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Preface

This edited book covers recent developments on fractional dynamics, time-delay
systems, system synchronization, and neuron dynamics.

Fractional calculus is extensively used as a powerful tool to investigate complex
phenomena in engineering and science, and has received renewed attention recently.
Chapter 1 of the book investigates fractional dynamics of complex systems. Some
recent results and applications in fractional dynamics are presented. In Chapter 2,
the synthesis and application of fractional-order controllers are presented. This is
an active area of research. The fractional-order PID controllers are designed for the
velocity control of an experimental modular servo system. The system consists of
a digital servomechanism and open-architecture software environment for real-time
implementation. Experimental results of fractional-order controllers are presented
and analyzed. The effectiveness and superior performance of the fractional-order
controls are compared with classical integer-order PID controllers.

Time delay is a common phenomenon in engineering, economical and biological
systems, and has become a popular research topic in recent years. In Chapter 3, equi-
librium stability, Lindsedt’s method and Hopf bifurcation, and transient behaviors
in differential-delay equations are presented. Multiple-scale and the center mani-
fold analysis are addressed. These methods are applied to investigate dynamical
behaviors of a differential-delay system modeling a section of the DNA molecule.
Chapter 4 focuses on the methodologies for time-domain solutions and control de-
sign of time-delayed systems. Method of semi-discretization and continuous time
approximation are discussed. The spectral properties of the methods will be investi-
gated. A comparative study of stability of time-delayed linear time invariant systems
is carried out by the Lyapunov method, Pad approximation and semi-discretization.
The methods of solution for stochastic dynamical systems with time delay are also
discussed, and a number of control examples and an experimental validation are
presented.

Chapter 5 develops a theory for synchronization of multiple dynamical systems
under constraints. The metric functionals based on the constraints are introduced
to describe the synchronicity of two or more dynamical systems. The chapter pro-



vi

vides a theoretic framework for designing controllers of slave systems which can be
synchronized with master systems.

Finally in Chapter 6, complex dynamics of neurons with time-delay, stochas-
ticity and impulsive discontinuity are presented. Complex dynamical behaviors in-
clude periodic spiking, chaotic spiking, periodic and chaotic bursting, and synchro-
nization. In this chapter, a comprehensive review on recent developments and new
results in nonlinear neural dynamics are presented.

It is our hope that the book presents a reasonably broad view of the state-of-
the-art of complex systems, and provides a useful reference volume to scientists,
engineers and students. Furthermore, we hope that the book will stimulate more
researches in the rapidly evolving and interesting field of complex systems.

Edwardsville, Illinois Albert C.J. Luo
Merced, California Jian-Qiao Sun

June, 2010
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Chapter 1
New Treatise in Fractional Dynamics

Dumitru Baleanu

Abstract Fractional calculus becomes a powerful tool used to investigate complex
phenomena from various fields of science and engineering. In this context, the re-
searchers paid a lot of attention for the fractional dynamics. However, the fractional
modeling is still at the beginning of its developing. The aim of this chapter is to
present some new results in the area of fractional dynamics and its applications.

1.1 Introduction

Fractional calculus deals with the generalization of differentiation and integration to
non-integer orders. Fractional calculus is as old as the classical one and it has gained
importance during the last few decades in various fields of science and engineering
(Oldham and Spanier, 1974; Miller and Ross, 1993; Samko et al., 1993; Podlubny,
1999; Hilfer, 2000; Zaslavsky, 2005; Magin, 2000; Kilbas et al., 2006; West et al.,
2003; Uchaikin, 2008; Lakshmikantham et al., 2009).

The fractional derivatives are the infinitesimal generators of a class of translation
invariant convolution semigroups which appear universally as attractors. The frac-
tional derivative at a point z is a local property only when « is an integer. Since the
fractional derivatives represent the generalization of the classical ones, some of the
classical properties are lost, e.g. the fractional Leibniz rule and the chain rule be-
come more complicated than the classical counterparts (Oldham and Spanier, 1974;
Miller and Ross, 1993; Samko et al., 1993; Podlubny, 1999; Kilbas et al., 2006).

Several applications of fractional calculus were simply based on replacing the
time derivative in an evolution equation with a given derivative of fractional order.

Dumitru Baleanu

Department of Mathematics and Computer Science, Cankaya University, 06530 Ankara, Turkey;
Institute of Space Sciences, P.O. BOX, MG-23, R 76900, Magurele-Bucharest, Romania.

Emails: dumitru@cankaya.edu.tr, baleanu @ venus.nipne.ro



2 Dumitru Baleanu

Various recent results confirm that fractional derivatives seem to arise for impor-
tant mathematical reasons (Podlubny, 1999; Hilfer, 2000; Zaslavsky, 2005; Magin,
2000; Kilbas et al., 2006; West et al., 2003; Uchaikin, 2008; Lakshmikantham et al.,
2009; Gorenflo and Mainardi, 1997; Heymans and Podlubny, 2006; Mainardi et al.,
2001; Scalas et al., 2004; Jesus and Machado, 2008; Chen et al., 2004; Barbosa et al.,
2004; Carpinteri and Mainardi, 1997; Solomon et al., 1993; Fogleman et al., 2001;
Nigmatullin and Mehaute, 2005; Momani, 2006; Tarasov, 2006, 2005; Zaslavsky,
2002; Lorenzo and Hartley, 2004; Baleanu et al., 2009a,b; Magin et al., 2008; Ma-
gin, 2009; Silva et al., 2008; Trujillo, 1999; Maraaba et al., 2008a,b; Baleanu et
al., 2008a; Baleanu and Muslih, 2005a; Caputo, 2001; Lim and Muniandy, 2004,
Mainardi et al., 2001; Mainardi, 1996; Tenreiro Machado, 2003, 2001; Metzler et
al., 1995).

Based on the fact that the diffusion can be described by fractional differential
equations, we ask the following questions:

Are mathematical models with fractional space and/or time derivatives consistent
with the fundamental laws of nature? How can the fractional order of differentiation
be observed experimentally?

Recently the fractional order differential equations started to play an important
role in modeling the anomalous dynamics of various processes related to complex
systems in the most diverse areas of science and engineering. However, only a few
steps have been taken toward what may be called a coherent theory of these equa-
tions in the applied sciences (Oldham and S’panier, 1974; Miller and Ross, 1993;
Samko et al., 1993; Podlubny, 1999; Hilfer, 2000; Kilbas, 2006; Uchaikin, 2008;
Lakshmikantham, 2009).

The fractional Lagrangian and Hamiltonian are typical examples of non-local
theories which were investigated in several physical problems (Pais and Uhlenbeck,
1950; Gomis et al., 2004, 2001; Gomis and Mehen, 2000; Llosa and Vives, 1994;
Bering, online). Besides, a Hamilton formalism for nonlocal Lagrangian was pro-
posed in Llosa and Vives (1994) and Bering (online), an equivalent singular first
order Lagrangian was obtained and the corresponding Hamiltonian was pulled back
on the phase space by making use of the corresponding constraints (Llosa and Vives,
1994). It was shown the space-time non-commutative field theories are acausal and
the unitarity is lost (Seiberg et al., 2000; Alvarez-Gaume and Barbon, 2001).

The fractional variational principles represent an important part of fractional cal-
culus and it is connected to the fractional quantization procedure (Riewe, 1996,
1997; Klimek, 2001; Klimek, 2002; Agrawal, 2002; Tarasov and Zaslavsky, 2006;
Agrawal and Baleanu, 2007; Agrawal, 2006, 2007; Baleanu and Agrawal, 2006;
Baleanu and Avkar, 2004; Baleanu, 2009; Rabei et al., 2009; Baleanu et al., 2008b;
Baleanu, 2006, 2008; Baleanu and Trujillo, 2008). There are several proposed meth-
ods to obtain the fractional Euler-Lagrange equations and the corresponding Hamil-
tonian (Baleanu et al., 2008a,b; Rabei et al., 2007; Baleanu and Muslih, 2005b;
Muslih and Baleanu, 2005a; Baleanu et al., 2006). However, this issue has not yet
completely clarified and it requires more further analysis.

Quantization of systems with fractional derivatives is a novel area in the applica-
tion of fractional differential and integral calculus. The interest in fractional quan-
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tization appears simply because it describes both conservative systems and non-
conservative systems (Muslih and Baleanu, 2005b; Lim and Teo, 2009).

Schrodinger equation was considered with the first-order time derivative mod-
ified to Caputo fractional ones in Naber (2004), Dong and Xu (2008) and Ju-
marie (2009). However, in this case the obtained Hamiltonian was found to be non-
Hermitian and non-local in time and the obtained wave functions are not invariant
under the time reversal. The quantization of fractional Klein-Gordon field and frac-
tional electromagnetic potential in the Coulomb gauge and the temporal gauge were
subjected of intense debate (Lim and Teo, 2009).

The necessary conditions for the optimality in optimal control problems with
dynamics described by differential equations of fractional order were obtained
(Agrawal and Baleanu, 2007; Agrawal, 2004; Baleanu et al., 2009). By making use
of an expansion formula for fractional derivative, optimality conditions and a new
solution scheme is proposed.

It was proved that the fractional calculus models with differential equations can
describe more complex biological systems by extending the scales (time and space)
over which the models are effective and thus expand the range of phenomena under
study.

The fractional wavelet transform (Unser and Blu, 2000b, 2002, 1999, 2000a)
represents a new and important mathematical tool for signal and image analysis.
The fractional wavelet analysis (Ding and Baleanu, 2006, 2010) and the combination
of this method with some other standard ones (Walczak, 2000; Din¢ and Baleanu,
2007, 2004b,a; Dinc et al., 2003) were proposed very recently in order to investigate
the composite signals of the components in complex drug mixtures.

This chapter is based mainly on the results obtained by the author and his col-
laborators in various fields of fractional calculus and its application. The chapter is
organized as follows:

In Section 1.2 the main definitions and the properties of the fractional calculus
are presented.

Section 1.3 is dedicated to the fractional variational principles and their applica-
tions.

Section 1.4 contains a brief review of the fractional optimal control formulation.

Section 1.5 is devoted to the application of the fractional calculus in nuclear
magnetic resonance.

Fractional wavelet method and its applications in drug analysis are illustrated
briefly in Section 1.6.

1.2 Basic definitions and properties of fractional derivatives and
integrals

In this section we present the basic definitions of the fractional derivatives and in-
tegrals (Oldham and Spanier, 1974; Miller and Ross, 1993; Samko et al., 1993;
Podlubny, 1999; Kilbas et al., 2006).
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Definition 1. Riemann-Liouville left-sided fractional integral of order « is given by

oD " P(x) = ﬁ/ (x —t)*1o(t)dt, = > a. (1.1)

Definition 2. Riemann-Liouville right-sided fractional integral of order o has the

form
1

b
D70(e) = s / (t— ) g(t)dt, x <b. (12)

Here o > 0 and I'(«) = [° s Le~*ds denotes the Gamma function.
0

Having defined the fractional integral, define the fractional derivative as the in-
verse operation, namely

aD3aD; %) = ¢, (1.3)
JDEG = L[ Do), (1.4)

where « = N — u, N is the smallest integer bigger than ¢ and p > 0.

Definition 3. Left Riemann-Liouville fractional derivative of order « is defined as

oy 1 a\" " ¢
oD7o(z) = m (@) /a mdt,x > a. (1.5)

Definition 4. Right Riemann-Liouville fractional derivative of order o becomes

gy L d\" " 6t

n—1<a<n,and o > 0.

Note that, for o = 1,2, ... we have

o_ (4"
aDz - <d.1'> ) (17)

d «
Dy = <—%> : (1.8)

Definition 5. The left Caputo fractional derivative is defined as

n—1
CDo(x) = oDy <¢(w) -y #Oa) (z— a)’“) : (1.9)

!
Pt k!

or

Cpog(s) — A0
“D“b(x)_F(nfa)/a (xit)aﬂfndt, (1.10)
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Definition 6. The right Caputo fractional derivative is defined as

CDeg(z) = (_1)”)/b( O (1.11)

t— x)aJrlfn

where 0 < n — 1 < @ < n and ¢(z) has n+1 continuous and bounded derivatives
in [a, b].

We notice that
DA =0, (A= constant) (1.12)

and
lim £ D%¢ = 0. (1.13)

In an infinite domain we have the following results
DY = —ocD¢, (Do = ;D59 (1.14)

Let us consider a function f(z1,z2).

Definition 7. A partial left Riemann-Liouville fractional derivative of order as, 0 <
a9 < 1, in the second variable is defined as

a2 _ 1 0 i f(ZL'1,u)
Dgzi f)(z) = ma—m/ —————du. (1.15)

as (IQ - u)az

Definition 8. A partial right Riemann-Liouville fractional derivative of order ay,

has the form

N 1 o [ f(z1,22)
D = — = du. 1.1
(D7 f)(x) I'(l — a) 0xs /1.2 (—z2 + u)o2 du (1.16)

If the function f is differentiable we obtain

g _ 1 f('rlv'"7xk—17ak‘7xk+17“‘7xn)
(Dak-i-f)(x) - F(l — ak) [ (mk — (Zk)ak

x, O
+/Mg %(1’17'"7xk—17u)zk+lv~")zn)
a (xk—u)ak

du.  (1.17)

k
Definition 9. Reflection operator © is defined as follows

O¢(z) = pla+b—x) (1.18)
and it has the following properties

OlD; 9] = .D, *[O4], (1.19)
0D, *¢] = D, *[Og]. (1.20)
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In addition, we have other properties of fractional derivatives and integrals, namely:
Semi-group property

DD 9 = D P, (1.21)
D, %D, ¢ = D, P, (1.22)
where o > 0,5 > 0.
Reciprocity
DD =¢, a>0t>a, (1.23)

In the more general case we have
DD ¢ = Dy, (1.24)
Composition Rules
d'ﬂ
(] n

d "1 40D (@) (¢ — a)i—o—n
D[ b(@)] = DE () = Y ? F((la )ft.ia)i ., (1.26)
= j—a—mn)

—[D] = uDFT0, a >0, (1.25)

n—1<a<n.

L and DS are commutative only if ¢/ (a) = 0 for j = 0,1,...,n — L.

DI [D](2)] = DEHG(z) = Y [Pl ]x:a%, (1.27)

m-—1<g<m.

=1

In particular, the fractional derivatives commute

D2[DP¢] = DI [,DY¢] (1.28)

if )
[Dy 7 O(x)]e=a =0, j=1,..,n (1.29)

and _
D2 p(2)]sma =0, j=1,..,m. (1.30)

Chain Rule has the following form:
For ¢(z) = F(h(x)) we obtain

T —a Ot T —a k—a k
oD F(h(z)) = (F(l —a) +Z< ) %d‘ikﬂhm), (1.31)

and it is obtained with the help of Fad di Bruno formula given below:
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k k ) (2)\ O
%F(h(x)) s leﬂm)(h(x))z 11 % (h T!( )) L a3

and i i
Y ora, =k, > a,=m. (1.33)
r=1

Leibniz Rule has a complicated formula as given below

o0

Do) = Y () o9 @b (o) (1.34)

k=0
where ¢(z) and 1(x) have continuous derivatives in [a, t].

Definition 10. Mittag-Leffler function is defined as

(oo} k

t
Ba=) -, 0, a €R. 135
gf(ak—kl) @>0 ac (1.35)

By using Eq. (1.35) we observe that
Ex(t) = exp(1), (1.36)

and
Fs(t) = cosh /1. (1.37)

Definition 11. The two-parameter Mittag-Lefller function has the form:

E = _— ; R. 1.
(1) ;F(aﬂﬂ), a>0; §>0, a, fe€ (138)
From (1.38) we conclude that
et —1

Era(t) = ——, (1.39)

sinh v/t
Eso(t) = , 1.40
2.2(t) i (1.40)
Es1(t) = cosh V/t. (1.41)

The Laplace transformations for several Mittag-Leffler functions are summarized
in the following:

L(Ba(-Xt")) = , (1.42)

Lt Eyo(—MY)) =

, (1.43)



8 Dumitru Baleanu

a—0
— a S
L(t°P 7 By 5(—Xt%)) = = (1.44)

In the following we are going to present a brief introduction of the generalized
functions and they connect with the fractional derivatives.

Generalized functions have many interesting applications in science and engi-
neering (Gelfand and Shilov, 1964).

Let us consider the Cauchy’s integral formula as given below:

0= | - 1 (145)

Here n is a positive integer, I'(n) denotes the Gamma function and a < ¢. Let us
consider @7 (1) as given below:

1
OF(t) = —t""1 t>0 1.46
o () Ty 0t (1.46)
and zero for ¢ < 0.
Letting f be zero for ¢ < a and by making use of (1.46), we obtain that (1.45)
becomes

JdPF(E) = f(t) =P (1), (1.47)

where * denotes the convolution operation and it is given by

o0
o) % f(t) = / o()h(t — 7)dr. (1.48)

— 00

Equation (1.47) can be generalized for any o > 0 as (Gelfand and Shilov, 1964)

JPF(t) = f(t) x PE(D), (1.49)

where @7 (t) is a generalized function or distribution (Gelfand and Shilov, 1964).

Having in mind to define the convolution of two generalized functions we have
to defined first the test functions (Gelfand and Shilov, 1964). For these reasons we
choose the set K of all real functions ¢(x) with continuous derivatives of all orders
and with bounded support. We denote these functions the test functions. We can add
and multiply by a scalar a test function in order to get new test functions, as a result,
K becomes a linear space. Another interesting property of these test functions is
that the sequence ¢1(z), ..., ¢, (x) of test functions converges to zero in K if all
above mentioned functions vanish outside a given fixed common bounded region
and converge uniformly to zero together with their derivatives of any order.

We claim that f is a continuous linear functional on K if there exists some rule
according to which we can associate with every ¢(x) in K a real number (f, ¢) such
that (Gelfand and Shilov, 1964)
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a) (f, 101 + asga) = a1(f, ¢1) + aa(f, =), for any real numbers a; and ao
and for any two functions ¢4 (z) and ¢ (z).

b) If the sequence ¢1, ¢2, ..., d,, ... converges to zero in K, then the sequence
(f,01), (fs02), ..., (f &), ... converges to zero (Gelfand and Shilov, 1964).

The next step is to consider k(t) = g(t)*h(t) and a test function ¢(z). Therefore,
we obtain the following (Podlubny, 1999; Gelfand and Shilov, 1964):

(o) = [ K00 =it [ { [ steme - f)dé} o)t
— [ [s©n@mo + ndsan. (1.50)

Here the limits of the integrals are —oo and +oo respectively.
By making use of (1.50) we obtain the generalization of a convolution of two
functions as mentioned in the following:

(g # h, @) = (g(t), (h(7), &(t + 7)) (1.51)

From (1.51) we obtain the following properties of the convolution operation:

g*xh=hxg, (1.52)
Fx(g*h)=(f*g)*h, (1.53)
D(g x h) = (Dg) x h = g * (Dh), (1.54)

where D(-) denotes the generalized derivative. The relation between the general-
ized derivative and the classical derivative becomes (Podlubny, 1999; Gelfand and
Shilov, 1964)

n—1

D" f = {0+ 3 D5t~ a)lf P (a). (155)

k=0

For @ < 0 and @/ (t) as a generalized function we introduce the notion of left
fractional derivative as given below:

oDy = IY[S], (1.56)
or
D[] = f(t) * DL(). (1.57)
In the same way, we define
DE[f] = f(t) x DT (1), o > 0. (1.58)

The most interesting properties of the distributions &7 (¢) are (Podlubny, 1999;
Gelfand and Shilov, 1964)
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D" =&/ (t),ne 2, (1.59)
and
OF (t — a) x DF (1) = D7 4(t — a). (1.60)
From (1.60) we obtain
D7D (f)) = DI (f). (1.61)

For0 < n —1 < a < n we obtain the following important relations for the
generalized fractional derivative

D (f) = f() x PL (1) = f(t) « (D" P, _,)()
= (D"f(t) * Py_o(t) = D" (f(t) * P_o (1)) (1.62)
From (1.62) we observe that the distributional forms of Caputo and the Riemann-

Liouville are the same.
The right fractional derivative can be define as follows

Dy (f) = f(t) x P, (1.63)
where ¢, is defined as
B (_t)o/—l
@ i
“.() T@) t <0,
d”_(t) =0, t>0. (1.64)
In addition, we have
& (t)=(—1)"D7"4(t7), (1.65)

for n being integer.
The integration by parts formula is valid for the generalized fractional deriva-
tives, namely

/ D7 flg(t)dt = / DJ g f(t)dt. (1.66)

1.3 Fractional variational principles and their applications

The Lagrangian formulation of dynamical systems represents one of the most im-
portant principle in physics.

The corresponding Lagrangian for dissipative systems depends explicitly on
time, therefore the Hamiltonian depends explicitly on time too.

One still open and important issue in this area is the fractional quantization pro-
cedure. The main obstacle for fractional calculus quantization is represented by its
non-locality of the fractional derivatives.
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The main advantage of this theory is that it incorporates, under certain limits,
both the conservative and nonconservative systems.

1.3.1 Fractional Euler-Lagrange equations for discrete systems

The classical Euler-Lagrange differential equation is the fundamental equation of
calculus of variations.
It states that J if is defined by an integral of the form

I'= /f(t,y, y)dt, (1.67)
where p
. Y
== 1.68
y=g (1.68)
then J has a stationary value if the Euler-Lagrange differential equation
of d [of
——-—|=)=0. 1.69
oy @ <ay> (1.9

Let us consider the following Lagrangian

1
L= 5(;,2 —V(q). (1.70)

+§=0. (1.71)

In the following we are giving the fractional generalization of the above results.

Let us assume that o; (j = 1,...,n1) and By (k = 1,...,n2) are two sets of
real numbers all greater than 0, tq, = max(aq, ..., &n1, B1,- -, On2), and M is
an integer such that M — 1 < aypa. < M. Let J[g”] be a functional of the type

b
/ L(t,q%, D", D™ ¢, thqu,...,th"zqP) dt, (1.72)

defined on the set of n functions ¢”, p = 1,...,n which have continuous left
Riemann-Liouville fractional derivative of order oj, j = 1,...,n; and right
Riemann-Liouville fractional derivative of order 8, j = 1,...,n2 in [a,b] and
satisfy the boundary conditions (¢”(a))) = q,; and (g"(b)W) = QG J =
1,..., M —1. A necessary condition for .J[¢”] to admit an extremum for given func-
tions ¢g°(t), p = 1,...,n is that ¢°(¢) satisfy Euler-Lagrange equations (Agrawal,
2002)
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nl n2
+Zt v 5 Daj p+§ 6th3J - =0, (1.73)

Here, if «; is an integer, then D, 7 and tDbj must be replaced with the ordinary
derivatives (d/dt)® and (—d/dt)®7, respectively. The method initiated by Agrawal
(Agrawal, 2002) was generalized and improved by Baleanu and coworkers (Baleanu
et al., 2006; Baleanu and Avkar, 2004; Baleanu, 2004; Muslih and Baleanu, 2005c;
Baleanu and Muslih, 2005b).

Let us start with the following classical Lagrangian

L(z,y,2) = &3 4 y2°. (1.74)
The classical solutions of Euler-Lagrange equations are given below
z(t) = at +b,2(t) = 0. (1.75)

We notice that y(t) has an undetermined evolution and a and b are constants to
be determined from the initial conditions.
The fractional generalization of (1.74) becomes

Ly = (uD§x) DSz + yz°. (1.76)
As aresult, the Euler-Lagrange equations of (1.76) are given below
DY (D¥2) =0,2° =0, DF(,Dz) +3yz* =0. (1.77)

From (1.77) we notice that z = 0, y is not determined. We note that x fulfills the
following equation
Dy (,Dix) =0. (1.78)

The solution of (1.78), under the assumption of 1 < o < 2, is given by

z(t) = At —a)* ' + B(t — a)*2

t_
+ C(t—a)*2F (1,1 —o,1+a, _a>

b—a
t—a

+ D(t—a)*2F <1,2 a, 1+ a, - ) (1.79)
a

Here o I represents Gauss hypergeometric function and A, B, C, and D are real
constants. When o — 11 and a = 0, the classical linear solution of one-dimensional
space is recovered, namely

z(t) = A+ Ct. (1.80)
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1.3.2 Fractional Hamiltonian formulation

1.3.2.1 A direct method with Riemann-Liouville fractional derivatives

In the following we introduce the meaning of fractional Hamiltonian. For simplicity,
in the following we consider the following form of the fractional Euler-Lagrange
equations (Agrawal, 2002)

oL oL

e = 1,p=1,...,N. 1.81
o) P o~ DS b m b 08D

In the following by using (1.81) we define the generalized momenta as (see, for
example, Ref.(Rabei et al., 2007) for more details)

oL

=0 =1,...,N. 1.82
pap aal)?qp(t)’ p I ? ( )

As a consequence of (1.81) and (1.82) a Hamiltonian function is defined as
H = pa,Diq’(t) — L. (1.83)

The canonical equations corresponding to (1.83) are given below

oH oL
VTR (1.84)
0H o
o = .Dfq’, (1.85)
oOH
8_qutngpap,0<a<1,p:1,...,N. (1.86)

1.3.2.2 A direct method within Caputo fractional derivatives

In the following we present briefly the Hamiltonian formulation within Caputo’s
fractional derivatives (Baleanu and Agrawal, 2006). Let us consider the fractional
Lagrangian as given below

L(q.S Df'q,t), 0 <a<1. (1.87)

By using (1.87) we define the canonical momenta p,, as follows

oL
= —=—. 1.88
We define the fractional canonical Hamiltonian as

H = p, (§ Dj'q) — L. (1.89)

a
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Taking total differential of (1.89) and by using (1.88), we obtain

L oL
dH = dp,, (° D¥q) — —dq — —dt. 1.90
Pa (¢ Di'q) 5%~ Bt (1.90)

Taking into account the fractional Euler-Lagrange equations we obtain
C na a oL
dH = (5 Di'q)dpa + (:Dypa)dq — 5-dt. (1.91)

Finally, after some simple manipulations, the fractional Hamilton equations are ob-
tained as follows

OH oL

ot o (1.92)
OH

Fo < Diq, (1.93)
OH

5 = Dire. (1.94)

1.3.2.3 Fractional Ostrogradski’s formulation

The higher-derivatives theories (Gitman and Tytin, 1990; Nesterenko, 1989) appear
naturally as corrections to general relativity and cosmic strings as well (Birell and
Davies, 1982). The unconstrained higher-order derivatives have more degree of free-
dom than lower-derivative theories, as a result a lack a lower-energy bound was
reported. A method how to remove all these problems was suggested in (Simon,
1990). It was reported that the non-local formulation can be written as an infinite
order Ostrogradski’s formulation (Gitman and Tytin, 1990; Nesterenko, 1989). On
the other hand the fractional derivatives are non-local objects and we have a decom-
position formula for them. In conclusion, a natural question is how to formulate a
theory corresponding to the fractional case.

Let us consider an ordinary local Lagrangian depending on a finite number of
derivatives at a given time as (Bering, online)

L (), 4(t), ™ (1)) - (1.95)

Let us consider a Lagrangian depending on a piece of the trajectory ¢(t, \) for
Y\ belonging to an interval [a, b], namely

L™™(t) = L(q(t + X)). (1.96)

Here a, b represent real numbers. Therefore, we have created a non-local Lagrangian
and the corresponding action function is given by
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S(q) = / QL (1), (1.97)

We are able to write the Euler-Lagrange equation corresponding to (1.97) as

(Bering, online)
dL™"™(t)
dt————= = 0. 1.98
[ Sy o9

We observed that Equations (1.98) are functional relations to be satisfied by a
Lagrangian constraint. Another observation is that there is no dynamics except the
displacement inside the trajectory

q(t) — q(t + ). (1.99)
The following step is to introduce the dynamical variable Q(t, \) as
Q(t,\) =q(t+ N). (1.100)
Let us consider a field Q(t, \) instead of a trajectory ¢(t), namely
Qt,\) = Q'(t,\), (1.101)

where Q = % and Q'(t,\) = %. In such a way we obtaina 1 + 1
dimensional formulation of non-local Lagrangian (Bering, online).

The coordinates and momenta are suppose to have the following forms

Z emN) g™ (t) Z e (N)pim)(t (1.102)
m=0 m=0
where
{a"™ (). oy (1)} = 07, (1.103)
and m
em(A) = A € A = (=0x)™I(N). (1.104)

In conclusion, the Hamiltonian for 1 + 1 dimensional field has the form

H(t,[Q, P]) = / dAP(t, Q' (t, \) — L(t,[Q)), (1.105)

where P denotes the canonical momentum of (). The phase space is T * J equipped
with the fundamental Poisson brackets

{Q(t,\), P(t,\)} =5(A = N). (1.106)
The functional L(t, [Q]) is defined as below

L(t,[Q]) = / AT L(E,A). (1.107)
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By analyzing (1.107), the primary constraint becomes
d)(ta A, [Qv P]) = P(tv )‘) - /dUX()\a _U)E(t; g, )‘) =~ 0. (1.108)

e(t; 0, A\) and x(\, —o) have the following definitions:

OL(t,o)
Lo, \) = ————=~ A, —0) =
(10 = 5o %) YA )
where £(\) denotes the sigma distribution. By using this construction the Euler-
Lagrange equation is guaranteed by itself

(1.109)

b~tp= /dag(t;a,A). (1.110)

In the following we would like to derive both the Lagrangian and the Hamiltonian
formalisms for non singular Lagrangian with fractional order derivatives starting
from the Hamiltonian formalism of non local-theories (Baleanu et al., 2006). Let us
consider the following Lagrangian to start with

L(g,t) = L(t,q"™), (1.111)
where the generalized coordinates are defined as

g = Dima(t), (1.112)

where m is a natural number.

To obtain the reduced phase space quantization, we start with the infinite dimen-
sional phase space T J(t) = {Q(¢, \), P(t,\)}.

The key issue is to find an appropriate generalization of (1.104) for the fractional
case (Baleanu et al., 2006). As it was pointed out in (Bering, online) the coordinates
and the momenta are considered as a Taylor series. Therefore, the first step is to
generalize the classical series to the fractional case. A natural extension is to use
factorial instead of the Gamma function. In this way we introduce naturally the
generalized functions instead of e, (\) and €™ () given by (1.104).

As it is already known several fractional Taylor’s series expansions were de-
veloped (Trujillo, 1999; Hardy, 1945), therefore we have to decide which one is
appropriate for our generalization. Since we are dealing with fractional Riemann-
Liouville derivatives we choose the following generalization proposed, namely

QUEN = 3 ea,(Na®(1),

m=—0oo

Pt,A) = > €™ (Np(an(t), (1.113)

m=—0oo
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where
()\ — )\Q)am
oy, +1)°

and o, = m+a, with0 < o < 1. Here )\ is a constant. The coefficients in (1.113)
are new canonical variables:

ea, () = ™ (X) = DI 3(A — Ao), (1.114)

{0, pa_y} = bz (1.115)

By using (1.115) we obtain that

Y e (Nea, (N) =X = X), (1.116)
and
+oo
/ e (New | (A) = 50 (1.117)

Therefore, e* () and e,,, (\) form an orthonormal basis. We stress on the fact
that (1.116) and (1.117) involve the generalized functions and the relations have the
meaning in the sense of generalized functions approach (Gelfand and Shilov, 1964;
Hardy, 1945).

The fractional Hamiltonian is now given by

H= Y pq¢* —L(¢°,q*). (1.118)

m=—oc0
The momenta constraints become an infinite set of constraints
o0
oL
— _ Qi —n, —
Gn = Pa, (1) = D 1D, e = (1.119)

m=n

The fractional Euler-Lagrange equations are as follows

.- (7] aL(t) _
> Db gy =" (1.120)

l=—00

An interesting property of the fractional series proposed by Riemann and dis-
cussed by Hardy in (Hardy, 1945) is that when «,,, becomes integers the usual form
of Taylor series is obtained. Therefore one should notice that for integer values of
oy, We have

R AN 10
Pan () = Y (—%> g =" (1.121)

1=0

which is the definition of Ostrogradski’s momenta (Gitman and Tytin, 1990).



18 Dumitru Baleanu

In this case the Euler-Lagrange equation for original fractional derivative La-
grangian is given below

(&%) _
Ztnb aqaz _0. (1.122)
1=0
Now, from this equation, for integer values of «,, we obtain the Euler-Lagrange
equation for higher derivative Lagrangian, namely

“(od\' oerw)
> (i) atatty =" (12

=0

The constraints (1.121) and (1.123) lead us to eliminate canonical pairs
{a%,pa, (1 > ).

In this case the infinite dimensional phase space is reduced to a finite dimensional
one. The reduced space is coordinated by T'x J™ = {q*, p,, } withl =0,1,...,n
1. The Hamiltonian in the reduced space is given by

n—1

H— Z p(x,mq(xrm+1 _ L(qo,q“'m). (1.124)

m=0

One should notice that the canonical reduced phase space Hamiltonian (1.124) is
obtained in terms of the reduce canonical phase space coordinates {g™, p,, } with
[ =0,1,...,n— 1. In this case the path integral quantization of filed system is given

by
n—1

K = / [T dgomdpemeitd de=ricop™mammst =y, (1.125)

m=0

We observe that when « are integers, we obtain the path integral for systems with
higher order Lagrangian (Gitman and Tytin, 1990; Nesterenko, 1989).

1.3.2.4 Example

The classical Pais-Uhlenbeck fourth order oscillator is described by the following
equation (Pais and Uhlenbeck, 1950)

d*z A’z

-7+ (W2 + wd)— o +wiwiz =0, (1.126)
where v, w1, and wo are all positive constants. As it can be seen from (1.126), the
model represents two oscillators coupled by a fourth-order equation of motion. The
fractional generalization of (1.126) can be obtained by replacing the classical deriva-
tives to the fractional one. It is easy to see that the fractional Lagrangian counterpart
corresponding to the fractional generalization of (1.126) becomes
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Ly = L6020 - (@ + W) (DFa)? + wiude?) =0, (1127)
or
"y, (t _ a)—Za 00 20 (t _ a)k—Za *) 2
_ AV —_— t
Li=51\Tra=p Q(t>+kz::1(k’)l“(k—2a+1)q ®)

—q) ad —a k—a 2
4&+@%%H£Tmn§j@)§%%:3wmo
+ wfwng(t)] : (1.128)

Finally, we obtain the following Lagrangian
2
(t —a)—2 — (22 (t—a)=2
——Q(1 —_ t
<r(1—2a)Q()+§ k) Ti—2a+0 Y

_a)e e o)k 2
—@ﬁ+w@<%ﬁ€£5Qa»+§j<Z);%;;};5Q@Mw>

Ly[Qll = %

+ w%w%@z(t)] . (1.129)

In our investigated case, we obtain the following fractional Euler-Lagrange and
Hamilton equations
t — n—2a
204) ( a) 20 (t)

P(n)(t) + P('n—l)(t) =7 < n F(n o0+ 1)aDt

— 7' (0} +wj) <f:> %anmu), (1.130)

_ a)—2a

(t
I'(l1-2a)

’

Poy(t) =~ JDFQ(1)

— 7 (W + w%)%mi’@(w +v wiwdQ(t). (1.131)

1.3.2.5 Fractional path integral quantization

The classical Lagrangian to start with is given by
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1 1 1
L= 5(1 + 2w?)i? — §w2x2 - 56250'2, (1.132)

where w and ¢ are constants.
The fractional generalization of (1.132) has the following form:

’

1 1 1
L'=30+ W) (DO (t))? — —w?z? — 562[th(tD‘;:c(7f))]2. (1.133)

2

The independent coordinates are z(t) and ;DS x(t) respectively. Let us denote
p{ = py and p§ = DD (1)) The fractional canonical momenta are (Rabei et al.,
2007) '

oL oL oL

_ _po(— 9L e OL 1.134
oz e omran) P T oz (139

Py

By making use of (1.133) we obtain the forms of the fractional canonical momenta
as given below:

p§ = (14 Ew?)DYx(t) + D3z (1), (1.135)
py = —e, D>z (t). (1.136)
Taking into account (1.135) the fractional canonical Hamiltonian becomes
H = ptD%x(t) + psD2*x(t) — L, (1.137)
and after taking into account (1.133), (1.135) and (1.135), the fractional Hamiltonian

has the form:

)2
T L I R 0 ) SR E

By making use of (1.138) the fractional path integral is given by

K= / dzd(,D2x(t))dp§ dpg e'tS A=) +p3 DIz~ H)} (1.139)

1.3.3 Lagrangian formulation of field systems with fractional
derivatives

A covariant form of the action would involve a Lagrangian density £ via S =
[ Ld*x = [ Ld3zdt where £ = L($,0,,0).
The corresponding classical covariant Euler-Lagrange equation is

oL oL
9L 9, %% __y, 1.140
96~ % 50,9) (1140
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where ¢ is the field variable. In the following we present the fractional generaliza-
tion of the above mentioned result. Let us consider an action as given below:

S = /L ,(DSF_)o(x), (DG, (), o) dxdt. (1.141)

Here 0 < o < 1 and ay correspond to x1, x2, x3 and ¢ respectively.
The fractional Euler-Lagrange equations are as follows (Baleanu and Muslih,
2005b):

1,4

o oS o oS B

(lk—

as
9

For o, — 1, Equation (1.142) is the usual Euler-Lagrange equations for classical
fields.
1.3.3.1 Application 1: Fractional Dirac field

Lagrangian density for Dirac fields of order % is proposed as follows (Muslih and
Baleanu, 2005b; Raspini, 2001)

L=1 (vaDi/f’w(x) + (m)2/3d)(ﬂc)> ) (1.143)

By using (1.143) the generalized momenta become
(me )y =97°, (m_)y=0. (1.144)
From (1.143) and (1.144) we construct the canonical Hamiltonian density as
1 = 0 (1D} 0() + (M) (@) + Mal(me_ )y — "]
+A2[(Te_ ) 5] (1.145)

Making use of (1.145), the canonical equations of motion have the following forms

;% (m_ )y = —(m)?*P(z) — DY *yFep(x), (1.146)
D3 (m )5 = —(m)2 () — DY p(x) — AN =0, (1.147)
D; Y = (:T)U =\, (1.148)
D;%p = OHr =)o, (1.149)

Am_ )y
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which lead us to the following equations of motion:

D2y (z) + (m)**P(z) =
vani/%(x) + (m)*3y(z) =

0, (1.150)
0. (1.151)

The path integral for this system is given by
K = [ d(m_)o dim_)g b dbl(m_) — 210l(m_) )
X expi [/ diz {( D2+ (m, ) gD P — H}] . (1.152)

Integrating over (m,_ )y and (7, )1/;, we arrive at the result

K—/dd)dd_)cxpi[/ d%ﬁ} (1.153)

1.3.3.2 Application 2: Fractional Schriodinger equation, a Lagrangian
approach

The classic Schrodinger equation is given by

dip

ih— +—A¢ V(z)y = 0. (1.154)

The classical Lagrangian corresponding to (1.154) is

2
<¢* i @bdi) th (Vyvyl) — V(z)yy'. (1.155)

We proposed the following Lagrangian density for the fractional Schrodinger
equation:

hQ
(w*DMw D ¥h) = S (052 ¥Dg: vl —Vi@pwwl. (1.156)
The generalized momenta are
ih ih
(mi)y =S¥ (T)pr = —5 0. (1.157)

The total canonical Hamiltonian density reads as

2
Mr = DWD‘*%HV( Yot

+)\1[(7r+) w*] + Ao[(my )yt + %w]. (1.158)
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The corresponding fractional canonical equations of motion are

h2
D™ (71 )y = —Diwl);{wwV( YapT + AQ, (1.159)
o R zh
D2 (4 )yt = 5 —DUDE Y + V(2)p — A, (1.160)
aHT
TN R 1.161
D+ w 5(71'.;,_)1/,1 )\27 ( 6 )
OMHr
Y = =\ 1.162
DI = 5oy, =M (1.162)

and after some calculations we arrive at the following fractional equations of motion

: 2

%(DT -D )Yl = h D%D%wuw o, (1.163)
Zh ay g hQ @ @

_3(1) — DY)y = —D DY + V(). (1.164)

The path integral for fractional Schrédinger equation is found to be as

K = /dw dytexpi [/ d%ﬁ]. (1.165)

1.4 Fractional optimal control formulation

Fractional optimal control problem gained a lot of importance during the last
decades.
In the following we present briefly how this technique works on a given example.
The aim is to minimize the following performance index:

b
= / [z, u,t)dt, (1.166)

such that
Dz = g(z,u,t), (1.167)

and the terminal conditions z(a) = ¢ and x(b) = d. Here t denotes the time, z(t)
and u(t) are a n, x 1 state and n,, X 1 control vectors, f and g are a scalar and a
ng X 1 vector functions. The dimensions n, and n,, fulfill the relation n,, < n.

A fractional order formulation for this problem for the case of scalar variables
and functions was developed in (Agrawal and Baleanu, 2007). The same formulation
is applicable for the vector case.

A modified performance index is defined as
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b
J(u):/ [H(x,u,t) — AT ,D2]dt, (1.168)

where H (z,u, A, t) is the following Hamiltonian:
H(z,u, M\ t) = f(z,u,t) + ATg(z,u,t), (1.169)

and A is a n, x 1 vector of Lagrange multipliers. Here the superscript T repre-
sents the transpose of the vector. Using (1.168) and (1.169) and the techniques from
fractional variational principles, the necessary equations for the fractional control
problem can be written as given below (Agrawal, 2004):

)
o0H

— = 1.171

Y ( )
Dfz = 8—H (1.172)
TN -

We notice that if z;(b) is not specified, then we require \;(b) to be 0. Here z;
and \; are the ith components of the vectors = and A. Equations (1.170)—(1.72)
along with the above condition on A represent the necessary conditions in terms of a
Hamiltonian for the fractional optimal control problem. To solve the obtained set of
differential equations we used the Griinwald-Letnikov definition. For the discretized
time interval [a, b] with (N + 1) equally-spaced grid points, at node ¢ we have

(07 1 d «@ .
oDy Yy = h_azwg )yi_]', 1=0,...,N,
j=0
1 N—i
Dyy: = h—azw](.a)yiﬂ, i=N,...,0, (1.173)
§=0

respectively, where y; = y(t;), h = 1/N, t; = ih, and

wl® = (~1)! (‘;‘) . (1.174)

1.4.1 Example

To demonstrate the above proposed formulation, let us minimize (Baleanu et al.,
2009)

1 2
i=1 / oD oD 0)2d1, (1.175)
0
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subjected to the following dynamic constraint, oD}’ oD 0(¢) = u(t). Here we have
a=0,b=2,and ¢D{oD0(t) is the sequential derivative of 6. By making use of
0(t) = z1(t), oDFO(t) = x2(t) the modified performance index in (1.175) becomes
2
J= [ [H(x,u,\) — AToD2x(t))]dt, (1.176)
0

where
H(x,u,\) = %uQ(t) + AT (Ax(t) + b u(t)) (1.177)

denotes the Hamiltonian of the system, and

_ [ =:(t) _ (M)
s = (20 0= (30).
(1.178)
0 01
(). 4= (20)
Using (1.170)-(1.72), we obtain
th/\l =0, th)\Q - =0, u+ Ao =0,

(1.179)

OD?:)Sl — X9 = 0, ODtaOSQ —u=0.

We observed that the variable u from the above mentioned equations can be elim-
inated using the third equality shown in (1.179). In addition, we use the following
terminal conditions, (0) = (D{0(0) = 0 and 0(2) = oD{6(2) = 1 which can be
translated into 21 (0) = z2(0) = 0 and z1(2) = 22(2) = 1.

The presentation of the numerical method which is used to solve the equations in
(1.179) is given below.

This method uses the scheme developed in (Agrawal and Baleanu, 2007) for
scalar case. Briefly, we do the followings (Baleanu et al., 2009):

a) we divide the time domain into /N sub-domains, where N represents an integer,

b) approximate the fractional derivatives in (1.179) at each node using the
Griinwald-Letnikov definitions given in (1.173),

¢) apply the terminal conditions,
d) solve the resulting equations.

For N = 128 and a = 0.75,0.85,0.95 and 1, the values of the state variables
x1 and x2 and the control variable u are presented in the following Figs.1.1, 1.2 and
1.3. These figures also include the analytical solutions for o = 1. The results show
that as a approaches 1, the analytical solution is recovered.
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Fig. 1.1 State z1(t) as a function of ¢ for different & (— : @ = 0.75, - : a« = 0.85, - :
o = 0.95, ----- a =1, x: @ = 1 (Analytical))
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Fig. 1.2 State z2(t) as a function of ¢ for different & (— : @« = 0.75, ---: « = 0.85, ---: @« = 0.95,
————— a =1, x: a = 1 (Analytical))
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Fig. 1.3 Control u(t) as a function of ¢ for different o (— : & = 0.75, --- : & = 0.85, -+ :
o = 0.95, ----- a =1, x: @ = 1 (Analytical))

1.5 Fractional calculus in nuclear magnetic resonance

As it was proved in (Magin et al., 2008; Magin, 2009), the generalization of the
Bloch equation through extension of the time derivative to fractional order offers
a number of interesting possibilities concerning spin dynamics and magnetization
relaxation.

Let us denote M, M,, and M, as the system magnetizations (x,y and z com-
ponents). My will denote as the equilibrium magnetization, 7T} is the spin-lattice
relaxation time, T represents the spin-spin relaxation time. Let us denote wg the
resonant frequency given by the Larmor relationship wg = By, where By is the
static magnetic field (z-component) and + is the gyromagnetic ratio for spin % par-
ticles.

As a result the classical equations are given in the following (see Refs. (Magin et
al., 2008; Magin, 2009) and the references therein)

dM, Mo — M,

- 1.180
7 R ( )
dM,, M,

= woMy = 2=, (1.181)
My _ o, — My (1.182)

e Tm o,



28 Dumitru Baleanu

Several approaches were presented to follow in fractional generalization; we ul-
timately should employ the form best suited for fitting experimental data. The as-
sumption of a time domain fractional derivative suggests a modulation — or weight-
ing — of system memory, an assumption that plays an important role in affecting
the spin dynamics described by the Bloch equations.

In addition, the fractional order systems of differential equations (Kilbas et al.,
2006) depend on the initial conditions; as a result, we should choose the fractional
derivative most appropriate for handling the initial conditions of our problem.

In Nuclear Magnetic Resonance, the initial state of the system is specified by the
components of the magnetization, hence these need to be clearly identified (Magin
et al., 2008; Magin, 2009). Another more general, and still open issue, is the phys-
ical meaning of the fractional Bloch equations and this question ultimately goes
back to the basic formulation-the Schrédinger equation as a fractional order par-
tial differential equation in quantum mechanics - a topic beyond the scope of this
presentation (Rabei et al., 2007; Naber, 2004; Baleanu and Muslih, 2005b).

1
T,
In order to preserve the meaning of the initial conditions for the magnetization

for our problem,namely M, (0), M, (0), and M (0), we will use the fractional order
Caputo derivative.

SDOM, (t) = —ioMy(t) — = My (t). (1.183)

120 v v " ¥

100 §

\

[=)
[=]

Magnetization, M_(f)

N
S

20

t(s)

Fig. 1.4 Plots of M. (¢) for different values of « in the range of a= 0:5 (bottom curve) to o = 1:0
(top curve) in steps of 0.1. For these plots, equation (186) was used with M, (0) = 0, T1=1 sec
and Mo = 100. The Mittag-Leffler function was evaluated using the Matlab function m-file mIf.m
found at http://www.mathworks.com/matlabcentral.
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As a result, we obtain a set of fractional order Bloch equations as given below

Moy — M
“pon, = OT (1.184)
M,
CDoM, = oM, — ?: (1.185)
M,
°DoM, = —woM, — TJ. (1.186)
2

Here &g, %, and % each have the units of (sec) ™.

1 2
Using either fractional calculus or the Laplace transformation, the solution for
M. (t) is given as follows

—*\ | M, —e
(1) = M.(0) (T1)+T1 ,H(Tl) (1.187)

The solutions for M, (t) and M, (t) can be found by solving the corresponding
fractional order differential equations. If we suppose that

M (t) = M(t) + iM,(t), (1.188)
and use that
M (0) = M,(0) + iM,(0), (1.189)
100 100
~ 50 ~ 50
v>\ va 0
s 0 S
-50 -50
-100 -100
0 20 40,,.60 8 100 0 20 40 60 8 100
t(s) t(s)
100 100
= 50 = 50
s 0 s 0
-50 -50
-100 -100
20 40 60 80 100 0 20 40 60 80 100
16 20)
100 100
50 50
S g
~50 E—50
-100 -100
0 20 40 60 s 100 0 20 40 60 80 100
t(s) £(s)

Fig. 1.5 Plots of M, (t) for T> = 20 ms and fo = (%:) = 80, 160, and 320 Hz, top to bottom,
respectively. In the right hand side we have the plots of M, (t) for fo = 160 Hz and T% = 10, 20,
and 40 ms, top to bottom, respectively. For all plots, equation (195) was used with M, (0) = 0 and
M, (0) =100.
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Fig. 1.6 Plots of M (t) in the complex plane with « = 1 (a, classical model), o =0.9 (b) and o =
0.8 (¢). For these plots, Equations (187) and (190) were used with M (0) =0, M, (0) = 100, T>
=20 ms and fo = 160 Hz.
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100

M, (2) -100" -100 M (t)

100

=50
780 -100 -100 M_(1)

Fig. 1.7 A plot of fractional order solution to the Bloch equations with o = 1 (classical model). In
the right hand side we have a plot of fractional order solution to the Bloch equations with o = 0.9.
For these plots, Equations (1.186), (1.187) and (1.189) were used with M (0) =0, M, (0) = 100,
M.(0)=0,T1 =1s,T> =20 ms and fo = 160 Hz.

then we observe that we can combine the two equations for the x and the y compo-
nents of magnetization given above to yield.
The next step is to assume that

My (t) = My (0)Ea(—=AL7), (1.190)
and to introduce (1.190) into (1.183). By making use of
O DB (=A%) = —AEq (=A%), (1.191)

we obtain the values of )\ as given below:

1 _
A= — +1i)g. 1.192
T2+Z 0 ( )
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Also, we observe that
My(t=0)=M(0), M(t=00)=0. (1.193)

In fractional calculus one of the questions is to verify the classical results. In this
case we get for a = 1 the following expressions:

M,(t) = exp (—%) (M(0) cos(wot) + M, (0) sin(wot)),  (1.194)
M,(t) = exp (—%) (M(0) cos(wot) — M, (0) sin(wot)),  (1.195)

which both agree with the classical results.

1.6 Fractional wavelet method and its applications in drug
analysis

Various spectrophotometric methods such as graphical an numerical approaches
have been used for the quantitative analysis of samples containing multicomponents.

In some complex mixture analysis the classical graphical and numerical spectro-
scopic methods do not provide always desirable and reliable results. Namely, the
derivative spectrophotometry and its modified versions have been used extensively
in fast quantitative analysis of mixtures. However, these spectral methods may not
lead to desirable analysis results due to the strong spectral overlapping characteris-
tics of compounds, decreasing signal intensity with worsening signal-to-noise ratio
in higher derivative orders.

The developments of wavelet transform and its applications in the field of ana-
Iytical chemistry has significantly amplified the potential power of various spectral
analysis techniques. It was shown that the continuous wavelet transform (CWT)
approach represents an important signal processing method for data reduction, de-
noising, baseline correction and resolution of multi-component overlapping spectra
(Walczak, 2000). CWT methods have been successfully used for the quantitative
resolution of multicomponent mixtures without using any priori separation proce-
dure (see for example Ref.(Din¢ and Baleanu, 2007) and the references therein).
The application of the fractional wavelet transform for the simultaneous determi-
nation of the compounds in a binary mixture was applied for the first time in the
literature by Dinc and Baleanu (Din¢ and Baleanu, 2006). A new wavelet transform
that is based on a recently defined family of scaling functions so called the fractional
B-splines was introduced (Unser and Blu, 2000b, 2002, 1999, 2000a). The interest
of this family is that they interpolate between the integer degrees of polynomial
B-splines and that they allow a fractional order of approximation. In the following
the notion of B-spline is introduced (Unser and Blu, 2000b, 2002, 1999, 2000a). A
B-spline represents a generalization of the Bezier curve.
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Fig. 1.8 Absorption spectra (A) and FWT spectra (B) of ATV (— — —) and AMD () in the

calibration range of 4-20 pg/mL. Due to the large wavelength interval the FWT spectra was
described on a small figure. Here ATV denotes the atorvastatin and AMT represents amlodipine in
their mixture.
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Let a vector known as the knot be defined by T' = {¢o,t1,...,tn} where T is a
non-decreasing sequence with ¢; € [0, 1], and define the control points Py, P,,. The
knots tp 41, ..., t;—p—1 are called internal knots.

We define the basis functional as

1, ift; <t =< tit1 and t; < tiv1,

io(t) = (1.196)
0, otherwise,

and t—1t t t
Nip(t) = —— N p1(t) + — 25— Nipy 1 (2).
litp — L Litp+1 — Lit1
As aresult the spline is a curve defined as below:

C(t) = PiNip(t). (1.197)

The next step is to introduce the fractional B spline as (Unser and Blu, 2000a)

00 1
porige S0 (CF ) -
B (z) = Totl) ot D) : (1.198)

where the Gamma function is defined as
+oco
I'a+1) = / x“e”"dx, (1.199)
0
and (z — k)T = max(z — k,0)%.
The forward fractional finite difference operator of order « is given below:

<= «
A% f(z) =D (1) <k) flz —k), (1.200)

k=0

where the binomial coefficient has the form:

oy I'la+1)
<k>F(1€+1)F(a—k+1)' (1.201)

The centered fractional B-splines of degree « is defined by

o _ 1 _1\k a+1 AT
20 = iy SV () leokn a2

We mention that
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i ——, aodd,
—_94qi 2
jaje = { 250G (1.203)
e log(z)
(—)iFng @ :

The fractional B-spline wavelets is defined as

X —1)* o
zbi(g):Z(;) Z( 1”) Pk - 1B (@ — k). (1.204)

kez ez

We observe that

/+Oo z"Pg (x)dx = 0. (1.205)
The Fourier transform fulfills the following relation
b (w) = C(jw)**, asw — 0, (1.206)
and
0 (w) = C(jw)**, asw — 0, (1.207)

where ¢ (w) is symmetric.

We notice that fractional spline wavelet looks like a fractional derivative opera-
tor in Grinwald-Letnikov representation. To illustrate the advantages of the com-
bined CWT and fractional wavelet transform for a given mixture we show below
a picture showing the action of the fractional wavelet transform on a CWT coef-
ficients. The implications of the obtained results from the chemical point of view
were described in details in (Din¢ and Baleanu, 2010). Namely, by making use of
the fractional wavelet transform we obtain higher peak amplitude, less noise and
sharper peaks (Din¢ and Baleanu, 2010). Fractional wavelet transform is a power-
ful tools for the data reduction, de-noising, compressing and baseline correction of
the analytical signals and resolution of multicomponent overlapping signals (se for
example Ref.(Din¢ and Baleanu, 2006) and references therein).
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Chapter 2

Realization of Fractional-Order Controllers:
Analysis, Synthesis and Application to the
Velocity Control of a Servo System

Ramiro S. Barbosa, Isabel S. Jesus, Manuel F. Silva, J. A. Tenreiro Machado

Abstract The synthesis and application of fractional-order controllers is now an
active research field. This article investigates the use of fractional-order PID con-
trollers in the velocity control of an experimental modular servo system. The sys-
tem consists of a digital servomechanism and open-architecture software environ-
ment for real-time control experiments using MATLAB/Simulink. Different tuning
methods will be employed, such as heuristics based on the well-known Ziegler-
Nichols rules, techniques based on Bode’s ideal transfer function and optimization
tuning methods. Experimental responses obtained from the application of the sev-
eral fractional-order controllers are presented and analyzed. The effectiveness and
superior performance of the proposed algorithms are also compared with classical
integer-order PID controllers.

2.1 Introduction

Fractional calculus (FC) is an area of mathematics that extends derivatives and in-
tegrals to an arbitrary order (real or, even, complex order) and emerged at the same
time as the classical differential calculus. FC generalizes the classical differential
operator D} = d" / dr" to a fractional operator D¥, where o can be a non-integer
value (Oldham and Spanier, 1974; Oustaloup, 1991, 1995; Podlubny, 1999a; Samko
et al., 1993; Miller and Ross, 1993; Carpinteri and Mainardi, 1997). However, its
inherent complexity delayed the application of the associated concepts.

Nowadays, FC is extensively applied in science and engineering (Oldham and
Spanier, 1974; Oustaloup, 1991, 1995; Podlubny, 1999a; Carpinteri and Mainardi,
1997, Hilfer, 2000; Westerlund, 2002), being recognized its ability to yield a su-
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perior modelling and control in many dynamical systems. We may cite its adop-
tion in areas such as viscoelasticity and damping, diffusion and wave propagation,
electromagnetism, chaos and fractals, heat transfer, biology, electronics, signal pro-
cessing, robotics, system identification, traffic systems, genetic algorithms, perco-
lation, modelling and identification, telecommunications, chemistry, irreversibility,
physics, control, economy and finance. We may say that all areas of science are
touched by this fascinating new (and, at the same time, old) topic.

In what concerns the area of automatic control, the fractional-order controllers
(FOCs) are now an active field of research (Oustaloup, 1991, 1995; Podlubny,
1999a,b; Barbosa et al., 2004b; Machado, 1997; Ma and Hori, 2003; Feliu-Batlle et
al., 2007; Valério and Sa da Costa, 2004; Sabatier et al., 2004; Silva and Machado,
2006, 2008; Silva et al., 2008; Machado et al., 2007; Jesus et. al., 2006a; Jesus et al.,
2007c, 2008a; Jesus and Machado, 2008a, 2009). Ma and Hori (2003) used a PI*D
controller for the speed control of two-inertia system. The superior robustness per-
formance against input torque saturation and load inertia variation are shown by
comparison with integer PID control. Feliu-Batlle et al. (2007) applied FOCs in
the control of main irrigation canals, which revealed to be robust to changes in the
time delay and gain. Valério and S4 da Costa (2004) introduced a FOC in a two
degree of freedom flexible robot, achieving a stable response for the position of its
tip. Sabatier et al. (2004) applied the CRONE (French acronym for “Commande
Robuste d’Ordre Non Entier”) algorithm to a robust speed control of a low damped
electromechanical system with backlash. The CRONE scheme ensures robust speed
control of the load in spite of plant parametric variations and speed observation er-
rors. Silva et al. (2006, 2008) compared the performance of legged robots locomo-
tion when controlled using integer and fractional PD control algorithms. Through a
simulation study, they showed the advantages of using a PD% algorithm in the joint
control of hexapod robots with two and three degrees of freedom per leg. This con-
troller allows the minimization of two global measures of the overall performance
of the mechanism (in an average sense), being one index inspired on the system
dynamics and the other based on the trajectory tracking errors (Silva and Machado,
2008). It was also verified that the superior performance of the fractional PD? joint
leg controller, for the fractional order o ~ 0.5, is kept for different ground prop-
erties. In (Machado et al., 2007; Jesus and Machado, 2009), It is studied the skin
effect phenomena and the electrical potential in the FC perspective. It was verified
that the classical electromagnetism and the Maxwell equation, with integer order
derivatives, lead to models requiring a FC viewpoint to be fully interpreted. Jesus
et al. (2006a, 2007¢c) analyzed the electrical impedance in botanical elements. The
fractional order behavior as well as its relation with the electrical impedance was
established and an equivalent fractional order circuit model was presented. Also, in
(Jesus et al., 2008a; Jesus and Machado, 2008a), they studied an electrolytic process
for developing fractional order capacitors. The results revealed capacitances of frac-
tional order that can constitute an alternative to the classical integer order capacitors.
It was verified that it is possible to get fractional order elements by adopting non-
classical electrodes and dielectrics. For more application examples, see the therein
references of the above cited works.
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In spite of the recent progresses, the truth is that simple and effective tuning
rules, such as those for classical PID controllers, are still lacking. In this chapter,
we apply several types of fractional PID controllers in the velocity control of an ex-
perimental servo system. Also, several tuning methods will be employed in order to
assess the performance of such algorithms. Firstly, we use the well-known Ziegler-
Nichols (Z-N) heuristic rules (Ziegler and Nichols, 1942) and analyze the effect of
fractional (derivative and integral) orders upon the system’s performance. After, a
simple analytical method for tuning FOCs based on Bode’s ideal transfer function is
outlined. Finally, several optimal fractional PID will be applied to the servo system.
Comparison with conventional integer PID is also pursued. The experiments show
that the extra parameters (derivative and integral orders) provided by the FOCs can
effectively enhance the system performance and help to adjust more carefully the
dynamics of an automatic control system.

Bearing these ideas in mind, this chapter is organized as follows. Section 2.2
presents the fundamentals of FOCs while Section 2.3 outlines the Oustaloup’s fre-
quency approximation method used in this work for the realization of the fractional
algorithms. Section 2.4 describes the experimental servo system setup and Section
2.5 makes the mathematical modelling and identification of the servo system. Sec-
tion 2.6 describes the FOC scheme used in the experiments. Here, we will present
the several FOCs employed. Section 2.7 shows the experimental results obtained
from the application of the well-known Ziegler-Nichols (Z-N) tuning rules. Re-
sponses from the quarter decay ratio and oscillatory behavior Z-N heuristics will
be given. In Section 2.8 we propose a simple analytical method for tuning FOCs
and in Section 2.9 we investigate the use of optimal FOCs in the control of the servo
system. Finally, Section 2.10 draws the main conclusions.

2.2 Fractional-order control systems

FOCs may be defined as systems that possess fractional derivatives or integrals in
the system to be controlled or in the controller. The fundamentals for the analysis
and synthesis of fractional-order systems are given in next subsections.

2.2.1 Basic theory

In general, a fractional system can be described by a Linear Time Invariant (LTT)
fractional-order differential equation of the form:

anDPy (1) + a1 DIy (8) + -+ agDPy (1)
= DD u () + b1 D" u (1) + -+ + boD{u(r), 2.1
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where B, o (k=0,1,2,...) are real numbers, B > --- > 1 > Po, > -+ > ay >
o and ag, b (k=0,1,2,...) are arbitrary constants.
The corresponding continuous transfer function has the form:

Y O _ O — 1 e Qo
G(s) = (s) _ bus®" +by_15 + o+ bos ' 02
Ul(s) ansPr + a,_ P14 - - - 4 ggsPo

A z-transfer function of (2.2) can be obtained by using a discrete approximation
of the fractional-order operators, yielding:

— bm[w(z_l )]am +bm—1 [W(Z_l )]a'"—l 4+t bO[W(Z_l )]0(0
G(z) = a0z P+ an 1 [w(z P+ +agw(z )P (2.3)

where w(z~!) denotes the discrete equivalent of the Laplace operator s, expressed
as a function of the complex variable z or the shift operator z !

The generalized operator ,D¥, where a and ¢ are the limits and @ the order of
operation, is usually given by the Riemann-Liouville definition (¢ > 0):

1 dar rt x(7)
D¥ =—_—— / —_— —1 24
oD x(t) Fn—a)dr J, (t—r)“—”“df’ n—1<a<n, 2.4)

where I"(u) represents the Gamma function of u. Another common definition is that
given by the Griinwald-Letnikov approach (o € R):

5
«D¥x(t) = lim L ) (—=1)* <Z‘>x(t—kh), (2.5)

o
h—0 h% =

where £ is the time increment and [v] means the integer part of v.

Several attempts have been made to give a meaningfully interpretation of frac-
tional derivatives/integrals (Nigmatullin, 1992; Rutman, 1994, 1995; Adda, 1997,
Monsrefi-Torbati and Hammond, 1998; Podlubny, 2002; Machado, 2003, 2009).
Podlubny (2002) gives a geometric and physical interpretation to fractional differen-
tiation and integration for various kinds of well-known operators. Machado (2003,
2009), introduces a probabilistic interpretation of the fractional derivative based on
the Griinwald-Letnikov definition. Other different approaches have been proposed
(Nigmatullin, 1992; Rutman, 1994, 1995; Adda, 1997; Monsrefi-Torbati and Ham-
mond, 1998), but at author’s knowledge, no consensual interpretation (geometric or
physical) is yet been established for these operators.

For a wide class of functions, important for applications, definitions (2.4) and
(2.5) are equivalent (Oldham and Spanier, 1974; Podlubny, 1999a; Samko et al.,
1993; Miller and Ross, 1993). This allows one to use the Riemann-Liouville defi-
nition during problem formulation, and then turn to the Griinwald-Letnikov defini-
tion for obtaining the numerical solution. Moreover, an important fact revealed by
both definitions is that the evaluation of fractional-order derivatives in any instant ¢
requires the whole history of y(¢). This means that fractional-order derivatives are
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“global” operators having a memory of the entire past in opposition with the integer-
order derivatives that are “local” operators. This property is being used to model
hereditary and memory effects in most materials and systems. While this brings a
new viewpoint over many areas of science and engineering, it poses, however, eval-
uation problems due to the unlimited memory imposed for their computation (e.g.,
for large values of ¢). To overcome this difficulty, Podlubny (1999a) suggested the
use of the so-called “short memory” principle, which takes into account the behavior
of y(¢) only in the “recent past”, i.e. in the interval [t — L,¢], where L is the “memory
length” and, consequently, maximizing the amount of computation to L seconds.
This method was applied successfully for the numerical solution of linear ordinary
fractional-order differential equations with constant and non-constant coefficients
and non-linear ordinary fractional-order differential equations (Podlubny, 1999a).

The fractional-order derivatives can also be defined in the transform domain. It
is shown that the Laplace transform (L) of a fractional derivative of a signal x(z) is
given by:

n—1
L{D%x(1)} = s*X (s)— ) sE DYy (1) o (2.6)
k=0 =

where X (s) = L{x(#)}. Considering null initial conditions, expression (2.6) reduces
to the simple form (o € RN):

L{D%x(t)} = s*X (s), 2.7

which is a direct generalization of the integer-order scheme with the multiplication
of the signal transform X (s) by the Laplace s-variable raised to a real power o. The
Laplace transform reveals to be a valuable tool for the analysis and design of FOC
systems.

2.2.2 Fractional-Order controllers and their implementation

The FOC concept was first introduced by Oustaloup (1991, 1995), who developed
the so-called CRONE controller. Some earlier authors that produced important re-
sults in the control area include Bode (1945), Tustin et al. (1958) and Manabe
(1961, 1963). Also, Machado (1997, 1999) discussed the design of fractional-order
discrete-time controllers. More recently, Podlubny (1999b) proposed a generaliza-
tion of the PID controller, the PI*D* controller, involving an integrator of order 4
and a differentiator of order . The transfer function G.(s) of such a controller has

the form: U
G(s) = o = p—i-l([f;L +Kps*, A, u>0, (2.8)
E(s)
where E(s) is the error signal and U(s) the controller’s output. The parameters
(Kp,Ki,Kp) are the proportional, integral, and derivative gains of the controller,

respectively.
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The PI*D* controller is represented by a fractional integro-differential equation
of type:
u(t) = Kpe(t) + K;D *e(t) + KpD"e(1). (2.9)

Clearly, depending on the values of the orders A and u, we get an infinite num-
ber of choices for the controller’s type (defined continuously on the (A, tt)- plane).
For example, taking (A, u) ={(1,1),(1,0),(0,1),(0,0)} gives the {PID,PI, PD,P}
controllers. All these classical types of controllers are the particular cases of the frac-
tional PI* D* algorithm. Thus, the PI* D is more flexible and gives the possibility
of adjusting more carefully the dynamical properties of a control system (Podlubny,
1999a,b).

As shown above, the fractional-order operators are characterized by having irra-
tional continuous transfer functions in the Laplace domain or infinite dimensional
discrete transfer functions in time domain. These facts preclude their direct utiliza-
tion both in time and frequency domains. Therefore, the usual approach for the
analysis and synthesis of fractional-order systems is the development of continu-
ous and discrete integer-order approximations of these operators (Machado, 1997,
1999; Vinagre et al., 2000; Chen and Moore, 2002; Vinagre et al., 2003; Charef et
al., 1992; Barbosa et al., 2006; Chen et al., 2004; Carlson and Halijak, 1964).

For instance, the usual approach for obtaining discrete equivalents of continuous
operators of type s* (a € R) adopts the Euler, Tustin and Al-Alaoui generating
functions (Machado, 1997; Vinagre et al., 2000; Chen and Moore, 2002; Vinagre et
al., 2003; Barbosa et al., 2006; Chen et al., 2004; Al-Alaoui, 1993, 1997). However,
the fractional-order conversion schemes lead to non-rational z-formulae. In order to
get rational expressions we may adopt two possibilities. One way is to perform a
power series expansion (PSE) (Taylor series) over them and the final approxima-
tion corresponds to a truncated z-polynomial function (FIR filter) (Machado, 1997;
Vinagre et al., 2000; Barbosa et al., 2006). For example, using the backward Eu-
ler rule, H(z~') = (1 —z")/T, and performing a PSE of [(1 —z~!)/T]* gives the
discretization formula corresponding to the Griinwald-Letnikov definition (2.5):

Do) = 5 = G)OCPSE{“ -,
= (2) e = (5) (el )

where P is a polynomial of degree N and c,Ea) are binomial coefficients which may

be calculated recursively as:

9, c§“>:<1_HT°‘>c,§?3, k=1,2, ... @.11)

Another possible way is to obtain a discrete transfer function in the form of ra-
tional function (i.e., as the ratio of two polynomials) (IIR filter) by application of
the continued fraction expansion (CFE) method (Chen and Moore, 2002; Barbosa
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et al., 2006; Chen et al., 2004). It is well known that the CFE is a method of eval-
uation of functions that frequently converges much more rapidly than power series
expansions, and converges in a much larger domain in the complex plane. A method
for obtaining discrete equivalents of the fractional-order operators, which combines
the well known advantages of the trapezoidal rule (commonly designated as the
Tustin method in the control community) and the advantages of the CFE uses the
generating function:

1\ O
—1\\ & 21—z
== . 2.12
we) = (35 .12)
By doing so over expression (2.12), results in the discrete transfer function,
approximating continuous fractional-order operators, expressed as:

a _M_(g)“ (1—[')“
D (Z>_X(Z)_ 7)) CFES (1 -
- (E)“M_ <E>apo+p1z‘1+---+pmz—m 013
AT Qn(Zil) AT ‘10+6112*1+---+an*” y .

where T is the sampling period, CFE{u} denotes the function from applying the
continued fraction expansion to the function u, Y (z) is the z-transform of the output
sequence y(nT), X(z) is the z-transform of the input sequence x(nT), m and n are
the orders of the approximation, and P and Q are polynomials of degrees m and n,
correspondingly, in the variable 7~ 1.

2.3 Oustaloup’s frequency approximation method

In this study we adopt integer rational transfer functions of the continuous frac-
tional operators introduced by Oustaloup (Oustaloup, 1991; Oustaloup et al., 2000),
and hence commonly named the Oustaloup-recursive-approximation method. So,
in order to implement the term s* (o € R) of the FOC, a frequency-band limited
approximation is used by cutting out both high and low frequencies of transfer func-
tion (s/®,)% to a given frequency range [@p, @], distributed geometrically around
the unit gain frequency w, = (a);,a)h)l/ 2 (Oustaloup et al., 2000), yielding:

The synthesis of such transfer function (2.14) results in a recursive distribution
of poles and zeros, giving:
D(s) = Al/im Dy(s), (2.15)

where
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a N /

o, 1+s/0
Dy (s) = (-) Lts/oj (2.16)

) 2yl +S/wk

and
N+ -4 N+ 1+ §
a)h 2N+1 a)h 2N+1

o, =(—= wp, p=|— . 2.17
‘ <(0b> i ‘ (%) v ( )

Taking N, @y, @, and @, permits the determination of the values of the set of
zeros and poles of (2.17) and consequently, the synthesis of the desired transfer
function (2.16).

2.4 The experimental modular servo system

The Modular Servo System (MSS) consists of the INTECO (Inteco, 2006) digital
servomechanism and open-architecture software environment for real-time control
experiments. The MSS supports the real-time design and implementation of ad-
vanced control methods using MATLAB/Simulink tools.

Fig. 2.1(a) illustrates the MSS setup, which consists of several modules mounted
in a metal rail and coupled with small clutches. The modules are arranged in the
chain such that the DC motor with the generator module is at the front and the
gearbox with the output disk is at the end of the chain, see Fig. 2.1(b).

The DC motor can be coupled with the modules of inertia, magnetic brake, back-
lash and gearbox with the output disk. The angle of rotation of the DC motor shaft
is measured using an incremental encoder. The generator is connected directly to
the DC motor and generates a voltage proportional to the angular velocity.

The servomechanism is connected to a computer where a control algorithm is
implemented based on the measurement of the angular position and/or velocity. The
accuracy of measurement of the position is 0.1% while the accuracy of measured
velocity is 5%. The armature voltage of the DC motor is controlled by a PWM
signal v(r) excited by a dimensionless control signal in the form u(t) = v(¢)/Vyay.
The admissible controls satisfy |u(z)| < 1 and v;ue, = 12 V (Inteco, 2006).

2.5 Mathematical modelling and identification of the servo
system

The experiments in the MSS include the modules of the DC motor with tacho-
generator, inertia load, encoder module and gearbox module with output disk (see
Fig. 2.1).

The linear model of the setup system is represented in Fig. 2.2. It is assumed that
the armature inductance of the motor is negligible. Also, the static and dry frictions,
as well the saturation are neglected. Based on these considerations, the electrical
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(a) Setup

Tachogenerator  DC motor

Pl

Gearbox with
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Magnetic
brake

(b) Mechanical construction

Fig. 2.1 The modular servo system (MSS) (Inteco, 2006).

i(?) +

K.o(t)

Fig. 2.2 Schematic of DC Motor.
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and mechanical equations that model the system are, respectively, given by:

v(t) = Ri(t) + K.00(t), (2.18)

Jo(t) + Bo(t) = Kyi(t), (2.19)

where
v(t) is the applied voltage,
i(¢) is the armature current,
(t) is the angular velocity of the rotor,
R is the resistance of armature winding,
J is the moment of inertia of the moving parts,
B is the damping coefficient due to viscous friction,
K.o(t) is the back electromotive force (EMF),
T = K;i(t) is the electromechanical torque.
By combining expressions (2.18) and (2.19) we get

Tsw(t) + (l)(t) = Ksmv(t)7 (2.20)

where the motor time constant 7y and motor gain Ky, are given by:

RJ K
Ty=————r, K= (2.2
BR + Kel(t BR + KeKt
The transfer function for the motor velocity @(¢) has the form:
@ (S) Kon
G(s) = = . 2.22
)=V " Tt (2:22)

The control applied to the system has the form of a PWM signal. Thus, we as-
sume the dimensionless control signal as the scaled input voltage, u(t) = v(¢) /Vinax-
The admissible control satisfies |u(t)| < 1. With respect to Ky = Ky Vingx We obtain
the transfer function in the form:

o(s) K
V(s) Ts+1’

where the parameters K; and 7; must be identified by the user.

For the identification process, a unit step input signal, u(r) = 1(¢), is applied to
the servo system and the angular velocity versus time is acquired. Next, the least
squares method is used to find the system parameters of transfer function (2.23).

Figure 2.3 shows the velocity obtained from the measurements and the velocity
calculated from the model (2.23). Clearly, the fitting of both curves is good. The
calculated values of system parameters are Ky = 203.5344 rad/s and Ty = 0.8258 s.
We must note that these values were obtained for the configuration described in
the first paragraph of this section and that other setup of the system will generate
different parameters.

G(s) = (2.23)
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Fig. 2.3 Measured and simulated velocities.

2.6 Fractional-order real-time control system

The MSS setup for the experiments include the modules of DC motor with tacho-
generator, inertia load, encoder and gearbox with output disk (see Fig. 2.1).

All real-time control experiments are performed using the MATLAB/Simulink
real-time model of Fig. 2.4. A fixed-step solver (Euler’s integration method) with a
step size of 0.01 (sampling period of T = 0.01 s) is chosen.

Reference

& Velocity
Control
]
T
> Velocity & Reference D
N »
10.25+ 1 [ Filtered control
L P Simple filter 1
I - 1% rad-to-rad/s =
+ PID
1T Control " | Angle (encoder)
tep Saturation L
- = Velocity (tacho)
Reset
o : ]
(0] " Reset Servo ot 0.055+1
Normal Reset Simple filter
Encoders ) )
real-time only Filtered velocity|

Fig. 2.4 Real-time model with the fractional PID controller (adapted from (Inteco, 2006)).
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The fractional term s* (@ € R) in the fractional PID controller transfer function
(2.8) is implemented by using the Oustaloup’s frequency approximation method de-
scribed in Section 2.3. The values used were N = 5, @, = 1 rad/s and @y, = 1000 rad/s.

The fractional-order controllers are implemented in digital form by discretiza-
tion of the continuous controller transfer functions. The discretization technique
used consists in the bilinear (or Tustin’s) approximation with a sampling period of
T =0.01s.

This work investigates the application of several types of fractional PIDs in the
control of the angular velocity of the servo systems in which were was adopted the
D*-controller, the I*-controller, the PI*-controller and the PI* D-controller, corre-
spondingly given by the transfer functions (¢, A > 0):

Ge (s) = KpsH, (2.24)

K
Ge(s) ==, (2.25)

A

K

G.(s) = Kp+ s_’{ (2.26)

K
Ge(s) =Kp+ S—; +Kps, (2.27)

where the gains (Kp, K;, Kp) and orders (i, A) of the FOCs are the parameters to
be tuned.

