by typing

data = horzcat(data1,data2);
data = sort(data)

which yields the output

data =
  Columns 1 through 8
     3     3     4     5     5     5     5     8
  Columns 9 through 16
     8     9    10    13    13    13    15    16

autowrapping those lines that are longer than the width of the Command 
Window. We then determine the number of measurements n1 and n2 in 
each sample, which is eight for both of the samples in our example. Th en we 
create a linearly-spaced vector L ranging from 1 to length(data).

n1 = length(data1);
n2 = length(data2);
L = 1 : length(data)

which yields

L =
  Columns 1 through 8
     1     2     3     4     5     6     7     8
  Columns 9 through 16
     9    10    11    12    13    14    15    16

We next fi nd the unique values C in the data. Th e location vectors ia and ic 
help to fi nd C = data(ia) and to reconstruct data from data = C(ic).

We then search for tied values in data. Aft er we have initialized the 
variables by setting them all to zero, the tied values in ic are located using 
find and are then stored in dties, with the number of occurrences recorded 
in nties. Having located the tied values their ranks are averaged and stored 
in icf. We type

nties = 0;
dties = 0;
kties = 0;
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j = 1;
for i = 1 : length(ia)
    f = find(ic==i);
    if length(f) > 1
        dties(j) = max(data(f));
        nties = nties+1;
        j = j + 1;
    end
    icf(f) = mean(L(f));
end
icf

which yields

icf =
  Columns 1 through 4
    1.5000    1.5000    3.0000    5.5000
  Columns 5 through 8
    5.5000    5.5000    5.5000    8.5000
  Columns 9 through 12
    8.5000   10.0000   11.0000   13.0000
  Columns 13 through 16
   13.0000   13.0000   15.0000   16.0000

As we can see, instead of ranks 1 and 2, the averaged ranks 1.5 and 1.5 are 
used for the two duplicate values of 3 in the data set. Similarly, the averaged 
rank 5.5 is used for the value of 5, which occurs four times in the data set, 
instead of the ranks 4, 5, 6 and 7. Th e averaged rank 8.5 is used for the value 
of 8 instead of ranks 8 and 9 and the averaged rank 13 is used for the value of 
13 instead of ranks 12, 13 and 14. Instead of using the above code MATLAB 
provides the function tiedrank to compute ranks adjusted for tied values:

icf = tiedrank(data);

Th e result obtained using tiedrank is icf, which is identical to that obtained 
previously. Th en we count the repetitions of each tied value by typing

for i = 1 : nties
    kties(i) = sum(data == dties(i));
end

and display the values of all three variables by typing

nties
dties
kties

which yields

nties =
     4
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dties =
     3     5     8    13

kties =
     2     4     2     3

We see that we have four diff erent tied values (nties=4), with the actual values 
stored in dties (these being the values 3, 5, 8 and 13, which occur 2, 4, 2 and 3 
times in the data set, respectively). We now use ismember to locate the values 
in data1 and data2 in data. Th e fi rst output from ismember for the sample in 
data1 is Lia1, which contains 1 indicating that the statement that the data in 
data1 are found in data is true, and the Lia1 output of ismember for the sample 
in data1 contains 0 whenever data1 is not a row in data. Th e second output 
from ismember is the column array locb1, which contains the lowest index 
in data for each row in data1 that is also a row in data. We now collect the 
corresponding ranks in icf and sum them up to R1 and R2.

[Lia1,locb1] = ismember(data1,data);
r1 = icf(locb1);
R1 = sum(r1)

[Lia2,locb2] = ismember(data2,data);
r2 = icf(locb2);
R2 = sum(r2)

which yields

R1 =
   83.5000

R2 =
   52.5000

We then calculate the test static U of the Mann-Whitney test, which is the 
smaller of U1 and U2

U1 = n1*n2 + n1*(n1+1)/2 - R1
U2 = n1*n2 + n2*(n2+1)/2 - R2
U = min([U1 U2])

which yields

U1 =
   16.5000

U2 =
   47.5000

U =
   16.5000
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We use U to calculate the measured z-value, corrected for tied values, by 
typing

t = 0;
S = n1 + n2;
for i = 1 : nties
    t(i) = (kties(i)^3 - kties(i)) / 12;
end
T = sum(t);
zcal = abs(U - n1*n2/2) / ...
    sqrt( (n1*n2/(S*(S-1))) * ((S^3-S)/12 - T))

which yields

zcalc =
    1.6473

Th is is a two-tailed Mann-Whitney test, i.e., the alternative hypothesis is 
that the medians are not equal, no matter which is larger. Computing the 
two-tailed critical zcrit value using the function norminv for the standard 
normal distribution (with a mean of zero and a standard deviation of one) by 
entering 1–0.05/2 yields the upper (positive) zcrit value, which we compare 
with the calculated zcalc value

zcrit = norminv(1-0.05/2,0,1)

which yields

zcrit =
    1.9600

Since the absolute measured zcalc value is 1.6473, which is smaller than 
the critical zcrit value of 1.9600, we cannot reject the null hypothesis. We 
can therefore conclude that our samples come from the same population. 
Alternatively, we can use the function ranksum to perform a Mann-Whitney 
test on the same samples:

[p,h,stats] = ranksum(data1,data2)

which yields

P =
    0.1071

H =
     0

STATS = 
    ranksum: 83.5000
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Th e result h=0 means that we cannot reject the null hypothesis at a 5% 
signifi cance level. Th e p-value of 0.1071 or ~11% (which is larger than the 
signifi cance level) means that the chances of observing either the same 
result or a more extreme result, from similar experiments in which the null 
hypothesis is true, would be 11 in 100.

We can use the same script to test whether the two samples in organicmatter_
two.mat come from the same lithological unit (null hypothesis) or from 
two diff erent units (alternative hypothesis) without requiring a normality 
assumption for the underlying population. We clear the workspace and load 
the data.

clear

load('organicmatter_two.mat');

Alternatively, we can use the function ranksum to perform a Mann-Whitney 
test on the same samples:

[P,H,STATS] = ranksum(corg1,corg2)

which yields

P =
    0.5906

H =
     0

STATS = 

       zval: 0.5380
    ranksum: 3733

Th e result h=0 means that we cannot reject the null hypothesis at a 5% 
signifi cance level without another cause. Th e p-value of 0.5906 or ~59% 
(which is much larger than the signifi cance level) means that the chances 
of observing either the same result or a more extreme result from similar 
experiments in which the null hypothesis is true would be 5,906 in 10,000.

 3.12 The Ansari-Bradley Test

Th e Ansari-Bradley test introduced by Abdur R. Ansari and Ralph A. 
Bradley (1960) can be used to determine whether two samples come from 
the same distribution (null hypothesis), or whether the samples come from 
distributions with the same median and shape but diff erent dispersions 
(e.g., variances) (alternative hypothesis). In contrast to the F-test, which 

3.12 THE ANSARI-BRADLEY TEST  109



compares the dispersions of normally-distributed data, the Ansari-Bradley 
test compares dispersions without requiring a normality assumption for the 
underlying population, i.e., it is a non-parametric hypothesis test.

Th e test requires that the samples have similar medians, which can be 
achieved by subtracting the medians from the samples. Th e test combines 
both sets of measurements (samples 1 and 2) and arranges them together 
in ascending order. Th ere are diff erent ways to calculate the test statistic An. 
Here we use the one given by Hedderich and Sachs (2012, page 463)

where the value of the indicator function Vi is 1 for values from sample 1 
and 0 for values from sample 2. Th e test statistic is therefore equal to the 
sum of the absolute values   of the deviations from the mean value (n +1)/2 
(Hedderich and Sachs 2012). For this the data are concatenated and sorted, as 
in the Mann-Whitney test (Section 3.11), and the smallest and largest values 
are then assigned rank 1, the second smallest and second largest values are 
assigned rank 2, and so forth. Th e smaller An, the larger the dispersion of the 
values between the two samples 1 and 2. Again, the ranking of the data may 
also be corrected for tied values, as was previously carried out in the Mann-
Whitney test. For n≤20 we can fi nd the critical values for the text statistic An 
in Table 1 in the open-access article by Ansari and Bradley (1960). For larger 
values of n we use the standard normal distribution

with
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again from Hedderich and Sachs (2012, page 463). Th e null hypothesis can 
be rejected if the absolute measured z-value is higher than the absolute 
critical z-value, which depends on the signifi cance level α.

Our fi rst example uses the Ansari-Bradley test to test whether two samples 
data1 and data2, each consisting of eight measurements, come from the same 
distribution (null hypothesis), or from distributions with the same median 
and shape but diff erent dispersions (alternative hypothesis). We fi rst clear the 
workspace and defi ne two samples.

clear

data1 = [7 14 22 36 40 48 49 52];
data2 = [3 5 6 10 17 18 20 39];

We next subtract the medians from both data sets as the method requires the 
medians to be similar.

data1 = data1 - median(data1);
data2 = data2 - median(data2);

We then concatenate the two samples horizontally and sort the measurements 
in ascending order by typing

data = horzcat(data1,data2);
data = sort(data)

which yields

data =
  Columns 1 through 5
  -31.0000  -24.0000  -16.0000  -10.5000   -8.5000
  Columns 6 through 10
   -7.5000   -3.5000   -2.0000    2.0000    3.5000
  Columns 11 through 15
    4.5000    6.5000   10.0000   11.0000   14.0000
  Column 16
   25.5000

We determine the sample sizes for data1 and data2 and then calculate the size 
n of the concatenated samples.

n1 = length(data1);
n2 = length(data2);
n = n1 + n2;

We then determine the positions of the measurements in data1 and data2 
within the concatenated and sorted vector data using ismember. Th e function 
ismember returns an array of the same size as data containing 1 (true) where 
the elements of data1 are in data, or 0 (false) where they are not. We type
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V1 = ismember(data,data1)
V2 = ismember(data,data2)

which yields

V1 =
  Columns 1 through 8
     1     1     1     0     0     0     0     1
  Columns 9 through 16
     1     0     0     0     1     1     1     0

V2 =
  Columns 1 through 8
     0     0     0     1     1     1     1     0
  Columns 9 through 16
     0     1     1     1     0     0     0     1

Th en we create a linearly-spaced vector L ranging from 1 to length(data).

L = 1 : length(data);

We then calculate the test static An of the Ansari-Bradley test by typing

An = sum(((n+1)/2 - abs(L - (n+1)/2)).* V1)

which yields

An =
   31

According to Table 1 in Ansari and Bradley (1960), the critical value for n1=8 
and n2=8 is 45 at a signifi cance level of 5%. Alternatively, we can use the 
function ansaribradley to perform the Ansari-Bradley test by typing

[h,p,stats] = ansaribradley(data1,data2)

which yields

h =
     0

p =
    0.3507

stats = 
        W: 31
    Wstar: -1.0564

Th e result h=0 means that we cannot reject the null hypothesis without another 
cause at a 5% signifi cance level. Th e p-value of 0.3507 or ~35% (which is 
greater than the signifi cance level) means that the chances of observing 
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either the same result or a more extreme result from similar experiments in 
which the null hypothesis is true would be 3,507 in 10,000.

Th e second example demonstrates the handling of tied values in a data set 
with a large sample size (>50 measurements). We create such a data set of 
100 measurements by using a random number generator:

data1 = 3.4 + rand(1,100);
data2 = 4.3 + rand(1,100);

We then replace some values in data1 and data2 to introduce replicate (or 
tied) values.

data1(1,50:55) = 2.5;
data2(1,25:28) = 2.5;

We fi rst subtract the medians from both data sets as the method requires the 
medians to be similar.

data1 = data1 - median(data1);
data2 = data2 - median(data2);

Th e two samples are then concatenated horizontally and sorted in ascending 
order by typing

data = horzcat(data1,data2);
data = sort(data);

For the Ansari-Bradley test we now use the function tiedrank with (data,0,1), 
which computes the ranks from each end so that the smallest and largest 
values are assigned rank 1, the next smallest and largest are assigned rank 2, 
and so forth.

icf = tiedrank(data,0,1);

Th en, we calculate the test statistic of the Ansari-Bradley test, which is the 
sum of the ranks of those measurements that are members of data1.

An = sum(icf(ismember(data,data1)))

which yields

An =
        4903

Alternatively, we can again use the equation introduced above by typing

n1 = length(data1);
n2 = length(data2);
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n = n1 + n2;

V1 = ismember(data,data1)
V2 = ismember(data,data2)

An = sum(((n+1)/2 - abs(icf - (n+1)/2)).* V1)

which also yields

An =
        4903

Finally, we calculate the z-value using the equations introduced above by 
typing

if mod(n,2) == 0
   display('n is even')
   muAn = 0.25 * n1 * (n+2);
   siAn = n1*n2*(n^2-4)/((48*(n-1)));
else
   display('n is odd')
   muAn = 0.25 * n1 * (n+1)^2/n;
   siAn = n1*n2*(n+1)*(n^2+3)/(48*n^2);
end

zcalc = (An - muAn)/sqrt(siAn)

which yields

zcalc =
   -0.7184

Since the critical z-value 

zcrit = norminv(1-0.05/2,0,1)

which yields

zcrit =
    1.9600

is larger than the calculated z-value, we cannot reject the null hypothesis 
without another cause. Using

[h,p,stats] = ansaribradley(data1,data2)

yields a similar result

h =
     0

p =
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    0.4725

stats = 
        W: 4903
    Wstar: -0.7184

We can use the same script to test whether the two samples in organicmatter_
four.mat come from the same distribution (null hypothesis), or from 
distributions with the same median and shape but diff erent dispersions 
(alternative hypothesis). We clear the workspace and load the data.

clear

load('organicmatter_four.mat');

We use the function ansaribradley to perform the Ansari-Bradley test by 
typing

[h,p,stats] = ansaribradley(corg1,corg2)

which yields

h =
     0

p =
    0.7448

stats = 
        W: 1861
    Wstar: 0.3254

Th e result h=0 means that we cannot reject the null hypothesis without another 
cause at a 5% signifi cance level. Th e p-value of 0.7448 or ~74% (which is 
greater than the signifi cance level) means that the chances of observing 
either the same result or a more extreme result from similar experiments in 
which the null hypothesis is true would be 7,448 in 10,000.

 3.13 Distribution Fitting

In Section 3.9 we computed the mean and standard deviation of our sample 
and designed a normal distribution based on these two parameters. We then 
used the χ2-test to test the hypothesis that our data indeed follow a Gaussian or 
normal distribution. Distribution fi tting functions contained in the Statistics 
Toolbox provide powerful tools for estimating the distributions directly from 
the data. Distribution fi tting functions for supported distributions all end 
with fit, as in binofit, or expfit. Th e function to fi t normal distributions to 
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the data is normfit. To demonstrate the use of this function we fi rst generate 
100 synthetic Gaussian-distributed sets of values with a mean of 6.4 and a 
standard deviation of 1.4.

clear

rng(0)
data = 6.4 + 1.4*randn(100,1);

We then defi ne the midpoints v of nine histogram intervals with the edges e, 
display the results, and calculate the frequency distribution n.

e = 1.5 : 10.5;
h = histogram(data,e);
v = h.BinWidth * 0.5 + h.BinEdges(1:end-1);
n = h.Values;

Th e function normfit yields estimates of the mean, muhat, and standard 
deviation, sigmahat, of the normal distribution for the observations in data.

[muhat,sigmahat] = normfit(data)

muhat =
    6.5723

sigmahat =
    1.6274

Th ese values for the mean and the standard deviation are similar to the 
ones that we defi ned initially. We can now calculate the probability density 
function of the normal distribution with the mean muhat and standard 
deviation sigmahat, scale the resulting function y to same total number of 
observations in data, and plot the result.

x = 2 : 1/20 : 10;
y = normpdf(x,muhat,sigmahat);
y = trapz(v,n) * y/trapz(x,y);
bar(v,n), hold on, plot(x,y,'r'), hold off

Alternatively, we can use the function mle to fi t a normal distribution (and 
also other distributions such as binomial or exponential distributions) to 
the data. Th e function mle(data,'distribution',dist) computes parameter 
estimates for the distribution specifi ed by dist. Acceptable strings for dist 
can be obtained by typing help mle.

phat = mle(data,'distribution','normal');

Th e variable phat contains the values of the parameters describing the type of 
distribution fi tted to the data. As before, we can now calculate and scale the 
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probability density function y, and display the result.

x = 2 : 1/20 : 10;
y = normpdf(x,phat(:,1),phat(:,2));
y = trapz(v,n) * y/trapz(x,y);

bar(v,n), hold on, plot(x,y,'r'), hold off

In earth sciences we oft en encounter mixed distributions. Examples are 
multimodal grain size distributions (Section 8.8), multiple preferred 
paleocurrent directions (Section 10.6), and multimodal chemical ages in 
monazite refl ecting multiple episodes of deformation and metamorphism 
in a mountain belt. Fitting Gaussian mixture distributions to the data aims 
to determine the means and variances of the individual distributions that 
combine to produce the mixed distribution. Th e methods described in this 
section help to determine the episodes of deformation in a mountain range, 
or to separate the diff erent paleocurrent directions caused by tidal fl ow in an 
ocean basin.

As a synthetic example of Gaussian mixture distributions we generate 
two sets of 100 random numbers ya and yb with means of 6.4 and 13.3, 
respectively, and standard deviations of 1.4 and 1.8, respectively. We then 
vertically concatenate the series using vertcat and store the 200 data values 
in the variable data.

clear

rng(0)
ya = 6.4 + 1.4*randn(100,1);
yb = 13.3 + 1.8*randn(100,1);
data = vertcat(ya,yb);

Plotting the histogram reveals a bimodal distribution. We can also determine 
the frequency distribution n using histogram. 

e = -0.5 : 30.5;
h = histogram(data,e);
v = h.BinWidth * 0.5 + h.BinEdges(1:end-1);
n = h.Values;

We use the function mgdistribution.fit(data,k) to fi t a Gaussian mixture 
distribution with k components to the data. Th e function fi ts the model by 
maximum likelihood, using the Expectation-Maximization (EM) algorithm. 
Th e EM algorithm introduced by Arthur Dempster, Nan Laird and Donald 
Rubin (1977) is an iterative method alternating between performing an 
expectation step and a maximization step. Th e expectation step computes an 
expectation of the logarithmic likelihood with respect to the current estimate 
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of the distribution. Th e maximization step computes the parameters that 
maximize the expected logarithmic likelihood computed in the expectation 
step. Th e function mgdistribution.fit creates an object of the gmdistribution 
class (see Section 2.5 and MATLAB Help on object-oriented programming 
for details on objects and classes). Th e function gmdistribution.fit treats 
NaN values as missing data: rows of data with NaN values are excluded from 
the fi t. We can now determine the Gaussian mixture distribution with two 
components in a single dimension.

gmfit = gmdistribution.fit(data,2)

Gaussian mixture distribution with 2 components in 1 dimensions
Component 1:
Mixing proportion: 0.513162
Mean:   13.0942

Component 2:
Mixing proportion: 0.486838
Mean:    6.4730

Th us we obtain the means and relative mixing proportions of both 
distributions. In our example both normal distributions with means of 
6.4730 and 13.0942 contribute ~50% (~0.49 and ~0.51, respectively) to the 
mixture distribution. Th e object gmfit contains several layers of information, 
including the mean gmfit.mu and the standard deviation gmfit.Sigma that we 
use to calculate the probability density function y of the mixed distribution.

x = 0 : 1/30 : 20;
y1 = normpdf(x,gmfit.mu(1,1),gmfit.Sigma(:,:,1));
y2 = normpdf(x,gmfit.mu(2,1),gmfit.Sigma(:,:,2));

Th e object gmfit also contains information on the relative mixing proportions 
of the two distributions in the layer gmfit.PComponents. We can use this 
information to scale y1 and y2 to the correction proportions relative to each 
other.

y1 = gmfit.PComponents(1,1) * y1/trapz(x,y1);
y2 = gmfit.PComponents(1,2) * y2/trapz(x,y2);

We can now superimpose the two scaled probability density functions y1 
and y2, and scale the result y to the same integral of 200 as the original data. 
Th e integral of the original data is determined using the function trapz to 
perform a trapezoidal numerical integration.

y = y1 + y2;
y = trapz(v,n) * y/trapz(x(1:10:end),y(1:10:end));
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Fig. 3.15 Fitting Gaussian mixture distributions. As a synthetic example of Gaussian mixture 
distributions we generate two sets of 100 random numbers, with means of 6.4 and 13.3, 
and standard deviations of 1.4 and 1.8, respectively. Th e Expectation-Maximization (EM) 
algorithm is used to fi t a Gaussian mixture distribution (solid line) with two components to 
the data (bars).

Finally, we can plot the probability density function y on the bar plot of the 
original histogram of data.

bar(v,n), hold on, plot(x,y,'r'), hold off

We can then see that the Gaussian mixture distribution closely matches the 
histogram of the data (Fig. 3.15).
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 4.1 Introduction

Bivariate analysis aims to understand the relationship between two variables, 
x and y. Examples are the length and width of a fossil, the sodium and 
potassium content of volcanic glass, and the organic matter content along 
a sediment core. When the two variables are measured on the same object, 
x is usually identifi ed as the independent variable and y as the dependent 
variable. If both variables have been generated in an experiment, the variable 
manipulated by the experimenter is described as the independent variable. 
In some cases neither variable is manipulated and neither is independent.

Th e methods of bivariate statistics aim to describe the strength of the 
relationship between the two variables, either by a single parameter such 
as Pearson’s correlation coeffi  cient for linear relationships or by an equation 
obtained by regression analysis (Fig. 4.1). Th e equation describing the 
relationship between x and y can be used to predict the y-response from any 
arbitrary x within the range of the original data values used for the regression 
analysis. Th is is of particular importance if one of the two parameters is 
diffi  cult to measure. In such a case, the relationship between the two variables 
is fi rst determined by regression analysis on a small training set of data. Th e 

 4 Bivariate Statistics

 Middle Pleistocene lake-sediment sequence in 
the Suguta Valley of northern Kenya, consisting 
mostly of diatomite, clays and silts with 
intercalated volcanic ashes. The dating of the 
ash layers and the typical sedimentation rates 
of deposits can be used to create an age-depth 
model for the sequence. This age model is in 
turn required to reconstruct environmental, 
and hence climatic, variations through time 
within the area.
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regression equation can then be used to calculate the second parameter.
Th is chapter fi rst introduces correlation coeffi  cients (Section 4.2), and then 

explains the widely-used methods of linear and nonlinear regression analysis 
(Sections 4.3, 4.9 and 4.10). A selection of other methods that are also used 
to assess the uncertainties in regression analysis are also explained (Sections 
4.4 to 4.8). All methods are illustrated by means of synthetic examples since 
these provide an excellent means of assessing the fi nal outcome. We use 
the Statistics Toolbox (MathWorks 2014), which contains all the necessary 
routines for bivariate analysis.

 4.2 Correlation Coeffi  cients

Correlation coeffi  cients are oft en used in the early stages of bivariate 
statistics. Th ey provide only a very rough estimate of a rectilinear trend in 
a bivariate data set. Unfortunately, the literature is full of examples where 
the importance of correlation coeffi  cients is overestimated, or where outliers 
in the data set lead to an extremely biased estimation of the population 
correlation coeffi  cient.

Fig. 4.1 Display of a bivariate data set. Th e thirty data points represent the age of a sediment 
(in kiloyears before present) at a certain depth (in meters) below the sediment-water interface. 
Th e combined distribution of the two variables suggests a linear relationship between age and 
depth, i.e., the rate of increase in the sediment age with depth is constant. A Pearson’s correlation 
coeffi  cient (explained in the text) of r=0.96 supports a strong linear interdependency between 
the two variables. Linear regression yields the equation age=21.2+5.4 depth, indicating an 
increase in sediment age of 5.4 kyrs per meter of sediment depth (the slope of the regression 
line).
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Th e most popular correlation coeffi  cient is Pearson’s linear product-
moment correlation coeffi  cient ρ (Pearson 1895) (Fig. 4.2). We estimate the 
population’s correlation coeffi  cient ρ from the sample data, i.e., we compute 
the sample correlation coeffi  cient r, which is defi ned as

where n is the number of pairs xy of data points, sx and sy are the univariate 
standard deviations. Th e numerator of Pearson’s correlation coeffi  cient is 
known as the corrected sum of products of the bivariate data set. Dividing the 
numerator by (n–1) yields the covariance

which is the summed products of deviations of the data from the sample 
means, divided by (n–1). Th e covariance is a widely-used measure in 
bivariate statistics although it has the disadvantage of being dependent on the 
dimensions of the data. Dividing the covariance by the univariate standard 
deviations removes this dependency and leads to Pearson’s correlation 
coeffi  cient.

A popular way to test the signifi cance of Pearson’s correlation coeffi  cient 
is to determine the probability of an r-value for a random sample from a 
population with a ρ=0. Th e signifi cance of the correlation coeffi  cient can be 
estimated using a t-statistic

Th e correlation coeffi  cient is signifi cant if the calculated t is greater than the 
critical t (n-2 degrees of freedom, α=0.05). Th is test is, however, only valid if 
both variables are Gaussian distributed.

Pearson’s correlation coeffi  cient is very sensitive to disturbances in 
the bivariate data set. Several alternatives exist to Pearson’s correlation 
coeffi  cient, such as Spearman’s rank correlation coeffi  cient proposed by the 
English psychologist Charles Spearman (1863–1945). Spearman’s coeffi  cient 
can be used to measure statistical dependence between two variables without 
requiring a normality assumption for the underlying population, i.e., it is a 
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Fig. 4.2 Pearson’s correlation coeffi  cent r for various sample data sets. a-b Positive and 
negative linear correlation, c random scatter with no linear correlation, d an outlier causing a 
misleading value of r, e curvilinear relationship causing a high r since the curve is close to a 
straight line, f curvilinear relationship clearly not described by r.
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non-parametric measure of correlation (Spearman 1904, 1910). Furthermore, 
since it uses the ranks of the values in x and y rather than their numerical 
values, it can be used to fi nd correlations in nonlinear data, and even in non-
numerical data such as fossil names or rock types in stratigraphic sequences. 
Having replaced the numerical values in x and y by their ranks (whereby 
multiple values in x and y are replaced by their respective average ranks) the 
sample Spearman’s rank correlation coeffi  cient is defi ned as

where di is the diff erence between the ranks of the two variables. Since this 
correlation coeffi  cient is based on ranks rather than numerical values it is 
less sensitive to outliers than Pearson’s correlation coeffi  cient.

Another alternative to Pearson’s correlation coeffi  cient is the Kendall’s 
tau rank correlation coeffi  cient proposed by the British statistician Maurice 
Kendall (1907–1983). Th is is also a non-parametric measure of correlation, 
similar to the Spearman’s rank correlation coeffi  cient (Kendall 1938). Th e 
Kendall’s tau rank correlation coeffi  cient compares the ranks of the numerical 
values in x and y, which means a total of 0.5 n(n–1) pairs to compare. Pairs 
of observations (xi,yi) and (xj,yj) are said to be concordant if the ranks for 
both observations are the same, and discordant if they are not. Th e sample 
Kendall’s tau rank correlation coeffi  cient is defi ned as

where P is the number of concordant pairs and Q is the number of discordant 
pairs. Kendall’s correlation coeffi  cient typically has a lower value than Spear-
man’s correlation coeffi  cient.

Th e following example illustrates the use of the correlation coeffi  cients 
and highlights the potential pitfalls when using these measures of linear 
trends. It also describes the resampling methods that can be used to explore 
the confi dence level of the estimate for ρ. Th e synthetic data consist of two 
variables, the age of a sediment in kiloyears before present and the depth 
below the sediment-water interface in meters. Th e use of synthetic data sets 
has the advantage that we fully understand the linear model behind the data.

Th e data are represented as two columns contained in fi le agedepth_1.
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txt. Th ese data have been generated using a series of thirty random levels 
(in meters) below the sediment surface. Th e linear relationship age=5.6 
meters+20 was used to compute noise-free values for the variable age. Th is 
is the equation of a straight line with a slope of 5.6 and an intercept with 
the y-axis of 20. Some Gaussian noise with a mean of zero and a standard 
deviation of 10 has been added to the age data.

clear

rng(0)
meters = 20 * rand(30,1);
age =  5.6 * meters + 20;
age = age + 10.* randn(length(meters),1);

plot(meters,age,'o')
axis([0 20 0 140])

agedepth(:,1) = meters;
agedepth(:,2) = age;
agedepth = sortrows(agedepth,1);

save agedepth_1.txt agedepth -ascii

Th e synthetic bivariate data set can be loaded from the fi le agedepth_1.txt.

clear

agedepth = load('agedepth_1.txt');

We then defi ne two new variables, meters and age, and generate a scatter plot 
of the data.

meters = agedepth(:,1);
age = agedepth(:,2);

plot(meters,age,'o')
axis([0 20 0 140])

In the plot, we can observe a strong linear trend suggesting some 
interdependency between the two variables, meters and age. Th is trend can 
be described by Pearson’s correlation coeffi  cient r, where r=1 indicates a 
perfect positive correlation (i.e., age increases with meters), r=0 suggests no 
correlation, and r=–1 indicates a perfect negative correlation. We use the 
function corrcoef to compute Pearson’s correlation coeffi  cient.

corrcoef(meters,age)

which results in the output

ans =
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    1.0000    0.9563
    0.9563    1.0000

Th e function corrcoef calculates a matrix of Pearson’s correlation coeffi  cients 
for all possible combinations of the two variables age and meters. Th e value 
of r=0.9563 suggests that the two variables age and meters are dependent on 
each other.

Pearson’s correlation coeffi  cient is, however, highly sensitive to outliers, 
as can be illustrated by the following example. Let us generate a normally-
distributed cluster of thirty data with a mean of zero and a standard deviation 
of one. To obtain identical data values, we reset the random number generator 
by using the integer 10 as seed.

clear

rng(10)
x = randn(30,1); y = randn(30,1);

plot(x,y,'o'), axis([-1 20 -1 20]);

As expected, the correlation coeffi  cient for these random data is very low.

corrcoef(x,y)

ans =
    1.0000    0.0302
    0.0302    1.0000

Now we introduce a single outlier to the data set in the form of an exceptionally 
high (x,y) value, in which x=y. Th e correlation coeffi  cient for the bivariate 
data set including the outlier (x,y)=(5,5) is much higher than before.

x(31,1) = 5; y(31,1) = 5;

plot(x,y,'o'), axis([-1 20 -1 20]);

corrcoef(x,y)

ans =
    1.0000    0.5022
    0.5022    1.0000

Increasing the absolute (x,y) values for this outlier results in a dramatic 
increase in the correlation coeffi  cient.

x(31,1) = 10; y(31,1) = 10;

plot(x,y,'o'), axis([-1 20 -1 20]);

corrcoef(x,y)
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ans =
    1.0000    0.7981
    0.7981    1.0000

and reaches a value close to r=1 if the outlier has a value of (x,y)=(20,20).

x(31,1) = 20; y(31,1) = 20;

plot(x,y,'o'), axis([-1 20 -1 20]);

corrcoef(x,y)  

ans =
    1.0000    0.9403
    0.9403    1.0000

We can compare the sensitivity of Pearson’s correlation coeffi  cient with that 
of Spearman’s correlation coeffi  cient and Kendall’s correlation coeffi  cient 
using the function corr. In contrast to corrcoef, this function does not 
calculate correlation matrices that we can later use (e.g., in Chapter 9) for 
calculating correlations within multivariate data sets. We type

r_pearson = corr(x,y,'Type','Pearson')
r_spearman = corr(x,y,'Type','Spearman')
r_kendall = corr(x,y,'Type','Kendall')

which yields

r_pearson =
    0.9403

r_spearman =
    0.1343

r_kendall =
    0.0753

and observe that the alternative measures of correlation result in reasonable 
values, in contrast to the absurd value for Pearson’s correlation coeffi  cient 
that mistakenly suggests a strong interdependency between the variables. 
Although outliers are easy to identify in a bivariate scatter, erroneous values 
can easily be overlooked in large multivariate data sets (Chapter 9).

Various methods exist to calculate the signifi cance of Pearson’s correlation 
coeffi  cient. Th e function corrcoef also includes the possibility of evaluating 
the quality of the result. Th e p-value is the probability of obtaining a 
correlation as large as the observed value by random chance, when the true 
correlation is zero. If the p-value is small, then the correlation coeffi  cient r 
is signifi cant.
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[r,p] = corrcoef(x,y)

r =
    1.0000    0.9403
    0.9403    1.0000

p =
    1.0000    0.0000
    0.0000    1.0000

In our example the p-value is close to zero suggesting that the correlation 
coeffi  cient is signifi cant. We conclude from this experiment that this 
particular signifi cance test fails to detect correlations attributed to an outlier. 
We therefore try an alternative t-test statistic to determine the signifi cance 
of the correlation between x and y. According to this test, we can reject the 
null hypothesis that there is no correlation if the calculated t is larger than 
the critical t (n-2 degrees of freedom, α=0.05).

tcalc = r(2,1) * ((length(x)-2)/(1-r(2,1)^2))^0.5
tcrit = tinv(0.95,length(x)-2)

tcalc =
   14.8746

tcrit =
    1.6991

Th is result indeed indicates that we can reject the null hypothesis and therefore 
there is no correlation. As an alternative to detecting outliers, resampling 
schemes or surrogates such as the bootstrap or jackknife methods represent 
powerful tools for assessing the statistical signifi cance of the results. Th ese 
techniques are particularly useful when scanning large multivariate data sets 
for outliers (see Chapter 9). Resampling schemes repeatedly resample the 
original data set of n data points, either by choosing n–1 subsamples n times 
(the jackknife), or by picking an arbitrary set of subsamples with n data 
points with replacement (the bootstrap). Th e statistics of these subsamples 
provide better information on the characteristics of the population than the 
statistical parameters (mean, standard deviation, correlation coeffi  cients) 
computed from the full data set. Th e function bootstrp allows resampling of 
our bivariate data set, including the outlier (x,y)=(20,20).

rng(0)
rhos1000 = bootstrp(1000,'corrcoef',x,y);

Th is command fi rst resamples the data a thousand times; it then calculates 
the correlation coeffi  cient for each new subsample and stores the result in 
the variable rhos1000. Since corrcoef delivers a 2-by-2 matrix (as mentioned 
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above), rhos1000 has the dimensions of 1000-by-4, i.e., 1000 values for each 
element of the 2-by-2 matrix. Plotting the histogram of the 1000 values for 
the second element, i.e., the correlation coeffi  cient of (x,y), illustrates the 
dispersion of this parameter with respect to the presence or absence of the 
outlier. Since the distribution of rhos1000 contains many empty classes, we 
use a large number of bins.

histogram(rhos1000(:,2),30)

Th e histogram shows a cluster of correlation coeffi  cients at around r=0.1 
that follow the normal distribution, and a strong peak close to r=1 (Fig. 4.3). 
Th e interpretation of this histogram is relatively straightforward. When the 
subsample contains the outlier the correlation coeffi  cient is close to one, but 
subsamples without the outlier yield a very low (close to zero) correlation 
coeffi  cient suggesting the absence of any strong interdependence between 
the two variables x and y.

Bootstrapping therefore provides a simple but powerful tool for either 
accepting or rejecting our fi rst estimate of the correlation coeffi  cient for the 
population. Th e application of the above procedure to the synthetic sediment 
data yields a clear unimodal Gaussian distribution for the correlation 
coeffi  cients of the subsamples.

Fig. 4.3 Bootstrap result for Pearson’s correlation coeffi  cient r from 1000 subsamples. Th e 
histogram shows a roughly normally-distributed cluster of correlation coeffi  cients at around 
r=0, suggesting that these subsamples do not include the outlier. Th e strong peak close to r=1, 
however, suggests that an outlier with high values for the two variables x and y is present in 
the corresponding subsamples.
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clear

agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

corrcoef(meters,age)

ans =
    1.0000    0.9563
    0.9563    1.0000
    
rng(0)
rhos1000 = bootstrp(1000,'corrcoef',meters,age);

histogram(rhos1000(:,2),30)

Most of the values for rhos1000 fall within the interval [0.92,0.98]. Since the 
correlation coeffi  cients for the resampled data sets (in our example) have 
an approximately normal distribution, we can use their mean as a good 
estimate for the true correlation coeffi  cient.

mean(rhos1000(:,2))

ans =
    0.9557

Th is value is similar to our fi rst result of r=0.9557, but now we have confi dence 
in the validity of this result. In our example, however, the distribution of 
the bootstrap estimates of the correlations from the age-depth data is quite 
skewed, as the upper limited is fi xed at one. Nevertheless, the bootstrap 
method is a valuable tool for assessing the reliability of Pearson’s correlation 
coeffi  cient for bivariate analysis.

 4.3 Classical Linear Regression Analysis

Linear regression off ers another way of describing the relationship between 
the two variables x and y. Whereas Pearson’s correlation coeffi  cient provides 
only a rough measure of a linear trend, linear models obtained by regression 
analysis allow the prediction of arbitrary y-values for any given value of 
x within the data range. Statistical testing of the signifi cance of the linear 
model provides some insights into the accuracy of these predictions.

Classical regression assumes that y responds to x and that the entire 
dispersion in the data set is contained within the y-value (Fig. 4.4). Th is 
means that x is then the independent variable (also known as the predictor 
variable, or the regressor). Th e values of x are defi ned by the experimenter 
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and are oft en regarded as being free of errors. An example is the location x 
within a sediment core from which the variable y has been measured. Th e 
dependent variable y contains errors as its magnitude cannot be determined 
accurately. Linear regression minimizes the deviations Δy between the data 
points xy and the value y predicted by the best-fi t line y=b0+b1x using a least-
squares criterion. Th e basic equation for a general linear model is

where b0 and b1 are the regression coeffi  cients. Th e value of b0 is the intercept 
with the y-axis and b1 is the slope of the line. Th e squared sum of the Δy 
deviations to be minimized is

Partial diff erentiation of the right-hand term in the equation and setting it to 
zero yields a simple equation for the regression coeffi  cient b1:

Fig. 4.4 Linear regression. Whereas classical regression minimizes the Δy deviations, reduced 
major axis regression minimizes the triangular area 0.5*(ΔxΔy) between the data points and 
the regression line, where Δx and Δy are the distances between the predicted and the true 
x- and y-values. Th e intercept of the line with the y-axis is b0, and the slope is b1. Th ese two 
parameters defi ne the equation of the regression line.
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Th e regression line passes through the data centroid defi ned by the sample 
means, and we can therefore compute the other regression coeffi  cient b0,

using the univariate sample means and the slope b1 computed earlier.
As an example let us again load the synthetic age-depth data from the 

fi le agedepth_1.txt. We can defi ne two new variables, meters and age, and 
generate a scatter plot of the data.

clear

agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

A signifi cant linear trend in the bivariate scatter plot, together with 
a correlation coeffi  cient greater than r=0.9, suggests a strong linear 
dependence between meters and age. In geological terms, this implies that 
the sedimentation rate was constant through time. We now try to fi t a linear 
model to the data that will help us predict the age of the sediment at levels for 
which we have no age data. Th e function polyfit computes the coeffi  cients 
of a polynomial p(x) of a specifi c degree that fi ts the data y in a least-squared 
sense. In our example we fi t a fi rst degree (linear) polynomial to the data

p = polyfit(meters,age,1)

p =
    5.3667   21.7607

where p is a row vector containing the polynomial coeffi  cients in descending 
powers. Since we are working with synthetic data we know the values for 
the slope and the intercept with the y-axis. Th e estimated slope (5.3667) and 
the intercept with the y-axis (21.7607) are in good agreement with the true 
values of 5.6 and 20, respectively. Both the data and the fi tted line can be 
plotted on the same graph.

plot(meters,age,'o'), hold on
plot(meters,p(1)*meters+p(2),'r'), hold off
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Movie 
4.1

Instead of using the equation for the regression line we can also use the 
function polyval to calculate the y-values.

plot(meters,age,'o'), hold on
plot(meters,polyval(p,meters),'r'), hold off

Both of the functions polyfit and polyval are incorporated in the GUI 
function polytool.

polytool(meters,age)

Th e coeffi  cients p(x) and the equation obtained by linear regression can 
now be used to predict y-values for any given x-value. However, we can only 
do this within the depth interval for which the linear model was fi tted, i.e., 
between 0 and 20 meters. As an example the age of the sediment at a depth 
of 17 meters is given by

polyval(p,17)

ans =
   112.9946

Th is result suggests that the sediment at 17 meters depth has an age of ca. 
113 kyrs. Th e goodness-of-fi t of the linear model can be determined by 
calculating error bounds. Th ese are obtained by using an additional output 
parameter s from polyfit as an input parameter for polyconf to calculate the 
95% (alpha=0.05) prediction intervals.

[p,s] = polyfit(meters,age,1);
[p_age,delta] = polyconf(p,meters,s,'alpha',0.05);

plot(meters,age,'o',meters,p_age,'g-',...
  meters,p_age+delta,'r--',meters,p_age-delta,'r--')
axis([0 20 0 140]), grid on
xlabel('Depth in Sediment (meters)')
ylabel('Age of Sediment (kyrs)')

Th e variable delta provides an estimate for the standard deviation of the 
error in predicting a future observation at x by using p(x). Since the plot 
statement does not fi t on one line we use an ellipsis (three periods, i.e., ...) 
followed by return or enter to indicate that the statement continues on the 
next line. Th e plot now shows the data points, and also the regression line 
and the error bounds of the regression (Fig. 4.5). Th is graph already provides 
some valuable information on the quality of the result. However, in many 
cases a better understanding of the validity of the model is required and 
more sophisticated methods for testing the confi dence in the results are 
therefore introduced in the following sections.
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 4.4 Analyzing the Residuals

When we compare how much the predicted values vary from the actual or 
observed values, we are performing an analysis of the residuals. Th e statistics 
of the residuals provide valuable information on the quality of a model fi tted 
to the data. For instance, a signifi cant trend in the residuals suggests that 
the model does not fully describe the data. In such cases a more complex 
model, such as a polynomial of a higher degree, should be fi tted to the data. 
Residuals are ideally purely random, i.e., they are Gaussian distributed 
with a mean of zero. We therefore test the hypothesis that our residuals are 
Gaussian distributed by visual inspection of the histogram and by employing 
a χ2-test, as introduced in Chapter 3.

clear

agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

p = polyfit(meters,age,1);

res = age - polyval(p,meters);

Fig. 4.5 Th e result of linear regression. Th e plot shows the original data points (circles), the 
regression line (solid line), and the error bounds (dashed lines) of the regression. Note that 
the error bounds are actually curved although they seem to be almost straight lines in the 
example.
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Since plotting the residuals does not reveal any obvious pattern of behavior, 
no more complex model than a straight line should be fi tted to the data.

plot(meters,res,'o')

An alternative way to plot the residuals is as a stem plot using stem.

subplot(2,1,1)
plot(meters,age,'o'), hold on
plot(meters,p(1)*meters+p(2),'r'), hold off

subplot(2,1,2)
stem(meters,res);

To explore the distribution of the residuals we can choose six classes and 
display the corresponding frequencies.

histogram(res,6)

Th e χ2-test can be used to test the hypothesis that the residuals follow a 
Gaussian distribution (Section 3.9). We use chi2gof to perform the χ2-test

[h,p,stats] = chi2gof(res)

which yields

h =
     0

p =
   NaN

stats = 
    chi2stat: 0.0099
          df: 0
       edges: [-28.2530 -1.0404 3.4950 17.1012]
           O: [14 5 11]
           E: [13.7940 5.1876 11.0184]

Th e result h=0 means that we cannot reject the null hypothesis without 
another cause at a 5% signifi cance level. However, the quality of the result 
is not very good because the sample size of 30 measurements is very small. 
In such an example, pooling the data could yield very low (or even zero) 
expected counts. Th e function chi2gof then displays a warning that the χ2 
approximation may not be accurate. In our example we have not defi ned 
the number of bins and therefore (according to the documentation) chi2gof 
should use a default of 10 bins for pooling the data. According to Section 
3.9, the corresponding number of degrees of freedom should be 10-(2+1)=7 
but the output of chi2gof indicates df=NaN instead. However, if there are not 
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enough degrees of freedom to conduct the test, chi2gof returns a p-value of 
NaN, as in our example. Alternatively, we use chi2gof with 6 bins

[h,p,stats] = chi2gof(res,'NBins',6)

which yields

h =
     0

p =
    0.1481

stats = 
    chi2stat: 2.0922
          df: 1
       edges: [-28.2530 -5.5759 1.9832 9.5422 17.1012]
           O: [11 7 5 7]
           E: [8.8282 8.4603 7.3927 5.3187]

As indicated by df=1 and the number of edges (edges), chi2gof now uses 4 
bins instead of 6 bins defi ned by NBins=6 in chi2gof in order to avoid bins with 
very low (or even zero) expected counts. Th e function chi2gof then yields a 
p-value of 0.1481 indicating that the result is signifi cant and we cannot reject 
the null hypothesis that the residuals follow a Gaussian distribution.

 4.5 Bootstrap Estimates of the Regression Coeffi  cients

In this section we use the bootstrap method to obtain a better estimate of 
the regression coeffi  cients. As an example we use the function bootstrp with 
1000 samples (Fig. 4.6).

clear

agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

p = polyfit(meters,age,1);

rng(0)

p_bootstrp = bootstrp(1000,'polyfit',meters,age,1);

Th e statistic of the fi rst coeffi  cient, i.e., the slope of the regression line is

histogram(p_bootstrp(:,1),15)

median(p_bootstrp(:,1))
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ans =
    5.3855

We use the median instead of the mean since we cannot expect the bootstrap 
results to be Gaussian distributed. In contrast, the statistic of the second 
coeffi  cient shows a signifi cant dispersion.

histogram(p_bootstrp(:,2),15)

median(p_bootstrp(:,2))

ans =
   21.5374

Th e true values, as used to simulate our data set, are 5.6 for the slope and 
20 for the intercept with the y-axis, whereas the corresponding coeffi  cients 
calculated using polyfit were 5.3667 and 21.7607 (Section 4.3).

 4.6 Jackknife Estimates of the Regression Coeffi  cients

Th e jackknife method is a resampling technique that is similar to the 
bootstrap method. From a sample with n data points, n subsamples with 
n–1 data points are taken. Th e parameters of interest, e.g., the regression 
coeffi  cients, are calculated for each of the subsamples. Th e mean and 
dispersion of the coeffi  cients are then computed. Th e disadvantage of this 
method is the limited number of n subsamples: a jackknife estimate of the 
regression coeffi  cients is therefore less precise than a bootstrap estimate.
Th e relevant code for the jackknife is easy to generate:

Fig. 4.6 Histogram of a, the fi rst (slope of the regression line) and b, the second (y-axis 
intercept of the line) regression coeffi  cient, as estimated from bootstrap resampling. Th e fi rst 
coeffi  cient is well constrained, but the second coeffi  cient shows a broad scatter.

a b
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clear

agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

p = polyfit(meters,age,1);

for i = 1 : 30
    j_meters = meters;
    j_age = age;
    j_meters(i) = [];
    j_age(i) = [];
    p(i,:) = polyfit(j_meters,j_age,1);
end

Th e jackknife for subsamples with n–1=29 data points can be obtained by 
a simple for loop. Th e ith data point within each iteration is deleted and 
regression coeffi  cients are calculated for the remaining data points. Th e mean 
of the i subsamples gives an improved estimate of the regression coeffi  cients. 
As with the bootstrap result, the slope of the regression line (fi rst coeffi  cient) 
is well defi ned, whereas the intercept with the y-axis (second coeffi  cient) has 
a large uncertainty:

median(p(:,1))

ans =
    5.3663

compared to 5.3855 calculated by the bootstrap method and

median(p(:,2))

ans =
    21.7964

compared to 21.5374 from the bootstrap method (Section 4.5). Th e true 
values, as before, are 5.6 and 20. Th e histograms of the jackknife results from 
30 subsamples (Fig. 4.7)

subplot(1,2,1), histogram(p(:,1)), axis square
subplot(1,2,2), histogram(p(:,2)), axis square

do not display such clear distributions for the coeffi  cients as the histograms 
of the bootstrap estimates. As an alternative to the above method, MATLAB 
provides the function jackknife with which to perform a jackknife 
experiment.

p = jackknife('polyfit',meters,age,1);
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Fig. 4.7 Histogram of a, the fi rst (slope of the regression line) and b, the second (y-axis 
intercept of the line) regression coeffi  cient, as estimated from jackknife resampling. Note that 
the parameters are not as well defi ned as those from bootstrapping.

median(p(:,1))  
median(p(:,2))

ans =
    5.3663

ans =
   21.7964

subplot(1,2,1), histogram(p(:,1)), axis square
subplot(1,2,2), histogram(p(:,2)), axis square

Th e results are identical to those obtained using the code introduced 
above. We have seen therefore that resampling using either the jackknife 
or the bootstrap method is a simple and valuable way to test the quality of 
regression models. Th e next section introduces an alternative approach for 
quality estimation, which is much more commonly used than the resampling 
methods.

 4.7 Cross Validation

A third method to test the quality of the result of a regression analysis involves 
cross validation. Th e regression line is computed by using n–1 data points. 
Th e nth data point is predicted and the discrepancy between the prediction 
and the actual value is computed. Th e mean of the discrepancies between the 
actual and predicted values is subsequently determined.

In this example the cross validation is computed for n=30 data points. 

a b
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Th e resulting 30 regression lines, each computed using n–1=29 data points, 
display some dispersion in their slopes and y-axis intercepts.

clear

agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

p = polyfit(meters,age,1);

for i = 1 : 30
    j_meters = meters;
    j_age = age;
    j_meters(i) = [];
    j_age(i) = [];
    p(i,:) = polyfit(j_meters,j_age,1);
    plot(meters,polyval(p(i,:),meters),'r'), hold on
    p_age(i) = polyval(p(i,:),meters(i));
    p_error(i) = p_age(i) - age(i);
end
hold off

Th e prediction error is – in the ideal case – Gaussian distributed with a mean 
of zero.

mean(p_error)

ans =
   -0.0487

Th e standard deviation is an unbiased mean of the deviations of the true data 
points from the predicted straight line.

std(p_error)

ans =
   10.9757

Cross validation gives valuable information on the goodness-of-fi t of the 
regression result and can also be used for quality control in other fi elds, such 
as those of temporal and spatial prediction (Chapters 5 and 7).

 4.8 Reduced Major Axis Regression

In some examples neither variable is manipulated and both can therefore be 
considered to be independent. In such cases several methods are available to 
compute a best-fi t line that minimizes the distance from both x and y. As an 
example the method of reduced major axis (RMA) minimizes the triangular 
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area 0.5*(ΔxΔy) between the data points and the regression line, where Δx 
and Δy are the distances between the predicted values of x and y and the 
true values of x and y (Fig. 4.4). Although this optimization appears to be 
complex, it can be shown that the fi rst regression coeffi  cient b1 (the slope) is 
simply the ratio of the standard deviations of y and x.

As with classical regression, the regression line passes through the data 
centroid defi ned by the sample mean. We can therefore compute the second 
regression coeffi  cient b0 (the y-intercept),

using the univariate sample means and the slope b1 computed earlier. Let us 
again load the age-depth data from the fi le agedepth_1.txt and defi ne two 
variables, meters and age. It is assumed that both of the variables contain 
errors and that the scatter of the data can be explained by dispersions of 
meters and age.

clear

agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

Th e above formula is used for computing the slope of the regression line b1.

p(1,1) = std(age)/std(meters)

p =
   5.6117

Th e second coeffi  cient b0, i.e., the y-axis intercept, can therefore be computed 
by

p(1,2) = mean(age) - p(1,1) * mean(meters)

p =
   5.6117   18.7037

Th e regression line can be plotted by

plot(meters,age,'o'), hold on
plot(meters,polyval(p,meters),'r'), hold off
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Th is linear fi t diff ers slightly from the line obtained from classical regression. 
Note that the regression line from RMA is not the bisector of the lines 
produced by the x-y and y-x classical linear regression analyses, i.e., those 
produced using either x or y as an independent variable while computing 
the regression lines.

 4.9 Curvilinear Regression

It is apparent from our previous analysis that a linear regression model 
provides a good way of describing the scaling properties of the data. However, 
we may wish to check whether the data could be equally well described by a 
polynomial fi t of a higher degree, for instance by a second degree polynomial:

To clear the workspace and reload the original data, we type

clear

agedepth = load('agedepth_1.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

A second degree polynomial can then be fi tted by using the function polyfit.

p = polyfit(meters,age,2)

p =
   0.0589    4.1087   26.0381

Th e fi rst coeffi  cient is close to zero, i.e., has little infl uence on predictions. 
Th e second and third coeffi  cients are similar to those obtained by linear 
regression. Plotting the data yields a curve that resembles a straight line.

plot(meters,age,'o'), hold on
plot(meters,polyval(p,meters),'r'), hold off

Let us compute and plot the error bounds obtained by using an optional 
second output parameter from polyfit as an input parameter to polyval.

[p,s] = polyfit(meters,age,2);
[p_age,delta] = polyval(p,meters,s);

As before, this code uses an interval of ±2s, corresponding to a 95% confi dence 
interval. Using polyfit not only yields the polynomial coeffi  cients p, but also 
a structure s for use with polyval to obtain error bounds for the predictions. 
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Th e variable delta is an estimate of the standard deviation of the prediction 
error of a future observation at x by p(x). We then plot the results:

plot(meters,age,'o',meters,p_age,'g-',...
   meters,p_age+2*delta,'r', meters,p_age-2*delta,'r')
axis([0 20 0 140]), grid on
xlabel('Depth in Sediment (meters)')
ylabel('Age of Sediment (kyrs)')

We now use another synthetic data set that we generate using a quadratic 
relationship between meters and age.

clear

rng(0)
meters = 20 * rand(30,1);
age =  1.6 * meters.^2 - 1.1 * meters + 50;
age = age + 40.* randn(length(meters),1);

plot(meters,age,'o')

agedepth(:,1) = meters;
agedepth(:,2) = age;

agedepth = sortrows(agedepth,1);

save agedepth_2.txt agedepth -ascii

Th e synthetic bivariate data set can be loaded from the fi le agedepth_2.txt.

clear

agedepth = load('agedepth_2.txt');

meters = agedepth(:,1);
age = agedepth(:,2);

plot(meters,age,'o')

Fitting a second order polynomial yields a convincing regression result.

p = polyfit(meters,age,2)

p =
    1.8356   -7.0653   74.1526

As shown above, the true values for the three coeffi  cients are +1.8, –7.1 and 
+74.2, which means that there are some discrepancies between the true 
values and the coeffi  cients estimated using polyfit. Th e regression curve and 
the error bounds can be plotted by typing (Fig. 4.8)

plot(meters,age,'o'), hold on

144  4 BIVARIATE STATISTICS



plot(meters,polyval(p,meters),'r'), hold off

[p,s] = polyfit(meters,age,2);
[p_age,delta] = polyval(p,meters,s);

plot(meters,age,'o',meters,p_age,'g',meters,...
   p_age+2*delta,'r--',meters,p_age-2*delta,'r--')
axis([0 20 -50 700]), grid on
xlabel('Depth in Sediment (meters)')
ylabel('Age of Sediment (kyrs)')

Th e plot shows that the quadratic model for this data is a good one. Th e quality 
of the result could again be tested by exploring the residuals, by employing 
resampling schemes, or by cross validation. Combining regression analysis 
with one of these methods provides a powerful tool in bivariate data analysis, 
whereas Pearson’s correlation coeffi  cient should be used only as a preliminary 
test for linear relationships.

 4.10 Nonlinear and Weighted Regression

Many bivariate data in earth sciences follow a more complex trend than a 
simple linear or curvilinear trend. Classic examples for nonlinear trends are 
the exponential decay of radionuclides, or the exponential growth of algae 
populations. In such cases, MATLAB provides various tools to fi t nonlinear 

Fig. 4.8 Curvilinear regression from measurements of barium content. Th e plot shows the 
original data points (circles), the regression line for a polynomial of degree n=2 (solid line), 
and the error bounds (dashed lines) of the regression.
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models to the data. An easy-to-use routine to fi t such models is nonlinear 
regression using the function nlinfit. To demonstrate the use of nlinfit we 
generate a bivariate data set where one variable is exponentially correlated 
with a second variable. We fi rst generate evenly-spaced values between 
0.3 and 3 at intervals of 0.1 and add some Gaussian noise with a standard 
deviation of 0.2 to make the data unevenly spaced. Th e resulting 26 data 
points are stored in the fi rst column of the variable data.

clear

rng(0)
data(:,1) = 0.3 : 0.1 : 3;
data(:,1) = data(:,1) + 0.2*randn(size(data(:,1)));

We can then compute the second variable, which is the exponent of the fi rst 
variable multiplied by 0.2 and increased by 3. We again add Gaussian noise, 
this time with a standard deviation of 0.5, to the data. Finally, we can sort the 
data with respect to the fi rst column and display the result.

data(:,2) = 3 + 0.2 * exp(data(:,1));
data(:,2) = data(:,2) + 0.5*randn(size(data(:,2)));
data = sortrows(data,1);
plot(data(:,1),data(:,2),'o')
xlabel('x-Axis'), ylabel('y-Axis')

Nonlinear regression aims to estimate the two coeffi  cients of the exponential 
function, i.e., the multiplier 0.2 and the summand 3. Th e function 
p=nlinfit(data(:,1),data(:,2),fun,p0) returns a vector p of coeffi  cient 
estimates for a nonlinear regression of the responses in data(:,2) to the 
predictors in data(:,1) using the model specifi ed by fun. Here, fun is a 
function handle to a function of the form hat=modelfun(b,X), where b is a 
coeffi  cient vector. A function handle is passed in an argument list to other 
functions, which can then execute the function using the handle. A function 
handle uses the at sign, @, before the function name. Th e variable p0 is a 
vector containing initial values for the coeffi  cients and is the same length 
as p. We can design a function handle model representing an exponential 
function with an input variable t and the coeffi  cients phi. Th e initial values 
of p are [0 0]. We can then use nlinfit to estimate the coeffi  cients p using the 
data data, the model model, and the initial values p0.

model = @(phi,t)(phi(1)*exp(t) + phi(2));
p0 = [0 0];
p = nlinfit(data(:,1),data(:,2),model,p0)
 
p =
    0.2121    2.8306
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We can now use the resulting coeffi  cients p(1) and p(2) to calculate the 
function values fittedcurve using the model and compare the results with 
the original data in a graphics.

fittedcurve_1 = p(1)*exp(data(:,1)) + p(2);

plot(data(:,1),data(:,2),'o')
hold on
plot(data(:,1),fittedcurve_1,'r')
xlabel('x-Axis'), ylabel('y-Axis')
title('Unweighted Fit')
hold off

As we can see from the output of p and the graphics, the fi tted red curve 
describes the data reasonably well. We can now also use nlinfit to perform 
a weighted regression. Let us assume that we know the one-sigma errors of 
the values in data(:,2). We can generate synthetic errors and store them in 
the third column of data.

data(:,3) = abs(randn(size(data(:,1))));
errorbar(data(:,1),data(:,2),data(:,3),'o')
xlabel('x-Axis'), ylabel('y-Axis')

We can now normalize the data points so that they are weighted by the inverse 
of the relative errors. We therefore normalize data(:,3) so that the total of 
all errors in data(:,3) is one, and store the normalized errors in data(:,4).

data(:,4) = sum(data(:,3))./data(:,3);

To make a weighted fi t, we defi ne the model function model, and then use 
nlinfit with the parameter Weights.

model = @(phi,t)(data(:,4).*(phi(1)*exp(t) + phi(2)));
p0 = [0 0];
p = nlinfit(data(:,1),data(:,5),model,p0,'Weights',data(:,4))

p =
    0.2191    2.3442

As before, nlinfit will compute weighted parameter estimates p. We again 
use the resulting coeffi  cents p(1) and p(2) to calculate the function values 
fittedcurve using the model and compare the results with the original data.

fittedcurve_2 = p(1)*exp(data(:,1)) + p(2);
errorbar(data(:,1),data(:,2),data(:,3),'o')
hold on
plot(data(:,1),fittedcurve_2,'r')
xlabel('x-Axis'), ylabel('y-Axis')
title('Weighted Fit')
hold off
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Comparing the coeffi  cients p and the red curves from the weighted regression 
with the previous results from the unweighted regression reveals slightly 
diff erent results (Fig. 4.9):

errorbar(data(:,1),data(:,2),data(:,3),'o')
hold on
plot(data(:,1),fittedcurve_1,'r--')
plot(data(:,1),fittedcurve_2,'r-')
xlabel('x-Axis'), ylabel('y-Axis')
title('Comparison of Unweighted and Weighted Fit')
hold off

As an example, in the unweighted regression the fi tted curved is moved 
towards the fi rst two data points (x=0.24823 and x=0.60753) with a large 
error, while in the weighted experiment it is moved towards the third data 
point (x=0.73846) with a small error.
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data point (x=0.73846) with a small error.
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 5.1 Introduction

Time-series analysis aims to investigate the temporal behavior of a variable 
x(t). Examples include the investigation of long-term records of mountain 
uplift , sea-level fl uctuations, orbitally-induced insolation variations and 
their infl uence on the ice-age cycles, millennium-scale variations in the 
atmosphere-ocean system, the eff ect of the El Niño/Southern Oscillation on 
tropical rainfall and sedimentation (Fig. 5.1), and tidal infl uences on noble 
gas emissions from bore holes. Th e temporal pattern of a sequence of events 
can be random, clustered, cyclic, or chaotic. Time-series analysis provides 
various tools with which to detect these temporal patterns. Understanding 
the underlying processes that produced the observed data allows us to 
predict future values of the variable. We use the Signal Processing and 
Wavelet Toolboxes, which contain all the necessary routines for time-series 
analysis (MathWorks 2014a and b).

