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Preface

The main goal of this book is to give a presentation of various types of coherent
states introduced and studied in the physics and mathematics literature during al-
most a century. We describe their mathematical properties together with application
to quantum physics problems. It is intended to serve as a compendium on coherent
states and their applications for physicists and mathematicians, stretching from the
basic mathematical structures of generalized coherent states in the sense of Gilmore
and Perelomov' via the semiclassical evolution of coherent states to various specific
examples of coherent states (hydrogen atom, torus quantization, quantum oscilla-
tor).

We have tried to show that the field of applications of coherent states is wide,
diversified and still alive. Because of our own ability limitations we have not covered
the whole field. Besides this would be impossible in one book. We have chosen some
parts of the subject which are significant for us. Other colleagues may have different
opinions.

There exist several definitions of coherent states which are not equivalent. Nowa-
days the most well known is the Gilmore—Perelomov [84, 85, 155] definition: a co-
herent state system is an orbit for an irreducible group action in an Hilbert space.
From a mathematical point of view coherent states appear like a part of group rep-
resentation theory.

In particular canonical coherent states are obtained with the Weyl-Heisenberg
group action in LZ(R) and the standard Gaussian ¢g(x) =7 1/ 46”‘2/ 2 Modulo mul-
tiplication by a complex number, the orbit of ¢ is described by two parameters
(g, p) € R? and the L?-normalized canonical coherent states are

©q,p(x) = 7 VAe—(=a)*/24i((x=q)p+qp/2)

Wavelets are included in the group definition of coherent states: they are obtained
from the action of the affine group of R (x + ax 4 b) on a “mother function”
¥ € L?(R). The wavelet system has two parameters: Yap(x) = ﬁl/f(xa;b).

I'They have discovered independently the relationship with group theory in 1972.
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One of the most useful property of coherent system 1, is that they are an “over-
complete” system in the Hilbert space in the sense that we can analyze any n € H
with its coefficient (., n) and we have a reconstruction formula of 7 like

n =fdzﬁ(z)1/fz,

where 7 is a complex valued function depending on (y;, ).

Coherent states (being given no name) were discovered by Schrodinger (1926)
when he searched solutions of the quantum harmonic oscillator being the closest
possible to the classical state or minimizing the uncertainty principle. He found that
the solutions are exactly the canonical coherent states ¢, .

Glauber (1963) has extended the Schrodinger approach to quantum electro-
dynamic and he called these states coherent states because he succeeded to explain
coherence phenomena in light propagation using them. After the works of Glauber,
coherent states became a very popular subject of research in physics and in mathe-
matics.

There exist several books discussing coherent states. Perelomov’s book [156]
played an important role in the development of the group aspect of the subject and in
its applications in mathematical physics. Several other books brought contributions
to the theory of coherent states and worked out their applications in several fields
of physics; among them we have [3, 80, 126] but many others could be quoted as
well. There is a huge number of original papers and review papers on the subject;
we have quoted some of them in the bibliography. We apologize the authors for
forgotten references.

In this book we put emphasis on applications of coherent states to semi-classical
analysis of Schrodinger type equation (time dependent or time independent). Semi-
classical analysis means that we try to understand how solutions of the Schrodinger
equation behave as the Planck constant 7 is negligible and how classical mechanics
is a limit of quantum mechanics. It is not surprising that semi-classical analysis
and coherent states are closely related because coherent states (which are particular
quantum states) will be chosen localized close to classical states. Nevertheless we
think that in this book we have given more mathematical details concerning these
connections than in the other monographs on that subjects.

Let us give now a quick overview of the content of the book.

The first half of the book (Chap. 1 to Chap. 5) is concerned with the canonical
(standard) Gaussian Coherent States and their applications in semi-classical analysis
of the time dependent and the time independent Schrodinger equation.

The basic ingredient here is the Weyl-Heisenberg algebra and its irreducible rep-
resentations. The relationship between coherent states and Weyl quantization is ex-
plained in Chaps. 2 and 3. In Chap. 4 we compute the quantum time evolution of
coherent states in the semi-classical régime: the result is a squeezed coherent states
whose shape is deformed, depending on the classical evolution of the system. The
main outcome is a proof of the Gutzwiller trace formula given in Chap. 5.

The second half of the book (Chap. 6 to Chap. 12) is concerned with extensions
of coherent states systems to other geometry settings. In Chap. 6 we consider quan-
tization of the 2-torus with application to the cat map and an example of “quantum
chaos”.
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Chapters 7 and 8 explain the first examples of non canonical coherent states
where the Weyl-Heisenberg group is replaced successively by the compact group
SU(2) and the non-compact group SU(1, 1). We shall see that some representations
of SU(1, 1) are related with squeezed canonical coherent states, with quantum dy-
namics for singular potentials and with wavelets.

We show in Chap. 9 how it is possible to study the hydrogen atom with coherent
states related with the group SO(4).

In Chap. 10 we consider infinite systems of bosons for which it is possible to
extend the definition of canonical coherent states. This is used to prove mean-field
limit result for two-body interactions: the linear field equation can be approximated
by a non linear Schrédinger equation in R? in the semi-classical limit (large number
of particles or small Planck constant are mathematically equivalent problems).

Chapters 11 and 12 are concerned with extension of coherent states for fermions
with applications to supersymmetric systems.

Finally in the appendices we have a technical section A around the stationary
phase theorem, and in section B we recall some basic facts concerning Lie algebras,
Lie groups and their representations. We explain how this is used to build general-
ized coherent systems in the sense of Gilmore—Perelomov.

The material covered in these book is designed for an advanced graduate student,
or researcher, who wishes to acquaint himself with applications of coherent states
in mathematics or in theoretical physics. We have assumed that the reader has a
good founding in linear algebra and classical analysis and some familiarity with
functional analysis, group theory, linear partial differential equations and quantum
mechanics.

We would like to thank our colleagues of Lyon, Nantes and elsewhere, for discus-
sions concerning coherent states. In particular we thank our collaborator Jim Ralston
with whom we have given a new proof of the trace formula, Stephan Debievre, Alain
Joye and André Martinez for stimulating meetings.

M.C. also thanks Sylvie Flores for offering valuable support in the bibliography.

To conclude we wish to express our gratitude to our spouses Alain and Marie-
France whose understanding and support have permitted to us to spend many hours
for the writing of this book.

Lyon and Nantes, France Monique Combescure
Didier Robert
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Chapter 1
Introduction to Coherent States

Abstract In this Chapter we study the Weyl-Heisenberg group in the Schrédinger
representation in arbitrary dimension n. One shows that it operates in the Hilbert
space of quantum states (and on quantum operators) as a phase-space translation.
Then applying it to a Schwartz class state of arbitrary profile we get a set of gen-
eralized coherent states. When we apply the Weyl-Heisenberg translation operator
to the ground state of the n-dimensional Harmonic Oscillator, one gets the stan-
dard coherent states introduced by Schrodinger (Naturwissenshaften 14:664—666,
1926) in the early days of quantum mechanics (1926). Later the coherent states
have been extensively studied by Glauber (Phys. Rev. 131:2766-2788, 1963; Phys.
Rev. 130:2529-2539, 1963) for the purpose of quantum optics and it seems that their
name comes back to this work. The standard coherent states have been generalized
by Perelomov (Generalised Coherent States and Their Applications, 1986) to more
general Lie groups than the Weyl-Heisenberg group.

We also introduce the usual creation and annihilation operators in dimension n
which are very convenient for the study of coherent states. We show that coherent
states constitute a non-orthogonal over-complete system which yields a resolution
of the identity operator in the Hilbert space and which allows a computation of the
Hilbert—Schmidt norm and of the trace of respectively Hilbert—Schmidt class and
trace-class operators.

We study their time-evolution for the quantum Harmonic Oscillator hamiltonian
and show that a time evolved coherent state located around phase-space point z is up
to a phase a coherent state located around the phase-space point z;, where z; is the
phase-space point of the classical flow governed by the Harmonic Oscillator. This
property was described by Schrodinger as the non-spreading of the time evolution
of coherent states under the quantum Harmonic Oscillator dynamics.

We also show how to go from the Schrédinger to the Fock—Bargmann represen-
tation using the standard coherent states.

M. Combescure, D. Robert, Coherent States and Applications in Mathematical Physics, 1
Theoretical and Mathematical Physics,
DOI 10.1007/978-94-007-0196-0_1, © Springer Science+Business Media B.V. 2012
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2 1 Introduction to Coherent States

1.1 The Weyl-Heisenberg Group and the Canonical Coherent
States

1.1.1 The Weyl-Heisenberg Translation Operator

Consider quantum mechanics in dimension n. Then the position operator Q has n
components Ql, .. Qn where Q j is the multlphcatlon operator in LZ(R") by the

coordinate x;. Slmllarly the momentum operator P hasn components P where

A

——h— 1.1
ihge (1.1)

h is the Planck constant divided dy 27. Q and P are selfadjoint operators with
suitable domains D(Q) and D(P).

D(0) = {u e L*(R") | xju(x) e L*(R"), Vj=1,....n}
D(P) = {u e L2(R") ‘ 337”] € L2(R"), Vj = ln}
The operators Q and P obey the famous Heisenberg commutation relation
[P, O] = =6, 4ih (1.2)

on the domain of Q P—P. Q The bracket [A, B] is the commutator:

[4, 8] = Ak BA

On the intersection of the domains D(Q) ND( P ) the operator p - Q —q- P is well
defined for z = (¢, p) € R?", where the dot represents the scalar product:

n
0=) pj0;
1

It is selfadjoint so it is the generator of a unitary operator T(z) called the Weyl-
Heisenberg translation operator:

N i N ~
T(Z)=exp(ﬁ(p- Q—q-P)> (1.3)
Now we use the Baker—Campbell-Hausdorff formula

Lemma 1 Consider two_anti-selfadjoint operators A, B in the Hilbert space H,
with domains D(A), D(B). We assume the following conditions are satisfied:

(1) There exists a linear subspace space Hy dense in H, which is a core for A
and B.
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(i) Ho is invariant for A, B, e e!B ,Vt eR.
(iii) A and B commute with [A B] in Ho and l[A B] well defined in Ho, has a
selfadjoint extension in H.

Then we have

[A, é])exp( )exp( ) (1.4)

N | =

eXp(A + é) = exp(—

Proof Let us introduce
F(t)u —t /2[A B]etAetBu
where u € Hy is fixed. Let us compute the time derivative
F'(Hu = —I[A, é]e_’z/zm’é]e“&e’éu
+ e—zz/z[A,B]erA(A T f}’)e’éu (1.5)

The only difficulty is to commute B with ¢'A. But we have, using the commutations
assumptions,

(et = A4, Bl = [4, 8]
So we get that
F'(t)=(A+ B)F(1) (1.6)
and the formula (1.4) follows. O

Using this formula, one deduces the multiplication law for the operators f"(z):
T()T () =exp<—2iho(z,z’)>f(z +7) (1.7)
where for z = (g, p), 2 = (¢, p'), o (z, Z’) is the symplectic product:
0(z,)=q-p'=p-q (1.8)
and
T()T (@)= eXp(—%o(z, z')) ()7 ()

which is the integral form of the Heisenberg commutation relation. In particular we
have:

A 7] A A
(T@) =(T@) =T(-2)
since the symplectic product of z by itself is zero.

The fact that the Weyl-Heisenberg unitary operator is a translation operator can
be seen in the following lemma:
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Lemma 2 For any z = (q, p) € R*" one has

() <Q> o) = (g i) (1.9)
Proof Let us denote Lz) = p- 0— q- Pifz= (g, p). We have easily
d i A
ihs (ehLm Qe—ﬁuz)) ehL [0, L(2)]e HL@

But we have [Q, i(z)] = —ihq. So we get the formula for Q With the same proof

we get the formula for P. g
Corollary 1

T(z) = e 4P/ herirCe5aP (1.10)
Proof Let

0@ = e—it’a-p/2hop-0o—tq-P
Using Lemma 1 we get

d - d A
ET(IZ) —U(t) = —L(tz)U(t)

Hence the corollary follows. O

Let us specify the situation in dimension 1. We introduce:

[N
eg=—=P
vh
"o
e = —
Vh
e3=1il
We easily check that
[e1, e2] = e3, [e1,e3] =[e2,e3]=0

This means that the operators Q, P, 1 generate a Lie algebra denoted by f; which
is the Weyl-Heisenberg algebra. The elements of this algebra are defined using
triplets of coordinates (s; x, y) € R3 by:

W =xe1 + yer + se3 (1.11)
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In quantum mechanics it is more convenient to use the following coordinates:
it i, a N

W=—"21+ i—i(pQ—qP)

where the real numbers ¢, ¢, p are defined as
g=—vhx, p=~hy, t=-2hs

Then we can calculate the commutator of two elements W, W’ of the Lie algebra b :

Lemma 3
(W, W= (xy/ - yx')e3 (1.12)
o((x,y), (x",¥)) =xy' —x"y is simply the symplectic product of (x, y) and (x', y').

Proof We simply use Lemma 1. O

For any W in h; we can define the unitary operator ¢" and we get a group using
(1.4). This group is denoted Hj. It is a Lie group and its Lie algebra is §1. The Lie
group Hj is simply R with the non commutative multiplication

t, ), )= (t+1+0(z,7),z+7), wherer eR,zeR? (1.13)

We deduce (1.13) from an elementary computation. If W, W’ € b using (1.4) we
have

! " 1
VeV ="' where W' = 5[W, W+ W+ W

Using the (¢, ¢, p) and (¢, ¢/, p’) coordinates for W and W’ respectively, we get the
corresponding coordinates (", ¢”, p”) for W such that

"=t+1 +0(z7), =747

which is the Weyl-Heisenberg group multiplication (1.13).
In the same way we define the Weyl-Heisenberg algebra b, and its Lie Weyl—
Heisenberg group H,, for any n > 1.

The Weyl-Heisenberg Group H, and Schrodinger Representation in Dimen-
sion n  The Weyl-Heisenberg Lie algebra b, is a real linear space of dimension
2n 4+ 1. Any W € b, has the decomposition
it i A A A N N . A
W=-—1+ ﬁ(p~ Q—q-P), where Q=(Qi,...,0n), P=(P1,..., Py)
(t;q,p)=(t;2) e R x R2" is a coordinates system for W. The Lie bracket of W
and W', in these coordinates, is

(W, W']= %a(z, )1
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This reflects the Heisenberg commutation relations (1.2).
As for n = 1 a group multiplication is introduced in R x R?" to reflect multiplica-
tion between operators " . So, H,, is the set R x R>" with the group multiplication

.2 )=+t +02).2+7) (1.14)
where o is the symplectic bilinear form in R
0@)=q-p'—q" p, ifz=(qp). =" p"

H,, is a Lie group of dimension 2n + 1.
The Schrodinger representation is defined as the following unitary representation
of H, in L?(R"):

pt,2)=e "7 (z), (1,2) €H,

In other words the map (¢, z) — p(t, z) is a group homomorphism from the Weyl—
Heisenberg group H, into the group of unitary operators in the Hilbert space
L2(R™M).

By taking the exponential of W one recovers the Weyl-Heisenberg Lie group
defined above:

oW — o—it/2h exp(%(pQ _ qp)) — e 120 ()
Recall that z = (g, p).
Remark 1 The Schrodinger representation is irreducible, this will be a consequence
of the Schur Lemma 10. According to the celebrated Stone—von Neumann theorem

(see [182]) the Schrodinger representation is the unique irreducible representation
of H,,, up to conjugation with a unitary operator, for every 4 > 0.

1.1.2 The Coherent States of Arbitrary Profile

The action of the Weyl-Heisenberg translation operator on a state u € L*(R") is the
following:

(f“(z)u)(x) = exp(—zl—hq . p) exp<%x . p)u(x —-q) (1.15)

Physically it translates a state by z = (g, p) in phase space. One has a similar for-
mula for the Fourier transform that we denote F defined as follows:

Fu(€) = Qnh)™" / e V€ (x) dx

n
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(F(7 @u) ) =exp( —q - p )exp( —=q - & | Fw) (& — p)
2h h

which says that the state is translated both in position and momentum by respec-
tively ¢ and p. Now taking any function u( in the Schwartz class S(R") the coherent
state associated to it will be simply

uz(x) = (T (2)uo) (x) (1.16)

A useful example for applications is the following generalized Gaussian function.
Le be I' a symmetric complex n x n matrix such that its imaginary part II" is
positive-definite. Then we can take ug = ¢/, where

0D (x) = (h) "4 det /4 (3 M)e s T (1.17)

1.2 The Coherent States of the Harmonic Oscillator

1.2.1 Definition and Properties

They have been introduced by Schrodinger and have been extensively studied and
used. They are obtained by taking as reference state u( the ground state of the har-
monic oscillator

2
1o(x) = po(x) = (wh)~"/* exp(—’z‘—h) (118)

Thus ¢, := f‘(z)<po is simply a Gaussian state of the form

, . 2
0 (x) = (h)y "4 exp(—zl—hq . p) exp(%x . p) exp(—%) (1.19)

i1 . . — )2
(Fo)(€) = (h) ™4 exp(%) exp(—i% - @Tp)) (1.20)

. is a state localized in the neighborhood of a phase-space point z = (¢, p) € R*"
of size +/h in all the position and momentum coordinates. Then it is a quantum
state which is the analog of a classical state z obtained by the action of the Weyl—
Heisenberg group H,, on ¢g. They are also called canonical coherent states. They
have many interesting and useful properties that we consider now.

It is useful to use the standard creation and annihilation operators:

a= (0 +iP) (1.21)

al=—(0—iP) (1.22)
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at is simply the adjoint of a defined on D(Q) N D(l'3 ). Furthermore a simple con-
sequence of the Heisenberg commutation relation is that:

[a;.a]] =64 (1.23)

Then the Hamiltonian of the n-dimensional harmonic oscillator of frequency 1 is
1 “ n h
Hoszz(Pz—i-Qz):hJZ:l(a}aj—i—E)=§(aT~a+a-aT) (1.24)

It is trivial to check that the ground state ¢g of Hy is an eigenstate of a with eigen-
value 0. A question is: are the coherent states ¢, also eigenstates of a? The answer
is yes and is contained in the following proposition:

Proposition 1 Let z = (g, p) € R*". We define the number o € C" as

a:\/%(qwtip) (1.25)
Then the following holds
T(al(z) '=a—« (1.26)
Moreover
ap; = ag; 1.27)

Proof We simply use Lemma 2 to prove (1.26). Then we remark that:
T@al (@) '¢: =T (@apy=0=(a - a)g; O

The Baker—Campbell-Hausdorff formula (1.4) is still true for annihilation-
creation operators but we need to adapt the proof with the following modifications.

Let o be the linear space spanned by the products ¢, (x)e"* where o € N* and
n € C". We can extend the definition of f(z)u for every u € Hp and z € Cc2n,

Lemma4 Foreveryu € Ho,z > T (z)u can be extended analytically to C**. More-
over T (2)u € Ho and we have for every z, 7' € C** and every u € H,,

(T (@ )u =CXp<—%o(z,z’)>f(z +7)u (1.28)

where o is extended as a bilinear form to C*" x C".

Proof Using formula (1.15), we can extend f"(z)u analytically to C?". So we can
define

exp(%(p 0—q- ﬁ))u =T(@u, forz=(q,p)eC”
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Now with the same proof as for (1.4), we get that (1.28) is still true for every z,
7/ eC". O

Using (1.28), in the creation and annihilation operators representation we have
that

2
T(z) = exp(a a2l —a ~a) = exp(—%) exp(a . aT) exp(—a - a) (1.29)

Recall that by convention of the scalar product - we have:
n n
&-azz&jaj, aoa1'=2ajaj.
j=1 j=1

Using (1.29) we have, since exp(—a - a)go = ¢o:

o |? ;
¢: =exp| ——- exp(a-a’)go (1.30)

Two different coherent states overlap. Their overlapping is given by the scalar prod-
uct in L2(R"). We have the following result:

Proposition 2

/ 2
o :exp<ia(§’hZ )>exp<—|Z 4; | ) (1.31)

Proof We first establish a useful lemma:

Lemma 5

|z|?

(90, T (2)p0) = exp(—E) (1.32)

Proof We use (1.29). So we get

2 ; B 2 _
o0 @)= exp(~L2 ) o, gn) = enp ~EL ) e 20

But since ¢y is an eigenstate of a with eigenvalue 0, we simply have

le™*¢0] =1 :

The operator T(z) transforms any coherent state in another coherent state up to
a phase:
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Lemma 6
A i
T(z)p, =exp <_ ﬁa (z, Z/)>§oz+z’

Proof The proof is immediate using (1.7).
The overlap between ¢, and ¢, is given by:

(2. 902) = (T ()90, T o) = exp<2l—ha(z, z’>>(<po, (z' = 2)¢o)

where we have used (1.7). Now using the lemma for the last factor we get the re-
sult. O

In the particular case of the dimension n equals one, the kth eigenstate ¢y of
the harmonic oscillator (the Hermite function, normalized to unity) is generated
by (ah)k:

¢ = (kD' (a) g

so that expanding the exponential, formula (1.30) gives rise to the following well-
known identity:

o0
(X
¢, = exp(—lal’/2) ZT

In arbitrary dimension n, the operator (a <)k excites the ground state of the harmonic
oscillator to the kth excited state of the jth degree of freedom. More precisely let
k = (k1, ..., k,) € N" be a multiindex. The corresponding eigenstate of Hyg is:

Pk (x) = Pk, (xX1) - . . P, (Xn) (1.33)
and it has eigenvalue Ex = (k1 + k2 + - - - + k,, + n/2)h. Note that this eigenvalue is
highly degenerate, except Eg. We have

Lemma 7

(af)ki
o=[]—F (1.34)
!

j=1

The physicists often use the ket notation for the quantum states. Let us define it
for completeness:

10) =
k) = ¢x
and they also designate the coherent state with the ket notation:

|z) = ¢,
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Then we have:

Lemma 8
=ew(-E0) ¥ S (1.35)
ST T k! '

_ 4;jtip;
where o = “=L and
J V2R

k _ ki _k k
ot =oy oy Lo

n
k! =kilka!. . . ky!

1.2.2 The Time Evolution of the Coherent State for the Harmonic
Oscillator Hamiltonian

A remarkable property of the coherent states is that the Harmonic Oscillator dy-
namics transforms them into other coherent states up to a phase. This property was
anticipated by Schrodinger himself [175] who describes it as the non-spreading of
the coherent states wavepackets under the Harmonic Oscillator dynamics. Further-
more the time-evolved coherent state is located around the classical phase-space
point of the harmonic oscillator classical dynamics.

Let z := (g, p) € R?" be the classical phase-space point at time 0. Then it is
trivial to show that the phase-space point at time ¢ is just z; := (g;, p;) given by

2 =Fiz

where F; is the rotation matrix

cost  sint
Fl = .
—sint cost

We have the following property:

Lemma 9 Define

<Q:(t)) — o—itHos/R <Q:> oitHos/
P(t) P

Note that Q(—t), ﬁ(—t) are the so-called Heisenberg observables associated to
Q, P.Then:
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(1)
om\ _ 0
(8- (%)
(i)
e—itﬁos/hf(z)eitﬁos/h _ f(z;)
Proof

(i) One has, using the Schrodinger equation and the commutation property of Q, P

that
2(0)-(42)
dt \ P(r) Q)
Then the solution is (1.36).
(ii) Then

e /M (p- 0 —q-P)"o M =p. 0)—q-PW)=pi- 0 —q,- P
By exponentiation one gets the result. U

Proposition 3 The quantum evolution for the harmonic oscillator dynamics of a
coherent state @, is given by

efitﬁos/hwz — e—itn/2

Pz,
Proof
e—mﬁl(,s/h(pZ _ e—itﬁos/hf(z)eitﬁos/h < e—nﬁos/h(po
— f(zl)e*"’”/zwo — efitn/z(pzr
where we have used that ¢ is an eigenstate of 1':1(,S with eigenvalue n % Il

In Chap. 3 we shall see a similar property for any quadratic hamiltonian with
possible time-dependent coefficients. Then the quantum time evolution of a coherent
state will be a squeezed state instead of a coherent state, located around the phase-
space point z; for the associated classical flow which is linear (since the Hamiltonian
is quadratic).

1.2.3 An Over-complete System

We have seen that the coherent states are not orthogonal. So they cannot be con-
sidered as a basis of the Hilbert space L?(R") of the quantum states. Instead they
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will constitute an over-complete set of continuous states over which the states and
operators of quantum mechanics can be expanded.

We can now introduce the Fourier-Bargmann transform that will be studied in
more details in Sect. 1.3. We start from ug € L2(R"), |lug]|? := fR" luo(x)|2dx = 1.
Let us define the Fourier—Bargmann transform by the following formula

FBuz) =vi(@) = @rh) " (u.,v), z=(q,p) eR”" (1.37)

If ug is the standard Gaussian ¢, the associated Fourier—Bargmann transform will
be denoted F5.

Proposition 4 ]-'53 is an isometry from L*(R") into L>(R>")
Proof We have
(15, v) = 2R P4 /R V() uo(x — qre ¥ /M dx (1.38)
From Plancherel theorem we get
Qah)™" /R (g, ps 0|7 dp = /R lv()uo(x — )| dx (1.39)

Then we integrate in ¢ variable and change the variables: ¢’ = x — g, x’ = x, so we
get the result. O

Then by polarization we get that the scalar product of two states ¥, ' € L?(R")
can be expressed in terms of ¥¥, (y/)%:

W.y)= / dz(y") ()Y (2) (1.40)

We deduce, using Fubini theorem that the function y“(z) determines the state v/
completely:

V= / dz % (2)e; (1.41)

This implies that the Schrodinger representation is irreducible.
Then we use Schur’s lemma:

Lemma 10 If A is a bounded operator in L*(R") such that
AT () =T(z)A, VzeR™

then

>
I
)
=

for some C € C.
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We deduce that the coherent states provide a resolution of unity. Define the fol-
lowing measure:

du(z)=Cdz=Cdq1dq>...dg,dp1dp>...dp, (1.42)

where and C € C is a constant to be determined later. Let |z)(z| be the projection
operator on the state |z). We consider the operator

A:/du(z) 12)(z]

We have the following result:
Proposition 5 A commutes with all the operators T(2).

Proof Using (1.7) we get:
[A.T(2)] = /du(z/)<e><p(—§ia(z, z’)) 1Z')(z" -zl

- exp(—ziha(z, z/)>|z + z/><z/|)

Now using the change of variable 7" = z + 7’ in the last term we get zero.
Therefore in view of the Schur’s lemma A must be a multiple of the identity
operator:

A=d "1

We determine the constant d by calculating the average of the operator A in the
coherent state |z):

-1 _ Aoy / INVER , |Z/|2
d~'=(z|Alz) = | du(@) |(zlZ)| = | du(@)exp( —

2h

The constant C can be chosen so that d = 1. Therefore the resolution of the identity
takes the form:

/d,u(z) lz)(z| =1 (1.43)

where d(z) is given by (1.42) and the constant C is such that
|z
C d —— =1
/I%Zn < eXp( 2h

C=Quh)™ (1.44)

This gives
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The resolution of identity (1.43) allows to compute the trace of an operator in

terms of its expectation value in the coherent states. Let us recall what the trace of
an operator is when it exists.

Definition 1 An operator B is said to be of trace class when for some (and then
any) eigenbasis e, of the Hilbert space one has that the series (e, (B*B)Y 2ek) is
convergent. Then the trace of B is defined as

Tr(B) = (ex. Bex) (1.45)

keN

An operator B is said to be of Hilbert-Schmidt class if B*B is of trace class.

Proposition 6 Let B be an Hilbert-Schmidt operator in L*(R") then we have

A 2 _ A 2
Bl = e [ |Buclaz (146
If B is a trace-class operator in L*(R") then we have

TrB = (2nh)™" /2 (uz, Bu;)dz (1.47)
R n

Proof Let {e;} be an orthonormal basis for L?(R") (for example the Hermite basis
¢;). We have

18155 =Y |1Bej|?
J
= ") (Be;)|)? (1.48)
J

But we have

~

(Bej)t(z)=(éej,uz>=(ej,B*uZ> (1.49)

Using Parseval formula for the basis {e;} we get

S| Bej|)? = @amy /zn | B*u. | dz (1.50)

=0 R

Using that || B ||%{s = B* ||%{S we get the first part of the corollary.

For the second part we use that every class trace operator can be written as B=
BE‘B 1 where Bj, By are Hilbert—Schmidt. Moreover the Hilbert—Schmidt norm is

associated with the scalar product (32, 1§1) = Tr(f?;‘él). So we get
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Te(B) = Te(B3 B1) = @iy~ /R (Boue, Bruc)dz

:@mw/(%&Qa (1.51)
RZV:

These formulas will appear to be very useful in the sequel.

1.3 From Schrodinger to Bargmann—Fock Representation

This representation is well adapted to the creation-annihilation operators and to the
Harmonic oscillator. It was introduced by Bargmann [17]. In this representation the
phase space R?" is identified to C":

_q—ip
(g.p)>¢= 7

and a state v is represented by the following entire function on C”":
p2+q2
Vi (&) = v (g, pye -
Recall that *(z) = 2 h) ™ *(p,, ¥), 2 = (¢, p)-

Proposition 7 The map  — 1/’1&01 is an isometry from L*(R") into the Fock space
F(C") of entire functions f on C" such that

2 &L =
LJf@ﬂe R |dg Ad] < +oo
F(C™) is an Hilbert space for the scalar product

(fa f1) = [C AR T [de ndE| (1.52)

Proof A direct computation shows that ‘/’ﬁlol is holomorphic: 9; l/fliol = 0. Recall
that the holomorphic and antiholomorphic derivatives are defined as follows.

1 1
b= +idy). ==, —id))

We can easily get the following explicit formula for wgolz

2 2
‘ﬁﬁ l({) — (nh)_3"/42_"/2/ W (x) exp|:—l<x— _ ﬁx C+ g_)i| dx (1.53)
0 Rn R\ 2 2
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The transformation i +— wéol is called the Bargmann transform and is denoted
by B. Its kernel is the Bargmann kernel:

B(x, ) = (wh)~3/*27" 2 exp 1 ﬁ—ﬁx~§+ﬁ
’ h\ 2 2
where x e R", ¢ € C"* (1.54)

Recall the notations x> = x - x, {2 =¢-¢,¢ - ¢ = [
Using that ¢ > ¥ is an isometry from L2(R") into L2(R?"), we easily get that

[cnh/fﬁol(s“)!ze‘% e AdE| =113 (1.55)

Hence B is an isometry form L2(R”") into F(C").

_For convenience let us introduce the Gaussian measure on C", dju = e l[d¢ A
de|.
It is not difficult to see that F(C") is a complete space.
If { f} is a Cauchy sequence in F(C") then { f;} converges to f in L2(C", d ).
So we get in a weak sense that 97 f =0 so f is holomorphic hence f € FCH. O

Let us now compute the standard harmonic oscillator in the Bargmann represen-
tation. We first get the following formula

/ ¥ (X)B(x, §)dx :/ 1#()6)(% - %C)B(x,é)dx (1.56)
Rll ]Rn
2
o [ weoBe.odx= [ 1//(X)<%x—%)8(x,§)dx (157)
R" R"
Hence
1
B&xy)() = ﬁ(ﬁf’; + OBy () (1.58)
1
B(hoy =—(ho —¢)B 1.59
(Rdx ) () ﬁ( ¢ — By () (1.59)
Then we get the Bargmann representation for the creation and annihilation operators
Bla'y]©) = ¢Bly 1) (1.60)
Blay1(¢) = 9; BIy1(0) (1.61)

So the standard harmonic oscillator Hos = fi(a™a + 5), has the following Bargmann
representation

. h
HE =he - o, +n3 (1.62)
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Remark 2 It is very easy to solve the time dependent Schrodinger equation for ﬁﬁ}s.
If F € F(C") such that £9; F € F(C"), then F(t,) = e~ 3 F(e” 3 ¢) satisfies

ing, F(1)y=HLF(1),  F(0,0)=F() (1.63)

Moreover if i = 1 and if we put e~//2 it/2

& F(t)=HEF(@).

in place of e ™'/~ we solve the heat equation

We shall see now that the Hermite functions ¢, have a very simple shape in the
Bargmann representation. Let us denote ¢§(§ ) = B¢y . Then we have

Proposition 8 For everya e N, ¢ € C",
¢h(e) = @rh) @)~ (1.64)
Moreover {(bz(;)}aeNn is an orthonormal basis in F(C").

Proof Let us first recall the notations in dimension n. For @ = (1 - - - o) € N, ! =
arl--apland for & = (41, ..., L) €C" ¢ =" 4"

We get easily that (¢%, ) =0 if a # 8.

It is enough to compute, for n = 1, ||k ”3—'(@) and this is an easy computation
with the Gamma function.

Let us prove now that the system {{%}yene is total in F(C").

Let f € F(C") be such that (¢%, f) =0 for all « € N". f is entire so we have

F@)=)" fat®

where f, are the Taylor coefficient of f at 0. The sum is uniformly convergent
on every ball of C". On the other side from Bessel inequality, we know that the
Taylor series ), fu¢® converges in F(C"). But we can see that {{%}qen» is also
an orthogonal system in each ball with center at 0. Then we get that f,, = 0 for every
o hence f =0.

Let us remark here that we could also prove that the system {¢§ (&) }aenn is or-
thogonal using that Hermite functions is an orthonormal system and B is an isome-

try.
Finally, let us prove formula (1.64). It is enough to assume n = 1. We get easily
that ¢§ = \/]2_71 So for every k > 1, we have, using (1.60),
(')t ¢t
(9] ZB[—% ©) =
¢ N 2kl D

Then we get the following interesting result.
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Corollary 2 The Bargmann transform B is an isometry from L>(R") onto F(C").
The integral kernel of B~ is

-1 —3n/4n—n/2 VES -
B, x) = (wh)y~3/427 2 exp - E—ﬁx-g—i—? (1.65)

where x e R", ¢ € C".

We also get that the Bargmann kernel is a generating function for the Hermite
functions.

Corollary 3 For every x € R" and ¢ € C" we have

_ £
B(x,0)= ) Gryrana®e® (1.66)
aeN"?
Proof Compute the Fourier coefficient in the Hermite basis of x — B(x, ¢). O

The standard coherent states also have a simple expression in the Bargmann—
Fock space.
Let ¢x be the normalized coherent state at X = (x, &).

Proposition 9 We have the following Bargmann representation for the coherent
state px
Blyx1(€) = rhy"/2eh 6D (1.67)

x—i&
72

where n =

Proof A direct computation gives
n 1 2
Blexi©) = (V) " [ ay exp[—ﬁ <y2 (e iE +VE) %)] (1.68)

. . 2
Then we get the result by Fourier transform of the Gaussian e™". 0

One of the nice properties of the space F(C") is existence of a reproducing
kernel.

Proposition 10 For every f € F(C") we have

f@&)=Qrm™" /C"e%f(n) dug(m, V¢eC" (1.69)
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Proof 1t is enough to assume that f is a polynomial in ¢ and that s = 1. So we have

;o{ . r_’Ct

(1.70)
Hence we get
f@o=em™ /(C” (Z Ca—:])f(n)dus(n)= Qm)™" /Cn e f(m) dup(n)
¢ (1.71)
O

Remark 3 The function e; () = (2w h) _"e%{ is a representation of the Dirac delta
function in the point ¢. Note that e; is not in F(C"). Moreover we have f(¢) =

(ec, f)and | f(O)| = @r )"l fll Fen-

Using the Bargmann representation we can give a proof of the well-known
Mehler formula concerning the Hermite orthonormal basis {¢y} in L2(R). It is suf-
ficient to assume that A = 1.

Theorem 1 For every w € C such that |lw| < 1 we have

> @)kt

keN"
+w? (x2 2w
2(1 —w?)

where k = |K| =k +--- + kg.

Proof The case n > 2 can be easily deduced from the case n = 1. So let n = 1.

The left and right side of (1.72) are holomorphic in w in the unit disc
{w € C, |w| < 1}. So by analytic continuation principle it is enough to prove it for
w = e /% for every ¢ > 0. Hence the right side of (1.72) is the heat kernel denoted
Kos(t; x, y) of the harmonic oscillator I-AI,,S.

Using Remark 2 and inverse Bargmann transform we get easily the following
integral expression for K (t; x, y):

Kos(t;x,y)

x2+y
=27 1g 7322

_ 1 _ _ _
xfcexp(«/i(x.;wy.;)_§(w2g2+§2)—§;>|d; AdE| (1.73)
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The last integral is a Fourier transform of a Gaussian function as it is seen using real

coordinates ¢ = q\_/%p ,z=1(q, p). We have

Kos(t: x, y) =2‘1n‘3/2/ e~ 24y gy (1.74)
RZ

' 1 2 i = w?
Y:(l(x+wy)>7 A=§<i(31+_ﬁ)2) l(l—uljjz))’ w=e"2 (175)

A is a symmetric matrix, its real part is positive definite and det(A) = 1 — w?. So
we have (see [117] or Appendices A, B and C)

—1/2 212 — 0 _La-lyy
Kos(t;x, ) =77 121 —w?) Ve 24 1 (1.76)

The Mehler formula follows. O



Chapter 2
Weyl Quantization and Coherent States

Abstract It is well known from the work of Berezin (Commun. Math. Phys.
40:153-174, 1975) in 1975 that the quantization problem of a classical mechani-
cal system is closely related with coherent states. In particular coherent states help
to understand the limiting behavior of a quantum system when the Planck constant 7
becomes negligible in macroscopic units. This problem is called the semi-classical
limit problem.

In this chapter we discuss properties of quantum systems when the configuration
space is the Euclidean space R", so that in the Hamiltonian formalism, the phase
space is R” x R" with its canonical symplectic form o. The quantization problem
has many solutions, so we choose a convenient one, introduced by Weyl (The Clas-
sical Groups, 1997) and Wigner (Group Theory and Its Applications to Quantum
Mechanics of Atomic Spectra, 1959).

We study the symmetries of Weyl quantization, the operational calculus and ap-
plications to propagation of observables.

We show that Wick quantization is a natural bridge between Weyl quantization
and coherent states. Applications are given of the semi-classical limit after introduc-
ing an efficient modern tool: semi-classical measures.

We illustrate the general results proved in this chapter by explicit computations
for the harmonic oscillator. More applications will be given in the following chap-
ters, in particular concerning propagators and trace formulas for a large class of
quantum systems.

2.1 Classical and Quantum Observables

The quantization problem comes from quantum mechanics and is a mathematical
setting for the Bohr correspondence principle between the classical world and the
quantum world.

Let us consider a system with n degrees of freedom. According the Bohr corre-
spondence principle, it is natural to check a way to associate to every real function
A on the phase space R?" (classical observable) a self-adjoint operator A in the
Hilbert space LZ(R") (quantum observable). According the quantum mechanical
principles, the map A — A has to satisfy some properties.

M. Combescure, D. Robert, Coherent States and Applications in Mathematical Physics, 23
Theoretical and Mathematical Physics,
DOI 10.1007/978-94-007-0196-0_2, © Springer Science+Business Media B.V. 2012
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(1) A— Aislinear, A is self-adjoint if A is real and 1 =12 ).

(2) position observables: x; — X := 0 j where 0 ;j is the multiplication operator
by x;.

(3) momentum observables : &; — é ji= ﬁj where I3j is the differential operator

(4) commutation rule and classical limit: for every classical observables A, B we
have
I~ - —
lim| —-|A,B|—{A,B} ) =

Let us recall that [A, IAE] — AB — BA is the commutator of A and f?, {A, B} is the
Poisson bracket defined as follows:

{A,B}(x,6) =(0A- 0B —9:B-0:A)(x,&), x,EeR".

Let us remark that if we introduce VA = (0, A, d: A) then we have {A, B}(x,§) =
0(VA(x,&),VB(x, &)) (o is the symplectic bilinear form).

If the observables A, B depend only on the position variable (or on the momen-
tum variables) then A - B = A.B but, this is no longer true for a mixed observable.
This is related to the non-commutativity for product of quantum observables and
the identity: [X;, é/] = ih so, the quantum observable corresponding to x;&; is not
determined by the rules (1) to (4).

We do not want to discuss here the quantization problem in its full generality
(see for example [77]). One way to choose a reasonable and convenient quantization
procedure is the following, which is called Weyl quantization (see [117] for more
details). Let L, be a real linear form on the phase space R**, where z = (p, q),
L.(x,&) =0(z, (x,&)) (every linear form on R2" is like this). It is not difficult to
see that L is a well defined quantum Hamiltonian (i.e. an essentially self-adjoint

operator in L2(R")). Its propagator e 7L has been studied in Chap. 1.
Remark that we have L ;= —L(z) with the notation of Chap. 1.
For ¢ € S(R"), we have explicitly
e T ey (x) = e OCPEN Py (x — 1g). @.1)
So, the Weyl prescription is defined by the conditions (1) to (4) and the following:
&)
e iLnd) _ omils — T(y)

We shall use freely the Schwartz space S(R")! and its dual S’'(R") (temperate dis-
tributions space).

IRecall that f € S(R") means that f is a smooth function in R” and for every multiindices «, 8,
x¢ afu is bounded in R”. Tt has a natural topology. S’(R") is the linear space of continuous linear
form on S(R").
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Proposition 11 There exists a unique continuous map A — A from S'(R*") into

L(S(R"™), S'(R™)) satisfying conditions (1) to (5).
Moreover if A € S(R*") and ¥ € S(R™) we have the familiar formula

Ay =)™ // y A(% f)eml“‘”'s YOdyde,  (2.2)

and A is a continuous map from S(R") to S(R").
The hermitian conjugate of A is the quantization of the complex conjugate of A

ie. (A)* = A. In particular A is Hermitian if and only if A is real.

Proof Here it is enough to assume that 7 = 1.
Let us consider the symplectic Fourier transform in S’(R*"). Assume first that
A € S(R™).
A(z) = / AQ)e @D gg, (2.3)
2n
We have the inverse formula

A(X):(Zn)‘”/2 A(z)e’" @Y dz. (2.4)

For ¢, n € S(R") we have

(y, An) = @m)™" /R A=y, n)dz. 25)

In other words we get
Ay =(@m)™" /R AT @y dz. (2.6)
O

Deﬁnltlon 2 For a given operator A, the function A is called the contravariant sym-
bol of A and the function A is the covariant symbol of A

Let us remark that we have the inverse formula

Proposition 12 If A is a continuous map from S8’ (R") to S(R") then we have for
every X € R,
A(X) =Tr(AT (- X)). 2.7

Proof For X =0 the formula is a consequence of the Fourier inversion formula.
For any X we use that the Weyl symbol of T (—X) is z > e 17 &%), O
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As a consequence we have a first norm operator estimate. If A € L' (R*") we
have

IA] < @m)™ /2 |A(z)| dz. (2.8)
R n
The r.h.s. in formula (2.2) can be extended by continuity in A to the distribution
space S’ (R?").

Let us compute now the Schwartz kernel K 4 of the operator A defined in formula
(2.6). We have

Kax,y) = f A(x =y, pe? e 2 ap, (2.9)
Rn
Using inverse Fourier transform in p variables, we get

X +y

Ka(x,y) = (271)_"/ A( ,g)d’“‘—”‘S de (2.10)

this gives (2.2). The other properties are easy to prove and left to the reader.
Let us first remark that from (2.10) we get a formula to compute the i-Weyl
symbol of A if we know its Schwartz kernel K

A(x,$)=/ e%“'éK<x+%,x—g>du. @.11)

Sometimes, we shall use also the notation A = Opj A (h-Weyl quantization of A).
Hence we shall say that Aisan h-pseudodifferential operators and that A is its Weyl
symbol. For applications it is useful to be able to read properties of the operator A

on its Weyl symbol A. A first example is the Hilbert—Schmidt property.

Proposition 13 Let A € L(S(R"), S'(R")). Then A is Hilbert-Schmidt in L*(R")
if and only if A € L*>(R*") and we have

|A])7, = @)™ /fRZn|A(x,g)|2dxdg. 2.12)

In particular if A and B are two Hilbert-Schmidt operators then A.B is a trace
operator and we have

Tr(A.B) = @nh)™" //2 A(x,&)B(x, &) dx dE. (2.13)
Rl‘l

Proof We know that

|4l = [[ 1Kty avay,

Then we get the proposition using formula (2.10) and Plancherel theorem. U
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We shall see later many other properties concerning Weyl quantization but most
of time we only have sufficient conditions on A to have some property of A, like for
example L2 continuity or trace-class property.

Let us give a first example of computation of a Weyl symbol starting from an
integral kernel. We consider the heat semi-group e ~/#os | of the harmonic oscillator

ﬁm. Let us denote K, (¢; x, &) the Weyl symbol of e Hos and K (¢; x, y) its integral
kernel. From formula (2.11) we get

Kw(z;x,g)zf e—%"-$K<z;x+%,x—%)du. (2.14)
Using Mehler formula (1.72) we have to compute the Fourier transform of a gen-
eralized Gaussian function, so after some computations, we get the following nice
formula:

Ko (t; x, &) = (cos(t/2)) "/ 2o~ /D02 +8%) (2.15)

Recall that x2 = x - x = |x|2.

2.1.1 Group Invariance of Weyl Quantization

Let us first remark that an easy consequence of the definition of Weyl quantization
is the invariance by translations in the phase space. More precisely, we have, for any
classical observable A and any z € R,

T() 'AT(z)=A-T(z), where A-T(2)(z)=A( —2). (2.16)

Hamiltonian classical mechanics is invariant by the action of the group Sp(n) of
symplectic transformations of the phase space R*”. A natural question to ask is to
quantize linear symplectic transformations. We shall see later how it is possible. In
this section we state the main results.

Recall that the symplectic group Sp(n) is the group of linear transforma-
tions of R?" which preserves the symplectic form o. So F € Sp(n) means that
o(FX,FY)=0(X,Y) forall X, Y € R¥".If we introduce the matrix

=(%0)

FeSp(n) < F'JF=1, (2.17)

then

where F' is the transposed matrix of F.
If n =1 then F is symplectic if and only if det(F) = 1.
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Linear symplectic transformations can be quantized as unitary operators in
L*(R")

Theorem 2 For every linear symplectic transformation F € Sp(n) and every sym-
bol A € X (1) we have
R(F)"'AR(F)=A-F. (2.18)

Moreover ﬁ(F ) is unique up to multiplication by a complex number of modulus 1

Definition 3 The metaplectic group is the group Met(n) generated by R(F) and
Al,AeC, x| =1.

Remark 4 A consequence of Theorem 2 is that Risa projective representation of
the symplectic group Sp(n) in the Hilbert space L>(R"). It is a particular case of a
more general setting [193].

More properties of the metaplectic group will be studied in the next chapter. Let
us give here some examples of the metaplectic transform.

e The Fourier transform JF is associated with the symplectic transformation

(x,8) > (5, —x).
o The partial Fourier transform ., in variable x ;, is associated with the symplectic
transform:

(xj, &) = (&5, —x;), XKy &) = (ks 6),  iTkF# .

e Let A be a linear transformation on R”, the transformation ¥ — |det(A)|"/% x
¥ (Ax) is associated with the symplectic transform

£a(3) = ()
Ne) " \an-1g)

e Let A be areal symmetric matrix, the transformation ¥ — e!4**/2y is associated
with the symplectic transform
1 0
F = .

2.2 Wigner Functions

Let ¢, € L>(R"). They define a rank one operator Iy on = (Y, n)e. Its Weyl
symbol can be computed using (2.11).
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Definition 4 The Wigner function of the pair (¥, ¢) is the Weyl symbol of the rank
one operator [Ty ,. It will be denoted W, y,. More explicitly we have

W(p,w(x,é)=/ e_%“fw(x—i-E)I//(x— z)a’u. (2.19)
R 2 2

An equivalent definition of the Wigner function is the following:

Wy y(2) = Qrh)™" / (o, T()p)e @M gy (2.20)

R2n

where T'(z) = e~iLz.

We can easily see that (2.19) and (2.20) are equivalent using formula (2.6) and
Plancherel formula for symplectic Fourier transform.

The Wigner functions are very convenient to use. In particular we have the fol-
lowing nice property:

Proposition 14 Let us assume that A is Hilbert—Schmidt and W, ¢ € L>(R"). Then
we have

(v, Ap)= @rh)™" fR L ACOWy o (X)dX. (2.21)

IfAeS' (R and if ¥, ¢ € S(R™), the formula (2.21) is still true in the weak sense
of temperate distributions.

Proof Let us first remark that (v, A(p) = Tr(AHWp). Hence the first part of the
proposition comes from (2.13).

Now if ¥/, ¢ € S(R") then we easily get Wy , € S (R?"). On the other side there
exists A; € S(R?") such that Aj— Ain S’(R*"). So we apply (2.21) to Aj and we
go to the limit in j. g

What Wigner was looking for was an equivalent of the classical probability dis-
tribution in the phase space R?". That is, associated to any quantum state a distri-
bution function in phase space that imitates a classical distribution probability in
phase space. Recall that a classical probability distribution is a non-negative Borel
function p; Z — RT, Z := R?", normalized to unity:

/ p()dz =1,
VA

and such that the average of any observable A € C*° is simply given by

p(A)=/ZA(z)p(z)dz.
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From Proposition 14 we see that a possible candidate is
p(2)=Qrh)y " Wy,e.

Actually in the physical literature the expression above (with the factor (27 h)™") is
taken as the definition of the Wigner function but we do not take this convention.
In the following we denote by W,, the Wigner transform for ¢, ¢.
What about the expected properties of (2w h) "W, as a possible probability dis-
tribution in phase space? Namely:

e positivity

e normalization to 1

e correct marginal distributions

Proposition 15 Let z = (x, £) € R* and ¢ € L>(R") with ||¢|| = 1. We have
@

2

@riy [ Wyt 6rde = ot

which is the probability amplitude to find the quantum particle at position x.
(i)

2
)

ery [ Wy ydr=[a

which is the probability amplitude to find the quantum particle at momentum § .

(iii)
(27th)_"/ Wy (x,8)dxdé =1.
R2n
@iv) Wy(x,&) €R.
Proof

(i) Let f € S be an arbitrary test function. We have

| e ors@as

_ 5 Y Y —ig-y/h
_/dy<ﬂ<X+2><p<x 2)/dse VIR fE)

— Qrhy" / dy@(x 4 X)w(x - X)(Ff)(y). 222)
e 2 2

By taking for the usual Fourier transform F f an approximation of the Dirac
distribution at y = 0 we get the result.
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(i1) Is proven similarly.
(iii) Follows from the normalization to unity of the state ¢.
(iv) We have
W,(2)* = @uh)™ / 7 (p. T(=2)p)e'o /"

and the result follows by change of the integration variable 7/ — —z’ and by
noting that o (z, —z') = —0o (2, Z'). d

Let us now compute the Wigner function W, .- for a pair (¢, ¢,/) of coherent
states.

Proposition 16 For every X, z, 7/ € R?* we have

2 .
Ci(x—ty s (2.23)
- >Z, . .

Proof 1t is enough to consider the case & = 1. Let us apply formula (2.20):

z+7
2

1
W, »(X)=2" exp(—ﬁ‘X —

W, 2 (X) = Q2m)™" / (02, T(2")por)e ™o XD ", (2.24)

R2n

Using formula (1.7) from Chap. 1, we have

i

<¢z’ T(Z//)¢Z/> = <§Dz, (01/+z//>ef‘7(z ,2")
— e dlimT =T Peho @+ +o () (2.25)

Using the change of variables z” = z — z’ + u, we have to compute the Fourier
transform of the standard Gaussian e““'z/ 4 and (2.23) follows. O

We have the following properties of the Wigner transform:

Proposition 17 Lez ¢, ¢ € L2(R") be two quantum states. Then Wy, y € L2 (R>)N
L® (R and we have

)

IWe,yliLee < 2" l@ll2 ¥ [l2.
(i)
IWe.llz2 < @) llgl2llv 2.

(iii) Let ¢,y € L*(R"). Then we have
|2

(@, )" = @)™ Wy, Wy) 12 gony.-
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Proof (i) is a simple consequence of the definition of the Wigner transform and of
the Cauchy—Schwartz inequality. For the proof of (ii) we note that

/dz|W¢,¢(z)}2=/dxd§‘/dyeié‘y/h¢<x+ %)w(;c - %)

Using an approximation argument, we can assume that ¢, ¥ € L' (R") N L (R").
So we have ¢(x + 5) ¥ (x — %) € L?*(R", dy). According to the Plancherel theorem

2

we have
oo falf o5+ (e
=/dy‘¢<x+ §>w<x _ %) ’
so that
/dZ’W¢,¢(2)|2 - (2nﬁ)"/dx/dy'¢<x+ %>¢<x _ %) ’
= Qrh)" |el* v > (2.26)

O

The Wigner transform operate “as one wishes” in phase space, namely according
to the scheme of classical mechanics:

Proposition 18 Ler ¢, ¥ € L>(R") and T(2), R(F) be, respectively, operators of
the Weyl-Heisenberg and metaplectic groups, corresponding, respectively, to

— a phase-space translation by vector 7 € R¥"
— a symplectic transformation in phase space

We have

Wf(z’)(p,f(z’)x//(z) =Wo.y(z— 7, 2.27)
Wik, ey @ =W (F~'2). (2.28)

Proof We have the nice group property of the Weyl-Heisenberg translation opera-
tor:

PN T T ) = eXp(—%U(X, z/)> %)
so that
Wi o i @ye @ = Qmh)™" /dX exp<—%a(z -7, X))((p, f(X)lp)

= W(p,llj(z - Z/).



2.2 Wigner Functions 33
As a result of the property of the metaplectic transformation we have
R(FT'T(YR(F)=T(F~'7).
Therefore
Wik s iy ) = @)™ f de/ (. T(F2yplemo @M
=Qrh)™" f dz" (e, f"(z/’)1/f>e_i“(Z’FZN)/h

= (27‘[h)7"/dz/ ((,0, ]A"(Z/)w>efia(F"z,z/)/h’

where we have used the change of variable Fz' = z” and the fact that a symplectic
matrix has determinant one. O

Now we get a formula to recover the Weyl symbol of any operator Ae
L(S[R"), S"(R™)).

Proposition 19 Every operator Ac £(§ (R™), S'(R™)) has a contravariant Weyl
symbol A and a covariant Weyl symbol A in S’ (R*").
We have, in the distribution sense in general, in the usual sense if A is bounded

in L2(R™),

AX) = @rh)™ / / Moz AV (0 dzd?, (229)
R4
AX) = Qrh)™ f (¢Z+X,A¢Z)e*%”<x’z) dz. (2.30)
R2n

Proof We compute formally. It is not very difficult to give all the details for a rigor-
ous proof.

We apply inverse formula for the Fourier—-Bargmann transform (see Chap. 1). So
for any ¥ € S(R"), we have

Ay (x)=Qrh)™" / /R e Ag:igz. v)eo (0 dzdd. (2.31)
So we get a formula for the Schwartz kernel K 4 for A

Katex) =ty [[ o Apfoipe o dzaz. @32

Then we apply formula (2.11) to get the contravariant symbol A.
The formula for the covariant symbol follows from (2.7) and trace computation
with coherent states. g
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The only but important missing property to have a nice probabilistic setting with
the Wigner functions is positivity which is unfortunately not satisfied because we
have the following result, proved by Hudson [120] for n = 1, then extended to n > 2
by Soto—Claverie [181].

Theorem 3 Wy, (X) >0 on R?" if and only if ¢ = C(py) where C is a complex
number, I' a complex, symmetric n X n matrix with a positive non degenerate imag-
inary part IT", z € R*", where we define the Gaussian

oD (x) = (mh)y*det'/* 3 exp(zl—hfx ~x>. (2.33)

Proof We more or less follow the paper of Soto—Claverie [181].