In order to assure a good steady state error, the term 1/ s* in expressions (2.25)-
(2.27) must be implemented by means of an integer integrator (Franklin et al., 2006;
Axtell and Bise, 1990). The modified integral term of the mentioned FOCs is then

given in the form:
1-A
P=K>—, 0<A<l (2.28)
s

The steady-state behavior could be also improved by multiplying the FOC by a
term of the form (s+ 17)/s, with 1) being a small value (Feliu-Batlle et al., 2007).

2.7 Ziegler-Nichols tuning rules

Ziegler and Nichols (1942) proposed two methods for tuning the controller param-
eters based on the transient response characteristics of a given plant. In the first
method, the choice of controller parameters is designed to result in a closed-loop
step response transient with a decay ratio of approximately 0.25 (that is, the tran-
sient decays to a quarter of its value after one period of oscillation). In the second
method, the criterion for tuning the controller parameters consists in evaluating the
system at the limit of stability (ultimate sensitivity method). Here, the proportional
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gain is increased until the system becomes marginally stable and we observe contin-
uous oscillations. The corresponding gain K, and the period of oscillation P, (also
called ultimate gain and ultimate period, respectively) are then determined (Franklin
et al., 2006). In this section, we will apply both methods to the servo system.

Several works for tuning fractional/integer order PID controllers based on Ziegler-
Nichols rules have been proposed (Barbosa et al., 2008a,b; Valério and da Costa,
2006a,b). Barbosa et al. (2008a,b) investigated the adoption of different fractional
PID algorithms in the velocity control of an experimental servo system by using
the Ziegler-Nichols rules. In (Barbosa et al., 2008a), they used the ultimate sensi-
tivity method while in (Barbosa et al., 2008b) the quarter-decay ratio was adopted.
The fractional orders, as well the constants of the controllers, were varied and their
effect on system’s performance was analyzed. It was shown that the FOCs can ef-
fectively enhance the system performance providing extra tuning parameters useful
for the adjustment of the control system dynamics. Also, the Zeigler-Nichols rules
revealed to be simple and effective in the final tuning of the fractional algorithms.
Valério and da Costa (2006b) developed tuning rules for fractional PID controllers.
These rules are quadratic and require the same plant time-response used by the
quarter-decay ratio Ziegler-Nichols rules for integer PID. The fractional PID tuned
with these rules compare well with integer PID tuned according to the Ziegler—
Nichols rules, and provide a roughly constant overshoot when the gain of the plant
undergoes variations. Also, in (Valério and da Costa, 2006a) the same authors have
developed tuning rules for integer PIDs that behave, to the possible extent, as frac-
tional PIDs, while keeping the simplicity of the Ziegler-Nichols rules. The results
obtained showed that the rules lead to PID controllers that behave better than those
tuned using Ziegler-Nichols rules, but worst than ruled-tuned fractional PIDs (which
follow more complex specifications with greater ease).

2.7.1 Ziegler-Nichols tuning rules: quarter decay ratio

Ziegler and Nichols (Z-N) recognized that the step responses of a large number of
process control systems exhibit a process reaction curve like that shown in Fig. 2.5.

The S-shape of the curve is characteristic of many higher-order systems, and
such plant transfer function may be approximated by a first-order system plus a
time delay (FOPTD) of ¢; seconds:

Y(s) Ae'
U(s) ts+1°

(2.29)

where 7 is the system time constant and A is the gain. The parameters (A,7,,T) are
determined from the unit step response of the process. If a tangent is drawn at the
inflection point of the S-shaped curve, then the slope of the line is R =A/7 and the
intersections of the tangent line with the time axis and line y(z) = A identify the time
delay L =t; and time constant 7 (Franklin et al., 2006).
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Fig. 2.5 Process reaction curve.

The choice of controller parameters is designed to result in a closed-loop step
response transient with a decay ratio of approximately 0.25 in one period of os-
cillation. This corresponds to { = 0.21 and is a good compromise between quick
response and adequate stability margins. Table 2.1 lists the controller parameters
suggested by Ziegler and Nichols to tune the proportional gain K, integral time 77,
and derivative time Tp.

Once the values of T; and Tp have been obtained, the gains K; and Kp, are com-

puted as:
Kp
K= T Kp = KpTp. (2.30)

Table 2.1 Ziegler-Nichols tuning for the controller G, (s) = Kp (1 + 1/T;s + Tps), for a decay ratio
of 0.25.

Type of controller K, Tr Tp
1
P — oo 0
RL
PI 09 L 0
RL 0.3
PID 1.2
7L 2L 0.5L

For the identification of the FOPTD model parameters, a unit step input is ap-
plied to the system and the process reaction curve is acquired, as shown in Fig. 2.6.
Note that the response is slightly different of that of Fig. 2.3, particularly in what
concerns the gain of the system. This fact is a consequence of variation of the system
dynamics over time, since these responses were obtained in different times.
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Fig. 2.6 Unit step response of the servo system.

Following the method of Ziegler-Nichols we identify the parameters A = 187.2106,
7=1.1841 and L = 0.1753. The integer PID parameters are then calculated accord-
ing to the formulae given in Table 2.1.

In the next experiments, a velocity step input of amplitude 40 rad/s is applied
to the closed-loop servo system (Fig. 2.4) and the angular velocity versus time is
acquired for different types of fractional PID controllers. The obtained experimental
responses are then presented and analyzed.

Figures 2.7—2.10 illustrate the velocity responses of the experimental system
with the D, I ’1, PI* and PI*D controllers, respectively, for several values of deriva-
tive order u and integrative order A. In all the cases, the gains Kp, Kp and K; are
fixed and given by the following rules:

e For the D* and I* controllers we have used the proportional gain of the integer
P controller obtained from application of the Z-N rules (see Table 2.1), that is,
Kp =K; =1/RL=0.0361.

e For the PI* we have used the parameters of the integer PI obtained from ap-
plication of the Z-N rules (see Table 2.1), that is, Kp = 0.9/RL = 0.0325 and
K; =0.3K,/L=0.0556.

e For the PI*D we have used the parameters of the integer PID obtained from
application of the Z-N rules (see Table 2.1), that is, Kp = 1.2/RL = 0.0433,
K =K,/(2L) =0.1235 and Kp = 0.5LKp = 0.0038.



Ramiro S. Barbosa, Isabel S. Jesus, Manuel F. Silva, J. A. Tenreiro Machado

58
50 T T T T
! - _
! \‘/ K,=0.0361, p =0 (P-Controller)
a0 A
(Y
— \ /-\,—-_-—-—-————————-
< 30r
g
£z
Q
S 20 .
o
>
ks
& _
S 10r L=02 p=01
u=03
u=04
0 .
u = 0.5, D*—Controller
_10 1 1 1 1
0 2 4 6 8 10
Time [s]
Fig. 2.7 Velocity response of the real-system with the D* controller and u = {0,0.1,0.2,

0.3,0.4,0.5}.
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Fig. 2.8 Velocity response of the real-system with the 1* controller and A = {0,0.1,0.3,0.5,0.7}.
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Fig. 2.9 Velocity response of the real-system with the PI* controller and 2={0.3,0.5,0.7,0.9,1}.
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Fig. 2.10 Velocity response of the real-system with the PI*D controller and A = {0.2,0.4,
0.6,0.8,1}.

2.7.2 Ziegler-Nichols tuning rules: oscillatory behavior

In the second method, a P controller is applied to the velocity servo system until the
system shows non-decaying oscillations, as shown in Fig. 2.11. The ultimate gain



60 Ramiro S. Barbosa, Isabel S. Jesus, Manuel F. Silva, J. A. Tenreiro Machado

and period yield K, = 0.08 and P, = 0.74 s, respectively. The controller parameters
are then calculated according to the Ziegler-Nichols rules illustrated in Table 2.2.
Once the values of T; and Tp have been obtained, the gains K; and K are computed
by using formulae (2.30).

50 T T T

45/\ /\ /\ j

— 40
3
RS}
£ 35
=S
)
>
g
B 30
S}
<
25 <«<——P =074 ——>
20 1 1 |
7.5 8 8.5 9 9.5
Time [s]

Fig. 2.11 Ultimate gain K,, = 0.08 and ultimate period P, = 0.74s.

Table 2.2 Ziegler-Nichols tuning for controller G.(s) = Kp(1 + 1/T;s + Tps) based on oscillatory
behavior.

Type of controller K, T; p
P 0.5K, oo 0
PI 0.45K, LP 0
e 127"
PID 0.6K, 1P 1P
-OR”y ) u 3 u

Once more, a velocity step input of amplitude 40 rad/s is applied to the closed-
loop servo system (Fig. 2.4) and the angular velocity versus time is acquired for
different types of fractional PID controllers. The obtained experimental responses
are then presented and analyzed.
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Figures 2.12—2.14 illustrate the velocity responses of the experimental system
with the DH, I* and PI* controllers, respectively, for several values of derivative
order u and integrative order A. In all the cases, the gains Kp, Kp and K are fixed
and given by the following rules:

e For the D* and I controllers we have used the proportional gain of the integer
P controller obtained from application of the Z-N rules (see Table 2.2), that is,
Kp = K; =0.5K, = 0.04.

e For the PI* we have used the parameters of the integer PI obtained from ap-
plication of the Z-N rules (see Table 2.2), that is, Kp = 0.45K,, = 0.0364 and
K; =1.2Kp /P, = 0.0590.

50 — : : .
I~ Kp — 0.04, u = 0 (P-Controller)
40
IS S e N = e —
30 |

Angular velocity [rad/s]

20 [L -Y\ \ |
f \ R

1 =0.45, D"— Controller

=10 I 1
0 2 4 6 8 10

Time [s]

Fig. 2.12 Velocity response of the real-system with the D* controller and p = {0,0.05,0.15,
0.25,0.35,0.45}.

2.7.3 Comments on the results

From the analysis of previous Figs. 2.7—2.10 and 2.12—2.14, we conclude that
the application of both Z-N tuning methods leads to similar results. However, the
velocity responses differ from the application of different fractional PID controllers.

In fact, Figs. 2.7 and 2.12 reveal that the steady-sate error increases as the order
u of the D* controller increases. The variation of the gain Kj was also tested (with
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a fixed value of the derivative order) and, as expected, the system showed a dimin-
ishing steady-state error as Kp increases. However, the overshoot and settling time
are more acceptable for the case where the order u is changed. We verify that the
extra degree of tuning provided by the fractional algorithm, in comparison to the
classical P controller, may be useful to yield a satisfactory control. In Figs. 2.8 and
2.13, we observe that the steady-state error due to the use of an I* controller is very
small. We must note that the real system is nonlinear and, therefore, the oscillations
are damped very quickly. Once more, we verify that the fractional order A is a very
useful parameter for adjusting the dynamics of the control system. In fact, the order
A has a large influence upon the system dynamics, as illustrated in Figs. 2.8 and
2.13. As in previous case, Figs. 2.9, 2.10 and 2.14 show that the steady-state error
is very small and that the order A has a large influence in the overshoot and settling
time of the system. An adequate phase margin can be easily established by a proper
choice of A. However, the output converges to its final value more slowly, as should
be expected by a weak fractional integral term.

2.8 A simple analytical method for tuning fractional-order
controllers

In his work on design of feedback amplifiers, Bode suggested an ideal shape of the
loop transfer function of the form (Bode, 1945; Astrom, 2000):

L(s) = (ﬂ)a 2.31)

N

where @, is the gain crossover frequency and o is an arbitrary non-integer value.
Bode called (2.31) the ideal cut-off characteristic, but in the terminology of auto-
matic control it is best known as the Bode’s ideal loop transfer function. The slope
a is typical positive. In this study we consider 1 < o < 2.

The interpretation of loop transfer function (2.31) in the frequency domain is
very simple. The Bode diagram of amplitude is simply a straight line of slope —20a
dB/dec, while the phase curve is a horizontal line positioned at — /2 rad (see Fig.
2.15). The Nyquist curve is a straight line through the origin with arg L(jow) =
—om/2 rad.

This choice of L(s) gives a closed-loop system with the desirable property of
being insensitive to gain changes. If the gain changes, the crossover frequency @,
will change, but the phase margin of the system remains PM = 7(1 — ¢/2) rad,
independently of the value of the gain (see Fig. 2.15). The gain margin is infinite.
The slopes & = 1.333, 1.5 and 1.667 correspond to phase margins of PM = 60°, 45°
and 30°, respectively.

The transfer function (2.31) is irrational for non-integer values of «. Therefore,
for its practical implementation, it will be approximated by a rational transfer func-
tion of type (2.16), that is, with a recursive set of poles and zeros over a specified
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Fig. 2.15 Bode diagrams of amplitude and phase of L(jo) for | < a < 2.

band of frequencies. Bode suggested that it is sufficient to approximate L(s) over a
frequency range of interest around the crossover frequency ;.

Several studies for tuning fractional, as well integer, controllers have been pro-
posed based on Bode’s ideal loop transfer function (Barbosa et al., 2004b; Karimi et
al., 2002a,b; Barbosa et al., 2003, 2004a; Chen et al, 2003; Chen and More, 2005;
Djouambi et al., 2008). Barbosa et al, (2003, 2004a,b) suggested the use of the
Bode’s ideal shape as reference function for the tuning of integer PID controllers.
They verified that specifying a desired gain crossover frequency and the slope at
that frequency (which is equivalent to defining a specific phase margin), and min-
imizing a performance criterion like the integral of square error (ISE), can ensure
that the phase around the gain crossover frequency is nearly flat. Assuring this fea-
ture, we then obtain closed-loop systems more robust to gain variations and step
responses exhibiting an almost iso-damping property. Adopting a similar approach,
Y.Q. (Chen et al, 2003; Chen and More, 2005) proposed a PID tuning method for a
class of unknown, stable and minimum phase plants. They designed a PID controller
to ensure that the phase plot is flat at a given frequency called “tangent frequency” so
that the closed-loop system is robust to gain variations and that the step responses
exhibit an iso-damping property. With this method, no plant models are assumed
during the PID controller design; only several relay tests are needed. More recently,
Djouambi et al. (2008) proposed a method for tuning a controller that guarantees
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that the open-loop transfer function of a unity feedback control system will be the
Bode’s ideal transfer function. Like the case of the above cited works, the idea of the
proposed controller is to assure a flat phase around the crossover frequency so that
the closed-loop system is robust to gain variations and the step response exhibits an
iso-damping property. The proposed method is based on the rational approximation
of the fractional-order operators (Charef et al., 1992), which can somehow be ma-
nipulated to easily control the width and the position of the flat phase to achieve the
desired performances.

2.8.1 The proposed analytical tuning method

Here we outline a simple analytical method for tuning fractional-order controllers
based on Bode’s ideal loop transfer function (Barbosa et al., 2004b; Astrom, 2000).
Let us consider again the mathematical model of the velocity servo system:

K
Gls) = Ts+1

Since L(s) = C(s) G(s), the controller transfer function that gives the Bode’s
ideal loop transfer function (2.31) has the form:

(2.32)

Ts+1
C(s)=Kp R (2.33)
which can be expressed as
1
C(s) =Kp <s_°‘ + Tsl_“> . (2.34)

As can be seen by expression (2.34), the transfer function is, in fact, a DM
controller of fractional integration A and fractional derivation i (where 4 =1—1).
The time-domain equation of the controller C(s) is:

u(t)=Kp (D;%(t) +TD} % (t)). (2.35)
The open-loop transfer function L (s) = C(s) G (s) is then given by:

K,K

L(S):s_a’ l<oa<2. (2.36)

The phase margin ¢,, of the system and the controller’s gain can be calculated
through the relations:

Om = +argL(j,) :7c<1—%>, 2.37)

X

IL(jo:)|=1 = K =% (2.38)
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where @, is the gain crossover frequency. So, given a specified phase margin, from
(2.37) we get the fractional order & and, given the gain crossover frequency, we get
from relation (2.38) the controller gain Kp.

Therefore, the parameters of the fractional controller (2.33) are tuned to attain
two specifications: the desired phase margin ¢,,, which provides the adequate over-
shoot of the system; and the gain crossover frequency @,, which defines the desired
speed of response of the system.

The design procedure can be outlined as follows:

1. Find the fractional order o by using formula (2.37) from the desired phase margin
Om;

2. Calculate the proportional gain Kp by using formula (2.38) from the gain crossover
frequency @, and the nominal gain of the system process K.

As an example, the closed-loop system should satisfy the following specifica-
tions:

1. Phase margin ¢, = 60°;
2. Gain crossover frequency w, = 1 rad/s.

The parameters of the servo system obtained from the identification experiment
of Section 2.5 are K = 203.5344 and T = 0.8258 s. Following the above design
procedure, the parameters of the FOC are o = 1.333 and Kp = 0.0049. So, the
transfer function of the fractional controller is:

0.8258s+1

=0.0049 ————+—
C(s) $1333

(2.39)

Once again, a velocity step input of amplitude 40 rad/s is applied to the closed-
loop servo system with fractional controller (2.39) and the angular velocity versus
time is acquired for several different design specifications. Next, the obtained ex-
perimental responses are presented and analyzed.

Figure 2.16 shows the experimental velocity step responses of the servo system
for the phase margins ¢,, = {30°, 45°, 60°, 80°} and the same gain crossover fre-
quency . = 1 rad/s while the corresponding control signals are shown in Fig. 2.17.
In Fig. 2.18 we show the experimental velocity step responses of the servo system
for ¢,, = 45° and . = {0.5, 0.75, 1, 1.5} rad/s. Figure 2.19 illustrates the corre-
sponding control signals.

From the results, we verify that the system behaves like the desired specifications.
That is, with the phase margin we change mainly the overshoot of the closed-loop
response and with the crossover frequency we change the speed of response, al-
though, in this case, the overshoot is also slightly changed. Therefore, we prove the
effectiveness of the simple analytical method for tuning FOCs and its applicability
in the velocity control of a servo system.
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Fig. 2.16 Velocity response of the real-system with the fractional controller (2.39) and
om = {30°, 45°, 60°, 80°}.
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Fig. 2.17 Control signal of the real-system with the fractional controller (2.39) and
om = {30°, 45°, 60°, 80°}.
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Fig. 2.18 Velocity response of the real-system with the fractional controller (2.39) and

o. = {0.5,0.75,1, 1.5} rad/s.
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2.9 Application of optimal fractional-order controllers

In recent years, the number of works dedicated to the design of optimal fractional-
order controllers has been increasing (Leu et al., 2002; Xue et al., 2006; Jesus et
al., 2006b, 2007a; Machado et al., 2006; Jesus and Machado, 2007; Jesus et al.,
2007b; Jesus and Machado, 2008b; Jesus et al., 2008b). Leu et al. (2002) proposed
the design of a fractional PID controller by taking both time and frequency domain
specifications. The controller parameters and the fractional orders of the fractional
PID controller are determined to minimize an integral square error (ISE) perfor-
mance index while satisfying the specified gain and phase margins. A comparison
between optimal fractional PID and optimal integer PID algorithms is presented for
controlling integer as well fractional processes. The design examples show that the
performance of the control system can significantly be improved by using a frac-
tional PID. Xue et al. (2006) investigated the use of a fractional PID for a position
servomechanism control system considering actuator saturation and the shaft tor-
sional flexibility. Extensive simulations of the position servomechanism controlled
by optimal integer PID/PI and optimal fractional PID/PI algorithms are presented to
illustrate the superior robustness of the fractional scheme. It was shown that the best
fractional PID works better than the best integer PID. Jesus et al. (2006b, 2007a) an-
alyzed the heat diffusion system in the perspective of fractional calculus by applying
a conventional PID controller. The PID parameters are tuned by using the so-called
Ziegler-Nichols open loop (ZNOL) method (Jesus and Machado, 2008a; Machado
et al., 2006). However, the poor results indicated that the method of tuning might
not be the most adequate for the control of the heat system. Therefore, in (Jesus
et al., 2007a,b) they proposed the use of FOCs tuned through the minimization of
the ISE, ITSE, IAE and ITAE indices. The results demonstrate the effectiveness of
the FOCs when used for the control of fractional systems. More recently, in (Jesus
et al., 2008b) a nonlinear controller (NLC) with a fractional model was presented
and compared with other algorithms. The results reveal the superior performance of
the NLC based on the fractional algorithm, namely in the dynamics of systems of
non-integer order.

In this section we will apply several optimal fractional/integer PID controllers to
the velocity control of the servo system. The presence of the phenomena of satura-
tion and backlash in the servo system are analyzed also in this study. For that, we
consider again the servo (real-time) feedback control system illustrated in Fig. 2.4.
The controller is given by a PID/PI AD controller and the nonlinearity (Figure 2.20)
is described by equation:

. m, |m| < 9,
n(m) = { §sign(m), |m|> 8, 240

where sign(m) is the signal function.

The controller is tuned by the minimization of an integral performance index.
For that purpose, we analyze the indices that measure the response error, namely
the integral absolute error (IAE) and the integral time absolute error (ITAE) criteria,
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Fig. 2.20 Non-linearity of the saturation type (6 = [—1, 1]), inserted in the closed-loop system.
defined as: -
IAE:/ Ir () — ¢ (1) dt, (2.41)
0
ITAE — / 1 (1) — e (1) dr, (2.42)
JO

where r(¢) is the input reference to the system and ¢(¢) the corresponding response
of the closed-loop system.

We can use other performance criteria, such as the integral square error (ISE) or
the integral time square error (ITSE); however, in the present case, the IAE and the
ITAE criterion produce the best results and are adopted in the study.

Another possible performance index consists on the energy E, at the controller
output n(t), given by the expression:

T.
E, = / n?(t)dt, (2.43)
0]

where T, is the time window needed to stabilize the system output c(z).

2.9.1 Tuning of the PID and PI* D controllers

In this work we compare the performances of two controller architectures, namely
an integer PID and a FOC of type PI*D, when controlling the servo system without
or with backlash for the IAE and ITAE indices.

Once more, a velocity step input of amplitude 40 rad/s is applied to the closed-
loop servo system with the optimal integer/fractional PID controllers and the angu-
lar velocity versus time is acquired.

The first step in the work consisted in tuning both control schemes in the per-
spective of optimizing the IAE and ITAE indices.

Table 2.3 presents the results of tuning both control algorithms, when minimizing
the TAE index, and using the servo system without the presence of backlash. In this
table is depicted the optimum value of the fractional order A for the integrative term
of the PI*D (A = 0.8), the minimum values of the IAE and the controller energy and
the corresponding parameters (Kp, K;, Kp) for the PI*D and PID controllers. Also,
it is given some specifications that characterize the system time response, namely:
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Table 2.3 Optimum values for the integer PID and fractional PI* D controllers, and corresponding
values of the IAE, controller parameters (Kp, K;, Kp) and time specifications (PO, t,, t,) for the
system without backlash.

A TIAE E, Kp K; Kp PO (%) t t

1.00 34.0668 2.8269  0.0998 0.0375 0.0027 35.1405 027 8.19

0.80 17.8305 1.8528  0.0397  0.0348  0.0041 247334 028 2.93

The percentual overshoot, PO;
The rise time, t,;
And the settling time, ;.

Analysing this table we conclude that the PI*D scheme leads not only to lower
values of the index IAE and of the controller energy E,, but also to a better transient
response with lower values of PO and ;.

Table 2.4 presents the results of tuning both control algorithms, when minimizing
the TAE index, and using the servo system in the case of having backlash. In this
table is presented the optimum value of A of the PI*D, the minimum values of
the TAE, the controller energy E,, the controller parameters (Kp, K;, Kp) and the
specifications (PO, t,, t;) for the PI 2D and PID controllers.

Table 2.4 Optimum values for the integer PID and fractional P/ 2D controllers, and corresponding
values of the IAE, controller parameters (Kp, K;, Kp) and time specifications (PO, t,, t,) for the
system with backlash.

A TIAE E, Kp K; Kp PO (%) t, ts

1.00  30.4017 2.8335  0.0998  0.0375  0.0027 33.6425 028  7.01

0.80 18.1299  2.0250  0.0397  0.0348  0.0041 234787 029 288

It is possible to conclude that, as in the previous case of the system with backlash,
the PI*D scheme, with A = 0.8, leads not only to lower values for the IAE and for
the controller energy E,, but also to a faster transient response having lower values
of the PO and t,.

The previous tuning procedure is now repeated considering the minimization of
the ITAE index.

Table 2.5 presents the results of tuning both algorithms, when minimizing the
ITAE, and using the servo system without the presence of backlash. In this table is
presented the optimum value of A of the PI AD, the minimum values of the ITAE, the
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controller energy E,, the controller parameters (Kp, K;, Kp) and the specifications
(PO, t,,t5) for the PI* D and PID controllers.

Table 2.5 Optimum values for the integer PID and fractional PI* D controllers, and corresponding
values of the ITAE, controller parameters (Kp, K;, Kp) and time specifications (PO, t,, t;) for the
system without backlash.

A ITAE E, Kp K; Kp PO (%) t t;

1.00  62.6920  2.2555  0.0671 0.0373  0.0015 404646 027 490

0.85  39.8773 1.6899  0.0243  0.0353  0.0062 16.5204 040  3.35

Analyzing the values presented in Table 2.5 we conclude that, like in the previous
cases of the IAE with or without the backlash, the PI*D scheme, with A = 0.85,
leads to lower values for the ITAE and for the controller energy E,, and also gives a
faster transient response with lower values for PO and ;.

Finally, Table 2.6 presents the results of tuning both algorithms, when minimiz-
ing the ITAE, and using the servo system in the case of having backlash. In this
table is presented the optimum value of A of the PI*D, the minimum values of
the ITAE, the controller energy E,, the controller parameters (Kp, K;, Kp) and the
specifications (PO, t,,ts) for the PI*D and PID controllers.

Table 2.6 Optimum values for the integer PID and fractional PI* D controllers, and corresponding
values of the ITAE, controller parameters (Kp, K;, Kp) and time specifications (PO, t,, t;) for the
system with backlash.

A ITAE E, Kp K; Kp PO (%) t, ts

1.00  57.2717 23740  0.0671 0.0373  0.0015 377394 028  4.98

0.85  39.9524 1.9431 0.0243  0.0353  0.0062 16.0887  0.41 3.36

Observing the values presented in Table 2.6 we can conclude again that the PI*D
scheme, with A = 0.85, leads to lower values for the ITAE and for the controller en-
ergy E,, and (as previously) gives also a faster transient response with lower values
for PO and t;.

Comparing the results presented in Tables 2.3-2.6 we conclude that the PI*D
controller (with A € [0.8, 0.85]) minimizes the controller energy E,, when control-
ling the servo system with or without the presence of backlash. Furthermore, it also
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leads to a faster transient response with lower values of time specifications PO and
t, for both situations.

Comparing the results in the tables, we may conclude that when the control algo-
rithms are tuned using the minimization of the ITAE, both the controller energy and
the percentual overshoot are lower, when adopting the PI*D. In this case, it is then
preferable to tune the control algorithm by minimizing the ITAE. However, these
results are obtained at the cost of an increase in the values of #, and #,.

The same conclusions can be drawn analyzing Figs. 2.21 — 2.28. Figs. 2.21 and
2.22 show the velocity step responses of the closed-loop system, for the integer PID
tuned in the IAE and the ITAE perspectives, respectively, without or with backlash.
We note that the responses are very similar, if we look at specifications PO and ¢,
for both situations.
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Fig. 2.21 Comparison of the velocity response without or with backlash, under the action of a PID
controller, tuned in the viewpoint of the minimization of the IAE.

Figures 2.23 and 2.24 illustrate the velocity step responses of the closed-loop
system, for the PI*D tuned in the IAE and the ITAE perspectives, respectively,
without or with backlash. From these figures, we observe that when the controller
is tuned from the viewpoint of minimizing the IAE the step response show higher
PO and longer t;. Also, in both cases, we note that the responses are almost equal,
independently of the fact of the system including backlash or not.

Figures 2.25 and 2.26 show the velocity step responses of the closed-loop sys-
tem, for the integer PID and the fractional PI*D controllers tuned in the IAE and
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Fig. 2.22 Comparison of the velocity response without or with backlash, under the action of a PID
controller, tuned in the viewpoint of the minimization of the ITAE.
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Fig. 2.23 Comparison of the velocity response without or with backlash, under the action of a
PI*D controller, tuned in the viewpoint of the minimization of the IAE.
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Fig. 2.25 Comparison of the velocity response, under the action of a PID and PI* D controller,
tuned in the viewpoint of the minimization of the IAE, when the system is backlash free.
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Fig. 2.26 Comparison of the velocity response, under the action of a PID and PI*D controller,
tuned in the viewpoint of the minimization of the ITAE, when the system is backlash free.
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Fig. 2.27 Comparison of the velocity response, under the action of a PID and PI*D controller,
tuned in the viewpoint of the minimization of the IAE, when the system includes backlash.
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the ITAE perspectives, respectively, without system backlash. We conclude that the
PI*D controller presents a better transient response, namely it reveals a lower PO
and smaller z;. These results are independent of the criteria followed to tune the
control scheme.

Figures 2.27 and 2.28 illustrate the velocity step responses of the closed-loop
system, for the integer PID and the fractional PI*D controllers tuned in the IAE
and the ITAE perspectives, respectively, when the system includes backlash. As
previously observed in Figures 2.25 and 2.26, we conclude also that the PI AD con-
troller presents a better transient response, revealing a lower PO and smaller z,. In
the same way, these results are independent of the indices minimized to tune the

control scheme.
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Fig. 2.28 Comparison of the velocity response, under the action of a PID and PI*D controller,
tuned in the viewpoint of the minimization of the ITAE, when the system includes backlash.

2.10 Conclusions

In this chapter we investigated the velocity control of a servo system by using several
fractional PID controllers and tuning methods:

e First, we adapted the well-known Ziegler-Nichols rules for the tuning of frac-
tional PID controllers. It was shown that the FOCs can effectively enhance the
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control system performance providing extra tuning parameters useful for the ad-
justment of the control system dynamics. The Ziegler-Nichols rules revealed to
be simple and effective in the final tuning of the FOCs;

e Second, a simple analytical tuning method was devised and used to tune a FOC.
With this method it is possible to attain two design specifications: one to establish
the overshoot of the closed-loop system, and the other to define the speed of
response of the system. The FOC tuned by this method was applied to the servo
system proving to be effective;

e Third, several optimum fractional PID controllers were proposed for the control
of the servo system. The controllers were tuned by using the IAE and ITAE per-
formance indices. With the ITAE the advantage of using FOCs is more evident,
revealing better transient response and smaller controller energy. Furthermore, it
was shown that the system with the FOCs performs better than the integer PID
without or with the presence of backlash.
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Chapter 3
Differential-Delay Equations

Richard Rand

Abstract Periodic motions in DDE (Differential-Delay Equations) are typically
created in Hopf bifurcations. In this chapter we examine this process from several
points of view. Firstly we use Lindstedt’s perturbation method to derive the Hopf Bi-
furcation Formula, which determines the stability of the periodic motion. Then we
use the Two Variable Expansion Method (also known as Multiple Scales) to inves-
tigate the transient behavior involved in the approach to the periodic motion. Next
we use Center Manifold Analysis to reduce the DDE from an infinite dimensional
evolution equation on a function space to a two dimensional ODE (Ordinary Dif-
ferential Equation) on the center manifold, the latter being a surface tangent to the
eigenspace associated with the Hopf bifurcation. Finally we provide an application
to gene copying in which the delay is due to an observed time lag in the transcription
process.

3.1 Introduction

Some dynamical processes are modeled as differential-delay equations (abbreviated
DDE). An example is
dx(t)
dt
Here the rate of growth of x at time ¢ is related both to the value of x at time ¢, and
also to the value of x at a previous time, t — 7.
Applications of DDE include laser dynamics (Wirkus and Rand, 2002), where
the source of the delay is the time it takes light to travel from one point to another;
machine tool vibrations (Kalmar-Nagy et al., 2001), where the delay is due to the

:—x(t—T)—x(t)S. (3.1)
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dependence of the cutting force on thickness of the rotating workpiece; gene dy-
namics (Verdugo and Rand, 2008a), where the delay is due to the time required for
messenger RNA to copy the genetic code and export it from the nucleus to the cyto-
plasm; investment analysis (Kot, 1979), where the delay is due to the time required
by bookkeepers to determine the current state of the system; and physiological dy-
namics (Camacho et al., 2004), where the delay comes from the time it takes a
substance to travel via the bloodstream from one organ to another.
A generalized version of Eq.(3.1) is

dx(t)
dt

=ox(t) + Bx(t —T)+ f(x(t),x(t —T)) (3.2)

where o and f3 are coefficients and f is a strictly nonlinear function of x(¢) and
x(t — T). Here the linear terms ox(r) and Bx(t — T') have been separated from the
strictly nonlinear terms, a step which facilitates stability analysis.

3.2 Stability of equilibrium
Equation (3.2) has the trivial equilibrium solution x(¢) = 0. Is it stable? In order to
find out, we linearize Eq.(3.2) about x = 0:

dx(t)
dt

=ox(t)+Bx(t—T). (3.3)
Since Eq.(3.3) has constant coefficients, we look for a solution in the form x = M s
which gives the characteristic equation:

A=a+pe . (3.4)

Equation (3.4) is a transcendental equation and will in general have an infinite num-
ber of roots, which will either be real or will occur in complex conjugate pairs. The
equilibrium x = 0 will be stable if all the real parts of the roots are negative, and
unstable if any root has a positive real part. In the intermediate case in which no
roots have positive real part, but some roots have zero real part, the linear stability
analysis is inadequate, and nonlinear terms must be considered.

As an example, we consider Eq.(3.1), for which Eq.(3.4) becomes

A =—e? (3.5)

Since A will be complex in general, we set A = v + i@, where v and @ are the real
and imaginary parts. Substitution into Eq.(3.5) gives two real equations:

v=—e"TcoswT, (3.6)
o =e¢ "TsinoT. (3.7)
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The question of stability will depend upon the value of the delay parameter T'. Cer-
tainly when 7' = 0 the system is stable. By continuity, as 7T is increased from zero,
there will come a first positive value of T for which x = 0 is not (linearly) stable.
This can happen in one of two ways. Either a single real root will pass through
the origin in the complex-A plane, or a pair of complex conjugate roots will cross
the imaginary axis. Since v=w=0 does not satisfy Eqs.(3.6) and (3.7), the first case
cannot occur.

In order to consider the second case of a purely imaginary pair of roots, we set
v =0in Eqgs.(3.6) and (3.7), giving

0= —coswT, (3.8)
o = sinwT. (3.9)

Equation (3.8) gives wT=n/2, whereupon Eq.(3.9) gives @ = 1, from which we
conclude that the critical value of delay T= T.,=n/2. That is, x = 0 in Eq.(3.1) is
stable for T < 7/2 and is unstable for T > 7 /2. Stability for T= T.,=n /2 requires
consideration of nonlinear terms.

In order to check these results we numerically integrate Eq.(3.1) using the MAT-
LAB package DDE23. Note that this requires that the values of x be given on the
entire interval —7 < ¢t < 0. Figures 3.1 and 3.2 show the results of numerical in-
tegration using the initial condition x = 0.01 on —7 < ¢ < 0. Figure 3.1 is for
T = /2 —0.01 and shows stability, while Fig. 3.2 is for T = /2 +0.01 and shows
instability, in agreement with the foregoing analysis.

3.3 Lindstedt’s method

The change in stability observed in the preceding example will be accompanied by
the birth of a limit cycle in a Hopf bifurcation. In order to obtain an approximation
for the amplitude and frequency of the resulting periodic motion, we use Lindstedt’s
method (Rand and Armbruster, 1987; Rand, 2005).
We begin by stretching time,
T= 1. (3.10)

Replacing ¢ by 7 as independent variable, Eq.(3.1) may be written in the form:

dx(7)

_ _ _ 3
0= = —x(t—oT) ~x(1)" (3.11)

Next we choose the delay T to be close to the critical value T,,=7m/2:
T— g Y (3.12)

We introduce a perturbation parameter € < 1 by scaling x:
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Fig. 3.1 Numerical integration of Eq.(3.1) for the initial condition x = 0.01 on —7 <7 <0, for

T=m/2-0.0L.
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Fig. 3.2 Numerical integration of Eq.(3.1) for the initial condition x = 0.01 on —7 <7 <0, for

T =m/2+0.01.



3 Differential-Delay Equations 87
x=+/¢eu. (3.13)
Using Eq.(3.13), Eq.(3.11) becomes:

du(t
0™ __(t— oT)— eu(r)’. (3.14)
dt
Next we scale A
A=¢gu, (3.15)
and we expand u and ® in power series of €:
u(t) = ug(t) + eur (1) + O(?), (3.16)
o = 1+¢ek +0(?), (3.17)

where we have used the fact that w=1 when T=T,.
The delay term u(t — @T) is handled by expanding it in Taylor series about £=0:

u(t—oT) =u (- (1+ek +0(£2))(§ +en)) (3.18)
:u<f—§—£(lqﬁ+u)+0(£2)> (3.19)
—u(t- S —ew St e-DyvoE). G20

Substituting into Eq.(3.14) and collecting terms gives:

du T

0 0

P — = 21

e +up(T 2) 0, (3:21)
duy T du, du T

1. N 0 lia 0 Ay 3

€ —- +u1(1: 2) kl—d +(k1 +u)— T (t 2) uy.  (3.22)

Since Eq.(3.1) is autonomous, we may choose the phase of the periodic motion
arbitrarily. This permits us to take the solution to Eq.(3.21) as:

ug(T) =Acost, (3.23)

where A is the approximate amplitude of the periodic motion. Substituting Eq.(3.23)
into (3.22), we obtain:

d T 3 1

% +u(t— ) =kiAsinT+ (k; ) +1)Acost —A® <ZCOST+ ZC0S3"L'
(3.24)

For no secular terms, we equate to zero the coefficients of sin7 and cost on the

RHS of Eq.(3.24). This gives:

2

2
k=0 and A=-—7/U. 3.25
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Now A is the amplitude in u. In order to obtain the amplitude in x, we multiply the
second one of Egs.(3.25) by 1/€, which, together with Eqs.(3.13) and (3.15), gives

2 2 T
The Amplitude of periodic motion in Eq.(3.1) is —= VA ,namely, — T——).
p p q.(3.1) 73 y /3 ( (322)6)

This predicts, for example, that when T = 7 /2 4 0.01, the limit cycle born in the
Hopf will have approximate amplitude of 0.1155. For comparison, numerical inte-
gration gives a value of 0.1145, see Fig. 3.3.

0.1
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—0.05

0 200 400 600 800 1000 1200
t

Fig. 3.3 Numerical integration of Eq.(3.1) for the initial condition x = 0.05 on —7 <t <0, for
T =m/2+0.01.

3.4 Hopf bifurcation formula

The treatment of the Hopf bifurcation (Rand and Verdugo, 2007) in the previous
section for Eq.(3.1) can be generalized to apply to a wide class of DDEs. In this
section we present a formula for the amplitude of the resulting limit cycle for the
DDE:

dx
i ox+ Bxg+ arx® + arxxg + a3x5 + b1 + box’xg + b3xx§ + b4x,31, (3.27)
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where x = x(t) and x; = x(t — T). Here T is the delay. Associated with (3.27) is a
linear DDE

dx
i ox+ Bxg. (3.28)

We assume that (3.28) has a critical delay T, for which it exhibits a pair of pure
imaginary eigenvalues +®i corresponding to the solution

X = €1 COS Wt + ¢y sin Wt (3.29)
Then for values of delay T which lie close to T,
T=T,+u, (3.30)

the nonlinear Eq.(3.27) may exhibit a periodic solution which can be written in the
approximate form:
x =Acosmt, (3.31)

where the amplitude A can be obtained from the following expression for A%:

A? = g I, (3.32)

where
P=4B*B—a)(B+a) (—5B+40a), (3.33)

Q= 15b4 BT +5b2 B0 Tor +3 by B Tor — 15ab3 B T + by B T,
—15ab1 BTy — 22a5° B Top — Taras B T — 14a1a3 B2 Top — 302° B T
—Ta\ B T — 40> B T — 1207 b4 B* Ter — 307 b3 B* Tep + 6 02 by B T,
—302b BT+ 12a5° a B4 Tor + 37 azaz o B4 Tpp 4+ 30ay a3 a B4 T,
+7aaB T, +19a1a, a BT, +18a” a B T, + 1203 b3 B3 T,
12030 BT 4+ 120°b) B3 T + 403 & B3 T — 20a2a3 0% B3 T,
—16a1a30* B> Tpr — 1202 0> B3 T, — 26 a1 ar 0> B T, — 8a> o B3 T,
—8a*b BT, —4araz o B2 T, +8a? a® B2 T, +8ayar o B2 T,
+5b3B°+15b1 B —150bs B* + b3 B* —15aby B* +3 by B* — 4a3® B*
— 9a2a3ﬁ4— 18a1a3ﬂ4—a22ﬁ4 —9a1a2[34— 18&12ﬁ4—3a2b4ﬁ3
+6a’b3 3 —30%b, B2 — 1202 b B3 +26a32 a3+ 19ara3 0 B3
+30a1az 0B+ 11a? af + 33aaa B2 +12a.2 a B + 12 03 by B2
+203b3 B2+ 1203 b2 B2 —8a3> a? B2 — 32ara3 &> B — 12a; a3 a* B
— 4@ od? B> —18ajara* B2 —8a* b3 B —8az? o B+ 8araz o B
+4a)> o’ B+8azaz o (3.34)
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In Eq.(3.32), A is real so that A% > 0, which means that ;1 must have the same sign
as 5.

Eq.(3.34) depends on U, o, B, a;, b; and T,. This equation may be alternately
written with T, expressed as a function of o and f. This relationship may be ob-
tained by considering the linear DDE (3.28). Substituting Eq.(3.31) into Eq.(3.28)
and equating to zero coefficients of sin(@t¢) and cos(wr), we obtain the two equa-
tions:

Bsin(0Ty)=—-o, Pcos(wTy)=—a. (3.35)

Squaring and adding these we obtain

o=+/p2-az (3.36)

Substituting (3.36) into the second of (3.35), we obtain the desired relationship be-
tween T, and « and f3:

arccos (-_(X)
T,—— B/ (3.37)

cr ﬁz — a2

3.4.1 Example 1

As an example, we consider the following DDE:

dx
— = —x—2x;— — 3. .
. X Xd — XXqg — X (3 38)

This corresponds to the following parameter assignment in Eq.(3.27):
Ot:—l,[3:—2,a1:a3:b2:b3:b420,a2:b1:—1. (3.39)

The associated linearized equation (3.28) is stable for zero delay. As the delay T
is increased, the origin first becomes unstable when T' = T, where Eq.(3.37) gives

that
—1

arccos — )
T., = 2 _ T (3.40)
V3 3V3
Substituting (3.39) and (3.40) into (3.32), (3.33), (3.34), we obtain:
6481
2
=—— =1.667u, 341
40V/37 4+ 171 H 4D
where we have set
2
T=T,+u=—F7+u=12092+pu. (3.42)

3V3
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Thus the origin is stable for i < 0 and unstable for p > 0. In order for A% in (3.41) to
be positive, we require that & > 0. Therefore the limit cycle is born out of an unstable
equilibrium point. Since the stability of the limit cycle must be the opposite of the
stability of the equilibrium point from which it is born, we may conclude that the
limit cycle is stable and that we have a supercritical Hopf. This result is in agreement
with numerical integration of Eq.(3.38).

3.4.2 Derivation

In order to derive the result (3.32), (3.33), (3.34), we use Lindstedt’s method. We
begin by introducing a small parameter € via the scaling

X =E€u. (3.43)
The detuning p of Eq.(3.30) is scaled like £%:
T=Ty+p=Ty+E]. (3.44)
Next we stretch time by replacing the independent variable ¢ by 7, where
T=Qt. (3.45)
This results in the following form of Eq.(3.27):

du
Q— =ou+Puyg+ 8(a1u2 + aruug + a3u§) + 82(b1u3 + bouPuy + b3uu§ + b4u2),

dt
(3.46)
where uy = u(7— QT). We expand € in a power series in €, omitting the O(€) term
for convenience, since it turns out to be zero:

Q=0+¢ek+ (3.47)
Next we expand the delay term u,:

g =u(t—QT) = u(t— (0 + %y + ) (T + 22)) (3.48)

u(t — T, — 2 (ko T + @) +--+) (3.49)
= u(t— 0T,) — (kyTor + @) (T — @T,,) + O(e%). (3.50)

Finally we expand u(7) in a power series in €:

u(t) = uo(t) + uy (t) + €2un (T) + - - (3.51)

Substituting and collecting terms, we find:
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d
0= — auo(r) - Buo(7 - 0T,;) =0, (3.52)
dbl1
a)z — oy (1) — Bu(t— 0T)
= ayup(7)? 4 azuo(T)uo (T — @T,) + azup(tT — 0T,,)?, (3.53)
a)% — o (T) — Bup(t — OT) (3.54)

drt

where - - - stands for terms in ug and 1, omitted here for brevity. We take the solution
of the ug equation as (cf. Eq.(3.29) above):

uo(t) = Acos(7). (3.55)
We substitute (3.55) into (3.53) and obtain the following expression for u;:
u1(t) = my sin(27) + mycos(27) 4+ ms, (3.56)

where m is given by the equation:

7142 (2a3ﬁ +azﬁ—2alﬁ—2a3a) «/ﬁz—az
2 (B+a)(5p—4a) '

and where my and ms3 are given by similar equations, omitted here for brevity. In
deriving (3.57), @ has been replaced by /2 — a2 as in Eq.(3.36).

Next the expressions for ug and u;, Eqs.(3.55),(3.56), are substituted into the u;
equation, Eq.(3.55), and, after trigonometric simplifications have been performed,
the coefficients of the resonant terms, sin 7T and cos 7, are equated to zero. This re-
sults in Eq.(3.32) for A? as well as an expression for k; (cf. Eq.(3.47)) which does
not concern us here. (Note that A = €A from Eqgs.(3.31),(3.43),(3.55),and u = szﬂ
from (3.44). The perturbation method gives A2 as a function of {1, but multiplication
by £ converts to a relation between A2 and p.)

ny —

(3.57)

3.4.3 Example 2

As a second example, we consider the case in which the quantity Q in Egs.(3.32),(3.34)
is zero. To generate such an example for the DDE (3.27), we embed the previous
example in a one-parameter family of DDE’s:

d
d—“; — X — 20— xxg— A, (3.58)

and we choose A so that Q =0 in Eq.(3.32). This leads to the following critical value
of A:
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_ An+ 3V3
18(2m+3V/3)
Since this choice for A leads to Q = 0, Eq.(3.32) obviously cannot be used to find

the limit cycle amplitude A. Instead we use Lindstedt’s method, maintaining terms
of 0(84). The correct scalings in this case turn out to be (cf.Eqs.(3.44),(3.47)):

— ‘wr

=0.0859 (3.59)

2n 4
T:]‘Lr+ =—4E€ y 3.60
M 33 u (3.60)
Q=0+, +e*ky+-- (3.61)

We find that the limit cycle amplitude A satisfies the equation:
A*=_TIu, (3.62)

where we omit the closed form expression for I and give instead its approximate
value, ['=620.477.

The analysis of this example has assumed that the parameter A exactly takes on
the critical value given in Eq.(3.59). Let us consider a more robust model which
allows A to be detuned:

4T+3V/3 )
PR TS o - LIy § (3.63)

18(2m+3V/3)
Using Lindstedt’s method we obtain for this case the following equation on A:
A+ GAA’ + T =0, (3.64)

where we omit the closed form expression for o and give instead its approximate
value, 0=342.689. Equation (3.64) can have 0,1, or 2 positive real roots for A, each
of which is a limit cycle in the original system. Thus the number of limit cycles
which are born in the Hopf bifurcation depends on the detuning coefficients A and
. Elementary use of the quadratic formula and the requirement that A2 be both real
and positive gives the following results: If it < 0 then there is one limit cycle. If yu >
0 and 0A < —2+/T U then there are two limit cycles. If 4 > 0 and 6A > —2/T 1
then there are no limit cycles.

3.4.4 Discussion

Although Lindstedt’s method is a formal perturbation method, i.e., lacking a proof
of convergence, our experience is that it gives the same results as the center mani-
fold approach, which has a rigorous mathematical foundation. The center manifold
approach has been described in many places, for example (Hassard et al., 1981;
Campbell et al., 1995; Stepan, 1989; Kalmar-Nagy et al., 2001; Rand, 2005), and
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will be treated later in this Chapter. Since the DDE (3.27) is infinite dimensional
(for example the characteristic equation of the linear DDE (3.28) is transcendental
rather than polynomial, and hence has an infinite number of complex roots), the
center manifold approach involves decomposing the original function space into a
two dimensional center manifold (in which the Hopf bifurcation takes place) and an
infinite dimensional function space representing the rest of the original phase space.
The center manifold procedure is much more complicated than the Hopf calcula-
tion. Stepan refers to the center manifold calculation as “long and tedious” ((Stepan,
1989), p.112), and Campbell et al. refer to it as “algebraically daunting” ((Campbell
et al., 1995), p.642). Thus the main advantage of the Hopf calculation is that it is
simpler to understand and easier to execute than the center manifold approach.

The idea of using Lindstedt’s method on bifurcation problems in DDE goes back
to a 1980 paper by Casal and Freedman (Casal and Freedman, 1980). That work
provided the algorithm but not the Hopf bifurcation formula. We present the general
expression for the Hopf bifurcation, as in Eqs.(3.32)—(3.34), as a convenience for
researchers in DDE.

3.5 Transient behavior

We have seen that Lindstedt’s method can be used to obtain an approximation for
the periodic motion of a DDE. This section is concerned with the use of perturbation
methods to obtain approximate expressions for the transient behavior of DDEs, e.g.
for the approach to a steady state periodic motion. In the case of ordinary differential
equations (ODEs), a very popular method for obtaining transient behavior is the
two variable expansion method (also know as multiple scales) (Cole, 1968; Nayfeh,
1973; Rand and Armbruster, 1987; Rand, 2005). In this section we show how this
method can be applied to a DDE. See also (Das and Chatterjee, 2002; Wang and Hu,
2003; Das and Chatterjee, 2005; Nayfeh, 2008). Although this approximate method
is strictly formal, its use is justified by center manifold considerations. Although
the DDE is an infinite dimensional system, a wide class of problems involves the
presence of a two dimensional invariant manifold, and it is the approximation of the
transient flow on this surface which is the goal of this perturbation method.

3.5.1 Example

In order to illustrate the manner in which this perturbation method may be applied
to DDEs, we choose a simple DDE problem, one that has an exact solution, namely:

dx

T ——x(t-T), T= T eu. (3.65)

2
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3.5.2 Exact solution
In Eq.(3.65) we set
x(t) = exp(At), (3.66)
giving the characteristic equation
A = —exp(—AT). (3.67)

When € = 0, that is when T = 7 /2, Eq.(3.67) has the exact solution A = i. Thus for
€ >0 we set
A =i+e(atib). (3.68)

Substituting Eq.(3.68) into (3.67) and equating real and imaginary parts to zero, we
obtain the following two equations on a and b:

aezexp(—aezu—&e) sin <b£2u+8u+”—be> , (3.69)
2 2
b8+1:exp(—a82u—¥) cos <b82l.t+€,u+ﬂ7b8>. (3.70)

If Egs.(3.69) and (3.70) were to be solved for a and b, we would obtain a solution
to (3.65) in the form:

x(t) = exp(ear) { csgé 211 ——‘_}-ggllypgtt’ 3.71)

In order to obtain a version of the exact solution (3.71) which will be useful for com-
paring solutions to Eq.(3.65) obtained by the perturbation method, we now derive
approximate expressions for a and b. Taylor expanding Eqs.(3.69),(3.70) for small
€, we obtain

b 2
a€+~~~=w+--- (3.72)
]+bg+...:]_%+... (3.73)

Solving Eqs.(3.72),(3.73) for a and b, we obtain the approximate expressions:
2wu
n?+4

a= +0(e), b=-— +0(e) (3.74)

3.5.3 Two variable expansion method (also known as multiple
scales)

In applying this method to the example of Eq.(3.65), we replace time ¢ by two time
variables: regular time & =1, and slow time 1) = €¢. The dependent variable x(t) is
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then replaced by x(&, 1), and Eq.(3.65) becomes

ox ox

ﬁﬁ—s% =—x(§E-T,n—eT). (3.75)

Note that since T = 1/2 + €U, the delayed term may be expanded for small € as
follows:

x(E~T,n—€T) =x(E - 3.m) —enE — ey g HO(E), (3.76)

where x, is an abbreviation for x(§ — Z,1). Next we expand x = xo + €x1 + O(€?)
and collect terms in Eqs.(3.75),(3.76), giving

8)60 V[ _
%+x0(€_57n) _07 (377)
axl T _ 8de T ax()d ax()
Je taG-gm=ngst oG (3.78)
Eq.(3.77) has the periodic solution
xo = R(17)cos(§ — 6(n)). (3.79)

where as usual in this method, R(1) and 6(1) are as yet undetermined functions of
slow time 1. The next step is to substitute Eq.(3.79) into (3.78). Before doing so,
we rewrite (3.78) by noting that (3.77) can be written in the form xo; = —dxo/d&:

axl T _ asz T (92 8x0
¥+x1(5—57n)——#8—52—gmx0—ﬁ- (3.80)

Now we substitute (3.79) into (3.80) and require the coefficients of both cos(& — 0)
and sin(& — 0) to vanish, giving the following slow flow on R and 6:

R’+§R9’—uR —0, (3.81)
gR’ _RO' =0, (3.82)

where primes represent differentiation with respect to slow time 7). Solving for R’
and 0’, we get

4

R = nzi IR (3.83)
2

o — nz_Tm (3.84)

from which we obtain
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4
R(n) = Roexp (nfL) ; (3.85)
2
0(n) = -1+ 6. (3.86)
Eq.(3.79) thus gives
4uet 2
X =& xy = Roexp <n2'u—_f4> cos <t—n2L_f4£t—90> , (3.87)

which agrees with the exact solution given by Eq.(3.71) with a and b given by (3.74).

3.5.4 Approach to limit cycle

Now let us use the two variable method on Eq.(3.1). We have seen by use of Lindst-
edt’s method that this DDE has a limit cycle of amplitude 2,/gt/ V3, see Eq.(3.25).
The question arises as to the stability of this limit cycle. This may be determined as
follows: After scaling x as in Eq.(3.13), we may obtain Eq.(3.1) by adding the term
—&x(t)? to the RHS of Eq.(3.65). This results in the term —x; being added to the
RHS of Egs.(3.78) and (3.80). After trigonometric reduction, this new term causes
the term —3R3/4 to be added to the RHS of Eq.(3.81), resulting in the new slow
flow

4uR —3R3
2nu — (37/2)R?
o' = %. (3.89)

Here we see that Eq.(3.88) has two equilibria, R = 0 and R = 2,/uu/ V3. Treat-
ing (3.88) as a flow on the R—line immediately shows that for 4 > 0 the R =0
equilibrium is unstable, a fact which we have already observed via a different ap-
proach, since R = 0 corresponds to the trivial solution of Eq.(3.1), which was inves-
tigated in Eqs.(3.5)—(3.9). In addition (3.88) shows that for u > 0 the equilibrium
R=2/u/ /3 is stable, from which we may conclude that the corresponding limit
cycle is stable and that the Hopf bifurcation is supercritical. This conclusion agrees
with the numerical integration displayed in Figure 3.3.

3.6 Center manifold analysis

We have seen earlier that the equilibrium solution x = 0 in Eq.(3.1) is stable for
T < m/2 and is unstable for T > /2. The question remains as to the stability of
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x =0 when T = 1 /2. More generally, in order to determine the stability of the x=0
solution of a DDE in the form of Eq.(3.2),

dx(r)
dt
in the case that the delay T takes on its critical value T,,, it is necessary to take
into account the effect of nonlinear terms. This may be accomplished by using a
center manifold reduction. In order to accomplish this, the DDE is reformulated
as an evolution equation on a function space. Our treatment closely follows that
presented in (Kalmar-Nagy et al., 2001).

The idea here is that the initial condition for Eq.(3.90) consists of a function de-
fined on —7 <t < 0. As t increases from zero we may consider the piece of the
solution lying in the time interval [T +¢,¢] as having evolved from the initial con-
dition function. In order to avoid confusion, the variable 0 is used to identify a point
in the interval [—T,0], whereupon x(¢ + 6) will represent the piece of the solution
which has evolved from the initial condition function at time #. From the point of
view of the function space, ¢ is a parameter, and it is & which is the independent
variable. To emphasize this, we write:

=ox(t)+ Bx(t —T)+ f(x(¢),x(t —T)), (3.90)

x(0)=x(+0). (3.91)

The evolution equation, which acts on a function space consisting of continuously
differentiable functions on [—T,0], is written:

dx,(0) 3
_ 30 for 0 € [-T,0), (3.92)

00 (0) + B, (=T) + f(x:(0),x:(=T)), for 6 =0.

ax,(e)
dt

Here the DDE (3.90) appears as a boundary condition at 8 = 0. The rest of the
interval goes along for the ride, which is to say that the equation % = % is
an identity due to Eq.(3.91).

The RHS of Eq.(3.92) may be written as the sum of a linear operator A and a

nonlinear operator F':

9x,(0) )
Ax(8) = 20 for 6 € [-T0), (3.93)
(th(()) +BX;(*T), for 6 =0.

0, for 6 € [-T,0),
{f(xt(o),xz(—T)), for 6 =0.

We now assume that the delay T is set at its critical value for a Hopf bifurcation,
i.e. the characteristic equation has a pair of pure imaginary roots, A = +®i. Corre-
sponding to these eigenvalues are a pair of eigenfunctions s1(0) and s,(6) which
satisfy the eigenequation:

Fxi(0) = (3.94)
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A(51(8) +i52(8)) = iw(s1 (8) +is(8)). (3.95)
That is,
As1(0) = —ws2(6), (3.96)
ASQ(@) = @S] (9) (3.97)

From the definition (3.93) of the linear operator A we find that s1(6) and s»(6) must
satisfy the following differential equations and boundary conditions:

2251(6) = ~om(0), (3.98)

d

552(6) = 031(6), (3.99)
as1 (0) + Bsi (=T) = —ws>(0), (3.100)
as(0) + Bsa(—T) = ws (0). (3.101)

Let’s illustrate this process by using Eq.(3.1) as an example. We saw earlier that at
T=T.=n/2, @=1, which permits us to solve Eqs.(3.98), (3.99) as:

51(0) =c1c080 —cy8in O, (3.102)
52(0) =c1sinB+cpcos0, (3.103)

where ¢; and ¢; are arbitrary constants. In the case of Eq.(3.1), the boundary condi-
tions (3.100), (3.101) become (=0, B=—1):

—s51(—=7/2) = —5,(0), (3.104)
—s2(—=7/2) = 1(0). (3.105)

Equations (3.102), (3.103) identically satisfy Eqs.(3.104), (3.105) so that the con-
stants of integration ¢ and ¢, remain arbitrary at this point.
In preparation for the center manifold analysis, we write the solution x,(0) as
a sum of points lying in the center subspace (spanned by s;(0) and s,(8)) and of
points which do not lie in the center subspace, i.e., the rest of the solution, here
called w:
x(8) = y1(t)51(8) +y2(2)s2(0) +w(2)(6). (3.106)

Here y; (¢) and y,(¢) are the components of x;(0) lying in the directions s;(6) and
52(0) respectively.

The idea of the center manifold reduction is to find w as an approximate
function of y; and y2 (the center manifold), and then to substitute w(y1,y2)
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into the equations on y4 (¢) and y2(t). The result is that we will have replaced
the original infinite dimensional system with a two dimensional approximation.

In order to find the equations on y; (t) and y,(¢), we need to project x;(6) onto the
center subspace. In this system, projections are accomplished by means of a bilinear
form:

(vyu) = +/ v(0+T)Bu(6)do (3.107)

where u(60) lies in the original function space, i.e. the space of continuously differ-
entiable functions defined on [—T,0], and where v(8) lies in the adjoint function
space of continuously differentiable functions defined on [0, T]. See the Appendix
to this chapter for a discussion of the adjoint operator A*.

In order to project x;(0) onto the center subspace, we will need the adjoint eigen-
functions n; (6) and n,(0) which satisfy the adjoint eigenequation:

A*(n1(0)+inp(0)) = —iw(n1(0) +iny(0)), (3.108)

That is,
A*n1(60) = ony(6), (3.109)
A*ny(0) = —wny(0), (3.110)

where the adjoint operator A* is defined by
_dv(6)

A*v(0) = de
ov(0)+ Bv(T), for =0.

, for 6 € (0,T], 311

In addition, the adjoint eigenfunctions n; are defined to be orthonormal to the eigen-
functions s;:

[, if i = j,
(ni,sj) = {0’ ifi?éj. (3.112)

From the definition (3.111) of the linear operator A* we find that n;(6) and n,(0)
must satisfy the following differential equations and boundary conditions:

—%m(e) = wny(0), (3.113)

d
—%ng(ﬂ) = —a)nl(Q), (3.114)
ani(0)+ Bn(T) = wny(0), (3.115)
any(0) 4+ Bny(T) = —on(0). (3.116)

We continue to illustrate by using Eq.(3.1) as an example. With @ = 1, Eqs.(3.113),
(3.114) may be solved as:

n1(0) =dycos0 —dsin0, (3.117)
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ny(0) =d;sin@ +dycos 0, (3.118)

where d; and d, are arbitrary constants. In the case of Eq.(3.1), the boundary con-
ditions (3.115), (3.116) become (=0, B=—1):

—ny(m/2) = ny(0), (3.119)
—my(7/2) = —ny (0). (3.120)

As in the case of the s; eigenfunctions, Eqgs.(3.117), (3.118) identically satisfy
Eqgs.(3.119), (3.120) so that the constants of integration d; and d, remain arbitrary.

The four arbitrary constants c1, ¢2, dy, dy of Eqs.(3.102),(3.103),(3.117),(3.118)
will be related by the orthonormality conditions (3.112). Let’s illustrate this by com-
puting (ny,s;) for the example of Eq.(3.1). Using the definition of the bilinear form
(3.107), we obtain:

(m1,s1) = m (031 (0)+ | (6+7 )(—1)s1(9)d9, (3.121)
-2
(n1,51) = Qetze) dzlr(ch —re)d _ 1. (3.122)
Similarly, we find:
(11,52) = (e —2c¢1)da+(2cr+7ey) dy _o. (3.123)

4

The other two orthonormality conditions give no new information since it turns out
that (ny,s1) = —(n1,s2) and (ny,s2) = (ny,s1). Thus Egs.(3.122) and (3.123) are
two equations in four unknowns, ci, ¢2, di, dp. Without loss of generality we take

dl:landa’zzo,givingc.:%H,czz— ; and n;
for Eq.(3.1) become:

47 sinO + 8 cosO

0) = 3.124

Sl( ) 7[2—|—4 9 ( )
8sinB —4mwcosHO

0) = 3.125

52(0) P : (3.125)

n1(0) = cos 0, (3.126)

ny(0) = sin 6. (3.127)

Recall that our purpose in solving for n; and n; was to obtain equations on y; (¢) and
y2(t), the components of x,(0) lying in the directions s1(6) and s,(0) respectively,
see Eq.(3.106). We have:

yi(t) = (n1,x), y2(t) = (n2,x). (3.128)
Differentiating (3.128) with respect to ¢:

yi(t) = (n1,%), y2(t) = (n2,%). (3.129)
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Let us consider the first of these:
yi(t) = (n1,%) = (n,Ax; + Fx;) = (m1,Ax) + (n1, Fx;). (3.130)
Now by definition of the adjoint operator A*,
(n1,Ax;) = (A" n1,x) = (0ny,x) = 0(ny,x;) = Oy,. (3.131)
So we have

y1 = 0y2+ (n1,Fx),
and similarly (3.132)
y2 = =y + (n2,Fx;).

In Egs.(3.132), the quantities (n;, Fx;) are given by (cf. Eq.(3.107)):
-0
(ni, Fx:) = ni(0)Fx,(0) +/  m(0+T)BFx(6)d8 (3.133)

=n;(0)f(x(0),x(—T)) since Fx;(6)=0 unless 6=0, (3.134)

in which x; = y1(¢)s1(0) +y2(¢)s2(0) + w()(6). Continuing with the example of
Eq.(3.1), Egs.(3.132) become, using f = —x()*:

. 8y1 4mys : .
=y, — — 6=0 d =— 3.135
Y=y <n2+4 n2+4+W( ) and  y> = —yi, ( )
where we have used s (O):HZLM, $ (O):ﬁ, n1(0)=1 and n,(0)=0 from Eqs.(3.124)
—(3.127).

The next step is to look for an approximate expression for the center manifold,
which is tangent to the y;-y, plane at the origin, and which may be written in the
form:

w(y1,y2)(8) = m1(0)y} +ma(8)y1y2 +m3(8)y3. (3.136)

The procedure is to substitute (3.136) into the equations of motion, collect terms,
and solve for the unknown functions m;(6). Then the resulting expression is to be
substituted into the y;-y; equations (3.132). Note that if this is done for the example
of Eq.(3.1), i.e. for Eqgs.(3.135), the contribution made by w will be of degree 4
and higher in the y;. However, stability of the origin will be determined by terms
of degree 2 and 3, according to the following formula (obtainable by averaging).
Suppose the y;-y, equations are of the form:

yi =@y +h(y,y2) and Yy = -y +g(yi,y2) (3.137)

Then the stability of the origin is determined by the sign of the quantity Q, where
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160 = hi11 +hin+ 8112+ 8222
1
% [hia(hiy +ho2) — g12(811 + 822) — hiig11 + hxgon), (3.138)

where subscripts represent partial derivatives, which are to be evaluated at y; =y, =
0.0 > 0 means unstable, Q < 0 means stable. See ( Guckenheimer and Holmes,
1983) pp.154-156, where it is shown that the flow on the y;-y; plane in the neigh-
borhood of the origin can be approximately written in polar coordinates as:

d

_or+ o). (3.139)
dt

Applying this criterion to Eqgs.(3.135) (in which w is assumed to be of the form
(3.136) and hence contributes terms of higher order in y;), we find:

4
0= ——8 = —0.2495. (3.140)

(m2+4)*

The origin in Eq.(3.1) for T = T, = 1/2 is therefore predicted to be stable. This
result is in agreement with numerical integration, see Fig. 3.4.

0.15 T T T T T T T T T

0.1 E

0.05

e ———

—0.05
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i

0 50 100 150 200 250 300 350 400 450 500
t

Fig. 3.4 Numerical integration of Eq.(3.1) for the initial condition x = 0.1 on —7 <t <0, for
T=nm/2.

Now let’s change the example a little so that w plays a significant role in determining
the stability of the origin:
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dx(r)
dt

= —x(r—T) —x(r)* (3.141)

Since the linear parts of this example and of the previous example are the same, our
previously derived expressions for sy, 57, n; and ny, Eqs.(3.124)—(3.127), still apply.
Eqs.(3.135) now become:

(81 4mys
N=N\mia 24

2
+w(0= 0)> and Yy = —y. (3.142)

So our goal now is to find the functions m;(0) in the expression for the center man-
ifold (3.136), and then to substitute the result into Eq.(3.142) and use the formula
(3.138) to determine stability.

We begin by differentiating the expression for the center manifold (3.136) with
respect to z:

ow(y1,y2)(0)

> =2m(0)y1y1 +ma(0)(y1y2 +y2y1) +2m3(0)y2y2.  (3.143)

We substitute the equations (3.132) on y; and y, in (3.143) and neglect terms of
degree higher than 2 in the y;:

0 2]
Iwin,y2)(0) _ 2my(0)y10y> +ma(0)(—y1wy1 + y:0y2)

ot
—2m3(0)y20y1 + - (3.144)
= 0[-my(8)yi +2(m1(8) —m3(6))y1y2
oy (8)2] 4 - (3.145)

We obtain conditions on the functions m;(6) by deriving another expression for w
and equating them. Let us differentiate Eq.(3.106) with respect to ¢:

Ix(0) _ . . aw(t)(0

O swsi(0) +wame) + WO g4
Using the functional DE (3.92)—(3.94), and rearranging terms, we get:
) 0 Ix(0) . .

W(;i( ) _ xa(t ) 5 )51(8) = 2(1)52(6) (3.147)
= Ax(0) + Fx;(0) — y1(t)51(0) — ¥a(t)s52(0) (3.148)

= A(y1(t)s1(0) +y2(t)52(0) + w(t)(8))
+Fx(0)—y1(t)s1(0) — y2(1)s2(0) (3.149)
= y1As1 + o As) + Aw+ Fxy — y181 — Yos2 (3.150)

= y1(—ws3) + y2(@s1) +Aw + Fx;
—(@y, + (n1,Fx;))s1 — (—oy1 + (n2,Fx;))sa - (3.151)
= Aw+ Fx; — (n1,Fx;)s1 — (na, Fx;)s» (3.152)
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where we have used Eqs.(3.96), (3.97) and (3.132), and where the quantities
(ni, Fx;) are given by Eq.(3.134).

Eq.(3.152) is an equation for the time evolution of w. Since the operator A is
defined differently for 8 € [—7,0) and for 6 = 0, we consider each of these cases
separately when we substitute Eq.(3.136) for the center manifold. In the 8 € [—T,0)
case, Eq.(3.152) becomes:

Iw(t)(6)

o= my? +mhyiys +mhy3 — (n1,Fx,)s1(0) — (2, Fx;)s2(0),  (3.153)

where primes denote differentiation with respect to 8. In the 6 = 0 case, Eq.(3.152)
becomes:

ow(t)(6
PO o, (0153 + ma Oy -+ m3(0)3)

+B (i (=T)yi +ma(=T)y1y2 +m3(=T)y3)
+f(x(0),,(=T)) — (n1,Fx)s1(0) — (na, Fx;)s2(0). (3.154)
Now we equate Eqs.(3.153) and (3.154) to the previously derived expression for w,
Eq.(3.145). Equating (3.153) to (3.145), we get:

v} -+ myy1ya +mby3 — (n1,Fx)s1(6) — (na, Fx;)s2(8) =
@[—may} +2(my —m3)y1ys +moy3] 4 - (3.155)

Equating (3.154) to (3.145), we get:

o (my (0)y} +ma(0)y1y2 +ms3(0)y3)
+B(mi (=T)yi +ma(=T)y1ys+m3(—T)y3)
+f(x(0),%(=T)) — (n1,Fx)51(0) — (n2, Fx;)52(0) =
@[=my(0)y7 +2(m1 (0) —m3(0))y1y2 +ma(0)y3] +--- (3.156)
Now we equate coefficients of y%, y1y2 and y% in Egs.(3.155) and (3.156) and so

obtain 3 first order ODE’s on m, m; and m3 and 3 boundary conditions. From
Eq.(3.134), the nonlinear terms (n;, Fx;) become:

(ni, Fxi) = ni(0)f (% (0),x(=T)), (3.157)
in which x; = y1(£)s1(6) + y2()s2(60) + w(1)(6) ~ (t)s (6) +y2(t)52(6). In the
case of the example system (B.14l)we have a =0, f=-1, =1, T = n/2,
fx(),x(t =T)) = —x(1)* and

F(0),5:(=T)) = —x,(0)* = — (151 (0) + y252(0))*. (3.158)

For this example, Eq.(3.155) becomes

mly? +mhy1ys +mhy3 + (v151(0) +y252(0))%s1(8)
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= —moyi +2(mi — m3)y1y2 +moy3 (3.159)
which gives the following 3 ODE’s on m;(6):
my +51(0)%51(6) = —ma, (3.160)
my+251(0)52(0)s51(6) = ( 1= m3), (3.161)
iy +5,(0)%s1(0) = (3.162)

For this example, Eq.(3.156) becomes

—(my (—7/2)y} +mao(—7/2)y1y2 +m3(—7/2)y3)
—(y151(0) +y252(0))% + (y151(0) +252(0))?51(0) =
—m(0)y7 +2(m1 (0) — m3(0))y1y2 + ma(0)y3, (3.163)

which gives the following 3 boundary conditions on m;(8):

—my(—1/2) — 51(0)> + 51 (0)* = —my(0), (3.164)
—my(—7/2) — 251(0)52(0) + 251 (0)*52(0) = 2(m; (0) — m3(0)), (3.165)
—m3(—7/2) — 52(0)* +52(0)%s1 (0) = my(0). (3.166)

So we have 3 linear ODE’s (3.160)—(3.162) with 3 boundary conditions (3.164)—
(3.166) for the m;(0). In these equations, s; and s are given by Eqs.(3.124), (3.125).
The solution of these equations is algebraically complicated. I used a computer al-
gebra system to obtain a closed form solution for the m;(0). For brevity, a numerical
version of the center manifold is given below:

w =
(0.20216 8in26 + 0.16022 cos 26 — 0.6953 sin 8 + 0.39537 cos 6 — 0.5768) y12
+(0.32044 sin26 — 0.40432 c0s 20 + 0.09393 sin 6 + 0.5034 cos 0) y; y2
+(—0.202165in260 — 0.16022 c0s 26 + 0.0299 sin O + 0.64984 cos 6 — 0.5768) y,>.

(3.167)

Next we substitute the algebraic version of Eq.(3.167) into the y;-y; Eqs.(3.142) and
use Eq.(3.138) to compute the stability parameter Q:

_ 32(9-nm)

- =0.19491 > 0. (3.168)
5(n2+4)

Thus the center manifold analysis predicts that origin of Eq.(3.141) is unstable. This
result is in agreement with numerical integration, see Fig. 3.5.
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Fig. 3.5 Numerical integration of Eq.(3.141) for the initial condition x = 0.04 on —7 <t <0, for
T=nm/2.

3.6.1 Appendix: The adjoint operator A*

The adjoint operator A* is defined by the relation:
(v,Au) = (A*v,u), (3.169)

where the bilinear form (v, u) is given by Eq.(3.107):

(v,u) = v( +/ V(6 +T)Bu(6)d6 (3.170)

where u(60) lies in the original function space, i.e. the space of continuously differ-
entiable functions defined on [—T,0], and where v(0) lies in the adjoint function
space of continuously differentiable functions defined on [0, T].

The linear operator A is given by Eq.(3.93):

du(0)
Au(6) = 70 for 6 € [-T,0),

ou(0) + Pu(-T), for 0 =0,

3.171)

from which (v,Au) can be written as follows:
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(v, Au) = v(0)Au(0) + / V(8 + T)BAu(8)d6 (3.172)

= v(0)[ou(0) + Bu(— A+/ v(0+T)B ﬁf%w. (3.173)

Using integration by parts, the last term of Eq.(3.173) can be written:

-0 u
'/J W(6+T)B dd(:)de

— (0 +T)Bu(6 / Bu( 9+”de (3.174)

dv(9)
do

= v(T)Bu(0) — v(0)Bu(~T) — ,/Mﬁw N2 (3175)

where ¢ = 0 + T'. Substituting (3.175) into (3.173), we get

(v,Au) = [av(0) + Bv(T)]u(0) + ./¢T0 (—d‘;l(;))> Bu(¢ —T)do (3.176)

— (A*v,u) (3.177)

from which we may conclude that the adjoint operator A* is given by:

dav(¢)
A*v(9) = ~de for ¢ € (0,7,

ov(0)+Bv(T) ford =0.

(3.178)

3.7 Application to gene expression

This section offers a timely example showing how DDEs occur in a mathematical
model of gene expression (Monk, 2003; Verdugo and Rand, 2008a). The biology
of the problem may be described as follows: A gene, i.e. a section of the DNA
molecule, is copied (transcribed) onto messenger RNA (mRNA), which diffuses out
of the nucleus of the cell into the cytoplasm, where it enters a subcellular structure
called a ribosome. In the ribosome the genetic code on the mRNA produces a protein
(a process called translation). The protein then diffuses back into the nucleus where
it represses the transcription of its own gene.

Dynamically speaking, this process may result in a steady state equilibrium, in
which the concentrations of mRNA and protein are constant, or it may result in an
oscillation. In this section we analyze a simple model previously proposed in the
biological literature (Monk, 2003), and we show that the transition between equilib-
rium and oscillation is a Hopf bifurcation. The model takes the form of two equa-
tions, one an ordinary differential equation (ODE) and the other a delayed differen-
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tial equation (DDE). The delay is due to an observed time lag in the transcription
process.

Oscillations in biological systems with delay have been dealt with previously in
(Mahaffy, 1988; Mahaffy et al., 1992; Mocek et al., 2005).
The model equations investigated here involve the variables M(t), the concentration
of mRNA, and P(z), the concentration of the associated protein (Monk, 2003):

O <w> — WM, (3.179)

P = ayM—u,P (3.180)

M

where dots represent differentiation with respect to time ¢, and where we use the
subscript d to denote a variable which is delayed by time T, thus P; = P(t — T). The
model constants are as given in (Monk, 2003): @, is the rate at which mRNA is tran-
scribed in the absence of the associated protein, ¢, is the rate at which the protein
is produced from mRNA in the ribosome, U, and U, are the rates of degradation of
mRNA and of protein, respectively, Py is a reference concentration of protein, and n
is a parameter. We assume Uy,=U,=/l.

