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Supervisor’s Foreword

Ultra-cold atomic ensembles have played a key role in advancing many research
fields in recent years, including precision measurement, quantum many-body
physics and quantum information processing. In the latter, atomic ensembles have
been used in the implementation of several cornerstones such as long-lived
quantum memories, non-classical photon sources and quantum repeaters for long
range quantum networks. This Ph.D. work of Dr. Yoav Sagi studies the coherence
properties of trapped atomic ensembles at high densities, which are essential to
many of the aforementioned applications. The study focuses on how interparticle
interactions modify the ensemble coherence dynamics, and whether it is possible
to extend the coherence time by means of external control.

The first question addressed is how decoherence is modified due to elastic
collisions. Information is stored in the ensemble by encoding it into the coherence
between two internal states of the atom. These states then couple differently to the
external trapping potential (e.g. laser field) and this in turn leads to broadening of
the original narrow transition. Intriguingly, time-dependent fluctuations, which are
frequent due to the high density, narrow this broadened transition and prolong the
coherence time—a phenomenon first observed in NMR where it is named
‘‘motional narrowing’’. The thesis reports on experiments revealing the analogous
effect in optically trapped 87Rb atoms. A beautiful universal dependency of the
emergent new coherent timescale on the atomic phase space density is proven to
exist. An important related question is how this effect depends on the microscopic
physical model of the fluctuations. To answer this question, a discrete fluctuation
model is considered, for which a closed-form formula for the spectrum exists.
From the model one learns that the motional-narrowed spectrum is sensitive to the
specific collision model, i.e. to whether the collisions are ‘‘hard’’ billiard ball like
or ‘‘soft’’ forward scattering processes. Experimentally, the model is shown to
correctly describe the spectrum of optically trapped atoms without fitting
parameters.

The work also addresses the question of whether the coherence time can be
extended by applying external control fields. It is well known that fluctuations at
low frequencies can be overcome by a single population inverting pulse—the
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celebrated coherence echo technique. As the collision rate increases a single pulse
can no longer achieve this since the average frequency of each atom before and
after this pulse is different. However, dynamical decoupling theories generalize
this idea to multi-pulse sequences and enable the suppression of noise at higher
frequencies. Applying these ideas to atomic ensembles, a 20-fold increase of the
coherence time is demonstrated when a sequence with more than 200 pi-pulses is
applied. A full characterization of this process is accomplished using quantum
process tomography, establishing that a dense ensemble can indeed be used as a
quantum memory with coherence times exceeding 3 s.

Finally, the experiments presented here were performed with a new set-up
designed and built from scratch by Dr. Sagi. The new all-optical apparatus achieves
quantum degeneracy in about 10 s. This comparably short time enables acquisition
of large data sets, which of course improve the overall signal to noise. Many
important details regarding the construction of the new set-up appear in a separate
chapter in this thesis. Although the main scientific achievements reported in this
thesis were published in several journal papers, I do believe that a well written thesis
has added value: it tells the story from beginning to end without constraints of space
or popularity trends. A good thesis makes it easier for a non-professional to become
familiar with the research subject, and for a professional to delve into the details
sometimes omitted in short journal letters. The present thesis is a good example of
this added value, and I am sure the reader will find its study highly rewarding.

Rehovot, Israel, January 2012 Dr. Nir Davidson
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Chapter 1
Introduction

In current day computer and communication technology, information is represented
in bits. Computation is performed by applying a series of logical gates to the bits,
and in between storing their value in a memory. Quantum computation takes these
ideas to the the quantum world. Loosely speaking, using the superposition concept,
many computations can be done in parallel thus achieving an exponential speed
up. Quantum bits (qubits) replace the classical bit, with the important feature that
they are capable of being in a coherent superposition of the two underlying logical
states. Other counterparts of classical computation span from quantum memories to
quantum processors.

From a practical point of view, a qubit can be implemented as any system with
two energy levels. We shall refer to it in this work as a two-level system (TLS). In
most isolated quantum systems there are many discrete levels, but we will restrict
transitions and measurements to only two of them, and treat it as an effective TLS.
Many physical realizations of TLS exist, including photons, ions, quantum dots,
Josephson junction loops and atoms. Each of these systems has advantages and
disadvantages, and it seems that ultimately a quantum network will combine several
of them to benefit from their very different properties [1].

Two of the most used physical qubits are photons and neutral atoms. Photons
are easy to manipulate and produce. They interact weakly with their environment
and therefore can remain coherent for long travel distances. This last advantage is
also their disadvantage: interaction between photons is usually very small, making
the implementation of an all optical two-qubit gate very difficult. Atoms, on the
other hand, are easy to keep in one place, and can interact strongly with both other
atoms and external electromagnetic fields. It is therefore sensible to use atoms as
“stationary qubits” for storage and manipulation and use photons as “flying qubits”
that interchange the information between separated sites.

One of the controlled ways of interaction between atoms and photons which
is widely used is the electro-magnetically induced transparency (EIT) [2]. In this
scheme atoms with a lambda-shape energy structure interact with two light fields
called “pump” and “probe”. The pump is usually much stronger than the probe, and
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2 1 Introduction

is used to control the interaction strength between the probe and the atomic ensemble.
Closing the pump light while the probe is propagating in the atomic ensemble leads
to a conversion of the photonic excitation into the coherence between the two low
lying states of the atoms. This is sometimes called “storage of light”, although only
the coherence which was carried by the light is actually stored in the ensemble. The
beauty of this conversion process is that it is reversible, which makes the atomic
ensemble a true memory.

In order to increase the efficiency of the storage and retrieval processes, it is desired
to work with atomic ensembles with high optical depth [3, 4]. This is because the
coupling of the atoms to the external electromagnetic field scales as the square root of
the number of atoms in a volume where the light intensity is approximately uniform.
Working at high optical depth, however, usually implies that the atomic density is
high and the rate of inter-particle collisions is large compared to the storage time. One
of the goals of this work is to understand how this fact changes the time dynamics of
a stored coherence. The question we address is how rapid velocity changing elastic
collisions change the decay function of the ensemble coherence, and what is the
asymptotic coherence time in such a scenario.

The ensemble I consider in this thesis is that of cold atoms trapped in a conservative
potential. In practice, the atoms are cooled and trapped by lasers, and are very well
isolated from their surrounding. When trapped in an optical dipole potential, the
atoms can be kept for many seconds without scattering photons or interacting with
other atoms coming from the walls of the vacuum chamber. This, together with
the excellent controllability one has over the experimental parameters, makes this
system ideal for studying the effect elastic collisions have on the ensemble coherence.
Another point which simplifies things in a cold ensemble is the fact that s-wave
scattering is the dominant collision process.

From the point of view of a particular atom, other atoms can be regarded as the
environment, and collisions with them can be treated as the coupling to a bath. Also,
since the phase space density is low enough, the motion of each atom is to very good
approximation classical. The theoretical framework I adopt in this thesis, therefore,
will be that of an effective two level system in contact with a Lorentzian reservoir.
The experimental results confirm that this is indeed a good approximation.

Using this framework, we find that elastic collisions lead to a phenomenon we
call “collisional narrowing”, in analogy to the celebrated motional narrowing effect
known for many years in the field of nuclear magnetic resonance (NMR). The way this
phenomenon manifests itself in the case of cold atomic ensembles is in the increase of
the coherence time as the collision rate increases. Though similar to NMR, the effect
of collisional narrowing bears some unique features. The newly emerging prolonged
coherence time is found to scale universally with the atomic phase space density. This
means that in an ensemble dominated by the collisional narrowing effect, adiabatic
changes in the trapping potential will not affect the coherence time. A more elaborate
theoretical study reveals how the exact shape of coherence decay depends on the
distribution of atomic detunings or on the microscopic collision process.

Since the concept of coherent superposition lies in the heart of quantum compu-
tation, it is obvious that decoherence is a major obstacle to its realization. Several



1 Introduction 3

techniques have been developed throughout the years to cope with this problem,
ranging from quantum error correction, decoherence free subspaces and dynamical
decoupling. The latter refers to the use of external fields in order to average out
the negative effect of the surrounding. Though the positive effect of collisions is to
enhance the coherence time, they also introduce a negative outcome; they render the
conventional Hahn echo technique useless, since on average the detuning of each
atom before and after the echo pulse is different. Another goal of this work is to
explore the possibility to extend the ensemble coherence by dynamical decoupling
— the generalization of the coherent echo technique to multiple pulses [5–8].

1.1 Outline

Chronologically, the first three years of the Ph.D. work were devoted to the design
and construction of the new experimental apparatus. In the experiment, 87 Rb atoms
are trapped in a dipole potential created by a far-off-resonance laser, and can be
cooled down to quantum degeneracy (Bose-Einstein condensation). A summary of
the new setup is given in the beginning of Chap. 2, and more details regarding various
aspects of the new apparatus are given in following sections.

The theoretical framework is presented in Chap. 3 where I introduce an effective
single spin Hamiltonian and define what is the ensemble coherence. I also explain why
this observable is indeed measured in a time-domain Ramsey experiment. In Chap. 4
I explore the asymptotic effect of elastic collisions on the ensemble coherence. I
show that the coherence time is linearly increasing for increasing collision rate. In
what follows I demonstrate the universal scaling of the prolonged coherence time
with the atomic phase space density.

These findings are independent of the exact shape of the detuning distribution as
long as the observation time is large compared to the mean time between collisions
and as long as the detuning distribution has a finite second moment. However, in
Chap. 5 I study to much more detail the exact shape of the spectrum and its depen-
dence of the collision model and the detuning distribution. For this purpose I present
a specific discrete fluctuation model for which it is possible to derive a closed form
formula for the spectrum. This formula holds true for any detuning distribution. I
first use this formula to study the case where the detuning distribution is Gaussian. It
is shown that even in this case the spectrum deviates from known results for a con-
tinuous Gaussian fluctuations. This is especially surprising since for both models the
detuning distributions and correlation functions are the same, and the only difference
originates from the “softness” of the collisions. An important question which arise
in this context is whether the discrete model actually describes the true physics of
trapped cold atomic ensemble. To answer this question 3D Monte Carlo simulations
and experiments are presented, both providing an affirmative answer.

The motional narrowing effect appears in many physical systems, but in Chap. 6
I study whether this effect can be actually reversed. In other words, the question
raised is whether it is possible for fluctuations to broaden the spectrum. I show that
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the answer is yes, and that the condition for this to happen is that the initial detuning
distribution will have heavy-tails with a diverging first moment. Physically, heavy-
tails can be maintained only up to some cutoff, which translates into a broadening
effect that persists up to some characteristic collision rate. I also explain in this
Chapter the analogy between the problems of the ensemble coherence and spatial
diffusion, and use this to propose an experiment observing motional narrowing in
the latter.

Finally, in Chap. 7 the possibility to extend the coherence time using dynamical
decoupling with external control pulses is explored. I present experimental results
showing a 20-fold increase of the coherence time when a dynamical decoupling
sequence with more than 200 pi-pulses is applied. Using quantum process tomog-
raphy, it is demonstrated that a dense ensemble with an optical depth of 230 can be
used as an atomic memory with coherence times exceeding 3 s. Measurements of
the coherence time as a function of the decoupling scheme pulse rate show quadratic
scaling, and I explain the origin for this behavior.
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Chapter 2
The Experimental Setup

The experiments described in this work were performed in a new experimental setup
designed and built during the PhD. I first give a brief description of the new apparatus
which is necessary for the understanding of the experiments. Following, I elaborate
on the various subsystems of the new setup. In particular, I describe the sequence
which leads to Bose-Einstein condensation.

2.1 Brief Description of the New Apparatus

In the experiment, cold 87 Rb atoms are trapped in a far-off-resonance laser (see
Fig. 2.1). The two relevant internal states are |1〉 = ∣

∣F = 1; m f = −1
〉

and |2〉 =
∣
∣F = 2; m f = 1

〉

in the 52S1/2 manifold, which are, to first order, Zeeman insen-
sitive to magnetic fluctuations in the applied magnetic field of 3.2G [1]. Initially
∼109 atoms are trapped and cooled in a magneto-optical trap, and further cooled by
Sisyphus and Raman sideband techniques. The technique of rapid adiabatic passage
with constant RF radiation and a ramped magnetic field is then used to transfer the
atoms from state

∣
∣52S1/2, F = 1; m f = 1

〉

ending with 80% of the atoms at |1〉, and
the rest in state

∣
∣52S1/2, F = 1; m f = 0

〉

. The atoms are loaded into an optical dipole
trap created by two horizontal crossing beams at an angle of 28◦, creating an oval
trap with an aspect ratio of 1:3.9. The 50 µm waist laser beams originate from a sin-
gle frequency Ytterbium fiber laser at 1064 nm. Their polarization is parallel to the
magnetic field, and frequency differ by 120 MHz to eliminate standing waves. The
external control is composed of RF radiation at 2.15 MHz and microwave radiation
at ∼6.8 GHz, both locked to an atomic standard. The state populations is measured
by recording the fluorescence of a detection beam resonant with a transition to an
excited 52 P3/2 state [2]. An effect which should be taken into account is the levels
shift induced by the MW field [3]. We have carefully measured this shift, which in the
maximum MW power reaches to ∼50 Hz, and it is taken into account when setting
the frequency of the external fields. We carry out evaporative cooling for 2.5 s to a
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Fig. 2.1 We laser cool 87 Rb atoms and trap them in a crossed red-detuned laser beams configuration.
We employ state sensitive detection using a detection beam and a photomultiplier tube (PMT), and
measure the density and temperature using absorption imaging on a CCD camera

laser power of 0.16 W and back to the final laser value which determines the ther-
modynamic conditions in the experiment. The typical spontaneous scattering rate is
less than 1 s−1 and the trap lifetime is longer than 5 s. The temperature is measured
by an absorption imaging after a time of flight.

2.2 General Considerations

The design of the new setup is based on several considerations. The two main goals
are that the new setup will work with high data acquisition rate, and that it will enable
good optical access to incorporate the optical lattice beams, detection and trapping
lasers. In conventional BEC setups based on two chambers and magnetic trapping
the evaporation sequence takes around a minute, and the typical data acquisition rate
is therefore a data point every ∼100 s. The long evaporation times are a consequence
of the low collision rates and low densities in the magnetic trap. In order to increase
this rate we have decided to use an optical dipole trap instead. The natural densities
and collision rates in an optical trap are much higher, and this allows for much faster
evaporation, typically on the scale of a few seconds [4, 5]. The short evaporation
times ease the vacuum requirements, and enables us to work in a single chamber.
Since we do not use magnetic trapping, it is not necessary to work with very short
distances which are usually required to obtain large gradients of the magnetic field.
Thus, the size of the vacuum chamber can be larger, which provides a better optical



2.2 General Considerations 7

access. Another advantage of the larger size is that one can use large diameter MOT
beams, which increase the number of atoms collected into the MOT for a given
87 Rb background vapor pressure. We have designed the MOT coils in such a way
that we gain optical access to the atoms at 45◦, which then can be used to construct
a 3D cubic optical lattice for all sides of the chamber.

To further improve the initial conditions for the evaporative cooling, we have
implemented a third optical cooling scheme, Raman sideband cooling [6, 7], in
addition to the conventional MOT and polarization gradient cooling schemes (PGC).
The details of the implementation and the scheme will be given later, but in short, it
works for 10 ms, during which the phase space density of atoms is increased by two
orders of magnitude and the temperature is lowered to ∼1.5 µK.

The MOT beams have a diameter of 30 mm and are retro-reflected by a cat-eye
setup. The total power of the MOT beams is ∼650 mW (adding the power of the retro-
reflected beams), and it is derived from an external cavity diode laser amplified by a
tapered amplifier. The repump power is ∼20 mW. All lasers are prepared on a separate
table and delivered to the setup by optical fibers. Around the chamber there are three
pairs of compensating coils through which a current is tuned to cancel residual
magnetic fields at the location of the atoms. Very good cancelation is attained though
the use of MW spectroscopy of the Zeeman levels. The residual magnetic noise in
the lab was measured to be 5 kHz. Rubidium emerges from dispensers operated in a
steady state current of 2.4 A, chosen as a tradeoff between longer vacuum lifetime
and smaller number of atoms in the MOT. For a given 87 Rb background pressure,
we use ultra-violet LEDs which desorb atoms from the chamber walls and increase
the number of atoms in the MOT and the loading rate [8, 9].
A typical experimental sequence is composed of the following stages:

• Three seconds of Magneto-optical trap loading. Typically 109 atoms are collected.
• 30 ms of compressed MOT phase. Magnetic field is not changed, but the repump

intensity is lowered and the cooling light frequency is shifted to the red.
• Two consecutive PGC phases, separated by 5 ms, each is 2 ms long.
• Raman sideband cooling phase, 12 ms long.
• During all this time the dipole trap is on, and at typically t = 3.023 s all cooling

lasers are shut off.

