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Preface

Computational fluid dynamics (CFD) uses large scale numerical computation to

solve problems of fluid flow. It has been known since its onset that the numerical so-

lution to a given flow depends on the relation between the flow and the coordinates

(mesh) used to compute it. Each of the two well-known coordinate systems for

describing fluid flow—Eulerian and Lagrangian—has advantages as well as draw-

backs. Eulerian method is relatively simple, but its drawbacks are: it smears

contact discontinuities badly; it needs generating a body-fitted mesh prior to

computing flow past a body. Lagrangian method, by contrast, resolves contact

discontinuities (including material interfaces and free surfaces) sharply, but it also

has drawbacks: the gas dynamics equations could not be written in conserva-

tion partial differential equations (PDE) form, rendering numerical computation

complicated; it breaks down due to cell deformation.

A fundamental issue in CFD is, therefore, the role of coordinates and, in par-

ticular, the search for “optimal” coordinates. It is in the long search for an optimal

coordinate system that a unified coordinate (UC) system was developed by the first

author and his collaborators over the last decade. While the search for an opti-

mal coordinate system in CFD would undoubtedly continue, the unified coordinate

system developed so far is found to combine the advantages of both Eulerian and

Lagrangian system, while avoiding their drawbacks. Indeed, it goes beyond these.

For instance, the UC system provides a foundation for automatic mesh generation

by the flow being computed.

This monograph first reviews the relative advantages and drawbacks of Eulerian

and Lagrangian coordinates as well as the Arbitrary-Lagrangian-Eulerian (ALE)

and various moving mesh methods in CFD for one- and multi-dimensional flow.

It then systematically introduces the unified coordinate approach to CFD, illus-

trated with numerous examples and comparisons to clarify its relation with existing

approaches.

The content of this monograph is based on a graduate course taught by the first
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author from 2000 to 2007 at the Hong Kong University of Science and Technology,

Academia Sinica in Taiwan, Hong Kong Polytechnic University and Hong Kong

Baptist University, and by the second author since 2009. We thank Prof. T.

Tang for his comments on the first draft of the book. We also acknowledge the

permission of Communication in Computational Physics (CiCP) for allowing us to

use the material presented in a review paper .

Many scientists have made substantial contributions in the course of develop-

ment of the UC approach to CFD. Here is a partial list: Chien-Cheng Chang, De-

Lin Chu, Bo Gao, Yuan-Ping He, Jeu-Jiun Hu, Changqiu Jin, Sergei Kudriakov,

Chih-Yu Kuo, Claude Lepage, Zuo-Wu Li, Ping-Yiu Li, Meng-Sing Liou, Ching

Yuen Loh, Yang-Yao Niu, Keh-Ming Shyue, Ronald Ming Cho So, Yih-Chin Tai,

Henry Van Roessel, Zi-Niu Wu, Jaw-Yen Yang, Gui-Ping Zhao, Yanchun Zhao.

Without their valuable contributions, the UC approach to CFD could not have

reached its current state of maturity. We also thank our secretary Odissa Wong

for her help for many years in editing and preparing the figures. We give special

thanks to our wives, Kwok Lan Hui and Jie Shen, for their strong support to us in

writing this monograph.

The publication of the current monograph gets financial support from China

Science and Technology Publication Fund, and National Natural Science Founda-

tion of China through Project No.10928205.

Wai-How Hui
Kun Xu

Hong Kong University of Science and Technology

December 1, 2011
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Chapter 1

Introduction

1.1 CFD as Numerical Solution to Nonlinear Hyperbolic

PDEs

The great majority of research work in CFD, especially those in the first several

decades, treats it as numerical solution to nonlinear hyperbolic partial differential

equations (PDEs). For a good summary, see Hirsch[1]. Most part of this monograph

also treats CFD as numerical solution to nonlinear hyperbolic PDEs. But it is

concerned mainly about the role of coordinates in CFD and, in particular, will

base all CFD study on the newly discovered unified coordinates. To put it in

perspective we shall first give an overview of the major developments of CFD as

numerical solution to the initial value problem of nonlinear hyperbolic PDEs as

follows.

The theoretical foundation for nonlinear hyperbolic PDEs was laid by Riemann

in his pioneering work[2] where he introduced the concept of Riemann invariants

and posed the special initial value problem—since has been known as the Riemann

problem. It turns out that the Riemann problem plays a central role in most

numerical methods in CFD.

Nothing very significant happened during the following six decades until Richard-

son proposed weather prediction by numerical process (Lewis Fry Richardson, Cam-

bridge University Press, 1922). Even without an electronic computer, wanting to

find numerical solutions to nonlinear hyperbolic PDEs immediately raises many in-

teresting theoretical and practical questions, and progresses are made in answering

them.

(1) The first of these is the discovery of the CFL condition[3]. It simply says

that in a time-marching process to find a numerical solution, marching too fast

causes numerical instability and destroys the solution.
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(2) Practical methods for computing solutions with shock discontinuities are

developed: the artificial viscosity method of von Neumann and Richtmyer which

smears shock discontinuities[4]; the Godunov method which reduces the general

initial value problem to a sequence of Riemann problems with cell-averaging data[5];

the Glimm random choice method which also reduces the general initial value

problem to a sequence of Riemann problems but with data of randomly chosen

representative states[6, 7]; and the shock-fitting (front tracking) method[8]. The

last two methods are not easily extended to the three-dimensional flow.

(3) A very important discovery was made by Lax and Wendroff[9] that in order

to numerically capture shock discontinuities correctly, the governing PDE should

be written in conservation form to begin with. This is easily done in Eulerian

coordinates (in any dimensions) and also for one-dimensional flow in Lagrangian

coordinates. But for a long time, it was not known how to use Lagrangian coordi-

nates to write the governing PDEs for multidimensional flows in conservation form.

This problem was solved by Hui et al.[10].

(4) To extend Godunov’s method to higher order accuracy, the important con-

cepts of limiters and TVD were introduced which avoid non-physical oscillations

in high resolution schemes[11, 12].

(5) From the onset of CFD, it was known that the numerical solution to a given

flow depends on the coordinates (mesh) used to compute it; hence great efforts

have been devoted to search for the optimum coordinate system: the Particle-

in-Cell method[13]; the Arbitrary-Lagrangian-Eulerian method[14]; various moving

mesh methods[15]; and the unified coordinate method[10].

(6) Finally, to compute a flow past a body, which is the central problem in

fluid dynamics, it is necessary to construct a body-fitted mesh prior to computing

the flow. Even after decades of research, mesh-generation remains tedious and

time-consuming. The unified coordinate approach to CFD has opened up a way of

automatic mesh-generation[16].

1.2 Role of Coordinates in CFD

1.2.1 Theoretical Issues

For more than 200 years, two famous coordinate systems have existed for describing

fluid flow: Eulerian system is fixed in space, whereas Lagrangian system follows
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the fluid. An immediate question arises:

“Are these two coordinate systems equivalent to each other theoretically?”

This question must have been asked by numerous researchers in fluid dynamics

(FD), and the answer presumably was positive. Surprisingly, the first mathematical

proof of equivalency, meaning the existence of a one-to-one map between the two

sets of weak solutions obtained by using the two systems, was given as late as 1987

by Wagner[17] and holds only for one-dimensional flow . For 2-D and 3-D flows,

Hui et al.[10, 18] showed that they are not equivalent to each other theoretically

(see Section 8.3).

Although Lagrangian and Eulerian approaches to FD are each self-contained

and general, prior to the advent of computer most text books [19−22] are written

in Eulerian coordinates, with the exception of [23], which is devoted solely to

Lagrangian approach. There are at least two reasons for this historical bias.

Firstly, steady flow is the most important class of flow in application of FD,

and Eulerian coordinate system has a clear advantage in describing it: the time

variable drops out, reducing the number of independent variables from 4 to 3.

This greatly simplifies the mathematics of the governing equations. By contrast,

the time variable in Lagrangian coordinates is essential and cannot disappear, so

apparently we still need 4 independent variables for three-dimensional flow even

when the flow is steady. Of course, one might argue that among the 4 apparent

independent variables, there must be a relation expressing the steadiness of the flow.

Indeed, such a relation does exist, see Eq.(20) in [24], but it is solution-dependent;

hence without knowing the flow solution it is difficult to use the relation to reduce

the number of independent variables from 4 to 3. On the other hand, when the

flow solution is known there is no need to use that relation. This is the dilemma of

Lagrangian approach for steady flow: the governing equations of FD in Lagrangian

coordinates do not simplify as Eulerian coordinates do, and steady flow has to be

obtained by solving the unsteady flow equations. This dilemma was resolved in

[25−27] when the Lagrangian time variable was introduced which played the dual

role as time and as a Lagrangian label (see also the variable λ in (9.4) when h = 1).

Secondly, in the problem of flow past a body, which is the central problem

In the presence of a vacuum, the definition of weak solution for the Lagrangian equations

must be strengthened to admit test functions which are discontinuous at the vacuum.
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in FD, very often one is interested only in the flow quantities on the body sur-

face, e.g., pressure, temperature, velocity and shear stresses on the airfoil surface.

Eulerian approach naturally and easily produces these quantities. By contrast, in

Lagrangian approach, we need to calculate the motion histories of all fluid particles

and then trace them back to find the flow quantities on the body surface. This is

quite cumbersome.

With the advent of computer and the birth of computational fluid dynamics, the

advantages and drawbacks of Eulerian and Lagrangian approach need be critically

re-examined from the computational point of view.

1.2.2 Computational Issues

Computationally, Eulerian and Lagrangian systems are not equivalent even for 1-D

flow. Indeed, it has been known since the onset of CFD that the numerical solution

to a given flow depends on the relation between the flow and the coordinates used

to compute it. For 1-D flow, we shall show in Chapter 4 that Lagrangian system

is superior to the Eulerian and, in turn, the UC (i.e., the generalized Lagrangian

plus shock-adaptive Godunov scheme) is superior to both the Lagrangian and the

Eulerian, and is completely satisfactory.