We can check by direct computation that the Wigner density of ¢, is positive
(according the definition we have to compute the Fourier transform of the expo-
nent of a quadratic form). We can also give the following more elegant proof. First,
it is enough to consider the case z = (0, 0). Second, it is possible to find a meta-
plectic transformation F such that ¢, (/) = R(F Yo (see the section on symplectic
invariance and Chap. 3 for more properties on the metaplectic group). Hence we
get Wﬁ(F)w()(X) = W(po(F_l(X)). But we have computed above W), which is a
standard Gaussian, so it is positive.

Conversely, assume now that Wy (X) > 0 on R2". We shall prove that the
Fourier-Bargmann transform v#(z) is a Gaussian function on the phase space.
Hence using the inverse Bargmann transform formula, we shall see that i is a Gaus-
sian.

Let us first prove the two following properties:

y*(2) #£0, VzeR™, (2.34)
lv* (@) < C’=, vz e R, for some C, 6 > 0. (2.35)

‘We have seen that
(.0 |* = @)™ fRz Wy (X)W, (X)dX
—on / Wy (X)e 11X g x. (2.36)
R2n

The Ilast integral is positive because by assumption Wy (X) > 0 and
Wy (X)dX =1.

Using again (2.36) we easily get (2.34). The second step is to use a property of
entire functions in C”. Let us recall that in Chap. 1, we have seen that the function

2

vhe) = exp(%;”'q)w#(q, P) (2.37)
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is an entire function in the variable { =g — ip € C". Moreover we get easily that
V*(¢) satisfies properties (2.34). To achieve the proof of Theorem 3 we apply the

following lemma, which is a particular case of Hadamard factorization theorem for
n =1, extended for n > 2 in [181]. O

Lemma 11 Let f be an entire function in C" such that f(¢) #0 forall ¢ € C" and
for some C > 0,6 >0,

|f@©]<cel, veecn (2.38)

Then f(¢) =eP©, where P is a polynomial of degree < m.

2.3 Coherent States and Operator Norms Estimates

Let us give now a first application of coherent states to Weyl quantization. We as-
sume first that A = 1.

Theorem 4 (Calderon—Vaillancourt) There exists a universal constant C,, such that
for every symbol A € C®°(R?*") we have

||A||£(L2’Lz) <C, sup |9k AX)). (2.39)
|y|§2n+1,X€R2”

Beginning of the Proof From (2.32) we get the formula
(v. An) = @m)™" / fR o Apeyt @nF ) dzdz. (2.40)

We shall get (2.39) by proving that the Bargmann kernel Kf(z, ) = (¢, A(pz) is
the kernel of a bounded operator in L?(R>"). Let us first recall a classical lemma

Lemma 12 Let ($2, ) be a measured (o -finite) space, K a measurable function
on §2 X §2 such that

mg ::max{sup/ |K(z,2)]dZ, sup/ |K(z,z/)|dz}.
) ZeJa

Then K is the integral kernel of a bounded operator Tx on L*(§2) and we have
Tk =mk.

So the Calderon—Vaillancourt theorem will be a consequence of the following.
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Lemma 13 There exists a universal constant C, such that for every symbol A €
C®(R?") we have

)72n71

KBz, )| < Ca(1+ 12— 7| sup |V AX)). (2.41)

ly|<2n+1,X eR2n

Proof We have already seen that

KB o) = fR ACOWy () dX

/
=2"/ A(X)exp(—‘X— it
- 2

2
. 1, /
—io X—Ez,z—z dX.

(2.42)

First remark that we have

o, Ag)| < sup |AX)]. (2.43)
X eR2n

So we only have to consider the case |z’ — z| > 1. The estimate is proved by inte-

gration by parts (as is usual for an oscillating integral).
Let us introduce the phase function

z+7

2
1
<1>:—'X— —ia(X—Ez’,z—z/). (2.44)

We have |0x®@| > |z — 7’| hence

NP o o

2.45
oy (2:49)

So we get the wanted estimates performing 2n + 1 integrations by parts in the inte-
gral (2.42) using formula (2.45).
This achieves the proof of the Calderon—Vaillancourt theorem. d

Corollary 4 Aisa compact operator in L*(R") if A is C*® on R¥" and satisfies
the following condition:

lim [ A(x)| =0, VyeN* |y|<2n+1. (2.46)
|z| =400

Proof Let us introduce x € C®(R?") such that x (X) =1 if | X| < % and x(X)=0
if | X| > 1. Let us define Ag(X) = x(X/R)A(X). For every R > 0, AR is Hilbert—
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Schmidt hence compact. Using the Calderon—Vaillancourt estimate, we get

So A is compact. g

Using the same idea as for proving Calderon—Vaillancourt theorem, we get now
a sufficient trace-class condition.

Theorem 5 There exists a universal constant T, such that for every A € C®(R?")
we have

Al <2 D2 / [akaco]dx. (2.47)
ly|<2n+1 R

In particular if the r.h.s. is finite then A is in the trace class and we have

TrA=Qm)™" / A(X)dX. (2.48)
]RZn

Proof Recall that i = 1. From (2.29) we know that A has the following decompo-
sition into rank one operators:

A=am™ //R&o hg ). dzdz. (2.49)

But we know that ||1T; /|[7gr = 1. So we have

47 = 2o f/R (e Age)| dzdz. (2.50)

Using integration by parts as in the proof of Calderon—Vaillancourt, we have

oz, Ag:)| <Cn(l+1z =2 Y /Rzne—'X—<Z+Z’>/2'2|a§A(X)|dx (2.51)
lyI=N

with N =2n + 1. Now perform the change of variables u = (z +7')/2, v=2—7
and using Young inequality we get

f/IR4n’<¢z/,A¢z>|dzdz/§rn > /RZn|a;A(X)|dX (2.52)

lyI=N

hence (2.47) follows.
We can get (2.48) by using approximations with compact support Ag like in the
proof of Corollary 4. O
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Remark 5 Using interpolation results it is possible to get similar estimates for the
Schatten norm ||A||, for 1 < p < +o0.

Let us now compute the action of Weyl quantization on Gaussian coherent states.

Lemma 14 Assume that A € X (m) (m is temperate weight). Then for every N > 1,
we have

A vl 0V A(z
Ap.= > n* '( )wy,z + O (RN, (2.53)
lyI=N ’

the estimate of the remainder is uniform in L*(R") for z in every bounded set of the
phase space and

v, . =T(2)Ar0p¥(2")s. (2.54)

where g(x) = n_”/4e_‘x|2/2, Op{’(z?) is the 1-Weyl quantization of the monomial.:
(x, &) =xVe"" y = (v, y") e N In particular OpY (z?)g = P, g where P, is
a polynomial of the same parity as |y |.

Proof Let us write
A ~ A A A _1 A A
Ap, = AARTI(2)g = AT () (ART1(2)) AARTI(2)g,
where Ay, is the dilation: Apyr = B~"/*y (h~1/2x) and fl is T forh=1.
Let us remark that (ART(2)) 'AART (z) = Op{[Ap,;] where Ap (X) =

A(hX + z). So we prove the lemma by expanding Ap,; in X, around z, with
the Taylor formula with integral remainder term to estimate the error term. U

The following Lemma allows to localized observables acting on coherent states.
Lemma 15 Let A be a smooth observable with compact support in the ball
B(Xo, ro) of the phase space. Then there exists R > 0 and for all N > 1 there exists
Cn such that for |z — Xo| = 2rg we have

|Ag.| < CniN (27N, for |z > R. (2.55)

Proof 1t is convenient here to work on Fourier—Bargmannn side. So we estimate

(02, Agy) = @)™ f AW 2 (Y)aY. (2.56)
]er

As we have already seen, we have
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/2 AW, (Y)dY

:2”/ exp ! Y—Z+Z/
R2n h 2

Using integrations by parts as above, considering the phase function vy)=—|Y—
# > —io(Y — %X , z— X) and the differential operator
M, M’ large enough,

I(Ag <p/)|<cMM// <1+|Y_Z|>M<1+|Z_Z/|)MM/dY (2.58)
ST i< Vi Vh

Therefore we easily get the estimate choosing M, M’ conveniently and using that
the Fourier—-Bargmannn transform is an isometry. U

2 i 1 / /
—ﬁa(Y—zz,z—z>>A(Y)dY. (2.57)

I3 ‘1’\2 dy, we get for every

We need to introduce some properties for the Weyl symbols A.

Definition 5 A positive function m on R? is a temperate weight if it satisfies the
following property. There exist N, C such that

m(X+Y)§m(X)(1+|X—Y|)N, VX,Y e RY. (2.59)

A symbol A is a classical observable of weight m if for every multiindex « there
exists Cy such that

0% AX)| < Com(X), VX eR™.
The space of symbols of weight m is denoted X (m).

A basic example of temperate weight is m, (X) = (1 4+ |X)*, u € R. We shall
denote X* = ¥ (m,,). For example X° = ¥ (1).

Remark 6 The product of two temperate weights is a temperate weight and if m is
a temperate weight then m~! is also a temperate weight.

As proved by Unterberger [186] and rediscovered by Tataru [183] it is possible

to characterize the operator class E(l) on the matrix element (¢,/, Agoz) We state
now a semi-classical version of Unterberger result.

Theorem 6 Let Ay be a h-dependent family of operators from S(R") to S'(R").
Then A =Opy (Ap) with Ap, € X (1) with uniform estimate® if and only if for every

2This means that for every y, SUPfe10,17 107 Alloo < +00.



40 2 Weyl Quantization and Coherent States
N there exists Cy such that we have

lz — 2|

Vh

—N
|<§0z’,AA(Pz)|§CN<1+ ) , Vhelo, 1), z.7 e R*. (2.60)

Proof Suppose that A= Opy (Ap), with A € X(1) is a bounded family. We get
estimate (2.60) by integrations by parts as above.
Conversely if we have estimates (2.60), using (2.23) and (2.29) we have

n p 1 z2+7
Ar(X) = (h) //ﬂ;@(wzuf\wz)exp<—ﬁ<‘>{— 3

+iJ<X— %) : (z—z/))>dzdz/. 2.61)

Using the change of variables %Z, =u and z — z/ = V/hv we get easily that there
exists C > 0 such that

2

|[AnX)|<C, VX eR™, helo,1]. (2.62)

In the same way we can estimate every derivatives of Ap, after derivation in X in
the integral (2.61). O

The other main fact in Weyl quantization is existence of an operational calculus.
We shall recall its properties in the next section.

2.4 Product Rule and Applications

2.4.1 The Moyal Product

One of the most useful properties of Weyl quantization is that we have an operational
calculus defined by:

The Product Rule for Quantum Observables Let us start with A, B € S(R?").

We look for a classical observable C such that A - B = C. Let us first remark that
the integral kernel of C is

Kc(x,y)zjlé Ka(x,s)Kp(s,y)ds. (2.63)
Using relationship between integral kernels and Weyl symbols, we get

C(X)=(mh)™" // e?Po VD A(X + Z)B(X +Y)dY dZ, (2.64)
4n
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where o is the symplectic bilinear form introduced above.
Now let us apply Plancherel formula in R*" and the following Fourier transform

formula:

Lemma 16 Let f(T) = elf(B'T’ﬂ,for T € R™ where B is a non degenerate sym-
metric m x m matrix. Then the Fourier transform f is

F(©) = @) det B|~V/2eiTsen Bo=5(B7'0.0) (2.65)
where sgn B is the signature of the matrix B.
Proof See [117, 163]. O

Hence we get

10
Clx, &)= exp(’;o(Dx, Dg; D, Dn))A(x, £)B(y, 1) (2.66)

(x,&)=0,m

We can see easily on formula (2.66) that C € S (R2"), So that (2.64) defines a non-
commutative product on classical observables. We shall denote this product C =
A x B (Moyal product).

In semi-classical analysis, it is useful to expand the exponent in (2.66), so we get
the formal series in A:

C(x.&)=) Cj(x.&)h/, where

Jj=0

1
- (2.67)

: J
Cj(x.&) = ]—(’Ecr(Dx,Dg; Dy,Dn>) A(x. £)B(y. 1)

(x,&)=0.n)

We can easily see that in general C is not a classical observable because of the #
dependence. It can be proved that it is a semi-classical observable in the following
sense.

Definition 6 We say that A is a semi-classical observable of weight m, where m is
temperate weight on R2" | if there exist ho > 0 and a sequence A; € X (m), j €N,
so that A is a map from ]0, fip] into X (m) satisfying the following asymptotic con-
dition: for every N € N and every y € N?" there exists Cy > 0 such that for all
h €10, 1[ we have

supm ™' (z) <CyhNT (2.68)

R2n

97 .
§<A(h, BN thj(z)>

0<j=N

Ay is called the principal symbol, A the sub-principal symbol of A.
The set of semi-classical observables of weight m is denoted by Y. (m). Its range
in L(SR"), S’'(R™)) is denoted Xy, (m).
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‘We may use the notation rh=X.(m w-
Now we state the product rule for Weyl quantization.

Theorem 7 Let m, m’ be two temperate weights in R*". For every A € X (m) and
B e E(m’), there exists a unique C € Xs.(mp) such that A - B = C with C <
ijo R/ Cj. The C; are given by

1 _1Bl
Cj(x,5)=5 Z (a!;! (Dfag"A)-(DgafB)(x,s).
la+Bl=J

Proof The main technical point is to control the remainder terms uniformly in the
semi-classical parameter 7. This is detailed in the appendix of the paper [31]. O

Corollary 5 Under the assumption of the theorem, we have the well known cor-
respondence between the commutator for quantum observables and the Poisson

bracket for classical observables, IE[A Bl e Em’ ) and its principal symbol
is the Poisson bracket {A, B}.

A very useful application of the Moyal product is the possibility to get semi-
classical approximations for inverse of elliptic symbol.

Definition 7 Let A(h) be a semi-classical observable in X.(m) and X( € R%", We
shall say that A is elliptic at X if Ag(Xp) #O.
We shall say that A is uniformly elliptic if there exists ¢ > 0 such that

|A(X)| = em(X), VX eR™. (2.69)
Theorem 8 Let A € X .(m) be an uniformly elliptic semi-classical symbol. Then

there exists B € Xs.(m™") such that Bx A = 1 (in the sense of asymptotic expansion
in Xs.(1)). Moreover, we have

B-A=1+0(1), (2.70)

where the remainder is estimated in the L*norm of operators.
Moreover the semi-classical symbol B of B is B = ijo I B with

Bo=A4,',  Bi=-A14," 2.71)

Proof Let us denote by C;(E, F) the jth term in the Moyal product E x F'. The
method consists to compute by induction By, ..., By such that

< > th.,'>*A(h):O(hN+1). (2.72)

0<j<N
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We start with By = ALO' The next step is to compute Bj such that BjAg+ A1 Bo =0.
Then to compute B, such that

Cy(Ag, Bg) + Ci(Ay, B1) + B2Ag=0.

So we get all the B; by induction using the asymptotic expansion for the Moyal
product.

The remainder term in (2.70) is estimated using the Calderon—Vaillancourt theo-
rem. O

We give now a local version of the above theorem, which can be proved by the
same method.

Theorem 9 Let A € Xy (m) be an elliptic symbol in an open bounded set 2 of R*".
Then for every y € C3°(82) there exists By € X .°° such that

ByA=3+0(r™). (2.73)

Remark 7 For application it is useful to note that if A depends in a uniform way of
some parameter ¢ € [0, 1] then B also depends uniformly in ¢. In particular & may
depend on h.

2.4.2 Functional Calculus

An useful consequence of the algebraic properties of symbolic quantization is a
functional calculus: under suitable assumptions if H is an Hermitian semi-classical
observable then for every smooth function f, f (H) is also a semi-classical observ-
able. The technical statement is

Theorem 10 Let H be a uniformly elliptic semi-classical Hamiltonian. Let f be a
smooth real valued function such that, for some r € R, we have

VkeN, 3G, |fPe)| <Cuis)F, VseR.

Then f (I:I ) is a semi-classical observable with a semi-classical symbol Hy(h, z)
given by

Hy(h.2) <Y W Hy (). (2.74)
Jj=0
In particular we have
Ho(2) = f(Ho(2)), (2.75)

Hy1(z) = Hi(2) f'(Ho(2)), (2.76)



44 2 Weyl Quantization and Coherent States

andfor, j>2, Hpj= Y djx(H)f®(H), (2.77)
1<1<2j-1

where d; (H) are universal polynomials in 8y Hy(z) with |y| +£<j.

A proof of this theorem can be found in [68, Chap. 8], [107]. In particular we
can take f(s) = (A 4 s)~! for JA # 0 (the proof begins with this case) or f with a
compact support.

From this theorem we can get the following consequences on the spectrum of H
(see [107]).

Theorem 11 Let H be like in Theorem 10. Assume that H(;l [E_, EL] is a com-
pact set in R" x R". Consider a closed interval I C [E_, E]. Then we have the
following properties.

(1) Yh €10, hyl, ko > 0, the spectrum of H is discrete and is a finite sequence of
eigenvalues E1(h) < E2(h) < --- < En, (h) where each eigenvalue is repeated
according its multiplicity.

Moreover Ny = O(h™") as h \ 0.
(i) Forall f € Cgo(l), f(ﬁ) is a trace-class operator and we have

Te[f(H)] < D0~ %00), (2.78)

j=0

where t; are distributions supported in Hy ! (I). In particular, we have

0(f) = 2m)™* /R . F(Ho(@)dz, (2.79)
1(f) = @m)™ /R o "(Ho(2))Hi(z) dz. (2.80)

An easy consequence of this is the following Weyl asymptotic formula:

Corollary 6 If I =[A_, Ay] such that Ay are non critical values for Hy? then we
have

lim (27 k)" Ny =/ dqdp. (2.81)
hi—0 [Ho(g.p)ell

Remark 8 Formula (2.81) is very well known and can be proved in many ways,
under much weaker assumptions.
For a proof using the functional calculus see [163, pp. 283-287].

3That A is a non-critical value for H means that V H (z) #0if H(z) = .
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Under our assumptions we shall see in Chap. 4 that we have a Weyl asymptotic
with an accurate remainder estimate:

Ny = (2nh)_"/ dgdp +O(h'™"),
[H(q.p)el]

using a time dependent method due to Hérmander and Levitan ([116] and its biblio-
graphy). For more accurate results about spectral asymptotics see [122].

2.4.3 Propagation of Observables

Now we come to the main application of the results of this section. We shall give a
proof of the correspondence (in the sense of Bohr) between quantum and classical
dynamics. As we shall see this theorem is a useful tool for semi-classical analysis
although its proof is an easy application of Weyl calculus rules stated above. The
microlocal version of the following result is originally due to Egorov [73]. R. Beals
[18] found a nice simple proof.

Theorem 12 (The Semi-classical Propagation Theorem) Let us consider a time de-
pendent Hamiltonian H(t) € Z‘ . satisfying:

0 Hj(t,2)| <C,, forly|+j>2; (2.82)

“2(H(t) — Ho(t) — hH (1)) € 2. (2.83)

We assume that H (t, 7) is continuous for t € R and that all the estimates are uniform
int forte[-T,T].

Let us introduce an observable A € X, such that 8§A ex0 if lyl = 1. Then we
have the following.

(a) For h small enough and for every W € S(R"), the Schridinger equation
iy =HOV, Yieg=V (2.84)

has a unique solution which we denote ; = ﬁ(l, $)Yr. Moreover U(I, s) can
be extended as a unitary operator in L2(RM).

(b) The time evolution A(t s) ofA from the initial time s is A(t s) = U(s, t)A X
U(t, s) and has a semi-classical Weyl symbol Ap(t, s) such that Ap(t,s) e X
More precisely we have A(t,s) =< Zj>0 thj(t, s),in X M, which is umform m
t,s, for t,s € [T, T]. Moreover Aj(t,s) can be computed by the following
formulas:

Ao(t,532) = A(@"(2)), (2.85)
t
Ay(t,s5,2) =[ {A(@™"), HI(DO}(P"7(2)) dT (2.86)

and for j > 2, Aj(t,s; z) can be computed by induction on j.
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Proof Property (a) will be proved later. It is easier to prove it if H is time indepen-
dent because we can prove in this case that H is essentially self-adjoint (for a proof
see [163]). Then we have

U@):=0(,0)= exp(—%ﬁ).

Let us remark that, under the assumption of the theorem, the classical flow for Hy
exists globally. Indeed, the Hamiltonian vector field (9¢ Hy, —0x Hp) has a sublinear
growing at infinity so, no classical trajectory can blow up in a finite time. Moreover,
using usual methods in non linear O.D.E. (variation equation) we can prove that
A(D"%) € X (1) with semi-norm uniformly bounded for ¢, s bounded.

Now, from the Heisenberg equation and the classical equations of motion we get

d — A
EU(Sv f)A()(t, T)U(Ta S)

l' —

= U s; r){ h[ﬁ(z), Ao(t, )] — {H (D), Ao}(q?t”)}l}(t,s), (2.87)

where Ag(t, s) = A(®"*). But, from the corollary of the product rule, the principal
symbol of

H([A@), Aol D] - {H©), Ao} ) (#)

vanishes. So, in the first step, using the product rule formula, we get the approxima-
tion

U(s.t)AU (1, 5) — Ao(t, $)

t [ —_— A A
:/ ﬁ(s,r)(%[ﬁ(t),Ao(t,t)]—{H(t),Ao}CD”T>U(r,s)dr. (2.88)

Now, it is not difficult to obtain, by induction, the full asymptotics in /. For j > 2,

t
Ajlt.sin) = Y F(a,ﬂ)/ [(820f Hi (1)) - (8:% 8P A() ("7 (2)) d.

[(a,B)|+k=j+1
O=t=<j-1

(2.89)
with

Fe p) == e

The main technical point is to estimate the remainder terms. For a proof with more
details see [31] where the authors get a uniform estimate up to Ehrenfest time (of
order log h~!). We give in Appendix B the necessary details for uniform estimates
on finite times intervals. g
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Remark 9 1f H(t) = Hy(t) is a polynomial function of degree < 2 in z on the phase
space R?" then the propagation theorem assumes a simpler form: A(z, s) = A(®"*)
and the remainder term is null. This is a consequence of the following exact formula:

i _—

h[H, B|={H, B}, (2.90)

where B € 1,
Now we give an application of the propagation theorem and coherent states in
semi-classical analysis: we recover the classical evolution from the quantum evolu-

tion, in the classical limit /& \ 0.

Corollary 7 For every observable A € X° and every z € R*", we have
%ig})(f](t,s)goz, AU, 9)p.) = A(@"(2)) (2.91)
and the limit is uniform in (t, s; 7) on every bounded set of R; x Ry x Rg”.
Proof
(U(I, S)Qz, AU, s)goz> = <goz, Us, t)/iﬁ(t, s)(pz>
= /Rzn A(t,s; X)W, (X)dX

X~z

:(nh)_"/ Alt,s: X)e™ 7 dX.  (2.92)
R2n

So by the propagation theorem we know that A(z,s; X) = A(@"* (X)) + O(h).
Hence the corollary follows. g

Remark 10 The last result has a long history beginning with Ehrenfest [74] and con-
tinuing with Hepp [113], Bouzouina—Robert [31]. In this last paper it is proved that
the corollary is still valid for times smaller than the Ehrenfest time Tg := yg|log#l,
for some constant yg > 0.

2.4.4 Return to Symplectic Invariance of Weyl Quantization

Let us give now a first construction of metaplectic transformations. Other equivalent
constructions and more properties will be given later (chapter on quadratic hamilto-
nians).

Lemma 17 For every F € Sp(n) we can find a Cl-smooth curve F;, t € [0, 1], in
Sp(n), such that Fo =1 and F) = F.
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Proof An explicit way to do that is to use the polar decomposition of F', F = V|F|
where V is a symplectic orthogonal matrix and | F| = +/ F' F is positive symplectic
matrix. Each of these matrices have a logarithm, so F = eXel with K, L Hamilto-
nian matrices, and we can choose F;, = e'Ke’L. F, is clearly the linear flow defined
by the quadratic Hamiltonian H,(z) = 18,27 where S, = —JF, F,_l. O

Now we use the (exact) propagation theorem. U(t, s) denotes the propagator
defined by the quadratic Hamiltonian built in the proof of Lemma 17 and Theo-
rem 12. Then we define R(F) = U(1,0). Recall that U(z, 0) is the solution of the
Schrodinger equation

ih%ﬁ(r,O) =HmnUt,0), U©,0)=1. (2.93)

The following theorem translates the symplectic invariance of the Weyl quantiza-
tion.

Theorem 13 For every linear symplectic transformation F € Sp(n) and every sym-

bol A € ¥ (1) we have

—

R(F)"'AR(F)=A-F. (2.94)

Proof This is a direct consequence of the exact propagation formula for quadratic
Hamiltonians

00, AU (1.0) = Ad™0. (2.95)
0

We can get another proof of the following result (see formulas (2.27)).

Corollary 8 Let vy, n € L>(R"). For every linear symplectic transformation F €
Sp(n), we have the following transformation formula for the Wigner function:

Wiy k@ =Won(F7'(@),  VzeR™ (2.96)
Proof For every A € S(R?"), we have
(RCF)n, AR(F)Y) = fR L AQW(R(F)Y, R(F)1)(2) dz
= (n. R(F)"'AR(F)y)
= /Rzn A(F - D)Wy () dz. (2.97)
The corollary follows. O

We have the following uniqueness result.



2.5 Husimi Functions, Frequency Sets and Propagation 49

Proposition 20 Given the linear symplectic transformation F € Sp(n), there ex-
ists a unique transformation R(F), up to a complex number of modulus 1, satisfy-
ing (2.18).

Proof 1f 14 satlsﬁes V1AV = A-F then 1f B=vV"! I%(F) we see that B com-
mutes with every A Aex /(). In particular | B commutes with the Heisenberg—Weyl
translations T(z), hence T(z) 1BT(z) B. But we knows that T(z) lBT(z)

B(/--i—\z). So the Weyl symbol of B (it is a temperate distribution) is a constant com-
plex number X. But here B is unitary, so [A| = 1. d

2.5 Husimi Functions, Frequency Sets and Propagation

2.5.1 Frequency Sets

The Husimi transform of some temperate distributions u € S’(R") is defined as
follows:

Definition 8 The Husimi transform of u € S’(R") is the function #,,(z) defined on
the phase space R>" by

M, (2) = Qah) |, ), zeR™ (2.98)

The Husimi transform in contrast with the Wigner transform is always non-
negative. We shall see below that the Husimi distribution is a “regularization” of
the Wigner distribution.

Proposition 21 For every ¢ € L*>(R") we have
Hy =W, * Gy,
where G is a gaussian function in phase space namely
Go(z) = (nh)_"e_lz‘z/h.

One has fRZ" Go(z)dz = 1. This means that the Husimi distribution is a “regular-
ization” of the Wigner distribution.

Proof According to the Proposition 17(iii) we have
H(p (Z) = (27t h)in (quz ) Wq))LZ(RZn) .

But we know that

Wy, (X) = Wy (X —2).
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We use Proposition 16:

(-555)
exp| — Wy (X)dX.

="
W) =2" .

R2n
This yields the result. g

In semi-classical analysis (or in high frequency analysis) it is important to un-
derstand what is the region of the phase space R?* where some states ¥ € L>(R")
depending on h, essentially lives when & is small. For that purpose let us introduce
the frequency set of yr.

Definition 9 Let v, € L2(R"), depending on #, such that ||| < 1. We say that
Vi is negligible near a point Xo € R?", if there exists a neighborhood Vx, such that

Hy, (2) = O(R®), VzeVy,. (2.99)

Let us denote A/[1/] the set {X € R?", v, is negligible near X}. The frequency set
FS[v] is defined as the complement of N [] in R,

Example 1

o If Y = ¢ then FS[g;] = {z}.
o Lety = a(x)eés(x) where a and S are smooth functions, a € S(R"), S real. Then
we have the inclusion

FS[y] € {(x,6)|E = VS)}. (2.100)
There are several equivalent definitions of the frequency set that we now give.

Proposition 22 Let vy, be such that |Yp| < 1 and Xo = (x0, &) € R**. The fol-
lowing properties are equivalent:

Q)
Hyp (X)=O(RT™), VX € Vx,.
(ii) There exists A € S(R?"), such that A(Xo) = 1 and
[Avn] =0(n). 2.101)
(iii) There exists a neighborhood Vx, of Xo such that for all A € C5°(Vx,),
|Avs| = O(r*). (2.102)

(iv) There exist x € C°(R") such that x(xo) = 1 and a neighborhood Vg, of &
such that

(X €, yp) = O(R+) (2.103)
Sforall & € Vg,.
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Proof Let us assume (i). Then we have
Hy, () = O(R°), 1z — Xol <ro. (2.104)
Using Lemma 15 we have
|Ag.|| < ChrN2(2)~N, if |z — Xo| > ro/2. (2.105)

We have, using linearity of integration,

Ay = @l f dz(gz. ) Ags.

From the triangle inequality, we have

|Aun] = @xny™ [ deltwn.val|| el

<Quh)™" (/ dz —l—/ dz). (2.106)
[1z—Xol<rol [1z—Xol=ro]

Then we get (iii):
|Avn|” = O(1*).

Let us now assume (iii); we want to prove (i).

Let us introduce x € C3°(B(Xo,70)), x(X) = 1if [X — Xo| < ro/2. Using The-
orem 9 we have BA = § + O(ht°). Hence %y = O(hT*). But using Lemma 15
we have (1 — )¢, ;) = OKT™®) for |z — Xg| < ro/4. So we have proved
(Yh. @z) = O(hT*) for |z — Xo| <ro/4. O

A consequence of this proposition is that Weyl quantization does not increase the
frequency set.

Corollary 9 Let V¥, be such that | Yy <1, A € X (1), then we have
FS[A(¥n)] S FS[¥l. (2.107)
Moreover if A is elliptic at X then we have

Xo € FS[A(yn)] < XoeFS[ysl. (2.108)

Proof Let us assume that Xo ¢ FS[y]. If x is like in the proof of the proposition,
we have x Ay = O(h%). Applying Lemma 15 we have, for z near Xo,

(¢, (1= ) AYm) = O(h)
so we get, z near Xo,

(02, X AYs) = O(h). -
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2.5.2 About Frequency Set of Eigenstates

Let us consider a quantum Hamiltonian H.Assume that H € X (m). Let us consider
the stationary Schrédinger equation

Hyp = Epn, (2.109)

where ||¥5| =1, limp 0 Ef = E.

Proposition 23 The frequency set of Yy is in the energy level set Sgp = {X €
R, H(X) = E}.

Proof Let Xg € R2" such that H (Xo) # E. There exist § > 0, ro > 0 such that
|H(X)— E| > 6, forevery X € B(Xo, o). Let us choose some x € C5°(B(Xo, 7)),
x (Xo) = 1. Using theorem 9 and the remark following this theorem (here at the end
¢ = h), we can find B such that

B(H — Ep) =% + O(h*™), (2.110)
so we get Xy = O(RT>) hence X ¢ FS[yr]. O

Assume now that H satisfies the assumptions of the Propagation theorem and ¥
satisfies the Schrodinger equation (2.109).

Proposition 24 The frequency set FS[vyr] is invariant under the classical flow &,
foreveryt e R.

Proof Let Xo ¢ FS[yn]. There exists a compact support symbol A elliptic at Xg
such that Ay = O(RT°).
For every t we have

itEp

U(=0) Ay = O(h*™) = 7" A(0) Y.

Recall that the principal symbol of A(t) is A - @'. So we find that if z is near
@~ '(Xg), then A(t)yrp = O(h+*°), hence @~ X ¢ FS[¥;]. So we see that FS[y]
is invariant. g

2.6 Wick Quantization

2.6.1 General Properties

Following Berezin—Shubin [23] we start with the following general setting.
Let M be a locally compact metric space, with a positive Radon measure p and
‘H an Hilbert space. For each m € M we associate a unit vector e, € H such that
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the map m > e, is strongly continuous from M into H. Moreover we assume that
the following Plancherel formula is satisfied, for all ¢ € H,

|Ilﬂ||2=/M|(€m,1/f)|2du(rn)- (2.111)

Let us denote w#(m) = (em, ¥). The map ¢ — w#(m) := Ty (m) is an isometry
from H into L2(M). The canonical coherent states introduced in Chap. 1 are ex-
amples of this setting where M = R*", H = L?>(R"), z > ¢,, with the measure
du(z) = 2rh)™"dgdp, z=(q, p) €R™".

Definition 10 Let A € £(H).

(i) The covariant symbol of A is the function on M defined by A.(m) = (e, Aey ).
(i) The contravariant symbol of A is the function on M, if it exists, such that

Aw:/ ASm) Ty dm, ¥ €H. (2.112)
M

For the standard coherent states example, the covariant symbol is called Wick
symbol and the contravariant symbol the anti-Wick symbol.

The covariant symbol satisfies the equality A.(m) = Tr(AHm).

Let us compute the anti-Wick symbol of some operator A with Weyl symbol A.

We know 2that the 7-Weyl symbol of the projector I7, is the Gaussian
(nh)_”e_%. So we find that the Weyl symbol of A is the convolution of its
anti-Wick symbol and a standard Gaussian function:

[X—z%

A(X)=(7rh)*”/2 AC(X)e™ T dz. (2.113)
]Rn

This formula shows that if A has a bounded anti-Wick symbol (A€ € L®(R?"))
then its Weyl symbol is an entire function in C?*, which is a restriction for a given
operator to have an anti-Wick symbol.

Let us remark that the Wick symbol is an inverse formula associated with (2.113):

X —z[?

Ac(z) =2”/ A(X)e™ h dX. (2.114)
R2n

Now we give another interpretation of the contravariant symbol. Let us first remark
that we have

T T =1y, (2.115)
T-T* = My, (2.116)

where I1; is the orthogonal projector in L%(M) on H identified with Z(H).
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Proposition 25 Let us assume that A has a contravariant symbol A€ such that
A€ € L°°(M). Then we have

A=T" A°.T, (2.117)

where A€ is here the multiplication operator in L*>(M).

Proof For every ¥, n € H we have

(n. Ay)= /Mm, em){em. Avr)dpu(m) (2.118)
and
(em, Ayr) = fM AC(m') (em M) dpa(m')
= /M AC(m") Iy e, M) dpp(m'). (2.119)
So we get

<77,A¢)=/:/ A" )My em, ) (0, em) dpp(m’) dp(m). (2.120)
MxM
We get the conclusion using the equality

(n.em)= /M(emu em)(n, em) du(m). (2.121)
0

Estimates on operators with covariant and contravariant symbols are easier to
prove than for Weyl symbols. Moreover they can be used as a first step to get esti-
mates in the setting of Weyl quantization as we shall see for positivity. The following
proposition is easy to prove.

Proposition 26 Let A be an operator in H with a contravariant symbol A°. Suppose
that A€ € L®°(M). Then A is bounded in H and we have

1Al < [A] < A .. (2.122)

Moreover A is self-adjoint if and only if A€ is real and A is non-negative if A€ is
w-almost everywhere non-negative on M.

For our basic example H = L?(R"), it is convenient to use the following notation.
If A is a classical observable, A € X' (1), Op%} (A) denotes the Weyl quantization of
A and Op}” (A) denotes the anti-Wick quantization of A. In other words Op}" (A)
admits A as an anti-Wick symbol. The following proposition is an easy consequence
of the above results.
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Proposition 27 Let A € X' (1) (more general symbols could be considered). Then
we have

2
Op}”(A) =Opy (A *G), where G(X) = (nh)_”e_%, (2.123)

(v 0pg ) = e ™ [ A@Hy @z, 2124
R4n
where Hy (2) is the Husimi function of 1.
We get now the following useful consequence for Weyl quantization.

Proposition 28 (Semi-classical Garding inequality) Ler A € ¥ (1), A>0on R?".
Then there exists C € R such that for every h € 10, 1] we have

(v, Ay)>Ch, vy eL*(R"). (2.125)

Proof We know that Opy/ (A * G) is a non-negative bounded operator. So the propo-
sition will be proved if

|OPE (A G — A)| =O(h). (2.126)

Using a standard argument for smoothing with convolution, we get i~ (A % G —
A) € ¥ (1), with uniform estimates in & € ]0, 1]. Hence we get (2.126) as a conse-
quence of the Calderon—Vaillancourt theorem. O

These results are useful to study the matrix elements (Y5, Alﬂh), for a family
{¥r}r in the semi-classical regime [106]. This subject is related with an efficient
tool introduced by Lions—Paul [137] and P. Gérard [82] (see also [35]): the semi-
classical measures. This is an application of anti-Wick quantization as we shall see
now.

2.6.2 Application to Semi-classical Measures

Semi-classical measures were introduced to describe localization and oscillations of
families of states {5}, |[Wrll =1 (or at least bounded in L2(R™)).
Let us first remark that

A (Y, 0p3"Ay)

is a probability measure u”* in R?". Moreover this probability measure has a density
given by the Husimi function of v,

du" = 2rh) " Hy, (2) dz.
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In particular we have
(v, Opi” Ay)| < [l Alloc

for every A € Cp (Rzn) (space of continuous, bounded functions on R2m).

Definition 11 A semi-classical measure for the family of normalized states {5}
is a probability measure x on the phase space R>* for which there exists at least one
sequence {hg}, . lim Ay = 0 such that for every A € X' (1), we have

—+00

Vi Opp, " AYn, ) = fzn Adpu. (2.127)

lim {
k—+00 R

In other words, the measure sequence 1™ weakly converges toward the measure /.

Remark 11 Semi-classical measures can also be defined for states yj; € L2(R", K)
where /C is an Hilbert space. By the way in this setting Weyl symbols and anti-Wick
symbols are operators in .

We can also define semi-classical measures for statistical mixed states o, where
0 is a non-negative operator such that Trp = 1.

For more applications and properties of these extensions see the huge literature
on this subject; for example see [135].

The following proposition is a straightforward application of the properties of
the Husimi function.

Proposition 29 Let (v be a semi-classical measure for {Yp}r. Then the support
supp(u) of the measure v is included in the frequency set FS[yrs], supp(n) €
ES[yn].

Example 2

(1) Let ¥5 = ¢, a standard coherent state. Then this family has one semi-classical
measure, i = §; (Dirac probability).

(i) Let us assume that the states family {5} is tight in the following sense. There
exists a smooth symbol y, with compact support, such that x ¥ = ¥ + O(h).
Then using Lemma 15, we can see that the family of probabilities {1} is tight,
so applying the Prokhorov compacity theorem, there exists at least one semi-
classical measure. One of a challenging problem in quantum mechanics is to
compute these semi-classical measures for family of bound states satisfying
(2.109). If for some ¢ > 0, H™[E — ¢, E + ¢] is a bounded set, this family is
tight. For classically ergodic systems it is conjectured that there exists only one
semi-classical measure, which is the Liouville measure [106].

One important property of semi-classical measures is the following propagation
result.
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Let us consider the time dependent Schrodinger equation

o (t) = HYn(t),  ¥i(0) = ¥p, (2.128)

where H is a time independent Hamiltonian. We assume that H is real, subquadratic
and / independent (for simplicity).

% H € L®(R*), forall y such that [y| > 2. (2.129)

Let u be a semi-classical measure for {1y }.

Theorem 14 For every t € R, {Y(t)} has a semi-classical measure du; for the
same subsequence Ry, given by the transport of du by the classical flow: @, u(t) =

(@)H* .

Proof Forevery A € Co™(R?"), the semi-classical Egorov theorem and comparison
between anti-Wick and Weyl quantization give

(Vn (), Opg" (A)yn (1)) = /Rz A- @' dpy, +Oh). (2.130)
Hence we get the result going to the limit for the sequence fy. g
We have the following consequence for the stationary Schrodinger equation.

Corollary 10 Let ju be semi-classical measure for a family of bound states {{1},
satisfying Hvyry, = Epyry. Then u is invariant by the classical flow ®' for every
teR.

Proof yp(t) = e A En Y satisfies the time dependent Schrédinger equation so us-
ing the Theorem we get (®')*u = p. O

Now we illustrate Corollary 10 on Hermite bound states of the harmonic oscilla-
tor.

We assume n = 1. We can easily compute Husimi function H; of the Hermite
function ¢;.

2 2\J
|2= (q”+p7)’ e~ 2h @ +p?)

Hi(q. p) =|(ex. ¢)) 21 (2.131)

We want to study the quantum measures du; = (27 )~'H j(q, p)dq dp when the
energies E; = (j + %)h have a limit £ > 0. So we have A — 0 and j — 4o00. For
simplicity we fix E > 0 and choose h = h; = %

Let f be in the Schwartz class S(R?). We have to compute the limit of
f f(X)du;(X) for j — +oo. Using polar coordinates and a change of variables
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we have to study the large k limit for the Laplace integral

I1()) ::(_+1)'/ u]ef%“f(\/Zucose,v2usin9)du, 6 [0, 2r].
J - Jo

We can assume that f has a bounded support and (0, 0) is not in the support of f.
Using the Laplace method we get

lim 1(j) = f(V2E(cos 8, sin6)). (2.132)
Jj—>+o00
So, we have
: 1 o .
j_l:TOO/f(X)duj(X)zm/O f(V2E(cos8,sin6))do.  (2.133)

On the r.h.s. of (2.133) we recognize the uniform probability measure on the circle
of radius /2. This measure is a semi-classical measure for the quantum harmonic
oscillator. Let us remark that the classical oscillator of energy +/2E moves on the
circle of radius +/2E in the phase space.



Chapter 3
The Quadratic Hamiltonians

Abstract The aim of this chapter is to construct the quantum unitary propagator for
Hamiltonians which are quadratic in position and momentum with time-dependent
coefficients. We show that the quantum evolution is exactly solvable in terms of
the classical flow which is linear. This allows to construct the metaplectic transfor-
mations which are unitary operators in L?(R") corresponding to symplectic trans-
formations. Simple examples of such metaplectic transformations are the Fourier
transform, which corresponds to the symplectic matrix J defined in (3.4) and the
propagator of the harmonic oscillator, corresponding to rotations in the phase space.

The main results of this chapter are computations of the quantum evolution op-
erators for quadratic Hamiltonians acting on coherent states. We show that the time
evolved coherent states are still Gaussian states which are recognized to be squeezed
states centered at the classical phase space point (see Chap. 8). From these compu-
tations we can deduce most of properties concerning quantum quadratic Hamiltoni-
ans. In particular we get the explicit form of the Weyl symbols of the metaplectic
transformations. These formulas are generalizations of the Mehler formula for the
harmonic oscillator.

Quadratic Hamiltonians are very important in quantum mechanics because
more general Hamiltonians can be considered as non-trivial perturbations of time-
dependent quadratic ones as we shall see in Chap. 4.

3.1 The Propagator of Quadratic Quantum Hamiltonians

A classical quadratic Hamiltonian H is a quadratic form defined in the phase
space R?". We assume that this quadratic form is time dependent, so we have

H(t,z) = Z cjk(t)zjzk

1<j.k=<n

where z = (¢, p) € R?" is the phase space variable and the real coefficients c; ¢ (¢)
are continuous functions of time ¢ € R. It can be rewritten as

1
H(t.q.p) = 5(q. p)S() (2) 3.1)
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where S(¢) is a 2n x 2n real symmetric matrix of the block form

T
S@t) = (CL;; I;(tt) (3.2)

Gy, L;, K; are n x n real matrices with G, K, being symmetric, and L,T denotes the
transpose of L;. The classical equations of motion for this Hamiltonian are linear

and can be written as
q q
. )| =JS@ 3.3
(4)=ss0 (1) 33)

where J is the symplectic matrix

0 1,
J=<_1n o) (3.4)

Let F(t) be the classical flow for the Hamiltonian H (¢). It means that it is a
symplectic 2n X 2n matrix obeying

F()=JS@)F (1) (3.5)
with F(0) = 1. Then the solution of (3.3) with g(0) = ¢, p(0) = p is simply
q®)\ _ q
(PU)) =ro (P)

We now consider the quantum Hamiltonian

H@) =(0.P)- S (195) (3.6)

The quantum evolution operator U (t)! is solution of the Schrodinger equation
d s
lhEU(t) =H@U(t) 3.7

with U (0) = 1. The following result was already proved in Chap. 2 as a particular
case of a more general result. We shall give here a simple direct proof.

Theorem 15 One has for all times t

U@)* (%) U@t)=F@) (%) (3.8)

'We shall explain later why this quantum propagator is a well defined unitary operator in L2 (R").
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Proof Define Q, =U (t)*@l? (t), and similarly for P (Heisenberg observables).
Using the Schrodinger equation one has

d (0N _~ s (O\]~
_lhE<§>_Um [H(t)’<ﬁ)]U(’)

[ﬁ(;), (},QE)} = —ihJS@) (%)

This means that Q;, P, must satisfy the linear equation

d (0 0
E(@)—JS(”<@>

which is trivially solved by (3.8). g

But

3.2 The Propagation of Coherent States

In this section we give the explicit form of the time evolved coherent states in terms
of the classical flow F(¢) given by the 2n x 2n block matrix form:

F(1) = (fc‘j gft ) 3.9)

It will be shown that the complex n x n matrix A; 4 i B; is always non-singular.
Then we establish the following result:

~ ~ _ i
Uy, = (mh)™"/AT (z,) (det(A, +iB,)) " exp(ﬁ(a +iD) (A +iB) \x-x

(3.10)
where z; = F(t)z is the phase space point of the classical trajectory and 7T (z) is the
Weyl-Heisenberg translation operator by the vector z = (x, £) € R¥":

?(z):exp[%(&@—x-ﬂ} (3.11)

This means that U, @, 1s a squeezed state centered at the phase space point z;, so the
squeezed state moves on the classical trajectory.

We take h =1 for simplicity.

A simple example is the harmonic oscillator

~ 1 d?

1 2
osz_iﬁﬁ-ix (3.12)
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It is well known that for ¢ # km, k € Z the quantum propagator e /s has an
explicit Schwartz kernel K (¢; x, y) (Mehler formula, Chap. 1).

It is easier to compute directly with the coherent states ¢,. ¢p is the ground state
of I/-I\OS so we have

—ltHgo _e—lt/z(po (313)
Let us compute et H vz, Vz € R2, with the following ansatz:
e Mg, = OT (z)e gy (3.14)

where z; = (g;, p;) is the generic point on the classical trajectory (a circle here),

coming from z at time # = 0. Let ¥, , be the state equal to the rh s.in (3.14), and
let us compute 8;(z) such that v , satisfies the equation i dl(p H @, Oli=0 = Y0,z
We have

’f(z,)u(x) — ei(mx—qmr/Z)u(x —q)
and
Vr.o(x) = ei(St(Z)_t/z'f‘Ptx_qut/z)wo(x —qr) (3.15)

So, after some computations left to the reader, using properties of the classical tra-
jectories

dr = pr, Pt =—4s, Pz2+‘1t2=1’2+f]2
the equation
z—wt ((x) = (02 + 1) 2 (1) (3.16)

is satisfied if and only if

1
8(2) = E(Pt% - pq) (3.17)

Let us now introduce the following general notations for later use.
F; is the classical flow with initial time #y = 0 and final time ¢. It is represented
as a 2n x 2n matrix which can be written as four n x n blocks:

_ At Bt
Ft_(ct Dt) (3.18)

Let us introduce the following squeezed states: ¢ defined as follows:

wr(x)zar exp(%]"xw) (3.19)

where I" € X, ¥, is the Siegel space of complex, symmetric matrices I" such that
(I') is positive and non-degenerate and ap € C is such that the L?-norm of <pr
one. R

We also denote ¢! =T (2)p!".

For I’ = i1, we denote ¢ = @'t
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Theorem 16 We have the following formulas, for every x € R" and z € R*",
U () =" () (3.20)
Uip! (x) = T(Fi2)g" (x) (3.21)

where I = (C; + D;T')(A; + B, ')~ and ar, = ar (det(A; + B, I")) /2.

Beginning of the Proof The first formula can be proven by the ansatz

= i
Urpo(x) = a(r) CXp<ﬁF,x ~x>

where I; € ¥, and a(t) is a complex values time-dependent function. We get first
a Riccati equation to compute /; and a linear equation to compute a(t).

The second formula is easy to prove from the first, using the Weyl translation
operators and the following known property

U T ()0 =T (Fz)

Let us now give the details of the proof for z = 0.
We begin by computing the action of a quadratic Hamiltonian on a Gaussian
(h=1).

Lemma 18

Lx-Dyes ™% = <LTx Tx— %TrL)ei”'x

Proof This is a straightforward computation, using

1 x;iDy + Dix;
Lx-D, =~ L, 2= 7K
T Z Jk 2

1<j,k<n
and, for w € R",
(- Dx)egr” = (I'x 'w)egm.x O
Lemma 19

(GDy - Dy)e ™ = (GIx - I'x —i Tr(GI))e ™

Proof As above, we get

~ 1 1 1 j i
Heal'xx — <§Kx~x +x~LFx+§GFx~Fx— %Tr(L—}—GF))e?Fx'X (3.22)

0
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We are now ready to solve the equation
Ly =Ay (3.23)
i—y = .
at

with

n/4.—x2/2

Yli=o(x) =gx) :=m""""e

For simplicity we assume here that I" = i1, the proof can be easily generalized to
I'eX,.
We try the ansatz

Y(t,x) =a(neliv= (3.24)
which gives the equations
Ii=—-K-2I'"L - LGT, (3.25)
1
a(r) = —E(Tr(L +GI)a(r) (3.26)

with the initial conditions
Io=il,  a(0)=(m)""*

We note that I'T L et LT determine the same quadratic forms. So the first equation
is a Ricatti equation and can be written as

I,=—K—-LLT - LTI -TGLL (3.27)

where LT denotes the transposed matrix for L. We shall now see that (3.27) can be
solved using Hamilton equation

: K L

Fo=1 (3.29)

i=(e 5)
is a symplectic matrix V. So using the next lemma, we have det(A; 4+ i B;) # 0 Vt.
Let us denote

We know that

Mt:At+iBt, Nt:Ct+iDt (330)

We shall prove that 7 = N,Mt_l. By an easy computation, we get
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M,=L"M, +GN,
N, =—KM, — LN,
Now, compute

i(N MY=NM' - NM~'Mm™!

v 0T
=—K—-LNM'=NM ' (L"M +GN)M™!
=-K-LNM'=NM~'L" ~NM~'GNM™'

which is exactly (3.27).
Now we compute a(t), using the following equality:

Tr(L" + G(C +iD)(A+iB)™") =Te(M)M ™' =Tr(L + GI)

using Tr L = Tr LT Let us recall the Liouville formula

d .
7 log(det M,) = Tr(M, M)
which gives directly
_ —n/4 . -1/2
a(r) = ()% (det(A; +iBy))
To complete the proof, we need to prove the following.
Lemma 20 Let F be a symplectic matrix.
A B

r=(¢ 5)

Then det(A + i B) # 0 and I(C +iD)(A +iB)~! is positive definite.

We shall prove a more general result concerning the Siegel space X,.

(2 0)

Lemma 21 If

65

(3.31)

(3.32)

(3.33)

(3.34)

is a symplectic matrix and Z € X,, then A+ BZ and C + DZ are non-singular and

(C+DZ)A+BZ) 'ex,

Proof Let us denote M := A+ BZ, N :=C + DZ. F is symplectic, so we have

FTJF =J. Using

(V)=r(2)
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we get

(MT,NT)J<%>=(1, Z)J(é):O (3.35)
which gives
MIN=N"M
In the same way, we have
i,(MT, NT)J (M> = l,(l, Z2)FTJF ( {>
2i N 2i Z

1 I 1 - R
=50 2)J (z) = Z(Z— Z)=-3Z (336)

We get the following equation:
NTM —MTN =2i3Z (3.37)

Because 3Z is non-degenerate, from (3.37), we see that M and N are injective. If
x €C", Ex =0, we have

Mi=x"MT =0

hence
x'3z¥ =0
then x = 0.
So, we can define
a(F)(Z)=(C+DZ)(A+BZ)™! (3.38)

Let us prove that «(F)Z € X,. We have
a(F)Z=NM"!
> (@P2) =)' N = (M) MTNMT = NM T =a(F)Z

‘We have also:

rNM~'—NM~' . NTM-MTN
M - M= - =3Z
2i 2i
and this proves that J(«(F)(Z)) is positive and non-degenerate.
This finishes the proof of the Theorem for z = 0. d

The map F +— «(F) defines a representation of the symplectic group Sp(n)
in the Siegel space X,. For later use it is useful to introduce the determinant:
8(F,Z) =det(A + BZ), F € Sp(n), Z € X,,. The following results are easy al-
gebraic computations.
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Proposition 30 We have, for every Fy, F; € Sp(n),

1) a(F1F) =a(Fa(F).
(i) 8(F1F2, Z) =6(F1,a(F2)(2))8(F2, Z).
(iii) For every Z1,Z, € X, there exists F € Sp(n) such that a(F)(Z1) = Z;. In
other words the representation « is transitive in X,.

Many other properties of the representation « are studied in [139] and [77].
For completeness, we state the following.

Corollary 11 The propagator ﬁ, is well defined and it is a unitary operator in
L2(R").

Proof For every coherent state ¢, l7t @ is solution of the Schrodinger equation. As
we have seen in Chap. 1, the family {¢,},cg2: is overcomplete in L*(R™). So for-
mula (3.20) wholly determines the unitary group 17;. In a preliminary step we can
see that ﬁ,i/f is well defined for ¥ € S(R") using inverse Fourier—-Bargmann trans-
form, that U,y € S(R"), and that || U, ¥|| = ||¥/]|. So we can extend U, in L2(R").
In particular it results that ﬁt is a unitary operator and that ﬁt has a unique self-
adjoint extension in LZ(R"). O

It will be useful to compute the Fourier—Bargmann transform of U, @;.

Recall that U (1) = R (Fy) where R (F) is the metaplectic operator corresponding
to the symplectic 2n x 2n matrix F and that F; has a four blocks decomposition

7= (& 5)
Now we define n x n complex matrices Y;, Z; as follows:
Yi=A:+iB; —i(C; +iDy), Zi=Ar+iB; +i(Cy +iDy)
One has the following property, using the symplecticity of F;:

Lemma 22
Z*Z=Y*Y —41
Y; is invertible.
One can define the matrix W; as follows:
W, =2y !

which satisfies the following property.
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Lemma 23
®
Wo=0
(i)
Wi W, <1
(iii)

1
(r+in~'= z—i(]l + W)
In particular W is a symmetric matrix.

Proof

(1) Is an easy consequence of the fact that Fy = 1, hence Yy =21, Zp =0.
(ii)) We have

W*W = (r*) ' zFzy = (v) T (ry —4n)y T =1 —4(yyr) T
(iii) Is a simple algebraic computation. d
Theorem 17 The matrix elements (¢;, ﬁ,(pz/) are given by the following formula:
(@2, Urpy) = 2" det™' (A, + Dy +i(B: — C1))
« o~ i/20 (Fiz 2) o= (22 +87) /4o =W (E+ix)-(6+ix) /4 (3.39)
where z — F;7' = (x, ) and

Wy = (A; — Dy +i(B, +C)) (A + Dy +i (B — Cz))71

Proof For simplicity we forget the time index ¢ everywhere.
It is enough to assume that z’ = 0. From the metaplectic invariance, we get

<(0z’ ﬁ@z’) = (‘pZ’ 7:(FZ/)('O(F))
_ e—io(Fz/,z)/2<¢Z_Fz,’ (p(”) (3.40)

So we have to compute (@x, ¢/7).
We have

(px, D)= det™"/2(A + i B)e2ira=a*)

x f o3 MHDvxe—ix(ptie) gy (3.41)

So the result follows from computation of the Fourier transform of a generalized
Gaussian (or squeezed state). Il
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3.3 The Metaplectic Transformations

Recall that a metaplectic transformation associated with a linear symplectic trans-
formation F € Sp(n) in R?", is a unitary operator R(F) in L>(R") satisfying one of
the following equivalent conditions

R(F)*AR(F)=AoF, VAeS(R) (3.42)
RIF'TXOR(F)=T[F'(X)], VXeR™ (3.43)

R(F)*AR(F)=AoF,
for A(q,p)=¢qj, 1 <j<nand A(g,p)=pr, 1l <k<n (3.44)

A is the Weyl quantization of the classical symbol A(g, p) and we recall that the
operator 7' (X) is defined by

?(X):exp<%(g Q—x- i))) (3.45)

when X = (x, £) e R¥.

