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Supervisor’s Foreword

Some of the most dramatic recent advancements in nanotechnology have exploited
the specific pairing of DNA bases to create programmable dynamic three-dimen-
sional structures that precisely self-assemble from individual DNA strands. This
revolution started with the pioneering work of N. C. Seeman [1] and changed
dramatically about 5 years ago when P. W. K. Rothemund [2] introduced the
‘origami’ method. In this process a single, 7,000-base ‘scaffold’ strand of viral
DNA is used as a template to organize over 200 hundred differently designed
synthetic ‘staple’ strands, through hybridization, into well-defined two-dimensional
shapes. Since then, well over a thousand papers have been published pushing these
techniques forward to make objects ranging from three-dimensional nano-boxes
with lids that open in response to a signal, to structures, functionalised by proteins
or metal nanoparticles that exhibit remarkable biological or optical properties,
to dynamic DNA nanotechnology, including walkers on prescriptive landscapes [3]
or programmable tracks [4, 5].

The ambitious goal of this thesis was to develop a coarse-grained model of
DNA that is simple enough to be tractable, but complex enough to capture the
structural, thermodynamic and mechanical properties of DNA that are crucial to
DNA nanotechnology. By focusing on the basic physics of single strands, double
strands and the transitions between them, Tom Ouldridge was able to quantita-
tively describe many of the underlying physical processes that are exploited when
experimentalists make functional nanostructures from DNA. By using computer
simulations, many processes that are inaccessible to experimental measurement
can be carefully examined. At the same time, detailed analysis of the experiments
helps constrain and improve the theoretical models.

Tom was able to provide a detailed exploration of the pathways explored during
a full cycle of DNA nanotweezers, an iconic nanomachine, and also to make
predictions relevant to a new two-footed walker. This new model is a step-change



vi Supervisor’s Foreword

improvement over previous attempts to coarse-grain DNA, and is currently being
exploited in worldwide collaborations to understand DNA nanotechnology and
biology. A recent extension of the method to graphical processing unit (GPU)
chips opens up the possibility of directly studying large structures such as DNA
origamis with up to 10,000 or more bases.

April 2012 Adriaan A. Louis
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Chapter 1
Introduction

In this book I introduce a coarse-grained model of deoxyribonucleic acid (DNA)
which is optimized for reproducing the thermodynamic and mechanical changes
accompanying the formation of B-DNA duplexes from single strands. This process,
known as hybridization, is a vital component of the fast-growing field of DNA nan-
otechnology, as well as being relevant to a wide range of biological systems.

The layout of this book is as follows: in this chapter, I will first introduce the
DNA molecule, and discuss its relevance in biology and nanotechnology. Then I
will consider modelling of DNA, and highlight the need for a new coarse-grained
approach. My novel model is presented in Chap. 2, and the techniques used to simulate
it are outlined in Chap. 3 (a technical issue with simulation is discussed in Chap.4).
In Chaps.5 and 6, the model is fitted and validated by comparison to extensive
experimental data on thermodynamic and mechanical properties of DNA. Finally, to
demonstrate the utility of the model, it is applied to two nanodevices (DNA tweezers
in Chap.7 and a two-footed DNA walker in Chap.8)—in both cases, non-trivial
results are observed.

1.1 DNA Chemistry and Structure

The discovery of the structure of (DNA) and its role in biology was one of the tri-
umphs of twentieth century science, revealing the molecular basis of genetics. The
existence of DNA was first revealed in 1868/1869 by Meischer [1], who discovered
a novel substance common to all cell nuclei that contained large amounts of phos-
phorus and no sulphur. Levene later proposed that DNA consisted of nucleotides
(which themselves are formed from base, sugar and phosphate chemical groups—
see Fig. 1.1a) linked by covalent bonds between the sugar and phosphate groups [2,
3], but dismissed its potential as an information carrier due to a belief that the bases
formed small or repetitive chains. The hereditary significance of DNA was revealed
in 1944 when Avery et al., expanding on earlier work by Griffith [4], showed that
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Fig. 1.1 DNA chemistry and structure. a The chemical composition of DNA: two strands of two
nucleotides each are shown in a schematic view (taken from Ref. [5]), with covalent bonds shown
as solid lines and hydrogen bonds as dashed lines; b helical structures of duplex DNA: the A, B
and Z conformers (taken from Ref. [6])

DNA was responsible for the transfer of traits observed when dead bacteria are mixed
with a live population [7].



1.1 DNA Chemistry and Structure 3

To understand the mechanism of inheritance, however, it was necessary to find
the structure of DNA. Although X-ray diffraction patterns of DNA existed prior to
1950, the elucidation of DNA structure was initially hindered by the existence of
two allomorphs of DNA [8], the ‘A’ and ‘B’ forms. This dichotomy was realized
by Rosalind Franklin [9], and X-ray data from both forms were combined with
chemical knowledge! by Watson and Crick, who concluded that DNA was a right
handed double helix of nucleotides (Fig. 1.1b). The two strands are held together
by specific hydrogen bonds between adenine (A) and thymine (T), and guanine (G)
and cytosine (C) bases, and these base pairs (bp) are stacked on their neighbours.
Thus, DNA forms a double helix stabilized by bases in the centre, and with sugar and
phosphate groups connecting the bases along the outer edge. It is this complementary
pairing of bases (AT and CG) that allows DNA to act as the mechanism of inheritance,
as will be discussed in Sect. 1.2.

Since the work of Watson and Crick, our understanding of DNA structure has
grown significantly, but the essential principle of DNA as a double helix of comple-
mentary base pairs remains valid. The most common A and B forms are now well
characterized and example structures are shown in Fig. 1.1b. Both are right-handed
double helices, but whereas in B-DNA the base pairs lie astride and almost perpen-
dicular to the helix axis, A-DNA base pairs are offset and significantly tilted with
respect to the helix axis [8]. Specific repetitive sequences can also form alternative
structures, such as the left-handed Z-DNA (Fig. 1.1b). B-DNA is the most common
in physiological conditions, but A-DNA can be favoured by the lower humidity in
X-ray scattering experiments, and RNA-DNA hybrids also form A-type helices (as
do RNA duplexes themselves) [10].

More exotic structures can also be formed through alternative binding mechanisms
for certain DNA sequences. Hydrogen bonding with a different side of the base
(Hoogsteen hydrogen bonding) allows the formation of ‘G-quadruplex’ structures
[8], which occur in nature as the telomeres at the end of a chromosome. More detailed
discussions of DNA structure can be found in Refs. [8, 10].

1.2 The Role of DNA in Biology

Complementary base-pairing is the key property that allows DNA to function as the
mechanism of information storage and inheritance. Firstly, the sequence of bases in
DNA stores the information required to self-assemble and maintain an organism—the
most obvious example is the use of sequence to specify the proteins to be constructed
in a cell [13]. The specificity of DNA binding (A-T and G—C base pairs are the most
favourable) means that each strand in a double helix carries a negative image of the
information on the other strand. As a consequence, it is possible to copy DNA by

1 Chargaff et al. had shown that of the four base types in DNA, the pair adenine and thymine always
occur in equal amounts, as do guanine and cytosine [11]. Gulland et al. had also suggested that
bases were linked by hydrogen-bonding [12].
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separating the two strands and using the information on both to construct copies of
the original, as is done by DNA polymerase [13].

In order for the information stored in DNA sequences to be useful, the bases must
be accessible to enzymes such as RNA polymerase. These enzymes need to interpret
the base sequence in order to function—in the case of RNA polymerase, sequences
are used to generate messenger RNA molecules, which code for the assembly of
specific proteins. It is therefore necessary that base-pairing is only marginally stable,
so that the helix can be opened and the sequence read. More information on the role
of DNA in a biological context is given in Ref. [13].

1.3 DNA Nanotechnology

1.3.1 DNA Nanostructures

With the advent of the ability to make short DNA sequences to order has come the
realization that DNA has ideal properties for use in nanotechnology. A set of single
strands can be designed with a pattern of complementarity that specifies a certain
2- or 3-dimensional structure (usually formed from branched double-helices) as the
global free energy minimum (or most probable state) of the system. Strands can then
be mixed and self-assemble, provided the sequences are well designed. The structural
properties of DNA make it ideal for this purpose—double-stranded DNA (dsDNA)
is stiff on the nanoscale, with helices having a persistence length (the lengthscale
over which the direction of the DNA axis becomes decorrelated) of around 50 nm or
150 bp [14]. By contrast, single-stranded DNA (ssDNA) has the flexibility to act as
hinges between duplex sections.

The idea of using DNA crystals to facilitate protein crystallography, by creating
a lattice to which proteins could be attached, was the original spark that led See-
man to found the field of DNA nanotechnology. The self-assembly of short strands
(oligonucleotides) was first demonstrated by the Seeman lab, who created a four-
armed junction [16]. Junctions of this type, and more complex motifs [17, 18], have
been used to create lattices [19-21] and ribbons [18]. Recently, proteins have been
attached to a 2-dimensional DNA crystal to facilitate electron cryomicroscopy stud-
ies [22]. 3-dimensional structures have also been realized: initially, the Seeman group
constructed a cube [23] and a truncated octahedron [24] in several discrete stages.
Polyhedral cages that rapidly form as solutions of oligonucleotides are cooled have
recently been developed [25-29] (Fig.1.2a). Self-interactions within a single strand
have also been used to create a tetrahedron [30].

An alternative approach to self-assembly, DNA origami, was recently developed
by Rothemund [31]. In this case, a long single strand is folded into a desired struc-
ture by short ‘staple’ strands, allowing the assembly of an enormous range of 2-
dimensional structures, such as the ‘smiley faces’ in (Fig.1.2b). This approach has
recently been extended to three dimensions, either by linking together 2-dimensional
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Fig. 1.2 Examples of DNA nanostructures. a Illustrations and a reconstruction from tunneling
electron microscopy data of polyhedra constructed by the Turberfield group [15, 25, 26]; b atomic-
force microscope (AFM) images from Rothemund’s original DNA origami work [31]; c illustrations
and AFM images of icosahedra constructed from origami subunits by the Shih group, taken from Ref.
[34] (Some of the images in this figure were reproduced with permission from the following sources.
CryoEM image in (a): Kato et al. [15]: copyright 2009 American Chemical Society. Bipyramid
image in (b): Erben et al. [26]: copyright 2007 American Chemical Society; (¢): Douglas et al. [34]:
copyright 2009 Macmillan Publishers Ltd: Nature.)

sheets [32, 33], or by using the twist of DNA to form inherently 3-dimensional
folded helix bundles [34] (Fig.1.2¢c). By designing the staples to form links between
helices that are not commensurate with DNA periodicity, strain can be incorporated
into origami structures, allowing curved and twisted structures to be created [35].
Recently, complex 3-dimensional curved structures such as spheres and bottles have
also been realized [36].

Origami has already been shown to have useful applications. It has become a bio-
physical breadboard, allowing nanoscale placement of the components of interest,
such as the binding sites of a DNA walker [37]. The Dietz lab have also developed
origami tools for specific uses in the laboratory, sub as DNA ‘calipers’ for mea-
suring biomolecular dimensions and fluctuations (C. Castro and H. Dietz. A DNA
origami caliper device for the study of single molecule conformaronal dynamics,
unpublished). Liquid crystals of stiff origami rods have also been used to partially
align membrane proteins to allow NMR structure determination [38].

The use of origami within more sophisticated structures has also recently been
pioneered. Origami tiles have been connected by ‘sticky ends’ (extra bases which
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can bind to bases on other tiles) to form tubes, 1-dimensional arrays and cages [34,
39, 40]. Some of the edges of an origami consist of blunt-ended helices, which can
undergo coaxial stacking interactions with other origami edges to form extended
structures, as is evident from the images in Rothemund’s original paper [31]. Recent
work has explored the possibility of making such interactions selective by introducing
patterning to the origami edges [41]. Liedl et al. [42] have linked origami (in the form
of bundles of DNA double helices) with ssDNA to engineer ‘tensegrity’ structures.
In these systems, the 3-dimensional conformation of the system is maintained by
a balance of tension within the ssDNA sections and compression of the origami
bundles.

DNA has also been combined with other materials to create pre-assembled com-
ponents for self-assembly. Small organic molecules have been used as vertices in
structures held together by DNA [43, 44], and colloidal crystallization has been
achieved by functionalizing nanoparticles with DNA [45]. Another possibility is
to use DNA in combination with ribonucleic acid? (RNA) [46], itself a promising
material for use in nanotechnology [47].

An extensive review of DNA nanostructures and their potential uses can be found
in Ref. [48].

1.3.2 DNA Nanodevices: Switches

Marginal stability is thought to be useful for a wide class of assembly processes, as it
allows malformed structures to rearrange themselves into the desired configuration
[49-51]. Thermal fluctuations in DNA binding, however, have been explicitly put to
use in designing dynamic nanodevices [52]. Two principles are central to much of
the work on DNA nanodevices:

e DNA binding can introduce mechanical change to a system, as binding causes
strands to be held (reasonably rigidly) in close proximity, and unbinding causes
this restriction to be released.

e A strand in a partially-formed duplex with a substrate can be replaced by a strand
with a greater degree of complementarity with the substrate [53]. This process
is known as foehold-mediated strand displacement—see Fig. 1.3. Displacement
relies on the fluctuational opening of base pairs, so that strands can compete for
binding.

The potential for creating nanodevices using these principles was demonstrated by
Yurke et al., who constructed the iconic ‘DNA tweezers’ [54], a nanodevice which is
the topic of Chap. 7. The tweezers, shown in Fig. 1.3, consist of three strands that form
two rigid arms with a flexible ssDNA joint. The arms possess overhanging ssDNA
sections, and a strand of the correct sequence (known as the fuel) can bind to the two

2 Ribonucleic acid is a similar to DNA, but possesses a modified sugar and thymine groups are
replaced by uracil [10].
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Fig. 1.3 DNA tweezers, an example of a DNA nanodevice which relies upon strand displacement.
The tweezer unit is initially open. When the fuel (F') is added, it binds to the tweezer arms, bringing
them together and closing the tweezers. The antifuel (F) is then added and binds to the fuel toehold.
The antifuel competes with the tweezers for bonding to the fuel. Finally, the tweezers are displaced
by the antifuel, allowing them to open again. Reproduced by permission from Macmillan Publishers
Ltd: Nature. Yurke et al. [54]: copyright 2000

arms and pull the tweezers shut. The fuel, however, also possesses an overhanging
toehold. Introducing a further strand (the antifuel) which is complementary to the
entirety of the fuel leads to the eventual displacement of the tweezers, returning
them to their original open state and producing a waste duplex. The tweezers can be
thought of as a switch that changes state in response to changes in the environment.

The tweezers themselves do not have an obvious purpose, except perhaps as
a method to sense the presence of the fuel strand, but the basic mechanism is at
the heart of work to develop potentially useful devices. DNA hybridization and
strand displacement have been used to create boxes [32] and cages [S55] that can be
opened or closed in response to the presence of certain species of ssDNA in solution
(these containers have a size comparable to a small virus). Strand-displacement
triggered release of gold nanoparticles from within wires constructed from DNA and
small organic molecules has also been demonstrated [56]. Displacement on a much
grander scale has also been used to reconfigure a Mobius strip constructed from DNA
origami [57], offering a new assembly technique which may assist the construction
of topologically complex structures.

DNA strands are not the only signal to which switches can be designed to respond.
Douglas et al. [58] have designed a DNA origami cage that is locked by two duplexes.
One of the strands in these duplexes, however, is an aptamer for a cancer marker (it
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binds strongly to a protein which is especially common on the surface of cells of a
certain type of cancer). The marker can displace the other locking strand and lead
to the opening of the cage only when bound to a cancerous cell. The system shows
promise as a mechanism for the targeted drug delivery.

1.3.3 DNA Nanodevices: Walkers

An attractive idea is to couple the mechanical changes to directional motion, creating
‘walkers’ inspired by the molecular motors of biology. Typically, walkers have one or
two feet which attach to binding sites on a track. The earliest designs used sequential
addition of strands to generate coordinated, unidirectional motion (via displacement)
[59, 60].

Autonomous, unidirectional motion, which does not rely on external control of
the environment (in this case through manipulating the concentrations of fuel strands
as a function of time), must catalyze the release of free energy from a fuel source
[52]. The free energy release upon the hydrolysis of the phosphodiester backbone of
nucleic acids can be used for this purpose [37, 61, 62]. In these systems, the presence
of a walker catalyzes the hydrolysis of the single-stranded binding site to which it
is attached, thereby encouraging the walker to step to the next site. Unidirectional
motion arises as the track behind the walker is modified, making it unfavourable to
step backwards.

An alternative source of free energy is in catalyzing DNA hybridization itself [63].
If the fuel strands are designed to form intra-strand base pairs and exist as metastable
hairpins, whose opening is catalyzed by the walker operation, the need for sequential
addition of strands can be overcome. This idea has been used to create a two-footed
walker that catalyzes the association of fuel with its track [64].

By coordinating the interaction of the feet of a two-footed walker with its track,
the Turberfield group have also demonstrated the possibility of autonomous motion
on a track that can be reused. Motors have been designed that catalyze both the
hydrolysis and hybridization of fuel strands [65, 66]—the former of which is the
subject of Chap. 8.

As an alternative to conventional strand-displacement, the migration of the branch
point of a four-armed (Holliday) junction has also been used in the design of walkers
[67, 68]. The principle here is very similar to displacement, except that instead of
one strand taking base pairs from another, base pairs are transferred between the
helices at the branch point. By including an additional toehold, the reaction can be
biased in the desired direction.

Walking devices have a clear potential to act as active agents in a molecular assem-
bly line. Initial studies have demonstrated the possibility of using DNA hybridization
to accelerate chemical processes through bringing reagents into close proximity [69],
and the possibility of using a walker to selectively pick up gold nanoparticle cargo
[70].

Reviews of DNA-based nanomachines from can be found in Refs. [52, 71].
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1.3.4 DNA Computation

The ability of DNA to carry information and undergo reactions based on that informa-
tion has lead to the suggestion that it can be used for computation. In 1994, Adleman
demonstrated that a Hamiltonian path problem (finding a path through a graph which
visits each node exactly once) could be encoded into DNA strands, which could then
solve the problem upon being mixed [72]. The novel aspect of DNA computation
is the high parallelization—the presence of a thermodynamically large number of
strands means that the system can attempt many solutions to a combinatorial prob-
lem simultaneously. This potential for high parallelization has lead to a great deal of
work aimed at creating architectures for DNA computation that have the potential to
solve useful problems [73]. Considerable effort has also been devoted to developing
logic gates based on DNA displacement [74].

Although DNA possesses the advantages of parallelism and miniaturization over
conventional computing technology, it also possesses several obvious disadvantages.
Firstly, the creation of the strands and analysis of the results are complicated and
time-consuming. This problem is made worse by the fact that DNA computers are
currently ‘one-shot’ devices: you have to recreate your system every time you want
to run a new calculation, and they cannot be programmed easily [73].

Perhaps the best hope for applications of DNA-based decision-making is to use
it in vivo, where its ability to interface directly with biological matter becomes an
advantage, and the difficulty in extracting human-readable output may not be relevant.
For example, one might consider a system that could perform a logical calculation
based on the environment in a cell, and respond in a potentially therapeutic manner
(such as by releasing drugs from containers like those discussed in Sect. 1.3.2). In
this case the massively parallel nature of DNA computation would be used to treat
many cells at once, and there would be no need to convert the results into readable
output. Indeed, RNA computation has recently been used to trigger selective cell
death in response to the presence of a cancer marker [75].

1.4 Modelling DNA Self-Assembly

1.4.1 Why Model DNA Self-Assembly?

As discussed in Sect. 1.3, DNA nanotechnology is a rapidly growing field of great
potential. Much of DNA nanotechnology relies either largely or entirely upon the
formation of B-DNA duplexes from single strands (although transitions involving dif-
ferent chemistry can be exploited, such as the formation of ‘i-motif” structures [76]).

Currently there is only a limited theoretical understanding of the processes
involved in DNA self-assembly, which hampers efforts to design ever more sophisti-
cated systems. In particular, information about the intermediate states in
assembly processes, which are often difficult to resolve in experiment yet crucial to
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the processes as a whole, would aid the design of nanotechnology. Computer mod-
elling, provided it can capture the transition between single- and double-stranded
DNA, has the potential to offer significant insight into these systems. For example,
a simulation might be able to explain why some systems are more successful than
others, or provide an efficient way to test novel ideas.

A model of DNA that captures the transition from ssDNA to dsDNA would there-
fore be of great use to the DNA nanotechnology community. Furthermore, many
systems of biological relevance (such as the opening of transient ‘bubbles’ (stretches
of broken bps) within helices and the extrusion of cruciform structures in negatively
supercoiled (or under-twisted) DNA [77]) are governed by the properties of single
and double strands, and the competition between the two. A reliable model would
also deepen our understanding of such systems.

1.4.2 Atomistic and Continuum Models of DNA

At the most detailed level, atomistic simulations using force fields such as AMBER
or CHARM offer an intimate representation of DNA [78]. A large-scale systematic
study of the structural properties of short sequences as represented by AMBER has
been carried out by the Ascona B-DNA Consortium [79]. Unfortunately, the number
of degrees of freedom (including those of the solvating HoO molecules) prohibits the
simulation of large molecules for long periods of time. For example, simulations of
double helices (on the scale of 10-20 base pairs) have only recently been extended
to time scales of ~1 ws [80, 81]. The use of enhanced sampling techniques has
given atomistic simulations some access to hybridization transitions in the smallest
duplexes [82] and hairpins [83, 84], although larger systems remain prohibitively
expensive to model.

At the other end of the spectrum, continuum models of DNA [85] treat the double
helix as a uniform medium. Whilst these approaches can provide important insight
into DNA behaviour on long length-scales, they are by definition unable to deal
directly with processes involving duplex hybridization or melting.

It is also worth noting models that have been introduced for the explicit purpose of
modelling DNA origami. Sherman and Seeman have presented a geometrical scheme
for minimizing strain in origami structures [86], and a finite element method (which
treats dSDNA as an elastic rod) has been developed by Castro et al. [87] to predict the
structure of stressed origami. Although these tools are useful in the nanotechnology
design process, they are also inherently inapplicable to the assembly process itself.

1.4.3 Coarse-Grained Models of DNA

To gain further insight into hybridization, coarse-grained models, which represent
DNA through a reduced set of degrees of freedom with effective interactions, are
required. Models of DNA with approximately 10 coarse-grained units per nucleotide
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have been successfully used to study the interaction of DNA with lipids [88, 89], but
in order to explore assembly transitions simpler models are required. In particular,
models whose coarse-grained scale is approximately that of the nucleotide may pro-
vide the ideal compromise between resolution and computational speed for assembly
transitions.

Statistical Models of DNA

The simplest available coarse-grained models are statistical, neglecting structural and
dynamical detail. These models use sequence-dependent parameters that describe
the free-energy gain per base pair relative to the denatured state, with extra para-
meters used for initialization of duplex regions and to describe unpaired sections
within the structure. Among the most popular are the Poland—Scheraga [90] and
nearest-neighbour models [91, 92], generally used in the context of polynucleotide
and oligonucleotide melting, respectively. A particularly important version of the
nearest-neighbour model, which has been shown to reproduce experimental melting
temperatures of duplexes ranging from 4-16bp in length with a standard deviation
of 2.3K, was introduced by SantalLucia and Hicks [91, 92]. In this model, the con-
centrations of oligonucleotides A and B, and their duplex A B, are given by:

AB
[i][;] =exp (—B(AHap — TASa3)), (1.1)

where the constants A H4 g and AS4 g are computed by summing contributions from
each nearest-neighbour set of two base pairs, together with terms for helix initiation
and various structural features, all of which are assumed to be temperature indepen-
dent. Such a description, in which AHp and AS4p are temperature independent,
constitutes a ‘two-state’ model. A two-state model essentially neglects the variation
in energy within the bound and unbound ensembles, and is equivalent to approxi-
mating each as a single state with a certain degeneracy.

Statistical models, although extremely useful, are unable to describe dynamics
of systems or the effects that arise from the geometry and topology of DNA, and
hence are not complex enough to study many of the processes involved in DNA
nanotechnology.

Models of DNA with Reduced Dimensionality

Alternatives to these purely statistical models have also been proposed. Everaers
et al. [93] have suggested a lattice model of DNA explicitly designed to unify
nearest-neighbour and Poland-Scheraga models, with the added advantage that some
structural information is also preserved. Peyrard—Bishop—Dauxois (PBD) models
[94] represent base pairs through a continuous 1-dimensional coordinate, allowing
dynamical simulations of denaturation bubbles in polynucleotide DNA. An extension
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of the PBD model to include twist has also made the investigation of torque induced
denaturation possible [95, 96]. None of the models discussed, however, provide a
sufficiently sophisticated representation of the 3-dimensional structure of DNA to
allow the detailed study of the transitions involved in nanotechnology.

Rigid Base-Pair Models

Rigid base-pair models, in which undeformable base pairs are the fundamental unit,
have been used to study perturbations to DNA such as those induced by enzymes
[97]. By definition, such models cannot represent the transition from single strands
to duplexes, and hence are inappropriate for the study of assembly processes. Lankas
et al. [98] directly compared rigid base-pair and rigid base models that were para-
meterized to reproduce positional time-series that were generated from atomistic
simulations of B-DNA. Interestingly, the authors found that the rigid base models,
in which the base pairs are deformable and nucleotides are the essential unit of sim-
ulation, generated a more local representation of the interactions than rigid base-pair
models did, suggesting that the individual bases are a more appropriate level of
description for structural and mechanical properties of B-DNA.

Rigid and Stiff Base Models

To study the processes involved in nucleic acid structure formation, a fully
3-dimensional coarse-grained model, in which individual bases are able to move
separately, is required. Several models in which the base is either represented as a
rigid unit, or with stiff internal degrees of freedom, have been proposed in the last
decade. These models represent nucleotides by one or more interaction sites, and can
be divided into two kinds. Firstly, some modellers parameterize their effective force
fields by direct comparison with either atomistic simulations or data from crystal
structures. An alternative is to take a more heuristic approach, designing force fields
to provide a reasonable description of a range of large-scale properties (such as melt-
ing temperatures of helices) when compared to experiment: these two approaches
could be described as ‘bottom-up’ and ‘top-down’, respectively.

Bottom-up approaches have been used to study RNA nanostructures [99], the
response of DNA minicircles to supercoiling [100—102], the behaviour of B-DNA
over a range of conditions [103], and the properties of the resultant DNA model as
a function of parameterization [104]. These models have one [100-102], three [99,
104] or six [103] sites per nucleotide.

Typically, adjacent sites within a strand are connected by ‘bonded interactions’,
which involve bond stretching, angular and dihedral potentials and provide much
of the structure of the model. Additional, ‘non-bonded’ interactions represent base-
pairing, stacking, excluded volume and in some cases electrostatic interactions (either
treated with explicit ions [102] or implicit linearized Poisson—-Boltzmann methods
[103, 104]). Additional structural information, enabling the specificity of double



1.4 Modelling DNA Self-Assembly 13

helix structures, is encoded in potentials which represent hydrogen-bonding. This
is done either through terms which depend on the orientation of individual bases
[104], by having bases with internal structure [103] or by having hydrogen-bonding
interactions depend on the location of several sites neighbouring the bases in question
[99-102]. In some cases, the interactions are specified by the ‘native state’ of a certain
system, so that in a given simulation bases can only bind in one way [99-102].

Many of these models are parameterized using all-atom simulations of DNA
by extracting the distribution functions of various degrees of freedom from small
simulations, and then fitting CG potentials to reproduce these distributions. Often
this is done using ‘Boltzmann inversion’ (whereby potentials of a variable g are
taken as V(g) = —1/81In W(q), with W(q) being the distribution function of ¢ in
the original simulation) as an initial approximation [99, 101, 104]. This procedure
has also been performed using X-ray crystal structures of DNA as the source of
W(g) [100]. Alternatively, Savalyev and Papoian have pioneered the ‘molecular
renormalization group’ technique, which is a systematic method for reproducing
correlations in the CG model [102].

It is also worth mentioning the application of a similar methodology to the study
of DNA binding to the nucleosome [105]. This model involves one interaction site
for each amino acid C, atom and one for each phosphate of DNA, and interactions
are parameterized by Boltzmann inversion of atomistic simulations to reproduce
fluctuations around the native state.

Although systematically coarse-graining removes some of the arbitrary choices
in designing a minimal model, there are drawbacks. Firstly, the resultant force-field
will be biased towards the structures with which it was parameterized: in particular,
equilibrium duplex structures are often the primary source of information, and hence
single-stranded behaviour is not necessarily well reproduced. In some cases, the
potential is actually designed only to reproduce fluctuations about a certain structure
of interest [99, 105], and in many cases the bonding pattern of the ‘native state’ is
required as an input [99—-102, 105], reducing the general applicability of such models.
It is worth noting that there has been little use of these models to date to rigorously
study systems and effects other than those with which they were parameterized.

Secondly, the transition between ssSDNA and dsDNA may be poorly represented:
indeed, none of the bottom-up approaches described above have been used to investi-
gate melting transitions in a rigorous way, with the focus being largely on structural
properties. Thirdly, ‘representability problems’ [106] mean that careful fitting to
distribution functions will not necessarily reproduce thermodynamic properties in a
reliable fashion [107]. Finally, it is not yet known how accurate atomistic simulations
are in reproducing the duplex hybridization transition—indeed, some authors have
commented that their CG potentials give incorrect structural properties due to issues
with the atomistic potentials from which they were parameterized [102].

All coarse-grained models represent a compromise, and an appropriate model
must be chosen for the investigation at hand. Current examples of bottom-up
approaches seem well-suited to studying fluctuations in the vicinity of the equilibrium
structure in question. By contrast, top-down approaches appear to lend themselves
to the study of larger changes, particularly assembly transitions.
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Top down approaches have been used to study RNA folding and unfolding [108—
112]. These methods have variable levels of detail—several have multiple interaction
sites per nucleotide, with complex interactions designed to mimic specific effects
like stacking and hydrogen-bonding [109-111]. The model of Ding et al. [110]
appears to be particularly promising. It has been used to predict with some success a
number of structures formed from a single folded RNA with no input except sequence,
including systems as large as tRNA (almost 80 nucleotides in length). It should be
noted, however, that this description includes an additional (arbitrary) multi-body
loop formation term, with the need to parameterize this term effectively reducing
the predictive power of the model. A more simple, one site-per-nucleotide approach
has also been used to study the folding and unfolding of large RNA motifs [109].
In this case, attractive interactions are introduced between neighbouring nucleotides
specifically to reproduce a certain native state, reducing the general applicability of
the approach.

Top-down models of DNA have also been suggested, all with multiple inter-
action sites per nucleotide, and physically motivated potentials such as stacking
and hydrogen-bonding [113-128]. Drukker et al. [113] suggested the first fully 3-
dimensional, helical, dynamical3 model of DNA, and used it to observe denaturation.
Several simpler models of DNA in which helicity is neglected were then used to study
the thermodynamics of duplex hybridization [126], duplex mediated gelation of col-
loids [115] and self-complementary hairpin formation [114, 116, 117]. Using an
alternative helical model, Niewieczerzat and Cieplak studied the affects of applying
tension to a duplex [118].

A large body of work has also been based around a model initially proposed
by Knotts et al. [119]. Similarly to many of the bottom-up approaches, this model
involves three sites-per-nucleotide, one each for base, sugar and phosphate groups.
The potential includes extensional, angular and dihedral terms associated with
the covalent links within each strand, and hydrogen-bonding, intrastrand stacking,
excluded volume and a Debye—Hiickel electrostatic term between phosphates. In the
original work, very little rigorous analysis of the model was performed, but it was
used to study the conformations of a ring nanostructure [120]. Later work has studied
the melting transition in some detail [121, 122] and hybridization when one of the
strands is tethered [127, 128]. It should be noted that the methodology neglects sig-
nificant issues with inferring bulk properties from small simulations, as discussed in
Chap. 4. In this updated work, the model was re-parameterized and a medium-range
attractive potential, the origin of which is unclear, was introduced to facilitate duplex
formation. A variant of the model with sequence-dependent structural properties has
been applied to nucleosome binding [125]. Other authors have attempted to augment
the potential with explicit electrostatics [123] and even an explicit representation of
the solvent [124]. It is clear from these approaches that replacing a given implicit,
effective interaction with a more explicit form is not a trivial process.

3 In this context a dynamical model is one that makes predictions for the kinetics of processes, as
opposed to a statistical model which does not directly give kinetic information.
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1.4 Modelling DNA Self-Assembly 15

For the purposes of this work, the study of complexes involving B-DNA and their
formation, a good representation of the structural, mechanical and thermodynamic
properties of single strands and B-DNA is required. Previous models have not been
optimized for this purpose. In many cases, models can only represent the duplex
state [102], or are strongly biased towards a representation of a single native con-
firmation [99-101, 103, 105]. Of the models which are designed to capture duplex
formation, the majority represent the helicity of DNA in a somewhat unphysical fash-
ion. Physically, the helicity of DNA derives from the tendency of consecutive bases
to form coplanar stacks, with an average separation of around 3.4 A [129], shorter
than the equilibrium separation of phosphates of approximately 6.5 A [130]. As a
result, single strands undergo a transition from a largely ordered, helical structure
at low temperature to a disordered one at high temperature [10]. This transition has
been largely neglected in the past (helicity is usually either absent [114-117, 126] or
enforced largely through dihedral and angular potentials imposed on the backbone of
asingle strand [113, 118, 121-125, 127, 128]), but it has important consequences. In
particular, unstacked strands are extremely flexible relative to duplexes, permitting
the formation of DNA structures which involve sharply bent single-stranded regions,
such as hairpins. It is worth noting that none of the models of duplex formation have
been used to study even simple hairpin-forming systems. Furthermore, it has sig-
nificant consequences for the thermodynamics and kinetics of assembly (the role of
stacking in the thermodynamics of duplex formation is discussed in Chap. 6).

The work of Morriss-Andrews et al. [104] and Ding et al. [110] are exceptions to
the previous comments, in that they capture helicity of duplexes whilst permitting
single strands to be unstacked and flexible. The key aspect of these models is that
stacking and hydrogen-bonding interactions have orientational dependence, meaning
that the potentials which maintain the backbone structure need to be less specific for
right-handed double helices to form. The model presented in this work will pursue
a similar approach.

As well as the structure and flexibility of duplexes and single strands, the
thermodynamics of hybridization is an important aspect to capture. Rigorous ther-
modynamic simulations, in which melting temperatures are compared to experiment,
have not been performed for the majority of models. Of those models for which such
comparisons have been made, it has either been exclusively for duplexes [121] or
hairpins [114, 116]. An additional concern is the temperature ranges over which
transitions occur. For complex assembly processes involving several interactions, it
is important that the widths of transitions (and not just the melting temperatures) are
similar to experiment, so that certain features such as hierarchical assembly are pre-
served. More generally, transition widths determine the response of melting temper-
atures to concentration changes and the addition of stabilizing/destabilizing motifs.
Where it was considered, the melting transition in previous models was generally
significantly wider than experimentally reported [114, 116, 121].
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Chapter 2
A Novel DNA Model

2.1 A Feasibility Study

When this project was started in 2007, very few models were available in the liter-
ature. In particular, no thermodynamic simulations of systems involving branched
duplexes had been performed. It was therefore necessary to establish whether the
aim of simulating nanotechnology with a coarse-grained model was a feasible one.

At the time, the model which had been studied most rigorously and used to
simulate the largest systems (involving many particles undergoing DNA-mediated
aggregation) was that of Starr and Sciortino [1]. This model represents DNA as an
essentially linear molecule which has the potential to form ladder-like duplexes with
its complementary strand. I adapted this model and used it to investigate the forma-
tion of ‘Holliday Junctions’, branched four-armed junctions involving four strands
of DNA [2].

The junctions considered were based on those used by Malo et al. [3] to construct
atwo-dimensional DNA crystal. These junctions, as shown in Fig. 2.1, had two 13-bp
long arms and two 7-bp long arms. Due to the extra bonding in the longer arms, these
were predicted to be stable at higher temperature, and indeed UV absorbance did
suggest that the junction forming process proceeded in two stages as the system was
cooled.

Rigorous model thermodynamics were obtained for the entire assembly process,
demonstrating the possibility of using coarse-grained models to simulate DNA nan-
otechnology. The model reproduced the greater stability of 13-bp duplexes, and also
suggested the possibility of hierarchical assembly at constant temperature (having
formed the longer arms, the two shorter arms of the junction could form coop-
eratively at temperatures above their individual melting points). Another pleasing
result was that displacement of strands from partially bound duplexes was observed,
an important process in DNA nanotechnology. As is evident from Fig.2.1b, how-
ever, there were significant issues with this model. Due to the ladder-like nature
of the model and absence of an explicit stacking interaction, the geometrical and
mechanical properties of duplex DNA were far from realistic. For example, the

T. E. Ouldridge, Coarse-Grained Modelling of DNA and DNA Self-Assembly, 21
Springer Theses, DOI: 10.1007/978-3-642-30517-7_2,
© Springer-Verlag Berlin Heidelberg 2012
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(b)

—— CTAACTC // AATGC CTT CTG GA

== CGC ATG AGC AGG A /| GAGTTAG
v=+=TGTTCCG // TCCTG CTC ATC GC
= = TCC AGAAGGCATT //CGGAACA

Fig. 2.1 a Strand sequences and schematic Holliday Junction structure from the system simulated
in Ref. [2]. b Five identical Holliday junctions as represented by the model of Ref. [2]

duplex arms in Fig.2.1b are unrealistically flexible perpendicular to the plane of
bonding.

2.2 The Philosophy of the Model

Having established that modelling DNA nanotechnology was feasible, it was impor-
tant to decide which aspects of DNA to emphasize in the new model. For the purposes
of simulating much of DNA nanotechnology, I have aimed to embed the thermody-
namics of transitions involving ssDNA and dsDNA (in the most common B-form)
into a 3-dimensional, dynamical, coarse-grained representation that provides a rea-
sonable description of the structural and mechanical features of the molecule. This
ambition naturally coincides with a top-down approach. I have not been primarily
concerned with the chemical details of interactions, but rather their net effect with
regard to the properties of DNA.