The situation for 2-D and 3-D flow is more complicated. Each of the two well-

known coordinate systems for describing fluid flow has advantages as well as draw-

backs. Eulerian method is relatively simple, but its drawbacks are: it smears

contact discontinuities badly; it needs generating a body-fitted mesh prior to

computing flow past a body. Lagrangian method, by contrast, resolves contact

discontinuities (including material interfaces and free surfaces) sharply, but it also

has drawbacks: the gas dynamics equations could not be written in conserva-

tion partial differential equations (PDE) form, rendering numerical computation

complicated; it breaks down due to cell deformation.

A fundamental issue in CFD is, therefore, the role of coordinates and, in par-

ticular, the search for “optimal” coordinates. The search for optimal coordinates

has led to the development of the unified coordinate (UC) system[28], in a series

papers beginning with [25−27]. See also [29−33]. This monograph first reviews the

relative advantages and drawbacks of Eulerian and Lagrangian coordinates in CFD

for 1-D and multi-dimensional flow, and then systematically discusses the unified
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coordinate system and its applications.

For 1-D flow, UC uses a material coordinate and also applies the shock-adaptive

Godunov scheme [34−36] instead of the classical Godunov scheme[5]. For 2-D flow,

it uses one material coordinate, with the other coordinate determined so as to

preserve mesh othorgonality (or preserve the Jacobian), whereas for 3-D flow, it

uses two material coordinates, with the third one determined so as to preserve

mesh skewness (or preserve the Jacobian). The unified coordinate system may be

regarded as a generalization of Lagrangian system. It combines the advantages of

both Eulerian and Lagrangian system while avoiding their drawbacks. The UC

formulation also provides a foundation for automatic mesh-generation by the flow

being computed. It may also be regarded as a moving mesh method in that the

mesh can move in any manner, while the effects of its movement on the flow are

fully accounted for.

1.3 Outline of the Book

This book is arranged as follows: Derivation of the equations of physical conser-

vation laws are given in Chapter 2. Chapter 3 reviews shock-capturing methods

for 1-D flow based on Eulerian coordinates, pointing out their defects. Although

most of the materials in Chapters 2 and 3 can be found in existing texts, e.g.,

Ref. [1, 37−39], they are included here to give a smooth introduction to the main

theme of this monograph and also to make it self-contained. Chapter 4 introduces

UC method for 1-D flow and shows how all defects of Eulerian and Lagrangian

computation are cured or avoided by UC. Chapter 5 comments on the difficul-

ties encountered in current computational methods for the general case of multi-

dimensional unsteady flow. Chapter 6 gives the unified coordinates formulation

of CFD for multi-dimensional unsteady flow, whose mathematical properties are

studied in Chapter 7. Chapter 8 is devoted to the very important special case of

Lagrangian gas dynamics. Chapter 9 uses UC to study the simpler problem of

steady 2-D supersonic flow, showing that it can be solved essentially as 1-D un-

steady flow. 3-D steady supersonic flow is also discussed. Chapter 10 discusses the

general case of unsteady flow computation using UC, illustrated with typical ex-

amples and comparisons with existing methods. Chapter 11 discusses viscous flow

computation. Chapter 12 is devoted to the applications of the unified coordinates
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to kinetic theory. Finally, a summary of the book is given in Chapter 13.
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Chapter 2

Derivation of Conservation Law

Equations

All fluid motions, no matter how complex, are governed by the conservation laws

of physics, namely, conservation of mass, momentum and energy. This chapter is

devoted to the derivation of these conservation law equations and discussing their

mathematical properties.

2.1 Fluid as a Continuum

Fluids, like all matter, are made up of molecules. The properties of a fluid in

motion may be studied on the basis of the mechanics of the molecules composing

the fluid. Although such a procedure may appear feasible in principle, it will

indeed be a formidable task to achieve solutions to practical problems. Apart from

this consideration, we are generally not interested in the details of motion of the

molecules. What we intend to do in fluid dynamics is to establish relations between

various macroscopically observable properties, e.g., pressure, density and velocity,

pertaining to a fluid in motion. These macroscopically observable quantities are the

mean values, in space and time, obtained by taking the average over a sufficiently

long time compared to the time scale related to the motion of the molecules. For

example, the mass density ρ in a small volume Ω0 is taken as

ρ = lim
Ω→Ω0

number of molecules × mass of molecules in Ω
Ω

, (2.1)

where Ω0 is macroscopically small so that the value of ρ as defined in (2.1) represents

how dense the mass is locally, but is microscopically large so that it represents

a mean density free of molecular fluctuations. Such a definition is possible as,

for instance, at normal pressure and temperature, a volume of (10−4cm)3 of air

contains 2.7× 107 of molecules. This being the case, it is a reasonable assumption
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to regard a fluid as a continuous medium or a continuum. With such a picture of

the fluid in mind, we call an infinitesimal fluid element a fluid particle, which in

fact contains millions of molecules.

The continuum hypothesis breaks down in some extreme situations, e.g., space

flight at high altitude where the air is rarefied. In this situation, we invoke the

kinetic theory instead (see Chapter 12).

2.2 Derivation of Conservation Law Equations in Fixed

Coordinates

Let’s consider a control volume Ω of fluid which is fixed in space (Figure 2.1).

Figure 2.1 Control volume showing notation

(1) Conservation of mass. For conservation of mass, we have

rate of increase of mass in Ω=mass influx through ∂Ω per unit time.

Mathematically,
d
dt

∫
Ω

ρdΩ = −
∫

∂Ω

ρq · ndS. (2.2)

Here t is time, ρ and q are the density and velocity of the fluid, and the right hand

side is the inward mass flux across the surface of Ω per unit time .

(2) Conservation of momentum. In a similar fashion, the equation for the rate

of increase of momentum in Ω is

d
dt

∫
Ω

ρqdΩ = −
∫

∂Ω

qρq · ndS +
∫

∂Ω

τdS +
∫
Ω

ρF dΩ , (2.3)

When chemical reaction takes place, the conservation of mass must be applied to each

species separately.
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where the left hand side is the rate of increase of momentum inside Ω , while on

the right hand side, the first term is the rate of inward flux of momentum carried

across ∂Ω by the flow, the second term is the total surface force produced by the

stress τ on ∂Ω , and the third term is the total body force on Ω , where F denotes

the body force per unit mass, e.g., the gravitation force.

(3) Conservation of energy. For the conservation of energy, we have

rate of increase of energy in Ω

= influx of energy per unit time through ∂Ω

+work done by (surface and body) forces per unit time

+heat transfer due to thermal conduction per unit time.

Here we neglect the heat transfer due to radiation, as it is very small in most cases,

except when the temperature is extremely high.

Now the total energy per unit mass is equal to q ·q/2+ i, where i is the specific

internal energy per unit mass. Mathematically, we have

d
dt

∫
Ω

(
1
2
q · q + i

)
ρdΩ =−

∫
∂Ω

(
1
2
q · q + i

)
ρq · ndS

+
∫
Ω

ρF · qdΩ +
∫

∂Ω

τ · qdS −
∫

∂Ω

κ · ndS, (2.4)

where κ is the heat flux per unit area per unit time.

With the body force F given—and from now on the body force will be assumed

negligible—this system of five equations (2.2)∼(2.4) (the vector equation (2.3) is

equivalent to three scalar equations) contains more than 5 unknowns, namely ρ, q,

τ , κ and i. Hence the system is not closed.

We consider two flow models.

(1) Inviscid flow. For a fluid in hydrostatic equilibrium in the absence of body

force, it is known that

(i) the stress on any surface element is normal to the surface and independent

of its orientation. Hence

τ = −pn, (2.5)

where p > 0 is the scalar pressure.

(ii) The heat conduction

κ = 0. (2.6)
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(iii) The internal energy is a function of the pressure and density,

i = i(p, ρ). (2.7)

The form of this function is established by experiment and various thermodynamic

arguments.

When the gas is non-uniform or in motion, none of these is strictly true. How-

ever, provided that time and space derivatives are not too large, they are still good

approximations for many purposes. With these as assumptions, the basic conser-

vation equations become a closed set for the five flow quantities ρ, p and three

components of velocity q. They are, when written in integral form,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d
dt

∫
Ω

ρdΩ = −
∫

∂Ω

ρq · ndS,

d
dt

∫
Ω

ρqjdΩ = −
∫

∂Ω

[ρqjq + pj] · ndS, j = 1, 2, 3,

d
dt

∫
Ω

ρ

(
1
2
q · q + i

)
dΩ = −

∫
∂Ω

[
ρ

(
1
2
q · q + i

)
q + pq

]
· ndS,

(2.8)

where the vector j is the unit vector in the xj(j = 1, 2, 3) direction. The five

equations in (2.8) are called inviscid flow equations, and the flows they describe

are called inviscid flows.

(2) Viscous flow. In the general case, we have

(i) Fourier law for heat-conduction:

κ = −k∇T, (2.9)

where k > 0 is the coefficient of thermo-conductivity of the fluid, and T denotes

the temperature.

(ii) Cauchy formula for stress components

τi(n) = τjinj, i, j = 1, 2, 3. (2.10)

(iii) Symmetry of stress tensor:

τij = τji. (2.11)

(iv) For Newtonian fluid,

τij = −pδij + μ

[(
∂qi

∂xj
+

∂qj

∂xi

)
− 2

3
δij

∂qk

∂xk

]
, (2.12)
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where δij is the Kronecker delta and μ is the coefficient of viscosity of the fluid.

Details of derivation of (i)∼(iv) can be found in most texts on fluid mechanics, e.g.,

[1] and [2].

Using (2.9) ∼ (2.12), we rewrite the conservation laws equations (2.2)∼(2.4) in

their integral forms as follow:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d
dt

∫
Ω

ρdΩ +
∫

∂Ω

ρqjnjdS = 0,

d
dt

∫
Ω

ρqidΩ +
∫

∂Ω

(ρqiqj − τij)njdS = 0, i = 1, 2, 3,

d
dt

∫
Ω

ρ
(qkqk

2
+ i
)

dΩ +
∫

∂Ω

[
ρ
(qkqk

2
+ i
)

qj − k
∂T

∂xj
− τijqi

]
njdS = 0,

(2.13)

where Einstein’s summation convention is used over the range of j, k = 1, 2, 3. The

five equations in (2.13) are the viscous flow equations for Newtonian fluid.

