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Preface

Computational fluid dynamics (CFD) uses large scale numerical computation to
solve problems of fluid flow. It has been known since its onset that the numerical so-
lution to a given flow depends on the relation between the flow and the coordinates
(mesh) used to compute it. Each of the two well-known coordinate systems for
describing fluid flow—FEulerian and Lagrangian—has advantages as well as draw-
backs. Eulerian method is relatively simple, but its drawbacks are: @ it smears
contact discontinuities badly; @ it needs generating a body-fitted mesh prior to
computing flow past a body. Lagrangian method, by contrast, resolves contact
discontinuities (including material interfaces and free surfaces) sharply, but it also
has drawbacks: @ the gas dynamics equations could not be written in conserva-
tion partial differential equations (PDE) form, rendering numerical computation
complicated; @ it breaks down due to cell deformation.

A fundamental issue in CFD is, therefore, the role of coordinates and, in par-
ticular, the search for “optimal” coordinates. It is in the long search for an optimal
coordinate system that a unified coordinate (UC) system was developed by the first
author and his collaborators over the last decade. While the search for an opti-
mal coordinate system in CFD would undoubtedly continue, the unified coordinate
system developed so far is found to combine the advantages of both Eulerian and
Lagrangian system, while avoiding their drawbacks. Indeed, it goes beyond these.
For instance, the UC system provides a foundation for automatic mesh generation
by the flow being computed.

This monograph first reviews the relative advantages and drawbacks of Eulerian
and Lagrangian coordinates as well as the Arbitrary-Lagrangian-FEulerian (ALE)
and various moving mesh methods in CFD for one- and multi-dimensional flow.
It then systematically introduces the unified coordinate approach to CFD, illus-
trated with numerous examples and comparisons to clarify its relation with existing
approaches.

The content of this monograph is based on a graduate course taught by the first
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author from 2000 to 2007 at the Hong Kong University of Science and Technology,
Academia Sinica in Taiwan, Hong Kong Polytechnic University and Hong Kong
Baptist University, and by the second author since 2009. We thank Prof. T.
Tang for his comments on the first draft of the book. We also acknowledge the
permission of Communication in Computational Physics (CiCP) for allowing us to
use the material presented in a review paper® .

Many scientists have made substantial contributions in the course of develop-
ment of the UC approach to CFD. Here is a partial list: Chien-Cheng Chang, De-
Lin Chu, Bo Gao, Yuan-Ping He, Jeu-Jiun Hu, Changqiu Jin, Sergei Kudriakov,
Chih-Yu Kuo, Claude Lepage, Zuo-Wu Li, Ping-Yiu Li, Meng-Sing Liou, Ching
Yuen Loh, Yang-Yao Niu, Keh-Ming Shyue, Ronald Ming Cho So, Yih-Chin Tai,
Henry Van Roessel, Zi-Niu Wu, Jaw-Yen Yang, Gui-Ping Zhao, Yanchun Zhao.
Without their valuable contributions, the UC approach to CFD could not have
reached its current state of maturity. We also thank our secretary Odissa Wong
for her help for many years in editing and preparing the figures. We give special
thanks to our wives, Kwok Lan Hui and Jie Shen, for their strong support to us in
writing this monograph.

The publication of the current monograph gets financial support from China
Science and Technology Publication Fund, and National Natural Science Founda-

tion of China through Project No.10928205.

Wai-How Hui
Kun Xu
Hong Kong University of Science and Technology
December 1, 2011

(@ The unified coordinate system in computational fluid dynamics. Communications in
Computational Physics, 2: 577-610, 2007.
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Chapter 1

Introduction

1.1 CFD as Numerical Solution to Nonlinear Hyperbolic
PDEs

The great majority of research work in CFD, especially those in the first several
decades, treats it as numerical solution to nonlinear hyperbolic partial differential

1. Most part of this monograph

equations (PDEs). For a good summary, see Hirsch!
also treats CFD as numerical solution to nonlinear hyperbolic PDEs. But it is
concerned mainly about the role of coordinates in CFD and, in particular, will
base all CFD study on the newly discovered unified coordinates. To put it in
perspective we shall first give an overview of the major developments of CFD as
numerical solution to the initial value problem of nonlinear hyperbolic PDEs as
follows.

The theoretical foundation for nonlinear hyperbolic PDEs was laid by Riemann
in his pioneering work!? where he introduced the concept of Riemann invariants
and posed the special initial value problem—since has been known as the Riemann
problem. It turns out that the Riemann problem plays a central role in most
numerical methods in CFD.

Nothing very significant happened during the following six decades until Richard-
son proposed weather prediction by numerical process (Lewis Fry Richardson, Cam-
bridge University Press, 1922). Even without an electronic computer, wanting to
find numerical solutions to nonlinear hyperbolic PDEs immediately raises many in-
teresting theoretical and practical questions, and progresses are made in answering
them.

(1) The first of these is the discovery of the CFL condition[®. Tt simply says
that in a time-marching process to find a numerical solution, marching too fast

causes numerical instability and destroys the solution.
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(2) Practical methods for computing solutions with shock discontinuities are
developed: the artificial viscosity method of von Neumann and Richtmyer which

4]

smears shock discontinuities!®; the Godunov method which reduces the general

initial value problem to a sequence of Riemann problems with cell-averaging datal®/;
the Glimm random choice method which also reduces the general initial value
problem to a sequence of Riemann problems but with data of randomly chosen
representative statesl® 7; and the shock-fitting (front tracking) method®). The
last two methods are not easily extended to the three-dimensional flow.

(3) A very important discovery was made by Lax and Wendroff”) that in order
to numerically capture shock discontinuities correctly, the governing PDE should
be written in conservation form to begin with. This is easily done in Eulerian
coordinates (in any dimensions) and also for one-dimensional flow in Lagrangian
coordinates. But for a long time, it was not known how to use Lagrangian coordi-
nates to write the governing PDEs for multidimensional flows in conservation form.
This problem was solved by Hui et al.[1%.

(4) To extend Godunov’s method to higher order accuracy, the important con-
cepts of limiters and TVD were introduced which avoid non-physical oscillations
in high resolution schemes!*!> 12,

(5) From the onset of CFD, it was known that the numerical solution to a given
flow depends on the coordinates (mesh) used to compute it; hence great efforts
have been devoted to search for the optimum coordinate system: the Particle-
in-Cell method*3]; the Arbitrary-Lagrangian-Eulerian method!*¥; various moving
mesh methods!*?; and the unified coordinate method™.

(6) Finally, to compute a flow past a body, which is the central problem in
fluid dynamics, it is necessary to construct a body-fitted mesh prior to computing
the flow. Even after decades of research, mesh-generation remains tedious and
time-consuming. The unified coordinate approach to CFD has opened up a way of

automatic mesh-generation1¢.

1.2 Role of Coordinates in CFD
1.2.1 Theoretical Issues

For more than 200 years, two famous coordinate systems have existed for describing

fluid flow: Eulerian system is fixed in space, whereas Lagrangian system follows
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the fluid. An immediate question arises:

“Are these two coordinate systems equivalent to each other theoretically?”

This question must have been asked by numerous researchers in fluid dynamics
(FD), and the answer presumably was positive. Surprisingly, the first mathematical
proof of equivalency, meaning the existence of a one-to-one map between the two
sets of weak solutions obtained by using the two systems, was given as late as 1987
by Wagner'” and holds only for one-dimensional flow”. For 2-D and 3-D flows,
Hui et al.l'% 18] showed that they are not equivalent to each other theoretically
(see Section 8.3).

Although Lagrangian and Eulerian approaches to FD are each self-contained
and general, prior to the advent of computer most text books [19—22] are written
in Eulerian coordinates, with the exception of [23], which is devoted solely to
Lagrangian approach. There are at least two reasons for this historical bias.

Firstly, steady flow is the most important class of flow in application of FD,
and Eulerian coordinate system has a clear advantage in describing it: the time
variable drops out, reducing the number of independent variables from 4 to 3.
This greatly simplifies the mathematics of the governing equations. By contrast,
the time variable in Lagrangian coordinates is essential and cannot disappear, so
apparently we still need 4 independent variables for three-dimensional flow even
when the flow is steady. Of course, one might argue that among the 4 apparent
independent variables, there must be a relation expressing the steadiness of the flow.
Indeed, such a relation does exist, see Eq.(20) in [24], but it is solution-dependent;
hence without knowing the flow solution it is difficult to use the relation to reduce
the number of independent variables from 4 to 3. On the other hand, when the
flow solution is known there is no need to use that relation. This is the dilemma of
Lagrangian approach for steady flow: the governing equations of FD in Lagrangian
coordinates do not simplify as Eulerian coordinates do, and steady flow has to be
obtained by solving the unsteady flow equations. This dilemma was resolved in
[25—27] when the Lagrangian time variable was introduced which played the dual
role as time and as a Lagrangian label (see also the variable A in (9.4) when h = 1).

Secondly, in the problem of flow past a body, which is the central problem

D In the presence of a vacuum, the definition of weak solution for the Lagrangian equations
must be strengthened to admit test functions which are discontinuous at the vacuum.
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in FD, very often one is interested only in the flow quantities on the body sur-
face, e.g., pressure, temperature, velocity and shear stresses on the airfoil surface.
Eulerian approach naturally and easily produces these quantities. By contrast, in
Lagrangian approach, we need to calculate the motion histories of all fluid particles
and then trace them back to find the flow quantities on the body surface. This is
quite cumbersome.

With the advent of computer and the birth of computational fluid dynamics, the
advantages and drawbacks of Eulerian and Lagrangian approach need be critically

re-examined from the computational point of view.
1.2.2 Computational Issues

Computationally, Eulerian and Lagrangian systems are not equivalent even for 1-D
flow. Indeed, it has been known since the onset of CFD that the numerical solution
to a given flow depends on the relation between the flow and the coordinates used
to compute it. For 1-D flow, we shall show in Chapter 4 that Lagrangian system
is superior to the Eulerian and, in turn, the UC (i.e., the generalized Lagrangian
plus shock-adaptive Godunov scheme) is superior to both the Lagrangian and the
Eulerian, and is completely satisfactory.

The situation for 2-D and 3-D flow is more complicated. Each of the two well-
known coordinate systems for describing fluid flow has advantages as well as draw-
backs. Eulerian method is relatively simple, but its drawbacks are: @ it smears
contact discontinuities badly; @ it needs generating a body-fitted mesh prior to
computing flow past a body. Lagrangian method, by contrast, resolves contact
discontinuities (including material interfaces and free surfaces) sharply, but it also
has drawbacks: @ the gas dynamics equations could not be written in conserva-
tion partial differential equations (PDE) form, rendering numerical computation
complicated; @ it breaks down due to cell deformation.

A fundamental issue in CFD is, therefore, the role of coordinates and, in par-
ticular, the search for “optimal” coordinates. The search for optimal coordinates
has led to the development of the unified coordinate (UC) system[®®, in a series
papers beginning with [25—27]. See also [29—33]. This monograph first reviews the
relative advantages and drawbacks of Eulerian and Lagrangian coordinates in CFD

for 1-D and multi-dimensional flow, and then systematically discusses the unified
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coordinate system and its applications.

For 1-D flow, UC uses a material coordinate and also applies the shock-adaptive
Godunov scheme [34—36] instead of the classical Godunov schemel®. For 2-D flow,
it uses one material coordinate, with the other coordinate determined so as to
preserve mesh othorgonality (or preserve the Jacobian), whereas for 3-D flow, it
uses two material coordinates, with the third one determined so as to preserve
mesh skewness (or preserve the Jacobian). The unified coordinate system may be
regarded as a generalization of Lagrangian system. It combines the advantages of
both Eulerian and Lagrangian system while avoiding their drawbacks. The UC
formulation also provides a foundation for automatic mesh-generation by the flow
being computed. It may also be regarded as a moving mesh method in that the
mesh can move in any manner, while the effects of its movement on the flow are

fully accounted for.

1.3 Outline of the Book

This book is arranged as follows: Derivation of the equations of physical conser-
vation laws are given in Chapter 2. Chapter 3 reviews shock-capturing methods
for 1-D flow based on Eulerian coordinates, pointing out their defects. Although
most of the materials in Chapters 2 and 3 can be found in existing texts, e.g.,
Ref. [1, 37—39], they are included here to give a smooth introduction to the main
theme of this monograph and also to make it self-contained. Chapter 4 introduces
UC method for 1-D flow and shows how all defects of Eulerian and Lagrangian
computation are cured or avoided by UC. Chapter 5 comments on the difficul-
ties encountered in current computational methods for the general case of multi-
dimensional unsteady flow. Chapter 6 gives the unified coordinates formulation
of CFD for multi-dimensional unsteady flow, whose mathematical properties are
studied in Chapter 7. Chapter 8 is devoted to the very important special case of
Lagrangian gas dynamics. Chapter 9 uses UC to study the simpler problem of
steady 2-D supersonic flow, showing that it can be solved essentially as 1-D un-
steady flow. 3-D steady supersonic flow is also discussed. Chapter 10 discusses the
general case of unsteady flow computation using UC, illustrated with typical ex-
amples and comparisons with existing methods. Chapter 11 discusses viscous flow

computation. Chapter 12 is devoted to the applications of the unified coordinates



Chapter 1 Introduction

to kinetic theory. Finally, a summary of the book is given in Chapter 13.
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Chapter 2

Derivation of Conservation Law
Equations

All fluid motions, no matter how complex, are governed by the conservation laws
of physics, namely, conservation of mass, momentum and energy. This chapter is
devoted to the derivation of these conservation law equations and discussing their

mathematical properties.

2.1 Fluid as a Continuum

Fluids, like all matter, are made up of molecules. The properties of a fluid in
motion may be studied on the basis of the mechanics of the molecules composing
the fluid. Although such a procedure may appear feasible in principle, it will
indeed be a formidable task to achieve solutions to practical problems. Apart from
this consideration, we are generally not interested in the details of motion of the
molecules. What we intend to do in fluid dynamics is to establish relations between
various macroscopically observable properties, e.g., pressure, density and velocity,
pertaining to a fluid in motion. These macroscopically observable quantities are the
mean values, in space and time, obtained by taking the average over a sufficiently
long time compared to the time scale related to the motion of the molecules. For

example, the mass density p in a small volume (2 is taken as

. number of molecules x mass of molecules in 2
p= lim , (2.1)
2500 f)

where {2y is macroscopically small so that the value of p as defined in (2.1) represents
how dense the mass is locally, but is microscopically large so that it represents
a mean density free of molecular fluctuations. Such a definition is possible as,
for instance, at normal pressure and temperature, a volume of (10~*cm)? of air

contains 2.7 x 107 of molecules. This being the case, it is a reasonable assumption
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to regard a fluid as a continuous medium or a continuum. With such a picture of
the fluid in mind, we call an infinitesimal fluid element a fluid particle, which in

fact contains millions of molecules.
The continuum hypothesis breaks down in some extreme situations, e.g., space

flight at high altitude where the air is rarefied. In this situation, we invoke the

kinetic theory instead (see Chapter 12).

2.2 Derivation of Conservation Law Equations in Fixed
Coordinates

Let’s consider a control volume {2 of fluid which is fixed in space (Figure 2.1).

Outward normal n

boundary of 2

Figure 2.1 Control volume showing notation

(1) Conservation of mass. For conservation of mass, we have

rate of increase of mass in {2=mass influx through 92 per unit time.

Mathematically,
4 pd) = —/ pq - ndS. (2.2)
dt Jo a0
Here t is time, p and q are the density and velocity of the fluid, and the right hand
side is the inward mass flux across the surface of {2 per unit time®.

(2) Conservation of momentum. In a similar fashion, the equation for the rate

of increase of momentum in {2 is

d
— [ pqdf2 = f/ gpq - ndS +/ TdS +/ pFd, (2.3)
dt Jq o0 a0 Q

(D When chemical reaction takes place, the conservation of mass must be applied to each

species separately.
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where the left hand side is the rate of increase of momentum inside {2, while on
the right hand side, the first term is the rate of inward flux of momentum carried
across 02 by the flow, the second term is the total surface force produced by the
stress 7 on 02, and the third term is the total body force on {2, where F' denotes
the body force per unit mass, e.g., the gravitation force.

(3) Conservation of energy. For the conservation of energy, we have

rate of increase of energy in {2
= influx of energy per unit time through 012
+work done by (surface and body) forces per unit time

+heat transfer due to thermal conduction per unit time.

Here we neglect the heat transfer due to radiation, as it is very small in most cases,
except when the temperature is extremely high.
Now the total energy per unit mass is equal to g - q/2+ 4, where i is the specific

internal energy per unit mass. Mathematically, we have

d (1 > 1 ,
- -q-q9+1 de:f/ <q-q+z>pq-ndS
dt Jo \2 a0 \2
+/ pF~qu—|—/ T-qdS — Kk -ndS, (2.4)
Q Ele) Ele)

where k is the heat flux per unit area per unit time.

With the body force F' given—and from now on the body force will be assumed
negligible—this system of five equations (2.2)~(2.4) (the vector equation (2.3) is
equivalent to three scalar equations) contains more than 5 unknowns, namely p, g,
T, k and ¢. Hence the system is not closed.

We consider two flow models.

(1) Inviscid flow. For a fluid in hydrostatic equilibrium in the absence of body
force, it is known that

(i) the stress on any surface element is normal to the surface and independent
of its orientation. Hence

T = —pn, (2.5)

where p > 0 is the scalar pressure.

(ii) The heat conduction
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(iii) The internal energy is a function of the pressure and density,

i = i(p,p). (2.7)

The form of this function is established by experiment and various thermodynamic
arguments.

When the gas is non-uniform or in motion, none of these is strictly true. How-
ever, provided that time and space derivatives are not too large, they are still good
approximations for many purposes. With these as assumptions, the basic conser-
vation equations become a closed set for the five flow quantities p,p and three

components of velocity q. They are, when written in integral form,

d
— pd.Q:f/ pq - ndS,
o0

dt /o
d . .
5 | pud? =~ [pgiq+pj]-ndS, j=123, (2.8)
Q an
d <1q q+'>d() / { (lq q+'>q+ q] ndS
En pPls5a- t == P\ 54" ? P ' )
dt Jo = \2 00 2
where the vector j is the unit vector in the z;(j = 1,2,3) direction. The five

equations in (2.8) are called inviscid flow equations, and the flows they describe
are called inviscid flows.
(2) Viscous flow. In the general case, we have

(i) Fourier law for heat-conduction:
k= —kVT, (2.9)

where k > 0 is the coefficient of thermo-conductivity of the fluid, and T" denotes
the temperature.

(ii) Cauchy formula for stress components
Ti(n) =Tiun;, 1,7=1,2,3. (2.10)
(iii) Symmetry of stress tensor:
Tij = Tji- (2.11)
(iv) For Newtonian fluid,

0q;  0q; 2.0
Tij = —pdsj + | [(—q + i) 35ij 8—:(1];2] ; (2.12)

3xj 8951
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where §;; is the Kronecker delta and p is the coefficient of viscosity of the fluid.
Details of derivation of (i)~(iv) can be found in most texts on fluid mechanics, e.g.,
[1] and [2].

Using (2.9) ~ (2.12), we rewrite the conservation laws equations (2.2)~(2.4) in

their integral forms as follow:

d
T pd.Q +/ pg;n;dS =0,
o0

e pqzd() —|—/ (pgiq; — 7ij)n;dS =0, i=1,2,3, (2.13)
d Tk Q. ) / TGk or

il B9 ) an ( ) kgl nids =,

dt 0 p ( 2 + ! + a0 p 2 + 8$j T]q n]

where Einstein’s summation convention is used over the range of j,k = 1,2,3. The
five equations in (2.13) are the viscous flow equations for Newtonian fluid.

Remark (1) With the equation of state of the fluid p = pRT appended, where
R is the gas constant and i = i(p, p) is the specific internal energy, the system of
equations (2.13) forms a closed system for the five unknowns p, p, ¢;(i = 1,2, 3).

(2) Inviscid flow is a special case of viscous flow when the fluid viscosity and
thermo-conductivity are negligible, i.e., when =k = 0.

(3) Inviscid flow may become discontinuous (in space and in time), even if the
initial flow is smooth.

(4) Inviscid flow is reversible, since the inviscid flow equations (2.8) are obviously
invariant under the transformation

{ b=t (2.14)
q— —q.

(5) This is not the case for the viscous flow equations (2.13) with u,k > 0.
Consequently, viscous flow is irreversible.

For most part of the monograph, we shall be concerned mainly with inviscid
flow, which is much simpler than viscous flow. It is generally recognized that
the convective terms in the inviscid flow equations (2.8), i.e., the fluxes across
the surface of the control volume, are the terms that pose the most stringent
requirements on the discretisation techniques, but that the viscous and thermo-
conduction terms in the viscous flow equations (2.13) can be handled relatively
easily using central discretisation. Viscous flow computation will be discussed in

Chapters 11 and 12.
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2.3 Conservation Law Equations in Moving Coordinates

If the coordinate system used to describe fluid flow moves itself with velocity Q,
the conservation law equations derived in the previous section need be modified
by replacing the fluid velocity g by its relative velocity (¢ — @) in the flux terms.
Accordingly, for example, the inviscid flow equations (2.8) become

d

dt Joqe)
d

dt Jou)

pd!?:—/(mp(q—Q)-nd&

pq;d2 = /6 [pgi(q — Q) + pj] - ndS
2

(2.15)
+inertial forces, j=1,2,3,

d
— pedf? = —/ [pe(g — Q) + pg] - ndS.
dt Jou) EYe)

Here e = (1/2)q* +i(p, p) is the specific total energy of the fluid.

In the special case of Lagrangian coordinates, Q = g, and (2.15) simplifies to

< pd2 =0,
dt Jo(q)

d

— pq;df2 = —/ pj - ndS + inertial forces, j=1,2,3, (2.16)
At Jo(q) 00

d

— ped?2 = f/ pq - ndS.

dt Joq) Eo)

On the other hand, in the special case of Eulerian coordintes, Q = 0 and hence
{2 is independent of time ¢, yielding the system (2.8), which may also be written
symbolically as
4 / Bd0 = — [ F(E) nds, (2.17)
dt /o o0

where E = (p, pq, pe)™.

The issues of computation complications of using conservation law equations
(2.15) for moving coordinates, including (2.16) for Lagrangian coordinates, over
(2.8) for fixed coordinates (also called Eulerian coordinates) will be discussed in

later chapters.
2.4 Integral Equations versus Partial Differential Equations

To illustrate concepts, we use conservation law equations for fixed coordinates. As

shown in Section 2.2, conservation laws of physics lead directly to integral form
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equations (2.13) (including the inviscid flow equations (2.8) as special case), which
thus describe the actual physical phenomena properly; in particular, they admit
piece-wise smooth solution. On the further assumption that the flow is smooth
everywhere, i.e., p, p,i and q have continuous first derivatives, these integral equa-
tions can be converted to PDE by noting that for any smooth functions f(x,y, z,t)

and F(z,y, z,t), we have

(1)

d of
- = —d£n. 1
a /., flz,y,2z,t)d2 T de (2.18)
(2)
/ F-ndS= | V-Fdf? (Gauss Divergence Theorem). (2.19)
a0 Q
®3)

If [ fd2 =0 forall 2C R?and f is continuous, then f =0. (2.20)
Q

Making use of (2.18)~(2.20), we obtain from (2.13) the differential form of the

conservation law equations

dp  Olpg;) _
ot T 0w, O
adpg) 0, -
5 +axj (Pgiqj + pdij)
o [ (0q | 0Og 2 . Og .
= —Zpii——|, i=1,2,3, 2.21
O _M (3xj +8xi) 3t 7 Oz, ! (2:21)

e (50 g (5 ) o
o T 9q; | 0g; o 0
o o (3 5 -S|

This system of equations is called the Navier-Stokes Equations for viscous flow.
In the special case of inviscid flow for which & = p = 0, the Navier-Stokes

equations reduce to the Euler equations

v FE) =0, (2.22)
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which is said to be in conservation form. Written out in details, (2.22) becomes

pU pU pw
P pu2 +0p puv puw
pU 2
0 5] puv 0 pv° +p 0 pUwW
J— JE— —_ _— = O
ot p’o Z; o puw oy pow T | pwr+p ’
pe pU (e—i—g) pU (e—i—B) pw (e—i—g)
p P P
(2.23)

where u, v, w are the z-, y- and z-component of the velocity g, respectively, and
1
e= §(u2+1}2+w2)+i.

Note The Euler equations for inviscid flow (2.23) can also be derived directly
from the integral form equations (2.8).

Remarks on the Navier-Stokes equations for viscous flow

(1) It is generally believed, though not yet proven, that all solutions to the
Navier-Stokes equations for laminar flow are smooth. If so, the system of integral
equations (2.13) for viscous flow is equivalent to the Navier-Stokes equations (2.21)
which are in PDE form.

(2) For unsteady flow, the Navier-Stokes equations are hyperbolic if k = 0, u ~
0; parabolic, otherwise.

(3) It is not known what general initial and boundary conditions will make the
Navier-Stokes equations well-posed. The situation is even more uncertain when
these equations are solved numerically.

(4) For many practical viscous flows, the fluid viscosity and thermo-conductivity
are very small, resulting in a high Reynolds number. For high Reynolds number
flow, the viscous scale is several orders of magnitude smaller than a typical length
scale of the problem. Without special treatment, large number of mesh points
would be needed to get reasonable resolution of the numerical solution, requiring
very large storage and long computing time.

Remarks on the Euler equations for inviscid flow

(1) The inviscid flow equations (2.23) obtained by neglecting fluid viscosity
and thermo-conductivity in the Navier-Stokes equations are of hyperbolic type and
have only one scale. These render numerical computation much easier than the

viscous flow equations. This is why great efforts are spent on computing inviscid
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flow solution (see [3-5]), hoping to get a good first approximation to high Reynolds
number flow.

(2) In smooth flow region, the Euler equations (2.23) hold and are equivalent
to its integral counterparts (2.8).

(3) Across discontinuities, only the integral form equations (2.8) are valid.

Therefore, the starting point for studying inviscid flow should be the integral
equations (2.8), not the Euler PDE (2.23) as is done quite commonly. In this
regard, we note that it is the integral form equations (2.8), not the Euler equations
(2.23), that are actually solved in numerical computation (see Section 3.4). The
reason why most text books discuss the Euler PDE (2.23) at great length, rather
than the integral equations (2.8), is because the mathematical theories of system
of hyperbolic PDE are quite well developed, e.g., characteristics and Riemann
invariants, but we know very little about the mathematical theory of integral-
differential equations (2.8). The mathematical properties revealed by the PDE,
(2.23), though only valid for smooth flow, are found to be very helpful in computing

piece-wise smooth solution to the integral equations (2.8). See Sections 3.4~3.7.

2.5 The Entropy Condition for Inviscid Flow Computation

As pointed out in Section 2.2 the inviscid flow model neglects all irreversible mech-
anisms, such as viscosity and thermo-conductivity of the fluid. Consequently, the
solution to the inviscid flow equations (2.8) (or (2.23)) is not unique: once it ad-
mits one solution it also simultaneously admits its reverse flow solution. If the
conservation law equations (2.8) are to model the real flow which typically has
very small but positive viscosity and thermo-conductivity, then clearly only one of
these solutions can be physically correct.

In order to pick out the physically correct solution, one general approach is to
add a diffusive term so as to obtain a system with a unique smooth solution and
then let the coefficient of this term tend to zero. However, this “vanishing viscos-
ity” method requires studying a more complicated system of equations, somewhat
similar to the Navier-Stokes equations. But this is what we wanted to avoid in the
first place when we try to get a good approximation to viscous flow by solving the
inviscid equations because of its simplicity. For this reason, we would like to derive

other conditions that can be applied directly on the solutions of this (hyperbolic)
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inviscid system to filter out the physically incorrect solutions. For gas dynamics,
we can appeal to the second law of thermodynamics, which states that entropy is
non-decreasing. This very simple condition, called entropy condition, enables us to
select the physically correct inviscid solution that well approximates the solution
of flow with small viscosity. More will be discussed about entropy condition in
Section 3.3.

For other systems, it is frequently possible to derive similar conditions, generally

called entropy conditions, by analogy with gas dynamics.
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Chapter 3

Review of Eulerian Computation for 1-D
Inviscid Flow

3.1 Flow Discontinuities and Rankine-Hugoniot Conditions

3.1.1 Special Case: Stationary Surface of Discontinuity

Let o be a stationary surface of discontinuity and n be a unit normal of o (Figure
3.1). We take a rectangular volume {2 for which o cuts across {2 as shown in the
figure. Let S} denote the surface of {2 which lies in the positive side of o, S_ that

lies in the negative side, and S; denote the lateral surfaces of 2.

normal n

Figure 3.1 Control volume (2 in relation to surface of discontinuity o

Recall the integral form equations (2.8) for inviscid flow,

d
de+/ pq -ndS =0,
dt o0

dt

d 1 1
q +1 de+/ —q2+i+g pq -ndS =0,
dt a2 \2 P

where n is the outward unit normal of 9f2. We restrict, for the moment, our

[ paas2+ [ (pala-m)+pm)as =0, (3.1)

attention to the case when o is stationary and apply the following identity to (3.1):

fdS= [ fdS+ [ fds+ / Fds (3.2)
an St S S_
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for any integrable function f on 92 . Let d be the maximum distance between S
and S_ . Then
Si—0 as d—0. (3.3)

Hence

fim | fds = de+ / £ds. (3.4)

The terms involving volume integrals in (3.1) also vanish as d — 0. We then let S
shrink to a point P so that at the point P on o, each equation in (3.1) reduces to

the form
FH(P) + [~(P) =0. (3.5)
Noting that the outward normal on the surfaces S} and S_ are opposite to each

other, we get from (3.1)

(Pan)+ = (Pan) -,
(gpgn +pn)y = (qpgn +pn)_

(0]~ ()]

where ¢, = q-n, h=1i+p/p and

(3.6)

1 p

y—1p

for a perfect gas with gamma-law. These five equations relate the flow variables
on the opposite sides of a surface of discontinuity ¢ and are called the Rankine-
Hugoniot conditions.

To sum up the analysis above, we see that the integral form conservation law
equations (3.1) admit discontinuous solution, but on crossing a stationary surface
of discontinuity the flow variables must satisfy the Rankine-Hugoniot conditions
(3.6).

3.1.2 General Case: Moving Surface of Discontinuity

Suppose o moves with velocity s. We take the reference frame to move with velocity
s and replace the fluid velocity q in by the relative velocity ¢ — s. D’Alembert
inertial force arises in the momentum equation—the second of (3.1), or (2.15)—

as the reference frame is not an inertial one. However, the D’Alembert force is
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proportional to the volume of {2 and hence disappears as its thickness d tends to
zero (Figure 3.1). So we can make use of the results for the case of stationary
o by simply replacing g by the relative velocity (¢ — s) in the Rankine-Hugoniot
conditions (3.6).

3.2 Classification of Flow Discontinuities

3.2.1 Special Case: Stationary Surface of Discontinuity

1. Case 1: (pgn)+ =0
Let 71 and 72 be two independent orthogonal unit tangential vectors to o
(Figure 3.2).

normal n

Figure 3.2 Tangential directions and normal direction of surface of discontinuity

From (3.6) we have (pg,)+ = (pgn)- = 0 . This implies

(gn)+ = (gn)- = 0. (3.7)
From (3.7) and the second of (3.6), we get
P+ =p-. (3.8)

On the other hand, the flow variables p, ¢, and ¢,, may be discontinuous, while
p is continuous across ¢. In this case, ¢ is called a contact discontinuity, or a slip
surface.

2. Case 2: (pgn)+ #0

From the first equation of (3.6), we have (pg,)— # 0. Then from the second of
(3.6), we get

(q-72)1=(q-72)-. (3.9)

This means that the tangential velocities are continuous across the surface . Now

if the normal velocity is also continuous, i.e., (¢,)+ = (gn)—, then p; = p_ and
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p+ = p— from the first and the second of (3.6). In this case, the flow is continuous
and is a trivial one. For discontinuity to occur, we must have (¢,,)+ # (qn)—-

In the non-trivial case when (¢,)+ # (¢n)—, from the third of (3.6) and using
lql” = ¢, + 2 + 2, we get

1 1
<qn2 + h) = <qn2 + h> . (3.10)
2 n 2 _

Taking dot product of both sides of the second of (3.6) with n, we obtain

(pan® + 1)+ = (pgn” + p)—. (3.11)

In this case, the surface of discontinuity is called a shock wave. We sum up the

conditions relating the flow variables on the opposite sides of a shock as follows:

Pan)+ = (Pgn)—, (pgn)+ # 0,
q-7T1)+=(q-11)-,
q-7T2)+ =(q-T2),
(pan® +p)+ = (pgn”> + ),

12 12
“q?+h) = (za?+h
(a7 1), = (30 +1)

Given the flow state upstream of a shock (the “+” state), we can calculate the

(
(
( (3.12)

downstream flow state (the “—” state) by using (3.12), which are also called the
Rankine-Hugoniot conditions across a shock. There are three possible solutions.

