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Preface

This is the second volume in a series of Lecture Notes in Physics entitled ‘‘Clusters
in Nuclei’’ based on the well known Cluster Conferences that have been running
since decades, on two recent State Of The Art in Nuclear Cluster Physics
Workshops, as well as on successfull Theoretical Winter Schools, traditionally
held on the Campus of the Université de Strasbourg.

A great deal of research work has been done in the field of alpha clustering and
in cluster studies of light neutron-rich nuclei. The scope of this new Series of
lecture notes is to deepen our knowledge of the field of nuclear cluster physics
which is one of the domains of heavy-ion nuclear physics facing the greatest
challenges and opportunities.

The purpose of this second volume of Lecture Notes in Physics Clusters in
Nuclei, is to promote the exchange of ideas and discuss new developments in
‘‘Clustering Phenomena in Nuclear Physics and Nuclear Astrophysics’’ from
both the theoretical and experimental points of views. It is aimed to retain the
pedagogical nature of our earlier Theoretical Winter Schools and should provide a
helpful reference for young researchers entering the field and wishing to get a feel
of contemporary research in a number of areas.

The various aspects of the main topics in this second volume of Clusters in
Nuclei are divided into six chapters, each highlighting new ideas that have
emerged in recent years:

• Microscopic Cluster Models
• Neutron Halo and Breakup Reactions
• Breakup reaction models for two- and three-cluster projectiles
• Clustering Effects within the Dinuclear Model
• Nuclear Alpha-Particle Condensates
• Clusters in Nuclei: Experimental Perspectives

The first chapter entitled Microscopic Cluster Models by Descouvemont and
Dufour shows how clustering aspects can be fairly well described by microscopic
cluster models such as the Resonating Group Method or the Generator Coordinate
Method (GCM). For the sake of pedagogy, the formalism is presented in simple
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conditions by assuming spinless clusters and single-channel calculations. Exten-
sions of the GCM to multicluster and multichannel calculations are compared to
different three-alpha descriptions of 12C proposed as typical illustrative examples.

The second chapter of Nakamura on Neutron Halo and Breakup Reactions
connects the phenomenological aspects of neutron halos to experimental results
collected for breakup reactions at intermediate/high energies. Nakamura investi-
gates the breakup reactions as playing significant role in elucidating exotic
structures along the neutron drip line. This study is be very important for further
investigations of drip-line nuclei towards heavier mass regions available with the
new-generation Radioactive Ion Beam (RIB) facilities: SPIRAL2, FAIR etc. in
Europe, RIBF and KoRIA in Asia and FRIB in the US.

Breakup reaction models for two- and three-cluster projectiles are deeply
discussed in Chap. 3 by Baye and Capel to provide a precise reaction picture
coupled to a fair description of the projectile. The projectile is assumed to possess
a cluster structure revealed by the dissociation process. This cluster structure is
described by a few-body Hamiltonian involving effective forces between the
clusters. Within this assumption, various reaction models are reviewed.

The Chap. 4 entitled Clustering Effects within the Dinuclear Model by
Adamian, Antonenko and Scheid describes clustering of two nuclei as a dinuclear
system (DNS) following Volkov ideas. The problems of fusion dynamics in the
production of superheavy nuclei, of the quasifission process and of multi-nucleon
transfer between nuclei are revisited within the DNS concept. Similarly, ternary
fission processes are discussed within the scission-point picture.

Yamada, Schuck and their collaborators are trying in Chap. 5 (Nuclear Alpha-
Particle Condensates) to definitively demonstrate that a typical alpha-particle
condensate is the Hoyle state of 12C, which plays a crucial role for the synthesis of
light-mass elements in the universe. It is conjectured that alpha-particle condensate
states also exist in heavier n alpha nuclei in qualitative agreement with the
experimental observations presented in Vol.1 by von Oertzen in his lecture notes.

Finally, the last chapter Clusters in Nuclei: Experimental Perspectives
proposed by Papka treats most of experimental aspects of nuclear cluster states
studies from traditional techniques to the most recent developments and emerging
methods. Many aspects of acceleration, including high-intensity, low-energy and
radioactiveion beams are detailed in the context of nuclear clustering. The interest
in combining radioactive beams and active targets are also addressed in terms of
new perspectives and possible fields of future investigations.

Each forthcoming volume will also contain lectures covering a wide range of
topics from nuclear cluster theory to experimental applications that have gained a
renewed interest with available RIB facilities and modern detection techniques.
We stress that the contributions in this volume and the following ones are not
review articles and so are not meant to contain all the latest results or to provide an
exhaustive coverage of the field but are written instead in the pedagogical style of
graduate lectures and thus have a reasonable long ‘shelf life’.

The edition of this book could not have been possible without stimulous
discussions with Profs. Greiner, Horiuchi, and Schuck. Our appreciation goes to all
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our co-lectures for their valuable contributions. We acknowledge also all the
referees for their comments on the chapters that are included in this volume.
I would like here to thank, more particularly, Prof. Poenaru for his constant
helpfull suggestions from the beginning to the end. Special thanks go Dr. Christian
Caron and all the members of his Springer-Verlag team (in particular, Mrs Angela
Schulze-thomin and Gabriele Hakuba) for their help, fruitful collaboration and
continuedsupport for this ongoing project.

Strasbourg, May 2011 Christian Beck
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Chapter 1
Microscopic Cluster Models

P. Descouvemont and M. Dufour

Abstract We present an overview of microscopic cluster models, by focusing on
the Resonating Group Method (RGM) and on the Generator Coordinate Method
(GCM). The wave functions of a nuclear system are defined from cluster wave func-
tions, with an exact account of antisymmetrization between all nucleons. For the
sake of pedagogy, the formalism is mostly presented in simple conditions, i.e. we
essentially assume spinless clusters, and single-channel calculations. Generalizations
going beyond these limitations are outlined. We present the GCM in more detail, and
show how to compute matrix elements between Slater determinants. Specific exam-
ples dealing withα+nucleus systems are presented. We also discuss some approxima-
tions of the RGM, and in particular, the renormalized RGM which has been recently
developed. We show that the GCM can be complemented by the microscopic variant
of the R-matrix method, which provides a microscopic description of unbound states.
Finally, extensions of the GCM to multicluster and multichannel calculations are
discussed, and illustrated by typical examples. In particular we compare different
three-α descriptions of 12C.

1.1 Introduction

Clustering is a well-known effect in light nuclei [1]. Historically, the observation
of clustering started with the α particle, which presents a large binding energy and
therefore tends to keep its own identity in light nuclei. A description of nuclear states
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based on a cluster structure was first suggested by Wheeler [2] and by Margenau [3],
and then extended by Brink [4]. This formulation is known as the α-cluster model,
and has been widely used in the literature (see for example Ref. [5]). A typical
example of α cluster states is the second 0+ level in 12C, known as the Hoyle state
[6], which presents a strong α +8 Be cluster structure, and plays a crucial role in
stellar evolution.

The cluster structure in α nuclei (i.e. with nucleon numbers A = 4n) was clarified
by Ikeda [7] who proposed a diagram which identifies situations where a cluster
structure can be observed. The α model and its extensions were utilized by many
authors to investigate the properties of α-particle nuclei such as 8Be, 12C, 16O, etc.
In particular, the interest for α-cluster models was recently revived by the hypothesis
of a new form of nuclear matter, in analogy with the Bose–Einstein condensates [8].

If the α particle, owing to its large binding energy, plays a central role in clus-
tering phenomena, it soon became clear that other cluster structures can be observed.
Reviews of recent developments in cluster physics can be found in Refs. [9, 10].
In many nuclei, some states present an α +nucleus structure. A well known example
is 7Li, well described by an α+ t model [11]. In recent years, clustering phenomena
have been observed in several nuclei such as 16O, 18O, 19F, etc. More exotic states
were suggested by Freer et al. [12] who found evidence for an 6He+6He rotational
band in 12Be. This unusual structure was subsequently supported by various calcu-
lations (see, for example [13, 14]).

An important property of clustering is that it may change from level to level in the
same nucleus [15]. There are many examples: in 5He, the ground state present anα+n
structure, whereas the 3/2+ excited state is better described by a t+d configuration
[16]. More generally, many nuclei exhibitα-cluster bands in their high-energy region.
Recently “extreme” α-clustering has been reported in the 18O nucleus [17].

The observation of clustering effects is the basis of cluster models, which are
essentially divided into two categories: (i) non-microscopic models, where the
internal structure of the clusters is neglected [18, 19], and (ii) microscopic theo-
ries where the clusters are described by shell-model wave functions [20, 21]. The
Schrödinger equation is written as

HΨ = ETΨ, (1.1.1)

where H is the Hamiltonian, PΨ the wave function, and ET the total energy.
In non-microscopic approaches, the Hamiltonian of a system involving A nucleons

distributed over N clusters is given by

H =
N∑

i=1

P2
i

2Mi
+

N∑

i>j=1

Vij(Ri − Rj), (1.1.2)

where the N clusters with masses Mi have a space coordinate Ri and a momentum
Pi. In this definition, Vij is a nucleus–nucleus interaction which can be local or
non local. It may also depend on other cluster coordinates such as the spin or the
velocity. Of course, the simplest variant is a two-cluster model (N = 2) where, after
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removal of the c.m. motion, the Hamiltonian only depends on the relative coordinate
r = R1 − R2. An important issue in non-microscopic models is the choice of the
potentials Vij. In general, these potentials are fitted on some properties of the system,
such as binding energies or nucleus–nucleus phase shifts. In most cases they depend
on the angular momentum between the clusters. It is well known that, to simulate the
Pauli principle, this potential must satisfy some requirements. Deep potentials [19]
or their supersymmetric partners [22] can partially account for antisymmetrization
effects, although the associated wave functions neglect the structure of the clusters.

Non-microscopic theories can be extended to more than two clusters. For three-
body models, the hyperspherical method [23] or the Faddeev approach [24] are
efficient techniques. Because of their relative simplicity, at least for two-cluster
variants, non-microscopic models can be directly extended to scattering states, i.e. to
solutions of (1.1.2) at positive energies. This raises difficulties to properly include the
asymptotic behaviour of the wave function, but is now well mastered for two-body
and three-body scattering states.

The present work is devoted to microscopic cluster theories [20]. In a microscopic
model, the Hamiltonian of the A-nucleon system is written as

H =
A∑

i=1

p2
i

2mN
+

A∑

i>j=1

vij(ri − rj), (1.1.3)

where mN is the nucleon mass (assumed to be equal for neutrons and protons), ri

and pi are the space coordinate and momentum of nucleon i, and vij a nucleon–
nucleon interaction. We explicitly mention the dependence on space coordinates,
but vij may also depend on other nucleon coordinates. Until now, most microscopic
cluster calculations neglect three-body forces (see however Ref. [25]).

Hamiltonian (1.1.3) is common to all microscopic theories, which explicitly treat
all nucleons of the system. Examples are the shell model [26] and its “No-Core”
extensions [27], the Antisymmetric Molecular Dynamics (AMD, see Ref. [28]), or
the Fermionic Molecular Dynamics (FMD, see Ref. [29]). For small nucleon numbers
(i.e. A ≤ 4), efficient techniques are available to solve the Schrödinger equation
with realistic nucleon–nucleon interactions (see Ref. [30] and references therein).
These methods can be applied to bound as well as to continuum states. When the
nucleon number is larger, some approximation must be used. The specificity of cluster
models is that the wave function of the A-nucleon system, solution of the Schrödinger
equation associated with (1.1.3), is described within the cluster approximation. In
other words, the A nucleons are assumed to be divided in clusters, described by
shell-model wave functions, and the total wave function is fully antisymmetric. For
a two-cluster system with internal wave functions φ1 and φ2, the total wave function
is written as

Ψ = A φ1φ2g(ρ), (1.1.4)

where A is the A-nucleon antisymmetrizor, and the radial function g(ρ) depends on
the relative coordinate ρ. The cluster approximation is at the origin of the Resonating
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Group Method (RGM) proposed by Wheeler [2] and widely used and developed by
many groups (see for example [16, 20, 31]).

A significant breakthrough in microscopic cluster theories was achieved by the
introduction of the Generator Coordinate Method (GCM), equivalent to the RGM,
but allowing simpler and more systematic calculations [32]. The principle of the
GCM is to expand the radial wave function g(ρ) in a Gaussian basis. Under some
restrictions, the total wave function (1.4) can then be rewritten as a combination of
Slater determinants, well adapted to numerical calculations. Over the last decades,
the GCM was developed in various directions: multi-cluster extensions [33–35],
improved shell-model descriptions of the cluster wave functions [36], monopole
distortion of the clusters [37], etc.

In nuclear spectroscopy, microscopic cluster models present a wide range of appli-
cations. They are remarkably well suited to molecular states, which are known to be
strongly deformed, and present a marked cluster structure (see, for example, Refs.
[13, 38–40]). The physics of exotic nuclei, and in particular of halo nuclei, is rather
recent [41], and is also well described by cluster models. These nuclei are regarded
as a core surrounded by external nucleons moving at large distances [42], and can
be considered as cluster systems (see, for example, Refs. [43–45]). Unbound nuclei
are extreme applications of cluster models, well adapted to resonances [46]. Several
other applications, such as β decay [47] or charge symmetry in the Asymptotic
Normalization Constant [48], have also been analyzed within microscopic cluster
theories.

Microscopic cluster models have been also applied to various types of reactions:
elastic, inelastic, transfer, etc. At low energies, the wavelength associated with the
relative motion is large with respect to the typical dimensions of the system, and
antisymmetrization effects are expected to be important. Microscopic theories have
been widely applied in nuclear astrophysics (see e.g. [49, 50]), where measurements
in laboratories are in general impossible at stellar energies [51–53]. This includes
low-energy capture and transfer processes. Other nuclear reactions, such as nucleus–
nucleus bremsstrahlung [54], have been studied in microscopic approaches. Being
restricted to a limited number of cluster configurations (in general one), a microscopic
cluster model is well adapted to the spectroscopy of low-lying states, and to low-
energy reactions, where the level density and the number of open channels are limited.

It is of course impossible to provide an exhaustive bibliography of microscopic
cluster theories. Excellent reviews can be found, for example, in Refs. [16, 20, 32,
55–57]. The paper is organized as follows. In Sect. 1.2, we discuss effective nucleon–
nucleon interactions used in microscopic theories. In Sect. 1.3, we present the RGM
in simple conditions: we consider systems made of two spinless clusters. We present
an illustrative example with the α + n system. Section 1.4 is devoted to the GCM
and to its link with the RGM. In Sect. 1.5 we give more specific information on the
calculation of GCM matrix elements. In Sect. 1.6, we discuss some approximations
and reformulations of the RGM equations. Section 1.7 is devoted to extensions of
the model to multicluster and multichannel approaches. The treatment of scattering
states in the GCM framework is outlined in Sect. 1.8. We discuss some applications
of the RGM in Sect. 1.9. Concluding remarks are presented in Sect. 1.10.
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1.2 Choice of the Nucleon–Nucleon Interaction

In the A-body Hamiltonian (1.1.3), the nucleon–nucleon interaction vij must account
for the cluster approximation of the wave function. This leads to effective interactions,
adapted to harmonic-oscillator orbitals. For example, using 0s orbitals for the α
particle makes all matrix elements of non-central forces equal to zero. The effect of
non-central components is simulated by an appropriate choice of the central effective
interaction.

The nucleon–nucleon interaction contains Coulomb and nuclear terms and is
written as

vij(r) = vC
ij (r)+ vN

ij (r), (1.2.1)

where the Coulomb term

vC
ij (r) = e2

r

(
1

2
− tiz

)(
1

2
− tjz

)
, (1.2.2)

is defined in the isospin formalism. For the nuclear term, most calculations performed
with the RGM use central vN,c

ij (r) and spin–orbit vN,so
ij (r) interactions with

vN
ij (r) = vN,c

ij (r)+ vN,so
ij (r). (1.2.3)

In general, the central part is written as a combination of Ng Gaussian form factors

vN,c
ij (r) =

Ng∑

k=1

V0kexp(−(r/ak)
2)(wk − mkPσij Pτij + bkPσij − hkPτij). (1.2.4)

Other potentials, such as the M3Y force [58] are defined from Yukawa form factors.
However, the use of Gaussian form factors is well adapted to harmonic-oscillator
orbitals. Parameters V0k and ak are given in Table 1.1 for the Volkov V2 [59] and
Minnesota [60] interactions. Both forces contain one adjustable parameter (M and
u, respectively). The standard values are M = 0.6 and u = 1, but these parameters
can be slightly modified in order to reproduce an important property of the system.
A typical example is the energy of a resonance or of a bound state.

The Volkov interaction involves two Gaussian functions and does not depend
on spin and isospin (bk = hk = 0). With this force the deuteron binding energy
is underestimated and the dineutron system is bound with the same energy. The
Minnesota interaction [60] is defined by three different Gaussian functions. This force
reproduces the deuteron binding energy and some properties of nucleon–nucleon
scattering. It simulates the missing tensor force in the binding energy, as well as
possible three-body effects, through the central term. Of course, the quadrupole
moment of the deuteron, which is determined by the tensor force, is exactly zero
with the Minnesota interaction.
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Table 1.1 Amplitudes V0k (in MeV) and ranges ak (in fm) of the Volkov V2 and Minnesota inter-
actions

Interaction k V0k ak wk mk bk hk

Volkov V2 1 −60.65 1.80 1 − M M 0 0
2 61.14 1.01 1 − M M 0 0

Minnesota 1 200 1/
√

1.487 u/2 1 − u/2 0 0
2 −178 1/

√
0.639 u/4 1/2 − u/4 u/4 1/2 − u/4

3 −91.85 1/
√

0.465 u/4 1/2 − u/4 −u/4 u/4 − 1/2

In Ref. [40], we have extended the Volkov V2 interaction by introducing Bartlett
and Heisenberg components. This development was motivated by the need for more
flexible interactions, able to reproduce thresholds in transfer reactions. This force is
referred to as the EVI (Extended Volkov Interaction) interaction.

In most calculations a spin–orbit term is included. We take it as defined in
Ref. [61] (see also [60]),

vN,so
ij (r) = − S0

�2r5
0

(
(ri − rj)× (pi − pj)

) · (si + sj)exp
(−(r/r0)

2), (1.2.5)

where S0 is the amplitude (expressed in MeV.fm5), and si is the spin of nucleon i.
Standard values of S0 are S0 ≈ 30 MeV.fm5, which provides a fair approximation
of the 1/2− − 3/2− energy splitting in 15N. We use a range r0 = 0.1 fm, which is
equivalent to a zero-range force.

As mentioned earlier, cluster models make use of effective nucleon–nucleon
forces. In contrast, ab initio models [29, 62] aim at determining exact solutions
of the Schrödinger equation (1.1.1), without the cluster approximation. For instance,
the No-Core Shell Model (NCSM) is based on very large one-center harmonic-
oscillator (HO) bases and effective interactions [63], derived from realistic forces
such as Argonne [64] or CD-Bonn [65]. These interactions are adapted for finite
model spaces through a particular unitary transformation. Wave functions are then
expected to be accurate, but states presenting a strong clustering remain difficult
to describe with this model. Indeed, in spite of considerable advances in computer
facilities, the calculations remain limited by the size of the model space. Realistic
interactions are adjusted to reproduce properties of the nucleon–nucleon system with
a high precision. The necessity to introduce a 3N force or more (4N, ...) is now estab-
lished in order to get highly accurate spectra [66]. However, genuine expressions of
these potentials remain under study [66].
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1.3 The Resonating Group Method

1.3.1 The RGM Equation

Let us consider A nucleons with coordinates ri, assumed to be divided in two clusters
with A1 and A2 nucleons. The center of mass (c.m.) of each cluster is given by

Rcm,1 = 1

A1

A1∑

i=1

ri,

Rcm,2 = 1

A2

A∑

i=A1+1

ri,

(1.3.1)

which define the c.m. of the system Rcm, and the relative coordinate ρ as

Rcm = 1

A

(
A1Rcm,1 + A2Rcm,2

)
,

ρ = Rcm,2 − Rcm,1.

(1.3.2)

For each cluster, we define a set of translation-invariant coordinates

ξ1i = ri − Rcm,1 for i = 1, . . . ,A1,

ξ2i = ri − Rcm,2 for i = A1 + 1, . . . ,A.
(1.3.3)

The A1 and A2 sets of coordinates ξ1i and ξ2i are not independent since we have,
according to the definitions of Rcm,1 and Rcm,2,

A1∑

i=1

ξ1i =
A∑

i=A1+1

ξ2i = 0. (1.3.4)

In the RGM, the total wave function is based on internal cluster wave functions
φ1(ξ1i) and φ2(ξ2i). These internal wave functions are defined in the harmonic-
oscillator model with oscillator parameter b. Here, we always assume that the oscil-
lator parameter is common to all clusters. Going beyond this approximation intro-
duces serious technical problems due to spurious c.m. components (see for example
[16, 37, 67]). The RGM wave function is written, for two-cluster systems, as

Ψ (ξ1i, ξ2i, ρ) = A φ1(ξ1i)φ2(ξ2i)g(ρ), (1.3.5)

where g(ρ) is the relative wave function, to be determined from the Schrödinger
equation (1.1.1), and A the antisymmetrization operator

A =
A!∑

p=1

εpPp, (1.3.6)



8 P. Descouvemont and M. Dufour

where Pp is a permutation over the A nucleons and εp = ±1 is the sign of this permu-
tation. This operator not only acts inside the clusters, but also contains exchange terms
between them. With this definition, the antisymmetrization operator is not exactly a
projector since we have

A 2 = A!A . (1.3.7)

In Eq. (1.3.5), we do not include the spins of the clusters, neither the relative
angular momentum between the clusters. Definition (1.3.5) only contains one cluster
configuration or, in other words, a single arrangement of the nucleons. More gener-
ally, several cluster wave functions (1.3.5) can be combined to improve the total wave
function of the system. Here we limit ourselves to this simple case, for the sake of
clarity. Various extensions will be developed in Sect. 1.7.

At first glance, the RGM wave function may appear as suitable for cluster states
only, where the cluster approximation is obvious. However, owing to the antisym-
metrization operator A , the RGM (and the equivalent GCM described in Sect. 1.4)
can be also applied to non-cluster states, such as shell-model or single-particle states
[56].

Another remarkable advantage of the RGM wave function (1.3.5) is its direct
applicability to scattering states. The main issue for scattering is to treat the asymp-
totic behaviour of the wave functions. At large relative distances between the colliding
nuclei, antisymmetrization effects are negligible and the factorization (1.3.5) is exact
without the antisymmetrization operator. This property is one of the main advantages
of the RGM with respect to other microscopic approaches, such as the shell model or
the FMD, where the treatment of scattering states is a serious problem, in particular
to go beyond nucleon+nucleus scattering [68].

To derive the relative wave function g(ρ), let us rewrite Eq. (1.3.5) as

Ψ = A φ1φ2g(ρ) =
∫

A φ1φ2δ(ρ − r)g(r)dr, (1.3.8)

where r is a parameter on which operator A does not act, and where the internal
coordinates are implied. Then, using (1.3.8) in the Schrödinger equation (1.1.1)
provides the RGM equation

∫ [
H (ρ, ρ′)− ET N (ρ, ρ′)

]
g(ρ′)dρ′ = 0. (1.3.9)

In this equation, N and H are the (non-local) overlap and Hamiltonian kernels
defined as

{
N (ρ, ρ′)
H (ρ, ρ′)

}
= 〈φ1φ2δ(ρ − r)|

{
1
H

}
|A φ1φ2δ(ρ

′ − r)〉, (1.3.10)

where the integrals are performed over the internal coordinates and over the relative
coordinate r. In the Hamiltonian operator H, the kinetic energy of the center of mass
(c.m.) has been subtracted. Accordingly ET is defined with respect to the c.m. energy.
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The RGM equation (1.3.9) can be simplified further by rewriting A and H as

A = 1 + A ′

H = H1 + H2 + H ′,
(1.3.11)

where A ′ only contains exchange terms, H1 and H2 are the internal Hamiltonians
of the clusters, and H ′ is given by

H ′ = − �
2

2μ
�ρ +

A1∑

i=1

A∑

j=A1+1

vij, (1.3.12)

μ being the reduced mass μ = μ0mN with μ0 = A1A2/(A1 + A2). The internal
energies E1 and E2 are given by

Ei = 〈φi|Hi|φi〉, (1.3.13)

and the relative energy E is

E = ET − E1 − E2. (1.3.14)

In these conditions, kernels (1.3.10) can be expressed as

N (ρ, ρ′) = δ(ρ − ρ′)+ NE(ρ, ρ
′)

H (ρ, ρ′) =
(

− �
2

2μ
�ρ + VD(ρ)+ E1 + E2

)
δ(ρ − ρ′)+ HE(ρ, ρ

′)
(1.3.15)

where NE and HE are the exchange kernels, and where the direct potential VD is
given by

VD(ρ) = 〈φ1φ2|
A1∑

i=1

A2∑

j=1

vij|φ1φ2〉. (1.3.16)

The RGM equation (1.3.9) is finally written as
(

− �
2

2μ
�ρ + VD(ρ)

)
g(ρ)+

∫
K(ρ, ρ′)g(ρ′)dρ′ = Eg(ρ), (1.3.17)

with

K(ρ, ρ′) = HE(ρ, ρ
′)− ET NE(ρ, ρ

′). (1.3.18)

Equation (1.3.17) is the standard form of the RGM equation. It can be solved by
different techniques (see for example [69]). The non-local term (1.3.18) is energy
dependent and arises from exchange effects in the antisymmetrization operator
(1.3.11). If A ′ = 0, i.e. if antisymmetrization is neglected, the kernels NE and
HE are equal to zero. In this simple approximation, the RGM equation is local and
only involves the direct potential VD.
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1.3.2 Example: Overlap Kernel of the α+n System

This simple example illustrates the calculation of the overlap kernel. The extension
to the Hamiltonian kernels is given in [70]. Let us consider the α and neutron internal
wave functions

φ1 = Φα(ξ1, ξ2, ξ3)|n1 ↓ n1 ↑ p1 ↓ p1 ↑>
φ2 = |n2 ↓>, (1.3.19)

where we have factorized the space and spin/isospin components. The spatial compo-
nent Φα of the α-particle wave function is built from 0s oscillator orbitals with
parameter ν = 1/2b2. In the coordinate system (1.3.3) it is given as

Φα(ξ1, ξ2, ξ3) = 1

N
exp(−ν

4∑

i=1

ξ2
i ), (1.3.20)

with the normalization factor defined by

〈Φα | Φα〉 = 1

= 1

N2

∫ ∫ ∫
exp
(
−2ν

(
ξ2

1+ξ2
2+ξ2

3 + (ξ1 + ξ2 + ξ3)
2)) dξ1dξ2dξ3

= 1

N2

(
π3

32ν3

)3/2

.

(1.3.21)
Notice that the internal wave function (1.3.20) only depends on three independent
coordinates [see Eqs. (1.3.3, 1.3.4)]. Coordinate ξ4 is defined from (1.3.4).

Since we assume that the external neutron has a spin down, only the exchange
operator P15 between nucleons 1 and 5 contributes in the antisymmetrization operator
(1.3.6). Applying P15 on the internal and relative coordinates provides

P15ξ1 = 3

4
ρ + 1

4
ξ1,

P15ξ2 = −1

4
ρ + 1

4
ξ1 + ξ2,

P15ξ3 = −1

4
ρ + 1

4
ξ1 + ξ3,

P15ρ = −1

4
ρ + 5

4
ξ1. (1.3.22)

A simple calculation leads to

P15Φαδ(ρ − r) = Φαexp

[
−4ν

5

(
r2 − (P15ρ)

2)
]
δ(P15ρ − r), (1.3.23)

and the exchange overlap kernel is deduced from (1.3.15) as
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NE(ρ, ρ
′) = −

∫ ∫ ∫ ∫
drdξ1dξ2dξ3Φα(ξ1, ξ2, ξ3)

× δ(ρ − r)P15Φα(ξ1, ξ2, ξ3)δ(ρ
′ − r).

(1.3.24)

The integral is first performed over r. Then, integration over ξ2 and ξ3 provides

∫
|Φα(ξ1, ξ2, ξ3)|2dξ2dξ3 =

(√
3π

6ν

)3

exp

(
−8ν

3
ξ2

1

)
. (1.3.25)

This gives, by integrating over ξ1 and using the delta function in (1.3.23),

NE(ρ, ρ
′) = −

(
4

5

)3 ( 8ν

3π

)3/2

exp

[
−4ν

75
(17ρ2 + 17ρ′2 + 16ρ · ρ′)

]
. (1.3.26)

This result can be also found in Refs. [70, 71] for example (see also Ref. [72]). Of
course it does not depend on the spin and isospin of the external nucleon.

1.4 The Generator Coordinate Method

1.4.1 Introduction

The main problem associated with the RGM is not to solve the integro-differential
equation (1.3.17). This can be done, for example, by using finite-difference methods
[73], or the Lagrange-mesh technique [69, 74]. In contrast, the determination of the
overlap and Hamiltonian kernels (1.3.10) requires heavy analytical calculations, in
particular for systems involving p-shell clusters. The non-systematic character of the
RGM makes it quite difficult to apply in multicluster systems or in multichannel
problems.

This limitation received an efficient solution with the introduction of the Generator
Coordinate Method [16, 32, 75]. The idea underlying the GCM is to expand the radial
function g(ρ) (1.3.5) over Gaussian functions, centered at different locations, called
the generator coordinates. This expansion allows to express the total wave function
(1.3.5) as a superposition of Slater determinants. The RGM and the GCM methods
are therefore equivalent, but the use of Slater determinants makes the GCM better
adapted to numerical calculations. The GCM has been applied, in the last decades,
to many nuclei or reactions. In particular the spectroscopy of exotic nuclei [45, 76],
and reactions of astrophysical interest [77] have been investigated.
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1.4.2 Slater Determinants and GCM Basis Functions

Let us consider a one-center Slater determinant Φ1(S) built from A1 orbitals. All
orbitals are centered at a common location S as

Φ1(S) = 1√
A1!

det
{
ϕ̂1(S) . . . ϕ̂A1(S)

} = 1√
A1!

A ϕ̂1(S) . . . ϕ̂A1(S), (1.4.1)

where the individual orbitals ϕ̂i(S) are factorized in space, spin and isospin compo-
nents. Each function ϕ̂i(S) is therefore defined as

ϕ̂i(S) = ϕi(r,S)|msi 〉|mti〉, (1.4.2)

where |msi 〉 is a spinor and |mti〉 the isospin function. In this definition, the space, spin
and isospin coordinates are implied. The radial part ϕi(r,S) is an harmonic-oscillator
function, normalized to unity [78]. For s waves, it reads

ϕi(r,S) = ϕ0s(r,S) = (πb2)−3/4exp

(
− (r − S)2

2b2

)
. (1.4.3)

The parameter v and oscillator energy �ω are related to the oscillator parameter b as

v =1/2b2

�ω = �
2

mN b2 .
(1.4.4)

For p waves, the radial functions are

ϕi(r,S) = ϕ1pμ(r,S) =
√

2

b
(rμ − Sμ)ϕ0s(r,S), (1.4.5)

where index μ corresponds to the Cartesian coordinates (x,y,z). In the following we
do not explicitly write the labels 0s or 1pμ to the nucleon orbitals. We assume that
all orbitals have a common oscillator parameter and are all centered at the same
location. This is different from the AMD or FMD, where the oscillator parameters
are optimized individually for each nucleon.

A drawback of the internal wave function (1.4.1) is that it is not invariant under
translation. However, the Slater determinant (1.4.1) can be rewritten as

Φ1(S) = exp

(
− A1

2b2 (Rcm,1 − S)2
)
φ1, (1.4.6)

where φ1 is the translation-invariant function defined in Sect. 1.3.1, and where Rcm,1
is the c.m. coordinate (1.3.1) of the system. The factorization (1.4.6) is known as the
Bethe and Rose theorem [79], and assumes that all shells below some maximum are
included in the Slater determinant (1.4.1).
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Let us now consider a two-center wave function defined from two cluster functions
(1.4.1) located at S1 and S2. The generator coordinate is defined as R = S2 − S1.

We choose the origin of the system along the axis between S1 and S2. The location
of the origin is therefore defined by a parameter λ (with 0 ≤ λ ≤ 1). Typical values
are λ = 0 which corresponds to the center of cluster 1, and λ = A2/A, where the
origin is located at the center of mass. We define the two-cluster Slater determinant
as

Φ(R) = 1√
A! det

{
ϕ̂(−λR) . . . ϕ̂A1(−λR)ϕ̂A1+1((1 − λ)R) . . . ϕ̂A((1 − λ)R)

}
,

= 1√
N0

AΦ1(−λR)Φ2((1 − λ)R), (1.4.7)

where the nucleon coordinates are implied. The normalization factor N0 = A!
A1!A2!

stems from property (1.3.7). This Slater determinant is built with A1 orbitals at
−λR and A2 orbitals at (1 − λ)R. Definition (1.4.7) can be directly extended to
more than two clusters [21, 32, 80]. Obviously this basis function is not invariant
under translation. However, by using the factorization (1.4.6) for both clusters, and
assuming a common oscillator parameter b, Eq. (1.4.7) can be rewritten as

Φ(R) = 1√
N0
ΦcmA φ1φ2Γ (ρ,R), (1.4.8)

which involves the translation-invariant functions φ1 and φ2. The c.m. and radial
wave functions read

Φcm(Rcm) =
(

A

πb2

)3/4

exp

(
− A

2b2

[
Rcm + R(λ− A2/A)

]2
)
,

Γ (ρ,R) =
( μ0

πb2

)3/4
exp
(
− μ0

2b2 (ρ − R)2
)
. (1.4.9)

The c.m. and radial coordinates are therefore uncoupled. The associated func-
tions are simple Gaussian functions with oscillator parameters b/

√
A and b/

√
μ0,

respectively. This factorization of the c.m. motion greatly simplifies the calculation
of GCM matrix elements. Let us express the Slater determinant (1.4.7) as

Φ(R) = ΦcmΦ̄(R), (1.4.10)

where Φ̄(R) is a physical basis function, independent of the c.m. coordinate. Func-
tionsΦ(R), on the contrary, contain spurious c.m. components, but are well adapted
to a numerical calculation since they are Slater determinants. Using (1.4.10), we have

〈Φ(R)|Φ(R′)〉 = 〈Φcm|Φcm〉〈Φ̄(R)|Φ̄(R′)〉, (1.4.11)
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with

〈Φcm|Φcm〉 = exp

(
−A(λ− A2/A)2

4b2 (R − R′)2
)
. (1.4.12)

The overlap between basis functions Φ̄(R) is therefore obtained from a matrix
elements between Slater determinants, corrected by a simple c.m. factor. Notice that
both c.m. functions in the matrix elements (1.4.12) may involve different generator
coordinates.

Matrix elements between GCM basis states Φ̄(R) should not depend on λ. This
provides a strong test of the calculations. The choice λ = A2/A, i.e. taking the origin
at the center of mass, is commonly used since c.m. correction factors are trivial.
Another choice adopted in the literature is λ = 0, where all orbitals are centred at
the origin of cluster 1. If the orbitals of the external clusters are orthogonalized to the
core orbitals [32, 81], the calculation of matrix elements is strongly simplified (see
Sect. 1.5). This technique is quite efficient when the core is a closed-shell nucleus
(α,16 O, 40Ca, etc.) and is surrounded by 0s orbitals (see for example Ref. [82] for
the 16O+3He+p three-cluster system).

Matrix elements of other operators should account for the spurious c.m. contribu-
tion. Garthenaus and Schwartz [83] have shown that the removal of the c.m. compo-
nent of the wave function can be achieved by using transformed operators, obtained
by a modification of the space and momentum coordinates as

ri −→ ri − Rcm

pi −→ pi − 1

A
Pcm, (1.4.13)

where Pcm is the c.m. momentum. The transformation-invariant forms of the kinetic
energy and of the r.m.s. radius are therefore

T −→ T − Tcm =
∑

i

p2
i

2mN
− Tcm,

< r2 >−→< r2 > −R2
cm = 1

A

∑

i

r2
i − R2

cm, (1.4.14)

and the c.m. matrix elements take the simple forms

〈Φcm |Tcm|Φcm〉 = 1

4
�ω

(
3 − A(λ− A2/A)2

2b2 (R − R′)2
)

〈Φcm|Φcm〉

〈Φcm

∣∣∣R2
cm

∣∣∣Φcm〉 =
(

3

2
b2 + (λ− A2/A)2

4
(R + R′)2

)
〈Φcm|Φcm〉. (1.4.15)

A similar calculation can be performed for the electric operators of rank L [84].
At the long-wavelength approximation, the translation-invariant form is defined as
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M E
LM = e

∑

i

(
1

2
− tiz

)
|ri − Rcm|LYM

L (Ωri−Rcm). (1.4.16)

This operator can be expanded as [78]

M E
LM =

∑

k

(
4π(2L + 1)!

(2k + 1)!(2L − 2k + 1)!
)1/2 [

M E
L−k(ri)⊗ M E

k (Rcm)
]LM

,

(1.4.17)
where M E

L−k(ri) is defined from (1.4.16) and where the c.m. contributions read

M E
km(Rcm) = Rk

cmYm
k (ΩRcm). (1.4.18)

Matrix elements can be obtained as in (1.4.15). However, the calculation of additional
multipoles (k < L) can be avoided by choosing λ = A2/A or, in other words, by
taking the c.m. as origin of the coordinate system. In that case, only k=0 contributes in
the matrix elements of (1.4.17) and the c.m. correction is trivial. Similar developments
can be performed for magnetic multipoles [85].

The factorization of the internal wave functions and of the radial part makes GCM
basis functions (1.4.8) well adapted to collisions (see Sect. 1.8). If the oscillator
parameters of the clusters are different, the removal of the spurious c.m. components
is however a delicate problem [16, 86]. This can be tackled by using the Complex
GCM [16]. In this variant the generator coordinate R is complex. The calculation of
matrix elements is very similar, but the imaginary part provides an efficient tool to
deal with different oscillator parameters of the clusters.

1.4.3 Equivalence Between RGM and GCM

In the two-cluster approximation, the total wave function of a system is defined as a
superposition of GCM basis functions

Ψ = Φ−1
cm

∫
f (R)Φ(R)dR, (1.4.19)

where f (R) is the generator function, to be determined from the microscopic Hamil-
tonian (1.1.3) According to Eq. (1.4.8), wave functionΨ is invariant under translation.
Using (1.4.8), wave function (1.4.19) reads

Ψ = A φ1φ2g(ρ), (1.4.20)

with

g(ρ) =
∫

f (R)Γ (ρ,R)dR, (1.4.21)

which shows the equivalent between the RGM and the GCM. The generator function
is obtained from the Hill–Wheeler equation [87]
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∫ [
H(R,R′)− ET N(R,R′)

]
f (R′)dR′ = 0, (1.4.22)

where the GCM kernels are given by

{
N(R,R′)
H(R,R′)

}
= 〈Φ̄(R)|

{
1
H

}
|Φ̄(R′)〉, (1.4.23)

and where c.m. components have been removed. In practice the integral in (1.4.21)
is discretized over a finite set of Rn values as

g(ρ) ≈
∑

n

f (Rn)Γ (ρ,Rn). (1.4.24)

For bound states, the integral equation (1.4.22) is therefore replaced by the diago-
nalization of a matrix (typically 10 Rn values are used). The treatment of scattering
states requires an additional tool to correct for the Gaussian asymptotic behaviour of
the relative function (1.4.24). This will be developed in Sect. 1.8.

The calculation of matrix elements between Slater determinants is well known
[4] and will be discussed in Sect. 1.5 (see also Refs. [32, 67] for further detail). The
RGM and GCM kernels [(1.3.10) and (1.4.23), respectively] can be linked to each
other by integral transforms [32, 67, 88].

1.4.4 Two-Cluster Angular-Momentum Projection

Let us consider the partial-wave expansion of the GCM basis states (1.4.7)

Φ(R) = 4π
∑

�m

Φ�m(R)Ym∗
� (ΩR). (1.4.25)

Notice that the overall normalization does not play a role, and can be chosen freely
as long as it is consistently used in the calculation of the matrix elements. We use
the expansion of (1.4.9)

Γ (ρ,R) = 4π
∑

�m

Γ�(ρ,R)Ym
� (Ωρ)Y

m∗
� (ΩR),

Γ�(ρ,R) =
( μ0

πb2

)3/4
exp
[
− μ0

2b2 (ρ
2 + R2)

]
i�

(
μ0ρR

b2

)
, (1.4.26)

where i�(x) is a spherical Bessel function [89]. Then Eqs. (1.4.8) and (1.4.25) provide

Φ�m(R) = 1√
N0

A φ1φ2Γ�(ρ,R)Ym
� (Ωρ) (1.4.27)
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and the total wave function reads

Ψ �m =
∫

f�(R)Φ
�m(R)dR. (1.4.28)

The generator function f�(R) is obtained from the Hill–Wheeler equation involving
projected GCM kernels

∫ [
H�(R,R′)− ET N�(R,R′)

]
f�(R

′)dR′ = 0. (1.4.29)

The projected overlap kernel N�(R,R′) is derived from the expansion

N(R,R′) = 〈Φ(R)|Φ(R′)〉
= (4π)2

∑

�m

〈Φ�(R)|Φ�(R′)〉Ym
� (ΩR)Y

m∗
� (ΩR′)

= 4π
∑

�

(2�+ 1)〈Φ�(R)|Φ�(R′)〉P�(cos θ),

(1.4.30)

where θ is the angle between R and R′. Then, by inverting (1.4.30), we find

N�(R,R′) = 〈Φ�(R)|Φ�(R′)〉 = 1

8π

∫ π

0
N(R,R′)P�(cos θ)d cos θ, (1.4.31)

and a similar equation holds for the Hamiltonian kernel H�(R,R′). Since N(R,R′)
and H(R,R′) only depend on the relative angle θ, the orientation of one generator
coordinate can be chosen arbitrarily. A common choice is to take R along the z axis,
and R′ in the xz plane. The integration over θ can be performed numerically with a
Gauss–Legendre quadrature, or analytically in some simple cases.

For two-clusters systems, the projection over parity is automatic since the angular-
momentum projection provides

π = (−1)�. (1.4.32)

1.5 Matrix Elements Between Slater Determinants

1.5.1 General Presentation

Let us consider a system of A orbitals ϕ̂i(Sn) distributed among N clusters. The set of
cluster locations is denoted as S{N}. As mentioned in (1.4.2) the individual orbitals
involve space, spin and isospin components as

ϕ̂i(Sn) = |ϕi(r,Sn)〉|msi〉|mti〉, (1.5.1)
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Fig. 1.1 Typical two-cluster
(α + n) and three-cluster
(16O+3He+p)
configurations. The crosses
indicate the c.m. location
within the generator
coordinates

where ϕi(r,Sn) is an harmonic-oscillator function. Most calculations are performed
with 0s orbitals, but the presentation is more general; explicit definitions of s and p
orbitals are given by (1.4.3) and (1.4.5). The A-nucleon Slater determinant reads

Φ(S{N}) = 1√
A! det{ϕ̂1(S1) . . . ϕ̂A(SN )}. (1.5.2)

For example, the α + n system involves four s orbitals at S1 = −R/5, and one 0s
orbital at S2 = 4R/5. The 19Ne+p system, with 19Ne described as 16O+3He [82],
involves four 0s and twelve 1p orbitals at S1 = −R1/20 − 3R2/19, three 0s orbitals
at S2 = −R1/20 + 16R2/19, and one 0s orbital at S3 = 19R1/20 (see Fig. 1.1).

The calculation of matrix elements between Slater determinants (1.5.2) is rather
simple and systematic. We present here a short overview of the method, but more
detail can be found in Refs. [4, 32]. The overlap is given by

〈Φ(S{N})|Φ(S′{N})〉 = 1

A! 〈A ϕ̂1(S1) . . . ϕ̂A(SN ) | A ϕ̂1(S′
1) . . . ϕ̂A(S′

N )〉
= 〈ϕ̂1(S1) . . . ϕ̂A(SN ) | A ϕ̂1(S′

1) . . . ϕ̂A(S′
N )〉

= 〈ϕ̂1(S1) . . . ϕ̂A(SN ) | det ϕ̂1(S′
1) . . . ϕ̂A(S′

N )〉
= det B, (1.5.3)

where we have used (1.3.7), and where matrix B is given by the individual overlaps
as

Bij = 〈ϕ̂i(Si)|ϕ̂j(S′
j)〉. (1.5.4)

For one-body operators O1 written as

O1 =
A∑

i=1

o1(ri), (1.5.5)

a matrix element between Slater determinants reads
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〈O1〉 = 〈Φ(S{N})|O1|Φ(S′{N})〉

=
A∑

ij=1

Mij〈ϕ̂i(Si)|o1|ϕ̂j(S′
j)〉

= det B
A∑

ij=1

(
B−1

)

ji
〈ϕ̂i(Si)|o1|ϕ̂j(S′

j)〉 if det B 
= 0, (1.5.6)

where Mij is a cofactor of matrix B. It is obtained from the determinant of B after
removal of column i and line j, and multiplication by a phase factor (−1)i+j. If
det B 
= 0, we have

Mij = det B
(

B−1
)

ji
. (1.5.7)

One-body matrix elements therefore involve a double sum over the individual
orbitals. Here and in the following, we assume det B 
= 0, but the generalization
is straightforward. Typical examples of one-body operators are the kinetic energy,
the r.m.s. radius, and the electromagnetic operators.

For a two-body operators O2 such as the nucleon–nucleon interaction

O2 =
A∑

i>j=1

o2(ri, rj) = 1

2

A∑

i 
=j=1

o2(ri, rj), (1.5.8)

a matrix element reads

〈O2〉 = 〈Φ(S{N})|O2|Φ(S′{N})〉

= 1

2

A∑

ijkl=1

Mij,kl〈ϕ̂i(Si)ϕ̂j(Sj)|o2|ϕ̂k(S′
k)ϕ̂l(S′

l)〉, (1.5.9)

where Mij,kl is a second-order cofactor of matrix B. For det B 
= 0, we have

Mij,kl = det B
[(

B−1
)

ki

(
B−1

)

lj
−
(

B−1
)

kj

(
B−1

)

li

]
. (1.5.10)

In addition since the individual matrix elements satisfy the symmetry property

〈ϕi(Si)ϕj(Sj)|o2|ϕk(S′
k)ϕl(S′

l)〉 = 〈ϕj(Sj)ϕi(Si)|o2|ϕl(S′
l)ϕk(S′

k)〉, (1.5.11)

the following definitions are equivalent:
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〈O2〉 =1

2
det B

A∑

ijkl=1

[(
B−1

)

ki

(
B−1

)

lj
−
(

B−1
)

kj

(
B−1

)

li

]

× 〈ϕ̂i(Si)ϕ̂j(Sj)|o2|ϕ̂k(S′
k)ϕ̂l(S′

l)〉

=1

2
det B

A∑

ijkl=1

(
B−1

)

ki

(
B−1

)

lj

[〈ϕ̂i(Si)ϕ̂j(Sj)|o2|ϕ̂k(S′
k)ϕ̂l(S′

l)〉

− 〈ϕ̂i(Si)ϕ̂j(Sj)|o2|ϕ̂l(S′
l)ϕ̂k(S′

k)〉 ] . (1.5.12)

They involve a quadruple sum over the individual orbitals. In practice the two-body
matrix elements represent the main part of the computer time. Further extensions
to three-body forces can be done, but the corresponding matrix elements involve
sextuple sums overs the individual orbitals.

1.5.2 Spin and Isospin Factorization

In Eq. (1.5.1) it is assumed that the individual orbitals are characterized by spin and
isposin projections (ms = ±1/2,mt = ±1/2). In that case, the overlap matrix B
takes the simpler form

B =

⎛

⎜⎜⎝

Bn↓
Bn↑

Bp↓
Bp↑

⎞

⎟⎟⎠ , (1.5.13)

involving (smaller) submatrices corresponding to the nucleon types. The individual
orbitals have been reordered in four groups corresponding to the spin and isospin
values (notice that a phase factor (−1) may appear in the wave function when
reordering the orbitals). The overlap (1.5.3) is then factorized as

det B =
4∏

k=1

det Bk,

Bk
ij = 〈ϕi(Si)|ϕj(S′

j)〉, (1.5.14)

where only the spatial parts of the wave functions are involved [see Eq. (1.5.1)]. In
this definition, index k corresponds to the four spin/isospin projections. This means
that the calculation is much faster than by using the full matrix. In many cases some
of the matrices Bk are identical (for example in nα systems such as 8Be or 12C, the
four matrices Bk are identical), which still simplifies the calculations.

If the one-body operator O1 does not depend on spin and isospin (as for the kinetic
energy for example), its matrix element (1.5.6) is simplified to
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Table 1.2 Direct and exchange coefficients (k1 ≥ k2) for the nuclear (central), Coulomb and spin–
orbit interactions

k1 k2 Ak1k2
D Ck1k2

D Sk1k2
D Ak1k2

E Ck1k2
E Sk1k2

E
1 PσPτ Pσ Pτ 1 PσPτ Pσ Pτ

n ↓ n ↓ 1 1 1 1 0 −1 1 1 1 1 0 −1
n ↓ n ↑ 1 0 0 1 0 0 0 1 1 0 0 0
n ↓ p ↓ 1 0 1 0 0 −1 0 1 0 1 0 0
n ↓ p ↑ 1 0 0 0 0 0 0 1 0 0 0 0
n ↑ n ↑ 1 1 1 1 0 1 1 1 1 1 0 1
n ↑ p ↓ 1 0 0 0 0 0 0 1 0 0 0 0
n ↑ p ↑ 1 0 1 0 0 1 0 1 0 1 0 0
p ↓ p ↓ 1 1 1 1 1 −1 1 1 1 1 1 −1
p ↓ p ↑ 1 0 0 1 1 0 0 1 1 0 0 0
p ↑ p ↑ 1 1 1 1 1 1 1 1 1 1 1 1

〈O1〉 = det B
4∑

k=1

∑

ij

(
Bk)−1

ji 〈ϕi(Si)|o1|ϕj(S′
j)〉, (1.5.15)

where the spin and isospin components of the individual orbitals have been taken out.
The number of terms in the summations over ij of course depends on the spin/isposin
index k.

Two-body operators in general depend on spin and isospin, but Eq. (1.5.9) can
also be simplified. Let us consider a central nucleon–nucleon interaction defined by
Eq. (1.2.4). The matrix elements (1.5.9) and (1.5.12) can be written as

〈VN,c〉 = 1

2
det B

4∑

k1,k2=1

∑

ijkl

(
Bk1
)−1

ki

(
Bk2
)−1

lj

×
[
Ak1k2

D 〈ϕi(Si)ϕj(Sj)|v|ϕk(S′
k)ϕl(S′

l)〉
− Ak1k2

E 〈ϕi(Si)ϕj(Sj)|v|ϕl(S′
l)ϕk(S′

k)〉 ] , (1.5.16)

where v is a Gaussian form factor, and where the direct and exchange coefficients
Ak1k2

D and Ak1k2
E are defined for each operator in (1.2.4). They are given in Table 1.2,

as well as the corresponding coefficients Ck1,k2
D and Ck1,k2

E arising from the Coulomb
interaction (1.2.2). Notice that these coefficients satisfy the symmetry properties

Ak2k1
D = Ak1k2

D , Ak2k1
E = Ak1k2

E , (1.5.17)

and equivalent relations hold for the Coulomb potential. Summations (1.5.16) can
therefore be simplified.
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1.5.3 The Spin–Orbit Interaction

Potentials considered in the previous section are scalar operators with respect to the
spin. For two nucleons coupled to spin S = 0 or 1 and projection MS, the application
of the Wigner–Eckart theorem gives

〈SMS|VN,c|S′M ′
S〉 = 〈S||VN,c||S′〉δSS′δMSM ′

S
, (1.5.18)

where the reduced matrix element 〈S||VN,c||S′〉 does not depend on the spin projec-
tions. The spin–orbit potential is a rank-1 operator, and the previous property does not
hold anymore. The calculation of the matrix elements is therefore more complicated
since the overlap between wave functions with different spins is zero.

Let us consider the scalar product involved in the spin–orbit potential (1.2.5)

L · S = LzSz + (S+L− + S−L+)/2. (1.5.19)

Since Sz does not change the spin of the a nucleon pair, the contribution of LzSz can
be determined as in (1.5.16)

〈LzSzexp(−( r

r0
)2)〉 = 1

2
det B

∑

k1,k2

∑

ijkl

(
Bk1
)−1

ki

(
Bk2
)−1

lj

×
[

Sk1k2
D 〈ϕi(Ri)ϕj(Rj)|Lzexp(−( r

r0
)2)|ϕk(Rk)ϕl(Rl)〉

−Sk1k2
E 〈ϕi(Ri)ϕj(Rj)|Lzexp(−( r

r0
)2)|ϕl(Rl)ϕk(Rk)〉

]
,

(1.5.20)
where coefficients Sk1k2

D and Sk1k2
E are given in Table 1.1. The matrix elements of

S+L− and S−L+ must be computed with the more general formula (1.5.9).

1.5.4 Matrix Elements Between Individual Orbitals

We give here matrix elements for 0s orbitals [32], and then discuss how to derive
matrix elements involving higher shells. As mentioned previously we assume that all
orbitals have the same oscillator parameter b. Notation ϕi corresponds to a 0s orbital
centred at Ri.

The overlap, kinetic energy and r.m.s radius are given by

〈ϕi|ϕj〉 = Bij = exp

(
− (Ri − Rj)

2

4b2

)
,

〈ϕi| − �
2

2mN
�|ϕj〉 = �ω

[
3

4
− (Ri − Rj)

2

8b2

]
Bij,

〈ϕi|r2|ϕj〉 =
[

3

2
b2 + (Ri + Rj)

2

4

]
Bij. (1.5.21)
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For a Gaussian form factor and for the Coulomb interaction we have

〈ϕiϕj|exp(− (r1 − r2)
2

a2 )|ϕkϕl〉 =
(

a2

a2 + 2b2

)3/2

exp

(
− 2b2

a2 + 2b2 P2
)

BikBjl,

(1.5.22)
and

〈ϕiϕj| 1

|r1 − r2| |ϕkϕl〉 = 1√
2b

erf(P)

P
BikBjl, (1.5.23)

where vector P is defined as

P = 1

2
√

2b
(Ri − Rj + Rk − Rl). (1.5.24)

For the spin–orbit potential, we need the matrix elements

〈ϕiϕj|exp(− (r1 − r2)
2

r2
0

)Lμ|ϕkϕl〉 = − i

4b2

r2
0

r2
0 + 2b2

[
(Ri − Rj)× (Rk − Rl)

]
μ

× 〈ϕiϕj|exp(− (r1 − r2)
2

r2
0

)|ϕkϕl〉,
(1.5.25)

where μ = −1, 0, 1. The combination of (1.2.5), (1.5.22) and (1.5.25) shows that
the factors involving r0 cancel out in the final matrix element of the spin–orbit
interaction.Matrix elements involving p orbitals can be obtained by rewriting (1.4.5)
as

ϕpμ(r,R) = √
2b

d

dRμ
ϕs(r,R). (1.5.26)

The corresponding matrix elements are therefore obtained by differentiation of 0s
matrix elements with respect to the generator coordinate R. Another approach is
to expand harmonic-oscillator orbitals in a Cartesian basis. Matrix elements in this
basis can be computed by recurrence relations [90]. In practice the latter technique
is the most efficient to include orbitals beyond the p shell.

1.5.5 Example: α + n Overlap Kernel

In this section we present an illustrative example with the α + n system, treated in a
way which is adopted in numerical calculations. Similar developments are presented
in Ref. [31] for theα+α system. More general results, obtained for systems involving
an α particle and an s-shell cluster will be given in the next subsection. The α particle
is built with four 0s orbitals, whereas the external neutron can have a spin up or
down. As long as the interaction does not depend on the spin, both projections are
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not coupled.As in Sect. 1.3.2, we define a Slater determinant with ms = −1/2 for
the external neutron. The GCM basis function (1.4.7) is explicitly written as

Φ(R) = 1√
5! × det{ϕ0s(−R

5
)n ↓ ϕ0s(−R

5
)n ↑

ϕ0s(−R
5
)p ↓ ϕ0s(−R

5
)p ↑ ϕ0s(

4R
5
)n ↓}, (1.5.27)

where we use λ = 1/5, which makes the c.m. factor (1.4.12) equal to unity. The
overlap between two Slater determinants (1.5.27) is therefore given by

N(R,R′) = 〈Φ(R)|Φ(R′)〉 =

∣∣∣∣∣∣∣∣∣∣

B11 B12 0 0 0
B21 B22 0 0 0
0 0 B11 0 0
0 0 0 B11 0
0 0 0 0 B11

∣∣∣∣∣∣∣∣∣∣

= B3
11(B11B22 − B12B21), (1.5.28)

with

B11 = 〈ϕ0s(−1

5
R)|ϕ0s(−1

5
R′)〉

B12 = 〈ϕ0s(−1

5
R)|ϕ0s(

4

5
R′)〉

B21 = 〈ϕ0s(
4

5
R)|ϕ0s(−1

5
R′)〉

B22 = 〈ϕ0s(
4

5
R)|ϕ0s(

4

5
R′)〉. (1.5.29)

Using the single-particle overlap (1.5.21), we find

N(R,R′) = exp

(
− (R − R′)2

5b2

)[
1 − exp

(
−R · R′

2b2

)]
. (1.5.30)

The first term is the direct contribution, which stems from the diagonal of the overlap
matrix. The second term is responsible for exchange effects, and is negligible at large
distances. When R (or R′) tends to zero, the Slater determinant (1.5.27) vanishes
since two rows or columns are identical. This property is a consequence of the Pauli
principle, and the total overlap (1.5.30) also vanishes.

In this simple example, projection over angular momentum is directly obtained
from definition (1.4.31) as

N�(R,R′) = 1

4π
exp

(
−R2 + R′2

5b2

)[
i�

(
2RR′

5b2

)
− (−1)�i�

(
RR′

10b2

)]
. (1.5.31)
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1.5.6 GCM Kernels of α + N Systems

In this section we present analytical expressions for α + N GCM kernels, where N
is a 0s shell nucleus (with A2 nucleons). An extension to systems involving an 16O
core is given in Ref. [81]. As shown by Horiuchi [32] (see also Ref. [88]), the overlap
kernel takes the general form

N(R,R′) =
A2∑

n=0

Nnfn(R,R′), (1.5.32)

with

fn(R,R′) = exp
(
−μ0v

2
(R − R′)2 − nvR · R′) , (1.5.33)

and v = 1/2b2. Index n in (1.5.32) can be interpreted as the number of exchanged
terms. The overlap kernel is therefore entirely determined from a set of integer
numbers Nn. They can be obtained from algebraic calculations.

For the symmetric α+ α system (μ0 = 2), functions fn must be symmetrized as

fn(R,R′) → 1

2

(
fn(R,R′)+ fn(R,−R′)

)
, (1.5.34)

which shows that terms corresponding to n and 4 − n are equivalent in expansion
(1.5.32). After expansion on angular momentum, the symmetrized definition (1.5.34)
involves even partial waves only.

For systems involving 0s-shell orbitals, the kinetic energy matrix element between
individual orbitals ϕi can be written as [see Eq. (1.5.21)]

〈ϕi| − �
2

2mN
�|ϕj〉 = �ω

[
3

4
〈ϕi|ϕj〉 + ν

2

d

dν
〈ϕi|ϕj〉

]
. (1.5.35)

Consequently, the kinetic-energy kernel reads, after subtraction of the c.m. contri-
bution,

T(R,R′) = �ω

[
3

4
(A − 1)+ ν

2

d

dν

]
N(R,R′), (1.5.36)

and can be directly obtained from coefficients Nn. These coefficients are given in
Table 1.3 for various systems.

For the potential kernels, we assume that the nuclear interaction is given by combi-
nations of Gaussian functions and exchange operators O as

vN (r) = V0exp

(
− r2

a2

)
O, (1.5.37)
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Table 1.3 Coefficients Nn of
the overlap kernel

System n = 0 n = 1 n = 2 n = 3 n = 4

α + n, α + p 1 −1
α +3 H, α +3 He 1 −3 3 −1
α + α 1 −4 6 −4 1

where O is one of the operators 1,PσPτ ,Pσ ,Pτ . The GCM kernel corresponding to
the two-body potential (1.5.37) is given by (see Ref. [32])

VN (R,R′) = V0

(
a2

a2 + 2b2

)3/2∑

n

fn(R,R′)
5∑

i=1

VN
ni exp[−α2F2

i (R,R′)],
(1.5.38)

where functions Fi(R,R′) are defined as

F1(R,R′) = 0,

F2(R,R′) = R/2
√

2b,

F3(R,R′) = R′/2
√

2b,

F4(R,R′) = (R + R′)/2
√

2b,

F5(R,R′) = (R − R′)/2
√

2b, (1.5.39)

and α is defined by α2 = 2b2/(a2 + 2b2).

The Coulomb kernel takes the general form

VC(R,R′) = e2

√
2b

∑

n

fn(R,R′)
5∑

i=1

VC
ni

erf[|Fi(R,R′)|]
|Fi(R,R′)| . (1.5.40)

Coefficients VN
ni and VC

ni are given in Tables 1.4 and 1.5, respectively. The projected
kernels are directly obtained by integration over the relative angle between R and R′
[see Eq. (1.4.31)].

A very simple application is the α particle with four 0s orbitals centred at the
origin. In that case all space components in (1.5.16) take the same form. For a
Gaussian potential of range a and amplitude V0, the α nuclear and Coulomb energies
are

VN (α) = 6(w + m)

(
a2

a2 + 2b2

)3/2

V0

VC(α) =
√

2

π

e2

b
. (1.5.41)
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Table 1.5 Coefficients VC
ni of the Coulomb potential (see caption of Table 1.4). VC1 and VC2 corre-

spond to the mirror systems

System VC1 VC2

α + n, α + p
n = 0 (1, 0, 0, 0, 0) (1,0,0,2,0)
n = 1 (−1, 0, 0, 0, 0) (0,−1,−1, 0,−1)
α +3 H, α +3 He
n = 0 (2, 0 ,0 ,4 ,0 ) (1, 0, 0, 2,0)
n = 1 (−2,−4,−4,−6,−2) (−2,−1,−1,−4,−1)
n = 2 (2, 4, 4 ,2, 6 ) (1, 2 ,2, 2 ,2 )
n = 3 (−2, 0, 0, 0,−4) (0,−1,−1, 0,−1)
α + α

n = 0 (2, 0 ,0 ,4 ,0 )
n = 1 (−4,−4,−4,−10,−2)
n = 2 (4, 8, 8, 8, 8 )
n = 3 (−4,−4,−4,−2,−10)
n = 4 (2, 0, 0, 0 ,4 )

1.6 Approximations of the RGM

1.6.1 Eigenvalues of the Overlap Kernel

In this Section, we consider other variants of the RGM equation. All are based on the
eigenvalues of the overlap kernel [16, 31, 32, 57, 91]. Let us consider the eigenvalue
problem

∫
N�(ρ, ρ

′)χ�n(ρ′)dρ′ = μ�nχ�n(ρ), (1.6.1)

where N�(ρ, ρ
′) is the �-projected overlap kernel. In a more compact notation,

Eq. (1.6.1) is rewritten as

N�χ�n = μ�nχ�n. (1.6.2)

These orthogonal eigenstates χ�n play an important role in approximations [92]
and extensions [93] of the RGM. In particular, eigenstates χ�i(ρ) corresponding to
μ�i = 0 are called forbidden states. These functions are different from zero and
present the property

A φ1φ2χ�i(ρ) = 0, (1.6.3)

i.e. they vanish from the action of the antisymmetrizor. They are typical of calcu-
lations with identical oscillator parameters. When the oscillator parameters of both
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clusters are different, forbidden states (μ�i = 0) are replaced by “almost" forbidden
states (μ�i small) which induce spurious states in the Schrödinger equation [16, 31,
37]. On the other hand, eigenstates with μ�i ≈ 1 are weakly affected by exchange
effects of the overlap kernel. The eigenvalue distribution therefore provides some
insight on the importance of the antisymmetrization.

For some systems, involving a closed-shell nucleus (α,16 O,40 Ca, . . .) and an
s-shell cluster, the calculation of the eigenvalues is analytical, and only depends of
the quantum number [32]

N = 2�+ n. (1.6.4)

For example, the α + n, α + t and α + α eigenvalues are

μN =
⎧
⎨

⎩

1 − (−1/4)N forα + n
1 − 3( 5

12 )
N + 3(− 1

6 )
N − (− 3

4 )
N forα + t

1 − 22−N + 3δN,0 forα + α (N even)
. (1.6.5)

These eigenvalues do not depend of the oscillator parameter. The eigenfunctions
are harmonic oscillator orbitals with oscillator parameter b/

√
μ0. From the example

(1.6.5) we immediately see that the α + n system presents one forbidden state for
� = 0. The reason is that the s orbital is already occupied in the α particle, and is not
accessible to the external neutron. The α + α system presents two forbidden states
for � = 0, one for � = 2, and zero for � ≥ 4.

In general, the eigenvalue problem (1.6.1) cannot be solved analytically. A numer-
ical approach has been proposed by Varga and Lovas [91] who write (1.6.1) in an
equivalent form

A φ1φ2χ�n(ρ) = μ�nφ1φ2χ�n(ρ), (1.6.6)

which shows thatμ�n are the eigenvalues of the antisymetrization operator. Expanding
χ�n(ρ) over a finite Gaussian basis as

χ�n(ρ) =
∑

i

c�n(Ri)Γ�(ρ,Ri) (1.6.7)

provides the equivalent eigenvalue problem
∑

i

c�n(Ri)
(
〈Φ�(Rj)|Φ�(Ri)〉 − μ�n〈Γ�(Rj)|Γ�(Ri)〉

)
= 0. (1.6.8)

The first term is the overlap between two projected Slater determinants (1.4.27),
whereas the second term corresponds to the direct contribution, and can be calculated
analytically as [94]

〈Γ�(Rj)|Γ�(Ri)〉 = exp
[
− μ0

4b2 (R
2
i + R2

j )
]

i�

(
μ0RiRj

2b2

)
. (1.6.9)

Of course, the method is approximative only, but is quite simple to apply, in particular
for multicluster problems [95], or in two-cluster systems with different oscillator
parameters [37].
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1.6.2 Reformulation of the RGM Equation

Our aim here is to reformulate the RGM equation (1.3.17) in a more transparent way.
One of the reasons is that the RGM two-cluster kernels can be used in multicluster
calculations [93, 96], and therefore provide a microscopic framework to multicluster
calculations. After projection on angular momentum �, the RGM equation (1.3.17)
can be recast as

(
T� + V� − ENE�

)
g� = Eg�, (1.6.10)

where T� is the kinetic energy in partial wave �, and V� a potential which includes
exchange contributions. Equation (1.6.10) resembles a usual two-body Schrödinger
equation, but the equivalent potential depends on energy. This is not a problem in
two-body calculations, but raises some ambiguities in multicluster models. In that
case, cluster-cluster energies are not precisely defined. An iterative procedure has
been proposed by Fujiwara et al. [97] but the method was shown to raise conceptual
problems in three-body calculations [48].

An elegant and efficient method has been proposed by Suzuki et al. [96] and is
briefly explained here. Let us define a modified radial function

ĝ� = N
1/2
� g� =

∑

n

μ
1/2
�n 〈χ�n|g�〉χ�n

= g� −
∑

n

(1 − μ
1/2
�n )〈χ�n|g�〉χ�n. (1.6.11)

Since μ�n tend to unity for large n, ĝ�(ρ) and g�(ρ) have the same asymptotic
behaviour. In addition, ĝ�(ρ) is orthogonal to the forbidden states since

〈χ�i|ĝ�〉 = 0 (1.6.12)

for μ�i = 0. Replacing g� by

g� = N
−1/2
� ĝ� (1.6.13)

in (1.6.10) provides

(T� + VRGM
� )ĝ� = Eĝ�, (1.6.14)

where VRGM
� is not local, but does not depend on energy. It is defined as

VRGM
� = N

−1/2
� (T� + V�)N�

−1/2 − T�
= V� + W�. (1.6.15)

Of course, implicit summations in (1.6.13) and (1.6.15) only include allowed states
(μ�n 
= 0). The renormalized RGM therefore contains the bare RGM potential V�,
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and an additional contribution W�. As shown in [96], this term can be computed by
an expansion over harmonic-oscillator functions [32].

In Refs. [93, 96], a detailed comparison is performed between the use of renormal-
ized RGM potentials in three-body calculations and fully microscopic calculations
with the same nucleon–nucleon interaction. This is done for three typical three-body
systems: 6He = α+ n + n, 9Be = α+α+ n, and 12C = α+α+α. The α+ n and
α + α RGM potentials W� have been obtained numerically [96]. The binding ener-
gies of the ground states are in reasonable agreement with the microscopic energies,
but are slightly underestimated. This leads to the suggestion that three-body effects,
missing in the renormalized RGM, should be attractive.

This technique opens various possibilities in the microscopic treatment of the
nucleus–nucleus interaction. For example, three-body continuum states [98] could
be treated with these potentials. In parallel, Continuum Discretized Coupled Channel
(CDCC) calculations require a precise description of two and three-body projectiles
[99] and could be performed with non-local RGM potentials. On the other hand, the
renormalized RGM has been successfully used to compute the triton and hypertriton
binding energies from nucleon–nucleon interactions based an a quark cluster model
[100].

1.6.3 The Orthogonality Condition Model

The Orthogonality Condition Model (OCM) has been proposed by Saito [92]. The
main idea was to simplify the RGM approach, while keeping its microscopic grounds.
Let us introduce the projector

�� = 1 −
∑

i∈PFS

|χ�i〉〈χ�i|, (1.6.16)

where the sum runs over the Pauli forbidden states (PFS, μ�i = 0). This provides an
equivalent RGM equation [16, 92]

��(T� + VOCM
� − E)ĝ� = 0, (1.6.17)

where the OCM potential is implicitly defined by

H� = N�
1/2(T� + VOCM

� )N�
1/2. (1.6.18)

Equation (1.6.18) is strictly equivalent to (1.3.17). However, the potential VOCM
�

has a non-local form. The purpose of the OCM is to include antisymmetrization
effects through the operator ��, but to use approximations for the potential [57,
92]. Various methods have been proposed to solve the non-local equation (1.6.17)
(see Refs. [92, 94] and references therein).

The OCM equation can still be simplified by replacing (1.6.17) by the local
equation
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(T� + Ṽ� − E)g̃� = 0 (1.6.19)

where Ṽ� is a local potential [18, 19]. The role of the forbidden states is simulated
by additional non-physical states g̃i in the potential. Their number depends on the
system and on angular momentum [see Eq. (1.6.5) for some systems]. In this way,
the orthogonality condition (1.6.12) is replaced by

〈g̃i|g̃�〉 = 0. (1.6.20)

Deep nucleus–nucleus potentials are available in the literature, in particular for
α + n [101] and α + α [102]. The main advantage of the local approximation is its
simplicity. The calculation of bound states and phase shifts is straightforward with,
for example, the Numerov method [73, 103]. All matrix elements are obtained from
one-dimensional integrals. In nuclear astrophysics, many capture reactions have been
investigated in this framework (see for example [94, 104]).

1.7 Recent Developments of the GCM

1.7.1 Introduction

For the sake of clarity, the formalism presented in previous sections was simplified as
much as possible. In particular, we neglected the spins of the clusters, assumed single-
channel problems, and limited the discussion to two-cluster systems. However, the
GCM has been significantly extended in two directions, with the goal of improving
the description of the system: the extension to multichannel approaches, and to
multicluster calculations. We briefly review these two developments. In addition,
attention has been paid on the improvement of the cluster wave functions: large shell-
model bases [36], and mixing of several shell-model wave functions corresponding
to different oscillator parameters [37].

1.7.2 Internal Wave Functions

Microscopic cluster calculations are performed with a shell-model description for the
cluster wave functions. The standard shell-model formalism can therefore be used.
However, in contrast with shell-model calculations, the definition of the internal wave
functions is just a first step of cluster theories. As long as s clusters only are involved,
the construction of the shell-model states is trivial. In particular, the corresponding
wave functions involve a single Slater determinant (except for the deuteron, but this
nucleus is poorly described by the shell model).

Going beyond s-shell clusters strongly increases the complexity of the calcu-
lations. Analytical developments are, in most cases, very difficult and need to be
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replaced by entirely numerical approaches. In Ref. [36], we proposed a generalized
cluster model, where the cluster wave functions are defined by all p-shell configura-
tions consistent by the Pauli principle. Formally, this can be directly extended to the
sd shell or higher (see for example Refs. [105, 106] for applications involving 30Ne
and 39Ca clusters), but raises computational problems owing to the large number of
Slater determinants and of orbitals involved in the matrix elements.

In practice, cluster calculations are optimized when working in the LS coupling
scheme. As shown before, this allows to factorize a Slater determinant in four nucleon
types, according to the spin and isospin. In that case, each nucleon orbital (1.4.2) is
defined either in a Cartesian basis as

ϕ̂nxnynz,msmt (r) = ϕnx (x)ϕny(y)ϕnz (z)|ms〉|mt〉, (1.7.21)

or in a spherical basis as

ϕ̂nlm�,msmt (r) = ϕn�(r)Y
m�
� (Ωr)|ms〉|mt〉, (1.7.22)

where the space, spin and isospin components have been factorized. In (1.7.22),
ϕn�(r) is an harmonic-oscillator radial function [78]. Both bases are equivalent and
related to each other by a unitary transform.

An alternative is to use the jj coupling scheme, where the individual orbitals are
defined as

ϕ̂n�jm,mt (r) = ϕnl(r)
[
Y�(Ωr)⊗ χs

]jm|mt〉. (1.7.23)

In this option, the overlap (1.5.3) is expressed as the product of two determinants
involving more orbitals (see Sect. 1.5). This property strongly increases the compu-
tation times for two-body matrix elements since they involve quadruple sums over
the individual orbitals [see (1.5.12)].

Let us now define a Slater determinant built from A1 individual orbitals. All
configurations, compatible with the Pauli principle, must be included up to some
excitation level Nmax. In most cluster calculations, Nmax = 0, but particle-hole
excitations Nmax > 0 are possible. A compromise should be adopted between the
quality of the internal wave functions and the feasibility of the cluster calculation.

Let us start with the most common applications, i.e. p-shell nuclei with Z1 protons
and N1 neutrons (A1 = Z1 + N1). Filling the p shell can be performed in Nc =
CZ1−2

6 ×CN1−2
6 different possibilities (Cj

i is the number of combinations of j elements
among i elements). The basis therefore involves Nc Slater determinants Φi. For
example Nc = 6 for 15N, and Nc = 225 for 12C.

In general, these shell-model states do not have a definite spin. Projection over
the total spin I1 is performed by diagonalization of the spin operators I2 and Iz which
provides

ΦI1K1 =
Nc∑

i=1

dI1K1
i Φi, (1.7.24)
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where dI1K1
i are linear coefficients obtained from the eigenvalue problems

Nc∑

j=1

dI1K1
j

[〈Φi | I2 | Φj〉 − I1(I1 + 1)δij
] = 0

Nc∑

j=1

dI1K1
j

[〈Φi | Iz | Φj〉 − K1δij
] = 0. (1.7.25)

The fact that the eigenvalues of I2 and Iz provides integer or half-integer values for
I1 and K1 is a strong test of the calculation.

In practice, further diagonalizations of the isospin T2, intrinsic spin S2 and orbital
angular momentum L2 are performed, in order to obtain a deeper analysis of the wave
functions. Basis states (1.7.24) are therefore recombined as

Φ
I1K1
S1L1T1c1

=
Nc∑

i=1

dI1K1
S1L1T1c1,i

Φi, (1.7.26)

where c1 is an additional quantum number used to distinguish between states with
identical values of (I1K1S1L1T1). The parity is simply obtained from the product of
the parities of the individual orbitals. Finally, basis states (1.7.26) are used to diag-
onalize the Hamiltonian. This is necessary in collision theories, where the internal
wave functions must be eigenstates of the internal Hamiltonian. Linear combinations
of Slater determinants are then used in multicluster calculations.

In principle, wave functions (1.7.26) could be employed for several clusters. In
practice, however, the total number of Slater determinants is given by the product of
Nc values of each cluster. Consequently calculations are currently limited to systems
involving a single cluster with generalized shell-model wave functions (1.7.26). In
Ref. [36], we give the different sets of quantum numbers for 8Li (Nc = 120) and
11B (Nc = 300) described in the p shell. These wave functions are used in that
reference for a microscopic calculation of the 8Li(α, n)11B cross section. In principle,
including excited configurations (Nmax > 0) can be performed, but strongly increases
the number of Slater determinants.

Let us briefly compare the use of the LS coupling (1.7.21) and of the jj coupling
(1.7.23). There is an orthogonal transform between them and are equivalent as long
as all orbitals of a given shell are considered. As discussed above the use of the jj
coupling increases the computer times. However it allows to keep limited numbers
of Slater determinants, even beyond the p shell.

A simple example is provided by 14C, where both coupling modes are illustrated
in Fig. 1.2. In the LS coupling mode, six neutrons fill the p shell, and four p protons
can be combined in C4

6 = 15 combinations. This provides two 0+ states, one 1+ state
and two 2+ states. Alternatively, considering the jj coupling mode only provides one
0+ state since the 1p3/2 subshell is filled. The corresponding spectra obtained with
an oscillator parameter b = 1.6 fm, and the V2 interaction (M = 0.6) complemented
by a spin–orbit force (S0 = 30 MeV.fm5) are displayed in Fig. 1.3, and compared
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Fig. 1.2 Shell-model orbitals for 14C in the LS and jj coupling modes (see text). Full and open
circles represent occupied and unoccupied orbitals, respectively
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Fig. 1.3 Energy spectrum of 14C in the LS and jj coupling modes. For the sake of clarity, the
experimental energy of the ground state has been shifted to the LS value

with experiment. Our goal here is not to optimize the interaction, but to illustrate the
problem with a typical nucleon–nucleon force. As expected the jj coupling mode,
limited to the 1p3/2 subshell, does not provide excited states and the ground state is
less bound (by 1.9 MeV) than in the LS coupling mode. The advantage of the former
conditions is that the number of Slater determinants is limited to one.

This problem is still more apparent when going to sd-shell nuclei. Let us
consider 17N, which is illustrated in Fig. 1.4. In the LS coupling mode we have
Nc = 6 × 66 = 396 Slater determinants. This gives 1/2−(12), 3/2−(19), 5/2−(18)
states, 7/2−(13), 9/2−(6), and 11/2−(2) states. The energy spectrum (limited to
the 2 first levels for each angular momentum) is shown in Fig. 1.5. Using this set
of basis functions for two or three-cluster calculations is highly time and memory
consuming. Considering the jj coupling mode (illustrated in Fig. 1.4) provides a much
smaller number of Slater determinants Nc = 30. Of course the number of 17N states
is reduced, and the binding energies are lower that in the LS coupling mode, but
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Fig. 1.5 See caption to Fig. 1.3 for 17N

a multicluster calculation (e.g. 17N + n) keeps the computer requirements within
acceptable limits. Notice that the calculations have been performed with standard
parameters in the nucleon–nucleon interaction. The comparison with experiment
can be improved by slightly tuning the parameters M and S0.

As a general statement, this problem gets more and more important when the
nucleon number is far from a closed shell. For example, 18O and 30Ne need Nc =
C2

12 = 66 in the sd shell; in contrast 24Mg would need Nc = C4
12 × C4

12 = 245025,
as 4 neutrons and 4 protons are distributed among the 12 sd orbitals. If this large
number does not raise significant problems in shell-model calculations, it makes
cluster approaches impossible owing to the additional clusters, and to the global
angular-momentum projection. The use of the jj coupling mode, in that case, is
necessary.
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1.7.3 Multicluster Angular-Momentum Projection

Cluster wave functions based on Slater determinants are not defined with a definite
spin value. In order to restore the spin, an angular-momentum projection is needed.
We start by assuming that the individual clusters have a spin zero. A projected wave
function of the system is obtained from (see Ref. [4])

ΦLM
K (S{N}) =

∫
DL∗

MK (Ω)R
L(Ω)Φ(S{N})dΩ, (1.7.27)

where DL
MK (Ω) is a Wigner function depending on the Euler anglesΩ = (α, β, γ ),

andΦ(S{N}) is a N-cluster Slater determinant (1.5.2). In (1.7.27), K is the projection
over the intrinsic axis, and the rotation operator RL(Ω) is defined as

RL(Ω) = eiαLz eiβLy eiγLz , (1.7.28)

and performs a rotation of the wave function, or an inverse rotation [107] of the
space coordinates ri of the individual orbitals. Since the orbitals are defined in the
harmonic-oscillator model, a rotation of the quantal coordinates ri is equivalent to
an inverse rotation of the generator coordinate. Consequently, we have

RL(Ω)Φ(S{N}, r1, . . . , rA) = Φ(S{N},RL(Ω−1)r1, . . . ,R
L(Ω−1)rA)

= Φ(RL(Ω)S{N}, r1, . . . , rA). (1.7.29)

The effect of the rotation operator is therefore equivalent to a rotation of the generator
coordinates. This property is typical of harmonic oscillator functions, and greatly
simplifies the calculations.

Let us consider a rotation-invariant operator O, such that

O = RL(Ω−1)ORL(Ω). (1.7.30)

A matrix element of O between projected functions (1.7.27) reads

〈ΦLM
K (S{N})|O|ΦL′M ′

K ′ (S′{N})〉

= 8π2

2L + 1
δLL′δMM ′

∫
DL�

KK ′(ω)〈Φ(S{N})|ORL(ω)|Φ(S′{N})〉dω,
(1.7.31)

and therefore reduces to a three-dimensional integral over the Euler angles. If Oλμ
is an irreducible operator of rank λ, (1.7.30) is generalized as

RL(Ω)OλμRL(Ω−1) =
∑

μ

Dλ
μ′μ(Ω)Oλμ′ , (1.7.32)

and the matrix element (1.7.31) must be extended [35].
Let us now consider clusters with spin. An N-cluster basis function (which can be a

linear combination, as in Sect. 1.7.2) therefore involves quantum numbers associated
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with the spin projection Ki and is denoted as ΦK1...KN . In that case, the rotation
operator corresponding to the total angular momentum J is factorized as

RJ(Ω) = RL(Ω)RS(Ω), (1.7.33)

where RL(Ω) rotates the space coordinates, and RS(Ω) the spin coordinates. Since,
by definition, the cluster states have good spin, the spin rotation provides

RS(Ω)ΦK1...KN =
∑

K ′
1...K

′
N

D I1
K ′

1K1
(Ω) . . .D IN

K ′
N KN

(Ω)ΦK ′
1...K

′
N
, (1.7.34)

where Ii are the spins of the N clusters (for the sake of clarity the generator coordinates
are implied). A projected basis state (1.7.27) is then generalized to

ΦJM
K,K1...KN

=
∑

K ′
1...K

′
N

∫
DJ∗

KM(Ω)D
I1
K ′

1K1
(Ω) . . .D IN

K ′
N KN

(Ω)RL(Ω)ΦK ′
1...K

′
N

dΩ,

(1.7.35)
and, as in (1.7.27), only the space rotation should be explicitly performed. Matrix
elements between functions (1.7.35) are directly obtained from an extension of
(1.7.31). Specific applications to 3 and 4-cluster systems can be found in Refs. [35,
108]. An important application concerns two-cluster systems, and is explained in
more detail in the next subsection.

Finally the parity projection is performed with the operator

ΦJMπ
K,K1...KN

= 1

2

(
1 + πP

)
ΦJM

K,K1...KN
, (1.7.36)

where π = ±1 is the parity of the state, and where P reverses all nucleon coordinates
as ri → −ri. In some specific cases, this operator can be replaced by an equivalent
rotation operator (see an example in Ref. [35]). This allows to combine angular-
momentum and parity projection in a single rotation operator.

1.7.4 Multichannel Two-Cluster Systems

Until now the presentation was limited to single-channel two-cluster models. We
briefly show here how to extend the formalism to multichannel calculations, and/or
with spins different from zero. Although the notations are more complicated, the
principles of the GCM (Sect. 1.4), as well as matrix elements between basis states
(Sect. 1.5) remain unchanged.

Let us consider a channel c composed of two clusters with spins I1 and I2 (parities
π1 and π2 are implied). The internal wave functions ΦI1K1

c and ΦI2K2
c are defined

in (1.4.1), and are in general combinations of Slater determinants [see (1.7.24)].
A channel c is characterized by the properties of the clusters: masses and charges,
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spins, levels of excitation, etc. In transfer and inelastic reactions, the introduction of
excited channels is of course necessary. However, even in spectroscopic calculations,
additional channels may improve the total wave function of the system, according to
the variational principle. As shown in Sect. 1.7.2, calculations involving p-shell or
sd-shell clusters may contain a large number of channels.

From the internal cluster wave functions, we extend definition (1.4.7) to

ΦIK
c (R) = 1√

N0

∑

K1K2

〈I1K1I2K2|IK〉AΦI1K1
c

(
−A2

A
R
)
ΦI2K2

c

(
A1

A
R
)

= 1√
N0

A

[
ΦI1

c

(
−A2

A
R
)

⊗ΦI2
c

(
A1

A
R
)]IK

, (1.7.37)

where I is the channel spin, and results from the coupling of I1 and I2. This quantum
number plays an important role in reactions. In (1.7.37), we assume that the origin is
at the c.m., and we have rewritten the angular-momentum coupling in the standard,
compact, notation.

According to (1.7.34), projection of basis functions (1.7.37) provides

ΦJM
cIK (R) =

∫
DJ∗

MK (Ω)R
J(Ω)ΦIK

c (R)dΩ. (1.7.38)

This definition is well adapted to spectroscopy. However we define an equivalent
basis as

ΦJMπ
c�I (R) =

(
2�+ 1

256π5

)1/2∑

K

〈IK�0|JK〉ΦJM
cIK (R), (1.7.39)

which makes use of the relative angular momentum �. The normalization factor
allows to simplify the RGM wave function (see below). This factor, however, can be
chosen arbitrarily as long as it is consistent in all matrix elements. Notice that the
projection over � directly provides the projection on parity which is related to the
individual parities of the clusters π1 and π2 as

π = π1π2(−1)�. (1.7.40)

Using Eqs. (1.7.27), (1.7.33) and (1.7.34), we have

ΦJMπ
c�I (R) = 1

4π

∫
dΩR

[
ΦI

c(R,ΩR)⊗ Y�(ΩR)
]JM

. (1.7.41)

with

ΦIK
c (R,ΩR) = RL(ΩR)Φ

IK
c (R). (1.7.42)

The overlap between two projected basis functions (1.7.41) is obtained from a gener-
alization of the single-channel result (1.7.31) as
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〈ΦJπ
c�I(R) | ΦJπ

c′�′I ′(R′)〉 =
√
(2�+ 1)(2�′ + 1)

8π(2J + 1)

×
∑

K,K ′
〈I K � 0 | J K〉〈I ′ K ′ �′ K − K ′ | J K〉

×
π∫

0

d�
′

K−K ′,0(β)〈ΦIK
c (R, 0) | ΦI ′K ′

c′ (R′, β)〉d cosβ,

(1.7.43)
where ΦIK

c (R, β) is a Slater determinant with the generator coordinate in the xz
plane, and making an angle β with the z axis. To derive (1.7.43), we have used
the symmetry of the unprojected matrix element around the z axis. For two-cluster
calculations these matrix elements are obtained from one-dimensional integrals. This
definition is valid for any rotation–invariant operator. The extension to more general
operators can be found in Ref. [85]. Notice that the projected matrix elements (1.7.43)
must be symmetric. This is not trivial since the generator coordinates R and R′ are
not treated in the same way (R is chosen along the z axis). The symmetry of the final
result is a severe test of the calculation.