Thermodynamically, the most important transitions to represent are the stacking
of single strands, the formation of single-stranded hairpins and the hybridization of
two separate strands to form duplexes. In terms of structure, it is vital that a model
captures the ability of single strands to be both helically ordered and disordered. The
helicity of dsDNA is also crucial, as it has a potentially large role in the kinetics of
assembly, in particular leading to frustration of bonding when strands are topolog-
ically constrained [4]. A reasonable representation of the mechanical properties of
DNA is also necessary. Single strands should be flexible, and duplexes comparatively
stiff to represent their roles in nanotechnology. Further, quantities like the torsional
and extensional moduli of dsDNA are important if the model is to be used to study
systems involving DNA under stress, such as minicircles [5].

I have attempted to capture these properties by using only physically motivated
interactions. Pairwise potentials representing excluded volume, backbone connec-
tivity, hydrogen-bonding, stacking, coaxial stacking and cross-stacking have been
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included (with no terms that possess explicitly length or loop size dependence [6, 7]).
Analogously to the work of Morriss-Andrews et al. [8] and Ding et al. [6], the struc-
ture of dsDNA in the model is largely enforced by orientational dependencies of the
hydrogen-bonding and stacking potentials.

An additional consideration in model design is the need for computational effi-
ciency (if assembly transitions of complex structures are to be simulated). In the
model, all interactions are pairwise (i.e., only involve two nucleotides, which are
taken as rigid bodies). This pairwise character allows me to make efficient use of
cluster-move Monte Carlo (MC) algorithms [9], which facilitate relaxation on all
length-scales in a bound structure, and allow a much larger typical step size than
possible in explicitly dynamical simulations (for more information, refer to Chap. 3).
Designing the interactions to be truncated at short distances also improves simulation
efficiency.

2.3 Degrees of Freedom in the Model

The model consists of rigid nucleotides with three interaction sites, illustrated in
Fig.2.2. The three interaction sites lie in a line, with the base stacking and hydrogen-
bonding/base excluded volume sites separated from the backbone excluded volume
site by 6.3 and 6.8 A respectively. The orientation of bases is specified by a normal
vector, which gives the notional plane of the base: the relative angle of base planes
is used to modulate interactions (rather than through the use of off-axis sites).

It must be emphasized that the (often fairly complex) details of the interactions
should not be over-interpreted—they are a means to an end. They are an attempt
to mathematically quantify the tendency of nucleotides to interact favourably when
in the geometry of duplex DNA, through the positions and orientations of the rigid
model nucleotides. The widths and well depths of these potentials have been opti-
mized to fit the properties of DNA, under the condition that the formation of unphys-
ical structures was limited.

For the rest of this work, the model will be described in terms of reduced units,
where one unit of length corresponds to I = 8.518 A (this value was chosen to
give a rise per bp of approximately 3.4 A) and one unit of energy is equal to E =
4.142 x 107207 (or equivalently, kT at T = 300K corresponds to 0.1E).

2.4 The Potential

2.4.1 Functional Forms

The potential used to model DNA consists of a sum of terms designed to represent
physical interactions, such as excluded volume, base-stacking and hydrogen bonding.
These terms are constructed from the functions given below:


http://dx.doi.org/10.1007/978-3-642-30517-7_3
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(a) ()

Stacking site

Hydrogen—bonding site
Base repulsion site

Backbone repulsion site

(b)

Fig. 2.2 a Model interaction sites. For clarity, the stacking/hydrogen-bonding sites are shown on
one nucleotide and the base excluded volume on the other. The sizes of the spheres correspond to
interaction ranges: two repulsive sites interact with a Lennard—Jones o (see main text) equal to the
sum of the radii shown (note that the truncation and smoothing procedure extends the repulsion
slightly beyond this distance). The distance at which hydrogen-bonding and stacking interactions
are at their most negative is given by the diameter of the spheres. Visualization was found to be
clearer with nucleotides depicted as in (b), with the subfigures (a) and (b) representing identical
nucleotides on the same scale. The ellipsoidal bases allow a representation of the planarity inherent
in the model, with the shortest axis corresponding to the base normal. ¢ A 12 bp duplex as represented
by the model

e FENE spring (used to connect backbones):
02
0 € r—=r")
VEENE(F, €, 17, A) = —Eln (1 - T) . 2.1
e Morse potential (used for stacking and H-bonding):
0 0 2
Worse (7, €, 77, a) = 6(1 —exp(—(r—r )a)) . (2.2)
e Harmonic potential (used for cross-stacking and coaxial stacking):
0 k 0)2
Vharm (, k, 1 )Zz(r_r ) . (2.3)

Lennard—Jones potential (used for soft repulsion):

e =4 ((2)°- (%)), @4)
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e Quadratic terms (used for modulation):

Vinod (0, @, 0°) = 1 — a(@ — 6°)2. (2.5)
e Quadratic smoothing terms for truncation:

Vimooth (X, b, x) = b(x® — x)*. (2.6)

These functional forms are combined to give the following truncated, smooth and
differentiable functions:

e The radial part of the stacking and hydrogen-bonding potentials:

Worse (7, €, rO’ a) — VMorse (€, €, roa a)) if rlov < < rhigh’
A0 €Vsmooth (', b1, r¢-10%) if relow < < plow,
1(r) = . - ) . L
€Vimooth (r, bMEN, pe-high) if phigh < < pohigh
0 otherwise.
2.7
e The radial part of the cross-stacking and coaxial stacking potentials:
Vharm (7, k, %) = Vharm (7, k, r0) if PV < < phigh,
k Vsmooth (7 blow’ rC,lOW) if polow 4 rlow’ 28
h(r) = high .c,high ¢ high ¢ high (2.8)
k Vsmooth (1, b s F ) if r <r<r s
0 otherwise.
e The radial part of the excluded volume potential:
VLJ(r9 €, O’) lfr <r*,
f3(r) = 1 €Vamooth (7, b, r€) ifr* <r <r¢, (2.9)
0 otherwise.

e The angular modulation factor used in stacking, hydrogen-bonding, cross-stacking
and coaxial stacking:

Vinoa (6, a, 6°) if 00 — AG* <0 <60+ AG*,
Vemootn (6, b, 80 — A6%) if 00 — A6 < 6 < 6° — AB*,
Vimootn (0, b, 60 + A6°) if 6° + AG* < 0 < 600+ AG°,
0 otherwise.

fa(®) = (2.10)

e Another modulating term which is used to impose right-handedness (effectively a
one-sided modulation):
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1 ifx >0,

£s(d) = Vinod (x, a, 0) ifx* <x <0, .11

Vsmooth (x, b, x€) if x© < x < x*,

0 otherwise.

2.4.2 Interactions

The functional forms of Sect.2.4.1 are combined to produce a potential for model
DNA:

V= Z (Vbackbone + Vitack + Ve/xc)

nn
+ Z (VHB + Vcross_stack + Vcoaxial_stack + Vexc)- (2.12)

other pairs

Here the sum over nn runs over consecutive bases within strands.
For illustrations of the degrees of freedom to which the potential is applied, refer
to Fig.2.3.

2.4.2.1 Backbone Springs

Consecutive backbone sites on the same strand are connected by finitely-extensible
nonlinear elastic (FENE) springs, which maintain backbone connectivity and specify
the equilibrium separation of bases along the backbone (6rgackbone). As bases are
linked by several covalent bonds in physical DNA, the extensibility of the backbone
represents the possibility of rotating these covalent bonds with respect to each other,
as well as the extension of the bonds themselves. Here, dry is the separation of
interaction sites X on two nucleotides.

0
Vbackbone = VFENE (07backbone > €backbones 07 backbone » Abpackbone) - (2.13)

2.4.2.2 Excluded Volume

In order to prevent the collapse of model DNA into a dense, strongly-interacting
cluster it is necessary to include excluded volume terms (which also prevent the
backbones of two strands crossing during dynamical simulations). Excluded volume
interactions occur between all combinations of backbone and base excluded vol-
ume sites on any two nucleotides (see Fig.2.2). The only exception is for nearest
neighbours, for which the backbone excluded volume sites do not interact (as their
separation is controlled by the backbone FENE spring).
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Backbone—base vector

Base normal

——— 0.74 units

4 0.80 units

I
I
i 6rback—hase
i

Fig. 2.3 Tllustration of the variables used to parameterize the potential. Not shown in this diagram
are the chirality inducing terms cos(¢1), cos(¢2), cos(¢3) and cos(¢4), which are discussed in detail
in Sects. 2.4.2.3 and 2.4.2.6. It is convenient to define each pairwise interaction as if one nucleotide
(coloured red in this picture) is being influenced by the other (coloured black): this allows each angle
to be well-defined when calculating forces and torques. When calculating the energy, of course, the
final result does not depend on the labelling of nucleotides. I define 65, 65 and 67 as being measured
with respect to the orientation of the red nucleotide, and 63, 6 and fg with respect to the orientation
of the other nucleotide

* *
Vexe = f3 (67backbones €excs Tbackbone s 5rbackbone) +f3 (0rbases €exc> Tbase 5rbase))
+ f3(07back—base» €excs Tback—base 5rgack_base)
+ f3(0rbase—back» €excs Tback—bases O pack —base)- (2.14)

’
Vexc = f3 (5rbasev €exc» Obase» 5rl§<ase)
+ f3 (OFback—bases €excs Tback—bases 5rl;kack—base)
*
+ f3 (07pase—back s €excs Tback—base 5rback7base)' (2.15)
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2.4.2.3 Stacking

Bases have a tendency to form coplanar stacks, which drives the formation of helices
in single- and double-stranded DNA due to the difference in length between the
separation of bases along the backbone, and the optimal distance of stacking. The
model reproduces this tendency with a stacking interaction between nearest neigh-
bours on the same strand. The potential contains a radial term on the distance between
stacking sites (rgack ), modulated by angular terms that favour the alignment of base
normals with each other (64) and with the separation between stacking sites (0s, 0 ).
Right-handed helices are imposed through additional modulating factors which
reduce the interaction to zero for increasing amounts of left-handed twist (measured
by the quantities cos(¢1) and cos(¢2)).

0 c,low c,high low high
Vstack =1 (07 stack» Estack» dstack » O gtack» 5rstack ) 6rstack ) 5rstack’ 6rstack)

X f4(O4, Qstack, 4, egtack,éb Ae:tackA)

x fa(0s, Qstack,5> Hgtack,S’ AG;ﬁtack,S) fa(be, Qstack,6> 9?tack,6’ Ae:tackb)
X fs(—cos($1), dstack, 1, — €0S(D1)gack)

X fs(—cos($2), dstack,2, — €OS($2)ack)- (2.16)

When calculating an interaction, it is convenient to arbitrarily label one of the
nucleotides as being influenced by the other, as the angles can then all be defined
with respect to one or other of the nucleotides (see Fig.2.3). This is helpful when
calculating the torques on a nucleotide, as in this situation one must consider the
forces and torques on one of the nucleotides due to the other (and vice versa). If the
labelling is swapped, there is of course no difference in the overall energy, and in most
cases the interaction is symmetric under exchange of nucleotides so the calculation
is also unaffected.

The stacking term is unusual, in that it is not symmetric under the exchange of
the two nucleotides in question. 65 and f¢ are calculated differently depending on
which nucleotide is chosen to be influenced by the other, allowing the interaction to
distinguish between the 3’ and 5’ directions.

o If the labelled nucleotide is in the 5’ direction, 65 = m — 05 and fg = 0.
o If the labelled nucleotide is in the 3’ direction, 65 = 5 and g = ™ — 0.

By defining 65 and 6¢ in this way, it is possible to require that stacking can only
occur when both normals point in the 5" direction. The base normals then define an
axis about which the handedness of twist can be measured, and allow anti-parallel
base-pairing to be enforced.

The chirality of DNA is introduced into the model via the terms cos(¢) and
cos(¢y) in the stacking interaction, which also distinguish between the 3’ and 5’
directions. Assume one of the nucleotides has been chosen to be labelled—the vec-
tor dFpackbone 1S then the normalized vector to this nucleotide from the other one.
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Let y and y by the unit vectors defined by the cross product of the normal and
backbone-base vectors of the labelled and unlabelled nucleotides respectively.

e Labelled nucleotide in the 5’ direction: cos(¢)) = ¥.0Fpackbone, COS(¢) =
5’ -5fbackb0ne-
e Labelled nucleotide in the 3’ direction, cos(¢|) = —Y.0Tpackbone, COS(¢2) =

—5’ . 5f'backbone .

When the stack forms in a right-handed fashion, cos(¢1) and cos(¢,) will be negative
(this result relies on the fact that stacking normals must point in the 3’ to 5’ direction).

2.4.2.4 Hydrogen Bonding

DNA bases can undergo hydrogen bonding with each other, most commonly along
the “Watson—Crick’ faces (the edge of the base furthest from the sugar group), with
the planes of the bases approximately antiparallel. When taken in conjunction with
stacking, the result is the famous B-DNA double helix. The model reproduces base-
pairing through the Vyp term, which incorporates a radial term dependent on the
separation of hydrogen-bonding sites, drgp. This interaction is modulated by terms
that encourage the co-linear alignment of all four backbone and hydrogen-bonding
sites (quantified by the angles 61, 6, and 63). A further factor is included to encourage
the planes of bases to be antiparallel (measured by 64). Finally, terms are included
that penalize pairs in which the separation of bonding sites is far from orthogonal
with the base normals (these angles are 67 and 6g). This final term tends to have only
a small role for correctly formed base pairs, but is important in minimizing hydrogen
bonding between bases that are not opposite each other in the helix.

0 c,low c,high 1 high
Vig = f1(0ruB, €NB, aHB, Oryp, 0Ty » 0Ty~ > OFHR » Oyp )
0 0
X f4(01, ans, 1, eHB,l’ AH:[BJ) f4(02, anp 2, 9HB,2’ AeﬁB,z)
0 0
X f4(03, anB 3. Oyp 3. Abp 3) fa(0a. an.a. Opyp 40 Abyp 4)

X f4(07. aup.7, O 7. Abip 1) f4(0s. anp.s, Op . Abfipg).  (2.17)

2.4.2.5 Cross-Stacking

Vieross_stack represents cross-stacking interactions between a base in a base pair and
nearest-neighbour bases on the opposite strand, providing additional stabilization of
the duplex [10, 11]. Here it is incorporated through a potential which is a function
of the distance between hydrogen-bonding sites rgp, modulated by the alignment of
base normals and backbone-base vectors with the separation vector (the same angles
that appear in the definition of the hydrogen bonding potential) in such a way that
its minimum is approximately consistent with the structure of model duplexes.
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0 ¢,low c,high low high
Veeross_stack = S2(0ruB, keross 5rcrosss 5”01—035 » 0T cross 5rcross’ OFcross

0 *
x f4(01, Across, 15 ecross,lv Aecross,l)

0 * 0 *
X f4(92’ Across,2s across,Z’ A0cross,2) f4(93’ Across,3s across,?)’ Agcross,3)

0 *
X (f4(94, Across,4» ecross,4’ Aecross,ét)
0 *
+ fa(m — 04, Across, 4> 0cross,4’ Aecross,él))
G 62 N
x| fa(07, Aceross, 7> Ycross, 7> cross,7)
0
+ fa(m — 07, dcross, 7 9cross,77 Aa:rossj))
0
X (f4(98, Across,8» ecross,S’ Aezmss,g)

+ fa(m — 03, dcross 8, 98“,55,3, Ae:ross,S)) . (2.18)

2.4.2.6 Coaxial Stacking

The final term, Voax_stack, 18 introduced to capture the tendency of stacking across
nicked backbones to stabilize the binding of oligomers to duplexes with overhanging
single-stranded tails [ 12—17] (coaxial stacking between blunt helix ends is also known
to cause origami structures to associate [18]). The interaction is designed to be very
similar in form to conventional stacking, with minor differences. Firstly, the radial
component of the potential is taken to be of a more truncated, quadratic form—this
was to prevent interactions between two bases which were stacked above and below
their mutual neighbour. Secondly, it is impossible to define a 3’5" axis with two non-
neighbouring bases: hence it was necessary to make the potential symmetric with
respect to the alignment of base normals with their separation (65 and ). Similarly,
without a 3’ to 5’ axis, the modulating terms which impose right-handedness also have
to be designed differently—the new quantities cos(¢3) and cos(¢4) are defined below.
Finally, in the case of nearest-neighbour stacking, the restriction of the backbone link
between nucleotides means that the modulations described in Sect. 2.4.2.3 are enough
to describe the geometry of stacking. For non-neighbour nucleotides, however, it was
found that configurations in which the nucleotides were poorly stacked also gave
significant interactions. To overcome this, an additional modulation in the angle
between the two nucleotides’ backbone—base vectors (81) was also included.
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0 - low ¢,high low high
Vcoax_stack =5 (0stack» k, 5rcoax1 575%,( , 0Tcoax » 5”00“7 OFcoax

0
X fa(04, Acoax 4, 900;1)(,4’ AejoaxA)

X (f4(€ls Acoax, 15 ggoax,h A9;‘(021)(,1)

+ f4(27T — 0y, dcoax, 1, ngax,p Aezoax,l))
X (f4(95, Aeoax,5> 9goax,5’ Aezoaxﬁ)

+ f4(77 — 0s, Acoax,5, egoax,ﬁ’ Agjoax,S))
X (f4(96, Acoax, 6, agoax,@ Aozfoax,ﬁ)

0
+ fa(m — O, Acoax,65 9C0ax,6’ Aejoax,ﬁ))

x f5(cos(¢3), Acoax,3/ » COS(¢3):0aX)
X f5(cos(94), deoax,4'» €OS(P4) Sax)- (2.19)

Chirality is also imposed for the coaxial stacking term. Here there is no natural 3’
to 5’ direction, and so the vector between stacking sites rather than base normals
must be used. I define the vector dFgck to be the normalized vector to the labelled
nucleotide’s stacking site from the other nucleotide, with a similar definition for
OFbackbone- Taking b and b to be the backbone-base vectors for the labelled and
unlabelled nucleotides respectively:

o co8(¢3) = OFstack.(OTpackbone X lj)
o co8(d4) = OFtack-(OTpackbone X b).

In this case, cos(¢3) and cos(¢4) are both positive for a right-handed stack.!

2.4.3 Parameterization

The previous section is summarized in Tables 2.1 and 2.2, where the values of para-
meters of the model are also given. Note that the hydrogen bonding interaction is
taken as non-zero only for complementary base pairs A-T and G—C, but beyond this
there is no sequence dependence in the model. Also note that the factors b and x¢
used in the quadratic smoothing parts of each interaction are not explicitly given.
For each funtion, these quantities are specified by demanding differentiability and

U In fact, after the model was implemented it was found that cos(¢3) = cos(¢4), and so the
modulation could be simply calculated as cos? (93).
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Table 2.1 Parameter values in the model

2 A Novel DNA Model

Interaction Parameters
Vbackbone ~ VFENE (07backbone) ~ €backbone = 2 Abackbone = 0.25 o, }(J)ackbone =0.7525
VHB f1(6ruB) eng = 1.077 app = 8 orig = 0.4
Srig =075 brlow =034 S = 0.70
fa(01) app,1 =1.50 Oy, =0 A, = 0.70
fa(62) app2 =150 Oy, =0 A, = 0.70
fa(03) app3 =150 Oy =0 A 3 = 0.70
fa(0a) app4 =046 Oy, =7 A 4 = 0.70
fa(67) amp7 =4.00  Fp . =7/2 A7 =045
fa(0s) appg =4.00 Oy =m/2 A g =045
Vistack S1(6rstack) €stack = 1.3448  dastack = 6 fsrsomck =04
+2.6568 kT
i =09  brlow —032 st — 0.75
fa(04) asiack.4 = 130 05,4 4, =0 Al s =08
f4(05) astack,5 =0.90 65, s =0 A s = 0.95
f4 () astack.6 = 0.90 0,46 =0 Al = 0.95
Ss(=cos(¢1)) Astack,1 = 2.00 COS(¢1):1aCk = —0.65
f5(=cos(¢2)) astack,2 = 2.00  cos(¢2)f,e = —0.65
Vexe f3(6rbackbone) €exe = 2.00 Obackbone = 0.70 5r{fackb0ne =0.675
+ f3(0rpase) €exe = 2.00 Obase = 0.33 orf e = 0.32
+ f3(6rback—base) €exc = 2.00 Oback—base = 0.515 6rl;kack—base =0.50
+ /3 (6 base—back) €exe = 2.00 Oback—base = 0.515 5r§ack—base = 0.50

In this table, all energies and lengths are in terms of the simulation units £ and /. When more
than one function is listed for an interaction, the total interaction is a product of all the terms.
Given the parameters of the main part of the interaction (for example, €, ro, a and r, for the Viiorse
part of fi(r)), the parameters of the smoothed cutoff regions are uniquely determined by ensuring
continuity and differentiability at the boundaries (7% and rhigh for fi1(r))

continuity at the point where the form of the potential changes. For example, consider
an angular modulation f4(#). To be continuous at 8° &+ AG*, we require:
1 —a(A0")? = b — (0° £ AOY))?, (2.20)

and
2a(A0*) = 2b(0° — (6° £ AGY)). (2.21)

Given a, #° and AG*, b and 6¢ can be extracted by solving Eqs.2.20 and 2.21
simultaneously. An equivalent procedure can be performed for any of the product
functions which constitute a given interaction.

There are many free parameters in this model. This is, however, somewhat decep-
tive. The parameters relating to smoothing the truncation of potentials are generally
of minor importance (at least for the thermodynamics of the system), as the effect of
a potential well is largely determined by its width and depth rather than the details
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Table 2.2 Further model parameters
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Interaction Parameters
Veross_stack  f2(07HB) k=475 18 s = 0.575 5rC.oss = 0.675
Srlow = 0495  SriEh — 0.655
f4(01) Aeross,1 =2.25 00 =7 —235  Af% ;=058
f4(62) deross.2 = 170 69, = 1.00 AGZ o, = 0.68
f4(03) deross,3 = 1.70 egmss ;= 1.00 AGY s 3 = 0.68
f4(94) + fa(m — 04) Across, 4 = 1.50 ecrogs 4= =0 Ae:ross 4= =0.65
fa07) + fa(m —07)  deross =170 09 5 =0.875 AGY s 7 = 0.68
F1(08) + fa(m —03)  across.g = 1.70 ag’ms ¢ =0.875 AGY s = 0.68
Vcoax_stack f2 (6rc0ax) kcoax =46 ‘5 Feoax = =04 oré, Tcoax = =0.6
Srlow =022 Srgh = 0.58
f2O) + fa@m = 01)  deoaxn =200 0%, =7—0.60 A%, , =065
§ACH) deoaxs =130 00 ;=0 A% 4 =038
fa05) + fa(m —05)  deoaxs =0.90 6% <=0 A%y s =095
Sfa(0s) + fa(m — 0Op) dcoax,6 = 0.90 980.“ 6 = 0 Ae:mx 6= =0.95

f5(cos(¢3))
f5(cos(¢4))

Aeoax,3 = 2.00  cos(93)iyx = —0.65
Aeoax.4r = 2.00  cos(P4)lyx = —0.65

of its edge. Furthermore, a number of parameters are essentially dictated by DNA
geometry, and of those that are unconstrained, many are necessarily equal to others
by symmetry. The parameters are also constrained by the requirement that the model
behaves ‘like DNA’. In other words, if stacking and pairwise bonding are to drive
the formation of double helices, rather than just cause collapse, the potentials need
to have fairly narrow widths. Despite these caveats, there are still a large number
of parameters to fit, especially via a top-down approach. This fitting is made more
complex as it involves a compromise between the representation of various aspects of
DNA. In particular, a given parameter may influence a wide range of properties and it
is difficult to design a simple metric to compare the reproduction of thermodynamic
and mechanical DNA behavior. In this case, lengths and potential minima were ini-
tially chosen to give model duplexes approximate B-DNA geometry. The stacking
interaction strength and stiffness were then altered by hand to be consistent with
the experimental thermodynamics reported for 14-base oligomers by Holbrook et al.
[19]. Hydrogen-bonding and cross-stacking potentials were then added, and adjusted
to give duplex and hairpin formation thermodynamics consistent with the SantalLu-
cia parameterization of the nearest-neighbour model [12], which can be viewed
as an accurate empirical fit to experimental data. For comparison with Ref. [12],
I considered an ‘average base pair step’—details are provided in Chap.6—as the
model contains limited sequence dependence. Mechanical properties, such as persis-
tence lengths, were then compared to experiment and interaction stiffnesses adjusted


http://dx.doi.org/10.1007/978-3-642-30517-7_6

34 2 A Novel DNA Model

by hand to provide improved agreement. This process was then iterated until the
current set of parameters was found.”

In general, the interaction energy in a coarse-grained model should be interpreted
as a free energy, as it incorporates a number of implicit degrees of freedom [23],
and thus it is plausible that interaction strengths could be temperature dependent.
To reduce free parameters, I have avoided this temperature dependence except with
regard to the stacking interaction. It was found that it was difficult to generate a
stacking transition with an entropy as small as required (for details, refer to Chap. 6)
whilst maintaining an appropriate stiffness for dSDNA. I therefore took the stacking
strength parameter to be linearly dependent on temperature: over the range 270—
370K, the stacking strength increases by ~6%, in effect reducing the entropy cost
of the transition.

There are several possible causes of this underestimation of the transition width.
A contribution may be that in order to replicate the flexibility of single strands, the
conformation of bases is unrestricted except by excluded volume, certainly a sig-
nificant simplification. For physical DNA, a range of different conformations are
accessible (allowing the large flexibility of unstacked single strands), but the avail-
able fraction of configuration space is restricted by specific steric clashes, which
would be exceedingly difficult to reproduce in a bead-spring model such as mine.
This overestimate of available configurations is the compromise necessary to allow
hairpins and nanostructures to form. An alternative cause may be the lack of stack-
ing heterogeniety. In reality, each pair of bases will stack with a different strength,
resulting in a different stacking probability from other neighbouring bases. When
looking at the average properties of a mixed sequence, however, an observer would
see a combination of a number of transitions which would appear broader than the
individual transitions themselves. This broadening effect is absent in my average
base model. Finally, the stacking interaction itself is thought to rely partially on
hydrophobic effects [24, 25], and hence would be temperature dependent in any
model without explicit water.

2.4.4 Neglected Features of DNA

The model currently neglects some features of DNA. Although it incorporates
sequence specificity (only A-T and G-C hydrogen bonds are possible), there is
no other sequence dependence of interactions. I have made the simplifying assump-
tion that noncomplementary base pairs have zero attraction, and also neglected the
possibility of alternative base-pair geometries (such as Hoogsteen [24]). Due to this
simplification, this version of the model cannot probe many sequence-dependent
effects, such as the preferred sites of bubble formation (internal melting of base
pairs) in DNA.

2 as the coaxial stacking term has an almost negligible effect on the properties discussed above,
it was separately fitted to thermodynamic data on coaxial stacking [12, 1417, 20-22].
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There are no explicit electrostatic interactions in the model, which may be
expected to be important as bare ssDNA has a charge of —e per base associated with
the phosphate groups. For this reason, I fit to experimental data (where possible)
at [Na™] = 500mM, where electrostatic properties are strongly screened. Indeed,
at these ionic concentrations, the Debye screening length is approximately 4.3 A,
smaller than the excluded volume diameter for backbone—backbone interactions in
our model (~6 A). At the shortest distances allowed by the steric interactions, charges
would have an energy of ~2kT in a Debye-Hiickel approximation. Other authors
have attempted to explicitly include a Debye-Hiickel term [7], but also included a
salt-dependent, medium-range attraction between strands in monovalent salt to facil-
itate hybridization, the physical origin of which is unclear. Due to this simplification,
the model is unable to probe low salt regimes, and any result which relies upon DNA
backbones coming into close proximity should be treated with caution.

The model also simplifies the geometry of DNA. Although the pitch, rise and
diameter of helices are approximately consistent with experimental data, the grooves
in between the backbones are of equal size. For physical DNA, by contrast, the major
groove is significantly larger than the minor groove [24]. This is important for protein
binding, and is also likely to have consequences for the strain inherent in certain
origami designs [26].

Finally, it should be noted again that the description of the behaviour of the back-
bone of single-strands is very simplistic. In particular, bases are fully able to rotate
and bend about the backbone bond with no restriction except for steric clashes. Whilst
this seems to give a reasonable description of large-scale single-stranded mechanical
properties (as discussed in Chap.5), one should be wary of any predictions that rely
heavily on one or two nucleotides adopting a particular configuration.

The simplifications in the model were made partly to reduce the number of possi-
ble parameters. For example, sequence dependence would give 16 combinations of
stacking pairs, each pair requiring several parameters to describe their interaction.
It was also felt that, as an initial step in modelling, it was important to obtain a
good physical representation of the underlying properties of DNA assembly (such
as the generic dependence of melting temperature on length), before incorporat-
ing sequence specific or low salt effects. Furthermore, some generic effects may be
obscured by sequence-specific terms (for instance, free-energy profiles such as those
in Chap. 6 would have sequence-dependent fluctuations overlying the general trend).

2.4.5 Additional Parameters Required for Dynamical Simulations

The parameters presented so far specify the thermodynamic properties of the model.
To use explicitly dynamical algorithms, one must introduce masses, moments of
inertia and drag coefficients. For simplicity, [ assume that each nucleotide is a uniform
density sphere centred on the backbone-base axis, 0.24/ from the backbone site (this
assumption is discussed in Sect.3.2). Taking the unit of mass in simulations to be
M = 100 AMU, an average mass of anucleotide is around 3.1575M, and the moment
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of inertia is 0.43512 in simulation units. Using Langevin dynamics to simulate the
modelis discussed further in Chap. 3 and Appendix B, where the damping coefficients
are defined and given values. Note that this definition of M, when combined with
the reduced length and energy scales L and E, defines the reduced unit of time in
simulations T = (E/M/L*)~%> = 1.706 ps.
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Chapter 3
Methods

Due to the number of nucleotides in a typical system of interest, and the complexity
of the interactions between them, it is impossible to find exact analytical expressions
for the behaviour of a general coarse-grained model of DNA. Computer simulations
can provide numerical information in the absence of any exact solutions, and guide
the application of simpler, analytic descriptions.

For an atomistic (classical) model of DNA with explicit solvent, the obvious way
to extract information from the model would be to integrate Newton’s equations of
motion from a variety of initial states. The trajectories generated could then be used
to extract statistical and kinetic properties of the system.

For efficiency of simulation, solvent effects are usually treated implicitly in coarse-
grained models. Thus solvent-mediated interactions must be directly included as
interactions between solute particles. Even if, however, the statistical consequences
of these interactions are perfectly captured by the implicit solvent model, the question
of how to generate dynamical trajectories remains. Simply integrating Newton’s
equations would generate unphysical ballistic motion of solute particles between
collisions, and would also result in simulations at constant total energy (whereas in
reality the solvent acts as a thermal reservoir for the solute).

In this chapter, the two basic algorithms used in this work (Langevin dynamics
and cluster-move Monte Carlo) are discussed. Techniques for enhancing sampling of
thermodynamics (umbrella sampling) and kinetics (forward flux sampling) are also
introduced.

3.1 Monte Carlo Simulation

Technically, Monte Carlo (MC) simulation evades the question of dynamics alto-
gether, and simply randomly generates microstates' with a probability distribution
appropriate to a given ensemble. For example, consider a system in the canonical

' To avoid confusion, I shall take the term microstate to be a given set of positions, orientations,
velocities and angular velocities for the system in question. The configuration is defined by the
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ensemble (i.e., a system at constant volume but in contact with a thermal reser-
voir at temperature 7'). Elementary classical statistical mechanics dictates that the
microstates of a system of N bodies should be occupied with a density:

pa™, pY, @V LYy o exp(=AHEN, p", @V, LY)), 3.1)

wherer?, pN , 2V and LY are the centre of mass position, centre of mass momentum,
angular orientation and angular momentum of N bodies, 5 = 1/kgT and H is the
Hamiltonian of the system [1].

Generally, p" and L" enter the Hamiltonian in the form:

N T
H=Z(%+%(LNQ‘L”) +vah.eY, (3.2)

where 7,7! is the inverse of the 3x 3 moment of inertia tensor. The quadratic terms
in the generalized momenta are trivially integrated over, giving a constant indepen-
dent of r" and QV. As a consequence, the occupation of microstates with a given
configuration (r", Q") is simply given by:

o, QN o exp(—pvaV, QM. (3.3)

Monte Carlo simulation (in the canonical ensemble) generates configurations sam-
pled from this distribution. The role of the solvent as a thermal bath is therefore
directly incorporated—generalizations to alternative ensembles can also be consid-
ered.

3.1.1 Metropolis Monte Carlo

An enduringly simple and elegant Monte Carlo method was developed by Metropolis
et al. in 1953 [2]. In this algorithm, one devises an arbitrary (ergodic) set of trial
moves with which to generate new configurations from existing ones. Typically, these
moves involve translations (and rotations) of single particles. The simulation then
steps stochastically through the states of the system. At each step, a single move is
chosen randomly which converts an initial configuration p into a new configuration v,
and the move is accepted with the probability:

Pacc(p — v) = min{l, exp (=B(E” — EM))}, (34

(Footnote 1 continued)

positions and orientation of entities in the sysem. Finally, I shall use the term state more broadly,
to apply to a set of microstates or configurations which are in some way similar (for instance, the
‘duplex state’ consists of all microstates in which the two strands are bound to each other.
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where E# and E" are the configurational energies in the old and new configurations.
Provided the probability of generating a trial move from state ji, Pgen(pt — v), is
equal to the probability of generating the reverse move when in state v/, Poen (v — 1),
one can easily show that:

Prove (1t — v) _ Pgen (it = V) Pace (1t — v)

— _ v p
Pmove(V — /14) - Pgen(V — M)Pacc(V s ,U/) - exp( ﬁ(E E )) (35)

This condition is known as detailed balance. If it holds for all pairs of states of the
system, then the stationary distribution of the Monte Carlo process (the distribution
that it samples from in the limit of infinite steps) is such that:

p(i) _ Prove (it — V)

— _ v o_ 14
p(W)  Prmove(v = 1) P (—OES = ED). G0

Such a stationary distribution is exactly the one required by Eq. 3.3.

Metropolis MC has been extremely widely used since its invention, and has been
employed to study self-assembly processes [3-5] and even DNA [6]. One of its
major advantages is that it does not involve integration of equations of motion, and
hence there is no issue with convergence or stability if the typical moves are fairly
large (one can even choose unphysical moves). Such large moves mean that systems
simulated using Metropolis MC can be made to equilibrate extremely quickly (in
terms of computer time).

It does, however, have its drawbacks. Firstly, as there are no equations of motion,
one cannot rigorously study the dynamics of processes using Monte Carlo. It has
been argued that Metropolis MC can give a qualitative picture of the ease with which
a system explores its state-space [3—5], but it is difficult to make concrete statements
beyond the fact that isolated particles will undergo diffusive dynamics [7].

One of the particular issues with interpreting a Metropolis MC dynamically is
the tendency to suppress the diffusion of clusters of particles [7], as there is no
opportunity for particles to move cooperatively. For an aggregate to move, each
individual element must separately move in the desired direction. Furthermore, the
vast majority of large moves of monomers will cause a significant increase in energy.
Consequentially, these moves will tend to be rejected by the criterion of Eq.3.4.
The result is that strongly bound clusters, which in reality move in coordination due
to the forces between their constituents, diffuse unreasonably slowly compared to
monomers.

The problem of suppressed cluster motion can become so severe that it hinders
not only dynamical interpretation of Metropolis MC trajectories, but also the ability
of these trajectories to reach states representative of equilibrium [7-9].
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(b) reverse move

e
ij

Fig.3.1 Cluster building in a VMMC simulation step. Particle i is randomly selected and a random
move is chosen (a). Particle j interacts with i in the initial state, and the appropriate pairwise energies
before and after the move are calculated. A partial link is formed between i and j with a probability
given by Eq.3.7. An equivalent procedure is performed in (b) for the reverse move. If a link would
also be formed in this case, a full link is formed and j is added to the cluster. The procedure is
repeated until all particles that interact with particles in the cluster have been tested

3.1.2 Cluster Moves and Virtual Move Monte Carlo

In order to overcome the issue of the suppressed motion of aggregates in Monte Carlo
simulations, a variety of ‘cluster algorithms’ have recently been introduced [7, 9—
11]. In general, these algorithms aim to reproduce cooperative motion by proposing
changes of state that involve several particles moving in unison, in a way that reflects
the interactions within the system.

In particular, the Virtual Move Monte Carlo (VMMC) algorithm of Whitelam
and Geissler [7, 9], illustrated in Fig.3.1, has been extensively used in this work.2
The algorithm requires the random choice of a seed particle and a move (typically
translation or rotation). Links are then attempted with all particles with which the
seed interacts in the initial state, and are formed with the probability:

Pink (i, j) = max (0. 1 = exp(=A(¢[ ' = ). (3.7)

where ez’;t is the pairwise energy between the seed particle i and a neighbor j after

i has been moved but j has not, and ef ‘" s their initial energy. The reverse move,
in which both particles begin in the new state and the seed is moved in the opposite
direction, is then considered. If the linking is also successful in this case, a “full link’
is formed, and the new particle becomes part of the cluster and moves in conjunction
with the seed, preserving their pairwise interaction energy. Otherwise, the link is
termed a ‘partial link” and the new particle is not included in the cluster. Links are
attempted from all particles that are added to the cluster.