(1) Solution 1:

P— = P+
p- =Dy, (3.13)
q_ = q+7

which represents a continuous flow.

(2) Solution 2:

B Piaa(y+1)
VO+Gns = P+aay + 29D+

_ 2p4qny — P+ + D+

T v+1 ’

VG py — Prdiy 29Dy

(v + Dp+gn+
(qu)* = (q71)+a
(qu)* = (q72)+~

(3.14)

n—
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For this solution the entropy p/p”, pressure p, density p and temperature T of a
fluid particle, increase on crossing the shock from the “+” side to the “—” side.
This is the physically correct solution. We note that this is the way the entropy
condition is applied.

(3) Solution 3: this solution is obtained from Solution 2 in (3.14) by interchang-
ing the “4+” with the “—”. For this solution the entropy p/p? , pressure p, density p
and temperature 7" of a fluid particle decrease on crossing the shock from the “+”
side to the “—” side. This is physically incorrect and should be rejected according

to the second law of thermodynamics. This is another way the entropy condition
is applied.

3.2.2 General Case: Moving Surface of Discontinuity

Suppose ¢ moves with velocity s. The Rankine-Hugoniot conditions are obtained,
as explained in Section 3.1, by simply replacing the fluid velocity g in (3.6) by the
relative velocity (g — s). Classification of flow discontinuities then follows similarly.

The results are summed up as follows:

1. Case 1: contact discontinuity or slip surface

b+=p-,
(qn - Sn)-i- = (Qn - Sn)— =0. (315)

Hence
(gn)+ = (qn)- = sn,
where s, = s-n, p,qr, and ¢, may be discontinuous.
2. Case 2: shock

The Rankine-Hugoniot conditions are

[IO(Qn - Sn)}-i- = [p(qn - Sn)}—>
[p(an = 0)* + 1], = [plan — 50)* +1] _,
(@ - 71)+=(q 71)-,

(

Q

(3.16)
To)r =(q-T2)-,

LS

(gn —sn)? + hL = E(qn —5n)” + h} E

| =
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which involve the normal component of the velocity of the shock. Given the flow
state upstream of a shock and its normal velocity, we can calculate the downstream
flow state by using (3.16).

In the remaining of this chapter, we restrict our discussions to 1-D flow only.

Here we list some useful results for 1-D flow. For a system of conservation laws

OE OF(E)
— =0 1
ot Ox ’ (3.17)
the Rankine-Hugoniot shock jump conditions are
s(BEy—E_)=F(Ey)-F(E-), (3.18)

where s = dz/dt is the speed of the shock. On the other hand, the speed s of a
contact (or slipline) discontinuity is equal to the characteristic speed A of (3.17),
ie.,

S = )\z(E—i-) = )\Z(E_) (319)

For the simpler case of a scalar conservation law 0E /0t + 0F/0x = 0, the shock

speed is
F, —F_
="\ 3.20
As an example, we consider the inviscid Burgers equation in three different PDE
forms:
“ Ou | 0(u?/2)
U u/2
=0 3.21
ot Ox ’ (3.21)
whose shock speed is
(b) 1 1
2% 5"
51 = Uy —u_ :E(u++u—)7
ou?  02u3/3
il =0 3.22
ot Ox ’ (3.22)
whose shock speed is
2 5 2
) 7§u+—§u_ gui+u+u7+u2_7és
T —ur 3 uy +u b
+ + -

(when uy # u_) and
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© ou ou

Yo

We see that although the three equations are equivalent to each other for smooth

= 0. (3.23)

solution, when a shock is present, it has different speeds according to (3.20). In
particular, (3.21) and (3.22) are in conservation form, hence their shock speeds can
be easily calculated using (3.20), and they are different!

This raises a serious question in computing non-linear conservation laws that
does not exist for linear equations. The question is: which equation, amongst
the many that are equivalent for smooth solution, should we use as the starting
point for computing numerical solution which may be discontinuous? Of the three
equations above, (3.23) is not in conservation form and therefore, according to Lax-
Wendroff theorem ([1], see also [2]), will not capture shocks correctly and must be
rejected. Although (3.21) and (3.22) both are in conservation form and can be used
in numerical computation to capture the shock, each one correctly with respect to
their form of equation. But if the Burgers equation is to represent some physical
phenomena, the solutions obtained from (3.21) and (3.22) cannot be both correct as
they have different shock speeds. Does any of these solutions correctly describe the
physical phenomenon? If so, which one? These questions cannot be answered if one
uses a PDE as the starting point for computation. To answer these questions, one
must go back to the physical phenomena and derive its corresponding conservation
law equations, which are usually in integral form, similar to (2.8). These integral
conservation law equations can then be converted to PDE, with the assumption of
solution smoothness. If the PDE coincides with (3.21), then the solution to (3.21)
will correctly describe the physical phenomena. But if the PDE coincides with
(3.22), then the solution to (3.22) will correctly describe the physical phenomena.
If the PDE does not coincide with (3.21), nor (3.22), (this implies that (3.21) and
(3.22) are obtained from some PDE by mathematically equivalent manipulations),
then the solutions obtained from them do not describe the physical phenomena.

This example serves to emphasize the importance of using the integral form
conservation law equations, not PDE, as the starting point of computation; in

doing so, the difficulties, or confusions, mentioned above are avoided.
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3.3 Riemann Problem and its Solution

3.3.1 Elementary Waves

The Riemann problem for a system of conservation laws in one space dimension is

the special initial value problem

O0E OF(E)

ot oz
B E;, x<0,
E(z,0) = { E. x>0,

where E = (u1,---,uy), and we assume that F(E) = (F(E), -, Fn(E)) is

dF(E)
dE

has m real and distinct eigenvalues A\ (E) < -+ < A\, (E) in M. The initial data

=0, t>0,z€R,

RP : (3.24)

smooth in a neighborhood M C R™, and the Jacobian matrix A(E) =

E; and E, are constant.

The Riemann problem plays a central role in the theory of systems of conser-
vation laws as well as in numerical methods for computing solution to the general
initial value problem of conservation laws. Indeed, its solution reveals all the im-
portant physics of wave propagation, and is the building brick for the two most im-
portant numerical methods: the Godunov method and the random choice method.
It is also of crucial importance in the shock fitting (front tracking) method.

The simplicity of the Riemann problem, as against the problem with general
initial data, derives from its property that both the equation and Riemann data

are invariant under the transformation
t—at, z—ar, a>0. (3.25)
Consequently, solution to RP exists in the form of similarity solution, i.e.,

x
E-B). =" (3.26)
Indeed, using (3.26) in (3.24) yields

dE
A—€¢)— =0. 3.27
(A-eD) (3.27)
Solution to the Riemann problem (3.24) may possibly be continuous or be discon-
tinuous.

Continuous solutions are to be found from (3.27). There are two possibilities:
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dE 0o dE 20
— =0or — .
d¢ d¢
dE S .
(1) d_ﬁ = 0. This gives a constant solution
x
E (?) = const.. (3.28)
dE dE
(2) 3 # 0, then £ is an eigenvalue of A and I is parallel to its right
eigenvector, i.e.,
dE : (3.29)
a* = CrY(E),C = const..

The solution is called a centered rarefaction wave.

Discontinuous solutions of conservation law, as mentioned in last subsection,
include a shock wave and a contact wave.

(1) Shock wave. Across a shock wave, the states E; and E_ on its two sides
must satisfy

s(BEy—E_)=F(Ey)-F(E-), (3.30)
d
where s = d_:; is the speed of the shock wave.

(2) Contact wave. The speed of a contact wave must be equal to the charac-
teristic speed, i.e.,

S = )\Z(E+) = )\Z(E_) (331)

Shock wave, contact wave and rarefaction wave are called elementary waves.
It is known that a linearly degenerated A-field gives rise to a contact wave,
whereas a genuinely non-linear A-field gives rise to either a shock wave or a centered

rarefaction wave, i.e., see Chapter 17, Theorems 17.9, 17.11 and 17.17 in Smollerl?.
3.3.2 Existence and Uniqueness of Solution

Using these elementary waves, a solution to the Riemann problem (3.24) can be
constructed provided that |E, — E,| is small. In particular, we have the following
theorem (Smoller [3], Chapter 17):

Theorem 3.1 (Local existence and uniqueness of solution) Let E, € M and
suppose that the system (3.24) is strictly hyperbolic and that each characteristic

field is either genuinely nonlinear or linearly degenerate in M. Then there is a
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neighborhood M C M of E, such that if E, € M, the Riemann problem (3.24)
has a solution. This solution consists of at most (m + 1)-constant states separated
by shocks, centered rarefaction waves or contact discontinuities. There is precisely

one solution of this kind in M.
3.3.3 Structure of Riemann Solution for 1-D Flow

The conservation law Euler equations for 1-D flow of a perfect gas with a ~y-law are

o (" d pu
—|pu ] +=1| pu2+p | =0, (3.32)
ot ox
pe u(pe + p)
where
1, 1 p
= — . 3.33
e=gu’+ 1, (3.33)

Here u is velocity, p is pressure, p is density and e is specific total energy. System
(3.32) is hyperbolic and in conservation form.

Since across a contact the pressure p and velocity u are continuous, the Riemann
problem for 1-D Euler equation in Eulerian coordinates is better formulated using

primative variables W = (p, u, p). Thus

61+A(W)6—W:O, t>0,
ot ox
RP: (3.34)
W(It*O)* W@ JJ<0,
T W, x>0,
where the Jacobian matrix is
U op 0
A= 0 u 1/p (3.35)
0 pa? wu

and a = (vyp/ p)l/ 2 is the speed of sound. The wave structure for the Riemann
problem is shown in Figure 3.3.

Bl gives the global existence of solution to the Riemann

The following theorem
problem (3.34):
Theorem 3.2(Global existence and uniqueness of solution) There is a unique

solution to the Riemann problem (3.34) if and only if

Up — Up <

2 (st ), (3.36)



3.3 Riemann Problem and its Solution 29

If (3.36) is violated, then a vacuum is present in the solution. The solution is
composed by at most 4 constant states (including the states W, and W,. ) sepa-
rated by a shock (or a rarefaction), a contact, and a rarefaction (or a shock). The

solution is sketched in Figure 3.3.

A-wave ' p Ag-wave
(shock or '/ (contact)
rarefaction) .,"
,/.I
7 D
'/
(2) ," (3) Ag-wave
7 (shock or
s rarefaction)
) )
.I'
x
A W[:(p? U, p)/c 0 Wr:(p% u, p)r E

Figure 3.3 Structure of Riemann solution for 1-D Euler equations

3.3.4 Solution of the Elementary Waves

The eigenvalues of A and their corresponding right eigenvectors are

M=u—a, X=u, A=u-ta, (3.37)
1 1
a 1 a
rW=| —— | 2@=(0], »®O=[ - (3.38)
P
0
a® a?

The Ao-field is linearly degenerate, giving rise to a contact wave. On the other
hand, both A;-field and A3-field are genuinely non-linear, each of which giving rise
to a shock or a rarefaction wave.

(1) The Ao-field. Across the contact

us=uz = u", (3.39)
but there is no relation between p2 and ps .
(2) The A;-field.
Case 1: py > py. In this case, the wave is a shock, because only on crossing
(time ¢ increases, see Figure 3.3) a shock wave can pressure of a particle increases;
it cannot do so on crossing a rarefaction wave. We also pointed out earlier that

as pressure increases crossing a shock, so does entropy of the fluid particle. So we
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have implicitly applied the entropy condition at this stage. The relations between
the state W, and the state W in region (2) (Figure 3.3) are thus given by the

Rankine-Hugoniot conditions

p2(uz — s) = pi(w — s),

PQ(U2*5)2+p2:Pl(ul*5)2+plv (3 40)
2 7Y p2 1 2 7 m

s —=8) '+ ———=-(wm—8)"+ ———,

(u2 =) ¥—1p2 2( ) Y—1p

where s is the shock speed. With the state W, given, there are two solutions of
(3.40) for the state Wa: one with entropy-increasing, the other decreasing. The
entropy-increasing solution is the physically acceptable one and is given in terms

of the pressure ratio @ = pa/p; > 1 as follows:

-1
!
p2_ o+l
=7 ,
pe L_HOé‘Fl
v
2(a—1)ay v+1 v—1 (3.41)
Ug = Up — [ s
(y+Da+y—-1V 2y 27y
smup—ap ) ey 121
2y 2y

where ag = \/vpe/pe-

Note that as the shock strength tends to zero, the pressure ratio o = py/py tends
to unity and the shock speed s approaches the characteristic speed A\ = uy — ay.

Case 2: pa << py. In this case, the wave is a rarefaction, because only on cross-
ing (time ¢ increases, see Figure 3.3) a rarefaction wave can pressure of a particle
decreases; it cannot do so on crossing a shock wave. The solution in the rarefac-

tion wave is to be found by solving the following system of ordinary differential

equations:
dW
— = CrM(W),C = const.,
d¢ . (3.42)
M (W) =¢.
With W = (p,u,p)T and (3.38), we may write the first equation of (3.42) as
1
(0w )-c| @ 3.43
d_€ u - p ) ( : )
p 2
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hence
do_1_»r
dp a®  p’
44
du 1 1 (3.44)
dp pa NaiZa
Integrating the first equation of (3.44) gives p/pY = const., i.e., the entropy is
constant. Hence
p_(p\""
L (_> | (3.45)
Pe D
Substituting (3.45) in the second equation of (3.44) and integrating, we get
(v=1)/2v
2
w = up + 2 1<p> . (3.46)
y—1 pe

(3.45) and (3.46) express the flow variables p and u in terms of the pressure ratio
p/pe . We now use the second equation of (3.42) to express p/py as a function of &.
Since a = \/vp/p, we get a/a; = (p/pe)?~1/?7. Using (3.37), the second equation
of (3.42) becomes

E=u—a

(v=1)/2v (v=1)/2v
2
=uy + a 1-— (p> — ay (p>
v—1 De i

201Z v + 1 (p >(’Y_1)/2"/
——ay | — .
y—1 =1 "\p

P 7—-1<Ue 2 €>}
ooy S S 3.47
De L’—Fl ag y—1 a (3.47)

Equations (3.45)~(3.47) give the complete solution of the flow inside the rarefaction

:’u/z+

Therefore

wave. Of particular interest is the velocity us,

(v=1)/2v
2
Uy = g+ — P—Gﬂ ]. (3.48)

7-1 pe
Also, the position of the first ray (upstream) is
x
7 = Se=we—ar (3.49)
and the position of the last ray (downstream) is
T 2(1 + 1 ("/_1)/27
T tmu+ Ty, (p2>
t y—-1 ~-1 Pe
=Ug — Q2. (350)
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The solutions (3.45)~(3.47) are to be used for

u—ap<§=

(p2)(71)/2’Y
ag = ap | — .
De

<'U/2 — a2,

|8

where

(3) The Az-field. This can be studied similarly to the A;-field.

Case 1: ps > p,.. This results in a shock and we have

v—1
a+ —
P3 _ v+l o P
- _1 9 - 9
pT ,y a+1 p’!‘
v+1
2(a —1)ay, v+1 v—1
Uz = Uy — o+
s v+ Da+~y—-1V 2y 27y
1 —1
S = Upr + Qyr %a—&—%.

(3.51)

(3.52)

(3.53)

Again, as the shock strength tends to zero, the pressure ratio a = p3/p, tends to

unity and the shock speed s approaches the characteristic speed A3 = u, + a, .

Case 2: p3<< p,. This results in a rarefaction wave, of which the solution is

(v=1)/2v
2a,
U =u, + a4 1-— (p> ,
Y= 1 Dr

In particular,

2 - (v=1)/2v
U3 = Uy + a 1 — <p3> .
Y= 1 Dr

Solution (3.54) holds for
uz+a3< &= —<ur+ar,

where

_1 - 2 "/_1)/27
EZP_<U_+__£>} .
Pr y+1\a, ~v—1 oa,

(3.54)

(3.55)

(3.56)

(3.57)
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3.3.5 Solution Algorithm

We are now in the position to give an algorithm for constructing the solution to the
Riemann problem (3.34). We first note that the pressure and velocity in regions

(2) and (3) are the same, and denote them with (*), i.e.,

p2=p3=0p", (3.58)
ug = uz = u*. (3.59)
We shall make use of (3.58) and (3.59) to derive a single equation for p* and then
solve it.
We already know (Figure 3.3) that if p* << py, the A;-field is a rarefaction wave
and u*(= ug) is given by (3.48). But if p* > py, the A-field is a shock and u* is
given by the second equation of (3.41). We therefore define a function

w\ (v—1)/2v
2a

ug + —=~ [1—<p—) ] P* < pe,

v—1 De

w1(p ): ) (p 1) ay " (3~60)
Do y+1p® ~+y—-1 |

Uy — p* 2 — + 2 , D > De.

R L

0

Similarly, for the Az-field we define a function

s\ (v—1)/2v
2a,
UT+V1l1_<%) 17 p* < pr,
Y3(p*) = 9 <p_* _ 1> a (3.61)
- " 1p* -1
Upr — P * \/’y;— p_+’y2 ) p*>p7"
(,YJF 1)_ +y-1 Y DPr Y

o(p") = 1 (p") — P3(p”). (3.62)
Equation (3.59) then requires
¢(p*) = 0. (3.63)

This is the required equation for p* which is to be solved numerically, using New-

ton’s method of iteration, say.
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With p* found, the solution in the whole flow filed, i.e., (p,u,p) in regions
(1)~(4), as well as the flow inside the rarefaction wave, can be found using the
formulae derived early in this section. Of course, W; = W, in region (1) and
W, = W, in region (4). A good computer program for solving the Riemann

problem can be found in [4].

3.4 Preliminary Considerations of Numerical Computation

3.4.1 The Question of Weak Solution to Partial Differential Equations

In many CFD text books, the starting point is the Euler equations (3.32), which
are of hyperbolic type. For such a system, no matter how smooth the initial data,
the solution may become discontinuous when the characteristics of the same family
intersect. Consequently, solution to the Euler equations in the classical sense—
the functions (p, u,p) are smooth (having continuous first derivatives) and satisfy
(3.32)—does not exist. It is then necessary to extend the classical concept of solu-
tion to weak solution, for which the functions (p,u,p) are piece-wise smooth such
that they satisfy (3.32) in smooth flow region and satisfy the Rankine-Hugoniot
conditions on crossing discontinuities. The analytic solution to the Riemann prob-
lem given in Section 3.3 is indeed a weak solution. Numerical solution to the Euler
equations means to compute their weak solution. One way of doing this is to revert
the Euler equations back to the integral form conservation equations

4 EdN = - F(E) - ndS, (3.64)

dt /o 00
where E = (p, pu, pe)T.

On the other hand, we see from Section 2.4 that the integral form conservation
equations (3.64) is equivalent to the Euler PDE (3.32) in smooth flow region. We
also see from Section 3.1 that the integral form equations automatically contain
the Rankine-Hugoniot conditions on crossing a discontinuity. It is therefore clear
that solving the integral form equations (3.64) will automatically gives the weak
solution to the Euler equations (3.32) without even introducing the concept of weak
solution, which belongs to partial differential equations. For this reason, and for
the example discussed at the end of Section 3.2, and also for the reason to be give
presently, we emphasige that the starting point of computing inviscid flow should

be the integral form conservation equations.
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3.4.2 Finite Volume Formulation

The main task in CFD is to compute numerical solution to the following initial

value problem, i.e., in 1-D case,

d
S [ Ede=—- | F(E) nds, (3.65)
dt /o Ye)

with initial condition E(z,0) = Eq(x).

If we take cell j to be the control volume 2 : x; 1/ < = < Zj11/2, (3.65)

pecomes (B(a;41/2.) = F(B(w;_1/2.1))
d N F E Ij+1/2,t *F E Ij_l/Q,t
EEJ = — - , (3.66)
where
1 [Fi+1/2
E;(t)= E/ E(z,t)dx (3.67)

j—1/2

is cell average and h = x;41/9 — Tj_1/2 is cell width. Integrating (3.66) from time
t" to t"t! gives

En+1 _ En 1 e
=B 5|

We note that in deriving (3.68) there has been no approximation made, hence

tn+1

F(E (2412, 1))dt — / F(E(z; 1. 0)dt| . (3.68)

tn

it remains exact. We also note that (3.68) belongs to the class of conservative
numerical schemes which ensure correct capturing of shock waves, according to
Lax-Wendroff theorem!!.

Different methods of evaluating the flux integrals on the right hand side of
(3.68), particularly E at the interfaces, constitute different numerical schemes. For
example, in the Glimm’s random choice schemel® 6/ E at the interface between
cell 7 and cell j + 1 is to be obtained from the solution of the Riemann problem
with E; and E;;; at time t,, as Riemann data, where E; is the value of E at
some point in cell j which is chosen randomly. Although random choice scheme
works well for 1-D flow, it is difficult to extend to multi-dimensional flow. Another

scheme is the famous Godunov scheme to be discussed in the next section.

3.5 Godunov Scheme

In 1959, Godunov!” proposed a finite volume scheme, which used the Riemann
solution as a building brick for the numerical solution of compressible Euler equa-

tions. Under the assumption of constant state inside each control volume at the
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beginning of each time step t", i.e.,
E(x,t") = Ej(x,t") = const, for z;_1/0 << Tj41/2,

the initial condition around a cell interface becomes

Ej7 l'< xj+1/27

E(z,t") = { (3.69)

Ejt, ©>xj11/2,

and there is a corresponding exact Riemann solution for the Euler equations

L —Tjtr1/2
E; i/:(v,t) = Erp (ﬁ) .

As a result, the fluxes in (3.68) can be evaluated based on the above solution, i.e.,
F(E(zj41/2,t)) = F(Erp(0)). (3.70)

The above scheme based on the exact Riemann solution is called Godunov scheme.

Godunov scheme is composed of two phases: cell averaging phase followed by
solving a sequence of Riemann problems for every pair of adjacent cells using the
cell averages as Riemann data. The second phase is exact, and the only error arises
from cell averaging in the first phase. Godunov scheme has the following desirable
properties:

(1) It is conservative and consistent and hence, according to Lax-Wandroff
theorem!!| it can capture shocks correctly whenever it converges, which requires
numerical stability of the scheme.

(2) Tt can always be made stable by suitably adjusting the time step in the
marching computation, according to the CFL stability condition.

(3) For linear systems of conservation law equations it reduces to the upwind
scheme, which is the least dissipative scheme among all first-order schemes.

(4) Tt is applicable to non-uniform cells.

(5) Tt is entropy-satisfying: the entropy condition is applied in obtaining the
Riemann solution.

However, due to cell averaging Godunov scheme is only first order accurate for
smooth flow, and zeroth order accurate across discontinuities (shocks and contacts).
For 1-D flow, the Godunov-averaging errors across a shock can be avoided by using

the shock-adaptive Godunov scheme ([8, 9]; see Section 4.2). On the other hand,
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averaging errors across a contact is inherent in FEulerian coordinates which do not,
in general, align with the contact. Errors of this type can only be avoided by using
coordinates of the Lagrangian-type (see Chapter 4).

In comparison with traditional central difference methods for the Euler equa-
tions, one of the merit of the Godunov scheme is its clear physical picture, where gas
dynamics process gets involve in the construction of the numerical scheme through
the flux evaluation. The Riemann solution tells us exactly what is happening at
a cell interface if the initial condition is distributed piecewise constant. Therefore,
this methodology can be naturally extended to more complicated system once the
dynamics under simple initial condition can be obtained.

The Euler equations present a shock discontinuity with zero thickness. Numer-
ically, this sharp transition cannot be properly resolved by any refined cell size.
Therefore, the real equations the Godunov method solves numerically with a lim-
ited cell resolution, must be viscous governing equations, where any flow structure
should be compatible with the cell size. In other words, an additional dissipation is
implicitly added in the Godunov method. Certainly, if the shock discontinuity or
slip surface can be well resolved by shock or contact fitting methods, the additional
dissipation can be avoided (see Chapter 4).

The use of the Riemann solution somehow helps to introduces the “appropriate”
numerical dissipation needed in the discontinuity region. However, contrary to
many statements in the literatures, the amount of dissipation in the Godunov
method is not coming from the characteristic waves of the Riemann solution or the
so-called upwinding mechanism, but is coming from the preparation of the initial
data at the beginning of each time. For example, the preparation of piecewise
constant state inside each cell is based on the conservation of mass, momentum,
and total energy. In this process, the kinetic energy is not conserved and the lost

el19. As a consequence,

kinetic energy is automatically transferred into thermal on
in multi-dimensional flow simulation the amount of dissipation in the Godunov
method is closely related to the relative orientation of the shock discontinuity and
the mesh distribution™"). Therefore, the dissipation in the Godunov method is a
passive one, but it may not be adequate in flow computation. This observation can
be used to analyze many defects of the Godunov method in the flow simulations

(see Section 3.7). Also, the assumption of discontinuity at a cell interface in the
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Godunov method is valid only for the cases where the cell resolution is not enough
to resolve the flow structure. In the well-resolved continuum flow regime, this
assumption is not necessary and the high-resolution scheme is basically trying to

reduce such a discontinuity jump.

3.6 High Resolution Schemes and Limiters

In order to extend the Godunov method to high resolution, we have to modify the
piecewise constant initial condition first. A natural extension is to introduce slopes
inside each cell for the preparation of initial condition. However, a naive slope
construction can easily introduce over- or under-shoot in the discontinuity regions.
On the other hand, if we simply connect the cell averages, the initial data in the
Godunov scheme will be a continuous function across the cell interface, therefore
it goes back to the traditional central difference schemes, where the post-shock
oscillations are intrinsically rooted. Therefore, in order to properly construct a high
resolution scheme, the following criteria have to be satisfied. Firstly, in the smooth
region, the initial reconstruction should be as close as possible to a continuous one
across a cell interface; Secondly, in the discontinuity region the large jump at the
cell interface has to be kept; Thirdly, the reconstruction has to avoid over- and
under-shoot in all situations. The reconstruction method, which could satisfy all
above requirements, must use non-linear limiters to limit or choose the appropriate
one from all possibly reconstructed slopes. In other words, even for linear equation
a non-linear reconstruction mechanism has to be involved. With the inclusion of
slopes, the Riemann solution should theoretically be replaced by the generalized
Riemann solution?. However, there are simpler ways to achieve high resolution,
and one of them is the monotonic upstream-centered scheme for conservation laws
(MUSCL) of van Leer!'3].

The reconstruction can be further replaced by more accurate approximations
as well. For example, the reconstruction can use quadratic, as in the piecewise
parabolic method (PPM)[!) or even higher order reconstructions as in the ENO
(essentially non-oscillatory) or WENO (weighted ENO) methods>~17.

For any high resolution scheme, it is basically a choice between the use of the
continuous and discontinuous initial data for the flux evaluation. Currently, most

high resolution schemes make the choices between the continuous and discontinu-
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ous ones based heavily on the numerics. In other words, it is the stencil and their
coefficients that determine the final reconstruction. For complicated flow problems,
such as the viscous flow computation inside a boundary layer of the Navier-Stokes
equations, a purely numerical choice may trigger serious problems when there are
only a few points inside such a layer, and the solution may strongly depend on
the order of the reconstruction. For a successful scheme solving the hypersonic
viscous heat conducting flow equations, the choice between the continuous and
discontinuous initial data reconstruction should not only be based on the numer-
ics, such as different stencil or limiters, but also be based on the flow physics to
choose the appropriate one. For example, an ideal case is the following. Inside the
viscous heat conducting boundary layer, even with the possible “inappropriate”
discontinuity initial reconstruction, according to local Reynolds number the flow
physics will quickly smear the discontinuity and generate a continuous one for the
flux evaluation. Otherwise, the high resolution scheme will automatically generate
waves which don’t exist in the boundary layer, to poison the numerical solution.
One good example to use flow physics to make the choices is the gas-kinetic BGK
scheme, where both discontinuous and continuous flow distributions are included
in the final gas distribution function at a cell interface, and the weight between
them depends on the flow physics!!® 191, Therefore, the boundary solution is not
sensitive to the limiters used at all.

High resolution schemes generally give more accurate numerical results in the
smooth flow region, but different combinations of approximate Riemann solvers
and limiters give slightly different results!*). Although they also improve resolution
of shocks and contacts, they remain of zeroth order accuracy there. In all Eule-
rian computations presented in this book, we use Godunov scheme with the exact
Riemann solver and upgrade it to high resolution via the MUSCL methodology,
employing the MINMOD limiter. Some of the computed results are reported in

Section 4.5 for comparison with the unified coordinates computation.

3.7 Defects of Eulerian Computation

Godunov scheme and high resolution schemes have enjoyed great success in CFDI];
in particular the shock can be resolved with 2 to 3 computational cells in high res-

olution scheme. However, Eulerian computation using Godunov scheme or higher
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resolution schemes with various combinations of approximate Riemann solvers and
limiters have inherent defects. The following list represents known defects!20=23] of
Eulerian computation for solving (3.32):
(1) Contact smearing;
(2) Slow moving shocks;
(3) Sonic point glitch;
(4) Start-up errors;
(5) Low pressure flow;
(6) Wall-overheating;
(7) Strong rarefaction waves.
Defects (4)~(7) are also shared in Lagrangian computation. In Section 4.5, we
will detail out these defects, point out their causes and show how they all can be

cured or avoided by using the unified coordinates.
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Chapter 4

1-D Flow Computation Using the Unified
Coordinates

4.1 Gas Dynamics Equations Based on the Unified Coordi-
nates

The gas dynamics equations in Eulerian coordinates (¢, z) are written in conserva-

tion PDE form as

o (° 0 e
dl i =0 4.1
5 | Pu | Tag | pw e : (4.1)
p u(pe + p)
where
1
PR B S
2 vy—1p

Under the transformation to classical Lagrangian coordinates

dt = dA,
1

dr = udX + =d¢, (4.2)
p

1/p —u
0 0
5(z)+a—€(fp)=0~ Y

The system of equations (4.3) is seen to be in conservation PDE form.

(4.1) become

We now introduce the transformation to the unified coordinates (A, ) as follows:

dt = dA\,
{ dx = UdX 4+ Ad¢, (44)
where U(), €) is an arbitrary function. It can easily be shown that
o€ + Uﬁ =0. (4.5)

ot or
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This means that the coordinate ¢ is invariant following a pseudo-particle whose
velocity is U. Consequently, computational cells move with the pseudo-particles,
instead of the fluid particles as in Lagrangian coordinates. As we can see from the
above transformation, the case U = 0 gives us the Eulerian coordinates in which &
is independent of the flow; in particular, £ = z if A = 1. On the other hand, the
case U = u gives the Lagrangian coordinates, since the pseudo-particles move with
the fluid particles. The classical Lagrangian coordinate corresponds to the special
case when A = 1/p in addition to U = u. Thus the unified coordinate & introduced
by (4.4) with U = u may be regarded as a generalized Lagrangian coordinate;
it has the flexibility in choosing the stretching factor A. One advantage of this
unified coordinate system is its ability to show the effect of coordinate systems on
the behaviour of the solution by simply varying the parameter U from 0 to u.

Under transformation (4.4), the gas dynamics equations (4.1) become

OE OF
N + 9 " 0, (4.6)
where
pA (u—TU)pu
_ | rAu | (w=U)pu® +p
B= pAe |’ F= (u—U)pue + up
A -U

The last equation in (4.6) is the compatibility condition of the differential relation
(4.4) for dz. We note that like the Eulerian system (4.1), the UC system (4.6)
and its Lagrangian special case (4.3) are also in conservation PDE form. It is
well-known that Eulerian system (4.1) is hyperbolic in ¢-direction, and so is the
Lagrangian system (4.3) in A-direction. We now prove that the UC system (4.6)
is also hyperbolic in A-direction, despite the fact that the transformation involves
the unknown function v. We choose Q@ = (p, p,u, A)T to be the vector of state

variables, then the eigenvalues and corresponding eigenvectors are [

(1) o=0,

u—U
2) o=y, (4.7)
3) Ui:(u—U)j:a

1/2
where a = (E> is the speed of sound. The corresponding right eigenvectors
p
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are
T1 :(0707071)T7
T2 :(0717070)T7

T
1
Py = <1,a2,:i:,:1: U/“> .

ap’  apot

(4.8)

Since these eigenvectors are evidently linearly independent, we conclude that sys-
tem (4.6) is hyperbolic in A-direction.

Since the UC system (4.6) and its special case (4.3) are, like their Eulerian
counterpart (4.1), both hyperbolic and in conservation form, these systems can be
solved similarly to the Eulerian one. In particular, any shock-capturing methods
developed for conservation laws (as summarized in Chapter 3) apply.

We further note that Lagrangian gas dynamics equations (4.3) and the Eularian
ones (4.1) are both strictly hyperbolic, having distinct eigenvalues (—pa, 0, +pa)
and (u— a,u,u+ a), respectively. It is remarkable that Wagner[? proved that they
are theoretically equivalent to each other, meaning the existence of a one-to-one
map between the two sets of weak solutions obtained by using the two systems.
This important result does not, however, carry over to the case of multi-dimensional
flow, as shown in Chapter 8.