Remark (1) With the equation of state of the fluid p = ρRT appended, where

R is the gas constant and i = i(p, ρ) is the specific internal energy, the system of

equations (2.13) forms a closed system for the five unknowns ρ, p, qi(i = 1, 2, 3).

(2) Inviscid flow is a special case of viscous flow when the fluid viscosity and

thermo-conductivity are negligible, i.e., when μ = k = 0.

(3) Inviscid flow may become discontinuous (in space and in time), even if the

initial flow is smooth.

(4) Inviscid flow is reversible, since the inviscid flow equations (2.8) are obviously

invariant under the transformation {
t → −t,

q → −q.
(2.14)

(5) This is not the case for the viscous flow equations (2.13) with μ, k > 0.

Consequently, viscous flow is irreversible.

For most part of the monograph, we shall be concerned mainly with inviscid

flow, which is much simpler than viscous flow. It is generally recognized that

the convective terms in the inviscid flow equations (2.8), i.e., the fluxes across

the surface of the control volume, are the terms that pose the most stringent

requirements on the discretisation techniques, but that the viscous and thermo-

conduction terms in the viscous flow equations (2.13) can be handled relatively

easily using central discretisation. Viscous flow computation will be discussed in

Chapters 11 and 12.



14 Chapter 2 Derivation of Conservation Law Equations

2.3 Conservation Law Equations in Moving Coordinates

If the coordinate system used to describe fluid flow moves itself with velocity Q,

the conservation law equations derived in the previous section need be modified

by replacing the fluid velocity q by its relative velocity (q − Q) in the flux terms.

Accordingly, for example, the inviscid flow equations (2.8) become⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

∫
Ω(Q(t))

ρdΩ = −
∫

∂Ω

ρ(q − Q) · ndS,

d
dt

∫
Ω(Q(t))

ρqjdΩ = −
∫

∂Ω

[ρqj(q − Q) + pj] · ndS

+inertial forces, j = 1, 2, 3,

d
dt

∫
Ω(Q(t))

ρedΩ = −
∫

∂Ω

[ρe(q − Q) + pq] · ndS.

(2.15)

Here e = (1/2)q2 + i(p, ρ) is the specific total energy of the fluid.

In the special case of Lagrangian coordinates, Q = q, and (2.15) simplifies to⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d
dt

∫
Ω(q(t))

ρdΩ = 0,

d
dt

∫
Ω(q(t))

ρqjdΩ = −
∫

∂Ω

pj · ndS + inertial forces, j = 1, 2, 3,

d
dt

∫
Ω(q(t))

ρedΩ = −
∫

∂Ω

pq · ndS.

(2.16)

On the other hand, in the special case of Eulerian coordintes, Q = 0 and hence

Ω is independent of time t, yielding the system (2.8), which may also be written

symbolically as
d
dt

∫
Ω

EdΩ = −
∫

∂Ω

F (E) · ndS, (2.17)

where E = (ρ, ρq, ρe)T.

The issues of computation complications of using conservation law equations

(2.15) for moving coordinates, including (2.16) for Lagrangian coordinates, over

(2.8) for fixed coordinates (also called Eulerian coordinates) will be discussed in

later chapters.

2.4 Integral Equations versus Partial Differential Equations

To illustrate concepts, we use conservation law equations for fixed coordinates. As

shown in Section 2.2, conservation laws of physics lead directly to integral form
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equations (2.13) (including the inviscid flow equations (2.8) as special case), which

thus describe the actual physical phenomena properly; in particular, they admit

piece-wise smooth solution. On the further assumption that the flow is smooth

everywhere, i.e., p, ρ, i and q have continuous first derivatives, these integral equa-

tions can be converted to PDE by noting that for any smooth functions f(x, y, z, t)

and F (x, y, z, t), we have

(1)
d
dt

∫
Ω

f(x, y, z, t)dΩ =
∫
Ω

∂f

∂t
dΩ . (2.18)

(2) ∫
∂Ω

F · ndS =
∫
Ω

∇ · FdΩ (Gauss Divergence Theorem). (2.19)

(3)

If
∫
Ω

f dΩ = 0 for all Ω ⊂ R3 and f is continuous, then f ≡ 0. (2.20)

Making use of (2.18)∼(2.20), we obtain from (2.13) the differential form of the

conservation law equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+

∂(ρqj)
∂xj

= 0,

∂(ρqi)
∂t

+
∂

∂xj
(ρqiqj + pδij)

=
∂

∂xj

[
μ

(
∂qi

∂xj
+

∂qj

∂xi

)
− 2

3
μδij

∂qk

∂xk

]
, i = 1, 2, 3,

∂

∂t

[
ρ
(qkqk

2
+ i
)]

+
∂

∂xj

[
ρqj

(qkqk

2
+ i
)

+ pqj

]
=

∂

∂xj

[
μqi

(
∂qi

∂xj
+

∂qj

∂xi

)
− 2

3
μ

∂qk

∂xk
qj + k

∂T

∂xj

]
.

(2.21)

This system of equations is called the Navier-Stokes Equations for viscous flow.

In the special case of inviscid flow for which k = μ = 0, the Navier-Stokes

equations reduce to the Euler equations

∂E

∂t
+ ∇ · F (E) = 0, (2.22)
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which is said to be in conservation form. Written out in details, (2.22) becomes

∂

∂t

⎛⎜⎜⎜⎜⎝
ρ

ρu

ρv

ρw

ρe

⎞⎟⎟⎟⎟⎠+
∂

∂x

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ρu

ρu2 + p

ρuv

ρuw

ρu

(
e +

p

ρ

)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

∂

∂y

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ρv

ρuv

ρv2 + p

ρvw

ρv

(
e +

p

ρ

)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

∂

∂z

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ρw

ρuw

ρvw

ρw2 + p

ρw

(
e +

p

ρ

)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= 0,

(2.23)

where u, v, w are the x-, y- and z-component of the velocity q, respectively, and

e =
1
2
(u2 + v2 + w2) + i.

Note The Euler equations for inviscid flow (2.23) can also be derived directly

from the integral form equations (2.8).

Remarks on the Navier-Stokes equations for viscous flow

(1) It is generally believed, though not yet proven, that all solutions to the

Navier-Stokes equations for laminar flow are smooth. If so, the system of integral

equations (2.13) for viscous flow is equivalent to the Navier-Stokes equations (2.21)

which are in PDE form.

(2) For unsteady flow, the Navier-Stokes equations are hyperbolic if k ≈ 0, μ ≈
0; parabolic, otherwise.

(3) It is not known what general initial and boundary conditions will make the

Navier-Stokes equations well-posed. The situation is even more uncertain when

these equations are solved numerically.

(4) For many practical viscous flows, the fluid viscosity and thermo-conductivity

are very small, resulting in a high Reynolds number. For high Reynolds number

flow, the viscous scale is several orders of magnitude smaller than a typical length

scale of the problem. Without special treatment, large number of mesh points

would be needed to get reasonable resolution of the numerical solution, requiring

very large storage and long computing time.

Remarks on the Euler equations for inviscid flow

(1) The inviscid flow equations (2.23) obtained by neglecting fluid viscosity

and thermo-conductivity in the Navier-Stokes equations are of hyperbolic type and

have only one scale. These render numerical computation much easier than the

viscous flow equations. This is why great efforts are spent on computing inviscid
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flow solution (see [3–5]), hoping to get a good first approximation to high Reynolds

number flow.

(2) In smooth flow region, the Euler equations (2.23) hold and are equivalent

to its integral counterparts (2.8).

(3) Across discontinuities, only the integral form equations (2.8) are valid.

Therefore, the starting point for studying inviscid flow should be the integral

equations (2.8), not the Euler PDE (2.23) as is done quite commonly. In this

regard, we note that it is the integral form equations (2.8), not the Euler equations

(2.23), that are actually solved in numerical computation (see Section 3.4). The

reason why most text books discuss the Euler PDE (2.23) at great length, rather

than the integral equations (2.8), is because the mathematical theories of system

of hyperbolic PDE are quite well developed, e.g., characteristics and Riemann

invariants, but we know very little about the mathematical theory of integral-

differential equations (2.8). The mathematical properties revealed by the PDE,

(2.23), though only valid for smooth flow, are found to be very helpful in computing

piece-wise smooth solution to the integral equations (2.8). See Sections 3.4∼3.7.

2.5 The Entropy Condition for Inviscid Flow Computation

As pointed out in Section 2.2 the inviscid flow model neglects all irreversible mech-

anisms, such as viscosity and thermo-conductivity of the fluid. Consequently, the

solution to the inviscid flow equations (2.8) (or (2.23)) is not unique: once it ad-

mits one solution it also simultaneously admits its reverse flow solution. If the

conservation law equations (2.8) are to model the real flow which typically has

very small but positive viscosity and thermo-conductivity, then clearly only one of

these solutions can be physically correct.

In order to pick out the physically correct solution, one general approach is to

add a diffusive term so as to obtain a system with a unique smooth solution and

then let the coefficient of this term tend to zero. However, this “vanishing viscos-

ity” method requires studying a more complicated system of equations, somewhat

similar to the Navier-Stokes equations. But this is what we wanted to avoid in the

first place when we try to get a good approximation to viscous flow by solving the

inviscid equations because of its simplicity. For this reason, we would like to derive

other conditions that can be applied directly on the solutions of this (hyperbolic)
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inviscid system to filter out the physically incorrect solutions. For gas dynamics,

we can appeal to the second law of thermodynamics, which states that entropy is

non-decreasing. This very simple condition, called entropy condition, enables us to

select the physically correct inviscid solution that well approximates the solution

of flow with small viscosity. More will be discussed about entropy condition in

Section 3.3.