A calculation analog to those developed in Sect. 1.4 provides the equivalence
between the GCM and RGM for a multichannel system. The extension of (1.4.27) is
directly obtained from

ΦJMπ
c�I (R) = 1√

N0
ΦcmA Γ�(ρ,R)ϕJMπ

c�I (ξ1, ξ2,Ωρ), (1.7.44)

where the channel wave function reads

ϕJMπ
c�I (ξ1, ξ2,Ωρ) =

[[
φI1

c (ξ1)⊗ φI2
c (ξ2)

]I ⊗ Y�(Ωρ)
]JM

. (1.7.45)

In this definition, φI1
c and φI2

c are the translation-invariant internal wave functions
depending on the sets ξ1 and ξ2 of internal coordinates. In multichannel problems,
the total wave function of the system is given by

Ψ JMπ =
∑

c�I

Ψ JMπ
c�I , (1.7.46)

where the contribution of each channel is defined as

Ψ JMπ
c�I =

∫
f Jπ
c�I (R)Φ

JMπ
c�I (R)dR (in the GCM)

= A gJπ
c�Iϕ

JMπ
c�I (in the RGM). (1.7.47)

As for single-channel calculations, the RGM radial function is deduced from the
generator function as

gJπ
c�I(ρ) =

∫
f Jπ
c�I (R)Γ�(ρ,R)dR. (1.7.48)
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Fig. 1.6 Multicluster
configurations for two (a),
three (b, d), and five (c)
-cluster description. In
model (c) the basis of the
tetrahedron is assumed to be
defined by three α particles
in an equilateral
configuration
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1.7.5 Multicluster Models

1.7.5.1 General Discussion

Although multicluster theories have been also developed in the RGM [33], we focus
here on GCM calculations. Let us assume N clusters with internal wave functionsΦN

and centered at Si. As in Sect. 1.5, the set of cluster locations is denoted as S{N} =
(S1, . . . ,SN ). From these locations, we define a set of generator coordinates R{C} =
(R1, . . . ,RC)where C represents the number of independent coordinates required to
define the system (see Fig. 1.6). For example, two-cluster systems are characterized
by one generator coordinate, the distance between the clusters (Fig. 1.6a). In a three-
body model, the clusters are located at the vertices of a triangle (Fig. 1.6b). Depending
on the geometry of the triangle, the number of generator coordinates can be C = 1, 2,
or 3 (C = 1 for an equilateral triangle).

A GCM basis function is defined by a multicluster generalization of Eq. (1.4.7)
as

Φ(R{C}) =
√

A1! · · · AN !
A! Φ−1

cm AΦ1(S1) . . . ΦN (SN ), (1.7.49)

where the c.m. component has been removed. Again, for the sake of clarity, we
do not explicitly mention the spin orientations of the clusters. Equation (1.7.49) is
the starting point of all multicluster models. Matrix elements between these Slater
determinants are obtained as for two-cluster calculations (see Sect. 1.5). When N >

2, there are, however, various applications of multicluster models, which differ by
the projection technique:
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(i) Systems with a fixed geometry (Fig. 1.6b for N = 3 and Fig. 1.6c for N = 4). Wave
function (1.7.49) is projected with (1.7.35) and (1.7.36) on spin J and parity π,
respectively. Examples for three-cluster systems are 11Li or 24Mg described by
triangular 9Li+n+n or 16O+α+α configurations [109, 110]. Some four-cluster
systems have been described by a tetrahedral configuration with an equilateral
triangle for the three α particles, and an additional s cluster [35]. The use of a
symmetric structure for the three α particles allows a reduction of the computer
times for the projected matrix elements.

(ii) Two-body systems involving a cluster nucleus (Fig. 1.6d). This approach is
essentially used to describe nucleus–nucleus collisions, where one of the
colliding nuclei presents a cluster structure. Typical examples are 7Be + p,
with 7Be = α + 3He [111] and 12C + α with 12C = 3α [108]. In that case, the
angular momentum of the cluster subsystem must be restored. The projection
over angular momentum is therefore multiple.

(iii) Multicluster hyperspherical formalism. This development is recent [45] and is
currently limited to three-cluster systems. The relative motion is described in
hyperspherical coordinates [23]. This framework was recently extended to a
microscopic description of three-body scattering states [95].

1.7.5.2 Fixed Geometry

In option (i), the projections over angular momentum and parity are performed with
(1.7.35) and (1.7.36), respectively. As mentioned before, in some specific cases,
the parity P operator can be replaced by a rotation (for example, operator P in an
equilateral triangle involving three identical clusters is equivalent to a rotation by π).

When the clusters have a spin zero, a projected matrix element of a rotation-invariant
operator O between projected basis functions (1.7.27) is obtained from (1.7.31). The
integrals are in general performed numerically (see Ref. [35] for further detail).

Finally, the total wave function of the system is obtained from a superposition of
projected functions (1.7.27) as

Ψ JMπ =
∑

K

∫
f Jπ
K (R{C})ΦJMπ

K (R{C})dR1 · · · dRC,

≈
∑

K

∑

R{C}
f Jπ
K (R{C})ΦJMπ

K (R{C}). (1.7.50)

Coefficients f Jπ
K (R{C}) are obtained from the Hill–Wheeler involving the Hamiltonian

and overlap kernels
∑

R′{C},K ′

[
HJπ

KK ′(R{C},R′{C})− EJπ
ω NJπ

KK ′(R{C},R′{C})
]
f Jπ
K ′ (R′{C}) = 0. (1.7.51)

When the cluster spins are different from zero, additional quantum numbers,
corresponding to the spin orientations, must be introduced. This model is well adapted
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to three-body halo nuclei, such as 6He [112] or 11Li [109]. The 3α and 4α descriptions
of 12C and 16O are also known to significantly improve the binding energies [35].

1.7.5.3 Systems Involving a Cluster Nucleus

Multicluster models mentioned in the previous subsection are well adapted to nuclear
spectroscopy. To extend these models to nucleus–nucleus reactions, a multiple
angular momentum is necessary to restore, not only the spin of the total system, but
also the spins of the colliding nuclei. Although a situation where both colliding nuclei
present a cluster structure is possible, practical applications are currently limited to
a s-shell particle with a multicluster nucleus. We therefore consider systems built
from N + 1 clusters.

Let us define nucleus 1 by N clusters with a set of generator coordinates R{C}.
The internal wave functions with spins I1 and parity π1 are therefore taken as in
Eq. (1.7.50) and read

ΦI1K1π1
ω =

∑

K,R{C}
FI1π1

K,ω (R{C})ΦI1K1π1
K (R{C}). (1.7.52)

In this definition, index ω corresponds to the level of excitation. Wave functions with
different ω values are orthogonal to each other. States with EI1π1

ω < 0 correspond to
bound states, whereas EI1π1

ω > 0 represent pseudostates. They can be interpreted as
square-integrable approximations of scattering states, and simulate the distortion of
the nucleus.

Let us now consider the total (N + 1)-cluster system. The relative motion with
nucleus 2 (assumed to be described by a single cluster) requires the additional relative
coordinate R. An unprojected wave function is written as

Φ(R{C},R) = 1√
N0

A Φ1

(
R{C},−A2

A
R
)
Φ2

(
A1

A
R
)
, (1.7.53)

where Φ1(R{C},−A2
A R) is a Slater determinant (1.7.49) centred at −A2

A R. After
projection over the angular momentum of nucleus 1, and summation over R{C}, a
basis state is defined as

ΦIK
ω (R) = 1√

N0
A [ΦI1π1

ω (−A2

A
R)⊗ΦI2π2(

A1

A
R)]IK , (1.7.54)

where (1.7.52) has been used for nucleus 1. The multichannel theory presented in
Sect. 1.7.4 can therefore be applied. In particular the matrix elements (1.7.43) are
still valid, after an additional projection on I1π1. In general, these matrix elements
involve 7-dimensional integrals [80, 113] (3 dimensions for the Euler angles in the
bra and in the ket, and one additional integral for the relative motion). When the
cluster nucleus involves two clusters, this integral is reduced to 5 dimensions [110].
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Fig. 1.7 Three-cluster
configuration
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1.7.5.4 Hyperspherical Formalism

Let us consider the three-cluster system displayed in Fig. 1.7. The center of mass of
each cluster is defined as

Rcm,1 = 1

A1

A1∑

i=1

ri,

Rcm,2 = 1

A2

A1+A2∑

i=A1+1

ri,

Rcm,3 = 1

A3

A∑

i=A1+A2+1

ri. (1.7.55)

In the hyperspherical formalism [23], the scaled Jacobi coordinates are given by

x = √
μ23(Rcm,2 − Rcm,3),

y = √
μ

[
Rcm,1 − A2Rcm,2 + A3Rcm,3

A23

]
, (1.7.56)

where A23 = A2 + A3, and where the reduced masses are

μ23 = A2A3

A23

μ = A1A23

A
.

(1.7.57)

These coordinates provide the hyperradius and hyperangle

ρ2 = x2 + y2

αρ = arctan(y/x). (1.7.58)

The hyperspherical formalism is well known in non-microscopic three-body
systems [30, 114], where the structure of the nuclei is neglected. In that case, the
kinetic energy can be written as
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T = − �
2

2mN

(
∂2

∂ρ2 + 5

ρ

∂

∂ρ
− K2(Ω5)

ρ2

)
, (1.7.59)

where Ω5 = (Ωx,Ωy, α) is defined from the hyperangle α, and by the directions
of the Jacobi coordinatesΩx andΩy. The hypermomentum operator K2 generalizes
the concept of angular momentum in two-body systems and can be diagonalized as

K2Y
�x�y

KLM (Ω
5) = K(K + 4)Y

�x�y
KLM (Ω

5), (1.7.60)

where K is the hypermomentum, and �x and �y are the orbital momenta associated
with x and y. The hyperspherical functions are [115]

Y
�x�y

KLM (Ω
5) = φ

�x�y
K (α)

[
Y�x (Ωx)⊗ Y�y(Ωy)

]LM
, (1.7.61)

with

φ
�x�y
K (α) = N

�x�y
K (cosα)�x (sin α)�y P

�y+1/2,�x+1/2
n (cos 2α). (1.7.62)

In these definition, Pαβn (x) is a Jacobi polynomial, N
lx ly

K is a normalization factor,
and n = (K − �x − �y)/2 is a positive integer. The total wave function is then
expanded over the basis (1.7.61), which provides a system of coupled differential
equations (see Ref. [114] for detail). There are three different choices for the Jacobi
coordinates (1.7.56). However, these choices are equivalent since the corresponding
hyperspherical functions (1.7.61) are related to each other by a unitary transform
involving Raynal–Revai coefficients [115]. Many applications have been performed
in the spectroscopy of light nuclei [114, 116] and, more recently, for three-body
continuum states [98, 117].

The extension of the hyperspherical theory to microscopic three-cluster systems
is recent [45]. Let us consider a three-cluster Slater determinant (1.7.49) or (1.7.53)
defined by two generator coordinates R1 and R2 (see Fig. 1.7). According to (1.7.58),
we define the hyperradius and hyperangle from the scaled generator coordinates

X = √
μ23 R2

Y = √
μR1

(1.7.63)

as

R2 = X2 + Y2

αR = arctan(Y/X).
(1.7.64)

This Slater determinant can be factorized as in (1.4.8) for two-cluster systems. We
have

Φ(X,Y) = ΦcmA φ1φ2φ3exp

(
− (x − X)2

2b2

)
exp

(
− (y − Y)2

2b2

)
, (1.7.65)
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where Φcm is defined as in (1.4.19), and φ1, φ2, φ3 are the translation-invariant
internal wave functions of the three clusters. We take here the origin of the coor-
dinates at the center of mass. We assume that the clusters have a spin zero, but the
theory can be generalized by additional angular momentum couplings (see Ref. [45]
for detail).

To develop (1.7.65), we use the expansion [115]

exp (−(x.X + y.Y)) = (2π)3

(ρR)2
∑

�x�yLMK

IK+2(Rρ)Y
�x�y

KLM (Ω
5
ρ)Y

�x�y∗
KLM (Ω5

R),

(1.7.66)
where IK+2(x) is a modified Bessel function. The Slater determinant (1.7.65) can
therefore be written as

Φ(X,Y) =
∑

�x�yLMK

ΦLM
�x�yK (R)Y

�x�y
KLM (Ω

5
R), (1.7.67)

where the projected basis function reads

ΦLM
�x�yK (R) =

∫
dΩ5

RY
�x�y�

KLM (Ω5
R)Φ(X,Y)

= ΦcmA φ1φ2φ3GK (ρ,R)Y
�x�y

KLM (Ω
5
ρ), (1.7.68)

with

dΩ5
R = R5 cos2 αR sin2 αRdαRdΩXdΩY , (1.7.69)

and

GK (ρ,R) =
(

b2

ρR

)2 (
4π

b2

)3/2

exp

(
−ρ

2 + R2

2b2

)
IK+2

(
ρR

b2

)
. (1.7.70)

Definition (1.7.68) is a direct extension of (1.4.27), obtained for two-cluster
systems. It only depends on a single generator coordinate, the hyperradius R. As
in (1.4.27), ρ is the quantal coordinate, and R a parameter which is not affected by
antisymmetrization. The total wave function is given, as in (1.4.28) for two-cluster
systems, as

Ψ LM =
∑

�x�yK

∫
f L
�x�yK (R)Φ

LM
�x�yK (R)dR, (1.7.71)

where the generator functions f L
�x�yK (R) are obtained from a three-body

Hill–Wheeler equation (1.4.32). The matrix elements involving GCM projected func-
tions are computed as in Sect. 1.7.5.3, with a further integral over the hyperangle.
This gives, for the overlap,
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〈ΦLM
�x�yK (R)|ΦLM

�′x�′yK ′(R′)〉 =
∫

dαRdαR′ cos2 αR sin2 αR cos2 αR′ sin2 αR′

× φ
�x�y
K (αR)φ

�′x�′y
K ′ (αR′)〈ΦL

�x�y
(X,Y)|ΦL

�′x�′y(X
′,Y ′)〉,
(1.7.72)

where the matrix elements in the integrand are obtained from five dimensional
integrals. Matrix elements in the hyperspherical framework therefore involve 7-
dimensional integrals. The advantage with respect to the fixed geometry is that
this basis involves one generator coordinate only. It has been essentially applied
to systems involving s clusters, such as 6He [45], 6Li [45], 9Be [96] or 12C [96]. In
that case, a semi-analytic treatment of the matrix elements (1.7.72) can be used. Very
recently an 16O+p+p calculation was performed [118] to investigate the diproton
radioactivity of 18Ne.The model has also been extended to a microscopic description
of three-body continuum states [95].

1.8 Scattering States With the GCM

1.8.1 Introduction

The treatment of scattering states in microscopic models is a delicate problem. Exact
solutions of the Schrödinger equation (1.1.1) for positive energies must take account
of the asymptotic boundary conditions. Extensions to scattering and resonant states
represent however a wide range of applications: elastic and inelastic scattering,
transfer, capture, etc. The two latter processes are important in nuclear astrophysics,
where the low-energy cross sections relevant to stellar models are in general too small
to be measured in laboratory. The need for a precise treatment of unbound states is
also crucial in the study of light exotic nuclei, where the ground state is close to the
particle-emission threshold, or is unbound. In that case the determination of reso-
nance properties require an extension to scattering states. At large distances, the
microscopic Hamiltonian tends to

H → H1 + H2 − �
2

2μ
�ρ + Z1Z2e2

ρ
. (1.8.1)

Consequently, the relative wave function (1.1.4) of a scattering state at energy E
tends to, in partial wave �m,

Ψ �m(ρ) −→
ρ→∞φ1φ2Ym

� (Ω)g
�
ext(ρ),

g�ext(ρ) = I�(kρ)− U�O�(kρ), (1.8.2)

where k is the wave number, and I�(x) = O∗
�(x) are incoming and outgoing Coulomb

functions [119]. At large distances, antisymmetrization between the colliding nuclei
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is negligible. In Eq. (1.8.2), U� is the collision matrix, which determines the scattering
cross sections. In single-channel calculations, U� is parametrized as

U� = exp(2iδ�), (1.8.3)

where δ� is the phase shift. It is real in microscopic theories, since nucleon–nucleon
interactions are real. In optical models, it can be complex owing to complex optical
potentials. In a multichannel problem [120], U� is a symmetric and unitary matrix
whose size is equal to the number of open channels. Here we restrict the presentations
to single-channel calculations. An extension can be found in Refs. [85, 121].

In the RGM approach, solutions of (1.3.17) (or its angular-momentum extension)
can be derived at positive energies by using finite-difference methods, or by the
Lagrange-mesh approach [122, 123]. The GCM variant, however, cannot be directly
adapted to scattering states since any finite combination of (projected) Slater determi-
nants (1.4.27) presents a Gaussian behaviour. This problem is addressed by using the
microscopic R-matrix method [119, 124], which is briefly described in Sect. 1.8.3.

1.8.2 Cross Sections

The collision matrices U� provide the elastic cross section. As in previous sections,
we only consider systems with spinless particles (see Ref. [124] for a generalization).
At the scattering angle Ω = (θ, φ) the elastic cross section is given by

dσel.

dΩ
= |fC(Ω)+ fN (Ω)|2, (1.8.4)

where the Coulomb and nuclear amplitudes read

fC(Ω) = − η

2k sin2 θ/2
e2i(σ0−η ln sin θ/2),

fN (Ω) = i

2k

∑

�

(2l + 1)e2iσl (1 − U�)P�(cos θ). (1.8.5)

In these definitions, σ� = argΓ (� + 1 + iη) is the Coulomb phase shift, and η =
Z1Z2e2/�v is the Sommerfeld parameter (v is the relative velocity). As the Coulomb
amplitude diverges at small angles, the integrated elastic cross section is not defined
for charged-particle scattering.

Radiative capture is an electromagnetic transition from a scattering state to a
bound state. The electromagnetic aspects of this process can be studied at the first
order of the perturbation theory [119], with a scattering state at positive energy E and
a bound state in partial wave Jf πf as final state at negative energy Ef . The definition
of capture cross sections can be found in Refs. [124, 125] for example.
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1.8.3 The Microscopic R-Matrix Method

As mentioned before, GCM basis functions have a Gaussian asymptotic behaviour,
and cannot directly describe scattering states. This problem is typical of variational
calculations, where the basis functions can only reproduce the short-range part of
the wave functions. The R-matrix method provides an efficient way to use a finite
basis for the determination of scattering properties. In this approach the configuration
space is divided in two regions, separated by the channel radius a. In the internal
region, the wave function is given by the GCM expansion (1.4.28)

Ψ �m
int =

∑

n

f�(Rn)Φ
�m(Rn)

= A φ1φ2g�int(ρ)Y
m
� (Ωρ). (1.8.6)

The channel radius is chosen large enough to make the nuclear force as well as
antisymmetrization between the clusters negligible. Consequently, the external wave
function is defined as

Ψ �m
ext = φ1φ2g�ext(ρ)Y

m
� (Ωρ), (1.8.7)

where the radial function g�ext(ρ) is given by (1.8.2).
The quantities to be determined are the collision matrix U� and the coefficients

f�(Rn). The principle of the R-matrix theory is to solve the Schrödinger equation in
the internal region, and to use the continuity condition

g�int(a) = g�ext(a). (1.8.8)

However, as the kinetic-energy operator is not Hermitian over a finite interval, the
Schrödinger equation is replaced by the Bloch-Schrödinger equation

(H + L − E)Ψ �m
int = LΨ �m

ext , (1.8.9)

where the Bloch operator [126] acts at ρ = a and is defined as

L = �
2

2μ
δ(ρ − a)

d

dρ
. (1.8.10)

Using expansion (1.8.6) in (1.8.9) gives the linear system

∑

n′
C�nn′ f�(Rn′) = 〈Φ�(Rn) | L | Ψ �

ext〉, (1.8.11)

where matrix C� is defined at energy E by

C�nn′ = 〈Φ�(Rn)|H + L − E|Φ�(Rn′)〉int. (1.8.12)
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These matrix elements are defined over the internal region. This is achieved by
subtracting the external contributions [121]. By definition of the channel radius a,
antisymmetrization effects and the nuclear interaction are negligible in the external
region. The relevant matrix elements are therefore given by

〈Φ�(Rn)|Φ�(Rn′)〉int = 〈Φ�(Rn)|Φ�(Rn′)〉 −
∞∫

a

Γ�(ρ,Rn)Γ�(ρ,Rn′)ρ2dρ,

〈Φ�(Rn)|H|Φ�(Rn′)〉int = 〈Φ�(Rn)|H|Φ�(Rn′)〉

−
∞∫

a

Γ�(ρ,Rn)(Tρ + VC(ρ)+ E1 + E2)Γ�(ρ,Rn′)ρ2dρ,

(1.8.13)
where the first terms in the r.h.s. are matrix elements over the whole space, involving
Slater determinants. The second terms represent the external contributions of the
basis functions and are computed numerically.

From matrix C�, one defines the R matrix

R� = �
2a

2μ

∑

nn′
Γ�(a,Rn)

(
C�
)−1

nn′Γ�(a,Rn′) (1.8.14)

which provides the collision matrix as

U� = I�(ka)− kaI ′
�(ka)R�

O�(ka)− kaO′
�(ka)R�

. (1.8.15)

For single-channel calculations the R-matrix and the collision matrix are of dimension
one and, strictly speaking, are therefore not matrices. However the tradition is to keep
the terminology "matrix", even for single-channel calculations. When the collision
matrix is known, coefficients f�(Rn) can be determined from the system (1.8.11).
Notice that the channel radius a is not a parameter. In practice, it stems from a
compromise: it should be large enough to satisfy the R-matrix conditions, but should
be kept as small as possible to limit the number of basis states in the internal region.
The stability of the collision matrix and of the wave function with respect to the
channel radius is a strong test of the calculation. Further detail concerning the R-
matrix method, and its application to microscopic calculations can be found in Refs.
[85, 121, 124].
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1.9 Applications of the GCM

1.9.1 The 2α and 3α Systems

1.9.1.1 Conditions of the Calculations

The α+α system has been well known for many years, and was one of the first appli-
cations of microscopic cluster models. Owing to the large binding energy of the α
particle, 8Be is an ideal example of nuclear cluster structure. Two-alpha calculations
are rather simple; the matrix elements can be computed from the analytical expres-
sions of Tables 1.3, 1.4 and 1.5. The phase shifts are well known experimentally
[127] and can be accurately reproduced by microscopic cluster models associated
with the R-matrix method (see, for example, Ref. [128]).

On the other hand, more complicated 3α calculations have also been performed in
various three-body models. Here we present a simultaneous study of both systems,
as well as a comparison between different 3α descriptions of 12C. The calculations
are performed within the same conditions: an oscillator parameter b = 1.36 fm, and
the Minnesota interaction with an admixture parameter u = 0.94687, as adopted in
Ref. [93]. This u value provides a good description of the α + α phase shifts up
to 20 MeV, i.e. below the proton threshold. In these conditions, the binding energy
of the α particle (independent of u) is Eα = −24.28MeV, and the r.m.s. radius is√
< r2 >α = √

9/8b = 1.44 fm.

1.9.1.2 The α + α System

The generator coordinates R are taken from 0.8 to 8 fm by step of 0.8 fm. We first
present the energy curves, defined as the energy of the system for a fixed generator
coordinate R

E�(R) = H�(R,R)

N�(R,R)
, (1.9.16)

and involve the Hamiltonian and overlap kernels.
Using the asymptotic behaviour (1.8.1) of the Hamiltonian provides, at large R

values

E�(R) → 2Eα + �
2

2μ

�(�+ 1)

R2 + Z1Z2e2

R
+ 1

4
�ω, (1.9.17)

where the last contribution comes from a residual kinetic-energy term. The energy
curves cannot be considered as nucleus–nucleus potentials, as they do not include
forbidden states (see Sect. 1.6). However they provide qualitative properties of the
system. In particular the existence of a minimum suggests bound states or resonances,
and the location of this minimum provides an estimate of clustering effects.
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Fig. 1.8 α + α energy
curves (1.9.16). Horizontal
lines represent threshold
energies (see Eq. 1.9.17)

Fig. 1.9 α + α phase shifts
for � = 0, 2, 4. Experimental
data are taken from Ref.
[127]

The energy curves for � = 0, 2, 4 are presented in Fig. 1.8. As it is well known,
the minimum for � = 0 is located at fairly large distances (R ≈ 3.2 fm), which is a
strong support for α + α clustering in 8Be. When � increases this minimum moves
to smaller distances. It almost disappears for � = 4, where only a broad resonance
can be expected.

The α+α phase shifts are presented in Fig. 1.9 with the experimental data of Ref.
[127]. The 0+ ground state is found at E = 0.098 MeV, in fair agreement with exper-
iment (E = 0.092 MeV). The broad 2+ and 4+ resonances are also well reproduced
by the α+α model. Further developments in the α+α system, including monopole
distortion of the α particle (i.e. the α wave function is defined by a combination of
several b values) can be found, for example, in Refs. [37, 60]. A discussion of the
sensitivity to the channel radius is presented in Ref. [124].

1.9.1.3 The 3α System

The 12C nucleus described by a 3α cluster structure has been studied in various
microscopic approaches: with a frozen geometry (see, e.g., Refs. [5, 35, 129]), with
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an α +8 Be model [33, 130], and with the hyperspherical formalism [93]. Here
we aim at comparing the different approaches within the same conditions. We also
complement the hyperspherical calculation presented in Ref. [93].

In multichannel (or multicluster) calculations, the energy curves are defined by
a generalization of (1.9.16). For a given generator coordinate R, the Hamiltonian
matrix is diagonalized as

∑

j

(
HJπ

ij (R,R)− EJπ (R)NJπ
ij (R,R)

)
cJπ

j = 0, (1.9.18)

where i, j represent the channels (or additional generator coordinates in multicluster
problems). We only consider the lowest eigenvalue.

The calculations are performed as follows:

(a) For the frozen geometry, we take an equilateral structure (see Fig. 1.10), with
RC = 1–7 fm (by step of 1 fm). A minimum is found near RC ≈ 2.1 fm, which
is smaller than with the Volkov force [5, 35]. The Volkov force is known to give
rise to stronger clustering effects.

(b) For the α+8Be model (Fig. 1.11), 8Be is described by I = 0,2,4 and by 4 generator
coordinates R2 = 1.4, 2.6, 3.8, 5.0 fm. These values cover the minima observed
in the energy curves (Fig. 1.8). For the α+8Be motion, we take R1 = 1.5–12.3 fm
by step of 1.2 fm. Matrix elements are determined as explained in Ref. [110].
Figure 1.11 displays the α+8Be energy curves as a function of the generator
coordinate R1. The 0+ and 2+ partial waves present a minimum near R1 ≈ 2 fm,
whereas the 3− energy curve is typical of a stronger deformation. We illustrate
the influence of α +8Be� excited channels by keeping only the α +8Be(0+)
configurations (dotted lines). The energy surface (generalization of Eq. (9.18) for
two generator coordinates) is presented in Fig. 1.12 for J = 0+. The minimum,
corresponding to the ground state of 12C, is obtained for rather small values of
R1 and R2. At large R1 values, the dependence on R2 follows the α + α energy
curves of Fig. 1.8.

(c) For the hyperspherical description of the 3α system, we take the generator coordi-
nates R = 1.5–15 fm by step of 1.5 fm, and K values up to Kmax = 12. The energy
curves (Fig. 1.13) present a minimum near R ≈ 4 fm for J = 0+, 2+ and at
larger distance for J = 3−. In Fig. 1.14 we analyze the convergence with respect
to Kmax. This convergence is rather fast, much faster than in non-microscopic
models [116].

The 12C energies, obtained by the diagonalization of the full basis, i.e. including
all generator coordinates, are shown in Table 1.6 for the 0+

1 , 0+
2 , 2+ and 3− states.

Except for the 0+
2 resonance, the differences between calculations (b) and (c) are of

the order of 0.02 MeV, which shows that both bases are equivalent. In contrast, the
much simpler model (a) gives a significant underbinding (∼ 0.7 MeV). In option
(b), considering only I = 0 in 8Be provides a non-negligible difference. For the 0+

2
state which plays a key role in He burning, the α+8Be description is slightly better
than the hyperspherical approach (larger K and R values would be necessary to reach
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Fig. 1.10 3α structure in model (a) (left) and energies (right). The α particle is represented by a
gray circle

Fig. 1.11 3α structure in model (b) (left) and energy curves for different J values (right). The dotted
lines are obtained with the α +8Be(0+) channel only

Fig. 1.12 12C energy surface for J = 0+ as a function of R1 and R2

full convergence). For this state the frozen equilateral triangle configuration is not
adapted.

In general the 2+ excitation energy is underestimated. This result is due to the
lack of spin–orbit force, whose matrix elements vanish in an α model. Introducing α
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Table 1.6 Binding energies (in MeV) for various 12C states in models (a), (b) and (c). For model
(b), the bracketed values are obtained with I = 0 only

State (a) (b) (c)

0+
1 −83.69 −84.44(−84.10) −84.46

0+
2 −63.86 −72.23(−72.11) −72.14

2+ −81.29 −82.04(−81.41) −82.06
3− −69.03 −72.30(−71.81) −72.28

breakup configurations increases the 2+ excitation energy [131], in agreement with
experiment. In that case, however, the simplicity of the α cluster model is lost.

1.9.2 Other Applications of the Multicluster Model

In this subsection, we aim to illustrate the multicluster approach with typical results
obtained with a five-cluster model [35, 80, 132]. It allows the description of reac-
tions between a nucleus denoted as 1 and a nucleus denoted as 2 and/or to describe
spectroscopic properties of the unified nucleus (1 + 2).
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Fig. 1.15 Schematic
representation of the
five-center model. Si are the
corresponding vertices
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Table 1.7 Binding energies (in MeV) of one-center and four-center wave functions.

Ground-state One center Four centers
12C 0+ −76.3 −88.0
13C 1/2− −83.7 −91.7
14C 0+ −96.1 −103.4
15N 1/2− −120.7 −126.8
16O 0+ −140.4 −148.8

A schematic representation is given in Fig. 1.15. Nucleus 1 is described by a
tetrahedral structure with three alpha clusters located at the vertices of an equilateral
triangle and an additional s-cluster. Typical examples are 12C = 3α, 13C = 3α+ n,
and 15N = 3α + t. Nucleus 2 is described by a s-cluster and corresponds to an α
particle or a nucleon. The set of generator coordinates defining nucleus 1 is defined
as R{C} = (Rc,Rh) (see Fig. 1.15).

To test the cluster description of nucleus 1, we first analyze properties of some
p-shell nuclei described by a tetrahedral structure [35]. The calculations with the
four-cluster model are performed with a mixing of (Rc,Rh) configurations, whereas
one-center results are obtained with Rc = Rh = 0. The oscillator parameter is
optimized to minimize the binding energy. The nucleon–nucleon interaction is the
Volkov force V2 (with the standard value M=0.6), and the spin–orbit amplitude is
chosen as S0 = 30 MeV.fm5. The spin–orbit force does not contribute to 12C, 14C
and 16O since the clusters have an intrinsic spin zero.

Table 1.7 compares the ground-state binding energies in a one-center model and
in a four-centers model. The binding energies obtained within the four-center model
are always lower with a quite substantial difference.

Table 1.8 shows typical E2 transition probabilities and the 12C quadrupole moment.
Clearly the introduction of clustering effects in these nuclei improve the wave func-
tions. The four-cluster results are in good agreement with experiment, whereas the
no-cluster approximation underestimates the E2 properties.

We illustrate five-cluster calculations with the α+16O system, described by five
α clusters [80]. It is well-known that several 20Ne states present a marked α+16O
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Table 1.8 12C quadrupole moment (in e.fm2) and reduced transition probabilities (in W.u.). Exper-
imental data are taken from Refs. [133, 134].

One-center Four-center Experiment
12C Q(2+) 3.0 5.4 6 ± 3

B(E2, 2+ → 0+) 2.0 4.5 4.65 ± 0.26
13C B(E2, 3/2− → 1/2−) 1.5 3.4 3.5 ± 0.8

B(E2, 5/2− → 1/2−) 1.0 3.1 3.1 ± 0.2

Table 1.9 α-width (in keV) of some 20Ne states in the K = 0− band. Experimental data are taken
from Ref. [135]

Jπ Two centers Five centers (0+) Five-centers (0+, 3−, 1−) Experiment

1− 0.042 0.032 0.031 0.028 ± 0.003
3− 13.0 10.8 10.6 8.2 ± 0.3
5− 200 173 169 145 ± 40
7− 700 570 530 310 ± 30

structure. The 20Ne nucleus is described by α + 16O channels where the 0+ ground
state and the 1− and 3− excited states are considered. For computer-time reasons,
only one set of generator coordinates (Rc = 1.8 fm,Rh = 2.5 fm) is selected to
describe the 16O nucleus. These values minimize the 16O binding energy.

We focus here on α widths of some states in the K = 0− band. They are obtained
within the R-matrix formalism. Results are gathered in Table 1.9 and obtained in
three different ways: the standard two-cluster model where 16O is described by a
closed p-shell structure, the multicluster approach with only the 16O ground state,
and with some excited channels. The α widths are overestimated in the two-center
approach, but are significantly reduced when clustering effects are included in 16O.
Excited channels still improve the comparison with experiment.

In Ref. [80] the spectroscopy of 20Ne was complemented by calculations of the
α +16O phase shifts and of the 16O(α, γ)20Ne radiative-capture cross section. As
mentioned in Sect. 1.8, the cluster model can be extended to scattering states with
the R-matrix method, which provides scattering properties (such as resonance widths)
and cross sections.

1.9.3 Multichannel Study of the 17F(p, γ )18Ne Reaction

The knowledge of the 17F(p, γ )18Ne reaction rate is important for the understanding
of novae and X-ray bursts [136]. The energy range characteristic of such astrophysical
events can be evaluated by the calculation of the Gamow energy EG and the width
of the Gamow peak �0 [137]. For a typical temperature T = 0.5 GK, these values
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Fig. 1.16 18Ne and 18O
energy spectra (taken from
Ref. [136]) with respect to
the nucleon threshold (dotted
line)
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are EG = 0.32 MeV and �0 = 0.28 MeV. Until now, a direct measurement of the
17F(p, γ )18Ne cross section down to these energies has not been performed.

It is now well established that the 3+
1 (� = 0) resonance at Ecm = 0.64 MeV

dominates the 17F(p, γ)18Ne reaction rate at stellar temperatures. The energy and
the proton width have been measured by Bardayan et al. [138]. However, the gamma
width which determines the reaction rate is experimentally unknown and is estimated
from theoretical calculations.

The predictive power of the GCM is of particular interest in such a context. Indeed,
the small number of parameters allows reliable calculations in the astrophysical
energy range. The 18Ne wave functions are defined as a combination of 17F + p and
14O + α channel functions. The 17F internal wave functions are defined from all
possible Slater determinants with one proton in the sd shell, the s and p shells being
filled. This provides the well known shell-model states with spin I1 = 5/2+, 1/2+,
and 3/2+. Similarly, the 14O internal wave functions are defined from four neutrons
in the p shell, the s shell being filled for the neutron part, and the s and p shells
being filled for the proton part. This provides two states with I1 = 0+, one state with
I1 = 1+ and two states with I1 = 2+ (see Sect. 7.2). The nucleon–nucleon interaction
is fitted to the 3+ energy. Further detail about the conditions of the calculation is given
in Ref. [136].

The 18Ne spectrum is shown in Fig. 1.16 along with the 18O mirror nucleus. We
find a good overall agreement with experiment. The state ordering below the 17F+p
threshold is well reproduced, except for the 0+

2 state, slightly unbound in the GCM.
However the difference with the experimental value is only of 0.49 MeV. We can also
notice the good description of the 2+

2 state.
The important 3+

1 resonance is known to have a single-particle structure, and is
well described in a 17F + p model. The energy is adjusted by the nucleon–nucleon
force, but the proton width Γp = 21.1 keV is obtained without any fitting procedure.
The GCM value is in very good agreement with experiment (Γp = 18.0 ± 2stat ±



1 Microscopic Cluster Models 59

Fig. 1.17 17F(p, γ )18Ne
astrophysical S-factor with
the contribution of different
multipolarities (taken from
Ref. [136])
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1sys keV). The predicted gamma width Γγ = 33 meV is similar to values deduced
from the shell model, and used in astrophysics (Γγ = 30 ± 20 meV) [138].

The total and partial S-factors are displayed in Fig. 1.17. The astrophysical S-factor
is related to the cross section σ(E) as

S(E) = Eσ(E)exp(2πη), (1.9.19)

where η is the Sommerfeld parameter defined in Sect. 1.8.2. The calculations are
performed for the E1, E2, and M1 multipolarities, and the 0+

1 , 2+
1 , 2+

2 and 4+
1 bound

states are considered. As expected, the non-resonant E1 transitions give the dominant
contribution below the 3+

1 state. At zero energy, the S-factor is entirely determined
by the E1 term. The calculation gives S(0) = 3.5 keV-b. On the contrary, the M1
contribution is dominant near the resonance (the E2 term is negligible). More detailed
calculations [136] show that transitions to the 2+

1 and 2+
2 bound states represent the

main parts of the S-factor.
The 17F(p, γ )18Ne reaction rate is usually calculated as a sum of a direct compo-

nent and of a resonant term taking into account the 1−
1 , 3+

1 and 0+
3 contributions in

18Ne [139]. One of the main advantages of our method is to perform calculations
without separation between resonant and non-resonant contributions. However, in
the present case our model is unable to reproduce the 1−

1 and 0+
3 low-energy reso-

nances. Their contribution to the rate can be treated separately taking energies and
total widths from experiment [139].

All these results illustrate the adequacy and limitations of the present framework
for reactions of astrophysical interest. Here, two states located in the astrophysical
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energy range are not reproduced by the GCM: the 1−
1 and 0+

3 states. This means
that the multichannel basis is not sufficient, and that other configurations should be
introduced. Owing to the fact that the main contribution comes here from the 3+

1
resonance, this problem is however minor.

Another drawback comes from the lack of degrees of freedom in the Volkov
interaction. The present parameter choice leads to a strong overestimate of the
(14O + α)− (17F + p) threshold: 15.43 MeV to be compared with the experimental
value 1.19 MeV [140]. This can be explained by the fact that the model gives a better
description of 17F than of 14O. This problem prevents the simultaneous study of the
14O(α, p)17F transfer reaction. For these reasons, we have developed the EVI [141]
(see Sect. 1.2 for more detail), a new interaction with an additional parameter which
allows to fit two important properties of the system such as a resonance energy and a
threshold value. This interaction is well suited to transfer reactions where the repro-
duction of the Q value is crucial. Applications in nuclear astrophysics can be found,
for example, in Ref. [142].

1.9.4 12Be as an Example of a Light Exotic Nucleus

Due to technical difficulties, experimental informations related to the study of exotic
light nuclei are in general limited. From a theoretical point of view, cluster models
appear to be particularly well adapted to study such nuclei. In particular, the exact
treatment of the asymptotic behavior of the wave functions through the MRM (see
Sect. 1.8) allows the description of unbound states. A cluster model is also well suited
to molecular states, which present a strong deformation.

We illustrate applications of the GCM with a recent study performed on the
12Be nucleus [14], by focusing on molecular states. Above the 6He+6He threshold,
4+, 6+ and 8+ states have been identified in the breakup of 12Be into the 6He+6He
and 8He + α channels by Freer et al. [143]. They are believed to be members of a
molecular band.

A multi-channel wave function is given by a superposition of 8He + α and
6He+6He components. The 0+ internal wave functions of 6He and 8He are built
in a one-center harmonic oscillator model with (p3/2)

2 and (p3/2)
4 configurations,

respectively and the 2+ states, with (p3/2)(p1/2) and (p3/2)
3(p1/2)

1 configurations,
respectively. Details on the conditions of the calculations are given in Ref. [14]. The
present calculation updates an earlier study [13], where only ground-state configu-
rations were included.

The calculation (see Fig. 1.18) supports the existence of a molecular band,
as proposed by Freer et al. [143] and by Saito et al. [144]. The large reduced
widths support the molecular structure of this band. The analysis of the dimen-
sionless reduced widths shows that the 0+ wave function is dominated by the
6He(0+)+6He(0+) channel. The theoretical 2+ and 4+ energies are in good agree-
ment with the results of Saito et al. [144] and of Freer et al. [143], respectively.
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Fig. 1.18 Positive-parity
12Be states predicted by the
GCM (full symbols) and
experimental candidates
(open symbols [143–145])
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The wave functions are dominated by the 6He(0+) +6 He(0+) and 8He(0+) + α

ground-state configurations.
The 0+

2 and 2+
2 states are well reproduced by the GCM. Indeed, the energy differ-

ence with experiment is less than 0.5 MeV for both states (see Fig. 1.18). According
to Refs. [146–148], we confirm that these states belong to a same 0+

2 band and we
propose other band members. The calculation shows that the wave functions of the
0+

2 -band members are dominated by the 8He + α channels.
With this example, we have illustrated the ability of the GCM to describe molecular

states. Indeed, we have reproduced many known states of 12Be, in particular those
belonging to a molecular band. We have also predicted new 12Be bands which could
be searched for in future experimental studies.

1.10 Conclusions

In this work, we have reviewed various aspects of microscopic cluster models. With
respect to non-microscopic variants, microscopic theories offer several advantages:
in particular, they only depend on a nucleon–nucleon interaction, and excited config-
urations can be introduced without further parameters. The cluster approximation
makes them tractable, even for fairly large nucleon numbers. Of course, cluster
models use effective interactions.

Microscopic cluster models are applied in many topics; using the microscopic
R-matrix method, they can be consistently extended to scattering states [124]. This
property opens many perspectives in low-energy nuclear physics. Not only cross
sections can be studied, but spectroscopic applications can be extended to unbound
states, even with a broad width [149]. The microscopic treatment of two-cluster
scattering states is well known, but this formalism has been recently extended to
three-cluster scattering states [95].

We have illustrated the formalism with some typical examples, both in spec-
troscopy and in reactions. In the literature, the GCM has been applied to many
fields, ranging from the spectroscopy of exotic nuclei to reactions of astrophysical
interest. Microscopic cluster models represent a efficient tool for the investigation
of nuclei located near or beyond the driplines. These nuclei, such as 16B or 18B
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for example [150], are now actively studied in large-scale facilities. They combine
several difficulties: they are unbound even in their ground state, excited states of the
core are expected to be important, and core-neutron interactions (such as 15B + n or
17 B+n) are not available. Investigations of Bose–Einstein condensation [8] in nuclear
physics also benefit from cluster models. In the future, scattering theories could be
developed with microscopic cluster wave functions of the projectile, in particular
for the Continuum Discretized Coupled Channel (CDCC) method [99], or for the
eikonal method [151]. The merging of precise scattering models with microscopic
descriptions of the projectile represents a challenge for the upcoming years.
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Theor. Phys. Suppl. 68, 29 (1980)
6. Hoyle, F.: Astrophys. J. Suppl. 1, 121 (1954)
7. Ikeda, K., Takigawa, N., Horiuchi, H.: Prog. Theor. Phys. Suppl., Extra Number p. 464 (1968)
8. Tohsaki, A., Horiuchi, H., Schuck, P., Röpke, G.: Phys. Rev. Lett. 87, 192501 (2001)
9. von Oertzen, W., Freer, M., Kanada-En’yo, Y.: Phys. Rep. 432, 43 (2006)

10. Freer, M.: Rep. Prog. Phys. 70, 2149 (2007)
11. Fujiwara, Y., Tang, Y.C.: Phys. Rev. C 31, 342 (1985)
12. Freer, M., Angélique, J.C., Axelsson, L., Benoit, B., Bergmann, U., Catford, W.N., Chappell,

S.P.G., Clarke, N.M., Curtis, N., D’Arrigo, A., DeGóes Brennand, E., Dorvaux, O., Fulton,
B.R., Giardina, G., Gregori, C., Grevy, S., Hanappe, F., Kelly, G., Labiche, M., Brun, C.L.,
Leenhardt, S., Lewitowicz, M., Markenroth, K., Marqués, F.M., Motta, M., Murgatroyd, J.T.,
Nilsson, T., Ninane, A., Orr, N.A., Piqueras, I., Laurent, M.G.S., Singer, S.M., Sorlin, O.,
Stuttgé, L., Watson, D.L.: Phys. Rev. Lett. 82, 1383 (1999)

13. Descouvemont, P., Baye, D.: Phys. Lett. 505B, 71 (2001)
14. Dufour, M., Descouvemont, P., Nowacki, F.: Nucl. Phys. A 836, 242 (2010)
15. Wildermuth, K., Kanellopoulos, T.: Nucl. Phys. 9, 449 (1958)
16. Tang, Y.C.: in Topics in Nuclear Physics II Lecture Notes in Physics. Vol. 145, p. 572 Springer,

Berlin (1981)
17. Johnson, E.D., Rogachev, G.V., Goldberg, V.Z., Brown, S., Robson, D., Crisp, A.M., Cottle,

P.D., Fu, C., Giles, J., Green, B.W., Kemper, K.W., Lee, K., Roede, B.T., Tribble, R.E.: Eur.
Phys. J. A 42, 135 (2009)

18. Neudatchin, V.G., Kukulin, V.I., Korotkikh, V.L., Korennoy, V.P.: Phys. Lett. 34B, 581 (1971)
19. Buck, B., Dover, C.B., Vary, J.P.: Phys. Rev. C 11, 1803 (1975)
20. Wildermuth, K., Tang, Y.C.: A Unified Theory of the Nucleus. Vieweg, Braunschweig (1977)
21. Suzuki, Y., Varga, K.: Stochastic variational approach to quantum-mechanical few-body prob-

lems. Lecture Notes in Physics Vol. m54 (1998)
22. Baye, D.: Phys. Rev. Lett. 58, 2738 (1987)
23. Lin, C.D.: Phys. Rep. 257, 1 (1995)



1 Microscopic Cluster Models 63

24. Faddeev, L., Merkuriev, S.: Quantum Scattering Theory for Several Particle Systems. Kluwer
Academic Publishers, Dordrecht (1993)

25. Tohsaki, A.: Phys. Rev. C 49, 1814 (1994)
26. Caurier, E., Martínez-Pinedo, G., Nowacki, F., Poves, A., Zuker, A.P.: Rev. Mod. Phys. 77,

427 (2005)
27. Navrátil, P., Vary, J.P., Barrett, B.R.: Phys. Rev. Lett. 84, 5728 (2000)
28. Kanada-En’yo, Y., Horiuchi, H., Ono, A.: Phys. Rev. C 52, 628 (1995)
29. Neff, T., Feldmeier, H.: Eur. Phys. J. Spec. Top. 156, 69 (2008)
30. Kievsky, A., Rosati, S., Viviani, M., Marcucci, L.E., Girlanda, L.: J. Phys. G 35, 063101

(2008)
31. Saito, S.: Prog. Theor. Phys. Suppl. 62, 11 (1977)
32. Horiuchi, H.: Prog. Theor. Phys. Suppl. 62, 90 (1977)
33. Kamimura, M.: Nucl. Phys. A 351, 456 (1981)
34. Varga, K., Suzuki, Y., Tanihata, I.: Phys. Rev. C 52, 3013 (1995)
35. Dufour, M., Descouvemont, P.: Nucl. Phys. A 605, 160 (1996)
36. Descouvemont, P.: Nucl. Phys. A 596, 285 (1996)
37. Baye, D., Kruglanski, M.: Phys. Rev. C 45, 1321 (1992)
38. Descouvemont, P., Baye, D.: Phys. Lett. B 169, 143 (1986)
39. Wada, T., Horiuchi, H.: Phys. Rev. C 38, 2063 (1988)
40. Dufour, M., Descouvemont, P.: Nucl. Phys. A 726, 53 (2003)
41. Tanihata, I., Hamagaki, H., Hashimoto, O., Shida, Y., Yoshikawa, N., Sugimoto, K.,

Yamakawa, O., Kobayashi, T., Takahashi, N.: Phys. Rev. Lett. 55, 2676 (1985)
42. Jonson, B.: Phys. Rep. 389, 1 (2004)
43. Varga, K., Suzuki, Y., Ohbayasi, Y.: Phys. Rev. C 50, 189 (1994)
44. Descouvemont, P.: Nucl. Phys. A 584, 532 (1995)
45. Korennov, S., Descouvemont, P.: Nucl. Phys. A 740, 249 (2004)
46. Adahchour, A., Descouvemont, P.: Nucl. Phys. A 813, 252 (2008)
47. Baye, D., Descouvemont, P.: Phys. Rev. C 38, 2463 (1988)
48. Tursunov, E.M., Baye, D., Descouvemont, P.: Phys. Rev. C 73, 014303 (2006)
49. Liu, Q.K.K., Kanada, H., Tang, Y.C.: Phys. Rev. C 23, 645 (1981)
50. Dufour, M., Descouvemont, P.: Phys. Rev. C 78, 015808 (2008)
51. Langanke, K.: Adv. Nucl. Phys. 21, 85 (1994)
52. Descouvemont, P.: Phys. Rev. C 70, 065802 (2004)
53. Iliadis, C.: Nuclear Physics of Stars. Wiley, Weinheim (2007)
54. Baye, D., Descouvemont, P., Kruglanski, M.: Nucl. Phys. A 550, 250 (1992)
55. Tang, Y.C., LeMere, M., Thompsom, D.R.: Phys. Rep. 47, 167 (1978)
56. Wildermuth, K., Kanellopoulos, E.J.: Rep. Prog. Phys. 42, 1719 (1979)
57. Friedrich, H.: Phys. Rep. 74C, 209 (1981)
58. Bertsch, G., Borysowicz, J., Mcmanus, H., Love, W.G.: Nucl. Phys. A 284, 399 (1977)
59. Volkov, A.B.: Nucl. Phys. 74, 33 (1965)
60. Thompson, D.R., LeMere, M., Tang, Y.C.: Nucl. Phys. A 286, 53 (1977)
61. Baye, D., Pecher, N.: Bull. Cl. Sci. Acad. Roy. Belg. 67, 835 (1981)
62. Navrátil, P., Quaglioni, S., Stetcu, I., Barrett, B.R.: J. Phys. G 36, 083101 (2009)
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Chapter 2
Neutron Halo and Breakup Reactions

T. Nakamura and Y. Kondo

Abstract Characteristic features of neutron halos in the context of breakup exper-
iments at intermediate/high energies are discussed. Neutron halos have been found
for light neutron rich nuclei along the neutron drip line, as intense radioactive nuclear
beams have become available in recent years. A neutron halo nucleus is composed
of a tightly bound core surrounded by one or two neutrons which extend outside
of the mean field potential due to quantum tunneling. Coulomb breakup of halo
nuclei shows extremely enhanced cross sections for such systems, originating from
the characteristic electric dipole response of halo nuclei at low excitation energies,
called soft E1 excitation. Such features are shown for one-neutron halo nuclei by
Coulomb breakup experiments of 11Be on Pb at about 70 MeV/nucleon, performed at
RIKEN, where it was found that the direct breakup mechanism is responsible for this
excitation. We then show how the E1 excitation spectrum can be related to properties
of the halo distribution, and hence that the method of Coulomb breakup is a powerful
spectroscopic tool. As such, applications of the Coulomb breakup of 15C and 19C
are shown. The 19C case is valuable for extracting the microscopic structure of 19C,
which has only recently been clarified. The 15C case can be used to extract the radia-
tive capture cross section of the 14C(n, γ )15C reaction. We then demonstrate recent
applications of the “inclusive” Coulomb breakup method to a new-region of loosely
bound nuclei near the island of inversion (N ∼ 20). There, evidence obtained, of the
1n halo structure in 31Ne, is presented. In the 2n halo case the Coulomb breakup
of 11Li at 70 MeV/nucleon, measured at RIKEN, is shown. This reaction has pro-
vided evidence of dineutron-like structure, revealed by the strong enhancement of
the soft E1 excitation. For nuclear dominated breakup, where a light target is used,
the momentum distribution of the core fragment has key information on the halo
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distribution, and the single-particle properties of the valence neutron. Here we show
an example of a spectroscopic study of 13Be, populated by removing one neutron
from the two neutron halo nucleus 14Be. These results show that the breakup reac-
tions play significant roles in elucidating the structures along the neutron drip line.
This feature will be very important for further investigations of the drip-line nuclei
towards the heavier region, as will be produced using the new-generation RI (Rare-
Isotope) beam facilities, as has just been completed in RIKEN (RIBF) in Japan. Such
enhanced RI-beam facilities are soon to be commissioned in Europe (SPIRAL2, FAIR
etc.), in Asia (KoRIA), and in the US (FRIB).

2.1 Introduction

In 1985, the anomalously large matter radius of the most neutron-rich Li isotope,
11Li, significantly beyond the conventional r0 A1/3 law, was discovered from a mea-
surement of its interaction cross section with a carbon target at 790 MeV/nucleon [1].
Soon after this epoch-changing finding, an extremely narrow transverse momentum
distribution of 9Li, following the breakup of 11Li on a carbon target, was observed
[2]. This was later confirmed by the measurement of the corresponding longitudinal
component [3]. Combined with the large matter radius, the narrow momentum width
of the core fragment was interpreted as a manifestation of a “halo”, an extended
density distribution of two valence neutrons spilling out of the densely-packed 9 Li
core. This basic concept was discussed in Ref. [4]. The third important finding of
this nucleus was made by observing its anomalously large Coulomb breakup (CB,
or electromagnetic dissociation EMD) cross section [5], which was interpreted as
evidence of an enhanced electric dipole response at low excitation energies, known
as “soft E1 excitation”. These features are all related to the cluster-like structure of
11Li, i.e., a three-body 9Li+n+n structure appearing near the breakup threshold.

This chapter focuses on “breakup reactions” of halo nuclei. Breakup reactions
have played significant roles since the early days of halo physics. After about two
decades from the first experimental confirmation of halo structure in 11Li, many
experimental methods and techniques related to breakup reactions of halo nuclei
have made very significant progress.

It should also be noted that several RI-beam facilities have been upgraded, com-
missioned, or are expected to soon be commissioned, to improve the quality and
intensity of the secondary beams. In 2007, the new-generation RI-beam facility RIBF
(RI beam Factory) at RIKEN in Japan has been commissioned [6, 7]. This facility
enhances capabilities of drip-line physics thanks to its extraordinary improvement in
intensities of exotic nuclei, by more than three orders of magnitude for most nuclei,
compared to those available at the pre-existing facilities. The power of the RIBF
facility was demonstrated recently by the discovery of about 50 new neutron-rich
isotopes near the predicted astrophysical r-process path [8, 9]. Later in this chapter,
we show results of breakup measurement of 31Ne performed in this facility [10].
Other new-generation facilities include FAIR at GSI in Germany [11], SPIRAL2 at
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Fig. 2.1 Nuclear chart up to Z = 20 (Ca), whose drip-lines are based on the identified bound
nuclei. The known neutron halo nuclei are indicated. Evidence for halo structures of 22C and 31Ne
have recently been obtained experimentally [10, 14]

GANIL in France [12], FRIB at MSU in the USA [13], which will be in operation
in 3–10 years.

As in 11Li,neutron halo nuclei have been discovered at the limit of nuclear stability
on the neutron-rich side (neutron drip line) in the lower mass part of the nuclear chart,
as shown in Fig. 2.1. A neutron halo nucleus is composed of a tightly bound core
surrounded by a low-density neutron cloud, called a halo, which contains one or two
neutrons. Halo phenomena occur basically due to the quantum tunneling effect for
weakly bound neutron(s) which extend outside of the surface of nuclear mean-field
potential due to the core. Since the halo neutron(s) are spatially decoupled from the
core, a halo nucleus has a cluster-like property, and a 1n halo nucleus is regarded as
a two-body system composed of a core+1n, and a 2n halo nucleus as a three-body
system composed of a core+n+n .

As discussed in the review articles [15–19], and references therein, the main issues
in halo physics are summarized as follows:

1. Microscopic structure of 1n halo nuclei: A key issue is the single-particle con-
figuration of the valence neutron relative to the core. The condition of 1n-halo
formation is that a nucleus should have small Sn (1n separation energy), typi-
cally Sn < 1 MeV. Another important requirement is that the valence neutron has
low (or no) orbital angular momentum to avoid the hindrance of the tunneling
effect due to the centrifugal barrier (�(�+ 1)�2/(2µr2)). It is suggested that the
orbital angular momentum should be � = 0 or 1 for halo formation. In fact, only
when � = 0, 1 can one obtain a divergent r.m.s. radius (

√〈r2〉) of the tail density
distribution in the limit that Sn → 0 [18, 20, 21].

2. Microscopic structure of 2n halo nuclei: A 2n-halo nucleus has a three-body struc-
ture, called Borromean, where the two-body subsystems are weakly unbound but
the three-body system is bound. Recently, a possible strong dineutron correlation,
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where the two neutrons at the low-density nuclear surface take a spatially compact
configuration [22], has attracted special interest since this may happen for 2n halo
nuclei or neutron-skin nuclei [23]. The dineutron correlation is different from the
BCS-type long range correlation which arises for normal nuclei [24]. If such a
correlation is evidenced by 2n halo nuclei, we may expect similar correlations
in heavier neutron-skin nuclei, or even in the inner crust of a neutron star. The
possibility of the revelation of Efimov states in three-body halo nuclei has also
been discussed [25–27], but whose evidence has yet to be provided.

3. Interplay between shell evolution and halo formation: In most halo nuclei the
lowering of a low-� single-particle orbital, compared to the conventional shell
order is suggested. A famous example is the intruder 1/2+ ground state below
the 1/2− state in 11Be (parity inversion), as was identified 50 years ago [28] well
before the discovery of its 1n halo structure. Such a shell evolution enhances the
halo formation due to the appearance of a low-� orbital. In turn, we should note
that low kinetic energy of halo neutron(s) may cause the lowering of �.

4. Interplay between deformation and the halo: Deformation can influence the low-
ering of a low-� orbital in some cases, which could cause formation of a halo
structure [29, 30].

5. Other many-body correlations as a cause of halo formation: The possibility that
tensor correlations enhance s-p degeneracy of the two valence neutrons in 11Li is
discussed [31, 32].

6. Characteristic nuclear responses of halo nuclei: “Soft E1 excitation” is a unique
response of halo nuclei to an electric dipole operator. Such exotic excitation
modes may appear in different responses, such as E0, E2 [33], and spin-isospin
excitations [34].

7. Halo formation in heavier nuclei: So far, halo nuclei have been found in the mass
region less than A ∼ 20, except for the newly-found 1n halo nucleus 31Ne (see
Fig. 2.1)[10]. We thus raise the question: can we observe many halo cases in
heavier nuclei?; how? In what form can halo states appear in heavier nuclei? The
anti-halo effect predicted theoretically [35, 36], where neutron halo formation is
suppressed due to the pairing correlation, may limit the number of 2n halo cases.
It is also suggested that the dominance of larger � orbits for heavier nuclei may
restrict the cases of neutron halo to limited regions where s or p shells are located
near the Fermi surface. On the other hand, deformation and shell evolution effects
may increase the possibility of halo cases along the neutron drip line. In heavier
regions, we may expect more complex halo structure due to a mixture of different
shell configurations. For example, Meng and Ring have predicted the existence
of giant halo structure, involving about 6 neutrons for neutron-rich Zr isotopes
[37].

8. Understanding of possible 4n halo systems (among other multi-neutron halos):
8He and 19B are the 4n halo candidates, whose structures are not well known.
These systems could provide the first step to understand multi-neutron halos
expected in heavier neutron rich nuclei.

9. Finally, we would like to raise the following questions:
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a. Where is the neutron drip line located in heavier nuclei?
b. Does the existence of halo states change the location of the drip line? (i.e., will

the existence of halo structures change the nuclear stability?)

Such questions are fundamental to understand many-body nucleonic systems and
their stability at the limit of extreme isospin asymmetry.

Breakup reactions of halo nuclei play important roles in solving many of the above
issues. Breakup reactions are categorized into two processes, (1) Coulomb Breakup,
and (2) Nuclear Breakup, depending on the primary interaction involved. The breakup
on a heavy target, such as Pb or U, is dominated by Coulomb breakup, while the
breakup with a light target, such as proton, Be, and C, is dominated by nuclear
breakup. Both reaction processes are important in the spectroscopy of halo nuclei
since the observables in breakup reactions are strongly correlated to the microscopic
structures of the ground and continuum states of halo nuclei; as described later.

In what follows, we show the characteristic features of breakup reactions by
illustrating recent experimental results. Section 2.2 describes the Coulomb breakup
method in general. Section 2.3 describes the characteristic features of Coulomb
breakup and soft E1 excitation of “1n” halo nuclei. There, we explain the mech-
anism of soft E1 excitation and how the single-particle configuration of a 1n halo
nucleus can be studied. The examples shown there are for exclusive Coulomb breakup
of 11Be [38–40], 19C [41], 15C [42–44], and recent inclusive Coulomb breakup of
31Ne measured at RIBF [10]. Section 2.4 describes examples for “2n” halo nuclei,
showing 11Li [45–50]. There we discuss the possible application to probe the dineu-
tron correlation in 2n halo nuclei. In Sect. 2.5, we discuss the use of nuclear breakup
experiments on 14Be to study the spectroscopic information on the unbound nucleus
13Be [51]. In Sect. 2.6, we summarize and provide an outlook of the potential of
breakup reactions on halo nuclei for the future.

2.2 Coulomb Breakup at Intermediate/High Energies

Coulomb excitation has been a powerful spectroscopic tool in nuclear physics for
many years. In earlier days, heavy ion beams of low-energy, below the Coulomb bar-
rier, were primarily used. Recently, Coulomb excitation has been applied successfully
to neutron-rich/proton-rich nuclei at intermediate/high energies. When Coulomb
excitation is applied to drip line nuclei, such as halo nuclei, the Coulomb excitation
leads to a breakup channel, associated with 1–2 nucleon removals, called Coulomb
breakup or equivalently electromagnetic dissociation, due to their weak binding.

In Coulomb breakup, a projectile is excited by an impulse due to the Coulomb
field of a high-Z target as shown schematically in Fig. 2.2. Here Lorentz-contracted
electric field acts on the projectile as it passes the high-Z target with a relativistic
velocity at an impact parameter b. For relativistic speeds, the magnetic field also
becomes effective, so the more general term electromagnetic dissociation (EMD)
is also used. In fact, for a relativistic incident velocity β = v/c of a projectile, the
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bProjectile
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Virtual Photon

Target

(a)
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Fig. 2.2 a The Coulomb breakup process is shown schematically. When a relativistic projectile
passes a high-Z target at an impact parameter b, it experiences an impulse due to the Lorentz-
contracted electromagnetic field. When the intermediate excited state is above the particle decay
threshold, as is often the case for halo nuclei, the projectile breaks up into the core fragment and
nucleon(s). b The Coulomb breakup process can be regarded as the absorption of a virtual photon

electric field E and magnetic field B are almost perpendicular to each other, related by
|B| = β|E| [52]. This implies that the EM field approximates a real electromagnetic
wave as β → 1.

Hence, Coulomb breakup can be expressed as a photo-absorption process induced
by a virtual photon, as shown schematically in Fig. 2.2b. Such a treatment is called
the equivalent-photon [52, 53] or Weizsäcker-Williams method of virtual quanta.
There, the Coulomb excitation cross section at an excitation energy Ex is expressed
simply as a product of the photo-absorption cross section σ Eλ

γ (Ex) and the vir-
tual photon number NEλ(Ex). The latter is obtained by integrating NEλ(Ex, b) (the
photon flux at an impact parameter b) from the cutoff impact parameter b0 to infinity
or, equivalently, by integrating the angle differential photon number with respect to
the scattering angle from 0 to the grazing angle θgr,

dσ(Eλ)

dEx
=

∫ ∞

b0

2πbdbNEλ(Ex, b)
σ Eλ
γ (Ex)

Ex
(2.1)

=
∫ θgr

0
dΩ

dN Eλ(Ex, θ)

dΩ

σ
Eλ(Ex)
γ

Ex
(2.2)

= NEλ(Ex)
σ Eλ
γ (Ex)

Ex
. (2.3)

Here, λ represents a multipolarity of the transition, and E identifies an electric tran-
sition (M is used for the magnetic transitions). The photo-absorption cross section is
related to the reduced transition probability B(Eλ) as in,

σ Eλ
γ (Ex) = (2π)3(λ+ 1)

λ[(2λ+ 1)!!]2

(
Ex

�c

)2λ−1 dB(Eλ)

dEx
. (2.4)
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Fig. 2.3 E1 virtual photon
spectra as a function of the
energy of a virtual photon
(Eγ = Ex). Three cases, for
incident energies of 28, 70,
and 280 MeV/nucleon on a
Pb target are shown. These
incident energies are those
for the Coulomb breakup
experiments of 11Li in Refs.
[45, 46], [50], and [49],
respectively

Since NEλ(Ex) is provided in an analytical form, a measurement of dσ/dEx can be
used to extract dB(Eλ)/dEx directly.

For neutron halo nuclei, the electric dipole (E1) transition is dominant. For E1
excitation, Eqs. (2.3) and (2.4) can be combined as,

dσ(E1)

dEx
= 16π3

9�c
NE1(Ex)

dB(E1)

dEx
, (2.5)

where NE1(Ex) is the number of E1 virtual photons with photon energy Ex. When
we measure the scattering angle, as in the example of the 11 Be Coulomb breakup
experiment shown later [40], the formula for the corresponding double differential
cross section is also useful.

d2σ

dΩdEx
= 16π3

9�c

dNE1(Ex, θ)

dΩ

dB(E1)

dEx
. (2.6)

Note that in the semiclassical approach the center of mass (c.m.) of the projectile and
that of the outgoing particles after the breakup approximately follows a Rutherford
trajectory. Hence, there is a one-to-one correspondence between b and θ , stated as
b = a cot(θ/2) � 2a/θ , where a is half the distance of the closest approach in the
classical Rutherford scattering.

The typical E1 virtual photon spectra (photon flux) as a function of γ -ray energy
(Eγ=Ex) are shown in Fig. 2.3. The electric field experienced by the projectile,
as a function of time, is bell-shaped, with a width of b/(βγ ). Hence, the energy
spectrum, which is the Fourier transform of the time spectrum, extends to higher
excitation energy (higher frequency) for projectiles with higher incident energy, as
detailed in Ref. [52].
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2.3 Coulomb Breakup and Soft E1 Excitation of 1n Halo Nuclei

A large EMD cross section (0.89 ± 0.10 b) was observed for 11Li at 0.8 GeV/nucleon,
which was associated with the large enhancement of the E1 strength at low excitation
energies [5]. As the virtual-photon flux falls rapidly with energy, as shown in Fig. 2.3,
such a large cross section can only be explained by the concentration of significant E1
strength at low excitation energies of 1–2 MeV; which we now call soft E1 excitation.
Such a picture is contrary to the conventional picture of the E1 response of nuclei
where most of the E1 strength is exhausted by the giant dipole resonance (GDR),
located at Ex ∼ 80A−1/3 MeV or 31.2A−1/3 + 20.6A−1/6 MeV [54].

Ikeda predicted that such a low-energy E1 transition is caused by the low-
frequency motion of the charged core nucleus against the low-density neutron halo,
which is called a soft dipole resonance (SDR) [32, 54]. On the other hand, it has been
known that the enhancement occurs due to a direct breakup mechanism, where the
halo nucleus breaks up without forming any intermediate resonances, and that the
enhancement occurs due to the spatially-decoupled nature of the halo, whose detail
is shown later.

Three earlier exclusive Coulomb breakup experiments on 11Li, in the 1990s
[45–49], failed to clarify the mechanism of the soft E1 excitation, since the B(E1)
strength distributions obtained from the three experiments were inconsistent (see
Sect. 2.4 ). In addition, theoretical interpretation of the soft E1 excitation of 11Li is
difficult due to the correlations of the two neutrons. Hence, the Coulomb breakup
of the 1n halo nucleus 11Be was of great importance for understanding the under-
lying mechanism of soft E1 excitation due to its simpler structure. This section is
devoted to the Coulomb breakup of a 1n halo nucleus, to clarify the mechanism and
characteristic features of the soft E1 response of a 1n halo nucleus.

2.3.1 Coulomb Breakup of 11Be and Characteristic Feature
of Soft E1 Excitation of One-Neutron Halo Nuclei

The 1n halo structure of 11Be was first suggested by the enhancement of its reaction
cross section at a high incident energy of 790 MeV/nucleon at LBL [56], and at
a lower incident energy of 33 MeV/nucleon at RIKEN [57]. A narrow momentum
distribution of 10Be following the breakup of 11Be on a light target was observed [58],
and later investigated further with γ ray coincidences with the 10Be fragment [59]
at MSU. These measurements show clearly the one neutron halo structure of 11Be.
The first exclusive Coulomb breakup experiment was studied at 72 MeV/nucleon at
RIKEN [38]. Later, Coulomb breakup was studied at 520 MeV/nucleon at GSI [39],
and was investigated in more detail at 69 MeV/nucleon at RIKEN [40]. In this section,
we show the characteristic features of Coulomb breakup of 1n halo nuclei by showing
these experimental results for 11Be.
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The wave function of the ground state of 11Be(Jπ = 1/2+) can be written as,

|11Be(1/2+; gs)〉 = α|10Be(0+)⊗ 2s1/2〉 + β|10Be(2+)⊗ 1d5/2〉 + .... (2.7)

Here, the main issue is the occupancy of the halo configuration in the ground state,
namely, the spectroscopic factor for the first term involving the s-wave neutron.
Already in the 1970s, although the halo structure was not known, there were some
spectroscopic studies of 11Be by using the transfer reaction, 10Be(d, p)11Be, from
which the dominance of 2s1/2 neutron in the ground state (α2(= C2S)= 0.73 [60],
0.77 [61]) was extracted. The one-neutron separation energy is known very precisely
as 504 ± 5 keV. Since its ground state property is better established, Coulomb
breakup of 11Be is better suited for investigating the mechanism of soft E1 excitation,
compared to the 2n halo nucleus 11Li.

2.3.1.1 Typical Experimental Setup and the Invariant Mass Method

The three exclusive Coulomb breakup experiments used to map the B(E1) distrib-
ution of 11Be [38–40] were largely consistent with each other. Hence, hereafter, we
mainly show the result from Ref. [40].

To extract the B(E1) distribution, an exclusive (kinematically complete ) mea-
surement is required, where momentum vectors of all the outgoing particles, in this
case 10Be and the neutron, are measured. The experimental setup used in the experi-
ment of Ref. [40] is shown in Fig. 2.4. In this experiment, the 11Be secondary beam,
produced by fragmentation of an 18O beam at 100 MeV/nucleon at RIPS at RIKEN,
bombarded a Pb target at an average energy of 68.7 MeV/nucleon. The momen-
tum vectors of the beam (P(11Be)) as well as those of the outgoing 10Be fragment
(P(10Be)) and the neutron (P(n)) were measured in coincidence.

The excitation energy of the projectile can be extracted by reconstructing the
invariant mass M(11Be∗) of the intermediate excited state of 11Be as follows.

M(11Be∗) =
√√√√

(
∑

i

Ei

)2

−
(

∑

i

Pi

)2

(2.8)

=
√
(E(10Be)+ E(n))2 − (P(10Be)+ P(n))2, (2.9)

where E(10Be) and E(n) are the total energy of the 10Be fragment and that of the
neutron, respectively. The relative energy Erel between 10Be and the neutron is then
related to M(11Be∗) as,

Erel = M(11Be∗)− M(10Be)− mn . (2.10)

Here M(10Be) and mn denote the mass of 10Be and of the neutron, respectively. The
excitation energy Ex is related to the relative energy by Ex = Erel + Sn.
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Fig. 2.4 Experimental setup used in the exclusive Coulomb breakup experiment of 11Be at RIPS
at RIKEN. The figure is from Ref. [40]

It is useful to note approximate forms of Erel. In the non-relativistic limit, Erel
can be written as,

Erel = µ

2

[
v(10Be)− v(n)

]2
, (2.11)

where µ stands for the reduced mass of 10Be and the neutron, and v(10Be) and
v(n) the velocities of the outgoing particles. When these velocities are transformed
to the projectile rest frame, this result is a good approximation. This can be also
approximately written as

Erel = µ

2

[(
v(10Be)− v(n)

)2 + (v̄θ12)
2
]
, (2.12)

where v̄ and θ12 represent the mean velocity and the opening angle between the
two outgoing particles. This approximate form implies that the measurement of the
relative energy is primarily determined by the difference of the velocities (first term)
and the opening angle (second term) of the two outgoing particles. An approximate
formula of the energy resolution can then be given as,

ΔErel ∼=
√

2 · E

A

A1 A2

A1 + A2
· Erel ·

√(
Δv1

v1

)2

+
(
Δv2

v2

)2

+Δθ2
12, (2.13)

where E and A denote the kinetic energy and mass number of the projectile. In the
case of 70 MeV/u 11 Be, decaying into 10Be and a neutron with a relative energy of
1 MeV, a resolution of 190 keV(r.m.s.) is achieved for the condition ofΔv1/v1 =Δv2/

v2 = 1%, and Δθ12 = 10 mrad. In the experiment of Ref. [40], the same resolution
value was obtained by a detailed Monte Carlo analysis including the known velocity
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and angular resolutions. Note that the energy resolution is proportional to
√

Erel and√
E/A. Because of this dependence, one can achieve better energy resolution in the

invariant mass method compared to the missing mass method where the resolution
is determined by the order of E instead of

√
E/A. It is also noted that in the invariant

mass method, energy resolution is independent of the angular and energy spreads of
the beam, the source of one of the major uncertainties for missing mass spectroscopy.

2.3.1.2 Breakup Cross Sections and the B(E1) Spectrum

The breakup cross sections of 11Be on lead and carbon targets are shown in Figs. 2.5a
and b, respectively. The breakup data on the carbon target, where nuclear breakup
is expected to be dominant, is used to investigate the characteristic features of target
dependence. The cross sections are plotted for the different scattering angular ranges
shown. Here, the scattering angle θ is that in the c.m. frame of the target+projectile.
This was extracted from the difference of the incoming, P(11Be), and the sum of the
outgoing, P(10Be)+P(n),momentum vectors. The angular ranges, 0 ≤ θ ≤ 6◦ for the
Pb target and 0 ≤ θ ≤ 12◦ for the C target, are almost identical in the laboratory frame,
corresponding to the acceptance range in this experiment. We call these angular
ranges the “whole acceptance”. All the spectra shown in these figures are corrected
for the acceptance.

One can see clearly the distinctive difference between the spectra for the two
targets. The total breakup cross section into 10Be + n for the Pb target (whole accep-
tance, Erel ≤ 5 MeV) is 1790 ± 20 (stat.) ± 110 (syst.) mb, which is larger by a
factor of about 20 than that for the C target (93.3 ± 0.8 (stat.)+5.6

−10.3 (syst.) mb). Such
a big difference is due to the fact that the reaction on the Pb target is dominated
by Coulomb breakup, which is of the order of one barn for the soft E1 excitation.
On the other hand, reaction with the C target is dominated by nuclear breakup. Note
that if only nuclear breakup were to occur on both for C and Pb targets, the ratio of
the cross sections for these two targets would be about 2, roughly equal to the ratio
of the target+projectile radii [40].

The second remarkable difference is the spectral shape. The spectra for the Pb
target, both for the whole acceptance and the angular-selected one, have an asym-
metric peak at very low Erel, while that for the carbon target for the whole acceptance
shows two resonance peaks (Ex = 1.78 MeV, 5/2+, and Ex = 3.41 MeV, 3/2+)
superimposed on the continuum. It is interesting to note that the angular-selected
spectrum for the C target has a similar asymmetric peak as for the Pb target.

This asymmetric shape of the peaks is in good agreement of the direct breakup
mechanism shown by the solid curves. Namely, the direct breakup mechanism
explains how the soft E1 excitation occurs for a 1n halo nucleus. The detailed expla-
nation of the direct breakup mechanism, and its characteristic features, is described
in the next subsection. We find that the agreement with the direct breakup mechanism
is perfect for the angular selected data for Pb, and approximately so for the whole
acceptance data. The selection of the most forward angles, well within the grazing
angle (θgr = 3.8◦), has been found useful to extract almost purely the “Coulomb”
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Fig. 2.5 Breakup cross
sections as a function of Erel
of 10Be and the neutron in
the breakup of 11 Be+Pb at
69 MeV/nucleon (a) and
11Be + C at 67 MeV/nucleon
(b). See text and Ref. [40]
for details. (The figure is
from Fukuda et al. [40])

(a)

(b)

component of the breakup as was demonstrated in this experiment and later by
detailed reaction theories [62–64]. For the whole acceptance data, we see a slight
deviation which is attributed to nuclear breakup and higher order Coulomb breakup
effects. Even for the C target data, when we select sufficiently forward angles, we
find the direct Coulomb breakup dominates. These features were also seen in the
angular distributions shown in Ref. [40].

The B(E1) distribution was extracted from the angular-selected data. In this case,
it is useful to adopt the double differential cross section of Eq. (2.6), integrated over
the selected angular range. The resultant B(E1) spectrum is shown in Fig. 2.6, which
is again explained by the direct breakup mechanism shown in the solid curve. The
integrated B(E1) obtained from the data selected for the forward angles amounts to
1.05 ± 0.06e2fm2 corresponding to 3.29 ± 0.19 W.u. (Weisskopf unit) for Ex ≤ 4
MeV, which is huge, considering that the E1 strength in this energy region for normal
nuclei is negligible (below 0.1 W.u.).

2.3.1.3 Direct Breakup Mechanism

We now explain the direct breakup mechanism. As demonstrated by the comparison
with the Coulomb breakup data of 11Be, the direct breakup mechanism explains well
the soft E1 excitation of 1n halo nuclei. In the direct breakup mechanism, the 1n-halo
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Fig. 2.6 B(E1) strength
distribution for 11Be as a
function of Ex, obtained
from the angle-selected
Coulomb breakup data on a
Pb target (θ < 1.3 degrees).
The solid curve is the result
of a calculation with the
direct breakup mechanism
with α2 = 0.72

nucleus, in this case 11Be, breaks up into 10Be and a neutron without forming any
intermediate resonances. The possibility of the soft dipole resonance (SDR) as a main
mechanism of this large E1 strength is now rejected. Hence, it is more appropriate
to call this phenomenon soft E1 “excitation”.

The direct breakup mechanism is explained simply by the following matrix
element,

dB(E1)

dErel
=| 〈� f (r,q) | eE1

eff T̂ (E1) | �i (r)〉 |2, (2.14)

where �i (r) and � f (r,q) represent the wave function of the ground state and the
final state in the continuum of the neutron relative to the core, respectively. r is the
relative coordinate of the valence neutron relative to the c.m. of the core. � f (r,q)
is also a function of the relative momentum q = √

2µErel/�. The electric dipole
operator is T̂ (E1)(= rY (1)(
)). For the case of 11Be,�i is |11Be(1/2+; g.s.)〉.

For simplicity, we consider a pure single particle state and a spinless core, as in
|10Be(0+)⊗ ν2s1/2〉. The Eq. (2.14) can then be expressed in a simpler form as

dB(E1)

dErel
= 3

4π
(eE1

eff )
2〈�i 010 | � f 0〉2

∣∣∣∣
∫

drr2φ f (r, q) rφi (r)

∣∣∣∣
2

, (2.15)

where �i , �f are the orbital angular momenta of the valence neutron in the initial
state, and the scattered neutron in the final state, respectively [65–67]. φi is the radial
wave function involved in �i , and φf is the radial component of the final scattering
state of the neutron. The E1 effective charge eE1

eff for the one-neutron halo nucleus
is Ze/A. Although the actual analysis is performed with a distorted wave for φ f , it
is instructive to consider the plane wave approximation

φ f (r, q) =
√

2µq

�2π
j� f (qr), (2.16)

where j� f (qr) is the spherical Bessel function. With this approximation, it is found
that the above equations (Eqs. (2.14) and (2.15)) have the form of the Fourier trans-
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form of rφi (r). Hence, the B(E1) distribution at low q (low Erel) is the amplified
Fourier image of the density distribution of the valence neutron (or halo). It should
be noted that this image is amplified due to the factor “r” in the E1 operator. It is
shown in Ref. [64] that due to this amplification, B(E1) at low Erel is almost solely
determined by the density distribution outside of the range of the mean-field poten-
tial. That is, in the integration of Eq. (2.14), most of the contribution comes from the
radial region outside of the range of the neutron-core binding potential.

This interpretation in terms of a Fourier transform also implies that the spatial
decoupling of the halo and the core is important. The spatially decoupled halo state
overlaps very well with the E1 operator which further emphasizes large separations of
the valence neutron and the core. Such an intermediate state has a large overlap with
the final scattering state where the outgoing neutron is by definition well separated
from the core fragment. Conversely, since neutrons in ordinary nuclei are not spatially
decoupled from the core, only a high energy E1 photon can separate the whole neutron
fluid from the proton fluid as arises in the GDR.

Another instructive formula is obtained by further approximating Eq. (2.15), by
replacing the ground state radial wave function by its asymptotic form at large dis-
tance. In general, φi (r) can be written

φi (r) = Nh(1)�i
(iηr), (2.17)

where N is the normalization factor, and h(1)�i
is the spherical Hankel function with

η = √
2µSn/�. In particular, the s-wave state as in |10Be(0+)⊗ν2s1/2〉 is expressed

by the Yukawa function,

φi (r) = −N
exp(−ηr)

ηr
(2.18)

Then Eq. (2.15) leads to the following analytical form:

dB(E1)

dErel
= N 2 3�

2

π2µ

(
Ze

A

)2 √
Sn E3/2

rel

(Erel + Sn)
4 . (2.19)

This formula shows the essence of the direct breakup of an s-wave halo state. We find
that the peak of this analytical form appears at Erel = (3/5)Sn (i.e., Ex = (8/5)Sn),
and the integrated strength is inversely proportional to Sn. Hence, the lower the
separation energy, the stronger the soft E1 excitation is. Thus, the observable is
dictated by Sn or the threshold energy. This is why the soft E1 excitation is considered
as a threshold effect. However, we should note that Sn is simply the reflection of
the halo distribution. Hence, the spatially decoupled nature of the halo nucleus is
considered to be more essential. Such analytical forms, for different combinations
of the initial and final states, were described in Ref. [66, 67] and their features are
also discussed in Sect. 2.3.2
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2.3.1.4 Spectroscopic Factor

The B(E1) spectrum can be used to extract the spectroscopic information of the
halo structure. Namely, for the two-component configuration, Eq. (2.14) can be
rewritten as,

dB(E1)

dErel
= α2 | 〈� f | Ze

A
T̂ (E1) |10 Be(0+)⊗ ν2s1/2〉 |2 +

β2 | 〈�∗
f | Ze

A
T̂ (E1) |10 Be(2+)⊗ ν1d5/2〉 |2

� α2 | 〈� f | Ze

A
T̂ (E1) |10 Be(0+)⊗ ν2s1/2〉 |2, (2.20)

where �∗
f represents the scattering state between the excited state of 10Be(2+

1 ) and

the neutron. Note that the interference term vanishes since the final state of 10Be is
definite.

As was mentioned the B(E1) strength at low Erel is only sensitive to the tail of
the density distribution. Accordingly, only the amplitude for the |10Be(0+)⊗ν2s1/2〉
component, the halo configuration, survives as shown in Eq. (2.20). The spectroscopic
factor α2 of |10Be(0+) ⊗ ν2s1/2〉 can thus be extracted from the amplitude of the
B(E1) spectrum. In the experiment of Ref. [40], the spectroscopic factor for the
halo configuration α2 = 0.72 ± 0.04 was extracted. The spectroscopic factors from
other experiments range from 0.6 to 0.9 (see Table II of Ref. [40]), which are over
all consistent with the current result.

2.3.1.5 Sum Rules

There are two significant sum rules for the E1 response of a 1n halo nucleus; the
non-energy weighted cluster sum rule [68–70] and the energy weighted cluster sum
rule [71]. The non-energy weighted cluster sum rule is described as,

B(E1) =
∫ +∞

−∞
d B(E1)

d E
d E = 3

4π

(
Ze

A

)2

〈r2〉, (2.21)

which shows that the integrated B(E1) is proportional to 〈r2〉, where r represents the
distance of the halo neutron from the c.m. of the core. For 11Be, Ref. [40] estimated√〈r2〉 = 5.77 ± 0.16 fm by summing the E1 strength up to Ex = 4 MeV, which
is 1.05 ± 0.06 e2fm2. Note, however, the sum should be taken to infinity, and also
take account of bound final states [68, 69]. The extrapolation to infinity amounts to
0.12e2fm2, while for bound states, we should also add the E1 strength of 0.100(15)
e2fm2 due to excitations of the 1st excited state at Ex = 320 keV (Jπ = 1/2−) [72]
as well as other contributions (1p3/2) calculated as 0.037e2fm2 [70]. Then the sum
of E1 strength amounts to 1.31±0.07e2fm2, where the uncertainty is only statistical.
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Considering the systematic errors arising from the model [69], the estimated
√〈r2〉

is 6.4 ± 0.5 fm, about 10% larger than the original estimate.
It is useful to investigate the other dependence on the integrated B(E1) strength.

Combined with the result of the previous section, for the case of the s-wave 1n halo,
one can extract the following relations:

B(E1) ∝ α2/Sn (2.22)

∝ 〈r2〉. (2.23)

It is now evident that B(E1) of the 1n halo is determined by and scales with Sn, α2,
and is related to the size, 〈r〉2, according to the non-energy weighted cluster sum
rule.

Another important sum rule is the energy-weighted cluster sum rule [71], which
is described as,

∫
σγ (E1)d Ex =

∫
16π3

9�c
Ex

dB(E1)

dEx
d Ex = 60N Z

A
− 60Nc Zc

Ac
MeVmb, (2.24)

where Ac, Nc, and Zc represent the mass-, neutron- and atomic number of the core
fragment. For 11Be, this means that the cluster sum rule exhausts 5.7% of the TRK
(Thomas-Reich-Kuhn) sum rule. Ref. [40] extracted the value 4.0(5)%, which is
about 70 % of the cluster sum. It is interesting to note that this value is consistent
with the spectroscopic factor α2 for the halo configuration.

2.3.2 Spectroscopy Using Coulomb Breakup of 1n Halo
Nuclei - Application to 19C

As was demonstrated for 11Be, Coulomb breakup of a 1n halo nucleus occurs
primarily by the direct breakup mechanism, as expressed by the matrix element
shown in Eqs. (2.14) or (2.15). The B(E1) distribution has a characteristic shape
depending on Sn, � ( denoted by �i in this section) of the valence neutron, and the
spectroscopic factor of the configuration. Here, the characteristic shapes and ampli-
tude of B(E1) spectra are discussed, whose characteristic differences can be used to
clarify the shell configuration and spin-parity of the loosely bound state, in this case,
the ground state of 19C. The structure of 19C was unknown for many years before the
exclusive Coulomb breakup experiment [41] was performed. We also demonstrate
that the angular distribution of the Coulomb breakup reaction is useful in the deter-
mination of Sn. These features provide the basis for the Coulomb breakup method
offering a useful spectroscopic tool for a loosely-bound 1n nuclear system.



2 Neutron Halo and Breakup Reactions 83

2.3.2.1 Issues with 19C

The structure of 19C has not been well known partially because of a large uncertainty
in the four direct mass measurements: The Time-Of-Flight Isochronous (TOFI) at
Los Alamos measured Sn (19C) to be 700 ± 240 keV [73], and later 230 ± 120 keV
[74], while at GANIL, the high-resolution spectrograph (SPEG) combined with the
TOF measured Sn (19C) to be 50±420 keV [75], and later −70±240 keV [76]. The
mass evaluation in 1993 based on these direct mass measurements was 0.16 ± 0.11
MeV [77, 78]. Such a small Sn value, even smaller than that of 11Be, suggests a
significant halo state in 19C, which has drawn much attention. However, we should
note that the extracted Sn value ranged from almost 0 to 700 keV.