Computationally, Lagrangian method is superior to the Eulerian in that contact
discontinuities are sharply resolved in Lagrangian computation as they coincide
with the coordinate lines (cell interfaces) and hence avoid the cell averaging errors
across them, whereas contacts are badly smeared in Eulerian computation because
they do not align with the fixed Eulerian coordinates and hence errors arise due
to cell averaging across the contacts. We shall show that Lagrangian computation
can be further improved by using the shock adaptive Godunov scheme to replace

the classical Godunov scheme.

4.2 Shock-Adaptive Godunov Scheme

As we pointed out earlier, the only source of error in the Godunov scheme arises
from averaging the conservative flow quantities over a computational cell when
representing the flow in all cells by piecewise constant states. To minimize this
error, we distinguish three cases.

(1) In smooth flow regions, the error due to cell averaging is small and can be
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reduced by using a high resolution schemes, e.g., FCTE! MUSCLM, ENOP!, or
WENOU! etc..

(2) On crossing a contact discontinuity the error is large, as in Eulerian com-
putation. However, it is minimized using Lagrangian or the unified coordinates
(generalized Lagrangian). Since the contact coincides with the Lagrangian coordi-
nate line and hence with a cell interface, there is no error arising from averaging
across it.

(3) On crossing a shock discontinuity, we shall use the shock-adaptive Godunov
scheme to replace the classical Godunov scheme. In this new scheme, there also is
no error arising from averaging across the shock. This is described as follows!* 7> 8.

The basic idea of the shock-adaptive Godunov scheme consists of splitting a
shock-cell, i.e., a computational cell containing a shock wave, along the trajectory
of the shock. The split shock-cell becomes two sub-cells: one entirely upstream of
the shock and the other entirely downstream. In this way, the cell averaging proce-
dure across the shock discontinuity, and the errors associated with it, are avoided,
resulting in infinite shock resolution. The fictitious cell boundary separating the
two sub-cells and moving through the regular mesh at the local speed of the shock
shall be called a partition. With this abstraction, the two sub-cells and the other
(regular) cells can be treated on an equal footing in the Godunov scheme (recall
that Godunov scheme applies to non-uniform cells as well as uniform ones).

The shock-adaptive Godunov scheme is complemented by a shock-cell splitting
criterion which triggers the splitting of a shock-cell in the presence of a shock in
the flow field. In the approach considered here, a shock-cell is split if the pressure
jump across an elementary shock wave, as obtained from the exact solution to the

Riemann problem, is larger than some critical shock strength threshold, say if

& < 5Shock7 0< 5Shock < 1a (49)

Pa
where the subscripts d and u refer to the downstream and upstream flow states,
respectively. This desirable self-adaptivity feature permits for the automatic de-
tection of a shock wave without a priori knowledge of its position nor its existence.
The value of dghock = 1 corresponds to splitting all cells along elementary
shock waves, whereas dgpock = 0 corresponds to no splitting and the scheme sim-

ply reduces to the classical Godunov scheme. In our calculations, dshock = 0.6,
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corresponding to the entropy jump of 16%, was found to be satisfactory.

We note that the shock-adaptive Godunov scheme is, in effect, doing a shock
fitting in the overall shock-capturing environment, using the information from the
exact Riemann solution with no extra cost. We also note that a similar idea
was proposed in [9] for Eulerian computation. However, it did not work well (for
example, see [8]), due to convolution of averaging errors across a shock and those
across a contact. In Lagrangian computation, contact resolution is taken care of
by its alignment with cell interface, leaving only the shock resolution to be handled

by the shock- adaptive Godunov scheme.

4.3 The Use of Entropy Conservation Law for Smooth Flow
Computation

Now with the use of the shock-adaptive Godunov scheme in the Lagrangian coor-
dinates, the errors arising from averaging across both discontinuities—shocks and
contacts—are avoided, and the numerical computation of unsteady flow needs be
done only in the smooth flow regions. The utmost importance of the conserva-

tion form of the governing equations'"!

for the correct capturing of shocks is no
longer necessary as shocks are now fitted exactly. It is therefore possible to freely
rewrite the governing equations in any other form that is advantageous for com-
puting smooth flow. For this purpose, an entropy-conserving reformulation of the
governing equations in the smooth flow region is proposed.

One motivation for the use of an alternative set of governing equations arises
from the desire to eliminate the overshoots commonly observed in Lagrangian com-
putation in the vicinity of contacts (see Refs. [1, 11], also Figures 4.3 and 4.9),
despite the fact that in the case U = u the flow quantities are not averaged across
a slip line. Another motivation is to compute entropy accurately.

Since the flow is isentropic along a path line in a smooth flow region, the energy
equation (the 3rd equations of (4.3) and (4.6)) can be replaced by the law of

conservation of entropy,

08

5 =0 (4.10)

along a path line, where S = p/p?. Accordingly, (4.3) and (4.6) are simplified. For

example, (4.3) becomes
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1/p g [
| u |+=]| p | =0 (4.11)
(2 0

p/p? “\o

We caution that the law of conservation of entropy (4.10), and hence (4.11), ap-
plies only in regions of smooth flow, i.e., upstream and downstream of the shock.
Across a shock discontinuity, the exact entropy jump is imposed using the Riemann
solution.

To summarize, our UC method for 1-D flow computation consists of using

(1) the generalized Lagrangian coordinates given by (4.4), or its special case,
the classical Lagrangian coordinates given by (4.2);

(2) the shock-adaptive scheme in place of the classical Godunov scheme;

(3) Equations (4.11) instead of (4.3) for computing flow in the smooth flow
regions.

Accordingly, UC gives exact entropy everywhere, fits shocks exactly and resolves
contacts sharply. It will be shown in Section 4.5 that all the defects listed in Section
3.7, except the defect (7), can be cured or avoided by the UC method using the
classical Lagrangian coordinate plus shock adaptive Godunov scheme for (4.11).
To avoid the defect (7), which has a large variation of density, it is necessary to

use (4.6) (in place of (4.3) ) with its energy equation replaced by (4.10).

4.4 The Unified Computer Code

With the Riemann solution given in Appendix A, where we have used a parameter
h such as U = hu, and the shock-adaptive Godunov scheme explained in Section
4.2, we are now in the position to describe the numerical procedure.

A pseudo-particle in the physical space marching in the flow direction of a fluid
particle corresponds to a cell marching in the A-direction in the computational
(X, €) space. The superscript n refers to the marching time step number and the
subscript 7 refers to the cell index number on a time line A = const..

The following steps describe the numerical procedure of the shock-adaptive
Godunov scheme upgraded by MUSCL. This scheme is applied only for U = u
(Lagrangian coordinates). By putting the shock-detection parameter dshock equal
to zero (no cells are splitted) the described scheme reduces to the classical Godunov-

MUSCL scheme, and it can then be applied for 0<< U << u.
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Step 1: initialization at \’. Assume the initial conditions of a flow problem
are given at t = 0 (A = 0) in the physical space. Then a &-coordinate mesh is laid

on the z line (for instance, we take £ equal to x) with

§=2¢60,81,82, " &m- (4.12)
Hence the flow variables QY = (p?, p9,u?, AY)(i = 1,2,---,m) are known as initial
conditions. Subsequently, E? are available for all 4, =1,2,--- m.

Step 2: construction of interface fluxes. With all E} and @7 known at
stepn (n=0,1,2,---), the Q data are first upgraded or reconstructed via MUSCL
procedure by nonlinear interpolation in the following way. Let f be any of the above
variables p, p,u or A, then in the cell ¢ and i 4+ 1, we assume linearly distributed
states in both cells, and use nonlinear extrapolation to determine cell interface flow

variables as follows:

fr="fir1 —0.5(fivo — fix1)o(r™), (4.13)
o fiv1 — fi
" fire — firr) (4.14)
fl:fi +05(f2 *fifl)(ﬁ(’l’_), (415)
- _finn—fi
r —71,1_ ) (4.16)

where ¢(r) = max(0, min(1,r)) is the minmod limiter and subscripts  and [ corre-
spond to the right and the left state, respectively. We emphasize that the MUSCL
upgrading does not apply across shocks: the shocks are already captured exactly
by the shock-adaptive Godunov scheme based on the Lagrangian coordinates, there
is no room for further improvement by upgrading.

A local Riemann problem is solved at all cell interfaces, including partitions,
for all adjacent cell pairs ¢ and 7 + 1. A Newton iterative method is employed (see
Use reference [12] of chapter 3) for finding the values of pressure p* and velocity

u™ at the cell interface §;; /2. The numerical fluxes are obtained in the following.

Let us consider two cells, ¢ and ¢ 4+ 1, with partition between them having the

d
slope ¢ = 0}41/5 > O(Figure 4.1) (The case o7, | , < 0 can be derived similarly).

dx i+1/
Applying the divergence theorem to the cells ¢ and 7 + 1, we obtain

AS?HE?H =AET + O';(L+1/2 “AX- E:+1/2
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—AX- (F(P;'k+1/2a uf+1/2) - F(P?A/za u;ll/Q))a (4.17)

n+1l pn+1 n mn n m
A€i+1 Ei+1 —Afz‘HEiH —Oit1/2° AN Eiy

—AX- (F(p;‘k+3/27 u;-‘+3/2) — F(piy1,uih)), (4.18)
ag Ag
AN n
Tit1/2
Ag A&

Figure 4.1 Computational cells ¢ and ¢ + 1 with

partition in between having slope o7, 5

where Ej /2 1s the averaged conserved flow state along the inner (downstream)

side of the shock having speed U?H/Z. Using Af;”‘l = A& + U?+1/2 - AX and
Afgfll =AY — U:L+1/2 - A, the above equations can be written in the form
Ei +1 :E’L — W (F(pi+1/2’ Ui+1/2)
+‘7in+1/2 (B - E3+1/2) - F(pf_1/2,uf_1/2)) ) (4.19)
n+1 n AA * * n n
Ef=E;, - W (F(pi+3/27ui+3/2) - F(p}4, ui+1)) ) (4.20)
i1

which reproduce the numerical fluxes

@) = { F(pp,ul), +07y, )y <0,

F(pizl:l/27ui:|:1/2) + Gii1/2(Ei - Eiil/z)a :‘:‘72'11/22 0

K2

are evaluated at §;41/2, where U?il/z are the slopes d¢/d\ of the interface Eit1/2 at
A" and E7 /2 is the averaged conserved flow state along the inner (downstream)
side of the shock relative to the shock-subcell being updated. The speeds o7, ; /2
of the partitions are updated based on the speeds of the corresponding elemen-
tary shock waves in the local Riemann problems. The presence of a new shock is
tested at all cell interfaces. If the splitting criterion is satisfied, a new partition is
introduced to account for the incoming shock and the cell is split.

Step 3: determination of the step size AA™. To satisfy the stability

condition of the scheme, the step size is determined as the minimum of the step
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sizes

A= (1.22)

‘U?il/Z‘
mlax{ AL
for the regular cells and

AN = min { AL } (4.23)

i “7?+1/2| + “7?71/2‘

for the shock-subcells which represents the intersection point of the + waves in the
shock-subcell, or equivalently, the intersection point of the incoming elementary
wave with the opposing cell interface, also an elementary wave.

For an elementary rarefaction wave, o7, /2 is replaced by the speed of the
leading Mach line (fastest characteristic). For an elementary shock wave, o7, /2
is replaced by the shock speed, since any disturbance propagating in the shock
direction is bounded by the shock, with the flow upstream of the shock being
undisturbed.

Step 4: advancement of the average cell states from A" to A"t! =

A" + AAX™. The average states E;LH for all non-terminating cells, with domain

{NOeR) A" <A< )\n+17§zﬂf1/2 + 071 pA=A") <E <&l 00y (A= A")}

(4.24)
are obtained at A\"*! using the difference equation
Ei+1 =E} - W((%+)z - (&) (4.25)

with the composite fluxes given by (4.21). The cell width A&+ of a shock-subcell
is updated using
AGT = Ag! + (03112 = 0i1/2) AN" (4.26)

prior to advancing the conserved flow state. For a stationary coordinate contact

n n
i+1/2 i+1/2

to the local Riemann problem. For a regular rectangular cell, the above difference

line, o = 0; for a partition, o = 0&}ock> @S obtained from the solution

equation reduces to the familiar updating formula used in the classical Godunov
scheme.

Step 5: decoding to get Q?‘H. The decode procedure is straightforward.
)T

From the expression for E = (e1, ez, e3,e4)", where e; = pA, ea = pAu, e3 = pAe
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or ez = % (for shock-adaptive Godunov scheme) and ey = A, we have

>
== 4.27
=2, (a.27)
€1
== 4.28
P=r (4.28)
(&-2)o-1p vs
T Ty - ) u,
p={ \es " 2) P (4.29)
ez p7, U =wu, for shock-adaptive Godunov scheme,
A:€4. (430)

Step 6: Elimination of the terminating shock-subcells at A”*! (Only
for shock-adaptive Godunov scheme). The shock-subcells terminating at A"*!
are eliminated by removing the corresponding partitions and the upstream shock-
subcells. This renders the downstream subcell a regular cell at A"*+1.

Step 7: Mapping results onto the physical space. To map results from
computational space onto the physical space, trapezoidal integration is applied to
get

!t =2 4+ 0.5 AN (UM + UMY, (4.31)
This step in the program is optional since the grid in the physical space does not
participate in the computation; all computations are carried out in the transformed
(N, €) space. Tt is obvious that we will have some errors during mapping of compu-
tational results onto physical domain, but the errors are small as seen in the test
examples.

Now the numerical procedure for advancing one time step is completed. To
march forward further, one goes back to Step 2 and repeats Steps 2~6.

A detailed computer code is given in Appendix B, where we have used a pa-
rameter h such that U = hu. It can be used to perform an Eulerian computation
by specifying h = 0, or classical Lagrangian computation by specifying h = 1 and
A = 1/p, or the UC computation. The code may also be used to do computer

experiments to see the effects of h on the flow.

4.5 Cure of Defects of Eulerian and Lagrangian Computa-
tion by the UC Method

We now explain how to use the UC method to cure, or avoid, the following defects

of the Eulerian computation:
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(1) Contact smearing;
(2) Slow moving shocks;
(3) Sonic point glitch;

(4) Start-up errors;

(5) Low pressure flow;

(6) Wall-overheating;

(7) Strong rarefaction waves.

Note that defects (4) to (7) are also shared in the classical Lagrangian compu-

tation.

To do the UC computation for cases (1)~(6) it is adequate, as we shall do, to

use U = uw and A = 1/p. For case (7), the density variation is great, and it is

necessary to use the coordinates given by (4.4) with U = u, while leaving A to be

determined as part of the solution. This allows us to have a uniform mesh initially

by

specifying A = 1.0 at A = 0.

4.5.1 Contact smearing

Figure 4.2 shows the Eulerian computation for the Riemann problem with initial

data,

(r.p) = { (5.9924,19.5975,460.804),  0<z < 1.0, 5)
(5.99242, —6.19633, 46.0950), 1.0< z< 2.0,
N (Eulerian) - (Eulerian)
30t 250
25t 200
p 20f ;150
15} 100
10} 50
0 05 1 15 2 00— o5 1 15 2
T T

Figure 4.2 Contact smearing for Riemann problem (4.32): Eulerian computation

employing Godunov MUSCL method with minmod limiter

which consists of two shocks and a contact line in between, where p is density

and ¢ internal energy. While the shocks are resolved to within 2 cells, which is
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a fortuitous fact due to characteristics converging to the shocks, the contact line
is badly smeared; the smearing actually increases with the number of marching
time steps. As pointed out earlier, the numerical smearing of the contact is due to
non-alignment of Eulerian coordinate line, x =const., with the contact line. It is
inherent in the Eulerian computation and cannot be substantially reduced, except
with artificial techniques which are not always reliable.

Figure 4.3 shows the classical Lagrangian computation. We see that the shock
resolution is similar to Eulerian computation, and that the contact is more sharply
resolved. We also note the overshoot (undershoot) near the contact.

Figure 4.4 shows the UC computation, i.e., classical Lagrangian plus shock
adaptive Godunov scheme and the use of equation (4.11). It reproduces the exact

analytic solution, as predicted.

(Lagrangian) (Lagrangian)

35 - . 300 : —

30 [‘ : 250}

25 1 200 ]

p 20 1 7 1501 -
15 ] 100
10 b 1 501
50 0.5 1 1.5 2 00 0.5 1 1.5 2

T x

Figure 4.3 Contact smearing for Riemann problem (4.32): Lagrangian computation

employing Godunov MUSCL method with minmod limiter

4.5.2 Slow moving shock

In computing an isolated shock, if the shock is slow-moving the disturbances due
to the shock is of low frequencies (long waves). The numerical dissipation near the

shock is small for slow-moving shocks and may not be sufficient to damp the long

waves down. The test case is the Riemann problem with the initial data,[!?]
| (3.86,0.0,10.33), 0<z < 1.0,
(pyup) = { (1.0,-2.63,1.0), 1.0<az< 2.0. (4.33)
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(UC) (UQ)
35 " " 300 —
30F M 1 2501
25+ 1 200F
p 20f . i 150} L
15F - 100}
10} 1 50 F
5 1 1 1 0 1 1 1
0 0.5 1 15 2 0 0.5 1 1.5 2
T x

Figure 4.4 Contact smearing for Riemann problem (4.32): UC computation employing

shock adaptive Godunov MUSCL method with minmod limiter

In these cases, the strong acoustic and entropy waves generated will give rise to

(12] " where the shock speed is

some oscillations in the pressure as well as density
0.11.

In the Lagrangian coordinates the speed of a shock wave is always greater (in
magnitude) than the characteristic speed, ap, and hence the shock cannot be slow-
moving. Therefore, the errors due to slow-moving shocks that occur in Eulerian
computation will never occur in Lagrangian computation. This is clearly seen by
comparing the Lagrangian results in Figure 4.6 with the Eulerian ones in Figure

4.5 for the same flow problem. With UC method, both errors are eliminated, as

shown in Figure 4.7.

" (Eulerian) (Eulerian)
4
10 S
8 3
p 6 P2
4
9 1
0 . 0
0 0.5 1 0 0.5 1
T T

Figure 4.5 Slowly moving shock wave for Riemann problem (4.33): Eulerian

computation employing Godunov MUSCL method with minmod limiter
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Figure 4.6 Slowly moving shock wave for Riemann problem (4.33): Lagrangian

computation employing Godunov MUSCL method with minmod limiter
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Figure 4.7 Slowly moving shock wave for Riemann problem (4.33): UC computation

employing shock adaptive Godunov MUSCL method with minmod limiter

4.5.3 Sonic point glitch

In Eulerian computation, many shock-capturing methods experience difficulties in
the resolution of rarefaction waves. We consider the Riemann problem from!!?!
with initial data

(1.0,0.75,1.0), 0<uz < 1.0,

4.34
(0.125,0.0,0.1), 1.0< z< 2.0. (4.34)

(mmw—{

Figure 4.8, which uses the first order Godunov method, shows a “glitch” in the
rarefaction waves region. This phenomenon is associated with the fact that at the
point where the “glitch” situates the flow is sonic, hence the characteristic velocity
for the genuinely nonlinear wave field is zero (see [13] and [14] for an explana-

tion). In Lagrangian computation, the corresponding characteristic velocities are
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ap and —ap, and will never become zero. Consequently, the sonic point glitch can
never occur in Lagrangian computation, as demonstrated in Figure 4.9 which was
computed using the same Godunov method but based on the Lagrangian equa-
tions. We note that contact overheating (see also 4.5.6 Wall-overheating below) is
greatly smeared in Eulerian computation (Figure 4.8), but is more pronounced in
Lagrangian computation (Figure 4.9). The overheating is completely eliminated

using UC method, as shown in Figure 4.10.
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Figure 4.8 Sonic glitch test for Riemann problem (4.34): Eulerian computation

employing Godunov MUSCL method with minmod limiter
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Figure 4.9 Sonic glitch test for Riemann problem (4.34): Lagrangian computation
employing Godunov MUSCL method with minmod limiter

4.5.4 Start-up errors/'?

Numerical errors are often observed in using conventional shock-capturing methods
to compute the propagation of an isolated shock, especially when the initial data

are chosen as a sharp discontinuity. These methods require averaging across a
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(ue) (UC)
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z

Figure 4.10 Sonic glitch test for Riemann problem (4.34): UC computation employing
shock-adpative Godunov MUSCL method with minmod limiter

shock, leading to a smeared shock profile and, in the process, generating acoustic
and entropy waves. While acoustic waves dissipates quickly the entropy waves
remain observable.

This is again the same Riemann problem as the slowly moving shock test (4.33),
of an isolated shock, initially located at x = 1.0, moving at a speed equal to 0.92.
Eulerian computations are shown in Figure 4.11, whereas Lagrangian computations
are shown in Figure 4.12, both using the conventional Godunov-MUSCL shock-
capturing method. In both cases, the start-up errors occur in the form of entropy

waves in the density profile and in the entropy profile.
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Figure 4.11 Start-uperror test for Riemann problem (4.33): Eulerian

computationemploying Godunov MUSCL method with minmod limiter

In our method, the shock is fitted using exact Riemann solution and is taken
to be a cell interface, avoiding cell-averaging across it. Consequently, the start-up

errors are avoided, as shown in Figure 4.13.
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Figure 4.12 Start-up error test for Riemann problem (4.33): Lagrangian computation

employing Godunov MUSCL method with minmod limiter
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Figure 4.13 Start-up error test for Riemann problem (4.33): UC computation
employing Godunov MUSCL method with minmod limiter

4.5.5 Low pressure flow

A difficulty occurs in some shock-capturing methods with a linearized Riemann
solution that use conservation formulation'®. In this formulation the total energy,
density and momentum are the conserved variables, but the pressure p is computed
from the total energy after subtracting the kinetic energy determined from the
momentum and density. In regions of high speed flow, the kinetic energy dominates
the internal energy and inaccuracies in the conserved quantities can easily lead to
the kinetic energy exceeding the total energy, causing computational breakdown in
the form of pressure being negative. It was shown in [15] that this will not happen
with the (first order) Godunov method for the Euler equations but can happen if

a linearized Riemann solution is used.
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The difficulty of negative pressure appearing will never happen in UC method
in which, for the smooth flow regions, pressure is determined from the constancy
of the entropy and the conserved quantity 1/p (see (4.11)), and can never become
negative. On crossing a shock, pressure is increased as determined by the exact
Riemann solution and cannot become negative either. Figure 4.14 shows the UC
computation for the expansion flow due to a piston withdrawing at speed equal to
5 from a gas at rest with a unit pressure and density. It is seen that even when
the flow near the piston is almost vacuum, e.g., the pressure is p = 1.6 x 1077, the

flow is computed without any difficulty.
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Figure 4.14 Sudden expansion of a gas; UC computation (dots) compared with exact
solution (solid line) at ¢t = 1.0

4.5.6 Wall-overheating

This notorious phenomenon of wall-overheating was first discovered by von

12,17-28] 1t i3 now realized (2

Neumann['%! and has since been a hot topic of researchl
that not only sudden compression of a gas due to shock reflection from a solid wall,
but also sudden expansion due to an abrupt withdrawal of a piston from the gas,
will produce this wall-overheating. Most conventional shock-capturing methods

in Eulerian or Lagrangian computation can accurately predict pressure and ve-
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locity in these situations, while under-predicting density, thus over-predicting the
temperature near the wall, hence the name.

Consider the well known Noh’s problem: the initial condition is a uniform
flow with velocity u = —1, density p = 1 and pressure p = 0 in a unit domain
0 < x < 1. This flow is reflected at time ¢ = 0 from a solid wall situated at x = 0,
and we want to compute the flow after the reflection. Fulerian computations of
pressure, p velocty u, density p and i temperature 7" are shown in Figure 4.15,
whereas the corresponding, Lagrangian computations are shown in Figure 4.16,
both results are compared with the exact solutions. We see from these figures that
the conventional Godunov-MUSCL method in Eulerian or Lagrangian coordinates
predicts wall pressure and velocity correctly, but it fails to predict the density (and
hence also temperature and entropy) correctly near the wall. The failure is worse
in the Lagrangian computation. Figure 4.17 presents computational results for
the same problem using UC method, i.e., (4.11) with the shock-adaptive Godunov
scheme. The wall overheating is seen completely eliminated; indeed, the exact

solution is reproduced by our method.
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Figure 4.15 Noh’s problem; Eulerian computation (dots) employing Godunov-MUSCL

scheme, compared with exact solution (solid line) at t = 0.6
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Figure 4.16 Noh’s problem; Lagrangian computation (dots) employing
Godunov-MUSCL scheme, compared with exact solution (solid line) at ¢t = 0.6
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Figure 4.17 Noh’s problem; UC computation (dots) employing shock-adaptive
Godunov-MUSCL scheme, compared with exact solution (solid line) at ¢t = 0.6
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An example of sudden expansion is the flow resulting from an abrupt with-
drawal, at time ¢t = 0, of a piston with a velocity u = —2 from the gas at rest
having pressure p = 1 and density p = 1. If a Eulerian mesh is used, this is a
moving boundary problem in that the piston position is not fixed with a mesh line,
and some special treatment must be applied in order to correctly satisfy the bound-
ary condition there. Such treatment would produce additional errors. In contrast,
there is no difficulty in Lagrangian mesh, and we shall present only Lagrangian
computations.

Figure 4.18 shows the computed results using Lagrangian method based on
the conservation form equations (4.3). The method is seen capable of predicting
the wall pressure and velocity (not shown here) correctly, but fails to predict the
wall density, temperature T" and entropy S correctly. We note that this failure is
due to the inability of conventional shock-capturing methods to correctly simulate
the flow near the start of the motion. This flow near the start of the motion is
singular in nature. Therefore, spurious entropy is generated near the wall which
remains unchanged with mesh refinement!*?l. This is expected, because the flow
near the start of the motion is a centered (rarefaction) waves which has no length
scale. Using UC method, i.e., shock-adaptive Godunov method applied to (4.11),
the wall overheating is completely eliminated while the whole flow field is correctly
predicted, as seen in Figure 4.19.

In both examples, the UC is seen to completely overcome the difficulties of wall-
overheating. We emphasize that the success of the UC method originates from the

use of the entropy conservation equation to replace the energy onel'?.
4.5.7 Strong rarefaction waves

Recently, a new defect of conventional shock-capturing methods was found in [29]
due to the presence of strong rarefaction waves. The defect appears in Eulerian,
Lagrangian, and gas-kinetic computation. As an example, consider the Riemann

problem with initial data

(1000.0,0.0,1000.0), 0<x < 0.3,

(pyup) = { (1.0,0.0,1.0), 0.3<z<1. (4.35)
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Figure 4.18 Sudden expansion of a gas; Lagrangian computation (dots) employing

Godunov-MUSCL scheme, compared with exact solution (solid line) at ¢t = 1.0
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Figure 4.19 Sudden expansion of a gas; UC computation (dots) employing shock-
adaptive Godunov-MUSCL scheme, compared with exact solution (solid line) at t=1.0
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As shown in Figure 4.20, even with 500 cells in one unit, there is still significant
error in the shock location. It is now realized®” that this is due to the presence
of a strong rarefaction wave which affects the location and strength of the adja-
cent contact line which, in turn, affects the location of the shock front. The UC
method, again, can avoid this error as seen in Figure 4.21. We note that with
the presence of a strong rarefaction wave, the density variation is great. In such
a situation the classical Lagrangian method, which uses 9x/9¢ = 1/p, will give
large cell disparity and hence error. We use the UC based on the general equa-

tion (4.6) with the entropy equation (4.10) replacing the energy equation in (4.6).
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Figure 4.20 Velocities calculated by MUSCL-LLF, MUSCL-ROE, gas-kinetic BGK and
5th-order WENO methods with 500 cells (Tang and Liu2%)
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Figure 4.21 Velocities by the UC method with 500 cells
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By putting A = 1 at A = 0, we have a uniform mesh initially, and the difficulty with
large cell disparity is avoided. In this way, the UC is, again, completely satisfactory,

as shown in Figure 4.21.

4.6 Conclusions

From these examples, we conclude that for 1-D flow,

(1) Classical Lagrangian computation is superior to the Eulerian in its sharp
resolution of contact discontinuities. In this regard, we note with pleasant interest
that in the two seminal papers by Von Neumann!®!l and by Godunov®?, the clas-
sical Lagrangian gas dynamics equations (4.3) were used, instead of their Eulerian
counterpart (4.1).

(2) The UC computation, with its use of shock-adaptive Godunov scheme in
place of the classical one, and with its use of the entropy conservation equation
in place of the energy conservation equation for smooth flow, is superior to both
Eulerian and Lagrangian computation.

(3) The UC computation is completely satisfactory for 1-D flow.

(4) The UC also applies to the system with real gas effect!33!.
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Chapter 5

Comments on Current Methods for
Multi-Dimensional Flow Computation

5.1 Eulerian Computation

The chief advantage of Eulerian computation is that the control volumes, i.e.,
the cells, are fixed in space. This facilitates writing computer codes and, if we
discretize the integral equation (2.17), we automatically obtain a conservative nu-
merical scheme which ensures correct capturing of shocks.

A list of defects of Eulerian computation for 1-D flow has been given in Section
3.7. These carry over to 2-D and 3-D flow, too; the most serious of these is the
smearing of contact discontinuities. A good example is shown in Figure 5.1, where a
Riemann problem for 2-D steady supersonic flow is studied. The large numerical er-
ror around the contact line (slipline) (Figure 5.2) is seen to also affect the accuracy
of the smooth flow computation. As pointed out in Chapter 3, contact smear-

ing is inherent in Eulerian computation because, as in 1-D flow, it does not align

y
p, =025
p, =05 shock
M,=12
_- slipline
T
- )
- expansion
P, =10 fan
p,=1.0
M,=2.4

Figure 5.1 2-D steady Riemann problem: sketch
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itself to Eulerian coordinates. Figure 5.3 shows the classical Lagrangian computa-
tion. Figure 5.4 shows results from the unified coordinate computation (for detail,

see Chapter 9), which is completely satisfactory.
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Figure 5.2 Density distribution in the 2-D steady Riemann problem; Eulerian
computation (Godunov-MUSCL)
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Figure 5.3 Density distribution in the 2-D steady Riemann problem; Lagrangian
computation (Godunov-MUSCL)
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Figure 5.4 Density distribution in the 2-D steady Riemann problem; UC computation
(Adaptive Godunov-MUSCL)

There are also defects that exist in multi-dimensional flows only. For exam-

ple, shock instability and carbuncle phenomena can appear for the high speed
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flow around a cylinder when the mesh is well aligned with the flow field™. The
main reason for this is due to special dissipative mechanism in the Godunov
method, where the cell averaging is the only source for the artificial dissipation!?.
Therefore, the anisotropy of the dissipative
property triggers the shock instabilities.
For example, a standard shock instability
(carbuncle) phenomena from Roe’s scheme
is shown in Figure 5.5. Even though it is
not totally conclusive at the current stage,
there are many explanations existing in the
literatures!® 4. For the UC method, due to

the freedom in imposing the mesh velocity

and the capability of shock fitting by mov-

ing the mesh, it may be possible to avoid Figure 5.5 Shock instability!"
or reduce the carbuncle phenomena.

Another serious drawback is that for computing flow past a body, which is the
central problem in CFD, a body-fitted mesh must be generated prior to computing
the flow field. But, mesh generation remains a tedious and time-consuming process,

even after more than three decades of research.

5.2 Lagrangian Computation

For 1-D flow, classical Lagrangian computation was shown in Chapter 4 to be
superior to the Eulerian. Its chief advantage is sharp resolution of contact discon-
tinuities, and this arises from the flow property that a contact line is a material
line and, therefore, aligns with a Lagrangian coordinate. This advantage carries
over to multi-dimensional flow also as seen in Figure 5.3.

However, for multi-dimensional flow, Lagrangian coordinate system has two
serious difficulties.

(1) Due to cell movement and deformation—both are unknown a priori—the
integral equation (2.16) could not be easily written in conservation PDE form. In-
deed, as late as 1999 D. Serrel stated that “Writing the equations of gas dynamics

in Lagrangian coordinates is very complicated if (dimension) D= 2”. In this re-
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gard, 1-D flow is a fortuitous exception, see (4.3). This has serious consequences.
To begin with, lack of conservation PDE form has prevented Lagrangian scheme to
be a scheme on a moving mesh in Eulerian space; the design of such a scheme has
great historical importance as well as practical application, as pointed out in[6, 7].
Although (2.16) looks very similar to, and indeed simpler than, (2.8) in Eulerian
coordinates, the difficulty in using (2.16) as compared to (2.8) is that the control
volumes (cells) move and deform with the fluid velocity, which is unknown and
has to be determined as part of the solution. Therefore, without conservation form
PDE, additional computation procedure is needed to tract the movement and defor-
mation of the cells while using (2.16). This is usually done by employing staggered
meshes for the velocity which controls the mesh movement and deformation. But
switching between meshes requires interpolations of flow variables and geometries,
producing numerical diffusion.