2.3 Magnetic Coils

The design of the new set of coils had to reach the necessary anti Helmholtz fields
required for the MOT operation (typical gradients are 10 G/cm), be able to produce
in a Helmholtz configuration a magnetic field of 1007 G required for a Feshbach
resonance in 87 Rb, and finally preserve the optical access at 45◦ relative to the axis
connecting the centers of the two coils for future use (i.e. in constructing optical
lattices). The new design is based on two coils with 49 windings each of copper
tubes with an outer diameter of 1/8". To comply with the third requirement we used
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Fig. 2.2 Magnetic field magnitude [G] in a Helmholtz configuration of the coils with 1 A current.
The blue markers are the cross sections of the coils windings. The black lines in the figure are the
optical axes at 45◦ to the coils axis. The red lines depict the diameter of the MOT beams

Table 2.1 Physical characteristics of the new coils

Calculated Measured

Current to produce magnetic field of 1007 G 120 A 126 A
Resistivity of a single coil 0.09 � 0.076 �
Optimal current for MOT 10 A 8 A
Exiting water temperature at I = 100 A 60◦ 80–60◦

a conical hollow center for the coils. The design and the Helmholtz fields created by
a current of 1 A are shown in Fig. 2.2. From this calculation we see that a current of
120 A will be needed in order to achieve the 1007 G Feshbach resonance. The use of
tubes enabled us to use cooling water, which is available in the lab, to cool the coils
efficiently at such high currents. In Table 2.1 we compare the designed and achieved
values of several physical characteristics of the new coils.
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Fig. 2.3 Raytracing of the designed objective. The red lines are the surfaces of the lenses. The final
set of red lines is the chamber wall

2.4 Imaging Setup

The imaging setup is a conventional on resonance absorption imaging setup [10] with
two unique features: First, the imaging setup objective lens was designed and built
according to our calculations, and it gives a resolution of ∼3.3 µm with a relatively
large working distance of 50 mm. Second, a new technique was developed in order
to take a reference picture in less than 100 µs after the absorption picture with the
atoms. With such a short waiting time, there is a substantial reduction of the noise
in the analyzed picture. The technique relies on an intense pumping of the atoms
into a far detuned state before taking the reference picture. The pumping process is
very short, and therefore enable us to take pictures 40 µs long and separated by only
50 µs. This effectively freezes the movement of the fringes which usually appear in
the absorption beam and produces a background which is almost shot noise limited.

2.4.1 The Imaging System Objective

The heart of the imaging system is the objective lens. Due to the sizes of the chamber,
we wanted a diffraction limited lens, with a working distance of at least ∼50 mm, a
diameter of an inch and preferably a lens which is made of standard optical elements
(and thus cheaper). We have written a raytracing script in Matlab (the code is given in
Appendix B), and used as a starting point the design given in Ref. [11]. We restricted
ourselves to use only standard lenses from Thorlabs, and used their published physical
properties in the raytracer. Our final design is given in Fig. 2.3. The lenses used in
this design are LC1582 LB1676 LA1608 LE1202, and the distances and properties
are given in the Appendix. The designed objective has a NA of 0.2 and spherical
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Fig. 2.4 Airy pattern mea-
sured for the home built
objective

geometric abberations much less than the diffraction limit, which is ∼2.5 µm at
a wavelength of 780 nm. The designed effective focal length of the objective is
50.8 mm.

We have built the objective using mounting tubes and rings we had bought from
Thorlabs. We have tested the resolution of the objective with the following setup;
780 nm collimated light emerged from a single mode fiber (waist ∼1.1 mm). After-
wards it was enlarged by a telescope of 7.5–50 cm lenses (magnification of ×6.66),
and injected into the objective. We made sure that the objective is indeed parallel and
centered to the beam. After that we have placed a 3.7 mm long window to simulate
the vacuum chamber wall. Afterwards, we used a commercial x60 objective held on
a xyz translation stage and imaged the spot onto a calibrated camera. The measured
picture is given in Fig. 2.4. The measured resolution (half the Airy disk ) is ∼3.3 µm.

2.4.2 Absorption Imaging with Very Short Delay Times
Between Pictures

Absorption Imaging is usually the main diagnostic in BEC experiments. Two images
are taken, in the first one the light interacts strongly with the atoms (i.e. absorption)
whereas in the second not. The background is then subtracted from the two images,
and the absorption signal can be calculated. Each picture of the absorption beam
contains many fringes arising from interference from parallel planes in the way of the
absorption beam (i.e. windows, vacuum chamber, lenses, and so forth). These fringes
tend to change their position at acoustic timescales, which results in a structured
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noise left in the picture which is not related to information from the atoms. In order
to eliminate this noise it is necessary to reduce the time delay between the pictures.
Nevertheless, going down to short delay poses an inherent problem: the atoms do not
move fast enough to be absent from the second picture. There are numerous possible
solutions for this problem, and we are going to describe here one of them which we
have implemented successfully in the setup.

The atoms can initially be either in the F = 1 or F = 2 state. The absorption
beam is resonant with the F = 2 → F ′ = 3 transition, and thus it is necessary to add
to the first pulse also a repump beam resonant with the transition F = 1 → F ′ = 2.
After the first absorption pulse is over (usually its duration is 50 µs or less), we switch
on a depumping beam resonant with the transition F = 2 → F ′ = 2. This beam
is on for only a short time (typically less than 50 µs), and it efficiently drives the
atoms into the F = 1 state. Then, only 100 µs after the first pulse, a second pulse is
switched on, but this time it only includes the absorption beam and not the repump.
Since ideally there are no atoms in F = 2 there will be no atomic absorption in this
pulse, and it will serve only as the background picture. Since the repump in the first
pulse is not collinear with the absorption beam, only the absorption beams enters
the camera directly. The intensities of the two pictures is on the average the same.
The differences that still exists arise due to the fact that the camera technically can’t
close the shutter in the second image quickly and therefore collects more background
noise.

To demonstrate the technique we cool and trap 87 Rb in a dipole trap. The trapping
laser is shut off exactly before the absorption pulse time in order to avoid substantial
Stark shifts. The imaging consists of two 50 µs pulses as described before, separated
by a time delay of 50 µs in which a depumper beam is switched on. The imaging
optics is constructed by the objective described earlier and a second f = 150 mm lens
that image the picture into a PCO Pixelfly qe double shutter camera with resolution
of 1024 × 1392 pixels. With this optical setup, each pixel correspond to 2.24 µm in
the plane of the atoms.

The raw images are shown in Fig. 2.5. There are many fringes and inhomogeneities
in the two pictures, but the atomic absorption signal is still apparent. The intensity
in the two pictures is different by only 2%. For weak absorption beams (I � Isat ),
the pictures are analyzed by first subtracting the relevant dark pictures (taken before
the experiment without lasers), dividing the two pictures with the appropriate inten-
sity correction (so they have the same average intensity), and finally a logarithm is
taken. The result is the optical density of the atoms, an example of which is shown
in Fig. 2.6. A zoom of the atoms in the trap is shown in Fig. 2.7. The standard devi-
ation of the background noise is ∼0.048 (in the optical density), which corresponds
to ∼8 atoms per pixel. The shot noise of the laser beam can be calculated in the
following way. In a pulse duration of �t we calculate the number of photons n that
incident on a single pixel. The shot noise in the optical density is than given by
log (n + √

n)/(n − √
n) ≈ log 1 + 2/

√
n. For a 50 µs pulse of 100 µW laser, and

taking into account the quantum efficiency of the camera (25%), this results in a
noise of ∼0.035 in the optical density. All this assumes a uniform distribution of the
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Fig. 2.5 Raw images taken
in the absorption scheme
described

laser on all pixels. We see that the noise in the absorption picture is 40% higher than
the shot noise limit.

When the optical density is substantially higher than unity, there is an advantage
to work with absorption beam with higher intensity [12]. In this case, a more careful
analysis of the absorption picture is required. Let us denote by Iin the incident
absorption light, than the number of photons scattered by an atom in one second
in given by �sc = γ /2 · (1 + Isat/I )−1, where Isat is the saturation intensity, γ
is the natural linewidth of the transition, and we assume an on resonance light.
Notice that if the optical density is high, and if I is comparable to Isat , there will
be an exponential decrease in the transmitted intensity, which in turn modifies the
scattering rate. This effect is the deviation from the usual analysis described before.
We can write a differential equation describing the propagation of the absorption
beam intensity through the atoms:

∂ I

∂z
= −ρ �ωγ

2

I

I + Isat
,
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Fig. 2.6 Absorption image of atoms in a 80 µm dipole trap. The colors represent the optical density.
The crossing high optical density oval shaped cloud is the crossing region of the two crossed trapping
beams. One can see that many atoms are also captured in the “wings” of these two beams

where ω is the transition frequency, ρ is the density of the atoms and z is the propa-
gation direction. We shall multiply the equation by (1 + Isat/I ) and integrate along
z to arrive at the result:

Iout − Iin

Isat
+ ln(Iout/Iin) = −ρs

�ωγ

2Isat
,

where we define the surface density by ρs(x, y) = ∫

ρ(x, y, z)dz, and use the nota-
tions Iin and Iout for the incoming and outgoing beams, respectively. The calibration
of the camera enables us to translate the recorded picture into intensity, and because
the intensity difference between the two pictures is very small (normally no more
than 2%) we can assume that the absorption pictures gives Iout and the reference
picture gives Iin (in both picture we subtract a “dark” picture without the beams to
eliminate any systematic background noise). Once we have Iout and Iin we can plug
it into the equation and obtain ρs(x, y). Since the system has a cylindrical symmetry,
from ρs(x, y) we can infer ρ(x, y, z). This is especially easy if we assume a certain
shape of the cloud, i.e. a Gaussian.

From the measurement of the density distribution in different times we can mea-
sure all other parameters; temperature can be measured by the time of flight technique,
oscillation frequency can be measured by observing the shape of the atomic cloud
after some disturbance is made in the trap (more details on this later) and finally the
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Fig. 2.7 Absorption image of atoms in a 80 µm dipole trap, zoomed. The colors represent the
optical density

total number of atoms can be found by integration over the density distribution. From
measurements of T , ωosc, N and ρ we can also calculate the phase space density and
collision rate.

2.5 State Manipulation and Detection

In this thesis the two relevant internal states are |1〉 = ∣
∣F = 1; m f = −1

〉

and |2〉 =
∣
∣F = 2; m f = 1

〉

in the 52S1/2 manifold (see Fig. 2.9). The advantage of working
with these two levels is that, to first order, they are Zeeman insensitive in an applied
magnetic field of 3.2G [1]. Since �m = ±2 between these two states, the external
control�(t) is done by a two-photon transition, employing RF radiation at 2.15 MHz
and microwave radiation at 6.832527928 GHz (see Fig. 2.9). An effect which should
be taken into account is the microwave dressing effect, namely the shift of the energy
levels due to the applied MW field [3]. We have carefully measured this shift as a
function of the MW power and found it can typically reach a maximum of about
∼50 Hz. This shift has to be taken into account when setting the frequency of the
external fields.

We measure the Rabi frequency, �, of the external field in the following way;
We detect the population at state |2〉 while scanning the duration of the applied
external field pulse. An example of such a measurement is given in Fig. 2.8. We fit
the oscillating data points with the function y = a cos[�t] + b and extract the Rabi
frequency. In the given example the fit yields�/2π = 628.5±0.8 Hz, where the error
margins are given with a confidence level of 95%. The accuracy of this measurement
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Fig. 2.8 Calibration measurement of the Rabi frequency of the control field. The x-axis is the
duration of the pulse, and the y-axis is the normalized population at state |2〉. We fit the data to the
function y = a cos[�t] + b to find the Rabi frequency �

Fig. 2.9 Diagram of the
hyperfine ground states of
87 Rb, with the two rele-
vant magnetically insensitive
states. A two-photon transi-
tion is employed, with a large
enough detuning from the
intermediate level

is 0.13%. Also note that the time resolution we have in setting the external pulse
duration is 25 ns. Spatial variation of the external control field over the ensemble are
very small since the wavelength of the microwave radiation is ∼4.4 cm compared to
the typical size of the atomic cloud which is ∼100 µm. The single π -pulse fidelity
was measured to be F = 0.995 in an experiment in which we induce more than 100
sequential pulses and measure the oscillations decay.

The state detection scheme is similar the one described in Ref. [2]. We use
a detection laser beam which is resonant with the transition

∣
∣52S1/2, F = 2

〉 →
∣
∣52 P3/2, F ′ = 3

〉

. We first give a 1 ms long detection pulse which probes the pop-
ulation in the state |2〉. We measure the fluorescence signal from the atoms using
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Fig. 2.10 A typical result of a Ramsey experiment with � = 130 s−1. The duration of a π/2 pulse
is 250 µs

a photomultiplier tube. This detection pulse also gives the atoms at |2〉 momentum
kicks which drive them out of resonance due to the doppler shift. We then give a short
pulse of a repump laser which is resonant with the transition

∣
∣52S1/2, F = 1

〉 →
∣
∣52 P3/2, F ′ = 2

〉

. The purpose of this pulse is to transfer the atoms at state |1〉 to
∣
∣52S1/2, F = 2

〉

. Finally, we give another 1 ms long detection pulse which detects
the atoms that were is |1〉. We normalize the signal of atoms at state |2〉 to the total
signal, and we obtain the probability to find an atom at |2〉. Note that this three pulse
sequence is carried in the same experimental run.

As will be explained in the next chapter, we use a time-domain Ramsey experiment
to measure the coherence; a shortπ/2 pulse produced by the external control field pre-
pares the atoms in a superposition |ψ〉 = 1√

2
(|1〉+ |2〉) followed by a waiting time t ,

then a second π/2 pulse and finally a measurement of the population at |2〉. A typical
result can be seen in Fig. 2.10. Such a measurement consist of 2000 points taken
with different waiting times between the two π/2 pulses. The fast oscillations are a
manifestation of the detuning between the transition frequency and the control field.
To facilitate the extraction of the decoherence envelope function, we set this detuning
to be much larger than the decay rate which ensures a separation of timescales. The
envelope function is extracted by taking the standard deviation of n points, where n
is the average number of points in a single fast oscillation period.
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2.6 The Trap Setup

The heart of the new setup is the optical dipole trap. The use of a far detuned dipole
trap has many advantages; The depth of the trap depends only weakly on the Zeeman
sublevel of the atoms. The initial conditions of the atoms are much more favorable
than those in a magnetic trap, probably due to a local increase in the phase space
because of the dimple effect [13], and also suppression of re-scattering. Another
advantage is the high initial collision rate, which in turn enables shorter evaporation
times. Nevertheless, the main disadvantage is the lack of a similar effect to the so
called ‘RF knife’ in a magnetic trap [10], namely the removal of the hottest atoms in
a controlled way without changing the oscillation frequency of the trap. In a gaussian
beam trap, the radial oscillation frequency can be approximated byω2

osc = 4U0/mσ 2

where U0 is the trap depth, m is the mass and σ is the beam waist (e−2 radius). The
common and easiest way to force evaporation is to decrease the power of the laser
[4]. Since this procedure also lowers the trap depth U0 it decreases the oscillation
frequency. Thus, the efficiency of the evaporation deteriorate as evaporation progress
and it is not possible to carry runaway evaporation (evaporation process in which the
collision rate increases). One way which was proposed to circumvent this problem
is to dynamically change the waist of the beam during the evaporation [5].