Since the 13th neutron in 19C most-likely occupies an orbital in the sd shell, the
following two possibilities for the ground state configuration should be examined:

|19C(1/2+)〉 = α|18C(0+)⊗ ν2s1/2〉 + β|18C(2+)⊗ ν1d5/2〉, (2.25)

|19C(5/2+)〉 = γ |18C(2+)⊗ ν2s1/2〉 + δ|18C(0+)⊗ ν1d5/2〉, (2.26)

where α,β,γ , and δ denote the spectroscopic amplitude for each configuration. The
shell model calculations in Ref. [79, 80] also suggest such configurations, where
these two states are almost degenerate in energy.

Before the exclusive Coulomb breakup measurement that we present here was per-
formed, inclusive measurements of either 18C [79–81] or the neutron [82] momentum
components following 19C breakup were performed. The momentum distribution of
18C measured at 77 MeV/nucleon at MSU [79, 80] exhibited a narrow width of
42 ± 4 MeV/c, while that measured at 914 MeV/nucleon at GSI [81] had a broader
width of 69 ± 3 MeV/c. Later, the semi-exclusive nuclear breakup on the 9Be target
was performed at MSU, where the γ -coincidence information was also incorporated.
There, the inclusive 18C momentum distribution is closer to the high energy result
of Ref. [81].

Because of such ambiguities in the early inclusive measurements, the interpreta-
tion of the ground state of 19C had long been controversial. Reference [79] suggested
a Jπ = 1/2+ assignment for the 19C ground state, and indicated halo formation aris-
ing from a large component of the |18C(0+)⊗ ν2s1/2〉 configuration. However, the
revised analysis [80] suggested the Jπ = 5/2+ assignment with a large portion of a
|18C(2+)⊗ν2s1/2〉 configuration. A similar possibility was also suggested in the GSI
paper [81]. The halo formation should be strongly suppressed for this configuration
because of the effective increase of Sn by 1.62 MeV corresponding to the cost of the
core excitation energy of the 18C (2+) state. As is later shown, this would affect the
spectral shape of the Coulomb breakup spectrum as well.

2.3.2.2 Characteristic Features of Spectral Shape of Direct Breakup

Since the density distribution outside of the potential will vary strongly, depending on
the orbital angular momentum of the valence neutron �i and the Sn value, the B(E1)
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Table 2.1 Characteristics of the spectral shape of d B(E1)/d Erel depending on the orbital angular
momentum of the valence neutron (�i ) in the initial state, and that of the scattered neutron (� f ) in
the final state [21, 67]

�i → � f d B(E1)/d Erel ∝ E
� f +1/2
rel (for small Erel) Peak of d B(E1)/d Erel

s → p ∝ E3/2
rel Erel = 3

5 Sn

p → s ∝ E1/2
rel Erel � 0.18Sn

p → d ∝ E5/2
rel Erel = 5

3 Sn

d → p ∝ E3/2
rel Erel = 5

3 Sn

spectrum is also characterized by these values. There is also a dependence on � f ,
the orbital angular momentum of the dissociated neutron. In the realistic calculation
of dB(E1)/d Erel based on the direct breakup mechanism, Eq. (2.14) or (2.15) are
used. However, it is instructive to investigate the analytical forms when using a
spherical Hankel function for the ground state, and a spherical Bessel function (plane
wave) for the final state, as in Eq. (2.19) for the s-wave halo. One obtains a general
form, for instance, in Eq. (2) of Ref. [67]. In this reference, the explicit analytical
forms are presented for p → s and p → d, in addition to that for s → p (Eq. (2.19)).
It can also be shown that, for a very small Erel value,

d B(E1)

d Erel
∝ E

� f +1/2
rel , (2.27)

and dB(E1)/dErel reaches maximum at the value shown in Table 2.1 , depending on
�i and � f [21]. This table illustrates that the distinctive difference of spectral shape of
d B(E1)/d Erel allows us to determine the �i value as well as to estimate Sn. For some
cases, Jπ of the ground state can be extracted. Therefore, the exclusive Coulomb
breakup of a 1n+ core system is a very powerful tool for investigating microscopic
structure of such a weakly-bound nucleus.

2.3.2.3 Energy Spectrum and the Ground State Configuration of 19C

Figure 2.7 shows the Coulomb breakup cross section as a function of Erel, which
was obtained by using the 19C beam with an average energy of 67 MeV/nucleon at
RIKEN [41]. Here, the nuclear breakup component was subtracted using the breakup
spectra for a C target. The method of selecting only very forward angles, as was used
in more recent 11Be data [40], was not adopted in these data due to lower statistics.
The Coulomb breakup spectrum in Fig. 2.7 shows a typical asymmetric shape with a
large cross section of 1.19 ± 0.11 barn, a typical feature for a neutron halo nucleus.

Calculations were performed for the direct breakup mechanism for 4 different
assumed ground state configurations, depending on the configuration in Eqs. (2.25)
and (2.26). First of all, we have found that for Jπ =5/2+, any mixture of the two
components, |18C(2+) ⊗ ν2s1/2〉 and |18C(0+) ⊗ ν1d5/2〉 failed to reproduce the
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Fig. 2.7 Coulomb breakup cross sections for 19C measured at 67 MeV/nucleon on a Pb target.
The dot-dashed and dashed curves are calculations for the configurations, |18C(2+) ⊗ ν2s1/2〉
and |18C(0+)⊗ ν1d5/2〉, respectively, of Jπ = 5/2+ assignment with unit spectroscopic factors and
Sn = 160 keV. The dotted and solid curves are calculations for the configuration |18C(0+)⊗ν2s1/2〉
with Sn = 160 keV and Sn = 530 keV, respectively. The latter Sn value is from the angular distribution
shown below

data with a former adopted Sn value of 160 keV. Varying Sn over a wide range (from
100 to 700 keV) was not able to reproduce the data, since the calculation could not
explain the magnitude of the cross section.

For the Jπ = 1/2+ case, on the other hand, the peak height of the spectrum
can be reproduced with α2 = 0.064 (dotted line) for Sn=160 keV. However, a fur-
ther tuning of the Sn value was required to obtain an overall fit to the spectrum.
In fact, good agreement was obtained using a higher Sn value of 530 keV as shown
by the solid line. This Sn value was obtained from an independent analysis using
the angular distribution, as shown below. In this case a large spectroscopic factor of
α2 = 0.67 was deduced. As for the |18C(2+)⊗ν1d5/2〉 configuration, only negligible
contribution is obtained and thus this is not shown.

We concluded that the ground state of 19C is Jπ = 1/2+, involving a dominant
configuration of |18C(0+)⊗ ν2s1/2〉 and the Sn value of about 500 keV. This config-
uration is rather close to that predicted by a shell model calculation with the WBP
interaction [79, 83]. The large amplitude for an s-wave valence neutron with such a
small Sn value shows that 19C is a 1n halo nucleus. There are a number of theoretical
work on dynamics and spectroscopic significance of Coulomb breakup of 19C. S.
Typel and R. Shyam used a time-dependent dynamical model of the breakup with a
heavy target, which could explain well the energy spectrum of 19C as well as that of
11Be [84]. We also refer to Ref. [63] and references therein.
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Fig. 2.8 Angular
distribution of the Coulomb
breakup cross section of 19C
on a Pb target. (The figure is
from T. Nakamura et al. [41])

2.3.2.4 Mass from the Angular Distribution of Coulomb Breakup

We now demonstrate that the Sn value can be determined from an analysis of the
angular distribution of 19C (i.e., of the 18C + n c.m.). As was shown in the case
of the Coulomb breakup of 11Be [40], the scattering angle of the excited 19C∗ in
the c.m. frame of the target+projectile can be extracted using the momentum vec-
tors of the incident 19C particle, and of the outgoing 18C and the neutron. As in
Eq. (2.6), the angular distribution of the cross section is proportional to that of the E1
virtual photon (dN E1/dΩ). The point is that the angular distribution of the photon is
the function of Ex, which is related to Sn by Ex = Erel + Sn. For a given Erel, the
angular distribution is then controlled by the parameter Sn , and is independent of the
choice of the final state wave function. Hence, Sn can be extracted from the measured
angular distribution. Note that the determination of Sn from the angular distribution
is less model dependent compared to the determination of Sn from the peak position
of the B(E1) spectrum which may be affected by other E1 excitations.

Figure 2.8 shows the measured angular distribution, for 0 ≤ Erel ≤ 0.5 MeV, in
comparison with the calculated spectra, where an angular resolution of 8.4 mrad
(in 1σ ) was incorporated. The angular distribution is best fitted with Sn = 530±130
keV as indicated by the solid curve, while the previously adopted value of Sn = 160
keV was unable to reproduce the angular distribution.

Such a higher Sn value was also extracted from the investigation of the momentum
distribution of 18C in coincidence with the de-excitation γ ray from the first excited
state of 18C at MSU [85]. Note that the newer mass evaluation Sn (19C) = 0.577±94
MeV [86, 87]) now takes into account the angular distribution of this Coulomb
breakup measurement as well as the momentum distribution in the γ -ray tag method.

In this section, we have shown that Coulomb breakup is a powerful spectroscopic
tool to investigate otherwise unknown states of loosely bound nuclei. It is important
that the technique of using the angular-distribution analysis for a 1n halo system was
established through this work [41].
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2.3.3 Application to the Radiative Capture
Reaction 14C(n, γ )15C of Astrophysical Interest

Coulomb breakup associated with one neutron emission can be useful to extract the
radiative neutron capture reaction (n, γ ), the latter being the inverse of the (γ, n)
reaction. As such, Coulomb breakup is also a useful tool in application to nuclear
astrophysics [88, 89]. Here, we show the case of the Coulomb breakup of 15C whose
inverse process is 14C (n, γ )15C. The principle of detailed balance provides the
relation between σγ n (photo-absorption cross section:σγ n = σγ in Eq. (2.4)) and
the radiative neutron capture cross section σnγ as in,

σnγ (Ec.m.) = 2IA + 1

2IA−1 + 1

E2
γ

2µc2 Ec.m.
σγ n(Eγ ), (2.28)

where IA = 1/2, and IA−1 = 0 for the present case, and µ denotes the reduced
mass of 14C + n, and Ec.m. is the c.m. energy of n + 14C which is equivalent to
Erel. Due to the phase-space factor, the photo-absorption cross section is larger by
2–3 orders of magnitude. For instance, for the current case at Ec.m.= 0.5 MeV,
σγ n(Eγ )/σnγ (Ec.m.) � 150. We also note that the photon numbers are further mul-
tiplied, which is of 2–3 orders of magnitude. Considering, in addition, the kinematic
focusing and the possibility of using a thick target, of the order of 100 mg/cm2,
Coulomb breakup is more advantageous, even using a weak radioactive beam,
compared to the neutron capture experiment. In this particular experiment on the
neutron capture on 14C, there is an additional difficulty in preparing the 14C target,
which is radioactive, while Coulomb breakup is free from such a difficulty.

2.3.3.1 The Radiative Neutron Capture Reaction 14C(n, γ )

The neutron capture reaction on 14C has drawn much attention due to its importance
in several nucleosynthesis processes. There are three cases where this reaction may
be of significance.

1. The neutron induced CNO cycle, 14C(n, γ )15C(β−)15N(n, γ )16N(β−)16O(n, γ )
17O(n, α)14C,which occurs in the burning zone of asymptotic giant branch (AGB)
stars with 1–3 M� [90] . The 14C(n, γ )15C reaction is the slowest in this reaction
chain, and thus controls the cycle.

2. Synthesis of heavy elements: Terasawa [91, 92] proposed a new-type of r-process
initiating from the lightest elements, and thus contains light neutron rich nuclei in
the path. This r process was inferred from the similarity of the nuclear abundance
pattern in metal-deficient halo stars to that of ordinary ones. The neutron capture
on 14C lies in one of the critical reaction flows of this process.

3. Inhomogeneous big bang models: In such models, the neutron-rich zone induces
nucleosynthesis and reaction paths involving light neutron-rich nuclei can appear.
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In this scenario, the 14C(n, γ )15 C reaction is also considered to be one of the key
reactions [93].

Due to these possible stellar reactions, the 14C (n, γ )15C reaction has attracted
much attention.

2.3.3.2 Soft E1 Excitation and the p-Wave Direct Neutron Capture

From the nuclear structure point of view, the ground state of 15C, i.e., the final state
of the capture reaction, is intriguing because it has a moderate-sized neutron halo
with a neutron separation energy Sn of only 1.218 MeV. Its main configuration is
|14C(0+)⊗ ν2s1/2〉. Therefore, Coulomb breakup of 15 C is expected to proceed via
soft E1 excitation due to the direct breakup mechanism.

Then, the direct capture of a p-wave neutron [65] is considered to be a dominant
process. This capture process is called direct neutron capture since the neutron in
the continuum is captured onto the 14C nucleus, just as in the inverse process where
15C breaks up into its p-wave continuum by the Coulomb breakup (direct breakup).
The p-wave capture process, as a stellar reaction, is exceptional, considering that the
neutron capture of a low-energy s-wave neutron that obeys the 1/v law is usually
dominant. The dominance of p-wave neutron capture has also been discussed for
stable nuclei, although the final state in this case is an excited state in an s orbital as
in 13C (1/2+) [94, 95].

2.3.3.3 Issues with 15C Coulomb Breakup and Direct Capture
Experiments on 14C

There has been controversy over the previous experimental results for this neutron
capture process. The pioneering experiment to extract the 14C (n, γ )15C reaction
rate was made by a direct measurement of the neutron capture cross section on a 14C
radioactive target [96]. The extracted MACS (Maxwellian averaged capture cross
section) of 1.72 ± 0.43µb at kT=23 keV was about a factor of 4-5 smaller than
predicted by the p-wave direct neutron capture calculations [93, 97].

As for the Coulomb breakup approach, A. Horváth et al. measured 15C Coulomb
breakup at 35 MeV/nucleon at MSU [42]. There, the energy spectrum of the inverse
capture cross section was very different from the expected p-wave behavior. Their
extracted capture cross section was about twice as large as that from the above-
mentioned direct measurement. More recently, Datta Pramanik et al. measured the
Coulomb breakup at higher energies, 605 MeV/nucleon at GSI [98, 99]. The result
showed a typical direct breakup spectrum, indicating the p-wave direct capture in
the inverse process.

More recently, the direct capture measurement was performed for the second time
by Reifarth et al. [100]. The result shows a significantly higher cross section com-
pared to the first direct measurement. In this new measurement, an energy spectrum
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ranging from ∼10 keV to 800 keV was also obtained so that a direct comparison to
the Coulomb breakup energy spectrum is now possible.

Here, we primarily show the result from the most recent Coulomb breakup exper-
iment at RIKEN using a 15C secondary beam at 68 MeV/nucleon on a Pb target [44].
It should be noted that the 14C(n, γ )15C case is a rare one, where both directions of
the reactions, neutron capture and Coulomb breakup, can be measured, so that such
data can be used to make a rigorous test of the Coulomb breakup method. Therefore,
precise measurements in both directions are highly desirable. Recent reaction theo-
ries [101–103] for treating Coulomb breakup reactions can also be tested using such
measurements.

2.3.3.4 Coulomb Breakup and Neutron-Capture Spectra

Figure 2.9 shows the relative energy spectrum of 14C + n in the breakup of 15C
on a Pb target at 68 MeV/nucleon. To extract the Coulomb breakup component,
we adopt the same procedure as in the Coulomb breakup of 11Be [40], using the
angular selection at forward angles. The solid squares show the breakup cross section
integrated over the scattering angular range 0◦ ≤ θ ≤ 6.0◦ which nearly corresponds
to the whole acceptance. Open circles show the cross section for a selected angular
range, 0◦ ≤ θ ≤ 2.1◦, which corresponds to the impact parameter range b > 20 fm.

The breakup cross sections for Erel ≤ 4 MeV are 670 ± 14 (stat.)±40 (syst.) mb
and 294 ± 12 (stat.)±18 (syst.) mb for the whole acceptance and the selected angu-
lar range, respectively. Such large breakup cross sections due to Coulomb breakup
on a heavy target are typical for halo nuclei. We should note, however, that the
15C breakup cross section is about 1/5 ∼ 1/3 of those for the conventional halo
nuclei such as 11Be [40], and 19C [41], both of which were measured at about 70
MeV/nucleon. This indicates that the size of the halo in 15C is not as extended as
in those more weakly-bound halo nuclei. The B(E1) spectrum, extracted from the
spectrum for 0◦ ≤ θ ≤ 2.1◦, is shown in Fig. 2.10, which is in excellent agreement
with the direct breakup calculation, as shown in the solid curve (dot-dashed curve
shows the calculation before folding the experimental resolutions).

2.3.3.5 Neutron Capture Cross Section

Figure 2.11 shows the neutron capture cross section σnγ extracted from the B(E1)
spectrum by applying the principle of detailed balance (Eq. 2.28). An excellent
agreement is obtained with the p-wave direct radiative capture model calculation
[66]. This result is consistent with the consideration that the final state of the 14C
capture reaction (namely 15C g.s.) is a halo state with a dominant s wave component.
The result is also found to be consistent with the neutron capture measurement in
Ref. [100], with only a slight deviation at around Ec.m. ∼ 0.5 MeV. The over-
all agreement of the Coulomb breakup result with the direct capture measurement
suggests that Coulomb breakup can be a good alternative for obtaining the neutron
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Fig. 2.9 Relative energy spectra for Coulomb breakup of 15C. Solid squares represent the data
for scattering angles up to 6◦, and open circles represent the data for selected scattering angles up
to 2.1 ◦. The solid curves are calculations for a direct breakup model with a spectroscopic factor
α2 = 0.91, for the halo configuration (a = 0.5 fm and r0 = 1.223 fm) (The figure is from T.
Nakamura et al. [44])

Fig. 2.10 B(E1) spectrum for 15C excitation. The solid curve corresponds to the direct breakup
model calculation. The dot-dashed curve is the same calculation, before folding with the experi-
mental resolution. (The figure is from T. Nakamura et al. [44])

capture cross sections involving radioactive nuclei. Note that in general the Coulomb
breakup method can be applied to neutron-rich nuclei where the corresponding direct
neutron capture measurement is not feasible.

As for the comparison with previous Coulomb breakup results, we find that only
the data obtained from the Coulomb breakup measurement performed at GSI [98,
99] is consistent with the presented measurement. The neutron capture cross section
derived from the Coulomb breakup experiment performed at MSU is significantly
smaller (about 1µ b at Ec.m. = 23.3 keV, and 4µb around 0.05–0.10 MeV).
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Fig. 2.11 Neutron capture cross section on 14C leading to the 15C ground state. Solid circles are
the results of the current experiment, and open squares are those from the most recent direct capture
measurement [97]. The dot-dashed curve is the calculation based on the direct radiative capture
model, while the solid curve is the same one but includes experimental resolution. Both calculations
were done using a spectroscopic factor α2 = 0.91 and with potential parameters a = 0.5 fm and
r0 = 1.223 fm (The figure is from T. Nakamura et al. [44])

Since our results are consistent with those of Reifarth et al. [100], the argument
and implications in the nucleosynthesis scenario follows closely those of Ref. [100],
where the role of the 14C(n, γ )15C in the neutron induced CNO cycles, and the
impact of such a cycle on the neutron flux are discussed. The confirmation of the
reciprocity between Coulomb breakup and the radiative neutron capture is encourag-
ing for further studies of (n, γ ) reactions in heavier neutron-rich nuclei. One should
note, however, that in the inverse reaction of Coulomb breakup, one can restrict the
reaction to the ground state. For the case of 15C, there is only one excited state at
0.74 MeV, and the neutron capture to this state is found negligible from theories
[93, 97]. Although, such fortunate situations may be scarce for heavier regions, we
may expect lower level densities near closed shells, such as N = 50 and 82, where
Coulomb breakup can be applicable. These nuclei may be relevant to the r-process,
and thus also be of importance.

2.3.4 Inclusive Coulomb Breakup of 31Ne

As was shown above, Coulomb breakup reaction is a powerful tool for investigating
1n halo nuclei when one can map the d B(E1)/d Erel function by a kinematically
complete measurement (exclusive Coulomb breakup). Here, we show that “inclusive”
Coulomb breakup can also be a useful tool. The case presented in this section is an
inclusive Coulomb breakup measurement of 31Ne [10], which was performed at the
new-generation RI-beam facility, RIBF, at RIKEN as one of the day-one 48Ca beam
campaign experiments in Dec. 2008.



92 T. Nakamura and Y. Kondo

2.3.4.1 Issues with 31Ne

For about a decade, the heaviest 1n halo nucleus experimentally known has been
19C. Since the first observation of 31Ne in the late 1990s [104], 31Ne has been the
next heavier candidate for a 1n halo nucleus due to the small 1n separation energy.
According to the mass evaluation in 2003 [85, 86], Sn was theoretically estimated
as 0.332 ± 1.069 MeV, while the recent direct mass measurement showed Sn to be
0.29 ± 1.64 MeV [105].

Experimental studies of 31Ne are thus important as to how and in what form heavier
halo nuclei appear, as raised in the questions in the Introdution. Once halo structure
of 31Ne is established, then we may obtain a key to understand how a single particle
configuration plays a role in halo formation. 31Ne (N = 21) could be inside “the
island of inversion”, where shell model calculations showed that N = 20 magicity
is lost and significant 2p-2h configurations are mixed [106–108]. The neigboring
nuclei 32Mg [109], 32Na [110], 30,32Ne [111, 112] were found within this island,
experimentally.

For the conventional shell order, where the valence neutron resides in the 1 f7/2
orbital upon the 30Ne core, an enhanced tail of the density distribution (halo) never
develops, being blocked by the high centrifugal barrier. The halo formation of 31Ne
is only possible when a strong shell modification occurs, such that the 2p3/2 orbit
lowers below the 1 f7/2 orbit, for instance.

2.3.4.2 Inclusive Coulomb Breakup

We show that inclusive Coulomb breakup can be used to obtain a signal of the
existence of a halo structure. In an inclusive breakup experiment for the 1n halo
nucleus candidate, we measure 1n removal cross section on a heavy target. Namely,
we measured the counts of 30Ne fragments relative to the counts of 31Ne projectiles
which bombarded a Pb target.

As was mentioned, an exlusive (kinematically complete) measurement requires
that of four momentum vectors of all the outgoing particles. In this case we need a
coincidence measurement of the neutron, which requires 1-2 order larger yield for
the beam. On the other hand, an inclusive measurment is feasible with beam intensity
of the order of counts per second or even less, suitable for the earlier stage of the
new facility. In the experiment of Ref. [10], typical 31Ne beam intensity was about
5 counts per second and the data was taken only for about 10 hours.

The inclusive Coulomb breakup works in the following way. The inclusive
Coulomb breakup cross section can be written as,

σ(E1) =
∫ ∞

Sn

16π3

9�c
NE1(Ex)

d B(E1)

d Ex
d Ex. (2.29)

Namely, the product of NE1(Ex) and d B(E1)/d Ex is contained in the cross section.
As in Fig. 2.3, and in Fig. 2.12 for this particular case, the photon spectrum falls
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Fig. 2.12 Top: The E1
virtual photon spectrum on
Pb target for the projectile at
230 MeV/nucleon at the
impact parameter cut of
13.1 fm. Bottom: Calculated
B(E1) spectrum assuming
the soft E1 excitation of the
31Ne with the p-wave halo
neutron bound by Sn = 0.5
MeV (left) and the giant
dipole resonance (GDR) at
Ex = 21.6 MeV with the
sigma width of 2.13 MeV
(� = 5 MeV) and with the
full strength of TRK sum
rule (right)

exponentially with Ex. Thus, σ(E1) becomes significant only when the B(E1) is
concentrated at low excitation energies (soft E1 excitation) as in the case of halo
nuclei. The bottom part of Fig. 2.12 shows the comparison of calculations of B(E1)
for a halo nucleus (soft E1 excitation) and the ordinary nucleus (GDR) for a A = 31
nucleus. For the GDR of the ordinary nucleus, we assume that the GDR peak is
located at 31.2A−1/3 + 20.6A−1/6 MeV = 21.6 MeV [53] with a width of 5 MeV
(Gaussian) exhausting the full TRK sum rule, namely,

∫
σγ (E1)d Ex =

∫
16π3

9�c
Ex

d B(E1)

d Ex
d Ex = 60N Z

A
MeVmb. (2.30)

The TRK sum for the A = 31 nucleus is 420 MeVmb. Then the total Coulomb
breakup cross section σ(E1) for 31Ne on Pb target at 230 MeV amounts to 58 mb. 1

On the other hand, assuming that 31Ne is a halo nucleus and has soft E1 strength
caused by the valence neutron in p3/2 with Sn = 0.5 MeV, then the total Coulomb
breakup cross section up to Ex = 10 MeV is 510 mb, which is about one order
of magnitude larger than that due to the GDR. In the measurement, we obtain 1n
removal Coulomb breakup cross section, whose integration ranges up to Ex ∼ S2n
instead of infinity. For this range, the GDR strength can yield essentially null cross
section, while the soft E1 excitation gives rise to the Coulomb breakup cross section
in the 1n removal channel as 470 mb. With such a distinctive difference, 1n-removal
Coulomb breakup cross section can be used as a signal showing a halo state.

1 When we use the 80A−1/3 formula, we obtain even less cross section.
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Fig. 2.13 One neutron removal cross sections for 19C, 20C, and 31Ne on Pb ( diamonds) and C
(circles), and extracted Coulomb breakup cross sections (squares) obtained at about
230 MeV/nucleon. The large Coulomb cross section of 31Ne close to that of 19C (established halo
nucleus) indicates the 1n halo structure of 31Ne. The Coulomb breakup cross section for 19C esti-
mated from the exclusive one ([41], also see Sect. 3.2 is shown by the square, symbol just left of
the current data, which shows consistency. The data for 19C and 31Ne are from Ref. [10]. The data
for 20C are preliminary

2.3.4.3 Results of 31Ne Breakup

Figure 2.13 shows the 1n removal cross sections of 19,20C and 31Ne on Pb and C
targets at 230–240 MeV/nucleon. It is readily seen that the cross sections of 19C and
31Ne are both significantly larger than that of 20C. Secondly, the ratio of the cross
section for Pb to that for C is 9.0 ± 1.1 for 31Ne and 7.4 ± 0.4 for 19C, much larger
than the ratio for nuclear breakup only, which is estimated to be about 1.7–2.6. This
demonstrates that the cross section for a Pb target is dominated by Coulomb breakup
for 19C and 31Ne.

The Coulomb breakup component of the 1n removal cross section on Pb was
deduced by subtracting the nuclear component estimated from σ−1n(C). For this
purpose, it was assumed that σ−1n(C) arises entirely from the nuclear contribution,
and that the nuclear component for a Pb target scales with the parameter Γ , as in,

σ−1n(E1) = σ−1n(Pb)− Γ σ−1n(C), (2.31)

where Γ was estimated to be ∼ 1.7−2.6. The lower value is the ratio of tar-
get+projectile radii, as in Ref. [5], while the upper one is that of radii of the two
targets as in the Serber model [113]. The Coulomb breakup cross section for 31Ne
was thus obtained to be σ−1n(E1) = 540 ± 70 mb, which takes into consideration
the ambiguity arising from the choice of these two models.The dominance of the
Coulomb breakup for the reaction of 31Ne on Pb and the deduced σ−1n(E1) of some
0.5 b, nearly as high as the established halo nucleus 19C, indicates the occurrence of

http://dx.doi.org/10.1007/978-3-642-24707-1_3


2 Neutron Halo and Breakup Reactions 95

Fig. 2.14 The Coulomb breakup cross section for 31Ne on Pb at 234 MeV/nucleon is compared
with calculations for configurations of the valence neutron in 2s1/2, 2p3/2, 1d3/2, 1 f7/2 coupled to
31Ne (g.s.) for C2 S = 1 as a function of Sn. An example of lower C2 S value (C2 S = 0.5) is shown
by the dot-dashed curve for the 2p3/2 configuration

soft E1 excitation for 31Ne, thereby providing evidence of 1n halo structure of this
nucleus.

According to the direct breakup mechanism, the single-particle structure of the
ground state of 31Ne can be examined. Figure 2.14 compares the experimentally
deduced σ−1n(E1) with calculations for possible valence-neutron configurations as
a function of Sn. Since there is a large experimental uncertainty in the Sn value of
31Ne, the calculations were shown as a function of Sn.

The figure deals with direct-breakup calculations for a pure single particle con-
figuration C2S = 1 for the valence neutron either in the 2s1/2, 1d3/2, 1 f7/2, or 2p3/2
orbital, being coupled to the ground state of 30Ne. More detailed analysis including
possible configurations of the valence neutron coupled to the 30Ne (2+

1 ) state is pre-
sented in Ref. [10]. The essential point is, however, included in this figure. Namely,
the comparison in Fig. 2.14 shows that the data can be reproduced only by the config-
uration of |30Ne(0+

1 )⊗ν2p3/2〉 (Jπ = 3/2−) or |30Ne(0+
1 )⊗ν2s1/2〉 (Jπ = 1/2+),

but not by |30Ne(0+
1 )⊗ν1d3/2〉 nor |30Ne(0+

1 )⊗ν1 f7/2〉. The significant contribution
of such low-� valence neutron is again consistent with the 1n halo structure in 31Ne.
The other important implication of this result is that the conventional shell model
configuration of |30Ne(0+

1 )⊗ν1 f7/2〉 for the N=21 nucleus does not represent a pri-
mary configuration of the 31Ne ground state. Large-scale Monte-Carlo Shell Model
(MCSM) calculations employing the SDPF-M effective interactions [108] support
the assignment of Jπ = 3/2− having a |30Ne(0+

1 )⊗ ν2p3/2〉 contribution, which is
consistent with the current findings.

The shell model calculations (MCSM) also showed the large configuration mix-
ing, where |30Ne(0+

1 ) ⊗ ν2p3/2〉 could be mixed with |30Ne(2+
1 ) ⊗ ν2p3/2〉 and

|30Ne(2+
1 )⊗ ν1 f7/2〉. Such a large configuration mixing may be better described in

terms of deformation. In fact, recently, the current data was interpreted by a deformed
mean-field model [114]. There, the 21st neutron (p3/2) can be orbiting in a deformed
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mean-field potential, namely in the Nilsson levels [330]1/2− or [321]3/2−, although
the possibility of an s-wave valence neutron ([200] 1/2+) in a strongly deformed
mean field (β > 0.59) was not fully excluded. More recently, the ground state prop-
erties of 31Ne were also discussed using the particle-rotor model, which takes into
account the rotational excitation of the 30Ne core [115]. It is interesting to note that
halo properties, such as direct breakup dynamics and soft E1 excitations, are kept
for the wave functions obtained in a deformed mean-field potential.

Recently, there have been debates over the Jπ assignment of the ground state
of 33Mg [116–119], either with Jπ = 3/2− or Jπ = 3/2+. Note that 33 Mg has the
same neutron number N = 21 as 31Ne. The Coulomb breakup results of 31Ne shown
here may provide some hints to understand the structure of 33Mg and other isotones
nearby.

We also have a preliminary result of inclusive Coulomb breakup of 22C (2n-halo
candidate), where we have obtained evidence for 2n halo structure of this nucleus,
whose details will be published elsewhere. For this nucleus, the large radius of 22C
was recently suggested in the reaction cross section measurement [14], in accordance
with the 2n halo structure of this nucleus.

As was demonstrated, inclusive measurements are in particular important when
the beam intensity is not sufficient. Such a study provides us with a first step to
approach the exotic property of extremely neutron rich nuclei. However, for a full
understanding of the microscopic structure of 31Ne, exclusive Coulomb breakup
experiments would be desired, where C2S and Sn can be extracted for this 1n halo
nucleus. At RIBF at RIKEN, such experiments will be realized soon by the comple-
tion of the SAMURAI (Superconducting Analyser for MUlti-particles from Radio-
Isotope Beam) facility.

2.4 Coulomb Breakup and Soft E1 Excitation of 2n Halo Nuclei

The phenomena of soft E1 excitation for 2n halo nuclei have been known since the
first inclusive Coulomb breakup experiment for 11Li was performed [5]. However,
we still lack a complete understanding of the nature of soft E1 excitation for 2n halo
nuclei due to experimental and theoretical difficulties compared to 1n halo cases.

So far, the exclusive Coulomb breakup measurements have been performed for
6He [120, 121], 11Li [45–50], and 14Be [122]. For 6He, the two data [120, 121]
are not in agreement. Theoretically, there are a number of theoretical publications
for 6He [123–132], although theoretical interpretations of the data [120, 121] are not
fully established. For 14Be, the statistics of the experiment in Ref. [118] is apparently
not satisfactory to be compared with theories.

The soft E1 excitation of 11Li was also controversial, partly due to the inconsis-
tency of three data obtained in the 90’s: one measured at MSU at 28 MeV/nucleon
[45, 46], one at RIKEN at 43 MeV/nucleon [47], and one at GSI at 280 MeV/nucleon
[49] (see Fig. 2.17). More recently, the new data on 11Li was obtained [50] with much
higher statistics and with higher sensitivity for two neutron detections. In this section,
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we review this data, and discuss the obtained implication of the soft E1 excitation
and the microscopic structure of the 2n halo nucleus 11Li.

2.4.1 Exclusive Coulomb Breakup of 11Li

2.4.1.1 Experimental Setup and Treatment of Neutron Cross Talks

A kinematically complete measurement of the Coulomb breakup of 11Li on Pb at 70
MeV/nucleon was performed at RIKEN [50]. The experimental setup is shown in
Fig. 2.15, where the incoming 11Li was excited by absorption of a virtual photon and
then broke up into the 9Li fragment and the two neutrons. The difference from the
experiment of 1n halo nuclei is that we should take a special care of measurements
of the fast two neutrons in coincidence. In order to veto cross talk events which can
happen in the two neutron detection, the neutron detectors composed of 54 rods of
plastic scintillators (214(H) ×6.1 (V) ×6.1 (D) cm3 each) were arranged into two
walls (12 × 2 rods for the front (NEUT-A) and 15 × 2 rods for the rear (NEUT-B)),
separated by 1.09 m.

Since a neutron is scattered easily by the scintillator material, cross-talk events,
where one single neutron leaves more than one signal, can occur. Figure 2.16 (left)
schematically illustrates how such a cross-talk event occurs. There, one neutron is
scattered in a scintillator rod in the first neutron-detector wall (NEUT-A), which
reaches another scintillator rod in the second wall (NEUT-B) to be fired again. Such
an event arising from a single neutron can be mistaken for two neutrons firing inde-
pendently these two scintillator rods. When two signals are obtained from the two
scintillator rods, each of which belong to a different wall (different-wall event), one
can extract the apparent velocity between the two scintillator rods (vAB). One can
then utilize the vAB information to reject the cross-talk events by imposing the con-
dition such that the velocity to the first scintillator vA is smaller than vAB . This
condition excludes almost fully the cross-talk events since the neutron has smaller
velocity after the scattering. The validity of this method of vetoing the cross-talk
events was confirmed by the calibration run using the 7Li (p, n)7Be (g.s.+0.43 MeV)
reaction, which emits only one neutron at the forward angles.

We have also events where two neutrons hit two scintillator rods that belong to the
same neutron-detector wall. In this case, one cannot distinguish a two-neutron event
from a one-neutron event when two hits take place in a close distance. Figure 2.16
(right) shows how the cross-talk events affect the sensitivity at low Erel in 9Li +n+n,
where Erel between the two neutrons is also low. There is a dip in the efficiency curve
at Erel ∼ 0 MeV for the same-wall events due to the insensitivity mentioned, while
the different-wall events have a smooth efficiency curve towards Erel ∼ 0, which
enabled us to measure B(E1) strength down to Erel = 0 MeV. In treating the same-
wall events, we confirmed that energy spectrum after the efficiency correction in the
same wall events is essentially identical to that for the different wall events.
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Fig. 2.15 The experimental setup for the Coulomb breakup measurement of 11Li on Pb at
70 MeV/nucleon at RIKEN. The setup contains a dipole magnet (MAG), drift chamber (FDC),
hodoscope (HOD), and two-walls of neutron detector arrays (NEUT-A,B). (The figure is from T.
Nakamura et al. [50])

Target

Target

i) Cross talk event (1n)

ii) True 2n event

NEUT-A
NEUT-B

Fig. 2.16 Left Schematic explanation of the cross-talk event: (i) Cross-talk event where one neutron
fires both NEUT-A and NEUT-B, and (ii) Two neutron event hitting independently NEUT-A and
NEUT-B. The cross-talk events shown in (i) can be excluded by imposing the condition vA < vAB ,
where vA denotes the neutron velocity between the target and the NEUT-A, and vAB denotes the
apparent velocity obtained from the timings at NEUT-A and NEUT-B. Right Estimated efficiencies
for the different-wall events and same-wall events. The efficiency is also compared with those from
the experiments at MSU [45, 46] and at GSI [49] (The latter figure is from Ref. [50]).
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Fig. 2.17 B(E1) spectrum obtained in the Coulomb breakup of 11Li at 70 MeV/nucleon Ref. [50]
compared with the previous data obtained at MSU at 28 MeV/nucleon (dot-dashed-line) [45, 46],
RIKEN at 45 MeV/nucleon (solid histogram) [47, 48], and at GSI at 280 MeV/nucleon (zone between
dashed lines) [49]. The data is also compared with the three-body calculation shown in the solid
curve [68, 69]

2.4.1.2 B(E1) Spectrum and Two Neutron Correlation

Figure 2.17 shows the obtained B(E1) distribution, which is compared with the
previous three data sets. The result reveals substantial E1 strength that peaks at very
low Erel around 0.3 MeV. This feature is in contrast to the previous data, which
showed much reduced strength towards low relative energies which may be due to
the low neutron detection efficiency near Erel ∼ 0 MeV in those experiments.

The spectrum amounts to a large energy-integrated B(E1) strength of 1.42 ±
0.18 e2fm2 (4.5(6) W.u.), for Erel ≤ 3 MeV, which is the largest soft E1 strength ever
observed. In fact, this E1 strengths is about 40% larger than that for the one-neutron
halo nucleus 11Be [39, 40].

In extracting this spectrum, the E1 virtual photon spectrum assumed S2n = 0.3
MeV (2003 Mass Evaluation) [85, 86]. Recently, the mass values with higher
precisions have been experimentally obtained at ISOLDE(CERN) [133] and at
TRIUMF [134]. The former used the mass spectrometer MISTRAL, which deduced
the S2n value to be 0.378(5) MeV, while the latter used the Penning trap technique
which enabled an extremely precise mass evaluation of 11Li as S2n = 0.36915(65)
MeV. These results provided consistently higher values by about 20% compared to
the 2003 mass evaluation, which affects the evaluation of the photon number that is
dependent on Ex = S2n + Erel. For the latter S2n value of 0.369 MeV, the E1 strength
for 11Li re-evaluated is 1.49(19) (e2fm2) for Erel ≤ 3 MeV, or about 5% larger. Such
a slight change within the experimental uncertainty does not essentially change the
conclusion.

Figure 2.17 also compares the present B(E1) distribution with a calculation using
the three-body model proposed by Esbensen and Bertsch [67, 68], which includes the
two-neutron correlations both in the initial and final states in the E1 excitation. Note
that this calculation reproduces the data very well with no adjustment of normal-
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ization. Recently, a revised 3-body calculation was made by Esbensen et al. [135],
where the recoil effect was taken into account, in addition. Although an overall agree-
ment with the data has been obtained, some deviation occurs around Erel ∼0.5 MeV
as shown in Fig. 2 of Ref. [135]. This may be an indication that the other effects,
such as core excitation, may be important. The recent calculation by Myo et al.
[31, 32], which incorporated the effect of the core polarization using the tensor opti-
mized shell model, reproduced better the peak region. These overall agreements
of both the spectral shape and absolute strength in these calculations indicate the
presence of a strong two neutron correlation in 11Li, both in the ground and final
states.

2.4.1.3 Non Energy Weighted Cluster Sum Rule for 2n Halo Nuclei
and Dineutron Correlation

The spatial two-neutron correlation in the ground state (initial state) of two-neutron
halo nuclei can be quantitatively estimated by the non-energy weighted E1 cluster
sum rule [68, 69]. Such a sum rule was discussed for 1n halo nuclei in Sect. 2.3.1.5.
For the case of a two-neutron halo nucleus, the E1 operator r is replaced by r1 + r2,

where r1 and r2 are the position vectors of the two valence neutrons relative to the
c.m. of the core. Namely, the sum rule is written as,

B(E1) = 3

4π

(
Ze

A

)2

〈r2
1 + r2

2 + 2r1 · r2〉 = 3

π

(
Ze

A

)2

〈r2
c,2n〉. (2.32)

Here, r1 + r2 can be related to rc,2n , which is the distance between the c.m. of the
core and that of the two halo neutrons. Importantly, the term of (r1 · r2) involves the
opening angle θ12 between the two position vectors of the two valence neutrons. The
value of 〈rc,2n〉, and hence B(E1), becomes larger for the smaller spatial separation
of the two neutrons, when θ12 approaches 0◦. The integrated B(E1) thus provides a
good measure of the two-neutron spatial correlation.

The integral of the E1-response calculation up to Erel = 3 MeV (solid curve in
Fig. 2.17) accounts for about 80% of the total E1 cluster sum-rule strength above S2n.
Assuming that the B(E1) distribution follows this solid curve, the observed B(E1)
strength is then translated into 1.78±0.22e2fm2 for Ex ≥ S2n, which corresponds to

the value of
√

〈r2
c,2n〉 = 5.01±0.32 fm. Adopting the sum rule value, 1.07e2fm2, for

two non-correlated neutrons calculated in Ref. [68], the value 1.78±0.22 e2fm2 cor-
responds to 〈θ12〉 = 48+14

−18◦ . This angle is significantly smaller than the mean opening
angle of 90 ◦ expected for the two non-correlated neutrons. Hence, an appreciable
two-neutron spatial correlation is suggested for the two halo neutrons. Reference

[135] estimated
√

〈r2
c,2n〉 = 5.22 fm, while Ref. [31] calculated

√
〈r2

c,2n〉 to be

5.69 fm. These predicted values are close to the experimental estimation.
The important point for the soft E1 excitation of 2n halo nucleus is that the larger

polarization of the charge due to the stronger dineutron-like correlation enhances the
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soft E1 excitation. The charge radius measurement of 11Li also extracted the distance√
〈r2

c,2n〉 = 5.97 (22) [135–137], which is higher than the value from the Coulomb
breakup. This discrepancy could be related to the possible core polarization effect
[135].

It can be shown that spatial nn correlation is related to a mixture of different parity
states in the valence neutrons of 11Li. In a simple shell model picture where the inert
9 Li core is assumed, the 11Li could be described as,

�(11Li(g.s.)) = α|9Li(g.s.) ⊗ ν(2s1/2)
2〉 + β|9Li(g.s.)⊗ ν(1p1/2)

2〉. (2.33)

Here, we are interested in the mean opening angle between r1 and r2.The expectation
value of cos θ12 can be written as,

〈cos θ12〉 = α2〈(2s)2| cos θ12|(2s)2〉 + β2〈(1p)2| cos θ12|(1p)2〉
+ 2αβ〈(1p)2| cos θ12|(2s)2〉 (2.34)

= 2αβ〈(1p)2| cos θ12|(2s)2〉 (2.35)

The terms for α2 and β2 are null since these are odd functions of cos θ12. Hence,
a non-zero expectation value implies a mixture of these different parity configura-
tions. Namely, no mixture of different parity states (either α2 = 0 or β2 = 0) gives
rise to 〈θ12〉= 90◦ and no 2n correlation, while the mixture leads to the 2n spatial
correlation.

Other than shown above, there are extensive theoretical studies on the three-body
nature and the breakup dynamics of 11Li [23, 68, 131, 135, 138–146]. Our Coulomb
breakup result, in combination with these theoretical studies, should provide fruitful
information on the crucial properties of this intriguing Borromean system.

To summarize the soft E1 excitation of 2n halo nuclei, as in the case of 1n halo,
the strong low-energy E1 transitions certainly occurs for 2n halo nuclei. For 11Li, the
integrated soft E1 strength is about 40% larger than for 11Be. Such an enhancement
is also related to the nn spatial correlation (dineutron-like correlation), which can be
understood by the r1·r2 term in the non-energy weighted cluster sum rule. Experimen-
tally, it is of great importance to detect two neutrons in coincidence unambiguously.
A novel detection scheme, in combination with an analysis procedure using the kine-
matical condition for excluding cross-talk events, was introduced in Ref. [50]. Such
a method would be evolved further for multi-neutron detections for a breakup of 4n
halo nuclei in the near future.

2.5 Spectroscopy of Unbound States via the Nuclear Breakup

We now focus on the breakup with a light-mass target, where nuclear breakup dom-
inates over the Coulomb breakup. The nuclear breakup accompanied by 1n or 2n
emissions, which we treat here, are categorized into two mechanisms:
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Fig. 2.18 Schematic drawings of the neutron removal processes. Upper figure (a) shows diffractive
dissociation (or inelastic scattering/elastic breakup) for the case of 14Be. For instance, unbound
resonances such as the first 2+ state can be excited. In the forward detectors, the 12Be fragment and
the two neutrons are detected. The bottom figure (b) shows the 1n knockout process. In this case,
the remaining 13Be is produced as an intermediate unbound state followed by the decay into 12Be
and n. In the forward detectors, the 12Be fragment and the neutron are detected

1. Diffractive dissociation (or Elastic breakup/Inelastic scattering): This process is
inelastic scattering into the resonant state or non-resonant continuum as shown
in (Fig. 2.18a). The term elastic breakup is used since this process corresponds to
an elastic scattering of the neutron off the target. In this process, the neutron(s)
are basically going in the forward directions which can be covered by the neutron
detectors in the standard setup of invariant-mass spectroscopy of neutron-rich
nuclei.

2. Knockout reaction (or Stripping/Inelastic breakup): The knockout reaction may
be viewed as a quasi-free inelastic scattering of the neutron off the target
(Fig. 2.18b). In this process, the neutron is scattered to a large angle due to a
relatively large momentum transfer or even be absorbed by the target. As a con-
sequence, the neutron will not appear in the forward direction. This process is
sometimes referred to as absorption.

Experiments using the neutron removal reactions of radioactive nuclei with light
targets have been extensively studied [147], as a powerful spectroscopic tool as in
Coulomb breakup. Inelastic breakup can be used to excite directly unbound reso-
nances. In Sect. 2.3.1.2, the case for 11Be + C was briefly mentioned, where two
resonances of 11Be above the 1n-decay threshold were observed (see Fig. 2.5b).
In this section, we show the excitation of 14Be using the inelastic scattering with
carbon and proton targets.

In the knockout reaction, the momentum distribution of the core fragment, and
the cross section can be used to determine the orbital angular momentum (�) of the
removed neutron. At RI-beam facilities using high/intermediate-energy fragmenta-

http://dx.doi.org/10.1007/978-3-642-24707-1_3
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Fig. 2.19 Energy levels of low-lying states of 12Be, 13Be, and 14Be, where the excitation energies
are shown in MeV. The energy and the spin-parity of the first excited state of 14Be were obtained
from the elastic breakup of 14 Be on a carbon target [148], which was later confirmed by the breakup
on a proton target. The level scheme of 13Be was obtained from the 1n removal reaction of 14Be
on the proton target. The Sn value of the 13Be ground state was found −0.51(1) MeV (see text).
The arrows from the 13Be to 12Be correspond to the decays observed in this experiment. The direct
decay from the 2+

1 state of 14Be into the ground state of 12Be was also observed, which follows the
phase-space decay (see Fig. 2.22 )

tion, there have been extensive experimental studies on neutron removal reactions
using a variety of radioactive beams on light targets [147]. At MSU, a method of
measuring γ rays in coincidence with the core fragment has been developed, which
can determine the final bound excited state of the core fragment. Here, we show the
case of determining the “unbound” final states of 13Be, following the one-neutron
removal of 14Be. This requires extra cares, compared to the bound excited state, as
described below.

In what follows, we review experimental studies using the 14Be beam at about 70
MeV/nucleon on carbon and proton targets [51, 148]. The unbound low-lying states
of 14Be and 13Be were studied, whose level schemes, including the ones obtained in
these experiments are summarized in Fig. 2.19.

2.5.1 Inelastic Scattering of 14Be

2.5.1.1 Issues with 14Be

14Be is the most neutron-rich bound beryllium isotope with the two-neutron separa-
tion energy S2n = 1.26(13) MeV [86, 87] (see Figs. 2.1 and 2.19). This nucleus is
a Borromean nucleus since 13Be and the two neutrons are unbound, and is known
to have two-neutron halo structure due to the weak binding of the two valence neu-
trons. The structure of 14Be has been investigated theoretically as a 12Be+n +n
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(a) (b)

Fig. 2.20 a Relative energy spectrum of 12Be+n +n in the inelastic scattering of 14Be on a carbon
target at 68 MeV/nucleon. b Differential cross sections for the inelastic scattering of 14Be. Curves
show the DWBA calculations using optical potential parameter sets. The figures are from Ref. [148]

three-body system [149–153]. This nucleus is also discussed in terms of α−α clus-
tering structure as a common property of the neutron-rich beryllium isotopes [154].

The energies of the first 2+ states (2+
1 ) are important benchmarks to investigate

the shell gaps, and their associated nuclear magicity. The 2+
1 states of most nuclei

are bound, and thus can be studied by in-beam γ ray spectroscopy as in the case of
12Be [155]. For 12Be, notably large deformation length was obtained by the (p, p′)
reaction, despite the fact that 12Be has N = 8. Meanwhile, the 2+

1 state of 14Be has
long been controversial, which is lying above the 2n decay threshold. A candidate
of the 2+

1 state was reported at around Ex = 1.6 MeV [156, 157]. However, subse-
quent experiments did not show evidence of the state at around 1.6 MeV [19, 122].
In addition, no spin-parity assignment was done in these experiments. This nucleus
was thus investigated by the kinematically complete measurement of 14Be breakup
on a carbon target with higher statistics at RIKEN [148].

2.5.1.2 Relative Energy Spectrum and Angular Distribution

Figure 2.20a shows the relative energy spectrum of the 12Be + n +n system measured
in the breakup of 14Be on a carbon target at 68 MeV/nucleon [148]. The detector setup
used is identical to the one in Fig. 2.15. The two neutrons in coincidence with 12Be
at forward detectors were measured, which corresponds to the measurement of the
elastic breakup (inelastic scattering/diffractive).

A clear resonance peak has been observed at Erel = 0.28(1) MeV, which was
assigned to the first excited state at Ex = 1.54(13) MeV. It should be noted that the
uncertainty of Ex is mainly from that of S2n of 14Be. The spin and parity of the state
were determined from the analysis of the angular distribution of the inelastically
scattered 14Be∗ (12Be + n + n). This angular distribution was obtained using the
same procedure as in the Coulomb breakup experiments of 11Be, 15,19C, and 11Li
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Fig. 2.21 Systematics of the 2+
1 excitation energies Ex(2

+
1 ) (top) and quadrupole deformation

lengths δ for beryllium isotopes (bottom) are plotted, including the 14Be results [148]. In the bottom
figure, the open diamonds represent the result from the inelastic scattering with a 12C target, while
the open circles are those with a proton target. The systematics shows the melting of the N = 8
shell gap at 12Be.14Be has the least excitation energy and the least deformation length among the
Be isotopes. The figure is from Ref.[148]

described in the previous sections. Figure 2.20b shows the differential cross sections
for populating the 1.54-MeV state as a function of the scattering angle. Based on
the angular distribution, which is well fitted with curves of the DWBA calculations
for the �L = 2 transition, the observed resonance was assigned as a Jπ =2+ state.
The quadrupole deformation length was extracted from the DWBA analysis to be
1.18(13) fm. It is interesting to note that the observed Ex(2

+
1 ) value of 14Be is

smaller than that of 12Be as compared in Fig. 2.21. Contrary to the naive picture that
the lower Ex(2

+
1 ) indicates a larger collectivity for 14Be, the deformation length

was observed to be significantly smaller than that of 12Be. Such small collectivity
in 14Be may be related to the quenching of effective charges due to the high isospin
value as in neutron-rich B isotopes [158, 159]. It was also found that the shell model
calculations with effective interactions more appropriate to neutron-rich nuclei in
the p-shell (SFO) [160] reproduced the properties of the first 2+

1 states better both
for 12Be and 14Be, rather than the conventional ones (PSDMK) [161].

2.5.2 Breakup of 14Be with a Proton Target and Spectroscopy
of 13Be

14Be was also studied by the reaction 1H (14Be, 12Be+2n) at 69 MeV/nucleon using
a liquid hydrogen target provided by the cryogenic target system CRYPTA [162].
Since the reaction yield per energy loss for liquid hydrogen is larger than any other
target with a larger mass number, the use of such a target is advantageous for RI
beam experiments. The γ ray detectors (DALI NaI(Tl) array) were also installed,
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surrounding the target. The experimental setup was essentially similar to the one
used for the Coulomb breakup of 11Li (see Fig. 2.15), except for the liquid hydrogen
target.

In the Eikonal terminology, the breakup with a proton target at the energy of about
70 MeV is treated as an elastic breakup, irrespective of the amplitude of the neutron
momentum transfer, since the proton remains in the ground state through the reaction
in any ceases. However, here, we distinguish the case where the two neutrons and
the core fragment (12Be) are captured in the range of the forward detectors, from
the one where one neutron is deflected with a large momentum transfer and thus
only the 12Be and the neutron are in the range of the forward detectors. The former
corresponds to the case shown in Fig. 2.18a, while the latter corresponds to the case
shown in Fig. 2.18b. In the former case, we find that the major contribution is the
excitation to the 2+

1 state of 14Be, and the latter case corresponds to the production of
13Be in the intermediate state. Both channels can be studied in the same experimental
setup. As later described, some events from the 2n+12Be channel can be mixed with
the 1n + 12Be channel due to finite efficiency of the neutron detection. Hence, a
careful subtraction was made for 1n + 12Be spectrum.

2.5.2.1 Elastic Breakup and Study of the Three-Body Decay

The analysis of the 2n+12Be channel showed a similar energy spectrum as Fig. 2.20,
and confirmed the existence of 2+

1 state at about Ex=1.5 MeV, whose detailed
analysis on the spectrum is published elsewhere. It should be noted that there was
no coincidence with γ rays associated with the 2+

1 state of 12Be which supports that
the 2+

1 state decays into the ground state of 12Be.
We also investigated the property of the three-body decay from this state.

Figure 2.22 shows the two dimensional plots of the two-body relative energies, so
called Dalitz plot, for the decay of the 2+

1 state. The experimental distribution is well
described by the phase-space decay simulation with no signal of any correlation, and
hence no evidence for the sequential decay through a 13Be state was provided. This
implies that there are no resonance states of 13Be up to about 0.28 MeV (=Erel(2

+
1 ))

above the 12Be + n decay threshold. In the subsequent subsections, we show that
excitation to the 2+

1 state in 14Be can affect the spectrum of 13Be, which will be
properly subtracted.

2.5.2.2 One-Neutron Removal Reaction of 13Be -Introduction

The 1n removal reaction of 14Be on a proton target at 69 MeV/nucleon was used
to study 13Be [50], whose production process is schematically shown in Fig. 2.18b.
Here, we describe how one could extract the spectrum of the intermediate unbound
states of 13Be by the nuclear breakup at intermediate energies.

The energy levels of the unbound nucleus 13Be were controversial because sev-
eral experimental studies [163–171] were not consistent. In particular, there had
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Fig. 2.22 a: Experimental Dalitz plot for the decay of the 2+ state of 14Be. Ec−n1 and En1−n2
represent two-body relative energies of 13Be-n and the two neutrons, respectively. b: Simulation
results of the same Dalitz plot by assuming the decay according to the three-body phase space. c and
d: Projected histograms of a on Ec−n1 and En1−n2, respectively. Simulations shown by histograms
reproduce the experimental distributions very well.

been large ambiguities in spin-parity assignments. The resonances of the two-body
constituent, 13Be, of the three-body system 14Be is a key to understand its Borromean
structure. In addition, theoretically, there is an interesting question as to whether at
N = 9 the parity inversion as in 11Be occurs [172] or not. The experiment of Ref. [51]
was thus performed to disentangle the situation and to clarify the low-lying unbound
levels of the 13Be nucleus by determining both the energy and Jπ .

Similar spectroscopic studies to the case of 13Be were performed for the
two-body unbound resonance states in Borromean nuclei, such as 5He [120, 173,
174], 7He [173–175], 10Li [49, 171, 176], by the breakup of nuclei 6He, 8He, and
11Li, respectively. The proton knockout reactions, which may have different selection
rules for the production, have been applied for the study of 16B [177] and 18B [178].
Some of the earlier breakup extracted the momentum distribution of 5He [179], 10Li
[180] and 16B [177], to provide spectroscopic information such as the amplitude
and � of the removed neutron (proton). However, the distribution obtained was only
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inclusive. Namely, the momentum distributions in those experiments were obtained
without selecting the state in the energy (mass) spectrum.

The work on 13Be measured Erel and the momentum distribution, simultaneously.
The high statistics of the experiment in Ref. [51] enabled to subtract the effect of
the 2n + 12Be channel, as described later. The γ -ray coincidence also allowed to
distinguish the decay into the daughter fragment 12Be in the excited states. Such a
kinematically complete measurement and analysis was realized in this experiment
for the first time.

2.5.2.3 Momentum Distribution of the Bound and Unbound
State Following the Neutron Removal

The inclusive momentum distribution of the fragment following the neutron removal
reaction has been used as a spectroscopic tool to probe the extension of the radial
wave function, in particular for halo nuclei since the early work on 9Li fragment
from 11Li [2, 3].

At MSU, the method of combining γ -ray detection following the neutron removal
has been successfully developed to identify the final state of the core fragment as in
Ref. [59] and references in Ref. [147]. For 1 n removal, the momentum distribution
for a specific core state was used to determine the orbital angular momentum (�) of
the removed neutron, leading to the spin-parity assignment of the relevant state. In
addition, the partial cross sections to individual final states provide the spectroscopic
factors by applying reaction theory such as the Eikonal model. The Eikonal models
to analyze such experimental observables are reviewed in detail in Ref. [181].

At RIKEN, the one-neutron removal reactions of 18C and 19C on a proton target
were studied [182] to probe the single particle states of these nuclei and their daughter
nuclei. Figure 2.23 shows the momentum distribution of 17C following the 1n removal
of 18C at 81 MeV/nucleon on a proton target with identifying the final state of
outgoing 17C by detecting de-excitation γ rays [182]. In this work, the experimental
momentum distributions were compared with the theoretical ones calculated by the
Continuum-Discretized Coupled-Channels (CDCC) method [183], instead of the
Eikonal method. The Eikonal calculation always treat the 1n removal on the proton
target as elastic breakup, and thus it is difficult to distinguish an excitation to a state
of the projectile, and the breakup associated with the large momentum transfer to the
neutron. The CDCC calculations can treat such processes on equal footing.

In this measurement, the momentum distribution for populating the first excited
state of 17C tagged by the 0.21-MeV γ rays (Fig. 2.23a) is well described by the
calculation of the neutron removal from the ν2s1/2 orbital, while the other one
(Fig. 2.23b) for the second excited state is well described by the calculation for
the neutron removal from the ν1d5/2 orbital. These results led to the confirmation of
the spin-parity assignments of Jπ = 1 /2+ and Jπ = 5/2+ for the first and second
excited states of 17C, as proposed in Ref. [184].

When the final state of the core is an unbound resonance as in 13Be from 14Be,
one cannot determine the energy of the state by measuring the γ ray but the decaying
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(a) (b)

Fig. 2.23 Transverse momentum distributions of 17C in coincidence with de-excitation γ rays
following the 1n removal from 18C with a proton target at 81 MeV/nucleon [182]. The solid and
dashed curves correspond to the CDCC calculations for the assumption of removal of s-wave and
d-wave neutron, respectively. The figures are from Ref. [182]

particles. Hence, the invariant-mass spectroscopy is suitable for such a case instead
of in-beam γ -ray spectroscopy. For the measurement of the unbound nucleus 13Be
in Ref. [51], invariant mass spectroscopy was combined with the measurement of
the momentum distribution measurement.

2.5.2.4 Extraction of 13Be states: Selection of 1n + 12Be Events

In the 1n removal process (Fig. 2.18b), one neutron is emitted in the forward direction
after the decay of 13Be, while the neutron removed first is deflected in a large angle.
As such, the first neutron is out of range of the neutron detectors. Therefore, the
Mn = 1 events, where Mn represents the neutron multiplicity, were selected for this
process.

However, we should note that the Mn = 1 events also contain contributions from
the inelastic process (Fig. 2.18a), since the efficiency of the neutron detection is
not 100% but finite (22%). In the inelastic process, two neutrons are emitted in the
forward direction, but could be recorded as an Mn = 1 event when only one neutron
is detected due to this finite efficiency of the neutron detectors. Here, the amount of
mixture of two-neutron events was extracted by analyzing the Mn = 2 events since
we have such events as in Fig. 2.22.

Figure 2.24 (left) shows the total 1n+12Be spectrum (solid curve), as well as the
estimation of the two-neutron events mixed in the Mn = 1 events (dashed curve).
The latter was obtained by reconstructing the n−12Be energy for the 2n + 12Be
events and by normalizing the spectrum properly by using the efficiency values.
It was found that the lowest peak corresponds to the decay of the 2+

1 state of 14Be.
The contaminant from the inelastic process in the Mn = 1 events, which is mainly
from the excitation to the 2+

1 state of 14Be, is thus subtracted in the analysis.
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Fig. 2.24 (Left) Relative energy spectrum for the Mn = 1 events. The dashed histogram shows the
contribution from the inelastic scattering of 14Be, estimated from the Mn = 2 events. The lowest
peak thus corresponds primarily to the decay from the 2+

1 state of 14Be. This figure is adopted
from Ref. [51]. (Right) Relative energy spectrum for 13Be after subtracting the contribution from
2n+12Be events which are dominated by the excitation of 2+

1 . The peak at 0.5 MeV and the shoulder
around 2 MeV are observed

It should be noted that earlier work on 13Be using the inclusive breakup reaction
may be affected by the contribution from the 2+

1 state of 14Be. In this sense, it is
important to perform a kinematically complete measurement. Note also that the effect
of inelastic excitation to resonances (diffractive dissociation) is expected to be larger
for lower incident energies. The eikonal calculations by Hencken et al. [185] predicted
that the contributions from diffractive dissociation and stripping (knockout) reaction
are comparable below around 80 MeV/nucleon, while above 200 MeV/nucleon the
stripping (knockout) reaction is dominant over the diffractive dissociation. This may
be suggestive when one uses inclusive nuclear breakup reactions.

2.5.2.5 Relative Energy Spectra and Momentum Distributions

Figure 2.24 (right) shows the relative energy spectrum of 12Be+n after subtracting the
inelastic component shown in Fig. 2.24(left). Two peaks at around 0.5 and 2 MeV
are observed. The γ -ray coincident events were also analyzed to verify whether
the final state of 12Be in the decay is the ground state. Figure 2.25 shows the Erel
spectra obtained in coincidence with the 2.1-MeV (filled circles) and 2.7-MeV (open
triangles) γ rays, corresponding to the decays to 12Be(2+

1 )+n and 12Be(1−
1 )+n (see

also Fig. 2.19). A peak at Erel ∼ 0 for the 2.1-MeV γ coincidence events is likely to
correspond to the resonance at around 2 MeV in Fig. 2.24 (right). The cross sections
up to Erel = 4 MeV were 16(2) mb and 9(1) mb for the 2.1-MeV and 2.7-MeV γ -ray
coincidence events, respectively, which are small compared with 103(7) mb for the
inclusive spectrum in Fig.2.24 (right). Hence, in the discussion hereafter, we neglect
the contribution of the γ -ray related events.

The contribution of the decay to the isomeric state 12Be (0+
2 ) was not taken into

consideration in the analysis, which could not be extracted experimentally due to its
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Fig. 2.25 Relative energy spectra of 13Be in coincidence with 2.1 -MeV and 2.7 -MeV γ ray decay
in 12Be in the breakup of 14Be on the proton target [51]. For the coincidence with the 2.1 -MeV γ

in 12Be, the peak at Erel ∼ 0 MeV corresponds to the excitation energy of the d-wave peak of 13Be
in Fig. 2.24 (right). See also Fig. 2.19

long mean life time, 331(12) ns, of this state [184]. However, the 0.5-MeV peak is
likely to be relevant to the decay to the ground state but not to the isomeric state,
from the consideration of penetration factor [51].

The transverse momentum distributions of 13Be were extracted as shown in
Fig. 2.26, depending on the energy region. The difference of widths corresponds
to the different orbital angular momentum of the removed neutron. A simultane-
ous fitting of the relative energy spectrum and the momentum distributions deter-
mines the dominant angular momentum of � =1 for the 0.5-MeV peak. The extracted
resonance energy and width were 0.51(1) MeV and 0.45(3) MeV, respectively. This
width is consistent with the single-particle width of 0.55 MeV for the � = 1 decay.
These results led to the spin-parity assignment of 1/2−, which is different from the
assignment of the earlier experiments. However, we notice that the spectrum of GSI
experiment [171] is rather similar to the current result (although their primary assign-
ment was s-wave). Our result is also consistent with the recent theory [172], which
predicted the existence of this low-lying p-wave state.

The 2 MeV peak was assigned as the d-wave component in agreement with most
of the previous work, although we note that the width is much wider than the single-
particle estimate. This could imply that this peak is composed of a few states rather
than a single resonance.

The s-wave component is also found to exist in the spectrum, for the analysis of
which we assumed this to be a virtual state [187]. The scattering length was thus
extracted to be as = −3.4(6) fm, which is very small and thus implies a weak
correlation between 12Be and the s-wave neutron. This is consistent with the fact
that in the three-body decay of the 2+

1 state of 14Be, no signal of the resonance
state (nor strong virtual state) of 13Be below Erel = 0.28 MeV was observed. In this
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(a) (b)

Fig. 2.26 Transverse momentum distributions of 13Be for (a) 0.25 MeV < Erel < 0.75 MeV, and
(b) 2.0 MeV < Erel < 2.5 MeV, in the one-neutron knockout reaction of 14Be. The curves show
the result of the simultaneous fitting, assuming that the energy spectrum is composed of s-, p-, and
d-wave components. The figures are from Ref. [51]

sense, it is not appropriate to refer the s-wave level as a resonance or virtual state.
Instead, it is likely that the weak s-wave continuum is distributed at low-energy range
(Erel ∼ 0 − 2 MeV), and its level energy is not definite. The level and decay scheme
for the structures of 13Be and 14Be, including the three-body decay and the γ -decay
branches, are summarized in Fig. 2.19.

2.5.2.6 Disappearance of N = 8 Shell Gap

The notable finding in the result of Ref. [51] was the existence of a p-wave resonance
as the ground state of 13Be. Taking consideration of the low-lying s-wave strengths,
it may be more appropriate to conclude that the p-wave ground state is almost degen-
erate in energy with the s-wave contribution. We now show the systematics of energy
difference (�ε) between the 1/2+ and 1/2− states for the N = 7 and N = 9 nuclei
as shown in Fig. 2.27. Since the position of the 1/2+ state of the unbound nucleus
13Be cannot be defined, only the upper limit is shown for 13Be. The slope of�ε with
respect to the atomic number for the N = 9 nuclei is nearly identical to the one for
N = 7. The latter was originally plotted by I. Talmi and I. Una for the difference of
the single particle p1/2 and s1/2 states [28], and was summarized in Ref. [187] with
other N = 9 nuclei. This results suggest the melting of the N = 8 shell gap in 13Be.

Such a shell evolution could be interpreted by modern shell models. One expla-
nation was given by inclusion of the spin-flip p-n monopole interaction [160, 191],
which could explain the structure of neutron rich p-shell nuclei. In the stable nuclei
13C and 15C, the πp3/2 orbital is fully occupied, resulting in the N = 8 shell gap due
to the strong interaction with the νp1/2 orbital. Since the interaction becomes weak
at 11Be and 13Be by decreasing the occupation number of the πp3/2, the νp1/2 goes
up and the gap between the neutron sd-shells weakens. The shell model calculation
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Fig. 2.27 Energy difference
of 1/2+ and 1/2− states for
N = 7 (dashed) and 9 (solid)
nuclei as shown in Fig. 8 of
Ref. [184], as a function of
atomic number. A similar
plot for the single particle
states was presented for
N = 7 in Ref. [28]. The
upper-limit value is shown
for 13Be [51]. The energy
values except for 13Be are
taken from Refs. [188–190]

including this effect by introducing the enhanced spin-flip p-n monopole interac-
tion [160] provides the intruder 1/2− ground state. This agreement may indicate the
importance of this effect in the neutron-rich N = 8 region. As was mentioned, this
shell model calculation reproduced the overall level schemes of the low-lying states
of 12−14Be.

However, we also should note that the shell model may not explain the effect of
strong deformation expected in the neutron-rich Be isotopes. In fact, strong deforma-
tion in 12Be was observed [155]. For neutron-rich weakly-bound nuclei and unbound
nuclei, we also should note that the use of harmonic oscillator wave functions may
not be appropriate. Recently, the properties of the neighboring nuclei 11,12Be were
investigated in terms of single-particle motion in deformed potential [192], where the
two Nilsson levels [101] 1

2
−

and [220] 1
2
+

become almost degenerate at large prolate
deformation. This can also be true for the 9th neutron of 13Be. As such, the 1/2−
state may become the ground state. Note that, in this case, the single particle orbital
at the spherical limit has still a significant gap between ν1p1/2 and ν2s1/2. It is inter-
esting to note that prolate deformation can be strongly induced in the neutron-rich
region even near the magic number due to the nuclear Jahn-Teller effect (or a sponta-
neous breaking of symmetry). Low-� orbitals as a function of the potential depth has
smoother function than the higher-� orbitals, which tend to cause the degeneracy in
the unbound region between the different � orbitals, resulting in the Jahn-Teller effect
[193]. Hence, the deformation can play major roles in the structure of neutron-rich
weakly-bound and unbound nuclei.

It is interesting to investigate how these theoretical approach, such as shell models
and deformed potential models, can be understood in a universal way. In this respect,
spectroscopic studies of neutron-rich weakly-bound and unbound nuclei are of great
importance.
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2.6 Concluding Remarks

This lecture note has reviewed breakup reactions of halo nuclei, and their related
topics, primarily from the experimental point of view. Halo nuclei are interesting
many-body quantum states, where one or two neutrons extend outside of the range
of nuclear mean field potential. A neutron halo nucleus breaks up easily with a
high cross section in response to Coulomb/nuclear interactions with a target nucleus.
Hence, the breakup can be a probe of microscopic structure of halo nuclei.

In Sect. 2.2, we described the method of the Coulomb breakup of halo nuclei at
intermediate/high energies. We emphasized that the Coulomb breakup is a suitable
tool when we apply this method to radioactive nuclei. This is partly because Coulomb
breakup at intermediate/high energies gains yield due to a large photon number,
availability of a thick target, and to kinematic focusing. We also note that the relatively
good energy resolution can be obtained in the invariant mass method when it is
applied to breakup experiments, which is advantageous compared to missing-mass
spectroscopy.

In the following sections (Sect. 2.3 and Sect. 2.4), recent Coulomb breakup exper-
iments of several halo nuclei, mainly using the data from our group, were reviewed.
We clarified that the main mechanism of the soft E1 excitation is attributed to direct
breakup, and as such the final state is not a resonance but rather structure-less con-
tinuum. The phenomena and spectroscopic significance appear in a different manner
between 1n- and 2n halo nuclei. For 1n halo nuclei, the final state represents simply
a relative motion between the neutron and the core. As such, the spectrum can be
described by the matrix element shown in Eq. (2.14). Since the Coulomb breakup is
highly sensitive to the tail of the radial wave function. The spectroscopic amplitude
and � of the halo configuration, as well as the Sn of the nucleus, can be extracted by
a kinematically complete measurement (exclusive measurement). Examples shown
were the cases of 11Be and 15,19C. The Coulomb breakup of 11Be provided the basis
of the experimental and analysis methods of intermediate-energy Coulomb breakup.
The latter experiments were the cases to demonstrate how the Coulomb breakup of
1n-weakly bound nuclei can be a useful spectroscopic tool. For 19C, we could also
extract the Sn value by a novel method using the angular distribution in the Coulomb
breakup.

We have also demonstrated the usefulness of inclusive Coulomb breakup, by
showing the case of 31Ne, whose experimental work was long scarce due to the
small yield of this nucleus. Inclusive measurement is more feasible for very exotic
nuclei with the beam yield of the order of particle per second. Here, evidence is
shown for the first time for a heavy halo nucleus, 31Ne, much beyond the known
halo nuclei.

It should be noted, however, that the exclusive measurement would provide more
structure information, as illustrated in the Coulomb breakup experiments of 11Be
and 15,19C. In 2012 at RIBF, we plan a commissioning experiment of the SAMURAI
facility, which is equipped with the superconducting magnet with the 80 cm gap and
the maximum magnetic field of about 3 T, and with the large-area neutron detectors,
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NEBULA (NEutron-detection system for Breakup of Unstable Nuclei with Large
Acceptance). We plan to perform an exclusive Coulomb breakup experiment of 31Ne
in the near future. Such an experiment would clarify the microscopic structure (�,
shell configurations, and Sn) of this nucleus.

For Coulomb breakup of 2n halo nuclei, the initial and final states are much more
complicated. However, we have demonstrated that spatial dineutron correlation may
play significant roles in the enhancement of the strong E1 strength observed in
11Li. We have also shown the importance of unambiguous 2n detection, which has
been accomplished by the novel method, using a kinematical condition of velocities
associated with the two neutrons. With such high-statistical data combined with the
high sensitivity down to Erel = 0 MeV, reliable comparisons with theories have
become possible for the first time. We showed some of such comparisons. We should
note, however, that the theoretical interpretation is still not fully settled, partly due to
effects of the core excitation. Inclusion of such effects was attempted theoretically
by Myo et al. [31, 32].

Recently, evidence for the two-neutron halo structure in 22C has been provided
by the reaction cross section measurement [14]. We have also preliminary results on
the Coulomb breakup of this nucleus. Study of such a heavy 2n halo nucleus having
a different shell configuration is very important to clarify the nature of dineutron
correlation. Understanding of dineutron correlations in halo nuclei is essential to
investigate such correlations in neutron-skin nuclei in heavier mass regions. In addi-
tion, studies of halo nuclei with 4n or multiple halo neutrons become more important
for the future. Such studies would shed light on the physics of neutron stars, as well.

In the final part of this lecture note, we showed examples of 14Be breakup on
the light targets, which undergo the diffractive dissociation to the excitation to the
1st excited state of 14Be, and the 1n removal process to produce the 13Be unbound
states. We have shown that such a kinematically complete measurement is powerful
to determine the spin-parities and the energies of the levels of the −1n unbound
system. As such, this method provided the basis of studying the 1n removal channel.

Through this lecture note, we showed typical experimental tools for halo nuclei
and neighboring states including unbound nuclei. With the advent of new-generation
facilities, where RIKEN has already launched such a facility, RIBF, and FAIR, FRIB,
KoRIA, and SPIRAL2 will be commissioned in a few to several years, these exper-
imental tools will play more significant roles when we explore closer to the bound
limit in heavier mass regions.
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Chapter 3
Breakup Reaction Models for Two-
and Three-Cluster Projectiles

D. Baye and P. Capel

Abstract Breakup reactions are one of the main tools for the study of exotic nuclei,
and in particular of their continuum. In order to get valuable information from mea-
surements, a precise reaction model coupled to a fair description of the projectile is
needed. We assume that the projectile initially possesses a cluster structure, which
is revealed by the dissociation process. This structure is described by a few-body
Hamiltonian involving effective forces between the clusters. Within this assumption,
we review various reaction models. In semiclassical models, the projectile-target
relative motion is described by a classical trajectory and the reaction properties
are deduced by solving a time-dependent Schrödinger equation. We then describe
the principle and variants of the eikonal approximation: the dynamical eikonal
approximation, the standard eikonal approximation, and a corrected version avoiding
Coulomb divergence. Finally, we present the continuum-discretized coupled-channel
method (CDCC), in which the Schrödinger equation is solved with the projectile con-
tinuum approximated by square-integrable states. These models are first illustrated
by applications to two-cluster projectiles for studies of nuclei far from stability and
of reactions useful in astrophysics. Recent extensions to three-cluster projectiles,
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like two-neutron halo nuclei, are then presented and discussed. We end this review
with some views of the future in breakup-reaction theory.

3.1 Introduction

The advent of radioactive ion beams has opened a new era in nuclear physics by
providing the possibility of studying nuclei far from stability. In particular the avail-
ability of these beams favoured the discovery of halo nuclei [1]. Due to the very short
lifetime of exotic nuclei, this study cannot be performed through usual spectroscopic
techniques and one must resort to indirect methods. Breakup is one of these meth-
ods. In this reaction, the projectile under analysis dissociates into more elementary
components through its interaction with a target. Many such experiments have been
performed with the hope to probe exotic nuclear structures far from stability [2–4].

In order to get valuable information from breakup measurements, one must have
not only a fair description of the projectile, but also an accurate reaction model.
At present, a fully microscopic description of the reaction is computationally unfea-
sible. Simplifying assumptions are necessary. First, we will discuss only elastic
breakup, i.e. a dissociation process leaving the target unchanged in its ground state.
Other channels are simulated through the use of optical potentials. Second, we assume
a cluster structure for the projectile. The projectile ground state is assumed to be a
bound state of the clusters appearing during the breakup reaction. The bound and
continuum states of the projectile are thus described by a few-body Hamiltonian
involving effective forces between the constituent clusters. Theoretical reaction mod-
els are therefore based on this cluster description of the projectile and effective
cluster-cluster and cluster-target interactions.

Even within these simplifying model assumptions, a direct resolution of the result-
ing few-body Schrödinger equation is still not possible in most cases. In this article,
we thus review various approximations that have been developed up to now.

We begin with the models based on the semiclassical approximation [5] in which
the projectile-target relative motion is described by a classical trajectory. This approx-
imation is valid at high energies. It leads to the resolution of a time-dependent
Schrödinger equation. Initially, the time-dependent equation was solved at the first
order of the perturbation theory [5]. Then, as computers became more powerful,
it could be solved numerically [6–11]. We present both versions indicating their
respective advantages and drawbacks.

We then describe the eikonal approximation [12] and its variants. The principle
is to calculate the deviations from a plane-wave motion which are assumed to be
weak at high energy. By comparison with the semiclassical model, it is possible to
derive the dynamical eikonal approximation (DEA) that combines the advantages of
both models [13, 14]. The standard eikonal approximation is obtained by making the
additional adiabatic or sudden approximation, which neglects the excitation energies
of the projectile. With this stronger simplifying assumption, the final state only differs
from the initial bound state by a phase factor. This approach is mostly used to model
reactions on light targets at intermediate and high energies. Its drawback is that
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the Coulomb interaction leads to a divergence of breakup cross sections at forward
angles. This problem can be solved using a first-order correction of the Coulomb
part within the eikonal treatment. A satisfactory approximation of the DEA can then
be derived [15, 16]: the Coulomb-corrected eikonal approximation (CCE), which
remains valid for breakup on heavy targets. It reproduces most of the results of the
DEA, although its computational time is significantly lower [17] which is important
for the study of the breakup of three-cluster projectiles.

Finally, we present the continuum-discretized coupled-channel method (CDCC)
[18, 19], in which the full projectile-target Schrödinger equation is solved approxi-
mately, by representing the continuum of the projectile with square-integrable states.
This model leads to the numerical resolution of coupled-channel equations, and is
suited for low- as high-energy reactions.

All the aforementioned models have been developed initially for two-body pro-
jectiles. However, the physics of three-cluster systems, like two-neutron halo nuclei,
is the focus of many experimental studies and must also be investigated with these
models. We review here the various efforts that have been made in the past few years
to extend breakup models to three-cluster projectiles [20–22].

In Sect. 3.2, we specify the general theoretical framework within which the pro-
jectile is described. The semiclassical model and approximate resolutions of the
time-dependent Schrödinger equation are described in Sect. 3.3. Section 3.4 presents
the eikonal approximation as well as the related DEA and CCE models. Next, in
Sect. 3.5, the CDCC method is developed. In Sect. 3.6, we review applications of
breakup reactions to two-body projectiles. In particular, we emphasize the use of
breakup to study nuclei far from stability and as an indirect way to infer cross sec-
tions of reactions of astrophysical interest. Section. 3.7 details the recent efforts made
to extend various reaction models to three-body projectiles. We end this review by
presenting some views of the future in breakup-reaction theory.

3.2 Projectile and Reaction Models

We consider the reaction of a projectile P of mass mP and charge ZPe impinging
on a target T of mass mT and charge ZT e. The projectile is assumed to exhibit a
structure made of N clusters with masses mi and charges Zie (mP = ∑

i mi and
ZP = ∑

i Zi). Its internal properties are described by a Hamiltonian H0, depending
on a set of N − 1 internal coordinates collectively represented by notation ξ . With
the aim of preserving the generality of the presentation of the reaction models, we do
not specify here the expression of H0. Details are given in Sects. 3.6 and 3.7, where
applications for the breakup of two- and three-body projectiles are presented.

The states of the projectile are thus described by the eigenstates of H0. For total
angular momentum J and projection M, they are defined by

H0φ
JM
τ (E, ξ) = EφJM

τ (E, ξ), (3.2.1)

where E is the energy in the projectile centre-of-mass (c.m.) rest frame with respect
to the dissociation threshold into N clusters. Index τ symbolically represents the set
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of all additional quantum numbers that depend on the projectile structure, like spins
and relative orbital momenta of the clusters. Its precise definition depends on the
number of clusters and on the model selected when defining H0. We assume these
numbers to be discrete, though some may be continuous in some representations
when there are more than two clusters. To simplify the notation, the parity π of the
eigenstates of H0 is understood. In the following, any sum over J implicitly includes
a sum over parity.

The negative-energy solutions of Eq. (3.2.1) correspond to the bound states of
the projectile. They are normed to unity. The positive-energy states describe the
broken-up projectile with full account of the interactions between the clusters. They
are orthogonal and normed according to 〈φJM

τ ′ (E ′, ξ)|φJM
τ (E, ξ)〉 = δ(E −E ′)δττ ′ .

To describe final states when evaluating breakup cross sections, we also consider
the incoming scattering states φ(−)

k̂ξ
. They correspond to positive-energy states of

H0 describing the N clusters moving away from each other in the projectile c.m.
frame with specific asymptotic momenta and spin projections. These momenta are
not independent, since the sum of the asymptotic kinetic energies of the clusters
is the positive energy E. However, within that condition, their directions and, if
N > 2, their norms can vary. By k̂ξ , we symbolically denote these directions and
wave numbers, as well as the projections of the spins of the clusters. These incoming
scattering states are thus solutions of the Schrödinger equation

H0φ
(−)
k̂ξ
(E, ξ) = Eφ(−)

k̂ξ
(E, ξ). (3.2.2)

They can be expanded into a linear combination of the eigenstates φJM
τ of Eq. (3.2.1)

with the same energy as

φ
(−)
k̂ξ
(E, ξ) =

∑

JMτ

aJM
τ (k̂ξ )φJM

τ (E, ξ), (3.2.3)

where the coefficients aJM
τ depend on the projectile structure. These scattering states

are normed following 〈φ(−)
k̂′
ξ

(E ′, ξ)|φ(−)
k̂ξ
(E, ξ)〉 = δ(E − E ′)δ(k̂ξ − k̂′

ξ ).

The interactions between the projectile constituents and the target are usually
simulated by optical potentials chosen in the literature or obtained by a folding
procedure. Within this framework the description of the reaction reduces to the
resolution of an (N + 1)-body Schrödinger equation

[
P2

2μ
+ H0 + VPT (ξ,R)

]
�(ξ,R) = ET�(ξ,R), (3.2.4)

where R = (R,ΩR) = (R, θR, ϕR) is the coordinate of the projectile centre of mass
relative to the target, P is the corresponding momentum, μ = mPmT/(mP + mT )

is the projectile-target reduced mass, and ET is the total energy in the projectile-
target c.m. frame. The projectile-target interaction VPT is expressed as the sum of
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the optical potentials (including Coulomb) that simulate the interactions between the
projectile constituents and the target,

VPT (ξ,R) =
N∑

i=1

ViT (RiT ) , (3.2.5)

where RiT is the relative coordinate of the projectile cluster i with respect to the
target.

The projectile being initially bound in the state φJ0M0
τ0 of negative energy E0, we

look for solutions of Eq. (3.2.4) with an incoming part behaving asymptotically as

�(ξ,R) −→
Z→−∞ei{KZ+η ln[K(R−Z)]}φJ0M0

τ0
(E0, ξ), (3.2.6)

where Z is the component of R in the incident-beam direction. The wavenumber K
of the projectile-target relative motion is related to the total energy ET by

ET = �
2K 2

2μ
+ E0. (3.2.7)

The P-T Sommerfeld parameter is defined as

η = ZPZT e2/�v, (3.2.8)

where v = �K/μ is the initial P-T relative velocity.
A first idea that may come to mind is to solve Eq. (3.2.4) exactly, e.g., within the

Faddeev framework or its extensions. However, the infinite range of the Coulomb
interaction between the projectile and the target renders the standard equations ill-
defined. Only recently significant progress has been made. For example, in Refs.
[23, 24], this problem is tackled by using an appropriate screening of the Coulomb
force. This technique has been used to successfully describe the elastic scattering
and breakup of the deuteron on various targets. However, it has long been limited
to light targets (see [25] for a recent extension to a heavier target). To obtain a
model that is valid for all types of target, one must still resort to approximations
in the resolution of Eq. (3.2.4). These approximations are made in the treatment of
the projectile-target relative motion, like in the semiclassical (Sect. 3.3) or eikonal
(Sect. 3.4) approximations, or by using a discretized continuum, like in the CDCC
method (Sect. 3.5)

3.3 Semiclassical Approximation

3.3.1 Time-Dependent Schrödinger Equation

The semiclassical approximation relies on the hypothesis that the projectile-target
relative motion can be efficiently described by a classical trajectory R(t) [5]. It is thus
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valid when the de Broglie wavelength is small with respect to the impact parameter b
characterizing the trajectory, Kb � 1, i.e. when the energy is large enough. Along
that trajectory, the projectile experiences a time-dependent potential V that simulates
the Coulomb and nuclear fields of the target. The internal structure of the projectile,
on the contrary, is described quantum-mechanically by the Hamiltonian H0. This
semiclassical approximation leads to the resolution of the time-dependent equation

i�
∂

∂t
�(ξ,b, t) = [H0 + V (ξ, t)]�(ξ,b, t). (3.3.1)

The time-dependent potential is obtained from the difference between the projectile-
target interaction VPT (3.2.5) and the potential Vtraj that defines the classical trajec-
tory

V (ξ, t) = VPT [ξ,R(t)] − Vtraj[R(t)]. (3.3.2)

The potential Vtraj acts as a P-T scattering potential that bends the trajectory, but does
not affect the projectile internal structure. Its interest lies in the fact that V decreases
faster than VPT . Its effect amounts to changing the phase of the wave function. Usu-
ally it is chosen to be the Coulomb potential between the projectile centre of mass
and the target, but it may include a nuclear component. At sufficiently high energy,
the trajectory is often approximated by a straight line.

For each impact parameter b, Eq. (3.3.1) has to be solved with the initial condition
that the projectile is in its ground state,

�(M0)(ξ,b, t) −→
t→−∞φ

J0M0
τ0

(E0, ξ). (3.3.3)

For each trajectory, the time-dependent wave function �(M0) must be calculated for
the different possible values of M0.