For other systems, it is frequently possible to derive similar conditions, generally

called entropy conditions, by analogy with gas dynamics.
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Chapter 3

Review of Eulerian Computation for 1-D

Inviscid Flow

3.1 Flow Discontinuities and Rankine-Hugoniot Conditions

3.1.1 Special Case: Stationary Surface of Discontinuity

Let σ be a stationary surface of discontinuity and n be a unit normal of σ (Figure

3.1). We take a rectangular volume Ω for which σ cuts across Ω as shown in the

figure. Let S+ denote the surface of Ω which lies in the positive side of σ, S− that

lies in the negative side, and Sl denote the lateral surfaces of Ω .

Figure 3.1 Control volume Ω in relation to surface of discontinuity σ

Recall the integral form equations (2.8) for inviscid flow,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d
dt

∫
Ω

ρdΩ +
∫

∂Ω

ρq · ndS = 0,

d
dt

∫
Ω

ρqdΩ +
∫

∂Ω

(ρq(q · n) + pn)dS = 0,

d
dt

∫
Ω

(
1
2
q2 + i

)
ρdΩ +

∫
∂Ω

(
1
2
q2 + i +

p

ρ

)
ρq · ndS = 0,

(3.1)

where n is the outward unit normal of ∂Ω . We restrict, for the moment, our

attention to the case when σ is stationary and apply the following identity to (3.1):∫
∂Ω

fdS =
∫

S+

fdS +
∫

Sl

fdS +
∫

S−
fdS (3.2)
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for any integrable function f on ∂Ω . Let d be the maximum distance between S+

and S− . Then

Sl → 0 as d → 0. (3.3)

Hence

lim
d→0

∫
∂Ω

fdS =
∫

S+

fdS +
∫

S−
fdS. (3.4)

The terms involving volume integrals in (3.1) also vanish as d → 0. We then let S

shrink to a point P so that at the point P on σ, each equation in (3.1) reduces to

the form

f+(P ) + f−(P ) = 0. (3.5)

Noting that the outward normal on the surfaces S+ and S− are opposite to each

other, we get from (3.1)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(ρqn)+ = (ρqn)−,

(qρqn + pn)+ = (qρqn + pn)−,[
ρqn

(
q2

2
+ h

)]
+

=
[
ρqn

(
q2

2
+ h

)]
−

,

(3.6)

where qn = q · n, h = i + p/ρ and

i =
1

γ − 1
p

ρ

for a perfect gas with gamma-law. These five equations relate the flow variables

on the opposite sides of a surface of discontinuity σ and are called the Rankine-

Hugoniot conditions.

To sum up the analysis above, we see that the integral form conservation law

equations (3.1) admit discontinuous solution, but on crossing a stationary surface

of discontinuity the flow variables must satisfy the Rankine-Hugoniot conditions

(3.6).

3.1.2 General Case: Moving Surface of Discontinuity

Suppose σ moves with velocity s. We take the reference frame to move with velocity

s and replace the fluid velocity q in by the relative velocity q − s. D’Alembert

inertial force arises in the momentum equation—the second of (3.1), or (2.15)—

as the reference frame is not an inertial one. However, the D’Alembert force is
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proportional to the volume of Ω and hence disappears as its thickness d tends to

zero (Figure 3.1). So we can make use of the results for the case of stationary

σ by simply replacing q by the relative velocity (q − s) in the Rankine-Hugoniot

conditions (3.6).

3.2 Classification of Flow Discontinuities

3.2.1 Special Case: Stationary Surface of Discontinuity

1. Case 1: (ρqn)+ = 0

Let τ 1 and τ 2 be two independent orthogonal unit tangential vectors to σ

(Figure 3.2).

Figure 3.2 Tangential directions and normal direction of surface of discontinuity

From (3.6) we have (ρqn)+ = (ρqn)− = 0 . This implies

(qn)+ = (qn)− = 0. (3.7)

From (3.7) and the second of (3.6), we get

p+ = p−. (3.8)

On the other hand, the flow variables ρ, qτ1 and qτ2 may be discontinuous, while

p is continuous across σ. In this case, σ is called a contact discontinuity, or a slip

surface.

2. Case 2: (ρqn)+ �= 0

From the first equation of (3.6), we have (ρqn)− �= 0. Then from the second of

(3.6), we get

(q · τ 1)+ =(q · τ 1)−,

(q · τ 2)+ =(q · τ 2)−. (3.9)

This means that the tangential velocities are continuous across the surface σ. Now

if the normal velocity is also continuous, i.e., (qn)+ = (qn)−, then ρ+ = ρ− and
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p+ = p− from the first and the second of (3.6). In this case, the flow is continuous

and is a trivial one. For discontinuity to occur, we must have (qn)+ �= (qn)−.

In the non-trivial case when (qn)+ �= (qn)−, from the third of (3.6) and using

|q|2 = q2
τ1

+ q2
τ2

+ q2
n , we get(

1
2
qn

2 + h

)
+

=
(

1
2
qn

2 + h

)
−

. (3.10)

Taking dot product of both sides of the second of (3.6) with n, we obtain

(ρqn
2 + p)+ = (ρqn

2 + p)−. (3.11)

In this case, the surface of discontinuity is called a shock wave. We sum up the

conditions relating the flow variables on the opposite sides of a shock as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(ρqn)+ = (ρqn)−, (ρqn)+ �= 0,

(q · τ 1)+ = (q · τ 1)−,

(q · τ 2)+ = (q · τ 2)−,

(ρqn
2 + p)+ = (ρqn

2 + p)−,(
1
2
qn

2 + h

)
+

=
(

1
2
qn

2 + h

)
−

.

(3.12)

Given the flow state upstream of a shock (the “+” state), we can calculate the

downstream flow state (the “−” state) by using (3.12), which are also called the

Rankine-Hugoniot conditions across a shock. There are three possible solutions.

(1) Solution 1: ⎧⎨⎩
ρ− = ρ+,

p− = p+,

q− = q+,

(3.13)

which represents a continuous flow.

(2) Solution 2: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ− =
ρ2
+q2

n(γ + 1)
γρ+q2

n+ − ρ+q2
n+ + 2γp+

,

p− =
2ρ+q2

n+ − γp+ + p+

γ + 1
,

qn− =
γq2

n+ρ+ − ρ+q2
n+ + 2γp+

(γ + 1)ρ+qn+
,

(qτ1)− = (qτ1)+,

(qτ2)− = (qτ2)+.

(3.14)
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For this solution the entropy p/ργ, pressure p, density ρ and temperature T of a

fluid particle, increase on crossing the shock from the “+” side to the “−” side.

This is the physically correct solution. We note that this is the way the entropy

condition is applied.

(3) Solution 3: this solution is obtained from Solution 2 in (3.14) by interchang-

ing the “+” with the “−”. For this solution the entropy p/ργ , pressure p, density ρ

and temperature T of a fluid particle decrease on crossing the shock from the “+”

side to the “−” side. This is physically incorrect and should be rejected according

to the second law of thermodynamics. This is another way the entropy condition

is applied.

3.2.2 General Case: Moving Surface of Discontinuity

Suppose σ moves with velocity s. The Rankine-Hugoniot conditions are obtained,

as explained in Section 3.1, by simply replacing the fluid velocity q in (3.6) by the

relative velocity (q−s). Classification of flow discontinuities then follows similarly.

The results are summed up as follows:

1. Case 1: contact discontinuity or slip surface

p+ =p−,

(qn − sn)+ =(qn − sn)− = 0. (3.15)

Hence
(qn)+ = (qn)− = sn,

where sn = s · n, ρ, qτ1 and qτ2 may be discontinuous.

2. Case 2: shock

The Rankine-Hugoniot conditions are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ρ(qn − sn)]+ = [ρ(qn − sn)]−,[
ρ(qn − sn)2 + p

]
+

=
[
ρ(qn − sn)2 + p

]
− ,

(q · τ 1)+ = (q · τ 1)−,

(q · τ 2)+ = (q · τ 2)−,[
1
2
(qn − sn)2 + h

]
+

=
[
1
2
(qn − sn)2 + h

]
−

,

(3.16)
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which involve the normal component of the velocity of the shock. Given the flow

state upstream of a shock and its normal velocity, we can calculate the downstream

flow state by using (3.16).

In the remaining of this chapter, we restrict our discussions to 1-D flow only.

Here we list some useful results for 1-D flow. For a system of conservation laws

∂E

∂t
+

∂F (E)
∂x

= 0, (3.17)

the Rankine-Hugoniot shock jump conditions are

s(E+ − E−) = F (E+) − F (E−), (3.18)

where s = dx/dt is the speed of the shock. On the other hand, the speed s of a

contact (or slipline) discontinuity is equal to the characteristic speed λ of (3.17),

i.e.,

s = λi(E+) = λi(E−). (3.19)

For the simpler case of a scalar conservation law ∂E/∂t + ∂F/∂x = 0, the shock

speed is

s =
F+ − F−
E+ − E−

. (3.20)

As an example, we consider the inviscid Burgers equation in three different PDE

forms:

(a)
∂u

∂t
+

∂(u2/2)
∂x

= 0, (3.21)

whose shock speed is

(b)

s1 =

1
2
u2

+ − 1
2
u2
−

u+ − u−
=

1
2
(u+ + u−);

∂u2

∂t
+

∂2u3/3
∂x

= 0, (3.22)

whose shock speed is

s2 =

2
3
u3

+ − 2
3
u3
−

u2
+ − u2−

=
2
3

u2
+ + u+u− + u2

−
u+ + u−

�= s1;

(when u+ �= u−) and
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(c)
∂u

∂t
+ u

∂u

∂x
= 0. (3.23)

We see that although the three equations are equivalent to each other for smooth

solution, when a shock is present, it has different speeds according to (3.20). In

particular, (3.21) and (3.22) are in conservation form, hence their shock speeds can

be easily calculated using (3.20), and they are different!