Due to the complexity of the cluster building, forwards and reverse moves are
not generated with equal probability. Preserving the detailed balance condition of
Eq.3.5 therefore requires an alternative criterion to that in Eq.3.4:

2 The algorithm used is actually the variant detailed in the appendix of Ref. [9].
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Puce(pt — V|R) = DR — v)min{1, IT}""exp (=B(e; — ' )} (3.8)
In this case, Pycc(pt — V|R) is the probability of accepting a move from state p to
state v, given a realization of links and partial links R. Dy is a factor which is zero
if there are any partial links between a particle in the cluster and a particle outside
it (and unity otherwise). Finally, the product H?’/jo is taken over all pairs of particles
which are non-interacting in state x4 and have positive energy in state v, and vice
versa. €; j and ef ; are simply pairwise energies in the trial configuration and before
the move respectively.

The algorithm and acceptance probability are more opaque than for Metropolis
MC. The net result, however, is that collective moves are possible for aggregates
(or subsections of aggregates) that at least partially reflect the gradients in potential
energy of the system. The outcome, at least for the DNA model introduced in Chap. 2,
is vastly improved sampling when compared to basic Metropolis MC, which more
than compensates for the extra complexity of the algorithm.

The primary distinction between this algorithm, and others such as that suggested
by Troisi and coworkers [11], is that this version considers the energy change due to
the move when building a cluster, rather than simply the strength of interaction in
the initial state. As a consequence, proposed moves are more sensitive to potential
energy gradients than in other algorithms. A drawback is that the cluster-building
process is more complex, and hence each step requires greater computational power.
The relative advantages of these factors remains unclear at the time of writing.

By their very nature, cluster algorithms are most effective when the majority of
the interactions in the system are pairwise, as clusters are built up by considering
pairwise energies. Multi-body potentials can be included, but not within the cluster
building framework, and they simply modify the final acceptance criterion:

Pace(it = v[R) = Dr ()i — v)min {1, (n;’,/j"e(*ﬂ(f?fffﬁf))) e—/’(Er”n—E#”} :
(3.9)

where here Ef, and EY, are the multi-body contributions to the total energy of the
initial and trial-move states. The utility of pairwise interactions in this regard was a
consideration in designing the model, and led to the use of rigid-body nucleotides.

As with Metropolis MC, cluster move algorithms do not technically provide a
dynamical representation of the time evolution of the model system. If the moves
used are ‘local’, involving small displacements and rotations of clusters of particles,
one can interpret the sequence of states visited as a pseudo-dynamical description
of the model. The rates of processes then give some idea of the ease with which the
free-energy landscape of the system is navigated. However, although cluster moves
overcome the Metropolis issue of extremely slowly diffusing clusters, it is not easy
to ensure that clusters of different sizes move at the appropriate relative rates. In
addition, it is an even more challenging task to ensure that internal relaxation and
diffusion of clusters happen at appropriate rates. Furthermore, due to the subtleties
of the move generation and acceptance criteria, it is difficult to compare the rates of
processes in simulations of slightly different systems.
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3.2 Langevin Dynamics

The Langevin formalism is a self-consistent way of incorporating an implicit source
of noise and dissipative forces into deterministic equations of motion [12], such
that the simulation will sample microstates with a weight given by Eq.3.1. For
example, the model presented here can be described in terms of a Hamiltonian
HaN, pV, qV, V), which is a function of the positions, momenta, orientations
(here represented through quaternions—refer to Appendices A and B for details)
and generalized angular momenta of all objects in the system. Such a Hamiltonian
would generate deterministic motion via the equations:

0 0 0 . 0
I; p: H, pi or; H, q; oI, H, i aq H (3.10)

Following the Langevin formalism, as detailed by Davidchack et al. [13], one aug-
ments these equations with damping and noise terms so that>:

. 0 . 0
pi = —EH —p;i +bw;(t), II; = _a_qH —TI'G(q;, II;) + BW;(r). (3.11)

Here v and I' give the strength of linear and rotational damping, and G(q;, II;) is
a four-dimensional vector that couples the rotational momenta. w; () and W; (¢) are
3- and 4-vectors, each component being a gaussian distributed random force with
zero mean and lag-covariance 0(¢). b and B are constants which give the magnitude
of the random forces. In principle, v, I', b and B are matrices, coupling the noise
and friction applied to different degrees of freedom. For simplicity, I have chosen to
assume that all translational modes (and separately all rotational modes) experience
the same strength of noise and damping.

By requiring that the stationary distribution of the Fokker-Planck process that
corresponds to this Langevin equation is given by the Boltzmann distribution, one can
relate the damping and noise terms by fluctuation-dissipation relations, as discussed
in Appendix B:

2 2
7:61, F:ﬁi, and MzL. (3.12)
2m 2M

Here, I is taken as the moment of inertia tensor in the principal axis frame, and
the form of Here v and I" give the strength of linear and rotational damping, and
G(q;, IT;) is given in Appendix B. These equations can be integrated numerically,
using the methods outlined by Davidchack et al. [13]—in this work, I use the
‘Langevin A’ algorithm.

3 Here T consider only additive noise, and can therefore neglect the subtleties of the distinction
between Ito and Stratonovich calculus [12].
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Unlike Monte Carlo, Langevin algorithms are explicitly dynamical, but issues
remain with inferring kinetics from the simulations. Firstly, it is well known that
coarse-graining has the effect of speeding up dynamics by smoothing free-energy
landscapes [14]. Although this may seem undesirable, it is, in a sense, one of the
advantages of coarse graining that allows long time scale processes to be accessed.
Secondly, rare event kinetics are exponentially sensitive to the heights of free-energy
barriers, which are difficult to fit in a coarse-grained model. Perhaps the most impor-
tant problem, however, is the lack of hydrodynamic interactions in coarse-grained
Langevin methods.

Hydrodynamic effects arise because the solvent flow induced by the motion of one
solute particle affects the motion of nearby solute particles [15]. The affect can be
approximately treated within an implicit solvent model, for example by use of Oseen
tensor formalism [15], but such methods are extremely computationally expensive.

A typical consequence of neglecting hydrodynamics is that collective motion is
suppressed. For example, the Rouse model of polymer diffusion (which neglects
hydrodynamic interactions) predicts that the diffusion coefficient scales as 1/N,
where N is the molecular weight of the polymer [15]. By contrast, the Zimm model
(which incorporates an approximate treatment of hydrodynamics) predicts a diffusion
coefficient which scales as the inverse of the radius of gyration [15].

When implementing Langevin dynamics, one has a degree of choice of the form of
the friction and damping terms, although they must always be related by a fluctuation-
dissipation theorem if the equilibrium distribution is to be the correct one. Given
the degree of simplification inherent in the simulation, it seems unlikely that being
precise about the damping terms will prove significantly beneficial. This reasoning
justified the simplifying assumptions about the form of the noise and damping terms,
effectively treating each nucleotide as a sphere for dynamical purposes.

If each nucleotide is taken as a sphere of radius ro = 5 A, mass m = 315.75 AMU
and uniform density, continuum hydrodynamics for an isolated nucleotide would
then give

6
= "0 and T = 8anprd Te(1 ™Y = 10y (3.13)

m

In principle, one could take 1/ = 0.03 in reduced time units (giving v ~ 20ps~!),
which would correspond to a nominal value of = 1.1 x 103 kgm~!s~!, similar
to experimental values for water at around 300 K.

Due to hydrodynamic interactions, however, such a drag coefficient would seri-
ously underestimate the diffusion of large aggregates, which are necessary for the
majority of processes of interest in this work (for example, the association of two
single strands to form a duplex). In particular, it was found that such large drag
coefficients led to prohibitively slow dynamics for large systems, such as the walker
discussed in Chap.8. Given the number of simplifications already present in the
Langevin model of dynamics, it was decided that there was little justification in
maintaining high drag coefficients at the expense of efficient sampling. It was
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therefore decided to set v = 1 and I' = 3 in reduced units, values which main-
tain the diffusive behaviour of the system but accelerate the dynamics.*

Despite the difficulty of directly inferring time scales from Langevin simulations,
there are clear advantages over Monte Carlo for analyzing kinetics. Firstly, there
are qualitatively different methods to generate trial MC moves (for example, the
algorithms discussed in Sect. 1.1.2), with potentially large (and poorly understood)
consequences for the kinetics of simulated processes. Secondly, for a given imple-
mentation of a cluster MC algorithm, it is extremely difficult to compare rates of
processes for similar but distinct simulations. This difficulty arises because the prob-
abilities with which moves are generated and accepted vary in a non-trivial manner
with factors such as system size, temperature and external forces. For example, the
comparison of the rate of binding of a DNA walker’s foot to a track with and without
tension, as presented in Chap. 8, would have been much more problematic with MC
simulations.

By contrast, applying Langevin dynamics to a given model involves significantly
less arbitrary choice (and the choices are of a more quantitative, rather than a quali-
tative nature). Further, the kinetics of different systems can be directly compared, as
the algorithm changes in a more intuitive and well-understood fashion as the para-
meters are changed. Nonetheless, all results should be interpreted with caution. In
particular, due to the absence of hydrodynamic interactions between solute particles,
small scale fluctuations will be excessively fast compared to large scale diffusion.

Given the caveats associated with Langevin dynamics, it is only sensible to
compare relative rates for similar processes. Further, any relative difference that
is observed should only be believed if a physical cause (which is not a peculiar result
of the dynamics) can be identified. One possible consistency check is to compare the
Langevin results with the pseudo-dynamics of VMMC—if the results are similar,
despite the vast differences in algorithms, one can be confident that the result is a
generic one.

In this work I use a time step of 2 = 0.003 units of simulation time (~5 ps). The
accuracy of this time step, and of my implementation of both Langevin Dynamics
and VMMC algorithms in general, is checked in Appendix C.

3.3 Advanced Sampling Techniques

Much of this thesis involves stuying processes that require duplex hybridization
and displacement. Such processes are rare-event dominated, in that they typically
involve transitions between (meta)stable states such as duplexes and dissociated
single strands, via unfavourable intermediate states.

4 Despite this reduction in noise, dynamics are still highly damped. For example, a simulation
of a 10bp duplex at 300K initiated with all 10bp formed but far from an optimal configuration
(with around 70 % of the typical binding energy and no kinetic energy) will reach states typical of
equilibrium in around 10 units of reduced time. For comparison, diffusion over its own length is
around 10-100 times slower for a 10 bp duplex.
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Such processes can require long simulations, and itis particularly difficult to obtain
enough statistics for reliable thermodynamic or kinetic data. As a consequence, a
variety of techniques have been developed to improve the sampling of rare events—
this work utilizes umbrella sampling and forward flux sampling.

3.3.1 Umbrella Sampling

Umbrella sampling, introduced by Torrie and Valleau [16], uses unphysical biasing
of configurations to encourage transitions between (meta)stable states. Firstly, an
order parameter Q(rN , @N), which identifies the extent of reaction, is defined. If
the order parameter Q is well chosen, the free energy F(Q) (defined in terms of the
probability P (Q) that the system is in state Q by F(Q) = —kpT In P(Q)) will have
minima at the metastable states and high values at the unfavourable states that cause
the reaction bottleneck.

Umbrella sampling involves introducing an additional bias w(Q) to the sampling
distribution, so that configurations are sampled according to w ( Q)e e (Q)
is generally chosen to increase the probability of occupying transition states, thereby
increasing the flux between minima.

The thermodynamic average of any function A(r", Q") is given by:

_ [dr¥deV AN, V) e Avateh)
a [drNdQN e-svaNa)

[ drVaoN Aav.oY) w(Q)e AV

(4)

NQN)
w(Q)
JdrNd@N s w(Q) eV e

(3.14)

In order to unbias the results, therefore, one records A/w(Q) and normalizes with
respect to 1/w(Q).

In this work, umbrella sampling is used in conjunction with VMMC. w(Q) is in
effect an additional multi-body interaction which must be considered separately from
the cluster generation, such that the final term in the braces of Eq.3.9 is modified
by w(Q")/w(Q"), with Q" and Q" representing the initial and final values of the
order parameter respectively.

For particularly difficult systems, it can be advantageous to split the simulation
into several ‘windows’, each of which is strongly biased to remain within a certain
range of Q. Equilibration within each window is easier than for the transition as a
whole, and the separate windows can be combined using the WHAM algorithm of
Kumar et al. [17].
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3.3.2 Forward Flux Sampling

Although umbrella sampling is an extremely powerful technique for extracting ther-
modynamic averages, it technically provides no direct information on the pathways
and kinetics of assembly processes. Forward flux sampling is an alternative which
allows one to calculate the flux of systems between two local minima of free energy,
and also sample from the trajectories that link the two minima [18, 19].

Once again, one considers an order parameter Q which measures the extent of
the reaction, such that non-intersecting interfaces, /\gf1 can be drawn between con-
secutive values of Q. Initially, simulations are performed that begin in the lowest
value of Q (which I shall define as Q = —2), and the flux of trajectories crossing
the surface )\(11 (for the first time since leaving Q = —2) is measured.

The total flux of trajectories from Q = —2 to the alternative minima (Q = N) is
then calculated as the flux across )\91 from Q = —2, multiplied by the conditional
probability that these trajectories reach Q = N before returning to to Q = —2.
This probability can be factorized into the product of the probabilities of trajectories
starting from the interface A} ;| reaching the interface )\ZH before returning to
Q=-2.

PON_ X)) =TIV PO A, (3.15)

The simulation then proceeds by randomly loading microstates which correspond
to the crossing of /\(11, and using these as initial points from which to estimate

P()\(1)|)\(11 ). The process is then iterated for successive interfaces, allowing the esti-
mation of flux and the construction of trajectories sampled from the distribution of
transition pathways.
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Chapter 4
Finite Size Effects

If the self-assembly of model DNA systems was easy to simulate, the best way to
study such processes would be to model a large system where a number of the as-
sembled structures can simultaneously form. This direct approach is not generally
feasible, however, as the presence of significant free energy barriers to assembly
makes equilibrium hard to achieve. Equilibration can be driven by rare-event tech-
niques such as umbrella sampling (see Chap. 3), but these techniques are best suited
to simulating a single target structure (I am unaware of any studies where biased
sampling is used to simulate the formation of multiple targets). So if the assembly
of a single structure is simulated, what issues arise with inferring the properties of a
bulk system of the same strands?

Firstly, interactions between assembled structures are neglected. This is often a
good approximation, because the interactions between them are likely to be mainly
associated with excluded volume—any attractions are likely to be weak compared
to the forces associated with the assembly itself—and assembly often occurs at
relatively low concentrations. In addition to neglecting the interactions of assembled
structures, such simulations will not capture states in which aggregates larger than the
target structure have formed. Depending on the details of the system, these aggregates
may constitute metastable states that can be significant in the dynamics.

The second potential source of error is due to neglected fluctuations of the local
concentration of reactants, and this is the topic of this chapter. In particular, I will show
that these finite-size errors in canonical ensemble simulations of dimerization can
be significant, but also how they can be corrected under the assumption that species
behave ideally. I will also examine how the assembly yields converge towards the bulk
values as the system size is increased, enabling the assumptions of the corrections
to be checked. In Appendix D, I discuss larger clusters and simulations in the grand
canonical ensemble.

Although the extrapolation is not a complex procedure, it has been neglected in
the past. In particular, simulations have been performed on DNA duplex formation
[1-4] without applying corrections. An attempt to correct for finite size effects during
duplex formation was made by Prytkova et al. [S], but the method (which is not
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justified in the paper) involves an unclear renormalizaton of temperature and doesn’t
appear to correct for concentration fluctuations.

One should note that specific methods have been developed to calculate the equi-
librium thermodynamics of heterodimer formation in the protein-ligand binding lit-
erature [6]. Such techniques aim to estimate the partition function of bound and
separated molecules directly, and typical methods include calculating a potential of
mean force for a certain pathway between bound and unbound structures, incor-
porating the effects of overall translational degrees of freedom separately. These
techniques are optimized for problems of great computational difficulty and do not
generalize well to multicomponent assembly. Furthermore, they lack the flexibility
and simplicity of the approach analysed here in which nothing need be approximated
or assumed about the nature of bonding, and no pathway need be imposed a priori.

4.1 Dimer Formation in the Canonical Ensemble

4.1.1 Heterodimer Formation

The physical cause of finite size statistical corrections can be seen by considering
heterodimer formation—such a system may correspond to protein binding or DNA
hybridization. Consider a simulation in a periodic cell of volume v, containing one
monomer of type ‘A’ and one of type ‘B’. Assuming a criterion exists for defining a
subset of states as ‘bound’,! a simulation will estimate the relative probability with
which bound (AB) and unbound (A,B) states are observed in such a system:

__ probability(AB) @1

" probability(A, B)’ '
with the fraction of bound pairs given by:

fi=o/(1 4+ D). 4.2)

Naively, one might hope that fj = fuo, the bulk equilibrium bonding fraction at
the same temperature and concentration. Unfortunately, this is not the case, because
although the average concentration of a bulk system is matched, important concen-
tration fluctuations are neglected (as shown in Fig.4.1).

One can apply corrections using simple thermodynamic arguments, if itis assumed
that interactions between all particles that are not in a dimer state are negligible.

! The details of this criterion are not important, except for the fact that bound particles must be
separated by a small distance compared to the simulation volume, and that the correlation of particles
in the unbound state must be small.
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Fig. 4.1 a Shows two different particles in a box of size v. One can imagine doubling the volume
to 2v whilst doubling the number of particles, therefore maintaining the average concentration,
as shown in (b). For the purposes of analysis, the new volume can be split in half with a line as
indicated. All states with one of each of A and B on either side of the line, such as (b), will provide
the same statistics as the original system. Macrostates such as those shown in (c), however, will
have different statistics: for instance, (c).iii necessarily has a binding fraction of zero. (d)—(f) show
an equivalent construction for homodimer formation

Consider a periodic system of volume Dv, with D an integer,” with the same average
concentration as the system with D = 1. I define:

e Zap and Zx p as the partial partition functions of the D = 1 system when confined
to the relevant subset of states. For future convenience, these quantities are defined
using distinguishable statistics, although it does not matter at this stage. Note that
® = ZaB/ZAB-

e N as the total number of particles of type A or B (here N = D).

e N; as the number of molecules of species i (in this case i is A, B or AB).

e g, as the single particle partition function for species i, in the volume Dv, with
the internal degrees of freedom treated using indistinguishable statistics.

e /; as the chemical potential of species i.

The p; are given by a standard result of statistical mechanics:
pi=—kpT-—In{ 3~ )~ kT In (—) , (4.3)

where the approximation becomes an equality in the thermodynamic limit. In this
limit, equilibrium thermodynamics gives > ; vjp; = 0, where v; are the stoichio-
metric coefficients of the species in the reaction, resulting in:

NaB  qaB

= . 4.4)

NANB  qaqB

As each gj scales with the volume of the system:
gaB = DZag, (4.5)

2 In the limit D — oo, the details of boundary conditions should become irrelevant.
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Fig.4.2 aDimeryield forasystem described by atwo-statemodel Z>/Z; 1 = exp(—AE/T+AS),
with AE = —2and AS = —15 inreduced units, with the values chosen for illustrative convenience.
Plotted are the yield for a two-particle system and the bulk values at the same average concentration
for homodimers and heterodimers. b Heterodimer yield as a function of system size D, with average
concentration fixed. The ‘x’ symbols indicate results from simulations of my DNA model that were
capable of forming D DNA duplexes of 5bp, and the ‘+’ are the predictions of Eq. (4.11), with &
chosen to reproduce the D = 1 result. The solid line indicates f,. Simulations were performed in a
periodic cell of length I = 10 x 20°222) [ where L is the reduced length scale of the model defined
in Chap. 2, at a temperature of 303.03 K. At each D, a minimum of 1.5 x 10'! VMMC steps per

strand were performed in total. No statistically significant deviations from the theory presented here
were found

gaqs = D*Za B, (4.6)
which gives (using D = N):
[AB] vZAB eq
= =vd =K L., 4.7
[AIB] ~ Zas AR @D

Note that the quantity Zag/Za p is that which is generally directly estimated in
protein/ligand binding studies [6]; this is then multiplied by a reference concentration
to give the equilibrium constant.

Substituting (4.1), (4.5) and (4.6) into (4.4) yields:

foo
2  _— 4.8
(I = foo)? 9
={1 ! 1 Ly’ 1 4.9
:>foo—(+ﬁ)— (+ﬁ)_' 4.9)

In this case, fo < f1 for all values of @, as is illustrated for a model dimer-forming
system in Fig. 4.2. It is also noticeable that the transition is wider for the bulk system.
The physical causes of these two effects will be discussed at the end of Sect.4.1.3.
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4.1.2 Heterodimer Convergence

It is useful to consider how the bonding fraction converges to the bulk result as the
system size is increased from one cluster to the thermodynamic limit. Consider a
system of volume Dv, and calculate the fraction of dimers ( fp) as a function of @,
again neglecting interactions except dimer formation. Consider the macrostate with b
dimers formed (out of a possible D). The partition functions of individual monomers
and dimers scale with the size of the system (Dv), and the partition function of the
system is the product of the individual partition functions together with combinatorial
factors. Using Z4 p and Z 4 p as defined before, the partition function of a macrostate
with b dimers (using distinguishable statistics) is given by:

Zy(D) =

(DZAB)b(DZZA,B)D_b( D )2, (4.10)

b! (D —b)!

in which the combinatorial factor is obtained from the total number of permutations of
A and B (D!?) divided by the permutations which exchange monomers for monomers
((D — bYH?)) or dimers for dimers (b!). The expression can be divided by D!? to
make the statistics indistinguishable. fp is found in the usual way, using Eq. (4.1) to
simplify:

2
b (3 (ﬁ) B )bz,

2 - D A
> OD(%) ((D b)‘) B 2= DZ)

Plotting fp against D for ® = 1.54 (Fig.4.2b) shows that the bonding fraction
falls from 0.606 to a large D limit of 0.482. It is possible to formally find this limit
by noting that for any value of ®, Z; is sharply peaked about its maximum bmode
for large D. This allows the use of the saddle point approximation, whereby Z; is
taken as Gaussian and therefore foo = bmoge/D by symmetry. Maximizing In Z;
with Stirling’s approximation yields:

fp= 4.11)

dinZ,
db

~ In (%) +21In(D — b) — In(b), (4.12)

P (D - bmode)2

=1 4.13)
Dbmode

Using bmode/D = foos Eqs. (4.13) and (4.8) are identical, as they should be.

The microscopic approach provides a simple mechanism for evaluating the
accuracy of the correction scheme in certain cases. If it is possible to simulate the
simultaneous formation of two or more targets, one can compare the change in dimer
yield to the predictions of the microscopic approach, and then extend to the thermo-
dynamic limit if the agreement is good. This is particularly useful if it is possible



56 4 Finite Size Effects

to consider an example with the relevant model where the self-assembly process is
relatively simple. For example, for my DNA model, all interactions are truncated
within distances much shorter than the typical separation of unbound strands, mak-
ing the assumptions of ideality reasonable. Simulating duplex formation for short
strands of about five bases in length is simple, and simulations forming several targets
can be performed. The results are plotted in Fig.4.2b, showing perfect agreement
with Eq.(4.11). Longer duplexes and complicated branched structures are much
more challenging to simulate, meaning that only single target simulations are feasi-
ble. From the fact that the correction is successful for shorter duplexes, however, one
can be confident that it will apply to longer strands when the concentration of DNA
bases is similar.> Throughout the rest of this work, I will use finite size corrections
as detailed in this chapter to infer bulk binding properties of DNA systems.

4.1.3 Homodimer Formation

It is instructive to consider the differences between homodimer and heterodimer
corrections. For homodimers formed from two particles of type A, the partition
functions of each particle species are given by:

DZ)a
oA = . (4.14)
2
gaga = D*Za A, (4.15)

where the factor of two compensates for the overcounting of indistinguishable states
in Zoa. Proceeding as in Sect.4.1.1:

[2A] vZoA vd eq
W = ZZA’A = 7 = K2A' (4.16)

The bound fraction in the thermodynamic limit follows as:

=1 ! 1 LY 1 4.17
foo—(‘i‘ﬁ)— (+4—)—- (4.17)

The behaviour of the correction is significantly different from that of heterodimers,
as shown in Fig.4.2. In this case, the midpoint of the transition is unchanged, but the

3 Due to the lack of non-specific attractions in my DNA model, it is unlikely that it will form
large clusters unless the sequences are specifically designed for this purpose. This study shows
that, neglecting the possibility of aggregation through base-pairing, the model’s bulk behaviour is
well described by the statistical extrapolation from a small system presented here. Bulk aggregation
of DNA is possible, as discussed in Chap. 1, but in these examples the strands were specifically
designed to form extended base-paired structures, and in other cases it can be neglected.
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width is noticeably larger in bulk than for the two-particle system, i.e. foo > f1 for
f1< %, and foo < f1 for f1 > %

The physical mechanism for the broadening of the transition can be understood
in terms of concentration fluctuations. Figure. 4.1f shows the states of a four-particle
homodimer-forming system which cannot be sampled in a two-particle simulation. Of
these, (f).i shows the smallest fluctuation in concentration, with three of the particles
occupying half the volume and the remainder containing only one. In this case, it is
impossible to have a binding fraction of unity. A binding fraction of zero is also less
likely than in the two-particle case as the three monomers occupying the ‘right’ half
of the system have a higher probability of forming one dimer than the two particles
did in the original system. As a consequence, the fraction of dimers is pushed towards
% as the system grows in size, because larger concentration fluctuations are allowed
which in turn favour the less probable configuration (whether dimer or monomer),
leading to a broader transition in bulk.

The same argument can be applied to heterodimers, but with an important dis-
tinction. In this case, concentrations of individual species A and B can separately
fluctuate. Unlike total concentration fluctuations, fluctuations in the relative concen-
trations of A and B will always reduce the probability of forming dimers, because of
configurations like that in Fig. 4.1c.iv where no dimers can be formed. Consequently
the heterodimer yield is lower in bulk than for a two particle system, as well as having
a broader transition.

4.2 Summary

In this chapter, I have highlighted a necessity to correct equilibrium yields when
extrapolating from small, canonical ensemble simulations of dimerization to bulk
systems. I have provided a methodology to perform this correction and established
a framework to explore it’s accuracy. I have tested the accuracy of the extrapolation
for my model: agreement is essentially perfect, suggesting that, unless sequences
are specifically designed to aggregate, small simulations are sufficient to extract the
bulk thermodynamic properties of my model.

Dimerization in the canonical ensemble is of particular relevance to this thesis,
especially in Chap. 6. In Appendix D, the discussion is extended to larger clusters,
systems in the grand canonical ensemble and systems in which some of the reactants
are localized.
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Chapter 5
Stuctural and Mechanical Properties

of Model DNA

5.1 Basic Structure

The model is specifically designed to allow an approximate representation of
B-DNA in its double-stranded state. The relative sizes of the equilibrium back-
bone separation and ideal stacking distance lead to a pitch of 10.34bp per turn at
296.15K (23°C, approximately room temperature) similar to experimental estimates
of 10-10.5 [1, 2]. The model length scale is chosen so that the average rise per bp
at room temperature is 3.4A [3], which results in a helix with a radius (taken as the
furthest extent of the excluded volume) of 11.5 A, comparable to the experimental
value of 11.5-12A [3, 4].

If strands are to form a double helix, it is not possible to optimize the stacking
interaction, as consecutive stacking sites cannot sit directly above one another. Sin-
gle strands, however, are not constrained in this way and hence form tighter helices,
with a radius approximately 80 % that of a duplex, similar to the 70-80 % observed
for a number of polynucleotide single helices [4]. A pleasing result is that, in order
to alleviate the reduction in stacking, hydrogen-bonded bases in the model undergo
‘propellor twisting” whereby bases in a pair twist in opposite directions in order to
better align their stacking centres with adjacent bases in the same strand. Experi-
mentally, propellor twist is seen to vary from around 5 to 15° in GC rich regions and
from 15 to 25° in sections with large AT content [5]: my model has a slightly larger
average propellor twist of 21.7° at 296.15K.

5.2 Mechanical Properties

It is important that the model captures the tendency of duplex DNA to be very stiff
on the nanoscale, and the fact that ssDNA is comparatively flexible, if the model is
to be used to study nanotechnology. As shown in Fig.5.1, this qualitative tendency
is indeed reasonably well captured.
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(@ (b)

Fig. 5.1 Typical configurations indicating relative flexibility of double-stranded, stacked single-
stranded and unstacked single-stranded DNA. a 202bp double helix at 296.15 K. b Stacked single
strand of 202 bases at 277.15 K. ¢ Unstacked single strand of 160 bases at 296.15K

To make more quantitative statements, it is necessary to define metrics of rigidity.
A commonly used measure of the large-scale properties of a polymer is its persistence
length. A general definition is given, for example, in the textbook by Cantor and
Schimmel [6]:
_ (L.1p)
P )

5.1

with L being the end to end vector of the polymer and ly representing the vector
between the first two monomers. For the case of an infinitely long, semi-flexible
polymer in which the correlations in alignment decay exponentially with separation,
Eq.5.1 is equivalent to the commonly used form:

(ind0) = exp(—n{lo)/Lps). (5.2)

An alternative measure of polymer properties, the Kuhn length, is defined by [7]:
bk = (L?)/(Lmax), (5.3)

and gives the length of monomers for a freely-jointed chain (FJC) [7] with the same

maximum end-to-end length L., and (L?) as the polymer in question. For long
semi-flexible chains bx = 2L but for other models this equivalence may not hold.

5.2.1 Double-Stranded DNA

5.2.1.1 Persistence-Length

The persistence length of dsDNA is generally accepted to be approximately 450-
500nm at moderate to high [Na™], corresponding to around 130-150 base pairs [8,
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9]. I performed four simulations of a duplex of length 202 bp at 296.15 K for 2 x 10°
VMMC steps to extract the persistence length. It was found that base pairs at either
end of single- or double-stranded DNA possess an increased relative flexibility. In
order to obtain persistence length values that are valid for long strands where end
effects are negligible, the behaviour of bases near the end of strands was ignored. The
correlation of the helix axis (defined as the distance between consecutive base-pair

midpoints) at two points was observed to decay exponentially with distance, allowing

an estimate of L?,';p fex through Eq.5.2. Figure 5.2a indicates a model persistence

length of around 123 base pairs, in reasonable agreement with experiment.

5.2.1.2 Torsional and Extensional Moduli

The stiffness of DNA duplexes is also manifested in a resistance to twisting. Torsional
rigidity (in the linear regime) is quantified by an elastic modulus C, which relates
applied torque G to resultant twist A6 of aduplex of length/: C = GI/A6. Estimates
for C have been made using cyclization kinetics and topiosomer distributions for
minicircles [8, 10, 11], luminescence depolarization [12] and from twisting of DNA
under tension [13], giving values in the range 170-440 fJ fm, with the effect of salt
on C currently unclear from the literature [12].

Calculating the response to torsion is non-trivial, as the curvature of the DNA axis
makes the twist between two ends hard to define. An approximate estimate of the
torsional modulus can be obtained by considering the twisting of the central 10 base
pairs of a 20bp duplex, and the central 20 base pairs of a 30bp duplex at 296.15 K.
Such short sections are extremely stiff, minimizing the natural bending fluctuations.
To provide an unambiguous definition of torsion and twist, Monte Carlo moves were
chosen so that the base pairs at the end of the central section remained perpendicular
to the vector between their midpoints, allowing the vector between the midpoints to
define an axis about which torsion could be applied and twist measured.

Simulations were performed in which the torque applied to the end bases was
varied between 8 pN nm, and the resultant twist used to infer C. A separate estimate
was also obtained using the equipartition result for the variance in twist at zero torque:
(AH&WS[) = kT1/C. Further simulations used the equipartition result to estimate C
under a tension of 9pN, to ensure that stretching the duplexes had no effect. All
estimates (for both 10- and 20-bp regions of interest) gave C ~ 450 — 475fJfm,
suggesting that this is a reasonably robust estimate of the torsional stiffness of DNA
duplexes in the model.

A long molecule of dsDNA under low tension responds as an extensible wormlike
chain, with the behaviour initially dominated by the straightening of the chain, before
stretching the base-pair rise itself becomes relevant as the chain extension approaches
the contour length [14, 15]. At higher forces, the duplex undergoes an overstretching
transition and the B-DNA structure breaks down [16]. Early experimental estimates
for the extensional modulus K, obtained from fitting force-extension curves to exten-
sible wormlike chain models, give K in the region of 1050—1250pN at high salt [14,
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Fig. 5.2 a Decay of the correlation of helix axis plotted against base pair separation for duplex
at 296.15K. The solid line is a fit of exponential behaviour. b Tension applied against resultant
extension for the central 100bp of a 110-bp duplex at 296.15 K. The squares are simulation results,
the solid line is a fit of Eq.5.4

15], with smaller values at lower salt. A more recent study, at a monovalent salt
concentration of 50 mM, claims K ~ 1500pN [17].

The model’s extensional modulus K was estimated by applying tension to a 100-
bp region within a 110-bp double helix, and fitting the resultant force-extension curve
to the result of Odijk for extensible wormlike chains [18]:

=1L 1+F kT[1+ th y] 5.4)
x = Lo X 3F ycothy]]), .
where: 12
= FL(Z) (5.5)
YENLkr ) '

in which x is the extension resulting from a force F applied to a duplex of contour
length L and persistence length L ;. Performing an unconstrained three-parameter
fit with the values of Lo, L s and K gave an excellent agreement with the data, as
shown in Fig.5.2b, with K = 2166pN, Lo = 339.6 A and L ,; = 431.0A (126bp).
The value of L is similar to that expected from the rise of a short duplex (exactly
3.4 A per base pair would give Lo = 336.6A), and L ps 1s only slightly larger than the
estimate from the decay of the correlation of the helix axis (123 bp). This agreement
suggests that the extensible wormlike chain model provides a good description of the
model’s properties in this regime, and that the value of K = 2165 pN is a reasonably
robust one for my model.

The model gives C ~ 450 — 4751] fm (slightly larger than the top of the exper-
imental range of 170-440fJfm) and K ~ 2165pN, (around ~1.5 to 2 times as
large as typical experimental estimates). Although large, these values are not suffi-
ciently different from measured values as to invalidate the majority of conclusions
drawn from the model (although certain quantities, such as the critical twist density
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at which plectonemes are extruded, will be affected). It was found to be difficult to
reparameterize the model to reduce these moduli without decreasing the persistence
length, which is already slightly below experimental estimates. I feel that the current
compromise, in which the persistence length is most faithfully reproduced, is a rea-
sonable one as it is easier to imagine that nanostructures and nanodevices would be
more sensitive to bending than torsional or extensional stiffness.

It is worth noting that recent investigations have suggested that DNA initially
overwinds when stretched [19]. The model does not reproduce this anti-intuitive
behaviour, instead slightly untwisting as the stacking distance is extended. It is pos-
sible, therefore, that the model fails to capture the softness of a mode of deformation
that leads to this behaviour—perhaps the sloping of base pairs with respect to the
axis [20]. If this is the case, it is perhaps unsurprising that the estimated moduli are
larger than experimental observations.

5.2.2 Single-Stranded DNA

The mechanical properties of ssDNA are less well established than those of dsDNA.
Furthermore, long single strands of DNA will generally be partially stacked, result-
ing in sections of substantially different flexibility [21, 22]. First, I shall explore
persistence length of ssDNA when stacked.

5.2.2.1 Persistence Length of Stacked Single Strands

Mills et al. [21] have investigated the flexibility of gapped duplexes connected by
poly(dA) (long single stands of DNA in which all the bases are adenine) at 4 °C, when
the bases are largely stacked into single helices. Although the interpretation depends
on the probability of stacking, the intrinsic persistence length of the stacked regions
was estimated to be around 100 A, corresponding to approximately 30 bases. This
value is noticeably larger than expected for unstacked strands (see Sect.5.2.2.2), but
smaller than for duplexes. For comparison, I performed four simulations of single
strands of 202 identical bases at 4 °C for 2 x 10° VMMC steps each (ignoring the
data from the five bases at either end), requiring that all bases maintained a stacking
interaction of > — 0.60 kcal mol~! with their neighbours (doubling this value had no
discernible effect).

Taking the vectors between adjacent stacking sites as the axis of the polymer,
Fig. 5.3 shows that the correlation of these vectors decays exponentially with sepa-
ration and hence that Eq.5.2 can be used to extract the persistence length of stacked
ssDNA. Such a fit gives L;,’S“‘“k /{lop) = 41.6 bases, somewhat larger than the value
reported by Mills et al. [21], but not unreasonable.
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Fig. 5.3 a Decay of the correlation of helix axis plotted against base separation for stacked single
strands at 277.15K (crosses), plotted logarithmically. The line is a fit of an exponential decay. Also
shown (solid line, no symbols) is the decay of the correlation of backbone vectors for an unstacked
single strand at 296.15K. b Kuhn and persistence length inferred from simulations of unstacked
single strands, as a function of the length of ssDNA over which they are measured

5.2.2.2 Persistence Length of Unstacked Single Strands

Poly(dT) is generally assumed to be entirely unstacked at room temperature, and
has little tendency to form secondary structure [1, 21]. As a consequence, it can
be used to test the inherent flexibility of unstacked single strands. Gapped helices
have been used by Mills et al. [21], who inferred a high salt persistence length
of 20-30 A from rotational decay rates, and Rivetti et al. [23], who studied length
distributions with atomic force microscopy, finding ~16A for short sections (<3
bases), growing to around 28 A for longer regions. Fluorescence resonance energy
transfer between donors and acceptors attached to either end of poly(dT) has also
been used to fit polymer models to chain end-to-end distributions, with Murphy et
al. finding a persistence length of around 19.4 A at 500 mM [Nat] [24]. All of these
results suggest persistence lengths on the scale of 2—5 bases.

In general, these results are obtained by first assuming a model of ssDNA (often a
wormlike chain), and measuring a quantity which depends upon the conformational
or dynamical properties of such a chain. The parameters of the model are then fitted
to a theory of the measured quantity which incorporates a polymer model. As such,
the results are likely to be dependent on the choice of model for the polymer, and
the accuracy of the theory used to interpret the data. As a consequence, one should
treat these results with caution, but they do clearly indicate that unstacked ssDNA is
very flexible.