3.3.2 Cross Sections

From the output of the resolution of Eq. (3.3.1), the probability of being in a definite
state of the projectile can be obtained by projecting the final wave function onto the
corresponding eigenstate of H0. One can for example compute the elastic scattering
probability

Pel(b) = 1

2J0 + 1

∑

M0

∑

M ′
0

∣∣∣
〈
φ

J0M ′
0

τ0 (E0, ξ)

∣∣∣�(M0)(ξ,b, t → +∞)
〉∣∣∣

2
. (3.3.4)

This probability depends only on the norm of the impact parameter b because the
time-dependent wave function �(M0) depends on the orientation of b, i.e. on the
azimuthal angle ϕR, only through a phase that cancels out in the calculation of Pel.
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From this probability, the cross section for the elastic scattering in direction Ω is
obtained as

dσel

dΩ
= dσ traj

el

dΩ
Pel[b(Ω)], (3.3.5)

where b(Ω) is given by the classical relation between the scattering angle and the
impact parameter derived from potential Vtraj. The factor dσ traj

el /dΩ is the elastic

scattering cross section obtained from Vtraj. In most cases dσ traj
el /dΩ is generated

from the Coulomb interaction and is thus the P-T Rutherford cross section.
Likewise, a general breakup probability density can be computed by projecting

the final wave function onto the ingoing scattering states of H0,

dPbu

dk̂ξdE
(b) = 1

2J0 + 1

∑

M0

∣∣∣
〈
φ
(−)
k̂ξ
(E, ξ)

∣∣∣�(M0)(ξ,b, t → +∞)
〉∣∣∣

2
. (3.3.6)

After integration and summation over k̂ξ , the breakup probability per unit energy
reads

dPbu

dE
(b) = 1

2J0 + 1

∑

M0

∑

JMτ

∣∣∣
〈
φJM
τ (E, ξ)

∣∣∣�(M0)(ξ,b, t → +∞)
〉∣∣∣

2
. (3.3.7)

Similarly to Eq. (3.3.5), a differential cross section for the breakup of the projectile
is given by

dσbu

dEdΩ
= dσ traj

el

dΩ
dPbu

dE
[b(Ω)]. (3.3.8)

The breakup cross section can then be obtained by summing the breakup probability
over all impact parameters

dσbu

dE
= 2π

∫ ∞

0

dPbu

dE
(b)bdb. (3.3.9)

Because of the trajectory hypothesis of the semiclassical approximation, the
impact parameter b is a classical variable. Therefore, no interference between the
different trajectories can appear. This is the major disadvantage of that technique
since quantal interferences can play a significant role in reactions, in particular in
those which are nuclear dominated.

3.3.3 Resolution at the First Order of the Perturbation Theory

In the early years of the semiclassical approximations, Eq. (3.3.1) was solved at the
first order of the perturbation theory [5]. This technique, due to Alder and Winther,
was applied to analyze the first Coulomb-breakup experiments of halo nuclei [26].
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The time-dependent wave function �(M0) is expanded upon the basis of eigen-
states of H0 in Eq. (3.2.1). At the first order of the perturbation theory, the resulting
equation is solved by considering that V is small. With the initial condition (3.3.3),
the wave function at first order is given by [5, 27]

e
i
�

H0t�(M0)(ξ,b, t) =
[

1 + 1

i�

∫ t

−∞
e

i
�

H0t′V (ξ, t′)e− i
�

H0t′dt′
]
φJ0M0
τ0

(E0, ξ).

(3.3.10)
Following Eq. (3.3.6), the general breakup probability density reads

dPbu

dk̂ξdE
(b) = �

−2

2J0 + 1

∑

M0

∣∣∣∣
∫ +∞

−∞
eiωt

〈
φ
(−)
k̂ξ
(E, ξ)

∣∣∣V (ξ, t)
∣∣∣φJ0M0
τ0

(E0, ξ)
〉
dt

∣∣∣∣
2

,

(3.3.11)
where ω = (E − E0)/�. The breakup probability per energy unit reads

dPbu

dE
(b) = �

−2

2J0 + 1

∑

M0

∑

JMτ

∣∣∣∣
∫ +∞

−∞
eiωt

〈
φJM
τ (E, ξ)

∣∣∣V (ξ, t)
∣∣∣φJ0M0
τ0

(E0, ξ)
〉
dt

∣∣∣∣
2

.

(3.3.12)
With Eq. (3.3.10), exact expressions can be calculated when considering a purely

Coulomb P-T interaction for straight-line trajectories in the far-field approximation
[28], i.e. by assuming that the charge densities of the projectile and target do not
overlap during the collision. One obtains

〈
φJM
τ (E, ξ)

∣∣∣�(M0)(ξ,b, t → +∞)
〉
=

ZT e
e−iEt/�

i�

∑

λμ

4π

2λ+ 1
Iλμ(ω, b)

〈
φJM
τ (E, ξ)

∣∣∣M Eλ
μ (ξ)

∣∣∣φJ0M0
τ0

(E0, ξ)
〉
, (3.3.13)

where M Eλ
μ are the electric multipoles operators of rank λ, and Iλμ are time integrals

(see, e.g., Eq. (13) of [29]) that can be evaluated analytically as [28]

Iλμ(ω, b) =
√

2λ+ 1

π

1

v
iλ+μ√

(λ+ μ)!(λ− μ)!
(
−ω

v

)λ
K|μ|

(
ωb
v

)
, (3.3.14)

where Kn is a modified Bessel function [30].
If only the dominant dipole term E1 of the interaction is considered, the breakup

probability (3.3.12) reads [31]

dPE1
bu

dE
(b) = 16π

9

(
ZT e
�v

)2

×
(ω

v

)2
[

K 2
1

(
ωb
v

)
+ K 2

0

(
ωb
v

)]
dB(E1)

dE
.

(3.3.15)
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The last factor is the dipole strength function per energy unit [31],

dB(E1)

dE
= 1

2J0 + 1

∑

μM0

∫∑
dk̂ξ

∣∣∣
〈
φ
(−)
k̂ξ
(E, ξ)

∣∣∣M E1
μ (ξ)

∣∣∣φJ0M0
τ0

(E0, ξ)
〉∣∣∣

2

= 1

2J0 + 1

∑

μM0

∑

JMτ

∣∣∣
〈
φJM
τ (E, ξ)

∣∣∣M E1
μ (ξ)

∣∣∣φJ0M0
τ0

(E0, ξ)
〉∣∣∣

2
.

(3.3.16)
Since modified Bessel functions decrease exponentially, the asymptotic behaviour
of dPE1

bu /dE for b → ∞ is proportional to exp(−2ωb/v).
In the case of a purely Coulomb P-T interaction, the first order of the perturbation

theory exhibits many appealing aspects. First, it can be solved analytically. Second,
the dynamics part (Iλμ) and structure part (matrix elements of M Eλ

μ ) are separated
in the expression of the breakup amplitudes (3.3.13). This first-order approximation
has therefore often been used to analyze Coulomb-breakup experiments by assum-
ing pure E1 breakup (see Ref.[4]). However, as will be seen later, higher-order and
nuclear-interaction effects are usually not negligible, and a proper analysis of exper-
imental data requires a more sophisticated approximation.

3.3.4 Numerical Resolution

The time-dependent Schrödinger equation can also be solved numerically. Various
groups have developed algorithms for that purpose [6–11, 32, 33]. They make use of
an approximation of the evolution operator U applied iteratively to the initial bound
state wave function following the scheme

�(M0)(ξ,b, t +Δt) = U (t +Δt, t)�(M0)(ξ,b, t). (3.3.17)

Although higher-order algorithms exist (see, e.g., [34]), all practical calculations
are performed with second-order approximations of U. Various expressions of
this approximation exist, depending mainly on the way of representing the time-
dependent projectile wave function. However they are in general similar to [11]

U (t +Δt) = e−i Δt
2�

V (ξ,t+Δt)e−i Δt
�

H0 e−i Δt
2�

V (ξ,t) + O(Δt3). (3.3.18)

With this expression, the time-dependent potential can be treated separately from the
time-independent Hamiltonian H0, which greatly simplifies the calculation of the
time evolution when the wave functions are discretized on a mesh [11].

The significant advantage of this technique over the first order of perturbation
is that it naturally includes higher-order effects. Moreover, the nuclear interaction
between the projectile and the target can be easily added in the numerical scheme [35].
However, the dynamical and structure evolutions being now more deeply entangled,
the analysis of the numerical resolution of the Schrödinger equation is less straight-
forward than in the first-order approximation. The numerical technique is also much
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Fig. 3.1 Breakup cross section of 11Be on Pb at 68 MeV/nucleon as a function of the relative energy
E between the 10Be core and the neutron. Calculations are performed within the semiclassical
approximation with or without nuclear interaction [11]. Experimental data [26] are scaled by 0.85
[36]. Reprinted figure with permission from [11]. Copyright (2003) by the American Physical
Society

more time-consuming than the perturbation one. The first order of the perturba-
tion theory therefore remains a useful tool to qualitatively analyze calculations of
Coulomb-dominated reactions performed with more elaborate models. Moreover, as
will be seen in Sect. 3.4.4, it can be used to correct a divergence in the treatment of
the Coulomb interaction within the eikonal description of breakup reactions.

Figure 3.1 illustrates the numerical resolution of the time-dependent Schrödinger
equation for the Coulomb breakup of 11Be on lead at 68 MeV/nucleon [11]. It shows
the breakup cross section as a function of the relative energy E between the 10Be core
and the halo neutron after dissociation. The full line corresponds to the calculation
with both Coulomb and nuclear P-T interactions. The dashed line is the result for a
purely Coulomb potential, in which the nuclear interaction is simulated by an impact
parameter cutoff at bmin = 13 fm. A calculation performed with an impact parameter
cutoff at bmin = 30 fm simulating a forward-angle cut is plotted as a dotted line. The
experimental data from [26] are multiplied by a factor of 0.85 as suggested in [36]
after a remeasurement.

This example shows the validity of the semiclassical approximation to describe
breakup observables in the projectile c.m. frame for collisions at intermediate ener-
gies. It also confirms that for heavy targets the reaction is strongly dominated by
the Coulomb interaction. The inclusion of optical potentials to simulate the nuclear
P-T interactions indeed only slightly increases the breakup cross section at large
energy E. This shows that Coulomb-breakup calculations are not very sensitive to
the uncertainty related to the choice of the optical potentials. Nevertheless, since
optical potentials can be very easily included in the numerical resolution of the time-
dependent Schrödinger equation, they should be used so as to avoid the imprecise
impact-parameter cutoff necessary in purely Coulomb calculations.
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3.4 Eikonal Approximations

3.4.1 Dynamical Eikonal Approximation

Let us now turn to a purely quantal treatment providing approximate solutions of
the Schrödinger equation (3.2.4). At sufficiently high energy, the projectile is only
slightly deflected by the target. The dominant dependence of the (N + 1)-body
wave function � on the projectile-target coordinate R is therefore in the plane wave
contributing to the incident relative motion (3.2.6). The main idea of the eikonal
approximation is to factorize that plane wave out of the wave function to define a
new function �̂ whose variation with R is expected to be small [12, 31, 37]

�(ξ,R) = eiKZ�̂(ξ,R). (3.4.1)

With factorization (3.4.1) and energy conservation (3.2.7), the Schrödinger equation
(3.2.4) becomes

[
P2

2μ
+ vPZ + H0 − E0 + VPT (ξ,R)

]
�̂(ξ,R) = 0, (3.4.2)

where the relative velocity v between projectile and target is assumed to be large.
The first step in the eikonal approximation is to assume the second-order derivative

P2/2μ negligible with respect to the first-order derivative vPZ ,

P2

2μ
�̂(ξ,R) 	 vPZ�̂(ξ,R). (3.4.3)

This first step leads to the second-order equation (but now first-order in Z),

i�v
∂

∂Z
�̂(ξ,b,Z) = [H0 − E0 + VPT (ξ,R)] �̂(ξ,b,Z), (3.4.4)

where the dependence of the wave function on the longitudinal Z and transverse b
parts of the projectile-target coordinate R has been made explicit. This equation is
mathematically equivalent to the time-dependent Schrödinger equation (3.3.1) for
straight-line trajectories with t replaced by Z/v. It can thus be solved using any of
the algorithms cited in Sect. 3.3.4. However, contrary to time-dependent models, it is
obtained without the semiclassical approximation. The projectile-target coordinate
components b and Z are thus quantal variables. Interferences between solutions
obtained at different b values are thus taken here into account. This first step is
known as the dynamical eikonal approximation (DEA) [13, 14].

3.4.2 Cross Sections

The transition matrix element for elastic scattering into direction Ω = (θ, ϕ) of the
final momentum K = (K ,Ω) of the projectile in the c.m. frame reads [38]
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Tfi =
〈
eiK·RφJ0M ′

0
τ0 (E0, ξ)

∣∣∣VPT (ξ,R)
∣∣∣�(M0)(ξ,R)

〉
, (3.4.5)

where�(M0) is the exact solution of the Schrödinger equation (3.2.4) with the asymp-
totic condition (3.2.6). By using Eqs. (3.4.1), (3.2.1), and (3.4.4), one obtains the
approximation [13]

Tfi =
〈
eiK·RφJ0M ′

0
τ0 (E0, ξ)

∣∣∣eiKZ [H0 − E0 + VPT (ξ,R)]
∣∣∣�̂(M0)(ξ,R)

〉

≈ i�v
∫

dRe−iq·b ∂

∂Z

〈
φ

J0M ′
0

τ0 (E0, ξ)

∣∣∣�̂(M0)(ξ,R)
〉
, (3.4.6)

where the transferred momentum q = K − K Ẑ is assumed to be purely transverse,
i.e. exp[i(K · Ẑ − K )], is neglected. The norm of q is linked to the scattering angle
by

q = 2K sin θ/2. (3.4.7)

Let us define the elastic amplitude

S(M0)

el,M ′
0
(b) =

〈
φ

J0M ′
0

τ0 (E0, ξ)

∣∣∣�̂(M0)(ξ,b,Z → +∞)
〉
− δM ′

0M0
. (3.4.8)

The transition matrix element (3.4.6) reads after integration over Z,

Tfi = i�v
∫

dbe−iq·bei(M0−M ′
0)ϕR S(M0)

el,M ′
0
(bX̂), (3.4.9)

where ϕR is the azimuthal angle characterizing b. The phase factor exp[i(M0 −
M ′

0)ϕR] arises from the rotation of the wave functions when the orientation of b
varies [14]. The integral over ϕR can be performed analytically, which leads to the
following expression for the elastic differential cross section [14]

dσel

dΩ
= K 2 1

2J0 + 1

∑

M0M ′
0

∣∣∣∣
∫ ∞

0
bdbJ|M0−M ′

0|(qb)S(M0)

el,M ′
0
(bX̂)

∣∣∣∣
2

, (3.4.10)

where Jm is a Bessel function [30]. From Eq. (3.4.10), one can see that contrary to the
semiclassical approximation (3.3.5), the eikonal elastic cross section is obtained as
a coherent sum of elastic amplitudes over all b values. This illustrates that quantum
interferences are taken into account in the eikonal framework.

The transition matrix element for dissociation reads

Tfi =
〈
eiK′·Rφ(−)

k̂ξ
(E, ξ)

∣∣∣VPT (ξ,R)
∣∣∣�(M0)(ξ,R)

〉
, (3.4.11)

where K′ = (K ′,Ω) is the final projectile-target wave vector. One can then proceed
as for the elastic scattering. Using Eqs. (3.4.1), (3.2.2), and (3.4.4), taking into account
the energy conservation,
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�
2K 2

2μ
+ E0 = �

2K ′2

2μ
+ E, (3.4.12)

and assuming the transferred momentum q = K′ − K Ẑ to be purely transverse, the
transition matrix element is expressed as

Tfi ≈ i�v
∫

dbe−iq·bS(M0)
bu (E, k̂ξ ,b), (3.4.13)

with the breakup amplitude

S(M0)
bu (E, k̂ξ ,b) =

〈
φ
(−)
k̂ξ
(E, ξ)

∣∣∣�̂(M0)(ξ,b,Z → +∞)
〉
. (3.4.14)

The differential cross section for breakup is given by

dσ

dk̂ξdEdΩ
∝ 1

2J0 + 1

∑

M0

∣∣∣∣
∫

dbe−iq·bS(M0)
bu (E, k̂ξ ,b)

∣∣∣∣
2

, (3.4.15)

where the proportionality factor depends on the phase space. Like the elastic scatter-
ing cross section (3.4.10), it is obtained from a coherent sum of breakup amplitudes
(3.4.14), confirming the quantum-mechanical character of the eikonal approxima-
tion. Here also, the integral over ϕR can be performed analytically and leads to Bessel
functions [14].

By integrating expression (3.4.15) over unmeasured quantities, one can obtain
the breakup cross sections with respect to the desired variables, like the internal
excitation energy of the projectile. Since these operations depend on the projectile
internal structure, we delay the presentation of some detailed expressions to Sects. 3.6
and 3.7 treating of two-body [14] and three-body [20] breakup.

3.4.3 Standard Eikonal Approximation

In most references, the concept of eikonal approximation involves a further simpli-
fication to the DEA [31, 39]. This adiabatic, or sudden, approximation consists in
neglecting the excitation energy of the projectile compared to the incident kinetic
energy. It comes down to assume the low-lying spectrum of the projectile to be degen-
erate with its ground state, i.e. to consider the internal coordinates of the projectile
as frozen during the reaction [31]. This approximation therefore holds only for high-
energy collisions that occur during a very brief time. This second assumption leads
to neglect the term H0 − E0 in the DEA equation (3.4.4) which then reads

i�v
∂

∂Z
�̂(ξ,b,Z) = VPT (ξ,R)�̂(ξ,b,Z). (3.4.16)

The solution of Eq. (3.4.16) that follows the asymptotic condition (3.2.6) exhibits the
well-known eikonal form [12, 37]



134 D. Baye and P. Capel

�̂(M0)(ξ,b,Z) = exp

[
− i

�v

∫ Z

−∞
VPT (ξ,b,Z′)dZ′

]
φJ0M0
τ0

(E0, ξ). (3.4.17)

After the collision, the whole information about the change in the projectile wave
function is thus contained in the phase shift

χ(sξ ,b) = − 1

�v

∫ +∞

−∞
VPT (ξ,R)dZ. (3.4.18)

Due to translation invariance, this eikonal phase χ depends only on the transverse
components b of the projectile-target coordinate R and sξ of the projectile internal
coordinates ξ . Cross sections within this standard eikonal approximation are obtained
as explained in Sect. 3.4.2, replacing �̂(M0) by eiχφ

J0M0
τ0 .

Being obtained from the adiabatic approximation, expressions (3.4.17) and
(3.4.18) are valid only for short-range potentials. For the Coulomb interaction, the
assumption that the reaction takes place in a short time no longer holds, due to its
infinite range. The adiabatic approximation thus fails for Coulomb-dominated reac-
tions [31]. Besides imprecise uses of a cutoff at large impact parameters [40], there
are two ways to avoid this problem. The first is not to make the adiabatic approxi-
mation, i.e. to resort to the more complicated DEA (see Sect. 3.4.1). The second is
to correct the eikonal phase for the Coulomb interaction as suggested in [15] (see
Sect. 3.4.4). Nevertheless, as shown in Ref. [14], the Coulomb divergence does not
affect eikonal calculations performed on light targets at high enough energies. Most
of the nuclear-dominated reactions can thus be analyzed within an eikonal model
including the adiabatic approximation (see, e.g., Ref. [41]).

Figure 3.2 illustrates the difference between the DEA (full line), the usual eikonal
approximation (dashed line) and the semiclassical approximation (dotted line)
when Coulomb dominates. It shows the breakup cross section of 11Be on Pb at
69 MeV/nucleon for a 10Be-n relative energy of 0.3 MeV as a function of the P-T
scattering angle. As explained above, the usual eikonal approximation diverges for
the Coulomb-dominated breakup, i.e. at forward angles. The DEA, which does not
include the adiabatic approximation, exhibits a regular behaviour at these angles.
Interestingly, the semiclassical approximation follows the general behaviour of the
DEA, except for the oscillations due to quantum interferences between different
b values. The DEA has therefore the advantage of being valid for describing any
breakup observable on both light and heavy targets.

The nuclei studied through breakup reactions being exotic, it may be difficult, if
not impossible, to find optical potentials that describe the scattering of the clusters by
the target. One way to circumvent that problem is to resort to what is usually known
as the Glauber model [31, 37, 39, 43]. This model has been mostly used to calculate
total and reaction cross sections. At the optical-limit approximation (OLA) of the
Glauber model, correlations in the cluster and target wave functions are neglected.
The nuclear component of the eikonal phase shift for cluster i is then expressed as
a function of the densities ρT of the target and ρi of the cluster, and of a profile
function 1 − eiχNN that corresponds to an effective nucleon-nucleon interaction. The
nuclear component of the eikonal phase shift is approximated by [31]
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Fig. 3.2 Breakup cross
section of 11Be on Pb at
69 MeV/nucleon as a
function of the P-T scattering
angle in the P-T c.m. frame
for a 10Be-n energy
E = 0.3 MeV. Calculations
are performed within the
DEA, usual eikonal, and
semiclassical
approximations [42]

χN
i (bi) = i

∫∫
ρT (rT )ρi(ri)[1 − eiχNN(|bi−sT +si |)]drT dri, (3.4.19)

where sT and si are the transverse components of the internal coordinates rT of
the target and ri of cluster i, respectively, and bi is the transverse component of the
c.m. coordinate of cluster i. The OLA is therefore equivalent to the double-folding
of an effective nucleon-nucleon interaction. The density of the target can usually
be obtained from experimental data. The cluster density being unknown, it has to
be estimated from some structure model, like a mean-field calculation. The profile
function is usually parametrized as [31, 44]

1 − eiχNN(b) = 1 − iαNN

4πβNN
σ tot

NN exp

(
− b2

2βNN

)
, (3.4.20)

where σ tot
NN is the total cross section for the N-N collision, αNN is the ratio of the

real part to the imaginary part of the N-N scattering amplitude, and βNN is the slope
parameter of the N-N elastic differential cross section. These parameters depend on
the nucleon type (p or n) and on the incident energy. Their values can be found
in the literature (see, e.g., Ref. [44]). The validity of the Glauber approximation is
discussed in Ref. [45].

3.4.4 Coulomb-Corrected Eikonal Approximation

The eikonal approximation gives excellent results for nuclear-dominated reactions
[14, 31]. However, as mentioned above, it suffers from a divergence problem when
the Coulomb interaction becomes significant. To explain this, let us divide the eikonal
phase (3.4.18) into its Coulomb and nuclear contributions

χ(sξ ,b) = χC
PT (b)+ χC(sξ ,b)+ χN (sξ ,b). (3.4.21)

In this expression, χC
PT is the global elastic Coulomb eikonal phase between the

projectile and the target. However, Coulomb forces not only act globally on the
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projectile, they also induce ‘tidal’ effects due to their different actions on the various
clusters. The tidal Coulomb phase χC is due to the difference between the cluster-
target and projectile-target bare Coulomb interactions. The remaining phase χN

contains effects of the nuclear forces as well as of differences between Coulomb
forces taking the finite size of the clusters into account and the bare Coulomb forces.

At the eikonal approximation, the integral (3.4.18) defining χC
PT diverges and

must be calculated with a cutoff [12, 31]. Up to an additional cutoff-dependent term
that plays no role in the cross sections, it can be written as [37]

χC
PT (b) = 2η ln(Kb), (3.4.22)

where appears the projectile-target Sommerfeld parameter η defined in Eq. (3.2.8).
The phase (3.4.22) depends only on b.

The tidal Coulomb phase is computed with Eq. (3.4.18) for the difference between
the bare Coulomb interactions for the clusters in the projectile and the global P-T
Coulomb interaction,

χC(sξ ,b) = − η

ZP

+∞∫

−∞

(
N∑

i=1

Zi

|RiT | − ZP

|R|

)
dZ. (3.4.23)

It can be expressed analytically. Because of the long range of the E1 component
of the Coulomb force, this phase behaves as 1/b at large distances [14, 17]. In the
calculation of the breakup cross sections (3.4.15), the integration over bdb diverges
for small q values, i.e. at forward angles, because of the corresponding 1/b asymptotic
behaviour of the breakup amplitude, as illustrated in Fig. 3.2. This divergence occurs
only in the first-order term iχC of the expansion of the eikonal Coulomb amplitude
exp(iχC).

As seen in Sect. 3.3.3, the first order approximation (3.3.15) decreases exponen-
tially at large b and hence does not display such a divergence. A plausible correction
is therefore to replace the exponential of the eikonal phase according to [15, 16]

eiχ → eiχC
PT

(
eiχC − iχC + iχFO

)
eiχN

, (3.4.24)

where χFO is the result of first-order perturbation theory (3.3.10),

χFO(ξ,b) = − η

ZP

∫ +∞

−∞
eiωZ/v

(
N∑

i=1

Zi

|RiT | − ZP

|R|

)
dZ. (3.4.25)

Note that because of the phase eiωZ/v, the integrand in Eq. (3.4.25) does not exhibit a
translational invariance. The first-order phaseχFO depends on all internal coordinates
of the projectile. When the adiabatic approximation is applied to Eq. (3.4.25), i.e.
when ω is set to 0, one recovers exactly the Coulomb eikonal phase (3.4.23). This
suggests that without adiabatic approximation the first-order term of exp(iχC)would



3 Breakup Reaction Models for Two- and Three-cluster Projectiles 137

Fig. 3.3 Breakup of 11Be on Pb at 69 MeV/nucleon. The parallel-momentum distribution between
the 10Be core and the halo neutron is computed within the DEA, the CCE, the eikonal approximation
including the adiabatic approximation, and the first-order of the perturbation theory [17]. Reprinted
figure with permission from Ref. [17]. Copyright (2008) by the American Physical Society

be iχFO (3.4.25) instead of iχC (3.4.23), intuitively validating the correction (3.4.24).
Furthermore, since a simple analytic expression is available for each of the Coulomb
multipoles (see Sect. 3.3.3), this correction is easy to implement.

With this Coulomb correction, the breakup of loosely-bound projectiles can be
described within the eikonal approximation taking on (nearly) the same footing both
Coulomb and nuclear interactions at all orders. This approximation has been tested
and validated for a two-body projectile in Ref. [17]. Note that in all practical cases
[16, 17, 20], only the dipole term of the first-order expansion (3.3.13) is retained to
evaluate χFO.

Figure 3.3 illustrates the accuracy of the CCE for the breakup of 11Be on lead
at 69 MeV/nucleon [17]. The figure presents the parallel-momentum distribution
between the 10Be core and the halo neutron after dissociation. This observable has
been computed within the DEA (full line), which serves as a reference calculation, the
CCE (dotted line), the eikonal approximation including the adiabatic approximation
(dashed line), and the first-order of the perturbation theory (dash-dotted line). The
usual eikonal approximation requires a cutoff at large impact parameter to avoid
divergence. The value bmax = 71 fm is chosen from the value prescribed in Ref.
[40]. At the first order or the perturbation theory, the nuclear interaction is simulated
by an impact parameter cutoff at bmin = 15 fm.

We first see that the magnitude of the CCE cross section is close to the DEA
one, whereas, the other two approximations give too large (eikonal) or too small
(first order) cross sections. Moreover the CCE reproduces nearly perfectly the shape
of the DEA distribution. In particular the asymmetry, due to dynamical effects, is
well reproduced. This result suggests that in addition to solving the Coulomb diver-
gence problem introduced by the adiabatic approximation, the CCE also restores
some dynamical and higher-order effects missing in its ingredients, the usual eikonal
approximation and the first order of the perturbation theory.
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3.5 Continuum-Discretized Coupled-Channel Method

The CDCC method is a fully quantal approximation which does not imply any restric-
tion on energies. Its main interest lies in low energies where the previous methods
are not valid. The principle of the CDCC method is to determine, as accurately as
possible, the scattering and dissociation cross sections of a nucleus with a simplified
treatment of the final projectile continuum states. To this end, these states describ-
ing the relative motions of the unbound fragments are approximately described by
square-integrable wave functions at discrete energies. The relative motion between
the projectile and target and various cross sections can then be obtained by solving a
system of coupled-channel equations. The number of these equations and hence the
difficulty of the numerical treatment increase with increasing energy.

The CDCC method was suggested by Rawitscher [46] and first applied to deuteron
+ nucleus elastic scattering and breakup reactions. It was then extensively developed
and used by several groups [18, 47–52]. Its interest has been revived by the availability
of radioactive beams of weakly bound nuclei dissociating into two [19, 48–52] or
three [21, 22, 53, 54] fragments.

We assume that the breakup process leads to N clusters and that the cluster-
target interactions do not depend on the target spin. The projectile wave func-
tions φJM

τ (EJ
τB, ξ) describing N-body bound states at negative energies EJ

τB and
φJM
τ (E, ξ) describing N-body scattering states at positive energies E are defined

with Eq. (3.2.1). Since the total angular momentum of the projectile-target system
is a good quantum number, the first step consists in determining partial waves of
the (N + 1)-body Hamiltonian (3.2.4). The general partial wave function for a total
angular momentum JT can be expanded over the projectile eigenstates as

�JTMT(R, ξ) =
∑

LJτ

∑

B

[φJ
τ (E

J
τB, ξ)⊗ ψL

JτB(R)]JTMT

+
∑

LJτ

∞∫

0

[φJ
τ (E, ξ)⊗ ψL

JτE(R)]JTMT dE. (3.5.1)

In this expansion, index B runs over the bound states of the projectile. The total
angular momentum JT results from the coupling of the orbital momentum L of the
projectile-target relative motion with the total angular momentum J of the projectile
state. The relative-motion partial waves ψL

JτB and ψL
JτE are unknown and must be

determined. The parity is given by the product of (−1)L and the parity of φJM
τ .

The first term of Eq. (3.5.1) represents the elastic and inelastic channels while the
second term is associated with the breakup contribution. However, the presence of
the continuum renders this expression intractable.

The basic idea of the CDCC method is to replace wave function (3.5.1) by

�JTMT(R, ξ) =
∑

LJτn

[φJ
τn(ξ)⊗ ψL

Jτn(R)]JTMT , (3.5.2)
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where the functions φJM
τn (ξ) ≡ φJM

τ (EJ
τn, ξ) represent either bound states (EJ

τB<0)
or square-integrable approximations of continuum wave functions (EJ

τn > 0) at
discrete energies

EJ
τn =

〈
φJM
τn (ξ)

∣∣∣H0

∣∣∣φJM
τn (ξ)

〉
. (3.5.3)

Approximation (3.5.2) resembles usual coupled-channel expansions and can be
treated in a similar way.

In practice, two methods are available to perform the continuum discretization. In
the “pseudostate” approach, the Schrödinger equation (3.2.1) is solved approximately
by diagonalizing the projectile Hamiltonian H0 either within a finite basis of square-
integrable functions or in a finite region of space. In both cases, square-integrable
pseudostates φJM

τn are obtained. This approach is simple but there is little control on
the obtained energies EJ

τn. Therefore, it is customary to keep only the pseudostates
with energies below some limit Emax.

The alternative is to separate the integral over E in (3.5.1) into a limited number
of small intervals, or “bins”, [En−1,En] which may depend on J and to use in each
of them some average of the exact scattering states in this range of energies [18,
46–48]. This “bin” method provides the square-integrable basis functions

φJM
τn (ξ) = 1

Wn

∫ En

En−1

φJM
τ (E, ξ)fn(E)dE, (3.5.4)

where the weight functions fn may also depend on J. Such states are orthogonal
because of the orthogonality of the scattering states and they are normed if Wn is the
norm of fn over [En−1,En]. Using Eq. (3.5.4), their energy (3.5.3) is given by

EJ
τn = 1

W 2
n

∫ En

En−1

|fn(E)|2EdE. (3.5.5)

Here also, a maximum energy Emax ≡ Enmax is chosen. In practice, these basis states
are usually constructed by averaging the scattering states φ̃JM

τ (k, ξ) normalized over
the wave number k, often within equal momentum intervals [19].

The total wave function (3.5.2) can be rewritten as

�JTMT(R, ξ) = R−1
∑

c

�JTMT
c (ΩR, ξ)uJT

c (R), (3.5.6)

where c represents the channel LJτn and

�JTMT
c (ΩR, ξ) = iL

[
φJ
τn(ξ)⊗ YL(ΩR)

]JTMT
. (3.5.7)

By inserting expansion (3.5.6) in the Schrödinger equation (3.2.4) and using
Eq. (3.5.3), the relative wave functions uJT

c are given by a set of coupled equations
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[
− �

2

2μ

(
d2

dR2 − L(L + 1)

R2

)
+ Ec − ET

]
uJT

c (R)+
∑

c′
V JT

c,c′(R)u
JT
c′ (R) = 0,

(3.5.8)
where Ec ≡ EJ

τn. The sum over L is truncated at some value Lmax. The sum over the
pseudo-states or bins is limited by the selected maximum energy Emax. The CDCC
problem is therefore equivalent to a system of coupled equations where the potentials
are given by

V JT
c,c′(R) =

〈
�JTMT

c (ΩR, ξ)

∣∣∣VPT (R, ξ)
∣∣∣�JTMT

c′ (ΩR, ξ)
〉
. (3.5.9)

This matrix element involves a multidimensional integral over ΩR and over the
internal coordinates ξ . In general, the potentials are expanded into multipoles corre-
sponding to the total angular momentum operator JT of the system. This may allow
an analytical treatment of angular integrals.

System (3.5.8) must be solved with the boundary condition for open channels

uJT
c (R)−→

R→∞v−1/2
c

[
Ic(KcR)δcc0 − Oc(KcR)SJT

cc0

]
, (3.5.10)

where c0 is the incoming channel. The asymptotic momentum in channel c reads

Kc =
√

2μ(ET − Ec)/�2, (3.5.11)

and vc = �Kc/μ is the corresponding velocity. In Eq. (3.5.10), Ic = Gc − iFc and
Oc = I∗

c are the incoming and outgoing Coulomb functions, respectively [30], and
the element SJT

cc0 of the collision matrix is the amplitude for populating channel c
from initial channel c0.

Various methods have been developed to solve system (3.5.8) (see, e.g., Ref.
[55]). A convenient approach is the R-matrix formalism [56], which is both sim-
ple and accurate. The configuration space is divided into two regions: the internal
(R<a) and external (R>a) regions, where a is the channel radius. In the external
region, the potential matrix defined by Eq. (3.5.9) can be well approximated by its
diagonal Coulomb asymptotic form. Hence the wave function is replaced by com-
binations of Coulomb functions. In the internal region, the radial wave functions
uJT

c can be expanded over some basis [56]. A significant simplification occurs when
using Lagrange functions [52, 57, 58].

A scattering wave function verifying the initial condition (3.2.6) is then con-
structed with the different partial waves. Inserting this CDCC approximate wave
function in Eq. (3.4.11) enables calculating transition matrix elements towards
pseudostates or bin states as a function of the collision matrices SJT (see Eq. (5)
of Ref. [19]). Since these transition matrix elements are obtained only at discrete
energies EJ

nτ , they must be interpolated in order to obtain breakup cross sections at
all energies.

The CDCC method has first been applied to two-body projectiles. As an example,
Fig. 3.4 shows the convergence of the breakup of 8B on 58Ni at 25.8 MeV. The con-
vergence concerns the set of partial waves l in the 7Be-p continuum of the projectile
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Fig. 3.4 7Be angular distribution after the breakup of 8B on 58Ni at 25.8 MeV computed within a
CDCC model [19]. The convergence of the numerical scheme is illustrated with various maximum
values of the 7Be-p relative orbital momentum l in the continuum and various maximum values of
multipole order λ of the potential expansion in Eq. (3.5.9): l ≤ 3, λ ≤ 2 (dashed line), l ≤ 3, λ ≤ 3
(full line), l ≤ 4, λ ≤ 4 (dash-dotted line). Experimental data from Ref. [63]. Reprinted figure
with permission from Ref. [19]. Copyright (2001) by the American Physical Society

and the number of multipoles in the expansion of the potential appearing in matrix
elements (3.5.9). The validity of CDCC has been tested for breakup observables in
a comparison with three-body Faddeev calculations [25]. The agreement between
both sets of results is good except when the coupling with the transfer channel is
important.

Let us also mention extensions beyond the simple two-body model of the projectile
allowing the core to be in an excited state [59, 60]. These references present total
cross sections for the breakup on a 9Be target of 11Be into 10Be + n and of 15C into
14C + n calculated by including core deformations. This extension of CDCC known
as XCDCC leads to very long computational times.

The extension of CDCC to three-body projectiles is more recent [21, 22, 53, 54,
61]. The calculations are still much more time-consuming since the projectile wave
functions are much more complicated (see Sect. 3.7). Consequently, the calculation
of the potential matrix elements (3.5.9) raises important numerical difficulties. At
present, converged calculations are mainly restricted to elastic scattering [53, 54, 61].
Most breakup calculations still involve limited bases and/or simplifying assumptions
[21, 22] but these limitations can be overcome [62].
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3.6 Breakup Reactions of Two-Body Projectiles

3.6.1 Two-Cluster Model

Most of the reaction models have been applied assuming a two-cluster structure of
the projectile. In this section, we specify the expression of the internal Hamiltonian of
the projectile and the set of coordinates usually considered in practical applications.
We then illustrate the models presented in Sect. 3.2 and the approximations explained
in Sects. 3.3, 3.4 and 3.5 with various applications to the study of exotic nuclei and
nuclear astrophysics.

We consider here projectiles made up of a single fragment f of mass mf and charge
Zf e, initially bound to a core c of mass mc and charge Zce. The core and fragment
are assumed to have spins sc and sf . The internal structure of these clusters and of
the target is usually neglected although some structure effects can be simulated by
the effective potentials.

Let us now particularize the general formalism (3.2.1)–(3.2.3) to the present case.
The internal coordinates ξ represent the relative coordinate r = rf −rc. The structure
of the projectile is described by the two-body internal Hamiltonian

H0 = p2

2μcf
+ Vcf (r), (3.6.1)

where μcf = mcmf /mP is the reduced mass of the core-fragment pair (with mP =
mc +mf ), p is the momentum operator of the relative motion and Vcf is the potential
describing the core-fragment interaction. This potential usually includes a central
part and a spin-orbit coupling term in addition to a Coulomb potential. In many
cases, the potential is deep enough to contain unphysical bound states below the
ground state. These unphysical or forbidden states are useful because they allow
the wave function representing the physical ground state to exhibit the number of
nodes expected from the Pauli principle, as obtained in microscopic descriptions [64].
Although these forbidden states do not play any role in the core-fragment scattering,
they could affect breakup properties. However, as shown in Ref. [65], their presence
can be ignored because their effect is negligible.

Let k be the wave vector describing the asymptotic relative motion between
the fragments in the projectile continuum. The corresponding energy is thus
E = �

2k2/2μcf . Notation τ in Eq. (3.2.1) corresponds here to the coupling mode,
i.e. to the total spin S of the projectile and the relative orbital momentum l. The wave
functions defined in Eq. (3.2.1) read

φJM
lS (E, r) = r−1il [Yl(Ω)⊗ χS]JM uJ

lS(k, r), (3.6.2)

where χS is a spinor resulting from the coupling of sc and sf . The radial functions
uJ

lS(k, r) are normalized according to 〈uJ
lS(k, r)|uJ

lS(k
′, r)〉 = δ(k −k′) and the scat-

tering wave functions φJM
lS (E, r) according to 〈φJM

lS (E, r)|φJ ′M ′
l ′S′ (E ′, r)〉 = (2E/k)
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Fig. 3.5 Jacobi set of
coordinates: r is the
projectile internal
coordinate, and R = b + ZẐ
is the target-projectile
coordinate
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δ(E − E ′)δJJ ′δMM ′δll ′δSS′ . The notation k̂ξ in Eq. (3.2.2) represents the direction
Ωk of k and the spin orientations νc and νf of the core and fragment spins sc and sf .
Relation (3.2.3) between continuum eigenstates of H0 becomes

φ
(−)
Ωk,νcνf

(E, r) = 1

k

∑

lSJM

(scsf νcνf |Sν)(lSM − νν|JM)Y M−ν∗
l (Ωk)φ

JM
lS (E, r)

(3.6.3)
with the property 〈φ(−)Ωk,νcνf

(E, r)|φ(−)
Ω ′

k ,ν
′
cν

′
f
(E ′, r)〉 = δ(k − k′)δνcν′

c
δνf ν

′
f
. Notice

that notations τ and k̂ξ are model dependent and would be quite different if a tensor
interaction were included in Vcf . A detailed description of the simple case sc=sf =0
can be found in Ref. [27].

Within this framework the description of the reaction reduces to the resolution of
a three-body Schrödinger equation (3.2.4) that reads, in the Jacobi set of coordinates
illustrated in Fig. 3.5,

[
P2

2μ
+ H0 + VPT (r,R)

]
�(r,R) = ET�(r,R). (3.6.4)

The projectile-target interaction (3.2.5) then reads

VPT (R, r) = VcT

(
R − mf

mP
r
)

+ VfT

(
R + mc

mP
r
)
, (3.6.5)

where VcT and VfT are optical potentials that simulate the core-target and fragment-
target interactions, respectively.

For a two-body projectile, the DEA breakup cross section (3.4.15) becomes
Eq. (46) of Ref. [14]. Integration over Ωk and summation over νc and νf lead to
the energy and angular distribution of the fragments in the P-T c.m. rest frame. With
the normalization of the positive-energy states given above, it reads [14]

dσbu

dEdΩ
= μcf

�2k
KK ′

2J0 + 1

∑

M0

∑

lJM

∣∣∣∣∣∣

∞∫

0

bdbJ|M−M0|(qb)S(M0)

klJM (b)

∣∣∣∣∣∣

2

, (3.6.6)
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Fig. 3.6 Breakup of 19C on
Pb at 67 MeV/nucleon:
semi-classical cross sections
for two different binding
energies of the projectile:
0.53 MeV (upper panel) and
0.65 MeV (lower panel) [35].
Experimental data from Ref.
[67]. Reprinted figure with
permission from Ref. [35].
Copyright (2001) by the
American Physical Society
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where S(M0)

klJM are coefficients of a partial-wave expansion of the breakup amplitude
(3.4.14) (see Eq. (44) of Ref. [14]). Breakup cross sections are mainly expressed
as energy distributions dσbu/dE as a function of the energy of the relative motion
between the fragments. They are obtained by integrating (3.6.6) over Ω . However,
most experimental data concern angular distributions or distributions of the core
momentum in the laboratory frame. Note that, in addition, theoretical results should
be convoluted with the experimental acceptance and resolution. A change of frame
for the theoretical results is thus in general not sufficient to allow a fruitful comparison
with experiment.

3.6.2 Two-Body Breakup of Exotic Nuclei

A first information that one can extract from experiment concerns the separation
energy of the halo neutrons. Indeed, the shape of the breakup cross section and, in
particular, its maximum are sensitive to this energy as can be shown at first order
of perturbation theory with rather simple models based on the asymptotic behaviour
of the halo wave function [66]. An example is given by the breakup of 19C on lead
at 67 MeV/nucleon [4, 67]. In Fig. 3.6, a non-perturbative semi-classical calculation
with a 18C+n two-body model shows that the shape of the experimental data is much
better reproduced if the binding energy of 19C is raised from the recommended value
0.53 MeV to 0.65 MeV [35],
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Fig. 3.7 Breakup of 11Be on
a C target at 67 MeV/
nucleon: calculation
performed in a semi-classical
model [70]. Experimental
data from Ref. [36]

Indirect information can also be obtained on the spin of the ground state of the
halo nucleus when few rather different orbital momenta are probable. The magnitude
of the cross section is very sensitive to the orbital momentum l of the ground state.
A study of the one-neutron removal cross section from 31Ne described in a simple
30Ne + n model allows to rule out the prediction 7/2− of the naive shell model and
to confirm the value 3/2− resulting from a shell inversion [4, 68, 69].

Nuclear-induced two-body breakup on light targets is an interesting tool to
observe resonances of a halo nucleus and to assess some of their properties. In Fig. 3.7
are displayed experimental data on the 11Be breakup on a C target at 67 MeV/nucleon
[4, 36]. These data present a broad bump near the location of a known resonance with
an assumed spin-parity 5/2+. The bump width is however broader than the known
resonance width. A semi-classical calculation (dashed line) based on a 10Be + n
model reproduces the shape of the data very well after convolution with the experi-
mental resolution (full line) [70]. Moreover the d5/2 component of the theoretical
cross section (dotted line) resonates and confirms the 5/2+ attribution.

Breakup reactions are also used to infer the spectroscopic factor of the dominant
configuration in the core+nucleon structure of halo nuclei [26, 41]. Various theoretical
studies have been performed to assess the sensitivity of breakup calculations to the
projectile description [71, 72]. These studies have revealed that the breakup cross
sections not only depend on the initial bound state of the projectile, but are also
sensitive to the description of its continuum [71]. Moreover it has been shown that, for
loosely-bound projectiles, only the tail of the wave function is probed in the breakup
process and not its whole range [72, 73]. These studies therefore suggest that one
should proceed with caution when extracting spectroscopic factors of weakly-bound
nuclei from breakup measurements, as other structure properties, like the continuum
description, may hinder that extraction.

As mentioned earlier, many Coulomb-breakup experiments have been analyzed
within the framework of the first order of the perturbation theory (see Sect. 3.3.3).
In order to assess the validity of that approximation, various authors have compared
perturbation calculations to numerical resolutions of the time-dependent Schrödinger
equation [29, 74–76]. These studies have shown that, in many cases, breakup cannot
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Fig. 3.8 Influence of the couplings inside the continuum [29]. Time evolution of the numerical
breakup probability per energy unit (3.3.7) for 11Be impinging on Pb at about 45 MeV/nucleon for
a 10Be − n relative energy E = 1.5 MeV and an impact parameter b = 100 fm. Reprinted figure
with permission from Ref. [29]. Copyright (2005) by the American Physical Society

be modelled as a one-step process from the initial bound state towards the continuum
and that higher-order effects should be considered for a reliable description of the
reaction. In particular, they indicate that significant couplings are at play inside the
continuum. To illustrate this, Fig. 3.8 displays the time evolution of the breakup prob-
ability per energy unit (3.3.7) for the collision of 11Be on Pb at about 45 MeV/nucleon
computed within the time-dependent 10Be+n model of Ref. [11]. The obtained value
is divided by its evaluation at the first-order of the perturbation theory (3.3.15) at
t → +∞. After a sharp increase at the time of closest approach t = 0, the breakup
probability (full line) oscillates and then stabilizes at a value which differs by about
5% from its first-order estimate. Although the total breakup probability becomes
stable, its partial-wave composition still varies: the dominant p wave contribution
(dash-dotted line) is depleted towards the s (dotted line) and especially d (dashed
line) ones. This signals couplings inside the continuum, which may affect the eval-
uation of breakup observables [29, 76]. We will see in the next section that it may
perturb the analysis of breakup reactions of astrophysical interest [77–80].

3.6.3 Application to Nuclear Astrophysics

Radiative-capture reactions are a crucial ingredient in the determination of the reac-
tion rates in nuclear astrophysics. However the difficulty of their measurement and,
in some cases, the scatter of the results has raised interest in indirect methods where
the time-reversed reaction is simulated by virtual photons in the Coulomb field of
a heavy nucleus [81, 82]. The radiative-capture cross section can be extracted from
breakup cross sections if one assumes that the dissociation is due to E1 virtual pho-
tons and occurs in a single step. A typical example is the 7Be(p, γ )8B reaction which
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(a) (b) (c)

Fig. 3.9 8B Coulomb breakup on Pb at 44 MeV/nucleon. Parallel-momentum distribution of the
7Be core corresponding to various angular cuts calculated in a DEA model [78]. a Influence of
nuclear and Coulomb interactions on the calculation. b Effects of the various multipoles of the
Coulomb interaction. c Role of the higher-order effects on the calculation. Experimental data from
Ref. [85]

has been studied with the breakup of 8B into 7Be + p on heavy targets at different
energies [63, 83–89].

Though appealing, the breakup method also faces a number of difficulties. First,
while many reactions are dominated by an E1 transition, an E2 contribution to the
breakup cross section may not be negligible [74]. Second, higher-order effects, i.e.
transitions from the initial bound state into the continuum through several steps may
not be negligible [29, 74–76]. Finally, the nuclear interactions between the projec-
tile and the target may interfere with the Coulomb interaction [11, 35]. Therefore
elaborate reaction theories must be used to interpret the experimental data.

The experiments on the breakup of 8B have been analyzed in a number of papers
[19, 77, 78, 90–92]. Figure 3.9 shows a comparison between the experimental data of
Ref. [85] and DEA calculations [78]. Without adjustable parameters, the calculations
(full lines) fairly reproduce the asymmetry exhibited by the data which could not
be well explained in earlier works [90, 92]. The three panels of Fig. 3.9 illustrate
the influence of various approximations upon the calculation [78]. The left panel
illustrates that nuclear P-T interactions can be neglected when data are restricted
to forward angles. The central panel confronts a dynamical calculation including
only the dipole term of the Coulomb interaction (dashed lines) to the full calculation,
indicating that higher multipoles have a significant effect on the breakup process. The
right panel compares the dynamical calculation to its first-order approximation (dot-
dashed lines), emphasizing the necessity to include higher-order effects in breakup
calculations. These results show that some of the assumptions of the breakup method
[81, 82] are not valid. It is therefore difficult to infer the accuracy of the S factors
extracted from breakup cross sections.
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Fig. 3.10 Breakup of 15C on
Pb at 68 MeV/nucleon. The
experimental energy
distribution measured for
two scattering-angle cuts
[99] is confronted to the
time-dependent calculation
of Ref. [80]. Reprinted figure
with permission from Ref.
[80]. Copyright (2009) by the
American Physical Society
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An interesting problem was raised by the 14C(n, γ )15C capture reaction. The mea-
sured cross sections for the Coulomb breakup of 15C [93, 94] provided an S factor
which disagreed with direct measurements [95, 96]. Moreover, theoretical analyses
indicated that the Coulomb-breakup cross sections were inconsistent with infor-
mation obtained from 15F by charge symmetry and with microscopic models [97].
A new measurement [98, 99] has obtained breakup cross sections that fully agree with
properties of the mirror system and with theory [79, 80]. These theoretical analyses
show that a fully dynamical calculation, taking proper account of higher-order effects
is necessary to correctly analyze the breakup measurements, in agreement with the
analysis of the 8B Coulomb breakup of Ref. [78]. They also indicate that including
both Coulomb and nuclear interactions as well as their interferences is necessary to
correctly reproduce data at large scattering angles. In this way a very good agreement
can be obtained between direct and indirect measurements of the S factor. Figure 3.10
displays the breakup cross section of 15C on Pb measured at 68 MeV/nucleon [99]
and its comparison to the theoretical calculation of the time-dependent model of Ref.
[80]. The dotted lines show the direct results of the calculation, while the full lines
correspond to these results folded by the experimental resolution and scaled to the
data.

3.7 Breakup Reactions of Three-Body Projectiles

3.7.1 Three-Cluster Model of Projectile

Let us consider a system of three particles, the core with coordinate rc, mass mc and
charge Zce and two fragments with coordinates r1 and r2, masses m1 and m2, and
charges Z1e and Z2e. The projectile mass is mp = mc + m12 with m12 = m1 + m2.
After removal of the c.m. kinetic energy Tc.m., the three-body Hamiltonian of this
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system in Eq. (3.2.1) can be written as

H0 = p2
c

2mc
+ p2

1

2m1
+ p2

2

2m2
+ Vc1 + Vc2 + V12 − Tc.m., (3.7.1)

where Vij is an effective potential between particles i and j (i, j = c, 1, 2). We
assume that these interactions involve central, spin-orbit and Coulomb terms. These
potentials may contain unphysical bound states below the two-cluster ground state
to simulate effects of the Pauli principle. These forbidden states must be eliminated
from the three-body wave functions either with pseudopotentials [100] or with super-
symmetric transformations [101, 102].

Various resolution techniques can be considered for obtaining the wave functions
of a three-body projectile. A first option is to describe this projectile with an expan-
sion in Gaussian functions depending on Jacobi coordinates [21, 31, 103]. For bound
states, the wave functions can be obtained from a variational calculation. Well estab-
lished techniques allow systematic calculations of the matrix elements [31, 103].
Calculations are then simpler when the interactions are expressed in terms of Gaus-
sians. At negative energies, this type of expansion may however have convergence
problems in the description of extended halos. At positive energies, it enables to
obtain pseudostates but is not convenient to obtain scattering states.

Let us describe another efficient tool to deal with three-body systems, the formal-
ism of hyperspherical coordinates. It is especially interesting when the two-cluster
subsystems are unbound so that only a three-body continuum exists. Notation ξ of
Sect. 3.2 represents here five angular variables and one coordinate with the dimen-
sion of a length, the hyperradius (see Refs. [104–106] for details). Four angular
variables correspond to physical angles and the fifth one is related to a ratio of coor-
dinates defined below in Eq. (3.7.6). The wave functions are expanded in series of
hyperspherical harmonics, i.e. a well known complete set of orthonormal functions
of the five angular variables. The coefficients are functions of the hyperradius and
can be obtained from variational calculations. Scattering states can be obtained from
extensions of the R matrix theory [56, 107]. A drawback of this method is that the
hyperspherical expansion may converge rather slowly.

With the dimensionless reduced masses μc(12) = mcm12/mPmN and μ12 =
m1m2 /m12mN where mN is the nucleon mass for example, the internal coordinates
ξ are scaled Jacobi coordinates defined as

x = √
μ12(r2 − r1) (3.7.2)

and

y = √
μc(12)

(
rc − m1r1 + m2r2

m12

)
, (3.7.3)

i.e., up to a scaling factor, the relative coordinate between the clusters 1 and 2 and the
relative coordinate of their centre of mass with respect to the core. With LaplaciansΔx
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andΔy with respect to x and y, the Hamiltonian (3.7.1) of this three-body projectile
can be rewritten as

H0 = − �
2

2mN
(Δx +Δy)+ Vc1 + Vc2 + V12. (3.7.4)

To investigate the breakup cross sections for this system, we need wave functions at
both positive and negative energies.

In the notation of Refs. [104, 106], the hyperradius ρ and hyperangle α are defined
as

ρ =
√

x2 + y2 (3.7.5)

and

α = arctan(y/x). (3.7.6)

The hyperangle α and the orientations Ωx and Ωy of x and y provide a set of five
angles collectively denoted as Ω5. The volume element is dxdy = ρ5dρdΩ5 with
dΩ5 = sin2 α cos2 αdαdΩxdΩy.

The hyperspherical harmonics form an orthonormal basis which verifies a closure
relation. The purely spatial hyperspherical harmonics read [104, 106]

Y
lxly

KLML
(Ω5) = φ

lxly
K (α)

[
Ylx(Ωx)⊗ Yly(Ωy)

]LML
. (3.7.7)

where K is the hypermomentum quantum number, lx and ly are the orbital quantum
numbers associated with x and y, and L is the quantum number of total orbital

momentum. The functionsφ
lxly
K depending on the hyperangleα are defined in Eqs. (9)

and (10) of Ref. [106]. The hyperspherical harmonics involving spin are defined by

Y JM
γK (Ω5) =

[
Y

lxly
KL (Ω5)⊗ χS

]JM
, (3.7.8)

where χS is a spinor corresponding to a total spin S of the three clusters. Intermediate
couplings as, for example, the total spin s12 of the fragments are not displayed for
simplicity. Index γ stands for (lxlyLS).

A partial wave function φJM is a solution of the Schrödinger equation (3.2.1)
associated with the three-body Hamiltonian (3.7.4) at energy E. It can be expanded
as

φJM (E, ρ,Ω5) = ρ−5/2
∑

γK

χJ
γK (E, ρ)Y

JM
γK (Ω5), (3.7.9)

For bound states (E < 0), the hyperradial wave functions decrease asymptotically
as
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χJ
γK (E, ρ) ∼

ρ→∞ exp(−
√

2mN |E|/�2ρ). (3.7.10)

Index τ of Eq. (3.2.1) is irrelevant for bound states within the present assumptions.
The normalization of the scattering states (E > 0) is fixed by their asymptotic form.
Several choices are possible. The asymptotic form of the hyperradial scattering wave
function is for instance given by [20]

χJ
γK(γωKω)(E, ρ) →

ρ→∞ iKω+1(2π/k)5/2

×
[
H−

K+2(kρ)δγ γωδKKω − U J
γK ,γωKωH+

K+2(kρ)
]
,

(3.7.11)

where k = √
2mN E/�2 is the wave number and H−

K and H+
K are incoming and

outgoing functions [107–109]. In the neutral case, i.e. when clusters 1 and 2 are
neutrons, these functions read H±

K (x) = ±i(πx/2)1/2 [JK (x)± iYK (x)] where JK
and YK are Bessel functions of first and second kind, respectively. The wave functions
φJM
(γωKω)

(E, ρ,Ω5) are normalized according to 〈φJM
(γωKω)

(E, ρ,Ω5)|φJ ′M ′
(γ ′
ωK ′

ω)
(E ′,

ρ,Ω5)〉 = 2E(2π/k)6δ(E − E ′)δJJ ′δMM ′δγωγ ′
ω
δKωK ′

ω
. In the charged case, expres-

sion (3.7.11) is only an approximation because the asymptotic form of the Coulomb
interaction is not diagonal in hyperspherical coordinates [107, 110]. The indices
γωKω where γω = (lxω, lyω,Lω,S) denote the partial entrance channels for this
solution. For scattering states, index τ of Eq. (3.2.1) is necessary and rather compli-
cated: it represents the entrance channel γωKω. The asymptotic behaviour of a given
partial wave depends on the collision matrix. For real interactions, the collision
matrix UJ of each partial wave J is unitary and symmetric. For three-body scatter-
ing, it differs from two-body collision matrices in an important aspect: its dimension
is infinite since the particles can share the angular momentum in an infinity of ways.
In practical calculations, its dimension depends on the number of hypermomenta
included in the calculation, limited to a maximum K value, denoted as Kmax.

The three-body final scattering states are described asymptotically with two rel-
ative wave vectors. Let kc, k1, k2 be the wave vectors of the core and fragments in
the projectile rest frame. The asymptotic relative motions are defined by the relative
wave vector of the neutrons

k21 = √
μ12kx = m1k2 − m2k1

m12
(3.7.12)

and the relative wave vector of the core with respect to the centre of mass of the
fragments

kc(12) = √
μc(12)ky = m12kc − mc(k1 + k2)

mP
. (3.7.13)

The total internal energy of the projectile with respect to the three-particle threshold
is given by
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E = �
2

2mN
k2 = �

2

2mN
(k2

x + k2
y). (3.7.14)

The orientations Ωkx of kx and Ωky of ky and the ratio αk = arctan(ky/kx) form
the wave vector hyperanglesΩ5k . The hyperangle αk controls the way the projectile
energy E is shared among the fragments. For example, the energy of the relative
motion between fragments 1 and 2 is E cos2 αk . In the scattering states (3.2.2),
notation k̂ξ thus representsΩ5k and the final orientations νc, ν1, ν2 of the three spins.
It is convenient to replace these orientations by the total spin s12 of the fragments,
the total spin S and its projection ν. Relation (3.2.3) is then given by

φ
(−)
Ω5kSν(E, ρ,Ω5) = (2π)−3

∑

JM

∑

lxωlyωLωKω

(LωSM − νν|JM)

× Y LωM−ν∗
lxωlyωKω

(Ω5k)K φJ−M
(γωKω)

(E, ρ,Ω5).

(3.7.15)

where K is the time-reversal operator. These functions are normalized with respect
to δ(kx − k′

x)δ(ky − k′
y)δSS′δνν′ .

The hyperradial wave functions χJ
γK are to be determined from the Schrödinger

equation (3.2.1). The parity π = (−1)K of the three-body relative motion restricts
the sum over K to even or odd values. Rigorously, the summation over γK in (3.7.9)
should contain an infinite number of terms. In practice, this expansion is limited by
the truncation value Kmax. The lx and ly values are limited by lx + ly ≤ K ≤ Kmax.
For weakly-bound and scattering states, it is well known that the convergence is
rather slow and that large Kmax values must be used.

The functions χJ
γK are derived from a set of coupled differential equations [106,

107]

[
− �

2

2mN

(
d2

dρ2 − (K + 3/2)(K + 5/2)

ρ2

)
− E

]
χJ
γK (E, ρ)

+
∑

γ ′K ′
V J
γ ′K ′,γK (ρ)χ

J
γ ′K ′(E, ρ) = 0,

(3.7.16)

where the potentials matrix elements are defined as

V J
γ ′K ′,γK (ρ) =

〈
Y JM
γ ′K ′(Ω5)

∣∣∣
3∑

i>j=1

Vij(rj − ri)

∣∣∣Y JM
γK (Ω5)

〉
. (3.7.17)

For bound states, approximate solutions can be obtained with an expansion on a
finite square-integrable basis. However, using such a basis for scattering states raises
problems since they do not vanish at infinity. Their asymptotic form requires a proper
treatment. This technical difficulty can be solved within the R-matrix theory [56,
107, 111] which allows matching a variational function over a finite interval with the
correct asymptotic solutions of the Schrödinger equation.
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In the R-matrix approach, both bound and scattering hyperradial wave functions
are approximated over the internal region by an expansion on a set of square-
integrable variational functions defined over [0, a]. Lagrange-mesh basis functions
are quite efficient for describing two-body bound and scattering states [57, 112, 113].
The main advantage of this technique is to strongly simplify the calculation of matrix
elements (3.7.17) without loss of accuracy if the Gauss approximation consistent with
the mesh is used [106]. This method was extended to three-body bound states in Ref.
[106] and to three-body scattering states in Ref. [107]. We refer the reader to those
references for details.

3.7.2 Dipole Strength Distribution

The E1 strength distribution for transitions from the ground state to the continuum is a
property of the projectile that can be extracted from breakup experiments under some
simplifying assumptions for cases where E1 is dominant [4]. In the hyperspherical
coordinate system, the multipole operators are given by Eq. (B2) of Ref. [106]. For
example, in two-neutron halo nuclei, the E1 strength is given by

M E1
μ (ρ,Ω5) = eZc

m12

mP

ρ sin α√
μc(12)

Yμ
1 (Ωy). (3.7.18)

The E1 transition strength (3.3.16) from the ground state at negative energy E0 with
total angular momentum J0 to the continuum is given by

dB(E1)

dE
= 4

2J0 + 1

(mN

�2

)3
E2

∑

M0μ

∑

Sν

∫
dΩ5k

∣∣∣
〈
φ
(−)
Ω5kSν(E, ρ,Ω5)

∣∣∣M E1
μ (ρ,Ω5)

∣∣∣φJ0M0(E0, ρ,Ω5)
〉∣∣∣

2
. (3.7.19)

The E1 strength presents the advantage that it can also be calculated in various
ways without constructing the complicated three-body scattering states [114]. Most
model calculations of the E1 strength for 6He indicate a concentration of strength at
low energies E [20, 22, 108, 115–117]. The origin of this low-energy bump remains
unclear and can sometimes be attributed to a three-body resonance [20, 108]. The
existence of such a bump does not agree with GSI data [118].

This puzzling problem deserves further studies. A first-order description of
Coulomb breakup for 6He is probably not very accurate (see Sect. 3.7.3), even at
the energies of the GSI experiment [118]. Extracting the E1 strength from breakup
measurements is very difficult and not without ambiguities. This is exemplified by
the variety of experimental results obtained for the breakup of the 11Li two-neutron
halo nucleus. As shown in Fig. 3.11, most early experiments [119–121] did not dis-
play a significant strength at low energies in contradiction with data from the more
recent RIKEN experiment [4, 122].
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Fig. 3.11 Experimental E1
strength for the breakup of
the 11Li two-neutron halo
nucleus: Ref. [122] (full
circles), Ref. [119]
(dash-dotted line), Ref. [120]
(histogram), Ref. [121]
(dashed line). Reprinted
figure with permission from
Ref. [122]. Copyright (2006)
by the American Physical
Society

3.7.3 The CCE Approximation for Three-Body Projectiles

We consider a collision between a three-body projectile and a structureless
target with mass mT and charge ZT e [20]. The breakup reaction is described by
the four-body Schrödinger equation (3.2.4) where H0 is given by Eq. (3.7.4). The
effective potential (3.2.5) between projectile and target is defined as

VPT (R, x, y) = VcT

(
R + m12

mP

y√
μc(12)

)
+ V1T

(
R − mc

mP

y√
μc(12)

− m2

m12

x√
μ12

)

+ V2T

(
R − mc

mP

y√
μc(12)

+ m1

m12

x√
μ12

)
. (3.7.20)

In this expression, each interaction ViT between a constituent of the projectile and
the target is simulated by a complex optical potential (including a possible Coulomb
interaction taking the cluster extension into account).

In order to obtain breakup cross sections, one must calculate transition matrix
elements for the breakup into three fragments. The transition matrix elements (3.4.11)
read

Tfi = (μ12μc(12))
−3/4

×
〈
eiK′·Rφ(−)

Ω5kSν(E, ρ,Ω5)

∣∣∣VPT (R, x, y)
∣∣∣�(M0)(R, ρ,Ω5)

〉
(3.7.21)

for four-body breakup. The factor (μ12μc(12))
−3/4 appears when the integration

is performed in coordinates ρ and Ω5 and the bound-state wave function (3.7.9) is
normed in this coordinate system rather than in Jacobi coordinates [20]. At the eikonal
approximation, the exact scattering wave function � in Eq. (3.7.21) is replaced by
its approximation given by Eqs. (3.4.1) and (3.4.17). The transition matrix element
(3.7.21) is then obtained following Eq. (3.4.13) as
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Fig. 3.12 CCE calculation
of the total and 0+, 1−, 2+
partial cross sections of 6He
breakup on 208Pb at
240 MeV/nucleon [20].
Reprinted figure with
permission from Ref. [20].
Copyright (2009) by the
American Physical Society
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with the eikonal breakup amplitude (3.4.14), that reads here [20]

S(M0)
Sν (E,Ω5k,b) = (μ12μc(12))

−3/4

×
〈
φ
(−)
Ω5kSν(E, ρ,Ω5)

∣∣∣eiχ(b,sx,sy)
∣∣∣φJ0M0(E0, ρ,Ω5)

〉
. (3.7.23)

Following Eq. (3.7.20), the eikonal phase shiftχ defined in Eq. (3.4.18) is obtained
as

χ = χcT + χ1T + χ2T . (3.7.24)

It depends on the transverse part b of R as well as on the transverse parts sx and sy
of the scaled Jacobi coordinates x and y.

From the transition matrix elements (3.7.21), various cross sections can be derived.
The differential cross section (3.4.15) with respect to the eight independent variables
Ω, k21, kc(12) reads in the c.m. frame

dσ
dΩdk21dkc(12)

= 1

2J0 + 1

1

4π2

( μ
�2

)2 K ′

K

∑

SνM0

|Tfi|2. (3.7.25)

The physical wave numbers k21 and kc(12) are proportional to kx and ky and can thus
be expressed from k and αk [20]. Integrating Eq. (3.7.25) over all anglesΩ andΩ5k
leads to the energy distribution cross section dσ/dE .

The CCE approximation has allowed calculating various elastic and breakup
cross sections for 6He on 208Pb by treating 6He as an α + n + n three-body sys-
tem [20]. In Fig. 3.12, the contribution from the different partial waves is displayed
at 240 MeV/nucleon. As expected for a transition from a 0+ ground state, the J = 1−
component is dominant. However the J = 0+ and J = 2+ components are not neg-
ligible. The known 2+ resonance at 0.82 MeV is clearly visible in the total cross
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Fig. 3.13 Comparison [20] between the total CCE cross section (full line) of 6He breakup on
208Pb at 240 MeV/nucleon with the experimental data of Ref. [118]. The 1− partial cross sections
calculated with two types of elimination of forbidden states (supersymmetry: dashed line, projection:
dotted line) are also displayed. Reprinted figure with permission from [20]. Copyright (2009) by
the American Physical Society

section. Extracting an E1 strength from such data is thus not easy, even at this high
energy.

A comparison of the CCE cross section (full line) with GSI data [118] is presented
in Fig. 3.13. The disagreement already discussed for the E1 strength in Sect. 3.7.2 is
clearly visible. The data do not show as large a cross section at low energies as the
theory. It is not even clear whether the 2+ resonance is visible in these data. Neverthe-
less the agreement is reasonably good above 2 MeV, given that no parameter is fitted
to this experiment in the model calculation. The 1− contribution is calculated with
two different ways of eliminating the unphysical bound states in the α+ n potentials
(dashed and dotted lines). The low-energy peak corresponds to a broad resonance
in the lowest 1− three-body phase shift. Further experimental and theoretical works
are needed to explain this discrepancy.

The advantage of the relative simplicity of the CCE is that various types of angular
differential cross sections can be calculated. Examples of double differential cross
sections showing various energy repartitions between the fragments are presented in
Fig. 7 of Ref. [20].

3.7.4 The CDCC Approximation for Three-Body Projectiles

The CDCC method has also been extended to three-body projectiles. In the first works
[53, 54, 61], the pseudostate discretization was adopted. Indeed, it avoids the difficult
construction of scattering states and allows an accurate treatment using expansions
involving Gaussians with various widths. Only recently was the construction of bins
attempted [22]. The difficulty of the calculation restricted the first applications to
elastic scattering.

The differential cross section for elastic scattering of 6He on 12C at 229.8 MeV
is displayed in Fig. 3.14. A single-channel calculation neglecting breakup channels
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Fig. 3.14 Ratios of
differential cross sections
obtained with CDCC to
Rutherford cross section for
the elastic scattering of 6He
on 12C at 229.8 MeV without
and with coupling to breakup
channels [53]. Experimental
data from Ref. [123].
Reprinted figure with
permission from Ref. [53].
Copyright (2004) by the
American Physical Society
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Fig. 3.15 Ratios of
differential cross sections to
Rutherford cross section for
the elastic scattering of 6He
on 209Bi at 22.5 MeV:
comparison of three- and
four-body CDCC without
and with coupling to breakup
channels [61]. Experimental
data from Refs. [124, 125].
Reprinted figure with
permission from Ref. [61].
Copyright (2006) by the
American Physical Society
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(dotted line) overestimates the experimental data of Ref. [123]. The shape of the
data is very well reproduced by introducing 0+ and 2+ pseudochannels and taking
account of all couplings (full line).

In Fig. 3.15 is displayed a comparison between calculations of 6He elastic scat-
tering on 209Bi at 22.5 MeV involving two-cluster (“Three-body CDCC”, dashed
line) and three-cluster (“Four-body CDCC”, full line) descriptions of 6He. A sig-
nificant difference appears between calculations neglecting breakup channels (“no
coupling”) and those including it (“full coupling”). The agreement with experimental
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Fig. 3.16 Ratios of
differential cross sections to
Rutherford cross section for
the elastic scattering of 6He
on 64Zn at 13.6 MeV:
comparison of CDCC
calculations with various
basis sizes and maximum
energies Emax with a
single-channel calculation
[54]. Experimental data from
Ref. [126]. Reprinted figure
with permission from Ref.
[54]. Copyright (2008) by the
American Physical Society
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data [124, 125] seems better within the four-body treatment including the breakup
channels.

Another type of basis functions, based on deformed oscillators, has been used to
construct 6He pseudostates in Ref. [54]. This technique also allowed a description
of elastic scattering explicitly including breakup channels. In Fig. 3.16, the elastic
scattering of 6He on 64Zn at 13.6 MeV is compared with experimental data from
Ref. [126]. These results show that including partial waves up to J = 2 and taking
coupling into account (full line) allow a good agreement with data. Here also, the
calculation omitting the coupling to the continuum (dashed line) disagrees with the
experimental data. The same basis has recently been extended to the construction of
bins [22].

While, for three-body projectiles, the effect of breakup channels has been included
for some time in studies of elastic scattering, the determination of breakup cross
sections is just starting. Some preliminary calculations have been published recently.
Some of them are not fully converged [22] or involve simplifying assumptions [21].
A recent CDCC calculation [62] provides a good agreement with experiment [118]
for 6He breakup on 12C. For 6He breakup on 208Pb, it does not agree well with
experiment and is about a factor of two lower than the CCE results of Ref. [20]
displayed in Fig. 3.13. The reasons of these discrepancies are not yet understood.
Nevertheless, the CDCC method should allow a precise treatment of three-body
breakup in a near future.

3.8 Perspectives

The theory of breakup reactions offers several accurate non-relativistic approxima-
tions covering a broad energy range, that allow an interpretation of various exper-
iments. A good accuracy is reached for some time for the breakup of two-body
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projectiles and is in view for the breakup of three-body projectiles. Good results can
already be obtained with the simplest models of projectile structure, provided that
the value of the projectile binding energy is correct. This suggests that only limited
spectroscopic information can be extracted from the comparison of theory and exper-
iment. This is partly due to the fact that a comparison of experimental data with results
of calculations usually requires complicated convolutions. Nevertheless, breakup has
proved to be an efficient alternative probe to measure the separation energies of bound
states of exotic nuclei. When performed on light targets, it also provides information
about the location and width of resonances of such nuclei. Moreover, some informa-
tion about the quantum numbers of the ground state of exotic nuclei can be assessed
from breakup measurements. The extraction of spectroscopic factors, however, is
very sensitive to the accuracy of the absolute normalization of experiments. More-
over, the sensitivity of breakup calculations to the description of the continuum of
the projectile indicates that these extractions should be performed with caution. In
addition, Coulomb breakup on heavy targets is also used to measure astrophysical S
factors. However the accuracy of this indirect technique is uncertain.

Several methods can now be applied to the breakup of three-cluster projectiles
(CDCC method, eikonal approximation, ...). They will allow studying coincidence
observables that are more difficult to measure but less sensitive to the absolute nor-
malization of cross sections. They should also allow the study of correlations between
the emitted fragments. In this respect, efforts should be made at the interface between
theory and experiment to facilitate the transformation of the results of model cal-
culations into quantities comparable with the data, taking account of the resolution
and acceptances of the detection setup. On the theoretical side, three-cluster bound
states can be obtained with good accuracy but the difficult treatment of the three-body
continuum still requires progress.

Attempts to improve the model description of the projectile by including excited
states of the clusters composing the projectile have started with the extended CDCC.
In the future, one can expect a further improvement by using a microscopic descrip-
tion of the projectile within the microscopic cluster model [127–129], involving
effective nucleon-nucleon forces and full antisymmetrization. Improvements in the
projectile description should first concern bound states. This should reduce the uncer-
tainties appearing in non-microscopic cluster models because of the effective forces
between the clusters in the projectile and between the clusters and the target. Using
fully antisymmetrized wave functions in breakup calculations seems to be within
reach for two-cluster projectiles. This approach should open the way towards ab
initio descriptions of the projectile based on fully realistic nucleon-nucleon forces.

All the reaction descriptions presented in this review have been developed within
non-relativistic quantum mechanics. However, relativistic effects may be significant
and affect the analysis of breakup data, even at intermediate energies of a few tens
of MeV/nucleon. Several authors have started analyzing these effects and have pro-
posed ways to take them into account in time-dependent [130] or CDCC [131, 132]
frameworks. Since some of the new facilities of radioactive-ion beams will operate
at high energies (a few hundreds of MeV/nucleon), these effects will have to be better
understood and incorporated in state-of-the-art reaction models.
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Chapter 4
Clustering Effects Within the Dinuclear Model

Gurgen Adamian, Nikolai Antonenko and Werner Scheid

Abstract The clustering of two nuclei in a nuclear system creates configurations
denoted in literature as nuclear molecular structures. A nuclear molecule or a dinu-
clear system (DNS) as named by Volkov consists of two touching nuclei (clusters)
which keep their individuality. Such a system has two main degrees of freedom
of collective motions which govern its dynamics: (i) the relative motion between
the clusters leading to molecular resonances in the internuclear potential and to the
decay of the dinuclear system (separation of the clusters) which is called quasifission
since no compound system like in fission is first formed. (ii) the transfer of nucle-
ons or light constituents between the two clusters of the dinuclear system leading
to a special dynamics of the mass and charge asymmetries between the clusters in
fusion and fission reactions. In this article we discuss the essential aspects of the
diabatic internuclear potential used by the di-nuclear system concept and present
applications to nuclear structure and reactions. We show applications of the dinu-
clear model to superdeformed and hyperdeformed bands. An extended discussion is
given to the problems of fusion dynamics in the production of superheavy nuclei,
to the quasifission process and to multi-nucleon transfer between nuclei. Also the
binary and ternary fission processes are discussed within the scission-point model
and the dinuclear system concept.

G. Adamian (B) · N. Antonenko
Bogoliubov Laboratory of Theoretical Physics,
Joint Institute for Nuclear Research,
141980 Dubna (Moscow region), Russia
e-mail: adamian@theor.jinr.ru

N. Antonenko
e-mail: antonenk@theor.jinr.ru

W. Scheid
Institut für Theoretische Physik der Justus-Liebig-Universität Giessen,
Heinrich-Buff-Ring 16, 35392 Giessen, Germany
e-mail: werner.scheid@theo.physik.uni-giessen.de

C. Beck (ed.), Clusters in Nuclei, Vol.2, Lecture Notes in Physics 848, 165
DOI: 10.1007/978-3-642-24707-1_4, © Springer-Verlag Berlin Heidelberg 2012



166 G. Adamian et al.

4.1 Introduction

A nuclear molecule [1] or a dinuclear system (DNS) is a cluster configuration
consisting of two nuclei which touch each other and keep their individuality, i.e.
8Be → α + α. The dinuclear system concept was first introduced by Volkov [2–5].
First observable evidences for nuclear molecules were detected by Bromley et al.
[6] in the scattering of 12C +12C and 16O +16O which has some importance for the
element synthesis in astrophysics.

The dinuclear system model has far reaching applications in nuclear structure
physics, namely for the explanation of normal-, super- and hyper-deformation of
heavy nuclei, in fusion and incomplete fusion reactions for the production of super-
heavy nuclei, in mass and charge transfer reactions between clusters, in quasifission,
when no compound nucleus is formed, and in binary and ternary fission. All these
subjects will be discussed in this article.

The main degrees of freedom of the dinuclear model are the relative motion of the
clusters and the transfer of nucleons between them. The relative motion describes
the formation of the dinuclear system in heavy ion collisions, the properties of the
nuclear molecular resonances and the decay of the dinuclear system leading to fission,
quasifission and emission of clusters. The transfer of nucleons between the clusters
changes the mass and charge asymmetries and can be phenomenologically treated by
the mass and charge asymmetry coordinates, defined as η = (A1 − A2)/(A1 + A2)

and ηZ = (Z1 − Z2)/(Z1 + Z2) where A1, A2 and Z1, Z2 are the mass and charge
numbers of the clusters, respectively. The case η = 0 means two equal clusters
(A1 = A2) and at η = ±1 only one cluster exists because of A1 = 0 or A2 = 0.
So the coordinate η runs in the interval (1,−1) and one is able to describe also
a completely fused system with |η| = 1. Further degrees of freedom needed for
a more realistic representation of the nucleus-nucleus system are the deformations
(vibrations) of the clusters, their orientations (rotation–oscillations), the neck degree
of freedom between them, and the single-particle motion in the individual clusters.

4.2 Adiabatic or Diabatic Potentials Between Nuclei

The description of the dynamical way of heavy ion fusion strongly depends on the
potential taken between the nuclei. We discriminate between adiabatic and diabatic
potentials. Adiabatic potentials represent the minimum of energy of the system for
a given set of collective coordinates and a given internuclear distance. The potential
energy can be calculated with the Strutinsky method

U = ULD + δUshell , (4.1)

where ULD is the energy of the system obtained with a liquid drop model for the
shape coordinates and δUshell includes the effects of the shells. The shell effects
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Fig. 4.1 The used
parameters of the two-center
shell model. Here, 2R0λ

measures the length of the
system. The deformation
parameters are given by
βi = ai/bi with i = 1, 2.
The neck parameter is
ε = E0/E ′

in nucleus-nucleus collisions are obtained with a two-center shell model which is
shortly discussed in the following subsection.

4.2.1 Two-Center Shell Model

In most calculations of potentials one uses the two-center shell model of Maruhn and
Greiner [7]. It is based on the two-center oscillator. The parameters of the Maruhn–
Greiner model (see Fig. 4.1) are the length � of the system, expressed by the ratio
λ = �/(2R0) where R0 is the radius of the spherical compound nucleus, the mass
asymmetry η defined by the masses left and right to the plane through the neck,
η = (A1 − A2)/(A1 + A2), the neck parameter ε = E0/E ′ (ratio of barriers, see
Fig. 4.1), and the deformations βi = ai/bi with i = 1 and 2 (ratio of semiaxes).

Recently, Diaz Torres [8] proposed a two-center shell model with a greater vari-
ability. The potentials are superpositions of two shifted and rotated Woods–Saxon
potentials

V = exp(−R1δ)Û (Ω1)V1Û−1(Ω1)exp(R1∇)
+ exp(−R2∇)Û (Ω2)V2Û−1(Ω2)exp(R2∇) (4.2)

with the Woods–Saxon potentials

Vi=1,2 = −V0i f i(r)+ 1

2
λi

(
�

mc

)2

V0i
1

r
df i

so

dr
�s (4.3)

with f i, f i
so =

(
1 + exp([r − Ri

0(so)]/ai
0(so))

)−1
. (4.4)
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The centers are positioned at R1 and R2, the relative coordinate is r = R1 − R2,

and Û (Ω1) and Û (Ω2) are operators for rotation by the Euler angles Ω1 and Ω2,

respectively. To get the single-particle levels of T + V , Diaz Torres used two non-
orthogonal sets of oscillator functions around the centers of the two parts of (4.2)
as basis for diagonalizing the Hamiltonian. He considered the two-center potentials
of the system consisting of the spherical nuclei 16O and 40Ca for different relative
distances and two oblately deformed 12C nuclei with different relative orientations.
This two-center shell model is realistic with respect to bound and continuum levels,
but difficult to evaluate for heavier systems.

4.2.2 Calculation of Adiabatic and Diabatic Potentials

In order to calculate adiabatic and diabatic potentials one has to consider both types of
single-particle energies for the shell effects. Diabatic TCSM states can be calculated
by the maximum overlap method according to Lukasiak et al. [9, 10] or by the
method of maximum symmetry where one diagonalizes a two-center Hamiltonian
with maximum symmetry excluding the neck potential and terms proportional to
�x, �y and sx, sy in the spin-orbit potential. The maximum overlap method and the
method of maximum symmetry which is numerically simpler yield nearly the same
results for the single-particle energies. The nucleus-nucleus potentials are obtained
by the Strutinsky method [11]:

Vadiab = VLD + δUshell ,

Vdiab = Vadiab +
∑

α

(
εdiab
α (R)ndiab

α (R)− εadiab
α (R)nadiab

α (R)
)
. (4.5)

Diabatic potentials are strongly repulsive and forbid fusion via the internuclear coor-
dinate. They are similar to potentials calculated with double folding methods by using
frozen densities. The latter type of potentials is also denoted as sudden potentials.
Fig. 4.2 shows diabatic potentials for the 100Mo +100Mo and 110Pd +110Pd systems.
One finds that the double folding potential in the 110Pd +110Pd case (dotted–dashed
curve in Fig. 4.2) leads to a very similar potential (solid curve in Fig. 4.2) obtained
with diabatic single-particle energies of the TCSM and the Strutinsky formalism.

The time-dependence of the transition from a diabatic potential to an adiabatic
can be related to the characteristic relaxation time for the shape degrees of freedom
of the system. The potential is given by

V (λ, t) = Vadiab(λ)+�Vdiab(λ, t) with

�Vdiab ≈
∑

α

(
εdiab
α (λ, t)ndiab

α (λ, t)− εadiab
α (λ)nadiab

α (λ)
)
. (4.6)

Here, λ is the dimensionless internuclear distance parameter of the TCSM (see
Fig. 4.1). nadiab

α (λ) varies with λ according to a Fermi distribution with temper-
ature T (λ) = √

E∗(λ)/a, where E∗(λ) is the excitation energy of the system.
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Fig. 4.2 Diabatic potentials
for the systems
100Mo + 100Mo (dotted line,
curve 1) and 110Pd + 110Pd
(solid line, curve 2). The
phenomenological double
folding potential for the
system 110Pd + 110Pd is
shown by the dashed–dotted
line (curve 3). The
discrepancy between this
potential and the diabatic one
becomes smaller if, by
starting at the minimum of
the pocket, the neck
parameter ε is diminished by
decreasing λ (dashed line,
curve 4) for 110Pd + 110Pd

λ

The diabatic occupation numbers ndiab
α follow relaxation equations

dndiab
α (λ, t)

dt
= − 1

τ(λ, t)

(
ndiab
α (λ, t)− nadiab

α (λ)
)

(4.7)

with τ(λ, t) = 2�

〈Γ 〉 ≈ 5 × 10−21s and

〈Γ (λ, t)〉 =
∑

α

n̄diab
α (λ, t)Γα(λ)/

∑

α

n̄diab
α (λ, t), (4.8)

n̄diab
α = ndiab

α for εdiab
α > εF ,

n̄diab
α = 1 − ndiab

α for εdiab
α ≤ εF .

Fig. 4.3 shows a calculation of the potential for the 110Pd + 110Pd system as a func-
tion of λ. The dashed potential lying between the diabatic (solid line) and adiabatic
(points) potentials results from the above equations for a time t0 = 8×10−21 s which
is roughly the time for forming the compound nucleus. The astonishing outcome is
that a quite high barrier of about 60 MeV remains towards smaller internuclear dis-
tances and hinders the direct fusion to 220 U along the internuclear coordinate. From
these calculations we conclude that in heavier collision systems one has to consider
diabatic or modified diabatic potentials with high barriers to the inside hindering a
direct fusion process.

With a microscopic approach based on the formalism of irreducible representa-
tions of the SU(3) group one finds an influence of the structural forbiddenness on the
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Fig. 4.3 The diabatic (solid
curve), the diabatic
time-dependent (dashed
curve) and the adiabatic
(dotted curve) potentials for
110Pd + 110Pd as a function of
λ
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fusion of heavy nuclei and can estimate the energy thresholds for complete fusion in
relative distance and mass asymmetry degrees of freedom. This effects are similar
as the shown diabaticity of the internuclear potential [12].

4.2.3 The Motion of the Neck

Here we consider the dynamics of the neck degree of freedom between the touching
nuclei [13, 14]. The neck dynamics is described by the neck parameter ε = E0/E ′
defined by the ratio of the actual barrier height E0 to the barrier height E ′ of the
two-center oscillator (see Fig. 4.1). The neck grows with decreasing ε. In order to
learn about the neck dynamics we calculated the potential energy surface as a func-
tion of λ and ε for the case of the 110Pd +110 Pd system in the adiabatic approach
(see Fig. 4.4) and carried out dynamical, time-dependent calculations which have
an adiabatic character because of the adiabatic potential energy surface. The kinetic
energy is written

T = 1

2

∑

i,j

Bi,j q̇i q̇j, i = 1, 2, q1 = λ, q2 = ε, (4.9)

and dissipative forces are included by use of a Raleigh dissipation function

� = 1

2

∑

i,j

γi,j q̇i q̇j, (4.10)

where the friction coefficients are calculated with

γi,j = 2ΓBi,j/� (4.11)
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Fig. 4.4 Potential energy
surface (units MeV),
calculated in the (λ, ε)-plane
for the reaction 110Pd +110Pd
with shell corrections and
βi = 1 (lowest part),
without shell corrections and
βi = 1 (middle part), and
with shell corrections and
βi = 1.2 (upper part). The
dynamical trajectories in the
lowest part starting from the
touching configurations and
with initial kinetic energies
0, 40 and 60 MeV are
presented by solid, dashed
and dotted lines, respectively
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according to the linear response theory and Γ is the average width of single particle
states. The classical equations are derived from the Lagrangian L = T − V and
Raleigh dissipation function�.Starting withλ= 1.59 and ε = 0.75 for 110Pd+110Pd
and with mass parameters obtained within the Werner–Wheeler approximation under
the assumption of an incompressible and irrotational flow of the nuclear matter we
reached the fission-type valley already after a very short time of 3 − 4 × 10−22 s at
λ ∼ 1.68 and then found oscillations in this valley in case of a small kinetic energy.
The characteristic time of all processes results ∼ 5×10−21 s. This has as consequence
that fusion may occur easier in reactions with heavier isotopes in contradiction to
the experimental data. For the system 110Pd +110 Pd we draw the dependence of λ
and ε as functions of time and the fusion probability with different starting values at
and above the Bass barrier in Fig. 4.5, respectively. The experimental value is about
PCN ≈ 10−4.