We shall prove below that for every F € Sp(2n) there exists a metaplectic trans-
formation R (F). This transformation is unique up to a multiplication by a complex
number of modulus 1.

Lemma 24 [f ﬁ] (F) and ﬁz(F ) are two metaplectic operators associated to the
same symplectic map F then there exists A € C, || = 1, such that R{(F) = AR, (F).

Proof Denote R = Rl(F)Rz(F) . Then we have R*T(X)R = T(X) for all
X € R?". Applying the Schur lemma 10 we get R=21,1eC.But R is unitary
so that |A] = 1. O

We shall prove here that F +— ﬁ(F ) defines a projective representation of the
real symplectic group Sp(n) with sign indetermination only. More precisely, let
us denote by Mp(n) the group of metaplectic transformations and 7, the natural
projection: M — Sp(2n) then the metaplectic representation is a group homo-
morphism F R(F) from Sp(n) onto Mp(n)/{1, —1}, such that np[R(F)] =
VF € Sp(2n) For more details about the metaplectic transformations see [133].

Proposition 31 For every F € Sp(n) we can find a Cl-smooth curve F;, t € [0, 1],
in Sp(n), such that Fo =1 and F1 =

Proof An explicit way to do that is to use the polar decomposition of F, F =V |F|
where V is a symplectic orthogonal matrix and |F| = ~/ FT F is positive symplectic
matrix. Each of these matrices have a logarithm, so F = eXel with K, L Hamilto-

nian matrices, and we can choose F, = e'KeL. O
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Let F; be as in Proposition 31. F; is the linear flow defined by the quadratic
Hamiltonian H;(z) = 38,z - z where §; = —J F; Ft_l. So using above results, we
define R (F)= U,. Here U, is the solution of the Schrédinger equation

d ~ ~ o~
ihUr=HnOT; (3.46)

that obeys fjo = 1. Namely it is the quantum propagator of the quadratic Hamilto-
nian H (¢). That the metaplectic operator so defined satisfies the required properties
follows from Theorem 15.

Proposition 32 Let us consider two_symplectic paths F; and F/ joining 1 (t =0)
to F (t =1). Then we have U1 :I:U (with obvious notation).
Moreover, ifFl, F?e Sp(2n) then we have

R(F')R(F*) =+R(F'F?) (3.47)

Proof We first remark that the propagator of a quadratic Hamiltonian is determined
by its action on squeezed states ¢! and its classical flow. So using (3.20) we see that
the phase shift between the two paths comes from variation of argument between 0
and 1 of the complex numbers b(¢) = det(A; + i B;) and b'(¢) = det(A| + i B;).

We have arg[b()] = J( fot % ds) and by a complex analysis argument, we have

b(s) Ly (s)
S(./o b(s) S)_°</o o) ds)””N

with N € Z. So we get

b(l)fl/z — eiN”b/(l)71/2

The second part of the proposition is an easy consequence of Theorem 16 concern-
ing propagation of squeezed coherent states and Proposition 30. More precisely,
the sign indetermination in (3.47) is a consequence of variations for the phase of
det(A + iB) concerning F = F! and F = F?. To compare with F' F? we apply
Proposition 30. 0

Remark 12 A geometrical consequence of Proposition 30 is the following. The map
Fr R (F) induces a group isomorphism between the symplectic group Sp(n) and
the quotient of the metaplectic group Mp(n)/{—1, 1}. In other words the group
Mp(n) is a two-cover of Sp(n).

An interesting property of the metaplectic representation is the following.
Proposition 33 The metaplectic representation R has two irreductible non-

equivalent components in L2(R"). These components are the subspaces Lgd(R")
of odd states and L%, (R") of even states.
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Proof Let us first remark that the subspaces L? od. ev (R™) are invariant for R (F) be-
cause quadratic Hamiltonians commute with the parity operator [Ty (x) = ¥ (—x).
Now we have to prove that L2 od. ev (R") are irreducible for R.

Let us begin by considering the subspace L L (R™). Let B be a bounded operator
in L2 (R™) such that R(F )B B R(F ) for every F € Sp(n). According to the Schur
lemma we have to prove that B=21,1eC.

In particular B commutes with the propagator of the harmonic oscillator U; =

el! Hos . We can suppose that B is Hermitian. So B is diagonal in the Hermite basis
¢« (see Chap. 1). We have B¢a = Ay @y for every o € N,
To conclude we have to prove that A, = Ag if || and |B] are even.
Assume for simplicity that n = 1 (the proof is also valid for n > 2).

. . . s itv2 .
Let us consider the metaplectic transformation R, = e'™*" associated to the sym-
plectic transform F; = exp(g 0)-

We have
Rigr = clt.k, j)o;
Jj=0
Using that EE = §§, we get
ct,k, Jrj=ct, k, j)ie (3.48)

Now we shall prove thatif k — j is even then c(t, k, j) # O for some f hence A j = A.
This a consequence of the following

et k, j)= / & gr (X)) (x) dx

If c(¢, k, j) = 0 for every ¢ then fR x2m¢k(x)¢j (x)dx =0 for every m € N. But this
is not possible if k — j is even (see properties of Hermite functions).

So we have proved that L2, (R) is irreducible. With the same proof we also find
that Lgd (R) is also irreducible.

Assume now that BRI (F)= R (F )E and that B is a linear transformation from
Lgv (R) in Lgdd(R). We still have Eq’)k = Ax¢k. But an Hermite function is odd or

even so Ax = 0 for all k and B = 0. So these representations are non-equivalent. [J

3.4 Representation of the Quantum Propagator in Terms
of the Generator of Squeezed States

In this section our aim is to revisit some results obtained in [49] and [51].
Let us start with classical Hamiltonian mechanics in the complex model C", ¢ =
'2” As above, F is a classical flow for a quadratic, time-dependent Hamiltonian.

Let us denote by F¢ the same flow in C". We easily get

c 1 7 -
Fr = E(Yg + Z7) (3.49)



72 3 The Quadratic Hamiltonians

where
Y=A+D+i(B-0C), Z=A—D+i(B+C) (3.50)

Recall that all these matrices are time dependent and Y is invertible. So we have Y =
|Y|V (polar decomposition), where |Y 2=YY*and V isa unitary transformation
of C" (V € SU(n)).

We already introduced W = Z Y~! and we know that 0 < W*W < 1. So we can
factorize F¢ in the following way.

F¢=D° 5 3.51)
Sc=Ve (3.52)
c s\ —1/2 s —1/2 %=
D¢ =(1—W*W) "t 4 (1-WW) W (3.53)

Coming back to the real representation in R?", S is an orthogonal symplectic trans-
formation (a rotation in the phase space). Let us compute R (S). To do that, we write
V = e/l (this is possible locally in time). L is an Hermitian complex matrix. V is
the flow at time 17 of the quadratic Hamiltonian

_ 1 _ _
HSC(C,C)=§(§~LTC+C~LC)

Let H be the real representation of H¢, then we have I?(S) = e”ﬁs. So I?(S) is a
quantum rotation because we have, for every observable O,

el fls 5e_iﬁ5 =05
It is more difficult to compute R (D) (the dilation or squeezing part).
We write down the polar decomposition of W, W = U|W|, |[W|> = W*W, U
unitary transformation in C". We are looking for a generator at (new) time 1 for

the transformation D. Let us introduce a complex transformation B in C" with the
polar decomposition B = U|B| (|B|?> = B*B). After standard computations, we get

0 B*\_ (cosh|B|  —sinh|B|U*
eXP<B 0)_(Usinh|B| —Ucosh |B|U* (3.54)

Comparing with previous computation of D¢, we get

cosh |B| = (1 — w*w) ™'/ (3.55)
sinh |B|U* = cosh |B|W* (3.56)
sinh |B| = cosh |B||W| (3.57)

2This time is a new time, which has nothing to do with 7.
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We can solve the last equation:

|B| = argtanh |W| (3.58)
More explicitly we have
(ww)"
B=W 3.59
Z 2n+1 ( )
n>0

In particular B is a symmetric matrix (BT = B) because W is a symmetric matrix.
As for the rotation part, we can get now a dilation generator,

[ _ _
=5 Bs—¢-BE)
such that the (complex) equation of motion is
¢ =B

liinally we restore the time ¢. We have a decomposition F; = D(B;)S(L;) such that
Uy =XD(B;)S(L;), where A, is a complex number, |A;| =1 and

D(B,) = ¢>@"Bra’—a-B,*a) (3.60)

is the generator of squeezed states. More properties of D(B) will be given at the
end of this section. We can get now

Proposition 34 For every time t we have
Urpo =det'? V,p, (3.61)
where ¢p, is the squeezed state defined by
¢5, = D(B)¢o (3.62)
and det th/ % is defined by continuity, starting fromt =0 (Vo = 1).

Proof 1t is enough to show that ¢q is an eigenstate of §(L) with eigenvalue y =
1 Tr(L). Clearly

(a’-L'a+a-La')gy = Z(Lj,ia;a,- + L,-,ja,-aj.)goo = ZLi,iQDO
ij '

since a;¢p0 =0, Vi = 1,...,n. We get the result by exponentiating. Let us remark
here that even if L is defined in a small time interval we can conclude because the
prefactor of ¢, must be continuous in time ¢. O

We can also demonstrate that the quantum evolution of a coherent state ¢, is
simply a displaced along the classical motion of a squeezed state:
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Proposition 35 Let z; = (q;, p;) be the phase space point of the classical flow at
time t starting with initial conditions 7z = (q, p). Thus

()=5()

U()g, =detV,*T (z,) @5,

One has

Proof One uses the fact that, due to that ﬁ(t) = ﬁ(F,),
Utyp: =UMT @0 =T ()T ("o O

More on n-Dimensional Squeezed States Consider now any complex symmetric
n x n matrix W such that W*W < 1. Take as before the polar decomposition of W
to be
wun1/2
W=U|W|, |W|=(W*W)
U being unitary. We define the n x n complex symmetric matrix B to be
B = U argtanh |W|

More explicitly writing the Taylor expansion of arg tanhu at 0 we find

o0
W*W)"
B=WZ¥ and we have |W| = tanh | B| (3.63)
= 2n+1

Now we construct the unitary operator D(B) in L2(R") as
Lt pat .
D(B) =exp z(a -Ba' —a- B*a)
We have

Lemma 25

(1) D(B) is unitary with inverse D(—B).
(i)

a [ @a-wwHT2 W@ - wrw) 2 (a
D(B) (a%) D(—B) = <—(1 _ W*W)—l/ZW* (1— W*W)—I/Z ) <aT)

Proof Let us denote

ap(t)=D(tB)aD(—1B),  aj4(1)=D(tB)a' D(—1B)
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Computing

ia ) =D(@B) l(aJVBaT—&LB*a) a|D(—tB)
T 2 ’

we get, using the commuting relations,

d =—B
EaB(t) = —Bap(1)

and the same for a':
d
Eag(t) = B*a}kg(t)
. 0 B* .
We get the result by computing exp((j, 7)) as in (3.54). O

We define the n-dimensional squeezed state as
v'® = D(B)go

where ¢ is the standard Gaussian (ground state of the Harmonic oscillator).
We shall first compute 1/ (&) in the Fock—-Bargmann representation. We recall that
in the Fock—Bargmann representation one has

Blgol(¢) = 2nh) ™"/

(independent of ¢ € C").
Then we try the following ansatz:

1
B[y ®]@) :aexp<2—h§ -Mg“) (3.64)

where M is a complex symmetric matrix that we want to compute. From now on we
assume A= 1.
Let us consider the antihermitian Hamiltonian Hp to be

Hp = %(aT .Ba' —a. B*a)

Take a fictitious time ¢ to vary between O and 1 and consider the evolution operator
Ug(t) =e'f'8_Then I/J(B (1) =Upg (t)go satisfies the differential equation

d
VPO =Hy P
with the following limiting values:

VPO =g, Y PO)=y®
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In the Fock—Bargmann representation Hp has the following form:
1 k
Hg(£,0;) = E(C B¢ —0; - B70;)

Using the ansatz (3.64) for ¥ (®)(r) we see that one has
. 1 . 1 1
(a —I—aEC : MC) CXP(EC : MC) =a(t)Hp(¢, 3;)CXP<§§ : M§>

Now we compute the right hand side using the convention of summation over re-
peated indices; we get

1 1 1 1 1
Ea(t)<§§ B¢ — Eag“jB*ijMika - EB;;'a{jCkMki> eXP(EK 'Mé“)
1 N N 1
= Ea(g’ B¢ —Tr(B*M) —{ - MB*M{) exp 5¢ Mt
Identifying we get
y * . 1 *
M=B— MB*M, a:—EaTr(B M)

Let us solve the differential equation

oM =—MB*M + B (3.65)

with M[:() =0.
‘We consider N such as

M=UN

with U independent of ¢ given by the polar decomposition of B.
Then equation (3.65) becomes

UdN=—-UN|B|N +U|B|
Thus it reduces to
0N =—N|B|N + |B|

At time t = 0, N = 0O thus the solution at time ¢ = 1 is a function of |B| (thus
commuting with |B]) given by

N =tanh|B|

This implies that
M =Utanh|B|=U|W|=W
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Now consider the differential equation satisfied by a(¢). We get
2a=—-aTr(B*M)=—aTt(|BIU*UN) = —aTr(|B| tanh | B|)

Since a(0) = (27)™"/? we get

a(t) = (2n)”/2exp(—%/
0

1
= Qm)™"/? exp(—i Trlogcosht|B|)

t

ds Tr(|B|tanhs|B|)>

—1/2 1/4

a(l) = @) ™"/*(detcosh |B|) ™ /" = 27)~"/*(det(1 — |W|?))
where we have used that e ™4 = dete”.

Thus the squeezed state ¥ 8) = D(B)¢y has the following Fock—-Bargmann rep-
resentation

v B () = (2;1)‘”/2(detcosh|B|)_1/2 exp(%g . Wg) (3.66)

Now using the inverse Fock—Bargmann transform we go back to the coordinate
representation of ¥ ®). One has to compute the following integral:

x2 - Ez -1
/dqdpexp - 7—x«/§§+7 —L L4 We (3.67)

The argument of the exponential can be rewritten as

2 . 2
X 1, ip-g p . 1, , 5
5 14 St tx@+ip) 2(q + p%)
1 . .
+Z(q-Wq—lp~Wq—lq-Wp—p-Wp)
x? _ 3, 1, 1 , _
=—7+x(q+lp)—é—lq P +Z(q-Wq—lp-Wq—lq-Wp—p-Wp)

Thus it appears a quadratic form in g, p which can be written in matrix form as

1 q

M_l 31—-W  —i(W+1)
T2 \-i(W+1) w41

with

One has

L1 i
M ‘E(i (31—W)(11+W>1>
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Thus the integral over g, p in (3.67) will be the exponential of the following
quadratic form:

LM (F) -2 3.68
_E(x”x) ix) "7 (3.68)
with a phase which is exactly
(det(M/2m))~"* = @7)"2(det(n + W)~/

It is easy to compute the expression in (3.68). It gives
1 -1
5% L-=w)@+Ww) x
Thus restoring the & dependence and the factors = we get the following result.

Proposition 36 The squeezed state B is actually a Gaussian in the position rep-
resentation given by

vB(x)=ar exp(zl—'hx . Fx) (3.69)

with
F=i(l— W)@+ w)!
and

ar = (@h) "2 (det(1 — |W?)) @+ w)~/2

3.5 Representation of the Weyl Symbol of the Metaplectic
Operators

See Chap. 2 for the definitions of covariant and contravariant Weyl symbols. We
have shown that R(F) = U; where U, is the quantum propagator of the quadratic
Hamiltonian,

L ~
H(t) = E(Q, P)M, <}%> (3.70)

with M, = —J F, Ft_l, F; being a continuous path in the space Sp(n) joining 1 at
t =0to F att = 1. In [52] the authors show the following result.
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Theorem 18

(1) If det(1 + F) # O the contravariant Weyl symbol of ﬁ(F ) has the following
form:

R(F, X) =e™|det(1 + F)| " exp(=iJ (1 = )@+ F)"'X-X) (3.71)
wherev e Z ifdet(l + F) >0andv € Z+ 1/2 ifdet(1 + F) < 0.
(ii) If det(1 — F) # O the covariant Weyl symbol of I?(F) has the following form:

R*(F, X) = #|det(1 — F)|'? exp(—%](]l+ F)(1— F)1X.X> (3.72)

where p =V + 5 and v € 7.

This formula has been heuristically proposed by Mehlig and Wilkinson [143]
without the computation of the phase. See also [61].

We can restore the 7 dependence of R(F, X) and R*(F, X) by putting a factor
i~ in the argument of the exponentials.

Proof Let us state the following proposition which is a direct consequence of (3.39)
after algebraic computations.

Proposition 37 The matrix elements of R (F) on coherent states ¢, are given by
the following formula:

(0o x|R(F)g,) = 2" (det(1 + F +iJ (1 — F))) "/
X—iJX>

2
X exp(— >

x (Z + L;”)) (3.73)

Kr=(+F)(1+F+iJ1—F)" (3.74)

X
S

1
+ Eia(X,z)—i—KF(z-}-

where

Now we can compute the distribution covariant symbol of ﬁ(F ) by plugging
formula (3.73) into formula (2.29).

Let us begin with the regular case det(1 — F) # 0 and compute the covariant
symbol.

Using Proposition 37 and formula (3.39), we have to compute a Gaussian integral
with a complex, quadratic, non-degenerate covariance matrix (see [117]).

This covariance matrix is Kr — 1 and we have clearly

Kr—1=—iJA—F)(1+F+iJ0—-F) '=-@—-ia)"
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where A = (1+ F)(1 — F)~!'J is areal symmetric matrix. So we have
REKr—1=—(1+42)"",  SKp-—1)=—A(1+4%)"" 375

So that 1 — K is in the Siegel space X, and Theorem 7.6.1 of [117] can be applied.
The only serious problem is to compute the index .

Let us define a path of 2n x 2n symplectic matrices as follows: G, = &'/ if
det(1 — F) > 0,and G, = G? ® '™/ if det(1 — F) < 0, where

0
G2=<’7(t) )
0 5

where 7 is a smooth function on [0, 1] such that n(0) =1, n(t) > 1 on ]0, 1] and
where Jo, is the 2n x 2n matrix defining the symplectic matrix on the Euclidean
space R,

G1 and F are in the same connected component of Sp, (2n) where Sp, (2n) =
{F € Sp(2n), det(1 — F) # 0}. So we can consider a path s — F, in Sp,(2n) such
that Fj =Gy and F{ =F.

Let us consider the following “argument of determinant” functions for families
of complex matrices:

O[F;] = arg [det(1+ F, +iJ (1 — Fy))] (3.76)
BIF] = arg, [det(1 — Kp)~!] (3.77)

where arg. means that ¢ — 6[F;] is continuous in ¢ and 6[1] =0 (Fp = 1), and
S > arg, [det(S)] is the analytic determination defined on the Siegel space X,
such that arg , [det(S)] = 0 if § is real (see [117], vol. 1, Sect. 3.4).
With these notations we have
_ BUF1=0IF] 378)
2
Let us consider first the case det(1 — F) > 0.

Using that J has the spectrum =i, we get det(1 + G, +iJ (1 — G,)) = 4"e™™!
and1 — Kg, =1.

Let us remark that det(1 — Kr)~! =det(1 — F)~"!det(l — F +iJ(1 + F)).
Let us introduce A(E, M) =det(1 — E + M(1 + E)) for E € Sp(2n) and M €
sp,(2n, C). Let consider the closed path C in Sp(2n) defined by adding {G;}o</<1
and {F]}o<s<1. We denote by 27¥ the variation of the argument for A(e, M)
along C. Then we get easily

B(F)=0[F]+2nv+nr, neZ (3.79)

When det(1 — F) < 0, by an explicit computation, we find arg , [det(1 — Kg,)] = 0.
So we can conclude as above.

The formula for the contravariant symbol can be easily deduced from the covari-
ant formula using a symplectic Fourier transform. O
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JS

’

Remark 13 When the quadratic Hamiltonian H is time independent then F, =€’
S is a symmetric matrix. So if det(e’/S + 1) # 0, then we get applying (3.71),

t -1/2 t
det[cosh<5J5>i| exp(ia(tanh(EJS)X-X>) (3.80)

This formula was obtained in [118]. In particular the Mehler formula for the Har-
monic oscillator is obtained with § = 1.

In [61] the author discuss the Maslov index related with the metaplectic repre-
sentation.

R(etJS, X) Zeiﬂv

Remark 14 In the paper [52] the authors give a different method to compute the con-
travariant Weyl symbol R(F, X) inspired by [76]. They consider a smooth family
F; of linear symplectic transformations associated with a family of time-dependent
quadratic Hamiltonians H;. After quantization we have a quantum propagator ﬁ,
with its contravariant Weyl symbol U,” (X). We make the ansatz U, (X) = o e X MiX
where o, is a complex number, M, is a symmetric matrix. Using the Schrédinger
equation 9;U}” = H; ® U}, and the Moyal product, we find for M; a Riccati equa-
tion which is solved with the classical motion. Afterwards, «; is found by solving a
Liouville equation hence we recover the previous results (see [52] for details).
This approach will be adapted later in this book in the fermionic setting.

3.6 Traps

We now give an application in physics of our computations concerning quadratic
Hamiltonians.

The quantum motion of an ion in a quadrupolar radio-frequency trap is solved
exactly in terms of the classical trajectories. It is proven that the quantum stability
regions coincide with the stability regions of the associated Mathieu equation. By
quantum stability we mean that the quantum evolution over one period (the so-
called Floquet operator) has only pure-point spectrum. Thus the quantum motion
is “trapped” in a suitable sense. We exhibit the set of eigenstates of the Floquet
operator.

3.6.1 The Classical Motion

Let us consider a three-dimensional Hamiltonian of the following form:

H(@) = p_2 + < <12 - l(x2 + y2)> (Vi = Vocos(wr)) (3.81)
2m 2 2

Ty

Here p = (px, py, p;) is the three-dimensional momentum, m the mass of the ion,
and r = (x, y, z) is the three-dimensional position. rg is the size of the trap and e
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the charge of the electron. V| (resp. Vp) is the constant (resp. alternating) voltage.
Such time-periodic Hamiltonians are realized by using traps that are hyperboloids of
revolution along the z-axis that are submitted to a direct current plus an alternating
current voltage. Also known as Paul traps they allow to confine isolated ions like
cesium for rather long times, and also a few ions together in the same trap.

It is obvious to see that this Hamiltonian is purely quadratic and that it decouples
into three one-dimensional Hamiltonians:

Ht)=h,(H)Q1®1+10h,()®1+1Q1L® h (1)

where I, () = hy (1) = m — —(a — Beos(wt)), h (1) = 3= L 22(a — Bcos(wt))
with o = 2V1 ,3— —ZV()

Thus x(t) y(1), z(t) evolve according to the Mathieu equations:

¥(t) —x(1)(a/m — cos(wt)B/m) =0, 2(1) +z(1) (20 /m — cos(wt)2B/m) =

(3.82)
It is known that each of these equations have stability regions parametrized by
(a, B, w), in which the motion remains bounded. Furthermore it can be shown that
it is quasiperiodic with Floquet exponent p. See [142].

Theorem 19 There exist p, p’ € R and rapidly converging sequences ¢, c, € R
depending on a = 4a/mw?, b = 2B/mw? such that the solution of (3.82) with
x(0)=u, x(t) =v/m, z(0) =u’, 2(0) =v'/m are given by

(t,u,v) ”+§mj @n+p) ) + in(2n+0) 2
x(t,u,v) ==Y c,cos| 2n — sin| (2n —
¢ & ) )
/ —+00 12 “+o00
u wt 2v . wt
z2(t,u' V) = > ;oo ch cos<(2n + ,o/)7> + T ;oo c sm((Zn + ,0/)?)

wherec =), cn,d =) ;(2n+ p)cy, and similarly for ¢’, d’. Note that the Floquet
exponent p is the same for x, y but p’ # p.

The proof depends heavily on the linearity of Mathieu’s equations. Note that the
stability regions are delimited by the curves C; for which (3.82) has periodic solu-
tions, i.e. for which p = j € N. For given «, 8, there exists wi, w; € R such that
for any w €]wi, wa[ the classical equations of motion (3.82) have stable solutions.
w1 has to be large enough hence the name “radio-frequency traps”.

3.7 The Quantum Evolution

Since ions are actually quantum objects it is relevant to consider now the quantum
problem. As known from the general considerations of this Chapter on quadratic
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Hamiltonians the quantum evolution for Hamiltonians of the form (3.81) is com-
pletely determined by the quantum motion. The Hilbert space of quantum states is
H = L*(R?). One thus finds that the time-periodic Hamiltonian

o~

72 242
H(1t) ::—%A—i—(a—ﬂcos(a)t))(zz— 2 )

where A is the 3-dimensional Laplacian and generates an unitary operator U (t,s)
that evolves a quantum state from time s to time ¢. The Floquet operator is the
operator on time evolution over one period 7' = 27 /w:

U(T.0) = U (T,0)Uy(T,0)U.(T,0)
We shall denote by ﬁF (resp. ﬁ/F) the operator [/]\X(T, 0) (resp. ﬁZ(T, 0)). Then one
has the following results:

Theorem 20

(i) Given a, B € R there exists wy, w2 € RT as in the previous section such that for
any € H and any € > 0 there exists R € R™ such that

SLtlp||F(|r| > R)ﬁ(t,s)l/f” <€

F(|r| > R) being the characteristic function of the exterior of the ball |r| < R.

(i) For «, B, w as above, l?F has pure-point spectrum of the form {exp(—ipm (k +
1/2))}ken where p is as in the preceding section the classical Floquet exponent.
Similarly for ﬁl’p

Remark 15 A complete proof can be seen in [47].
(1) says that the time evolution of any quantum state remains essentially localized
along the quantum evolution.

Proof To prove (i) it is enough to state the result in one dimension, and to as-
sume m = h = 1. We establish the result for y» € C;° which is a dense set.
Let W(—2x,&,t) be the Wigner function of the state {(¢) := ﬁ(l,O)l//. Then
W(x,. 1) € L\(R), V¢ € R, Vx € R. Furthermore we have

(%
T2
It follows that

I7(x1> Ryl = |

[x|>2

2

=/d$ Wx,§,1)

dx d& W(x,é,t):/ dxdg W(x(1),%(1),0)
R |x|>2R

where x(¢) is a solution of (3.82) with x(0) = x, x(0) = &. Then we perform a
change of variables with uniform (in 7) Jacobian, the linearity of Mathieu’s equation
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and the boundedness in time of its solution in the stable region, together with the
fact that W (x, &, 1) € L' (R?) to conclude. O

An extension of Theorem 20 to Hermite-like wavefunctions is the following:
define
Ly

/2 i N, x2
CDk(t,X):(Lz)_l/z(L_t) Hk(x/\/ﬁ|Lt|) exp<l2htzt )

where Hj are the normalized Hermite polynomials and the determination of the
square-root is followed by continuity from r = 0. We have

Ut,00P(0,.) = Di(t,.), VteR

This can be proven by using the Trotter product formula, a steplike approximation
fn (@) of the function f () = o — B cos(wt) and the continuity of solutions of (3.82)
when fy — f. See [47] and [99, 100] for details.

The normalized eigenstates of Ur are generalized squeezed states. Let us assume
m = 1 for simplicity. Let F(¢) be the symplectic 2 x 2 matrix solution of

F=JMF

1 0
M) = (0 f(t))

ro=(8 3)

We choose suitable initial data F(0) = (g g(_), ) with

wd —1/2
=(3)

We define L; = A; +iB;, N; = C; + i D;. For these initial data, we have

where

f({t) =a — Bcos(wt)

g +00 1 ~+00

L, = _elpwt/Z § Cnelna)t’ N, = _ezpwt/Z § :Cnemwt

c gd
-0 —00

It is clear that |L,|, Z—: are T -periodic where T = 27 /w, and furthermore

_ . L5\ k/2
ez(k+1/2)pTr(Lt)—l/2(_t>
L,
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is also T -periodic. Then we introduce the self-adjoint quasi-energy operator
K iy 0 + hy(2)
= —Il1N—
ar
acting in the Hilbert space

K=L*R)®L*T,)

of functions depending on both x and ¢, T-periodic in ¢. This formalism has been
introduced by Howland [119] and Yajima [204]. K is closely related to the quantum
evolution operator. We have the following result:

Lemma 26

(1) Assume ¥ € K is an eigenstate of K with eigenvalue A. Then for any t € T,
W (t,.) € LX(R) and satisfies

Ut +T, 0¥ @) =e /")
(ii) Conversely let € L*(R) satisfy
U(T, 0y = e~ TNy
Then ¥ = e */AT 1,00y € K and satisfies
KV =\¥
Proof Define

lpk(t, X) — e(k+1/2)pa)l/2(pk(x)

Then using the periodicity properties we have ¥ € K and

~ 1
U(T,0)9,(0,.) = exp(—inp <k + 5>>®k(0, )
and thus

1\ hpw
Ko, =k+ = )| —
k (+2) > Yk g



Chapter 4
The Semiclassical Evolution of Gaussian
Coherent States

Abstract In this Chapter we consider semiclassical asymptotics of the quantum
evolution of coherent states at any order in the Planck constant. We consider a con-
trol in time of the remainder term depending explicitly on & and on the stability
matrix. We find that the quantum evolved coherent state is in L?-norm well approx-
imated by a squeezed state located around the phase-space point z; of the classical
flow reached at time 7, with a dispersion controlled by the stability matrix at point z;.
The idea goes back to Hepp (Commun. Math. Phys. 35:265-277, 1974) and was
further developed by G. Hagedorn (Ann. Phys. 135:58-70, 1981; Ann. Inst. Henri
Poincaré 42:363-374, 1985). The method that we develop here follows the paper
(Combescure and Robert in Asymptot. Anal. 14:377-404, 1997) where we consider
general time-dependent Hamiltonians and use the squeezed states formalism and the
metaplectic transformation (see Chap. 3). The difference between the exact and the
semiclassical evolution is estimated in time ¢ and in the semiclassical parameter i
giving in particular the well known Ehrenfest time of order log(A~!).

We then provide two applications of the semiclassical estimates: the first one con-
cerns the semiclassical estimate of the spreading of quantum wave packets which
are coherent states in terms of the Lyapunov exponents of the classical flow. The sec-
ond application is to the scattering theory for general short range interactions: then
the large time asymptotics can be controlled and the quantum scattering operator
acts on coherent states following the classical scattering theory with good estimates
in A. More accurate estimates can be obtained using the Fourier—Bargmann trans-
form (Robert in Partial Differential Equations and Applications, 2007). We consider
Gevrey type estimates for the semiclassical coefficients and h-exponentially small
remainder estimates in Sobolev norms for solutions of time-dependent Schrédinger
equations.

4.1 General Results and Assumptions

We shall consider the quantum Hamiltonian H(r) of a possibly time-dependent
problem. We assume that the corresponding time-dependent Schrodinger equation
defines a unique quantum unitary propagator U (¢, s). Then we consider the canoni-
cal Gaussian coherent states ¢, where z = (g, p) € R*" is a phase-space point. Then
we let it evolve with the quantum propagator that is we consider the quantum state

M. Combescure, D. Robert, Coherent States and Applications in Mathematical Physics, 87
Theoretical and Mathematical Physics,
DOI 10.1007/978-94-007-0196-0_4, © Springer Science+Business Media B.V. 2012
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at time ¢ defined by
(1) :=U(t,0)¢;

Semiclassically (when A is small) ¥ (z, ¢, h) is well approximated in L?-norm by
a superposition of “squeezed states” centered around the phase-space point z; =
@ (t)z of the classical flow. This study goes back in the pioneering paper by Hepp
[113] and was later developed by G. Hagedorn in a series of papers [99, 100]. In
[49] an approach is developed connecting the semiclassical propagation of coherent
states to the so-called squeezed states. We develop here a generalization of these
results, following the paper [51], allowing general time-dependent Hamiltonians
and estimating the error term with respect to time ¢, to z and to A.

The knowledge of the time evolution for any Gaussian ¢, is a way to get many
properties for the full propagator U (¢, 0) (we can always assume that the initial time
is 0). This is easy to understand using that the family {¢., z € R*"} is overcomplete
(Chap. 1). Let us denote by K;(x,y) the Schwartz-distribution kernel of U (¢, 0).
From overcompleteness we get the following formula:

Kitx.) = Qe ™ [ deU@.00]00p0) (.1)

R

This equality holds as Schwartz distributions on R?* and explains why it is very
useful to solve the Schrodinger equation with coherent state ¢, as initial state:

iho W, (1) = HOW. (1), ¥:(0)=¢, (4.2)

Several applications will be given later as well for time-dependent and time-
independent Schrodinger equations type.

4.1.1 Assumptions and Notations

Let H (1) be a self-adjoint Schrodinger Hamiltonian in L?(R™) obtained by quan-
tizing a general time-dependent symbol H (x, &, t) called classical Hamiltonian. We
use the i- Weyl quantization (see Chap. 2). H is assumed to be a C°°-smooth func-
tionforx e R", £ e R",r €]-T,T[0 < T <400 satisfying a global estimate:

(A.0) There exist some nonnegative constants m, M, K g 7 such that

)M a0} Hx. £,0)| < K.

(141 + 151
uniformly in (x, &) € R*,t €]-T, T[ for |y| + |y’| = m. So H may be a
very general Hamiltonian including time-dependent magnetic fields or non
Euclidean metrics. We furthermore assume H (x, &, t) to be such that the clas-
sical and quantum evolutions exist from time 0 to time # for ¢ in some interval
]-T,T[ where T < 400 or T = 400. More precisely:
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(A.1) Given some z = (qo, po) € R?" there exists a positive T such that the Hamil-
ton equations

. O0H ) oH

4 =——r, pi, 1), pr=———(qr, pr,1)

ap dgq
have a unique solution for any ¢ € |—T, T[ starting from initial data z :=
(g0, po). We denote z; = (q;, p:) := D (t)z the phase-space point reached at
time ¢ starting by z at time 0.

(A.2) There exists a unique quantum propagator U (z, s), (¢, s) € R? with the fol-
lowing properties:

(1) U(t,s) is unitary in L2(R") with

Ult,s)=U(t,nU(r,s), Y(r,s,1)eR’
(i) U(.,.) is a strongly continuous operator-valued function for the operator
norm topology in L2(R™). The usual norm in L2(R") is denoted by |1l
(iii) Let
2
Bk) = {u eL*(R"): > |xPodu|” = lulpy < oo}
lor|+1Bl<k

and let B(—k) be the standard dual space of B(k).

Then we assume that there exists some k € N such that for any ¥ € L?(R") and any
s €[-T, T U(t,s)y¥ is B(—k)-valued absolutely continuous in ¢ and satisfies the
time-dependent Schrédinger equation

ih%U(r, )y =H@OU @, )y

in B(—k) at almost every t € |-T, T[.
If H is independent on time ¢ satisfying (A.0), (A.1) is satisfied if the trajectory
is on a compact energy level: H(g,, p;) = E with H~'(E) bounded in RZ X R’;}

and (A.2) is satisfied if H is self-adjoint. But if H depends on time 7, no general
conditions are known that ensure properties (A.1), (A.2) to be true. However, we
shall indicate in the usual Schrédinger case with time-dependent potentials or in the
Schrodinger case with time-dependent electric and magnetic fields some general
technical conditions provided by Yajima [202, 205] such that (A.2) holds true for
k=2:

(1) Let H(x,&,t) =32+ V(t,x), Ir:=[-T,T]and

V eC(Ir, LP>(R")) +C(Ir, L*(R")), 88_‘1‘/ e LPY*1 (I7) + L>F (I7)

where 8 > 1, pp = Max(p, 2), p1 =2np/(n+4p)ifn>5, p1 >2p(p+ 1) if
p=4and p1 =2p/(p+1)ifn <3,a; >4p/(4p —n) and

p/m
mel’(l):{u:/ dt[/ dx‘u(t,x)|mj| <oo]
I n
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(Note that V (¢, x) can be less regular in the time variable if it is more regular in
the space variables.) Then property (A.2) is satisfied for s, t € IT x I7 and for
any quantization of H ().

(2) Let H(x,&,t) = %(é — A(t,x))* + V(t,x) where V(t,x) and A(t,x) =
{Aj(t,x)}j=1,..,n are the electric and magnetic vector potentials. If B(z, x) is
the strength tensor of the magnetic field i.e. the skew-symmetric matrix

_0Ar DA
k= 0x; 0Xy
we assume the following:
i Aj: R™*! — R is such that for any multiindex «, YA is Clin (t,x) €
Rn+l.
(i) There exists € > 0 such that

09B(, )| < Ca(1+1x)) 775, ol =1
09 A(t, x)| + 928, A(t, x)| < Co, el > 1, (£, x) e R"H!

(iii) V :R"*! — R belongs to LP*(R)+ L>®(R) for some p > n/2 with p > 1
anda =2p/(2p —n).

In Chap. 1 we have described the construction of standard coherent states by
applying the Weyl-Heisenberg operator to the ground state ¥ of the n-dimensional
harmonic oscillator with Hamiltonian

1, &
Ko:==(P?+Q?
0 2( +0?) 43)

9. = T(2)%

In Chap. 3 we have computed an explicit formula for the time evolution of coherent
states driven by any quadratic Hamiltonian in (g, p).

We shall now define generalized coherent states by applying T(z) to the ex-
cited states ¥, of the n-dimensional harmonic oscillator; given a multiindex v =
V1, ..., vy), ¥, is the normalized eigenstate of (4.3) with eigenvalue |v| +n/2. We
recall the notation

n
i=>"v
j=1

‘We thus define
lI/Z(V) = 7A—‘(Z)lljv

and @, is simply IIIZ(O).
Similarly we define generalized squeezed states CDZ(VI); centered around the phase-
space point z. Let W be a symmetric n X n matrix with polar decomposition W =

U|W| where |W| = (W* W)/2 and U a unitary n x n matrix. We assume that
W*W <1
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and define
B := U Argtanh|W| 4.4)

Now as in Chap. 3 we construct the unitary operator ﬁ(B) in L2(R") as
A 1 * * *
D(B) =exp E(a -Ba* —a- B*a)

a* and a being the creation and annihilation operators. We define
o) :=T()D(B)Y,
Of course we have
o) (v) ¢<B)
where /(B is the standard squeezed state, using the notations of Chap. 2 and
o) =g

using the notation of Chap. 1.

4.1.2 The Semiclassical Evolution of Generalized Coherent States

In this section we consider the quantum evolution of superpositions of generalized
coherent states of the form lI/z(”) and prove under the above assumptions that, up to
an error term which can be controlled in ¢, z, A, it is close in L*-norm to a super-
position of squeezed states of the form d>(t where z; := @ (¢)z is the phase-space
point reached at time ¢ by the classical ﬁow @(t) of H(t), and B, is well-defined
through the linear stability problem at point z;. We follow the approach developed
in [51] where we use:

— the algebra of the generators of coherent and squeezed states
— the so-called Duhamel principle, which is nothing but the following identity:

1 [ N A
Ui(t,s) = Us(t,s) = E[ dt Ui(t, ‘E)(Hl(‘l,') - Hz(r))Ug(r, s) 4.5)

where Uj(t,s) is the quantum propagator generated by the time-dependent
Hamiltonian H (t),i=1,2. We take H1 (1) = H(t) and Hg(t) to be the “Tay-
lor expansion up to order 2” of H (¢) around the classical path z;. More precisely:

A A oH A oH
Hy(t) = H(qy, pr, 1) + (Q - Qt) : S_(qt’ pr, 1)+ (P - Pt) : 5(%» pi> 1)

1,4 N
+§(Q—Qt»P—Pt) <}Q) Zi) (4.6)
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M; being the Hessian of H (t) computed at point z; = (g;, p;):

u 3*H

t — 8Z2
The interesting point is that since H>(t) is at most quadratic, its quantum propa-
gator is written uniquely through the generators of coherent and squeezed states. In
Chap. 3 we have shown the link between the quantum propagator of purely quadratic
Hamiltonians and the metaplectic transformations. It is shown that the quantum
propagator of purely quadratic Hamiltonians can be decomposed into a quantum

rotation times a squeezing generator. Let us be more explicit: Let Hg () be a purely
quadratic quantum Hamiltonian of the form

4.7)

=7t

ﬁga)=(é,ﬁ)so>(§)

with S(z) a 2n x 2n symmetric matrix of the form

_ (G L
“”‘(u K)
where G;, K; are symmetric and L denotes the transpose of L. In what follows S(r)

will be simply M;. Let F(¢) be the symplectic matrix solution of

F(t)=JM,F(t) (4.8)

0 1
7=(% )
It has the four-block decomposition
_(A® B@®
Foy= (C(t) D(t))

In Chap. 3 it has been established that the quantum propagator U, (t, 0) of H o(t)

is nothing but the metaplectic operator R(F(1)) associated to the symplectic ma-
trix F(¢). It implies that the Heisenberngbservables Q(t), P(t) obey the classical
Newton equations for the Hamiltonian H (¢) as expected. Therefore we have

with initial data Fy = 1, where

Lemma 27

N

U, (0,1) (g) U, (t,0) = F (1) <g>

Passing from the (Q, P) representation to the (a*, a) representation we easily
get
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-1 a* _1 Y[ Z[ a*
car ot 1))

Furthermore one can show that Ii’(F (t)) decomposes into a product of a rotation
part and a “squeezing” part. Defining the complex matrices:

Lemma 28

Y, =A@)+iB(t) —i(C(t) +iD({)), Zi =A@ +iB@1)+i(C{t)+iD(1))
4.9)
we have the following identity:

Z*Z=Y'Y —41
and Y, is invertible. The matrix W, = Z,¥,”! is such that
W'W, <1, Wo=0

Furthermore it has been shown in Chap. 3 (Lemmas 21 and 23) that it is a symmetric
matrix. Thus one can define the matrix B; according to (4.4); note that B, is not to be
confused with the matrix B(t) of the four-block decomposition of F' (). Introducing
the polar decomposition of Y;:

Y, = Y|V
where
YP?=YY*

we see that V; is a smooth function of  and we can define (at least locally in time)
a smooth self-adjoint matrix I; by

V, =exp(il})

Let Ii’(t) be the following unitary operator in L2(R™) (metaplectic transformation):

R :exp{%(a*»a) (19[ 18) <i>}

It has the following property:

R(®) (1) Ry~ = ((\‘2?3)

Remark 16 R(t) will be the rotation part of the metaplectic transformation U, (¢, 0)

Lemma 29

while D(B,) will be the squeezing part.
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One has the following property:

Proposition 38 The quantum propagator solving the time-dependent Schriodinger
equation

ih%Uq(t, s)=Ho()U,(t,s), U(s,s)=1
is given by
U,(t,s) = D(B)R(t)R(s) "' D(—By)
Due to the chain rule it is enough to show that
U,(t,0) = D(B)R(1)

The detailed proof can be found in the paper [51].

Now we can derive an explicit formula for the quantum propagator of H ().
Let S;(z) be the classical action along the trajectory for the classical Hamilto-
nian H(x,§,t) starting at phase-space point z = (g, p) at time 0 and reaching
zr = (g, pr) at time t:

t
Si(2) = /O ds[is - & — H(xy. £, 5)]

and define
8 = S;(z) — 9Pt —9q9-pP
2
The following result holds true:

Proposition 39 Ler Us(z, s) be the quantum propagator for the Hamiltonian H(t)
given by (4.6). Then we have

Ua(t,s) = exp[i (8 — 8,)/h]T (z) D(BYR(R(s) ' D(—=B)T(~z5)  (4.10)

Proof Here we use the notation z := 442

h
Using the Baker—Campbell-Hausdorff formula (and omitting the index ¢ in the
following formulas) we get

LT =1@]at—zat o)
di Z) = Z)|Zz-a Z-a ZZ‘Z -2

But

1, . . i . . U | .
Q(Z'Z—Z'Z)—ﬁ(p-q—q-p), and zB—t[S—E(p-qﬂv-q)]
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so that taking the derivative of (4.10) with respect to time ¢t we get

N1 NI PR DR
i 5 = 2(p-q P-q) 2(p-q q-p)
+£]-(13—]9)—ﬁ'(Q—CI):|U2+f(Zt)Hq(t)f(—Zz)U2
Ni-p=s+i-(-n-5-2-9)
s 0-
#5300 —pu(370)]us
= H (1)U 4.11)
where we have used that § - p — S = H(q, p, 1). O

The important fact here will be that U, propagates coherent states into Weyl
translated squeezed states so that using (4.5) we get a comparison between the
quantum evolution of coherent states and the Weyl-displaced squeezed state cen-
tered around the phase-space point z;. Consider as an initial state a coherent state

CDZ(O(; = T(z)lllo. We get
Un(t, 000 ) = /" (z)) D(B) R (1) Wy = /M
using the fact that

N 1
R(t)Wy =exp(iy;)¥y, where y; = Etr(l“t)

Therefore applying Duhamel’s formula (4.5) to »© 2.0 We get

2, By Zs,Bs

(4.12)

This will be the starting point of our semiclassical estimate. Taking an arbitrary
multiindex u = (uy, ..., Ly) We denote

L[ 5 L
U, 009 —elC:/m1 g © :E/ dsU(t,)[H(s) — Ha(s)]e &/ M7 ©
0

@,(1) :=T(z)D(B)R(1)¥,

Starting from (4.12) we deduce that for any integer / > 1 there exist indexed func-
tions ¢, (¢, k) such that

3(1-1)
U, 00@0(0) = D cult, )@y (n)e!™/"
|v|=0

< C,h? (4.13)
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Furthermore the constant C; can be controlled in the time ¢ and in the center z of
the initial state. Let us now explicit the Taylor expansion of the Hamiltonian around
the classical phase-space point at time ¢ z;: we denote

2n

(S

v!

] b

o v=(V1,...,2)
Uj! agj]

1

for f being a real function of ¢ € R?".
Taking for ¢ the phase-space point z we can write the Taylor expansion of
H(q, p,t) around the phase-space point z; = (g;, p;) at time ¢ as

I+1
HW ,
HEn=). # ¢ —z)"
[v]=0 ’
v) -
" Z f H (Zt+9(f' Zt) t) ({ _Zt)v(l _9)l+l do
[v|=i+2 )!
HY)(z,
_y HYED e S Gzt @)
V=0 v! [v|=l+2

Now we perform the h-quantization of (4.6) denoting £2 := (0, P); we get

A A 1 1)
Hi -0 =) — 5= (@-z)"+ ) R (&1
[v|=3 ’ [v|=I+2

where
Ry(t) = T(=z)O0pp[¢" - rv. (O]T (z)

We now insert (4.15) into (4.12) and obtain the semiclassical estimate of order /%
for the propagation of generalized coherent states, using in particular the Calderon—
Vaillancourt estimate (Chap. 2). Let us introduce some notation: we consider only
nonnegative time and define

o(z,t) == sup (1 + |zt|)

0<s<t

0(z,t) = sup [tr(F*(s)F(s))]

0<s<t

1/2

where F(t) is the symplectic matrix solution of (4.8). Let M be any fixed integer
not smaller than (M + (m — 2)1)/2. Let us define

pat = n™M Y (Itl) (V02,105

1<j<l
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(we recall that the constants M, m, Ky 7 were defined in Assumption (A.0)). Note
that if (A.0) is satisfied with m =2 and M = 0 (H (¢) is said to be subquadratic) then
we have M| = 0. The result will be a generalization of (4.13) using as initial state
a superposition of generalized coherent states (defined with higher order Hermite
functions).

Theorem 21 Assume H(x,&,t) and z be such that (A.0)—(A.2) are satisfied. Then
for any integers | > 1, J > 1 and any real number k > 0 there exists a universal
constant I' > 0 such that for every family of complex numbers {c,,, p € N", |u| < J}
there exist ¢, (t, h) forv e N, |v| <3( — 1)+ J, such that for 0 < h+ VIOt <k
the following L*-estimate holds:

J ) J+3(1-1)
U(z,O)(Z cjcpz({g)—e“”/h > cut. D)

1/1=0 ln1=0

12
SFKH,T,OZ(Z,h,t)< Z IC;LIZ) (4.16)

0<|ul=sd
Moreover the coefficients c,(t, h) can be computed by the following formula:

cu(t,h) —cy

= Y > > h<’<l+"'+’<p>/2—pa,,,ﬂ,u(t)>cv (4.17)

vi<J  1=<p=<l—1 “kj+-+kp<2p+i—1
|[n—v|<31-3 ki>3

where the entries ap ., (t) are given by the evolution of the classical system and are
universal polynomials in HY)(z,,t) for |y| <1+ 2 satisfying ap,u,v(0)=0.

Remark 17 (Comments on the error estimate and the Ehrenfest time) The error term
seems accurate but not very explicit in our general setting. Let us assume for sim-
plicity that T = 400 and that the classical trajectory z; is bounded and unstable
with a Lyapunov exponent A > 0. So there exists some constant C > 0 such that

0(z,1) <Ce, Vi>0.

Then for every ¢ > 0 there exist C, and h, > 0 such that

0<t< -3¢ log<l> = pez, ht) < C.h* (4.18)
- 6A h -

for 0 < i < h.. So roughly speaking we can say that the semiclassical expansion

(4.16) is still valid for times smaller than the Ehrenfest time T := & log(#). When

the classical trajectory is stable (6(z, ) < C(1+ |t]), YVt € R) then (4.16) is valid for

much longer time interval: 0 <t < C, h’%’g.
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Fig. 4.1 Time evolution of p
a coherent state

semiclassical
wavepackets
attimest,t'

wavepacket

Remark 18 Let us denote @ (z, x) = eid/h Zuﬁg_l)cﬂ(z‘, h)®,(t, x) and as-
sume for simplicity that v (0) = ¢, and denote V. (r) = U(z, 0)g,. ¥ (t,x) is
clearly localized very close to the point z; of the classical path. Moreover the shape
of Y@ (z, x) is close to a Gaussian shape with center at z, and with a complex co-
variance matrix /; depending on the stability matrix of the classical system. This

shape evolves with time (see Fig. 4.1). It is exponentially small outside any ball
{lx—q:] < h% ~¢}, for any ¢ and its /i-Fourier transform 1}2 (¢, &) exponentially small

outside any ball {|€ — p;| < h%_g}. From (4.16) we get easily for the exact evolved
state Y, (¢) the following probability estimates to be true outside of a narrow tube
around the classical path:

f | ‘dx|wz(t,x)|2+/ lﬁd.f;|1ﬁz(t,g)|2=0(h+<>°) (4.19)
\ |6 —pi|=h2

x—q;|>h2"°

Proof We only give here the strategy of the proof. For the technical details we refer
the reader to [51] or to [164] for a different approach. The idea of the proof is to
use repeatedly the Duhamel Formula to yield a Dyson series expansion of U (t, 0) —
U, (t,0) and to use (4.15) to calculate H (t) — 1:12 (). One thus has for every integer
p>1

U(t,0) — Us(t,0)
. t t t n n
= Z (ih)—f/ dtlf dt2-~-/ dtj_1 Ua(t, 1)) (H (t;) — Ha(t)))
1=j=p 0 n e
x Up(tj, tj—1)(H (tj—1) — Ha(tj-1))
x Up(tj—1,tj-2)--- ([:](fl) - 1:12(11))U2(l1»0)

t t t
@ [Can [ [t () - o)
1 tp

X Un(tps1,1p) (H(tp) — Ha(tp))Ua(tp, tp—1) --- (H(t1) — Ha(11))Ua (11, 0)
(4.20)
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We shall apply this formula with p =1 — 1. It is convenient to introduce the follow-
ing notation:

I(ty,...,t5; Br, ..., Bj) = U2(0,t) BjUs(tj, tj—1) - - - Ua(ta2, t1) B1 U (21, 0)

where By = Opj by are quantum observables. By the chain rule we have

M,....t5;Bi,....B) =[] U200,0)BUs(t,0)
1<k<j

where the product is ordered from the right to the left. Denoting

. HW(z,,
A=Y P -z

!
[vl=k

we see that [T(t, ..., 1p; PAIkl, e PAIkp) is a homogeneous non-commutative poly-

nomial in Q, P of degree k1 + - - - + kj, using Lemma 27. Therefore the last integral
in (4.20) will yield the error term in the theorem. For the detailed proof we refer the
reader to [51]. O

A more general result is obtained by taking as initial state a coherent state with
arbitrary profile (see Chap. 1, Sect. 1.1.2): let f € S(R") to be the profile of a state.
Define

(Anf)(x) = h—"/“f(i 4.21)

Jﬁ)
Then for any z € R?" we construct a coherent state centered at z by
fo=T@ARS

One has the following result:

Theorem 22 There exists a family of differential operators with time-dependent
coefficients,

pk](-va,th)a JZla kZ3

depending only on the Hamiltonian along the classical path z;, 0 < s <,
Pjk(x,&,t) being a polynomial in (x,&) of degree < k such that for any real num-
ber k > 0 and any integer | > 1 and any f € S(R") there exists I' > 0 such that the
following L*-norm estimate holds:

U@ 0T @) Anf — Ua(t,0)ApPi(f t. )| < T Knspi(z.t, ) (4.22)
where Pi(.,t, h) is the (h, t)-dependent differential operator defined by

P(fithy=f+ Y WP pj Danf
(k, el

withl; ={(k, ) eNxN: 1<j<i—1,k>3j, 1 <k—2j<I}.
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Moreover the polynomials pyj(x,§&,t) can be computed explicitly in terms of the
Weyl symbol of the following differential operators defined above

t 1 5]
/ dtl/ dtl_l---f dnrIi(ty, ... t;;ky, ..., k)
0 0 0

Remark 19 If we consider an h-metaplectic transformation V in L2(R") we con-
sider the following object V = Agl V Ay, (with no confusion with the notation for
the transpose of a matrix). By definition since V has a quadratic generator V is
h-independent. So we find that Ua(t, 0) A Pi(f,t, h) is actually a coherent state
centered at z; with profile D(B)R() f - More explicitly

Uz(t,oman(f,r,h)=e"5f/hf<zt>Ah< > hf/zpj@,Dx,r>D(B,>1%<t>f)
0<j=l-1

where p;(x, Dy, t) are differential operators with polynomial coefficients depend-
ing smoothly on ¢ as long as the classical flow z — z; exists.

4.1.3 Related Works and Other Results

In the physics literature the quantum propagation of coherent states has been consid-
ered by many authors, in particular by Heller [110, 111] and Littlejohn [138]. In the
mathematical literature Gaussian wave packets have been introduced and studied in
many respects, particularly under the name “Gaussian beams” (see [8, 159, 160]).
Somewhat related to the subject of this Chapter is the study by Paul and Uribe
[152, 153] of the h-asymptotics of the inner products of the eigenfunctions of a
Schrodinger type Hamiltonian with a coherent state and of “semiclassical trace for-
mulas” (see Chap. 5). However, their approach differs from the one presented here
by the use of Fourier-integral operators, which were introduced in connection with
wave packets propagation in the classical paper by Cordoba and Fefferman [54].