This raises a serious question in computing non-linear conservation laws that

does not exist for linear equations. The question is: which equation, amongst

the many that are equivalent for smooth solution, should we use as the starting

point for computing numerical solution which may be discontinuous? Of the three

equations above, (3.23) is not in conservation form and therefore, according to Lax-

Wendroff theorem ([1], see also [2]), will not capture shocks correctly and must be

rejected. Although (3.21) and (3.22) both are in conservation form and can be used

in numerical computation to capture the shock, each one correctly with respect to

their form of equation. But if the Burgers equation is to represent some physical

phenomena, the solutions obtained from (3.21) and (3.22) cannot be both correct as

they have different shock speeds. Does any of these solutions correctly describe the

physical phenomenon? If so, which one? These questions cannot be answered if one

uses a PDE as the starting point for computation. To answer these questions, one

must go back to the physical phenomena and derive its corresponding conservation

law equations, which are usually in integral form, similar to (2.8). These integral

conservation law equations can then be converted to PDE, with the assumption of

solution smoothness. If the PDE coincides with (3.21), then the solution to (3.21)

will correctly describe the physical phenomena. But if the PDE coincides with

(3.22), then the solution to (3.22) will correctly describe the physical phenomena.

If the PDE does not coincide with (3.21), nor (3.22), (this implies that (3.21) and

(3.22) are obtained from some PDE by mathematically equivalent manipulations),

then the solutions obtained from them do not describe the physical phenomena.

This example serves to emphasize the importance of using the integral form

conservation law equations, not PDE, as the starting point of computation; in

doing so, the difficulties, or confusions, mentioned above are avoided.
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3.3 Riemann Problem and its Solution

3.3.1 Elementary Waves

The Riemann problem for a system of conservation laws in one space dimension is

the special initial value problem

RP :

⎧⎪⎪⎨⎪⎪⎩
∂E

∂t
+

∂F (E)
∂x

= 0, t > 0, x ∈ R,

E(x, 0) =
{

El, x < 0,

Er, x > 0,

(3.24)

where E = (u1, · · · , um), and we assume that F (E) = (F1(E), · · · , Fm(E)) is

smooth in a neighborhood M ⊂ Rm, and the Jacobian matrix A(E) =
dF (E)

dE

has m real and distinct eigenvalues λ1(E) < · · · < λm(E) in M . The initial data

El and Er are constant.

The Riemann problem plays a central role in the theory of systems of conser-

vation laws as well as in numerical methods for computing solution to the general

initial value problem of conservation laws. Indeed, its solution reveals all the im-

portant physics of wave propagation, and is the building brick for the two most im-

portant numerical methods: the Godunov method and the random choice method.

It is also of crucial importance in the shock fitting (front tracking) method.

The simplicity of the Riemann problem, as against the problem with general

initial data, derives from its property that both the equation and Riemann data

are invariant under the transformation

t → αt, x → αx, α > 0. (3.25)

Consequently, solution to RP exists in the form of similarity solution, i.e.,

E = E(ξ), ξ =
x

t
. (3.26)

Indeed, using (3.26) in (3.24) yields

(A − ξI)
dE

dξ
= 0. (3.27)

Solution to the Riemann problem (3.24) may possibly be continuous or be discon-

tinuous.

Continuous solutions are to be found from (3.27). There are two possibilities:
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dE

dξ
= 0 or

dE

dξ
�= 0.

(1)
dE

dξ
= 0. This gives a constant solution

E
(x

t

)
= const.. (3.28)

(2)
dE

dξ
�= 0, then ξ is an eigenvalue of A and

dE

dξ
is parallel to its right

eigenvector, i.e., ⎧⎪⎨⎪⎩
λi(E) = ξ,

dE

dξ
= Cr(i)(E), C = const..

(3.29)

The solution is called a centered rarefaction wave.

Discontinuous solutions of conservation law, as mentioned in last subsection,

include a shock wave and a contact wave.

(1) Shock wave. Across a shock wave, the states E+ and E− on its two sides

must satisfy

s(E+ − E−) = F (E+) − F (E−), (3.30)

where s =
dx

dt
is the speed of the shock wave.

(2) Contact wave. The speed of a contact wave must be equal to the charac-

teristic speed, i.e.,

s = λi(E+) = λi(E−). (3.31)

Shock wave, contact wave and rarefaction wave are called elementary waves.

It is known that a linearly degenerated λ-field gives rise to a contact wave,

whereas a genuinely non-linear λ-field gives rise to either a shock wave or a centered

rarefaction wave, i.e., see Chapter 17, Theorems 17.9, 17.11 and 17.17 in Smoller[3].

3.3.2 Existence and Uniqueness of Solution

Using these elementary waves, a solution to the Riemann problem (3.24) can be

constructed provided that |E� − Er| is small. In particular, we have the following

theorem (Smoller [3], Chapter 17):

Theorem 3.1 (Local existence and uniqueness of solution) Let E� ∈ M and

suppose that the system (3.24) is strictly hyperbolic and that each characteristic

field is either genuinely nonlinear or linearly degenerate in M . Then there is a



28 Chapter 3 Review of Eulerian Computation for 1-D Inviscid Flow

neighborhood M̃ ⊂ M of E� such that if Er ∈ M̃ , the Riemann problem (3.24)

has a solution. This solution consists of at most (m + 1)-constant states separated

by shocks, centered rarefaction waves or contact discontinuities. There is precisely

one solution of this kind in M̃ .

3.3.3 Structure of Riemann Solution for 1-D Flow

The conservation law Euler equations for 1-D flow of a perfect gas with a γ-law are

∂

∂t

⎛⎝ ρ

ρu

ρe

⎞⎠+
∂

∂x

⎛⎝ ρu

ρu2 + p

u(ρe + p)

⎞⎠ = 0, (3.32)

where

e =
1
2
u2 +

1
γ − 1

p

ρ
. (3.33)

Here u is velocity, p is pressure, ρ is density and e is specific total energy. System

(3.32) is hyperbolic and in conservation form.

Since across a contact the pressure p and velocity u are continuous, the Riemann

problem for 1-D Euler equation in Eulerian coordinates is better formulated using

primative variables W = (ρ, u, p). Thus

RP:

⎧⎪⎪⎨⎪⎪⎩
∂W

∂t
+ A(W )

∂W

∂x
= 0, t > 0,

W (x, t = 0) =
{

W �, x < 0,

W r, x > 0,

(3.34)

where the Jacobian matrix is

A =

⎛⎝ u ρ 0
0 u 1/ρ

0 ρa2 u

⎞⎠ (3.35)

and a = (γp/ρ)1/2 is the speed of sound. The wave structure for the Riemann

problem is shown in Figure 3.3.

The following theorem[3] gives the global existence of solution to the Riemann

problem (3.34):

Theorem 3.2(Global existence and uniqueness of solution) There is a unique

solution to the Riemann problem (3.34) if and only if

u� − ur <
2

γ − 1
(a� + ar). (3.36)



3.3 Riemann Problem and its Solution 29

If (3.36) is violated, then a vacuum is present in the solution. The solution is

composed by at most 4 constant states (including the states W � and W r ) sepa-

rated by a shock (or a rarefaction), a contact, and a rarefaction (or a shock). The

solution is sketched in Figure 3.3.

Figure 3.3 Structure of Riemann solution for 1-D Euler equations

3.3.4 Solution of the Elementary Waves

The eigenvalues of A and their corresponding right eigenvectors are

λ1 = u − a, λ2 = u, λ3 = u + a, (3.37)

r(1) =

⎛⎜⎜⎜⎝
1

−a

ρ

a2

⎞⎟⎟⎟⎠ , r(2) =

⎛⎝ 1
0
0

⎞⎠ , r(3) =

⎛⎜⎜⎜⎝
1
a

ρ

a2

⎞⎟⎟⎟⎠ . (3.38)

The λ2-field is linearly degenerate, giving rise to a contact wave. On the other

hand, both λ1-field and λ3-field are genuinely non-linear, each of which giving rise

to a shock or a rarefaction wave.

(1) The λ2-field. Across the contact

p2 =p3 = p∗,

u2 =u3 = u∗, (3.39)

but there is no relation between ρ2 and ρ3 .

(2) The λ1-field.

Case 1: p2 > p�. In this case, the wave is a shock, because only on crossing

(time t increases, see Figure 3.3) a shock wave can pressure of a particle increases;

it cannot do so on crossing a rarefaction wave. We also pointed out earlier that

as pressure increases crossing a shock, so does entropy of the fluid particle. So we
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have implicitly applied the entropy condition at this stage. The relations between

the state W � and the state W 2 in region (2) (Figure 3.3) are thus given by the

Rankine-Hugoniot conditions⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ2(u2 − s) = ρl(ul − s),

ρ2(u2 − s)2 + p2 = ρl(ul − s)2 + pl,

1
2
(u2 − s)2 +

γ

γ − 1
p2

ρ2
=

1
2
(ul − s)2 +

γ

γ − 1
pl

ρl
,

(3.40)

where s is the shock speed. With the state W � given, there are two solutions of

(3.40) for the state W 2: one with entropy-increasing, the other decreasing. The

entropy-increasing solution is the physically acceptable one and is given in terms

of the pressure ratio α = p2/p� > 1 as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ2

ρ�
=

α +
γ − 1
γ + 1

γ − 1
γ + 1

α + 1
,

u2 = u� − 2(α − 1)a�

(γ + 1)α + γ − 1

√
γ + 1
2γ

α +
γ − 1
2γ

,

s = u� − a�

√
γ + 1
2γ

α +
γ − 1
2γ

,

(3.41)

where a� =
√

γp�/ρ�.

Note that as the shock strength tends to zero, the pressure ratio α = p2/p� tends

to unity and the shock speed s approaches the characteristic speed λ1 = u� − a�.

Case 2: p2 p�. In this case, the wave is a rarefaction, because only on cross-

ing (time t increases, see Figure 3.3) a rarefaction wave can pressure of a particle

decreases; it cannot do so on crossing a shock wave. The solution in the rarefac-

tion wave is to be found by solving the following system of ordinary differential

equations: ⎧⎪⎨⎪⎩
dW

dξ
= Cr(1)(W ), C = const.,

λ1(W ) = ξ.

. (3.42)

With W = (ρ, u, p)T and (3.38), we may write the first equation of (3.42) as

d
dξ

⎛⎝ ρ

u

p

⎞⎠ = C

⎛⎜⎜⎜⎝
1

−a

ρ

a2

⎞⎟⎟⎟⎠ , (3.43)
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hence ⎧⎪⎪⎨⎪⎪⎩
dρ

dp
=

1
a2

=
ρ

γp
,

du

dp
= − 1

ρa
= − 1√

γpρ
.