In order to change the waist of the laser we have designed and built an optically
compensated zoom system. Also, to keep the aspect ratio of the trap constant we have
decided to work with a two beam trap in a crossed configuration. The aspect ratio is
directly controlled by the crossing angle between the two beams. The trapping laser
setup is depicted in Fig. 2.11. The trap laser is an Ytterbium fiber laser manufactured
by IPG, model YLR-50-1064-LP-SF. This is a 50 W single frequency fiber laser
(linewidth< 50 kHz) with a wavelength of 1064.347 nm and a waist of 1.5 mm. We
tested the new laser with a high speed detector (8 GHz BW) and verified that there are
no more than a single mode, at least at the measured bandwidth. The setup produces
a 28◦ crossed beam trap with a waist range of 50–250µm and an aspect ratio of
1 : 4. The total power reaching the atoms is ∼30–32 W. The laser emerges with a
linear polarization through an optical isolator. It is than passed through a telescope
which is focused to a waist of 800 µm on an AOM (Model 35060-30-3-1.06-I-HGM-
W with driver model 39060-30DMA05-A, manufactured by NEOS Tech). After the
telescope there is a polarization beam splitter (PBS1) and a mirror (M1) which create
the two beams that are going to enter the AOM. The ratio between the two beams can
be controlled using a λ/2 placed just after the laser head. The two beams are aligned
such that they heat different spots on the AOM. The right (left) beam is resonant with
the moving acoustic scattering lattice in the AOM and diffracts into the order +1
(−1). The remaining zero orders of both beams are removed by a beam dump. The two
diffracted beams are then mode matched and recombined on a beam splitter (PBS2).
Since the AOM is sensitive to the incident polarization we rotate the polarization of
the left beam before and after the AOM. The AOM operates at 60 MHz, therefore the
frequency difference between the two diffracted beams is 120 MHz which effectively
prevents effects of standing waves. Mirrors M3 and M4 are used to align the beam
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Fig. 2.11 A sketch of the experimental setup of the trapping laser

to a specific mode which is measured by two quadrant detectors placed after the
leakage of mirror M5. In case of problems before Mirror M5, this enables us to
correct the problems and then realign very accurately the beam such that it does not



2.6 The Trap Setup 19

require further realignment after M5. The lenses after M5 create the zoom system
(it will be described afterwards in more detail). The two beams are finally separated
by polarizing beam splitter (PBS3) and sent into the chamber. The final polarization
state of the two beams can be further manipulated by waveplates just after mirrors
M6 and M8. The holders of mirrors M6 and M8 include piezoelectric elements that
enable real time fine tuning of the crossed position. After the trap beams leave the
chamber we image them on a position sensitive quadrant detector, and lock their
position using the piezoelectric mirror mounts. The position locking corrects small
displacements of the focus position during the dynamic compression of the zoom.
Also, we continuously monitor the beams power (we do this also at the leakage
after M5), and lock the power to the desired value. This value changes during the
evaporation, and so the power locking system keeps the beams power locked to this
value dynamically.

In an ideal zoom system the beam waist changes without affecting its position.
However, to a certain extent a movement of the waist is acceptable if it is kept under
some limitations. At the crossing point of the two trapping beams the potential depth
is twice the depth of each single beam. If the waist is more than one Rayleigh range
away from the crossing point, another local minima of the potential appear at the
waist of each beam. Therefore, it seems reasonable to tolerate a movement of the
waist position up to one Rayleigh range of the beam.

It is well known that an ideal zoom system requires an independent movement of
at least two optical elements (mechanically compensated zoom systems). There is a
different approach which require only a single moving platform (so there is only a
single independent moving variable), but allow the concurrent movement of several
optical elements. This approach gives an approximation of a zoom system, and is
called optically compensated zoom system [14]. In the lowest order of implementa-
tion we allow the concurrent movement of two lenses, where in between there is a
static third lens (the moving lenses does not change their relative distance).

We have designed optically compensated zoom system which achieve a waist
range of 50 –250 µm. Design parameters were optimized using Gaussian ABCD
matrices simulations. Our design is based on two positive moving lenses with focal
length of 75 mm positioned 10 cm apart from each other, and in between one fixed
negative lens with a focal length of −50 mm. The result of the simulation of our
design is given in Fig. 2.12. We have built this system and verified that indeed we
get the designed waist range.

2.7 Raman Sideband Cooling

Raman sideband cooling is an optical cooling scheme first proposed and demon-
strated by Steven Chu’s group in 1998 [6, 7]. In this scheme, one uses a magnetic
field to shift the relative energy of two vibrational ladders of two Zeeman sub lev-
els such that the states |m; n〉 and |m + 1; n − 1〉 are degenerate (m is the Zeeman
index and n is the vibrational state index). Once the levels are degenerate, Raman
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Fig. 2.12 Simulation of a three component optically compensated zoom system. Simulation are
done using ABCD matrices. Left graph is the waist size as a function of translation stage position.
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Right graph is the waist position as a function of the waist size. The position of the ±Reighley range
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transitions move the atoms from |m = −1; n + 1〉 to |m = 1; n − 1〉. In this transi-
tion the atoms loose two vibrational quanta. The final stage of the scheme is optical
pumping back into the m = −1 state. One has to make sure that the confinement
is strong enough such that the atoms are in the Lamb-Dicke regime, and thus the
probability for a change in the vibrational level during the optical pumping process
is small. To accomplish this and also to create a well separated vibrational ladder,
we built a four beam optical lattice. The lattice beams also induce the degenerate
Raman transitions.

The implementation of the scheme in 87 Rb is depicted in Fig. 2.13. Magnetic field
of ∼200 mB is applied in the z axis. The Raman lattice is composed of four beams
in exactly the same geometry and polarizations as in Ref. [6]. The total power of
the raman lattice beams is 350 mW and the frequency is detuned by +13 GHz with
respect to the D2 F = 1 → F ′ = 2 transition. The optical pumping is done with a
strong σ+ (∼20 µW) and a weak π beam (∼2 µW), both detuned +10 MHz with
respect to the D2 F = 1 → F ′ = 0 transition. Also needed is a repumper which
pumps back atoms transferred to F = 2 state. All beam waists are ∼1.1 mm.

The cooling sequence starts just after the second PGC phase. We ramp up adiabat-
ically the lattice, and switch on the magnetic fields, optical pumping and repumper
lasers for 10 ms. Finally, the lattice is ramped down, while the magnetic field is
still on. A temperature measurement done in a time of flight technique is shown in
Fig. 2.14. Temperatures of ∼1.5 µK are typical. We end up with few 108 atoms, in
a typical waist of 500 µm, which gives a typical phase space density of 5 × 10−4.
We have also performed MW spectrometry experiments after the sequence, a typ-
ical result of which is given in Fig. 2.15. The optical pumping produces a typical
distribution of 80% of atoms in m = 1, 15% in m = 0 and 5% in m = −1.
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Fig. 2.13 Raman sideband cooling in 87 Rb atoms
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Fig. 2.14 Time of flight measurements of 87 Rb atomic cloud after Raman sideband cooling. Fits
correspond to temperature of 1.58 ± 0.06 µK in the horizontal direction and 1.20 ± 0.25 µK in the

vertical direction. Cloud size, σ , is found by fitting to a density distribution function: n(r) = n0e
r2

2σ2 .
Time is the expansion time of the cloud measured from the sudden shout down of the lattice. Error
bars are standard deviations of three measurements done for each point
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2.8 Levitation

Raman sideband cooling enables to reach temperatures as low as 1.5 µK. The needed
trap depth to load such cold atoms is very low, and thus for a given laser power
larger trap waists can be used. Nevertheless, when going to larger trap waists, the
gravitational energy difference across the trap can be larger than the trap depth. As an
example, for a 200 µm distance the gravitational energy for 87 Rb is 21 µK. A useful
tool in cold atomic experiments is the use of some force to contradict gravitation and
to effectively create levitation in the location of the atoms.

In our setup we have implemented levitation using magnetic forces. The main idea
is to use the magnetic dipole moment of the atoms, and to create a magnetic field gra-
dient such that the force equals mg. The magnetic dipole interaction energy is given
by HB = m f g f |B|, where we assume magnetic dipole moment adiabatic following
of the magnetic field direction. For our case m f = 1 (this is the resulting state after
the Raman sideband cooling), and g f = 0.7 MHz/G. We use the main coils of the
MOT to create the field gradient needed for the levitation. We have carried out a 3D
calculation of the magnetic fields, and determined that the needed current in the coils
in an anti-Helmholtz configuration is 13 A. In the experiment we have found that the
value should be 12 A. The use of two coils in an anti-Helmholtz configuration facil-
itates the current requirement from the current driver, but the drawback is stronger
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Fig. 2.16 Calculation of the transverse anti trapping oscillation frequency induced by magnetic
field gradients in the transverse plain as a function of�I which is the difference between the current
in the upper and lower coils. The sum of the two currents is kept constant at 24 A to produce the
axial magnetic field gradients necessary for levitation

transverse magnetic field gradient which induces anti trapping in the transverse plain.
On the other hand one can use a current of 24 A in a single coil to get better results.
The calculated transverse anti trapping oscillation frequency is depicted in Fig. 2.16.
We have found that the small anti trapping effect in the transverse plain can be useful
to get rid of the atoms that are weakly trapped in the wings of the two trapping beams.
We have found that these atoms cause excessive heating when they collide with atoms
inside the crossing region. Since the transverse trapping frequencies are usually very
low, these anti trapping effect helps to spill these atoms without changing effectively
the potential in the crossing region.

To summarize, we have used an unbiased current in an anti Helmholtz configu-
ration of the MOT coils to levitate the atoms. We have found and verified the exact
parameters of the levitation by optimizing the number of atoms is a very shallow trap
(which does not trap without levitation), and also by time of flight measurement in
which we verified that there is no free fall.

2.9 Lifetime Measurements

The vacuum measured by the vacuum ion pump is ∼2 × 10−11Torr. The ambient
vapor pressure at the position of the atoms is determined by the current in the Rb
dispensers. This value is a tradeoff between high current which would result in more
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Fig. 2.17 Lifetime measurement in a magnetic trap. We fit to exponential function N = N0e−t/τ .
In this measurement the atoms are prepared in F = 1 state

atoms gathered in the MOT and low current which will results in longer lifetimes and
thus more efficient evaporation. We can measure the lifetime in different ways. One
of the most sensitive ways is to measure the lifetime of atoms loaded into a magnetic
trap. This is a very sensitive probe to m changing transition, because such a transition
immediately transfer the atom to an untrapped state, in contrast to other heating
mechanisms which require many photons to cause a loss of a single atom. Such m
changing transitions occurs mainly due to stray light. We have found that with very
small leakage, lifetime measured using this method are an order of magnitude shorter
than as measured in other methods. The results of a typical measurement is given in
Fig. 2.17, where the measured exponential decay time is 8.1 s (in this measurement
the current in the getters is 2.7 A). Notice that the exponential fit describes the data
well, which implies that in this measurement there is no density dependent loss. This
is expected since the densities we obtain in magnetic trap are quite low. Measurements
with optical dipole trap with different beam waists give similar results. Recently we
have reduced the current in the getters to 2.4 A, and the lifetime increased to more
than 10 s.
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Fig. 2.18 Number of loaded atoms in the trap as a function of the trap waist. The error bars are the
standard deviation of the average of seven measurements. The measurement is done 100 ms after
the end of the cooling and loading phases. No levitation in this measurement

2.10 Trap Loading

The trapping laser is present throughout the optical cooling phases since we did
not notice any improvement when it was shut off during this time. The number of
collected atoms as a function of the trapping laser waist when the laser is at full power
is given in Fig. 2.18. The graph shows that there is an optimum around ∼200 µm
waist size. At larger waists gravitation starts to lower substantially the trap depth,
and in lower trap depths the capturing volume is smaller. Actually, when trying to
take these two considerations into account it seems that there is another mechanism
in smaller trap waists which helps to keep the number of atoms higher than expected.
We believe this mechanism to be the so called dimple effect, as was demonstrated in
Ref. [13, 15]. In short, the dimple effect is a local increase of the phase space density
in comparison to the phase space density of a reservoir, in a region of space where
the potential is lower than the potential at the reservoir, and in thermal equilibrium.
When using smaller waist traps we gain in the phase space since the potential in
the trap is lower than in the Raman sideband cooled cloud. When adding levitation
we gain in the number of atoms (typically not more than 20%), and the drop in the
number of atoms shifts to larger waists.
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Fig. 2.19 Oscillation frequency measurement by a rapid trap switching. We switch off the trap for
1 ms and measure the cloud center (upper graph) and waist (lower graph) after 1 ms time of flight.
Trap parameters are: power 15 W, σ = 75 µm

2.11 Oscillation Frequency Measurements

One of the most important characterizations of the trap is the measurement of its
oscillation frequency. We have employed two measurement techniques which we
present here: rapid switching of the trap and parametric excitation. In both tech-
niques, besides the oscillation frequencies there are numerous interesting physical
phenomena we were able to observe such as trap non harmonicity, parametric cooling
and more.

2.11.1 Oscillation Frequency Measurement by a Rapid Trap
Switching

In this technique we switch off the trap for a short duration and then switch it on
again and measure the atomic could geometric parameters as a function of time. The
measurement is carried by absorption imaging pictures of the cloud which we fit to a
gaussian and find its center and waist. The witching duration should be smaller than
the oscillation period. An example of such a measurement is shown in Fig. 2.19.
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The upper graph shows the oscillation of the center of mass of the cloud, and
as expected its damping which is only connected to the non harmonicity of the
trap is quite small. The center of mass oscillation in the trap can be written as
x = x0 sin(ωosct), where t is the time, ωosc is the oscillation frequency and x0 is the
initial displacement. After a time of flight duration of tto f the measured center of mass
position is given by xtof = x +vtto f = x0 sin(ωosct)+ tto f ωoscx0 cos(ωosct)which

can always be written as xtof = x0

√

1 + (tT O Fωosc)2 sin(ωosct + φ), with some

phase φ. We see that we may gain a “magnification” factor of
√

1 + (tto f ωosc)2

by the use of the time of flight technique. since for a given ωosc the maximum
measurable time of flight duration is limited, the typical value is tto f ωosc = 10. Still,
since the displacement relative to the atomic waist is small, and since the typical
atomic waist is few tenths of microns, the typical x0 is on the order of a few microns.
This results in a measurable displacement of ∼10 µm, which is small and thus this
kind of measurement tends to be noisy.

The lower graph at Fig. 2.19, on the other hand, shows the measurement of the
waist of the atomic cloud. This is the so called “breathing mode” and it is damped due
to collisions. It is quite easy to induce a large relative waist change, and this translates
to a measurable change of many tenths of microns. This kind of measurement tends
to be easier and with better signal to noise. Nevertheless, there are two points to
remember. First, as a result of the damping it is usually difficult to measure more than
10 oscillations, which limits the accuracy of the measured frequency. Second, due to
non harmonicity of the trap the instantaneous frequency measured by the breathing
mode shifts up as time goes on. This is because the amplitude of the motion decreases
and due to non linear effect of the oscillator the frequency increases. On the average
it means that this measurement technique has a small bias towards lower frequencies.
Saying all that, it is still our preferred way of measuring the oscillation frequency
due to the good signal to noise and accuracy.

From the damping rate of the breathing mode we could infer the collision rate
directly. This is appealing since direct measurements of this value are not easy to
perform [16]. The main issue which needs to be taken into account here is the effect
of anharmonicitiy of the trap. The slow decay of the center of mass mode, however,
shows that at our typical collision rates this effect is rather small. More details on
this technique are given in Chap. 5.

2.11.2 Parametric Excitation of Atoms in a Dipole Trap

Another technique to measure the oscillation frequency is by modulating the trapping
laser intensity and measuring the response of the atoms. In the experiment, we give
a modulation at a certain frequency and measure the number of remaining atoms
and their temperature. In a perfect harmonic oscillator we expect to see a resonance
behavior at each of the oscillation frequencies of the trap. A typical measurement is
given in Fig. 2.20. The temperature of the atoms show two clear peaks at the radial and

http://dx.doi.org/10.1007/978-3-642-29605-5_5
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Fig. 2.20 Parametric modulation of the trap depth. Upper graph is the remaining atoms’ tempera-
ture and lower graph is the number of remaining atoms. We give 100 ms of modulation which ends
just before the measurement. Trap parameters: power 15 W, modulation peak to peak 3 W, waist is
∼60 µm

axial oscillation frequencies. An interesting feature is a decrease of the temperature at
frequencies of 1000–1500 Hz (the temperature without any modulation is ∼47 µK).
This decrease is due to the anharmonicity of the trap. The hotter atoms fill the higher
energy levels of the trap, which due to the anharmonicity also have smaller oscillation
frequencies. When we induce parametric excitation with smaller frequencies than
the resonance frequency we on the average excite hotter atoms out of the trap and
thus the remaining atoms are colder. In the lower graph in Fig. 2.20 one can see that
indeed the largest number of atoms which are lost exactly in this frequency range.
This effect which we call parametric cooling was already reported in Ref. [17–19].
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sequence

2.12 Evaporation to BEC

Our sequence to achieve quantum degeneracy is composed of several stages. First,
we use optical cooling, as explained before, which brings the phase space of our
ensemble to be better than 10−4. The atoms are then loaded into the dipole trap. In
order to collect a large number of atoms, we set the waist of the trapping beams to
∼200−250 µm and its power to maximum (∼30W). We then let the atoms freely
evaporate for 0.5 s. Next, we compress the trap to a waist of ∼50 µm during 1.5 s.
This compression reduces the volume by a factor of ∼100, and consequently the den-
sity and elastic collision rates increase dramatically. Unfortunately, also the inelastic
scattering rate is increased, and we have found experimentally that the most effi-
cient evaporation is achieved when the laser power is reduced gradually during the
compression down to 5% of its maximum value. At this point there are typically 106

atoms at a phase space density of 10−2, a temperature of 6.5 µK, a maximum density
of ρ = 3 × 1013 cm−3 and a maximum elastic collision rate of �col = 1000 s−1.
This constitutes an evaporation process with an efficiency of ∼2.6.