When stacking and hydrogen-bonding interactions are removed from the model
presented in this work, the conformation of ssDNA is exclusively determined by
excluded volume interactions. Steric clashes limit backbone orientation, and this
restriction on nearby nucleotides results in an effective stiffness of single strands.
This description of ssDNA is undoubtedly a simplification, but it has the advantage
of not biasing a particular structure and keeps all interactions as pairwise, which is
ideal for the VMMC algorithm used in simulation.
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To compare the model to experiment, I simulated single strands of one base type
with stacking interactions set to zero to mimic poly(dT) (four simulations each for
a range of strand lengths were performed at 296.15K for 4 x 109 VMMC steps. A
typical configuration is shown in Fig. 5.1c). As the stiffness of ssDNA in my model
results from excluded volume interactions, meaning that interactions between non-
neighbouring nucleotides play a role, it should not be a surprise that the correlation
of backbone vectors does not decay exponentially with separation along the chain,
as shown in Fig.5.3a. It is therefore impossible to use Eq.5.2 to evaluate L. If
Eq.5.1 is used instead in order to compare to experimental results, the persistence
length is observed to rise with the contour length considered (measured regions were
embedded within strands with 30 extra bases at each end to avoid end effects), as
shown in Fig. 5.3b. Similar behaviour is observed for the Kuhn length b, also shown
in Fig. 5.3b. For strands of ~100 bases, the persistence length obtained using Eq. 5.1
is similar to experimentally inferred values (19-30 A), suggesting that the simplified
description used in the model is not unreasonable.

Given that the experimentally inferred persistence lengths are so short, it seems
plausible that non-neighbour interactions (which in physical DNA would include
explicit electrostatic repulsion) may contribute towards single-stranded stiffness in
physical DNA. Such interactions have been observed to dominate at lower salt
concentrations in force-extension experiments (see Sect.5.2.2.3), when electrosta-
tic interactions have a longer range, but they may also have a role at higher salt
concentrations.

5.2.2.3 Force-Extension Properties

A number of groups have considered the stretching of ssDNA. In the work that first
revealed the overstretching of dsDNA, Smith et al. [16] extended A-phage ssDNA
with optical tweezers. At moderately high salt (150 mM [Na*]), the force-extension
curve was well fitted by an extensible FIC model, with a Kuhn length of 15A and
a stretch modulus of each Kuhn segment of 800 pN. At very low salt concentrations
(and with formaldehyde present), the force-extension properties of the molecule were
very similar to the higher salt results above 15 pN, but the DNA was much easier to
extend at lower forces.

Even ignoring the failure of the FJC model to account for the behaviour in the
second case, the use of the FJC in the first case is non-self-consistent. An assumption
of the FJC model is that interactions between different segments can be neglected,
but here the segment length (15 A) is comparable both to the Debye screening length
and the width of the polymer. In other words, if DNA really did want to behave like
an FJC with segment length 15 A, then at low forces it would find that it repeatedly
bumped into itself and actually failed to behave like an FIC at all!

If the FIC model is not valid, one must explain why DNA in moderately high salt
appears so hard to extend at low tension. Several authors have claimed that hairpins
in the single strand, which must be unzipped if the molecule is to be extended, explain
the original result of Smith et al. [16]. In the second case, formaldehyde and long-
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range electrostatic repulsion prevent the formation of hairpins, making ssSDNA easier
to extend. The long range repulsion, a result of low salt concentration, also favours
extended conformations of a hairpin-free strand, making extension even easier.

To test the intrinsic force-extension behaviour of ssDNA, it is therefore necessary
to prevent the formation of hairpins. Dessinges et al. considered stretching DNA in
the presence of denaturants [25], and other authors have used homopolymers which
are unlikely to form secondary structure [22, 26-28]. Both approaches, however, have
their drawbacks: denaturants may have additional consequences beyond destabilizing
the duplex, and homopolymers may behave in a manner which is not typical of a less
ordered sequence.

Homopolymer stretching has revealed some non-trivial behaviour. When stretch-
ing sSRNA (poly(A) and poly(C)), Seol et al. observed plateaus in the force-extension
curve that were not seen for poly(U) [22, 26]. The authors were able to fit the curves
using a statistical model in which the RNA was treated as a string of rigid, helically
stacked sections and flexible, unstacked bases. Mishra et al. stretched homopolymeric
ssDNA with an atomic force microscope, and found evidence of another plateau at
higher forces (~110pN) for poly(dA) that was absent for poly(dT) [27]. The exis-
tence of this plateau was confirmed by Chen et al., who showed that it was associated
with considerable hysteresis [28].

Testing the force-extension properties of model ssDNA is not difficult with the
model—I simulated strands of 400 identical bases under constant tension, and
extracted the average extension of the central 360 bases. Simulations were performed
for 10'° VMMC steps and systems both with and without stacking interactions were
considered. The results are plotted in Fig. 5.4a, along with a number of experimental
curves.

From Fig.5.4a it is clear that the behaviour of model DNA is qualitatively rea-
sonable. It is difficult, however, to draw too many quantitative conclusions, as direct
comparison to all curves is problematic. In particular, the curves of Seol et al. were
obtained at the salt concentration appropriate to my model, but homopolymeric RNA
may not give a good representation of generic DNA. Furthermore, the strand lengths
in the experiment were unknown and only derived from fitting models to the data.
The curve of Dessinges et al. was obtained in the presence of denaturants and at
low salt, and hence the fact that ssDNA is far more extensible (particularly at low
tension) is not surprising. The result of Smith et al., as discussed above, shows the
effect of hairpin formation (hence the resistance to extension at low force — the force
at 0.1 nm/base is well above other curves ). Above ~10 pN, however, hairpins should
be of limited relevance and hence comparison may be worthwhile (although the salt
concentration of 150 mM sodium is lower than that used to fit the model).

5.2.2.4 The Effect of Stacking

Seol et al. attributed plateaus in the force-extension curves of RNA to stacking in
single strands [22]. They modelled ssSRNA as a non-self-avoiding chain consisting
of bases that could be stacked or random coil-like. Stacked regions had a shorter
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Fig. 5.4 a Force-extension curves for model ssDNA compared to experiments. Solid curves repre-
sent simulations of model DNA: green for the normal parameterization, and blue without stacking.
Dashed curves are inferred from the fits of Seol et al. [22]: magenta for poly(C) and cyan for
poly(A). Black “+" are points from the force-extension curve of single-stranded A-DNA in 150 mM
[Na™], from Smith et al. [16]. Red “x" are points from the force-extension curve of charmoid DNA
in low salt conditions and in the presence of denaturatants, as measured by Dessinges et al. [25]. b
Derivative of force-extension curve for model DNA when stacking is possible, calculated by differ-
entiating a cubic spline fitted to the force-extension data. Note the plateau around at an extension
of ~0.35nm per base

monomer length than unstacked sections, but a significantly larger persistence length.
The assumptions of the statistical model used to fit the curves, at first sight, seems to
apply fairly well to my system, and so it is worth considering my model in this light.
The first thing to note is that model strands are significantly easier to extend (above
10 pN) if stacking interactions are removed (Fig. 5.4a). This is indeed a result of the
need to break stacking interactions in order to align more backbone vectors with
the force. Furthermore, although it is not easy to see in Fig.5.4a, there is a plateau-
like feature in the force-extension curve which is evident if the gradient is plotted
(Fig.5.4b). This feature becomes more obvious if the stacking strength is increased.
An obvious question is why my model shows a weaker plateau-like feature than
the curves of Seol et al., given that if anything the stacking interaction in my model
is stronger than that used to fit the curves. The answer is that, in the model of Seol
et al., the separation of stacked bases is assumed to lie along the helix axis, which
tends to align with the force. This is a reasonable assumption for long helices, but for
shorter sections with only a few bases, stacked regions will tend to rotate to align the
longer vector between exterior sugars with the force. In my model, at high tension,
single strands typically break up into a series of stacked pairs, which are capable of
aligning their backbones with the applied force. By contrast, in the model of Seol
et al., the number of stacked bases tends to zero at high tension and this is why a
relatively weak stacking interaction is able to provide such a strong signal.
Although my model’s description of the backbone is simplistic, it is hard to see
why the general principle that stacked bases can align their backbone separation,
rather than their helix axis, with the applied force should be invalid. My model
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therefore suggests that the stacking parameters obtained from fitting the statistical
model of Seol et al. to their data should be treated with some caution, although it
supports the general principle that plateaus in force-extension curves can arise from
the unstacking of helices.

5.3 Summary

Overall, the model gives a reasonably physical representation of the mechanical
properties of DNA. Care must be used in systems when the specific values of moduli
(rather than their order of magnitude) are of importance—for instance, the critical
value of torque at which plectoneme extrusion occurs will be sensitive to the exact
value of the torsional modulus. The model does, however, capture the tendency of
dsDNA to be essentially rigid on the nanoscale, whilst single strands are extremely
flexible—properties essential for much of DNA nanotechnology.
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Chapter 6
Thermodynamic Properties of Model DNA

6.1 Single-Stranded Stacking Transition

The attractive stacking interaction between adjacent bases causes single strands to
form helical stacks at low temperature, with this order being disrupted as the temper-
ature increases [1]. The literature is divided on both the nature of the attraction and
the thermodynamics of the transition. The relative contributions of van der Waals,
induced dipole, hydrophobic and permanent polar/electrostatic interactions remain
unclear [2]. There has also been much debate on the cooperativity with which bases
stack. Vesnaver and Bresslauer claim that a 13-base strand undergoes a completely
cooperative transition between helical and random coil [3], whereas other authors
have inferred essentially uncooperative transitions for the individual stacks in poly(C)
and poly(A) [4-8]. Other groups claim weak to moderate cooperativity, with stack-
ing probability affected by nearby base stacking [9—11]. It is clear, however, that
stacking has a large influence on the thermodynamics of double helix formation, as
the magnitude of the enthalpy and entropy changes of hybridization increase as the
single-stranded state becomes more disordered [3, 10, 12, 13]. A limited number of
short atomistic simulations of ssDNA have been performed [14—18]: all observe that
the strands tend to adopt partially-stacked configurations, but there is insufficient
data to draw firm conclusions about the thermodynamics of the process.

Given the uncertain nature of stacking behaviour it is difficult to constrain the
model in this regard. To introduce a large degree of cooperativity would, however,
require adding internal degrees of freedom to the nucleotide or including next-
nearest-neighbour interactions. For simplicity, therefore, I compare the model to
reported uncooperative stacking. The study of Holbrook et al. [12] is most appro-
priate, as it deals with heterogeneous strands rather than homopolymers, and hence
might be expected to provide a reasonable estimate of the average stacking strength.

To characterize the stacking properties of my model, I simulated oligonucleotides
consisting of identical nucleotides (preventing the possibility of hydrogen bonding),
and recorded the distribution of the number of neighbours with a stacking interaction
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stronger than a cutoff value! as a function of temperature and oligonucleotide length.
For each strand length (5-9 and 14 bases), four simulations were performed at 7 =
333K for 4 x 10° VMMC simulation steps each, and I extrapolated the results to other
temperatures using single histogram reweighting. For a 14-base nucleotide, around
50 % of neighbours were found to be stacked at 338 K, with the transition being so
broad that around 30 % of neighbours remained stacked at 373K, and 70 % were
stacked at around 306 K. Typical stacked and unstacked configurations are shown in
Fig.6.1.

6.1.1 A Statistical Model of Stacking

It is instructive to characterize the thermodynamics of stacking using a simpler,
statistical model, as it highlights the causes of certain behaviour. I model the stacking
transition using a statistical description based on that of Poland and Scheraga [19].
In this model, a given pair of neighbours can be either stacked or unstacked, and the
list of stacked pairs specifies the system configuration.

If each stacking pair were independent and identical, the contribution to the par-
tition function from a configuration (its relative probability of occurring) would be
given by:

Zeontig = zou v™i 6.1)

where u and v represent the contributions to the partition function (statistical weight)
of a stacked and an unstacked pair respectively, N; and N; are the number of stacked
an unstacked pairs and zo denotes the trivial contribution from translation and orien-
tation of the whole strand. To generalize to the case of non-independent neighbouring
pairs, I introduce two new parameters. The statistical weight of a continuous section
of n stacked pairs is now given by:

un) =ou"w*, (6.2)

with x being equal to the number of bases in the run of stacked pairs that lie at the
end of the strand. n unstacked pairs contribute the same statistical weight as before:

v(n) =v". (6.3)
If 0 and w are unity, each neighbour pair is independent, and Eq. 6.1 is recovered. o

takes the role of a cooperativity parameter: for 0 < o < 1, stacking is cooperative,
in that configurations with multiple separate regions of stacking are disfavoured, and

! Bases were counted as stacked if their stacking interaction was less than —0.1 reduced units,
or approximately —0.60 kcalmol~! (relative to a typical stacked interaction of —6 kcalmol™!).
Adjusting the cutoff to —1.2 kcalmol~! had a negligible effect.
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Fig. 6.1 (a) and (b): two possible configurations of a 9-base strand at 333 K. a All neighbours
stacked to form a right-handed helix. b Most neighbours unstacked, giving a flexible, disordered
strand. ¢ Frequency of total number of stacked bases in a 14-base single strand at 300K from
simulations of my model, and as predicted by the simpler statistical model with parameters as given
in Eq.6.8

for o > 1 stacking is anticooperative. w accounts for end effects: for 0 < w < 1,
end bases are less likely to stack: for w > 1 the opposite is true.
Using these definitions, the total partition function for a strand of length / becomes:

= > zw Hau va, (6.4)

{ni, mi; 1}

Here, {n;, r;; [} specifies a configuration, n; being the number of stacked pairs in the
ith contiguous sequence of stacked neighbours, m ; being the number of unstacked
pairs in the mth sequence of unstacked bases and x = >, x; is the total number of
bases at the end of the strand involved in stacking.

Defining r = u/v,n = ) ; n; and letting p be the total number of stacked regions:

=2z Z w o Pt". (6.5)

{nimj;l}

with Z}' = z¢ v/~! being the partition function of a completely unstacked strand. To
compare directly with simulations, the ratio of the probability of observing r stacked
pairs to the probability of observing a completely unstacked strand is required:

Zl(r) = > woli' =1 Zw Zam{x,pl}, (6.6)

{n=r;l}

with Q(y ,, p.7y defined as the number of distinct configurations of length / with r
stacked pairs, of which x are at the end of the strand, divided between p contiguous
regions of stacking. The advantage of this representation is that finding Qi ,, .7} is
simply a matter of combinatorics.
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Qqx,r, p;1y 18 given by the number of ways to split  stacked pairs into p sections,
multiplied by the number of ways to split / — r — 1 unstacked pairs into p + x — 1
sections, with an additional factor of two for x = 1 as the order of stacked and
unstacked regions can be swapped. This is equivalent to the number of ways of
selecting p — 1 objects from a set of r — 1 objects (without replacement), multiplied
by the number of ways to select p + x — 2 objects from a set of size [ — r — 2. This
is because there are r — 1 possible ways to divide the stacked pairs into non-empty
sets, and we must do this division p — 1 times. Thus:

A +61)0r =D —r—=2)!
r—plp— DI —r—2—p+0)l(p—n)"

Qixrpil) = 6.7)

for all possible values of x, r and p for a strand of length /, with the exception that
240,0,0;4 = QL2 1-1,1y = 1.

I assume that the temperature dependence of stacking is manifested in the para-
meter 7, which is defined as t = exp(—Ah*"/RT + As*'/R), with Ah*" and As®’
representing the (assumed constant) enthalpy and entropy changes associated with
stack formation.? I take w and o to be entropic (this will be justified later) and hence
temperature independent.

The four parameter model detailed above can be fitted to simulation data, yielding:

AR’" = —5.47 kcal mol !,
AsS! = —15.77 calmol 1 K1,
o = 0.755,

w = 0.789.

(6.8)

As o and w are close to unity, the model shows only weak cooperative and end
effects. The entropy and enthalpy parameters are similar to those found by Holbrook
et al. [12], to which the model’s stacking behaviour was compared during fitting.
The authors estimated A#*' = —5.7 and —5.3kcalmol~! and As*’ = —16.0 and
—15.0calmol~! K~! for two different strands at [NaT]= 120 mM. Similar results at
[Na™] = 50mM suggest weak salt dependence in this regime [12].

Simulations performed in which the repulsive steric interactions were set to zero
gave a slightly higher As®’ and values of o and w consistent with unity. Thus I
conclude that the small cooperative effects in the model result from excluded volume.
To understand the cause of the cooperativity, consider a chain of bases A, B, and
C, and without loss of generality, consider B fixed whilst A and C move relative to
it. Due to the requirement that base normals must point in the 3’ to 5’ direction to
stack, the regions of space in which A and C stack with B do not overlap. Therefore,
if A and B are stacked, the excluded volume that A represents to C only prevents

2 Simulations are performed in the canonical ensemble, and hence should be described in terms of
energy and entropy changes. I assume that, as dilute DNA strands contribute a very small partial
pressure, discrepancies between constant volume and constant pressure results are small: we there-
fore use the term ‘enthalpy’ to describe what are in fact energies in the model, for consistency with
experimental literature.
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C adopting conformations in which it is unstacked. By contrast, if A and B are
unstacked, the excluded volume of A can prevent C adopting both stacked and
unstacked configurations. As a consequence, C has a slightly higher tendency to
stack if A and B are stacked, resulting in positive cooperativity. Similarly, end bases
experience more freedom due to the reduction in excluded volume, and are therefore
less likely to stack.

The statistical model is very successful. Figure 6.1 compares its predictions to the
results for a strand length (14 bases) and temperature (300 K) that are well outside
the ranges with which it was fitted.

6.2 Duplex Formation

Hydrogen bonding between bases can lead to the formation of bound pairs of DNA
strands, which adopt the canonical B-helix structure over a wide range of conditions
due to stacking interactions. In contrast to the stacking transition, there is areasonable
consensus in the experimental literature on the melting temperature (75, ) of duplexes.

The model was fitted to the two-state model and parameters of Ref. [20], which
is known to give a very good prediction of experimental 7,,. Note that the model
is not limited to two-state thermodynamics, as will be shown in Sect.6.2.2. Rather,
I am using Ref. [20] as a useful quantification of experimental results for melt-
ing. As my model contains no differentiation between A-T and G-C base pairs,
I compare the results to strands consisting of ‘average bases’, the parameters for
which, AhSStzp = —8.2375kcalmol~! and Asgfp = —20.019calmol~! K~ are
obtained from averaging over all possible complementary base-pair steps in Ref.
[20]. T also use the average terminal corrections Ahg"lf’" = 1.1kcalmol~! and
Asg"L’m = 3.45calmol~ ! K—!, the initiation parameters Ahg"Li’ = 0.2 kcal mol ™!
and Asi" = —5.7calmol~! K~! and an additional salt correction of As{¢/" =
—0.12754 calmol~'K~! per phosphate for [Na®] = 500 mM, again taken from Ref.
[20].2

To explore the model’s representation of duplex hybridization, I simulated pairs
of complementary oligonucleotides for a range of strand lengths between 5 and 20
bases. For each system, four simulations of 4 x 10'© VMMLC steps were performed
in periodic cells with a length of 20 simulation units,* corresponding to a concentra-
tion of 3.36 x 10~*M. Umbrella sampling, using the number of base pairs with a

3 Averaging over the parameters of Ref. [20] gives an extremely convenient metric for comparison.
An alternative approach (at least for the purposes of comparing 7},,) would be to average over the 7,
of all possible sequences. This second method gives results which are approximately 0.5 K lower
for a 5bp duplex and quickly converges on the first as duplex size increases.

4 Simulations of duplexes with more than 12 bp necessitated using a larger periodic cell, and
hence a lower concentration. The fraction of bound duplexes was scaled to the higher concentration
assuming the separate species are approximately ideal, as justified in Chap.4. Extrapolation to a
range of temperatures was performed using single histogram re-weighting: the accuracy of such a
method was checked for 8 bp duplexes, and no significant systematic errors were found.
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Fig. 6.2 a T, of duplexes as a function of strand length, with both strands having a total concen-
tration of 3.3 x 10™*M, as given by my model (crosses connected by a solid line) and averaged
parameters from Ref. [20] (squares connected by a dashed line). b Fraction of 10-base strands bound
in duplexes at a concentration of 3.36 x 10~*M as a function of temperature, from my model (solid
line) and using the parameters of Ref. [20] (dashed line). The typical range of the estimates of 7},
from the four simulations at each duplex length is <1K, so errors are minimal on this scale

hydrogen-bonding energy below —0.1 units (—0.60 kcal mol~!) as an order parame-
ter, was used to ensure good sampling. This cutoff is a factor of 7 lower than typical
energies, and doubling it had no significant effect on the results. 7;,, was taken as the
temperature at which half of the strands would be bound in a bulk solution.

The variation in melting temperature with duplex length is shown in Fig.6.2a,
where it is compared to the predictions of the model of Ref. [20]. The agreement in
the dependence of T, on length is extremely good: this dependence is essentially a
measure of the cooperativity of the duplex forming transition, which is most strongly
influenced by the relative contributions of hydrogen-bonding and stacking/cross-
stacking to duplex stability.

The polynucleotide melting temperature (the melting temperature for infinitely
long strands) at S00mM [Na™] for a strand of 50 % C—G content, is predicted by
the empirical relations given by Blake and Delcourt [21] and Frank-Kamenetskii
[22] as 372.5 and 369.0K respectively. A crude estimate for my model can be made
by simulating a pair of long, complementary strands in a partially bound state, and
finding the temperature at which the free-energy change of adding an additional base
pair to a partially formed duplex is zero. Simulations of partially formed 100bp
strands (with the duplex/single-stranded DNA interface at a variety of points) gave
values of 7 in the range 363.7 to 366.8 K, around 6 K below the empirical relations.
The model’s estimate, however, is very rough (as it neglects the stabilizing effect of
bubbles and the destabilizing effect of intrastrand hairpins).

Figure 6.2b compares the 10-bp duplex yield as a function of temperature for our
model with the predictions of Ref. [20]. The widths of the transitions are consistent
to within a few degrees Kelvin, with my model consistently producing a marginally
sharper transition for all duplex lengths. The width of the transition determines the
response of the system to changes in concentration. Consider, for example, a simple
two-state model of DNA hybridization, as used in Ref. [20] and expressed in Eq. 1.1.
Assuming equal total concentrations of each strand ([Ag]), the width of the transition
scales approximately as:
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ksT?
AT ~ 2Bom (6.9)
AH
and the change in T}, with concentration is given by:
dr, kgT? AT
m Bim_ (6.10)

d[Ao] ~  [AoJAH  [Agl’

and hence agreement in both 7}, and the transition width at a given concentration
imply agreement in 7, over a range of concentrations.

6.2.1 Free Energy Profile of Duplex Formation and Fraying

The free energy of duplex formation of a 15-bp duplex is plotted in Fig.6.3 as a
function of the number of base pairs (the order parameter of umbrella sampling). To
avoid complicating features in the free-energy profile due to hairpins and misbonds,
which can conceal the underlying trends at low numbers of bonds, only base pairs
that are present in the desired duplex were given a non-zero strength of hydrogen
bonding in this simulation. The general form of the free-energy profile is qualitatively
similar to that found for another coarse-grained model of DNA [23], with an initial
entropy penalty for the formation of the first base pair, followed by a downhill slope
as the duplex ‘zips up’ in a cooperative fashion. As can be seen, the formation of
the final base pair is actually free-energetically unfavourable, and the typical state
consists of a duplex with ‘frayed’ ends. This fraying arises because bases at the end
of the duplex lack the stabilizing influence of neighbouring base pairs on either side
and entropy favours the open state.

Although fraying is a widely accepted phenomenon [24], experimental data is
rather sparse, though it is established that weaker AT ends fray more easily than CG
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capped helices [25]. Nonin et al. inferred fraying probabilities of terminal AT bps of
around 0.375 and 0.7 at 273 and 298K respectively, and found 0.015 and 0.12 for
GC pairs at the same temperatures (at moderate salt concentrations) [25]. Patel et al.
found much higher melting temperatures for terminal base AT pairs, concluding that
they were around 50 % frayed at 313K at high salt concentration [26]. My model
shows approximately 10 % fraying at 273 K, increasing to around 20 % at 300K and
reaching 50 % at approximately 337 K, reasonable values for ‘average’ base pairs. It
is worth noting that fraying probability for actual DNA will not only depend on the
identity of the final base pair, but also its neighbour due to the sequence dependence
of stacking interactions, an additional sequence-dependent effect that will not be
reproduced by my model. Note that in many cases, particularly at low temperature,
end bps in my model break but remain stacked, adopting conformations to maximize
stacking at the expense of hydrogen bonding.

6.2.2 A Statistical Model of Duplex Formation

I attempted to fit the duplex yield as a function of temperature, for each strand length
[, using a two-state model of the form in Eq. 1.1.

[A;B] _ U@
[A/1[Bi] z?

=exp (= B(AH — TAS)), 6.11)

where [A;] is the concentration of strand A of length / and [B;] and [A; B;] are the
concentrations of its complementary strand and the bound pair. v is the volume sim-
ulated, Z;; and Z; are the statistical weights (contributions to the partition function)
of the duplexes and single-stranded states to a simulation and AH; and AS; the
(assumed T -independent) enthalpy and entropy of the transition. It was found, how-
ever, to be an unsatisfying fit to the melting curves, and further attempts to fit A H;
and AS; as a linear function in / (by analogy with the nearest-neighbour model),
were unsuccessful. The failure of a simple two-state model should not come as a
surprise, however, as several authors have indicated that the entropy and enthalpy of
duplex formation show temperature dependence due to the single-stranded stacking
transition [3, 10, 12, 13].

Two-state descriptions typically fail when the macrostates that constitute the reac-
tants and products show significant temperature dependence. In the rest of this
section, I attempt to factor out the temperature dependence of reactant and prod-
uct macrostates, thereby producing a multi-state statistical model that highlights the
cause of the full model’s description of duplex thermodynamics.

It is possible to devise a statistical model of duplex formation that takes the
stacking transition into account. In particular, one can use the results of Sect.6.1.1
to factor out the temperature dependence of the unbound state.
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MBI zy P (- B(aH - TAS))Z)?
(A~ 22" z

, (6.12)

where in this case A H; and AS] are the enthalpy and entropy difference between the
duplex and unstacked single-stranded macrostates. It might be expected that, having
factored out the temperature dependence of the single-stranded state, A H/ and AS]
should be temperature independent. Unfortunately, although fitting to Eq. 6.12 with
constant AHZ’ and ASI’ was more successful than assuming constant A H; and A Sy,
it overcorrected for the variations in AS; and A H; with temperature. This failure
arises primarily from neglecting the dependence of the bound state on temperature,
which has two main contributions:

e As temperature increases, increased fraying leads to smaller entropy and enthalpy
differences between typical bound states and completely unstacked single strands,
as bound states become more disordered.

e Frayed ends themselves undergo a stacking transition, once more resulting in the
entropy and enthalpy of bound states relative to unstacked strands becoming less
negative with temperature.

To incorporate these effects within a statistical model, I split the duplex macrostate
into states with y out of / possible base pairs formed. Stacking of the frayed ends
is treated by viewing the 2(I — y) unpaired bases as undergoing stacking with the
same AR*" and As®? given in Sect.6.1.1. Cooperativity and end effects are ignored
for these bases as it would be difficult to include them consistently when stacking is
initiated adjacent to a duplex region.

Therefore, defining Z;; (y) as the statistical weight of a duplex state with y out of
[ base pairs:

2(l—y)
2= zun=>3 z,“,(y)(1 +exp (— B(ART — TAS”))) Y (6.13)
y y

Here Zj; (y) is the statistical weight of a duplex state with y out of / base pairs formed,
and the other bases unstacked.

The hypothesis of the multi-state model is that the temperature dependence of the
macrostates measured by Z;;(y) and Z; should be minimal, and hence that:

Z;5(y)
v
(Z}")?

— exp ( — B(AH (y) — TAS,O(y))), (6.14)

with constant A H, ZO (y) and ASIO (y), which represent the enthalpy and entropy dif-
ferences between unstacked single strands and the states contributing to Z;;(y).

It is possible to extract the probability of forming / base pairs in a simulation of
duplex formation, and the stacking parameters can be taken from Sect.6.1.1. Hence
AH)(y) and AS?(y) can be fitted via:
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Fig. 64 a AHIO (y) against duplex length /. Points are styled according to the total number of
bonds formed, b = [ — y. The solid lines are linear fits for the dependence of AHIO( y) on [ for
fixed y. b Variation with 7' of enthalpies associated with the formation of a 15-bp duplex. The black
curve represents simulation results, other curves the predictions of the statistical model outlined
in the text. The lines labeled A Hiransition give the enthalpy change upon duplex formation for the
simulations and the statistical model. The lines labeled Hgs and Hyg are the enthalpies of the duplex
and single strands relative to a completely unstacked state. The transition enthalpy in the statistical
model is the difference between the latter two curves

(AH(y) = TAS) () /kpT = —1n (v (Zg;fig)

_ vl (y)(Z)/Z})> (6.15)
a (I+exp(—B(ARS —T Ass1))) 0 )

where @;(y) is the relative probability (extracted from simulation) of being in a state
with y base pairs compared to the probability of having zero base pairs. Temperature
independent AHIO(y) and ASlO (y) fit the data extremely well, indicating that the
statistical model successfully captures the temperature dependence of the bound and
unbound states.

Furthermore, as shown in Fig.6.4, AHIO(y) (and ASlO(y), which is not shown)
are linear in [ for fixed y to an excellent approximation. Thus, having factored out
sources of variation with temperature in the initial and final states, I obtain a result
similar to the initial hypothesis of the nearest-neighbour model: adding an extra bp
to a helix (i.e., increasing the length of the strands by one base, and forming one extra
base pair, so that the number of unpaired bases is constant) contributes a constant
enthalpy and entropy change relative to unstructured single strands.

The argument above suggests an extension of the nearest-neighbour model to non-
two-state behaviour to incorporate fraying and stacking, and thus predict the values
of AS(T) and AH (T) for oligonucleotides. Such a model, however, would require
extensive parameterization (particularly when sequence dependence is considered),
and may be impractical at the current time.
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6.2.2.1 Interpreting Duplex Thermodynamics

Using the model described in the previous section, it is possible to describe the
hybridization transition using completely temperature independent parameters. Com-
bining Eqgs. 6.6,6.11,6.13, and 6.14:

Zy
72

Keg =exp (= B(AH —TAS))) =v
1

2-y)
>, exp ( — B(AH(y) — TASlO(y))) (1 +exp (— B(ARS — TAs”))) ’
B >, exp (= BART = TAs)) YT w' ¥, 0P Qs rpu

)

(6.16)

where K, is the equilibrium constant of the reaction.
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The enthalpy changes at 7}, for the model are slightly larger than predicted by Ref.

[20], which is to be expected as the transitions are slightly narrower. The discrepancy

rises from about 6 % for 5bp duplexes to around 22 % for 20 bp double strands. The

behaviour of AS is similar.

To investigate the details of the temperature dependence of enthalpy changes in
duplex formation, I simulated the formation of a 15bp duplex over a wide range of
temperatures (to avoid complications due to misbonds and hairpins, only ‘correct’
pairs were given an attractive hydrogen bonding interaction), with the data shown
in Fig.6.4b. I find that at low temperatures, below 342K, A H becomes more neg-
ative with increasing temperature, with a gradient that reaches a maximum size of
around —0.055 kcal mol~! K~ per base pair at approximately 312 K. At 342K, how-
ever, A H reaches its most negative value, before heading rapidly towards zero. The
statistical model highlights the cause of this behaviour, as illustrated in Fig. 6.4b.

Well below 340 K, the enthalpy of the bound state is seen to be approximately con-
stant whereas the enthalpy of the single strands becomes less negative with increased
temperature as they unstack, causing the observed tendency for AH of the transi-
tion to become more negative. At higher temperatures, however, the enthalpy of the
bound state becomes less negative due to fraying, as the typical bound state changes
from being a fully formed duplex at low temperatures to a higher enthalpy partially-
melted state at higher temperatures. As the polynucleotide melting temperature is
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approached, fraying becomes more significant, resulting in the observed decrease in
the magnitude of A H for the transition.

A change in enthalpy due to the stacking transition has been observed experimen-
tally by several groups [3, 10, 12, 13, 27], who deduced values for the typical
enthalpy gradient of —0.050, —0.095, —0.05 to —0.1, —0.068 to —0.87 and
—0.062 kcal mol~! K~! per base pair, respectively, in reasonable agreement with the
model. These investigations were generally performed with either oligonucleotides
with several CG pairs at the end [3, 10, 12, 13] or polynucleotides [27], both of
which would massively reduce the impact of fraying: if I set the fraying contribution
to zero in the statistical fit, I obtain a typical value of —0.06 to —0.07 kcal mol K1,
in even better agreement with experiment.

In addition, Jelesarov et al. [13] considered another duplex with AT bps at the end
of the helix, which showed A H becoming more negative with increasing 7" at low
temperature, before flattening-off by around 320 K, in agreement with the predictions
of the model for the consequences of fraying. Measurements were not performed at
high enough T to check for an eventual decrease in the magnitude of AH, but my
model predicts the effect should be observable. In particular, duplexes with large AT
end regions and a stabilizing GC cores should demonstrate such an effect.

6.2.3 Structural Motifs

6.2.3.1 Hairpins

DNA hairpins, which occur when a self-complementary strand binds to itself, form-
ing a duplex stem and an unhybridized loop (Fig.6.5), are a common structural
motif. They have biological importance as a mechanism for release of superhelicity
through cruciform formation [28], and relevance to nanotechnology as metastable
states (either occurring by accident [29] or through design [30, 31]). In addition, they
are an extremely common motif in biological RNA structures [32]. To date, there
have been no coarse-grained models which have been applied to both hairpins and
bimolecular duplexes. An approach in which the single strands have the potential to
be extremely flexible allows for hairpins and duplexes to have appropriate relative
stabilities.

To demonstrate the ability of the model to represent hairpins, I simulated them
with stem sizes ranging from 5—12 bps, and loops of 5—18 bases. Four simulations for
each hairpin were performed in the vicinity of 7, for 4 x 10'© VMMC steps, with
umbrella sampling as a function of hydrogen-bonded base pairs used to ensure good
statistics. In this case, I considered only states with at least one of the ‘native’ bps in
the stem present as being a hairpin, as long loops had the potential to form transient
base pairs with little relevance to the stability of the target structure. SantalLucia has
presented parameters for estimating the melting temperature of hairpins [20], which I
again take as a good representation of experimental results. These parameters include
sequence independent entropy penalties for loop formation and enthalpy/entropy



6.2 Duplex Formation 83

Fig. 6.5 A hairpin with a 12bp stem and an 18-base loop at 343K
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Fig. 6.6 a Variation of hairpin melting temperature with loop length from our model (symbols con-
nected by dashed lines) and from Ref. [20] (solid lines). b Variation of hairpin melting temperature
with stem length from our model (symbols connected by dashed lines) and from Ref. [20] (solid
lines)

terms for the stabilizing effect of the first mismatched bp in the loop (called a ‘terminal
mismatch’: I compare to an average Ah']" = —2.91kcal mol~! and As™ =
—7.33 calmol~! K~1). The results for 7}, are compared to the predictions of Ref.
[20] in Figs. 6.6a, b. T}, is defined as the temperature at which a strand is in a hairpin
state half of the time.

The results indicate that the model slightly underestimates 7y, for hairpins relative
to the predictions of Ref. [20] (and by extension, experiment): typically by approx-
imately 3 K, which is slightly less than 1 % of the absolute melting temperature (at
the 7,,, predicted by Ref. [20], model hairpins usually constitute approximately 25 %
of the ensemble rather than 50 %). My model fails to reproduce the jump in stability
associated with 5-base loops (and indeed smaller ones, which are not shown), and it
is difficult to see how such an effect could be captured without specific stabilizing
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interactions (as it deviates strongly from the trend for longer loops). Such interactions
have been postulated for tightly packed loops [33], and for 3- and 4-base loops Ref.
[20] includes loop sequence specific corrections, presumably for this reason.

Encouragingly, the trends with loop length (for loops longer than five bases) and
stem size are well reflected by the model (this is particularly pleasing, as the depen-
dence on loop length was not used in parameterization), an indication that the majority
of the physics of hairpin formation is well represented by the model. As found with
duplex formation, model transition widths are slightly smaller than predicted by Ref.
[20] (the discrepancy is very similar to that indicated in Fig.6.2b). Note that, if the
duplex transitions were as broad as predicted by the SantalL.ucia model, hairpin stem
formation would be somewhat more favourable at these temperatures well above the
duplex T;,. The slightly narrower transitions of my model might therefore contribute
to the lowering of hairpin 7;, relative to Ref. [20], as well as the representation of
the loop itself.?

6.2.3.2 Mismatches, Bulges and Internal Bubbles

A variety of other DNA motifs exist, such as duplexes involving mismatches between
non-complementary base pairs or with one strand carrying extra, unpaired bases.
SantaLucia [20] has provided parameters for the influence of these motifs on 7. In
many cases, they are highly sequence dependent and it is less clear than in the simple
double-helix case (where the variations in parameters are relatively smaller) that
averaging over AS and A H contributions for all sequences is a reasonable approach
to find an average effect. It should, however, give a rough estimate of the typical
change in melting temperature due to a motif.

I compared the effect of several motifs on model duplex 7, to the predictions
of Ref. [20], again averaged over all possible sequences (Table6.1). The simplest
possible case is that of a single unpaired base at the end of a strand, generally
referred to as a ‘dangling end’. Typically, dangling ends are observed to provide a
stabilizing influence, assumed to result from cross-stacking with the final base pair
of the duplex, although the degree of stabilization is highly sequence dependent [2,
20]. The cross-stacking interaction included in the model provides such a stabilizing
effect, and the degree of stabilization is in good agreement with the predictions of
Ref. [20]. In contrast to dangling ends, extra, unpaired bases on one strand within the
helix are highly destabilizing, as they disrupt the helix structure. In the terminology of
SantaLucia, these are known as bulges. In general, our model slightly underestimates
the destabilization of helices due to bulges compared to the predictions of Ref. [20],
although the melting observed temperatures remain within 2 % of the predictions.