4.2 Application to the Spreading of Quantum Wave Packets

In this section we give an application of the estimate of the preceding section to
the spreading (in phase space) of a quantum wave packet which is, at time 0, local-
ized in the neighborhood of a fixed point of the corresponding classical motion. Let
z=1(q, p) be such a fixed point and take as an initial quantum state the coherent
state ¢.. The quantum state at time ¢ is

V() =U(r,0)¢;

We have seen that we can approximate ¥ () by a Gaussian wavepacket again local-
ized around z; = z but with a spreading governed by the stability matrix My of the
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corresponding classical motion (given by (4.7)). A way of measuring the spreading
of wave packets around the point z in phase space is to compute

S(n) = <f(—z)w), > (afa; +a,-a;f)f<—z)w>>
j=1
= |af ()¢ )| + |a* T (¥ o) | (4.23)

The intuition behind this definition is the following. Let W, ; be the Wigner function
of the states ¥ (¢). According to the properties seen in Chap. 2, 2nwh) "W, ;(X) is
a quasi-probability on the phase space R*" x and we have

Qrh)™" /dX W, (X)AX) = (W (1), AW (1)).

Applying this relation to A= f"(z) (@a*-a+a- a*)’i‘(—z) which has the Weyl-
symbol A(g, p) =1q — x|2 +|p—£ |2, we see that S(¢) is the variance of the quasi-
probability 2w h) ™" W, ;(X).

Let us notice that S(¢) is well defined if the estimate (4.13) holds in the Sobolev
space X (2) and with some more assumption on the quantum evolution U (¢, 0) one
can get the estimate (4.13) in X¥»>-norm as we shall see now. More refined estimates
in other Sobolev norms will be given in the last section of this chapter.

Let us consider some symbol g satisfying assumption (A.0) with m = 0, such that
Opy}, (g) is invertible in the Schwartz space S(IR"). Let us assume that the following
L?-operator norm estimate holds:

-1

|OpysU . 0)[Opjg] ™ || < Cug

Then an estimate analogous to (4.13) holds true:
0Py e[U(t. 0T ) A f — Ua(t.0) ApPi(f.t. )] < CrgT K pr(z. 1. h)
Obviously S(0) = n and we are interested in the difference
AS(t) :=S(@) — S(0)
Let us first calculate
n
T(t):= <T(—z)<1>(t), Z(a;‘aj + aja;f)T(—z)qﬁ(t)>
j=1
where @ () is the approximant of ¥ (¢) given by
& (t) =&/ (2)Up(1) ¥

Then

1
T()=n -|-2||21U0(t)l1/o||2 =n-+ Etr(Z;‘Zt)
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where Z; is defined by (4.9) and we use Lemma 28. Therefore
1 k
T@)—T(0)= 5tr(z, Z)

We show now that this is the dominant behavior of AS(#) up to small correction
terms that we can estimate.

Let us assume that the classical flow at phase-space point z has finite Lyapunov
exponents, with a greatest Lyapunov exponent A € R (for notions concerning the sta-
bility and Lyapunov exponents for ordinary differential equations we refer to [39]).
Then by definition there exists some constant C > 0 such that ||F(¢)| < Ce,
Vt >0 where C is independent of ¢. In what follows we denote by C a generic
constant independent of 7, /. Then under the above assumptions we get

o) — o)) 50 < CVhte?, V>0
We deduce the following result:
Theorem 23 Under the above assumptions we have the long time asymptotics
AS(t) = AT (t) + O () if one of the two following conditions is fulfilled:
(i) A <0 (“stable case”) and 0 <t < he—1/2
(i) A > 0 (“unstable case”) and ¢’ > ¢ such that
0<r< ((l — 28/)/6k) log(1/h)

In particular we have

Corollary 12 Let us assume that the Hamiltonian H is time independent and that
the greatest Lyapunov exponent is A > 0. Then S(t) — S(0) behaves like e**' as

t — 400 and h— 0 as long as t[log(1/h)]~" stays small enough.
(1) More precisely there exists C > 0 such that

eZM
= = AT () <Ce?, Vi>0

!

AS(1) = AT (1) + O(R°), for0<t <

log 7 for some &’ > ¢

(ii) In particular for n = 1 we have a more explicit result:

4b* + (a — ¢)?

ASO =507 a0

sinh?(at) + O (If) (4.24)

ab

b C) = My is the Hessian matrix of H

under the above condition for t where (

at z.
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Proof We get (i) using that the matrix J My has at least one eigenvalue with real
part 1. To prove (4.24) we compute explicitly the exponential of the matrix ¢J M
which gives F(¢). Its eigenvalues are A = /b2 — ac and 1/X. So we get the formula

cosh(rr) + 2 sinh(rr < sinh(At
exp(tJ My) = (1) oA (5) A [E .)
— 5 sinh(At) cosh(Ar) — 3 sinh(At)
hence we have
4b* + (a —c)?
_ * _ 2
AT (t) = tr(Zt Z,) = 72(1?2 — a0 sinh”(At). 0

4.3 Evolution of Coherent States and Bargmann Transform

In Sect. 4.1 we have studied the evolution of coherent states using the generators of
coherent states and the Duhamel formula. Here we present a different approach fol-
lowing [164], working essentially on the Fourier—-Bargmann side (see Chap. 1). This
approach is useful to get estimates in several norms of Banach spaces of functions
and also to get analytic type estimates.

We keep the notations of Sect. 4.1. We revisit now the algebraic computations of
this section in a different presentation.

Recall that we want to solve the Cauchy problem

Ay (1)

ih— = = HOy @), ¥0) =g, (4.25)

where ¢, is a coherent state localized at a point z € R?". Our first step is to transform
this problem with suitable unitary transformations such that the singular perturba-
tion problem in /& becomes a regular perturbation problem.

4.3.1 Formal Computations

We rescale the evolved state i, (¢) by defining f; such that ¢, (¢) = f(zt)Ah fr.
Then f; satisfies the following equation:

ihdy fi = Ay T @) (HOT () — ihd, T (z)) An fi (4.26)

with the initial condition f;—o = g where g(x) = 7"/ 4e=3 1 we easily get the
formula

AT @)Y HOT (z0) Ap = OpY H(t, NIix + g1, VhE + py) (4.27)
Using the Taylor formula we get the formal expansion
H(t,Vhx + qi, NBE + pr) = H(t,2) + VhigH(t, z0)x + N7, H (1, 2)&

+hKy(tx, &) +h Yy RIPTIK (1 x,E) (428)
j=3
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where K;(t) is the homogeneous Taylor polynomial of degree j in X =
(x.6) eR?".

1
Kj(t;X)= ) — 0} H(t;2)X”
yl=j "~

We shall use the following notation for the remainder term of order k > 1:

Ri(t; X) = (H(t,z, +VNX) —Zhj/sz(t;X)> (4.29)

Jj<k
It is clearly a term of order #*/? from the Taylor formula. By a straightforward
computation, the new function f;* = exp(—i %’) [ satisfies the following equation:

i ff = opY[K20] f* +OpP [REO D] f*, fL,=¢ (4.30)

In the r.h.s. of (4.30) the second term is a (formal) perturbation series in V. We
change again the unknown function ft# by b(t)g such that f,# = ﬁ[F[]b(t)g. Let us
recall that the metaplectic transformation R[F] is the quantum propagator associ-
ated with the Hamiltonian K, (¢) (see Sect. 4.1). The new unknown function b(z, x)
satisfies the following differential equation which is now a regular perturbation dif-
ferential equation in the small parameter A:

i9:b(t, x)g(x) = OpY[RY (1, Fy(x, )] (b(1)g) (x)
b(0,x) =1

431

Now we can solve (4.31) semiclassically by the ansatz
b(t, x) = Z R/2bj(t, x)
j=0
Let us identify powers of !/2, denoting
K. X)=K;(1. F, (X)), XeR™

we thus get that the b (¢, x) are uniquely defined by the following induction formula
for j > 1, starting with bo(t, x) = 1,

abj(t,x)gx) = Y Op{[K[®](bi(t,)g)(x) (4.32)
k+e=j+2, £>3

bj(0,x) =0 (4.33)

Let us remark that Op'l”[Kf(t)] is a differential operator with polynomial symbols
of degree £ in (x,&). So it is not difficult to see, by induction on j, that b;(z)
is a polynomial of degree < 3 in variable x € R"” with complex time-dependent
coefficient depending on the center z of the Gaussian in the phase space. Moreover,
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coming back to the Schrodinger equation, using our construction of the b; (¢, x), we
easily get for every N >0,

ihy™ = Hoyy™ + RN (1) (4.34)
where
w;””(r)=ei5'/hf<z,>Ah1%[Fz]< > hf'/zbja)g) (4.35)
0<j=<N
and

Rév(t,x)zei‘sf/h<ﬁj/2 3 f(z,>Aﬁ1%[F,]0p¥’[Rk(r>oFt](b,-mg)) (4.36)

Jj+k=N+3
k>3

Thus, we have an algorithm to build approximate solutions wz(N) (t,x) of the
Schrodinger equation (4.25) modulo the error term R;N) (t, x). Of course the hard
mathematical work is to estimate accurately this error term.
Remark that all these computations use only existence of the classical trajectory.
We need some technical estimates concerning the Fourier—-Bargmann transform
to have a bridge between the Bargmann side and the usual configuration space. We
refer to [164] for the proofs of the following subsection.

4.3.2 Weighted Estimates and Fourier—-Bargmann Transform

We restrict here our study to properties we need later. For other interesting properties
of the Fourier—-Bargmann transform the reader can see the book [141].

Recall that in Chap. 1, Sect. 1.2.3, the Fourier—Bargmann transform F B (here
h =1) was defined as follows

FBu(X) =:vf(2) = @) ™% (g.,v), X =(q,p) eR”

Let us begin with the following formulas, easy to prove by integration by parts. With
the notations X = (¢, p) € R xeR"andu e S(R"), we have

FBxu)(X) = i<a,, - éq)}'B(u)(X) (4.37)
FB(@u)(X) = (%p - aq>f3(u>(X> (4.38)
_ (i(p — )+ %).FB(M)(X) (4.39)

Recall that e(P*+49)/4F B(u)(g, p) is holomorphic in the complex variable ¢ — ip
(see Chap. 1).
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So, let us introduce the weighted Sobolev spaces, denoted /C,,(n), m € N.

u € K,,(n) means that u € LZ(R”) and x"‘a,’? u e L2(R") for every multiindex o,
B such that |« + B| < m, with its natural norm. Then we have easily

Proposition 40 The Fourier—Bargmann transform is a linear continuous function
from K,y (n) into K., (2n) for every m € N.

Now we shall give an estimate in exponential weighted Lebesgue spaces.

Proposition 41 For every p € [1, +00), for every a > 0 and every b > a~/2 there
exists C > 0 such that for all u € S(R") we have

le™u)],, &) < ||l FBux)| (4.40)

®Y)
More generally, for every a > 0 and every b > al—‘{?‘ there exists C > 0 such that for
allu e S(R") and all S € Sp(2n) we have

[ ™[RI ey = €M FPuCO | 12 (“4-41)

We need to control the norms of Hermite functions (see Chap. 1) in some
weighted Lebesgue spaces. Let u be a C*°-smooth and positive function on R™
such that

lim p(x) =400 (4.42)
[x|—>+00
|87 ()| < 0lx|*, Vx eR™ |x| >R, (4.43)

for some R, >0and 6 < 1.

Lemma 30 For every real p € [1,+00], for every £ € N, there exists C > 0 such
that for every «, B € N™ we have

ferosea e, < cmemein(E) g

where || o ||¢.p is the norm on the Sobolev space’ WEP T is the Euler Gamma
function.?

More generally, for every real p € [1, +00], for every £ € N, there exists C > 0
such that

||eu<%<r)—'/2x>xa35 (e—mz) ||1Z
]

< Cla+Bi+1 (|5(r)1/2| + |3(r)1/2|r<@)> (4.45)

Recall that u € WP means that 0Yu € L? for every |a| < L.

2The Euler classical Gamma function I must be not confused with the covariance matrix I5.
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4.3.3 Large Time Estimates and Fourier—-Bargmann Analysis

In this section we try to control the semi-classical error term R§N) (t, x), for large
time, in the Fourier—Bargmann representation. This is also a preparation to control
the remainder of order N in A, N for analytic Hamiltonians considered in the fol-
lowing subsection.

Let us introduce the Fourier-Bargmann transform of b (¢)g,

Bj(t,X)=FB[b;(1)g](X) =(b;(1)g, gx), for X e R*".
The induction equation (4.32) becomes, for j > 1,
B, X)= / Z (OpY[K{(1)]gx, gx>) Bi(t, X')dX' (4.46)

2i
R (k—HZ— j+2

>3

with initial condition B;(0, X) =0 for j > 1 and with By(¢, X) = exp(—%).
We have seen in Sect. 4.1 that we have

(OpY[Kf(1)]gx. 8x) = (Zn)_”/

y KL, Y)Wy x/(Y)dY, (4.47)

where Wy yx/ is the Wigner function of the pair (gx’, gx). Let us now compute
the remainder term in the Fourier—-Bargmann representation. Using that F B is an
isometry we get

FBOpY[Rew) 0 Fiy] (b 118)](X)
= /Rz” B;(t, X')(OpY [Re(t) o Fr sy |gxr gx)d X’ (4.48)

where Ry (t) is given by the Taylor integral formula (4.49):

/21

Re(t,X) = 0

1
Z/ OWH (1,2 +OVRX) XY (1 —60)"1do  (4.49)
0

lyl=¢
We shall use (4.48) to estimate the remainder term RgN), using estimates (4.40) and

(4.41).
Now we shall consider long time estimates for B; (¢, X).

Lemma 31 For every j >0, every s € N, r > 1, there exists C(j, «, B) such that
for |t| < T, we have

HeM(X/4)X0!a§B/ (l, X) ”S . < C(], a, ﬁ)a([» Z)NMI |F|3T/(l + T)] (450)
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where |F|r = SUpjs|<r |Ft|. My and o (t, z) were defined in Sect. 4.1, M| depends on
assumption (A.0) on H(X,1). || ® ||s., is the norm in the Sobolev space W*" (R?")3

Proof The main idea of the proof is as follows (see [164] for details). We proceed
by induction on j. For j = 0 (4.50) results from (4.44).
Let us assume inequality proved up to j — 1. We have the induction formula

(G=D

&Bj(t,X) = Z / Ko(t, X, X")Be(t, X') d X’ (4.51)
k= j2 VB
>3
where

1
Ke(t. X, X')= )" — Y H (1, z)(Op} (FY) gx', gx), and  (4.52)

yl=e "
(Op} (FiY) g1, gx) = 2" /R L (EY) Wy x(Y)dY (4.53)

By a Fourier transform computation on Gaussian functions, we get the following
more explicit expression:

X+x\\""
— Yn—IBl
(Opllu(FtY)nghgﬂ— ZCﬂZ <Ft< > >>

B<y
x Hg <Ft (”%‘Xl)))e—lxw2/46—(i/2>a(X’,X)
(4.54)
Estimate (4.50) follows easily. 0

Now we have to estimate the remainder term. Let us compute the Fourier—
Bargmann transform of the error term:

1§§N+1>(t,X)=FB[hJ'/2 > Op'f[Rk(t)oF,](bj(t)g):|(X)

j+k N+3

- ¥ [.5 pU[Ri(t) o FiJgx gx)dX’
]‘H;{>/?\)/+3

Using estimates on the B; we get the following estimate for the error term:

3The Sobolev norm is defined here as I flls,r = (Z\a\fs fdx [FCOINDY fors eN, r>1.
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Lemma 32 For every k > 0, for every £ € N, s > 0, r > 1, there exists Cy ¢ such
that forall T and t, |t| < T, we have

< CnuMy (T I FEN B+ T)VRT (455)

S, r —

| xR RNV @, x)|

for \/ﬁ|F|T <k, |a| + 18] <L, where My ((T,z) is a continuous function of

Sup 1—o|<7 [0% H (1, 2,)].
3<|y|<N¢

Proof As above for estimation of the B (¢, X), let us consider the integral kernels

Ni(t. X. X") = (OpY[Re(1) o Fi]gx. 8x) (4.56)
We have
Ni(t, X, X') = R0/ Z f(l-e)"
52 k+1

X (f Oy H(t, 2 + eJﬁF,Y)(F,Y)V . WX/,X(Y)dY) do
RZn

(4.57)
Let us denote by Ny, the operator with the kernel Nk (¢, X, X’). Using the change
of variable Z =Y — X+TX/ and integrations by parts in X’ as above, we can es-

timate N ([B;(t, )](X). Then using the estimates on the B;(z, X) we get esti-
mate (4.55). Il

Now, it is not difficult to convert these results in the configuration space, using
(4.40). Let us define Az, (x) = ("‘hﬁ;‘ ‘;” Y2,

Theorem 24 Let us assume that (A.0) is satisfied. Then we have for the remainder
term,

0 n
RM(z,x) = ihgvf;m(r, xX)—HOyNM (@, x)

the following estimate. For every k > 0, for every £, M € N, r > 1 there exist C p ¢
and Ny such that for all T and t, |t| < T, we have

[ RO O], , = Cneh N Po @ MM PP A+ TN @58)

for every h €10, 1], VhF| <k.
Moreover, if H(t) admits a unitary propagator (see condition (A.2)), then under
the same conditions as above, we have

[Uip: — v N0, < Cn oo @ OV MIFRN T (1 4+ TH)NTP2RNEDZ - (4.59)
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Proof Using the inverse Fourier—-Bargmann transform, we have

RM(t,x) = f(aMn( f (R[F1ox) () RM (1, X) dX>
]RZn

Let us remark that using estimates on the b; (¢, x), we can assume that N is arbi-
trary large. We can apply previous results on the Fourier—-Bargmann estimates to
get (4.58). The second part is a consequence of the first part and of the Duhamel
principle. 0

We see that the estimate (4.58) is much more accurate in norm than estimate
(4.59), we have lost much information applying the propagator U;. The reason is
that in general we only know that the propagator is bounded on L? and no more.
Sometimes it is possible to improve (4.59) if we know that U; is bounded on some
weighted Sobolev spaces. Let us give here the following example.

Let H = —R2A + V(x). Assume that V satisfies:

VeC™®R"), [0°V(x)|<CeV(x),
V=1, [V -vyl<c(l+x—y)

for some M € R. So the time-dependent Schrodinger equation for H has a unitary

propagator U; = e/ ' The domain of A can be determined for every m € N
(see for example [163]).

D(A™) = {u e W 2(R"), V"u € L*(R")}
It is an Hilbert space with the norm defined by
2
leel3 =Y A0 | o oy + IV 012
loe] <2m

Using the Sobolev theorem we get the supremum norm estimate for the error:

sup |(Uig) () — ¥ (1, x)| < Cwv o 2 )M PR (14 THNF2 RN/

xeR”n

(4.60)

4.3.4 Exponentially Small Estimates

Up to now the order N of the semi-classical approximations was fixed, even arbi-
trary large, but the error term was not controlled for N large. Here we shall give
estimates with a control for large N. The method is the same as on the previous sec-
tion, using systematically the Fourier—Bargmann transform. The proof are not given
here, we refer to [164] for more details. For a different approach see [101, 102]. To
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get exponentially small estimates for asymptotic expansions in small % it is quite
natural to assume that the classical Hamiltonian H (¢, X) is analytic in X, where
X=x,&¢€ R2"_ This problem was studied in a different context in [87] concern-
ing Borel summability for semi-classical expansions for bosons systems.

So, in what follows we introduce suitable assumptions on H (¢, X). As before we
assume that H (¢, X) is continuous in time ¢ and C* in X and that the quantum and
classical dynamics are well defined.

Let us define a complex neighborhood of R?" in C?",

2,={XeC™ |3X| < p} (4.61)

where IX = (3X1,...,3X2,) and | - | is the Euclidean norm in R?" or the Hermi-
tian norm in C>*. Our main assumptions are the following.

(A,) (Analytic assumption) There exists p > 0, T € ]0, +o0], C > 0, v > 0, such
that H (¢) is holomorphic in §2, and for ¢ € I, X € £2,,, we have

|H(t, X)| < Ce”™!,  and

(4.62)
|0 H(t,ze + V)| < RVyle’¥l, VieR, Y eR™

for some R > 0 and all y, |y| > 3.

We begin by giving the results on the Fourier—-Bargmann side. It is the main
step and gives accurate estimates for the propagation of Gaussian coherent states
in the phase space. We have seen that it is not difficult to transfer these estimates
in the configuration space to get approximations of the solution of the Schrodinger
equation, by applying the inverse Fourier-Bargmann transform as we did in the C*°
case.

The main results are stated in the following theorem.

Theorem 25 Let us assume that conditions (Ag) and (A,) are satisfied. Then the
following uniform estimates hold.
B
| X*ay B, X) ”LZ(RM,eMXIdX)

3j+Hal+IB]

3j 3j j . .
<P R (U 1 —10l) 5 (B3 + el +181) 2 (4.63)

where Cy, > 0 depends only on % > 0 and is independent on j € N, a, B € N and
lr|<T.
Concerning the remainder term estimate we have

||XD‘3§R§N) @, X) “LZ(]RZ”,eMX‘ dx)

3NA+3+|a|+|B]
2

X (BN +3+ ol +18]) (4.64)

where L < p, a, B € N2t N > 1, v«/ﬁ|F|T <2(p —A), C;\ depends on A and is
independent on the other parameters (h, T, N, a, B).
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From Theorem 25 we easily get weighted estimates for approximate solutions
and remainder term for the time-dependent Schrodinger equation. Let us recall the
Sobolev norms in the Sobolev space W™" (R").

1/r
el = ( > h‘“'/Z/ |8£‘u<x)lrdx)
lee] <m R

and a function p € C®°(R?) such that p(x) = |x| for |x| > 1.

Proposition 42 For every m € N, r € [1, +00], A > 0 and ¢ < min{l1, ﬁ}, there
exists Crm.p.e > 0 such that for every j > 0 and every t € IT we have

|RUE b, ()ge™ |, | < (Crmne) ™ (14 1FIr) Y2214 1) 4.65)
Theorem 26 With the above notations and under the assumptions of Theorem 25,
1//§N) (t, x) satisfies the Schrodinger equation

iy ™M (t,x) = HOy™N (6, x) + RNV (1, x),  where (4.66)
¥ (e, x) = e"“f/hﬂz,)Ahﬁ[F,]( Y W, (r)g) (4.67)
0<j=N

is estimated in Proposition 42 and the remainder term is controlled with the follow-
ing weighted estimates:

| REV @yestn |

r,m,h

< OV + )ORRIF) TR () T @)

where C depends only on m,r,e and not on N > 0, |t| < T and h > 0, with the

condition «/7_1|F|T < k. The exponential weight is defined by pp, ((x) = u(x\;%‘ ).

m’' >0 and h, < min{1, ﬁ}.

Remark 20 We see that the order in j of the coefficient b;(¢)g in the asymptotic
expansion in /i//? is C/ j1/2 or using Stirling formula C"/T"(j)!/? for some constant
C > 0,C’ > 0. So we have found that the renormalized evolved state b(z, x)g(x)
obtained from v, (7, x) has a Gevrey-2 asymptotic expansion in %!/, Recall that a
formal complex series ;¢ i/ is a Gevrey series of index p > 0 if there exist
constants Cy > 0, C > 0 such that

lejl < CoCIT(NV*, Vj=>1.

Any holomorphic function f (k) in a complex neighborhood of 0 has a convergent
Gevrey-1 Taylor series. But in many physical examples we have a non-convergent
Gevrey asymptotic series f[«] for a function f holomorphic in some sector with
apex 0. Under some technical conditions on f it is possible to define the Borel sum
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By (z) for the formal power series f[«] and to recover f(x) from its Borel sum
performing a Laplace transform on By (t) (see [180] for details and bibliography).

When it is not possible to apply Borel summability, there exists a well known
method to minimize the error between ) _;_y ¢ i« and f(x). It is called the as-
tronomers method and consists of stopping the expansion after the smallest term of
the series (it is also called “the least term truncation method” for a series). Concern-
ing the semiclassical expansion found for b(z, x)g(x) it is not clear that it is Borel
summable or summable in some weaker sense. A sufficient condition for that would
be that the propagator U, can be extended holomorphically in « := /'/2 in a (small)
sector {re’?, 0 <r <rg, 10| < ¢}. In a different context (quantum field theory for
bosons), Borel summability was proved in [87].

Using the astronomers method Theorem 26 we easily get the following conse-
quences.

Corollary 13 (Finite Time, Large N) Let us assume here that T < 4-00. There exist
c>0,hyp>0,a>0,e >0, such that if we choose Ny = [%] — 1 we have

” RéNh) (1)esHhs

L2 <exp (— %) (4.69)

forevery |t| < T, h€]0, hgl. Moreover, we have
c
w0 @) — Ut 1)z 2 < exp(—ﬁ> (4.70)

Also we have the following.
Corollary 14 (Large Time, Large N) Let us assume that T = 400 and there ex-
isty >0,8>0, Cy =0, such that |Fy ;)| < exp(y|t]), |z:| < exp(S|t]) for every

0 €]0, 1[ there exists ag > O such that if we choose Np g = [;—Z] — 1 there exist
co > 0, ng > 0 such that

”h(Nh,9+2)/2R§Nﬁ,9+l)(t)eeuh,, ”L2 < exp<_2_z> 4.71)

for every |t] < % log(h~1), Vi € h €10, ng]. Moreover we have

Np, co
[ @) — U 1) 2 < exp(—ﬁ) 4.72)
under the conditions of (4.71).

Remark 21 We have considered here standard Gaussian. All the results are true
and proved in the same way for Gaussian coherent states defined by g!’, for any
I e Z’,T . These results have been proved in [164] and in [101, 102] using different
methods.
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All the results in this subsection can easily be deduced from Theorem 25. Propo-
sition 42 and Theorem 26 are easily proved using the estimates of Sect. 2.2. The
proof of the corollaries are consequences of Theorem 26 and the Stirling formula
for the Euler Gamma function.

4.4 Application to the Scattering Theory

In this section we assume that the interaction satisfies a short range assumption
and we shall prove results for the action of the scattering operator acting on the
squeezed states. One gets a semiclassical asymptotics for the action of the scattering
operator on a squeezed state located at point z_ in terms of a squeezed state located
at point z; where z; = S(z_), S being the classical scattering matrix. For the
basic classical and quantum scattering theories we refer the reader to [66, 162].
Let us first recall some basic facts on classical and quantum scattering theory. We
consider a classical Hamiltonian H for a particle moving in a curved space and in
an electromagnetic field:

1
H(g.p)=38@p-p+a@ -p+V(@, qeR' peR’ (4.73)
g(q) is a smooth positive definite matrix and there exist ¢ > 0, C > 0 such that

clp*<g@)p-p<Clpl*>, ¥(g,p)eR"

a(q) is a smooth linear form on R” and V (g) a smooth scalar potential. In what

2
follows it will be assumed that H (g, p) is a short range perturbation of H© = %
in the following sense: there exist p > 1, and C, for « € N” such that

109(1 — g(@)| + [8%a()| + |99V (@)] < Calg) P71, VgeR"  (4.74)
q q q

H and H© define two Hamiltonian flows &, @, on the phase space R?" for all
t € R. The classical scattering theory establishes a comparison of the two dynamics
@', @/, in the large time limit. Note that the free dynamics is explicit:

@((q, p) =(q+1p,p)

The methods of [66, 162] can be used to prove the existence of the classical wave
operators defined by

Q¢X = lim o7 ()X) 4.75)

t—=+00

This limit exists for every X € Zy where Zp = {(q, p) € R?", p 0} and is uniform
on every compact of Zp. We also have for all X € Zy

: t ocl _ bt _
t_l)lztl’loo(@ 25(X) — ((X)) =0
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Moreover, .Qﬂ are C*°-smooth symplectic transformations. They intertwine the free
and the interacting dynamics:

HoR{X=2{oHOX), V¥XeZ, and @' oQf=0{0d]
Then the classical scattering matrix S/ is defined by
SCl _ (QCI)_IQCZ
= (22 ¢l

This definition makes sense since one can prove (see [162]) that modulo a closed
set Ny of Lebesgue measure zero in Z (Z \ Zy € Np) one has

25(20) = 2°(20)
Moreover S is smooth in Z \ Aj and commutes with the free evolution:
) 1
SUPy = DS

The scattering operator has the following kinematic interpretation: let us consider
X_ € Zy and its free evolution QD(’)X _. There exists a unique interacting evolution
@' (X) which is close to CD(’)(X _) for t \( —oo. Moreover there exists a unique point
X € Zp such that @'(X) is close to ®((X ) fort /+o00. X, X are given by

X=0%%_ and X,=8X_

Using [66] we can get a more precise result. Let I be an open interval of R and
assume that 7 is “non trapping” for H which means that for every X such that
H(X) e I we have lim;_, 4o |®"(X)| = +00. Then we have

Proposition 43 If I is a non trapping interval for H then S is defined everywhere
in H=Y(I) and is a C*° smooth symplectic map.

On the quantum side one can define the wave operators and the scattering op-
erator in a similar way. Let us note that the quantization H of H is essentially
self-adjoint so that the unitary group U (¢) = exp(—%I:I ) is well defined in L2(R").
The free evolution Uy(t) := exp(—%I:I (0)) is explicit:

; 2
@) =any " [ exp(5 (=15 + 0= -8) Jporavae @ro)

The assumption (4.74) implies that we can define the wave operators §£24 and the
scattering operator S (n) — (£24)*82_ (see [66, 162]). Recall that

Q4= lim U(=0Uy(t)
t—=+00

The ranges of £21 are equal to the absolutely continuous subspace of H and we
have

QiUp(t) =U(t)R4, S™U(t) = Uy(t)S™ 4.77)
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One wants to obtain a correspondence between lim_, o S and S¢/. There are many
works on the subject (see [99, 102, 165, 203]). Here we want to check this classical
limit using the coherent states approach like in [99, 102].We present here a differ-
ent technical approach extending these results to more general perturbations of the
Laplace operator.

We recall some notations of Chap. 3: X, is the Siegel space namely the space of
complex symmetric # x n matrices I" such that II” is positive and non degenerate.
Given F any 2n x 2n symplectic matrix the unitary operator R(F) is the metaplectic
transformation associated to F. g/ is the Gaussian function of L2 norm 1 defined
by

gr(x) =ar exp(zl—.hl“x -x) 4.78)

and we denote
of =T(2)g"

Finally Ay, is the unitary operator defined in (4.21).
The main result of this section states a relationship between the quantum scatter-
ing and the classical scattering.

Theorem 27 For every N > 1, every z_ € Z\ Ny and every I'_ € X,, we have the
following semiclassical approximation for the scattering operator S acting on the
Gaussian coherent state (pzr__ :

sMmpl- — ei5+/hf(Z+)Ah1%(G+)( > hj/zbjgr> +O(RNTD2) - (4.79)
0<j<N

where we define
=8, zi=(q+. p1)
z+ = (qt, pt) is the interacting scattering trajectory z; = 45’(.(2&[1,), 8+ =

fjoooo(ptq, — H(z)) dt — %, Gy = gz—'f, b; is a polynomial of degree

<3j, bo= 1. The error term (’)(h(N+])/2) is estimated in the L*-norm.

Let us denote

Yo=¢;-, and Yy i=5My_

Using the definition of S we have

Ve = lim ( lim Uo(t)U(t—s)Uo(s)>1p_ (4.80)

t—400 \§—>—00

The strategy of the proof consists of applying the estimate (4.13) at fixed time ¢ to
U (t —s) in (4.80) and then to see what happens in the limits s — —oo, t — 400.
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Let us denote by on the Jacobi stability matrix for the free evolution and by F;(z)
the Jacobi stability matrix along the trajectory @’(z). We have

1, 1
0 __ n n
Ft‘(o 11,,)

We need large time estimates concerning classical scattering trajectories and their
Jacobi stability matrices.

Proposition 44 Under the assumptions of Theorem 27 there exists a unique scat-
tering solution of the Hamilton equation z; = JV H(z;) such that

it —_ 3,Q§6Z+ = O((t)_p), fOr t —> +00

2 — 8,9562_ = O((t)_p), fort - —o0

Proposition 45 Let us denote
Gy = Fr_y (P52 ) F

Then we have
(1) limg_, o Gt 5 = Gy exists, Vt >0
(11) lim;— 400 FO_’G, = G4 exists

_ 0z _ 0z4
(i) Gr=gt,and Gy =5+

These two propositions will be proven later together with the following one. The
main step in the proof of Theorem 27 will be to solve the following asymptotic
Cauchy problem for the Schrodinger equation with data given at time t = +o0:

ihdsyY) = Ay (s) + O (AN /2 fy (s))

. - 4.81)
limg—, — oo Up(—8$)V¥;_ " (s) =@,

where fy € L! (R) N L°°(R) is independent of A. The following result is an exten-
sion for infinite times of results proven in Sect. 4.1 for finite times.

Proposition 46 The problem (4.81) has a solution which can be computed in the
following way:

I/f;N)(r,x):e“th(z)Ané(G»( > h-’”b;(r,z)gf)
0<j=N

The bj(t,z—, x) are uniquely defined by the following induction formula for j > 1
starting with bo(t,x) = 1:
&bt z—,x)g(x) = Z op’f’[Kf(t)](bk(t, )g)(x) (4.82)
k+l=j+2, [>3
lim b;(t,z—,x)=0 (4.83)
1——00
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with
1
K?(t, X)=K;(t.G/(X))=Y_ —!a)V(H(z,)(G,X)V, X e R™
lyl=Jj

bj(t,z_,x) is a polynomial of degree <3 in variable x € R" with complex time-
dependent coefficients depending on the scattering trajectory z; starting from z_ at
time t = —00. Moreover we have the remainder uniform estimate

iy ™M (t) = Ay (1) + O(RN T2 (1) =r) (4.84)
uniformly in h €10, 1], and t > 0.

Proof of Theorem 27 Without going into the details which are similar to the finite
time case, we remark that in the induction formula (4.82) we can use the following
estimates to get uniform decrease in time estimates for b (¢, z—, x). First there exist
¢ > 0 and Tp > O such that for ¢+ > Ty we have |g;| > ct. Using the short range
assumption and conservation of the classical energy we see that for || > 3 there
exists C,, > 0 such that

0% H(z)| < C) (1) ~P~! (4.85)

Therefore we deduce (4.84) from (4.82) and (4.85).
Using Proposition 46 and Duhamel’s formula we get

UYL () =y @ +5) + O(HNTD2)
uniformly in 7, s € R. But we have
vty = U = $)Ug(s)y|
<[vM 0 v -9V © |+ [|Vo)v— — vV o)

‘We know that

lim [Ups)y— - M) =0

§—>—00

Then going to the limit s — —oo we get uniformly in t >0

v —vw2-y_|| = O(h(N+1)/2)

Then we can compute Uo(—t)wgiv) (¢) in the limit t — 400 and we find out that
Sy = 1//J(FN) + OhW+D/2y where

N) _ AW
pi = tim Uo(-nyM o)

So we have proved Theorem 27. O
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Let us now prove Proposition 44 following the book [162].

Proof Let us denote u(t) :=z; — @?z,. We have to solve the integral equation

t
u(t) =o%(z_) +/ (JVH (u(s)) + 2(z-)) ds

—00

We can choose 77 < 0 such that the map K defined by

t
Ku(t) = / (JVH(u(s)) + @2(z-)) ds

—00

is a contraction in the complete metric space Cr, of continuous functions u# from
]—o00, T1] into R2" such that Sup;<r, |u(t)| <1, with the natural distance. So we can
apply the fixed point theorem to prove Proposition 44 using standard technics. [

Proposition 45 can be proved by the same method.
Let us now prove Proposition 46.

Proof Let us denote 70 := @%(z_). Furthermore if S is a symplectic matrix
A B
=(¢ 5)
and I" € X, (X, is the Siegel space) we define
Ys(IM)=(C+DIryA —{—BF)*] e,
Then let
Iy = Zp-)
One has for every N > 0:
ihd N (e s, x) = HOYEY (05,0 + RV (5,0

where

1//Z(N)(t,s,x):ei‘sss’l/hf(Zt)Ahk(Ft,sFso)< > hf/zbja,s)gf-) (4.86)
0<j<N

and

RM) (¢, 5. x) = el /Pp(N+3)/2
(s,

x< Y T@)ARR(FisF))

jHk=N+2, k=3

x OpY (Ri(t,s) o [Fy s FL]) (b; (2, s)gr)> (4.87)
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One denotes F; s = Fi_g (@81_) the stability matrix at q),_s(fb‘?(z_)). Moreover
the polynomials b (z, s, x) are uniquely defined by the following induction formula
for j > 1 starting with by (s, s, x) = 1:

abjts,x)= > OpY[Kf(t.9)](bi(t. )8 ) )
k+l=j+2, >3

bi(s,s,x)=0
where
K. X)=)Y i'a)V(H(cp’—f(q)?z_))(F,_SE?X)V, X eR*”
lyl=t ©°

So using Propositions 44 and 45 we can control the limit s — —oo in (4.86)
and (4.87) and we get the proof of the Proposition 46. 0

The following corollary is an immediate consequence of Theorem 27 and of the
properties of the metaplectic transformation:

Corollary 15 For every N € N we have

sl —eibe/h 3 ﬁj/znj(x ;ﬁ*)go{: () +O(h>)
0<j=N h

where 7, = S(z_), I'y = X6, (I2), mj(y) are polynomials of degree <3j in
y € R™. In particular mo = 1.

Recall that X is the space of smooth classical observables L such that for every
y € R2" there exists C y = 0 such that

|0y L(X)| < C(X)™, VX eR™

The Weyl quantization L of L is well defined (see Chap. 2). One has the following
result:

Corollary 16 For any symbol L € X (m), m € R, we have
(Mg, ,LSMg, )= L(5z-)) +O(Vh)

In particular one recovers the classical scattering operator from the quantum scat-
tering operator in the semiclassical limit.

Proof Using Corollary 15 one gets
(S(h)‘pzfa lA‘S(h)(pzf) = (‘pzl}’ i"ﬂﬁ) + O(\/ﬁ)

and the result follows from a trivial extension of Lemma 14 of Chap. 2. U
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Remark 22 A similar result was proven for the time-delay operator in [192]. The
proof given here is different and doesn’t use a global non-trapping assumption.

Further study concerns the scattering evolution of Lagrangian states (also called
WKB states). It was considered by Yajima [203] in the momentum representation
and by S. Robinson [167] for the position representation. The approach developed
here provides a more direct and general proof that is detailed in [164].

Note also that under the analytic and Gevrey assumption one can recover the re-
sult of [102] for the semiclassical propagation of coherent states with exponentially
small estimate.



Chapter 5
Trace Formulas and Coherent States

Abstract The most known trace formula in mathematical physics is certainly the
Gutzwiller trace formula linking the eigenvalues of the Schrodinger operator H as
Planck’s constant goes to zero (the semi-classical régime) with the closed orbits of
the corresponding classical mechanical system. Gutzwiller gave a heuristic proof
of this trace formula, using the Feynman integral representation for the propagator
of H. In mathematics this kind of trace formula was first known as Poisson formula.
It was proved first for the Laplace operator on a compact manifold, then for more
general elliptic operators using the theory of Fourier-integral operators. Our goal
here is to show how the use of coherent states allows us to give a rather simple and
direct rigorous proof.

5.1 Introduction

A quantum system is described by its Hamiltonian H and its admissible energies
are the eigenvalues E; (h) (we suppose that the spectrum of the self-adjoint operator

H in the Hilbert space H = L>(R") is discrete). The frequency transition between
energies E;(h) and Ex(h) is wjx = w

If n =1, or if the system is integrable, it is possible to prove semi-classical ex-
pansion for individual eigenvalues E ; (k) when A\ 0. For more general systems it
is very difficult and almost impossible to analyze individual eigenvalues. But it is
possible to give a statistical description of the energy spectrum in the semi-classical

regime by considering mean values
Te(f(H)) =) f(E;j(W) (5.1)

A first result can be obtained if we suppose that the ~A-Weyl symbol H of H is
smooth and satisfies the assumption of the functional calculus in Chap. 2 (Theo-
rem 10). Consider an interval I, = [A; — &, A» + €] such that H -1 (1) is compact for
¢ small enough. The following result is proved in [107]:

Proposition 47
(i) For every smooth function f supported in I, we have the asymptotic expansion

at any order in h
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Trf(ﬁ)x(27rh)_”/ dX f(H(X))+ > W ="Ci(f) (5.2)
R2n

Jj=1

where C(f) are computable distributions in the test function f.
(i) If A and 1o are noncritical values for H U and if Nj denotes the number of
eigenvalues of H in I :=[A1, A2] then we have the Weyl asymptotic formula

= Qrh)"Vol(H~ (D)) + O(h'™") (5.3)

Remark 23 (i) The first part of the Proposition is an easy application of the func-
tional calculus.

Using (i) it is possible to prove a Weyl formula with an error term O (h?~") with
6 < %. The error term with @ = 1 is optimal (in general) and can be obtained using
a method initiated by Hormander [42, 107, 116]. Furthermore using a trick initiated
by Duistermaat-Guillemin [71] the remainder term can be improved in o(h' ") if
the measure of closed classical path on H=L(x;) is zero, for i = 1, 2 (see [158]).

The density of states of a quantum system H is the sum of delta distribution
D(E) =) 8(E — Ej(h)). The integrated density of states is the spectral reparti-
tion function N(E) =ti{j, E;(h) < E} where € denotes the number of terms in a
series £. So that we have D(E) = %N(E).

The Gutzwiller trace formula is a semi-classical formula which expresses the
density of states of a quantum system in terms of the characteristics of the cor-
responding classical system (invariant tori for the completely integrable systems,
periodic orbits otherwise). Remark that properties of the classical system may have
consequence on the error term in the Weyl formula (see the Remark above). The
prototype of the trace formula is the Poisson summation formula:

+00 +00
Y. fm= Y] fank (5.4)

n=—00 k=—o0

for any f € S(R). Recall that f is the Fourier transform f(z) = f]R dte T £(1).

We show in which respect it is a Trace Formula Consider the quantum momen-
tum operator P in dimension one, P = —i -+ d , acting in L?([0, 27]) with periodic
boundary conditions u(0) = u(27). P is an unbounded operator with purely discrete
spectrum and one has

sp(P) =7
Therefore one has
. +00
Tef(P)= Y fo
n=—0o0

ISee the definition in Sect. 5.2.
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The classical Hamiltonian is H(g, p) = p. Therefore the solutions of the classical
equations of motion are

g=t mod(2m)

So, the classical trajectories are periodic in phase space (T') x R and are k-
repetitions of the primitive orbit of period 27, Yk € Z. Thus the periods of the
classical flow are equal to 2km, k € Z. Then the Poisson Summation Formula ex-
presses that the trace of a function of a quantum Hamiltonian equals the sum over
the periodic orbits of the corresponding classical flow of the Fourier Transform of
this function taken at the periods of the classical flow.

From the Poisson Summation formula one deduces a Trace Formula for the one-
dimensional Harmonic Oscillator: take

~ 1, - ~

Ho=2(P*+ Q%)
the Hamlltoman of the Harmomc Oscillator. We assume i = 1 for simplicity. The
spectrum of Ho is {n + 2, n € N}. Therefore for any f € S([0, +00[) one has

— 1
:=j£:‘f<é'+'§>
n=0
Replace f by f‘(q, 0) f in (5.4). One gets

Y fn+q)y =) H™ f(2km)

nez keZ

Therefore for g = 2 one gets

+00
Tr(f (Ho)) = ) (—=D*f(2km)

k=—o00

But 2k are the periods of the orbits for the classical Harmonic oscillator of fre-
quency 1, which are all repetitions of the primitive orbit of period 277. One notes the
apparition of a factor (—1)¥ in the trace formula which is the manifestation of the
so-called Maslov index of the periodic orbit of period 2k .

The paper of Gutzwiller appeared in 1971. Between 1973 and 1975 several au-
thors gave rigorous derivations of trace formulas, generalizing the classical Poisson
summation formula from d? /d6? on the circle to elliptic operators on compact man-
ifolds: Colin de Verdiere [45], Chazarain [41], Duistermaat—Guillemin [71]. The
first article is based on a parametrix construction for the associated heat equation,
while the two other ones replace this with a parametrix constructed as a Fourier-
integral operator, for the associated wave equation.

The pioneering works in quantum physics of Gutzwiller [97, 98] and Balian—
Bloch [12, 13] (1972-74) showed that the trace of a quantum observable A, lo-
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calized in a spectral neighborhood of size O(h) of an energy E for the quantum
Hamiltonian H, can be expressed in terms of averages of the classical observable
A associated with A over invariant sets for the flow of the classical Hamiltonian H
associated with H. This is related to the spectral asymptotics for H in the semi-
classical limit, and it can be understood as a “correspondence principle” between
classical and quantum mechanics as Planck’s constant /& goes to zero.

More recently, papers by Guillemin—Uribe [96] (1989), Paul-Uribe [150, 151]
(1991, 1995), Meinrenken [144] (1992) and Dozias [70] (1994) have developed
the necessary tools from microlocal analysis [117] in a nonhomogeneous (semi-
classical) setting to deal with Schrodinger-type Hamiltonians. Extensions and
simplifications of these methods have been given by Petkov—Popov [157] and
Charbonnel-Popov [40].

In this Chapter we show how to recover the semi-classical Gutzwiller trace for-
mula from the coherent states method.

The coherent states approach presented here seems particularly suitable when
one wishes to compare the phase-space quantum picture with the phase-space clas-
sical flow. Furthermore, it avoids problems with caustics, and the Maslov indices
appear naturally. In short, it implies the Gutzwiller trace formula in a very simple
and transparent way, without any use of the global theory of Fourier-integral opera-
tors. In their place we use the coherent states approximation (gaussian beams) and
the stationary phase theorem.

The use of Gaussian wave packets is such a useful idea that one can trace
it back to the very beginning of quantum mechanics, for instance, Schrodinger
[175] (1926). However, the realization that these approximations are universally
applicable, and that they are valid for arbitrarily long times, has developed gradu-
ally. In the mathematical literature these approximations have never become text-
book material, and this has lead to their repeated rediscovery with a variety of
different names, e.g. coherent states and Gaussian beams. The first place that
we have found where they are used in some generality is Babich [8] (1968)
(see also [9]). Since then they have appeared, often as independent discover-
ies, in the work of Arnaud [6] (1973), Keller and Streifer [124] (1971), Heller
[110, 111] (1975, 1987), Ralston [159, 160] (1976, 1982), Hagedorn [99, 100]
(1980-85), and Littlejohn [138] (1986)—and probably of many more, which
we have not found. Their use in trace formulas was proposed (heuristically) by
Wilkinson [199] (1987). The propagation formulas of [99, 100] were extended in
Combescure—Robert [52], with a detailed estimate on the error both in time and
in Planck’s constant /. This propagation formula of coherent states which is de-
scribed in Chap. 4 allows us to avoid the whole machinery of Fourier-integral
operator theory. The early application of these methods in [8] was for the con-
struction of quasi-modes, and this has been pursued further in [159] and [150].
They have also been applied to the pointwise behavior of semi-classical mea-
sures [153].

The proof we shall present here for the Gutzwiller trace formula is inspired by
the paper by Combescure—Ralston—Robert [53].
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5.2 The Semi-classical Gutzwiller Trace Formula

We consider a quantum system in LZ(R") with the Schrodinger Hamiltonian
H=-PA+V(x) (5.5

where A is the Laplacian in L?(R") and V (x) a real, C*(R") potential.
The corresponding Hamiltonian for the classical motion is

H(g.p)=p"+ V(@
and for a given energy E € R we denote by X'r the “energy shell”:
2p:={(q,p) eR™: H(q, p) = E} (5.6)

More generally we shall consider Hamiltonians H obtained by the h-Weyl quanti-
zation of the classical Hamiltonian H, so that H = Op%(H ), where

i(x—

optyn=can " [[n(* e e T aver s)

The Hamiltonian H is assumed to be a smooth, real valued function of z = (x, &) €
R?", and to satisfy the following global estimates:

o (H.0) there exist non-negative constants C, m, C,, such that
|0y H(z)| < Cy{H(2)), VzeR™ VyeN* (5.8)
(H@)<CH(Z)) (z—2)", ¥z, Z eR™ (5.9)
where we have used the notation (1) = (1 + |u|?)'/? for u € R™.

Remark 24

() H(q, p) = p> + V(q) satisfies (H.0), if V(g) is bounded below by some con-
stant a > 0 and satisfies the property (H.0) in the variable ¢.

(i) The technical condition (H.0) implies in particular that H is essentially self-
adjoint on L2(R™) for h small enough and that X(ﬁ ) is a h-pseudodifferential
operator if y € C3°(IR) (see Chap. 2 and [107]).

Let us denote by ¢’ the classical flow induced by Hamilton’s equations with
Hamiltonian H, and by S(q, p; t) the classical action along the trajectory starting at
(g, p) attime t = 0, and evolving during time ¢

t

S(q,p;t)=f0 (ps-d4s — H(q. p))ds (5.10)

where (¢, pr) = ¢:(q, p), and dot denotes the derivative with respect to time. We
shall also use the notation: a; = ¢’(a) where @ = (g, p) € R2" s a phase-space
point. Recall that the Hamiltonian H is constant along the flow ¢'.
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If y is a periodic trajectory parametrized as t — «;, a7+ = og Where T;‘ is the
primitive period (the smallest positive period), the classical action along y is

T;‘ )
Sy =/ dt p1q: :=§£ pdq
0 1%

An important role in what follows is played by the “linearized flow” around the
classical trajectory, which is defined as follows. Let

92H

HN(C(;)Z W (511)

o=u;

be the Hessian of H at point o; = ¢’ () of the classical trajectory. Let J be the

symplectic matrix
0 1
J= <_ 1 0) (5.12)

where 0 and 1 are, respectively, the null and identity n x n matrices. Let F; be the
2n x 2n real symplectic matrix solution of the linear differential equation

Fr=JH"(a)F,

5.13
e (2 %) o1

F; depends on @ = (g, p), the initial point for the classical trajectory, ;.

Let y be a closed orbit on X¥'r with period T,, and let us denote simply by
F, the matrix F), = F(T}). F, is usually called the “monodromy matrix” of the
closed orbit y. Of course, F,, does depend on «, but its eigenvalues do not, since
the monodromy matrix with a different initial point on y is conjugate to F, . F, has
1 as eigenvalue of algebraic multiplicity at least equal to 2. In all that follows, we
shall use the following definition:

Definition 12 We say that y is a non-degenerate orbit if the eigenvalue 1 of F), has
algebraic multiplicity 2.

Let o denote the usual symplectic form on R
0(a,o/)=p~q/—p/~q, o =(q,p); a’:(q/,p/) (5.14)

(- is the usual scalar product in R"). We denote by {«1, |} a basis for the eigenspace
of F), belonging to the eigenvalue 1, and by V its orthogonal complement in the
sense of the symplectic form o

V={aeR":0(a)=0(xa}) =0} (5.15)

Then, the restriction P, of F,, to V is called the (linearized) “Poincaré map” for y .
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In more general cases the Hamiltonian flow will contain manifolds of periodic
orbits with the same energy. When this happens, the periodic orbits will necessarily
be degenerate, but the techniques we use here can still apply. The precise hypothesis
for this (“Hypothesis C”) will be given later. Following Duistermaat and Guillemin
we call this a “clean intersection hypothesis”, it is more explicit than other versions
of this assumption. Since the statement of the trace formula is simpler and more
informative when one does assume that the periodic orbits are non-degenerate, we
will give only that formula in this case.

We shall now assume the following. Let (I'g)r be the set of all periodic orbits
on X'g with periods T}, 0 < |T,| < T (including repetitions of primitive orbits and
assigning negative periods to primitive orbits traced in the opposite sense).

e (H.1) There exists $E > 0 such that H~'([E —8E, E +8E]) isa compact set of
R?" and E is a noncritical value of H (i.e. H(z) = E = VH(z) #0).

e (H.2) All y in (I'g)r are non-degenerate, i.e. 1 is not an eigenvalue for the cor-
responding “Poincaré map”, P,. In particular, this implies that for any 7 > 0,
(I'g)r is a discrete set, with periods —T <T,, <---<T,, <T.

We can now state the Gutzwiller trace formula. Let A = Op}, (A) be a quantum
observable, such that A satisfies the following.

e (H.3) Thereexists 6 e R, C, >0 (y € N2"), such that

|07 A(z)| < CV(H(Z)>8, Vz € R

e (H.4) g is a C*™ function whose Fourier transform g is of compact support with
Suppg C [—T, T] and let x be a smooth function with a compact support con-
tainedin |E —§E, E+§E[, equal to 1 in a neighborhood of E. Then the following
“regularized density of states” p4 (E) is well defined:

aon A (E—H
,oA(E):Tr<X(H)Ax(H)g< W >> (5.16)

Note that (H.1) implies that the spectrum of H is purely discrete in a neighborhood
of E so that p4 (E) is well defined. We have also, more explicitly,

E—FE; ~
pa(E)= Y g( ’)x%Ej)(Agoj,cpj) (5.17)

- h
I<j<N

where E1 < --- < Ey are the eigenvalues of H in 1E — 8E, E + §E[ (with multi-
plicities) and ¢; is the corresponding eigenfunction (H @j = Ejp;). Let us remark
here that the A scaling: E_FLE/ is the right one to have a nice semi-classical limit. The
first argument is that if » = 1 (and for integrable systems), in regular case, eigen-
values are given by Bohr—Sommerfeld formula [108] and their mutual distance is of

order fi. The second argument is included in the following result [106, 158].
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Under assumption (H.1) the Liouville measure d L g is well defined on the energy
surface Xg:

dLp = (d Xk is the Euclidean measure on X'r)

Now we can state the Gutzwiller trace formula.

Theorem 28 (Gutzwiller trace formula) Assume (H.0)—(H.2) are satisfied for H,
(H.3) for A and (H.4) for g. Then the following asymptotic expansion holds true,
modulo O (h™°),

pa(E) = () "2§(O)h~ "~V /E Al)dog(a)+ Y c(@n

k>—n+2
+ Z (27T)n/2_lei(sy/h+0yﬂ/2){@(Ty)’det(]l _ Py)’—l/Z
veWUE)T
Ty* )
x/o A(as)ds—i—Zd}’(g)hf} (5.18)

izl

where T;‘ is the primitive period of y, o, is the Maslov index of y (o, € Z and is
computed in the proof), ci(g) are distributions in § with support in {0}, d}/ (g) are
distributions in g with support {T, }.

Remark 25 We can include more general Hamiltonians depending explicitly in A,
H= Zle K HY) such that H© satisfies (H.0) and for j > 1,

|0 HY ()| < ¢, ;(HO () (5.19)

It is useful for applications to consider Hamiltonians like H® + nH® where H D
may be, for example, a spin term. In that case the formula (5.18) is true with different
coefficients. In particular the first term in the contribution of 7, is multiplied by

exp(—i [y HO(ay)ds).

Remark 26 For Schrédinger operators we only need smoothness of the potential V.
In this case the trace formula (5.18) is still valid without any assumptions at in-
finity for V when we restrict ourselves to a compact energy surface, assuming
E < liminfy|- o V (x). Using exponential decrease of the eigenfunctions [109] we
can prove that, modulo an error term of order O (ht™), the potential V' can be re-
placed by a potential V satisfying the assumptions of the Remark 2.1.

It is also possible to get a trace formula for Hamiltonians with symmetries [38].
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5.3 Preparations for the Proof

We shall make use of the standard coherent states introduced in Chap. 1 and their
propagation by the time-dependent Schrodinger equation established in Chap. 4. We
denote by

9o =T ()0 (5.20)

the usual coherent states centered at the point « of the phase space R?". Then it is
known that any operator B with a symbol decreasing sufficiently rapidly is in trace
class [163], and its trace can be computed by (see Chap. 1)

TrB = (2nh)—”/ (pes Boo)da (5.21)
R2n
The regularized density of states p4 (E) can now be rewritten as

pa(E)= Q)" 'n" G0 Mo, A UNgo)dtda (522)
RxR2n

where U (t) is the quantum unitary group:

A

Uty=e""A/m and A, = x(H)Ax(H) (5.23)

Our strategy for computing the behavior of p4 (E) as /i goes to zero is first to com-
pute the bracket

m(at, 1) = (gu, Ay U(0ga), (5.24)

where we drop the subscript x in A, for simplicity.