Next, evaporation is continued only by reducing the power of the trapping laser.
The best results to date were obtained with the following power reduction scheme:
for the first 1.5 s, the power follows the function I (t) = Ae−t/τ1 + B with τ1 = 0.5 s,
and A and B such that I (0) = 0.05Imax and I (1.5) = 0.01Imax. For the next 3 s,
the power is given by I (t) = Ce−t/τ2 + D with τ2 = 1 s and C and D chosen such
that I (1.5) = 0.01Imax and I (4.5) = 0.0047Imax. The total evaporation sequence is
plotted in Fig. 2.21.
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Fig. 2.22 Different stages in the condensation process, taken after a time of flight of 18 ms. The
height is proportional to the optical depth in each image. In all these experiments we used the same
sequence, and the different ending conditions stem from fluctuations in the initial number of atoms
before the evaporation
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Fig. 2.23 The condensate aspect ratio calculated in the Thomas–Fermi limit using the measured
oscillation frequencies. The insets show the measurements
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The resulting BEC contains ∼5000–1000 atoms. We have measured it after a
time of flight of 15–20 ms. At this point, and mostly due to the fluctuation in the
initial conditions before the evaporation, the conditions after the evaporations are
quite fluctuating. In future work we plan to perform the last stage of the evap-
oration by increasing the gradients of an applied magnetic field. Thus a higher
trapping frequency can be maintained and therefore also a better efficiency. In
Fig. 2.22 we depict different stages of the condensation process. In addition, we
have measured the oscillation frequencies in the trap just at the condensation point
and obtained ωr = 2π × 84 Hz and ωz = 2π × 41 Hz. Using this values, we
calculate the aspect ratio of the condensate as a function of the time of flight (in
Thomas–Fermi regime) and plot it in Fig. 2.23 [10]. It is important to note that
since the aspect ratio is close to unity, in the calculation of the chemical potential
from experimental data the kinetic energy in both axis has to be taken into account.
Doing so we find that the typical chemical potential is µ = 2π × 300 Hz. We extract
the temperature from the thermal wings around the condensate (but still not too close)
and get a typical value of T = 50 nK.
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Chapter 3
Theoretical Framework

When the atoms move in the potential their energy levels slightly change. I denote
the energy of the low-lying internal states |1〉 and |2〉 by E1(x, y, z), and E2(x, y, z),
respectively. The depth of the optical potential is proportional to U (x, y, z) ∝
I (x, y, z)/�, where I (x, y, z) is the laser intensity and � is its detuning from the
excited states � = ωlaser − ωi , where ωi is the resonance transition frequency
of the state |i〉 to the excited states. Since ω1 �= ω2, one gets that �1 �= �2
and consequently the energy difference between the two internal states is not con-
stant: �E(x, y, z) = E2 − E1 = I (x, y, z)( 1

�2
− 1

�2
) ≈ I (x, y, z)�1−�2

�2 , where
I assume that �1 − �2 � �1,�2. In particular, the energy difference between
the states has the same spacial dependence as the laser intensity and the optical
potential �E(x, y, x) ∝ U (x, y, z)η but multiplied by the differential energy shift
η = �1−�2

�
.

3.1 Atomic Motion in the Trap Without Collisions

Next, I would like to show that the fast oscillatory motion of the atoms can be
averaged, and the detuning is then proportional to the energy of each atom. I consider
atomic motion in a Gaussian trap without collisions. Since the temperature of the
atoms is small compared to the maximum trap depth, I shall approximate the potential

by an harmonic potential: U (x, y, z) = m
2

[

ω2
x x2 + ω2

y y2 + ω2
z z2

]

− U0, where ωi

is the oscillation frequency of the i th axis. The motion of a specific atom is given
then by (x(t), y(t), z(t)) = (Ax cos[ωx t +φx ], Ay cos[ωyt +φy], Az cos[ωz t +φz]),
where Ai and φi correspond for the atom initial conditions. The accumulated relative
phase between the two internal states is given by
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φ(t) =
t∫

0

�E(x(t ′), y(t ′), z(t ′))dt ′

∝ η

8
[−8tU0 + A2

x mωx (2tωx − sin[2φx ] + sin[2φx + 2ωx t])
+ A2

ymωy
(

2tωy − sin[2φy] + sin[2φy + 2ωyt])

+ A2
z mωz (2tωz − sin[2φz] + sin[2φz + 2ωz t])]. (3.1)

For times which are greater than the oscillation periods, t � ω−1
i , the two Sine terms

for each axis can be neglect. Also, since there is an ensemble of atoms with different
initial conditions (and therefore different values of φi ), these sine terms will average
out. We are then left with the expression

φ(t) ∝ −ηtU0 + ηm

4

[

A2
xω

2
x + A2

yω
2
y + A2

zω
2
z

]

t = −η
[

U0 + Et

2

]

t, (3.2)

where I denoted by Et the total energy of this atom. The result is that if the mean time
between collisions is larger the the oscillation period in the trap, the fast oscillations
can be averaged, and the rate of phase accumulation (detuning) depends on the
average energy. For the experiments presented in this thesis the oscillation period is
always the shortest timescale and therefore we can safely consider a coarse grained
model in which the energy of each atom is constant in between collisions. When an
elastic collision occurs, the total energy of each atom is changed, and therefore also
its detuning.

3.2 The Hamiltonian and the Ensemble Coherence

Full quantum mechanical treatment of the ensemble will lead to a multi-particle
Hamiltonian which is difficult to solve. Since interactions are small, I shall adopt
instead a mean-field approach in which the ensemble in treated as an effective two-
level system interacting with a modified external field which includes the effect of the
atomic interactions. The effective single particle Hamiltonian for atoms with internal
states designated by |1〉 and |2〉 can then be written as

Ĥ = � [ω0 + δ(t)] |2〉 〈2| + ��(t) |2〉 〈1| + h.c., (3.3)

whereω0 is the free-space transition frequency between the states, δ(t) is the detuning
from the resonance due to the mean-field and�(t) is an external control field which is
used for state manipulation (for the dynamical decoupling or Ramsey experiments).
Here, the detuning is already assumed to be after the averaging over the fast oscil-
lation has been performed. Starting from an initial state |ψ(0)〉 = 2−1/2(|1〉 + |2〉)
and no external control fields, the wave-function at any given time is given in the
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rotating frame by |ψ(t)〉 = 2−1/2(|1〉 + e−iφ(t) |2〉), where the phase difference is
given by φ(t) = ∫ t

0 δ(t
′)dt ′. The ensemble coherence is quantified by the function

R(t) = |〈ρ12(t)〉||〈ρ12(0)〉| , where ρ12 is the off-diagonal element of the reduced two-level
density matrix and the notation 〈〉 stands for the ensemble average [1]. Due to the
differential energy shifts of the trapping potential and to interactions between the
atoms, each atom “sees” a different detuning. This detuning distribution generates
a phase distribution with a width that increases in time and leads to dephasing—a
reduction of the R(t).

To get a feeling for the behavior of the coherence, we consider a Gaussian phase
distribution, Pφ, with a standard deviation σφ. The calculation of the coherence is
straight forward, giving

R(t) = e− σ2
φ
(t)

2 . (3.4)

This result shows that the coherence decays as the width of the phase distribution
increases.

3.3 How to Measure Coherence?

The conventional way to measure coherence is in a Ramsey experiment [2]. Such a
measurement consists of two short π/2 pulses separated in time, and a detection of
the population at one of the states following. One way to perform this measurement is
by keeping the time between the pulses constant and scanning the phase of the second
pulse, which gives the coherence for that given waiting time. In this work, however, I
use a slightly different sequence in which we keep the phase of both pulses the same,
and scan the waiting time between the two pulses. In order to extract the coherence,
we choose the detuning between the control field and the transition frequency to
be large compared to the decoherence rate. This results in fast oscillations at the
corresponding frequency, and we now explain why the envelope of these oscillations
indeed gives the coherence as we have defined it above.

We consider a specific atom which is initially at state |1〉. The application of a
π/2 pulse induce the following rotations:

|1〉 → 1√
2
(|1〉 + |2〉)

|2〉 → 1√
2
(− |1〉 + |2〉) .

After the first Ramsey pulse the atom is transferred to the state |ψ〉 = 1√
2
(|1〉 + |2〉).

The atom now accumulates a relative phase between the two states, and at time t
its state is given by |ψ〉 = 1√

2

(|1〉 + e−iφ(t) |2〉). Applying the second π/2 Ramsey

pulse transforms its state into |ψ〉 = 1
4

[(

1 − e−iφ
) |1〉 + (

1 + e−iφ
) |2〉]. We finally
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measure the population in state |2〉 and the result is given by P1 = | 〈2|ψ〉|2 =
1
2 (1 + cosφ). Since there are many atoms contributing incoherently to the signal,
the experimental signal will be P1 = 1

2 (1 + 〈cosφ〉), where 〈〉 denote the ensemble
average.

In order to obtain the envelope of the Ramsey signal one has to measure both
signal quadratures and repeat the Ramsey sequence as before but set the phase of
the second pulse to π/2 relative to the first pulse. The transformation of the second
Ramsey pulse is then given by

|1〉 → 1√
2
(|1〉 + i |2〉)

|2〉 → 1√
2
(i |1〉 + |2〉) ,

and resulting experimental signal is P2 = 1
2 (1 + 〈sin φ〉). We normalize the Ramsey

signal 2P − 1 so they are centered at zero and spanning from −1 to 1, and their
envelope is given by R = √

(2P1 − 1)2 + (2P2 − 1)2 = √〈cosφ〉2 + 〈sin φ〉2. This
can be also written as R = |〈ρ12〉|, since ρ12 = eiφ. This shows that by extracting the
envelope of the Ramsey signal and normalizing it between 1 and 0, one can measure
the coherence. Instead of measuring both quadratures in the experiment, it is enough
to set the detuning of the control field to a large enough value and directly extract
the envelope, as was explained in Chap. 2.

3.4 Dephasing in a 3D Harmonic Trap Without Collisions

For atoms trapped in a 3D harmonic potential the phase distribution is not Gaussian.

Follow Ref. [3], we write the phase distribution as: Pφ = 3
√

3
(

−μφ+
√

3σφ+φ
)2

2σ3
φ

e
−

√
3(−μφ+√

3σφ+φ)
σφ , where μφ and σφ are its average and standard deviation, respec-

tively. Using this equation we can calculate the coherence R =
[

1 + σ2
φ

3

]−3/2

.

Without collisions the time dependence is given by σφ(t) = σδt , and inserting this

into the previous expression we obtain R(t) =
[

1 + (σδ t)2

3

]−3/2
. Solving for τ1 the

equation R(τ1) = e−1 yields: τ1 =
√

3
(

e2/3 − 1
)

σ−1
δ ≈ 1.69 · σ−1

δ . Measuring
the coherence in experiments with very low densities we extract τ1, from which we
can directly calculate σδ . It can also be shown that σδ is linearly proportional to
the temperature T [3], and therefore we can write τ1 = ηT −1. We have carried out
experiments at very low density and measured η = 1.2 ·10−7 K · s. This value differs
by a factor of 2 from the value derived in Ref. [3] due to a reason yet unknown.

http://dx.doi.org/10.1007/978-3-642-29605-5_2
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3.5 The Ensemble Coherence with an External Control Field
A System-Reservoir Gaussian Framework

We now consider the evolution of the ensemble coherence in the presence of
external control field. A specific useful form of external control is the π-pulse—an
external field pulse with a duration and power chosen such that it induces a complete
population inverting between the internal states of the atoms. Assuming a Gaussian
phase distribution, the coherence with a series of π-pulses is given by [1, 4]:

R(t) = e− ∫ ∞
0 dωSδ(ω)F(ωt)/πω2

, (3.5)

where the argument is the overlap integral between the fluctuations power spec-
trum, Sδ(ω) = ∫ ∞

−∞〈δ(t)δ(0)〉eiωt dt , and a filter function which encapsulates
the information on the dynamical decoupling pulse sequence and is given by
F(ωt) = 1

2 | ∑n
k=0(−1)k(eiωtk+1 −eiωtk )|2 with tk being the pulses times, t0 = 0 and

tn+1 = t . Since collisions form a Poisson process, we expect the detunings correla-
tion function to decay exponentially. The power spectrum is therefore a Lorentzian

Sδ(ω) = ∫ ∞
−∞�δ(t)eiωt dt = 2�σ2

δ

�2+ω2 .
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Chapter 4
Spectral Narrowing due to Elastic Collisions

4.1 Introduction to Motional Narrowing

As already explained, inhomogeneities in δ over the ensemble lead to dephasing
of a stored coherence. Intriguingly, fluctuations in δ can prolong the coherence
time—a phenomenon called motional narrowing. Historically, motional narrowing
was first observed in liquid NMR, where a large reduction in the width of spectral
lines was observed in comparison to solid NMR due to the thermal motion of the
nuclei [1]. Later the effect was also reported in other fields such as molecular physics
[2], semiconductor microcavities [3] and quantum dots [4]. In this chapter we study
motional narrowing due to elastic collisions in a dense atomic ensemble. In contrast to
previous experiments, our apparatus enables precise and independent control over
the thermodynamic parameters of the system. Owing to this, we are able to quantita-
tively analyze the dependance of the narrowed linewidth on the fluctuations rate and
strength, and demonstrate an inverse linear dependence on the former and quadratic
dependence on the latter. We also find that the narrowed linewidth exhibits universal
scaling with the atomic phase space density.

4.2 Collisional Narrowing: Motional Narrowing due to Elastic
Collisions

The general idea behind collisional narrowing in cold atomic ensembles is that due to
velocity-changing collisions the evolution of the phase distribution transform from
ballistic expansion to diffusion, which results in a much slower decoherence. In the
limit where collisions are not important, namely t � tcol , the phase distribution is
ballistically expanding, σφ = σδt , and using Eq. (3.4) we get that the coherence is
given by

Rt�tcol (t) = e−t2/τ2
1 , (4.1)
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where τ1 = √
2σ−1

δ , and it corresponds to a Gaussian lineshape. Note also that when
the detuning distribution is not a Gaussian (Eq. 4.1) is only an approximation with
τ1 = ασ−1

δ , where α a number on the order of 1 which can be derived from the
distribution (for 3D harmonic trap it is α ≈ 1.69).

In the other limit, when collisions change the dynamics of the coherence, the
accumulated phase is given by φ(t) = �N

i=1�φi = �N
i=1tiδi , where {δi } are drawn

from Pδ , and {ti } is a series of durations between collisions, which are distributed
exponentially with a rate constant �col . Note that �−1

col is the energy autocorrelation
time constant, which for cold atoms in 3D relates to the conventionally defined
collision rate �̃col by �col = �̃col/2.7 [5]. Employing the central limit theorem,
we obtain that φ(t) is normally distributed with a mean µφ = µδt and a standard

deviation σφ = √
D · t , where D is a diffusion coefficient given by D = 2tcolσ

2
δ . We

plug this result into (Eq. 3.4) and get that the decay envelope is given in this limit by

Rt�tcol(t) = e−t/τ2 , (4.2)

where τ2 = 2D−1 = �colσ
−2
δ = α−2�colτ

2
1 . (4.3)

The exponential decay is the hallmark of motional narrowing resulting in a
Lorentzian-shaped transition line where the width is inversely proportional to the
collision rate. Note that since we have employed the central limit theorem, this
result is only valid for detuning distributions with a finite second moment. In Chap. 6
(Eq. 6.7) we obtain a generalization of this expression which is valid also for heavy-
tailed distributions.