(2) Computation may break down due to cell deformation. This is because a
Lagrangian computational cell is literally a fluid particle with finite size, no matter
how small, and hence deforms with the fluid. This is illustrated in Figure 5.6 for
a cylindrical explosion, where the computation breaks down after some finite time
t = 0.4, due to severe cell deformation. The break down is typically associated

with the appearance of negative pressure.
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(a) a cylindrical explosion at t=0 (b) mesh at t=0.4 using Lagrangian method

Figure 5.6 A typical Lagrangian mesh; Computation breaks down soon afterwards
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Great efforts have been spent in Lagrangian computation to prevent it from
breaking down by using special treatment; the Arbitrary-Lagrangian-Eulerian (ALE)

method represents such a successful treatment.

5.3 The ALE Computation

Early efforts to combine the advantages of both Lagrangian and Eulerian systems
have resulted in the famous Particle-in-Cell method® 9 and the Marker-and-Cell
method!'~13] The highly original idea of Harlow developed in the Particle-in-Cell
method of separating a computational cycle into a Lagrangian phase plus a convec-
tive, or remap/rezone, phase has been widely used in many hydrodynamic computer
codes, in particular, in the celebrated ALE codel4—19],

In this method a computational cycle consists of a computation phase in La-
grangian space followed by a remap/rezone phase to the Eulerian or ALE space.
In the Lagrangian phase, it has the advantages as well as the drawbacks of the
Lagrangian computation mentioned above, namely, it resolves contact discontinu-
ities sharply but, due to the lack of conservation PDE form, it uses staggered
meshes and hence produces numerical diffusion arising from switching between
the meshes. Moreover, numerical diffusion is also introduced in the remap/rezone
phase of the computation, because it too requires interpolations of the flow variables
and of geometries. Indeed, it was demonstrated by Halll??! that rezoning results
in the type of errors encountered in Eulerian solutions and that with continu-
ous remapping/rezoning, ALE computation is equivalent to Eulerian computation.
The remap/rezone phase is, however, needed in order to prevent computational
breakdown.

While ALE has achieved greatly in resolving contact discontinuities, an impor-
tant phase of its computation—the remap/rezone phase—requires the intervention

of the user!'®| although new ideas have recently been proposed® to avoid it.

5.4 Moving Mesh Methods

In methods of this type, meshes are re-distributed statically, or moved dynami-
cally, according to flow properties so as to increase computational accuracy and

efficiency. These typically require solution to an elliptic equation at every step
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of the re-distribution or movement. Many moving mesh methods have been
developed (21331,

To account for the effects of re-distribution and movement of the mesh, it is
necessary to have one or more space (or geometric) conservation equations, which
are either derived mathematically or given intuitively, in addition to the physi-
cal conservation laws. While these may be necessary condition(s), it is not cer-
tain whether the effects due to mesh movement on the flow are fully taken into
account.

In a recent paper®¥, another defect of moving mesh methods has been found
that in a supersonic flow past a blunt nosed airfoil, although mesh re-distribution
may increase the shock resolution, the accuracies for some integral physical prop-
erties, e.g., lift and drag, can decrease.

Most above moving mesh methods are static ones, where the mesh is re-generated
according to an elliptic solver within every or several time steps. Another type of
moving mesh methods, which have the similarity with the Lagrangian method,
are called dynamic ones. There is a defined governing equation to determine the
mesh moving velocity and the original governing equations are transformed into
the computational space, such as coordinate transformation or mapping. Many
applications for the dynamic moving mesh methods are those related to the scalar
equations with the development of possible singularities®> =39 but are not imme-
diately applicable to the Euler equations of gas dynamics. In engineering, moving
mesh methods have also been successfully developed for the problems with moving

boundaries and interfaces[40> 411,

5.5 Optimal Coordinates

We see from the discussions above, each of the different coordinate systems have
advantages as well as drawbacks, and they tend to be complementary. We should
thus try to find, or construct, an “optimal” system of coordinates.

For compressible flow, we want such a system to possess the following desirable
properties:

(1) Conservation form PDE exists, as in Eulerian system;

(2) Contact discontinuities are sharply resolved, as in Lagrangian system;
(3) Body-fitted mesh can be generated automatically, and, if possible, we may
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also wish our system to be orthogonal and uniform. It is the aim of this book to

show that the unified coordinate system possesses these desirable properties.
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Chapter 6

The Unified Coordinates Formulation of
CFD

6.1 Hui Transformation

We introduce arbitrary coordinates (A, &, 7, ¢) via a transformation from Cartesian
(t,z,y,2) as follows:

dt = dA,

dzx = UdX + Ad¢ + Ldn + Pdc,

dy = VdA + Bdé + Mdn + Qdd,

dz = WdA + Cd¢ + Ndn + RAC.

From (6.1), we get
Dq ¢
o7 e e
¢

where Dg/Dt = 0/0t + Q - V. So the coordinates (£,, (), and hence the com-
putational cells, move with the pseudo-particle whose velocity is Q = (U, V, W).

(6.2)

The above coordinate system includes two important special cases: Eulerian
when @ = 0 and Lagrangian when @ = q, g being the fluid velocity. In the
general case, we have a coordinate system with three degrees of freedom: U,V and
W are arbitrary.

Special cases: For 1-D flow, (6.1) reduces to

dt = d),
(6.3)
dz = Ud) + Ad€,

which is identical to (4.4). For 2-D steady flow, (6.1) reduces to

dr = Ud) + AdE,
dy = Vd\ + Bd¢.
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For 2-D unsteady flow, (6.1) reduces to

dt = dA,
dz = UdA + Ad¢ + Ldn, (6.5)
dy = VdA + Bd¢ + Mdn.
For 3-D steady flow, (6.1) reduces to
dx = Ud\ + Ad¢ + Ldn,
dy = VdA + Bd§ + Mdn, (6.6)

dz = WdA 4+ Cd¢ + Ndn.

6.2 Geometric Conservation Laws

Whereas the mesh velocity (U, V, W) is arbitrary, the nine coefficients A, B,C,---, R
in transformation (6.1) are not arbitrary, but must satisfy a set of compatibility

conditions for dz, dy and dz to be total differentials. These conditions are

A QU OL U 9P U

N Ty 1R ) W T

0B _ov. oM oV 0Q oV (6.7)
ox @& ox  an ox ol '
oC _OW ON oW IR oW

N T ) W VI ) W T

0A 0L DA 9P OL 0P

on 0T a¢ 0’ a¢ on’

oB _ oM 0B _0Q oM _0Q (6.8)
op 0§ o¢ o9&’ 9¢  on’ '
oC ON 9C OR ON R

oy g’ a¢ ol 9 oy

We note that of the eighteen conditions in (6.7) and (6.8), only nine of them are
independent. We shall take the first nine conditions in (6.7), which all involve
A-derivative and are called time-evolution, to be the independent conditions; the
remaining nine in (6.8), are called free divergence constraints and hold for all time
provided they hold initially. Equations (6.7) are also called geometric conservation

laws.

6.3 Derivation of Governing Equations in Conservation Form

Consider conservation of mass equation, which can be written as



6.3  Derivation of Governing Equations in Conservation Form 81

9p | puy)

0= i—=1,2,3
615 8xj (J B )
O(pug
:nga) (a=0,1,2,3,20 = t,up = 1) (6.9)

:% pua/d\l'a7
a8

after using Gauss divergence theorem. Here zg = t,ug = 1, {2 is any control volume

and the summation convention has been used.

We define N
d:l?o = dl‘ldxgdl‘g,
El\.’l?l = —d:L‘gdSL‘gd:Eo, (6 10)
dl‘g = dIgdl‘odIl, '
dl‘g = 7dl‘0df£1dl‘2
and similarly for aﬁg. We further define
SUo = (21,72, 73),
(56'271}37 0)>
6.11
= (3,20, 1), ( )
LEg - (IO,I17I2)
and similarly for 55 Then from the transformation we get
dze = Uapdés, (6.12)
where €0 = )‘761 = £a€2 = 77a€3 = C and
Uy = 22 (6.13)
9¢p
Hence,
0 :j{ puaaxa :f puaUaﬂafﬂ. (6.14)
a0 an
Using Gauss divergence theorem, we get
0K
=28 o, (6.15)
9¢p
where
Kg = puaUag. (6.16)

(6.15) is the mass equation written in conservation form in the arbitrary co-
ordinate system. We can similarly derive the momentum and energy equation in

conservation PDE form.
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To summarize, we have

Xpva) _ o o —0.1.2.3,
0xq

M+@:O, j=1,2,3, (6.17)
0xq O0x;

Ipuat)  Op _o
3xa al‘o

in the Cartesian coordinates, and

0K

—:07 ﬂ:0717273a

¢

K . .

I Epu; +pUjs) _ 0, j=1,2,3, (6.18)
9&p

3(K3H*ong) —0
9&p

in arbitrary coordinates. Here H = e + p/p.

The physical laws are now written in conservation PDE form (6.18) in arbitrary
coordinates, including the Lagrangian. However, (6.18) is not a closed system,
because it contains (through U,g ) new unknowns: the coefficients A, B,C,---, R
in the transformation (6.1)@’. Although unknown, these coefficients are nevertheless
related to the mesh velocity (U, V, W) via the compatibility conditions (6.7). To
have a system of PDE that is closed and in conservation form it is, therefore,
necessary and sufficient to append the time evolution equations (6.7) to the physical
conservation laws (6.18). (6.7) are called geometric conservation laws (GCL). In
this regard, Eulerian coordinates represent a degenerate case in that the geometric
conservation laws reduce to triviality, and the physical conservation laws alone
suffice as a closed system.

We conclude that (6.18) and (6.7) form a closed system of fourteen conservation
PDE, containing fourteen unknowns: p,p,q, A, B,C,---, R (the mesh velocities
(U, V,WW) in these equations will be given in Chapter 7). These are

@ this explains why, as pointed out in Section 5.2, with Lagrangian coordinates, the physical
laws alone cannot be written in closed conservation PDE form; the 1-D case (4.3) is just a
fortuitous exception.
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opd | 0(pX) | 00Y)  00pZ) _
E)) ¢ an a¢ ’
9pAg; | 0(pXqj+pJy) | OpYae; +pda)  9(pZ4; +pJs) _
oA o0& on aC ’
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Ople O(pXe+pJi-q) 0O(pYe+pJa-q) 0O(pZe+pds-q) _0
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Here X = (¢—-Q)-J1,Y =(q—Q) - J2,Z=(q— Q) J3 and
MR—NQ CQ - BR
Ji=| NP-LR |, Jy=|AR-CP |,
LQ—MP BP — AQ
(6.20)
BN — CM A L P
Js=| CL—AN |, A=|B M Q
AM — BL C N R

We remark that the 14-equation system in arbitrary coordinates (6.19) appears

to be much larger than the 5-equation system in Eulerian coordinates (6.17), but

the eigenvalues corresponding to the additional nine equations—the geometric con-

servation laws—are found to be equal to zero (multiplicity 9), giving rise only to

new linearly degenerated waves and no new nonlinear waves (shocks, rarefaction
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waves, etc.). Details of these eigenvalues and their corresponding eigenvectors are
given in [1] for 2-D flow and in [2] for 3-D flow. Therefore, system (6.19) does
not generate spurious nonlinear waves that are not in the original system (6.17).
Computationally (see Chapter 10 for details), the physical conservation laws are
first solved, keeping the geometric variables (A, B,C,---, R) fixed, then the mesh
velocity (U, V,W) are computed, and finally the geometric variables are updated
using the geometric conservation laws alone. In this way, even the additional lin-
early degenerated waves do not appear (see [1, 2]). It is also interesting to observe
that in the important special case of Lagrangian coordinates when Q = q, the
linearly degenerated wave corresponding to the zero eigenvalue is not new but is
already in the original system.

As to computing time requirement, the bulk of it is spent on solving the physical
conservation laws, which is the same as in Eulerian computation. Additional time
used in updating the geometric conservation laws adds about 3% to the total,
while additional time used to compute the mesh velocity (U, V, W) adds another
5% ~ 10%, depending on the problems at hand.

In the special case of 2-D flow, the system of governing equations (6.19) simpli-

fies to

OE OF 0G
T T 21
B + o€ + an 0, (6.21)
where
pA pX pY
pAu pXu+pM pYu—pB
pAv pXv—pL pYv+pA
E_ pAe  F- pXe+p(uM —vL) G- pYe+ p(vA —uB)
A -U 0
B -V 0
L 0 -U
M 0 -V

(6.22)
withA=AM—-BL, X = (q—Q)-J1 = (u—U)M—(v—=V)LandY = (¢—Q)-J2 =
(v—V)A - (u—U)B, where J; = (M,—L)T and J; = (—B, A)*. Here X and
Y are the components of the relative velocity in the V& and V7 directions with
the length of the boundaries. The first four equations in (6.22) are the physical

conservation laws and the last four the geometric conservation laws.
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Chapter 7
Properties of the Unified Coordinates

We shall call the system of coordinates (X, &, 7, () defined in (6.1) unified in the
sense that it unifies the Eulerian system when @ = 0 with the Lagrangian when
Q = q, and also in the sense that the system of governing equations (6.19) unites
the geometrical conservation laws with the physical ones to form a closed system

of PDE in conservation form.

7.1 Relation to Eulerian Computation

The Eulerian computation is a special case of the unified coordinate (UC) approach
by assigning @ = 0, which makes the system simple. Since the UC system is in a
conservative form, it may be regarded as a moving mesh method in the Fulerian
space. As such, UC has advantages over the Eulerian system in the following
aspects: (O The mesh velocity can be chosen to make the mesh align with the
contact line or contact surface, see Section 7.4. @ The UC formulation naturally
provides a foundation for mesh generation, where the mesh velocity can be used
in this process. @ By properly choosing mesh velocity Q, UC can handle the
interaction problems between flow and solid at ease (see example 4 in Section
12.5).

7.2 Relation to Classical Lagrangian Coordinates

We shall now prescribe conditions to be satisfied by the mesh velocity (U, V, W) so
as to give the unified coordinates additional useful properties.
For 1-D flow, we require the coordinate £ in (6.3) to be a material coordinate,
ie.,
Dg¢ ~0
Dt ’
hence U = u but A is arbitrary. This includes the classical Lagrangian coordinate

(7.1)
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as a special case when U = u and A = 1/p, or, we may say that the unified
coordinate is a generalization of the Lagrangian one in that the coefficient A in
(6.3) is arbitrary rather than equal to 1/p.

We also use shock-adaptive Godunov scheme to replace the classical Godunov
scheme and the entropy conservation equation to replace the energy conservation
equation for computing smooth flow, as explained in Chapter 4.

For 2-D flow, we require a coordinate in (6.5), £ say, to be a material coordinate,

ie.,
Dqf
—= =0
Dt ’

plus a mesh angle-preserving (or Jacobian-preserving) condition to jointly deter-

(7.2)

mine the mesh velocity (U, V).
For 3-D flow, we require two coordinates in (6.1), £ and 7, to be material

coordinates, i.e.,

Dqg Dqn
— =0, — =0 7.3
Di C o : (7.3)

plus a mesh skewness-preserving (or Jacobian-preserving) condition to jointly de-
termine the mesh velocity (U, V,W).

We see from above that the unified coordinates can be regarded as a generaliza-
tion of the classical Lagrangian coodinates, which requires all coordinates (&, 7, ¢)
to be material coordinates. By requiring only one of the two coordinates in 2-D
flow, and only two of the three coordinates in 3-D, to be material the UC already
possesses the most important advantage of Lagrangian system: sharp resolution
of contact discontinuities (see Sections 7.4 and 7.5). To require the remaining
coordinate also to be material would then inherit the defect of Lagrangian coordi-
nates: computation breakdown due to cell deformation with the fluid. Instead, we
choose the remaining coordinate in such a way as to preserve the mesh angles (and
hence also mesh orthogonality) in 2-D or to preserve mesh-skewness in 3-D, thus

preventing computation breakdown.

7.3 Relation to Arbitrary-Lagrangian-Eulerian Computation

The unified coordinates approach shares the same spirit of the Arbitrary-Lagrangian-

Eulerian (ALE) approach in that it combines the best features of the Lagrangian
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and Eulerian approach!!, or in that the coordinates move at an arbitrary velocity!?.
However, the strategies are quite different. In the ALE approach, “the general
strategy is to perform a Lagrangian time step and to follow it with a re-map step
that maps the solution from the distorted Lagrangian mesh on to the spatially
fixed Eulerian mesh or the ALE mesh”[ 2. This is usually done by employing a
staggered mesh. Furthermore, the rezoning/remapping strategies are not generally
prescribed; instead, “rezoning requires the intervention of the user, - - -, and the suc-

7121 Tn our

cess of the method depends heavily on the skill and patience of the user
UC approach we propose a specific rule for mesh movement (see Sections 7.4, 7.5
and 7.8 below), and in our method all computations are done entirely in the trans-
formed space without a staggered mesh and with no explicit rezoning/remapping

to the Eulerian or ALE space; explicit re-mapping causes numerical diffusion.

7.4 Contact Resolution

We now explain in this and the next section how to determine the mesh velocity
so as to get sharp resolution of contacts. Consider the 2-D case first. In this case
there are two arbitrary functions, U and V', and we can prescribe two requirements.

The first requirement is that coordinate n shall be a material coordinate, meaning

Dqn
— =0 7.4
Di (7.4)
Together with Dgn/Dt = 0 in (6.2), we get
Y=w-V)A—(u—-U)B=0. (7.5)

We observe that contact lines, being material lines, must coincide with coor-
dinate lines and, therefore, can be resolved sharply. Moreover, a material inter-
face (including a free surface) corresponds to 7 =const. and thus can be resolved

sharply.

7.5 Mesh Orthogonality

The second requirement is that mesh angles, and hence mesh orthogonality, shall
be preserved during the A-marching computation. This means

iarccos (M) = 2arccos ( AL+ BM ) =0
AN V€|V ) — aa VA2 B2+ M2)

(7.6)




90 Chapter 7  Properties of the Unified Coordinates

which, after expressing V' in terms of U from (7.5) and using the geometric conser-

vation laws of (6.19), yields an ODE for U

?9% L PN OU = QA ©), (7.7)

where Up(A, €) can be prescribed arbitrarily, and

S? 0B 0A L 0B 0A
Poxe = 17 (43¢~ 25 ) ~ s (43 25, )

S2A ou ov L[ Ov ou

with
A=AM — BL, S*?=1L1%+M? T?=A%+ B2

We note that the mesh-angle preserving condition is not unique, but can be
replaced by any reasonable condition, e.g., preserving the Jacobian A, which would
be particularly suitable for incompressible flow computation.

Remark (1) Condition (7.4) alone inherits the advantages of Lagrangian co-
ordinates: sharp resolution of contacts. If we further require

D
D—qf =0, (7.9)
then the coordinates (§,n) are Lagrangian and computation may break down due
to large cell deformation. This can be prevented by the mesh-angle preserving
condition (7.7), or by the Jacobian-preserving condition. The UC system may be
regarded as a generalization of the Lagrangian system in that we retain only one
condition of Lagrangianess (7.4), while abandoning the other one (7.9) in favor of a
mesh-angle preserving condition, or Jacobian preserving condition. The same may
be said about the 3-D case (see remark (2) below).

(2) In the case of 3-D flow, there are three arbitrary functions U, V and W, so we

should prescribe three requirements: We want  and ¢ to be material coordinates,

meaning
Dqn
—— =0 7.10
e (7.10)
and
Dt _ (7.11)

Dt
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(7.10) and the second equation of (6.2) combine to give

Y=(q@-Q) - J;=0. (7.12)
Similarly, (7.11) and the third equation of (6.2) combine to give

Z=(q—-Q) -Js=0. (7.13)

As the third condition, we require that the mesh skewness

_ AL L[ |P] 1= { 0, orthogonal,

AXL P (7.14)

00, degenerate

be preserved during the A-marching computation®. Here A = (A, B,C)",L =
(L,M,N)T and P = (P,Q, R)T. This condition is

Ok
D 0. (7.15)
It might seem a possible alternative (to the three conditions (7.10), (7.11) and
(7.15)) to use (7.10) and to preserve the two mesh angles during the A- marching
computation. This would then have the desirable effect that mesh orthogonality
can also be preserved for 3-D flow (as in the 2-D case) when the mesh is initially
orthogonal. However, this is impossible in general, because it would contradict a
theorem of [4] (see also Section 9.5) that for steady flow past a body, orthogonal
body-fitted mesh is possible if and only if the flow belongs to a special class called
complex-lamellarl® | for which ¢ -V x ¢ = 0. We also note that, as in the 2-D case,
the condition of mesh skewness-preserving can be replaced by that of Jacobian-

preserving.

7.6 Unified Coordinates for Steady Flow

In the special case of steady flow, (7.10) and (7.11) become q-Vn = 0 and q-V({ = 0.
Hence, fluid velocity vector g lies in the direction of the intersection line between
the surfaces n(x, y, z) =const. and {(x,y, z) =const.. At the same time, the second
and the third equations of (6.2) also become Q- Vn =0 and Q- V¢ = 0, and hence

the mesh velocity vector @ must lie along the same intersection line. Therefore,

Q = hq, (7.16)
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where h can be an arbitrary function. This means the unified coordinates move in
the direction of fluid velocity but not with its speed, in contrast to the Lagrangian
coordinates which move with the fluid both in its direction and speed. This special

case of the UC will be studied in details in Chapter 9.

7.7 Effects of Mesh Movement on the Flow

In Sections 7.4~7.6, we paid emphasis on sharp resolution of contacts. On the
other hand, if contact resolution is not an important issue, as in some applications,
there is no need to require any of the coordinates in UC to be material. In such
cases we can freely choose the mesh velocity (U, V, W) to our benefits and regard
the UC as a moving mesh method. As such, it distinguishes from existing moving
mesh methods in that the effects of mesh movement on the flow are now fully
accounted for through the geometric conservation laws which, together with the
physical conservation laws, form a closed system of PDE in conservation form

(equation (6.19)). An example is given in Chapter 12.

7.8 Relation to Other Moving Mesh Methods

For the numerical solution of partial differential equations, the adaptive or mov-
ing mesh methods can be roughly divided into two categories, i.e., the static and
dynamic ones. For the static method, a new mesh is generated according to some
monitor function after every or several time steps in the calculation and all flow
variables are interpolated to the new mesh at a fixed time. By contrast, the UC
uses only one mesh, and therefore does not need interpolation of flow variables and
geometries between two meshes.

For the dynamic moving mesh methods, a mesh equation that involves mesh
velocity is employed to move a mesh within each time step in such a way that the
mesh becomes concentrated in regions of rapid variation of the solution. At the
same time, the original governing equations are transformed into the the moving
mesh space. In this regard, the dynamic moving mesh method is closely related
to the UC method, even though they are targeting on the different equations. For
example, the dynamic moving mesh method is mostly used for the scalar equations,

and the UC method is solely solving the fluid system.
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The mesh equation and the original differential equation are solved simultane-

ously for the dynamic moving mesh method. The moving finite element method!®!

[Tl have aroused considerable interest. Other

8—9]

and moving finite difference method
representative research in this aspect is the work by Russell, Huang, et all
Different from the UC method, the mesh movement in this approach is usually
based on the error measure or error equi-distribution principle for the determina-
tion of moving mesh equation' 1%, But, even with so many years research, it is
still surprisingly difficult to describe consistently reliable moving mesh equations.
In 1-D case, in order to keep the equal-partition of the mesh, one of the criterion
of the moving mesh method is to keep MOx/IE as a constant, where M is the
monitor function to determine the distribution of the mesh. Therefore, we have
0 oz
8_§ <M8_§) =0. (7.17)

In order to determine the mesh movement, we can make a time derivative to the

o0 ox
EEQ%Nﬂ’

from which the mesh velocity can be obtained implicitly,

o? 0 (8/\/1 8x>

o MU == 5¢ "ox o

above equation,

where U = 9z/0\ is the mesh velocity and A = dz/9¢. With similar consideration
and the introduction of a relaxation time 7 to determine the time scale to settle
down the optimal mesh with equal-distribution, a series of moving mesh velocity

equations have been obtained, such as

0 (M8U>:_%§(MA)7

e\ e €
10 0
U= ;a—ga—f(MA). (7.18)

In principle, the UC method can adapt the above moving mesh equation as well
in the determination of the mesh velocity U. In other words, the UC approach
can be unified with the above dynamic moving mesh method. Based on the trans-
formation between (¢,z) and (), &) space in the UC approach, the compatibility
condition (geometrical conservation laws) is given explicitly. However, for the dy-

namic moving mesh method, there is no distinction between the difference ¢ and A,
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and the geometrical conservation law is implicitly satisfied for the scalar equation
in 1-D case. But, solely designing a mesh velocity without explicitly conservation
forms and geometrical conservation laws will meet great barriers in its development
and applications for multidimensional fluid system.

Even though the above moving mesh methods cannot be applicable to gas
dynamic equations, the definition of mesh velocity may become a supplement to
the Lagrangian gas dynamics and be implemented in the UC system. For example,
(7.18) is more likely to define a diffusive mesh velocity associated to the elliptic
system, which can be used to prevent the mesh deformation. Therefore, with proper
choice of the monitor function M, and construct the diffusive mesh velocity in 2-D,
such as | o2 | 52
= ;3—52(MA)’ Vi= ;3_172(MM)
with M = dy/0n, we can define a generalized Lagrangian type mesh velocity

Uqg

U=u+Uy, V=v+Vy,

which not only follow the fluid velocity, but also adjust itself to smoothing the
mesh irregularity. A recent study of moving mesh method with dissipative mesh

velocity is presented in [16].

7.9 Relation to Mesh Generation and the Level-Set Function
Method

The UC system can also be used in other frameworks, such as automatic mesh
generation and implementation of level set function. As the body surface is a
material surface, condition (7.5) guarantees that the mesh in UC is automatically
a body-fitted mesh at all time. This provides the foundation for automatic mesh
generation (see Section 10.2 for implementation details).

The function n(z,y,t) given by (7.4) is a level set function, hence there is no

need to introduce an extra level set function when using the level set method.
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Chapter 8

Lagrangian Gas Dynamics

8.1 Lagrangian Gas Dynamics Equations

For simplicity we consider 2-D flow, when (6.1) simplifies to

dt = d),
dr = UdA + Ad¢ + Ldn, (8.1)
dy = VdA + Bd¢ + Mdn,

the governing equations (6.19) also reduce to (6.21). In the special case of La-

grangian coordinates, (6.21) simplifies to

OE O0F 0G
i T E 2
B\ + o€ + an 0, (8.2)
pA 0 0
pAu pM —pB
pAv —pL pA
E_ pAe  F- p(uM —vL) e p(vA — uB) (8.3)
A —u 0
B —v 0
L 0 —U
M 0 —v

The first four equations of (8.3) are the physical conservation laws and the last four
are the geometric conservation laws.

We remark that this system of Lagrangian gas dynamics equations (8.2) in
conservation PDE form was given for the first time for 2-D flow in [1], and
for 3-D flow in [2]. It is this conservation form PDE that guarentees that shocks
can be captured correctly and provides a foundation for designing schemes that
are moving mesh schemes in Eulerian space. Indeed, the first such scheme has
just been proposed by Despres and Mazeran!®, who ingeniously incorporate the
remaining compatibility conditions

0A 0L 0B OM

oy " o6 oy oe &4
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to rewrite (8.2) into a canonical form.

8.2 Weak Hyperbolicity

Whereas system (6.21) is strongly hyperbolic like the Eulerian case, the Lagrangian
system (8.2) is found in [1] to be only weakly hyperbolic, meaning that while all
eight eigenvalues are real, there does not exist a complete set of eight linearly
independent eigenvectors. This finding is also confirmed in [3].

Since this finding is quite striking, it is necessary here to say more about the

eigen-systems of (8.2). To study the hyperbolicity of (8.2), we rewrite it as

Aa_U+Ba_U+ a_U =8, (8.5)

where
U = (p,p,u,v,A, B, L, M)T,
OF OF 0G
AZ%, B:%, CZ%,
and S is the source term due to the transformation (8.1), which has no contribu-
tion to the eigen-field. System (8.5) is said to be hyperbolic (also called strongly
hyperbolic, or fully hyperbolic) in A if

(1) all eigenvalues o of
det(cA —aB —fpC) =0

are real for every pair (o, 3) € R?, 0% + 32 = 1;
(2) associated with the eigenvalues there exists a complete set of eight linearly
independent right eigenvectors in the state space.

Now, from direct computation we find that the eigenvalues of (8.5) are

oo=0 (multiplicity 6),
o+ =%av/a'? + (32, (8.6)

where multiplicity 6 means 6 eigerwalues have the same value, o/ = (aM —

BB)/A, B = —(aL — BA)/A. For o4, the associated eigenvectors are

( 1 o B —ad -8 -85 —aa’)T
T+ = 3 .

v oy v T 9 ) 9 87
@ pox por poxl Woal Woe) 7o) (8.7)
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Associated with the eigenvalue og = 0,
rank(c A — aB — C)|s=0, = 3,

so we get only 5 linearly independent eigenvectors:

(0,0,0,0,1,0,0,0)",

(0,0,0,0,0,1,0,0)",

(0,0,0,0,0,0,1,0)", (8.8)
( )

( )

0,0,0,0,0,0,0,1)7,

T1
T2
r3
T4
rs=(0,1,0,0,0,0,0,0)T.

This means that associated with the eigenvalue o = 0 (multiplicity 6) there exist
5, and only 5, linearly independent eigenvectors. Consequently, the Lagrangian
system (8.2) does not have a complete set of 8 linearly independent eigenvectors —
one eigenvector is missing—and is therefore weakly hyperbolic. We note that in [3]
the free divergence constraints (8.4) were used to rewrite the system (8.2) (mainly
the mass conservation equation) into canonical form, and it was then found that
three (two in the special case) eigenvectors are missing, although the eigenvalues
are the same as (8.6). Nevertheless, the conclusion is the same: Lagrangian gas dy-
namics system (8.2) is weakly hyperbolic, which appears to be an intrinsic property

of the Lagrangian formulation due to shear discontinuities.

8.3 Non-Equivalency of Lagrangian and Eularian Formula-
tion

Similar to 2-D flow, the 3-D Lagrangian gas dynamics system is also found to
be weakly hyperbolic?. This implies that for 2-D and 3-D flow, Lagarangian
system of gas dynamics is not equivalent to the Eulerian system (for the
special case of steady flow, this finding was first reported in [4]). In particular, the
Cauchy problem for weakly hyperbolic systems is not well posed in the sense of
Hadamard; it is well-posed only in a weaker sense, compared with strong hyperbolic
systems.

This seems surprising, in view of the fact that Eulerian system of gas dy-

namics equations is long known to be strongly hyperbolic. However, it has been
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demonstrated!® that Lagrangian re-formulation of any Eulerian hyperbolic system
will generically lead to a weakly hyperbolic system. A simple example is given
here.

Consider the inviscid hyperbolic Burgers equation

uy + uuy = 0. (8.9)
The Lagrangian transformation
dt = dA\,
{ de = udX + Ad¢ (8.10)

changes (8.9) into

<Z)A+< 2o > (Z)s =0 (8.11)

The eigenvalues of the system (8.11) are 0 and 0, but there exists only one linearly
independent right eigenvector (0,1)T. Hence (8.11) is weakly hyperbolic.
In this regards, the 1-D Lagrangian system of gas dynamics equations (4.3) is

just an exception: it happens to be strongly hyperbolic.
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Chapter 9
Steady 2-D and 3-D Supersonic Flow

9.1 The Unified Coordinates for Steady Flow

As shown in Section 7.6, in the case of steady flow, for two of the unified coordinates
(M, €,m) to be material coordinates, the mesh velocity must be parallel to the fluid
velocity, i.e., (U, V,W) = h(u,v,w). Therefore, transformation (6.6) becomes
dz = hudX + Ad¢ + Ldn,
dy = hvdA + Bd§ + Mdn, (9.1)
dz = hwd\ + Cd§ + Ndn,
where h is to be determined later, and w,v,w are the z-, y- and z-component of

fluid velocity q. It is easy to see that
D¢

=0
Dt ’
Dn
— =0. 9.2
Dt (9.2)

Hence, ¢ and 7 are stream functions in steady flow.
The geometrical state variables T = (A, B,C)T and S = (L, M, N)T satisfy

the compatibility conditions,

or _o(he) _,

ox ot 7

9S8 0O(hq) _

e (9.3)

In the special case of steady 2-D or axisymmetric flow, transformation (9.1)

reduces to

{ dx = hud\ + AdE, (9.4)

dy = hvd\ + Bd¢.
Here ¢ is a stream function and the arbitrary function h is chosen so that the mesh

A, € is orthogonal (see (9.8)).
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9.2 [Euler Equations in the Unified Coordinates

The Euler equations for 2-D and axisymmetric steady flow in Cartesian coordinates

pu pvU pv

O | put+p 9 puv _a| pw (9.5)

dx | puv oy | e +p |y | e |’ '
pue pvH pvH

1 1

where p is the pressure, e = —(u? +v?) + C PandH = + P Herea =0
2 y—1p p

denotes 2-D flow and a = 1 denotes axisymmetric flow.