Section 5.2 discusses signals in general and contains a technical 
description of how to generate synthetic signals for time-series analysis. 
Th e use of spectral analysis to detect cyclicities in a single time series (auto-
spectral analysis) and to determine the relationship between two time series 

 5 Time-Series Analysis

 Alternations of clayey and silty layers in the 
Upper Triassic sediments near Heilbronn 
in Germany, indicating cyclic changes in 
environmental conditions. Time-series analysis 
aims to investigate the temporal behavior of 
a variable such as grainsize. Together with 
age determinations, this method can be used 
to determine the period of the cycles and to 
speculate about the mechanism that caused 
the rhythmic changes in grain size.
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as a function of frequency (cross-spectral analysis) is then demonstrated in 
Sections 5.3 and 5.4. Since most time series in earth sciences have uneven 
time intervals, various interpolation techniques and subsequent methods 
of spectral analysis are required, and these are introduced in Section 5.5. 
Evolutionary power spectra to map changes in cyclicity through time 
are demonstrated in Section 5.6. An alternative technique for analyzing 
unevenly-spaced data is explained in Section 5.7. Section 5.8 introduces 
the very popular wavelet power spectrum, which is able to map temporal 
variations in the spectra in a similar way to the method demonstrated in 
Section 5.6. Section 5.9 then introduces a non-parametric method to detect 
abrupt transitions in central tendency and dispersion within time series. 
Th is chapter closes with an overview of nonlinear techniques, in particular 
the method of recurrence plots (Section 5.10).

 5.2 Generating Signals

A time series is an ordered sequence of values of a variable x(t) at certain 
times tk.

a b

Fig. 5.1 a Photograph of ca. 30 kyr-old varved sediments from a lake in the Andes of 
Northwest Argentina. Th e distribution of the source rocks and the interannual precipitation 
pattern in the area suggest that the reddish-brown layers refl ect cyclic recurrences of enhanced 
precipitation, erosion, and sediment input into the lake. b Th e power spectrum of a red-
color intensity transect across 70 varves is dominated by signifi cant peaks at frequencies of 
ca. 0.076, 0.313, 0.455 and 1.0 yrs-1. Th ese cyclicities suggest a strong infl uence of the tropical 
Atlantic sea-surface temperature (SST) variability, the El Niño/Southern Oscillation (ENSO), 
and the annual cycle that occurred 30 kyrs ago, similar to today’s cyclicities (Trauth et al. 
2003).
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If the time interval between any two successive observations x(tk) and x(tk+1) 
is constant, the time series is said to be equally spaced and the sampling 
interval is

Th e sampling frequency fs is the inverse of the sampling interval Δt. We 
generally try to sample at regular time intervals or constant sampling 
frequencies, but in many earth science examples this is not possible. As an 
example, imagine deep-sea sediments sampled at fi ve-centimeter intervals 
along a sediment core. Radiometric age determinations at certain levels in 
the sediment core revealed signifi cant fl uctuations in the sedimentation 
rates. Despite the samples being evenly spaced along the sediment core they 
are not equally spaced on the time axis. Here, the quantity

where T is the full length of the time series and N is the number of data 
points, represents only an average sampling interval. In general, a time series 
x(tk) can be represented as the linear sum of a periodic component xp(tk), a 
long-term component or trend xtr(tk), and random noise xn(tk).

Th e long-term component is a linear or higher-degree trend that can be 
extracted by fi tting a polynomial of a certain degree and subtracting the 
values of this polynomial from the data (see Chapter 4). Noise removal will 
be described in Chapter 6. Th e periodic – or cyclic in a mathematically less 
rigorous sense – component can be approximated by a linear combination of 
sine (or cosine) waves that have diff erent amplitudes Ai, frequencies fi, and 
phase angles ψi.

Th e phase angle ψ helps to detect temporal shift s between signals of the same 
frequency. Two signals x and y with the same period are out of phase unless 
the diff erence between ψx and ψy is equal to zero (Fig. 5.2).

Th e frequency f of a periodic signal is the inverse of the period τ. Th e 
Nyquist frequency fnyq is half the sampling frequency fs and represents the 
maximum frequency the data can produce. As an example audio compact 

5.2 GENERATING SIGNALS  153



disks (CDs) are sampled at frequencies of 44,100 Hz (Hertz, where 1 Hz=1 
cycle per second), but the corresponding Nyquist frequency is 22,050 Hz, 
which is the highest frequency a CD player can theoretically produce. Th e 
performance limitations of anti-alias fi lters used by CD players further 
reduce the frequency band and result in a cutoff  frequency of around 20,050 
Hz, which is the true upper frequency limit of a CD player.

We can now generate synthetic signals to illustrate the use of time-series 
analysis tools. When using synthetic data we know in advance which features 
the time series contains, such as periodic or random components, and we can 
introduce a linear trend or gaps in the time series. Th e user will encounter 
plenty of examples of the possible eff ects of varying the parameter settings, 
as well as potential artifacts and errors that can result from the application 
of spectral analysis tools. We will start with simple data and then apply the 

a

b

Fig. 5.2 a Periodic signal x a function of time t defi ned by the amplitude A, and the period 
τ which is the inverse of the frequency f. b Two signals x and y of the same period are out of 
phase if the diff erence between ψx and ψy is not equal to zero.
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methods to more complex time series. Th e fi rst example illustrates how to 
generate a basic synthetic data series that is characteristic of earth science 
data. First, we create a time axis t running from 1 to 1000 in steps of one unit, 
i.e., the sampling frequency is also one. We then generate a simple periodic 
signal y: a sine wave with a period of fi ve and an amplitude of two by typing

clear

t = 1 : 1000;
x = 2*sin(2*pi*t/5);

plot(t,x), axis([0 200 -4 4])

Th e period of τ=5 corresponds to a frequency of f=1/5=0.2. Natural data 
series, however, are more complex than a simple periodic signal. Th e slightly 
more complicated signal can be generated by superimposing several periodic 
components with diff erent periods. As an example we compute such a signal 
by adding three sine waves with the periods τ1=50 (f1=0.02), τ2=15 (f2≈0.07) 
and τ3=5 (f3=0.2). Th e corresponding amplitudes are A1=2, A2=1 and A3=0.5.

t = 1 : 1000;
x = 2*sin(2*pi*t/50) + sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);

plot(t,x), axis([0 200 -4 4])

By restricting the t-axis to the interval [0,200], only one fi ft h of the original 
data series is displayed (Fig. 5.3 a). It is, however, recommended that long 
data series be generated, as in the example, in order to avoid edge eff ects 
when applying spectral analysis tools for the fi rst time.

In contrast to our synthetic time series, real data also contain various 
disturbances, such as random noise and fi rst or higher-order trends. In order 
to reproduce the eff ects of noise, a random-number generator can be used to 
compute Gaussian noise with mean of zero and standard deviation of one. 
Th e seed of the algorithm should be set to zero using rng(0). One thousand 
random numbers are then generated using the function randn.

rng(0)
n = randn(1,1000);

We add this noise to the original data, i.e., we generate a signal containing 
additive noise (Fig. 5.3 b). Displaying the data illustrates the eff ect of noise 
on a periodic signal. Since in reality no record is totally free of noise it is 
important to familiarize oneself with the infl uence of noise on power spectra.

xn = x + n;

plot(t,x,'b-',t,xn,'r-'), axis([0 200 -4 4])
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c

b

Fig. 5.3 a Synthetic signal with the periodicities τ1=50, τ2=15 and τ3=5, with diff erent 
amplitudes, and b the same signal overprinted with Gaussian noise. c Th e time series shows 
a signifi cant linear trend.
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Signal processing methods are oft en applied to remove a major part of 
the noise, although many fi ltering methods make arbitrary assumptions 
concerning the signal-to-noise ratio. Moreover, fi ltering introduces artifacts 
and statistical dependencies into the data, which may have a profound 
infl uence on the resulting power spectra.

Finally, we introduce a linear long-term trend to the data by adding a 
straight line with a slope of 0.005 and an intercept with the y-axis of zero (Fig. 
5.3 c). Such trends are common in earth sciences. As an example, consider 
the glacial-interglacial cycles observed in marine oxygen isotope records, 
overprinted on a long-term cooling trend over the last six million years.

xt = x + 0.005*t;

plot(t,x,'b-',t,xt,'r-'), axis([0 200 -4 4])

In reality, more complex trends exist, such as higher-order trends or trends 
characterized by variations in gradient. In practice, it is recommended that 
such trends be eliminated by fi tting polynomials to the data and subtracting 
the corresponding values. Our synthetic time series now contains many 
characteristics of a typical earth science data set. It can be used to illustrate 
the use of the spectral analysis tools that are introduced in the next section.

 5.3 Auto-Spectral and Cross-Spectral Analysis

Auto-spectral analysis aims to describe the distribution of variance contained 
in a single signal x(t) as a function of frequency or wavelength. A simple 
way to describe the variance in a signal over a time lag k is by means of 
the autocovariance. An unbiased estimator of the autocovariance covxx of the 
signal x(t) with N data points sampled at constant time intervals Δt is

Th e autocovariance series clearly depends on the amplitude of x(t). 
Normalizing the covariance by the variance σ2 of x(t) yields the autocorrelation 
sequence. Autocorrelation involves correlating a series of data with itself as 
a function of a time lag k.
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A popular method used to compute power spectra in earth sciences is the 
method introduced by Blackman and Tukey (1958). Th e Blackman-Tukey 
method uses the complex Fourier transform Xxx(f) of the autocorrelation 
sequence corrxx(k),

where M is the maximum lag and fs the sampling frequency. Th e Blackman-
Tukey auto-spectrum is the absolute value of the Fourier transform of the 
autocorrelation function. In some fi elds, the power spectral density is used 
as an alternative way of describing the auto-spectrum. Th e Blackman-Tukey 
power spectral density PSD is estimated by

where X*xx(f) is the conjugate complex of the Fourier transform of the 
autocorrelation function Xxx(f) and fs is the sampling frequency. Th e actual 
computation of the power spectrum can only be performed at a fi nite 
number of diff erent frequencies by employing a Fast Fourier Transformation 
(FFT). Th e FFT is a method of computing a discrete Fourier transform with 
reduced execution time. Most FFT algorithms divide the transform into 
two portions of size N/2 at each step of the transformation. Th e transform 
is therefore limited to blocks with dimensions equal to a power of two. In 
practice, the spectrum is computed by using a number of frequencies that is 
close to the number of data points in the original signal x(t).

Th e discrete Fourier transform is an approximation of the continuous 
Fourier transform. Th e continuous Fourier transform assumes an infi nite 
signal but discrete real data are limited at both ends, i.e., the signal amplitude 
is zero beyond either end of the time series. In the time domain, a fi nite signal 
corresponds to an infi nite signal multiplied by a rectangular window that has 
a value of one within the limits of the signal and a value of zero elsewhere. In 
the frequency domain, the multiplication of the time series by this window 
is equivalent to a convolution of the power spectrum of the signal with the 
spectrum of the rectangular window (see Section 6.4 for a defi nition of 
convolution). Th e spectrum of the window, however, is a sin(x)/x function, 
which has a main lobe and numerous side lobes on either side of the main 
peak, and hence all maxima in a power spectrum leak, i.e., they lose power 
on either side of the peaks (Fig. 5.4).
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A popular way to overcome the problem of spectral leakage is by 
windowing, in which the sequence of data is simply multiplied by a smooth 
bell-shaped curve with positive values. Several window shapes are available, 
e.g., Bartlett (triangular), Hamming (cosinusoidal) and Hanning (slightly 
diff erent cosinusoidal) (Fig. 5.4). Th e use of these windows slightly modifi es 
the equation for the Blackman-Tukey auto-spectrum to

where w(k) is the windowing function. Th e Blackman-Tukey method 
therefore performs auto-spectral analysis in three steps: calculation of the 
autocorrelation sequence corrxx(k), windowing and, fi nally, computation of 
the discrete Fourier transform. MATLAB allows power spectral analysis to be 
performed with a number of modifi cations to the above method. One useful 
modifi cation is the Welch method (Welch 1967) (Fig. 5.5). Th is method 
involves dividing the time series into overlapping segments, computing the 
power spectrum for each segment, and then averaging the power spectra. 
Th e advantage of averaging the spectra is obvious: it simply improves the 
signal-to-noise ratio of a spectrum. Th e disadvantage is a loss of resolution 
in the spectra.

Cross-spectral analysis correlates two time series in the frequency domain. 

a b
Fig. 5.4 Spectral leakage. a Th e amplitudes of the side lobes relative to that of the main lobe 
are reduced by multiplying the corresponding time series by b a smooth bell-shaped window 
function. A number of diff erent windows with advantages and disadvantages are available for 
use instead of the default rectangular window, including Bartlett (triangular) and Hanning 
(cosinusoidal) windows. Graph generated using the function wvtool.
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Th e cross-covariance is a measure of the variance between two signals over a 
time lag k. An unbiased estimator of the cross-covariance covxy of two signals, 
x(t) and y(t), with N data points sampled at constant time intervals Δt, is

Fig. 5.5 Principle of Welch’s power spectral analysis. Th e time series is fi rst divided into 
overlapping segments; the power spectrum for each segment is then computed and all spectra 
are averaged to improve the signal-to-noise ratio of the power spectrum.
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Th e cross-covariance series again depends on the amplitudes of x(t) and y(t). 
Normalizing the covariance by the standard deviations of x(t) and y(t) yields 
the cross-correlation sequence.

Th e Blackman-Tukey method uses the complex Fourier transform Xxy(f) of 
the cross-correlation sequence corrxy(k) 

where M is the maximum lag and fs the sampling frequency. Th e absolute 
value of the complex Fourier transform Xxy(f) is the cross-spectrum while 
the angle of Xxy(f) represents the phase spectrum. Th e phase diff erence is 
important in calculating leads and lags between two signals, a parameter 
oft en used to propose causalities between two processes documented by the 
signals. Th e correlation between two spectra can be calculated by means of 
the coherence:

Th e coherence is a real number between 0 and 1, where 0 indicates no 
correlation and 1 indicates maximum correlation between x(t) and y(t) at the 
frequency f. A signifi cant degree of coherence is an important precondition 
for computing phase shift s between two signals.

 5.4 Examples of Auto-Spectral and Cross-Spectral Analysis

Th e Signal Processing Toolbox provides numerous methods for computing 
spectral estimators for time series. Th e introduction of object-oriented 
programming with MATLAB has led to the launch of a new set of functions 
performing spectral analyses. Type help spectrum for more information 
about object-oriented spectral analysis. Th e non-object-oriented functions 
to perform spectral analyses, however, are still available. One of the oldest 
functions in this toolbox is periodogram(x,window,nfft,fs) which computes 
the power spectral density Pxx of a time series x(t) using the periodogram 

5.4 EXAMPLES OF AUTO-SPECTRAL AND CROSS-SPECTRAL ANALYSIS  161



method. Th is method was invented by Arthur Schuster in 1898 for studying 
the climate and calculates the power spectrum by performing a Fourier 
transform directly on a sequence without requiring prior calculation of 
the autocorrelation sequence. Th e periodogram method can therefore be 
considered a special case of the Blackman and Tukey (1958) method, applied 
with the time lag k set to unity (Muller and Macdonald 2000). At the time 
of its introduction in 1958, the indirect computation of the power spectrum 
via an autocorrelation sequence was faster than calculating the Fourier 
transformation for the full data series x(t) directly. Aft er the introduction 
of the Fast Fourier Transform (FFT) by Cooley and Tukey (1965), and 
subsequent faster computer hardware, the higher computing speed of the 
Blackman-Tukey approach compared to the periodogram method became 
relatively unimportant.

For this next example we again use the synthetic time series x, xn and xt 
generated in Section 5.2 as the input:

clear

t = 1 : 1000; t = t';
x = 2*sin(2*pi*t/50) + sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);

randn('seed',0)
n = randn(1000,1);
xn = x + n;

xt = x + 0.005*t;

We then compute the periodogram by calculating the Fourier transform of 
the sequence x. Th e fastest possible Fourier transform using fft computes 
the Fourier transform for nfft frequencies, where nfft is the next power of 
two closest to the number of data points n in the original signal x. Since the 
length of the data series is n=1000, the Fourier transform is computed for 
nfft=1024 frequencies, while the signal is padded with nfft-n=24 zeros. 

Xxx = fft(x,1024);

If nfft is even, as in our example, then Xxx is symmetric. For example, as the fi rst 
(1+nfft/2) points in Xxx are unique, the remaining points are symmetrically 
redundant. Th e power spectral density is defi ned as Pxx2=(abs(Xxx).^2)/Fs, 
where Fs is the sampling frequency. Th e function periodogram also scales the 
power spectral density by the length of the data series, i.e., it divides by Fs=1 
and length(x)=1000.

Pxx2 = abs(Xxx).^2/1000;
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We now drop the redundant part in the power spectrum and use only the 
fi rst (1+nfft/2) points. We also multiply the power spectral density by two 
to keep the same energy as in the symmetric spectrum, except for the fi rst 
data point.

Pxx = [Pxx2(1); 2*Pxx2(2:512)];

Th e corresponding frequency axis runs from 0 to Fs/2 in Fs/(nfft-1) steps, 
where Fs/2 is the Nyquist frequency. Since Fs=1 in our example, the frequency 
axis is

f = 0 : 1/(1024-1) : 1/2;

We then plot the power spectral density Pxx in the Nyquist frequency range 
from 0 to Fs/2, which in our example is from 0 to 1/2. Th e Nyquist frequency 
range corresponds to the fi rst 512 or nfft/2 data points. We can plot the 
power spectral density over the frequency by typing

plot(f,Pxx), grid

Th e graphical output shows that there are three signifi cant peaks at the 
positions of the original frequencies of the three sine waves (1/50, 1/15, 
and 1/5). Alternatively, we can also plot the power spectral density over the 
period by typing

plot(1./f,Pxx), axis([0 100 0 1000]), grid

where we observe the three periods 50, 15, and 5, as expected. Since the 
values on the x-axis of this plot are not evenly spaced (in constrast to those 
on the frequency axis), we fi nd the long periods poorly resolved and a broad 
peak at a period of 50 in this graphics. Th e code for the power spectral 
density can be rewritten to make it independent of the sampling frequency,

Fs = 1;

t = 1/Fs :1/Fs : 1000/Fs; t = t';
x = 2*sin(2*pi*t/50) + sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);

nfft = 2^nextpow2(length(t));
Xxx = fft(x,nfft);

Pxx2 = abs(Xxx).^2 /Fs /length(x);
Pxx = [Pxx2(1); 2*Pxx2(2:512)];
f = 0 : Fs/(nfft-1) : Fs/2;

plot(f,Pxx), grid
axis([0 0.5 0 max(Pxx)])
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where the function nextpow2 computes the next power of two closest to 
the length of the time series x(t). Th is code allows the sampling frequency 
to be modifi ed and the diff erences in the results to be explored. We 
can now compare the results with those obtained using the function 
periodogram(x,window,nfft,fs).

[Pxx,f] = periodogram(x,[],1024,1);

Th is function allows the windowing of the signals with various window 
shapes to overcome spectral leakage. However, we use the default rectangular 
window by choosing an empty vector [] for window to compare the results 
with the above experiment. Th e power spectrum Pxx is computed using an 
FFT of length nfft=1024, which is the next power of two closest to the length 
of the series x(t) and which is padded with zeros to make up the number 
of data points to the value of nfft. A sampling frequency fs of one is used 
within the function in order to obtain the correct frequency scaling for the 
f-axis. We display the results by typing

plot(f,Pxx), grid
xlabel('Frequency')
ylabel('Power')
title('Auto-Spectrum')

or alternatively 

plot(1./f,Pxx), axis([0 100 0 1000]), grid
xlabel('Period')
ylabel('Power')
title('Auto-Spectrum')

Th e graphical output is almost identical to our Blackman-Tukey plot and 
again shows that there are three signifi cant peaks at the positions of the 
original frequencies (or periods) of the three sine waves. Th e same procedure 
can also be applied to the noisy data:

[Pxx,f] = periodogram(xn,[],1024,1);

plot(f,Pxx), grid
xlabel('Frequency')
ylabel('Power')
title('Auto-Spectrum')

Let us now increase the noise level by introducing Gaussian noise with a 
mean of zero and a standard deviation of fi ve.

rng(0)
n = 5 * randn(size(x));
xn = x + n;
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[Pxx,f] = periodogram(xn,[],1024,1);

plot(f,Pxx), grid
xlabel('Frequency')
ylabel('Power')
title('Auto-Spectrum')

Th is spectrum now resembles a real data spectrum in the earth sciences and 
the spectral peaks are set against a signifi cant background noise level. Th e 
peak of the highest frequency even disappears into the noise and cannot be 
distinguished from maxima that are attributed to noise. Both spectra can be 
compared on the same plot (Fig. 5.6):

[Pxx,f] = periodogram(x,[],1024,1);
[Pxxn,f] = periodogram(xn,[],1024,1);

subplot(1,2,1)
plot(f,Pxx), grid
xlabel('Frequency')
ylabel('Power')

subplot(1,2,2)
plot(f,Pxxn), grid
xlabel('Frequency')
ylabel('Power')

Next, we explore the infl uence of a linear trend on a spectrum. Long-term 
trends are common features in earth science data. We will see that this trend 
is misinterpreted as a very long period by the FFT, producing a large peak 

a b

Fig. 5.6 Comparison of the auto-spectra for a the noise-free, and b the noisy synthetic signals 
with the periods τ1=50 (f1=0.02), τ2=15 (f2≈0.07) and τ3=5 (f3=0.2). Th e highest frequency 
peak disappears completely into the background noise and cannot be distinguished from 
peaks attributed to the Gaussian noise.
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with a frequency close to zero (Fig. 5.7).

[Pxx,f] = periodogram(x,[],1024,1);
[Pxxt,f] = periodogram(xt,[],1024,1);

subplot(1,2,1)
plot(f,Pxx), grid
xlabel('Frequency')
ylabel('Power')

subplot(1,2,2)
plot(f,Pxxt), grid
xlabel('Frequency')
ylabel('Power')

To eliminate the long-term trend, we use the function detrend. Th is function 
removes linear trends, defi ned as either a single straight-line fi t from the 
vector x, or a continuous, piecewise linear trend from x with one or more 
breakpoints defi ned by the user.

xdt = detrend(xt);

subplot(2,1,1)
plot(t,x,'b-',t,xt,'r-'), grid
axis([0 200 -4 4])

subplot(2,1,2)
plot(t,x,'b-',t,xdt,'r-'), grid
axis([0 200 -4 4])

Fig. 5.7 Comparison of the auto-spectra for a the original noise-free signal with the periods 
τ1=50 (f1=0.02), τ2=15 (f2≈0.07) and τ3=5 (f3=0.2), and b the same signal overprinted on a 
linear trend. Th e linear trend is misinterpreted by the FFT as a very long period with a high 
amplitude.

166  5 TIME-SERIES ANALYSIS



Th e resulting spectrum no longer shows the low-frequency peak.

[Pxxt,f] = periodogram(xt,[],1024,1);
[Pxxdt,f] = periodogram(xdt,[],1024,1);

subplot(1,2,1)
plot(f,Pxx), grid
xlabel('Frequency')
ylabel('Power')

subplot(1,2,2)
plot(f,Pxxdt), grid
xlabel('Frequency')
ylabel('Power')

Some data contain a high-order trend that can be removed by fi tting a higher-
order polynomial to the data and subtracting the corresponding x(t) values.

We now use two sine waves with identical periodicities τ=5 (equivalent 
to f=0.2) and amplitudes equal to two to compute the cross-spectrum of two 
time series. Th e sine waves show a relative phase shift  of t=1. In the argument 
of the second sine wave this corresponds to 2π/5, which is one fi ft h of the full 
wavelength of τ=5.

clear

t = 1 : 1000;
x = 2*sin(2*pi*t/5);
y = 2*sin(2*pi*t/5 + 2*pi/5);

plot(t,x,'b-',t,y,'r-')
axis([0 50 -2 2]), grid

Th e cross-spectrum is computed by using the function cpsd, which uses 
Welch’s method for computing power spectra (Fig. 5.8). Pxy is complex and 
contains both amplitude and phase information.

[Pxy,f] = cpsd(x,y,[],0,1024,1);

plot(f,abs(Pxy)), grid
xlabel('Frequency')
ylabel('Power')
title('Cross-Spectrum')

Th e function cpsd(x,y,window,noverlap,nfft,fs) specifi es the number of 
FFT points nfft used to calculate the cross power spectral density, which is 
1024 in our example. Th e parameter window is empty in our example and the 
default rectangular window is therefore used to obtain eight sections of x and 
y. Th e parameter noverlap defi nes the number of overlapping samples, which 
is zero in our example. Th e sampling frequency fs is 1 in this example. Th e 
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coherence of the two signals is one for all frequencies, since we are working 
with noise-free data.

[Cxy,f] = mscohere(x,y,[],0,1024,1);

plot(f,Cxy), grid
xlabel('Frequency')
ylabel('Coherence')
title('Coherence')

We use the function mscohere(x,y,window,noverlap,nfft,fs) which specifi es 
the number of FFT points nfft=1024, the default rectangular window 
(window=[]), and no overlapping data points (noverlap=0). Th e complex part 
of Pxy is required for computing the phase shift  between the two signals 
using the function angle.

phase = angle(Pxy);

plot(f,phase), grid
xlabel('Frequency')
ylabel('Phase Angle')
title('Phase Spectrum')

Th e phase shift  at a frequency of f=0.2 (period τ=5) can be interpolated from 
the phase spectrum

interp1(f,phase,0.2)

Fig. 5.8 Cross-spectrum of two sine waves with identical periodicities of τ=5 (equivalent to 
f=0.2) and amplitudes of 2. Th e sine waves show a relative phase shift  of t=1. In the argument 
of the second sine wave this corresponds to 2π/5, which is one fi ft h of the full wavelength of 
τ=5. a Th e magnitude shows the expected peak at f=0.2. b Th e corresponding phase diff erence 
in radians at this frequency is 1.2566, which equals (1.2566.5)/(2.π) = 1.0000, which is the 
phase shift  of 1 that we introduced initially.
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which produces the output

ans =
  -1.2566

Th e phase spectrum is normalized to one full period τ=2π and the phase 
shift  of –1.2566 therefore equals (–1.2566.5)/(2.π)=–1.0000, which is the 
phase shift  of one that we introduced initially.

We now use two sine waves with diff erent periodicities to illustrate cross-
spectral analysis. Both signals, x and y, have a periodicity of 5 but a phase 
shift  of 1.

clear

t = 1 : 1000;
x = sin(2*pi*t/15) + 0.5*sin(2*pi*t/5);
y = 2*sin(2*pi*t/50) + 0.5*sin(2*pi*t/5+2*pi/5);

plot(t,x,'b-',t,y,'r-')
axis([0 100 -3 3]), grid

We can now compute the cross-spectrum Pxy, which clearly shows the 
common period of τ=5 (or frequency of f=0.2).

[Pxy,f] = cpsd(x,y,[],0,1024,1);

plot(f, abs(Pxy)), grid
xlabel('Frequency')
ylabel('Power')
title('Cross-Spectrum')

Th e coherence shows a high value that is close to one at f=0.2.

[Cxy,f] = mscohere(x,y,[],0,1024,1);

plot(f,Cxy), grid
xlabel('Frequency')
ylabel('Coherence')
title('Coherence')

Th e complex part of the cross-spectrum Pxy is required for calculating the 
phase shift  between the two sine waves.

[Pxy,f] = cpsd(x,y,[],0,1024,1);
phase = angle(Pxy);

plot(f,phase), grid

Th e phase shift  at a frequency of f=0.2 (period τ=5) is

interp1(f,phase,0.2)
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which produces the output of

ans =
  -1.2572

Th e phase spectrum is normalized to one full period τ=2π and the phase 
shift  of –1.2572 therefore equals (–1.2572.5)/(2.π)=–1.0004, which is again 
the phase shift  of one that we introduced initially.

 5.5 Interpolating and Analyzing Unevenly-Spaced Data

We can now use our experience in analyzing evenly-spaced data to run a 
spectral analysis on unevenly-spaced data. Such data are very common in 
earth sciences, for example in the fi eld of paleoceanography, where deep-sea 
cores are typically sampled at constant depth intervals. Th e transformation 
of evenly-spaced length-parameter data to time-parameter data in an 
environment with changing length-time ratios results in unevenly-spaced 
time series. Numerous methods exist for interpolating unevenly-spaced 
sequences of data or time series. Th e aim of these interpolation techniques for 
x(t) data is to estimate the x-values for an equally-spaced t vector from the 
irregularly-spaced x(t) actual measurements. Linear interpolation predicts 
the x-values by eff ectively drawing a straight line between two neighboring 
measurements and by calculating the x-value at the appropriate point 
along that line. However, this method has its limitations. It assumes linear 
transitions in the data, which introduces a number of artifacts including the 
loss of high-frequency components of the signal and the limiting of the data 
range to that of the original measurements. 

Cubic-spline interpolation is another method for interpolating data that are 
unevenly spaced. Cubic splines are piecewise continuous curves requiring at 
least four data points for each step. Th e method has the advantage that it 
preserves the high-frequency information contained in the data. However, 
steep gradients in the data sequence, which typically occur adjacent to 
extreme minima and maxima, could cause spurious amplitudes in the 
interpolated time series. Since all these (and other) interpolation techniques 
might introduce artifacts into the data, it is always advisable to (1) keep the 
total number of data points constant before and aft er interpolation, (2) report 
the method employed for estimating the evenly-spaced data sequence, and 
(3) explore the eff ect of interpolation on the variance of the data.

Following this brief introduction to interpolation techniques we can 
apply the most popular linear and cubic spline interpolation techniques 
to unevenly-spaced data. Having interpolated the data we can then use 
the spectral tools that have previously been applied to evenly-spaced data 
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(Sections 5.3 and 5.4). We must fi rst load the two time series:

clear

series1 = load('series1.txt');
series2 = load('series2.txt');

Both synthetic data sets contain a two-column matrix with 339 rows. Th e fi rst 
column contains ages in kiloyears, which are unevenly spaced. Th e second 
column contains oxygen-isotope values measured on calcareous micro-
fossils (foraminifera). Th e data sets contain 100, 40 and 20 kyr cyclicities 
and they are overlain by Gaussian noise. In the 100 kyr frequency band, the 
second data series has shift ed by 5 kyrs with respect to the fi rst data series. 
To plot the data we type

plot(series1(:,1),series1(:,2))
figure
plot(series2(:,1),series2(:,2))

Th e statistics for the spacing of the fi rst data series can be computed by

intv1 = diff(series1(:,1));

plot(intv1)

Th e plot shows that the spacing varies around a mean interval of 3 kyrs, with 
a standard deviation of ca. 1 kyr. Th e minimum and maximum values for the 
time axis

min(series1(:,1))
max(series1(:,1))

of tmin=0 and tmax=997 kyrs provide some information about the temporal 
range of the data. Th e second data series

intv2 = diff(series2(:,1));

plot(intv2)

min(series2(:,1))
max(series2(:,1))

has a similar range, from 0 to 997 kyrs. We see that both series have a mean 
spacing of 3 kyrs and range from 0 to ca. 1000 kyrs. We now interpolate the 
data to an evenly-spaced time axis. While doing this, we follow the rule that 
the number of data points should not be increased. Th e new time axis runs 
from 0 to 996 kyrs, with 3 kyr intervals.

t = 0 : 3 : 996;
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We can now interpolate the two time series to this axis with linear and spline 
interpolation methods, using the function interp1.

series1L = interp1(series1(:,1),series1(:,2),t,'linear');
series1S = interp1(series1(:,1),series1(:,2),t,'spline');

series2L = interp1(series2(:,1),series2(:,2),t,'linear');
series2S = interp1(series2(:,1),series2(:,2),t,'spline');

In the linear interpolation method the linear interpolant is the straight line 
between neighboring data points. In the spline interpolation the interpolant 
is a piecewise polynomial (the spline) between these data points. Th e 
method spline with interp1 uses a piecewise cubic spline interpolation, i.e., 
the interpolant is a third-degree polynomial. Th e results are compared by 
plotting the fi rst series before and aft er interpolation.

plot(series1(:,1),series1(:,2),'ko'), hold on
plot(t,series1L,'b-',t,series1S,'r-'), hold off

We can already observe some signifi cant artifacts at ca. 370 kyrs. Whereas 
the linearly-interpolated points are always within the range of the original 
data, the spline interpolation method produces values that are unrealistically 
high or low (Fig. 5.9). Th e results can be compared by plotting the second 
data series.

plot(series2(:,1),series2(:,2),'ko'), hold on
plot(t,series2L,'b-',t,series2S,'r-'), hold off

In this series, only a few artifacts can be observed. Th e function interp1 also 
provides an alternative to spline, which is pchip. Th e name pchip stands for 

Fig. 5.9 Interpolation artifacts. Whereas the linearly interpolated points are always within 
the range of the original data, the spline interpolation method results in unrealistic high and 
low values.
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Piecewise Cubic Hermite Interpolating Polynomial and this method performs 
a shape-preserving piecewise cubic interpolation. Th e function avoids 
the typical artifacts of the splines as it preserves the original shape of the 
data series. We can apply the function used above to calculate the power 
spectrum, computing the FFT for 256 data points with a sampling frequency 
of 1/3 kyr–1.

[Pxx,f] = periodogram(series1L,[],256,1/3);

plot(f,Pxx)
xlabel('Frequency')
ylabel('Power')
title('Auto-Spectrum')

Signifi cant peaks occur at frequencies of approximately 0.01, 0.025 and 0.05, 
corresponding approximately to the 100, 40 and 20 kyr cycles. Analysis of 
the second time series

[Pxx,f] = periodogram(series2L,[],256,1/3);

plot(f,Pxx)
xlabel('Frequency')
ylabel('Power')
title('Auto-Spectrum')

also yields signifi cant peaks at frequencies of 0.01, 0.025 and 0.05 (Fig. 5.10). 
We now compute the cross-spectrum for both data series.

[Pxy,f] = cpsd(series1L,series2L,[],128,256,1/3);

plot(f,abs(Pxy))
xlabel('Frequency')
ylabel('Power')
title('Cross-Spectrum')

Th e correlation, as indicated by the high value for the coherence, is quite 
convincing.

[Cxy,f] = mscohere(series1L,series2L,[],128,256,1/3);

plot(f,Cxy)
xlabel('Frequency')
ylabel('Magnitude Squared Coherence')
title('Coherence')

We can observe a fairly high coherence at frequencies of 0.01, 0.025 and 0.05. 
Th e complex part of Pxy is required for calculating the phase diff erence for 
each frequency.

phase = angle(Pxy);
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plot(f,phase)
xlabel('Frequency')
ylabel('Phase Angle')
title('Phase spectrum')

Th e phase shift  at a frequency of f=0.01 is calculated using

interp1(f,phase,0.01)

which produces the output of

ans = 
  -0.2796

Th e phase spectrum is normalized to a full period τ=2π and the phase 

Fig. 5.10 Result from cross-spectral analysis of the two linearly-interpolated signals: a signals 
in the time domain, b cross-spectrum of both signals, c coherence of the signals in the 
frequency domain, and d phase spectrum in radians.
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5.1

shift  of –0.2796 therefore equals (–0.2796.100 kyrs)/(2.π)=–4.45 kyrs. Th is 
corresponds roughly to the phase shift  of 5 kyrs introduced to the second 
data series with respect to the fi rst series.

Th e Signal Processing Toolbox also contains a GUI function named sptool 
(for Signal Processing Tool), which is a more convenient tool for spectral 
analysis but is not described in any detail herein.

 5.6 Evolutionary Power Spectrum

Th e amplitude of spectral peaks usually varies with time. Th is is particularly 
true for paleoclimate time series. Paleoclimate records usually show trends, 
not only in the mean and variance but also in the relative contributions of 
rhythmic components such as the Milankovitch cycles in marine oxygen-
isotope records. Evolutionary power spectra have the ability to map such 
changes in the frequency domain. Th e evolutionary or windowed power 
spectrum is a modifi cation of the method introduced in Section 5.3, which 
computes the spectrum of overlapping segments of the time series. Th ese 
overlapping segments are relatively short compared to the windowed 
segments used by the Welch method (Section 5.3), which is used to increase 
the signal-to-noise ratio of power spectra. Th e evolutionary power spectrum 
method therefore uses the Short-Time Fourier Transform (STFT) instead of 
the Fast Fourier Transformation (FFT). Th e output from the evolutionary 
power spectrum is the short-term, time-localized frequency content of the 
signal. Th ere are various methods to display the results. For instance, time 
and frequency can be plotted on the x- and y-axes, respectively, or vice versa, 
with the color of the plot being dependent on the height of the spectral peaks.

As an example we use a data set that is similar to those used in Section 
5.5. Th e data series contains three main periodicities of 100, 40 and 20 kyrs 
and additive Gaussian noise. Th e amplitudes, however, change through 
time and this example can therefore be used to illustrate the advantage of 
the evolutionary power spectrum method. In our example the 40 kyr cycle 
appears only aft er ca. 450 kyrs, whereas the 100 and 20 kyr cycles are present 
throughout the time series. We fi rst load from the fi le series3.txt and display 
the data (Fig. 5.11).

clear

series3 = load('series3.txt');
plot(series3(:,1),series3(:,2))
xlabel('Time (kyr)')
ylabel('d18O (permille)')
title('Signal with Varying Cyclicities')
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Since both the standard and the evolutionary power spectrum methods 
require evenly-spaced data, we interpolate the data to an evenly-spaced time 
vector t, as demonstrated in Section 5.5.

t = 0 : 3 : 1000;
series3L = interp1(series3(:,1),series3(:,2),t,'linear');

We then compute a non-evolutionary power spectrum for the full length of 
the time series (Fig. 5.12). Th is exercise helps us to compare the diff erences 
between the results of the standard and the evolutionary power spectrum 
methods.

[Pxx,f] = periodogram(series3L,[],1024,1/3);
plot(f,Pxx)
xlabel('Frequency')
ylabel('Power')
title('Power Spectrum')

Th e auto-spectrum shows signifi cant peaks at 100, 40 and 20 kyr cyclicities, 
as well as some noise. Th e power spectrum, however, does not provide any 

Fig. 5.11 Synthetic data set containing three main periodicities of 100, 40, and 20 kyrs and 
additive Gaussian noise. Whereas the 100 and 20 kyr cycles are present throughout the time 
series, the 40 kyr cycle only appears at around 450 kyrs before present.
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information about fl uctuations in the amplitudes of these peaks. Th e non-
evolutionary power spectrum simply represents an average of the spectral 
information contained in the data.

We now use the function spectrogram to map the changes in the power 
spectrum with time. By default, the time series is divided into eight segments 
with a 50% overlap. Each segment is windowed with a Hamming window 
to suppress spectral leakage (Section 5.3). Th e function spectrogram uses 
similar input parameters to those used in periodogram in Section 5.3. We then 
compute the evolutionary power spectrum for a window of 64 data points 
with a 50 data point overlap. Th e STFT is computed for nfft=256. Since the 
spacing of the interpolated time vector is 3 kyrs, the sampling frequency is 
1/3 kyr–1.

spectrogram(series3L,64,50,256,1/3)
title('Evolutionary Power Spectrum')
xlabel('Frequency (1/kyr)')
ylabel('Time (kyr)')
colormap(jet)

Fig. 5.12 Power spectrum for the complete time series. showing signifi cant peaks at 100, 40 
and 20 kyrs. Th e plot, however, does not provide any information on the temporal behavior 
of the cyclicities.
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Fig. 5.13 Evolutionary power spectrum using spectrogram, which computes the short-time 
Fourier transform STFT of overlapping segments of the time series. We use a Hamming 
window of 64 data points and 50 data points overlap. Th e STFT is computed for  nfft=256. 
Since the spacing of the interpolated time vector is 3 kyrs the sampling frequency is 1/3 kyr-1. 
Th e plot shows the onset of the 40 kyr cycle at around 450 kyrs before present.

Th e output from spectrogram is a color plot (Fig. 5.13) that displays red ver-
tical stripes representing signifi cant maxima at frequencies of 0.01 and 0.05 
kyr–1 (i.e., every 100 and 20 kyrs). Th ere is also a 40 kyr cycle (corresponding 
to a frequency of 0.025 kyr–1), but this only occurs aft er ca. 450 kyrs, as 
documented by the vertical red stripe in the lower half of the graph.

To improve the visibility of the signifi cant cycles, the colors used in the 
graph can be modifi ed using the colormap editor.

colormapeditor

Th e colormap editor displays the colormap of the fi gure as a strip of 
rectangular cells. Th e nodes that separate regions of uniform slope in the RGB 
colormap can be shift ed by using the mouse, which introduces distortions 
in the colormap and results in modifi cation of the spectrogram colors. For 
example shift ing the yellow node towards the right increases the contrast 
between the vertical peak areas at 100, 40 and 20 kyrs, and the background.
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 5.7 Lomb-Scargle Power Spectrum

Th e power spectrum methods introduced in the previous sections require 
evenly-spaced data. In earth sciences, however, time series are oft en unevenly 
spaced. Although interpolating the unevenly-spaced data to a grid of evenly-
spaced times is one way to overcome this problem (Section 5.5), interpolation 
introduces numerous artifacts into the data, in both the time and frequency 
domains. For this reason an alternative method of time-series analysis has 
become increasingly popular in earth sciences, the Lomb-Scargle algorithm 
(e.g., Scargle 1981, 1982, 1989, 1990, Press et al. 1992, Schulz et al. 1998).

Th e Lomb-Scargle algorithm only evaluates the data of the time series 
at the times ti that are actually measured. Assuming a series y(t) of N data 
points, the Lomb-Scargle normalized periodogram Px, as a function of 
angular frequency ω=2πf > 0, is given by

where

and

are the arithmetic mean and the variance of the data (Section 3.2). Th e 
constant τ, which is defi ned by the relationship

is an off set that makes Px(ω) independent of shift ing the ti values by any 
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constant amount. Scargle (1982) showed that this particular choice of the 
off set τ has the consequence that the solution for Px(ω) is identical to a least-
squares fi t of sine and cosine functions to the data series y(t): 

Th e least-squares fi t of harmonic functions to data series in conjunction 
with spectral analysis had previously been investigated by Lomb (1976), and 
hence the method is called the normalized Lomb-Scargle Fourier transform. 
Th e term normalized refers to the factor s2 in the dominator of the equation 
for the periodogram.

Scargle (1982) has shown that the Lomb-Scargle periodogram has an 
exponential probability distribution with a mean equal to one, assuming that 
the noise is Gaussian distributed. Th e probability that Px(ω) will be between 
some positive quantity z and z+dz is exp(–z)dz. If we scan M independent 
frequencies, the probability of none of them having a value larger than z is 
(1–exp(–z))M. We can therefore compute the false-alarm probability of the 
null hypothesis (i.e., the probability that a given peak in the periodogram is 
not signifi cant) using

Press et al. (1992) suggested using the Nyquist criterion (Section 5.2) to 
determine the number of independent frequencies M, assuming that the 
data were evenly spaced. In this case, the appropriate value for the number of 
independent frequencies is M=2N, where N is the length of the time series.

More detailed discussions of the Lomb-Scargle method are given in Scargle 
(1989) and Press et al. (1992). An excellent summary of the method and a 
TURBO PASCAL program to compute the normalized Lomb-Scargle power 
spectrum of paleoclimatic data have been published by Schulz and Stattegger 
(1998). A convenient MATLAB algorithm lombscargle for computing the 
Lomb-Scargle periodogram has been published by Brett Shoelson (Th e 
MathWorks, Inc.) and can be downloaded from File Exchange at

http://www.mathworks.de/matlabcentral/fileexchange/993-lombscargle-m

Th e following MATLAB code is based on the original FORTRAN code 
published by Scargle (1989). Signifi cance testing uses the methods proposed 
by Press et al. (1992) explained above.

We fi rst load the synthetic data that were generated to illustrate the use 
of the evolutionary or windowed power spectrum method in Section 5.6. 
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Th e data contain periodicities of 100, 40 and 20 kyrs, as well as additive 
Gaussian noise, and are unevenly spaced about the time axis. We defi ne two 
new vectors t and x that contain the original time vector and the synthetic 
oxygen-isotope data sampled at times t.

clear

series3 = load('series3.txt');
t = series3(:,1);
x = series3(:,2);

We then generate a frequency axis f. Since the Lomb-Scargle method is not 
able to deal with the frequency of zero (i.e., with an infi nite period) we start 
at a frequency value that is equivalent to the spacing of the frequency vector. 
Th e variable ofac is the oversampling parameter that infl uences the resolution 
of the frequency axis about the N(frequencies)=N(datapoints) case. We also 
need the highest frequency fhi that can be analyzed by the Lomb-Scargle 
algorithm: the Nyquist frequency fnyq that would be obtained if the N data 
points were evenly spaced over the same time interval is commonly used for 
fhi. Th e following code uses the input parameter hifac, which is defi ned by 
Press et al. (1992) as hifac=fhi/fnyq.

int = mean(diff(t));
ofac = 4; hifac = 1;
f = ((2*int)^(-1))/(length(x)*ofac): ...
    ((2*int)^(-1))/(length(x)*ofac): ...
    hifac*(2*int)^(-1);

where int is the mean sampling interval. We normalize the data by subtracting 
the mean.

x = x - mean(x);

We can now compute the normalized Lomb-Scargle periodogram px as a 
function of the angular frequency wrun using the translation of Scargle’s 
FORTRAN code into MATLAB code.

for k = 1:length(f)
    wrun = 2*pi*f(k);
    px(k) = 1/(2*var(x)) * ...
       ((sum(x.*cos(wrun*t - ...
       atan2(sum(sin(2*wrun*t)),sum(cos(2*wrun*t)))/2))).^2) ...
       /(sum((cos(wrun*t - ...
       atan2(sum(sin(2*wrun*t)),sum(cos(2*wrun*t)))/2)).^2)) + ...
       ((sum(x.*sin(wrun*t - ...
       atan2(sum(sin(2*wrun*t)),sum(cos(2*wrun*t)))/2))).^2) ...
       /(sum((sin(wrun*t - ...
       atan2(sum(sin(2*wrun*t)),sum(cos(2*wrun*t)))/2)).^2));
end
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Th e signifi cance level for any peak in the power spectrum px can now be 
computed. Th e variable prob indicates the false-alarm probability for the null 
hypothesis: a low prob therefore indicates a highly signifi cant peak in the 
power spectrum.

prob = 1-(1-exp(-px)).^(2*length(x));

We now plot the power spectrum and the probabilities (Fig. 5.14):

plot(f,px)
xlabel('Frequency')
ylabel('Power')
title('Lomb-Scargle Power Spectrum')

figure
plot(f,prob)
xlabel('Frequency')
ylabel('Probability')
title('Probabilities')

Th e two plots suggest that all three peaks are highly signifi cant since the 
errors are extremely low at the cyclicities of 100, 40 and 20 kyrs.

An alternative way of displaying the signifi cance levels was suggested by 
Press et al. (1992). In this method the equation for the false-alarm probability 
of the null hypothesis is inverted to compute the corresponding power of 
the signifi cance levels. As an example we choose a signifi cance level of 95%. 
However, this number can also be replaced by a vector of several signifi cance 
levels such as signif=[0.90 0.95 0.99]. We can now type

m = floor(0.5*ofac*hifac*length(x));
effm = 2*m/ofac;
signif = 0.95;
levels = log((1-signif.^(1/effm)).^(-1));

where m is the true number of independent frequencies and effm is the 
eff ective number of frequencies using the oversampling factor ofac. Th e 
second plot displays the spectral peaks and the corresponding probabilities.

plot(f,px)
hold on
for k = 1:length(signif)
    line(f,levels(:,k)*ones(size(f)),'LineStyle','--')
end
xlabel('Frequency')
ylabel('Power')
title('Lomb-Scargle Power Spectrum')
hold off

All three spectral peaks at frequencies of 0.01, 0.025 and 0.05 kyr–1 exceed the 
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Fig. 5.14 a Lomb-Scargle power spectrum and b the false-alarm probability of the null 
hypothesis. Th e plot suggests that the 100, 40 and 20 kyr cycles are highly signifi cant.

a

b
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95% signifi cant level, suggesting that they represent signifi cant cyclicities. 
We have therefore obtained similar results to those obtained using the 
periodogram method. However, the Lomb-Scargle method has the advantage 
that is does not require any interpolation of unevenly-spaced data, as well as 
permitting quantitative signifi cance testing.

 5.8 Wavelet Power Spectrum

Section 5.6 demonstrated the use of a modifi cation to the power spectrum 
method for mapping changes in cyclicity through time. A similar modifi cation 
could, in theory, be applied to the Lomb-Scargle method, which would have 
the advantage that it could then be applied to unevenly-spaced data. Both 
methods, however, assume that the data are composites of sine and cosine 
waves that are globally uniform in time and have infi nite time spans. Th e 
evolutionary power spectrum method divides the time series into overlapping 
segments and computes the Fourier transform of these segments. To avoid 
spectral leakage, the data are multiplied by windows that are smooth bell-
shaped curves with positive values (Section 5.3). Th e higher the temporal 
resolution of the evolutionary power spectrum the lower the accuracy of 
the result. Moreover, short time windows contain a large number of high-
frequency cycles whereas the low-frequency cycles are underrepresented.

In contrast to the Fourier transform, the wavelet transform uses base 
functions (wavelets) that have smooth ends per se (Lau and Weng 1995, 
Mackenzie et al. 2001). Wavelets are small packets of waves; they are defi ned 
by a specifi c frequency and decay towards either end. Since wavelets can 
be stretched and translated in both frequency and time, with a fl exible 
resolution, they can easily map changes in the time-frequency domain. 
We use the functions for wavelet analysis that are included in the Wavelet 
Toolbox (MathWorks 2014b). Th ere is also, however, a very popular wavelet 
toolbox produced by Christopher Torrence and Gilbert P. Compo (1998), 
which is freely available online from

http://paos.colorado.edu/research/wavelets/

A wavelet transformation mathematically decomposes a signal y(t) into 
elementary functions ψa,b(t) derived from a mother wavelet ψ(t), by dilation 
and translation,
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where b denotes the position (translation) and a (>0) the scale (dilation) of 
the wavelet (Lau and Weng 1995). Th e wavelet transform of the signal y(t) 
about the mother wavelet ψ(t) is defi ned as the convolution integral

where ψ* is the complex conjugate of ψ. Th ere are many mother wavelets 
available in the literature, such as the classic Haar wavelet, the Morlet wavelet, 
or the Daubechies wavelet. Th e most popular wavelet in geosciences is the 
Morlet wavelet introduced by French geophysicist Jean Morlet (1931–2007), 
which is defi ned by

where η is the time and ω0 is the wave number (Torrence and Compo 
1998). Th e wave number is the number of oscillations within the wavelet 
itself. We can easily compute a discrete version of the Morlet wavelet wave 
by translating the above equation into MATLAB code, where eta is the non-
dimensional time and w0 is the wave number. Changing w0 produces wavelets 
with diff erent wave numbers. Note that it is important not to use i for index 
in for loops, since it is used here for imaginary unit (Fig. 5.15).

clear

eta = -10 : 0.1 : 10;
w0 = 6;
wave = pi.^(-1/4) .* exp(i*w0*eta) .* exp(-eta.^2/2);

plot(eta,wave)
xlabel('Position')
ylabel('Scale')
title('Morlet Mother Wavelet')

In order to familiarize ourselves with wavelet power spectra, we use a pure 
sine wave with a period fi ve and additive Gaussian noise.

clear

rng(0)
t = 0 : 0.5 : 50;
x = sin(2*pi*t/5) + randn(size(t));

As a fi rst step, we need to defi ne the mother wavelet and its wave number w0.

mother = 'morl';
w0 = 6;
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We then need to defi ne the values of the scales for which the wavelet 
transform will be computed. Th ese values defi ne how much a wavelet is 
stretched or compressed to map the variability of the time series at diff erent 
wavelengths. Scales with smaller values correspond to higher frequencies 
and can therefore map rapidly-changing details, whereas those with higher 
values can map the long-term variations. Th e defi nition of the scales fi rst 
requires the sampling interval dt of our time series x. We then use the 
default spacing ds of 0.4875 for a Morlet wavelet, following the instructions 
contained in the Wavelet Toolbox manual (MathWorks 2014b). Th e smallest 
value for the scales s0 is usually chosen to be twice the sampling interval, i.e., 
2*dt. We next calculate the number of scales nb, which depends on the length 
of the time series and the spacing of the scales. Finally, we calculate the scales 
scales themselves depending on the smallest scale, the number of scales, and 
the spacing of the scales, using equations provided in the Wavelet Toolbox 
manual (MathWorks 2014b).

dt = 0.5;
ds = 0.4875;
s0 = 2*dt;
nb = fix(log2(length(x))/ds)+1;
scales = s0*2.^((0:nb-1)*ds);

Fig. 5.15 Morlet mother wavelet with wave number 6.
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In the next step we compute the real or complex continuous wavelet 
coeffi  cients using the function cwt contained in the Wavelet Toolbox.

coefs = cwt(x,scales,mother);

Th e function scal2frq converts scales scales to pseudo-frequencies, using 
the mother wavelet mother and the sampling period dt.

f = scal2frq(scales,mother,dt);

We use a fi lled contour plot to portray the power spectrum, i.e., the absolute 
value of the wavelet coeffi  cients (Fig. 5.16 a).

contour(t,f,abs(coefs),...
   'LineStyle','none',...
   'LineColor',[0 0 0],...
   'Fill','on')
xlabel('Time')
ylabel('Frequency')
title('Wavelet Power Spectrum')
set(gcf,'Colormap',jet)
set(gca,'YLim',[0 0.9],...
   'XGrid','On',...
   'YGrid','On')

Alternatively, we can compute the wavelet transform using the fast Fourier 
transform (FFT) algorithm implemented in the function cwtft. Th is approach 
is used in the freely available wavelet toolbox produced by Torrence and 
Compo (1998). We fi rst defi ne the scales using the values for the smallest 
scales s0, the sampling interval ds of the scales, and the number of scales nb 
from above, merged into a structure array sc.

sc.s0 = s0;
sc.ds = ds;
sc.nb = nb;

Th en, we create a structure array sig that contains the signal x, the sampling 
interval (or period) dt, the mother wavelet mother, and the scales sc.

sig = struct('val',x,...
    'period',dt,...
    'wavelet',mother,...
    'scales',sc);

Th e output from cwtft is a structure array cwtstruct that includes the wavelet 
coeffi  cients cfs and the scales scales. Th e default mother wavelet is the 
Morlet wavelet.

cwtstruct = cwtft(sig);
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We convert the scales to pseudo-frequencies using the equation for the 
Morlet wavelet, which we fi nd in the wavelet defi nitions in the cwtft help 
section.

f = 1./(4*pi*cwtstruct.scales/(w0+sqrt(2+w0^2)));

Fig. 5.16 Wavelet power spectrum showing a signifi cant period at 5 cycles that persists 
throughout the full length of the time vector.  Th e wavelet power spectrum has been calculated 
using a the continuous 1D wavelet transform cwt and b the continuous wavelet transform 
using the FFT algorithm cwtft.

a

b
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We again use a fi lled contour plot to portray the power spectrum, i.e., the 
absolute value of the wavelet coeffi  cients (Fig. 5.16 b).

contour(t,f,abs(cwtstruct.cfs),...
    'LineStyle','none',...
    'LineColor',[0 0 0],...
    'Fill','on')
xlabel('Time')
ylabel('Frequency')
title('Wavelet Power Spectrum Using FFT Algorithm')
set(gcf,'Colormap',jet)
set(gca,'YLim',[0 0.9],...
    'XGrid','On',...
    'YGrid','On')

As we can see, the wavelet power spectrum derived using cwtft is much 
smoother than that computed with cwt, since cwtft uses sinusoids to smooth 
the coeffi  cients. However, the smoothing causes a signifi cant loss of detail in 
the contour plot.

We now apply this concept to the synthetic data from the example to 
demonstrate the windowed power spectrum method and load the synthetic 
data contained in fi le series3.txt, remembering that the data contain 
periodicities of 100, 40, and 20 kyrs as well as additive Gaussian noise, and 
that they are unevenly spaced about the time axis.

clear

series3 = load('series3.txt');

As for the Fourier transform and in contrast to the Lomb-Scargle algorithm, 
the wavelet transform requires evenly-spaced data, and we therefore 
interpolate the data using interp1.

t = 0 : 3 : 1000;
series3L = interp1(series3(:,1),series3(:,2),t,'linear');

Again, we fi rst need to defi ne the mother wavelet and its wave number w0.

mother = 'morl';
w0 = 6;

We then defi ne the scales, as demonstrated in the fi rst example. Unlike the 
previous example the sampling interval dt of our time series is now 3. 

dt = 3;
ds = 0.4875;
s0 = 2*dt;
nb = fix(log2(length(series3L))/ds)+1;
scales = s0*2.^((0:nb-1)*ds);
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We compute the wavelet coeffi  cients using cwt.

coefs = cwt(series3L,scales,mother);

We convert the scales scales to pseudo-frequencies using the mother wavelet 
mother and the sampling period dt.

f = scal2frq(scales,mother,dt);

We use a fi lled contour plot to portray the power spectrum (Fig. 5.17 a).

contour(t,f,abs(coefs),...
   'LineStyle','none',...
   'LineColor',[0 0 0],...
   'Fill','on')
xlabel('Time')
ylabel('Frequency')
title('Wavelet Power Spectrum')
set(gcf,'Colormap',jet)
set(gca,'YLim',[0 0.04],...
   'XGrid','On',...
   'YGrid','On')

Th e graph shows horizontal clusters of peaks at around 0.01 and 0.025 kyr–1, 
corresponding to 100 and 40 kyr cycles. Th e 40 kyr cycle (a frequency of 
0.025 kyr–1) only appears at ca. 450 kyrs before present. Using cwtft instead 
of cwt again creates a much smoother result (Fig. 5.17 b).

sc.s0 = s0;
sc.ds = ds;
sc.nb = nb;
sig = struct('val',series3L,...
    'period',dt,...
    'wavelet',mother,...
    'scales',sc);
cwtstruct = cwtft(sig);
scales = cwtstruct.scales

f = 1./(4*pi*cwtstruct.scales/(w0+sqrt(2+w0^2)));

contour(t,f,abs(cwtstruct.cfs),...
    'LineStyle','none',...
    'LineColor',[0 0 0],...
    'Fill','on')
xlabel('Time')
ylabel('Frequency')
title('Wavelet Power Spectrum Using FFT Algorithm')
set(gcf,'Colormap',jet)
set(gca,'YLim',[0 0.04],...
    'XGrid','On',...
    'YGrid','On')

Compared to the windowed power spectrum method, the wavelet power 
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Fig. 5.17 Wavelet power spectrum for the synthetic data series contained in series_3.txt. 
Th e plot clearly shows signifi cant periodicities at frequencies of 0.01, 0.025, and 0.05 kyr-1 
corresponding to the 100, 40, and 20 kyr cycles. Th e 100 kyr cycle is present throughout the 
entire time series, whereas the 40 kyr cycle only appears at around 450 kyrs before present. 
Th e 20 kyr cycle is relatively weak but is probably present throughout the entire time series. 
Th e wavelet power spectrum has been calculated using a the continuous 1D wavelet transform 
cwt and b the continuous wavelet transform using FFT algorithm cwtft.
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spectrum clearly shows a much higher resolution on both the time and 
the frequency axes. Instead of dividing the time series into overlapping 
segments and computing the power spectrum for each segment, the wavelet 
transform uses short packets of waves that better map temporal changes 
in the cyclicities. Th e disadvantage of both the windowed power spectrum 
and the wavelet power spectrum is, however, the requirement for evenly-
spaced data. Th e Lomb-Scargle method overcomes this problem but (as with 
the power spectrum method) has limitations in its ability to map temporal 
changes in the frequency domain.