With the described method one calculates a wrong dependence of the fusion prob-
ability on the isotope composition and of the mass asymmetry of target and projectile
[14]. There must exist a hindrance for a fast growth of the neck and the motion to
smaller values of λ. We found as an essential hindrance large microscopically cal-
culated mass parameters for the neck motion. We obtained the microscopical mass
parameters with the cranking formula [15], where the main contributions to the mass
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Fig. 4.5 Left Time dependence of λ and ε for different initial values of λ and ε at which the
110Pd +110 Pd system has the same potential energy 26.5 MeV. The initial kinetic energy is zero.
The calculated results with λ(0) = 1.6 and ε(0) = 0.75, λ(0) = 1.66 and ε(0) = 0.74,
and λ(0) = 1.52 and ε(0) = 0.8 are presented by solid, dashed and dotted lines, respectively.
Right Dependence of the fusion probability on λv (λ-value in the fusion valley of the potential
energy surface) for the 110Pd +110Pd reaction at different excitation energies. A fast dissipation of
kinetic energy in the entrance channel is assumed. The results of calculations for incident energies
corresponding to the Bass barrier, 10 MeV above the Bass barrier and 20 MeV above the Bass barrier
are presented by solid, dashed and dotted lines, respectively

resulted from (cr=cranking)

Bcr
i,j ≈ �

2
∑

α

− dnα
dEα
Γ 2
α

∂Eα
∂qi

∂Eα
∂qj

, (4.12)

where Eα and nα are TCSM single-particle eigenvalues and occupation numbers,
respectively, and Γα is the width of the decaying single-particle states. This formula
yields (WW= Werner–Wheeler)

Bcr
λλ = BWW

λλ , Bcr
εε ≈ 30 × BWW

εε , Bcr
λε ≈ 0.35 × BWW

λε . (4.13)

The much larger neck mass parameter Bcr
εε has as consequence that the system stays

nearly fixed at the entrance configuration, which is the typical dinuclear system
configuration, for a sufficient long time. Fig. 4.6 shows the motion of ε as functions
of the time and the internuclear distance λ obtained with the Werner–Wheeler masses
(pointed curves) and with microscopical masses (solid curves). The latter masses
lead to a slow growth of the neck and justify the assumption of a fixed neck as we
presume in the DNS model [15]. Beside large neck mass parameter we found also
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Fig. 4.6 Upper part Time-dependence of the neck parameter ε in the system 96Zr + 96Zr calculated
with microscopical (solid curve) and Werner–Wheeler (dashed curve) mass parameters. Lower part
Trajectories in the (λ, ε)-plane calculated for the system 136Xe + 136Xe with microscopical (solid
curve) and Werner–Wheeler (dashed curve) mass parameters. The end points of the solid and dashed
curves are at time t = 2 × 10−21 s and t = 2 × 10−22 s, respectively

other dynamical restrictions for a fast growth of the neck which are caused by the
potential energy surface intermediate between the adiabatic and diabatic limits.

4.2.4 Repulsive Potentials by the Quantization of Kinetic Energy

Also a consequent quantization of the kinetic energy of a collectively described
nucleus–nucleus system can lead to a repulsive potential as shown by the work of
Fink et al. [16]. Assume the classical Hamiltonian of the nucleus-nucleus system as

H = T (xi, ẋi)+ V (xi) with xi = x1, x2, x3, ... and (4.14)
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T = 1

2
gikẋi ẋk. (4.15)

The quantization yields for the operator of kinetic energy:

T̂ = −�
2

2
g−1/2 ∂

∂xi gikg1/2 ∂

∂xk
(4.16)

with g = det(gik), gik = (g−1)ik, gikgkl = δil .

Choosing the coordinate x1 = R as the internuclear distance and xμ=2,3,4,... as
the other coordinates (Greek letters) we obtain after some transformations for the
Hamiltonian:

Ĥ = −�
2

2
g11 ∂

2

∂R2 − �
2

2
g−1/2 ∂

∂xμ g̃μvg1/2 ∂

∂xv

+V
(

R, xμ +
∫ R

∞
g1μ

g11 dR′
)

+ Vadd (R) (4.17)

The additional potential Vadd will be given below. As example was chosen the scat-
tering of two 12C nuclei: 12C + 12C. As coordinates we took the coordinate of the
relative motion r = R and the quadrupole deformations of both nuclei by using
symmetrical and asymmetrical coordinates as follows

α
(s)
2μ = 1√

2
(α
(1)
2μ + α

(2)
2μ ) α

(a)
2μ = 1√

2
(α
(1)
2μ − α

(2)
2μ ). (4.18)

The transformation of Ĥ to a constant reduced mass μ0 for the relative motion yields

Ĥ ′ = − �
2

2μ0

∂2

∂r2 + · · · 1

g11μ0
Vadd + g11μ0 − 1

g11μ0
E (4.19)

with Vadd = �
2

4
g11

(
∂2

∂r2 ln(g11g1/2)+ 1

2

(
∂

∂r
ln(g11g1/2)

)2
)

(4.20)

The additional potential results from the r-dependence of the mass tensor. Since
this potential depends not only on g11, but also on the determinant g of the mass
tensor, all mass elements contribute equivalently. Fig. 4.7 shows the result for
Ṽadd = Vadd/(g11μ0) which has the main contributions from the α2μ masses. In
conclusion, we learn that the correct inclusion of more degrees of freedom leads to
repulsive potentials which screen the inside from the outside like the diabatic poten-
tials perform it. If in calculations with adiabatic potentials the number of explicitly
treated degrees of freedom is increased, then these calculations give a relative motion
which proceeds essentially in a diabatic potential since the treated degrees of free-
dom consume the content of the kinetic energy of the relative motion and bring it
perhaps to a stop.
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Fig. 4.7 The additional
potential Vadd = Ṽadd (r) =
(1/μ0g11)Vadd (r) is plotted
for 12C + 12C. In the broken
curve, only the mass of the r
degree of freedom is taken
into consideration; in the full
curve, the masses of the α2μ
motion are also considered.
The comparison of the two
curves shows that the main
contributors to Ṽadd are the
α2μ masses

12 12

r(fm)

+

The nucleus–nucleus potentials have a potential pocket resulting by the attractive
nuclear and repulsive Coulomb interactions. With increasing Coulomb repulsion in
the DNS the depth of the pocket decreases. Due to a quite shallow potential pocket
in the diabatic regime, about 0.5 MeV, in the 58Ni +208Pb reaction, the capture cross
section in this reaction would have the maximum at low bombarding energies about
(15–25) MeV above the Coulomb barrier [17]. The experimental verification of this
effect would allow us to discriminate between the adiabatic and diabatic regimes of
nucleus-nucleus interaction and determine the depth of the potential pocket.

4.3 Nuclear Molecules, Hyperdeformed Nuclear Structures

The evidence of low-spin hyperdeformed (HD) states in actinides has been experi-
mentally established only in induced fission reactions [18–22]. Usually these states
are explained by a third minimum in the potential energy surface corresponding to a
nuclear ellipsoid shape with a ratio of axes of 1 : 3.An interesting observation in shell
model calculations was made that the third minimum of the potential energy surface
of actinide nuclei belongs to a molecular configuration of two touching nuclei (clus-
ters). Therefore, interpreting a HD configuration as a dinuclear system we showed
that the dinuclear systems have quadrupole moments and moments of inertia as those
measured for superdeformed states and estimated for HD states. The cluster states of
light nuclei and the possible existence of the necked-in shaped nuclei were considered
[23–30].

The indications of the population of high-spin HD states in fusion-evaporation
reactions with heavy-ions have been discussed by Herskind et al. (2006). In the
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publication of Adamian et al. [31] it was suggested to directly populate these states in
heavy ion collisions without going through the stage of compound nucleus formation.
Such states in the nucleus-nucleus potential are discussed in connection with nuclear
molecular states first observed in the 12C +12C collision by Bromley et al. (1960)
and then seen up to the system Ni + Ni by Cindro et al. (1996).

4.3.1 Hyperdeformed States Directly Formed in the Scattering
of 48Ca +140Ce and 90Zr +90Zr

In the following we discuss the dinuclear systems 48Ca +140 Ce and 90Zr +90 Zr as
possible candidates for explaining the hyperdeformed states [31]. First, we calculate
the potentials V (R, η,L) as functions of the relative distance for various angular
momenta [32]:

V (R, η, ηZ,L) = VC(R, ηZ)+ VN (R, η)+ Vrot(R, η,L) (4.21)

This potential consists of the Coulomb potential, the nuclear part and the centrifugal
potential Vrot = �

2L(L + 1)/(2
). The nuclear part is calculated by a double
folding procedure with a Skyrme-type effective density dependent nucleon-nucleon
interaction taken from the theory of finite Fermi systems [33]. The potentials for the
two above mentioned systems are depicted in Fig. 4.8. They have a minimum around a
distance Rm ≈ R1+R2+0.5fm ≈ 11 fm where R1 and R2 are the radii of the nuclei.
The position of the Coulomb (outer) barrier corresponds to R = Rb ≈ Rm + 1 fm.
The depth of this molecular minimum decreases with growing angular momentum
and vanishes for L > 100 in the considered systems.

In the potential around the minimum there are situated virtual and quasibound
states above and below the barrier, respectively. Replacing the potential near the
minimum by a harmonic oscillator potential we find the positions of one to three
quasibound states with an energy spacing of �ω ≈ 2.2 MeV for L > 40. For
example, the 90Zr +90 Zr system has the lowest quasibound state for L = 50 lying
1.1 MeV above the potential minimum.

The charge quadrupole moments of (40 − 50) × 102e fm2 and the moments of
inertia of (160–190)×�

2/ MeV of the quasibound dinuclear configurations 48Ca +
140Ce and 90Zr + 90Zr are near to those estimated for hyperdeformed states. Therefore,
we assume the quasibound states as HD states which can in principle produced in the
heavy ion reactions 48Ca on 140Ce and 90Zr on 90Zr. However, the following condi-
tions should be fulfilled: (1) The quasibound states should be directly excited and the
DNS should have no extra excitation energy. The excitation of the quasibound states
can proceed directly via a tunneling through the outer barrier including the centrifu-
gal potential. (2) The DNS should not change the mass and charge asymmetries and
stay fixed in the potential minimum for some time. Spherical and stiff nuclei (magic
and double magic nuclei) have this property.
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Fig. 4.8 The potential
V (R,L) for the systems
48Ca + 140Ce (upper part)
and 90Zr + 90Zr (lower part)
as a function of R for
L = 0, 20, 40, 60, 80
presented by solid, dashed,
dotted, dashed–dotted and
dashed–dotted–dotted
curves, respectively
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The cross section for penetrating the barrier and populating quasibound states is
given as

σ(Ec.m.) = π�
2

2μEc.m.

Lmax∑

L=Lmin

(2L + 1)TL(Ec.m.). (4.22)

Here, Ec.m. is the bombarding energy in the center of mass system and TL(Ec.m.)

the transmission probability through the entrance barrier at R = Rb approximated
by a parabola with frequency ω′

TL(Ec.m.) = 1/
(
1 + exp[2π(V (Rb, η, ηZ,L)− Ec.m.)/(�ω

′)]) . (4.23)

The angular quantum numbers Lmin and Lmax fix the interval of angular momenta
which contribute to the excitation of the HD states. Only an interval of angular
momenta leads to a stronger excitation of quasibound states. This effect is known in
the theory of nuclear molecules in the case of light heavy ions and there it is called
the molecular window. The lower limit Lmin is determined by the absorption of the
partial wave to fusion, transfer and excitation channels and the higher limit Lmax is
fixed by the upper border of quasibound states.

In the reaction 48Ca on 140Ce, cold and long living DNS can be formed at an
incident energy Ec.m. = 147 MeV and 90 ≤ L ≤ 100, and in the reaction 90Zr on
90Zr at Ec.m. = 180 MeV and 40 ≤ L ≤ 50. For both reactions we expect a cross
section of smaller than 1 μ b. Also the reaction 58Ni+58Ni (Ec.m. = 117MeV, 70 ≤
L ≤ 80, and the moment of inertia is 96 �

2/MeV) is a possible candidate for
populating the cluster-type HD states [34–36].
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The spectroscopic investigation of HD structures is difficult. One can observe
the γ -radiation caused by transitions between the collective rotational HD states or
one can measure their return-decay into the entrance channel. For high values of
L ≥ 70 (L ≥ 90), electromagnetic E2− transitions in the 58Ni+58Ni (48Ca+140Ce)
system have an energy of about 1.4–2 MeV (0.7–1.10 MeV). The formation cross
sections are small, and a high background is produced by fusion-fission, quasifission
and other processes. However, the latter processes have characteristic times much
shorter than the life-time of the HD states. The HD states should show up as sharp
resonance lines as a function of the incident energy.

4.3.2 Hyperdeformed States Formed by Neutron Emission
from the Dinuclear System

Another possibility to populate the HD states is the excitation after neutron emission
[37]. Now the incident energy is slightly larger than the Coulomb (outer) barrier.
With neutron-rich isotopes as projectiles, one lowers the neutron separation energy
and increases the probability of neutron emission from the DNS. Thus one produces
HD states with larger cross sections.

In our model we treat the formation and decay of the HD states as a three-step
process. First, an excited initial DNS is formed in the entrance channel. Here the
excitation energy of the DNS means the intrinsic excitation energy. Second, the
DNS loses its excitation energy by the emission of a neutron and forms a HD state.
Third, this rotating DNS emits γ -quanta and/or decays into two fragments.

The cross section σHD(Ec.m.) for the formation of the HD state depends on the
capture cross section or the capture probability Pcap and on the probability PHD of
the transformation of the DNS under neutron emission into a HD state which is a
cold DNS:

σHD(Ec.m.) =
Lmax∑

L=Lmin

π�
2

2μEc.m.
(2L + 1)Pcap(Ec.m.,L)PHD(Ec.m.,L). (4.24)

In order to calculate the value Pcap, we use the formalism of the reduced density
matrix and, therefore, take into account the influence of dissipation and fluctuations
in the relative coordinate. The details of the calculation of Pcap are presented in [17].

The decrease of the excitation energy of the hot DNS is provided by the emission
of a neutron which carries away the energy εnk + Bnk where εnk is the kinetic
energy of the neutron and Bnk the neutron separation energy. The index k = 1 or
2 corresponds to the DNS fragment from where the neutron can be evaporated. We
apply the statistical approach and describe the evolution of the excited DNS by the
competition between the neutron emission from the system and the DNS transition
over the quasifission barrier Bqf

R in R or over barriers Bsym
ηZ and Basym

ηZ in ηZ in
the direction to more symmetric and more asymmetric configurations, respectively.
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Taking into account the competition between different deexcitation channels by the
probability Pnk , one can write the probability PHD(Ec.m.,L) of the formation of the
HD state under neutron emission from the excited initial DNS state as:

PHD =
2∑

k=1

Pnk (E
∗,Bnk ,L)wnk (E

∗,Bnk ), (4.25)

where wnk is the probability to emit the neutron with such kinetic energy to cool the
excited DNS to the deepest HD state in the potential well.

The experimental method to identify the HD states is to measure rotational γ -
quanta between the HD states in coincidence with the decay into the fragments which
built up the HD configuration in the entrance channel. Then the formed cold system
has to fulfil the following conditions

Tγ � TR � TηZ . (4.26)

Here, Tγ is the time of the collective E2 transition, and TR and TηZ are the tunneling
times through the barriers in the R and ηZ coordinates, respectively. Measuring the
consecutive E2 γ transitions, one can determine the moments of inertia and electric
quadrupole moments of the HD states.

The isotopic dependence of the cross section for the formation of the HD state in
the reactions 48Ca +A2 Sn at L = 20 − 40 is shown in Fig. 4.9. The calculated cross
sections result between 10 and 100 nb and can be understood by considering the
closed neutron shell N = 82 of the tin isotopes. The above condition on the various
times restricts the interval of angular momenta at which it is possible to identify
HD states. In Fig. 4.9 we present the values of Tγ ,TR and TηZ as functions of the
angular momentum L for the reactions 60Ni +60Ni and 48Ca +140Ba. The condition
Tγ smaller or about TR is only satisfied in some intervals of L. At very large L
the value of TR becomes very small because the quasifission barrier vanishes. In
addition, the values of Bsym

ηZ and Basym
ηZ should be quite large to provide the condition

TR smaller or about TηZ . The reactions 48Ca +124,128,130,132,134Sn,48Ca +136,138

Xe,48Ca +137,138,140Ba,48Ca +83,84,86 Kr,40,48Ca +40,48 Ca,58,60Ni +58,60 Ni, and
40Ca+58 Ni are good candidates for the production and experimental identification of
HD states. The estimated identification cross sections σxγR of at least x (x ≥ 1 − 3)
γ quanta from the HD state before its decay in R are of the order of 1 nb to 2.5µb for
optimal incident energies.
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Fig. 4.9 Left Isotopic dependence of neutron separation energies and quasifission barriers Bqf
R

(upper part), barriers Bsym
ηZ and Basym

ηZ (middle part), and cross sections for the formation of the
HD state in the reactions 48Ca + A2 Sn at L = 20 − 40 (lower part). Right Time of collective
E2-transition and tunneling times through the barriers in R and ηZ for the hyperdeformed states
formed in the entrance channel of the indicated reactions as a function of the angular momentum L

4.4 Normal Deformed and Superdeformed Nuclei

4.4.1 Internuclear Potential, Moments of Inertia, Quadrupole
and Octupole Moments of the Dinuclear Shape

First we want to consider the calculation of the internuclear potential. The potential of
the DNS is strongly repulsive for smaller distances and hinders the nuclei to amalga-
mate together in the relative coordinate as already stated above. Under a small overlap
of the nuclei, one usually calculates the potential energy semi-phenomenologically

U (R, η, ηZ, I ) = B1 + B2 + V (R, η, ηZ, I )− B12. (4.27)

Here, Bi (i = 1, 2) are the asymptotic negative binding energies of the nuclei, B12
the negative binding energy of the compound nucleus and V (R, η, ηZ, I ) is the
interaction between the nuclei, described already earlier,

V (R, η, ηZ, I ) = VC(R, ηZ)+ VN (R, η)+ Vrot(R, η, I ). (4.28)

Also deformations are taken into consideration by assuming the clusters in a pole-
to-pole or other orientations with minimal potential energy.
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The moment of inertia of the DNS can be taken in the sticking limit


 = 
1 + 
2 + μR2, (4.29)

where μ is the reduced mass of relative motion. The moments of inertia, 
i (i = 1, 2)
of the nuclei may be calculated in the rigid-body approximation (
i = 
r

i ).
The mass and charge multipole moments of the DNS shape can be obtained with

the expression

Qλμ =
√

16π

2λ+ 1

∫
ρ(r)rλYλμ(Ω)dτ. (4.30)

Here, ρ(r) is the sum of the mass or charge densities of the clusters forming the DNS:
ρ(r) = ρ1(r)+ ρ2(r + R) which is the frozen density approximation. The shape of
the dinuclear system is described by the internuclear distance R and the mass and/or
the charge asymmetry coordinates (also deformation coordinates of the individual
clusters can additionally be used). This shape of the system can be compared [38]
with a multipole expansion of the nuclear surface with deformation parameters βλ:
R̄ = R0(1+β0Y00+β1Y10+β2Y20+...),where R0 is the spherical equivalent radius.
If we equate the mass multipole moments calculated with deformation parameters
and with the parameters of the DNS,

Qλ0(βλ) = Qλ0(R, η), (4.31)

we find a relation between these parameters. In Fig. 4.10 we depict the mass multipole
moments Qλ = Qλ0 for two touching clusters forming the 152 Dy system (at R = Rm)
and the deformation parameters βλ as a function of the mass asymmetry η. Thus, the
DNS with 0.7 ≤ η ≤ 0.8 (0.5 ≤ β2 ≤ 0.75) and η < 0.7 (β2 > 0.75) can be related
to the superdeformed and HD nuclear states, respectively.

4.4.2 Parity Splitting in Heavy Nuclei

A low-lying band with negative parity states is found near the positive parity ground-
state band in even-even actinide nuclei such as Ra, Th, U, and Pu which is caused by
reflection-asymmetric shapes of these nuclei. The negative parity states are shifted
upwards with respect to the positive parity states, denoted as parity splitting. The
band with negative parity and the parity splitting are explained by the dynamics of the
octupole shape degree of freedom or by assuming vibrations in the mass asymmetry
degree of freedom describable within the dinuclear system model [39–42]. The latter
type of approach will be explained in the following.

The mass asymmetry coordinate η is used as the relevant collective variable. The
ground state wave function in η is thought as a superposition of different cluster-type
configurations including the mono-nucleus configuration at |η| = 1. If we calculate
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Fig. 4.10 Dependence of the
quadrupole (Q2) and
octupole (Q3) moments
(upper part) and of the
deformation parameters β2
and β3 (lower part) on the
mass asymmetry η for the
compound nucleus 152 Dy
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the potential energy of the dinuclear system, we find that the α-cluster configuration
with ηα = ±(1−8/A) can have the lowest potential energy, lower than the energy of
the mono-nucleus. The schematic picture (Fig. 4.11) shows the potential in the mass
asymmetry and the reflection-asymmetric shapes of the α-cluster configurations.

For the description we substitute the coordinate η by x = η − 1 if η > 0 and
x = η + 1 if η < 0. Then the Schrödinger equation is written

(
−�

2

2

d
dx

1

Bx

d
dx

+ U (x, I )
)
ψn(x, I ) = En(I )ψn(x, I ). (4.32)

The mass Bx = Bη is the effective mass parameter in the η coordinate. A method
of calculating of Bη is described in Ref. [43]. The value of Bη can be estimated by
relating the mass-asymmetry coordinate η to the octupole deformation coordinate
β3. It can be derived:

β3 =
√

7

4π

π

3
η(1 − η2)

R3

R3
0

(4.33)
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Fig. 4.11 Schematic picture
of the potential in the mass
asymmetry and of the two
states with different parities
(parallel lines lower state
with positive parity, higher
state with negative parity)
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with R0 as the spherical equivalent radius of the corresponding compound nucleus.
With a value of Bβ3 = 200 �

2/ MeV known from the literature, we calculate Bη �
(dβ3/dη)2Bβ3 = 9.3 × 104Mfm2 (M is the nucleon mass), a value compatible with
the one used in the calculations.

The potential U (x, I ) is obtained by setting U (x, I ) = U (R = Rm, η, I ) with
the touching distance Rm of the clusters. The moment of inertia 
 in the centrifugal
potential is expressed for cluster configurations with α and Li as light clusters as


(η) = c1
(
r

1 + 
r
2 + M

A1A2

A
R2

m
)
. (4.34)

The rigid-body moments 
r
i and the constant c1 = 0.85 were used for all considered

nuclei. For |η| = 1 we assumed 
 = c2
r(|η| = 1) where 
r was calculated for a
deformed mono-nucleus and c2 = 0.1 − 0.3 was fixed by the energy of the first 2+
state. For example, for the isotopes 220,222,224,226Ra we have 
(|η| = 1) = 12, 17,
22, 32 �

2/ MeV, respectively.
We calculated the parity splitting for even-even isotopes of the actinides Ra, Th, U

and Pu and of the nuclei Ba, Ce and Nd for different values of the nuclear spin I [39,
40]. In Fig. 4.12 we show the rotational spectra for 232,234,236,238U. The points are
the experimental energies of the states [44], the lines connect the calculated points.

The calculated alternative parity states of ground-state rotational bands in
N = 150 isotones are listed in Table 4.1 [42]. They agree well with the available
experimental data [44] for the nuclei 244Pu (positive and negative parity states) and
246Cm,248Cf,252No (positive parity states). One can see in the rotational band of
244Pu, that there is an appreciable shift of the negative parity states with respect
to the positive parity states. The alternative parity states are predicted in nuclei
246Cm,248Cf,250Fm,252No, and 254Rf. In these nuclei there is also an apprecia-
ble shift of the negative parity states with respect to the positive parity states.
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Table 4.1 Calculated (E) and experimental (Eexp) energies (in keV) of the levels of ground-state
rotational band (K p = 0+) in N = 150 isotones

I p 244Pu 246Cm 248Cf 250Fm 252No 254Rf
E Eexp E Eexp E Eexp E Eexp E Eexp E Eexp

0+ 0 0 0 0 0 0 0 0 0 0
1− 804 797 797 782 692 596
2+ 44 44 43 43 42 42 42 46 46 45
3− 870 957 862 861 845 760 660
4+ 145 155 143 142 141 138 139 154 154 150
5− 989 1068 978 976 957 880 775
6+ 303 318 298 295 294 285 290 321 321 313
7− 1157 1206 1144 1139 1117 1050 937
8+ 515 535 507 500 500 492 545 545 530
9− 1373 1395 1356 1348 1322 1268 1143
10+ 779 802 765 755 743 822 822 799
11− 1634 1628 1612 1600 1569 1589 1390
12+ 1090 1116 1071 1057 1041 1148 1150 1115

Experimental data are taken from Ref. [44]

The maximal uncertainty of calculated energies is estimated to be about 100 keV
and mainly related to uncertainty of the calculation of the potential energy of the
α-cluster configuration. Therefore, within the model [42] the unknown collective
states can be predicted with high accuracy.

One should note that the alternative parity states in the yrast rotational band of
heaviest nuclei (Z ≥ 100) are not yet found in the experiments. However, there
is known the 3− state of non-yrast structure at the excitation energy of 987 keV in
254No [44] which is close to our predicted 3− yrast state. Perhaps, the lack of other
negative parity states in the present experimental yrast rotational bands is explained
by the difficulties to detect these states due to the small production cross sections,
large background, strong competition between the channels of γ -decay and emission
of conversion electrons, and appreciable shift of the states with different parities.
Further experimental and theoretical investigations of the predicted negative and
positive parity partners are desirable.

Also we considered spectra of odd–even nuclei, e. g. Ra, Th, U, Pu, Fm, No and
Rf isotopes, with an odd number of neutrons which leads to a doubling of states of
fixed nuclear spin I [41, 42]. A good test for the quality of the calculations are the
reduced matrix elements of the electric multipole moments Q(1), Q(2) and Q(3).
The electric multipole operators can be calculated for the DNS and it results the
expression, for example, for the charge dipole moment with respect to the center of
mass

Q10 = e
A
2
(1 − η2)Rm

(
Z1

A1
− Z2

A2

)
(4.35)
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Fig. 4.12 Left Experimental (points) and theoretical (lines) rotational spectra of 232,234,236,238U.
Right Reduced matrix elements of the electric quadrupole operator (solid curve) for 226Ra in com-
parison with experimental data (squares)

The calculated transition multipole matrix elements with effective charges are in
good agreement with the experimental data (see Fig. 4.12, [39–42]).

4.4.3 Cluster Effects in the Ground State and Superdeformed
Bands of 60Zn

More than 200 superdeformed (SD) bands have been investigated in various mass
regions (A = 60, 80, 130, 150 and 190). In the following we consider the SD band
of the 60Zn nucleus with the dinuclear model [45]. At low energies the structure
of 60Zn is built up by a double magic 56Ni and an α-particle. We can assume that
the ground state band of 60Zn contains an α component since the threshold for
α-decay is only 2.7 MeV. The observed SD band decays into the states of the ground
state band in the spin region I = 8 − 12. The moment of inertia in the SD band
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Fig. 4.13 Potential energy of
60Zn as a function of x is
presented in a stepwise
manner. Absolute squares of
the wave functions of the
ground state (solid curve)
and of the lowest state of the
SD band (dashed curve) with
I = 0 as a function of x
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varies between 692 and 795 M fm2 depending on spin. These values are close to
the sticking moment of inertia of the 52Fe +8Be cluster configuration which is 750
Mfm2. The threshold energies for the decay of 60Zn into 52Fe +8Be and 48Cr +12C
are 10.8 and 11.2 MeV, respectively. This values are close to the estimated value of
the SD band head at about 7.5 MeV. Therefore, we assume that two different cluster
configurations mainly occur in the states of 60Zn, namely the states of the ground
state band have an α-cluster configuration and the states of the SD band contain a
Be cluster configuration as an important component.

Let us describe the clusterization of 60 Zn with the dinuclear system model. Since
the mass fragmentations are near |η| = 1, we replace the coordinate η by x = η− 1
if η > 0 and x = 1 +η if η < 0. Fig. 4.13 presents the potential energy U (x, I = 0)
of 60Zn in a stepwise manner calculated for the fragmentations with an α, 6Li,
8Be, 10B, 12C (and so on) clusters. We find the α-minimum by 4.5 MeV deeper than
the energy of the mono-nucleus at x = 0. The further two minima belonging to the
8Be and 12C cluster configurations have the values 5.1 and 9.0 MeV above the zero
value at x = 0. The widths of all intermediate barriers and the minima are separately
equal to each other in order to minimize the number of free parameters. These two
widths were determined by the experimental energy of the 3− state at 3.504 MeV.

Fig. 4.13 shows also the absolute squares of the wave functions of the ground state
and of the lowest state of the SD band for I = 0. The calculated and experimental
spectra of the ground state and SD bands are given in Fig. 4.14. The moments of
inertia 
(x) are set as the rigid body moments of inertia for cluster configurations
with x �= 0.But the known energies of the states of the ground state band are fitted in
order to reach the correct γ -transition energies in the ground state band. We describe
this band as a soft rotor with the moment of inertia depending linearly on the spin
for I ≤ 8. Between the states with I = 8 and 10 a larger energy gap arises since
the nucleons occupy higher lying single particle states, namely first of all the 1g9/2
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Fig. 4.14 Left hand side Experimental and calculated energies of the states of the ground state
(GS) and superdeformed (SD) bands of 60Zn. Right hand side Calculated energies of positive and
negative parity bands of 60Zn

state. This effect can be described by an increase of the potential U (x = 0, I = 10)
for reproducing the experimental energy of the 10+ state. For higher values of I we
take the same angular momentum dependence of the moment of inertia of the ground
state band as for I ≤ 8. The details of the estimation of the mass parameter Bx = Bη
used in the Schrödinger equation can be read in [45].

The energies of the SD band have a variation of the moment of inertia with
spin reproduced in our calculations. One finds a crossing of the ground state band
and the SD band around I = 20. Then the SD band is the yrast band above
I = 20. Also negative parity states are predicted with the dinuclear system model
(see Fig. 4.14). The parity splitting practically disappears in the SD band. There is
no experimental information about low lying collective states with negative parity in
60Zn with exception of the 3− state at 3.504 MeV.

We treated electromagnetic transitions inside the SD band and from this band
to the ground state band. The branching ratio I (12+

sd → 10+
gs)/I (12+

sd → 10+
sd ) of

the E2 transitions, where the lowest experimental 10+ state is taken as the 10+
gs,

is found 0.54 in experiment [46] and obtained as 0.42 in our calculations. For the
ratio I (10+

sd → 8+
gs)/I (10+

sd → 8+
sd ), the experimental value is 0.60 [46] and the

calculated one 0.63.

4.4.4 Decay Out Phenomenon of Superdeformed Bands
in the Mass Region A ≈ 190

While the rotational transitions between the SD states are easy to detect with modern
Ge arrays, it is hard to localize the SD bands in excitation energy, spin and parity
and to link them to the normal deformed (ND) bands [47–52]. This is because of the
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decay out phenomenon of the SD band: the whole population of the SD band goes
practically to zero within two transitions at some critical spin. The decay out of SD
bands in the mass region A ≈ 190 was explained in Ref. [53] in the framework of the
DNS approach. One can see in Fig. 4.15 that the calculated total probabilities Pout of
decay out are in good agreement with the experimental ones. Our analysis indicates
that the sudden decay out of the SD band (8Be-cluster configuration) into the ND
band (related to the α-particle clusterization) is because of the crossing of the SD
band with the nearest neighboring excited ND band. The main reasons for the decay
out at the crossover point are (i) the perceptible square of the amplitude of the SD
wave function component in the ND well and (ii) the reduction of the in-band SD
collective E2 decay rate and the increase in the ND statistical E1 transition rate due
to the large excitation energy of the SD state with respect to the ND yrast line. Near
the band-crossing point, the statistical E1 decay to the ND configurations competes
successfully against the collective E2 decay along the SD band.

The decay width of a light cluster is one of the most important physical quantities
to identify a cluster-like structure. During γ -emission, the SD cluster states can
decay into two fragment clusters. Therefore, one can try to identify the SD states by
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measuring the rotational γ -quanta in coincidence with the decay fragments of the
DNS.

The sub-barrier fission resonances in Th, U, and Pu nuclei can be interpreted
as arising from the reflection-asymmetric SD and HD cluster states. The low-spin
SD and HD isomers are described mainly as Mg, Al, and Ca cluster configurations,
respectively. Then, we can propose a new experimental method to identify the SD
isomers by measuring the decay fragments of the isomer DNS, where the light nucleus
is Mg or Al, at the energies of transmission resonances in sub-barrier induced fission.

4.5 Complete Fusion and Quasifission in the Dinuclear Model

4.5.1 Reaction Models for Fusion With Adiabatic and Diabatic
Potentials

Reaction models which use adiabatic potentials describe the nuclear fusion as a
melting of the clusters into a compound nucleus. Since the adiabatic potential barrier
to the inside is usually smallest for two equal nuclei, such models have the property
that the two clusters exchange nucleons in a touching configuration up to the point
they are nearly equal (same mass, η ≈ 0) and then they fuse to the compound nucleus
along the internuclear distance R. This process yields large cross sections for fusion
with similar target and projectile nuclei (η ≈ 0) [14, 54], which contradicts the
experimental data in the production of superheavy nuclei [55].

In contrast to this picture the dinuclear system concept, which is based on the
ideas of Volkov and also von Oertzen, makes use of diabatic potentials which are
strongly repulsive behind the touching point of the clusters. Therefore, the nuclei
can not melt together along the internuclear coordinate [56]. In heavier systems they
remain for some time in a touching configuration and form the dinuclear system.
Then they start to exchange nucleons up to the point when the smaller nucleus is
eaten up by the larger one and the compound nucleus is formed [57–63]. This process
prefers the formation of the compound nucleus between an asymmetric system of
two clusters which is in agreement with the experience in the production of heavy
and superheavy nuclei.

As one can note, the dynamics of fusion is very different if described by adia-
batic or diabatic potentials. The adiabatic potentials prefer the dynamics of fusion
in the internuclear coordinate R, whereas the diabatic potentials describe the fusion
by the dynamics in the mass asymmetry coordinate η. The question arises which
of these very different reaction mechanisms for describing the production of super-
heavy nuclei is realized in nature. A possible answer would be given for example by a
detailed measurement of the quasifission process accompanying the fusion. Quasifis-
sion means the direct decay of the dinuclear system without forming the compound
nucleus and proceeds always in competition with the exchange of nucleons between
the clusters.
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It is clear that an adiabatic description with many explicitly treated collective
coordinates finally leads to a diabatic description, since the kinetic energy of the
relative cluster motion, first available in the system, gets then transferred into other
degrees of freedom and the nuclear system will stop its internuclear motion around
the touching point. However, this is the starting point of the description with the
dinuclear system concept.

In the following we will describe the fusion to superheavy nuclei with the di-
nuclear system concept. There are different methods like statistical procedures and
master equations to calculate production cross sections for superheavy nuclei. Many
interesting new treatments using the dinuclear system concept have recently carried
out in China and are described elsewhere [64].

4.5.2 Problems of Adiabatic Treatment of Fusion

In order to calculate the fusion probability within the adiabatic treatment, we started
from a value of λ = λv in the fission-type valley obtained from the dynamical calcu-
lation of the descent into this valley [14]. The phenomenological Werner–Wheeler
mass tensor was used. The necessary condition for the compound nucleus formation
is that the fusing system passes inside the fission saddle point at λ = λsd . The fusion
probability is, thus, determined by the leakage�λfus(t) through the barrier in λwhich
separates the strongly deformed configuration with an equilibrated large neck and
the compound nucleus:

PCN =
∫ t0

0
�λfus(t)dt, (4.36)

where t0 is the lifetime of the system and�λfus ∼ exp(−Bλfus/(k�)) (Kramers expres-

sion). Here, Bλfus = Vadiab(λsd )− Vadiab(λv) is the barrier for fusion in λ and k� =√
12E∗/A the local thermodynamic temperature with the excitation energy E∗ of the

system. For nearly symmetric reactions 100Mo+100Mo,100Mo+110Pd,110Pd+110Pd
and others, the fusion probabilities in λ are much larger [14] than the values found
from the experimental data. While the experimental fusion probability decreases
with mass asymmetry in the entrance channel [65], the calculated data have the
opposite tendency. Experimental evidence for a hindrance of fusion has been raised
mainly by the impossibility to produce fermium evaporation residues with nearly
symmetric projectile-target combinations. The adiabatic treatment of fusion in λ
mostly gives the wrong dependence of the fusion probability on the isotope com-
position of the colliding nuclei [14]. The qualitative and quantitative contradic-
tions obtained with the adiabatic scenario of the fusion point to the existence
of an additional hindrance for the fast growth of the neck and the motion to
smaller λ.
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Since the microscopical mass parameter of the neck degree of freedom is rather
large (see Sect. 4.2.3), the neck parameter can be taken approximately fixed (ε =
0.75) during the fusion. As in the previous case, the adiabatic treatment of fusion
in λ (at the fixed neck parameter) yields fusion probabilities PCN which are still
considerably overestimated in comparison to the experimental data. The reason of
this overestimate is clearly seen in Fig.4.16. In contrast to experiment the hindrance
of fusion in these potentials is almost absent (PCN ≈ 1) because there is no internal
fusion barrier for the motion to smaller elongations. So, the fusion probabilities will
be considerably overestimated in any model of fusion in λ where only the neck
parameter is taken fixed.

Since the adiabatic potential (with and without fixed neck parameter) is not ade-
quate for the description of fusion, we have to answer how fast is the transition
between the initial diabatic and the asymptotically adiabatic regimes during the
fusion process. The main question is the use of an adiabatic potential from the begin-
ning of the fusion process. The dynamical (time-dependent) diabatic potential (see
Eq. 4.6) at the lifetime t0 of the initial DNS (Fig. 4.16) has a very large fusion barrier
in λ and, correspondingly, the fusion probability in λ is negligible for combinations
leading to 246 Fm. It should be noted that these dynamical potentials were calculated
by using the smallest possible relaxation time for the transition between diabatic and
adiabatic potentials [15]. The calculated energy thresholds for the complete fusion in
the λ-and η-channels lead to the conclusion that the DNS evolution to the compound
nucleus proceeds in the mass asymmetry degree of freedom. For example, the average
fusion barriers Bfus

η in mass asymmetry are about 10, 12 and 15 MeV for the reactions
76Ge +170Er(η = 0.4),86Kr +160Gd(η = 0.3) and 110Pd +136Xe(η = 0.1), respec-
tively [59, 60]. The fusion barrier Bfus

λ in λ is about 3–4 times larger than the fusion

barrier Bfus
η in η. As shown in Fig. 4.17, the fusion probability PCN in η strongly

increases with mass asymmetry in the entrance channel. The same behaviour was
experimentally established [65]. For the reactions 40Ar+206Pb and 76Ge+170 Er, the
values of PCN in η are in good agreement with experimental data from evaporation
residue cross sections.

In compound systems heavier than 246Fm the difference between the fusion barri-
ers and fusion probabilities in both λ-and η-channels is even larger [56]. Our analysis
with the diabatic dynamics demonstrates that a structural forbiddenness exists for
a direct motion of the nuclei to smaller internuclear distances during the fusion
process. Fusion of heavy nuclei along the internuclear distance in the coordinates R
or λ is practically impossible. These facts strongly support our standpoint that the
correct model of fusion of heavy nuclei is the dinuclear system model where fusion
is described by the transfer of nucleons, i.e., by a motion in η.
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Fig. 4.17 Fusion probability
PCN in the reactions leading
to 246Fm with excitation
energy 30 MeV as a function
of the mass asymmetry in the
entrance channel. The result
of the adiabatic treatment of
the fusion in λ is presented
by the dotted line. The upper
limit of the fusion
probability in λ in the
dynamical diabatic treatment
is presented by the dashed
line. The fusion probability
in the η channel with a
closed fusion channel in λ is
presented by the solid line
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4.5.3 Fusion to Superheavy Nuclei

The evaporation residue cross section can be written as a sum over partial contribu-
tions [66]
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σER(Ec.m.) =
Jmax∑

J=0

σcap(Ec.m., J)PCN (Ec.m., J)Wsur(Ec.m., J). (4.37)

The factors are the partial capture cross sections, the fusion and survival probabilities.
The contributing angular momenta in σER are limited by the survival probability
Wsur with Jmax ≈ 10 − 20 when highly fissile superheavy nuclei are produced with
energies above the Coulomb barrier. We approximate the evaporation residue cross
section by

σER(Ec.m.) = σ
eff
cap(Ec.m.)PCN (Ec.m., J = 0)Wsur(Ec.m., J = 0) (4.38)

with an effective capture cross section σ eff
cap = (λ2/(4π))(Jmax + 1)2T (Ec.m., J =

0) (see also [17]). For reactions leading to optimal cross sections for superheavy
nuclei, the bombarding energy Ec.m. is above the outer Coulomb barrier, and we set
T (Ec.m., J = 0) = 0.5 near this barrier. The effective capture cross section results in
the order of a few mb. Whereas the capture cross section and the survival probability
are largely similarly formulated in all the models, the fusion probability is treated
along very different trajectories through a different potential energy surface there.
Here we want to present our approach proposed and applied for the fusion of clusters
to superheavy nuclei within the dinuclear system concept.

4.5.3.1 Fusion Probability Within the DNS Concept

After the system is captured in a DNS configuration, the total relative kinetic energy is
transferred into potential and excitation energies. Then the dinuclear system statisti-
cally evolves in time by diffusion in the mass asymmetry and relative coordinates. The
fusion probability PCN is the probability that the dinuclear system crosses the inner
fusion barrier Bfus

η in η and an excited compound nucleus is formed (see Fig. 4.18).
This barrier is measured with respect to the potential U (Rm, ηi) of the initial dinu-
clear configuration with the mass fragmentation ηi at the touching radius Rm. There
are different methods to calculate the fusion probability: Diffusion equations can
be solved with Fokker–Planck equations [66] or with the Kramers approximation
[59–61]. Also master equations in the coordinatesη andηZ were used. In the diffusion
equations the mean value η̄(t) mostly tends to the symmetric fragmentation η = 0
with an increasing probability for quasifission, determined by the quasifission barrier
BR

qf (η)measured with respect to the minimum of the potential U (R, η) at R = Rm.

The minima in the potential U (Rm, η) play an important role for selecting opti-
mum target and projectile combinations for producing superheavy elements. Sand-
ulescu et al. (1976) argued that the nuclei fuse with higher probabilities along the
valleys in an adiabatic potential in the R coordinate and pointed to the experimen-
tally successful choice of target-projectile combinations with a Pb nucleus as target
as proof for their hypothesis. This idea can simply transferred to the DNS concept. A
certain initial system in a minimum of the potential is hindered by the barrier Bsym

η
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Fig. 4.18 Potential energy of
the dinuclear system in the
reaction
54Cr +208 Pb → 262Sg
(|ηi | = 0.59) as a function
of η for J = 0. Both curves
are obtained with
experimental binding
energies. The dotted curve is
calculated for spherical
shapes of the nuclei, the solid
curve for deformed shapes in
pole-to-pole orientations

-1.0 -0.5 0.0 0.5 1.0
-10

0

10

20

30

B
*
fus

U
(M

eV
)

η

of the potential in η to move to more symmetric systems which would lead to a fast
decay by quasifission. Therefore, an asymmetric DNS in a potential minimum lives
a longer time with respect to its decay by quasifission than outside of the minimum
and has a larger chance to fuse by diffusion via nucleon transfer.

Let us assume that the initial configuration is in a minimum of the driving potential
U (Rm, η). Then the probability for complete fusion depends on the quasi-stationary
rate λfus

η for fusion, on λsym
η for going to a symmetric DNS which is easily decaying

into two fragments and on λqf
R for the decay by quasifission of the initial DNS

[59–61].

PCN = λfus
η /

(
λfus
η + λsym

η + λ
qf
R

)
. (4.39)

The rates can be calculated with two-dimensional Kramers-type formulas falling off
exponentially with the fusion barrier Bfus

η in η, with the barrier Bsym
η in η in the

direction to more symmetric configurations and with the quasifission barrier BR
qf ,

respectively. The probability PCN to overcome Bfus
η can be approximately written as

PCN ∼ exp
(
−(Bfus

η − min[Bsym
η ,BR

qf ])/T
)
. (4.40)

The barriers, following from the potential U (Rm, η), have heights strongly influ-
enced by shell and deformation effects. The temperature T is the local temperature
of the initial DNS and obtained from the excitation energy E∗: T = √

E∗/a with
a = (A1 + A2)/12 MeV−1.

The main hindrance for complete fusion is the evolution of the initial DNS to
more symmetric configurations and the subsequent quasifission. In cold fusion the
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Fig. 4.19 Calculated fusion
probabilities PCN for cold
fusion reactions (AX +208Pb)
and hot fusion reactions
(48Ca +A Y) as a function of
the charge number ZCN of
the superheavy compound
nucleus
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quasifission mainly arises from the initial DNS because of BR
qf < Bsym

η , whereas in

hot fusion reactions which have BR
qf > Bsym

η , the DNS prefers to go to symmetric

systems and to decay. Fig. 4.19 shows calculated probabilities PCN for cold (A X +
208Pb) and hot (48Ca + AY) fusion reactions.

4.5.3.2 The Survival Probability

The survival probability under the evaporation of x neutrons is calculated [67, 68]
with the expression

Wsur = Pxn(E∗
CN )

x∏

i = 1

Γn((E∗
CN )i)

Γn((E∗
CN )i)+ Γf ((E∗

CN )i)
. (4.41)

The factor Pxn(E∗
CN ) is the probability for the realization of the xn channel at the

excitation energy E∗
CN = Ec.m. + Qfus of the compound nucleus. The index i

denotes the evaporation step. (E∗
CN )i is the mean excitation energy of the compound

nucleus at the beginning of step i with the initial condition (E∗
CN )1 = E∗

CN . There
is an analytical expression for the ratio of the partial widths Γn and Γf for neutron
emission and fission, respectively, depending on level densities. An approximate
expression for P1n is given by

P1n = exp
(
−(E∗

CN − Bn − 2T )2/(2σ 2)
)
, (4.42)

where the parameter σ is set to σ = 2.5 MeV.
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Fig. 4.20 Measured and
calculated excitation
functions for xn evaporation
channels in the 48Ca +208Pb
reaction. The experimental
data from Refs. [93,
133–135] are presented by
circles, squares, triangles
and diamonds, respectively.
The closed symbols
correspond to the 1n and 2n
channels. The open symbols
correspond to the 3n and 4n
channels. The solid and
dashed curves show the
results obtained with the
Fermi-gas model and with
the model accounting a
collective enhancement of
the level density,
respectively. The predictions
of nuclear properties from
Refs. [100–103] are used
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Also it is possible to calculate Wsur with statistical codes, e.g. GROGIF [69]. As
an example we present a comparison between calculated and experimental excitation
functions of the reaction 208Pb(48Ca, xn)256−xNo in Fig. 4.20 [70]. Comparing the
results with measurements we conclude that the systematic uncertainty of our calcu-
lations of σER is up to a factor 3. Taking into account the experimental uncertainties
and the differences between various measurements, the calculated values of σER are
in good agreement with the experimental data for the most of evaporation channels,
especially near the maxima of the excitation functions (see also [71]).

4.5.3.3 Results for Fusion With Lead-Based Reactions

Let us first consider lead- and bismuth-based complete fusion reactions:

AZ +208Pb(209Bi) → superheavy nucleus + 1n.

To get the largest cross section for producing a compound nucleus by fusion, one has
to choose the incident energy sufficient that the dinuclear system can cross the inner
fusion barrier Bfus

η . Since the potential energy U (R, η) counts the energy above the
ground state energy of the compound nucleus, the optimal, i.e. the smallest excitation
energy of the compound nucleus, is given by

E∗
CN = U (ηinitial ,Rt)+ Bfus

η . (4.43)
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Table 4.2 Cold fusion reactions with 208 Pb target

Reaction E∗
CN (MeV) PCN σcap(mb) Wsur σ th

ER σ
exp
ER

50Ti +208Pb →257Rf + n 16.1 3 × 10−2 5.3 9 × 10−5 14.3 nb 15.6 ± 1.9nb

70Zn +208Pb →277Cn + n 9.8 1 × 10−6 3.0 6 × 10−4 1.8 pb 0.5+1.1
−0.4pb

86Kr +208Pb →293118 + n 13.3 1.5 × 10−10 1.7 2 × 10−2 5.1 fb < 0.5pb

Excitation energy E∗
CN , fusion probability PCN , capture cross section σcap, survival probability

Wsur and theoretical and experimental [72–75] evaporation residue cross section σ th,exp
ER .

The so calculated optimal excitation energies vary in Pb- and Bi-based reactions
with the emission of one neutron between 18 and 10 MeV in accordance with the
experimentally used incident energies. The calculated values depend sensitively on
deformation effects.

In the Table 4.2 we listed effective capture cross sections, fusion probabilities, sur-
vival probabilities and evaporation residue cross sections for three typical reactions
[54]. Whereas the capture cross section is nearly constant, the fusion probability
falls exponentially down with increasing projectile mass The reason for this strong
decrease is that the mass asymmetry of the initial dinuclear system gets smaller
with growing projectile mass with the consequence that the inner fusion barrier Bfus

η

increases and the fusion probability PCN decreases exponentially towards symmetric
projectile and target combinations in lead-based reactions. Since the variation of the
survival probability is moderate, the evaporation cross section drops from nb over pb
to fb. The calculated evaporation residue cross sections agree with the experimental
data [72–77] as shown in Fig. 4.21.

4.5.3.4 Hot Fusion With 48 Ca Projectiles

The actinide-based complete fusion reactions 48Ca + 232Th, 238U, 237Np, 242,244Pu,
243Am, 248Cm and 249Cf were used at JINR in Dubna to synthesize the elements 110,
112–116 and 118 [78]. The evaporation residue cross sections with the emission of
3 and 4 neutrons are on the level of 1 pb. Calculated and experimental evaporation
residue cross sections are shown in Fig. 4.21 at the maxima of the excitation functions
of the compound nuclei. Since the initial DNS is more asymmetric than in the lead-
based reactions, the fusion probability is larger. However, the survival probability
is diminished because the compound nucleus has an excitation energy of about 30–
40 MeV and, therefore, 3–4 neutrons have to be emitted to reach the ground state.

The main factor which prohibits the complete fusion of heavy nuclei is the evo-
lution of the initial DNS to more symmetric configurations (Bsym

η ≈ 0.5 − 1.5 MeV
and 4–5 MeV for hot and cold fusion, respectively) and the decay of the DNS during
this process or the decay of the initial DNS. In hot fusion reactions, the decay of
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Fig. 4.21 Calculated and
experimental [72–78]
maximal evaporation residue
cross sections for cold fusion
with 208Pb and 209Bi targets
and for hot fusion with 48Ca
projectiles. For the meaning
of the symbols see the
notations in the figure. The
predictions of nuclear
properties from Ref. [79] are
used

the DNS takes place mainly outside of the initial conditional minimum because of
BR

qf > Bηsym in contrast to the cold fusion reactions.

In Fig. 4.22 we show cross sections and probabilities for the reaction 48Ca + 248Cm
→ 116 calculated before the experiment was carried out [80]. This picture clearly
illustrates the different factors yielding the excitation functions: the capture cross
section, the fusion probability, which is the most complex, partly not yet definitely
determined quantity, and the ratio Γn/Γf which is lastly responsible for the survival
probability.

4.5.3.5 Isotopic Trends

Here we discuss some results on the isotopic variation of complete fusion cross
sections [81]. Fig. 4.23 shows that the production of the superheavy nucleus with
Z = 112 does not profit from the higher isospin. There result quite large cross
sections in the 208Pb-based reactions with 67Zn and 68Zn projectiles. As found for
the reactions treated, the value of PCN increases with decreasing mass number of
the projectile. The odd nucleus 275Cn has a larger P1n, a larger fission barrier and a
smaller neutron separation energy than the neighboring even-even nuclei which lead
to a larger survival probability Wsur.The fission barrier of the isotopes of the element
Cn (Z = 112) slightly increases with decreasing mass number from A = 278–274
due to a large level spacing at N = 162 for deformed nuclei. Going from 66Zn to 68Zn
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Fig. 4.22 Calculated
capture, fusion and
xn-evaporation residue cross
sections, the fusion
probability PCN and Γn/Γf

for the reaction 48Ca+248Cm
leading to element Z = 116
as a function of the
excitation energy of the
compound nucleus 296116

projectiles we see a small decrease of PCN , but a stronger increase of the survival
probability. The available experimental data [72–75] are well described (Fig. 4.23).

Calculated evaporation residue cross sections at the maxima of their excitation
functions, the corresponding excitation energies of the compound nuclei in the 3n
and 4n evaporation channels calculated with the predictions [79, 82, 83] by the
macroscopic–microscopic models are shown in Figs. 4.24 and 4.25 for the actinide-
based fusion reactions 48Ca +A U,A Np,A Pu,A Am,A Cm and A Bk [84, 85]. In this
interval of the mass number the value of PCN becomes larger with decreasing A in
most cases. The larger P3n and fission barriers and smaller neutron separation ener-
gies give a larger Wsur for odd nuclei such as 241Pu and 243,245,247Cm in comparison
to the neighboring even-even nuclei. One can conclude quite small uncertainties
in the calculated isotopic trends of σER due to the choice of predicted properties of
superheavies by the macroscopic–microscopic models. In the most cases the absolute
values of σER with the predictions [82, 83] differ within the factor of 1–3 from the
values of σER calculated with the predictions [79]. This difference does not exceed
the accuracy of the present experimental measurements and is within the estimated
inaccuracy of our calculations. For the 48Ca + 249Cf reaction, the calculated cross
section (σER = 0.12 pb, Fig. 4.21) with the predictions [82] is about six times larger
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*

Fig. 4.23 Left The calculated maximal evaporation residue cross sections in the 1n channel (lower
part) at the corresponding excitation energies of the compound nuclei (upper part) for the fusion
reactions Zn +208 Pb →(A−1) Cn + n and 70Zn +207 Pb →276Cn + n. The predictions of nuclear
properties from Ref. [79] are used. Right The calculated excitation functions for the 1n channel
of the fusion reactions 64Ni (solid line), 67,68,70Zn (dotted, dashed and solid lines, respectively),
73,76Ge (dotted and solid lines, respectively) + 208Pb. The experimental data [72–75] of the reactions
64Ni,70Zn +208Pb and upper limits for the reaction 68Zn +208Pb are shown by closed circles with
error bars and triangles, respectively. The predictions of nuclear properties from Ref. [79] are used
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Fig. 4.24 The calculated maximal and experimental (open circles with error bars) [78] evaporation
residue cross sections in the 3n and 4n channels (upper part) at the corresponding excitation energies
of the compound nuclei (middle part) and Q values (lower part) for the indicated fusion reactions
as functions of the mass number A of the target. The predictions of nuclear properties from Ref.
[79] are used

than the cross section calculated with the predictions [79]. The main reason for this
is the significant difference between the values of neutron separation energies which
leads to larger and more realistic Wsur with the predictions [82].
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Fig. 4.25 Left The maximal evaporation residue cross sections in the 3n and 4n (indicated) channels
for the indicated fusion reactions calculated with the predictions of nuclear properties from Ref.
[82] (closed symbols) and Ref. [83] (open symbols). Right The calculated maximal evaporation
residue cross sections at the corresponding optimal excitation energies of the compound nuclei (in
parentheses) for the indicated hot fusion reactions as a function of A. The results obtained with the
predictions of Refs. [79, 82, 83], are shown by closed squares, open squares, and open triangles,
respectively

Calculations for many other reactions with heavy ions leading to complete fusion
with the emission of neutrons from the excited compound nucleus were carried out
in the framework of the DNS model [54, 69, 85–92]. The calculated σ4n = 1 pb for
element 114 was reported before the experiment [59, 60]). Note that the calculations
for all reactions were performed with the same parameters.

4.5.3.6 Feature of Production of New Superheavy Nuclei in Actinide-Based
Complete Fusion Reactions

The cold Pb- and Bi-based and hot actinide-based complete fusion reactions [72–
78, 93–99] were carried out in order to approach to "the island of stability" of the
heaviest nuclei predicted at charge number Z = 114 and neutron number N = 184
by the macroscopic-microscopic models [79, 82, 83, 100–106]. The experimental
systematic of cross sections and half-lives of the superheavies produced in Dubna
with 48Ca-induced reactions reveals the increasing stability of nuclei approaching
the spherical closed shell N = 184. No discontinuity is observed yet when the proton
number 114 is crossed at the neutron numbers 172–176 [76].

As known, the shell at Z = 114 disappears in the relativistic and nonrelativistic
mean field models [107]. The island of stability close to the element Z = 120, or
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122, or 124, or 126 and N = 184 was predicted within these models. If these pre-
dictions are correct, there is some hope to synthesize new superheavy nuclei with
Z ≥ 120 by using the present experimental set ups and the actinide-based reactions
with neutron-rich stable projectiles heavier than 48Ca. The survival probability of
compound nucleus with Z ≥ 120 may be much higher than the one of compound
nucleus with Z = 114 if the shell closure at Z = 120, or 122, or 124, or 126 has a
stronger influence on the stability of the superheavy nuclei than the subshell closure
at Z = 114.

The predictions of macroscopic–microscopic models and phenomenological
model [108, 109] presently provide us all values which are necessary to calculate
σER. In the macroscopic–microscopic model [82] the height of the fission barrier Bf
of the nucleus with the fixed neutron number and Z > 116 decreases with increasing
deviation of Z from 114. Instead of the Z = 114 magic number, the model [108, 109]
relies on the Z = 126 closed shell.

Since the lower fission barriers and, correspondingly, the smaller values of Bf −Bn
are predicted in the macroscopic-microscopic model [82] for Z ≥ 118, the expected
evaporation residue cross sections of the nuclei with Z = 118–126 should be smaller
than those of the isotopes of nuclei with Z = 114–116. However, the model [108, 109]
with the closed proton shell at Z = 126 predicts the growth of the values of Bf − Bn
for Z = 118–126 nuclei which might result in a larger production cross sections for
the xn-evaporation channels.

The evaporation residue cross sections at the maxima of (2 − 4)n excitation
functions and corresponding optimal excitation energies E∗

CN calculated with the
mass table [82] are presented in Fig. 4.26 for the reactions 50Ti, 54Cr, 58Fe, 64Ni +
238U, 244Pu, 248Cm, 249Cf [87]. The small excitation energy in the actinide-based
reaction with 48Ca is due to the gain in the Q-value. With projectiles heavier than
48Ca the values of E∗

CN becomes larger. The values of σER decreases by about two
orders of magnitude with increasing the charge number of the target from 92 to 98.
The main reason of fall-off of σER with Z of compound nucleus is the strong decrease
of fusion probability PCN , i.e. the increasing role of quasifission with Z1 × Z2.

Only for the projectiles 50Ti and 54Cr the production cross section of Z = 114, 116,
and 118 results on the level of the present experimental possibilities.

With the mass table [108, 109] the calculated cross sections (Fig. 4.26) for pro-
ducing the evaporation residues with Z ≥ 114 are larger than the cross sections
calculated with the mass table [82]. With any mass table the value of σER decreases
with increasing Z in the interval Z = 114–120. However, the slopes of the decrease
are different because the survival probability with the mass table [108, 109] is larger
than the one with the mass table [82]. Using the mass table [108, 109], the calcu-
lated values of σER for Z = 114, 116 and 118 in the reactions with 50Ti and 54Cr can
be even larger than those in the reactions with 48Ca because of the dependence of
Bf − Bn on A at fixed Z. The dependencies of σER on Z in Fig. 4.26 demonstrate that
Z = 114 is not a proper magic number in [108, 109]. The calculated production cross
sections of element Z = 120 with the mass table [108, 109] are about two orders of
magnitude larger than those calculated with the mass table [82].
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σ

σ

Fig. 4.26 Evaporation residue cross sections calculated with the mass tables of Ref. [82] (left-hand
side) and of Refs. [108, 109] (right-hand side) at the maxima of (2 − 4)n excitation functions of
the reactions 50Ti, 54Cr, 58Fe, 64Ni + 238U,244Pu,248Cm, 249Cf

A series of experiments are desirable to answer the question where the next
spherical proton shell after 208Pb occurs [87–89]. The answer can be obtained
from the trend and values of evaporation residue cross sections. If the experi-
mental cross sections in reactions 50Ti +238 U,244Pu,248Cm → 114, 116, 118 and
54Cr +238U,244Pu → 116, 118 are larger than 0.1 pb, one can conclude that Z = 114
is not a proper magic number and the next magic nucleus beyond 208Pb is a nucleus
with Z ≥ 120. Based on the experimental results one could define the best model
describing the structure and properties of the superheavy nuclei.

In order to produce a new nucleus with Z = 120, in the optimal reaction 50Ti+249Cf
one needs to reach the level of the cross section of about (0.8–0.09) pb with magic
number Z = 126 and of about (0.5–1.2) fb with magic number Z = 114. However, the
cross section might be larger in the case of magic number Z = 120. Recently, the upper
limits of the evaporation residue cross section of about 0.1 and 0.4 pb were reached
in the complete fusion reactions 64Ni +238 U → 120 [76] and 58Fe +244 Pu → 120
[110], respectively. These results are along our results based on different mass tables
predicting the proton magic number Z = 114 or 126.

4.5.3.7 Production of Superheavy Nuclei With Radioactive Beams

In Pb-based reactions with neutron-rich nuclei 70,74,78Ni,80Zn,86Ge and 92Se a
decrease of PCN can be compensated by Wsur increasing with the number of neu-
trons (Table 4.3). For example, in the 62Ni +208Pb reaction the yield of the Z = 110
element is comparable with the yields in the 70,74Ni+208 Pb reactions. The calculated
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Table 4.3 Excitation energy, probabilities and cross sections for selected reactions

Reaction E∗
CN σcap PCN Wsur σ th

1n σ
exp
1n

(MeV) (mb)
66Zn +174Yb →238Fm + 2n 26.0 9.6 4 × 10−2 8 × 10−7 0.3 nb
76Zn +174Yb →248Fm + 2n 23.0 8.8 2 × 10−3 6 × 10−4 10.6 nb
76Ge +170Er →244Fm + 2n 24.6 8.4 5 × 10−4 3 × 10−4 1.3 nb 1.6+1.3

−1.6nb

62Ni +208Pb →269110 + 1n 12.3 3.5 4.5 × 10−6 5 × 10−4 7 pb 3.5+2.7
−1.8pb

64Ni +208Pb →271110 + 1n 10.7 3.4 1 × 10−5 5 × 10−4 17 pb 15+9
−6pb

70Ni +208Pb →277110 + 1n 13.5 3.1 7 × 10−8 5 × 10−3 1.1 pb
74Ni +208Pb →281110 + 1n 15.0 3.0 6 × 10−8 2 × 10−2 3.6 pb
78Ni +208Pb →284110 + 2n 17.5 3.0 2 × 10−7 6 × 10−2 36 pb
64Ni +209Bi →272111 + 1n 10.5 3.4 2 × 10−6 6 × 10−4 4.1 pb 3.5+4.6

−2.3pb

values of PCN in the cold fusion reactions are maximal when the neutron number
of the projectile is a magic number [54]. As follows from our model [54], inten-
sive beams of neutron-rich nuclei will be useful for producing heavy actinides, for
example Fm as listed in Table 4.3. In the Pb-based reactions the use of neutron-rich
projectiles leads to values of σER comparable with evaporation residue cross sections
for reactions with stable projectiles (Table 4.3).

4.5.4 Production of Neutron-Deficient Isotopes of Pu

The complete fusion reactions usually result in the neutron-deficient isotopes of
compound nuclei. One can use these reactions to produce some unknown neutron-
deficient isotopes with high efficiency. The search of the shell effects related to the
neutron number N = 126 motivates the study of neutron-deficient actinides as well.
For example, producing the unknown nuclei 220−227Pu, one can investigate the role
of the neutron magic number N = 126 in the region of the neutron-deficient nuclei
[86].

The nuclei APu with A ≤ 227 are unknown. These nuclei can be produced in the
complete fusion reactions 24Mg+ 204,206,208Pb, 26Mg+ 204,206Pb, 32S+ 192Pt, and
40,44,48Ca + 184W. The asymmetric reactions with Mg have the preference because
of the large (PCN ≈ 1) fusion probability. The excitation functions in the (3 − 5)n
evaporation channels are shown in Fig. 4.27 for the reactions 24Mg + 204,206Pb. The
products of the 3n evaporation channels have the largest yields. As seen, the unknown
neutron-deficient nuclei 223−227Pu can be produced with rather large cross sections
(0.1–20) nb. The reactions 24Mg + 206Pb and 24Mg + 204Pb seem to be the best for
producing the isotopes 226,227Pu and 223−225Pu, respectively.

In the reactions 40,44,48Ca + 184W one can obtain the nuclei 219,220,225,227Pu
with the cross sections larger than 0.2 nb. In the reactions with Ca the compound
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Fig. 4.27 Calculated excitation functions for the indicated xn evaporation channels in the reactions
24Mg + 204,206Pb at bombarding energies above the Coulomb barriers. The mass table [79] is used

nuclei would have smaller number of neutrons than in the 24Mg + 204Pb reactions
and one can reach the evaporation residues with more neutron deficit like in 218Pu
(cross section ∼2 pb). In the reaction with Ca the fusion probabilities are smaller
than those in the reactions with Mg mentioned above. However, for such evaporation
residues like 218−220 Pu the smaller PCN is overcompensated by larger Wsur because
a smaller number of neutrons is needed to be evaporated.

As found, the nuclei 218−220Pu can be also produced in the 32S + 192Pt reaction
with the cross sections of 1.5 times larger than those in the 40Ca + 184W reaction. In
order to conclude whether the reactions with 40Ca or 32S are preferable, one should
take into account the availability of the projectile and target materials.

4.5.5 Master Equations for Nucleon Transfer

Another description of the fusion and quasifission reactions is the possibility to apply
master equations for the transfer of nucleons between the clusters of the DNS [111].
As coordinates we choose the charge, neutron and mass numbers of both clusters of
the dinuclear system, respectively, namely ZP = Z, NP = N and AP = Z + N
for the projectile (light) cluster and ZT = Ztot − ZP, NT = Ntot − NP and
AT = Atot − AP for the target (heavy) cluster. For the derivation of the master
equations, we start with the shell model Hamiltonian of the DNS written in second
quantization where nP and nT are the single-particle quantum numbers of the clusters
P and T, respectively:

H = H0 + Vint, (4.44)
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H0 =
∑

nP

εnP a+
nP

anP +
∑

nT

εnT a+
nT

anT , Vint =
∑

nP,nT

(
gnPnT (Rm)a+

nP
anT + h.c.

)
.

(4.45)

For the matrix elements we simply set gnPnT (Rm) = gPT (Rm) = 1
2 〈nP|UP +

UT |nT 〉 where Rm is the distance of the nuclei at the minimum of the internuclear
potential and UP and UT are the single-particle potentials of the projectile (light)
and target (heavy) nuclei, respectively. Since we assume a thermal equilibrium in the
DNS, we disregard the excitation of the light fragment by the heavy one and vice
versa. With Z, N (light fragment, projectile numbers) and Ztot −Z, Ntot −N (heavy
fragment, target numbers) we are solving the eigenvalue problem

H0|Z,N, n〉 = EZ,N
n |Z,N, n〉 (4.46)

with the eigenvalues EZ,N
n . Then we can formulate a master equation for the proba-

bility PZ,N (n, t) to find the system in the state (Z,N, n) at time t.

d
dt

PZ,N (n, t) =
∑

Z′,N ′,n′
λ(Z,N, n|Z′,N ′, n′)

(
PZ′,N ′(n′, t)− PZ,N (n, t)

)

−
(
�

qf
Z,N (n)+�

fis
Z,N (n)

)
PZ,N (n, t). (4.47)

The rates�qf
Z,N (n) and�fis

Z,N (n) regard the quasifission and the fission of the heavy
nucleus in the DNS. The transition rates λ(Z,N, n|Z′,N ′, n′) = λ(Z′,N ′, n′|Z,
N, n) are calculated in time-dependent first order perturbation theory:

λ(Z,N, n|Z′,N ′, n′)= |〈Z,N, n|Vint|Z′,N ′, n′〉|2
sin2

(
�t(EZ,N

n − EZ′,N ′
n′ )/2�

)

�t(EZ,N
n − EZ′,N ′

n′ )2/4
.

(4.48)

The interaction energy Vint induces only transitions between states which differ by
an 1-particle-1-hole pair. The system of differential equations can be simplified by
assuming the DNS in thermal equilibrium and, therefore, we factorize PZ,N (n, t) as

PZ,N (n, t) = PZ,N (t)�Z,N (n,T ), (4.49)

where �Z,N (n,T ) is the probability to find the DNS in the states at a local tem-
perature T (N,Z) and is normalized to unity. With temperature-depending Fermi
occupation numbers for the single particle states and summing over the DNS states,
we finally obtain the master equations used in the further calculations:
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d
dt

PZ,N (t) = �
(−,0)
Z+1,N PZ+1,N (t)+�

(+,0)
Z−1,N PZ−1,N (t)

+�
(0,−)
Z,N+1PZ,N+1(t)+�

(0,+)
Z,N−1PZ,N−1(t)

−
(
�
(−,0)
Z,N +�

(+,0)
Z,N +�

(0,−)
Z,N +�

(0,+)
Z,N

)
PZ,N (t)

− (�
qf
Z,N +�

fis
Z,N )PZ,N (t) (4.50)

with the transition rates

�
(±,0)
Z,N (T ) = 1

�t

Z∑

P,T

|gPT |2n T
P
(T )(1 − n P

T
(T ))

sin2 (�t(εP − εT )/2�)

(εP − εT )2/4
,

�
(0,±)
Z,N (T ) = 1

�t

N∑

P,T

|gPT |2n T
P
(T )(1 − n P

T
(T ))

sin2 (�t(εP − εT )/2�)

(εP − εT )2/4
,

�
qf
Z,N (T ) =

∑

n

�
qf
Z,N (n)�Z,N (n,T ), �

fis
Z,N (T ) =

∑

n

�
fis
Z,N (n)�Z,N (n,T ).

The initial condition for the master equations is PZ,N = δZ,Zi δN,Ni . The above
rates dependent on temperature-dependent Fermi occupation numbers of the single
particle states which were calculated with spherical Woods–Saxon potentials with
spin-orbit force and Coulomb interaction. Also we took phenomenologically into
account the rotation of the DNS in the single-particle energies.

The decay rates of the DNS for quasifission are treated with the one-dimensional
Kramers rate

�
qf
Z,N (T ) = ω

2πωBR
qf

⎛

⎝
√(

Γ

2�

)2

+ (ω
BR

qf )2 − Γ

2�

⎞

⎠ exp

(
−

BR
qf (Z,N)

T (Z,N)

)
.

(4.51)

They depend on the height BR
qf of the outer potential barrier at the internuclear

distance Rb ≈ RP(1 + βP
√

5/4π)+ RT (1 + βT
√

5/4π)+ 2.0 fm which is nearly
independent of the angular momentum for J < 70 since the DNS has a large moment
of inertia. The height of the barrier is about 4.5 MeV for Z = 20 and less than 0.5 MeV
for Z = Ztot/2 ± 10. The temperature is obtained with the Fermi-gas expression
T = (E∗/a)1/2 MeV by using the excitation energy E∗(Z,N) of the DNS and
a = Atot/12 MeV−1. For a nearly symmetric DNS we have about T = 1.5 MeV.
The potential is approximated by an inverted harmonic oscillator with the frequency

ω
BR

qf around the top of the barrier and by a harmonic oscillator with frequency ω at

the pocket. We use constant values for these quantities: �ω
BR

qf = 1.0 MeV, �ω =
2.0 MeV and set the width Γ = 2.8 MeV .

The mass and charge yields are then obtained as

YZ,N (t0) = �
qf
Z,N

∫ t0

0
PZ,N (t)dt (4.52)
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with the reaction time t0 ≈ (3−4)×10−20 s which is about ten times longer than the
time of deep-inelastic collisions. We determine the time t0 by the balance equation
of the probabilities:

∑

Z,N

(
�

qf
Z,N +�

fis
Ztot−Z,Ntot−N

) ∫ t0

0
PZ,N (t)dt = 1 − PCN (4.53)

with the fusion probability PCN where ZBG and NBG are determined by the barrier
for fusion in the asymmetry coordinates:

PCN =
∑

Z>ZBG ,N>NBG

PZ,N (t0). (4.54)

The DNS with Z > ZBG evolves to the compound nucleus in a time of 10−20 s
which is much shorter than the decay time of the compound nucleus. The mass and
charge yields of quasifission products are given by

Y (AP) =
∑

Z

YZ,AP−Z(t0), Y (ZP) =
∑

N

YZ,N (t0). (4.55)

The partial and total cross section for quasifission can be calculated as:

σqf (Ec.m.,AP) = Y (AP)σcap(Ec.m.),

σqf (Ec.m.) =
∑

AP

σqf (Ec.m.,AP), (4.56)

where Pf denotes the fission probability of the heavier nucleus

Pf =
∑

Z,N

�
fis
Ztot−Z,Ntot−N

∫ t0

0
PZ,N (t)dt. (4.57)

The capture cross section, given as

σcap(Ec.m.) = π�
2

2μEc.m.
Jcap(Jcap + 1), (4.58)

depends on Jcap ≤ (2μR2
b(Ec.m. − Vb)/�

2)1/2 which is smaller than the critical
angular momentum Jcrit. Trajectories with J ≥ Jcrit contribute to deep-inelastic and
quasi-elastic collisions.

To explain the experimental total kinetic energy (TKE) of the quasifission prod-
ucts, one has to regard the large polarizations of the DNS nuclei. For nearly symmetric
dinuclear systems with (AP + AT )/2 − 20 ≤ AP ≤ (AP + AT )/2 + 20 we found
deformations which are about 3–4 times larger than the deformations of the nuclei in
their ground states. Let us assume the distribution of the fragments in charge, mass
and deformation as



4 Clustering Effects Within the Dinuclear Model 209

W (Z,N, βP, βT ) = YZ,N wβP (Z,N)wβT (Ztot − Z,Ntot − N), (4.59)

where we set the distributions of the deformations βP and βT as Gaussian distribu-
tions

wβ(Z,N) = 1√
2πσ 2

β

exp(−(β − 〈β〉)2/(2σ 2
β )). (4.60)

Here, σ 2
β = (�ωvib/(2Cvib)) coth(�ωvib/(2kT ))with the frequency ωvib(Z,N) and

the stiffness parameter Cvib(Z,N) of the quadrupole vibrations are determined from
experimental spectra. The average TKE is obtained as a function of the mass number
AP of the light fragment

〈TKE(AP)〉 =

∫ ∫
dβPdβT

∑

Z,N
Z+N = AP

TKE × W

∫ ∫
dβPdβT

∑

Z,N
Z+N = AP

W
(4.61)

with TKE = VN (Rb)+ VC(Rb). The variance of the TKE is

σ 2
TKE ≈

∑

Z
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(
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σ
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TKE(AP)

)2

T
(4.62)

with (j = P,T )

(
σ

def
TKE(AP)

)2

j
=

∑

Z

(
∂TKE
∂βj

)2

| βP = 〈βP 〉
βT = 〈βT 〉

σ 2
βj

YZ,AP−Z(t0)
∑

Z

YZ,AP−Z(t0)
. (4.63)

4.5.6 Results for Quasifission

Quasifission was for example investigated by Itkis et al. in Dubna in reactions with
48 Ca projectiles incident on U, Pu, Cm, and Cf producing the elements 112, 114,
116, and 118. With the above formalism of master equations we calculated a large
quantity of observable data like mass and charge distributions, distributions of total
kinetic energies (TKE), variances of total kinetic energies and neutron multiplicities
for cold and hot fusion reactions [111–113]. Therefore, the comparison of the the-
oretical description with experimental data provides sensitive information about the
applicability and correctness of the used model.
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Fig. 4.28 Left The calculated and experimental mass yields (upper part) and variances of the TKE
(lower part) of the quasifission products as a function of the mass number of the light fragment
for the hot fusion reaction 48Ca +248 Cm →296116 at a bombarding energy corresponding to an
excitation energy of the compound nucleus of 37 MeV. The results calculated for J = 0 and 70
are presented by solid and dotted curves, respectively. The experimental data are shown by solid
points. Right The contributions of fluctuations in deformation (solid line) and of nucleon exchange
(dotted line) to the variance of the TKE of quasifission products in the same reaction as on the right
hand side as functions of the mass number of the light fragment

In Fig. 4.28 we show the calculated mass yield Y (AP) and the variances of the TKE
of the fragments as functions of the light fragment mass number for the hot fusion
reaction 48Ca+248Cm →296116 in comparison with experimental data. At the chosen
incident energy the compound nucleus has an excitation energy of 37 MeV. The small
oscillations in the experimental data correspond to the accuracy of the measurements.
Around the initial mass number of AP = 48 the quasifission data were taken out
from the experimental analysis since it is difficult to separate them from deep-inelastic
events. The calculated peak around the initial mass number contains only quasifission
events. The calculations disregard angular momenta which are larger than the critical
one with which deep-inelastic and quasi-elastic collisions can happen. Since the
quasifission process starts from the entrance channel, the peak around the initial
mass number is pronounced.

Maxima in the mass and charge yields and the minima in the variances arise
from the minima in the driving potential U (Rm,ZP,NP, β

gs
P , β

gs
T , J) which are

caused by shell effects in the dinuclear system. For AP > 48, the maxima yields
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Table 4.4 The calculated variances σ 2
TKE of the TKE for nearly symmetric quasifission products

with Atot/2 − 20 ≤ AP ≤ Atot/2, fractions of the fusion–fission events with respect to the
quasifission events in the mass region Atot/2−20 ≤ AP ≤ Atot/2, and the calculated total numbers
(Mtot−sym

n ) of emitted neutrons for nearly symmetric quasifission splitting with Atot/2−20 ≤ AP ≤
Atot/2

Reaction E∗
CN σ 2

TKE PCN/
∑Atot/2

Atot/2−20 Y (AP) Mtot−sym
n

(MeV) (MeV2)
40Ar +165Ho 89 119 11 5.5

120 143 0.7 7.3
48Ca +244Pu 34.8 805 1.4 × 10−2 7.5

50 893 1.1 × 10−1 8.5
86Kr +208Pb 17 738 2.1 × 10−7 4.8

30 813 2.0 × 10−5 7.0

The reactions and the energies of the corresponding compound nuclei are indicated

of the quasifission products and the minima in the variance of the TKE appear if
one of the fragments is a Pb, Zr, or Sn nucleus. Beside the maximum in Y (AP)

for AP = 88-95 corresponding to the Pb nucleus as heavy fragment, the maximum
corresponding to about the neutron number N = 50 in the light fragment is also
pronounced in the calculation of Y (AP) given in Fig. 4.28. Since the DNS has a
large moment of inertia, the data calculated for J = 0 and 70 are very similar as
shown in Fig. 4.28 . Therefore, the dependence of Y (AP) and σ 2

TKE(AP) on angular
momentum is rather weak that confirms the applicability of the above equations. For
AP > 100, the variance (σ def

TKE(AP))
2, originating from the deformation, mainly

contributes to σ 2
TKE(AP); the same is true for all the reactions which we considered.

The contribution to the variance of TKE due to nucleon exchange is more important
in the decay of more asymmetric DNS (see Fig. 4.28). With increasing excitation
energy, the variance of the TKE of quasifission products with Atot/2 − 20 ≤ AP ≤
Atot/2 + 20 smoothly increases, mainly due to the increase of σ 2

β with T.
The relative contributions of the fusion-fission with respect to the quasifission

yields of symmetric fragmentations are listed in Table 4.4 for various reactions and
excitation energies. The contributions of the fusion-fission products are mainly deter-
mined by the fusion probability PCN , since the survival probability of the excited
compound nucleus is much less than unity.

If the compound nucleus is quite stable to be detected, the quasifission process
is the main factor suppressing the complete fusion of heavy nuclei. In fusion reac-
tions the fusion-fission events are much smaller than the events of the quasifission
products. The main contribution to symmetric and near symmetric fragmentations
comes from quasifission. For the cold fusion reactions leading to superheavy nuclei,
the quasifission products are almost associated with fragmentations near the initial
(entrance) DNS. However, an increase of the neutron number in the DNS results in
a larger fraction of nearly symmetric splitting. With our calculations we also predict
mass yields for AP < AP(initial). Complementary to the heavier fragments with
AP > AP(initial), the lighter fragments can give significant information about the
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dynamics and evolution of the DNS on its way in the mass asymmetry coordinate η
to the fused system. The yields of light products are known to be larger for higher
beam energies. It would be a challenge for experimentalists to measure also the very
asymmetric region of the quasifission mass yield.

Beside the calculations for hot fusion reactions we also carried out calculations
of quasifission and TKE variances for reactions with a 58 Fe beam, for cold fusion
reactions with Pb targets, and for reactions with lighter nuclei, e.g. 40Ar + 165Ho
[111].

4.6 Multinucleon Transfer Reactions

4.6.1 Production of Heaviest Nuclei in Transfer Reactions

The master equations also describe configurations of dinuclear systems which are
more asymmetric than the DNS in the entrance channel. The processes of forma-
tion and decay are ruled by the same mechanism of diffusion in the same relevant
collective coordinates: mass and charge asymmetries and relative distance.

With asymmetric-exit-channel quasifission (AECQ) reactions leading to nuclei
with charge numbers larger than the charge number of the target, one can produce
isotopes that can not be synthesized in complete fusion reactions. The direct produc-
tion of transactinides in AECQ reactions would give nuclei with 101 ≤ Z ≤ 108 in
the reactions 48Ca+ 238U, 243Am, 244,246,248Cm. The production of heavy actinides
has been studied in the transfer-type reactions by bombarding of actinide targets
with 16,18O, 20,22Ne and 40,44,48Ca [114–116]. Nuclei with Z > 102 have not been
observed because of the small cross sections or short lifetimes in the radiochemical
identification of the nuclei.

The cross section σZ,N of the production of a primary heavy nucleus with Z =
ZH and N = NH (H = heavy) in the AECQ reaction is written as the product of the
capture cross section σcap in the entrance reaction channel and the formation-decay
probability YZL,NL (L = light) of the DNS configuration: σZ,N = σcapYZL,NL .

The primary heavy nucleus is excited and evaporates x neutrons in the de-excitation
process. The evaporation residue cross section for the heavy nucleus with charge
number Z is obtained as

σER(Z,N − x) = σZ,N Wsur(xn). (4.64)

The actinide targets proposed for such reactions are deformed. Therefore, the mini-
mum value of the incident energy Emin

c.m., at which the collisions of nuclei at all orien-
tations become possible, is larger than the Coulomb barrier calculated for spherical
nuclei. In the AECQ reactions which occur slightly above the Coulomb barrier, only
partial waves with J ≤ Jcap = 20 contribute to the production of superheavy nuclei.
For Jcap = 20, the primary heavy nucleus has an angular momentum of about 10.
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Fig. 4.29 The DNS potential
energies at Rm and J = 0 as
functions of Z of the heavy
nucleus are presented by
dotted, dashed and solid
curves for the reactions
48Ca + 244,246,248Cm,
respectively. The arrow
indicates the initial DNS. For
the 48Ca + 248Cm reaction,
the barriers
Bsym
η (Zi = 20,Ni = 48)

and
BR(Z = 102,N = 160)
are indicated. The × denotes
U (Rb,Z = 102,N =
160, J = 0). The potential
energies refer to the energies
of the corresponding
compound nuclei. The mass
table [79] is used
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The primary mass and charge yield YZL,NL of the decay fragments can be calculated
as (see Eq. (4.52))

YZL,NL = �
qf
ZL,NL

∫ t0

0
PZL,NL dt. (4.65)

For J ≤ 20, the value of the probability of formation of the corresponding DNS
configuration is weakly dependent on J and the factorization (4.64) is justified. The
reactions with the transfer of many nucleons occur during a quite long time up to
t0 ≈ 10−20 s at J ≤ 20. The DNS potential energies at Rm as a function of Z = ZH
of the heavy fragment are shown in Fig. 4.29 for the reaction 48Ca + 244,246,248Cm
[117]. A minimization with respect to the N/Z ratio is made for each Z and the
deformations of the DNS nuclei are taken into consideration.

For 102 < Z < 110, the potential energy decreases with the total number of
neutrons of the DNS and a larger primary yield of superheavy nuclei is expected
in the reactions with 244,246Cm rather than with 248Cm. This is demonstrated in
Fig. 4.30, where the primary yields of the most probable isotopes of heavy nuclei are
calculated with the master equations and with the statistical formula

YZ,N ≈ 0.5 exp

(
−BR(Z,N)− Bsym

η (Zi,Ni)

T (Zi,Ni)

)
, (4.66)
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Fig. 4.30 The calculated
evaporation residue cross
sections σER are shown by
triangles, circles and squares
for the reactions 48Ca +
244,246,248Cm (Ec.m. = 207,
205.5 and 204 MeV,
respectively). The heavy
fragments after 1n
evaporation are indicated in
the upper part of the figure.
The results obtained with
(4.66) and (4.50) are
indicated by closed and open
symbols, respectively

where BR is given by BR(Z,N) = U (Rb,Z,N, J) − U (Rm,Zi,Ni, J) (see
Fig. 4.29) and T is the temperature calculated by using the Fermi-gas expression
T = √

E∗/a with the excitation energy E∗ of the initial DNS and the level-density
parameter a = Atot/12 MeV−1. Similar results are obtained with both methods.

In Fig. 4.30 the excitation energies of primary heavy nuclei correspond to Ec.m. =
204 − 207 MeV. The excitation energy of the primary heavy nucleus is defined
proportionally to its mass AH : E∗

H (Z,N) = (E∗(Zi,Ni)−BR(Z,N))AH/(AL +
AH ). In this case E∗

H (Z,N) is related to the maxima or to the right hand sides
of excitation functions for one-neutron emission. For example, for 262No we find
E∗

H = 16 MeV and Wsur(1n) = 2.4 × 10−4. The experimental data as well as
our treatment indicate the preference of a smaller number of evaporated neutrons to
produce superheavy nuclei. So one can see that with the AECQ reactions on actinide
targets, unknown isotopes of superheavy nuclei can be produced with suitable cross
sections.

4.6.2 Transfer Products in Cold Fusion Reactions

In Fig. 4.31 the cross sections are drawn for producing isotopes with Z = 84–94
in the reactions 74Ge + 208Pb at Ec.m. = 271.3 MeV and 76Ge + 208Pb at Ec.m. =
272.3 MeV [118]. The products are among Po, At, Rn, Fr and Ra. The isotopes with
short lifetimes decay during their flight from the target to the detector (t ≈ 2 μ s).
The cross sections increase with decreasing neutron number of the projectile. The
measurement of the yields of transfer-type products in cold fusion reactions and their
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Fig. 4.31 Calculated cross
sections of the isotopes of
nuclei with Z = 84 − 94
produced in the reactions
74,76Ge + 208Pb at
Ec.m. = 271.3 and
272.3 MeV, respectively. The
order of the indicated mass
numbers of the isotopes is in
accordance with the decrease
of their cross sections 10
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comparison with theoretical predictions are important for the understanding of the
mechanism of fusion.