3.7.1 Stability of equilibrium

We begin by rescaling Egs. (3.179) and (3.180). We set m = 2L, p = a:ap, and
po= a}f ¢, giving:
_ 1
M= ———— —um, (3.181)
Pd
1+ ()
p=m—up. (3.182)

Equilibrium points, (m*, p*), for (3.181) and (3.182) are found by setting iz = 0 and
p=0

um* = ———— (3.183)

m* = up*. (3.184)

Eliminating m* from Egs. (3.183) and (3.184), we obtain an equation on p*:

(p*)nJrI 4 pgp* _ @ = 0. (3.185)
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Next we define & and 7 to be deviations from equilibrium: & = & (¢) = m(t) — m*,

n =n(t) = p(t) — p*, and ny = n(r — T). This results in the nonlinear system:
1

=~ M
natp*\"
1+ (L2

n=E&—pun. (3.187)

Expanding for small values of 14, Eq.(3.186) becomes:

2 (m*+ &), (3.186)

€= —uE—Kng+Han+Hyns+--- (3.188)

where K, H, and H3 depend on p*, pg, and n as follows:

__ B (Y
K_p*(1+[3)2’ where B_<p0> , (3.189)

g, — Bn(Bn—n+p+1)
- 3
2(B+1) p*?
_ﬁn([32 2_4ﬁn2+n2+3ﬁ2n_3n+232+4ﬁ+2)
6(B+1)" pr '

(3.190)

H; =

(3.191)

Next we analyze the linearized system coming from Eqs. (3.188) and (3.187):

E=-ué—Kna, (3.192)
n=E&-un. (3.193)

Stability analysis of Egs. (3.192) and (3.193) shows that for T = 0 (no delay), the
equilibrium point (m*, p*) is a stable spiral. Increasing the delay, 7', in the linear
system (3.192)—-(3.193), will yield a critical delay, T, such that for T > T, (m*, p*)
will be unstable, giving rise to a Hopf bifurcation. For T = T, the system (3.192)-
(3.193) will exhibit a pair of pure imaginary eigenvalues +mi corresponding to the
solution

E(t) = Beos(wt + ¢), (3.194)
n(t) = Acos wt, (3.195)

where A and B are the amplitudes of the 17(¢) and & (¢) oscillations, and where ¢ is
a phase angle. Note that we have chosen the phase of 1)(¢) to be zero without loss
of generality. Then for values of delay T close to T,

T =T, +A, (3.196)

the nonlinear system (3.181)—(3.182) is expected to exhibit a periodic solution (a
limit cycle) which can be written in the approximate form of Egs. (3.194), (3.195).
Substituting Egs. (3.194) and (3.195) into Egs. (3.192) and (3.193) and solving for
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o and T, we obtain
0 =+\/K-pu2, (3.197)

2u Kf,uz)
1., = . (3.198)

3.7.2 Lindstedt’s method

We use Lindstedt’s Method (Rand and Verdugo, 2007) on Egs. (3.188) and (3.187).
We begin by changing the first order system into a second order DDE. This results
in the following form:

fi+2un+u’n=—Kng+Hni+Hyns+ - (3.199)

where K, H, and Hj are defined by Egs. (3.189)—(3.191). We introduce a small
parameter € via the scaling
n = &u. (3.200)

The detuning A of Eq. (3.196) is scaled like €2, A = €2§:
T=T,+A=T.,+¢€s. (3.201)
Next we stretch time by replacing the independent variable ¢ by T, where
T=Qt. (3.202)
This results in the following form of Eq. (3.199):

% 0 Lok Hyu? + €2 Hy i 3.203
W—i_ il %-i-u u=—Kuy+ eHyu; + € Hyuy, (3.203)

where uy = u(t— QT). We expand  in a power series in €, omitting the O(g) for
convenience, since it turns out to be zero:

Q=0+ek+: (3.204)
Next we expand the delay term u,:

ug = u(t—QT) = u(t— (®+ % + - -) (T, + €28)) (3.205)
= u(t— 0T, — e*(koTor + @8) +--) (3.206)
= u(t— 0T, — (ko Tor + 08)id (1 — OT.,) + O(%). (3.207)

Now we expand u(7) in a power series in €:
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u(t) = uo(t) + e (1) + Eup(t) +--- (3.208)

Substituting and collecting terms, we find:

& du
2du0+2ua)d0+Ku0(r T + g = 0, (3.209)
2d2u1 d 2
[0) d—+2uwd +Ku1(r oT,)+ u’u; = Hud(t — oT,,), (3.210)
& duy
0?2 120052 4 Kin(t— 0T,,) + puz = 3.211)

where - - - stands for terms in ug and 1, omitted here for brevity. We take the solution
of the ug equation as:
up(t) =AcosTt, (3.212)

where from Egs. (3.195) and (3.200) we know A = Aeg. Next we substitute (3.212)
into (3.38) and obtain the following expression for u:

u1(T) = my sin27 + my cos 2T + ms, (3.213)

where m is given by the equation:

2AHy /K — p? (u?—K) (2% - 3K)

K (16u8—39Ku*+18K>u>+9K3) ’

mp = (3.214)
and where my and m3 are given by similar equations, omitted here for brevity. We
substitute Eqs. (3.212) and (3.213) into (3.40), and after trigonometric simplifica-
tions have been performed, we equate to zero the coefficients of the resonant terms
sin T and cos 7. This yields the amplitude, A, of the limit cycle that was born in the
Hopf bifurcation:

P
A=A, (3.215)
0
where
= 8K (u*—K>)(16u° —39Ku* +18K*u> +9K3),  (3.216)
Q= QT + Q1, (3.217)
and

Qo = 48H3 K> u8 + 16 H2 K pu® —69H3 K3 p® + 32 H,2 K2 p®

— 63H3K* u* — 162H,% K> u* + 81 H3 K5 pu? + 108 Hy2 K*

+ 27H3K® +30H,2 K>, (3.218)
Q1 = 96H3 K i° +64H,? 1’ — 138 H3 K> i’ — 16H2 K i’

— 126H3 K> pu° — 308 Hy2 K2 1 + 162 H3 K* 1 4296 Hy2 K3 1

+ 54H3 K% 4 12H2 K . (3.219)
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Eq. (3.217) depends on U, K, H,, H3, and T,. By using Eq. (3.198) we may express
Eq. (3.217) as a function of u, K, Hp, and H3 only. Removal of secular terms also
yields a value for the frequency shift k,, where, from Eq. (3.204), we have Q =
© + €%ky:

R
o =~55. (3.220)

where Q is given by (3.217) and

R= VK- u2Qy. (3.221)

An expression for the amplitude B of the periodic solution for £ (¢) (see Eq. (3.194))
may be obtained directly from Eq. (3.187) by writing & = 7 + un, where 1 ~
Acos wt. We find:

B= VKA, (3.222)

where K and A are given as in (3.189) and (3.215) respectively.

3.7.3 Numerical example

Using the same parameter values as in (Monk, 2003)
@ =0.03/min, py =100, n =3, (3.223)

we obtain
p* =145.9158, m* = 4.3774, (3.224)

K=3.9089x 1073, H, =6.2778 x 1073, Hy = —6.4101 x 1077, (3.225)
2
T., — 18.2470, w— 5.4854 x 102, =% — 114.5432. (3.226)
w

Here the delay T, and the response period 27 /@ are given in minutes. Substituting
(3.224)—(3.226) into (3.215)—(3.222) yields the following equations:

A =27.0215VA, (3.227)
ky = —2.4512x 1073 8, (3.228)
B = 1.6894VA. (3.229)

Note that since Eq. (3.227) requires A > 0 for the limit cycle to exist, and since we
saw in Eqs. (3.192) and (3.193) that the origin is unstable for T > T, i.e. for A > 0,
we may conclude that the Hopf bifurcation is supercritical, i.e., the limit cycle is
stable.

Multiplying (3.228) by £ and substituting into (3.204) we obtain:

Q = 54854x 1072 —-2.4512x 1073 A (3.230)
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where A =T — T, = T — 18.2470. Plotting the period, %’, against the delay, T,
yields the graph shown in Fig. 3.6. These results are in agreement with those ob-
tained by numerical integration of the original Egs. (3.179) and (3.180) and with
those presented in (Monk, 2003).

160
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17 18 19 20 21 22 23 24
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Fig. 3.6 Period of oscillation, ZQ—” plotted as a function of delay 7', where 2 is given by Eq.(3.230).
The initiation of oscillation at T = T, = 18.2470 is due to a supercritical Hopf bifurcation, and is
marked in the Figure with a dot.

3.8 Exercises

Exercise 1
For which values of the delay 7 > 0 is the trivial solution in the following DDE
stable?
dx(t)
dt

= x(t) = 2x(t—T). (3.231)

Exercise 2
Use Lindstedt’s method to find an approximation for the amplitude of the limit cycle
in the following DDE:

dx(r)

o 3
e x(t—T)+x(t—T)". (3.232)
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Exercise 3
Use the center manifold approach to determine the stability of the x=0 solution in
the following DDE:
dx(t)
dt
Here is an outline of the steps involved in this complicated calculation:

— x(t— g>(1 +x(1)). (3.233)

1. Show that the parameters of the linearized equation

d);(tt) . (l B g) , (3.234)

have been chosen so that the delay is set at its critical value for a Hopf bifurcation,
i.e. the characteristic equation has a pair of pure imaginary roots, A = +oi. Find
.

2. Find the eigenfunctions s1(0), s2(0) and the adjoint eigenfunctions n;(0), n(8).
These are determined by Eqs.(3.98)—(3.101),(3.113)-(3.116), where the con-
stants ¢;, d; are related by the orthonomality conditions (3.112), in which the
bilinear form (v,u) is given by Eq.(3.107).

3. By comparing Eq.(3.233) with the general form (3.90), identify o, §, and f for
this system. This will permit you to write down Eqs.(3.155) and (3.156), in which
(ni, Fx;) is given by Eq.(3.157) and x; = y1(£)s1(0) + y2(t)s2(0).

4. Equate coefficients of y%, y1y2 and y% in Egs.(3.155) and (3.156) and so obtain 3
first order linear ODE’s on m(60), m,(0) and m3(0), together with 3 boundary
conditions.

. Solve these for m;(6).

6. Substitute the resulting expressions for m;(0) into Eq.(3.136) for the center man-

ifold.

7. Substitute your expression for the center manifold into the y;-y, Eqs.(3.132).
Here (n;, Fx;) is given by Eq.(3.134) and x, = y1(¢)s1(0) +y2(t)s2(0) + w(2)(6).

8. Compute Q from Eq.(3.138).

3n—2
Answer: Q = —4?” %

o)
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Chapter 4

Analysis and Control of Deterministic and
Stochastic Dynamical Systems with Time Delay

Jian-Qiao Sun, Bo Song

Abstract This chapter presents a comprehensive summary of recent advances in
the analysis and control of time-delayed deterministic and stochastic systems. The
studies of numerical methods for time-delayed systems in the mathematics literature
are reviewed including a discussion of the abstract Cauchy problem for delayed
differential equations. Several numerical methods for computing the response of
and designing controls for time-delayed systems are presented. These include semi-
discretization, continuous time approximation, lowpass filter based continuous time
approximation, and continuous time approximation with Chebyshev nodes. A large
number of examples are presented including optimal feedback gain design, stability
domains in the feedback gain space of linear time-invariant and periodic systems,
optimal control, Lyapunov stability, supervisory control of systems with uncertain
time delay, moment stability, Fokker-Planck-Kolmogorov equation and reliability
formulation of stochastic systems.

4.1 Introduction

Time delay is a common phenomenon in engineering, economical and biological
systems. It is caused by signal transportation and communication lags, feedback
delays and retarded hardware responses. It also arises when high order industry pro-
cesses are approximated by low-order models with delay (Camacho and Bordons,
1999). Other than a few cases, time delay is undesirable. Control strategies to elim-
inate or minimize unwanted effects are often employed. Effects of time delay on
the stability and performance of control systems have been a subject of many stud-
ies. For time-invariant linear systems with time delay, several methods are available

Jian-Qiao Sun, Bo Song
School of Engineering, University of California, Merced, CA 9533, USA.
Emails: jgsun@ucmerced.edu, bosong1979@gmail.com
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for the design of PID controls and stability analysis. These methods including root
locus and Nyquist criterion are quite mature.

4.1.1 Deterministic systems

Stability conditions of delayed time-varying systems have been extensively stud-
ied in the literature. The Lyapunov approach is a popular method to use (Wu and
Mizukami, 1995; Kapila and Haddad, 1999). A non-Lyapunov based stability study
of linear time-varying system by the Gauss-Seidel iteration is presented in (Xiao
and Liu, 1994). An unconditional stability criterion is derived in (Li et al., 1989) for
time-varying discrete systems. A study on stability and performance of feedback
controls with multiple time delays is reported in (Ali et al., 1998) by considering
the roots of the closed-loop characteristic equation. A survey of methods for sta-
bility analysis of deterministic delayed linear systems is presented in (Niculescu et
al., 1998). Another excellent survey of stability and control of time-delayed systems
can be found in (Gu and Niculescu, 2003).

Cao, Lin and Hu (2002), Fridman and Orlov (2009), and Kim (2008) ana-
lyzed stability of linear systems with time delay using the Lyapunov approach.
Fan and Chan discussed asymptotic stability problem for a class of neutral systems
with discrete and distributed delays via linear matrix inequality (Fan et al., 2002).
de Oliveira and Geromel focused on synthesis of non-rational controllers for linear
delay systems (de Oliveira and Geromel, 2004). Stabilization and performance de-
sign problems are expressed in terms of linear matrix inequalities. Gao, Chen and
Lam studied stability and H., controls of systems with two successive delay compo-
nents (Gao et al., 2008). Han concerned with stability of linear time-delay systems
of both retarded and neutral types by using time-independent and time-dependent
Lyapunov-Krasovskii functional (Han, 2009). Ivanescu, Dion, Dugard and Niculecu
(2000), Kolmanovskii and Richard (1999), Zhang, Tsiotras and Knospegave (2002)
investigated delay-dependent and delay-independent stability conditions. Shao pro-
vided improved delay-dependent stability criteria for systems with a varying delay
in a range (Shao, 2008). Xia and Jia considered the problem of robust stability and
stabilization of linear systems with a constant time-delay in the state and subject to
real convex polytopic uncertainty (Xia and Jia, 2003).

Although time delay is considered as a undesired characteristics which is fre-
quently a source of instability and complicates the analysis and design in most of
the applications, positive uses of time delay have also been investigated. From the
early 1950s (Tallman and Smith, 1958) to the more recent days (Suh and Bien, 1979,
1980; Shanmugathasan and Johnston, 1988; Kwon et al., 1990), time delay has been
used to improve system performance in various ways. The time-delayed feedback
control is designed in (Fujii et al., 2000) to regulate the librational motion of gravity-
gradient satellites in an elliptic orbit. Delayed feedback laws are investigated in
(Atay, 2002) to control the amplitude of oscillations in planar systems with general
nonlinearities. Olgac and his associates have published extensively on the use of



4 Analysis and Control of Systems with Time Delay 121

delayed resonator for vibration suppression (see e.g., (Filipovic and Olgac, 1998)).
Space teleoperation is notorious for time delays (Nohmi and Matsumoto, 2002). In
reference (Singh, 1995), a time-delay filter is developed to design a fuel/time opti-
mal control. A sampled-data control system is studied in (Ha and Ly, 1996) with a
consideration of computation time delay. Yang and Wu (1998) and Stepan (1998)
have studied structural systems with time delay. Over the years, researchers have
come to a realization that the model predictive control offers a good tool to deal
with time delay (Dumont et al., 1993; Normey-Rico and Camacho, 1999; Rawlings,
2000).

There have also been many studies of control systems with unknown and time-
varying time delays. Chen et al. derived sufficient conditions for the existence of the
guaranteed cost output-feedback controller in terms of matrix inequalities for uncer-
tain dynamical systems with time delay (Chen et al., 2004). The Lyapunov method
is used in (He et al., 2007) for the stability analysis of systems with time-varying
delay with known lower and upper bounds. The Lyapunov function dependent on
the known upper bound of uncertain state-delays is derived in the study of model
predictive controls (MPC) for a constrained linear digital systems with uncertain
state-delays (Hu and Chen, 2004). A class of iterative learning control systems with
uncertain state delay and control delay is studied in (Ji and Luo, 2006). Robust sta-
bility of uncertain linear systems with interval time-varying delay is studied in (Jiang
and Han, 2008). Stability of systems with bounded uncertain time-varying bounded
delays in the feedback loop is studied in (Kao and Rantzer, 2007). The stability
problem is treated in the integral quadratic constraint (IQC) framework. Kwon, Park
and Lee investigated delay-dependent robust stability for neutral systems with the
help of the Lyapunov method (Kwon et al., 2008). The system has time-varying
structured uncertainties and interval time-varying delays. A compensation scheme
consisting of a fuzzy-PID controller and a neural network compensator is proposed
for real-time control over the network (Lin et al., 2008). This scheme reduces the
influence of time delays on stability while maintaining the system performance. Ac-
cording to (Miller and Davison, 2005), given a finite-dimensional LTT plant and an
upper bound on the admissible time delay, there is no general theory for designing a
controller to handle an arbitrarily large uncertain delay. The authors show that given
a finite-dimensional LTI plant and an upper bound on the admissible time delay,
there exists a linear periodic controller which robustly stabilizes the plant. Robust
stability of systems with random time-varying delay is studied in (Yue et al., 2009).
The resulting system model has stochastic parameters. Sufficient conditions for the
exponential mean square stability of the system are derived by using the Lyapunov
functional method and the linear matrix inequality (LMI) technique.

When the uncertain time delay is bounded with known lower and upper bounds,
the supervisory control (Morse, 1996, 1997; Hespanha et al., 1999, 2003) can be
considered. The supervisory control proposes to use several estimates of uncertain
parameters for the system model. For each estimate of the parameter, a control is
designed to achieve the desired performance. A supervisor monitors the real-time
response of the system, selects a plant model according to a switching criterion and
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implements the corresponding control. This chapter presents one such example of
the supervisory control of systems with uncertain time delay.

4.1.2 Stochastic systems

There is a strong interest in the stochastic systems with time delay. An effective
Monte Carlo simulation scheme that converges in a weak sense is presented by
Kuchler and Platen (2002). Buckwar has studied numerical solutions of Itd type
differential equations and their convergence where the system considered has time
delay both in diffusion and drift terms (Buckwar, 2000). Guillouzic, L’ Heureux and
Longtin have studied first order delayed It6 differential equations using a small de-
lay approximation and obtained probability density functions (PDF) as well as the
second order statistics analytically (Guillouzic et al., 1999). Frank and Beek have
obtained the PDFs using the Fokker-Planck-Kolmogorov (FPK) equation for linear
delayed stochastic systems and studied the stability of fixed point solutions in bi-
ological systems (Frank and Beek, 2001). State feedback stabilization of nonlinear
time delayed stochastic systems are investigated by Fu, Tian and Shi (2003) where
a Lyapunov approach is used.

4.1.3 Methods of solution

Several methods of solution are available in the literature.

A method that fully discretizes the delayed control system in time domain has
been extensively studied. Pinto and Goncalves (2002) have fully discretized a non-
linear SDOF system to study control problems with time delay. Klein and Ramirez
(2001) have studied MDOF delayed optimal regulators with a hybrid discretiza-
tion technique where the state equation is partitioned into discrete and continuous
portions. Cai and Huang have studied optimal vibration controller with a delayed
feedback where standard discretization techniques are used (Cai and Huang, 2002).
Time-delayed systems have been studied using discretization techniques with an ex-
tended state vector. The Smith predictor is a well-known method (Smith, 1957) that
proposes a compensator to stabilize the feedback control designed for the system
without time delay.

A method using Chebyshev polynomials to approximate general nonlinear func-
tions of time has been developed to handle linear and nonlinear time-delayed dy-
namical systems with periodic coefficients (Deshmukh et al., 2008, 2006; Ma et al.,
2005, 2003). The method has also been applied to study optimal control problems. A
temporal finite element method has been proposed in (Garg et al., 2007) to study the
stability of time-delayed systems with parametric excitations. The work reported in
(Kalmar-Nagy, 2005) makes use of the piece-wise exact solution of linear differen-
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tial equations with a single time delay to create a map in order to study the stability
of the system.

The semi-discretization (SD) is a well-established method in the literature and
used widely in structural and fluid mechanics (Pfeiffer and Marquardt, 1996; Leuger-
ing, 2000). The method has been applied to delayed deterministic dynamical sys-
tems by Insperger and Stepan (Insperger and Stepan, 2001, 2002). The method
has been extended to control systems with delayed feedback (Sheng et al., 2004;
Sheng and Sun, 2005). The effect of various higher order approximations in semi-
discretization on the computational efficiency and accuracy has been examined in
(Elbeyli and Sun, 2004). The merit of the semi-discretization method as introduced
by Insperger and Stepan lies in that it makes use of the exact solution of linear
systems over a short time interval to construct the mapping of a finite dimensional
state vector for the system with time delay. The disadvantage of the method is that
it becomes difficult to handle multiple independent time delays with the mapping
as well as nonlinear dynamical systems. The continuous time approximation (CTA)
method is an extension of the method of semi-discretization and provides an alter-
native to handle systems with multiple independent time delays (Sun, 2009). The
CTA method has been applied to study control problems of the time-delayed linear
dynamical systems, and stochastic dynamical systems with time delay.

Most numerical methods for the solution and stability analysis of time-delayed
systems focus on approximation of temporal responses of the system, and are not
specifically developed to meet frequency domain requirements such as accurate rep-
resentation of poles and zeros of the original system. Numerical methods based on
the abstract Cauchy problem for computing the right-most characteristic roots of de-
lay differential equations (DDEs) are presented in (Engelborghs and Roose, 2002;
Breda et al., 2004, 2005). The convergence and stability of the method with the
Chebyshev polynomial expansion of the delayed response are discussed. The ab-
stract Cauchy problem can be stated in terms of a PDE, which is open to various
numerical methods for solutions. A finite difference method to solve the differential-
difference equation of the time-delayed system and the stability of the method are
presented in (Bellen and Maset, 2000), and a method of lines for solving the PDE of
the time-delayed system is investigated in (Maset, 2003; Koto, 2004). These meth-
ods are the same as the CTA method (Sun, 2009). The higher order Runge-Kutta
methods and their convergence are studied in (Maset, 2003). The implicit-explicit
(IMEX) linear multistep Runge-Kutta method for DDEs is studied in (Koto, 2009).
The book (Bellen and Zennaro, 2003) presents a comprehensive discussion of stud-
ies of numerical methods for DDEs up to 2003. The Padé approximation of the
transfer function is a method in frequency domain (Franklin et al., 1986; Vijta,
2000). This method provides a rational approximation of the transfer function of
the time-delayed system, which contains the exponential term e~"° due to time de-
lay. However, it does not focus on the accurate representation of the infinite number
of poles and zeros of the transfer function, in particular, the dominant poles.
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4.1.4 Outline of the chapter

The chapter is organized as follows. Section 4.2 reviews the abstract Cauchy prob-
lem, and points out that many numerical methods can be derived in this framework.
Section 4.3 presents the method of semi-discretization. Section 4.4 discusses the
method of continuous time approximation. Section 4.5 studies the spectral proper-
ties of these two methods. Section 4.6 presents a comparative study of stability of
time-delayed linear time invariant systems by the Lyapunov method, Padé approxi-
mation and semi-discretization. A number of control examples and an experimental
validation are presented in Sections 4.7 to 4.9. Section 4.10 presents a supervisory
control of systems with unknown time delays.

We then switch our interest to stochastic systems with time delay. In Sections
4.11 and 4.12, we review the methods of solution for stochastic dynamical systems
with time delay. Section 4.13 presents several examples of stability and response
analysis of stochastic systems with time delay.

4.2 Abstract Cauchy problem for DDE

The discussion in this section follows closely the reference (Bellen and Zennaro,
2003). Consider an n-dimensional system with k discrete time delays

%(t) = Aox(t) +ZAlxt—Tl = g(x(t)), (4.1)
X(G)ZQO(Q)’ 96[_7—,0],

where x(t) € R", Ag,A1,..., A, e R 0 =1 < 7 < -+ <7 =7and
g(x(t)) = Zf:() A;x(t — 7). The solution operator T(t) (¢t > 0) of the system
(4.1) is defined by

T(t)p(0) =x(t+0), ¢0) X, 4.2)

where the Banach space X = C([—, 0], R") is endowed with the maximum norm

Ol = max ()], ¢ €X, (4.3)

and x(t + 6) denotes the solution of Eq. (4.1) with the initial condition ¢(0) €
X. The family {T(t)}:>0 is a Cp-semigroup with an infinitesimal generator A :
D(A) € X — X given by

dp(0)

Ap = a5 PE€ D(A), (4.4)

where the domain D(A) is defined as
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dp(0) dip u }
D(A):{ eX: € Xand —2(0) =Y " Ajp(-7) ¢ . (4.5)
14 0 ane e 2 wem

The equation
dy b
260 = ;:0 Aip(~m) (4.6)

is known as the splicing condition. When () satisfies the splicing condition, the
response x(t) of the DDE is C'-continuous. When the splicing condition is not
satisfied, x(t) is CY-continuous (Bellen and Zennaro, 2003). The discontinuity in
©(0) propagates to the solution x(¢) making it nonsmooth.

The system (4.1) can be restated as an abstract Cauchy problem in terms of the
infinitesimal generator

W — A(O)x(t +0), t >0, @4.7)

x(0) = p(0), 0 € [-1,0].

It should be pointed out that in general, the infinitessimal operator A is a function
of time delay index 6. Hence, this simple looking linear system implicitly lives in
an infinite dimensional state space.

Introduce a function

v(t,0) =x(t+0), t>0, —7<0<0. 4.8)
Equations (4.4) and (4.7) lead to a hyperbolic PDE for v (¢, 0)
ov ov

with a boundary condition

ov

%(t,o) =g(v(t,0)), t>0, (4.10)
and an initial condition

v(0,0) = (), 6 € [-T,0]. “4.11)

The abstract Cauchy problem (4.7) and the PDE (4.9) do not contain time delay
explicitly and are amenable to various numerical methods of integration (Maset,
2003; Bellen and Maset, 2000; Koto, 2009; Bellen and Zennaro, 2003). The methods
of semi-discretization and continuous time approximation can also be derived from
the abstract Cauchy problem (4.7) and the PDE (4.9) (Elbeyli and Sun, 2004; Sun,
2009).

Next, we construct a discrete approximation of A. Consider a mesh Qy =
{Tn.4i = 0,1,...,N} of N + 1 points in [0, 7] such that 0 = 7y < Tn1 <
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- < 17n,n = 7. The continuous space X is replaced by the space X of the
discrete functions defined on the mesh 2. That is, x(¢ + 0) is discretized into a
block-vector

y(t) = [x(t),x(t — 75 1)s - x(t — T n)]T

= [yo(t),y1(t),y2(t), ., yn(®)]" (4.12)

Let (Lyy)(6) be the unique R™(V+1) valued interpolating polynomial of degree N
with (Lxy)(7n,;) = yi(t). In particular, (Lyy)(7n.0) = yo(t) = x(t).

The infinitesimal generator A is approximated by a spectral differentiation ma-
trix A v determined by the following equations

Yo =%(t) = f(Lny(rn0)) = (Any(t))o, (4.13)

. d(L .
yo= — ) ) — (Any () =1
T
It should be noted that the term (A yy(t))o in the first equation should be interpreted
in the sense of the operator as defined by f(Lyy(7n,0)). Other terms (Any(¢));

(i =1,...,N) are matrix multiplications. The system (4.7) now reads
y(t)= Any(1). (4.14)

Note that y(¢) is n(N +1) x 1, and A is n(N + 1) x n(NN 4 1). The initial condi-
tion reads y(0) = [¢(0), o(—=7n.1)s - - - o(—7n.5)] . In a nutshell, Eq. (4.14) is a
continuous time approximation of the system (4.1), which is the same as the one pre-
sented in (Sun, 2009). A detailed matrix representation of A v with the Chebyshev
external nodes on [(), —T] is presented in (Breda et al., 2004, 2005).

4.2.1 Convergence with Chebyshev nodes

Let B(, p) be a closed ball in C centered at A with radius p where X is the eigen-
value of the original system. It is shown in (Breda et al., 2004, 2005) that when the
Chebyshev external nodes on [0, —7] are used for (Lyy)(6), the maximum error
emax Of the collocation polynomial is bounded above by

Co [C\N
emaxsroﬁ(ﬁl> llell, (4.15)

where C and C are constants determined by A and p, but independent of N. Fur-
thermore,

N < _
1@9/\ Ai|l <pn,i=1,...,1, (4.16)
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where \; denotes the eigenvalue of the matrix A of multiplicity v that matches
the exact eigenvalue A of the original system, and

Cy 1/v 1 o) N\ /v “tr
N (Cs > VN ( N ) ’ @1
with Cy and C3 = C3(\) are constants. It should be noted that this convergence
analysis does not apply to the extraneous eigenvalues introduced by the discretiza-
tion, which don’t match any true eigenvalues of the original system. It also does not
address the accuracy of temporal response prediction. We shall numerically examine
this issue in the example section, and further show that these extraneous eigenvalues
are not negligible, and contribute to temporal responses.
For the convergence and stability analysis when the finite difference and Runge-
Kutta methods are used to derive Eq. (4.14), the readers are referred to (Maset, 2003;
Bellen and Maset, 2000; Koto, 2009; Bellen and Zennaro, 2003).

4.3 Method of semi-discretization

Consider a linear periodic system with time delay
x(t) = A(t)x(t)+A ()x(t — 1) + B(t)u(t), (4.18)

where x € %" and u € R™. A(t) € R™*", Ay(t) € R"*™ and B(t) € R"*™
are periodic matrices with period 7'. We shall consider a feedback control with or
without time delay in the following forms

u(t) = —Kx(t) oru(t) = —Kx(t — 1), 4.19)

where K € R™*" is the gain matrix.

When we introduce the method of semi-discretization, we can focus on the sys-
tem in Eq. (4.20) without loss of generality, because in the closed loop system, the
control simply modifies the matrix A(t) or A4(t).

x(t) = A(t)x(t)+Aq(t)x(t — 7). (4.20)

The time delay significantly complicates the solution process of the system, be-
cause the state vector of the system is no longer just x(t), but (xT (t),xT(t —71))T
for all 0 < 7y < 7, which has an infinite dimension.

Let us discretize the period 7" into an integer k intervals of length At such that
T = kAt. For the sake of simplicity, we assume that the time delay 7 = NAt
where N < k is an integer. When an integer cannot be found, discretization of the
time delay 7 will be approximate. Details on how to treat this case can be found
in (Insperger and Stepan, 2001). The CTA method introduced next can handle this
issue naturally.
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Consider Eq. (4.20) in a time interval ¢ € [t;,t;41] where t; = iAt, i =
0,1,2,...,k. In each small time interval [t;, {;11], the delayed responses x(t — )
and the time dependent coefficients are assumed to be constant. We denote

X(ti - T) = X((Z - N)At) = X;—N,

421
A(t) = As, Aglt:) = Ay

Equation (4.20) becomes
x(t) — Ax(t) = Ag(O)x(t — 1) t € [ts,tiva], 1=0,1,2,... k. 4.22)

The general solution of the equation is

t R . . .
X(t) — eAi(f/—ti)Xi + / eAi(t_ti_t)Ad(t)X(t — T)dt, (4.23)

L
te [ti,ti+1], 1=0,1,2,... k.

The integration on the RHS of the above equation can be computed by assuming
that A4(t)x(t — 7) is a constant or a linear function of time over the small interval
[t;,t;+1]. When it is taken to be a constant, it can be either the value at the beginning
of the interval or the mid-point average. The latter approximation has been shown as
good as the linear approximation. The work in (Elbeyli and Sun, 2004) has studied
the accuracy of these approximation schemes. In the numerical examples, the mid-
point approximation has been used.

As an example, we show the case when A 4(¢)x (¢t —7) is assumed to be A g;x;— n
over [t;, t;+1]. The response x;+1 = x(¢;11) at time ¢;41 can then be expressed in
terms of the initial condition x; and x;_ y in the following mapping

xi+1 = Qix; + Pix; N, 4.24)
where
tiya
P;= / eABETIA jdr, Qu=e®iAt, (4.25)
t;
Define an (N + 1) x n dimensional state vector as
T T T T 1T
yi=[xF xLyxlo . oxt ]

A mapping of the state vector over the interval [¢;,¢;11] can be found as
Yit1 = Hiyi, (4.26)
where the transition matrix from time ¢; to ¢;4; is

Qi OnX(ann) P;
H; = Lixn Onx(Nn—n) Onxn . (427)
O(Nn—n) Xn I(N’n—n) X(nN—n) O(Nn—n) Xn
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The mapping of the state vector over one period 7' = kAt is therefore
Yi+1 = @y, (4.28)
where the mapping matrix ® is given by
®=H;_1H;_o--H;Hp. (4.29)

Note that the index j (j = 0,1, ...) refers to the number of periods, i.e. y; is the
state vector at the beginning of the ;" period.

The stability of the control system is determined by the eigenvalues of ®. Let
|A|max denote the largest absolute value of eigenvalues of the matrix ®. Then,

Y1l < [Mmax|yjl- (4.30)

When |A|lmax < 1, @ is a contraction, and the control system is asymptotically
stable. The stability boundary is given by |A|max = 1. Equation (4.30) indicates that
the smaller |\|max 18, the faster the system converges to zero. |A|max therefore also
provides a measure of the control performance.

In the method of semi-discretization, delayed portion of the response is dis-
cretized and other part is kept continuous. And we use finite dimensional map to
approximate an infinite dimensional system. The method of semi-discretization is
an efficient and accurate method for analysis of time delayed periodic systems.
Minimization of the largest eigenvalue of the mapping leads to an optimal feed-
back controller in the sensor of response decay over one mapping step. However, it
is difficult to handle multiple independent delays or when the period of the system
is not a multiple of the time delay. The method of continuous time approximation
presented in Section 4.4 can deal with this problem.

4.3.1 General time-varying systems

In principle, the SD method can be extended to general time-varying linear systems.
In this case, the mapping of the state vector over one mapping interval becomes

yi+1 = ®()y;, 4.31)

where the matrix ®(j) is now a function of the mapping step j. The asymptotic
stability of the system requires

Mmax | [T ®0G) | < 1. (4.32)
i=0

The computation to delineate the stability boundary is far more intensive. A strin-
gent sufficient condition for asymptotic stability is that there exists a J < oo such
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that
[Amax (®(7)) < 1forall j > J. (4.33)

The extension of the method to nonlinear systems is nontrivial, and will lead to a
nonlinear mapping y,;+1 = F(j,y;) with a high dimension. It would be very diffi-
cult just to locate all the equilibrium points of the mapping in the high dimensional
state space.

4.3.2 Feedback controls

4.3.2.1 Optimal feedback gains

If we restrict our interest in a finite and compact region 2 C R™*" in the parametric
space K, we can find the regions of stability and optimal control gains in the region
to minimize |A|max. This leads to the following optimization problem

i [max |A(®)|] subject to [A|max < 1. (4.34)

This optimization formulation offers a different approach to the design of feedback
controls for linear systems with time delay. The control performance criterion is the
decay rate of the mapping ® over one period.

The implication of the optimal control gains obtained from Eq. (4.34) is studied
next by examining the root locus of PID controls of the linear time-invariant system.

4.3.2.2 Implication of optimal feedback gains

Consider a delayed PID control of a linear time-invariant second-order system.

01 0 000
x(t)=10 0 1 x(t)— |0 0 0 |x(t—r1), (4.35)
0 —w? 2w ki kp kq

where x = (1,4,#)7, ¢ is the damping ratio, and w is the natural frequency. Be-
cause the system is autonomous, we can arbitrarily select a period 7" > 7 to con-
struct the mapping. For convenience, we choose the undamped natural period of the
system as 7'. Note that the matrix H; is independent of ¢ in this case. The stability
of the system is also determined by the eigenvalues of a single matrix H;.

We first consider PI controls. The system parameters are chosen as ¢ = 0.05,
w = 2 and N = 50. The undamped period of the system is 7" = . Figures 4.1
and 4.2 show the root locus of the closed loop system for varying feedback gain
k; when k, = —1.1217. The closed loop poles corresponding to the optimal gains
(kp, ki) are marked on the loci in the figure. It appears that the optimization problem
stated in Eq. (4.34) leads to the feedback gains that stabilize all branches of the root
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Fig. 4.1 Root locus of the second order system with PI control with respect to k; when k, =
—1.1217. “x” indicates the optimal control gains on the root locus. Arrows show direction of
increasing k; gain.
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Fig. 4.2 Root locus of the second order system with PI control with respect to k; when k, =
—1.1217 in the magnified region of interest. “x” indicates the optimal control gains on the root
locus. “0” indicates the zero k; gains. Arrows show direction of increasing k; gain. w; (i =
0, 1,2, 3) correspond to the crossing frequency when the system is marginally stable. The branch
C1 is the most “vulnerable” branch for the system.

locus. The branch C'1 marked in Fig. 4.2 is the most vulnerable branch that could
cause instability. The optimal control gains place the pole to the leftmost tip of
the branch C'1 to ensure the best convergence rate. The present design method of
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optimal feedback controls leads to a multi-variable optimization problem, and offers
a complementary approach to the classic design methods such as root locus.

From Fig. 4.2, stability bounds of k; for the fixed k, = —1.1217 can be found as
[0,2.713].

The case for varying k, with a fixed optimal k; gain has a similar result and is
omitted here.

4.3.2.3 Tracking control

We now consider the tracking control problem. The control defined by Eq. (4.19) is
given by u(t) = —Ke(t) or u(t) = —Ke(t — 7) where e(t) = r(t) — x(t) is the
tracking error and r(t) is the reference vector. The state equation now reads

x(t) = A)x(t)+A.()x(t — 7) + g(r(t)), (4.36)

where g(r(t)) is a function of the reference input r(t) evaluated at ¢t or t — 7.
The one step mapping of the state vector y; can be expressed as

yir1 = Hiy; + b, (4.37)

where b? is due to the contribution of g(r(£)) over the interval [t;, ¢;; 1] in the 5%
period. Consequently the mapping of the state vector over one period T' = kAt is

y.y'—{-l = @y/ —|— d]', (438)

where

k=1 / k—1
dj=>) ( 11 Hn> bl. (4.39)
i=0 \n=i+1
Note that the index j (j = 0, 1, ...) still refers to the number of periods. This result
suggests that the tracking control of linear periodic systems has the same stability
region as that of the regulator.

The above control design and stability study are in terms of the extended state
vector y;. Recall that y; is a finite dimensional approximation of the original infinite
dimensional state of the time delay system. Therefore, the stability of y; implies
that of the original system. Furthermore, the condition |A|max < 1 is necessary and
sufficient for ® to be a contraction. It is also necessary and sufficient for the stability
of the system.

When |A|lmax < 1, Equation (4.30) indicates that the magnitude of y; decays in
every mapping step. This does not guarantee the same decay of the magnitude of
x; unless the system is in steady state. For this reason, the optimal feedback control
gains may not guarantee the transient performance of the closed-loop system in
some cases. The numerical results reported subsequently will attest to these points.
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4.3.3 Analysis of the method of semi-discretization
We consider three approximation schemes for computing the integral

¢ )
/ A=) A (DVx(F = 7)di (4.40)

t;

in Eq. (4.23) when ¢ = ;1. The first scheme is the zeroth order method when
Ay(t)x(t — 1) is taken to be A4(t;)x(t; — 7). The second scheme is called the
improved zeroth order method when A 4(t)x(t — 7) is taken to be (Ay(¢;)x(t; —
T) + Ag(tit1)x(tis1 — 7))/2, i.e. the average of the values at lower and upper
ends of the time interval [t;, t;11]. The third scheme is the first order method when
A 4(t)x(t — 7) is assumed to be a line function of time for t; <t < t;41.

To compare the accuracy of the three approximation schemes, we need a mea-
sure. Since the exact solutions for periodic systems are not available, we shall con-
sider the following LTI system, for which we can obtain exact stability bounds of
the control gains,

() + 2Cwi(t) + wia(t) = —kgi(t — 1) — kpx(t — 7), (4.41)

where ( is the damping ratio, and w is the natural frequency. The characteristic
equation of the closed loop system is as follows

$? 4+ 2€ws + w? + kgse™ ™S + kpe” 7% =0, (4.42)

where s is the Laplace variable. The roots of Eq. (4.42) are the closed loop poles.
By studying the stability of the closed loop poles, we can find the exact ranges of
the control gains kg and k;, that stabilize the system. Let k7 and k; be a pair of
control gains within the stable boundary of the controlled system. Keeping either of
the control gains constant, we can determine the upper and lower limits of the other
control gain that renders the system marginally stable. We label these exact gains as
kY, kfj, k; and ké where the superscript « and [ respectively stands for upper and
lower bounds.

Because the system in Eq. (4.41) is autonomous, we can arbitrarily select a period
T > 7 to construct the mapping ®. By fixing one of £ and k; in turn and varying
the other, we can obtain an approximate value for the upper and lower bound of
the control gains crossing the stability boundary defined by |A|max = 1. These
approximate gains corresponding to the exact ones k7, ké, Kk, and ké are denoted as
k4, kY, k¥ and kL.

We introduce the following root mean square error as a measure of accuracy of
the semi-discretization method,

ker = %\/(k}; — IE;;)Q + (k:fi - 1551)2 + (k;; - 1%3)2 + (kﬁ, - IE},)Q- (4.43)
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We can also study the effects of the approximation schemes on the optimal gains.
The convergence of the control gains and |\|;,ax as a function of discretization level
offers a qualitative measure for comparison, and will be considered hereafter. Fi-
nally, we simulate the system response and compare the decay rate of the response
to that predicted by the semi-discretization method with different approximation
schemes. In the numerical examples, we examine the decay rate of the L, norm of
the state vector y. This comparison is amenable to both time-invariant and periodic
systems.

4.3.3.1 Linear time-invariant second order system

We first consider a second-order autonomous system defined in Eq. (4.41) with ( =
0.05, w = 2 and 7 = 7/2. We have selected a period T = 7 > 7 to construct the
mapping.

In Table 4.1, we present the solutions for the upper and lower stability bounds
of the control gains with different discretization levels. We used k) = —0.1356
and k; = —0.3898, the optimal control gains by the zeroth order approximation
with N = 20. These solutions are compared with the exact values. The results in
the table are also plotted in Fig. 4.3. The figure shows that the convergence of the
first order approximation is far superior to that of the zeroth order approximations.
At N = 10, its error is comparable to that of the zeroth order approximation at

Table 4.1 Exact and approximate stability bounds of control gains with varying discretization
levels.

Discretization  Solution kp= —0.1356 kq= —0.3898 Error
Level Method lower upper lower upper ker
Exact | —1.75862692 0.19715358 | —1.85247965 1.364948976 nla

10 zeroth | —1.556284 0.1918105 | —1.5558121  1.4998466 |1.9182036e-1

improved | —1.792398  0.19921478 | —1.84305351 1.41216126 |2.9421873¢c-2
first order | —1.793502  0.19887852| —1.8705159 1.37106345 |1.9887050e-2
20 zeroth | —1.6557696 0.1938158 | —1.69536752 1.43163415 |9.9651774e-2
improved | —1.7635742  0.1973303 | —1.8401601 1.38495437 | 1.2005144¢-2
first order | —1.7672229  0.1975833 | —1.85698090 1.36647265 (4.9157433¢-3
40 zeroth | —1.7068267 0.19531915 [ —1.77153523  1.39809059 |5.0835515¢-2
improved | —1.7581437 0.19703111 | —1.84436498 1.37407107 |6.1096020¢-3
first order | —1.7607684 0.19726091 | —1.85360447 1.36532958 |1.2255089%¢-3
60 zeroth | —1.7240170  0.1958938 [ —1.79796493  1.3869977 |3.4122699¢-2
improved | —1.7576467  0.1970252 | —1.84662891 1.3708362 |4.1793607¢-3
first order | —1.7595781  0.1972013 | —1.85297953  1.3651181 [5.4439084c-4
80 zeroth —1.732641  0.1961951 [ —1.81138360 1.38146835 |2.5680546¢-2
improved | —1.7576447  0.1970397 | —1.84792522 1.36929181 |3.1851518¢-3
first order | —1.7591618  0.1971804 | —1.85276083 1.36504411 |3.0616550c-4
100 zeroth | —1.7378257  0.196380 | —1.81950120 1.37815617 |2.0586993¢-2
improved | —1.7577224  0.1970541 | —1.84875598 1.36838844 |2.5750569¢-3
first order | —1.7589692  0.1971708 [ —1.85265961 1.36500986 |1.9593027¢-4
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N = 100. Since the dimension of the matrix A; is (N +2) x (N +2),and ® is a
product of £ > N matrices A;, the computational effort to form & is proportional
to (N +2) x (N +2) x k ~ O (N®). Thus, the first order approximation provides
about 1000 fold computational efficiency increase as compared to the zeroth order
scheme. The increase in the computational efficiency significantly speeds up the
optimization solution process, which involves repeated calculations of ® and its
eigenvalues.
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Fig. 4.3 Variation of the control gain error k¢, with discretization level N. (——+-): zeroth order,
(—x—x—): improved zeroth order, (—o—o-): first order.

Figure 4.4 shows the effect of the three approximation schemes on the stability
boundary in the control gain space. The stable region is inside the closed curve. For
N = 20, there is a substantial difference between the stability boundary predicted

05— T T T T T .

Fig. 4.4 Stability boundaries of the second order linear time-invariant system with time delay.
T=n/2and N =20.(—-—-— ):zeroth order approximation, (— — —):improved zeroth order
approximation, (— ) : first order approximation.
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by the first order approach and that by the zeroth order method. It should be noted
that there is a slight difference between the improved zeroth order solution and the
first order solution. The stability boundary obtained by the zeroth order approxima-
tion approaches to that by the first order approximation as N increases beyond 40,
and deviates substantially when N < 40.

4.3.3.2 Mathieu equation

Next, we consider the Mathieu equation with a delayed feedback control
Z(t) + (0 + 2e cos2t)x(t) = —kat(t — 7) — kpz(t — 7), (4.44)

where e = 1, § = 4, and the period of the system is T = 7. We assume a time delay
7 = m/4. The uncontrolled system is parametrically unstable.

Table 4.2 shows the optimal feedback gains and associated largest absolute value
[A|lmax of eigenvalues of ®. The variation of || ;max With discretization level is de-
picted in Fig. 4.5. The solutions obtained by the first order and improved zeroth
order approximation converge much faster than that by the zeroth order approxima-
tion. Figure 4.6 shows the time history of the norm of the state vector y (t). The
figure validates that the decay rate, characterized by |\|imax, Obtained by the first
order and improved zeroth order approximation converges to the exact ones.

Table 4.2 Optimal control gains and the largest absolute value of eigenvalues of ® with varying
discretization levels.

Discretization Optimal gains
Level Approximation kp ka Ao

20 zeroth —2.016893 —0.3090877 0.00155351
improved zeroth —2.035019 —0.2839209 0.00344162

first order —2.034412 —0.2832894 0.00335362

40 zeroth —2.027560 —0.2973511 0.00222317
improved zeroth —2.034192 —0.2830767 0.00336122

first order —2.034040 —0.2829187 0.00333904

60 zeroth —2.029776 —0.2925680 0.0026507
improved zeroth —2.034037 —0.2829196 0.0033463

first order —2.033967 —0.2828478 0.0033365

80 zeroth —2.030838 —0.2901451 0.0028373
improved zeroth —2.033984 —0.2828655 0.0033410

first order —2.033947 —0.2828261 0.0033354

100 zeroth —2.031465 —0.2886839 0.0029433
improved zeroth —2.033959 —0.2828401 0.0033386

first order —2.033935 —0.2828150 0.0033350

120 zeroth —2.031879 —0.2877072 0.0030119
improved zeroth —2.033946 —0.2828265 0.0033372

first order —2.033929 —0.2828085 0.00333479
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Fig. 4.5 Variation of the largest absolute value of eigenvalues of ® with discretization level V.
(—0—0-): zeroth order, (—x—x—): improved zeroth order, (-A-A-): first order approximation.
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Fig. 4.6 Time history of the norm of the state vector y(t). ( ): Time simulation of
the system with optimal gains computed by the first order approximation; (kp,kq) =
(—2.03441, —0.28329) and Amax = 3.3536e—3. Corresponding mapping by the improved ze-
roth order approximation (+) and by the first order approximation (0). (— — ——): Time simu-
lation of the system with optimal gains computed by the zeroth order approximation, (kp, kq) =
(—2.01689, —0.30909) and Amax = 1.5535e—3. Corresponding mapping by the zeroth order
approximation (), and mapping by the first order approximation (A). (-« ---- ): The logarithmic
curve fit. In each of the mappings N = 20 is used.

Finally, we present the stability boundaries of the control gains with |A|pax = 1
using different approximations in Fig. 4.7. The shape of the stability region is more
complex than that of the time-invariant system. The irregular geometry is a reflection
of the complex behavior of the periodic system. This figure demonstrates again that
the proposed first order and improved zeroth approximations substantially improve
the accuracy and efficiency of the semi-discretization method even for periodic sys-
tems.
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Fig. 4.7 Stability boundary in (k, kq) plane, a section of the graph is enlarged to show the detail.
( ): first order approximation with N = 12, (— - — - — ): improved zeroth order approxi-
mation with N = 12. (- - - -): zeroth order approximation with N = 12, (- - - - ): zeroth order
approximation with N = 40.

4.3.4 High order control

In the previous discussion of semi-discretization, the delayed response x(t — 7) is
discretized. In the following, we discretize the delayed control u(t — 7) instead.
This leads to a control of higher order and with better performance. Consider a
linear system with a delayed control,

% = Ax(t) + Bu(t — 7), (4.45)

where x € R"™ and u € R™. Let A7 = 7/N be the sample time of the digital
control system and ¢ = kA7. We denote u(t — 7) = u(k — N). Following the
concept of semi-discretization, we construct a mapping from Eq. (4.45) as

x(k+1) = Ax(k) + Bu(k — N), (4.46)
where A
A=e227 B = / eABT)B s, (4.47)
0

Introduce the extended state (n + N'm) x 1 vector
y(k) = [x(k),u(k — N),u(k — N +1),...,u(k — 1)]. (4.48)

Then, Equation (4.46) can be written in terms of the extended vector without time
delay as

y(k+1) = Ay(k) + Bu(k), (4.49)
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where o
ABO---0 0
00I---0 0
A=|: 1 ol B=|:]. (4.50)
000---1 0
000---0 I

Consider the full state feedback control (Kwon and Pearson, 1980)

u(k) = —Ky(k) 4.51)
= —le(k) — Kgu(k — N) — Kgu(k - N + 1) — e = KNHu(k — 1)

We refer to this control as a higher order control because the gain matrix K is
m x (n + Nm). The gain matrix for the state feedback control u(k) = —Kx(k) is
m X n.

The feedback gain can be designed with the digital LQR optimal control to min-
imize a cost function (Cai et al., 2003)
J=5> [y (k)Qy(k) +u" (k)Ru(k)], (4.52)

2
k=0

where Q is non-negative definite symmetric matrix and R is a positive definite
symmetric matrix. We obtain K = [R + BTSOOB]_lﬁTSOOA where S, satisfies
the algebraic Riccati equation (Franklin et al., 1998),

Seo=A"[S. —S.B[R+B"S.B] 'BTS.JA + Q. (4.53)

4.3.5 Optimal estimation

Assume that the system has an output z(k) with measurement noise v (k)
z(k) = Cy(k)+v(k). (4.54)

Furthermore, we assume that the system (4.49) is subject to a white noise distur-
bance ~ ~
y(k+1) = Ay(k)+Bu(k) + Tw(k), (4.55)

where the process noise w(k) and the measurement noise v(k) are random pro-
cesses with zero mean
E[w(k)] = E[v(k)] =0, (4.56)

and the delta correlation function
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Elw(i)w™ ()] = Ev@)vT ()] =0, if i #, (4.57)
Elw(k)w (k)] = R, E[v(k)vT (k)] = R.. (4.58)

Define an estimation system as
¥ (k+1)=Ay(k)+Bu(k), (4.59)
z(k)= Cy(k), (4.60)

where ¥ (k) denotes an estimate of y(k), and §(k) is an update of y (k) given by

= ¥(k) + L(k)(z(k) — Cy(k)), (4.61)

and L is the estimate gain. L is determined by considering a recursive least squares
problem leading to the following equations (Franklin et al., 1998)

L(k) = M(k)CT(CM(k)CT +R,) !, (4.62)
M(k + 1) = A[M(k) — M(k)CT(CM(k)CT + R,)'CM(k)]AT
+TRIT. (4.63)

In the steady state as k — oo, we have L = L, and

L. =MIC(CM,CT+R,) !, (4.64)
M, = AM_ - M ,CT(CM,CT +R,) 'CM_,JAT + TRLT. (4.65)

4.3.6 Comparison of semi-discretization and higher order control

Reconsider the system (4.41) in terms of the delayed control
() + 2Cwi(t) + wiaz(t) = u(t — 7). (4.66)

We compare the performance of the higher order control with that of the PD feed-
back control with the optimal gains designed by semi-discretization. Let 7 = 7/2,
w = 2, ¢ = 0.05 and the discretization level N = 2°. The optimal feedback gains
are k, = —0.1356 and kg = —0.3898. Note that the system has one control input
m = 1 and the weighting matrix R becomes a scalar denoted as R. We take Q
such that @);; = 0 except Q11 = 4. The weighting factor R changes in the exam-
ples. Figure 4.8 shows the comparison of the impulse response of the system and
the controls implemented. In this case, the PD control with optimal gains designed
by the semi-discretization method and the higher order control have the same order
of magnitude, resulting the similar control performance. Figure 4.9 shows the same
comparison where the higher order control is about one order of magnitude larger
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than the PD control with optimal gains designed by the semi-discretization method
resulting much better performance.
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Fig. 4.8 Comparison of impulse responses (top) and controls (bottom) of the LTI system under
a PD control (solid line) with optimal gains designed by semi-discretization and a higher order
control (dashed line) with R = 1.
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Fig. 4.9 Comparison of impulse responses (top) and controls (bottom) of the LTI system under
a PD control (solid line) with optimal gains designed by semi-discretization and a higher order

control (dashed line) with R = 0.005.
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Figure 4.10 shows the comparison of the step response of the system and the
controls. As is the case in the previous example, the PD control with optimal gains
designed by the semi-discretization method and the higher order control have the
same order of magnitude, resulting the similar control performance. Figure 4.11
shows the same comparison where the higher order control is about two orders of

Controls
W

Time (s)

Fig. 4.10 Comparison of step responses (top) and controls (bottom) of the LTI system under a PD
control (solid line) with optimal gains designed by semi-discretization and a higher order control
(dashed line) with R = 0.05.
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Fig. 4.11 Comparison of step responses (top) and controls (bottom) of the LTI system under a PD

control (solid line) with optimal gains designed by semi-discretization and a higher order control

(dashed line) with R = 0.0005.
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magnitude larger than the PD control with optimal gains designed by the semi-
discretization method resulting much better tracking control.

The advantage of the higher order control design lies in that it allows the time
delay system to have relatively large feedback gains while still keeping the system
stable. This is not the case with the delayed PD control as indicated by the stability
domains in the gain space presented in this section and Section 4.7.

4.4 Method of continuous time approximation

Consider a dynamical system with one time delay 7 given by,
x=f(x(t),x(t—7),t)+Bu(t), 4.67)

where x € R”, u € R™, f describes the system dynamics with time delay, and
B = {B;} is the control influence matrix. Following the idea of semi-discretization,
we discretize the delayed part of the state vector (x (t — ¢1),0 < t; < 7). Let N be
an integer such that A7 = 7/N. 7, = iA7 (i = 1,2,..., N). We introduce a finite
forward difference approximation of the derivatives of (x (t — ;) ,1 < ¢ < N) as

(=) = o bl =) —x (6 - 7). (4.68)
Note that other approximation schemes including, for example, the central differ-
ence and Gear integration method for ordinary differential equations, can be used,
and that the discretization of the time delay interval can be non-uniform. Higher
order Runge-Kutta algorithms, Chebyshev nodes to replace the uniform sampled
points 7; and implicit-explicit methods can also be applied leading to better ap-
proximation of X (¢ — 7;) and more accurate solutions overall in frequency and time
domain (Bellen and Maset, 2000; Engelborghs and Roose, 2002; Maset, 2003; Koto,
2004; Breda et al., 2004, 2005; Koto, 2009).
Recall the finite dimensional extended state vector y (¢) defined in Eq. (4.12).
We obtain an equation for the vector y (),

[ f(yl (t)’YN—i-l (t)’t) B
= [y1 (1) — y2 (2)] 0
y(t) = + u ()
| yv () —yns1(®)]] L0
=f(y,t) + Bu(t). (4.69)

For a linear system
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X =Ax(t)+A x(t—7)+Bu(t), (4.70)

where A is the state matrix and A, is the state matrix related to the delayed re-
sponse, we have an equation for y (t) as

TA 0 - 0 A,
B
~I-210 -~ O {0]
¥ () = y®+| . [u)
0
| 0 - 0 EI-LI
= Ay (t)+Bu(t). (4.71)

Recall that 7; need not to be spaced uniformly in the time interval [0, 7]. Non-
uniform sampling allows the method to handle more than one independent time
delay (Sun, 2009). In the following, we present several control formulations in the
extended state space.

4.4.1 Control problem formulations

4.4.1.1 Full-state feedback optimal control

Define a performance index as

o0
J= % / (yTQy + uTRu) dt, (4.72)
0

where Q = QT > 0 and R = RT > 0. When the linear system (4.71) is consid-
ered, the full state feedback control u = —Ky is the LQR control determined by
the matrices (A, ]3, Q, R) (Lewis and Syrmos, 1995). When the nonlinear system
(4.69) is considered, we have a nonlinear optimal control problem on hand (Slotine
and Li, 1991).

Note that the extended state vector y contains the current and past system re-
sponse x (t). The history of the response x (t) can be stored in the memory to con-
struct y in real-time implementation of the control. The full state feedback control
does not consider possible transport delays since the current state x (¢) is included
in the control.

A theoretical issue to investigate is the controllability of the system (A, ]3) in
relation to the controllability of the corresponding linear system (A, B). A rigorous
proof of this relationship is elusive at this time. Many numerical examples suggest
that (A, B) is uncontrollable with a high deficiency of the controllability matrix.
This is because the original system lies in an infinite dimensional state space.
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4.4.1.2 Output feedback optimal control

Assume that there is a transport delay 7,,. We consider a control of the form u =
—Kx(t—T,) for the linear system. First, we select a discretization scheme such that
T, is one of the points 7; of the time discretization. Assume that 7,, = 7. Define an
output equation as

v=Cy =yi1 =x(t — 1), (4.73)

where y;.1 1 is the (k + 1)*" elemental vector defined in Eq. (4.12).

According to (Lewis and Syrmos, 1995), if a control gain K for the linear sys-
tem in Eq. (4.71) can be found such that the closed-loop system characterized by
the matrix A — BKC is stable, the system is output stabilizable. Assume that the
system is output stabilizable, an optimal control gain can be found in the following
optimization problem: Find a control gain K such that the performance index

1 1
J = 5yaPyo = 5tr [Pyeyg] (4.74)

is minimized where y( is an initial condition of the extended state vector y(¢),
subject to the constraint of the Lyapunov equation

(A —BKC)TP + P(A — BKC) + CTKTRKC + Q = 0. (4.75)

This is a nonlinear matrix algebraic optimization problem. The Matlab function
fminsearch can be used to find the optimal control. The optimal gain is in general
a function of the initial condition yg. This is not a desirable feature of the output
feedback control. A common approach to select initial conditions is to replace the
term yoy{ by its statistical average E[yoyqd |, i.e., the autocorrelation function of
yo. For more discussions, the reader is referred to (Lewis and Syrmos, 1995).

It should be noted that for a given initial value of the control gain to start search-
ing for the optimal one, even the best searching algorithm only gives a local mini-
mum of the performance index J. There are many research issues with the output
feedback design that need further studies. For example, how to help the searching
algorithm land on a much deeper local minimum? How to select the design matrices
Q and R to improve the control performance under certain constraints? In the cur-
rent formulation, when is the system output stabilizable? These turn out to be tough
technical questions to answer.

4.4.1.3 Optimal feedback gains via mapping
Another way to obtain optimal gains for output feedback controls is via mapping.

This approach has been studied extensively in (Sheng et al., 2004; Sheng and Sun,
2005) with semi-discretization, and is presented in Section 4.3.
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4.5 Spectral properties of the CTA method

As is the case for the method of semi-discretization, the CTA method focuses on
approximation of temporal responses of the system over a short time interval. As
N — o0, the approximate solution approaches the exact one in time domain at the
rate depending on the order of the local approximation. This has been verified by
means of extensive numerical simulations (Insperger and Stepan, 2001; Sheng et al.,
2004; Sheng and Sun, 2005; Sun, 2009).

The methods of semi-discretization and CTA are not specifically developed to
meet frequency dominant requirements such as accurate representation of the open-
loop or closed-loop poles and zeros of the original system. Although the methods
have been mostly validated with time domain numerical solutions, their properties
in frequency dominant have not been studied carefully. In the following, we shall
use numerical examples of a linear time-delayed system to examine this issue. Since
the CTA formulation can be made completely equivalent to semi-discretization for
linear time-invariant systems with a single time delay, the spectral properties of the
CTA method are the same as that of semi-discretization.

Consider a linear spring-mass-dashpot oscillator subject to a delayed PD control.
The closed-loop characteristic equation is given by Eq. (4.42). The state matrix with
the CTA method reads

1 0 1 0 0 [T
o] 0 o [
) ~1I —=I0 - 0
A= 0 (4.76)
: 0
L 0 e 0 AT -1

From the stability chart in (Sheng and Sun, 2005), we know that the system is stable
when (kp, kq) = (0.5, —0.5). There are two pairs of the dominant poles with real
parts approximately equal to —1 and —0.4. Figures 4.12 and 4.13 show the roots
of the characteristic equation (4.42) and the eigenvalues of the state matrix (4.76)
constructed with the forward central difference and fourth order Gear’s integration
algorithm (Carnahan et al., 1969). Extensive simulations show that the CTA method
is able to capture the dominant poles of the system only, and completely misses the
fast and high frequency poles.

The central finite difference for CTA yields more accurate solutions in time do-
main. But it introduces a set of lightly damped poles as shown in Fig. 4.14. This
causes difficulties when the method is used in control design. On the other hand, the
backward finite difference for CTA is unstable. A recent study uses the Chebyshev
polynomials to approximate the dynamics of the delayed response (Butcher and
Bobrenkov, 2009). The spectral property of the CTA method with the Chebyshev
polynomials is much improved as compared to the results based on finite difference
approximations.
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Fig. 4.12 Closed-loop poles of the linear oscillator under a delayed PD control. “x” denotes the
roots of the characteristic equation (4.42). “+” denotes the eigenvalues of the state matrix (4.76)
constructed with forward finite difference approximation. (kp, kq) = (—0.5, —0.5). ¢ = 0.05.
w =2.7 =m/4. N = 20. (b) is the zoomed view of (a) in the indicated range.
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Fig. 4.13 Closed-loop poles of the linear oscillator under a delayed PD control. “x” denotes the
roots of the characteristic equation (4.42). “+” denotes the eigenvalues of the state matrix (4.76)
constructed with the fourth order Gear’s integration scheme. (kp, kq) = (—0.5, —0.5). ¢ = 0.05.
w = 2.7 =m/4. N = 20. (b) is the zoomed view of (a) in the indicated range.
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Fig. 4.14 Closed-loop poles of the linear system with central finite difference approximation of
the delayed portion of the response under a delayed PD control. “x” denotes the roots of the
characteristic equation (4.42). “+” denotes the eigenvalues of the state matrix (4.76). (kp, kq) =
(—=0.5,-0.5). ¢ =0.05. w = 2.7 = 7/2. N = 40.
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Fig. 4.15 Closed-loop poles of the linear system with backward finite difference approximation
of the delayed portion of the response under a delayed PD control. “x” denotes the roots of the
characteristic equation (4.42). “+” denotes the eigenvalues of the state matrix (4.76). (kp, ka) =
(=0.5,-0.5). ¢ =0.05. w = 2.7 = /2. N = 40.

Why can the CTA method accurately predict temporal response x (t) of the time-
delayed system even when it misses all the fast and high frequency poles?

Recall that the response of time-delayed systems lives in an infinite dimen-
sional state space. x () is a projection of the infinite dimensional response (x (),
x(t—11),0 < t; < 7) on to the finite dimensional space R". However, different
objects in a higher dimensional space can have the same projection in a lower di-
mensional space. The CTA method aims at accurate time domain solutions of x ()
for all ¢ > 0, much like the numerical algorithms for integrating ordinary differ-
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ential equations, such as Runge-Kutta methods whose frequency domain properties
are also rarely discussed. These methods in time domain provide one projection of
the infinite dimensional response, while the methods in frequency domain such as
Padé approximations of the transfer function provide a different projection (Franklin
et al., 1986; Vijta, 2000). In principle, the solutions x (¢) obtained by both the time
and frequency domain methods with “equivalent accuracy” should be very close to
each other, while the solutions obtained by the frequency domain methods may have
an advantage of containing more accurate information about the poles and zeros.

The question is then, can we construct a time domain method that accurately
predicts both the temporal responses and the poles of the system? In the following,
we present a method that is promising.

4.5.1 A low-pass filter based CTA method

Let T be the sample time of a digitized system, and p > 0 be a parameter defining
an anti-aliasing low pass filter. The derivative of a measured signal can be computed
with the following transfer function.

p
s.
s+p

H(s) = 4.77)

Hence, ©(s) ~ H(s)x(s). The digital version of the transfer function with Tustin’s
approximation reads,

20z —1)
H(z) = . 4.
&) = G 0T =9 (4.78)
Define a parameter r = 1/(pT'). H(z) can be rewritten as
H(z) ! 21 (4.79)

TN (LY
9 Tz B T
In the z-domain, &(z) = H(z)z(2), or in the digital time domain,
1 . 1 . 1
(5 + 7‘> z(n) + (5 — 7'> #(n—1)= T (z(n) —z(n —1)). (4.80)

This relationship can be adopted for the CTA method. Equation (4.81) now reads

(% + T> ).((t — Ti) + (% — 7’) ).((t — Ti+1) = E [X(t — Ti) — X(t — Ti+1)] .
4.81)
where A7 = 7/N. 7, = iA7 (i = 0,1,2,...,N). We have selected the sample
time 7' = Ar. Equation (4.69) becomes
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V() =Fn(y () +Gnul(l), (4.82)
where ~ ~
I 0 0
BnIG-nT0 o
0 e :
Hy = ’ , (4.83)
0
L o 0 () I(z )]
f(y () B]
A= [y1 (t) —y2 (1)] 0
Fy =H,' ' , Gy =Hy'| |, (4.84)
A= [yn () =y~ (2)] 0 |

and y (t) is defined in Eq. (4.12). Note that Hy is a lower triangular matrix and is
non-singular as long as r # 1/2. When r = 1/2, the LPCTA is reduced to be the
backward finite difference method, which is unstable for the time-delayed system
(Sun, 2009).

Recall that » = 1/(pAr). Note that 1/Ar defines the bandwidth of the dis-
cretization and p denotes the bandwidth of the lowpass filter. The parameter r is
therefore a bandwidth ratio. The bandwidth 1/A7 determines how high the fre-
quency of the time-delayed dynamical system is captured by the numerical solution.
Note that the response of time-delayed dynamical systems contains infinitely high
frequency components. Since the lowpass filter should preserve the fidelity of high
frequency components in the numerical solution, the bandwidth p must be much
larger than 1/AT.

Equation (4.82) is based on a first order lowpass filter. Higher order lowpass
filters of various type can also be applied.

4.5.2 Example of a first order linear system

Consider a first-order system,
z(t) = —0.5z(t) + 0.5x(t — 1), (4.85)

where 7 = 7/2 is a constant time delay. We select 7 = 0.01 and N = 2'°, Fig-
ure 4.16 shows the poles of the system by the low pass filter based CTA (LPCTA)
method and the fourth order Padé approximation. It is clear that the low pass filter
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Fig. 4.16 Comparison of poles of the first order time-delayed system. “x” denotes the exact poles.
“+” denotes the poles obtained by the low pass filtered CTA method. “o” denotes the poles by the
Padé approximation with R44. (b) is the zoomed-in view of (a).

helps the CTA method to substantially improve the spectral prediction capability by
accurately computing many higher order poles of the system.
Let us now consider a nonlinear case with two time delays,

i(t) = —z(t) + z(t — 1) — 0.5z(t — 7/2) — 23(t) + sin wt. (4.86)

To measure the accuracy of the LPCTA solution in time domain, we define a nor-
malized RMS error over a duration of time 7}

1 M 9 1 (M
€RMS = \/?1/0 (x(t) —zap(t))” dt + \/?1/0 x(t)?dt, (4.87)

where z(t) is obtained from the direct numerical integration and 4 p(t) denotes the
solution obtained with an approximation method.

Figure 4.17 shows all the poles of the linear part of Eq. (4.86) obtained by the
LPCTA method. Figure 4.18 shows the responses by the direct integration and by
the LPCTA method with N = 25 and w = 1. The initial condition is 2:(0) = 0. The
agreement between the responses is excellent. Figure 4.19 shows the normalized
RMS errors for the LPCTA method and the method with Chebyshev nodes discussed
in Section 4.2 as a function of the driving frequency w. From the figure, we can see
that the RMS errors of both the methods have the same trend, and peak around
w = 1. At w = 10°, the RMS errors have a sharp jump. We note that w = 10° is
larger than the highest frequency of the poles obtained by the approximate methods.
In other words, this frequency is out of the bandwidth of the discrete solution. In




152

order to obtain accurate solutions for even higher frequencies, we must increase N

or the bandwidth of the method.
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Fig. 4.17 The exact and approximate poles predicted by the LPCTA method with N = 29 for the
linear part of Equation (4.86). ‘x’: the exact poles; ‘+’: the predicted poles.
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Fig. 4.18 The temporal response of Eq. (4.86). ‘- -’: the direct integration; ‘-’ the LPCTA method
with V = 26. The agreement between the results is excellent.
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Fig. 4.19 Variation of the normalized RMS errors with w of Eq. (4.86). ‘A’: the LPCTA method;
‘x’: the method with Chebyshev nodes. N = 26 is for both the methods.

4.6 Stability studies of time delay systems

This section presents a few numerical examples of stability boundaries of linear
time-invariant systems in the feedback gain space by various methods including
Lyapunov, semi-discretization and Padé approximation.

4.6.1 Stability with Lyapunov-Krasovskii functional

Consider a time-delayed linear time-invariant system

x(t) = Ax(t) + Agx(t — 1), (4.88)
subject to the initial condition

x(o) = ¢(o), Vo € [-7,0], (4.89)

where ¢(o) is a given function of time.

4.6.1.1 Delay independent stability conditions

Define a Lyapunov-Krasovskii functional (Ivanescu et al., 2000)
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t
V = xT(t)Px(t) + / xT (s)Sx(s)ds, (4.90)
t—T1
where P = PT > 0and S =ST > 0.

V =xT(0)Px(t) + xT()Px(t) + xT(1)Sx(t) — xT(t — 7)Sx(t — 7). (4.91)

We write Eq. (4.91) in the matrix form as,

v = [xT(t) xT(t - )] {ATPZCITI;A +5S P_Asd] [X(;((_t)ﬂ} 49
The stability condition is
[ATP XEP;A +8 P_Asd:| <o. 4.93)
A necessary condition is ATP + PA + S < 0. Let [ATP+PA +S] = —Q
where Q = QT > 0. Hence, we have
ATP+PA=-Q-S<o. (4.94)

This is the Lyapunov equation for the linear system without time delay %(¢) =
Ax(t), which implies that A must be Hurwitz stable. This is obviously too strict.
Furthermore, the stability condition stated above is independent of the time delay
7. Hence, it must hold for any time delay, including arbitrarily large delay. In the
numerical results presented later, we shall show that this stability condition is too
conservative.

4.6.1.2 Delay dependent stability conditions

To overcome the limitation of the stability condition independent of time delay, we
can modify the Lyapunov-Krasovskii functional to introduce the time delay depen-
dence in the stability conditions (Ivanescu et al., 2000). The system (4.88) can be
rewritten in the following form,

L .
‘f]—f = Ax(t), t>0, (4.95)

where L = x(t) + A, ftf_r x(s)ds and A = A + A,. Consider a Lyapunov-
Krasovskii functional as V' = V7 + V5 where

Vi =LTPL, (4.96)

t
Va =/ (s —t + 7)xT(s)P1x(s)ds. (4.97)
t

—T
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The derivatives of the Lyapunov-Krasovskii functional read,

Vi = LTPL 4+ LTPL = [Ax(¢)]TPL + LTP[Ax(t)] (4.98)
t
<xT(ATP + PA + 7ATPA,PTTATPA)x+ / xT(s)Pyx(s)ds,
t—T1
t
Vo = 7xTP1x —/ xT (s)P1x(s)ds, (4.99)
t—T1

V="Vi+Va <xT(ATP + PA + 7P, + TATPA,P{'ATPA)x. (4.100)
The stability condition is
V <0, or ATP +PA + 7P, + TATPA,PT!ATPA < 0. (4.101)
The Schur complement arguments lead to the matrix inequality.

(A+A)TP+PA+Ay)+7P; 7(A+Ay)TPA,

<0, (4.102)
TATP(A + Ay) —7P

where a necessary condition is [(A + Ay)TP + P(A + Ay) + 7P < 0.
Let [(A+Ay)TP+P(A+A,) +7P] = —Q where Q = QT> 0. We

have
-Q T(A + Ad>TPAd

TATP(A + Ay) —7P
Another condition stated in (Fan et al., 2002) reads,

<o0. (4.103)

T(r) =7|P1| < 1. (4.104)

4.6.2 Stability with Padé approximation

Consider the same time-invariant linear system with an output y(¢) and control u(t).
The transfer function G(s) relates the input and output as

(4.105)

Consider a feedback control with time delay as U(s) = e~ "*C(s)[R(s) — Y (s)].
The time delay term e~ 7? is approximated with the Padé expansion as

oo = Nols) _ Rp.als), (4.106)
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where the subscripts of R, 4(s) indicate the orders of the polynomials N, (s) and
D,(s). Several different order Padé approximations are listed in Table (4.3). The
closed-loop system response is given by

N{(s)Np(s)C(s)

Y(8) = &N, (5)0(s) + D) Dy(s)

R(s). (4.107)

The closed-loop characteristic equation reads
N(s)N,(s)C(s) + D(s)D,(s) = 0. (4.108)

In the stability analysis, we can apply the Routh-Hurwitz criterion (Franklin et al.,
1986).

Table 4.3 Various order of Padé approximations of the time delay term e~ 7* (Vijta, 2000).
Order | (0,1) | (1,1) 2,2) (1,2) 2,3)

Np(s)| 1 |2—s7|12— 68T + (sT)? 6 — 27 60 — 24sT + 3(s7)2
Dp(8)|1+ 87|24 57|12+ 657 + (s7)2 |6 + 457 + (s7)% |60 + 3657 + 9(s7)2 + (s7)3

Order 3,3) “44)
Np(s) | 120 — 60s7 + 12(s7)2 — (s7)3 | 1680 — 840s7 + 180(s7)% — 20(s7)3 + (s7)*
Dp(s) | 120 + 60s7 + 12(s7)2 + (s7)3 | 1680 + 840s7 + 180(s7)2 + 20(s7)3 + (s7)4

4.6.3 Stability with semi-discretization

As discussed in Section 4.3, the method of semi-discretization leads to a mapping
of the state vector over the interval [¢;, t;11] as

Yi+1 = ®y;. (4.109)
The stability boundary is given by
[Almax = 1. (4.110)

We should comment that the method of semi-discretization has been well studied
and proven to be effective and reliable (Elbeyli and Sun, 2004). We shall use this
method as a yardstick to compare with other methods in the stability analysis.

4.6.4 Stability of a second order LTI system

Next, we use the second order LTI system in Eq. (4.41) subject to a delayed PD
control as an example to compare the stability results in the PD control gain space
by various methods discussed above.
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Delay independent Lyapunov stability

We first compare the stability condition (4.93) with the method of semi-discretization.
In the numerical studies, we have chosen different values of time delays 7. The Q
and S matrices for the stability condition (4.93) are taken to be the identity matrix.
We have found that the stability domains determined by the Lyapunov method are
insensitive to the choices of these matrices. This is because we are only interested
in the stability domain determined by V' = 0.

Figure 4.20 shows the stability domains by both the methods for 7 = 7/30.
Since the Lyapunov stability condition is independent of time delay, it must hold
for all time delays including arbitrarily large ones. The figure suggests that as the
time delay 7 — oo, the regions of stability domains for different time delays as
obtained by the method of semi-discretization must converge to the domain by the
time-independent Lyapunov approach.

20 T T T T
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101 1

-&:h“ 5F 4
0.5
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-5 / 4
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10 . . 05 0 oS
0 20 40 60

Fig. 4.20 Stability domains in the k,, — kg gain space (t = 7 /30). The large domain is obtained
with the semi-discretization mothed. The small domain in the sub-figure is determined by Eq.
(4.93) of the Lyapunov method independent of time delay.