3 For example, if the melting transition of an 8-bp duplex was as wide as predicted by Ref. [20],
one would expect the statistical weight of an 8-bp duplex in my model to be increased by around a
factor of two at 341 K. This is the approximate melting temperature of a hairpin with an 8-bp stem
and a 6-base loop: increasing the statistical weight of the hairpin by a factor of two would translate
into an increase in 7,,, of around 2 K.
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Table 6.1 Effect on the melting temperature of a complementary duplex due to the addition of a
motif. In this table, AT, is the difference between the 7, of a structure with the motif and a fully
complementary duplex consisting of the same number of complementary bps as the motif structure.
For internal mismatches, bulges and bubbles, the motif was placed at the centre of the duplex

Motif Complementary Motif size AT,/ K
bp My Model Ref. [20]
Dangling end 5 1 base +3.42 +4.24
8 1 base +1.33 +1.44
15 1 base +0.66 +0.70
Bulge 8 1 base —17.98 —23.19
2 bases —23.92 —26.73
15 1 base —8.18 —12.36
2 bases —11.03 —11.58
5 bases —15.97 —13.11
Terminal mismatch 5 1 base / strand +6.71 +8.60
8 1 base / strand +3.02 +2.71
15 1 base / strand +0.94 +0.31
Internal mismatch 8 1 base / strand —8.81 —13.99
/ bubble 2 bases / strand —15.77 —21.86
5 bases / strand —25.70 —28.81
15 1 base / strand —4.92 —4.88
2 bases / strand —9.18 —11.51
5 bases / strand —15.37 —15.65

If a non-complementary pair of bases is added to an otherwise complementary
duplex to form a mismatch, the effect is generally stabilizing at the end of a duplex
(this is a ‘terminal mismatch’) and destabilizing in the interior. The model reproduces
this tendency as shown in Table 6.1, and also captures the increase in destabilization
if the mismatch region is extended (to form an internal ‘bubble’). Once again, the
destabilizing effect of motifs internal to the duplex tend to be slightly underestimated
relative to the predictions of Ref. [20], but the observed melting temperatures remain
within 2 % of the predictions.

Such motifs provide a good test of the model, as many were not considered in
parameterization (although the dangling ends and terminal mismatches were used to
constrain the strength of cross-stacking). In addition, misbonded structures involving
these motifs may have a role in the kinetics of nanostructure assembly, and hence it
is important that the model provides a reasonable representation of them. Although
in some cases the quantitative agreement with Ref. [20] is not perfect, the model
represents these motifs in a physically sensible way and the trends in stability at
least qualitatively reflect the average properties of DNA. Furthermore, the typical
magnitudes of AT, are reasonable, with the 7, remaining within 2 % of the average
predictions of Ref. [20]. It is possible that an underestimate of the disruptive effect
of extra bases on the helical structure [28], perhaps because the excluded volume
of bases is smaller than in reality, causes the underestimate of AT}, due to internal



86 6 Thermodynamic Properties of Model DNA

motifs. Another consideration may be that as the model hybridization transition is
slightly narrower than predicted by Ref. [20], a given destabilizing AG will have a
smaller effect on model 7}, than for the statistical description of Santalucia.

Given the good agreement between the model and Ref. [20] for a single mismatch
added to a 15-bp duplex, I investigated how the position of the mismatch affected
stability. Ty, is plotted against the position of the mismatch in Fig.6.7a. As can be
seen, there are two distinct regimes, with the melting temperature initially decreasing
as the mismatch is moved from the end of the strand (where it is stabilizing) towards
the centre. Eventually, however, it reaches a plateau at around five bases from the
end of the strand.

The cause of this plateau can be identified from examining the free energy profiles
for duplexes with mismatches located one and six bp from the end (Fig. 6.7b). The first
point to note is that the stability of duplexes with the maximum number of base pairs
(15) is nearly identical, despite the difference in mismatch position. This suggests
that provided a mismatch is surrounded by base pairs on either side, changing its
location has little effect on the total free energy. The difference in T, arises instead
from a difference in the nature of the lowest free-energy state.

When the mismatch is near to the strand end (in the regime where 7}, depends
on mismatch position), the most stable state consists of the larger section of duplex
formed with the bases beyond the mismatch unpaired. In this regime, the total free
energy gain from pairing the bases beyond the mismatch does not compensate for the
cost of enclosing a mismatch in a helix. As the mismatch is moved towards the centre,
the larger section loses bases and so becomes less stable, with the consequence that
T,, drops. At some point, however, the possible number of base pairs in the region
beyond the mismatch makes it favourable for the base pairs in this region to form.
From this point onwards, the most stable state consists of the two duplex regions
surrounding the mismatch. When this occurs, the net effect of moving the mismatch
towards the centre can be viewed (in the average base-pair case) as the transfer of
a base pair from the centre of the larger duplex to the centre of the smaller duplex,
where the contribution to stability will be unchanged. As a result a plateau in 7}, is
observed.

As the temperature is lowered, the free-energy gain from base pair formation
increases. As a consequence, the number of bases required before the region beyond
the mismatch is stable as a duplex decreases. For example, I find that for a mismatch
two bases from the end of a duplex, the enclosed mismatch state becomes the most
stable just below 320 K.

It is claimed in Ref. [20] that the stability of a mismatch is independent of its
position, except for terminal mismatches and mismatches occurring one base from
the end, which may cause the final base pair to be unstable. My simulations suggest,
however, that the distance of the mismatch from the duplex end at which 7}, plateaus
should increase with strand length (as longer strands melt at higher temperature).
Further, a similar temperature dependent influence of motif location should hold
for all destabilizing internal bubbles and bulges, as the plateau simply indicates the
point at which it is free-energetically favourable to form the second helix beyond the
disruption.
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Fig. 6.7 a Melting temperature of 15-bp complementary helix with an additional mismatch added
against the distance of that mismatch from the end of the strand. The melting temperature in the
absence of a mismatch is indicated via the horizontal line. b Free energy profile at 339K for a
15-base-pair duplex with one additional mismatch placed 1 base from the end (squares) and 6 bases
from the end (crosses)

Fig. 6.8 Typical configu-
rations of a duplex with 15
complementary bp and 1
internal mismatch at 335K. a
Mismatch two bp from the end
of the strands, with unpaired
bases after the mismatch. b
Mismatch six bp from the end
of the strand, enclosed by two
intact helices

mismatch

A dependence of 7, on mismatch location has been reported in the DNA microar-
ray literature [34, 35]. In particular, You et al. [34] observed that 21 bp duplexes had
their melting temperatures reduced by 1.8-2.2K due to a mismatch 3bp from the
end, and by 3.5K due to a central mismatch, values comparable to those found
here (although slightly smaller, as would be expected from a longer duplex with a
narrower transition). Naiser et al. [35] have even attempted to explain the effect of
mismatch location by using the model of Ref. [20] to predict the relative popula-
tion of partially bound states, in an approach similar to that of the Zuker group [36,
37]. This methodology, however, is somewhat suspect — the Santal_ucia parameters
are fitted to reproduce the free-energy difference between the bound and unbound
ensembles, and hence partially-formed states are already included implicitly in the



88 6 Thermodynamic Properties of Model DNA

fitting. Using the parameters to separately evaluate the free energy of partially bound
states therefore represents a form of double-counting.

My model therefore reproduces the observed tendency of mismatch location to
influence melting temperature, and even supports a hypothesis for the cause of this
non-trivial effect. This is particularly pleasing, as the model was in no way parame-
terized for this purpose.

6.2.4 Coaxial Stacking

Coaxial stacking occurs when non-neighbouring bases (often from different strands)
stack with each other. Such an interaction has been used to explain the stabilization of
duplexes by adjacent hairpin stems [20, 38—42] and the association of DNA origami
tiles [43].

The strength of the coaxial stacking interaction has been measured experimentally
in two ways. The Frank-Kamenetskii group have attempted to infer the probability
that a nicked duplex is in a state with stacking across the nick from gel mobility
studies [44, 45]. Other authors have considered the thermodynamic stabilization
of duplexes due to the presence of an adjacent double-stranded region, with which
coaxial stacking can occur [20, 38—42].

The direct measurements of the coaxial stacking/unstacking equilibrium from the
Frank-Kamenetskii lab were performed by measuring the mobility of duplexes under-
going gel electrophoresis. The mobilities of duplexes with a nick in one of the back-
bones were compared to the same duplexes without a nick and gapped duplexes con-
taining two single G bases. Assuming the coaxially stacked state of nicked duplexes
had the same mobility as the un-nicked duplexes, and that the unstacked state had the
same mobility as the gapped duplexes, the authors were able to infer a probability
of DNA being in each configuration.

Initial experiments [44] were performed at 37°C and low monovalent salt con-
centrations (around 15 Mm Na™). These results give AGcoax &~ —0.3 to —3.5kT for
a range of sequences, where e ~2Ceax/kT g the ratio of occupancy of stacked and
unstacked configurations. A noticeable trend is that stacks of CG base pairs seem
to be much stronger. Later work explored higher salt concentrations, with A G¢oax
typically becoming more negative by around 0.65 kT between 15 and 100mM [Na™],
giving an average of around —2.62 kT at 100mM [Na*] [45].

A number of other groups have tried to estimate the stabilizing contribution to
the free energy of hybridization, which I shall call AAGyyp,., from the presence of
an adjacent duplex. The Santalucia lab has inferred AAGpyp,, from analyzing the
formation hybridization of six-base strands to the dangling ends of hairpins at high
salt, finding an average stabilization of around —2.74 kT at 37°C (although there is
strong sequence dependence). Pyshnyi and Ivanova considered 7 bp duplexes stabi-

6 Note that the experiments were performed in a range of concentrations of denaturing urea, then
extrapolated to zero urea concentration.
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lized by hairpins at high salt, and inferred an average A AGhypy, of around —2.62 kT
at approximately 37°C, noting not only dependence on the bases at the coaxial
stack site, but also on the next-nearest neighbours [39, 40]. Lane et al. measured
the hybridization of a 13-base strand to the dangling end of a hairpin at 115mM
monovalent salt, comparing cases in which the duplex was adjacent to the hairpin
stem and in which there was a two nucleotide gap. The first duplex was found to be
more stable by about —1.87 kT at around 325 K — as the authors point out, however,
the gapped system is stabilized by dangling ends and hence this value is expected
to be somewhat smaller than the true AAGhnyy,.. Finally, Vasiliskov et al. consid-
ered the hybridization of a 5-base strand to the overhanging end of a duplex that
was tethered to surface in a microarray [42]. The results are difficult to draw direct
comparisons with, as the system may be quite distinct from solution-based assays,
but the authors report that stabilization is much stronger if adenine is involved in the
coaxial stacking.

It is tempting to draw direct comparisons between AAGnpybr. and AGeoax, but
they would be fallacious, as the quantities represent free energy differences between
different pairs of macrostates. For my model, they are quite different, and AGcoax
is significantly larger than AAGhyyp,.. The main reason for the difference is that
single-stranded dangling ends can be stacked onto the end of a duplex, and indeed
one would expect them typically to be stacked as dangling ends tend to stabilize
duplexes. This stacking of dangling ends tends to reduce the value of AAGpypy., as
it makes the unbound state more favourable.

6.2.4.1 Modelling Coaxial Stacking

The coaxial stacking interaction in my model, described in Chap. 2, is based on the
nearest-neighbour stacking interaction, with several differences. In particular, I have
allowed the strength of the interaction to be different form the nearest-neighbour
term — given that the stacking interaction implicitly incorporates a host of backbone
effects, it is not surprising that this is necessary. As the interaction is only important
in certain situations, the model was initially parameterized without it [46], and it has
since been included with the interaction strength as a fitting parameter.

To compare the resulting interaction to experiment, I have simulated a system
analogous to that studied by the Frank-Kamenetskii group. Specifically, I have mea-
sured the probability that a 20 base duplex with a nick in the centre unstacks about
the nick site, at 37°C, finding AGcoax = —4.3 kT This is somewhat more negative
than the Frank-Kamenetskii group’s average value, even if the salt dependence is
extrapolated to [Na™]=500Mm.

I have also attempted to compare directly to the thermodynamic measurements
of AAGhypr.. In particular, I simulated 6—, 7— and 8—bp duplex formation adjacent
to a hairpin stem.” The duplex melting tempertures were raised by 9.88, 7.66 and

7 Hairpin stems contained 12bp and loops consisted of six bases. For each system, four VMMC
simulations were performed for 4 x 10'0 steps, using umbrella sampling to improve equilibration.
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6.25 K respectively by the presence of the hairpin stem. By comparison, the averaged
Santalucia parameters for coaxial stacking predict slightly larger stabilizations of
11.7, 8.5 and 6.4 K. The results of Pyshnyi and Ivanova for A AGhyy, are similar on
average to those of the SantalLucia lab, and hence give similar stabilizations if they
are used in conjunction with the remaining Santalucia nearest-neighbour parameters.
The actual value of AA Gy, at 37°C is given by my model as —2.43 kT, slightly
less negative than the estimates of Ref. [39], [40] and [47]. Note also the difference
between AAGhypr, and AGcoax in my model, as discussed above.

There are issues with all of these comparisons. The thermodynamic results are
limited, as Ref. [39], [40] and [47] considered systems with fairly low 7}, and the
predictive power of their parameterizations have not been tested (particularly for
systems with a higher intrinsic 7;,). The measurements of the Frank-Kamenetskii
group also require some care: in particular, they rely on the assumption that the
unstacked state of the nicked duplex has the same flexibility as a duplex containing
two G nucleotides [44]. This will only be a reasonable assumption if the stacking
along the single-stranded gap is always broken. This seems to be a very strong
assumption, and if it is violated the effect would be to overestimate the probability
of the nicked duplex being in the unstacked state.

The chosen parameterization gives a stabilization of duplexes by coaxial stacking
which is similar to (if slightly smaller than) the average predicted by the Santalucia
lab [47] and Pyshnyi and Ivanova [39, 40]. For the stacked/unstacked equilibrium of
a nicked duplex, this parameterization gives AG¢oax as ~1 to 1.5 kT more negative
than that found by the Frank-Kamenetskii group [44, 45]. Neither discrepancy is
overly large, and if stacking can occur across the two G nucleotides in a gapped
duplex, this might make the agreement even better.

6.3 Summary

Overall, the model gives a good description of the average properties of the thermo-
dynamics associated with the sSDNA to B-duplex transition. It is the only model to
date to consistently describe stacking, duplex hybridization and hairpin formation,
and it also provides a reasonable representation of various DNA motifs. Sequence-
dependent effects are currently absent, but in some cases this can be an advantage.
For example, the temperature dependence of mismatch location (see Sect. 6.2.3) may
have been somewhat obscured by sequence-dependent variation. Further discussion
of model properties and accuracy is provided in Chap. 9.
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Chapter 7
Modelling DNA Tweezers

As mentioned in Chap. I, DNA tweezers were initially introduced by Yurke et al.
in 2000 as a prototypical DNA nanodevice [1]. The tweezers, consisting of strands
which form the arms « and g, and the hinge (h), can be switched between open and
closed states by the addition of fuel (f) and antifuel (f) strands, as shown in Fig.7.1.
The tweezers demonstrate the possibility of using DNA hybridization and toehold-
mediated strand displacement to perform mechanical operations. As such, they have
inspired the growing field of DNA nanodevices, as outlined in Chap. 1.

I have studied DNA tweezers to prove the versatility and efficiency of my model.
When the simulations were originally performed [2] (with an older version of the
model), no DNA nanodevice had ever been simulated with a coarse-grained approach.
This is partly because of the complexity of such systems and partly due to the need to
simultaneously represent rigid duplexes, flexible single strands and the hybridization
transition. To date, I am unaware of any other simulations of nanodevices, except-
ing subsequent studies performed with my model (such as the two-footed walker
simulation presented in Chap. 8).

7.1 Tweezer Simulation Methods

7.1.1 The Model System

For computational simplicity, I chose to model a system approximately half the size of
that used by Yurke et al.: the sequences are given in Appendix E. The duplex regions
which form the body of the tweezers are 10 bp in length, and the overhanging sections
for fuel binding are 8 bases long. The toehold which facilitates the displacement of
the tweezers is also taken to be 8 bases in length. I have sampled the free energy
landscape of the system consisting of one set of tweezers and a single f and f at
300K, in a periodic cell of length 40 reduced units (3.96 x 107201).

T. E. Ouldridge, Coarse-Grained Modelling of DNA and DNA Self-Assembly, 93
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(@

Fig. 7.1 Simulation snapshots showing stages of operation of DNA tweezers. a Tweezers initially
open. b Fuel (f) is added and binds to one arm (). ¢ Fuel binds to the second arm («) and closes the
tweezers. d Antifuel (f) is added and binds to the toehold of the fuel. e Antifuel begins to displace
first arm of the tweezers. f Tweezers open as first arm is displaced, and antifuel displaces the second
arm. g Antifuel fully hybridizes to fuel and the waste duplex is formed

7.1.2 Sampling the Transitions

The sampling of the free energy landscape was performed using the VMMC algo-
rithm, as mentioned in Chap.3. Every stage of the cycle is observable using unbi-
ased simulations at 300 K. To obtain the free energy landscape, however, umbrella
sampling was used to bias the ensemble and favour multiple transitions between
(meta)stable states, as discussed in Chap. 3. As in the simulations of duplex forma-
tion performed in Chap. 6, the number of hydrogen-bonded base pairs (with energy
below —0.1 simulation units) is a convenient order parameter to divide configu-
ration space into regions which can then be biased. Due to the complexity of the
tweezer system I found it necessary to introduce a four-dimensional order parameter

Q = (01, 02, 03, Q4), with:

e (1 as the number of correct base pairs between « and f.

e () as the number of correct base pairs between 8 and f.

e (3 as the number of correct base pairs between f and f, restricted to the bases of
f which bind to « or are in the toehold.

e ()4 as the number of correct base pairs between f and f, restricted to the bases of
f which bind to 8.

In this context, correct base pairs are those which are intended to form during tweezer
operation. Note that other base pairs are not forbidden, they are simply not included in
the order parameter. Even an order parameter as complex as this was not sufficient to
sample the tweezer cycle, particularly the transitions accompanying the displacement
of the final bp of « and 8 from f. To estimate the free energy change associated with
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these processes, it is necessary to encourage the displaced strand to reattach. This
requires that the displaced strand comes into close proximity with the duplex from
which it was displaced, and that the duplex undergoes some fraying to allow it to
reattach—a process not particularly well quantified by Q as it stands.

Q was therefore augmented with a fifth dimension, Qs, which depends on the
actual separation of strands in addition to hydrogen-bonding matrices. Any config-
uration of the system is within one of 15 discrete values of Qs—the definitions are
given in Appendix E.

Even with this complex order parameter, capturing the entire tweezer cycle in
one simulation would be impractical. Instead, individual simulations were restricted
to sampling small, overlapping ranges of Q (for instance, the binding of the fuel
to the first arm of the tweezers), and the results combined to give the free energy
of the entire cycle. Ten simulations were performed in each sampling window for
4 x 10'© VMMLC steps each. The windows used are detailed in Appendix E. The
possibility of such an approach was suggested in the original work of Torrie and
Valleau on umbrella sampling [3]. Kumar et al. [4] have proposed the weighted-
histogram analysis method (WHAM) for systematically combining the results from
overlapping simulation windows. This is particularly important for my system, as it
has 185895 possible values of Q, and 11 separate simulation windows which must
be patched together.

In order to facilitate the windowed umbrella sampling scheme, several restrictions
were imposed on the system during the simulations. These restrictions are outlined
in Appendix E.

7.1.2.1 Simulation Validity

When performing windowed sampling, the system has restricted movement through
state space, which can lead to sampling errors. For example, it is conceivable that
the state space corresponding to a certain order parameter range could be split into
two non-connected regions. If this were the case, only one of these regions would be
sampled in any simulation restricted to this range of the order parameter (ergodicity
would be broken).

For the windowing scheme outlined in Appendix E, it seems unlikely that such
a problem would arise. To be sure, however, I calculated the average energy as
a function of the order parameter, (E(Q)), in each simulation. For each pair of
overlapping windows, the value of (E(Q)) was compared for two frequently sampled
values of Q. In all cases, (E(Q)) was found to be consistent between windows to
within the error of the simulations (details are given in Appendix E). As a result, I
am confident that simulations of each overlapping pair of windows had access to the
same microstates, and therefore that the state space for each window was ergodically
sampled.

The accuracy of the simulations can also be checked by considering that in going
from the initial to the final state of the cycle, f and f form a duplex, and the tweezers
are in the open state in both cases. Thus the free energy change between the states
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Fig.7.2 aFree energy F as a function of the number of f/« and /S base pairs during initial binding
of the fuel. The arrows indicate the cooperative lowest free-energy pathways. b Free energy F plotted
as a function the number of f/f and f/tweezer base pairs for DNA tweezers at 300 K. White areas
indicate regions of high free-energy relative to their environment that were unsampled

with Q1 = Q> = Q3 = Q4 = 0 and those with Q1 = Q> = 0,03 > 0,04 > 0
should be the same as that for the formation of an isolated duplex of f and f (assuming
interactions between unbound molecules are minimal, as justified in Chap. 4). For the
windowed tweezer simulations, AG was found to be 48.88 k7', and from the isolated
duplex simulations I obtained AG = 48.83 kT . These values appear to agree well—
in order to perform a statistical test of the agreement, 10 separate estimates of AG
for the tweezer pathway were obtained by patching individual simulation results
together. I compared this set to the six individual estimates of AG obtained for the
simulation of duplexes in isolation using Welch’s unpaired t-test [S]. The result was
a test statistic of 0.9413, suggesting that any systematic errors are smaller than the
random error of the simulations.

7.2 Results

The free-energy landscape of the tweezer cycle is shown in Fig.7.2. To study the
cycle in detail, it is convenient to consider a one-dimensional pathway through the
landscape; I use that shown by the arrows in Fig.7.2b.

The gross features of the free energy landscape are as expected. Duplex formation
is highly cooperative; the pairing of two strands involves a high entropic cost for
forming the first base pair, then a downhill slope in free energy as additional bonds
are formed. This is reflected in Fig.7.3a by stages ‘b’, ‘c’ and ‘d’ which essentially
involve duplex formation. The large cooperativity suggests that f will fully bind to
one arm of the tweezers before binding to the second. The displacement processes
(indicated by ‘e’ and ‘f” in Fig.7.3) are comparatively flat as the total number of
interstrand base pairs is constant. Returning the tweezers to the open state (between
‘¢’ and ‘f*) and the decoupling of the ff duplex from the tweezers (‘g’) release the


http://dx.doi.org/10.1007/978-3-642-30517-7_4

7.2 Results 97

(a) : (b) ; ;
full system o ,L
= 3t = L
g d & | o
by & ~ o..-@" Inert
g 8, By tail
= 8 x
= ; w reduced “%
B a0t f @ L system
= £ 1
10 |
0 : NS 0 — . :
0,0 8.0 16,0 16,8 8,16 0,24 7.9 811 3.13 1,15
Coordinate (f/f . fitweezers) Coordinate (f/f , f/tweezers)

Fig. 7.3 a Free energy profile along the one-dimensional pathway indicated in Fig.7.2b. Coordi-
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detail. Squares represent the original system, circles a system with the tail of f unable to form a
hairpin and crosses a system with the last eightt bases of f and most of the f/ arm removed

free energy stored in bringing strands together, resulting in large decreases in free
energy.

Simulations allow for a detailed inspection of processes like displacement. Thus,
Fig.7.3 shows that there is actually an increase in free energy of ~3.2kT during the
displacement of the first arm of the tweezers, «, even though the total number of
interstrand base pairs in the system stays constant. Conversely, the displacement of
the second arm () shows a decrease in free energy as displacement proceeds (after
an unfavourable first step). These free-energy changes suggest a significant differ-
ence in speed for the two processes. To test this hypothesis, I initiated 20 unbiased
Langevin simulations from both of the macrostates directly preceding displacement
of the two arms, Q = (8,8,8,0,4) and Q = (0, 8, 16, 0, 8), and recorded when
displacement occurred. In all 30 simulations initiated from Q = (0, 8, 16, 0), com-
plete displacement was observed, requiring an average of 2.26 x 10% time steps.
By contrast, only 83 % of simulations initiated from Q = (8, 8, 8, 0) resulted in
displacement before 2.75 x 10” time steps. This is consistent with the first stage of
displacement being ~7 times slower.

The displacement of the o arm of the tweezers is shown in greater detail in
Fig.7.3b. The first thing to note is that the free energy changes non-monotonically
with the number of displaced bases of the « arm. The cause of the dip after three
bases have been displaced is shown in Fig.7.1e: a metastable hairpin (with a three
bp stem) is capable of coaxially stacking with the partial ff duplex, stabilizing the
macrostate. Displacing more of the @ arm means this hairpin cannot form, which
costs free energy—this explains the large increase in free energy associated with the
displacement of the next base.!

! The existence of a dip in free energy at (5,11) is the only significant difference between this work
and Ref. [2], which used an earlier version of the model that lacked coaxial stacking.
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Fig. 7.4 Tweezers (viewed
from the side) during the
displacement of the o arm
(Q1=4,02=28,03=12,
Q4 = 0). Note the restricted
confirmations of both single-
stranded tails

This is not enough, however, to explain the majority of the increase in free energy
with displacement. To demonstrate this, I have simulated the displacement of the «
arm, but with the final eight bases of f forbidden from forming bp (Fig.7.3b). As a
consequence, the metastable hairpin cannot form, and the non-monotonic behaviour
is no longer present. Furthermore, the free energy barrier of displacement is indeed
reduced relative to the unaltered system, but remains fairly large (~3 kT').>

Excluding the rise in free energy associated with disrupting the hairpin, the largest
increase occurs on displacing the first base of the o arm. To understand this, con-
sider Fig.7.4. Before displacement, a single base of f is forced to unstack and adopt
a restricted conformation to avoid clashing with the two helices involved in dis-
placement. When the first base of the « arm is displaced, it too must unstack and is
restricted in its conformational freedom, which costs free energy. Alternatively, the
coaxial stacking between the helices can be disrupted—but this is also costly. Essen-
tially, opening up a second single-stranded region is an unfavourable process, and this
explains the initial rise in free energy as displacement begins. It does not, however,
explain why the free energy continues to increase as further bases are displaced.

To understand this, note that the tweezers are a fairly bulky object, and as dis-
placement proceeds the single-stranded tails are increasingly drawn into the body
of the tweezers. This is entropically unfavourable, as the conformations of the flex-
ible single strands are restricted by the tweezer unit, and this effect contributes to
the increase in free energy with displacement. To demonstrate this, I considered a
system in which the final eight bases of f and all but the first bp of the f8 duplex
were removed. The results, shown in Fig. 7.3b, clearly demonstrate that a significant
contribution to the rise in free energy from displacement is due to steric clashes
involving these sections.

2 If Fig. 7.3b is analyzed closely, one finds that the final step is actually less favourable for the inert
hairpin than the normal system. This is because there is some tendency for the two single-stranded
tails of f and & to transiently bind at this point (lowering the free energy), which is obviously
impossible for the inert tail.
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The displacement of the 8 arm of the tweezers, shown in Fig.7.1f, is noticeably
different. There is an initial free-energy penalty for opening up a second single-
stranded section, as before, but once displacement has started it becomes favourable
to displace more bases. As displacement proceeds, the ff duplex moves further away
from the body of the tweezers, reducing the excluded volume interactions between
them and favouring states with greater degrees of displacement.

7.3 Discussion

This chapter has shown the potential of the model to study nanotechnology. Due
to its efficiency and physically reasonable description of DNA, it was possible to
simulate the entire cycle of DNA tweezers, the first time a DNA nanomachine has
been studied in this way.

Although the simulation was primarily undertaken as a proof of principle, non-
trivial results were obtained. In particular, the model demonstrated that displacement
processes can involve gradients in free energy, a result that was initially surprising.
The causes of these gradients are, however, physically reasonable. Firstly, the neces-
sary disruption of a metastable hairpin contributed to the free-energy barrier which
opposed displacement of the @ arm. The SantalLucia parameters predict that such
a hairpin would indeed be metastable at 300K (in fact, due to the presence of two
CG base pairs in the stem, it would be significantly more stable than average, with a
melting temperature predicted as 313.7 K). Furthermore, although this small system
could be designed so as to eliminate such a hairpin, careful design would be needed
to prevent similar structures forming when longer scale displacements are required.
As hairpins will tend to form either at the start or end of displacement, when long
single-stranded regions are available, they will constitute a free energy barrier in the
middle stages of displacement, thereby slowing down the process.

The second contribution to the free energy rise during displacement is the initial
cost of creating two single-stranded sections, which necessitates disrupting stacking
interactions. Although there is little experimental data with which to compare this
prediction, its motivation is physically reasonable. Furthermore, it is possible that in
reality the sharp bending of single strands to avoid the branch point of displacement
may incur some energy penalty that is not captured by the model, which would
exaggerate the effect.

Finally, there is a significant entropy cost associated with bringing the single-
stranded displacement tails into a region of high DNA density (the centre of the
tweezers). Again, the physical basis of this effect is applicable to real DNA. Indeed,
it is possible that electrostatic effects would exaggerate it further, particularly at
moderate or low salt concentrations. In addition, as the tweezers of Yurke et al.
are larger than those simulated here and thus have longer single-stranded tails, the
consequences of steric interactions may be more significant for their system.

For the tweezers, in which the displacement process is fast compared to the
initial association of duplexes [1], the consequences of any free-energy barrier to
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displacement are probably fairly minimal. The observation of a barrier to displace-
ment, however, may help to explain an initially puzzling result. Yurke and Mills have
shown that the rate of toehold-mediated strand displacement depends exponentially
on the toehold length (or equivalently the free energy of toehold binding), up to
a length of at least six bases when displacing 26 bp [6]. Zhang and Winfree have
reported similar results, and have also demonstrated that the rate plateaus for longer
toeholds [7]. Such a result could only be fitted with kinetics that assumed displace-
ment was essentially a two-state process with a single rate constant, rather than a
random walk in which each intermediate state was equally probable. My simulations
suggest that metastable hairpins and the consequences of having two single-stranded
regions rather than one make the intermediate states less favourable. Such arguments
make displacement look more like a process in which the system must hop from one
low free-energy basin to another than an unbiased random walk, and hence may go
someway to explaining the results of Refs. [6] and [7].

As ever, all results should be viewed with the approximations of the model in
mind. In this case, the tweezer arms are brought into close proximity when they are
closed by the fuel—electrostatic repulsion will probably be relevant here, even at
high salt. In addition, the lack of restriction on the conformation of ssDNA in the
model may mean that the stability of the fa—f/ junction is overestimated.? Either of
these considerations may mean that the stability of the closed state of the tweezers is
exaggerated by the model, but they should not affect the primary conclusions related
to the displacement process drawn from the study.
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Chapter 8
Modelling a DNA Walker

In this chapter I study the operation of a two-footed DNA walker proposed by Bath
etal. [1]. The walker consists of two single-stranded ‘foot’ domains which are linked
together by a duplex (Fig.8.1). The feet are intended to bind to adjacent sites on a
single-stranded track. The binding sites overlap, meaning that the feet compete for
binding to the track. As a consequence, a single-stranded region of one foot or the
other is always exposed. A fuel strand that is also present in solution can bind to either
exposed toehold. If the fuel has bound to the back foot,! then itis able to compete with
the track for binding to the rest of the foot. The fuel can thus displace the track and
cause the foot to be raised. If, alternatively, the fuel has bound to an exposed toehold
of the front foot, conventional toehold-mediated strand displacement is impossible
and the fuel should eventually detach.

The fuel contains a recognition site for the nicking enzyme N.BbvCIB, which
can cleave the fuel when it is in a duplex state (the duplex partner is not cleaved).
With the fuel in two separate pieces, the fuel/foot duplex is unstable and the fuel will
eventually detach, allowing the foot to rebind to the track. If it binds in front of the
other foot, a forwards step is taken—if it binds behind the other foot, the system has
returned to its original state and an idle step has occurred.

Due to the intended asymmetry of foot-lifting, the walker is expected to undergo
unidirectional, autonomous motion. For the walker to function in this way (with the
potential to perform work), it must catalyze the equilibriation of a non-equilibrium
system—in this case, it facilitates the enzymatic cleavage of ssDNA fuel strands.

To date, the principle of operation of the walker has been demonstrated on a
short track of two sites [1]. Preferential lifting of the front foot by a fuel strand has
been achieved (as has lifting of the back foot by a ‘reverse fuel’). The release of the
fuel has also been shown, and walkers have been found to successfully catalyze the
hydrolysis of >64 fuel strands.

! Throughout this chapter, the terms back or backwards are defined by the 5’ direction of the track,
and front or forwards by the 3’ direction.

T. E. Ouldridge, Coarse-Grained Modelling of DNA and DNA Self-Assembly, 101
Springer Theses, DOI: 10.1007/978-3-642-30517-7_8,
© Springer-Verlag Berlin Heidelberg 2012
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Fig. 8.1 a Schematic diagram of walker operation, adapted from Ref.[1]. Reactions which are
expected to show a large decrease in free energy are shown as irreversible. (i) and (vii) walker
bound to track, with competition between the two feet for binding. (i7) Fuel binds to raised toehold
of the back foot. (iii) Fuel competes with the track for binding to the back foot. (iv) Back foot
detaches from track and nicking enzyme binds to the recognition site. (v) Fuel is nicked by the
enzyme and detaches. The raised foot can then rebind either in front (vi) or behind (vii) the attached
foot, corresponding to taking an active step or idling respectively. As an alternative to (i7), the fuel can
bind to the raised toehold of the front foot: due to the geometry of the strands, however, conventional
displacement cannot proceed from this point. b Sequences used in the tweezers (written in 5’ to
3’ notation). Green highlighting indicates competition (or toehold) domains, and yellow the non-
competition (non-toehold) domains associated with binding to the track. Three adjacent binding
sites of the track are shown here. The lower case ‘t’s represent the bases which link the walker body
duplex to the feet. To prevent cleavage of the track by the nicking enzyme, mismatches are included
between foot and track: these mismatches are indicated by bars. The nicking site of the enzyme
within the fuel is indicated by the” symbol
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I 5
Back sitf AGCATCCTTCAGCTTC \

Foot: tt GATGCTGAGGCTGAGGGATGCT )

Front site{CTTCAGCTTCAGCATC
Foot: tt GATGCTGAGGCTGAGGGATGCT

Back sit: AGCATCCTTCAGCTTC

Front sit: CTTCAGCTTAAGCATO

.
Foot: ttlGATGCTGAGGUCTGAGGGATGCT Foot: tt GATGCTGAGGCTGAGGGATGCT

Back site: AGCATCCTTCAGCTTC Frontsite(CTTCAGCTTCAGCATC Frontsite: CTTCAGCTTCAGCATC
Foot: ttGATGCTGAGGCTGAGGGATGCT Foot: GATGCTGAGGECTGAGGGATGCT Foot: tt GATGCTGAGGCTGAGGGATGCT

Fig. 8.2 The binding of a walker to the track as observed in simulations. a The walker bound to the
back site. b The walker with foot raised; magenta and black circles indicate the typical separation
of bases that could form base pairs corresponding to correct binding to the front site. ¢ The walker
bound to the front site. d—f common misbonds with the front site. g, h common misbonds with the
back site. Highlighted regions show the motifs involved in pairing, all sequences are listed in 5’ to
3’ notation

8.1 Walker Simulations

I'have simulated every stage of walker operation, with the exception of the hydrolysis
of the fuel strand (for obvious reasons). As the sizes of individual components are
potentially pivotal to walker operation, I considered the system exactly as introduced
by Ref. [1], at a temperature of 310K (the sequences are given in Fig.8.1).

8.1.1 Binding of a Foot to the Track

Consider the stage in the walker’s cycle corresponding to moving from state (v) to
(vi) or (i) in Fig. 8.1a.? To study this process, I performed 50 Langevin simulations
of a system consisting of a track of three binding sites, with one foot attached to
the middle site of the track, and the other initially in a raised position (Fig. 8.2b).
Figure 8.3 shows the state of these simulations after 5 x 10 steps, at the end of the
simulations.

Typically, two types of initial binding were observed:

2 In fact, it is not clear that the fuel must completely detach before the foot rebinds to the track—the
possible consequences of this will be discussed in Sect. 8.1.5.
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Fig. 8.3 Results of foot-attachment simulations. a The final state of 50 Langevin simulations
initiated with one foot in the raised state. b The free energy profile of bonding to the front (red) and
back (blue) sites as a function of the number of correct base pairs, measured relative to the state
with no bonds. The free energy profiles were obtained from 10 VMMC simulations of 4 x 10'°
steps, with umbrella sampling used to improve equilibration

e binding to the front or back site in the intended (correct) manner (Fig. 8.2a, c).
e binding to the front or back site in an unintended manner (forming misbonds—
Fig.8.2d-h).

Misbonds occurred for one of two reasons—either, as in Fig.8.2d, g, because
the foot possesses two competition domains and these can attach to the track in the
wrong place, or as in Fig. 8.2e-h, because the sequence of the toehold domain is very
similar to the non-toehold domain (which itself contains a repeated motif). The most
common (and most stable) misbonds were those shown in Fig. 8.2d, e.

In some simulations, misbonds were displaced by correct bonding to the track.
The most obvious way that this can occur is in an ‘inchworm’ fashion, wherein some
correct base pairs are formed, creating a bulge that is eventually pushed through the
misbond, leaving the correct bonding in place. An intermediate stage of displacing a
misbond such as that in Fig. 8.2h is shown in Fig. 8.4a. For this particular misbond,
the displacement process is facile as correct base pairs can form without disrupting
the misbond, acting as a toehold for displacement. Other misbonds do not provide
obvious toeholds, and hence the rate of displacement is suppressed.