First of all we shall use Lemma 14 of Chap. 2, giving the action of an A-
pseudodifferential operator on a Gaussian.

Thus m (¢, o) is a linear combination of terms like

my (o, 1) =¥y o, U()ga) (5.25)

Now we compute U (t)¢,, using the semi-classical propagation of coherent states
result of Chap. 4. We recall that F; is a time-dependent symplectic matrix (Jacobi
matrix) defined by the linear equation (5.13). I%(F ) denotes the metaplectic repre-
sentation of the linearized flow F (see Chap. 3), and the /i-dependent metaplectic
representation is defined by

Ri(F) = ApR(F) A} (5.26)
We will also use the notation

tqt — P-4

t
8(a,t)=/ Dy -Gsds —tH(a) — £ : (5.27)
0
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From Chap. 4 we have the following propagation estimates in the L?-norm: for
every N € N and every T > 0 there exists Cy,7 such that

<Cn.rhY (5.28)

i8(ct, 1)
h

HU(tm - exp( )f<a,>1%h(F,>AhPN<x, Dy, t, h)o

where %(x) =7 "*exp(—|x|?/2), and Py(t, h) is the (A, t)-dependent differen-
tial operator defined by

Py(x, Dy t.l)y=1+ Y W/ plx. D1
(k,Heln

with Iy ={(k, j)) eENxN, 1 <j<2N -1, k>3j, 1 <k—2j <2N}
(5.29)

where the differential operators py;(x, Dy, t) are products of j Weyl quantization of
homogeneous polynomials of degree ks with ), <s<j ks =k (see [52], Theorem 3.5
and its proof). So that we get

P (x, Dy, )0 = Qi (X)Yo(x) (5.30)

where Qy;(x) is a polynomial (with coefficients depending on («, t)) of degree k
having the same parity as k. This is clear from the following facts: homogeneous
polynomials have a definite parity, and Weyl quantization behaves well with respect
to symmetries: Op" (A) commutes to the parity operator X f(x) = f(—x) if and
only if A is an even symbol and anticommutes with X if and only if A is an odd
symbol) and %(x) is an even function.

So we get

, ; i5(1,
m(a, 1) = Z ck,jyyh%*f exp(l (h 00)

(J.k)eln;ly|<2N

x (T(a) AR Qy Yo, T (@) Ar Ok, j R(F) o) + O(KY)  (5.31)

where Qy ;, respectively, Q,, are polynomials in the x variable with the same parity
as k, respectively, |y|. This remark will be useful in proving that we have only
entire powers in 72 in (5.18), even though half integer powers appear naturally in the
asymptotic propagation of coherent states.

By an easy computation we have

(T(@) AR Qy o0, T(@) Ar Ok, ; R(F1) o)

1 ~ — —~ n —_
=exp(—iﬁo(a,at>)<T1(°‘—ﬁ°”>Qywo, Qk,jR(Ft)wo> (5.32)

where f"l (+) is the Weyl translation operator with /= 1.
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We set
Ao — oy ~ A ~
my,jy (o, 1) = <T1 (W) 0y Yo, Qk,jR(Fz)Wo> (5.33)
mo(at, 1) —<f <ﬂ>{f 1%(F){F> (5.34)
0 ) - 1 ﬁ 0, t 0 .

We compute mo(c, t) first. We shall use the fact that the metaplectic group trans-
forms Gaussian wave packets into Gaussian wave packets in a very explicit way. If
we denote by A;, B, C;, D; the four n x n matrices of the block form of F;

_ (A B
F,_(Ct D;) (5.35)

We have already seen in Chaps. 3 and 4, since F; is symplectic, that U; = A; + i B;
is invertible. So we have defined

L=V,U~', whereV,=(C,+iD,) (5.36)
We have from our Chap. 3 (see also [77], Chap. 4)

mo(a, 1) = [det U1z >a /2

x/ exp{i(l" +i]l)x~x—L<x—q_qt>
. 2! NG 2

x(p—pi+ilqg—aqn) } dx (5.37)

But the integration in x is a Fourier transform of a Gaussian and can be performed
(see in Appendix A, Sect. A.1). The complex matrix I; 4 i1 is invertible and we
have

(Li+in~"' = % (5.38)

where we use the following notation:
W=7y,  Z,=U+iV,, Y,=U—iV, (5.39)

It is clear that Y is invertible (see Chap. 3). So we get

mo(a, 1) = 2" 7" [det v,U; ] Pldet Uy 17 2e ke @) (5.40)

where the phase W (t, o) is given by

We(t,a)=t(E — H()) + % /Ota(ozs — o, d)ds

+ (= W)@ — ) @) (5.41)

witha =¢q +ipifa=(q,p).
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In (5.40) we have a product of square root of determinant. [detU,]. 12 is a
branch for [det U;]~!/? with the phase (or argument) obtained by continuity in time
from U;—¢ = 1. For a complex symmetric matrix M with definite-positive real part,
[det M1, 12 is a branch for (det M)~ /2 with the phase obtained by continuity along
a path joining WM to M, the eigenvalues of M !/ having positive real part. Follow-
ing carefully these phases will give the Maslov correction index.

Remark 27 There is here a difference with the paper [53] where the phase was
obtained before integration in y € R", so computations here will be a little bit more
natural and easier.

The same phase Wg (¢, o) appears when computing my_; ,, (o, t) with non-trivial
amplitudes. Then the formula for the regularized density of states in (5.22) takes the
form

pA(E)zfl;dr/Z daa(t,a, h)eF VEC® (5.42)

where Wg is given in (5.41) and a(t, a, h) < ZjeN aj(t, )b,

Our plan is to prove Theorem 28 by expanding (5.42) by the method of sta-
tionary phase. The necessary stationary phase lemma for complex phase functions
can easily be derived from Theorem 7.7.5 in [117]. There is also an extended dis-
cussion of complex phase functions depending on parameters in [117] leading to
Theorem 7.7.12, but the form of the stationary manifold here permits us to use the
following result proved in Sect. A.2.

Theorem 29 (Stationary phase expansion) Let O C R? be an open set, and let
a, f € C®(O) withIf > 0in O and supp a C O. We define

M={xecO,3f(x)=0, f'(x) =0}

and assume that M is a smooth, compact and connected submanifold of R? of di-
mension k such that for all x € M the Hessian, " (x), of f is non-degenerate on
the normal space N, to M at x.

Under the conditions above, the integral J(w) = f Rl el ®q(x)dx has the fol-

lowing asymptotic expansion as w — +00, modulo O (w™°):
2 d—k
T .
Jw)y=|— E ToN)
(w) ( - ) . cjw
j=0

The coefficient cy is given by

" —1/2
co = el @l mo) /M[det<w>:| a(m)dVy(m) (5.43)

*

where dVy;(m) is the canonical Euclidean volume in M, mg € M is arbitrary, and
[det P], 12 denotes the product of the reciprocals of square roots of the eigenvalues
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of P chosen with positive real parts. Note that, since I f > 0, the eigenvalues of
m lie in the closed right half plane.

5.4 The Stationary Phase Computation

In this section we compute the stationary phase expansion of (5.22) with phase Vg
given by (5.41). Note that a(t, «, h) is actually, according to (5.31), a polynomial
in A'/2 and ii~'/2. Hence the stationary phase theorem (with Ai-independent sym-
bol a) applies to each coefficient of this polynomial.

We need to compute the first and second order derivatives of Wg (¢, o). Let us
introduce the 2n x 2n complex symmetric matrix

t_( W —iW,
Wi = (—i W, —-W )
It is enough to compute first derivatives for ¥g up to O (Joy — a|?):

1 1
0Vt e) = E— H(@) = (@ —a)- Joy + E(Wﬁ —1)é; - (o — ) (5.44)

Ve, o) = %(1 + F)J () — ) + %(FT —1)(WF —1) (s —)  (5.45)

The critical set for the stationary phase theorem is defined as
Ce={(a,1) e R x R, I(We(a,1)) =0, 8,We(t,a) =0, 3, We(t, o) = 0}

We have seen in Chap. 2 that since F is symplectic, one has W*W < 1, so if
S(WE(a, 1)) =0 then o; = . Using (5.44) we get

Ce={(a.) eR" xR, H(e) = E; oy =t}

Hence (t, @) is a critical point means that « is on a periodic path of energy E, for
the Hamiltonian H, and period ¢.
The second derivatives of W restricted on Cg can be computed as follows:

Vet @) = %(Wf 1) - ¢ (5.46)
’ l

07 WE(t, ) = —, H () + zii(F,T —1)(Wf — 1)@ (5.47)

g o WE(t, @) = %(JF, —FI'J)+ %(F,T — 1) (W —1)(F, —1) (5.48)

Let llll’;’ (t9, ) be the Hessian matrix of ¥ at point (fg, «g) of Cg. We have to
compute the kernel of lI/g (ag, tg).
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Lemma 33 For every (ty, ag) € Cg we have
ker(¥ (10, a0)) = {(r,v) € R x R*, v-9,H =0, (F, —1)v +1d = 0} (5.49)

Proof Using the Taylor formula we have

S(Yet,a) = %SW}/;'(!O, o) (1 —to, ¢ — atp) - (1 — 10, & — X0)

+0(|t — 1o + o — ao]?) (5.50)

From W*W < 1 we get, for some ¢ > 0,
S(ve(t, @) = cla —ar)? (5.51)
Using that o0 — oty = (@ — atg) + (09 — 0t0,y) + (00,70 — zy) + (0tz, — 0t;) We get
@ —a; = (1= Fy)(@—ao) + (to = & + O(It = tol* + o — aol*)

Then from (5.50) and (5.51) we get, for some ¢ > 0,
| 3@ (10, @) (t — 10, & — ) - (t — tg, @ — ag)| = || (Fiy — 1) (&t — @) + (¢ — )t ||

(5.52)
So we have proved the part “C” in (5.49). The part “O” is obvious. 0

The first thing to check, in order to apply the stationary phase theorem is that the
support of @ in (5.42) can be taken as compact, up to an error O (h°°). We do this
in the following way: let us recall some properties of A-pseudodifferential calculus
proved in [68, 107]. The function m(z) = (H(z)) is a weight function. In [68] it is
proved that X(I:I) = I:IX where H, € S(m=*), for every k (x is like in (H.4)). More
precisely, we have in the / asymptotic sense in S(m %),

Hy =" Hy,h/
j=0

and support [H ;] is in a fixed compact set for every j (see (H.4) and [107] for the
computations of H, ;). Let us recall that the symbol space S(m) is equipped with
the family of semi-norms

sup m~'(2)
ZERZ”

P4
QH(Z)

Now we can prove the following lemma.

Lemma 34 There is a compact set K in R¥" such that for

m(a, 1) = (pa, Ay U(0)gs)



5.4 The Stationary Phase Computation 137
we have
/ |m(a, t)| da = 0(h+°°)
RZ”/K
uniformly in every bounded interval in t.

Proof Let x € Ci°(JE —$8E, E+SE[) such that x x = x. Using (H.3) and the com-

position rule for A-pseudodifferential operators we can see that A X (H) is bounded
on L2(R"). So there exists a C > 0 such that

m(@,n| < C|7(A)¢a]
But we can write
|7 (H)ga|* = (% ()¢ ¢0)

Let us introduce the Wigner function, wy, for ¢, (i.e. the Weyl symbol of the or-
thogonal projection on ¢, ). We have

()Z(I:I)Z‘pm(aa):(”h)_n/HX2(Z)wa(Z)dZ

where

l=—af?
1

Wy (z) = (wh)™"e™ &

Using remainder estimates from [107] we have, for every N large enough,

Hyo= Y Hp b/ + VT Ry (h)
0<j<N

where the following estimate in Hilbert—Schmidt norm holds:

Ry (R +
e |Ry ()| g < +00

Now there is an R > 0 such that for every j, we have Supp[H,> ;] < {z, |z| < R}.
So the proof of the lemma follows from

[Rx s = Cxn [ |Ryhe | e

and from the elementary estimate, which holds for some C, ¢ > 0,

la—

’|2 c
/f e h dzda<Ce™n -
{lz|=R,||>R+1}

From (5.49) we see that a sufficient condition to apply the stationary phase theo-
rem is the following “clean intersection condition” for the Hamiltonian flow ¢’.
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Clean Intersection Condition (CI) We assume that Cg is a union of smooth com-
pact connected components and on each component, the tangent space T, «,)CE
to Cg at (fo,ap) coincides with the linear space {(r,v) € R x R,
V-0 H =0, (Fyyl)v+ta =0}.

So under condition (CI) the kernel of lI/g (t0, o) coincides with the tangent space
Tty,a0)(CE). Hence lI/,’;/ (to, o) is non-degenerate on the normal space at Cg on
(to, @p), as is required to apply the stationary phase theorem. At this point we have
already proved that there exists an asymptotic expansion for the regularized density
of states p4 (E). A more difficult problem is to compute this asymptotics in general.

The simpler case is the period 0 of the flow: Cp = {0, «), H(«¢) = E}. Then
the property (CI) is satisfied if E is non critical for H. Remark that O is not an
accumulation point in the periods of classical paths.

The Hessian matrix on Cg is

_1 i
{00 = ( EAbe ZVOH)

where VH = 3, H. The normal space N, to Cg has the basis {(1,0), (0, VH)}.
So the determinant of ¥/ (0, ) restricted to No.w is [VH |*. The stationary phase
theorem gives us

Proposition 48 Let g be such that g is supported in | — Ty, To[ where To > 0 and
@' has no periodic trajectory on X g with a period in | — Ty, To[\{0}. Then we have

x (H())

E)=g(0)2m)™"
PA(E) =g(0)(2m) </2 VH|

d2E>h1—" +O(R*™) (5.53)

E

Moreover the asymptotics can be extended as a full asymptotics in h.
As an application of (5.53) we have the following.

Theorem 30 (Weyl asymptotic formula) Assume that H satisfies condition (H.0).

Consider L1 < Ay such that H=Y[M] — &, k2 + €] is compact and are non critical

values for H. Let Ny be the number of eigenvalues E j(h) ofI:I inl=[A,A2].
Then we have

Ny =Qrh)™"Vol{a e R, H(a) € I} + O(R'™") (5.54)
Proof Using a partition of unity it is enough to consider

s = Y x(Ejm)

where x is supported in a small neighborhood of 1| or A, (between A; and A, we
can apply the functional calculus to get an asymptotic expansion; see [107]).
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To prove an asymptotic expansion for o (1) we use (5.53) choosing A = x (H), g
even, g(0) =1, g >0 and g(A) > 8¢ for |A| < gy for some &g > 0, &g > 0. We have

1 —A
G(A)—ﬁ/g<uh )U(,u)du:/(a(k)—o()»—i—rﬁ))g(t)dt (5.55)

From (5.53) we have, after integration,

— A
h—lfg(” )o(,u)du:(Znh)_”/ do x(H(@)+O(h™)

h H(a)<)

Using the following estimate, for some C > 0:
o +1h) —o)| < C(1+ |z ™" (5.56)

we get

oy =@at " [ dax(t@)+0(i)
H(a)<)\
then (5.54) follows.
Now we prove (5.56). It is enough to consider the case T > 0.
Suppose T < 9. Then

rTh —A
T S/dug<MT> =o(n")

For v = ¢¢p with £ € N, using the triangle inequality, we get
o (A + Legh) — o ()| < CLR'™"
Finally for £eg < 7 < (£ 4 1)g0 using again the triangle inequality we get (5.56). [J

Remark 28 Assuming that the set of all periodical trajectories of H in X'g is of
Liouville-measure 0, it is possible to prove by the same method the following result.
For every C > 0 we have

limh"’lti{j,E—ChfE,(h)fE—Ch}:f dLg =:Lg(Zg)  (5.57)
ANO ’ >k

This result was already proved in [106, 158] using Fourier-integral operators.

Now we come to the proof of the Gutzwiller trace formula (5.18).

Note that for isolated periodic orbits on X'r the non-degenerate assumption is
equivalent to the condition (CI). So it results from our discussion that in this case
the Hessian matrix ¥}, at (fo, ag), where y is a periodic path with period 7o = kT
and o € y is non-degenerate on the normal space J\/zo,a0 at Cg. Here J\/zo,a0 is the
linear space {R(1,0) + {(0,v), v € R?", o (v, VH) = 0}. Our main problem is to
compute the determinant of the restriction 11/]3’, | (to, &) of W[l(10, @) to Ny, e We
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shall denote IT; the orthogonal projection in R** on JV H () := & (tangent vector

to y).
It is convenient to introduce the notations
| T i .
G:E(W,O—IL), K:(F,O—Jl)(G+§J>+zJ

Using that Fy, is symplectic we have
33 o WE (t0, 00) = K (Fyy — 1)
So we have

Go - o Ka ) (5.58)

‘I’fg(m’“‘)):"l< Ka  K(Fy—1)

This formula is general. Furthermore we have the very useful result:

Lemma 35 K is a 2n x 2n invertible matrix and we have

o 1(u-1 -i@+V)
K __§<i11+v —(]l—i—iV)) (559

In particular we have
Yy -1
detK = (—D)" det(i) (5.60)
where U =U,,, V =V, Y =Y.

Proof We have, using definition of W,

W—-1  —i(W-1)
—i(W+1) —-(W+1)

[ 2V 2V \ (W -iVv)! 0
“\—2iU -2U 0 U —-iv)~!

After some algebraic computations, using in particular the symplectic relations, we

Wﬁ—1+i1=<

find
K (~L-iV ia+U) (U —iv)! 0
“\-i1-V —-14U 0 U —-iv)!
So we get the lemma. d

Now we begin to use the non-degeneracy condition to compute the determinant
of W7 | (to, p). We have

7 _ .1 d Ka
det(i~'Wy | (t0,20)) =i det(m K(Fto—jl)+ind> (5.61)

where d = J(W* —1).
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Let us introduce now convenient coordinates. We define a Poincaré section S by
the equation 7 () = 0 where 7 is a classical observable such that {7, H}(«) =1,
T (ap) =0, T is defined in an open neighborhood Vy of «ay.

The first return Poincaré map P(a) = ¢7 @ () is defined in Vo N S such that
T(dT @ ()) = 0 with T (erg) = 19, T (ex) is the first return time.

In Vy we can define new symplectic coordinates: (e, 7, @), where e = H(x),
T =T (), w(a) € R2"=D_ The differential P’(cg) of P at g is related with the
stability matrix F = (3,¢)(ag):

P'(ag)v=Fv— (FTVT -v)a (5.62)

For e near E, the Poincaré map P, is defined in VyNSN X, into V| NS N X, where
V1 is a neighborhood of g, by P(a) = dT O (), T(ag) =to.Itisa symplectic map
and for e = E its differential P, is the restriction of P’(«xg) to Ny, := To,y (SN Xf)
(for more details we refer to [103]).

Note that N, ={v € R¥ v.VH =v-VT =0}.

When the energy e is varying around E we have a smooth family of closed tra-
jectories of period T (e) parametrized by a(e) € Vo NS such that «(E) = «g and
T(E) =ty. T and o are smooth in e. This result is known as the cylinder Theorem
[103]. It is a consequence of the implicit function theorem applied to the equation
o7 (e)(a(e)) = a(e). In particular we have

(F-1a'(E)=T'(E)a (5.63)

Note that o’ (E) - VH = 1 so a’(E) # 0 and the non-degeneracy assumption implies
that {&, o/ (E)} is a basis for the generalized eigenspace E; for the eigenvalue 1 of
F (we have a non-trivial Jordan block if 7/(E) s 0).

Let V be the symplectic orthogonal of E1: V = {v|o (v, &) = o (v, o' (E)) = 0}.
The restriction of F to V is the algebraic linear Poincaré map P, @) Using (5.62)
we can easily prove that P, and P, @ are conjugate: M P, =P, @l where M is an
invertible linear map from N, onto V. So we have

det(Py — 1) = det(P,“) — 1)

In particular if y is non-degenerate then P, — 1 is invertible. The strategy is to
simplify as far as possible the r.h.s. in (5.61).

To simplify our discussion we shall assume that 7’ (E) # 0. It is not a restriction
because if 7’ = 0 we can perturb a little F by F¢, ¢ > 0, such that

Fé¢=F onV, Féa =a, Féa'(E)=a'(E) +ca

The determinant we have to compute depends only on the symplectic map F, so we
can compute with F®& and take the limit as ¢ — 0.
The first step is to find v € C** such that

(F—Dv+v-eK la=a (5.64)
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With this v := vp we get

d—vy-Ka Ka
c—1,q,/ a1 0
det(z lI/E,J_(to,ao)) =i det( 0 K(F—1)+ iﬂd> (5.65)
where I1;, = (l’;z)d.
A direct computation gives
K la= —%(F +1)VH

so (5.64) is transformed into
(F—1)v= %v &(F +1)VH
Using (F — ]l)TVH =0 we have v - @ =0, so we have to solve

(F—Dy =« (5.66)

We are looking for vg = A& + pa'(E) and we find

vo = T/:E) <%a = o/(E)> (5.67)

So our first simplification gives the expression
det(i "W} | (to,@0)) =i~ ' (d — voK &) det K det(F — 1+ iK' IT;)
For the first term we get

, .
. E),
d—voKdz—ivo-sziM

T'(E)

detK is already computed. We shall compute det(F — 1 + iK~'IT;) in a
symplectic basis {vy, v2, v3, ..., v,} wWhere v = &, vy = W/(E)a’(E) where
o(v2j—1,v2;) =1for 1 < j <mnand o(vj,vx) =0if |j — k| # 1. In this basis
we have

K av; = Y Y k1 g
alj = |Ol|2 [

So combining with the first column we can eliminate the terms K ’117& vjforj>2
and using that F — 1 is invertible on V we can assume that in the first column only
the two first terms are not zero. Finally we have obtained

x; 6
det(F —1+iK ') = det <x2 0) 0 = —8xpdet(P, — 1)

0 [P, —1]
(5.68)
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It is left to compute x7 and 6. We have

T'(E)

§=0((F -1y, v0) = TVH 2 (B

o (& o' (E)) (5.69)

1
xzz—ia((F+]l)VH, v) =|VH|? (5.70)

So we get
det(i7'WY | (to,@0)) =2"|VH|* det(Y) "' det(P, — 1) (5.71)

Using the expression (5.40) we find the leading term p; ,, (E) for the contribution of
the periodic path y in formula (5.18), assuming for simplicity that A = 1,

p1y(E) = m)">[det(YU™)], ™ Pldet U7 [det Y112

x §(T,)[det(P, —1)] "/ e/Ve | VH| ™! (5.72)

where [1]'/? denotes a suitable branch for the square root. So we get

172 (5.73)

p1y(E) = (Zn)n/z—lei(Sy/h+oyn/2)§(Ty)T;|det(]l _ Py)|_
with oy € Z and S, = §, pdgq.
Let us remark that, because P, is symplectic and 1 is not eigenvalue of P, , we
have det(P), — 1) = (—1)°/| det(P, — 1)| where o is the number of eigenvalues of
P, smaller than 1. So we see that

eio’yﬂ/2 :ieio/ﬂ/2 (574)

Thus we get that the contribution of the Maslov index in Theorem 28 is to determine
the sign in (5.74).

We have given here an analytical method for its computation. We do not consider
its geometrical interpretation (“Maslov cycle”) for which we refer to the literature
on this subject [60, 134, 166] and references in these works.

The other coefficients, d” are spectral invariants which have been studied by
Guillemin and Zelditch. In principle we can compute them using this explicit ap-
proach. This completes the proof of Theorem 28.

5.5 A Pointwise Trace Formula and Quasi-modes

From the well known Bohr—Sommerfeld quantization rules it is believed that there
exist strong connections between periodic trajectories of a classical system H and
bound states of its quantization H. In this section we discuss some properties of lo-
calization for bound states or approximate bound states (quasi-modes) near periodic
trajectories in the simplest cases. More general results are proved in [153].
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5.5.1 A Pointwise Trace Formula

The idea of this formula has appeared in [153]. We give here a proof of the main re-
sult of [153] for Gaussian coherent states. We assume that properties (H.0) and (H.1)
are satisfied. Consider the local density of states defined for every a € R*" by

E—E;(h
pe(@ = S ) (800 e )
J

where ]h are the normalized eigenfunctions for H, H W ]h =E;(hy ]h

Theorem 31 The local density of states pg () has the following asymptotic behav-
ior as h — 0:

pe(@) = b(g,a)ht* (5.75)
keN

The coefficients (g, o) are smooth in « and are distributions in g. Their expres-
sions depend on the behavior of the path t — ¢'o.

(i) If the path t — ¢'a has no periodic point with period in supp g then €; (g, @)
are distributions in § supported in {0}. In particular the leading term is

n+l 1

1
lo(g, ) = —=m~ 2 ——g(0 5.76
(g, @) ﬂ” 2 ||VH(oz)||g( ) (5.76)

(ii) Ift — ¢'a has a primitive period T*, £ (g, o) are distributions in & supported
in{mT*, m € Z}. In particular the leading term is

lo(g.a)=—=m""7 Y §(mT*)C(m) (5.77)

where
1

Cm)=(1— W poa-a) 2.

m

Recall that W,tI depends on the monodromy matrix F;.

Proof As for the trace formula (5.18), we first give a time-dependent formula for

ok (o) with the propagator U (t) = e iiH,

If 11, is the orthogonal projection on the coherent state ¢, we have

pE(@) =Tr<g<E - ﬁ)x(ﬁ)na)

by computing the trace on the basis ¥ ]h So we get

1 L ~
pr(@) = 5 / dt 50 7 E gy, U0 x (H)ga) (5.78)
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In (5.78) the integrand is the same as in the proof of the trace formula. The difference
is that here we have only a time integration. So the stationary phase theorem is much
simpler to apply: « is fixed such that H(«x) = E, the critical set of the phase g,
is defined by the equation ¢’a = « so we have t = mT* where T* is the primitive
period (T* = 0 if « is not a periodic point of the flow).

12}5 (t, @) is here the second derivative in time of {/g. So we have
i

Vet o) ==(1-WHa -

(O]

For + = 0 we have 1//E (a) = %||VH||2. Using that VH # 0, the stationary phase
theorem gives the part (i) of the Theorem.

For the periodic case we have to recall that W, is a complex symmetric n x n
matrix and that W*W < 1. With this properties we have easily that for every T > 0
there exists ¢y > 0 such that

R(L—W))a-&>cllal|> forre[-T,T]

So the critical points t =mT*, m € Z, are non degenerate and the stationary phase
theorem gives the part (ii) of the Theorem. 0

5.5.2 Quasi-modes and Bohr-Sommerfeld Quantization Rules

Quasi-modes (or approximated eigenfunctions) can be considered in more general
and more interesting cases (see [125, 153, 159, 160]) but for simplicity we shall
consider here mainly the fully periodic case. We always assume that (H.0) and (H.1)
are satisfied. We introduce:

(H.P) For every E € [E_, E1], X is connected and the Hamiltonian flow @;_1 is
periodic on X'g with a period Tg.

Remark 29 For n =1 the periodicity condition is always satisfied. For d > 1 this
condition is rather strong. Nevertheless it is satisfied for integrable systems and for
systems with a large group of symmetries.

Let us first recall a result in classical mechanics (Guillemin—Sternberg, [95]):
Proposition 49 Let us assume that above conditions are satisfied. Let y be a closed
path of energy E and period Tg. Then the action integral J (E) = |. v pdq defines

a function of E, C* in 1E_, E4[ and such that J'(E) = Tg. In particular for one
degree of freedom systems we have

J(E) =/ dz
H()<E
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Now we can extend J to an increasing function on R, linear outside a neigh-
borhood of 7. Let us introduce the rescaled Hamiltonian K = Qn)~'g (ﬁ ). Using
properties concerning the functional calculus [107], we can see that K has all the
properties of H and furthermore its Hamiltonian flow has a constant period 27 in

Z‘fo = Kal (A) for L € [A_, A4] where AL = %j(Ei). So in what follows we re-
place H by K, its “energy renormalization”. Indeed, the mapping %j is a bijective

correspondence between the spectrum of Hin[E_, E] and the spectrum of K in
. . T 1
[A—, A4], including multiplicities, such that A ; = Ej (E)).
Let us denote by m the average of the action of a periodic path on 2){( % and by
W € Z its Maslov index (m = % /, y P dx — 2w F). Under the above assumptions the

following results were proved in [107], using semi-classical Fourier-integral opera-
tors and ideas introduced before by Colin de Verdiere [44] and Weinstein [195].

5.5.2.1 Statements of Results Concerning Spectral Asymptotics
Theorem 32 [44, 107, 195] There exist Co > 0 and hy > 0 such that

spect(K) N[A—, 241 S | I (®) (5.79)
keZ

with
L(h) = [—m n (k - %)h — Coli2, —m + (k — %>h+ C0h2:|
for h €10, h].

Let us remark for /& small enough, the intervals I (%) do not intersect and this
theorem gives the usual Bohr—Sommerfeld quantization conditions for the energy
spectrum, more explicitly,

1 jz
A= EJ(Ek) = (k— Z)h—m—i— O(FLZ)

Under a stronger assumption on the flow, it is possible to estimate the number of
states in each cluster Iy (h).

(H.F) q§5<0 has no fixed point in Efo, VA €A —e&, Ay +&]and Vt €]0, 27 [.
Let us denote by di (/) the number of eigenvalues of K in the interval I (h).

Theorem 33 [42, 44, 108] Under the above assumptions, for h small enough and
—m + (k — )h e [A_, Ay ], we have

di(h) = Z I (—m + (k - %)h) hi—4 (5.80)

izl
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with I'; € C*®°([A_, A4]). In particular

ri) = @n)~ f dv,

>

In the particular case n = 1 we have u =2 and m = — min(Hy) hence dy (h) = 1.
Furthermore the Bohr—Sommerfeld conditions take the following more accurate
form:

Theorem 34 [107] Let us assume n = 1 and m = 0. Then there exists a sequence
fr € C°([F_, Fy)), for k > 2, such that

1
A@+thfk(x@)=<z+§)h+ 0(h*) (5.81)

k>2

for € € Z such that (€ + $)h € [A_, A ].
In particular there exists g € C*°([A—, Ay]) such that

Ag:<E+%>h+2hkgk<<£+%)ﬁ>+0(h°°) (5.82)

k=2
where £ € Z such that (€ + })h e [F_, F].

We can deduce from the above theorem and Taylor formula the Bohr—Sommer-
feld quantization rules for the eigenvalues E,, at all order in 7.

Corollary 17 There exist A — b(x, k) and C™ functions b; defined on [1.~, AT
such that b(A, h) = ZjeN b (MR 4+ 0(h®) and the spectrum E, ofI-AI is given by

E,= b((n + %)h h) + 0 (1) (5.83)

for n such that (n + %)h € [A~, AT1. In particular we have by(1) = T~ (2w L) and
b =0.

When H~'(I) is not connected but such that the M connected components
are mutually symmetric, under linear symplectic maps, then the above results still
hold [107].

Remark 30 For n = 1, the methods usually used to prove existence of a complete
asymptotic expansion for the eigenvalues of H are not suitable to compute the co-
efficients b; (1) for j > 2. This was done recently in [46] using the coefficients d jx
appearing in the functional calculus.
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5.5.2.2 A Proof of the Quantization Rules and Quasi-modes

We shall give here a direct proof for the Bohr—Sommerfeld quantization rules by
using coherent states, following [26]. A similar approach, with more restrictive as-
sumptions, was considered before in [151].

The starting point is the following remark. Let » > 0 and suppose that there exists
C, such that for every i €]0, 1], there exist E € R and ¢ € L%(RY), such that

7 r imi —
|(H—E)y| <C:h", and liminf [y := ¢ > 0 (5.84)

If these conditions are satisfied, we shall say that H has a quasi-mode of energy E
with an error O (/"). With quasi-modes we can find some points in the spectrum of
H close to the energy E. More precisely, if § > %, the interval [E — 8h", E 4 6h"]
meets the point spectrum of H. This is easily proved by contradiction, using that H
is self-adjoint. So if the spectrum of H is discrete in a neighborhood of E, then we
know that A has at least one eigenvalue in [E — 8R", E 4+ §1"].

Let us assume that the Hamiltonian H satisfies conditions (H.0), (H.1), (H.P).

Using Proposition 49, we can assume that the Hamiltonian flow <DIH has a con-
stant period 27 in H‘l]E_ —¢&, E4 + ¢, for some ¢ > 0.

Following an old idea in quantum mechanics (A. Einstein), let us try to construct
a quasi-mode for H with energies E™ close to E € [E_, E. ], related with a 27
periodic trajectory yg C X go, by the Ansatz

2 gty
Ve :/ e n Ul)p,dt (5.85)
0

where z € yg (¥, is a state living on yg). Let us introduce the real numbers

1 2
o(h)= ﬁfo [¢®)p(6) — Ho(q(1), p(1))]dr + %

where 1 — (q(t), p(¢)) is a 2w -periodic trajectory yg in H(f1 (E), E€|E_, E4],
W is the Maslov index of y. In order that the Ansatz (5.85) provides a good quasi-
mode, we must first check that its mass is not too small.

Proposition 50 Assume that 27 is the primitive period of yg. Then there exists a
real number mg > 0 such that

Wy, | = mph!* + 0(h'/?) (5.86)

Proof Using the propagation of coherent states and the formula giving the action of
metaplectic transformations on Gaussians, up to an error term O (v/h), we have



5.5 A Pointwise Trace Formula and Quasi-modes 149

2
e ll? = Geh) /2 / / /R P00 det(4, +i8y)

x (det(A, +iBy)) " dtdsdx

where the phase @ is
1
D(t,5,x) = —)E+ (6 — ;) + 5(% “Ps —4qr - ) +x-(pr — ps)

1 —
+§(U(x—qt)-(x—qt)—Fs(x—qs)'(x—qs)) (5.87)

I3 is the complex matrix defined in (5.36).
Let us show that we can compute an asymptotics for ||, | with the stationary
phase Theorem. Using that J([7}) is positive non-degenerate, we find that

J(@(,5,x)) =0, and [I(@(t,5,x)=0} & fxr=qg =¢q;} (5.89)

Onthe set {x = g; = ¢} wehave 0, P (¢, s, x) = pr — ps. Soif {x = g; = ¢} then we
have r = s (27 is the primitive period of yr) and we get easily that 9,® (¢, s, x) =0
In the variables (s, x) we have found that <15(t s, x) has one critical point: (s, x) =
(t, q¢). Let us compute the Hessian matrix 8 @ at (¢,t,qr):

—(Iids = o) -dr - [Ti(Gr — p)"
Qb (1,1, :( (Lidge = P - dr : 5.89
N O 21 o5

To compute the determinant, we use the identity, for » € C, u € C?, R € GL(C?)
T T, p-1 T
rou 1 0 r—u' -Ru u
(u R) (—R—lu 11) - ( 0 R> (550)

2det[—id2, @ (1,1,91)]

Then we get

. . ~ -1, . . N . . ~
= Iigs - G + () (RT1G — po) - (RTde — pr) det2315] (5.91)

But E is not critical, so (¢g;, p;) # (0, 0) and we find that det[—iag)((]ﬁ (t,t,q:)] #0.
The stationary phase Theorem (see Appendix A) gives

1Wye I = me?Vh+ O(h) (5.92)
with

2
m%=2(d+”/2ﬁ/ | det(A, +iBy)| | det[—id2 @ (1, 1,q)]| " dr
0

(5.93)
0

We now give one formulation of the Bohr—Sommerfeld quantization rule.
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Theorem 35 Let us assume that the Hamiltonian H satisfies conditions (H.0),
(H.1), (H.P) with period Tg = 2 and that 21 is a primitive period for a periodic
trajectory yg C XE. .

Then 5—1/411/” is a quasi-mode for H, with an error term O(h'/*), if E satisfies
the quantization condition:

o (h) :=%

1
— dgeZ 5.94
+2nh/yEp qe€ (5.94)

Moreover, the number A := % ny pdq — E is constant on [E_, E.]. Having cho-
sen C > 0 large enough, the intervals

1k, ) = [(% +b+k>h+k—Ch7/4, (% +b+k>h+A+Ch7/4:|

satisfy: if [ (k, h) N[E_, EL1] # @ then H has an eigenvalue in I (k, k).

Proof We use, once more, the propagation of coherent states. Using periodicity of
the flow, we have, if H(z) = E,

UQm)p, =e*" MWy 4 0(h) (5.95)

Here we have to remark that the term in ~/% has disappeared. This needs a calcula-
tion.
By integration by parts, we get

A e
Hvyryp =ih/ er o U(t)p, dt
0
=lh(e U Qm)e; _¢Z)+Ew}’E
= Ey,, + O(h?) (5.96)
So, we finally get a quasi-mode with an error O (1'/*), using (5.86). d

More accurate results on quasi-modes, using coherent states, are proved in par-
ticular in [125, 164].



Chapter 6
Quantization and Coherent States
on the 2-Torus

Abstract The two dimensional torus T? is a very simple symplectic space. Nev-
ertheless it gives non trivial examples of chaotic dynamical systems. These systems
can be quantized in a natural way. We shall study some dynamical and spectral
properties of them.

6.1 Introduction

The 2-torus T2, with its canonical symplectic form, is seen here as a phase space. It
is useful to consider classical systems and quantum systems built on T? for at least
two purposes.

Dynamical properties of classical non-integrable Hamiltonian systems in the
phase space RY x R? (d > 2) are quite difficult to study. In particular there are
not so many explicit models of chaotic systems. But on the 2-torus it is very easy to
get a discrete chaotic system by considering a 2 x 2 matrix F' with entries in Z and
such that [Tr F| > 2. So we get a discrete flow 1 — F'z fort € Z,z € T2! where
T2 = R2/7Z? is the 2-dimensional torus.

In 1980 Hannay—Berry succeeded to construct a “good quantization” R(F) cor-
responding to the “classical system” (T2, F). From this starting point many results
were obtained concerning consequences of classical chaos on the behavior of the
eigenstates of the unitary family of operators R(F) as well by physicists and mathe-
maticians. In this section we shall explain some of these results and their relationship
with periodic coherent states.

6.2 The Automorphisms of the 2-Torus

We have already seen in Chap. 1 that R? is a symplectic linear space with the canon-
ical symplectic bilinear form o = dg A dp. T? is also a symplectic (compact) man-
ifold with the symplectic two-form o = dg A dp identified with the plane Lebesgue
measure.

For t € N, F'z means that we apply F z-times starting from z, and if # > 0 then F' = (F~/)~!,
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Here we call automorphism of the 2-torus T? any map F induced by a symplectic

matrix F € SL(2, 7).
a b
F= (c d) (6.1)

Let F be of the form
with entries in Z satisfying det(F) = ad — bc = 1; the corresponding map of the
2-torus is given by

(q,p) € T> —> (¢.p) € T2, withg' =aqg+bp (mod 1), p’ =cq+dp (mod 1)

So F is a symplectic diffeomorphism of T2. In particular it preserves the Lebesgue
measure m; on T2,

We shall consider now the discrete dynamical system in T? generated by F.

Let us first recall the definitions and properties concerning classical chaos (er-
godicity, mixing). For more details we refer to the books [55, 123, 140].

A (discrete) dynamical system is a triplet (X, @, m) where X is a measurable
space, m a probability measure on X and @ a measurable map on X preserving the
measure m:

For any measurable set E C M one has m(@E)=m(E).

The orbit (or trajectory) of a point x € X is O(x) := {®*(x), k € Z}. The orbit is
periodic if 7 (x) = x for some T € Z, T # 0.

Definition 13 For a dynamical system D = (X, @, m) let us consider the time av-
erage or Birkhoff average E7(f, x) = % Z;zg f(@(x)), where f is measurable.
@ is ergodic if for any function f € L'(X, m) one has

Tlim Er(f,x)=m(f), m—everywhere (6.2)
—00
where m(f) := [ f dm is the spatial average.

Remark 31 If a dynamical system is ergodic its time average (in the sense of the left
hand side of (6.2)) equals the “space average”, and does not depend on the initial
point x € X almost surely.

Proposition 51 A dynamical system D = (X, @, m) is ergodic if and only if one of
the following statements is satisfied:

(i) Any measurable set E C X which is ®-invariant is such that m(E) =0 or
m(X \ E)=0.
(i) If f € L°°(X, m) is @-invariant (f o @ = f) then it is constant m-everywhere.

See [123, 139] for proofs.
This means in particular that the periodic orbits of an ergodic dynamical system
are rather “rare” from a measurable point of view:
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Proposition 52 Let @ be a continuous map on a compact topological space X en-
dowed with a probability measure m which is @ -invariant and such that m(U) > 0
for any open set U. If (X, @, m) is ergodic, then the set of periodic orbits in X is of
measure 0.

Although relatively rare, the periodic orbit have a strong importance in the frame-
work of ergodic theory since they allow the construction of invariant measures in the
following way. Let x € X and let O (x) be a periodic orbit of period p(x) € R. The
following probability measure is clearly invariant:

p(x)

Z ok (x)

where §, is the Dirac distribution at point a € R.

Given a map @ in X and m an invariant measure, it is not always true that m is
the unique invariant measure. If it is the case the map @ is said “uniquely ergodic”
and the unique invariant measure is ergodic (see [123]).

Well known examples are irrational rotations on the circle (or translations on the
torus T! ). If « is an irrational number, @ (x) = x +«, mod.1 defines a unique ergodic
transformation in T', the unique invariant measure is the Lebesgue measure (see
[123]). In the topological framework one has a characterization of such maps [55]:

my

p(x)

Proposition 53 Let D = (X, @, m) be a dynamical system with X a compact metric
space, and @ a continuous map. D is uniquely ergodic if and only ifV f € C(X):

hm =0

Zfod>’—m(f)

e¢]

where || - ||« is the norm of the uniform convergence.

There is a stronger property of dynamical systems which is the “mixing” prop-
erty:

Definition 14 A dynamical system D = (X, @, m) is said to be mixing if Vf, g €
L%(X,m) one has

lim [ f(®*x)g(x)dmx)=m(f)m(g)

k—oo Jx

The following result is useful and easy to prove.

Proposition 54 D = (X, @, m) is mixing if and only if there exists a total set T in
L*(X,m) such that for every f, g € T we have

dm | F(@5 () g(x)dm(x) =m(f)m(g)
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In the framework where X is a differentiable manifold, one can define the notion of
Anosov system (see [123, 139]):

Definition 15 A diffeomorphism @ of a differentiable manifold M is Anosov if
Vx € M, there exists a decomposition of the tangent space at x in direct sum of two
subspaces E¥ and E¥ and constants K > 0, 0 < A < 1 satisfying

(Dy®)ES = Ey(y.  (Dy®)EL=Eb

and
[(De@) x| < K (D@ ") EY| < K2
VxeM,neN.

We have the following useful stability result (see [139]).

Theorem 36 Let M be a compact manifold and ® an Anosov diffeomorphism
on M. There exists € > 0 small enough such that if || — ¥ ciyy < € then ¥
is an Anosov diffeomorphism on M, where

I¥llcrmny = S“/IV’[(|¢(X)| + [ D@ 0)])
xXe

Theorem 37 If @ is a diffeomorphism Anosov on T? then the dynamical system
D= (Tz, @, ) is mixing, | being the normalized Lebesgue measure on T2,

Let F € SL(2, Z). The hyperbolic automorphism of the 2-torus defined by F' rep-
resents the simplest examples of hyperbolic dynamical systems when |Tr F| > 2.
Namely if this is satisfied then F has two eigenvalues A, = A > A_ = A~ with
A > 1. Denote T,(T?) the tangent space at point x € T2, E} (resp. E;) the
eigenspace associated to the eigenvalue A (resp. A~!) and D F : Ty(T?) —>
Ty (T?) the differential of F. One has

IDxF)| = Alllvll ifveEf

IDcF@)| =[x "ilvll ifveE;

where || - | is the norm associated to the Riemannian metric ds* = dg* + dp? on T2.
This proves that F is an Anosov diffeomorphism, and is therefore ergodic and mix-
ing.

We can also give a more direct proof that F' is mixing using Proposition 54. Let
us consider the total family in L%(T?), ex(x) = e*™K* where k € Z>. We have

/ek(x)eg(q)”(x))dm(x)zf ex(x)e@pryng(x) dm(x)
T2 T2
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If £ # 0, using that A has eigenvalues A and A~! with A > 1, we see that (®7)"¢ is
large for 4n large hence we get sz er(x)e (D" (x))dm(x) = 0. We can conclude
using Proposition 54.

One can easily identify the periodic points of F':

Proposition 55 The periodic points (g, p) € T2 of an hyperbolic automorphism
of T2 are exactly points (q, p) such that (¢, p) € Q*/Z>.

Proof Let A be an hyperbolic automorphism of T2, and n € N*. Then the finite set
L,= {(%, %), r,s =1,...,n} is invariant under A and so all elements of L, are
periodic for A. Let m # n € N*. Since one has

ros
Lm,n={(—,—),r:1,...,m,s=1,...,n}CLmn
m n

all points of L,, , are also periodic. Thus all points in Q?/Z? are periodic for A. No
other point can be periodic. Namely a point (¢, p) € T? is periodic of period k € N*
if and only if there exists (m, n) € 72 such that

«=9(3)=()

But the matrix A¥ — 1 is invertible and has only rational entries. Thus

q) _ ( Ak _ 1)—1 my _ [Tk
p n Sk
with (r, si) € Qz. This completes the proof. O

Remark 32 An hyperbolic automorphism of T? is always mixing (so ergodic) but
never uniquely ergodic since every periodic point x gives an invariant probability
measure my.

6.3 The Kinematics Framework and Quantization

We closely follow the approaches of [10, 27, 29, 30, 59, 104].

Let us recall that we consider as phase space the 2-torus T? = R?/Z? with its
canonical symplectic two form.

Using the correspondence principle between classical and quantum mechanics,
it seems natural to look for the quantum states ¥ having the same periodicity in
position and momentum (g, p) as the underlying classical system.

The Weyl-Heisenberg translation operators f"(q, p) “translate” the quantum
state by a vector z = (g, p) € R%. So we are looking for some Hilbert space 7,
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included in the Schwartz temperate distribution space S'(R), such that for every
Y € H we have

T(1,00y =e 1y (6.3)
70, Dy =%y (6.4)

where we allow a phase 6 = (61, 62) since two wavefunctions ¥, Y, satisfying
Yy = e!“yY; define the same quantum state and, more importantly, we shall recover
the plane model as 8 runs over the square [0, 27 [ x [0, 27 [.

(6.4) means that the A-Fourier transform F v satisfies

Fr(p+1) =e 2 Fry(p) (6.5)

Recall that Fryr (p) = 2nh)~/2 [pe'4P/hy (q) dg.
From (6.3), (6.4) we see that ¥ must be a joint eigenvector for the Weyl-
Heisenberg operators 7' (g, p) and we get

70, DT (1,00 = T(1,007(0, Hy
Since we have
7, DT (1,0)=e/"T(1,0)7(0,1)

conditions (6.3), (6.4) entail the following quantification condition ﬁ = N where
N € N and £ is the Planck constant. Moreover, the quantum states v live in a N-
dimensional complex vector space.

This result can be obtained using the powerful methods of the geometric quanti-
zation [59]. Here we follow a more elementary approach as in [29, 30].

Let us denote by H (@) the linear space of temperate distributions 1 satisfying
periodicity conditions (6.3), (6.4) with i = ﬁ (remark that if & # ﬁ and if
satisfies (6.3), (6.4) then i = 0). So in all this chapter it is assumed that i = 2;+N
for some N € N.

Proposition 56 Hy (0) is a N dimensional complex linear subspace of the temper-
ate distribution space S'(R).

Proof Lety e H N(Q). From condition (6.4) we find that the support of i is in the
discrete set {g; = 2%}92 , ] €Z}. So ¥ is a sum of derivatives of Dirac distributions

v=> cj.‘ Sg). Using uniqueness of this decomposition we can prove that cj.a) =0

for o # 0, so we have ¢ = chi(qu where ¢; = CE-O). Now, using (6.3) we get a
periodicity condition on the coefficient ¢ ;. So we have

cj+N=ei6‘cj, VieZ and o = Z cj<Zeik9‘6qj+k) (6.6)
0<j<N-1 keZ

Conversely it is easy to see that if ¢ satisfies (6.6) then ¢ € Hx(0). So the propo-
sition is proven. O
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From the proof of the proposition, we get a basis of Hy (6):

e;@) :N_l/zzeikQIqu+k» 0<j<N-1
keZ

eﬁe) obviously satisfies (6.3). Let us check that it satisfies (6.5) by computing its
Fourier transform. As a consequence of the usual Poisson formula:

Zeziﬂkx — Z(Sl(x)
keZ Lel
we get after some easy computations

fhe§0>(p): -1 —217ZP(J+92/27T)Z(3_+2 (6.7)
12/ "

Let us introduce py = N + 271 and {;‘20) = N"2 ZkeZ e iktag, 2O for ¢ =
Nt
0,..., N — 1. We have now

> Fie (6.8)

0<t¢<N-1

where the matrix element F; ¢ is given by

0,0
Fjo= N_l/zexp<——<2n]£ + 08 +01j+ %))
b4

We put on H y (6) the unique Hilbert space structure such that {e( Jo<j<n—11is an
orthonormal basis. So we see that Fp is a unitary transformat1on from Hy (61, 62)
onto Hy (=62, 01). In particular if 6 = (0, 0), the matrix {F ¢} is the matrix of the
discrete Fourier transform.

For all v € H g, 9,) we have

N—1
0
V= cj@e
Jj=0
Then the vector
N—1
(c;(¥) ;=g

is interpreted physically as the quantum state of the particle in the position represen-
tation. Similarly in the momentum representation one sees that 1//9 € Hy(—03,6)
is decomposed as

. N-—1
70 =" d;je
j=0
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One goes from the position to the momentum representation via a generalized Dis-
crete Fourier Transform:

N 0, (6 1 2k 6
d;&yﬁ):exp(—iﬁ(i—i— >) Zcﬂ&)exp(—z](i} -i-ﬁl))

For 6 = (0, 0) we recognize the discrete Fourier operator that we have introduced
above.

A convenient representation formula for elements of H y (6) can be obtained us-
ing the following symmetrization operator:

2(9) Z( Nzl ra1=022) F () (6.9)

z€72

Let us remark that ¢ € H () if and only if { € S’ (R) satisfies

f(z)w — (_I)Nzlzzeiﬂ(((?zﬁl)»(zl,Zz))w (6.10)

Proposition 57 ¥ 1(\?) defines a linear continuous map from S(R) in S'(R). Its range
is Hy (0). Moreover for every ¢ € S(R) we have

( (9) E(@)w l/ZZelzelw(q 6)2850)(10) (611)
Lel
and
2 1 ®) 2
/R|1/f(x)| dx:m//mﬂ[zkj ()| do (6.12)

The map W +— {ei.g)(t/f)}osjgv_l can be extended as an isometry from L*(R) onto
the Hilbert space L2([0, 272, (CN, o 2)

Proof Recall that we have
T@y (x) =e 12/ 2he 2/ My (x — 7y)

So we have
E](V@)w. — Z ei(glzl_QZZZ)eiXZZ/hl//(x _ Zl)
21,22€7Z

We first compute the z;-sum using the Poisson formula:

Z ei(xz2/hi—0222) _ Z 8¢

7 +2711\1
ne
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we get

E}(\?)w — % Zeik(ﬂ Z (Z eiwll//(qj _ g))(sq_/-i-k (6.13)
keZ 0<j<N—-1 “eZ
The equalities (6.11) and (6.12) follow easily from (6.13).

In particular we see that for every j =0,..., N — 1 we have eﬁg) = Z‘[(\;})lpj
where ¥} (x) = Yo(gj — x), Yo is C°, with support in [— 7%, 751 and ¥ (0) = 1.
This proved that X (S(R)) = H (6).

Let us define the map Z(y) = {65.9)(1,0)}05]-51\/_1. We know that 7 defines an
isometry from Lz(R) into L2([0, 27 [%, CN, 452—%). We have to prove now that Z is
onto.

It is enough to prove that the conjugate operator Z* is injective on L2([0, 27[?,
CN, 49y To do that we have to compute (Z* f, ¥) where f = (fo,..., fn=1), fj

' 472
are pejrriodical functions on the lattice 27 Z x 2 Z and v € S(R). This is an exercise

left to the reader. O

This leads to a direct integral decomposition of L2(R):

) N 1 2 27 p2m
L2(R) = (2—> / / d0Hy (0)
T 0 JO

1 2 2 2w
v <_) / / A0y ), where y(0) ==y
2 o Jo

This is a Bloch decomposition of L2(IR) analogous to the description of electrons in
a periodic structure.

It appears that Hx (0) is equipped with the natural inner product and the spaces
Hn (0) are the natural quantum Hilbert spaces of states having the torus as phase
space.

Let us explain now in more detail the identification

5 - 1 2 p2m p2m
L " (R) = (2—> / / do Hy(6)
T 0 0

For every ¥ € S(R) we define 1/}(9, Jj)= ei.e)(t/f) where 0 € [0, 27 [% and j € Z.
We have seen that Y — & is an isometry from L%(R) onto L2([0, 27 [*x(Z/NZ),
% ® dun) where pp is the uniform probability on Z/NZ.

Let A be some bounded operator in L2(R). Assume that A is a linear continuous
operator from S(R) to S(R) and from S’ (R) to S'(R) and that A commutes with
Eﬁ)(AEI(\?) = 2](\,9)14), for every 6 € [0, 27 [>. Then Aisa decomposable operator
(see Reed—Simon [162], t. 1, p. 281). More precisely we have the following useful
result.
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Proposition 58 Let us denote by A N.o the restriction of AtoH N (@). Then we have,
for every Y1, Y, € LA(R),

~ A do
(V2. A1) 2y = f fmﬂz (20, Avo i Oy 7 s  614)

where Y1 (0) = Zy1.
Proof This is easily proved using that 1 (6) = Y gy _, ¥(#. j)e}” and (6.12). O
We shall apply the following results proved using Reed—Simon [162].

Corollary 18 Let Abea decomposable operator like above. Then we have

[l = sup 4wl (6.15)

and A is an isometry in L?(R) if and only ifAN,g is an isometry in Hy (0) for every
0 € [0,2x[%.

First examples are the Weyl-Heisenberg translations.

Lemma 36 Let z = (z1,22) € R% Then T(2)2) = 2@ T(2) if and only if
Nz € Z%. Moreover if z1 = N and zp = % we have

L np n2 . _hiny . 2
Tw.e <ﬁ’ N>e§9> _ exp(lnT> exp(l 6 + 27Tj)ﬁ>€§-9_2nl (6.16)
Proof Exercise. O

Corollary 19 The unitary (projective) representation (n1,n;) — TN’Q(%, %) of
the group 72 in ’HE\?) is irreducible.

Proof Let V be an invariant subspace of 7—{,5\?) and v = ZijsN—l ajeﬁ.e), v#0.If
aj =0for j # jo, then using translation f"N,g("W', 0) we get e}e) € V Vj.Butplaying

with YA"Nﬂ o, "WZ), if m coefficients a; are not O there exists a non zero vector of V
with m — 1 non null coefficients. So we can conclude that V = H y(0). O

Remark 33 It has been proved that all irreducible unitary representations of the dis-
crete Heisenberg group are equivalent to (TN,G(HWI, ”ﬁz), Hn ()), for some (N, 0) €
N* x [0, 2 [? [63].

For the particular case 6 = (0, 0), the states e(; can be identified with the natural
basis in CV. Then the translation operators T /N, 0), 7(0,1 /N) are simply N x N
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matrices of the following form:

T(0,1/N):=Z = diag(l, w, 0, ..., 0" ") (6.17)
where w = e?7/N is the primitive Nth root of unity.
0 0 0 1
. 1 0 ... 00
TA/N,O)y:=X=1. . . . . (6.18)
00 ... 10

These operators (matrices) have been introduced by Schwinger [175] as “general-
ized Pauli matrices” and are intensively used in quantum information theory for the
mutually unbiased bases problem in CV. See [50, 175]. They have the following
properties:
Proposition 59
(i) X and Z are unitary.
(ii) They are idempotent, namely
xN=2z"=1
(the identity matrix in CN).
(iii) They w-commute:
XZ=wZX.