Delay dependent Lyapunov stability

The delay dependent stability condition (4.103) is considered next. Figures 4.21 to
4.23 show the comparison of the stability domains by the delay dependent Lya-
punov method and the semi-discretization with 7 = 7/30, 7/4 and 7/2. We have



158 Jian-Qiao Sun, Bo Song

15 — |
10 1
'&’v 5 - m
SD
L
0 - 4
T=m/30

_5 1 L Il L 1

0 10 20 30 40 50

Fig. 4.21 Stability domains in the PD control gain space for the LTI system with time delay. The
closed region marked with SD is by the semi-discretization. The closed region marked with L is
determined by the delay dependent Lyapunov method. 7 = 7 /30.
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Fig. 4.22 Stability domains in the PD control gain space for the LTI system with time delay. The
closed region marked with SD is by the semi-discretization. The small circle is the stability domain
determined by the delay dependent Lyapunov method. 7 = 7 /4.
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Fig. 4.23 Stability domains in the PD control gain space for the LTI system with time delay. The
closed region marked with SD is by the semi-discretization. The small circle is the stability domain
determined by the delay dependent Lyapunov method. 7 = 7 /2.
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Fig. 4.24 Superposition of all the stability domains in Figs. 4.21 to 4.23. The small circle repre-
sents the stability domain by the delay dependent Lyapunov method for all large time delays.
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computed the stability domains for a number of time delays. We have found that
when the time delay is small, the stability domain by the delay dependent Lyapunov
method is indeed enlarged as compared to that by the delay independent Lyapunov
method, and is still contained within the domain obtained by the semi-discretization.

Figure 4.24 superimposes all the stability domains in Figs. 4.21 to 4.23. It appears
that the stability domains by the delay dependent Lyapunov method converge to that
by the delay independent Lyapunov method as the time delay increases. The stability
results are still very conservative.

Stability by Padé approximation

Figures 4.25 to 4.29 show the stability domains for 7 = 7/30 and 7/2 obtained by
the semi-discretization and the Padé approximation of orders (1,2), (2,3) and (4,4).
It is interesting to note that the stability domains by the Padé approximation agree
with that by the semi-discretization only when the delay is small. As the time delay
increases, the order of the Padé approximation has to be increased also. The Padé
approximation gives slightly less conservative stability results because its stability
domains don’t completely overlap with that by the semi-discretization. When the
Padé approximation is used to design feedback controls for systems with time delay,
we must pick the gains as much to the centroid of the domian as possible to avoid
instability.

20 T T T T T .

k

P
Fig. 4.25 Stability domains in the PD control gain space of the LTI system. The closed region
marked as SD is obtained by the semi-discretization and the one marked as P is by the Padé ap-
proximation of order (1,2). 7 = 7 /30.
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Fig. 4.26 Stability domains in the PD control gain space of the LTI system. The closed region
marked as SD is obtained by the semi-discretization and the one marked as P is by the Padé ap-
proximation of order (2,3). 7 = 7 /30.

Fig. 4.27 Stability domains in the PD control gain space of the LTI system. The closed region
marked as SD is obtained by the semi-discretization and the one marked as P is by the Padé ap-
proximation of order (1,2). 7 = 7 /2.
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Fig. 4.28 Stability domains in the PD control gain space of the LTI system. The closed region
marked as SD is obtained by the semi-discretization and the one marked as P is by the Padé ap-
proximation of order (2,3). 7 = 7 /2.
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Fig. 4.29 Stability domains in the PD control gain space of the LTI system. The closed region
marked as SD is obtained by the semi-discretization and the one marked as P is by the Padé ap-
proximation of order (4,4). 7 = /2.
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In summary, we have compared the stability results obtained by the Lyapunov
method, semi-discretization, and the Padé approximation. From extensive numerical
simulations, we have found that the Lyapunov method, whether it is delay dependent
or independent, leads to conservative results as compared with those obtained by
the semi-discretization. As the time delay increases, the Lyapunov results for a LTI
system converge to a small region which is the stability domain for arbitrary time
delay. The Lyapunov method appears to be quite conservative for LTI systems with
time delay and is not effective for feedback control design. On the other hand, the
Padé approximation gives less conservative and reasonably accutrate stability results
when the order of the method is high enough in comparison to the time delay.

4.7 Control of LTI systems

Consider a delayed PID control of the linear time-invariant (LTI) system in Eq.
(4.35). We first examine PD controls. The system parameters are chosen as { =
0.05, w = 2 and N = 50. The undamped period of the system is T' = 7.

Figure 4.30 shows the upper and lower bounds of the control gain &, as a function
of the time delay 7 when k; = 0. This result is fully agreeable to that obtained by
the Nyquist criterion. Note a periodic change of the bounds related to 7" in the figure.
The bounds become narrower as the time delay increases. In (Filipovic and Olgac,
1998), a similar result is achieved. This trivial example helps to study the issues
such as the accuracy of semi-discretization as a function of the time step At.

8

k bounds
i
[\*]

t/T

Fig. 4.30 Upper and lower bounds of control gain k,, vs. time delays when k4 = O for the time-
invariant second order system. Solid line is the upper bound. Dashed line is the lower bound.

In Fig. 4.31, the stability boundaries on the k, — kq plane are plotted for the
system with different time delays. It is interesting to point out that the size of the
stability region decreases when the time delay increases. Figure 4.32 shows the per-
formance contours of the feedback control as measured by the maximum absolute
value of eigenvalues of the mapping matrix ® for a time delay 7 = 7/2. This chart
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clearly indicates that for a given delay, there is a finite optimal pair of control gains
k, and k4 that will lead to the best control performance with the smallest |A|max-
Solving for the optimization problem in Eq. (4.34), we have found the optimal gains
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to be (ky, kq) = (—0.1356, —0.3898) with |A|max = 0.1103.
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Fig. 4.31 Stability boundaries on the k, — kg plane of the time-invariant system with different
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time delays. The inner part of the closed contour is the stable region.

/2/ 2

- 1.75
s
0 % s 2
S L s — "
125 \’.5
ol7 1

N
-0.5 /
LN
& -1
=151 “las

-3

-2

Fig. 4.32 Performance contours of the second order linear time-invariant system with a time delay
7 = 7 /2. The labels of the contours are the maximum absolute value Amax Of eingenvalues of the
mapping ®. “+” indicates the optimal control gains (kp, kq) = (—0.1356, —0.3898) with the

smallest Apnax = 0.1103.
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Figure 4.33 shows a comparison of time histories of the amplitude of the response
vector (z, ) of the system under the optimal and non-optimal feedback controls.
The optimal control clearly provides superior performance to that of the non-optimal
ones.

Next, we consider PI control.
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Fig. 4.33 Time history of the response amplitude of the autonomus system. Solid line: the op-
timal gains (kp, kq) = (—0.1356, —0.3898) and Amax = 0.1103. Dashed line: (kp, kq) =
(—0.5,—0.8) and Amax ~ 0.5. Dashed-dotted line: (kp,kq) = (0.8, —1.45) and Apax =
0.75.
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Fig. 4.34 Performance contours of the second order linear time-invariant system with a time delay
7 = m/4. The labels of the contours are the maximum absolute value Amax Of eigenvalues of
the mapping ®. “+” indicates the optimal control gains (kp, k;) = (—1.1217, 1.3682) with the
smallest Amax = 0.0537.
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Figure 4.34 shows the performance contours of the feedback control as measured
by the largest absolute value of eigenvalues of the mapping matrix ® for a time
delay 7 = 7/4. This chart clearly indicates that for a given delay, there is a finite
optimal pair of control gains k,, and k; that will lead to the best control performance
with the smallest |A|;ax. We have indeed found the optimal gains to be (kp, k;) =
(—1.1217,1.3682) with |A|max = 0.0537.

Figure 4.35 shows a comparison of time histories of the amplitude of the response
vector (z, &, ) of the system under the optimal and non-optimal feedback controls.
The optimal control clearly provides superior performance to that of the non-optimal
ones.
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Fig. 4.35 Time history of the response amplitude ||x|| of the autonomous system. Solid line: the
optimal gains (kp, k;) = (—1.1217,1.3682) and Amax = 0.0537. Dashed line: (kp, k;) =
(—1.0,2.0) and Amax =~ 0.5. Dashed-dotted line: (kp, k;) = (0.0,1.0) and Amax = 0.75.
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Fig. 4.36 Tracking performance of the response z(t) of the autonomous system. The reference
is a step input with » = 0.2. Solid line: the optimal gains (kp, k;) = (—1.1217, 1.3682) and
Amax = 0.0537. Dashed line: (kp, ki) = (—1.0,1.64) and Amax ~ 0.25. Dashed-dotted line:
(kp, ki) = (0.0,1.0) and Apmax = 0.75.
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In the classic PID control theory, the steady state tracking error can be eliminated
by the integral control. This is still true for time delayed linear systems. Figure 4.36
shows the response under the optimal and non-optimal feedback controls tracking a
step reference. Notice that the steady state tracking error is zero.

4.8 Control of the Mathieu system

Consider the Mathieu equation with a delayed PID feedback control

0 1 0 000
xt)=| 0 0 1{x@®)—|00 0 |x(t—r7), @111
4esin 2t —(6 4 2e cos2t) 0 ki kp kq

where x = (z,,4)T. The period of the system is 7" = 7. We select the parame-
terstobee = 1,0 = 1,3 and 4. When § = 1 and 4, the uncontrolled system is
parametrically unstable. Consider a delay 7 = 7/4 and choose N = 20.

Figures 4.37 and 4.38 present the stability boundaries on the k, — k4 plane with
different parameters. As is in the case of the time-invariant system, the size of the
stability region decreases with the increase of time delay. The shape of the stability
region is more complex than that of the time-invariant system. The irregular ge-
ometry of the contours in the figures is a reflection of the complex behavior of the
time-varying system.
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T=7/30
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Fig. 4.37 Stability boundaries on the k, — kq plane for the periodic system with different time
delays. The inner part of the closed contour is the stable region. § = 4 and e = 1.
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In the following discussions, the parameters are fixed tobe 6 = 4, = 1 and
N = 20. Figure 4.39 shows the performance contours of the control system with
a time delay 7 = 7/4. For the periodic system, there is also a finite optimal pair
of the feedback gains that will lead to the best control performance as measured by
|A\|max- We have found the optimal gains to be (k,, kq) = (—2.0169, —0.3091) with
[Almax = 1.5535e—3.
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4 ; ; ; ;
-5 -4 -3 -2 -1

k

r
Fig. 4.38 Stability boundaries of the periodic system with a time delay 7 = 7 /4. Solid line: § = 4
and € = 1. Dashed line: 6 = 3 and € = 1. Dashed-dotted line: § = 1 and & = 1. The inner part

of the closed contour is the stable region.
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Fig. 4.39 Performance contours of the closed loop periodic system with a time delay 7 = 7 /4.
The labels of the contours are the maximum absolute value Ap,ax of eingenvalues of the mapping
®. “+” indicates the optimal control gains (kp, kq) = (—2.0169, —0.3091) with the smallest
Amax = 1.5535e-3.
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Figure 4.40 shows a comparison of time histories of the amplitude of the response
vector (z, ) of the system under the optimal and non-optimal feedback controls.
The optimal control again provides superior performance to that of the non-optimal
ones.

Next, we consider PI control. Figure 4.41 presents the stability boundaries on
the k, — k; plane with k; = 0. The shape of the stability region is more complex
than that of the time-invariant system. When 7 = /20, the region breaks into two

0.25

Response amplitude

0 0.5 1 1.5 2 2.5 3
t/T

Fig. 4.40 Time history of the response amplitude of the periodic system. Solid line: the opti-
mal gains (kp, kq) = (—2.0169, —0.3091) and Apmax = 1.5535e-3. Dashed line: (kp, kq) =
(—2.0,0.4) and Apax =~ 0.25. Dashed-dotted line: (kp,kq) = (—4.0,—1.0) and Apax =
0.75.

4 T=m/20 t=m/10
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2
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-1
—4 —2 0 2 4 -2 0 2
k

Fig. 4.41 Stability boundaries on the k, — k; plane for the periodic system with different time
delays when kg = 0. The inner part of the closed contour is the stable region. § = 4 and e = 1.
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disjoint parts. Figure 4.42 presents the stability boundaries on the &k, — k4 plane with
k; = 0. In this case, the size of the stability region decreases with the increase of
time delay. Figure 4.43 shows minimal |A|max as a function of time delay for both
the PI and PD controls considered herein.

The irregular geometry of the stability boundary in Figs. 4.41 and 4.42 is a reflec-
tion of the complex behavior of the time-varying system. Furthermore, significant
variations of minimal |A|n,ax With time delay suggests the difficulty in designing
controls to reach certain performance targets.

7:=71:/IO 7::71:/4

T=7/2 T=3m/4

Fig. 4.42 Stability boundaries on the k, — kq plane for the periodic system with different time
delays when k; = 0. The inner part of the closed contour is the stable region. § = 4 and € = 1.
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Fig. 4.43 Minimal \,,x for the periodic system with different time delays. (-*-): PI control. (-0-):
PD control.
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Next, we consider the time domain performance of a PI control with time delay
7 = 7/4. Figure 4.44 shows the performance contours of the system. In this case,
there exists one finite optimal pair of the feedback gains that will lead to a minimal
|A\|max. We have found the optimal gains to be (k,, k;) = (—2.2628,0.9483) with
[Almax = 0.1605. Figure 4.45 shows a comparison of time histories of the ampli-
tude of the response vector x(t) of the system under the optimal and non-optimal

w

)

\'s\\sy

(=]

Fig. 4.44 Performance contours of the closed loop periodic system with a time delay 7 = 7 /4.
The labels of the contours are the maximum absolute value A\, ,x of eigenvalues of the mapping
®. “+” indicates the optimal control gains (kp, k;) = (—2.2628,0.9483) with the smallest
Amax = 0.1605.

(x|

Fig. 4.45 Time history of the response amplitude ||x|| of the periodic system under a delayed
PI control. Solid line: the optimal gains (kp, k;) = (—2.2628,0.9483) and Amax = 0.1605.
Dashed line: (kp,k;) = (—2.0,1.0) and Amax = 0.5. Dashed-dotted line: (ky, k;)
(=3.0,0.8) and Amax & 0.75.
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feedback controls. As pointed earlier, once the system is in steady state, the magni-
tude of x(t) decays at the faster rate due to the optimal control gains than that due
to the non-optimal ones.

4.9 An experimental validation

We apply the semi-discretization method to the design of the feedback control of
a rotary flexible joint experiment made by Quanser. The experimental apparatus is
shown in Fig.4.46, which consists of a rotary flexible joint mounted on top of a rigid
rotary platform. Two encoders are used in the system. One measures the angular
position of the platform, the other measures the angular displacement of the flexible
joint relative to the platform. The state equation of the system is of fourth order
given by

%X = Ax + bu, (4.112)

Fig. 4.46 The rotary flexible joint experiment.

where ' .
x=[0aba] , (4.113)
0 0 1 0
0 0 0 1
A=10 689.86 —57.6580 |’ (4.114)
0 —1359.2 57.658 0
b =1[00107.39 —107.39] " . (4.115)

0 is the angular position of the platform, and « is the angular position of the flexible
joint relative to the platform. A state feedback control v = —kTx is designed by
using the LQR method with the state weighting matrix Q and the control weighting
factor R given by
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Q = diag([3000 14500 10 0]), R = 2. (4.116)

The resulting optimal feedback gains are

k= [k ko ks ka] T = [38.7298 —73.2505 3.3657 1.1871]7 . (4.117)

By examining the measured step response of the open-loop system, we have
found that the system has a time delay of 0.002 second. An additional transport
delay 0.008 second between the input and the output of the system is digitally intro-
duced, leading to a total time delay 7 = 0.01 second.

The top plot of Fig. 4.47 shows the step response of the experimental system with
time delay under the LQR control. Recall that the LQR control is designed without
consideration of time delay. The time delay has already destabilized the control
system in simulations and introduces oscillations in the experimental response. The
experimental system has a hardware saturation limit of the control output, which
keeps the system stable in this case.

The closed-loop system with time delay reads

% = Ax — bk x(t — 7). (4.118)

We shall look for the optimal feedback gains k.
Here, the gain space is four dimensional. In this example, we restrict our interest
in the domain defined by

0<k; <100, =50 < ko <50, 0<ks<bhH, 0<ky<bh. 4.119)

We discretize the domain by dividing each gain range into ten partitions. We then
choose the grid points of the partition as initial guess of the optimal gains, and a
nonlinear search algorithm is run to find the optimal gains that deliver the minimal
|A|max- It turns out that there are many local minimums of |A|y,ax. The smallest one
among all the local minimums is taken to be the global minimum of |A|;ax in the
domain (4.119) of the gain space.

We have found the optimal feedback gains to be

Kpnin = [ 12.32067 —15.43203 0.86435 0.45176] ", (4.120)

with |A|max = 0.6511. The bottom plot of Fig. 4.47 shows the step response of
the closed-loop system with the feedback gains ky,;,. The current control design
explicitly takes into account of the effect of time delay, and improves the tracking
performance. Because the minimum of |A|pax i8S used in the control, the system has
plenty damping as shown in the response.

The present control design procedure does not require a significant computational
power. After the formulation of the mapping matrix, searching for one optimal gain
in the four dimensional space takes less than 10 seconds for a discretization level
N < 40, which gives accurate solutions as demonstrated in (Elbeyli and Sun, 2004).



174 Jian-Qiao Sun, Bo Song

10 f

Output (Degree)

=]
[=

0.5 1 1.5 2

W
o
A

N
(=]
L

—_
(=]
!

Output (Degree)

0.5 1.5 2

(=]
(=]

1
Time (Sec)
Fig. 4.47 Comparison of the experimental step response of the LQR control (top) and the feedback
control designed with the semi-discretization method (bottom) of the rotary flexible joint system
with a time delay 7 = 0.01 second.

Figure 4.48 shows the computational time for finding one local minimum as a func-
tion of the discretization level N. The computation is performed on a 2GHz PC.
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Fig. 4.48 Computational time for one nonlinear search for the optimal gains starting from k =[80
—20 0.5 0.5] as a function of the discretization level N.

4.10 Supervisory control

Recall the system in Eq. (4.67). The time delay 7 is assumed to be slowly time-
varying, and lies in an interval [Tynin, Tmax] Where the minimum and maximum time
delays are assumed to be known. Assume that we have obtained a set of optimal
feedback gains for the set of time delays sampled in the interval [Tiin, Tmax]- We
present the switching algorithm for selecting a gain to implement in real time.
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The actual time delay 7 is such that Tiin < 7 < Tiax. We descritize [Tmin, Tmax)
into M, — 1 intervals so that T, = 71 < T2 < - -+ < Tpr. = Tmax. Consider M,
models of the time-delayed system as

Consider the feedback control u; = —K;x; (t — 7;) where K; € Q. Each K is
found by imposing Eq. (4.34) subject to an additional constraint: K; must be stable
forall 7; (1 < j < M;). Let K;op¢ € €2 be the optimal gain for 7; and the associate
eigenvalue with the smallest magnitude |A\;(®)|min < 1. Check if K;op; stablizes
the system in Eq. (4.121) for all other time delays 7; (1 < 5 < M;).

Following the concept of the supervisory control (Morse, 1996, 1997; Hespanha
et al., 1999, 2003), we define an estimation error as

e =x;(t)—x(t), 1<i< M, (4.122)

where x () is the output of the system with unknown time delay. In the experiment,
x (t) would be obtained from measurements. Consider a positive function of the
estimation error F;(e;) > 0. An example is F;(e;) = ||e;||?. Define a switching
index ;(t) such that

fri(t) + )\ﬂTi(t) = Fz-(ez-), ()\i > 0)

m(0) =0, (4.123)
where the parameter )\; defines the bandwidth of the low pass filter. The general
solution for 7;(t) can be obtained as

t
mi(t) = e Mim(0) + / e MU= By (e(7))dr. (4.124)
0

The hysteretic switching algorithm in (Hespanha et al., 1999, 2003) is stated as
follows. Assume that the system is sampled at time interval At. At the k" time step,
the system is under control with the gain K; and the associated switching signal is
7;(k). At the (k + 1)*® step, if there is an index 7 such that m;(k) < (1 — n)m; (k)
where 7 > 0 is a small number, we switch to the gain K;. Otherwise, we continue
with the gain K. 17 is known as the hysteretic parameter and prevents the system
from switching too frequently.

4.10.1 Supervisory control of the LTI system

Consider a second-order autonomous system (4.35) under a delayed PI control. The
feedback control reads u = —[k;, ky, 0]x(t — 7) where x = (z,4,%)T. Take w = 2
and ¢ = 0.05. The discretization number of the time delayed response is set to be
N = 20 for all sampled time delays (Sheng et al., 2004; Sheng and Sun, 2005;
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Sun, 2009). Tin = 0.0419 and 7,ax = 0.2094. We pick five different time delays
to design optimal feedback gains according to the method outlined in the previous
section.

Table 4.4 Optimal PI feedback gains and |A|max for the four sampled time delays of the linear
time invariant system.

Time Delay k; kp [Almax
71 =0.0419 0.2000 —1.8400 0.9992
T2 =0.0733 0.2000 —2.3500 0.9982
T3 =0.1047 0.2000 —2.8600 0.9966
T4 =0.1571 0.2000 —2.8600 0.9938
75 =0.2094 0.2000 —3.3700 0.9907

The optimal gains associated with the five time delays are listed in Table 4.4. The
associated stability domains in the gain space are shown in Fig. 4.49. It should be
pointed out that when the optimal gains of all the controls with different time delays
fall in the intersection of the stability domains, it is possible to use the hysteretic
algorithm to switch among the pre-designed controls and to keep the system stable
all the time. When an optimal gain is out of the intersection, the control with that
gain can destabilize the system with some time delay in the range [Timin, Tmax]- This
property limits the size of the unknown time delay range [Tinin, Tmax] because the
stability domains change significantly with the time delay, particularly for periodic
systems (Sheng and Sun, 2005).
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Fig. 4.49 Stability domains (lines) in the gain space and the optimal feedback gains (o) for the
autonomous systems with five different time delays 7; (¢ = 1, 2, 3, 4, 5). The stability boundaries
become taller and narrower, and move upward along k; axis as time delay increases.

Figure 4.50 shows the closed loop response of the system under the feedback
control with all five different time delays when the system true time delay is taken
to be 7, and is assumed to be unknown. As it can be seen from the figure, when
the control designed for the time delay that is close to 74 is implemented, the per-
formance is acceptable. Otherwise, the performance can deteriorate as seen in the
left-upper sub-figure.
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Fig. 4.50 Response of the autonomous system under feedback controls designed for a specific gain
when the system true time delay is 71 and is assumed to be unknown. When the feedback gains
(K2, K3, K4) are designed for the time delay close to the actual one, the control performance is
quite good. K4 and K are the same. When the mismatch gap is large, i.e. when K4 designed for
T4 is implemented for the system with time delay 71, the performance deteriorates.

Next, we examine how well the hysteretic switch algorithm works. Assume that
we start with a control gain K5 designed for 75 while the system delay is 7;. Figure
4.51 shows that the hysteretic algorithm is able to switch the control to K. Figure
4.52 shows the switch signal 7(¢) and the control index.

05 ¢ T=1,K=Ks J
= 0r
0.5+ 1
_1 L L 1
0 5 10 15 20
Time (s)
1
051 T = 11, Switch from Ks
<0
-0.5
71 L L 1
0 5 10 15 20
Time (s)

Fig. 4.51 The closed loop response of the system under the switched control when the initial gain
of the control is K5 designed for 75 while the system true time delay is 71 (bottom), as compared
to the case when the gain is fiexed at K5 (top).
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Fig. 4.52 Switch signal (lower figure) and the control index (upper figure) of the hysteretic switch-
ing algorithm for the closed loop response in Fig. 4.51.

4.10.2 Supervisory control of the periodic system

Consider the Mathieu equation (4.111) with a delayed PID feedback control. The
period of the system is T" = 7. We select the parameterstobee = 1,6 = 4dand N =
20 for all sampled time delays. The uncontrolled system is parametrically unstable.
Next, we show the closed-loop response of the system under a switching PD control
with time delay in the range [0.5498, 1.0210]. Five time delays are sampled from
the interval and their optimal gains are listed in Table 4.5. The stability domains in
the gain space are shown in Fig. 4.53. Note that the optimal gains of all the controls
with different time delays fall in the intersection of the stability domains. Hence, it
is possible to use the hysteretic algorithm to switch among the pre-designed controls
and to keep the system stable all the time. Another interesting phenomenon as shown
in Fig. 4.53 and also in (Sheng and Sun, 2005) is that the stability domain in k, — kq
gain space grows along the k4 direction as time delay increases.

Table 4.5 Optimal PD feedback gains and |A|max for the five sampled time delays of the periodic
system. Note that the mapping step for the periodic system is one period, while the mapping step
for the LTI system is only one time delay 7.

Time Delay kp kq Al max
71 =0.5498 —3.6634 —0.0990 0.0130
T2 =0.6676 —4.0000 —0.8000 0.0083
T3 =0.7854 —2.8000 —0.6000 0.0141
74 =0.9032 —2.6000 —0.6000 0.0213

75 =1.0210 —1.8000 —0.6000 0.0347
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Fig. 4.53 Stability domains (lines) in the gain space and the optimal feedback gains (o) for the
periodic system with five different time delays 7; (¢ = 1,2, 3,4,5). The stability boundaries
move down along k4 axis as time delay increases.

Figure 4.54 shows the closed loop responses of the system under the feedback
control with the first four different time delays when the system true time delay is
taken to be 7 and is assumed to be unknown. As it can be seen from the figure,
when the control designed for the time delay that is close to 71 is implemented, the
performance is better.
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Fig. 4.54 Response of the periodic system under PD feedback controls designed for a specific gain
when the system true time delay is 71 and is assumed to be unknown.



180 Jian-Qiao Sun, Bo Song

Next, we start with a control gain K, designed for 74. Figure 4.55 shows the
closed loop response. The hysteretic algorithm switches the gain to reduce the
switch signal 7(t) as shown in Fig. 4.56.
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Fig. 4.55 The closed loop response of the periodic system under the switched PD control when the
initial gain of the control is K4 designed for 74 while the system true time delay is 71 (bottom), as
compared to the case when the gain is fiexed at K4 (top).
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Fig. 4.56 Switch signal (lower figure) and the control index (upper figure) of the hysteretic switch-
ing algorithm for the closed loop response in Fig. 4.55.
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4.11 Method of semi-discretization for stochastic systems

This section studies systems with time delay subject to both additive and multiplica-
tive stochastic disturbances. Specifically, we present a study of stability analysis
with the method of semi-discretization.

4.11.1 Mathematical background

We consider a system
x=fx(t),x(t—7),t)+G (x,t) W (1), (4.125)

where x € R", W € R™, the system dynamics and delayed effects are ac-
counted by the vector f and G = [g;;] is the matrix determining the parametric
and external random excitations. W; (t) are delta correlated Gaussian white noises
with E[W; (t)W; (t +T)] = 2nK;;6 (T'). Here, we will extend the the semi-
discretization method where the general procedure is studied in (Insperger and
Stepan, 2002) .

We make use of It6 stochastic calculus to obtain an accurate stochastic discrete
map. Equation (4.125) can be converted to It6 differential equation in the following
general form,

dX =m (X {#),X(t—7),t)dt+o (X,t)dB (1), (4.126)

where m is the drift including the Wong-Zakai correction term and o (X, t) is the
diffusion term defined as

o (X, t) o (X, t) = 20K 59 Ghos - (4.127)

The Brownian motion dB (¢) has the following properties that we use in the coming

sections
ti+ At
/ dB (t)
¢

i

E =0, E[dB;(t)dB; (t)] = 6;dt. (4.128)

We restrict ourselves to linear stochastic differential equations with m = AX ()
+A X (t—7),and G (X, ) is a linear function of X,

dX = AX (1) dt+A, X (t — 7) di+o (t) dB (t), 4.129)

where A is the state matrix and A ; is the state matrix related to the time delayed re-
sponse, o is the diffusion term due to parametric and external stochastic excitations.
The formal solution to this equation in integral form is written as follows
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ti+At
X (1 + AD=X (1) + / A1) X (1) dt (4.130)
t;

+ / N ALK (t— ) dit / B ().

ti t;

where X (¢;) is the initial value. Note that the fourth term on the RHS is a multi-
dimensional stochastic integral that must be interpreted in Itd sense. Although Eq.
(4.130) is exact it does not provide any simplifications for the desired mapping.
To circumvent this problem we introduce the following notations which will be
practical in the formulation,

X(ti — ) = X((i — NYAt) = X [i — N],
X(t) = X[i], ot)=olil, 4.131)
A(tl) =A [Z] ) Ar(ti) =A; [Z] )

where the time lag 7 is divided into an integer IV intervals of length A¢ such that
7 = NAL. Details of this procedure and applications in complex systems can be
found in (Insperger and Stepan, 2001, 2002)

Integration of Eq. (4.129) over a short time interval At gives:

X [i + 1]=X [i] +A [i] X [i] At (4.132)

ti+AL
+ A, (t;)X[i — N] At4o [i]/ dB ().

ti

The last term on the RHS is discretized in such a way that the diffusion term is
kept constant during the short interval. This is the essence of the semi-discretization
method and allows us to generate a discrete mapping of diffusion terms. We would
like to draw the readers attention to two points at this step. Firstly note that as At
gets smaller the accuracy of short time integrals improves. Therefore, the discrete
map (4.132) approaches to continuous process. Secondly the diffusion term is not
linear for the first moments but produces linear relationship for the second order
moments. This is due to the linear nature of the G matrix in Equation (4.125) and
we demonstrate it in the following sections. Define a (N + 1)n x 1 dimensional
state vector as

T

Y[ ={XT[E,XT[i—1],....,.XT[i-N]} . (4.133)
A mapping of Y [i] over the interval [¢;, t;11] becomes
Yli+1]=®[]Y[i]+R][], (4.134)

where ® [i] is the mapping that accounts for the system dynamics, delayed effects
and relationship of the delayed states and R [¢] is the combined stochastic influence
vector defined as
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ti+ At T Nn
R[] = la[i]/ dB(t)] ool 4.135)

t;

4.11.2 Stability analysis

To formulate the second order moment stability we define following matrix Z [i]
that represents the second order moments as

Z [l arsns = B (Y1 YT [i]), (4.136)

where M = (n+1)N x 1. Then the mapping of second order moments for one step
becomes

Z[i+1],,=E (cb [i],, ® [z’]qp) Z i, (4.137)

v E (q) (il Y [, Ri], + @[], Y[i], R [z’]k) VE (R [i], R [z’]p) .

Note that due to the linear nature of G the last term on the RHS can be at most
quadratic

E (R [, R [i]p> = H[i],, Zil,, + O E (Y []) + T lil,,.  (4138)

where Oy, is the term for the coupling of first order moments to the second order
moments. We group Eq. (4.137) as follows,

Z[i+ 1], = ¥ [il4p, Z i), + OB (Y[i];) + T[], (4.139)

klpq

where W [i],, = H[i], +F (<I> [i],, @ [i]qp) . This step allows us to write a sim-

ple stability condition because the effects of stochastic excitations linear in second
order moments become explicit. The stability condition for the system in (4.139) is

T 2 i+ 111 < P I1Z 3],
where ||.|| is the norm. This condition is guaranteed if
Mmax(d) < 1, forall 7, (4.140)

where |A|max (7) is the maximum absolute value of the linear transformation W [7].
Moreover, when limits

lim Z() =27, lim ®[i=¥, limIT[=T, limE[Y]]]=0,

17— 00 i—00 1—00 1—00
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exist Eq. (4.139) makes it possible to calculate the stochastically steady state re-
sponse of second order moments using

Z=[1-%"'T,

where I is the identity matrix with the same dimension as W.

4.12 Method of finite-dimensional markov process (FDMP)

Consider It6 equation (4.126). Recall that the system lives in an infinite dimensional
state space. In general, X (¢) is no longer a Markov process because it depends on
its history. Following the idea of the CTA method, we discretize the delayed part of
the state vector (X (¢ —¢1),0 < ¢1 < 7). Let N be integer such that AT = 7/N.
7, = iA7 (i = 1,2,...,N). Then, we introduce a finite difference approximation
of the derivatives of (X (t —7;),1 < i < N) as in Eq. (4.81). Define a discrete
vector as

Y (1) = [XT(t),XT (t— A7), XT (t— 2A7),...,XT (t — NAr)]"
YT (), YT (), YT (0),....YS,, 0] (4.141)

We obtain an Itd stochastic equation for the vector Y (t),

m (Y1 (t), Yy (1)) o (Y1 (1), Yy (t),1)
1 0
dy (t) = - [V (?_Y3()] dt + : dB (t)
Y () = Yo (8)] 0
=Y, t)dt + 6 (Y,t)dB (t). (4.142)

Note that the low-pass filtered CTA approximation in Section 4.5.1 can be applied
here also. Consider a linear stochastic differential equation as an example,

dX = AX (t) dt+A, X (t — 7) dt+o (t) dB (), (4.143)

where A is the state matrix and A, is the state matrix related to the delayed re-
sponse. We have an equation for Y (t) as

rooa P a A 1 ra(+\1
A 0 0 A, o(t)
1 1
sarl 0 —g571 0 0
dY (t) = Y (t) dt + dB (1)
1 1
0 0 zI-3z71 0

=AY (t)dt +5 (1) dB (t), (4.144)
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Equation (4.142) indicates that Y (t) is a Markov process when dB (¢) is a Brow-
nian motion (Lin and Cai, 1995). The conditional probability density function of
Y (t) satisfies a FPK equation as well as backward Kolmogorov equation.

4.12.1 Fokker-Planck-Kolmogorov (FPK) equation

The conditional probability density function py (y, t|yo, to) for the stochastic sys-
tem (4.142) satisfies the FPK equation given by

0 . 0 N 62 Bjk(Y)ﬂ
EPY(YatIYOatO) = *a—yj[m](y,t)py]Jr 99,008 [ o PY | (4.145)

where the index j runs from 1to M = n(N + 1) and b, = 664 or b = 667.
The index [ runs from 1 to p, the dimension of dB(t). The FPK equation is subject
to an initial condition, for example,

py (¥, tlyo,to) = 6(y — ¥yo)- (4.146)

Note that since the stochastic excitations only act on the vector X (t) = Y (¢),
the second order derivatives of the FPK equation only involve the components of
Y (t). Hence, there are only n x n diffusion terms, instead of M x M. In other
words, the time-delay within the FDMP method only affects the drift term of the
FPK equation. This is also true with the backward Kolmogorov equation and its
derivatives in the study of reliability and first-passage time probability.

Example of the linear system

Recall the linear system in Eq. (4.144). The FPK equation reads

0 o .. bk 0°
S (Y, y0,to) = — 5 —lanypy] + S 5 X (4.147)

Y, 2! Oy;0yx

Assume that the matrix A is nondefective. Then, there exist m eigenvalues Ay and
eigenvectors ¢ such that

Acy = M\ (no sum), (4.148)

and .
AC =CA, (4.149)

where A = diag{)\;} and C = {c,,¢1,..., ¢} (Golub and Loan, 1983). Note
that C is nonsingular. Introduce a transformation such that
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y = Caz. (4.150)

1

LetH=C !'b(C )" = {h;1r}. We obtain a Gaussian probability density func-

tion (Sun, 2006)

1
pZ(Z7t|Z07tO) :(27T)nl/2(det(czz))1/2 (4]5])
1 _
- exp <—§(Z - uz)Tczé(z - Mz)) )
where
(nz)k = Zore+t, (Czz)jk = —A (1 - e()‘j"”\’“)t) (no sum). (4.152)
‘ Aj+ A

Equation (4.152) indicates that the first and second order moments of the system are
stable if the real part of each eigenvalue \; of the matrix A is negative or zero.
Hence, py (¥, t|yo, to) is also Gaussian with the mean and variance given by

pry = Cpgz, Cyy = CCzzC". (4.153)

Recall thaty = [y1,y2,. .- ,yN+1]T for the case of one time delay and x = y;.
The marginal probability density function of the responses x of the original time-
delayed system is given by

px(etlorto) = [ [ o [ pvlvityostodyecdywin @ash

It is not hard to show recursively that px (x, t|yo, o) for the linear time-delayed
system is still Gaussian in x although it is not Markovian. This is an interesting
result.

4.12.2 Moment equations

Recall that in the Itd sense, dBy(t) is defined as the forward difference and
6, (Y, t) is independent of d By (t). Also, E[dBy(t)] = 0. Taking the mathematical
expectation on both sides of Equation (4.142), we have
dE[Y;(t
—[d,f( 1 — Bpin, (v, ) (4.155)

Consider a function F(Y,t) = Y;Y}. According to Itd’s lemma, we have

1.
d(YJYk) = <'ﬁ’L1Yk + fnkY}- + §b]‘k> dt + (OA'jlYk + (ATMYFJ‘) dBl(t). (4.156)
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Taking the expectation of the equation, and recalling that
El(6uYk + 61Y;)dBi(t)] = 0, (4.157)

because of the independence of the terms 6, Y%, + 61, Y; and dB;(t) in the Itd sense,
we have the equation for the correlation function

E|Y.Y 1.
%}zk] = F |m;Y, +miY; + §bjk . (4.158)

By following the same steps, we can construct differential equations governing
the evolution of the moments of any order. Consider again the linear example. The
moment equations of the first and second orders are readily obtained.

% = ApBIY(0), (4.159)
dE[?i,/ng] = Aj B[VYi] + A E[YY)] + %?yk. (4.160)
In the matrix form, they read
dgTY = Any, (4.161)
dffij = ARvy + RyvAT + %f), (4.162)

where py = E[Y] and Ryy = E[YYT].

4.12.3 Reliability

The backward Kolmogorov equation for the process Y (¢) can be derived as (Sun,
2006)

Iy bi(yo,to) 9%py

0
— t tg) = m, 4 .
8t0pY(y’ |y07 0) J(y07 0)8yOJ + 91 ay(]/ayok

(4.163)

Note that ty < t < oo. Integrating Equation (4.163) with respect to the delayed
components (y2,¥3,-..,yn+1) Of the state vector leads to the backward equation
for the marginal probability density function,

~

0 . opx  bik(yo,to) 9*px
——px (X, t|yo,to) = m;(yo,t + .
Jto Px(x;t[yo, to) i(yo, to) OYoj 2! 0Y0;9yok

(4.164)

An important application of the backward Kolmogorov equation is the reliability
study. Consider the state vector X (¢) of the original system. Let S C " be a
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domain in which the system is considered to be safe. I" is the boundary of S. Assume
that all the components of Y (£g) = yo lie inside S at time to. The probability that
the system is still in the safe domain S at time ¢ is given by

Rs (t,to,yo0) = P (t <TNX(t) € S[Y (to) = yo)

= / px (X, tyo, to)dx, (4.165)
S

where T is the first time when X (¢) crosses the boundary I". Rs (¢, to, yo) is also
known as the reliability against the first-passage failure with respect to the safe
domain S.

Integrating Eq. (4.163) over S with respect to x, we obtain a partial differential
equation of the reliability function Rs (¢, to, yo),

_ORs (¢, o, yo) ORs (t,to,y0)

= 1 t
ato m; (YO7 0) 8y0‘7_
bk (y0,to) O*Rs (t,t
n ik(Yo,to) 0°Rs (t, 07y0>, 4.166)
2! Yo OYok
subject to the following initial and boundary conditions
Rs (tosto,yo) =1, yo €S, (1 <i < N +1), (4.167)
Rs (t,to,y0) =0, yo; € I' (for at least one 7). (4.168)

4.12.4 First-passage time probability

Denote the complement of Rs (t, to,yo) as Fs (t, to, yo), which is the probability
distribution function of the first-passage time. We have

Fs (t,to,y0) = P(t > T[Y (to) = yo) =1 —Rs (t,%0,¥0) - (4.169)

Substituting this relationship to Equation (4.166), we obtain

O0Fs (t,to,y0) _ . OFs (t,to,yo0)
_ T\ JYS . t
8t() m] (y07 0) 8y07
bik(yo, to) 82Fs (t,to, yo)
+ -2 ) 4.170
2! 3240,7‘ Yok ( )

The probability density function of the first-passage time denoted by pr (t|yo, to)
is given by
OFs (t,to,yo) _  9Rs (¢ to,yo)

pr (t|yo, to) = p = o . (4.171)
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Differentiating Eq. (4.170) with respect to ¢, we yield the governing equation for
pr (tlyo,to)

opr (tlyo,to) . dpr (t|yo, to)
_ 2P \MIY0, M0 s 1) 2L A0, 70/
. )
n bik(yo,to) O°pr (t|YO7tO>' 4.172)
2! 590;; OYor

Since, at a given time ¢ > ¢ and when yo; € I" (for at least one ), the reliability
of the system vanishes Rs (¢, to, yo) = 0, this suggests the boundary condition

pr (t|yo,to) =0, t > tg, yoi € I' (for at least one 7). (4.173)

Assume that initially, the system starts from a point in the safe domain with proba-
bility one, we have an initial condition

pr (t0|y0,t0) = (5(}’0), Yoi € S, (1 <i< N+ 1) (4174)

4.12.5 Pontryagin-Vitt equations

th

The first-passage time is a random variable and its """ order moment can be defined

as
M, (y(), to) = E[(T — tg)’”|y0, to] = / (t — tQ)TpT (t|y0, t()) dt. 4.175)
to

From Eq. (4.172), we obtain a set of integral-partial differential equations for the
moments of the first-passage time as

* Ipr (t|yo, to) OM. (yo, to)
- t—to) ——2 2t = 1 (yo, to) — 2
/t . ( 0) dto i(¥0,to) Dyo;
n bik(yo,to) 0*M, (YOJO)' 4.176)
2! 9Y0;0Yok
This equation is in general difficult to solve. Assume that X(¢) is a stationary pro-
cess such that pr (t|yo, to) = pr (7|yo) = —w, m;(yo,t0) = 1M, (yo) and

I;.jk(YOy to) = 1;,7'k(y0) where 7 =t — {g. Let
M, (yo) = / " pr (Tlyo) d. (4.177)
0

Assume that lim, o, 7"pr (7|yo) = 0. We can derive a set of the generalized
Pontryagin-Vitt equations for the moments of the first-passage time as
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OM, (yo) n bjr(yo) 8*M, (yo)

—rM,_ =m,; . (4.178)
1(v0) i(¥0) yo; 2! Yo OYor
All the moments satisfy the same boundary condition
M, (yo) =0, yo; € I (for at least one i), r =1,2,3, ... 4.179)

Note that My(yo) = 1 because pr (T]yo) is a probability density function of 7.

Hence, the mean of the first-passage time satisfies the Pontryagin-Vitt equation with

r=1,

0My (vo) | bir(¥o) 92M (yo)
Yo; 2! Yo OYok

-1 =1m;(yo) (4.180)

4.13 Analysis of stochastic systems with time delay

4.13.1 Stability of second order stochastic systems

Consider a second order linear system subject to both additive and multiplicative
stochastic excitations.

#(6) + ard (1) + asa(t) = W (1) 2(t) + Wa (1) (1)
FWs (1) — kya(t —7) — kai(t —7),  (4.181)

where a; and ap are constant system parameters, k, and kg4 are the delayed feed-
back control parameters. We first compare the stability results of semi-discretization
method with the known analytical solution in the literature. To do so we restrict
ourselves to a non-delayed case without feedback and show the essential steps of
semi-discretization method. The Itd equations representing this system can be char-
acterized with

Xo
_ 4182
m [—alXQ — a2 X1 + 7 (K22X2 + K12X1 + Ka3) ( )
0 00 .
G= [Xl X, J L oy =0 for j=1,2,3 (4.183)
0'%1 —l—O’%Q =+ 0'%3 = 27TK11X12 =+ K22X22 + K33
+2(K12X1Xo + K13X1 + Ko3X5) . (4.184)

The derivation of these quantities are well known in the literature, see for example
(Lin and Cai, 1995) and not presented here. K13 and K>3 are the coupling terms for
second order moments with first order moments and would produce terms similar to
Opp in Equation (4.139). To keep the example simple we restrict ourselves to the
cases where K13 and K>3 are zero. The integration over a short time interval At
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yields following map
Xi(e+1)| _||10 A 0 1 X1 (4)
XQ(’L+1) o 01 7(1,2+7rK12 —a1+7rK22 XQ()

ti+At
+[ o 0 0 ]/ dB (t). (4.185)
.,

o [i]yy o [ilyy o [ily i

~

In the coming sections, we refer to this formulation as direct It6 integration. Com-
paring Eq. (4.185) to Eq. (4.134) we see that first two matrices on the RHS constitute
® [i],,,, the third one constitutes R [i],, . Naturally due to the absence of the de-
layed terms the vector sizes are much smaller. Notice that the terms like o [i],, are
the discretized constant quantities o [i],, = o (t;),, fort € (¢;,t; + At). Explicitly,
Equation (4.138) reads

ER[ERT[{]) = (4.186)
12 12 12 o lilyy olilyy +oliliy oy,
iy +o iy +olilis +0 [i],3 0 [i],s At.
symmetric o i3, + o lils + o [i]2

Here we take advantage of the symmetric nature of the second order moments and
use equivalent vector form for E (R [i(]R [Z]T> as follows

. | Elxi] 0 0 0 X2[i]
E FE [XlXQ] = 2w At 0 0 0 FE X1 [Z] X2 [Z]
E[X3] K11 2K15 Koy X2[i]
0
+onAt] 0 |. (4.187)
K33

Note that, the first matrix is the linear contribution H in Eq. (4.138) whereas the
second term is I

We take K17 and K15 = 0, and construct the map of second order moments
following the procedure described earlier.

X?
F | X1X5 =
2
X3 i+1
1 2At At?
—ao At 1+ (7TK22 —al)At—agAtz At + At? (7TK22 —(11)
a%Atz -2 (agAt + agAt2 (a1 — ’/TKQQ)) (1 + At (7TK22 — a1>>2
00 O X12 0
+27At |00 O E| X1 Xo| +2wAt 0 . (4.188)
00 K22 X22 i K33
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Using the It6 differential rule (Sun, 2006), we can obtain the equations for the sec-
ond order moments in the continuous time domain.

E[X?] 0 2 0 E X%
E FE [XlXQ] = —a2 —aq + 7TK22 1 FE [X1X2]
FE [X22] 0 —2a9 —2a71 + 4w Koo FE [X22]

189)
The stability of the second order moments is guaranteed if all the eigenvalues of the
matrix have negative real parts.

The integration of Eq. (4.189) over a short time At leads to exactly the same
discrete map as in Eq. (4.188) when the higher order terms involving At¢? are ne-
glected.

We take this results as our benchmark and investigate the stability boundary of
the semi discretized system. Here we briefly compare the stability boundaries ob-
tained by three approaches. To do so for the system in Eq. (4.181) we take as = 1
and vary the damping a;. Figure 4.57 shows the upper bound for K»5. The numer-
ical result obtained by Equation (4.13.1) is very close to that of the exact analytical
results. Note that the numerical results render discrepancies when a; is very small
that is when the system parameters are of the same order as At.

0.3 r o.
Stable

0.25 o

KZZ

Unstable

0.05

[
I
I
I
4

Fig. 4.57 Stability boundary for the strength of parametric excitation Koo with varying system
damping a1, for a2 = 1. (+): Exact solution, (- - - - ): exact drift mapping with At = 0.02, (- - -
-): direct Ito integration with At = 0.02, ( ): direct It6 integration with At = 0.0001

We found that accuracy of the drift term in Eq. (4.130) can be further improved if
the drift term is treated separately. The reason behind that is that those terms are of
order At. We further take advantage of the semi-discretization method and construct
a more accurate map of the drift terms using an equivalent continuous model
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T+ (a1 — ﬂ'KQQ)."E + (CLQ — 7TK12)$ = f [Z — N] fort; — At <t < t;, (4.190)

where f [¢ — N| = kpx [i — N] — kg [i — N]. Such a formulation is significantly
efficient and accurate if first order approximation is used for the feedback terms. We
call this approach as exact drift mapping and obtain the following 2D map

zli+1] | ooyl [z]]
[t +1] B1i Bai z [7]
Qs Qi f[i—N] } {Rl[l]}
. a0 - 4.191
+{/63iﬂ4i}{f[lN+1] + Ry [i] ( )
Note that in order to achieve an efficient numeric formulation we collapsed down
the delayed state effects into a scalar quantity f [i — N]. The explicit expressions
of the coefficients aj; and 3;; for a deterministic system is studied in the literature
(Insperger and Stepan, 2001, 2002). When W; (t) are constants the problem simpli-

fies to deterministic delayed feedback control and R;;, Ro; are due to the external
stochastic excitations. The transition matrix in Eq. (4.134) @ [i] becomes

[ B2i Bri 00+ Bai Bai]
ag; a1; 00+ oy ag;

—kg —kp00--- 0 0

®[H=| 0 0100 0 (4.192)

0 0 00--- 0
0 0 00--- 1 O

Now, we take W, = Wy = 0in Eq. (4.181), and set the feedback gains k,, k4 to
zero. In this case, the steady-state second moments of the system are known as

7TK33

2CL1

(4.193)

In Fig. 4.58 we vary the discretization time step At and obtain the second mo-
ments using the proposed method. We employ two formulations as described before:
i) direct It integration and ii) exact drift mapping. Clearly, the latter yields supe-
rior results where the results of E [ac%] and E [z122] = 0 are virtually the same
as the exact values. For F/ [ac%], the convergence rate of the exact drift mapping is
significantly higher than that of the direct Itd integration.

We first investigate the system in Eq. (4.181) using the system parameters 7 =
0.16, a1 = 0.4, as = 1 and the strength of stochastic excitations Ko = 0.5/ V2,
K11 = 1/V/2r, K33 = 0. Figure 4.59 shows the stability boundary as well as the
equal performance curves for the delayed feedback gains. We used a discretization
level of N = 8. The region outside the solid line is unstable. The equal performance
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Fig. 4.58 Second order moments versus the discrete time step At, K33 = %, system damping
a1 = 0.8 and ag = 4, all other parameters are set to zero. (- - - - ): exact values, (0-0-0): exact

drift mapping, (A-A-A): direct It6 integration.

T T T T T T T

N W A LU A3 X O
T

—

Fig. 4.59 Stability and performance boundaries of the delayed system in Eq. (4.181) in mean
square sense with a; = 0.4, a2 = 1, 7 = 0.16, N = 8 and stochastic excitations Koo =
0.5/\/% VK1 = 1/\/%, K33 = 0. (—): Stability boundary where Apmax = 1, (- - - -
):Amax = 0.875, (-— -— ): Apmax = 0.75.

lines correspond to the decay rate of the second moments of the system response.
The fastest decay rate can be achieved for k, = 4.566586 and kg = 4.763169 with
a corresponding |A|max = 0.748013. Note that, the origin in the unstable region
corresponds to the uncontrolled case.

The semi-discretization method applied to stochastic systems is very versatile
that one can obtain auto-correlation and cross-correlation functions of the system
response in steady state without difficulty. In Fig. 4.60, we demonstrate this phe-
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nomenon where we used the same parameters as in Fig. 4.58. This time we stacked
up the state vector and discretized the period of the system into a number of parts.
We turn off the feedback gains which effectively sets as;, aaj, 535, and Ba; to zero.
We present the auto-correlation of the displacement, F [z (t) z1 (t — T')]. It should
be noted that the results when 7' = 0 correspond to [xf] In other words, there is
one to one relation between Figs. 4.60 and 4.58.

2 ; ; . ; . ;
038
L5r -0.85
-0.9
— 1t o
§ -0.95 %
T o5t . i
e W0 14 16 18
o ot ’
)
-0.5
B T T T T T (
_1 . L P ¥ _I
0 0.5 1 1.5 2 2.5 3
T

Fig. 4.60 Variation of auto-correlation of the second moment of displacement with varying dis-
cretezation, N. a1 = 0.8, az = 4, kp = 0, kg = 0, K11 = 0, Koo = 0 K33 = \/%.(o 0):
N=7,(++):N=15(A A): N =24, (* — x): N = 40.

Figure 4.61 depicts the most general case where we have additive and multi-
plicative stochastic disturbances. This time we use the same parameter set as in

S i
—0
g3} :
Q
g
=]
=2 1
=l
=
3
@l 1
- . . . o S - - ——ftft————————=aA
0+ 1
0.004 0.01 0.04

Fig. 4.61 Delayed feedback control response withk, =2, kg =4a1 =0.4,a2 = 1,7 = 0.16,
N = 8 and stochastic excitations Koo = 0.5/ Vor, K1 = 1 / v/27. Second order moments
versus the discrete time step At; (A-A-A): E [22], (0-0-0): E [23], (x-x-X): E [z122] . Dashed
lines indicate the outcome of the Monte Carlo simulations.
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Fig. 4.59. The system is unstable when the controller is turned of. We use a feed-
back gain pair (k,,kq) = (4,2) to stabilize the system. The dashed lines in-
dicate the outcome of the Monte Carlo simulations where the initial conditions
for the delayed vector is assumed to be zero. The Monte Carlo simulations yield
0.511044, —0.0103565 and 3.91148 for F [23] , E [z122] and E [23], respectively.

4.13.2 One Dimensional Nonlinear System

Congider a system defined by
dX(t) = [-aX(t) —eX3(t) + bX (t — 7)]dt + 0dB(1), (4.194)

where dB(t) is a unit Brownian motion such that

E[dB ()] =0, E[dB (t1)dB (t2)] = {2;’ 2 i Z: . (4.195)

Equation (4.144) for this example reads

7 0 ~ b A l'gtrg(t)'l AN I‘O_'I
0 1T 0 0 0
Y (t) - dt+ | . | dB(t)
L4 0 0
=m(Y (t),t)dt + 6dB(t). (4.196)

The vector Y (t) reads

Y () =[X:(t), X1 (t—A7), X1 (t—2A7),..., X1 (t — NAT)|T
=[Vi (), Ya (t),..., Ve (1) (4.197)

The FPK equation of the system reads

0 o (v, 1150, to) = — o (3, )] +
5tpY Y;tlYo,to) = 8%_ i\Y,l)DY 5yj(7yk B)

282PY
2 Oy?

Wle@]

0
=— —[(—ay1 + bym — e¥})py] + =
Y1
~ AT 0 ~——[(a1y1 — a2ys)py]--

— —+—(@m—1Ym—1 — Am¥Ym)DY]- (4.198)
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When ¢ = 0, the FPK admits an exact solution as outlined in Section 4.12.1. When
the state matrix A is stable, the steady state solutions of the system exist. An exam-
ple of the steady state mean square response of Y; is shown in Fig. 4.62. The mean
square responses of all the components Y; fluctuate +1.7% about the average value
over the time delay interval. When b = 0, E[Y;%] matches the exact solution.

2 T T T T
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Index i

Fig. 4.62 Steady state mean square responses of Y; of the first order linear system with time delay.
a=-1.b=05¢€=0.N=20.

The FDMP method can also be applied to the stochastic system even when there
is no time delay b = 0. Note that F[Y1Yy] = Rx x(7k—1) is the correlation function
of X (t) wherek =1,2,...,N +1,and 7,—1 = (k — 1)A7/N. Figure 4.63 shows
the correlation function Rx x (7) when b = 0. The solution obtained by the FDMP
approximation matches perfectly with the exact solution.

0.8}

0.6

0.4}

Correlation Function Rxx (7)

0'2() 0.2 0.4 0.6 0.8 1

T

Fig. 4.63 Comparison of the exact correlation function of the first order linear system with the
solution by the FDMP method. The agreement is perfect. a = 1.0 = /2. ¢ = 0. b = 0.
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It is noted that the exact solution of the steady state probability density function
governed by the FPK equation (4.198) is illusive at this time, although its non-
delayed version is well known.
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Chapter 5

Synchronization of Dynamical Systems in Sense
of Metric Functionals of Specific Constraints

Albert C.J. Luo

Abstract In this chapter, a theory for synchronization of multiple dynamical sys-
tems under specific constraints is developed from a theory of discontinuous dynam-
ical systems. The metric functionals based on specific constraints are proposed to
describe the synchronicity of the two or more dynamical systems to such specific
constraints. The synchronization, desynchronization and penetration of multiple dy-
namical systems to multiple specified constraints are discussed through such metric
functionals, and the necessary and sufficient conditions for such synchronicity are
developed. The synchronicity of two dynamical systems to a single specific con-
straint is presented, and the synchronicity of the two systems to multiple specific
constraints is investigated as well. The chapter provides a theoretic frame work in or-
der to control slave systems which can be synchronized with master systems though
specific constraints in a general sense.

5.1 Introduction

The study on synchronization should go back to the 17th century. Huygens (1673)
gave a detailed description of the synchronization of two pendulum clocks with
a weak interaction. Once the coupled pendulums possess small oscillations with
the same initial conditions or the initial phase difference is zero, the two pendu-
lums will be synchronized. However, when the initial phase difference is 180°, the
anti-synchronization of two pendulums can be observed. For a general case, the
motion of the two pendulums will be combined by the synchronization and anti-
synchronization modes of vibration. Four types of synchronizations of two or more
dynamical systems have been considered: (i) identical or complete synchronization,
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(ii) generalized synchronization, (iii) phase synchronization, (iv) anticipated and lag
synchronization and amplitude envelope synchronization. All the synchronizations
of two or more systems at least possess one constraint for synchronicity, and the
aforementioned synchronizations possess the characteristics of asymptotic stability.
Once the two or more dynamical systems generate a state of synchronization un-
der a specific constraint, such a synchronized state should be stable, as referred to
Pikovsky et al. (2001) and Boccaletti (2008). After the Huygens’s studies, Rayleigh
described the synchronization phenomena in acoustic systems (Rayleigh J., 1945).
Due to electrical and radio wave propagations, the wave synchronization was of
great interest in 1920s. For early studies on synchronizations, one focused on the
limit cycles in self-excited dynamical systems, resonance phenomena in multiple-
degrees of freedom systems and, steady-state motion in forced vibration. The limit
cycle in self-excited dynamical systems was discussed (e.g., van der Pol B., 1927),
which is a kind of synchronization and such synchronization can be stabilized. The
other discussions on steady-state motion and resonance in nonlinear oscillations can
be referred in many books (e.g., Stocker J.J., 1950; Hayashi C., 1964). Recently, one
tried to control a flow of dynamical systems with attractors. Such an investigation
is actually to look into a dynamical system synchronizing with a goal dynamics, as
discussed in (Jackson, 1991).

Pecora and Carroll (1990) investigated the synchronization of two systems con-
nected with common signals and gave a criterion of the Lyapunov exponents.
The common signals are as constraints between the two systems. Based on this
idea, the synchronized circuits for chaos were developed by Carroll and Pecaora
(1991). Since then, one focused on developing the corresponding control methods
and schemes to achieve the synchronization of two dynamical systems with con-
straints. Pyragas (1992) presented two methods to obtain the synchronization of
two chaotic dynamical systems with a small time continuous perturbation. Kapita-
niak (1994) used a continuous control to present the synchronization of two chaotic
systems. Ding and Ott (1994) stated that a slave system (receiver system) is not
necessary to be a replica of part of master systems. Such a synchronization of two
systems is called an identical (or complete) synchronization. However, Rulkov et
al. (1995) discussed a generalized synchronization of chaos in directionally coupled
chaotic systems. Kocarev and Parlitz (1995) developed a general method to con-
struct chaotic synchronized systems, which decomposes the given systems into the
active and passive systems. Peng et al. (1996) presented the chaotic synchronization
of n-dimensional systems, and Pyragas (1996) discussed the weak and strong syn-
chronizations of chaos by the coupling strength of two dynamical systems. Ding et
al. (1997) reviewed the control and synchronization of chaos in high-dimensional
dynamical systems. Boccaletti et al. (1997) presented an adaptive synchronization
of chaos for secure communication. Abarbanel et al. (1997) used a small force to
control a dynamical system to specific orbits. Pyragas (1998) systematically intro-
duced the basic ideas of the generalized synchronization of chaos. Yang and Chua
(1999) used linear transformations to study generalized synchronization. Zhan et al.
(2003) investigated the complete and generalized synchronizations of coupled time-
delay systems. Campos and Urias (2004) presented a mathematical description of
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multi-modal synchronization with chaos. The definition of master-slave synchro-
nization was presented and a multivalued, synchronized function was introduced.
Koronovskii et al. (2004) discussed the duration of a process of complete synchro-
nization of two coupled, identical chaotic systems. Mosekilde et al. (2001) discussed
chaotic synchronization and applied such concepts to living systems, and recent
contribution on synchronization in biosystems can also be found (e.g., Wang et al.,
2008; Enjieu Kadji et al., 2008; Peng et al., 2009). Newell et al. (1994) investigated
synchronization in chaotic diode resonator. Kocarev and Parlitz (1996) investigated
synchronizing spatiotemporal chaos in coupled nonlinear oscillators. Teufel et al.
(1996) presented the synchronization of two flow-excited pendula as similar to Huy-
gens’ work (1986) . Yamapi and Woafo (2006) investigated synchronizations in a
ring of four mutually coupled self-sustained electromechanical devices. Boccaletti
et al. (2002) gave a systematical review about the synchronization of chaotic sys-
tems. The definitions and concepts are further clarified. Chen et al. (2006) discussed
on stability of synchronized dynamics and pattern formation in coupled systems.
As aforementioned, the phase synchronization exists in self-excited vibration sys-
tems, forced nonlinear vibrating systems and coupled nonlinear systems. For such
an synchronization one employed the perturbation techniques (e.g., Stocker, 1950;
Hayashi, 1964). Kuramoto (1984) investigated the waves and turbulence in chem-
ical oscillations by use of the phase synchronization (or entertainments). Zaks et
al. (1999) studied the imperfect phase synchronization through the alternative lock-
ing ratios. Feng and Shen (2005) investigated phase synchronization and anti-phase
synchronization of chaos in degenerate optical parametric oscillator.

On the other hand, one has been interested in the synchronization of discrete
systems with mappings. Pecora et al. (1997) discussed the volume-preserving
and volume-expanding synchronized chaotic systems through discrete maps. Stoc-
janovski et al. (1979) used the symbolic dynamics to study chaos synchronization,
and the information entropy was used to the synchronization of chaotic systems
through discrete maps. Rulkov (2001) discussed a regularization of synchronized
chaotic bursts. Afraimovich et al. (2002) studied the generalized synchronization of
chaos of noninvertible maps in mathematics. Barreto et al. (2003) discussed the ge-
ometrical behavior of chaos synchronization through discrete maps. Hu et al. (2008)
investigated the hybrid projective synchronization of a general class of chaotic maps.
Pareek et al. (2005) used multiple one-dimensional chaotic maps to investigated
cryptography, and the extension of such a research can be found in (Xiang et al.,
2008). Bowong et al. (2006) adopted the parameter modulation of a chaotic system
for secure communications. Fallahi et al. (2008) adopted the extended Kalman filter
and multi-shift cipher algorithm for secure chaotic communication, and Kiani-B et
al. (2009) used fractional chaotic systems to secure communication through an ex-
tended fractional Kalman filter. Wang and Yu (2009) used multiple-chaotic systems
to develop a block encryption algorithm with a dynamical sequence. Soto-Crespo
and Akhmediev (2005) showed nonlinear synchronization and chaos through soli-
tons as strange attractors. Hung et al. (2006) discussed chaos synchronization of two
stochastically coupled random Boolean networks. The more discussion about phase
synchronization in oscillatory networks was presented in Osipov et al. (2007). The
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investigations on synchronization on the dynamical systems with time-delay were
very active and the recent results can be found in (e.g., Zhan et al., 2003; Bowong
et al., 2006; Ghosh et al., 2007; Wang et al., 2008, Cruz-Herndndez and Romero-
Haros, 2008; Lu, 2008).

From the above discussions, the synchronization of two or more dynamical sys-
tems is that the corresponding flows of the two or more dynamical systems are
constrained under specific constraint conditions for a time interval. If the constraint
conditions are considered as constraint boundaries, the synchronization of the two
or more dynamical systems can be investigated by the theory of discontinuous dy-
namical systems. In Luo (2009), a theory for synchronization of dynamical systems
with specific constraints was presented by the theory for discontinuous dynamical
systems in (Luo, 2005, 2006, 2008). The general concept of synchronization was
presented. The necessary and sufficient conditions for the synchronization, desyn-
chronization and penetration were developed, and the synchronization complexity
for multiple slave systems with multiple master systems will be discussed under
specific constraints. In this chapter, the metric functional will be introduced for the
synchronicity of two dynamical systems with single and multiple constraints. With
such metric functional, the necessary and sufficient conditions for the synchroniza-
tion, desynchronization and penetration will be presented.

5.2 System synchronization

As in Luo (2009), the basic concepts and definitions about the synchronization of
dynamical systems will be presented. To solve the over constraints of slave systems,
a generalized synchronization will be introduced. For slave and master systems with
full constraints, the static synchronization will be introduced. To describe the syn-
chronization of two systems (e.g., slave and master systems) under specific con-
straints, the corresponding domains and boundaries relative to the constraints will
be discussed through discontinuous dynamical systems. To discuss the synchronic-
ity of the two systems, the metric functional will be introduced.

5.2.1 Synchronization of slave and master systems

Consider two dynamic systems as

x = F(x,7,p) € R" (5.1)
and i
% =TF(%,1,p) € R (5.2)
where X = (x1,x2,...,%,)T and p = (p1,p2,...,px)"; & = (X1,%,...,%)T and p =
EA e

(P1,P2,---, ;)" The two vector functions F = (Fy, F, ..., F,)" and F=(F,B,...,
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F;)T can be either time-dependent or time-independent. Consider a time interval
I15 = (t1,1,) C R and domains Uy C R" and Uz C R™. For initial conditions (#,X() €
L2 x Ux and (fo,%Xo) € I12 X l~],~(,~the corresponding flows of the two systems are
x(t) = ®(¢t,Xg,t0,p) and X(1) = ®(¢,%o, %o, P) for (¢,x) € I15 x Uy and (¢,X) € I12 X
Ui with p € Up € Rk and p € Up C Rk, The semi-group properties for two flows
hOldN(i'e'? q)(t +S7X07t0)vp> iq)(tvq)(‘s?XOvtOvp)vsvp) with %(IO) = q)(t(),X(),l(),p>,
and (I)(t +S7i07l07f)) = (I)(lv(p(s7i07t07ﬁ)7s7ﬁ) with i(t()) = Q(l())i()at()af)))'

Consider the synchronization of the two systems in Eqs.(5.1) and (5.2), the slave
and master systems are defined as follows.

Definition 5.1. A system in Eq.(5.2) is called a master system if its flow X(¢) is
independent. A system in Eq.(5.1) is called a slave system of the master system if
its flow x(¢) is constrained by a flow X(¢) of the master system.

From the foregoing definition, a slave system is constrained by a master system
through a specific condition. In other words, a slave system will be controlled by
a master system under a specific constraint. Such a phenomenon is called the syn-
chronization of the slave and master systems under such a specific condition. The
corresponding definition is given as follows.

Definition 5.2. If a flow x(¢) of a slave system in Eq.(5.1) is constrained by a flow
%(t) of a master system in Eq.(5.2) through

(P(X(t)ai(t)7ta)‘):07 A ERY, (5.3)

for time ¢ € [ty, ,tm,], then the slave system is said to be synchronized with the mas-
ter system in the sense of Eq.(5.3) for time ¢ € [t ,tm,], Which is also called an
(n : ii)-dimensional synchronization of the slave and master systems in the sense of
Eq.(5.3). There are four special cases:

(i) If t,,, — oo, the slave system is said to be absolutely synchronized with the
master system in the sense of Eq.(5.3) for time ¢ € [ty, ,0).

(ii) If t,,, — oo, the slave system is said to be asymptotically synchronized with
the master system in the sense of Eq.(5.3).

(iii) For n = 71, such a synchronization of the slave and master systems is
called an equi-dimensional system synchronization in the sense of Eq.(5.3) for time
t € [tmy,tm, -

(iv) For n = #i, such a synchronization of the slave and master systems is called
an absolute, equi-dimensional system synchronization in the sense of Eq.(5.3) for
time ¢ € [t ,0). If n # f, the (n : i)-dimensional synchronization is called a non-
equi-dimensional system synchronization.

From the previous definition, the state variables in a slave system can be less
or more than those in the master system. Therefore, it is not necessary to require
the slave and master systems have the same dimensions in state space for synchro-
nization. Under a certain rule in Eq.(5.3), it is interesting that a slave system can
follow another completely different master system to synchronize. From the pro-
ceeding definition, a slave system can be synchronized with a master system under
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a constraint condition. In fact, constraints for such a synchronization phenomenon
can be more than one. In other words, a slave system is synchronized with a master
system under multiple constraints. Thus, the synchronization of a slave system with
a master system under multiple constraints is described as follows:

Definition 5.3. An n-dimensional slave system in Eq.(5.1) is called to be synchro-

nized with an 7i-dimensional master system in Eq.(5.2) of the (n : 7i;1)-type (oran (n:

ii; 1)-synchronization) if there are [-linearly independent functions @;(x(z),%(z),z, ;)
(jeLandL ={1,2,...,I}) to make two flows X(¢) and x(¢) of the master and slave

systems satisfy

0;(x(1),X(z),t,Aj) =0for Aj € R" and j € L (5.4

for time ¢ € [ty, ,tm,]. There are eight special cases:

(i) If t,,, — oo, the slave system is said to be absolutely synchronized of the
(n : 7i;1)-type with the master system (or an (n : i;1)-absolute synchronization) in
the sense of Eq.(5.4) for time ¢ € [ty , ).

(ii) If 1,5, — oo, the slave system is said to be asymptotically synchronized of the
(n : 7i;1)-type with the master system (or an (n : ii;1)-asymptotic synchronization) in
the sense of Eq.(5.4).

(iii) For I = n, the slave system is said to be completely synchronized of the
(n : fi;n)-type with the master system (or an (n : fi;n)-complete synchronization) in
the sense of Eq.(5.4) for time t € [ty ,tm,].

(iv) For [ = n and t,,, — oo, the synchronization of the slave and master systems
is called an (n : 7i;n)-absolute, complete synchronization in the sense of Eq. (5.4) for
time 7 € [ty, ,0).

(v) If n =7 > [, the synchronization of the slave and master systems is called
an equi-dimensional system synchronization (or an (n : n;1)-synchronization) in the
sense of Eq.(5.4) for time ¢ € [t,y, ,tm, ]

(vi) If n =7 > [ and t,,, — oo, the synchronization of the slave and master sys-
tems is called an equi-dimensional, (n : n;/)-absolute synchronization in the sense
of Eq.(5.4) for time ¢ € [t , ).

(vii) If n = 71 = [, the synchronization of the slave and master systems is called
an equi-dimensional, complete synchronization (simply said a synchronization) in
the sense of Eq.(5.4) for time ¢ € [t, ,tm,]-

(viii) If n =7 = [ and t,,, — oo, the synchronization of the slave and master
systems is called an equi-dimensional, absolute, complete synchronization (simply
said an absolute synchronization) in the sense of Eq.(5.4) for time 7 € [t,, , ).

In the foregoing definition, if the /-nonlinear equations are linearly independent,
then there is a set of constants k; and only k; = 0 for all j € IL exists to make the
following equation hold for all the domains and time,

Ziz]k/(p/(x(t>vi(t>vt7Aj) =0. (5.5)
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In addition, the independence of functions ¢@;(x(¢),X(¢),z, ;) (for all j € L) is
checked through the corresponding normal vectors. The normal vector of @;(x(z),
%(1),t,A}) is computed by

:V i X A = e~ e B 9 ~ ") ~
n(p] (pJ(X7X7t7 /) (axlvaxzv 7axm ax~l axZ axn

99; I9; 99, 99; I9; 8<Pj)T 56

(2,x.X)

For all domains and time, if all the normal vectors ng,(j € IL) are linearly-
independent, i.e.,

kg, =0onlyif k;=0forall j €L, (5.7)

then the functions @;(x(z),%(¢),,A;) are linearly-independent.

The foregoing definition tells that the slave and master systems are synchronized
under /-constraints whatever the state-space dimension of the slave system is higher
or lower than the master system. For [ < n, the [-variables of the n-state variables of
the slave system can be expressed by the 7i-state variables of the master system via
the [-constraints. Select any [-variables x(; and the rest (n —[) variables x;) of the
n-state variables, i.e.,

xjj) € {xi,i =1,2,...,n} for j=1,2,...,1,
(5.8)
X €E{xi,i=1,2,...,n} fork=1+1,14+2,...,n.

From Eq.(5.4), because of the linear-independence of functions @;(x(¢),X(t), A ;)
(j=1,2,...,1), the constraint conditions gives

X[j] =f[j](X(1+1),X(l+2),... ,X(n),f(,k) for j e LL. 5.9)

Thus, the state variables x|;; of the slave system for j € L can be said to be syn-
chronized with the master system in the conditions of Eq.(5.4). The subscripts []
and (-) of the state variables of the slave systems represent the synchronizable and
non-synchronizable variables of the slave system to the master systems, respec-
tively. If [ = 1, this definition reduces to Definition 5.2 and (n: 7i;1) = (n : i), the
(n : @i;1)-synchronization reduce to the (n : 7i)-synchronization. However, for [ = n,
the n-linearly independent conditions constrain the responses of the master and slave
flows in the 7i-dimensional systems. Thus, the n-components of the slave flow can be
completely determined by the 7i-components of a flow in the master system. There-
fore, for the complete synchronization of the slave and master systems, a flow of the
slave system is completely controlled by the master system through the constraint
conditions in Eq.(5.4). For [ > n, the slave system is overconstrained by the master
system. Such a case will be discussed later. For n = 7i = [, an equi-dimensional,
complete synchronization of the slave and master systems is obtained. For this case,
n-components of a flow in the slave system are controlled by the n-components of
a flow in the master system through the n-constraint equations in Eq.(5.4). Because
the n-constraint equations in Eq.(5.4) are linearly-independent, the determinant of
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the Jocabian matrix of functions in Eq.(5.4) in neighborhood of the master flow X
is non-zero. Therefore, there is a one-to-one relation between the slave and master
flows x and X. It implies that the slave flow is completely controlled by the master
flow. From the above discussion, one obtains

x(r) =h(X(#),A) or

(5.10)
xi(t) = hi(X(t), ) for i=1,2,...,n.
Introduce a set of new variables with n-linear, independent relations between the
slave and master systems. So one obtains

2(r) = x(r) — B&(t) = h(X(t)) — BX(7) or

5.11

7i(t) = xi(t) — bi%i(t) = hi(X(2)) — bi%;(¢) fori=1,2,...,n. G0
where a constant diagonal matrix B = diag(by,ba,...,b,). One likes to consider
the synchronization of two systems to be z;(t) — 0 for ¢t — #,,, and z;(t) = 0 for
t € [tm,,tm,), from which the slave and master system are synchronized. The n-
equations (i.e., b (t) = hi(X(t)) = hi(%1,%,...,%,) for i = 1,2,...,n) give the
synchronization state independent of time. Such a concept can be extended to the
affine synchronization, i.e., for z;(¢) — ¢; (constant) for t — t,, and z;(r) = ¢; for
t € [tm, ,tm,]. The definition is given as follows:

Definition 5.4. For the slave and master in Eqs.(5.1) and (5.2) with n = 7, if the
slave and master flows satisfy

x(t) —BX(t) = ¢ (constant) (5.12)
with a constant diagonal matrix B = diag(b;,bs,...,b,) and a constant vector
c=(ci,c2,...,c,)T fort e [tm, stm, ], then the slave and master systems are equi-

dimensionally synchronized in such a affine transformation sense. If #,,1 1 — oo, the

synchronization of the slave and master systems is absolutely and equi-dimensionally
synchronized in the linear sense for time ¢ € [t,,, ,o0). Three important synchroniza-

tions are also given as follows.

) Ife=0andb;=1(i=1,2,...,n), the synchronization of the slave and master
systems is called an identical synchronization.

(ii) If e=0and b; = —1 (i = 1,2,...,n), the synchronization of the slave and
master systems is called an anti-symmetric synchronization.

(iii) f e = 0, and b; € {1,—1} (i = 1,2,...,n), the synchronization of the slave
and master systems is called a mixed, identical and anti-symmetric synchronization.

Notice that the matrix B can be a full matrix. To extend the above idea, new
variables are introduced as

zj = @;(x(t),X(t),t,\;) for j € L,

(5.13)
orz = @(x(t),X(1),2,A).
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If z; = ¢ (const) or z; = 0, Equation (5.13) can be used as the constraint condition
in Eq.(5.4). If the slave and master systems are not synchronized, the new variables
(zj #cj, j=1,2,...,1) will change with time ¢. The corresponding time-change rate
is given by

d o I X a
Z/ = E(pj(X([),X(t)vAj) Zl la Zk L) (PJ aqzj

Y Wy Y %(-:1,2,...,l>;m

i=1
] oxi ; a; ) (5.14)
_a < 99 LA 99
- d[ (X(t),X(I),A) ax ()+ a~ ()+ at
_do I I
=5 Frag Fra,

If the slave and master systems are continuous, the time-change rate of the new
variables for the constraint conditions in Eq.(5.4) should be zero, i.e., z; =0 (j € L)
orz =10 R’. However, if the slave and master systems are discontinuous to the con-
straint conditions, the time-change rate of the new variables for the constraint condi-
tions in Eq.(5.4) may not be zero. To investigate the synchronization, the constraint
conditions are considered as boundaries for discontinuous dynamical systems.