4.6.3 Production of Neutron-Rich Isotopes in Transfer Reactions

A recent study deals with the production of neutron-rich Zn and Ge isotopes with
neutron numbers N > 50 (here N = NL and Z = ZL) which are the products of
multinucleon transfer channels of the reactions 48Ca + 238U and 244Pu at low energies
[119]. In Fig. 4.32 we present calculated production cross sections of neutron-rich
isotopes in the reactions 48Ca + 238U and 244Pu at incident energies near the Coulomb
barrier. In both graphs the values of Ec.m. correspond to the condition E∗

L(Z,N, J) =
Bn(Z,N) where the neutron separation energy Bn for unknown nuclei is taken from
the finite range liquid drop model [82]. If we have E∗

L(Z,N, J) > Bn(Z,N), then the
primary neutron-rich nuclei are transformed into secondary nuclei with a less number
of neutrons because of the deexcitation by nucleon emission. The DNS evolution in
this reactions can be schematically presented in the following way: 48Ca +238 U
→ 78,80Zn + 208,206Pb → 82,84,86Zn + 204,202,200Pb and 48Ca + 244Pb → 82,84Ge +
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Fig. 4.32 Left Calculated cross sections for the indicated neutron-rich isotopes of Zn produced in
the 48Ca +238U reaction at values of Ec.m. providing the excitations of these isotopes to be equal to
the corresponding thresholds for the neutron emission. Right The same as in the left figure, but for
the indicated neutron-rich isotopes of Ge produced in the 48Ca + 244Pu reaction

210,208Pb → 86,88,90,92Ca +206,204,202,200 Pb. The system initially moves to the deep
minimum of the potential energy surface which is caused by shell effects around
the DNS with the magic heavy 208Pb and light 78Zn or 84Ge nuclei. Then from this
minimum it reaches the DNS with the exotic light nucleus by fluctuations in the mass
asymmetry. For low excitation energy, the evolution of the DNS towards symmetry
is hindered by the driving potential minimum. Since the predicted production cross
sections for the new exotic isotopes 84,86Zn and 90,92Ge are larger than 0.1 pb, they
can be synthesized with the present experimental possibilities (see also [120, 121]).

Within the DNS formalism, we studied for the future experiments the possibilities
for producing new neutron-rich isotopes of nuclei with Z = 64–79 (here N = NH
and Z = ZH ) as complementary to light fragments in the 48Ca+238U multinucleon
transfer reaction at an incident energy Ec.m. = 189 MeV taken as the height of the
Coulomb barrier for the spherical nuclei.The primary neutron-rich nuclei of interest
are excited and transformed into the secondary nuclei with less number of neutrons
with the same cross section because the neutron emission is dominant over other
deexcitation channels. The neutron emission channels are indicated in Fig. 4.33 for
primary neutron-rich Os and Re isotopes. The calculated results demonstrate that
the multinucleon transfer reactions provide a very efficient tool for producing new
neutron-rich nuclei with Z = 64–79. It is apparent that with the use of a heavier
actinide target as 244Pu or 248Cm one can reach more neutron-rich nuclei.

4.7 Binary and Ternary Fission in the Scission-Point Model

The measured fission properties of 258,259Fm, 259,260Md and 258,262No show total
kinetic energy (TKE) distributions of the fragments to be composed of two Gaus-
sians [122–124]. The highest TKE is associated with a sharply symmetrical mass
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Fig. 4.33 Calculated
production cross sections of
the primary Os and Re
isotopes versus the mass
number in the multinucleon
transfer reaction 48Ca(Ec.m.
= 189 MeV)+238U. Neutron
evaporation channels for
neutron-rich primary
isotopes are indicated. The
heaviest known isotopes are
marked by arrows

distribution while the fragments with lower energy result in a sharply symmetrical
or asymmetrical mass distribution. This phenomena is called the bimodal fission.
Here, we explain the bimodal fission with the dependence of the potential energy
surface of the fissioning system on the deformation parameters of the clusters in the
framework of the dinuclear system model. After the penetration through the fission
barrier the fissioning system moves along a trajectory to a compact dinuclear config-
uration belonging to the high TKE mode or along a trajectory to a highly deformed
and elongated dinuclear configuration belonging to the low TKE mode. In order to
describe the dynamics of these modes, we treat the fission process at the scission
point with the statistical scission-point model by using mass and charge asymmetry
coordinates, the deformation parameters of the fragments and the excitation energy
of the system [125–128].

4.7.1 Fission Potential With the Dinuclear System Model

The fissioning nucleus is assumed to form a dinuclear system at the scission point
with the two fragments in contact. The scission point is taken at a nuclear distance
R = Rb with Rb as the position of the outer potential barrier. Then the following
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parameters describe the system: the mass numbers Ai and charge numbers Zi of
the fragments i = 1, 2, their deformation parameters βi = ci/ai with the major
(ci) and minor (ai) semiaxes of the ellipsoidal shapes of the fragments, the distance
R between the fragments and the excitation energy E∗ of the system. The negative
binding energy of the system is obtained as the sum of the negative binding energies of
the individual fragments, represented by the liquid drop energy ULD and shell model
correction energy Ushell , and by the Coulomb and nuclear interaction between the
fragments (L = light, H = heavy):

U ({Ai,Zi, βi},R,E∗) = U L
LD(AL,ZL, βL)+ U H

LD(AH ,ZH , βH )

+ δU L
shell(AL,ZL, βL,E∗)+ δU H

shell(AH ,ZH , βH ,E∗)
+ VC({Ai,Zi, βi},R)+ VN ({Ai,Zi, βi},R).

(4.67)
The shell model correction energy δUshell depends on the excitation energy. The
excitation energy is given by

E∗ = Q − TKE({Ai,Zi, βi})+ Bn − Edef ({Ai,Zi, βi}) (4.68)

with the Q-value and the total kinetic energy of the fragments

TKE({Ai,Zi, βi}) = VC({Ai,Zi, βi},Rb)+ VN ({Ai,Zi, βi},Rb). (4.69)

Here, we set Bn = 0 for spontaneous fission and Bn = 8 Mev for neutron induced
fission. On the basis of the two-center shell model we first calculate the shell correc-
tions δUshell at zero excitation energy. In order to take into account the dependence
of the shell corrections on the excitation energy E∗ of the dinuclear system, we use
a frequently applied phenomenological expression

δU i
shell(Ai,Zi, βi,E∗) = δU i

shell(Ai,Zi, βi,E∗ = 0) exp(−E∗
i /ED), (4.70)

where the damping constant is chosen ED = 18.5 MeV and the excitation energy
in the pre-scission configuration is taken to be E∗

i = AiE∗/(AL + AH ). The cal-
culations have shown that for the excitation energies considered, a variation of the
decay constant ED over the range from 15 to 25 MeV has only slight effects on the
results of the calculations. The deformation energy Edef is measured with respect to
the ground states (g.s.) of the fragments of the dinuclear system and is calculated for
R = Rb as

Edef ({Ai,Zi, βi}) = U ({Ai,Zi, βi},Rb,E∗)− U ({Ai,Zi, β
g.s.
i },Rb,E∗).

(4.71)

Fig. 4.34 shows the contour plots of the neutron-induced fission of 236U for the frag-
mentations 104Mo+132 Sn (upper part) and 104Zr+132 Te (lower part) as functions of
the deformations of the light and heavy fragments at the scission point. The potential
energy surface of 104Zr + 132Te has two minima which lead to bimodal fission with
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Fig. 4.34 Potential energy of scission configurations as a function of βL and βH for the neutron
induced fission of 236U leading to 104Mo + 132Sn (upper part) and 104Zr + 132Te (lower part)

L

Fig. 4.35 Comparison of calculated and experimental charge number distributions for neutron
induced fission of 236U and 240Pu, and spontaneous fission of 252Cf. The yields are normalized to
unity. The calculated and experimental points are shown as open circles and solid points, respec-
tively, connected by straight lines

〈TKE〉 = 181 and 168 MeV. At low values of E∗, there can be a few minima in the
potential energy surface, but their number decreases with increasing E∗. Since the
excitation energy of pre-scission configurations does not exceed 30 MeV in the cases
of spontaneous and neutron induced fission, shell effects play an important role for
the formation of the mass-energy distribution of fragments.
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The bimodality or multimodality of fission can be also related to the varia-
tions of the charge and mass splittings in the small interval of charge and mass
numbers [126]. In order to obtain high- and low-<TKE> regimes in the fission-
ing nucleus, one should not always require two fission paths, short and long,
at the fixed charge and mass asymmetries. For example, for the fragmentations
235U(nth, f) →104Mo + 132Sn(< TKE > = 184MeV) and 104Zr +132 Te(< TKE >
= 168MeV) or 258Fm(sf) →126 Sn +132 Sn(< TKE >= 230MeV) and 124Cd +
134Te(< TKE >= 209 MeV).The suggested explanation of bimodal fission is rather
simple and allows us to describe well the available experimental data. This expla-
nation can be experimentally checked by measuring the masses and charges of the
fission products along with their kinetic energies [126]. The identification of charge
and mass numbers after the de-excitation of the fragments with γ -spectroscopy
is very promising. The neutron evaporation from the fragments can be estimated
with the calculated average values of excitation energies of the fragments. The sug-
gested observation of bimodality requires the precise determination of the charges
and masses of primary fragments. Additionally, one can expect different angular
momenta of the fission fragments for different modes to be measured.

4.7.2 Binary Fission

The barrier at R = Rb is assumed to keep the fragments in contact for a short time so
that the fragments come into a thermodynamic equilibrium state and are distributed
statistically in the potential energy surface. Then the relative primary yields of binary
fission fragments before evaporation of neutrons can be calculated according to the
statistical model as

Y ({Ai,Zi, βi},E∗) = Y0 exp(−U ({Ai,Zi, βi},Rb,E∗)/T ). (4.72)

Here, the scission configuration has a certain distribution in βL and βH in thermo-
dynamic equilibrium. The temperature T is related to the excitation energy E∗. For
fixed Ai and Zi the excitation energy is defined by the deepest minimum of the
potential energy surface as a function of βL and βH with 1 ≤ βL, βH ≤ 2.1. The
corresponding effective temperature is not a free parameter, but obtained from the
excitation energy: T = (E∗/a)1/2 with a = (AL + AH )/12 MeV−1. For fixed Ai
the distribution of fission fragments in Zi is very narrow. We found the most probable
charge numbers Zmin

i for each Ai in good agreement with experimental data. If one
needs to calculate the relative yield of a certain system regardless of deformation
parameters, the probability is integrated over the deformations:

Y (AL) =
∑

ZL

∫
Y (AL,ZL, βL,AH ,ZH , βH ,E∗)dβLdβH . (4.73)

It should be noted that the statistical approach does not allow to calculate the absolute
values of the yields; one just obtains relative yields. Since the temperatures of the
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L

Fig. 4.36 Calculated and experimental 〈TKE〉 as a function of AL for neutron induced fission of
234,236U and 240Pu. For fixed AL, the most probable charge splitting was found by minimization
of the total energy with respect to ZL

systems considered here are about 1 MeV, only deformations near to the minima
essentially contribute to the probabilities (yields). In order to get charge distributions
one has to sum the probability over the mass number:

Y (ZL) =
∑

AL

∫
Y (AL,ZL, βL,AH ,ZH , βH ,E∗)dβLdβH . (4.74)

In Fig. 4.35 we compare experimental and calculated charge number distributions
for spontaneous fission of 252Cf and neutron induced fission of 236U and 240Pu.
In the case of 236U the calculated charge number distribution is shifted by two units
relative to the experiment towards the symmetrical division. The mean total kinetic
energy at fixed Ai,Zi is calculated as

〈TKE〉({Ai,Zi}) =
∫

TKE({Ai,Zi, βi})Y ({Ai,Zi, βi},E∗)dβLdβH . (4.75)

To obtain the TKE—mass distribution, we sum over the charge number as follows

〈TKE〉(AL) =
∑

ZL

〈TKE〉({Ai,Zi}). (4.76)

In Fig. 4.36 we show mean total kinetic energies as a function of AL for 234,236U
and 240Pu fission induced by thermal neutrons. For each fixed value of AL the cal-
culations were performed at the most probable value of ZL. Since our quantities
are the primary mass and energy distributions of the fission fragments before the
prompt neutron emission, the experimental values of 〈TKE〉 have to be enlarged by
1–3 MeV. They are measured after the post - neutron emission. In Table 4.5 we listed
the various calculated quantities for the spontaneous fission of 252Cf in comparison
with experimental data. Here, σ 2

TKE are the variances of the TKE (see also [129]).
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Table 4.5 Mean TKEs, variances of TKEs and mass yields in spontaneous fission of 252Cf

Fragmentation < TKE > < TKE > σ 2
<TKE> σ 2

<TKE> Y Y
(MeV) (MeV) (MeV2) (MeV2)
exp theor exp theor exp theor

102Zr +150Ce 183.3 179.3 99(9) 106 0.21 0.18
106Mo +146Ba 189.3 190 89.5(4) 89 0.44 0.54
112Ru +140Xe 193.3 194.8 95(7) 90 0.25 0.21
118Pd +134Te 200 198 65 0.1 0.07

4.7.3 Ternary Fission

For the description of the ternary fission, we extended the model of binary fission. We
assume that the ternary system consists of two prolate ellipsoidal fragments and a light
charged particle (LCP) in between. The LCP can consist of one or several α-particles
and neutrons originating from one or both binary fragments. The third light fragment
(LCP) is assumed as stiff and spherical and lying between the heavier fragments. The
potential depends on the deformations β1 and β2 of the outer fragments, but not so
strongly as in the binary system.

Within the statistical method we calculate the relative yields of the ternary system
for a given LCP, characterized by (A3,Z3).First, the relative probability of the binary
system, Ybinary(Ab

1,Zb
1) with A = Ab

1 + Ab
2 and Z = Zb

1 + Zb
2 , is determined.

Then the ternary system is built up with the LCP between the heavier fragments.
For each binary system and a certain LCP, we calculate the relative probabilities for
ternary systems as

Yternary(A1,Z1,A3,Z3,Ab
1,Zb

1) =
Y 0

t

∫ ∫
exp(−U (A1,Z1, β1,A2,Z2, β2,A3,Z3,E∗)/T )dβ1dβ2. (4.77)

Finally, the yields are summed with the same charge asymmetries and the same LCP.
The following charge distribution is obtained:

Yternary(Z1,A3,Z3) =
∑

Ab
1,Z

b
1 ,A1

Ybinary(A
b
1,Zb

1)×Yternary(A1,Z1,A3,Z3,Ab
1,Zb

1).

(4.78)
The normalization factors are chosen so that the binary yields and the yields of ternary
systems from a certain binary system are normalized to unity. The probability of
formation of the α-particles from the heavy fragments is almost the same for all the
heavy fragments and does not influence the relative yields.

In Fig. 4.37 we compare our calculations for ternary fission of 252Cf and induced
ternary fission of 56Ni produced in the reaction 32S +24Mg [30]. In Table 4.6 we
present spectroscopic factors S for the correlations of the formation probabilities of
different LCP. The value of S and Yexp are related to the value of 4He which is S(4He)
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1

Fig. 4.37 Left hand side Charge distributions in spontaneous ternary fission of 252Cf with different
LCPs. The calculated and experimental points are depicted by empty and filled circles, respectively,
connected by straight lines. Right hand side The experimental (solid symbols) and calculated (open
symbols) charge distributions in induced ternary fission of 56Ni with the middle particle 8Be (circles)
and 12C (triangles), respectively

Table 4.6 Spectroscopic
factors for the formation of
the LCP with respect to
S(4He) = 5 × 10−2

LCP Yexp Sα+α+... SLCP

4He 1 1 1
10Be 1.3 × 10−2 5 × 10−2 ∼ 5 × 10−4

14C 5 × 10−3 2.5 × 10−3 ∼ 10−6

20O 1.25 × 10−4 ∼ 10−9

= 5×10−2. For 10Be we found that two sequentially formed 4He are correlated to
form the LCP 10Be. The neutrons do not change the probability of formation. The
spectroscopic factor for a direct formation of 10Be, SLCP = 10Be, is by two orders of
magnitude smaller.

4.8 Selected Summarizing and Concluding Remarks

Because of the richness of applications of the dinuclear model described in this
article we think to renounce a detailed summary of the described methods. As one
can recognize, the dinuclear model is a very basic model for the description of
nuclear structure and heavy ion collisions, for example, not mentioned in this review
deep-inelastic collisions [130–132]. In principle it explains the physics of a nuclear
molecule, consisting of two touching clusters. The potential between the clusters is of
diabatic nature, with a pocket around the touching distance and with a repulsive part
at smaller relative distances, avoiding a melting of the two nuclei as it may happen
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with adiabatic potentials. Therefore, the main degrees of freedom in this model are
the mass and charge asymmetries related to the transfer of nucleons (or clusters)
between the clusters.

As it depends on the complexity of the methods the dinuclear model can be a
phenomenological or a quantum theoretical description of the two touching clusters.
The phenomenological description of diffusion in the collective mass asymmetry
coordinate can be improved by microscopical master equations or by treatments of
quantum and open quantum systems. The applied constants like single particle widths
and cranking masses should be attributed to more microscopical calculations. Also
further collective degrees of freedom, like vibrations, rotations and neck dynamics
of the clusters should be adequately taken into consideration.

The basic assumption of a repulsive diabatic potential at smaller internuclear dis-
tances inherent in the dinuclear model does not contradict the experimental data. All
applications of the dinuclear model give a qualitatively and quantitatively satisfy-
ing description of the present data. Therefore, we believe on the correctness of the
internuclear potential of the dinuclear model. However, this is an important point
which needs further microscopical proofs and experimental signs for its existence,
especially as a function of the mass numbers of the clusters.
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Chapter 5
Nuclear Alpha-Particle Condensates
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Abstract The α-particle condensate in nuclei is a novel state described by a product
state of α’s, all with their c.o.m. in the lowest 0S orbit. We demonstrate that a
typical α-particle condensate is the Hoyle state (Ex = 7.65 MeV, 0+

2 state in 12C),
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which plays a crucial role for the synthesis of 12C in the universe. The influence of
antisymmentrization in the Hoyle state on the bosonic character of the α particle is
discussed in detail. It is shown to be weak. The bosonic aspects in the Hoyle state,
therefore, are predominant. It is conjectured that α-particle condensate states also
exist in heavier nα nuclei, like 16O, 20Ne, etc. For instance the 0+

6 state of 16O at
Ex = 15.1 MeV is identified from a theoretical analysis as being a strong candidate
of a 4α condensate. The calculated small width (140 keV) of 0+

6 , consistent with
data, lends credit to the existence of heavier Hoyle-analogue states. In non-self-
conjugated nuclei such as 11B and 13C, we discuss candidates for the product states
of clusters, composed of α’s, triton’s, and neutrons etc. The relationship of α-particle
condensation in finite nuclei to quartetting in symmetric nuclear matter is investigated
with the help of an in-medium modified four-nucleon equation. A nonlinear order
parameter equation for quartet condensation is derived and solved for α particle
condensation in infinite nuclear matter. The strong qualitative difference with the
pairing case is pointed out.

5.1 Introduction

Cluster as well as mean-field pictures are crucial to understand the structure of light
nuclei [1, 2]. It is well known that many states in light nuclei as well as neutron rich
nuclei [3] and hypernuclei [4] have cluster structures. Recently, it was found that
certain states in self-conjugate nuclei around the α-particle disintegration threshold
can be described dominantly as product states of α particles, all in the lowest 0S
orbit. They are called “α-particle condensate states”. Considerable theoretical and
experimental work has been devoted to this since this idea was first put forward in
2001 [5].

The ground state of 8Be has a pronounced α-cluster structure [6, 7]. Its average
density in the 0+ ground state is, therefore, very low, only about a third of usual
nuclear saturation density. The two α particles are held together only by the Coulomb
barrier and 8Be is, therefore unstable but with a very long life time (10−17s). No
other atomic nucleus is known to have such a structure in its ground state. However,
it is demonstrated with a purely microscopic approach that, e.g. 12C also has such
a structure but as an excited state [8–16]: the famous “Hoyle” state [17, 18], i.e.
the 0+

2 state at 7.65 MeV [19]. It is formed by three almost independent α particles,
only held together by the Coulomb barrier. It is located about 300 keV above the
disintegration threshold into 3α particles and has a similar life time as 8Be, i.e. also
very long. A new-type of antisymmetrized α-particle product state wave function, or
THSR α-cluster wave function proposed by Tohsaki, Horiuchi, Schuck, and Röpke
[5, 20–23] describes well the structure of the Hoyle state. The THSR wave function
is analogous to the (number-projected) BCS wave function [24], replacing, however,
Cooper pairs by α particles (quartets). The 3α particles, to good approximation, can
be viewed to move in their own bosonic mean field where they occupy the lowest 0S
level. We, therefore, talk about an alpha particle condensate. A more accurate theory
reveals that there exist residual correlations, mostly of the Pauli type, among the alpha
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particles and, in reality, their occupation of the 0S level is reduced but still amounts
to over 70% [25–27]. This number is typical for nuclear mean field approaches. The
theory [5, 14] reproduces almost all measured data of the Hoyle state, as for instance
the inelastic form factor from (e,e′), very accurately. It is predicted that the Hoyle
state has about triple to quadruple volume compared with the one of the 12C ground
state. Excitations of one alpha out of the condensate into 0D and 1S states of the
mean field can be formed and the 2+

2 [26, 28, 29] and 0+
3 [30, 31] states in 12C

are reproduced in this way (the latter, so far only tentatively). This triplet of states
are precisely the ones which, even with the most modern no-core shell model codes
[32–35], cannot be reproduced at all. The new interpretation of the Hoyle state as an
α condensate has stimulated a lot of theoretical and experimental works on α-particle
condensation phenomena in light nuclei [28–31, 36, 37, 38–50].

The establishment of the novel aspects of the Hoyle state incited us to conjecture
4α condensation in 16O. The theoretical calculation [51] of the OCM (orthogonality
condition model) type [52–54] succeeded in describing the structure of the first
six 0+ states up to about 16 MeV, including the ground state with its closed-shell
structure, and showed that the 0+

6 state at 15.1 MeV around the 4α threshold is a
strong candidate for a 4α-particle condensate, having a large α condensate fraction
of 60%. Similar gas-like states of α clusters have been predicted around their α
cluster disintegration thresholds in self-conjugate A = 4n nuclei with the THSR wave
function [5, 55] and the Gross–Pitaevskii-equation approach [56]. Besides the 4n
nuclei, one can also expect cluster-gas states composed of alpha and triton clusters
(including valence neutrons, etc.) around their cluster disintegration thresholds in
A �= 4n nuclei, in which all clusters are in their respective 0S orbits, similar to the
Hoyle state with its (0Sα)3 configuration. The states, thus, can be called “Hoyle-
analogues” in non-self-conjugated nuclei. It is an intriguing subject to investigate
whether or not Hoyle-analogue states exist in A �= 4n nuclei, for example, 11B,
composed of 2α and a t cluster [57–59] or 13C, composed of 3α and 1n [60–62].
The 2α+ t (3α+ n) OCM [59, 61] calculation indicates that the 1/2+

2 (1/2
+
3 ) state

at Ex = 11.95 (12.14) MeV just above the 2α + t (3α + n) threshold is a candidate
for the Hoyle-analogue.

It has been pointed out that in homogeneous nuclear matter and asymmetric
matter α condensation is a possible phase [63–67] at low densities. Therefore, the
above mentioned α-particle product states in finite nuclei is related to Bose–Einstein
condensation (BEC) of α particles in infinite matter. The infinite matter study used
a four particle (quartet) generalization of the well known Thouless criterion for the
onset of pairing as a function of density and temperature. The particular finding in
the four nucleon case was that α-particle condensation can only occur at very low
densities where the quartets do not overlap appreciably. This result is consistent with
the structure of the Hoyle state as well as the 0+

6 state of 16O, in which the average
density is about one third or one fourth of the saturation density. It is interesting to
note that the low density condition for quartetting was in the meanwhile confirmed
in Refs. [68–70] with a theoretical study in cold atom physics.

At this point it may be worthwhile to remark that nuclear physics is predestinated
for cluster physics. This stems from the fact that in nuclear physics there are four
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(a) (b)

Fig. 5.1 (Color online) Sketch of a α-particle configuration with the two protons and two neutrons
occupying the lowest 0S level in the mean field potential of harmonic oscillator shape, and b the
energetically lowest configuration in the case of four neutrons with two neutrons in the 0S orbit and
the other two in the 0P orbit

different fermions (proton–neutron, spin up–down), all attracting one another with
about equal strength. Such a situation is very rare in interacting fermion systems.
Most of the time there are only two species of fermions, as e.g. electrons, spin up–
down. However, four different fermions are needed to form a quartet. This is easily
understood in a mean field picture where the four nucleons can be put into the lowest
0S level of a harmonic potential, whereas were there only neutrons two of four
neutrons would have to be put into the p-orbit which is energetically very penalizing,
see Fig. 5.1. This is the reason why there is no bound state of four neutrons, while
the α-particle is very strongly bound. However, recently experiments in cold atom
physics try to trap more than one species of fermions [71, 72] which then also may
open up interesting cluster physics in that field.

The purpose of this lecture is to demonstrate the novel aspects of nuclearα-particle
condensates, in particular, emphasizing the structure study of 12C and 16O with the
THSR wave function and the OCM approach.

The paper is organized as follows. In Sect. 5.2 we first review briefly the RGM
framework to describe nα nuclear states [73, 74], which is basic for the THSR
wave function and OCM. Then, we formulate the THSR wave function and OCM.
Before discussing the Hoyle state, we study the structure of 8Be with the THSR
wave function, and discuss the difference between the THSR-type wave function
and Brink-type wave function [75, 76] in Sect. 5.3. The latter type of wave function
is based on a geometrical, crystal-like viewpoint of the cluster structure. Section 5.4
is dedicated to a discussion of the structure of the Hoyle state, studying the antisym-
metrization effect among the 3α clusters, occupation probability and momentum
distribution of α particles, and the de Broglie wave length, etc. Then, we discuss the
Hoyle-analogue states in 16O with the 4α OCM and THSR wave function, together
with 11B and 13C. The Gross–Pitaevskii-equation approach is devoted to investigate
α-particle condensation in heavier 4n nuclei. In Sect. 5.5, we focus on the α-particle
condensation in nuclear matter and its relation with that in finite nuclei. The density
dependence of the α condensation fraction is discussed and a ‘gap’ equation for the α
particle order parameter is established and solved. The strong qualitative difference
with the pairing case is discussed. Finally, in Sect. 5.6 we present the summary and
conclusions.
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5.2 Formulation of Alpha-Condensation: THSR Wave Function
and OCM Approach

5.2.1 Resonating Group Method (RGM)

The microscopic nα wave function Ψnα incorporating α-cluster substructures can in
general be expressed in the following RGM form [73, 74]:

Ψnα = A

{
χ (ξ)

n∏

i=1

φαi

}
=
∫

daΨnα(a)χ(a), (5.1)

Ψnα(a) ≡ A

⎧
⎨

⎩

n−1∏

j=1

δ(ξ j − a j )

n∏

i=1

φαi

⎫
⎬

⎭ , (5.2)

with A the antisymmetrizer of 4n nucleons. The intrinsic wave function of the ith α
cluster, φαi , is taken as a Gaussian (with size parameter b),

φαi ∝ exp

⎡

⎣−
∑

1≤k<l≤4

(ri,k − ri,l)
2/(8b2)

⎤

⎦ , (5.3)

representing the intrinsic spatial part of the (0s)4 shell-model configuration, where
{ri,1, . . . , ri,4} denote the coordinates of the four nucleons in the i-th cluster. The
spin-isospin part in Eq. (5.3) is not explicitly written out but supposed to be of scalar-
isoscalar form. We will not mention it henceforth. The wave function χ for the
c.o.m. motion of the α’s is chosen translationally invariant and depends only on the
corresponding Jacobi coordinates ξ = {ξ1, ξ2, . . . , ξn−1}. The function Ψnα(a) in
Eq. (5.2) describes the α-cluster state located at the relative positions specified by a
set of the Jacobi parameter coordinates a = {a1, a2, . . . , an−1}.

The internal part of the Hamiltonian for the relevant A = 4n nucleus is composed
of kinetic energy − �2

2M ∇2
i , with nucleon mass M, the Coulomb force (V C

i j ), the

effective two-nucleon (V (2)
i j ) and three-nucleon (V (3)

i jk ) interactions:

H = −
4n∑

i=1

�
2

2M
∇2

i − TG +
4n∑

i< j

V C
i j +

4n∑

i< j

V (2)
i j +

4n∑

i< j<k

V (3)
i jk , (5.4)

where the c.o.m. kinetic energy of the total system TG is subtracted.
The Schrödinger equation for the fermionic nα system is

HΨnα = EΨnα. (5.5)

Substituting the total wave function of Eq. (5.2) into Eq. (5.5), we obtain the equation
of motion for the relative wave function χ,
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∫
da′ {H(a, a′)− E N (a, a′)

}
χ(a′) = 0, or (H − EN) χ = 0, (5.6)

where the Hamiltonian and norm kernels, H(a, a′) and N (a, a′), are defined as

{
H(a, a′)
N (a, a′)

}
= 〈Ψnα(a) |

{
H
1

}
| Ψnα(a′)〉. (5.7)

Equation (5.6) is called the RGM equation [74]. One also can formulate the RGM
framework for non 4n nuclei such as 11B and 13C with the microscopic 2α + t and
3α + n cluster model, respectively.

5.2.2 THSR Wave Function

In the THSR description [5, 22], the relative wave function χ in Eq. (5.1) is expressed
in the following nα condensation form,

χTHSR
nα (B : R1,R2, . . . ,Rn) =

n∏

i=1

ϕ0(B : Ri − XG), (5.8)

ϕ0(B : R) = exp(−2R2/B2), (5.9)

where Ri = (ri,1 + · · · + ri,4)/4 denotes the c.o.m. coordinate of the i-th α particle,
XG = (R1 + · · · + Rn)/n is the total c.o.m. coordinate of the nα system and
ϕ0(B : R) represents a Gaussian with a large width parameter B which is of the
nucleus’ dimension. Usually, one uses Jacobi coordinates {ξ i } splitting off the total
c.o.m. part of the wave function. Then the THSR ansatz for χ in Eq. (5.8) is given
by

χTHSR
nα (B : R1,R2, . . . ,Rn) = exp

(
−2

n−1∑

i=1

μi
ξ2

i

B2

)
, (5.10)

with μi = i/(i + 1). A slight generalization of Eq. (5.10) is possible, taking into
account nuclear deformation (see Sect. 5.3). With Eqs. (5.8) and (5.1), one can write
the THSR wave function in the following nα product form,

Ψnα → 〈r1,1, . . . , rn,4|THSR〉 = A[ψα1ψα2 · · ·ψαn ], (5.11)

where

|THSR〉 = |THSR(B)〉 ≡ A|B〉, (5.12)

〈r1,1, . . . , rn,4|B〉 = ψα1ψα2 · · ·ψαn , (5.13)
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where ψαi = ϕ0(B : Ri − XG)φαi and definitions of Eqs. (5.12) and (5.13) will be
useful later. Equations (5.11)∼(5.13) show the analogy of the THSR wave function
with the number-projected BCS wave functions for pairing

〈r1,1, . . . , rn,2|BCS〉 = A
[
φpair(r1,1, r1,2)φpair(r2,1, r2,2) · · · φpair(rn,1, rn,2)

]
,

(5.14)
where φpair(ri,1, ri,2) denotes the Cooper pair wave function.

The product of n identical 0S wave functions in Eq. (5.11) reflects the boson con-
densate character. This feature is realized as long as the action of the antisymmetrizer
in Eq. (5.1) is sufficiently weak. On the other hand, in the limit where B is taken to
be B = b, the normalized THSR wave function is equivalent to an SU(3) shell model
wave function with the lowest harmonic oscillator quanta [77, 78]; for example, in
the case of the 2α, 3α and 4α systems, they respectively are given by

lim
B→b

N2α(B)Ψ2α(B) = |(0s)4(0p)4; (λμ) = (4, 0), Jπ = 0+〉, (5.15)

lim
B→b

N3α(B)Ψ3α(B) = |(0s)4(0p)8; (λμ) = (0, 4), Jπ = 0+〉, (5.16)

lim
B→b

N4α(B)Ψ4α(B) = |(0s)4(0p)12; (λμ) = (0, 0), Jπ = 0+〉, (5.17)

where the Nnα(B) are the normalization factors. The shell model wave functions in
Eqs. (5.15), (5.16) and (5.17) are the dominant configurations of the ground-state
wave functions of 8Be, 12C and 16O, respectively. In fact, the components of Eqs.
(5.16) and (5.17) in the ground states of 12C and 16O have weights over 60 and 90%,
respectively, because both of the states have shell-model-like compact structures. On
the other hand, in the case of the ground state of 8Be, the component of Eq. (5.15) is
as small as about 20% but still the largest, and the remaining components distribute
monotonously in a lot of higher SU(3) configurations, when one expands the wave
function of the 8Be ground state in terms of the SU(3) basis. This characteristic
comes from a pronounced 2α cluster structure in the ground state (see Sect. 5.3).

The wave functions of the quantum states in A = 4n nucleus can be expanded
using the nα THSR wave function, like

Ψk =
∑

m

fk(B
(m))Ψnα(B

(m)), (5.18)

where Ψnα(B(m)) is the nα THSR wave function which has the form of

Ψnα(B
(m)) = A

[
χTHSR

nα (B(m); R1,R2, . . . ,Rn)φα1φα2 . . .φαn

]
. (5.19)

The discrete variational parameters B(m) represent the generator coordinate of the
Hill–Wheeler ansatz. The expansion coefficients fk(B(m)) and the corresponding
eigenenergy Ek for the k-th eigenstate are obtained by solving the following Hill–
Wheeler equation [79, 80],
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∑

m′

〈
Ψnα(B

(m))

∣∣∣H − Ek

∣∣∣Ψnα(B
(m′))
〉

fk

(
B(m

′)
)

= 0. (5.20)

This equation has the same structure as the RGM equation in Eq. (5.6) but reducing
it to a one parameter equation. The superposition of THSR wave functions fine tunes
the results but a single THSR wave function with an optimized B-value already yields
excellent results as will be demonstrated below.

5.2.3 nα Boson Wave Function and OCM

In order to study the bosonic properties of the nα system, one needs to map the
microscopic (fermionic) nα cluster model wave function Ψnα in Eq. (5.1) onto an
nα boson wave function 	(B)nα . The RGM framework given in Sect. 5.2.1 is useful
and appropriate for the mapping. Taking into account the normalization of Ψnα, 1 =
〈Ψnα|Ψnα〉 = 〈χ(ξ)|N (ξ , ξ ′)|χ(ξ ′)〉, the nα bosonic wave function is provided in
the following form [74],

	(B)nα (ξ) ≡ N1/2χ =
∫

dξ ′N 1/2(ξ , ξ ′)χ(ξ ′), (5.21)

where χ represents the relative wave function with the set of Jacobi coordinates,
ξ = {ξ1, ξ2, . . . , ξn−1}, with respect to the c.o.m. of α clusters. The square-root
matrix N 1/2(ξ , ξ ′) is related to the norm kernel of the nα RGM wave function in
Eq. (5.7). It is noted that 	(B)nα depends only on the Jacobi coordinates ξ , and all of
the internal coordinates of nα particles are integrated out in 	(B)nα .

From the RGM equation (5.6), the equation of motion for 	(B)nα (ξ) is obtained in
the form

(
N−1/2HN−1/2 − E

)
	(B)nα = 0, (5.22)

where H denotes the Hamiltonian kernel defined in Eq. (5.6). Then, one can interpret
N−1/2HN−1/2 as the nonlocal nα boson Hamiltonian. In Eq. (5.22) care should be
taken that before inversion all zero eigenvalues of the norm N are properly eliminated.
The eigenfunctions belonging to the zero eigenvalues are the so-called Pauli forbid-
den states uF (r) which satisfy the condition NuF = A

{
uF (ξ)

∏n
i=1 φαi

} = 0.

The boson wave function has the following properties: (1) 	(B)nα is totally sym-
metric for any 2α-particle exchange, (2) 	(B)nα satisfies the equation motion (5.22),
and (3)	(B)nα is orthogonal to the Pauli forbidden states uF (r). In order to obtain the
boson wave function	(B)nα , we need to solve the equation of motion of the bosons in
Eq. (5.22). Solving the boson equation, however, is difficult in general even for the
3α case. Thus, it is requested to use more feasible frameworks for the study of the
bosonic properties and the amount of α condensation for the Nα system. One such
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framework is OCM (orthogonality condition model) [52–54]. The OCM scheme,
which is an approximation to RGM, is known to describe nicely the structure of low-
lying states in light nuclei [26, 30, 31, 51, 52–54, 81–86]. The essential properties
of the nα boson wave function	(B)nα , as mentioned above, can be taken into account
in OCM in a simple manner. We will demonstrate this below.

In OCM, the α cluster is treated as a point-like particle. We approximate the
nonlocal nα boson Hamiltonian in Eq. (5.22) by an effective (local) one, that is
H (OCM),

N−1/2HN−1/2 ∼ H (OCM) (5.23)

H (OCM) ≡
n∑

i=1

Ti − TG +
n∑

i< j=1

V eff
2α (i, j)+

n∑

i< j<k=1

V eff
3α (i, j, k), (5.24)

where Ti denotes the kinetic energy of the i-th α cluster, and the center-of-mass
kinetic energy TG is subtracted from the Hamiltonian. The effective local 2α and 3α
potentials are presented as V eff

2α (including the Coulomb potential) and V eff
3α , respec-

tively. Then, the equation of the relative motion of the nα particles with H (OCM),

called the OCM equation, is written as

{
H (OCM) − E

}
	(OCM)

nα = 0, (5.25)

〈uF | 	(OCM)
nα 〉 = 0, (5.26)

where uF denotes the Pauli-forbidden state of the nα system as mentioned above.
In the case of 2α system, the Pauli-forbidden states between the two α-particles are
0S, 0D and 1S states with the total oscillator quanta Q less than 4. It is pointed out
that the Pauli-forbidden states in the nα system can be constructed from those of the
2α system [87, 88].

The bosonic property of the wave function 	 can be taken into account by sym-
metrizing the wave function with respect to any 2α-particle exchange,

	(OCM)
nα = S	(OCM)

nα (1, 2, . . . , n), (5.27)

where S denotes the symmetrization operator, S = (1/
√

n!)∑k Pk, where the sum
runs over all permutations P of the n α-particles. It is noted that the completely
collapsed state of the nα particles is forbidden within the present framework because
of the Pauli-blocking effect in Eq. (5.26).

The OCM equation (5.25) with the condition (5.26) is solved with the help of the
Gaussian expansion method (GEM) [89, 90]. Combining OCM and GEM provides a
powerful tool to study the structure of light nuclei [4, 26, 51, 59, 61] as well as light
hypernuclei [4, 91], because the Pauli-blocking effect among the clusters is properly
taken into account and GEM covers an approximately complete model space [89, 90].
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It is also useful to apply Kukulin’s method [92] for removing the Pauli-forbidden
states uF ’s from the wave function 	(OCM)

nα . The present OCM-GEM framework,
for example, in the case of 16O, can cover a model space large enough to describe
the dilute α gas-like configuration, as well as α + 12C cluster and shell-model-like
ground state structures.

5.2.4 Single α-Particle Density Matrix and Occupation
Probabilities

A literal interpretation of an α condensate in a finite system is that all the α parti-
cles occupy the lowest 0S-wave orbit of an α mean field potential. Due to residual
interactions and the action of the Pauli principle, the occupation probabilities may
spread out over several orbits, but a particular orbit should be occupied with a sig-
nificant probability if a state is called a condensate. The occupation probability can
be calculated by solving the eigenvalue problem of a single α-particle density matrix
[25–27, 93–96].

The single α-particle density matrix for the nα boson system can be defined
with the use of the nα Boson wave function 	(B)nα (ξ) in Eq. (5.21) mapped from the
translationally invariant normalized microscopic nα wave function in Eq. (5.1),

ρ
(1)
int (q1,q1

′) =
(

n

n − 1

)3

ρ
(1)
int,J(ξ1, ξ1

′), (5.28)

ρ
(1)
int,J(ξ1, ξ1

′) =
∫ n−1∏

i=2

dξ i	
(B)
nα

∗
(ξ1, ξ2, . . . , ξn−1)	

(B)
nα (ξ1

′, ξ2, . . . , ξn−1),

(5.29)
where q1 = n−1

n ξ1 = R1 − XG is the 1st particle coordinate (R1) with respect
to the c.o.m coordinate of the system (XG) and ξ1 denotes the relative coordinate
between the 1st particle and the remaining (n−1) ones. The factor in Eq. (5.28) is the
Jacobian ∂ξ1/∂q1. Since the wave function	(B)nα (ξ) is totally symmetric with respect
to particle permutation, the choice of the 1st particle is arbitrary. The definition (5.29)
is called the Jacobi-type one-particle density matrix. The diagonal density matrix
ρ
(1)
int (q,q) stands for the density distribution of α particles with respect to the c.o.m.

coordinate of the nα system. The eigenvalue problem of the density matrix ρ(1)int ,

∫
dq′ρ(1)int (q,q′)ϕ(q′) = λϕ(q), (5.30)

gives the single α-particle orbit ϕ(q) and its occupation probability λ, where q is
measured from the c.o.m. coordinate of the system. The spectrum of eigenvalues of
the density matrix ρ(1)int gives information on the occupancy of the orbits of the system
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and it is obviously equal to that of ρ(1)int,J. The occupation probability is labeled with
the angular momentum L and the quantum number of a positive integer nL , like LnL .

In this article, for a single-α orbit with an angular momentum L, we denote the largest
occupation probability as L1 (nL = 1), the second largest as L2 (nL = 2), the third
largest as L3 (n3 = 3), etc. Please notice that the positive number nL is different
from the number of nodes for the radial part of the corresponding single-α orbit ϕ(q)
(for instance, in Fig. 5.13, the single-α orbits labeled as L = 0 and nL = 1 (S1)

have 2S and 0S nodal behaviors for the ground state (0+
1 ) and the Hoyle state (0+

2 ),

respectively).
Let us remind that one should use the Jacobi coordinate system for the choice of

the internal coordinates of the density matrix. If an internal coordinate system other
than the Jacobi coordinate system is adopted (for example, that adopted by Pethick
and Pitaevskii (PP) [97]), an unphysical result is obtained even for condensation of a
finite number of ideal bosons in a harmonic trap, contrary to what PP expected. Two
physically motivated criteria for the choice of the adequate coordinate system lead
to a unique answer for the internal one-particle density matrix, i.e. the Jacobi-type
internal density matrix, while the PP-type one-body density matrix does not satisfy
the criteria (see Refs. [95, 96] for details).

In general even for the 3α system, one encounters numerical difficulties to obtain
the boson wave function mapped from the microscopic nα wave function, 	(B)nα =
N1/2χ in Eq. (5.21), by solving the boson equation in Eq. (5.22), as mentioned above.
Thus, it is hard in general to calculate the one-body density matrix for the α particle
ρ
(1)
int in Eq. (5.28). To overcome this difficulty, the following two approximate ways

have so far been proposed to evaluate the density matrix. One is, as for the boson
wave function, to use the nα OCM wave function (5.27) obtained by solving the
OCM equations (5.25) and (5.26), i.e. 	(B)nα � 	

(OCM)
nα [26, 51]. The application of

this method was done for the 3α and 4α systems, the results of which are presented
in Sects. 5.4.1 and 5.4.2. The other is to make the following approximation for the
boson wave function as proposed in Refs. [25, 27], 	(B)nα (ξ) � Nχ/

√〈Nχ |Nχ〉.
This method was used for the 3α and 4α THSR wave functions. The results are
discussed in Sect. 5.4.2. The two approximations give quantitative similar results for
the occupation probabilities and for the single-α orbits in the 3α and 4α systems,
which are obtained by solving the eigenvalue problem of Eq. (5.30).

5.3 THSR Wave Function Versus Brink Wave Function for 8Be

Before discussing the Hoyle state, it is instructive to study 8Be in some detail because
even this nucleus which is known to have intrinsically a two-alpha dumbbell structure
[6, 7] can very well be described in the laboratory frame with the THSR wave
function. Let us repeat Eq. (5.1) for this particular case

Ψ2α = A
[
χ(r)φα1φα2

]
, (5.31)
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Fig. 5.2 (Color online) Comparison of THSR wave function with a single component “Brink” wave
function with D = 3.45 fm (denoted by n = 1). The convergence rate with the superposition of several
(n) “Brink” wave functions is also shown. The line denoted by n = 30 corresponds to the full RGM
solution. The Volkov No.1 force is taken with Majorana parameter value M = 0.56. Figure is taken
from Ref. [22]

with the relative coordinate between the 2α particles, r = R1 − R2. Note that
Eq. (5.31) is a fully antisymmetric and translationally invariant wave function in
8 − 1 = 7 coordinates. Solving the RGM equation in Eq. (5.6) with a given
Hamiltonian, one obtains the energy E of 8Be and χ. The 2α boson wave func-
tion 	(B)2α (r) representing the relative motion of the two α-particles, mapped from
the corresponding fermionic 2α wave function Ψ2α, is given in Eq. (5.21),

	
(B)
2α (r) =

∫
dr′N 1/2(r, r′)χ(r′), (5.32)

Expressions (5.31) and (5.32) have been obtained with very high numerical accuracy
since 50 years with excellent results for all low energy properties of 8Be [6]. The radial
part of the 2α boson wave function r	2α(r) in the ground state (Jπ = 0+) is shown
in Fig. 5.2 denoted by n = 30. We see that there exist two nodes, an effect which
stems from the Pauli principle.

Here we will discuss two approximate forms for χ(r): the THSR wave function
and the Brink cluster wave function [75]. Let us start with the latter. In the Brink
wave function, the α particles are placed at certain positions in space. In the case of
8Be, placing the 2α particles at the positions of D/2 and −D/2, respectively, this
leads to
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χBrink(r) = P̂ J=0exp

⎡

⎢⎣−
(

R1 − D/2 − (R2 + D/2)
)2

b2

⎤

⎥⎦

= P̂ J=0exp

[
− 1

b2 (r − D)2
]
, (5.33)

where P̂ J=0 denotes the projection operator onto spin J = 0. Though this kind of
geometrical, crystal-like viewpoint of the cluster structure works well for many cases,
for instance, parity-violating 12C+α, 16O+α, and 40Ca+α structures in 16O, 20 Ne
and 44Ti, respectively [2, 98–100], and also when additionally neutrons are involved
[101], it is on the contrary known since several decades that this picture fails for
the description of the famous Hoyle state, i.e. the 0+

2 state in 12C (see Sect. 5.4).
The ansatz of the two α particles being placed at a distance D from one another
seems reasonable, since the Quantum Monte Carlo calculation with realistic two-
and three-nucleon potentials in Ref. [7] indeed indicates that the two α’s are about
4 fm apart. Obviously, the parameter D can be varied to find the optimal position
of the α-particles. The result of such a procedure is shown in Fig. 5.2 with the line
denoted by n = 1 taking the optimal value D = 3.45 fm (b is kept fixed at its free
space value, b = 1.36 fm). Qualitatively such a “Brink" wave function follows the full
variational solution (line denoted by n = 30). However, in the outer part, for instance in
the exponentially decaying tail quite strong differences appear. The squared overlap
with the exact solution is 0.722. Of course,the Brink wave functions also can serve
as a basis and it is interesting to study the convergence properties. We, therefore,
write for the 8Be wave function appearing in Eq. (5.6)

Ψ2α = A
[
χ(r)φα1φα2

] =
∑

i

fiΨ
Brink
2α

(
r, D(i), b

)
, (5.34)

Ψ Brink
2α

(
r, D(i), b

)
= A

[
χBrink

D(i) (r)φα1φα2

]
(5.35)

where the D(i) indicate the various positions of the α-particles and fi are the
expansion coefficients. The convergence of the squared overlap with the exact
solution is studied where we take for the positions D(1) = 1 fm, D(2) = 2 fm,
. . . , D(n) = n fm. We start with n = 5. In Fig. 5.3 the convergence rate is shown as
a function of n for the squared overlap and for the energy. The point of n = 1 is with
the optimized single Brink wave function (D(1) = 3.45 fm). We see that the con-
vergence is not extremely fast but for n = 20 the squared overlap with the full RGM
solution amounts to 0.9999. Also energy is converged to within 10−4. In Fig. 5.2 we
show the convergence of the 2α boson wave function r	2α(r). In the insert we see
that there is still a slight change in the far tail going from n = 25 to n = 30.

Let us now investigate the THSR ansatz for χ(r). There it is assumed from the
beginning that the α’s are delocalised and a single Gaussian e−r2/B2

centered at the
origin with, however, a large width B2 = b2 +2β2,with β a variational parameter, is
taken. Very much improved results over the single component Brink wave function
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are obtained. With β = 3.24 f m the squared overlap becomes 97.24%. However,
practically 100% accuracy, compared with the exact solution, can be achieved starting
with a slightly improved ansatz, i.e. with an axially symmetric deformed Gaussian
which is then projected on the ground-state spin J = 0 (projections on J = 2,4 yield
the rotational band of 8Be) [102],

χTHSR(r) =P̂ J=0exp

(
− r2⊥

b2 + 2β2⊥
− r2

z

b2 + 2β2
z

)

∝exp(−r2/B2⊥)
ir

Erf

(
i
(B2

z − B2⊥)1/2

B⊥Bz
r

)
, (5.36)

with B2
i = b2 + 2β2

i and r2⊥ = r2
x + r2

y , and Erf(x) the error function. The second
line of Eq. (5.36) is obtained from a simple calculation.

Such an intrinsically deformed ansatz is, of course, physically motivated by the
observation of the rotational spectrum of 8Be indicating a large value of the cor-
responding moment of inertia. The minimization of the energy yields β⊥ = βx =
βy = 1.78 fm and βz = 7.85 fm. With these numbers, the squared overlap between
the exact Ψ2α and Ψ THSR

2α is with 0.9999 extremely precise. In Fig. 5.2 we also show
that the THSR wave function agrees very well even far out in the tail with the “exact”
solution with 30 “Brink” components.

As seen above, the single component, two parameter THSR ansatz, Eq. (5.36),
for the relative wave function of two alpha’s seems to grasp the physical situation
extremely well. The most important part of this wave function is the outer one beyond
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some 3 fm. There, the two alpha’s are in an S wave of essentially Gaussian shape.
The corresponding harmonic oscillator frequency is estimated to �ω ∼ 2 MeV.
Therefore, as long as the two alpha’s do not overlap strongly, they swing in a very low
frequency harmonic oscillator mode in a wide and delocalized fashion, reminiscent
of a weakly bound gas like state. Inside the region r < 2−3 fm where the two alpha’s
heavily overlap, because of the strong action of the Pauli principle, the relative wave
function has two nodes and small amplitude, as shown in Fig. 5.2. Contrary to the
outer part of the wave function determined dynamically, the behavior of the relative
wave function in this strongly overlapping region is determined kinematically, solely
reflecting the r-dependence of the norm kernel in Eq. (5.7). This is clearly seen from
the fact that both THSR and Brink wave functions have very nearly the same behavior
in this region. Thus, we found that the alpha’s in 8Be move practically as pure bosons
in a relative 0S state of very low frequency as long as they do not come into one
another’s way, that is as long as they do not overlap. One should stress that this
picture holds after projection on good total momentum and good spin, that is in the
laboratory frame. It is equally true, as already mentioned, that in the intrinsic frame
8Be can be described as a strongly deformed two alpha structure, see ansatz (5.36),
reminiscent of a dumbbell.

5.4 Alpha-Gas Like States in Light Nuclei

5.4.1 12C Case

The α cluster nature of 12C has been studied by many authors using various
approaches. Figure 5.4 shows the energy spectrum of 12C [19]. The 0+

2 state, located
near the 3α breakup threshold, is called the Hoyle state [17, 18], which plays an
astrophysically crucial role in the synthesis of 12C in the universe. Its small excita-
tion energy of 7.65 MeV is very difficult to explain by the shell model, even using the
most modern non-core shell model approach [32–35]. The fully microscopic 3α clus-
ter models [8–13], however, succeeded in the 1970s in explaining the observed data
such as the small excitation energy and the inelastic form factor of the (e,e′) reaction
etc., together with the structures of the ground-band states (0+

1 −2+
1 −4+

1 ), 2+
2 , and

negative-parity states (3−
1 − 1−

1 ). The cluster model studies with the 3α GCM (gen-
erator coordinate method) [8–10] and 3α RGM [11–13] showed that the Hoyle state
has a weakly interacting gas like 3α-cluster structure with a very large radius (about
1/3 of the ground-state density), whereas the ground state has a shell-model-like
compact structure.

This 3α gas-like nature of the Hoyle state is demonstrated in Fig. 5.5, in which the
overlap between a Brink-type wave function and the full RGM solution obtained by
solving the 3α RGM equation in Eq. (5.6) is shown. The overlap is quite poor and in
the best case the squared overlap reaches only about 50%. This means that the 0+

2 state
has a distinct clustering and has no definite spacial or geometrical configuration. The
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Fig. 5.4 Experimental
energy spectra of 12C [19]
together with the calculated
ones using the 3α RGM
[11–13]

EXP 3  RGM

Fig. 5.5 Structure of the 0+
2

state shown by the overlap
between the Brink-type
cluster wave function of the
isosceles configuration and
the exact 0+

2 wave function.
Figure adopted from
Ref. [2, 8–10]

situation is also pointed out in a recent work [15, 16], in which about 55 components
of the Brink-type wave functions are needed to reproduce accurately the full RGM
solution for the Hoyle state. However, this Hoyle-state wave function is shown to be
almost completely equivalent to a “single THSR wave function“ as discussed in next
section.

5.4.1.1 THSR Description of the Hoyle State

The total wave function for 12C in the THSR description is obtained by solving the
Hill–Wheeler equation based on Eqs. (5.18), (5.19) and (5.20). Table 5.1 shows the
results of the energies, r.m.s. radii, and monopole strengths in the THSR description
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Table 5.1 Comparison of the total energies, r.m.s. radii (Rr.m.s.), and monopole strengths (M(0+
2 →

0+
1 )) for 12C given by solving Hill–Wheeler equation based on Eq. (5.3) and by Ref. [11–13]. The

effective two-nucleon force Volkov No. 2 [103] was adopted in the two cases for which the 3α
threshold energy is calculated to be −82.04 MeV

THSR w.f. (Hill–Wheeler) 3α RGM [11–13] Exp.

E (MeV) 0+
1 −89.52 −89.4 −92.2

0+
2 −81.79 −81.7 −84.6

Rr.m.s. (fm) 0+
1 2.40 2.40 2.44

0+
2 3.83 3.47

M(0+
2 → 0+

1 ) (fm
2) 6.45 6.7 5.4

Fig. 5.6 (Color online) Comparison of the experimental inelastic form factor of 12C(e, e′) with
the RGM (denoted by cluster), THSR (BEC) and FMD calculations. Figure is adopted from
Ref. [15, 16]

together with those of the full 3α RGM calculation and the data. One can see that
the THSR description succeeds to reproduce the properties of the two 0+ states.
Inspecting the r.m.s. radii, the Hoyle state has a volume 3–4 times larger than that
of the ground state of 12C. The inelastic form factor of 12C from the ground state to
the Hoyle state in the THSR description is displayed in Fig. 5.6. We reproduce very
accurately the experimental data.

In order to study how good a single 3α THSR wave function reproduces the full
RGM solutions, we use the THSR wave function with axially symmetric deformation,
presented as

Ψ3α(β⊥, βz) = A
{
χTHSR

3α (β⊥, βz)φαφαφα

}
, (5.37)
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χTHSR
3α (β⊥, βz) = exp

[
−2

2∑

i=1

μi

(
ξ2

i⊥
b2 + 2β2⊥

+ ξ2
i z

b2 + 2β2
z

)]
, (5.38)

where ξ1,2 are the two Jacobi coordinates with μ1 = 1/2 and μ2 = 2/3, and β⊥
and βz are the deformation parameters with β⊥ = βx = βy . The wave function with
good total spin J = 0 is written as

Ψ J=0
3α (β⊥, βz) = P̂ J=0Ψ3α(β⊥, βz), (5.39)

where P̂ J is the angular momentum projection operator. In what concerns the THSR
wave function for the description of the Hoyle state, the situation is slightly more
complicated than in the 8Be case by the fact that the loosely bound 3α configuration
is now no longer the ground state but the 0+

2 state at 7.65 MeV excitation energy (as
a side remark, let us mention that usually Bose–Einstein condensates of cold atoms
also are not the ground states of the systems which are given by small crystals). As
discussed in Sect. 5.2, the wave function (5.39) has the dominant configuration of
the ground state in the limit of β⊥ = βz = 0. Thus, in order to discuss the Hoyle
state, we have to use the 3α wave function Ψ̃ J=0

3α which is orthogonal to the ground
state, expressed as

Ψ̃ J=0
3α (β⊥, βz) = P̂ J=0 P̂g.s

⊥ Ψ3α(β⊥, βz), (5.40)

where P̂g.s
⊥ keeps the wave function in Eq. (5.40) to be orthogonal to the ground-state

wave function, i.e. P̂g.s
⊥ = 1 − |0+

1 〉〈0+
1 |.

On the left side of Fig. 5.7, we show the contour map of the energy surface corre-
sponding to the state (5.39) in the two parameter space (β⊥, βz), defined as

E(β⊥, βz) = 〈Ψ J=0
3α (β⊥, βz)|H |Ψ J=0

3α (β⊥, βz)〉
〈Ψ J=0

3α (β⊥, βz)|Ψ J=0
3α (β⊥, βz)〉

, (5.41)

where H is the microscopic Hamiltonian of 12C used in the 3α RGM calculation. One
sees a minimum at β⊥ = 1.5 fm and βz = 1.5 fm, which means a spherical shape.
The minimum energy of −87.68 MeV is about 1.7 MeV higher than the total energy
of −89.4 MeV obtained by the full 3α RGM calculation (see Table 5.1). When the
Hill–Wheeler equation in Eq. (5.20) is solved in the two-parameter space of β⊥ and
βz, we can reproduce the total energy of the RGM result.

On the right side of Fig. 5.7, the contour map of the energy surface corresponding
to the state (5.40) orthogonal to the ground state is displayed, where we use the
ground-state solution of the Hill–Wheeler equation in the two-parameter space of
β⊥ and βz .We see an energy minimum at β⊥ = 5.2 fm and βz = 1.5 fm in the prolate
region of the map and a second energy minimum at β⊥ = 2.6 fm and βz = 7.5 fm in
the oblate region. The minimum energy value is −81.75 MeV. This value is almost
the same as the total energy of −81.67 MeV obtained by the full 3α RGM (see
Table 5.1). The minimum energy of −81.75 MeV is close to the second minimum
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Fig. 5.7 (Color online) Contour map of the energy surface in the two parameter space (β⊥, βz)

for (left) Ψ J = 0
3α (β⊥, βz) in Eq. (5.39) and for (right) Ψ̃ J=0

3α (β⊥, βz) in Eq. (5.40) orthogonal to the
ground state

energy of −81.67 MeV and there is a valley with an almost flat bottom connecting
these two minima. This means that the energy of the spherical configuration is only
slightly higher than that of the deformed configuration, that is, the energy gain due
to the deformation is small.

A very remarkable result from the right side of Fig. 5.7 is that the wave function
at the minimum energy point (β⊥ = 5.3 fm and βz = 1.5 fm) has 99.3% squared
overlap with the full RGM solution (see Fig. 5.8), although the spherical wave func-
tion (β⊥ = βz = 4.0 fm) gives already a squared overlap of 92%. The THSR wave
function Eq. (5.37) is of Gaussian type with a wide extension, centered at the origin.
It is completely different from a Brink type wave function with the three α-particles
placed at definite values in space. A slight improvement of Eq. (5.40) can still be
achieved in taking the βi parameters as Hill–Wheeler coordinates and superpose a
couple of wave functions of the type (5.40) with different width parameters. Practi-
cally 100% squared overlap with the wave function of the full RGM result is then
achieved. It should be pointed out that the superposition of several Gaussians of the
type (5.40) does not at all change the physical content of the THSR wave function
as a wide extended distribution centered around the origin. Therefore, the Hoyle
state can be seen as three almost inert α-particles moving in their own mean field
potential, to good approximation given by a wide harmonic oscillator, whereas the
α’s are represented by four nucleons captured in narrow harmonic potentials. The
situation is given as a cartoon in Fig. 5.9.
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Fig. 5.8 (Color online)
Contour map of the squared
overlap of the normalized
THSR wave function
Ψ̃ J=0

3α (β⊥, βz) in Eq. (5.40),
orthogonal to the ground
state, with the full RGM
solution
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Fig. 5.9 (Color online) Pictorial representation of the THSR wave function for n = 3 (12C). The
three α-particles are trapped in the 0S-state of a wide harmonic oscillator (B) and the four nucleons
of each α are confined in the 0s-state of a narrow one (b). All nucleons are antisymmetrized

5.4.1.2 Influence of Antisymmetrization and Orthogonalization

A crucial question is whether for the Hoyle state the THSR wave function (5.1)
with (5.8) can be considered to good approximation as a product state of α particles
condensed with their c.o.m. motion into the 0S orbital. For this, one has to quantify
the influence of the antisymmetrizer A in Eq. (5.1). A direct way to measure the
influence of antisymmetrization is to study the following expectation value of the
antisymmetrizer A,

N (B) = 〈B|A|B〉
〈B|B〉 , (5.42)

where |B〉 is the THSR wave function in Eq. (5.12) without the antisymmetrization,
that is, just the product state ψα1ψα2ψα3 in Eq. (5.13). The normalization of the
antisymmetrizer A is chosen so that N(B) becomes unity in the limit where the
intercluster overlap disappears, i.e. for the with parameter B → ∞.

The result of N(B) is shown in Fig. 5.10 as a function of the width parameter
B. We chose, as optimal values of B for describing the ground and Hoyle states,
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Fig. 5.10 (Color online)
Expectation value of the
antisymmetrization operator
for the product state |B〉. The
value at the optimal B values,
Bg for the ground state and
BH for the Hoyle state, are
denoted by a circle and a
cross, respectively
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B = Bg = 2.5 fm and B = BH = 6.8 fm, for which the normalized THSR wave
functions give the best approximation of the ground state 0+

1 and the Hoyle state
0+

2 , respectively, which are obtained by solving the Hill–Wheeler equation (5.20).
The squared overlaps are 0.93 and 0.78, respectively. From Fig. 5.10 we find that
N (BH ) ∼ 0.62 and N (Bg) ∼ 0.007. These results indicate that the influence of
the antisymmetrization is strongly reduced in the Hoyle state compared with the
influence in the ground state. An important point in the present consideration is that
the THSR wave function at B = BH is not automatically orthogonal to the ground
state. This is contrary to the situation with condensed cold bosonic atoms, for which
the density is so low that the overlap of the electron clouds can, on average, be
totally neglected. In the present case, the squared overlap of |THSR(B = BH )〉 with
|THSR(B = Bg)〉 (or with the ground state 0+

1 obtained by solving the Hill–Wheeler
equation) is less than 0.12. This small value indicates that the orthogonality with the
ground state is nearly realized.

An explicit orthogonalization with |THSR(B)〉 to the ground state 0+
1 obtained

by solving the Hill–Wheeler equation gives non-negligible effects for a quantita-
tive description of the Hoyle state with the THSR wave function. As mentioned in
Sect. 5.4.1.1, the normalized THSR wave function orthogonal to the ground state

0+
1

(
∼ P̂(g.s)⊥ |THSR(B)〉

)
gives a squared overlap of 0.92 (for B = 6.1 fm) with the

0+
2 state obtained by solving the Hill–Wheeler equation, although the squared over-

lap using the normalized THSR wave function without the orthogonalization gives
already a value of 0.78. In addition, as shown in Fig. 5.11, the energy curves for the
THSR wave function,

E(B) = 〈THSR(B)|H |THSR(B)〉
〈THSR(B)|THSR(B)〉 , (5.43)

indicates a minimum corresponding to the ground state at B ∼ Bg, but the second
minimum corresponding to the Hoyle state is not present. This is due to the fact that
the THSR state with B = BH , |THSR(B = BH )〉, still includes the ground-state
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Fig. 5.11 (Color online)
Energy curve in the
orthogonal space to the
ground state, denoted by
EP (B), together with E(B).
The values at the optimal B
values, Bg and BH for the
ground state and Hoyle state,
respectively, are marked by a
circle and a cross,
respectively
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component of about 10%, as mentioned above. In fact, if one calculates the energy
taking into account the explicit orthogonalization to the ground state,

EP (B) = 〈P̂(g.s)⊥ THSR(B)|H |P̂(g.s)⊥ THSR(B)〉
〈P̂(g.s)⊥ THSR(B)|P̂(g.s)⊥ THSR(B)〉

, (5.44)

there appears the minimum corresponding to the Hoyle state at B ∼ BH , as shown
in Fig. 5.11. Thus, the small admixture of the ground-state components to the Hoyle
state is never negligible, and explicit elimination by P̂(g.s)⊥ plays an essential role to
describe the Hoyle state. It is true that the effect of the antisymmetrization is not
negligible even for the Hoyle state in the sense that the projection operator P̂(g.s)⊥
excludes the compact ground-state components which are strongly subject to the
antisymmetrizer. Nevertheless, it is worth emphasizing that as a result of the explicit
orthogonalization to the ground state, the Hoyle state can not have a compact structure
but has a dilute density, for which, in the end, the effect of antisymmetrization is small.

5.4.1.3 Alpha-Particle Occupation Probabilities, Momentum Distribution,
and the de Broglie Wave Length in the Hoyle State

Direct quantities indicating how well the Hoyle state is described by a product state
of three α’s are the α-particle occupation probabilities and single particle orbits,
which are obtained by diagonalizing the internal single α-particle density matrix
ρ
(1)
int (q, q ′) defined in Eq. (5.28). The occupation of the single-α orbits of the Hoyle

state is shown in Fig. 5.12. One finds that the α particles occupy the S1 orbit to over
70%, and those for other orbits are very small. This means that each of the three
α particles in the 0+

2 state is in the S1 orbit with occupation probability as large
as about 70%. The radial behavior of the S1 orbit is illustrated with the solid line
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Fig. 5.12 (Color online)
Occupation of the single-α
orbitals of the Hoyle state of
12C compared with the
ground state
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in Fig. 5.13b. We see no nodal behavior but small oscillations in the inner region
(r < 4 fm) and a long tail up to r ∼ 10 fm. For reference, the radial behavior of
the S-wave Gaussian function, ϕ0s(r) = N0s(B)exp(−r2/(2B2)), is drawn with
the dashed line in Fig. 5.13b, where the size parameter B is chosen to be 3.6 fm, and
N0s(B) denotes the normalization factor. The radial behavior of the S1 orbit is similar
to that of the S-wave Gaussian function, in particular, in the outer region (r > 4 fm),
whereas a slight oscillation of the former around the latter can be seen in the inner
region (r < 4 fm). Thus, the Hoyle state can be described as the product state of
(0S)3α being realized with a probability of over 70%.

In the case of the ground state of 12C, the α-particle occupations are equally
shared between S1, D1 and G1 orbits (see Fig. 5.12), thus invalidating a conden-
sate picture for the ground state. These occupancies can be explained quite well
from the following fact: The ground state has as main configuration the SU(3) shell
model wave function (λ, μ) = (04). Figure 5.13a demonstrates the radial parts for
the S1−, D1, and, G1-orbits, the number of nodes of which are two, one and
zero, respectively. Reflecting the SU(3) character, the radial behavior of the three
orbits is similar to those of the harmonic oscillator wave functions (uN L) with
Q = 4, u02, u21 and u40, respectively, where N (L) denotes the number of nodes
(orbital angular momentum). We see that the radial parts of the single α-particle
orbits oscillate strongly in the inside region (r < 4 fm). This is due to the important
Pauli blocking effect for the ground state with its compact shell-model-like structure.

Another important quantity to demonstrate the 3α condensate nature of the Hoyle
state is the momentum distribution of a single-α particle. It is defined as a double
Fourier transformation of the internal single-α density matrix ρ(1)int (q, q ′) defined in
Eq. (5.28),

ρ(k) =
∫

dq′dq
eik·q′

(2π)3/2
ρ
(1)
int (q,q′) e−ik·q

(2π)3/2
,

∫
dkρ(k) = 1, (5.45)



252 T. Yamada et al.

Fig. 5.13 Radial parts of the
single α orbits, a S1 (solid
line), D1 (dashed) and G1
(dotted), in the 0+

1 state, and
b the S1 (solid) orbit in the
0+

2 state compared with an
S-wave Gaussian function
(dotted), rϕ0s , with the size
parameter B = 3.6 fm (see
text) [26]. Note that all the
radial parts in figures are
multiplied by r
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Let us remind that ρ(k) would have a δ-function like peak around k = 0 for an ideal
dilute condensed state in homogeneous infinite matter.

The momentum distributions of the α particle, ρ(k) and k2 ×ρ(k), are shown for
the 0+

1 and 0+
2 states in Fig. 5.14. Reflecting the dilute structure of the Hoyle, we see

a strong concentration of the momentum distribution in the k < 1 fm−1 region, and
the behavior of ρ(k) is of the δ-function type, similar to the momentum distribution
of the dilute neutral atomic condensate states at very low temperature trapped by
an external magnetic field [104]. On the other hand, the ground state has higher
momentum components up to k ∼ 6 fm−1 as seen from the behavior of k2 × ρ(k)
reflecting the compact structure. The above results for the radial behavior of the S1
orbit, occupation probability and momentum distribution for the 0+

2 state again lead
us to conclude that this state is of the 3α condensate character with as much as about
70% occupation probability.
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Fig. 5.14 Momentum
distribution of the α particle
in 12C, a ρ(k) and b k2ρ(k),
for the 0+

1 (solid line) and 0+
2

(dotted) states [26]
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The de Broglie wave length of the α’s moving in the Hoyle state is an interesting
quantity. It can be estimated from the resonance energy of 8Be being roughly 100 keV.
Otherwise, one can estimate the kinetic energy of theα-particles from a bosonic mean
field picture using the Gross–Pitaevskii equation [56] (see Sect. 5.4.3). The mean
field potential of α-particles in the Hoyle state (see Fig. 5.23) indicates the position
of the single α particle energy (180 keV). The kinetic energy of the single α particle is
calculated to be 380 keV. From this, the de Broglie wave length λ = 2π( 2Mα

�2 Eα)−1/2

is, therefore, estimated to be of a lower limit of approximately 20 fm. A more reliable
estimate of the de Broglie wave length is to use the expectation value of k2 for the
wave number k of the α particle in the Hoyle state, evaluated from the momentum
distribution of the alpha particle,ρ(k), in Fig. 5.14, obtained by a 3αOCM calculation
[26]. The result is λ = 2π/

√〈k2〉 ∼ 20 fm, consistent with the previous value.
These estimates all indicate that the de Broglie wave length is much longer than the
inter α-particle distance, contrary to what is claimed in Ref. [105], using qualitative
arguments.
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Fig. 5.15 (Color online)
Theoretical interpretation of
the 0+

2 , 2+
2 and 0+

3 states

0

10

5

15

10
+

14
+

30 +

20+

12+4.44

7.66

14.1

10.3

22 +
9.9

Ex (MeV)

7.272 M e V3α
αα α

α α
α

α α
α

5.4.1.4 Family of the Hoyle State: 2+
2 and 0+

3

In the previous section, we found that the Hoyle state has a dilute 3α-condensate-
like structure with a main configuration of (0S)3α. Then, an excited state of the Hoyle
state, for example, a 2+ state with (0S)2α(0D)α, may exist somewhat higher up in
energy than the Hoyle state. Itoh et al. observed the 2+

2 state at 2.6 ± 0.3 MeV above
the 3α threshold with a width of 1.0 ± 0.3 MeV by measuring α particles decaying
from excited 12C states with inelastic α scattering [36]. This state was quite recently
confirmed by experiment with a high-energy-resolution magnetic spectrometer [39].

A deformed calculation using the THSR wave function in Eqs. (5.37) and (5.38)
was performed for the 2+ state of 12C. Projecting on good angular momentum with a
treatment of resonances yields the position of the 2+

2 -state in 12C (2.1 MeV above 3α
threshold) which is in good agreement with the experimental value [28, 36]. Also the
calculated width (0.64 MeV) gives a quite reasonable estimate of the data. Detailed
investigation of the wave function of the 2+

2 -state shows that it can essentially be
described in lifting out of the condensate state with the three α’s in the 0S-orbit, one
α-particle in the next 0D-orbit. It is tempting to imagine that the 0+

3 -state which,
experimentally, is almost degenerate with the 2+

2 -state, is obtained by lifting one
α-particle into the 1S-orbit. Preliminary theoretical studies [30, 31] indicate that
this scenario might indeed apply. However, the width of the 0+

3 state is very broad
(∼ 3 MeV), rendering a theoretical treatment rather delicate. Further investigations
are necessary to validate or reject this picture which is shown graphically in Fig. 5.15.
Anyway, it would be quite satisfying, if the triplet of states, (0+

2 , 2+
2 , 0+

3 ) could all be
explained from the α-particle perspective, since those three states are precisely the
ones which cannot be explained within a (no core) shell model approach [32–35].
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5.4.1.5 Precursors of a 3α Condensate State: 3−
1 and 1−

1

The 3− state at E3α = 2.37 MeV measured from the 3α threshold in Fig. 5.4 is
interesting from the point of view of the dilute α condensation. If the state is a
condensate with all of the 3α particles in the P orbit, there is the possibility of a
superfuid with a vortex line, similar to the rotating dilute atomic condensate at very
low temperature [104]. Thus, it is an intriguing problem to study the structure within
the 3α OCM. The OCM [26] reproduces well the energy of the 3−

1 state as well as
the 1−

1 state (E3α = 3.57 MeV) with respect to the 3α threshold.
The calculated nuclear radius of the 3− state is 2.95 fm, the value of which is

larger than that for the ground state (0+
1 ), while it is smaller than that for the 0+

2
state. This suggests that the structure of the 3− state is intermediate between the shell-
model-like compact structure (0+

1 ) and the dilute 3α structure (0+
2 ). The occupation

probabilities of the single-α orbits of the state are 44.7% for P1-orbit and 27.9% for
F1-orbit. Although the concentration of the single P1 orbit amounts to about 50%,
the radial behavior of the single-α orbit has two nodes in the inner region. However,
the amplitude of the inner oscillations is significantly smaller than that for the ground
state in Fig. 5.13a [26]. The small oscillations indicate a weak Pauli-blocking effect,
and thus, we can see the precursor of a 3α condensate state [26], although the 3−
state is not an ideal rotating dilute 3α condensate.

As for the 1−
1 state, the calculated nuclear radius, 3.32 fm, is larger than that of

the ground state and the 3−
1 state but is still smaller than that of the 0+

2 one. The
occupation probabilities of the α particles in the 1−

1 state are 35% for P1 orbit and
16% for F1 orbit. Thus, there is no concentration of the occupation probability to a
single orbit like in the 0+

2 state. Since the α particles in the 1−
1 state are distributed

over several orbits, the state is not of the dilute α-condensate type. On the other hand,
the radial behavior of the P1 orbit has two nodes in the inner region, the behavior
of which is rather similar to the 2P harmonic oscillator wave function. However, the
F1 orbit has a F-wave Gaussian-type behavior. Also the oscillatory behavior of the
F1 orbit for 0 < r < 2 fm is similar to the one of the S1 orbit in the 0+

2 state in
Fig. 5.13. These interesting behaviors of the F1 orbit indicate some signal of dilute α
condensation, reflecting the relatively large nuclear radius (3.32 fm) of the 1−

1 state.

5.4.2 16O Case

In the previous section, we showed that the Hoyle state, which has about one third
of saturation density, can be described, to good approximation, as a product state
of three α-particles, condensed, with their c.o.m. motion, into the lowest α mean
field 0S-orbit [25, 26]. These novel aspects indicate that the Hoyle state has a 3α-
condensate-like structure. The establishment of the novel aspect of the Hoyle state
naturally leads us to speculate about the possibility of 4α-particle condensation in
16O.
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Fig. 5.16 Comparison of
energy spectra among
experiment, the 4α OCM
calculation [51], and the
THSR treatment [27]. Dotted
line denotes the 4α threshold.
Experimental data are taken
from Ref. [19] and from Ref.
[48] for the 0+

4 state
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The experimental 0+ spectrum of 16O up to about the 4α disintegration thresh-
old is shown in Fig. 5.16. In the past, the 0+

1 (g.s), 0+
2 and 0+

3 states up to about
13 MeV excitation energy has very well been reproduced with a semi-microscopic
cluster model, i.e. the α +12 C OCM (Orthogonality Condition Model) [87, 88]. In
particular, this model calculation, as well as that of an α +12 C GCM (Generator-
Coordinate-Method) one [106], demonstrates that the 0+

2 state at 6.05 MeV and the
0+

3 state at 12.05 MeV have α +12 C structures [107] where the α-particle orbits
around the 12C(0+

1 )-core in an S-wave and around the 12C(2+
1 )-core in a D-wave,

respectively. Consistent results were later obtained by the 4αOCM calculation within
the harmonic oscillator basis [86]. However, the model space adopted in Refs. [83,
84, 86, 106] is not sufficient to account simultaneously for the α +12 C and the 4α
gas-like configurations. On the other hand, the 4α-particle condensate state was first
investigated in Ref. [5] and its existence was predicted around the 4α threshold with
the THSR wave function. While the THSR wave function can well describe the dilute
α cluster states as well as shell model like ground states, other structures such as
α +12 C clustering can not be treated and are only incorporated in an average way.
Thus, it is important to explore the 4α condensate without any a priori assumption
with respect to the structure of the 4α system. For this purpose, a full four-body
4α OCM calculation with Gaussian basis functions was performed [51]. This model
space is large enough to cover the 4α gas, the α +12 C cluster, as well as the shell-
model configurations. In this section, we first present the results of the 4α OCM
calculation, and then discuss a recent analysis with the THSR wave function for the
4α system.
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Table 5.2 Energies (E − E th
4α), r.m.s. radii (R), and monopole transition matrix elements to the

ground state [M(E0)]. Rexp. and M(E0)exp. are the corresponding experimental data. The finite
size of α particle is taken into account in R and M(E0) (see Ref. [26] for details)

4αOCM Experiment

E − E th
4α R M(E0) Γ E − E th

4α Rexp. M(E0)exp. Γexp.

0+
1 −14.37 2.7 −14.44 2.71 ± 0.02

0+
2 −8.00 3.0 3.9 −8.39 3.55 ± 0.21

0+
3 −4.41 3.1 2.4 −2.39 4.03 ± 0.09

0+
4 −1.81 4.0 2.4 0.60 −0.84 No data 0.6

0+
5 −0.248 3.1 2.6 0.20 −0.43 3.3 ± 0.7 0.185

0+
6 2.08 5.6 1.0 0.14 0.66 No data 0.166

5.4.2.1 4α OCM Analysis

The 4α OCM Hamiltonian was presented in Eq. (5.24). The effective α–α interac-
tion V eff

2α is constructed by the folding procedure from an effective two-nucleon force
[108, 109] including the Coulomb interaction. One should note that the folded α−α
potential reproduces the α−α scattering phase shifts and energies of the 8Be ground
state and of the Hoyle state. The three-body force V eff

3α was phenomenologically
introduced so as to fit the ground state energy of 12C. In addition, the phenomeno-
logical four-body force V4α was adjusted to the ground state energy of 16O. The
origin of the three-body and four-body forces is considered to be deducible from
the state dependence of the effective nucleon–nucleon interaction and the additional
Pauli repulsion between more than two α-particles. However, they are short-range,
and hence only act in compact configurations. The expectation values of those forces
is less than 10% of the one of the corresponding two-body term.

The Jπ = 0+ energy spectrum obtained by the 4α OCM is shown in Fig. 5.16.
We can reproduce the full spectrum of 0+ states up to about the 4α disintegration
threshold, and tentatively make a one-to-one correspondence of those states with the
six lowest 0+ states of the experimental spectrum. In view of the complexity of the
situation, the agreement is considered to be very satisfactory.

We show in Table 5.2 the calculated r.m.s. radii and monopole transition matrix
elements to the ground state, together with the corresponding experimental values.
The r.m.s. radius of the ground state is reproduced well, and those for the other five
0+ states are by about 10% or more larger than the ground state. The M(E0) values
for the 0+

2 and 0+
5 states are consistent with the corresponding experimental values.

The M(E0) value for the 0+
3 state is accurate only within a factor of two.

In order to analyze the obtained wave functions, it is useful to study the overlap
amplitude Y(r) and spectroscopic factor S2, which are defined as follows:

Y(r) =
√

4!
3!1!
〈[
δ(r ′ − r)

r ′2 YL(r̂′)	L(
12C)

]

0
|Ψ (0+

6 )

〉
, (5.46)
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Fig. 5.17 Spectroscopic factors of the α +12 C(Lπn ) channels (Lπn = 0+
1 , 1−

1 , 2+
1 , 3−

1 , 4+
1 , 0+

2 ) in
the six 0+ sates of 16O

S2 =
∫ ∞

0
dr [rY(r)]2 , (5.47)

where	L(
12C) is the wave function of 12C, given by the 3α OCM calculation [26],

and r is the relative distance between the center-of-mass of 12C and the α particle.
From this quantity we can see how large is the component in a certainα+12 C channel
which is contained in the wave functions obtained by the 4α OCM. The results of S2

factors are shown in Fig. 5.17. Since the ground state has a closed shell structure with
the dominant component of SU(3)(λ, μ) = (0, 0), the values of the S2 factors for 0+

1
in Fig. 5.17 can be explained by the SU(3) nature of the state. As mentioned above,
the structures of the 0+

2 and 0+
3 states are well established as having α +12 C(0+

1 )

and α +12 C(2+
1 ) cluster structures, respectively. These structures of the 0+

2 and 0+
3

states are confirmed by the 4α OCM calculation. In fact, one sees that the S2 factors
for the α+12 C(0+

1 ) and α+12 C(2+
1 ) channels are dominant in the 0+

2 and 0+
3 states,

respectively.
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Fig. 5.18 (Colors online)
Overlap amplitudes
multiplied by r, defined by
Eq. (5.46), for the 0+

6 state in
16O
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On the contrary, the structures of the observed 0+
4 , 0+

5 and 0+
6 states in Fig. 5.16

have, in the past, not clearly been understood, since they have never been discussed
with the previous cluster model calculations [83, 84, 86, 106]. Although Ref. [5]
predicts the 4α condensate state around the 4α threshold, it is not clear to which
of those states it corresponds to. As shown in Fig. 5.16, the 4α OCM calculation
succeeded, for the first time, to reproduce the 0+

4 , 0+
5 and 0+

6 states, together with
the 0+

1 , 0+
2 and 0+

3 states. From the analyses of the overlap amplitudes and the S2

factors (see Fig. 5.17), the 4α OCM showed that the 0+
4 and 0+

5 states mainly have
α +12 C(0+

1 ) structure with higher nodal behavior and an α +12 C(1−) structure,
respectively. The monopole strength of the 0+

5 state is reproduced nicely within the
experimental error.

In Table 5.2, the largest r.m.s. radius is about 5 fm for the 0+
6 state. Comparing

with the relatively smaller r.m.s. radii of the 0+
4 and 0+

5 states, this large size suggests
that the 0+

6 state may be composed of a weakly interacting gas of α particles of
the condensate type. In addition, the 0+

6 state has a large overlap amplitude with
the α +12 C(0+

2 ) channel with a S2 factor of about 2.0 (see Fig. 5.17), whereas the
amplitudes in the other channels are much suppressed (see Fig. 5.18). The amplitude
in the Hoyle-state channel has no oscillations and a long tail stretches out to ∼20 fm.

While a large size is generally necessary for forming anα condensate, the best way
for its identification is to investigate the single-α orbit and its occupation probability,
which can be obtained by diagonalizing the one-body (α) density matrix as defined
in Eq. (5.28) [25, 26, 93–96]. As a result of the calculation of the L = 0 case, a
large occupation probability of 61% of the lowest 0S-orbit is found for the 0+

6 state,
whereas the other five 0+ states all have appreciably smaller values, at most 25%
(0+

2 ).The corresponding single-α S orbit is shown in Fig. 5.19. It has a strong spatially
extended behavior without any node (0S). This behavior is very similar to that of the
overlap amplitude of 0+

6 for the α +12 C(0+
2 ) channel shown in Fig. 5.18. These

results indicate that α particles are condensed into a very dilute 0S single-α orbit, see
also Refs. [26, 110]. In addition, Fig. 5.20 shows the momentum distribution k2ρ(k)
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Fig. 5.19 (Color online)
Radial parts of single-α
orbits with L = 0 belonging
to the largest occupation
number, for the ground and
0+

6 states
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Fig. 5.20 (Color online)
Momentum distribution of α
particles multiplied by
k2, k2ρ(k), in the six 0+
states of 16O
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of α particles in the six 0+ states defined in Eq. (5.45). One sees that the momentum
distribution of the 0+

6 state concentrates strongly in the narrow region k < 1 fm−1,

and the behavior is quite similar to that of the Hoyle state in Fig. 5.14. Thus, the 0+
6

state clearly has, according to our calculation, a 4α condensate character.
Comparing the single-α orbit of the 0+

6 state in Fig. 5.19 with that of the Hoyle state
shown in Fig. 5.13, one can see an almost identical shape. This is also an important
indication that the 0+

6 state has α-particle condensate nature. Of course, the extension
is slightly different because of the smallness of the system. The nodeless character of
the wave function is very pronounced and only some oscillations with small amplitude
are present in 12C, reflecting the weak influence of the Pauli principle between the
α’s, as discussed in Sect. 5.4.1.2. On the contrary, due to the much reduced ground-
state radii, the “α-like” clusters strongly overlap in 12C and 16O, producing strong
amplitude oscillations which take care of antisymmetrization between clusters [26,
51]. In fact, on sees in Fig. 5.19 that the single-α orbit for the ground state has
maximum amplitude at around 3 fm and oscillations in the interior with two nodal
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Table 5.3 Partial α widths in 16O∗ decaying into possible channels and the total width. The reduced
widths defined in Eq. (5.48) are also shown. a is the channel radius

12C(0+
1 )+ α 12C(2+

1 )+ α 12C(0+
2 )+ α Total

(a = 8.0 fm) (a = 7.4 fm) (a = 8.0 fm)

ΓL (keV) 104 32 8 × 10−7 136
θ2

L (a) 0.024 0.016 0.60

(2S) behavior, due to the Pauli principle and reflecting the shell-model configuration
(also see Fig. 5.13 for the ground state of 12C).

The α decay width constitutes a very important information to identify the 0+
6

state from the experimental point of view. The width ΓL can be estimated, based on
the R-matrix theory [111],

ΓL = 2PL(a) · γ 2
L (a),

PL(a) = ka

F2
L(ka)+ G2

L(ka)
,

γ 2
L (a) = θ2

L(a)γ
2
W(a),

γ 2
W(a) = 3�

2

2μa2 , θ
2
L(a) = a3

3
Y2

L(a), (5.48)

where k, a and μ are the wave number of the relative motion, the channel radius,
and the reduced mass, respectively, and FL , GL , and PL(a) are the regular and
irregular Coulomb wave functions and the corresponding penetration factor, respec-
tively. The reduced width of θ2

L(a) is related with the overlap amplitude Y(r) defined
in Eq. (5.46). In Table 5.3, we show the partial α decay widths ΓL of the 0+

6 state
decaying into the α +12 C(0+

1 ), α +12 C(2+
1 ) and α +12 C(0+

2 ) channels, and also
the total α decay width which is obtained as a sum of the partial widths, and reduced
widths θ2

L(a) defined in Eq. (5.48). Experimental values are all taken as given by the
decay energies. Thus the excitation energy of the calculated 0+

6 state is assumed to
be the experimental value, i.e. 15.1 MeV.

The obtained very small total α decay width of 136 keV, in reasonable agreement
with the corresponding experimental value of 160 keV, indicates that this state is
unusually long lived. The reason of this fact can be explained in terms of the present
analysis as follows: Since this state has a very exotic structure composed of gas-like
four alpha particles, the overlap between this state and α+12 C(0+

1 ) or α+12 C(2+
1 )

wave functions with a certain channel radius becomes very small, as this is, indeed,
indicated by small θ2

L(a) values, 0.024 and 0.016, respectively, and therefore by
small γ 2

L (a) values. These largely suppress the decay widths expressed by Eq. (5.48)
in spite of the large values of the penetration factors caused by large decay energies
7.9 and 3.5 MeV into these two channels, α+12 C(0+

1 ) and α+12 C(2+
1 ), respectively.