 5.9 Detecting Abrupt Transitions in Time Series

A number of methods are available to detect abrupt changes in time series in 
the time domain. An example of such such methods for use in climate time 
series is the rampfi t method (Mudelsee and Stattegger 1997, Mudelsee 2000), 
and examples suitable for use in the frequency domain are the evolutionary 
power spectrum and the wavelet power spectrum (e.g., Lau and Weng 1995, 
Mackenzie et al. 2001). In most cases, trends and events in both time and 
frequency domains are detected by computing the statistical parameters of 
the data (e.g., measures of central tendency and dispersion) contained in 
a sliding window of length L. Th e precision of these parameters depends 
on the length of the window, i.e., an accurate value for the mean and the 
variance is obtained if L is large. However, a larger window reduces the 
accuracy of the estimated changes in these parameters. Th is problem is 
oft en referred to as Grenander’s uncertainty principle of statistics (Grenander 
1958). Performing a statistical test to assess diff erences in central tendency 
and dispersion between two diff erent sliding windows, however, partly 
overcomes this problem, provided only the location of a sharp transition in 
statistical parameters is required.

Th e classic t-test and F-test statistics are oft en used to compare the means 
and variances of two sets of measurements and could therefore be used to 
detect changes in the location and dispersion between two sliding windows. 
Th ese two tests, however, make the basic assumption that the samples came 
from a population with a Gaussian distribution (Sections 3.7 and 3.8). Th e 
non-parametric Mann-Whitney and Ansari-Bradley tests provide a solution 
to this problem that is independent of the distribution (Sections 3.11 and 
3.12). Th e Mann-Whitney test (Mann and Whitney 1947, Lepage 1971) 
performs a two-sided rank sum test of the null hypothesis that two samples 
come from identical continuous distributions with identical medians, against 
the alternative that they do not have identical medians. Th e Ansari-Bradley 
test performs a two-sided test that two independent samples come from the 
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same distribution, against the alternative that they come from distributions 
that have the same median and shapes but diff erent dispersions (Ansari and 
Bradley 1960, Lepage 1971).

Th e example below demonstrates the Mann-Whitney and Ansari-Bradley 
tests on two synthetic records that contain signifi cant changes in the central 
tendency (mean, median, mode) and dispersion (range, variance, quantiles) 
in the middle of the time series (Fig. 5.18). Th e time axis runs from 0.1 to 500 
kyr at sampling intervals of 0.1 kyr. At 250 kyr the mean of the log-normal 
distributed data changes abruptly from 1.0 to 1.5 and the standard deviation 
changes from 0.5 to 1.3 (Fig. 5.18 a).

clear
rng(0)
t = 0.1 : 0.1 : 500;
y1 = 0.1 * random('logn',1,   0.5, 1, length(t),1);
y2 = 0.1 * random('logn',1.5, 1.3, 1, length(t),1);
y = y1(1:length(t)/2);
y(length(t)/2+1:length(t)) = y2(length(t)/2+1:length(t));

We fi rst use a Mann-Whitney test with paired sliding windows of three 
diff erent lengths, in order to detect any abrupt change in the mean. We 
choose sliding window lengths of 300, 500, and 1,000 data points, i.e., in each 
step we apply the Mann-Whitney test to two samples of 150 data points, two 
samples of 250 data points, and two samples of 500 data points. Note that 
when running a Mann-Whitney test on diff erent sets of data the length of 
the window needs to be adjusted to the length of the time series, and to the 
required accuracy with which the transition in the mean is to be identifi ed.

w = [300 500 1000];

We use the function ranksum introduced in Section 3.11 to perform the 
Mann-Whitney test.

for j = 1:length(w)
na = w(j);
nb = w(j);
for i = w(j)/2+1:length(y)-w(j)/2
    [p,h] = ranksum(y(i-w(j)/2:i-1),y(i+1:i+w(j)/2));
    mwreal(j,i) = p;
end
mwreal(j,1:w(j)/2) = mwreal(j,w(j)/2+1) * ones(1,w(j)/2);
mwreal(j,length(y)-w(j)/2+1:length(y)) = ...
        mwreal(j,length(y)-w(j)/2) * ones(1,w(j)/2);
end

We then display the results.

subplot(2,1,1)
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Fig. 5.18 Mann-Whitney and Ansari-Bradley tests on synthetic dust fl ux record. a Lognormal 
distributed noise. Aft er 250 kyrs the mean and variance of the data shift s towards a lower 
value. b Result of a Mann-Whitney test for three diff erent lengths of the paired sliding 
windows (150, 250 and 500 data points, equivalent to 15, 25 and 50 kyrs). Th e length of the 
window clearly infl uences the amplitudes and widths of the parameter maxima, whereas the 
location of the transition in the mean is well defi ned. c Result of a Ansari-Bradley test for 
three diff erent lengths of the paired sliding windows (150, 250 and 500 data points, equivalent 
to 15, 25 and 50 kyrs). Th e length of the window clearly infl uences the amplitudes and widths 
of the parameter maxima, and the location of the transition in the dispersion is well defi ned.
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plot(t,y)
title('Synthetic signal of lognormal distributed noise')
subplot(2,1,2)
plot(t,log(mwreal))
title('Results from Mann-Whitney U-test')

Th e result from the Mann-Whitney test reveals that the length of the window 
infl uences the amplitudes and widths of the maxima of the test parameter, 
whereas the location of the transition in the means is well defi ned (Fig. 
5.18  b). We next use an Ansari-Bradley test for the same three diff erent 
lengths of paired sliding windows (150, 250 and 500 data points) to detect any 
abrupt change in the standard deviation. We use the function ansaribradley 
introduced in Section 3.12 to perform the Ansari-Bradley test.

for j = 1:length(w)
df1 = w(j) - 1;
df2 = w(j) - 1;
for i = w(j)/2+1:length(y)-w(j)/2
    [h,p] = ansaribradley(y(i-w(j)/2:i-1),y(i+1:i+w(j)/2));
    abreal(j,i) = p;
end
abreal(j,1:w(j)/2) = abreal(j,w(j)/2+1) * ones(1,w(j)/2);
abreal(j,length(y)-w(j)/2+1:length(y)) = ...
    abreal(j,length(y)-w(j)/2) * ones(1,w(j)/2);
end

We then display the results.

subplot(2,1,1)
plot(t,y)
title('Synthetic signal of lognormal distributed noise')
subplot(2,1,2)
plot(t,log(abreal))
title('Results from Ansari-Bradley test')

Th e length of the window again clearly infl uences the amplitudes and widths 
of the maxima of the test parameters, and the location of the transition in 
the dispersion is again well defi ned (Fig. 5.18 c). Th is method has been 
successfully applied to records of terrigenous dust fl ux preserved in marine 
sediments off shore subtropical West Africa, the eastern Mediterranean Sea, 
and the Arabian Sea, in order to detect trends, rhythms and events in the 
African Plio-Pleistocene climate (Trauth et al. 2009).

 5.10 Nonlinear Time-Series Analysis (by N. Marwan)

Th e methods described in the previous sections detect linear relationships 
in the data. However, natural processes on the earth oft en show a more 
complex and chaotic behavior, and methods based on linear techniques may 
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therefore yield unsatisfactory results. In recent decades, new techniques for 
nonlinear data analysis derived from chaos theory have become increasingly 
popular. Such methods have been employed to describe nonlinear behavior 
by, for example, defi ning the scaling laws and fractal dimensions of natural 
processes (Turcotte 1997, Kantz and Schreiber 1997). However, most 
methods of nonlinear data analysis require either long or stationary data 
series and these requirements are rarely satisfi ed in the earth sciences. While 
most nonlinear techniques work well on synthetic data, these methods are 
unable to describe nonlinear behavior in real data. 

During the last decades, recurrence plots have become very popular 
in science and engineering as a new method of nonlinear data analysis 
(Eckmann 1987, Marwan 2007). Recurrence is a fundamental property of 
dissipative dynamical systems. Although small disturbances in such systems 
can cause exponential divergence in their states, aft er some time the systems 
will return to a state that is close to a former state and then pass again 
through a similar evolution. Recurrence plots allow such recurrent behavior 
of dynamical systems to be visually portrayed. Th e method is now widely 
accepted as a useful tool for the nonlinear analysis of short and nonstationary 
data sets.

 Phase Space Portrait

Th e starting point for most nonlinear data analyses is the construction of a 
phase space portrait for a system. Th e state of a system can be described by its 
state variables x1(t), x2(t), …, xd(t). As an example, suppose the two variables 
temperature and pressure are used to describe the thermodynamic state of 
the earth’s mantle as a complex system. Th e d state variables at time t form 
a vector in a d-dimensional space, which is known as the phase space. Th e 
state of a system typically changes with time and the vector in the phase space 
therefore describes a trajectory representing the temporal evolution (i.e., the 
dynamics) of the system. Th e trajectory provides essential information on 
the dynamics of the system, such as whether systems are periodic or chaotic.

In many applications the observation of a natural process does not yield 
all possible state variables, either because they are not known or because 
they cannot be measured. However, due to coupling between the system’s 
components, we can reconstruct a phase space trajectory from a single 
observation ui:

where m is the embedding dimension and τ is the time delay (index based; 
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the real time delay is τ=Δt). Th is reconstruction of the phase space is called 
time delay embedding. Th e reconstruction of the phase space is not exactly the 
same as the original phase space, but its topological properties are preserved 
provided that the embedding dimension is suffi  ciently large. In practice, 
the embedding dimension must be more than twice the dimension of the 
attractor (i.e., m>2d+1). Th e reconstructed trajectory is then suffi  ciently 
accurate for subsequent data analysis.

As an example we now explore the phase space portrait of a harmonic 
oscillator such as an undamped pendulum. We fi rst create the position 
vector x1 and the velocity vector x2

clear

t = 0 : pi/10 : 3*pi;
x1 = sin(t);
x2 = cos(t);

Th e phase space portrait

plot(x1,x2)
xlabel('x_1') 
ylabel('x_2')

is a circle, suggesting an exact recurrence of each state aft er one complete 
cycle (Fig. 5.19). Using the time delay embedding we can reconstruct this 
phase space portrait using only a single observation, e.g., the velocity vector, 
and a time delay of fi ve, which corresponds to a quarter of the period of our 
pendulum.

tau = 5;
plot(x2(1:end-tau),x2(1+tau:end))
xlabel('x_1')
ylabel('x_2')

As we can see, the reconstructed phase space is almost the same as the 
original phase space. Next, we compare this phase space portrait with one 
for a typical nonlinear system, the Lorenz system (Lorenz 1963). Weather 
patterns oft en to not change in a predictable manner. In 1963, Edward 
Lorenz introduced a simple three-dimensional model to describe the 
chaotic behavior exhibited by turbulence in the atmosphere. Th e variables 
defi ning the Lorenz system are the intensity of atmospheric convection, the 
temperature diff erence between ascending and descending currents, and the 
distortion of the vertical temperature profi les from linearity. Small variations 
in the initial conditions can cause dramatically divergent weather patterns, a 
behavior oft en referred to as the butterfl y eff ect. Th e dynamics of the Lorenz 
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Fig. 5.19 a Original, and b reconstructed phase space portrait for a periodic system. Th e 
reconstructed phase space is almost the same as the original phase space. 

system are described by three coupled nonlinear diff erential equations:

Integrating the diff erential equation yields a simple MATLAB code for 
computing the xyz triplets of the Lorenz system. As system parameters 
controlling the chaotic behavior we use s=10, r=28 and b=8/3; the time delay 
is dt=0.01. Th e initial values for the position vectors are x1=8, x2=9 and x3=25. 
Th ese values, however, can be changed to any other values, which of course 
will then change the behavior of the system.

clear

dt = .01; 
s = 10; 
r = 28; 
b = 8/3; 
x1 = 8; x2 = 9; x3 = 25; 
for i = 1 : 5000 
   x1 = x1 + (-s*x1*dt) + (s*x2*dt); 
   x2 = x2 + (r*x1*dt) - (x2*dt) - (x3*x1*dt); 
   x3 = x3 + (-b*x3*dt) + (x1*x2*dt); 
   x(i,:) = [x1 x2 x3];
end

a b
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Typical traces of a variable (such as the fi rst variable) can be viewed by 
plotting x(:,1) over time (Fig. 5.20).

t = 0.01 : 0.01 : 50;
plot(t,x(:,1))
xlabel('Time')
ylabel('Temperature')

We next plot the phase space portrait for the Lorenz system (Fig. 5.21).

plot3(x(:,1),x(:,2),x(:,3))
grid, view(70,30)
xlabel('x_1') 
ylabel('x_2') 
zlabel('x_3')

In contrast to the simple periodic system described above, the trajectories of 
the Lorenz system obviously do not precisely follow the previous course, but 
recur very close to it. Moreover, if we follow two very close segments of the 
trajectory, we see that they run into diff erent regions of the phase space with 
time. Th e trajectory is obviously circling around a fi xed point in the phase 
space and then, aft er a random time period, circling around another. Th e 
curious orbit of the phase states around fi xed points is known as the Lorenz 
attractor.

Th ese observed properties are typical of chaotic systems. While small 
disturbances in such a system cause exponential divergences in its state, the 
system returns approximately to a previous state through a similar course. 
Th e reconstruction of the phase space portrait using only the fi rst state and 
a time delay of six

Fig. 5.20 Th e Lorenz system. As system parameters we use s=10, r=28 and b=8/3;  the time 
delay is dt=0.01.

5.10 NONLINEAR TIME-SERIES ANALYSIS (BY N. MARWAN)  199



Movie 
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tau = 6; 
plot3(x(1:end-2*tau,1),x(1+tau:end-tau,1),x(1+2*tau:end,1)) 
grid, view([100 60])
xlabel('x_1'), ylabel('x_2'), zlabel('x_3')

reveals a similar phase portrait with the two typical ears (Fig. 5.21). Th e 
characteristic properties of chaotic systems can also be observed in this 
reconstruction.

Th e time delay and embedding dimension need to be chosen from a 
previous analysis of the data. Th e delay can be estimated with the help of the 
autocovariance or autocorrelation function. For our example of a periodic 
oscillation,

clear

t = 0 : pi/10 : 3*pi;
x = sin(t);

we compute and plot the autocorrelation function

for i = 1 : length(x) - 2
    r = corrcoef(x(1:end-i),x(1+i:end));
    C(i) = r(1,2);
end

plot(C)

Fig. 5.21 a Th e phase space portrait for the Lorenz system. In contrast to the simple periodic 
system, the trajectories of the Lorenz system obviously do not follow precisely the previous 
course, but recur very close to it. b Th e reconstruction of the phase space portrait using only 
the fi rst state and a time delay of 6 reveals a topologically similar phase portrait to a, with the 
two typical ears.

a b
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xlabel('Delay'), ylabel('Autocorrelation')
grid on

We now choose a delay such that the autocorrelation function for the fi rst 
time period equals zero. In our case this is fi ve, which is the value that we have 
already used in our example of phase space reconstruction. Th e appropriate 
embedding dimension can be estimated using the false nearest neighbors 
method, or more simple, using recurrence plots, which are introduced in the 
next subsection. Th e embedding dimension is gradually increased until the 
majority of the diagonal lines are parallel to the line of identity.

Th e phase space trajectory or its reconstruction is the basis of several 
measures defined in nonlinear data analysis, such as Lyapunov exponents, 
Rényi entropies, or dimensions. Th e book on nonlinear data analysis by Kantz 
and Schreiber (1997) is recommended for more detailed information on 
these methods. Phase space trajectories or their reconstructions are also 
necessary for constructing recurrence plots.

 Recurrence Plots

Th e phase space trajectories of dynamic systems that have more than three 
dimensions are diffi  cult to portray visually. Recurrence plots provide a way 
of analyzing systems with higher dimensions. Th ey can be used, e.g., to 
detect transitions between diff erent regimes, or to detect interrelationships 
or synchronisations between diff erent systems (Marwan 2007). Th e method 
was fi rst introduced by Eckmann and others (1987). Th e recurrence plot is a 
tool that displays the recurrences of states in the phase space through a two-
dimensional plot.

If the distance between two states, i and j , on the trajectory is smaller than 
a given threshold ε, the value of the recurrence matrix R is one; otherwise it 
is zero. Th is analysis is therefore a pairwise test of all states. For N states we 
compute N2 tests. Th e recurrence plot is then the two-dimensional display 
of the N-by-N matrix, where black pixels represent Ri,j=1 and white pixels 
indicate Ri,j=0, with a coordinate system representing two time axes. Such 
recurrence plots can help to fi nd a preliminary characterization of the 
dynamics of a system or to fi nd transitions and interrelationships within a 
system (cf. Fig. 5.22).
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As a fi rst example we load the synthetic time series containing 100 kyr, 40 
kyr and 20 kyr cycles already used in the previous sections. Since the data are 
unevenly spaced, we need to linearly interpolate the data to an evenly-spaced 
time axis.

clear

series1 = load('series1.txt');
t = 0 : 3 : 996;
series1L = interp1(series1(:,1),series1(:,2),t,'linear');

We start with the assumption that the phase space is only one-dimensional. 
Calculating the distances between all points of the phase space trajectory 
produces the distance matrix S.

N = length(series1L);

Fig. 5.22 Recurrence plots representing typical dynamical behaviors: a stationary uncorrelated 
data (white noise), b periodic oscillation, c chaotic data (Roessler system), and d non-
stationary data with abrupt changes.

a

c

b

d
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S = zeros(N, N);

for i = 1 : N,
    S(:,i) = abs(repmat(series1L(i), N, 1 ) - series1L(:));
end

We can now plot the distance matrix

imagesc(t,t,S)
colormap jet
colorbar
xlabel('Time'), ylabel('Time')
axis xy

for the data set, where a colorbar provides a quantitative measure of the 
distances between states (Fig. 5.23). We now apply a threshold ε to the 
distance matrix to generate the black/white recurrence plot (Fig. 5.24).

imagesc(t,t,S<1)
colormap([1 1 1;0 0 0])
xlabel('Time'), ylabel('Time')
axis xy

Both plots reveal periodically recurring patterns. Th e distances between 
these periodically recurring patterns represent the cycles contained in the 
time series. Th e most signifi cant periodic patterns have periods of 200 
and 100 kyrs. Th e 200 kyr period is the most signifi cant because of the 
superposition of the 100 and 40 kyr cycles, which are common divisors of 
200 kyrs. Moreover, there are smaller substructures within the recurrence 
plot that have periods of 40 and 20 kyrs.

As a second example we now apply the method of recurrence plots to the 
Lorenz system. We again generate xyz triplets from the coupled diff erential 
equations.

clear

dt = .01; 
s = 10; 
r = 28; 
b = 8/3; 
x1 = 8; x2 = 9; x3 = 25; 
for i = 1 : 5000 
   x1 = x1 + (-s*x1*dt) + (s*x2*dt); 
   x2 = x2 + (r*x1*dt) - (x2*dt) - (x3*x1*dt); 
   x3 = x3 + (-b*x3*dt) + (x1*x2*dt); 
   x(i,:) = [x1 x2 x3];
end

We then choose the resampled fi rst component of this system and reconstruct 
a phase space trajectory by using an embedding of m=3 and τ=2.
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Fig. 5.23 Display of the distance matrix from the synthetic data, providing a quantitative 
measure for the distances between states at particular times; blue colors indicate small 
distances and red colors represent large distances.

t = 0.01 : 0.05 : 50;
y = x(1:5:5000,1);
m = 3; tau = 2;

N = length(y);
N2 = N - tau*(m - 1);

Th e original data series had a length of 5,000 data points, reduced to 1,000 
data points (equivalent to 50 seconds), but because of the time delay method 
the reconstructed phase space trajectory has a length of 996 data points. We 
can create the phase space trajectory with

for mi = 1:m
   xe(:,mi) = y([1:N2] + tau*(mi-1));
end

We can accelerate the pair-wise test between each pairs of points on the 
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Fig. 5.24 Th e recurrence plot for the synthetic data derived from the distance matrix, as 
shown in Fig. 5.23, aft er applying a threshold of ε=1.

trajectory with a fully vectorized algorithm supported by MATLAB. For this 
we need to transfer the trajectory vector into two test vectors whose element-
wise test will provide the pair-wise test of the trajectory vector:

x1 = repmat(xe,N2,1);
x2 = reshape(repmat(xe(:),1,N2)',N2*N2,m);

From these vectors we calculate the recurrence plot using the Euclidean norm 
without any FOR loop (see Section 9.4 for details on Euclidean distances).

S = sqrt(sum((x1 - x2).^ 2,2 ));
S = reshape(S,N2,N2);

imagesc(t(1:N2),t(1:N2),S<10)
colormap([1 1 1;0 0 0])
xlabel('Time'), ylabel('Time')
axis xy

Th is recurrence plot reveals many short diagonal lines (Fig. 5.25). Th ese 
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Fig. 5.25 Th e recurrence plot for the Lorenz system using a threshold of ε=2. Th e regions with 
regular diagonal lines reveal unstable periodic orbits, typical of chaotic systems.

lines represent periods of time during which the phase space trajectory runs 
parallel to earlier or later sequences in this trajectory, i.e., periods of times 
during which the states and dynamics were similar. Th e distances between 
these diagonal lines represent the periods of the cycles, which vary and are 
not constant, in contrast to those for a harmonic oscillation (Fig. 5.22).

 Recurrence Quantifi cation

Th e structure of recurrence plots can also be described by a suite of 
quantitative measures. Several measures are based on the distribution of 
the lengths of diagonal or vertical lines, as well as on the local proximity 
confi guration. Th ese measures can be used to trace hidden transitions within 
a process. As an example we will consider two measures: the recurrence 
rate and the transitivity coeffi  cient. Th e recurrence rate is the density of 
points in the recurrence plot and corresponds to the recurrence probability 
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Fig. 5.26 Time series of the synthetic data used in the example of quantitative measures of 
recurrence plots.

of the system. Th e transitivity coeffi  cient has its roots in graph theory and 
characterizes the regularity or complexity of the system.

We load the synthetic time from the fi le series3.txt, interpolate the data 
to an annual time axis, and reconstruct its phase space trajectory using an 
embedding dimension of 5 and a time delay of 3 (Fig. 5.26).

clear

series3 = load('series3.txt');

t = 0 : 1 : 996;
series3L = interp1(series3(:,1),series3(:,2),t,'linear');
plot(t,series3L)
xlabel('Time')

N = length(series3L);
tau = 3; m=5;
N2 = N - tau*(m - 1);

xe = zeros(N2,m);
for mi = 1:m
   xe(:,mi) = series3L([1:N2] + tau*(mi-1));
end

Using the vectorized approach we calculate the recurrence plot by applying 
a threshold of 1.2 to the distance matrix (Fig. 5.27).

x1 = repmat(xe,N2,1);
x2 = reshape(repmat(xe(:),1,N2)',N2*N2,m);

S = sqrt(sum((x1 - x2).^ 2,2));
S = reshape(S,N2,N2);
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R = S<1.2;

imagesc(t(1:N2),t(1:N2),R)
colormap([1 1 1;0 0 0])
xlabel('Time'), ylabel('Time')
axis square xy

To calculate the recurrence rate we can simply compute the mean of the 
matrix R

RR = mean(R(:))

which yields

RR = 
  0.1399

Th e probability that the system returns to a randomly selected previous state 
is therefore about 14%.

Th e transitivity coeffi  cient is a graph-theoretical measure of the probability 
that three connected network nodes (triples) are completely interconnected, 

Fig. 5.27 Recurrence plot for the synthetic data in Fig. 5.26, using an embedding of m=5 and 
τ = 3 and applying a threshold of ε=1.2.
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i.e., that they form a closed triangle:

Th is measure can be intuitively understood with respect to recurrences in 
the phase space. We identify a recurrence of states by a network link: close 
points on the phase space trajectory are connected by a link. Th ree connected 
points form a triple, but only if all three points recur closely to each other, 
thus forming a triangle. Such a triangular confi guration will remain along 
the phase space trajectory if the dynamic is very regular (recurring states 
remain recurring over a long period of time). However, if the dynamic is 
chaotic, then parts of the phase space trajectory that were initially close 
will subsequently diverge and the triangular confi guration will break down, 
although the corresponding triple nodes might remain interconnected for 
some time. Th e probability of fi nding triangles is therefore higher for regular 
dynamics but lower for chaotic dynamics. Th is explanation is, of course, 
rather simplifi ed but a theoretically substantiated explanation can be found 
in Donner et al. (2011). 

In order to calculate the probability that triples also form triangles we need 
to compute the number of connected triples and the number of triangles, 
which can be achieved directly from the recurrence plot but excluding the 
main diagonal.

A = R - eye(size(R));

Th e number of triangles and triples is then 

numTripl = sum(sum(A * A));
numTria = trace(A * A * A);

and fi nally, the transitivity coeffi  cient is the fraction

Trans = numTria/numTripl

which yields

Trans = 
   0.5930

Th is number means that the system does not have regular dynamics (which 
would yield a transitivity coeffi  cient close to one).

Changes in the dynamics, such as transition points and regime changes, 
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Fig. 5.28 Recurrence rate and transitivity coeffi  cient for the synthetic data in Fig. 5.26, using 
a moving window of 150 data points and an overlap of 20%.

are oft en of interest. Recurrence analysis can be used to detect diff erent types 
of such transitions. Applying moving windows along the main diagonal of 
the recurrence plot, we divide it into sub-recurrence plots and calculate the 
recurrence measures of these sub-plots. In our example we choose a moving 
window length of 150 and an overlap of 20%

w = 150;

We then calculate the recurrence rate and transitivity coeffi  cient within these 
moving windows (Fig. 5.28).

w = 150;
Trans = zeros(length(R)-w,1);
RR = zeros(length(R)-w,1);
for i = 1:w/5:length(R)-w
   subR = R(i:i+w,i:i+w);
   RR(i) = mean(subR(:));
   subA = A(i:i+w,i:i+w);
   numTripl = sum(sum(subA * subA));
   numClosTria = trace(subA * subA * subA);
   Trans(i) = numClosTria/numTripl;
end

plot(t(round(w/2) + (1:w/5:length(RR))), RR(1:w/5:end),... 
  t(round(w/2) + (1:w/5:length(RR))), Trans(1:w/5:end))
xlabel('Time')
legend('recurrence rate','transitivity coeff',4)

Th e results suggest slight changes in the dynamics with respect to recurrence 
probability (due to the visible amplitude variations in the time series) and 
regularity. For a reliable interpretation of the variations in the recurrence 
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measures, a statistical test should be applied (Marwan 2011). Other more 
complex measures that quantify other aspects of the dynamics (e.g., 
predictability, or laminar phases) are included in the Cross Recurrence Plot 
Toolbox for MATLAB, available from

http://tocsy.pik-potsdam.de/CRPtoolbox/

Bivariate and multivariate extensions of recurrence plots allow nonlinear 
correlation tests and synchronization analyses to be carried out. A detailed 
introduction to methods based on recurrence plots can be found on the 
following web site:

http://www.recurrence-plot.tk

Th e analysis of recurrence plots has already been applied to many problems 
in earth sciences. Th e comparison of the dynamics of modern precipitation 
data with paleo-rainfall data inferred from annual-layered lake sediments in 
the northwestern Argentine Andes provides a good example of such analyses 
(Marwan et al. 2003). In this instance the recurrence plot method was applied 
to red-color intensity transects across varved lake sediments that were 
approximately 30 kyrs old (Section 8.7). Comparing the recurrence plots 
from the sediments with those from modern precipitation data revealed that 
the reddish layers document the more intense rainy seasons that occurred 
during La Niña years. Th e application of linear techniques was, however, 
not able to link the increased fl ux of reddish clays with either the El Niño or 
La Niña phase of the El Niño/Southern Oscillation. Moreover, recurrence 
plots helped to prove the hypothesis that longer rainy seasons, enhanced 
precipitation, and the stronger infl uence of the El Niño/Southern Oscillation 
caused an increase in the number of landslides 30 kyrs ago (Marwan et al. 
2003, Trauth et al. 2003).
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 6.1 Introduction

Signal processing involves techniques for manipulating a signal in order to 
minimize the eff ects of noise, to correct all kinds of unwanted distortions, 
and to separate out various components of interest. Most signal processing 
algorithms include the design and realization of fi lters. A fi lter can be 
described as a system that transforms signals. System theory provides the 
mathematical background for fi lter design and realization. A fi lter has an 
input and an output, with the output signal y(t) being modifi ed with respect 
to the input signal x(t) (Fig. 6.1). Th e signal transformation can be carried 
out through a mathematical process known as convolution or, if fi lters are 
involved, as fi ltering.

Th is chapter deals with the design and realization of digital fi lters with 
the help of a computer. Many natural processes, however, resemble 
analog fi lters that act over a range of spatial dimensions. A single rainfall 
event is not recorded in lake sediments because short and low-amplitude 
events are smeared over a longer time span. Bioturbation also introduces 
serious distortions, for instance in deep-sea sediment records. In addition 
to such natural fi lters, the fi eld collection and sampling of geological data 

 6 Signal Processing

 Trace fossils several centimeters long in 
Cambrian sediments exposed in the Äleklinta 
cliff  on the island of Öland, Sweden. Such 
benthic mixing (or bioturbation) causes 
signifi cant distortions in sedimentary records 
as it changes both the amplitude and the 
phase of environmental signals. In order to 
reconstruct the original signal such records 
need to be deconvolved, i.e., the eff ect of the 
bioturbation fi lter needs to be reversed.

� Springer-Verlag Berlin Heidelberg 2015
M.H. Trauth, MATLAB� Recipes for Earth Sciences,
DOI 10.1007/978-3-662-46244-7_6

215



alters and smoothes the data with respect to its original form. For example 
a fi nite sized sediment sample is integrated over a certain period of time 
and therefore smoothes the natural signal. Similarly, the measurement of 
magnetic susceptibility in a sediment core with the help of a loop sensor 
introduces signifi cant smoothing since the loop response is integrated over 
a section of the core.

Th e characteristics of these natural fi lters are oft en diffi  cult to determine, 
whereas numerical fi lters are designed with well-defi ned characteristics. In 
addition, artifi cial fi lters are time invariant in most cases, whereas natural 
fi lters, such as mixing within the water body of a lake or bioturbation at the 
water-sediment interface, may vary with time. An easy way to describe or 
predict the eff ect of a fi lter is to explore the fi lter output from a simple input 
signal as a sine wave, a square wave, a sawtooth function, a ramp function, 
or a step function. Although there is an endless variety of such input signals, 
most systems or fi lters are described by their impulse response, i.e., the 
output resulting from the input of a unit impulse.

Th is chapter starts with a technical section (Section 6.2) on generating 
periodic signals, trends, and noise, following on from Section 5.2 of the 
previous chapter. Section 6.3 then considers linear time-invariant systems, 
providing the mathematical background for fi lters. Th e succeeding sections 
(6.4 to 6.9) deal with the design, the realization, and the application of linear 
time-invariant fi lters. Section 6.10 then considers the use of adaptive fi lters 
originally developed for use in the telecommunication industry. Adaptive 
fi lters automatically extract noise-free signals from duplicate measurements 
on the same object. Such fi lters can be used in a large number of applications, 
for example to remove noise from duplicate paleoceanographic time series, 
or to improve the signal-to-noise ratio of parallel color-intensity transects 
across varved lake sediments (see Chapter 5, Fig. 5.1). Adaptive fi lters 
are also widely used in geophysics for noise canceling. We use the Signal 

Fig. 6.1 Schematic of a linear time-invariant (LTI) system. Th e input signal is transformed 
into an output signal.
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Processing Toolbox (MathWorks 2014), which contains all the necessary 
routines for time-series analysis.

 6.2 Generating Signals

MATLAB provides numerous tools for generating basic signals that can be 
used to illustrate the eff ects of fi lters. In Chapter 5 we generated a signal by 
adding together three sine waves with diff erent amplitudes and periods. In 
the following example the time vector is transposed in order to generate 
column vectors.

clear

t = (1:100)';
x = 2*sin(2*pi*t/50) + sin(2*pi*t/10) + 0.5*sin(2*pi*t/5);

plot(t,x), axis([0 100 -4 4])

Frequency-selective fi lters are very common in earth sciences. Th ey are used 
to remove specifi c frequency bands from the data. As an example we can 
design a fi lter to suppress that portion of the signal that has a periodicity 
of τ=10, leaving the other two cycles unaff ected. Th e eff ects of such fi lters 
on simple periodic signals can also be used to predict signal distortions of 
natural fi lters.

A step function is another basic input signal that can be used to explore 
fi lter characteristics. It describes the transition from a value of one towards 
a value of zero at a specifi c time. Th e function stairs draws a stairstep graph 
of the elements of x.

t = (1:100)';
x = [ones(50,1);zeros(50,1)];

stairs(t,x), axis([0 100 -2 2])

Th is signal can be used to study the eff ects of a fi lter on a sudden transition. 
An abrupt climate change could be regarded as an example. Most natural 
fi lters tend to smooth such a transition and smear it over a longer time period.

A unit impulse is a third important signal type that we will use in the 
following examples. Th is signal equals zero at all times except at a single 
data point, where it equals one. Th e function stem plots the data sequence x 
as stems from the t-axis, using circles for the data values.

t = (1:100)';
x = [zeros(49,1);1;zeros(50,1)];

stem(t,x), axis([0 100 -4 4])
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Th e unit impulse is the most popular synthetic signal used to study the 
performance of a fi lter. Th e output of the fi lter, i.e., the impulse response, 
describes the characteristics of a fi lter very well. Moreover, the output of a 
linear time-invariant fi lter can be described by the superposition of impulse 
responses that have been scaled by multiplying the output of the fi lter by the 
amplitude of the input signal.

 6.3 Linear Time-Invariant Systems

Filters can be described as systems with an input x(t) and output y(t). We will 
therefore fi rst describe the characteristics of systems in general before then 
considering fi lters. Important characteristics of a system are

• Continuity – A system with continuous inputs x(t) and outputs y(t) is a 
continuous system. Most natural systems are continuous. However, aft er 
sampling natural signals we obtain discrete data series and model these 
natural systems as discrete systems, with discrete inputs and outputs.

• Linearity – For linear systems, the output y(t) of the linear combination of 
several input signals xi(t), where

 

 is the same as the linear combination of the outputs yi(t):

 

 Important properties of linearity are scaling and additivity (superposition), 
which allow the input and output to be multiplied by a constant ki, either 
before or aft er transformation. Superposition allows additive components 
of the input to be extracted and transformed separately. Fortunately, 
many natural systems follow a linear pattern of behavior. Complex linear 
signals such as additive harmonic components can be separated out and 
transformed independently. Milankovitch cycles provide an example of 
linear superposition in paleoclimate records, although there is an ongoing 
debate about the validity of this theory. Numerous nonlinear systems 
also exist in nature, which do not possess the properties of scaling and 
additivity. An example of a linear system is

x = (1:100)';
y = 2*x;
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plot(x,y)

 where x is the input signal and y is the output signal. An example of a 
nonlinear system is

x = (-100:100)';
y = x.^2;

plot(x,y)

• Time invariance – Th e system output y(t) does not change as a result of a 
delay in the input x(t+i): the system characteristics are constant with time. 
Unfortunately, natural systems oft en change their characteristics with 
time. For instance, benthic mixing or bioturbation depends on various 
environmental parameters such as nutrient supply, and the system’s 
properties consequently vary signifi cantly with time. In such a case it is 
diffi  cult to determine the actual input of the system from the output, e.g., 
to extract the actual climate signal from a bioturbated sedimentary record.

• Invertibility – An invertible system is a system in which the original input 
signal x(t) can be reproduced from the system’s output y(t). Th is is an 
important property if unwanted signal distortions are to be corrected, in 
which case the known system is inverted and the output then used to 
reconstruct the undisturbed input. For example, a core logger measuring 
magnetic susceptibility with a loop sensor integrates the signal over a 
specifi c core interval, with the sensitivity highest at the position of the 
loop and decreasing down-core and up-core. Th is system is invertible, 
i.e., we can compute the input signal x(t) from the output signal y(t) by 
inverting the system. Th e inverse of the above linear system is

x = (1:100)';
y = 0.5*x;

plot(x,y)

 where x is the input signal and y is the output signal. A nonlinear system

x = (-100:100)';
y = x.^2;

plot(x,y)

 is not invertible. Since this system yields equal responses for diff erent 
inputs, such as y=4 for inputs x=–2 and x=+2, the input x cannot be 
reconstructed from the output y. A similar situation can also occur in 
linear systems, such as

6.3 LINEAR TIME-INVARIANT SYSTEMS  219



x = (1:100)';
y = zeros(size(x));

plot(x,y)

 Th e output y is zero for all inputs x, and the output therefore does not 
contain any information about the input.

• Causality – Th e system response only depends on present and past inputs 
x(0), x(–1), …, whereas future inputs x(+1), x(+2), … have no eff ect on 
the output y(0). All real-time systems, such as telecommunication systems, 
must be causal since they cannot have future inputs available to them. All 
systems and fi lters in MATLAB are indexed as causal. In earth sciences, 
however, numerous non-causal fi lters are used. Th e fi ltering of images 
and signals extracted from sediment cores are examples where the future 
inputs are available at the time of fi ltering. Output signals have to be 
delayed aft er fi ltering in order to compensate for the diff erences between 
causal and non-causal indexing.

• Stability – A system is stable if the output y(t) of a fi nite input x(t) is 
also fi nite. Stability is critical in fi lter design, where fi lters oft en have 
the disadvantage of provoking divergent outputs. In such cases, the fi lter 
design has to be revised and improved.

Linear time-invariant (LTI) systems are very popular as a special type of 
fi lter. Such systems have all the advantages that have been described above, 
as well as being easy to design and use in many applications. Th e following 
Sections 6.4 to 6.9 describe the design, realization and application of LTI-
type fi lters to extract specifi c frequency components from signals. Th ese 
fi lters are mainly used to reduce the noise level in signals. Unfortunately, 
however, many natural systems do not behave as LTI systems in that the 
signal-to-noise ratio oft en varies with time. Section 6.10 describes the 
application of adaptive fi lters that automatically adjust their characteristics 
in a time-variable environment.

 6.4 Convolution, Deconvolution and Filtering

Convolution is a mathematical description of a system transformation. 
Filtering is an application of the convolution process. A running mean of 
length fi ve provides an example of such a simple fi lter. Th e output of an 
arbitrary input signal is
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Th e output y(t) is simply the average of the fi ve input values x(t–2), x(t–1), 
x(t), x(t+1) and x(t+2). In other words, all the fi ve consecutive input values 
are multiplied by a factor of 1/5 and summed to form y(t). In this example all 
input values are multiplied by the same factor, i.e., they are equally weighted. 
Th e fi ve factors used in the above operation are therefore called fi lter weights 
bk. Th e fi lter can be represented by the vector

b = [0.2 0.2 0.2 0.2 0.2]

consisting of the fi ve identical fi lter weights. Since this fi lter is symmetric, 
it does not shift  the signal on the time axis: the only function of this fi lter 
is to smooth the signal. Running means of a given length are oft en used to 
smooth signals, mainly for cosmetic reasons. Modern spreadsheet soft ware 
usually contains running means as a function for smoothing data series. Th e 
eff ectiveness of a smoothing fi lter increases with the fi lter length.

Th e weights that a fi lter of arbitrary length uses can be varied. As an 
example let us consider an asymmetric fi lter of fi ve weights.

b = [0.05 0.08 0.14 0.26 0.47]

Th e sum of all of the fi lter weights is one and therefore it does not introduce 
any additional variance into the signal. However, since it is highly asymmetric, 
it shift s the signal along the time axis, i.e., it introduces a phase shift .

Th e general mathematical representation of the fi ltering process is the 
convolution:

where bk is the vector of fi lter weights, and N1+N2 is the order of the fi lter, 
which is the length of the fi lter reduced by one. Filters with fi ve weights, as in 
our example, have an order of four. In contrast to this format, MATLAB uses 
the engineering standard for indexing fi lters, i.e., fi lters are always defi ned as 
causal. Th e convolution used by MATLAB is therefore
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where N is the order of the fi lter. A number of the frequency-domain tools 
provided by MATLAB cannot simply be applied to non-causal fi lters that 
have been designed for applications in earth sciences. Hence, it is common 
to carry out phase corrections in order to simulate non-causality. For 
example frequency-selective fi lters, as will be introduced in Section 6.9, can 
be applied using the function filtfilt, which provides zero-phase forward 
and reverse fi ltering.

Th e functions conv and filter that provide digital fi ltering in MATLAB 
are best illustrated in terms of a simple running mean. Th e n elements of 
the vector x(t1), x(t2), x(t3), …, x(tn) are replaced by the arithmetic means of 
subsets of the input vector. For instance, a running mean over three elements 
computes the mean of inputs x(tn–1), x(tn), x(tn+1) to obtain the output y(tn). 
We can illustrate this simply by generating a random signal

clear

t = (1:100)';
rng(0)
x1 = randn(100,1);

designing a fi lter that averages three data points of the input signal

b1 = [1 1 1]/3;

and convolving the input vector with the fi lter

y1 = conv(x1,b1);

Th e elements of b1 are the weights of the fi lter. In our example all fi lter weights 
are the same and equal to 1/3. Note that the conv function yields a vector that 
has a length of n+m–1, where m is the length of the fi lter.

m1 = length(b1);

We can explore the contents of our workspace to check the length of the 
input and output of conv. Typing

whos

yields

Name        Size            Bytes  Class     Attributes
b1          1x3                24  double
m1          1x1                 8  double
t         100x1               800  double
x1        100x1               800  double
y1        102x1               816  double
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Here, we see that the actual input series x1 has a length of 100 data points, 
whereas the output y1 has two additional elements. Convolution generally 
introduces (m–1)/2 data points at each end of the data series. To compare 
input and output signals, we therefore clip the output signal at either end.

y1 = y1(2:101,1);

A more general way to correct the phase shift s of conv is

y1 = y1(1+(m1-1)/2:end-(m1-1)/2,1);

which of course only works for an odd number of fi lter weights. An alternative 
is to use same for the shape parameter in conv(a,b,shape) in order to return 
the most central 100 data points of the convolution that have the same size 
as the input signal x1.

y1 = conv(x1,b1,'same');

We can then plot both input and output signals for comparison, using legend 
to display a legend for the plot.

plot(t,x1,'b-',t,y1,'r-')
legend('x1(t)','y1(t)')

Th is plot illustrates the eff ect that the running mean has on the original input 
series. Th e output y1 is signifi cantly smoother than the input signal x1. If we 
increase the length of the fi lter we obtain an even smoother signal output y2.

b2 = [1 1 1 1 1]/5;
m2 = length(b2);

y2 = conv(x1,b2,'same');

plot(t,x1,'b-',t,y1,'r-',t,y2,'g-')
legend('x1(t)','y1(t)','y2(t)')

Th e reverse of convolution is deconvolution, which is oft en used in signal 
processing to reverse the eff ects of a fi lter. We use the fi rst example of a 
random signal x1, design a fi lter that averages three data points of the input 
signal, and convolve the input vector with the fi lter, which yields the output 
y1.

clear

t = (1:100)';
rng(0)
x1 = randn(100,1);
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b1 = [1 1 1]/3;
y1 = conv(x1,b1);

We use deconv to reverse the convolution and compare the deconvolution 
result x1d with the original signal x1.

x1d = deconv(y1,b1);

plot(t,x1,'b:',t,x1d,'r')

As we can see, there is no diff erence. Th ere is a diff erence, however, if we add 
noise to the signal and deconvolve the result by typing

y1n = y1 + 0.05*randn(size(y1));
x1nd = deconv(y1n,b1);

plot(t,x1,'b:',t,x1nd,'r')

Th e next section provides a broader defi nition of fi lters.

 6.5 Comparing Functions for Filtering Data Series

Th e fi lters described in the previous section were very simple examples of 
nonrecursive fi lters, in which the fi lter output y(t) depends only on the fi lter 
input x(t) and the fi lter weights bk. Prior to introducing a broader description 
of linear time-invariant fi lters, we replace the function conv by filter, which 
can also be used for recursive fi lters. In this case, the output y(tn) depends not 
only on the fi lter input x(t), but also on previous elements of the output y(tn–1), 
y(tn–2), y(tn–3) and so on (Section 6.6). We will fi rst use conv for nonrecursive 
fi lters in order to compare the results of conv and filter.

clear

t = (1:100)';
rng(0)
x3 = randn(100,1);

We design a fi lter that averages fi ve data points of the input signal.

b3 = [1 1 1 1 1]/5;
m3 = length(b3);

Th e input signal can be convolved using the function conv.

y3 = conv(x3,b3,'same');

We next follow a similar procedure with the function filter and compare the 
result with that obtained using the function conv. In contrast to the function 
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conv without using same, the function filter yields an output vector with the 
same length as the input vector. Unfortunately, the function filter assumes 
that the fi lter is causal. Th e fi lter weights are indexed n, n–1, n–2 and so on, 
and therefore no future elements of the input vector, such as x(n+1), x(n+2) 
etc. are needed to compute the output y(n). Th is is of great importance in 
electrical engineering, the classic fi eld of MATLAB application, where fi lters 
are oft en applied in real time. In earth sciences, however, the entire signal is, 
in most applications, available at the time of processing the data. Th e data 
series is fi ltered by

y4 = filter(b3,1,x3);

and the phase correction is then carried out using

y4 = y4(1+(m3-1)/2:end-(m3-1)/2,1);
y4(end+1:end+m3-1,1) = zeros(m3-1,1);

which works only for an odd number of fi lter weights. Th is command simply 
shift s the output by (m–1)/3 towards the lower end of the t-axis, and then 
fi lls the data to the end with zeros. Comparing the ends of both outputs 
illustrates the eff ect of this correction, where

y3(1:5,1)
y4(1:5,1)

yields

ans =
    0.0225
    0.1950
    0.2587
   -0.1103
   -0.5638

ans =
    0.0225
    0.1950
    0.2587
   -0.1103
   -0.5638

Th is was the lower end of the output. We can see that both vectors y3 and y4 
contain the same elements. We now explore the upper end of the data vector, 
where

y3(end-5:end,1)
y4(end-5:end,1)
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yields the output

ans =
    0.5491
    0.0181
   -0.5868
   -0.8124
   -0.8498
   -0.8333

ans =
    0.5491
    0.0181
         0
         0
         0
         0

Th e vectors are identical up to element y(end–m3+1), but then the second 
vector y4 contains zeros instead of true data values. Plotting the results with

subplot(2,1,1), plot(t,x3,'b-',t,y3,'r-')
subplot(2,1,2), plot(t,x3,'b-',t,y4,'r-')

or in one single plot,

plot(t,x3,'b-',t,y3,'g-',t,y4,'r-')

shows that the results from using conv are identical with those from using 
filter, except at the upper end of the data vector. Th ese observations are 
important for our next steps in signal processing, particularly if we are 
interested in leads and lags between various components of signals.

 6.6 Recursive and Nonrecursive Filters

We now expand the nonrecursive fi lters by a recursive component, such that 
the output y(tn) depends not only on the fi lter input x(t), but also on previous 
output values y(tn–1), y(tn–2), y(tn–3), and so on. Th is fi lter requires not only 
the nonrecursive fi lter weights bi, but also the recursive fi lters weights ai (Fig. 
6.2), and can be described by the diff erence equation:

Although this is a non-causal version of the diff erence equation, MATLAB 
again uses the causal indexing,
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Fig. 6.2 Schematic of a linear time-invariant fi lter with an input x(t) and an output y(t). Th e 
fi lter is characterized by its weights ai and bi. and the delay elements T. Nonrecursive fi lters 
require only nonrecursive weights bi whereas recursive fi lters also require the recursive fi lter 
weights ai.

with the known problems in the design of zero-phase fi lters. Th e larger of the 
two quantities M, and N1+N2 or N, is the order of the fi lter.

We use the same synthetic input signal x5 as in the previous example to 
illustrate the performance of a recursive fi lter.

clear

t = (1:100)';
rng(0)
x5 = randn(100,1);

Th is input is then fi ltered using a recursive fi lter with a set of weights a5 and 
b5,

b5 = [0.0048    0.0193    0.0289    0.0193    0.0048];
a5 = [1.0000   -2.3695    2.3140   -1.0547    0.1874];

m5 = length(b5);

y5 = filter(b5,a5,x5);

and the output y5 corrected for the phase

y5 = y5(1+(m5-1)/2:end-(m5-1)/2,1);
y5(end+1:end+m5-1,1) = zeros(m5-1,1);

We can now plot the results.

plot(t,x5,'b-',t,y5,'r-')
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a b

Th is fi lter clearly changes the signal dramatically. Th e output contains only 
low-frequency components and all higher frequencies have been eliminated. 
A comparison of the periodograms for the input and the output reveals that 
all frequencies above f=0.1 (corresponding to a period of τ=10) have been 
suppressed.

[Pxx,f] = periodogram(x5,[],128,1);
[Pyy,f] = periodogram(y5,[],128,1);

plot(f,Pxx,f,Pyy)

We have now designed a frequency-selective fi lter, i.e., a fi lter that eliminates 
certain frequencies while leaving other frequencies relatively unaff ected. Th e 
next section introduces tools that are used to characterize a fi lter in the time 
and frequency domains and to predict the eff ect of a frequency-selective 
fi lter on arbitrary signals.

 6.7 Impulse Response

Th e impulse response is a very convenient way of describing the characteristics 
of a fi lter (Fig. 6.3). Th e impulse response h is useful in LTI systems where 
the convolution of the input signal x(t) with h is used to obtain the output 
signal y(t).

Fig. 6.3 Transformation of a a unit impulse to compute b the impulse response of a system. 
Th e impulse response is oft en used to describe and predict the performance of a fi lter.
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It can be shown that the values of the impulse response h are identical to the 
fi lter weights in nonrecursive fi lters, but not in recursive fi lters. Th e above 
convolution equation is oft en written in a short form:

In many examples convolution in the time domain is replaced by a simple 
multiplication of the Fourier transforms H(f) and X(f) in the frequency 
domain.

Th e output signal y(t) in the time domain is then obtained by a reverse Fourier 
transform of Y(f). Signals are oft en convolved in the frequency domain rather 
than the time domain because of the relative simplicity of the multiplication. 
However, the Fourier transformation itself introduces a number of artifacts 
and distortions, and convolution in the frequency domain is therefore not 
without problems. In the following examples we apply the convolution only 
in the time domain.

First, we generate a unit impulse:

clear

t = (0:20)';
x6 = [zeros(10,1);1;zeros(10,1)];

stem(t,x6), axis([0 20 -4 4])

Th e function stem plots the data sequence x6 as stems from the x-axis, 
terminated with circles for the data value. Th is can be a better way to plot 
digital data than using the continuous lines generated by plot. We now 
feed this into the fi lter and explore the output y6. Th e impulse response is 
identical to the weights of nonrecursive fi lters.

b6 = [1 1 1 1 1]/5;
m6 = length(b6);

y6 = filter(b6,1,x6);

We again correct this for the phase shift  of the function filter, although this 
might not be important in this example.

y6 = y6(1+(m6-1)/2:end-(m6-1)/2,1);
y6(end+1:end+m6-1,1) = zeros(m6-1,1);
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We obtain an output vector y6 of the same length and phase as the input 
vector x6. We now plot the results for comparison.

stem(t,x6)
hold on
stem(t,y6,'filled','r')
axis([0 20 -2 2])
hold off

In contrast to plot, the function stem accepts only one data series and the 
second series y6 is therefore overlaid on the same plot using the function 
hold. Th e eff ect of the fi lter is clearly seen on the plot: it averages the unit 
impulse over a length of fi ve elements. Furthermore, the values of the output 
y6 equal the fi lter weights of a6; in our example these values are 0.2 for all 
elements of a6 and y6.

For a recursive fi lter, however, the output y6 does not match the fi lter 
weights. Once again, we fi rst generate an impulse:

clear

t = (0:20)';
x7 = [zeros(10,1);1;zeros(10,1)];

An arbitrary recursive fi lter with weights of a7 and b7 is then designed.

b7 = [0.0048    0.0193    0.0289    0.0193    0.0048];
a7 = [1.0000   -2.3695    2.3140   -1.0547    0.1874];

m7 = length(b7);

y7 = filter(b7,a7,x7);

y7 = y7(1+(m7-1)/2:end-(m7-1)/2,1);
y7(end+1:end+m7-1,1) = zeros(m7-1,1);

Th e stem plot of the input x2 and the output y2 shows an interesting impulse 
response:

stem(t,x7)
hold on
stem(t,y7,'filled','r')
axis([0 20 -2 2])
hold off

Th e signal is smeared over a broader area, and is also shift ed towards the 
right. Th is fi lter therefore not only aff ects the amplitude of the signal, but 
also shift s the signal towards lower or higher values. Such phase shift s are 
usually unwanted characteristics of fi lters, although in some applications 
shift s along the time axis might be of particular interest.
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Fig. 6.4 a Magnitude and b phase response of a running mean over eleven elements.

a b

 6.8 Frequency Response

We next investigate the frequency response of a fi lter, i.e., the eff ect of a fi lter 
on the amplitude and phase of a signal (Fig. 6.4). Th e frequency response 
H(f) of a fi lter is the Fourier transform of the impulse response h(t). Th e 
absolute value of the complex frequency response H(f) is the magnitude 
response of the fi lter A(f).

Th e argument of the complex frequency response H(f) is the phase response 
of the fi lter.

Since MATLAB fi lters are all causal it is diffi  cult to explore the phase of 
signals using the corresponding functions included in the Signal Processing 
Toolbox. Th e user’s guide for this toolbox simply recommends that the fi lter 
output be delayed in the time domain by a fi xed number of samples, as we 
have done in the previous examples. As another example a sine wave with a 
period of 20 and an amplitude of 2 is used as an input signal.

clear

t = (1:100)';
x8 = 2*sin(2*pi*t/20);
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A running mean over eleven elements is designed and this fi lter applied to 
the input signal x8.

b8 = ones(1,11)/11;
m8 = length(b8);

y8 = filter(b8,1,x8);

Th e phase of the output y8 is corrected for causal indexing.

y8 = y8(1+(m8-1)/2:end-(m8-1)/2,1);
y8(end+1:end+m8-1,1) = zeros(m8-1,1);

Both input and output of the fi lter are plotted.

plot(t,x8,t,y8)

Th e fi lter clearly reduces the amplitude of the sine wave. Whereas the input 
signal x8 has an amplitude of 2, the output y8 has an amplitude of

max(y8)

ans =
    1.1480

Th e fi lter reduces the amplitude of a sine with a period of 20 by

1-max(y8(40:60))/2

ans =
    0.4260

i.e., by approximately 43%. Th e elements 40 to 60 are used for computing the 
maximum value of y8, in order to avoid edge eff ects. Nevertheless, the fi lter 
does not aff ect the phase of the sine wave, i.e., both input and output are in 
phase.

Th e same fi lter, however, has a diff erent impact on a diff erent input signal. 
Let us design another sine wave x9, with a similar amplitude but with a 
diff erent period of 15.

clear

t = (1:100)';
x9 = 2*sin(2*pi*t/15);

Applying a similar fi lter and correcting the output y9 for the phase shift  of the 
function filter yields

b9 = ones(1,11)/11;
m9 = length(b9);
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y9 = filter(b9,1,x9);

y9 = y9(1+(m9-1)/2:end-(m9-1)/2,1);
y9(end+1:end+m9-1,1) = zeros(m9-1,1);

Th e output y9 is again in phase with the input x9, but the amplitude is 
dramatically reduced compared to that of the input.

plot(t,x9,t,y9)

1-max(y9(40:60))/2

ans =
    0.6768

Th e running mean over eleven elements reduces the amplitude of this signal 
by ~68%. More generally, the fi lter response clearly depends on the frequency 
of the input. Th e frequency components of a more complex signal containing 
multiple periodicities are aff ected in a diff erent way. Th e frequency response 
of a fi lter

clear

b10 = ones(1,11)/11;

can be computed using the function freqz.

[h,w] = freqz(b10,1,512);

Th e function freqz returns the complex frequency response h of the digital 
fi lter b10. Th e frequency axis is normalized to π. We transform the frequency 
axis w to the true frequency values f. Th e true frequency values f are w times 
the sampling frequency (which is one in our example) divided by 2*pi.

f = 1*w/(2*pi);

Next, we calculate and display the magnitude of the frequency response.

magnitude = abs(h);

plot(f,magnitude)
xlabel('Frequency'), ylabel('Magnitude')
title('Magnitude')

Th is plot can be used to predict the eff ect of the fi lter for any frequency of 
an input signal. We can interpolate the magnitude of the frequency response 
to calculate the increase or reduction in a signal’s amplitude for a specifi c 
frequency. As an example the interpolation of magnitude for a frequency of 
1/20
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1-interp1(f,magnitude,1/20)

ans =
    0.4260

results in the expected ~43% reduction in the amplitude of a sine wave with 
a period of 20. Th e sine wave with a period of 15 experiences an amplitude 
reduction of

1-interp1(f,magnitude,1/15)

ans =
    0.6751

i.e., approximately 68%, which is similar to the value observed previously. It 
is very important that such a running mean wipes out certain frequencies, 
e.g., those for which magnitude=0. As an example, applying the fi lter to a 
signal with a period of approximately 1/0.09082 completely eliminates 
that signal. Furthermore, since the magnitude of the frequency response 
is the absolute value of the complex frequency response h, the magnitude 
response is actually negative between ~0.09082 and ~0.1816, between ~0.2725 
and ~0.3633, and between ~0.4546 and the Nyquist frequency. All signal 
components having frequencies within these intervals are mirrored on the 
t-axis. As an example we try a sine wave with a period of 7 (e.g., a frequency 
of approximately 0.1429), which is within the fi rst interval with a negative 
magnitude response:

t = (1:100)';
x10 = 2*sin(2*pi*t/7);

b10 = ones(1,11)/11;
m10 = length(b10);

y10 = filter(b10,1,x10);

y10 = y10(1+(m10-1)/2:end-(m10-1)/2,1);
y10(end+1:end+m10-1,1) = zeros(m10-1,1);

plot(t,x10,t,y10)

Th e sine wave with a period of 7 experiences an amplitude reduction of

1-interp1(f,magnitude,1/7)

ans =
    0.7957

i.e., approximately 80%, but also changes the sign as we can see from the 
plot. Th e elimination of certain frequencies and fl ipping of the signal have 
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important consequences when interpreting causality in earth sciences. 
Th ese fi lters should therefore be avoided completely, even though they are 
off ered as standards in spreadsheet programs. As an alternative, fi lters with 
a specifi c frequency response should be used, such as a Butterworth lowpass 
fi lter (Section 6.9).