The slave and master flows x(7) and X(¢) are determined by differential equations
in Egs.(5.1) and (5.2). Suppose at least there is a point x,, at time ¢,, to satisfy the
constraint condition in Eq.(5.3), i.e.,

Zm = (P(X(tm),i(lm),lm,)\) =0. (5]5)

For t > t,,, the synchronization between the slave and master systems requires
the slave and master flows to satisfy the constraint condition in Eq.(5.3). Because
the master flow is independent, only the slave flow can be changed for the condi-
tion in Eq.(5.3). If the constraint condition in Eq.(5.3) is treated as a super-surface,
the slave system should be switched to the super-surface. If the slave and master
systems are C"-continuous and differentiable (r > 1) to the super-surface, the slave
and master flows will pass through the super-surface instead of staying on the super-
surface because of the continuity and differentiation of the slave and master flows.
Otherwise, on the super-surface, one obtains z = d@/dr = 0 for all time ¢ > 1, and
dF@/dt* =0 (k=1,2,...). From a theory of discontinuous dynamical system in
Luo (2006, 2008), at least the slave system possesses discontinuous vector fields
to make the slave and master flows stay on the super-surface, which means that
the slave and master systems to the constraint can keep the synchronization on the
super-surface. Therefore, the constraints can be used as super-surfaces to investigate
the synchronization of slave and master systems.
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5.2.2 Generalized synchronization

As discussed in the previous section, if the number of constraints for slave and mas-
ter systems is over the number of state variables of the slave system (i.e., [ > n), the
slave system is overcontrained under the constraint conditions by the master sys-
tem. In other words, if all the constraint conditions are satisfied, the master system
should be partially constrained also for n < [ < n+7i. Otherwise, the constraint con-
ditions cannot be satisfied for the synchronization of the slave and master systems.
The overconstrained synchronization for slave and master systems can be defined
from Definition 5.3, i.e.,

Definition 5.5. If [ > n, an (n : /i;1)-synchronization of the slave and master systems
in Egs.(5.1) and (5.2) in sense of Eq.(5.4) for time ¢ € [t,, ,tw,] is said an (n : 71;1)-
overconstrained synchronization.

To make an overconstrained slave system be synchronized with a master sys-
tem, the flow of the master system should be controlled by the constraints. Gener-
ally speaking, the slave system can be partially controlled by some constraints in
Eq.(5.4), and the master system can be partially controlled by the rest constraints in
Eq.(5.4) as well. For some time intervals, the slave system can be controlled by the
master system under the constraints. With time varying, for some time intervals, the
master system can also be controlled by the slave system. For this case, it is very
difficult to know which one of two systems is a slave or master system. In fact, it is
not necessary to distinguish slave and master systems from two dynamical systems.
To investigate the synchronization of two or more systems, Definition 5.2 can be
generalized as follows.

Definition 5.6. If a flow x(¢)of a system in Eq.(5.1) with a flow X(z) of a system
in Eq.(5.2) is constrained by a single constraint in Eq.(5.3) for time ¢ € [ty ,tm, ],
then the two systems are said to be synchronized in the sense of Eq.(5.3) for time
t € [tm, ,tm,|. There are five special cases:

(i) If t,,, — oo, the two systems are said to be absolutely synchronized in the sense
of Eq.(5.3) for timet € [t ,0).

(ii) If ¢,,, — oo, the two systems are said to be asymptotically synchronized in the
sense of Eq.(5.3).

(iii) For n = 7i, the two equi-dimensional systems are said to be synchronized in
the sense of Eq.(5.3) for time ¢ € [y, ,tm,].

(iv) For n = 7 and t,,, — oo, the two equi-dimensional systems are said to be
absolutely synchronized in the sense of Eq.(5.3) for time 7 € [ty ,0).

(v) For n =i and t,, — oo, the two equi-dimensional systems are said to be
asymptotically synchronized in the sense of Eq.(5.3).

In an alike fashion, the synchronization of slave and master systems in Definition
5.3 should be generalized for the synchronization of slave and master systems with
or without overconstraints.
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Definition 5.7. An n-dimensional system in Eq.(5.1) with an 7i-dimensional sys-
tem in Eq.(5.2) is said to be synchronized with /-constraints (or an [-constraint
synchronization) for time t € [ty ,tn,] if there are [-linearly independent func-
tions @;(x(¢),X(¢),t,A;) (j € Land L = {1,2,...,1} with [ < n+7i) to make two
flows X(¢) and x(¢) of the two systems satisfy the constraints in Eq.(5.4) for time
t € [tm, ,tm,]. There are five special cases:

(i) If t,,, — oo, the two systems are said to be absolutely synchronized with /-
constraints (or an absolute, /-constraint synchronization) in the sense of Eq.(5.4) for
time 7 € [ty, ,0).

(ii) If t,,,, — oo, the two systems are said to be asymptotically synchronized with
l-constraints (or an asymptotic I-constraint synchronization) in the sense of Eq.(5.4).

(iii) If n = 7i, the two equi-dimensional systems are said to be synchronized with
I-constraints in the sense of Eq.(5.4) for time 7 € [ty ,tm,]-

(iv) If n =i and t,,, — oo, the two equi-dimensional systems are said to be abso-
lutely synchronized with [-constraints in the sense of Eq.(5.4) for time ¢ € [t,,, ,0).

(v)If n =7 andt,,, — oo, the two equi-dimensional systems are said to be asymp-
totically synchronized with /-constraints in the sense of Eq.(5.4) for time € [t,,, , ).

From the above definition, the number of constraints in Eq.(5.4) can be greater
than the dimension number of state space for one of the two systems in Eqgs.(5.1)
and (5.2) (i.e., [ > n or [ > 1). For such a case, one cannot control only one of the
two systems to make them be synchronized through the constraints. In other words,
one must control both of two systems to make the corresponding synchronization
occur. Of course, if / < n or [ <7, one can control only one of two systems to make
them be synchronized through the constraints in Eq.(5.4). If the constraint func-
tions @;(x(¢),X(¢),z,A;) (for all j € L) are time-independent for [ = n + i, Equation
(5.4) will give a set of fixed values of x* and X*, which are independent of time.
The constraints yield the values-fixed, static points in the resultant sate space. To
make the two systems in Eqgs.(5.1) and (5.2) be synchronized at the static points in
phase space, such a synchronization can be called a static synchronization of two
systems in Eqs.(5.1) and (5.2). For [ > n + 7, the time-independent constraints in
Eq.(5.4) will give the statically overconstrained synchronization, which may not be
meaningful for practical problems. Such a case will not be discussed any more. If
the constraint functions of @;(x(¢),%(z),¢,A;) (for all j € L) are time-dependent for
| = n+1, Equation (5.4) will give a flow of x* and X* relative to time. To elimi-
nate time, the constraints in Eq.(5.4) give a one-dimensional flow in the resultant
phase space. If the time-dependent constraint functions of @;(x(¢),%(z),z,A;) (for
all j € IL) are of [-dimensions with [ = n+ 7 + 1, Equation (5.4) will give a set of
fixed values of x* and X* at a specific time #* in the resultant phase space, which is
an instantaneous fixed point only at time ¢*. For this case, it is very difficult for the
two systems to be synchronized for such an instantaneous point. Such a case may
not be too meaningful, which will not be discussed. Therefore, the following two
definitions are given to describe the afore-discussed cases.
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Definition 5.8. An n-dimensional system in Eq.(5.1) with an 7i-dimensional sys-
tem in Eq.(5.2) is said to be statically synchronized with [-constraints (or a static
synchronization) for time t € [t,y, 1, ] if there are [-linearly independent and time-
independent functions @;(x(1),%X(¢),A;) (j € Land L ={1,2,...,l} withl = n+7)
to make two flows X(¢) and x(¢) of the two systems satisfy the constraints in Eq.(5.4)
for time ¢ € [ty, ,tm, |. There are two special cases:

(i) If t,,, — oo, the two systems are said to be absolutely and statically synchro-
nized with [-constraints (or an absolute and static synchronization) in the sense of
Eq.(5.4) for time 7 € [t , ).

(ii) If t,,,, — oo, the two systems are said to be asymptotically and statically syn-
chronized with [-constraints (or an asymptotic and static synchronization) in the
sense of Eq.(5.4).

Definition 5.9. An n-dimensional system in Eq.(5.1) with an 7i-dimensional sys-
tem in Eq.(5.2) is said to be synchronized with a one-dimensional constraint-flow
(or a 1 — D constraint-flow synchronization) for time t € [ty, ,tm,] if there are I-
linearly independent and time-dependent functions @;(x(z),X(¢),z,A;) (j € L and
L={1,2,...,1} with [ = n+7) to make two flows X(z) and x(¢) of the two systems
satisfy constraints in Eq.(5.4) for time 7 € [t,,,,tm,|. TWo special cases are given as
follows:

(1) If #,,, — oo, the two systems are said to be absolutely synchronized with a one-
dimensional constraint-flow (or an absolute, 1 — D constraint-flow synchronization)
in the sense of Eq.(5.4) for time ¢ € [t ,0).

(i1) If t,,,, — oo, the two systems are said to be asymptotically synchronized with a
one-dimensional constraint-flow (an asymptotic, 1 — D constraint-flow synchroniza-
tion) in the sense of Eq.(5.4).

5.2.3 Resultant dynamical systems

From the theory of discontinuous dynamical systems in Luo (2006, 2008), the syn-
chronization of two or more dynamical systems with specific constraints can be
investigated through a resultant dynamical system. The constraint conditions can
be considered as a set of super-surfaces. If the resultant system to the constraints
is discontinuous, the resultant discontinuous dynamical system can be adjusted on
both sides of each super-surface for such synchronization. For doing so, a set of
new state variables for the resultant discontinuous system will be introduced, and
the sub-domains and boundaries relative to the constraints will be presented. For
the synchronization of slave and master systems on the constraint surfaces, only the
slave system can be adjusted, and the master system cannot be adjusted. In other
words, the slave system can be controlled in order to make it be synchronized with
the master system through the constraints. That is, the slave system can be expressed
by discontinuous vector fields to all the constraint surfaces for such synchronization,
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but the master system should keep a continuous vector field to such constraint sur-
faces. However, for a resultant system formed by two systems with constraints, one
can adjust two dynamical systems to make them be synchronized on the constraint
conditions in general.

A new vector of state variables of two dynamical systems in Eqs.(5.1) and (5.2)
is introduced as

X = (x:%)7 = (x1,%2,.. ., X3 81, %2, ..., %) T € R (5.16)

The notation (-;-) = (-,-) is just for a combined vector of state vectors of two
dynamical systems. From the constraint condition in Eq.(5.3), a constraint boundary
for the discontinuous description of the synchronization of two dynamical systems
in Egs.(5.1) and (5.2) can be defined, and the corresponding domains separated by
such a constraint boundary can be obtained.

Definition 5.10. A constraint boundary in an (n + 7i)-dimensional phase space for
the synchronization of two dynamical systems in Egs.(5.1) and (5.2) to constraint
condition in Eq.(5.3) is defined as

Q) = Q] ﬁQz

= {X(O)

c Rl (5.17)

MXWJA)MﬂWﬂi@@JJ)Q}

¢ is C" -continuous (r > 1)

and two corresponding domains for a resultant system of two dynamical systems in
Eqs.(5.1) and (5.2) are defined as

sz—{yw¢mmmME¢WWWﬂW&hM>Q}CmHm
b @ is C" -continuocus(r > 1) ’
{ ¢ 2y ) (5.18)
o _ g | #XP2) = 06P0.50(0),1,2) <0, g
2 = .
¢ is C" -continuous(r > 1)

On the two domains, the resultant system of two dynamical systems is discontin-
uous to the constraint boundary, defined by

X(@ = Fl)(X(® ¢ 7Y in Qy (a0 =1,2), (5.19)

where F(@) = (F(@), )T = (F](OC),F;‘X)7 YRR, )T and w(@=(pg, p)T.
Suppose there is a vector field F©) (X(O),t,)\) on the constraint boundary with
(p(X((’>,t,)\) =0, and the corresponding dynamical system on such a boundary is
expressed by

X0 =FO(X©® 1 A) on Q5. (5.20)
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The domains Q4 (¢ = 1,2) are separated by the constraint boundary dQ1,, as
shown in Fig.5.1. For a point (x(1), 1)) € Q, at time 1, one obtains @(x(1), (1) 7, )
> 0. For a point (x?),%?)) € Q, at time 7, one obtains ¢(x%, %) ¢, X) < 0. How-
ever, on the boundary (X(O),i(o)) € dQ1, at time ¢, the constraint condition for syn-
chronization should be satisfied (i.e., ¢(x(?), (0 1, X) = 0). If the constraint condi-
tion is time-independent, the constraint boundary determined by the constraint con-
dition is invariant. If there are many constraint conditions for the synchronization of
two dynamical systems, the above definition can be extended.

o

~ /
T (x50 1,4) >0

\
! o(x® 59 ,12)=0

- ——

7 o o
—-- —_———— S o(x® 5@ 1 2)<0

Fig. 5.1 Constraint boundary and domains in (n + 7i1)-dimensional state space.

Definition 5.11. The j®-constraint boundary in an (n + i1)-dimensional phase space
for the synchronization of two dynamical systems in Egs.(5.1) and (5.2), relative to
the jth—constraint of the constraint conditions in Eq.(5.4), is defined as

Qo) = Qu1,j) N Q)

o) @ (XO7)1,)) = @;(xO) (1), 80 (1),1,A5) = 0,
= X »J

@; is C'"J -continuous(r; > 1)

c R (5.21)

and two domains pertaining to the jM-boundary for a resultant system of two dy-
namical systems in Eqs.(5.1) and (5.2) are defined as

o <) 9 (XU 1, 0)) = @;(x1)(0), X1 (2),1,25) > 0,
Lj) = '
o @; is C"7 -continuous(r; > 1)
C 9{”4’5; 5.22)
2.J) (pj(X(z’j),[,)\j) = (pj(X(z’j)([),i(2’j)([),l,)\j) <0,
Qop=X>7
@, is C"i -continuous(r; > 1)
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On the two domains relative to the j-constraint boundary, a discontinuous resul-
tant system of two dynamical systems in Eqs.(5.1) and (5.2) with the j®-constraint
in Eq.(5.4) is defined by

X(@) = P (X% 1, 7\ %) in (5.23)

aj,j)

ey ,...,I:“;l(aj"i))T and

where F(@) = (F(@); {e)T = (Fl(aj"i) F,l(aj"i);ﬁl(af’j)
(&) (@) ~(@))

w7 =(p;”",B; )" Suppose there is a vector field of FO)(X©1) £, X;) on the
j"-constraint boundary with @;(X(®/) ¢, X;) = 0, and the corresponding dynamical

system on the jM-boundary is expressed by
X0 = FON(XOI) 1, X)) on 9Q ). (5.24)

Since [-constraint conditions are linearly independent, any two boundaries are
intersected each other. Consider two constraint boundaries of dQ15(;) and dQ )
for synchronization. The intersection of the two constraint boundaries is given by

Q121 = 0Qp(j) NI ) C K2 (5.25)
and the corresponding domain in phase space is separated into four sub-domains
Qg 04, 6) = Ra.)) Ny C R for jk=1,2,... and aj, 0 = 1,2. (5.26)

Such a partition of the domain in state space for a resultant system of two dynam-
ical systems is sketched in Fig. 5.2. The intersection of the two constraint bound-
aries in state space for a resultant system of two dynamical systems is depicted by
an (n+ 7 — 2)-manifold, depicted by a dark curve. For the [-linearly independent
constraints, the state space partition can be completed via such [-linearly indepen-
dent constraint boundaries. Based on the /-constraint conditions, the corresponding
intersection of boundaries is

9y
(%0 %00) 4 ) =0
Q1,j) NQ(1,4) // },"PJ( i)
\<',\ / ’
g // N
N\ Qi) NQ &
e S
Q2,j) Qa1 ,<\ \})\
7&.\ // \\
( Nt - So
\ N\,
\ \ L Ny
\ 4 N\ ~
/ ~_,
| / ~ \ (X(O’k) %08 ;2 )=0
I 7/ Q2,5 NQ k) P ) W AK) =
7

Fig. 5.2 An intersection of two boundaries with ¢; =0 and ¢, =0 for j,k € L and j # k.
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IQy53) = Ml 9Qua(j) C R (5.27)

which gives an (n+ 7i — [)-dimensional manifold. Consider the synchronization of
the slave and master systems for discussion. If n = [, the intersection manifold of
the constraints is an 7fi-dimensional state space. In other words, the slave system
can be completely controlled through the n-constraints to be synchronized with the
master system. From the [-constraint conditions in Eq.(5.4), the domain in (n+
fi)-dimensional state space is partitioned into many sub-domains for the resultant
system of two dynamical systems, i.e.,

Qo = Qoyopaq) = Mimi Qo) CR™ foray=1,2and jeL.  (5.28)

The total domain ¢ = Ulj:] U(Z)Cj:1 (ﬂlj:]Q(a]_’ j)) C R is a union of all the sub
domains.

From the foregoing description of a resultant dynamical system, the synchroniza-
tion of two systems under constraints can be investigated through such a resultant
dynamical system with the constraint boundaries as in Luo (2006, 2008). The con-
straint boundaries can be either of one-side or of two sides. If the resultant system
for the synchronization of two systems can be defined (or can exist) in one of the
two sub-domains only, such a constraint boundary is called one-side boundary. Oth-
erwise, the constraint boundary is called two-side constraint boundary. If a flow of
the resultant system can approach to a constraint flow on the constraint boundaries
as t — oo, for such a case, the synchronization of two systems to the constraint
boundaries is asymptotic.

5.2.4 Metric functionals

For a better description of the synchronicity of two dynamical systems, a metric
functional based on the constraint boundaries can be introduced. The metric func-
tionals are a set of non-negative functions of constraint functions. For a constraint
function in Eq.(5.3), the definition of a metric function is given as follows:

Definition 5.12. A metric function for two dynamical systems in Egs.(5.1) and (5.2)
is defined by a non-negative functional

V(Xat7)‘) :f((P(thv)‘)) (5.29)

with the following conditions
(1) V(X,z,A) is continuous and differentiable for time ¢ and X,
(ii) for X = X(®) € Q,, V(X(@) 1, X) > 0,
(iii) only for X = X € 9Q,, V(X £, 1) = 0;

and the time-change rates of the metric functional are for k =1,2,...
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VI(X,1,\) = d—kV(X iA=L [V“"])(X ‘ )\)} 5.30)
19 - dtk 19 - d[ bR ( .
where

VO(X,1,0) = V(X,1,N). (5.31)

From the foregoing definition, consider a metric functional as

V(X,5,A) = = [p(X,1,A)]. (5.32)

N =

For two dynamical systems in Egs.(5.1) and (5.2), from the foregoing definition,
one obtains

2
VX 1)) = % [<p(x<“>,t,>\)] >0 (5.33)
for X(®) € Q4 and
2
V(XO 1, 2) = % [<p(x<°),t,)\)} =0 (5.34)

for X € 9Q,,. From Eq.(5.34), one obtains (D(X(O) ,1,A) = 0. So the conditions in
Eq.(5.34) is equivalent to the constraint condition in Eq.(5.3). The time-change rate
of the metric function is

. 0 . d
=<p[Vx<p~i+vi<p~i+a—ﬂ=<p[Vx<p~F+vx<p~F+a—‘f].(5.35)

In fact, the metric functional in Eq.(5.29) can be also defined by the other non-
negative functions. For instance, using the absolute function, we have

V(X,1,A) = [o(X,1,A)]. (5.36)

In Definition 5.12, the metric functional for the single constraint is presented.
For multiple constraints in Eq.(5.4), the corresponding metric functionals can be
defined in order to describe the synchronicity of two dynamical systems under such
constraints. From Eq.(5.4), a set of metric functionals for two dynamical systems in
Eq.(5.1) and (5.2) are introduced.

Definition 5.13. The j™- individual metric functional and a resultant metric func-
tional for two dynamical systems in Eq.(5.1) and (5.2) are

DV (Xj,0,A5) = fi(9i(X,1, A7) forj € L= {1,2,....1}
(n:ﬁ:”V(Xat;)‘) - Z_l/:l(nﬁ)vj(xﬁa)‘j) (5-37)
= Z_I/:]f,»((p,(X,t,)\j)) forie€{1,2,...,n}
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with the fo]lowing conditions for (j =1,2,...,I)
(i) "MV;(X,t, ;) is continuous and differentiable for time ¢ and X,
(i) for X = X (&' ) €Qq, ),< V(X4 1, 0;) >0,
(iii) for X = X(%/) ¢ 3912 )y (XOD 1) = 0;

and the time-change rates are for k= 1 ,2,.

k

d a4 (o ﬁ)Vj(X,l,)\) _

My Xx) = T

d Tirme (k—
£ ey 6=l 1 A } 5.38
dl |: J ( b ) . ( . )
For the jM-metric functional relative to the jM-constraint, it is similar to the met-
ric functional pertaining to the single constraint, as discussed before. Herein, con-
sider a resultant metric function as
- 1t - 2
DY (X, 0) = 3 ¥ {("‘">vj(x,z,>\.,-)] forl=1,2,...,n (5.39)
For two dynamical systems in Egs.(5.1) and (5.2), from the foregoing definition,
one obtains
1

—Z’ [q),(x i ),t,)\)]2>0forl:1,2,...,n (5.40)

<":ﬁ:1)V(X(a),I,)\) — >

for X7 € Qg 5y (j=1,2,...,1;05 =1,2), X € Q) and

o 1 . 2
(mmt)y (X0 5 A) = 523:1 {(pj(X(O“’),t,)\j)] —O0forl=1,2,---.n (5.41)
for X € 9Qy,;) (j = Loy =1,2) and X € 9Q5(y). From Eq.(5.41),
one obtains
@;(X) 1. X;)=0for j=1,2,....land [ =1,2,...,n. (5.42)

So the conditions in Eq.(5.42) is equivalent to that in Eq.(5.4).
Similarly, we discuss another metric functional as

DY (X1, 0) = Y @i (X @D 0| for I =1,2,...,n. (5.43)

For the slave and master systems in Egs.(5.1) and (5.2), from the foregoing defini-
tions, one obtains

K 1 ) =Ygy (XID A)|> Ofor (=12, 0 (544)
for X(aj7j) c Q(a“‘n(‘] = ],2,. .. ,l)’X(O!) c Q(a) and
Dy (X0 1 x) = le:1|(Pi(X(0:j)’[’>‘f)| =0forl=1,2,...,n (5.45)

for X(0/) ¢ Q) (j=1,2,...,1) and X(©) ¢ 9Qy(y). From Eq.(5.45), one obtains
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@, (X% . X;)=0for j=1,2,....land [ =1,2,...,n. (5.46)

So the conditions in Eq.(5.46) are equivalent to those constraint conditions in
Eq.(5.4). The resultant metric functional is a kind of a generalized Lyanunov func-
tion, which cannot be use to determine the synchronization in general. However,
the resultant metric functional can be only used to two special cases: (i) full syn-
chronization, and (ii) full desynchronization. The detailed discussion about the syn-
chronization and desynchronization will be presented in the following section. For
any general case of synchronization, all the individual metric functions should be
adopted. As afore-discussed, each individual metric functional in Eq.(5.37) can be
the same as the resultant metric functional. However, those individual metric func-
tionals will provide more possibility for one to discuss the synchronicity of two
dynamical systems.

5.3 Single-constraint synchronization

In this section, under a single constraint, the synchronicity of two dynamical systems
will be discussed. Based on the metric functional in Eq.(5.29), the proper definitions
relative to the synchronicity of two dynamical systems in Eqgs.(5.1) and (5.2) to a
constraint in Eq.(5.3) will be presented. The necessary and sufficient conditions for
the synchronicity of two dynamical systems to the constraint are developed.

5.3.1 Synchronicity

Before discussing the synchronicity of two dynamical systems to the constraint
boundary, the neighborhood of the constraint boundary should be introduced through
a typical point on such a constraint boundary for time ¢,,. For any small € > 0, the
neighborhood of a constraint boundary is defined as follows.

Definition 5.14. For X, € Q, (o € {1,2)) and X\ € 9Qy5 at time 1, X\& =
X,g? ). For any small € > 0, there is a time interval [ty_¢,tn) OF (tn,tmre]. The &-

neighborhood of the constraint boundary dQ, is defined as

Qs = {X<oc>‘||x<oc>(t) X <8,6>01€ [tm_s,tm)}v
(5.47)
Qe = {X(OC)‘HX(O‘)O‘) —X;(7?>|| <9,0>0,t€ (thm—t-s]} .

For a point X,S?) = (x$>,i$>)T € JdQq, at time t,,, a surface of the constraint

boundary dQ, at the instantaneous time #,, is governed by (p(x(o),i(o),tm,)\) =

(p(x,(q?>,i,(f1)),tm, A) = 0. If the constraint function ¢ is time-independent, such a con-
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straint surface for the synchronization of two dynamical systems is invariant with re-
spect to time. Otherwise, this constraint surface changes with the instantaneous time
tm. In addition to the constraint surface, two boundaries of domain Qg %(a = 1,2)

(a) f(<a)

are determined by @(x(*), %) 1, ¢ A) = (X2 ¢, %0 e tm_e,A) = C, as shown in
Fig.5.3. In the e-neighborhood of a constraint boundary, if the resultant system of
two dynamical systems is attractive to such a constraint boundary, any a flow in the
two e-domains will approach to the constraint boundary. Further, the synchronicity
of two dynamical systems to the constraint boundary can be investigated. In other
words, the attractivity of the resultant system to the constraint boundary requires
that any flow in the two &-domains of Qg (@ = 1,2) approach the constraint bound-
ary 0Qq5 ast — t,,. From Luo (2006, 2008), the synchronization of two dynamical
systems to the constraint needs that any flows of the resultant system in the two

e-domains of Qq (o = 1,2) are attractive to the constraint boundary.

T e e Ql—&'
OO

Q1

Q¢

m—g’ m757tm—€)

~
/,>’\ x50 1 ¢, A) >0

0 %D 1)

(x50 1, 1) =0

T
—_— ——a

N p(x®@ %@ 4, £,4) <0

Fig. 5.3 A neighborhood of the constraint boundary and the attractivity of a resultant flow to the
constraint boundary in (n + 7i)-dimensional state space.

Definition 5.15. For two dynamical systems in Eqs.(5.1) and (5.2) with a constraint
in Eq.(5.3), there is a metric functional of V(X,z,A) = f(@(X,z,A)) in Eq.(5.29).
For X,(na) €Qq (@xe{1,2})and X,(,?) € 0Q5 at time £y, X,(na) = X,g?). For any small
€ > 0, there is a time interval [t,,_¢, %y ). The two systems in Egs.(5.1) and (5.2) to
constraint in Eq.(5.3) is called to be synchronized in sense of the metric functional
for time t,, € [t, ,tm,] if

V(X,(n%)’tm,’)\) = V(Xrg?)ytmv)q =0 (5.48)
VXY 10 A) = VXY, e, A) < O for o = 1,2, '

In addition to the attractivity of a flow of the resultant system to the constraint
boundary, the repulsion of a flow of the resultant system to the constraint bound-
ary can be defined. Because such a repulsion, any flows of the resultant system in
the two e-domains of Qg (o = 1,2) can never approach to the constraint bound-
ary. In other words, two dynamical systems in Egs.(5.1) and (5.2) cannot make the
constraint condition in Eq.(5.3) be satisfied. Thus the repulsion of a flow of the re-
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sultant system to the constraint boundary should be introduced. Such a repulsion
phenomenon is sketched in Fig.5.4. The constraint boundary 0, is governed by
o(x©.% £, X) = 0. The boundary of the e-neighborhood of the constraint is

obtained by @(x(%),%(® 1, . A) = (p(x,gz‘i)e, ~,Sza+)£,tm+£,)\) = C. Two flows of the

X
resultant system on both sides of the constraint boundary dQ, move away in two
domains Qg (o = 1,2), which means that no any flows of the resultant system can
arrive to the constraint boundary. So the synchronization of two dynamical systems
in Egs.(5.1) and (5.2) to the constraint in Eq.(5.3) cannot be achieved. Such a repul-
sion of a resultant system to the constraint boundary implies that the two dynamical
systems is desynchronized to the constraint in Eq.(5.3). To descript the desynchro-
nization of two systems to a constraint, a mathematical description can be given as
follows.

Qfe
Q2

+€
il

( 0)  +(0) )

Xm ey Xmtertm

2) <2 )

(
(Xprer Zmpe s mte

Fig. 5.4 The repulsion of a resultant flow to the constraint boundary in(n + 7i)-dimensional state
space.

Definition 5.16. For two systems in Eqgs.(5.1) and (5.2) with constraint in Eq.(5.3),
there is a metric functional of V(X,t,A) = f(¢(X,t,A)) in Eq.(5.29). For X\ e
Qy (e {1,2}) and XS,?) € 0Q1; at time t,,,, X,(na) = X,(q?). For any small € > 0, there
is a time interval [f;,,2,,+¢]. The two dynamical system systems in Egs.(5.1) and (5.2)
to constraint in Eq.(5.3) are said to be repelled (or desynchronized) in sense of the
metric fucntional for ty, € [tm, ,tm,] if

V(vafizvthra )‘) = V(X,(r(,)),tm,)\) =0;
(5.49)
V(Xr(;:zgatm+£a)\) - V(X,(ﬂ,tm%)\) >0 for o =1,2.

From the theory of discontinuous dynamical systems in Luo (2006, 2008), a re-
sultant system of two dynamical systems in Egs.(5.1) and (5.2) may pass through
the constraint boundary from a domain to another. For this case, the penetration syn-
chronicity of two dynamical systems can occur, as sketched in Fig. 5.5. Such syn-
chronization can be called an instantaneous synchronization. A flow of a resultant
system to the constraint boundary for time ¢ < t,,, and ¢ > ¢,, lies in the two domains



226 Albert C.J. Luo

Q) and Q;. In sense of Eq.(5.3), a definition of such penetration synchronicity is
given as follows.

T e o

0) £(0)

m’ s Xm stm)

- e

0 40 TN (@ 5D e, R) <0
(KmrerXmyertmre)

Fig. 5.5 A penetration of a resultant flow to the constraint boundary in (n + /i)-dimensional state

space.

Definition 5.17. For two dynamical systems in Eqs.(5.1) and (5.2) with constraint
in Eq.(5.3), there is a metric functional of V(X,z,A) = f(@(X,#,\)) in Eq.(5.29).
For X\ € Qg (ax€{1,2}) and X\ € 9y, at time tm,ana) =X, For any small
€ > 0, there is a time interval [t,,_¢, 1 ¢]. A resultant flow of two dynamical systems
in Egs.(5.1) and (5.2) is said to be penetrated to the constraint boundary dQ,g from
Qq to Qg at time 7, in the sense of the metric fucntional if for o, 8 € {1,2} and

aFp

V(Xgnaf)’tmi’A) = V(XEIEJRJMJHA) = V(Xl(’i?)atma )\) = 0;
V(X;af)gvtmfsy)q - V(X,Sl({)’lm, R )\> > O’ (550)

VX tmiesA) = VXE) 11, 0) > 0.

In Definition 5.17, the incoming flow with “—"" and outgoing flow with “+” to the
boundary are prescribed. From the above definition, a penetration flow of the resul-
tant system of two dynamical systems to the constraint boundary can be considered
to be formed by the semi-synchronization and semi-desynchronization. Such a pen-
etration flow of the resultant system to the constraint boundary can also be called
an instantaneous synchronization of two dynamical systems in Eqgs (5.1) and (5.2)
to constraint in Eq.(5.3). Such an instantaneous synchronization will disappear be-
cause the semi-desynchronization exists. From the definition of a penetration flow,
a flow of the resultant system in domain Q, approaches to the constraint boundary.
However, in domain QB, such a flow will leave from the constraint boundary.

To investigate the relations among three types of synchronicity of two dynamical
systems to the constraint in Eq.(5.3), the switchability of the synchronization, desyn-
chronization and penetration is of great interest, which can be discussed through the
singularity of the resultant system to the constraint boundary.
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5.3.2 Singularity to constraint

From a theory of discontinuous dynamical systems in Luo (2006, 2008), a flow of
a resultant system of two dynamical systems may be tangential to the constraint
boundary governed by the constraint condition in Eq.(5.3). For this case, the syn-
chronicity of two dynamical systems to the constraint occurs only at one point and
then returns back to the same domain. Such an instantaneous synchronization is dif-
ferent from a penetration flow of the resultant system to the constraint boundary. The
tangential synchronization of two dynamical systems to the constraint is sketched in
Fig. 5.6. In domain Q, the tangential synchronization of the two systems to the con-
straint boundary dQ, is presented. The two boundaries at time f,,, ¢ and £, ¢ are
given by the two different surfaces. For such synchronicity, the following definition
is given.

o(x® g0 11 e, 4) >0 D80
1 (1 / ~ S
AN (gf,,}xﬁ,,)s,tm—a : 5 J~a
\/ S —— |

p(x® %0 1, 1) =0
VAR N
N px®,%@ 1,,6,4) <0

e ——all

Fig. 5.6 Tangential synchronization to the constraint in an (7 + 7i)-dimensional state space.

Definition 5.18. For two dynamical systems in Eqs.(5.1) and (5.2) with constraint
in Eq.(5.3), there is a metric functional of V(X,z,A) = f(@(X,z,A)) in Eq.(5.29).
For X,(na) €Qqy (o € {1,2}) and X,(y € 9 at time tm,X,(na) = X,Sﬁ”. For any small
€ > 0, there is a time interval [f;,_¢,ly1¢]. At X(@ ¢ QLE fort € [ty tmrel, the
functional V (X(®) 1, A) is C"*-continuous (r¢ > 2) and [V 7etD(X(@) ¢ X)| < co. A
flow of a resultant system of two dynamical systems in Eqs.(5.1) and (5.2) is said to
be tangential (or grazing) to the constraint boundary at time #,, in the sense of the
metric fucntional if for o € {1,2}

V(X;(gjza[m:t»)\) = V(x,(,(l)),tm,)\) =0:
V(XD 1, ) = 0; (5.51)

VXY e A) = VX £ A) > 0.

In Definition 5.18, the incoming flow with “—"" and outgoing flow with “+4” to
the boundary are prescribed. Such a tangency of a resultant flow to the constraint
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boundary will cause the synchronicity to be changed. The onset and vanishing sin-
gularity for synchronizations can be discussed, and the corresponding definition is
given as follows.

Definition 5.19. For two dynamical systems in Egs.(5.1) and (5.2) with constraint
in Eq.(5.3), there is a metric functional of V(X,z,A) = f(¢(X,z,A)) in Eq.(5.29).
For X,(na) € Qg (o €{1,2}) and X,(1?> € 9 at time tm,X,(na) = X,(1?> For any small
€ > 0, there is a time interval [t;,_¢,lpy1¢]. At X(@ ¢ QLE fort € [ty tmre), the
functional V (X(® 7, \) is C"@-continuous and [V et (X(®) 1 X)| < o (ry > 2).
(i) The synchronization of two dynamical systems in Eqgs.(5.1) and (5.2) with
constraint in Eq.(5.3) is called to be vanishing to form a penetration from domain

Qq to QB at the constraint boundary at time f,,, in the sense of the metric fucntional
if for , 8 € {1,2} and ¢ #

VX b A) = VX b, A) = VXY 1, A) = 0;

vOXD 1, 2) #£0, VOXPE) 1,0 2) =0, 5
VXD e A = VXY 1 A) >0 '

VX e ) = VXE) 10 0 > 0.

(i1) The synchronization of two dynamical systems in Eqgs.(5.1) and (5.2) with
constraint in Eq.(5.3) is called to be onset from a penetration from domain Q to
QB at the constraint boundary at time #,, in the sense of the metric fucntional if for

o,f€{1,2} and o0 #
VX 1, A) = VX b, A) = VXY 10, A) = 0;

VO 4, 2) £0, VOXE) 1,0 0) =0; 55
VXY e A) = VXY 1 ) > 0;

VXP) e, A= VXP) 1 X) > 0.

In Eq.(5.52), the notation “F” represents the synchronization first with “—"" and
the penetration secondly with “+4”. This condition is called either the vanishing con-
dition of synchronization to form a new penetration or the onset condition of pen-
etration from the synchronization at the boundary of constraint in Eq.(5.3). How-
ever, in Eq.(5.53), the notation “+” represents the penetration first with “+” and
the synchronization secondly with “—". This condition is called the onset condition
of synchronization from a state of penetration to the boundary, which can also be
called the vanishing condition of penetration to form a synchronization at the con-
straint boundary at time ¢,,. The switching conditions between the synchronization
and desynchronization are presented as follows.

Definition 5.20. For two dynamical systems in Eqgs.(5.1) and (5.2) with constraint
in Eq.(5.3), there is a metric functional of V(X,,A) = f(@(X,#,\)) in Eq.(5.29).
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For X,(na) € Qg (o€ {1,2}) and X,(y € 0Q5 at time 1,,, X,(na) = X,Sﬁ”. For any small
€ > 0, there is a time interval [t,,_¢,ly1e]. At x(@) ¢ QLE fort € [ty e tmre], the
functional V (X(® 1, X) is C"*-continuous (r¢ > 2) and [V et (X(®) 1 A)| < co,

(i) The synchronization of two dynamical systems in Egs.(5.1) and (5.2) to con-
straint in Eq.(5.3) are called to be onset from a desynchronization at the constraint
boundary at time ¢, in the sense of the metric fucntional if for ¢ = 1,2

V(Xr(’nai) I [mi ’ A) = V(Xl(’lft)) 9 [mv A) = 0,
VX i, A) = 0; (5.54)
V(Xr;ai)gatmi&)‘) - V(X,S;Q,tmi’ >\) > 0.

(ii) The synchronization of two dynamical systems in Eqs.(5.1) and (5.2) to con-
straint in Eq.(5.3) is called to be vanished to form a desynchronization at the con-
straint boundary at time ¢, in the sense of the metric fucntional if for oo = 1,2

V(X’(”aqg’[m]F’A) = V(Xl(??)v[ma A)=0;
V(”(Xf(naI)’tm%)‘) =0; (5.55)

V(X tmres A) — V(X

molms A) > 0.

Similarly, in Eq.(5.54), the notation “+” represents the desynchronization first
with “+” and the synchronization with “—"" secondly. This condition is called either
the onset condition of synchronization from the desynchronization on the boundary
or the vanishing condition of desynchronization to form a new synchronization on
the boundary. In Eq.(5.55), the notation “F” represents the synchronization first
with “—"" and the desynchronization secondly with “+”. This condition is called the
vanishing condition of synchronization to form a new desynchronization, which can
also be called the onset condition of desynchronization from the synchronization. In
other words, the onset and vanishing conditions of the desynchronization from the
penetration can be discussed as for the synchronization. The following definition
will give the onset and vanishing conditions of desynchronization.

Definition 5.21. For two dynamical systems in Eqs.(5.1) and (5.2) with constraint
in Eq.(5.3), there is a metric functional of V(X,z,A) = f(@(X,z,A)) in Eq.(5.29).
For X,(na) €Qq (o€ {1,2}) and X,(,?) € dQ at time t,,, X,(,?) = X,(,?) For any small
€ > 0, there is a time interval [t,,_¢,tnte]. At X(@) ¢ QLE fort € [ty_e,tmre, the
functional V (X(® 1, X) is C"@-continuous (rq > 2) and [V« +D)(X(®) 1, \)| < oo,
(i) The desynchronization of two dynamical systems in Egs.(5.1) and (5.2) to
constraint in Eq.(5.3) is called to be vanished to form a penetration from Q, to
Qg at the constraint boundary at time 1, in the sense of the metric fucntional if for

o,f€{1,2} and o0 #
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V(Xgnai)’[mi’A) = V(Xlgﬁz7[m+7A) = V(Xl(’i?)atma )\) = 0;

VXD ta, A) = 0, VIO (xB) 1, ) £ 0;
(5.56)
V(X,(ﬂg,tmﬂ,)\) - V(X,Sﬁz,tmi,)\) >0,

VX tmiesA) = VXE) 11, 0) > 0.

(i1) The desynchronization of two dynamical systems in Eqgs.(5.1) and (5.2) to
constraint in Eq.(5.3) is called to be onser from a penetration from Qg to Qg at the
constraint boundary at time t,, in the sense of the metric fucntional if for o, €

{1,2} and o # B

VXY 1, A) = VIXP) 10 A) = VXY 1, A) = 0

V(l)(X’g"ai)’tmi7)\) - 07 V(l)(anﬁﬁJme)\) 7é 0;
(5.57)
VX e tmre, A) = VX, 1, A) > 0;

VX e A) = VXP) 0 2) > 0.

Notice that in Eq.(5.56), the notation “+” represents the desynchronization first
with “+” and the penetration secondly with “—". This condition is called the vanish-
ing condition of desynchronization to form a new penetration on the boundary, and
can also be called the onset condition of penetration from a synchronization state.
However, in Eq.(5.57), the notation “+4" represents the penetration first with “4-” and
the synchronization secondly with “—". This condition is called the onset condition
of desynchronization from a penetration and also can be called the vanishing con-
dition of the penetration to form a desynchronization state. From the previous three
definitions, the switching between synchronization and penetration, between desyn-
chronization and penetration, and between desynchronization and synchronization
were presented. However, another switching between two penetrations should be
discussed.

Definition 5.22. For two dynamical systems in Eqgs.(5.1) and (5.2) with constraint
in Eq.(5.3), there is a metric functional of V(X,z,A) = f(@(X,t,A)) in Eq.(5.29).
For X,(na) € Qqy (a € {1,2}) and X,(1?> € JdQy, at by, X,(na) = X,g?). For any small
€ > 0, there is a time interval [ty;_g,tm1e]. At X(@) ¢ QLE fort € [ty—e,tmye], the
functional V(X(® 1, A) is C"*-continuous (ry > 2) and |[VetD(X(®) ¢ A)| < oo,
The penetration of the slave and master systems in Egs.(5.1) and (5.2) to constraint
in Eq.(5.3) are called to be switched at the constraint boundary at time #,, in the

sense of the metric fucntional if for o, € {1,2}
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0
VXt A) = VXLt A) = VX 1, X) = 0;

vOXY 1Ay =vOXB) A =0;
(Xt s tm s N) (Xt s tmt, ) 5.58)

V(X trre, A) — V(X

m1atm¥7A) > 07

VXL e, ) = VXP) 11, 0) > 0.

Based on the definitions of the tangential (or grazing) and switching singularity,

there is a critical parameter A., from which 8V(X,(,?i),tmi,)\) /O], # 0, such a
singularity is called the corresponding bifurcation at A, for parameter .

5.3.3 Synchronicity with singularity

As similar to discontinuous dynamical systems in Luo (2006, 2008), the above
synchronicity of two dynamical systems in Eqgs.(5.1) and (5.2) with constraint in
Eq.(5.3) can be extended to the case of higher-order singularity. The correspond-
ing definitions can be presented. The definition for the (2k¢ : 2kg)-synchronization
of two dynamical systems in Eqgs.(5.1) and (5.2) with constraint in Eq.(5.3) at the
corresponding constraint boundary for time #, € [fm, ,tm,] is presented first.

Definition 5.23. For two dynamical systems in Egs.(5.1) and (5.2) with constraint in
Eq.(5.3), there is a metric functional of V (Xt,A) = f(@(X,z,A)) in Eq.(5.29). For
X,(no£> €Qq (o€ {1,2}) and X,<1?> € 9Q1y at by, X,(no£> = X,gi». For any small € > 0,
there is a time interval [f,,_¢,tn]. At X(%) € Q %, fort € [ty_g, 1), the functional
V(X(@ £, X) is C"@-continuous (ry > 2kg + 1) and |V et (X(®) 1 X)| < co. The
two dynamical systems in Egs.(5.1) and (5.2) with constraint in Eq.(5.3) is called
to be synchronized with the (2k; : 2k;)-type to the constraint in Eq.(5.3) for time
tm € [tm, ,tm,] in the sense of the metric fucntional if for o = 1,2

VXt ) = VXS ) = 0;

VOa) (X 1 A) = 0forsq = 1,2,...,2k; (5.59)
V(X,(,fi),lm,,A) - V(X;(naf)sytmff,‘a )\) <0.

As in the definition for the (2k; : 2k;)-synchronization, the (2k; : 2k;)-desynchr-
onization of two dynamical systems in Eqs.(5.1) and (5.2) with constraint in Eq.(5.3)
on the corresponding constraint boundary for time #,, € [t ,tm, ] is also presented.

Definition 5.24. For two dynamical systems in Egs.(5.1) and (5.2) with constraint in
Eq.(5.3), there is a metric functional of V(X,z,A) = f(@(X,#,)) in Eq.(5.29). For
X,(na) €Qq (o €{1,2}) and X,(y € dQ, at 1y, X,(na) = X,Sﬁ”. For any small € > 0,

there is a time interval [t,,, fy1¢]. At X(@) ¢ QL for t € (ty,tmrel, the functional
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V(X(@ ¢, X) is C"@-continuous (rg > 2kg + 1) and |V et (X(@ ¢ \)| < oo, The
two dynamical systems in Eqs.(5.1) and (5.2) with constraint in Eq.(5.3) is said to be
desynchronized (or repelled) with the (2k; : 2k;)-type to the constraint in Eq.(5.3)
for tyy € [tm, ,tm,] in the sense of the metric fucntional if for oo = 1,2

VXSt A) = V(X A) = 0;
V(X 1 X) =0, s¢=1,2,..., 2ke: (5.60)

VXY e N) = VEY 100, A) > 0.

As discussed before, the penetration on the boundary of constraint is composed
of the semi-synchronization and semi-desynchronization. From the foregoing two
definitions, the (2kq : 2kg)-penetration of two dynamical systems in Eqs.(5.1) and
(5.2) to constraint in Eq.(5.3) at time ¢, is described.

Definition 5.25. For two dynamical systems in Eqgs.(5.1) and (5.2) with constraint
in Eq.(5.3), there is a metric functional of V(X,z,A) = f(@(X,#,\)) in Eq.(5.29).
For X,(na) € Qy (o e {1,2}) and X,<1?> € 0Qqy at t,, X,(no£> = X,gi». For any small
€ > 0, there is a time interval [fy,_g,fmye]. At X(® € QL€ fort € [y, tmye], the
functional V (X(®) ¢, X) is C"-continuous and |V "e*1) (X(@) 1 X)| < oo (rq > 2kg).
A flow of two dynamical systems in Eqs.(5.1) and (5.2) with constraint in Eq.(5.3)

is said to be penetrated with the (2kq : 2kg)-type from domain Qg to domain Qg at
the constraint boundary at time #,, in the sense of the metric fucntional if

VXY 10 A) = VX 1 A) = VXD 1, A) = 0;
VI (X' 1 A) =0 for sq = 1,2,..., 2ke:

V08 (XP) 10 A) =0forsg =1,2,...,2ks; (5.61)
VXS gt e, A) = VX 1, A) > 0 for o € {1,2} and
V(X,(ﬂg,tm+g,)\) - V(X,(fl,tm+,)\) >0foro # B € {1,2}.

From the three definitions, the higher-singularity is used for description of the
synchronization, desynchronization and penetration at the constraint boundary, and
the switching among the three synchronous states can be discussed through the
higher-order singularity as well.

5.3.4 Higher-order singularity

From the previous descriptions of the synchronization, desynchronization and pene-
tration with the higher-order singularity for two dynamical systems to the constraint,
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the higher-order singularity of the two dynamical systems to the constraint boundary
should be further discussed as follows.

Definition 5.26. For two dynamical systems in Eqgs.(5.1) and (5.2) with constraint
in Eq.(5.3), there is a metric functional of V(X,z,A) = f(¢(X,t,A)) in Eq.(5.29).
For X,(,?) € Qq (€ {1,2}) and X,(,?) € dQqy at by, X,(na) = X,(,?). For any small
€ > 0, there is a time interval [t,,_¢,tnre]. At X(@ ¢ QLE fort € [ty_e,tmrel, the
functional V (X(®) ¢, X) is C"-continuous and |V e+ (X(@) 1 X)| < oo (rq > 2kg).
A resultant flow of the two dynamical systems in Egs.(5.1) and (5.2) with constraint
in Eq.(5.3) is said to be tangential to the constraint boundary with the (2kq — 1)™-
order at time t,, in the sense of the metric fucntional if for a € {1,2}

V(Xrgflai)atmi,A) = V(X,gr(l)),lm,A) = O,

VO (XU 1 A) = 05g = 1,2,..., 2%ke — 1;
( m+tstmt ) o o (562)
VXY, e A) = VXY 4, A) > 0and

V(Xz(naqzsv[ers» A)— V(X,(n“ﬁ,tw, A)>0.

The foregoing definition gives the definition of the (2kq — 1) tangential con-
dition to the constraint boundary. Based on the similar ideas, the switchability of
the synchronization, desynchronization and penetration of two dynamical systems
to the constraint boundary can be described.

Definition 5.27. For two dynamical systems in Egs.(5.1) and (5.2) with constraint in
Eq.(5.3), there is a metric functional of V(X 1, A) = f(¢(X,#,)) in Eq.(5.29). For
X,(no£> €Qq (o€ {1,2}) and X,<1?> € 9Q1y at by, X,(no£> = X,gi». For any small € > 0,
there is a time interval [t,,—¢, fy1e]. At X(@ ¢ QLEfort € [ty_e,tmyrel, the functional
V(X £, X) is C"-continuous and |V e 1) (X(®) 1 X)| < oo (rq > 2kq +1).

(i) The (2kg : 2kg)-synchronization of the two dynamical systems in Eqs.(5.1)
and (5.2) with constraint in Eq.(5.3) is said to be vanishing to form a (2k, : 2kg)-
penetration from domain Q¢ to domain g at the constraint boundary at time #,, in
the sense of the metric fucntional if for o, § € {1,2} and @ #

VXD 1 A) =VXP) 1 X) = VXD 1, A) = 0;
V<sa>(X;<naf);fm7,>\) =0forsq =1,2,...,2kq,
VOB (XUB) 1, M) =0 forsg = 1,2,...,2kg + 1; (5.63)

VXY, e A) = VX 1 ) >0,

VXP) tre, A) — V(XP)

m s A) > 0.

(ii) The (2kg : 2kg)-synchronization of the two dynamical systems in Eqs.(5.1)
and (5.2) with constraint in Eq.(5.3) is said to be onset from the (2kq : 2kg)-
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penetration from Qg to Qg at the constraint boundary at time #,, in the sense of
the metric fucntional if for o, 8 € {1,2} and o # 3

VXY 10 X)) = VXP) 10 A) = VXY 1, A) = 0;
Vi)(X\% 1 A)=0forsg =1,2,...,2kq,

VO (XP) 10, X) =0 forsg =1,2,...,2kg + 1; (5.64)
VXY e A) = VXY 1 ) >0,

VXP) e, ) = VX 1 X) > 0.

From this definition, this condition in Eq.(5.63) for the onset of the (2ke : 2kg)-
synchronization from the (2kq : 2kg)-penetration on the constraint boundary can
be called the vanishing condition of the (2kq : 2kg)-penetration to form a new
(2kg, : 2kg)-synchronization on the constraint boundary. In Eq.(5.64), the vanishing
condition of the(2kq : 2kg)-synchronization to form a new (2kg : 2kg)-penetration
can be called the onset condition of the (2kq : 2kg)-penetration from the synchro-
nization. The onset and vanishing conditions of the (2kq : 2kg)-desynchronization
from the (2kq : 2kg)-penetration can be discussed. The following definition will
give the onset and vanishing conditions of the (2k4 : 2kg )-desynchronization.

Definition 5.28. For two dynamical systems in Eqs.(5.1) and (5.2) with constraint in
Eq.(5.3), there is a metric functional of V(X 1, A) = f(@(X,#,A)) in Eq.(5.29). For
X,(na) €Qq (o €{1,2}) and X,(y € dQ, at 1y, X,(na) = X,Sﬁ”. For any small € > 0,
there is a time interval [f;,—¢, fmte]. At X(@ e QL€ fort € [ty _e,tmye], the functional
V(X(® ¢, X) is C"*-continuous and |V et (X(®) 1 A)| < oo (rg > 2kg +1).

(i) The (2k : 2kg)-synchronization of the two dynamical systems in Egs.(5.1)
and (5.2) with constraint in Eq.(5.3) is called to be vanished to form a (2kg : 2kg)-
desynchronization at the constraint boundary at time #,, in the sense of the metric
fucntional if for o, f € {1,2} and & # B

VXD b, A) = VX 1, A) = VX, 1, 3) = 0;
V(s“)(XEnaqumIa)‘) =0forsq =1,2,...,2keg+ 1,
VO (XP) e, X) =0 forsg = 1,2,..., 2kg + 1; (5.65)

V(an"ig,tmn,x) — V(Xﬁﬁ,tﬂ,)\) >0,
VX e, ) = VXP) 1, 0) > 0.

(ii) The (2kq : 2kg)-synchronization of the two dynamical systems in Eqs.(5.1)
and (5.2) with constraint in Eq.(5.3) is said to be onset from the (2kq : 2kg)-
desynchronization at the constraint boundary at time 7, in the sense of the metric
fucntional if for o, € {1,2} and o #
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VXt A) = VXL e, A) = VX 1, A) = 0;
V) (X 1 X) =0forsg =1,2,...,2ke + 1,

V8 (XB) 1 A) =0 forsg = 1,2,...,2k5 + 1 (5.66)
V(Xiestmier A) = V(X i, A) > 0,

VXP) e A) = VXB) £ A) > 0.

It is observed that the conditions in Eqs.(5.65) and (5.66) are symmetrically
switched. The condition in Eq.(5.65) for the onset condition of the (2kq : 2kg)-
synchronization from the (2k¢ : 2kg )-desynchronization on the constraint boundary
can be called the vanishing condition of the (2ky : 2kg )-desynchronization to form a
new (2kg : 2kg)-synchronization on such a constraint boundary. However, the con-
dition in Eq.(5.66) for the vanishing condition of the (2kq : 2kg)-synchronization
to form a new (2kg : 2kg)-penetration can be called the onset condition of the
(2kg : 2kg)-desynchronization from the synchronization. The switching of desyn-
chronization and penetration on the boundary will be discussed as follows.

Definition 5.29. For two dynamical systems in Eqs.(5.1) and (5.2) with constraint in
Eq.(5.3), there is a metric functional of V (X,z,A) = f(@(X,z,\)) in Eq.(5.29). For
X,(no£> €Qq (o€ {1,2}) and X,<1?> € 9Q1y at by, X,(no£> = Xf,?> For any small € > 0,
there is a time interval [fy,_g, tmre]- At X(@) ¢ QL€ fort € [ty_g,tmte), the functional
V(X(® ¢, X) is C"*-continuous and |V et (X(@) 1 )| < oo(ry > 2kg +1).

(i) The (2kg : 2kg)-desynchronization of the two dynamical systems in Eqs.(5.1)
and (5.2) with constraint in Eq.(5.3) is called to be vanished to form a (2k : 2k5)-
penetration from domain €, to domain Qg at the constraint boundary at time 7, in
the sense of the metric fucntional if for o, f € {1,2} and & # 8

V(er?i)vtmiv)‘) = V(Xf(’lﬁg7tm+7A) = V(Xlgi))atma A)=0;
V(ra)(XSnafz,tmi,)\) =0forrg=1,2,...,2kq+1;

VOB (XUB) 4,1, A) =0 for rg = 1,2,...,2kg; (5.67)
V(X:(q?i)gatmisaA) - V(Xrgftai)atmiaA) > Oa

V(Xr(nﬁngythrs;)\) — V(X,Sﬁz,thm)\) > 0.

(ii) The (2kg : 2kg)-desynchronization of the two dynamical systems in Egs.(5.1)
and (5.2) with constraint in Eq.(5.3) is said to be onset from the (2kq : 2kg)-
penetration from domain Qg to domain Qg at the constraint boundary at time 7,
in the sense of the metric fucntional if for @, € {1,2} and a # 3,

V(X'(naqz’[mx’k) = V(XISEJZ?["H—,}‘) = V(Xl(??)atmv )‘) = 0;
V(S“)(Xﬁn“qz,fm%)‘) =0forsqg=1,2,....2kq+1,
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VO (XP) 1,0, 0) =0 forsg =1,2,...,2kg;
VX e, A) = VX 0 X) > 0, (5.68)

V(X,(,,fﬁg,tm+g,A> - V(Xr(r‘?latm+’)\) > 0.

Similarly, the onset condition of the (2kq : 2kg)-desynchronization from the
(2kq, : 2kg)-penetration on the constraint boundary in Eq.(67) can be called the
vanishing condition of the (2kq : 2kg)-penetration to form a new (2kq : 2kg)-
desynchronization on the constraint boundary. However, in Eq.(5.68), the vanishing
condition of the (2kq, : 2kg)-synchronization to form a new (2k : 2kg)-penetration
can be called the onset condition of the (2ky, : 2kg )-penetration from the (2k, : 2kg)-
desynchronization.

Definition 5.30. For two dynamical systems in Eqs.(5.1) and (5.2) with constraint
in Eq.(5.3), there is a metric functional of V(X,z,A) = f(@(X,#,\)) in Eq.(5.29).
For X,(no£> € Qq (a € {1,2}) and X,<1?> € Qs at t,y, X,<na) = X,(,?). For any small
€ > 0, there is a time interval [t,,_¢,tnre]. At X(@ ¢ QL fort € [ty_e,tmrel, the
functional V(X(®),z,\) is C"@-continuous and differentiable (roq > 2kq 4 1) and
[V (et (X(®) 1 A)| < oo, The (2k : 2kg )-penetration of the two dynamical systems
in Egs.(5.1) and (5.2) with constraint in Eq.(5.3) is called to be switched to a new
(2kp : 2kq)-penetration at the constraint boundary at time #,, in the sense of the
metric fucntional if for o, 8 € {1,2} and @ #

VX 1, A) = VXP) i, A) = VXY 10, A) = 0;
V(sa)(xf(naqz’[m%)‘) =0forsy =1,2,...,2kq +1;

VR (XE) 1, A) =0 for s =1,2,...., 2k5 + 15 (5.69)
V(Xietmes A) = V(X s A) >0,

VIXE), tmie ) = VXE) 14 A) > 0.

In the foregoing definition, the condition for the (2k¢, : 2kg)-penetration switch-
ing to the (2kp : 2kq )-penetration at the boundary is presented.

5.3.5 Synchronization to constraint

In the previous section, the definitions for the synchronicity and the corresponding
singularity of two dynamical systems to a specific constraint were discussed. What
conditions can guarantee such synchronicity of the two dynamical systems to the
constraint exists? In this section, necessary and sufficient conditions for the syn-
chronization of two dynamical systems to the specific constraint will be presented.
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The synchronicity switching is discussed through the singularity of a flow of the
resultant system to the constraint boundary.

Theorem 5.1. For two dynamical systems in Eqs.(5.1) and (5.2) with constraint
in Eq.(5.3), there is a metric functional of V(X,z,A) = f(¢(X,t,A)) in Eq.(5.29).
For X,(,?) € Qy (a €{1,2}) and X,(,?) € dQy at time fy, X,(na) = X,(,?) For any
smalle > 0, there is a time interval [fy—g,tm) O (ty,tmte]. For X(@ ¢ QL€ at time
t € [tm—gstm) OF (tym,tmye], the functional V(X(“),t,)\) is C"-continuous (rq >
ko 4 1) and [V o2 (X(®) 1 X)| < oo, For X(®) € Q4 and X(© € 9Q15, suppose
DU)F(@) (X(@) ¢ (@) = D) FO)(XO) ¢ X) (54 =0,1,2,...) for X(® =XO) (g ¢
{1,2}). The two dynamical systems in Egs.(5.1) and (5.2) to the constraint in
Eq.(5.3) are synchronized for time 7 € [t, ,Zm,] in the sense of the metric fucntional
if and only if
@) for X,(na) € Qg and X,(,(,» € dQ, with any time ,,

X =x0 yrad(x{¥ 1 A)=0fora=12andre =0,1,2,...;  (5.70)
(i) for X&) € Q¢ atty € [tm—g,tm) and X € 9Qy, with 1, € (tmy »tm,)

X 2 x® v (x® 1= A) <0and

571
lim VIO(X® 12 X) =0 for a = 1,2; 7D
Le =t
(iii) for X\ € QL at 17 € (tmy tmre] and X\ € 9Q 15 With tr ¢ [tm, +my)]
X 2 x9 v xi® 4+ A)>0and
(5.72)

lim VOO(X® 15, X) =0 for o = 1,2;

[lj'»‘)[m

(iv) for ng’) € Qrfatty € [tmestm ) ortf € (tmy,tmre] and X € 90, with
tm = tm, and t,

X £ X0, lim VORE ) 0

te —tm+
© 573
lim VXY 1 X) <0fora=1,2. 673

fie —lm+

Proof: (i) For two dynamical systems in Eqgs.(5.1) and (5.2) with a constraint
condition in Eq.(5.3), the boundary 0Q, in Eq.(5.17) and two domains Q (¢t =
1,2) in Eq.(5.18) are defined. From Definition 5.13, at time £, X, = X\ € 9Q1.
So one obtains

VX 1 A) = 0.

From Definition 5.13, for any time ¢, one gets X@ =X € 90Q,,,
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(X (1),1,X) = p(XO(1),1,X) =0,

which implies
VX, 6,A) = V(XD (1),1,A) =0.

On the constraint boundary 0Q5,
D(ra)F(a)(X(a)jt,ﬂ(a)) — D(r“)IE‘(O)(X(O),t,)\)

gives
dretIX(@ () grat1XO)(p)
dtratl = dtretl

The foregoing equation gives
v (X(®) (1)1, X) = 0.

On the other hand, consider X(%) (1) = X()(¢) € 9Q, at time 1. Selecting ' =1+ €
for any small € > 0, the Taylor series expansion gives

VX@, /) —VX® ) =Y v (X©@ g x)ere,

ra=1

Using Eq.(5.70), the foregoing equation yields
VX ¢ X)—v(X® 1 ) =0.

Because of V(X(“),t, A) =0, fort’ =t + €, the following equation holds
V(X ¢ A)=v(XO /A =0.

Therefore, X(®) (1) = XO)(¢'), i.e., X(@)(¢') is on the boundary Q.
(ii) and (iii) For x\*) € Q€ at 17 € [ty_e,tm) OF 1} € (tmytmre] and X € XY €
AQp with by € (tm, ,tm, )
VX rE ) > 0.

Introduce 0 < & = |tyte — 5| < |tmre —tm| = € for t,, >t and t,, < t}. Because
of
V(Xilestme, ) = VX, 15,0) = VIV (X, 68,0 (Fe1) + (&)

and once higher-order terms drop, the foregoing equation leads to
VX tmies A) = VX, 18, 0) = VO (X1, ) (e ).

From Definition 5.15 for t,,, € (tu, ,tm,) With z,, we have

lim vOO(XY - A)<0and lim vOO(XW 1o x) = v 1, 0) =0

te —tm— T —m

However, using Eq.(5.71), the condition in Definition 5.15 is obtained.
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From Definition 5.16 for t,; & [tm, ,tm,] With £, we have

lim VXt A)>0and lim VIOXY rF2) = v (XY 1., A) =0,

Sty 1 =t

However, using Eq. (5.72), the condition in Definition 5.16 is obtained.
(iv) For ng) CQLE attime 1 € [ty g, tm) OT 1 € (s Imre] and X,(,?) caQ
with 1, = t,,, and t,,,,,

lim [v(xﬁ,,“i)g,tmig, A) - V(X ik, A)}

1 St
= 1im VX £ A)(xe) + lim VOX® 12 X (+e)? +o(€2).
tie —tm+ tie —tm+

Ignoring the third-order term and the higher-order terms of g; yields

tim [V (Xt N) V(X150

te —tmt
= Jlim v<1>(x5(“>,t,§,>\)(isl)+ti1ir? VO N (+e)?
k “im+t K ~Im+

Using lim v (ng),t%, A) = 0, the foregoing equation becomes

lKi —lm;+

lim [v(x,ﬁ,";ge,tmﬂ,x)-v(x;‘)‘),t,f,)\)} = lim VOX® it A)(xe)?.

K>
t%‘)tmi t%‘“mi

If lim VX £ X) >0, we have

te —tm+

tim (VX e, )~ VX 1, 0)] > 0.

tie —tm+

From Definition 5.18, the point (Xs,,(fi,tmii) (i = 1,2) is tangential point to the
constraint. The synchronization at such a point appears or disappears. However,
the conditions in Definition 5.18, Equation (5.73) can be obtained. This theorem is
proved. |

For the point (X,(,ff),tml ), the synchronization will be onset. However, for the

point (Xf,g),tmz), the synchronization will vanish. For t,, € (ty,,tm,), the syn-

chronization at point (X,(na),tm) on the constraint boundary can be formed. For
tm & [tm,tm,], the desynchronization at point (X,(na),tm) on the constraint bound-
ary can be formed. If #,,, — —o0 and #,,, — oo, the synchronization is absolute. The
synchronization of two dynamical systems to the constraint can occur at any time z,.

Once the synchronization is formed on the constraint boundary, such synchroniza-
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tion on the constraint boundary will not disappear. If the higher order singularity on
the boundary exists, the corresponding theorem is presented in a similar fashion.

Theorem 5.2. For two dynamical systems in Eqgs.(5.1) and (5.2) with constraint in
Eq.(5.3), there is a metric functional of V(X,z,\) = f(@(X,,A)) in Eq.(5.29). For
X,(na) €Qq (o €{1,2}) and X,(,?) € dQ, at 1y, X,(na) = X,(,?). For any small € > 0,
there is a time interval [fy,—¢,fy ) OT (tm, tm+e]. For X(@) ¢ QL€ attimet € [ty _¢,tm) or
(tmytm 1), the functional V (X(®) £, ) is C"-continuous and |V "« 1) (X(®) ¢ X)| <
oo (rg zka—f—]).ForX("‘) € Qg and X € 9Q,, suppose D F( )( X(@) ¢ gla )) =
DEIFO(XO) 1 ) (54 =0,1,2,...) for X(@ =X (¢ € {1,2}). The two dynam-
ical systems in Eqs.(5.1) and (5.2) to the constraint in Eq.(5.3) are synchronized for
time ¢ € [ty ,tm,] in the sense of the metric fucntional if and only if

(i) for X\ € Qq and XY € 9Q15 With £y € (ty s my)

r(na) = l(’l(i))v V(Va)(X’(na)Jm’A) =0
fora=1,2andro =0,1,2,...

(5.74)

(ii) for XECO‘) € Q fattime t, € [ty_g,tm) and X ) ¢ dQp with ty, € (b, ,tm,)

92X lim V(X 10, A) =0 for s = 1,2,...,2ke;

b =i (5.75)
V(2ka+‘)(X$<a),t,;,)\) <0Oand lim Vet (X(® 1= ) =0for o =1,2;

te —tm
(iii) for XECO‘) € Ql¢ attime 1} € (tm,tmye| and X € 9Q1, with 1, & [tm, stm, )

DX fim VO (X 1 X) =0forsg =1,2,..., 2kg;

I —lp
X i (5.76)
V(Zk“+')(X§<‘x>,t,}L,)\) >0and lim V@ tD(X® 15 X) =0 foro=1,2;

te —tm

(iv) for XS(“) € QlE attime 1 € [tmee,tm—) t& € (tmt,tmre] and X ) ¢ Q1
with 1, = t,,, and 1,

% £ xO) Jlim V) (X 1 N) =0 forsg = 1,2,...,2kq + 1;

t —Im+
< 5.77
lim Vat2)(X & ) <0fora=1,2. 67D

I —Imt

Proof: (i) For two dynamical systems in Eqgs.(5.1) and (5.2) with a constraint
condition in Eq.(5.3), the boundary dQ, in Eq.(5.17) and two domains Q, (ot =

1,2) in Eq.(5.18) are defined. From Definition 5.13, at time z,,,, X(O£> 1()?) €9Q,.
So the following equation holds,

VX 1, A) = 0.



5 Synchronization of Dynamical Systems 241
From Definition 5.13, for any time z, one obtains X(® = X©) ¢ 9Q,,
(X @ (1),1,0) = (X (1),1,A) =

which is implies
V(X(a)(l)7[7>‘) = V(X(O)([)7l7)‘) -

On the boundary 915,
DUaF(@) (X(®) ¢ 7(@)) = plra)FO©)(x©) ; x)

i.e.,

d X (1) aeXO()
dtre  dtra
The foregoing equation gives

v (X(® (1) 1, A) = 0.

On the other hand, consider a point X(®)(¢r) = X0 (1) € 9Q, at time 7. Selecting
t' =t + ¢ for any small € > 0, the Taylor series expansion gives

VIX@ A VX ) =Y Ve (X N
Using Eq.(5.74), the foregoing equation gives
VX ¢ X)—v(X® 1 ) =0.
Because of V(X(‘x>,t, A) =0, fort’ =1+ €, one obtains
V(X® ¢ X)) =v(XO ./ A)=0.

Therefore, X(®) (') = XO)(¢'), i.e., X(® (') is on the boundary Q5.
(ii) and (iii) For X'\*) € Q€ at time 15 € [tm_g,tm) OF £ € (futmre] and X €
AQp with by € (tm, ,tm, )
VX rE ) > 0.

Introduce 0 < & = |tyie — 15| < |tmre —tm| = € fort,, >t and t,, < t,}. Because
of

V(X:(najzmtmia )\) - V(XSC(X)J;[?)‘)
= Y ey e (X 1 X) (g etV CRet D (X 1 X) (e ) o (1) e )

and once the (2ky +2) and higher-order terms drop, one obtains

VX tmre, A) = VX 15, 0)
ZZkaV(sa X(O!) i )(ﬂ:g )Sa +V(2ka+l)(X5< )7 ,)\)(:ES )Zka+l
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and
Jlim [V(X,(:i)g,tmisa A) - V(X i, A)}
te —tm+
— ka“ lim V(Sa)(xsca),t%,)\)(iel )+ lim V<2k“+1)(X$<a),t,f,)\)(i81)Zk“H-
@ te —tm+ e =tk

Definition 5.23 for t, € (tm, ,tm,) With £ gives

lim V@)X 1~ ) <0and

te —tm—

lim VChatD (X = n) = y@ka+1)(x(® 1 N) =0,
te =t
However, using Eq.(5.75), the condition in Definition 5.15 is obtained. Definition
5.24 for ty, & [tm, ,tm,] With 7,} leads to

lim VDX i x) >0

ti‘”mﬁ»

and lim V@a+)(X(® b A) = vt (XP 1, A) = 0.

1§ >tm

However, using Eq. (5.76), the condition in Definition 5.16 is obtained.
(iv) Similarly, for X\%) € QX at time 15 € [tm_g,fm_) OF i € (tms,mse] and

X,(,?> € 0Qp with t,, = t,,, and ty,,,

V(vazggvtmi&)\) - V(XSCOOJ%?)‘)
_ Zfi““V(S“)(Xsca)vt?)\)(ifl)S“ 4V (%kat2) (choc) t’?’)\xigl)ZkaJrz_‘_o(eleaJrZ)’

Ignoring the (2kq + 3)term or higher-order terms, we have

lim [v(xﬁn“i)g,tmig, A) - V(X® ik, A)}

[% —lm+

= YR him v (X A ke )+ Jim VX X)) e,
t

k —Imt tie —tm+

Using lim V(s (ng),t,?i, A)=0(sq¢ =1,2,...,2kq + 1), the foregoing equation

Ki—m;+
gives

lim [V(Xﬁn“i)s,tmig, A)— V(Xi“),t,fw]

b —lm+

= lim V@et2(X(® N (g )Hat2,

K ?
t% —tm+
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If lim V(Zat2) (cha),t%,)\) > 0, one obtains

t% —tm+

fim V(X tue, A) = VX5, 0)] > 0.

it

From Definition 5.26, the point (X,(no,.‘iﬁm,-i) (i =1,2) is a tangential point to the
constraint. The synchronization at such a point appears or disappears. However,
the conditions in Definition 5.26, Eq. (5.73) can be obtained. This theorem is
proved. |

B I ,,,,,(;il,)i)if

m—g>im—e

Wi [ e
Q[ (X5 i) - sl
g (Xm—sitm—e) (Xg,?),tm)
2
(a) (anlzeytm—s)
Q

X0 b))

Qi

(®

Fig. 5.7 (a) A cross section view and (b) a 3-D view for an absolute synchronization of two dynam-
ical systems to the constraint in vicinity of the constraint boundary 0dQ;, in (n + 7i)-dimensional

state space. Any point for synchronization on the constraint boundary, is expressed by (XS,? >,tm).
In two domains, the resultant flows in the vicinity of the constraint boundary are expressed by

(Xgna,)g,tm,g) (a0 = 1,2). The onset point on the constraint boundary is (XS,?]) ,tm, ), depicted by a
red circular symbol.

Consider the foregoing two theorems with f,,,, — —oo and t,,, — oo. For this case,
once the two dynamical systems to the constraint are synchronized, such synchro-
nization can keep forever. To explain the two theorems, the synchronization of the
flows of two dynamical systems on the boundary d€;, are in Fig. 5.7. Any point
of a constraint flow on the constraint boundary is expressed by (X,g? ),tm) for syn-
chronization. In the two domains, the reslutant flows in the vicinity of the constraint
boundary are expressed by (X,(na,) estm—g) (@ =1,2). The onset point is denoted by

(X,(,?I) Jtm, ). For ty, > t,, and t,, — oo, all the flows of the resultant system of two dy-



244 Albert C.J. Luo

namical systems will be on the constraint boundary. Thus, the synchronization of the
two dynamical systems to the constraint is an absolute synchronization. The start-
ing point of a resultant flow for the synchronization can occur at any time #,, > t,,, .
However, if #,,,, is finite, the two dynamical systems to the constraint can be synchro-
nized only in a finite time interval of ¢ € (¢, ,%m, ). To the point on the boundary at
time ¢ = t,,,, such synchronization will disappear. Further, the resultant flow on the
constraint boundary for synchronization vanishing will enter into the domain, which
cannot be synchronized any more in sense of Eq.(5.3). Such synchronization is very
easily realized through the discontinuous vector fields to the two dynamical systems
to the constraint boundary. For the synchronization of slave and master systems to
the constraint, a slave system is controlled by discontinuous, external vector fields
in order to make it synchronize with the master system. To answer this question, let
us discuss the metric functional first.

For F(@) (X(@) 1, 7(®)) = FO)(XO) £, ) at X(*) =XO) (¢ € {1,2}), the synchro-
nization of two dynamical systems to a specific constraint requires D) (X (@) (z),
1,A) = DX (X (¢),1,X) = 0. For a metric functional in Eq.(5.32), if X(®)(r) =
X (1) on the constraint boundary, one gets

vID(X@® 1 A) = Cjz_(f""zo’ (5.78)

because of (X1, X) = 0. Furthermore, for X(%)(r) = X(0)(¢), if

do\*  d&
v® (X(“)(t),t,)\> = <d_qto> +(p720 =0 (5.79)

is required, the following condition should be satisfied, i.e.,

%go(X(“)(t),t,,\) =0. (5.80)

Continuously, if X(®) (1) = X (¢) € 9Q5, VO (X@ (1),1,A) = 0 leads to

dkf]

Ww(X(“)(t),t,A):Oforkzl,z,... (5.81)

Consider another metric functional in Eq.(5.36), and the corresponding time change
rate is

vID(x(® ¢ \) = sgn(<p)‘2—(f, (5.82)
For X(%)(r) = X()(¢), one requires
vID(x® 1 ) = sgn((p)czl—(f =0. (5.83)
So one achieves d
— (X (1),1,X) =0. (5.84)

dt
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Furthermore, if X(®) (1) = X©)(¢) € 9Q15, VO (X @ (1)1, X) = 0 leads to

k
%(p(X(“)(t),t,)\):Ofork: 1,2,... (5.85)
If a resultant system of two different dynamical systems is continuous to the con-
straint boundary, it is very difficult to make the two different dynamical systems be
synchronized with a specific constraint. Most of such synchronization is asymptotic
as t — oo. To make the synchronization of two dynamical systems to a specific con-
straint possible, one often considers control schemes to realize the synchronization
through adjusting vector fields. Next, consider the resultant system of two different
dynamical systems to be discontinuous to the constraint boundary.

For F(®)(X(®) 1 7c(@)) £ FO/(X©) 1 X) for X(®) = XO) (o € {1,2}), the syn-
chronization of two dynamlcal systems with a specific constraint does not require
the condition in Eq.(5.85), i.e.,

k
jtk(p( X9(),0,A) £0fork=1,2,... (5.86)

To distinguish ng) from X\") at time f; € [tmstmi1], @ point Xg?) € Q¢ in the do-
©)

main infinitesimally approaches a point X5’ € dQ1; on the constraint boundary at

timez. For X(a) € Q% (or X<a ¢ dQ12), the corresponding differentiation of vector

fields with respect to state variables can be carried out. For X E 0Q1, on the con-
straint boundary, such differentiation cannot be done for ¢’ € (f; — €,t;) (any small
€ > 0) because the vector fields (F(®)(X(®) ¢, 7'r<°‘)) ae{l, 2}) to the constraint

boundary dQ1, are discontinuous (i.e., ]F(0>( X sy A) £ Fle ( tk o )) for
X(a) = X§0> at time f; = £, ). Therefore, the time #; will be replaced by ¢, =

ty — 0 for a point Xg?) € Q. For a metric functional in Eq.(5.32), at X(®)(r) =
XO (@), vA(X@(1),1,A) = 0 is always observed even if d¢/dt # 0. One also
obtains V/(X@(¢),1,X) > 0 if deo/dt # 0. Tt implies that V(X(®(¢'),¢', ) >
V(X (t,,),t, A) for t' = 1,, + €. So one obtains X (r) # X(®)(¢') € Qq. It means
that the two dynamical systems to a specific constaint cannot be synchronized.
For this case, one cannot use such a metric functional in Eq.(5.32) to investigate
the synchronization for a discontinuous resultant system. However, for a metric
functional in Eq.(5.36), at X(@ (z_) = X©)(¢), one obtains V() (X(®) (1, )1, A) =
sgn(@y)de/dt #0if do/dt #0.1f dp/dt <0 and @ = 0, orif do/dt > 0 and
@ =0_, then VI(X®)(£),1,\) = sgn(¢s )de/dt < 0. From the aforementioned
discussion, the metric functional in Eq.(5.36) can be considered as a candidate of
metric functional to investigate the synchronization of two dynamical systems with
F(@)(X(@) 1, 7(®)) £ FO)(X© ¢ X). Under the constraint condition in Eq.(5.3), the
correspondmg theorem is presented for the synchronization of two dynamical sys-
tems in Eqgs.(5.1) and (5.2) as follows.