(iv) X is diagonalized by the discrete Fourier transform JF:
F*XF=2Z

where Fj i = \/Lﬁa)jk, Vj,k=1,...,N.

Remark 34 A complex N x N matrix is an Hadamard matrix if all its entries have
equal modulus. Note that F is an unitary Hadamard matrix of the Vandermonde
form, and that X and its powers generate the commutative algebra of the “circulant”
matrices. A N x N matrix C is said to be circulant if all its rows and columns are
successive circular permutations of the first:

C1l c ... CN
. CN C] ... CN-—1
C =circ(cy,C2,...,CN) = 6.19)
c 3 ... cl

C=cil+cyX+ -+ XV!

(see [57)).
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The Discrete Fourier transform in CV is very natural in this context since it
transforms any basis vector in the position representation into any basis vector in

the momentum representation.

Lemma 37 For any circulant matrix C there exists a diagonal matrix D such that

F*CF=D
Furthermore
N-1
Dj ; —\/Néj = ch+1w Jk
0
Proof Use Proposition 59(iv) and (6.19). O

These properties are very useful to construct the N 4 1 mutually unbiased bases
in Quantum Information Theory for N a prime number. See [50].

6.4 The Coherent States of the Torus

Already used in the physical literature in [131] we introduce now the coherent states

adapted to the torus structure of the phase space. They will be the image by the

periodisation operator X ](\,9 ) of the usual Gaussian coherent states studied in Chap. 1.
In dimension 1 one has, for z = (¢, p) € R2 and yeC,Jy >0,

o\ 174 - - 2
Sy igp  ixp . (x—q)

_ _47 27 = 17 6.20

Py,z(x) <nh> eXP( T AT ) (6.20)

o) =20, (6.21)

It is easily seen from the definition properties of Z‘/(Ve) and the product rules for T(z)
that

PO = 3 (—pNmme Om bt o AT (4 2)g, (6.22)

ny,ny€Z

For every z' = (2, z}) € Z* we get

0 Y : ’
q)}(/;_‘_z/ — (_DNZIZZez(zz@z 201 ginNo (2.2 )(p)(fg (6.23)

Thus the states gp}(/ei e (p)(f; are equal modulo phase factor, so they describe the
same physical system and we can identify them. Recall that o is the symplectic

form:

a((a, b), (c, d)) =ad — bc
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The set {<pf2 },e2 therefore constitutes a coherent states system adapted to the torus.

)

In the basis e i of the position representation we have

( ) (6))

cj(qg.p)={e; . ¢4 p
1/4
— ( ) Le—tﬁ Zezelmeh(x p) exp(lyi( _q)2> (6.24)
wh N — 2h
where x] N + 2 —m.

Similarly we have in the momentum representation (for y =1i):
’ wh N e 2 M

with g8 = £ 4 O .

An important property which is inherited from the overcompleteness character
of the set of coherent states in L?(R") is that the {(p)(,?;} ce12 form an overcomplete
system of H (@) with a resolution of the identity operator 13, (5):

Proposition 60 V6 € [0,27)? and Vi = 1/21w N we have
dqdp ) ©®)
Ty = /1r2 27k |‘/’y,q,p)<¢’y7q,p

where we use the bra—ket notation for the projector on the coherent state (pc(]?;,

Proof For simplicity we assume y = i. Since Hy (@) is finite dimensional it is
enough to prove that V(j, k) € [0, N — 172 we have

dgdp
LS5l el ) =

Now using (6.24) together with Fubini’s Theorem we get

dgdp 1
L S pesta.p = [ Lapexp(ani(s —k~ Nem~m)p)

m,n

1
X /0 dq (ﬁg’o(x;?’ — q)(pg’o(x;?’ — q) (6.25)

If j = k then the first integral in the right hand side of (6.25) is zero except for
m = n in which case we get 1. Thus we get

/<q pet? 2nh Plesta.pf Z/ dqll¢b oo —a) | = [¢bol” =

mez

If j # k the same integral is zero since j — k € N*. 0
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We also get the Fourier—-Bargmann transform /% of any state ¥ € Hy (6) as
f_ 0
V= ‘/ﬁ(‘/’q,p’ V)

The map WY : ¢y € Hn(0) — WOy = Nyt e LA(T?, %) is obviously iso-
metric. The quantity
2
H%(q.p)=|(¢l ,. ¥
is called the Husimi function of v € Hy (6).

We have as a corollary an analogous result as Proposition 6:

Corollary 20 Let Ag € L(Hp). Then

We have the following very useful semi-classical result.

Proposition 61 For every complex numbers y, y’ with positive imaginary part we
have:

(i) There exist constants C > 0, ¢ > 0 such that for any z,z € T>, N > 1,
_ "2
(@5, ooy )| < CV/Nem@@eN (6.26)

where d(z,7) is the distance between 7 and 7' on the torus T2. In particular
fory =y’ =i we can choose c = .
(i) There exists ¢ > 0 such that V6 € [0, 27)? we have ¥z = (g, p) € T2

6 2 —cN
”‘py,z” =l+0(e ‘ )
Proof For simplicity, let assume that y = y’ = i. The proof is the same for arbitrary

U
v,V
‘We recall that in the continuous case one has

(X )|2—ex —|Z/_Z|2
@z, $z)| =EXp o

so that

ozl =1

Thus we shall prove that the analogous properties (i) and (ii) hold for the coherent
states of the 2-torus but only in the semi-classical limit N — co. A weaker result is
given in [29], here we shall give a different proof.

We rewrite (6.23): for every z € T2, m = (my, ma) € 72,

(@] inN(o(z,m)+mim2) .i(m20r—m10;) it No (2,7
g =e (0 (z.m)+mimy) oi (m262—m161) o (z,2)

o (6.27)
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Let us denote f; ./(0) = (gof, goze,) and consider f; . as a periodic function in 6 for
the lattice (27Z)2. Its Fourier coefficient ¢, (z, z') can be computed using (6.27),

; de
’ —im-0(, 60 6

cmlz,2) = e 0., (6.28)

wend)= [ el o)

i do
— ezﬂN(a(z,m)—i—mlmz)/ 9/’ 0 5 6.29
0,272 ((pz (pz+m>4n2 ( )
— eiﬂN(G(Z,m)-‘rmmz)((pZ/, Oriri) (6.30)
where m = (m1, —my). f,  being a smooth function in 6, we get

oz @] = ) Jem(z.2)] (6.31)

meZ?

But |ey (2, 2)| = (wh)~! exp(—%l So

> len(z )| =@n Y- eXP(‘%)

meZ? meZ?
Now we have
lZ —z—m>> |z —z|* + [m|> = 2|m||z — 2|
So we get
Z lz/ — 7z —m|? —le—7|2xN —m|*7N/2
expl ————— )| <e ¢ Z e
2h
meZz,lm\zélﬁ meZ?
So for every N > 1 we get
> 12
|7/ —z —m| o
Z exp| —————— ) <Ce le—=2"["r N
2h
meZ2,|m|>4+/2
For the finite sum we have easily
/ ~ 12
I —7—m _ N2
Z exp _| | <Ce d(z,2')"ntN
2h
m€Z2,|m|§4\/§

so we get (i).
Concerning the proof with any y, ', we have to use the inequality

lz—2/12

oy pp2)| < Ch™12e=¢"%

where C > 0, ¢ > 0 depend on y, y/, but not in z, 7'.
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The proof of (ii) uses the same method with 7' = z. So we get

|fec@) = 1< > [0z @epm)|

m#(0,0)
and
£z @) — 1| <V/N D emimPaN
m7(0,0)
So we have proved (ii). O

6.5 The Weyl and Anti-Wick Quantizations on the 2-Torus

We will show how a phase-space function (classical Hamiltonian) H € C*(T?) can
be quantized as a selfadjoint operator in the Hilbert space H y (6). These functions
have to be real.

6.5.1 The Weyl Quantization on the 2-Torus

We identify the functions H with the functions C> on R? of period (1, 1) € R?.
Then we have

H(q, p)= Z Hm’nezmc((q,p),(m,n))
(m,n)eZ?

Then we define, following [104] and [64]:

Definition 16

~fm n
Opy (H) =) Hu.n (ﬁ’ ﬁ) (6.32)

Recall that i = ﬁ, N e N*,

One has the following property:

Proposition 62 Let 0 € [0,27)? and h > 0. Then for any function H € C*®(T?)
one has

Opy, (HYHN (0) S Hy(0)
Proof This follows directly from the definition of H (6) and from
T (m,n)Op} (H)T (m,n)* =Op} (H), ifm,neZ

In other words Opg/(H ) commutes with 21(\(,9). Il
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Thus we define the operator Ophwg (H) € L(Hy) as the restriction of (6.32) to
Hy(0).

In the decomposition of L2(R) as a direct integral, Op%ve (H) is the fiber at 6 of
Opy (H).

do
Opy (H) = f / Op}y o (H)~— (6.33)
h 027 K0 42
We have also the following formula by restriction to Hy (6):
~f(n m
Opyy(H)= > Hn,mT<N, N) (6.34)
n,me”z

In particular we see that the map H +— Opgg(H ) cannot be injective, so the Weyl

symbol H of Op}vivg (H) is not unique. It becomes unique by restricting to trigono-
metric polynomials symbols. Let us denote by 7y the linear space spanned by
Tn.m(q, p) = e2im(ng=mp) forn . m=0,..., N — 1. Then we have

Proposition 63 Opgle is a unitary map from Ty (with the norm of L*([0, 11?) onto

L(Hn (), equipped with its Hilbert—-Schmidt norm. In particular we have, for ev-
ery H K € Ty,

Tr(Opy o (H)Op)! ,(K)*) = N f /T H@K(@)dz (6.35)

Proof Let us recall the formula

N . 4 .
T(ﬁ, ﬁ)eﬁg) — elﬂki/Nel(92+2T[])f/Ne§9+)k (636)

Using that the discrete Fourier transform is unitary, we get

Tfkgfk/g/* NS 8 6.37)
r —, — —, — = ’ ’ .
NN NN k,k'0¢,¢

So the system {N’l/zf"(ﬁ %)}05/@@51\1_1 is an orthonormal basis in L(Hy(0)),
equipped with its Hilbert—Schmidt norm and we get the proposition. O

Corollary 21 Every linear operator H in Hn(0) has a unique Weyl symbol
HeTy,

H(Z) — Z Hm’ne2irm(z,(m,n))

0<m,n<N-—1

where

*
Hypn = N—l/ZTr<1f1f(ﬂ, £) ) (6.38)
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A semi-classical result for the Weyl quantization is the following:

Proposition 64 For all H € C*®(T?) one has
. 1 W
]\}Elloo NTr(Oph,e(H)) = /11‘2 dz H(z)

©)

Proof Using the orthonormal position basis e j one has

N-1
ECTRUNED B) BE A Ed (e ¥

j:O m,n

Now we use the property (6.36):

1
—Tr(OpyY ,(H
N r( Pr.0 )
e
=V Z Z Hy Ntk
Jjk=00.n€Z
N+ —ite+i (22 k ¢!
X exp z—( +k)— i +T 2—+ Jj+ ( j+k)
tn—ito+i"2 1 = i 2z
=;;H,,,ZN(—1) e I ﬁze N (6.39)

Thus we conclude

Tr(Op) o (H)) = Hoo+ Y Heyane' (G162
L,neZ*

The last term tends to O because of the regularity of H, and the first one is
sz dz H(z), which completes the proof. O

6.5.2 The Anti-Wick Quantization on the 2-Torus

As in the continuous case (see Chap. 2) the Anti-Wick quantization is associated to
the system of coherent states.

Definition 17 Let H € L>(T?). Then (pg, p being the system of coherent states
defined in the previous section, we define

Y= [ @l
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Remark 35 Note that Opg‘g](H )y for H € C®(T?) is simply the restriction of

Opgw(H ) (considered as an operator on S’ (R)) to Hy ().
Let us recall that we always assume 2w AN = 1.

As for Weyl quantization, Anti-Wick quantization on R? and on T? are related
with a direct integral decomposition

Proposition 65 Let H € C*®(T?). Then we have the direct integral decomposition

i )= | /[0 U )(2 : (6.40)

In particular we have the uniform norm estimate
[Op7 (D] < 1 H lloo (6.41)

Proof Using periodicity of H and direct integral decomposition of ¥ € S(R)
(¥(0) = T ¥), we get

do
iy =Y / /m / H@{@l e ¥ O))pcindig 5 (642)

n=(ny,ny)eZ?

Using periodicity in z of ¢, and ¢,1, = e“’(”’z)/%f“(n)wz, we get
AW 0 e
Opp," (H)y = H@(@!, v O))prindz— (643
[0,27[2 T2 4

So we have proved (Ong(H))e = Oph (H). O
Now we show a link between Anti-Wick quantization and the Husimi function:

Proposition 66 One has for any H € C*°(T2) and for any ¥ € Hg
. 0n ) =N [ dzH@H @)

And we have the following semi-classical limit:
Proposition 67 For any z € T2, any 6 € [0; 2x[2, and any H € C*°(T?) we have

Jim (o, Oppy Ho!) = H (2)

Proof We denote z = (q, p) € T2 and B, (z) the ball of center z and radius & and by
B¢ (z) its complementary set. Take ¢ <« 0. We have

/

d
ot angt)= [ SR

g(z) 27 h B,

d7’

2
o i Elez 6t)
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It is clear that the first term in the right hand side tends to 0 as 7 — 0 because of
Proposition 61(i). For the second term we denote g(z,z') = N| ((pf, (pf,) |>. We have

/ dz’ H(Z')g(z,7') — H(2)
B:(2)
5/ dz’]H(z’)—H(z)!g(z,z’)HH(Z)\’/ g(z,z’)dz’—l'
B:(2) B (2)

SEHVHHOO/ g(z,z’)dz’+]H(z)|‘/ dz’g(z,z’)—l‘ (6.44)
B (2) B:(2)

Using the resolution of identity we have

| azsled) =160~ [ dgle)
B (2) B¢ (2)

Using Proposition 61(ii) the first term in the right hand side tends to 1 as N — oo,
and it is clear that the second is small as N — oo. This completes the proof. 0

As in the continuous case the Weyl and Anti-Wick quantizations are equivalent
in the semi-classical regime:

Proposition 68 For any H € C®(T?) and any 0 € [0, 21)2 we have

|Op} o (H) = Opp g (D | 234, 0y = O(N '), as N — o0 (6.45)

Proof This result follows from the similar one in the continuous case (see Chap. 2,
Proposition 27) using the estimate

|Opio (H) = 0P (D | £ g0y = 10PR (H) = Op3 " (BD | £ 12 gy (6:46)
Il

6.6 Quantum Dynamics and Exact Egorov’s Theorem

6.6.1 Quantization of SL(2,7)

‘We now consider a dynamics in phase space induced by symplectic transformations
F € SL(2,Z). It creates a discrete time evolution in T2 and the n-step evolution is
provided by F".

One wants here to quantize F as a natural operator in H y (6).

We have seen in Chap. 2 (3.3) that F is quantized in L(L2(R)) by the metaplectic
transformation R(F). Let us recall the following property:

RF*T(R(F)=T(F~'2) (6.47)
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We shall see now how to associate to F' an unitary operator in Hy (6).

Proposition 69 Let F € SL(2,7). Then for any 6 € [0,2m)? there exists 6’ €
[0, 271)2 such that

R(F)YHg € Hy

Furthermore 0’ is defined as follows:

0\ _ (62 ab mod 27
<9{) =F (91) +aN (cd> : <mod 2n> (6.48)
Moreover we have

RFYZD =20 R(F) (6.49)

Proof We use here Proposition 57 and formula (6.9). From (6.47) we get, if ¥ €
Hy(0) and z = (21, 22) € Z?,

T(@R(F)Y = RIFOT(F (2))y =e O Q0NN R(FYy  (6.50)

e )
Z2 —C a 22

We have o (7, (62, 601)) =0 (z, F(62,01)) and

where

Zyzh = —cdz} + (ad + bc)z122 — abzs
But modulo 2 we have z% =-71, z% = —2z72,ad + bc = 1. So we get, modulo 27,

o (2, (62,0)) + TNz 25 = z1(db1 + b2 + wNcd) — 22(bO1 + abr — T Nab)

+nNz122

So we have R (F)Hg C Hg with 8’ given by (6.48). Moreover it is easy to check
formula (6.49). O

Let us denote 6’ := wp(0). So 7 is a smooth map from the torus }Rz/(ZyrZ)2
into itself.

Remark 36 We can easily see that Iée(]) = F* for § = (0,0) in the basis of
{eﬁ.e)};v:l , up to a phase.
Definition 18 For every F € SL(2, Z), we shall denote IéN)g(F ) the restriction of
R(F) to Hy(0). It is the quantization of F in Hy(0). Ry,¢(F) is a linear operator
from Hp (0) in Hy (6').
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Proposition 70 IéN,g(F) is a one-to-one linear map from Hy (0) in Hy (0').
Furthermore we have the following relationship between Ry ¢(F) and R(F).

R ® N do
R(F) = VnoRNo(F)5—— (6.51)
0,272 (2m)
where Vy g is the canonical isometry from Hy(0') onto Hy(0) defined by
(4 0
VN,ge; )=e§- ).

In particular for every 0 € [0, 21 2, R N.o(F) is a unitary transformation from
Hy(0) onto Hy(0').

Proof We know that Ié(F ) is an isomorphism from S(R) onto S(R) and from S’ (R)
onto S’(R). Using that H (#) is finite dimensional we see that RBN’Q(F) is a one-
to-one linear map from Hy (9) in Hy (0).

We can easily check that Viy ¢ EJ(V”F(Q)) = 21(\(,9) for every 6 € [0, 2n 2. So using
that 7 is an area preserving transformation we get, for every ¢, n € S(R),

~ 1 A
<77» R(F)‘W)I}(R) = m/ (71(9)’ VN,0RN,0¢(9)>HN(9)d9

[0,27[2

So the proposition is proved using standard properties of direct integral decomposi-
tions for operators. O

One has the following results concerning the interesting case 8’ = 6. The proofs
are left to the reader or see [29, 30, 104].

Proposition 71 Consider F € SL(2,Z) with |Tr F| > 2. Then VN € N* there exists
6 € [0,27)? so that

R(FYHn(6) S Hn (6)
where 0 can be chosen independent of N if and only if F is of the form

even odd odd even
odd even/’ or even odd

The case |Tr F| = 3 is the only case where the choice of 6 is unique with 0 = (7, )
for N odd and 6 = (0, 0) for N even.

Moreover in the case
F o (even odd
" \odd even

the value 0 = (0, 0) is a solution of the fixed point equation 0 = g (0).

Remark 37 Tt has been shown in [64] that for F € SL(2, Z) of the following form:

2g 1
F= <2g2 -1 2g>
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the operator Ié(F ) has matrix elements in the basis {65»0) }?’:_01 of the form
2im

R Cn
R(F)ji=—=exp I

JN

where |Cy| =1, so that it is represented as a unitary Hadamard matrix. We do not
know at present whether this property is shared by more general maps F.

(8% — jk +gk2))

6.6.2 The Egorov Theorem Is Exact

As in the continuous case the Egorov theorem is exact since R(F) is the metaplectic
representation of the linear symplectic map F:

Theorem 38 For any H € C*°(T?) one has

Ry.0(F)*Op} (H)Ry o(F) =Op}! ,(H o F) (6.52)

Proof By denoting fg (z) the restriction of f”(z) to Hu (0) one has
A~ m n
Op;z&(H) = Z Hm,nT«Q(N» N)
m,nez

So

A A A A m n A
Ry o(F)*Opy g (H)RN 9(F) =Y HunRy 6(F)*Ty (ﬁ, ﬁ>RN,e<F)

m,n

But we know that
Ry o(F)*Ty(2)Rn o(F) =To(F~'2), VYz=(m/N,n/N)

We do the change of variables

Then we get

m' n
-

p w D A w
Ry o(F)*Op)Yy (H)Ry o(F) = ) (HoF)m/,n'Te)( > N)=0ph,9(HoF>

m',n'€Z

This completes the proof. O
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6.6.3 Propagation of Coherent States

As in the continuous case the quantum propagation of coherent states is explicit and
“imitates” the classical evolution of phase-space points. Here the phase space is the
2-torus and ¥z € T? the time evolution of the point z = (g, p) is given by

=(5)=r () ()

We shall use “generalized coherent states” which are actually “squeezed states”.
Take y € C with Jy > 0. The normalized Gaussian ¢, € L*(R) were defined in

Sect. 6.4.
) Iy ]/46 iyx?
= — X
orix 7h P\ ™n

Then the generalized coherent states in L%(R) are

oy i=T(@)¢" (6.53)
The generalized coherent states on the 2-torus are as above
0
0= I\ ¢y € HN )

We take such coherent state as initial state and apply to it the quantum evolution
operator Ry (F). One has the following result:

Proposition 72 Let F € SL(2, 7)) be given by

If tp(0) =06, then

1/2
A ) |by + al 0
Ryo(F)py, .= (m Fy,Fz

where F -y = Z;i;

Proof We know that £\ R(F) = R(F)Z\. Let z = (¢, p) € T2. Then we have

A A . -
Ryo(F)¢!) . = Ry o(F)Z\ 0y.: = Z\ R(F)gy, .

The result follows from the propagation of coherent states by metaplectic transfor-
mations in the plane (see Chap. 3). U
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6.7 Equipartition of the Eigenfunctions of Quantized Ergodic
Maps on the 2-Torus

One of the simplest trace of the ergodicity of a map F on T? in the quantum world
is the equipartition of the eigenfunctions of R ~.6 (F) in the classical limit N — oco.
It has been established in the literature in different contexts: for the geodesic flow on
a compact Riemannian manifold it was proven by [45, 174, 206]. For Hamiltonian
flows in R” it was established in [106], and for smooth convex ergodic billiards in
[83]. For the case of the d-torus this problem has been investigated in [28]. Here we
restrict ourselves on the case of the 2-torus.

Theorem 39 (Quantum ergodicity) Let F be an ergodic area preserving map on T2,
and Ry o(F) € U(Hyp) its quantization where 0 = wp(6). Denote by {¢§V}j:1 ,,,,, N

the eigenfunctions of R\N’@(F). Then there exists E(N) C {1, ..., N} satisfying
. #E(N)
lim

N—o0

=1

such that VA € C®(T?) and all maps j: N € N— j(N) € E(N) we have:

Jim (@70x). Opy o (A)b](x)) = fT AR dz (6.54)
Jim (67, 0P (Hgl) = / AQ: (6.55)

uniformly with respect to the map j(N).
Remark 38 This Theorem says that the Wigner distribution and Husimi distribution
(when divided by N) converge in the sense of distributions to the Liouville distribu-
tion along subsequences of density one.

We begin with a lemma:

Lemma 38 Let us introduce the following Radon probability measures M],y , LN as
follows: '

1 N
1Y (A)=(pY, Opny (A)gl), ELN(A)=NZM§Y(A)
j=1

This measures are F-invariant. because ¢§-V are eigenstates for R N.o(F).
One has VA € C®(T?):

im iy (A) = u(A)

w is the Liouville measure on the 2-torus T2.
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Proof We find that the measures ,u?’ are F-invariant, modulo O(N~!), using

Egorov theorem and that ¢;V are eigenstates for R N.o(F).
Clearly we have

1
v (A) = - Tr(Oppyy (A))

So we have
1
v (A) = p(a)] = | Tr(Opy, (A))—M(A)‘

1
< [op % (A) = Op (A £, ’ Tr(Opjy 4(A)) — w(A)
We deduce the result using Propositions 64 and 68. O

Remark 39 The Lemma is still true for the Schwartz distributions vN (A) =
((]bj.V,Opgfg(A)qﬁ?’) and vy (A) = 5 Z] 1V vY (A). The v are exactly F-invariant.

Let us prove now

Proposition 73 For every A € C*°(T?) we have

.1 N 2
yim 5 D 1 () = p(A)F =0 (6.56)
0<j=N

Proof We can replace A by A — u(A) and assume that u(A) =
Define for n € N* the “time-average” of A:

1k:n
= —ZA o Fk.
n
k=1

Using the Remark after Lemma 38, we can replace ,u by v :
We have v;(A) =v; j (A,) for every n>1.Sowe get using the Cauchy—Schwarz
inequality and F invariance of v ;

WY )] = l(opf (AneY . oY) < |opl (AneY |
< (Opy (A)*Opy (A9}, ¢7) (6.57)

But from the composition rule for # Weyl quantization (Chap. 2) we have

1
Op} (A4,)*Op} (A,) = Op}Y (1A 1%) + <N) (6.58)
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For every n, consider the limit N — +o00. Using Lemma 38 we get
. 2 . 2
limsup | (4)|” = limsup v (4)|” < / |An>du
N—+o0 N—+00 T2

Using ergodicity assumption and the Lebesgue dominated convergence theorem we
have

lim / |AnPdu=0
n—-—4o00 T2

The limit (6.56) follows if w(A) =0. O

Now, the Bienaymé—Tchebichev inequality gives the following result according
to which “almost-all” eigenstates are equidistributed on the torus.

Proposition 74 For any H € C*®°(T?) and Ve > 0

o #ie |M§Y(H)—M(H)|<8}
lim =1
N—o0 N

Along the same lines as in [106] one can concludes for the existence of a H-
independent set £ (N) such that the theorem holds true.

Remark 40 A natural question is “is the quantum ergodic theorem true with E(N) =
N’ (unique quantum ergodicity)? The answer is negative. In [58] the following re-
sult is proved. Let C = {1y, ..., T}, K periodic orbits for F. Consider the probabil-
ity measure jicq = Y i< j<g ®jlir;, where o; € [0, 1Tand 3y _; g o; = 1. Then
there exists a sequence Ny — 400 such that

li NoWAN—lAdl A 6.59
Jim (63 OpRo (AR =5 | AGdz+ Zpca() (6.59)

This result shows that some eigenstates can concentrate along periodic orbits, this
phenomenon is named scarring.

6.8 Spectral Analysis of Hamiltonian Perturbations

The previous results can be extended to some perturbations of automorphisms of the
torus T2.

Let H be a real periodic Hamiltonian, H € C ©(T2) and F € SL(2,7). Let 6 €
[0, 27 [2 be such that @ = 77 (/). We consider here the following unitary operator in
Hn (0), where 2r AN = 1:

£ A
U, = exp(—i ﬁOp}f:ﬁ (H)> Ry .o (F)
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We shall see that if F is hyperbolic and & small enough the quantum ergodic theorem
is still true.

To prepare the proof we begin by some useful properties concerning the propa-
gators V(t) = e_’%ﬁ, Vno(t) = e iHHNS,

Let us introduce the following Hilbert spaces: g = Dom(I-AI(,SC + 1)*/2, where
s = 0, with the norm |12 = [[(Hose + D" *W 11> (Aose = —12 L5 +2?).

Lemma 39 For every s > 0 and every T > 0, there exists Cs,7 > 0 such that
v, <Corlivlls, Y¥ €Ky, Vie [-T,T1,¥hel0,2n]

Proof 1t is sufficient to assume that s € N (using complex interpolation). For s =0
we know that V (¢) is unitary. Let us denote A = (I:IOSC + 1)]/2. Letus assume s = 1.
It is enough to prove that AV (t)A~! is bounded from L2(R) into LZ(R).

We have

hd .
S VEDAVO =V=0[H, AV @)

Using the semi-classical calculus (Chap. 2), and that H is periodic, we know that
iﬁ[ﬁl,A] is bounded on L2(R). So the lemma is proved for s = 1.

Now we will prove the result for every s € N by induction. Assume the lemma is
proved for k < s — 1. Compute

hd s g K
?EVH)A Vi)y=V®[H, A°|V()

But %[I-AI , A®] is an h pseudodifferential operator of order s — 1 for the weight
w(x, &) = (1+x%4&2>)1/2 In particular the operator %[ﬁ, AS]A'S is bounded on
L%(R). So we get the result for s using the induction assumption. O

The following result will be useful to transform properties from the space L?(R)
to the spaces Hy ().

Let ¥ € S(R) and for 6 € [0, 277[% be such that ¥ (9) = (¥ (0,0), ..., ¥ (6, N —
1) € CN (coefficient of ¥ (#) in the canonical basis of Hy(6)). Let us denote
Hy ([0, 27 [?) the periodic Sobolev space of order s > 0 of functions from [0, 27 [?
into CV Its norm is denoted || - || v s.

Lemma 40 For every s > 0 there exists Cy such that

[0y, <Cslvls, V¥ e S®R) (6.60)

In particular we have the following pointwise estimate: for every s > 1 there exists
C, such that

[V (O)] < Csllylly, Vi € Ky (6.61)
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Proof Let us recall that, for every ¥ € S(R), 6 = (61, 62) €]0, 2712,

- 4 i 0
GO H=N"Y (g -0, qj=+ 2

= N 2xN
So we have
30,0, j) =N~ "t —g)yq; —O+iN"qi 0, ))  (6.62)
Lel
— _ o d
35,00, ) = N ‘/zge’ee"ﬁam—& (6.63)

Reasoning by induction on |m| = m + my, m = (m1,my), we easily get

/[0 g (6, j)| d9<Cn Y. / (|(hdy) w(x)| + [t w(x)| )dx (6.64)

k+e<|m|
So estimate (6.60) follows. Estimate (6.61) is a consequence of Sobolev estimate in

dimension 2. O

Let us now consider the propagation of coherent states gp( ) under the dynamics
Vn.o(t) in Hy(6). We shall prove that estimates can be obtained from the corre-
sponding evolution in L?(R) (see Chap. 4), using the two previous lemmas.

Recall these results. We have checked approximate solutions for the Schrédinger
equation:

ihdy = Hyr, Yo =¢yz Sy >0
We have found w;y) such that

M M M M
zh8, ( ) '(pz(,t ) + h(N+3)/2R£J )’ I/IZ( 0) =9, (665)

where, for every s > 0, ||R(M)||,CS =0() for h— 0.
wZ(M) has the following expression:

yMo=c'h > hj/znj<t,x 7 )q;z;(x) (6.66)

0<j<M
where z; = (q;, p:) is the classical path in the phase space R? such that zo = z
satisfying
‘it = %(ta qt, Pt)
) . (6.67)
pr=—75,.q.p), qo=q, po=p

and

ol =T )" (6.68)
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@' is the Gaussian state:

ol (x) = (wh)~*a(r) exp<§i F,x.x) (6.69)

I is a complex number with positive non degenerate imaginary part, §; is a real
function, a(t) is a complex function, 7 (¢, x) is a polynomial in x (of degree < 3 )
with time dependent coefficients.

More precisely I is given by the Jacobi stability matrix of the Hamiltonian flow
7> @)z :=z;. If we denote

0 0 0 0
A= g O o 04 P (6.70)
dq dq op op
then we have
I=(Ci+yD)(A+yB)™', L=y, (6.71)
t
—4q0pPo
5(2) = /0 (psds — H(zy)) ds — % 6.72)
-1/2
a(t) =[det(A, +yB)] /", (6.73)

where the complex square root is computed by continuity from ¢ = 0.
Using the two lemmas and the Duhamel formula, we get, using the notation

0
v =50y,

Proposition 75 For every m > 0 and every 0 € [0, 27[> we have

0 ,0) - 1)/2
|Vn.o0l) — o ltyey =OWN n+D/2) (6.74)
i 0.0) _ (©) . .
In particular we have ;[ = ¢ Iz with the notation of Sect. 6.4.

Let us come back to Hamiltonian perturbations of hyperbolic automorphism F'.
Let us denote Fy, = @4, o F. Fj; is symplectic on T? (it preserves the area). By the
C! stability of Anosov dynamical systems, for & small enough, F 77 is Anosov. The
quantum analogue of F}, is the unitary operator

~ &€ A
Ry..e(F) = CXP<—1 ﬁop%,g (H)> Ry.6(F)
We have the following semi-classical correspondence.

Proposition 76 The following estimates hold true uniformly in z € T?> and
ee [0,1]:

R 0.6 (F)yL = Cogly pe (o) (6.75)
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Ce+F-yDg
Ag+F-y B

C :eiag(F(Z))/h<|yb +a|)1/2(|A5+FVBs|)1/2
¢ yb+a As+ F -y B,

where v, = and

In particular C, is a complex number of modulus one.
Proof This is a direct consequence of propagation of coherent states (Sect. 4.3). [

Now we shall prove some spectral properties for R N.0.e (F) for &€ small enough.
Let us denote nj.v, 0 < j <N — 1 the eigenvalues of Ry g .(F), so that

I%N’Q’E(F)'Q/IJN = 179’1//]"\/ where {1//]’.\/}05]5;\/,1 is an orthonormal basis of Hy (6)

and n ;V € S!, the unit circle of the complex plane.

Theorem 40 For ¢ > 0 small enough, when N — +o00, the eigenvalues
{ﬁj-v}osjgN—l are uniformly distributed on S' i.e. for every interval I on S') we
have

_ tlinYen
VTN TR (6.76)

were i is the Lebesgue probability measure on S'.

Proof In a first step we will prove that for every f € C!(S!) we have

1 N
fim T (Rwoc(P)] = [ £ diato 6.77)

N—+40oc0

Using Fourier decomposition of £ it is enough to prove (6.77) for f(z) =z, k € Z.
Hence we have to prove that for every k # 0,

. 1 5 k
Glim_ NTr((RN,g,g(F)) )=0 (6.78)

We assume k > 1 (for k < —1 there are obvious modifications).
Using that the coherent states are an overcomplete system in H y (6), we have

(o)) = [ {62 (R ()]
Using the propagation of coherent states we get

~ k —
(2. (Rw.0.6(F)) 02)| = (0 @y et i) + O(eNT112)

and using Proposition 61 we have
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(02, (Rw.0.6 () 6f)| < C e, kyv/Ne E@RAE N 4 o (s N~1/2)

But we know that for & small enough Fy,; is Anosov so it is ergodic and its periodic
set has zero measure. So for every § > 0 we have u{z € T2, d((Ff{)kz, z)>48}=0.
Using that O (s N~1/2) is uniform in z € T2 we get (6.78) hence (6.77).

Now we get easily the Theorem considering fi+ € C'(S!) such that f_ <1; <
fyand [ (fy — f-)du <8 with § — 0. O



Chapter 7
Spin-Coherent States

Abstract In this chapter we consider that the unit sphere S? of the Euclidean
space R3 with its canonical symplectic structure is a phase space. Then coherent
states are labeled by points on S? and allow us to build a quantization of the two
sphere S2. They are defined in each finite-dimensional space of an irreducible uni-
tary representation of the symmetry group SO(3) (or its covering SU(2)) of S? and
give a semi-classical interpretation for the spin.

As an application we state the Berezin—Lieb inequalities and compute the ther-
modynamic limit for large spin systems.

7.1 Introduction

Up to now we have considered Gaussian coherent states and their relationship with
the Heisenberg group, the symplectic group and the harmonic oscillator. These
states are used to describe field coherent states (Glauber [90]). For the description
of assembly of two-levels atom, physicists have introduced what they have called
“atomic coherent states” [5]. These states are defined in Hilbert space irreducible
representations of some symmetry Lie group.

As we shall see later it is possible to associate coherent states to any Lie group
irreducible representation. This general construction is due to Perelomov [155]. In
this chapter we consider the rotation group SO(3) of the Euclidean space R> and its
companion SU(2). Irreducible representations of these groups are related with the
spin of particles as was discovered by Pauli [154].

In this chapter (and in the rest of the book) we shall use freely some basic notions
concerning Lie groups, Lie algebra and their representations. We have recalled most
of them in an Appendices A, B and C.

7.2 The Groups SO(3) and SU(2)

Let us consider the Euclidean space R equipped with the usual scalar product,
x = (x1,x2,x3), y = (1, ¥2, ¥3), X -y = X1y1 +x2y2 +x3y3 and the Euclidean norm

M. Combescure, D. Robert, Coherent States and Applications in Mathematical Physics, 183
Theoretical and Mathematical Physics,
DOI 10.1007/978-94-007-0196-0_7, © Springer Science+Business Media B.V. 2012
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Ix|l = (x7 + x3 + x2)!/2. The isometry group of R is denoted O(3).! A € 0(3)
means that |Ax|| = ||x|| for every x € R3.SO(3) is the subgroup of direct isometries
i.e. A € SO(3) means that A € O(3) and det A = 1. It is well known that A € SO(3)
is a rotation characterized by a unitary vector v € R? (rotation axis) and an angle
6 € [0, 2z [. More precisely, v is an 1-eigenvector for A, Av = v and A is a rotation
of angle 6 in the plane orthogonal to v. So we have the following formula, for every
x eR3:

Ax:=RO,v)x =1 —cos)(v-x)v+ (cosh)x + sinf (v A x) (7.1)
Recall that the wedge product v A x is the unique vector in R3 such that
detfv,x,w]=@WAXx) -w, VYwe R3
It is easy to compute the Lie algebra so(3) of SO(3),
50(3) = {A e Mat(3,R), AT + A =0}

where A7 is the transposed matrix of A.
Considering rotations around vectors of the canonical basis {ey, €2, e3} of R3 we
get a basis {E1, E», E3} of s0(3) where

d
Er=—R(6,
k=g ( ek)e:o

It satisfies the commutation relation
[Ex, E¢]=En (7.2)

for every circular permutation (k, £, m) of (1, 2,3).
It is well known that any rotation matrix is an exponential.

Proposition 77 For every v € R3, ||v|| =1 and 0 € [0, 27 we have
R(H,v) =MW (7.3)

where M(v) = ) | 43V Ej.

Proof 6 — R(0,v) and 8 — ¢?M® are one parameter groups, so it is enough to
see that their derivatives at @ = 0 are the same. This is true because we have v A x =
M(v)x. Il

As SO(2) (identified to the circle S') SO(3) is connected but not simply con-
nected. To compute irreducible representations of SO(3) it is convenient to consider

! An isometry in an Euclidean space is automatically linear so that O (3) is a subgroup of GL(R?).
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a simply connected cover of SO(3) which can be realized as the complex Lie group
SU(2). SU(2) is the group of unitary 2 x 2 matrices A with complex coefficients,

A=(“"). such that |a|> + |b]> = 1.

The Lie algebra su(2) is the real vector space of dimension 3 of 2 x 2 complex
anti-Hermitian matrices of zero trace:

su2)={X egl2,C) | X*+ X =0,TrX =0}

The three linearly independent matrices:

1(0 i 10 —1 L(i 0
A“E(i 0>’ A2_§<1 0)’ A3_§<o —i)

form a basis of su(2) on R and satisfy the commutation relations
[Ak, Ael = Ap (7.4)

provided k, I, m is a circular permutation of 1, 2, 3.
Let us consider the adjoint representation of SU(2). This representation is defined
in the real vector space su(2) by the formula

pu(A)=UAU™", U eSUQ), Acsu(2) (7.5)

In physics the spin is defined by considering the Pauli matrices, which are hermitian
2 x 2 matrices given by

e N ) S (R B

which satisfy the commutation relations
[ok, 01] =2ion (7.7)

which is equivalent to (7.4) because we have Ay = %ak. {o1, 02, 03} is an orthonor-
mal basis for the three-dimensional real linear space H> ¢ of Hermitian 2 x 2 ma-
trices with trace 0, which will be identified with R3. The scalar product in Hj o
is

1
(A,B) = 3 Tr(A*B)
Let us denote Ry the 3 x 3 matrix of py in this basis. The following proposition
gives the basic relationship between the groups SO(3) and SU(2).

Proposition 78 For every U € SU(2) we have:

(i) Ry has real coefficients.
(i1) Ry is an isometry in H3 y.
(iii) detRy =1.
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(iv) The map U — Ry is a surjective group morphism from SU(2) onto SO(3).
(v) The kernel of U — Ry isker R = {1, —1}.

Proof

(i) From (Ryoy,o0¢) = lTr(Ucrkalcr/g) we get (Ryox, o¢) = (Ryok, 0p).
(i) Using commutativity of trace we have (Ry A, Ry B) = %Tr AA*= (A, A).
(iii) We have det Ry = %1 because Ry is an isometry. But det Ry = 1 and SU(2)
is connected so det Ry = 1.
(iv) Itis easy to see that R is a group morphism.

Let us consider the following generators of SU(2):

_(e7®2 0 _ (cos(8/2) —sin(0/2)
Ul(‘”‘( 0 el’fﬂ/z)’ Uz<9)_<sin(9/2) cos(9/2))

Let us remark that we have, for every ¢, ¢’, 9,

—i/2p+9) i/2(¢'~9)
cos(0/2)e sin(6/2)e > (71.8)

Ui(@)U2(0)U, ((0 ) = (Sin(e/z)ei/Z(W(ﬂ) COS(@/Z)ei/Z((H‘p/)

Then compute the image:

cosp sing O cosf 0 —sinf
Ry,p)=|—sing cosgp 0], Ry, = 0 1 0
0 0 1 sinf 0 cosf

Ry, (p) 1s the rotation of angle ¢ with axis e3, Ry, ) is the rotation of angle 6 with
axis ep.
So, if ¢, 0, n € [0, 27| we have

Ru,@yv,0) U1 () = Ruy ) Rua0) Ruy ()

where (¢, 0, n) are the Euler angles of the rotation R(¢, 8, n) := Ry, ) Ru,6) X
Ry, (- But any rotation can be defined with its Euler angles, so R is surjective.

(v) Let U € SU(2) be such that UAU ! = A for every A € Hy . Then we easily
get UAU ™! = A for every A € Mat(2, C) hence U = A1 with A = =1. g

We shall see now that every irreducible representation of SO(3) comes from an
irreducible representation of its companion SU(2).

Corollary 22 p is an irreducible representation of SO(3) if and only if p is an
irreducible representation of SU(2) such that

oRy = pR_y, YU eSUQ)

Proof Let p be a representation of SU(2) in a finite-dimensional linear space E
such that pRy = pR_y. Then we define a representation p of SO(3) in E by the
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equality p(Ry) = p(U). Conversely every representation of SO(3) comes from a

representation of SU(2) like above. In other words the following diagram is com-
mutative:

SUQ@) ! S0(3)

GL(E)

where GL(E) is the group of invertible linear maps in E. O

Corollary 23 The Lie algebras s0(3) and su(2) are isomorph though the isomor-
phism DR(1) (differential of R at the unit of the Lie group SU(2)). In particular we
have DR(1)Ay = Ex, k=1,2,3.

Remark 41 The generators {Lj}1<k<3 of the rotations with axis e; give a basis of
the Lie algebra so(3) as a real linear space. Recall that L = (L1, L2, L3) is the
angular momentum.” L; belongs to the complex Lie algebra so(3) @ iso(3) and is
sometimes denoted Ji, J =ix A V,. For example L3 =i(x29y, — x19x,). We have
the commutation relations, for every circular permutation (k, £, m) of (1,2, 3),

[Lk, Le)=iLp. (7.9)

This basis can be identified with the matrix basis (i E, i E3, i E3) considered before.

7.3 The Irreducible Representations of SU(2)

The group SU(2) is simply connected (it has the topology of the sphere S*), so we
know that all its representations are determined by the representations of its Lie
algebra so(2) (see Appendices A, B and C). Moreover, SU(2) is a compact Lie
group so all its irreducible representations are finite dimensional.

7.3.1 The Irreducible Representations of su(2)

We shall first consider the representation of the Lie algebra su(2) and determine all
its irreducible representations.

Recall that su(2) is a real Lie algebra and it is more convenient to consider its
complexification su(2) + isu(2). But any matrix can be decomposed as a sum of an

2Multiplication by i gives self-adjoint generators instead of anti-self-adjoint operators.
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Hermitian and anti-Hermitian part, so we have

502, C) = su(2) +isu(2) (7.10)

5l(2, C) is the space of matrices A = (i’ fa), a, b, c e C. Itis the Lie algebra of the

group of 2 x 2 complex matrices g such that detg = 1. It results from (7.10) that ir-
reducible representations of the real Lie algebra su(2) are determined by irreducible
representations of the complex Lie algebra sl(2, C).

One considers s[(2, C) endowed with the basis {H, K4, K_} in which the com-
mutation relations are

[H Kil=+Ky, [K+ K_1=2H (7.11)

1/1 0 01 00
HZE(O —1)’ K+:<0 o)’ K_:(l 0)

It is also convenient to introduce Hermitian generators (see footnote 2):

where

03 Ki+K_ o Ki—K_ o
Ky=H=—, Ki=—=—, Kn=——=— (712
. 2 : 2 2 2 2i ; 712

Let (E, R) be a (finite- dlmensmnal) 1rreduc1ble representation of s[(2, C). For con-

venience let us denote A the operator R(H). H admits at least an eigenvalue A and
an eigenvector v # 0:

Hv=2xv
From the commutation relations (7.11) we have
I:Ik_ll_v = (12+I:I + I€+)v =+ 1)I€+v
HK_v= (IQ,I:I — 1%,)11 =A—- 1)12,1;

Since there must be only a finite number of distinct eigenvalues of H , there exists
an eigenvalue Ag of H and an eigenvector vy such that

I:Ivoz)»ovo, IQ,UOZO

Ao is the smallest eigenvalue of H. One defines then

A

k
Vg = (K+) )
It must obey
Hue = (ho + k) vk

One can show by induction on k that

k_vk =ckvg—1, Wwhereckr1=cx—2Mo+k), VkeN
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So we get
ck=—kQ@2rx+k—-1), keN

Since the vectors v 7 0 are linearly independent and the vector space E is finite
dimensional there exists an integer n such that

vo#0,v1#0,...,v, #0,v,41 =0

Thus from K_ vu+1 = 0 one deduces that 2Ag +n = 0.
Then Yk € N one has

[Ky, K_Jue=2Hv,  [H,Ki]oe=£Kiv (7.13)

One deduces that the vectors {v};_, generate a subspace of E invariant by the
representation R and since the representation we look for is irreducible, they gen-
erate the complex linear space E which is therefore of finite dimension n + 1. The
elements of the basis {vk}f(’:O are called Dicke states in [5].

In conclusion we have found necessary conditions to get an irreducible represen-
tation (E™, R™) of dimension n + 1 of sI(2, C) with a basis {vi}{_, of E® such
that

R™ (Hyw, = (k _ %)vk

R™W(K 1) vk = veqy
R(”)(K,)vk =k(n—k+ v

(7.14)

forO0 <k <mand v_; =v,41 =0.
‘We have to check that these conditions can be realized in some concrete linear

space. Let E( the complex linear space generated by homogeneous polynomials
k. n—k

of degree n in (z1, z2) € C with the basis vy = % and

3 3 1 3 3
RW(K)=2—, R"&Kp)=zu-—, R"@H =—<z——z—>
(K-) 250 (K+) Py (H) 2\ " 25

So we have proved:

Proposition 79 Every irreducible representation of sl(2, C) of finite dimension is
equivalent to (E™, R™) for some n € N.

In the physics literature one considers j such that n =2j. j is thus either integer
or half-integer and represents the angular momentum of the particles. We shall see
later that representations of SO(3) correspond to j € N so n is even. j is the greatest
eigenvalue of R (H).

In quantum mechanics the representation (E?/), R27) is denoted (V), D))
and one considers the basis of V/) indexed by the number m, —j <m < j, where
m is integer if j is, and half-integer if j is.
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States in V) represent spin states and the operators in V /) are spin observables.
So we introduce the notation 3’@ = R@D(K,) (it is the spin observable along the
axis Oxg, 1 <€ <3) and S3 = R@)(K.). This basis is usually written in the “ket”
notation of Dirac as | j, m). The correspondence is the following:

. om [ —m)!
|j,m)=(=1)/" ,/mvmﬂ

In this basis the representation DJ of the elements K3, K +, K_ (basis of the com-
plex Lie algebra s1(2, C) defined at the beginning) act as follows:

S31j, m) = m|j, m)
Siljom) = —m)G+m=+Dlj,m+1)
S_1j,my =G +mG—m+1)|j,m—1)

& . . . (] ”l)! o N\Jjtm, . .
S_ —jy=0 m)= | ———— (S —
lj,—J)=0, ljm) =,/ T )!(2j)!( R )

We recall that the two components L1, Ly of the angular momentum are related to
the operators L 1 as follows:

Hence

Li=L1+ilL,, L_=Li—il,

In theArepfechntation space (v, D7y of s1(2, C) one can consider the spin operator
S = (51,52, $3) and

22, @ 2
Sl + Sz + S3 == S
S? can be rewritten as
§2= 5.8, +5(5 + 1)
It is clear that for the representation D/, the vector |j, m) is eigenstate of S2:
S*|j,m) = j(j + DIj.m)

Thus S? acts as a multiple of the identity and is called the Casimir operator of the
representation D/ .

One defines a scalar product on E?/) by imposing that the basis |j, m) is an
orthonormal basis. In the ordered basis:

|]v_])s|]v_.]+1)vv|]’]_1>»|]’]>

the operators S3, S+ are represented by the following (2 4+ 1) x (2j + 1) matrices:
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Sy =diag(—j,—j+1,....,5—1,)) (7.15)
0 0 0 ... 0 0 0
V2j 0 0 ... 0 0 0

. 0 22— 0 ... 0 0 0

S, = . . . . . . (7.16)
0 0 0 ... V22j=) 0 0
0 0 0 0 J2j 0
0 V2] 0 . 0 0
0 0 V2@j=1) ... 0 0

. 0 0 0 .. 0 0

So=|. . . L (7.17)
0 0 0 0 V2j
0 0 0 0 0

These formulas are consequences of the polynomials representation of the Dicke
states | j, m) in the space V/) given by
z {+mZ é —-m

VU +m)G —m)!

|j,m)(z1,22) =

7.3.2 The Irreducible Representations of SU(2)

We shall see now that for every j € % we can get a representation 7U) of SU(2)

such that its differential 47 /) coincides with the representations D) of su(2) that
we have studied in the previous section. Furthermore they are the only irreducible
representations of SU(2).

Since every unitary matrix is diagonalizable with unitary passage matrices we

have VA € SU(2):
el 0 _
A=g<0 qugl

for some ¢ € R. Then we show that the exponential map from su(2) to SU(2) is

surjective:
el 0 .

From the relation
we deduce
A= exp(itgogg_l)

with igo3 g_1 € su(2), hence the result.
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Taking the Pauli matrices as a basis we find that every A € su(2) can be written
as

A=ia-o, a=(aj,ar,as) cR?
We deduce easily that
det A = ||a||®
and
A? = —(detA)1

Therefore we have proven the following lemma:
Lemma 41 For any A € su(2) one has
A% = —(detA)1
Furthermore one has the following result:

Proposition 80 For any A € su(2) such that det A = 1, one has, Vt € R,

exp(tA) =costl +sintA (7.18)

Proof Both members of (7.18) have A as derivative at t = 0. It is therefore enough
to show that the map t € R — l1cost + Asint is a one parameter subgroup of
GL(2,C). Take s € R. One has

(Lcost+ Asint)(lcoss + Asins)
=1costcoss + A%sinssint + (sinscost + cosssint)A

=1cos(s +1¢)+ Asin(s + 1) (7.19)

As a consequence we see that every element g € SU(2) can be written as

g=ail+wS +oa3 7 +ag

f:(? 6) /Z(? —01>’ ‘%/:<(i) —Oi)

the vector (a1, a2, &3, org) of R* being of norm 1. Thus SU(2) can be identified with
the group of quaternions of norm 1.
The group SU(2) acts on C? by the usual matrix action.

where

g= ( “E Z) e SU(2) (7.20)
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z1\ _ [ az1+bz
§\z) T\ bz +az

g induces an action p(g) on functions f : C> — C:

with |a|? + |b|* = 1. Then

p(Q)f=fog!

Since g has determinant one its inverse g~

L (a —b
§ =\b 4

(p(®) f)(z1,22) = f(az1 — bza, bz1 +az)

One considers V) as the vector space of homogeneous polynomials in zj, zo of
degree 2j (we recall that j € 3N). Consider the following basis in V/):

equals

thus

2j 2j—1 j+m _j—m 2j . .
o an TS —jsm L

It is clear that V) is stable by p.
One equips V) with the SU(2)-invariant scalar product which makes the mono-
mials

an orthonormal basis of V). Define the action of g € SU(2) on an homogeneous
polynomial p in the following way:

T/ (g)p(z1,22) =pog '(z1,22)

Let us prove the following.

Lemma 42 Consider the homogeneous polynomial p:

2j
2j—1
p(z1,22) = Zszllzzj
=0
Then the map
2j
pellpl? =) 1'2j = Dlal?
=0

defines an Hilbertian norm of VY that is invariant by the action of SU(2).
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Proof Tt is enough to check that || p o g* ||2 =|p ||2 which implies that the represen-
tation (V) T/) is unitary. Take

p(z1,22) = pa.p(z1,22) = (@z1 + Bz2), @, BeC

which generate V), Then if

2j 2j
25—l 2i—1
p(z1,22) = Zc‘zzl]zzj . p'(z1,22) = Zc}zllzzf
=0 1=0
2j 2j
_ 2j—1 _ 2j—1
pog ez =) difizy’ ", pog i) =) dizizy’
1=0 1=0
one has
2j
(P p)=(p'og . pog™!)=> agi@j—-1
1=0
2j '
=Y adinej -t =\ (ea +pB)> (7.21)
1=0

Namely the Hermitian scalar product in C2 of (o, B) with (¢/, B’) is invariant under
SU(2). O

We shall study the representation T"/) of SU(2) obtained by restriction of p to
V). One defines

fa@iz) =21 "

We first consider diagonal matrices in SU(2). They are of the form

) eit 0
g =exp(—2itK3) = (O e‘”)

Then

(T (e ) (21, 22) = fi(zie™, z20e") = 72 £ (21, 22) (7.22)

Thus every £ is eigenstate of T (g,) with eigenvalue e~ 2",
We shall now consider the differential 7/ (g) for the basis elements K3, K+

of 5[(2, C): one considers X € sl(2, C),

=5 %)
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and

8 = exp(iX) = (igi f,g;)

Then g(0) =1 and g’(0) = X so that

a0 =d0)=1,  b0)=c(0)=
d'(0) =a, b'(0) =B, dO=y, d0O)=-

For any polynomial in two variables f(z1, z2) one has

d
((dp)(=X) f)(z1.22) = (p(gt) ')z 2| = —(fog)(a1.22)
=0 dt =0
= (az1 + Bz2)01 f (21, 22) + (yz1 +822)92 f (21, 22)
Therefore
1

(dp)(K3) = 5(1131 —2202)

(dp)(K+) = z102, (dp)(K-) = 2201
We shall determine the action of dp(K3), dp(K 1) on the basis vectors f,,],' of VU):

dp(K3) fis = mfh

Furthermore using

Wfh=G4+m AT hafh =G —mz T
we get
dp(K ) fn=(G—mfl . dp(K)fh=(+m)f]_,
Denoting
o) = : e
P = G =mtG T mn "
we get
dTY(K3)|j,m) =m|j,m) (7.23)
AT K )Ij,m) =jG+ 1) —m@m+D)|j,m+1) (7.24)
dTD(K ) jym) =j(+1) —m@m—1)|j,m—1) (7.25)

We use here the abuse of notation p = T/). So we deduce the following result:
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Proposition 81 The differential of the representation TY of SU(2) coincides with
the representation D7 of su(2).

Proposition 82 For any j € %N, (VD TWY is an irreducible representation of
SU(2).
It defines an irreducible representation of SO(3) if and only if j € N.
Ifnisodd(j e %, j ¢ N) then T'D is a projective representation of SO(3).

Proof It follows from general results about the differential of the representations of
Lie groups that the differential of 7(/) is an irreducible representation.

The second part comes from the following fact: T (—g) = T (g), Vg € SU(2)
if and only if n is even.