Th e frequency response can be calculated for all kinds of fi lters. It is a 
valuable tool for predicting the eff ects of a fi lter on signals in general. Th e 
phase response can also be calculated from the complex frequency response 
h of the fi lter (Fig. 6.4):

phase = 180*angle(h)/pi;

plot(f,phase)
xlabel('Frequency'), ylabel('Phase in degrees')
title('Phase')

Th e phase angle phase is plotted in degrees. We observe frequent jumps in 
this plot that are an artifact of the function arctangent within the function 
angle. We can unwrap the phase response to eliminate those jumps that are 
equal to or larger than 180°, with the help of the function unwrap.

plot(f,180*unwrap(angle(h))/pi)
xlabel('Frequency'), ylabel('Phase in degrees')
title('Phase')

In our example this has no eff ect since no jumps occur that are equal to or 
larger than 180°. Since the fi lter has a linear phase response phase, no shift s 
occur in the frequency components of the signals relative to each other. We 
would therefore not expect any distortions of the signal in the frequency 
domain. Th e phase shift  of the fi lter on a specifi c period can be computed 
using

interp1(f,180*unwrap(angle(h))/pi,1/20) * 20/360 

ans =
   -5.0000

and 

interp1(f,180*unwrap(angle(h))/pi,1/15) * 15/360

ans =
   -5.0000

for the sine waves with periods of 20 and 15, respectively. Since MATLAB 
uses causal indexing for fi lters, the phase needs to be corrected in a similar 
way to the delayed output of the fi lter. In our example we used a fi lter with 
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a length of eleven. We therefore have to correct the phase by (11–1)/2=5, 
which suggests a zero phase shift  for the fi lter for both frequencies.

Th is also works for recursive fi lters. Consider a simple sine wave with a 
period of 8 and the previously employed recursive fi lter.

clear

t = (1:100)';
x11 = 2*sin(2*pi*t/8);

b11 = [0.0048    0.0193    0.0289    0.0193    0.0048];
a11 = [1.0000   -2.3695    2.3140   -1.0547    0.1874];

m11 = length(b11);

y11 = filter(b11,a11,x11);

We correct the output for the phase shift  introduced by causal indexing and 
plot both input and output signals.

y11= y11(1+(m11-1)/2:end-(m11-1)/2,1);
y11(end+1:end+m11-1,1) = zeros(m11-1,1);

plot(t,x11,t,y11)

Th e magnitude is reduced by

1-max(y11(40:60))/2

ans =
    0.6465

which is also supported by the magnitude response

[h,w] = freqz(b11,a11,512);

f = 1*w/(2*pi);

magnitude = abs(h);

plot(f,magnitude)
xlabel('Frequency'), ylabel('Magnitude')
title('Magnitude Response')

1-interp1(f,magnitude,1/8)

ans =
    0.6462

Th e phase response

phase = 180*angle(h)/pi;
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f = 1*w/(2*pi);

plot(f,180*unwrap(angle(h))/pi)
xlabel('Frequency'), ylabel('Phase in degrees')
title('Magnitude Response')

interp1(f,180*unwrap(angle(h))/pi,1/8) * 8/360

ans =
    -5.0557

must again be corrected for causal indexing. Since the sampling interval was 
one and the fi lter length is fi ve, we have to add (5–1)/2=2 to the phase shift  
of –5.0557. Th is suggests a corrected phase shift  of –3.0557, which is exactly 
the delay seen on the plot.

plot(t,x11,t,y11), axis([30 40 -2 2])

Th e next section gives an introduction to the design of fi lters with a desired 
frequency response. Th ese fi lters can be used to amplify or suppress diff erent 
components of arbitrary signals.

 6.9 Filter Design

We now aim to design fi lters with a specifi c frequency response. We fi rst 
generate a synthetic signal x12 with two periods, 50 and 5. Th e power 
spectrum of the signal shows the expected peaks at frequencies of 0.02 and 
0.20.

clear

t = 0 : 1000;
x12 = 2*sin(2*pi*t/50) + sin(2*pi*t/5);

plot(t,x12), axis([0 200 -4 4])

[Pxx,f] = periodogram(x12,[],1024,1);

plot(f,Pxx)
xlabel('Frequency')
ylabel('Power')

Th e Butterworth fi lter design technique is widely used in order to create fi lters 
of any order with a lowpass, highpass, bandpass and bandstop confi guration 
(Fig. 6.5). In our example we would like to design a fi ve-order lowpass 
fi lter with a cutoff  frequency of 0.10. Th e inputs of the function butter are 
the order of the fi lter and the cutoff  frequency normalized to the Nyquist 
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frequency, which in our example is 0.5 (i.e., half of the sampling frequency). 
Th e outputs from butter are the fi lter weights a12 and b12.

[b12,a12] = butter(5,0.1/0.5);

Th e frequency characteristics of the fi lter show a relatively smooth transition 
from the passband to the stopband, but the advantage of the fi lter is its low 
order.

[h,w] = freqz(b12,a12,1024);

Fig. 6.5 Frequency responses for the fundamental types of frequency-selective fi lters. a 
Lowpass fi lter to suppress the high-frequency component of a signal. In earth sciences, such 
fi lters are oft en used to suppress high-frequency noise in a low-frequency signal. b Highpass 
fi lters to remove all low frequencies and trends in natural data. c-d Bandpass and bandstop 
fi lters to extract or suppress a certain frequency band. Th e solid line in all graphics depicts 
the ideal frequency response of a frequency-selective fi lter, while the gray band shows the 
tolerance for a low-order design of such a fi lter. In practice, the frequency response lies within 
the gray band.
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f = 1*w/(2*pi);

plot(f,abs(h)), grid
xlabel('Frequency')
ylabel('Magnitude')

We can again apply the fi lter to the signal by using the function filter. 
Frequency-selective fi lters such as lowpass, highpass, bandpass and bandstop 
fi lters are designed to suppress certain frequency bands, but phase shift s 
should be avoided. Th e function filtfilt provides zero phase-shift  forward 
and reverse digital fi ltering. Aft er fi ltering in the forward direction, the 
fi ltered sequence is reversed and runs back through the fi lter. Th e magnitude 
of the signal is not aff ected by this operation, since it is either 0 or 100% of the 
initial amplitude, depending on the frequency. Any phase shift s introduced 
by the fi lter are canceled out by the forward and reverse application of the 
same fi lter. Th is function also helps to overcome the problems with causal 
indexing of fi lters in MATLAB by eliminating the phase diff erences between 
the causal and non-causal versions of the same fi lter. Filtering, and then 
plotting the results clearly illustrates the eff ects of the fi lter.

xf12 = filtfilt(b12,a12,x12);

plot(t,x12,'b-',t,xf12,'r-')
axis([0 200 -4 4])

We might now wish to design a new fi lter with a more rapid transition from 
passband to stopband. Such a fi lter requires a higher order, i.e., it needs 
a larger number of fi lter weights a12 and b12. We now create a 15-order 
Butterworth fi lter as an alternative to the above fi lter.

[b13,a13] = butter(15,0.1/0.5);

[h,w] = freqz(b13,a13,1024);

f = 1*w/(2*pi);

plot(f,abs(h)), grid
xlabel('Frequency')
ylabel('Magnitude')

Th e frequency response is clearly improved. Th e entire passband is relatively 
fl at at a value of 1.0, whereas the stopband is approximately zero everywhere. 
We next modify our input signal by introducing a third period of 5. Th is 
signal is then used to illustrate the operation of a Butterworth bandstop fi lter.

clear

t = 0 : 1000;
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x14 = 2*sin(2*pi*t/50) + sin(2*pi*t/10) + 0.5*sin(2*pi*t/5);
plot(t,x14), axis([0 200 -4 4])

[Pxx,f] = periodogram(x14,[],1024,1);

plot(f,Pxx)

Th e new Butterworth fi lter is a bandstop fi lter. Th e stopband of the fi lter is 
between the frequencies 0.05 and 0.15. It can therefore be used to suppress 
the period of 10, corresponding to a frequency of 0.1.

rng(0)
xn14 = x14 + randn(1,length(t));

[b14,a14] = butter(5,[0.05 0.15]/0.5,'stop');
xf14 = filtfilt(b14,a14,x14);

[Pxx,f] = periodogram(xf14,[],1024,1);

plot(f,Pxx)

figure
plot(t,xn14,'b-',t,xf14,'r-'), axis([0 200 -4 4])

Th e plots show the eff ect of this fi lter. Th e frequency band between 0.05 and 
0.15, and therefore also the frequency of 0.1, have been successfully removed 
from the signal.

 6.10 Adaptive Filtering

Th e fi xed fi lters used in the previous sections make the basic assumption that 
the signal degradation is known and does not change with time. However, 
a priori knowledge of the signal and noise statistical characteristics is not 
usually available in most applications. In addition, both the noise level and 
the variance of the genuine signal can be highly nonstationary with respect 
to time, e.g., stable isotope records during a glacial-interglacial transition. 
Fixed fi lters cannot thus be used in a nonstationary environment without 
any knowledge of the signal-to-noise ratio.

Adaptive fi lters, widely used in the telecommunication industry, could 
help to overcome these problems. An adaptive fi lter is an inverse modeling 
process that iteratively adjusts its own coeffi  cients automatically without 
requiring any a priori knowledge of the signal and the noise. Th e operation 
of an adaptive fi lter includes (1) a fi ltering process, the purpose of which is 
to produce an output in response to a sequence of data, and (2) an adaptive 
process, providing a mechanism for the adaptive control of the fi lter weights 
(Haykin 1991).
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In most practical applications the adaptive process is oriented towards 
minimizing an estimation error e. Th e estimation error e at an instant i is 
defi ned by the diff erence between the desired response di and the actual fi lter 
output yi, which is the fi ltered version of a signal xi, as shown by

where i=1, 2, …, N and N is the length of the input data vector. In the case 
of a nonrecursive fi lter characterized by a vector of fi lter weights W with f 
elements, the fi lter output yi is given by the inner product of the transposed 
vector W and the input vector Xi.

Th e choice of desired response d that is used in the adaptive process depends 
on the application. Traditionally, d is a combination signal that is comprised 
of a signal s and random noise n0. Th e signal x contains noise n1 that is 
uncorrelated with the signal s but correlated in some unknown way with 
the noise n0. In noise canceling systems the practical objective is to produce 
a system output y that is a best fi t in the least-squares sense to the desired 
response d.

Diff erent approaches have been developed to solve this multivariate 
minimum error optimization problem (e.g., Widrow and Hoff  1960, Widrow 
et al. 1975, Haykin 1991). Th e selection of one algorithm over another is 
infl uenced by various factors including the rate of convergence (the number 
of adaptive steps required for the algorithm to converge closely enough to 
an optimum solution), the misadjustment (the measure of the amount by 
which the fi nal value of the mean-squared error deviates from the minimum 
squared error of an optimal fi lter, e.g., Wiener 1945, Kalman and Bucy 
1961), and the tracking (the capability of the fi lter to work in a nonstationary 
environment, i.e., to track changing statistical characteristics of the input 
signal) (Haykin 1991).

Th e simplicity of the least-mean-squares (LMS) algorithm, originally 
developed by Widrow and Hoff  (1960), has made it the benchmark against 
which other adaptive fi ltering algorithms are tested. For applications in 
earth sciences we use this fi lter to extract the noise from two signals S 
and X, both containing the same signal s, but with uncorrelated noise n1 
and n2 (Hattingh 1988). As an example, consider a simple duplicate set of 
measurements on the same material, e.g., two parallel stable isotope records 
from the same foraminifera species. You would expect two time-series, each 
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with N elements, containing the same desired signal overlain by diff erent, 
uncorrelated noise. Th e fi rst record is used as the primary input S

and the second record as the reference input X.

As demonstrated by Hattingh (1988), the desired noise-free signal can be 
extracted by fi ltering the reference input X using the primary input S as the 
desired response d. Th e minimum error optimization problem is solved by 
the least-mean-square norm. Th e mean-squared error ei

2 is a second-order 
function of the weights in the nonrecursive fi lter. Th e dependence of ei

2 on 
the unknown weights W may be seen as a multidimensional paraboloid 
with a uniquely defi ned minimum point. Th e weights corresponding to 
the minimum point on this error performance surface defi ne the optimal 
Wiener solution (Wiener 1945). Th e value computed for the weight vector 
W using the LMS algorithm represents an estimator whose expected value 
approaches the Wiener solution as the number of iterations approaches 
infi nity (Haykin 1991). Gradient methods are used to reach the minimum 
point on the error performance surface. To simplify the optimization 
problem, Widrow and Hoff  (1960) developed an approximation for the 
required gradient function that can be computed directly from the data. Th is 
leads to a simple relationship for updating the fi lter-weight vector W.

Th e new parameter estimate Wi+1 is based on the previous set of fi lter weights 
Wi plus a term that is the product of a bounded step size u, a function of the 
input state Xi and a function of the error ei. In other words, error ei calculated 
from the previous step is fed back into the system to update fi lter coeffi  cients 
for the next step (Fig. 6.6). Th e fi xed convergence factor u regulates the 
speed and stability of adaption. A low value of u ensures a higher level of 
accuracy, but more data are needed to enable the fi lter to reach the optimum 
solution. In the modifi ed version of the LMS algorithm by Hattingh (1988), 
this problem is overcome by feeding the data back so that the fi lter can have 
another chance to improve its own coeffi  cients and adapt to the changes in 
the data.
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In the following example introducing the use of the function canc, each 
of these loops is called an iteration, and many of these loops are required 
if optimal results are to be achieved. Th is algorithm extracts the noise-
free signal from two vectors, x and s, containing the correlated signals and 
uncorrelated noise. As an example we generate two signals yn1 and yn2 
containing the same sine wave but diff erent Gaussian noise.

clear

x = 0 : 0.1 : 100; x = x';
y = sin(x);
rng(0)
yn1 = y + 0.5*randn(size(y));
yn2 = y + 0.5*randn(size(y));

plot(x,yn1,x,yn2)

Th e algorithm canc formats both signals, feeds them into the fi lter loop, 
corrects the signals for phase shift s, and formats the signals for the output. 
Th e required inputs are the signals x and s, the step size u, the fi lter length l 
and the number of iterations iter. In our example the two noisy signals are 
yn1 and yn2. We make an arbitrary choice of a fi lter with l=5 fi lter weights. A 
value of u in the range of 0 <u< l/λmax, where λmax is the largest eigenvalue of 
the autocorrelation matrix for the reference input, leads to reasonable results 
(Haykin 1991) (Fig. 6.7). Th e value of u is computed using

k = kron(yn1,yn1');
u = 1/max(eig(k))

where kron returns the Kronecker tensor product of yn1 and yn1' (which is 
a matrix formed by taking all possible products between the elements of yn1 

Fig. 6.6 Schematic of an adaptive fi lter. Each iteration involves a new estimate of the fi lter 
weights Wi+1 based on the previous set of fi lter weights Wi plus a term that is the product of 
a bounded step size u, a function of the fi lter input Xi, and a function of the error ei. In other 
words, error ei calculated from the previous step is fed back into the system to update fi lter 
coeffi  cients for the next step (modifi ed from Trauth 1998).
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and yn1'), and eig returns the eigenvector of k. Th is yields

u =
    0.0019

We now run the adaptive fi lter canc for 20 iterations and use the above value 
of u.

[z,e,mer,w] = canc(yn1,yn2,0.0019,5,20);

Th e output variables from canc are the fi ltered primary signal z, the extracted 
noise e, the mean-squared error mer for the number of iterations it performed 
with stepsize u, and the fi lter weights w for each data point in yn1 and yn2. Th e 

Fig. 6.7 Output of the adaptive fi lter. a Th e duplicate records corrupted by uncorrelated 
noise are fed into the adaptive fi lter with 5 weights with a convergence factor of 0.0019. Aft er 
20 iterations, the fi lter yields b the learning curve, c the noise-free record, and d the noise 
extracted from the duplicate records.
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plot of the mean-squared error mer

plot(mer)

illustrates the performance of the adaptive fi lter, although the chosen 
step size u=0.0019 clearly results in a relatively rapid convergence. In most 
examples a smaller step size decreases the rate of convergence but improves 
the quality of the fi nal result. We therefore reduce u and run the fi lter again 
with further iterations.

[z,e,mer,w] = canc(yn1,yn2,0.0001,5,20);

Th e plot of the mean-squared error mer against the iterations

plot(mer)

now converges aft er about six iterations. In practice, the user should vary the 
parameters u and l to obtain the optimum result. We can now compare the 
fi lter output with the original noise-free signal.

plot(x,y,'b',x,z,'r')

Th is plot shows that the noise level of the signal has been reduced dramatically 
by the fi lter. Next, the plot

plot(x,e,'r')

shows the noise extracted from the signal. Using the last output from canc we 
can calculate and display the mean fi lter weights of the fi nal iteration from w

wmean = mean(w)
plot(wmean)

Th e frequency characteristic of the fi lter provides a more illustrative 
representation of the eff ect of the fi lter.

[h,w] = freqz(www,1,1024);
f = 1*w/(2*pi);
plot(f,abs(h))

which clearly shows that the fi lter is a lowpass fi lter with a relatively smooth 
transition band. Th is means that it does not have the quality of a recursive 
fi lter designed, for example, using the Butterworth approach. However, the 
fi lter weights are calculated in an optimization process rather than chosen 
arbitrarily.

Th e strength of an adaptive fi lter is in fi ltering a time series with a variable 
signal-to-noise ratio along the time axis. Since the fi lter-weight vector W is 
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updated for each individual data point, these fi lters are even used in real-time 
applications such as telecommunication systems. We examine this behavior 
through an example in which the signal-to-noise ratio in the middle of the 
time series (x=500) is reduced from about 10% to zero.

clear

x = 0 : 0.1 : 100; x = x';
y = sin(x);
rng(0)
yn1 = y + 0.5*randn(size(y));
yn2 = y + 0.5*randn(size(y));

yn1(501:1001) =  y(501:1001);
yn2(501:1001) =  y(501:1001);

plot(x,yn1,x,yn2)

Th e value of u is again computed by

k = kron(yn1,yn1');
u = 1/max(eig(k))

which yields

u =
    0.0016

We now run the adaptive fi lter canc for 20 iterations and use the above value 
of u.

[z,e,mer,w] = canc(yn1,yn2,0.0016,5,20);

Th e plot of the mean-squared error mer versus the number of performed 
iterations it with stepsize u

plot(mer)

illustrates the performance of the adaptive fi lter, although the chosen step 
size u=0.0016 clearly results in a relatively rapid convergence. Again, we can 
now compare the fi lter output with the original noise-free signal.

plot(x,y,'b',x,z,'r')

Th is plot shows that the fi lter output y is almost the same as the noise-free 
signal x. Th e plot

plot(x,e,'r')

shows the noise extracted from the signal. Here we can observe some signal 
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components that have been removed by the fi lter in error, from within the 
noise-free segment of the time series beyond x=500. Using the last output 
of canc, we can calculate and display the fi lter weights w of the fi nal iteration

surf(w(3:999,:)), shading interp

which shows nicely the adaptation of the fi lter weights before and aft er the 
change in the signal-to-noise ratio. We plot only the middle part of w, as the 
edges 1:(l-1)/2 and end-(l-1)/2:end are all zero due to the length of the fi lter 
l. We can also use this example to demonstrate the eff ect that the values of 
u and l have on the performance of the adaptive fi lter. In theory, a smaller u 
leads to more accurate results, but the rapid adaptation to a changing signal-
to-noise ratio does not work well. Larger values of l also give better results 
but the number of data points lost through the fi ltering process increases by 
(l-1)/2.

Th e graphical user interface (GUI) version canctool can be used as an 
alternative to canc. We use the same example data set as before; this function 
was created using the GUI Design Environment (GUIDE) (see Section 2.10). 
We again generate two signals, yn1 and yn2, containing the same sine wave 
but diff erent Gaussian noise.

clear

x = 0 : 0.1 : 100; x = x';
y = sin(x);

rng(0)
yn1 = y + 0.5*randn(size(y));
yn2 = y + 0.5*randn(size(y));

We next run canctool

canctool(yn1,yn2)

and watch the fi lter iteratively adjusting its fi lter weights. Th e function 
canctool accepts the primary and reference signals as inputs. Th e GUI 
provides default values for the fi lter length, the convergence rate, and the 
number of iterations. Th e user must adjust these values   to the specifi c data, 
for example, using the formula for a suitable convergence rate that has been 
described above. As an example, we choose a fi lter length of 11, a convergence 
rate of 0.00001, and 30 iterations. Once the calculation is complete, canctool 
exports the fi ltered primary signal yy, the fi ltered reference signal zz (using 
the same set of fi lter weights), the noise ee extracted from the primary signal, 
and the mean-squared error mer for each iteration, to the workspace using the 
function assignin. Th e application of this algorithm has been demonstrated 
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on duplicate oxygen-isotope records from ocean sediments (Trauth 1998). 
Th is work by M.H. Trauth illustrates the use not only of the modifi ed LMS 
algorithm, but also of another type of adaptive fi lter, the recursive least-
squares (RLS) algorithm, in various diff erent environments (Haykin 1991, 
Trauth 1998).
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 7.1 Types of Spatial Data

Most data in earth sciences are spatially distributed, either as vector data, 
(points, lines, polygons) or as raster data (gridded topography). Vector data 
are generated by digitizing map objects such as drainage networks or outlines 
of lithologic units. Raster data can be obtained directly from a satellite 
sensor output, but gridded data can also, in most cases, be interpolated from 
irregularly-distributed fi eld samples (gridding).

Th e following section introduces the use of vector data by using coastline 
data as an example (Section 7.2). Th e acquisition and handling of raster data 
are then illustrated using digital topographic data (Sections 7.3 to 7.5). Th e 
availability and use of digital elevation data has increased considerably since 
the early 90s. With a resolution of 5 arc minutes (about 9 km), ETOPO5 
was one of the fi rst data sets for topography and bathymetry. In October 
2001 it was replaced by ETOPO2, which has a resolution of 2 arc minutes 
(about 4 km), and in March 2009 the ETOPO1 became available, which has a 
resolution of 1 arc minutes (about 2 km). Th ere is also a data set for topography 
called GTOPO30 completed in 1996 that has a horizontal grid spacing of 30 
arc seconds (about 1 km). More recently, the 30 and 90 m resolution data 

 7 Spatial Data

 Braided river system at the northern end of 
the Suguta Valley in northern Kenya. The 
spatio-temporal analysis of these river systems, 
together with their sediment compositions 
and provenances (especially in the older 
sediments) helps in the reconstruction of 
paleoenvironmental conditions.
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from the Shuttle Radar Topography Mission (SRTM) have replaced the older 
data sets in most scientifi c studies. Section 7.6 demonstrates how to export 
3D graphics objects such as digital terrain models to create interactive 
documents such as Apple iBooks Author documents or interactive Adobe 
PDF documents, in particular for use with tablet computers.

Th e second part of this chapter deals with the estimation of continuous 
surfaces from unevenly-spaced data and the statistics of spatial data 
(Sections 7.7 to 7.8). In earth sciences, most data are collected in an irregular 
pattern. Access to rock samples is oft en restricted to natural outcrops such 
as shoreline cliff s and the walls of a gorge, or anthropogenic outcrops such 
as road cuttings and quarries. Th e sections on interpolating such unevenly-
spaced data illustrate the use of the most important gridding routines and 
outline the potential pitfalls when using these methods. Sections 7.9 to 7.11 
introduce various methods for statistically analyzing spatial data, including 
the application of statistical tests to point distributions (Section  7.9), the 
spatial analysis of digital elevation models (Section 7.10), and an overview of 
geostatistics and kriging (Section 7.11).

Th is chapter requires the Mapping Toolbox (MathWorks 2014a), although 
most graphics routines used in our examples can be easily replaced by 
standard MATLAB functions. Section 7.6 requires Simulink 3D Animation 
to create animated 3D graphics objects (MathWorks 2014b). An alternative 
and useful mapping toolbox by Rich Pawlowicz (Earth and Ocean Sciences, 
at the University of British Columbia) is available from

http://www.eos.ubc.ca/~rich/

Th e handling and processing of large spatial data sets requires a computing 
system with at least 4 GB physical memory.

 7.2 The Global Geography Database GSHHG

Th e Global Self-consistent, Hierarchical, High-resolution Geography 
(GSHHG) database is an amalgamation of two public domain databases by 
Paul Wessel (SOEST, University of Hawaii, Honolulu, HI) and Walter Smith 
(NOAA  Laboratory for Satellite Altimetry, Silver Spring, MD) (Wessel and 
Smith 1996). Th e GSHHG database combines the older GSHHS database 
(Soluri and Woodson 1990, Wessel and Smith 1996), which is a shoreline 
database, with the poor quality Antarctica data replaced by the more accurate 
data from Bohlander and Scambos (2007), together with rivers and borders 
from the CIA World Data Bank II (WDBII) (Gorny 1977). Th e GSHHG data 
can be downloaded from the web page of the US National Geophysical Data 
Center (NGDC):
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http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html

As an example we use the data from the fi le coastline.txt, which contains an 
excerpt from the older GSHHG shoreline database. Th e two columns in this 
fi le represent the longitude/latitude coordinates of NaN-separated polygons or 
coastline segments.

NaN  NaN
42.892067 0.000000
42.893692 0.001760
NaN  NaN
42.891052 0.001467
42.898093 0.007921
42.904546 0.013201
42.907480 0.016721
42.910414 0.020828
42.913054 0.024642
42.915987 0.028749
42.918921 0.032562
42.922441 0.035789
(cont'd)

Th e NaNs perform two functions: they provide a means of identifying break 
points in the data and they serve as pen-up commands when the Mapping 
Toolbox plots vector maps. Th e shorelines can be displayed by using

clear

data = load('coastline.txt');

plot(data(:,1),data(:,2)), axis equal
xlabel('Longitude'), ylabel('Latitude')

More advanced plotting functions that are contained in the Mapping Toolbox 
(MathWorks 2014a) allow an alternative version of this plot to be generated 
(Fig. 7.1).

axesm('MapProjection','lambert', ...
      'MapLatLimit',[0 15], ...
      'MapLonLimit',[35 55], ...
      'Frame','on', ...
      'MeridianLabel','on', ...
      'ParallelLabel','on');
plotm(data(:,2),data(:,1));

Note that the input for plotm must be in the correct order, with the latitude 
entered fi rst, followed by the longitude (i.e., the second column of the data 
matrix must be entered fi rst). In contrast, the function plot requires an xy 
input, i.e., input must be in the opposite order, with the fi rst column of the 
matrix entered fi rst. Th e function axesm defi nes the map axis and sets various 
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Fig. 7.1 Shoreline display from the GSHHS data set. Th e map shows an area between latitudes 
0° and 15° north, and longitudes 40° and 50° east. Th is simple map is made using the function 
plot, with equal axis aspect ratios (data from Wessel and Smith 1996).

map properties such as the map projection, the map limits, and the axis 
labels.

 7.3 The 1-Minute Gridded Global Relief Data ETOPO1

ETOPO1 is a global data base of topographic and bathymetric data on a 
regular 1 arc-minute grid (about 2 km) (Amante and Eakins 2009). Older 
ETOPO2v2 and ETOPO5 global relief grids have been superseded but are 
still available. ETOPO1 is a compilation of data from a variety of sources. It 
can be downloaded from the US National Geophysical Data Center (NGDC) 
web page

http://www.ngdc.noaa.gov/mgg/global/

As an example we use the data from the fi le grid01-258.asc that has the 
following content:
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NCOLS  1801
NROWS  2401
XLLCENTER   30.0000000000
YLLCENTER -20.0000000000
CELLSIZE 0.016666666667
NODATA_VALUE   -32768
    294    299    293    288    285    282 ...
    294    294    289    291    281    276 ...
    288    285    285    283    280    272 ...
    280    276    277    277    283    279 ...
    271    272    271    274    280    283 ...
    267    270    268    272    272    276 ...
(cont'd)

Th e headers document the size of the data matrix (e.g., 1801 columns and 
2401 rows in our example), the coordinates of the lower-left  corner (e.g., x=30 
and y=–20), the cell size (e.g., ~0.0167=1/60 degree latitude and longitude), 
and the –32768 fl ag for data voids. We comment the header by typing % at the 
beginning of the fi rst six lines

%NCOLS  1801
%NROWS  2401
%XLLCENTER   30.0000000000
%YLLCENTER -20.0000000000
%CELLSIZE 0.016666666667
%NODATA_VALUE   -32768
    294    299    293    288    285    282 ...
    294    294    289    291    281    276 ...
    288    285    285    283    280    272 ...
    280    276    277    277    283    279 ...
    271    272    271    274    280    283 ...
    267    270    268    272    272    276 ...
(cont'd)

and load the data into the workspace. 

clear

ETOPO1 = load('grid01-258.asc');

We fl ip the matrix up and down. Th e –32768 fl ag for data voids must then be 
replaced by the MATLAB representation for Not-a-Number NaN.

ETOPO1 = flipud(ETOPO1);
ETOPO1(find(ETOPO1 == -32768)) = NaN;

Finally, we check whether the data are now correctly stored in the workspace 
by printing the minimum and maximum elevations for the area.

max(ETOPO1(:))
min(ETOPO1(:))
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In this example the maximum elevation for the area is 5,677 m and the 
minimum elevation is –5,859 m. Th e reference level is the sea level at 0 m. 
We now defi ne a coordinate system using the information that the lower-left  
corner is latitude 20° south and longitude 30° east. Th e resolution is 1 arc 
minute, corresponding to 1/60 of a degree. 

[LON,LAT] = meshgrid(30:1/60:60,-20:1/60:20);

We now generate a colored surface from the elevation data using the function 
surf.

surf(LON,LAT,ETOPO1)
colormap jet

Fig. 7.2 Display from the ETOPO1 elevation data set. Th e map uses the function surf to 
generate a colored surface. Th e colorbar provides information on the colormap used to 
portray the topographic and bathymetric variations (data from Amante and Eakins 2009).
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shading interp
axis equal, view(0,90)
colorbar

Th is script opens a new fi gure window and generates a colored surface. Th e 
surface is highlighted by a set of color shades, and is displayed in an overhead 
view (Fig. 7.2). Additional display methods will be described in the section 
on SRTM elevation data (Section 7.5).

 7.4 The 30-Arc Seconds Elevation Model GTOPO30

Th e 30 arc second (about 1 km) global digital elevation data set GTOPO30 
contains only elevation data, not bathymetry. Th e data set has been developed 
by the Earth Resources Observation System Data Center and is available 
from the U.S. Geological Survey web page

https://lta.cr.usgs.gov/GTOPO30

Th e model uses a variety of international data sources but is mainly based 
on raster data from the Digital Terrain Elevation Model (DTEM) and vector 
data from the Digital Chart of the World (DCW). Th e GTOPO30 data set has 
been divided into 33 tiles. Th e tile names refer to the longitude and latitude 
of the upper-left  (northwest) corner of the tile. Th e tile name e020n40 
refers to the coordinates of the upper-left  corner of the tile, i.e., longitude 
20 degrees east and latitude 40 degrees north. As an example we select and 
download the tile e020n40, which is provided as a 24.9 MB compressed tar 
fi le. Aft er decompressing the fi le we obtain eight fi les containing the raw data 
and header fi les in various formats. Th e tar fi le also provides a GIF image of 
a shaded relief display of the data.

Importing the GTOPO30 data into the workspace is simple. Th e Mapping 
Toolbox provides an import routine gtopo30 that reads the data and stores it 
onto a regular data grid. We import only a subset of the original matrix:

clear

latlim = [-5 5]; lonlim = [30 40];
GTOPO30 = gtopo30('E020N40',1,latlim,lonlim);

Th is script reads the data from the tile e020n40 (without fi le extension) at full 
resolution (scale factor =1) into the matrix GTOPO30, which has the dimensions 
of 1,200 by 1,200 cells. Th e coordinate system is defi ned by using the lon/lat 
limits listed above. Th e resolution is 30 arc seconds, corresponding to 1/120 
of a degree. 

[LON,LAT] = meshgrid(30:1/120:40-1/120,-5:1/120:5-1/120);
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We need to reduce the limits by a factor of 120, in order to obtain a matrix 
of similar dimensions to the GTOPO30 matrix. A grayscale image can be 
generated from the elevation data using the function surf. Th e fourth power 
of the colormap gray is fl ipped vertically in order to obtain dark colors for 
high elevations and light colors for low elevations.

surf(LON,LAT,GTOPO30)
shading interp
colormap(flipud(gray.^4))
axis equal, view(0,90)
colorbar

Th is script opens a new fi gure window and generates the gray surface using 
interpolated shading, displayed in an overhead view (Fig. 7.3).

Fig. 7.3 Display from the GTOPO30 elevation data set. Th e map uses the function surf to 
generate a gray surface. Th e fourth power of the colormap gray is used to intensify the gray 
shades of the map at higher elevations and the colormap is then fl ipped vertically in order to 
obtain dark colors for high elevations and light colors for low elevations (data from the U.S. 
Geological Survey).
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 7.5 The Shuttle Radar Topography Mission SRTM

Th e Shuttle Radar Topography Mission (SRTM) was a radar system on board 
the Space Shuttle Endeavour during an 11-day mission in February 2000 
(Farr et al. 2000, 2007). SRTM was an international project spearheaded 
by the National Geospatial-Intelligence Agency (NGA) and the National 
Aeronautics and Space Administration (NASA). Detailed information on 
the SRTM project, including a gallery of images and a user’s forum, can be 
accessed through the NASA web page:

http://www2.jpl.nasa.gov/srtm/

Th e data were processed at the Jet Propulsion Laboratory. Th ey are distributed 
through the United States Geological Survey’s (USGS) National Map Viewer 
and Download Platform:

http://viewer.nationalmap.gov/viewer/

Alternatively, the raw data fi les can be downloaded from

http://dds.cr.usgs.gov/srtm/

Th is directory contains zipped fi les of SRTM DEMs from various areas of the 
world, processed by the SRTM global processor and sampled at resolutions of 
1 arc second (SRTM-1, 30 meter grid) and 3 arc seconds (SRTM-3, 90 meter 
grid). As an example we download the 1.7 MB fi le s01e036.hgt.zip from

http://dds.cr.usgs.gov/srtm/version2_1/SRTM3/Africa/

containing SRTM-3 data for the Kenya Rift  Valley in East Africa. All elevations 
are in meters referenced to the WGS84 EGM96 geoid, as documented at

http://earth-info.nga.mil/GandG/wgs84/index.html

Th e name of this fi le refers to the longitude and latitude of the lower-left  
(southwest) pixel of the tile, i.e., latitude one degree south and longitude 
36 degrees east. SRTM-3 data contain 1,201 lines and 1,201 samples, with 
similar numbers of overlapping rows and columns. Aft er having downloaded 
and unzipped the fi le we save s01e036.hgt in our working directory. Th e 
digital elevation model is provided as 16-bit signed integer data in a simple 
binary raster. Th e bit order is big-endian (Motorola’s standard) with the most 
signifi cant bit fi rst. Th e data are imported into the workspace using

clear
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fid = fopen('S01E036.hgt','r');
SRTM = fread(fid,[1201,inf],'int16','b');
fclose(fid);

Th is script opens the fi le s01e036.hgt for read only access using fopen and 
defi nes the fi le identifi er fid, which is then used to read the binaries from 
the fi le (using fread) and to write them into the matrix SRTM. Function fclose 
closes the fi le defi ned by fid. Th e matrix fi rst needs to be transposed and 
fl ipped vertically.

SRTM = SRTM'; SRTM = flipud(SRTM);

Th e –32768 fl ag for data voids can be replaced by NaN, which is the MATLAB 
representation for Not-a-Number.

SRTM(find(SRTM == -32768)) = NaN;

Th e SRTM data contain numerous gaps that might cause spurious eff ects 
during statistical analysis or when displaying the digital elevation model 
in a graph. A popular way to eliminate gaps in digital elevation models is 
by fi lling gaps with the arithmetic means of adjacent elements. We use the 
function nanmean since it treats NaNs as missing values and returns the mean 
of the remaining elements that are not NaNs. Th e following double for loop 
averages SRTM(i-1:i+1,j-1:j+1) arrays, i.e., averages over three-by-three 
element wide areas of the digital elevation model.

for i = 2 : 1200
    for j = 2 : 1200
        if isnan(SRTM(i,j)) == 1
            SRTM(i,j) = nanmean(nanmean(SRTM(i-1:i+1,j-1:j+1)));
        end
    end
end
clear i j

If there are still NaNs in the data set (as in our example) causing errors when 
importing the data set into a Virtual Reality Modeling Language (VRML) 
client, the double for loop can be run a second time. Finally, we check 
whether the data are now correctly stored in the workspace by printing the 
minimum and maximum elevations of the area.

max(SRTM(:))

ans =
   3992

min(SRTM(:))
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ans =
   1504

In our example the maximum elevation of the area is 3,992 m above sea level 
and the minimum is 1,504 m. A coordinate system can be defi ned using 
the information that the lower-left  corner is s01e036. Th e resolution is 3 arc 
seconds, corresponding to 1/1,200 of a degree.

[LON,LAT] = meshgrid(36:1/1200:37,-1:1/1200:0);

A shaded grayscale map can be generated from the elevation data using 
the function surfl. Th is function displays a shaded surface with simulated 
lighting.

surfl(LON,LAT,SRTM)
shading interp
colormap gray
view(0,90)

Th is script opens a new fi gure window and generates the shaded-relief 
map using interpolated shading, as well as a gray colormap, displayed in an 
overhead view. Since SRTM data contain a large amount of noise, we fi rst 
smooth the data using an arbitrary 9-by-9  pixel moving average fi lter. Th e 
new matrix is then stored in the matrix SRTM_FILTERED.

B = 1/81 * ones(9,9);
SRTM_FILTERED = filter2(B,SRTM);

Th e corresponding shaded-relief map is generated by

surfl(LON,LAT,SRTM_FILTERED)
shading interp
colormap gray
view(0,90)

Aft er having generated the shaded-relief map (Fig. 7.4), the plot must be 
exported to a graphics fi le. For instance, the fi gure may be written into a 
JPEG format with a 70% quality level and 300 dpi resolution.

print -djpeg70 -r300 srtmimage

Th e new fi le srtmimage.jpg has a size of 320 KB; the decompressed image 
has a size of 16.5 MB. Th is fi le can now be imported into another soft ware 
package such as Adobe Photoshop.
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 7.6 Exporting 3D Graphics to Create Interactive Documents

Since the introduction of electronic devices with touch controls, interactive 3D 
graphics objects have become increasingly popular in multimedia electronic 
books (ebooks). Th e Simulink 3D Animation available from Th e MathWorks, 
Inc. provides the necessary tools to create and export 3D graphics objects for 
inclusion in documents such as multimedia ebooks, interactive webpages, 
and presentations (MathWorks 2014b). Th e VRML fi les are text fi les with the 
fi le extension .wrl for world, short for Virtual Reality World. Opening such 
a fi le in, for example, the MATLAB editor reveals that it contains vertices 
and edges for 3D polygons, together with parameters such as surface colors, 
textures, transparency and so on. Th e VRML fi les can be viewed using a 
browser plugin (of which there are many diff erent types available online), or 
using 3D soft ware such as the open-source MeshLab soft ware

http://meshlab.sourceforge.net

Fig. 7.4 Display from the fi ltered SRTM elevation data set. Th e map uses the function surfl 
to generate a shaded-relief map with simulated lighting, using interpolated shading and a gray 
colormap, displayed in an overhead view (data from Farr et al. 2000, 2008).
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or the free Blender soft ware available at

http://www.blender.org

Th ese tools (as well as others) can be used to convert the VRML format 
into other 3D graphics object fi le formats such as the Universal 3D .u3d 
and COLLADA .dae formats. As an example the U3D format is the format 
required to place a 3D graphics object onto a PDF page with Adobe Acrobat. 
Th e DAE format is used to include 3D graphics objects in Apple iBooks 
Author fi les, for use with Apple iPads and other iOS devices with touch 
controls.

Th e digital terrain models created in previous sections are great examples 
for such interactive 3D objects. We use a modifi ed script to import and 
display an SRTM data set from the previous section as an example. Th e data 
are imported into the workspace using

clear

fid = fopen('S01E036.hgt','r');
SRTM = fread(fid,[1201,inf],'int16','b');
fclose(fid);

Th e matrix fi rst needs to be transposed and fl ipped vertically.

SRTM = SRTM'; SRTM = flipud(SRTM);

Th e SRTM data contain numerous gaps that might cause spurious eff ects 
during statistical analysis or when displaying the digital elevation model in a 
graph. We can use the method described in the previous section to eliminate 
the gaps. In this case, however, we have to search the data set for additional 
possible NaNs, even aft er having searched for NaNs and replaced them with the 
means of the surrounding pixels, because the VRML clients cannot handle 
the character string NaN and therefore produces an error message when 
importing the fi le into soft ware such as MeshLab. Since it is for display only 
we can also use a simplifi ed method of replacing the gaps marked by -32768 
with the mean of the entire DEM.

SRTM(find(SRTM == -32768)) = mean(SRTM(:));

A coordinate system can then be defi ned using the information that the 
lower-left  corner is s01e036. Th e resolution is 3 arc seconds, corresponding 
to 1/1,200 of a degree.

[LON,LAT] = meshgrid(36:1/1200:37,-1:1/1200:0);
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We also need to reduce the size of the array by a factor of 10 because most 
VRML clients limit the number of vertices in a VRML fi le. You can run an 
experiment with a larger number of vertices and see whether it works with 
your VRML soft ware.

LON = LON(1:10:end,1:10:end);
LAT = LAT(1:10:end,1:10:end);
SRTM = SRTM(1:10:end,1:10:end);

We also eliminate the edges of the data set, as these may cause problems 
when writing the VRML fi les.

LON = LON(2:end-1,2:end-1);
LAT = LAT(2:end-1,2:end-1);
SRTM = SRTM(2:end-1,2:end-1);

3D graphics can be generated from the elevation data using the function 
trimesh following Delaunay triangulation of the data set using delaunay.

tri = delaunay(LON,LAT);
trimesh(tri,LON,LAT,SRTM)
axis([35.5 37.5 -1.5 0.5 -500 4500]), axis off

Next, we determine the size of the array SRTM and reshape the 119-by-119 
array SRTM to a n-by-1 array, where n=xdim*ydim=14161.

[xdim ydim] = size(SRTM);
SRTM = SRTM(:);

We then determine the range of the z-values and defi ne the spacing in x and 
y directions.

zrange = range(SRTM);
xspace = 10;
yspace = 10;

We again use the colormap demcmap to display the SRTM data set.

cmap = demcmap(SRTM,256);

Alternatively, we can use any other colormap, even one that we have created 
ourselves, to display the digital terrain model. We then normalize the 
elevation data to the [1,length(cmap)] range.

cmap = cmap(round((SRTM-min(SRTM)) ...
    .*(size(cmap,1)-1)./zrange)+1,:);

Th e Simulink 3D Animation User’s Guide (MathWorks 2014b) contains a 
great introduction in its chapter Interact with Virtual Reality Worlds, which 
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explains the following steps in greater detail than provided here. We fi rst 
need to make sure that all virtual reality worlds are closed and deleted.

out = vrwho;
for i=1:length(out)
    while (get(out(i),'opencount')~=0)
        close(out(i));
    end
    delete(out(i));
end

We then create a new virtual reality world myworld using vrworld.

myworld = vrworld('');
open(myworld)

Our world then needs a shape and a grid. We create the shape newShape with 
the name Landscape and the grid newGrid using vrnode. Th e function vrnode 
creates a handle to either an existing or a new node.

shapeName = ['Landscape'];
newShape = vrnode(myworld,shapeName,'Shape');
newGrid = vrnode(newShape,'geometry','DEM','ElevationGrid');

We can access the contents of the variable newShape from the vrworld class in 
a similar manner to structure arrays, e.g., by typing

getfield(newShape.geometry)

which lists a number of the defi ning parameters of newShape such as, for 
example, the color. Th e nodes of the world can be accessed using one of the 
two commands

nodes(myworld)
mynodes = get(myworld,'Nodes')

We can access the fi elds of the node Landscape using one of the two commands

fields(myworld.Landscape)
fields(mynodes.DEM)

and the DEM using

fields(myworld(1))
fields(mynodes(2))

both with a detailed output of all the parameter settings of the nodes. We can 
also list the fi elds in newShape and newGrid using

fields(newShape)
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fields(newGrid)

and modify the values of the various parameters of newShape and newGrid. As 
an example we can reduce the height values   to 20% of the original SRTM 
values   in order to change the proportions of the 3D graphics.

setfield(newGrid, ...
    'xDimension',xdim,...
    'zDimension',ydim,...
    'xSpacing',xspace,...
    'zSpacing',yspace,...
    'height',0.2*SRTM);

We then use the same colormap cmap that was created previously (before 
using demcmap) based on elevation

GridColor = vrnode(newGrid,...
        'color','TerrainColor',...
        'Color');
GridColor.color = cmap;
getfield(newGrid,'color')

and save the world myworld created with Simulink 3D Animation to a new 
VRML fi le srtm_2.wrl.

save(myworld,'srtm.wrl')
close(myworld)
delete(myworld)

We then close and delete the world myworld. Importing the resulting VRML 
fi le into a VRML client such as MeshLab or Blender reveals the terrain model 
does indeed have colors, as defi ned by demcmap. We can use the fi le in the 
VRML format to create an interactive document. However, the soft ware to 
create such interactive documents, such as Adobe Acrobat or Apple iBooks 
Author, may require diff erent fi le formats; these can easily be converted with 
the MeshLab or Blender soft ware.

 7.7 Gridding and Contouring

Th e previous data sets were all stored in evenly-spaced two-dimensional 
arrays. Most data in earth sciences, however, are obtained from irregular 
sampling patterns. Th e data are therefore unevenly-spaced and need to 
be interpolated in order to allow a smooth and continuous surface to be 
computed from our measurements in the fi eld. Surface estimation is typically 
carried out in two major steps (Fig. 7.5). Firstly, the number of control 
points needs to be selected, and secondly, the value of the variable of interest 

264  7 SPATIAL DATA



Fig. 7.5 Methods for selecting the control points to use for estimating the values at grid 
points. a Construction of a circle around the grid point (plus sign) with a radius defi ned by 
spatial autocorrelation of the z-values at the control points (small circles). b Triangulation: the 
control points are selected from the vertices of the triangle surrounding the grid point, with 
the option of also including the vertices of the adjoining triangles.

needs to be estimated for the grid points. Control points are the unevenly-
spaced fi eld measurements, such as the thicknesses of sandstone units at 
diff erent outcrops or the concentrations of a chemical tracer in water wells. 
Th e data are generally represented as xyz triplets, where x and y are spatial 
coordinates and z is the variable of interest. In such cases most gridding 
methods require continuous and unique data. However, spatial variables in 
earth sciences are oft en discontinuous and not spatially unique: for example, 
the sandstone unit may be faulted or folded. Furthermore, gridding requires 
spatial autocorrelation, i.e., the neighboring data points should be correlated 
with each other through a specifi c relationship. Th ere is no point in making a 
surface estimation if the z variables are random and have no autocorrelation. 
Having selected the control points, a number of diff erent methods are 
available for calculating the z-values at the evenly-spaced grid points.

Various techniques exist for selecting the control points. Most methods 
make arbitrary assumptions on the autocorrelation of the z-variable. Th e 
nearest-neighbor criterion includes all control points within a circular 
neighborhood of the grid point, where the radius of the circle is specifi ed 
by the user (Fig. 7.5 a). Since the degree of spatial autocorrelation is likely to 
decrease with increasing distance from the grid point, considering too many 
distant control points is likely to lead to erroneous results when computing 
values for the grid points. On the other hand, using radii that are too small 
may limit the number of control points used in calculating the grid point 
values to a very small number, resulting in a noisy estimate of the modeled 
surface.

a b
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It is perhaps due to these diffi  culties that triangulation is oft en used as 
an alternative method for selecting the control points (Fig. 7.5 b). In this 
technique, all control points are connected in a triangular network. Every 
grid point is located within the triangular area formed by three control points. 
Th e z-value of the grid point is computed from the z-values of the three grid 
points. A modifi cation of this form of gridding also uses the three points 
at the apices of the three adjoining triangles. Th e Delauney triangulation 
method uses a triangular net in which the acuteness of the triangles is 
minimized, i.e., the triangles are as close as possible to equilateral.

Kriging, introduced in Section 7.11, is an alternative approach to select 
control points. It is oft en regarded as the ultimate method of gridding. Some 
people even use the term geostatistics synonymously with kriging. Kriging is 
a method for quantifying the spatial autocorrelation and hence the circle’s 
dimension. More sophisticated versions of kriging use an elliptical area 
instead of a circle.

As mentioned above, the second step in surface estimation is the actual 
computation of the z-values for the grid points. Th e arithmetic mean of the 
measured z-values at the control points

provides the easiest way of computing the values at the grid points. Th is is 
a particularly useful method if there are only a limited number of control 
points. If the study area is well covered by control points and the distance 
between these points is highly variable, the z-values of the grid points should 
be computed using a weighted mean. Th is involves weighting the z-values at 
the control points by the inverse of the distance di from the grid points.

Depending on the spatial scaling relationship of the variable z, the inverse of 
the square root of the distance may be used to weight the z-values, rather than 
simply the inverse of distance. Th e fi tting of 3D splines to the control points 
off ers another method for computing the grid point values that is commonly 
used in the earth sciences. Most routines used in surface estimation involve 
cubic polynomial splines, i.e., a third-degree 3D polynomial is fi tted to at 
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least six adjacent control points. Th e fi nal surface is a composite comprising 
diff erent portions of these splines. MATLAB has, from the start, provided a 
biharmonic spline interpolation method, which was developed by Sandwell 
(1987). Th is gridding method is particularly well suited for producing smooth 
surfaces from noisy data sets with unevenly-distributed control points. As an 
example we use synthetic xyz data representing the vertical distance between 
the surface of an imaginary stratigraphic horizon that has been displaced 
by a normal fault, and a reference surface. Th e foot wall of the fault shows 
roughly horizontal strata, whereas the hanging wall is characterized by the 
development of two large sedimentary basins. Th e xyz data are irregularly 
distributed and so need to be interpolated onto a regular grid. Th e xyz data 
are stored as a three-column table in a fi le named normalfault.txt.

4.3229698e+02   7.4641694e+01   9.7283620e-01
4.4610209e+02   7.2198697e+01   6.0655065e-01
4.5190255e+02   7.8713355e+01   1.4741054e+00
4.6617169e+02   8.7182410e+01   2.2842172e+00
4.6524362e+02   9.7361564e+01   1.1295175e-01
4.5526682e+02   1.1454397e+02   1.9007110e+00
4.2930233e+02   7.3175896e+01   3.3647807e+00
(cont'd)

Th e fi rst and second column contain the coordinates x (between 420 and 470 
of an arbitrary spatial coordinate system) and y (between 70 and 120), while 
the third column contains the vertical z-values. Th e data are loaded using

clear

data = load('normalfault.txt');

Initially, we wish to create an overview plot of the spatial distribution of the 
control points. In order to label the points in the plot, numerical z-values of 
the third column are converted into character string representations with a 
maximum of two digits.

labels = num2str(data(:,3),2);

Th e 2D plot of our data is generated in two steps. Firstly, the data are 
displayed as empty circles using the plot command. Secondly, the data are 
labeled using the function text(x,y,'string'), which adds text contained in 
string to the xy locations. Th e value 1 is added to all x coordinates in order 
to produce a small off set between the circles and the text.

plot(data(:,1),data(:,2),'o'), hold on
text(data(:,1)+1,data(:,2),labels), hold off
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Th is plot helps us to defi ne the axis limits for gridding and contouring: 
xlim=[420 470] and ylim=[70 120]. Th e function meshgrid transforms the 
domain specifi ed by vectors x and y into arrays XI and YI. Th e rows of the 
output array XI are copies of the vector x and the columns of the output array 
YI are copies of the vector y. We choose 1.0 as the grid interval.

x = 420:1:470; y = 70:1:120;
[XI,YI] = meshgrid(x,y);

Th e biharmonic spline interpolation is used to interpolate the irregular-
spaced data at the grid points specifi ed by XI and YI.

ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

Th e option v4 selects the biharmonic spline interpolation, which was the sole 
gridding algorithm available until MATLAB4 was replaced by MATLAB5. 
MATLAB provides various tools with which to display the results. Th e 
simplest way to display the gridding results is as a contour plot using contour. 
By default, the number of contour levels and the values of the contour levels 
are chosen automatically. Th e choice of the contour levels depends on the 
minimum and maximum values of z.

contour(XI,YI,ZI)

Alternatively, the number of contours can be chosen manually, e.g., ten 
contour levels.

contour(XI,YI,ZI,10)

Contouring can also be performed at values specifi ed in a vector v. Since the 
maximum and minimum values of z are

min(data(:,3))

ans =
   -27.4357

max(data(:,3))

ans =
   21.3018

we choose

v = -40 : 10 : 20;

Th e command

[c,h] = contour(XI,YI,ZI,v);
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yields contour matrix c and a handle h that can be used as input to the 
function clabel, which labels contours automatically.

clabel(c,h)

Alternatively, the plot can be labeled manually by selecting the manual option 
in the function clabel. Th is function places labels onto locations that have 
been selected with the mouse. Labeling is terminated by pressing the return 
key.

[c,h] = contour(XI,YI,ZI,v);
clabel(c,h,'manual')

Filled contours are an alternative to the empty contours used above. Th is 
function is used together with colorbar, which displays a legend for the plot. 
In addition, we can plot the locations (small circles) and z-values (contour 
labels) of the true data points (Fig. 7.6).

contourf(XI,YI,ZI,v), colorbar, hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels), hold off

A pseudocolor plot is generated using the function pcolor. Black contours 
are also added at the same levels as in the above example.

pcolor(XI,YI,ZI), shading flat, hold on
contour(XI,YI,ZI,v,'k'), hold off

Th e third dimension is added to the plot using the mesh command. We can 
also use this example to introduce the function view(az,el) to specify the 
direction of viewing, where az is the azimuth or horizontal rotation and el 
is the elevation (both in degrees). Th e values az=–37.5 and el=30 defi ne the 
default view for all 3D plots,

mesh(XI,YI,ZI), view(-37.5,30)

whereas az=0 and el=90 is directly overhead and the default 2D view:

mesh(XI,YI,ZI), view(0,90)

Th e function mesh provides one of many methods available in MATLAB for 
3D presentation, another commonly used function being surf. Th e fi gure may 
be rotated by selecting the Rotate 3D option on the Edit Tools menu. We also 
introduce the function colormap, which uses predefi ned color look-up tables 
for 3D graphics. Typing help graph3d lists a number of built-in colormaps, 
although colormaps can also be arbitrarily modifi ed and generated by the 
user. As an example we use the colormap hot, which is a black-red-yellow-
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Fig. 7.6 Contour plot with the locations (small circles) and z-values (contour labels) of the 
true data points.

white colormap.

surf(XI,YI,ZI), colormap('hot'), colorbar

Using Rotate 3D only rotates the 3D plot, not the colorbar. Th e function 
surfc combines both a surface and a 2D contour plot in one graph.

surfc(XI,YI,ZI)

Th e function surfl can be used to illustrate an advanced application for 3D 
visualization, generating a 3D colored surface with interpolated shading 
and lighting. Th e axis labeling, ticks, and background can be turned off  by 
typing axis off. In addition, black 3D contours can be added to the surface, 
as above. Th e grid resolution is increased prior to data plotting in order to 
obtain smooth surfaces (Fig. 7.7).

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

surf(XI,YI,ZI), shading interp, light, axis off, hold on
contour3(XI,YI,ZI,v,'k'), hold off
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Fig. 7.7 Th ree-dimensional colored surface with interpolated shading and simulated lighting. 
Th e axis labeling, ticks and background are turned off . Th e plot also contains 3D contours, 
in black.

Th e biharmonic spline interpolation described in this section provides a 
solution to most gridding problems. It was therefore, for some time, the only 
gridding method that came with MATLAB. However, diff erent applications 
in earth sciences require diff erent methods of interpolation, although they 
all have their problems. Th e next section compares biharmonic spline 
interpolation with other gridding methods and summarizes their strengths 
and weaknesses.

 7.8 Comparison of Methods and Potential Artifacts

Th e fi rst example in this section illustrates the use of the bilinear interpolation 
technique for gridding irregular-spaced data. Bilinear interpolation is 
an extension of the one-dimensional technique of linear interpolation 
introduced in Section 5.5. In the two-dimensional case, linear interpolation is 
fi rst performed in one direction, and then in the other direction. Th e bilinear 
method would appear to be one of the simplest interpolation techniques, 
which might intuitively not be expected to produce serious artifacts or 
distortions in the data. Th e opposite is true, however, as this method has a 
number of disadvantages and other methods are therefore preferred in many 
applications.

Th e sample data used in the previous section can again be loaded to study 
the eff ects of a bilinear interpolation.
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clear

data = load('normalfault.txt');
labels = num2str(data(:,3),2);

We now choose the option linear while using the function griddata to 
interpolate the data.

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'linear');

Th e results are plotted as contours. Th e plot also includes the locations of the 
control points.

v = -40 : 10 : 20;
contourf(XI,YI,ZI,v), colorbar, hold on 
plot(data(:,1),data(:,2),'o'), hold off

Th e new surface is restricted to the area that contains control points: by 
default, bilinear interpolation does not extrapolate beyond this region. 
Furthermore, the contours are rather angular compared to the smooth 
shape of the contours from the biharmonic spline interpolation. Th e most 
important character of the bilinear gridding technique, however, is illustrated 
by a projection of the data in a vertical plane.

plot(XI,ZI,'k'), hold on
plot(data(:,1),data(:,3),'ro')
text(data(:,1)+1,data(:,3),labels)
title('Linear Interpolation'), hold off

Th is plot shows the projection of the estimated surface (vertical lines) and 
the labeled control points. Th e z-values at the grid points never exceed the 
z-values of the control points. As with the linear interpolation of time series 
(Section 5.5), bilinear interpolation causes signifi cant smoothing of the data 
and a reduction in high-frequency variations.

Biharmonic spline interpolations are, in many ways, the other extreme. 
Th ey are oft en used for extremely irregular-spaced and noisy data.

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

v = -40 : 10 : 20;
contourf(XI,YI,ZI,v), colorbar, hold on
plot(data(:,1),data(:,2),'o'), hold off

Th e contours suggest an extremely smooth surface. Th is solution is very 
useful in many applications but the method also produces a number of 
artifacts. As we can see from the next plot, the estimated values at the grid 
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points are oft en beyond the range of the measured z-values.

plot(XI,ZI,'k'), hold on
plot(data(:,1),data(:,3),'o')
text(data(:,1)+1,data(:,3),labels)
title('Biharmonic Spline Interpolation'), hold off

Th is can sometimes be appropriate and does not smooth the data in the 
way that bilinear gridding does. However, introducing very close control 
points with diff erent z-values can cause serious artifacts. As an example we 
introduce one reference point with a z-value of +5 close to a reference point 
with a negative z-value of around –26.

data(79,:) = [450 105 5];
labels = num2str(data(:,3),2);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

v = -40 : 10 : 20;
contourf(XI,YI,ZI,v), colorbar, hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels), hold off

Th e extreme gradient at the location (450,105) results in a paired low and 
high (Fig. 7.8). In such cases, it is recommended that one of the two control 
points be deleted and the z-value of the remaining control point be replaced 
by the arithmetic mean of both z-values.