The eigenvalues of (9.5), with respect to the a-direction, are

o9 = v (multiplicity 2),
u

wv +a?vVM?2 -1
oy =

)

w2 — a2
where a is the speed of sound and M = vu? 4+ v2/a is the flow Mach number.
System (9.5) is known to be hyperbolic for supersonic flow: M > 1. However, the
initial value problem for (9.5) is well-posed if and only if

u
Z>1 9.6
a > (9:6)

which requires the flow in the marching direction, x, be supersonic. It is, therefore,
a stronger condition than simply M > 1.

Under transformation (9.4), (9.5) becomes

K 0 1

H 0 0
K Ku+pB N Qh TPU | ahKuv [ U 7 (9.7)
x| Kv—pA o0& pU Y v

A —u 0

B —v 0

where K = p(uB — vA).

We note that while the first 4 equations of (9.7), which are the physical conser-
vation laws transformed from (9.5), are in conservation form they do not form a
closed system as they contain the additional unknowns A and B. It is by appending

the compatibility conditions of the transformation (the last 2 equations of (9.7))
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that they form a closed system of PDE in conservation form. These 2 compatibility
conditions are called geometric conservation laws.
The free function h is chosen to ensure mesh orthogonality. This means that

uA 4+ vB = 0 for all \, which gives!!

109
h:exp/ p—;za—gdf/q. (9.8)

We note that the system of equations (9.7) is in conservation form, so any shock-
capturing method can be employed to solve them. Similar to 1-D flow in Chapter
4, with the application of shock-adaptive Godunov schemel?® 3 in which the shock
wave is fitted exactly using the Riemann solution without additional cost, the
energy equation can be replaced by conservation of entropy S = p/p? along a
streamline in smooth flow regions. We also use the mesh orthogonality condition
(9.8), which is equivalent to uA+vB = 0 for all A, to eliminate A. Equations (9.7)

are then simplified to
oF 0G

5+3_§_S’ (9.9)
K 0 1
H 0 0
K
F= S CG=h| 0 |, s=_9Evly (9.10)
KqupBB —pv Y u
KU—ZL pU v
u

The eigenvalues of (9.9) arel!l

00 =0 (multiplicity 3),
hq tan p

o=+ T

1
where p = arcsinM and T = A2 + B2.

It is shown[¥ that (9.9) is hyperbolic if and only if the flow is supersonic, i.e.,
M>1. (9.11)

It is further shown that condition (9.11) also ensures well-posedness of the initial
value problem for (9.9). We should also remark that under transformation (9.4),

which involves the dependent variables v and v, there is no guarantee that the
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hyperbolic system (9.5) will be transformed to a system of the same type. The fact
that the transformed system (9.9) turns out to be also hyperbolic must be regarded

as fortuitous.

9.3 The Space-Marching Computation

(9.9) is solved using the fractional step method as follows:

Step 1 Solve OF /OX + 0G/0¢ = 0 to get

* n AN~ n N n
F" = Fj - _A€ [Gj+1/2(F ) - Gj—1/2(F )] (9-12)
Step 2 Solve 9F /OX = S to get
n+1 n *
F'"" = F + AXS(F™). (9.13)

In Step 1, we use the adaptive Godunov schemel® 3! where éj+1 /2 is Godunov
flux.

The procedure of space-marching computation for flow past a body is as follows:

(1) Begin with a column of uniform orthogonal cells, where the uniform flow is
given and is perpendicular to the column.

(2) Solve (9.9) by marching in A with the Godunov-MUSCL scheme. After one
step A\, the initial column of cells moves to the right by hgeo A\, where g, is the
velocity of the uniform free stream.

(3) After several steps when the initial column of cells has moved to the right
by Ax, the given cell width, add one new column of cells on the left that is identical
to the initial column.

(4) Repeat the above process and, when the cells meet the body surface, im-
pose the boundary conditions there. Since the body surface is a streamline, it
corresponds to a coordinate line and, therefore it is very easy to satisfy boundary
condition there.

(5) Continue this process until the columns of cells cover the whole body surface.
This then completes the wanted computation.

(6) (optional) The mesh at any step A can be constructed (and plotted) by
integrating (9.4).

Remark (1) With the use of the unified coordinates, only the two momentum

equations in (9.9) need be solved, but the conservation laws of mass, energy and



9.4 Examples 105

entropy (in smooth flow regions) are satisfied exactly. This is to be compared with
Eulerian computation, in which all four equations in (9.5) need be solved. So use
of the unified coordinates not only produces more accurate results but also saves
computing time.

(2) In principle, a space-marching method can also be employed using Eulerian
coordinates. However, in order to do that, a body-fitted mesh must be generated
prior to the marching in order to satisfy the boundary condition correctly. It is
known that even after thirty years of research, mesh-generation remains a major
bottleneck of CFD, as it is tedious, time-consuming and requires experiences and
special training. By contrast, space-marching based on the unified coordinates
requires no mesh-generation prior to flow computation, although the flow-generated
mesh can be constructed if desired. This avoids the cumbersome mesh-generation
stage in Eulerian computation, thus greatly saving computing time.

(3) What is more important is that even after mesh-generation, a space-marching
method using Eulerian coordinates will fail when the flow in the marching direc-
tion, x say, is subsonic, even though the flow is supersonic everywhere (see Example
2 below). By contrast, in computations using the unified coordinates, the space-
marching is along the local flow direction (streamlines), hence it always succeeds,

providing only that the flow is supersonic everywhere.

9.4 Examples

Example 1[!  This is a Riemann problem formed with two intersecting uni-
form streams making an angle of 23 degrees as shown in the Figure 9.1. This
extremely difficult problem was posed by Glaz and Wardlaw(® and attempts were
made to find its solution using Eulerian computation. Unfortunately, the solution
given in [5] was incorrect. In our computation, we use 20 uniform cells with 7' = 0.5
for the top part and 30 non-uniform cells with T" = 0.05 for the bottom part. This
small initial data of T" has the effect of increasing the accuracy in the expansion flow
region. The flexibility in defining the stream function £ in UC allows us to choose
different scales T for different regions. The computed result for Mach number dis-
tribution is shown in the Figure 9.2, where the very strong slip line is seen resolved

sharply, a task that is almost impossible to achieve by Eulerian computation.
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p=0.01 ——
p=0.05
M=35 —

p=1.0 /
p:1.0 /
M=10 =23

Expansion

Figure 9.1 Schematic 2-D Riemann problem
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Figure 9.2 Mach number distribution

Example 26  This is a supersonic flow of M. = 2.0 past a diamond-shaped

airfoil with semi-apex angle of 7.5° placed at an angle of attack of 10° (Figure 9.3).

o

2.5
M=2

C B

Figure 9.3 Diamond-shape airfoil
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The flow-generated meshes at different A are plotted in Figure 9.4 and Figure
9.5, and the computed pressure contours and surface Mach numbers are plotted in
Figure 9.6, respectively. The computation took very little time (1.8 s on a P4, 2.8

GHz PC machine), and yet the computed results are identical to the exact solution.

—15L a1
0 0.5 1

T x

Figure 9.4 Flow-generated mesh at A = 0 (left) and A = 0.4 (right)

1.5 ¢

Figure 9.5 Flow-generated mesh at A = 0.6 (left) and A = 1.0 (right)
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Figure 9.6 Pressure contours (left) and surface Mach number (right)

In Eulerian computation, a body-fitted mesh must be generated prior to com-
puting the flow. We also note that in this example, a space-marching method
in Eulerian coordinates fails as the z-component (in the free stream direction) of
the flow behind the shock is subsonic. A time-marching method has to be used
whose computing time is more than three orders of magnitude longer (2393 s, same
machine), plus the time (2180 s) spent in generating a body-fitted mesh to begin
the time- marching computation. Yet the computed shock and the Prandtl-Meyer
expansions are smeared (Figure 9.7).

Example 36 This is a hypersonic flow of M, = 5 past a circular cone with
20° apex angle at zero angle of attack. This is an axisymmetric flow and its com-
putation details are different from that for the 2-D of Example 2, where (9.13)
in Step 2 is not needed. In the present axisymmetric flow, we need Step 2. In
particular, (9.12) in Step 1, computes a 2-D flow of M, = 5 past a wedge of 20°,
hence after this step the 2-D entropy of 1.056 immediately behind the shock at
the apex (x = 0) is higher than the corresponding value for the cone, and this
higher value remains constant along the streamline, hence on the cone surface.
This is obviously incorrect. However, the application of (9.13) in Step 2 gives

an axisymmetric correction to the flow field, so that the entropy along streamline
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Figure 9.7 Surface Mach number distribution on diamond-shaped airfoil. Eulerian
computation (5th Order WENO Scheme), 100 x 200 cells. Computing time to 20000
Steps: 2393 s on P4, 2.8 GHz PC machine
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entering the shock wave at later x decreases with x and approaches the correct cone
value (Figure 9.8). The initial surface entropy overshoot is similar to the famous
“wall overheating” paradox of von Neumann.

The computed Mach numbers across the rays from the apex are plotted in Fig-
ure 9.9 and compared to the well-known Taylor-Maccoll solution(”). The computing
time is small (only 5% of that in Taylor-Maccoll computation), yet the agreement
is excellent, especially the shock is sharply resolved.

5.2

— Taylor-Maccoll Solution
5.1 . Present

Mach

4.2||||||||||||||||||||||||
10 12 14 16 18 20

0
Figure 9.9 Mach number distribution, 102 cells. Computing time:
7.21 s (P4, 2.8 GHz)

As seen from these examples, for 2-D steady supersonic flow the unified coordi-
nate computation can resolve both shock and contact sharply and, for flow past a
body it does not require generating a body-fitted mesh prior to computing the flow
field. Moreover, a 2-D steady supersonic flow is computed easily as if it were a 1-D
unsteady flow. We conclude that the unified coordinates as defined by (9.4) plus
the orthogonality condition (9.8) constitutes an optimal coordinate system for 2-D
steady supersonic flow, being robust, accurate, efficient and, for flow past a body,
capable of automatically generating a mesh by the flow being computed.

It is interesting to note that the UC moves with velocity hq, it therefore follows
the fluid particles only in their direction of flow, but not with their speed. We thus

see that the advantage of Lagrangin coordinates is retained simply by following
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the fluid particles in their direction of motion. We then adjust the speed of the
coordinates so that the system is orthogonal. In this way, the disadvantage of the

Lagrangian coordinates in this case, namely cell distortion, is avoided.

9.5 3-D Flow

The situation is more complicated for 3-D flow, partly due to 3-D topology. We
shall first show that, unlike the 2-D case, an optimal coordinate system does not
exist for 3-D flow in general.

Definition 9.1 a coordinate system (A,&,n) is said to be optimal if it is
orthogonal and VA//q.

Theorem 9.1 For smooth 3-D steady flow, an optimal coordinate system

(N, &, m) exists if and only if the flow satisfies

q-(Vxq)=0. (9.14)

Flows of this class are called complex-laminar(®.

Remark (1) The 2-D steady gas flow is a special case of the flow for which
(9.14) is satisfied; hence optimal coordinates exist for the 2-D steady supersonic
flow as shown in section 9.4.

(2) Irrotational flow is another special case which satisfies the flow condition
(9.14). In this case, we may simply take A = ¢, where ¢ is the velocity potential
for irrotational flow, whilst £ and 1 are orthogonal stream functions.

(3) When the flow condition (9.14) is not satisfied, optimal coordinates do not
exist. Now we prove the above theorem.

Proof Suppose that the optimal coordinates exist. Then
VA =k(z,y,2)q, (z,y,2) €N
for some function k(z,y, z). That is, kq is an irrotational vector field in {2 and
Vx(kq)=0 in £

or

Vinkxq+Vxqg=0 in . (9.15)

Multiplying q with (9.15) yields (9.14).
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Conversely, suppose that (9.14) holds; then by the Pfaffian theorem, there exists
an integrating factor k = k(x,y, z) such that

kq-dr =do¢
is a total differential of some function ¢ = ¢(x,y, z). Thus
Vo = kq.

Now we let A = ¢ and construct the optimal coordinates (X, &,n) by making the

transformation
(z,y,2) = (N, &m),

where & = £(z,y,2),n = n(x,y, z) are selected so that they are two independent

families of stream functions whose existence are known a priori; thus
Ve lq, Vnlg.
The transformation so constructed is

dA=Agdz + A\ydy + A;dz = VA - dr,
dn =n,dz + nydy + n.dz = Vn - dr.

Now we need to show that the above transformation belongs to the class (9.1). For

this purpose, we invert (9.16) to get

& & ‘ Ay Az ‘ Ay Az

Ny 7=z Ny Mz fy &,
d 1 & & Ao Al N o | [
i TR e e |||
4 det[ ,,17] Ne 12 N Ms s & a

o(z,y,z)
& &, _‘/\m Ay ’/\m Ay
N Ny Nw My o &y
(9.17)

Since V¢ | q,Vn L q, it follows that

V¢ x Vn//q;
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that is,
& & ’ & & ’ S &y
Ny Nz Nz Nz Nz Ty —7
u N v N w o
Meanwhile,
VA= Az, Ay, Az) = (ku, kv, kw) = kq;
hence
Az Ay A
A T Yy z B _ B B
ONEm) | _ & & & | = Mehu+ A\hv + M\ hw = khe?.
A(z,y, 2) ‘
Ne Ty Tz
Thus, (9.17) becomes
f _‘)\y )\z’ ’/\y )\z‘
Ny 7Nz & &
dx 1 . A AL Y dA
dy | =— 5 hv — € ¢ d¢
T
Nw My §o &y
LR ’ 1o ow ’
qu ;Lq2 77y M=z ]N“Lq2 gy fz
_ 1 1 U w ’ 1 U w ‘ ?12
=| %2 — 713
wo 1w ’ djuow ‘
kq? quQ Ne Ty Bq2 §x &y
hu A1 Bl dA

hw A3 Bg d’l7
This completes the proof. Moreover, we have

e e
Tk T

Conversely, when transformation (9.18) is given and the flow condition (9.14) is

satisfied, it can be shown similarly that
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Although the optimal coordinate system does not exist for general 3-D steady
flow, the UC A-marching method still gives good results, e.g., good shear layer res-
olution. In the following, a 3-D steady supersonic inviscid corner flow computation
is presented!®!, where two intersecting wedges, both with angles of 9.5° form an
axial corner over which there is a Mach 3 flow. The flow field consists of two planar
wedge shocks, two embedded shocks, a corner shock and a shear layer. Figure 9.10
shows the geometrical configuration (left) and the computed u-velocity contours
(right) on a typical A-plane. The corner shock, embedded shocks, and 2-D wedge
shocks are clearly shown. In particular, the triangular slip-surfaces are distinct and

sharp. They all agree with the experimental locations by West and Korkegil'%.

Y

|

z ! —:experiment Y
v .
—slip surfaces u-velocity contours

ey £ —

(a) sketch of the problem (b) u-velocity contours
Figure 9.10 Supersonic flow past a corner”!

Instead of using a shock capturing method, the random choice method has also

been successfully applied in UC to numerically solve 2-D and 3-D supersonic steady

flow problems!*!: 12,
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Chapter 10
Unsteady 2-D and 3-D Flow Computation

10.1 Summary of Solution to the 2-D Euler Equations Using
the Unified Coordinates

To illustrate the idea, we consider 2-D flow. Let us first summarize the results in
Chapters 6 and 7. The unified coordinates (), £, 7) are related to the Eulerian ones

(t,x,y) via the transformation

dt = dA,
dz = UdX + Ad¢ + Ldn, (10.1)
dy = VdA + Bd¢§ + Mdn.
From (10.1), we get
Dq (€
— =0 10.2
Dt (n) ’ (102)
where
Dg 0
Do @V
So the coordinates (£, 7), and hence computational cells, move with velocity @ =
(U, v).
Under transformation (10.1), the system of governing equations becomes
OE O0F 0G
—+——4+—=0 10.3
N (10.3)
where
pA pX pY
pAu pXu+pM pYu—pB
pAv pXv—pL pYv+pA
E_ pAe P pXe+p(uM —vL) G pYe+ p(vA —uB)
A U 0
B -V 0
L 0 -U
M 0 -V

(10.4)
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with A=AM —BL, X =u—-UM—-(v—V)LandY =(v—-V)A— (u—U)B.
The first four equations in (10.3) are the physical conservation laws and the last
four are the geometric conservation laws.

Since there are two arbitrary functions U and V', we prescribe two requirements:
(1) Coordinate lines 17 =const. shall be material lines of fluid particles, meaning
Dgn
—— =0. 10.5
D (10.5)

Together with the second equation of (10.2), we get
(v—V)A=(u—-U)B. (10.6)

(2) Mesh angles, and hence mesh orthogonality, shall be preserved during the
A-marching computation. Thus we have

9 cos™ (m> iaL rccos ( AL + BM ) =0 (10.7)
X IV¢| [V AN VAR B2+ M2) '

After expressing V in terms of U from (10.6) and using the geometric conservation

laws, (10.7) becomes an ordinary differential equation for U,

ou

o + P A, U = Q(n; A, 6), (10.8)

S2 0B 0A L 0B 0A
Por.8) = 7oz (Aa_f - Ba?) Y (Aa_n - Ba—n) ’

S2A Ou ov ov Oou
Qin 9 = o (B¢ 450 ) + 5 (45 - Bgn ) +uPmr©

where

and
A=AM — BL, S?=1°%+M? T?=A%+ B2

We can specify any initial data for U at n = const..

We note that since (10.3) is in conservation PDE form, it can be solved as
easily as Eulerian system in the A-£-n space by marching in A. The only difference
is that at each time step we need compute the mesh velocity (U,V) by solving
(10.8) for U and then (10.6) for V. After that we update the geometric quantities
(A, B, L, M) to be used in the physical conservation laws. Detailed computation

procedure follows.
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10.2 Computation Procedure

We now show how to compute steady flow which may have subsonic regions. Flows
of this type are computed by marching in time A until a steady state is reached.
An example of time-accurate flow computation is also given at the end of Section
10.3.

The computation procedure for uniform flow past a body is illustrated by a
Mach 0.8 steady flow of air (v = 1.4) past a NACA 0012 airfoil as follows!!: Ini-
tialization Stage—automatic generation of body-fitted mesh in a com-
putational window.

Given the mesh sizes Ax and Ay and the number of cells M x N in the window
(we use M = 200 and N = 100 in the example).

Step 1 Begin with a column of N orthogonal cells, representing the given
uniform flow in the z-direction (Figure 10.1(a)). This gives the initial vales of
(A,B,L,M)=(1,0,0,1). We also take (U, V) = (u,v) initially.

(a) (b) (e) (d)

Figure 10.1 Flow generated mesh at different times

Step 2 Compute the solution to (10.3) by marching in time A, using dimen-
sional splitting: Splitting into two 1-D systems in A-{ and A-n, each of them is
solved using the standard Godunov/MUSCL scheme with the minmod limiter (De-
tails are as follows: To update the solution from time n to time n+ 1: @ Solve the
first four equations (the physical conservation laws) of (10.3) for (p, p, u,v) keeping
A,B,L,M,U and V at time n level. @ Use this updated values together with a
specified initial data to solve (10.8) for U and then (10.6) for V at time n + 1.
® Use these 3 updated values of U and V to update (A4, B, L, M) at time level
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n + 1 by integrating the geometric conservation laws. At all outer boundaries of
the computational region at every time step, we apply the characteristic boundary
conditions[?). After one time step A\, this column of cells moves to the right by
UAM.

Step 3 After several time steps when the initial column of cells has moved to
the right by a distance equal to Az, add one new column of cells on the left that
is identical to the initial column.

Step 4 Repeat this process of adding cell columns on the left of the computa-
tional region until the leading column meets the body surface (Figure 10.1(b)) we
then impose the boundary condition of zero normal velocity on the body surface.

Step 5 Continue this process until after the columns of cells cover the whole
body surface and further downstream, when we have M columns of cells in the
window (Figure 10.1(d)). This completes the initialization stage, and we now have

a body-fitted mesh (Figure 10.2) and a flow field around the airfoil in the window.
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Figure 10.2 Preliminary mesh and surface pressure from UC computation (solid line)

and reference results by Hafez et al.® (dots)

The computed mesh is seen orthogonal, as predicted. It is also fairly uniform
in the a-direction, because in solving (10.8) we have specified uniform data for U
at n =const.. The associated flow field computed (e.g., surface pressure in Figure
10.2) is, however, only a very rough approximation to the correct one (see, e.g., the

potential solution of Hafez et al. [3]), partly because it has not reached the steady



10.2  Computation Procedure 121

state and partly because the downstream boundary conditions used at the transient
times, e.g., in Figure 10.1 (c), are obviously incorrect as the computational regions
at those times are not the full window.

To progress further, one could use the body-fitted orthogonal mesh generated
so far to perform an Eulerian computation with the associated flow field as an
initial solution. This can be easily done by putting U = V = 0 (without solving
(10.8) and (10.6)) during the subsequent iterations towards a steady state. In this
way, the unified coordinate approach plays the role of mesh generation for Eulerian
computation.

An alternative and better way is to continue the unified coordinate computation
to proceed to the Main Stage—iteration with flow-adjusted meshes.

Step 6 To iterate the solution towards a steady state, whenever we add a new
column of cells on the left of the window we also simultaneously delete the right-
most column of cells from the computation window, thus keeping the window in
the same size. At the same time, we improve the solution by using the information
of the flow field at every time step, e.g., the surface pressure gradient, to adjust the
initial data of U at 7 =const. in solving (10.8) so that the mesh is refined in regions
of high pressure gradient. We note that this flow-adjusted refined mesh remains
orthogonal. The computed mesh and surface pressure distribution are shown in
Figure 10.3, which are much better than Figure 10.2 and also in good agreement
with the potential low computation of Hafez et all®/. The pressure contours at the

same time are shown in Figure 10.4.

Figure 10.3 Self-justified mesh (left) and final pressure distributions (right) from UC

computation (solid line) and reference results by Hafez et al.®l (solid dots)
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Figure 10.4 Pressure contours

The flow-adjusted mesh in Figure 10.3 looks similar to those obtained by the
Mesh re-distribution method in Euelrian computation. But there are differences:
Mesh re-distribution requires generating another mesh at every time step by solving
an elliptic equation, and conservation properties in the interpolations of geometry
and flow variables between the two meshes must be ensured. These issues do not
arise in our flow-adjusted mesh approach because we need only one mesh; the only
modification is to specify the initial data for U at 17 =const. by using the pressure
gradient information known at each time step.

In terms of computing time, most of the CPU time is used in solving the Rie-
mann problems for the physical conservation laws, which is the same as in Eulerian
computation. However, additional times are needed to solve (10.8) and to update
the geometric variables (A, B, L, M). These typically increase the CPU time by
5% ~ 10%. (This can also be reduced if in Step 6 we put U = V = 0 after the
flow-adjusted mesh is well established so that there is no need to solve (10.8) sub-
sequently). On the other hand, mesh re-distribution in Eulerian computation by
solving an elliptic equation increases CPU time. What is most important is that
Eulerian computation always needs generating a body-fitted mesh prior to flow

computation, and this can be time-consuming.

10.3 Examples

Example 1 Example 1 showing a transonic flow computation is already given

above.
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Example 2 Example 2[!! shows a sample computation for a Mach 2.2 steady
flow over a NACA 0012 airfoil at an angle of attack of 8 degrees and a horizontal
air-SF6 material. Figure 10.5 shows the flow-generated meshes at different times,
whereas Figures 10.6 and 10.7 show the computed contours of density, pressure and
entropy at those times. The interface between air and SF6 was initially identified
with a particular value of 1 and it remained so, because a contact line coincides with
a coordinate line 77 =const. in the unified coordinate system. The computation
was straight forward, with no special treatment; yet the results are better than the
corresponding Eulerian ones, in particular the interface and the slip line behind

the airfoil are resolved sharper.
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Figure 10.5 Flow-generated meshes
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Figure 10.6 Density contours

Example 3 This is an unsteady supersonic flow, M., = 3.0, past a diamond-
shape airfoil with 10° vertex angle which is oscillating about its vertex according

to 8 = 2sin30mt, where 0 is the instantaneous pitching angle. The computed
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flow-generated meshes!*! at different times are plotted in Figure 10.8. It is seen
that at all times of the oscillation, the flow-generated meshes are body-fitted and
are almost orthogonal, although the mesh on the expansion side of the airfoil is
coarsened.

The UC approach also works well with the shallow water wave equations!®.

1.5
1k
0.5
ot
—0.5
—1t
1% i 2 l 3 3
(a) pressure contours, t=4.0 (b) entropy contours, t=4.0

Figure 10.7 Pressure and entropy contours
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(g) t=10T

(k) t=11T

Figure 10.8 Flow-generated meshes for oscillating diamond-shape airfoil. Apex angle

= 10, pitching motion about the apex: 6(t) = 2sin2nt/T, the period of oscillation
T = 2/30, free stream Mach number M = 3.0
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Chapter 11

Viscous Flow Computation Using
Navier-Stokes Equations

11.1 Navier-Stokes Equations in the Unified Coordinates

In the precedent chapters, we have concentrated on inviscid flow. We now extend
the unified coordinates method to viscous flow via the Navier-Stokes equations in
this chapter, and via the BGK modeled Boltzmann equation in the next chapter.

The Navier-Stokes equations in 2-D Eulerian space can be expressed as

OE OF 0G 0OF, 0G,

R T 11.1
ot Tor "oy T ox T oy (11.1)
where
p pu 0
g | P F_| Pt P Tax
pU ) puv ) v Ty )
pe (pe +p)u UTzz + VToy — Ko
pv 0
G- puUv G, = Ty
pv2 +p | Tyy
(pe + p)’U UTyy + VTyy — Ky

For a Newtonian fluid with Stokes hypothesis, the viscous stresses Tz, T4y, Tyy and

heat transfer rates k., ky are

Oou 2 ov 2 Ou Ov
— _ . — - — . = = —_— —_— 11
Toa = 2 =iV G Ty = g~V G Tay = T M( 95 a:::) (11.2)
and
_ b OT _ b OT

L= k= . 11.3
i P. Oz Fy P. 0y ( )

Here p is viscosity coefficient, ¢, is the specific heat at constant pressure, P, is the

Prandtl number and T is the temperature.
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With the following transformation between the physical coordinates (¢, z,y) and

unified coordinates (A, &, n),
dt = d),
do = Ud\ + Ad¢ + Ldn, (11.4)
dy = VX + Bd¢ + Mdy,

we can get the inverse transformation

d\ 1 0 0 dt
i | =1 & & ¢ dz |. (11.5)
dn e Mo My dy

The Navier-Stokes equations (11.1) in the unified coordinates (X, &, n) become

OE _OF oG 0F, 0G,

>t o€ 4,?%;‘4, o + o (11.6)
where B
E = AE,
F = A(GE + & F + £,G),
G = A()E + . F +1,G), (11.7)
Fv = A(fa;Fv + fva),

G, = A(nsz + nva)
and A = 9(z,y)/0(&,n) = AM — BL.

The coefficient matrix in (11.5) becomes

1 0 0 1 A 0 0
& & &y =2 -X M -—-L |, (11.8)
N Nz Ty -Y -B A

where X = MU — LV and Y = AV — BU. Hence, the variables in (11.6) are

E = AE,

F=(-XE+MF - LG),

G = (-YE - BF + AG), (11.9)
F,=(MF,—LG,),

G, = (-BF, + AG,).

The viscous shear stresses given by (11.2) become the following in the transformed

computational space:
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4 2
Tow = % [g(Muf — Buy,) — g(—ng + Avn)],
4 2
Tyy = L —(—Lve + Avy) — = (Mug — Buy) |, (11.10)
A3 3
Toy = %(—Lug + Au,, + Mve — Buy),
and the heat conduction terms in (11.3) are
Ry = — ﬂcz (MT§ - BTT])a
’ (11.11)
Ky = — PA( LT, + AT;).

In the computational space, the viscous flux vector F, and G, are

0

4 1 4 2
(3M2+L2> ug— 5 M Lue — (EMBJrAL) Uy + ( - gAM+BL> vy
1 s 4o, 2 4
—gMLug—l- M —l—gL ve + MA—gBL Uy — MB+§AL Uy

FU:% a2 (u?)e + M2+ 2 (v?) ——ML(uv)
2\3 3 ‘T3
ep(M?+L2), . 1( 4 o1 4 )
- Te+—-| —=-MB-AL —{ —MB—--AL
+ P’I‘ §+2 3 (U )77+2 3 (’U )77
+(MA—§BL>W,, (BL——MA)uv,, w:@
(11.12)
and
0
4 2 4, 1
4 1 , 4
BL MB"‘gAL Us_gABun+ B +§A Un
G=%| 1/ 4 4 2
5(—gMB—AL)(u2)5—§(MB+§AL)(U2)5+(AM—gBL>uvg
2 ef(-MB—AL), 1[4 , 5\, »
+<BL—3AM>UU5+ P, T5+2 3B + A% ) (u®),
Lie 4,0\ o 1 cp(B* + A?)
—|—2(B + 3A )(v n 3AB(uv),7 + — 5 T,

(11.13)
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In order to solve the Navier-Stokes equations under unified coordinate system,
the standard operator-splitting method is usually used, where the inviscid part is
solved based on the Riemann solution as presented in the previous chapter, and
the viscous terms are discretized using central differences.

The advantage for the inviscid flow computation using the unified coordinate
method is mainly due to the fact that there is clear material or slip line, which
can be used as one of the coordinate, such as 7 =const.. However, for the viscous
flows, there is no sharp slip line, and the shear layer can be considered as an infinite
number of slip lines. The failure of the classical Lagrangian method for the viscous
flow computation is due to the mesh velocity following the fluid velocity in the
dissipative region, such as inside the viscous boundary layer, where boundary cells
can be infinitely deformed. So for computing steady or unsteady viscous flow, it is
necessary to decouple the mesh velocity from the fluid velocity. The strategy used

earlier, such as mesh orthogonality, is a good choice for the viscous flows.

11.2 The Angle-preserving Equation

We now discuss how to use unified coordinates to compte 2-D steady flow via the
Navier-Stokes equations. We shall use the time-marching approach until the flow
field reaches steady state. It is known from Section 7.6 that at steady state the
mesh velocity @ is proportional to the fluid velocity q,

v

(11.14)
To accelerate convergence to steady state, we shall use @ = hq during the transition
stage. Accordingly, transformation (11.4) becomes
dt = dA,
dz = hudA + Ad¢ + Ldn, (11.15)
dy = hvd\ + Bd§ + Mdn.
(11.14) requires the mesh velocity @ to be proportional to the fluid velocity g, and
thus might cause difficulties for viscous flow at solid boundary. But this apparent
difficulty can be overcomed as explained presently.
The angle-preserving h-equation derived by Hui et al.lYl is

oh oh ou ov ou v
S2J— + T [— = {52 (B— — A—) -T2 <M— — L—)] h, 11.16
o0& on o0& o0& on an ( )
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where
S? =L%+ M?, T?=A%+ B2

In the following, we will assume that the coefficients (A, B, L, M) are smooth
enough. If the solution is smooth, then with h computed by (11.16), we have that
if the mesh is orthogonal at the flow entry, the entire mesh will become orthogonal
after a sufficiently long time iteration, independently of the orthogonality of the
initial mesh. Orthogonal mesh is known to possess many desirable properties over
non-orthogonal grids, e.g., attaining higher accuracy than non-orthogonal meshes.

As for the inviscid flow case, (11.16) is to be solved at every time step after
the flow variables Q = (p, p,u,v)T and the geometric variables K = (A, B, L, M)
are found. We recall that the h-equation is a first order linear partial differential
equations for h(&,n; \) with A appearing as a parameter. To find solution h in the
range

0<h<1, (11.17)

we note that (11.16) is linear and homogeneous, therefore it possesses two proper-
ties: @ positive solution h > 0 always exists; @ if h is a solution to (11.16) so is
h/C, C being any constant.

In order to ensure a solution satisfying (11.17), Hui et all!l defined g = In(hq)
to replace the h equation by

SQ(Asinﬁchosﬂ)% +T?(M cos fLsinﬁ)%

o0& on
Ocosf Osin 6 dcost Osind
=52 — —71? — 11.1
st (p75e" — 4T ) T (WO 1)

where ¢ = Vu2 4+ v? and 6 is the flow angle: v = gcosf,v = ¢sinf. Now, if g;
is any solution to (11.18) then h = exp(g1)/qC is a solution to (11.16) satisfying
condition (11.17), provided we choose C equal to the maximum of exp(g1)/q over
the whole flow field being computed.

The advantages of replacing (11.16) by (11.18) become more pronounced for the
Navier-Stokes equations. These, along with some further precautions, are explained

in the next section.