Using the general expression for a Gaussian phase distribution given in (Eq. 3.5)
with the time-domain Ramsey experiment filter function, F(z) = 2 sin2 z

2 , and with

the Lorentzian power spectrum, Sδ(ω) = 2�colσ
2
δ

ω2+�2
col

, the coherence is found to be a

generalized Gumbel function:

RGumbel(t) = e−σ2
δ�

−2
col

(

e−�col t +�col t−1
)

, (4.4)

which converge to the functional forms discussed before in the appropriate
limits. Note that this function is only valid for δ(t) which are a Gaussian process. In
particular, for atoms in a 3D harmonic trap the exact detuning distribution is not a
Gaussian, and therefore this function is only an approximation, albeit a very good
one. In (Sect. 5) we solve exactly a discrete fluctuation model which does not assume
a specific functional form for the detuning distribution. The disadvantage of the exact
spectrum, though, is that it is not given explicitly but only numerically in terms of
the system parameter (i.e. σδ and �col ). This makes this approach inconvenient for
data analysis and therefore we use the exact spectrum only as a mean to correct the
systematic deviations from the Gumbel function given in Eq. (4.4). For more details
on the data analysis see Appendix A.

http://dx.doi.org/10.1007/978-3-642-29605-5_3
http://dx.doi.org/10.1007/978-3-642-29605-5_6
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http://dx.doi.org/10.1007/978-3-642-29605-5_3
http://dx.doi.org/10.1007/978-3-642-29605-5_5
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Fig. 4.1 Typical results of
Ramsey experiments with
cold 87 Rb atoms. Two short
π/2 pulses are given, sepa-
rated by a time indicated by
the x-axis. The y-axis is the
normalized population at |2〉.
The data presented here was
taken for atoms with tem-
perature of 1.7 µK, which
gives a dephasing time of
τ1 = 73 ms. The collision
rates are (a) �col = 3s−1

(b) �col = 33 s−1, and graph
(c) is a comparison of the
envelopes of the two experi-
ments, normalized to begin at
1 (solid blue line). The dotted
lines are fits to a Gumbel func-
tion, as defined by Eq. (4.4).
The π/2 pulse duration is
∼300 µs. The detuning of the
control field is 2π · 203 Hz,
chosen such that the enve-
lope can be easily extracted.
The envelopes are extracted
by calculating the standard
deviation of all points in a
single Ramsey oscillation and
multiplying by

√
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4.3 Experimental Observation of Collisional Narrowing

The typical temperature in the experiment is T = 2 µK, low enough that we can
approximate our Gaussian trap by an harmonic potential, and the density is ρ =
1013 cm−3. The atomic phase space density is smaller than 0.05 which means that
the motion of the atoms in the trap can be treated classically. Typical results of two
Ramsey experiments at low and high collision rates are depicted in Fig. 4.1. For
t < �−1

col the two envelopes have the same Gaussian like decay shape as expected
by Eq. (4.1), but for longer times the envelope of the Ramsey experiment with the
higher collision rate deviates and changes its form to an exponential like with a lower
dephasing rate.

We fit the envelopes extracted from the Ramsey measurements with a Gumbel
function (see Fig. 4.1c). We have carried out three sets of experiments with different
temperatures, in each of which we have varied the density and extracted τ2. The
measured temperature is used to calculate τ1 for each datasets, and the extracted τ2
is corrected for the non-Gaussian detuning distribution of atoms in a 3D harmonic
trap (for more details see Appendix A). In Fig. 4.2a we plot the extracted values
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Fig. 4.2 The exponential
decay time τ2 as a function of
the measured collision rate (a)
and phase space density (b) for
three datasets with different
temperature and τ1. The
collision rate is the average
collision rate in the cloud
and it is calculated from the
measured density, temperature
and oscillation frequency of
the trap. The dotted lines
are linear fits to the data.
The measured temperature is
1.7µK (diamonds), 3.1 µK
(circles) and 4.3 µK (squares)
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of τ2 for the three datasets, and as predicted by Eq. (4.3), we get that it depends
linearly on the collision rate with a different slope for each temperature. An important
consistency test is the comparison of the value of τ1 calculated from the slopes of
the linear fits of Fig. 4.2a to the value calculated directly from the temperature. We
use the relation for a 3D harmonic trap σ−1

δ = 1.69 · τ1 and Eq. (4.3) and find τ1 =
71 ± 18 ms, 47 ± 10 ms and 30 ± 6 ms for the datasets with temperatures of 1.7 µK,
3.1 µK and 4.3 µK, respectively. These values of τ1 are in good agreement with the
values τ1 = 73 ms, 40 ms and 29 ms, calculated from the measured temperatures.
The origin of axis is within the error margins of the three linear fits.

4.4 Universal Behavior of the Narrowed Linewidth

A striking universal behavior is revealed when Eq. (4.3) is rewritten in terms of the
system thermodynamic parameters. The density of atoms can be written ρ ∼ �T 3/2,
where � is the phase space density, and T is the temperature. The collision rate
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scaling is �̃col = ρσcolvth where σcol is the collision cross-section, and vth is the
average thermal velocity which is proportional to T 1/2. For low temperatures the
collisions are s-wave scattering processes and σcol does not depend on density or
temperature. The scaling of the collision rate is therefore �col ∼ ρT 1/2, and when
substituted into Eq. (4.3) we get τ2 ∼ �T 2σ−2

δ . It can be shown that σδ ∼ T for
any potential of the form U ∼ xn , and in particular this is the case for an harmonic
potential. The final result is that the narrowed linewidth is inversely proportional to
the atomic phase space density: τ2 ∼ �. In Fig. 4.2b we plot τ2 of the same three
experimental datasets presented before versus the measured phase space density. As
predicted, all data points lie on a linear curve. We fit the data with a power law
function τ2 = C · �n and find n = 0.91 ± 0.19, in agreement with the expected
value of n = 1. A linear fit yields a slope of τ2/� = 1602 ± 285 ms in agreement
with the calculated value of 1629 ms based on the trap parameters. All error margins
are given for a 95 % confidence level.

4.5 Monte-Carlo Numerical Simulations

To further support our findings we perform molecular dynamics Monte-Carlo
simulations. We simulate classical motion of 4000 atoms in a cigar shaped 3D
harmonic trap with parameters similar to the experiment. The atoms are drawn from a
Boltzmann distribution assuming a temperature of 4 µK. The collisions are simu-
lated in the following way: we use the steady state density profile to calculate each
atom’s probability to undergo a collision according to the collision rate at its position.
For each atom undergoing a collision, we calculate its velocity after the collision by
assuming a virtual counterpart with a velocity which is drawn according to a prob-
ability distribution which depends on the velocity of the first atom, and assuming
s-wave scattering processes. Finally, We calculate the energy shift of the internal
states induced by the external potential along the trajectory of each atom, and inte-
grate this to get the accumulated phase and the contribution to the Ramsey signal.
Using τ1 as the scaling parameter of time, we rewrite Eq. (4.3) in a dimensionless
form: τ2/τ1 = α2 · �colτ1. In Fig. 4.3 we plot the experimental results in a dimen-
sionless form, and find that they agree well both with the theory and Monte-Carlo
simulations.

4.6 Collisional Narrowing in a Symmetric Many-Body
Coherent Superposition

In our experiment the atomic ensemble is treated as an effective single spin system,
which also correctly describes an atomic memory based on a collinear pump-probe
EIT configuration [6]. Other schemes for creating non-classical states of light are



44 4 Spectral Narrowing due to Elastic Collisions

Fig. 4.3 A comparison of
the dimensionless collisional
narrowing timescale, τ2/τ1,
versus the dimensionless
collision rate �colτ1 for
experimental data (red
squares, blue circles and
black diamonds), Monte-carlo
simulations (green triangles)
and the theoretical prediction
of Eq. (4.3) (black dotted line)
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based on Raman scattering processes and they induce a global coherence in the
ensemble [7, 8]. As an example, in a co-linear geometry between the Raman read and
write beams the state of the ensemble can be written as |ψ(0)〉 = 1√

N

∑N
k=1 a†

k |0〉,
where the operator a†

k creates an excitation in the k-th atom and N is the total number

of atoms. The ensemble state at a time t is given by |ψ(t)〉 = 1√
N

∑N
k=1 e−iφk (t)a†

k |0〉,
where φk(t) = ∫ t

0 dtδk(t) and δk(t) is the detuning realization of the k-atom. The

fidelity is given by F = |〈ψ(t)|ψ(0)〉| = |
∑N

k=1 e−iφk (t)

N |. Approximating this sum
by the integral F = | ∫ ∞

−∞ dφPφ(t)e−iφ(t)| and using a Gaussian phase distribution

yields F = e− σ2
φ
(t)

2 —identical to the decay envelope in Eq. (3.4). This shows that as
long as the atomic trajectories are not affected by the global coherence, the effect
of collisions on the coherence time in a Raman scattering scheme is the same as
discussed before.
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Chapter 5
The Ensemble Spectrum with an Arbitrary
Detuning Distribution

In this chapter we aim to exactly solve for the spectrum (and the decay of coherence)
of an ensemble with an arbitrary detuning distribution P0(δ). Historically, the spec-
trum of a TLS ensemble was first studied by Kubo who considered an ensemble of har-
monic oscillators with randomly varying resonant frequencies, and found an analytic
expression for the ensemble spectrum for a frequency which is a Gaussian process
[1]. In the prevalent case, where the frequency autocorrelation function decays expo-
nentially in time, the Kubo solution gives a generalized Gumbel function, as defined
in Eq. (4.4).

5.1 Discrete Fluctuations Model and the Resulting Spectrum

In order to obtain an analytic solution for any detuning distribution, we consider
fluctuations in the detuning which are discrete in nature and follow Poisson statistics
(see upper schematics in Fig. 5.1). A new detuning is drawn from P0(δ) for any
TLS undergoing a randomizing event, which occurs at a rate �. We assume that
two consecutive detunings have no correlation, which together with the Poissonian
statistics of the randomizing events yields the correlation function C(|t − t ′|) =
〈δ(t)δ(t ′)〉 = e−�|t−t ′|. The ensemble coherence for this model is given by [2]

R̃(s) = R̃0(s + �)

1 − � R̃0(s + �)
, (5.1)

where R̃(s) ≡ L{R(t)} is the Laplace transform of R(t), and R0(t) is the coherence
without fluctuations written explicitly as

R0(t) =
∫ ∞

−∞
P0(δ)e

iδt dδ. (5.2)
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Knowing R̃(s) we can calculate the complex spectrum of the TLS ensemble by
S(ω) = R(iω) + R(−iω) and the decay of coherence R(t) = L−1{R̃(s)}. For an
alternative original derivation of Eq. (5.1) see Appendix B.

5.2 Comparison with a Gaussian Process

We compare the result of Eq. (5.1) with the predictions of the Kubo model. As
mentioned before, Kubo showed that for a δ(t) which is a Gaussian process with an
exponentially decaying correlation function the coherence is given by a generalized
Gumbel function [1]

RGumbel(t) = e−σ2
δ�

−2
(

e−�t +�t−1
)

, (5.3)

where σδ and �−1 are the standard deviation of δ(t) and its correlation time, respec-
tively. In the limit of � → 0 one retrieves a Gaussian inhomogeneous coher-
ence decay: R0(t) = e−t2/τ2

, with τ = √
2σ−1

δ , a result which can be also
obtained directly from Eq. (5.2) and using a Gaussian phase distribution P0(δ) =
(2πσ2

δ )
−1/2e−δ2/2σ2

δ . Intuitively, one would expect to retrieve the generalized Gum-
bel function by using the solution of the discrete model given in Eq. (5.1) with this
R0(t). In Fig. 5.1 we compare the two spectra and find that they differ. This is rather
surprising since the detuning distribution P0(δ) and correlation function C(t) are
identical for the two models. The difference stems from the discrete nature of the
frequency fluctuations which results in an accumulated phase not distributed as a
Gaussian. In other words, the discrete fluctuation model give rise to δ(t)which is not
a Gaussian process, even when the underlying detuning distribution is Gaussian.

To gain better understanding of this point we have carried out numerical simula-
tions with 20, 000 TLS, for each of which the detunings are drawn from a Gaussian
distribution and the times between collisions are drawn from an exponential distri-
bution with a rate �. The results of the simulation are shown as squares in Fig. 5.1,
and fully conform to the result of the discrete model. In a second simulation the rate
of randomizing events was ten times higher, but the detunings were drawn with cor-
relations to each other according to σ−2

δ 〈δ(t)δ(0)〉 = e−t/tcorr , with a time-constant
tcorr = 10�−1 (for more details see Appendix C). The results of this simulation are
in good agreement with the spectrum of the generalized Gumbel function, as can be
seen in Fig. 5.1. The correlations between subsequent detunings effectively smooth
the spectral jumps, and therefore increasing tcorr� gradually transforms δ(t) to be a
Gaussian process. The quantity tcorr� measures the “hardness” of the fluctuations,
with a “soft” Kubo solution obtained for tcorr� 	 1.

The spectral sensitivity can be used as a tool to study the underlying physics of
the fluctuations. As an example we consider a vapor cell in a room temperature with
two species of atoms; active atoms at which the coherence is going to be stored
and neutral atoms which are usually refereed to as a “buffer gas”, added to slow
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Fig. 5.1 The spectrum of an ensemble with a Gaussian detuning distribution as calculated by the
solution of the discrete fluctuation model given in Eq. (5.1) (solid black line), and by the Kubo’s
solution for a Gaussian process given in Eq. (5.3) (red-dotted line). The markers are the results of
simulations without correlations between subsequent detunings (black squares and upper part of
the schematics), and with correlations (red circles and lower part of the schematics)

the diffusion process of the active atoms which blur the spatial information. Due to
the relatively high temperature of the vapor cells, collisions in this ensemble are a
many-body multi-channel scattering process which is not well understood [3]. The
spectrum of the atoms, which is initially a Gaussian due to Doppler broadening,
is narrowed because of the collisions—a phenomenon called “Dicke narrowing”
[4]. Though the original phenomenon considered by Dicke was for a single photon
transition, in hot vapor cells it is usually seen in two-photon EIT measurements
[5, 6]. In Fig. 5.2 the ratio of the spectral width of a soft Kubo-like ensemble and a hard
discrete-like ensemble is plotted for the Gaussian case. The calculation shows that
the difference can be as large as 18 %, a value which is most likely measurable in an
experiment. A measurement of the Dicke narrowed spectrum in such an ensemble can
therefore quantitatively distinguish between soft and hard collisions. It is expected
that whether the collisions are soft or hard will be determined by the mass ratio of
the active atom and buffer gas atom. It will be, therefore, interesting to perform this
experiment with different kind of buffer gas. Of course, such a measurement requires
an independent determination of � and τ . Also, to ensure the difference is maximal,
one has to tune the parameters such that �τ is on the order of 1. This can be achieved
by changing the angle between the pump and the probe beams, and by controlling
the pressure of the buffer gas.
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Fig. 5.2 The ratio of the full width at half maximum (FWHM) of the Kubo spectrum and the
discrete fluctuations model spectrum, as a function of �τ , where τ is the inhomogeneous decay
time. The difference between the two FWHM grows as high as 18 % for �τ ≈ 1.5, a value which
is most likely measurable in an experiment

5.3 Application of the Discrete Fluctuations Model to Cold
Atomic Ensembles

A wide-spread physical realization of the discrete model consists of an ensembles
of cold atoms trapped in a conservative potential. The detuning distribution which
originates from differential shift (e.g. differential light or Zeeman shifts) is deter-
mined by the geometry and dimensionality of the trapping potentials and by the
atomic temperature [7]. The source of randomization are elastic collisions (s-wave
scattering) which are predominant at low temperatures. Every 2.7 collisions, on
average, the energy of each atom is randomized [8], and as a consequence also its
potential energy and detuning. The detuning distribution for a 3D harmonic trap is
proportional to the density of states and the Boltzmann factor: P0(δ) ∼ δ2e−K δ , with
K = 2�/ηkB T and η is a dimensionless parameter characterizing the differential

shifts in the trap [7]. The resulting inhomogeneous decay is R0(t) =
(

1 + t2

τ2∗

)− 3
2

with τ∗ = τ/
√

e2/3 − 1. The Laplace transform of R0(t) is given by

R̃0(s) = τ2∗ s
[π

2
H (1, τ∗s)− π

2
Y (1, τ∗s)− 1

]

, (5.4)

where H is the Struve function and Y is the Bessel function of the second kind.
We use Eq. (5.1) to calculate R̃(s), from which we compute the inverse Laplace
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Fig. 5.3 A plot of the decay of coherence in the absence of fluctuations, R0(t/τ ), for a 3D harmonic
trap (black solid line) compared to the decay with fluctuations, R(t/τ ), with �/τ = 6 calculated
by the solution of the discrete model for a 3D harmonic trap (blue dashed-dotted line) and for a
Gaussian detuning distribution (red dashed line). The inset shows the corresponding spectra. Also
plotted is the result of a Monte-Carlo simulation with the same � and τ (green solid line). The
simulations were done with 4000 atoms and colliding at an average rate �col = 2.7� [8]

transform numerically and obtain R(t). In Fig. 5.3 we plot R0(t/τ ) and R(t/τ ) for
�τ = 6 and compare it to the solution of the discrete model with a Gaussian detuning
distribution. For both the Gaussian and the 3D harmonic trap cases with �τ > 0 the
decay is slower than for a R0(t/τ )—the well-known motional narrowing effect [9,
10]. However, the difference between the exact solution for 3D harmonic trap and an
approximated Gaussian solution is larger than 25 % at the 1/e decay point and 65 %
at 1/e2. This shows that even for the same values of τ and � the dependence on the
detuning distribution P0(δ) is significant. We further corroborated the discrete model
for trapped atomic ensemble by performing 3D Monte-Carlo (MC) simulations of
atoms trapped by a far-off-resonance laser, in the same way as explained before. The
results of the simulations are plotted in Fig. 5.3. The discrete model solution for a 3D
harmonic trap agrees well with the MC simulations, whereas the Gaussian solution
deviates considerably from both. We conclude that the discrete model is better suited
to describe the spectrum of cold atomic ensembles.
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5.4 Comparison of the Theory to Experimental Results

The experiments are performed with a trap with radial oscillation frequency of
ωr = 2π · 520 Hz, which is measured directly by parametric excitation. The
final laser power after the evaporation is 1.6 W. The thermodynamic parameters
are measured after a time of flight with an absorption imaging technique, and typ-
ically yield 300, 000 atoms in a temperature of 3µK and a phase space density of
∼0.05. The spin relaxation time (T1) which originates from inelastic collisions [11]
is measured to be T1 = 6 s. Since the total population in the states |1〉 and |2〉 is
70 % in these experiments, we normalize the signal to the initial population at state
|2〉 and also subtract the measured background noise so the resultant signal is nor-
malized between 0 and 1. To facilitate the extraction of the Ramsey envelope, we set
the external control field frequency such that the average detuning relative to ω0 is
much larger than 2πτ−1. The extracted envelopes of the measured Ramsey fringes
are depicted in Fig. 5.4 for � = 130 s−1 and 11s−1.