(3.44)

Integrating the first equation of (3.44) gives p/ργ = const., i.e., the entropy is

constant. Hence
ρ

ρ�
=
(

p

p�

)1/γ

. (3.45)

Substituting (3.45) in the second equation of (3.44) and integrating, we get

u = u� +
2a�

γ − 1

[
1 −

(
p

p�

)(γ−1)/2γ
]

. (3.46)

(3.45) and (3.46) express the flow variables ρ and u in terms of the pressure ratio

p/p� . We now use the second equation of (3.42) to express p/p� as a function of ξ.

Since a =
√

γp/ρ, we get a/a� = (p/p�)(γ−1)/2γ . Using (3.37), the second equation

of (3.42) becomes

ξ =u − a

=u� +
2a�

γ − 1

[
1 −

(
p

p�

)(γ−1)/2γ
]
− a�

(
p

p�

)(γ−1)/2γ

=u� +
2a�

γ − 1
− γ + 1

γ − 1
a�

(
p

p�

)(γ−1)/2γ

.

Therefore
p

p�
=
[
γ − 1
γ + 1

(
u�

a�
+

2
γ − 1

− ξ

a�

)]
. (3.47)

Equations (3.45)∼(3.47) give the complete solution of the flow inside the rarefaction

wave. Of particular interest is the velocity u2,

u2 = u� +
2a�

γ − 1

[
1 −

(
p2

p�

)(γ−1)/2γ
]

. (3.48)

Also, the position of the first ray (upstream) is

x

t
= ξ� = u� − a�, (3.49)

and the position of the last ray (downstream) is

x

t
= ξ2 =u� +

2a�

γ − 1
− γ + 1

γ − 1
a�

(
p2

p�

)(γ−1)/2γ

=u2 − a2. (3.50)
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The solutions (3.45)∼(3.47) are to be used for

u� − a� ξ =
x

t
u2 − a2, (3.51)

where

a2 = a�

(
p2

p�

)(γ−1)/2γ

. (3.52)

(3) The λ3-field. This can be studied similarly to the λ1-field.

Case 1: p3 > pr. This results in a shock and we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ3

ρr
=

α +
γ − 1
γ + 1

γ − 1
γ + 1

α + 1
, α =

p3

pr
,

u3 = ur − 2(α − 1)ar

(γ + 1)α + γ − 1

√
γ + 1
2γ

α +
γ − 1
2γ

,

s = ur + ar

√
γ + 1
2γ

α +
γ − 1
2γ

.

(3.53)

Again, as the shock strength tends to zero, the pressure ratio α = p3/pr tends to

unity and the shock speed s approaches the characteristic speed λ3 = ur + ar .

Case 2: p3 pr. This results in a rarefaction wave, of which the solution is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ

ρr
=
(

p

pr

)1/γ

,

u = ur +
2ar

γ − 1

[
1 −

(
p

pr

)(γ−1)/2γ
]

,

p

pr
=
[
γ − 1
γ + 1

(
ur

ar
+

2
γ − 1

− ξ

ar

)](γ−1)/2γ

.

(3.54)

In particular,

u3 = ur +
2ar

γ − 1

[
1 −

(
p3

pr

)(γ−1)/2γ
]

. (3.55)

Solution (3.54) holds for

u3 + a3 ξ =
x

t
ur + ar, (3.56)

where

a3 = ar

(
p3

pr

)(γ−1)/2γ

. (3.57)
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3.3.5 Solution Algorithm

We are now in the position to give an algorithm for constructing the solution to the

Riemann problem (3.34). We first note that the pressure and velocity in regions

(2) and (3) are the same, and denote them with (∗), i.e.,

p2 = p3 = p∗, (3.58)

u2 = u3 = u∗. (3.59)

We shall make use of (3.58) and (3.59) to derive a single equation for p∗ and then

solve it.

We already know (Figure 3.3) that if p∗ p�, the λ1-field is a rarefaction wave

and u∗(= u2) is given by (3.48). But if p∗ > p�, the λ1-field is a shock and u∗ is

given by the second equation of (3.41). We therefore define a function

ψ1(p∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u� +
2a�

γ − 1

[
1 −

(
p∗

p�

)(γ−1)/2γ
]

, p∗ p�,

u� −
2
(

p∗

p�
− 1
)

a�

(γ + 1)
p∗

p�
+ γ − 1

√
γ + 1
2γ

p∗

p�
+

γ − 1
2γ

, p∗ > p�.

(3.60)

Similarly, for the λ3-field we define a function

ψ3(p∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ur +
2ar

γ − 1

[
1 −

(
p∗

pr

)(γ−1)/2γ
]

, p∗ pr,

ur −
2
(

p∗

pr
− 1
)

ar

(γ + 1)
p∗

pr
+ γ − 1

√
γ + 1
2γ

p∗

pr
+

γ − 1
2γ

, p∗ > pr.

(3.61)

We further define a function

φ(p∗) = ψ1(p∗) − ψ3(p∗). (3.62)

Equation (3.59) then requires

φ(p∗) = 0. (3.63)

This is the required equation for p∗ which is to be solved numerically, using New-

ton’s method of iteration, say.
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With p∗ found, the solution in the whole flow filed, i.e., (ρ, u, p) in regions

(1)∼(4), as well as the flow inside the rarefaction wave, can be found using the

formulae derived early in this section. Of course, W 1 = W � in region (1) and

W 4 = W r in region (4). A good computer program for solving the Riemann

problem can be found in [4].

3.4 Preliminary Considerations of Numerical Computation

3.4.1 The Question of Weak Solution to Partial Differential Equations

In many CFD text books, the starting point is the Euler equations (3.32), which

are of hyperbolic type. For such a system, no matter how smooth the initial data,

the solution may become discontinuous when the characteristics of the same family

intersect. Consequently, solution to the Euler equations in the classical sense—

the functions (ρ, u, p) are smooth (having continuous first derivatives) and satisfy

(3.32)—does not exist. It is then necessary to extend the classical concept of solu-

tion to weak solution, for which the functions (ρ, u, p) are piece-wise smooth such

that they satisfy (3.32) in smooth flow region and satisfy the Rankine-Hugoniot

conditions on crossing discontinuities. The analytic solution to the Riemann prob-

lem given in Section 3.3 is indeed a weak solution. Numerical solution to the Euler

equations means to compute their weak solution. One way of doing this is to revert

the Euler equations back to the integral form conservation equations

d
dt

∫
Ω

EdΩ = −
∫

∂Ω

F (E) · ndS, (3.64)

where E = (ρ, ρu, ρe)T.

On the other hand, we see from Section 2.4 that the integral form conservation

equations (3.64) is equivalent to the Euler PDE (3.32) in smooth flow region. We

also see from Section 3.1 that the integral form equations automatically contain

the Rankine-Hugoniot conditions on crossing a discontinuity. It is therefore clear

that solving the integral form equations (3.64) will automatically gives the weak

solution to the Euler equations (3.32) without even introducing the concept of weak

solution, which belongs to partial differential equations. For this reason, and for

the example discussed at the end of Section 3.2, and also for the reason to be give

presently, we emphasige that the starting point of computing inviscid flow should

be the integral form conservation equations.
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3.4.2 Finite Volume Formulation

The main task in CFD is to compute numerical solution to the following initial

value problem, i.e., in 1-D case,

d
dt

∫
Ω

EdΩ = −
∫

∂Ω

F (E) · ndS, (3.65)

with initial condition E(x, 0) = E0(x).

If we take cell j to be the control volume Ω : xj−1/2 < x < xj+1/2, (3.65)

becomes
d
dt

Ej = −F (E(xj+1/2, t)) − F (E(xj−1/2, t))
h

, (3.66)

where

Ej(t) =
1
h

∫ xj+1/2

xj−1/2

E(x, t)dx (3.67)

is cell average and h = xj+1/2 − xj−1/2 is cell width. Integrating (3.66) from time

tn to tn+1 gives

En+1
j = En

j − 1
h

[∫ tn+1

tn

F (E(xj+1/2, t))dt −
∫ tn+1

tn

F (E(xj−1/2, t))dt

]
. (3.68)

We note that in deriving (3.68) there has been no approximation made, hence

it remains exact. We also note that (3.68) belongs to the class of conservative

numerical schemes which ensure correct capturing of shock waves, according to

Lax-Wendroff theorem[1].

Different methods of evaluating the flux integrals on the right hand side of

(3.68), particularly E at the interfaces, constitute different numerical schemes. For

example, in the Glimm’s random choice scheme[5, 6], E at the interface between

cell j and cell j + 1 is to be obtained from the solution of the Riemann problem

with Ej and Ej+1 at time tn as Riemann data, where Ej is the value of E at

some point in cell j which is chosen randomly. Although random choice scheme

works well for 1-D flow, it is difficult to extend to multi-dimensional flow. Another

scheme is the famous Godunov scheme to be discussed in the next section.

3.5 Godunov Scheme

In 1959, Godunov[7] proposed a finite volume scheme, which used the Riemann

solution as a building brick for the numerical solution of compressible Euler equa-

tions. Under the assumption of constant state inside each control volume at the
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beginning of each time step tn, i.e.,

E(x, tn) = Ej(x, tn) = const, for xj−1/2 < x xj+1/2,

the initial condition around a cell interface becomes

E(x, tn) =
{

Ej , x xj+1/2,

Ej+1, x > xj+1/2,
(3.69)

and there is a corresponding exact Riemann solution for the Euler equations

Ej+1/2(x, t) = ERP

(
x − xj+1/2

t − tn

)
.

As a result, the fluxes in (3.68) can be evaluated based on the above solution, i.e.,

F (E(xj+1/2, t)) = F (ERP(0)). (3.70)

The above scheme based on the exact Riemann solution is called Godunov scheme.