11.3 Advantages of the g-equation Over the h-equation

There are three advantages of the g-equation (11.18) over the h-equation (11.16):
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(1) g behaves more smooth than h. Indeed, as shown in [2] for supersonic flow,
g is continuous across a slip line, but ¢ and h are not. As such, accurate solution
in g can be obtained easily from (11.18) but it is difficult to get accurate solution
in h from (11.16).

(2) The mesh moves with the velocity hg. When we have a stagnation point
such as the center of a vortex, a finite speed of the mesh, i.e., hg > 0, implies that
we must have h — oo as ¢ — 0. If we force h to be finite as given by solving
the h-equation, the mesh cannot move at the stagnation point so that severe mesh
deformation may still occur. If we solve the g-equation, we can ensure continuity
of g, and hence of hq, everywhere.

(3) The greatest advantage in the context of viscous flow computation is the
simplicity of specifying boundary condition at a nonslip wall. In order to preserve
the mesh angle at the wall, say a line 79, one should not define the boundary
condition in the following way:

M
on
The above equation can be rewritten as
h%f])+quo at  n=mno.

=0 at n=nno. (11.19)

However, on the wall ¢ = 0, so that we have the following singular boundary

condition which is very difficult to be realized in numerical computation:

h
g—n Y (11.20)
Since we solve the g-equation, then, by (11.19), the boundary condition becomes
simply
dg
— =0 t =10. 11.21
an at - 1m="To ( )

Summing up, while the fluid velocity vector ¢ = 0 holds on a solid boundary,
solving the g-equation with boundary condition (11.21) can give a finite value of hq
on the solid boundary, allowing computational cells (the pseudo particles) to glide
over the solid surface. This could not be achieved if the h-equation were solved,
because the requisite boundary condition (11.20) is difficult to impose.

Some further precautions should be made in order to make the computation

successful:
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(1) the solution hq should be kept in memory since it is with hg that the mesh
moves. If we just keep h, then at a stagnation point one would have h — oo, which
is very difficult to handle numerically.

(2) when solving (11.18) up to a boundary, one might readily compute the flow
angle by using

u . v
cosf = sinf =

max(vu2 + 02, ¢)’ max(vu2 + v2,¢)’

where € is a small parameter used to avoiding division by zero near a stagnation

point. However, this is incorrect and would yield a wrong solution since in such
a way one would have cos? 0 + sin? @ = 0 at a stagnation point. At a stagnation
point, one could extrapolate the flow angle from nearby points. Here we just solve

(11.18) in the interior domain with g obtained through boundary condition (11.21).

11.4 Boundary Condition and Movement of Boundary
Cells

The following details are programming techniques, which are nevertheless impor-
tant for successful computation of viscous flows.

In the computations performed for inviscid flow past a solid body, a cell interface
is taken to coincide with the solid wall and a ghost cell to lie inside the solid wall so
that the solid wall lies at the middle between the ghost cell and the boundary cell.
For a nonslip wall here, it is more convenient to place the center of the boundary
cell on the wall so that the fluid velocity vanishes there exactly. As explained in
the last section, solution to the g-equation allows the boundary cells to glide over
the wall with velocity hq. In some cases, the wall may involve discontinuities of
slop. These must be taken into account when the boundary cells glide along the
wall. A convenient way is to save the initial boundary points for all the time.
Then the new boundary points are interpolated, by cubic interpolation, from the
fixed initial boundary points under the constraint of orthogonality. If the initial
boundary points were not saved, and one simply interpolates the boundary points
of the new time step from those of the old time step, then slop discontinuities
would propagate irregularly so that the shape of the wall would deform, sometimes
severely. These remarks also apply to inviscid flow computations as in Example 2

of Chapter 9.
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11.5 Solution Strategies

As the system of Navier-Stokes equations (11.6) is in conservation form, any well-
established shock-capturing method can be used to solve the inviscid part. Similar
to the approaches in the earlier chapters, we shall use the Godunov method with
the MUSCL update to higher resolution to solve system (11.6). Details are shown
in the last chapter. The viscous part is discretized by using central differences as
follows.

Applying the divergence theorem to (11.6) over the cuboid cell (i, j, k) results

in
k k
B =Ej; - izz (Ffill//;,j - Ff—+11//223> - i;\] (éfﬁﬁz - éfﬁ@) )
i=1,2,---,m; j=1,2,---,n, (11.22)

where

Ffill//;j = Ff:f//zzj + E?+1/2,j7

Giyiha= G+ Gl
Ff:ll//;j and iji/l% are the inviscid fluxes, E§+1/2,j ,Qﬁj+1/2 are viscous contri-

butions defined by second order central differences.

The numerical procedure can now be summarized as follows:

Step 1 Assume the initial conditions of a flow problem are given at t = 0(A =
0) in the zy plane. Then an appropriate £-n coordinate mesh is laid on the xy plane.
A nonuniform mesh on the zy plane corresponds to a uniform mesh on the £n plane,
with constant A&; and Anjy, i.e., A = A€ and An; = An are independent of ¢ and
j. One would wonder whether the results depend on the choice of the intervals A&
and An, especially on the relative value A{/An. The solution is independent of the
choice of A¢ and An. However, from a numerical point of view, rounding errors
may make the solution slightly different for different choices of A¢ and An. Most
importantly, when using an iterative procedure to solve the equation for g, the
convergence criterion (residue) is dependent on A¢ and An. Since the g-equation

(11.18), when literally discretized, contains the coefficient it is useful to

1
AE2An?’
let the convergence criterion be defined as

10~

S AEAE
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The initial and boundary conditions are defined according to the problem spec-

ified. The initial conditions for A, B, L and M can be computed simply as

iy~ L Yi+1j ~ Yi-1,
Ajj= A T R L
’ 2A¢& ’ 2 IAE ,
T i — T o o
Lij= % M, ;= %JHTé/Hl

Step 2 We first describe the general strategy and then the specific steps.

General strategy: Strang splitting. Strang splitting is used to render the 2-D
problem a sequential solutions of two 1-D problems. Let Ei)\ be the difference
operator for the 1-D equation (simply obtained from (11.6) by dropping the 8277

terms) whose solution after one time step A\

~k+1

B ANF (—k+1/2 k12 )

_ ok
=E;; - AL, Fiii)o;,—Fi_1)2;

is denoted
k+

~ k1
_ ré k
E =L E".
. ~k+1 s . .
Using E as initial solution and compute the final solution by

+

~k+1
EMY =l E T = L0, L5, EF, (11.23)

where L7, is ghe operator for the 1-D equation (simply obtained from (11.6) by
dropping the 8_€ terms)
R s BN A N AU IRV RPN s
Ei; =E - Ay (Gi,j+1/2 (E ) —Gij ) (E )) :

The simple splitting method (11.21) is not very accurate. The Strang splitting!®,

which is more accurate than (11.23), is defined as
EM = Eg%* Lgkcﬁ% E* (11.24)

for marching from A\* to A**1 = A\¥ 4+ ANk =0,1,2,---.

General strategy: time step-wise approach. The geometric conservation laws
are decoupled from the physical conservation laws. Roughly speaking, at each time
step, all the geometrical variables A, B, L, M, h are regarded as constants and we
solve the equations in (11.6). After obtaining the physical variables at the new

time step, we obtain A, B, L, M. Then we solve the equation for g.
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Now let us state the specific steps. Note that we have used an explicit time
integration method.

We first take A, B, L, M,k to be constant over the interval \¥ < X < M\Ft1,
Then for every pair of adjacent cells (4, j) and (i + 1, j),

(0) Compute the time step AX. This is defined by using the stability condition

AX [ o¢ On
: (A£+An <1

. . dF dG
Here g¢ is the spectral radius of iE and o, that of B We have

2 2
M — ol uM|” + |vL
(1_h)|u v |+a\/‘ "+ L]

T V(i) A A

{0=m) g + 05| + a2+ 1
_ B)* + [vA?
Qn_max{(l_h)mB vA | VBl + o4l

A A

(1= )l + ony| + ay /2 + 72 }

We also need a viscous update, which requires the time step to satisfy

A)\é(fx +ny)<1

where A = AM — BL.

Re 2 \A&2 " Ap?

(1) Do a MUSCL type data reconstruction in a component by component
manner. For example, in the {-direction, let f be any of the physical variables
p, D, u, v, then, instead of assuming a uniform state in the cells (¢, j) and (i + 1, 5),
we assume linearly distributed states and use linear extrapolation to determine
cell interface flow variables: fr = fiy1,; — 0.5(fit2,; — fit1,5)P(rT) with r+ =
(fivr — fig)/(fizay — firry) and fr = fij +0.5(fi; — fic1,)0(r™) with r— =
(fi+1,; — fi,5)/(fij — fi=1,5), where ¢(r) = max{0, min(1,7)} is the minmod flux
limiter and subscripts R and L of f correspond to right and left states, respectively.

(2) Define the normal direction of the cell interface &, 1 ; between the two
adjacent cells (i,7) and (i + 1,7) as

(Vij + (V )it
(VE)ij + (V€11
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Project the velocity vector ¢ = (u,v) into the normal and the tangential compo-
nents (w and 7).

(3) Solve the Riemann problem to get the interfacial flow variables (p, p,w, )T
and hence (p,p,u,v)T at £ = §i+%,j. These are constants and will be denoted by
(-)ig 1,5-See [1] for details.

(4) Update the geometrical variables as follows:
( A ) _ ( AF; ) N A/\’“hk ( Uiplj — Uil )
B} Bf; ) A% Virgs =iy )
(ij-l >< Li; )
My M3,

or compute them directly by using

S S k41 k+1
A’?J.rlz(sc )k+1 _ Lit1,j i—1,5 BRH1 — ( )k+1 _ Yit1,5 —Yi-1,5
&ij 2A, v P &ij 2AE; ’
k+1 k+1 okt
Lk+1 ( )k+1 _ Tigt1 — T M = ( Yol _ merl Yij—1
K 2An; ’ b 74,7 2An;

(5) Calculate the cell interface fluxes. For instance, the 2nd component of the

. E+3 .
interface flux F'; N fj is evaluated as
3

k k+1 k+1 k+1
Piry (U= hi ) (uip g MET —vigs jL7T7) + pig s M5

plus the viscous flux.

(6) Update the conserved variables E,, in the physical conservation laws (11.6)

A)\k k+1
k+1 k o 2
Epz j Epz‘,j A& (Fi+%,j Fl*—,j

(7) Decode E’;jjjl to get Q"1 (physical variables), using A = fl’“"'lM’“"'1

2V
Bk+1 ijl )

(8) Apply Strang splitting, (11.24), to advance E"»C . to E"»CJ-rl (or QF j to QkH).
(9) Update hk to th by solving (11.18), using the updated values Ql€+1 nd

K f‘j"l (geometrical variables) in its coefficients (Note: this step (9) is, of course, to

using

be by-passed if h = const. is assumed in the computation).

(10) (optional) Calculate the mesh in the z-y plane at AF+1:



138 Chapter 11 Viscous Flow Computation Using Navier-Stokes Equations
xfj‘l =zf + % ((hgcos®)f; + (hgcos 0)5'}'1) AN,
yitt =y + % ((hqsin®) £, + (hgsin);T1) AX.

By a mesh we mean the lines joining the cell centers, not the cell interface lines.
After this, we repeat Step 2 to advance the solution further to \*+2, and so on.
Step 3 The motionless viewing window technique is applied once the mesh

has moved to the right. Accordingly, the column of cells which have moved out of

the original physical domain to the right are deleted, while a new column of cells
is added at the input flow boundary on the left.
In summary, our numerical scheme is second order accurate in space but only

first order accurate in time.

11.6 Test Examples: Shock/Boundary Flow Interaction and
Shock/Shock Interaction

In this section, the unified coordinates approach is tested numerically on two ex-
amples with comparison to the Eulerian approach. One is the shock/boundary flow
interaction with separation. The second one is a shock/shock interaction problem.

The objective of these computations is to show the UC method can handle com-
plex flows while keeping its advantages in resolving discontinuities in the inviscid
flow regime.

As the mesh is adapted at every time step, the UC approach takes more time
than the classical Eulerian approach mainly through the solution of the g-equation,
for which we have simply used an explicit iterative method. It makes the UC
approach to have 50% more CPU time than the Eulerian approach. We believe a
more efficient algorithm to solve the g-equation can substantially reduce the CPU
time.

(4. Shock/boundary layer in-

Example 1 Shock/boundary flow interaction
teraction is an important and complex problem in supersonic and transonic flow
applications. Because of its importance, it has been actively investigated since the
beginning of high-speed aerodynamics in the 1940s. A comprehensive account on
this subject is given in [5], where most of the historical papers and recent publica-
tions are cited. There are essentially three types of shock/boundary layer interac-

tion. Here we only consider the interaction between an oblique incident shock wave
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and a boundary layer. The oblique shock wave is supposed to be strong enough to
induce separation. Our purpose here is to first demonstrate that even with such
a flow (with strong recirculation) the unified coordinate system works. Then we
perform some comparison with known experimental study.

The problem is defined as follows. The freestream condition is M., = 3, Re =
10*. The incident shock angle is 3 = 30° which corresponds to a deflection angle
6 = 12.8°. The flow conditions (p,u,v,p, M) after the oblique shock are given by

the oblique shock relations

r (v + 1)M2, sin? 8
Poo 24 (v —1)M2 sin’® 3’
2
i—1—1-—,Y(M2 sin? 3 — 1),
Poo v+
M2 2
M2 — -1 M2 cos?

2 -1 ’
—’yMgosiHQﬁ—l ’Y—MgosiHQﬁ—i—l
’y—l 2

= M7 cos 0,
p
v=M,— sm@
p
where the deflection angle 6 is related to the shock angle § by

M2 sin?3 -1
M2 (v 4+ cos2f3) +2

tan @ = 2arctan

0.4 H

0.2

x

Figure 11.1 Shock/boundary layer interaction. Mesh used for the Eulerian approach.
AYmin = 0.002
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In the computation using the Eulerian system, a mesh of 100 x 50 is employed.
Initially, a mesh with Az = 1/100, Ay; j—1 = 0.002 and Ay, j1+1/Ay;; = 1.05 (V
J € (1,49)) in the physical plane is laid over a domain of {0<<2<1,0<<y<<0.5}.
The mesh is shown in Figure 11.1. It is also used as the initial mesh for the unified
coordinates computation.

The Mach contours and the streamlines are shown in Figures 11.2 and 11.3. It

is clear that the interaction induces separation and a vortex is formed.

0.6 —

Figure 11.2 Mach contours obtained using the Eulerian approach

0.6 -

Figure 11.3 Streamlines by the Eulerian approach
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Now consider the unified coordinates approach. The computation uses the
Eulerian mesh given above as the initial mesh. The final mesh produced by the

unified coordinates approach is displayed in Figure 11.4.

0.6 |
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Figure 11.4 Shock/boundary layer interaction. Mesh produced by the UC approach

The Mach contours and the streamlines are shown in Figures 11.5 and 11.6,
respectively. It is encouraging that the unified coordinates approach can handle
the case of shock/boundary layer interaction even though a vortex exists. Such a

case had been impossible using the classical Lagrangian approach.

0.6 -

04—

Figure 11.5 Mach contours obtained using the UC approach
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0.6 -

Figure 11.6 Streamlines by the UC approach

Example 2 Shock/Shock interaction. Now consider the problem of shock/shock
interaction. Two oblique shocks are generated by two wedges which cause a de-
flection of the flow by an angle § = 5° (lower wedge) and 6§ = 15° (upper). The
upstream Mach number is My, = 4. Figures 11.7 and 11.8 show Mach contours
of inviscid computation using Eulerian and UC approach. After the shock/shock
interaction, the emerged slipline is better resolved in the UC computation in com-

parison with the Eulerian one.

0.6 |-

Figure 11.7 Eulerian computation for shock/shock interaction (inviscid flow). Mach

contours for My =4
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For the viscous flow case, the Reynolds number is Re = 10* An initial mesh of
120 x 120 will be used. The Mach contours obtained by the Eulerian approach and
unified coordinate approach are displayed in Figures 11.9 and 11.10, respectively.
We note that the leading shocks produced by the UC approach are curves, and
this is due to the effect of boundary layer displacement, which makes the effective

solid surface from a flat one to a parabolic arc. This is less visible in Eulerian

computation.

0.6

0.4

0.2

0 0 0.2 0.4 0.6 0.8 1 1.2
T

Figure 11.8 UC computation for shock/shock interaction (inviscid flow). Mach

contours for My =4

0.6 [

Figure 11.9 Eulerian computation for shock/shock interaction. Mach contours for

w =4 and Re = 10*

The success of this computation clearly shows that the unified coordinate system

works even for a very complex problem for which the classical Lagrangian approach
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should fail to work. Notably, it captures discontinuities more sharply in the inviscid
flow regimes, while it does not break down in the viscous flow regime. This is due

to the use of an h-equation (or g-equation) which avoids severe mesh deformation.

0.6 |-

0.2

Figure 11.10 UC computation for shock/shock interaction. Mach contours for Mo =4
and Re = 10*

An important discrepancy is the curvature of the oblique shocks produced by
the upper and lower wedges. The Eulerian approach produces two straight shock
waves (Figure 11.9). This would be qualitatively incorrect, since the increasing
(displacement) thickness of the boundary layer on the wedges should make the
shocks curved. This property is nevertheless well captured by the unified coordinate
system, see Figure 11.10 from which it is clear that the front two oblique shock
waves are curved.

We have also performed a computation using a refined mesh (240x240) for the
Eulerian approach. The Mach contours is shown in Figure 11.11, from which we
see that the oblique shock waves are curved.

To conclude, this chapter extends the unified coordinate system initially pro-
posed for inviscid flow computation to the case of viscous flow computation. In
contrast with the classical Lagrangian approach which fails to work for comput-
ing boundary layer flow due to infinite mesh deformation, the unified coordinate
system—a generalized Lagrangian system-works for boundary layer flow computa-
tions due to its freedom in constructing the mesh velocity.

The unified coordinate system is expected to work better than the Eulerian
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approach since boundary layers can be considered as the superposition of an infinite

number of slip lines and the unified coordinate system works well with sliplines.

0.6 |-

Figure 11.11 Eulerian approach for shock/shock interaction with a mesh 240 x 240

points. Mach contours for Mo, = 4 and Re = 10*
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Chapter 12

Applications of the Unified Coordinates
to Kinetic Theory

12.1 Brief Introduction of Gas-Kinetic Theory

Besides the macroscopic governing equations—the Navier-Stokes equations, a fun-
damentally different approach to describing viscous flow is based on the microscopic
particle (molecule) motion—the so-called Boltzmann equation. The fluid density

is defined as a collection of individual molecules
p= Zmni, (12.1)

where m is the molecular mass and n; is the particle number density at a cer-
tain velocity. However, due to the huge number of particles in a small volume in

common situations, such as > n; = 2.7 x 10! moleculars in 1 cubic centimeter
i

at 1 atmosphere and T = 0°C, to follow each individual particle is impossible.
Instead, a continuous distribution function is used to describe the probability of
particles to be located in a certain velocity interval. For hydrodynamics purpose,

n; is approximated by a gas distribution function

flxi,t, ci),

where (z;,t) is the location of any point in Eulerian space and time, ¢; = (¢, ¢y, ¢;)
is particle velocity with three components in the x-, y-and z-direction, and the

relation between n; and f is
mn; = f(zi,t,ci).

As a result, the sum in (12.1) can be replaced by the integral

p:// fdegdeyde,
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in the particle velocity space. For molecules with internal motion, such as rotation
and vibration, the distribution function f can take these internal motion into ac-
count as well through additional variables ¢;. The dimension and formulation for
g; are defined below.

For monatomic gas, the internal degree of freedom N is equal to 0. For diatomic
gases, under the normal pressure and temperature, N is equal to 2 which accounts
for two independent rotational degrees of freedom. The equipartition principle in
statistical mechanics states that each degree of freedom shares an equal amount of
energy %kT, where k is the Boltzmann constant and 7' is the temperature. Then

the specific heats C, and C), for the gases in equilibrium state have the forms

N +3 N+3)+2
_ Mt - & R, (12.2)
where R = k/m is the gas constant, m is the mass of each molecule, and the three
accounts for the molecular translation motion in z-, y-and z-direction. From the
above equations, we can obtain the ratio of the principal specific heats, which is

commonly denoted by -,

N = % - 7(]\[;?; 2 (12.3)
So 7 is 5/3 for monatomic gas (N = 0) and 7/5 for diatomic gas (N = 2).

The thermodynamic aspect of the Navier-Stokes equations is based on the as-
sumption that the departure of the gas from local equilibrium state is sufficiently
small. Although we do not know the real gas distribution function f exactly in the
real flow situation, in classical physics we do know the corresponding equilibrium
state g locally once we know the mass, momentum and energy densities. In the
following, we are going to define the equilibrium distribution and present all its
physical properties. In order to understand the internal variable ¢; inside the gas

distribution function, let’s first write down the Maxwell-Boltzmann distribution g

for the equilibrium state,

9,0(2:;T> 2 exp{—(m/2kT)[(c; — u;)* + 7]}
—P(2:;T> : exp{—(m/2kT)[(ce —u)?+(cy—v)*+ (c; —w)? +i +- - -+s¥]},

(12.4)
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where ¢; = (¢1,62,--,¢n) are the components of the internal particle velocity
in N-D, u; = (u,v,w) is the corresponding macroscopic flow velocity with three
components in the z-, y-and z-direction. In the above equation, the parameters
T,u; and p, which determine g uniquely, are functions of space and time. Taking
moments of the equilibrium state g, the mass, momentum and energy densities at
any point in space and time can be obtained. In particular, the macroscopic and

microscopic descriptions are related by

) 1
pu; | = /g . Ci degdeyde.dsidsy - - - don . (12.5)
pe 5(0? +¢?)
More specifically,
) 1
pu 00 Co
o / . / p ey de,deyde.ds; - - doy,
pw —00 1 C,
pe §(ci+c§+c§+§12+~-~+§]2v)

(12.6)
from which the total energy density pe can be expressed as

1 N+3
pe = —p(u2 + 02 +w? + ——’_k:T)7
2 m

which includes both kinetic and thermal energy densities. Note that (12.4) de-
scribes the gas distribution function g in 3-D and the value of N can be obtained
in terms of v from (12.3). If we re-define the internal variable ¢; as a vector in
K-D, in the 3-D case we have
=37 +5

v—1

For 1-D gas flow, the macroscopic average velocities in y-and z-direction are

K=N

equal to zero with (v,w) = (0,0). So, the random motion of particles in y-and
z-direction can be included in the internal variable ¢ of the molecules. As a result,
the internal degree of freedom becomes N + 2, which is denoted again by K with
the relation K = N + 2. The distribution function ¢ in the 1-D case goes to

N+3

(™ _ )22 22
g—p(znkT> exp{~(m/2kT)[(cz—u)*+c;+c;+si+---+<sx]} (12.7)
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K41

~o( ) epl—(m/2KT e =+ 2,

where the dimension of ¢ is K. Substitue N = K —2 into (12.3), we get the relation
between K and v in the 1-D case,

For example, for diatomic gas with N = 2 and v = 1.4, K is equal to 4, and the
total energy density goes to

1 K+1
pe = Loluz 4 EFXD
2 m

kKT|.

In 2-D flow calculations, K is equal to N + 1, and the equilibrium distribution

function is

N+3

g:p(m:ZT) " expl{—(m/2kT)[(es — ) + (e — )2+ E+ 2+ R}
_p(2yl::;T> 2 eXp{*(m/QkT)[(Cm — u)2 + (Cy . 1})2 + CQ}}' (128)

Then the relation between v and K becomes

4 — 2~

=1
For diatomic gas, K is equal to 3 in the 2-D case and the total energy density
becomes

(K +2)

1
pe = —plu®+0v? + kKT|.

2
In all cases from the 1-D to 3-D, the pressure p is related to p and T through the
following relation:
p=nkT = L kT = pRT,
m

where n is the particle number density, R is the gas constant and m is the molecule
mass. Note that the pressure is independent of the internal degree of freedom N.

Due to the unique format of the equilibrium distribution function g in classical
statistical physics, at each point in space and time, there is a one to one corre-
spondence between g and the macroscopic densities, e.g., mass, momentum and

energy. So, from macroscopic flow variables at any point in space and time, we
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can construct a unique equilibrium state. However, in real physical situation, gas
does not necessarily stay in the Local Thermodynamic Equilibrium (LTE) state,
such as gas inside a shock or boundary layer, even though we can still construct
a local equilibrium state there from the corresponding macroscopic flow variables.
Usually, we do not know the explicit form of the gas distribution function f in
extremely dissipative flow regions, such as that inside a strong shock wave. What

we know is the time evolution of f, the so-called Boltzmann Equation

Fot oo+ aifo = QUL f) = / / / F'f — fF)BO,V)de,dode,  (12.9)

where V' = |e — ¢, is the particle collision velocity differences between impact
particles which will be changed to V' = |¢/ — /.| after collision. Here f is the
gas distribution function before collision with f = f(¢) and f, = f(c.), and f’
is the after impact gas distribution function with f/, = f(c's) and f' = f(c'.).
The function B depends on the interaction potential of particles. In the above
equation, f is the real gas distribution function, a; is the external force term acting
on the particle in i-th direction, and Q(f, f) is the collision operator. From the
physical constraints of the conservation of mass, momentum and energy during

particle collisions, the following compatibility condition has to be satisfied:

/%Q(ﬁ fdz =0, (12.10)

1
where d= = degdeyde.dades - - - dsk and Yo = (1, ¢4, ¢y, 2, i(ci + ci +c2 4 )T,

For convenience, the following notations will be used:
=+t +sk, de=dgds---dsgk.

Assuming further that the spatial and temporal variations of the distribution
function f are small on the scale of the mean free path and the mean time interval
between collisions, it is possible to find the first order approximations to the viscous
stress tensor and the heat flux from the Boltzmann equation, which are in agree-
ment with the Navier-Stokes equations. Thus the Navier-Stokes equations may be
regarded as the leading term in an asymptotic expansion of the full Boltzmann
equation in the limit of K, ~ 0, where Kn is the Knudsen number. From the

Boltzmann equation, the viscosity and heat conduction coefficients can be derived
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as functions of the basic quantities describing the molecules!’. For example, the
viscous stress o;; and the heat flux x; can be obtained from the gas distribution

function f, such that
oij = /(cl —u;)(¢; — uj) fdegdeyde.ds — pdi;

and

1
K; = <
2

/(ci — ;) ((cz —u)? + (¢ —v)* + (c2 — w)* + %) fdezdeyde.ds, (12.11)

where p is the local pressure. The viscous stress 0;; and heat conducting ~; terms

go to zero if and only if f = g for the flow in equilibrium state.

12.2 Gas-Kinetic BGK Model Under the Unified Coordinate
Transformation

The BGK model of the approximate Boltzmann equation in 2-D space can be

written asl?

ft+cwfx+cyfy: g, (1212)

where f is the gas distribution function and ¢ is the equilibrium state approached
by f. The particle collision time 7 determines the closeness between f and g. Both
f and g are functions of space (z,y), time ¢, particle velocity (cz, ¢,), and internal
variable ¢. In Chapter 6, Hui’s transformation can be used from the physical
domain (¢, z,y) to the computational domain (X, &, n),

dt = dA,

dz = Ud\ + Ad{ + Ldn, (12.13)

dy = VdA + Bd¢ + Mdn,
where (U, V) are the mesh velocity, (A, B, L, M) are determined by the compati-

bility conditions or the geometric conservative laws,

0A oU
PN
oB oV
ax o’
oL aé (12.14)
™ o
oM v
N 9’
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With the above transformation (12.13), the gas-kinetic BGK equation becomes

SR AT gellle DM (e, VA =2= 1,

(12.15)

)]fH~*H (cz=U)B+(cy=V

where A = AM — BL is the Jacobian of the transformation.
For an equilibrium flow with distribution f = g, by taking the conservative
1 T
moments ¢ = <1,cm,cy7 é(ci + 032/ + CQ)) to (12.15), the same Euler equations

(6.21) under the moving mesh in the Eulerian space can be obtained,

8E OF aG

12.16
o Ty =% (12.16)
where
pJ pX pY
pJu pXu+pM pYu—pB
pJu pXv — pL pYv + pA
B pJe Fo pXe+p(uM —vL) C_ pYe+ p(vA —uB)
A -U 0
B -V 0
L 0 -U
M 0 -V
(12.17)

For the viscous and heat conducting flow, the Chapman-Enskog expansion of

(12.15) up to the 1st order of T gives
F=a= 7 (5 49+ g lles— DM ~(,-V)Llght . (1=(exU) B+~ V) Alg)).

Taking moments of ¢ again to (12.15) with the above Navier-Stokes distribution
function, we can get the Navier-Stokes equations in moving space, which are pre-
sented in Section 11.1. In this chapter, instead of solving the viscous governing
equations, we are going to solve the gas-kinetic equation (12.15) to compute vis-

cous flow.
12.3 Numerical BGK-NS Scheme in a Moving Mesh
System

In this section, we are going to present the gas-kinetic method to solve (12.15)

by a directional splitting method. For example, the BGK model (12.15) in the
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&-direction is
Kl a _9—f

In order to evaluate the fluxes across a moving interface & = const., let’s first define

A. (12.18)

its normal direction n and tangent direction ¢,
(Ma _L) (La M)
S 7 s
where S = v/ M?2 + L2 is the physical length of the cell interface. Then, the particle

velocity (¢ — U, ¢y, — V) relative to a moving cell interface can be decomposed into

n = V{/|VE] =

the normal ¢, and tangential ¢, velocities as well, namely

. (cz —UM (¢, = V)L

Cp = - ’

S S

(12.19)
i (cz —U)L n (cy — V)M
v S S '

Hence, with the above transformation, (12.18) in the ¢-direction becomes
0 0 g—rf f
A — (5S¢, 12.2
SR AN+ e(Sat) = (12:20)

This is the basic equation to be solved to construct the gas distribution function f
at the moving cell interface £ = const., then calculate the numerical fluxes. In the
above equation, A is the cell area and S is the cell interface length. At the center

of a moving cell interface the above equation can be re-written as

0 g-— f
EX(f) ( of) ="

(12.21)

where z is the length scale in the normal direction of the moving cell interface

in the physical space. Since d\ = dt, the integral solution of the above equation

becomes
1 t
f(€i+1/2a77j7t’6176y7§):;/ g(;z: t Cm,Cy,C) (t— t)/‘l'dt/
0
e T folEig1/2 = EatiEy), (12.22)

where &' = Z;11/9 — C.(t — t') is the trajectory of a particle motion relative to
the moving cell interface and f; is the initial gas distribution function f at the

beginning of each time step (¢ = 0). The scheme based on the above solution
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will be identical to the BGK-NS method®!, even though the system here (A, #) is
moving relative to the stationary system (¢, 2). The difference only appears in the
construction of the equilibrium states in both g and fj, which are presented in the
following.

In the local moving frame of reference at interface & = const., the Maxwellian

distribution should have the form

N\ (K42)/2 L,
s=r(gmg)  eRl-ln/2RDE ~ 0 4 (G - 9P 467

where the averaged macroscopic fluid velocity (@, ) is related to the fluid velocity

(u,v) in the inertia frame of reference by

(u—UM (v=V)L

S S
(12.23)

 W-U)L (-V)M

TS S

Numerically, (12.21) is the same equation as the one we have solved in the Eu-
lerian space, where ¢, ¢, are the particle velocity and @,0 are the macroscopic
velocity in the m and t-direction. Then, the standard BGK-NS method!®! can
be used to solve (12.21) to evaluate the time-dependent gas distribution function
f(§i+1/2,nj7t,éx,6y7g) at the cell interface § = &;;1/2. The detailed formulation
of the gas-kinetic BGK-NS scheme for the Navier-Stokes solutions is given in [3].

Therefore, standing on the moving cell interface the fluxes can be explicitly ob-

tained,
7, !
Fpa - Co - & OdE
fp~ = /Cz C~y f(§i+1/2a77j7taCzac?ﬁg)d‘:" (1224)
pU
Fpe ) iv1/2,5 5(512 +6,% +¢%)

The above fluxes are evaluated standing on the moving reference of frame with mesh
velocity (U, V), in order to update the conservative variables in the (£,7) space,
we need to transfer the fluxes in (12.24) into the fluxes for the mass, momentum
and energy transport of the inertia frame of reference. In other words, the above
obtained gas distribution function f(&;41/2,7j,t,¢s, ¢y, <) and its mass flux across

the moving cell interface é, f(&;11 /2,Mj»t, €z, €y, <) Will carry the mass, momentum
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1
and energy densities (1, Czy Cy, 3 (ci—l—ci—&—?)) in the inertia frame of reference. So,

the time-dependent numerical flux in the Eulerian space in the n-direction across

the cell interface £ = C should be calculated as

F, 1
Fou - Ca - -
fp = /Scm cy f(§i+1/2a77j7taCz7cya§)d‘:' (1225)
pv
1
Foe / iv1)2, §(Ci+03 +¢%)

In the above equation, the distribution function f is a scalar function, which is
invariant under coordinate transformation, but the particle velocities (¢, é,) and
(cz,cy) are defined differently in the different frame of reference. In order to eval-
uate the above flux integration, the easiest way is to write the (cg, ¢,) velocities in

terms of (é,¢,). Based on the transformation (12.19), we have

Mc, + Le, —Lé; + Mc,
csz+fy, cyzv+fy.
Therefore, (12.25) becomes
Fo SFp
F, prﬁ+prﬁ+SUfp
pu _
_7:pv - —LFpq+ MFys + Spr g ’
Foe ) iv1/2,5 (MU—LV)]—'m;+(LU+MV)]—'p,~,+S.7-'pg+§(U2+V2)]—'p

(12.26)
where (F,, Fpa, Fpis Fpe) are given in (12.24). So the fluxes relative to the moving
cell interface in the Eulerian space is just a linear combination of the fluxes in the
moving frame of reference due to the linear transformation between the inertia and
moving space with relative velocity (U, V). Similarly, the fluxes at the cell interface
7 = const., i.e., G, can be constructed as well.