Theorem 5.3. For two dynamical systems in Eqs.(5.1) and (5.2) with constraint
in Eq.(5.3), there is a metric functional of V(X,,A) = f(@(X,#,\)) in Eq.(5.29).
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For X,(n) € Qq (o € {1,2}) and X E 0Q1, at time 1, X,(na) = X,g?). For any
small € > 0, there is a time interval [fy_¢,tm) OF (tm,tmte]. For X(@ ¢ Qlfattc
[tm—gstm) OF (tm,tmie], the functional V(X(O‘),t,)\) is C"-continuous (ry > 3) and

[V et (X(@) 1 X)| < oo, For X(®) € Qg and X0 € 9Q,, let F(@) (X(@) 1 (@) £
FO(XO ¢, X) for X(® = X© and a € {1,2}. The two dynamical systems in
Eqgs.(5.1) and (5.2) to the constraint in Eq.(5.3) are synchronized for time ¢ €
[tm, stm,] in the sense of the metric fucntional if and only if

(i) for X'% = X and X(@) (1) € Qg (0 € {1,2}) at time £ =ty € [t, ]
VXYt A) = VXt A) = 0; (5.87)
(ii) for time t, € (tm, ,tm, )
XY =X and vIOXY 1 A) <Ofora=1,2, (5.88)
(iil) with penetration at time ¢ = t,,,, Xma) XE,(,),) (i=1,2)

VO (XL, tya, A) = 0 and VO (XL, 11, A) > 0 for a € {1,2} 59
v(XB) 1, A)<OforBe{1,2}and B # '

or with desynchronization at time ¢ = t,,,, Xﬁnof) = X,(,(,),) (i=1,2)

VO X, t, A) = 0 and VO (XS 4, ) > 0 for o € {1,2},
()

VXL 1, A) = 0and VO (XP) 1,4, A) > 0 for B € {1,2} and § # a.
(5.90)
Proof: From Definition 5.13, the metric functions for the constraint boundary
0Q1; and domains Q4 (a = 1,2) are given by

V(X«)),,,)\) =0 forX© ¢ aQy,
VX®,1,A) >0 for X% € Qq,00=1,2.
(i) Fort =4, and X(® = X' € Qg (a0 € {1,2}), X\ =X € 9Q),. Further,

VXSt ) = VXSt X) =0,

Equation (5.87) is obtained, vice versa.
(ii) For time t,; € (t, ,tm, )s X\® — ) 6 dQq;. Consider a point X( )8 € Qf

m—

for t,,—¢ = t,, — € in the neighborhood ofX 6 0Q, and € > 0. We have
Ve tnesX) = VXt 2) = =V (X 1, Ne+ o).

Because of any selection of € > 0, if
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vOOXY 1 A)<O0fora=1,2,

then
VXY e A) = VXD £ A) > 0.

From Definition 5.15, the two dynamical systems to a specific constraint are
synchronized for time interval of t,, € (tn, ,tm, ). However, Eq. (5.88) is achieved if

VXY 1 A) = VXY g g,A) <0.
(iii) At time t =1t,,,, ,X(a) = m,. E 0dQy,. Consider a point Xf:fie €Qq (a=1,2)

for t,,+¢ = tm; £ € in the neighborhood of X,(,(,) ) € dQ, and € > 0. The Taylor series
expansion gives

V(Xmo;)isv[mzi&)‘) V(Xl(ﬂzt [m,i7)‘)
= :|:V( )(X;(n;:)tv[miﬂ:v )£+V( )( m:l:vlm:i7)‘)£2+0(£2)'

If the third and higher order terms are dropped in the foregoing equation in Qg
(¢ = 1,2), with the condition

V(l)(Xma:)tv[mliv >‘) =0,
the following equation is achieved:
V(X:(noé)iwlmzi& )‘) - V(Xl(n(,x')i7[mii7 >‘) =v@ (X:Sqo,-czb[mii))‘)gz + 0(82)'

ifva )(X( )_,tm, JA) = V(l)(Xm zL,t,,H, A) # 0 and only the first order term in the
Taylor series expansion is cons1dered one gets

VXY, e tmres A) = VXt A) = VO (XD 1, M

For a,B € {1,2} and o # 3, from Definition 5.19, the disappearance and ap-
pearance of synchronization with the penetration require

V(XS g tmtes A) = VXL g, A) > 0,
VXL o e, A) = VXL 1o X) >0,

from which Eq.(5.89) is obtained, vice versa.
For o, 8 € {1,2} and o # B, from Definition 5.20, the disappearance and onset
of synchronization with the desynchronization require

V(X;(na:)tg7tm2:|:£7 A) - V(X;(na:)‘:7tm,i7 A) > 07
VXPL e tmres A) = VXL 1, A) >0,
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from which Eq.(5.90) is obtained, vice versa. Therefore, this theorem is proved. Wl

From the foregoing theorem, the synchronization of two dynamical systems to
a special constraint requires that the first-order derivative of the metric functional
be less than zero. The onset and vanishing conditions of the synchronization in
Eqgs.(5.89) and (5.90) are the vanishing and onset conditions relative to the penetra-
tion and desynchronization, respectively. If the first-order derivative is zero, under
what conditions can two dynamical systems to a special constraint be synchronized
in sense of Eq.(5.3)? The following theorem will consider the synchronization of
two dynamical systems to a special constraint with higher-order singularity.
Theorem 5.4. For two dynamical systems in Eqgs.(5.1) and (5.2) with constraint in
Eq.(5.3), there is a metric functional of V(X,2,A) = f(@(X,z,A)) in Eq.(5.29). For
X\ e Qq (o € {1,2}) and X e dQ1, at ty, X =X For any small € > 0,
there is a time interval [fy_¢,tm) OF (tmtmre]. For X(®) € QF€ at 1 € [t_e,tm)
t (tmstmye), the functional V(X(® . X) is C"-continuous (rgq > 2kq + 1) and
[V(rai2) (X1, X)| < eo. For X(® € Q4 and X € 9Q,, let F(@)(X(®) ¢ 7(@)) £
FO(X©) 7, A) for X(*) = X and o € {1,2}. The two dynamical systems in
Egs.(5.1) and (5.2) to constraint in Eq.(5.3) are synchronized of the (2kg : Zkﬁ)-
type for time ¢ € [t,, ,tm,] in the sense of the metric functional if and only if

(i) for X\% = X and X9 (1) € Qq (¢ € {1,2}) at time 1 = t, € [t L]
VX, 10, A) = V(XY 1y A) = 0. (5.91)
(ii) for time t,y € (tm, tm, )s

XY = X and VO (XY 1, A) =0 (s¢ =1,2,...,2ke)
(5.92)
vkt (x(® Ny <Ofora=1,2.
(iii) with the (2kg : 2kg)-penetration for time ¢ = f,,,, X\ = X\ (i =1,2),
V6 (XL 1, A) = 0 (50 = 1,2, 2kg + 1),
and V22X, 4,0 X) >0 for @ € {1,2};
(5.93)
Ve (XP) 1, A) =0 (sp =1,2,...,2kp),

v (xP) . A) <0for B e{1,2}and B # .

or with the (2k : ZkB)-desynchronization for time ¢t = t,,,;, XS,,OI‘) = X(O) (i=1,2),
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VO (XS f, A) = 0 (50 = 1,2, 2kg + 1),
and Ve t2)(X\) 10 X) > 0for € {1,2}; S0
i ( .
VO (XP) 10, M) = 0 (55 = 1,2,...,2kg + 1),
vs+2(xP) 4 X)) > 0for e {1,2} and B # .

Proof: From Definition 5.13, the metric functions for the boundary 0Q, and
domains Qg (o = 1,2) are given by

V(X«)),,,)\) =0 forX© ¢ aQy,
VX®,1,0) >0 forX¥ € Qq,00=1,2.

(i) For t =ty € [tm, ,tm,] and X(@ = X% € 04, X% =XV € 9Q,. Further,

VXt A) = VXD 10, A) =0,

So Eq.(5.91) is obtained. If Eq.(5.91) exists, from Definition 5.13, X\*) =X\ e
BQ]Q.
(ii) For time t,, € (tm, tm, ) X,(naj (O) € dQ1,. Consider a point X( )8 € QF for

tm—g =ty — € in the neighborhood of X,(n) € dQ, and € > 0. The following Taylor
series expansion is achieved.

VXDt s,A) VXD 1)
= ZZka (sa) m_ e s A)(—€)%® _V(Zka+1)(thx)’[m e g2ka+1 +o(e 2ka+1).

sa—l

Due to the higher order singularity, i.e.,
V(sa)(XEna—)ytm—yA) == 0 for S = 1,2, . ,2]{0“

and by ignoring of the (2ky + 2)-order and higher-order terms, the Taylor series
expansion gives

VX e, A) = VXS 1 A) = =Vt DX - x)g2kat],

From Definition 5.24, the synchronization of two dynamical systems to a specific
constraint for time #,, € (t, ,tm, ) requires

VXD e ) = VXY 1, 2) > 0.

Thus,
v et x(@ ) <.

However, if
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V@t ) (x(® 1 N) <0,

then
v (Xf,f‘,)g,zm,g,,\) VX 4 A) >0

is achieved, which implies the two dynamical systems to the specific constraint are
synchronized for time t,;, € (tm, ,tm, )-

(iii) At time ¢ = t,, X,(ni X,(,(,)l € dQy,. Consider a point X,(n ig € Qg for
Imi+e = tm; £ € in the neighborhood of XS,,,. € dQ1; and € > 0. The Taylor series

expansion gives

V(X ig,rm,ﬂ,m VXL g, A)
2k 1
= Yty e (X 1, N) () v Rt (X, L N )g2ke (e t2),

sa—l

Letting o = 3, because of the higher order singularity of the V-function in domain
QB’ i.e.,

V(SB)(XE,EBE,[miﬂ:aA) =0 (sﬁ = 1,2,...,2/(5)

2kﬁ+1

and once the higher order terms of € are dropped, one obtains

VXPL ot A) = VXL 1, A) = £V (XP) 1 NPt
Similarly, if the following equation exists

V(Sa)(XEnO::)tv[miﬂ:aA) =0 (sa=1.2,....2kg+1)

Qkg+2

and the higher order term of € will not be considered, the Taylor series expan-

sion gives
V (Xhestmite: A) = VXGk s, X) = V2K 15 N,

From Definition 5.27, the onset and vanishing conditions of the (2k, : 2kg )-synchronization
of the two dynamical systems with a corresponding penetration on the constraint
boundary Qg are

(Xz(no,tr);rsvtmi:Fev }‘) (Xr(no,‘:)!:vtmi:Fv }‘) >0,

VXD i X) = VX e, A) <0,
with

(Sa (X(O‘)

m;F>

e A) =0 (sq=1,2,...,2%q+1),

Ve (XP) 1, A) =0 (s5=1,2,...,2kp).
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Thus, one gets
V(2koc+2)(Xr(:::)'ntmi:':7 A) >0 and V(Zkﬁ+1>(X££)_7tm;—v)‘) <0.

In other words, Equation (5.93) is obtained. If Eq.(5.93) holds, the conditions in
Definition 5.27 can be obtained for the onset and vanishing condition for synchro-
nization from the penetration.

If the (2kq : 2kg)-synchronization of two dynamical systems to a specific con-
straint vanishes and appears with a (2kg : 2kg)-desynchronization, the following
conditions are required

V(Xsn(f:)FsvtmiZF&)‘) - V(an(?:)thmi:Fv A) > 07
V(Xipg;:gatmﬂiev A) - V(X;(ySZFJm;% A) > 07

with the singularity conditions
VO (X 1,2 M) =0 (s = 1,2,...,2kq + 1),

VO (XP) 12, A) =0 (s =1,2,...,2kg + 1),
So one obtains

y@hat2)(x() 1, A) > 0and VB (XP) 1,2 X) >0,

i.e., Equation (5.94) is obtained, vice versa. Therefore, this theorem is proved. M

In the foregoing theorem, the onset and vanishing conditions of the (2kq : 2kg)-
synchronization in Eqs.(5.93) and (5.94) for time t = ¢, (i = 1,2) are also the
vanishing and onset conditions of the (2kq : 2kg)-penetration and the (2k, : 2kg)-
desynchronization, respectively. To explain the synchronization of the two dynam-
ical systems under the condition in Eq.(5.3) in the previous two theorems, such
synchronization is sketched in Fig.5.8. On the constraint boundary, any point for

synchronization is expressed by (X,g? ),tm). In the two domains, any flows in the

vicinity of the boundary are expressed by (X,gfi)g,tm,g) (o =1,2). The onset and

vanishing points are (X,(,?]),tml) and (X,(,?Z),tmz) with red and blue circular symbols.

Both of the two points belong to a sub-manifold on the boundary in the (n + 7)-
dimensional phase space. Once a flow of the resultant system of two dynamical
systems from domain Q; comes to any point of the sub-region on the constraint
boundary, the synchronization of the two dynamical systems to the constraint oc-
curs until the point (X,(q?z),tmz) is reached. If #,,, — oo, such synchronization will not
disappear forever. For t,, > t,,,, once the resultant flows are on the constraint bound-
ary, the synchronization of the two dynamical system to the constraint will keep
forever.
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Fig. 5.8 (a) A cross-section view and (b) A 3-D view of the synchronization of resultant flows
in vicinity of the constraint boundary dQ), in (n + /i)-dimensional state space. On the constraint
boundary, any point for synchronization is expressed by (XS,? ),tm). In two domains, the resultant
flows in the vicinity of the constraint boundary are expressed by (Xf,,a,) estm—e) (00 =1,2). The onset

and vanishing points are (XE,?]) Jtm, ) and (XE,%) ,tm, ) With red and blue circular symbols.

5.3.6 Desynchronization to constraint

In the previous four theorems, the synchronization for two dynamical systems to
the constraint in Eq.(5.3) is discussed. Next, the desynchronization of two dynam-
ical systems will be similarly discussed. The desynchronization is another phe-
nomenon opposite to the synchronization. If F(®) (X(®) 1, 7(®)) = F(©)(X(©) 1 X) on
the constraint boundary, the desynchronization will be discussed first, and the desyn-
chronization for F(®)(X(®) ¢ 7(@) £ FO)(X©O) ¢ X\) on the constraint boundary
will be addressed. The theorems for desynchronization with (@) (X(@) ¢ (@) =
F©(X©) 1, X) are presented as follows.

Theorem 5.5. For two dynamical systems in Egs.(5.1) and (5.2) with constraint in
Eq.(5.3), there is a metric functional of V(X,z,A) = f(@(X,#,)) in Eq.(5.29). For
X,(na) €Qqy (acq{l,2})and X,(1?> € dQ, at time 1, X,(na) = X,g?). For any small € >
0, there is a time interval [t,,—¢,tp) OF (ty,tme]. For X(@ ¢ QL€att €[ty e tm) or
(tmstmye), the functional V(X(@ 7, X) is C"-continuous and |V "e+2) (X(@) 1, X)| <
oo (rg > ko +1). ForX(® € Q, and X(©) € 995, suppose DEF(@) (X(@) ¢ (@) =
DEAFO) (X0 1 X) (54 =0,1,...) for X(®) =X (¢ € {1,2}). The two dynamical
systems in Eqs.(5.1) and (5.2) to constrain in Eq.(5.3) are desynchronized for time
t € [tm, stm,] in the sense of the metric fucntional if and only if

(i) for X,(na) € Qg and Xg,?) € dQq, with any time £,
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X = x v (X 1, 4) =0,

fora=1,2andry =0,1,2,...

(5.95)

(i) for X\&) € Q€ at time £} € (tm, tmye] and X € Q15 With 1 € (tr; s Lmy)

X 2 x9 v xi® i+ A)>0and

5.96
Jim vOX® 15 A) = 0for o =1,2; (5.96)

te —tm
(iii) for XECO‘) € Q. f attime t € [ty—g,tm) and X € 9Q1, with 1, & [tmy s tm, |

X 2 x© v (x{® 1~ A) <0and

5.97
lim VIO(X® 12, A) = 0for o = 1,2; (5:97)

te —tm

(iv) for cha) € QLE at time 1 € [ty_g,tm) OF £ € (tn,tmre] and X,(,?) € 0Qy
with 1, = t,,, and 1,

X £ X, tim vO(XE, 68 X) =0,

te —tmt
& i 5.98
lim VXY 1+ X) <0fora=1,,. 698

te —tm+

Proof: Once Definitions 5.15, 5.16, 5.19 and 5.20 are used, the proof of this
theorem is similar to the proof of Theorem 5.1. ]

Theorem 5.6. For two dynamical systems in Egs.(5.1) and (5.2) with constraint in
Eq.(5.3), there is a metric functional of V(X,z,A) = f(@(X,#,)) in Eq.(5.29). For
X,(na) €Qqy (acq{l,2})and X,(1?> € dQ, at time 1, X,(na) = X,g?). For any small € >
0, there is a time interval [t,,—¢,tp) OF (ty,tm+e]. For X(@) ¢ Ql€att € [ty e tm) or
(tm,tmye], the functional V(X(® 1, ) is C"-continuous and |V "e+2) (X(@) 1 X)| <
oo(rg > kg +1). For X(@ € Oy and X € 9Q,5, suppose DG F(@) (X(O‘),t, 7r<°‘)) =
DUAIFO) (XO) 1 X) (54 =0,1,...) for X(® =X (¢ € {1,2}). The two dynamical
systems in Egs.(5.1) and (5.2) to constraint in Eq.(5.3) are desynchronized for time
t € [tm, ,tm,| in the sense of the metric fucntional if and only if

(i) for X\ € Qg and XY € 9Q5 With tyy € (fy s my)

W =X, v (X, 1,2) =0,
foro=1,2and ro, =0,1,2,...

(5.99)

(ii) for XECO‘) € Qlf attime 1, € (tm,tmye] and X € 9Q, with 1, € (tmy > tm,)



254 Albert C.J. Luo

XP X0 tim vea (X 1k ) = 0forsq = 1,2, ..., 2ke;

" 5ty @ (5.100)
Vet ) (X b X) > 0and lim Vet (XF 1 X)=0for a=1,2;

tie —im

(iii) for X\&) € Q¢ at time 15 € [tm_e,tm) and XY € 9Q12 With tyy & [t sty ]

X 2 X9 lim V(XY 12 ) = 0forsq = 1,2, ..., 2ke;

te —tm—

Vet (X @ 1 A) < 0and lim VDX = A)=0fora=1,2;

tie —lm
(5.101)
(iv) for XS(“) cQleattimers € [ty e tm ) Or tE € (tmy tmre] and X,(q?) € dQ
with 1, = t,,, and 1,

X@ £ x© Jlim V) (X 1 X) =0 for s = 1,2,..., 2kg + 1;
fe et (@ (5.102)
lim V@2 (X 1E X)) < 0fora=1,2.

I % —Imt

Proof: Once Definitions 5.23, 5.24, 5.27 and 5.28 are used, the proof of this
theorem is similar to the proof of Theorem 5.2. ]

From the two foregoing theorems, the conditions for the desynchronization are
similar to the conditions for the synchronization. If ¢,,, — —o and ¢,,, — oo, such
a desynchronization of two dynamical systems to constraint in Eq.(5.3) is absolute.
Once the resultant flows on the constraint boundary are repelled, such a desynchro-
nization can keep forever. To explain the two foregoing theorems, the desynchro-
nization of two dynamical systems to a specific constraint are sketched in Fig. 5.9
through the resultant flows in the vicinity of the constraint boundary dQ1;. Any

point for desynchronization on the constraint boundary is expressed by (X,(,?) oIm)-
In the two domains, the resultant flows in the vicinity of the boundary are ex-

pressed by (X,Sﬁ)g,tmﬂ) (o =1,2). The onset point for the desynchronization is

denoted by (Xﬁﬁ’]),rm, ). For ty, > t,,, and t,, — oo, all the resultant flows leave from
the constraint boundary, which means the desynchronization exists forever. How-
ever, if #,, > t,, is finite, such desynchronization to the constraint will disap-
pear at a point (X,(,?z),tmz). The desynchronization of two dynamical systems with
F(X(@) ¢ (@) = FO(XO) ¢, \) to a specific constraint are different from those
with F(®)(X(®) ¢ w(@) £ FO)(XO) ¢, X). Therefore, the conditions for the desyn-
chronization of two dynamical systems with discontinuous vector fields are dis-
cussed in the following two theorems.

Theorem 5.7. For two dynamical systems in Eqs.(5.1) and (5.2) with constraint
in Eq.(5.3), there is a metric functional of V(X,z,A) = f(@(X,t,A)) in Eq.(5.29).
()

For X,(na) € Qy (a € {1,2}) and X,(1?> € dQqy at time &y, Xy = X,(1?> For any
small € > 0, there is a time interval [fy_g,t) OF (tm,tmye]. For X(@ ¢ QL€ at
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1’% (XEn_)Fg ) tm+8 ) %

9912
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(X0 tm)  (Xpplertmee) |

(@

m) (XPptme)

()
Fig. 5.9 (a) Cross section view and (b) 3-D view for the desynchronization of slave and master
flows in vicinity of the boundary dQ; in (n + fi)-dimensional state space. On the boundary, any
point for desynchronization is expressed by (XE,? ) ,tm ). In the two domains, the flows in the vicinity
of the boundary are expressed by (XEna_Qs,zmH) (a0 =1,2). The onset point is (XS,?I) ,tm, ), depicted
by a red circular symbol.

1 € [tmestm) OF (tm,tmre], suppose V(X 7, ) is C"*-continuous (rq > 3) and
[Vt D(X(@) ¢ N)| < oo, For X(®) € Q4 and X0 € 9Q,, F@)(X(® ¢ 7(@)) £
FO(XO 7, A) at X(®) =X (¢ € {1,2}). The two dynamical systems in Egs.(5.1)
and (5.2) to constraint in Eq.(5.3) is desynchronized for time ¢ € [t,y, ,tu,] in the
sense of the metric fucntional if and only if

(i) for X\ = X and X (1) € Q¢ (a0 € {1,2}) at time 1 = s € [ty ,my]
VXY s A) = VX 1, A) = 0. (5.103)
(ii) for time t,y € [tm, ,tm, )s
X =X and VO (XY 1,0 A) > 0 for a = 1,2, (5.104)
(iil) with a penetration for time t = ,,,, X,(no:) = Xﬁ,?i) (i=1,2),

V(XD 5, A) = 0and VO (X 1,2, 2) > 0 for & € {1,2},
' ' (5.105)
VIO(XP) 4, A) > 0for B € {1,2} and B # a,

or with a synchronization for time ¢ = #,,, X,(no:) = Xﬁ,?,. ,
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VXLt A) = 0 and VO (XL 1,5, A) > 0 for & € {1,2},

v xPL tmsA) > 0 for B € {1,2} and B # a.
(5.106)
Proof: By using Definitions 5.15, 5.19-5.21, the proof of this theorem is similar
to the proof of Theorem 5.3. |

fmies A) = 0 and VO (XL

From the foregoing theorem, the desynchronization of two dynamical systems to
a specific constraint requires that the first-order derivative of the metric functional
be greater than zero. In addition, the onset and vanishing conditions of desynchro-
nization in Egs.(5.105) and (5.106) are the vanishing and onset conditions for onset
of the penetration and synchronization with the desynchronization, respectively. The
following theorem will give the corresponding conditions for the desynchronization
of two dynamical systems to a specific constraint with the higher-order singularity.

Theorem 5.8. For two dynamical systems in Eqs.(5.1) and (5.2) with constraint
in Eq.(5.3), there is a metric functional of V(X,z,A) = f(@(X,z,A)) in Eq.(5.29).
For X,(na) € Qy (a € {1,2}) and X,(1?> € 9dQy at time 4, X,(na) = X,(1?> For any
small € > 0, there is a time interval [ty,_g,tm) OF (fy,tmte]. For X(@ ¢ QL€ at
1 € [tmgstm) OF (tmstmie], suppose V(X(@) 7, X) is C"e-continuous (rg > 2ke + 1)
and [V e+) (X(®) 1 A)| < oo F(@)(X(@) ¢ (@) £ FO)(XO) 1 X) at X(@) =XO) for
X(@ e Q4 and X© € 9Q), (a € {1,2}). The two dynamical systems in Eqs.(5.1)
and (5.2) to constraint in Eq.(5.3) is desynchronized of the (2k; : 2k;)-type for time
t € [tm, stm,] in the sense of the metric fucntional if and only if

(i) for X\ = XV and X (1) € Q¢ (¢ = 1,2) at time ¢ = ty € [t L, ],
VXY 1 A) = VXY 1, A) =0, (5.107)
(i) for time t,y € (tm, tm, )s

X9 = X and V0 (XIY 1, X) = 0(rg = 1,2,...,2kq),

va+)(X@ 10 \) < 0for a € {1,2}; < 10s

XP) = X9 and v (XP) 10 N) =0(rg = 1,2,...,2kg) 109
m+ — xm m+stm+ts = B =14y 2kp),s

vt (xB) L X) <0forBe{1,2}and B #a.
(iii) with a (2kg : 2kg)-penetration flow for time t = 1, X,(,g ) = XS,?,.),

VO (XL 1, A) =0 (50 = 1,2,...,2kg + 1)
and V (%ka+2) (anﬁﬁmiia A)>0forae{1,2}; (5.109)
VO (XP) 1 A) = 0 (s5 = 1,2,...,2Kkp),

vt (x®B) 4 A) > 0for B {1,2} and B # .
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or with a (2k; : 2k;)-synchronization for time 1 = #,,,, X,(,,Of) = Xﬁ,?/.),

V6D (XS s, A) = 0 (50 = 1,2,..., 2kg + 1)

and Ve t2(X\) 1, N) > 0 for o € {1,2}; 5110
VO (XEL . ) =0 (55 = 1,2, 2kg + 1), |

v+ (x4 LX) > 0for B e {1,2} and § # a.

Proof: Using Definitions 5.25, 5.27-5.29, the proof of this theorem is similar to
Theorem 5.4. |

In the foregoing theorem, the onset and vanishing conditions of the (2k; : 2k;)-
desynchronization in Eqs.(5.109) and (5.110) are also the vanishing and onsets of
the (2kq : 2kg)-penetration and the (2k; : 2k;)-synchronization, respectively. The
(2ky : 2ky)-desynchronization requires that the (2k; + 1 : 2k, + 1)-order derivatives
of the metric function should be greater than zero. The desynchronization of two dy-
namical systems to a specific constraint is presented in the previous two theorems,
as sketched in Fig.5.10 through the resultant flows in the vicinity of the constraint
boundary. On the constraint boundary, any point relative to desynchronization is

expressed by (X,g? ),tm). In the two domains, the flows in the vicinity of the con-
straint boundary are expressed by (X,(nale,tmﬂ) (a=1,2). The onset and vanishing

points are (X,(,?I),tm1 ) and (X,(,?Z),tmz) with red and green circular symbols, which are

generated by the two penetration. Both of them belong to a sub-manifold on the con-
straint boundary in the (n 4+ 7)-dimensional state space. The points (X,(,?]),tml) and

(Xf,i)z),tmz) are starting and vanishing points of the resultant flow relative to desyn-
chronization. If #,,, — oo, once the desynchronization exists, no any synchronization
for such two systems to a specific constraint can be achieved. The desynchroniza-
tion for F(%) (X(®) ¢ 7(@)) £ FB)(X(B) ¢ 7(B)) can be investigated through the two
foregoing theorems. From the previous discussion, the penetration of two dynamical
systems to a specific constraint is also very important for the onset and vanishing of
synchronization and desynchronization.

5.3.7 Penetration to constraint

The synchronization and desynchronization of two dynamical systems to a specific
constraint have been discussed. Another important phenomenon is the penetration
of two dynamical systems to a specific constraint. The penetration of two dynamical
systems with F(®)(X(®) ¢ 7(@)) = F©O)(X©) ¢ X)(a = 1,2) to a specific constraint
cannot exist. However, if two dynamical systems to a specific constraint possess
discontinuous vector fields, the penetration can occur at the constraint boundary.
The corresponding theorems are presented as follows.
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Fig. 5.10 (a) A cross-section view and (b) a 3-D view of the desynchronization of resultant flows

in vicinity of the constraint boundary dQi, in (n + 7i)-dimensional state space. On the constant

boundary, any point for desynchronization is expressed by (XS,? ) ,m)- In two domains, the resultant

flows in the vicinity of the constant boundary are expressed by (X E,, ) estm—e) (@ =1,2). The onset
(0)

and vanishing points are (XE,,] Jtm, ) and (X, ,tm,) With red and green circular symbols.

Theorem 5.9. For two dynamical systems in Eqs.(5.1) and (5.2) with constraint
in Eq.(5.3), there is a metric functional of V(X,t,A) = f(o(X,z,X)) in Eq.(5.29).
For X\ € Qg (ae{1,2})and X € 90y, at time £, X0 = X\, For any small
£ > 0, there is a time interval [f,_¢, ) OF (fy, tmye]. For X(®) € QE€ atr € [t,_¢,1m)
or (tm, tm+e)s V(X( )1, A) s C’O‘-continuous (re >2) and [Vt (X(®) 1 N)| < oo,
F()(X(@) 1 (@) £ FO(XO) 1, A) at X(®) =XO) for X(%) € Q and X € 9Q,
(el ,2}). The two dynamlcal systems in Egs.(5.1) and (5.2) to the constraint in
Eq.(5.3) is penetrated at time ¢ € [t , 1, ] in the sense of the metric fucntional if and
only if
(i) at time 1 = t,y € (tm; s tmy ) X,(,fi) :X(O) X(B) for @, = 1,2 and @ # 3,

v - A) <0and VO (XP) 1,0 0) >0, (5.111)

(ii) with a synchronization at time ¢ = I, X( ) XE,? —xB l (i=1,2),

i m;

V(XY 4, A) < 0fora e {1,2},
VX)L 4, 2) =0and VO(XP) 1,0, 0) >0 (5.112)
for B € {1,2} and B # @,
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or with a desynchronization at time ¢ = t,,,,, anof); = XS,(,),) = an’l (i=1,2),
VX, b, A) = 0and VO (X 05, A) > 0 foree € {1,2}, i
V(X 4, A) > 0for B € {1,2} and B # a, e

=Xi =X (i=1,2),

or with a switching penetration at time 1 = f,,, , Xﬁ:lcz_r

V(l)(X(a)

) b, A) = 0 and VO (XL 1,2, A) > 0 for & € {1,2},

V(X)L 1, 0) =0and VO (XL 1,4,0) >0 (5.114)
forfe{l,2}and B #

Proof: By using Definitions 5.17, 5.19, 5.20 and 5.22, the proof of this theorem
is similar to the proof of Theorem 5.3. |

Theorem 5.10. For two dynamical systems in Eqs.(5.1) and (5.2) with constraint
in Eq.(5.3), there is a metric functional of V(X,z,A) = f(@(X,z,A)) in Eq.(5.29).
For X,(na) € Qy (a € {1,2}) and X,(1?> € 9dQy at time 4, X,(na) = X,(1?> For any
small € > 0, there is a time interval [fy_g,t) OF (tm,tmye]. For X(@ ¢ QL€ at
t € [tm—gytm) OF (tm,tmte], SUPPOSE V(X(O‘),t,)\) is C"*-continuous (r¢ > 2k + 1)
and |V Ue+1) (X(@) 1 )| < 0. For X(@ € Q4 and X € 9Q,, F@(X(@) 1 (@) £
FO(XO) 7, X) for X(® =X ( € {1,2}). The two dynamical systems in Egs.(5.1)
and (5.2) to the constraint in Eq.(5.3) is penetrated of the (2k; : 2k, )-type for time
t € [tm, ,tm,] in the sense of the metric fucntional if and only if
(i) for time = tyy € (tmy s tmy ) X\&) = X3 =XP)|

vk (X% 1 A)=0and V2Rt (X¥ 1 ) <0

v (XP) 1 Ay =0and VETI(XP) 1 A) > 0; (5.115)

o,f€{1,2} and ox # 3.

()ii) with a (2k; : 2k, )-synchronization at time ¢ = t,,,;, X,(,,Of)_ = X,(,(,),) = X,(,E)i (i=
1,2),

vk (X 1, A) = 0 and VDX 1, ) <0;
V<2kB+l)(X££i’tmiiv )\) =0 and V(2ka+2) (X}('rgthmii? )\) >0 (51 16)

fora,p € {1,2} and B # «,

or with a (2k; : 2k, )-desynchronization at t = t,,,, X = x0 = xP) (i=1,2),

miF T i mj+
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v@kat (X! 1 o X) = 0and Vet (XL 1,0 A) >0
v (XB) 1, A) = 0and VS IIXE) 1 x) >0 (>.117)
fora,B € {1,2} and § # «,

or with a (2kg : 2kq) penetration at time = t,,, anof); = X,(,(,),) = X,(,EZr (i=1,2),

V@t (X 1 X) = 0and Vet (X 1, A) > 0;
V<2kB+1 ( ertvtm,:b)‘) =0 and V(Zkﬁ+2)(xr(nﬁizt7tmiﬂ:7A) >0 (5.118)
fora,B € {1,2} and B # «.

Proof: Using Definitions 5.25, 5.27, 5.28 and 5.30, the proof of this theorem is
similar to the proof of Theorem 5.4. |

In the foregoing theorem, the onset and vanishing conditions of the (2kq : 2kg)-
penetration of the ¢ € [t,,4n,] to a specific constraint in Eqs.(5.116)—(5.118) are
also the vanishing and onset conditions of the (2k; : 2k,)-synchronization, the
(2k; : 2ka)-desynchronization and the (2kg : 2kq)-penetration, respectively. The
penetration of the two dynamical systems to a specific constraint is sketched in
Fig.5.11. On the constraint boundary, any point for penetration is expressed by

2
X9 1) (anJ)revtm+€)
m tm

(a) % X(l) te s)

m—g?

X tmy)

2Q
(o) =

Fig. 5.11 (a) A cross-section view and (b) a 3-D view of the penetration of resultant flows in
vicinity of the constraint boundary dQi, in (n + 7i)-dimensional state space. On the constraint

boundary, any point for penetration is expressed by (XE,? ) ,tn). In two domains, the resultant flows

in the vicinity of the constraint boundary are expressed by (ana,)g,tm,g) (a = 1,2). The onset and

vanishing points are (XE,?]),tm,) and (XE,?; ,tm,) With red and blue circular symbols.
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(X,g? ),tm). In two domains, the incoming and outgoing resultant flows in the vicin-

ity of the constraint boundary are expressed by (X,(,,Oi)e,tm,g) and (X,(,f3 lg,tmﬂ)

(a,B € {1,2} and a # B). The onset and vanishing points are (X,S?l),tml) and

(X,(,?z) ,tm, ) with red and blue circular symbols.

5.4 Multiple-constraint synchronization

In this section, the synchronization of two dynamical systems to multiple constraints
will be discussed. Following the discussion of the synchronicity of two dynamical
systems to a single constraint, the synchronicity of two dynamical systems with
multiple constraints can be investigated. Based on the metric functions of multiple
constraints, the definitions relative to the synchronicity of two dynamical systems to
multiple constraints will be defined. From the corresponding definitions, the corre-
sponding theorems for the synchronicity of two dynamical systems to the constraints
are presented.

5.4.1 Synchronicity to multiple-constraints

The e-domain in the vicinity of the intersected, constraint boundary will be defined
through the e-domain of the j™-constraint boundary. Based on such e-domain and
the intersected constraint boundary, the synchronicity of two dynamical systems to
multiple constraints will be discussed in this section.

Definition 5.31. For X'/ ¢ Q4 ;) (¢ € I and j € L with I = {1,2} and

L =1{1,2,...,1}) and X,(,?’j) € dQyy(;) at time tm,X,(naj’j) = XE,(,)’j). For any small
£ > 0, there is a time interval [f,,_¢,%m) OF (fm,Zm+e]. The neighborhood of the jt"-
constraint boundary is defined as

)

_ i - 0,/
Q= {x%z) ] X7 (1) = X071 < 81y 810ty > 0ot € [tm—estm)

L i 0,j
erofj,j) = {XWN) ’ (X (@) () — X J>|| <8(4;.j): O(a;.j) > 0,1 € (tm,tm+g]} .

(5.119)

The sub-domains and the intersected boundary are defined as
I I
Qo =Quay.0p = [ | Qay.j) and 0Q15(5) = IQu(12.0y = [ 0,y (5.120)
J=1 j=1

For Xy € Qa(a=04an--- 0,0 €Tand j € L) and Xy, € Q55 (i = (12 ---1))

at time tm,ana) = X,g? ). For any small € > 0, there is a time interval [f,_g,ty,) Or
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(tmytm+e]. The neighborhood of the intersected constraint boundary 8912(j) is de-
fined as

Q;f:{ ‘||x X0 <6,8> 0,1 € [tm g,t,,,)}
(5.121)
Qe = {x<a ‘||x H-XV)<8,8>01re (tm,tm_,_g]}.
where 6 = min_(§(q;, ;) with L ={1,2,...,1} and I = {1,2}.
jeL,ajel” 0
Definition 5.32. Three index sets are defined as
L=JLiand (L =2, (5.122)
L; = oK) k7, Y CLand  + b+ =1, (5.123)

Definition 5.33. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints
in Eq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For X( 7)) € Qg j)

(ajeland jeL withl={1,2} and L. ={1,2,...,/ ande”)E8Qu- at
J ()

time f,,, (a”]) = Xg,?’j). For any small € > 0, there is a time interval [ty,_¢,tn)

or (lm,lm+g]. The systems in Egs.(5.1) and (5.2) with constraints in Eq.(5.4) are

called an [/;-dimensional synchronization, /;-dimensional desynchronization and I3-

dimensional penetration for time ty, € [fm, ,tm,] in the sense of metric fucntionals
(@) if foraj =1,2and j € Ly,

(n:ﬁ)Vj(X(a/v/) tor ’)\1) _ (nﬁ)Vj(Xgr(z)J)a[m,Aj) =0;

m

’ (5.124)
(r:f (Xl(na];‘])vtmfsv Aj)— (":F’)Vj(X,(nai’J) stm—s Aj) > 0;
(i) if for ¢j = 1,2 and j € L,
VXt Aj) = VX 1, A ) = 0; (5.125)
Ry (XG0 g e A) — VXD A > 0;
(iii) if for a;, B; € {1,2},; # B; and j € L,
(n:ﬁ)V, X(‘Xl’vj) P 7’)\' _ (n:ﬁ)V, X(O,‘j) ‘ ,)\' =0;
i( m—Aj) i mAj) (5.126)
AV (X e Aj) = VX 1y Af) > 05
(n: n) (B17 /) N’ )\ — (m)y. X(Oy.f) o) =0:
ViRt s A)) it A7) (5.127)

(n:ﬁ)Vi(X:(ffré)ylerea Aj)— (n:ﬁ)Vi(XffiJ)a’er’ Aj) > 0.
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From the previous definition, among the /-constraints in Eq.(5.4), (i) there are
l1-constraints to make the two dynamical systems be synchronized in the normal
directions of the corresponding constraints; (ii) there are l,-constraints to make the
two dynamical systems be desynchronized in the normal directions of the corre-
sponding constraints; and (iii) there are /3-constraints to make the two dynamical
systems be penetrated in the normal directions of the corresponding constraints. If
I =13 =0 and [} = [, the two dynamical systems to all the [-constraints are syn-
chronized. If I3 = 0 and [; + I, =, the two dynamical systems to all the /-constraints
are to be synchronized with /;-constraints and desynchronized with l;-constraints.
If [; =0 and I, + I3 = [, the two dynamical systems to all the /-constraints are to
be desynchronized with l,-constraints and to be penetrated with /3-constraints. For
this case, the two dynamical systems cannot be synchronized any more for all the
I[-constraints. If one of three types of synchronicity has changed the current state,
the synchronicity of the two dynamical systems will be changed. The three special
cases are useful. Therefore, three definitions for the three special cases will be given
as follows:

Definition 5.34. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints
in Bq.(5.4), there are (1 + 1)-metric functionals in Eq.(5.37). For X\ € Q4 5
(€T and j €L with I = {1,2} and L = {1,2,...,1}) and X\\"/) € 9Q;) at

time tm,X,(na'i - X,g? ) For any small € > 0, there is a time interval [fy_g,ln)-

The two dynamical systems in Eqs.(5.1) and (5.2) with constraints in Eq.(5.4) are
called an /-dimensional synchronization for time #,, € [t , %, ] in the sense of metric
functionals if for a; = 1,2 and j € L,

("Zﬁ)‘/' anoihl) ) tm~ ) A i) — (n:ﬁ)v' Xl(’lft)d> ) tm? A i) — O’
i : /) i( - J) (5.128)
VXL e Ap) = EIVH X 1 ) > 0.

m—E& m—

Definition 5.35. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints
in Eq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For X,(ﬂa""']) € Qq;j)

(0j €L and j € L with I = {1,2} and L = {1,2,...,1}) and X\\"/) € 9Q,;, at
time tm,X,(naj ) X,(,? ) For any small € > 0, there is a time interval (¢, fy1¢]. The
two dynamical systems in Eqs.(5.1) and (5.2) with constraints in Eq.(5.4) are called
an [-dimensional desynchronization for time , € [tm,,tm,] in the sense of metric

functionals if for o; € Tand j € L,

DYt Ag) = VXG0, 0)) = 0 (5129)
WYXt e Aj) = VXL 1, Ag) > 0.

Definition 5.36. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints

in Eq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For X,(na'i ) € Q

aj,j)
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(0 €Tand j €L with I = {1,2} and L = {1,2,...,1}) and Xy € 9Q,; at
time tm,X,(naj 9 X,g? ) For any small € > 0, there is a time interval [t,,_¢,y) OF
(tm,tmre]. The two dynamical systems in Eqs.(5.1) and (5.2) with constraints in
Eq.(5.4) are called an [-dimensional penetration for time #,, € [ty ,t,] in the sense

of metric functionals if for &, 3; € I and j € L with o; # B;,

DYt Ag) = VXD 10, 0) =0,

: B (5.130)
(n:ﬁ)V/(Xl(nafjg)atmffa AI) - (n:ﬁ)V/(XI(’I’lafjhl) ’tm7 ? A,) > 0,
(”:ﬁ)V' X(ﬁﬁj),[m ’)\' _ (n:ﬁ)v, Xf'r(z)’j)atrm ) = 0,

1Kot s tms A ) i( J) (5.131)

(":F’)Vj(Xr(fig),tm+ev>\j) - (n:ﬁ)Vi(XfiJ)a[me)‘j) >0.

5.4.2 Singularity to constraints

As discussed in the synchronization of two dynamical systems to the single con-
straint, the singularity for a flow of the two dynamical systems in Eqgs.(5.1) and
(5.2) to one of the constraints in Eq.(5.4) can be described. The tangency of a resul-
tant flow to one of /-constraint boundaries is presented first, and then the vanishing
and onset of the synchronization of two dynamical systems to the j-constraint
boundary of the [-constraint boundaries will be presented.

Definition 5.37. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints
in Eq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For X,(na""") € Q)

(0 €Tand j €L with I = {1,2} and L = {1,2,...,1}) and Xy € 9Q,; at

time tm,X,(f"’j) = x,ﬁ?*-”. For any small € > 0, there is a time interval [t,,_¢,1,) or

(tmytmre]. At X(®od) € Q(iofj ) for time ¢ € [t—e,tm) OF (tm,tm¢], the functional
_ . . . o (res+1 .

Ay (X(@5) 1, X}) is C™® -continuous and |(”'”)V/-(r ! )(X(O‘!’/),t,)\j)| < oo (rg; >

2). A flow of the resultant system for two dynamical systems in Eqgs.(5.1) and (5.2)

with [-constraints in Eq.(5.4) is called to be tangential to the j® -constraint boundary

for time t,, € [tm, ,tm,] in the sense of metric functionals if all j € L and aj € I,

(n:ﬁ)Vj(XEnO‘IjJ),tmI’)\j) — (n:ﬁ)vj(XE;)’j)atmaAj) =0:;

VL b Ag) = 0 G.132)

DV XD e, A) — VXS 1, Af) > 0.

Definition 5.38. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints
in Eq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For X,(na""") € Q

aj,j)
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(¢j € Land j € L with T = {1,2} and L = {1,2,...,1}) and X" € 9Q,(; at

time tm,X,(na'f - X,(,? ) For any small € > 0, there is a time interval [t,_¢,tp)

t (tmstmre]. At X(@0J) g Qfﬁj jy for z € [tm—g,tm) OF (tm;tmye], the functional
5

i . g (e 1
Ry, (X(@7) tX}) is C" -continuous and |7 /(r )( X(4550) 1 A )| < oo (ro; >

2). (1) The synchronization of the two dynamical systems in Egs.(5.1) and (5.2) with

the j™-constraint in Eq.(5.4) is called to be vanished to form a penetration on the

j™ -constraint boundary at time ¢, in the sense of metric functionals if for o;, 8, € T

and a # 3 with j € L,

(n:ﬁ)Vj(X(a/v i) tm¢7)‘/) = (n:ﬁ)vj(X(Bi’j)Jm,,)\j)

mF m
_ (n:ﬁ)Vj(Xn?’]),[m,Aj) —0:

) 8 1 ) =0 513

(niﬁ)vj(xl(’ﬂaqé%)v[m$£v>\1) - (":mVj(X:(na? / s Aj) > 05

(i V(X n?/s,),[m e Aj) — " )VJ( x P/ stm—s Aj) > 0.

m—

(ii) The synchronization of the two dynamical systems in Egs.(5.1) and (5.2) with
the j™-constraint in Eq.(5.4) is called to be onset from the penetration on the ;-
constraint boundary at time #,, in the sense of metric functionals if for o;, B; € I and
o # B with j €L,

RV X e A) = DV XP) f, )
= (n:ﬁ)vj(xl(??>7[n1,>‘) =0

Ay (X P) 10, 0) =0, (5.134)

(” n)VI(X’<ﬂ )£’tm 57)‘) - (n:ﬁ)Vi(ngaf)atmfy)‘) > 0;

(o n)V (Xl(fi)saIMiSaA> (n: n)V (Xr(fi)atmi,A> > 0.

Definition 5.39. For two dynamical systems in Eqs.(5.1) and (5.2) with con-
straints in Eq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For X(a”’)
Q) (@ €T and j €L with T={1,2} and L = {1,2,...,1}) and X’ €

aglzm at time tm,X,(,,aj’j) = X;,?’j). For any small € > 0, there is a time interval
[tm—gytm) OF (L, tmye]. At X (@) ¢ Q(i;_ 7 for ¢ € [tm—g,tm) OF (tm,tmtel, the func-
vl

. o Yo . o (rm‘\‘])

tional "V, (X(@-) 1, A;) is C"* -continuous and |(”'”)V,. X @) NG| < oo
(raj >2). (i) The synchronization of the two dynamical systems in Eqgs.(5.1) and
(5.2) with the jth-constraint in Eq.(5.4) are called to be onset from the desynchro-

nization on the j"- constraint boundary at time £, in the sense of metric functionals
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if for oj, B € T and & # B with j € L,

(n:ﬁ)vj(X’(nai/’ ) tmiaA]) — (m )V](X<Bl7 i) [mi;)‘ )
= Ry (X 4 N) = 0;

VO s Aj) =0 (-135)
(n: n)V/(X,(nai/%)afmist ) — (n:ﬁ)V/.(Xlglai/v j) lmi)\j) > 0

(i )V (Xf(fig)atmisa)‘ ) (n:ﬁ)V( (ﬁ,,j) tmia)‘ ) > 0.

(i1) The synchronization of the two dynamical systems in Eqs.(5.1) and (5.2) with
the j"-constraint in Eq.(5.4) is called to be vanished to form the desynchronization
on the jM-constraint boundary at time ¢, in the sense of metric functionals if for
o;,B; €land a # B with j €L,

(n:ﬁ)Vi(Xz(na{ 7 sty Aj) = () V(X (B“j) st s Aj)

_ (n:ﬁ)Vj(Xn?’J),[m,Aj) —0:

) 8 1 ) =0 5130

DXL tge, Ap) — VXS 1, Xj) > 0;

(n:it )V/(X (Bj»J) tm$8,>\/) _ (n:ﬁ)Vj(X(ﬁjL/),lm;,)\j) > 0.

mF¥e mF

Definition 5.40. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints
in Eq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For X,gf‘j’j) € Q. j)
(¢j € Land j € L with T = {1,2} and L = {1,2,...,1}) and X" € 9Q,; at
time tm,X,g?j - X,g?’ ). For any small € > 0, there is a time interval [t,_¢,t)

t (s tmye]. At X0 ¢ Qf[of, ) for 1 € [tm_g,tm) OF (tm,tme], the functional

" , e
)y, (X(@7) 1 X}) is C" -continuous and |7 /(r it )(X(“‘N),t,)\ )| < oo (ro; >

2). (i) The desynchronization of the two dynamical systems in Eqgs.(5.1) and (5.2)
with the jM-constraint in Eq.(5.4) is called to be vanished to form a penetration on
the j-constraint boundary at time t,, if for o, 8; € T and & # B with j € L,

(n:ﬁ)vj(X(O‘J7 ) [miaA ) — (A V/( (B/J) tm+,>\/)
= (n:ﬁ)Vi(XE" J)’tm’A.i> =0;
)y DX 1, 27) = 0; (5.137)

(ﬂiﬁ)V (ngzaj]:g)atmisa )\ ) (m: H)V (ngzaj]:J) Im+, )\/) > 0’

(n: H)V( r(fi,&{)’tm+8’)‘ ) (nn)V( (ﬁ/,j) tm+a)‘ ) > 0.
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(i1) The desynchronization of the two dynamical systems in Eqgs.(5.1) and (5.2)
with the j-constraint in Eq.(5.4) is called to be onset from the j"-penetration flow
on the jM-constraint boundary at time #,, in the sense of metric functionals if for
o;,B; €land a # B with j €L,

IV (X{EL e X) = DV 1, )
— DY (XD 1, A) = 0;
(n:ﬁ>y](l>(x’(f+>7,m+7 A)=0; (5.138)
(n: n)VI(Xr(11¢)£’tm¥£7 A) — () Vi(X:Sgatm%)\) >0;
(":ﬁ)Vj(XfﬁsﬁmH’)\) () (X;(fla’mh)\) > 0.
Definition 5.41. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints
in Eq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For X( i) ¢ Q(

(aj €Tand j €L with [={1,2} and L = {1,2,...,}) and X\\" € 9Q,,
(@),) _ 5(0.))
Xy = X

05/7])

time f,,, . For any small &€ > 0, there is a time interval [tm,g,tm)
or (tmytmre]. At X)) € Q?fj_ jy for 1 € [tme,tm) OF (tmylmie], the functional
I
+1)
J

(ra
/

)y (X( @) 1, X}) is C"® -continuous and |V (X(@I) 1, Xj)| < eo(ra, >
2). The penetration of the two dynamical systems in Eqs.(5.1) and (5.2) with the

j™-constraint in Eq.(5.4) is called to be switched to form a new penetration on the

j"-constraint boundary at time #,, in the sense of metric functionals if for o i, B el

and a # 3 with j € L,

("iﬁ)Vj(X:(:f /) st s Aj) = (mA) Vi(Xon (ﬁ, ) sl Aj)

= V(X 1, Aj) = 0;

YO K 1, Aj) = OOV 1, Aj) = 0; (5.139)

(w ”)VI(X:;azé:s),fmxs)‘ i) — (n:ﬁ)vj(xl(ﬂo;h ) st Aj) > 0;

(i )V (Xffig)’tmisaA ) (nis )V (X(BJJ) tmi,A ) > 0.

5.4.3 Synchronicity with singularity to multiple constraints

As discussed in a single constraint, the synchronicity of two dynamical systems
to multiple constraints with higher-order singularity can be described through the
following definitions.

Definition 5.42. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints

in Bq.(5.4), there are (1 + 1)-metric functionals in Eq.(5.37). For X\ € Q4 5
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(a¢jeland jeL with I ={1,2} and L = {1,2,...,I},L =L; UL, UL3) and
XS,? ) €dQ 12(j) at time #,,,, X,(naj . XS,? ) . For any small € > 0, there is a time inter-
val [t—etm) OF (ty v ¢]. AtX (%)) € Qf;j ) fort € [tm-e,tm) OF(t, tm €], the func-
. L i . To. . oy (Forn) , 7
tional "MV, (X(®:/) 1, X;) is C"® -continuous and |(”'”)V/ XD 1 N )| < oo
(raj > Zka_,. +1). The two dynamical systems in Egs.(5.1) and (5.2) with constraints
in Eq.(5.4) is called an /;-dimensional synchronization with the (2kq; : 2k, )-order
singularity for all j € Ly, l>-dimensional desynchronization with the (2kq; : 2kg, )-
order singularity for all j € L, and /3-dimensional penetration with the (Zkaj :
2kg,)-order singularity for all j € L3 for time t € [tm,,tm,| in the sense of met-
ric functionals

(i)ifforo; =1,2and j € Ly,
DYt A) = VX 10, 0) = 0

(nii)y )

X 1 Aj) = 0, for sa; = 0,1,2,..., 2ke; (5.140)

(n:ﬁ)Vj(X,(nai:éj)afnz—£7>\j) - (n:ﬁ)Vj(X(aﬁj),tm—v)‘J) > 0;

m
(i) if for ¢j = 1,2 and j € L,
VKL s X)) = VXD 10, 0) = 0

(n:ﬁ)Vi(s‘xj)

(szfj)yfmim)\j) = 0 for Sa; = 0,1,2,... 72k0‘j; G141
(n:ﬁ)Vj(X;(naq{g)alanv )\j) - (n:ﬁ)Vj(Xz(nafj) 7tm+v>‘j) > 0;

(iii) if for aj, B; € 1,2 and j € L3 with aj # B;,
("1'”'>V,~(Xf,,ai’j),fm—a)\.i) — (n:ﬁ)Vj(X’(T?:J')’tm,)\j) =0;

(nii)y )

X e Aj) = 0, for sa; = 0,1,2,...., 2ke; (5.142)

(n:ﬁ)Vj(X,(nai:éj)afnz—£7>\j) - (n:ﬁ)Vj(X(aﬁj),tm—v)‘J) > 0;

(”:ﬁ)Vi(Xz(fij)J’"Jr’A-i) — (":ﬁ)Vj(X,(,?’j),tm,Aj> =0;

(n:ﬁ)v.i(%j)(xfffj)afmw)\j) =0, forsg, =1,2,...,2kp; (5.143)

VXL e Aj) = VX Af) > 0.
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Consider two dynamical systems with /-constraints to be synchronized, or desyn-
chronized or penetrated with higher-order singularity. The corresponding descrip-
tions for such synchronicity will be given as follows.

Definition 5.43. For two dynamical systems in Egs.(5.1) and (5.2) with con-
straints in Eq.(5.4), there are (I 4 1)-metric functionals in Eq.(5.37). For X(a”])
Q4 (@; € Land j € L with I={1,2} and L = {1,2,...,1}) and X;,” €

Q) at time t,,hX(a’ 4) = X%/ For any small € > 0, there is a time interval
[tm—e,tm) OF (tm,tmre]- At X)) ¢ Qfs P for t € [tm—g,tm) Or(tm,lmre], the func-

tional “Mv;(X(%:1) 1. ;) is C"® -continuous and I(”:ﬁ)Vj(rajH)(X(O‘N),t,}\j)| < oo

(ra > Zka +1). The two dynamical systems in Egs.(5.1) and (5.2) with constraints
in Eq.(5. 4) is called an [-dimensional synchronization with the (2kq; : 2kg;)-order

singularity for all j € IL for time #,, € [t, ,tm,] in the sense of metric functionals if
foroj=1,2and j €L,

Cn) Y (XS 0 Aj) = VXS 1, ) = 0;
ey (XD 4 Xy =0, for sg, = 0,1,2,.... ke (5.144)

J m*

(HIﬁ)V} (Xﬁnaﬁsj)atm 87)\f) - (”:E)Vj(X(aj7J> tm 7)‘ ) > O

m

Definition 5.44. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints
in Eq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For X,(ﬂa""j) € Qq;j)
(0 € Tand j € L with T ={1,2} and L = {1,2,...,7}) and X" € 9Qyy ;) at
time tm,X,(naj - X,(,?J ). For any small € > 0, there is a time interval [t,_¢,tp)

r (b, tmye]. At X)) ¢ Q?EOZ-,/') for ¢ € [tm—g,tm) O (tm,tmie], the functional

~ . ~ ro;+1 i
(), (X(@)) 1 X}) is C" -continuous and |<’“”)V/.( it )(X<‘X»i*"),t,>\.,-)| < oo (re; >

2ko; + 1). The two dynamical systems in Egs.(5.1) and (5.2) with constraints in
Eq.(5.4) is called an [-dimensional desynchronization with the (2kq; : 2k, )-order
singularity for all j € IL for time #,, € [t, ,tm,] in the sense of metric functionals if
foroj=1,2and j €L,

(n:ﬁ)v./'(xz(noii7 / [m+v>‘J) = (n:ﬁ)Vi(Xl(v?,j)vtnn)‘./') =0;

Ay (XD 1 A =0 for sg = 0,1,2, ..., 2y (5.145)

(n: n)V/(X’(nO‘#)Jer&)\J) - (ntﬁ>yi(xl(?1“+f’- )7tm+v>‘j) > 0.

Definition 5.45. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints
in Eq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For X(a” e Q

aj,j)
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(¢j € Land j € L with T = {1,2} and L = {1,2,...,1}) and X" € 9Q,(; at

time tm,X,(na'f - X,(,? ) For any small € > 0, there is a time interval [t,_¢,tp)

t (tmstmre]. At X(@0J) g Qfﬁj jy for z € [tm—g,tm) OF (tm;tmye], the functional
5

i . et
Ry, (X(@7) tX}) is C" -continuous and |7 /(r ’ )( X(4550) 1 A )| < oo (ro; >

2kq; + 1). The two dynamical systems in Eqgs.(5.1) and (5.2) with constraints in
Eq.(5.4) is called an /-dimensional penetration with the (Zka Zk[; )-order singu-

larity for all j € L for time ty € [fm,,tm,] in the sense of metric functionals if for
o;,B; € 1,2 and j € L with o # S3;.

DYt A) = VXD 1, 0) = 0

m—

m—

(X 1 A =0, forsg, = 0,1,2,...., 2oy (5.146)

(n: n)VI(X’(nO‘J;?/)’tm S’Ai) _ (”:ﬁ)Vj(X(ajJ),tm,,)\j) >0;

m—

(n:i )V ( (B/v]) tm+’)\ ) — (n:ﬁ)Vj(XSr(z)J),fm,)\j) =0;

oy 0 B 4N =0, forsg =0,1,2,... 2kg (5.147)

J

(n:f )Vj (Xnﬁfs),[meSv )‘j) - (n:ﬁ)vj(xﬁ?ij)vtm+v )‘J) > 0.

5.4.4 Higher-order singularity to constraints

Since a resultant flow of two dynamical systems to one of /-constraints possesses
the higher-order singularity, the synchronicity of the two dynamical systems to the /-
constraints will be changed. In this section, the higher-order singularity of a resultant
flow of two dynamical systems to the jM-constraint boundary from the [-constraints
will be presented herein.

Definition 5.46. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints
in Bq.(5.4), there are (1 + 1)-metric functionals in Eq.(5.37). For X\ € Q4 5
(¢j € Land j € L with T = {1,2} and L = {1,2,---,1}) and X" € 9Q, at
time tm,X,(na'f - X,(,? ) For any small € > 0, there is a time interval [t,_¢,tp)

T (L, bmre|. At X)) ¢ Q?[(ZJ) for t € [ty—g,tm) OF (tm,tmiel, the functional

_ . 3y ot
)y, (X(@7) £, X;) is C"* -continuous and |7 /-(r ! )(X(“N),t,)\ )| < oo (re; >

2kq; ). A flow of the resultant system of two dynamical systems in Eqs (5.1) and
(5.2) with [-constraints in Eq.(5.4) is called to be tangential to the j* b_constraint

boundary with the (2kq; — 1)®-order for time &y, € [tm, ,tm,] in the sense of metric
functionals if for j € I and o; el
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(n:ﬁ)vj(xl(no;l7 7 [ijvAJ) = (n:ﬁ)vj(xl(??h/)vtmaAj) =0;

ey (XD 4 A5 =0 for sg = 1,2,..., 2k, — 1 (5.148)

(n:ﬁ)VI(X,(;;,g))[m¥€7)‘ ) _ (n:ﬁ)vj(x’(no;/v i) [m¥7)‘ ) > 0.

Definition 5.47. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints
in Eq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For X(a” e Qo))
(aj el and j € L with I ={1,2} and L = {1,2,...,/}) and X\ e Q) at
time tm,X,(qf""'i) = X,(qi)"i). For any small € > 0, there is a time interval [ty,_¢,tm)

t (tnytmye]. At X(@01) ¢ Q(iofj ) for 1 € [tm—g,tm) OF (tm,tme], the functional

i . (a1
Ay (X(@59) 1, X}) is C™® -continuous and |(’“”)V/-(r a

2kg; +1).

(i) The synchronization of the (2kq; : 2k, )-order of the two dynamical systems
in Egs.(3.1) and (5.2) with the j™-constraint in Eq.(5.4) is said to be vanished to
form the penetration on the jM-constraint boundary from domain Q(q,j) 10 p, ) at
time 7,, in the sense of metric functionals if for o;, B; € T and & # B with j € LL,

(X4 1, Xj)| < o0 (rg; >

(":ﬁ)Vj(X;(nafj,j)’t’"*’)‘j) - (n:ﬁ)Vi(Xl(?ﬁv.i)7tm¥7Aj)

= (n:mVi(X'(??J)’tm’A.i) =0;

0y (XD 1, Aj) = 0 for sg = 1,2, 2ka;
(5.149)
(n:ﬁ)V( 8 (ﬁ/ fe 1,2,...,2 1:
Xt s tmgs Aj) =0 forsg, =1,2,...,2kg + 15

(n: n)V/(Xmargl)Jm £7>‘j) _ (n:n)Vj(X(Olrv/) f 7)\]) > 0:

( )VJ(XEr?ig)?tmIE,Aj) (n:f )Vj( (B]J) tmq:,)\j) > 0.

(ii) The synchronization of the (2k¢ T ZkB,.)-order of the two dynamical systems

in Eqgs.(5.1) and (5.2) with the jth constraint in Eq.(5.4) is said to be onset from the
penetration on the j constraint boundary from domain Q(q,.j) 10 (p, ) at time 7,
in the sense of metric functionals if for ¢;, f; € I and & # B with j € L,

m)y (XD g A) = ey XP) N

_ (n:ﬁ>Vj(Xr<1?>;[m;)\) =0; (5150&)
Ay (XD NG =0 for sg = 1,2, 2Ky
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(sp;)

i (Bj1J)
2y P (XD, g Aj) =0 for s, = 1,2+, 2kp, + 13

YK e A) VX LAY S 0; (5.150b)
(n: H)V (Xr(fi)gaIMié‘a)\) (m: H)V (ng‘?i)atmi,)\) > 0.

Definition 5.48. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints
in Eq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For X( i) ¢ Q(

(aj €Tand j €L with [={1,2} and L = {1,2,...,}) and X\\" € 9Q,,

05/7])

time f,,, ". For any small & > 0, there is a time interval [tm,g,tm)
t (tnytmye]. At X(@01) ¢ Q(iof j) for t € [tm—e,tm) Of (tm,tme], the functional
J
_ . . ) o (ra 4l -
@)y, (X(@7) 1, X}) is C" -continuous and |(”'”)V/-(r ! )(X(“‘f’/),t,)\j)| < oo (rg; >
2kg; +1).

(i) The (Zka,» : Zkﬁj)-synchronization of the two dynamical systems in Eqs.(5.1)

and (5.2) with the j™-constraint in Eq.(5.4) is called to be onset from the desynchro-
nization on the jM-constraint boundary at time z,, in the sense of metric functionals
if for aj, B; € I and o # B; with j € L,

DV s Aj) = CIVN s, A)

= (n:ﬁ)‘/j(xl(??,j)v[mv AJ) =0

o Sas ;
Ay XD i Af) =0 For sgg = 1,2, gy + 1
- (5.151)
ey O XD N = 0 forsg, — 1,2, 2kg, 1 1:
i Xttt Sg; = RIRE

A (XD e, Aj) — EOV X 1 X)) > 05
(n:t)yy Vi(X ,(fﬂ),fmis,A) (n:ﬁ)V( (Bm) i s A;) > 0.

(ii) The (Zkaj : Zkﬁj)-synchronization of the two dynamical systems in Eqs.(5.1)
and (5.2) with the j®-constraint in Eq.(5.4) is said to be vanishing to form the desyn-
chronization on the j"-constraint boundary at time 7, in the sense of metric func-
tionals if for o, B; € I and & # B with j € L,

I (X357 s Ay ) = Y, (K0 s )

= A (X0, 1, 25) = 0;

(Stx,) (oj,))
v, (XS b Aj) = 0 for sq, = 1,2, 2k, + 13
' (5.152)

WO x B ) =0 1,2,... 2%kg, + 1;

Vi mF s orsg, = g; t 1

(n:fl)Vj(Xl(’l’taqé;J)7[m¥87 )\J) - (n:")Vj(ngf;” / sImr s AJ) >0;

(v n)vl (erig)vtﬂﬁﬁ}‘i) (: n)VI (X(BJJ) tm¥7)‘ ) > 0.
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Definition 5.49. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints
in Eq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For X,(n ) € Q. j)
(¢j el and j € L with I = {1,2} and L = {1,2,...,/}) and X\ e IQ ;) at
time tm,X(a”’) = X,S?’j). For any small € > 0, there is a time interval [ty_¢,tm)

or (b, bmye]- At X)) ¢ Q?f;ﬁ/.) for ¢ € [tm—g,tm) O (tm,tmie], the functional

- ro.+1
(m: n)V/(X(a” ),l,)\ i) is C"% -continuous and |(”:”)Vj( 1)
2kq; + 1).

(i) The desynchronization of the (Zkaj : Zk[;j )-order of the two dynamical systems
in Egs.(5.1) and (5.2) with the jth—constraint in Eq.(5.4) is called to be vanished to
form the penetration on the j®-constraint boundary from domain Q(am) to B;ni)
at time t,, in the sense of metric functionals if for &;, 8; € I and & # B with j € LL,

(X(a’i’j)vl>>‘.f)| <o (raf >

RV X b Aj) = VX 1, A)

= (n:;l>Vj (Xlgr(lhj)atma )\/) = O,

<n;ﬁ>V]Fsa_f>(Xfﬁ»”,,mi,>\j) =0 for sq, = 1,2,...,2%kq, +1;
o) (5.153)
(n:ﬁ)V/_ ( (ﬁ/:]) tm+a)\ ) 0 for Sﬁ =1 2 Zkﬁj;

DV KD e Aj) — VXS i, Ag) > 0;

sty (P e, A ) — OOV XD 1 A >0,

(i) The desynchronization of the (2kq, : 2kg,)-order of the two dynamical sys-
tems in Eqs.(5.1) and (5.2) with the j"-constraint in Eq.(5.4) is said to be onset from

the penetration on the j®-constraint boundary from domain Q(Oﬂ,nj) to Q B,.j) at time
t,, in the sense of metric functionals if for ¢;, 8; € T and o # B with j € L,
WDV Xt ) = DV g )
= (m n)VJ(Xlgr(l)),tm,A> = 0,

(sn)y 2 (XD g A7) = 0 for s, = 1,2, 2k, + 13

(5.154)
Y R b ) = 0 forsg, = 1,2,..., 2k
(n:ﬁ>vj(Xma¢)g,tm187)‘) (n: ">V1 (X,(njg,tmi,)\) > 0;

(nﬁ>vl (XISEQE sIm+e, >\) (n: n>VI ()(1(1’?42 oI )\) > 0.
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Definition 5.50. For two dynamical systems in Egs.(5.1) and (5.2) with constraints
in Bq.(5.4), there are (1 + 1)-metric functionals in Eq.(5.37). For X\ € Q4 )
(0 €Tand j €L with I = {1,2} and L = {1,2,...,1}) and X"/ € 9Q,; at
time tm,X,g?j - X,g?’ ). For any small € > 0, there is a time interval [t,_¢,fy)

t (b tmye]. At X0 ¢ Q?Eof, ) for 1 € [tm—g,tm) OF (tm,tme], the functional

~ . ) a-+1
)y, (X(@7) 1 X}) is C" -continuous and |7 /(r )( (@) £, })] < o0 (ro; >

2kq; +1). The (2kq, : 2kp;)-penetration of the two dynamical systems in Eqgs.(5.1)

and (5.2) with the jth-constralnt in Eq.(5.4) is called to be switched from the
(Zkﬁf : 2kq; )-penetration on the j"-constraint boundary at time #,, in the sense of
metric functionals if for aj, B; € I and a; # fB; with j € LL,

<n:ﬁ)Vi(Xl(’nthl) [m¥7)‘ ) = (wA) V ( ﬁ’ ) [mi7Al)
= (n:ﬁ)‘/./.(xl(??,ﬂv[mv AJ) =0

(XS e Aj) = O for sq; = 1,2,...,2%kq, + 1;

(5.155)
iy R 1 Ap) =0 for sy, = 1.2,....2kg, + 1

(n:ﬁ)vj(XEnaq]:g),lmIEa)‘/) _ (”:E)Vj(xfnﬁ’j),tmia)‘j) > 0;

(nn)v (Xz(fis>v[n1i£,>\ )*( )V( Bh ) lmi,A ) > 0.

5.4.5 Synchronization to all constraints

In this section, from the definitions for the synchronicity of two dynamical sys-
tems with multiple constraints, the necessary and sufficient conditions for such syn-
chronicity of the two dynamical systems to multi-constraints will be discussed. Be-
cause of many constraints for two dynamical systems, the synchronicity for each
one of constraints should be discussed.

Theorem 5.11. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints
in Eq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For X,gf‘j’” € Q. j)
(aj €T and j €L with I ={1,2} and L = {1,2,...,1}) and X"/ € 9Q,; at

time tm,X,(naj 9 = X,(q?’j ). For any small € > 0, there is a time interval [t,,_¢,y) OF
(tmtmre). For X)) ¢ Q(q,,j) and X)) ¢ 9Qy5(j), at X (@) = X0 the con-

dition DU F(@is)) (X(9:)) 1, gl@i)) = D(s"‘./')]F(On’)( 00 1,2)) (sa; = 0,1,2,...)
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holds . The two dynamical systems in Egs.(5.1) and (5.2) to [-constraints in Eq.(5.4)
are synchronized with [-dimensions for time ¢ € [ty ,tu,] in the sense of metric
functionals if and only if

(i) forall j e L, Xy, (:]) & Q(q,j) and X ) e dQy(;) for any time z,,,

X’(naj»f) _ Xl(r(l)y.f) (n:ﬁ)V(sa.l)

s j ( Enah ) tm7Aj> =0

(5.156)
foro; =1,2and sq; =0,1,2,...

(i) forall j € L,X\ %) ¢ Q| attimet € [fne,tn) and X7 € 90y ;) with
tm € (tmy >tmy),

Xg(afvj) # X,(;),]), (n:ﬁ)y}?l)(xscaj’j)7t;7Aj) < O and
e (5.157)
tim AV G 1 ) =0 for = 1,2;
te —tm
(iii) for the j™-constraint (j € L),X (a”’) € erag_ ;) at time t& € (tmytmre] and
]
X7 € 90y With by & [ty s omy),

X £ XED, @y DRED X)) > 0 and
) (5.158)
Jim DY X j) = 0 for o = 1,2;
te —tm ’
(iv) for the j™-constraint (j € L.),X (a’ i) e Q(Jr;_ ;) attime 1 € [tn—ertm— )t €
]
(trtstmre) and X507 € DQ 5 j) With 1y = ty, and ty,
X £, dim My ) =0,
te —tm+

lim (”ﬁ)Vi(Z) (Xscm,t,jf,)\) < 0foraj =1,2.

t% —lmt

(5.159)

Proof: The proof is similar to the proof of Theorem 5.1 for each j € IL. For
all j € L, if the conditions in Eqs.(5.156) and (5.157) are satisfied, from Definition
5.34, the two dynamical systems in Eqgs.(5.1) and (5.2) are synchronized for time t €
(tm, ,tm,) in the sense of Eq.(5.4), vice versa. If the onset and vanishing conditions
in Eqs.(5.158) and (5.159) hold, from Definition 5.37, the synchronization of two
dynamical systems will start to form and to vanish, vice versa. This theorem is
proved. ]

Theorem 5.12. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints

in Eq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For X\ € Q4 5
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(0 €Tand j €L with I = {1,2} and L = {1,2,...,1}) and Xy € 9Q,; at
time tm,Xmaj ) X(O’j For any small € > 0, there is a time interval [t,,_¢,t,) or
(tm,tme]. For X(O‘J’” € Qg ;) and X 04) ¢ 9Q5(j) at X(@.)) = X(©0J) ] the relation
DO (@) (X(050) 4, 7@y — Do) p(04) (X0 /> 1,7)) (so; = 0,1,2,....) holds.
The two dynamical systems in Eqgs.(5.1) and (5.2) to [-constraints in Eq (5.4) are
synchronized with /-dimensions for time ¢ € [t, ,tm,] in the sense of metric func-
tionals if and only if

(0,/)

(i) forall j € L, X\ ¢ Q(a;,j) and X3, € 0Qqy(j) With 1y € (tm s tm, ),

anaj»f) _ ngv.i), (n:ﬁ)V(saj)

0 Aj) =0

(5.160)
foro; =1,2and sq; =0,1,2,...

(iiy forall j € Lxscaj,j) c Q(*ijyj) attime t, € [ty—¢,tm)and X0 ¢ 9Q1yj) with
tm € (tmy >tmy),

X X,

lim 0y (XD 1 X)) = 0 for so, = 1,2,...,2kay:
o (n:ﬁ>V]?2kﬂﬁf+1>(X§(a>7[;’ ) <0, G-16D
t;hg;.m (n:2) V’.(quf+l)(X5<a"’j),t; ,A) =0foro; =1,2;
(iii) for the j™-constraint (j € L),X (a”’) € Q;roij) at time 7 € (tw,tmie] and
X7 € 90y With by & [ty s omy),
XS{%’J) #X,§§”7
lim <"ﬁ>vj(s“f Jx @) A j) =0 forsq, = 1,2,...,2ka;
K —lm— ("3ﬁ)y.(2ka-f+1)(X$€a),t,f,)\) “0 (5.162)
t;llir:m (ntﬁ)y’.(%“fﬂ)(cha"""),t,j, A) =0fora;=1,2;

(iv) for the j™-constraint (j € IL), Xscaj’ﬂ Q(ﬂ j attime 7 € [tm—g,tm—) and

(0,/)

18 € (tmrstmye), and Xy, € 9Qy(j) With 1, = 1, and t,,
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a)#XO)
. A (Sa) irJ
tihr? ("»")Vj / (Xsca/ '/),t%,)\j) =0forsq, =1,2,...,2kq; +1, (5.163)
K “lm+
. e (ke +2)  (a, )
r%lLTni (m)y = (X A g) < Ofor = 1,2.

Proof: The proof is similar to the proof of Theorem 5.2 for eachj € LL. For all
j €L, if the conditions in Eqs.(5.160) and (5.161) are satisfied, from Definition 5.38,
the slave and master systems in Eqs.(5.1) and (5.2) are synchronized for time ¢ €
(tm, ,tm,) in the sense of Eq.(5.4), vice versa. If the onset and vanishing conditions
in Egs.(5.162) and (5.163) hold, from Definition 5.41, the synchronization will start
to form and to vanish, vice versa. The proof is completed. ]
Theorem 5.13. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints
in Eq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For X( i) ¢ Qo))
(aj el and j € L with I ={1,2} and L = {1,2,...,/}) and X\ e Q) at
time tm,X,gf"""’) = x,ﬁ?*-”. For any small € > 0, there is a time interval [t,,_¢,t,) or
(tmytmre]. At X(®od) € Q(iof j) for time ¢ € [t—¢,tm) OF (tm,tm¢], the functional

Js

i ' o ) o (ra; 1 .
)y, (X(@7) ¢, X}) is C" -continuous and | ”'”)V/-(r ! )(X(“f’/),t,)\j)| < oo(rg; >

3). For X(%) € Qg 5 and X047 € 9Q 5, at X(@5:) = X(O0:) (%)) (X(93]) 1,
(i) £ F(0.4) (X<0 ’> ,t,A;). The two dynamlcal systems in Eqs.(5.1) and (5.2) to

l-constraints in Eq.(5. 4) are synchronized with /-dimensions for time ¢ € [t , 4, ] in
the sense of metric functionals if and only if

(i) forall j € L,X,,"” = X{ and X777 € Qg ) (0 € 1) at i € [ty o1,

Ay X9 1, A = DV 1, 05) = 0; (5.164)
(i) for all j € L, time ty, € (tm, ,tm, )

X — X0 and Py (X 1, Ny <Oforap=1,2  (5.163)
(iii) with the j™-penetration for time ¢ = f,,,, Xi&) = X\ (i = 1,2) for a;, B; €
I and ﬁj 7é (Xj,
DY (K 1, A) = 0 and DV (X 1,1, 77) >0,
(5.166)
(n:ﬁ)V]( )( l(fljatm, 7)\]) <0:
or with the j-desynchronization for time t =1, X,gff) = X,(q?l.) (i=1,2)fora;,B; €l
and ﬁj 7& (Xj,
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(n:ﬁ)vj(”(X’(nai )atm,ia >‘ ) 0 and (nﬁ)v](z) (Xl(nag )atm,ia >‘ ) >0,
(5.167)

sn)y DX P 1 Aj) = 0and DV XEED 4L ) > 0.