On the other hand, the decay into the α +12 C(0+
2 ) channel is also suppressed due

to the very small penetration caused by the very small decay energy 0.28 MeV, even
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though the corresponding reduced width takes a relatively large value θ2
L(a) = 0.60.

This is natural since the 0+
2 state of 12C has a gas-like three-alpha-particle structure.

It is very likely that the above mechanism holds generally for the alpha condensate
states in heavier nα systems, and therefore the alpha condensate states can also be
expected to exist in heavier systems as a relatively long lived resonance.

As for the decay widths of the 0+
4 and 0+

5 states, as evaluated by Eq. (5.48), they
are shown in Table 5.2. The calculated width of the 0+

4 state is 600 keV, which is
quite a bit larger than that found for the 0+

5 state 200 keV. Both are qualitatively
consistent with the corresponding experimental data, 600 and 185 keV, respectively.
We should note that our calculation consistently reproduces the ratio of the widths of
the 0+

4 , 0+
5 , and 0+

6 states, i.e. about 3:1:1, respectively, though the magnitudes of the
widths are underestimated by about a factor of four with respect to the experimental
values (see Table 5.2). The reason why the width of the 0+

4 state is larger than that
of the 0+

5 state, though the 0+
4 state has lower excitation energy, is due to the fact

that the former has a much larger component of the α +12 C(0+
1 ) decay channel,

reflecting the characteristic structure of the 0+
4 state. The 4α condensate state, thus,

should not be assigned to the 0+
4 or 0+

5 state [ 27, 51] but very likely to the 0+
6 state.

5.4.2.2 THSR Wave Function Analysis

As mentioned already, the first investigation of the 4α-particle condensate state was
performed with the THSR wave function [5]. It was conjectured that 4α-particle
condensation should occur around the 4α threshold. As mentioned in Sect. 5.2, the
THSR wave function allows only for two limiting configurations, that is a pure
Slater determinant for B = b and a pure α-particle gas for B � b. Asymptotic
configurations like α +12 C(0+

1 ) are absent. Thus, the THSR wave function can
well describe the dilute α cluster states as well as shell model like ground states,
whereas other structures such as α +12 C(0+

1 ) clustering may be only incorporated
in an average way. In this section, we see whether or not the counterpart of the 0+

6
state obtained by the 4α OCM calculation can also be found with the THSR wave
function, and then we study how well the 4α condensate state is described with the
THSR wave function.

The microscopic wave function of 16O with the THSR ansatz is described in
Eqs. (5.18) and (5.19), and the eigenenergies and eigenstates are obtained by solv-
ing the Hill–Wheeler equation Eq. (5.20). The Hamiltonian is given in Eq. (5.4),
where the effective nucleon–nucleon interaction called F1 [112] was adopted. The
resulting 0+ spectrum is shown in Fig. 5.16. Hereafter, we assign the four 0+
states as (0+

1 )THSR–(0+
4 )THSR. In Table 5.4, the energies, r.m.s. radii, monopole

transition matrix elements M(E0) to the ground state, and α-decay widths of the
(0+

1 )THSR–(0+
4 )THSR states are displayed. The (0+

3 )THSR state has a large r.m.s.
radius of 4.2 fm and the (0+

4 )THSR state has an even larger one of 6.1 fm. They
are comparable to the values for the (0+

4 )OCM and (0+
6 )OCM states in the 4α OCM

calculation, respectively, where the six 0+ states obtained by the 4α OCM calcula-
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Table 5.4 Energies E − E th
4α, r.m.s. radii Rrms, monopole matrix elements M(E0), and α decay

widths Γ, obtained within the 4α THSR framework, where E th
4α = 4Eα denotes the 4α threshold

energy, with Eα the binding energy of the α particle [27]

E − E th
4α[MeV] Rrms[fm] M(E0)[fm2 ] Γ [MeV]

(0+
1 )THSR −15.05 2.5

(0+
2 )THSR − 4.7 3.1 9.8

(0+
3 )THSR 1.03 4.2 2.5 1.6

(0+
4 )THSR 3.04 6.1 1.2 0.14

Fig. 5.21 (Color online)
Overlap amplitude
multiplied by r for the
(0+

4 )THSR state in the
α + 12C(0+

1 , 0+
2 ) channels,

defined in Eq. (5.46)
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tion in Table 5.2 are labeled as (0+
1 )OCM–(0+

6 )OCM. On the other hand, the M(E0)
values of the (0+

3 )THSR and (0+
4 )THSR states well agree with those of the (0+

4 )OCM
and (0+

6 )OCM states, respectively. This suggests that the (0+
4 )THSR state corresponds

to the (0+
6 )OCM state, and hence to the 15.1 MeV state.

More quantitative evidences for the (0+
4 )THSR state being the counterpart of the

(0+
6 )OCM state are presented from the analyses of the overlap amplitudes of the

α+12C(0+
1 , 0+

2 ) channels and the one-body density matrix for the α particle etc. with
the wave function of the (0+

4 )THSR state. In Fig. 5.21, we show the overlap amplitudes
of the α+ 12C(0+

1 , 0+
2 ) channels for the (0+

4 )THSR state. The radial behaviors of the
α+ 12C(0+

1 , 0+
2 ) channels are very similar to those of the (0+

6 )OCM case in Fig. 5.18.
In addition, we found that the single-α S orbit occupancy in the (0+

4 )THSR state is
as large as 64%, which is comparable to that in the (0+

6 )OCM state, and the radial
behavior of the single-α S orbit in the former state is illustrated in Fig. 5.22, and is
similar to that in the latter in Fig. 5.19.

In conclusion we found that the (0+
4 )THSR state corresponds to the (0+

6 )OCM state
and is most appropriately considered to be the 4α condensate state. This further
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Fig. 5.22 (Color online)
Radial parts of
single-α-particle orbits with
L = 0 and nL = 1 for the
(0+

1 )THSR (dotted curve) and
(0+

4 )THSR (solid) states
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gives us a strong support that the 4α condensate state exists around the 4α breakup
threshold and is very likely to correspond to the observed 0+

6 state at 15.1 MeV.

5.4.3 Heavier 4n Nuclei: Gross–Pitaevskii Equation

In principle, one could go on, increasing the number ofα-particles, as for 20Ne, 24Mg,
etc. and study their structure with use of the THSR wave function or within the OCM
framework. However, one easily imagines that the complexity of the calculations
quickly becomes prohibitive. In order to get a rough idea what happens for more
α-particles, drastic approximations have to be performed. One such approximation
is to consider the α-particles as ideal inert bosons and to treat them in mean field
approximation. This then leads to the Gross–Pitaevskii Equation (GPE) [113–116]
which is widely employed in the physics of cold atoms [104]. One interesting ques-
tion that can be asked in this connection is: How many α’s can maximally exist in a
self-bound α-gas state? Seeking an answer, it is interesting to investigate it schemat-
ically using an effective α− α interaction within an α-gas mean-field calculation of
the Gross–Pitaevskii type [56].

In the mean field approach, the total wave function of the condensate nα-boson
system is represented as

	(nα) =
n∏

i=1

ϕ(ri ), (5.49)

where ϕ is the normalized single-α wave function of the i-th α boson. Then, the
equation of motion for the α boson, called the Gross–Pitaevskii equation, is of the
non-linear Schrödinger-equation type,
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− �
2

2m

(
1 − 1

n

)
∇2ϕ(r)+ U (r)ϕ(r) = εϕ(r), (5.50)

U (r) = (n − 1)
∫

dr′ ∣∣ϕ(r′)
∣∣2 Vαα(r′, r), (5.51)

where m stands for the mass of the α particle and U is the mean-field potential
of α-particles. The center-of-mass kinetic energy correction, 1 − 1

n , is taken into
account together with the finite number corrections, n − 1. In the present study, only
the S-wave state is solved self-consistently with the iterative method. The effective
2α interaction υ2 is taken of Gaussian-type including a repulsive density-dependent
term, to account for the Pauli repulsion at short distances, which is of similar form
as the Gogny interaction (known as an effective NN potential) [117] used in nuclear
mean-field calculations

Vαα(r, r′) = V0exp
[
−0.72(r − r′)2

]
− 130 exp

[
−0.4752(r − r′)2

]

+ (4π)2gδ(r − r′)ρ
(

r + r′

2

)
+ VCoul(r − r′), (5.52)

where the units of υ2 and r are MeV and fm, respectively, and ρ denotes the density
of the nα system. The folded Coulomb potential VCoul is presented as

VCoul(r − r′) = 4e2

|r − r′|erf(a|r − r′|), (5.53)

The Gaussian-potential part in Eq. (5.52) is based on the Ali-Bodmer potential
[118], which is known to reproduce well the elastic α-α scattering phase shift up to
about 60 MeV for V0 = 500 MeV. The two parameters of the force, V0 and g, were
adjusted to reproduce the energy (measured from the 3α threshold) and r.m.s. radius
of the Hoyle state obtained from the THSR analysis.

The correspondingαmean-field potential for threeα’s of 12C is shown in Fig. 5.23.
One sees the 0S-state lying slightly above threshold but below the Coulomb barrier.
As more α-particles are added, the Coulomb repulsion drives the loosely bound sys-
tem of α-particles farther and farther apart. For example, in the case of six α’s in
24Mg, the Coulomb barrier is lower and its position is moved outwards. Thus, even-
tually the Coulomb barrier should fade away in some limiting nucleus. According
to our estimate [56], a maximum of eight to ten α-particles can be held together in a
condensate. However, there may be ways to lend additional stability to such systems.
We know that in the case of 8Be, adding one or two neutrons produces extra binding
without seriously disturbing the pronounced α-cluster structure. Therefore, one has
reason to speculate that adding a few neutrons to a many-α state may stabilize the con-
densate. But again, state-of-the-art microscopic investigations are necessary before
anything definite can be said about how extra neutrons will influence an α-particle
condensate.
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Fig. 5.23 Alpha-particle
mean-field potential for three
α′s in 12C and six α′s in
24Mg. The dotted line
denotes the energy of the
single-α 0S orbit (from Ref.
[56])

Concerning excitation of condensate states with many α particles, heavy ion reac-
tions and Coulomb excitation may be appropriate tools. As an ideal case let us imag-
ine that 40Ca has been excited by Coulomb excitation to a state of about 60 MeV.
Coulomb excitation favors 0+-states and 60 MeV is the threshold for disintegration
into 10 α-particles. Since the Coulomb barrier is absent for ten α’s, this state may
perform a Coulomb explosion of a 10 α particle coherent state. A cartoon of such a
scenario is sketched in Fig. 5.24. With heavy ion reactions, experiments with coin-
cident measurements are being analyzed to detect multi α events by Borderie et al.
[49]. W. v. Oertzen et al. seem to have detected an enhancement of multi α decay
out of α-condensates in compound states of heavier N = Z nuclei, see Ref. [119].
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Fig. 5.24 (Color online)
Cartoon of a Coulomb
explosion of 10 α-particles
from 40Ca

5.4.4 Hoyle-Analogue States in Non-4n Nuclei: 11B and 13C

In the previous sections, we discussed the α-gas-like states in 4n nuclei. On the other
hand, one can also expect cluster-gas states composed of alpha and triton clusters
(including valence neutrons etc.) around their cluster disintegrated thresholds in
A � = 4n nuclei, in which all clusters are in their respective 0S orbits, similar to the
Hoyle state with (0Sα)3. The states, thus, can be called Hoyle-analogue states in
non-self-conjugated nuclei. It is an intriguing subject to investigate whether or not
the Hoyle-analogue states exist in A �= 4n nuclei, as for example, 11B, composed of
2α and 1t clusters as well as 13C, composed of 3α and 1n.

The structure of 3/2− and 1/2+ (1/2− and 1/2+) states in 11B (13C) up to around
the 2α + t (3α + n) threshold were investigated by the 2α + t OCM [59] 3α + n
OCM [61]) for 11B(13C) combined with the Gaussian expansion method. The model
space for the 2α+ t (3α+n)OCM is large enough to cover the 2α+ t (3α+n) gas,
the 7Li + α and 8 Be + t (9Be + α and 12C + n) clusters, as well as the shell-model
configurations. As well known, the α − t and α − n potentials have a strong parity
dependence [2]. In the odd waves they are strongly attractive to produce the bound
states (for α−t) and resonant states (α−t and α−n),while the even ones are weakly
attractive and have no ability to produce any resonant states up to Ex ∼ 15 MeV
[120]. Thus, the gas-like states in 11B and 13C might appear in their even-parity
states.

The energy levels of 3/2− and 1/2+ states in 11B are shown in Fig. 5.25. The 3/2−
1

state is the ground state with a shell-model-like structure. The calculated nuclear
radius is R = 2.22 fm(Rexp = 2.43 ± 0.11 fm). The dominant configuration of
this state is SU(3)[ f ](λ, μ)L = [443](1, 3)1 with Q = 7 harmonic oscillator quanta
(95%), having the main angular momentum channel of (L , S)J = (1, 1

2 ) 3
2
. On the

other hand, also the 3/2−
2 state has a shell-model-like structure.

The 3/2−
3 state appears at Ex = 8.2 MeV (E = −2.9 MeV referring to the 2α+ t

threshold). The radius of 3/2−
3 is 3.00 fm. This value is by about 30% larger than that

of the ground state of 11B, and the α− α r.m.s. distance (distance between 8Be(2α)
and t) is 4.47 fm (3.49 fm). Thus, 3/2−

3 has a 2α+ t cluster structure. A characteristic
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Fig. 5.25 (Color online)
Calculated energy levels of
3/2− and 1/2+ states in 11B
with respect to the 2α + t
threshold, together with the
experimental data

feature of 3/2−
3 is that the isoscalar monopole transition rate B(E0:IS) is as large as

96±16 fm4, comparable to that of the Hoyle state (120±9 fm4). The present model
(92 fm4) reproduces well the data. It is interesting to study whether 3/2−

3 possesses
an α gas nature like the Hoyle state. To this purpose, we study the single-cluster
orbits and their occupation probabilities in the 3/2−

3 state by solving the eigenvalue
equation of the single-cluster density matrices.

Figure 5.26 shows the occupation probabilities of the n-th L-wave single-α-
particle (single-t-particle) orbit in the 3/2−

1 and 3/2−
3 states. In the 3/2−

1 state,
the occupation probabilities of α particles spread out in several orbits, and those
of t orbits concentrate mainly on two orbits. These results originate from the SU(3)
nature of the 3/2−

1 state as mentioned above. On the other hand, in the 3/2−
3 state,

there also is no concentration of α occupation probability on a single orbit. This
result is in contrast with those of the Hoyle state (see Fig. 5.12). Consequently the
3/2−

3 state can not be identified as the analogue of the Hoyle state. The reason why
the 3/2−

3 state is not of Hoyle-type is as follows: The 3/2−
3 state is bound by 2.9 MeV

with respect to the 2α + t threshold, while the Hoyle state is located by 0.38 MeV
above the 3α threshold. This extra binding energy of 3/2−

3 with respect to the 2α+ t
threshold suppresses strongly the development of the gas-like 2α + t structure.

As for the 1/2+ states, the 1/2+
1 state appears as a bound state at Eexp

x = 6.79 MeV
around the 7Li+α threshold. This low excitation energy indicates that α-type corre-
lations should play an important role in this state. In fact, we found that the 1/2+

1 state
with the radius of 3.14 fm has a 7Li(g.s)+ α structure with P-wave relative motion,
although the 7Li(α + t) part is rather distorted in comparison with the ground state
of 7Li. Since the 3/2−

3 state has the largest S2 factor for the 7Li(g.s) + α channel
with S-wave relative motion, the 1/2+

1 and 3/2−
3 states of 11B can be interpreted as

parity-doublet partners.
In addition to the 1/2+

1 state, the 1/2+
2 state appears as a resonant state at

Ex = 11.95 MeV (Γ = 190 keV) around the 2α + t threshold using the complex-
scaling method [121–126]. The large radius (RN = 5.98 fm) indicates that the state
has a dilute cluster structure. The analysis of the single-cluster properties showed that
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(a)

(c) (d)

(b)

Fig. 5.26 (Color online) Occupation probabilities of the α (t) orbits for the a 3/2−
1 and b 3/2−

3
states together with the c 1/2+

1 and d 1/2+
2 ones in 11B

this state has as main configuration (0Sα)2(0St ) orbital occupation with about 65%
probability (see Fig. 5.26). Thus, the 1/2+

2 state can be called the Hoyle-analogue.
Recently, the 1/2+(3/2+) state at Ex = 12.56 MeV withΓ = 210±20 keV (located
at 1.4 MeV above the 2α + t threshold) was observed in the α+ 7Li decay channel
[127–129]. The energy and width of the 12.56-MeV state are in good correspondence
to the present study. The Hoyle-analogue state in 11B, thus, could be assigned as the
12.56-MeV state. It should be reminded that the 1/2+

2 state is located by 0.75 MeV
above the α + α + t threshold, while 1/2+

1 is bound by 4.2 MeV with respect to
the three cluster threshold. The latter binding energy leads to a suppression of the
development of the gas-like α + α + t structure in 1/2+

1 , whereas it is generated
with a large nuclear radius in the 1/2+

2 state because of its appearance above the
three-body threshold.

The calculated energy spectrum of 1/2− states in 13C is shown in Fig. 5.27.
The four 1/2− energy levels are in good correspondence with the experimental
data. The ground state (1/2−

1 ) is described as having a shell-model configuration.
The calculated nuclear radius (2.39 fm) agrees with the data (2.44 fm). The three
isoscalar monopole transition strengths, M(1/2−

1 −1/2−
2 ) = 4.2, M(1/2−

1 −1/2−
3 )= 5.6, and M(1/2−

1 − 1/2−
4 ) = 8.2, are also consistent with experiment [60],

6.1 ± 0.5, 4.2 ± 0.4, and 4.9 ± 0.4, respectively, in units of fm2. The nuclear radii
for the three excited 1/2− states are 3.36, 2.96, and 3.19 fm, respectively.
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Fig. 5.27 (Color online)
Calculated energy levels of
1/2− and 1/2+ states in 13C
with respect to the 3α + t
threshold, together with the
experimental data

From the analysis of the radial behavior of the overlap amplitudes referring to
the 12C + n and 9Be+ α channels, the 1/2−

2 and 1/2−
3 states are characterized as

having large components of 12C(g.s, 2+) + n and 12C(3−) + n with 9Be(g.s)+ α,

respectively. On the other hand, the 1/2−
4 state contains a somewhat large component

of the 12C(Hoyle)+n channel together with 12C(2+)+ n and 9Be(g.s)+α.However,
this state does not have as large an α condensate component as the Hoyle state in
12C. This is due to strong attraction of the odd-wave α− n potentials which induces
the coupling of 12C(2+) + n and 9Be(g.s)+ α structures with the 12C(Hoyle) + n
configuration, and disturbs significantly the structure of the 3α condensate in 13C. In
the mirror nucleus 13N, the 3α+ p OCM analysis gives qualitatively similar results
to those of the present 13C case.

As for the 1/2+ states of 13C, the energy spectrum of the first three 1/2+ states
correspond well with the data (see Fig. 5.27). We found that the 1/2+

1 state has a
main configuration [12C(g.s) ⊗ 2s1/2]. Reflecting the fact that the neutron binding
energy of the 1/2+

1 state with respect to the 12C(g.s.) + n threshold is as small as
1.9 MeV, this state has a neutron-halo-like structure. In fact the calculated nuclear
radius of this state (2.68 fm) is larger than that of the ground state (2.39 fm), and
this enhancement of the radius comes from the neutron-halo-like structure.

On the other hand, the 1/2+
2 state has a dominant configuration of the extra neutron

coupled with the Hoyle state, with non-negligible mixing of 9Be(g.s, 1/2−
1 ) + α

channels. The nuclear radius is about 4.0 fm, which is smaller than that of the Hoyle
state in the 3αOCM calculation [26]. We found that the size of the 3α part in this state
is reduced by about 15 % in comparison with that of the Hoyle state. The occupation
probability of α particle in 0S orbit in this state is less than 30%, which is much
smaller than that for the Hoyle state.

The 1/2+
3 state around the 3α + n threshold has the nuclear radius of 5.40 fm

with a dilute α condensate feature, in which 3α particles occupy an identical 0S orbit
with 55% probability. This state has a rather large overlap with the 9Be(1/2+

1 )+ α

channel as well as with the 12C(Hoyle)+ n one. It is noted that the 9Be(1/2+
1 ) state
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is known to have a neutron-halo-like structure (or 2α + n gas-like structure). Thus,
these results suggest that the 1/2+

3 state is a candidate for the Hoyle-analogue state.
With this we terminate our consideration of cluster and condensate aspects in finite

nuclei. An important connection with the finite systems is given by clustering, for
instance α particle clustering and condensation in infinite matter. In the next section
we turn to these issues.

5.5 Clusters in Nuclear Matter and α-Particle Condensation

5.5.1 Nuclear Clusters in the Medium

Of course, it is also interesting and important to study how α-clusters behave and
actually condensate in infinite symmetric and asymmetric nuclear matters. This not
only in regard to better understand what finally happens in a finite nucleus but in
collapsing and compact stars one may speculate about the existence of a macroscopic
α-particle condensate. So let us first consider the modification anα particle undergoes
when it is embedded in a nuclear medium.

Medium modifications of single-particle states as well as of few-nucleon states
become of importance with increasing density of nuclear matter. The self-energy
of an A-particle cluster can in principle be deduced from contributions describ-
ing the single-particle self-energies as well as medium modifications of the inter-
action and the vertices. A guiding principle in incorporating medium effects is
the construction of consistent (“conserving”) approximations, which treat medium
corrections in the self-energy and in the interaction vertex at the same level of
accuracy. This can be achieved in a systematic way using the Green functions
formalism [130]. At the mean-field level, we have only the Hartree–Fock self-
energyΓ HF(1) =∑2 V̄ (12, 12) f (2) together with the Pauli blocking factors, which
modify the two-nucleon interaction from V (12, 1′2′) to V (12, 1′2′)[1− f (1)− f (2)],
with f (1) = [1+ exp(εHF(1)−μ)/T ]−1 and V̄ (12, 12) = V (12, 12)− V (12, 21).
In the case of the two-nucleon system (A = 2), the effective wave equation which
includes those corrections is presented in the following form [131, 132],

[
εHF(1)+ εHF(2)− E2,P

]
ψ2,P (12)

+ 1

2

∑

1′2′
[1 − f (1)− f (2)]V̄ (12, 1′2′)ψ2,P (1

′2′) = 0. (5.54)

This effective wave equation describes bound states as well as scattering states. The
onset of pair condensation is achieved when the binding energy E2,P=0 coincides
with 2μ, where P denotes the total momentum of the two-nucleon system. It is
noted that the Gor’kov equation in BCS theory of superfluidity is a special case of
Eq. (5.54).
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Fig. 5.28 Shift of binding
energy of the light clusters
(d—dash dotted,
t/h—dotted, and α—dashed:
perturbation theory, full line:
non-perturbative
Faddeev–Yakubovski
equation) in symmetric
nuclear matter as a function
of density for given
temperature T = 10 MeV
[64]
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Similar equations have been derived from the Green function approach for the
case A = 3 and A = 4, describing triton/helion (3He) nuclei as well as α-particles in
nuclear matter. The effective wave equation contains in mean field approximation
the Hartree–Fock self-energy shift of the single-particle energies as well as the Pauli
blocking of the interaction. We give the effective wave equation for A = 4,

[
εHF(1)+ εHF(2)+ εHF(3)+ εHF(4)− E4,P

]
ψ4,P (1234)

+ 1

2

∑

i< j

∑

1′2′3′4′
[1 − f (i)− f ( j)]V̄ (i j, i ′ j ′)

∏

k �=i, j

δk,k′ψ4,P (1
′2′3′4′) = 0. (5.55)

A similar equation is obtained for A = 3, which is an equation for a fermionic
cluster.

The effective wave equation has been solved using separable potentials for A = 2
by integration. For A = 3, 4 we can use a Faddeev approach [64]. The shifts of binding
energy can also be calculated approximately via perturbation theory. In Fig. 5.28 we
show the shift of the binding energy of the light clusters (d, t/h and α) in symmetric
nuclear matter as a function of density for temperature T = 10 MeV [64].

It is found that the cluster binding energy decreases with increasing density.
Finally, at the Mott density ρMott

A, P (T ) the bound state is dissolved. The clusters are not
present at higher densities, merging into the nucleonic medium. For a given cluster
type characterized by A, n, we can also introduce the Mott momentum PMott

A (ρ, T )
in terms of the ambient temperature T and nucleon density ρ, such that the bound
states exist only for P ≥ PMott

A (ρ, T ). We do not present an example here, but it is
intuitively clear that a cluster with high c.o.m. momentum with respect to the medium
is less affected by the Pauli principle than a cluster at rest, because the overlap of the
bound state wave function in momentum space and the Fermi distribution function
becomes smaller.
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5.5.2 Four-Particle Condensates and Quartetting in Nuclear Matter

In general, it is necessary to take into account all bosonic clusters to gain a complete
picture of the onset of superfluidity. As is well known, the deuteron is weakly bound
as compared to other nuclei. Higher A-clusters can arise that are more stable. In this
section, we will consider the formation ofα-particles, which are of special importance
because of their large binding energy per nucleon (∼7 MeV). We will not include
tritons or helions, which are fermions and not so tightly bound. Moreover, we will
not consider nuclei in the iron region, which have even larger binding energy per
nucleon than the α-particle and thus constitute, in principle, the dominant component
at low temperatures and densities. However, the latter are complex structures of many
particles and are strongly affected by the medium as the density increases for given
temperature, so that they are assumed not to be of relevance in the density region
considered here.

The in-medium wave equation for the four-nucleon problem has been solved using
the Faddeev–Yakubovski technique, with the inclusion of Pauli blocking, see also
below. The binding energy of an α-like cluster with zero c.o.m. momentum vanishes
at around ρ0/10, where ρ0 � 0.16 nucleons/fm3 denotes the saturation density of
isospin-symmetric nuclear matter, see Fig. 5.28. Thus, the four-body bound states
make no significant contribution to the composition of the system above this density.
Given the medium-modified bound-state energy E4,P , the bound-state contribution
to the EOS is

ρ4(β, μ) =
∑

P

[
eβ(E4,P−2μp−2μn) − 1

]−1
. (5.56)

We will not include the contribution of the excited states nor that of scattering states.
Because of the large specific binding energy of the α particle, low-density nuclear
matter is predominantly composed of α particles. This observation underlies the
concept of α matter and its relevance to diverse nuclear phenomena [133–139].

As exemplified by Eq. (5.55), the effect of the medium on the properties of an α
particle in mean-field approximation (i.e., for an uncorrelated medium) is produced
by the Hartree–Fock self-energy shift and Pauli blocking. The shift of the α-like
bound state has been calculated using perturbation theory [131, 132] as well as
by solution of the Faddeev–Yakubovski equation [64]. It is found that the bound
states of clusters d, t, and h with A < 4 are already dissolved at a Mott den-
sity ρMott

α ≈ ρ0/10, see Fig. 5.28. Since Bose condensation only is of relevance
for d and α, and the fraction of d, t and h becomes low compared with that of α
with increasing density, we can neglect the contribution of them to an equation of
state. Consequently, if we further neglect the contribution of the four-particle scat-
tering phase shifts in the different channels, we can now construct an equation of
state ρ(T, μ) = ρfree(T, μ)+ρbound,d(T, μ)+ρbound,α(T, μ) such that α-particles
determine the behavior of symmetric nuclear matter at densities below ρMott

α and
temperatures below the binding energy per nucleon of the α-particle. The formation
of deuteron clusters alone gives an incorrect description because the deuteron binding
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energy is small, and, thus, the abundance of d-clusters is small compared with that of
α-clusters. In the low density region of the phase diagram, α-matter emerges as an
adequate model for describing the nuclear-matter equation of state.

With increasing density, the medium modifications—especially Pauli blocking—
will lead to a deviation of the critical temperature Tc(ρ) from that of an ideal Bose
gas of α-particles (the analogous situation holds for deuteron clusters, i.e., in the
isospin-singlet channel) [64].

Symmetric nuclear matter is characterized by the equality of the proton and neu-
tron chemical potentials, i.e., μp = μn = μ. Then an extended Thouless condition
based on the relation for the four-body T-matrix (in principle equivalent to Eq. (5.55)
at eigenvalue 4μ)

T4(1234, 1′′2′′3′′4′′, 4μ) = 1

2

∑

1′2′3′4′

{
V̄ (12, 1′2′)[1 − f (1)− f (2)]

4μ− E1 − E2 − E3 − E4
δ(3, 3′)δ(4, 4′)

+cycl.

}
T4(1

′2′3′4′, 1′′2′′3′′4′′, 4μ)

(5.57)
serves to determine the onset of Bose condensation of α-like clusters, noting that
the existence of a solution of this relation signals a divergence of the four-particle
correlation function. An approximate solution has been obtained by a variational
approach, in which the wave function is taken as Gaussian incorporating the correct
solution for the two-particle problem [63].

On the other hand, Eq. (5.57), respectively Eq. (5.55) at eigenvalue 4μ, has also
been solved numerically exactly by the Faddeev–Yakubovsky method employing
the Malfliet–Tjon force [140, 141]. The results for the critical temperature of α-
condensation is presented in Fig. 5.29 as a function of the chemical potential μ (see
also Ref. [63]). The exact solution could only be obtained for negative μ, i.e. when
there exists a bound cluster. It is, therefore, important to try yet another approximate
solution of the in-medium four-body equation. Since theα-particle is strongly bound,
we make a momentum projected mean field ansatz for the quartet wave function
[142–144]

Ψ1234 = (2π)3δ(3)(k1 + k2 + k3 + k4)

4∏

i=1

ϕ(ki )χ
ST , (5.58)

where χ ST is the spin-isospin function which we suppose to be the one of a scalar
(S = T = 0). We will not further mention it from now on. We work in momentum
space and ϕ(k) is the as-yet unknown single particle 0S wave function. In position
space, this leads to the usual formula [24] Ψ1234 → ∫

d3 R
∏4

i=1 ϕ̃(ri − R) where
ϕ̃(ri ) is the Fourier transform of ϕ(ki ). If we take for ϕ(ki ) a Gaussian shape, this
gives: Ψ1234 → exp[−c

∑
1≤i<k≤4(ri − rk)

2] which is the translationally invariant
ansatz often used to describe α-clusters in nuclei. For instance, it is also employed
in the α-particle condensate wave function of Tohsaki et al. (THSR) in Ref. [5].
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Fig. 5.29 Critical temperature of alpha and deuteron condensations as functions of a chemical
potential and b density of free nucleons [65]. Crosses (×) correspond to the solution of Eq. (5.55)
with the Malfliet–Tjon interaction (MT I–III) using the Faddeev–Yakubovski method

Inserting the ansatz (5.58) into (5.55) and integrating over superfluous variables,
or minimizing the energy, we arrive at a Hartree–Fock type of equation for the single
particle 0S wave function ϕ(k) = ϕ(|k|)which can be solved. However, for a general
two body force Vk1k2,k′

1k′
2
, the equation to be solved is still rather complicated.

We, therefore, proceed to the last simplification and replace the two body force by a
unique separable one, that is

Vk1k2,k′
1k′

2
= λe−k2/k2

0 e−k′2/k2
0 (2π)3δ(3)(K − K′), (5.59)

where k = (k1 − k2)/2, k′ = (k′
1 − k′

2)/2, K = k1 + k2, and K′ = k′
1 + k′

2. This
means that we take a spin-isospin averaged two body interaction and disregard that
in principle the force may be somewhat different in the S, T = 0, 1 or 1, 0 channels.
It is important to remark that for a mean field solution the interaction only can be an
effective one, very different from a bare nucleon–nucleon force. This is contrary to
the usual gap equation for pairs, to be considered below, where, at least in the nuclear
context, a bare force can be used as a reasonable first approximation.

We are now ready to study the solution of Eq. (5.55) for the critical temperature
T αc , defined by the point where the eigenvalue equals 4μ. For later comparison,
the deuteron (pair) wave function at the critical temperature is also deduced from
Eqs. (5.55) and (5.59) to be

φ(k) = − 1 − 2 f (ε)

k2/m − 2μ
λe−k2/k2

0

∫
d3k′

(2π)3
e−k2/k2

0 φ(k′), (5.60)

where φ(k) is the relative wave function of two particles given byΨ12 → φ(|k1−k2
2 |)

δ(3)(k1 + k2), and ε = k2/(2m). We also neglected the momentum dependence of
the Hartree–Fock mean field shift in Eq. (5.60). It, therefore, can be incorporated into
the chemical potential μ. With Eq. (5.60), the critical temperature of pair condensa-
tion is obtained from the following equation:

1 = −λ
∫

d3k

(2π)3
1 − 2 f (ε)

k2/m − 2μ
e−2k2/k2

0 . (5.61)
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In order to determine the critical temperature for α-particle condensation, we have
to adjust the temperature so that the eigenvalue of (5.55) and (5.57) equals 4μ. The
result is shown in Fig. 5.29a. In order to get an idea how this converts into a density
dependence, we use for the moment the free gas relation between the density n(0) of
uncorrelated nucleons and the chemical potential

n(0) = 4
∫

d3k

(2π)3
f (ε). (5.62)

We are well aware of the fact that this is a relatively gross simplification, for instance
at the lowest densities, and we intend to generalize our theory in the future so that cor-
relations are included into the density. This may be done along the work of Noziéres
and Schmitt-Rink [145]. The two open constants λ and k0 in Eq. (5.59) are deter-
mined so that binding energy (−28.3 MeV) and radius (1.71 fm) of the free ( fi = 0)
α-particle come out right. The adjusted parameter values are: λ = −992 MeV fm3,

and k0 = 1.43 fm−1. The results of the calculation are shown in Fig. 5.29.
In Fig. 5.29, the maximum of critical temperature T αc,max is at μ = 5.5 MeV,

and the α-condensation can exist up to μmax = 11 MeV. It is very remarkable that
the results obtained with (5.58) for T αc very well agree with the exact solution of
(5.55) and (5.57) using the Malfliet–Tjon interaction (MT I-III) [140, 141] with
the Faddeev–Yakubovski method also shown by crosses in Fig. 5.29 (the numerical
solution only could be obtained for negative values of μ). This indicates that T αc is
essentially determined by the Pauli blocking factors.

In Fig. 5.29 we also show the critical temperature for deuteron condensation
derived from Eq. (5.61). In this case, the bare force is adjusted with
λ= − 1305 MeV fm3 and k0 = 1.46 fm−1 to get experimental energy (−2.2 MeV)
and radius (1.95 fm) of the deuteron. It is seen that at higher densities deuteron con-
densation wins over the one of α-particle. The latter breaks down rather abruptly at a
critical positive value of the chemical potential. Roughly speaking, this corresponds
to the point where the α-particles start to overlap. This behavior stems from the fact
that Fermi–Dirac distributions in the four body case, see Eq. (5.55), can never become
step-like, as in the two body case, even not at zero temperature, since the pairs in an
α-particle are always in motion. As a consequence, α-condensation generally only
exists as a BEC phase and the weak coupling regime is absent, see also discussion
in Sect. 5.5.4.

Figure 5.30 shows the normalized self-consistent solution of the wave function
in momentum space derived from Eq. (5.55) with the mean field ansatz (5.58)
and the wave function in position space defined by its Fourier transform ϕ̃(r).
Figures 5.30(a1) and (b1) represent the wave functions of the free α-particle. The
wave function resembles a Gaussian and this shape is approximately maintained
as long as μ is negative, see Fig. 5.30(a2). On the contrary, the wave function of
Fig. 5.30(a3), where the chemical potential is positive, has a dip around k = 0 which
is due to the Pauli blocking effect. For the even larger positive chemical potential of
Fig. 5.30(a4) the wave function develops a node. The maximum of the wave function
shifts to higher momenta and follows the increase of the Fermi momentum kF , as
indicated on Fig. 5.30.
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Fig. 5.30 Single particle wave functions (a1 ∼ a4) in momentum space ϕ(k) and (b1 ∼ b4) in
position space r ϕ̃(r) at chemical potential (μ), critical temperature (Tc), and density (n), which
are obtained by solving Eq. (5.55) with the mean field ansatz (5.58) [65]: for (a1) [(b1)] μ =
−7.08 MeV, Tc = 0 MeV, n = 0 fm−3, for (a2) [(b2)] μ = −2.22 MeV, Tc = 6.61 MeV, n =
9.41 × 10−3 fm−3, for (a3) [(b3)] μ = 6.17 MeV, Tc = 8.45 MeV, n = 3.07 × 10−2 fm−3,

and for (a4) [(b4)] μ = 10.6 MeV, Tc = 5.54 MeV, n = 3.34 × 10−2 fm−3. Figs. (a1) and (b1)
correspond to the wave functions for free α-particle. The vertical lines in Figs. (a3) and (a4) are at
the Fermi wave length kF = √

2mμ

On the other hand, the wave functions in position space in Figs. 5.30(b2), (b3)
and (b4) develop an oscillatory behavior, as the chemical potential increases. This
is reminiscent to what happens in BCS theory for the pair wave function in position
space [146].

An important consequence of this study is that at the lowest temperatures, Bose–
Einstein condensation occurs for α particles rather than for deuterons. As the density
increases within the low-temperature regime, the chemical potential μ first reaches
−7 MeV,where theα’s Bose-condense. By contrast, Bose condensation of deuterons
would not occur until μ rises to −1.1 MeV.
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The “quartetting” transition temperature sharply drops as the rising density
approaches the critical Mott value at which the four-body bound states disappear.
At that point, pair formation in the isospin-singlet deuteron-like channel comes into
play, and a deuteron condensate will exist below the critical temperature for BCS
pairing up to densities above the nuclear-matter saturation density ρ0, as described
in the previous Section. Of course, also isovector n–n and p–p pairing develops. The
critical density at which the α condensate disappears is estimated to be ρ0/3. There-
fore, α-particle condensation primarily only exists in the Bose–Einstein-Condensed
(BEC) phase and there does not seem to exist a phase where the quartets acquire a
large extension as Cooper pairs do in the weak coupling regime. However, the vari-
ational approaches of Ref. [63] and of Eq. (5.58) on which this conclusion is based
represent only a first attempt at the description of the transition from quartetting
to pairing. The detailed nature of this fascinating transition remains to be clari-
fied. Many different questions arise in relation to the possible physical occurrence
and experimental manifestations of quartetting: Can we observe the hypothetical “α
condensate” in nature? What about thermodynamic stability? What happens with
quartetting in asymmetric nuclear matter? Are more complex quantum condensates
possible? What is their relevance for finite nuclei? As discussed, the special type of
microscopic quantum correlations associated with quartetting may be important in
nuclei, its role in these finite inhomogeneous systems being similar to that of pairing.

On the other hand, if at all, α-condensation in compact star occurs at strongly
asymmetric matter. It is, therefore, important to generalize the above study for sym-
metric nuclear matter to the asymmetric case. This can be done straight forwardly
again using our momentum projected mean field ansatz (5.58) generalized to the
asymmetric case. This implies to introduce two chemical potentials, one for neu-
trons and for protons. We also have to distinguish two single particle wave functions
in our product ansatz which now reads

ψ1234 → ϕp(k1)ϕp(k2)ϕn(k3)ϕn(k4)χ0

× (2π)3δ(k1 + k2 + k3 + k4)
(5.63)

where ϕτ (ki ) = ϕτ (|ki |) is the s-wave single particle wave functions for protons
(τ = p) and neutrons (τ = n), respectively. χ0 is the spin-isospin singlet wave
function. This now leads to two coupled equations of the Hartree–Fock type for ϕn

and ϕp. For the force we use the same as in the symmetric case.
Figure 5.31a shows the critical temperature of α condensation as a function of the

total chemical potentialμtotal = μp +μn .We see that Tc decreases as the asymmetry,
given by the parameter

δ = nn − n p

nn + n p
, (5.64)

increases. This is in analogy with the deuteron case (also shown) which already had
been treated in Refs. [147, 148]. On the other hand, in Fig. 5.31b, it is also interesting
to show Tc as a function of the free density which is



5 Nuclear Alpha-Particle Condensates 279

Fig. 5.31 Critical
temperature as a function of
the total chemical potential
μtotal = μp + μn (top) and
the total free density ntotal
(bottom) [66]. Thick (thin)
lines are for α-particle
(deuteron). Solid, dashed,
and dotted lines are
respectively for
δ = 0.0, δ = 0.5, and
δ = 0.9, where the density
ratio δ is as in Eq. (5.64)

(a)

(b)

n(0)total = n(0)p + n(0)n (5.65)

n(0)p = 2
∫

d3k

(2π)3
f p(k) (5.66)

n(0)n = 2
∫

d3k

(2π)3
fn(k), (5.67)

where the factor two in front of the integral comes from the spin degeneracy, and
f p,n(k) = [1 + exp(�2k2/2m − μp,n)]−1. It should be emphasized, however, that
in the above relation between density and chemical potential, the free gas relation is
used and correlations in the density have been neglected. In this sense the dependence
of Tc on density only is indicative, more valid at the higher density side. The very
low density part where the correlations play a more important role shall be treated
in a future publication. It should, however, be stressed that the dependence of Tc on
the chemical potential as in Fig. 5.31a, stays unaltered.

The fact that for more asymmetric matter the transition temperature decreases,
is natural, since as the Fermi levels become more and more unequal, the proton–
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neutron correlations will be suppressed. For small δ’s, i.e., close to the symmetric
case, α condensation (quartetting) breaks down at smaller density (smaller chemical
potential) than deuteron condensation (pairing). This effect has already been dis-
cussed in our previous work for symmetric nuclear matter [63, 65]. For large δ’s,
i.e. strong asymmetries, the behavior is opposite, i.e., deuteron condensation breaks
down at smaller densities than α condensation, because the small binding energy of
the deuteron can not compensate the difference of the chemical potentials.

More precisely, for small δ’s, the deuteron with zero center of mass momentum
is only weakly influenced by the density or the total chemical potential as can seen
in Fig. 5.31. However, as δ increases, the different chemical potentials for protons
and neutrons very much hinders the formation of proton–neutron Cooper pairs in the
isoscalar channel for rather obvious reasons. The point to make here is that because
of the much stronger binding per particle of the α-particle, the latter is much less
influenced by the increasing difference of the chemical potentials. For the strong
asymmetry δ = 0.9 in Fig. 5.31 then finally α-particle condensation can exist up to
ntotal = 0.02 fm−3 (μtotal = 9.3 MeV), while the deuteron condensation exists only
up to ntotal = 0.005 fm−3(μtotal = 6.0 MeV).

Overall, the behavior of Tc is more or less as expected. We should, however,
remark that the critical temperature for α-particle condensation stays quite high,
even for the strongest asymmetry considered here, namely δ = 0.9. This may be
of importance for the possibility of α-particle condensation in neutron stars and
supernovae explosions [149, 150].

We also show the single particle wave functions of protons and neutrons, enter-
ing the quartet wave function (5.63), for various ratios of Fermi surface imbalance
and chemical potentials in Fig. 5.32. In most cases of Fig. 5.32, the momentum-
space wave functions with negative chemical potentials are monotonically decreas-
ing whereas the ones with positive chemical potentials have a dip at k = 0.However,
the momentum-space wave functions also develop a dip at k = 0 even at a negative
chemical potential as the asymmetry takes on stronger values. This can be seen in
Fig. 5.32(a3) and (c2). Furthermore, the neutron wave function in k-space with large
positive chemical potential develops a node. This behavior is similar to the wave
functions in Ref. [65]. As shown in Fig. 5.32, the dissymmetry of proton and neutron
wave functions increases as δ increases. As a consequence, the critical temperature
decreases, and the α condensation breaks down at a more dilute density, see Fig. 5.31.
We also present in Fig. 5.32(a4), (b4) and (c4) the proton and neutron wave functions
in real space. In spite of the sometimes strong dissymmetry in momentum space,
the proton and neutron wave functions are relatively more similar to one another in
r-space. The neutron wave function develops a node as the total chemical potential
μtotal = μp + μn increases, but the negative values of the wave function remain
rather moderate.

In conclusion the α-particle (quartet) condensation was investigated in homoge-
neous symmetric nuclear matter as well as in asymmetric nuclear matter. We found
that the critical density at which the α-particle condensate appears is estimated to
be around ρ0/3 in the symmetric nuclear matter, and the α-particle condensation
can occur only at low density. This result is consistent with the fact that the Hoyle
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Fig. 5.32 Momentum-space single particle wave functions for proton ϕp (solid line), and for neu-
tron ϕn (dashed line) for the critical temperature as a function of k for δ = 0.0, 0.5, 0.9,
and the real-space wave functions for proton ϕ̃p (solid line), for neutron ϕ̃n (dashed line) as
a function of r for δ = 0.9 derived from the Fourier transform of ϕp,n(k) with ϕ̃p,n(r) =∫

d3keik·rϕp,n(k)/(2π)3 [66]. The top, middle and bottom figures are for μtotal = μp + μn ∼
−11 MeV, ∼ 0.0 MeV, and ∼ 9.0 MeV, respectively. The wave functions are normalized by∫

d3kϕ2
p,n(k)/(2π)

3 = 1. The details of data for respective figures are following: a1 δ =
0.0, μtotal = −11.1 MeV, μp = −5.53 MeV, μn = −5.53 MeV, Tc = 4.52 MeV. a2
δ = 0.5, μtotal = −11.5 MeV, μp = −8.18 MeV, μn = −3.35 MeV, Tc = 4.07 MeV. a3,
a4 δ = 0.9, μtotal = −11.0 MeV, μp = −10.8 MeV, μn = −0.163 MeV, Tc = 3.35 MeV.
b1 δ = 0.0, μtotal = 0.028 MeV, μp = −0.014 MeV, μn = −0.014 MeV, Tc = 7.46 MeV.
b2 δ = 0.5, μtotal = 0.11 MeV, μp = −4.65 MeV, μn = 4.76 MeV, Tc = 6.74 MeV. b3,
b4 δ = 0.9, μtotal = −0.02 MeV, μp = −8.18 MeV, μn = 8.16 MeV, Tc = 4.29 MeV.
c1 δ = 0.0, μtotal = 8.80 MeV, μp = 4.40 MeV, μn = 4.40 MeV, Tc = 8.44 MeV. c2
δ = 0.5, μtotal = 8.93 MeV, μp = −1.12 MeV, μn = 10.0 MeV, Tc = 7.16 MeV. c3, c4
δ = 0.9, μtotal = 8.94 MeV, μp = −4.21 MeV, μn = 13.2 MeV, Tc = 3.72 MeV

state (0+
2 ) of 12C also has a very low density ρ ∼ ρ0/3. On the other hand, in the

asymmetric nuclear matter, the critical temperature Tc for the α-particle condensa-
tion was found to decrease with increasing asymmetry. However, Tc stays relatively
high for very strong asymmetries, a fact of importance in the astrophysical context.
The asymmetry affects deuteron pairing more strongly than α-particle condensation.
Therefore, at high asymmetries, if at all, α-particle condensate seems to dominate
over pairing at all possible densities.
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5.5.3 Reduction of the α-Condensate with Increasing Density

The properties of α matter can be used to frame the discussion of the structure of
nα nuclei. As described in the preceding section, computational studies of these
nuclei based on THSR cluster states have demonstrated that an α condensate is
established at low nucleon density. More specifically, states lying near the threshold
for decomposition into α particles, notably the ground state of 8Be, the Hoyle state
(0+

2 ) in 12C, and corresponding states in 16O and other nα nuclei are dilute, being of
low mean density and unusually extended for their mass numbers. We have shown
quantitatively within a variational approach that α-like clusters are well formed,
with the pair correlation function of α-like clusters predicting relatively large mean
distances. For example, in determining the sizes of the 12C nucleus in its 0+

1 (ground)
state and in its 0+

2 excited state, we obtained the r.m.s. radii of 2.44 and 3.83 fm,
respectively. The corresponding mean nucleon densities estimated from 36/4πr3

rms
are close to the nuclear-matter saturation density ρ0 = 0.16 nucleon/fm3 in the
former state and 0.03 nucleon/fm3 in the latter. The expected low densities of putative
alpha-condensate states are confirmed by experimental measurements of form factors
[151].

All of our considerations indicate that quartetting is possible in the low-density
regime of nucleonic matter, and that α condensates can survive until densities of
about 0.03 nucleons/fm3 are reached. Here, we are in the region where the concept
of α matter can reasonably be applied [152–155]. It is then clearly of interest to use
this model to gain further insights into the formation of the condensate, and espe-
cially the reduction or suppression of the condensate due to repulsive interactions
[110]. We will show explicitly that in the model of α matter, as in our studies of
finite nuclei, condensate formation is diminished with increasing density. Already
within an α-matter model based on a simple α − α interaction, we can demonstrate
that the condensate fraction—the fraction of particles in the condensate—is signifi-
cantly reduced from unity at a density of 0.03 nucleon/fm3 and essentially disappears
approaching nuclear matter-saturation density.

The quantum condensate formed by a homogeneous interacting boson system
at zero temperature has been investigated in the classic 1956 paper of Penrose and
Onsager [156] who characterize the phenomenon in terms of off-diagonal long-range
order of the density matrix. Here we recall some of their results that are most relevant
to our problem. Asymptotically, i.e., for |r−r′| ∼ ∞, the nondiagonal density matrix
in coordinate representation can be decomposed as

ρ(r, r′) ∼ ψ∗
0 (r)ψ0(r′)+ γ (r − r′). (5.68)

In the limit, the second contribution on the right vanishes, and the first approaches
the condensate fraction, formally defined by

ρ0 = 〈Ψ |a†
0a0|Ψ 〉

〈Ψ |Ψ 〉 . (5.69)
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Penrose and Onsager showed that in the case of a hard-core repulsion, the condensate
fraction is determined by a filling factor describing the ratio of the volume occupied
by the hard spheres. They applied the theory to liquid 4He, and found that for a hard-
sphere model of the atom–atom interaction yielding a filling factor of about 28%,
the condensate fraction at zero temperature is reduced from unity (its value for the
noninteracting system) to around 8%. (Remarkably, but to some extent fortuitously,
this estimate is in rather good agreement with current experimental and theoretical
values for the condensate fraction in liquid 4He.)

To make a similar estimate of the condensate fraction for α matter, we follow Ref.
[150] and assume an “excluded volume” for α particles of 20 fm3. At a nucleonic
density of ρ0/3, this corresponds to a filling factor of about 28%, the same as for
liquid 4He. Thus, a substantial reduction of the condensate fraction from unity (for
a noninteracting α-particle gas at zero temperature) is also expected in low-density
α matter.

Turning to a more systematic treatment, we proceed in much the same way as
Clark and coworkers [152–154], referring especially to the most recent study with
M. T. Johnson. Adopting the α − α interaction potential

Vαα(r) = 475 e−(0.7 r/fm)2 MeV − 130 e−(0.475r/fm)2 MeV (5.70)

introduced by Ali and Bodmer [118], we calculate the reduction of the conden-
sate fraction as function of density within what is now a rather standard variational
approach. Alpha matter is described as an extended, uniform Bose system of inter-
acting α particles, disregarding any change of the internal structure of the α clusters
with increasing density. In particular, the dissolution of bound states associated with
Pauli blocking (Mott effect) is not taken into account in the present description.

The simplest form of trial wave function incorporating the strong spatial cor-
relations implied by the interaction potential (5.70) is the familiar Jastrow choice,

Ψ (r1, . . . , rA) =
∏

i< j

f (|ri − r j |). (5.71)

The normalization condition

4πρα

∫ ∞

0

[
f 2(r)− 1

]
r2dr = −1, (5.72)

in which ρα is the number density of α-particles, is imposed as a constraint on
the variational wave function, in order to promote the convergence of the cluster
expansion used to calculate the energy expectation value [157]. In the low-density
limit, the energy functional [binding energy per α cluster as a functional of the
correlation factor f (r)] is given by

E[ f ] = 2πρα

∫ ∞

0

{
�

2

mα

(
∂ f (r)

∂r

)2

+ f 2(r)Vαα(r)

}
r2dr, (5.73)
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Fig. 5.33 Reduction of
condensate fraction in α
matter with increasing
nucleon density. Exploratory
calculations (full line) are
compared with HNC
calculations of Johnson and
Clark [152–154] (crosses).
For comparison, we show
estimates of the condensate
fraction in the 0+

2 (Hoyle)
state of 12C, according to
Refs. [25, 26] (stars)
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where mα is the α-particle mass, while the condensate fraction is given by

ρ0 = exp

{
−4πρα

∫ ∞

0
[ f (r)− 1]2r2dr

}
. (5.74)

The variational two-body correlation factor f was taken as one of the forms employed
by Clark and coworkers [152–154], namely

f (r) = (1 − e−ar )(1 + be−ar + ce−2ar ). (5.75)

At given density ρ, the expression for the energy expectation value is minimized
with respect to the parameters a, b, and c, subject to the constraint (5.72). It is
important to note that these approximations, based on truncated cluster expansions,
are reliable only at densities low enough so that the length scale associated with
decay of f 2(1)− 1 is sufficiently small compared to the average particle separation,
which is inversely proportional to the cubic root of the density [152–155, 157, 158].

To give an example, for the nucleon density 4ρα = 0.06 fm−3, a minimum of
the energy expectation value (73) was found at a = 0.616 fm−1, b = 1.221,
and c = −5.306, with a corresponding energy per α cluster of −9.763 MeV and
a condensate fraction of 0.750. The dependence of the condensate fraction on the
nucleon density ρ = 4ρα as determined in this exploratory calculation is displayed
in Fig. 5.33.

The reduction of the condensate fraction of αmatter to roughly 0.8 as given by our
calculation at nucleonic density 0.03 fm−3 agrees well with results of Suzuki [25]
and Yamada [26] for 12C in the Hoyle 0+

2 state. Using many-particle approaches to
the ground-state wave function and to the THSR (0+

2 ) state of 12C, the occupation of
the inferred natural α orbitals is found to be quite different in the two cases. Roughly
1/3 shares (approaching equipartition) are found for the S, D, and G orbits in the
ground (0+

1 ) state, with α-cluster occupations of 1.07, 1.07, and 0.82, respectively
(see Sect. 5.4.1.3). On the other hand, in the Hoyle (0+

2 ) state, one sees enhanced



5 Nuclear Alpha-Particle Condensates 285

Fig. 5.34 Occupation of the
S orbital as a function of
density using the 3α OCM
for 12C [26]

occupation (2.38) of the S orbit and reduced occupation (0.29, 0.16, respectively) of
the D and G orbits (see also Sect. 5.4.1.3). This corresponds to an enhancement of
about 70% compared with equipartition.

To get a more extended analysis, OCM calculations have been performed [26]
for studying the density dependence of the S-orbit occupancy in the Hoyle state on
the different densities ρ/ρ0 ∼ (R(0+

1 )exp/R)3, in which the rms radius (R) of 12C

is taken as a parameter and R(0+
1 )exp =2.56 fm. A Pauli-principle respecting OCM

basis Ψ OCM
0+ (ν) with a size parameter ν is used, in which the value of ν is chosen

to reproduce a given rms radius R of 12C, and the α density matrix ρ(r, r′) with
respect to Ψ OCM

0+ (ν) is diagonalized to obtain the S-orbit occupancy in the 0+ wave
function. The results are shown in Fig. 5.34. The S-orbit occupancy is 70 ∼ 80%
around ρ/ρ0 ∼ (R(0+

1 )exp/R(0+
2 )THSR)

3 = 0.21,while it decreases with increasing
ρ/ρ0 and amounts to about 30 ∼ 40% in the saturation density region. Figure 5.35
shows the radial behaviors of the S-orbit with given densities. A smooth transition
of the S-orbit is observed, with decreasing ρ/ρ0, from a two-node S-wave nature
(ρ/ρ0 ∼ 1.18) in Fig. 5.35a to the zero-node S-wave one (ρ/ρ0 � 0.15) in Fig. 5.35d
[26]. The feature of the decrease of the enhanced occupation of the S orbit is in striking
correspondence with the density dependence of the condensate fraction calculated
for nuclear matter (see Fig. 5.33).

A more accurate and reliable variational description of α matter can be realized
within the hypernetted-chain (HNC) approach to evaluate correlation integrals; this
approach [152–154, 157] largely overcomes the limitations of the cluster-expansion
treatment, including the need for an explicit normalization constraint. Such an
improved approach is certainly required near the saturation density of nuclear mat-
ter, where it predicts only a small condensate fraction [152–154]. Of course, at high
densities the simple Ali-Bodmer interaction [118] ceases to be valid, and it becomes
crucial to include the effects of Pauli blocking. Once again, this conclusion reinforces
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Fig. 5.35 Radial behaviors of the S orbit in the 12C(0+) state with a R = 2.42 fm (ρ/ρ0 ∼ 1.18),
b R = 2.70 fm (ρ/ρ0 ∼ 0.85), c R = 3.11 fm (ρ/ρ0 ∼ 0.56), and d R = 4.84 fm (ρ/ρ0 ∼ 0.15),
where R denotes the nuclear radius of the 12C(0+) state [26]

the point of view that we can expect signatures of an α condensate only for dilute
nuclei near the threshold of nα decay.

5.5.4 ‘Gap’ Equation for Quartet Order Parameter

For macroscopic α condensation it is, of course, not conceivable to work with a
number projected α particle condensate wave function as we did when in finite nuclei
only a couple of α particles were present. We rather have to develop an analogous
procedure to BCS theory but generalized for quartets. In principle a wave function of
the type |α〉 = exp[∑1234 z1234c+

1 c+
2 c+

3 c+
4 ]|vac〉 would be the ideal generalization

of the BCS wave function for the case of quartets. However, unfortunately, it is
unknown so far (see, however, Ref. [159]) how to treat such a complicated many
body wave function mathematically in a reasonable way. So, we rather attack the
problem from the other end, that is with a Gorkov type of approach, well known
from pairing but here extended to the quartet case. Since, naturally, the formalism is
complicated, we only will outline the main ideas and refer for details to the literature.
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Fig. 5.36 Graphic
representation of the BCS
mass operator in Eq. (5.78)

Actually one part of the problem is written down easily. Let us guide from a
particular form of the gap equation in the case of pairing. We have at zero temperature
[131, 132]

(ε1 + ε2)κ12 + (1 − n1 − n2)
1

2

∑

1′2′
V̄121′2′κ1′2′ = 2μκ12, (5.76)

where κ12 = 〈c1c2〉 is the pairing tensor, ni = 〈c+
i ci 〉 are the BCS occupation

numbers, and V̄121′2′ denotes the antisymmetrized matrix element of the two-body
interaction. The εi are the usual mean field energies. Equation (5.76) is equivalent to
the usual gap equation in the case of zero total momentum and opposite spin, i.e. in
short hand: 2 = 1̄ where the bar stands for ‘time reversed conjugate’. The extension
of (5.76) to the quartet case is formally written down without problem

(ε1234 − 4μ)κ1234 = (1 − n1 − n2)
1

2

∑

1′2′
V̄121′2′κ1′2′34

+ (1 − n1 − n3)
1

2

∑

1′3′
V̄131′3′κ1′23′4 + all permutations.

(5.77)
with κ1234 = 〈c1c2c3c4〉 the quartet order parameter. This is formally the same equa-
tion as in Eq. (5.55) with, however, the Fermi–Dirac occupation numbers replaced by
the zero temperature quartet correlated single particle occupation numbers, similar
to the BCS case. For the quartet case, the crux lies in the determination of those occu-
pation numbers. Let us again be guided by BCS theory or rather by the equivalent
Gorkov approach [160]. In the latter, there are two coupled equations, one for the
normal single particle Green’s function (GF) and the other for the anomalous GF.
Eliminating the one for the anomalous GF in inserting it into the first equation leads
to a Dyson equation with a single particle mass operator,

MBCS
1;1′ (ω) =

∑

2

�12�
∗
1′2

ω + ε2
with �12 = −1

2

∑

34

V̄12,34〈c4c3〉. (5.78)

This can be graphically represented in Fig. 5.36, where 〈cc〉 stands for the order
parameter κ12 and the dot for the two body interaction.

The generalization to the quartet case is considerably more complicated but
schematically the corresponding mass operator in the single particle Dyson equa-
tion can be represented graphically as in Fig. 5.37, with the quartet order parameter
〈cccc〉. Put aside the difficulty to derive a manageable expression for this ‘quartet’
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Fig. 5.37 Graphical
representation of the
approximate α-BEC mass
operator Mquartet of
Eq. (5.80)

single-particle mass operator, what immediately strikes is that instead of only one
‘backward going line’ with (−p,−σ) as in the pairing case, we now have three back-
wards going lines. As a consequence, the three momenta k1, k2, k3 in these lines
are only constrained so that their sum be equal to k1 + k2 + k3 = −p and, thus, the
remaining freedom has to be summed over. This is in strong contrast to the pairing
case where the single backward going line is constrained by momentum conservation
to −p. So, no internal summation occurs in the mass operator belonging to pairing.
The consequence of this additional momentum summation in the mass operator for
quartetting leads with respect to pairing to a completely different analytic structure
of the mass operator in case of quartetting. This is best studied with the so-called
three hole level density g3h(ω) which is related to the imaginary part of the three
hole Green’s function G3h(k1, k2, k3;ω) = ( f̄1 f̄2 f̄3 + f1 f2 f3)/(ω + ε123) with
ε123 = ε1 + ε2 + ε3 and f̄ = 1 − f by

g3h(ω) = −
∫

d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3
ImG(3h)(k1, k2, k3;ω + iη)

=
∫

d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3

× ( f̄1 f̄2 f̄3 + f1 f2 f3)πδ(ω + ε1 + ε2 + ε3).) (5.79)

In Fig. 5.38 we show the level density at zero temperature ( f (ω) = θ(−ω)),
where it is calculated with the proton mass m = 938.27 MeV (natural units) [67].
Two cases have to be considered, chemical potential μ positive or negative. In the
latter case we have binding of the quartet. Let us first discuss the case μ > 0.
We remark that in this case, the 3h level density goes through zero atω = 0, i.e., since
we are measuring energies with respect to the chemical potentialμ, just in the region
where the quartet correlations should appear. This is a strong difference with the
pairing case where the 1h level density, g1h(ω) = ∫ d3k/(2π�)3( f̄k+ fk)δ(ω+εk) =∫

d3k/(2π�)3δ(ω+εk), does not feel any influence from the medium and, therefore,
the corresponding level density varies (neglecting the mean field for the sake of the
argument) like in free space with the square root of energy. In particular, this means
that the level density is finite at the Fermi level. This is a dramatic difference with
the quartet case and explains why Cooper pairs can strongly overlap whereas for
quartets this is impossible as we will see below. We also would like to point out that
the 3h level density is just the mirror to the 3p level density which has been discussed
in Ref. [161].
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Fig. 5.38 3h level densities
defined in Eq. (5.79) for
various values of the
chemical potential μ at zero
temperature [67]
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For the case where μ < 0 there is nothing very special, besides the fact that it
only is non-vanishing for negative values of ω and that the upper boundary is given
by ω = 3μ. Therefore, the level density of Eq. (5.79) is zero for ω > 3μ.

With these preliminary but crucial considerations we now pass to the evaluation
of the single-particle mass operator with quartet condensation. Its expression can be
shown to be of the following form
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Mquartet
1;1 (ω) =

∑

234

�̃1234( f̄2 f̄3 f̄4 + f2 f3 f4)�̃
∗
1234

ω + ε234
(5.80)

with

�̃1234 = 1

2
V̄12,1′2′δ33′δ44′ 〈c1′c2′c3′c4′ 〉. (5.81)

Again, comparing the quartet single-particle mass operator (5.80) with the pairing
one (5.78), we notice the presence of the phase space factors in the former case
while in Eq. (5.78) they are absent. As already indicated above, this fact implies in
the quartet case that only the Bose–Einstein condensation phase is born out whereas
a ‘BCS phase’ (long coherence length) is absent. The complexity of the calculation in
Eq. (5.80) is much reduced using for the order parameter 〈cccc〉 our mean field ansatz
projected on zero total momentum, as it was already very successfully employed with
Eq. (5.58),

〈c1c2c3c4〉 → φk1k2,k3k4χ0,

φk1k2,k3k4 = ϕ(|k1|)ϕ(|k2|)ϕ(|k3|)ϕ(|k4|)
× (2π)3δ(k1 + k2 + k3 + k4), (5.82)

where χ0 is the spin-isospin singlet wave function. It should be pointed out that
this product ansatz with four identical 0S single particle wave functions is typical
for a ground state configuration of the α particle. Excited configurations with wave
functions of higher nodal structures may eventually be envisaged for other physical
situations. We also would like to mention that the momentum conserving δ function
induces strong correlations among the four particles and (5.82) is, therefore, a rather
non trivial variational wave function.

For the two-body interaction of V̄12,1′2′ in Eq. (5.81), we employ the same sepa-
rable form (5.59) as done already for the quartet critical temperature.

At first let us mention that in this pilot application of our selfconsistent quartet
theory, we only will consider the zero temperature case. As a definite physical exam-
ple, we will treat the case of nuclear physics with the particularly strongly bound
quartet, the α particle. It should be pointed out, however, that if scaled appropriately
all energies and lengths can be transformed to other physical systems. For the nuclear
case it is convenient to measure energies in Fermi energies εF = 35 MeV and lengths
in inverse Fermi momentum k−1

F = 1.35−1 fm.
The single particle wave functions and occupation numbers obtained from the

above cycle are shown in Fig. 5.39. We also insert the Gaussian wave function with
same r.m.s. momentum as the single particle wave function in the left figures in
Fig. 5.39. As shown in Fig. 5.39, the single particle wave function is sharper than a
Gaussian.

We could not obtain a convergent solution for μ > 0.55 MeV. This difficulty is
of the same origin as in the case of our calculation of the critical temperature for α
particle condensation. In the r.h.s. panels of Fig. 5.39 we also show the corresponding
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Fig. 5.39 Single particle wave function ϕ(k) in k-space (left), for r-space ϕ̃(r) (middle), and
occupation numbers (right) at μ = −5.26 (top), −1.63 (middle), and 0.55 (bottom), with zero
temperature. The r-space wave function ϕ̃(r) is derived from the Fourier transform of ϕ(k) by
ϕ̃(r) = ∫ d3keik·rϕ(k)/(2π)3. The dashed line in the left panels correspond to the Gaussian with
same norm and r.m.s. momentum as ϕ(k) [67]

occupation numbers. We see that they are very small. However, they increase for
increasing values of the chemical potential. For μ = 0.55 MeV the maximum of the
occupation still only attains 0.35 what is far away from the saturation value of one.
What really happens for larger values of the chemical potential, is unclear. Surely,
as discussed in Sect. 5.5.2 the situation for the quartet case is completely different
from the standard pairing case. This is due to the fact, as already mentioned, that the
3h level density goes through zero at ω = 0, i.e. just at the place where the quartet
correlation should build up for positive values of μ. Due to this fact, the inhibition
to go into the positive μ regime is here even stronger than in the case of the critical
temperature [65].

The situation in the quartet case is also in so far much different, as the 3h Green’s
function produces a considerable imaginary part of the mass operator. Figure 5.40
shows the imaginary part of the approximate quartet mass operator of Eq. (5.80) for
μ < 0 and μ > 0. These large values of the damping rate imply a strong violation
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Fig. 5.40 −ImMquartet(k1, ω + iη) in Eq. (5.80) as a function of ω for μ = −4.9 MeV (left) and
for μ = 0.55 MeV (right) at zero temperature [67]

of the quasiparticle picture. In Fig. 5.41 we show the spectral function of the single
particle GF. Contrary to the pairing case with its sharp quasiparticle pole, we here
only find a very broad distribution, implying that the quasiparticle picture is com-
pletely destroyed. How to formulate a theory which goes continuously from the
quartet case into the pairing case, is an open question. One solution could be to
start right from the beginning with an in medium four body equation which contains
a superfluid phase. When the quartet phase disappears, the superfluid phase may
remain. Such investigations shall be done in the future.

5.6 Summary and Conclusions

We discussed α condensation in nuclear systems. One remarkable manifestation is
the Hoyle state (0+

2 ) in 12C at 7.65 MeV with a gas-like structure of three α-particles,
trapped by a shallow self-consistent mean field of wide extension, in which the c.m.
motion of the α particles occurs dominantly in the lowest 0S orbit. We found that
a simple wave function of the α-condensate type, called the THSR wave function,
describes very nicely the structure of the Hoyle state and reproduces the inelastic form
factor of 12C(e, e′) and others quantities. The condensate feature of the Hoyle state
was confirmed by the calculation of the bosonic occupation numbers in diagonalizing
the bosonic density matrix. It was shown that the occupation of the 0S state of the
α-particles is over 70% for the Hoyle state, and the remaining component (30%)
comes from residual correlations, mostly of the Pauli type, among the α particles.
In spite of the very different number of particles and other important differences, the
situation has some analogy with the case of cold bosonic atoms.

We conjectured that the α-particle condensates also exist in heavier self-conjugate
nuclei. Theoretical calculations of the OCM type indicate that the 0+

6 state at
15.1 MeV in 16O is a strong candidate. So far we do not dispose of sufficient exper-
imental data to confirm its nature. Experiments are under way and being analyzed.
This analogue of the Hoyle state in 16O has many similarities with the original one
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Fig. 5.41 Spectral function
of the single particle GF,
−2ImG(k, ω + iη), as
function of ω for
μ = −4.9 MeV (top) and for
μ = 0.55 MeV (bottom) at a
zero temperature [67]

in 12C: it lies a couple of hundred keV above the 4α disintegration threshold. It is
quite strongly excited by (e, e′). Its width is 160 keV. This is much larger than for the
Hoyle state in 12C but with respect to its energy it is still unusually small. The large
width stems from a position higher up in Coulomb barrier and also the Coulomb
barrier itself has become slightly lower. The situation in 16O with respect to alpha
clustering is considerably more complicated than in 12C. Results from the 4α OCM
calculations showed that 2nd up to 5-th 0+ states in 16O have α +12 C structures.
Only the 6-th 0+ state is the analogue to Hoyle state. We also discussed the results
of the THSR wave function for 16O.

As for the heavier α-particle condensates, we found first that they are predicted
to be slightly above their nα threshold in the A = 4n nuclei but below the Coulomb
barrier, and second the phenomenon will terminate at about eight to ten α’s as the
confining Coulomb barrier fades away. However, the concept of α condensation in
nuclei can be generalized to non self-conjugated nuclei (A �= 4n). Since the nuclear
α-particle condensation is described dominantly as a product state of α particles
occupying the lowest 0S orbit, the counterpart in A �= 4n nuclei should still be
presented as a product state of the constituent clusters in the 0S state. For instance,
we can conjecture product states composed of α’s, a few neutrons and/or s-wave
clusters (d, t,3He) such as (0S)2α(0S)t in 11B and (0S)3α(0S)n in 13C etc. Indeed,
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our OCM calculations indicate that they appear slightly above their three- and four-
cluster disintegrated thresholds, 2α+ t for 11B and 3α+n for 13C, as positive-parity
states with Jπ = 1/2+.These results encourage us to conjecture that cluster-gas-like
states described by antisymmetrized product wave functions of constituent clusters,
all in the 0S level, can exist in general in excited states of low density in light nuclei.

We dwell on the fact that concepts developed for infinite nuclear matter are of value
also to interpret properties in finite nuclei and to construct useful approximations.
As examples, we refer to pairing, two and more body correlations, and one body
occupation numbers. Pairing definitely also is a useful concept for many finite nuclei,
in spite of the fact that nuclei are by far not macroscopic objects. For example, the
strong reduction of measured moments of inertia of such nuclei compared with
the classical values are explained as a consequence of superfluidity [24, 162, 163].
In this sense, we discussed nuclear α-particle condensation as the analogue to the
number-projected BCS wave function, replacing Cooper pairs by α particles. A real
macroscopic phase of condensed α’s may be formed during the cooling process of
compact stars [164, 165], where one predicts the presence of α-particle condensates
[150]. On the other hand, a possibility of quartetting with cold atoms in which
fermions are trapped in four different magnetic substates also have been discussed
[142, 144, 166, 167]. Theoretical and experimental works in this direction will also
be useful and helpful to investigate the low-density bosonic α-particle gas states in
nuclei.

In conclusion, the idea of α-particle condensation in nuclei is novel. A completely
new nuclear phase in which α particles move like in a gas as quasi-elementary
constituents is surely intriguing. In order to bring deeper insights into the role of
clustering and quantum condensates in the systems of strongly interacting fermions,
it is hoped that moreα-particle states in nuclei and/or manyα’s around a nuclear core,
including cluster-gas-like states composed of α’s, t’s and n’s etc., will be observed
in the near future.
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127. Soić, N. et al.: Nucl. Phys. A 742, 271 (2004)
128. Curtis, N. et al.: Phys. Rev. C 72, 044320 (2005)
129. Charity, R.J. et al.: Phys. Rev. C 78, 054307 (2008)
130. Kraeft, W.D., Kremp, D., Ebeling, W., Röpke, G.: Quantum Statistics of Charged Particle

Systems. Akademie-Verlag, Berlin (1986)
131. Röpke, G., Münchow, L., Schulz, H.: Nucl. Phys. A 379, 536 (1982)
132. Röpke, G., Schmidt, M., Münchow, L., Schulz, H.: Nucl. Phys. A 399, 587 (1983)
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Chapter 6
Cluster in Nuclei: Experimental Perspectives

P. Papka and C. Beck

Abstract This lecture notes treat some experimental aspects of nuclear cluster states
studies, ranging from traditional techniques to some of the most recent developments
and emerging methods. Experimental investigations, in the field of nuclear clusters
are discussed in terms of detection techniques and associated electronics. Recent
developments in accelerator technology and targetry are also presented in the scope
of new opportunities in cluster studies. The nature of cluster states makes exclu-
sive measurements crucial. It requires the simultaneous detection of nucleons, light,
intermediate-mass and heavy fragments, and possibly γ -rays together with timing
information. Precise measurements of angular correlations and energy distributions
between emitted particles are needed for kinematic reconstruction in order to achieve
a detailed study of the decay modes and the underlying dynamics. Within this scope,
highly segmented and high-efficiency detection systems are depicted. Developments
in digital signal processing have made possible major advances in experimental
nuclear physics. The combination of large numbers of channels with fast data acqui-
sition systems is one of the key aspects of this modern technology. Nuclear reactions
play a key role in the study of the structure of nuclear clusters. Therefore, aspects
of acceleration, including high-intensity, low-energy stable and radioactive beams
are presented. Targetry has received a renewed interest with the advent of active
targets (ACTAR). The combination of radioactive beams and active targets for the
study of nuclear clustering is certainly opening new horizons in this field of physics.
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A number of current experimental setups and computer codes are cited to illustrate
some of the techniques described but this list is by no means exhaustive.

6.1 Introduction

The clearest evidence for the occurrence of cluster states in nuclei is observed through
their decaying modes above the particle threshold via neutrons, protons, α particles
or heavier cluster emissions. Abnormal form factor measurements or the effects on
reaction mechanisms are some of the other manifestations of cluster states in nuclei.
Some of the striking examples are the characteristic breakup of 6He and the 2n
transfer reaction rate to target nuclei [1]; halo nuclei such as 9,11Li [2]; or 12C [3]
for its famous Hoyle state just above the three α particle threshold [4].

We begin this chapter with an overview of the different aspects of cluster states as
investigated from natural or exotic radioactivity to various nuclear reactions induced
either by stable or radioactive beams. The shape evolution of cluster configurations
and internal structure of cluster states have also been investigated by means of the
electron probe with (e, e′) reactions.

The experimental techniques in cluster studies do not differ strongly from stan-
dard nuclear physics methods where neutrons, γ -rays or charged particles need to
be detected. However, the dedicated experimental setups often use sophisticated
charged-particle arrays where particle identification, detection efficiency and energy
resolution are some of the key aspects.

6.2 Population of Cluster States

6.2.1 Radioactive Decay

6.2.1.1 Heavy Cluster Radioactive Decays

Alpha radioactivity can be considered as the first known manifestation of cluster
emission. Initially discovered in the Uranium decay series [5–7], α radioactivity
requires the pre-formation of an 4He nucleus emitted through the Coulomb barrier.
Decay modes involving much heavier clusters were only discovered in 1984 by Rose
and Jones [8] from Oxford University.

More exotic emissions, such as 14C-cluster radioactivity of 223Ra [9, 10], were also
measured almost simultaneously at Orsay by using the superconducting spectrometer
SOLENO [11]. SOLENO—see Fig. 6.1—has been employed to detect and identify
14C clusters spontaneously emitted from 222,223,224,226Ra parent nuclei. Thanks to
the excellent energy resolution of the magnetic spectrometer a structure in the kinetic
energy spectrum of 14C emitted by 223Ra was discovered [12]. Even heavier clusters
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Fig. 6.1 Layout of the
SOLENO magnetic
spectrometer: 1 iron shield,
2 solenoidal coil, 3 vacuum
chamber, 4 source, 5 iris,
6 shutters, 7 detector. The
arrows indicate the trajectory
of 14C6+ ions [11]

[5–7, 13–16] were discovered later on but their full identification is more complicated
for essentially two reasons. The branching ratios for such decay processes decrease
rapidly with the mass of the cluster, namely about 106 to 1015 times less intensely
than for α particles. Due to the larger atomic numbers of the heavy-clusters, the
absorption owing to large energy loss in the foil which contains the radioactive
nuclei is much higher. Only fragments with sufficient energy escape the foil and
deposit some residual energy in a detector.

Only a few types of experiments were undertaken to study exotic cluster decays
[9, 13–15]. Experimental arrangements were developed to deal with the large ratio
between the dominant emission of α particles, or spontaneous fission, and exotic
heavy-cluster decay in the late 1980s, early 1990s [6, 7].

Two important aspects for these experiments to be successful were carefully inves-
tigated: i.e. the preparation of the radioactive source and the sensitivity of the related
experimental setup to be optimised for the detection of heavy clusters rather than
for α-particles or fission fragments. The radioisotope of interest can either be found
naturally, or produced through a beam-induced nuclear reaction, and chemically sep-
arated before preparing the source. Two methods for source preparation are identified:
via implantation in a substrate directly after production using beam-induced nuclear
reaction or via chemical separation, a method applicable to both naturally occurring
or synthesised radioisotopes. A relatively large number of radioactive nuclei are nec-
essary to overcome low heavy-cluster decay probabilities; meanwhile the radioactive
material must be spread over a large area to allow the heavy clusters to escape from
the substrate.

Magnetic Spectrometers

The use of semiconductor detectors for energy measurement is limited by the total
incoming flux of charged particles. This is not only because of count rate limitations
from the data acquisition system but mostly due to radiation damage. This applies
especially in detecting heavy fission fragments as the radiation damage increases
dramatically with Z [17].

The separation of unwanted particles can be achieved using a magnetic
spectrometer. The cluster emitted from the radioactive source is stripped from most
of its electrons when ejected from the foil and the magnetic field settings of the
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spectrometer are tuned in order to transport the particles of interest with a defined
rigidity to a focal plane. Particles with a different rigidity are dumped in a stopper.
The SOLENO setup shown in Fig. 6.1 [11] probably was the unique spectrometer
dedicated to this type of measurement. The selectivity, in terms of a heavy cluster to
α separation, had a limit of 10−8 [10, 13].

Glass Detectors

The plate irradiation technique is relatively ancient. The tracks of the particles are
physically recorded in a substrate during irradiation and they are optically analysed
after a given exposure time. This method has a long history and is still used in
a number of applications, for example neutron dosimetry and high-flux neutron
measurements, or in some neutrino experiments. The latest techniques make use
of automated optical scanning with sophisticated algorithms to identify the tracks of
the particles. Regarding heavy-cluster studies, nuclear track detectors were essen-
tially made of glass phosphate. Heavy clusters impinging on the glass with high
incident energy create defects in the crystal due to the displacement of atoms, chang-
ing the local properties of the glass. The track left on the glass is revealed through the
etching method; a dip is formed and the features of the track relate to the energy loss
of the particle through the material. Information on Z and E of the decay products
can be deduced from the depth and the angle of the revealed cone.

Radioactive sources are prepared in the form of large-area thin foils placed against
the glass detector for an exposure time in the order of several hundreds of days. These
measurements were performed in a low background-radiation environment, espe-
cially because high-energy cosmic rays can produce tracks resembling heavy-cluster
events. Several experiments undertaken by Bonetti et al. [15, 16] were performed at
the Gran Sasso Underground Laboratory making use of the mountain as a very thick
shield against muon cosmic rays. This technique allows high sensitivity to heavy
clusters to α-particles with a ratio ranging from 10−8 to 10−16 [15]. However, for
extremely large flux irradiation, or long exposure, not only cosmic rays but also
α-particles produce defects in the glass that mimic heavy-cluster events.

Accelerator Mass Spectrometry Measurement

Accelerator Mass Spectrometry (AMS) [18] was developed together with the
advent of electrostatic accelerators. AMS is nowadays used for a large range of
applications concerned with very low concentrations (down to one in 1018) of ele-
ments or isotopes. AMS techniques make use of the charge-to-mass ratio to separate
the species of interest. In addition, the nuclei are accelerated with sufficient energy
to provide direct charge and mass identifications by using �E − E and time-of-
flight measurements, respectively. Owing to the extreme sensitivity, only a limited
number of detected ions are sufficient to characterise a sample. In the field of heavy-
cluster radioactivity, investigations have been carried out on Uranium samples where
the heavy clusters are contained after radioactive decay. Fragments emitted from
14C radioactivity [19] could be trapped in the sample and the idea to count these
atoms using AMS measurement emerged [15]. Direct measurement of the isotope of
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interest is possible if its half-life is long enough to allow for concentration evaluation
at the time of the preparation of the sample. The decay rate is extracted from the con-
centration using the secular equilibrium formula, taking into account the half-lives
of the parent and daughter nuclei.

6.2.1.2 Ternary and Quaternary Fission

Ternary fission was suggested shortly after the discovery of binary fission, mostly
because it is more energetically favourable. Binary fission can be observed relatively
easily with cheap solar cells placed in opposing directions with respect to a spon-
taneous fission source but ternary and quaternary fissions are experimentally much
more challenging. It took a great deal of effort to observe these events, which are
less frequent than binary fission, at a ratio of ≈10−3 for ternary and ≈10−7 for qua-
ternary fission of the well studied 252Cf spontaneous fission source. Note that 252Cf,
with a half-life of 2.645 years, does not occur naturally but is produced in high-
flux neutron reactors. Following spontaneous ternary fission, the fragments were
initially expected to be emitted in three distinct directions, separated with ≈120◦,
and with the energy shared between the fragments. It was discovered later that, at the
scission, the fragments adopt a collinear configuration with the formation of two or
three necks. In ternary fission the fragments at the tips of the collinear configuration
are emitted approximately in opposite directions. The middle fragment carries then
relatively low energy and is emitted nearly at rest in the laboratory frame. A number
of setups dedicated to this specific decay mode were devised, for example NESSI
[20, 21] or FOBOS [22]. The NEutron Scintillator tank and SIlicon ball detector
(NESSI) consists of two 4π detectors for neutrons, the Berlin Neutron Ball, and
the Berlin Silicon Ball for charged particles. Neutron multiplicity is measured with
high efficiency in a liquid Gadolinium-loaded scintillator detector and the fission
fragments detected with the silicon detector array. The FOBOS setup (see Fig. 6.2)
is composed of modular detectors placed opposite one another with respect to a
spontaneous fission source, 252Cf, or a target bombarded with thermal neutrons,
235U(nth, f) or α particles 238U(α, f ).Owing to the difficulties in detecting the third
fragment, the general approach is to determine the missing momentum via precise
measurement of the velocity and energy of the two detected fragments to reconstruct
the missing mass. The mass resolution on the mass reconstruction is crucial. The
mass and charge of the fragments are deduced using a sophisticated method some
aspects of which are detailed in [23, 24]. In the FOBOS setup the time of flight
is recorded with fast detectors, noted as 1 and 3 in Fig. 6.2. The charge and mass
are deduced by combining the Time-of-Flight (ToF) measurement and pulse shape
analysis of the energy deposition within the Large Ionization Detectors 2. Large
energy loss of the fragments in the entrance windows and mass loss due to neutron
emission must be taken into account and deduced from a multi-iteration procedure.
Further developments in ternary fission measurements with semi-conductor charged
particle detectors and efficient neutron detection with 3He gas-filled detectors are
implemented in the COMETA setup under the FOBOS collaboration.
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Fig. 6.2 Left panel: FOBOS (see Refs. [23, 24]) in a 12 module arrangement setup. Right panel:
schematics of a pair of FOBOS modules with, T target, 1 start avalanche counters, 2 Large Ionization
Chambers (LIC), 3 stop position-sensitive counters, 4 neutron collimator, 5 Frisch grid of the LIC,
6 cathode combined with the LIC entrance window

6.2.1.3 Study of Light Cluster Nuclei via β-Decay

A number of studies explored theβ-decay [25, 26] to populate unbound resonances in
light cluster nuclei as, for instance, in Ref. [27]. The radioactive nuclei are populated
through primary nuclear reactions and implanted in a substrate where excited states
of the daughter nuclei are populated through radioactive decay. The excited states
are populated through the β-decay selection rules and the highest excitation energy
will be dictated by the Q-value of the decay.

Charged-particle detectors surround the substrate where the radioactive ions are
implanted. Each implanted ion leads to an event of interest, which is useful in
dealing with extremely low beam intensities in the order of a few thousand ions
per second. This technique is similar to a measurement using a radioactive source,
but in this case the lifetime of the radioactive isotopes can be lower than a millisec-
ond. Contaminating reactions are considerably reduced and scattered particles from
ion beam interactions are negligible. However, isobaric nuclei can be transported to
the implantation site, which is one of the main concern when using Rare Ion Beams
as detailed in a further section. Cluster states can be studied nearly at rest in the
laboratory frame with little kinematic distortion. The daughter nucleus populated in
the primary β-decay has a very low recoil velocity owing to its mass of a few thou-
sand times larger than the emitted lepton–antilepton pair. Large coverage solid angle
and large efficiency are also made possible because of non-kinematic narrowing.
The kinetic energy of the break-up particles originates from the difference between
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the excitation energy of the level state populated in the β decay and the Q-value of
the break-up channel. For this reason, the study of low-lying states is not suitable
when the radioactive ions are implanted in a substrate. The available energy shared
between the break-up particles must allow sufficient energy to overcome the energy
loss through the various layers before energy deposition within the active part of
the detector. In one hand, only a limited number of states are populated, due to the
selection rules of β-decay, but very selective measurements can be performed due
to a simplified excitation energy spectrum.

In Ref. [28] the excited states of 9Be were populated via β-decay of 9Li with
two α-particles emitted and one neutron emitted in the subsequent break-up. The
identification of the 9Be states relies on the reconstruction of the missing momentum
to deduce the position and energy of the neutron. As a consequence, the states at
Ex ≤ 2.7 MeV could not be identified properly, leading to low recoil energy. How-
ever, the higher excited states could be clearly studied through angular distribution
measurements.

This technique is restricted to a limited number of nuclei, such as 8,9Be, and an
extensive study of 12C states was undertaken by means of 12N and 12B beam decay
studies [27]. To overcome the detection thresholds, direct irradiation of a highly seg-
mented detector was used [29, 30]. Secondary 12N and 12B ion beams were produced
at the Kernfysisch Versneller Instituut (KVI), Groningen, and separated with the mag-
netic separator TRIµP. The beam was defocused and homogeneously implanted in
a finely segmented 48 × 48 silicon strip detector of a 16 × 16 mm2 total area and a
thickness of 78 µm (2304 pixels, of 300 × 300 µm2 size) through a degrader and
primary DSSSD detector (“detector 2” of Fig. 6.3). With a low implantation rate and
owing to the fine segmentation of the detector, the occurrence of pile-up events (two
radioative decays in the same pixel) is very restricted. In this experiment the states of
interest in 12C are located in an excitation energy region Ex ≈ 10 MeV.The available
energy for the α-particles in 12C∗ → 3α can be, at most, of 2(Ex − Q)/3 ≤ 3 MeV
considering a two-step decay with 8Be emitted in its ground state. With such low
energy, the α particles are stopped within less than 40 µm of silicon. The incident
beam energy is chosen in order to implant the ions half-way through the detector.
The three α-particles are emitted from inside the detector and their energy is not
deteriorated as no dead layer is encountered by the particles. The energy is dissi-
pated in a single pixel and the total energy can be measured precisely with virtually
no detection threshold.