With the above fluxes, the flow variables can be updated in each moving com-
putational cell by
TR 1o
E}f = E%*& " (Fi—1/2,j*Fi+1/2,j)dt+Afn /tn (Gij—1/2—Gijr1/2)dt,

(12.27)
where E = (pA, pAu,pAv,pAe)t and F = (F,, Fpu, Fpus Fpe)' are given in
(12.26), G fluxes in the n-direction.
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12.4 Numerical Procedure

The numerical procedure for the gas-kinetic scheme on a moving and adaptive mesh
can be summarized in the following. In some numerical examples, the adaptive
mesh method is not used, and the corresponding step can be ignored. Also, all
fluid quantities (p, pu, pv, pe) and the geometric variables (A, B, M, L) are defined
at each cell center. Any cell interface values are obtained as the average of the
values in the adjacent cells.

Step 1 Initialize the conservative variables (p, pu, pv, pe) and (A, B, L, M) at
t = A = 0 in the zy plane. Usually, £ and 7 are the initial arclength of their
corresponding z-and y-coordinate lines. For example, for the rectangular domain,
we take A& = Az, and An = Ay when Az and Ay are constants on the physical
domain initially. Or, we can simply choose two constants to define A and An.
Then, (4, B, L, M) are determined according to the definition,
Oz
¢’
_ 9y

o€’

Ox

on’
_ 9

on’

A:

B
(12.28)

M

Then, we calculate (Ap, Apu, Apv, ApE) inside each cell with A = AM — BL.

Step 2 Construct or modify the mesh using the adaptive grid method®!,
and update the conservative variables (p, pu, pv, pe) inside each cell in the phys-
ical domain. Subsequently, calculate (A, B, L, M) by (12.28) again and update
(Ap, Apu, Apv, Ape) with the new A = AM — BL. The re-distribution of conser-
vative variables in this step is fully conservative.

Step 3 Given a mesh velocity (U, V') at the center of each cell, such as the fluid
velocity g in the gas-kinetic Lagrangian method, at the cell interface § = & 1/2
the mesh velocity is calculated as

)i+ (U)itr,;
(U)it1/2,5 = ’ 5 =,

(V)isray = Pia® Wit
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which are the average of the velocities from the neighboring cells. Then, based
on (12.26) the numerical fluxes are calculated across the moving interface. At the

same time, the center of the cell, (27 ;,y}';), moves to a new location through

B a4 Uy (- ),
(12.29)
Yyt =yl Vig x (0 =),

The location of cell vertex is updated by averaging the centers of 4 neighboring
cells.

Step 4 With the new mesh location 21, y" 1 calculate (A, B,L, M) and

A using (12.28). Then, update the conservative variables by the finite volume

scheme (12.27) in the newly moved cells. It can be shown that the use of (12.28)

to calculate (A, B, L, M) is the same as the geometrical conservation law (12.14),

such as the update of A,

An+17 671 n+1
% af y

n+1 n+1

xifl/&j B xij_l/2,j
= Y;
_ Ty T (U)o g AN =iy 5 — (U)FL ;AN
= Ag

Thye T T2, AN n n
- jAg s+ AE ((U)i+1/2,j - (U)i71/2,j)

AN

:A?,j + A—f((U)?H/z,j - (U);lfl/Q,j)'

Similarly, it is true for B, L and M.
Then go to Step 2 to repeat the above process until the output time.

12.5 Numerical Examples

As mentioned earlier, the main advantage of the current method is that the phys-
ical conservation laws under unified coordinate are coupled with the geometrical
conservation laws. Mathematically, the unified system provides an enlarged and
complete system, which avoids the difficulties in other moving mesh methods to im-
plement the geometrical conservation separately based on physical intuition. Also,
different from the Eulerian and Lagrangian methods, the choice of mesh velocity

(U, V) becomes a new degree of freedom in the current model. The proper choice of
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the mesh velocity depends on the specific applications to get the optimum accuracy
in the numerical solution. For example, the mesh velocity can be the fluid velocity
in the free surface flow, or follow the oscillating angular velocity for a pitching

airfoil. In the approach by Hui et all’l

, preserving the mesh angle has been used to
get the local value h in the determination of mesh velocity (hu, hv). In this section,
the BGK-NS scheme on a moving mesh will be tested on several examples. Differ-
ent choices of the mesh velocity will be used. The numerical results are compared
with the exact solutions, experimental data, and the available solutions obtained
by others.

Example 1: free surface flow. The current approach with the choice of
(U,V) = (u,v) becomes a purely gas-kinetic Lagrangian method even though it
is solving the viscous governing equations. The use of the fluid velocity as the
mesh velocity can naturally capture the free surface sharply. The case we are
going to study is the dam break problem, where a column of water is released
by removing a vertical diaphragm. This becomes a standard benchmark prob-
lem due to its simple geometry and the available experimental measurement!®.
The initial configuration is shown in the upper left picture in Figure 12.1. In
this example, a rectangular column of water in hydrostatic equilibrium is confined
initially between two vertical walls. The water column is 3.5 units wide and 7.0
units high. The gravity is acting downward with the dimensionless 0.05 unit in
magnitude.

After the diaphragm eruption at time ¢ = 0, the water is pushing out and moves

freely along a dry horizontal floor. The measured quantities include the water wave

===
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Figure 12.1 Moving meshes at time ¢t = 0, 9.46, 14.0, 19.7

front location L on the floor. In our calculation, 40 x 20 rectangular mesh points
are initially employed in a domain 0<< << 3.5,0<C y<< 7.5. Figure 12.1 presents
the moving meshes at three subsequent times. Since the mesh velocity is equal to
the fluid velocity, the mesh distribution is the same as the water distribution. In a
purely Lagrangian simulation, the mesh is easily tangled at a later time. Since we
have used a mesh smoothing technique through the mesh adaptive method with
a constant monitor function to equally distribute the mesh!!, the moving mesh
becomes generally smooth all over the domain even though the mesh adaptation
steps are applied only a few times.

Figure 12.2 shows the water tip location versus time for both simulation and
experimental measurement. The non-dimensional time in the horizontal coordinate
is normalized by t\/W , where W is the width of the initial water column. Good
agreements between computation and experiment are evident.

Example 2: shock reflection inside a channel with a ramp. In order to
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Figure 12.2  The time dependent location of water front. Experimental measurement %!

vs the calculation from UC method

preserve the mesh angles® | the mesh velocity (U, V) = (hu, hv) can be obtained

by solving the following equation for h:

9 ( VE Vi ) —0

OX\ V¢l [V ’
where V€ = (M, —L)/A,Vn = (—B,—A)/A and 0 is the flow angle, u = gcos#,
v =gsinf, g = vu?® +v2. Let § = In(hq), then the above equation becomes

S%(Asing — BCOS@)Z—Z +T?%(M cos — Lsin@)%

n
0 cosf Osin 6 Jdcost Osind
2 2
=S (B a€ —A J€ )T (M an —L an ), (12.30)

where S? = L? + M? and T? = A? + B?. Numerically, (12.30) can be solved by an
iterative method to get h at different grid point. The detail description was given
in [5].

In the current supersonic flow of M = 1.8 passing through a ramp in a chan-
nel, (12.30) is used to calculate g and hence h, then determine the mesh veloc-
ity. Here the ramp with 15° is placed at the lower wall between z = 0.5 and
z = 1.0. A computational mesh with 180 x 50 mesh points in the physical do-
main {0< << 3.6,0<< y<< 1.0} is initially generated. An initial flow data with
(p,p, M,0) = (1,1,1.8,0) is imposed inside each cell, as well as at the left boundary.
Reflection boundary conditions are used at the top and bottom walls. When h is

chosen according to (12.30), the mesh will automatically preserve the mesh angle,
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which is shown in Figure 12.3. Figure 12.4 presents pressure and Mach number
distributions after the steady state solution is obtained. The shocks and slipline
are seen sharply resolved.

1

0% 0.5 1 15 2 25 3 35

Figure 12.3 Computational mesh due to the implementation of mesh angle preservation

1p T

0.5F A
0 L L L L L L L
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(a) pressure contours
1
0.5F
ok . . .
0 0.5 1 1.5 2 2.5 3 3.5

(b) mach contours

Figure 12.4 Computed flow with shock seflection in a channel

Example 3: viscous flow above an oscillating wall. This is called Stokes’
second problem, which considers fluid motion above an infinite flat plate execut-
ing sinusoidal oscillations parallel to itself. The fluid above the plate is initially

stationary. The governing equation for velocity u in the z-direction is

ou 0%y

with the boundary conditions
Uwanl (0, 1) = ug coswt, u(oco,t) = 0.

The exact solution for the above problem is

u(y,t) = upe YV« cos (wt —yq/ ;) (12.32)
v
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Aty = 4\/1//7(4)7 the amplitude of u is equal to ugexp(—4/v/2) = 0.05ug, which
means that the influence from the wall is confined within a distance of order
0~ 4\/1//7. Since the gas-kinetic scheme solves the compressible Navier-Stokes
equations, in order to simulate the above incompressible limiting solution the Mach
number for the compressible flow takes a small value, i.e., M = 0.15. The kine-
matic viscosity coefficient takes a value v = 0.00046395, and a mesh size 10 x 70
mesh points is used.

In the current calculation, we have used two ways to determine the mesh ve-
locity. In the first case, we used the purely Lagrangian method for the viscous
solution, where the mesh velocity follows the fluid one. Due to large velocity shear
in the boundary layer, the Lagrangian method will stretch the mesh severely. This
is the main reason why nobody really used Lagrangian method for the viscous flow
computation. However, it is still theoretically interesting to see the solution using
gas-kinetic Lagrangian method. Figure 12.5 shows the mesh (left) and velocity
(right) at time wt = 7/25 when the mesh follows the fluid velocity. Even though
the mesh has been stretched greatly, it is surprising that the numerical solution
is very close to the exact solution. This proves the robustness and accuracy of
the current kinetic scheme for the viscous computation. With increasing time, the
mesh will be stretched further until 20 mesh points are not enough to follow the

time increasing velocity arc-length. Eventually, the computation will stop. If the

0.7 8 :
exact solution
0.6 7 o (U, V)=(uv)
0.5
0.4
=

0.3
0.2 9
0.1 1

0 0

0 1 2 3 —0.5 0 0.5 1
z (wt=m/25) u/ uy (wt=m/25)

Figure 12.5 Lagrangian gas-kinetic scheme for viscous flow. Mesh (left) and velocity

(right) distributions at time wt = /25
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mesh velocity at all mesh points follow the wall velocity, such as (U, V) = (uwal, 0),
the mesh will not get tangled. Figure 12.6 shows the mesh and simulation results

at wt = m/2.

0.7 8 -
——exact solution
0.6 7 ° ( U., V) = (u’walho)
0.5 6
5
0.4 5
> 3 4
0.3 =
3
0.2 9
0.1 1
0 0 il
29.9 30 30.1 30.2 -02 0 02 04 06
z u/ ug

Figure 12.6 Gas-kinetic scheme for viscous flow with (U, V) = (uwai,0). Mesh (left)

and velocity (right) distributions at time wt = nt/2

Example 4: freely falling plates. In the 2-D experiment conducted by An-

dersen, Persavento and Wang!”!

, a small rectangular aluminum plate was designed
to fall freely in a water tank. For the falling plate, many physical quantities were
measured, such as the plate trajectory and falling speed. The fluid force and torque
on the plate were calculated according to the experimental data. Here we apply the
above UC method to solve the 2-D Navier-Stokes equations to study the rich hydro
dynamical behavior of falling plates. In the following, we simulate the plate move-
ment under the following conditions: the plate thickness to width ratio 8 = 1/8,
the plate thickness h = 0.081 cm, the density of the fluid py = 1.0g cm™3, the
density of the plate p, = 2.7g cm™3, and their ratio p,/ps = 2.7. In the current
simulations, the Reynolds number for a rectangular plate is Re = lu;/v = 837.
The radius of the computational domain has a value about five times the length
of the longer axis of the plate, i.e., = 5L and L is the chord length. In or-
der to confirm the convergence of the computational results, a larger domain with
r = 10L was also used. In both cases, two stretched meshes are generated around

the falling plates with 200 x 50 and 400 x 100 mesh points separately. Since the
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solution close to the plate is well resolved by the small cell size and different mesh
stretching parameters are used, the simulation results on different computational
domain basically capture mesh refinement effects.

Following the experiment, the rectangle plate is released at an initial angle
of 0.25x radian with respective to the horizontal axis, with an initial velocity
u = (—8.92 cm/s, —8.92 cm/s). The computational mesh around the rectangle
is fixed with the rigid body motion of the plate, as shown in Figure 12.7. With the
above initial condition, the rectangular plate first has a fluttering motion from side
to side, then after a while it starts to tumble. Since the experimental results pre-
sented in [7] were for the tumbling section, the numerical data in the correspond-
ing section is extracted and compared with the experimental data. Figure 12.8
shows the rectangular plate trajectory of the current simulation and experimental
measurement!”. The agreement is seen very good. Quantitatively, the averaged -
and y-direction velocity components become (V,, = 15.1 cm/s, V, = —11.8 cm/s),
and the angular velocity is (w = 15.0 rad/s), which have an excellent match with

the experimental results (see Table 12.1).
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Figure 12.7 computational mesh fixed to the rectangle

Table 12.1 Experimental and numerical falling plate averaged translational and
angular velocities
Ve /(cm/s) Vy/(cm/s) w/(rad/s)
experiment (Andersen et al. [7]) 15.940.3 —11.54+0.5 14.5+0.3
computation 15.1£0.30 —11.8+0.37 15.0£0.36

Based on the numerical computations, Figures 12.9~12.11 present the compo-

nents of the fluid forces and their torque as a function of the plate orientation
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(phase) and evolution time respectively. In order to get a comparison on the dy-
namical forces for different plate shapes, the computational results for an ellipse
is also included [8]. In Figure 12.9, the horizontal axis of the left plot is the an-
gle of the tumbling plate. However, the horizontal axis of the right plot uses the
real evolution time. The phase differences between the rectangle and ellipse plates
movement can be clearly observed from the right plot. From these figures, rea-
sonable agreements between the experimental data [7] and the current numerical
solutions are obtained. The elliptic plate rotates much faster than the rectangular
one. The vorticity field for a full tumble rotation around the rectangular plate is

shown in Figure 12.12.

Computed by UC
—8F K]
— 10 L
Measured by experiment
g —12f a7
< 14t
—16} LA
_1sl ‘_\_‘\
20 5 10 15 20
z/cm

Figure 12.8 Trajectories of the falling rectangle in the tumbling section: experiment

and computation solutions

15 ~—-ellipse 1.5 ~—-ellipse
rectangle ——rectangle
1 « experimental data 1

2 25 3 35 4 45 5 55 12 14 16 18 20 22 24 26 28 30
0/= Time[l/ u;]

Figure 12.9 z-direction fluid force F; on the plate during the tumbling process for both

ellipse and rectangle. The horizontal axis are rotational angle (left) and dimensionless

time (right)
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3 ~—--e11i£)se : 3 -—-ellipse
rectangle o
2.5 « experimental data 2.5 rectangle

12 14 16 18 20 22 24 26 28 30
Time[l/ u;]

Figure 12.10 y-direction fluid force Fy, on the plate during the tumbling process for
both ellipse and rectangle. The horizontal axis are rotational angle (left) and

dimensionless time (right)

0.15 —~ellipse 0.15 —~cllipse
rectangle —rectangle
0.10 « experimental data 0.10

Torque[mgl]
Torque[mgl]

2 3 4 5 55 12 14 16 18 20 22 24 26 28 30
0/n Time[l/ ]

Figure 12.11 Torques on the plate during the tumbling process for both ellipse and

rectangle. The horizontal axis are rotational angle (left) and dimensionless time (right)
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—-127

—130

31 32
z/cm z/cm

Figure 12.12 Vorticity field of a falling rectangle plate at four instants during a full

rotation

12.6 Conclusion

In this chapter, the unified coordinate approach is successfully applied to the kinetic
theory-based equation. In particular, the Boltzmann BGK-type equation is written
in a generalized form (12.15) under Hui’s unified coordinate transformation. A
unified numerical scheme for the viscous solution is then developed. This is a finite
volume gas-kinetic scheme on a moving mesh in the Eulerian space and the mesh
velocity can be properly chosen to capture low movement with moving boundaries.
The Eulerian and Lagrangian methods are two limiting cases for the current scheme.
The current unified gas-kinetic method has been applied to many flow problems,
such as the free surface flow and Mach reflection inside a channel, where both
inviscid and viscous solutions have been accurately obtained. The great advantage
of using unified coordinates, i.e., the Hui’s transformation, is that a variable and
arbitrary mesh velocity can be used and the geometrical conservation laws are
naturally coupled with the fluid dynamic equations. The physical and geometrical
variables can be updated simultaneously. Due to the simple straight line particle
motion and the relaxation term in the gas-kinetic model, the numerical treatment
of the complicated viscous terms in the Navier-Stokes equations under the unified

coordinate transformation can be avoided.
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Chapter 13

Summary

A system of unified coordinates (UC) has been introduced via transformation (6.1).
It has three degrees of freedom — the mesh velocity — and unifies the traditional
Eulerian and Lagrangian systems while including them as special cases. Based on
(6.1), contributions are made to CFD as follows.

Theoretically,

(1) The governing equations of fluid flow in any moving coordinates can be
written as a system of closed conservation PDEs; consequently, shocks can be
captured correctly and the effects of mesh movement on the flow are fully accounted
for.

(2) The system of Lagrangian gas dynamics equations is written in conservation
PDE form, putting it on the same footing as Eulerian gas dynamics and providing a
foundation for developing Lagrangian schemes as moving mesh schemes in Eulerian
space.

(3) The Lagrangian system of gas dynamics equations in 2-D and 3-D is shown
to be weakly hyperbolic whereas the Eulerian one is fully hyperbolic; they are,
therefore, not equivalent to each other.

Computationally,

(4) The UC is superior to both Eulerian and Lagrangian systems in that contact
discontinuities are resolved sharply without mesh tangling.

(5) For flow past a body, the UC avoids the tedious and time-consuming task
of mesh generation; the mesh in UC is automatically generated by the flow.

(6) Boundary conditions on moving boundaries are satisfied easily in UC, mak-
ing it efficient to compute fluid-solid interaction problems, as examplified by the
falling-plate problem in Chapter 12.

(7) The UC approach provides a new dynamic moving mesh method which
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has the distinct feature that the effects of mesh movement on the flow are fully

accounted for.



Appendix A

Riemann Problem for 1-D Flow in the
Unified Coordinate

The Riemann problem for 1-D unsteady flow written in the unified coordinates is

8_E+8_F:07 A >0,

ox | o¢ N

Q(O é—) _ le £<Oa ( ' )
Sl Qn €0,

where @, and @, are the constant vectors representing the flow states on the
left and right side, respectively. From now on, we shall consider only the simpler
case when h is a constant in the range 0<< h<< 1. The general case when h is a
function of the coordinates is discussed in this book. With h = const., (4.6) is a

system of conservation law equations with constant coefficients and a solution to
A
the Riemann problem depends on ( = — alone, i.e., it is a self-similar solution of

the form @ = Q(¢). It is constructed by piecing the smooth solutions with the

discontinuous solutions.
Nonlinearity of Characteristic Fields

Case 1: 01 = 0. We have

T VO'1 =0. (A2)

Hence, the characteristic field corresponding to o1 = 0 is linearly degenerate.

1-h
Case 2: 09 = % We have
1—-nh
ro - VO'Q = |:()U:| =0. (AS)
A
P
L . (1-hu . :

So the characteristic field corresponding to o2 = A is also linearly degener-

ate.
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(I1-huta

Case 3: 04 = " . We have

~y a (1—-h) o4
= % — . A4
Vou ( S P -2, (A1)

hence
y+1

. =41 - A.
T+ V(Ii :tzapA#O ( 5)

and the o4 characteristic fields are genuinely nonlinear.

Smooth Solution

The smooth solution from the o4 characteristic fields can be derived from the

following system of ODE:

dp 1

— = A.6
A~ a? (A.6)
du 1

— =+ A7
dp ap’ ( )
dA h

— = . A8
B~ paos (A.8)

The solution for p, u, A relates the flow state Q = (p, p,u, A)T in the rarefaction fan
to the initial state Q, = (po, po, uo, Ag)T upstream of the fan through the following

expressions:
p=ro(2)" (A9
u¥727al:uo$%, (A.10)
A=Aoexp </ T (A1)

To find the solution inside the rarefaction fan, we consider the characteristic
ray through the origin (0,0) and a general point (), §) inside the fan. The slope of

the characteristic is
¢ ¢ (1-huta
—_— = = =0 =
- x OF

" (A.12)
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Making use of (A.9)~(A.11), (A.12) becomes an equation for p(§> as follows:

+1-2h)\ 2 —1 ~1
fo) = | T2 ) 200+ - o+ T 4o explo(p) =0,
Poh ag ag
(A.13)
where )
Fhdp
= . A.14
9(p) / (e (A14)

The other flow variables p, v and A as functions of % can be easily found from
(A.9)~(A.11).

Discontinuous Solutions

We start from the Rankine-Hugoniot jump conditions of the system (A.1):

olpAl=[(1 = h)pu], (A.15)
alpuA]=[(1 — h)pu® + pl, (A.16)
olpeA]=[(1 = h)pue + up], (A.17)

o[A] = —[h], (A.18)

where [.] denotes the jump across the discontinuity whose speed is denoted by
dg
7=

Case 1: shock wave. We denote the pre-shock flow state by Qq, = (po, po, vo,

Ap)T and the post shock flow state by Q = (p, p,u, A)T, respectively. Then the

shock jump relations after some algebraic manipulations can be expressed in terms

of = Ea as follows:

Po
ay+1)+~v-1
- , A.19
P poa(v—l)—l—’y—i—l ( )
%y 1/2
w=ugt La-1) | 2| (A.20)
a1
v+1
Az 4y - M=) (A.21)
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where

1—h 1 — 1\ 2
Osh+ = wiﬂ (la_F’Y_) X (A_22)
2 2

Ao Ao
Formulas (A.19)~(A.22) hold for h, 0<< h<< 1.

Case 2: slip line (a). For the slip line corresponding to the slope oo =

%, from Rankine-Hugoniot jump conditions (A.15)~(A.18), we find
U="1ug, (A.23)
A=Ay, ifh#L (A.25)

The only variable which can change its value freely across the slip line is the density
p-
Case 3: slip line (b). The other degenerate wave corresponds to the slope

o1 = 0. From the Rankine-Hugoniot jump conditions, we have

u=1uyp, (A.26)
p=po, (A.27)
p=po, ifh#1. (A.28)

The only variable which can change its value across this wave is A.
In the Lagrangian case when h = 1, 01 = 09 = 0, and the two slip lines coincide.

In this case, the jump relations across the slip line are

U="1uq, (A.29)

but p and A can jump arbitrarily.



Appendix B

Computer Code for 1-D Flow in the
Unified Coordinate

CCCCCcLeeeeeceeceeceeceeceecreceeceeccececcecccecccecccececcccececceccccccc
FIRST ORDER GODUNOV OR GODUNOV SCHEME WITH MUSCL
IN UNIFIED COORDINATES FOR ONE-DIMENSIONAL UNSTEADY FLOW.

GOVERNING EQUATION

E_lamda + F_ksi = 0

WHERE
/ rhoxA \ / (1-h)*rho*u \
E = | rhoxuxA | F = | (1-h)*rhoxu™2+p |
| rhoxexA | | (1-h)*rho*uxe+uxp |
\ A / \ ~h*u /
HERE
rho : DENSITY
u : VELOCITY COMPONENT IN EULERIAN COORDINATES
p : PRESSURE
e : INTERNAL ENERGY: O0.5%(u*u)+p/((gamma-1)*rho)
A : GEOMETRICAL VARIABLE
h : PARAMETER OF TRANSFORMATION O <= h <=1

REFERENCE:

W. H. HUI and S. KOUDRIAKQOV, THE ROLE OF COORDINATES IN THE
COMPUTATION OF DISCONTINUITIES IN ONE-DIMENSIONAL FLOW,
Computational Fluid Dynamics Journal, Vol 8, no 4,
January, 2000

ok oK oK K o ok ok ok Kk o ok ok ok ok K o ok ok ok ok K o ok ok Kk 3 ok oK oK K 3k ok ok K K ok ok ok ok 3 ok ok ok ok ok ok K
PRINCIPAL VARIABLES:
ook ok ok ok ok ok ok ok ok ok ok ok sk sk ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok

D : ARRAY OF DENSITIES

U : ARRAY OF VELOCITIES

P : ARRAY OF PRESSURES

C : ARRAY OF SPEEDS OF SOUND

CU : ARRAY OF GEOMETRIC VARIABLES ’A’

E1l : ARRAY OF CONSERVATIVE VARIABLES El=rho*A
E2 : ARRAY OF CONSERVATIVE VARIABLES E2=rho*u*A
E3 : ARRAY OF CONSERVATIVE VARIABLES E3=rho*ex*A
E4 : ARRAY OF CONSERVATIVE VARIABLES E4=A

F1,FF1 : ARRAY OF FLUXES FF1=F1=(1-h)*rho*u
F2,FF2 : ARRAY OF FLUXES FF2=F2=(1-h)*rho*u”2+p
F3,FF3 : ARRAY OF FLUXES FF3=F3=(1-h)*rho*u*e+u*p
F4,FF4 : ARRAY OF FLUXES FF4=F4=-h*u

XX : ARRAY OF POSITIONS IN PHYSICAL SPACE
SPEED1 : ARRAYS OF OF SHOCK SPEEDS

Qoo oo
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C SPEED2 : OR FASTEST MACH LINES

C TOL : TOLERANCE ERROR

C SEC : PARAMETER FOR THE MUSCL UPGRADING

C SEC=0.0 --- FIRST-ORDER GODUNOV SCHEME
C SEC=0.5 --- GODUNOV SCHEME WITH MUSCL
C DT : TIME STEP

C DX : SIZE OF THE COMPUTATIONAL CELL

C CFL : CFL NUMBER

C MD : MAXIMUM DIMENSION OF ARRAYS

c¢CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
PARAMETER (MD=1500)
DIMENSION D(0:MD),U(0:MD),P(0:MD),C(0:MD),CU(0:MD)
DIMENSION E1(0:MD),E2(0:MD),E3(0:MD),E4(0:MD)
DIMENSION F1(0:MD),F2(0:MD),F3(0:MD),F4(0:MD)
DIMENSION FF1(0:MD),FF2(0:MD),FF3(0:MD),FF4(0:MD)
DIMENSION XX(0:MD), SPEED1(0:MD), SPEED2(0:MD)
COMMON /ARRAYS/ D,U,P,C,CU,E1,E2,E3,E4,F1,F2,F3,F4
COMMON /ARRAYS/ FF1,FF2,FF3,FF4,XX
COMMON /GAMMAS/ GAMMA,G1,G2,G3,G4,G5,G6,G7,G8,G9
COMMON /SCALARS/ M,DX,DT,DOMLEN
COMMON /STATES/ DLB,ULB,PLB,CLB,DRB,URB,PRB
COMMON /STATES/ CRB,CULB,CURB
COMMON /MSTATES/ DMB,UMB,PMB,CUMB
COMMON /TSTATES/DL,UL,PL,DR,UR,PR,CUL,CUR,H
EXTERNAL FUNCL,FUNCR,FMINMOD
OPEN(UNIT=90,FILE=’input.dat’,STATUS=’UNKNOWN’)
READ (90, *) XL ! LEFT END OF X-DOMAIN
READ (90, *)XR ! RIGHT END OF X-DOMAIN
READ (90, %)M ! NUMBER OF POINTS PROFILES
READ (90, *) GAMMA ! RATIO OF SPECIFIC HEATS
READ (90, *) TIMEOUT ! OUTPUT TIME
READ (90, *)DLB ! DENSITY ON LEFT SIDE
READ (90, *) ULB ! SPEED ON LEFT SIDE
READ (90, *)PLB ! PRESSURE ON LEFT SIDE
READ (90, *) DRB ! DENSITY ON RIGHT SIDE
READ (90, *) URB ! SPEED ON RIGHT SIDE
READ (90, *) PRB ! PRESSURE ON RIGHT SIDE
READ (90, *) CULB ! GEOMETRIC PARAMETER ON LEFT
READ (90, *) CURB ! GEOMETRIC PARAMETER ON RIGHT
READ (90, *)H ! PARAMETER IN TRANSFORMATION
CLOSE(90)
C compute gammas
G1=(GAMMA-1.0)/(2.0%*GAMMA)
G2=(GAMMA+1.0)/(2.0%*GAMMA)
G3=2.0%GAMMA/ (GAMMA-1.0)
G4=2.0/(GAMMA-1.0)
G5=2.0/ (GAMMA+1.0)
G6=(GAMMA-1.0)/ (GAMMA+1.0)
G7=0.5%(GAMMA-1.0)
G8=1.0/GAMMA
G9=GAMMA-1.0
(C %k >k 3k ok >k 5k ok ok 5k >k 3k ok >k 3k 3k >k k ok >k 3k ok >k 5k >k sk ok >k 5k >k sk ok k 3k %k sk ok %k ok %k sk ok sk ok >k sk k kK
c data for descrete calculations
€3k 3k 3k 3k 3k 3k ok 3k 5k >k Sk ok >k Sk ok >k 3k ok 3k sk ok 3k 5k %k 3k sk k Sk >k Sk ok %k 5k %k 3k ok %k 5k >k 3k 5k %k ok %k %k k k k.
CFL=0.8
SEC = 0.0
DOMLEN = XR-XL
DX DOMLEN/REAL (M)
TIME = 0.0
CALL INICON1
0001  CONTINUE
C********************************************
C SET TRANSMISSIVE BOUNDARY CONDITIONS
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Coksk sk ok ok ok ok K K o ok ok ok K K o ok ok ok K K ok ok ok K K ok ok ok ok ok ok ok ok K ok ok kK

D(0) = D(1)

u(o) = U

P(0) = P(1)

CU(0) = Cu(1)

D(M+1) = D(M)

UM+1) = U(M)

P(M+1) = P(M)

CUM+1)= CUM)
C*********************************************
C CALCULATE FLUX ON THE INTERFACE

C********************************************
DO 0002 I=0,M
IF ((I .GE. 2).AND.(I .LE. (M-2))) THEN
DTOP=D(I)-D(I-1)
DBOT=D(I+1)-D(I)
DL=D (I)+SEC*FMINMOD (DTOP,DBOT)
(C 3k 3k >k 5k 3k 5k 3k >k 3k >k 3k >k 3k >k 5k 3k 5k 3k >k 3k >k 3k >k 3k >k 5k 3k 5k 3K >k 3k >k >k 3k >k 3k %k >k 3k >k 3k %
UTOP=U(I)-U(I-1)
UBOT=U(I+1)-U(I)
UL=U(I)+SEC*FMINMOD (UTOP,UBOT)
(C 3k 3k >k 3k 3k 5k 3k 5k 3k >k 3k >k 3k >k 3k >k 5k 3k 5k 3k >k 3k >k 3k >k 3k >k 5k 3K >k 3K >k >k 3k >k 3k >k >k %k >k 3k %k >k
PTOP=P(I)-P(I-1)
PBOT=P(I+1)-P(I)
PL=P (I)+SEC*FMINMOD (PTOP,PBOT)
C******************************************
CUTOP=CU(I)-CU(I-1)
CUBOT=CU(I+1)-CU(I)
CUL=CU (I)+SEC*FMINMOD (CUTOP , CUBOT)
C*********************************************
DTOP=D (I+2)-D(I+1)
DBOT=D(I+1)-D(I)
DR=D (I+1)-SEC*FMINMOD (DTOP,DBOT)
C********************************************
UTOP=U(I+2)-U(I+1)
UBOT=U(I+1)-U(I)
UR=U(I+1)-SEC*FMINMOD (UTOP,UBOT)
C********************************************
PTOP=P (I+2)-P(I+1)
PBOT=P (I+1)-P(I)
PR=P (I+1)-SEC*FMINMOD (PTOP,PBOT)
(C 3k 3k >k 3k 3k 5k 3k 5k 3k 5k 3k >k 3k >k 3k 3k 5k 3k 5k 3k 5k 3k >k 3k >k 3k >k 5k 3k >k 3k >k >k 3k >k 3k >k >k %k >k 3k %k 5k
CUTOP=CU (I+2)-CU(I+1)
CUBOT=CU(I+1)-CU(I)
CUR=CU (I+1)-SEC*FMINMOD (CUTOP,CUBOT)
ELSE
DL=D(I)
UL=U(I)
PL=P(I)
CUL=CU(I)
DR=D(I+1)
UR=U(I+1)
PR=P(I+1)
CUR=CU(I+1)
ENDIF
CALL RIEMANN(PM,UM)
(C 3k 3k >k 3k 3k 5k 3k 5k 3k >k 3k >k 3k >k 5k 3k 5k 3k 5k 3k >k 3k >k 3k 3k 5k 3k 5k 3k >k 5k 3k >k 3k >k 3k >k >k 3k >k 3k 3k >k 3k >k >k %k >k 3k >k 5k %
CL=SQRT (GAMMA=PL/DL)
CR=SQRT (GAMMA*PR/DR)
IF(PM.GT.PL) THEN
C left wave is shock
SL=(1.0-H) *UL/CUL-CL*SQRT (G2+PM/PL+G1) /CUL
CUML=CUL-H* (UM-UL) /SL

179
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SPEED2(I) = SL

ELSE
C left wave is expansion wave
A =PL
B = PM

CALL QK15(FUNCL,A,B,RESULT,ABSERR,RESABS,RESASC)
CUML=CUL*EXP (RESULT)
SPEED2(I) = ((1.0-H)*UL-CL)/CUL
IF(ABS(PM-PL) .LE. 0.000001) SPEED2(I)=0.0
ENDIF
€ 3k 3k 3k ok 3k sk sk sk sk sk sk sk sk sk Sk Sk Sk ok Sk sk ok sk sk sk sk sk sk sk Sk Sk sk sk sk sk sk sk sk ok sk sk ok sk sk sk sk sk sk ok sk ok ko k
IF(PM.GT.PR) THEN
C right wave is shock
SR=(1.0-H) *UR/CUR+CR*SQRT (G2*PM/PR+G1) /CUR
CUMR=CUR-H* (UM-UR) /SR
SPEED1(I+1) = SR

ELSE
C right wave is expansion wave
A = PR
B = PM

CALL QK15(FUNCR,A,B,RESULT, ABSERR,RESABS,RESASC)
CUMR=CUR*EXP (RESULT)
SPEED1(I+1) = ((1.0-H)*UR+CR)/CUR
IF(ABS(PM-PR) .LE. 0.000001) SPEED1(I+1)=0.0
ENDIF
C********************************************************
$=0.0
CALL SAMPLE(PM,UM,CUML,CUMR,S,PS,US,DS)
(C %k 3k 3k 3k 3k ok ok 3k sk >k Sk ok >k Sk ok >k Sk ok 3k Sk >k >k 3k 3k Sk ok >k k >k 3k ok >k 3k ok 3k 3k >k 3k >k 3k 3k >k 3k >k k >k >k 3k >k %k >k >k 3k >k %k k.