We measure � directly by creating a sudden small perturbation in the trapping
laser intensity and measuring the decay of the breathing-mode oscillations, as can
be seen in the inset of Fig. 5.4. This value is also compared to indirect calculation
using the measured temperature and density, and agrees to within 20 %. By reducing
the MOT beams intensity we change � with almost no change in the temperature.
Thus, we can reduce � such that �τ 
 1 and fit the measured Ramsey signal with
the expected R0(t) and extract τ . The theoretical decay curves, which are calculated
without fitting parameters using Eqs. (5.1) and (5.4) and the measured � and τ , are
plotted in Fig. 5.4) and agree well with the experimental data.

The asymptotic long time behavior of Eq. (5.1) for t/τ 	 1 should coincide with
the results already obtained in Eqs. (4.2) and (4.3). For simplicity we assume that
the envelope R0(t) is a positive monotonically decreasing function, which means
that R̃0(s) is also a monotonically decreasing. The coherence given in Eq. (5.1) has a
single pole at s0 which is the solution of the equation: 1 −� R̃0(s0 +�) = 0, and the
long time limit behavior of R(t) is then given by R(t) = e−t/τ2 , where τ2 = −s−1

0 .
From dimensional considerations R0(t) can always be written as R0(t) = �(t/τ ).
Using this notation the Laplace transform can be written as R̃0(s) = τ�̃(τs), where
�̃(τs) = ∫ ∞

0 dx�(x)e−xτs . We use a Taylor expansion to first order around s = 0,
R̃0(s + �) ≈ τ�̃(�τ )+ τ2�̃′(�τ )s, and solve for s0:

τ2 = �τ2F(�τ ), (5.5)

where F(x) = − �̃′(x)
1−x�̃(x)

. Eq. (5.5) gives a closed-form expression for the motional-

narrowing timescale, τ2, in terms our two model parameters τ and � for slowly
varying F(�τ ). It can be shown that F(x) = 1/2 for �(x) = e−x2

, and
limx→∞ F(x) = 1/3 for �(x) = (1 + x2)−3/2, which corresponds to τ2 = �τ2/2
for the Gaussian case, and τ2 = �τ2/3 for 3D harmonic trap. This coincide with
the result of Eq. (4.3). Using the last equation with the experimentally measured
τ = 42 ms and � = 130 s−1 we find τ2 = 76.4 ms. We use the tail (t > 130 ms) of

http://dx.doi.org/10.1007/978-3-642-29605-5_4
http://dx.doi.org/10.1007/978-3-642-29605-5_4
http://dx.doi.org/10.1007/978-3-642-29605-5_4
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Fig. 5.4 The envelopes, R(t), of two Ramsey experiments with the same inhomogeneous timescale
τ = 42ms and different � (black solid lines), and theoretical calculations using Eq. (5.4) and
Eq. (5.1) without fitting parameters (red dashed line). The inset shows the decay of atomic-cloud
waist oscillations fitted by an exponentially decaying cosine e−�t cos(2π f0t)+c, with� = 130s−1,
and f0 which agrees well with the value measured by parametric excitation f0 = ωr/π

the experimentally measured coherence decay curve (Fig. 5.4) and directly extract
τ2 = 76.3 ± 1.2 ms with a 95 % confidence level.
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Chapter 6
Motional Broadening in Ensembles with
Heavy-Tail Detuning Distribution

In previous chapters we have shown that fluctuations in the resonance frequency
of the two-level systems (TLS) cause narrowing of the spectrum. In other words,
we have shown that fluctuations change the time-evolution of the phase difference
between the two levels of the TLS from linear (ballistic) expansion to diffusion. In
this chapter we address the question under what conditions the fluctuations can have
the reverse effect to motional narrowing and lead to broadening of the spectral lines.
An example for this effect was pointed out in Ref. [1]. We analyze the problem in a
spectroscopic framework, and show that when the ensemble frequency distribution
has heavy tails with a diverging mean, motional broadening emerges. In terms of
quantum information, this manifests itself as a shortening of the coherence time as
the the fluctuation rate increases. We derive a general equation for the linewidth of
the spectrum, and demonstrate its validity through numerical simulations. Since in
practice heavy tails of the frequency distribution can be sustained only up to some
point, we study scenarios with cutoffs and show that motional broadening persists
up to some fluctuation rate. Motional broadening is relevant to many fields in which
heavy-tail distributions are encountered, including turbulence [2], diffusion [3] and
laser-cooling [4].

We consider a similar model to the one introduced in Chap. 5 of an ensemble of
two-level systems (TLS) which is described by the Hamiltonian given in Eq. (3.3).
For this Hamiltonian the coherence can be written as

R(T ) = |〈eiφ(T )〉|, (6.1)

where φ(T ) = ∫ T
0 δ(t)dt is the accumulated phase difference between the two

internal states in the rotating frame. The spectrum, S(ω), is the absolute value squared
of the Fourier transform of the coherence. The coherence start at 1 and decays to
0 as time advances. If the absolute value is omitted from the previous definition,
oscillations may occur. Without fluctuations, the detuning of each TLS is constant
in time, and the coherence is given by R0(T ) = | ∫ ∞

−∞ P0(δ)eiδT dδ|.
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6.1 The Case of Poisson Fluctuations

As explained already in Chap. 5, an explicit expression for R(t) can be derived
for fluctuations modeled by discrete spectral jumps and it is given in Eq. (5.1).
This solution is valid for all P0(δ), and in particular, to illustrate the transition
from motional narrowing to broadening, we consider an ensemble with a Student’s
t-distribution:

P0(δ) = N (r, δ0)

[

1 + 1

r

(
δ

δ0

)2
]− 1+r

2

, (6.2)

with the normalization factor N (r, δ0) = �
( r+1

2

)

/�
( r

2

)

δ0
√

rπ, where �(z) is
the gamma function. For r → ∞ the distribution is approaching a Gaussian
with a standard deviation δ0, and for r = 1 it is identical to the Cauchy dis-
tribution (Lorentzian). The first (second) moment of the distribution diverges for
r < 1 (r < 2). Using Eq. (5.1), we calculate the spectrum and plot it in Fig. 6.1 for
r = 0.5 and r = 1.5, with and without fluctuations. For r = 1.5 we observe that
the spectrum becomes narrower in the presence of fluctuations, which demonstrate
that motional narrowing persists even when the second moment diverges. On the
other hand, for r = 0.5 the fluctuations broaden the spectrum. In Fig. 6.1 we plot
as a function of � the normalized spectral width, which is defined to be the full
width at half the maximum (FWHM) divided by the FWHM for � = 0. The figure
clearly shows the narrowing (for r = 1.5) or broadening (for r = 0.5) effects as
the fluctuation rate increases. Curiously, for the Cauchy distribution, corresponding
to r = 1, there is no � dependency. This fact follows from Eq. (5.1), but it is also
true regardless of the distribution of the collision times, as can be explained by the
observations which follow. In Fig. 6.2 we plot the normalized FWHM as a function
of r for various values of �. This figures clearly demonstrate that the transition point
from motional narrowing to broadening is at r = 1.

6.2 Motional Broadening for Stable Distributions

It is instructive to consider the effect of fluctuations when the distribution of the
detuning is given by one of the so-called ‘stable laws’ with a characteristic exponent
0 < α ≤ 2 [5]. For each distribution in this class, the weighted sum of indepen-
dent identically distributed variables produces a variable with a scaled version of the
same distribution. More explicitly: for any two real numbers q, s > 0, and a pair of
independent variables δ1, δ2 of such distribution, the weighted sum (qδ1 + sδ2) /(qα+
sα)1/α has the same distribution as δ j . Some well-known examples of stable distri-
butions are Gaussian (α = 2), Cauchy (α = 1) and Lévy (α = 1/2) distributions.
The coherence, as given in Eq. (6.1), is the absolute value of the characteristic func-
tion,ϕφ(t), of the phase distribution. Assuming P0 isα-stable, the phase with discrete
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Fig. 6.1 The two upper graphs show the spectrum for a Student’s t-distribution of the detunings
[see Eq. (6.2)]. On the left the spectrum is plotted for r = 0.5 for which the first moment of the
distribution diverges whereas on the right the spectrum is plotted for r = 1.5 for which only the
second moment diverges but the first moment exists. For both spectrums the spectrum is plotted
without fluctuations (solid line) and with fluctuations at � = 10δ0 (dashed line). In the lower graph
we plot the full width at half the maximum (FWHM) normalized to the FWHM without fluctuations,
as a function of �

fluctuations (’collisions’) can be written asφ(T ) = ∑n
j=1�t jδ j

D= (
∑n

j=1�tαj )
1/αδ,

with�t j being the periods between collisions. For stable distributions the character-
istic function satisfies: |ϕφ(t)| = e−cα|t |α , with some cα > 0 [5]. Thus, the coherence
without collisions is given by R0(T ) = e−cαT α

and with collisions it is given by

R(T ) = e−cα(
∑n

j=1 �tαj ). (6.3)

For any series of collisions:
∑n

j=1�t j = T , and hence:

∑n
j=1�tαj
T α

=
n

∑

j=1

�t j

T

(
�t j

T

)α−1
{

≤ τα−1
max α ≥ 1

≥ τα−1
max α ≤ 1

(6.4)
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Fig. 6.2 The normalized
spectral width as a function
of r for different values of
�. All lines cross at r = 1,
above which there is motional
narrowing and below motional
broadening

with τmax = max{t j/T }. Combining Eqs. (6.3) and (6.4) and the fact that τmax ≤ 1
we get

R(T )

{

> R0(T ) , α > 1 (motional narrowing)

< R0(T ) , α < 1 (motional broadening).
(6.5)

with no other assumption regarding the distribution of the collision times.

6.3 Generalization

We now extend the above observations further to distributions which are by them-
selves not stable, but are in the domain of attraction of a stable distribution (or ‘law’)
Sα. This notion means that a sum of variables drawn from the distribution, up to
a normalizing factor, converges in distribution to Sα, as the number of summands
increases. A distribution belongs to the domain of attraction of an α-stable law if its
cumulative distribution function, F(x), scales as F(x) ∼ |x |αh(|x |) as x → −∞,
and 1− F(x) ∼ xαh(x) as x → ∞, where h(x) is a slowly varying function at infin-
ity [6]. The domain of attraction of the Gaussian distribution contain all distributions
with a finite variance.

If P0 belongs to the domain of attraction of an α-stable distribution, then its
characteristic function is of the form |ϕφ(t)| = e−c|t |αh̃(t), with h̃(t) = eo(t) a
slowly varying function as t → 0 [6]. The coherence without collisions is given

by R0(T ) = exp
[

−cT αh̃(T )
]

, and with collisions it is given by R(T ) = exp
[

−c
∑n

j=1�tαj h̃(�t j )
]

. Extending Eq. (6.4) one may see that if limn→∞ τmax = 0,

at a fixed T , than for α > 1:
∑n

j=1�tαj h̃(�t j ) < C1T ατ
η1
max , and for α <
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Fig. 6.3 The coherence without fluctuations (dotted lines) and with fluctuations separated by�t j =
0.25 · δ−1

0 (solid lines). The detuning distribution is assumed to be the Student’s t-distribution with
r = 0.5 and 1.5. Since the coherence is given by R(T ) = R0(�t1) · R0(�t2) · · · R0(�tn), a
Zeno/anti-Zeno like behavior explains the transition from motional narrowing to broadening for a
diverging first moment of P0, at which point ∂T R0|T =0 changes from 0 to −∞

1:
∑n

j=1�tαj h̃(�t j ) > C2T ατ
−η2
max , with some η j ,C j > 0. This extends the

validity of Eq. (6.5) for the limit of many randomizing events (high collision rate)
when the detuning have a distribution in the domain of attraction of an α-stable law.

The above can be summarized by saying that whether the coherence of a TLS
ensemble decays faster or slower due to ‘resetting’ discrete fluctuations depends on
the the tails of the detunings distribution. Motional broadening emerges for heavy-
tailed distributions with α < 1 which corresponds to a diverging first moment. This
explains the results of Fig. 6.1 since the Student’s t-distribution belongs to the domain
of attraction of an α-stable distribution with α = r . Furthermore, the criterion for
motional broadening given in Eq. (6.5) coincides with the divergence of the detuning
distribution’s first moment.

To get an intuition for the above results we write the coherence at a time T , for a
given series of randomization events, as

R(T ) =
n

∏

l=1

∫ ∞

−∞
dδl P0(δl)e

i�tlδl = R0(�t1) · R0(�t2) · · · R0(�tn). (6.6)

In addition, the derivative ∂T R0|T =0+ is 0 for α > 1 and −∞ for α < 1. The
combination of these two properties explains why depending on whether α is larger
or smaller than 1, the coherence after a fluctuation lie above or below the original
curve of R0(T ), as depicted in Fig. 6.3 for the simple case of equal times between
randomization events. In this respect, motional narrowing is analogous to the Zeno
effect [7], and motional broadening to the anti-Zeno effect.
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Fig. 6.4 Numerical simulation of the logarithm of the coherence using an ensemble of 10,000
particles following the Poisson discrete fluctuations model with three different rates� and detunings
following a Student’s t-distribution with r = 0.5. The dotted (black) lines are linear fits, validating
the prediction of Eq. (6.7) that as � increases the decay becomes exponential. We extract the decay
rate, γ, by fitting the simulated coherence for T > 10�−1 to an exponentially decaying function
Ae−γT . The inset shows γ as a function of � for different values of the distribution parameter r .
The dotted lines are fits to the function γ = a�1−ᾱ + b (which has the functional form derived in
Eq. (6.7). The extracted exponents agree well with the expected values ᾱ = r

We rewrite Eq. (6.3) using the typical time between collisions �t j ∼ �−1, and

the inhomogeneous decay rate γ0 = c1/α
α , and obtain in the limit of many collisions

�T 
 1: R(T ) ≈ e−γα0 �1−αT . The asymptotic behavior of the coherence decays
exponentially with time, and the decay rate is given by

γ = γα0 �
1−α. (6.7)

This equation with α = 2 reduces to the result obtained in Eq. (4.3). Since Eq. (6.3)
is true only for a stable distribution, we test the validity of Eq. (6.7) for distrib-
utions in the domain of attraction of an α-stable distribution in numerical simu-
lations. The results of these simulations for a Student’s t-distribution are plotted in
Fig. 6.4, and show that as the fluctuation rate increases the decay of coherence indeed
becomes exponential. From the numerical curves we extract the decay rate and plot
it in the inset of Fig. 6.4 for various values of the distribution parameter r and �.
The functional form of the decay rates confirms the prediction of Eq. (6.7) with the
correct α.

http://dx.doi.org/10.1007/978-3-642-29605-5_4
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Fig. 6.5 Numerical sim-
ulation of the normalized
coherence R(T )/R0(T ) at
time T = 0.5δ−1

0 versus the
fluctuations rate �. The detun-
ing distribution is taken to
be the Student’s t-distribution
[see Eq. (6.2)] with r = 0.5,
and the fluctuations are Pois-
sonian. Each curve is calcu-
lated for P0 truncated at a
cutoff detuning δc
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In real physical situations the detuning distribution can not have a diverging first
moment, and the heavy tail scaling can be sustained up to some cutoff δc. For P0(δ)
with a characteristic exponentα < 1, the order of magnitude of the sum

∑n
j=1�t jδ j

is the same as of max{t jδ j }. The effect of the cutoff is therefore negligible as long
as Prob(max[{δ j }] > δc) � 1 (we assume 〈�t j 〉 = �−1 < ∞). This probability
depends on the number of collisions, which is roughly given by �T . An estimate
of this probability yields that the effect of the cutoff is insignificant for �T �
(δc/δ0)

α, where δ0 is the typical scale of the detuning distribution [see Eq. (6.2)].
This means that for a given observation time T , motional broadening persists up to
fluctuation rate on the order of (δc/δ0)

αT −1. This qualitative picture is demonstrated
in numerical simulations plotted in Fig. 6.5. Motional broadening prevails for small
�, later changing to motional narrowing once the cutoff is sampled and discovered.