The proof of the last part is left to the reader. g

Corollary 24 Every irreducible representation of SU(2) is equivalent to one of the
representations (V(f), T(f)), j € %N.

Proof Since SU(2) is compact we know that every irreducible representation of
SU(2) is finite dimensional. We have seen that every irreducible representation of
finite dimension of su(2) is one of the D/, j € %N. This implies the result since
SU(2) is connected and simply connected. U

7.3.3 Irreducible Representations of SO(3) and Spherical
Harmonics

We have seen above that irreducible representations of SO(3) are described by
(T'Y, vy for j € N. A more concrete equivalent representation can be obtained
with a spectral decomposition of the Laplace operator on S?.

Recall that in spherical coordinates (r, 6, ¢) we have

_32+32 9* 97 29 1,
_ax]Z x5 8x32_3r2 ror 209

where Ag is the spherical Laplace operator on s?,

92 1 9 1 92

Apim e %
s 892+tan989+sin293¢2

(7.26)

SO(3) has a natural representation X in the function space L2(R?) (and in L2(S?))
defined as follows: X (g) f(x) = f(g~'x) where g € SO(3), f € L>(R?) and the
Laplace operator commutes with X'.

Let us introduce the linear space jfg(j ) of homogeneous polynomials f in
(x1, x2,x3) of total degree j and satisfying A f = 0 and restricted to the sphere
S?; %”;’ ) is the space of spherical harmonics.
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Recall that the Euclidean measure on S? is d s (6, ¢) = sinf d6 dg.

Theorem 41 %(j )isa subspace of C*°(S?) of dimension 2j + 1, invariant for the
action X. The representation (X, Jfg(" )) is irreducible and is unitary equivalent to
the representation (T )V (1)),

Recall the following expression for the measure d i on the sphere: du»(6, ¢) =
sinf df de.

Proof We shall prove some properties of spherical harmonics which are proved in
more details for example in [130].

The space H/ is invariant by the generators L1, Ly, L3 of rotations. In spherical
coordinates we have

19
Ly=—-— (7.27)
i dgp
1 d i 0
Lr=—(cosp— — ¢ % (7.28)
i 00  tanf dg
] cosy 0
Ly =i|sing— — 7.29
! ’(Sm‘oae *ane a<p> (7.:29)
We can compute the Casimir operator: L2 := L% + L% +1Li= —Asg2. In particular
we have [L3, Ag]=0.
If Ly := L &+iL, then we have
(L3, Li]==%Lx, (L4, L_1=2L3 (7.30)

LiL_=L?>—L3(L;—1), L_Ly=L?>—L3(L3+1) (7.31)
Let f € H/. In polar coordinates we have f(r,6, ¢) =r/Y (6, ). So we get
Af=0 <= —AgpY=j+1Y
L3 can be diagonalized in H/
LY =LY <= Y(p,0)=e¢" (), meZ —j<m<j

So admitting that H/ has dimension 2 + 1 we see that the representation (X', H )
is unitary equivalent to the representation (77, V()). g

Remark 42 Using the same method as in Sect. 7.3.1, for every j € N we have
an orthonormal basis {Y]'?}, j<k<j of ffg(] ) where Yj'? are eigenfunctions of Lj:

L3Y jk =kY ]]?, —J <k < j.In other words Y ]k are Dicke states. Moreover they have
the following expression:

2j +1
TT

Y0, 9) = Pj(cos0) (7.32)
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where P; are the Legendre polynomials

d’

. A SR
P’(”)_zfj!dui(“ D

For k # 0 we can use the following formula:

LYk =G+ D —kE+ DY

(7.33)
LY} =jGF+D —kk- 1)1/;‘—1

Let us prove now two useful properties of the spherical harmonics

Proposition 83

(i) Forevery j €N, %@U) has dimension 2j + 1.
(i) {YJ].‘, —j <k <j,jeN}isan orthonormal basis of LZ(SZ) or, equivalently,

P/ =126

jeN

Proof Let us introduce the space @é‘j ) of homogeneous polynomials in (xg, x2, x3)

of total degree j. The dimension of 3 ; is w It easy to prove that A is
surjective so we get (i):

G+DG+2) G=-DJj

dim(ker A) =
im(ker A) > 3

=2j+1

To prove (ii) let us introduce on ﬁéj ) ascalar product such that we have an orthonor-

ky ky k3 .
mal basis {f}%}kl+k2+k3:ﬁ Let us introduce the Hilbert space 57 := GBQZ;J).
So the linear operators adi and x; are hermitian conjugate. Hence A is conjugate to
r? =x% +x%+x32.

We have rzﬂéj ) - Wéj 2 and Aﬁél ) = 9;1 =2, Using the formula (Fredholm
property) ker A = (Im A*)*, we get ,@3(1 ) = Hj & r29’3(/ = Step by step we get

29 =HD &rH V.. 02 HI Y (7.34)

where j —1<2¢ < j.
Now we can prove that the spherical harmonics is a total system in L*(S?). Let
us remark that the algebra | J jen &3,j is dense in C (S?) for the sup-norm (conse-

()
i jeN ij s
dense in C(S?) for the sup-norm, so U/eN %”3(]) is dense in L?(S?). O

quence of Stone-Weierstrass Theorem). So using (7.34) we see that _J
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7.4 The Coherent States of SU(2)

7.4.1 Definition and First Properties

Let us start with a ref_erence (non zero) vector Y € 174%2 and‘consider elements of
the orbit of 1 in V) by the action of the representation 7). We get a family of
states of the form

lg) =T (g)vo

j will be fixed, so we denote |g) = T'(g)¥o. In a more explicit form we have
T(9)Vo(z1.22) = Yo(g ' (z1.22)), (21,22) € C?

In principle any vector ¥ € V/) can be taken as reference state. However for the
states Yg = |j, =) we can see that the dispersion of the total spin operator S =
(S 1, Sg, S3) is minimal, so that the states |j, &) determine the system of coherent
states which, in some sense, is closest to the classical states. In practice we choose
in what follows

vo=1j.—J)
Let us recall the definition of the dispersion for an observable A for a state Y, where
¥ is a normalized state in an Hilbert space A and A a self-adjoint operator in I

For i in the domain of A the average is (A) = (¥, AI/I) and the dispersion is
defined like the variance for a random variable in probability:

nyAi=((A~(A),1)°), = (&), (4],

Let us recall here the Heisenberg uncertainty principle: if A, B are self-adjoint op-
erators in 52 and ¥ € JZ, ||y || = 1 then we have

(804) (89 B) = 1 (A, B]), )" (1.35)

Application to the total spin observable gives

AS= " AgSi= Y 18w | — Sk v)

1<k<3 1<k<3

For Yoo = |j, m) we get
AyS=jG+1)—m?

So the dispersion is minimal for m = =+
The Heisenberg inequality for spin operators reads (see (7.35))

PO 1,4
(52830 = 557 736

It is easy to see that this inequality is an equality for o = Vn,.
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Now our goal is to study the main properties of the coherent states |g). Let us
first remark that the full group G = SU(2) is not a good set to parametrize these
coherent states because the map g > |g) is not injective. So we introduce the so-
called isotropy group H defined as follows:

H={geG,38 R, T(g)yo=rc"yy)

We find that H is the subgroup of diagonal matrices

H={<g 2)} o = exp(i )

Now the map g — |g) is a bijection from the quotient space X := G/H onto the
orbit of 9, where G/H is the set of left coset gH of H in G and g > ¢ is the
canonical map: G — G/H.

Let us denote X = X\{(_Ol (1))}

Lemma 43 X is isomorphic to the set of elements of the form

{(a_ 5), a€R, a#0, B=p1+if€C, 012"‘:312“‘:322:1}

Proof Let us denote g(a,b) a generic element of SU(2), g = ( Z), a,beC,
la|® + |b]* = 1.

We first remark that for every |b] = 1, g(0, b) is in the coset of g(0, 1).

Now if |a|? + |b|?> = 1 and a # 0 then we have a unique decomposition

gla,b)=g(a’,b")g(a,0)

witha' > 0,0 = (&, @2+ )3 =1.
So we get the lemma. d

Remark 43 Concerning the orbit with our choice of ¥ the image of X¢ does not
contain the monomial z%J , which are obtained with g(0, 1).

Choosing the parametrization
N
o = CoS —, ,8:—sm§e Y, 0<0<2m 0<¢p<2m

we see that the space X is just a representation of the two-dimensional sphere S?
minus the north pole, namely the set of unit three-dimensional vectors

n = (sinfcosg, sinfsing,cosd), 0<O<m 0<¢p<2m
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and any element g, € X can be written as

0
gn = €xp |:i 3 (singoy — cos goo'g)i| (7.37)

where o1, 0y are the Pauli matrices.

Thus gn describes a rotation by the angle 6 around the vector m =
(sing, —cos ¢, 0) belonging to the equatorial plane of the sphere and perpendic-
ular to n (it is well defined because 0 € [0, 7 [).

Definition 19 The coherent states of SU(2) are the following states defined in the
representation space V/):

In) =T (gn)¥o := D(m)¥o (7.38)

In the physics literature they are called the spin-coherent states because the spin is
classified with the irreducible representations of SU(2) (see [154]). These coherent
states have several other names: atomic coherent states, Bloch coherent states.

Choosing g = gn the coherent state of the SU(2) group can now be written as

In) = T (gn)¥o = exp(ifm - K)o
where
m = (sing, —cos ¢, 0), K= (K1, K>, K3)

m is the unit vector orthogonal to both n and ng = (0, 0, 1). Note that this definition
excludes the south pole ng = (0, 0, —1).

Thus a coherent state of SU(2) corresponds to a point of the two-dimensional
sphere S? which may be considered as the phase space of a classical dynamical
system, the “classical spin”. The coherent states associated with the south pole will
be the image of (g(0, B)), |8] = 1 giving monomials zf].

So we have parametrized the spin coherent by the sphere S.

Another useful parametrization can be obtained with the complex plane, using
the stereographic projection from the south pole of the sphere S? onto the complex
plane C.

If n = (n1,n2,n3) € S? then the stereographic projection of n from the south
pole is the complex number ¢ (n) = ”{i—;’iz So in polar coordinates we have ¢ (n) =
tan(0/2)e’?.

As we have already remarked, the group SU(2) naturally embeds into the com-
plex group SL(2, C) which is the group of complex matrices having determinant
one. The following Gaussian decomposition in SL(2, C) will be useful. The proof is
an easy exercise.

Lemma 44 For any g € SL(2, C) of the form

g=<7‘f ‘g) with 8 # 0
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one has a unique (Gaussian) decomposition
g=ty-d-t_

where d is diagonal and t are triangular matrices of the form

ty = (é i) = (l ?) (7.39)

and

We have the formulas

14 B
= 8, =—, = — 740
) 2= ¢ 5 (7.40)
Moreover if g € SU(2) then we have
eP=(1+1P) " =1 +1z?) " (7.41)

This allows to write as consequence of Gauss decomposition,
T(j)(g) — T(j)(t+)T(j)(d)T(j)(t_)
Let us write &€ = re’* with 7 > 0 and s € R.

Taking Yo = |j, —j) as the reference state one gets in the representation
(T, vy

TD (1) = e+ = 1o (7.42)
T (d)o = =2/ 0y (7.43)

So we have
T(g)¥o=eNT(t3)o (7.44)

From (7.41) we get N = (1 4 |£|*) /. ¢ is a real number (argument of 8). If g = gp
then § is real so we get s = ¢ =0.

In conclusion we have obtained an identification of the coherent states |n) with
the state |¢) defined as follows:

16y = (1+1¢P) 7 exp(¢8:)1), —)
More precisely we denote |¢) = |gn) With the following correspondence:

n = (sinf cos ¢, sin@ sin ¢, cos ), ¢ =—tan Ee_i“’

The geometrical interpretation is that —¢ is the stereographic projection of n.
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Recall the following expression of gp:

cos % —sin %e_"g"
gll = 2] 0 (745)

in 8eiv 0
sin 5€ cos 5

Another form for |n) is given by the following equivalent definition using that g, =
ei9(sin (pS'l —cos (p.§'2)

n) = D(&)vo
where
D) =exp(£5, —£S_)

and £ = tan(%)e’?.
The Gaussian decomposition also provides a “normal form” of D(§):

D(&) =exp(¢S4) exp(n83) exp(¢/S-)
with
n=-2loglgl, ¢ =-¢

Since ¢, ¢’, n do not depend on j it is enough to check this formula in the represen-
tation where j = %, S= %R(o), where o is the three component Pauli matrix.

For each n € S? the coherent state y, minimizes Heisenberg inequality obtained
by translation of (7.36) by D(n) i.e. putting S’k = D(n)S‘kD(n)’1 instead of S'k,
1 <k<3.

7.4.2 Some Explicit Formulas

Many explicit formulas can be proved for the spin-coherent states. These formulas
have many similarities with formulas already proved for the Heisenberg coherent
states and can be written as well with the coordinates n on the sphere S? or in the
coordinates ¢ in the complex plane C.

Let us first remark that S?> and C can be identified with a classical phase space. S?

is equipped with the symplectic two form o = sin6 d6 A dg. In the stereographic
dende
(I+1g P2

projection it is transformed in o = 2i This is an easy computation using

{=—tan %e_i“’.

Let us consider first some properties of operators D (n). We shall also use the no-
tations D(£) or D(¢) where £ and ¢ are given by & = tan($)e’¥ and ¢ = —tan §e /¢
using polar coordinates for n. The multiplication law for the operators D(n) is given
by the following formula:

Proposition 84

(i) For every my, my outside the south pole of S? we have

D(n)D(ny) = D(n3) exp(—i @ (ny, my) J3) (7.46)
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where @ (n1, ny) is the oriented area of the geodesic triangle on the sphere with

vertices at the points [ng, ny, na].
n3 is determined by

n3 = Rgnl ny (7.47)

where Ry is the rotation associated to g € SU(2) as in Proposition 78 and

0
&n = exp <i 5 (o1 sing — 0, cos (p)> (7.48)

(ii) More generally for every g € SU(2) and every n € S? such that n and g - n are

outside the south pole we have

DYV (g)yrg = exp(—ij </ (g.m))Ygm (7.49)

where g -n = Rg(n) and <7/ (g,n) is the area of the spherical triangle [ng, n,

g -nj.

Proof We prove the result in the two-dimensional representation of SU(2). The vec-
tor n3 is determined only by geometrical rule and is thus independent of the repre-

sentation. We choose the representation in V'1/2.

Define R(g) to be the rotation in SO(3) induced by any g € SU(2). By the defi-

nition (7.48) of g we have

R(gn)ng=n, Vn=(sinfcosg,sinf sing, cosb)
We need to compute g = gn, gn,. We use the following lemma:

Lemma 45 Vg € SU(2) 3m € S? and § € R such that

g = 8&mr3(8)
where r3(8) = exp(i%cm).

Applying the lemma to g = gn, gn, We get

g = 8&mr3(8)

and we need to identify m with n3 given by (7.47). We have
R(r3(8))no =ng
Then
R(g) = R(gn))R(gn,) = R(gm)R(r3(3))
Applying this identity to the vector ng we get
R(gn;)R(gny)n0 = R(gn;)M2 = R(gm)no =m

Thus we have proven that m = n3 = R(gn,)n>.
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So we have seen that the displacement operator D(n) transforms any spin-
coherent state |n) into another coherent state of the system up to a phase:

D(m)|ny) = D(m)D(ny) o = D(my) exp(i $3@ (n, m1)) Yo = exp(—ij @ (n, 1)) my)

where ny = R(gp)n;. The second factor in the right hand side of (8.65) does depend
on the representation. The computation of @ (ny, ny) will be done later.

In the proof of (7.49) the nontrivial part is to compute the phase <7 (g, n) which
also will be done later. U

The following lemma shows that the spin is independent of the direction.

Lemma 46 One has

Dm)S3Dm)"' =n-S

We shall prove the lemma in the representation of the Pauli matrices. First note
that

0 6
D(n) = cos 5 +isin > (singo| — cos o)

Then

0 0
Dm)o3D(n)~' = (cos 7+ i sin 5(s,in @O — cos (pUz))a3

0 0
X (cos 5~ isin E(Sin Qo1 — Cos <p02)> (7.50)

We use the properties of the Pauli matrices:
0103 = —i02, 0203 =101, 0701 = —i03
to compute the right hand side. One gets
D(n)cr3D(n)’1 =cosfo3 + sinf(singpor + cospo)) =n-a
The following consequence is that |n) is an eigenvector of the operator n - S:
Proposition 85 One has
n-Sin) = —j[n)

Proof Denote by |ng) the vector
Sy,
Then
S3lno) = —je*S 0 = — jng)

since we take Yo =|j, —J).
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Now we shall use the above lemma:
n-Sin) = D(n)J3y = —j[n)
This completes the proof of the proposition. d

As in the Heisenberg setting, the spin-coherent states family |n) is not an orthog-
onal system. One can compute the scalar product of two coherent states |n), |n’):

Proposition 86 One has

‘. / 1 -n\’
(n’|n>=e”‘p(“’“)<7_|_;l n) (7.51)

where @ (n, 1) is a real number. If the spherical triangle with vertices {ng, n,n’} is
an Euler triangle then @ (n, n') is the oriented area of this triangle.

Proof To each point n on the sphere S? we associate its spherical coordinates 6 €
[0,7), ¢ €[0,2m7) as usual:

Xx = siné cos @, y =sinfsing, z=cosf

The corresponding element g, € SU(2) is defined as

0
&n = exp <i > (sinpo] — cos 9002)>

The matrix i(singo; — cosoy) can be viewed as a pure quaternion that we de-
note g. Using (7.18) we have

0 .
gn—cos§+qsm§

Taking n’ € S? with spherical coordinates 6, ¢’ we get (using quaternion calculus)

6’ .0 .0 ( ,)
/ = COS — COS — — SIn — S1in — CoS —
8&n8n ) ) ) ) -9

/ / /

+..9.9.(, Vg O in® osineos? (752
031 S1n — S1n — SIn — COS — S1In — Sin — COS — .
3tSM S SIS = @) g €085 SI7 g S5 €087

Therefore gpgy is of the form (7.20) with

0’ o .0 ..

@ = oS — cOS — — sin — sin —e! (#~¢")
2 2 2 2

The element g, of SU(2) can be written as

0

cos% —sinie i
&n 0 i [
in Zet¢ 9
sin 5¢€ cos 5
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Now we turn to the representation 7’ (g) in the space V/) of homogeneous poly-

nomials of degree 2j in z1, z». The coherent state |n) is of the form T (gn)yo for
2j

i)

VEH!

neous polynomial representation. Note that this is coherent with the choice |j, —j).
The overlap between two coherent states is given by the scalar product:

some n € S? and v being a reference state. We choose /g = in the homoge-

(T (gn) 0. T (gw)V0)

1 ) 0 .\ 6’ o . N\
<<z2005—+zlsin—e"/’> ,(zgcosa—i—zlsin—e”") > (7.53)

2! 2 2 2

We make use of the following result:

Lemma 47 Let I, g(z1,22) = (az1 + ﬁz2)2j. Then the scalar product in v of
two such polynomials equals

(Mo g, M) = ) (@ + BB

Then we get

0 ! o 0 . N\
(n'|n) = <cos 3 cos 5 -+ sin 3 sin Eel (p—o ))

By an easy calculus we obtain

o' o .0 .
cOS — c0S — + sin — sin —e! (¥~
2 2 2 2

_ 14+n-n
2

Let us now compute the phase of the overlap (n|n). It is a non trivial and interesting
computation related with Berry phase as we shall see. It can be extended to a more
general setting for coherent states on Kéhler manifolds [32]. We follow here the
elementary proof of the paper [4].

Let us denote

0 0’ o .0 . /
n= arg(cos 2 cos ) + sin 2 sin Ee‘(‘P—W )>
Using classical trigonometric formula we get

_ sin® sinf’ sin(g — ¢’)
(14 cos6)(1 4 cosf’) + sin@ sin 6’ cos(p — ¢’)

tann (7.54)

We now compare this formula with the following spherical geometric formula al-
ready known by Euler and Lagrange (see [75] for a detailed proof).

Let 3 points nj, ny, n3 be on the unit sphere S2, not all on the same great circle
and such that the spherical triangle with vertices ny, ny, n3 is an Euler triangle i.e.
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the angles and the sides are all smaller than 7. Let w be the area of this triangle.
Then we have
w |det[n;, ny, n3]|

tan — = (7.55)
2 l14+n;-np+ny-n3+n3-ng

Notice that this formula takes account of the orientation of the piecewise geodesic
curve with vertices ni,ny,n3. The orientation is positive if the frame {Onj,
Ony, Ons} is direct.

From (7.54) and (7.55) we get directly that tan 2 = tan % Butw,ne]—m, [ so
we can conclude that n = w. O

As is expected, the spin-coherent state system provides a “resolution of the iden-
tity” in the Hilbert space V/):

Proposition 87 We have the formula

2j+1
4

/SZ dnjn)(n|=1 (7.56)

Or using complex coordinates |{),

[Lam@eei=1 7.5
where the measure d i is
T B et s
A +1z19)
with d>¢ = 14€5d¢]
Proof The two formulas are equivalent by the change of variables { = —tan %e_i‘/’.

So it is sufficient to prove the complex version.
Let us recall the analytic expression for |n) and |¢).

1 0 0 \¥
In) = ¥n(z1,22) = Nent —sin e Y21 + cos %2 (7.58)

[C) =¥ (z1,22) = (¢z1+ 22)2j (7.59)

1 1
VeHI A+ 15137
Recall that we have an orthonormal basis of Dicke states {d,{ }_j<k<jin V) where
Jjt+k_j—k

21 2

VR —k)!

d;;/ (z1,22) =
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So we get

2))! 2 2\~ j+
(Ve di) = (m) (1+1217) ¢ (7.60)

And using the Parseval formula we get

o)y =1+ 1227 (1+ )~ (1 +n2)” (7.61)

Equation (7.61) is the complex version for the overlap formula of two coherent
states (7.53).

It is convenient to introduce now the spin Bargmann transform (see Chap. 1 for
the Bargmann transform in the Heisenberg setting).

For every v € V) we define the following polynomial in the complex variable ¢:

V) = (e o) (1 +1217)

Ifv= Z_j <k<j Ckek a direct computation gives

2
Jo el g =g 2 e

—j<k<j
7 2
=— 7.62
T llvll (7.62)
Or equivalently
2

> d¢ T 2

v = — v 7.63)
/(C|(W§| )| TERTRE TS (

This formula is equivalent to the overcompleteness formula by polarisation. O

Remark 44 From the proof we have found that the spin-Bargmann transform:
BIv(¢) == v/*(¢) is an isometry from V) onto the space &, of polynomials
of degree at most 2 j equipped with the scalar product

_d
1+ g2+

2j+1

(P,Q)= /CP(OQ(;)

In particular we have
YR = (1+ ) (1 +75)%
We now extend the computation of the phase @ (n,n’) in the general case by

giving for it a different expression related with the well known geometric phase.
A similar computation was done in [146].
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Proposition 88 For any n,n’ € S we have

¢(n,n’)=—i (W d ) (7.64)
J Jn,n]

where the integral is computed on the shortest geodesic arc joining n to W of the
one differential form (Vry,, dr,).

To explain the formula we recall here the main idea behind the geometric phase
discovered by Berry [24] and Pancharatnam [149] (see also [2]).

Let us consider a closed loop n(z) : [0, 1] — S? which is continuous by part,
n(0) = n(1). We define the time-dependent Hamiltonian as

H@) =n()-S

The solution of the time-dependent Schrodinger equation with this Hamiltonian is
denoted 1/ (¢). Let us consider 1(¢) in the Hilbert space and «(¢) € R such that

v (1) =e*Dn(r)

We choose a(t) such that (n(t), 7(¢)) = 0. In other terms 7 (¢) describes a parallel
transport along the curve. Then the geometrical phase «(¢) obeys

ic(t) + (¥ (1), ¥ (1)) =0
‘We thus have

a(l):=a(y)=i 7€ (Y. dy)
14

If ¥ delimitates a portion I" of S* we have by Stokes theorem

a(y) = / (v, d)
r

where the product of the differentials is the external product.
Let Y be the coherent state |n) obtained at t = 1 from v (0) = ¥ry,. In the ho-
mogeneous polynomial representation we get

" 1 0202 4 cos? 2]
= —=| Sin ¢ COS —
n (2])! 5 <1 212

Thus

Wn __J z cosgei‘/’—z sing singei‘”z +c0s2z o
30 JeHi\' 2 SR) 2° ! 2%

3 2j 0 . 0 . 6\ ~!

Vn - _isin —e”"z1<zl sin Ee“" + zp cos —)

B9 J2H 2 2
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Using the invariance of the scalar product in V/) under SU(2) transformations we
perform the change of variables

7z 0 i o 0
= 7108 — — 7€ "% sin —
1 1 ) 2 )

9 9 (7.65)
Z, = z1e/%sin 2 + 25 cos >
One thus have using the orthogonality relations in V():
OYn J o 2j—1 2j
<””“’ W> =an ez z))=0 (7.66)
One can calculate the scalar product of 331@“ and 39’/(//)“ :
3Yn 9 22 ., .0 - 0 ; 0\ 2/
w", 9Yn =i ]_ e '"?sin— Zlsz L Zycos —e'¥ + Zp sin — 727!
90 " dgp @) 2 2 2 2)72
1
= Eij sinf (7.67)
since

(2127 2127 Y =j - 1)

We shall now calculate the phase of the scalar product (Y, Yy ) by calculating the
geometric phase along the geodesic triangle 7 = [ng, n, n’, ng]. Denote by £2 the
domain on S? delimited by .7. We have

a(9)=i7§ (Y, dym) Zi/ (dyrm, dym) (7.68)
T 2
This yields
a(T) = —j/ sinf d6 dp = — jArea(s2)
Q
We denote by [ng, n;] the portion of great circle on S? between n; and ny. We now

integrate (7.68) successively along [ng, n], [m, n’] and [n’, ng]. From the fact that
[ng, n], [n’, ng] lie in verticle planes we have

/ (Yrn, dym) Z/ (Ym,dym) =0
[ng,n] [n,ng]

Thus for an Euler triangle we get

—jArea(2) = —j®(n,n) =i f (Yn. dVm)

[n,n']



212 7 Spin-Coherent States

In the general case we can subdivide the triangle in several Euler triangles with
vertex at ny by adding vertices between n and n’. Then we get

omn)=—2 [ (Y dym)
J Jn,n]

As a consequence of our study of the geometric phase, let us now compute the
phase in formula (7.46).
We already know that

D) D(np) Yo = D(n3)e’™

and we have to compute «.
We have

(W0, D) D)) = & (Yo, D (n3) )
= (D(m1)* Yo, D(m) o) (7.69)
From Lemma 48 we know that (o, D(n3)Y) > 0. But D(m)* = D(n}) where n

is the symmetric of n; on the great circle determined by ng and n;. Applying the
computation of the phase in (7.53) we get

a =arg((n}, my))

With an elementary geometric argument we get the phase in formula (7.46).

As a consequence, we can get the phase <7 (g, n) in formula (7.49). If g = gm
then <7 (g, m) = @ (m, n). For a generic g € SU(2) we have g = gmr3(8) for some
seR.

So we have ggn = gmr3(8)gn. Let n = (8, ¢) (polar coordinates). We have
r3(8)gn = gur3(8) where n’ = (0, ¢ + §). So using computation of @ in (7.46)
and elementary geometry we find that 2/ (g, n) is equal to the area of the spherical
triangle [ng, n, g - n].

Let us close our discussion concerning the geometric phase for coherent states
by the following result:

Lemma 48 Let ¥ and Y2 be two different states on a great circle of S j (unit sphere
on V). One parametrizes this by the angle 6 in the following way:

Y (0) =x1(0)¥1 + x2(0)y2

where x;(0) € R and 4 (0) = ¥, ¥ (6p) = 2.
One assumes that

(v (©),¥(©)=0

Then 1 and yry are in phase, namely

(Y1, ¥2) >0
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Proof One can assume that a = R (Y, ¥») > 0. Then by an easy calculus we get

a 1
x1(0) =cosf — ———sinb, x2(0) = ——=sinf, a =cosby
V1—a? V1—a?
. 1
(W (0), ¥(0) = ——=3(VY1,¥2)
( ) 2+/1 —a?
One deduces that (11, ¥2) is real therefore positive. O

Remark 45 For two coherent states |n) and |n’) there are two natural geodesics
joining them: the geodesic on the two sphere S and the geodesic on the sphere S i
(sphere (2 + 1) dimensional). It is a consequence of results proved above that the
geometric phases for these two curves in V) are the same. This was not obvious
before computations.

7.5 Coherent States on the Riemann Sphere

We have seen that it is convenient to compute on the sphere S? using complex coor-
dinates given by the stereographic projection. We shall give here more details about
this. In particular this gives a semi-classical interpretation for the spin-coherent
states and a quantization of the sphere S?. The picture is analogous to the har-
monic oscillator coherent states and the associated Wick quantization of the phase
space R,

The stereographic projection of the sphere S? from its south pole is the transfor-
mation 773 (n) = ¢, defined by

§_n1+in2
n 1+n3

where n = (n1, ny, n3). g is an homeomorphism from SE :=S?\{(0, 0, 1)} on the
complex plane C. Moreover 7y can be extended in an homeomorphism from s?

on C :=C U {oo} such that 5(0,0, 1) = co. C is a one-dimensional complex and

compact manifold called the Riemann sphere.
—1

mg  is determined by the formula ns_l ¢ = (ny,ny, n3) where
gy LFE R ' I e |15
1+ i+’ 1+[¢?

It is known that the group of automorphisms of C (bijective and biholomorphic
transformations) is the Mobius group, the group of homographic transformations

h(z) = gﬁjr's where a, b, ¢, d € C such that ad — bc = 1. The conventions are: if

¢ =0 then h(oc0) = 00; if ¢ # 0 then h(oc0) = % h(—%) = 00.

Let us denote g = (¢ z), g € SL(2,C) and f = h,. Then is not difficult to see
that hg = 1 if and only if g = &1,.
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We have seen that if g € SU(2) then R, defines a rotation in S2.In C we see that
R, becomes a Mobius transformation:

Lemma 49 Let I§g =nyRym; and g € SUQ), g = (% Z) Then we have

~ at+b ~

Ry =———, V¢eC 7.70

S ¥ (7.70)

Proof We only give a sketch. First it is enough to consider g = g>(0). After some

computations we get the result using that Mobius transformations preserve the cross
=8

ratio 6" U

For simplicity we denote Rgg =g-C.
Now our aim is to realize the representation (TP, V7Y in a space of holomorphic
functions on the Riemann sphere C. This is achieved easily with the spin-Bargmann

transform %/ introduced above. Recall that Z7v(¢) = (Y, v) (1 + |¢[3)/.
We get the images of the Dicke basis and of the coherent states:

j | @nt \" .
d£(§)3=931(dk)(5)=<m) &, jtrk=¢ (7.71)

Ue@ = W ve)(1+12P) = (1+12P7) 7 (14+22)7, zceC (7.72)

Let us remark that the Hilbert space V/ is transformed in the Hilbert space %, i
(polynomials of degree < 2j + 1) and that &% coincides with the space of holo-
morphic functions P on C such that

[C PP+ 1£7) > 2d% < +oo

So the exponential weight of the usual Bargmann space is replaced here by a poly-
nomial weight.

We see now that the action of SU(2) in the Bargmann space %; is simple and
has a nice semi-classical interpretation.

Let us denote T/ (g) := B/ TJ (g) %7*.

On the Riemann sphere the representation 7/ has the following expression:

Proposition 89 For every v € 9, and g € SU(2) we have

TV () =1;(g. OV(s(©) (7.73)

S

Q

;’_
(+a”

where g = (%), 1j(g.0) = (a+ b)) and Ry-1(¢) =

S|
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Proof Tt is enough to prove the proposition for ¥ (¢) = ¢¢. From definition of %/
we get

(J+k)!
Vi =k)!

Using that the scalar product in V/ is invariant for the SU(2) action we obtain

(BT (g)di) () = 2))! (Ez1+22)%, @21 —bz2) * (bzy +az) ),

o et A\, aifac—b\*
JTJ _ 7 2
(BT (g)dy)(¢) = (z!(zj—e)!) (a+b2) (&H) (7.74)

Hence we get the proposition. g

Now, following Onofri [148] we shall give a classically mechanical interpretation
of the term (g, ¢). This interpretation can be extended to any semi-simple Lie
group, as we shall see later.

Let us introduce K (¢, ¢) = 2log(1 + ¢¢) (Kihler potential), d the exterior dif-
ferential, 0 the exterior differential in ¢, 9 the exterior differential in E .

We have d =3 + 3 and dd = 39 = —9d.

We introduce the one form 6 = —i0 K and the two form
dc AdE
w=d0 = 2i§—2§2
(I+1¢19)

w is clearly a non-degenerate antisymmetric two form. So (C,w)isa symplectic
manifold. Moreover it is a Kédhler one-dimensional complex manifold for the Her-
mitian metric

dgde
ds>=4——"__
SRR B

It is not difficult to see that w is invariant by the action of SU(2): g,» = w. In other
words SU(2) acts in C by canonical transformations.

C is connected and simply connected, so there exists a smooth function S(g, ¢)
such that dS(g, ) =6 — g.0.

Now let us compute du as follows.

From (7.73) with ¢ = 1/70 =1 and using that (Y, ¥o) = (1 + |§|2)j we get

(0. T7 (s~ 8c)* o)
(0. ¥r¢)

Then we compute du = (ij (0 — g.0))u = (ij dS)u. Hence we get the classically
mechanical interpretation for u(g, ¢)

(g, 0) = (g, 0)ei Jo O=8:0) (1.75)
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7.6 Application to High Spin Inequalities

One of the first successful use of spin-coherent states was the thermodynamic limit
of spin systems as an application of Berezin—Lieb inequalities. Berezin—Lieb in-
equality holds true for general coherent states.

7.6.1 Berezin—Lieb Inequalities

We shall follow here the notations of Sect. 2.6 concerning Wick quantization. We
assume here that the Hilbert space .77 is finite dimensional (this is enough for our
application). Let A € £() with a covariant symbol A, and contravariant symbol
A€ defined on some metric space M with a probability Radon measure d . (m). It is
not difficult to see that these two symbols satisfy the following duality formulas:

Tr(AB) = / Ac(m)BE(m)du(m) (7.76)
M
Ac(m') = /M|<em|em/>|2AC<m)du<m) (7.77)

In particular we have
Tr(A) = / Ac(m)dp(m) (7.78)
M
Let us remark that if A, is well defined, A€ is not uniquely defined in general.

Theorem 42 Let H be a self-adjoint operator in 7€ and x a convex function on R.
Then we have the inequalities

/M x (He(m)) dpe(m) < Tr(x (H)) < / x (HE(m)) dpu(m) (1.79)

M

Proof Let us recall the Jensen inequality [170], which is the main tool for proving
the Berezin—-Lieb inequalities. For any probability measure v on M, any convex
function x on R and any f € L' (M, dv) we have

x( /M fdv(m)) < /M % (£ (m)) dv(m) (7.80)

‘We start with the formula

T () = [ few 2 ()en)diecn

M

Using the spectral decomposition for self-adjoint operators, we have

(em. x (H)em)= /R X (M) dvy (3)
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where vy, is the spectral measure of the state e,,. It is a probability (discrete) mea-
sure. So the Jensen inequality gives

(ems x (H)em) = x (Ac(m))

Integrating in m we get the first Berezin—Lieb inequality

/M X (Hem)) du(m) < Te(x (1))

For the second inequality we introduce an orthonormal basis of 5 {v,}1<n<n Of
eigenfunctions of A. So we have

(va] X (H)vn) = x ({va] Bva)) = (/ HE(m)|(valem)| du(m))

From Jensen inequality applied with the probability measure |(v,|ey) 12dju(m) we
get

(vn|X(ﬁ)vn)s/Mx(H“(m>)]<v,,|em>|2du<m)

Summing in n we get the second Berezin—Lieb inequality. U

7.6.2 High Spin Estimates

We consider a one-dimensional Heisenberg chain of N spin 8" = (S, S5, §5), 1 <
n < N. The Hamiltonian of this system is

H=- )" s's!
I<n<N-1

H is an Hermitian operator in the finite-dimensional Hilbert space .#% = @~ #"
where .#" = V) for every n.

From the coherent states systems in V) we get in a standard way a coherent
system in .7 parametrized on (S?)" (or CV using the complex parametrisation).
In the sphere representation, if £2 = (m!,...,n") e S we define the coherent state
Yo =Yy @ Y- Ypv. We get, as for N = 1, an overcomplete system with a
resolution of identity. We denote d$2y the probability measure (47) Vdn' ® --- ®
dn® . Wick and anti-Wick quantization are also well defined as explained in Chap. 1.
In particular the Berezin—Lieb inequalities are true in this setting.

As usual the followmg conventlon is used: if A € i”(%”’”) and B € 3(%”’" )
then AB=1Q1--®AQ---®@B®1---®1 with A at position m, B at posi-
tion m’.
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In particular for the covariant and contravariant symbols of AB we have the
following obvious properties:

(AB)o(2) = Ac(n™) B.(n™) (7.81)

(AB)“(£2) = A°(n™)B*(n™") (7.82)

We shall prove the following results concerning the symbols of one spin operators
(81, 82, 83):

Proposition 90 The covariant symbols are

S1,c(m) = —jsinfcos g (7.83)
S2.c(m) = —jsinfsing (7.84)
S3,c(m) = —jcosH (7.85)

The contravariant symbols are

S{m)=—(j+ 1)sinfcosg (7.86)
S5m) = —(j + 1)sinfsing (7.87)
S5(m) = —(j 4 1) cos (7.88)

Proof It seems more convenient to compute in the complex representation ¥, for
the coherent states. In the space V /) the spin operators are represented by differen-
tial operators

1

S = E(Zlau +220;;) (7.89)
1

Sy = 2—1.(Z1822 —220,) (7.90)
1

S3 = E(Z]azl —220;,) (7.91)

The coherent state 1#4! has the expression

Ve (21, 22) = (1+12P) 7 @21+ )Y

1
V2!
So a direct computation gives

N )
(§|S1|§)=—2jT|i|2=—jsm6?cos¢ (7.92)

In the same way we can compute Sy (n) and S3 (n).
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Computing contravariant symbols is more difficult because we have no direct
formula.

The trick is to start with a large enough set of functions in complex variables
(¢, ¢) and to compute their anti-Wick quantizations.

Let us denote Aq g, (¢, ) =041¢1>)"7¢%¢P and Aa,ﬁ,,(k, £) the matrix ele-
ments of the operator Aa,ﬁ,,, —J <k, £ < j,in the canonical basis of V) We shall
use the following formula:

<w,Avk>=/A“(;)(vz,ngvmduj@)
C (7.93)

(ve, M ve) = (ve, V) (Ye, vi) = epee I T THE

2))!
where ¢ =(%)1/2'

So we get
A ; y 2j-1-2
Aapk,0) = cree fc (d20) i Hhra B (1 g2) 7T

Using polar coordinates ¢ = re'? we get
R 00 72 +2042k+1
Aq,p,r(k, 0) = crcedai, p+e2(2] + 1)/0 drm

We compute the one variable integral using beta and gamma functions

/Ood s (sl sl _1TeEHre -4
y —m—m— = — , I — = —

0 A+rH 2 2 2 2 ra)
Finally we have the formula

rG+k+a+DI'(j—a—k+1t+1)

Aaprlk, 0) = 2j + Dexcedark. pre

rQj+t+2)
(7.94)
For exampleif r =1, =0,1, =0, 1,2 we find
. 1
Aotk k+1) = ——/(+k+1(j—k) (7.95)
2j+2

. 1
Ag11tkk+ )= ——/(G+h(—k+1 7.96
01,1k, k+1) 2j+2\/(]+ )(j +1 (7.96)
A kk+1)= i —k+1 7.97
0,01k, k+1) 2j+2(] +1) (7.97)
A1 k+1) = i+ k+1 7.98
L1k, k+1) 2j+2(]+ +1) (7.98)

Using these results we easily get a contravariant symbol for S as in (7.86). O
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Now we can compute the covariant and contravariant symbols of the Hamilto-
nian H. Applying the above results, translated in the sphere variables, we get

H.(2)=j* > nmamt (7.99)
1<m<N-1
H@)=(G+D> > n"n"* (7.100)
1<m<N-1

We are ready now to prove the main result which is a particular case of much more
general results proved in [136, 177]. Let us introduce the quantum partition function

1 A
Z1(B, j :4Tre_’3H, eR
B. ) ETER B

The corresponding classical partition function is obtained taking the average of spin
operators on coherent states. So we define

7. j) = /

e~ PH(2) du(£2)
(SN

Putting together all the necessary results we have proved the following Lieb’s in-
equalities:

Proposition 91 We have the following inequalities:
ZUB, ) <Z9B, j) < ZB, j+ 1), Vj, integer or half-integer  (7.101)

This result can be used to study the thermodynamic limit of large spin systems
(see [136]).

Corollary 25 With the notations of the previous proposition we have

298, j)

im = 7.102
j=+o0 ZEE(B, ) ( )

7.7 More on High Spin Limit: From Spin-Coherent States to
Harmonic-Oscillator Coherent States

We want to give here more details concerning the transition between spin-coherent
states and Heisenberg coherent states.

Let us begin by the following easy connection between spin-coherent states and
harmonic oscillator coherent state. We compute on the Bargmann side. We start
from

Y@ = (L4 Inl) (14 7)Y



7.7 More on High Spin Limit: From Spin-Coherent States 221

If we replace 1 and ¢ by % and % and let j — +oo then we get

. j ¢ A —Inf?
lim ¥/} <—) =l —"/2 = \/ox
A Vo5 #n(6)

In the right side ¢,(¢) is the Bargmann transform of the Gaussian coherent state
located in 7. In this sense the spin-coherent states converge, in the high spin limit,
to the “classical” coherent states.

In the same way we shall prove that the Dicke states converge to the Hermite
basis of the harmonic oscillator.

Let us denote now d; ; the Dicke basis of y . I:Id.,',k =kdjx,—j<k<j. The
spin-Bargmann transform of d; x is easily computed:

CH'

# —
GO =G TG -0

Recall that (see Chap. 1) the Bargmann transform of the Hermite function v,
(L eN)is
Ce

Wg(f)=m

Then we have

Proposition 92 For every £ € N and every r > 0 we have

- ¢ (5 \_ #
J—>+ol<§§cl—>—oodj’k<\/2_j) =279 (¢) (7.103)
Jj—k—

uniformly in |¢| <r.

Proof The result follows from the following approximations. For j, k large enough
such that j — k & £ we have

eyt ept @)t
G+G -k aej-o! ¢ O

A different approach concerning the high spin limit of spin-coherent states is to
consider contractions of the Lie group SU(2) in the Heisenberg Lie group H; (see
[121]). We are not going to consider here the theory of Lie group contractions in
general but to compute on the example of SU(2) and its representations.

Let us consider the irreducible representation of index j of SU(2) in the
Bargmann space %;. & is clearly a finite-dimensional subspace of the Barg-
mann-Fock space .% (C).
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Let us compute in this representation the images Li, Lg of the generators
K+, K3 of the Lie algebra sl(C). We get easily

d
= g“— —J (7.104)
ile
L* :2j§—§2i (7.105)
+ ot .
d
L= — (7.106)
9
Let us introduce a small parameter ¢ > 0 and denote
L% =eL” (7.107)
L® =¢eL” (7.108)
Ls=r1f4 109
5=L3+ Eﬂ (7.109)
We have the following commutation relations:
[L%, L% ] =205 —1,  [L§ LG]==%L% (7.110)

As ¢ — 0 (7.107) define a family of singular transformations of the Lie algebra
su(2) and for ¢ = 0 we get (formally)

[L%,L%]=-1, [L9,L%]==+L} (7.111)
These commutation relations are those satisfied by the harmonic oscillator Lie alge-
bra: Lg_ =a', Lo =a, Lg =N:=da'a.

We can give a mathematical proof of this analogy by computing covariant sym-
bols.

Proposition 93 Assume that ¢ — 0 and j — +00 such that im2 je2 = 1. Then we

have
im(y) |5 ) =16 = (pclatale) (7.112)
tim(y) - |L5 W], )= = (gclatipe) (7.113)
tim(y) |LE |y, ) =¢ = (eclalge) (7.114)

Proof From the computations of Sect. 7.5 we have

j 1—¢f?
1+1¢12

(Wl |L5|wd)= -
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So we have

; ; 1
J &larJ _ 2 -
141l = 4151+ 0(5)
and we get (7.112).
The other formulas are proved in the same way using the following relations:

2j¢
1+ ¢ 0

2j¢
1+ (¢

(wi|L%|wl) = (wi|LE i) =



Chapter 8
Pseudo-Spin-Coherent States

Abstract We have seen before that spin-coherent states are strongly linked with
the algebraic and geometric properties of the Euclidean 2-sphere S*. We shall now
consider analogue setting when the sphere is replace by the 2-pseudo-sphere i.e. the
Euclidean metric in R3 is replaced by the Minkowski metric and the group SO(3)
by the symmetry group SO(2, 1). The main big difference with the Euclidean case
is that in the Minkowski case the pseudo-sphere in non compact as well its sym-
metry group SO(2, 1) and that all irreducible unitary representations of SO(2, 1) are
infinite dimensional.

8.1 Introduction to the Geometry of the Pseudo-Sphere, SO(2, 1)
and SU(1, 1)

In this section we shall give a brief introduction to pseudo-Euclidean geometry (of-
ten named hyperbolic geometry). There exists a huge literature on this subject. For
more details we refer to in [11] or to any standard text book on hyperbolic geometry
like [36].

8.1.1 Minkowski Model

On the linear space R we consider the Minkowski metric defined by the sym-
metric bilinear form (x,y) » = x Ey 1= x1y; + x2y2 — Xoyo where x,y € R3,
x = (x0, X1, X2), ¥y = (Y0, Y1, ¥2)-

So we get the three-dimensional Minkowski space (R3, (-, - ) with its canonical
orthonormal basis {eg, e1, e2}.

Let us remark that the Minkowski metric is the restriction of the Lorentz relativis-
tic metric, defined by the quadratic form x% + x% +x32 — x%, to the three-dimensional
subspace of R* defined by x3 = 0.

The surface in R3 defined by the equation {x € R3, (x, x)y = —1} is a hyper-
boloid with two symmetric sheets. The pseudo-sphere PS? is one of this sheet. So
we can choose the upper sheet:

PS? = {x = (x0, x1, x2), X{ + x5 — x5 = —1,x0 > 0}

M. Combescure, D. Robert, Coherent States and Applications in Mathematical Physics, 225
Theoretical and Mathematical Physics,
DOI 10.1007/978-94-007-0196-0_8, © Springer Science+Business Media B.V. 2012
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PS? is a surface which can be parametrized with the pseudopolar coordinates (7, ¢):

xg =coshr, x1 =sinhtcosg, X3 =sinh T sing,

T € [0, +oo[,p € [0, 27

PS? is a Riemann surface for the metric induced on PS? by the Minkowski metric.

In coordinates (xg, x1, x2) PS? is defined by the equation xg =,/ 1 + x12 + x%. So,
in coordinates {x, xo} on PS?, the metric ds? = —dx(% + dx12 + dx% is given by the
following symmetric matrix:

2

_ N X1X2
G— 1+x7+x2 1+x7+x3
- 2
X1X2 _ o)
14+x2+x3 14x7+x3

Hence we see that ds? is positive-definite on PS?. In polar coordinates we have a
simpler expression: ds”> = dt? + sinht? d?. The curvature of PS” is —1 every-
where (compare with the sphere S? with curvature is +1 everywhere). By analogy
with the Euclidean sphere we shall denote n the generic point on S2.

The Riemannian surface measure in pseudopolar coordinates is given by comput-
ing the density +/det G, where G is the matrix of the metric in coordinates (z, ¢).
So the surface measure on PS? is

d*n=sinhtdr do

We can see that the geodesics on the pseudo-sphere PS? are determined by their
intersection with planes through the origin 0.
We consider now the symmetries of PS?. Let us denote

-1 0
L=|0 1
0 0

—_ O O

the matrix of the quadratic form (e, @) ,: (x, y)y = Lx - y (recall that the - denotes
the usual scalar product in R?).

The invariance group of (e, @) , is denoted O(2,1).So A € O(2, 1) means Ax []
Ax = x [ x for every x € R? or equivalently, ATLA = L (AT is the transposed
matrix of A). In particular if A € O(2, 1) then det A = £1. The direct invariance
group is the subgroup SO(2, 1) defined by A € O(2, 1) and det A = 1. This group
is not connected so we introduce SO((2, 1) the component of 1 in SO(2, 1), itis a
closed subgroup of SO(2, 1).

The pseudo-sphere PS? is clearly invariant under SO (2, 1).

It is not difficult to see that 1 is always an eigenvalue for every A € SOy(2, 1). Let
v € R? be such that lv] =1, Av=v and (v, v)r # 0. The orthogonal complement
of Rv for the Minkowski form (., .) s is a two-dimensional plane invariant by A. So
A looks like a rotation in Euclidean geometry.
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Let us give the following examples of transformations in SO (2, 1):

1 0 0
Ry=|0 cos¢ —sing |: rotation in the plane {e1, ez} (8.1)
0 sing cosg

cosht sinht O
By =|sinht cosht O0]: boostin the direction e (8.2)
0 0 1

cosht O sinhrt
By, = 0 1 0 . boost in the direction ep (8.3)
sinht O cosht

These three transformations generate all the group SOg(2, 1). This can be easily
proved using the following remark: if Av = v and if U is a transformation then
Ay(Uv) =Uv where Ay = UAU .

SOp(2, 1) is a Lie group. In particular it is a three-dimensional manifold.

8.1.2 Lie Algebra

We can get a basis for the Lie algebra so(2, 1) of SO(2, 1) by computing the gener-
ators of the three one-parameter subgroups defined in (8.1). We get

00 O
Ey:=—Rylp=0=|0 0 -1 (8.4)

d¢ 01 0

d 010
E .= d—Bl,Th:() =|1 0 O (8.5)

t 000

0 0 1
Ey:= d—Bz’rh:o =10 O (8.6)

t 1 00

The commutation relations of the Lie algebra are the following:

[Eo, E1]l= E2, [E2, Eol = Ei, [E1, E2] =—Ep (8.7)

If we compare with generators of s0(3) we remark the minus sign in the last relation.

Let us consider the exponential map exp : so0(2,1) — SO(2,1). If A =x0Eo +
x1E1 + xp E> where xg + x12 + x% = 1, we have the one-parameter subgroup of
SO, 1), R(®) =e’4. R(9) is a pseudo-rotation with axis v = (xq, —x2, x1). Its
geometrical properties are classified by the sign of (v, v) .
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e (v,v)py > 0 (“time-like” axis): R(1) has a unique fixed point on PS?, each orbit
is bounded. R(1) is said to be elliptic

e (v,v)y < 0 (“space-like” axis): there exists a unique geodesic on PS? invariant
by U(1), R(1) is said hyperbolic

e (v, v)y =0 (“light-like” axis): the geodesics asymptotically going to Rv are in-
variant by R(1). R(1) is said parabolic

These classification will be more explicit on other models of PS? as we shall see. As
in the Euclidean case we can realize the Lie algebra relations (8.7) in a Lie algebra
of complex 2 x 2 matrices.

We replace the group SU(2) by the group SU(1, 1) of pseudo-unitary unimodular

matrices of the form:
_ (> B 2 a2 _
g—<ﬂ a) o 182 =1

SU(1,1) is a Lie group of real dimension 3. Let us introduce now a convenient
parametrization of SU(1, 1):

o = cosh Lef @2 g ginh Leito-1)/2
2 ’ 2

where the triple (¢, ¢, ¥) runs through the domain 0 < ¢ <2x, 0 <t <00, —21w <
¥ < 2m. In this way one gets the factorization

cosh 5e@FV)/2 ginh Lel (W =¥)/2
glp.t,9) =

sinh £e!(V=9)/2 cosh Le=i(#FV)/2
=8(9,0,0)£(0,7,0)£(0,0, ¥)

In the group SU(1, 1) we choose three one-parameter subgroups consisting of the
matrices

t . !
cosh 5 i sinh 5

w1 (1) = g(0,1,0), wz(t)=( ) wo(r) = g(t,0,0)

R ;
—i smhz coshj

The generators of these one-parameter subgroups are

1/0 1 i (0 1 i1 0
n=3( o) =30 o) w=3(0 1)
These three matrices form a basis of the Lie algebra su(1, 1) with the commutation
relations:
[b1, b2] = —bo, [b2, bol = by, [bo, b1]1 = b2 (3.8)

We see that the Lie algebras so(2, 1) and su(1, 1) are isomorph and we can iden-
tify the basis {Eg, E1, E2} and {bg, b1, b2}. Now we shall see that SU(1, 1) is for
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SOp(2, 1) what is SU(2) for SO(3). Let us consider the adjoint representation of
SU(1, 1). For every g € SU(1, 1) and x = (xg, x1, x2) we have

g( > xkbk)g1 =Y wbh

0<k<2 0<k<2

Let us denote y = p(g)x, where y = (yo, y1, ¥2). As in the Euclidean case we have
the following result.

Proposition 94 For every g € SU(1, 1) we have:

(i) g+ p(g) is a group morphism from SU(1, 1) onto SO(2, 1).
(i) p(g) =1 if and only if g = £1. In particular the groups SO(2, 1)y and
SU(1, 1)/{1, —1} are isomorph.
>iii) If A = vobo + vib1 + v2by then for every T € R, p(e’A) is a pseudo-rotation
of axis (vo, —v3, v1).

Proof 1t is easy to see that p(g) € SO(2, 1) and p is a group morphism. Let us re-
mark that we have wy (1) = e'? for k =0, 1, 2. Then we find that p(wo(t)) is the ro-
tation R; of axis eq in the Minkowski space, p (w1 (¢)) is the boost B; ; and p (w2 (%))
is the boost By ;. Then it results that the range of p is the full group SOy(2, 1).

(ii) is easy to prove, as in the Euclidean case.

We assume v = (v, v, v2) # (0,0,0). The kernel of voEg 4+ vi E1 + v2E> is
clearly generated by the vector (vg, —v2, v1) so we get (iii). g

It will be useful to remark that the group SU(1, 1) is isomorph to the SL(2, R)
group of real 2 x 2 matrices A such that det A = 1. The isomorphism is simply the

conjugation A +—> A™'AA where A € SL2.R), A= 7(; ).

Let us remark that we have su(1, 1) +isu(l, 1) =sl(2, C) so su(l1, 1) and su(2)
have the same complexification as Lie algebras.

We shall see now that this isomorphism has a simple geometry interpretation and

this is very useful to get a better insight of the pseudo-sphere geometry.

8.1.3 The Disc and the Half-Plane Poincaré Representations of the
Pseudo-Sphere

Considering the stereographic projection from the apex (0,0, —1) onto the plane
{e1, ea}, the upper hyperboloid is transformed into the disc D of radius 1. By this
transformation the metric on the pseudo-sphere becomes a metric on . Choosing
in PS? polar coordinates (7, ¢) and in D polar coordinates (r, —¢), we have

. . . T
xog =coshr, x1 =sinht cos g, X3 =sinh T sing, r = tanh 5
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In D the metric and the surface element of the pseudo-sphere have the following
expression:

2 _4dr’+r2dy?) o= 4rdrde

Y= Ta—y (=2

So we get another model of the pseudo-sphere named the Poincaré disc model.

It is also convenient to introduce a complex representation of D, { = re™*¢. In D
geodesics are the straight lines through the origin and arcs circle orthogonal to the
boundary (see the references).