F1(I) = (1.0-H)*DSx*US
F2(I) = F1(I)*US+PS
F3(I) = F1(I)*(US*US/2.0+PS/(G9*DS))+PS*US
F4(I) =-H*US
0002 CONTINUE

(C 3k ok 3k 5k 3k 5k 3k 5k 3k >k 3k >k 3k >k 5k 3k >k 3k >k 3k >k 5k >k 5k 3k >k 3k 5k 5k >k 5k 3k >k 3k >k 5k 3k >k 3k >k 5k 3k >k 3k >k >k >k >k 3k >k 3k % >k %k %k 3k %k >k
C CHOOSING TIME STEP
C**********************************************************
SMAX = 0.0
DO 777 I=1,M
IF(SMAX .LE. ABS(SPEED1(I))) SMAX=ABS(SPEED1(I))
777 CONTINUE
DO 778 I=1,M
IF(SMAX .LE. ABS(SPEED2(I))) SMAX=ABS(SPEED2(I))
778 CONTINUE
IF(SMAX.GT.0.0) THEN
DT=CFL*DX/SMAX
ELSE
DT=CFL*0. 1*DX
ENDIF
IF(TIME.LE.TIMEOUT.AND.TIME+DT.GT. TIMEQOUT) THEN
DT=TIMEQUT-TIME
TIME=TIMEOUT
ELSE
TIME=TIME+DT
ENDIF
print*,"dt=,time=",DT,TIME
IF (ABS (TIME-TIMEOUT) .LT.0.00001) GO TO 98
C***********************************************************
C  UPDATING CONSERVATIVE VARIABLES
C***********************************************************
DO 0003 I=1,M
E1(I)=E1(I)-(DT/DX)*(F1(I)-F1(I-1))
E2(I)=E2(I)-(DT/DX)*(F2(I)-F2(I-1))
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E3(I)=E3(I)-(DT/DX)*(F3(I)-F3(I-1))
E4(I)=E4(I)-(DT/DX)*(F4(I)-F4(I-1))
0003 CONTINUE
Gk ko sk ok ko Kok Kok Kok ko ok ok ok Kok Kok Kok ok ok Kok kK sk ok ok ok K Kok K
C DECODING TO GET PHYSICAL VARIABLES
Cokakotok koo sk ok ook ok ok ko ko sk ok sk ok ok sk ok ok sk ok ko sk ok sk ok ok sk ko sk ok ook ok sk ok ok ok ok
DO 0004 I=1,M

UOLD = U(I)

D(I) = E1(I)/E4(I)

U(I) = E2(I)/E1(I)

CU(I)= E4(I)

TEMP = E3(I)/E1(I)-U(I)*U(I)/2.0

P(I) = TEMP*G9*D(I)

XX (I)=XX(I)+0.5%DT*Hx (U(I)+UOLD)
0004 CONTINUE

GO TO 0001

Cskok kok ok o ok ok ook ook o oK ok ook o oK o oK ok ook ook o K ok o ok ok o ok o ok ok o ok o ok ok o ok ook ok ook ook ok o ok ok ok K
C PRINT RESULTS INTO THE FILE ’results.dat’
Gtk ok ok o ok ok ok o ok ook ok Kok o ok ok ok K ok o ok o K oK o ok ok K ok o ok ok K ok o ok K ok ok ok K ok ok ok ok ok ok ok K
98 OPEN (UNIT=7,FILE="results.dat’,STATUS=’UNKNOWN’)
DO 0005 I=1,M
WRITE(7,6) I*DX,XX(I),D(I),U(I),P(I),

1 D(I)*LOG(P(I)/(D(I)**GAMMA))
0006 FORMAT (F10.6,2X,5(F12.5,1X))
0005 CONTINUE

END

Cokkokokok ok ook Kok ok ok ok ok Kok ok ok ook Kok ok ok ok o ok Kok ok ok ok ok o koK ok ok ok ok o ok Kok ok ok ok ok o Kk ok

Cokkkokokok ok ok Kok ok ok ok ok Kok ok ok o ok Kok ok ok ok o ok Kok ok ok ok ok o koK ok ok ok ok o ok Kok ok ok ok ok o Kk ok
SUBROUTINE RIEMANN(P,U)

Cokkkkokok ok ook koK ok ok ok ook Kok ok ok o o koK ok ok ok o ok Kok Kok ok ok o ok Kok ok ok ok o ok kK Kok

C compute pressure P and velocity U
C on the slip line (contact line)
C Newton-Raphson method is used to find P

Cokskokokskosk sk ok ok ok sk sk sk ok ok ok ok sk sk ok ok ok ok sk sksk sk ok ok ok sk sk sk sk sk ok ok sk sk sk sk sk o sk ok ok ok ok
COMMON /GAMMAS/ GAMMA,G1,G2,G3,G4,G5,G6,G7,G8,G9
COMMON /TSTATES/DL,UL,PL,DR,UR,PR,CUL,CUR,H
DATA TOL,NRITER/1.0E-10,50/
DU=UR-UL
C compute sound speeds
CL=SQRT (GAMMA=*PL/DL)
CR=SQRT (GAMMA*PR/DR)
C compute critical velocity
DUCRIT=G4* (CL+CR)-DU
C check for generation of vacuum
IF(DUCRIT.LE.0.0) THEN
C vacuum is generated by given data
WRITE(6,*) ’VACUUM IS GENERATED BY GIVEN DATA’
STOP
ENDIF
C guess value is computed
CALL STARTE(P,DL,UL,PL,CL,DR,UR,PR,CR)
PO=P
DO 0001 K=1,NRITER
CALL PREFUN(FL,FLD,P,DL,PL,CL)
CALL PREFUN(FR,FRD,P,DR,PR,CR)
P = P -(FL+FR+DU)/(FLD+FRD)
CHA = 2.0*ABS((P-P0)/(P+P0))
IF(CHA.LE.TOL)GOTO 0002
IF(P.LT.0.0)P=TOL
PO=P
0001 CONTINUE
WRITE(6,*) ’DIVERGENCE IN NEWTON-RAPHSON SCHEME’
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0002 CONTINUE
C compute U
U = 0.5%(UL+UR+FR-FL)

RETURN
END
Coksk sk ok s ok ok ok sk ok o ok ok ok sk sk o ok ok ok ok sk o ok ok ok K 3 ok ok ok K 3 ok ok sk ok o ok ok sk sk o ok ok ok ok ok ok ok
C choose initial P for iteration
C Reference: E.Toro "Rieman Solvers and
C Numerical methods for Fluid Dynamics"

Cokokokskksk ok sk sk ok sk ok sk sk ok ok ok sk sk sk ok sk ok sk sk sk ok sk sk ok ok ok sk s ok ok ok sk sk ok ok sk sk ok ok
SUBROUTINE STARTE(P,DL,UL,PL,CL,DR,UR,PR,CR)

C hybrid starter using PVRS, TRRS and TSRS
COMMON /GAMMAS/ GAMMA,G1,G2,G3,G4,G5,G6,G7,G8,G9
DATA TOL,QMAX/1.0E-10,2.0/

C compute guess value from PVRS riemann solver

PV = 0.5%(PL+PR)-0.125*% (UR-UL) * (DL+DR) * (CL+CR)
PMIN = AMIN1(PL,PR)
PMAX = AMAX1(PL,PR)
QRAT = PMAX/PMIN
IF(QRAT.LE.QMAX.AND. (PMIN.LE.PV.AND.PV.LE.PMAX)) THEN
C use PVRS solution as guess
P=AMAX1 (TOL,PV)
ELSE
IF(PV.LT.PMIN) THEN
C use two-rarefaction solution
PNU = CL+CR-G7*(UR-UL)
PDE = CL/PL**G1 + CR/PR**G1
P = (PNU/PDE) **G3
ELSE
C two-shock approximation with PV as estimate
GEL = SQRT((G5/DL)/(G6*PL+AMAX1(TOL,PV)))
GER = SQRT((G5/DR)/(G6*PR+AMAX1(TOL,PV)))
P = (GEL*PL+GER*PR-(UR-UL) )/ (GEL+GER)
P = AMAX1(TOL,P)
ENDIF
ENDIF
RETURN
END
Cokesk sk s ok ok ok sk sk o ok ok ok ok ok o ok ok ok ok ok sk 3 ok ok ok K 3 ok ok Kk o ok ok ok ok ok ok ok ok ok ok ok oK
C function for iteration

Cokokk ok ks ks ok ko sk sk sk ok ok ok e sk sk sk ko ko sk sk sk sk sk sk sk ko ok ok ok
SUBROUTINE PREFUN(F,FD,P,DK,PK,CK)

C pressure functions are evaluated
COMMON /GAMMAS/ GAMMA,G1,G2,G3,G4,G5,G6,G7,G8,G9
IF(P.LE.PK) THEN

C rarefaction wave
PRAT = P/PK
F = G4*CK* (PRAT#*G1 -1.0)
FD = (1.0/(DK*CK))*PRAT**(-G2)
ELSE
C shock wave
AK = G5/DK
BK = G6%PK
QRT = SQRT(AK/ (BK+P))
F = (P-PK)*QRT
FD = (1.0 - 0.5%(P-PK)/(BK+P))*QRT
ENDIF
RETURN
END

(C ok sk sk sk sk ok s o ok sk sk ok sk o o ok sk ok ok ok o sk sk ok sk o o ok sk sk sk ok sk o ok ok ok ok sk ok o o ok ok ok ok ok ok o ok sk sk ok ok sk ok
Gk kK ok ok ok ok o K KoK ok ok o o KoK oK oK ok o oK K oK oK ok o o K K KoK oK ok ok o 3 3 K oK oK oK oK o o o K oK oK ok ok ok o o K KoK ok ok ok ok
SUBROUTINE QK15(F,A,B,RESULT,ABSERR,RESABS,RESASC)

C**xBEGIN PROLOGUE QK15
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C++xDATE WRITTEN 800101 (YYMMDD)

C+*xREVISION DATE 870530 (YYMMDD)

CxxxCATEGORY NO. H2A1A2

Cxx*xKEYWORDS 15-POINT GAUSS-KRONROD RULES
C+*xxAUTHOR PIESSENS, ROBERT, AND DE DONCKER, ELISE,

C APPLIED MATH. AND PROGR. DIV. - K. U. LEUVEN

Cx*xPURPOSE To compute I = Integral of F over (A,B), with error estimate
C and J = integral of ABS(F) over (4,B)

C*x*xDESCRIPTION

From the book "Numerical Methods and Software"
by D. Kahaner, C. Moler, S. Nash
Prentice Hall 1988

Real version

PARAMETERS ON ENTRY
F - Real
Function subprogram defining the integrand
FUNCTION F(X). The actual name for F needs to be
Declared E X T ER N A L in the calling program.

A - Real: Lower limit of integration
B - Real: Upper limit of integration
PARAMETERS ON RETURN
RESULT - Real: Approximation to the integral I
Result is computed by applying the 15-POINT

KRONROD RULE (RESK) obtained by optimal addition
of abscissae to the7-POINT GAUSS RULE(RESG).

ABSERR - Real: Estimate of the modulus of the absolute error,
which should not exceed ABS(I-RESULT)

RESABS - Real: Approximation to the integral J

RESASC - Real: Approximation to the integral of ABS(F-I/(B-A4))

Qoo

over (A,B)
C*x*REFERENCES PIESSENS R. ET. AL., "QUADPACK: A SUBROUTINE PACKAGE FOR
C AUTOMATIC INTEGRATION" SPRINGER, BERLIN 1983.

C**xROUTINES CALLED RI1MACH
CxxxEND PROLOGUE QK15
C

REAL A,ABSC,ABSERR,B,CENTR,DHLGTH,EPMACH,F,FC,FSUM,FVAL1,FVAL2,

1 FV1,FV2,HLGTH,RESABS,RESASC,RESG,RESK,RESKH,RESULT ,UFLOW,

2 WG,WGK,XGK

INTEGER J,JTW,JTWM1

EXTERNAL F

DIMENSION FV1(7),FV2(7),WG(4),WGK(8) ,XGK(8)
THE ABSCISSAE AND WEIGHTS ARE GIVEN FOR THE INTERVAL (-1,1).

BECAUSE OF SYMMETRY ONLY THE POSITIVE ABSCISSAE AND THEIR
CORRESPONDING WEIGHTS ARE GIVEN.

XGK - ABSCISSAE OF THE 15-POINT KRONROD RULE
XGK(2), XGK(4), ... ABSCISSAE OF THE 7-POINT
GAUSS RULE
XGK(1), XGK(3), ... ABSCISSAE WHICH ARE OPTIMALLY

ADDED TO THE 7-POINT GAUSS RULE

Qoo Q

WGK - WEIGHTS OF THE 15-POINT KRONROD RULE



184 Appendix B Computer Code for 1-D Flow in the Unified Coordinate

WG - WEIGHTS OF THE 7-POINT GAUSS RULE

QaQ

DATA XGK(1),XGK(2),XGK(3),XGK(4) ,XGK(5) ,XGK(6) ,XGK(7) ,XGK(8)/
0.9914553711208126D+00, 0.9491079123427585D+00,
0.8648644233597691D+00, 0.7415311855993944D+00,
0.5860872354676911D+00, 0.4058451513773972D+00,
0.2077849550078985D+00, 0.0D+00 /

DATA WGK(1) ,WGK(2) ,WGK(3) ,WGK(4) ,WGK(5) ,WGK(6) ,WGK(7) ,WGK(8)/
0.2293532201052922D-01, 0.6309209262997855D-01,
0.1047900103222502D+00, 0.1406532597155259D+00,
0.1690047266392679D+00, 0.1903505780647854D+00,
0.2044329400752989D+00, 0.2094821410847278D+00/

0
0

S wWN -

S wWN -

DATA WG(1),WG(2),WG(3),WG(4)/
0.1294849661688697D+00,
0.3818300505051189D+00,

.2797053914892767D+00,
.4179591836734694D+00/

N =

LIST OF MAJOR VARIABLES

CENTR - MID POINT OF THE INTERVAL
HLGTH - HALF-LENGTH OF THE INTERVAL

ABSC - ABSCISSA

FVAL* - FUNCTION VALUE

RESG - RESULT OF THE 7-POINT GAUSS FORMULA
RESK - RESULT OF THE 15-POINT KRONROD FORMULA

RESKH - APPROXIMATION TO THE MEAN VALUE OF F OVER (A,B),
I.E. TO I/(B-A)

MACHINE DEPENDENT CONSTANTS

EPMACH IS THE LARGEST RELATIVE SPACING.
UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.

*x*xFIRST EXECUTABLE STATEMENT QK15
EPMACH = R1MACH(4)
UFLOW = RIMACH(1)

oQooQQaaaaaoaoaoaaa

EPMACH = 0.6D-07

UFLOW = 0.12D-37
CENTR = 0.5E+00%(A+B)
HLGTH = 0.5E+00%(B-A)

DHLGTH = ABS(HLGTH)

C
C COMPUTE THE 15-POINT KRONROD APPROXIMATION TO
C THE INTEGRAL, AND ESTIMATE THE ABSOLUTE ERROR.
C

FC = F(CENTR)

RESG = FC*WG(4)

RESK = FC*WGK(8)

RESABS = ABS(RESK)

DO 10 J=1,3

JTW = J*2

ABSC = HLGTH*XGK(JTW)
FVAL1 = F(CENTR-ABSC)
FVAL2 = F(CENTR+ABSC)
FV1(JTW) = FVAL1
FV2(JTW) = FVAL2
FSUM = FVAL1+FVAL2
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RESG = RESG+WG(J)*FSUM
RESK = RESK+WGK (JTW) *FSUM
RESABS = RESABS+WGK (JTW)* (ABS (FVAL1)+ABS(FVAL2))
10 CONTINUE
DO 156 J = 1,4
JTWM1 = J*2-1

ABSC = HLGTH*XGK(JTWM1)
FVAL1 = F(CENTR-ABSC)
FVAL2 = F(CENTR+ABSC)
FV1(JTWM1) = FVAL1
FV2(JTWM1) = FVAL2
FSUM = FVAL1+FVAL2
RESK = RESK+WGK (JTWM1) *FSUM
RESABS = RESABS+WGK(JTWM1)* (ABS(FVAL1)+ABS(FVAL2))
15 CONTINUE
RESKH = RESK*0.5E+00
RESASC = WGK(8)*ABS (FC-RESKH)
DO 20 J=1,7
RESASC = RESASC+WGK (J)* (ABS(FV1(J)-RESKH)+ABS (FV2(J)-RESKH))
20 CONTINUE

RESULT = RESK+HLGTH

RESABS = RESABS*DHLGTH

RESASC = RESASC*DHLGTH

ABSERR = ABS((RESK-RESG)*HLGTH)

IF (RESASC.NE.O.0E+00.AND.ABSERR.NE.O.0E+00)

1 ABSERR = RESASC*AMIN1(0.1E+01,
2 (0.2E+03*ABSERR/RESASC) **1.5E+00)

IF (RESABS.GT.UFLOW/ (0.5E+02*EPMACH) ) ABSERR = AMAX1
1 ((EPMACH*0.5E+02)*RESABS, ABSERR)

RETURN

END

C*************************************************
C Functions for finding pressure
c inside left and right expansion fan
(C 3k 3k >k 3k 3k 5k 3k 5k 3k >k 3k >k 3k >k 3k 3k >k 3k 5k 3k >k 3k >k 3k >k 5k 3k 5k 3K >k 5k >k >k 3k >k 3K >k >k 3k >k 3k %k >k %k >k 3k % 5k %
REAL FUNCTION FUNCL(X)
COMMON /GAMMAS/ GAMMA,G1,G2,G3,G4,G5,G6,G7,G8,G9
COMMON /TSTATES/ DL,UL,PL,DR,UR,PR,CUL,CUR,H
REAL X
CL=SQRT (GAMMA*PL/DL)
AL=(1.0-H)*(UL+2.0*CL/G9)
AL=AL*SQRT (GAMMA*DL/ (PL**G8) )
BL=G3* (1.0-H)+GAMMA
FUNCL = H/(AL*X**G2-BL*X)
RETURN
END
C*****************************************************
REAL FUNCTION FUNCR(X)
COMMON /GAMMAS/ GAMMA,G1,G2,G3,G4,G5,G6,G7,G8,G9
COMMON /TSTATES/ DL,UL,PL,DR,UR,PR,CUL,CUR,H
REAL X
CR=SQRT (GAMMA*PR/DR)
AR=(1.0-H) *(UR-2.0*CR/G9)
AR=AR*SQRT (GAMMA*DR/ (PR**G8) )
BR=G3*(1.0-H)+GAMMA
FUNCR = -H/(AR*X**G2+BR*X)

RETURN

END
Gk ok ok ok ok ok ok ok ok kokokokokokokokokokok okoskokskook sk ok sk ok ok sk ok ok ook ok ok sk ok ok
c function limiter for second-order terms

Cokskokoskokskokokokkokokokokokokokskok kot skokkokkokokokokok ok ok skok sk ok skesk sksk sk sk sk sk sk ok sk ok ok ok ok ok
REAL FUNCTION FMINMOD(X,Y)
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PROD=X*Y
IF (PROD .LE. 0.0) THEN
FMINMOD=0.0
ELSE
AX=ABS (X)
AY=ABS (Y)
IF (AX .LE. AY) THEN
FMINMOD=X
ELSE
FMINMOD=Y
ENDIF
ENDIF
RETURN
END
(C 3k 3k sk ok 3k 5k 3k 5k 3k >k 3k >k 3k >k 5k 3k 5k 3k 5k 3k >k 5k >k 5k 3k 5k 3k 5k 3k >k 5k 3k >k 3k >k 5k >k >k 3k >k 3k 3k >k 3k >k >k 3k >k 3k >k >k %k >k 3k % >k %
C
C*************************************************

C sampling the solution
C This subroutine gives exact solution
C as a function of angle (S)

Ao o o o ok ook ok ok ok ok ok ok ok ok sk ok ok ok K K K
SUBROUTINE SAMPLE(PM,UM,CUML,CUMR,S,P,U,D)

C solution is sampled according to wave patterns
c values in: PM, UM, S
[ values out: P, U, D

COMMON /GAMMAS/ GAMMA,G1,G2,G3,G4,G5,G6,G7,G8,G9
COMMON /TSTATES/ DL,UL,PL,DR,UR,PR,CUL,CUR,H
EXTERNAL FUNCL,FUNCR
CL=SQRT (GAMMA*PL/DL)
CR=SQRT (GAMMA*PR/DR)
(C %k >k 3k 3k >k ok >k ok 5k >k sk ok >k sk 3k >k sk ok ok 5k >k >k 5k ok >k 5k >k sk >k >k 5k >k 3k ok >k 3k ok 3k ok >k 5k >k 5k ok %k 3k >k 5k ok %k 5k >k sk k sk k.
IF(((1.0-H)*UM).GE.0.0) THEN
CUM=CUMR
ELSE
CUM=CUML
ENDIF
C********************************************************
IF(S.LE. ((1.0-H)*UM/CUM)) THEN

C sample point is to the left of the contact
IF(PM.LE.PL) THEN
C left fan

SHL=((1.0-H)*UL-CL) /CUL
IF(S.LE.SHL) THEN
C left data state
D=DL
U=UL
P=PL
ELSE
CML= CLx*(PM/PL) **G1
STL= ((1.0-H)*UM-CML)/CUML
IF(S.GT.STL) THEN
C middle left state
D=DL* (PM/PL) **G8
U=UM
P=PM
ELSE
C an left state (inside fan)
TOL=1.0E-06
NRITER=20
POO=(PM+PL) /2.0
P=P00
DO 0007 K=1,NRITER
CALL FUNL(FFL,FDL,S,P)
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0007
0009

P = P - FFL/FDL
CHA = 2.0*ABS((P-P00)/(P+P00))
IF(CHA.LE.TOL)GOTO 0009
IF(P.LT.0.0)P=TOL
POO=P

CONTINUE

WRITE(6,*) ’DIVERGENCE IN NEWTON-FUN SCHEME’

CONTINUE
A=PL
B=P

CALL QK15(FUNCL,A,B,RESULT,ABSERR,RESABS,RESASC)

CU=CUL*EXP (RESULT)
2.0* (CL+G7*UL+CU*S) /(2.0 (1.0-H)+G9)
DL* (P/PL) **G8

ELSE
left shock
PML PM/PL
SL (1.0-H)*UL/CUL-CL*SQRT (G2*PM/PL+G1) /CUL
IF(S.LE.SL) THEN
left data state

D = DL

U = UL

P = PL
ELSE

middle left state (behind shock)

D = DL*(PML+G6)/(PML*G6+1.0)
UM
PM

U
P
ENDIF
ENDIF
ELSE
right of contact
IF(PM.GT.PR) THEN
right shock
PMR = PM/PR
SR (1.0-H) *UR/CUR+CR*SQRT (G2*PM/PR+G1) /CUR
IF(S.GE.SR) THEN
right data state

D = DR

U = UR

P = PR
ELSE

middle right state (behind shock)

D = DR*(PMR+G6)/(PMR*G6+1.0)
U =1UM
P = PM
ENDIF
ELSE
right fan

SHR=((1.0-H)*UR+CR) /CUR
IF(S.GE.SHR) THEN
right data state
D=DR
U=UR
P=PR
ELSE
CMR= CR*(PM/PR)**G1
STR= ((1.0-H)*UM+CMR)/CUMR
IF(S.LE.STR) THEN
middle right state
D=DR* (PM/PR) **G8

187
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U=UM
P=PM
ELSE
C fan right state (inside fan)

TOL=1.0E-06

NRITER=20

P0OO=(PM+PR) /2.0

P=P00

DO 0006 K=1,NRITER
CALL FUNR(FFR,FDR,S,P)
P = P - FFR/FDR
CHA = 2.0%ABS((P-P00)/(P+P00))
IF(CHA.LE.TOL)GOTO 0008

c print*,"pr,ffr,fdr",P,FFR,FDR
IF(P.LT.0.0)P=TOL
POO=P
0006 CONTINUE
WRITE(6,*) ’DIVERGENCE IN NEWTON-FUN SCHEME’
0008 CONTINUE
A=PR
B=P

CALL QK15(FUNCR,A,B,RESULT, ABSERR,RESABS,RESASC)
CU=CUR*EXP (RESULT)
U = 2.0%(-CR+G7*UR+CU%*S)/(2.0*(1-H)+G9)
D = DR*(P/PR)**G8
ENDIF
ENDIF
ENDIF
ENDIF
RETURN
END
(C 3k 3k >k 5k 3k 5k 3k 5k 3k 5k 3k >k 3k >k 3k 3k 5k 3k >k 3k >k 3k >k 3k >k 5k 3k 5k 3K >k 3k >k >k 3k >k 3K >k >k 3k >k 3k %k >k %k >k 3k %k 5k
C solution inside the fan
C*************************************************
SUBROUTINE FUNR(FFR,FDR,S,P)
COMMON /GAMMAS/ GAMMA,G1,G2,G3,G4,G5,G6,G7,G8,G9
COMMON /TSTATES/ DL,UL,PL,DR,UR,PR,CUL,CUR,H
EXTERNAL FUNCR
CL=SQRT (GAMMA*PL/DL)
CR=SQRT (GAMMA*PR/DR)
AA=(2.0%(1.0-H)+G9) / (PR**G1)
BB=G9* (1.0-H)*UR/CR-2.0%(1.0-H)
CC=G9*CUR*S/CR
A=PR
B=P
CALL QK15(FUNCR,A,B,RESULT, ABSERR,RESABS,RESASC)
FFR=AAx* (P**G1) +BB-CC*EXP (RESULT)
FDR=G1*AA* (P** (-G2) ) -CC*EXP (RESULT) *FUNCR.(P)
RETURN
END
C******************************************************
SUBROUTINE FUNL(FFL,FDL,S,P)
COMMON /GAMMAS/ GAMMA,G1,G2,G3,G4,G5,G6,G7,G8,G9
COMMON /TSTATES/ DL,UL,PL,DR,UR,PR,CUL,CUR,H
EXTERNAL FUNCL
CL=SQRT (GAMMA*PL/DL)
CR=SQRT (GAMMA*PR/DR)
AA=(2.0%(1.0-H)+G9) / (PL**G1)
BB=G9* (1.0-H) *UL/CL+2.0%(1.0-H)
CC=G9*CUL*S/CL
A=PL
B=P
CALL QK15(FUNCL,A,B,RESULT, ABSERR,RESABS,RESASC)
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FFL=AAx* (P**G1) -BB+CC*EXP (RESULT)

FDL=G1*AA* (P** (-G2) ) +CC*EXP (RESULT) *FUNCL (P)
RETURN
END

C*********************************************
C initila data for the Riemann problem
(C 3k 3k >k 5k 3k 5k 3k 5k 3k >k 3k >k 3k >k 5k 3k >k 3k >k 3k >k 5k >k 5k 3k >k 3k >k 5k >k 5k 3k >k 3k >k 5k %k >k 3k %k 5k 3k >k 3k K
SUBROUTINE INICON1
PARAMETER (MD=1500)
DIMENSION D(0:MD),U(0:MD),P(0:MD),C(0:MD),CU(0:MD)
DIMENSION E1(0:MD),E2(0:MD),E3(0:MD),E4(0:MD)
DIMENSION F1(0:MD),F2(0:MD),F3(0:MD),F4(0:MD)
DIMENSION FF1(0:MD),FF2(0:MD),FF3(0:MD),FF4(0:MD)
DIMENSION XX(0:MD), SPEED1(0:MD), SPEED2(0:MD)
COMMON /ARRAYS/ D,U,P,C,CU,E1,E2,E3,E4,F1,F2,F3,F4
COMMON /ARRAYS/ FF1,FF2,FF3,FF4,XX
COMMON /GAMMAS/ GAMMA,G1,G2,G3,G4,G5,G6,G7,G8,G9
COMMON /SCALARS/ M,DX,DT,DOMLEN
COMMON /STATES/ DLB,ULB,PLB,CLB,DRB,URB,PRB
COMMON /STATES/ CRB,CULB,CURB
COMMON /MSTATES/ DMB,UMB,PMB,CUMB
COMMON /TSTATES/DL,UL,PL,DR,UR,PR,CUL,CUR,H
(C 3k 3k 3k 5k 3k 5k 3k 5k 3k >k 3k >k 3k >k 5k 3k >k 3k >k 3k >k 3k >k 5k >k 5k 3k 5k 3k >k 5k >k >k 3k >k 3k >k >k 3k >k 3k >k >k 3k >k 5k %k >k %k >k 3k %k 5k
C INITIALISATION OF PHYSICAL VARIABLES
C*****************************************************
XX(0) = 0.0
DO 0001 I=1,M
XX(I) = I*DX
X = IxDX
IF(X.LE. (DOMLEN/2.0)) THEN
D(I) = DLB
U(I) = ULB
P(I) = PLB
C(I) = SQRT(GAMMA*PLB/DLB)
CU(I)= CULB
ELSE
D(I)
u(I)
P(I)
c(D)
Cu(I)
ENDIF
C*****************************************************
C INITIALISATION OF CONSERVATIVE VARIABLES
(C 3k 3k >k 5k 3k 5k 3k 5k 3k >k 3k >k 3k >k 5k 3k 5k 3k >k 3k >k 3k >k 3k >k 5k 3k 5k 3k >k 5k >k >k 3k >k 3k >k >k 3k >k 3k >k >k 3k >k 5k %k >k %k >k 3k %k 5k
E1(I) = D(I)*CU(I)
E2(I) = E1(I)*U(I)
E3(I) = E1(I)*(U(I)*U(I)/2.0+P(I)/(G9*D(I)))
E4(I) = CU(I)
0001  CONTINUE
RETURN
END

DRB
URB
PRB
SQRT (GAMMA*PRB/DRB)
CURB
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