The TLS ensemble coherence problem can be mapped to that of particles perform-
ing diffusion in free-space, where the detuning and accumulated phase are mapped
to velocity and position, respectively. In this analogy, the diffusion problem assumes
an ensemble of particles with a steady-state distribution of velocities, starting all
from the same point in space. In the absence of collisions, the particles are ballisti-
cally expanding and the width of their position distribution grows linearly with time.
With collisions, our criterion yields that the width of the particles’ spatial distribu-
tion grows faster than ballistic (super-ballistic) for heavy-tailed velocity distribution.
Super-ballistic diffusion is known to exist in turbulent flow [8]. In the context of spa-
tial diffusion, a particularly interesting implementation of the model considered in
this paper can be achieved. It was shown that the steady-state velocity distribution of
atoms in a polarization lattice follows a power law with an exponent that depends on
the lattice depth [9]. As a result, in such a system the diffusion becomes anomalous
[10]. Going to a low enough lattice depth, it should be possible to observe motional
broadening, namely diffusion whose scaling with time is faster than ballistic.



60 6 Motional Broadening in Ensembles with Heavy-Tail Detuning Distribution

References

1. Burnstein A (1981) Chem Phys Lett 83:335
2. Falkovich G, Gawedzki K, Vergassola M (2001) Rev Mod Phys 73:913
3. Bouchaud J-P, Georges A (1990) Phys Rep 195:127
4. Bardou F, Bouchaud J, Aspect A, Cohen-Tannoudji C (2002) Lévy statistics and laser cooling.

Cambridge University Press, Cambridge
5. Feller W (1968) An introduction to probability theory and its applications, vol II, 3rd edn.

Wiley, New York
6. Ibragimov IA, Linnik YV (1971) Independent and stationary sequences of random variables.

Wolters-Noordhoff, Groningen
7. Milburn GJJ (1988) Opt Soc Am B 5:1317
8. Shlesinger MF, West BJ, Klafter J (1987) Phys Rev Lett 58:1100
9. Castin Y, Dalibard J, Cohen-Tannoudji C (1991) The limits of Sisyphus cooling. In: Moi L,

Gozzini S, Gabbanini C, Arimondo E, Strumia F (eds.) Light induced kinetic effects on atoms,
ions, and molecules. ETS Editrice, Pisa

10. Marksteiner S, Ellinger K, Zoller P (1996) Phys Rev A 53:3409



Chapter 7
Suppression of Collisional Decoherence
by Dynamical Decoupling

7.1 Introduction

As was already mentioned, cold atomic ensembles can be used as an interface between
matter and photonic qubits in quantum networks, and in recent years vast experi-
mental advances in this direction have been reported [1–6]. The effect of collisional
fluctuations was analyzed in the previous chapters and the decoherence it induces is
well understood. Though fluctuations at low frequencies can be overcome by a single
population inverting pulse—the celebrated coherence echo technique [7, 8], as the
collision rate increases this is no longer possible due to higher frequency compo-
nents. Dynamical decoupling (DD) theories generalize this technique to multi-pulse
sequences by harnessing symmetry properties of the coupling Hamiltonian [9–13].
Though DD was demonstrated in several experiments [14–19], its use with atomic
ensembles remains unexplored to date. In this chapter we study experimentally DD
in a dense cold atomic ensemble and report on a substantial suppression of collisional
decoherence.

We again consider atoms with internal states |1〉 and |2〉, trapped in a conser-
vative optical potential which are described by the effective Hamiltonian given
in Eq. (3.3). We have shown that the state of each atom is given by |ψ(t)〉 =
2−1/2(|1〉 + e−iφ(t) |2〉), where the phase difference is given by φ(t) = ∫ ∞

0 δ(t)dt .
A schematic plot of three realizations of φ(t) is given in Fig. 7.1 (top), and it can
be seen that the phase difference is accumulated in a constant rate between col-
lisions [20]. The effect of a population inverting pulse (π-pulse) is to change the
sign of δ, and a train of such pulses lead to a much narrower phase distribution and
slower decoherence, as depicted in Fig. 7.1 (bottom).

Y. Sagi, Collisional Narrowing and Dynamical Decoupling in a Dense 61
Ensemble of Cold Atoms, Springer Theses, DOI: 10.1007/978-3-642-29605-5_7,
© Springer-Verlag Berlin Heidelberg 2012
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Fig. 7.1 Schematic drawing of the evolution of the relative phase between the two internal states.
Without dynamical decoupling (top), the average potential energy of the atom is changed after a
collision and therefore also its average rate of phase accumulation, δ. With dynamical decoupling
pulses (dotted lines) the spread of the phases is much smaller (note the different graph scales). The
inset shows small oscillations due to the fast periodic atomic motion in the trap. Since the oscillation
period is shorter than all relevant timescales in our experiment, we consider only δ(t) averaged over
an oscillation period [20]

7.2 Quantum Process Tomography of Dynamical
Decoupling

The conditions in the experiments presented here are 275,000 atoms at a temperature
of 1.7 µK, phase space density of 0.04 and an average collision rate of 100 s−1.
The typical inhomogeneous decay time as measured in a Ramsey-like experiment is
∼150 ms. The peak optical depth for a non-polarized resonant light is ∼230.

We employ a Carr-Purcell-Meiboom-Gill (CPMG) decoupling scheme [21] and
show in what follows that for collisional detuning fluctuations it is virtually optimal.
The pulse sequence is composed of n π-pulses at times tk = 2k−1

2n t where k = 1 . . . n
(see Fig. 7.2), and we characterize it by the effective frequency fDD = n

2t . We study
the effect of the DD scheme by performing a quantum process tomography (QPT)
[22]. QPT enables us to reconstruct the χ-matrix which gives a convenient way to
calculate the density matrix after the process, ρout , in terms of the initial density
matrix, ρin , by ρout = E[ρin] = ∑

k,l Êkρin Ê†
l χkl , where Ê = ( Î , X̂ ,−i Ŷ , Ẑ) with

( Î , X̂ , Ŷ , Ẑ) being the Pauli matrices. For a single qubit this is conveniently done by
a measurement of tr [X̂ρ], tr [Ŷρ] and tr [Ẑρ]. We measure the population at state |2〉
with and without another π pulse, and the difference of the two values normalized to

the initial population at state |1〉 gives tr [Ẑρ]+1
2 . We obtain the other two projections

by applying a π/2 pulse in the suitable axis and then measure tr [Ẑρ].
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Fig. 7.2 The experimental pulse sequence starts with a state preparation, followed by a train of
π-pulses with alternated phases to minimize the accumulation of errors due to pulse width and
frequency inaccuracies, and a final state detection. The duration of each π pulse is ∼0.5 ms and its
average fidelity is ∼0.995

The results of a QPT of a DD sequence with fDD = 35 Hz are depicted in Fig. 7.3.
There are two distinctive decay timescales for the equatorial plane and the z-axis,
which correspond to phase damping noise processes and depolarizing noise processes
(T1), respectively. The former originates from collisional fluctuations in δ and it
is the dominant noise process which determines the ensemble coherence time, τc,
which is quantified by R(t). Depolarization process is induced by inelastic collisions,
and its typical timescale is measured to be T1 = 6 s [23]. The worst case fidelity
of the ensemble as a quantum memory, defined as F = min|ψ〉 〈ψ|E [|ψ〉 〈ψ|] |ψ〉, is

calculated from the measured χ-matrix to be F = 0.83, 0.74 and 0.64 for 1, 2
and 3 s, respectively, which corresponds to an exponential decay timescale of τc =
2.4 sec. The contraction of the Bloch sphere is symmetric in the equatorial plane,
which indicates that the decoupling scheme is insensitive to the stored superposition.
We demonstrate this point with a direct measurement in which we start with two
orthogonal initial states in the equatorial plain and scan the phase of a final π/2
pulse added to the sequence and measure the population at |2〉 normalized to its
initial value. The results depicted in the inset of Fig. 7.4 exhibit the same contrast
and preserve the π/2 phase shift between the two initial states.

7.3 Optimal Decoupling Sequence for Collisional Bath

The decay of the coherence with a DD pulse sequence and assuming a Gaussian
phase distribution is given in a system-reservoir framework by Eq. (3.5) with a filter
function which encapsulates the information on the DD pulse sequence and is given
by F(ωt) = 1

2 | ∑n
k=0(−1)k(eiωtk+1 − eiωtk )|2 with t0 = 0 and tn+1 = t . As already

explained, the power spectrum is given by Sδ(ω) = 2�σ2
δ

�2+ω2 , where�−1 is the velocity
correlation time. By solving numerically Eq. (3.5) and leaving the {ti }n

i=1 as free
parameters, we find that the optimal decoupling sequence for a Lorentzian power
spectrum is given by ti = η+i−1

n−1+2η t , where i = 1...n and 0.5 ≤ η ≤ 1 is a numerical

factor which depends on n and t . For �t
n � 1 we find η ≈ 0.5, for which we retrieve

http://dx.doi.org/10.1007/978-3-642-29605-5_3
http://dx.doi.org/10.1007/978-3-642-29605-5_3
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Fig. 7.3 Quantum process tomography of dynamical decoupling with fDD = 35 Hz. Any single-
qubit density matrix ρ can be mapped to a point in space r̄(ρ) = (tr(X̂ρ), tr(Ŷρ), tr(Ẑρ)), with
(X̂ , Ŷ , Ẑ) being the Pauli matrices. The colors and lines are chosen for the initial states,ρin , which lie
on a sphere with a radius 1. For each of these states we calculate the process outcome, ρout = E[ρin],
and plot it with its initial color at r̄(ρout ). The contraction of the Bloch sphere is more pronounced
on the equatorial plane which shows that the main noise process is phase damping, as descried by
the Hamiltonian of Eq. (3.3). There is also a rotation of the sphere around the |1〉-|2〉 axis at a rate
of ∼9 ◦ s−1 due to small inaccuracies in the control field

the CPMG pulse sequence. Furthermore, even when �t
n ≈ 1 the coherence time

with the CPMG pulse sequence differs by less than 1% from the optimal value. We
have tested theoretically and experimentally other DD schemes, and in particular
the one suggested in Ref. [12], and verified that they are indeed inferior to the
CPMG sequence in our Lorentzian fluctuations power spectrum (for more details
see Appendix D).

7.4 Coherence Time Measurements with Dynamical
Decoupling

We measure R(t)directly by preparing the atoms in the superposition |ψ〉 = 1√
2
(|1〉+

|2〉), employ the DD pulse sequence and finally measure the length of the Bloch vector
with quantum state tomography. Though R(t) does not have to follow, a priori, some
well defined function, the experimental results depicted in Fig. 7.4 show that the data
is well fitted by an exponentially decaying function e−t/τc , from which we extract
the coherence time τc. The exponential decay is expected in the Markovian limit,
where the decay timescale is much larger than the fluctuations correlation time [13].

http://dx.doi.org/10.1007/978-3-642-29605-5_3
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Fig. 7.4 The ensemble coherence versus time without DD ( fDD = 0 Hz) and with two representing
DD pulse rates, normalized to the initial coherence. The inset shows a storage of two orthogonal
initial states in the equatorial plane: |ψ1〉 = 1√

2
(|1〉 + |2〉) and |ψ2〉 = 1√

2
(|1〉 + eiπ/2 |2〉). We add

to the decoupling scheme another pulse independent of the initial state with a phase and duration
chosen to correct for the small rotation of the Bloch sphere as was measured in the QPT. We measure
the population at |2〉 after 3 s, normalized to the initial population, versus the phase of aπ/2 detection
pulse. The fringe contrast is not centered to 0.5 due to inelastic m-changing transitions

A measurement of the dependance of the coherence time on the DD pulse rate is
shown in Fig. 7.5. We observe a quadratic increase of the coherence time versus fDD

up to 35 Hz, for which there is a 20-fold improvement to more than 3 s.
In order to explain these results we present a qualitative model for the coherence

time. Without collisions the inhomogeneous dephasing rate is proportional to σδ .
For simplicity we assume that if a collision did not occur between two consecutive
π-pulses the inhomogeneous broadening is averaged out. If a collision occurred,
however, the width of the ensemble phase distribution increases by ∼ f −1

DDσδ . The
number of collisions up to a time t is�col t , and since we add random variables (i.e. the
accumulated phase), the width of the phase distribution increases as a square root of
time:��(t) ∼ f −1

DDσδ
√
�col t . For cold collisions in 3D harmonic trap, the relation

between the collision rate and the relaxation rate was shown to be �col = 2.7 · �
[24]. The coherence time, τc, is the time for which the width of phase distribution is
on the order of 1, yielding

τc ∼ f 2
DDσ

−2
δ �−1, (7.1)
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Fig. 7.5 The coherence time versus the dynamical decoupling pulse rate fDD . The experimental
data (blue circles) agrees well both with the theoretical prediction of Eq. (3.5) taking a Lorentzian
power spectrum (solid line) with σδ = 23.8 s−1 and � = 37.5 s−1 which were extracted from
measured quantities and with no fit parameters, and with molecular dynamics Monte-Carlo simu-
lations done with 1000 atoms in a 3D harmonic trap with an inhomogeneous decay time similar
to the experiment (red squares). The errorbar is a estimated from the fits shown in Fig. 7.4. The
inset shows a measurement of the dephasing rate for different collision rates for fDD = 8 Hz,
demonstrating the linear dependence of Eq. (7.1). The dotted line is a linear fit of the data

with a parabolic dependence on fDD . This result can be also obtained from Eq. (3.5)
by approximating F(ωt)

π(ωt)2
≈ δDirac(ωt − 2π fDDt) and using the Lorentzian power

spectrum.
Exact calculations of τc using Eq. (3.5) without fitting parameters are presented

in Fig. 7.5 in good agreement with the experimental data. The calculations are done
with a Lorentzian power spectrum where the parameters � and σδ are extracted from
measured quantities. � is extracted from the collision rate which is calculated using
the measured temperature, number of atoms and trap oscillation frequencies. As
mentioned before, the parameter σδ is measured in a Ramsey experiment at very low
densities, where the collisions can be disregarded and σδ can be extracted from the
measured dephasing rate. We also perform Monte-Carlo simulations, and its results
are also depicted in Fig. 7.5, and agree well with both theory and experiments. We
conclude that the effect of collisions can be indeed formulated as an effective single
spin Hamiltonian coupled to a reservoir. Moreover, although the detunings of atoms
trapped in a 3D harmonic trap are not normally distributed, the distribution of their

http://dx.doi.org/10.1007/978-3-642-29605-5_3
http://dx.doi.org/10.1007/978-3-642-29605-5_3
http://dx.doi.org/10.1007/978-3-642-29605-5_3
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accumulated phase can be well approximated by a Gaussian owing to the central
limit theorem and the large number of collisions involved.

Another prediction of Eq. (7.1) is the linear dependence of the coherence time on
�−1. In the experiment we change � by reducing the density and collision rate while
keeping the temperature, and therefore σδ , unchanged [20]. This is accomplished by
reducing the intensity of the cooling lasers in the trap loading stage. In the inset of
Fig. 7.5 we plot τ−1

c versus the average collision rate for a pulse rate of fDD = 8 Hz.
As expected, the coherence time is inversely proportional to the collision rate.
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Chapter 8
Summary and Outlook

8.1 Summary

In this thesis I have studied an ensemble of trapped ultra-cold atoms. Atomic ensem-
bles can be used as quantum memories in applications such as quantum computation
and long-distance quantum networks. In a typical experiment, information contained
in an electromagnetic field is mapped into the coherence between the two internal
levels of the atoms. A high optical depth of the ensemble enhances its coupling to the
light field and improves the overall efficiency of the storage and retrieval process. It is
therefore plausible to use optically thick and consequently dense atomic media. Start-
ing with a traveling pulse of light, the conversion process leaves the atomic coherence
at different positions with different phases. When the information is retrieved, this
spatially dependent phase is crucial for a full and correct reconstruction of the pho-
tonic pulse. In this thesis, however, we consider only a small volume where the stored
coherence can be considered to have a uniform phase.