Let us remark that the metric is conformal so the angles for the metric coincide
with the Euclidean angles. So an isometry of ID is a conformal transformation of D.
We know that such direct transformations f are homographic:

[ = Ofg—i_ﬁ, such that |a|* — B> =1

BE +a

In other words the direct symmetry group of D is given by a representation of

SU(,1), g = Hg, where Hy(¢) = f(£), g = (Zg) Moreover we see easily

that H, = 1p if and only if ¢ = £1. So we recover geometrically the fact that
SOQ2, 1)~ SU(1, 1)/{1, £1}.
It is well known that the unit disc can be conformally transformed into the

half complex plane H = {z = u + iv, v > 0} by the homography Hp¢ = %

or H(;lz = _zi—ti’ where ¢ € D, z € H. Explicitly, if ¢ = re!? and z =u + iv, we
have
2rsing 1—r?
M:—, Ve
1+7r2+2rcosg 1+7r2+2rcosg

In H the metric and the surface element of the pseudo-sphere have the following
expression:

2 du2+dv2’ 2 dudv

ds
v2 v

So we get another model of the pseudo-sphere named the Poincaré half-plane model.
In this model the boundary of the disc is transformed into the real axis. In H the
geodesics are vertical lines and half circles orthogonal to the real axis.

As for the disc we can see that the direct symmetry group of H is the group
SL(2,R) with the homographic action H,(z) = ‘;Zzig, o B,y,8eR, ad —yB=1
and H, = 1y if and only if g = 1. We recover the fact that SU(1, 1) and SL(2, R)
are isomorph groups.

Finally there is another realization of the pseudo-sphere which is important to
define coherent states: PS” can be seen as a quotient of SU(1, 1) by its compact

maximal subgroup U (1).
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Lemma 50 For every n = (cosh t, sinh  sin ¢, sinh t cos ¢) define

_( cosh(z/2)  sinh(t/2)e™¥
&n = \sinh(r/2)e!¢  cosh(r/2)

Then the map n +— {gnwo(1), t € [—2m,2x[} is a bijection from S* in the right
cosets of SU(1, 1) modulo U (1) where U (1) is identified with the diagonal matrices

(07 . 92) 1€ [0,4n.

Proof Let us denote g(a, B) = (;; g), o, B €C, |a|?> —|B)?> = 1. The lemma is a
direct consequence of the following decomposition: there exist o’ >0, 8/ € C, t €
[0, 47 [, unique such that

gla, p)=g(a’, Bwo (1)

More precisely we have o’ = ||, t = 2arga, B’ = e/’/? 8. This proves the lemma. [J

So modulo composition by a rotation of axis eg on the right, every g € SU(1, 1)
is equivalent to a unique gn, n € PS*. We can see that gy is a pseudo-rotation with
axis v = (0, sing, cos ¢) (remark a change of sign).

To get that, remark

d 1 . .
8 —8n = 5(cosgo1 +singo) = (cos pby —singb2)

SO gn = er(cos¢b|—sm(pb2),

(0, sing, cos ¢).

this is indeed a pseudo-rotation of axis direction

8.2 Unitary Representations of SU(1, 1)

Let us begin by introducing a useful and important invariant operator for Lie group
representation: the Casimir operator. We first define the Killing form on a Lie alge-
bra g,

(X,Y)= %Tr(ad(X)ad(Y)) (8.9)

where ad is the Lie adjoint representation: ad(X)Y =[X, Y], VY € g.
ad(X) is the infinitesimal generator of the one-parameter group transformation
in g:

Gy(Y)=eXye 0X

We have the antisymmetric property:

(ad(X)Y, Z),=—(Y.ad(X)Z),, VX.Y.Zeg
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Consider a basis {X;} of g. The Killing form in this basis has the matrix g; =
tr(ad(X j)ad(Xy)). We denote gj’k the inverse of the matrix g; .

Let us now consider a representation R of a Lie group G in the linear space V
and p = dR the corresponding representation of its Lie algebra g in .2’ (V). The
Casimir operator Cy; is defined as follows:

Ch=> g p(Xpp(Xp)

Let us remark that if V is infinite dimensional some care is necessary to check the
domain of C/;. Nevertheless a standard computation gives the following important
property.

Lemma 51 The Casimir operator Cly commutes with the representation p,
p(X)Cis = Cosp(X), VX € g.
In particular if the representation is irreducible then Cl=cl1, chs €R.

Let us now remark that every irreducible unitary representation of SU(1, 1) is
infinite dimensional, this is a big difference with SU(2).

Proposition 95 Let p be a unitary representation of SU(1, 1) in a finite-dimensional
Hilbert space F. Then p is trivial, i.e. p(g) =1 4, V¥g € SU(1, 1)

Proof Using the isomorphism from SL(2, R) onto SU(1, 1), it is enough to prove
the proposition for a unitary representation of SL(2, R).
For every x e R, a € R, a # 0, we have

6266 -6

Then we see that p( (1) ’16 ) are all conjugate for x > 0. By continuity they are conjugate
tol = p( (1) (1)) because the representation is finite dimensional. The same property
holds true for x < 0 and for matrices ( ! (1)) But the group SL(2, R) is generated by

y

1x
01

A e SL(2, R). U

the two matrices (, ) and (; (1)) So we can conclude that p(A) = 1 4 for every

Unitary irreducible representations of SU(1, 1) have been computed indepen-
dently by Gelfand—Neumark [81] and by Bargmann [15]. We shall follow here the
presentation by Bargmann with some minor modifications.
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8.2.1 Classification of the Possible Representations of SU(1, 1)

Let p be an irreducible unitary representation of SU(1,1) in some Hilbert
space 7.

It can be proved that .7 is infinite dimensional except if p is trivial (p(g) =1,
Vg e SU(, 1)).

So 7 will be infinite dimensional.

In the representation space the generators b; define the operators

.d .
B; ::td—p(a)j(t)) , j=0,1,2
t t=0
with the commutation relations
[B1, B2] = —i By, [B2, Bol=iBy, [Bo, B1]=iB; (8.10)
Or with the complex notation B4+ = B, i B, we have

[B—, B4+]=2Bo, [Bo, B+]==+B+ (8.11)

We have p(wo(t)) = e 50 hence e 74750 = 1. So the spectrum of By is a subset of
{%, k € Z}. There exists g € 72, ||[Yol| = 1 and Boyg = Ay, A = % ko € Z.
Using the commutation relation we have

BoByo = (A + 1)Bi o (8.12)
BoB_vo = (A — 1)B_vro (8.13)

Reasoning by induction, we get for every k € N,
Bo(BX)yo = O+ k) (B o (8.14)
Bo(B_) w0 = (. — k) (B_) o (8.15)

Introduce now the Casimir operator C,s of the representation which is supposed to
be irreducible, so C,y = ¢, 1 Where

1
Cus = B§ — 5(B-Bi+ B1B-)

Hence we have the equations

(B-By + B B-)yo = 2(A* — cas) Y0 (8.16)
(B-By — B+ B_)y0 =2 (8.17)

So we get
B_Bipo = (Mt + 1) — cas) V0 (8.18)

ByB_yo= (A — 1) — ca5) Y0 (8.19)
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Using now Bft Yo instead of 9 we have proved for every k € N,
B_BXyro= (A +k— DA+ k) — cas) Vo (8.20)
By By = (0 =k + 10— k) — cas) Y0 (8.21)

Let us denote v;” = (A +k — 1)(A +k) — cqs) and v, = (A —k + DA —k) — cay).
Using that By = B* and B_ = B’ we get from (8.20),

| BE w0 |* = vl | B wo (822)
| B o |* = v | B wo (8.23)

From (8.22) we can start the discussion.

(I) Suppose that for all k € N, Bi Vo # 0 and BX 4 # 0. Then for every k € N,

A % k is an eigenvalue for By.

(I-1) IfOis in this family (i.e. A € Z) then we can suppose that By = 0 so we
can choose A = 0. From (8.22) we find the necessary condition c,s < 0.

(I-2) If O is not in the family A £ k, L = % + ko, ko € Z and using Bi we can
assume that A = % From (8.22) we get ¢, < 1/4.

In these two cases we get an orthonormal basis {¢;,},ez for 72, such that

Bogy, = (m + %)gom, where ¢ = 0 in the first case and &€ = 1 in the second case.

This is really a basis because the linear space span by the ¢,, is invariant by the

representation which is irreducible.

(II) Suppose now that there exists kg € N such that Biﬁllpo =0 and Bi" Yo # 0.
Using (8.20) we see that for every £ € N, B g is proportional to BY Bf’ Yo, SO
we can replace vy by B_IT_O Yo. So we have By = Ao, B4 ¥o = 0. Hence this
gives v]+ =0and ¢y =A(A+1). If A =0 we get B_yp =0 and the Hilbert
space is unidimensional. So we have A > 0. As above we get an orthonormal
basis of 2 {@n }men such that By, = (A — m)@y,.

If there exists ko € N such that photl Yo =0 and B Yo # 0 we have a similar
result with eigenvalues A + m for By.

In case (I) the Casimir parameter ¢, varies in an interval and we said the represen-
tation belongs to the continuous series; in case (II) the Casimir parameter varies in
a discrete set and we say that the representation belongs to the discrete series.

8.2.2 Discrete Series Representations of SU(1, 1)

In the last section we have found necessary conditions satisfied by any irreducible
representation of SU(1, 1). Now we have to prove that these conditions can be real-
ized in some concrete Hilbert spaces.
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8.2.2.1 The Hilbert Spaces .77;, (D)

Let n be a real number, n > 2, .7, (D) is the Hilbert space of holomorphic functions
f on the unit disc D of the complex plane C satisfying

n—1 2 -2 .
113 @ :=T/D|f(z)| (1—1z%)" "dxdy < +oo, z=x+iy (8.24)

The measure dv,(z) := ”n;l(l — |z/%)"~2dx dy is a probability measure on D and
74,(D) is a complete space with the obvious Hilbert norm is a consequence of stan-
dard properties of holomorphic functions.

It is useful to produce the following characterization of ¢, (D) using the series
expansion of f:

f@ =) ()i
k>0

which is absolutely convergent inside the disc .
In (8.24) let us compute the integral in polar coordinates z = re!?. From the
Parseval formula for Fourier series we get

1
1 2y = 20 — 1)”Z|Ck(f)|2/0 P2 (] _r2)n72dr (8.25)

k>0
So we have
2 _ 2 (M) (k+ 1)
|m%®—§Mijﬁ:W— (8.26)

This gives a unitary equivalent definition of 7%, (D) as a Hilbert space of functions
on the unit circle. In particular the scalar product in 7, (D) of f; and f> has the
following expression:

(1, Py =) e (f2) vk (8.27)

k>0

where y, ¢ = %

From formula (8.26) and (8.27) we easily get that e;(z) := {\/%}520 is an or-
thonormal basis of .7, (D).

8.2.2.2 Discrete Series Realization of SU(1, 1) in .77, (D)

These representations can be introduced using Gauss decomposition in the complex

Lie group SL(2, C),
1 0 0 i
CO-COEDEH e
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where «, 8, v, § are complex numbers such that «d — 86 =1, o # 0.
Moreover this decomposition as a product like

6 D6 )

is unique. So this allows us to define natural actions of SU(1, 1) in the disc D.

Let us denote by ¢_(z) the matrices ( i (1)), t+(z) the matrices ((1) i) and d(u) =

(5.,1)-

Let us denote g a generic element of SU(1, 1),

G 2

Consider the 7 matrix in the Gaussian decomposition of gr_(z). We have 1 =

t_(zZ) where the complex number 7z is Z = M_(g)(z) = gizi We get easily that

IM_(g)(z)| =1 1if |z] =1 and from the maximum principle, |M_(g)(z)| < I if
|z] < 1. So we have defined a right action of SU(1, 1) in . In the same way we

get a left action considering the 74 matrix in the decomposition of ( (1) i) g 1. Sowe
—B+oaz
a—Bz

Now we want to define unitary actions of SU(1, 1) in the space .7, (D) as fol-
lows:

get the action M (g)(z) =

Iy f @) =mg () f(M_(g7")z) (8.29)

where the multiplier my (z) is chosen such that &, defines an unitary representation
of SU(1, 1). We prove now that it is true with the choice my (z) =(@— B2 ".

Theorem 43 For every integer n > 2 we have the following unitary representation
of SU(1, 1) in the Hilbert space 7 (D):

27 f @) =@ — ﬂzr"f(M) (8.30)
o — Bz

75 (@) f(2) = (a+/§z)‘"f<ﬂ+ofz> (8.31)
o+ Bz

Proof 1t is not difficult to see that @f are SU(1, 1) actions in the linear space
(D). Let us prove that &, is unitary. This follows with the holomorphic

change of variables Z = ;/“?_JEZZ, Z=X+iY,z=x+iy. We get z = gig%,
dz

T =BZ+ o) ~2. We conclude using that for a holomorphic change of variable
in the plane, we have from the Cauchy conditions,
o)) |

det =
‘ (X, Y)

dz2

dz
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So we get for any f € J74,(D),
_ _ B+az
/ & — Bzl | f ( )
— Bz

/|f(Z)| (1—121%)"" 2axdy

|Z| 2 dx dy

which says that &, is unitary. Let us remark here that the above computations show
that the multiplier m, is necessary to prove unitarity. g
The next step is to prove that these representations are irreducible. To do that we
first compute the corresponding Lie algebra representation.
Let us compute the image of this basis by the representation &, . Straightforward
computations give

4 - L P 8.32
270 (wo() f(2) T E<n+ Zd_z)f(Z) (8.32)
d 1

RGOS (nz+(z ~1) )f(z) (8.33)
t =0 2

4 () f@)] = l(nz L +z2)i>f<z) (8.34)
dr "\ =0 20 dz '

So we get the three self-adjoint generators By, B, B2, B; = id P, (bj), where d
denotes the differential on the group at 1,

n d
By==+z2 (8.35)
2
< z+ 2 —1 Z) (8.36)
< ) (8.37)
dz
with the commutation relations
[B1, B2] = —iBy, [B2, Byl = —iBy, [Bo, Bi]l=iB; (8.38)
Using the notation By = B> F i B], we have
d
= — 8.39
dz ( )
2 d
By =nz+z7"— (8.40)

dz
and

[B—, B4+]=2By, [Bo, B+]==+B+ (8.41)
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Remark 46 Operators B, fora =0, 1, 2, & are non-bounded operators in the Hilbert
space 77, (D) so we have to define their domains. Here we know that the represen-
tation &, is unitary. So Stone’s theorem gives that By is essentially self-adjoint and
the linear space &7 of all polynomials in z is a core for By. Moreover the spectrum
of By is discrete, with simple eigenvalues {n/2 + k, k € N}.

B and B; also have a unique closed extension. Moreover it could be possible to
characterize their domains (left to the reader!). Operators B are closable in J7;, (D).
We keep the same notation By for their closures.

We have the following useful property.

Lemma 52 B are adjoint of each other: B = Bx. In particular for every ¢ € C
the operator i (¢ B_ — ¢ By) is self-adjoint.

Proof 1t is enough to prove B = B. This is formally obvious because we know
that Bj, B; are self-adjoint. We left to the reader to check that the domains are the
same. O

Let us compute the Casimir operator C;, for the representation &, .
A direct computation of the coefficients g; ; of the Killing form shows that
gjk=0if j#kand goo=—1, g1,1 = g22 = 1. So we get

1
C" =Bi — B} — B3 =B} — 5(B+B-+ B-By) (8.42)

Let us assume for the moment that &, is irreducible. Then by Schur lemma we
know that C” is a number; this number can be computed using the monomial z°.
We find easily

cr o= %(% - 1) —k(k—1), k= % (8.43)

Let us remark that k := 7 is the lowest eigenvalue of By and is called Bargmann

index.

8.2.3 Irreducibility of Discrete Series

Here we prove that for every integer n > 2, the representation &, is irreducible.

Let E be a closed invariant subspace in .7, (D). The restriction of &, to the
compact commutative subgroup g (6, 0, 0) is a sum of one-dimensional unitary rep-
resentations. So there exist u € E, v € R such that

2, (8(0,0,0))u=¢u, VOeR

But u has a series expansion u(z) = }_a;z/. So by identification we have e"?a; =
e i+2))0 ;- From this we find that there exists jo such that a;, # 0 so we find
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v =n+2jo. Butthisentails a; = 0if j # jo. Hence we conclude that the monomial
7/ belongs to E.

Now playing with B+ we conclude easily that E contains all the monomials z/,
J € N. We have proved above that the monomials is a total system in .7, (D). So
E =74,(D).

The discrete series representations have an important property: they are square
integrable (see Appendices A, B and C).

On the group SU(1, 1) we have a left and right invariant Haar measure . u is
positive on each non empty open set and unique up to a positive constant (see [128]).

The following result is proved in [129].

Proposition 96 For every f € 54, (D) we have

_ 2
2, f f), dp(g) <+oo
/;U(l,l) ‘( n )j{:ﬁ(ﬂ]))‘
where dg is the Haar measure on SU(1, 1).

There exist other unitary irreducible representations for SU(1, 1): the principal
series and the complementary series (see also the book of Knapp [127] for more
details). These representations are not square integrable.

Up to equivalence, discrete series, principal series and complementary series are
the only irreducible unitary representations. Let us explain now what principal series
are.

8.2.4 Principal Series

These representations can also be realized in Hilbert spaces of functions on the unit
circle.

They are defined in the following way: take a nonnegative number A and a point
z on the unit circle. Then the homographic transformation

az—i—ﬁ
Bz+a

=

obviously maps the unit circle into itself. One defines

az—i—ﬁ)

) _ ——142i1
r@lk(g)f(z)—lﬂz"i_al f<,3Z+&

One considers the Hilbert space £2(S!) with the scalar product

1 27 B
(i )= 5 / 46 11(6) £(6)
7T Jo
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To prove the unitarity of the representation ;; (g) in the Hilbert space we perform
the change of variable § — 0’ where

i ae? +pB
- Bel? +a
The Jacobian satisfies
do’ ) _
’E = |pe” +a|

Thus we have for any real A:

2 ) 2 .
| aol@a@n @) = [ al @)
Now we can prove:

Proposition 97 For any ) € R, &, is a unitary irreducible representation of
SU(1, 1) in the Hilbert space SZ(SI). Moreover its Casimir operator is Cj) =
—(5+22).

For the generator wg(¢) of the Lie group su(1, 1) one gets

(Zin(@0®) ) () = f ()
Thus the corresponding generator of SU(1, 1) is simply

d

Lo= —
0= 46

To find the generator associated to w; we need to calculate

2

t . t
sinh Ee’e + cosh 3 =cosht + cosf sinht

Thus

cosh %e’p + sinh %)

. 0y _ . —1/2+ix
((@M(wl (t)f))(e ) (cosht + sinht cos 9) f(sinh %eie T cosh%

Thus the generator L1 of SU(1, 1) is given by
L ! +iA 6 —sinf d
=|—=+iAr|cosf —sinf—
: 2 do
Similarly using the third generator w> one finds

L L i) sine 94
=—|——- l SING — COSOU —
2 2 do
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Therefore the usual linear combinations By = +L1 + i L, satisfy

1 : )
B.=[-Z= 7 —i0 _ . —i0 %
+ ( 2+1 )e ie 70

1 . ood
B_ = —<—§ +i)»)e’9 — ieleﬁ

We define

By=iL ; 4
=1 =]—
0 0=t
Using the same method as for discrete series, we can prove that these representations
are irreducible (start with By and use B+).
To calculate the Casimir operator Bg - %(B_ B, + B4 B_) itis enough to apply

it to the constant function. Thus Byl =0, B+1 = :I:(—% +i2)eF?. One finds

2 1 1 2
C::BO_E(B_B++B+B_):_ Z—)» 1

8.2.5 Complementary Series

When the parameter A of the principal series is imaginary the representation is not
unitary in the space L>(S"). So, following Bargmann [17] we introduce a different
Hilbert space. Let us introduce the sesquilinear form depending of the real parameter
o €10, 31,

o—1/2

(f1, [2)o =C//[02 ]2(1 — cos(6) — 62)) J1(01) f2(62) d61 dOr

(f1, f2)o is well defined if f7, f> are continuous on S!. The constant c is computed
such that (1, 1), =1,
c=2""7"7B(0,1/2)7!

The integral foz (1 — cos0)° 1240 is computed using the change of variable
x = cos(f) so we get c. The following properties are useful to build the Hilbert
space .

Proposition 98
(i) Forevery fi, f» € C(S") we have

/ /[0 (1= cos@ =) 6] f2(60) 01 oz < LAl £
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(i)
(ex,e0)e =0, ifk#4L
where e (9) = e'k?.
(iii)
(ex, ex)o = Ak (0)
where
_r(/240) (K +1/2—0)
r(1/2—o)l(k|+1/2+0)
In particular Lo = 1 and M (o) > 0 for every k € Z and o €10, 1/2][.

Ar(o)

(8.44)

Proof

(i) is proved using the change of variable u = 6; — 6, and Cauchy—-Schwarz in-
equality.
(ii) Itis a consequence of the following equality, for k # £,

(k. et)o = /f (1 — cos(u))” /20!t C+1 4o quy = 0
[0,27]2

(iii)) We have A_j = A, so it is enough to consider the case k > 0. Hence we have
T —172
(ers er)e = 20/ (1= cos())”~"* cos(ku) du
0

We compute the integral using the change of variable x = cosu, so cos(ku) =
Ty (x), where Ty is the Tchebichev polynomial of order k.

1
(ks er)o =2c/ A=) "2 (1= x2) "’ Tx) dx
—1

But we have the following expression, known as the Rodrigues formula [56]:

k—1)! dk B
T (x) = (—1)"2"‘1ﬁ(1 _ x2)1/2ﬁ((1 _ xz)k 1/2)

Hence we get the result by integrations by parts and well known formulas for
gamma and beta special functions.
O

Soif fi, € CSY, fi =Y iez c,{ek is the Fourier decomposition of f;. Then
as a result we have

(f1, f2)o = Z/\k(U)C_;iC;%

keZ



8.2 Unitary Representations of SU(1, 1) 243

This shows that (fi, f2) — (f1, f2)s is a positive-definite sesquilinear form
on C(Sh).

Now we can define the complementary series %, 0 < o < 1/2, as follows. It is
realized in the Hilbert space 7%, of functions f on S! such that Y kez Ak (0) lex |2 <
400 equipped with the scalar product { f1, f2)s (see proposition (iii)).

So we can define, for f € J7,

az+,3>

_ ——14+20
Cs(8) f(2)=|Bz+al f<ﬂz+&

Proposition 99 For all 0 < o < 1/2, 6, is a unitary irreducible representation of

SU(1, 1) in 5. Moreover its Casimir operator is C, = o2 — %

Proof We use the same methods as for the discrete and continuous series. In partic-
ular the computations are the same as for the continuous series with o in place of i A.
The main difference here is in the definition of the Hilbert space which is necessary
to get a unitary representation. 0

8.2.6 Bosons Systems Realizations

Let us start with a one boson system. We consider the usual annihilation and cre-
ation operators a, a®in L2(R) (see Chap. 1). The following operators satisfy the
commutation relations (8.41) of the Lie algebra su(1, 1):

1 1
@,  B_= Sa% Bo=(aa’ +a'a) (8.45)
We have seen in Chap. 3 that the metaplectic representation is a projective repre-
sentation of the group Sp(1) = SL(2, R) and it is decomposed into two irreducible
representation in the Hilbert subspaces of L?(R), Lgv (R) of even states and Lf) 4 (R)
of odd states. But the group SL(2, R) is isomorphic to the group SU(1, 1) by the

explicit map g > Fy 1= MogM; ', g € SU(1, 1), Fy € SL(2, R) with Moy = (! f).

So the metaplectic representation defines a representation of the group SU(1,1)
in the space L2(R) with two irreducible components Rev od 1n the space L? ev.od (R).

In quantum mechanics it is natural to consider ray-representations (or projective
representations) instead of genuine representations. For example the metaplectic
representation is a ray-representation.

Let us compute the Casimir operators C,y o4 for each components.

We compute C,, using the bound state 1y for the harmonic oscillator (Yo €
L2 (R)).

Using that I:Imc = %(aaT +afa) = aad’ — 5 we get CeyYo = —%1//0 and
Coatr1 = — 151 (Bovo = o and Boyry = zwl).

We see that the commutation relations (8.45) define two irreducible “representa-
tions” of SU(1, 1) which are neither in the discrete series neither in the continuous
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series. The reason is that they are ray-representations corresponding with the even
part and odd part of the metaplectic representation.

More details concerning ray-representations can be found in [16, 197]. In par-
ticular these ray-representations are genuine representations of the covering group
SU (1, 1) (which is simply connected but SU(1, 1) is not). A “double valued repre-
sentation” p in a linear space satisfies

pgh)=C(g.hp(g)ph), withC(g,h) ==l

Let us now consider the two bosons system. We consider two annihilation and
creation operators aj 2, a? 5 in L*(R?) (see Chap. 1). The following operators satis-
fies the commutation relations (8.41) of the Lie algebra su(1, 1):

: 1, .
By =aa,, B_=aja, By = E(alal —i—a;ag + 1) (8.46)

The Casimir operator is

1 1 £ \2
Cas=—Z+Z(a;az—al'a1)
We know from Chap. 1 that we have an orthonormal basis of LZ(RZ),

{Bmyms Yoy moyens WheTe @y s = (a])™ (a})"™ 0,0 such that

mp+my+1
BO¢m|,m2 = f‘pml,mz (847)
B+¢m1,m2 = ¢m1+1,m2+1 (848)
B_¢my,my = Pmy—1,my—1 (8.49)
A direct computation gives
1 2
Cas¢m1,m2 = _Z + (m1 —my) ¢m1,m2 (8.50)

So if we introduce k = %(1 + |nol), we get easily (assuming ng > 0) the following
lemma.

Lemma 53 For every positive half integer k, the Hilbert space spanned by
{Pmyt2k—1,my, m2 € N}, is an irreducible space for the representation of the Lie
algebra with generators (8.45).

We know now that this Lie algebra representation defines a unitary representation
of SU(1, 1) but only a projective representation of SU(1, 1).
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8.3 Pseudo-Coherent States for Discrete Series

We can now proceed to the construction of coherent states by analogy with the
harmonic oscillator case (Glauber states) and the spin-coherent states.
We consider here the discrete series representation.

8.3.1 Definition of Coherent States for Discrete Series

Let us consider the representation (%, , 5¢(D)). It could be possible to work with
.@,;“ as well. Every g € SU(1, 1) can be decomposed as g = gnh where h € U(1)
and n € PS?. It is convenient to start with 9 € .7 (D) such that hg = Yo so we
take as a fiducial state ¥(¢) = yn_’é/ 240 and we define ¥y = %, (gn)¥o. Most of
properties of Y, will follow from suitable formula for the operator family D(n) =
2, (gn). There are many similarities with the spin setting. We shall explain now
these similarities in more detail.
Using polar coordinates for n we have

~( cosh(z/2)  sinh(z/2)ei®
8n= \sinh(z/2)e"  cosh(z/2)

So using the definition of the representation &, we have the straightforward for-
mula for the pseudo-spin-coherent states.

Ye(@) = (1— |;|2)”/2(1 —¢z)™", where ¢ =sinh(z/2)e'? (8.51)
Now we shall give a Lie group interpretation of the coherent states. Let us recall
that B, =id %, ()b, m=0,1,2,and By = By +iBy, B_ = B, —iB_. Then we
have

D(n) = exp(—it(cospB| —singB,)) (8.52)
= exp(r/Z(B,ei“’ — B+e_i‘p)) (8.53)

The second formula reads
Dm)=D() = exp(SB,S;‘BQ, with & = %e_i‘p (8.54)

We can get a simpler formula using a heuristic following from Gauss decomposition:

_( cosh(z/2)  sinh(/2)ei¢
"7 \sinh(z/2)e’*  cosh(z/2)

_ ! 0Y (cosh(z/2) 0 I tanh(z/2)e™
_(tanh(t/2)ei<p 1)( 0 costh/Z)> (O 1 ) (8.55)
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Recall that Byyg = %1//0 and |¢| = tanh(t/2). Moreover if b € su(1, 1) then we
have

Iy (e?)=e""B,  with B=idZ, (1)b (8.56)

Suppose that (8.56) can be used for b; & b (which are not in the Lie algebra
su(l, 1). Then we get the following representation of pseudo-coherent states in the
Poincaré disc D, where ¢ and n represents the same point on the pseudo-sphere PS?,

Yn =1 = (1—1¢1?)" e By (8.57)

Let us remark that in the spin case this heuristic is rigorous because the represen-
tation &/ is well defined on SL(2, C) which is not true for &, . Nevertheless it is
possible to give a rigorous meaning to formula (8.57) as we shall see in the next
section.

8.3.2 Some Explicit Formula

We follow more or less the computations done in the spin case. We shall give details
only when the proofs are really different.

It is convenient to compute in the canonical basis {e;}¢en of the representation
space 7%, (D) (analogue of Dicke states or Hermite basis). We easily get the formu-
las

Bier = /n T O+ Derg (8.58)
B_es=Et(n+4L€—1)er_q, B_ep=0 (8.59)

Boey = (% + e) er. (8.60)

Let us remark that the linear space &; of polynomials of degree < j is stable for
By and B_ but not for B, . For every £ € N we have

Bleg=(n(n+1)---(n+€—1)e1) ¢,

Following our heuristic argument we expand the exponent e’ 5+ as a Taylor series
(which is not allowed because By is unbounded) and we recover the formula:

Y@ =(1—-1e?) 1 -zz)* (8.61)

Let us give now a rigorous proof for this. It is enough to explain what is e/ 3+e, for
every ¢t € D and every £ € N. For simplicity we assume ¢t €] — 1, 1[.

Proposition 100 For every m € N, the differential equation

Qat = B+¢t7 Po(z) = 7"
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has a unique solution holomorphic in (t, z) € D x D given by the following formulas.
Form =0

$i()=10—12)7" (8.62)
form>1,

o(D)=1—-1t2)"—-14+7"(01 —tz)-n—m (8.63)

Proof We check ¢;(z) = ZeeN x¢(H)z%. So we can compute xg () using the induc-
tion formula

t
Xe1(0) = x¢41(0) + (n + ﬁ)/ xe(s)ds
0
The result follows easily. U

From our computations we get the expansion of v, in the canonical basis

rek+e Y2
= (1—1z2)* _ 8.64
ve=(1-1¢P) Z(F(H])F(zk)> Cer (8.64)
£eN
Proposition 101 For everyny,n; € PS? we have
D(n1)D(ny) = D(n3) exp(—i® (1, m2)Boy) (8.65)

where @ (ny, ny) is the oriented area of the geodesic triangle on the pseudo-sphere
with vertices at the points [ng, ny, ny].
n3 is determined by

n3 = R(gn,)M2 (8.66)

where R(g) is the rotation associated to g € SU(1, 1) and
T
gn= exp(—iz(ol sing + o7 cosgo)) (8.67)

Proof Computation of n3 is easy using the following lemma. The phase will be
detailed later. g

Lemma 54 Forall g € SU(1, 1) there exist m € PS? and 8 € R such that

g =8mr3(3)

where r3(8) = exp(i 3 Bo).

The following lemma shows that the pseudo-spin is also independent of the di-
rection.
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Lemma 55 One has

Dm)ByD(m)"'=-nB (8.68)

Proof Let (t,¢) be the pseudopolar coordinates of n, n = n(z, ¢). We have
D(n(t)) =exp(—it(cospB] —singBy)).

Let us use the notation A(7) := D(n(t))AD(n(t))~! where A is any operator in
€ (D). Then we have the equalities

j_'[BO(T) = —cos¢By(t) —singpB (1) (8.69)
iB1 (t) = —sinpBy(1) (8.70)
dt
iBz(r) = —cos¢By(7) (8.71)
dt

We have the following consequences:

d? d
—— Bo(t) = By(7), — Bp(0) = —cos¢ By —sing By (8.72)
dr? dt

hence we get Bo(r) = —n(t) [IB. Il

The following consequence is that |n) is an eigenvector of the operator n [ B:

Proposition 102 One has
n [ B|n) = —k|n) (8.73)
where k = 7.
As in the Heisenberg and spin settings, the pseudo-spin-coherent states family

[n) is not an orthogonal system in (D). One can compute the scalar product of
two coherent states [n), [n'):

Proposition 103 One has

(8.74)

—k
<n/|n) _ efik<1>(n,n’) (1 _ I;El n/>

where @ (n, 1) is the oriented area of the hyperbolic triangle {ng,n, n’}.

Proof We use the complex representation of coherent states, starting from the defi-
nition, we get

ve@=(1-1c2) (1-zz)7* (8.75)
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Next we use the series expansion

Qk+t-Dt
(1=¢2) ZX;: Qk—D)'e! (&)

to compute the Fourier coefficient of the coherent state |{) in the basis ey

([ rTek+o \'? N
(eelt) = (m) (1-121)"¢ (8.76)

The Parseval identity gives
(' [n)=(1— 1) (1 =1 (1 -5¢)* (8.77)

We can translate this equality in pseudopolar coordinates (¢ = tanh(z/2)e™'¢) and
we get

(n'|n) = (cosh(t/2) cosh(z'/2) — sinh(z/2) sinh(z'/2)e' @ )¢ (8.78)
O
An easy computation now gives the following lemma:

Lemma 56
1—n0C —2k
ool = (5 879

The computation of the phase @ in formula (8.74) can be done as for the spin
case using the geometric phase method.

As is expected, the pseudo-spin-coherent state system provides a “resolution of
the identity” in the Hilbert space .7 (D):

Proposition 104 We have the formula

2k — 1
_— dnn)(n| =1 (8.80)
4 PS?
Or using complex coordinates ¢ ),
[am@iei=1 (8:81)
where the measure dv,, is
n—1 d*c
dvy(§) = —— s
! (1—1¢%)?

; 2. _ ldgnde]
with d g—T
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Proof The two formulas are equivalent by the change of variables { = tanh %e_ig".
So it is sufficient to prove the complex version.
We introduce

F@©) =1 Am-
Decompose f in the basis of 7, (D), f = 2230 ceee, we have

COPNERIE W S B O, e 2 NPT 1 SN YA
Nales] _§F(€+1)F(2k)(l 12127121 el

After integration in { we have

2k —1 »  d%¢ / 2
1 S S d?
™ /DV ©l (1—1¢1%)? DW)' :

So we get the resolution of identity by a polarisation argument. O

8.3.3 Bargmann Transform and Large k Limit

Here we introduce the (pseudo-spin) Bargmann transform and prove that as
k — +o0 the representation %,, contracts to the Harmonic oscillator representa-
tion or Heisenberg—Schrodinger—Weyl representation.

Let us denote

) = Clo) (1 —127) 7" o e Miw), ¢ eD.

In fact this transformation is trivial, here it is identity! But it is convenient to see this
as a Bargmann transform. Using the Parseval formula we easily get

~12
o) = E Ce)/zk,g/ (ee, ) ) = E ee(&){ee, 9) oz m)
£eN £eN

Here we shall note the dependence in the Bargmann index k, so we denote the
pseudo-spin-coherent state Wé‘ (2).

Proposition 105 The pseudo-coherent states wé‘ converge to the Glauber coherent
state @; (see Chap. 1) as k — 400 in the following Bargmann sense and the Dicke
states £ converge to the Hermite function v, for every £ € N:

. k,g _ /
Jim w6V =0l ©), VegleC (8.82)
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Proof 1t is an easy exercise, knowing that

o e |§|2
¢ (¢)) =exp| ¢ - =~
and that

;Z
24!

O 0

As for the spin case we have analogous results for the generators of the Lie
algebras. Let us introduce a small parameter ¢ > 0 and denote
Bf =¢By (8.83)

1
Bj=Bo— 551 (8.84)

We have the following commutation relations:
[Bf,B?]=2e"B5 —1,  [Bi, BL|=+B% (8.85)

As ¢ — 0 equations (8.83) define a family of singular transformations of the Lie
algebra su(1, 1) and for ¢ =0 we get (formally)

[BY,B°]=-1, [BY.BY]=+BY (8.86)
These commutation relations are those satisfied by the harmonic oscillator Lie alge-

bra: B_?_ =a', BY =aq, Bg =N:=dla.
We can give a mathematical proof of this analogy by computing the averages.

Proposition 106 Assume that ¢ — 0 and k — +o0 such that lim2ke*> = 1. Then
we have

1im<w§/m|38|¢§/m> =1¢1> = (g la’alg;) (8.87)
lim(yf, 2| BL|WE, m) =€ = (ecla’leo) (8.88)
lim(yf, | BE |V, ) =¢ = teclaler) (8.89)

Proof From the proof of Lemma 55 we can compute the following averages:
(Vn. Bvg)=kn

Using the ¢ parametrization we get the result as in the spin case. O
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8.4 Coherent States for the Principal Series

As for discrete series we can consider coherent states for the principal and com-
plementary series. The principal series is realized in the Hilbert space L%(S!)
with the Haar probability measure on the circle S' and with its orthonormal basis
er(0) =" L e

eo being invariant by the rotations subgroup of S(1, 1) we define the coherent
states wlig(z), zeSh as

(2) = | cosh(r/2) + sinh(z/2)e ¢z~ (8.90)

2ir—1

. 1 -
YO = 1= 1¢PP|P 71 = i7] (8.91)
In the first formula coherent states are parametrized by the pseudo-sphere and in the
second formula they are parametrized by the complex plane.

Properties of these coherent states are analyzed in the book [156] (pp. 77-83).

8.5 Generator of Squeezed States. Application

We shall prove here that the SU(1, 1) generalized coherent states considered above
(introduced by Perelomov [156]) are nothing but the one-dimensional squeezed
states introduced in Chap. 3.

We consider the realization of the Lie algebra su(1, 1) defined by the generators

1 n .
By = Z(aa' +a'a)
By = ()2

2
B_ = la2

2

These generators are defined as closed operators in the Hilbert space L>(R). They
obey the commutation rules (8.41). Furthermore for the Casimir operator we have
Cas =—11.

We have already remarked in Sect. 8.2.6 that this representation of the Lie al-
gebra su(l1, 1) gives a projective representation of SU(1, 1) (not a genuine group
representation).
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8.5.1 The Generator of Squeezed States

Consider now one-dimensional squeezed states. Recall the following definition.
Take a complex number w such that |w| < 1. We define

B(w) = % argtanh(|ow|)

D(B) = exp(BBy — BB_)
D(B) is also known as the “Bogoliubov transformation” and generates squeez-
ing.
For |0) = ¢ being the ground state of By, let the generalized coherent state g
be defined as

Vg = D(B)|0)

Remark 47 Tt is not difficult to show that in terms of the operators Q, P of quantum
mechanics one has

D(B) = exp(%%ﬂ(@z —P?) - %fﬁﬂ(éﬁ + ﬁQ))

We first recall the fundamental property of D(8) proved in Chap. 3 in any di-
mension.

Lemma 57 On 2(Q) N 2(P) the following identities holds true:
() D(B) is unitary and satisfies
D)~ =D(-p)
(ii)
D(B)aD(—p) = (1— ) ""*(a— wa')
(iii)
sinh(2r)

D(B)ByD(—p) = cosh(2r) By — (B4e? + B_e™)
with B = re? being the polar decomposition of B into modulus and phase.

The following results are direct consequences of Chap. 3:

Proposition 107
(1) Define § = %jr—g One has
NS>0
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RN 1+ o 2 x2
W(’”=<7> (|1+w|> exp<_8?>

(i) More generally if ¢y is the kth normalized eigenstate of By (Hermite function)
one has

D@ 27K2 (s \* 1+ o "“/ZH( ) sx?
— (= ) exp| ——
T \x ) i+l o "\

where Hy is the normalized kth Hermite polynomial.

and

Now we address the following question: what is the Wigner function of a
squeezed state? It will appear that it is a Gaussian in ¢, p but with squeezing in
some direction and dilatation in the other direction. One has the following result:

Proposition 108 The Wigner function Wy, (q, p) is given by

- 35)>
T TR AR

g*ns 1
Wy, (g, p) =2exp| —

Remark 48

(i) For B =0, § =1, and thus we recover the Wigner function of ¢y.
(i) It is clear that

1
—— | dgdpWy,(q.p) =1
27 | dadp vs(q, P)

The proof is an easy computation of Gaussian integrals.

8.5.2 Application to Quantum Dynamics

Consider the time dependent quadratic Hamiltonian
Hy (1) = At)By + A(t)B_ + (1) By (8.92)

where A and j are C! functions of 7, A is complex and y is real. Its propagator is
denoted U, (¢, s). This is a particular case of general quadratic Hamiltonian studied
in Chap. 1 and in Chap. 4.

We revisit here the computation of U;(¢, s) using the su(l, 1) Lie algebra rela-
tions satisfied by {Bg, B+, B_}.

It is convenient to formulate the result in an abstract setting.
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Proposition 109 Assume that By, By are closed operators with a dense domain in
a Hilbert space 7 such that By = By, BY = B_ and satisfying the commutation
relations:

[B_,B11=2By,  [Bo, B]l=+Bx.
Then H, (t) defined by (8.92) has a propagator given by
Ua(t.5) = D(B1) exp(i (v — v5) Bo) D(—B1) (8.93)

where the complex function B; and the real function y; satisfy the differential equa-
tions

idy = AP + poy + A, wp=0 (8.94)
y=—Ad—Aw—p, y=0 (8.95)

Proof The first step is to compute the following derivatives:

.d _
IED(/%) = (o;B+ +a;B_ + p;Bo)D(B;) (3.96)
where
.y
oy =1 m (897)
01 = ,M (8.98)

1 — oy |?

Using (8.96) we can compute

d .
iEUz(I, s) = (B4 + @ B— + p;Bo — y D () Bo) D(—f;)

and we directly get (8.94).
Let us prove now (8.96). .
The method is the following. Denote L(¢) = B; By — B B—. We have

d
Lit+dt)y=L#)+3L@)~L(t)+ SELU)
Applying the Duhamel formula we get
1
oL+ _ oL(1) :/ ds S LUFNSL (1)e1=9L0)
0

Then as §t — 0 we have

1
4w :/ ds L0 (1)e 1)L
dt 0
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Now we have L(t) = B,B+ — BzB— and

iesL(z)B+e—sL<z) — 2B’ Bpe—sL®

ds
and
d
gesL(t) B_eSLO — _2gesL() g e—sL®)
Using Lemma 57 we get formula (8.96). O

Remark 49 The differential equation satisfied by w; is a Ricatti equation. We have
seen in Chap. 4 that this equation comes from a classical flow. In particular wy is
defined for every time ¢ and satisfied |w;| < 1 (wp = 0).

Let us now consider the time dependent Hamiltonian

2 L5 A2 g
Hy(t) = E(P + ()0 )+2—Q2

where g is a coupling constant and f a function of time ¢. Properties of this Hamilto-
nian have been considered by [156] and used in [48] to study the quantum dynamics
for ions in a Paul trap.

The su(1, 1) Lie algebra relations are satisfied by

P24 02 2 72 _ p2 2 P+ P
po= Tt 8 p T8 JCPEPC (g4
4 402

So we get

5 1 1
Hy () = 5(f @) = 1) By + 5 (f() = 1)B-+ (1 + /(1)) Bo

8
202
singularity and we have to take care of the domain of definition for operators By, B+.
Let us consider the Hilbert space L?(R.). Recall the Hardy inequality

+o00 |M(X)|2 400
/ dx < 4/ dx|u’ (x)
0 0

x|

The algebra is the same as above but here the potential has a non integrable

> VueH Ry)

Recall that HO1 (Ry) is the Sobolev space H'(R.) with the condition u(0) = 0.
Denote by L?(R.) the space {u € L>(R4.), xu € L*>(R.)}. The sesquilinear form
(1, v) > (u, Bov) is well defined on V := Hj (R4) N L3 (R4) and is Hermitian, non
negative. So By has a self-adjoint extension as a unbounded operator in L>(R).
Furthermore we see that B4 are also defined as forms on V and have closed ex-
tensions in L2(R,) such that B* = B_. These extensions also satisfy the su(1, 1)
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Lie algebra relations. Hence the unitary operators D(f), e'?50 are well defined in
L%(R+) with 8 complex and y real.
So we can apply Proposition 109 to the propagator U, (¢, s) of H ().

Corollary 26 The Hamiltonian H,(t) has time dependent propagator Ug(t,s)
given by (8.93)

Uy(t,s) = D(Br) exp(i(vi — 5) Bo) D(—Pr) (8.100)

where By, B+ are defined by (8.99) and B;, y: are determined by (8.94). Moreover
they are related to complex solutions of the Newton equation

E=rfn&,  E=ig,

E+id 1 . (8.101)
=i vi=—5arg(§ —i§)

Wy

Remark 50 Note that the solution of the classical equation of motion for Hy(?)
solves the quantum evolution problem for H, for every g € R.

The su(1, 1) Lie algebra can also be used to solve the stationary Schrodinger
equations for the hydrogen atom. It is nothing else than a group theoretic approach
of a method already used by Schrodinger himself [176].

Let us consider the radial Hamiltonian for the hydrogen atom with mass 1, A =1,
charge e, energy E > 0.

24 @ WED L R(r) =0 (8.102)
e - A —_— T r = .
dr?  rdr? r r2
We transform this equation by the change of variable r = x2 and of function R(r) =
x73/2 f(x). Then we get

+8Ex?

d? 40 +1)+3/4
dx? x2

+ 862> f=0
Another change of variable x = Au with A = (—%)1/ 4 gives

— tu +

> 5 4+ 1)+3/4
du? u?

+ szez) =0 (8.103)

This equation is the eigenvalue equation for the generator By with g2 = 4£(¢ +
1) + 3/4. So the negative energies of the radial Schrodinger equation (8.102) are
determined by the eigenvalues of By.
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Lemma 58 The self-adjoint operator By has a compact resolvent. Its spectrum is a
discrete set of simple eigenvalues given by

_2s+1
K=y

1 1 1/2
+k, keN, wheres = 5+ <Z +g2) (8.104)

Proof The domain of By is included in HO1 RN L%(R+) so we deduce that its
resolvent is compact.

The computation of the spectrum is standard, using B_ and B, as annihilation
and creation operators on the ground state 9. Using the results of Sect. 8.2.1.

We compute the ground state by solving equation B_1/9 = 0. This a singular
differential equation. We put ¥o(x) = x*¢(x). We can eliminate the singularity by
choosing s = % + (% + 2)/2. Then the equation is satisfied if ¢ (x) = exp(‘T"z). So
we have ¥(x) = Cox* exp(_sz) where s is like in (8.104) and By = 254—“1#0.
Then we get all the spectrum of By and all the bounded states ¥, = Ci Bi Yo where
the constants Cg are chosen to have an orthonormal basis in L2(R+). O

Applying this lemma and formula (8.103) we see that (8.102) has non trivial
solutions for £ = E,, = — 2‘;—42, n > 1, the well known energy levels of the hydrogen
atom. More properties will be given in the next chapter.

Remark 51 The Casimir operator is here Cys = cq51. cq5 1S computed by
, 1
Cas¥o = ( By = 5(B+B— + B+B-) Yo = k(k = o

with k = 2s4—+1. This is not compatible with a discrete representation of SU(1, 1)
except if s is half an integer. What we have considered here is an irreducible repre-
sentation of the universal cover SU (1, 1).

It could be possible to study coherent states ¢g = D(8)v in this representation
too as we have done for the discrete representations.

8.6 Wavelets and Pseudo-Spin-Coherent States

As is well known wavelets are associated with the affine group of transformations
of the real axis R: t — at + b where a > 0 and b € R. We denote g(a, b) this affine
transformation and A ¢ the group of all affine transformations.

Wavelets are real functions defined by the action of the group Ar on a given

fuIlCthIl ‘(// SO we ha €
w ) ( ) w
a,b t ,\/_
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If 4.5 is the Fourier transform of v, 5 and ¢ the Fourier transform of yr, we have

0a.b(s) = ae P p(as)

Now we shall see, following ideas taken from the paper [25], that wavelets and
pseudo-spin-coherent states are closely related.

This is not surprising using the following facts: the affine group is isomorph to
a subgroup of the SL(2, R) group! which is isomorph to SL(2, R)/SO(2) and this
one is isomorph to SU(1, 1)/U(1).2 Recall that the groups SU(1, 1) and SL(2, R)
are conjugate

_ L /1 i
1_ —
cSu(, 1)C SL(2,R), where C 7 <i 1)

Considering consequences of these facts, we shall find that the discrete series rep-
resentations of SU(1, 1) have realizations with strong connections with the affine
group hence relationship between pseudo-coherent states and generalized wavelets
will follow.

Remark that the affine group can be identify to R} x R with the group law:
(a,b) x (@',b") = (aa’,ab’ + b). Let us consider the mapping

Ja b
///:(a,b)n—><0 f)

It is easy to see that ./ is a group isomorphism from A ¢ into SL(2, R). Its image is
denoted Ay;.

SU(2) is a compact subgroup of SL(2, R) and it is not difficult to prove that the
quotient space SL(2, R)/SO(2) can be identified to Ag:

Lemma 59 For every A € SL(2,R) there exits a rotation R(0) = (f(s)fnee ;I;Z) and

a unique affine transformation (a, b) € R% x R such that
A= (a,b)R(®)
In particular the left cosets set SL(2, R)/SO(2) is isomorph to Ay;.

Let us consider the discrete series @,j’ which will be now denoted &, (n > 2
is an integer, n = 2k where k is the Bargmann index). Using the isomorphism ¢ —

72(0) = f:ii from the unit disc D onto the Poincaré half-plane H, &, can be realized
in the Hilbert space 7, (H). 7, (H) is the space of holomorphic functions f in H

IRecall that SL(2, R) is the group of 2 x 2 real matrices of determinant one.
ZRecall that U (1) is identified here with the group of matrices (639 e% ), 0 eR.
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such that
2 _n—1 o2
1136 =—— [ [fX+iD[¥Y""2dXdY < to0
H

with the natural norm. So we have a unitary map f + F from ¢, (H) onto .77, (D)
where F(¢) =2(14i¢)7" f(2(¢)). In 7, (H) the discrete series &, gives naturally
a unitary representation of SL(2, R)

(@n(‘c’ ”) f)(z) (d—bz)_"f<%> (8.105)

To establish a connection with the affine group it is convenient to realize the rep-
resentation &, in the space A, (H) of anti-holomorphic functions on H, so that
fe %Z (]HI) means that f(z) f (@) with f € 24,(H). f — f isa unltary map. We
denote f F= f Then 2, is unitary equivalent to the representation _@

. dz—b
(% (i Z) f) (z)=(a—cz)_”f(ﬁ> (8.106)

Note that the unitary equivalence between Qn and %, is implemented by the group,

isomorphism in SL(2, R),
a b N d c
c d b a

The restriction of , to the affine group has the following expression:

. —b
(% (A (a, b)) f)(2) =a”/2f<ZT> (8.107)

Wavelets are functions of a real variable, so the last step is to find a realization of
Py in the space

2 oo 1—-n 2
L,,(R+)={go)fo )] dt<—|—oo}

with the natural norm.
Let us introduce the (anti-holomorphic) Fourier—Laplace transform:

+Oo o, -
(Zne)(2) = cnf pt)e "dt, zeC, J()>0
0

¢, 1s a normalization constant.
Using the Fourier inverse formula and the Plancherel formula we have

+00 _
el Zox —iy)e™rdx, y>0,t>0 (8.108)

n —0oQ

() = 5
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+00
/ | Lo (x —iy) [y 2dxdy =(n—1)2'~ / o))" dr
0
(8.109)

21wy,

So we get isometries between the spaces Lf, (Ry), s(H) and H (H) choosing

n—2 . . . . . .
= ﬁ We have obtained the following irreducible unitary representation of

the affine group in the space L% R4):

Wnla,b) = L7 Dy (M (a, b))%,
Qap(t) = (% (@,b)p)(t) =a' e p(ar)

which represent wavelets on the Fourier side. Coherent states for SU(1, 1) where
defined in the Hilbert space 7, (D) by an action of SU(1, 1), starting from a fiducial
states ¥ invariant by the action of the unit circle U (1) (isomorph to SO(2)). Then
SU(1, 1) coherent states are parametrized by the quotient SU(1, 1)/U (1)

But from Lemma 59 and the isomorphism between SU(1, 1) and SL(2, R) we
see that SU(1, 1)/ U (1) can also be parametrized by the affine group: (a, b) — g4
where we choose one element g, ;, in each left coset. We have seen above in the
construction of coherent states that SU(1,1)/U (1) can be parametrized by C (or
by pseudo-sphere): & +— g¢. If g4 5 and g¢ are in the same coset then we have
8a,b = gch where h € U(1). We have chosen v rotation invariant so the actions
of g4» and g¢ define the same coherent state.

Let us move this construction in %, (H) and in L,% (R4). We get, respectively,
fiducial states fo(z) = d,(1 —iz)" and @o (1) = et~ 'e ™" where d,, and e, are suit-
able constants.

Then using properties of the representation &, we get a bijective correspon-
dence between SU(1, 1) coherent states defined in 5%, (D) for 2, and wavelets in
L,21 (R4). More precisely we have obtained

9ap(t) = (Wn(a, bypo)(t) = a' ™ ?e P p(ar)

which represent wavelets on the Fourier side. Their relationship with the SU(1, 1)
coherent states is given by

L7 IV = Qar by, VEEC (8.110)
I L 0us = Vepy, V(a,b) eRE xR 8.111)

where & = (a(£), b(£)) is a bijection from C onto R} x R and (a, b) — &(a, b) is
a bijection from R% x R onto C.

In particular we also have a resolution of identity for wavelets which can be
obtained from (8.81) or by a direct computation.

-1 dadb
f=" /f T an Ngan, VF €L (8.112)



262 8 Pseudo-Spin-Coherent States

The reader can find in [25] several explicit formulas concerning the three realiza-
tions of @f in 7%, (D), 5%, (H) and L% ®Ry).

Finally remark that %, is a representation in L% (R4) of a subgroup of S(1, 1)
conjugated to the restriction of ;. But all the representations %, are equivalent
contrary to the representations ;7 which are non-equivalent.

If M, is the unitary map M,@(t) = t'7"/?¢(t) from Lﬁ (Ry) onto L*(R,) then
we have clearly M, #;, = #>M,, so #, and #5 are conjugate for every n > 2.



Chapter 9
The Coherent States of the Hydrogen Atom

Abstract The aim of this chapter is to present a construction of a set of coherent
states for the hydrogen atom proposed by C. Villegas-Blas (Thomas and Villegas-
Blas in Commun. Math. Phys. 187:623-645, 1997; Villegas-Blas in Ph.D. thesis,
1996). We show that in a semiclassical sense they concentrate essentially around
the Kepler orbits (in configuration space) of the classical motion. A suitable unitary
transformation (the Fock operator) maps the pure-point subspace of the hydrogen
atom Hamiltonian onto the Hilbert space for the S* sphere. We study the coherent
states for the S sphere (as introduced by A. Uribe (J. Funct. Anal. 59:535-556,
1984)) and show that the action of the group SO(4) is irreducible in the space gen-
erated by the spherical harmonics of a given degree. Note that coherent states for
the hydrogen atom have been extensively studied by J. Klauder and his school. We
have chosen not to present them here and refer the interested reader to Klauder and
Skagerstam (Coherent States, 1985).

9.1 The S Sphere and the Group SO (4)

9.1.1 Introduction

It is well known that the non-relativistic quantum model for the hydrogen atom is
the quantization H of the Kepler Hamiltonian H (x, p) = @ — ﬁ, p,Xx € R3.

The natural symmetry group for H seems to be the rotation group SO(3). We
shall see in Sect. 9.2 that the hydrogen atom has “hidden symmetries” and its sym-
metry group is the larger group SO(4) which explain the large degeneracies of the
energy levels of H. This is why we start by studying the group SO(4), its irreducible
representations and hyperspherical harmonics.

Recall that SO(4) is the group of direct isometries of the Euclidean space R* or

its unit sphere 3,
S = {x: (x1,...,x