An alternative mechanism exhibited by my model is far less obvious. In this case,
one strand reaches back to form a ‘double-X’ structure, shown in Fig. 8.4b. There is
no obvious route to fully displace the misbonding from this position, but the misbond
is somewhat destabilized (partially due to the loss of dangling end stabilization) and
hence has a greater tendency to melt than in a normal configuration. If the misbonding
melts before the other half of the structure, displacement has, in effect, taken place.
This process has been observed for the misbonds of type (d) and (g), for which
the inchworm form of displacement is particularly slow. Misbonds of type (f) are
reasonably rare, and the only example of displacement involving this structure caused
it to be converted into a type (d) misbond by a double-X mediated process.
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Fig. 8.4 Displacement as observed during simulations. a ‘Inchworm’-style displacement of a back
foot misbond. b ‘double-X’ structure containing a misbond with the front site. Misbonded sections
are highlighted with red circles, and correctly-bonded regions with magenta circles

I'have also observed displacement wherein the back site displaces a misbond with
the front. This process is similar to normal strand displacement, except it is generally
slowed by pauses at the mismatch locations.

In some other cases, misbonds were observed to detach from the track, allowing the
foot to rebind. Whether through displacement or melting, all misbonded feet would
be expected to find the lower free-energy states of correct bonding eventually.?

The stability of the misbonds as isolated strands can be estimated using the nearest-
neighbour model of Ref. [2]: they are predicted to have melting temperatures slightly
above that for an average 6-bp duplex with two dangling ends.* This level of stability
suggests that the misbonds could be kinetically relevant in the physical system, as
they have a role in my simulations where the type of misbond shown in Fig. 8.2d is
a close approximation to an average 6-bp duplex with two dangling ends.

8.1.1.1 The Absence of a Foot Replacement Bias

The walker was not originally designed to have a bias associated with foot replace-
ment. From looking at Fig. 8.2a, however, there is clearly an asymmetry between the
forward and backward directions, as the raised foot is attached to the front end of
the track-bound foot. As mentioned in the previous section, misbond formation is
far more common with the front site. Generating a bias for foot replacement would

3 Unbiased VMMC simulations performed at the same temperature demonstrate similar behav-
iour, suggesting that these results are not overly dependent on the details of the simulation tech-
nique. Although statistics are fairly poor, the VMMC simulations appear to give a somewhat higher
probability of any misbonds melting before they are displaced—nevertheless, binding through dis-
placement is still observed.

4 Using the parameters of Ref. [2], I calculate melting temperatures of 316K, 311.7K and 312.8 K
at 0.000336 M for strands carrying the motifs causing misbonds in Fig. 8.2d-h respectively. This
should be compared to that of an ‘average’ 6-bp duplex with two dangling ends, which has a 7;,, of
309.4K.
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be extremely beneficial for the walker—without such a bias, its efficiency is limited
to 50 %.

From the evidence of Fig.8.3a, the geometrical asymmetry does not appear to
translate to a bias towards stepping forwards correctly. Instead, a roughly equal
number of simulations were observed to be bound correctly in front of or behind
the attached foot at the end of the simulations. Even if all of the simulations that
were ended while in a misbonded state were destined to eventually attach correctly
to the front site, the ratio of forwards to backwards steps would still only be ~2: 1.
It is clear that my model predicts that any bias associated with foot replacement is
minimal.

The lack of an obvious bias was initially surprising, as Fig. 8.2b suggests that the
raised foot is inherently closer to the front site. Part of the reason may be the greater
ease with which back misbonds can be converted into correct binding to the back
site, as discussed in the previous section. Many simulations, however, directly formed
correct bonding, and simulations in which misbonding was forbidden provided little
evidence of a substantial bias for stepping forwards.

The flexibility of single strands ensures that this difference in proximity of the front
and back sites is somewhat illusory. In order to form a correct base pair between the
front site of the track and the raised foot, it is necessary for a single-stranded region to
stretch across the length of the 16-bp duplex which links the two feet together—this is
decidedly unfavourable (see Fig. 8.2b). By contrast, forming a correct base pair with
the back site does not require such stretching (only the approximate anti-alignment
of the walker body and the track/foot duplex). This visual argument is borne out
by the free energy of bonding for the front and back sites, which indicate only a
marginally lower free energy cost for forming the first few (correct) base pairs with
the front site than with the back (Fig. 8.3b).

8.1.1.2 Binding of the Feet to a Track Under Tension

In the previous section, it was argued that the asymmetry of the walker did not result
in a large bias for binding correctly to the front site over the back site due to the
contractility of ssDNA. A possible method of overcoming this difficulty, and thereby
generating biased foot replacement, would be to apply a tension to the track. The
question of how the walker behaves on a stretched track is also an interesting problem
in its own right, as tracks will have to be stretched to generate motion in a chosen
direction.

I performed 50 Langevin simulations of 5 x 10° steps in which the track was
subjected to a constant tension of 14.6 pN, a physically reasonable force to apply to
a DNA (enough to cause significant extension of single strands, as shown in Chap. 5,
but not sufficient to cause overstretching of long duplexes). The results, shown in
Fig.8.5a, now indicate a significant (although not overwhelming) preference for
stepping forwards (similar results were obtained using unbiased VMMC and with
tracks under half the tension). The majority of this bias is a result of the increased rate
of directly binding to the front site in the correct manner, as the bases at the end of the
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Fig. 8.5 Results of foot-attachment simulations with a tension of 14.6 pN applied to the track. a The
final state of 50 Langevin simulations initiated with one foot in the raised state. b The free energy
profile of bonding to the front (red) and back (blue) sites as a function of the number of correct base
pairs, measured relative to the state with no bonds. The free energy profiles were obtained from 10
VMMC simulations of 4 x 109 steps, with umbrella sampling used to improve equilibriation

track are now automatically stretched into a more convenient location for binding.
Such an explanation is supported by the free energy profiles of binding under tension
shown in Fig. 8.5b, which show that the result of the force is to make the formation
of the first few correct base pairs with the front site far easier. The mechanism is
further highlighted by considering the probability of having a single correct base
pair with different bases along the track as measured in VMMC umbrella sampling
simulations. The application of tension dramatically increases the weight of being
paired to bases at the far end of the front site (by approximately a factor of 7), whilst
barely affecting the probability of pairing with bases closer to the attached foot, and
slightly suppressing pairing with bases at the far end of the back site.

8.1.1.3 Binding to an Extended Track

If the walker is to be useful, it will have to take many consecutive steps along an
extended track. To test the feasibility of such a process, simulations were performed
for 3.5 x 10 steps on a track with seven binding sites (hereafter labelled r—z from
back to front), with one foot initially bound to site w and the other raised. The track
was subjected to a tension of 14.6pN. The results, shown in Fig. 8.6a, indicate that
the most common result is binding to site y; a single overstep. This would be a
disaster for the walker—when overstepped, there is no competition between the two
feet and hence the lifting of either foot is strongly suppressed. In this configuration,
the walker is essentially stuck.

It is even possible to double overstep, by binding to site z. Such binding, however,
requires considerable stretching and hence walkers bound in this configuration have
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Fig. 8.6 Results of foot-attachment simulations with a tension of 14.6 pN applied to a track with
six available binding sites. a The final state of 50 Langevin simulations initiated with one foot in
the raised state. b A double over-stepped configuration, exhibiting considerable fraying

a tendency for the front foot to fray away from the track (Fig. 8.6b). Consequently,
the fuel binding site can be revealed and the foot lifted.

Misbonds are also relatively common—generally they are based on the motifs of
Fig.8.2e, f. The extra length of track in these simulations allows the formation of
a few extra base pairs. To form these extra pairs, the duplex must enclose several
mismatches or internal loops. In my model, these structures are stable at 310 K—as
discussed in Chap.6, however, my model generally overestimates the stability of
structures involving internal loops and mismatches relative to Ref. [2]. It is therefore
probable that these kinetic traps would be less of an impediment for the actual walker
than in my system, although they may still be kinetically relevant. In particular, the
most common misbond in simulations involves binding to site y in the manner of
Fig.8.2f, with some additional pairing with site x. It its likely that the additional
pairing would likely be less stable in reality than in my model—this would open up
a toehold for an inchworm-type displacement of the misbond by correct binding to
the y site. No backwards steps were observed in this set of simulations. However,
this is likely to be due to the low statistics, given that backwards steps were observed
for a short track under tension.

Note that the mismatches such as those shown in Fig.8.2d, g do not have an
analogue in this larger system—with an extended track, these misbonds constitute
partial correct binding an the adjacent site.
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Fig. 8.7 Free-energy landscapes associated with the competition between toehold domains,
obtained from 10 VMMC simulations of 4 x 1010 steps each. a With no applied tension. b With
the track under a tension of 14.6 pN

Simulations performed with a tension of 7.3 pN gave similar results. Differences
are as would be expected—binding to site z is more frequent and stable at lower
tension, for example.

8.1.2 Competition Between Feet

Figure 8.7a shows the free-energy landscape associated with the competition between
the two feet of the walker (attached to the front two sites of a short track). The
maximum number of base pairs for each foot is 20 (that foot has then ‘won’ the
competition, and the toehold on the other foot is raised), and the maximum number
of base pairs with the non-toehold domain is 14. There appears to be only a small
free energy difference between having the front and back foot toeholds raised. Note
that when the front foot has lost the competition, it tends to fray as it is not favourable
to enclose a mismatch only one base pair from the end of the duplex.

The important point to note is that there is remarkably little difference between
Fig.8.7a, b (which shows the free-energy landscape for displacement under a tension
of 14.6 pN). The similarity suggests that such a tension should have a limited effect
on the bias of foot-lifting, as the relative exposure of toeholds is virtually unchanged.
The effect of the tension appears to be to differentially influence the transition states
of foot-binding, and hence the probability of binding to the front and back sites, but
not the final states of foot-binding. This is perhaps not surprising, as the bases in the
track are essentially transferred from one duplex to another by competition, and so
the track’s extensibility is similar in both cases.

8.1.3 Fuel Binding and Displacement

Figure 8.8a shows the free-energy landscape of fuel binding to the feet of a walker
(attached to the front two sites of a short track) without tension. The probability
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Fig. 8.8 Free-energy profiles associated with a the binding of fuel to the raised toeholds and b the
displacement of the track from the back foot by the fuel. Each profile was obtained from 10 VMMC
simulations of steps, performed in a periodic cell of side length 80 reduced units

of binding to each foot is roughly equal, with a slight bias towards the front foot
toehold (possibly because when the front toehold is exposed, it is not constrained by
being part of a loop). When bound to the back foot, displacement can proceed: the
free-energy profile for the displacement of the fuel and release of the foot is shown
in Fig. 8.8b. The steps at 7 and 12bp between the track and the foot indicate points
at which mismatches are repaired. These mismatches give a strong bias favouring
displacement, which in this case is likely to be beneficial as the fuel is unable to
displace all the bp between track and foot, and must wait for the final 6 bp to detach
spontaneously.

8.1.4 Lifting of the Wrong Foot

Bath et al. [1] performed an experiment in which one of the feet had its non-
competition domain mutated so as to be non-complementary with the fuel. The
rate of fuel binding was estimated by addition of a fluorescently-labeled fuel mole-
cule whose signal would increase upon binding. The signal was observed to increase
around 30 times faster when the mutant foot was the front foot, suggesting that the
bias for lifting the back foot was approximately 30:1. For back-foot lifting, the signal
was well modeled by a second-order process; the lifting of the front foot appeared
to be more complex.
Two possible mechanisms which could lead to this leak current are:

e The front foot is able to fray from its far end, partially revealing the binding site
for the fuel and allowing displacement.
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e The fuel can bind to the toehold of the front foot, and then somehow displace the
front foot from the track using this as a toehold.

Explanations which involve some fraction of the DNA having errors or being in a
misformed state when the fuel is introduced seem to be unlikely, as by the end of the
front-foot experiments around 50 % of the walkers had raised feet (see supplementary
material of Ref.[1]).

Yurke et al. [3] and Zhang et al. [4] have demonstrated that the blunt-ended
displacement involved in the first mechanism is highly suppressed relative to toehold-
mediated strand displacement. Both groups found that toeholds of 6 bp accelerate
displacement of ~20bp duplexes by around a factor 10° relative to blunt-ended
displacement at room temperature. Given these values, a factor of only 30 for the
walker seems surprisingly low. One should note that for the walker, only 8 bp must
be displaced before a mismatch can be repaired, which will make blunt-ended strand
displacement more likely to succeed once it has started. Furthermore, it is possible
that being attached to the body of the walker makes the end of the foot/track duplex
less stable, again favouring displacement.’

Exploratory simulations showed the possibility that, whilst bound to the front
toehold, the fuel could loop round and displace base pairs between the front foot
and the non-competition domain. This suggests a possible mechanism of incorrect
foot-lifting, in which the fuel detaches from the front toehold whilst bound to then
non-competition domain, allowing displacement of the track from the foot to proceed.
Such a process, involving a double-X-like structure, is illustrated in Fig. 8.9.

I performed forward flux sampling (FFS), as outlined in Chap. 3, to estimate the
flux from a state in which the fuel is bound to the toehold to one in which it has formed
8bp with the non-toehold region.® The sampling details are given in Appendix F.
50 more unbiased simulations were initiated from this point, of which 25 returned
to the initial state with no binding to the non-toehold region, 24 completed the
displacement and one failed to do either within the simulation time. I compared
the overall flux for displacement to that for simple dissociation of the fuel from the
walker.

The two estimates give a relative flux of 286:1 (error ~17.2 %) in favour of simply
melting the fuel/toehold duplex, rather than melting the toehold whilst displacing the
track. Thus ~0.35 % of systems with toehold binding to the front foot should displace
the track from the foot rather than simply dettaching.

Thus the model suggests that this mechanism should have a rate of order 300
times slower than the lifting of the back foot by the fuel. This number should be
treated with great caution—a number of limitations in the model may cause it to be

5 There is no evidence from my simulations that being attached to the body of the walker causes
a significant unpeeling tension on the end of the front foot/track duplex. The presence of explicit
electrostatics, however, would tend to generate some repulsion between the walker body and the
foot/track duplex. This would favour conformations in which they are separated by a greater distance,
perhaps providing some tendency for the foot/track duplex to peel from its front end.

6 8 bp between fuel and foot was found to be a metastable minimum of free energy. At this point,
the fuel has repaired the two mismatches between track and foot, which is favourable, but forming
any more base pairs is geometrically difficult without melting the fuel/toehold duplex (see Fig. 8.9).
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Fig. 8.9 Postulated mechanism for raising the front foot via displacement. a Fuel is bound to raised
front toehold. b Fuel is bound to first three bases of the non-competition domain, having displaced
the track. Fuel displaces more bases, forming a double-X-like structure. Fuel detaches from toehold,
allowing displacement to proceed

significantly different for real DNA (for instance, electrostatic effects may suppress
the configurations required, or the extra destabilization of the foot/track duplex due
to mismatches may favour the mechanism). Nonetheless, the model suggests that
this mechanism for a leak current is not completely implausible.

It should be relatively simple to distinguish between the two displacement mech-
anisms in experiment. By mutating one or other of the two toehold domains of the
front foot, either process can be effectively prevented from happening. If the leak
current is unaffected by the change, the mechanism in question can be eliminated as
a cause.

Establishing the dominant cause of lifting the wrong foot is important for opti-
mizing the walker. In particular, the mechanism analyzed here is strongly favoured
by the location of a mismatch near to the end of the non-toehold domain, which leads
to increased fraying and favours displacement. If this mechanism is discovered to
dominate the leak current, the sequence design could be reconsidered. Furthermore,
the pathway explored above is unlikely to be particularly sensitive to whether the
walker is attempting to do work against a force. Such a force would favour peel-
ing of the front end of the foot/track duplex, and hence exacerbate the alternative
blunt-ended displacement.

8.1.5 Fuel Dissociation

In Sect.8.1.1, it was assumed that reattachment of the foot occurs after the severed
fuel and nicking enzyme have completely dissociated from the foot. This may not,
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fuel segment

Fig. 8.10 Raised foot with a proximal and b distal half of fuel attached

however, be the case. One plausible scenario is that one or other of the halves of the
fuel, along with the enzyme, will dissociate first, leaving the other half still attached.
What consequences could the presence of half of the fuel have for reattachment (here,
the terms proximal and distal refer to the proximity of the fuel to the body of the
walker—see Fig. 8.10a):

e Proximal half of the fuel still attached. In this case, the section of the foot which
would bind to the back site is mostly exposed, whereas the front binding site is
largely inhibited.

e Distal half of the fuel still attached. In this case both binding sites are partially
inhibited by the presence of the fuel.

I have performed exploratory simulations for each of systems with both long and
short tracks under tension in which the walker is initiated with either half of the fuel
still attached to the raised foot. Currently data is limited, but the preliminary findings
are given below.

e Proximal half of fuel remaining: misbonds of type (d) and (e) are very common, but
displacement by the correct site is prevented by the presence of the fuel remnant.
The 12 available bp with sites v and y mean that the foot often binds in these
configurations (overwhelmingly with y for an extended track). Displacement of
the remainder of the fuel is reasonably facile for site y, but not for v as the other
foot blocks displacement of more than 2 bp. Presumably, however, detachment
of the fuel will eventually occur. Successful binding to site x (involving fuel
displacement) has been observed, but appears to be rare.

e Distal half of fuel remaining: binding to the 8 available bases at the front of the x
site is most probable. Binding to site v appears to be suppressed, although it has
been observed, and binding to site y can also occur. Although no full displacement
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of the fuel by site x has been observed in this system to date (a mismatch hampers
progress), the eventual outcome is likely to be that the fuel is displaced by the track,
as this will have a lower free-energy barrier than simply melting the track/foot
duplex.

Fully binding to any site on the track requires that the fuel fragment dissociate.
This could occur whilst the foot is raised, which would leave the system in a state
identical to that considered in Sect. 8.1.1. As the fuel remnant/foot duplex should be
more stable than any misbond, it seems likely that misbonded feet will detach from
the track before fuel dissociation, and so misbonds are likely to constitute only a
kinetic trap rather than a pathway to binding.

Partially binding in the correct fashion, however, may lead directly to full binding.
In particular, the track has been seen to displace the fuel from the foot, although such
aprocess is suppressed by the existence of mismatched bp between the track and foot
that are absent in the fuel/foot duplex. To date, I have only observed displacement
of the proximal half of the fuel by correct binding to site y, but it should be possible
in other cases. The only exception would be when the foot binds to site v with the
proximal half of the fuel still attached. In this case, 12 bp form with the track without
displacing the fuel and so full displacement of more than two base pairs of the fuel
is impossible. Nonetheless, one would expect the partial binding to the track to be
more stable than the foot/fuel duplex. It therefore seems likely that once in this state,
the fuel fragment would eventually detach, allowing complete binding.

Overall, the preliminary simulations seem to suggest that a foot with the proximal
half of the fuel still attached will be more likely to overstep or step backwards than
in a system with no fuel remnant. By contrast, a foot with the distal half of the fuel
present seems to be likely to bind correctly to the site immediately in front of the
attached foot, although overstepping is still possible. It would be beneficial to have
greater experimental characterization of the behaviour of the nicking enzyme, but it
seems likely that to preserve any forward-stepping bias it would be useful to ensure
that the proximal half of the fuel detaches first. This might be achieved by using more
AT base pairs in this half of the fuel strand, or alternatively moving the nicking site
so that it is closer to the proximal end of the fuel.

8.2 Discussion

In this chapter I have presented the results of simulations into the operation of a
two-footed DNA walker, the first time a simulation of a system such as this has been
attempted. The model and simulation techniques were able to successfully describe
a system this complex, and several novel predictions were made.

The model suggests that:

e In the original system introduced by Bath et al., if the walker is released from a
state with one foot raised, it can either bind directly to the front or back site, or
initially misbond with the track. Misbonds will eventually melt or be displaced.
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e The foot/track duplex can displace incorrect bonding via an ‘inchworm’ mecha-
nism, or via a novel ‘double-X’ state.

e There is little or no bias for a raised foot to step forwards correctly.

e Applying a tension of around 15 pN to the track favours directly binding with the
front site over the back site, and will tend to bias the walker towards stepping
forwards.

e Applying tension has a very small effect on the competition between feet once
both are bound.

e If the track is extended to include multiple binding sites, the most probable result
is a single overstep (even under tension). The singly-overstepped state does not
appear to be particularly susceptible to fraying from the front end (which would
encourage fuel binding), meaning that it would be difficult for the walker to recover
from such a configuration.

e A possible method by which the fuel could lift the front foot has been suggested,
involving initial binding to the raised toehold before reaching back to displace the
track from the foot.

e It is plausible that the one or other of the halves of the fuel will remain attached
to the track after the other has detached. Early results suggest that if the half that
is closest to the body of the walker remains, it will strongly inhibit binding to the
desired site (whilst permitting backwards stepping and overstepping). By contrast,
if the half of fuel that is furthest from walker’s body is still present, the bias for
stepping forward seems to be preserved, and overstepping is not strongly favoured
compared to the case with no fuel present.

The majority of these predictions rely primarily on the basic geometrical, thermo-
dynamic and mechanical properties of DNA, which the model reproduces reasonably
well. In particular, it is difficult to see how the conclusion that overstepping is prob-
able could be avoided, and similarly the consequences of having half of the fuel still
attached seem physically robust.

The relative probability of reaching correct binding directly or through a
displacement-based pathway is quite sensitive to the rates of different types of bind-
ing. The model does, however, highlight the possibility of previously unexpected
binding pathways from a system with one raised foot (and no fuel attached). Although
misbonding is still possible with fuel fragments present, the pathway to full binding
is strongly suppressed.

My model predicts that tension will favour stepping forward primarily by increas-
ing the rate at which correct pairing will occur with the front site relative to the back
site. Note, however, that tension will also prevent the back site from displacing
misbonds that occur with the front site. As a consequence, tension could increase
any bias for stepping forwards regardless of which pathway (direct binding or via
displacement) is more common in reality. The model’s representation of a mecha-
nism for lifting the front foot indicates that it is plausible, but the number of factors
which contribute to the process mean that it should be treated with caution.

The ‘double-X’ configuration does not appear to put the DNA under unusual
strain, but, due to the simplicity of the description of the backbone in the model, this
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Fig. 8.11 Schematic diagram of a proposed alternative walker design, with like colours indicating
complimentarity. The track has two distinct competition domains (t1 and t2), and two distinct non-
competition domains (b1 and b2). Two types of fuel are required—fuel a to lift the foot currently
at the rear of the track, and fuel b to lift the foot currently towards the front

predicted displacement mechanism can only be described as plausible. The inchworm
method, however, only requires the formation of bulged duplexes, which are known
to exist.

The main caveat is that the walker, like the tweezers, often brings duplexes into
reasonably close proximity. As a consequence, it is possible that electrostatic repul-
sion may have a significant role. Duplexes tend to be closest when in the fully bound
state. In this case, electrostatic repulsion may tend to push the body of the walker
away from the track, which would encourage more fraying than is observed in my
simulations. Some misbonds also tend to involve looser, more open structures, and
this means that they too might be penalized less by explicit electrostatics than correct
bonding. If this is the case, the displacement route to correct bonding may be more
common than observed in my simulations. Displacement itself, however, usually
involves a higher density of strands (particularly when the double-X mechanism is
involved), and so the effect on the kinetics is not obvious.

It is not easy to see whether electrostatics would penalize the initial states of
binding to either the front or back site more than the other. If so, however, this
effect would influence the bias for binding correctly to the front foot under tension.
If electrostatic interactions jeopardize the performance of the walker, higher salt
concentrations could be considered.

8.2.1 Considerations for Design Modifications

Having studied the walker using my model, several modifications to the design appear
to be sensible. Most importantly, the tendency to overstep must be reduced. One
approach would be to have two distinct toehold domains, two distinct non-toehold
domains, and two fuel strands (see Fig. 8.11). This would prevent overstepping by a
single site, and would also have the benefit of suppressing the possible leak current
suggested in this work.

The most stable misbonds (ignoring those which correspond to overstepping) arise
because the toehold domain and non-toehold domain have regions of very similar
sequence, and due to a repeated motif in the non-toehold domain. The behaviour of the
system could be simplified by removing this similarity, as direct binding to the correct
sites would dominate. It is not clear, however, that such a system would be any more
efficient. Furthermore, if the fuel typically detaches in stages, the role of misbonds
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as intermediates to correct binding appears to be reduced. In the original work, the
sequence was somewhat limited by the desire to make the walker able to move in
either direction. Lifting this requirement would give more sequence flexibility.

Applying tension to an extended track appears to be important, not only because
it allows the direction of the walker to be defined. Firstly, it will assist with the
recovery of walkers in a double-overstepped configuration (and reduce the frequency
with which this occurs) by encouraging fraying from the front end. My model also
suggests that tension will, to a limited degree, favour stepping forward. An additional
benefit would be that the invasion of the foot/track duplex by other sites on the
track [1] (which would effectively lead to an overstepped walker) would be strongly
suppressed.

Finally, designing the fuel so that the half closest to the walker body is likely
to detach first will probably improve the efficiency of the walker—this could be
achieved by making it shorter than the other half, or including more AT base pairs.
A remaining concern is whether the enzyme will detach before or after the fuel
segments, and whether it will interfere with the reattachment to the track if it remains
after one half of the fuel has dissociated.
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Chapter 9
Conclusions

This thesis introduces a novel coarse-grained model of DNA which is specifically
designed to capture the structural, mechanical and thermodynamic properties associ-
ated with single-stranded and duplex DNA, and the transition between the two. The
model has been shown to give a physically reasonable description of a range of DNA
properties, and has been applied to two nanotechnological systems (DNA tweezers
and a two-footed DNA walker). These studies represent the first investigations into
dynamic DNA devices using a coarse-grained model.

Unlike many alternatives in the literature, my model aims to reproduce DNA
behaviour in a manner which is as physically motivated as possible. In particular, the
structure of duplexes is enforced through the directionality of stacking and hydrogen-
bonding interactions, rather than through backbone constraints. This approach allows
for a stacking transition for single strands (which is absent in the majority of alter-
native models). Such a transition allows single strands to be extremely flexible when
unstacked, and makes the simulation of hairpins and more complex motifs possible.
To implement directional interactions, it was found to be important to represent the
planarity of bases in the model, another feature that was novel when the model was
introduced.

9.1 Utility of the Model

In Chaps. 5 and 6, the model’s properties were discussed in great detail. I have
shown that a model which is fairly simple in principle can give a good description
of a wide range of DNA properties (a far wider range than has been considered by
other authors). Specifically, my model has been shown to:

e Give an approximate representation of the structure of B-DNA.
e Have a broad, almost uncooperative stacking transition.
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e Reproduce the average melting temperatures and transition widths of short duplexes
extremely well (when compared to the Santal.ucia parameterization of the two-
state model [1]).

e Give a reasonable representation of the stability of structures involving hairpins,
bulges, mismatches and dangling ends. In particular, the dependence of hairpin
stability on loop and stem size agrees well with Ref. [1].

e Quantitatively reproduce the tendency of stacked single strands to be stiffer than
unstacked ssDNA, with duplex DNA seen to be even less flexible.

e Give a good description of the response of duplexes and single strands to tension,
and the response of dsDNA to applied torsion.

Many of the properties mentioned above were used to parameterize the model.
Although it is noteworthy that such a range of features can be described by a model
of this kind, to be really useful, it is important that the model makes predictions that
extend beyond its parameterization (a feature somewhat lacking in the field of coarse-
grained DNA modelling to date). The model reproduces some well-established
physical properties of DNA that were in no way considered in parameterization.
For example, the propellor twist of base pairs arises naturally in the model for the
same reason as in real DNA. Similarly, the dependence of T, on motif location for
duplexes with mismatches was initially surprising, but actually reflects experimen-
tally reported behaviour.

In addition, the model also makes non-trivial predictions, which are based on
sufficiently generic properties that they should prove robust to the approximations
present in my description of DNA. Below I highlight some of these predictions that
may be amenable to experimental investigation:

e The model suggests that at low temperatures, the magnitude of the enthalpy associ-
ated with duplex formation should increase with temperature, as has been observed
experimentally. At high enough temperatures, however, the model predicts that
duplex fraying will cause this gradient to change sign. Such a feature should be
particularly easy to detect for a duplex with a CG-rich core and AT bases towards
the ends, as fraying will be significant close to the melting temperature of the
duplex.

e It was found that the strand displacement process during the operation of DNA
tweezers was far from flat in free energy, as is generally assumed. In part this was
due to specific features of the system, but a component was due to the unfavoura-
bility of opening up a second single-stranded region when displacement begins,
a feature which should apply to all displacement processes. An initial increase in
free energy during displacement may help to explain the observed dependence of
displacement rate on toehold length, the strength of which is currently difficult to
justify [2].

e Simulation of a two-footed walker on a track demonstrated a range of non-trivial
behaviour. Most significantly, it was found that the current design would typically
lead to overstepping, an extremely undesirable event. The possibility that rebinding
may occur before both halves of the hydrolyzed fuel have detached may also tend
to favour overstepping and stepping backwards. Finally, applying a tension to
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the track was shown to improve the probability of stepping forwards, assuming
the difficulties mentioned above can be overcome. Potential design changes to
eliminate these problems are discussed in Chap. 8.

9.2 Limitations of the Model

Any coarse-grained model is a compromise, and my description of DNA certainly
neglects or heavily simplifies many features of potential importance. In particular,
the simplistic representation of electrostatic interactions is probably the major factor
limiting the predictive power of the model at this stage. This is particularly true for
much of nanotechnology, which often involves duplexes being brought into close
proximity (DNA origami, for instance, is a dense array of double helices).

The next most obvious simplification is the limited sequence dependence of
model. Features such as the tendency of bubbles to form in regions of weaker base-
pairing cannot. Therefore, be captured—an average base description has the advan-
tage, however, of not disguising general trends through sequence-specific effect.

The model’s structural and mechanical description of DNA on the level of one
base is unlikely to be very accurate, as the representation of a nucleotide is necessarily
simplistic and the model is fitted to long length scale properties. In particular, the
simplicity of the backbone interaction between nucleotides may allow structures
that in reality are penalized. Note also that minor and major grooving are absent in
the model, asymmetrical groove sizes being important in determining the stresses
involved in DNA origami [3].

9.3 Future Work

The most obvious avenues for further work involve improving the current limita-
tions of the model, by introducing a more physical representation of electrostatics,
increased sequence dependence and exploring the description of DNA mechanics on
the level of one base. None of these goals will be simple to achieve. The electrostatic
behavior of DNA is potentially very complex, particularly for systems which involve
divalent cations. In fact, an understanding of the consequences of electrostatics for
the stability of systems like DNA origami would be interesting in its own right. For
instance, it is a puzzle as to why ‘CANDO’ (a package with no explicit electrostat-
ics) is able to reproduce the structures of complex 3-dimensional DNA origami [4].
Introducing sequence dependence of all interactions to the model would result in
an enormous number of parameters, which would be difficult to constrain given the
experimental data available (this is particularly true of stacking). The description of
DNA on the level of a single base could potentially be compared to atomistic simu-
lations, such as those of the Maddocks group [5], which would show which modes
of deformation are too easy or too stiff in my model. It will not necessarily be trivial,
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however, to deduce which interactions are responsible for the differences between
force fields.

Despite the caveats mentioned in the previous section, I believe the model is
capable of providing insight into a range of phenomena as it stands. For example, I
am beginning to investigate the fundamental principles of strand displacement (in a
range of scenarios) and duplex formation under tension, topics which were inspired
by the simulations of nanotechnology presented in this thesis. Other authors have
published work on the pathways involved in duplex formation [6, 7]: it would be
instructive to see if I find similar results, or whether the results are strongly model-
dependent.

Further development of the model, as outlined above, will enable more systems
to be considered, such as DNA origami. From a broader perspective, it would be
interesting to investigate more biological behaviour. In particular, the model could
be used to explore how the forces and torques due to protein binding might induce
biologically useful behaviour, such as gene regulation and the origin of replication
in bacteria. Such work would require collaboration with researchers who study the
detailed mechanics of DNA/protein binding [8]. Another possible extension would be
to consider modelling RNA with an approach similar to that presented in this thesis.
Such a model may be of use in predicting the secondary structure of biologically
relevant RNAs, and could also provide information on the pathways by which these
molecules fold to their native state.
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Appendix A
Representing Forces
and Torques Using Quaternions

Langevin simulations in this work were performed using an algorithm which
requires a quaternion representation of rigid body orientation [1]. The details of
quaternion dynamics are discussed in Appendix B—here I present the forms of the
derivatives which are required by the algorithm.

A.1 Nucleotide Description

Any set of coordinates that are used to construct the potential must specify the
position and orientation of each nucleotide. Firstly, position can be specified by a
vector r which gives the location of the centre of mass of a nucleotide. Associated
with each nucleotide there is also a unit vector which indicates the direction of the
base sites from the backbone site (b) and a unit vector giving the normal to the
plane of the base (n). When represented in the space-fixed frame, call them b® and
n°, and in a body-fixed frame b” and n®. Define the body-fixed frame such that
bf’ = 0;; and nf.’ = J;3. The vectors can be mapped between frames using the
rotation matrix:

x*(r) = AT (£)xP. (A.1)

The rotation matrix A gives the orientation of the rigid body in the space-fixed
frame. A possesses only three independent degrees of freedom, and so can be
uniquely specified by a four-dimensional unit vector. Defining a quaternion q =
(90,91,92,93), any rotation matrix can be constructed via:

W%+ —a— 6 3@?+@%% 2(q193 — 90g2)
A=\ 2qq2—qoq3) aG—95+%G— 0% 3@@+@m% , (A2)
2(q193 + q092) 2(92g5 — q0q1) 95— 491 — 9> + 43

with >, qi2 = 1. An explicit discussion of the relationship between q and the Euler
angles of a rotation is given in Ref. [2]. The quaternion q is then a convenient
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representation of the orientation of the nucleotide. Using the quaternion
representation of orientation:

e Backbone-base orientation:

b* = AT ()b = (cq} + qf — &5 — 32(q192 + 9043)2(q193 — qoq2)).  (A.3)
e Normal orientation:

n' = AT(I)“b = (02(511613 + 4092)2(q293 — 6106]1)(q(2> - ‘1% - Q§ + ‘1%))~ (A4)
e Third axis (defined by n x b, useful for the chiral term of stacking):

Yy =AT(0)y = (c2(q19> — 9003)q5 — ;1 + B — 632(q2q3 + qoq1)).  (A.S5)
e Interaction site position:
ry =1+ dxAT ()" =r +dx(cqg + 47 — 43 — 632(q192 + 9043)2(9195 — 90q2)).

(A.6)

where d, is the distance of the interaction site x from the centre of mass along
the b direction.

A.2 Derivatives

The potential of the model is described in Chap. 2. As outlined in Appendix B,
derivatives with respect to the centre of mass position and quaternion of each
nucleotide are required to perform Langevin simulations. The potential is a sum
over pairwise interactions, and for each interaction one must differentiate the
potential with respect to the position vector and orientation quaternion for both
nucleotides involved.

For a nearest-neighbour interaction:

AVEENE (OTbackbone ) dfs(0rsy)
T2 Vg r (OTbackbone ) + 2 dor. Var(0ry)
oy

Veack _ dfi (f;rslack) Vq,’r(érstack) + ' Z Vs‘acvk dfjigl)l) vqr(el)

fl (éralm:k) dOrgack

y ‘l-,rvneighbour = dfs( (¢1) \v4 ¢
VS[ZIC S\ cos
fé(—cosz(dh)) dCOS(¢1)l q’r(COS( 1)

+ et St Var(cos(62),

(A7)

where the sum over x,y* means all combinations of repulsion centres except for
the two backbone sites. For non-neighbouring nucleotides,
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df3(0ryy) Vug  dfi(Orus)
;y dérw vqr(5 )+f1(5rHB) dérHB Vq‘r(él’HB)

Vug dfa(0;)
Var(0;
i:1—4,7,8f4(9i) do; arl0)

Vcross_slack de (5rHB )
fz(émg) déVHB

cross stack df 4 )
+ Z f4 dH vqal‘(gl)

+

vqr(érHB)

Vcross_stack d(f4 (91) +f4 (TC - 81)

+ Vr(0;
i;8f4(0i) +fa(m—0;) db; ar(61)
vq.,rvnon—neighbour = v Y df (5 )
coax_stack @J2{ OF stack
— V r 5 stac
f2(5rslack) darstack q"( " k)
VcoaxAslack df 4 (04)
7o) do, e
Vcoax _stack d(f4(01) +f4(27'£ B Hl)v (0 )
R0+ A2 0) o o
6
coax _stack d(ﬁ(a,) —‘rf4(7'[ - 61)
Vqr(0;
+,Zf4( Y+ fa(m— ) do; ar(00)
4
Vcoax stack de COS(¢) ))
Z fs(cos(¢;)) dcos(¢;) Varcos(¢),
(A.8)

where in this case the sum over x, y means all combinations of repulsion centres of
the two nucleotides. For each instance of an interaction, the parameters such as
strength and cutoffs are constant and so they have been suppressed in the equations
above.