Extrapolation beyond the area supported by control points is a common 
feature of spline interpolation (see also Section 5.5). Extreme local trends 
combined with large areas with no data oft en result in unrealistic estimates. 
To illustrate these edge eff ects we eliminate all control points in the upper-
left  corner.

[i,j] = find(data(:,1)<435 & data(:,2)>105);
data(i,:) = [];

labels = num2str(data(:,3),2);

plot(data(:,1),data(:,2),'ko'), hold on
text(data(:,1)+1,data(:,2),labels), hold off

We again use the biharmonic spline interpolation technique.

[XI,YI] = meshgrid(420:0.25:470,70:0.25:120);
ZI = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

v = -40 : 10 : 40;
contourf(XI,YI,ZI,v)
caxis([-40 40])
colorbar
hold on
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Fig. 7.8 Contour plot of a data set gridded using a biharmonic spline interpolation. At the 
location (450,105), very close control points with diff erent z-values have been introduced. 
Interpolation causes a paired low and high, which is a common artefact in spline interpolation 
of noisy data.

plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels)
hold off

As can be seen from the plot, this method extrapolates the gradients beyond 
the area with control points, up to the edge of the map (Fig. 7.9). Such an eff ect 
is particular undesirable when gridding closed data, such as percentages, or 
data that have only positive values. In such cases, it is recommended that 
the estimated z-values be replaced by NaN. For instance, we delete the areas 
with z-values larger than 20, which are regarded as unrealistic values. Th e 
resulting plot now contains a sector with no data.

ZID = ZI;
ZID(find(ZID > 20)) = NaN;

contourf(XI,YI,ZID,v)
caxis([-40 40])
colorbar
hold on
plot(data(:,1),data(:,2),'ko')
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Fig. 7.9 Contour plot of a data set gridded using a biharmonic spline interpolation. No control 
points are available in the upper left  corner. Th e spline interpolation then extrapolates beyond 
the area with control points using the gradients at the map edges, resulting in unrealistic z 
estimates at the grid points.

text(data(:,1)+1,data(:,2),labels)
hold off

Alternatively, we can eliminate a rectangular area with no data.

ZID = ZI;
ZID(131:201,1:71) = NaN;

contourf(XI,YI,ZID,v)
caxis([-40 40])
colorbar
hold on
plot(data(:,1),data(:,2),'ko')
text(data(:,1)+1,data(:,2),labels)
hold off

In some examples the area with no control points is simply concealed by 
placing a legend over this part of the map.

Other interpolation methods available with griddata are the cubic (cubic), 
natural neighbor (natural), and nearest neighbor (nearest) interpolation 
methods. Th e cubic option interpolates the data in two dimensions using 
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a spline, i.e., a third-degree 3D polynomial is fi tted to at least six adjacent 
control points, resulting in a surface (and its fi rst derivative) that is continuous. 
Th e resulting surface is much smoother than those calculated using linear 
(linear), natural (natural), or nearest neighbor (nearest) techniques but not 
as smooth as that resulting from a biharmonic spline interpolation (v4). For 
this reason the typical artifacts of splines do not occur to the same extent. 
We can compare all of these methods in the next example. We fi rst clear the 
workspace and reload the data from normalfault.txt.

clear

data = load('normalfault.txt');
data(79,:) = [450 105 5];
labels = num2str(data(:,3),2);

We then create titles for the results from the diff erent interpolation methods.

titles = ['linear ';'nearest';'natural';'cubic  ';'biharmo'];

Since we store the titles in a single character array, we use spaces to expand 
the names of the methods so that they are all the same length. We again defi ne 
the axis limits for gridding and contouring: xlim=[420 470] and ylim=[70 
120]. Th e function meshgrid transforms the domain specifi ed by vectors x 
and y into arrays XI and YI. Th e rows of the output array XI are copies of the 
vector x and the columns of the output array YI are copies of the vector y. We 
choose 1.0 as the grid interval.

x = 420:1:470; y = 70:1:120;
[XI,YI] = meshgrid(x,y);

We then use griddata with all available options and store the results in a 
three-dimensional array ZI.

ZI(:,:,1) = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'linear');
ZI(:,:,2) = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'nearest');
ZI(:,:,3) = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'natural');
ZI(:,:,4) = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'cubic');
ZI(:,:,5) = griddata(data(:,1),data(:,2),data(:,3),XI,YI,'v4');

We compare the results in fi ve diff erent graphics in separate fi gure windows, 
slightly off set on the computer display, using figure. Th e data are displayed 
as fi lled contours at values specifi ed in a vector v.

v = -40 : 10 : 20;

for i = 1 : 5
    figure('Position',[50 i*100-50 500 300])
    contourf(XI,YI,ZI(:,:,i),v), colorbar, hold on
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    plot(data(:,1),data(:,2),'ko')
    text(data(:,1)+1,data(:,2),labels), hold off
    title(titles(i,:))
end

According to the MATLAB documentation, Th e MathWorks, Inc. has now 
decided to move the linear (linear), the natural (natural) and the nearest 
neighbor (nearest) techniques to the new function scatteredInterpolant, while 
the biharmonic (v4) and cubic spline (cubic) options remain in the griddata 
function. In fact the code of griddata invokes the new scatteredInterpolant 
function instead of the original codes of linear, natural, or nearest. Th e new 
function works in a very similar manner to griddata, as we can easily explore 
by typing

FLIN = scatteredInterpolant(data(:,1),data(:,2),data(:,3),...
            'linear','linear');
FNEA = scatteredInterpolant(data(:,1),data(:,2),data(:,3),...
            'nearest','nearest');
FNAT = scatteredInterpolant(data(:,1),data(:,2),data(:,3),...
            'natural','none');

ZI(:,:,6) = FLIN(XI,YI);
ZI(:,:,7) = FNEA(XI,YI);
ZI(:,:,8) = FNAT(XI,YI);

titles(6:8,:) = ['scatlin';'scatnea';'scatnat'];

for i = 6:8
    figure('Position',[350 (i-5)*100-50 500 300])
    contourf(XI,YI,ZI(:,:,i),v), colorbar, hold on
    plot(data(:,1),data(:,2),'ko')
    text(data(:,1)+1,data(:,2),labels), hold off
    title(titles(i,:))
end

Another very useful MATLAB gridding method is splines with tension 
by Wessel and Bercovici (1998), available for download from the author’s 
webpage:

http://www.soest.hawaii.edu/wessel/tspline/

Th e tsplines use biharmonic splines in tension t, where the parameter t 
can vary between 0 and 1. A value of t=0 corresponds to a standard cubic 
spline interpolation. Increasing t reduces undesirable oscillations between 
data points, e.g., the paired lows and highs observed in one of the previous 
examples. Th e limiting situation t→1 corresponds to linear interpolation.
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 7.9 Statistics of Point Distributions

Th is section is about the statistical distribution of objects within an area, 
which may help explain the relationship between these objects and 
properties of the area. For instance, the spatial concentration of hand-axes in 
an archaeological site may suggest that a larger population of hominins lived 
in that part of the area, the clustered occurrence of fossils may document 
environmental conditions that were favorable to those particular organisms, 
the alignment of volcanoes may oft en help in mapping tectonic structures 
concealed beneath the surface.

Various methods for the statistical analysis of point distributions are 
introduced below. We fi rst consider a test for a uniform spatial distribution 
of objects, followed by a test for a random spatial distribution and fi nally, a 
simple test for a clustered distributions of objects.

 Test for Uniform Distribution

In order to illustrate the test for a uniform distribution we fi rst need to 
compute some synthetic data. Th e function rand computes uniformly-
distributed pseudo-random numbers drawn from a uniform distribution 
within the interval [0,1]. We compute xy data using rand and multiply the 
data by ten to obtain data within the interval [0,10].

clear

rng(0)
data = 10 * rand(100,2);

We can use the χ2–test introduced in Section 3.8 to test the hypothesis that 
the data have a uniform distribution. Th e xy data are now organized into 25 
classes that are square subareas with dimensions of 2-by-2. Th is defi nition 
of the classes ignores the rule of thumb that the number of classes should be 
close to the square root of the number of observations (see Section 3.3). Our 
choice of classes, however, does not result in any empty classes, which should 
be avoided when applying the χ2–test. Furthermore, 25 classes produce 
integer values for the expected number of observations that are easier to 
work with. We display the data as blue circles in a plot of y versus x. Th e 
rectangular areas are outlined with red lines (Fig. 7.10).

plot(data(:,1),data(:,2),'o')
hold on
x = 0:10; y = ones(size(x));
for i = 1:4, plot(x,2*i*y,'r-'), end
for i = 1:4, plot(2*i*y,x,'r-'), end
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Fig. 7.10 Two-dimensional plot of a point distribution. Th e distribution of objects in the fi eld 
is tested for uniform distribution using the χ2–test. Th e xy data are organized into 25 classes 
that are subareas with dimensions of 2-by-2.

hold off

A three-dimensional version of a histogram hist3 is used to display the 
spatial data, organized in classes (Fig. 7.11).

hist3(data,[5 5]), view(30,70)

As with the equivalent two-dimensional function, the function hist3 can be 
used to compute the frequency distribution n_obs of the data.

n_obs = hist3(data,[5 5]);
n_obs = n_obs(:);

For a uniform distribution, the theoretical frequencies for the diff erent 
classes are identical. Th e expected number of objects in each square area 
is the size of the total area 10∙10=100 divided by the 25 subareas or classes, 
which comes to four. To compare the theoretical frequency distribution with 
the actual spatial distribution of objects, we generate a 5-by-5 array with an 
identical number of objects.

n_exp = 4 * ones(25,1);
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Fig. 7.11 Th ree-dimensional histogram displaying the numbers of objects for each subarea. 
Th e histogram was created using hist3.

Th e χ2-test explores the squared diff erences between the observed and 
expected frequencies (Section 3.9). Th e quantity χ2 is defi ned as the sum of 
the squared diff erences divided by the expected frequencies.

chi2_data = sum((n_obs - n_exp).^2 ./n_exp)

chi2 =
    22.5000

Th e critical χ2 can be calculated using chi2inv. Th e χ2-test requires the 
degrees of freedom Φ. In our example we test the hypothesis that the data 
are uniformly distributed, i.e., we estimate only one parameter (Section  3.5). 
Th e number of degrees of freedom is therefore Φ=25–(1+1)=23. We test the 
hypothesis at a p=95% signifi cance level. Th e function chi2inv computes the 
inverse of the χ2 CDF with parameters specifi ed by Φ for the corresponding 
probabilities in p.

chi2_theo = chi2inv(0.95,25-1-1)

ans = 
    35.1725

Since the critical χ2 of 35.1725 is well above the measured χ2 of 22.5000, we 
cannot reject the null hypothesis and therefore conclude that our data follow 
a uniform distribution.
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 Test for Random Distribution

Th e following example illustrates the test for random distribution of objects 
within an area. We use the uniformly-distributed data generated in the 
previous example and display the point distribution.

clear

rng(5)
data = 10 * rand(100,2);
plot(data(:,1),data(:,2),'o')
hold on
x = 0:10; y = ones(size(x));
for i = 1:9, plot(x,i*y,'r-'), end
for i = 1:9, plot(i*y,x,'r-'), end
hold off

We then generate the three-dimensional histogram and use the function 
hist3 to count the objects per class. In contrast to the previous test, we now 
count the subareas containing a certain number of observations. Th e number 
of subareas is larger than would normally be used for the previous test. In 
our example we use 49 subareas or classes.

hist3(data,[7 7])
view(30,70)

counts = hist3(data,[7 7]);
counts = counts(:);

Th e frequency distribution of those subareas that contain a specifi c number 
of objects follows a Poisson distribution (Section 3.5) if the objects are 
randomly distributed. First, we compute a frequency distribution of the 
subareas containing N objects. In our example we count the subareas with 0, 
…, 5 objects. We also display the histogram of the frequency distribution as a 
two-dimensional histogram using histogram, aft er having fi rst calculated the 
bin edges E from the bin centers N (Section 3.3) (Fig. 7.12).

N = 0 : 5;
E =  -0.5 : 1 : 5.5;

h = histogram(counts,E);
title('Histogram')
xlabel('Number of observations N')
ylabel('Subareas with N observations')

v = h.BinWidth * 0.5 + h.BinEdges(1:end-1);
n_obs = h.Values;
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Here, the midpoints of the histogram intervals v correspond to the N=0, …, 5 
objects contained in the subareas. Th e expected number of subareas Ej with 
a certain number of objects j can be computed using

where n is the total number of objects and T is the number of subareas. For 
j=0, j! is taken to be 1. We compute the expected number of subareas, i.e., the 
theoretical frequency distribution n_exp, using the equation shown above,

for i = 1 : 6
    n_exp(i) = 49*exp(-100/49)*(100/49)^N(i)/factorial(N(i));
end
n_exp = sum(n_obs)*n_exp/sum(n_exp);

and display both the empirical and theoretical frequency distributions in a 
single plot.

h1 = bar(v,n_obs);
hold on
h2 = bar(v,n_exp);
hold off

set(h1,'FaceColor','none','EdgeColor','r')
set(h2,'FaceColor','none','EdgeColor','b')

Th e χ2-test is again used to compare the empirical and theoretical 
distributions. Th e test is performed at a p=95% signifi cance level. Since the 

Fig. 7.12 Frequency distribution of subareas with N objects. In our example the subareas with 
0, …, 5 objects are counted. Th e histogram of the frequency distribution is displayed as a two-
dimensional histogram, using histogram. 
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Poisson distribution is defi ned by only one parameter (Section 3.4), the 
number of degrees of freedom is Φ=6–(1+1)=4. Th e measured χ2 of

chi2 = sum((n_obs - n_exp).^2 ./n_exp)

chi2 =
    3.7615

is well below the critical χ2, which is

chi2inv(0.95,6-1-1)

ans = 
    9.4877

We therefore cannot reject the null hypothesis and conclude that our data 
follow a Poisson distribution and the point distribution is random.

 Test for Clustering

Point distributions in geosciences are oft en clustered. We use a nearest-
neighbor criterion to test a spatial distribution for clustering. Davis (2002) 
has published an excellent summary of the nearest-neighbor analysis, 
summarizing the work of a number of other authors. Swan and Sandilands 
(1996) presented a simplifi ed description of this analysis. Th e test for 
clustering computes the distances di separating all possible pairs of nearest 
points in the fi eld. Th e observed mean nearest-neighbor distance is

where n is the total number of points or objects in the fi eld. Th e arithmetic 
mean of all distances between possible pairs is related to the area covered 
by the map. Th is relationship is expressed by the expected mean nearest-
neighbor distance, which is

where A is the area covered by the map. Small values for this ratio then 
suggest signifi cant clustering, whereas large values indicate regularity or 
uniformity. Th e test uses a Z statistic (Section 3.5), which is
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where se is the standard error of the mean nearest-neighbor distance, which 
is defi ned as

Th e null hypothesis randomness is tested against two alternative hypotheses, 
clustering and uniformity or regularity. Th e Z statistic has critical values of 
1.96 and –1.96 at a signifi cance level of 95%. If –1.96<Z<+1.96, we cannot 
reject the null hypothesis that the data are randomly distributed. If Z<–1.96, 
we reject the null hypothesis and accept the fi rst alternative hypothesis of 
clustering. If Z>+1.96, we also reject the null hypothesis, but accept the 
second alternative hypothesis of uniformity or regularity.

As an example we again use the synthetic data analyzed in the previous 
examples.

clear

rng(5)
data = 10 * rand(100,2);
plot(data(:,1),data(:,2),'o')

We fi rst compute the pairwise Euclidian distance between all pairs of 
observations using the function pdist (Section 9.5). Th e resulting distance 
matrix distances is then converted into a symmetric, square format, so that 
distmatrix(i,j) denotes the distance between i and j objects in the original 
data.

distances = pdist(data,'Euclidean');
distmatrix = squareform(distances);

Th e following for loop fi nds the nearest neighbors, stores the nearest-
neighbor distances and computes the mean distance.

for i = 1 : 100
    distmatrix(i,i) = NaN;
    k = find(distmatrix(i,:) == min(distmatrix(i,:)));
    nearest(i) = distmatrix(i,k(1));
end
observednearest = mean(nearest)

284  7 SPATIAL DATA



observednearest =
    0.5078

In our example the mean nearest distance observednearest comes to 0.5078. 
We next calculate the area of the map. Th e expected mean nearest-neighbor 
distance is half the square root of the map area divided by the number of 
observations.

maparea = (max(data(:,1)-min(data(:,1)))) ...
         *(max(data(:,2)-min(data(:,2))));
expectednearest = 0.5 * sqrt(maparea/length(data))

expectednearest =
    0.4875

In our example the expected mean nearest-neighbor distance expectednearest 
is 0.4875. Finally, we compute the standard error of the mean nearest-
neighbor distance se

se = 0.26136/sqrt(length(data).^2/maparea)

se =
    0.0255

and the test statistic Z.

Z = (observednearest - expectednearest)/se

Z =
    0.7954

Since –1.96<Z<+1.96, we cannot reject the null hypothesis and conclude that 
the data are randomly distributed, but not clustered.

 7.10 Analysis of Digital Elevation Models (by R. Gebbers)

Digital elevation models (DEMs) and their derivatives (e.g., slope and aspect) 
can indicate surface processes such as lateral water fl ow, solar irradiation, or 
erosion. Th e simplest derivatives of a DEM are the slope and the aspect. Th e 
slope (or gradient) is a measure of the steepness, the incline or the grade of a 
surface measured in either percentages or degrees. Th e aspect (or exposure) 
refers to the direction in which a slope faces.

We use the SRTM data set introduced in Section 7.5 to illustrate the 
analysis of a digital elevation model for slope, aspect and other derivatives. 
Th e data are loaded by

clear
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fid = fopen('S01E036.hgt','r');
SRTM = fread(fid,[1201,inf],'int16','b');
fclose(fid);

SRTM = SRTM';
SRTM = flipud(SRTM);
SRTM(find(SRTM==-32768)) = NaN;

Th ese data are elevation values in meters above sea level, sampled on a 3 
arc second or 90 meter grid. Th e SRTM data contain small-scale spatial 
disturbances and noise that could cause problems when computing a drainage 
pattern. We therefore fi lter the data with a two-dimensional moving-average 
fi lter, using the function filter2. Th e fi lter calculates a spatial running mean 
of 3-by-3 elements. We use only the subset SRTM(400:600,650:850) of the 
original data set, in order to reduce computation time. We also remove the 
data at the edges of the DEM to eliminate fi lter artifacts.

F = 1/9 * ones(3,3);
SRTM = filter2(F, SRTM(750:850,700:800));
SRTM = SRTM(2:99,2:99);

Th e DEM is displayed as a pseudocolor plot using pcolor and the colormap 
demcmap included in the Mapping Toolbox. Th e function demcmap creates and 
assigns a colormap appropriate for elevation data since it relates land and sea 
colors to hypsometry and bathymetry. 

h = pcolor(SRTM); 
demcmap(SRTM), colorbar
set(h,'LineStyle','none')
axis equal
title('Elevation [m]')
[r c] = size(SRTM);
axis([1 c 1 r])
set(gca,'TickDir','out');

Th e DEM indicates a horseshoe-shaped mountain range surrounding a 
valley that slopes down towards the south-east (Fig. 7.15 a).

Th e SRTM subset is now analyzed for slope and aspect. When we are 
working with DEMs on a regular grid, slope and aspect can be estimated 
using centered fi nite diff erences in a local 3-by-3 neighborhood. Figure 7.13 
shows a local neighborhood using the MATLAB cell indexing convention. 
For calculating slope and aspect, we need two fi nite diff erences in the DEM 
elements z, in x and y directions:
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Fig. 7.13 Local neighborhood showing the MATLAB cell number convention.

and

where h is the cell size, which has the same units as the elevation. Using the 
fi nite diff erences, the slope is then calculated by

Other primary relief attributes such as the aspect, the plan, the profi le and the 
tangential curvature can be derived in a similar way using fi nite diff erences 
(Wilson and Galant 2000). Th e function gradientm in the Mapping Toolbox 
calculates the slope and aspect of a data grid z in degrees above the horizontal 
and degrees clockwise from north. Th e function gradientm(z,refvec) requires 
a three-element reference vector refvec. Th e reference vector contains the 
number of cells per degree as well as the latitude and longitude of the upper-
left  (northwest) element of the data array. Since the SRTM digital elevation 
model is sampled on a 3 arc second grid, 60∙60/3=1200 elements of the DEM 
correspond to one degree of longitude or latitude. For simplicity we ignore 
the actual coordinates of the SRTM subset in this example and use the indices 
of the DEM elements instead.

refvec = [1200 0 0];
[asp, slp] = gradientm(SRTM, refvec);

We display a pseudocolor map of the DEM slope in degrees (Fig 7.15 b).

h = pcolor(slp);
colormap(jet), colorbar
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set(h,'LineStyle','none')
axis equal
title('Slope [°]')
[r c] = size(slp);
axis([1 c 1 r])
set(gca,'TickDir','out');

Flat areas are common on the summits and on the valley fl oors. Th e south-
eastern and south-south-western sectors are also relatively fl at. Th e steepest 
slopes are concentrated in the center of the area and in the south-western 
sector. Next, a pseudocolor map of the aspect is generated (Fig. 7.15 c).

h = pcolor(asp);
colormap(hsv), colorbar
set(h,'LineStyle','none')
axis equal
title('Aspect')
[r c] = size(asp);
axis([1 c 1 r])
set(gca,'TickDir','out');

Th is plot displays the aspect in degrees, clockwise from north. For instance, 
mountain slopes facing north are displayed in red and east-facing slopes in 
green.

Th e aspect changes abruptly along the ridges of the mountain ranges 
where neighboring drainage basins are separated by watersheds. Th e Image 
Processing Toolbox includes the function watershed to detect these drainage 
divides and to ascribe numerical labels to each catchment area, starting with 
1.

watersh = watershed(SRTM);

Th e catchment areas are displayed in a pseudocolor plot in which each area 
is assigned a color from the color table hsv (Fig. 7.15 d), according to its 
numerical label.

h = pcolor(watersh);
colormap(hsv), colorbar
set(h,'LineStyle','none')
axis equal
title('Watershed')
[r c] = size(watersh);
axis([1 c 1 r])
set(gca,'TickDir','out');

Th e watersheds are represented by a series of red pixels. Th e largest 
catchment area corresponds to the medium blue region in the center of the 
map. To the north-west, this large catchment area appears to be bordered by 
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three catchments areas (represented by green colors) with no outlets. As in 
this example, watershed oft en generates unrealistic results since watershed 
algorithms are sensitive to local minima that act as spurious sinks. We can 
detect such sinks in the SRTM data using the function imregionalmin. Th e 
output of this function is a binary image in which pixels containing local 
maxima are marked by a value of one and all other pixels are marked by a 
zero.

sinks = 1*imregionalmin(SRTM);

h = pcolor(sinks);
colormap(gray)
set(h,'LineStyle','none')
axis equal
title('Sinks')
[r c] = size(sinks);
axis([1 c 1 r])
set(gca,'TickDir','out');

Th e pseudocolor plot of the binary image shows twelve local sinks, 
represented by white pixels, that are potential locations for spurious areas 
of internal drainage and should be borne in mind during any subsequent 
computation of hydrological characteristics from the DEM.

Flow accumulation, also called specifi c catchment area or upslope 
contributing area, is defi ned as the number of cells (or area) contributing 
runoff  to a particular cell (Fig. 7.14). In contrast to the local parameters 
of slope and aspect, fl ow accumulation can only be determined from the 
global neighborhood. Th e principal operation is to add cell infl ows from 
topographically higher neighboring cells, starting from the specifi ed cell 
and working up to the watersheds. Before adding together the outfl ows from 
each cell we need to determine the gradient of each individual cell towards 
each neighboring cell, indexed by N. Th e array N contains indices for the eight 
adjacent cells, according to the MATLAB convention, as shown in Figure 
7.13. We make use of the circshift function to access the neighboring cells. 
For a two-dimensional matrix Z, the function circshift(Z,[r c]) circularly 
shift s the values in the matrix Z by r rows and c columns. For example 
circshift(Z,[1 1]) will circularly shift  Z one row down and one column to 
the right. Th e individual gradients are calculated by

for the eastern, southern, western, and northern neighbors (known as the 
rook’s case) and by
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for the diagonal neighbors (known as the bishop’s case). In these formulae, 
h is the cell size, zr,c is the elevation of the central cell, and zr+y,c+x is the 
elevation of the neighboring cells. Th e cell indices x and y are obtained from 
the matrix N. Th e gradients are stored in a three-dimensional matrix grads, 
where grads(:,:,1) contains the gradient towards the neighboring cells to 
the east, grads(:,:,2) contains the gradient towards the neighboring cells 
to the south-east, and so on. Negative gradients indicate outfl ow from the 
central cell towards the relevant neighboring cell. To obtain the surface fl ow 
between cells, gradients are transformed using the inverse tangent of grads 
divided by 0.5π.

N = [0 -1;-1 -1;-1 0;+1 -1;0 +1;+1 +1;+1 0;-1 +1];
[a b] = size(SRTM);
grads = zeros(a,b,8);
for c = 2 : 2 : 8
   grads(:,:,c) = (circshift(SRTM,[N(c,1) N(c,2)]) ...
      -SRTM)/sqrt(2*90);
end
for c = 1 : 2 : 7
   grads(:,:,c) = (circshift(SRTM,[N(c,1) N(c,2)]) ...
      -SRTM)/90;
end
grads = atan(grads)/pi*2;

Since a central cell can have several downslope neighbors, water can fl ow 
in several directions. Th is phenomenon is called divergent fl ow. Early fl ow 
accumulation algorithms were based on the single-fl ow-direction method 
(known as the D8 method, Fig. 7.14), which allows fl ow to only one of the cell’s 
eight neighboring cells. Th is method cannot, however, model divergences in 
ridge areas and tends to produce parallel fl ow lines in some situations. In our 
example we illustrate the use of a multiple-fl ow-direction method, which 
allows fl ow from a central cell to multiple neighboring cells. Th e proportion 
of the total outfl ow that is assigned to a neighboring cell is dependent on 
the gradient between the central cell and that particular neighboring cell. 
Even though multiple-fl ow methods produce more realistic results in most 
situations, they tend to result in dispersion in valleys, where the fl ow should 
be more concentrated. A weighting factor w is therefore introduced, which 
controls the relationship between the outfl ows.
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A recommended value for w is 1.1; higher values would concentrate the fl ow 
in the direction of the steepest slope, while w=0 would result in extreme 
dispersion. In the following sequence of commands, we fi rst select those 
gradients that are less than zero and then multiply the gradients by the 
weighting.

w = 1.1;
flow = (grads.*(-1*grads<0)).^w;

We then sum up the upslope gradients along the third dimension of the flow 
matrix. Replacing all upslope gradient values of 0 by a value of 1 avoids the 
problems created by trying to divide by zero.

upssum = sum(flow,3);
upssum(upssum==0) = 1;

We divide the fl ows by upssum to obtain fractional weights that add up to a 
total of one. Th is is achieved separately for each layer of the 3D flow matrix 
using a for loop:

Fig. 7.14 Schematic of calculation of fl ow accumulation by the D8 method.
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for i = 1:8
   flow(:,:,i) = flow(:,:,i).*(flow(:,:,i)>0)./upssum;
end

Th e 2D matrix inflowsum will store the intermediate infl ow totals for each 
iteration. Th ese intermediate totals are then summed to reach a fi gure for the 
total accumulated fl ow flowac at the end of each iteration. Th e initial values 
for inflowsum and flowac are obtained through upssum.

inflowsum = upssum;
flowac = upssum;

Another 3D matrix inflow is now needed, in which to store the total 
intermediate infl ow from all neighbors:

inflow = grads*0;

Flow accumulation is terminated when there is no infl ow or, translating 
this into MATLAB code, we use a conditional while loop that terminates 
if sum(inflowsum(:))==0. Th e number of non-zero entries in inflowsum will 
decrease during each loop. Th is is achieved by alternately updating inflow 
and inflowsum. Here, inflowsum is updated with the intermediate inflow of 
the neighboring cells weighted by flow, under the condition that all of the 
neighboring cells are contributing cells, i.e., where grads are positive. Where 
not all neighboring cells are contributing cells, the intermediate inflowsum is 
reduced, as also is inflow. Th e fl ow accumulation flowac increases through 
consecutive summations of the intermediate inflowsum.

while sum(inflowsum(:))>0
   for i = 1:8
      inflow(:,:,i) = circshift(inflowsum,[N(i,1) N(i,2)]);
   end
   inflowsum = sum(inflow.*flow.*grads>0,3);
   flowac = flowac + inflowsum;
end

We display the result as a pseudocolor map with log-scaled values (Fig. 
7.15 e).

h = pcolor(log(1+flowac));
colormap(flipud(jet)), colorbar
set(h,'LineStyle','none')
axis equal
title('Flow accumulation')
[r c] = size(flowac);
axis([1 c 1 r])
set(gca,'TickDir','out');

292  7 SPATIAL DATA



Fig. 7.15 Display of a subset of the SRTM data set used in Section 7.5 and primary and 
secondary attributes of the digital elevation model; a elevation, b slope, c aspect, d watershed, 
e fl ow accumulation, and f wetness index (data from Farr et al. 2000, 2008).

c

d

d

e

a b
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Th e plot displays areas with high fl ow accumulation in shades of blue and 
areas with low fl ow accumulation, usually corresponding to ridges, in shades 
of red. We used a logarithmic scale for mapping the fl ow accumulation 
in order to obtain a better representation of the results. Th e simplifi ed 
algorithm introduced here for calculating fl ow accumulation can be used to 
analyze sloping terrains in DEMs. In fl at terrains, where the slope approaches 
zero, no fl ow direction can be generated by our algorithm and thus fl ow 
accumulation stops. Such situations require more sophisticated algorithms 
to perform analyses on completely fl at terrain. Th ese more advanced 
algorithms also include sink-fi lling routines to avoid spurious sinks that 
interrupt fl ow accumulation. Small depressions can be fi lled by smoothing, 
as we did at the beginning of this section.

Th e fi rst part of this section was about primary relief attributes. Secondary 
attributes of a DEM are functions of two or more primary attributes. Examples 
of secondary attributes are the wetness index and the stream power index. 
Th e wetness index for a cell is the log of the ratio between the area of the 
catchment for that particular cell and the tangent of its slope:

Th e term 1+fl owac avoids the problems associated with calculating the 
logarithm of zero when flowac=0. Th e wetness index is used to predict the 
soil water content (saturation) resulting from lateral water movement. Th e 
potential for waterlogging is usually highest in the lower parts of catchments, 
where the slopes are more gentle. Flat areas with a large upslope area have 
a high wetness index compared to steep areas with small catchments. Th e 
wetness index weti is computed and displayed by

weti = log((1+flowac)./tand(slp));

h = pcolor(weti);
colormap(flipud(jet)), colorbar
set(h,'LineStyle','none')
axis equal
title('Wetness index')
[r c] = size(weti);
axis([1 c 1 r])
set(gca,'TickDir','out');

In this plot, blue colors indicate high values for the wetness index while red 
colors represent low values (Fig. 7.15 f). In our example soils in the south-
east are the most likely to have a high water content due to the runoff  from 

294  7 SPATIAL DATA



the large central valley and the fl atness of the terrain.
Th e stream power index is another important secondary relief attribute that 

is frequently used in hillslope hydrology, geomorphology, soil science, and 
related disciplines. As a measure of stream power it provides an indication 
of the potential for sediment transport and erosion by water. It is defi ned as 
the product of the catchment area for a specifi c cell and the tangent of the 
slope of that cell:

Th e potential for erosion is high when large quantities of water (calculated by 
fl ow accumulation) are fast fl owing due to an extreme slope. Th e following 
series of commands compute and display the stream power index:

spi = flowac.*tand(slp);

h = pcolor(log(1+spi));
colormap(jet), colorbar
set(h,'LineStyle','none')
axis equal
title('Stream power index')
[r c] = size(spi);
axis([1 c 1 r])
set(gca,'TickDir','out');

Th e wetness and stream power indices are particularly useful in high 
resolution terrain analysis, i.e., digital elevation models sampled at intervals 
of less than 30 meters. In our terrain analysis example we have calculated 
weti and spi from a medium resolution DEM, and must expect a degree of 
scale dependency in these attributes.

Th is section has illustrated the use of basic tools for analyzing digital 
elevation models. A more detailed introduction to digital terrain modeling 
is given in the book by Wilson & Galant (2002). Furthermore, the article 
by Freeman (1991) provides a comprehensive summary of digital terrain 
analysis, including an introduction to the use of advanced algorithms for 
fl ow accumulation.

 7.11 Geostatistics and Kriging (by R. Gebbers)

Geostatistics describes the autocorrelation of one or more variables in 1D, 
2D, or 3D space, or even in 4D space-time, in order to make predictions 
for unobserved locations, to obtain information on the accuracy of the 
predictions, and to reproduce spatial variability and uncertainty. Th e 
shape, range, and direction of the spatial autocorrelation are described by 
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a variogram, which is the main tool in linear geostatistics. Th e origins of 
geostatistics can be traced back to the early 1950s when the South African 
mining engineer Daniel G. Krige fi rst published an interpolation method 
based on the spatial dependency of samples. In the 60s and 70s, the French 
mathematician George Matheron developed the theory of regionalized 
variables, which provides the theoretical foundations for Krige’s more 
practical methods. Th is theory forms the basis of several procedures for the 
analysis and estimation of spatially dependent variables, which Matheron 
called geostatistics. Matheron also coined the term kriging for spatial 
interpolation by geostatistical methods.

 Theorical Background

A basic assumption in geostatistics is that a spatiotemporal process is 
composed of both deterministic and stochastic components (Fig. 7.16). 
Th e deterministic components can be global and local trends (sometimes 
called drift s). Th e stochastic component comprises a purely random part 
and an autocorrelated part. Th e autocorrelated component suggests that 
on average, closer observations are more similar to each other than more 
widely separated observations. Th is behavior is described by the variogram 
in which squared diff erences between observations are plotted against their 
separation distances. Krige’s fundamental idea was to use the variogram 
for interpolation, as a means of determining the amount of infl uence that 
neighboring observations have when predicting values for unobserved 
locations. Basic linear geostatistics includes two main procedures: 
variography for modeling the variogram, and kriging for interpolation.

 Preceding Analysis

Because linear geostatistics as presented herein is a parametric method, the 
underlying assumptions need to be checked by a preceding analysis. As with 
other parametric methods, linear geostatistics is sensitive to outliers and 
deviations from a normal distribution. We fi rst open the data fi le geost_dat.
mat containing xyz data triplets, and then plot the sampling locations. Th is 
allows us to check the point distribution and detect any major errors in the 
data coordinates, x and y.

clear

load geost_dat.mat

plot(x,y,'.')
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Fig. 7.16 Components of a spatiotemporal process and the variogram; a spatiotemporal 
process, b global trend component, c local trend component, d random component, e 
autocorrelation component, and f variogram. Th e variogram should only be derived from the 
autocorrelated component.
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Th e range of the observations z can be checked by

min(z)

ans =
    3.7199

max(z)

ans =
    7.8460

For linear geostatistics, the observations z should be Gaussian distributed. 
Th is is usually only tested by visual inspection of the histogram because 
statistical tests are oft en too sensitive if the number of samples exceeds about 
100. One can also calculate the skewness and kurtosis of the data.

histogram(z)

skewness(z)

ans =
    0.2568

kurtosis(z)

ans =
    2.5220

A fl at-topped or multiple-peaked distribution suggests that there is more 
than one population present in the data set. If these populations can be 
related to particular areas they should be treated separately. Another reason 
for multiple peaks can be preferential sampling of areas with high and/or low 
values. Th is usually happens as a result of some a priori knowledge and is 
known as a cluster eff ect. Dealing with a cluster eff ect is described in Deutsch 
and Journel (1998) and in Isaaks and Srivastava (1998).

Most problems arise from positive skewness, i.e., if the distribution 
has a long tail to the right. According to Webster and Oliver (2001), one 
should consider root transformation if the skewness is between 0.5 and 
1, and logarithmic transformation if the skewness exceeds 1. A general 
transformation formula is: 
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for min(z)+m>0. Th is is known as the called Box-Cox transform, with the 
special case k=0 when a logarithm transformation is used. In the logarithm 
transformation, m should be added if z is zero or negative. Interpolation 
results of power-transformed values can be back-transformed directly aft er 
kriging. Th e back-transformation of log-transformed values is slightly 
more complicated and will be explained later. Th e procedure is known as 
lognormal kriging. It can be important because lognormal distributions are 
not uncommon in geology.

 Variography with the Classical Variogram

A variogram describes the spatial dependency of referenced observations in 
a unidimensional or multidimensional space. Since the true variogram of the 
spatial process is usually unkown, it has to be estimated from observations. 
Th is procedure is called variography. Variography starts by calculating the 
experimental variogram from the raw data. In the next step, the experimental 
variogram is summarized by the variogram estimator. Th e variography then 
concludes by fi tting a variogram model to the variogram estimator. Th e 
experimental variogram is calculated as the diff erences between pairs of 
observed values and is dependent on the separation vector h (Fig. 7.17). Th e 
classical experimental variogram is defi ned by the semivariance,

where zx is the observed value at location x and zx+h is the observed value at 
another point at a distance h from x. Th e length of the separation vector h 
is called the lag distance, or simply the lag. Th e correct term for γ(h) is the 
semivariogram (or semivariance), where semi refers to the fact that it is half 
of the variance in the diff erences between zx and zx+h. It is, nevertheless, the 
variance per point when points are considered in pairs (Webster and Oliver 
2001). Conventionally, γ(h) is termed a variogram instead of a semivariogram, 
a convention that we shall follow for the rest of this section. To calculate the 
experimental variogram we fi rst need to group pairs of observations. Th is is 
achieved by typing

[X1,X2] = meshgrid(x);
[Y1,Y2] = meshgrid(y);
[Z1,Z2] = meshgrid(z);

Th e matrix of separation distances D between the observation points is

D = sqrt((X1 - X2).^2 + (Y1 - Y2).^2);
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Fig. 7.17 Separation vector h between two points.

We then obtain the experimental variogram G, as half the squared diff erences 
between the observed values:

G = 0.5*(Z1 - Z2).^2; 

In order to speed up the processing we use the MATLAB capability to 
vectorize commands instead of using for loops to run faster. However, we 
have computed n2 pairs of observations although only n(n–1)/2 pairs are 
required. For large data sets (e.g., more than 3,000 data points) the soft ware 
and physical memory of the computer may become limiting factors. In 
such cases, a more effi  cient method of programming is described in the 
user manual for the SURFER soft ware (SURFER 2002). Th e plot of the 
experimental variogram is called the variogram cloud (Fig. 7.18), which we 
obtain by extracting the lower triangular portions of the D and G arrays.

indx = 1:length(z);
[C,R] = meshgrid(indx);
I = R > C;

plot(D(I),G(I),'.' )
xlabel('lag distance')
ylabel('variogram')

Th e variogram cloud provides a visual impression of the dispersion of values 
at the diff erent lags. It can be useful for detecting outliers or anomalies, but it is 
hard to judge from this presentation whether there is any spatial correlation, 
and if so, what form it might have and how we could model it (Webster and 
Oliver 2001). To obtain a clearer view and to prepare a variogram model the 
experimental variogram is now replaced by the variogram estimator.

Th e variogram estimator is derived from the experimental variograms in 
order to summarize their central tendency (similar to the descriptive statistics 
derived from univariate observations, Section 3.2). Th e classical variogram 
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Fig. 7.18 Variogram cloud: plot of the experimental variogram (half the squared diff erence 
between pairs of observations) versus the lag distance (separation distance between the two 
components of a pair).

estimator is the averaged empirical variogram within certain distance 
classes or bins defi ned by multiples of the lag interval. Th e classifi cation of 
separation distances is illustrated in Figure 7.19. Th e variogram estimator is 
calculated by:

where N(h) is the number of pairs within the lag interval h.
We fi rst need to decide on a suitable lag interval h. If sampling has been 

carried out on a regular grid, the length of a grid cell can be used. If the 
samples are unevenly spaced, as in our case, the mean minimum distance 
of pairs is a good starting point for the lag interval (Webster and Oliver 
2001). To calculate the mean minimum distance of pairs we need to replace 
the zeros in the diagonal of the lag matrix D with NaNs, otherwise the mean 
minimum distance will be zero:
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Fig. 7.19 Classifi cation of separation distances for observations that are equally spaced. Th e 
lag interval is h1, and h2, h3 etc. are multiples of the lag interval.

D2 = D.*(diag(x*NaN)+1);
lag = mean(min(D2))

lag =
    8.0107

Since the estimated variogram values tend to become more erratic with 
increasing distances, it is important to place a maximum distance limit 
on the calculation. As a rule of thumb, half of the maximum distance is a 
suitable limit for variogram analysis. We obtain the half maximum distance 
and the maximum number of lags by:

hmd = max(D(:))/2

hmd =
  130.1901

max_lags = floor(hmd/lag)

max_lags =
    16

Th e separation distances are then classifi ed and the classical variogram 
estimator is calculated:

LAGS = ceil(D/lag);

for i = 1 : max_lags
    SEL = (LAGS == i);
    DE(i) = mean(mean(D(SEL)));
    PN(i) = sum(sum(SEL == 1))/2;
    GE(i) = mean(mean(G(SEL)));
end

where SEL is the selection matrix defi ned by the lag classes in LAG, DE is the 
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mean lag, PN is the number of pairs, and GE is the variogram estimator. We 
can now plot the classical variogram estimator (variogram versus mean 
separation distance), together with the population variance:

plot(DE,GE,'.' )
var_z = var(z); 
b = [0 max(DE)]; 
c = [var_z var_z];
hold on

plot(b,c, '--r') 
yl = 1.1 * max(GE); 
ylim([0 yl])
xlabel('Averaged distance between observations')
ylabel('Averaged semivariance')
hold off

Th e variogram in Figure 7.20 exhibits a typical pattern of behavior. Values 
are low at small separation distances (near the origin), they increase with 
increasing distance until reaching a plateau (sill), which is close to the 
population variance. Th is indicates that the spatial process is correlated over 
short distances but there is no spatial dependency over longer distances. Th e 
extent of the spatial dependency is called the range and is defi ned as the 
separation distance at which the variogram reaches the sill.

Th e variogram model is a parametric curve fi tted to the variogram 
estimator. Th is is similar to frequency distribution fi tting (see Section 3.5), 
where the frequency distribution is modeled by a distribution type and its 
parameters (e.g., a normal distribution with its mean and variance). For 
theoretical reasons, only functions with certain properties should be used 
as variogram models. Common authorized models are the spherical, the 
exponential, and the linear model (more models can be found in the relevant 
published literature).

Spherical model:

Exponential model:
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Fig. 7.20 Th e classical variogram estimator (blue circles) and the population variance (dashed 
line).

Linear model:

where c is the sill, a is the range, and b is the slope (for a linear model). 
Th e parameters c and either a or b must be modifi ed if a variogram model 
is fi tted to the variogram estimator. Th e nugget eff ect is a special type of 
variogram model. In practice, when extrapolating the variogram towards a 
separation distance of zero we oft en observe a positive intercept on the y-axis. 
Th is is called the nugget eff ect and it is explained by measurement errors 
and by small scale fl uctuations (nuggets) that are not captured due to the 
sampling intervals being too large. We sometimes have expectations about 
the minimum nugget eff ect from the variance of repeated measurements in 
the laboratory, or from other prior knowledge. More details concerning the 
nugget eff ect can be found in Cressie (1993) and Kitanidis (1997). If there is 
a nugget eff ect, it can be added into the variogram model. An exponential 
model with a nugget eff ect looks like this:
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where c0 is the nugget eff ect.
We can even combine variogram models, e.g., two spherical models with 

diff erent ranges and sills. Th ese combinations are called nested models. During 
variogram modeling the components of a nested model are regarded as 
spatial structures that should be interpreted as being the results of geological 
processes. Before we discuss further aspects of variogram modeling let us 
just fi t some models to our data. We begin with a spherical model with no 
nugget eff ect, and then add an exponential model and a linear model, both 
with nugget variances:

plot(DE,GE,'o','MarkerFaceColor',[.6 .6 .6]) 
var_z = var(z);
b = [0 max(DE)];
c = [var_z var_z];
hold on
plot(b,c,'--r') 
xlim(b)
yl = 1.1*max(GE);
ylim([0 yl])

% Spherical model with nugget
nugget = 0;
sill = 0.803;
range = 45.9;
lags = 0:max(DE);
Gsph = nugget + (sill*(1.5*lags/range - 0.5*(lags/...
   range).^3).*(lags<=range) + sill*(lags>range));
plot(lags,Gsph,':g')

% Exponential model with nugget
nugget = 0.0239;
sill = 0.78;
range = 45;
Gexp = nugget + sill*(1 - exp(-3*lags/range));
plot(lags,Gexp,'-.b')

% Linear model with nugget
nugget = 0.153;
slope = 0.0203;
Glin = nugget + slope*lags;
plot(lags,Glin,'-m')
xlabel('Distance between observations')
ylabel('Semivariance')
legend('Variogram estimator','Population variance',...
   'Sperical model','Exponential model','Linear model')
hold off
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Th e techniques of variogram modeling are still very much under discussion. 
Some advocate objective variogram modeling by automated curve fi tting, 
using a weighted least squares, maximum likelihood, or maximum entropy 
method. In contrast, it is oft en argued that geological knowledge should be 
included in the modeling process and visual fi tting is therefore recommended. 
In many cases the problem with variogram modeling is much less a question 
of whether the appropriate procedure has been used than a question of the 
quality of the experimental variogram. If the experimental variogram is 
good, both procedures will yield similar results.

Another important question in variogram modeling is the intended use 
of the model. In our case the linear model does not at fi rst appear to be 
appropriate (Fig. 7.21). Following a closer look, however, we can see that the 
linear model fi ts reasonably well over the fi rst three lags. Th is can be suffi  cient 
if we use the variogram model only for kriging, because in kriging the 
nearby points are the most important points for the estimate (see discussion 
of kriging below). Diff erent variogram models with similar fi ts close to the 
origin will therefore yield similar kriging results if the sampling points are 
regularly distributed. If, however, the objective is to describe the spatial 
structures then the situation is quite diff erent. It then becomes important to 
fi nd a model that is suitable over all lags and to accurately determine the sill 
and the range. A collection of geological case studies in Rendu and Readdy 
(1982) show how process knowledge and variography can be interlinked. 
Good guidelines for variogram modeling are provided by Gringarten and 
Deutsch (2001) and Webster and Oliver (2001).

We will now briefl y discuss a number of other aspects of variography:

• Sample size – As in any statistical procedure, as large a sample as possible 
is required in order to obtain a reliable estimate. For variography it is 
recommended that the number of samples should be in excess of 100 to 
150 (Webster and Oliver 2001). For smaller sample numbers a maximum 
likelihood variogram should be computed (Pardo-Igúzquiza and Dowd 
1997).

• Sampling design – In order to obtain a good estimation close to the origin 
of the variogram, the sampling design should include observations 
over small distances. Th is can be achieved by means of a nested design 
(Webster and Oliver 2001). Other possible designs have been evaluated by 
Olea (1984).

• Anisotropy – Th us far we have assumed that the structure of spatial 
correlation is independent of direction. We have calculated omnidirectional 
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variograms ignoring the direction of the separation vector h. In a more 
thorough analysis, the variogram should be discretized not only in 
distance but also in direction (directional bins). Plotting directional 
variograms, usually in four directions, we are sometimes able to observe 
diff erent ranges (geometric anisotropy), diff erent scales (zonal anisotropy), 
and diff erent shapes (indicating a trend). Th e treatment of anisotropy 
requires a highly interactive graphical user interface, which is beyond the 
scope of this book (see the VarioWin soft ware by Panatier 1996).

• Number of pairs and the lag interval – When calculating the classical 
variogram estimator it is recommended that more than 30 to 50 pairs of 
points be used per lag interval (Webster and Oliver 2001). Th is is due to 
the sensitivity to outliers. If there are fewer pairs, the lag interval should 
be increased. Th e lag spacing does not necessarily need to be uniform but 
can be chosen individually for each distance class. It is also possible to 
work with overlapping classes, in which case the lag width (lag tolerance) 
must be defi ned. However, increasing the lag width can cause unnecessary 

Fig. 7.21 Variogram estimator (blue circles), population variance (solid line), and spherical, 
exponential, and linear models (dotted and dashed lines).
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smoothing, with a resulting loss of detail. Th e separation distance and the 
lag width must therefore be chosen with care. Another option is to use 
a more robust variogram estimator (Cressie 1993, Deutsch and Journel 
1998).

• Calculation of separation distance – If the observations cover a large area, 
for example more than 1,000  km2, spherical distances should be calculated 
instead of Pythagorean distances from a planar Cartesian coordinate 
system. 

 Kriging

We will now interpolate the observations onto a regular grid by ordinary 
point kriging, which is the most popular kriging method. Ordinary point 
kriging uses a weighted average of the neighboring points to estimate the 
value of an unobserved point: 

where λi are the weights that have to be estimated. Th e sum of the weights 
should be equal to one in order to guarantee that the estimates are unbiased:

Th e expected (average) error for the estimation must be zero. Th at is:

where zx0 is the true, but unknown value. We can use the above equations 
to compute algebraically the mean-squared error in terms of the variogram:

where E is the estimation or kriging variance (which must be minimized), 
γ(xi, x0) is the variogram (semivariance) between the data points and the 
unobserved points, γ(xi, xj) is the variogram between the data points xi and 
xj, and λi and λj are the weights of the ith and jth data points.
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For kriging we must minimize this equation (a quadratic objective 
function), satisfying the condition that the sum of the weights should be 
equal to one (linear constraint). Th is optimization problem can be solved 
using a Lagrange multiplier ν, resulting in a linear kriging system of N+1 
equations and N+1 unknowns:

Aft er obtaining the weights λi, the kriging variance is given by

Th e kriging system can be presented in a matrix notation:

where

is the matrix of the coeffi  cients: these are the modeled variogram values for 
the pairs of observations. Note that on the diagonal of the matrix, where 
separation distance is zero, the value of γ disappears.

is the vector of the unknown weights and the Lagrange multiplier.
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is the right-hand-side vector. To obtain the weights and the Lagrange 
multiplier the matrix G_mod is inverted:

Th e kriging variance is given by

For our calculations using MATLAB we need the matrix of coeffi  cients 
derived from the distance matrix D and a variogram model. D was calculated 
in the variography section above and we use the exponential variogram 
model with a nugget, sill, and range from the previous section:

G_mod = (nugget + sill*(1 - exp(-3*D/range))).*(D>0);

We then take the number of observations and add a column and row vector 
of all values of one to the G_mod matrix and a zero in the lower left  corner: 

n = length(x);
G_mod(:,n+1) = 1;
G_mod(n+1,:) = 1;
G_mod(n+1,n+1) = 0;

Th e G_mod matrix now has to be inverted:

G_inv = inv(G_mod);

A grid with the locations of the unknown values is needed. Here we use a 
grid cell size of fi ve within a quadratic area ranging from 0 to 200 in x and y 
directions. Th e coordinates are created in matrix form by:

R = 0 : 5 : 200;
[Xg1,Xg2] = meshgrid(R,R);

and converted to vectors by:

Xg = reshape(Xg1,[],1);
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Yg = reshape(Xg2,[],1);

We then allocate memory for the kriging estimates Zg and the kriging 
variance s2_k by:

Zg = Xg * NaN;
s2_k = Xg * NaN;

We now krige the unknown values at each grid point:

for k = 1 : length(Xg)
    DOR = ((x - Xg(k)).^2 + (y - Yg(k)).^2).^0.5;
    G_R = (nugget + sill*(1 - exp(-3*DOR/range))).*(DOR>0);
    G_R(n+1) = 1; 
    E = G_inv * G_R; 
    Zg(k) = sum(E(1:n,1).*z); 
    s2_k(k) = sum(E(1:n,1).*G_R(1:n,1))+E(n+1,1); 
end

Th e fi rst command computes the distance between the grid points (Xg,Yg) 
and the observation points(x,y). We then create the right-hand-side 
vector of the kriging system using the variogram model G_R and adding 
one to the last row. We next obtain the matrix E with the weights and the 
Lagrange multiplier. Th e estimate Zg at each point k is the weighted sum 
of the observations z. Finally, the kriging variance s2_k of the grid point is 
computed and we can plot the results. We fi rst create a grid of the kriging 
estimate and the kriging variance:

r = length(R);
Z = reshape(Zg,r,r);
SK = reshape(s2_k,r,r);

A subplot on the left  presents the kriged values:

subplot(1,2,1)
h = pcolor(Xg1,Xg2,Z);
set(h,'LineStyle','none')
axis equal
ylim([0 200])
title('Kriging Estimate')
xlabel('x-Coordinates')
ylabel('y-Coordinates')
colormap(jet)
colorbar

Th e left  hand subplot presents the kriging variance:

subplot(1,2,2)
h = pcolor(Xg1,Xg2,SK);
set(h,'LineStyle','none')
axis equal
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ylim([0 200])
title('Kriging Variance')
xlabel('x-Coordinates')
ylabel('y-Coordinates')
colormap(jet)
colorbar
hold on

and we overlay the sampling positions:

plot(x,y,'ok')
hold off

Th e kriged values are shown in Figure 7.22 a. Th e kriging variance depends 
only on the distance from the observations and not on the observed values 
(Fig. 7.22 b). Kriging reproduces the population mean when observations 
are beyond the range of the variogram; at the same time, the kriging variance 
increases (lower right corner of the maps in Figure 7.22). Th e kriging 
variance can be used as a criterion to improve sampling design and it is 
needed for back-transformation in lognormal kriging. Back-transformation 
for lognormal kriging is achieved by:

Fig. 7.22 Values interpolated on a regular grid by ordinary point kriging using a an 
exponential variogram model, and b the kriging variance as a function of the distance from 
the observation (empty circles).

a b
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 Discussion of Kriging

Point kriging as presented here is an exact interpolator. It reproduces exactly 
the values at an observation point, even though a variogram with a nugget 
eff ect is used. Smoothing can be achieved by including the variance of 
the measurement errors (see Kitanidis 1997), and by block kriging, which 
averages the observations within a certain neighborhood (or block). While 
kriging variance depends only on the distance between the observed and the 
unobserved locations, it is primarily a measure of the density of information 
(Wackernagel 2003). Th e accuracy of kriging is better evaluated by cross-
validation using a resampling method or a surrogate test (Sections 4.6 
and 4.7). Th e infl uence of the neighboring observations on the estimation 
depends on their confi guration, as summarized by Webster and Oliver 
(2001): "Near points carry more weight than more distant ones; the relative 
weight of a point decreases when the number of points in the neighborhood 
increases; clustered points carry less weight individually than isolated ones 
at the same distance; data points can be screened by ones lying between them 
and the target." Sampling design for kriging is diff erent from the design that 
might be optimal for variography. A regular grid, triangular or quadratic, 
can be regarded as optimal. 

Th e MATLAB code presented here is a straightforward implementation 
of the above formulae. In professional programs the number of data points 
entering the G_mod matrix is restricted and the inversion of G_mod 
is avoided by working with the covariances instead of the variograms 
(Webster and Oliver 2001, Kitanidis 1997). For those who are interested in 
programming and in a deeper understanding of algorithms, the publication 
by Deutsch and Journel (1992) is essential reading. Th e best internet source 
is the homepage for AI-GEOSTATISTICS:

http://www.ai-geostats.org
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 8.1 Introduction

Computer graphics are stored and processed as either vector or raster data. 
Most of the data types that were encountered in the previous chapter were 
vector data, i.e., points, lines and polygons. Drainage networks, the outlines 
of geologic units, sampling locations, and topographic contours are all 
examples of vector data. In Chapter 7, coastlines are stored in a vector format 
while bathymetric and topographic data are saved in a raster format. Vector 
and raster data are oft en combined in a single data set, for instance to display 
the course of a river on a satellite image. Raster data are oft en converted to 
vector data by digitizing points, lines or polygons. Conversely, vector data 
are sometimes transformed to raster data.

Images are generally represented as raster data, i.e., as a 2D array of color 
intensities. Images are everywhere in geosciences. Field geologists use aerial 
photos and satellite images to identify lithologic units, tectonic structures, 
landslides and other features within a study area. Geomorphologists use 
such images to analyze drainage networks, river catchments, and vegetation 
or soil types. Th e analysis of images from thin sections, the automated 
identifi cation of objects, and the measurement of varve thicknesses all make 
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use of a great variety of image processing methods.
Th is chapter is concerned with the analysis and display of image data. Th e 

various ways that raster data can be stored on the computer are fi rst explained 
(Section 8.2). Th e main tools for importing, manipulating and exporting 
image data are then presented in Section 8.3. Th is knowledge is then used 
to process and to georeference satellite images (Sections 8.4 to 8.6). On-
screen digitization techniques are discussed in Section 8.7. Sections 8.8 and 
8.9 deal with importing, enhancing, and analyzing images from laminated 
lake sediments, including color-intensity measurements on transects across 
the laminae. Finally, Sections 8.10 to 8.12 deal with automated grain size 
analysis, charcoal quantifi cation in microscope images, and the detection 
of objects in microscope images on the basis of their shapes. Th e Image 
Processing Toolbox is used for the specifi c examples throughout this chapter 
(MathWorks 2014). While the MATLAB User’s Guide to the Image Processing 
Toolbox provides an excellent general introduction to the analysis of images, 
this chapter provides an overview of typical applications in earth sciences.

 8.2 Data Storage

Vector and raster graphics are the two fundamental methods for storing 
pictures. Th e typical format for storing vector data has already been introduced 
in the previous chapter. In the following example the two columns in the fi le 
coastline.txt represent the longitudes and latitudes of the points of a polygon.

NaN  NaN
42.892067 0.000000
42.893692 0.001760
NaN  NaN
42.891052 0.001467
42.898093 0.007921
42.904546 0.013201
42.907480 0.016721
42.910414 0.020828
42.913054 0.024642
(cont'd)

Th e NaNs help to identify break points in the data (Section 7.2).
Th e raster data are stored as 2D arrays. Th e elements of these arrays 

represent variables such as the altitude of a grid point above sea level, the 
annual rainfall or, in the case of an image, the color intensity values.

174 177 180 182 182 182
165 169 170 168 168 170
171 174 173 168 167 170
184 186 183 177 174 176
191 192 190 185 181 181
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189 190 190 188 186 183

Raster data can be visualized as 3D plots. Th e x and y fi gures are the indices 
of the 2D array or any other reference frame, and z is the numerical value 
of the elements of the array (see also Chapter 7). Th e numerical values 
contained in the 2D array can be displayed as a pseudocolor plot, which is a 
rectangular array of cells with colors determined by a colormap. A colormap 
is an m-by-3 array of real numbers between 0.0 and 1.0. Each row defi nes a 
red, green, or blue (RGB) color. An example is the above array, which could 
be interpreted as grayscale intensities ranging from 0 (black) to 255 (white). 
More complex examples include satellite images that are stored in 3D arrays.

As previously discussed, a computer stores data as bits that have one of 
two states, represented by either a one or a zero (Chapter 2). If the elements 
of the 2D array represent the color intensity values of the pixels (short for 
picture elements) of an image, 1-bit arrays contain only ones and zeros.

0   0   1   1   1   1
1   1   0   0   1   1
1   1   1   1   0   0
1   1   1   1   0   1
0   0   0   0   0   0
0   0   0   0   0   0

Th is 2D array of ones and zeros can be simply interpreted as a black-and-
white image, where the value of one represents white and zero corresponds 
to black. Alternatively, the 1-bit array could be used to store an image 
consisting of any two diff erent colors, such as red and blue.