Godunov scheme is composed of two phases: cell averaging phase followed by

solving a sequence of Riemann problems for every pair of adjacent cells using the

cell averages as Riemann data. The second phase is exact, and the only error arises

from cell averaging in the first phase. Godunov scheme has the following desirable

properties:

(1) It is conservative and consistent and hence, according to Lax-Wandroff

theorem[1], it can capture shocks correctly whenever it converges, which requires

numerical stability of the scheme.

(2) It can always be made stable by suitably adjusting the time step in the

marching computation, according to the CFL stability condition.

(3) For linear systems of conservation law equations it reduces to the upwind

scheme, which is the least dissipative scheme among all first-order schemes.

(4) It is applicable to non-uniform cells.

(5) It is entropy-satisfying: the entropy condition is applied in obtaining the

Riemann solution.

However, due to cell averaging Godunov scheme is only first order accurate for

smooth flow, and zeroth order accurate across discontinuities (shocks and contacts).

For 1-D flow, the Godunov-averaging errors across a shock can be avoided by using

the shock-adaptive Godunov scheme ([8, 9]; see Section 4.2). On the other hand,
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averaging errors across a contact is inherent in Eulerian coordinates which do not,

in general, align with the contact. Errors of this type can only be avoided by using

coordinates of the Lagrangian-type (see Chapter 4).

In comparison with traditional central difference methods for the Euler equa-

tions, one of the merit of the Godunov scheme is its clear physical picture, where gas

dynamics process gets involve in the construction of the numerical scheme through

the flux evaluation. The Riemann solution tells us exactly what is happening at

a cell interface if the initial condition is distributed piecewise constant. Therefore,

this methodology can be naturally extended to more complicated system once the

dynamics under simple initial condition can be obtained.

The Euler equations present a shock discontinuity with zero thickness. Numer-

ically, this sharp transition cannot be properly resolved by any refined cell size.

Therefore, the real equations the Godunov method solves numerically with a lim-

ited cell resolution, must be viscous governing equations, where any flow structure

should be compatible with the cell size. In other words, an additional dissipation is

implicitly added in the Godunov method. Certainly, if the shock discontinuity or

slip surface can be well resolved by shock or contact fitting methods, the additional

dissipation can be avoided (see Chapter 4).

The use of the Riemann solution somehow helps to introduces the “appropriate”

numerical dissipation needed in the discontinuity region. However, contrary to

many statements in the literatures, the amount of dissipation in the Godunov

method is not coming from the characteristic waves of the Riemann solution or the

so-called upwinding mechanism, but is coming from the preparation of the initial

data at the beginning of each time. For example, the preparation of piecewise

constant state inside each cell is based on the conservation of mass, momentum,

and total energy. In this process, the kinetic energy is not conserved and the lost

kinetic energy is automatically transferred into thermal one[10]. As a consequence,

in multi-dimensional flow simulation the amount of dissipation in the Godunov

method is closely related to the relative orientation of the shock discontinuity and

the mesh distribution[11]. Therefore, the dissipation in the Godunov method is a

passive one, but it may not be adequate in flow computation. This observation can

be used to analyze many defects of the Godunov method in the flow simulations

(see Section 3.7). Also, the assumption of discontinuity at a cell interface in the
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Godunov method is valid only for the cases where the cell resolution is not enough

to resolve the flow structure. In the well-resolved continuum flow regime, this

assumption is not necessary and the high-resolution scheme is basically trying to

reduce such a discontinuity jump.

3.6 High Resolution Schemes and Limiters

In order to extend the Godunov method to high resolution, we have to modify the

piecewise constant initial condition first. A natural extension is to introduce slopes

inside each cell for the preparation of initial condition. However, a naive slope

construction can easily introduce over- or under-shoot in the discontinuity regions.

On the other hand, if we simply connect the cell averages, the initial data in the

Godunov scheme will be a continuous function across the cell interface, therefore

it goes back to the traditional central difference schemes, where the post-shock

oscillations are intrinsically rooted. Therefore, in order to properly construct a high

resolution scheme, the following criteria have to be satisfied. Firstly, in the smooth

region, the initial reconstruction should be as close as possible to a continuous one

across a cell interface; Secondly, in the discontinuity region the large jump at the

cell interface has to be kept; Thirdly, the reconstruction has to avoid over- and

under-shoot in all situations. The reconstruction method, which could satisfy all

above requirements, must use non-linear limiters to limit or choose the appropriate

one from all possibly reconstructed slopes. In other words, even for linear equation

a non-linear reconstruction mechanism has to be involved. With the inclusion of

slopes, the Riemann solution should theoretically be replaced by the generalized

Riemann solution[12]. However, there are simpler ways to achieve high resolution,

and one of them is the monotonic upstream-centered scheme for conservation laws

(MUSCL) of van Leer[13].

The reconstruction can be further replaced by more accurate approximations

as well. For example, the reconstruction can use quadratic, as in the piecewise

parabolic method (PPM)[14] or even higher order reconstructions as in the ENO

(essentially non-oscillatory) or WENO (weighted ENO) methods[15−17].

For any high resolution scheme, it is basically a choice between the use of the

continuous and discontinuous initial data for the flux evaluation. Currently, most

high resolution schemes make the choices between the continuous and discontinu-
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ous ones based heavily on the numerics. In other words, it is the stencil and their

coefficients that determine the final reconstruction. For complicated flow problems,

such as the viscous flow computation inside a boundary layer of the Navier-Stokes

equations, a purely numerical choice may trigger serious problems when there are

only a few points inside such a layer, and the solution may strongly depend on

the order of the reconstruction. For a successful scheme solving the hypersonic

viscous heat conducting flow equations, the choice between the continuous and

discontinuous initial data reconstruction should not only be based on the numer-

ics, such as different stencil or limiters, but also be based on the flow physics to

choose the appropriate one. For example, an ideal case is the following. Inside the

viscous heat conducting boundary layer, even with the possible “inappropriate”

discontinuity initial reconstruction, according to local Reynolds number the flow

physics will quickly smear the discontinuity and generate a continuous one for the

flux evaluation. Otherwise, the high resolution scheme will automatically generate

waves which don’t exist in the boundary layer, to poison the numerical solution.

One good example to use flow physics to make the choices is the gas-kinetic BGK

scheme, where both discontinuous and continuous flow distributions are included

in the final gas distribution function at a cell interface, and the weight between

them depends on the flow physics[18, 19]. Therefore, the boundary solution is not

sensitive to the limiters used at all.

High resolution schemes generally give more accurate numerical results in the

smooth flow region, but different combinations of approximate Riemann solvers

and limiters give slightly different results[4]. Although they also improve resolution

of shocks and contacts, they remain of zeroth order accuracy there. In all Eule-

rian computations presented in this book, we use Godunov scheme with the exact

Riemann solver and upgrade it to high resolution via the MUSCL methodology,

employing the MINMOD limiter. Some of the computed results are reported in

Section 4.5 for comparison with the unified coordinates computation.

3.7 Defects of Eulerian Computation

Godunov scheme and high resolution schemes have enjoyed great success in CFD[4];

in particular the shock can be resolved with 2 to 3 computational cells in high res-

olution scheme. However, Eulerian computation using Godunov scheme or higher
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resolution schemes with various combinations of approximate Riemann solvers and

limiters have inherent defects. The following list represents known defects[20−23] of

Eulerian computation for solving (3.32):

(1) Contact smearing;

(2) Slow moving shocks;

(3) Sonic point glitch;

(4) Start-up errors;

(5) Low pressure flow;

(6) Wall-overheating;

(7) Strong rarefaction waves.

Defects (4)∼(7) are also shared in Lagrangian computation. In Section 4.5, we

will detail out these defects, point out their causes and show how they all can be

cured or avoided by using the unified coordinates.
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Chapter 4

1-D Flow Computation Using the Unified

Coordinates

4.1 Gas Dynamics Equations Based on the Unified Coordi-

nates

The gas dynamics equations in Eulerian coordinates (t, x) are written in conserva-

tion PDE form as
∂

∂t

⎛⎝ ρ

ρu

ρe

⎞⎠+
∂

∂x

⎛⎝ ρu

ρu2 + p

u(ρe + p)

⎞⎠ = 0, (4.1)

where

e =
1
2
u2 +

1
γ − 1

p

ρ
.

Under the transformation to classical Lagrangian coordinates⎧⎨⎩ dt = dλ,

dx = udλ +
1
ρ
dξ,

(4.2)

(4.1) become

∂

∂λ

⎛⎝ 1/ρ

u

e

⎞⎠+
∂

∂ξ

⎛⎝−u

p

up

⎞⎠ = 0. (4.3)

The system of equations (4.3) is seen to be in conservation PDE form.

We now introduce the transformation to the unified coordinates (λ, ξ) as follows:{
dt = dλ,

dx = Udλ + Adξ,
(4.4)

where U(λ, ξ) is an arbitrary function. It can easily be shown that

∂ξ

∂t
+ U

∂ξ

∂x
= 0. (4.5)
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This means that the coordinate ξ is invariant following a pseudo-particle whose

velocity is U . Consequently, computational cells move with the pseudo-particles,

instead of the fluid particles as in Lagrangian coordinates. As we can see from the

above transformation, the case U = 0 gives us the Eulerian coordinates in which ξ

is independent of the flow; in particular, ξ = x if A = 1. On the other hand, the

case U = u gives the Lagrangian coordinates, since the pseudo-particles move with

the fluid particles. The classical Lagrangian coordinate corresponds to the special

case when A = 1/ρ in addition to U = u. Thus the unified coordinate ξ introduced

by (4.4) with U = u may be regarded as a generalized Lagrangian coordinate;

it has the flexibility in choosing the stretching factor A. One advantage of this

unified coordinate system is its ability to show the effect of coordinate systems on

the behaviour of the solution by simply varying the parameter U from 0 to u.

Under transformation (4.4), the gas dynamics equations (4.1) become

∂E

∂λ
+

∂F

∂ξ
= 0, (4.6)

where

E =

⎛⎜⎜⎝
ρA

ρAu

ρAe

A

⎞⎟⎟⎠ , F =

⎛⎜⎜⎝
(u − U)ρu

(u − U)ρu2 + p

(u − U)ρue + up

−U

⎞⎟⎟⎠ .