The atomic ensemble is an interacting many body system. We restrict our study to
low phase space densities where the ensemble can be treated classically. Also, since
the interactions are weak we adopt a mean field approach and use an effective single
spin Hamiltonian. Our system is therefore described by a reduced density matrix, and
the coherence is given by its off diagonal elements. The situation we envision is that
the ensemble is prepared in an initial coherent superposition, and the reduced density
matrix describes a pure state. As time progresses, however, the coherence decays.
This happens even for low density ensembles due to the inhomogeneous broadening
in the two-level energy difference. If we denote this bare dephasing rate by γ and
the elastic collision rate by �, we differentiate between two regimes; the first regime
is when � � γ, and collisions play no role in the coherence dynamics. In this case,
decoherence can be largely eliminated by the well-known echo technique. The other
regime will be the starting point of this work, where � is at least comparable if not
larger than the bare dephasing rate. The questions I have addressed in this context
are: what are the functional forms and the asymptotic decay time of the coherence?
How does this depend on the specific collision model? can we have both narrowing
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and broadening effects due to the collisions? And finally, can the coherence time be
extended by the application of a train of spin flipping pulses known as dynamical
decoupling?

To answer these questions I have built a new experimental setup, in which lasers are
used to gather and cool 87 Rb atoms to micro Kelvin temperatures, and thereupon trap
them at high densities in an optical dipole potential. The thermodynamic conditions
of the ensemble are characterized by taking absorption images of its spatial density
distribution in situ and after a time-of-flight. Using microwave and radio-frequency
fields, one can manipulate the internal degrees of freedom of the atoms, and sub-
sequently measure them using state-selective fluorescence techniques. Employing
these in time-domain Ramsey experiments, one can measure the ensemble spectrum
of a specific “clock” transition between two meta-stable hyperfine states.

I have first studied the asymptotic coherence time of the ensemble. I have shown
that velocity-changing elastic collisions prolong the coherence time, or putting it
differently, narrow the linewidth. This phenomenon is very similar to the motional
narrowing effect first observed in NMR. I have showed theoretically and confirmed
experimentally that the emerging longer coherence time universally depends only
on the atomic phase space density. These findings are further supported by classical
molecular dynamics Monte-Carlo simulations.

Next, I have studied how this effect depends on the physical model of the fluctu-
ations. To this end I have considered a fluctuation model in which the ensemble is
coupled to an environment which induces random jumps separated by times which
have a Poisson distribution. In this model a closed-form formula for the spectrum
in terms of the inhomogeneous spectrum and the Poisson rate constant exists. As a
case study we looked at a Gaussian detuning distribution and found that the spec-
trum depends on the softness of the collision, where in “softness” I mean how many
collisions are needed to randomize the detuning (hard collision corresponds to only
one). I have also demonstrated experimentally that the discrete spectral jumps model
correctly accounts for the spectrum arising from cold elastic collisions in an optically
trapped ensemble, without fitting parameters.

Another benefit of the spectral jumps model is that the solution for the spectrum
holds for any frequency distribution. In particular, I have found that for fat-tail distrib-
utions the effect is reversed, namely instead of narrowing of the spectrum fluctuations
lead to broadening. Using ideas from the mathematical theory of sums of identical
and independent variables, it can be proved that this behavior arises for frequency
distributions which belong to the domain of attraction of a Lévy stable law with a
characteristic exponent smaller than 1. This understanding can be extended to other
related phenomena such as anomalous diffusion and the Zeno effect.

Finally, I have addressed the question of whether the coherence time of a
collisional-narrowed atomic ensemble can be extended by applying external con-
trol fields. For this purpose I have used ideas from dynamical decoupling theories,
which generalize the Hahn echo technique to multi-pulse sequences and enable the
suppression of noise at a higher frequency. In the experiment I have demonstrated
a 20-fold increase of the coherence time when a dynamical decoupling sequence
with more than 200 pi-pulses was applied. A measurement of the coherence time
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as a function of pulses frequency agrees well with theory, assuming a Lorentzian
spectral function for the fluctuations. This spectral function is expected for a Pois-
son process, and the theory only uses two parameters which are measured in the
experiments. Using quantum process tomography it is shown that a dense ensemble
with an optical depth of 230 can be used as an atomic memory with coherence times
exceeding 3 seconds. In other words, the suppression demonstrated in the experi-
ment does not depend on the specific initial coherence in the ensemble—a necessary
requirement for memory.

8.2 Outlook

The discrete fluctuation model revealed many important features of the collisional
narrowed or broadened spectrum, but it seems that the assumption of a complete
loss of correlation after a collision is not really required. An important extension of
discussions in this thesis is towards models which contain correlations. It is, in many
ways, an extension of the theory towards a soft collision model. I think that the first
step towards this goal would be to simply consider correlations in time which decay
exponentially.

As I have explained, the shape of the spectrum was already demonstrated to
depend on the softness of the collision process. This was studied in detail for the
case of a Gaussian detuning distribution. This case, which may be the simplest to
deal with theoretically, is also interesting from an experimental point of view. In hot
atomic ensembles the dominant cause of inhomogeneous broadening is the Doppler
effect, and the bare spectrum is very well approximated by a Gaussian (as long
as the Doppler width is much higher than the natural width). A measurement of a
Dicke narrowed spectrum will probe the effect of the softness of the collisions. The
experiment we envision is a vapor cell in which one can choose the buffer gas species
and control its pressure. By changing the mass ratio between the active atom and the
buffer gas, the relative velocity change of the active atom after a single collision can
be altered. The measurement should be done in the regime where the inhomogeneous
spectrum is narrowed by approximately a factor of two. In this regime the difference
in the spectrums of “soft” and “hard” collision model is maximized. To achieve this
one can measure the EIT spectrum in a geometrical configuration where there is a
small angle between the probe and pump beams. Alternatively, the pressure of the
buffer gas can be reduced to decrease the Dicke factor.

Observing motional broadening in an experiment is a major challenge for the
future. The main problem is how to create a heavy-tail distribution of detunings or
velocities. If the ensemble is in thermal equilibrium, the energy distribution decays
exponentially at large energies because of the Boltzmann factor. This prohibits any
heavy-tail distribution for the velocities or detunings (since both are correlated to the
energy of the atom). A necessary step, therefore, for achieving such distributions is
to be in equilibrium with some external reservoir which is not by itself in thermal
equilibrium. The experiment proposed in chap. 6 uses exactly this notion; atoms are
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left to equilibrate with a polarization lattice, similar to the one used in Sisyphus
cooling. The steady state velocity distribution is a power law, with a power that
depends on the depth of the lattice. Motional broadening will than manifest itself
as a diffusion process at which the width of the atomic cloud grows faster than in
the ballistic case. By turning off the lattice and leaving the atoms to freely expand
it is possible to measure the velocity distribution directly. The advantage of such
an experiment is that it enables one to measure independently super-ballistic spatial
diffusion and heavy-tail momentum distributions.

Another promising future direction is to apply better and more sophisticated
dynamical decoupling schemes and improve further the coherence time. One way
to do it is to use pulses which are not exactly spin flipping. For a Lorentzian spec-
tral function as we have in our system, we have found out recently in work done
in collaboration with the group of Prof. Gershon Kurizki of the Weizmann institute
that a train of fractional ∼0.8π pulses achieves better results. Experimentally, this
experiment is more challenging owing to two reasons; first, the improvement over a
sequence of π-pulses is relatively small (on the order of 5 %). Second, there is not
a straight forward way to a correct for inaccuracies in the pulses such as the phase
alternation technique employed in previous experiments. Ultimately, one would like
to measure directly the spectral function of the bath and fit to it the optimal dynami-
cal decoupling sequence. Two features which have been neglected in this thesis and
are expected to appear in such a measurement are the effect of the rapid oscillatory
motion of the atoms, and spatial correlations arising due to the non homogeneous
density profile in the trap and the collision rate (on average there are more collisions
in denser places).

The use of dynamical decoupling should not be limited to thermal ensembles or
coherence which was created by microwave fields. In particular, the use of dynamical
decoupling to increase the storage time of a pulse of light in a cold ensemble was
never demonstrated. A question which arises in this context is whether we can choose
a dynamical decoupling sequence better suited to suppress the decoherence of a
stored light, since we know that to first order the atoms populate only a single state.
Of course the atomic motion in our experiment will wash out spatial information,
and this can be prevented by either working in an optical lattice, or by treating
the ensemble as a single spatial qubit (for experiments with co-propagating pump
and probe beams). It would also be interesting to use dynamical decoupling with a
Bose-Einstein condensate, where the challenge is to effectively decouple differential
mean-fields effects. These effects due to inter-particles interactions are expected to
be dominant for a condensate.



Appendix A
Collisional Narrowing Data Analysis

In the general case where the detuning distribution is not a Gaussian it can be
shown that the Ramsey decay envelope is given by [1]:

~RðsÞ ¼
~R0ðsþ CcolÞ

1� Ccol~R0ðsþ CcolÞ
; ðA:1Þ

where ~RðsÞ and ~R0ðsÞ are the laplace transforms of the Ramsey with and without
collisions, respectively. As seen in the previous chapter, for 3D harmonic trap the
Ramsey without collisions can be calculated analytically, and using Eq. (A.1) we
get the laplace of the Ramsey with collisions. Since analytic solution to the inverse
laplace does not exist in this case, we use instead a Gumbel function that
approximates the numerical solutions well (see Fig. A.1). We therefore fit the
extracted Ramsey envelopes to the function

f ðt; a; b; ¿1; ¿2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2R2
GumbelðtÞ þ b2

q

;

where RGumbelðtÞ is defined in Eq. (7) in the paper, a and b are global amplitude

and noise bias, Ccol ¼ ¿2=ð1:69¿1Þ2 in accordance with Eq. (5) for 3D harmonic
trap and ¿1 is calculated from the measured temperature (see Appendix). Note that
the only free parameters are a; b and ¿2. In order to eliminate systematic errors we
refine our analysis in the following way: taking some Ccol we compute numerically
the correct R(t) using Eq. (A.1). We then fit it with f and compare the value found
for ¿2 to the correct value calculated from Eq. (5), and define a correction factor
which is mostly in the range of 0:8� 1:2. We repeat this and construct a table of
the correction factor as a function of Ccol¿1 (see inset of Fig. A.1), and use this
table to correct the experimentally fitted ¿2 values. It is important to stress,
however, that this procedure does not change the slopes by more than 20 %.
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Fig. A.1 Comparison between a correct Ramsey decay envelope for 3D harmonic trap (Blue)
and the fitted Gumbel function (Red) for Ccol¿1 ¼ 2. The inset shows the correction factor for the
fitted value of ¿2 as a function Ccol¿1
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Appendix B
Derivation of the Spectrum for a Discrete
Fluctuation Model

We consider an ensemble of TLS with fluctuations in the detuning which are
discrete in nature and follow Poisson statistics. The probability for a specific TLS

to undergo n events up to a time t is given by Pn ¼ e�CtðCtÞn
n! , where C is the

detuning randomization rate. The total Ramsey signal, RðtÞ, can be constructed as
a series

RðtÞ ¼
X

1

n¼0

PnðtÞRnðtÞ; ðB:1Þ

where RnðtÞ is the Ramsey signal of the subgroup of TLS that experienced exactly
n randomization events. The average over this group of any function X̂ðt1; :::; tnÞ,
where ft1; :::; tng is a series of the n Poisson events times, can be written as

XðtÞ ¼ n!

tn

Z t2

0
dt1:::

Z t

0
dtnX̂ðt1; :::; tnÞ:

We use this with R̂n ¼
Qnþ1

l¼1

R1
�1 d–lP0ð–lÞei–lðtl�tl�1Þ and Eq. (B.1) in the paper to

calculate RnðtÞ

RnðtÞ ¼
n!

tn

Y

n

k¼1

Z tkþ1

0
dtkR0ðtkþ1 � tkÞ; ðB:2Þ

where tnþ1 ¼ t and t0 ¼ 0. Taking the Laplace transform of Eq. (B.2) and

employing the n-fold convolution theorem we get LftnRnðtÞ
n! g ¼ ~Rnþ1

0 ðsÞ, where

Lff ðtÞg � ~f ðsÞ is the Laplace transform of f : Substituting this into the Laplace
transform of Eq. (B.1) we obtain LfRðtÞeCtgðsÞ ¼

P1
n¼0 Cn~Rnþ1

0 ðsÞ, which can be
further simplified:
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~RðsÞ ¼
~R0ðsþ CÞ

1� C~R0ðsþ CÞ
: ðB:3Þ

Equation (5.1) gives the ensemble spectrum, ~RðsÞ, in terms of the bare spectrum
~R0ðsÞ and the detuning randomization rate C.
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Appendix C:
Numerical Simulations with Correlations
in the Fluctuations

Our aim is to generate an ensemble of a time-series of detunings –ðtÞ with some
arbitrary correlation function h–ðtÞ–ðt0Þi ¼ Cðt � t0Þ; where h�i stands for the
ensemble average. We first explain how to generate a matrix of correlated numbers
Y with a correlation matrix C from a matrix of uncorrelated numbers X. We
assume that the numbers in X were drawn from the required detuning distribution.
We look for a matrix U which satisfy UT U ¼ C, which can be found by using the
Cholesky decomposition method. If we then define Y ¼ XU we get the desired
correlated matrix, which can be verified by writing YT Y ¼ UT XT XU ¼ C, where
we have used the relation for the uncorrelated matrix XTX ¼ I. In the simulation
we start by drawing uncorrelated detunings from a Gaussian distribution. For each
simulated atom we then draw a series of collision times ftig from an exponential
distribution with a rate C, where the index i stands for the i-th collision. We
generate the correlation matrix in the following way: Cij ¼ Cðti � tjÞ. Finally, we
use the matrix C to generate the correlated detunings series, and use it to calculate
the contribution of this atom to RðtÞ. We then repeat this procedure for all atoms.
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Appendix D
Optimal Decoupling Pulse Sequence
for a Lorentzian Spectral Function

We want to find the pulse sequence timing series ftign
i¼1 which maximizes the

coherence as calculated by Eq. (3.5). We use a nonlinear minimization method
(Nelder–Mead) implemented in MATLAB software for the minimum decoher-
ence. We have consistently obtained a time series close to the form given in the
text: ti ¼ ·þi�1

n�1þ2·t; where i ¼ 1 ::: n and 0:5� ·� 1 is a numerical factor which

depends on the parameters of the problem. For fDD [ C, the difference of the time
series for the optimal · to the one with · ¼ 0:5 (which corresponds to the CPMG
scheme) is less then 1%. As an example we plot the coherence time as a function
of · for fDD ¼ 35Hz in Fig. D.1a. The difference in this case between ¿c of
· ¼ 0:5 and the optimal value is � 0:14%. In Fig. D.1b we plot the same calcu-
lation for fDD = 10 Hz. Here the difference between the optimal value and the
value at · ¼ 0:5 is � 0:93%. Therefore the value · ¼ 0:5 was chosen to be used in
the experiment.

In regard to the Uhrig dynamical decoupling scheme (UDD) [2], we plot in
Fig. D.2 a comparison between CPMG and UDD as a function of the number of
…-pulses. As can be clearly seen from the graph, the UDD scheme is inferior to the
simpler CPMG scheme for a Lorentzian bath spectrum. This is not surprising since
the UDD is expected to be superior in spectral functions that exhibit a cutoff in
frequency. This point was already discussed in Ref. [3]. We have also tested this
experimentally for several number of pulses and consistently obtained coherence
times with the UDD scheme which are 10–20 % lower than the coherence times
obtained with the CPMG scheme.
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Fig. D.1 Coherence time versus · for fDD = 35 Hz a fDD = 10 Hz b with a lorentzian power
spectrum with the typical experimental parameters C ¼ 37:5s�1 and �– ¼ 23:8s�1. The calcu-
lation of ¿c is done at t ¼ 1s
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Fig. D.2 Coherence time versus the number of …=pulses for a CPMG dynamical decoupling
scheme and the UDD scheme, for a lorentzian power spectrum with the typical experimental
parameters C ¼ 37:5s�1 and �– ¼ 23:8s�1. The calculation of ¿c is done at t = 1s

80 Appendix D: Optimal Decoupling Pulse Sequence for a Lorentzian Spectral Function



Appendix E
Publications Resulting from This Research

1. Sagi, Y., Almog, I. & Davidson, N. Universal scaling of collisional spectral
narrowing in an ensemble of cold atoms. Phys. Rev. Lett. 105, 093001 (2010).
2. Sagi, Y., Almog, I. & Davidson, N. Process tomography of dynamical
decoupling in a dense optically trapped atomic ensemble. Phys. Rev. Lett. 105,
053201 (2010).
3. Sagi, Y., Pugatch, R., Almog, I. & Davidson, N. Spectrum of two-level systems
with discrete frequency fluctuations. Phys. Rev. Lett. 104, 253003 (2010).
4. Sagi, Y., Pugatch, R., Almog, I., Aizenman, M. & Davidson, N. Motional
Broadening in Ensembles With Heavy-Tail Frequency Distribution. Phys. Rev. A.
83, 043821 (2011).

References

1. Brissaud A, Frisch U (1974) J Math Phys 15:524
2. Uhrig GS (2007) Phys Rev Lett 98:100504
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