In order to store more complex types of data, the bits are joined together 
to form larger groups, such as bytes consisting of eight bits. Since the earliest 
computers could only process eight bits at a time, early computer code was 
written in sets of eight bits, which came to be called bytes. Each element of 
the 2D array or pixel therefore contains a vector of eight ones or zeros.

  1    0    1    0    0    0    0    1

Th ese 8 bits (or 1 byte) allow 28=256 possible combinations of the eight 
ones or zeros, and are therefore able to represent 256 diff erent intensities, 
such as grayscales. Th e 8 bits can be read in the following way, reading from 
right to left : a single bit represents two numbers, two bits represent four 
numbers, three bits represent eight numbers, and so forth up to a byte (or 
eight bits), which represents 256 numbers. Each added bit doubles the count 
of numbers. Here is a comparison of binary and decimal representations of 
the number 161: 
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128   64   32   16    8    4    2    1         (value of the bit)
  1    0    1    0    0    0    0    1         (binary)

128 +  0 + 32  + 0 +  0 +  0 +  0 +  1 = 161   (decimal)

Th e end members of the binary representation of grayscales are

  0    0    0    0    0    0    0    0

which is black, and

  1    1    1    1    1    1    1    1

which is pure white. In contrast to the above 1-bit array, the 1-byte array 
allows a grayscale image of 256 diff erent levels to be stored. Alternatively, 
the 256 numbers could be interpreted as 256 discrete colors. In either case, 
the display of such an image requires an additional source of information 
concerning how the 256 intensity values are converted into colors. Numerous 
global colormaps for the interpretation of 8-bit color images exist that allow 
the cross-platform exchange of raster images, while local colormaps are 
oft en embedded in a graphics fi le.

Th e disadvantage of 8-bit color images is that the 256 discrete colorsteps 
are not enough to simulate smooth transitions for the human eye. A 24-bit 
system is therefore used in many applications, with 8 bits of data for each 
RGB channel giving a total of 2563=16,777,216 colors. Such a 24-bit image 
is stored in three 2D arrays, or one 3D array, of intensity values between 0 
and 255.

195  189  203  217  217  221
218  209  187  192  204  206
207  219  212  198  188  190
203  205  202  202  191  201
190  192  193  191  184  190
186  179  178  182  180  169

209  203  217  232  232  236
234  225  203  208  220  220
224  235  229  214  204  205
223  222  222  219  208  216
209  212  213  211  203  206
206  199  199  203  201  187

174  168  182  199  199  203
198  189  167  172  184  185
188  199  193  178  168  172
186  186  185  183  174  185
177  177  178  176  171  177
179  171  168  170  170  163
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Compared to the 1-bit and 8-bit representations of raster data, 24-bit storage 
certainly requires a lot more computer memory. In the case of very large 
data sets such as satellite images and digital elevation models the user should 
therefore think carefully about the most suitable way to store the data. Th e 
default data type in MATLAB is the 64-bit array, which allows storage of 
the sign of a number (bit 63), the exponent (bits 62 to 52) and roughly 16 
signifi cant decimal digits between approximately 10-308 and 10+308 (bits 51 to 
0). However, MATLAB also works with other data types such as 1-bit, 8-bit 
and 24-bit raster data, to save memory.

Th e amount of memory required for storing a raster image depends on the 
data type and the image’s dimensions. Th e dimensions of an image can be 
described by the number of pixels, which is the number of rows multiplied 
by the number of columns of the 2D array. Let us assume an image of 729-
by-713 pixels, such as the one we will use in the following section. If each 
pixel needs 8 bits to store a grayscale value, the memory required by the data 
is 729∙713∙8=4,158,216 bits or 4,158,216/8=519,777 bytes. Th is number is 
exactly what we obtain by typing whos in the command window. Common 
prefi xes for bytes are kilo-, mega-, giga- and so forth.

bit = 1 or 0 (b)
8 bits = 1 byte (B)
1024 bytes = 1 kilobyte (KB)
1024 kilobytes = 1 megabyte (MB)
1024 megabytes = 1 gigabyte (GB)
1024 gigabytes = 1 terabyte (TB)

Note that in data communication 1 kilobit=1,000 bits, while in data storage 1 
kilobyte=1,024 bytes. A 24-bit or true color image then requires three times the 
memory required to store an 8-bit image, or 1,559,331 bytes=1,559,331/1,024 
kilobytes (KB)≈1,523 KB≈1,559,331/1,0242=1.487 megabytes (MB).

However, the dimensions of an image are oft en given, not by the 
total number of pixels, but by the length and height of the image and its 
resolution. Th e resolution of an image is the number of pixels per inch (ppi) 
or dots per inch (dpi). Th e standard resolution of a computer monitor is 72 
dpi although modern monitors oft en have a higher resolution such as 96 
dpi. For instance, a 17 inch monitor with 72 dpi resolution displays 1,024-
by-768 pixels. If the monitor is used to display images at a diff erent (lower, 
higher) resolution, the image is resampled to match the monitor’s resolution. 
For scanning and printing, a resolution of 300 or 600 dpi is enough in most 
applications. However, scanned images are oft en scaled for large printouts 
and therefore have higher resolutions such as 2,400 dpi. Th e image used in 
the next section has a width of 25.2 cm (or 9.92 inches) and a height of 25.7 
cm (10.12 inches). Th e resolution of the image is 72 dpi. Th e total number of 
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pixels is therefore 72∙9.92≈713 in a horizontal direction, and 72∙10.12≈729 
in a vertical direction.

Numerous formats are available for saving vector and raster data into a 
fi le, each with their own particular advantages and disadvantages. Choosing 
one format over another in an application depends on the way the images 
are to be used in a project and whether or not the images are to be analyzed 
quantitatively. Th e most popular formats for storing vector and raster data 
are:

• Compuserve Graphics Interchange Format (GIF) – Th is format was 
developed in 1987 for raster images using a fi xed 8-bit colormap of 256 
colors. Th e GIF format uses compression without loss of data. It was 
designed for fast transfer rates over the Internet. Th e limited number of 
colors means that it is not the right format for the smooth color transitions 
that occur in aerial photos or satellite images. It is, however, oft en used for 
line art, maps, cartoons and logos (http://www.compuserve.com).

• Portable Network Graphics (PNG) – Th is is an image format developed in 
1994 that is used as an alternative to the GIF. It is similar to the GIF in that 
it also uses a fi xed 8-bit colormap of 256 colors. Alternatively, grayscale 
images of 1 to 16 bits can be stored, as well as 24 and 48 bit color images. 
Th e PNG format uses compression without loss of data, with the method 
employed being better than that used for GIF images.

• Microsoft  Windows Bitmap Format (BMP) – Th is is the default image 
format for computers running Microsoft  Windows as the operating 
system. However, numerous converters also exist to read and write BMP 
fi les on other platforms. Various modifi cations of the BMP format are 
available, some of them without compression and others with eff ective 
and fast compression (http://www.microsoft .com).

• Tagged Image File Format (TIFF) – Th is format was designed by the Aldus 
Corporation and Microsoft  in 1986 to become an industry standard for 
image-fi le exchange. A TIFF fi le includes an image fi le header, a directory, 
and the data in all available graphics and image fi le formats. Some TIFF 
fi les even contain vector and raster versions of the same picture, as well 
as images at diff erent resolutions and with diff erent colormaps. Th e main 
advantage of TIFF fi les was originally their portability. A TIFF should 
perform on all computer platforms; unfortunately, however, numerous 
modifi cations of the TIFF have evolved in subsequent years, resulting in 
incompatibilities. Th e TIFF is therefore now oft en called the Th ousands of 
Incompatible File Formats.
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• PostScript (PS) and Encapsulated PostScript (EPS) – Th e PS format was 
developed by John Warnock at PARC, the Xerox research institute. 
Warnock was also co-founder of Adobe Systems, where the EPS format 
was created. Th e PostScript vector format would never have become an 
industry standard without Apple Computers. In 1985 Apple needed a 
typesetter-quality controller for the new Apple LaserWriter printer and 
the Macintosh operating system and adopted the PostScript format. Th e 
third partner in the history of PostScript was the company Aldus, the 
developer of the soft ware PageMaker and now a part of Adobe Systems. 
Th e combination of Aldus PageMaker soft ware, the PS format and the 
Apple LaserWriter printer led to the creation of Desktop Publishing. 
Th e EPS format was then developed by Adobe Systems as a standard fi le 
format for importing and exporting PS fi les. Whereas a PS fi le is generally 
a single-page format containing either an illustration or a text, the purpose 
of an EPS fi le is to  also allow the inclusion of other pages, i.e., a fi le that 
can contain any combination of text, graphics and images (http://www.
adobe.com).

• In 1986 the Joint Photographic Experts Group (JPEG) was founded for 
the purpose of developing various standards for image compression. 
Although JPEG stands for the committee, it is now widely used as the 
name for an image compression and a fi le format. Th is compression 
involves grouping pixel values into 8-by-8 blocks and transforming each 
block with a discrete cosine transform. As a result, all unnecessary high-
frequency information is deleted, which makes this compression method 
irreversible. Th e advantage of the JPEG format is the availability of a 
three-channel, 24-bit, true color version. Th is allows images with smooth 
color transitions to be stored. Th e new JPEG-2000 format uses a wavelet 
transform instead of the cosine transform (Section 5.8) (http://www.jpeg.
org).

• Portable Document Format (PDF) – Th e PDF designed by Adobe Systems 
is now a true self-contained cross-platform document. PDF fi les contain 
the complete formatting of vector illustrations, raster images and text, or 
a combination of all these, including all necessary fonts. Th ese fi les are 
highly compressed, allowing a fast internet download. Adobe Systems 
provides the free-of-charge Acrobat Reader for all computer platforms to 
read PDF fi les (http://www.adobe.com).
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 8.3 Importing, Processing and Exporting Images

We fi rst need to learn how to read an image from a graphics fi le into the 
workspace. As an example we use a satellite image showing a 10.5 km by 11 
km subarea in northern Chile:

http://asterweb.jpl.nasa.gov/gallery/images/unconform.jpg

Th e fi le unconform.jpg is a processed TERRA-ASTER satellite image that can 
be downloaded free-of-charge from the NASA web page. We save this image 
in the working directory. Th e command

clear

I1 = imread('unconform.jpg');

reads and decompresses the JPEG fi le, imports the data as a 24-bit RGB 
image array and stores it in a variable I1. Th e command

whos

shows how the RGB array is stored in the workspace:

Name        Size                 Bytes  Class    Attributes
I1        729x713x3            1559331  uint8                       

Th e details indicate that the image is stored as a 729-by-713-by-3 array, 
representing a 729-by-713 array for each of the colors red, green and blue. Th e 
listing of the current variables in the workspace also gives the information 
uint8 array, i.e., each array element representing one pixel contains 8-bit 
integers. Th ese integers represent intensity values between 0 (minimum 
intensity) and 255 (maximum). As an example, here is a sector in the upper-
left  corner of the data array for red:

I1(50:55,50:55,1)

ans =
   174 177 180 182 182 182
   165 169 170 168 168 170
   171 174 173 168 167 170
   184 186 183 177 174 176
   191 192 190 185 181 181
   189 190 190 188 186 183

We can now view the image using the command

imshow(I1)

322  8 IMAGE PROCESSING



which opens a new Figure Window showing an RGB composite of the image 
(Fig. 8.1). In contrast to the RGB image, a grayscale image needs only a single 
array to store all the necessary information. We therefore convert the RGB 
image into a grayscale image using the command rgb2gray (RGB to gray):

I2 = rgb2gray(I1);

Th e new workspace listing now reads

Name        Size                 Bytes  Class    Attributes
I1        729x713x3            1559331  uint8              

Fig. 8.1 RGB true color image contained in the fi le unconform.jpg. Aft er decompressing and 
reading the JPEG fi le into a 729-by-713-by-3 array, MATLAB interprets and displays the RGB 
composite using the function imshow. See detailed description of the image on the NASA 
TERRA-ASTER webpage: http://asterweb.jpl.nasa.gov. Original image courtesy of NASA/
GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team.
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I2        729x713               519777  uint8              
ans         6x6                     36  uint8              

in which the diff erence between the 24-bit RGB and the 8-bit grayscale arrays 
can be observed. Th e variable ans for Most recent answer was created above 
using I1(50:55,50:55,1), without assigning the output to another variable. 
Th e commands

imshow(I2)

display the result. It is easy to see the diff erence between the two images in 
separate Figure Windows. Let us now process the grayscale image. First, we 
compute a histogram of the distribution of intensity values.

imhist(I2)

A simple technique to enhance the contrast in such an image is to transform 
this histogram to obtain an equal distribution of grayscales.

I3 = histeq(I2);

We can view the diff erence again using

imshow(I3)

and save the results in a new fi le.

imwrite(I3,'unconform_gray.jpg')

We can read the header of the new fi le by typing

imfinfo('unconform_gray.jpg')

which yields

ans = 
           Filename: [1x40 char]
        FileModDate: '18-Dec-2013 11:26:53'
           FileSize: 138419
             Format: 'jpg'
      FormatVersion: ''
              Width: 713
             Height: 729
           BitDepth: 8
          ColorType: 'grayscale'
    FormatSignature: ''
    NumberOfSamples: 1
       CodingMethod: 'Huffman'
      CodingProcess: 'Sequential'
            Comment: {}
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Hence, the command imfinfo can be used to obtain useful information 
(name, size, format, and color type) concerning the newly-created image fi le.

Th ere are many ways of transforming the original satellite image into 
a practical fi le format. Th e image data could, for instance, be stored as an 
indexed color image, which consists of two parts: a colormap array and a 
data array. Th e colormap array is an m-by-3 array containing fl oating-point 
values between 0 and 1. Each column specifi es the intensity of the red, green 
and blue colors. Th e data array is an x-by-y array containing integer elements 
corresponding to the lines m of the colormap array, i.e., the specifi c RGB 
representation of a certain color. Let us transfer the above RGB image into 
an indexed image. Th e colormap of the image should contain 16 diff erent 
colors. Th e result of

[I4,map] = rgb2ind(I1,16);
imshow(I1), figure, imshow(I4,map)

saved as another JPEG fi le using

imwrite(I4,map,'unconform_ind.jpg')

clearly shows the diff erence between the original 24-bit RGB image (2563 or 
about 16.7 million diff erent colors) and a color image of only 16 diff erent 
colors. Th e display of the image uses the default colormap of MATLAB. 
Typing

imshow(I4,map)
cmap = colormap

actually retrieves the 16-by-3 array of the current colormap

cmap =
    0.0588    0.0275    0.0745
    0.5490    0.5255    0.4588
    0.7373    0.7922    0.7020
    0.3216    0.2706    0.2667
    0.6471    0.6784    0.6157
    0.7961    0.8549    0.9176
    0.4510    0.3922    0.3333
    0.2000    0.1451    0.1451
    0.4824    0.5412    0.5843
    0.4039    0.4078    0.4784
    0.6667    0.7020    0.7451
    0.8980    0.8745    0.7255
    0.2824    0.2902    0.4039
    0.9569    0.9647    0.9608
    0.1765    0.1686    0.2902
    0.5843    0.5843    0.6078
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We can replace the default colormap by any other built-in colormap. Typing

help graph3d

lists the available colormaps. As an example we can use 

imshow(I4,map)
colormap(hot)

to display the image with a black-red-yellow-white colormap. Typing

edit hot

reveals that hot is a function creating the m-by-3 array containing fl oating-
point values between 0 and 1. We can also design our own colormaps, either 
by manually creating an m-by-3 array or by creating another function similar 
to hot. As an example the colormap precip.m (which is a yellow-blue colormap 
included in the book’s fi le collection) was created to display precipitation 
data, with yellow representing low rainfall and blue representing high 
rainfall. Alternatively, we can also use random numbers

rng(0)
map = rand(16,3);
imshow(I4,map)

to display the image with random colors. Finally, we can create an indexed 
color image of three diff erent colors, displayed with a simple colormap of full 
intensity red, green and blue.

[I5,map] = rgb2ind(I1,3);
imshow(I5,[1 0 0;0 1 0;0 0 1])

Typing

imwrite(I4,map,'unconform_rgb.jpg')

saves the result as another JPEG fi le.

 8.4 Importing, Processing and Exporting LANDSAT Images

Th e Landsat project is a satellite remote sensing program jointly managed 
by the US National Aeronautics and Space Administration (NASA) and the 
US Geological Survey (USGS), which began with the launch of the Landsat 1 
satellite (originally known as the Earth Resources Technology Satellite 1) on 
23rd July 1972. Th e latest in a series of successors is the Landsat 8 satellite, 
launched on 11th February 2013 (Ochs et al. 2009, Irons et al. 2011). It has 
two sensors, the Operational Land Imager (OLI) and the Th ermal Infrared 
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Sensor (TIRS). Th ese two sensors provide coverage of the global landmass at 
spatial resolutions of 30 meters (visible, NIR, SWIR), 100 meters (thermal), 
and 15 meters (panchromatic) (Ochs et al. 2009, Irons et al. 2011). General 
information concerning the Landsat program can be obtained from the 
webpage

http://landsat.gsfc.nasa.gov/?page_id=7195

Landsat data, together with data from other NASA satellites, can be obtained 
from the webpage

http://earthexplorer.usgs.gov

On this webpage we fi rst select the desired map section in the Search Criteria, 
either by entering the coordinates of the four corners of the map or by 
zooming into the area of interest and selecting Use Map. As an example we 
enter the coordinates 4°42'40.72"N 36°51'10.47"E of the Chew Bahir Basin in 
the Southern Ethiopian Rift . We then choose L8 OLI/TIRS from the Landsat 
Archive as the Data Set and click Results. Clicking Results produces a list 
of records, together with a toolbar for previewing and downloading data. 
By clicking the Show Browse Overlay button we can examine the images for 
cloud cover. We fi nd the cloud-free image

Entity ID: LC81690572013358LGN00
Coordinates: 4.33915,36.76225
Acquisition Date: 24-DEC-13
Path: 169
Row: 57

taken on 24th December 2013. We need to register with the USGS website, 
log on, and then download the Level 1 GeoTIFF Data Product (897.5 MB), 
which is then stored on the hard drive in the fi le LC81690572013358LGN00.
tar.gz. Th e .tar.gz archive contains separate fi les for each spectral band as 
well as a metadata fi le containing information about the data. We use band 4 
(Red, 640–670 nm), band 3 (Green, 530–590 nm) and band 2 (Blue, 450–510 
nm), each of which has a 30 m resolution. We can import the 118.4 MB TIFF 
fi les using

clear

I1 = imread('LC81690602013150LGN00_B4.TIF');
I2 = imread('LC81690602013150LGN00_B3.TIF');
I3 = imread('LC81690602013150LGN00_B2.TIF');

Typing
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whos

reveals that the data are in a unsigned 16-bit format uint16, i.e., the maximum 
range of the data is from 0 to 216=65,536.

  I1        7771x7611            118290162  uint16              
  I2        7771x7611            118290162  uint16              
  I3        7771x7611            118290162  uint16              

For quantitative analyses these digital number (DN) values need to be 
converted to radiance and refl ectance values, which is beyond the scope of 
the book. Th e radiance is the power density scattered from the earth in a 
particular direction and has the units of watts per square meter per steradian 
(Wm-2 sr-1) (Richards 2013). Th e radiance values need to be corrected for 
atmospheric and topographic eff ects to obtain earth surface refl ectance 
percentages. Th e Landsat 8 Handbook provides the necessary information 
on these conversions:

https://landsat.usgs.gov/Landsat8_Using_Product.php

We will instead use the Landsat 8 data to create an RGB composite of bands 
4, 3, and 2 to be used for fi eldwork. Since the image has a relatively low 
level of contrast, we use adapthisteq to perform a contrast-limited adaptive 
histogram equalization (CLAHE) (Zuiderveld 1994). Unlike histeq used in 
the previous section, the adapthisteq algorithm works on small regions (or 
tiles) of the image, rather than on the entire image. Th e neighboring tiles are 
then combined using bilinear interpolation to eliminate edge eff ects. 

I1 = adapthisteq(I1,'ClipLimit',0.1,'Distribution','Rayleigh');
I2 = adapthisteq(I2,'ClipLimit',0.1,'Distribution','Rayleigh');
I3 = adapthisteq(I3,'ClipLimit',0.1,'Distribution','Rayleigh');

Using ClipLimit with a real scalar between 0 and 1 limits the contrast 
enhancement, while higher numbers result in increased contrast; the default 
value is 0.01. Th e Distribution parameter sets the desired histogram shape 
for the tiles by specifying a distribution type, such as Uniform, Rayleigh, or 
Exponential. Using a ClipLimit of 0.1 and a Rayleigh distribution yields good 
results. Th e three bands are concatenated to a 24-bit RGB images using cat.

I = cat(3,I1,I2,I3);

We only display that section of the image containing the Chew Bahir Basin 
(using axes limits) and hide the coordinate axes. We scale the images to 10% 
of the original size to fi t the computer screen.

axes('XLim',[3000 5000],'YLim',[1000 4000],'Visible','Off'), hold on
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imshow(I,'InitialMagnification',10)

Exporting the processed image from the Figure Window, we only save the 
image at the monitor’s resolution. To obtain an image of the basins at a higher 
resolution, we use the command

imwrite(I(1000:4000,3000:5000,:),'chewbahirbasin.tif','tif')

Th is command saves the RGB composite as a TIFF-fi le chewbahirbasin.tif 
(about 36.3 MB) in the working directory, which can then be processed 
using other soft ware such as Adobe Photoshop.

According to the USGS Landsat webpage, Landsat data are amongst 
the most geometrically and radiometrically corrected data available. Data 
anomalies do occasionally occur, however, of which the most common types 
are listed on the USGS webpage:

http://landsat.usgs.gov/science_an_anomalies.php

We explore one of these types of anomaly as an example, i.e., artifacts 
known as Single Event Upsets (SEUs) that cause anomalously high values in 
the image, similar to the Impulse Noise (IN) that is also described on the 
same webpage. Th ese anomalies occur in some, but not all, Landsat images 
and similarly anomalous high or low values can also occur in other satellite 
images. We therefore use a part of a Landsat 7 image covering an area in 
the southern Ethiopian Rift , acquired by the Enhanced Th ematic Mapper 
(ETM+) instrument of that satellite. We can load and display the image using

clear

I1 = imread('ethiopianrift_blue.tif');
imshow(I1,'InitialMagnification',200), title('Original Image')

Th e parameter InitialMagnification is a numeric scalar that scales the 
image to, as an example, 200% magnifi cation. Th e image I1 shows numerous 
randomly-distributed anomalously high or low values, as well as a parallel 
track of paired anomalies in the right half of the image. We fi rst apply a 10-
by-10 pixel median fi lter to the image (see Section 8.8):

I2 = medfilt2(I1,[10,10],'symmetric');
imshow(I2,'InitialMagnification',200)
title('Median Filtered Image')

Using the option symmetric with the function medfilt2 extends I2 
symmetrically at the image boundaries by refl ecting it across its boundaries, 
instead of padding the image with zeros at the boundaries (by default). Th e 
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median-fi ltered version of the I2 image is, of course, very smooth compared 
to the original I1 image. We would, however, lose a lot of detail if we used 
this version of the image. We next subtract the median-fi ltered image I2 
from original image I1, which yields the image I3.

I3 = imsubtract(I1,I2);
imshow(I3,'InitialMagnification',200)
title('I1-I2')

We then subtract the original image I1 from the median-fi ltered image I2, 
which yields the image I4.

I4 = imsubtract(I2,I1);
imshow(I4,'InitialMagnification',200)
title('I2-I1')

We next replace the original pixels with their median-fi ltered versions if the 
diff erence between the median-fi ltered image I2 and the original image I1 is 
great than 10 in both directions (as it is in our example).

I5 = I1;
I5(I3>10 | I4>10) = I2(I3>10 | I4>10);
imshow(I5,'InitialMagnification',200)
title('Despeckled Image')

Th e image I5 obtained using this approach is the despeckled version of the 
image I1. We can also explore the pixel values of both versions of the image 
(I1 and I5) in a 3D surface plot, using

subplot(1,2,1)
I1S = im2double(I1);
surface(I1S), colormap jet, caxis([0 1])
shading interp, view(120,33), axis off
axis([1 size(I1,1) 1 size(I1,2) min(I1S(:)) max(I1S(:))])

subplot(1,2,2)
I5S = im2double(I5);
surface(I5S), colormap jet, caxis([0 1])
shading interp, view(120,33), axis off
axis([1 size(I1,1) 1 size(I1,2) min(I1S(:)) max(I1S(:))])

We need convert the image data to class double using im2double in order to be 
able to display the data using surface. Finally, we can display both images in 
the same fi gure window

subplot(1,2,1), imshow(I1), title('Original Image')
subplot(1,2,2), imshow(I5), title('Despeckled Image')

to see the result of despeckling the image I1 (Fig. 8.2).
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 8.5 Importing and Georeferencing TERRA ASTER Images

In Section 8.3 we used a processed ASTER image that we downloaded from 
the ASTER webpage. In this section we will use raw data from this sensor. 
Th e ASTER sensor is mounted on the TERRA satellite launched in 1999, 
part of the Earth Observing System (EOS) series of multi-national NASA 
satellites (Abrams and Hook 2002). ASTER stands for Advanced Spaceborne 
Th ermal Emission and Refl ection Radiometer, providing high-resolution (15 
to 90 meter) images of the earth in 14 bands, including three visible to near 
infrared bands (VNIR bands 1 to 3), six short-wave infrared bands (SWIR 
bands 4 to 9), and fi ve thermal (or long-wave) infrared bands (TIR bands 10 
to 14). ASTER images are used to map the surface temperature, emissivity, 
and refl ectance of the earth’s surface. Th e 3rd near infrared band is recorded 
twice: once with the sensor pointing directly downwards (band 3N, where 

Fig. 8.2 Despeckled section of the blue band of a Landsat image covering the Chew Bahir 
catchment in Southern Ethiopia; a original image, b despeckled image, c surface plots of the 
original image, and d surface plot of the image aft er despeckling. Original image courtesy of 
the Landsat Program of the US National Aeronautics and Space Administration (NASA) and 
the US Geological Survey (USGS).
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N stands for nadir from the Arabic word for opposite), as it does for all other 
channels, and a second time with the sensor angled backwards at 27.6° (band 
3B, where B stands for backward looking). Th ese two bands are used to 
generate ASTER digital elevation models (DEMs).

Th e ASTER instrument produces two types of data: Level-1A (L1A) and 
Level-1B (L1B) data (Abrams and Hook 2002). Whereas the L1A data are 
reconstructed, unprocessed instrument data, the L1B data are radiometrically 
and geometrically corrected. Any data that ASTER has already acquired are 
available; they can be located by searching the Japan Space Systems GDS 
ASTER/PALSAR Unifi ed Search Site and can be ordered from

http://gds.ersdac.jspacesystems.or.jp/?lang=en

or from NASA Reverb

http://reverb.echo.nasa.gov/reverb/

As an example we process an image from an area in Kenya showing Lake 
Naivasha (0°46'31.38"S 36°22'17.31"E). Th e Level-1A data are stored in two 
fi les

AST_L1A_003_03082003080706_03242003202838.hdf
AST_L1A_003_03082003080706_03242003202838.hdf.met

Th e fi rst fi le (116 MB) contains the actual raw data, whereas the second fi le 
(102 KB) contains the header, together with all sorts of information about 
the data. We save both fi les in our working directory. Since the fi le name 
is very long, we fi rst save it in the filename variable and then use filename 
instead of the long fi le name. We then need to modify only this single line of 
MATLAB code if we want to import and process other satellite images.

filename = 'AST_L1A_003_03082003080706_03242003202838.hdf';

Th e Image Processing Toolbox contains various tools for importing and 
processing fi les stored in the hierarchical data format (HDF). Th e graphical 
user interface (GUI) based import tool for importing certain parts of the raw 
data is

hdftool('filename')

Th is command opens a GUI that allows us to browse the content of the 
HDF-fi le naivasha.hdf, obtains all information on the contents, and imports 
certain frequency bands of the satellite image. Alternatively, the command 
hdfread can be used as a quicker way of accessing image data. Th e vnir_
Band3n, vnir_Band2, and vnir_Band1 typically contain much information 
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about lithology (including soils), vegetation and water on the earth’s surface. 
Th ese bands are therefore usually combined into 24-bit RGB images. We fi rst 
read the data

I1 = hdfread(filename,'VNIR_Band3N','Fields','ImageData');
I2 = hdfread(filename,'VNIR_Band2','Fields','ImageData');
I3 = hdfread(filename,'VNIR_Band1','Fields','ImageData');

Th ese commands generate three 8-bit image arrays, each representing the 
intensity within a certain infrared (IR) frequency band of a 4200-by-4100 
pixel image. We are not using the data for quantitative analyses and therefore 
do not need to convert the digital number (DN) values into radiance and 
refl ectance values. Th e ASTER User Handbook provides the necessary 
information on these conversions (Abrams and Hook 2002). Instead, we will 
process the ASTER image to create a georeferenced RGB composite of bands 
3N, 2 and 1, to be used in fi eldwork. We fi rst use a contrast-limited adaptive 
histogram equalization method to enhance the contrast in the image by 
typing

I1 = adapthisteq(I1);
I2 = adapthisteq(I2);
I3 = adapthisteq(I3);

and then concatenate the result to a 24-bit RGB image using cat.

naivasha_rgb = cat(3,I1,I2,I3);

As with the previous examples, the 4200-by-4100-by-3 array can now be 
displayed using

imshow(naivasha_rgb,'InitialMagnification',10)

We set the initial magnifi cation of this very large image to 10%. MATLAB 
scales images to fi t the computer screen. Exporting the processed image 
from the Figure Window, we only save the image at the monitor’s resolution. 
To obtain an image at a higher resolution, we use the command

imwrite(naivasha_rgb,'naivasha.tif','tif')

Th is command saves the RGB composite as a TIFF-fi le naivasha.tif (ca. 52 
MB) in the working directory, which can then be processed using other 
soft ware such as Adobe Photoshop. Th e processed ASTER image does not 
yet have a coordinate system and therefore needs to be tied to a geographical 
reference frame (georeferencing). Th e HDF browser

hdftool('naivasha.hdf')
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can be used to extract the geodetic coordinates of the four corners of the 
image. Th is information is contained in the header of the HDF fi le. Having 
launched the HDF tool, we select on the uppermost directory called 
naivasha.hdf and fi nd a long list of fi le attributes in the upper right panel of 
the GUI, one of which is productmetadata.0, which includes the attribute 
scenefourcorners. We collect the coordinates of the four scene corners into a 
single array inputpoints:

inputpoints(1,:) = [36.214332 -0.319922];  % upper left corner
inputpoints(2,:) = [36.096003 -0.878267];  % lower left corner
inputpoints(3,:) = [36.770406 -0.400443];  % upper right corner
inputpoints(4,:) = [36.652213 -0.958743];  % lower right corner

It is important to note that the coordinates contained in productmetadata.0 
need to be fl ipped in order to have x=longitudes and y=latitudes. Th e four 
corners of the image correspond to the pixels in the four corners of the 
image, which we store in a variable named basepoints.

basepoints(1,:) = [1,1];                   % upper left pixel
basepoints(2,:) = [1,4200];                % lower left pixel
basepoints(3,:) = [4100,1];                % upper right pixel
basepoints(4,:) = [4100,4200];             % lower right pixel

Th e function fitgeotrans now takes the pairs of control points, inputpoints 
and basepoints, and uses them to infer a spatial transformation matrix tform.

tform = fitgeotrans(inputpoints,basepoints,'affine');

We next determine the limits of the input for georeferencing (i.e., of 
the original image naivasha_rgb) using size, which yields xLimitsIn and 
yLimitsIn. Adding a value of 0.5 to both xLimitsIn and yLimitsIn prevents the 
edges of the image from being truncated during the affi  ne transformation.  
We then determine the limits of the output (i.e. of the georeferenced image, 
which is subsequently called newnaivasha_rgb) using outputLimits, which 
yields XBounds and YBounds.

xLimitsIn = 0.5 + [0 size(naivasha_rgb,2)];
yLimitsIn = 0.5 + [0 size(naivasha_rgb,1)];
[XBounds,YBounds] = outputLimits(tform,xLimitsIn,yLimitsIn);

We then use imref2d to reference the image to a world (or global) coordinate 
system.

Rout = imref2d(size(naivasha_rgb),XBounds,YBounds);

An imref2d object encapsulates the relationship between the intrinsic 
coordinates anchored to the rows and columns of the image, and the spatial 
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Fig. 8.3 Geoferenced RGB composite of a TERRA-ASTER image using the infrared bands 
vnir_Band3n, 2 and 1. Th e result is displayed using imshow. Original image courtesy of 
NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team.

location of the same row and column locations within a world coordinate 
system. Finally, the affi  ne transformation can be applied to the original RGB 
composite naivasha_rgb in order to obtain a georeferenced version of the 
satellite image newnaivasha_rgb with the same size as naivasha_rgb.

newnaivasha_rgb = imwarp(naivasha_rgb,tform,'OutputView',Rout);

An appropriate grid for the image can now be computed. Th e grid is 
typically defi ned by the minimum and maximum values for the longitude 
and latitude. Th e vector increments are then obtained by dividing the ranges 
of the longitude and latitude by the array’s dimensions and then subtracting 
one from the results. Note the diff erence between the MATLAB numbering 
convention and the common coding of maps used in published literature. 
Th e north/south suffi  x is generally replaced by a negative sign for south, 
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whereas MATLAB coding conventions require negative signs for north.

X = 36.096003 : (36.770406 - 36.096003)/4100 : 36.770406;
Y = -0.958743 : ( 0.958743 -  0.319922)/4200 : -0.319922;

Th e georeferenced image is displayed with coordinates on the axes and a 
superimposed grid (Fig. 8.3). By default, the function imshow inverts the 
latitude axis when images are displayed by setting the YDir property to 
Reverse. To invert the latitude axis direction back to normal, we need to set 
the YDir property to Normal by typing

imshow(newnaivasha_rgb,'XData',X,'YData',Y,'InitialMagnification',10)
axis on, grid on, set(gca,'YDir','Normal')
xlabel('Longitude'), ylabel('Latitude')
title('Georeferenced ASTER Image')

Exporting the image is possible in many diff erent ways, for example using

print -djpeg70 -r600 naivasha_georef.jpg

to export it as a JPEG fi le naivasha_georef.jpg, compressed to 70% and with 
a resolution of 600 dpi.

In the previous example we used the geodetic coordinates of the four 
corners to georeference the ASTER image. Th e Image Processing Toolbox 
also includes functions to automatically align two images that are shift ed 
and/or rotated with respect to each other, cover slightly diff erent areas, or 
have a diff erent resolutions. We use two ASTER images of the Suguta Valley 
in the Northern Kenya Rift  as an example. Th e images have been processed 
in the same way as described for the image of Lake Naivasha and exported 
as TIFF fi les using imwrite. Th e image in the fi le sugutavalley_1.tif was taken 
on 20th February 2003 and the second image in sugutavalley_2.tif was taken 
on 31st August 2003, both just aft er 8 o’clock in the morning. Lake Logipi, 
in the center of the images, is much larger in the second image than in the 
fi rst image. Th e original images are otherwise almost identical, except for 
the second image being shift ed slightly towards the east. To demonstrate 
the automatic alignment of the images, the second image has been rotated 
counterclockwise by fi ve degrees. Furthermore, both images have been 
cropped to the area of the Suguta Valley, including a small section of the rift  
shoulders to the west and to the east. We import both images using

clear

image1 = imread('sugutavalley_1.tif');
image2 = imread('sugutavalley_2.tif');
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Fig. 8.4 Automatically aligned TERRA-ASTER images of the Suguta Valley in the Northern 
Kenya Rift ; a fi rst image taken on 20th February 2003, b second image taken on 31st August 
2003, and c overlay of the second image aligned with the fi rst image. Original image courtesy 
of NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team.

Th e size of image1 is 666-by-329-by-3, while image2 is slightly smaller: 614-by-
270-by-3. We display the images by typing

subplot(1,2,1), imshow(image1)
subplot(1,2,2), imshow(image2)

Th e function imregconfig creates optimizer and metric confi gurations that 
we transfer into imregister to perform intensity-based image registration,

[optimizer, metric] = imregconfig('monomodal');

where monomodal assumes that the images were captured by the same sensor. 
We can use this confi gurations to calculate the spatial transformation matrix 
tform using the transformation type affine, as in the previous example.

tform = imregtform(image2(:,:,1),image1(:,:,1), ...
    'affine',optimizer,metric);

Th is transformation can be applied to image2 in order to automatically align 
it with image1.

a b c
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image2_reg = imwarp(image2,tform,'OutputView', ...
    imref2d(size(image1)));

We can compare the result with the original images using

subplot(1,3,1), imshow(image1)
subplot(1,3,2), imshow(image2)
subplot(1,3,3), imshowpair(image1,image2_reg,'blend')

print -djpeg70 -r600 sugutavalley_aligned.jpg

As we can see, the second image is now nicely aligned with the fi rst image 
(Fig. 8.4). Th e two images can now be used to map changes in the area (e.g., 
in the size of the lake) between 20th February and 31st August 2003. Th is 
script can also be used to automatically align other images, in particular 
those captured by diff erent sensors.

 8.6 Processing and Exporting EO-1 Hyperion Images

Th e Earth Observing-1 Mission (EO-1) satellite is part of the New Millennium 
Program of the US National Aeronautics and Space Administration (NASA) 
and the US Geological Survey (USGS), which began with the launch of this 
satellite on 21st November 2000. EO-1 has two sensors: the Advanced Land 
Image (ALI) has nine multispectral bands with a 30 m spatial resolution and 
a panchromatic band with a 10-m resolution, and the hyperspectral sensor 
(Hyperion) has 220 bands between 430 and 2,400 nm (Mandl et al. 2002, 
Line 2012). General information about the EO-1 program can be obtained 
from the webpage

http://eo1.gsfc.nasa.gov

Hyperion data (together with data from of other NASA satellites) are freely 
available from the webpage

http://earthexplorer.usgs.gov

On this webpage we fi rst select the desired map section in the Search 
Criteria, either by entering the coordinates of the four corners of the map or 
by zooming into the area of interest and selecting Use Map. As an example 
we enter the coordinates 2°8'37.58"N 36°33'47.06"E of the Suguta Valley in 
the Northern Kenya Rift . We then choose Hyperion from the EO-1 collection 
as the Data Set and click Results. Clicking Results produces a list of records, 
together with a toolbar for previewing and downloading data. Clicking the 
Show Browse Overlay button allows us to examine the images for cloud cover. 
We fi nd the cloud-free image

338  8 IMAGE PROCESSING



  Entity ID: EO1H1690582013197110KF_PF2_01
  Acquisition Date: 16-JUL-13
  Target Path: 169
  Target Row: 58

taken on 16th July 2013. As before, we need to register with the USGS 
website, log on, and then download the radiometrically corrected (but not 
geometrically corrected) Level 1R (L1R) product (215.3 MB), which is then 
stored on the hard drive in the fi le LEO1H1690582013197110KF_1R.ZIP. 
Th e .ZIP archive consists of a metadata fi le (.MET), a Federal Geographic 
Data Committee (FGDC) metadata fi le (.fgdc), an HDF data set fi le (.L1R), 
and multiple auxiliary fi les. Th e EO-1 User’s Guides provides some useful 
information on the data formats of these fi les (Barry 2001, Beck 2003). We 
can import the data from the EO1H1690582013197110KF.L1R fi le using

clear

HYP = hdfread('EO1H1690582013197110KF.L1R',...
    '/EO1H1690582013197110KF.L1R', ...
    'Index', {[1 1 1],[1 1 1],[3189 242 256]});

Th e parameter Index is a three-element cell array, {start,stride,edge}, 
specifying the location, range, and values to be read from the data set. 
Th e value of start specifi es the position in the fi le to begin reading. In our 
example it starts reading at the beginning of the fi le, i.e., starting from the [1 
1 1] element. Th e value of stride defi nes the interval between the values to 
be read, which in our example is [1 1 1], i.e., every element of the data set 
is to be read. Th e value of edge specifi es the size of the data in the fi le; in our 
example the dimensions of the data are 3,189-by-242-by-256. Typing 

whos

shows how the hyperspectral image is stored in the workspace:

HYP       3189x242x256            395129856  int16      

Th e details indicate that the image is stored as a 3,189-by-242-by-256 array, 
representing a 3,189-by-256 array for each of the 242 spectral bands. Th e 
listing of the current variables in the workspace also gives the information 
int16 array, i.e., each array element representing one pixel contains signed 
16-bit integers. We need to permute the array to move the bands to the third 
dimension by typing

HYP = permute(HYP,[1 3 2]);

We next need to determine the radiance values from the digital number 
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(DN) values in HYP. Th e radiance is the power density scattered from the 
earth in a particular direction and has the units of watts per square meter 
per steradian (Wm-2 sr-1) (Richards 2013). Th e EO-1 User Guide (v. 2.3) 
provides the necessary information on these conversions in its Frequently 
Asked Questions (FAQ) section (Beck 2003). According to this document, 
the radiance HYPR for the visible and near-infrared (VNIR) bands (bands 1 
to 70) is calculated by dividing the digital number in HYP by 40. Th e radiance 
for the shortwave infrared (SWIR) bands (bands 71 to 242) is calculated by 
dividing HYP by 80.

HYPR(:,:,1:70) = HYP(:,:,1:70)/40;
HYPR(:,:,71:242) = HYP(:,:,71:242)/80;

For quantitative analyses, the radiance values HYPR need to be corrected for 
atmospheric and topographic eff ects. Th is correction, which yields earth 
surface refl ectance values (in percentages), is beyond the scope of the book. 
Th e EO-1 User Guide (v. 2.3) again explains several methods to convert 
radiance to refl ectance values (Beck 2003). A simple way to convert radiance 
to refl ectance for relatively clear Hyperion images is given in

https://eo1.usgs.gov/faq/question?id=21

We will instead process the Hyperion image to create a georeferenced RGB 
composite of bands 29, 23 and 16, to be used in fi eldwork. Th e header 
fi le O1H1690582013197110KF.HDR contains (among other things) the 
wavelengths corresponding to the 242 spectral bands. We can read the 
wavelengths from the fi le using textscan:

fid = fopen('EO1H1690582013197110KF.hdr');
C = textscan(fid,'%f %f %f %f %f %f %f %f',...
    'Delimiter',',','Headerlines',257,'CollectOutput',1)
fclose(fid);

Th is script opens the header fi le for read only access using fopen and defi nes 
the fi le identifi er fid, which is then used to read the text from the fi le with 
textscan, and to write it into the array C. Th e character string %f %f %f %f 
%f %f %f %f defi nes the conversion specifi ers enclosed in single quotation 
marks, where %f stands for the double-precision fl oating-point 64-bit output 
class. Th e parameter Headerlines is set to 257, which means that the fi rst 257 
lines are ignored when reading the fi le. If the parameter CollectOutput is 1 
(true), textscan concatenates output cells of the same data type into a single 
array. Function fclose closes the fi le defi ned by the fi le identifi er fid. Th e 
array C is a cell array, which is a data type with indexed containers called 
cells. We can easily obtain the wavelengths from C using
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wavelengths = C{1};
wavelengths = wavelengths';
wavelengths = wavelengths(isnan(wavelengths(:))==0);

We can now plot the radiance HYPR of the VNIR bands (blue) and SWIR 
bands (in red) in a single plot.

plot(wavelengths(1:60),squeeze(HYPR(536,136,1:60)),'b',...
     wavelengths(71:242),squeeze(HYPR(536,136,71:242)),'r')

According to v. 2.3 of the EO-1 User Guide (Beck 2003), Hyperion records 
220 unique spectral channels collected from a complete spectrum covering 
357 to 2,576 nm. Th e L1R product has 242 bands but 198 bands are calibrated. 
Because of an overlap between the VNIR and SWIR focal planes, there are 
only 196 unique channels. Calibrated channels are 8–57 for the VNIR, and 
77–224 for the SWIR. Th e bands that are not calibrated are set to zero in 
those channels. 

In order to create an RGB composite of bands 29, 23 and 16, we can extract 
the bands from the radiance values data HYPR by typing

HYP1 = HYPR(:,:,29);
HYP2 = HYPR(:,:,23);
HYP3 = HYPR(:,:,16);

To display the data with imshow we need convert the signed integer 16-bit 
(int16) data to unsigned integer 8-bit data (uint8). For this purpose, we fi rst 
obtain an overview of the range of the data using a histogram plot with 100 
classes.

subplot(1,3,1), histogram(double(HYP1(:)),100), title('Band 29')
subplot(1,3,2), histogram(double(HYP2(:)),100), title('Band 23')
subplot(1,3,3), histogram(double(HYP3(:)),100), title('Band 16')

As we see, the radiance values   of most pixels from the spectral bands 29, 23 
and 16 lie between 0 and 200 Wm-2 sr-1. Several functions are available for 
converting the data from int16 to uint8. Th e function im2uint8 rescales the 
data to the range [0,255] and off sets it if necessary. Th e function uint8 simply 
rounds all values in the range [0,255] to the nearest integer; all values   less 
than 0 are set to 0 and all values   greater than 255 are set to 255. Th e function 
mat2gray(A,[AMIN AMAX]) converts an arbitrary array A to an intensity image 
I containing values in the range 0 (black) to 1.0 (full intensity or white), 
where [AMIN AMAX] can be used to limit the range of the original data, which 
is scaled to the range [0,1]. Since most of our radiance values are within the 
range [0,255], we use uint8 to convert our data to the uint8 data type without 
losing much information.
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Fig. 8.5 RGB composite of an EO-1 Hyperion image using VNIR bands 29, 23 and 16, showing 
the Barrier Volcanic Complex in the Suguta Valley of the Northern Kenya Rift . Th e image was 
acquired on 16th July 2013. Original image courtesy of NASA EO-1 Mission.

HYP1 = uint8(HYP1);
HYP2 = uint8(HYP2);
HYP3 = uint8(HYP3);

Again, displaying the radiance values of the three bands in a histogram using

subplot(1,3,1), histogram(single(HYP1(:)),30), title('Band 29')
subplot(1,3,2), histogram(single(HYP2(:)),30), title('Band 23')
subplot(1,3,3), histogram(single(HYP3(:)),30), title('Band 16')

reveals that most radiance values are actually within the range [20,80]. 
Instead of using histogram we can also use imhist to display the uint8 data.

subplot(1,3,1), imhist(HYP1(:)), title('Band 29')
subplot(1,3,2), imhist(HYP2(:)), title('Band 23')
subplot(1,3,3), imhist(HYP3(:)), title('Band 16')

We then use histeq to enhance the contrast in the image and concatenate the 
three bands to a 3,189-by-242-by-3 array.

HYP1 = histeq(HYP1);
HYP2 = histeq(HYP2);
HYP3 = histeq(HYP3);

subplot(1,3,1), imhist(HYP1(:)), title('Band 29')
subplot(1,3,2), imhist(HYP2(:)), title('Band 23')
subplot(1,3,3), imhist(HYP3(:)), title('Band 16')

HYPC = cat(3,HYP1,HYP2,HYP3);
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Finally, we can display the entire image using

imshow(HYPC)

or, as an alternative, that part of the image showing the Barrier Volcanic 
Complex in the northern Suguta Valley (Fig. 8.5).

imshow(HYPC(900:1100,:,:))

Exporting the image is possible in many diff erent ways, for example using

print -r600 -dtiff barrier.tif

to export it as a TIFF fi le barrier.tif with a resolution of 600 dpi.

 8.7 Digitizing from the Screen

On-screen digitizing is a widely-used image processing technique. While 
practical digitizer tablets exist in all formats and sizes, most people prefer 
digitizing vector data from the screen. Examples of this type of application 
include the digitizing of river networks and catchment areas on topographic 
maps, of the outlines of lithologic units on geological maps, of landslide 
distributions on satellite images, and of mineral grain distributions in 
microscope images. Th e digitizing procedure consists of the following 
steps. Th e image is fi rst imported into the workspace. A coordinate system 
is then defi ned, allowing the objects of interest to be entered by moving a 
cursor or cross hair onto it and clicking the mouse button. Th e result is a 
two-dimensional array of xy data, such as longitudes and latitudes of the 
corner points of a polygon, or the coordinates of the objects of interest in a 
particular area.

Th e function ginput included in the standard MATLAB toolbox allows 
graphical input from the screen, using a mouse. It is generally used to 
select points, such as specifi c data points, from a fi gure created by an 
arbitrary graphics function such as plot. Th e function ginput is oft en used 
for interactive plotting, i.e., the digitized points appear on the screen aft er 
they have been selected. Th e disadvantage of the function is that it does not 
provide coordinate referencing on an image. We therefore use a modifi ed 
version of the function, which allows an image to be referenced to an 
arbitrary rectangular coordinate system. Save the following code for this 
modifi ed version of the function ginput in a text fi le minput.m.

function data = minput(imagefile)
% Specify the limits of the image
xmin = input('Specify xmin! ');
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xmax = input('Specify xmax! ');
ymin = input('Specify ymin! ');
ymax = input('Specify ymax! ');

% Read image and display
B = imread(imagefile);
a = size(B,2); b = size(B,1);
imshow(B); 

% Define lower left and upper right corner of image
disp('Click on lower left and upper right corner, then <return>')
[xcr,ycr] = ginput;
XMIN = xmin-((xmax-xmin)*xcr(1,1)/(xcr(2,1)-xcr(1,1)));
XMAX = xmax+((xmax-xmin)*(a-xcr(2,1))/(xcr(2,1)-xcr(1,1)));
YMIN = ymin-((ymax-ymin)*ycr(1,1)/(ycr(2,1)-ycr(1,1)));
YMAX = ymax+((ymax-ymin)*(b-ycr(2,1))/(ycr(2,1)-ycr(1,1)));

% Digitize data points
disp('Click on data points to digitize, then <return>')
[xdata,ydata] = ginput;
XDATA = XMIN + ((XMAX-XMIN)*xdata/size(B,2));
YDATA = YMIN + ((YMAX-YMIN)*ydata/size(B,1));
data(:,1) = XDATA; data(:,2) = YDATA;

Th e function minput has four stages. In the fi rst stage the user enters the limits 
of the coordinate axes as reference points for the image. Th e image is then 
imported into the workspace and displayed on the screen. Th e third stage 
uses ginput to defi ne the upper left  and lower right corners of the image. In 
the fourth stage the relationship between the coordinates of the two corners 
on the fi gure window and the reference coordinate system is then used to 
compute the transformation for all of the digitized points.

As an example we use the image stored in the fi le naivasha_georef.jpg and 
digitize the outline of Lake Naivasha in the center of the image. We activate 
the new function minput from the Command Window using the commands

clear

data = minput('naivasha_georef.jpg')

Th e function fi rst asks for the coordinates of the limits of the x-axis and the 
y-axis, for the reference frame. We enter the corresponding numbers and 
press return aft er each input.

Specify xmin! 36.1
Specify xmax! 36.7
Specify ymin! -1
Specify ymax! -0.3

Th e function then reads the fi le naivasha_georef.jpg and displays the image. 
We ignore the warning
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Warning: Image is too big to fit on screen; displaying at 33%

and wait for the next response

Click on lower left and upper right corner, then <return>

Th e image window can be scaled according to user preference. Clicking on 
the lower left  and upper right corners defi nes the dimensions of the image. 
Th ese changes are registered by pressing return. Th e routine then references 
the image to the coordinate system and waits for the input of the points we 
wish to digitize from the image.

Click on data points to digitize, then <return>

We fi nish the input by again pressing return. Th e xy coordinates of our 
digitized points are now stored in the variable data. We can now use these 
vector data for other applications.

 8.8 Image Enhancement, Correction and Rectifi cation

Th is section introduces some fundamental tools for image enhancement, 
correction and rectifi cation. As an example we use an image of varved 
sediments deposited around 33 kyrs ago in a landslide-dammed lake in the 
Quebrada de Cafayate of Argentina (25°58.900'S 65°45.676'W) (Trauth et al. 
1999, 2003). Th e diapositive was taken on 1st October 1996 with a fi lm-based 
single-lens refl ex (SLR) camera. A 30-by-20 cm print was made from the 
slide, which has been scanned using a fl atbed scanner and saved as a 394 KB 
JPEG fi le. We use this as an example because it demonstrates some problems 
that we can solve with the help of image enhancement (Fig. 8.6). We then use 
the image to demonstrate how to measure color-intensity transects for use in 
time series analysis (Section 8.9).

We can read and decompress the fi le varves_original.jpg by typing

clear

I1 = imread('varves_original.jpg');

which yields a 24-bit RGB image array I1 in the MATLAB workspace. Typing

whos

yields

Name         Size                  Bytes  Class    Attributes
I1        1096x1674x3            5504112  uint8                          
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a b

c d

revealing that the image is stored as an uint8 array of the size 1,096-by-1,674-
by-3, i.e., 1,096-by-1,674 arrays for each color (red, green and blue). We can 
display the image using the command

imshow(I1)

which opens a new Figure Window showing an RGB composite of the image. 
As we see, the image has a low level of contrast and very pale colors, and the 
sediment layers are not exactly horizontal. Th ese are characteristics of the 
image that we want to improve in the following steps.

First, we adjust the image intensity values or colormap. Th e function 
imadjust(I1,[li; hi],[lo ho]) maps the values of the image I1 to new values 
in I2, such that values between li and hi are adjusted to values between 
lo and ho. Values below li and above hi are clipped, i.e., these values are 
adjusted to lo and ho, respectively. We can determine the range of the pixel 

Fig. 8.6 Results of image enhancements; a original image, b image with intensity values 
adjusted using imadjust, Gamma=1.5, c image with contrast enhanced using adapthisteq, 
d image aft er fi ltering with a 20-by-20 pixel fi lter with the shape of a Gaussian probability 
density function with a mean of zero and a standard deviation of 10, using fspecial and 
imfilter. 
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values using

lh = stretchlim(I1)

which yields

lh =
    0.3255    0.2627    0.2784
    0.7020    0.7216    0.7020

indicating that the red color ranges from 0.3255 to 0.7020, green ranges from 
0.2627 to 0.7216, and blue ranges from 0.2784 to 0.7020. We can utilize this 
information to automatically adjust the image with imadjust by typing

I2 = imadjust(I1,lh,[]);

which adjusts the ranges to the full range of [0,1], and then display the result.

imshow(I2)

We can clearly see the diff erence between the very pale image I1 and the more 
saturated image I2. Th e parameter gamma in imadjust(I1,[li;hi],[lo;ho], 
gamma) specifi es the shape of the curve describing the relationship between I1 
and I2. If gamma<1 the mapping is weighted toward higher (brighter) output 
values. If gamma>1 the mapping is weighted toward lower (darker) output 
values. Th e default value of gamma=1 causes linear mapping of the values in I1 
to new values in I2.

I3 = imadjust(I1,lh,[],0.5);
I4 = imadjust(I1,lh,[],1.5);

subplot(2,2,1), imshow(I1), title('Original Image')
subplot(2,2,2), imshow(I2), title('Adjusted Image, Gamma=1.0')
subplot(2,2,3), imshow(I3), title('Adjusted Image, Gamma=0.5')
subplot(2,2,4), imshow(I4), title('Adjusted Image, Gamma=1.5')

We can use imhist to display a histogram showing the distribution of intensity 
values for the image. Since imhist only works for two-dimensional images, 
we examine the histogram of the red color only.

subplot(2,2,1), imhist(I1(:,:,1)), title('Original Image')
subplot(2,2,2), imhist(I2(:,:,1)), title('Adjusted Image, Gamma=1.0')
subplot(2,2,3), imhist(I3(:,:,1)), title('Adjusted Image, Gamma=0.5')
subplot(2,2,4), imhist(I4(:,:,1)), title('Adjusted Image, Gamma=1.5')

Th e result obtained using imadjust diff ers from that obtained using histeq 
(which we used in Section 8.3 to enhance the contrast in the image). Th e 
function histeq(I1,n) transforms the intensity of image I1, returning in 
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I5 an intensity image with n discrete levels. A roughly equal number of 
pixels is ascribed to each of the n levels in I5, so that the histogram of I5 
is approximately fl at. Histogram equalization using histeq has to carried 
out separately for each color, since histeq only works for two-dimensional 
images. We use n=50 in our exercise, which is slightly below the default value 
of n=64.

I5(:,:,1) = histeq(I1(:,:,1),50);
I5(:,:,2) = histeq(I1(:,:,2),50);
I5(:,:,3) = histeq(I1(:,:,3),50);

subplot(2,2,1), imshow(I1), title('Original Image')
subplot(2,2,3), imhist(I1(:,:,1)), title('Original Image')
subplot(2,2,2), imshow(I5), title('Enhanced Image')
subplot(2,2,4), imhist(I5(:,:,1)), title('Enhanced Image')

Th e resulting image looks quite disappointing and we therefore use the 
improved function adapthisteq instead of histeq. Th is function uses the 
contrast-limited adaptive histogram equalization (CLAHE) by Zuiderveld 
(1994). Unlike histeq and imadjust, the algorithm works on small regions (or 
tiles) of the image, rather than on the entire image. Th e neighboring tiles are 
then combined using bilinear interpolation to eliminate edge eff ects. 

I6(:,:,1) = adapthisteq(I1(:,:,1));
I6(:,:,2) = adapthisteq(I1(:,:,2));
I6(:,:,3) = adapthisteq(I1(:,:,3));

subplot(2,2,1), imshow(I1), title('Original Image')
subplot(2,2,3), imhist(I1(:,:,1)), title('Original Image')
subplot(2,2,2), imshow(I6), title('Enhanced Image')
subplot(2,2,4), imhist(I6(:,:,1)), title('Enhanced Image')

Th e result looks slightly better than that obtained using histeq. However, all 
three functions for image enhancement, imadjust, histeq and adapthisteq, 
provide numerous ways to manipulate the fi nal outcome. Th e Image 
Processing Toolbox – User’s Guide (MathWorks 2014) and the excellent book 
by Gonzalez and others (2009) provide more detailed introductions to the 
use of the various parameters available and the corresponding values of the 
image enhancement functions.

Th e Image Processing Toolbox also includes numerous functions for 2D 
fi ltering of images. Many of the methods we have looked at in Chapter 6 
for one-dimensional data also work with two-dimensional data, as we have 
already seen in Chapter 7 when fi ltering digital terrain models. Th e most 
popular 2D fi lters for images are Gaussian fi lters and median fi lters, as well 
as fi lters for image sharpening. Both Gaussian and median fi lters are used 
to smooth an image, mostly with the aim of reducing the amount of noise. 
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In most examples the signal-to-noise ratio is unknown and adaptive fi lters 
(similar to those introduced in Section 6.10) are therefore used for noise 
reduction. A Gaussian fi lter can be designed using

h = fspecial('gaussian',20,10);
I7 = imfilter(I1,h);

where fspecial creates predefi ned 2D fi lters, such as moving average, 
disk, or Gaussian fi lters. Th e Gaussian fi lter weights h are calculated using 
fspecial('gaussian',20,10), where 20 corresponds the size of a 20-by-20 
pixel fi lter following the shape of a Gaussian probability density function 
with a standard devation of 10. Next, we calculate I8, which is a median-
fi ltered version of I1.

I8(:,:,1) = medfilt2(I1(:,:,1),[20 20]);
I8(:,:,2) = medfilt2(I1(:,:,2),[20 20]);
I8(:,:,3) = medfilt2(I1(:,:,3),[20 20]);

Since medfilt2 only works for two-dimensional data, we again apply the fi lter 
separately to each color (red, green and blue). Th e fi lter output pixels are the 
medians of the 20-by-20 neighborhoods around the corresponding pixels in 
the input image.

Th e third fi lter example deals with sharpening an image using imsharpen.