A.2.1 Derivatives of Functional Forms

Equations (A.7) and (A.8) contain derivatives of the functional forms Vggng and f;
with respect to their arguments, which are generally angles or distances. These are
given by:

dVFENE(r) _ G(V — ro)

0 FC— (A.9)
2caexp(—(r—r°)a)(1 —exp(—(r—r%)a) if r'ov <r<rhish,
dfi(r) _ 2€bjgy (1 — rétow), if rofow < <plov, (A.10)
dr 2ebpign(r — pehigh if Phigh < p < pohigh ’

0 otherwise.
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k(r —r°) if rlov << phish,
dfr(r) ) 2kbig,(r — rolow), if ol <y <plov, (A.11)
dr ) 2kbpign(r — pehighy —if phish <y < pehigh ’
0 otherwise.
“(6(9)-129)") ifr<r®,
distr) _J o | - (A.12)
dr 2eb(r —r%) if I <r<re, ‘
0 otherwise.
—2a(0 — 0°) if 0° — AO* <0<0° + A0,
dfa(0) _ ) 2b(0— (6° — A6%)) if 6° — AG° <0< — AO™, (A13)
do 2b(0 — (0° + AO%)) if 0° + AO" <0< 0° + AGF, '
0 otherwise.
) if ”
dfs(cos()) acos(¢) o i cosEq’)) < cos(¢) <0, .
— 5 = 2b(cos(p) —cos(¢)?) ifcos(¢h) < cos(¢p) < cos(¢p)”,
dcos(¢) !
0 otherwise.
(A.14)

A.2.2 Derivatives with Respect to the Coordinates

The somewhat clumsy definitions of angles in Chap. 2 are now extremely useful,
as it is natural to consider one nucleotide as being influenced by another when
calculating the force or torque. Label the nucleotide for which the force or torque
is being calculated as o, and its partner as f8. Define Jry, to be the vector to the
interaction site x on « from site y on f. Let 5t be a normalized vector, and let b, i
and y represent the orientation of B. 0,,0s,0;,¢, and ¢; involve angles with
respect to the orientation of «, and 03, 0, 05, ¢, and ¢, to involve angles with the
orientation of . The stacking interaction is intentionally asymmetric with respect
to the 3’ to 5 direction for neighbouring nucleotides. The result is that
Vig(05), Vig(0s), Vig(cos(¢,)) and V,,(cos(¢,)) all have a sign that depends
on whether « is in the 5’ direction of f: if it is, then the first option is taken, if not,
then the alternative.
Derivatives with respect to position vectors

Vi(ry) = Fy. (A.15)
Ve (01) = 0. (A.16)
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1 1
Vi(02) = . \2|orus|
1 —(b-orug)
~1 1 -~
Ve(03) = - 2 |oryg| b-
1 —(b-oryg)
V1‘(94) =0
1 1
vr(HS) - N 2 |5f'stack| "o
1— (n . 5rstack)
1 1
Vie(0s) = "=
1— (fl : 5f'stack)2 |5rSlaCk|
vr(HS’) - R 2 |5rstack| (n
1 — (n . 6rstack)
F1 1 -
(05) = .
\Y% ( 6) N R 2 |5l'stack| (n
1 — (ll . 5rstack)
A 1 B : -
1— (n-ofyg)? b
-1 |
Ve(0s) = ~ . \2|Orus| "
1 — (n-dryg)
+1
Ve T 16|
(COS(¢1 ) ) | 5rbackbone |
+1
Ve T 0T rackbone|
(COS(¢2 ) ) | OFbackbone |

51’ 51'
Ve (COS(¢3)) - _ ( stack2 + backbone2
| O tack | | OTpackbone |

b x (5rstack - 5rbackbone)

‘ 5rstack | | 0 I'backbone |

5[‘ 51'
vr(COS((f)4)) — _ ( stack2 + backbone2
| 5r5ta‘7k | l 5rbackb0ne |

b x (5rstack - 5rbackbone)

| 5rstack | | 5rbackbone |

)((5fstack X 5f'backbone) ’ b)

)((5fstack X 5fbackbone) : B)

(n-

(n-

(n-

(n-

(&

(n-

(b — (b - otyp)orus)

‘5rHB)5fHB)

5f‘slaok) 5fstack)

o 1A'statck) 5fstack)

5fstack ) 5f‘slack )

5fstack ) 5fstack )

Ofyp )Oorys)

Ofyp )0ryg)

(y - (y : 5f‘backbone)5fbackb0ne)

(5’ - (5’ : 5f'backbone)5fbackbone)
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(A.17)

(A.18)

(A.19)

(A.20)

(A21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)
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Derivatives with respect to orientation quaternions

Valdry) = 9t~ (A.30)
V() ——— L .P (A31)
4 F2 0
1— (b))
1
v(1(92):
1 — (b- otys)

1 - 1 -
V,(05) = b 0orpp b orm (51'113 _ aérHB>
1 - (f) . 5fHB)2 |5rHB| aq |5rHB| aq

(A.33)
-1 _ 0
Vq(0s) = ———=n" o (A.34)
I—(m-a)?
on 5A D B 00rack
1 o " OFstack + T3, (T g
Vq(05) = 1 5 (; SOt (A.35)
1— (n . 5fstack)2 mn ' l'stack( Istack - T)

vq(96) = !

1 - (ﬁ : 5fstack)2

% 1 i 65rstack _ 1 i or . (51‘ - aérstack>
| 0T stack| oq |0 stack |3 stac stac 3a

(A.36)

on 5f'stack + _;n Pl
Va(0y) = i ( “ or T (A.37)

1 00T giack
P 2 \ ——=——n-Jr; (5r - 0k, )
1 — (n . 5rstack) 0T sk stack stack 3q
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F
Vq(ls) =
11— (ﬁ : 5f'stack)2
% 1 i 65r5lack _ 1 i or <5I‘ aérslack)
‘5rsta0k| aq |5rsta0k|3 stack stack aq
(A.38)
1
vq(07) =
1-— (I'l . 5fHB)
on . 1 0drug 1 ( 65I‘HB>
X | =—- doryg + n- — n- oryg | orys -
(6(] HB |5rHB| 6(1 |5I‘HB |3 HB HB aq
(A.39)
-1 1 00 | B 09
Vq(0s) = TR 50 - 0rpp <5I'HB : rHB)
L~ (8- iygp)* 0Tl 0 ori| o
(A.40)
0 R 1 00T backbone
VQ<COS(¢1)) == (_y * OFpackbone + y- P )
aq | 5rbackbone | aq
1 00T packbo (A41)
— 5rbackbone (5rbackbone : Lne)
| 5rbackbone |3 aq
1 00
Va(cos(n)) = & R
| 5rbackbone | aq
1 V. or Sr a5I'backbone (A42)
|5l‘backbone |3 y backbone backbone aq
Vq (COS(¢3)) = _((5fstack X 5f‘backbone) b)
5rstack . a5l‘stack/aq 5rbackbone . a5l‘backb0ne/aq
X N 3 5
| brsmck | | 5rbackbone ‘
1 1 00T gack 00T packbone
+ ackbone T~ 0 stacl .
|5rstack| |5rbackbone| (( 6q * 5rb o 6q O k> b)
1 1 ob
Tl 1. 1 \== 51’5 ack X 51’ ackbone
|5rstack||5rbackbone| (aq ( tack pack® )>

(A.43)
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Vq(cos(¢4)) = *((5f'stack X 5f'backb0ne) . B)
% <5rstack : 65l'stack/6q 5rbackbone : a51‘backbone/aq>

‘ 5rstack |2 | 5rbackbone |2
1 1 (A.44)

+
| 5rstack | | 5rbackb0ne |

65I'stack a51‘backbone r
X — X 5rbackbone - X 5rslack b
oq oq

Useful explicit forms of quaternion derivatives

Many of the expressions in the previous section contain terms such as %{1".
These are actually matrices, with the explicit forms given below.
ASr.L). 9 91 —q92 —4
M = (a X,})’ =2 5 @ @ q | (A.45)
Y —4 93 —q0
on; q2 q3 q0 41
M,'j = — = 2 —ql —qO CI3 CI2 . (A46)
qu

qgo —q91 —q92 g3

dy; —q43 42 41 —4o
Mj=7"=2| 90 —¢1 9@ - | (A.47)
K q1 q 93
ob: qg 491 —q2 —q3
i=—=2 a5 @ @« q |. (A.48)
0g;

—q2 493 —q0 41



Appendix B
Quaternion Dynamics

The algorithm of Davidchack et al. [1] was used for the Langevin simulations in
this thesis. This algorithm extends the method of Miller et al. [3], which generates
Newtonian motion of rigid bodies described by quaternions. As neither paper fully
explains the origin of the equations of motion, I derive them here from first

principles.

B.1 Angular Velocities Represented in Quaternions

In Appendix A, quaternions were defined in terms of a rotation matrix relating the
orientation of a vector in the body-fixed frame x” to one in the space-fixed frame
x*. Rapaport [2] has shown that the angular velocity of an object in the body-fixed

frame is given by:

(e)
Q
[=)
o)
Q
[\S)
Q
(95)
Q

70

Wil |~ 40 43 —92f | D
w5 - —¢3 90 @1 || @
wh 93 @ —q1 Qo qs

I label the matrix in (B.1) as Sg.

B.2 Motion Without Noise or Damping

(B.1)

The full Lagrangian for my model, in the absence of any noise or damping, is

given by:
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T
L=y ( (%m,-(ri)T(ri) +2; (S;qi) I (Sg,_q,.)) s (;(q;)j(qi)j - 1))
—U({q}, {r}).
(B.2)
The second term in Eq. (B.2) is simply the kinetic energy of rotation. At this
stage, I have not fixed the normalization for each quaternion to unity, but instead
imposed a constraint term 4; (Zj(q[)‘j(qi)j - 1) that will later be used to impose

this condition on the trajectory. In this extended picture, I have introduced a
fictional zeroth component of the moment of inertia tensor, so that the matrix is
invertible:

)y O 0 0
0 &), 0 0
A <0> o, 0 (B.3)
0 0 0 ().

I have also included a 1/|q;|* term—I do this to make the Hamiltonian (when I
derive it) look simpler. Eventually I will restrict myself to trajectories for which
Iq’ |2 = 1, and these added terms will have no consequences for the motion. The
generalized momenta for this Lagrangian are:

oL
and
oL 4
I = = ——S.iS" q,. B.5
0d; g [t (5

Consequentially, the Hamiltonain can be shown to be:

e (o s 0 (i) 4 (S 1)
+U({q}, {11}). ’

(B.6)

Equations of motion can be determined via:

0 0 0 . 0 0
.i:_ ) .i:__ ’ .i:— ) Ili=—— Y A =0.
N=gp b P g =gt Mi=—go7t 7
(B.7)
The first two terms are trivial:
j ou

b=P and p=—o. (B.8)

m; or;
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118 The next two terms are not so simple:
1

Q= 4Sq,.1i’1S§’_H,- (B.9)

and
. 10 T oU
M= — o= ((Sarn) ()7 (SET0) ) + 220 — = B.10
sae ((sam) @) (s5m) ) + 20, - 5 (B.10)
Hence forth the subscript i indicating the identity of the particle will be assumed,
to avoid complication with index notation. I will also drop the q label on Sg. I can

now use the a%H term to impose \q|2 = 1, which means that SquT = 1. The easiest
way to eliminate A is by evaluating the angular velocity w. w is given by:

1

o=25"q= E(1)*ISTH, (B.11)

in which I have used Eq. (B.9), and the fact that S is orthogonal once |q|2 =1is
imposed. Therefore

oo L4 gr

=217 < (s, (B.12)
Usingl;[:fa%,»’l‘(,
d e T 712 T\ -1 (¢T 76_U
S(s'm) = $ H+S( 86(1((3 ) ()~ (s n))+2,1q a) B

The best way to treat these equations is to use tensor notation. Defining the third
rank tensor Dy, by:

Davpis = (87),,, (B.14)
and F,,; by:
0S,p
Fop=—"", (B.15)
Pl aqp

I can express Eqgs. (B.12) and (B.13) as:

(B.16)
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Using the fact that (I7!) g, 1s symmetric, it can be shown that the second and
third terms are equal. Hence,

. 1, _ , 1 _ ,
Wy = E (I 1),uv DU"‘Pq‘THP - Z (ST)va‘l (prﬁ(l l)ﬂy (ST);YJ) I, + ZA(ST)quP
ou
- (ST)V
»3q,

(B.17)

Consider the first term in the bracket. Inverting the definitions in Eq. (B.11):
. 1
Dovatrnp = Davp Esaawa ' 2Sp6[6[f0)[3 = Davaafopéléﬁwxwﬁ <B18>

Similarly the second term in the bracket becomes:

1 B 1 )

Z(ST)vaongaﬁ(I l)m"(ST)},GH"' = Z(ST)‘ (ZSa(/,I(pow())Fmﬂ(I 1) iv(ST)V,,— (25(7717.1,60‘/,)
= (ST, SugplpoF pup(I” )ﬂ,‘W eron

=(s" vp d¢1¢9chx[i(I I)ﬁylywwgwlp

(S
(s%)
= (), S 0 F popd py 00y
(s%)
(%),

= (1), Sap p0 F pap0op
= ST S,UIMFP}ﬁwywﬁ
(B.19)
So,
. |y T ry U
wuzi(l )ﬂv [DGV/ISMSMI&IJ_Svavolep’y/f]wawﬂ+2}~(S )quP_(S )vp@ .
(B.20)
With
100 0 0 1 0 0
b 01 0 0 b 10 0 0
““loo 1ol "™ o o o 1]
00 0 1 0 0 -1 0 B21)
0 01 0 0 0 0 1 ‘
b 0 00 —1 b 0 0 10
100 of T o -1 0o
0 1.0 0 1 0 0 0

and
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1 0 0 O 0O -1 0 O
P = 01 0 0 oo 1 0 0 O
“foo 10" "™ o 0o 0 -1
0 0 0 1 0O 0 1 O
(B.22)
0O 0 -1 0 00 0 -1
P 0 0 0 1 Fu — 0 0 -1
71 0o o of " o1 o0
o -1 0 O 1 0 O 0
The summations can be done explicitly, giving:
o = A/Io + 10/Io,
I, -1
) = yl “mw3 + 11 /1,
L1, (B.23)
Wy = w3w; + T2/Iy,
I,
o L—1
i == 2wy + 13/1,
with the torque t given by 7, = —3(57),, & aq Imposing g,q, = 1 implies that

wo = 2¢q,g, = 0 and hence that @y = 0. The Lagrange multiplier can therefore be
identified as 2 = —1y. When this is substituted back into the expression for H, it
cancels the effect of any component of %—Z along q, which is exactly what is needed

to retain g,g, = 1. So, returning to the explicit use of particle labels and Sg, the

expression for Il; becomes:

1'1,:—%%((S;Hiy(li)“(s;n,-)) (2;] (qu—;i)q,.). (B.24)

Note that once the condition |q|* = 1 has been applied, (I, i) cancels out from
Egs. (B.9) and (B.24). In fact, in the work of Miller et al. and Davidchack et al.,
the kinetic term is written (equivalently) as:

%(Sg_n,-) () (spm) = th a, TI), (B.25)
with

I (q;) = o~ TP (q,)], (B.26)

1
81

in which
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Pi(q) = (—(g)1, (@0 ()3, —(@)2)"s Pa(@) = (—(gi)s —(a)3 (@) (@i)y)”
and  P3(q;) = (— (93 (@0)as —(a0)y, (9)0)"
(B.27)

Quaternions and generalized quaternion momenta then evolve as:

3
Z and

23:7 oU aU
aq, ) = {5~ (9 5,4 )

Interestingly, if the — (qT au) q; term is left out of this expression, there are no

(B.28)

consequences for the dynamics of physical observables. By dropping this term, the
component of II parallel to q is not fixed at zero, as it technically should be.
an @ hi(q;,IT;) is easily shown to be independent of any term of IT parallel to q,

however—therefore such a term has no effect on the motion or energy of the
system. ¢, also remains orthogonal to q;, as it must.

B.3 Incorporating Noise and Damping

Equations (B.8) and (B.28) can be integrated to give Newtonian dynamics of rigid
bodies, as outlined in Ref. [3]. In this work, I am interested in motion driven by
noise and damping, implicitly representing the presence of a solvent. Davidchack
et al. [1] have developed an algorithm for this purpose [1]—here I discuss some

aspects in more detail. For convenience, the — (qlT gflj) q; term is not included in

the equation of motion by the authors of reference. From now on, the moment of
inertia tensor / is taken to be three-dimensional again.
One can attempt to add noise and damping in the following simple fashion:

l;i :&a
n;
U (B.29)
p, = —— — Vp; b iz )
Pi=—5. Pt wi(1)
3
0
aG=>) 3 (@ 1) and
k=1 (B.30)

3
: d U
==Y = Iy (q;, TT;) — 0 I'G(q;, IT;) + BW,(1),

i
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159 where w;(7) and W,(7) are three- and four-dimensional Wiener processes with unit
variance and independent dimensions."

To specify the damping and noise terms that will result in sampling of the
canonical ensemble, it is helpful to find the Fokker-Planck description equivalent
to Egs. (B.29) and (B.30). For a Langevin process with additive and independent
noise, v = A(v) + CW(r) (where C is a constant diagonal matrix), the equivalent
Fokker-Planck equation for a probability density p(v,7) is given by [4]:

op(v,r) 0 6pvt
S = 5y (AW Z . (B.31)

For sampling of the canonical ensemble it is necessary that 0p,/0t = 0, where

poocexp< <Z<th (q,T1 +p,/2m>)+v<{r},{q}>> (B.32)

is the Boltzmann distribution. Substituting Eq. (B.32) into Eq. (B.32), it is
immediately obvious that cancellation of terms will occur separately for each
particle, and also separately for linear and angular components. For the linear

terms,
P 9pg ou 6p0 b Po
X i ) 7 —— =0 B.33
pp; oU oU ﬁp, 3ﬁ ﬁ2 B
= o0 ar,”p' po+3/po+ > po=0.

(B.34)

It is fairly trivial to infer that the appropriate relationship between b and 7y is:
_p (B.35)

For the angular terms,
_ ii ih( IT,) _ iih( IT,) 9o
£ aqi 61'[, k4, 1L Po oIl (4, 1L aqi

I

3
. 0 0
+<;a—nl q h(q;, 11 )) po+

! Having different strengths of noise and damping for each particle would be a simple addition.
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It is fairly simple to show that:
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3
oU
qn ﬁ_ Pos (B37)
q; ( kZ aqz)
0 3
po (Z qm )pO <B38)
; k
and
aZpO ) 3 o 3 62
- , B.39
oI (ﬁ 2o, ﬁ;a «(0:,103) | py (B.39)
Thus,
r(-2 .1 - p6(a.11) - 3 2 (g 1)
aH ql7 q17 - 81_1, k(g 1
2
B2 X 3 d 3 62
) T
Equation (B.40) is evidently satisfied by:
qn ﬁZal—[ qn (B41)
One way to express this result is:
pB*
I'=—, M=— and G(q;,II;) =J(q;)II B.42
= T (4, 11) = J(a) (B.42)
and:
0 0
wie 1y sy b
J(q;) = 7 <; 1), P(q;)P; (%’)) = Tr(l ) (B.43)

exactly as stated in Chap. 3. Davidchack et al. [1] have introduced a numerical
method for integrating Eqgs. (B.29) and (B.30), and I have used this method in this
work.
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B.3.1 Subtleties Related to the Use of Quaternions

In the previous section, it was shown that the dynamics of Egs. (B.29) and (B.30),
with the damping and noise terms related by Eqgs. (B.35), (B.42) and (B.43), will
have a correct equilibrium distribution. It will also result in motion that conserves
|q,-\2, as the expression for q; is orthogonal to q;. A subtlety, however, is that the
Boltzmann distribution shown to be stationary is one over all values of q; and 11,
whereas only \qi|2 =1 and q;-II; =0 are physically relevant. However, the
dynamics of Egs. (B.29) and (B.30) do not connect states with \q[|2 =1 to other
values. Consequentially, the Boltzmann distribution at |q,»|2 = | must be stationary
in of its own right. Furthermore, as the value of II; parallel to q; has no influence
on the energy or the dynamics of the simulated system, it cannot affect the
distribution with respect to the other variables.



Appendix C
Validation of Simulation Techniques

It is important to ensure that the algorithms have been implemented correctly, and
in the case of Langevin dynamics, that the time step of simulations is small enough
to give accurate results.

C.1 Comparison of Langevin and VMMC Energies

Langevin and VMMC methods can both be used to estimate the average energy of
a system. As the methods are independent, a consensus is a good indicator that
both algorithms are correctly sampling the system.

Simulations were performed on a system in which all the interactions present in
the model occur frequently—a 30-base strand bound to two 10-base strands. The
shorter strands bind to adjacent regions of the longer strand, and hence can
undergo coaxial stacking across the joint.

Four VMMC simulations (of 5 x 10° steps per simulation), and four
Langevin simulations each at a range of time steps & (for 5 x 10% steps per
simulation) were performed at 300 K. The average potential energies measured
in each simulation are show in Table C.1. As can be seen, the values agree
well, with the average at each step size within 0.04 % of the average obtained
from VMMC simulations. No noticeable dependence of the maximum possible
time step on the values of friction coefficients in the vicinity of y =1 and
I' = 3 was observed.

C.2 Comparison of Hairpin Folding Speed as a Function of Step
Size in Langevin Dynamics

As discussed in Sect. C.1, Langevin dynamics with a step size of 7 = 0.003 in
reduced units appears to provide thermodynamic averages consistent with the
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Table C.1 Comparison of average potential energies obtained from VMMC and Langevin
simulations

Simulation method VMMC Langevin

Timestep & N/A h = 0.005 h = 0.003 h =0.001 h = 0.0005

(U) in each simulation —59.0067 —59.0360 —58.9919 —58.9409 —58.9648
—59.0118 —59.0146 —59.0042 —58.9646 —59.0070
—59.0253 —59.0165 —59.0202 —59.1566 —59.0763
—59.0290 —58.9882 —59.0313 —58.9267 —59.0295

Overall (U) —59.0182 —59.0138 —59.0119 —58.9972 —59.0194

Test statistic N/A 0.7152 0.5681 0.7232 0.9630

Timesteps and energies are quoted in the reduced units of the model. The test statistic is the result
of applying Welch’s unpaired t-test [5] to the distributions of (U) in the VMMC and Langevin
code. For h = 0.003 (5.12 ps), the difference between VMMC and Langevin estimates of (U) is
around 0.01 % of the total, and is not statistically significant

Fig. C.1 Average simulation le+05
time for hairpin folding as a
function of step size £ set0df {,
(in reduced units T, T = 1 2 1 J[ ]l
corresponding to 1.706 ps). _E 6e+04 -
Error bars are calculated °
assuming that hairpin folding O detr04}
is a Poisson process g

E 2e+04

0e+00 -

0 0.001 0.002 0.003 0.004 0.005
Step size

results of VMMC. Such a result, however, does not necessarily imply that the
kinetics of simulations at these time steps are reliable.

As Langevin dynamics is used in this thesis to explore the kinetics of processes,
it is important that the time step is small enough to reproduce them reliably. To test
this, simulations were performed to measure the rate of spontaneous folding of a
small hairpin as a function of step size. I considered a hairpin consisting of a stem
of six base pairs and a loop of five bases, measuring the average time (from 100
simulations) required for a strand (initialized in the open state) to fold into a fully-
formed hairpin at 300 K. The results are shown in Fig. C.1.

As is evident from Fig. C.1, there is no systematic dependence on hairpin
folding rate on the step size & up to 2 = 0.005 simulation units. Therefore I use
h = 0.003 with confidence throughout this work.
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Table C.2 Comparison of the bulk duplex yield inferred from four biased and four unbiased
simulations of the formation of a 5 bp duplex (extrapolation to the bulk limit performed as
outlined in Chap. 4)

Temperature Unbiased Biased
Average yield 4 Average Yield o

309.28 5.31E — 02 433E — 04 527E — 02 7.46E — 04
306.12 8.87E — 02 6.89E — 04 8.81E — 02 1.16E — 03
303.03 1.41E — 01 1.01E — 03 1.40E — 01 1.66E — 03
300.00 2.11E — 01 1.33E — 03 2.10E — 01 2.16E — 03
297.03 2.96E — 01 1.58E — 03 2.95E — 01 2.53E — 03
294.12 3.89E — 01 1.71E — 03 3.87E — 01 2.70E — 03
291.26 4.82E — 01 1.70E — 03 481E — 01 2.67E — 03
288.46 5.70E — 01 1.60E — 03 5.69E — 01 2.48E — 03
285.71 6.48E — 01 1.43E — 03 6.47E — 01 221E — 03

The average and standard deviation (¢) over the four simulations are shown
C.3 Comparison of Unbiased and Biased VMMC Simulations

Umbrella sampling is central to much of the work presented here. Due to its (often
heavy) biasing of some configurations, it can be very sensitive to errors in
algorithm implementation and typically responds differently from unbiased
simulations. As a test of both the algorithm in general and the umbrella
sampling code itself, therefore, simulations of the melting transition of a five-base
pair duplex were performed both with and without biasing.

I performed four unbiased simulations at 297.03 K for 2 x 10" VMMC steps
each, and four biased simulations at 294.11 K for 4 x 10! VMMC steps. The
results (extrapolated to nearby temperatures using single-histogram re-weighting)
are given in Table C.2. The results are clearly consistent, supporting the accuracy
of my implementation of the VMMC algorithm and umbrella sampling.
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Appendix D
Finite Size Effects for More Complex Systems

In Chap. 4, finite size effects relating to dimerization processes simulated in the
canonical ensemble were discussed. In this appendix, the formalism is extended to
multi-component assembly (of relevance to systems such as virus capsids and
micelles, as well as more complex assemblies of DNA). Simulations using the
grand canonical ensemble, and systems with one species immobilized, are also
considered.

D.1 Monodisperse Large Homoclusters

Consider the formation of larger clusters of a specific size from identical
monomers, a case relevant to the assembly of virus capsid-like objects [6-11], and
homomeric protein complexes [12]. If the formation of a single cluster is simulated
in the canonical ensemble, once again, the statistics of the various cluster sizes do
not directly correspond to bulk properties, but under the assumption that
interactions which do not constitute bonding are negligible it is possible to
extrapolate to large system sizes. Firstly, some definitions:

e 7 is the number of monomers needed to form the target, equal to the number of
monomers simulated.

e 7; is the partition function for species i (a cluster of i identical monomers), in the
simulation volume v, with the internal degrees of freedom treated distin-
guishably.

® Z;jk.. is the partition function of a system of volume v when in a state which
contains one cluster of species i, one of species j etc. This partition function is
calculated using distinguishable statistics. i,j, k... can therefore be taken to
specify a macrostate corresponding to the set of clusters i,j, k. . ..

e 1,, the number of clusters of size m in the macrostate—consequentially, an
alternative way to specify the macrostate is via the set {n,,} (Zijr.. = Z,3)-
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Fig. D.1 a The rop image shows six identical particles in a volume v. Doubling the volume
means that only a relatively minor concentration fluctuation is required to make the formation of
two hexamers impossible (and the formation of one hexamer more likely), compared to the
equivalent situation for dimers. As a consequence, the broadening effect of bulk corrections
increases with the size of the target structure. b Fractional yield of hexamers in the statistical
model of equation (D.9). Plotted are the yields for a single cluster system (red), for hexamers in
bulk (blue) and for an equivalent extrapolation to bulk for homodimer formation (green)

e Z(n) is the total partition function of the n-particle system in a volume v,
calculated using distinguishable statistics.
e as all monomers are identical, the A index will be omitted for clarity.

The thermodynamically relevant quantities are the ¢;/(q; )i, because given these
it is a simple task to calculate the bulk concentrations of each species using:
Ni _ 4 (D.1)
(N (1)

and

> iN;=nD =N. (D.2)

The quantities that are directly accessible from simulation are Z; ;. /Z. Exactly
how these can be accessed depends on how the system is sampled. A sensible
choice, however, is to sample states by the largest cluster size—this neatly divides
the partition function Z into n parts, and I label these subdivisions €;. There are
now n equations, one for each €;:

Q Zijk.
o R D.
~ ; o (D.3)

where the summation over j, k... is the sum over all sets of indices such that
J-k...<i and the indices sum to n. Z; ;.. are given by:
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Fig. D.2 a Relative fractional error on the yield of various cluster sizes as a function of 1/D in a
system with a maximum cluster size of six. All clusters show convergence with 1/D scaling in
the large D regime (as highlighted in b)

i N\
Z,‘J'J(m = I’l' H M, (D4)

!

I now have n simultaneous equations for z;/Z/" in terms of the measured
quantities ;/Z. In addition, these simultaneous equations have already been
decoupled as each Q;/Z expression contains only z,, with m <i, and thus finding
Zi /Zi/ " amounts to solving a polynomial of order i. All that remains is to find g; in
terms of z;. This is reasonably simple:

4
il

gi=D (D.5)

where in dividing by i! 1 account for the reduction in states imposed by
indistinguishability. I can then obtain the right hand side of (D.1) by:

qi _ DZi _ DZi/Zi/n
(@) Dz) Dz /zMm)"

(D.6)

in which the right hand side is expressed in terms of the known quantities z;/Z"/".
I can now eliminate the arbitrary large factor D by converting to concentrations

(which equates to multiplying both sides by (Dv)(’;l)), giving:
Vi) _ il u/Z"
[Nl]l i!(zl/zl/n)l .

(D.7)

Once again, the system of equations can be closed by conserving the total
monomer number:

Z iN;] = n/v. (D.8)

To illustrate the form of finite size corrections, consider the artificial example of
completely cooperative hexamer formation (in which we approximate clusters of
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Fig. D.3 Fractional yield of hexamers in a perfectly cooperative model as a function of system
size D for a low yield (5 % hexamers) and b high yield (95 % hexamers). The ‘+’ symbols are the
calculated points and the flat line the bulk value. The curve in a is a fit to a 1/D convergence

intermediate size as having zero probability). The complicating effects
of additional states will be discussed in Sect. D.2. For comparison with
Sect. 4.1.3, T will assume that the small system can be described by an equiva-
lent two-state model, so that the yields of hexamers and homodimers are identical
in the small simulation volume:

Zs/Zi 11,1, = exp(—AE/T + AS), (D.9)

with AE = —2 and AS = —15 in reduced units. The result, plotted in Fig. D.Ic,
indicates once again a much broader transition in the bulk case, this time with a
slightly adjusted midpoint. Furthermore, this broadening is much more
pronounced for hexamers than dimers. This trend is a general one, with larger
clusters experiencing greater broadening due to finite-size corrections. This is
because smaller relative concentration fluctuations are required to push the system
towards a yield of approximately 50 % for a clustering transition involving many
monomers as opposed to dimers, as illustrated in Fig. D.1b.

D.2 Homocluster Convergence

Many canonical simulations of self-assembly are performed using systems large
enough to form several or many clusters [6, 7, 9, 10, 13]. I apply the formalism of
the previous sections to explore the convergence of cluster statistics on bulk values
as system size is increased. As in the previous section, I consider a reference
system of n particles in a volume v, where n is the size of the largest cluster, and
proceed using the partition functions z; defined in this volume.

The statistical weight of the macrostate i,j, k..., containing a total of Dn
monomers in a volume D, with all degrees of freedom treated indistinguishably,
is given by:
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Fig. D.4 Fractional yield of hexamers in a perfectly cooperative model as a function of n’ for
a low yield (5 % hexamers) and b high yield (95 % hexamers). The ‘+’ symbols are the cal-
culated points and the flat line the bulk value. ‘x’ symbols indicate system sizes for which
D = n/n’ is integral. The dashed line in b is added as a guide to the eye

n m
Q{ﬂm}(D) = ];[ ,,(]ll!)(zll!))m ) (D.10)

Defining y,(D) = z;/(z}D'~1), I obtain an expression for the fractional yield of
a cluster of size c¢ in a system of size D:

n m
y’m
ﬁ(D) = no1 l//l n
Dn {Z} IL )t (T)
nm

(D.11)

This expression for f.(D) can be used to check that the extrapolation scheme is
valid for the system in question, by simulating a system with D = 2 and comparing
to the results expected from a D = 1 simulation. Such a simulation would also
allow the examination of clusters larger than the target structure, and their
incorporation into the statistics if their presence is significant.

In all cases that I have been able to study to high D (the meaning of ‘high’ will
be clarified later), f.(D) — f.(00) is observed to scale as 1/D in the large D limit
(see Fig. D.2) . The question of convergence speed then reduces to how large
D must be for this scaling to hold, and the value of f.(D) — f.(c0) at this point.
In general there are two distinct regimes of convergence, determined by the yield
of target structures. I shall illustrate these regimes by considering completely
cooperative transitions (in which only the target cluster and monomer
concentrations are non-negligible), before commenting on the effects of other
cluster sizes.
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D.2.1 Convergence at Low Yield

Section D.1 indicates that simulations of a single cluster underestimate the
transition width and hence underestimate the number of clusters at low yield.
In effect, in order to have a high isolated monomer fraction in bulk despite the
effects of volume fluctuations, the fraction of monomers in a single target
simulation must be even higher. As the system size is increased, concentration
fluctuations tend to transfer statistical weight from the extreme state favoured at
D =1 towards a more balanced cluster size distribution.

At low yield this effect produces a steady increase in the proportion of clusters
with D, with the deviation from the bulk fraction scaling as approximately 1/D
from low D (see Fig. D.3a). At very low yield, initial convergence becomes
noticeably slower than 1/D—this effect increases with target size. As a
consequence, relative errors remain significant at increasingly large values of
D as the yield is decreased or the target size increased.

D.2.2 Convergence at High Yield

At high yield, single target simulations overestimate the monomer fraction, for
reasons similar to the underestimate at low yield. Convergence, however, does not
initially show a 1/D behaviour, as illustrated in Fig. D.3b. Instead, a period of
slow convergence is followed by a rapid drop to a target yield just below the bulk
value, leading eventually to an oscillation in the vicinity of the bulk yield. These
oscillations persist for approximately n — 1 half-cycles, before settling in to a 1/D
convergence (n being the target cluster size).

These oscillations result from certain configurations disproportionately biasing
the ensemble, due to the inherently discrete nature of a small system. At D = 1, the
system is restricted to two states: one cluster or n monomers. At high cluster yield,
n monomers are extremely unfavourable and hence the single cluster state is
overwhelmingly observed, causing f,(1) to exceed f,(c0). As the system size is
increased, the zero monomer state continues to exert a disproportionate influence
on the ensemble, keeping f,(D) well above f,(co). Eventually, however, the
system becomes sufficiently large that the state with D — 1 clusters is most
favourable. Due to the discreteness of the system, this occurs before
(D—-1)/D=f,(c0). As a consequence, f,(D) is then underestimated
(or equivalently the number of monomers is overestimated), resulting in the
observed drop of f,(D). At still larger values of D, the state with D — 1 clusters
remains most favourable but now constitutes an overestimate of f, (D), resulting in
the observed rise in f, (D). This process is repeated for increasing number of
monomers, leading to oscillations which are eventually overwhelmed by the 1/D
convergence at large system size.
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Fig. D.5 a Fractional yield of dodecamers in a dodecamer forming system at low yield (90 %
isolated monomers, 5 % dodecamers in bulk). b Fractional yield of isolated monomers in a
dodecamer forming system at high yield (90 % dodecamers, 5 % monomers in bulk). Plotted are
points for systems in which the other 5 % is assumed to consist entirely of either 2-mers or 11-
mers. Also shown (dashed curves) are the results for completely cooperative systems with the
same 90 % majority species yield. These have been scaled by a factor of 0.5 so that the relative
errors can be directly compared

The question is then why oscillations are observed at high but not low yield,
where the discreteness of the system is still present. To answer this, it is
illuminating to allow D to take non-integer values so that the system size n’ = Dn
can take any integer value. At high yield, as shown in Fig. D.4b, one sees that the
system is extremely sensitive to the exact number of particles, because if D is not
an integer there are necessarily excess monomers. This results in the rapid
oscillation of f,(n’) with a period of approximately n. Closer inspection, however,
reveals that the period is longer than n, due to the fact that states with no
monomers present become increasingly unfavourable as D gets larger. The region
in which the f,(n') peaks transfer from n’ mod n = 0 to n’ mod n = 1 corresponds
to the region in which f,(D) drops off rapidly. By contrast, f,(n’) increases
monotonically with ' at low yield (Fig. D.4a) . In this regime, the fraction of
clusters is not high enough for the value of n’ mod n to be significant, and so the
general tendency to transfer statistical weight to states with a greater mix of cluster
sizes is dominant, and smooth convergence is observed.

As a consequence of this behaviour, convergence at high cluster yield is
extremely poor until D is sufficiently large that the state with D — 1 clusters has
approximately the same weight as the state with D clusters:

(Wn)D_ll//l ~ (l//n)D

~ . D.12
(D — D!(HP~'nl — (D)(n)” (b-12)
Substituting using the definition of y;(D) gives:
z 1/n
Derosssover = <—> : (D.13)
21
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The quantity z,/z} corresponds to the ratio of cluster to monomers at D = 1, and
consequentially increases with n at fixed bulk yield. This increase is offset by the
1/n exponent, meaning that the value of Dgosssover 1S Telatively independent of
target size, but increases with the target yield. It should also be noted that the
oscillations persist until a system size of approximately nD ;ossover, although they
are generally reasonably small. It is this value, D = nD sover, that defines the
large D limit.

In the intermediate yield regime near to the midpoint of the transition, the initial
error is small and z, /7| is not large, hence convergence is fast (whether it proceeds
by the first or second method). Away from the midpoint, however, significant
relative discrepancies can persist up to surprisingly large system sizes.

D.2.3 Intermediate Cluster Sizes

An additional complication for n > 2 is the fact that intermediate cluster sizes may
be relevant to the system, which can affect convergence. I shall analyze the effects
of the presence of intermediate cluster sizes under the assumption that the majority
of particles are found either as isolated monomers or in the target cluster size: for
the purposes of this section, the term ‘majority species’ applies to the most
prevalent of either the target cluster or monomers, and ‘minority species’ to the
less common of these two. Note that our discussions will compare the effects of
intermediate cluster sizes in systems with a certain yield of the majority species, as
it is the tendency of one species to dominate in bulk despite concentration
fluctuations that causes the large discrepancies at D = 1. Firstly, I consider the low
yield case. Here, the presence of clusters of intermediate sizes with bulk yields
comparable to the target cluster has little effect on the relative error of the target
yield at D = 1, which is largely determined by the bulk fraction of monomers.
By contrast, if the relevant intermediate cluster size is small (for instance a dimer
in a system forming a dodecahedron), the relative error between dimer and isolated
monomers is comparatively small, meaning that f>(1) & f>(c0), because from the
perspective of the monomer/dimer equilibrium the system has an effective size of
Desr = n/2. As a consequence, states including dimers are common and so the
entropic penalty associated with having no target clusters is reduced, meaning that
statistical weight is transferred to larger clusters more slowly as the system size is
increased. The effect manifests itself as a poor convergence in the first few steps,
as shown in Fig. D.5a. Also shown is the effect of having a significant presence of
large intermediate clusters, which is smaller as they do not relieve the entropic
penalty of having many monomers as swiftly as dimers do (the relative error is
seen to behave similarly to a completely cooperative system with the same
monomer yield).