Proof: The proof is similar to the proof of Theorem 5.3 for each j € IL. For allj €
L, if the conditions in Eqs.(5.164) and (5.165) are satisfied, from Definition 5.34,
the two dynamical systems in Eqgs.(5.1) and (5.2) to [-constraints in Eq.(5.4) are
synchronized for time ¢ € [t,y, ,tm, ], Vice versa. If the onset and vanishing conditions
in Eqs.(5.166) and (5.167) hold, from Definition 5.38 or 5.39, the synchronization
of the two dynamical systems to /-constraints in Eq.(5.4) will start to form and to
vanish, vice versa. The proof is completed. ]

In the foregoing theorem, the synchronization of the two systems is without any
singularity except for the onset and vanishing conditions on the boundaries of the
constraints. If the synchronization of two dyanmical systems with higher-order sin-
gularity, the corresponding theorems can be presented as follows.

Theorem 5.14. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints
in Eq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For X,(n ) € Qg j)
(j €T and j € L with I = {1,2} and L = {1,2,...,1}) and X\ e IQ ;) at
time tm,X(a”’) = Xﬁ,?’) For any small € > 0, there is a time interval [ty,_¢,tm)
or (tp,tmye]. At X(®:1) ¢ Qfof_ j) for dme £ € [tye,tm) OF (tm;lmiel, the func-

1

e . . For. . :7) ra.+] .
tional "MV (X @) 1 X;) is C"% contmuous and | (i) ,( )(X(“lv-/),t,)\j)| < oo

(ro; > 2ke;+1). For X(%:) € Q( 5 and X0 € 905y, at X (%) =X (O Fl@ind)
(X(@d) ¢, p(@id)) o F04) (X 0.), 6, A;). The two dynam1cal systems in Egs.(5.1)
and (5.2) to [-constraints in Eq.(5.4) are synchronized of the (Zkaj : Zkﬂj)—type with
[-dimensions for time ¢ € [ty 1, ] in the sense of metric functionals if and only if

(i) forall j €L, X(a’ ) =X\ and X)) (1) € Qq,.j) (aj €T) attime s =1, €
[ty sty s
iy X9 g, Aj) =DV XOD) 4, N ) = 0; (5.168)
(i) for all j € L and time t,, € (tm, ,tm, ),

x(®i) _ x(09),

m—

(n:A7) 1% ‘(S"‘,/ )

S X e Aj) = 0 for sgy = 1,2, 2Kka,, (5.169)

m—

- 2kq . +1 i
iy T & 1, x) < 0for o = 1,2;

) m—

(iii) with the j"-penetration of the (2ka; : 2kp;)-type for time ¢ = t, ,Xma”’)

X (i=1,2),
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(n:ﬁ)vj(sa_/')(xf(:i )7l‘m,i7A ) 0 (S(Xj = 1727"'72ij + 1)7

and V2t (x) 1 X)) > 0 for o € {1,2);

(5.170)
oy 8 XD Ny = 0(sp, = 1,2,..., 2k,
(2kﬂ+l)

(":ﬁ)V»

¢ (Xt Aj) <O for Bj € {1,2} and B; # a3

or with the j"-desynchronization of the (2kq, : 2k, )-type for time t =1y, X(a’ )

X (i=1,2),

= (Stx-)
(nit)y (Xf,f"i’,zm,i,A,):0(sa,,:1,2,...,2ka_,.+1),

and Ve 12) <X,(na; ),tm,i,)\ ) >0ora;e{1,2};
o) (5.171)
ey ( X 10 A ) =0(sp, = 1,2,...,2kg, + 1),

. (2kg.+2)
iy (Xph i, A ) > Ofor By € {1,2} and B; # a.

Proof: The proof is similar to the proof of Theorem 5.4 for each j € IL. For
allj € L, if the conditions in Eqs.(5.168) and (5.169) are satisfied, from Definition
5.38, the slave and master systems in Eqgs.(5.1) and (5.2) are synchronized with
the (2kaj : Zkﬂj)—type for time ¢ € [t ,tm,] in the sense of Eq.(5.4), vice versa. If
the onset and vanishing conditions in Eqs.(5.170) and (5.171) hold, from Definition
5.42 or 5.43, the synchronization will start to form and to vanish, vice versa. The
proof is completed. ]

5.4.6 Desynchronization to all constraints

In this section, from the definitions for the desynchronicity of two dynamical sys-
tems to multiple constraints, the necessary and sufficient conditions for such desyn-
chronicity will be discussed. Because of many constraints for two dynamical sys-
tems, the synchronicity for each single one of constraints should be discussed.

Theorem 5.15. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints
in Eq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For X,(n ) € Qg j)

(j €T and j € L with I = {1,2} and L = {1,2,...,1}) and X\ e IQ ;) at

time tm,X<a""i) =X For any small € > 0, there is a time interval [t,,_¢,4y) OF
(tms tmye]. For X(@)) ¢ Qg5 and X ©.J) ¢ IQ5(j)s at X (%) — X<0’j),D(S“J')IF'(O‘f’/>
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(X(@1), 1, 7(@50)) = DOaFOI (XO0) 1, X) (sq; = 0,1,2,---). The two dynamical
systems in Eqgs.(5.1) and (5.2) to [- constramts in Eq.(5.4) are desynchronized with
[-dimensions for time 7 € [t,, , 4, in the sense of metric functionals if and only if

() forall j € L, Xm”]) c Q(aﬁﬁ and X,g?’j) c 8Q]2(j> for any time £,

X’(ndjvj) _ X,(,:L),j), (n:ﬁ)vj(sa,f)(X,(,najvj)’[m’ )\1) _ 0, (5 172)

foraj=1,2and sq; =0,1,2,...

(i) forall j e L, X% ¢ QUE j attime t} € (e and X5 € 00, with
tm € (tmy >tmy),

X 2 (0 wny O x (&9 15y > 0 and
§ (5.173)
fim en)y (DX 1k xj) =0 for oy = 1,2;
I —lm ’

(iii) for the j™-constraint (j € ]L),Xfcaj ) S Q(’Of, g at time ¢ € [tm—¢,tm) and
X7 € Q) With b & [tmy s omy),

oc,,

£ XD, ey W& 2 X ) <0 and
N (5.174)
im )y O (G 1 7 j) =0 for o = 1,2;
(iv) for the jM-constraint (j € L), X(a” e Q(*thj) attime g € [tm_g,tm—) 1} €
(tmttm+e]| and X,(,, W) ¢ Q5 jy with ty, =ty and ty,,
@ £ x©, lim ey (X, ) =0
e —tm+

tim AV (X6, X) < 0 for o = 1,2,

t % —Imt

(5.175)

Proof: The proof is similar to the proof of Theorem 5.1 for eachj € L. For
allj € L, if the conditions in Eqs.(5.172) and (5.173) are satisfied, from Definition
5.35, the two dynamical systems in Eqs.(5.1) and (5.2) to constraints in Eq.(5.4) are
desynchronized for time 7 € (t,,, 2, ), vice versa. If the onset and vanishing condi-
tions in Eqs.(5.174) and (5.175) hold, from Definition 5.37, the desynchronization
will start to form and to vanish, vice versa. This theorem is proved. |

Theorem 5.16. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints

in Eq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For X(a” e Qo))



5 Synchronization of Dynamical Systems 281

(j €T and j € L with I = {1,2} and L. = {1,2,...,/}) and X\ e Q) at
time tm,Xmaj ) X(O’j ) For any small € > 0, there is a time interval [t,,_¢,t,) or
(tm,tmre]. For X(O‘w/) € Q( ;) and X0 € 9Q 5, at X(@4) = X0, pei ()
(X(D) ¢, p(@ol)) = ]F<0 J)( X9 1,X}) (s, = 0,],2,...). The two dynamical
systems in Eqs.(5.1) and (5.2) to I-constraints in Eq.(5.4) are desynchronized with
[-dimensions for time 7 € [t,,,,°0) in the sense of metric functionals if and only if

(i) forall j € L, X" € Oy ;) and X7 € 9Qy5(j) Witht € (1 y1ms),

X,(naivj) _ X]S?’j), (n:ﬁ)vj(sai)(X,(n‘xivj)’[m’ )\1) -0, 5176

foraj=1,2and sq; =0,1,2,...

(i) for all j e L, X% ¢ QUE j attime t} € (e and X5 € 00, with
tm € (tmy >tmy),

(X,7

£X.),
t{lij”l% <"¢ﬁ>vj<s"-1)(xﬁf"’ e A)) =0 for sq; = 1,2,...., 2kay;
et (x (@0 o xj) < 0 and e
Jim (it oD g @D) e 3y 0 for o = 1,2;

(iii) for the jM-constraint (j € L),X (“h’) cO €

(a;,j) AL ime 7. € [tm—g,tm) and
jsJ
X7 € 90y With by & [ty s omy),

(Z],

£X4,

lim <"ﬁ>vj<s“f Jx @) = A ) =0forsg =1,2,...,2k;

) (5.178)

lim (Y7 e A ) = 0 for o = 1,2;

e —tm

(iv) for the jM-constraint (j € L), X(a”’) € Q?ES j at time t¢ € [ty—g,tm—) and

t& € (tmy s tmre] and X% ¢ 9Qy(jy With t, = 1y, and 1,
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X X0
illm (nﬁ)vj(Aaj)(XS(‘aﬁ/)7t2-:7A/) - O fOr Saj - 1727-.-72](&.,- + ]’ (5,]79)
tie —Im+
o (kg +2 i
lim (’"”>Vj( XD Ay < 0fora=1,2.
tie —Im+

Proof: The proof is similar to the proof of Theorem 5.2 for each j € L. For all
j € L, if the conditions in Eqs.(5.176) and (5.177) are satisfied, from Definition
5.44, the two dynamical systems in Eqs.(5.1) and (5.2) to constraints in Eq.(5.4) are
synchronized for time ¢ € (£, ,tm, ), vice versa. If the onset and vanishing conditions
in Egs.(5.178) and (5.179) hold, from Definition 5.47, the synchronization will start
to form and to vanish, vice versa. The proof is completed. ]

From the foregoing theorem, the desynchronization requires all the higher-order
derivatives of the metric functions in Eq.(5.37) should be zero on the constraint sur-
faces and the the highest-order derivative of the metric functions in domain should
be greater than zero. In practical applications, such a condition is too strong for one
to control the desynchronization of the slave and master systems. Therefore, such
a condition can be released through a discontinuous vector fileds to the slave and
master systems. Therefore, the following theorem for the desynchronization will be
stated.

Theorem 5.17. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints

in Bq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For X\ € Q4 )

(¢j €L and j € L with I = {1,2} and L = {1,2,...,1}) and X\\*/) € 9Q;) at
time tm,X,(naj ) X,g? ) For any smalle > 0, there is a time interval [t,,_¢,t,) Or
(tmytmre]. At X(@0d) € Q?Eof, ) for time ¢ € [t—e,tm) OF (m,tm¢], the functional
_ . L (rai+l :

)y, (X(@7) ¢ A}) is C™® -continuous and |(”:”)Vj(r ! )(X(“‘f’/),t,)\j)| < oo(rg; >
3) For X(ajvj) c Q(O{f,j) and X(()v/) c anZ(j)’ at X(ajsj) — X(Osj)y]F(ajvj) (X(ajvﬂ’t)
7(%:0)y £ FON(XO0) 1, X;). The two dynamical systems in Eqs.(5.1) and (5.2) to
[-constraints in Eq.(5.4) are desynchronized with /-dimensions for time 7 € [t , i, |
in the sense of metric functionals if and only if

(i) forall j € L,X\y7 = X{*/and X(@1) (1) € Qg ) (@) € 1) att € [ty 1),
Y XD g, Ag) = VXD, 10, 0) = 0 (5.180)

(i) for all j € L and time t, € (t, ,tm, )
X\ X0 and sy DG Xy S 0fora;=1,2; (5.181)

i m+

(iii) with the j"-penetration for time ¢ = t,,,, X\ = X% (i = 1,2) for at; €1,
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(n:ﬁ)vj(”(X’(nai )atm,ia >‘ ) 0 and (nﬁ)v](z) (Xl(nag )atm,ia >‘ ) >0,
(5.182)

Ay (X 14, 2j) > 0 for Bj € Tand B # a3

or with the jM-synchronization for time t = tmi,X,g,‘f) = X,ﬁ?l.) (i=1,2) for a;,B; €
I'and ﬁj 7é o,

ey DK 0,0 = 0 and DV XD 1,0 X)) >0,
(5.183)
sty O (X P 1, Aj) = 0 and Dy (XPD 4L ) > 0.

Proof: The proof is similar to the proof of Theorem 5.3 for each j € L. For
allj € L, if the conditions in Eqs.(5.180) and (5.181) are satisfied, from Defi-
nition 5.35, the two dynamical systems in Egs.(5.1) and (5.2) to constraints in
Eq.(5.4) are desynchronized for time ¢ € [ty, ,m, ], Vice versa. If the onset and van-
ishing conditions in Eqs.(5.182) and (5.183) hold, from Definition 5.39 or 5.40,
the desynchronization will start to form and to vanish, vice versa. The proof is
completed. ]

In the foregoing theorem, the desynchronization of two dynamical systems to
multiple constraints is without any singularity except for the onset and vanishing
condition. If the desynchronization of two dynamical systems to multiple constraints
possesses higher-order singularity, the following theorem is presented.

Theorem 5.18. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints
in Eq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For X( i) ¢ Qo))
(aj €T and j € L with I ={1,2} and L = {1,2,...,/}) and X\ e Q) at
time tm,X(a”]) = Xﬁ,ﬁ’"i). For any small € > 0, there is a time interval [ty,_¢,tn)

or (tmytmye]. At X(®/) ¢ Qfoi,) for time t € [tm_e,tm) OF (tm,tmre), the func-

. R For. . .~ ra.+] .
tional "MV, (X(@-/) 1, X;) is C"* -continuous and | i) ,( )(X(“»lv-/),t,)\j)| < oo

(raj > 2kq; + 1). For X (4.)) ¢ Q (@i.)) and X(0J) ¢ 8912 , at X)) = X(0.J))
]F'(O‘W)(X(O‘P Dot m( @)y £ FON(XOD) 1 X;). The two dynamical systems in
Eqgs.(5.1) and (5.2) to [-constraints in Eq. (5 4) are desynchronized of the (2ka :

2kpg; )-type with [-dimensions for time ¢ € [t ,t,,] in the sense of metric functlonals
if and only if

(i) forall j € L, X7 = X7 and X7 € Qg ) (@ €1) at 1 € [ty 1),

DYt e Aj) = IV X 1, M) = 05 (5.184)

(i) for all j € L and time t,, € (tm, ,tm, ),
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x %)) _ x(0).

m+
i)y ) (D) N = 050 = 1,2, 2k (5.185)
i ( mt s Imts ) Saj = ajs .
o (2ke;+1) i
)y XD, 4, 0j) < 0 for o = 1,2;
(iii) with the j™-penetration of the (2ka : 2kg,)-type for time t = 1y, ,X(a’ 9
X0 (i=1,2),
(nii)y (W ) x (%)) _
( mi+ 7[m,i7A) O(Saf—],z,...,Zkaer])
and V<2"“f“>(xﬁf‘g ) e A;) > O for o € {1,2};
) (5.186)
5B;
iy 5 XD NG = 0(sp, = 1,2, 2kg))
e (2kg+1
)y Pt xB) X)) > 0for B € {1,2} and B # o
or with the j™-desynchronization of the (2kq; : 2k, )-type for time t = tm,,X(a’ )

=X (i=1,2),

(n:i) V(Sa_, )

f (xf’gl),rm,i,)\) 0 (sq; =1,2,...,2kq, +1)

and V2 (x) 1 X)) > 0for oy € {1,2};
(5.187)

v, 58
(n.n)vj (’(f/i>7zmli,)\) 0 (sp, = 1,2,...,2kg, + 1),

oy P3N B N> 0 for By € (1,2} andB; # o,

Proof: The proof is similar to the proof of Theorem 5.4 for each j € L. For
allj € L, if the conditions in Eqs.(5.184) and (5.185) are satisfied, from Definition
5.44, the two dynamical systems in Egs.(5.1) and (5.2) to constraints in Eq.(5.4)
are synchronized with the (2k; : 2kg,)-type for time ¢ € [tm,,tm,], vice versa. If
the onset and vanishing condmons in Egs.(5.186) and (5.187) hold, from Definition
5.47 or 5.48, the desynchronization will start to form and to vanish, vice versa. The
proof is completed. |

5.4.7 Penetration to all constraints

If F(0) (X (@00 ¢, g(@nd)) = ]F(O,j)(x(oy.i),,’)\j) for X(@»J) = X(0.) and ajc{1,2}
with all j € L, the two dynamical systems to multiple constraints do not have any
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penetration. For such penetration, F(®1/)(X(@:) ¢ 70(%0)) 2 FO(XO) 1 X))
should hold. Thus, the corresponding conditions for the /-dimensional penetration
of two dynamical systems with [-constraints are presented through the following
theorems.

Theorem 5.19. For two dynamical systems in Eqgs.(5.1) and (5.2) with constraints
in Eq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For X(a""i) € Qq;j)
(@ €Tand j €L with T={1,2} and L = {1,2,...,1}) and X\\"/) € 9Q;) at
time tm,X,(naj 9 = X,(,?’j ). For any small € > 0, there is a time interval [t,,_¢,t,) or
(tmytmre]. At X(@)) ¢ Q(i;,_,j) for time ¢ € [ty—g,tm) OF (tm,tmrel, the functional

j+1)

(ra

)y, (X(@1) ¢, \;) is C" -continuous and | ’“;‘)V_ (X0 1, X))| < oo(rg; >
3). For X)) € Qg ;) and X0 € 9Q 5 ), at X(@1) = XO0) 7lard) (X(@0-d) ¢,
(1)) £ J0) (X (00 >,t,)\_,). The two dynamlcal systems in Egs.(5.1) and (5.2) to

constraints in Eq.(5.4) is penetrated with [-dimensions for time ¢ € (t, ,4n,) in the
sense of metric functionals if and only if

() forall j € L, time £ =ty € (s my), X7 = X0 = x P/,
iy DX 1, ;) < 0and CIVIOKE 1 NS00 (5.188)

X(ah/) —

(ii) with the synchronization to the j"-constraint for time ¢ = Im, s
X}('V(L), /) X(ﬁ/vl) ( 1 2)

sty O (XD 1 ) <0,
| (5.189)
(nﬁ)V/( )(anﬁ,ﬂ; >’tmti’ A ) 0 and (11:171) j< )( ISEI;E )7[m1i7Al) > 0’

or with the desynchronization to the j"-constraint only for timetr = t,,,NX,(nO:Z_r =
X =xP) (i=1,2),

(”5ﬁ>V]§1>(X,(11(7¥ >atm,3Fa>‘ ) 0 and (%) j(z)(X:(n(T% )atmtha)‘I) >0,

(5.190)
Ay DX b, Af) > 0;

or with the switching penetration to the j®-constraint only for timet = t,,l[,X,(,,ofj),E =
X\ =xP (i=1,2),

YD XD 1, A) = 0 and DY (XD 1,0 X)) >0,

(5.191)

(n:ﬁ)vj(l)(xﬁgij) t”1,j:7A ) 0 and =Ry ( )(X,(fi/),l‘m,iv)‘ﬂ > 0.
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Proof: The proof is similar to the proof of Theorem 5.3 for each j € L. For
allj € IL, if the conditions in Eq.(5.188) are satisfied, the two dynamical systems in
Eqgs.(5.1) and (5.2) to constraints in Eq.(5.4) are penetrated with /-dimensions for
time ¢ € [tm, ,tm,|, Vice versa. If the onset and vanishing conditions in Egs.(5.189)—
(5.191) are satisfied, the penetration of the two dynamical systems with/- constraints
will start to be formed or to vanish, vice versa. This theorem is proved. [ |
Theorem 5.20. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints
in Eq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For XWJ ) € Q. j)
(¢j € Land j € L with T = {1,2} and L = {1,2,...,1}) and X" € 9Q,; at
time tm,X,g?j - X,g?’ ). For any small € > 0, there is a time interval [t,_¢, )

t (fmytmre]. At X(%0) € Q<iof- ;) for time 7 € [tm—e;tm) O (tmstmie], the func-
.

" , g e 1 ,
tional ""V;(X(®+) ¢, X;) is C"* -continuous and |"#) j(r 4 )(X(%’J),t,)\jﬂ < oo

(ra; > 2ko;+1). ForX(@) € Qg 1 and X% € 9Q5 ), at X(%1) = X(0) F(%)-])
(X J),t,n:(%»/)) + FO)(x(0. ),t,)\‘,). The two dynamical systems in Eqs.(5.1)
and (5.2) to [-constraints in Eq.(5.4) is penetrated of the (2k; : 2k;)-type with [-
dimensions for time ¢ € [ty ,n,) in the sense of metric functionals if and only if

(i) for all j € L, time t =ty € (tm; stmy)> X&) = X =X P,

m

(nﬁ)‘/./'(saj)(x:(nai’/) tms Aj) =0 forsg; =1,2,..., 2kq,
and (”:F’)V].(zka-"Jrl)(X,(ﬁ’j) -y Aj) <0;

(n:ﬁ)VJ( >( Brd) s Aj) = 0forsg =1,2,...,2kg, o
and (”:ﬁ)V/-(ZkBjH)(Xf(fij),fm+a Aj) > 0;

(i1) with the synchronization of the (2ka. : ZkBi)-type to the j™-constraint for
time 1 = £, X' =X\ =XP) (i=1,2),

1

<"¢ﬁ>vj.““f)(x,§,“j’”,zm,,A J) =0 forsq, = 1,2,...,2kq,
 (2kg. A1 L
and (”:”>Vj( it )(X,(nal’/),tmf,)\j) <0
o 55) (5.193)
sty P (X 4 Aj) = O forsg, = 1,2,....,2kg +1

(2, +2 >( (By-)

and (”:ﬁ)V/. s Aj) > 0;



5 Synchronization of Dynamical Systems 287

or with the desynchronization of the (2ka. : Zkﬁj)—type to the j"-constraint only for

time 1 = 1, X002 =X\ =XP) (i1=1,2),

miF

Ay (XD e Aj) =0 for sgy = 1,2,...., kg, + 1
(kg 12 .
and (":")Vj i )(X,(na¥]7j)7l‘m$, Aj) >0

(5.194)

(”ﬁ)v.;( )( (ﬁ’ sty Aj) =0 forsg, = 1,2,..., 2kg,

L (2kg +1 i
and (”:”)Vj P )(X,(fi"’),tmﬂ)\j) > 0;

or with the penetration of the (2kg : 2kq)-type to the j™

£ =ty XL = X0 =XP) (i=1,2),

-constraint only for time

m;+
(n:ﬁ)v(s“.i) (@,))

S X2t Aj) = 0 for sq; = 1,2, 2ka, + 1

o (kg 42 s
and (":")Vj i )(X,(na¥]7j)7l‘m$,>\j) >0
(5.195)

ey OB X B Ny = 0forsg, = 1,2,..., 2k +1

j mes or Sg; Kt

e
and 0y B B x> 0.

Proof: The proof is similar to the proof of Theorem 5.4 for each j € L. For
allj € L, if the conditions are satisfied in Eq.(5.192), the two dynamical systems in
Eqs.(5.1) and (5.2) to constraints in Eq.(5.4) are penetrated of the (Zka_,. : Zkﬁj)-type
with /-dimensions fort € (t,, ,tm,), vice versa. If the switching conditions for the
synchronization-penetration, desynchronization-penetration, penetration-penetration
in Eqgs.(5.193)—(5.195) are satisfied, the onset and vanishing of the (Zk(xj : Zkﬁ_,-)'
penetration with /-dimensions occur, vice versa. This theorem is proved. |

5.4.8 Synchronization-desynchronization-penetration

In this section, the mixture of the synchronization, desynchronization and penetra-
tion to multiple constraints is discussed.

Theorem 5.21. For two dynamical systems in Egs.(5.1) and (5.2) with constraints in
Eq.(5.4),there are (1+1)-metric functionals in Eq.(5.37). For X,,7/) € Q(q, ;) (o €
Tand j€LwithI={1,2} and L= {1,2,...,0},L =L, ULy) and X\\") € 9Q;

at time tm,X,g?j - X,g? ] ). For any small € > 0, there is a time interval [£y,_¢, %) OF
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(tmstme). For X(@:1) € Qg and X0 € 905, at X (@) = X0 pLe)Fles))

(X(@0) ¢, m(®0)) = DUGIFOD (XO©D) 1, X) (sq; = 0,1,2,...). The two dynami-
cal systems in Eqs.(5.1) and (5.2) to [-constraints in Eq (5 4) are of the (I1,h)-
synchronization and desynchronization for time [t,,,, , ., ] in the sense of metric func-
tionals if and only if

@) for X,(,1af"j) € Q(a‘,-,j) and X,g?"") € 8!2]2(j> for any time t,,,

Xgn(xivj) _ XE:L)J),(n:ﬁ)vj(sql)(xgqalv i) tm,AJ) =0 5.196)
foraj=1,2and sq; =0,1,2,...
(ii) forall j €Ly and o¢; = 1,2,
Xy 2 X0 ey D& 1 ) < 0and
(5.197)

lim Oy DX = Aj) = 0foray = 1,2,

te —tm /

with XKI’ ) € Q( ¢ ) attime ¢t € [ty—g,tm) and X,(q?’j) € 8912(.,-) for ti, € (tm, stm, )3
(iii) for all j € 1L2 and o; = 1,2,

X7 £ X, ey DEE g X)) > 0 and

y (5.198)
tim DY (KE 18 X)) = 0for oy = 1,2

t;‘)tm

with Xff’f 9 e Q(+ ij j) attime t& € (tmytmye) and x(07)

(iv) for somej € Iy,

S 8(212 for Im ¢ (tml ’th);

(X],

£ XD, ey D@D e Xy > 0 and

(5.199)
lim Py 1 ) = 0foray = 1,2

1 —tm

with X(a”’) ng j) attime 7 € (tmytm+e) and X e Q) for tiy & (tmy stm, )3
or for somej € Ly,

X7 £ X0, ey DR X)) < 0 and
et (5.200)
lim =y DX = Xj) =0 for o = 1,2

te —tm /

w1thX( o)) cQ ¢t

(,)) at time ¢ € [ty—¢,tn) and Xm’ € 8912 for ty, € (tm stm,);
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(v)for jeLin(iv) and ¢; = 1,2,

X@ £ x(O im Ay (X 1 xj) =0,
—Imt

(5.201)
lim AV (X 1 X) <0 for o = 1,2,

t,f —tm+

with X(a” ) Q(ﬂ jat time t € [tme,tm— )t € (tmstmie) andX ) e Q5 j)
for ty, = t;y, and t,y,, .

Proof: The proof is similar to the proof of Theorem 5.1 for each j € L. Forall j €
L, if the conditions are satisfied, the two dynamical systems in Egs.(5.1) and (5.2)
to [-constraints in Eq.(5.4) are of the ({;,,)-synchronization and desynchronization
for time [ty, ,4m,], vice versa. This theorem is proved. |

Theorem 5.22. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints
in Eq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For X( i) ¢ Qo))
(@j€land jeLwithI={1,2}and L = {1,2,...,I}, L =L, UL,) and X\ ¢
8(212( j) at time tm,X,(,,a 5) = X,(,(,) ’j). For any small € > 0, there is a time inter-
val [fiy—g,tm) OF (ty,tmye)- For X)) ¢ Q(q;,j) and X(©04) ¢ Q) at X (@) =

X0, pOe) pes)) (X (@) ¢, ge(@3:0)) = DU RO (XO4) ¢, Aj) (sq; = 0,1,2,...).

The two dynamical systems in Eqgs.(5.1) and (5.2) to [- constraints in Eq. (5 4) are
of an (I1,lh) — (2ko; + 1)_synchronization and (2kq; + 1)-desynchronization for
time [t ,Zm,] in the sense of metric functionals if and only if

(i) for X,(q,ai"j) € Qg j) and X,(q?’j) € dQy(;) for any time t,,

(SOZJ')

X’(ntxjvﬂ _ X,(;,)J), (n:ﬁ)vj (X;(naj,j),tmij) =0
(5.202)
foraj =1,2and sq; =0,1,2,...

(ii) forall j € IL; and ot; = 1,2,
X9 X0,

(X 10 Aj) = 0 for sq; = 1,2,...., 2kay;

(5.203)
(i (2 ) (X 12, Aj) <0 and

lim Dy XY 1 xj) =0 for a = 1,2;
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with XE((T'i"i) c Q¢ ) at time t, € [ty—g,tm) and X,g?"") € 8!212“) for ¢, €

(@,
(IM] b tmz )a

(iii) for all j € L, and o;; = 1,2,

X 2 x,

lim <niﬁ>vj<s"-") (XEf‘-"’-’ ),r,j, Aj) =0forsg, =1,2,..., 2k,
te —lmy ' '
, (5.204)
~ 2k, +1 ;
ey et x(@) 4 3y > 0 and
(kg +1 .
Jim ey 2 (@) 1 xj) =0 for g = 1,2;
te —tm X

with Xscaj’j) c Qe j) at time t& € (tmytmie] and X% ¢ Q) for 1y, ¢

(@,
(tml 9 tmz )7
(iv) for some j € Ly,
XS(aj,j) # X,S?J),

lim (n:ﬁ)V]ﬁsaj)(Xg(ajﬁj)vt;7)\j) =0 forsq, =1,2,...,2ka;;

e =t

(5.205)
L (kg1
<"1”)Vj( 5 )(Xg(a),t,j,)\j) >0 and
L (kg1 .
Jim <"¢">vj( XD 1 Aj) = 0for oy = 1,2;

with Xsca”'i) cQf ) at time tx € (ty,tmre| and X,(,?’-i) € dQyy(j) for ty ¢

€
(0,j
(tml 7tm2);

or for somej € Iy,

X 2 x,

7]]m (n:ﬁ)vi(saj) (Xs(a'hi),t; ’ A,) — 0 for S(x_,- -1 ,2, . ,Zk(xj; (5206)
te —tm+ ’
(ka1 .
ey 2 (@0 1 X)) < 0 and
with Xg(%’m € Q(sz,jz) at time t € (fm,tmye] and X079 € 9Qa(j,) for t &

[tml 7tm2];
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L 2k +1 .
lim <"'">vj( i )(Xﬁf"”) te,Aj) =0for o =1,2;

te —tm

(v)for jeLin (iv) and of; = 1,2,

a) 7& X ())
tilir? (”iﬁ)V].(sa-f)(Xsca-f"i),t%,)\j) =0forsg; =1,2,...,2kq; (5.207)
K “lmt
L (2kg,+1
Tim (y "X 1\ <0fora=1,2
te —tm+

with X(a” ) Q(ﬂ ;) attime . € [ty—g,lm-) or 15 € (tmsstmre) and X7 €

8912 for ty, = tyy, and t,.

Proof: The proof is similar to the proof of Theorem 5.2 for each j € L. For all
j € L, if the conditions are satisfied, the two dynamical systems in Egs.(5.1) and
(5.2) to constraints in Eq.(5.4) are of an (/,1) — (2kg; + 1)"-synchronization and

(2kq, + 1)"-desynchronization, vice versa. This theorem is proved. u
Theorem 5.23. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints
in Eq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For X( i) ¢ Qa.j)
(oj € Tand j € L with I ={1,2} and L = {1,2,...,/}) and X\ e Q) at
time tm,Xﬁna""i) = Xﬁ,(,)’j). For any small € > 0, there is a time interval [t,,_¢,t,) or
(tmytmre]. At X(®od) € Q?E;j ) for time ¢ € [t—e,tm) OF (tm,tm¢], the functional
iy (X @) 1, X })is C"% -continuous and |<”:'~‘)Vj(05j+])(X(O‘J’/> 605)] < oo (ro; >
3). For X(%1) € Qg ;) and X)) € 9Qy;), at X(%/) = X(OI)|F <%J>( <OW> ",
w(@ii)y £ FOD) (X7 £,X;). The two dynamical systems in Egs.(5.1) and (5.2)

to [-constraints in Eq.(5.4) are of the (11,15, 13)-synchnonization, desynchronization
and penetration for time ¢ € [t ,t,] in the sense of metric functionals if and only if

(i) for Xp??) = X7 and X (@) (1) € Qg ;) (0 € 1), at time 1 =t € [ty iy,

DV (Xt s, Ag) = VX 1, 0 ) =0 (5.208)

withall j € L =L, UL, ULs;
(i) for time t,, € (tm,,tm,) forall j € L,
Xfﬁ’j) —x© J) and (w:7) j“)(X,(naf’j),tm,,)\j) <Ofora;el,
(5.209)
X — X and ey (PP 1, N5y <0 for B € T;

m*

(iii) for time ty, € (tm, ,tm,) for all j € Lo,
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X4 — X and ey (XD 1,0 N)) > 0 for o €1,

m+
' ' (5.210)
Xfﬁ’f) = X' and (”:ﬁ)Vj(l)(X,(ffj),thm)\j) >0 for B; € I;
(vi) for time t,;, € (t, ,tm, ) for all j € L,
X\ =X and
. for o €11,
By X 1, Aj) <0
(5.211)
X017 — X0 and
for B; € T'and B; # a3
(n:ﬁ)V(1> X<ﬁj’j) A 0
j ( m+ sbmds /) >
(v) for j € Ly, k € {1,2,3} with time ¢t = tm/,X(a”/) = Xﬁ,?,.’j) (i=1,2),
Ay DX s, Aj) =0
foraj € {1,2}; (5.212)
YD K b Aj) > 0
and/or .
ety I 1 ) =0
for B; € {1,2}. (5.213)

Ay DX s, A ) >0

Proof: The proof is similar to the proof of Theorem 5.3 for each j € L. For
allj € L, if the conditions are satisfied, of the (11,15, 13)-synchnonization, desynchro-
nization and penetration for timet € [t,, ,fu,], vice versa. This theorem is proved. B

Theorem 5.24. For two dynamical systems in Eqs.(5.1) and (5.2) with constraints
in Eq.(5.4), there are (I + 1)-metric functionals in Eq.(5.37). For X\ € Q4 5
(@ €Tand j €L with T={1,2} and L = {1,2,...,1}) and X\\"/) € 9Q;) at
time tm,X,(naj - X,(,?’ ). For any small € > 0, there is a time interval [fy,_¢,tn)

t (b, tmre]. At X(@)) ¢ Q(i(;j) for time ¢ € [ty—g,tm) OF (tm,tmie), the func-

~ . ) ra.+1 .
tional “MV;(X (@) ¢ X;) is C"® -continuous and |7 ,.( it )(X<“»i7-/),t,)\A,')| < oo

(ra; > 2ke;+1). ForX(@1) € Q. 1 and X1 € 9Q ), at X(@1) = X0 F(%):])
(X (@) ),t,ir j»i)) £ FO.1) (X0, 0, ,t,Aj). The two dynamical systems in Eqs.(5.1)
and (5.2) to [-constraints in Eq. (5 4) are of the (I1,l,13)-synchnonization, desyn-
chronization and penetration of the (2k; : 2kg,)-type for all j € L=1L; UL, UL3
for time 7 € [t ,1m,] in the sense of metric functionals if and only if

(@) for X7 = X{09) and X(@:) (1) € Q(a;.j) (@ €T), attime 1 =ty € [ty ,1my),
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(n:ﬁ)Vi(X;aJiJ)7[m+7>‘j) _ (n:ﬁ)Vj(XSr?J),[ma )\,) -0 (5.214)

withall j e L =1L, UL, ULs;
(i) for time t,, € (tu, ,tm,) forall j € Ly,

M

 (sa)
Gty 5 (XD 1 A = 0 for sey = 1,2, 2ka, (5.215)

7 m—

(kg1 .
oy 2 (@) LX) < 0foray = 1,2;

(iii) for time t,, € (tm,,tm,) for all j € Lo,

X(aﬁj) _ X(OJ)

m+ T Mmoo

oy (Sa) ;
("‘")V‘é 7 (X’(:i/ tm+a)\ ) 0 for Sa; = 1,2,. Zkal-a (5.216)

- 2ke ;41 L 3
() s )(X;"i’”,w,)\j)>0fora,-=1,2;

(vi) for time t,;, € (t, ,tm, ) for all j € L,

X(ajvf) — X’(:l)vl)

m— )

sa;) ;
(””) ( (X’(nai,j tin— 7A ) 0 for Sa —1 2 2kaj7
(kg1 o
(n:n)Vj( it )(Xgnaj’/)7tm,,)\j) <Oforoj el
' ‘ (5.217)
X,SE{!I) _ ng?v])’
2o, 08;)
(n:n)vj (X, (ﬁ”J) sty Aj) = 0forsg =1,2,--+,2kg ,
. (2kg.+1
(n:n)vj( Bj )(X(ﬁ/ s A )>0forﬁjEHandﬁj#(Xj;
(v) for one of j € I with the (2kq; : 2k, )-singularity for time ¢ = ’man(na“]) =
X0 (i=1,2),
(n:ﬁ)ylgsaj)(xzai )7[m :Ea ) 0 for S(xj =1 2 2ka/ + ],
(5.218)

v (X b0 0) > 0 for o € {1,2);
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and/or

5B o (Bind)
AV (Xt Aj) = 0 for s, = 1,2,....,2kg, + 1, (5.219)
("‘ﬂ\/_fzkﬁﬂ)(X,(qgij)atmﬁ’)‘/) > 0 for ﬁj = {] ,2}.

Proof: The proof is similar to the proof of Theorem 5.4 for eachj € L. For allj €
L, if the conditions are satisfied, two dynamical systems in Egs.(5.1) and (5.2) to I-
constraints in Eq.(5.4) are of the (;,15,13)-synchnonization, desynchronization and
penetration of the (2kq; : 2kg, )-type for time t € [t ,tm, ], vice versa. This theorem
is proved. |

5.5 Conclusions

In this chapter, a theory for synchronization of multiple dynamical systems to spe-
cific constraints was presented from a theory of discontinuous dynamical systems.
The concepts on synchronization of two or more dynamical systems to specific con-
straints were systematically presented. Based on specific constraints, metric func-
tionals were porposed to measure the synchronicity of the two or more dynam-
ical systems to such specific constraints. The synchronization, desynchronization
and penetration of two or more dynamical systems to specific constraints were dis-
cussed through the metric functionals, and the necessary and sufficient conditions
for such synchronicity were developed. The synchronization of two dynamical sys-
tems to a single specific constraint was first discussed, and further the synchronicity
of two dynamical systems to multiple constraints was investigated. The meaning of
synchronization for dynamical systems with constraints is extended. This chapter
provides a general frame work to control slave systems which can be synchronized
with master systems through specific constraints.
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Chapter 6
The Complexity in Activity of Biological
Neurons

Yong Xie, Jian-Xue Xu

Abstract We sum up our work about neurodynamics in this chapter. It is widely
considered that the nervous system in man and animals is a rather complicated non-
linear dynamical system. Therefore, it is both necessary and important to understand
the behavior occurred in the nervous system from the perspective of nonlinear dy-
namics. Actually, a great many of novel and puzzling phenomena are just observed
in a single neuron, but their physiological or dynamical mechanisms remain open
so far. In other words, single neurons are not simple. We show many firing patterns
in theoretical neuronal models or neurophysiological experiments of single neurons
in rats in this chapter. And then we introduce three representative examples of best
known mathematical neuron models. The two types of neuronal excitability are il-
lustrated by the Hodgkin-Huxley mode and the Morris-Lecar model. Especially, it
is shown that we can change the types of neuronal excitability using the methods of
bifurcation control. Besides, we display bursting and its topological classification,
and explain bifurcation, chaos and crisis by the existing neuronal models. We give
emphasis to sensitive responsiveness of aperiodic firing neurons to external stimuli,
and show experimental phenomena and their underlying nonlinear mechanisms. The
synchronization between neurons is remarked simply. We stress a constructive role
of noise in the nervous system, and depict the phenomena of stochastic resonance
and coherence resonance, and give their dynamical mechanisms. The common anal-
ysis methods are presented for the time series of the interspike intervals. Finally, we
give two application examples about controlling chaos and stochastic resonance,
and draw some conclusions.
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6.1 Complicated firing patterns in biological neurons

6.1.1 Time series of membrane potential

We can obtain the time course of membrane potential (or transmembrane poten-
tial) easily in neurophysiological experiments. Membrane potential is the voltage
difference (or electrical potential difference) between the interior and exterior of a
cell. The cell membrane acts as a barrier which prevents the inside solution (intra-
cellular fluid) from mixing with the outside solution (extracellular fluid). Actually
such a membrane surrounds the cell to provide a stable environment for biochemi-
cal processes running in the interior of the cell. The membrane potential arises from
the action of ion channels, ion pumps, and ion transporters embedded in the cell
membrane. Neurons are specialized to use changes in membrane potential for rapid
communication with other neurons, muscles and secretory cells. There are two kinds
of the membrane potential: the relatively static one and the specific dynamic one.
The former is the resting membrane potential, which means the membrane potential
of a neuron at rest; the latter include the graded membrane potential and the action
potential. An action potential (also known as a nerve impulse or a spike) is a self-
regenerating wave of electrochemical activity that allows neurons to carry a signal
over a distance. In general, the action potential can be superior to graded mem-
brane potential if the action potential sharpens the temporal structure of neuronal
responses by amplifying fast transients of the membrane potential. On the other
hand, the graded membrane potential is superior for discrimination between stimuli
on a fine time scale (Kretzberg et al., 2001).

Usually neurons depolarizes from the resting potential and produces the action
potential, it travels down the axon to the synapses. Surprisingly, many neurons can
fire the action potential spontaneously. On reaching a (chemical) synapse, a neuro-
transmitter is released causing a localized change in potential in the postsynaptic
membrane of the target neuron by opening ion channels in its membrane. To our
knowledge, the states of individual ion channels are either closed or open, and they
are relatively random. The cooperation of a large number of ion channels embedded
in the membrane, however, can generate action potentials. Maybe this behavior is a
kind of emergent phenomenon in complex adaptive systems.

6.1.2 Firing patterns: spiking and bursting

Many neurons can exhibit repetitive (tonic) spiking and/or bursting (Izhikevich,
2007). Repetitive spiking means a neuron is typically constantly active. Bursting,
however, is a dynamic state where a neuron repeatedly fires discrete groups or bursts
of spikes. Each such burst is followed by a period of quiescence before the next burst
occurs. A burst of two spikes is called a doublet, of three spikes is called a triplet,
four - quadruplet, etc. (for detail, see http://www.scholarpedia.org/article/Bursting).



6 The Complexity in Activity of Biological Neurons 301

There is an evident difference in the membrane potential for spiking and bursting
(Chay et al., 1995). Namely, for spiking there is no clear underlying slow wave while
for bursting several spikes ride on the slow wave.

Spiking neurons are classified into two types (Izhikevich, 2007; Rinzel and Er-
mentrou, 1989; Izhikevich, 2000; Xie et al., 2008a; Tsuji et al., 2007), namely type-I
excitability and type-II excitability according to the frequency response character-
istics of a neuron to a constant current stimulus. A neuron with type-I excitability
is characterized by a continuous FI (the firing frequency versus the applied cur-
rent) curve that shows oscillations starting with an arbitrarily low frequency. The
firing frequency varies continuously from almost zero to a certain value with a wide
dynamic range as the applied current changes. In contrast, a neuron with type-II
excitability is characterized by a discontinuous FI curve with the oscillations start-
ing with a nonzero frequency, and the response frequency range is narrow. For a
neuron with type-I excitability there is an apparent threshold for the appearance of
spikes, while there is no true threshold for a neuron with type-II excitability, rig-
orously speaking (Izhikevich, 2007). Therefore there is a great difference in firing
behavior between them. Clearly, the two types of excitability have different neuro-
computational properties (Izhikevich, 2007). Type I excitable neurons can smoothly
encode the strength of input, e.g., the strength of applied dc-current or the strength
of incoming synaptic bombardment, into the frequency of their spiking output. Type
IT neurons cannot do that. Instead, they can act as threshold elements reporting when
the strength of input is above certain value. Both properties are important in neural
computations.

Almost every neuron can burst if stimulated or manipulated pharmacologi-
cally (for detail, see http://www.scholarpedia.org/article/Bursting). Many burst au-
tonomously due to the interplay of fast ionic currents responsible for spiking activity
and slower currents that modulate the activity. Neuronal bursting can play important
roles in communication between neurons. In particular, bursting neurons are impor-
tant for motor pattern generation and synchronization. Rinzel (1987) first proposed
a scheme according to the dynamical mechanisms of bursting onset and termination
to classify bursting neurons, and identified three types, i.e., square wave bursting,
parabolic bursting and elliptic bursting. It was later extended by Bertram et al., who
included another type. Izhikevich (2000, 2007) provided the complete classification,
identifying all 16 topological types, and foretelling 120 all possible types.

Neuronal firing behavior can be periodic or aperiodic. The periodic firing in-
cludes periodic spiking and periodic bursting; while the aperiodic firing consists of
irregular spiking and irregular bursting. Now more and more evidence shows that
a rather large part of such aperiodic firing is deterministic chaos, namely, chaotic
spiking or chaotic bursting (Aihara and Matsumoto, 1986; Mpitsos et al., 1988;
Hoffman et al., 1995; Gong et al., 1998, 2002; Xu et al., 1997; Longtin, 1993a; Ren
et al., 1997, 2001). Figure 6.1 shows four kinds of firing pattern, and they are ob-
tained by numerical simulation of the Hindmarsh-Rose neuron model (Hindmarsh
and Rose, 1984).

In neurophysiological experiments, the series of interspike intervals (ISIs) is usu-
ally recorded to display the firing pattern of a neuron. Interestingly, it is widely con-



302 Yong Xie, Jian-Xue Xu

2.0+
= 1.5
5 1.0
=3
; 0.5
<
£ 0.0
§ 0.5-
£ ALY
- MMM
0 200 400 600 800
time
(@
2.0
g 151
8 1.0
o
& 05
Q g
g 0.0
E-05] |
Q
E-1.0
-151
0 200 400 600 800
time
(®
2.0+
= 1.5
5 1.0
o
5 0.5
g
£ 00
505
UL
 MMAMAUUM MM
0 200 400 600 800
time
©
2.0-‘
g 151
g 1.0
g
& 057
g 0.0
£ 007
051
E—I.O—‘
-151
0 200 400 600 800
time
(C)]

Fig. 6.1 Firing pattern of the Hindmarsh-Rose neuron model with different applied currents. (a)
periodic spiking; (b) periodic bursting; (c) chaotic spiking; and (d) chaotic bursting.
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sidered that neural information transmitted from presynaptic to postsynaptic neu-
rons is embedded in the series of ISIs (Gong et al., 2002; So et al., 1998; Suzuki et
al., 2000). Integer multiple spiking (IMS) (Gu et al., 2001; Yang et al., 2002; Xie et
al., 2004a) is seemingly random firing behavior whose interspike interval histogram
(ISTH) exhibits multimodal structure with peaks at integer multiples of a basic ISI.
Furthermore the amplitude of the peaks decays with increasing ISI except for the
first few peaks, and the return map of ISI series has a crystal lattice structure, as
seen in Fig. 6.2. The IMS herein is numerically simulated from the Morris-Lecar
model. Similarly, integer multiple bursting (IMB) denotes that the inter-burst inter-
vals (IBIs) of the IMB exhibit multi-mode and are approximately integer multiples
of a basic IBI. Figure 6.3 shows the firing pattern of the IMB, which is observed in
the experiment on an experimental neural pacemaker (Gu et al., 2003). In addition,
bursting is a considerable complicated firing pattern, and has various types. Figure
6.4, For example, demonstrates a periodic parabolic bursting in a neural pacemaker
after the addtion of 5 uMol/L veratridine (Xie et al., 2003a). The upper trace is the
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Fig. 6.2 Integer multiple spiking in Ref. [24]. (a) the ISI histogram; and (b) the return map of the
ISI series.
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time course of membrane potential, and mainly exhibits the active phase of a burst;
while the ISI as a function of time is shown in the lower trace. It can be seen clearly
that parabolic bursting is characterized by a spike frequency which is low at the
beginning, high in the middle, and low again near the end of the active phase. ISI
series looks like a family of parabolic curves, as seen in the lower trace.
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Fig. 6.3 The integer multiple bursting in the experiment in Ref. [25]. (a) The firing trains; and (b)
IBI histogram.
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Fig. 6.4 Parabolic bursting induced by Veratridine in rat injured sciatic nerves.



6 The Complexity in Activity of Biological Neurons 305

In fact, there are different transition styles between firing patterns (Ren et al.,
1997; Mandelblat et al., 2001; Xie et al., 2003b; Li et al., 2003 ): mainly in-
cluding period adding and period-doubling cascades, which have been observed in
neural pacemakers. Figure 6.5 shows period-adding and period-doubling cascades
recorded in the different neural pacemakers, respectively. Note that ISI versus time
or ISI versus the number of ISI is not really a bifurcation diagram. However, the
action of the drugs is slowly permeable, and tunes up slowly the control parameters
of the neural pacemakers, therefore, time or the number of ISI reflects the changes
in the control parameters, and thus ISI versus time or ISI versus the number of ISI
can be considered to be a bifurcation diagram, roughly speaking.
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Fig. 6.5 Period-adding and period-doubling cascades. (a) Period-adding cascade in (Xie et al.,
2003b). The neural pacemaker exhibited period-one bursting, period-two bursting, period-three
bursting and period-four bursting after the addition of SmMol EGTA, respectively, as time elapsed.

(b) Period-doubling cascade route to chaos. The firing cascade of the neural pacemaker is induced
by the decrease of [Ca2+]0, see (Li et al., 2003).
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6.2 Mathematical models

6.2.1 HH model

The Hodgkin-Huxley (HH) model is one of the most famous neuron models in com-
putational neuroscience. It is the first quantitative model of the electrical excitability
of neurons based on a number of experiments in giant squid axons (Hodgkin and
Huxley, 1952). This model consists of three ionic currents: fast inward sodium cur-
rent, time-dependent outward potassium current and time-independent leak current.
And the circuit diagram is shown in Fig. 6.6.

Outside
Iy, I ]
Ry, Ry R,
(S — Y

Fig. 6.6 The circuit diagram corresponding to the HH model.

As we know, the HH model describes successfully how the action potentials
in neurons are initiated and propagated; and it is expressed by a set of nonlinear
ordinary differential equations as follows:

le_‘t/ B é(lm - gNam3h(V —VNa) — gK”4(V — Vi) —gL(V = V1)),

= (V)1 =) = BV,

dr (6.1)
= (V)1 )~ BV,

B (V)1 )~ BV,

V represents the membrane potential, which is the electrical potential difference
(voltage) across the neuronal membrane. m and A are gating variables that repre-
sent the activation and inactivation of the sodium current, since /& decreases when
m increases. n denotes the activation gating variable of the potassium current. Ob-
viously, m, h, and n obey equations of the same form, but with different voltage
dependences for their steady state values and time constants. Oy, B, @, Br, 0, and
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By are functions of V that are defined as follows:

(V) = 0.1(25.0— V) /exp((25.0— V) /10.0 — 1.0),
Bu(V) =4.0exp(—V /18.0),

o, (V) =0.07exp(—V /20.0),

Bu(V) = 1.0/ (exp((—V +30.0)/10.0) + 1.0),

0,(V) = 0.01(10.0 — V) /(exp((10.0 — V) /10.0) — 1.0),
Bn(n) =0.125exp(—V /80.0).

The HH model includes the following parameters: Vy, = 115.0 mV, Vx = —12.0
mV, and V; = 10.599 mV, representing the equilibrium potentials of the sodium,
potassium, and leak currents, respectively. They are determined uniquely by the
Nernst equation. Thus, these parameter values are controllable by changing the ionic
concentrations within and outside the membrane. gy, = 120.0 mS/cm?, gk = 36.0
mS/cm?, and g; = 0.3 mS/cm? represent the maximum conductance of the corre-
sponding ionic currents. They reflect the ionic-channel density distributed over the
membrane. Cyy = 1.0 uF/cm2 is the membrane capacitance. I,,; represents the ex-
ternally applied current, and usually serves as a bifurcation parameter of the system.
If I, exceeds a certain threshold value, the HH model neuron can exhibit periodic
spiking.

6.2.2 FitzHugh-Nagumo model

The FitzHugh-Nagumo (FHN) model (FitzHugh, 1961) is a simplification of the
HH model. As seen above, the HH has four variables. The variables kept in the FHN
model are only the excitable variable and the recovery variable which are charac-
terized as being the fast and slow variables respectively. Actually, the FHN model
adiabatically eliminates the 4 and m gates, and retains only the membrane potential
V and a slow variable w similar to n. Because of its simple two-variable form and
generality, the FHN has been used widely. It is able to reproduce many qualitative
electrical characteristics of a neuron, such as the existence of firing threshold, rela-
tive and absolute refractory periods, and the generation of action potentials under the
action of applied currents. The FHN model is described by the following equations
(FitzHugh, 1961):

av V3

E =V- ? — W+ Iy,

J (6.2)
d—:} =¢(V+a—bw).

Here, parameter are often taken as ¢ = 0.7, b = 0.8, and ¢ = 0.08. I,y denotes
the externally applied current and is usually considered to be the control parame-
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ter. Clearly, the membrane potential variable V has cubic nonlinearity that allows
regenerative self-excitation via a positive feedback; and the recovery variable w has
a linear dynamics that provides a slower negative feedback. Similarly, if the applied
current I,,; exceeds a certain threshold value, the FHN can also display a character-
istic excursion in the phase plane, before the variables V and w relax back to their
resting values. In fact, the dynamical behavior of this model can be nicely described
by zapping between the left and right branch of the cubic nullcline in the phase
plane.

6.2.3 Hindmarsh-Rose model

In 1982 and 1984, Hindmarsh and Rose (1984) constructed the Hindmarsh-Rose
(HR) neuron model to model the synchronization of firing of two snail neurons in
a relatively simple way that did not use the full HH equations. Naturally, at the
time they modified the FHN model to account for tail current reversal. This point
is crucial for the development of the HR model. Now the HR can be used to study
the spiking-bursting behavior of the membrane potential observed in experiments
made with a single neuron. The HR model has the mathematical form of a system
of three nonlinear ordinary differential equations in the following (Hindmarsh and
Rose, 1984 ):

dx

E :y_ax3+bx2_z+lexn

d

d_)t) =c—dx’—y, (6.3)
d

d—j =rls(x—x0) —7].

Where x denotes the membrane potential, which is written in dimensionless units.
The other two variables, y and z, which take into account the transport of ions across
the membrane through the ion channels. The transport of sodium and potassium ions
is made through fast ion channels and its rate is measured by y, which is called the
spiking variable. The transport of other ions is made thorough slow channels, and
is taken into account thorough z, which is called the bursting variable. In fact, z is a
slow variable and usually regarded as the bifurcation parameter of the fast subsys-
tem x — y when the method of the slow-fast subsystem decomposition is adopted to
analyze the dynamics of the HR model.

The HR model has eight parameters: a, b, c, d, r, s, xy and I,;. Commonly, we
fix some of them and let the other to be control parameters. Frequently, the applied
current I,y is considered to be the control parameter. Other parameters take a = 1.0,
b=3.0,c=1.0,d =5.0,s =4.0 and xyp = —1.6. The parameter r is something of
the order of 10e-3, and I,,; ranges between —10 and 10.
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6.3 Nonlinear mechanisms of firing patterns

6.3.1 Dynamical mechanisms underlying Type I excitability and
Type II excitability

The definition of neuronal excitability is first introduced here. In existing textbooks
it is that a “subthreshold” synaptic input evokes a small graded postsynaptic poten-
tial (PSP), while a “superthreshold” input evokes a large all-or-none action potential.
Unfortunately, this definition cannot be adopted to define excitability of dynamical
systems because many systems, including neuronal models have neither all-or-none
action potentials nor firing thresholds (Kretzberg et al., 2001; Izhikevich, 2000). A
purely geometrical definition, therefore, is more reasonable to describe neuronal ex-
citability (Kretzberg et al., 2001). From the geometrical point of view, a dynamical
system having a stable equilibrium is excitable if there is a large-amplitude piece of
trajectory that starts in a small neighborhood of the equilibrium, leaves the neigh-
borhood, and then returns to the equilibrium.

Despite a large number of biophysical mechanisms, there are only four co-
dimension-1 bifurcations of equilibrium underlying neuronal excitability because
they have the lowest co-dimension and hence they are the most likely to be seen
experimentally, namely, saddle-node on invariant circle (SNIC) bifurcation, saddle-
node (off invariant circle) bifurcation, supercritical Hopf bifurcation and subcritical
Hopf bifurcation (Izhikevich, 2007). In general, the former one underlies type-I ex-
citability, while the latter three mediate type-II excitability. When the resting state
of a neuron is near a SNIC bifurcation, the neuron can fire all-or-none spikes with
an arbitrary low frequency, it has a well-defined threshold manifold, and it acts as
an integrator (Izhikevich, 2001); i.e. the higher the frequency of incoming pulses,
the sooner it fires. In contrast, when the resting state is near a Hopf bifurcation, the
neuron fires in a certain frequency range, its spikes are not all-or-none, it does not
have a well-defined threshold manifold, it can fire in response to an inhibitory pulse,
and it acts as a resonator (Izhikevich, 2001); i.e. it responds preferentially to a cer-
tain (resonant) frequency of the input. Increasing the input frequency may actually
delay or terminate its firing.

In the context of neurons, the stable equilibrium corresponds to the resting state
of a neuron. All trajectories starting in a sufficiently small region of the stable equi-
librium converge back to the equilibrium. Such trajectories correspond to subthresh-
old PSPs. In contrast, the large-excursion trajectory corresponds to firing a spike.
Therefore, superthreshold PSPs are those that push the state of the neuron to or near
the beginning of the large trajectory thereby initiating the spike. Furthermore, the
limit cycle in the phase space corresponds to periodic spiking or periodic bursting
or periodic subthreshold oscillation of a neuron.
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6.3.2 Dynamical mechanism for the onset of firing in the HH
model

For the HH model, the bifurcation diagram of the membrane potential V versus
the applied current I, is shown in Fig. 6.7. From Fig. 6.7(a), we can see that
the neuron undergoes a Hopf bifurcation (HB) from quiescence to periodic spik-
ing at I; = 9.780 pA/cm?. Moreover, the amplitude of the periodic oscillation
decreases with an increase in the externally applied current, and the periodic oscilla-
tion terminates at I,,; = 154.527 [.LA/CmZ, where another Hopf bifurcation occurs.
Obviously, the left Hopf bifurcation is subcritical from Fig. 6.7(b). The bifurcation
diagrams in Fig. 6.7 were produced using the software package XPPAUT (Ermen-
trout, 2002). The left Hopf bifurcation is considerably important because it is the
dynamical mechanism of neuronal excitability from quiescence to periodic spiking
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Fig. 6.7 Bifurcation diagram of the HH model (Figure 1 in (Xie et al., 2008b)). The thick solid
lines represent stable steady states, while the dotted line represents unstable equilibrium points. The
thin lines represent the maximum and minimum values of stable limit cycles, and the dash-dotted
lines represent the maximum and minimum values of unstable limit cycles. (b) is the magnification
of (a) near the left Hopf bifurcation point.
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(Xie et al., 2008b). As to the right Hopf bifurcation, however, the intensity of the
external applied current generally exceeds the normal physiological range. The HH
model neuron, therefore, is of Type II excitability.

6.3.3 Type I excitability and Type II excitability displayed in the
Morris-Lecar model

The Morris-Lecar (ML) model (Morris and Lecar, 1981) is a variation of the
Hodgkin-Huxley model. Originally it was postulated in order to describe the various
oscillatory response patterns of the Barnacle muscle fiber. The differential equation
and V-dependent functions are

W e maV)V ~Vew) — gV Vi) 80V — Vi) + 1o,
dw Weo (V) — W] o
a Uy

With steady states for the Ca?>* and K* current fractions:

Me(V) = 0.5% {1 +tanh[(V — V) /V2]},
Weo(V) = 0.5 {tanh[(V — V3)/V4] }.

And a transition rate,
T, (V) =1/ cosh[(V — V3) /(2 % V4)].

Here the parameter C denotes the capacity; gc,, gx and g, are the maximal con-
ductance of calcium, potassium and leak, respectively, and V¢,, Vk and V;, are the
corresponding reversal potentials. Iy denotes the total synaptic inputs from the en-
vironment vary slowly with time, and ¢ represents the change between slow and
fast regions of the neuron. All conductances are in mS/cm? and voltages in mV; the
capacity C is uF/cm? and currents in uA/cm?. Here, I is generally the only free
parameter.

One can see that the equation is a two-dimensional description of neuronal spike
dynamics. The first equation describes the evolution of the transmembrane potential
V, the second equation the evolution of a slow recovery variable w, which represents
the open probability for the potassium channel.

We consider the bifurcation diagram of V' versus Iy, and focus our attention on
the dynamical mechanisms of excitability. Interestingly, the ML. model neuron can
undergo a Hopf or SNIC bifurcation depending on two different sets of values of
parameters (Rinzel and Ermentrout 1989, Morris and Lecar, 1981). In these two pa-
rameter sets, except for V3, Vy,2c, and @, the rest of parameters is the same, namely,
Vi=—12,V,=18,gx =8, =2, Vg = —84,V;, = —60, Vc, = 120 and C = 20.
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When V3 =2, Vy = 30, gc, = 4.4 and ¢ = 0.04, the ML model neuron under-
goes a subcritical Hopf bifurcation from the resting state to periodic spiking. The
bifurcation diagram of V versus Iy is shown in Fig. 6.8. Evidently, at Iy = 93.86
the subcritical Hopf bifurcation destabilizes the left rest state to fire. A saddle-node
bifurcation of limit cycles occurs at Iy = 88.29, that is, a stable limit cycle merges
with an unstable limit cycle denoted by the dot line. In particular, at the left and
right handsides of Fig. 6.8 the dynamic mechanisms are similar.
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Fig. 6.8 The bifurcation diagram of the membrane potential V versus Iy (Figure 1 in (Xie et al.,
2005)). The bold solid lines represent stable focus points, and the thin lines correspond to the
maximum and minimum values for membrane potential of periodic spiking, respectively. The dash-
dot line between the two HB bifurcation points is composed of unstable focus points.

40 -
| TN
>
20 ;
1 (_________._--——-—-
0- ‘\HB
—_ 4 \
= .
E 201 ‘ '
> SNIC
_40_
—60 4
-80 —— T
-50 0 50 100 150 200
1, (uA/cm®)

Fig. 6.9 The bifurcation diagram of the membrane potential versus ly (Figure 2 in (Xie et al.,
2005)). The left bold line consists of stable nodes, while the right bold line stable focus points. The
meaning of thin lines is the same as the caption of Fig. 6.8.
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Fig. 6.10 The nullclines in the phase plane of V — w near the SNIC bifurcation (Figure 3 in (Xie et
al., 2005)). The open circles are the unstable fixed points, and the solid circle in (a) is stable node.
The gray circle in (b) is a saddle-node. (a)The unstable invariant manifold is also drawn before the
bifurcation at Iy = 30. (b) At Iy = 39.96 the saddle merges with the node, and the SNIC occurs. (c)
A limit cycle corresponding to the periodic spiking is shown when Iy = 45.
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When V3 = 12, V4 = 17.4, gc, = 4 and ¢ = 1/15, the model neuron transits a
SNIC bifurcation at Iy = 39.96, and the state of the neuron varies from the resting
state to periodic spiking. Figure 6.9 shows the bifurcation diagram of V versus 1.
Clearly, a subcritical Hopf bifurcation occurs at Iy = 97.79, and a saddle-node bi-
furcation of limit cycles at Iy = 116.1. Near the SNIC bifurcation, the change in
relative positions of the V-nullcline and w-nullcline are shown in Figs. 6.10(a)-(c).
As is known, the intersections of these two nullclines are fixed points. We draw
the unstable invariant manifold of the saddle, as seen in Fig. 6.10(a). As to the cal-
culation of the unstable invariant manifold we give a simple description. To begin
with, the eigenvector for the positive eigenvalue of the saddle is computed, and then
the equations are integrated forward in time with initial conditions that are on the
eigenvector and slightly off of the singular point.

Thus we can see that the ML model neuron can undergo Hopf or SNIC bifurca-
tion depending on the values of parameters.

6.3.4 Change in types of neuronal excitability via bifurcation
control

As mentioned above, changes in types of neuronal excitability actually imply
changes in dynamical mechanisms underlying neuronal excitability, that is, varia-
tion in types of bifurcation. Specifically, we convert Type I excitability into Type
II excitability by a washout filter-aided dynamic feedback controller (Xie et al.,
2008a). In other words, such a controller is adopted to create a Hopf bifurcation
before the occurrence of a SNIC bifurcation. It is known that static state feedback
does not apply to problems where the dynamics and the targeted operating point
are uncertain (Hassouneh et al., 2004). Moreover, static state feedback changes the
operating conditions of the open-loop system. This may result in waste of control
energy and also induce degradation of system performance. Fortunately, washout
filters can overcome these difficulties. In fact, a washout filter is a high pass fil-
ter that washes out steady state inputs, while passing transient inputs (Abed et al.,
1994). The use of washout filters ensures that all the equilibrium points of an open-
loop system are preserved in the closed-loop system; namely, their locations are not
changed. In addition, washout filters facilitate automatic following of targeted oper-
ating points, which results in vanishing control energy once stabilization is achieved
and a steady state is reached.

Here, a two-dimensional Hindmarsh-Rose (HR) type model (Tsuji et al., 2007)
is used as a model neuron because it not only can exhibit Type I excitability un-
der appropriate values of parameters but also possesses a set of simple expression
formulas. It is described by the following equations:
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dx—cx x +
dr 3 YA

dy 7x2+dx—by+a
dr c ’

6.5)

where x and y denote the cell membrane potential and a recovery variable, respec-
tively. a,b,c,d and z are parameters. In particular, z represents the external stimulus.
Bifurcation behavior of this model has been explored in detail.

Under a set of parameter values, namely, a = 0.42, b = 1.0, c = 3.0, and d =
1.8, the neuron exhibits Type I excitability as the external stimulus z changes, as
shown in Fig. 6.11. There is a SNIC bifurcation at z = 0.3463, where the neuron
model generates the SNIC bifurcation from quiescence to firing. A subcritical Hopf
bifurcation occurs at z = 2.3420.

3 4

Fig. 6.11 The bifurcation diagram of the HR type model with Type I excitability (Figure 1(a) in
(Xie et al., 2008a)). The thick solid lines denote stable steady states, while the dotted line shows
unstable equilibrium points. The thin lines represent the maximum and minimum values of stable
limit cycles, and the dashed lines are the maximum and minimum values of unstable limit cycles.

We introduce a Hopf bifurcation at zyo = —0.5 via a washout filter-aided dynamic
feedback controller. This makes neuronal excitability change from Type I excitabil-
ity into Type II excitability.

The equations of the two-dimensional HR model with a dynamic feedback con-
troller through a washout filter are given as follows:

R S

@ Ty Tyt

d_y_x2+dx—by+a

dt c ’ (6.6)
dw

= =X 4w,

u=g(Wv), v=x—dsw,



316 Yong Xie, Jian-Xue Xu

where dy > 0 is the reciprocal of the filter time constant, and we set dy = 0.1. v is
the output function of the washout filter.

For the above closed-loop system, in addition to the creation of a Hopf bifur-
cation, our controller can be designed to control the criticality of the bifurcation
(see in the following). It is well known that only the quadratic and cubic terms in
a nonlinear system generating a Hopf bifurcation influence the bifurcation stability
coefficient (Abed and Fu, 1986; Chen et al., 2001). In order to simplify the choice
of control parameters, however, we represent our controller in the following simple
form with only a linear term and a cubic term:

u=K;(x—dw)+ K, (x—dsw)>. (6.7)

Note that introduction of the washout filter to the two-dimensional HR model
does not affect the equilibrium structure of the original system during a control pro-
cess. As we shall see later, the linear control gain K; determines two basic critical
conditions, but has no effect on the criticality of the bifurcation because of no con-
tribution to the bifurcation stability coefficient; the nonlinear control gain K},, on the
other hand, controls the criticality of the bifurcation, but has no influence on the
locations of equilibrium points.

Suppose that a Hopf bifurcation is created at a desired parameter value zg = —0.5
before the emergence of the SNIC bifurcation. For the closed-loop system it has only
one equilibrium point at zgp = —0.5, namely,

()C(),y(), W()) = (X(),y(),xO/df) = (—2.48 1 04, 2.1 0968, —24.81 04).
The Jacobian matrix of the closed-loop system is given as follows.

c(1-x®)+K +3K,(x—dpw)? —c —Kdy—3K,(x—dpw)dy

2xtd _b 0 . (6.8
C C
1 0 —d;

It is clear that the nonlinear control term has no influence on the Jacobian matrix
at the equilibrium point. Thus, the Jacobian matrix becomes

C(] —x2)+K/ —C —Kldf—|

2x+d 2NN (6.9)
[ C
1 0 —d

The corresponding characteristic equation has the following form,
PoA® + 1A%+ pad + p3 =0, (6.10)

where
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po =1,
b 2
p1 :df—l—;—c—i—cx - K,

_ bd;—bK;
o C

P2 —df-c+df-cx2+2x+d—b+bx2,

p3 = dp(2x+d—b+bx?).

If a Hopf bifurcation occurs, the Jacobian matrix of the closed-loop system must
satisfy the basic critical conditions (Chen et al., 2001; Guckenheimer and Holmes,
1997). One is the eigenvalue assignment. Namely, the characteristic equation has
a pair of pure imaginary eigenvalues A; = wyi and Ay = A; = —axi, and the other
eigenvalues have negative real parts at z9 = —0.5. The other is the transversality
condition. That is, the eigenvalues A; and A, cross the imaginary axis with some
nonzero speed at the Hopf bifurcation point (xo, v, wo; o). To avoid solving directly
all eigenvalues, we employ a more convenient and efficient algorithm criterion for
detecting the existence of Hopf bifurcations, which is on basis of the Routh-Hurwitz
stability criterion and described by the coefficients of the characteristic equation
instead of eigenvalues (Liu, 1994).

In this way, the eigenvalues assignment corresponds to the following condtions.

p3 >0,

Ay =p1 >0,
P11 Po

Ay = —0.
p3 D2

Substituting the parameter values and the location of the equilibrium point, we
can get

p3 =0.19935 >0,
K; < 15.90000,
K2 — 26.62042K, + 169.85670 = 0.

There are two solutions for the above equation, namely, K; = 16.01299 and K; =
10.60743. Apparently, only K; = 10.60743 meets the eigenvalue assignment. Next,
we examine if K; = 10.60743 satisfies the transversality condtion, which is written
as

dA;

— | = —62.03510+4.72179K; # 0, namely K; # 13.13804.

Apparently, K; = 10.60743 satisfies the transversality condition. As a result, we
take K; = 10.60743 according to the two basic critical conditions for the occurrence
of the Hopf bifurcation. For a while, let K, = 0, then the bifurcation diagram of the
closed-loop system is shown in Fig. 6.12. As expected, a Hopf bifurcation is created
at zo = —0.5. At the same time, the right Hopf bifurcation is moved to z = 9.656.
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Notice that the created Hopf bifurcation here is subcritcial. Thus, we have made the
neuronal excitability change from Type I excitability to Type II excitability.

6
5]
4]
3]
2]
14

=% 04

_1_:

Fig. 6.12 The bifurcation diagram of the closed-loop system with only the linear control term
K; = 10.60743.

In what follows, we can control the criticality of the created Hopf bifurcation
by the nonlinear control term. At a small neighborhood of a Hopf bifurcation point
the bifurcated periodic solution of the limit cycle has the amplitude of O(g), here,
€ = \/|z—z0|- The asymptotic stability of such a periodic solution is governed by
one characteristic exponent given by a real smooth even function f3(g) = B2 +
Bsge* +--- If B(€) < 0, the periodic solution is asymptotically stable, otherwise it
is unstable. From the expression of B(g), typically, it can be seen that the local
stability of the bifurcated periodic solution, namely, the criticality of the bifurcation
is determined by the sign of 3,, which is called the bifurcation stability coefficient.
Here, we apply the center manifold and normal form theory to derive the closed-
form analytic expression for 3;.

As seen above, after determining the linear control gain K; = 10.60743 according
to the two basic critical conditions for the Hopf bifurcation, the Jacobian matrix of
the closed-loop system becomes a constant matrix. Therefore, we can numerically
compute all eigenvalues of the matirx and their corresponding eigenvectors. In fact,
this is a necessary step in deriving the analytic expression for 8, with respect to K,
in order to employ the center manifold and normal form theory.

The constant matrix is

—4.85923 -3.0 —1.06074
—1.05403 —0.33333 0.0
1.0 0.0 -0.1

The eigenvalues and their corresponding eigenvectors are

A = —1.16241 x 107194 0.19408i,
A = —1.16241 x 107'°—0.19408i,
A3 = —5.29256,
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and
0.08441 +0.16381i —0.96125
vi = | —0.42457—-0.27080i | , v, =v;, v3= | —0.20431
0.84407 0.18512

Here, i is the imaginary unit. Due to very small real parts of A; and A,, the ma-
trix can be considered to have a pair of pure imaginary eigenvalues. Another is
a negative eigevalue. For notational simplicity, let @y = Im(4;) = 0.19408 and
M = A3 = —5.29256. We construct a matrix P as follows:

P = (Re(vy),—Im(vy),v3).

Here, Re and Im mean extracting the real part and the imaginary part of a
complex-valued expression, respectively.
That is,
0.08441  —0.16381 —0.96124

P=|-042457 0.27080 —0.20430 | .
0.84407 0.0 0.18512

Taking the following coordinate transformation,

X X0 X
yl=|Y|+P|Y |, (6.11)
w wo w
we can obtain
b —2.48104 +0.08441X —0.16381Y — 0.96124W

= | 2.10968 —0.42457X +0.27080Y — 0.20430W

y
w —24.81039 4 0.84407X + 01.8512W

Substituting the coordinate transformation into the closed-loop system, and then
making the following transformation, we can get a system under a new coordinate
system as follows:

'd_X_ _@_
dt dt FI(X,Y,W)

A _pr | D pxy,w | (6.12)
dt dt s

L dt L dt |

where P~ is the following inverse matrix of P
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0.20947  0.12671  1.22753
P'=|-039215 345558 1.77737
—0.95509 —0.57777  —0.19511

At (X,Y,W) = (0,0,0) the Jacobian matrix of the new system is

—1.0x10710  —0.19408 3.0x107?
0.19408 0.0 —-1.0x107°
0.0 0.0 —5.29256

We can regard the Jacobian matrix as the following matrix of the real canonical form
by ignoring very small entries,

0.0 —0.19408 0.0
0.19408 0.0 0.0
0.0 0.0 —5.29256

As a result, the Jacobian matrix of the new system has the following property:

okt R oF)
0X Y ow

0 —ay O
JdF? QJF%* OF?
or— ofr o = 0 0. 6.13
X 9Y oW @ (6.15)
0 0 M

L dX Y ow

11(0,0,0)

Here, we can apply the center manifold and normal form theory to derive the
analytic expression for the bifurcation stability coefficient f3,. In fact, by following
the procedures provided in (Hassard, 1981), the bifurcation stability coefficient has
a unified expression, regardless of the detailed form of the transformed system with
a real canonical form, as follows:

Ba(K) = 2Re(<g20<zo>gn ()~ 2)g )]

L ent )]2)L+M (6.14)
3 1mee 2600 2 )

where

( )_1 82F1_82F1+ 82F2+, 0*F*  9*F*  9°F!
80\0) =4\ 9x2 " av2 " oxay '\ oxz " ov2  “oxar ) )’
1

d*F!  9%2F! [9%F? Q%F?
s (a) =7 < axz T or? +l<3x2 o >>
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1 (32F1 J*F! 5 J*F? <82F2 J*’F* _9°F! > >
)

82 (@) =7\ 3% ~ 577 ~Zaxar Tl a2~ 9v T 2axav
g21 (Z07K’l) = G21 (Z()’K") +2G110S11 +G1()1S2()7
1 83F1+ J*F! N J*F? +83F2
8\ 9X3  9X9Y?2 9Xx29y  9Y3
d3F2  93F? d*F!  92F!
+’< IX3 T 9xXov?  ax29y oy ))

G -1 92F! N 92F? L o’ 9°F!
no =3\ oxow T avow " '\ oxow ~avow ) )’

G _1( *F!  9*F? +i< 9%F! N 9*F? >>
00 2\ 0XodW JYOW dYOW ~ 9Xow ) )’
Sy = 7h11/M’
Sy = _hzo/ (M_Ziwo) )
1 [d*F3 9*F3
"3 (aT +W> ’
1 (82173 92F3 ,82F3>

Gz] (ZovK")

» = 2\ 9x2 " ov2  “oxov

As above, all derivatives take their values at (X,Y,W;z) = (0,0,0; —0.5). In this
way, we obtain closed-form analytic expression for 3, as follows:

By = 0.22527 x 10~ + 2Re(0.64645 x 107K, +i0.34531 x 107°K,,).