I9 = imsharpen(I1);

Th is function calculates the Gaussian lowpass fi ltered version of the image 
that is used as an unsharp mask, i.e., the sharpened version of the image is 
calculated by subtracting the blurred fi ltered version from the original image. 
Th e function comes with several parameters that control the ability of the 
Gaussian fi lter to blur the image and the strength of the sharpening eff ect, 
and a threshold specifying the minimum contrast required for a pixel to be 
considered an edge pixel and sharpened by unsharp masking. Comparing 
the results of the three fi ltering exercises with the original image

subplot(2,2,1), imshow(I1), title('Original Image')
subplot(2,2,2), imshow(I7), title('Gaussian Filter')
subplot(2,2,3), imshow(I8), title('Median Filter')
subplot(2,2,4), imshow(I9), title('Sharpening Filter')

clearly demonstrates the eff ect of the 2D fi lters. As an alternative to these 
time-domain fi lters, we can also design 2D fi lters with a specifi c frequency 
response, such as the 1D fi lters described in Section 6.9. Again, the book by 
Gonzalez and others (2009) provides an overview of 2D frequency-selective 
fi ltering for images, including functions used to generate such fi lters. Th e 
authors also demonstrate the use of a 2D Butterworth lowpass fi lter in image 
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processing applications.
We next rectify the image, i.e., we correct the image distortion by 

transforming it to a rectangular coordinate system using a script that is 
similar to that used for georeferencing satellite images in Section 8.5. Th is 
we achieve by defi ning four points within the image, which are actually at the 
corners of a rectangular area (which is our reference area). We fi rst defi ne the 
upper left , lower left , upper right, and lower right corners of the reference area, 
and then press return. Note that it is important to pick the coordinates of the 
corners in this particular order. In this instance we use the original image 
I1, but we could also use any other enhanced version of the image from the 
previous exercises. As an example we can click the left  side of the ruler at 1.5 
cm and at 4.5 cm, where two thin white sediment layers cross the ruler, for 
use as the upper-left  and lower-left  corners. We then choose the upper-right 
and lower-right corners, further to the right of the ruler but also lying on the 
same two white sediment layers,

imshow(I1)
basepoints = ginput

and click return which yields

basepoints =
  517.0644  508.9059
  511.5396  733.5792
  863.2822  519.9554
  859.5990  739.1040

or any similar values. Th e image and the reference points are then displayed 
in the same fi gure window.

close all
imshow(I1)
hold on
line(basepoints(:,1),basepoints(:,2),...
       'LineStyle','none',...
       'Marker','+',...
       'MarkerSize',48,...
       'Color','b')
hold off

We arbitrarily choose new coordinates for the four reference points, which 
are now on the corners of a rectangle. To preserve the aspect ratio of the 
image, we select numbers that are the means of the diff erences between the 
x- and y-values of the reference points in basepoints. 

dx = (basepoints(3,1)+basepoints(4,1))/2- ...
     (basepoints(1,1)+basepoints(2,1))/2
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dy = (basepoints(2,2)+basepoints(4,2))/2- ...
     (basepoints(1,2)+basepoints(3,2))/2

which yields

dx =
  347.1386

dy =
  221.9109

We therefore choose

inputpoints(1,:) = [0 0];
inputpoints(2,:) = [0 dy];
inputpoints(3,:) = [dx 0];
inputpoints(4,:) = [dx dy];

Th e function fitgeotrans now takes the pairs of control points, inputpoints 
and basepoints, and uses them to infer a spatial transformation matrix tform 
using the transformation type projective.

tform = fitgeotrans(inputpoints,basepoints,'projective');

We next need to estimate the spatial limits for the output, XBounds and 
YBounds, corresponding to the projective transformation tform, and a set of 
spatial limits for the input xLimitsIn and yLimitsIn.

xLimitsIn = 0.5 + [0 size(I1,2)]
yLimitsIn = 0.5 + [0 size(I1,1)]

[XBounds,YBounds] = outputLimits(tform,xLimitsIn,yLimitsIn)

Th en we use imref2d to reference the image to world coordinates.

Rout = imref2d(size(I1),XBounds,YBounds)

An imref2d object Rout encapsulates the relationship between the intrinsic 
coordinates anchored to the rows and columns of the image and the spatial 
location of the same row and column locations in a world coordinate system. 
Finally, the projective transformation can be applied to the original RGB 
composite I1 in order to obtain a rectifi ed version of the image (I10).

I10 = imwarp(I1,tform,'OutputView',Rout);

We now compare the original image I1 with the rectifi ed version I10.

subplot(2,1,1), imshow(I1), title('Original Image')
subplot(2,1,2), imshow(I10), title('Rectified Image')
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We see that the rectifi ed image has black areas at the corners. We can remove 
these black areas by cropping the image using imcrop.

I11 = imcrop(I10);

subplot(2,1,1), imshow(I1), title('Original Image')
subplot(2,1,2), imshow(I11), title('Rectified and Cropped Image')

Th e function imcrop creates displays of the image with a resizable rectangular 
tool that can be interactively positioned and manipulated using the mouse. 
Aft er manipulating the tool into the desired position, the image is cropped 
by either double clicking on the tool or choosing Crop Image from the tool’s 
context menu. Th e result of our image enhancement experiment can now be 
used in the next section to analyze the colors of individual sediment layers.

 8.9 Color-Intensity Transects Across Varved Sediments

High-resolution core logging has, since the early 1990s, become popular as 
an inexpensive tool for investigating the physical and chemical properties of 
marine and lacustrine sediments. During the early days of nondestructive 
core logging, magnetic susceptibility and grayscale intensity transects were 
measured on board research vessels to generate a preliminary stratigraphy 
of marine cores, since the cyclic recurrence of light and dark layers seemed 
to refl ect glacial-interglacial cycles during the Pleistocene. Paleolimnologists 
adopted these techniques to analyze annually-layered (varved) lake sediments 
and to statistically detect short-term variabilities such as the 11 year sunspot 
cycle, the 3-7 year El Niño cycle, or the 78 year Gleissberg cycle. Modern 
multi-sensor core loggers are now designed to log a great variety of physical 
and chemical properties using optical scanners, radiograph imaging, and 
x-ray fl uorescence elemental analyzers.

As an example we explore varved sediments deposited around 33 kyrs 
ago in a landslide-dammed lake in the Quebrada de Cafayate of Argentina 
(Trauth et al. 1999, 2003). Th ese lake sediments have been intensively studied 
for paleoclimate reconstructions since they document episodes of a wetter 
and more variable climate that eventually fostered mass movements in the 
NW Argentine Andes during the Late Pleistocene and Holocene. Aside from 
various sedimentological, geochemical and micropaleontological analyses, 
the colors of the sediments have been studied as a proxy for rainfall intensities 
at the time of deposition. Color-intensity transects were analyzed to detect 
interannual variations in precipitation caused by the El Niño/Southern 
Oscillation (ENSO, 3–7 year cycles) and the Tropical Atlantic Sea-Surface 
Temperature Variability (TAV, 10–15 year cycles) using linear and nonlinear 
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methods of time-series analysis (e.g., Trauth et al. 2000, Marwan et al. 2003).
Th e El Paso section in the Quebrada de Cafayate contains well-developed 

annual layers in most parts of the profile (Fig. 8.7). Th e base of each of these 
mixed clastic and biogenic varves consists of reddish silt and clay, with a 
sharp lower boundary. Towards the top of the varves, reddish clay and silt are 
gradually replaced by light-brown to greenish clay. Th e change from reddish 
hues correlates with a slight decrease in grain size. Th is clastic portion of 
the varves is capped by a thin layer of pure white diatomite. Diatomites are 
sediments comprised mainly of porous siliceous skeletons of single-cell 
algae, i.e. diatoms. Th is internal structure of the laminae is typical of annual-
layered sediments. Th e recurrence of these layers and the distribution of 
diatoms, together with the sediment coloration and provenance, all provide 
additional evidence that rhythmic sedimentation in this region was controlled 
by a well-defi ned annual cycle. Th e provenance of the sediments contained 
in the varved layers can be traced using index minerals characteristic of the 
various possible source areas within the catchment. A comparison of the 
mineral assemblages in the sediments with those of potential source rocks 
within the catchment area indicates that Fe-rich Tertiary sedimentary rocks 

Fig. 8.7 Photograph of varved lake sediments from the Quebrada de Cafayate in the Santa 
Maria Basin, with cyclic occurrences of intense dark-red coloration refl ecting enhanced 
precipitation and sediment input during ENSO- and TAV-type periodicities (350 cm above 
the base of the El Paso section). Th e solid blue line denotes the course of the digitized color-
intensity transect. Th e red circles note the position of the diatomite layers, representing 
annual layers.
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exposed in the Santa Maria Basin were the source of the red-colored basal 
portion of the varves. In contrast, metamorphic rocks in the mountainous 
parts of the catchment area were the most likely source of the drab-colored 
upper part of the varves.

In nearly every second to fift h, and every tenth to fourteenth varve, 
the varve thickness increases by a factor of 1.5 to 2 and the basal reddish 
coloration is more intense, suggesting a greater fluvial input of Fe-rich Tertiary 
material. Exceptionally well-preserved sections containing 70–250 varves 
were used for more detailed statistical analysis of the observed cyclicities 
(see Chapter 5). High-quality photographs from these sections were scanned 
and subjected to standardized color and illumination corrections. Pixel-
wide representative red-color intensities were subsequently extracted from 
transects across the images of these varves. Th e resolution of these time 
series was of the order of ten intensity values per varve.

We will now analyze a 22-year package of varved lake sediments from the 
Quebrada de Cafayate as an example (Fig. 8.6). Th e photo was taking during 
a fi eld expedition in the late 1990s using an analog camera. It was then 
scanned and the contrast levels adjusted to heighten details using standard 
photo processing soft ware. We import the image from the fi le varves_original.
tif as a 24-bit RGB image array and store the data in a variable I.

clear

I = imread('varves_original');

We display the image using imshow and turn the axis labeling, tick marks and 
background back on.

imshow(I), axis on

Th e image is scaled to pixel indices or coordinates, so we fi rst need to scale 
the image to a centimeter scale. While keeping the fi gure window open we 
use ginput to count the number of pixels per centimeter. Th e function ginput 
provides a crosshair with which to gather an unlimited number of points 
forming a polygon, until the return key is pressed. We place the crosshair 
at 1 cm and 6 cm on the scale in the image and click to gather the pixel 
coordinates of the 5-cm interval.

[x,y] = ginput;

Th e image is size(I,2)=1830 pixels wide and size(I,1)=1159 pixels high. We 
convert the width and the height of the image into centimeters using the 
conversion 5/sqrt((y(2,1)-y(1,1))^2+(x(2,1)-x(1,1))^2), where 5 corres-
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ponds to the 5 cm interval equivalent to the sqrt((y(2,1)-y(1,1))^2+(x(2,1)
-x(1,1))^2) pixels gathered using ginput.

ix = 5 * size(I,2) / sqrt((y(2,1)-y(1,1))^2+(x(2,1)-x(1,1))^2);
iy = 5 * size(I,1) / sqrt((y(2,1)-y(1,1))^2+(x(2,1)-x(1,1))^2);

We can now display the image using the new coordinate system where ix and 
iy are the width and height of the image, respectively (in centimeters).

imshow(I,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')

We now digitize the color-intensity transect from the top of the image to 
bottom. Th e function improfile determines the RGB pixel values C along line 
segments defi ned by the coordinates [CX,CY].

[CX,CY,C] = improfile;

Th e scaled image and the polygon are displayed in the same fi gure window. 
Th e three color-intensity curves are plotted in a separate window.

imshow(I,'XData',[0 ix],'YData',[0 iy]), hold on
plot(CX,CY), hold off

figure
plot(CY,C(:,1),'r',CY,C(:,2),'g',CY,C(:,3),'b')
xlabel('Centimeters'), ylabel('Intensity')

Th e image and the color-intensity profi les are on a centimeter scale. To detect 
the interannual precipitation variability, as recorded in the color intensity of 
the sediments, we need to convert the length scale to a time scale. We use the 
22 white diatomite layers as time markers to defi ne individual years in the 
sedimentary history. We again use ginput to mark the diatomite layers from 
top to bottom along the color-intensity transect and store the coordinates of 
the laminae in the new variable laminae.

imshow(I,'XData',[0 ix],'YData',[0 iy]), hold on
plot(CX,CY), hold off
laminae = ginput;

To inspect the quality of the age model we plot the image, together with the 
polygon and the marked diatomite layers.

imshow(I,'XData',[0 ix],'YData',[0 iy])
hold on
plot(CX,CY)
plot(laminae(:,1),laminae(:,2),'ro')
xlabel('Centimeters'), ylabel('Centimeters')
hold off
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We defi ne a new variable newlaminae that contains the vertical y-component 
of laminae as the fi rst column and the years 1 to 22 (counting backwards 
in time) as the second colum. Th e 22 years are equivalent to the length 
of laminae. Th e function interp1 is used to interpolate the color-intensity 
transects over an evenly-spaced time axis stored in the variable age.

newlaminae(:,1) = laminae(:,2);
newlaminae(:,2) = 1 : length(laminae(:,2));
age = interp1(newlaminae(:,1),newlaminae(:,2),CY);

We complete the analysis by plotting the color-intensity curves on both a 
length and a time scale for comparison (Fig. 8.8).

subplot(2,1,1), plot(CY,C(:,1),CY,C(:,2),CY,C(:,3))
xlabel('Centimeters'), ylabel('Intensity'), title('Color vs. Length')
subplot(2,1,2), plot(age,C(:,1),age,C(:,2),age,C(:,3))
xlabel('Years'), ylabel('Intensity'), title('Color vs. Age')

Th e interpolated color-intensity transects can now be further analyzed 
using the time-series analysis tools. Th e analysis of a representative red-
color intensity transect across 70–250 varves during the project described 

Fig. 8.8 Color-intensity curves (red, green and blue) plotted against a depth and b age.

a

b
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above revealed significant peaks at about 13.1, 3.2, 2.2 and 1.0 yrs, suggesting 
both ENSO and TAV infl uences in the area at around 33,000 years ago (see 
Chapter 5 and Fig. 5.1).

 8.10 Grain Size Analysis from Microscope Images

Identifying, measuring and counting particles in an image are the classic 
applications of image analysis. Examples from the geosciences include 
grain size analysis, counting pollen grains, and determining the mineral 
composition of rocks from thin sections. For grain size analysis the task is to 
identify individual particles, measure their sizes, and then count the number 
of particles per size class. Th e motivation to use image analysis is the ability to 
perform automated analyses of large sets of samples in a short period of time 
and at relatively low costs. Th ree diff erent approaches are commonly used to 
identify and count objects in an image: (1) region-based segmentation using 
the watershed segmentation algorithm, (2) object detection using the Hough 
transform, and (3) thresholding using color diff erences to separate objects. 
Gonzalez, Woods and Eddins (2009) describe these methods in great detail 
in the 2nd edition of their excellent book, which also provides numerous 
MATLAB recipes for image processing. Th e book has a companion webpage 
at

http://www.imageprocessingplace.com/

that off ers additional support in a number of important areas (including 
classroom presentations, M-fi les, and sample images) as well as providing 
numerous links to other educational resources. We will use two examples 
to demonstrate the use of image processing for identifying, measuring, and 
counting particles. In this section we will demonstrate an application of 
watershed segmentation in grain size analysis and then in Section 8.9 we will 
introduce thresholding as a method for quantifying charcoal in microscope 
images. Both applications are implemented in the MATLAB-based RADIUS 
soft ware developed by Klemens Seelos from the University of Mainz (Seelos 
and Sirocko 2005). RADIUS is a particle-size measurement technique, based 
on the evaluation of digital images from thin sections that off ers a sub-mm 
sample resolution and allows sedimentation processes to be studied within 
the medium silt to coarse sand size range. It is coupled with an automatic 
pattern recognition system for identifying sedimentation processes within 
undisturbed samples. Th e MATLAB code for RADIUS can be downloaded 
from

http://www.particle-analysis.info/
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Th e following example for object segmentation illustrates the segmentation, 
measuring, and counting of objects using the watershed segmentation 
algorithm (Fig. 8.9). We fi rst read an image of coarse lithic grains of diff erent 
sizes and store it in the variable I1. Th e size of the image is 284-by-367 pixels 
and, since the width is 3 cm, the height is 3 cm∙284/367=2.32 cm.

clear

I1 = imread('grainsize.tif');
ix = 3; iy = 284 * 3 / 367;
imshow(I1,'XData',[0 ix],'YData',[0 iy])
title('Original Image')

Here, ix and iy denote the coordinate axes used to calibrate the image I1 to 
a centimeter scale. Th e true number of objects counted in this image is 236, 
including three grains that overlap the borders of the image and will therefore 
be ignored in the following exercise. We reject the color information of the 
image and convert I1 to grayscale using the function rgb2gray.

I2 = rgb2gray(I1);
imshow(I2,'XData',[0 ix],'YData',[0 iy])
title('Grayscale Image')

Th is grayscale image I2 has a relatively low level of contrast. We therefore 
use the function imadjust to adjust the image intensity values. Th e function 
imadjust maps the values in the intensity image I2 to new values in I3, such 
that 1% of the data is saturated at low and high intensities. Th is increases the 
contrast in the new image I3.

I3 = imadjust(I2);
imshow(I3,'XData',[0 ix],'YData',[0 iy])
title('Adjusted Intensity Values')

We next determine the background of the I3 image, which means basically 
the texture of the black foil on which the grains are located. Th e function 
imopen(im,se) determines objects in an image im with a specifi c shape se 
(a fl at structuring element such as a circular disk) and size (expressed as a 
specifi c number of pixels), as defi ned by the function strel. We then produce 
a background-free image, I4.

I4 = imopen(I3,strel('disk',1));
imshow(I4,'XData',[0 ix],'YData',[0 iy])
title('No Background')

We subtract the background-free image I4 from the original grayscale image 
I3 to observe the background I5 that has been eliminated.
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Fig. 8.9 Results from automated grain size analysis of a microscope image; a original 
grayscale image, b image aft er removal of background, c image aft er conversion to binary 
image, d image aft er eliminating objects overlapping the image border, e image with objects 
detected by tracing the boundaries of connected pixels, and f image with objects detected 
using a watershed segmentation algorithm.

a b

c

e f

d
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I5 = imsubtract(I3,I4);
imshow(I5,'XData',[0 ix],'YData',[0 iy])
title('Background')

Th e function im2bw converts the background-free image I4 to a binary 
image I6 by thresholding. If the threshold is 1.0 the image is all black, 
corresponding to the pixel value of 0. If the threshold is 0.0 the image is all 
white, corresponding to a pixel value of 1. We manually change the threshold 
value until we get a reasonable result and fi nd 0.2 to be a suitable threshold.

I6 = im2bw(I4,0.2);
imshow(I6,'XData',[0 ix],'YData',[0 iy])
title('Binary Image')

We next eliminate objects in I6 that overlap the image border, since they are 
actually larger than shown in the image and will result in false estimates. We 
eliminate these using imclearborder and generate image I7.

I7 = imclearborder(I6);
himage1 = imshow(I6,'XData',[0 ix],'YData',[0 iy]); hold on
set(himage1, 'AlphaData', 0.7);
himage2 = imshow(imsubtract(I6,I7),'XData',[0 ix],'YData',[0 iy]);
set(himage2, 'AlphaData', 0.4);
title('Image Border'), hold off

We then trace the boundaries using bwboundaries in a binary image where 
non-zero pixels belong to an object and zero pixels are background. By 
default, the function also traces the boundaries of holes in the I7 image. 
We therefore choose the option noholes to suppress the tracing of the holes. 
Function label2grb converts the label matrix L resulting from bwboundaries 
to an RGB image. We use the colormap jet, the zerocolor w for white, 
and the color order shuffle (which simply shuffl  es the colors of jet in a 
pseudorandom manner).

[B,L] = bwboundaries(I7,'noholes');
imshow(label2rgb(L,@jet,'w','shuffle'),...
   'XData',[0 ix],'YData',[0 iy])
title('Define Objects')

Th e function bwlabeln is used to obtain the number of connected objects 
found in the binary image. Th e integer 8 defi nes the desired connectivity, 
which can be either 4 or 8 in two-dimensional neighborhoods. Th e elements 
of L are integer values greater than or equal to 0. Th e pixels labeled 0 are the 
background. Th e pixels labeled 1 make up one object, the pixels labeled 2 
make up a second object, and so on.

[labeled,numObjects] = bwlabeln(I7,8);
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numObjects

In our example the method identifi ed 192 grains, which is signifi cantly less 
than the 236 grains counted manually, reduced by the three objects that 
overlap the borders of the image. Visual inspection of the color-coded image 
generated by bwboundaries reveals the reason for the underestimated number 
of grains. Two large grains in the middle of the image have been observed as 
being connected, giving a single, very large grain in the fi nal result. Reducing 
the disk size with strel from disk=1 to disk=5 can help separate connected 
grains. Larger disks, on the other hand, reduce the number of grains because 
smaller grains are lost by fi ltering. We now determine the areas of each of 
the grains.

graindata = regionprops(labeled,'basic');
grainareas= [graindata(:).Area];
objectareas = 3^2 * grainareas * 367^(-2);

We then fi nd the maximum, minimum and mean areas for all grains in the 
image, in cm2.

max_area = max(objectareas)
min_area = min(objectareas)
mean_area = mean(objectareas)

Th e connected grain in the middle of the image has a size of 0.16 cm2, which 
represents the maximum size of all grains in the image. Finally, we plot the 
histogram of all the grain areas.

clf
e = 0 : 0.0005 : 0.15;
histogram(objectareas,e)
xlabel('Grain Size in Millimeters^2')
ylabel('Number of Grains')
axis([0 0.1 0 30])

Several methods exist that partly overcome the artifact of connected 
grains in grain size analyses. Th e most popular technique for region-based 
segmentation is the watershed segmentation algorithm. Watersheds in 
geomorphology are ridges that divide areas contributing to the hydrological 
budget of adjacent catchments (see Section 7.10). Watershed segmentation 
applies to grayscale images the same methods used to separate catchments 
in digital elevation models. In this application, the grayscale values are 
interpreted as elevations in a digital elevation model, where the watershed 
then separates the two objects of interest.

Th e criterion commonly used to identify pixels that belong to one object 
is the nearest-neighbor distance. We use the distance transform performed 
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by bwdist, which assigns to each pixel a number that is the distance between 
a pixel and the nearest non-zero pixel in I7. In an image in which objects 
are identifi ed by pixel values of zero and the background by pixel values of 
one, the distance transform has zeros in the background areas and non-zero 
values that increase progressively with increasing distances from the edges 
of the objects. In our example however, the objects have pixel values of one 
and the background has pixels with with values of zero. We therefore have 
to apply bwdist to the complement of the binary image I7 instead of to the 
image itself.

D = bwdist(~I7,'cityblock');

Th e function bwdist provides several methods for computing the nearest-
neighbor distances, including Euclidean distances, cityblock distances, 
chessboard distances and quasi-Euclidean distances. We choose the cityblock 
option in this particular example, but other methods might be more 
appropriate for separating objects in other images. Th e distance matrix now 
contains positive non-zero values in the object pixels and zeros elsewhere. 
We then complement the distance transform, and ascribe a value of -Inf to 
each pixel that does not belong to an object.

D = -D;
D(~I7) = -Inf;

We compute the watershed transform for the distance matrix, and display 
the resulting label matrix.

L2 = watershed(D); 
imshow(label2rgb(L2,@jet,'w','shuffle'),...
   'XData',[0 ix],'YData',[0 iy])
title('Watershed Segmentation')

Aft er having displayed the results from watershed segmentation, we 
determine the number of pixels for each object using the recipe from above, 
except for index i running from 2 to max(objects) since the value 1 denotes 
the background and 0 denotes the boundaries of the objects. Th e fi rst true 
object is therefore marked by the value of 2.

objects = sortrows(L2(:),1);
max(objects)
clear objectsizes
for i = 2 : max(objects)
    clear individualobject
    individualobject = objects(objects == i);
    objectsizes(i) = length(individualobject);
end
objectsizes = objectsizes';
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objectsizes = sortrows(objectsizes,1);
objectsizes = objectsizes(objectsizes~=0);

We have now recognized 205 objects, i.e., more objects than were identifi ed 
in the previous exercise without watershed segmentation. Visual inspection 
of the result, however, reveals some oversegmentation (due to noise or other 
irregularities in the image) in which larger grains are divided into smaller 
pieces. On the other hand, very small grains have been eliminated by fi ltering 
the image with the morphological structuring element strel. We scale the 
object sizes. Th e area of one pixel is (3 cm/367)2.

objectareas = 3^2 * objectsizes * 367^(-2);

We now determine the areas for each of the grains. We again fi nd the 
maximum, minimum and mean areas for all grains in the image, in cm2.

max_area = max(objectareas)
min_area = min(objectareas)
mean_area = mean(objectareas)

Th e largest grain in the center of the image has a size of 0.09 cm2, which 
represents the maximum size of all grains in the image. Finally, we plot the 
histogram of all the grain areas.

clf
e = 0 : 0.0005 : 0.15;
histogram(objectareas,e)
xlabel('Grain Size in Millimeters^2'),...
   ylabel('Number of Grains')
axis([0 0.1 0 70])

As a check of the fi nal result we digitize the outline of one of the larger grains 
and store the polygon in the variable data.

figure
imshow(I1,'XData',[0 ix],'YData',[0 iy])
data = ginput;

We close the polygon by copying the fi rst row of coordinates to the end of the 
array. We then display the polygon on the original image.

data(end+1,:) = data(1,:)

imshow(I1,'XData',[0 ix],'YData',[0 iy]), hold on
plot(data(:,1),data(:,2)), hold off

Th e function polyarea yields the area of the large grain.

polyarea(data(:,1),data(:,2))

8.10 GRAIN SIZE ANALYSIS FROM MICROSCOPE IMAGES  363



ans =
    0.0951

Th e calculated area corresponds approximately to the result from the 
grain size analysis. If oversegmentation is a major problem when using 
segmentation to count objects in an image, the reader is referred to the book 
by Gonzalez, Woods and Eddins (2009) that describes marker-controlled 
watershed segmentation as an alternative method to avoid oversegmentation.

 8.11 Quantifying Charcoal in Microscope Images

Quantifying the composition of substances in geosciences, such as the 
mineral composition of a rock in thin sections, or the amount of charcoal 
in sieved sediment samples, is facilitated by the use of image processing 
methods. Th resholding provides a simple solution to segmenting objects 
within an image that have diff erent coloration or grayscale values. During the 
thresholding process, pixels with an intensity value greater than a threshold 
value are marked as object pixels (e.g., pixels representing charcoal in an 
image) and the rest as background pixels (e.g., all other substances). Th e 
threshold value is usually defi ned manually through visual inspection of the 
image histogram, but numerous automated algorithms are also available.

As an example we analyze an image of a sieved lake-sediment sample 
from Lake Nakuru, Kenya (Fig. 8.10). Th e image shows abundant light-gray 
oval ostracod shells and some mineral grains, as well as gray plant remains 
and black charcoal fragments. We use thresholding to separate the dark 
charcoal particles and count the pixels of these particles aft er segmentation. 
Aft er having determined the number of pixels for all objects distinguished 
from the background by thresholding, we use a lower threshhold value to 
determine the ratio of the number of pixels representing charcoal to the 
number of pixels representing all particles in the sample, i.e., to determine 
the percentage of charcoal in the sample.

We read the image of size 1500-by-1500 pixels and assume that the width 
and the height of the square image are both one centimeter.

clear

I1 = imread('lakesediment.jpg');
ix = 1; iy = 1;
imshow(I1,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeter'), ylabel('Centimeter')
title('Original Image')

Th e RGB color image is then converted to a grayscale image using the 
function rgb2gray.
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I2 = rgb2gray(I1);
imshow(I2,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')
title('Grayscale')

Since the image contrast is relatively low, we use the function imadjust to 
adjust the image intensity values. Th e function imadjust maps the values 
in the intensity image I1 to new values in I2, such that 1% of the data is 
saturated at low and high intensities of I2. Th is increases the contrast in the 
new image I2.

I3 = imadjust(I2);
imshow(I3,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')
title('Better Contrast')

We next determine the background of the lithic grains, which basically 
means the texture of the black foil on which the grains are located. Th e 
function imopen(im,se) determines objects in an image im below a certain 
pixel size and a fl at structuring element se, such as a disk with a radius of 5 
pixels generated by the function strel. Th e variable I4 is the background-
free image resulting from this operation.

I4 = imopen(I3,strel('disk',5));
imshow(I4,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')
title('W/O Background')

We subtract the background-free image I4 from the original grayscale image 
I3 to observe the background I5 that has been eliminated.

I5 = imsubtract(I3,I4);
imshow(I5,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')
title('Background')

Th e function im2bw converts the I4 image to a binary image (I6) by 
thresholding. If the threshold is 1.0 the image is all black, corresponding to 
a pixel value of 0. If the threshold is 0.0 the image is all white, corresponding 
to a pixel value of 1. We manually change the threshold value until we get a 
reasonable result. In our example a threshold of 0.03 gives good results for 
identifying charcoal fragments.

I6 = im2bw(I4,0.03);
imshow(I6,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')
title('Only Charcoal')
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Fig. 8.10 Display of results from automatic quantifi cation of charcoal in a microscope image; 
a original color image, b grayscale image, c image aft er enhancement of contrast, d image aft er 
removal of background, e image aft er thresholding to separate charcoal particles, and f image 
aft er thresholding to separate all objects.

a b

c
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d
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Since we know the size of a pixel we can now simply count the number of 
pixels to estimate the total amount of charcoal in the image. Finally, we 
compute the area of all objects, including charcoal.

I7 = im2bw(I4,0.6);
imshow(I7,'XData',[0 ix],'YData',[0 iy]), axis on
xlabel('Centimeters'), ylabel('Centimeters')
title('All Objects')

We are not interested in the absolute areas of charcoal in the image but in the 
percentage of charcoal in the sample.

100*sum(sum(I6==0))/sum(sum(I7==0))

ans =
   13.4063

Th e result suggests that approximately 13% of the sieved sample is charcoal. 
As a next step, we could quantify the other components in the sample, such 
as ostracods or mineral grains, by choosing diff erent threshold values.

 8.12 Shape-Based Object Detection in Images

Th e counting of objects within images on the basis of their shapes is a very 
time-consuming task. Examples of where this is carried out for round objects 
include the counting of planktonic foraminifera shells to infer past sea-
surface temperatures, of diatom frustules to infer past chemical composition 
of lake water, and of pollen grains to determine assemblages that can be used 
to reconstruct regional air temperature and precipitation. Linear objects that 
are determined include faults in aerial photos and satellite images (to derive 
the present-day stress fi eld of an area) and annual layers (varves) in thin 
sections (to establish an annually-resolved sedimentary history).

Th e Hough transform, named aft er the related 1962 patent of Paul VC 
Hough, is a popular technique with which to detect objects within images, 
based on their shapes. Th e Hough transform was orginally used to detect 
linear features, but soon aft er being patented it was generalized to identify 
objects of any shape (Duda and Hart 1972, Ballard 1981). Th e book by 
Gonzalez and others (2009) contains a comprehensive introduction to the 
Hough transform and its applications for detecting objects within images. 
According to their introduction to the method, the Hough transform is 
performed in two steps. In the fi rst step an edge detector is used to extract 
edge features, such as distinct sediment layers or the outlines of pollen grains, 
from an image (Fig. 8.13). In the second step lines (or objects of any other 
shape) that trace these edge features are identifi ed. Th e Image Processing 
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Toolbox (MathWorks 2014) contains functions that use the Hough transform 
to detect lines or circular objects.

Th e classic Hough transform is used to detect lines in images. Aft er 
applying an edge detector of any kind we end up with a binary image that 
has black pixels on the edges and white pixels in between. We next describe 
the lines through a given black pixel by the Euklidean distance ρ between the 
line and the origin, and by the angle θ of the vector from the origin to the 
closest point on the line (Fig. 8.11 a):

Th e family of all lines passing through this particular pixel (xi,yi) of an edge 
feature are displayed as a sinusoidal curve in the (θ,ρ) parameter space 
(Fig. 8.11 b). Th e intersection point (θ',ρ') of two such sinusoidal curves 
corresponds to the line that passes through two diff erent pixels, (x1,y1) and 
(x2,y2), of an edge feature. Next, we search for n points (xi,yi) in the Hough 
transform where many lines intersect, since these are points defi ning the line 
tracing an edge feature. Detecting circles instead of lines works in a similar 
manner, using the coordinates of the center of the circle and its radius instead 
of ρ and θ.

For our a fi rst example we use these functions to detect the thin layers of 
pure white diatomite within varved sediments exposed in the Quebrada de 
Cafayate of Argentina, which have already been used as examples in previous 
sections (Trauth et al. 1999, 2003) (Fig. 8.12). Th e quality of the image is not 
perfect, which is why we can not expect optimal results. We fi rst read the 
cropped version of the laminated sediment from Section 8.8 and store it in 
the variable I1. Th e size of the image is 1,047-by-1,691 pixels, consisting of 
three colors (red, green and blue).

clear

I1 = imread('varves_cropped.tif');
imshow(I1,'InitialMagnification',30)

We reject the color information of the image and convert I1 to grayscale 
using the function rgb2gray.

I2 = rgb2gray(I1);
imshow(I2,'InitialMagnification',30)

We then use adapthisteq to perform a contrast-limited adaptive histogram 
equalization (CLAHE), in order to enhance the contrast in the image 
(Zuiderveld 1994).
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Fig. 8.11 Th e concept of the Hough transform: a parametrization of lines in the xy-plane, and 
b sinusoidal curves in the pθ parameter space, with the point of intersection corresponding to 
the line that passes through two diff erent pixels of an edge feature (modifi ed from Gonzales 
et al. 2009).

a b

I3 = adapthisteq(I2,'ClipLimit',0.1,'Distribution','Rayleigh');
imshow(I3,'InitialMagnification',30)

Here, ClipLimit limits the contrast enhancement using a real scalar from 0 to 
1, with higher numbers resulting in greater contrast; the default value is 0.01. 
Th e Distribution parameter defi nes the desired histogram shape for the tiles 
by specifying a distribution type, such as Uniform, Rayleigh and Exponential. 
Using a ClipLimit of 0.1 and a Rayleigh distribution yields good results. 
Using the function im2bw then converts the I3 image to a binary image (I4) by 
thresholding. If the threshold is 1.0 the image is all black, corresponding to 
the pixel value of 0. If the threshold is 0.0 the image is all white, corresponding 
to a pixel value of 1. We manually change the threshold value until we get a 
reasonable result and fi nd 0.55 to be a suitable threshold.

I4 = im2bw(I3, 0.55);
imshow(I4,'InitialMagnification',30)

Th e function hough implements the Hough transform, houghpeaks fi nds 
the high-count accumulator cells in the Hough transform, and houghlines 
extracts lines in the original image, based on the other two functions. We 
determine the n=15 lines corresponding to the fi rst 15 maxima of the Hough 
transform and store fi ft een of the lines (lines 1 to 5, 6 to 10, and 11 to 15) in 
three separate variables lines1, lines2 and lines3.

[H,theta,rho] = hough(I4);
peaks  = houghpeaks(H,15);
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Fig. 8.12 Automated detection of thin layers of pure white diatomite within varved sediments 
exposed in the Quebrada de Cafayate of Argentina, using houghlines (Trauth et al. 1999, 
2003); a grayscale image, b enhanced image, c binary image, d image with diatomite layers 
marked by red lines, and e Hough transform of the image.
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lines1 = houghlines(I4,theta,rho,peaks(1:5,:));
lines2 = houghlines(I4,theta,rho,peaks(6:10,:));
lines3 = houghlines(I4,theta,rho,peaks(11:15,:));

We then display the Hough transform and mark the 15 maxima of the Hough 
transform with blue squares.

imshow(imadjust(mat2gray(H)),[], ...
    'XData',theta, ...
    'YData',rho, ...
    'InitialMagnification','fit')
colormap(hot), axis square, hold on
plot(theta(peaks(:,2)),rho(peaks(:,1)), ...
    'LineStyle','none', ...
    'Marker','s', ...
    'Color','b')
xlabel('\theta')
ylabel('\rho')
title('Hough Transform')

Th e variables lines1, lines2 and lines3 can now be used to display the 
lines on the image, with the line thickness decreasing from lines3 to lines1 
depending on the rank of the lines in the Hough transform.

imshow(I1,'InitialMagnification',30), hold on
for k = 1:length(lines1)
xy = [lines1(k).point1; lines1(k).point2];
plot(xy(:,1),xy(:,2),'LineWidth',3,'Color',[1 0 0]);
end
hold on
for k = 1:length(lines2)
xy = [lines2(k).point1; lines2(k).point2];
plot(xy(:,1),xy(:,2),'LineWidth',2,'Color',[1 0 0]);
end
for k = 1:length(lines3)
xy = [lines3(k).point1; lines3(k).point2];
plot(xy(:,1),xy(:,2),'LineWidth',1,'Color',[1 0 0]);
end

Th e result shows that the clearly recognizable white layers are well detected 
whereas the less pronounced layers are not identifi ed. Th e method also 
mistakenly marks non-existing lines on the image because of the low 
quality of the image. Using a better quality image and carefully adjusting the 
parameters used with the Hough transform will yield better results.

In the second example the Hough transform is used to automatically 
count pollen grains in a microscope image of Argentine honey (Fig. 8.13). 
Th e quality of the image is again not perfect, which is why we can not expect 
optimum results. In particular, the image of three-dimensional objects was 
taken with a very large magnifi cation, so it is slightly blurred. We fi rst read 
the pollen image and store it in the variable I1. Th e size of the image is 968-
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by-1,060 pixels of three colors (red, green and blue). Since the image is 
relatively large, we reduce the image size by a factor of two.

clear

I1 = imread('pollen.jpg');
I1 = I1(1:2:end,1:2:end,:);
imshow(I1,'InitialMagnification',100)

We reject the color information of the image and use the red color only.

I2 = I1(:,:,1);
imshow(I2,'InitialMagnification',100)

Next, we use adapthisteq to perform a contrast-limited adaptive histogram 
equalization (CLAHE) in order to enhance the contrast in the image 
(Zuiderveld 1994).

I3 = adapthisteq(I2);
imshow(I3,'InitialMagnification',100)

Th e function imfindcircles implements the Hough transform and extracts 
circles from the original image.

[centers,radii] = imfindcircles(I3,[12 20],...
    'Method','TwoStage',...
    'ObjectPolarity','Bright',...
    'Sensitivity',0.92,...
    'EdgeThreshold',0.20);
num = length(centers);
nstr = ['Number of Pollen Grains: ',num2str(num)];

Herein we use the TwoStage detection method for a two-stage circular Hough 
transform, following the procedure described by Yuen et al. (1990) and 
Davies (2005). Th e object polarity is set to bright as we are looking for bright 
rather than dark objects in our image. Th e sensitivity of 0.92 and the edge 
threshold of 0.20 are found by trial and error. We then use viscircles to 
display the circles on the grayscale image I2

imshow(I2,'InitialMagnification',100)
viscircles(centers, radii,'EdgeColor','b')
title(nstr)

using the output centers and radii from imfindcircles. Th e edge color of 
the circles in the graphics is set to b for blue. Th e result shows that we have 
counted 884 pollen grains with the method. Th e algorithm identifi es the 
majority of the objects, but some are not recognized and some of the larger 
objects are mistakenly identifi ed as two or more pollen grains. Using a better 
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quality image and carefully adjusting the parameters used with the Hough 
transform will yield better results. Plotting the histogram of the pollen radii 
using histogram

histogram(radii)

reveals that most of the grains have a radius of around 15 pixels.
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 9.1 Introduction

Multivariate analysis aims to understand and describe the relationships 
between an arbitrary number of variables. Earth scientists oft en deal 
with multivariate data sets such as microfossil assemblages, geochemical 
fi ngerprints of volcanic ash layers, or the clay mineral content of sedimentary 
sequences. Such multivariate data sets consist of measurements of p variables 
on n objects, which are usually stored in n-by-p arrays:

Th e rows of the array represent the n objects and the columns represent the 
p variables. Th e characteristics of the 2nd object in the suite of samples are 
described by the vector in the second row of the data array:

 9 Multivariate Statistics

 Miocene sedimentary rocks near the village 
of Nachola, to the east of the Suguta Valley in 
northern Kenya. Unmixing the composition 
of such deposits using multivariate statistical 
methods helps to determine the provenance 
of the sediments and their temporal variations, 
and hence changes in the relief, the drainage 
network and the rainfall patterns.

� Springer-Verlag Berlin Heidelberg 2015
M.H. Trauth, MATLAB� Recipes for Earth Sciences,
DOI 10.1007/978-3-662-46244-7_9
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As an example consider a set of microprobe analyses on glass shards from 
volcanic ash layers in a tephrochronology project. Th e variables then 
represent the p chemical elements and the objects are the n ash samples. 
Th e aim of the study is to correlate ash layers by means of their geochemical 
fi ngerprints.

Most multi-parameter methods simply try to overcome the main diffi  culty 
associated with multivariate data sets, which relates to data visualization. 
Whereas the character of univariate or bivariate data sets can easily be 
explored by visual inspection of a 2D histogram or an xy plot (Chapter 
3), the graphical display of a three variable data set requires a projection 
of the 3D distribution of data points onto a two-dimensional display. It is 
impossible to imagine or display a higher number of variables. One solution 
to the problem of visualization of high-dimensional data sets is to reduce 
the number of dimensions. A number of methods group together highly-
correlated variables contained within the data set and then explore the 
reduced number of groups.

Th e classic methods for reducing the number of dimensions are principal 
component analysis (PCA) and factor analysis (FA). Th ese methods seek the 
directions of maximum variance in a data set and use these as new coordinate 
axes. Th e advantage of replacing the variables by new groups of variables is 
that the groups are uncorrelated. Moreover, these groups can oft en assist in 
the interpretation of a multivariate data set since they oft en contain valuable 
information on the processes responsible for the distribution of the data 
points. In a geochemical analysis of magmatic rocks the groups defi ned by 
the method usually contain chemical elements with similar sized ions in 
similar locations within the lattices of certain minerals. Examples include 
Si4+ and Al3+, and Fe2+ and Mg2+, in silicates.

A second important suite of multivariate methods aims to group objects by 
their similarity. As an example cluster analysis (CA) is oft en used to correlate 
volcanic ash layers such as that used in the above example. Tephrochronology 
attempts to correlate tephra by means of their geochemical fi ngerprints. 
When combined with a few radiometric age determinations from the key 
ash layers this method allows correlation between diff erent sedimentary 
sequences that contain these ash layers (e.g., Westgate 1998, Hermanns et 
al. 2000). Cluster analysis is also used in the fi eld of micropaleontology, for 
example, to compare the pollen, foraminifera, or diatom content of diff erent 
microfossil assemblages (e.g., Birks and Gordon 1985).

A third group of methods is concerned with the classifi cation of 
observations. Humans tend to want to classify the things around them, 
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even though nature rarely falls into discrete classes. Classifi cation (or 
categorization) is useful as it can, for example, help decision makers to take 
necessary precautions to reduce risk, to drill an oil well, or to assign fossils 
to a particular genus or species. Most classifi cation methods make decisions 
based on Boolean logic with two options, true or false; an example is the use 
of a threshold value for identifying charcoal in microscope images (Section 
8.11). Alternatively, fuzzy logic (which is not explained in this book) is a 
generalization of the binary Boolean logic with respect to many real world 
problems in decision-making, where gradual transitions are reasonable 
(Zadeh 1965, MathWorks 2014a).

Th e following sections introduce the most important techniques of 
multivariate statistics: principal component analysis (PCA) and cluster 
analysis (CA) in Sections 9.2 and 9.5, and independent component analysis 
(ICA), which is a nonlinear extension of PCA, in Section 9.3. Section 
9.4 introduces discriminant analysis (DA), which is a popular method 
of classifi cation in earth sciences. Section 9.6. introduces multiple linear 
regression. Th ese sections fi rst provide an introduction to the theory behind 
the various techniques and then demonstrate their use for analyzing earth 
sciences data, using MATLAB functions (MathWorks 2014b).

 9.2 Principal Component Analysis

Principal component analysis (PCA) detects linear dependencies between 
variables and replaces groups of correlated variables with new, uncorrelated 
variables referred to as the principal components (PCs). PCA was introduced 
by Karl Pearson (1901) and further developed by Harold Hotelling (1931). 
Th e performance of PCA is better illustrated with a bivariate data set than 
with a multivariate data set. Figure 9.1 shows a bivariate data set that exhibits 
a strong linear correlation between the two variables x and y in an orthogonal 
xy coordinate system. Th e two variables have their individual univariate 
means and variances (Chapter 3). Th e bivariate data set can be described by 
the bivariate sample mean and the covariance (Chapter 4). Th e xy coordinate 
system can be replaced by a new orthogonal coordinate system, where the 
fi rst axis passes through the long axis of the data scatter and the new origin 
is the bivariate mean. Th is new reference frame has the advantage that the 
fi rst axis can be used to describe most of the variance, while the second axis 
contributes only a small amount of additional information. Prior to this 
transformation two axes were required to describe the data set, but it is now 
possible to reduce the dimensions of the data by dropping the second axis 
without losing very much information, as shown in Figure 9.1.

Th is process is now expanded to an arbitrary number of variables and 
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Fig. 9.1 Principal component analysis (PCA) illustrated for a bivariate scatter. Th e original xy 
coordinate system is replaced by a new orthogonal system, where the fi rst axis passes through 
the long axis of the data scatter and the new origin is the bivariate mean. We can now reduce 
the number of dimensions by dropping the second axis with little loss of information.

samples. Assume a data set that consists of measurements of p variables on n 
samples, stored in an n-by-p array.

Th e columns of the array represent the p variables and the rows represent the 
n samples. Aft er rotating the axis and moving the origin, the new coordinates 
Yj can be computed by
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Th e fi rst principle component (PC1), which is denoted by Y1, contains the 
highest variance, PC2 contains the second highest variance, and so forth. 
All the PCs together contain the full variance of the data set. Th is variance 
is, however, largely concentrated in the fi rst few PCs, which include most of 
the information content of the data set. Th e last PCs are therefore generally 
ignored to reduce the dimensions of the data. Th e factors aij in the above 
equations are the principal component loads; their values represent the 
relative contributions of the original variables to the new PCs. If the load 
aij of a variable Xj in PC1 is close to zero then infl uence of this variable is 
low, whereas a high positive or negative aij suggests a strong contribution. 
Th e new values Yj of the variables computed from the linear combinations 
of the original variables Xj, weighted by the loads, are called the principal 
component scores.

PCA is commonly used as a method for unmixing (or separating) variables 
X, which are a linear combination of independent source variables S

where A is the mixing matrix. PCA tries to determine (although not 
quantitatively) both the source variables S (represented by the principal 
components scores) and the mixing matrix A (represented by the principal 
component loads). Unmixing such variables works best if the probability 
distribution of the original variables X is a Gaussian distribution, and only in 
such cases are the principal components completely decorrelated. However, 
data in earth sciences are oft en not Gaussian distributed and alternative 
methods, such as independent component analysis (ICA), should therefore 
be used instead (Section 9.3). For example, radiance and refl ectance values 
from hyperspectral data are oft en not Gaussian distributed and ICA is 
therefore widely used in remote sensing applications to decorrelate the 
spectral bands, rather than PCA. Examples in which PCA is used include 
the assessment of sediment provenance (as described in the example below), 
the unmixing of peridotite mantle sources of basalts, and multispectral 
classifi cation of satellite images.

In the following example a synthetic data set is used to illustrate the use 
of the function pca included in the Statistics Toolbox. Th irty samples were 
taken from thirty diff erent levels in a sedimentary sequence containing 
varying proportions of the three diff erent minerals stored in the columns 
of the array x. Th e sediments were derived from three distinct rock types 
(with unknown mineral compositions) whose relative contributions to each 
of the thirty sediment samples are represented by s1, s2 and s3. Variations in 
these relative contributions (as represented by the thirty values in s1, s2 and 
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s3) could, for example, refl ect climatic variability within the catchment area 
of the sedimentary basin. It may therefore be possible to use the sediment 
compositions in the array x (from which we calculate s1, s2 and s3 using a 
PCA) to derive information on past variations in climate

We need to create a synthetic data set consisting of three measurements 
representing the proportions of each of the three minerals in the each of 
the thirty sediment samples. We fi rst clear the workspace, reset the random 
number generator with rng(0) and create thirty values s1, s2 and s3. We use 
random numbers with a Gaussian distribution generated using randn, with 
means of zero and standard deviations of 10, 7 and 12.

clear

rng(0)
s1 = 10*randn(30,1);
s2 =  7*randn(30,1);
s3 = 12*randn(30,1);

We then calculate the varying proportions of each of the three minerals in 
the thirty sediment samples by summing up the values in s1, s2 and s3, aft er 
fi rst multiplying them by a weighting factor.

x(:,1) =  15.4+ 7.2*s1+10.5*s2+2.5*s3;
x(:,2) = 124.0-8.73*s1+ 0.1*s2+2.6*s3;
x(:,3) = 100.0+5.25*s1- 6.5*s2+3.5*s3;

Th e weighting factors, which together represent the mixing matrix in our 
exercise, refl ect not only diff erences in the mineral compositions of the source 
rocks, but also diff erences in the weathering, mobilization, and deposition of 
minerals within sedimentary basins. Hence if two minerals have weighting 
factors with diff erent signs, one could be (for example) the weathering 
product of the other mineral, which would explain why their proportions in 
the thirty sediment samples were anti-correlated. Alternatively, the diff erent 
signs could indicate a dilution eff ect, i.e., if the proportions of one of the 
minerals in the sediment samples remain constant but the proportions of 
all other minerals vary in a similar way, they will be anti-correlated with 
the proportions of the fi rst mineral. To complete the generation of the data 
set, we add some Gaussian noise with a standard deviation of 3.8 to the 
proportions of the minerals and save the result as sediment_1.txt.

x = x + 3.8*randn(size(x));

save sediments_1.txt x -ascii

Having seen how the sedimentary record was created and the dependencies 
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that exist within the data set, we will now pretend that we do not know the 
relative contributions that the three source rocks made to the thirty sediment 
samples. Instead, we have a record of the mineral contents of thirty sediment 
samples stored in the fi le sediment_1.txt.

clear

x = load('sediments_1.txt');

Th e aim of the PCA is now to decipher the statistically independent 
contribution of the three source rocks to the sediment compositions. We can 
display the histograms of the data and see that they are not perfectly Gaussian 
distributed, which means that we cannot expect a perfect unmixing result.

subplot(1,3,1), histogram(x(:,1))
subplot(1,3,2), histogram(x(:,2))
subplot(1,3,3), histogram(x(:,3))

We display the proportions of the three minerals in the thirty samples along 
the sedimentary section. In this graphic we can see weak correlations and 
anti-correlations between the proportions of the three minerals.

plot(x(:,1:3)), grid
legend('Min1','Min2','Min3')
xlabel('Sample ID')
ylabel('Quantity')

Before running the PCA we defi ne labels for the various graphics created 
during the exercise. We number the samples 1 to 30, with the minerals being 
identifi ed by four-character abbreviations Min1, Min2 and Min3.

for i = 1 : 30
   samples(i,:) = [sprintf('%02.0f',i)];
end
minerals = ['Min1';'Min2';'Min3'];

We can explore the correlations between the minerals in pairwise bivariate 
scatter plots. We observe a strong negative correlation between the fi rst 
and second mineral, a weak positive correlation between the fi rst and third 
mineral, and a moderate negative correlation between the second and third 
mineral.

subplot(1,3,1),
plot(x(:,1),x(:,2),'o')
xlabel('Mineral 1')
ylabel('Mineral 2')
subplot(1,3,2),
plot(x(:,1),x(:,3),'o')
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Fig. 9.2 Correlation matrix containing Pearson’s correlation coeffi  cients for each pair of 
variables (for example, minerals in a sediment sample). Light colors represent strong positive 
linear correlations, while dark colors represent negative correlations. Orange suggests no 
correlation.

xlabel('Mineral 1')
ylabel('Mineral 3')
subplot(1,3,3),
plot(x(:,2),x(:,3),'o')
xlabel('Mineral 2')
ylabel('Mineral 3')

Th e correlation matrix provides a technique for exploring such dependencies 
between the variables in the data set (i.e., the three minerals in our example). 
Th e elements of the correlation matrix are Pearson’s correlation coeffi  cients 
(Chapter 4) for each pair of variables, as shown in Figure 9.2.

corrmatrix = corrcoef(x);
corrmatrix = flipud(corrmatrix);

imagesc(corrmatrix), colormap(hot), caxis([-1 1])
title('Correlation Matrix')
axis square, colorbar, hold
set(gca,'XTick',[1 2 3],...
   'XTickLabel',minerals,...
   'YTick',[1 2 3],...
   'YTickLabel',flipud(minerals))

Th is pseudocolor plot of the correlation coeffi  cients confi rms the correlations 
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between the minerals revealed in the pairwise bivariate scatter plots, again 
showing a strong negative correlation between the fi rst and second mineral 
(r=–0.8184), a weak positive correlation between minerals 1 and 3 (r=0.3483), 
and a moderate negative correlation between minerals 2 and 3 (r=–0.5557). 
Th ese observed dependencies would lead us to expect interesting results 
from the application of a PCA.

Various methods exist for scaling the original data before applying a PCA, 
such as mean centering (using a mean equal to zero) or standardizing (using a 
mean equal to zero and a standard deviation equal to one). We will, however 
use the original data for computing the PCA. Th e output of the function 
pca includes the principal component loads pcs, the scores newx, and the 
variances variances. Th e loads pcs are weights (or weighting factors) that 
indicate the extent to which the old variables (the minerals) contribute to the 
new variables (the principal components, or PCs). Th e principal component 
scores are the coordinates of the thirty samples in the new coordinate system 
defi ned by the three principal components, PC1 to PC3 (stored in the three 
columns of pcs), which we interpret as the three source rocks.

[pcs,newx,variances] = pca(x);

Th e loads of the three principal components PC1 to PC3 can be shown by 
typing

pcs(:,1:3)

ans =
    0.6342   -0.5085    0.5825
   -0.6215    0.1130    0.7753
    0.4600    0.8536    0.2444

We observe that PC1 (fi rst column) has high positive loads in variables 1 
and 3 (fi rst and third rows), and a high negative load in variable 2 (second 
row). PC2 (second column) has a high negative load in variable 1 and a high 
positive load in variable 3, while the load in variable 2 is close to zero. PC3 
(third column) has high loads in variables 1 and 2, with the load in variable 3 
being relatively low but also positive. We create a number of plots to visualize 
the PCs:

subplot(1,3,1)
plot(1:3,pcs(:,1),'o'), axis([0.5 3.5 -1 1])
text((1:3)+0.2,pcs(:,1),minerals,'FontSize',14), hold
plot(0.5:3.5,zeros(4,1),'r'), title('PC 1')
subplot(1,3,2)
plot(1:3,pcs(:,2),'o'), axis([0.5 3.5 -1 1])
text((1:3)+0.2,pcs(:,2),minerals,'FontSize',14), hold
plot(0.5:3.5,zeros(4,1),'r'), title('PC 2')
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subplot(1,3,3)
plot(1:3,pcs(:,3),'o'), axis([0.5 3.5 -1 1])
text((1:3)+0.2,pcs(:,3),minerals,'FontSize',14), hold
plot(0.5:3.5,zeros(4,1),'r'), title('PC 3')

Th e loads of the minerals and their relationships to the PCs can be used to 
interpret the relative (not absolute) infl uences of the diff erent source rocks. 
PC1 is characterized by strong positive contributions of minerals 1 and 3, 
refl ecting a relatively strong infl uence of the fi rst rock type as a source of the 
sediments. An opposite sign for the contribution of mineral 2 to the sediment 
refl ects either diff erent mobilization processes for this mineral within 
the catchment area, or a dilution eff ect. Th e second principal component 
PC2 is also dominated by minerals 1 and 3, but with opposite signs, while 
mineral 2 has relatively little infl uence. Th e third principal component PC3 
is infl uenced by all three minerals, with the same sign. An alternative way to 
plot of the loads is as a bivariate plot of two principal components. We ignore 
PC3 at this point and concentrate on PC1 and PC2. Remember to either close 
the fi gure window before plotting the loads or clear the fi gure window using 
clf, in order to avoid integrating the new plot as a fourth subplot in the 
previous fi gure window.

plot(pcs(:,1),pcs(:,2),'o'), hold on
text(pcs(:,1)+0.02,pcs(:,2),minerals,'FontSize',14)
plot([-1 1],[0 0],'r')
plot([0 0],[-1 1],'r')
xlabel('First Principal Component Loads')
ylabel('Second Principal Component Loads')
hold off

We can now observe in a single plot the same relationships that have 
previously been shown in several graphics (Fig. 9.3). It is also possible to plot 
the data set as functions of the new variables (the source rocks). Th is requires 
the second output of pca, containing the principal component scores.

plot(newx(:,1),newx(:,2),'+'), hold on
text(newx(:,1)+2,newx(:,2),samples,'FontSize',14)
plot([-400 400],[0 0],'r')
plot([0 0],[-150 300],'r')
xlabel('First Principal Component Scores')
ylabel('Second Principal Component Scores')
hold off

Th is plot clearly defi nes groups of samples with similar infl uences, e.g., 
samples 19, 20 and 26, and possibly also sample 18. We next use the third 
output from the function pca to compute the variances of the PCs.

percent_explained = 100*variances/sum(variances)
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Fig. 9.3 Principal component loads suggesting that the PCs are infl uenced by diff erent 
minerals. See text for detailed interpretation of the PCs.

percent_explained =
   72.4362
   22.7174
    4.8463

We see that more than 72% of the total variance is contained in PC1, and 
about 22% is contained in PC2, while PC3 contributes very little to the total 
variance of the data set (~5%). Th is means that most of the variability in the 
data set can be described by just two new variables. As would be expected, 
the two new variables do not correlate with each other, as illustrated by a 
correlation coeffi  cient between newx(:,1) and newx(:,2) that is close to zero.

corrcoef(newx(:,1),newx(:,2))

ans =
    1.0000    0.0000
    0.0000    1.0000

We can therefore plot the time series of the thirty samples as two independent 
variables, PC1 and PC2, in a single plot.

plot(1:30,newx(:,1),1:30,newx(:,2))
grid, legend('PC1','PC2')
xlabel('Sample ID'), ylabel('Value')

Th is plot displays approximately 94% (72%+22%) of the variance contained 
in the multivariate data set. According to our interpretation of PC1 and 
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PC2, this plot shows the variability in the relative contributions from the 
two sources to the sedimentary column under investigation. Since we have 
worked with a synthetic data set and the actual contribution of the three 
source rocks to the sediment is known from

rng(0)
s1 = 10*randn(30,1);
s2 =  7*randn(30,1);
s3 = 12*randn(30,1);

we can estimate the quality of the result by comparing the initial variations 
in s1, s2 and s3 with the (more or less) independent variables PC1, PC2 and 
PC3 stored in the three columns of newx.

subplot(3,1,1)
plotyy(1:30,newx(:,1),1:30,s1), title('PC1')
subplot(3,1,2)
plotyy(1:30,-newx(:,2),1:30,s2), title('PC2')
subplot(3,1,3)
plotyy(1:30,newx(:,3),1:30,s3), title('PC3')

Th e sign and the amplitude cannot be determined quantitatively and 
therefore, in this case, we change the sign of the second PC and use plotyy to 
display the data on diff erent axes in order to compare the results. As we can 
see, we have successfully unmixed the varying contributions of the source 
rocks s1, s2 and s3 to the mineral composition of the sedimentary sequence.