More recently, thanks to its well-established theory [25, 26], β-decay has been
found to be a useful tool for studying peculiar features of the halo structure of
nuclei [31].

6.2.1.4 Two-Proton Radioactivity

The diproton radioactivity was predicted by Goldansky [32] in the 1960s as the “true
three-body decay”. Such two-proton radioactivity [33, 34] occurs for a number of
very neutron-deficient nuclei on the neutron drip line or beyond. Some nuclei, as for
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Fig. 6.3 Right panel: finely segmented DSSSD detector (48×48 silicon strip detector, 16×16 mm2

area, 78 µm thickness). Left panel: detector and degrader arrangement for homogeneous implan-
tation of radioactive ions close to the centre of the 78 µm-thick DSSSD detector. Excited states in
12C are populated through β-decay of the 12N and 12B radioactive ions [30, 31]

example 45Fe [35, 36], have a forbidden one-proton emission for Q-value reason but
can possibly emit two protons via the direct emission of an unstable diproton. Though
the prediction was postulated about five decades ago the experimental techniques
only now allow the identification of such an exotic cluster decay. Many candidates,
such as 16Ne and 19Mg [37] for instance, were identified in long-lived to short-lived
nuclei or from excited states populated via β-decay.

Typical Rare Ion Beams for two-proton emission involve primary beam frag-
mentation followed by ion separation. The difference between two-proton emission
and sequential two-proton emission is obtained from the typical correlation between
the two protons from in-flight decay methods or knock-out reactions [37–39]. More
details on two-proton radioactivity can be found in the excellent reviews of Blank
[33, 34].

6.2.2 In-Beam Induced Reactions

In-beam induced nuclear reactions are mostly used for synthetising unstable nuclei
populated in the excited states of interest. Nuclei close to the valley of stability and
on the β+ unstable side are traditionnaly populated with stable ion beams. Cluster
studies, away from the valley of stability with large values of isospin, are populated
with the Rare Ion Beams (RIB) [40]. The reaction mechanism depends on some
of the basic characteristics of the system: projectile and target species and beam
energy. The adequate reaction is chosen for the maximum production cross section
and specific population of excited states. The experimental constraints considering a
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Fig. 6.4 Excitation energy landscape in 12C with 13C and 16O contamination indicated with C and
O labels. Excitation energy, spin and parity of the excited states in 12C are reported on the spectrum.
This figure has been adapted from Ref. [43]

particular reaction must also be taken into account. For example, low-lying break-up
states are preferably investigated by using complete kinematic measurements [41].
In inverse kinematics, when the projectile is heavier than the target nucleus, the break-
up particles are emitted in the centre-of-mass frame, moving with a velocity close
to the beam velocity. Limitations may arise when particles need to be measured at
angles approaching the beam axis at 0◦ [42] and detection efficiency is not favoured.

6.2.2.1 Inelastic Scattering Reactions

Inelastic scattering converts kinetic energy into excitation energy within the pro-
jectile and/or target nuclei. For example the α-unbound channels in 12C were studied
with great care using hadronic interaction with (p, p′) or (α, α′) reactions with high
energy-resolution spectrometers [43]. The technique relies on a precise momentum
measurement of the scattered particles, assuming the missing momentum has been
transferred to the recoil nucleus and the excitation energy is deduced from energy
conservation. The energy spectrum obtained at a given scattering angle is there-
fore used to extract the excitation energy of the target nucleus. Figure 6.4 shows a
12C spectrum at finite angle with a natural carbon target being bombarded with a
66 MeV incident energy proton beam [43]. The line shape of the excited state can
be characterised with precise determination of the width and interference between
excited states. The angular distribution of the scattered particles informs on the spin
and parity of the states. Weakly bound projectiles such as 6Li,7Li or 9Be have been
investigated with such reactions to study some exotic states in the light-mass region.
Typical cases such as 6He [44] or 11Li [45] show very pronounced halo structures
deduced from elastic and inelastic cross section measurements.
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6.2.2.2 Electron Scattering

Electron scattering [46, 47] has long been known as one of the best probes for
charge distribution measurement within the atomic nucleus because of the point-like
structure of the charge of the projectile. The search for exotic cluster states in light
nuclei is reported in numerous papers [48–50] including the study of the properties of
the Hoyle state of 12C [51]. Electron scattering cross sections are often plotted as the
ratio of the measured to the Mott cross section, the equivalent of the Rutherford cross
section for ion scattering. The Hoyle state being predicted to have a well-developed
three α structure, should show a large form factor if one could measure the elastic
scattering on the Hoyle state itself. This is not possible as the 12C target nuclei are
found naturally in their ground state. The population of this state can be produced via
inelastic collision with an electron. The scattering cross sections on the 7.65 MeV
state of 12C from Ref. [51] are well interpreted in the framework of the Fermionic
Molecular Model (FMD) and α cluster model. The large form factor calculated in
the bottom panel of Fig. 6.5 indicates a diffuse state of nuclear matter supported by
the very good agreement obtained for the 0+ and 0+ to 2+ transition data.

6.2.2.3 Transfer Reactions

In single-nucleon transfer reactions, neutron and/or proton removal allows the pop-
ulation of nuclei slightly away from the valley of stability. New information for light
nuclei (7,8Be,10C) was obtained by using this type of reaction. The reaction mech-
anism informs on the structure of a particular nucleus. Recent studies have shown
the strong correlation of the two neutrons in 6He through an enhanced 2n transfer
channel in the 6He +65Cu system at 22.6 MeV incident beam energy [1]. Cross sec-
tions for transfer reactions are relatively high, from a few MeV/u up to several tens
of MeV/u incident beam energy.

Multi-nucleon transfer reactions offer interesting ways of populating specific
states in residual nuclei. The transfer of α particles is interesting in populating α-
like nuclei where strong resonances are observed. The case of two nucleon transfer
reaction using (3He, n) or (p, t) reactions can be used selectively to populate target-
like nuclei by adding two correlated nucleons on specific orbitals. Some more exotic
reactions (4He,8He) [52] and (3He,8He) [53] were successfully performed but rarely
used due to low characteritic event rates.

6.2.2.4 Charge–Exchange Reaction

Heavy-ion charge–exchange reaction, through Gamow–Teller or Fermi transi-
tions, is a powerful tool for spectroscopic studies in exotic nuclei, and may be used
to investigate the isovector response of near drip line nuclei. In charge-exchange reac-
tions, and due to the nature of the interaction, isobaric analogue states are favourably
populated which can be of interest for the purpose of selectivity (isoscalar, Fermi–
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Fig. 6.5 Right column: Charge density in 12C calculated with the Fermionic Molecular Dynamics
model (solid lines), α cluster model (dashed lines) and Bose-Einstein Condensation (dotted lines).
Left Column: Ratio of the experimental cross sections to the Mott cross sections (open square)
compared to DWBA calculations performed with the potentials from the right column. Comparisons
are shown for the 0+ state (top panels) and 0+ to 2+ transition (middle panels) and the theoretical
charge distributions and cross sections are shown for the 2+ state in the bottom panels. This figure
has been adapted from Ref. [51]

Gamow and analogue states features). Nuclei such as 6,7Be,10C and 16F have been
investigated using (p, n), (3He,3 H) reactions on various targets (see for instance
[54–56]). Charge exchange reaction is a route to study exotic ions and to populate
even more exotic nuclei towards both neutron-rich and neutron-deficient regions in
inverse kinematic reactions using secondary beams.

6.2.2.5 Knock-Out Reactions and Fragmentation Reactions

Knock-out reactions occur at incident beam energies from 100 MeV/u and higher.
Using light targets, the main contribution in knock-out reactions corresponds to those
events where single nucleons from the projectile interact with the target nucleus in
surface-grazing collisions through inelastic break-up, or stripping [57]. Ground state
and excited states are populated in the projectile but minimum re-arangement within
the projectile/target nuclei is expected. The spread in momentum of the projectile after
the knock-out reaction not only depends on the multiple scattering through the target,
but also carries information related to the bound state wave function of the ejected
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nucleon. For example the knock-out of a loosely bound nucleon causes less spread
than a tightly bound nucleon. High value of orbital angular momentum of the ejected
nucleon also increases the momentum spread of the quasi-projectile. Therefore, a
measurement of the momentum spread characterizes the wave function of a single
particle. The longitudinal spread is a more sensitive measure of the momentum
dispersion than transversal, which is affected by scattering mechanisms. With heavy
targets and higher energy beams, 1 GeV/u, Coulomb knock-out plays an important
role [58].

Fragmentation occurs between a fast moving projectile and a target, in inverse
kinematics reaction. Beam energies are well above 100 MeV/u as for example the
1 GeV/u Ar beam at the FRS/GSI facility. Further away from the valley of stability
nuclei are efficiently produced via fragmentation of the primary beams. This tech-
nique implies that the fragmented nuclei are separated and transported in a beam
for secondary collisions where the knock-out reactions previously described present
relatively high cross sections (≈10 mb). Recent studies have employed single neu-
tron knock-out reaction to populate 16Ne and 19Mg from 17Ne and 20Mg fragmented
beams respectively [37].

6.2.2.6 Ion Beams

Most of the stable isotopes, if not all, were accelerated within stable ion beam facil-
ities in the last nearly 80 years by using oscillating or electrostatic accelerating tech-
niques. Electrostatic machines are mostly making use of negative ion beams that
allow pre-acceleration with a positive high voltage followed by efficient stripping
of the ions for a second acceleration with a higher charge state. Such machines are
called tandem van de Graff accelerators. Radio Frequency resonators in LINAC,
synchrotron or cyclotron make use of positive ions produced in ECR sources. Some
of the stable beam facilities have explored the acceleration of pre-synthesised iso-
topes separated in offline chemical separation. Some very interesting projectiles such
as 7Be,10Be can be produced by using primary irradiation of some stable elements
or isolated from naturally occurring radioactive isotopes such as 14C. Beryllium-
7 was prepared at Louvain-la-Neuve using the 7Li(p, n)7Be reaction, separated
using offline chemical separation techniques, and introduced in an ECR source [59].
A number of other isotopes can be employed for ion beam generation or for radioac-
tive targets, for example Americium or Californium.

Recent RIB facilities produce rare ion beams with down to ms half-life for
secondary reactions. Such short-lived isotopes are found far from stability and are
crucial to populate nuclei in un-explored regions in the both neutron-deficient region,
especially for exotic N = Z nuclei, and the neutron-rich region with high N/Z ratio.
In terms of cluster nuclei studies, a wide range of interesting projectiles are available
and still being developed in a number of facilities worldwide, for example, radioactive
Helium isotopes produced at JINR and GANIL with intensities up to ≈107 6He and
105 pps 8He. Facilities around the world use two main principles for rare ion beam
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Fig. 6.6 General layout of in-flight fragment separation and ISOL Rare Ion Beam facilities. Exper-
iments can be performed with a low-energy rare ion beam for β-decay studies and material research

production: in-flight fragment separation and Isotope Separation On-Line beams as
schematically depicted in Fig. 6.6.

In the first case high-energy projectiles are stripped from a number of nucleons
through fragmentation reaction within a relatively thin target and are separated from
a cocktail of particles with a sophisticated mass separator to produce a clean beam.
The main challenge is to eliminate isobaric nuclei, which is achieved at the cost
of a multi stage separator. Due to the spread in energy and multiple scattering of
the ions in the target, plus possible degraders in the mass separator, the beam qual-
ity is relatively poor. Alternately, the ions can be stopped just after the production
target in a gas catcher. The ions are slowed down but kept in a low charge
state for extraction and post acceleration. In this way the beam quality is greatly
improved. The first in-flight separation was performed in the 1970s, at the Lawrence
Berkeley Laboratory, and some of the facilities that routinely employ such techniques
include LISE/SISSI/GANIL (France), FAIR/FRS/GSI (Germany), Notre Dame and
NSCL/MSU (USA), ACCULINNA/JINR (Russia) and ETNA/LNS (Italy). Neutron-
rich and neutron-deficient nuclei can be produced with this technique.

ISOL techniques were implemented for the first time in the late 1950s, at the Niels
Bohr Institute in Copenhagen. The technique makes use of intense primary beams
from a driver accelerator or reactor impinging on a thick target for the production
of radioactive nuclei, typically through fission or spallation reactions. Note that the
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primary beam can be used to generate fast neutrons which causes efficient fissioning
thus the production of fission products that are neutron-rich by nature. Diffusion of
the newly formed isotopes is obtained by heating the target material and feeding the
unstable isotopes to an ion source for charge breeding and post acceleration. The
first implementation of the modern ISOL technique at ISOLDE CERN made use of
a 600 MeV proton beam with 4 µA intensity. Large amounts of unstable and stable
nuclei are produced and it is essential to select the isotope of interest. Ionization
through two- or three- step excitation using adequately tuned laser allows selective
ionization of virtually only one species then extracted with a voltage potential. High
resolution mass spectrometers are also employed to select the isotope of interest
from the inevitable isobars. Such techniques require special developments to attain
maximum extraction efficiency and transmission through the accelerator and sepa-
rators. A number of facilities such as ISAC/TRIUMF (Canada) or SPIRAL/GANIL
(France) for instance, deliver radioactive ion beams by this method.

6.3 Targetry

Irrespective of the effort invested in delivering either stable or Radioactive Ion Beams
(RIB), a proper choice of the target is essential to produce clean nuclear interactions
with incident projectiles. Indeed, the traditional high-energy physics colliders have
not been used often for applications in the low-energy nuclear physics domain and
nuclear interaction studies have been limited to fixed-target setups. Targetry, in the
jargon, is a subject of intense developments at the interface of material research and
nuclear physics. Chemistry, laser physics, material science and cryogenics, together
with mechanical engineering, are involved in a discipline sometimes called an art
by the target makers. Regarding the abundance of the related literature [60], an
exhaustive review in targetry would require a dedicated series of text books. This
chapter will be restricted to some developments in targets that concern cluster and
resonant states studies.

Targets, used in conjunction with charged particle spectroscopy, are tradition-
ally kept relatively thin in order to reduce multiple scattering of both incom-
ing and outgoing particles, typically from just under 10 µg/cm2 to 10 mg/cm2

(≈1018 to ≈1021 atm/cm2) depending of the features of the incident beam and the
outgoing particles to be detected, and according to the cross section of the reaction
of interest. The targets preferably are self-supported to avoid contamination from a
substrate, as well as to reduce the amount of material to be penetrated. The field of
targetry is subject to new experimental challenges owing to the rapid increase of Rare
Ion Beam facilities. This, depending on the technology adopted, is mostly in relation
to the features of secondary beams possibly characterised by large emittance and
energy spread, but mostly with limited intensities. New developments in RIB require
both high power dissipation targets for secondary beam production and very spe-
cific targets for secondary reactions. They are used in conjunction with sophisticated
detection devices if not as part of the detector itself.
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Fig. 6.7 Gas target with 1 ×3 cm2 Aramid 7.0 µm thick entrance and exit windows. The gas target
is 1 cm thick and pressure up to 1 atm is sustained [Neveling R., et al., private communication]

6.3.1 Gas Targets

Gas targets are not necessarily compatible with the high-vacuum requirement for
beam transport. Straightforward gas targets consist of a cell enclosed between two
thin windows to retain the gaseous target material. The windows of a gas cell intro-
duce unwanted contaminants but, on the other hand, any type of gas can be bom-
barded. Polymer materials, like Kapton (C22H10N2O5) Aramid (C12H10N2O2) or
Mylar(C8H10O4), are suitable for making gas target windows owing to their high
strength at relatively thin thicknesses down to 1.5 µm. A gas target for enriched iso-
topes is displayed in Fig. 6.7, which shows a volume of 3 cm3 of material contained
between 1 × 3 cm2 Aramid 7.0 µm windows placed 1 cm apart. A pressure of 1 bar
with a low leakage rate is sustained, insuring good vacuum in the target chamber and
beam pipe and a relatively thick target ≈1 mg/cm2.

The number of atoms/cm2 for such a gas target is approximately 3 × 1019

atoms/cm2 at a pressure of 1 bar at room temperature. HAVAR (Co ≈ 45%,Fe ≈
20%,Cr ≈ 20%,Ni ≈ 15%) is an alternative to polymers and the strength of this
material is even better. This type of material is used to avoid light H, C, O, N conta-
minants.

Gas cells are not necessarily suitable for hydrogen or Helium gasses due to
the small size of these atoms/molecules. Hydrogen atoms migrate relatively eas-
ily through thin film material. One way to reduce the leakage and to increase the
density of atoms is to cool down the gas cell. While reducing temperature, the opti-
mal pressure is kept at a desired value by increasing the number of moles in the
cell according to the ideal gas law. The thermal motion being slowed down, both
the H atoms migrate less efficiently through materials, and materials offer better
permeability.
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Fig. 6.8 Window less gas target pumping system of the European Recoil Separator ERNA [60]

If the windows of the gas cells induce background events, even using the thinnest
material, the way forward is to remove them but to keep the vacuum at a reason-
able level sounds somewhat unnatural. Windowless gas cell targets consist of an
extended volume where a low pressure over a relatively long distance enables target
thicknesses to be made in the order of 1017–1018 atoms/cm2 (5 cm at 4 mbar). Differ-
ential pressure by means of a multi-chamber connected with small apertures placed
to increase the vacuum impedance enable a pressure gradient from 1 to 10−6 mbar
within short distances. With such pressure the target thickness is typically in the order
of a few µg/cm2 or less. In the case of astrophysical nuclear reactions, the energy
loss through the target is a very important parameter. Self-supporting targets require
a minimum thickness in order to keep their integrity and mechanical strength. Car-
bon foils are amongst the thinnest self-supported targets with commercially available
1 µg/cm2 foils (a layer of nearly 25 atoms). Windowless gas targets offer the possi-
bility of producing extremely thin targets, in principle down to residual gas pressure if
needed. The window less gas target of the ERNA mass separator illustrated in Fig. 6.8
shows the complexity of the system between pumping stages and pump arrangement
[61]. The labels TMH indicate turbomolecular pumps, and WS the high pump-
ing speed pumps. Dry pumps, also called oil-free pumps, are backing the TMH
and WS pumps. The differential pressure is maintained by means of the apertures
denoted by L.

Jet-gas targets are of interest for increased thicknesses together with a better
determination of the interaction point. This is a very important requirement for both
γ -ray and magnetic spectrometer experiments. The gas target is injected at supersonic
velocity in a differential pressure system obtained through evacuated chambers that
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are vigorously pumped in order to keep the best vacuum possible in the beam lines.
A high-pressure nozzle blows the target material pretty much in the same way as
a high-pressure water cleaner. The jet is directed into a funnel connected to a high
pumping speed system to evacuate the bulk amount of gas. Owing to the momentum
of the particles within the jet, the main part of the gas material remains within the jet
axis and is evacuated through the dedicated pumping system. Residual gas lost from
the divergence of the jet is evacuated through differential pumping in an equivalent
system to that detailed for the gas cell target.

Gas targets are non-destructible because they are continuously regenerated and
allow the use of relatively high-intensity beams. However, a large deposition of
energy in the gas induces rapid dilation and, consequently, a loss of efficiency [62].
For both gas cell and jet-gas targets, the gaseous material has to be constantly fed in
order to maintain constant thickness against pumping. Expensive material must be
recovered and recirculated to keep the cost of the measurement within a reasonable
budget. Helium-3 material with a natural abundance just above 1 ppm, for example,
presents large variations in cost depending on the availability of the parent 3H together
with the demand for 3He-based neutron detectors or other large-scale applications.
In a gas target, optimised recovery together with the purification system allows an
economical use of isotopically enriched gas. Extensive nuclear astrophysics mea-
surements were performed with the windowless gas target facility RHINOCEROS
[62, 63]. Isotopically enriched targets such as 15N [64] were used with purification
of the recycled gas. Another well-known example is the α(12C,16O) radiative cap-
ture reaction which has been extensively studied, in particular with the use of the
ERNA mass separator with different types of windowless and gas jet targets [61].
The S-factor is measured at lowest possible centre-of-mass energy. The use of inverse
kinematics is of particular interest as it allows higher beam energy, Elab, compared
to direct kinematics for identical centre-of-mass energy, Ecm, as indicated in Eq. 6.1
as a function of the mass of the projectile Mp and target Mt . The recoils produced
with more recoiling energy are easier detected.

Ecm = Elab
Mt

Mt + Mp
(6.1)

6.3.2 Solid Hydrogen Targets

Proton targets are of very high importance for reactions involving RIBs [41]. Radioac-
tive nuclei with sub-millisecond lifetime can be delivered in a form of RIB but cer-
tainly not in the form of a fixed solid target. As a consequence, a number of nuclear
reactions require hydrogen targets to investigate cluster states far from stability in
inverse kinematics reactions. Proton beams were traditionally used for (p, p′), (p,
n), (p, d), (p, t), (p, 2p) reactions, and deuteron beams for (d, p), (d, n) reactions.
With the advent of RIB facilities there is a renewed interest in using this type of
reactions but in inverse kinematics, and this is especially the case for the study of
light neutron-deficient nuclei.
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In this respect, plastic targets certainly are the most affordable and easiest hydro-
gen targets to manufacture in the form of CH2 and CD2 polymers in any thickness
and dimension. However, beam intensities have to be limited due to the easy disinte-
gration of plastic-type materials but this is not really a concern with RIBs. In terms
of purity, the areal thickness of hydrogen accounts for approximately 15% of H in
CH2, or 33% of D in CD2,which is quite ineffective in terms of contaminants. There-
fore, cryogenic solid targets are preferred for experiments that are highly sensitive
to background contamination.

Early developments have proposed solid hydrogen targets in the form of nearly
self-supporting cryogenic hydrogen material [65]. With the advent of RIB facilities,
cryogenic hydrogen targets [66, 67] have been refined in order to provide relatively
thinner thicknesses with a limited amount of contaminating materials.

Hydrogen freezing in itself presents an interesting thermodynamical problem.
Indeed, the freezing of such material must be adequately performed in order to pro-
duce a homogeneous layer without structures, pockets of liquid material or bubbles.
The hydrogen should preferably be grown in a crystalline form far away from the
triple point where sudden changes in density are known to induce undesirable large
defects in the layer. The gas is generally fed at rather low temperature (≈80 K),
and special care is required to avoid clogging of the inlet pipes while freezing the
material.

Windowless solid–gas targets have also been the subject of interesting develop-
ments. A substrate is required to freeze the material, in other words, to grow the
crystal. Material with a relatively high boiling point, together with rather low vapour
pressure is suitable for use in high-vacuum chambers, otherwise a gradual reduction
of the target thickness is observed through sublimation. Concerning H windowless
gas targets, a gold substrate with the sufficient thickness of 60 mg/cm2, cooled down
to a temperature < 3K with a liquid Helium cryostat, can hold a homogeneous layer
of hydrogen ice on its surface [67]. This kind of setup is not necessarily ideal with
regard to cluster studies, as the gold backing would induce a large energy loss from
the incoming or outgoing particles depending on the orientation of the target.

In recent experiments at the RIKEN RIB facility [68], H targets [69] were produced
between two substrates that were removed after freezing, leaving a solid windowless
H solid layer as shown in Fig. 6.9. The target holder was made of copper and the
windows, used in the specific study of Ref. [69], were made of stainless steel plates
coated with Teflon. The cell was sealed with a ductile metal, Indium, compressed
between the target holder and the stainless steel plate. The 5–10 mm thick H cell
is cooled down at He liquid temperature while the H crystal is grown. Once the
freezing process is completed, the windows are moved away from the beam axis
with no damage to the target; as a result a very homogeneous 40 mg/cm2 thick
target can be sustained under high vacuum at a temperature of 3 K with a very slow
sublimation rate.

Thinner solid H and D targets are detailed in Ref. [66]. The principle resides in
the supply of gaseous H in a liquid He temperature cell with an appropriate design
for the pressure and temperature gradient to freeze the H material gradually from
the bottom to the top of the cell. The target, depicted in Fig. 6.10 is composed of
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Fig. 6.9 Schematics of the solid H target from [69]. The two removable bellows are cooled with
liquid He during feeding of H to be gradually frozen until complete coverage of the hole

three cells, the middle one of which accommodates the H material. The He coolant
is circulated in the two adjacent outside cells contained between Mylar windows. In
this type of target, the Mylar windows are necessary to contain the coolant during the
hydrogen phase transition. After freezing, the temperature is kept below the freezing
point of H and the Helium coolant is not needed anymore. The H target is then
sustained through the cooling of the cryostat, whereas the Mylar windows avoid the
sublimation of the material, keeping the pressure within the solid target cell under the
triple point. Although such a solution requires a containing windows, the thickness of
the target can be kept below 10 mg/cm2. The purity of the target is largely improved,
as compared to a solid plastic target, but the Mylar windows, in contrast to self-
supported targets, induce contaminating reactions. Further developments to remove
the two Mylar windows from the He cooling with the solution described in Ref. [69]
can be considered in order to reduce the contaminants by a factor of two and increase
the thickness homogeneity.

Solid hydrogen can be made to large thicknesses compared to gas targets. The
main advantage is the very good spatial resolution (1–10 mm) which is a crucial
parameter with regard to kinematical reconstruction of many-body decay events, or
using a magnetic spectrometer, for which the interaction point must be known as
accurately as possible.
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Fig. 6.10 Picture of the solid H target with the He cooling system a) and detail of the cryogenic
cell b) [66], [Roussel-Chomaz, P., et al., Private communication]

6.3.3 Active Targets

Statistics governs the quality of a measurement. The event rate is calculated with the
general expression:

Nevt = Np Ntσηdet (6.2)

where Nevt, the number of recorded events per second, is the product of the effi-
ciency of the detector ηdet, the number of target nuclei per cm2, Nt, the number
of projectiles per second Np and the cross section σ of the reaction of interest.
The beam intensity, especially when dealing with Rare Ion Beams, is in the hands
of the accelerator engineers and will increase with technology and developments
over the next decades. The cross section is a physical parameter and dealing with
low beam intensity reactions with relatively large cross sections are preferred. The
efficiency of the detector, ηdet,must be pushed to the highest value as close as 100%.
The last number to consider is Nt , which can easily be increased by adding more
target nuclei, in other words increasing the target thickness. But this, in principle, is
against good energy and position resolution. The first implementation of an active
target probably emerged from the need of a proton target where low-energy detec-
tion thresholds were required in high-energy physics [65]. In cluster physics studies,
recent investigations made use of a thick target to investigate the properties of res-
onant states. A beam impinged on a thick gas target was followed by two annular
silicon strip detectors. The two detectors allowed some degree of tracking, namely a
straight line intersecting two points. The interaction point was deduced by assuming
that the projectile kept to a linear trajectory in the gas target along the beam axis.
This information was sufficient to correct the energy of the detected particle before
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Fig. 6.11 Schematic rendition of the MAYA active-target. A beam projectile enters the detector
volume where it reacts with a nucleus in the gas. The particles involved in the reaction may produce
enough ionization to induce a pattern in the segmented cathode, after traversing a Frisch grid and
a plane of amplification wires. A set of ancillary detectors is used in the exit side of the detector

it penetrated the two detectors and the gas target. The energy of the incident particle
must also be calculated using the beam energy before penetrating the gas target and
the thickness of gas material before the interaction point.

The archetype of active targets, in the domain of secondary beams is the IKAR
detector [70] used at GSI (Germany) to study elastic scattering of exotic beams at
relativistic energies. Other examples, such as the MSTPC detector [71] designed at
RIKEN (Japan) to study fusion and astrophysical nuclear reactions in low-energy
regions, or the early active target MAYA (see Fig. 6.11), paved a new avenue in
combining the detector and the target in the same apparatus.

Active Targets (ACTAR) [72] work on the basic principle that the gas of a Time-
charge Projection Chamber (TPC) [65] is also the target for nuclear reactions and
the beam is impinging inside the chamber. The gas target can be pure or composed
of a mixture of standard gas detection C4H10 for instance or H, D and 3He. Such
an apparatus offers both very high efficiency and low detection thresholds; particle
identification and complete reconstruction of events can be performed with deduction
of the energy of the incident particle at the interaction point. This has the advantage
of making full use of a low-intensity ion beam and a single-beam energy is sufficient
to perform a complete excitation function measurement.

Early developments were based on square-shaped chambers such as the MAYA
detector at GANIL shown in Fig. 6.11 [73] or the Bordeaux TPC setup [74]. It is
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interesting to mention that the Bordeaux TPC setup has been very successful with
the first identification of the two-proton radioactivity [33, 34]. A number of the
present developments are based on barrel-shape geometry of the chamber to comply
with cylindrical coordinates of nuclear reactions occurring along the beam axis.
It is mechanically more suitable to handle various pressures in the target ranging from
a few mb to several bars with a minimum amount of material. This configuration
presents an advantage if the target is combined with γ -ray detectors; the walls of the
target can be kept relatively thin to reduce the absorption of the γ -rays. The diameter
of the barrel-shaped ACTAR typically is 0.5 m and the length around 1 m. This
geometry is ideal for applying a longitudinal magnetic field along the beam axis for
particle identification. This would preferably be achieved by means of conventional
(or even superconducting) magnets to sufficiently bend particles such as intermediate
energy protons.

In the cylindrical geometry, as for example TACTIC at TRIUMF (see Fig. 6.12),
the electric field of the TPC can be longitudinal or radial. Charged particles with
enough kinetic energy, ionize the gas along their path. The electrons are drifting, due
to the HV potential, and are detected with highly segmented detector systems placed
on the end cap of the barrel or on the side walls. The electrons drift in the chambers
with the velocity characteristic of the gas mixture and High Voltage (HV). Typical
CO2/Ar gas detection has been proven to be very suitable for use in drift chambers,
especially, due to the high HV break down allowing large gains. The gain is limited
by HV discharges but recent developments allow higher gain together with higher
granularity with the Gas Electron Multiplier (GEM) technology developed at CERN
by Sauli [76].

Drift electron velocity typically is in the order of 1–10 m/µs. Incident particles
with relatively low energy at nuclear scale, i.e. 1 MeV/A, travel much faster than
the drifting electrons, namely with velocity > 0.5%c, and the ionization can be con-
sidered to occur instantly compared to the drift time. The time difference, together
with a 2D projection on the cap or side of the barrel, allows the reconstruction of
3D tracks. The curvature of the track, together with the total energy of the particle
and path length, allow particle identification and the measurement of momentum
projected on the three axes. Reconstruction of complete events requires the identi-
fication of the track of every particle. The readout chamber defines the count rate
capability of the system, granularity, position resolution, drift times and energy.

Amongst the ACTAR setups currently operational or under development [72],
the Active Target Time Projection Chamber (AT-TPC) at MSU/NSCL is designed
to run in two different modes, namely as ACTAR or as a conventional detector [77].
The AT-TPC is a dual-functionality device containing both traditional active-target
and time-projection chamber capabilities. The detector consists of a large gas-filled
chamber installed in an external magnetic field.

Finally, it can be noted that in an ancillary detector mode, an exit window allows
the ejectiles to exit the target chamber to combine the TPC for track identification
and solid state detectors to stop energetic particles, as for example the SAMURAI
TPC from Riken [68].
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Fig. 6.12 Side view (top) and 3D representation (bottom) of the TACTIC ACtive TARget at TRI-
UMF. The beam enters and exits the chamber at positions labelled 1 and 4. The entrance and exit
windows to keep the target/detection gas within the chamber are labelled 2 and 3 [75]

6.4 Detection Techniques

Radiation detectors have been, and currently are, the subject of extensive research.
Details concerning traditional radiation detectors may be found in two exhaustive
review documents [78, 79]. The following section reports on some of the latest devel-
opments in highly segmented detection systems and advances in radiation detectors
relevant in cluster studies.

6.4.1 Gamma-Ray Spectroscopy

Gamma-ray spectroscopists are confronted with a great dilemma between efficiency
and resolution. High resolution is obtained at a cost of lower efficiency detectors and
higher efficiency materials offer poorer energy resolution. In this section, some of
the recent advances in the field of Germanium and LaBr3 technologies with typical
resolution of ≈2 keV and 25 keV at 1.332 MeV, respectively, are discussed. Ulti-
mately, high resolution γ -ray spectrometers are assembled in large-coverage angle
setups to overcome the intrinsic low efficiency of the detecting material.
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Fig. 6.13 Comparison of
LaBr3 : Ce, NaI(Tl) and
BaF2 energy resolutions with
a 60Co source [79]

State-of-the-Art Scintillation Detectors

A recent break-through in scintillation technology has significantly improved the
energy resolution in γ -ray spectroscopy, compared to traditional NaI(Tl) scintillators
as shown in Fig. 6.13 where the resolutions of LaBr3,NaI(Tl) and BaF2 detectors are
compared [80]. With a high yield of ≈60,000 photons per MeV, LaBr3 : Ce(0.5%Ce)
scintillating material offers increased energy resolution for Eγ > 100 keV as well as
high efficiency. The resolution at 662 keV is just less than 3% FWHM and improves
with higher energy. The material shows excellent timing resolution in the order of
250 ps (decay time ≈30 ns) [81]. However, intrinsic background radiation in LaBr3
originates from naturally occurring EC and β− emitter 138La(0.09%), the α emitter
227Ac introduced while growing the crystal, and its daughter β− and α emitters.

PARIS [82] is a 4πγ -ray calorimeter project based on combined scintillating
material. This detector array is under study to perform high energy γ -ray spec-
troscopy. Such an instrument will offer high selectivity capabilities and high detec-
tion efficiency with a resolution of near 1% at Eγ ≈ 10 MeV. The still costly LaBr3
scintillators are expected to be combined in sandwiched detectors, called phoswich,
by which a CsI(Tl) with a long decay constant and a fast LaBr3 are optically coupled
to a unique light sensor. Pulse shape analysis, based on the very different decay con-
stants, enables determination of the location of the interaction point in one or both
crystals. A large number of physics cases are listed, amongst them, radiative capture
through molecular state resonances and γ -transitions between molecular states.

Segmented Germanium Detectors

The search for γ -ray transitions between molecular states has been the subject
of extensive investigations, but up to now there still is a paucity of concluding
results. Modern γ -ray spectrometers will allow increased sensitivity of high res-
olution germanium detectors. Two major 4π segmented germanium detector arrays
GRETINA/GRETA [83] and AGATA [84, 85] are being implemented. The AGATA
demonstrator (see Fig. 6.15) and GRETINA, at a quarter of the GRETA array, present



6 Cluster in Nuclei: Experimental Perspectives 323

Fig. 6.14 Electric segmentation of a GRETA single Germanium crystal. The high resolution signal
is collected from the inner core contact, not shown in the figure, and the outer junction is segmented
into 36 elements [82]

the first steps in 4πsr germanium detector systems and, at this point in time, in-beam
measurements have already been performed with the two instruments. The TIGRESS
array composed of 16 Compton suppressed segmented clover detectors, with poten-
tial full γ -tracking, is already in use at TRIUMF [86]. The 4π γ -spectrometers will
allow the measurement of rare events with unprecedented efficiency and signal-to-
noise ratio owing to an extremely low Compton escape background. The γ tracking
technology is based on the electric segmentation of a single Germanium crystal,
as shown in Fig. 6.14. The high energy resolution signal is obtained from the core
contact at which the electrons are collected. The holes drifting in the opposite direc-
tion induce a signal on several outer contacts. The point of interaction can be deduced
from the line shape and amplitude of the signals by using sophisticated algorithms.

In theory, the 3D position of the interaction point can be deduced to within a
few cubic millimetre-size resolution. In this way the accurate determination of the
emission angle of the γ -ray allows precise Doppler correction. This is of interest
when dealing with a fast beam where the broadening of γ -rays depends strongly
on the opening angle of the non-segmented detectors. Full γ -tracking consists in
the reconstruction of multiple hit events originating from Compton scattering or
pair production. This is a very challenging task mainly due to the large number of
possible combinations increasing very rapidly with the number of interaction points
and number of incident γ -rays. AGATA and GRETA not only are based on the highest
resolution detecting material currently available, but those instruments will be about
40% efficient at 1.332 MeV, with an angular resolution of ≈1◦. In calorimeter mode,
events can be selected on the basis of multiplicity or total energy considerations.

The reference energy line at 1.332 MeV, together with the 1.173 MeV tran-
sition, originate from the 60Co radioactive source feeding the excited states in
60Ni.Traditional sources for calibration are 137Cs for its single 661.7 keV transi-
tion; 152Eu for its X-rays and numerous transitions between 121.8 and 1408.0 keV.
This source is also useful for efficiency calibration as the strength of the various
transitions is known very precisely. Low energy transition at 14 keV from 57Co, or
higher energies from 56Co with high energy transitions up to 3.611 MeV, cover a
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Fig. 6.15 Five clusters of the AGATA demonstrator at LNL, Legnaro, Italy

wide range of energy with relatively long-lived isotopes. Gallium-66 (t1/2 = 9.49 h)
offers 18 strong transitions up to 4.806 MeV with well defined intensities [87]. For
calibration points larger than 5 MeV, the first excited state of 16O at 6.19 MeV can
be populated through inelastic scattering. Transitions in the 10–15 MeV range are
obtained using radiative capture (p, γ ) or (n, γ ) reactions, such as 11B(p, γ )12C
with Eγ up to 13.92 MeV.

6.4.2 Charged Particle Detectors

Charged particle detection certainly is the main experimental probe in cluster studies.
This is in relation to the decay mode of the states involved as well as the nature of
the interaction of charged particles with matter. Semi-conductor detectors can be
manufactured in thin layers, from 15 µm to 2 mm in thickness for silicon detectors.
The technology has been developed extensively and detectors are made available
in a large variety of shapes, sizes and segmentation. These detectors are suitable
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for the Particle Identification (PID) method based on the measurement of energy
loss, where the thinner detector absorbs only a fraction of the incident energy, thus
allowing very low detection thresholds. Germanium detectors for charged particles
are less practical owing to the low operating temperature requiring a cryostat or a
Helium cooler to be attached to the diode usually surrounded by a capsule. They
are used in some applications where high-energy particles need to be measured with
high-energy resolution.

The energy resolution of semi-conductor detectors is excellent, being in the order
of 25 keV at 8.784 MeV for silicon. The position resolution is also crucial when
reconstructing the kinematics of a cluster decay. In this respect, the fine electric
segmentation on single-crystal silicon detectors is very useful. However, some imper-
fections due to the pulse height defect function of charge Z of the incident particle or
the inevitable dead layer, required for charge collection purposes, induces some non-
linear effects in the energy determination. Using the segmented detectors, interstrip
energy deposition induces charges in two adjacent channels and possibly mimics two
distinct particles. Accumulated radiation dose induces dark current in semi conductor
detectors which in turns deteriorates gradually the energy resolution [17].

Some of the traditional calibration points are obtained from α emitters, usually
parent radioactive isotopes and the daughters in the α chain. Open sources such as
241Am (Eα = 5.486 MeV), or the shorter-lived 228Th (1.912y) with one of the high-
est α energy lines available at Eα = 8.784 MeV provide precise calibration points
under 10 MeV. Those energies are useful for the lower energy calibration points and
beam-induced particles are often required for higher energy calibration points. The
latter involves kinematics and stopping power considerations. Elastic scattering of
light projectiles on natural 197Au thin targets offer high-energy calibration points
from forward to backward angles. Nuclear reactions such as 12C(16O, α)24Mg∗ or
12C(12C, α)20Ne∗ between Elab = 30–60 MeV incident energy offer discreteα spec-
tra according to the discrete levels in the residual nuclei. Due to the kinematics, the
energy depends on the detection angle, which must be calculated accordingly. Fission
sources with total kinetic energy up to ≈200 MeV shared between the two fragments
can be used in some cases, but the continuous character of the spectrum and the vari-
ous types of particles emitted make the calibration somewhat complicated. Numerous
methods for calibration that use a fission source are reported in the literature [87].

Position-Sensitive Silicon Detector

Position-sensitive Silicon-Strip Detectors (PSSSD) are composed of individual
electrically isolated adjacent strips on a semi-conductor equipped with a resistive
contact. Considering a given energy deposited in the strip, the signal read on both
edges decreases proportionally with the distance between the hit and the edge of
the diode. The total energy of the strip is deduced from the combination of the two
signals when calibrated adequately. When the total energy is known, the position
of the hit is deduced from the relative amplitude. Figure 6.16 shows typical α loci
obtained from the discrete states in 20Ne populated in the 12C(12C, α)20Ne∗ reac-
tion at Elab = 32 MeV. Due to the kinematics, the α-particle energies vary with the
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Fig. 6.16 Two-dimensional
scatter plot eh versus el
measured with one strip of a
16 ×16 strip (50 × 50 cm2)

Position-sensitive Detector
using the 12C(12C, α)20Ne∗
reaction at Elab = 32 MeV

emission angle and show the typical curvatures with decreasing energy for increasing
emission angle. The excited states in 20Ne are well separated, the line defined by
points 1 and 3 corresponds to the first excited state of this nucleus. The protons from
elastic scattering, 1H(12C,1H), should also be pointed out in the lower part of the
spectrum. Hydrogen is contained from inevitable water contamination of the targets.

In principle each event falls within a triangle, determined by points 1, 2 and 3
shown in Fig. 6.16, which energy is defined by the equation:

E = Lel + Heh (6.3)

where el,h represent the raw energies, in channels, and the calibration factors are L
and H. The intercept of the two lines (point 2) defined by the particles with various
energies detected along the edges of the detector, represents the zero energy, thus
defining the offset of the two channels. By using a mono energetic α source or beam-
induced particles using elastic scattering of a very light particle on a gold target, one
obtains the relationship between the calibration factors H and L as:

L

H
= eh1 − eh2

el2 − el1
. (6.4)

L and H reduce to only one calibration factor, L as a function of H or vice versa,
which allows plotting of an uncalibrated total energy spectrum. The remaining factor
is deduced from the calibration points by matching the centroids of the peaks to the
known energies.
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The position information, x, is extracted from the two calibrated amplitudes
El,h as:

x = X

(
a + El − Eh

El + Eh

)
(6.5)

where X is the length of the strip and a a calibration parameter ideally equal to 0.5.
The position resolution along the strip depends on the energy resolution of the detec-
tor. A typical performance of 0.1 mm position resolution is achieved. Longitudinal
resolution is much better than the position resolution across the strip, which depends
directly on its physical width.

The detection threshold is a function of the position along the strip, which must
be considered when measuring low-energy particles. The lowest threshold is at the
centre of the strip where the signal experiences an equal amount of resistive material
from the hit to both edges of the strip. The threshold is at the maximum for a hit
close to the edges when the amplitude is most decreased through the complete strip.
Two-dimensional position sensitive detectors are fitted with four contacts and offer
good position resolution on two axes [89, 90]. Position and energy can be measured
using relatively large detectors with a limited number of electronic channels.

Double-Sided Silicon Strip Detector

The P and N junctions of a semiconductor are segmented in parallel strips on both
sides but perpendicularly to one another. A hit is then recorded in two individual strips
and the particle position is identified in a pixel defined by the crossing point of the
two strips. Great advances were performed with the development of the inner barrels
of high-energy physics detectors such as ALICE at CERN, or the high-precision
cosmic-ray detector AMS-02 of the International Space Station. The size of the pixel
is defined by the pitch of the strip varying from the typical size of 50–3000 µm
[91, 92] to the total detector size of up to 100 × 100 mm2. The design of MUST/
MUST2 [93, 94] shown in Fig. 6.17 is based on 300 µm thick DSSSD, 128 × 128
strips with a total area of 100 × 100 mm2.

Recent studies in 2-proton radioactivity have made use of multi layers of highly
segmented detectors with a pitch of 100 µm [95, 96]. Tracking techniques developed
for this instrument, part of the RB3 setup, allow the reconstruction of the vertex of
the primary decay with high accuracy and determine the correlation between fast-
moving particles. Life-time measurement of the state can be performed down to a few
picoseconds when using position reconstruction. After interaction, the location of
the decay with respect to the target position is obtained from the determination of the
vertex with a precision of some tens of µm. The life time is determined according to
the velocity of the break-up nucleus and the position distribution of the decay within
the target.

Position assignment in single-particle detection is not ambiguous. Multi-hit events
within one double sided detector have to be sorted adequately due to multiple
combination of crossing strips as shown in Fig. 6.18. This is possible when par-
ticles are detected within a relatively large energy range. The pair of X–Y strips
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Fig. 6.17 Highly segmented silicon-strip detector of the MUST2 setup [93]

of the same hit read an approximately equal energy. The true crossing points are
deduced from the comparison of the energies. Identical particle energy events remain
ambiguous and should be discarded. For multiple-hit events, the number of X and
Y strips must be identical, otherwise more than one particle is detected in a single
strip, and the energy of the particles must be well separated. The number of com-
binations increases rapidly as it is proportional to N! with N the number of hits.

Annular Segmented Detectors

Annular Segmented detectors offer an ideal geometry for in-beam measurements.
The technology is identical to the DSSSD, differing only in the geometry. Cylindrical
coordinates are better adapted to in-beam measurement and the Silicon detector disc
covers a very large portion of the azimuthal angles. This is of particular interest when
detecting γ -rays in coincidence with charged particles for Doppler correction. The
centre of the detector is placed in the beam axis passing through the hole and covers
a large solid angle downstream or upstream of the target. The minimum angle is
defined by the distance between the detector and the target. Annular detectors are
found in a single detector unit, also called a CD on account of its similar size and
aspect, or can be assembled from separated sectors. The sectors can be arranged
in a flat or “lampshade” geometry as shown in Fig. 6.19 in single or double-sided
segmentation.

Precise energy measurement must take into account the effective thickness of the
detector. In large-acceptance setups the detectors can be placed relatively close to the
target and the effective thickness observed by the particle must be taken into account
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Fig. 6.18 Two-hit event in a
16 × 16 Double-sided
Silicon-Strip Detector. Red
stars indicate true pixels,
black stars are mis-assigned
events

Fig. 6.19 Separated sectors arranged in two different annular configurations

as a function of the incident angle with respect to the detector plane. This is very
important, especially when correcting for energy loss in the junctions of the detector,
the so called dead layer.
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Micro-Channel Plates (MCP)

Micro-Channel Plates (MCP) are large area detectors pierced with a large number
of small holes. A high voltage is placed across the front and back of the detector.
When a particle strikes the front of the detector, secondary electrons are emitted and
multiplied through the channels until collected on the back of the plate. Multiplication
factors in the order of 106 are achieved with adequate X–Y readout for position
measurement with excellent timing with a rise time of typically 2–3 ns. MCPs are used
traditionally to multiply electrons emitted by an incident particle when impinging
on a thin foil.

Charge identification is not sufficient to fully characterise a particle and mass
identification is often required. Mass determination is accessed by using Time-of-
Flight (ToF) and energy measurement techniques. MCP detectors are very useful
for this purpose when a thin foil, Mylar or carbon foil, for instance, is placed in the
path of the particles for electron production. Those electrons directed at an MCP,
possibly with a magnetic field to bend the trajectory and enhance the collection
efficiency, generate precise timing signals. The reference time signal is derived from
a second MCP or by using the beam time structure, if available. When using very
thin 12C foils down to 4 µg/cm2 the path and energy of the particles experience
very little alteration. The energy is measured by using a solid-state detector or a
magnetic spectrometer placed downstream from the MCP detectors. This technique
is employed from low-energy particles in Elastic Recoil Detection Analysis (ERDA)
or RIB facilities from incident energies of some hundreds of keV/u to a few hundreds
of MeV/u.

The large-area micro-channel plate entrance detector DANTE [97] of the magnetic
spectrometer PRISMA installed at LNL (Legnaro, Italy) is used to determine the
direction of the recoil nucleus by using the X–Y determination capability of MCP
detectors.

Gaseous Detectors

A large variety of detectors are based on the ionisation of a detection gas enclosed
in a chamber under high voltage bias in order to collect the positive and nega-
tive charges before recombination occurs. Geiger Müller counters, Parallel Plate
Avalanche Counters (PPAC), Multi Wire Proportional Chambers (MWPC), Drift
Chambers and Time Projection Chambers (TPC) are some examples of gaseous
detectors based on ionisation chambers with various electric fields, electrode arrange-
ments and granularity. Large density of strips allows high granularity of the detection
system and increased position resolution. Micro-Strip Gas Chambers [98] (MSGCs)
followed the multi-wire chambers where the anodes and cathodes are thin wires
stretched between mechanical supports. The strips are preferably printed on an
isolating substrate [98] allowing higher density and an easier manufacturing process.
As a result, the density of wires has been increased largely together with gains and
robustness. The life time and reliability of the detectors were greatly improved with
MSGC technology.
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Amplification in gaseous detectors mostly is a function of the electric field and
pressure. Ionisation electrons, being emitted during interaction with an energetic
particle, are accelerated under an electric field. Wire chambers are made of relatively
thin wires, in the order of 50 µm in diameter, under potential differences of a few kV
and a pressure of the ionisation gas of between a few mbar up to atmospheric pres-
sure. Multiplication is possible when the maximum velocity of the electrons, which
is the function of the acceleration and the mean free path, is enough to overcome
the ionisation energy and create new electrons through collisions with the atoms and
molecules of the gas. The multiplication mostly occurs when electrons approach the
wires, as the electric field, inversely proportional to the distance, increases dramati-
cally. Proportionality is obtained if the electric field around the wires is not affected
by the density of electrons produced in the avalanche, otherwise saturation effects are
experienced. Multiple processes that take place while multiplication occurs includes
the production of photons able to ionise further atoms or molecules through photo-
electric effect. Very large amplification factors, in other words large electric fields,
imply possible break-down or sparking within the detector.

Gas Electron Multipliers (GEM) Detectors

Constant improvements of gaseous detectors has led to new generations of micro-
strip detectors, for instance the MICROMEGAS [99, 100] developed at Saclay or
Secondary Electron Detectors (SED) based on the detection of electrons emitted from
a Mylar foil used to track rare ion beam projectiles at a relatively high rate [101].
Gas Electron Multipliers (GEM) [76, 102] developed at CERN are based on MSGC
technology with X–Y reading equipped with a preamplifying device to multiply the
number of electrons before collection [98].

GEM detectors are based on multipliers essentially composed of a thin (≈50 µm
thick) isolating plastic foil, Kapton or Mylar for example, coated on both sides with
an even thinner layer of conducting metal. A chemical process is used to pierce the
material with micro holes, located ≈50 µm from each other and arranged in a regular
pattern as shown in Fig. 6.20a. The cross section of the multiplier with electric field
equipotential lines is shown in Fig. 6.20b.

The voltage applied between the opposite layers is typically in the order of 1000 V,
offering a large electric field between the two layers of metal, greater than 107V/m.
The incident electrons, ejected by ionising particles in the detection gas, generate
avalanches of ions and electrons through the holes. The amplification is operated at
much lower HV than standard MSGCs but higher gradient owing to the small spacing
between the two metal layers. Standard MSGCs are placed at ground potential,
making the detection system relatively safe against HV discharges.

The third generation of GEM consists of a number of multiplying layers gradually
incremented from 1 to 3. The gain is subsequently increased through multiple stages.
Since the early developments in the late 1990s, GEM detectors have found a wide
range of applications primarily in high-energy physics but also in medical scanning
devices or nuclear physics within the newly developed ACtive TARgets, and have
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Fig. 6.20 Regular arrangement of micro holes through a foil of Kapton coated with Copper on both
sides a), and cross section with electric field represented through the thin layer b)

become particularly interesting in nuclear cluster physics and nuclear astrophysics
studies.

Segmented Scintillators

Scintillation detectors convert some of the energy of an incident particle into pho-
tons, typically on the UV side of the visible range. The secondary photons are con-
verted into electrons and further processed through electronic systems. The energy
resolution obtained from scintillation material is not competitive, compared to solid
state detectors, mostly because of the lower number of electrons emitted per unit of
energy deposited. Moreover, the response of the detectors depends on the type of
incident particle. The light output is a function of the mass, charge and energy
of the particles and is not linear. However, those detectors, especially the plastic
scintillators, can be shaped at ease and to relatively large sizes. Inorganic scintilla-
tors, such as NaI(Tl), LaBr3 or CsI(Tl) for example, are slightly to highly hygroscopic
and must be housed accordingly. Large arrays of scintillation detectors were devel-
oped to register high-multiplicity events at intermediate beam energies. INDRA and
CHIMERA [103] arrays are made of a large number of silicon and scintillator detec-
tors assembled in rings. Such detectors have been used to search for α gas condensate
in N = Z nuclei.

Large position-sensitive photomultiplier tubes, of 50 × 50 mm2, were recently
made available on the market. They offer new opportunities for position-sensitive
scintillator detectors. An arrangement of needle scintillators, closely packed and
optically coupled with the PM tube but optically isolated from each other, allows the
measurement of the energy of the particles with a good determination of position,
typically within the size of a needle. The signal of the position-sensitive photomul-
tiplier tubes is obtained by means of only four channels derived from a network of
resistors connected in a sophisticated manner. The sum of the four signals is propor-
tional to the energy deposited and the relative amplitudes are used to determine the



6 Cluster in Nuclei: Experimental Perspectives 333

2D position. This technique offers high granularity with a relatively low number of
electronics channels.

The maximum thickness of segmented silicon detectors is in the order of 1 mm.
This is sufficiently thick to stop ions with a few tens to few hundreds of MeV/u but
light ions need substantially thicker detectors for complete energy deposition. Multi-
layered detectors are not only necessary for�E − E discrimination, as discussed in
the following section, but also to stop higher energy particles. A 1 mm silicon layer
stops only 12 MeV protons, and 48 MeV α particles and higher energy particles are
traditionally stopped in multi-stage silicon/scintillator telescopes.

6.4.3 Neutron Detection

Detection of fast neutrons requires large volume detectors due to their long mean-free
path within matter. The type of interaction between neutron and matter also pre-empts
high-energy resolution measurement using other means than ToF techniques. For
these reasons, large neutron detector arrays are currently not capable of determining
the position and energy of particles with a comparable degree of precision to charged
particles with silicon detectors or γ -rays with germanium tracking detectors.

If thermal neutrons are traditionally detected with 3He-,6Li- or 10B-based detec-
tors, fast neutrons are preferably detected with scintillator detectors or fission cham-
bers. Part of the neutron momentum is converted into a moving charged particle using,
for example, the (n,p) elastic scattering reaction in plastic scintillators. Those detec-
tors are
preferred in nuclear physics studies as the neutrons are rarely emitted with less than
a few hundreds of keV. Liquid organic scintillators, such as NE213 material (Nuclear
Enterprise Ltd), are employed in a number of arrays, for instance DEMON [104].
This neutron detector array has been used to investigate a hypothetical tetraneu-
tron resonant state [105]. Thus far, such observation has not been confirmed, partly
owing to the difficulty of firmly assigning such high-multiplicity neutron events.
The neutron wall of EUROBALL made use of the BC501A (Bicron Radiation Mea-
surement Products) liquid scintillator [106] that uses pulse shape discrimination
to distinguish photons and neutrons. ToF measurement is used as another way of
discriminating γ and neutrons but also to determine the neutron energy.

Plastic scintillators are very fast detectors but do not display particle pulse shape
dependence. As a consequence, the γ -neutron discrimination is performed using only
time-of-flight techniques. However, large volume detectors can be fitted with mul-
tiple light sensors. Both the time difference method and relative amplitude between
two PM tubes fitted at both end of a scintillator bar can be employed to locate
the interaction point, which allows a degree of position determination. The light
collected by a PM tube is a rather complex function of the distance between the
interaction point and the PM tube. The loss of light from the interaction point to the
photocathode depends on the light absorption through the scintillator and reflecting
material. A relatively good approximation consists in assuming a linear decrease of
light intensity as a function of the distance between the PM tube and the interaction
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Fig. 6.21 Compact geometry configuration of the MoNA neutron detector at MSU/NSCL [105]
with 70% efficiency for En 50–250 MeV and position resolution of ≈12.5 mrad (7 cm within the
scintillator bar)

point, hence, the position can be reconstructed using the same method detailed for
the Position-sensitive Silison Detectors (PSD). Typical position resolution of about
5 cm is achieved.

The MoNA/LISA setup is designed for the detection of fast neutrons emitted from
neutron-rich nuclei populated with the rare ion beams at the MSU/NSCL facility.
The compact version of the MoNA detector is shown in Fig. 6.21. The first version
of this modular neutron detector array that is based on time difference measurement
for position determination, is composed of 144 scintillator detectors of 10 × 10 ×
200 cm3 size [107]. The current upgrade of this system, naturally called LISA, is
being implemented to provide a larger covering angle and efficiency.

A new neutron detection array at the RIB facility of the FLNR/JINR of Dubna,
Russia, is based on stilbene crystals by which γ /n discrimination is made possible
to even lower energy thresholds compared to liquid organic scintillators. However,
the response of the crystal depends on the emission angle of the charged particle
with respect to the crystal orientation. The efficiency of such detector material is
superior to liquid scintillators, and more compact detectors with more granularity
can be made.

6.4.4 Mass Spectrometers, Mass Separators and Combined Setup

Application of mass spectrometers to cluster state physics was mentioned earlier with
some of the early measurements in heavy cluster emission with SOLENO. Magnetic
mass spectrometers are very powerful instruments in terms of selectivity and energy
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resolution. A charged particle in a magnetic field is deflected according to its rigidity,
given in units of Tm, which is the product of the magnetic field B times the radius
of curvature ρ.

Bρ = p

Q
(6.6)

where for a given magnetic field the radius ρ is proportional to p, the momentum,
and inversely proportional to Q, the charge of the particle in units of proton charge.
The rigidity squared becomes a function of energy E in MeV, mass M in a.m.u. and
charge Q of the particle. The K value characterises the maximum particle energy that
a spectrometer or cyclotron can deflect within the boundaries of its magnetic field,
following the expression:

K = E M

Q2 . (6.7)

Zero degree measurements are very attractive in terms of population selectivity
of states from the relationship between angular momentum transfer and incident
beam energy [108, 109]. Typically low spin states are favourably populated at beam
energies under 50 MeV/u in (p, t) reaction measured at 0◦. Those measurements
are much more challenging because the outgoing particles must be separated out
of the ion beam. Rejection factors of 1010 are obtained in (p, p′) reactions with
a high resolution measurement and of 1013 or better in (p, t) reactions. Currently,
only a few facilities perform routinely this type of measurements; the Grand Raiden
spectrometer at RCNP, Japan [110], and the K600 spectrometer at iThemba LABS,
South Africa [111].

Mass separators not only make use of the magnetic field, but also of electrostatic
high voltage. Velocity filters, called Wien filters, are a combination of a magnetic field
and an electric field called perpendicular to one another. A succession of magnetic
dipoles (M), magnetic quadrupoles (Q), magnetic sextupoles (S) and electrostatic
dipoles (E) of the mass separator DRAGON, TRIUMF [112], is depicted in Fig. 6.22.

In both mass spectrometers and mass separators, the particles deflected away from
the focal plane must be dumped in a stopper. Unexpected background arises from
the scattering of unwanted particles such as multiple-scattering particles within the
target, beam halo, reflections on the walls of the vessel or from the stopper itself.
The selectivity of the apparatus lies in its capability to reject unwanted particles.

The particles are transported through the magnetic and electric fields to a focal
plane where they are detected. In a magnetic spectrometer, the energy is deduced
from the position at the focal plane, calibrated from known reaction products obtained
by means of Multi Wire Chambers or solid-state detectors with a high resolution
position. Unlike total absorption energy measurements with solid state detectors, the
energy resolution is independent of excitation energy and remains fairly constant
throughout the whole spectrum. Energy resolutions of under 20 keV are obtained
in careful (p, p′) measurements. Particle identification can also be performed with
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Fig. 6.22 Layout of the
DRAGON mass separator at
TRIUMF with magnified ion
trajectories [112]. The mass
separator is a succession of
magnetic dipoles (M),
magnetic quadrupoles (Q),
magnetic sextupoles (S) and
electrostatic dipoles (E).
Particles are detected at the
focal plane with a segmented
silicon detector

multi-layer detectors placed after the position-sensitive detectors. This allows some
degree of discrimination when particles with identical rigidity are produced.

Magnetic spectrometers and mass separators are used in conjunction with ancillary
detectors and are often part of complex experimental setups. The PRISMA large-
acceptance magnetic spectrometer (≈80 msr,�p/p ≈ 20%) at Legnaro was initially
fitted with the CLARA array, 25 Clover Germanium detectors with total photopeak
efficiency at 3% [113], then with the AGATA demonstrator. Internal PPAC detectors
are placed at the focal plane and the DANTE detector is used for ToF measurements
and to determine the direction of the ion entering the spectrometer, which is a very
important information for Doppler correction. Precise determination of A and Z of
the recoil nuclei is obtained from the trajectory of the particle, together with the
range energy in the PPAC. The energy is then deduced from the mass and ToF
measurements.

The population of the excited states in the two 24Mg fragments originating from
molecular resonant states in 48Cr were studied through γ -ray spectroscopy with the
PRISMA/CLARA setup [114]. Recent measurement at the DRAGON facility, with
the γ -ray spectrometer based on high-efficiency BGO detectors, has shown the high
radiative capture cross section in 12C+ 12C reaction with evidence of doorway states
in 24Mg [115].
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MUST2/TIARA/VAMOS/EXOGAM/BTD is a sophisticated detector arrange-
ment which acombines state-of-the-art detection techniques in a very complete
setup. The incident rare ion beam particles are tracked with the Beam Tracking
Detector, low pressure multi-wire proportional chamber for secondary beam tracking
(CATS) [116], or with Secondary Electron Detectors [117]. The energy and position
measurement of the light-charged particles is performed with TIARA/MUST2 [94],
γ -ray spectroscopy with EXOGAM, and the detection of the recoils with the large-
acceptance magnetic spectrometer VAMOS [118].

6.4.5 Particle Identification

�E − E and Time-of-Flight Methods

Traditional methods are based on time-of-flight discrimination by using energy
versus time correlation. Absolute time reference is useful as, for example, the RF
signal from cyclotron accelerators. Two MCPs can be employed when dealing with
continuous ion beams of electrostatic machines when a pulsed beam is not necessarily
available. The time difference between particles detected in coincidence can also be
employed.

The energy loss of energetic particles depends on the mass A, charge Z, energy E
and on the interacting material. The famous Bethe and Block formula describing the
energy loss of particles can, in its simplest version, be reduced to:

d E

dx
∝ AZ2

E
. (6.8)

For particles with identical incident energy, enough to punch through a sufficiently
thin detector, the energy loss is proportional to the mass and the square of the charge
of the particle. This technique is widely used with Silicon telescopes or ionisation
chambers backed with solid detectors for lower detection thresholds. Using silicon
detectors the technique is limited by the lack of mechanical strength of thin �E
diodes, typically not thinner than 15 µm, setting a limit on the detection thresholds.
Some efforts were devoted to build monolithic detectors where the�E layer, as thin
as 1 µm, is built using ion implantation on a 400 µm E detector [119].

Pulse Shape Discrimination

Pulse shape discrimination also has a long history, especially in using CsI detec-
tors [120], organic liquid scintillators and even silicon detectors. Particles deposit
their energy as a function of their interaction mode, with the rate of energy loss
depending on the mass, the charge and incident energy. Differences in the rise time
or decaying part of the pulses are caused by the increasing fraction of excitation with
longer lifetimes of the molecules of some specific scintillating material with increas-
ing stopping power. Pulse Shape Discrimination is crucial in neutron spectroscopy
for identifying neutrons and γ -rays and was first suggested in the late 1950s by
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Fig. 6.23 Particle
identification with a single
silicon detector in a rise time
versus energy scatter plot
[120]

F. D. Brooks [121]. Some work on Silicon detectors by Ammerlaan in the early 1960s
shows particle dependence of the signal. The basic principle of particle identification
from a single signal consists in measuring the ratio of the charge accumulated under
selected areas. A two-dimensional plot of the ratio, within the regions of interest,
versus the total energy allows particle identification.

In Silicon detectors, the dynamics of the charge collection depends on a number
of phenomena. The holes and electrons are produced by the ionising radiation and
migrate towards the electrodes. The collection time for electrons is faster than for the
holes and the shape of the signal, due to the interplay between negative and positive
charges, depends on the penetration depth of the incident particle. Moreover, the
linear energy transfer of a particle in matter depends strongly on its charge Z. Finally,
the plasma created along the particle track partly shields the electric field felt by the
electron-hole pairs and results in delayed charge collection time known as plasma
erosion time. Therefore, the leading edge of the pulse is expected to carry some
information on the particle type. A number of electronics manufacturers for Nuclear
Physics applications provide multiple CFD output discriminators, namely two CFDs
at 30 and 80% rise time that can be used in conjunction with TDCs to record the
time information. The time difference between the two CFDs plotted against the
amplitude, itself coded using a standard ADC, produces a particle identification
spectrum. This technique has proven to be efficient with silicon detectors, which are
relatively slow, where the leading edge experiences a difference in shape depending
on the nature of the particle. Figure 6.23 shows such a PID matrix, namely rise
time versus energy, recorded using the 19F + 12C system at 95 MeV incident beam
energy [122].
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Pulse shape analysis has long relied on dedicated electronics designed for certain
types of detectors, therefore, though the method is very powerful, the technique
remained limited. With the advent of Digital Signal Processing, standard electronics
has become much more versatile. At the time this document is written standard digital
signal processing units digitise with a sampling rate in the order of 100 MHz to a few
GHz. This contrasts with analog electronics where the analog-to-digital conversion
is performed at the end of the electronic chain to capture the amplitude of a signal
at a rate not exceeding tens of kHz. Note also that slow conversion induces long
periods of time, called the dead time, during which the electronics is awaiting the
processing of an event before being ready for a new event. With high sampling rate
digital electronics, details on the pulses are obtained and pulse shape analysis is
performed by means of an algorithm. As a consequence, Pulse Shape Analysis is
much more flexible with digital electronics compared to analog electronics. Software
QCDs are set to measure the integrated charge in various numbers of selected areas
of an electronic pulse. The areas of interest are selected in relation to the detector in
use or particles to be detected. Calculated CFDs, rise time, or analysis of the leading
edge of a signal can be performed within the FPGA of the module to deduce useful
information. Recent work has shown the discrimination between low-energy charged
particles by plotting the ratio of the integrated charge to the total charge versus
the energy of the particle [123]. Figure 6.24 displays such particle identification
obtained for particles stopped in the silicon detector using E versus the Rise Time
correlation. The right panel shows the traditional �E − E PID spectrum for those
particles punching through the 300 µm silicon detector. The left panel displays the
result of Pulse Shape Discrimination techniques for the particles stopped in the
silicon detector. This technique has the enormous advantage of reducing the detection
threshold, especially regarding high Z particles.

Particle identification in Bragg Ionization Chambers (BIC) is based on pulse shape
analysis. The energy deposition profile of a charged particle shows a large part of the
energy loss at the end of the path through the medium while the energy deposited per
unit of distance along the path is fairly homogeneous. This is understood from the
expression of the energy loss dE/dx of a particle, which is inversely proportional to
its energy. The ratio of the energy deposited along the path to the energy deposited on
the Bragg peak informs on the atomic number of the incident particle. This method
is applicable to particles with incident energies E ≥ 0.5 MeV/u. Those detectors
allow sufficiently long paths along which ionisation electrons are collected radially.
Such particle identification spectrum shown in Fig. 6.25 is obtained with the Binary
Recoil Filter in the 24Mg + 12C system at Elab = 130 MeV [124]. The identification
thresholds are relatively low and the turning points on the higher energy side of
the Z bands correspond to the ions punching through the ionisation chamber. The
pressure within the chamber is optimised to stop the ions of interest indicated here
with the locus on Z = 12. BIC detectors are used in the FOBOS [22] setup where
the energy of the heavy ions is too low to efficiently use the method as the ions
penetrate the chamber when already within the Bragg peak regime. However, using
the Bohr-Willer empirical equation, the range of a particle R within the ionisation
chamber is found to be:
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Fig. 6.24 Particle Identification obtained with a 420 MeV 20Ne beam bombarding a 12C target. Left
Panel: PID using Energy versus Rise Time techniques from Digital Signal Processing electronics.
Right panel: PID using �E − E techniques with Silicon and CsI(Tl) telescope [123]

R ∝
√

E M

Z2/3 . (6.9)

Complete Kinematics Measurements

Complete kinematics events measured with sufficiently high energy resolution
can provide a degree of particle identification even if only the energies are recorded.
Particle identification is made possible on the basis of momentum considerations.
If the final state is known, through Total final state Kinetic Energy (TKE) selec-
tion, the calculated sum of the momentum of the individual particles must equal the
momentum of the projectile. The momentum on the z-axis namely must equal the
momentum of the beam and the sum of the momenta on both the x- and y-axes must
equal zero. This implies calculating the momentum for all possible combinations
until the conditions are fulfilled within the resolution of the experimental setup. A
number of N! combinations exist for N different particles in the exit channel. This is
fairly straightforward for binary kinematics. In such a specific case, the mass of the
two particles can even be deduced by means of Eq. 6.10 from the energy of the two
individual fragments

M2 = MT
E1sin2(θ1)

E1sin2(θ1)+ E2sin2(θ2)
(6.10)

where MT is the sum of the mass of the two fragments M1,2 involved in the decay,
E1,2 and θ1,2 their energies and longitudinal angles in the laboratory frame. This is
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Fig. 6.25 Particle
identification in Bragg
Ionization Chamber of the
Binary Recoil Filter using
the 24Mg +12C system at
130 MeV [122]. Pressure in
the BIC is adjusted to stop
the 24Mg recoils as shown
with the 2D gate

typically used to determine the mass of fission fragments produced in fusion fission
reaction approximated as a binary decay omitting neutron emission.

Magnetic Spectrometers and Gas-Filled Spectrometers

Magnetic spectrometers make use of the magnetic rigidity to deflect a particle
with a given charge, mass and energy to the focal plane. Full particle identification
makes use of ToF and other techniques detailed in this section. As stated at the
beginning of this section, the measurement of the energy loss of particles through
a given thickness of material possibly is one of the most widely used methods for
discriminating particles. A variation of that method consists of letting the ions of
interest pass through a chamber with a partial vacuum in the mbar region. An average
charge state distribution is populated as a function of the pressure and the energy of the
ions. Such a chamber is placed in a magnetic field in order to deflect the ions according
to their average mass over charge state ratio. This method has been implemented in
a number of setups such as the BGS (Berkeley Gas-filled Spectrometer) [125] or
the RITU Gas-filled spectrometer [126, 127]. Recently, some similar measurements
with VAMOS, [128] and references therein, were performed in order to separate the
Evaporation Residues from the projectiles at 0◦.
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Magnetic Field

As already detailed in the section dedicated to Active Targets, most of the PID
methods described in this section can be employed to determine the nature of parti-
cles. In high-energy physics, particles are bent in large toroidal magnets for particle
identification and energy measurement purposes. Such techniques are relevant in
ACTAR, in applying an axial magnetic field to deviate the particles not necessarily
emitted perpendicularly to the magnetic field. The trajectory of the emitted particle
is coiling, with the bending radius being a function of the mass, charge state and inci-
dent energy itself decreasing through the gas cell. The AT-TPC of MSU is designed
to accommodate a 2T magnetic coil for PID purposes. Regarding the already large
amount of information available, the insertion of magnets or coils is not entirely
necessary, especially if some ancillary detectors, for example as γ -ray detectors, are
to be placed around the target.

6.4.6 Electronics and Data AcQuisition (DAQ) Systems

Some of the large experimental setups presented in the previous sections require
a few thousand electronics channels and standard modular electronics is not really
suitable. For reasons of granularity, the pitch of the silicon-strip detectors has been
reduced dramatically on increased size detectors and space constraint becomes a
limiting factor. Every strip requires an electronic channel with preamplification,
amplification and possibly digitisation capabilities. Integrated electronics allows the
implementation of all these components very close to the detector.

Front-End Electronics

The signal processing of detection systems is operated by two main com-
ponents, front-end and back-end electronics. The front-end electronics processes
electric signals with characteristic rise time, decay time and amplitude deliv-
ered through the characteristic impedance depending on the type of detector.
The preamplification stage must be of high quality and large bandwidth for high
resolution and linearity. Careful shielding and a minimum length cable are prerequi-
sites to minimise the electronic noise picked up from cables acting as aerials before
feeding the preamplifiers. A linear response of the preamplifiers and amplifiers for
the spectroscopy signal is crucial. Fast-timing is necessary when generating logic
signals and for efficient pulse shape discrimination if such a method is employed.
Single channel modules in NIM format tend to be ineffective in terms of space and
rapidly increase the complexity of a system when a large number of channels are
involved. Relatively compact electronics in NIM/VME/CAMAC format offer high-
density modules, traditionally in a multiple number of 16 channels, 16/32/64/128,
for linear amplifiers, ADC, TDC, QDC or other various functions. In analog elec-
tronics systems, the building and recording of an event is performed with one or
several front-end computers communicating with the converters (ADC/TDC/QDC).
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The communication is often managed by a trigger module requesting the coding, ini-
tiated by a trigger signal built according to the requirements of the experiment. While
the transfer of the data is operated, the trigger module vetoes any new acquisition
until the system has processed the event.

Alternately integrated electronics developed for highly segmented detectors, per-
form some of the signal processing, such as two stage amplification, timing output
and, possibly, fast digitisation in electronic modules placed very close to the detec-
tors. Such integrated systems are developed for dedicated setups where compactness
and the characteristics of the detectors are unique. High-density electronics, how-
ever, is challenging in terms of parasitive induced signals between neighbouring
components; reduced cross talk is one of the key features of such electronics. Cus-
toms application can be implemented using Application-Specific Integrated Circuits
(ASIC). Unlike a dedicated integrated circuit, this kind of standard modern electron-
ics makes use of adequately connected existing blocks. This technology makes the
designing easier and more cost-effective compared to developing a new chip from
scratch. Possible digitisation, for Digital Signal Processing, and some triggering can
also be implemented and each module is connected to the back-end electronics for
event building and communication between the modules. Digital electronics require a
great deal of computing resources, especially when high-resolution digitising, 14-bit
sampling, is combined with a high sampling rate creating large amount of data. Some
systems are even run triggerless, which has the disadvantage of generating extremely
large amounts of data but using time stamping, long time separation events can be
retrieved off-line.

Front-end electronics is equipped with its own computing unit and operating sys-
tem, for example VMS/VAX, UNIX/Linux, Windows or VXWorks. For a medium-
sized and large experimental setup, more than one front-end computer can be used
to operate each a section of the setup. Front-end computing units communicate with
the back-end electronics via, for example, fast Ethernet connection.

Back-End Electronics/Data Acquisition Systems

The communication with the front-end electronics is performed through the back-
end electronics. Online and offline analysis, monitoring of the detectors, slow control,
configuration of the front-end electronics, and data storage are the typical operations
performed by the back-end electronics. Numerous systems are available or often
built in-house for dedicated applications. MIDAS, developed at the Paul Sherrer
Institute, is a general Data Acquisition software tool making use of the ability of
ROOT for data handling and can be run on multiple platforms [129]. The parameters
of the DAQ are stored in an Online Data Base. Control is performed via a web
interface which makes it accessible from any authorised machine. Online analysis
allows ungated or gated histogramming by means of selections set in the data base.
Communication with the front-end electronics is operated through the drivers of the
front-end electronic modules; CAMAC, VME, Fastbus, GPIB and RS232 are part of
the MIDAS distribution set.
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6.5 Kinematics

In this section, the basic principles of momentum and total energy conservation are
applied to a few cases useful for the analysis of high-energy and position-resolution
data for kinematic reconstruction in cluster physics.

6.5.1 Complete Kinematics

Characterisation of cluster-states often involves the detection of fragments and
break-up particles. Ideally, all outgoing particles are detected and the correlation
between those particles within the centre-of-mass frame of the break-up nucleus can
be deduced. In the rest frame, observables such as the angular distribution between
the break-up particles and their relative energy give information about the decay-
ing states. The velocity vector of a nucleus before particle decay is deduced from
momentum conservation. If the nucleus decays to n particles, which are identified
and detected at longitudinal and azimuthal angles, θn and φn, with energy En, its
momentum p is obtained as the sum of the momenta of the n particles:

p = mV =
∑

pn (6.11)

where m, the mass of the break-up nucleus, is the product of the invariant mass m0
times the Lorentz factor γ

m = m0
1√

1 − (V/c)2
= m0γ. (6.12)

The same expression applies to the n break-up particles with mass mn and velocity
Vn . The norm of the velocity, Vn, is determined from energy measurement using the
expression:

Vn = c

√
1 + 2m0nc2/En

1 + m0nc2/En
(6.13)

and the x, y, z projections in Cartesian coordinates obtained from the θn andφn angles:

Vn x = Vnsinθncosφn, Vn y = Vnsinθnsinφn, Vn z = Vncosθn (6.14)

The final operation is to determine the relative energy between the particles in the
centre-of-mass frame of the nucleus. From the velocity vectors, the relative velocity
between two particles n1 and n2 is deduced as follows:

�vrel = �V n1 − �V n2 (6.15)
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The typical excitation energy of the break-up nucleus, converted into kinetic energy,
does not justify the use of relativistic expressions within the c-o-m frame. The relative
energy between two particles, denoted n1 and n2, is thus given by:

Erel = 1

2

(
mn1 · mn2

mn1 + mn2

)
v2

rel = 1

2
µv2

rel (6.16)

where µ is called the reduced mass. The excitation energy plus Q-value of the break-
up state is obtained by adding the total relative energy of all the break-up particles.

The excitation energy resolution evolves with the square root of the excitation
energy. This resolution is inherent to the position and energy resolution of the
charged particle detector. Hence, charged particle spectroscopy shows limitations
when reconstructing highly excited states as neighbouring states begin to overlap
due to the resolving power which decreases with increasing excitation energy.

Intermediate decay steps can be deduced from known energy resonance identified
in the relative energy spectra. This, for example, is the case of the very narrow ground
state of 8Be with only 92 keV relative energy in the c-o-m frame. Information can also
be deduced from the angular correlation in multi-step decay [130]. The angle between
two velocity vectors, i.e. between the directions of two-step decay, is expressed in
terms of the ratio of the scalar product and the product of the vectors:

cosβ = �vn1 · �vn2

�vn1 × �vn2
(6.17)

Figure 6.26 displays the break-up of unbound 6Be decaying in two protons and one
α particle as depicted in the diagram through the two-body decay channels namely
6Be →5 Li+ p and 6Be →4 He+2 He [131]. The direction taken by the particles in
the subsequent break-up of the 5Li and 2He resonances with respect to the primary
decay are sensitive to the spin and the parity of the states involved in parent and
daughter nuclei.

From complete kinematics measurements, a number of selections can be applied
to isolate the events of interest, for example the total kinetic energy distribution in
the final state. By considering the total momentum projected on the X- and Y-axes,
fortuitous events can be discarded if the sum of the momenta is greater than an
acceptable deviation from the zero value. Reconstruction of the azimuthal angle of
the particles involved in the primary binary reaction allows the discarding of those
events not contained within the reaction plane. The in-plane events are selected within
a narrow angle around �φ = 180◦ to discard those events originating mostly from
contaminating reactions.

6.5.2 Particle Reconstruction

The derivation described above is still valid when considering nearly complete kine-
matics measurements, i.e. when one particle is missing in the event. Reconstruction
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Fig. 6.26 Decay diagram of
6Be following two two-body
decay paths namely
6Be →5Li + p and
6Be →4He +2 He followed
by subsequent break-up of
the 5Li and 2He resonances
respectively [128]

of the missing particle is achieved if N-1 particles are identified, with well defined
energy and position, the momentum vector of the missing particle is deduced as
follows:

PNx = 0 −
N−1∑

n=1

Pnx , PNy = 0 −
N−1∑

n=1

Pny , PNz = Pbeam −
N−1∑

n=1

Pnz . (6.18)

This method is powerful for neutral particle identification, as the granularity and
efficiency of neutron detectors are usually not as good as for charged particle detec-
tors. The reconstruction of a missing neutron from charged particle information can
be performed with relatively good resolution. The draw-back of this method resides
in the cumulation of uncertainties from detected particles on the undetected particle;
the heavier the detected fragments compared to the reconstructed particle, the larger
the uncertainty of the reconstructed position and energy.

6.5.3 Total Final State Kinetic Energy (TKE)

From energy conservation principle, the total kinetic energy after a nuclear reaction
is equal to the beam energy plus the Q-value of the reaction. The Q-value relates the
amount of kinetic energy converted to mass (negative Q-value) or the amount of mass
converted into energy (positive Q-value). Total Kinetic Energy (TKE) conservation
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Fig. 6.27 Q-value spectrum
of the 12C(12C, 3α)12C
reaction [132]. The peak
indicated with a marker
corresponds to the three α
break-up of one 12C nucleus
and the ground state of the
missing 12C nucleus. The
two peaks at lower energy
correspond to the same exit
channel, but the 12C recoils
are emitted in the 4.44 and
9.6 MeV excited states

is written in Eq. 6.19 for N break-up particles considering possible dissipation of
energy through undetected γ -ray emission (Eγ ):

ET K E = Ebeam + Q − Eγ =
n=N∑

n=1

En − Eγ (6.19)

The Total Kinetic Energy distribution of the final state is also called a Q-value
spectrum and is very useful for selecting the channels of interest, especially when
mutual excitation plays an important role. Figure 6.27 shows the TKE spectrum in
the 12C + 12C reaction at Elab = 101.5 MeV [132]. One of the carbon nuclei is
identified from the three α break-up and the missing 12C recoil is reconstructed by
using momentum conservation. The prominent peak at 94 MeV corresponds to the
ground state of the missing 12C and the two peaks at lower energy correspond to the
4.44 and 9.6 MeV excited states respectively.

6.5.4 Dalitz Plots

In terms of theoretical calculations, three-body decay studies are much more chal-
lenging compared to two-body break-up channels. The Dalitz plot [133] is a pow-
erful representation of the energy correlation between three break-up particles. The
energy of the three particles is represented by means of a point in an equilateral tri-
angle connected perpendicularly to the three sides of the triangle. As in Figure 6.28,
the summed length of the three vectors, OD + OE + OF, remains constant wherever
the point O is located within the triangle. The height of the triangle equals the total
energy; the length of each segment connecting O to the sides of the triangle, OD, OE
and OF, is equal to the energy of the respective particle [133]. Following geometrical
manipulations, a 2D plot can be constructed with x- and y-values given by:
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Fig. 6.28 Dalitz projection
of the three-α break-up from
the 12.71 MeV (Jπ = 1+)
state in 12C, with η1 = E1
and η2 = (E1 + 2E2)/

√
3.

A particular energy
correlation is pointed with
the vectors OD, OE, OF. The
figure is adapted from [134]

x = E1 + 2E2√
3

, y = E1. (6.20)

For broad resonances, the total energy of the particles is normalised in order to
fit all the events in a unique triangle. The three-body decay of the 12.71 MeV state
in 12C decaying in three α particles is depicted in the Dalitz projection in Fig. 6.28
with a pattern corresponding to the decay of a 1+ state [134].

Four-particle break-up can be projected in a tetrahedron, with the conversion of
the energies in 3D expressed as follows:

x =
√

3

8
(E1 + E2 + 2E3), y = E1 + 3E2√

8
, z = E1. (6.21)

6.6 Computer Codes

A taste of modern experimental cluster physics was given in this chapter. The use of
a radioactive beam implies new experimental challenges addressed with new gen-
eration detectors, for example γ -tracking arrays or Active Target facilities. Such
experimental setups are optimised through detailed simulations in order to make the
best use of sophisticated ion beams and detector arrangements. A number of software
tools are commonly used in nuclear physics for cross section or energy loss calcula-
tions, data analysis and simulation purposes. An overview of some freely available
and highly supported codes is given here. This, by all means, is not exhaustive and
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the reader is invited to explore further as some applications possibly require more
specific codes.

LISE: Multipurpose Nuclear Physics and Magnetic Spectrometer Code

LISE is a package combining a number of nuclear physics codes. The initial
computer code was primarily designed for Radioactive Ion Beam production and
secondary beam transport simulations. Many nuclear physics codes are coupled with
the LISE code over a wide range of energies, from 10 keV to 10 GeV using a variety
of nuclear physics models. The user can implement some experimental setup and
visualise the response of the detectors, for example the expected energy resolution
or count rates [135].

SRIM Stopping Power Code

In dealing with cluster decay and charged-particle spectroscopy, calculations of
energy loss and multiple scattering are almost every day tasks. Ziegler’s [136] tables
for stopping power have been shown to be robust over a wide range of energies
and ion species, although some discrepancies are reported at very low energy where
measurements are not trivial. SRIM [137] can be used with a high level of confidence
for energies ranging from 100 keV to GeV per nucleon in multi layered or mixed
materials. A large library of useful compound materials met in experimental nuclear
physics is also available.

GEANT4 Simulation Code

The GEANT4 code [138] is traditionally used in high-energy physics for model-
ing complex detectors. Because of its high degree of sophistication, a wide number
of applications, for example in low-energy nuclear physics or for radiation detec-
tors currently in orbit around earth, are approached via GEANT simulations. Recent
developments of ACTAR and γ -tracking detectors are amongst the best examples
of GEANT simulations within the low energy nuclear physics community. The
computer code FLUKA [139], also having been developed at CERN over some
decades, is oriented towards high-energy particles; however, a wide range of parti-
cles are transported with numerous experimental databases for reaction cross sections
and nuclear models.

ACTAR Simulation Code

A number of well identified problems have been solved and implemented in the
computer code ActaSim [140], for the design of ACtive TARgets. This code allows
the assembly of pre-defined geometries, of TPCs under HV and magnetic fields, and
simulates the response and read-out of electronic systems for ACTAR. The response
of an ACtive TARget can be anticipated and optimised in terms of spatial and energy
resolution before any hardware development. Tracking algorithms for active targets
are also detailed in Ref. [141].
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ROOT Data Analysis Code

A general code for data analysis has been in developement at CERN since the
mid 1980s. This code was initially developed under the name PAW, and re-named
ROOT in its C++ version [142]. The package is a very versatile software tool that
can be used for simple histogram handling to large-scale data analysis of TeraByte
datasets in parallel computing architecture. ROOT primarily is a high-energy physics
software code, in which nowadays millions of detector channels are involved, but
it can be used with ease for smaller scale datasets. Events are stored in optimised
ROOT tree database structures for fast analysis. Custom applications are written
in C++ and interpreted through the ROOT CINT (C++ interpreter). It comprises
a wide range of functions from basic histogram handling to sophisticated fitting
applications. ROOT certainly is the most popular software data analysis code within
the subatomic physics community. A number of simulation codes (GEANT4) and
data analysis software, dedicated to specific experiments, are linked or developed
under the ROOT environment by making use of the numerous packages already
implemented.

6.7 Concluding Remarks

In these lecture notes, we have presented an overview of a number of well-established
methods and techniques, but also of some of the recent developments in the field
of experimental nuclear cluster studies. A number of major advances in detection
techniques, fine segmentation of semi-conductor detectors, high-density integrated
electronics and digital signal processing allows for a high degree of sophistication
in the experimental setups. As a result, the increase in efficiency and finer granular-
ity of the silicon detector array enable highly selective and precise measurements.
In the field of γ -ray spectroscopy there are very good prospects with the developing
4πγ -tracking arrays regarding the investigation of γ -decay events from molecular
resonances. In terms of detection techniques, the highly efficient ACtive TARgets
were developed mostly in response to the new experimental challenges originating
from Rare Ion Beam facilities. A new landscape in the chart is opening towards the
neutron-deficient region in the vicinity of and beyond the proton drip line where
a number of 2p emitters have already been identified. Neutron-rich ion beams are
well on their way to more exoticity and a number of interesting cases, such as the
11Li halo nucleus, the neutron-rich Be isotopes where the α–α core persists, or some
of the 30Ne and 32Mg nuclei displaying evident cluster structure give a taste of the
discoveries ahead of us in the field of nuclear clustering.
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