I now consider the effect of a significant presence of intermediate clusters on
the convergence of the yield of isolated monomers at high cluster fraction. If the
relevant intermediate clusters are large, the initial error is significantly reduced as
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the relative error between two large clusters of similar size is much smaller than
for a large cluster and a monomer, and in forming intermediate clusters some
monomers are ‘spare’. Convergence, however, is not improved as instead of the
state with D — 1 target clusters and D monomers coming to dominate the
ensemble, as in the completely cooperative case, states containing intermediate
clusters become most prevalent (in effect, they reduce the ‘entropy cost’ associated
with having few monomers in the system). If the intermediate clusters are large,
there will be few monomers in these states and as a consequence, statistical weight
is transferred to isolated monomers more slowly. This effect is illustrated in
Fig. D.5b: also plotted is a case with a significant presence of small intermediate
clusters. In this case convergence is not dramatically slowed (relative to a
completely cooperative system with the same target cluster yield), as the states
which become prevalent contain D — 1 target clusters and a mix of smaller
species, including several monomers.

In summary, for monodisperse clusters, the significant presence of intermediate
cluster sizes tends to reduce the rate of convergence of the fractional yield of the
minority species relative to a completely cooperative system (at a fixed yield of the
majority species), particularly if the relevant intermediate clusters are closer in
size to the majority species, by reducing the entropic penalty associated with
having few of the minority species in the system. In several cases, authors have
studied systems capable of forming approximately 10-20 clusters [6, 10, 13]. It is
probable that the finite-size effects illustrated here are relevant to these systems in
the regimes dominated by one cluster size.

Small-system simulations on the formation of micelles have also been
performed in the canonical ensemble (examples are given in Ref. [14]).
Micelles are not monodisperse, but show some variation about a typical finite
size. The techniques shown in this section can be equally well applied to such a
process, with qualitatively similar results—in particular, convergence to bulk
yields appears to be extremely slow when the micellar concentration is low. The
details are discussed in Ref. [14].

D.3 Simulations in the Grand Canonical Ensemble

As an alternative to NVT simulations, it is possible to use the grand canonical
ensemble. Here, instead of fixing the number of particles absolutely, one simulates
a system in a volume v such that configurations containing n particles are sampled
with the relative probability [15]:
efrnz(n)
P(n) x — (D.14)
n!

where Z(n)/n! is the partition function of an n-particle system, calculated using
distinguishable statistics. Configurations of the same n have the same relative
Boltzmann weighting as in the canonical ensemble. Thus a configuration
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containing n; clusters of size j is observed in a simulation with probability:

n;

P(imh) =] A (D.15)

1
j>0nJ']/

To date, grand canonical techniques (and related semi-grand canonical
approaches) have primarily been used to study the formation of micellar
structures [16-22], as opposed to mondisperse target structures. In many of
these cases, monomer concentrations are taken to be so low that the probability of
finding more than one cluster in a simulation volume is neglected, and the number
of monomers in the simulation is taken as a proxy for cluster size [16—19]. There
has been considerable debate on the details of inferring cluster probabilities from
simulations in which one monomer is fixed at the centre of the simulation volume,
under this extremely dilute assumption [16, 23, 24]. Other workers have explicitly
simulated the formation of multiple micellar clusters [20-22]. The advantage of
the grand canonical formalism for large micelles is obvious, as it allows a small
simulation volume to contain a large number of particles without requiring a high
average concentration. There is no reason, however, why the technique could not
also be applied to smaller, monodisperse self-assembling systems.

In principle, grand-canonical simulations are capable of capturing the
concentration fluctuations which must be considered to extract the bulk
thermodynamics from a small simulation. This is only true, however, if the
simulation samples the formation of multiple clusters. Under the assumptions of
ideal behaviour of separate species, the errors are simple to quantify. In bulk
equilibrium:

z1ePH

[N)] = —, (D.16)

where concentrations are measured relative to the simulation volume v, and:

N = [N (Dvy ' 2L = e (D.17)
! g, W
I assume that a simulation samples states which contain at most a single cluster
of more than one particle. In this case, the probability of observing a cluster of size
j > 1is given by:
Zrlze/i;m

n>0

p(j) = ( (D.18)

)
Zlefun
I+ > %eﬁl‘k> >
k>1 n>0
Thus the simulation concentration (measured relative to the simulation
volume) is:
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T A

:1+ Z [Nk]v

[erlm _ "
<1 —|—k22%e/f“") =

(D.19)

Note that all [N}] are inversely proportional to the simulation volume v—hence
relative errors initially grow with the simulation volume, before plateauing in the
limit of >, _ [Nx] > 1 (when the relative error is approximately unity).

N] = INJ™ S [N
S Y (D-20)

Extracting [N;] from the measured [Nj]Sim is simple. It can be shown that, under

our assumptions of ideality, [N;] = [Nj]Sim for such a simulation.

Equation (D.19) can be rearranged to give jmax — | linear simultaneous
equations for [Nj], where jmax is the largest cluster considered ([V;] is trivially
given by [Ny] = [N;]"™). The validity of the extrapolation can be simply checked
by simulating the system in a different volume and observing whether the [Nj]Sim
are predicted by the [N;] inferred from the original simulation.

In reality, it is unlikely that simulations are explicitly forbidden from sampling
states with multiple large clusters. If, however, cluster formation involves a
significant free energy barrier, and only the formation of a single cluster is actively
biased by the simulation, multiple large clusters will not be observed. In these
cases, Eq. (D.19) can be used, but any rare instances where multiple clusters do

occur (for example, two dimers) must not be included in evaluating [Nj]Sim. In the
extremely dilute limit, the results obtained from this method will coincide with the
assumption that at most one cluster exists in a simulation volume. Given the
simplicity of the extrapolation scheme presented here, however, this assumption
seems unnecessary.

D.4 Monodisperse Large Heteroclusters

Interesting structures are not only formed from identical subunits. DNA
nanostructures, such as the Turberfireld group’s tetrahedra [25], often involve
one each of several different single strands. Virus capsids can require more than
one type of coat protein, and some work has been undertaken to simulate models
of such structures [26]. Simulators have also considered templated assembly,
in which distinct shells of particles form cooperatively [27].

To discuss finite size effects present in large heterocluster formation, it is
necessary to extend the definitions of Sect. D.1.

e y is the number of distinct monomer species present.
e 1, is the number of monomers of species x required to form one target structure.

n=>y n
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® Z(ii,..i,) 18 the partition function for species (ii,i,...,i,) (a cluster of
i1 monomers of type 1, i, monomers of type 2 etc.), in the simulation volume v,
with the internal degrees of freedom treated distinguishably.

e let {i} denote (iy,i,,i3) to conserve space.

® Ziiv sy (1) - - - = Z{id 4j}... 18 the partition function of a system of volume v
when in a state which contains one molecule of species (ii,i2,...,iy), one of
species (ji,j2,...,jy) etc. This partition function is calculated using distin-
guishable statistics.

e Z(n) is the total partition function of the n-particle system in a volume v,
calculated using distinguishable statistics.

® 4(i\ir....i) = qyiy 1s the partition function for species (i1,12,...,1y) in a volume
Dv, with the internal degrees of freedom treated indistinguishably.

® Ngmy is the number of times that the cluster (mi,my,...,my) appears in a
macrostate. The macrostate is therefore completely specified by the set {z {m}},
or alternatively the list of clusters {i}, {j}, {k}...—Dboth alternatives will prove
useful.

As in Sect. D.1, the important quantities to estimate are:
iy iz,....iy)

i i> Ly

4.10,.0490.1,..0° " 900,..1)

(Dy)o~! , (D.21)

where ip = > i,. Given these ratios, the bulk concentrations are found by solving:
. n
Y N = (D.22)
e . v
{ivsizseniy}
for every x, using:

. io—1 iy iz,eensiy)
;= (D) iy i iy

| ,“..,0)]11 [N(O,l,..,,O)]lz' . '[N(O,O,...,l)]l‘ q(l,O,...,O)q(O,l7...,0)' . -Q(v 0,...,1)
(D.23)

One can relate the g, ;,....i,) 0 Z(i, jy.....i,)» Which are closer to the quantities directly
measurable in simulation, via:

L1 yeemsly)
iv,iz,eeiy) = Dﬁ
x X

(D.24)

Clearly, this is a more involved problem than the homocluster case. Having
obtained z;, ;. ;,), one must then solve y nonlinear simultaneous equations, rather
than just a single polynomial equation. A more subtle problem, however, is how to
extract the relative values of z( ; ;) from the simulation data. For the
homocluster case, the method presented in Sect. D.1 is a natural one. The size
of the largest cluster is a good order parameter, and it is likely that any sampling
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scheme that forces the system between monomers and the target will sample all of
the intervening states accurately.

By contrast, the order parameters for heterocluster formation are naturally
multi-dimensional (simply sampling according to the largest cluster size is
insufficient to isolate z;;). The question of how to best disentangle the information
is then somewhat system dependent. One simple approach would be to obtain an
estimate for each individual Z (y 13../Z(n) from simulation, and then fit

(i /Z(n)io/ " to reproduce these estimates, using:

y n lo/n Ny
Zioy/Z(n) = [ ! H<L> (%) : (D.25)

i !

where ig = ) i, and the product over {/} runs over all possible clusters. Note
that the presence of Z(n), which arises because only relative measurements are
possible, is not important as it will always cancel when values are substituted into
quotients such as on the RHS of Eq. (D.23).

Alternatively, one could construct a set of simultaneous equations to obtain a

subset of z{,»})/Z(n)iO/", and then use this subset to obtain all z{,»}/Z(n)i"/". This
approach is similar to the one used in Sect. D.1, but is complicated by the fact that

there is no obvious order parameter which immediately decouples all zg;, /Z(n)iO/ "

This approach is best illustrated with a basic example—consider the assembly of
two species A and B into a structure which contains two of each type of particle.

With a system this simple, it is trivial to enumerate all possible macrostates of a
small simulation and quantify their probability of occurring.

1. No clusters of more than one particle:

Z Z(4) = (21)? 200/2&)'" ? o /Z(#)'* ? 1\2
a0/ Z8) = @7 (222 ) Gy

2. One cluster of two A particles:

2
12 . 1/4
Z.0)0.0),0.0)/Z(4) = (21)? (Z(2'0>/§(4> ) (w(o"])/ﬁ@) ) ()

3. One cluster of two A particles, one cluster of two B particles:

, NV M2
Z(2’0)7(012)/Z(4) — (2')2 <Z(—.0)/ZZI( ) ) (Z(O.Z)/ZZ!( ) >

4. One cluster of two B particles:

1\ 2 i 12
Z(1,0).010)02)/Z(4) = (2!)2(1“'%(4) ) (%0‘2)/;(4) )(%)~

5. One cluster of one A and one B particle:

- 2/4 1/4 . 1/4
Zun.0.0.0.0/2(4) = (2!)2<"“'”{!Zl(!4> )(Z“D)/ﬁm )(”(0'”%(4) )

6. Two cluster of one A and one B particle:

2
Z(4)2*
Z(l,l),(l,l)/z(4) = (2!)2 <W> (%)
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Fig. D.6 Convergence of the 1
concentration (measured in
clusters per unit simulation

. 0.8
volume) in a tetramer form-
ing system, as the system size s |
D is increased. Yields are g 06
calculated for a system with =
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7. One cluster of three particles (two A and one B):

3/4 1/4
Z(2y1)7(011)/z(4) — (2')2 (Z(Z.l)é[Z](ﬁ) ) (Z(O,l)/ﬁ(‘l)

12)/Z(4 H n/Z(4 1/4
Z12).00/2(4) = (2!)2<Z< 2/28) ) (z(o. VZ4

9. One cluster of four particles (two B and two A):

Z2)/Z(4) = (212 (%) It is possible to take the simulation results for

)2.

8. One cluster of three particles (two B and one A):

)2.

macrostates 1, 5 and 6 above and use them to solve for z() /Z(4)1/ .

z(l,o)/Z(4)]/4 and Z<111)/Z(4)1/2. Given these values, one can simply find the
remaining z(; j by substituting them into expressions for macrostates 2, 4, 7 and

8 and 9.

Although the method is fairly simple in this case, it is not obvious that a
systematic process (that will work well for all situations) exists. For example, in
this case macrostate 3 (which consists of two homoclusters) is neglected in the
calculation. This is wasteful of information, particularly if macrostate 3 is
frequently sampled in simulations. It is possible to combine macrostates 3 and 4,
and use the aggregated data to find z; ), but there is no reason why this particular
aggregation should be made rather than, for instance, 2 and 4. As systems get
larger and more complex, further arbitrary decisions will have to be made.

2 1 will also assume that all particles of type 1 are localized.
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D.5 Heterocluster Convergence

If a simulation of the formation of a single heterocluster has been performed, and
the quantities z(;, ;, .;) €xtracted, one can use the formalism of the previous
section to extrapolate to bulk, under the assumption that distinct species behave
ideally. As with homoclusters and dimers, it is useful to be able to predict not only
the bulk yield, but how fractional yields will change as the system is increased in
size, so that the assumption of ideality can be checked.

Proceeding by analogy with Sect. D.2, consider a system of size D containing

Dn particles. Defining the fraction of particles of type a in cluster (cy, ¢z, - . ., cy) as
Jercnscy)(D):

(¥ / (TBL '))Wm
Cq (c1,e A VR
{'%,:)} Nerea,e. H{l} (ﬂm)

foronc)D) = _ , (D.26)
C1,C250-,Cy v /(H‘:IX!)) {1y

Dna ( {1

{%)}H (n1sy)!
where:
_ 2y ey
Yy(D) = i = » (D.27)
2(10,...,0)%(0,1,...,0) " * %(0,0,...,1)

To illustrate this convergence, the behaviour of a tetramer formed from two
particles each of two different types is shown in Fig. D.6.

D.6 Immobilized Species

In some experimental systems, the particles which associate are not all free to
diffuse. For example, DNA microarray assays consist of DNA ‘probes’ which are
tethered to a surface and ‘target’ molecules which diffuse through solution
[28, 29]. Another possibility would be DNA walkers, which are generally stuck to
a track and may in some applications be effectively localized.

It is not a priori obvious whether tethering one reactant will change the result of
the previous sections, in which local concentration fluctuations were invoked to
explain the difference between bulk and small-system statistics. Note that here
I am not concerned with whether the mechanism of tethering interacts with the
particles, either destabilizing or stabilizing the bound state, but rather whether
extrapolation to bulk for a given set of z(; differs from Sect. D.4.

To analyze this problem, it is instructive to consider how the standard result of
Eq. (4.3) arises directly from the partition function. Consider the contribution to
the partition function of a large system of a state which has Ny; clusters of

type {i}:
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Niiy N
diiy (Dzgy/ TI i)™
Q{N,- }(D) = = :
Y gN{i}! 1{_}[ Ney!

(D.28)

In this expression, the Nyy! term arises to avoid double counting of states, and
must be included because each gy, includes a separate integral for each cluster
over the whole of the system volume. Maximizing Qqy,,} With respect to Ny;
yields Eq. (4.3).

I now consider a system in which one of the reactants is immobilized (let this be
particle type 1).> The first consequence is that there is no need to divide by Niy!
when the cluster {i} includes the immobilized species, as there is no tendency to
double count when the clusters cannot move over all space. One must, however,
still deal with combinatorial effects. In particular, I now have to calculate the
combinatorial factor associated with the number of different choices of
immobilized particles that are involved in cluster formation. This introduces a
factor:

N}otal!
H{i},n;&o N{i}!

The second effect is that g;, does not scale with system volume for i; # 0, so that:

(D.29)

_ A ;
q{iy = Hi il for i) 75 0. (D.30)

Combining these two differences, I obtain:

Ny
A q{i} N N{olal!
an&mOb'(D) — | I | I q i{r} (4 :
Ny} {i},ilzoN{i}! (1120 {i} H{i}.,h;éON{i}!

(Dzgiy/ [Ty ic)™ 11 (zgy/ T i)™

Niolal;
N N :
Niy! {i}h 0 Niiy!

{i},i1=0
(D.31)

o immob. /Himmob.
It is trivial to check that for two sets of clusters {Ny; } and {Nii}}, 0 {“[\‘,‘:}0} /0 {%‘E}O}
has exactly the same functional dependence on zg;, Ny and N}Li} as Qv /
Q{Nh}' Therefore there are no statistical consequences of tethering one of the

reactants—a given set of z;;; will produce identical bulk yields to the case when all
species are free to diffuse.

Physically, this is because in this idealized limit the only important coordinates
are the relative separation of cluster-forming particles. Consequentially, it is

I will also assume that all particles of type 1 are localized.
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irrelevant that particles of type 1 are tethered, as the concentration fluctuations of
the other particles in the vicinity of type 1 provide the same statistical correction as
the untethered case.

Such an argument does not hold if two particles involved in an assembly are
localized. For a trivial counter-example, one could take heterodimer formation.
Localizing both species will give thermodynamics identical to the small system
limit.

When performing simulations of this kind, it is possible that non-tethered
particles will interact with the tethering mechanism in the unbound state. If this has
a significant effect on the unbound partition function, it will lead to errors in the
extrapolation. Such effects can be checked by changing the simulation volume and
observing whether the statistics of bound states change in the expected way.



Appendix E
Details of Sampling Methods for DNA Tweezers

E.1 Sequences

The strand sequences used in simulations are given below in the 5’3" convention.
Hinge (h): AGCT TCGA CCTT TTAG GGCC TTAT.
Tweezer arm 1 (2): GTCA GCCA ATAA GGCC CT.
Tweezer arm 2 (ff): GGTC GAAG CTT C GAAG CT.
Fuel (f): AGCT TCGA TGGC TGAC CTTA TTCA.
Antifuel (f): TGAA TAAG GTCA GCCA TCGA AGCT.

E.2 Definition of Qs

As discussed in Chap. 7, a reaction coordinate Q was used to bias the ensemble of
the tweezers to facilitate sampling. The first four dimensions of Q were simply
given by:

Q) : the number of correct base pairs between o and f.

Q>: the number of correct base pairs between f§ and f.

Q3: the number of correct base pairs between f and f, restricted to the bases of
f that bind to « or are in the toehold.

Q4: the number of correct base pairs between f and f, restricted to the bases of
f that bind to f.

Here, a base pair was considered to be formed if the H-bond energy between
nucleotides was below —O0.1 in reduced units. A fifth coordinate, which
explicitly depended on the separation of strands as well as the number of base
pairs, was also defined. Its definition is given in Table E.1. The definition is
fairly complex, but the general idea is to favourably bias states in which strands
are close but not yet paired. The most difficult transitions to sample involve the
completion of displacement of either arm, as it is necessary to sample the
rebinding of the arms to the fuel (which requires fraying of the f/f duplex).

T. E. Ouldridge, Coarse-Grained Modelling of DNA and DNA Self-Assembly, 163
Springer Theses, DOI: 10.1007/978-3-642-30517-7,
© Springer-Verlag Berlin Heidelberg 2012
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Table E.1 Table showing the definition of Qs

Qs value bp Separation
0 01=0=03=04=0 fa>4 AND f.f > 4
1 Qi =00R Q,=0)AND Q3 =04=0 f.ox >4 XOR f.fp > 4
2 (Qi=00R @, =0)AND Q3 =04=0 f.x<4 AND f.f <4
3 Q1 >0AND 0, >0AND Q3 =04 =0 f.Frochold > 4
4 01 >0AND 0, >0 AND Q4 =0 f fiochola <4
5 0, >0AND O3 >0AND Q; =04 =0 fg.o7 <3

AND No bp between fg and fis
6 0>, >0 AND Q3 >0 AND Q; = Q4 =0 AND

((No bp between fg and f;s AND 3 <fg.07 <5)
OR (bp between fg and f 5 AND fg.07 <3))

7 0, >0 AND Q3 > 0 AND Q; = Qs = 0 AND
(bp between fg and f;s AND 3 <fg.07 <5))
8 0, >0AND Q3 >0 AND Q; = Q4 = 0 fg.o0 > 5
9 0, >0AND Q3 >0 AND Q; =0 AND Q4 >0 None
10 03 >0AND Q; >0 AND Q; = 0, =0 fo.B, <3
AND No bp between fy and f 23
1 03 >0 AND Q, > 0 AND Q, = 0, = 0 AND

((No bp between fy and 3 AND 3 <fy.f,;<5)
OR (bp between f and f ,3 AND fo.f17<3))

12 03 >0 AND Q4 >0 AND Q; = O, = 0 AND
(bp between f, and f3 AND 3 <fo.f17<5))
13 03 >0AND O, >0AND Q; =0, =0 fo.f17 >5
14 Any forbidden state (see Sect. E.3) None
In this table, the “.“ symbol indicates the minimum distance, measured in simulation units,

between any two bases which can form a correct base pair for the strands indicated. For example,
f.f <4 means that at least two of the fuel and f/-arm bases that can be paired in the closed tweezer
state are within four simulation units. Subscript indicates that a specific base or bases (counting
from the 5’ end, starting from 0), rather than the entire strand, should be considered

The particularly complex definitions for s =5 — 8 and Q5 = 10 — 13 are
designed to favour the intermediate states of these rebinding processes, by
encouraging the fraying of the f/f duplex and increasing the proximity of the final
displaced base of the relevant tweezer arm to the base from which it was displaced.

The landscape was split into several sampling windows for convenience. The
range of each window is shown in Table E.2. Each window has significant overlap
with the windows on either side, allowing the entire landscape to be recovered
using the WHAM technique [30].

E.3 Restrictions to the Ensemble

To simplify the sampling and facilitate the use of a windows, several restrictions
were imposed on the system during the umbrella sampling simulations.
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Table E.2 Values of the order parameter to which sampling was restricted in each simulation
window

s

Window 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Other

o i

B A 03=0
7 v o 0;<8

0 s 820125
€ » 6>0,>3
¢ v 420,21
n A i i 01<3

0 R i 8> >5
! R 6>0,>3
K R 4>0,>1
A e i i 0,<3

1. In all umbrella simulations, dissociation of the tweezer unit itself was for-
bidden.

2. In simulations involving f, the complete dissociation of f and  was forbidden
before the dissociation of f and .

3. Letting X denote the base furthest from the toehold along f to which f is bound,
states with tweezer strands bound to f at bases between X and the toehold were
explicitly forbidden.

To sample states violated by restrictions 1 and 2, it would have been necessary
to drive the relevant dissociation/hybridization reactions, thereby complicating the
sampling. I decided that the most honest approach was to explicitly forbid these
possibilities, rather than simply fail to sample them.

Restriction 3 was based on the need to split the umbrella sampling into
windows. I used umbrella windows designed specifically to sample the progression
of the displacement of the o arm (windows y to {), in which complete detachment
from the fuel was forbidden, and a window designed to sample the release and
reattachment equilibrium for the final few base-pairs of the o/f duplex (window 7).

In an early simulation of a window in which the dissociation of o and f was
forbidden, the situation illustrated in Fig. E.1 occurred. (i) The o/f duplex was
reduced to one base pair. (ii) A weak bond then formed further up the o« arm to a
base of f already bound to f (a bound base can form transient, weak bonds to other
bases in our model). (iii) In this instance, the original «/f base pair broke first,
leaving o« and f weakly attached. This state actually has a low free energy
compared to others in the simulation window, as it maximizes the number of
strong base pairs, but the bond would have quickly broken and allowed the
tweezers to open in a simulation in which dissociation was possible. In this case,
this easy escape was prohibited, and so the simulation was essentially stuck
(although low in free energy, the state was hard to access, requiring a peculiar
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Fig. E.1 Illustration of the formation of a pathological state in windowed sampling

Table E.3 Test statistics obtained from comparing the distribution of E(Q) in overlapping
windows

Windows Q Test statistic Windows Q Test statistic
a/f (8,0,0,0,1) 0.0413 {/n (2,8,14,0,4) 0.8182
o/f (0,8,0,0,1) 0.6610 {/n (1,8,15,0,4) 0.3882
B/y (8,8,0,0,3) 0.8951 n/0 (0,8,16,0,6) 0.5098
By (7,7,0,0,3) 0.9349 n/0 (0,8,16,0,8) 0.6719
/0 (8,8,8,0,4) 0.9435 0/1 (0,6,16,2,9) 0.8249
/o (7,7,7,0,4) 0.9316 0/1 (0,5,16,3,9) 0.3024
o/e (6,8,10,0,4) 0.7710 1/K (0,4,16,4,9) 0.2573
o/e (5,8,11,0,4) 0.7278 1/K (0,3,16,5,9) 0.9430
€/ (4,8,12,0,4) 0.6722 K/ (0,2,16,6,9) 0.6473
€/ (3,8,13,0,4) 0.7310 K/ (0,1,16,7,9) 0.9651

sequence of events—it was consequentially also difficult to escape from). Rather
than attempting to force the sampling of these states, it was decided to impose
restriction 3 to prevent them forming.

To ensure that the neglected states were not significant in the operational cycle
of the tweezers, simulations were also performed in which no artificial weighting
or bias was imposed. Many complete (irreversible) cycles were recorded:
no violations of restrictions 1 and 2 were observed. Rare, transient violations of
the restriction 3 were observed, but they had no noticeable affect on the
displacement processes.

E.4 Comparing (E(Q)) from Different Windows

To be certain that windowing of simulations did not affect sampling accuracy by
limiting ergodicity, as outlined in Chap. 7, values of (E(Q)) were compared for
two commonly sampled values of Q for each overlap region between adjacent
windows. The distributions of E(Q) measured in the simulation were tested for
significance using Welch’s unpaired t-test [5]. The results, shown in Table E.3, are
as would be expected for consistent sampling (only one order parameter appears to
show significant difference at the 95 % level, as would be expected from 20 tests).
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Appendix F
Details of Sampling Methods for the DNA
Walker

Three types of simulation were performed on the DNA walker system presented in
Chap. 8. Firstly, simple unbiased Langevin and VMMC simulations were per-
formed to study the kinetics of foot-binding, and also to explore the possibility of
lifting of the wrong foot. To obtain thermodynamic data, VMMC simulations were
performed with biases that are discussed in the following section. Finally,
Langevin simulations using forward flux sampling were used to study the possible
mechanism of lifting the wrong foot from the track.

F.1 Order Parameters Used in Thermodynamic Simulations

Generally, order parameters were primarily constructed using the number of
hydrogen-bonding interactions with energies below —0.1 (in reduced units). An
additional dimension, analogous to the Qs introduced for the tweezers (see
Appendix E), was sometimes used to favour bringing duplexes into close
proximity. For all simulations considered in this section, base pairs were deemed
to be formed if hydrogen-bonding energy was < —0.1 simulation units.

¢ Front site binding: three-dimensional order parameter.

— Qi the number of correct bp between foot 2° and the front site.

— (»: the number of misbonded bp between foot 2 and the front site.

— (3: based on the separation of foot 2 from the front site when in the unbound
State.
In these simulations, binding to the back site was forbidden, as was the
dissociation of the initially attached foot from the track. Correct bonds and
misbonds with the front site were limited to 14 and 2 bp respectively.

® The initially raised foot.

T. E. Ouldridge, Coarse-Grained Modelling of DNA and DNA Self-Assembly, 167
Springer Theses, DOI: 10.1007/978-3-642-30517-7,
© Springer-Verlag Berlin Heidelberg 2012


http://dx.doi.org/10.1007/978-3-642-30517-7_8

168 Appendix F: Details of Sampling Methods for the DNA Walker

¢ Back site binding simulations were performed exactly analogously to the front
site calculations.
¢ Competition between toehold domains: three-dimensional order parameter.

— Qy: the number of correct bp between foot 1 and the middle site.

— (»: the number of correct bp between foot 2 and the front site.

— Qs: if either of the bp at the ends of the duplexes away from the competition
region had frayed, Q3 = 1, otherwise Q3 =0 .
To encourage migration of the displacement junction, states with one fewer
than the maximum number of bonds were favourably biased. The unintended
result of this bias (when first applied) was that additional fraying was observed
at the far ends of the walker/track duplexes, rather than fraying near the
junction point. Q3 was therefore included to distinguish between states with
and without frayed ends, allowing fraying at the displacement junction to be
selectively favoured. In these simulations, detachment of either foot was
prohibited, as was any binding to the back site.

¢ Fuel binding: six-dimensional order parameter.

— Qj: the number of correct bp between foot 1 and the middle site.

— (»: the number of correct bp between foot 2 and the front site.

— Qs: if either of the bp at the ends of the duplexes away from the competition
region had frayed, O3 = 1, otherwise 03 =0 .

— Qq: the number of correct bp with the competing toehold domain and the non-
toehold domain of the back foot.

— Qs: the number of correct bp with the competing toehold domain of the front
foot.

— Qg: based on the separation of the fuel from the toehold domain of the feet.
Both fuel-binding dimensions were limited to a maximum of 6 bp, and
detachment from the track of either foot was prohibited. An additional
dimension was included to bias the fuel towards approaching the toehold
domains. In these simulations, binding to the back site was prohibited and
incorrect pairing involving the fuel or foot 2 was limited to 2 bp.

¢ Displacement: three-dimensional order parameter.

— (Qj: the number of correct bp between foot 1 and the middle site.

— (»: the number of correct bp between foot 1 and the fuel.

— Qs: if either of the bp at the ends of the foot 1/fuel or foot 1/track duplexes
away from the competition region had frayed, Qs = 1, otherwise Q3 = 0.
Migration of the branch point was accelerated in a manner analogous to the
simulation of the competition domain. Once again, binding to the back site and
total detachment of either foot from the track was prohibited, as was the
detachment of fuel from the back foot. Incorrect pairing involving the fuel or
the front foot was limited to 2 bp. In order to sample the two mismatch
repairing steps, it was found to be advantageous to split the displacement into
two windows that were combined using the WHAM algorithm [30].
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¢ Foot lifting: three-dimensional order parameter.

— Q;: the number of correct bp between foot 1 and the middle site.

— (»: the number of correct bp between foot 1 and the fuel.

— (3: based on the separation of foot 1 and the back site when in the unbound
state.
In these simulations, detachment of foot 2 from the track, detachment of the
fuel from foot 1 and any binding to the back site were forbidden. Bonds
between foot 1 and the middle site were limited to 7 or fewer, and incorrect
pairing involving the fuel or the front foot was limited to 2 bp. As the
dimensions used for foot lifting were not identical with the displacement
simulations, WHAM cannot be used to combine the two sets of data. Instead,
the data was condensed onto a one-dimensional axis (the number of bp
between back foot and the middle site of the track) for both windows, and a
near-perfect agreement in the overlap region used to combine the data to
produce Fig. 8.8b.

As with the tweezers, the restrictions to the system were imposed to ensure that
accurate and well-defined sampling could be performed. In this case, unbiased
simulations have revealed a number of effects not visible in the restricted
thermodynamics simulations—such as the possibility of binding proceeding via
misbonds. Nonetheless, the thermodynamic simulations provide a good starting
point in understanding the kinetic results, such as the bias for binding correctly to
the front site under tension.

F.3 Forward Flux Sampling of Lifting the Front Foot

In Chap. 8, a possible mechanism for lifting the front foot after binding to its raised
toehold is suggested. Once bound to the raised toehold, the fuel can either detach
or reach round and begin to displace the track from the front foot. I estimated the
relative probability of these two events occurring using forward flux sampling.
Forward flux sampling is discussed in detail in Chap. 3.

Unlike umbrella sampling, forward flux sampling does not easily generalize to a
transition which can only be well described by a two-dimensional order parameter.
In this case, I am essentially interested in finding the relative probability of fuel
dissociating normally from the front toehold compared to fuel unbinding from the
toehold whilst bound to another part of the foot, leading to displacement of the
track. A natural order parameter, therefore, would have one dimension related to
the binding of the fuel to the toehold and another describing the binding of the fuel
to the rest of the foot.

To simplify the requirements of the algorithm, I used forward flux sampling to
measure the flux from a state in which the fuel is bound to the toehold to one in
which it has dissociated, and separately to one in which it has formed 8 bp with the
non-toehold region (but still attached to the toehold). Such a partially-displaced
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Table F.1 Order parameter definitions and simulation results for the melting detachment of the
fuel from the front-foot toehold domain

0 Definition Simulation results

0=-2 6 bp

0=-1 5 bp Crossing events: Steps:

0=0 3 or 4 bp 10618 4.82 x 108
Attempts: Successes:

0=1 1 or 2 bp 20000 1464

0=2 No bp and > 1 nearly formed bp 9800 360

0=3 No bp and no nearly formed bp 2000 1724

0=4 Separation >3 units 2000 1451

For these simulations, only correct bp between toehold and fuel were considered and were
counted as being formed if their energy was less than 0. “Nearly formed” bp were recorded if a
pair of these nucleotides had hydrogen-bonding sites within 0.9 simulation units and would have
had negative energy but for a single factor in the hydrogen-bonding term being zero. The time
step used was 0.003 simulation units

state was observed to be a metastable minimum of free energy, corresponding to a
‘double-X’ configuration. Individually, both processes are relatively simple to
describe using a one-dimensional order parameter. I then assumed that trajectories
that reached the metastable minimum of partial displacement tend to equilibrate
within the local minimum before either the fuel detaches from the toehold or the
non-toehold region. Using this assumption, I ran separate simulations initiated
from states with 8 bp between the non-toehold region and the fuel to calculate the
probability of successful foot-raising after such a state has been reached.*

F.2.1 Measuring the Melting Flux

I measured the flux from a state in which the fuel is bound to the raised toehold of
the front foot to a state in which the hydrogen-bonding sites of the fuel are
separated by at least three simulation units from the hydrogen-bonding sites of the
toechold. The order parameter definitions and simulation results are given in
Table F.1.

Multiplying the initial flux by the probabilities gives a melting flux of @ =
1.24 x 1077 per unit simulation time.® An error on this quantity can be estimated

* 1t should be noted that the estimate of displacement only includes trajectories that reach 8 bp
between the non-toehold region and the fuel prior to dissociation of the fuel from the toehold. It is
possible that displacement may occur without such a state being reached, and also that there are
completely different pathways to displacement that are not sampled due to the chosen order
parameter.

5 Due to the caveats with comparing simulation time to absolute time, I will report all fluxes in
terms of the simulation time, and only compare relative values.
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Table F.2 Order parameter definitions and simulation results for the initiation of wrong-foot
displacement after the fuel has bound to the front-foot toehold domain

(0] Definition Simulation results
Q = —2 Separation between correct bp of fuel and non-competition
domain > 4 units
Q = —1 4> separation > 2 units Crossing Steps:
events:

Q=0 2> separation > 1 unit 3850 3.84 x 10°
Attempts: Successes:

Q=1 Separation <1 and no bp or nearly-formed bp 20000 1798

Q=2 Nobpand >1 nearly formed bp 4500 1343

Q=3 lor2bp 20000 824

Q=4 3or4bp 20000 956

Q=5 5,6o0r7bp 3573 462

Q=6 >8bp 5000 2020

For these simulations, only correct bp were considered and were counted as being formed if their
energy was less than —0.5 in simulation units. ‘Nearly formed’ bp were recorded if a pair of these
nucleotides had a hydrogen-bonding energy of 0 > E > — 0.5, or had hydrogen-bonding sites
within 0.9 simulation units and would have had negative energy but for a single factor in the
hydrogen-bonding term being zero. The time step used was 0.003 simulation units

in the following manner. Ten simulations were performed to estimate the initial
flux, with a standard error on the mean of 1.43 x 10~* per unit time (compared to
an average of 7.33 x 1073 per unit time). The later stages can be modelled as
Bernoulli trials—the probability of success measured after N attempts has a
variance of p(1 — p)/N, where p is the true probability of success. The measured p
can then be used to estimate the standard error on p for each stage. Adding the
relative errors in quadrature gives a standard error of around 6.4 %.

F.2.2 Measuring the Flux to a Partially Displaced State

The alternative to directly melting is for the fuel strand to begin displacement of
the track from the foot, by reaching back to form a double-X-like structure. 8 bp
with the track was observed to be a metastable minimum of free energy,
corresponding to such a configuration. I measured the flux to this state from a state
in which the fuel is only bound to the toehold, with the order parameter and results
outlined in Table F.2.

Multiplying the initial flux by the probabilities for each stage gives a total flux
to the partially displaced state of ®puia = 8.77 X 10710 per unit simulation time.
From this point, either of the fuel/toehold or the fuel/non-toehold duplexes can
melt. Whenever the first case occurred, full displacement of the track and foot
lifting was always observed. In the other case, the system had returned to the
original state of fuel binding and displacement had failed. Both processes are
reasonably fast (being in the double-X configuration destabilizes the fuel/toehold
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duplex), so the relative rates could be estimated simply by running unbiased
simulations starting from the intermediate displacement state. Of 50 simulations
initiated from the partially displaced state, 24 completed the displacement and 25
returned to the original state of having the fuel bound to the track only (one failed
to do either in the simulation time). Combining this estimate with the flux to the
partially displaced state, I obtain a flux to successful displacement from a state
with fuel bound to the walker toehold of Dgisplacement = 4.39 x 107! per unit
simulation time, with an error of around 16.2 %. Thus,

D isplacemen
—displacement _ ) 0035, (F.1)
(Dmelt

with an error of around 17.2 %.
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