Th e approach described above has been used to study the provenance of 
the varved lake sediments described in the previous chapter (Section 8.9), 
which were deposited around 33 kyrs ago in a landslide-dammed lake in 
the Quebrada de Cafayate (Trauth et al. 2003). Th e provenance of the 
sediments contained in the varved layers can be traced using index minerals 
characteristic of the various possible source areas within the catchment. 
A comparison of the mineral assemblages in the sediments with those of 
potential source rocks within the catchment area indicates that Fe-rich 
Tertiary sedimentary rocks exposed in the Santa Maria Basin were the source 
of the red-colored basal portion of the varves. In contrast, metamorphic 
rocks in the mountainous parts of the catchment area were the most likely 
source of the relatively drab-colored upper part of the varves.

 9.3 Independent Component Analysis (by N. Marwan)

Principal component analysis (PCA) is the standard method for unmixing 
(or separating) mixed variables (Section 9.2). Such analyses produce signals 
that are linearly uncorrelated, and this method is also called whitening since 
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this property is characteristic of white noise. Although the separated signals 
are uncorrelated, they can still be interdependent, i.e., they may retain a 
nonlinear correlation. Th is phenomenon arises when, for example, the data 
are not Gaussian distributed and the PCA consequently does not yield good 
results. Th e independent component analysis (ICA) was developed for this 
type of task; it separates the variables X into independent variables S, which 
are then nonlinearly uncorrelated. Th e basis of an ICA, according to the 
central limit theorem, is that the mixture of standardized random numbers 
is Gaussian distributed. Th e ICA algorithms therefore use a criterion that 
estimates how Gaussian the combined distribution of the independent 
components is (Hyvärinen 1999). Th e less Gaussian this distribution, the 
more independent the individual components.

According to the linear mixing model, p independent variables X are 
linearly mixed in n measurements,

in which we are interested in the source variables S and the mixing matrix 
A (see Section 9.2). For example we can imagine that we are at a party in 
which a lot of people are carrying on independent conversations. We can 
hear a mixture of these conversations but perhaps cannot distinguish them 
individually. We could install some microphones and use these to separate 
out the individual conversations: hence, this dilemma is sometimes known 
as the cocktail party problem. Its correct term is blind source separation, 
which is defi ned by

where WT is the separation matrix required to reverse the mixing and obtain 
the original signals. In earth sciences we encounter similar problems, for 
example, if we want to determine the relative contributions of diff erent 
source rocks to basin sediments, as we did with the PCA but this time with 
the possibility that there are nonlinear dependencies in the data and that 
these are not Gaussian distributed (Section 9.2).

We again create a synthetic data set consisting of thirty measurements (the 
proportions of each of the three minerals) from each of the thirty sediment 
samples. In contrast to the PCA example, however, the temporal variation 
in the source rocks is not Gaussian distributed but is uniformly distributed, 
since we use rand instead of randn to create the pseudorandom numbers.

clear
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Fig. 9.4 Sample input for the independent component analysis. Th e relative proportions of 
three minerals in 30 sediment samples refl ect temporal variations in the contributions from 
three source rocks within the catchment of a sedimentary basin.

rng(0)
s1 = 10*rand(30,1);
s2 =  7*rand(30,1);
s3 = 12*rand(30,1);

We use the same mixing equation as in the PCA example to create the three 
columns of x (corresponding to the three minerals) by linearly mixing the 
source rocks s1, s2 and s3

x(:,1) =  15.4+ 7.2*s1+10.5*s2+2.5*s3;
x(:,2) = 124.0-8.73*s1+ 0.1*s2+2.6*s3;
x(:,3) = 100.0+5.25*s1- 6.5*s2+3.5*s3;

x = x + 3.8*randn(size(x));

save sediments_2.txt x -ascii

and save the data in the fi le sediments_2.txt (Fig. 9.4). Having created the 
synthetic data set, the data stored in sediment_2.txt are loaded by typing

clear

x = load('sediments_1.txt');

We can display the histograms of the data to see that they are not Gaussian 
distributed.
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subplot(1,3,1), hist(x(:,1))
subplot(1,3,2), hist(x(:,2))
subplot(1,3,3), hist(x(:,3))

We then display the proportions of the minerals in the thirty samples as a 
time series, in two separate plots.

plot(x(:,1:3)), grid
legend('Min1','Min2','Min3')
xlabel('Sample ID')
ylabel('Quantity')

We begin with the unmixing of the variables using the PCA. We calculate 
the principal components pcs, the mixing matrix a_pca, and the whitening 
matrix w_pca using

[pcs,newx,variances] = pca(x);
newx = newx./repmat(std(newx),length(newx),1);

a_pca = pcs*sqrt(diag(variances));
w_pca = inv(sqrt(diag(variances)))*pcs';

Th e pre-whitening reduces the unmixing into independent components (S) 
to a problem of fi nding a suitable rotation matrix B that can be applied to the 
variables XPC:

We need to fi nd a rotation matrix B such that the variables S have a completely 
non-Gaussian distribution. Th ere are several possibilities for implementing 
such a non-Gaussian criterion, such as minimizing or maximizing the excess 
kurtosis,

because the excess kurtosis γ for normally distributed data is zero. Please 
note that the excess kurtosis diff ers from the kurtosis: the excess kurtosis is 
the kurtosis minus three, since the kurtosis of Gaussian-distributed data is 
three (Section 3.2) but the excess kurtosis of such a distribution is zero. To 
fi nd a B that ensures a minimum or maximum excess kurtosis, a learning 
algorithm can be used that fi nds the fi xed points of the learning rule
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Th e FastICA algorithm by Hyvärinen (1999), which is based on a fi xed-
point iteration scheme, is an effi  cient algorithm for solving this problem. 
Th e learning rule is reduced in this example to the form

We begin with an initial rotation matrix B, which consists only of random 
numbers.

B = orth(rand(3,3)-0.5);
BOld = zeros(size(B));

Th e iteration is continued until a divergence criterion div is reached. We 
choose a value of zero for this criterion.

div = 0;

Th e fi xed-point iteration scheme consists of two steps: a symmetric 
orthogonalization, and the application of the learning rule. Th e divergence 
criterion div is updated with each iteration step and checked in order to stop 
the iteration process as soon as the divergence criterion is reached. Since 
MATLAB works with fl oating-point numbers, div will not actually reach 
zero and we therefore allow (1-div) to fall below the fl oating-point relative 
accuracy eps(1), or eps without input parameter 1 (since the default input for 
eps is 1) which is about 2.2204e-16 and therefore close to zero (see Section 
2.5).

while (1-div) > eps
   B = B*real(inv(B'*B)^(1/2));
   div = min(abs(diag(B'*BOld)));
   BOld = B;
   B = (newx'*(newx*B).^3)/length(newx)-3*B;
   sica = newx*B;
end

Finally, we compare the synthetic source rocks s1, s2 and s3 with the unmixed 
variables IC1, IC2 and IC3 (Fig. 9.5).

rng(0)
s1 = 10*rand(30,1);
s2 =  7*rand(30,1);
s3 = 12*rand(30,1);

subplot(3,1,1)
plotyy(1:30,-sica(:,3),1:30,s1)
title('IC1')
subplot(3,1,2)
plotyy(1:30,sica(:,2),1:30,s2)
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Fig. 9.5 Independent component analysis output. Th e ICA has identifi ed the source signals 
almost perfectly, as the pairwise similarity of the original inputs and the independent 
components suggests.

a

b

c
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title('IC2')
subplot(3,1,3)
plotyy(1:30,sica(:,1),1:30,s3)
title('IC3')

Th e ICA has identifi ed the source signals almost perfectly. We notice that the 
descending order of the ICs is diff erent from the initial order of s1, s2 and 
s3, which is due to the commutativity of addition. In real-world examples, of 
course, the order of the ICs is not relevant. Furthermore, the exact sign and 
amplitude does not match the original values and the ICA therefore yields 
only semi-quantitative results, as was also the case for the PCA. Finally, we 
can actually compute the mixing matrix a_ica and the separation matrix w_
ica using

a_ica = a_pca*B;
w_ica = B'*w_pca;

Th e mixing matrix a_ica can be used to estimate the proportions of the 
separated variables in our measurements. Th e components aij of the mixing 
matrix a_ica correspond to the principal component loads, as introduced in 
Section 9.2. Th e FastICA package is available for MATLAB and can be found 
on A. Hyvärinen’s webpage:

http://research.ics.aalto.fi/ica/fastica/

 9.4 Discriminant Analysis

Discriminant analysis helps to assign objects to established categories or 
groups. Examples include the assignment of fossil specimens to established 
genera or species, the identifi cation of rock types following mineralogical 
(or chemical) analysis, and the mapping of vegetation types from satellite 
images. Discriminant analysis is diff erent from simple classifi cation, which 
does not defi ne the number of groups or categories prior to the analysis.

Th e classic example of a discriminant analysis in petrography is the QAPF 
or Streckeisen diagram (Streckeisen 1974, 1976). Th is diagram categorizes 
igneous rocks (especially plutonic rocks) by their percentages of quartz (Q), 
alkali feldspar (including albite) (A), plagioclase (P), and feldsparthoids (F), 
normalized a total of 100%. Th e QAPF diagram displays the percentages of 
the four minerals in a double ternary plot, with QAP percentages in the upper 
half of the graphics and FAP percentages in the lower half. Th e QAPF diagram 
is commonly used by the International Union of Geological Sciences (IUGS) 
to classify plutonic rocks: e.g., a plutonic rock with 50% quartz, 30% alkali 
feldspar, 20% plagioclase and 0% feldsparthoids is termed a granite. Whereas 
Albert Streckeisen’s defi nition of plutonic rocks represents compromises 
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between established usages in diff erent parts of the world (Streckeisen 1974, 
1976), discriminant analysis is based solely on mathematical constraints for 
the classifi cation of objects. Furthermore, discriminant analysis assumes 
normality for the measured values within a class, which is probably not 
a valid assumption for the Streckeisen classifi cation. Since normality is 
important for the success of the method, the user must be careful to ensure 
that this condition is actually met, especially when analyzing compositional 
(closed) data (see also Section 9.5).

Discriminant analysis was fi rst introduced by Sir Ronald A. Fisher (1936) 
to discriminate between two or more populations of fl owering plant. Th e fi rst 
step involves determining the discriminant function Yi that best separate two 
groups of objects described by the normally-distributed variables Xi

Th e parameters ai are determined to maximize the distance between the 
multivariate means of the individual groups. In other words, we determine 
ai such that the ratio of the distances between the means of the groups to 
the distances between group members is high. In the second step, having 
determined the discriminant function from a training set of objects, new 
objects can be assigned to one group or the other. Using the Streckeisen 
diagram, a rock sample is assigned to an established rock type such as granite 
on the basis of the percentages of Q, A, P and F.

As an example we fi rst create a synthetic data set of granite rock samples, 
described by two variables, x1 and x2. Th ese two variables could represent the 
percentages of two chemical elements expressed as oxides (in weight percent). 
Let us assume that we know from preliminary studies that these rock samples 
come from three diff erent granites that were formed at diff erent times during 
three separate magmatic events. Apart from natural inhomogeneities within 
a granite intrusion, we can assume that the measured values   from the granite 
samples are normally distributed. In this example we will fi rst determine 
the discriminant functions separating the three groups (or types of granite). 
We then use the discriminant functions to assign rock samples (which were 
collected during a subsequent fi eld campaign) to one of the three types of 
granite.

We fi rst clear the workspace.

clear

We then reset the random number generator.

rng(0)
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Next, we generate a data set from the chemical compositions of the three 
types of granite. Sixty granite samples were collected from each rock type 
and chemically analyzed. Th e percentages of two chemical elements, x1 and 
x2, we store in three variables data1, data2 and data3.

data1 = randn(60,2);
data1(:,1) = 3.4 + 1.2*data1(:,1);
data1(:,2) = 1.7 + 0.4*data1(:,2);

data2 = randn(60,2);
data2(:,1) = 5.5 + 1.8*data2(:,1);
data2(:,2) = 2.9 + 0.6*data2(:,2);

data3 = randn(60,2);
data3(:,1) = 3+ 1.8*data2(:,1);
data3(:,2) = 0.3 + 1.2*data2(:,2);

In order to defi ne the established categories (or classes) we create a character 
array containing the labels for each pair of measurements using remap, which 
creates 60 copies of each string Granite_1, Granite_2, and Granite_3 and stores 
them in classes.

classes(1:60,1:9) = repmat('Granite_1',60,1);
classes(61:120,1:9) = repmat('Granite_2',60,1);
classes(121:180,1:9) = repmat('Granite_3',60,1);

We then vertically concatenate the three variables data1, data2 and data3 to 
a single variable data.

data = [data1(:,1:2);data2(:,1:2);data3(:,1:2)];

We save the resulting synthetic data set in the binary fi le granite.mat.

save granite.mat

We have thus generated a synthetic data set from three groups of normally 
distributed data. We can load the data set (as we would with any other real 
data set) from the fi le granite.mat by typing

clear

load granite.mat

We then create a linear discriminant analysis classifi er using Classification 
Discriminant.fit.

cls = ClassificationDiscriminant.fit(data,classes);

Th e function returns a discriminant analysis model for predictors data and 
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class labels classes. Th e layers of cls can be listed by typing

cls

resulting in the output

cls =
  ClassificationDiscriminant
    PredictorNames: {'x1'  'x2'}
      ResponseName: 'Y'
        ClassNames: [3x9 char]
    ScoreTransform: 'none'
     NObservations: 180
       DiscrimType: 'linear'
                Mu: [3x2 double]
            Coeffs: [3x3 struct]

Th e meaning of most fi elds in this output is obvious, except for ScoreTransform 
which is either a function handle for transforming scores or a string 
representing a built-in transformation function. We are not using the score 
transform which is why it is set to none. Th e fi eld Mu contains the means of 
the two variables from the three classes. Th e 3-by-3 structure Coeffs of the 
three classes contains the coeffi  cients of the linear classifi cation boundaries 
between classes 1 and 2, and between classes 2 and 3. Typing

cls.Coeffs

results in the output

ans = 
3x3 struct array with fields:
    DiscrimType
    Const
    Linear
    Class1
    Class2

which lists the discriminant type (linear in our example), the class names 
of the pairs of classes i and j, and the two parameters Const and Linear 
describing the classifi cation boundaries separating the two pairs of classes. 
We can extract the parameters of the classifi cation boundaries by typing

K1 = cls.Coeffs(2,3).Const;
L1 = cls.Coeffs(2,3).Linear;
K2 = cls.Coeffs(1,2).Const;
L2 = cls.Coeffs(1,2).Linear;

and store them in new variables K1, L1, K2 and L2. We then store the bivariate 
means by typing
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Mu1 = cls.Mu(1,:);
Mu2 = cls.Mu(2,:);
Mu3 = cls.Mu(3,:);

Finally, we display the result in a graphic using

h1 = axes('Box','On');
hold on

line(data1(:,1),data1(:,2),...
    'Marker','.','MarkerSize',8,...
    'LineStyle','None','MarkerEdgeColor','r')
line(data2(:,1),data2(:,2),...
    'Marker','.','MarkerSize',8,...
    'LineStyle','None','MarkerEdgeColor','b')
line(data3(:,1),data3(:,2),...
    'Marker','.','MarkerSize',8,...
    'LineStyle','None','MarkerEdgeColor','m')

line(Mu1(:,1),Mu1(:,2),...
    'Marker','o','MarkerEdgeColor','k',...
    'MarkerSize',8,'MarkerFaceColor','k')
line(Mu2(:,1),Mu2(:,2),...
    'Marker','o','MarkerEdgeColor','k',...
    'MarkerSize',8,'MarkerFaceColor','k')
line(Mu3(:,1),Mu3(:,2),...
    'Marker','o','MarkerEdgeColor','k',...
    'MarkerSize',8,'MarkerFaceColor','k')

h2 = legend('Granite 1','Granite 2','Granite 3',...
    'Location','SouthEast');

set(h2,'Box','Off')

f1 = @(x1,x2) K1 + L1(1)*x1 + L1(2)*x2;
h3 = ezplot(f1,[-5 12 0 5]);
set(h3,'Color','k')

f2 = @(x1,x2) K2 + L2(1)*x1 + L2(2)*x2;
h4 = ezplot(f2,[-5 10 0 5]);
set(h4,'Color','k')

title('Discriminant Analysis')

hold off

Th e graphic shows the members of the three classes (or types of granite) in 
three diff erent colors, the two red lines separating the three classes and the 
bivariate means of the classes (marked as red plus signs) (Fig. 9.6). A new 
sample with the composition x1=5.2 and x2=3.5 can easily be assigned to the 
class Granite 2.

h1 = axes('XLim',[-5 25],'YLim',[0 5],...
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Fig. 9.6 Result of linear discriminant analysis, separating three types of granites (1, 2 and 3).

    'Box','On');
hold on

line(5.2,3.5,...
    'Marker','o','MarkerEdgeColor','b',...
    'MarkerSize',8,'MarkerFaceColor','b')

f1 = @(x1,x2) K1 + L1(1)*x1 + L1(2)*x2;
h3 = ezplot(f1,[-5 12 0 5]);
set(h3,'Color','k')

f2 = @(x1,x2) K2 + L2(1)*x1 + L2(2)*x2;
h3 = ezplot(f2,[-5 10 0 5]);
set(h3,'Color','k')

text(0,2,'Granite 1','Color','r')
text(-0.5,4,'Granite 2','Color','b')
text(10,4.5,'Granite 3','Color','m')

title('Discriminant Analysis')

hold off

Th e function ClassificationDiscriminant.fit also allows a quadratic 
classifi er to be fi tted instead of the linear classifi er used in the example with 
three types of granite (MathWorks 2014b).
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 9.5 Cluster Analysis

Cluster analysis creates groups of objects that are very similar to each other, 
compared to other individual objects or groups of objects. It fi rst computes 
the similarity or (alternatively) the dissimilarity (or distance) between all 
pairs of objects and then ranks the groups according to their similarity or 
distance, fi nally creating a hierarchical tree visualized as a dendrogram. Th e 
grouping of objects can be useful in the earth sciences, for example when 
making correlations within volcanic ash layers (Hermanns et al. 2000) or 
comparing diff erent microfossil assemblages (Birks and Gordon 1985).

Th ere are numerous methods for calculating the similarity or (alternatively) 
the dissimilarity (or distance) between two data vectors. Let us defi ne two 
data sets consisting of multiple measurements on the same object. Th ese data 
can be described by vectors: 

Th e most popular measures of dissimilarity (or distance) between the two 
sample vectors are:

• the Euclidian distance – Th is is simply the shortest distance between the 
two points describing two measurements in the multivariate space:

 Th e Euclidian distance is certainly the most intuitive measure for 
similarity. However, in heterogeneous data sets consisting of a number of 
diff erent types of variables, a better alternative would be

• the Manhattan (or city block) distance – In the city of Manhattan, one must 
follow perpendicular avenues rather than crossing blocks diagonally. Th e 
Manhattan distance is therefore the sum of all diff erences:

Measures of similarity include

• the correlation similarity coeffi  cient – Th is uses Pearson’s linear product-
moment correlation coeffi  cient to compute the similarity of two objects:
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 Th is measure is used if one is interested in the ratios between the variables 
measured on the objects. However, Pearson’s correlation coeffi  cient is 
highly sensitive to outliers and should be used with care (see also Section 
4.2).

• the inner-product similarity index – Normalizing the length of the data 
vectors to a value of one and computing their inner product yields 
another important similarity index that is oft en used in transfer function 
applications. In this example a set of modern fl ora or fauna assemblages 
with known environmental preferences is compared with a fossil sample, 
in order to reconstruct past environmental conditions.

 Th e inner-product similarity varies between 0 and 1. A zero value suggests 
no similarity and a value of one represents maximum similarity. 

Th e second step in performing a cluster analysis is to rank the groups by 
their similarity and to build a hierarchical tree, visualized as a dendrogram. 
Most clustering algorithms simply link the two objects with the highest 
level of similarity or dissimilarity (or distance). In the following steps, the 
most similar pairs of objects or clusters are linked iteratively. Th e diff erence 
between clusters, each made up of groups of objects, is described in diff erent 
ways depending on the type of data and the application:

• K-means clustering uses the Euclidean distance between the multivariate 
means of a number of K clusters as a measure of the diff erence between 
the groups of objects. Th is distance is used if the data suggest that there is 
a true mean value surrounded by random noise. Alternatively,

• K-nearest-neighbors clustering uses the Euclidean distance of the nearest 
neighbors as measure of this diff erence. Th is is used if there is a natural 
heterogeneity in the data set that is not attributed to random noise.
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It is important to evaluate the data properties prior to the application of 
a clustering algorithm. Th e absolute values of the variables should fi rst be 
considered. For example a geochemical sample from volcanic ash might 
show an SiO2 content of around 77% and a Na2O contents of only 3.5%, but 
the Na2O content may be considered to be of greater importance. In such 
a case the data need to be transformed so that they have means equal to 
zero (mean centering). Diff erences in both the variances and the means are 
corrected by standardizing, i.e., the data are standardized to means equal 
to zero and variances equal to one. Artifacts arising from closed data, such 
as artifi cial negative correlations, are avoided by using Aitchison’s log-ratio 
transformation (Aitchison 1984, 1986). Th is ensures data independence 
and avoids the constant sum normalization constraints. Th e log-ratio 
transformation is

where xtr denotes the transformed score (i=1, 2, 3, …, d–1) of some raw 
data xi. Th e procedure is invariant under the group of permutations of the 
variables, and any variable can be used as the divisor xd.

As an exercise in performing a cluster analysis, the sediment data stored in 
sediment_3.txt are loaded. Th is data set contains the percentages of various 
minerals contained in sediment samples. Th e sediments are sourced from 
three rock types: a magmatic rock containing amphibole (amp), pyroxene 
(pyr) and plagioclase (pla), a hydrothermal vein characterized by the 
presence of fl uorite (fl u), sphalerite (sph) and galena (gal), some feldspars 
(plagioclase and potassium feldspars, ksp) and quartz, and a sandstone unit 
containing feldspars, quartz and clay minerals (cla). Ten samples were taken 
from various levels in this sedimentary sequence, each containing varying 
proportions of these minerals. First, the distances between pairs of samples 
can be computed. Th e function pdist provides many diff erent measures of 
distance, such as the Euclidian or Manhattan (or city block) distance. We use 
the default setting which is the Euclidian distance.

clear

data = load('sediments_3.txt');
Y = pdist(data);

Th e function pdist returns a vector Y containing the distances between 
each pair of observations in the original data matrix. We can visualize the 
distances in another pseudocolor plot.

imagesc(squareform(Y)), colormap(hot)
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title('Euclidean distance between pairs of samples')
xlabel('First Sample No.')
ylabel('Second Sample No.')
colorbar

Th e function squareform converts Y into a symmetric, square format, so that 
the elements (i,j) of the matrix denote the distance between the i and j 
objects in the original data. We next rank and link the samples with respect 
to the inverse of their separation distances using the function linkage.

Z = linkage(Y)

Z =
    2.0000    9.0000    0.0564
    8.0000   10.0000    0.0730
    1.0000   12.0000    0.0923
    6.0000    7.0000    0.1022
   11.0000   13.0000    0.1129
    3.0000    4.0000    0.1604
   15.0000   16.0000    0.1737
    5.0000   17.0000    0.1764
   14.0000   18.0000    0.2146

In this 3-column array Z, each row identifi es a link. Th e fi rst two columns 
identify the objects (or samples) that have been linked, while the third 
column contains the separation distance between these two objects. Th e fi rst 
row (link) between objects (or samples) 1 and 2 has the smallest distance, 
corresponding to the greatest similarity. In our example samples 2 and 9 
have the smallest separation distance of 0.0564 and are therefore grouped 
together and given the label 11, i.e., the next available index higher than the 
highest sample index 10. Next, samples 8 and 10 are grouped to 12 since 
they have the second smallest separation diff erence of 0.0730. Th e next row 
shows that the new group 12 is then grouped with sample 1, which have 
a separation diff erence of 0.0923, and so forth. Finally, we visualize the 
hierarchical clusters as a dendrogram, which is shown in Figure 9.7.

dendrogram(Z);
xlabel('Sample No.')
ylabel('Distance')
box on

Clustering fi nds the same groups as the principal component analysis. We 
observe clear groups consisting of samples 1, 2, 8, 9 and 10 (the magmatic 
source rocks), samples 3, 4 and 5 (the hydrothermal vein), and samples 6 and 
7 (the sandstone). One way to test the validity of our clustering result is to 
use the cophenet correlation coeffi  cient:

cophenet(Z,Y)
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Fig. 9.7 Cluster analysis output. Th e dendrogram shows clear groups consisting of samples 1, 
2, 8, 9 and 10 (the magmatic source rocks), samples 3, 4 and 5 (the magmatic dyke containing 
ore minerals), and samples 6 and 7 (the sandstone unit).

ans =
    0.7579

Th e result is convincing since the closer this coeffi  cient is to one, the better 
the cluster solution.

 9.6 Multiple Linear Regression

In Chapter 4 linear regression models were introduced as a way of describing 
the relationship between a dependent variable y and an independent variable 
x. Th e dependent variable is also known as the response variable, and the 
independent variable as the predictor variable. A multiple linear regression 
model describes the relationship between a dependent (or response) variable 
y, and n independent (or predictor) variables xi

where bi are the n+1 regression coeffi  cients of the linear model. Th e linearity 
in the term multiple linear regression refers to the fact that the response 
variable is a linear function of the predictor variables. Th e regression 
coeffi  cients are estimated by minimizing the mean-squared diff erence 
between the predicted and true values of the response variable y. As an 
example that is commonly used in the earth sciences is the quality of crude 
oil, which is assumed to be linearly dependent on the age of the sediment, the 
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burial depth, and temperature. In practice, the plausibility of the assumption 
of linearity must fi rst be examined. If this assumption is probably true then 
there are several methods of multiple linear regression available, some of 
which are included in the Statistics Toolbox (Mathworks 2014b).

As a fi rst example we create a noise-free synthetic data set with three 
variables Var1, Var2 and Var3. We wish to fi nd the infl uence of variables 
Var1 and Var2 on variable Var3. Th e variables Var1 and Var2 are therefore the 
predictor variables and the variable Var3 is the response variable. Th e linear 
relationship between the response variable and the predictor variables is 
Var3=0.2-52.0*Var1+276.0*Var2. Th e three variables Var1, Var2 and Var3 are 
stored as columns 1, 2 and 3 in a single array data.

clear

rng(0)
data(:,1) = 0.3 + 0.03*randn(50,1);
data(:,2) = 0.2 + 0.01*randn(50,1);
data(:,3) =     0.2 ...
            -  52.0*data(:,1) ...
            + 276.0*data(:,2);

We create labels for the names of the samples and the names of the variables, 
as we did in Section 9.2.

for i = 1 : size(data,1)
    samples(i,:) = [sprintf('%02.0f',i)];
end
         
variables = ['Var1';
             'Var2';
             'Var3'];

Th en we calculate the coeffi  cients beta of the multiple linear regression 
model using fitlm.

beta = fitlm(data(:,1:2),data(:,3),...
    'ResponseVar',variables(3,:),...
    'PredictorVars',variables(1:2,:)) 

Th e function fitlm uses a least mean-squares criterion to calculate beta. Th e 
method calculates an F-statistic to test the null hypothesis that all regression 
coeffi  cients are zero and there is no relationship between the response and 
predictor variables. Th e output of the function fitlm

beta =

Linear regression model:
    Var3 ~ 1 + Var1 + Var2
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Estimated Coefficients:
                   Estimate    SE    tStat    pValue
                   ________    __    _____    ______

    (Intercept)    0.2         0      Inf     0     
    Var1           -52         0     -Inf     0     
    Var2           276         0      Inf     0     

Number of observations: 50, Error degrees of freedom: 47
Root Mean Squared Error: 0
R-squared: 1,  Adjusted R-Squared 1
F-statistic vs. constant model: Inf, p-value = 0

fi rst recalls the linear regression model using the names of the response 
variable and the predictor variables. It then displays a table with the regression 
coeffi  cient estimates for each predictor variable in the fi rst column, the 
standard error, the F-statistic, and the p-values of the coeffi  cient estimates. 
Th e quality of the model is excellent as the p-value of the constant model, i.e., 
with no infl uence of predictor variables on the response variable, is zero, as 
suggested in the last line of the comments below the table. 

Since we have only three variables we can display the results in a three-
dimensional plot. We fi rst create a rectangular grid for the fi rst two variables 
and then calculate the predicted values for the second variable using the 
estimated regression coeffi  cients. We then use surf to display the linear 
regression plane of the model and line to plot the measurements as red 
points, with a marker size of 30 points.

[Var1,Var2] = meshgrid(0.20:0.01:0.45,0.17:0.01:0.23);
Var3 = beta.Coefficients.Estimate(1) + ...
       beta.Coefficients.Estimate(2)*Var1 + ...
       beta.Coefficients.Estimate(3)*Var2;

surf(Var1,Var2,Var3,'FaceAlpha',0.2), hold on
line(data(:,1), data(:,2), data(:,3),...
     'LineStyle','none',...
     'Marker','.',...
     'MarkerSize',30)
grid on
view(70,30)
hold off

Since the data set is noise free the data points all lie on the linear regression 
plane. Th is changes if we introduce normally-distributed noise with a 
standard deviation of 2.4.

clear

rng(0)
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data(:,1) = 0.3 + 0.03*randn(50,1);
data(:,2) = 0.2 + 0.01*randn(50,1);
data(:,3) =     0.2 ...
            -  52.0*data(:,1) ...
            + 276.0*data(:,2) ...
            +   2.4*randn(50,1);

for i = 1 : size(data,1)
    samples(i,:) = [sprintf('%02.0f',i)];
end
 
variables = ['Var1';
             'Var2';
             'Var3'];

Using fitlm again

beta = fitlm(data(:,1:2),data(:,3),...
    'ResponseVar',variables(3,:),...
    'PredictorVars',variables(1:2,:)) 

we see from the output

beta =

Linear regression model:
    Var3 ~ 1 + Var1 + Var2

Estimated Coefficients:
                   Estimate      SE       tStat       pValue  
                   ________    ______    _______    __________

    (Intercept)     5.0222     6.9235    0.72538       0.47181
    Var1           -45.307     9.1424    -4.9557    9.7694e-06
    Var2             239.8     33.273     7.2071     3.969e-09

Number of observations: 50, Error degrees of freedom: 47
Root Mean Squared Error: 2.41
R-squared: 0.596,  Adjusted R-Squared 0.579
F-statistic vs. constant model: 34.6, p-value = 5.68e-10

that the estimates of the regression coeffi  cients (5.0222, -45.307, and 239.8) 
do not exactly match those that were used to create the synthetic data 
(0.2, -52.0, and 276.0). Furthermore, the p-value of the constant model 
is signifi cantly higher than in the previous example, although it is still 
very good, as suggested in the last line of the comments below the table. 
Th e p-values of the individual regression coeffi  cient remain low, however, 
suggesting that both predictor variables Var1 and Var2 contribute equally to 
the response variable Var3 at a 5% signifi cance level. We can again display the 
results in a three-dimensional plot (Fig. 9.8)
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Fig. 9.8 Linear regression model for a synthetic data set with three variables and random 
noise.

[Var1,Var2] = meshgrid(0.20:0.01:0.45,0.17:0.01:0.23);
Var3 = 5.0222 - 45.307*Var1 + 239.8*Var2;

surf(Var1,Var2,Var3,'FaceAlpha',0.2), hold on
line(data(:,1), data(:,2), data(:,3),...
     'LineStyle','none',...
     'Marker','.',...
     'MarkerSize',30)
grid on
view(70,30)
hold off

and observe some diff erences between the data and the regression plane if 
we rotate the graph in three dimensions using the Rotate 3D tool on the 
toolbar of the Figure Window.

As a second example we use laboratory data from the Sherwood Sandstone, 
England, that suggest that intergranular permeability (as response variable) 
is mainly infl uenced by porosity and matrix conductivity (as predictor 
variables), while other variables have less infl uence. Th is example has been 
previously discussed in detail in an article by Olorunfemi (1985) and was 
used as an example in the textbook by Swan and Sandilands (1995). Th e data 
for 40 rock samples from the Sherwood Sandstone were taken from M.O. 
Olorunfemi’s publication and are stored in the fi le sherwoodsandstone.txt. 
We load the data from the fi le by typing
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clear

data = load('sherwoodsandstone.txt');

Th e fi ve columns of the array data contain the numerical values of the 
petrophysical parameters permeability (in m/s), porosity (without physical 
unit), matrix conductivity (in S/m), true formation factor (without physical 
unit), and induced polarization (in %). We also load the sample IDs (from 
Olorunfemi 1985) from the fi le sherwoodsandstone_samples.txt using 
textscan:

fid = fopen('sherwoodsandstone_samples.txt');
samples = textscan(fid,'%s','Headerlines',8);
fclose(fid);

Th e sherwoodsandstone_samples.txt fi le contains 40 sample IDs, each with 
fi ve characters including spaces that are used to make the length of the 
sample IDs identical so that they fi t into the cell array samples. Th is cell 
array contains only one cell, samples{1}, which in turn contains a 40-by-5 
character array of the sample IDs. We next create another character array 
that contains the variable names: Perm for permeability, Poro for porosity, MaCo 
for matrix conductivity, TrFF for true formation factor, and InPo for induced 
polarization.

variables = ['Perm';
             'Poro';
             'MaCo';
             'TrFF';
             'InPo'];

We then display the variables in a plot that includes a legend and has the 
data points labeled with the sample IDs. We use random colors for the data 
points, with the random number generator fi rst set to a seed value of 0. Since 
the values of the variables are very small we plot the logarithm of the values 
instead of the true values.

rng(0)
for i = 1:size(data,2)
    rcolor = rand(1,3);
    line(log(data(:,i)),1:40,...
        'Marker','Square','MarkerEdgeColor',rcolor,...
        'MarkerSize',8,'MarkerFaceColor',rcolor,...
        'LineStyle',':','Color',rcolor)
    text(log(data(:,i))+0.1,1:40,samples{1})
end    
legend(variables)

We then calculate the coeffi  cients beta of the multiple linear regression 
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model using fitlm.

beta = fitlm(data(:,2:5),data(:,1),...
    'ResponseVar',variables(1,:),...
    'PredictorVars',variables(2:5,:))

Th e function fitlm uses a least mean-squares criterion to calculate beta. Th e 
output of the function fitlm

beta =

Linear regression model:
    Perm ~ 1 + Poro + MaCo + TrFF + InPo

Estimated Coefficients:
                   Estimate      SE        tStat       pValue 
                   ________    _______    ________    ________

    (Intercept)     0.15868     7.5546    0.021005     0.98336
    Poro             50.636     18.714      2.7058    0.010458
    MaCo             -330.9     150.51     -2.1986    0.034609
    TrFF           -0.17857    0.18537    -0.96329     0.34201
    InPo           -0.45263    0.50101    -0.90344     0.37247

Number of observations: 40, Error degrees of freedom: 35
Root Mean Squared Error: 2.68
R-squared: 0.483,  Adjusted R-Squared 0.424
F-statistic vs. constant model: 8.18, p-value = 9.07e-05

fi rst recalls the linear regression model using the names of the response 
variable and the predictor variables. It then displays a table with the regression 
coeffi  cient estimates for each predictor variable in the fi rst column, the 
standard error, the t-statistic, and the p-values of the coeffi  cient estimates. 
Th e quality of the model is good as the p-value of the constant model (i.e., 
with no infl uence of predictor variables on the response variable) is very low, 
as the last line of the comments below the table suggests. Th e p-values of the 
individual regression coeffi  cient estimates suggests that only the porosity and 
matrix conductivity infl uence the permeability of the Sherwood Sandstone, 
at a 5% signifi cance level.

Th ere are multiple ways to examine the quality of the result. Th e Statistics 
Toolbox includes several functions for displaying diagnostic plots to identify 
and remove outliers from the data set. We can, for instance, produce a 
leverage plot of the data and the model by typing

plotDiagnostics(beta)

Th e leverage plot displays the leverage that an individual measurement has 
when added to the regression model, assuming that all other measurements 
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are already in the model. Th e plot also displays a horizontal dashed line that 
is not explained in the User’s Guide of the Statistics Toolbox (MathWorks 
2014b). Information regarding this dashed line can, however, be found in the 
R2013 Release Notes and the M-fi le of the function LinearModel

edit LinearModel.fit

where the regression diagnostics are explained in detail from line 126 
onward. According to this information, the average value of leverage is 
the ratio between the number of regression coeffi  cients and the number of 
measurements

size(data,2)/size(data,1)

which in this particular example yields

ans =
    0.1250

Observations with leverage values larger than twice this ratio

2*size(data,2)/size(data,1)

which yields

ans =
    0.2500

are considered to have high leverage, and are all measurements above the 
dashed line at 0.250. In our example there are two points with leverages 
greater than 0.250, one in row 11 of the array and the other in row 22. We 
can obtain the IDs of these samples by typing

samples{1}(11)
samples{1}(22)

which yields

ans = 
    'HF14'

ans =
    'HF49'

Th e leverage plot does not reveal whether or not the high-leverage points 
are outliers. We can instead calculate and display the Cook’s distance of each 
data point

plotDiagnostics(beta,'cookd')
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which is the change in the residuals of a model if this specifi c data point is 
removed. Th e larger the Cook’s distance of a particular data point the more 
likely it is to be an outlier. Th e diagnostic plot again displays a dashed line, 
which marks a recommended threshold of three times the mean Cook’s 
distance

3*mean(mdl.Diagnostics.CooksDistance)

which yields

ans =
    0.1144

According to this plot there are three data points above the critical value 
marked by the dashed line, one each in rows 22, 27 and 35. Since the data 
point HF49 in the 22nd row also has a high leverage on the model it should 
be removed as an outlier and the improved model then run. We can also 
examine the residuals of the model using

plotResiduals(beta)

which suggests that the measurements above 9 are outliers. As the last 
diagnostic plot in this exercise we display the normal probability plot of the 
residuals

plotResiduals(beta,'probability')

where the black line represents the probability of the residuals in the case 
of an ideal normal distribution. In our example, the tails of the normal 
distribution plot of the residuals do not match a normal distribution and 
our linear regression model is therefore good (but not perfect) without 
having removed the outliers. Th e regression coeffi  cients calculated from the 
regression analysis (including the outliers) are, however, similar to those 
reported on page 347 of Swan and Sandilands (1995).

Th e linear regression model can now be used to predict the permeability 
of a new sample from the values of the other petrophysical parameters. Th e 
eff ect that each predictor variable has on the model can be examined using 
one of several functions included in the Statistics Toolbox. As an example

plotSlice(beta)

yields a slice plot of the responses displaying each predictor variable separately. 
Within this plot we can drag the lines or insert values for the individual 
predictor variables and examine the resulting value of the response variable.
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 10.1 Introduction

Methods for analyzing circular and spherical data are widely used in earth 
sciences. For instance, structural geologists measure and analyze the 
orientation of slickensides (or striae) on fault planes. Circular statistics is 
also common in paleomagnetic applications. Microstructural investigations 
include the analysis of grain shapes and quartz c-axis orientations in thin 
sections. Paleoenvironmentalists also reconstruct paleocurrent directions 
from fossil alignments (Fig. 10.1). Th ere are theoretically two types of 
directional data in earth sciences: directional data sensu stricto, and oriented 
data. Directional data, such as the paleocurrent direction of a river as 
documented by fl ute marks, or the fl ow direction of a glacier as indicated by 
glacial striae, have a true polarity. Oriented data describe axial data and lines, 
such as the orientation of joints, without any sense of direction.

Th ere are a number of useful publications available on the statistical 
analysis of directional data, such as the books by Fisher (1993) and Mardia 
and Jupp (2000), and the chapters on the subject in books by Swan and 
Sandilands (2000), Davis (2002), and Borradaile (2003). Furthermore, 
Chapter 9 of the book by Middleton (1999) and two journal articles by 

 10 Directional Data

 Orthoceras fossils from an outcrop at Neptuni 
Acrar near Byxel krok on Öland, Sweden. 
Orthoceras is a cephalopod with a straight 
shell that lived in the Ordovician era, about 
450 million years ago. A statistical analysis of 
cephalopod orientations at Neptuni Acrar has 
revealed a signifi cant southerly paleocurrent 
direction, which is in agreement with 
paleogeographic reconstructions.

� Springer-Verlag Berlin Heidelberg 2015
M.H. Trauth, MATLAB� Recipes for Earth Sciences,
DOI 10.1007/978-3-662-46244-7_10
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Fig. 10.1 Orthoceras fossils from an outcrop at Neptuni Acrar near Byxelkrok on Öland, 
Sweden. Orthoceras is a cephalopod with a straight shell that lived in the Ordovician era, about 
450 million years ago. Such elongated, asymmetric objects tend to orient themselves in the 
hydrodynamically most stable position and therefore indicate paleocurrent directions. Th e 
statistical analysis of cephalopod orientations at Neptuni Acrar reveals a signifi cant southerly 
paleocurrent direction, which is in agreement with the paleogeographic reconstructions.

Jones (2006a, b) discuss the use of MATLAB® for the statistical analysis of 
directional data. MATLAB is not the fi rst choice for analyzing directional 
data since it does not provide the relevant functions, such as algorithms to 
compute the probability distribution function of a von Mises distribution, 
or to run a Rayleigh’s test for the signifi cance of a mean direction. Earth 
scientists have therefore developed numerous stand-alone programs with 
which to analyze such data, e.g., the excellent soft ware developed by Rick 
Allmendinger:

http://www.geo.cornell.edu/geology/faculty/RWA/programs.html

Th e following tutorial on the analysis of directional data is independent of 
these tools. It provides simple MATLAB codes to display directional data, to 
compute the von Mises distribution, and to run simple statistical tests. Th e 
fi rst section introduces rose diagrams as the most widely used method to 
display directional data (Section 10.2). With a similar concept to Chapter 
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Fig. 10.2 Rose diagram to display directional data using the function rose. Th e radii of 
the area segments are proportional to the frequencies for each class. We using rose with 
view(90,-90), so that 0° points due north and 90° points due east, i.e., the angles increase in 
a clockwise direction.

3 on univariate statistics, the next sections are then on the use of empirical 
and theoretical distributions to describe directional data (Sections 10.3 and 
10.4). Th e last three sections then describe the three most important tests 
for directional data, these being the tests for randomness of directional data 
(Section 10.5), for the signifi cance of a mean direction (Section 10.6), and for 
the diff erence between two sets of directional data (Section 10.7).

 10.2 Graphical Representation

Th e classic way to display directional data is the rose diagram. A rose 
diagram is a histogram for measurements of angles. In contrast to a bar 
histogram with the height of the bars proportional to frequency, the rose 
diagram comprises segments of a circle, with the radius of each sector being 
proportional to the frequency. We use synthetic data to illustrate two types 
of rose diagram that are used to display directional data. We load a set of 
directional data from the fi le directional_1.txt.

clear

data_degrees_1 = load('directional_1.txt');
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Fig. 10.3 Modifi ed rose diagram to display directional data using the function rose_sqrt. 
Th e plot scales the rose diagram to the square root of the class frequency. Th e area of the arc 
segments then increases with frequency.

Th e data set contains forty measurements of angles, in degrees. We use 
the function rose(az,nb) to display the data. Th e function plots an angle 
histogram for the angles az in radians, where nb is the number of classes. 
However, since the original data are in degrees we need to convert all 
measurements to radians before we plot the data.

data_radians_1 = pi*data_degrees_1/180;
rose(data_radians_1,12)

Th e function rose counts in a counterclockwise direction, with zero degrees 
lying along the x-axis of the coordinate graph. In geosciences, however, 0° 
points due north, 90° points due east, and the angles increase in a clockwise 
direction. Th e command view rotates the plot by +90° (the azimuth) and 
mirrors the plot by –90° (the elevation) (Fig. 10.2).

rose(data_radians_1,12)
view(90,-90)

Th e area of the arc segments increases with the square of the frequency. In 
a modifi cation the rose diagram is therefore scaled to the square root of the 
class frequency. Th e function rose does not allow plotting of the square root 
of the frequencies by default, but the corresponding fi le rose.m can be easily 
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modifi ed as follows. Aft er the histogram of the angles is computed in line 57 
using the function histc, add a line with the command nn = sqrt(nn), which 
computes the square root of the frequencies nn. Save the modifi ed function 
as fi le rose_sqrt.m and apply the new function to the data set.

rose_sqrt(data_radians_1,12)
view(90,-90)

Th is plot satisfi es all conventions in geosciences (Fig. 10.3).

 10.3 Empirical Distributions

Th is section introduces statistical measures used to describe empirical 
distributions of directional data. Th e characteristics of directional data 
are described by measures of central tendency and dispersion, similar to 
the statistical characterization of univariate data sets (Chapter 3). Assume 
that we have collected a number of angular measurements such as fossil 
alignments. Th e collection of data can be written as

containing N observations θi. Sine and cosine values are computed for each 
direction θi to compute the resultant or mean direction for the set of angular 
data (Fisher 1993, Mardia and Jupp 2000).

Th e resultant direction of the data set is

θ = −tan ( / )1 x yr r

Th e length of the resultant is

Th e resultant length clearly depends on the dispersion of the data. 
Normalizing the resultant length to the number of observations yields the 
mean resultant length.
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Fig. 10.4 Th e resultant length R of a sample decreases with increasing dispersion of the data 
θi.

Th e value of the mean resultant length decreases with increasing dispersion 
(Fig. 10.4). Th e diff erence between one and the mean resultant length is 
therefore oft en used as a measure of dispersion for directional data,

which is the circular variance. 
Th e following example illustrates the use of these parameters by means of 

synthetic directional data. We fi rst load the data from the fi le directional_1.
txt and convert all measurement to radians.

clear

data_degrees_1 = load('directional_1.txt');
data_radians_1 = pi*data_degrees_1/180;

We now calculate the resultant vector R. Firstly, we compute the x and y 
components of the resultant vector.

x_1 = sum(sin(data_radians_1))
y_1 = sum(cos(data_radians_1))

x_1 =
  -24.3898

y_1 =
  -25.9401

Th e mean direction is the inverse tangent of the ratio of x and y.

mean_radians_1 = atan(x_1/y_1)
mean_degrees_1 = 180*mean_radians_1/pi
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mean_radians_1 =
    0.7546

mean_degrees_1 =
   43.2357

Th is result suggests that the resultant vector R is around 0.75 radians or 43°. 
However, since both x and y are negative, the true value of mean_degrees is 
located in the third quadrant and we therefore add 180°

mean_degrees_1 = mean_degrees_1 + 180

mean_degrees_1 =
  223.2357

which results in a mean direction of around 223°. Th e length of this vector is 
the absolute value of the vector, which is

R_1 = sqrt(x_1^2 + y_1^2)

R_1 =
   35.6055

Th e resultant length depends on the dispersion of the directional data. 
Normalizing the resultant length to the sample size yields the mean resultant 
length Rm of

Rm_1 = R_1 / (length(data_radians_1))

Rm_1 =
    0.8901

A high Rm value suggests less variance. We then compute the circular variance 
sigma, which is

sigma_1 = 1 - Rm_1

sigma_1 =
    0.1099

 10.4 Theoretical Distributions

As in Chapter 3, the next step in a statistical analysis is to fi nd a suitable 
theoretical distribution that we fi t to the empirical distribution visualized 
and described in the previous section. Th e classic theoretical distribution 
to describe directional data is the von Mises distribution, named aft er 
the Austrian mathematician Richard Edler von Mises (1883–1953). Th e 
probability density function of a von Mises distribution is
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Fig. 10.5 Probability density function f(x) of a von Mises distribution with μ=0 and fi ve 
diff erent values for κ.

where μ is the mean direction and κ is the concentration parameter (Mardia 
and Jupp 2000) (Fig. 10.5). I0(κ) is the modifi ed Bessel function of fi rst 
kind and order zero. Th e Bessel functions are solutions of a second-order 
diff erential equation (Bessel’s diff erential equation) and are important in 
many problems of wave propagation in a cylindrical waveguide, and of 
heat conduction in a cylindrical object. Th e von Mises distribution is also 
known as the circular normal distribution since it has similar characteristics 
to a normal distribution (Section 3.4). Th e von Mises distribution is used 
when the mean direction is the most frequent direction. Th e probability of 
deviations is equal on either side of the mean direction and decreases with 
increasing distance from the mean direction.

As an example let us assume a mean direction of mu=0 and fi ve diff erent 
values for the concentration parameter kappa.

clear
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mu = 0; kappa = [0 1 2 3 4]';

We fi rst defi ne an angle scale for a plot that runs from –180 to 180 degrees, 
with intervals of one degree.

theta = -180:1:180;

All angles are converted from degrees to radians.

mu_radians = pi*mu/180;
theta_radians = pi*theta/180;

We then compute the von Mises distribution for these values. Th e formula 
uses the modifi ed Bessel function of fi rst kind and order zero that can be 
calculated using the function besseli. We compute the probability density 
function for the fi ve values of kappa.

for i = 1:5   
   mises(i,:) = (1/(2*pi*besseli(0,kappa(i))))* ...
   exp(kappa(i)*cos(theta_radians-mu_radians));
   theta(i,:) = theta(1,:);
end

Th e results are plotted by

for i = 1:5
   plot(theta(i,:),mises(i,:))
   axis([-180 180 0 max(mises(i,:))])
   hold on
end

Th e mean direction and concentration parameters of such theoretical 
distributions can be easily modifi ed for comparison with empirical 
distributions.

 10.5 Test for Randomness of Directional Data

Th e fi rst test for directional data compares the data set with a uniform 
distribution. Directional data following a uniform distribution are purely 
random, i.e., there is no preference for any direction. We use the χ2-test 
(Section 3.8) to compare the empirical frequency distribution with the 
theoretical uniform distribution. We fi rst load our sample data.

clear

data_degrees_1 = load('directional_1.txt');

We then use the function histogram to count the number of observations 
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within 12 classes, each with a width of 30 degrees.

h = histogram(data_degrees_1,0:30:360);
counts = h.Values;

Th e expected number of observations is 40/12, where 40 is the total number 
of observations and 12 is the number of classes.

expect = 40/12 * ones(1,12);

Th e χ2-test explores the squared diff erences between the observed and 
expected frequencies. Th e quantity χ2 is defi ned as the sum of these squared 
diff erences divided by the expected frequencies.

chi2 = sum((counts - expect).^2 ./expect)

chi2 = 
    102.8000

Th e critical χ2 value can be calculated using chi2inv. Th e χ2-test requires 
the degrees of freedom Φ. In our example we test the hypothesis that the 
data are uniformly distributed, i.e., we estimate one parameter, which 
is the number of possible values N. Since the number of classes is 12, the 
number of degrees of freedom is Φ=12–1–1=10. We test our hypothesis 
on a p=95% signifi cance level. Th e function chi2inv computes the inverse 
of the cumulative distribution function (CDF) of the χ2 distribution with 
parameters specifi ed by Φ for the corresponding probabilities in p.

chi2inv(0.95,12-1-1)

ans = 
    18.3070

Since the critical χ2 of 18.3070 is well below the measured χ2 of 102.8000 we 
reject the null hypothesis and conclude that our data do not follow a uniform 
distribution, i.e., they are not randomly distributed.

 10.6 Test for the Signifi cance of a Mean Direction

Having measured a set of directional data in the fi eld, we may wish to know 
whether there is a prevailing direction documented in the data. We use 
the Rayleigh’s test for the signifi cance of a mean direction (Mardia 1972, 
Mardia and Jupp 2000). Th is test uses the mean resultant length introduced 
in Section 10.3, which increases as the preferred direction becomes more 
signifi cant.
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Th e data show a preferred direction if the calculated mean resultant length is 
below the critical value (Mardia 1972). As an example we again load the data 
contained in the fi le directional_1.txt.

clear

data_degrees_1 = load('directional_1.txt');
data_radians_1 = pi*data_degrees_1/180;

We then calculate the mean resultant vector Rm.

Table 10.1 Critical values of mean resultant length for Rayleigh’s test for the signifi cance of a 
mean direction of N samples (Mardia 1972).

 Level of Signifi cance, α

N  0.100 0.050 0.025 0.010 0.001

5  0.677 0.754 0.816 0.879 0.991
6  0.618 0.690 0.753 0.825 0.940
7  0.572 0.642 0.702 0.771 0.891
8  0.535 0.602 0.660 0.725 0.847
9  0.504 0.569 0.624 0.687 0.808

10  0.478 0.540 0.594 0.655 0.775
11  0.456 0.516 0.567 0.627 0.743
12  0.437 0.494 0.544 0.602 0.716
13  0.420 0.475 0.524 0.580 0.692
14  0.405 0.458 0.505 0.560 0.669

15  0.391 0.443 0.489 0.542 0.649
16  0.379 0.429 0.474 0.525 0.630
17  0.367 0.417 0.460 0.510 0.613
18  0.357 0.405 0.447 0.496 0.597
19  0.348 0.394 0.436 0.484 0.583

20  0.339 0.385 0.425 0.472 0.569
21  0.331 0.375 0.415 0.461 0.556
22  0.323 0.367 0.405 0.451 0.544
23  0.316 0.359 0.397 0.441 0.533
24  0.309 0.351 0.389 0.432 0.522

25  0.303 0.344 0.381 0.423 0.512
30  0.277 0.315 0.348 0.387 0.470
35  0.256 0.292 0.323 0.359 0.436
40  0.240 0.273 0.302 0.336 0.409
45  0.226 0.257 0.285 0.318 0.386

50  0.214 0.244 0.270 0.301 0.367
100  0.150 0.170 0.190 0.210 0.260
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x_1 = sum(sin(data_radians_1));
y_1 = sum(cos(data_radians_1));

mean_radians_1 = atan(x_1/y_1);
mean_degrees_1 = 180*mean_radians_1/pi;
mean_degrees_1 = mean_degrees_1 + 180;

Rm_1 = 1/length(data_degrees_1) .*(x_1.^2+y_1.^2).^0.5

Rm_1 =
    0.8901

Th e mean resultant length in our example is 0.8901. Th e critical Rm (α=0.05, 
n=40) is 0.273 (Table 10.1 from Mardia 1972). Since this value is lower than 
the Rm from the data we reject the null hypothesis and conclude that there is 
a preferred single direction, which is

theta_1 = 180 * atan(x_1/y_1) / pi

theta_1 =
   43.2357

Th e negative signs of the sine and cosine, however, suggest that the true 
result is in the third sector (180–270°), and the correct result is therefore 
180+43.2357=223.2357.

 10.7 Test for the Diff erence between Two Sets of Directions

Let us consider two sets of measurements in two fi les directional_1.txt and 
directional_2.txt. We wish to compare the two sets of directions and test the 
hypothesis that these are signifi cantly diff erent. We use the Watson-William 
test to test the similarity between two mean directions

where κ is the concentration parameter, RA and RB are the resultant lengths 
of samples A and B, respectively, and RT is the resultant lengths of the 
combined samples (Watson and Williams 1956, Mardia and Jupp 2000). Th e 
concentration parameter can be obtained from tables using RT (Batschelet 
1965, Gumbel et al. 1953, Table 10.2). Th e calculated F is compared with 
critical values from the standard F tables (Section 3.8). Th e two mean 
directions are not signifi cantly diff erent if the calculated F-value is less than 
the critical F-value, which depends on the degrees of freedom Φa=1 and 
Φb=n–2, and also on the signifi cance level α. Both samples must follow a von 
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Mises distribution (Section 10.4).
We use two synthetic data sets of directional data to illustrate the 

application of this test. We fi rst load the data and convert the degrees to 
radians.

clear

data_degrees_1 = load('directional_1.txt');
data_degrees_2 = load('directional_2.txt');

data_radians_1 = pi*data_degrees_1/180;
data_radians_2 = pi*data_degrees_2/180;

We then compute the lengths of the resultant vectors.

x_1 = sum(sin(data_radians_1));
y_1 = sum(cos(data_radians_1));
x_2 = sum(sin(data_radians_2));
y_2 = sum(cos(data_radians_2));

mean_radians_1 = atan(x_1/y_1);
mean_degrees_1 = 180*mean_radians_1/pi;
mean_radians_2 = atan(x_2/y_2);
mean_degrees_2 = 180*mean_radians_2/pi;

mean_degrees_1 = mean_degrees_1 + 180
mean_degrees_2 = mean_degrees_2 + 180

R_1 = sqrt(x_1^2 + y_1^2);
R_2 = sqrt(x_2^2 + y_2^2);

mean_degrees_1 =
  223.2357

mean_degrees_2 =
  200.8121

Th e orientations of the resultant vectors are approximately 223° and 201°. 
We also need the resultant length for both samples combined, so we combine 
both data sets and again compute the resultant length.

data_radians_T = [data_radians_1;data_radians_2];

x_T = sum(sin(data_radians_T));
y_T = sum(cos(data_radians_T));

mean_radians_T = atan(x_T/y_T);
mean_degrees_T = 180*mean_radians_T/pi;

mean_degrees_T = mean_degrees_T + 180;

R_T = sqrt(x_T^2 + y_T^2)
Rm_T = R_T / (length(data_radians_T))
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R_T =
   69.5125

Rm_T =
    0.8689

We apply the test statistic to the data for kappa=4.177 for Rm_T=0.8689 (Table 
10.2). Th e computed value for F is

n = length(data_radians_T);

F = (1+3/(8*4.177)) * (((n-2)*(R_1+R_2-R_T))/(n-R_1-R_2))

F =
   12.5844

Using the F-statistic, we fi nd that for 1 and 80–2 degrees of freedom and 
α=0.05, the critical value is

finv(0.95,1,78)

ans =
    3.9635

Table 10.2 Maximum likelihood estimates of concentration parameter κ for calculated mean 
resultant length R (adapted from Batschelet 1965 and Gumbel et al. 1953).

R κ R κ R κ R κ
0.000 0.000 0.260 0.539 0.520 1.224 0.780 2.646
0.010 0.020 0.270 0.561 0.530 1.257 0.790 2.754
0.020 0.040 0.280 0.584 0.540 1.291 0.800 2.871
0.030 0.060 0.290 0.606 0.550 1.326 0.810 3.000
0.040 0.080 0.300 0.629 0.560 1.362 0.820 3.143
0.050 0.100 0.310 0.652 0.570 1.398 0.830 3.301
0.060 0.120 0.320 0.676 0.580 1.436 0.840 3.479
0.070 0.140 0.330 0.700 0.590 1.475 0.850 3.680
0.080 0.161 0.340 0.724 0.600 1.516 0.860 3.911
0.090 0.181 0.350 0.748 0.610 1.557 0.870 4.177
0.100 0.201 0.360 0.772 0.620 1.600 0.880 4.489
0.110 0.221 0.370 0.797 0.630 1.645 0.890 4.859
0.120 0.242 0.380 0.823 0.640 1.691 0.900 5.305
0.130 0.262 0.390 0.848 0.650 1.740 0.910 5.852
0.140 0.283 0.400 0.874 0.660 1.790 0.920 6.539
0.150 0.303 0.410 0.900 0.670 1.842 0.930 7.426
0.160 0.324 0.420 0.927 0.680 1.896 0.940 8.610
0.170 0.345 0.430 0.954 0.690 1.954 0.950 10.272
0.180 0.366 0.440 0.982 0.700 2.014 0.960 12.766
0.190 0.387 0.450 1.010 0.710 2.077 0.970 16.927
0.200 0.408 0.460 1.039 0.720 2.144 0.980 25.252
0.210 0.430 0.470 1.068 0.730 2.214 0.990 50.242
0.220 0.451 0.480 1.098 0.740 2.289 0.995 100.000
0.230 0.473 0.490 1.128 0.750 2.369 0.999 500.000
0.240 0.495 0.500 1.159 0.760 2.455 1.000 5000.000
0.250 0.516 0.510 1.191 0.770 2.547
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which is well below the observed value of F=12.5844 (Section 3.8). We 
therefore reject the null hypothesis and conclude that the two samples could 
not have been drawn from populations with the same mean direction.
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