If K, is a real number with K,, < —17.42357, B, < 0. As a consequence, K,, <
—17.42357 ensures that the periodic solution bifurcated from the Hopf bifurcation is
asymptotically stable, and then makes the Hopf bifurcation change from subcritical
into supercritical. In contrast, if K, > —17.42357, then 8, > 0, and the created Hopf
bifurcation is subcritical.

Let us investigate bifurcation behavior in the case of K,, = —20 to verify the ac-
curacy of our analytic expression for ;. The bifurcation diagram is shown in Figs.
6.13(a) and 6.13(b). Figure 6.13(b) is enlargement of Fig. 6.13(a) near the created
Hopf bifurcation point. From Fig. 6.13(b), it is clear that the created Hopf bifurca-
tion is supercritical. Thus, we can make the created Hopf bifurcation supercritical
via the nonlinear control term with K,, = —20. And we see the structure and loca-
tions of the equilibrium points are not changed. Also, the bifurcation points of the
left (created) and the right Hopf bifurcations are not varied. The bifurcation value
of the left HB is z = —0.5, while that of the right HB is z = 9.656. In other words,
the nonlinear control term only exerts an influence on the criticality of the bifurca-
tions, namely, the bifurcation stability coefficient, but no effect on the structure and
locations of the equilibrium points. Actually, these features can be seen from their
calculation processes and expressions.
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Fig. 6.13 The bifurcation diagram and time series of the closed-loop system with K; = 10.60743

and K, = —20.0. (a) The bifurcation diagram, and (b) is enlargement of (a) near the left Hopf
bifurcation point.
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6.3.5 Bursting and its topological classification

Different ionic mechanisms of bursting may lead to different dynamical mech-
anisms, which in turn determine the neuro-computational properties of bursters
(Izhikevich, 2007), i.e., how they respond to the input. Therefore, much effort is
devoted to studying and classifying the dynamics of bursting.

Most mathematical models of bursting neurons can be written in the slow-fast
form [2] as follows:

d

=),

) (6.15)
= — pg(ry).

dt
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where x represents the fast subsystem responsible for spiking activity, the modifica-
tion of spiking attributes to the role of the slow subsystem y, and 1 << 1 is the ratio
of time scales. Such systems are singularly perturbed system, for which the standard
method for analysis is to set £ = 0 and consider the fast and the slow subsystems
separately. This method is called dissection of neuronal bursting or slow-fast subsys-
tem decomposition (Rinzel, 1985). Therefore, we can treat y as a vector of slowly
changing bifurcation parameters to investigate the dynamical behavior of the fast
subsystem.

Usually, the fast subsystem has a limit cycle attractor corresponding to spiking
for some values of y and a stable equilibrium attractor corresponding to resting state
for other values of y. As y oscillates between the two regions where x exhibits spik-
ing and resting state, respectively, the whole system can burst. Now the key problem
is to make y oscillate. In the simple case the slow subsystem has a limit cycle at-
tractor, which is relatively insensitive to the fast variable, and thus the slow variable
exhibits an autonomous oscillation that periodically drives the fast subsystem dis-
play spiking and the resting state. Such a bursting is called slow wave bursting.
Parabolic bursting (Bertram et al., 1995; Ermentrout and Kopell, 1986; Rinzel and
Lee, 1987; Baer et al., 1995) belongs to this case, for example. The slow subsystem,
however, must be at least tow-dimensional. When the fast subsystem has a bistable
range of resting and spiking states, where the stable equilibrium and limit cycle at-
tractors coexist for the same value of y, a hysteresis loop is created for the slow
variable. Such a bursting is called hysteresis-loop bursting. Square wave bursting
(Rinzel and Ermentrout, 1989;Bertram et al., 1995) is one of this bursting.

Bursting neurons are distinguished qualitatively according to their topological
type (Izhikevich, 2007), which is determined by the two bifurcations of the fast
subsystem: one is from resting state to spiking, and the other is from spiking to
resting state. The former means that the state of the fast subsystem changes from a
stable equilibrium into a limit cyle attractor, the latter denotes the state of the fast
subsystem transforms from a limit cycle attractor into a stable equilibrium.

As we know, an equilibrium has only 4 possible bifurcations of co-dimension 1:
saddle-node bifurcation (fold), saddle-node bifurcation on invariant circle (circle),
supercritical Hopf bifurcation (Hopf) and Subcritical Hopf bifurcation (subHopf),
while also a limit cycle attractor has only 4 possible bifurcations of co-dimension
1 if the fast subsystem is two-dimensional: saddle-node bifurcation on invariant
circle (circle), saddle homoclinic orbit bifurcation (homoclinic), supercirical Hopf
bifurcation (Hopf) and fold limit cycle (fold cycle). Thus, there are 16 different
bifurcation combinations, resulting in 16 different topological types of fast-slow
bursting neurons with 2-dimensional fast subsystems. They can be named after the
bifurcations involved. If the constraint that the fast subsystem is two-dimensional is
removed, then the topological type has 120 all possible types for bursting neurons
(Izhikevich, 2007; Izhikevich, 2000).

The topological types of the three known bursting neurons are as follows.

Square-wave bursting belongs to the fold/homoclinic type. Namely, the fast sub-
system undergoes fold (saddle-node off limit cycle) bifurcation resulting in the tran-
sition from resting state to spiking. After spiking, the fast subsystem undergoes sad-



324 Yong Xie, Jian-Xue Xu

dle homoclinic orbit bifurcation resulting in the transition from spiking to resting.
As to parabolic bursting, it is the circle/circle type because the transition from spik-
ing to resting and back to spiking of the fast subsystem occurs via saddle-node on
invariant circle bifurcation. For elliptic bursting, the fast subsystem undergoes sub-
critical Hopf bifurcation leading to the transition from resting state to spiking. After
that, spiking stops via fold limit cycle bifurcation. Therefore, elliptic bursting is
subHopf/fold cycle type.

6.3.6 Bifurcation, chaos and Crisis

Bifurcation structures and chaos phenomena are frequently observed in experimen-
tal neural pacemakers and theoretical neuron models. Aihara, et al. (1985) find an al-
ternating periodic-chaotic sequence experimentally observed in periodically forced
neural oscillators of giant axons of squids, and demonstrate that such a sequence
can be qualitatively described by the HH model. Matsumoto et al. (1987) discover
that chaotic potential responses could be evoked in periodically forced squid axons
immersed in normal seawater and intermittent chaos appears through a subcritical
period-doubling bifurcation. In addition, Takahashi, et al. (1990) find the periodic
potential responses appear through either tangent bifurcation or type III bifurcation
in the same experimental objects. Ren et al. (1997) claim that they observe period-
adding cascades with or without chaos and period doubling cascades many times in
the experimental neural pacemakers. Shilnikov and Cymbalyuk (2005) investigate
a continuous and reversible transition between periodic tonic spiking and bursting
activities in a model of a heart interneuron from the medicinal leech and find that the
Blue-Sky Catastrophe is the dynamical mechanism for the transition between Tonic
Spiking and Bursting. Also, they show the model can demonstrate co-existence of
a periodic tonic spiking with either periodic or chaotic tonic spiking (Cymbalyuk
and Shilnikov, 2005). Feudel et al (2002) study global bifurcations of the chaotic
attractor in a modified HH model of thermally sensitive neurons, and observe an
abrupt increase of the interspike intervals in a certain temperature region, and iden-
tify this as a homoclinic bifurcation of a saddle-focus fixed point embedded in the
chaotic attractors. Interestingly, Guckenheimer and Oliva (2002) demonstrate the
existence of chaotic solutions in the HH model with its original parameters, which
is previously unobserved dynamics in such a model. Figure 6.14 shows the bifur-
cation diagram of ISI versus the time-scale factor r (Xie et al., 2004b). We can
see a period-adding cascade with chaos as r is decreased from Fig. 6.14. Here, the
firing pattern alternates between periodic bursting and chaotic bursting, which re-
sults from chaos appearance by period-doubling cascades and chaos termination by
saddle-node bifurcations.

An interior crisis occurs at the transition point between chaotic spiking and
chaotic bursting in the HR neuron model, where the change of the attractor size
is sudden but continuous (Xie et al., 2004b). Also, Jin et al. (2006) show a crisis of
interspike intervals in periodically forced HH model. Figure 6.15 shows an interior
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Fig. 6.14 Bifurcation diagram of ISI versus the time-scale factor r (see Fig. 1(b) in (Xie et al.,
2004b))

crisis occurs at the transition point between chaotic spiking and chaotic bursting in
the modified Chay model (Xie et al., 2004b). By the way, although the Chay model
is used to describe the electrical activities of pancreatic 8 cells, and, recently, it is
frequently considered to be a neuron model.

‘interior crisis

ISI

Fig. 6.15 Bifurcation diagram of ISI versus the maximal conductance of the slow K* current g,
in the modified Chay model (see Fig. 5(b) in (Xie et al., 2004b)).
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6.4 Sensitive responsiveness of aperiodic firing neurons to
external stimuli

6.4.1 Experimental phenomena

In a number of neurophysiological experiments about responsiveness of the chroni-
cally compressed dorsal root ganglion (DRG) neurons in rats to drugs, neuroscien-
tists have found that aperiodic firing neurons are more sensitive to external stimuli
than periodic firing neurons (Hu et al., 2000; Yang et al., 2000). To demonstrate
the universality of the sensitive responsiveness, various drugs with different action
mechanisms have been applied to the chronic compression DRG neurons, for ex-
ample, higher Ca?* solution, norepinephrine (NE) and tetracthylammonium (TEA).
Interestingly, all of these drugs can induce this phenomenon of the sensitive respon-
siveness in the experiments.

Let us now give in brief the experimental results on the phenomenon of sensitive
responsiveness (Yang et al., 2000). Here, we only show the responses of chronic
compression DRG neurons to TEA. Spike series from a total of 91 DRG neurons
with spontaneous firing behavior in 25 anesthetized rats were recorded extracellu-
larly. There are 32 periodic firing neurons and 59 aperiodic firing neurons, including
44 with chaotic bursting, 7 with integer multiple firing and 8 with chaotic spiking
patterns, in the 91 DRG neurons. After bath application of 2 mmol/L TEA to the
DRG neurons for 3 minutes, the percentage of periodic and aperiodic firing neurons
exhibiting obvious response are 27.3 and 93.2, respectively. Moreover, the responses
of aperiodic firing neurons are more intensive than those of periodic firing neurons.
Figure 6.16 shows the responses of injured DRG neurons with different firing pat-
terns to TEA. In Figs. 6.16(a)-(d), top panels, middle panels and bottom panels show
the spike trains, the histogram of mean firing rate (bin width 1 second) and the ISI
series, respectively.

From the experiments about the responses of periodic firing neurons and aperi-
odic firing neurons to TEA with different concentration, we observed that the aperi-
odic firing neurons exhibited a gradually enhanced response as the concentration of
TEA was increased from 0.5 mmol/L to 2 mmol/L and 10 mmol/L, while the peri-
odic firing neurons only produced a faint response to 10 mmol/L TEA, as shown in
Fig. 6.17.

From a number of experimental results, we can find that aperiodic firing neurons
respond more easily and intensively than periodic firing neurons to external stimu-
lation of drugs. What mechanisms govern such a phenomenon? Here, we devote our
attention to the study of this problem in terms of dynamical systems theory.
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Fig. 6.16 Responses of injured DRG neurons with different firing patterns to 2 mmol/L TEA (Fig.
1 in (Yang et al., 2000)). (a) There was no response induced by TEA in a periodic firing neuron.
A significant response was induced by TEA in neurons with chaotic bursting (b), integer multiple
firing (c) and chaotic spiking patterns (d).
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Fig. 6.17 Response of a chaotic bursting neuron and a periodic firing neuron to TEA with different
concentration (Fig. 2 in (Yang et al., 2000)). (a) shows a developed evident response of the chaotic
bursting neuron to TEA, and the response enhanced gradually as the concentration of TEA was
increased from 0.5 mMol/L to 2 mMol/L and 10 mMol/L. (b) shows the periodic firing neuron had
just a little response to 10 mMol/L TEA.

6.4.2 Nonlinear mechanisms

Actually, many neuron models are described by a set of first-order ordinary differ-
ential equations. Quite frequently some models are chaotic systems under a cer-
tain parameter range. As we know, a key development describing chaotic systems
is periodic orbit theory. Periodic orbits open a door to the understanding of the
chaotic dynamics. It has now been a widely accepted notion that unstable periodic
orbits (UPQO’s) constitute the most fundamental building blocks of a chaotic system
(Schmelcher and Diakonos, 1998; Davidchack and Lai, 1999; So et al., 1996, 1997).
Theoretically, there are the infinite number of UPO’s embedded in a chaotic attrac-
tor. Moreover, these UPO’s reveal the skeleton of the chaotic attractor because they
are dense in it. As a result, the UPO’s carry essential information concerning charac-
teristic features of the chaotic system, and allow the calculation of many dynamical
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invariants of physical interest like Lyapunov exponents, fractal dimensions and en-
tropies of the attractor by knowing their positions and properties (Cvitanovic,1998;
Auerbach et al., 1987; Lathrop and Kostelich, 1989). This reflects the importance of
the UPO’s for the analysis and decoding of the dynamics on the attractor. Therefore,
UPO’s seem to be the optimal practical tool for the description of chaotic systems.
More recently, the theory of UPQO’s has been applied to understand the mechanism
of neural coding and decoding (So et al., 1998). This is the very reason why UPQO’s
is used to characterize the activity of aperiodic firing neurons in this study. We use
the recurrence method to compute the distribution of UPQ’s at every period, which
denotes how often a chaotic trajectory visit UPO’s with the same period. Although
this method was proposed before a decade and more, it is sufficient enough for our
purpose.

First, we investigate a celebrated neuron model, the HR model, and reveal the
dynamical mechanisms for the sensitive responsiveness of aperiodic firing neurons
to external stimuli. And then we turn to the modified Chay model, and find the
phenomenon of sensitive responsiveness also occurs in this model. By the way, our
goal is to choose these two models to interpret the dynamical mechanisms for the
phenomenon of sensitive responsiveness, but not use them to model the injured DRG
neurons in rat.

It is well known that the neuronal firing pattern can be changed after the appli-
cation of a drug. This is because most of drugs affect the function of a neuronal
system by varying the efficacy of various ion channels in the membrane. Here, we
fix I = 3.0 and vary r to reflect the action of external stimulation in the HR model,
as seen previously.

The bifurcation diagram of ISI versus r is shown in Fig. 6.18. Figure 6.14 is the
enlargement of Fig. 6.18 over the range of [0.002 7, 0.005 5]. From Fig. 6.18, we can
see the firing pattern at first undergoes from simple period spiking to chaotic firing
via a period-doubling sequence, and then a saddle-node bifurcation abruptly termi-
nates this chaotic firing in the form of intermittency, and reorganizes simultaneously
period-3 bursting with the decrease of r. After that, the alternation between period-
doubling sequence and saddle-node bifurcation is repeated and at the same time a
narrow chaotic firing region occurs between them, as seen in Fig. 6.14. Finally, the
chaotic firing region disappears after a certain periodic bursting.

From Fig. 6.18, we see clearly that periodic spiking and period-2 bursting exist
in a broad range of r, respectively. Thus, they can retain easily their corresponding
firing patterns under a small perturbation of r. As r is reduced, the chaotic firing
range and the periodic bursting range appear alternately until the disappearance
of the chaotic firing range. In Fig. 6.14, we can find that a saddle-node bifurca-
tion terminates a chaotic regime, and simultaneously reorganizes a new periodic
bursting whose number of firing will increase by one. Furthermore, the size of
a chaotic regime is much smaller than that of the adjacent periodic regime. The
larger the firing number of a periodic bursting is, the smaller the size of the adjacent
chaotic regime becomes. Evidently, a period-doubling cascade leads to a chaotic
regime, and a saddle-node bifurcation terminates the chaotic regime via intermit-
tency. Namely, there are bifurcation points at the two ends of the chaotic regime.
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Therefore, an aperiodic firing neuron located at a chaotic range crosses bifurcation
points much more easily than the corresponding periodic firing one under a small
perturbation of 7.

180
1604 3

Fig. 6.18 Bifurcation diagram of ISI versus the time-factor r within the range of [0.001, 0.05]
(Figure 1(a) in (Xie et al., 2004b)).

It is well known that qualitative variations of dynamical behavior of a system
occur at bifurcation points as control parameters are changed. This implies the fir-
ing behavior varies qualitatively over bifurcation points for the HR model. Conse-
quently, an aperiodic firing neuron is more sensitive than a periodic firing one under
a small perturbation of r. It follows that various bifurcations should be one of dy-
namical mechanisms for the sensitive responsiveness of aperiodic firing neurons to
external stimuli.

To order to demonstrate whether such a phenomenon of sensitive responsiveness
of aperiodic firing neurons occurs in biophysical models, let us to investigate a pan-
creatic §-cell model. Since physiological evidence shows the intracellular calcium
concentration Ca®>* changes rather quickly during depolarization, it may not be a
low dynamic variable. Thus, we adopt the modified Chay model, which is based on
the hypothesis of Ca>* -activated K* channel (Chay et al., 1995). The equations are
listed as follows:

av
_CmE = g,mihw(v—V1)+g1(n4(V—VK)+gpP(V_VK)
+gL(V_VL)a
d_n _ nw—n’ (6.16)
dt n
d_p _ m3 heo (Vg — V) —kCP/(1 _P)(] _ )2
0 T pr),

where V is the membrane potential, # is the gating variable, p is a slow variable
which denotes the fraction of the available Ca®t -sensitive KT channels at time
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t. The maximal conductance of the slow K' current g, is chosen as the control
parameter.

The bifurcation diagram of ISI versus g, is shown in Fig. 6.19. Figure 6.15
is the enlargement of Fig.6.19 in the range of [10.5, 13.0]. From Figs. 6.19 and
6.15, we can see that dynamical behavior of the Chay model is similar to that of
the HR model. As g, is increased, the firing pattern undergoes a period-doubling
cascade and changes from periodic spiking to chaotic spiking, and then becomes
suddenly chaotic bursting via an interior crisis. With further increasing g, the
firing pattern transforms from chaotic bursting into period-7 bursting via an in-
verse period-doubling cascade. Hereafter, chaotic firing regimes and periodic burst-
ing regimes appear alternately, as shown in Fig. 6.15. Saddle-node bifurcation and
period-doubling bifurcation dominate this variation. Moreover, they are at the left
and right of chaotic regimes, respectively. Finally, the system terminates the firing
behavior at about g, = 26.855. In addition, it is noted that the number of spikes of
periodic bursting decreases by one if only the system strides over a chaotic regime.
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Fig. 6.19 Bifurcation diagrams of ISI versus g, with g, € [8, 27] (Figure 5(a) in (Xie et al.,
2004b)).

As seen in Fig. 6.15, the smaller the firing number of a periodic bursting is, the
narrower the chaotic regime adjacent to this periodic bursting is. This is contrary
to the case of the HR model. The fact holds, however, that is, the size of chaotic
regime is much smaller than that of the adjacent periodic regime. Aperiodic firing
cells, therefore, get across bifurcation points more easily than periodic firing cells
do under a small perturbation of g,. In other words, aperiodic firing cells exhibit a
significant change more easily than periodic firing cells when subjected to a small
perturbation of g,. Hence, various bifurcations remain still one of mechanisms for
sensitivity of aperiodic firing cells to external stimulation.

Now let us turn to the case of crisis. In fact, crisis phenomena occur in almost
all chaotic systems. There should be crisis phenomena emerging in chaotic neuron
models. Generally speaking, there are three different types of crises (Grebogi et al.,
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1986, 1987), i.e., attractor merging crisis, interior crisis, and boundary crisis, where
a chaotic attractor undergoes a sudden change as a function of the control parame-
ters. For attractor merging crisis, a multi-piece chaotic attractor merges together to
increase in size smoothly. Interior crisis means a chaotic attractor increases in size
abruptly. If a chaotic attractor suddenly vanishes, it is considered a boundary crisis
or an exterior crisis occurs.

In the following we focus our attention on the case of interior crisis. As to exterior
crisis, since it is related to abrupt disappearance or appearance of a chaotic attractor,
without any doubt, there is a qualitative variation in the dynamical behavior of a
system as the control parameter varies. Generally, an attractor merging crisis appears
in many systems with symmetries, where two (or more) chaotic attractors merge to
form a single chaotic attractor, and it also leads to an abrupt change in dynamical
behavior. Thus both of exterior crisis and attractor merging crisis can result in the
sensitive responsiveness of aperiodic firing cells to external excitation if they exist.

Now, we investigate the change in the firing pattern of the modified Chay model
before and after the interior crisis. It is can be seen from Fig. 6.15 that there is a
sudden increase in the size of a chaotic attractor as the parameter g, passes through a
critical value, as denoted by an arrow. The incremental portion comes from a chaotic
saddle that already exists for parameter values below the crisis. This chaotic saddle
is an invariant and nonattracting set having horseshoe-type dynamics and resembles
the new portion of the larger attractor just above the crisis in phase space. When the
crisis occurs, the chaotic saddle collides with the chaotic attractor and becomes part
of the chaotic attractor at the crisis (Kim and Stringer, 1992). This is the very origin
of the abrupt enlargement of the chaotic attractor via the interior crisis.

We take g, = 10.9 below the crisis and g, = 11.0 above the crisis. They corre-
spond to the firing states of chaotic spiking and chaotic bursting, respectively. The
membrane potentials are shown in Fig. 6.20. The upper panel is before the crisis,
while the lower one is after the crisis. Clearly, there is an evident difference between
membrane potentials, namely, for chaotic spiking there is no clear underlying slow
wave while for chaotic bursting an unpredictable number of spikes ride on the slow
wave. Figure 6.21 shows the first return maps of the ISI series in these two cases,
where the sizes and structures of the chaotic attractors are completely different. The
big dot and the small dot denote respectively the cases of g, = 10.9 and g, = 11.0.
Furthermore, the distributions of UPQO’s are calculated from 30 000 ISI’s before and
after the interior crisis, respectively. The embedding dimension is chosen as d = 3
and time delay as T = 1. There is a significant difference in the distribution of UPO’s
between g, = 10.9 and g, = 11.0, as seen in Fig. 6.22. Interestingly, the number of
UPQ’s increases suddenly at period 7. This is because the ISI series of after the cri-
sis is dense near the period-7 UPO’s. Thus, if an aperiodic firing cell resides near an
interior crisis, also it can exhibit the sensitive response to external stimulation.

To sum up, various bifurcations and crises are possible mechanisms for sensitive
responsiveness of aperiodic firing neurons to external excitation. They all can result
in obvious changes in the firing activity of an aperiodic firing neuron to external
weak stimulation. It is worth while to say that there are some periodic windows in
some chaotic regimes, for those periodic ones are very narrow in scale and do not
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form the leading pattern of periodic bursting in the HR model, the influence of them
is negligible.
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Fig. 6.20 Membrane potentials before and after the interior crisis (Figure 6 in (Xie et al., 2004b)).
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Fig. 6.21 First return maps of ISI before and after the interior crisis (Figure 7 in (Xie et al., 2004b)).

Up to now, the phenomenon of the sensitive responsiveness that aperiodic fir-
ing neurons are more sensitive to external stimulation has been investigated using
dynamical systems theory, and the dynamical mechanisms underlying such sensi-
tive responsiveness are revealed. Bifurcations and crises are considered as possible
mechanisms. We think that the sensitivity of neurons with aperiodic firing activity
to external stimulation reflects a universal property of excitable cells with determin-
istic chaos. The phenomenon of sensitive responsiveness can provide curing some
difficult diseases with important directions, for example, the time instant and dose
of taking drugs. That is, we can expect to control and cure some diseases with some
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minimum doses of drugs at appropriate instant of time making use of the sensitive
phenomenon.
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Fig. 6.22 Comparison of the distribution of UPOs computed from 30 000 ISI’s before and after
the interior crisis, respectively (Figure 8 in (Xie et al., 2004b)).

6.5 Synchronization between neurons

6.5.1 Significance of synchronization in the nervous system

Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization
(Gray et al., 1989). Now it is widely considered that the synchronous oscillation
plays a role in feature binding, neuronal communication and motor coordination
(Singer, 1993; Fries, 2001; Schnitlzer and Gross, 2005). Particularly, feature bind-
ing denotes how a large collection of coupled neurons combines external signals
with internal memories into new coherent patterns of meaning. An external stimulus
spreads over an ensemble of coupled neurons, building up a corresponding collec-
tive state. Thus, the synchronization among many coupled neurons is the basis of
a coherent perception. The synchronous oscillation, however, can be modulated by
task constrains, such as attention. To sum up, the neural synchronization may be the
important mechanism of the information integration in the particular cortical area or
between different cortical areas.
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6.5.2 Coupling: electrical coupling and chemical coupling

Neuron communication is completed via synapses (Michael and Bennett, 2006).
The synapse is a unique junction that allows for the transfer of neural information
from one neuron to the next. A synapse is usually located between a presynap-
tic axon and a postsynaptic dendrite. There are two types of synapses, electrical
and chemical. Electrical synapses are actually gap junctions, which are clusters
of intercellular channels that connect the interiors of coupled neurons via special
protein channels (Rozental et al., 2001). This allows for the direct flow of ions
from one neuron to another and rapid signal transmission between the neurons.
Generally this communication is unidirectional, but bidirectional communication
is also possible. We often refer to the coupling scheme of neurons coupled in this
way as electrical coupling. These synapses are therefore largely found in smooth
and cardiac muscle and in certain regions of the brain. On the other hand, chemi-
cal synapses are specialized junctions through which neurons signal to each other
and to non-neuronal cells such as those in muscles or glands ( more detail see
http://en.wikipedia.org/wiki/Chemical synapse). This type of synapses is crucial to
the biological computations that underlie perception and thought. Since a chemi-
cal synapse has a synaptic cleft, neurons must utilize a form of the neurotransmit-
ter release to achieve neuron communication. Thus this communication is usually
unidirectional. Compared to chemical synapses, electrical synapses conduct nerve
impulses faster, but unlike chemical synapses they do not have gain.

Synchronization between neurons coupled by electrical or chemical synapses has
been observed experimentally (Neiman and Russell, 2002; Elson, 1998). Now there
are a large number of scientific literatures devoted to the study of synchronization
mechanisms between coupled neuron models. Actually, there may be no connec-
tion between neurons in different brain regions. Many physiological experiments of
brain activity, however, show that synchronous oscillation to the same stimulation
can appear in different brain regions (Neiman and Russell, 2002). This means that
the synchronization can also occur in pairs of noncoupled neurons.

Since synchronization of electrically coupled neurons has been studied exten-
sively, we here show synchronous behavior of chemically coupled HR model neu-
rons (Wu et al., 2005). Specially, we consider two identical HR model neurons with
reciprocal synaptic connections. The differential equations of the coupled system
are given as

dx; i+ V.
ﬁ:yi_ax?""bx%_Zi‘f'Iext"i‘es xl—i_—c )
dt l—l—exp(xj;xo)

0
dv; 6.17
% :c—dx,z—yi, ©17)
dz

i rs(xi —xo) —zi] -
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Fig. 6.23 Figs. (a) and (b) are the time courses of membrane potential of two neurons for excitatory
synapse. (a) irregular activity for e, = 0.03, (b) period 1 antisynchrony for e; = 0.3, respectively.
Figs. (c) and (d) are the time courses of membrane potential of two neurons for inhibitory synapse.
(c) full antisynchrony for e; = —0.45, (d) full synchrony for e, = —0.9(Figure 1. in (Wu et al.,
2005)).
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Here, i=1, 2, j =2, 1, and i # j. In the numerical simulation, we take a = 1.0,
b=30,¢c=1.0,d =50, s =40, r =0.006, xp = —1.56, and I,y = 3.0. ¢ is
the strength of the synaptic coupling, and V, = 1.4 is the synaptic reverse poten-
tial which is selected so that the currents injected into the postsynaptic neuron are
always negative for inhibitory synapses and positive for excitatory synapses. Since
each neuron must receive an input every time the other neuron produces a spike, we
set Yy = 0.01 and X, = 0.85.

The chemical synapse is excitatory for e; > 0 and is inhibitory for e; < 0. The re-
sults show that two neurons are irregular oscillation with small excitatory coupling
strength, and are in full antisynchrony for enough excitatory coupling strength, as
shown in Figs. 6.23(a) and (b). Interestingly, these results are contrary to traditional
view. For the synchrony course of two coupled neuron with inhibitory synapse, the
oscillation of the two neurons is irregular for small coupling intensity, and the phase
difference between the two neurons increases gradually with coupling strength in-
creasing till e; = —0.45 at which the phase difference are biggest and the two neu-
rons exhibit full antisynchrony, see Fig. 6.23(c). As the intensity of inhibitory cou-
pling increases, the phase difference between neurons decreases. The two neurons
are in full synchronization for e; = —0.9, as seen in Fig. 6.23(d).

Our results show that excitatory synapses can antisynchronize two neurons, and
weak or moderate inhibitory synaptic coupling can antisynchronize two neurons
too, but strong inhibitory synapse can foster phase synchrony of two neurons. In
(Neiman and Russell, 2002), authors show that synchronization of nonidentical neu-
ronal oscillators which are not coupled can still be achieved via a specific mecha-
nism of noise-induced slow dynamics. In addition, note that a common signal in-
cluding noise can induce full synchronization or phase synchronization in the two
uncoupled neurons.

6.6 Role of noise in the nervous system

6.6.1 Constructive role: stochastic resonance and coherence
resonance

Noise permeates every level of the nervous system, from the perception of sensory
signals to the generation of motor responses, and poses a fundamental problem for
information processing (Faisal et al., 2008). In particular, external sensory stim-
uli are intrinsically noisy because they are either thermodynamic or quantum me-
chanical in nature. For example, all forms of chemical sensing (including smell and
gustation) are affected by thermodynamic noise because molecules arrive at the re-
ceptor at random rates owing to diffusion and because receptor proteins are limited
in their ability to accurately count the number of signalling molecules. Now it has
been widely considered that neurons can use a phenomenon of stochastic resonance
(SR) to detect weak signals in information processing (Longtin and Bulsara, 1991;
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Chialvo et al., 1997; Douglass et al., 1993; Levin and Miller, 1996; Russell et al.,
1999; Longtin, 1993b, 1997; Longtin and Hinzer, 1996 Douglass, 1993; Levin and
Miller, 1996; Moss et al., 2004; Braun et al., 1994; Gammaitoni et al., 1998; Wellens
et al., 2004).

SR is a phenomenon in which a nonlinear system is subjected to a periodic modu-
lated signal so weak as to be normally undetectable, but it becomes detectable due to
resonance between the weak deterministic signal and stochastic noise (Gammaitoni
et al., 1998). In other words, stochastic noise enhances a weak input signal. Gen-
erally, a system embedded in a noisy environment acquires an enhanced sensitivity
towards small external time-dependent forcings by the mechanism of SR, when the
noise intensity reaches some finite level. Many scientists, therefore, think that the
biological sensory system utilizes this phenomenon to detect emergent signals from
outer environment. In fact, the neurophysiological experiments on SR have been
conducted, three popular examples of which are the mechanoreceptor cells of cray-
fish, the sensory hair cells of cricket and human visual perception (more detail see:
http://www.scholarpedia.org/article/Stochastic_resonance).

Simultaneously, a phenomenon of coherence resonance (CR) has also attracted
much interest in the fields of neuroscience and physics (Pikovsky and Kurths, 1997).
CR is sometimes called autonomous stochastic resonance (ASR) (Longtin, 1997),
and refers to a phenomenon in which addition of certain amount of noise in excitable
system makes its oscillatory responses most coherent without any weak signal. Thus
a coherence measure of stochastic oscillations attains an extremum at optimal noise
intensity. Theoretically, CR can occur in excitable systems such as FHN model and
biophysical neuron models. Actually CR has been demonstrated in an experimental
neural pacemaker (Gu et al., 2002).

Moreover, there exists suprathreshold stochastic resonance (SSR), which is a
variant of SR that occurs for a specific set of conditions that are somewhat different
from those of SR (http://www.scholarpedia.org/article/Suprathreshold stochastic_res
onance). Like SR, SSR describes the observation of noise enhanced behaviour in
signal processing systems. Unlike conventional SR, SSR does not disappear when
the signal is no longer subthreshold. SSR has also been demonstrated in integrate-
and-fire neurons in the context of other noise-based enhancement effects, and satu-
ration. In recent modelling studies SSR has been observed in a model of the electri-
cally stimulated auditary nerve.

6.6.2 Stochastic resonance: When does it not occur in neuronal
models?

We reported that subthreshold oscillations could hinder the detection of a weak sig-
nal via SR in neuronal systems (Gong et al., 1998). Through the FHN model and
the Chay model, we have studied their subthreshold oscillations in certain parame-
ter regimes, and we have found that the existence of subthreshold oscillation could
hinder the detection of weak signals for neurons. It seems more difficult to say that
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SR does not occur than to find it, because one can not check for every one of the
combinations of the amplitude and the frequency of a stimulus as well as the noise
intensity in the periodic driven stochastic excitable cell model; however, from our
definition and calculation, a conclusion can be drawn that SR will not occur when
the effect of the subthreshold oscillation is very large compared with that of a pe-
riodic stimulus. Consequently, a weak signal whether periodic or aperiodic (finite
bandwidth) can not be amplified if it is overwhelmed by the subthreshold oscillation.

We note that the effect of the subthreshold oscillation can easily be neglected,
not only because it exists in a very small parameter range with a very small ampli-
tude, it can also bring a gamma-like distribution of spontaneous discharges. Under
a periodic stimulus, neurons having the subthreshold oscillation may also exhibit a
multimodal structure in the ISTH, a lattice form in the return map, and the evolu-
tion of the height of multi-peaks to individual maxima. All these were recorded in
neurophysiological experiments without paying attention to it.

The excitable cell model in our study seems robust to external perturbations
(stimuli). To get a stable performance, robustness is an essential quality when de-
signing a real weak signal amplifier based on SR. However, this also brings much
trouble if the system happens to work in the regime of subthreshold oscillation,
which greatly degrades the performance of the amplifier to enlarge weak signals via
SR.

The positive role played by subthreshold oscillations in encoding certain stimuli
via the mechanism of ASR was highlighted recently where it acted as the periodic
forcing. To our knowledge, we are the first to report the negative role played by
the subthreshold oscillation on SR phenomenon. As a result, if we make use of it to
encode certain stimuli via ASR, the subthreshold oscillation should be strengthened.
On the other hand, if we detect weak signals via SR, it should be got rid of.

6.6.3 Global dynamics and stochastic resonance of the forced
FitzHugh-Nagumo neuron model

We consider the periodically forced FHN neuron model in the following form:

dv

e—=vv—a)(l—v)—w,
dfvf (6.18)
I =v—dw—b+rsin(f).

The variable v is the fast voltage-like variable and w is the slow recovery variable.
We fix the values of the constants to € = 0.005, d = 1.0, and 8 = 7.5. Here the slow
variable of the neuronal model is driven by the external weak signal; the reason for
this is to allow comparison with the results obtained by other scholars.

We show that the small-amplitude subthreshold periodic oscillation and the large-
amplitude suprathreshold periodic oscillation coexist commonly in some parameter
regions of the forced excitable FHN neuron model (Gong and Xu, 2001), as shown
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in Fig.6.24 (Figs. 3(a) and (b) in (Gong and Xu, 2001)). To address the question, a
white Gaussian noise is added on the second equation. We find that the random tran-
sitions induced by noise between the subthreshold oscillation and the suprathreshold
oscillation are the essential mechanism underlying stochastic resonance studied by
us. The signal-to-noise ratio (SNR) as a function of noise intensity D is shown in
Fig. 6.25 (Fig. 7 in (Gong and Xu, 2001)). Clearly, the SNR increases with noise
intensity D, reaches a maximum, and decreases again, displaying the typical feature
of stochastic resonance. This kind of bistability was also found in the HH neuron
model with time-dependent sinusoidal stimulation, but stochastic resonance was dis-
cussed only in the region where the periodically forced HH neuron model has one
attractor, a stable nonfiring state. It is no doubt that the appearance of such dynamic
bistability should exist in other forced excitable neuronal models such as the ML
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neuron model and the Chay neuron model. Moreover, such bistability has been ob-
served experimentally in neurons. Therefore our results may help us to understand
stochastic resonance in these neuron systems.
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Fig. 6.25 Signal-to-noise ratios versus noise intensity D. The units of the axes are arbitrary.

In comparison with the previous studies about stochastic resonance, our work
shows that stochastic resonance of the excitable neuronal model is related to the
dynamic bistability. Furthermore, the transitions induced by noise between the two
dynamic oscillation are studied by us. The mean of the return time and the mean-
to-variance ratio of the pulse number distributions are calculated in our works, the
results suggest that these values can serve to distinguish our case from the previous
studies about stochastic resonance in the typical bistable nonlinear system and the
excitable neuronal model. Moreover, it is interesting to note that for our case the
external signal can be regarded not only as a subthreshold stimulation but also a
suprathreshold stimulation, thus our studies also extend the classical stochastic res-
onance which is used to detect a subthreshold signal to a new range that can be used
to detect suprathreshold signal for neurons.

Through comparing the stability of the firings of the FHN neuron model with
smooth basin boundary and that with fractal basin boundary, we can draw the con-
clusion that the stability of firings of the forced FHN neuron with fractal basin
boundary can be changed easily under the small noise perturbation. Figure 6.26
exhibits that the basin boundary between the two coexistent attractors has a frac-
tal structure, and it is verified by the further calculation about the dimension of the
basin boundary. This result suggests that in order to maintain the stability of firing
state subjected to random perturbations, the neuron model should be operated in the
region where the basin of attraction is smooth. The result also suggests that when
we study the dynamic behavior of some typical neuronal models, much attention
should be paid to the global dynamics of these systems. As shown in the present
studies, the global characteristics may have significant effects on some issues we
are interested in.
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(Figure 15 in (Gong and Xu, 2001)). The black dots represent the basin of attraction of the sub-
threshold oscillation, the other region is the basin of attraction of the suprathreshold oscillation.
The units of the v and w are arbitrary.

6.6.4 A novel dynamical mechanism of neural excitability for
integer multiple spiking

We show that saddle-node on invariant circle (SNIC) bifurcation is a novel dynam-
ical mechanism for integer multiple spiking (Xie et al., 2004a), and a neuron with
integer multiple spiking may employ the phenomenon of stochastic resonance to
detect external weak signals and transmit neural information. Integer multiple spik-
ing (IMS), here, is seemingly random firing behavior whose interspike interval his-
togram (ISIH) exhibits multimodal structure with peaks at integer multiples of a
basic interspike interval (ISI). Furthermore the amplitude of the peaks decays with
increasing ISI except for the first few peaks, and the return map of ISI series has
a crystal lattice structure. Such a phenomenon is referred to as stochastic phase
locking or skipping by Longtin (Longtin, 1995), it has been already observed in a
variety of neurophysiological experiments. Most recently, Xing and Hu et al. (2001)
observed the IMS in spontaneous discharge from injured dorsal root ganglion neu-
rons. Actually, this special kind of firing pattern was found earlier in the auditory
fibers of squirrel monkey and of the cat retinal ganglion cells and primary visual
cortex, and mechanoreceptor of the macaque monkey and crayfish when subject to
periodic stimulus (Gammaitoni et al., 1998).

The dynamical mechanisms of neural excitability for the IMS involved only Hopf
bifurcation (including supercritical and subcritical) in the existing studies. Since
there exist two major dynamical mechanisms of neural excitability, i.e., SNIC and
Hopf bifurcations, we want to investigate whether a model neuron near SNIC bifur-
cation can exhibit the firing behavior of the IMS.
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There are various noise sources for a neuron, such as ionic channel conductance
fluctuations, synaptic fluctuations and thermal noise. In general, therefore, the noise
component can be described using Gaussian white noise. Since the ML model under
a set of parameter values can undergo a SNIC bifurcation from the rest state to
repetitive spiking, here, we utilize this model to simulate the IMS when the model
neuron is subjected to a subthreshold periodic stimulus and Gaussian white noise.

In the following calculation, we take parameter values: V; = —1.2, V, = 18,
Va=12,Vu=174,3c. =4, gk =8, g1 =2, Ve, = 120, Vg = =84, VL, = —60,
¢ = 1/15and C = 20. The bifurcation diagram of the membrane potential versus Iy
is shown in Fig. 6.9. This model neuron transits a SNIC bifurcation at Iy = 39.96,
and the state of the neuron changes from the rest state to repetitive spiking. A sub-
critical Hopf bifurcation (HB) occurs at Iy = 97.79, and a saddle-node bifurcation
of limit cycles occurs at Iy = 116.1. Here, we are only interested in the dynamical
mechanism of excitability from the rest state to repetitive spiking, namely, the SNIC
bifurcation.

As stated above, a subthreshold periodic stimulus /; sin(27 ) and noise & ()
are added up to the right hand of the first equation to produce the IMS. Since
I sin(27 ft) is subthreshold, it alone is insufficient to evoke firing of the neuron. The
&(¢) is chosen as a Gaussian white noise with the statistical properties as (£ ()) =0
and (& (¢)&,(¢)) =2D3(t — 1), where D is the noise intensity, and & is the Dirac-
function.

We fix the constant current fy = 37 A/cm?, the frequency of the stimulus f = 10
Hz, and the amplitude of the stimulus /; = 8 uA/cmz, which is subthreshold one.
For a while the intensity of noise is chosen as D = 130. The stochastic Runge-Kutta
algorithm proposed by Honeycutt is used to integrate the stochastic ML mode with
the integration time step of 0.1 msec. A realization of this stochastic model is im-
plemented, and the time course of the membrane potential is shown in Fig. 6.27(a).
Clearly, the firing occurs near a preferred phase of the stimulus, but there can be a
random number of periods skipped between two successive firings. In other words,
noise can produce stochastic phase locking in the ML model with a subthreshold
periodic stimulus in the vicinity of the SNIC bifurcation. Figure 6.27(b) shows the
series of ISIs. We can see that the ISIs are concentrated at integer multiples of the
stimulus period of 100 msec and exhibit a structure of distinct layers. The peaks of
the ISIH decay exponentially except for the first two peaks, as seen in Fig. 6.2(a).
Furthermore, the width of the ISTH peaks determines the degree of phase locking:
sharp peaks correspond to a high degree of phase locking, i.e., a narrow range of
phases of the periodic stimulus during which firing preferentially occurs. The re-
turn map of the ISI series has a crystal lattice structure, as shown in Fig. 6.2(b).
These all exhibit the major features of the IMS observed in the neurophysiological
experiments. It follows that the firing behavior of the IMS is simulated successfully
by use of the ML under the action of subthreshold periodic stimulus and Gaussian
white noise. SNIC bifurcation, therefore, is a novel dynamical mechanism of neural
excitability for the IMS.

Evidently, the deterministic ML model is not a bistable system near the SNIC bi-
furcation. To a certain extent, however, the stochastic ML model is a nearly bistable
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Fig. 6.27 The simulation of Integer multiple spiking in the stochastic ML model (Figure 4 in
(Xie et al., 2004a)). The first 200 msec data is discarded to avoid transient. (a) The time series of
membrane potential. (b) The ISI versus the series number of ISI.

system, i.e., noise-induced bistablity. It follows that the SR can be characterized by
the ISTH, which corresponds to the residence time histogram (RTH) of a bistable
system. Figure 6.28 shows the height of the first three peaks in the ISTH computed
from 20,000 ISIs as a function of noise intensity D. We can see that a change in
the height of the second (or third) peak by varying the noise intensity: from a small
peak at low noise intensity, going through a maximum at an intermediate noise in-
tensity and decreasing again at a high noise intensity. An optimal noise intensity
can be found at where the maximum is located. This phenomenon is a signature of
a resonance (Longtin, 1993b; Wiesenfeld and Moss, 1995), and it is known as SR,
which is nonlinear cooperative effect in which a weak periodic stimulus entrains
large-scale environmental fluctuations, with the result that the periodic component
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is greatly enhanced. Therefore, neurons may make use of the SR phenomenon to
detect weak signals and transmit neural information, in which the noise plays a con-
structive role.

In summary, the IMS occurs in the vicinity of a SNIC bifurcation. This point
is different from the existing investigations in which the IMS was obtained near
a Hopf bifurcation. Hence, the SNIC bifurcation is a novel dynamical mechanism
of neural excitability underlying the IMS. Besides, we have investigated stochastic
resonance in the ML model neurons near the SNIC bifurcation. Neurons may make
use of the special firing behavior of the IMS to detect weak signals and transmit
neural information.
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Fig. 6.28 Height of the first three peaks in the ISIH as a function of noise intensity D (Figure 5 in
(Xie et al., 2004a)).

6.6.5 A Further Insight into Stochastic Resonance in an
Integrate-and-fire Neuron with Noisy Periodic Input

To check whether double SR occurs in an integrate-and-fire (IF) neuron with input
noise, a further insight into SR of the IF neuron is made. Since the IF neuron is one
of the simplest neuron models, it is frequently used to get qualitative characteristics
about SR. As we know, the noise enters the neuron in two ways, i.e. as the input
noise, or as the threshold noise. The former causes the membrane voltage to fluc-
tuate, while the latter causes the threshold to fluctuate. For the input noise, Bulsara
et al. (1995) studied the cooperative behavior between the noise and the periodic
stimulation in a simplified version by the method of mirror image; Shimokawa et
al. (1999, 2000), Plesser and Geisel (1999) studied the SR based on numerically
calculating the mean first passage time, which is also named as interspike interval
(IST) in the background of neural discharge. As for the threshold noise, Barbi et
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al. (2003) recently reported the double SR, and they stressed that it is interesting to
check whether the double SR can be observed in the case of the input noise. Inspired
by them, we are dedicated to investigating whether the double SR occurs in the IF
neuron with the input noise, and clarify the comparison between the two cases.

We consider the IF neuron described by the following equation:

d‘;gt) — _%+H+ASin(2ﬂt/T+(p0)-}-o'§(t), V(t) SSO,

V() =V, if V(t)=5So

(6.19)

where V is the membrane potential; Sy is the constant firing threshold; Vy < Sg rep-
resents the post-discharge resetting potential; T represents the characteristic mem-
brane charge-discharge time; (LT represents the resting potential; & (+)is the Gaussian
white noise satisfying < &(r + 7)&(¢t) >= 6(7); o is the noise intensity; and A, T
and ¢y are the amplitude, period, and initial phase, repectively. Once V reaches Sy,
it is immediately reset to Vi and a spike pulse is generated. The output of the neuron
consists of the sequence of these pulses. When there is no input signal, namelyA = 0,
Eq. (6.19) is the so-called Ornstein-Uhlenbeck with an absorbing boundary at S.
Let us temporarily omit the role of the noise, we have

V(t,@0) = Voexp (—?) +Tu (] —exp (—?))

A . 2
+m(r sin(Qt + @p) — 7°Qcos(Qr + ¢p)) (6.20)
4 [7sin(Qto + @p) — T°Qcos(Qo + ¢p) ] ex _I=h
1+ 1202 0 0 P T )
If t — oo, then
V(t,00) — TU+ 4 [7sin(Qr + @p) — T°Qcos(Q + ¢p)]
’ 1+ 72Q2
with the maximum value
_ TA
Vinax = TU+ \/ﬁ (6.21)

Then from Vi = Sg we get the critical amplitude A, = % 1+ 72Q2(Sy — ).
For suprathreshold periodic inputs, i.e. A > A., Eq. (6.19) has complex dynamics.
For instance, if during each M input signal periods, just NV spikes are generated, the
discharge pattern is a M : N phase locking with M and N to be positive integers. If
the noise is considered, the counterpart is the M : N stochastic phase locking, which
is a statistical definition.

Next we introduce the method for the probability distribution of ISIs (Buonocore
et al., 1987). For this purpose, we make a transform V(1) = X (t) + V(t, ), then
Eq. (6.19) turns into the Ornstein-Uhlenbeck with an absorbing boundary at the
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transformed threshold, namely,

X (1) = —%(dt FodW (), X(1) < Smoa (t:90) = So— V(. 00)

(6.22)
X(l+):07 if X(l):Smod(%(pO):SO*V(lv(PO)
If define the first passage time of Eq. (6.22) as
Tf = inf{u : X(u) > S mod (u, (PO)IX(O) =0<Smod (07 (PO)}a (6.23)

then 7y is a random variable, and it is the same as an ISI defined by Eq.
(6.19). Let g(S mod (1, 9o), u|0) represent the probability density function of 7y, then
8(S mod (u, o), u|0) satisfies the integral equation (Buonocore et al., 1987).

g(S mod (t,(PO),l|O) = _ZlP(S mod (t,(PO)’t|O’O)
t
+2/0 g(S mod (S,(PQ),SIO)T(S mod (tv(P0)3t|Smod (S,(P()),S)ds, (624)

where a nonsingular integral kernel ¥ is defined as
lP(S mod (ta %))”S mod (Sa (PO),S) = p(S mod (ta 9)?t|y?S)H(tasay) (625)
with
1 S mod (£, Po
H(t,s,y) = 5 (S/mod (t,(p()) + %)

exp((r —s)/7)/1
T exp(2(t —s) /) S mod (1> @) exp((t =5)/7) =], (6.26)

B 1 (x_ye—(t—s)/r)z
p(x’tly’ S) - \/71?()'21(1 — e—2([—s)/f) exp <_ GZT(I — e_z(t—s)/f) : (6'27)

Here p(x,t|y,s) is the probability density function of the Ornstein- Uhlenbeck
process with free boundaries. Solving Eq. (6.24) yields the probability density func-
tion, namely,

g(S mod (At,(PO)aA”O) =2
g(S mod (kAt,(PO)akA”O) =2

Smod (Ata(pO)aAt|OaO)a

(
(S mod (KA, @g), kAt|0,0)
k=1

+2A1 Y 8(S moa (jAL, @), jAL]0),
j=1

XW(S mod (KAL, @0), kAL|S moa (JAL, @0), jAL),
k=2,3,...

(6.28)

Now we turn to the Markov analysis of SR. Since g(S moq (4, @), #|0) depends
only on the initial phase ¢y at time ¢ = fy, it can be rewritten as g(u|¢@g) for brief. If
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@y denotes the previous discharge phase and f(@|@y)d¢@ represents the probability
with which the following discharge phase falls within (@, +d@), then f(@|@p)
reads

1 & -
f(<p|¢o)=52g<kT+%l<po>. (6.29)
k=0

Further, if the initial discharge phase distribution is 41(¢y), then the succes-
sive discharge phase distributions obey a recursive relation /,, 1 (@) = Jo f(@|@o)
ha(@o)d@o(n =0,1,2,...), and there exists a stationary discharge phase distribu-
tion hy(@) = ,}grolohn((p) By approximating the continuous phase axis by discrete

phase state, the continuous kernel f is reduced to a finite-order stochastic matrix
with elements f(27j/N|2nk/N)2x/N, j,k=0,1,..., N. Correspondingly, h(Q)
is approximated by the eigenvector belonging to the eigenvalue 1. From h(@) the
stationary probability density function g(¢) of ISI can be calculated according to

27
8= [ sltlo)h(o)do. (630)

The importance of g(¢) is in that it quantifies the coherence between the input
signal and the output signal. It is also possible to compute the statistical properties
such as autocorrelation and power spectral density of the spiking train, and finally
the signal-to-noise ratio (SNR) (Shimokawa et al., 2000) is

2r 2

(%)

where (77) = [ tg(r)dt is the mean ISI.

For the IF neuron with the threshold noise (Barbi et al., 2003), when the sub-
threshold input is strong enough, there exist two different noise intensities at which
g(nT)(ntakes 1 and 2 or 0.5) attain their maximums, respectively, and as a result the
output SNR reaches two extremes near the noise intensities, which is the so-called
double SR. Now in order to check whether this double SR occurs in the IF neuron
with the input noise, let us make a comparison between the SR in the two cases.
Seen from Fig.6.29(a), when the input signal is subthreshold, the highest peak of
g(t) moves towards the origin, so there exist three different noise intensities such
that g(nT)(n takes 1 or 2 or 0.5) attains the maximum, respectively, as shown in
Fig.6.29(b). But compared with Fig.6.29(c), these noise intensities nearly have no
bearing with the optimal noise intensity of SR, and this is completely inconsistent
with the case with the threshold noise. Furthermore, comparing Fig. 6.29(c) with
Fig. 6.29(d), we see at the optimal intensity o,,; ~ 0.75 (where the resonant peak is
observed) that the mean ISI nearly equals the input period, i.e. < Ty >~ T. There-
fore, the occurrence of SR here, similar to the case in (Shimokawa et al., 1999) is
due to the 1:1 stochastic phase locking, even though there isn’t an obvious plateau-
like flattening on the curve of < Ty > vs. 0.

27 ,
St = / hs(@)e ®dg
Jo

)

, 6.31)




6 The Complexity in Activity of Biological Neurons

349

(@

2.0 i
154
|
— 1h
S o M
o ] L“ i
J 11
0.5 !
| l':\.‘..:f \
0.0 +M~—AL—A— !
0 2 4
t

g ()

0.8 1

04 -

14 -
12 1

<75 >

S N B~ O co
R R T

05 10 15
o

2.0

2.5

Fig. 6.29 (Figure 1 in (Kang et al., 2005a)). (a) The stationary distribution of ISI with different
noise intensity: 0.15 (solid), 0.4 (dash), 1.15 (dot), 1.9 (dash dot); (b) the evolution of g(nT) via
noise intensity with n=1(line), n=0.5(dot), n=2(dash); (c) the SNR and (d) mean ISI via the noise
intensity. The parameters are 7 = 1.0, 4 = 0.35,A =1.0,Q = 0.5z and Sy = 1.0.
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Since the evolution of g(nT) does not contain the material information of SR,
the subsequent plots only show the dependence of mean ISI and SNR via the noise
intensity. To check whether the double SR exists, we choose a “low” frequency and
a “high” frequency to give numerical results just as that done in (Barbi et al., 2003),
respectively. In the low frequency case (see Fig.6.30), only if the subthreshold input
has a amplitude very close to the critical one A, = 0.7086 such as A = 0.7085, a
hump is observed on the curve of SNR via noise intensity left to the main resonant
peak, however this hump is not a secondary resonant peak. For the given A = 0.7085,
the optimal noise intensity is 6, = 0.54 £0.01, where the mean ISI is < 77 >=
4.0+ 0.03, so the occurrence of SR is owing to the 2:5 stochastic phase locking.
Noting that not only at the noise level where the hump is observed < 7 > is a
little larger than T, but there is a plateau-like flattening corresponding to the hump,
the occurrence of the hump corresponds to the 1:1 stochastic phase locking. In the
high frequency case (see Fig.6.31), even when the input amplitude is exactly the
same as the critical one, i.e. A = A, = 0.8242, an obvious hump different from the

0.75

“ 0.50

0.25

20 414 (b)

<7Tr>

Fig. 6.30 (Figure 2 in (Buonocore et al., 1987)) The evolution of (a) SNR and (b) mean ISI
via noise intensity. The parameters T = 1.0, So = 1.0, 7 = 10, u = 0.4 and A is 0.7085(solid),
0.69(dash), 0.72(dot).
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main SR peak is not obvious. The main SR peak is observed at 0,,; = 0.21 £0.01
with < 77 >=3.6840.03, therefore in this case the occurrence of SR is due to the
2:1 stochastic phase locking. The above analysis shows us there does not exist a
double SR in the IF neuron with the input noise, but when the input frequency is
low enough, a resonant structure similar to that of a double SR can be observed.
Why such a hump is obvious only in the low input frequency case? The explanation
should be connected with the most left peak at the stronger noise level in Fig.6.29
(a). In fact, the peak is noise-dominated, and it will soon overwhelm the coherent
integer multiple peaks when the input period is short. Therefore, when the input
frequency is “high”, some coherent information of the input signal is smeared by
the noise quickly, which makes the hump on the SNR curve unclear. In addition, the
above analysis also shows us that the stochastic phase locking does not suggest the
SR certainly, and the stochastic phase locking connected with SR is not confined to
the 1:1 pattern, which extends the conclusion in (Shimokawa et al., 1999).

1.5
1.2

0.9

10 4y ®)

<7 >

Fig. 6.31 (Figure 3 in (Kang et al., 2005a)). The evolution of (a) SNR and (b) mean ISI via noise
intensity. The parameters T = 1.0,89 = 1.0,7 =2, = 0.75 and A is 0.8242(solid), 0.8(dash),
0.9(dot).
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Thus, we have drawn the conclusions about the IF neuron with the input noise as
follows. Firstly, the noise intensity where the extreme of the ISI stationary proba-
bility peak g(nT) is observed is greatly discordant with the optimal intensity where
the SNR attains the maximum. Secondly, the double SR cannot occur in the IF, but
the resonant structure similar to that of the double SR can be observed when the
input frequency is low. Thirdly, for stronger subthreshold input signals, the occur-
rence of SR does relate to the stochastic phase locking, but the phase locking pattern
can be beyond the 1:1 pattern. The conclusions might reflect some properties of real
neurons, and they should be important in understanding the role of noise in neuro-
physicology.

6.6.6 Signal-to-noise ratio gain of a noisy neuron that transmits
subthreshold periodic spike trains

We numerically investigate the transmission properties of an integrate-and-fire neu-
ron model that transmits coherent subthreshold spike trains in a shot noise environ-
ment (Kang et al., 2005b). For very weak coherent couplings, it is shown that the
input-output signal-to-noise ratio (SNR) gain is easier to exceed unity; while for
stronger coherent couplings it is difficult to observe the SNR gain larger than unity
at the optimal noise intensity. These observations are different from those acquired
in the case of continuous noise. Our analysis further suggests that the larger SNR
gain in the very weak coherent coupling case should be due to the noise induced res-
onance. It is also shown that there is more possibility of the SNR gain above unity
for slower periodic spike trains transmitted by the model. The results may be useful
in understanding the performance of real noisy neurons acting as signal-processing
elements.

6.6.7 Mechanism of bifurcation-dependent coherence resonance of
Morris-Lecar Model

The mechanism of bifurcation-dependent CR of excitable neuron models is related
to the random transitions between attractors on two sides of bifurcation point. We
examine that the relationship between the random transitions and the mechanism
of bifurcation-dependent CR by use of the ML neuron model [113], and show that
there exist different attractors on two sides of the Hopf bifurcation point. It follows
that the neuron may transit between attractors on two sides of bifurcation point at
the presence of noise. The transition frequency tends towards a certain value for a
certain optimal noise intensity. Since the SNR of the neuronal response evaluated at
this certain frequency is maximal at the optimal noise intensity, CR occurs.
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6.7 Analysis of time series of interspike intervals

As stated previously, all neurons in the brain fire action potentials that carry informa-
tion to other parts of the brain along their fibres, and neural information is embedded
in the series of interspike intervals (ISIs). Consequently, the analysis methods for the
series of ISIs are very important in order to extract the neural information. In what
follows, we illustrate several methods from the viewpoint of nonlinear dynamics.

6.7.1 Return map

Return map is a simple method to find out the deterministic structure hidden in the
series of the ISIs. In detail, return map is constructed by previous ISI versus next
ISI. As we know, bifurcation and chaos phenomena of ISI are often dynamically
observed along a single fiber of injured sciatic nerve in the anesthetized rat. Figure
6.32(a) exhibits the continuous bifurcation procedure of the ISI data CA381W4 that
were recorded at a constant sampling interval #; of 97.66 (s as soon as the concen-
tration of calcium in the Krebs’ solution used to perfuse the injured sciatic nerves
was decreased from 5.0 mmol/L to 1.2 mmol/L (Gong et al., 1998). Therefore, the
direction of the abscissa not only stands for the sampling sequence of ISI but also
qualitatively represents the change in the ionic concentration of the solution with
time. To reveal the mechanism underlying the irregular ISI after the period transi-
tion enlarged and shown in Fig. 6.32(b) to the left of the vertical line, the data in the
point smear region from the right side of the vertical line to the end of the data file
have been separated and uniformly divided into nine groups each consisting of 4000
points. Thus every group may approximately be considered as a steady-state process
and return map can be applied to investigate the series of the ISIs.. Figure 6.32(c)
shows the one-hump structure constructed by the ISI data of the first group using
return map. This simple form is the most convincing evidence for the existence of
deterministic chaotic dynamics.

6.7.2 Phase space reconstruction

Actually, phase space reconstruction is attractor reconstruction, which refers to
methods for inference of geometrical and topological information about a dynamical
attractor from observations (for detail see: http://www.scholarpedia.org/article/Attra-
ctor_reconstruction.). Attractor reconstruction is an important first step in the pro-
cess of making predictions for nonlinear time series and in the computation of
certain invariant quantities such as Lyapunov exponent used to characterize the
dynamics of such series. The reliability of computed predictions and the accu-
racy of invariant quantities are strictly dependent on the accuracy of attractor re-
construction, which in turn is determined by the methods used in the reconstruc-
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tion process. Usually the time delay embedding as the way to reconstruct the
phase spaces of original dynamical systems. The validity of such a method is
guaranteed by the Whitney embedding theorem and the Takens embedding the-
orem (http://www.scholarpedia.org/article/Attractor reconstruction.). In the recon-
struction process, time delay and embedding dimension are two very import quan-
tities. Now there are various methods for determining such two quantities, autocor-
relation function and mutual information for time delay, and the false near neighbor
(FNN) method and the Cao method for embedding dimension, for example. Em-
bedding ideas were later extended beyond autonomous systems with continuously-
measured time series. A version was designed by Sauer for the series of ISIs. Actu-
ally, time delay for the series of ISIs can be selected as 1 because it can be considered
to be a discrete dynamical system. The key problem, therefore, is to determine the
embedding dimension for the series of ISIs.

6.7.3 Extraction of unstable periodic orbits

Periodic orbits play an important role in understanding the rich structures in a dy-
namical system (http://www.scholarpedia.org/article/Unstable_periodic_orbits). An
unstable periodic orbit (UPO), however, is simply a periodic orbit which is dynami-
cally unstable, and actually UPOs in chaotic set can be saddles as well as repellers.
Since the set of UPOs is dense within the chaotic set, a typical trajectory wanders
incessantly in a sequence of close approaches to these orbits. The more unstable an
orbit, the less time that a trajectory spends near it. Interestingly, the set of UPOs can
be considered to be the skeleton for chaotic attractors. Furthermore, many dynam-
ical invariants, such as, natural measure, Lyapunov exponents, and fractal dimen-
sions can by efficiently expressed in terms of a sum over UPOs. Therefore, UPOs
are also important tools in affecting the behavior of dynamical systems (So et al.,
1996,1997; Cvitanovic, 1998).

In most cases, time series of some variables observed in experiments are usually
the only available information from a dynamical system. To further analyze the
system, we firstly need to reconstruct its phase space. Recurrence method [67] is
a simple one for detecting UPOs from this reconstructed data set, and the standard
procedure is to look for peaks in a histogram of recurred points as a function of their
recurring periods. The sensitivity of this method in finding UPOs naturally depends
on the natural measure of the UPOs.

An enhancement of the standard recurrence methods was proposed later (So et
al., 1996,1997). In this method, experimentally extracted linear dynamics near each
state point was incorporated into a periodic-orbit transform that take experimental
data into a space where the probability measure at the UPOs are enhanced and at
other non-recurring points are dispersed. Similar to the previous recurrent methods,
an experimenter detects UPOs by looking for peaks in the transformed space.
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6.7.4 Nonlinear prediction and surrogate data methods

The nonlinear forecasting method was proposed that measures the predictability of
the future state of a dynamical system (Sugihara and May, 1990). It has the feature
of analyzing the experimental time series dynamically and the advantage of need-
ing only a relatively short time series, so nonlinear forecasting quickly became one
of the most important tools for the analysis of experimental data. The key of this
method is that when predicting the future state from chaotic time series, the nearest-
neighbor points are utilized so as to obtain the best prediction (Gong et al., 1998).
Let X7, i=1, d+1 be the nearest-neighbor points that form the the smallest sim-
T

plex around the point X7, and X; +p» I =1, d+1be their p steps of evolution points.

Then the point X ,,T after p steps of evolution from X7 can be predicted:

d+1
X, = Y exp(— X! —x"|)x,, (6.32)

i=1

according to the exponential weights computed from the Euclidean distances be-
tween X7 and its nearest-neighbor points.

After taking the first difference A of the measured time series to reduce the ef-
fects of any short-term linear autocorrelations, the time series from observation are
usually divided into two groups. One group is used as the data base for forecasting
the future while the other is used for the purpose of comparison with the predicted
values. Finally, Pearson’s correlation coefficient is applied to evaluate the effect of
prediction, i.e., the larger the values of the correlation coefficients is, the better the
forecasting is.

It is known that the long term behavior of a chaotic system is almost unpre-
dictable due to its sensitivity to the initial conditions, while the behavior of the sys-
tem can still be predicted to some extent for a relatively short time. As a result, the
evolution curve of the correlation coefficient first decay slowly when the prediction
step is small, then quickly with the growth of the prediction step.

Nonlinear forecasting method is frequently combined with the surrogate data
method (Theiler et al., 1992) together to analyse the series of ISIs. The simplest
algorithm for generating surrogate data is random shuffling. According to this al-
gorithm we will rearrange the original data in the rank order of the Gaussian white
noise generated from a random number generator. This algorithm guarantees that
the surrogate data is consistent with the null hypothesis of a §-correlated random
process, while exactly preserving the distribution of the original data. Another sur-
rogate data algorithm is phase randomization, which is realized by implementing
the Fourier transform for the original data set, randomizing the phases and then
inverting the transform. The surrogate data generated by the algorithm of phase ran-
domization have the same power spectrum as the original data.

Figure 6.33 shows that the IS, i.e., the time interval between any two successive
impulses, is the same as the interval between their corresponding two crosspoints of
the trajectory with the Poincare section from one side. According to this, the bifurca-
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tion and chaos phenomena of ISI time series from the §-cell model can conveniently
be obtained with the proper choice of Poincare section (Gong et al., 1998). As an
example, for the chaotic ISI time series given in Fig. 6.34 from the -cell model,
the values of the surrogate data generated by random shuffling are the same as the
original data, while the structure is identical to that of the noise. With the embed-
ding dimension d = 3 that equals the number of state variables of the model and the
time delay T = 1, altogether 4000 data points were used for the computation of the
noisy chaotic ISI time series from the model. It can be seen in Fig. 6.35 that with the
increase in the prediction step, the evolution of the correlation coefficient curve for
the chaotic ISI time series decays slowly first then very quickly, which is apparently
different from that of the surrogate data even in this worse SNR case. This suggests
the deterministic structure in the noisy time series. Therefore, one can easily dis-
tinguish chaos from noise according to their different evolution of the correlation
coefficient curves, even at a high level of noise.
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Fig. 6.33 Schematic diagram of the corresponding relationship between interspike intervals and
the Poincare section (Figure 1(b) in (Gong et al., 1998)).
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Fig. 6.34 Chaotic ISI time series obtained from the f-cell model: ISI versus ISI serial number
(Figure 2(a) in (Gong et al., 1998)).
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Fig. 6.35 Curves of the correlation coefficient p versus the prediction step. X, chaotic ISI time
series from the B-cell model contaminated with noise; +, the surrogate data (Fig. 4 in Ref. (Gong
et al., 1998)).

6.7.5 Nonlinear characteristic numbers

6.7.5.1 Correlation dimension

The most widely used procedure of detecting chaos is the GP correlation dimension
algorithm that quantifies the strangeness of the attractors (Grassberger and Procac-
cia, 1983a, b; Mizrachi et al., 1984). According to the GP algorithm, the correlation
integral is first evaluated using the following expression:

Cq(l) = lim — ZZ (= Ix" =x] ). (6.33)

Here, X" and X7 are reconstructed vectors with the embedding dimension d.
C(I) is the correlation integral, || - || represents Euclidean norm, @(-) is the Heav-
iside function, and [ is the correlation length. Then, the correlation dimension in
d-dimensional phase space is estimated form the slope of In({) versus InC,(/) plot.
To identify the correlation dimension, we look for a scaling region in the correlation
dimension plot. When the correlation dimension reaches a saturated state as a func-
tion of d, this value is taken as an estimate of the correlation dimension. Note that
the onset of the plateau known as then scaling region in local slope curves indicates
the occurrence of chaos.

Although the GP method has the advantage of simplicity, limitations still exist
such as the need for a large amount of time series data (Grassberger P., 1986); also,
as it is only concerned with the static values of the data, the influence of noise on its
computation is almost unavoidable (Osborne and Provenzale, 1989). As an example,
4000 ISI data points are computed from the 3-cell model are used to calculate the
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correlation dimension, and the local slope curves are given in Fig.6.36. It can be
seen that the plateau of the scaling region is long and distinct.
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Fig. 6.36 Local slope versus logarithmic / curves. The embedding dimension d is in sequence 2;

6.7.5.2 Lyapunov exponent

The Lyapunov exponent or Lyapunov characteristic exponent of a dynamic system
is a quantitative measure of the sensitivity of the system to the initial conditions,
i.e., the Lyapunov exponent is a quantity that characterizes the rate of separation of
infinitesimally close trajectories (Gong et al., 1998). Quantitatively, two trajectories
in phase space with initial separation 6Z diverge

8Z(1)] ~ |52, (6.34)

where A is the Lyapunov exponent.

The rate of separation can be different for different orientations of initial separa-
tion vector. Thus, there is a whole spectrum of Lyapunov exponents, and the number
of them is equal to the number of dimensions of the phase space. On the other hand,
the number of Lyapunov exponents is equal to the number of the embedding dimen-
sion of the reconstructed phase space. Usually we calculate the Largest Lyapunov
exponent (LLE), because it determines the predictability of the system. A positive
LLE is usually taken as an indication that the system is chaotic, and may be regarded
as an estimator of the dominant chaotic behavior of a dynamical system.

The LLE can be defined as follows:

S2(1)
52 |

l:limlln

f—oo f

(6.35)




360 Yong Xie, Jian-Xue Xu

Although the formula for the calculation of the Lyapunov exponents is given above,
in most cases we cannot carry out analytically, and must turn to numerical tech-
niques. One of the most used and effective numerical technique to calculate the Lya-
punov spectrum for a smooth dynamical system relies on periodic Gram Schmidt or-
thonormalization of the Lyapunov vectors to avoid a misalignment of all the vectors
along the direction of maximal expansion.

6.7.5.3 Approximate entropy

Approximate entropy has been introduced to characterize the regularity or pre-
dictability of time series (Pincus, 1991). This entropy calibrates an ensemble ex-
tent of sequential interrelations, quantifying a continuum that ranges from totally
ordered to completely random. More interestingly, approximate entropy assigns a
nonnegative number to a sequence or time series: smaller values of approximate
entropy imply a greater likelihood that similar patterns of measurements will be fol-
lowed by additional similar measurements. If the time series is highly irregular, the
occurrence of similar patterns will not be predictive for the following measurements,
and approximate entropy will be relatively large. Note that approximate entropy has
significant weaknesses, notably its strong dependence on sequence length and its
poor self-consistency. Namely, the observation that approximate entropy for one
data set is larger than approximate entropy for another for a given choice of m and
r should, but does not, hold true for other choices of m and r. By they way, m is the
number of dimensions, and 7 is the tolerance. To compute approximate entropy, m
and r must be fixed. The values m = 2 and r between 10% and 25% of the standard
deviation of the data sets are recommended.

The process of calculation is as follows (Pincus, 1991; Yang et al., 2002):

First, given N data points {u(i)}, form vector sequences x(i) = [u(i),...,
u(i+m—1)]. Then define the distance d[x(i),x(j)] between x(i) and x(j) as the
maximum difference in their respective scalar components. And then use the se-
quence x(1),x(2),...,x(N —m+ 1) to construct, for each i <N —m+1, C"(r) =

N—m+1
Y O(r—d[x(i) — d(j)]). Here, ©(-) is the Heaviside function. And then deter-

J=1

1 N—m+1
mine & (r) = Nomil > InC}"(r). Finally, we can calculate the approximate
entropy as follows:
ApEn(m, r, N) = ®"(r) — ®"1(r). (6.36)

The value of N for the computation of approximate entropy is typically between 100
and 5000; m =2 and r = 0.1 — 0.258TD, here, ST D is the standard deviation of the
data set.

Figure 6.37 shows a bifurcation cascade of ISIs from the rat injured nerve with
the perfusion of Ca?* free solution and its approximate entropy (Han et al., 2002),
and the schematic diagram of the experiment setup is shown in Fig. 6.38. The series
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of ISIs is transforming from period-2 bursting to period-3 bursting. We can see that
the change in approximate entropy is considerably obvious at the time instant of
transformation of the ISI pattern.
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0.4 r
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Fig. 6.37 The series of ISIs from the rat injured nerve and its approximate entropy (Figure 2 in
(Han et al., 2002)).
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Fig. 6.38 Schematic diagram of the experiment setup about the spontaneous firings of the DRG
neurons (Figure 1 in (Gong et al., 2002)).
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6.7.5.4 Lempel-Ziv complexity

The Lempel-Ziv complexity algorithm can be used to quantitatively characterize the
complexity of a data set (Szczepanski et al., 2003, 2004). The calculation of com-
plexity measure consists of two steps. First, generate a binary string by comparing
the original data with a threshold. Second, use the string to calculate the disorder
degree of the original data based on Lempel-Ziv algorithm. In detail, in the first
N
step, the average X = % '21 Xx; is subtracted for every signal simple x;, i =1, ..., N.
i=
The sample points are then compared with the threshold x,, = 0.2 x STD({x;}Y_,),
where STD({x; fvz 1) is the standard deviation of the data set. If —x;; < x; < Xy,
then s; = 0, otherwise s; = 1. In this way, the set of the original data is transformed
into a binary sequence s = s;s2, ..., Sy, Where s; is 1 or 0. In the second step, the
Lempel-Ziv complexity algorithm is calculated to obtain the complexity measure
of the original time series. The N-digit sequence is scanned from left to right and
defined a new block of length k every time it discovers a sub-string of length k not
previously encountered. After a number of operations, a decomposition of the orig-
inal time series in minimal blocks is obtained. The complexity is then defined as the
number of blocks in the decomposition.

6.8 Application

The dense UPO structure within a chaotic attractor and the exponential sensitivity
of a chaotic system provides a very power tool for utilizing chaos for control as well
as controlling chaos (http://www.scholarpedia.org/article/Unstable_periodic_orbits).
Cardiac arrhythmias were successful tamed by a chaos stabilization method; and
seizure activities were controlled by judiciously timed electric pulses.

SR-based techniques has been used to create a novel class of medical devices
(such as vibrating insoles) for enhancing sensory and motor function in the elderly,
patients with diabetic neuropathy, and patients with stroke (http://en.wikipedia.org/
wiki/Stochastic_resonance). For example, a potentially very important proposed ap-
plication where suprathreshold SR would be caused to occur is a cochlear implant
signalling strategy. The idea is based on the fact that people requiring cochlear im-
plants are missing the natural sensory hair cells that a functioning inner ear uses to
encode sound in the auditory nerve. It is known that the stereocilia of these hair cells
undergo significant Brownian motion, i.e. randomness, and the synaptic release of
neurotransmitter introduces additional randomness. These sources of randomness
lead to spontaneous firing in primary afferent auditory nerve fibres that is not nor-
mally present in deaf patients who benefit from cochlear implants. The hypothesis is
that suprathreshold stochastic resonance induced by re-introducing this natural ran-
domness to the encoding of sound could improve speech comprehension in patients
fitted with cochlear implants (http://www.scholarpedia.org/article/Suprathreshold st-
ochastic_resonance).
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6.9 Conclusions

The mammalian nervous system is a complex adaptive system, which is composed
of a large number of neurons. In fact, a neuron can be considered to be a rather
complicated nonlinear dynamical system. There are many neuron models presented
for different kinds of neurons. For example, the HR model of neuronal activity is
aimed to study the spiking-bursting behavior of the membrane potential of cortical
neurons, and the Traub model (Traub et al., 1991) is used to characterize a CA3
hippocampal pyramidal neuron. A rich variety of dynamical behavior occurs in
these neuron models, such as periodic spiking, chaotic spiking, periodic bursting
and chaotic bursting. It is this point that asks us to apply the nonlinear systems the-
ory to the investigation on the firing behavior of neuron models. And the methods or
theories in nonlinear dynamics can be helpful to understand the neuronal firing pat-
terns and the mechanisms underlying neural information encoding. Meanwhile, the
complicated phenomena observed in neurophysiological experiments provide strong
motivation for the development of nonlinear systems theory. Actually, the naissance
of neurodynamics is just a perfect combination between neuroscience and nonlinear
dynamics.

Up to now, it is very important and significant to establish corresponding math-
ematical models for special neurons including one-compartment model and multi-
compartment model. Therefore, the numerical or theoretical investigation on new
neuron models or existing neuron models with complex behavior remains very in-
teresting, and bifurcation and chaos occurring in these models are still hot topics.
As for noise in nervous systems, its role is waiting for more confirmation. As we
know, the neural information transmission happens at the synapses between neu-
rons. The collective behavior of neuronal population, therefore, should be studied
from the viewpoint of coupled neuronal networks including electrical and chemi-
cal coupling. In addition, the transitory process in nervous systems deserves more
attention.
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