The last equation in (4.6) is the compatibility condition of the differential relation

(4.4) for dx. We note that like the Eulerian system (4.1), the UC system (4.6)

and its Lagrangian special case (4.3) are also in conservation PDE form. It is

well-known that Eulerian system (4.1) is hyperbolic in t-direction, and so is the

Lagrangian system (4.3) in λ-direction. We now prove that the UC system (4.6)

is also hyperbolic in λ-direction, despite the fact that the transformation involves

the unknown function v. We choose Q = (p, ρ, u, A)T to be the vector of state

variables, then the eigenvalues and corresponding eigenvectors are [1]⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1) σ = 0,

(2) σ =
u − U

A
,

(3) σ± =
(u − U) ± a

A
,

(4.7)

where a =
(

γp

ρ

)1/2

is the speed of sound. The corresponding right eigenvectors
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are ⎧⎪⎪⎪⎨⎪⎪⎪⎩
r1 =(0, 0, 0, 1)T,

r2 =(0, 1, 0, 0)T,

r± =
(

1, a−2,± 1
aρ

,∓ U/u

aρσ±

)T

.

(4.8)

Since these eigenvectors are evidently linearly independent, we conclude that sys-

tem (4.6) is hyperbolic in λ-direction.

Since the UC system (4.6) and its special case (4.3) are, like their Eulerian

counterpart (4.1), both hyperbolic and in conservation form, these systems can be

solved similarly to the Eulerian one. In particular, any shock-capturing methods

developed for conservation laws (as summarized in Chapter 3) apply.

We further note that Lagrangian gas dynamics equations (4.3) and the Eularian

ones (4.1) are both strictly hyperbolic, having distinct eigenvalues (−ρa, 0, +ρa)

and (u−a, u, u+a), respectively. It is remarkable that Wagner[2] proved that they

are theoretically equivalent to each other, meaning the existence of a one-to-one

map between the two sets of weak solutions obtained by using the two systems.

This important result does not, however, carry over to the case of multi-dimensional

flow, as shown in Chapter 8.

Computationally, Lagrangian method is superior to the Eulerian in that contact

discontinuities are sharply resolved in Lagrangian computation as they coincide

with the coordinate lines (cell interfaces) and hence avoid the cell averaging errors

across them, whereas contacts are badly smeared in Eulerian computation because

they do not align with the fixed Eulerian coordinates and hence errors arise due

to cell averaging across the contacts. We shall show that Lagrangian computation

can be further improved by using the shock adaptive Godunov scheme to replace

the classical Godunov scheme.

4.2 Shock-Adaptive Godunov Scheme

As we pointed out earlier, the only source of error in the Godunov scheme arises

from averaging the conservative flow quantities over a computational cell when

representing the flow in all cells by piecewise constant states. To minimize this

error, we distinguish three cases.

(1) In smooth flow regions, the error due to cell averaging is small and can be
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reduced by using a high resolution schemes, e.g., FCT[3], MUSCL[4], ENO[5], or

WENO[6] etc..

(2) On crossing a contact discontinuity the error is large, as in Eulerian com-

putation. However, it is minimized using Lagrangian or the unified coordinates

(generalized Lagrangian). Since the contact coincides with the Lagrangian coordi-

nate line and hence with a cell interface, there is no error arising from averaging

across it.

(3) On crossing a shock discontinuity, we shall use the shock-adaptive Godunov

scheme to replace the classical Godunov scheme. In this new scheme, there also is

no error arising from averaging across the shock. This is described as follows[1, 7, 8].

The basic idea of the shock-adaptive Godunov scheme consists of splitting a

shock-cell, i.e., a computational cell containing a shock wave, along the trajectory

of the shock. The split shock-cell becomes two sub-cells: one entirely upstream of

the shock and the other entirely downstream. In this way, the cell averaging proce-

dure across the shock discontinuity, and the errors associated with it, are avoided,

resulting in infinite shock resolution. The fictitious cell boundary separating the

two sub-cells and moving through the regular mesh at the local speed of the shock

shall be called a partition. With this abstraction, the two sub-cells and the other

(regular) cells can be treated on an equal footing in the Godunov scheme (recall

that Godunov scheme applies to non-uniform cells as well as uniform ones).

The shock-adaptive Godunov scheme is complemented by a shock-cell splitting

criterion which triggers the splitting of a shock-cell in the presence of a shock in

the flow field. In the approach considered here, a shock-cell is split if the pressure

jump across an elementary shock wave, as obtained from the exact solution to the

Riemann problem, is larger than some critical shock strength threshold, say if

pu

pd
< δShock, 0 < δShock < 1, (4.9)

where the subscripts d and u refer to the downstream and upstream flow states,

respectively. This desirable self-adaptivity feature permits for the automatic de-

tection of a shock wave without a priori knowledge of its position nor its existence.

The value of δShock = 1 corresponds to splitting all cells along elementary

shock waves, whereas δShock = 0 corresponds to no splitting and the scheme sim-

ply reduces to the classical Godunov scheme. In our calculations, δShock = 0.6,
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corresponding to the entropy jump of 16%, was found to be satisfactory.

We note that the shock-adaptive Godunov scheme is, in effect, doing a shock

fitting in the overall shock-capturing environment, using the information from the

exact Riemann solution with no extra cost. We also note that a similar idea

was proposed in [9] for Eulerian computation. However, it did not work well (for

example, see [8]), due to convolution of averaging errors across a shock and those

across a contact. In Lagrangian computation, contact resolution is taken care of

by its alignment with cell interface, leaving only the shock resolution to be handled

by the shock- adaptive Godunov scheme.

4.3 The Use of Entropy Conservation Law for Smooth Flow

Computation

Now with the use of the shock-adaptive Godunov scheme in the Lagrangian coor-

dinates, the errors arising from averaging across both discontinuities—shocks and

contacts—are avoided, and the numerical computation of unsteady flow needs be

done only in the smooth flow regions. The utmost importance of the conserva-

tion form of the governing equations[10] for the correct capturing of shocks is no

longer necessary as shocks are now fitted exactly. It is therefore possible to freely

rewrite the governing equations in any other form that is advantageous for com-

puting smooth flow. For this purpose, an entropy-conserving reformulation of the

governing equations in the smooth flow region is proposed.

One motivation for the use of an alternative set of governing equations arises

from the desire to eliminate the overshoots commonly observed in Lagrangian com-

putation in the vicinity of contacts (see Refs. [1, 11], also Figures 4.3 and 4.9),

despite the fact that in the case U = u the flow quantities are not averaged across

a slip line. Another motivation is to compute entropy accurately.

Since the flow is isentropic along a path line in a smooth flow region, the energy

equation (the 3rd equations of (4.3) and (4.6)) can be replaced by the law of

conservation of entropy,
∂S

∂λ
= 0 (4.10)

along a path line, where S = p/ργ . Accordingly, (4.3) and (4.6) are simplified. For

example, (4.3) becomes
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∂

∂λ

⎛⎝ 1/ρ

u

p/ργ

⎞⎠+
∂

∂ξ

⎛⎝−u

p

0

⎞⎠ = 0. (4.11)

We caution that the law of conservation of entropy (4.10), and hence (4.11), ap-

plies only in regions of smooth flow, i.e., upstream and downstream of the shock.

Across a shock discontinuity, the exact entropy jump is imposed using the Riemann

solution.

To summarize, our UC method for 1-D flow computation consists of using

(1) the generalized Lagrangian coordinates given by (4.4), or its special case,

the classical Lagrangian coordinates given by (4.2);

(2) the shock-adaptive scheme in place of the classical Godunov scheme;

(3) Equations (4.11) instead of (4.3) for computing flow in the smooth flow

regions.

Accordingly, UC gives exact entropy everywhere, fits shocks exactly and resolves

contacts sharply. It will be shown in Section 4.5 that all the defects listed in Section

3.7, except the defect (7), can be cured or avoided by the UC method using the

classical Lagrangian coordinate plus shock adaptive Godunov scheme for (4.11).

To avoid the defect (7), which has a large variation of density, it is necessary to

use (4.6) (in place of (4.3) ) with its energy equation replaced by (4.10).

4.4 The Unified Computer Code

With the Riemann solution given in Appendix A, where we have used a parameter

h such as U = hu, and the shock-adaptive Godunov scheme explained in Section

4.2, we are now in the position to describe the numerical procedure.

A pseudo-particle in the physical space marching in the flow direction of a fluid

particle corresponds to a cell marching in the λ-direction in the computational

(λ, ξ) space. The superscript n refers to the marching time step number and the

subscript i refers to the cell index number on a time line λ = const..

The following steps describe the numerical procedure of the shock-adaptive

Godunov scheme upgraded by MUSCL. This scheme is applied only for U = u

(Lagrangian coordinates). By putting the shock-detection parameter δShock equal

to zero (no cells are splitted) the described scheme reduces to the classical Godunov-

MUSCL scheme, and it can then be applied for 0 U u.
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Step 1: initialization at λ0. Assume the initial conditions of a flow problem

are given at t = 0 (λ = 0) in the physical space. Then a ξ-coordinate mesh is laid

on the x line (for instance, we take ξ equal to x) with

ξ = ξ0, ξ1, ξ2, · · · , ξm. (4.12)

Hence the flow variables Q0
i = (p0

i , ρ
0
i , u

0
i , A

0
i )(i = 1, 2, · · · , m) are known as initial

conditions. Subsequently, E0
i are available for all i, i = 1, 2, · · · , m.

Step 2: construction of interface fluxes. With all En
i and Qn

i known at

step n (n = 0, 1, 2, · · ·), the Q data are first upgraded or reconstructed via MUSCL

procedure by nonlinear interpolation in the following way. Let f be any of the above

variables p, ρ, u or A, then in the cell i and i + 1, we assume linearly distributed

states in both cells, and use nonlinear extrapolation to determine cell interface flow

variables as follows:

fr = fi+1 − 0.5(fi+2 − fi+1)φ(r+), (4.13)

r+ =
fi+1 − fi

fi+2 − fi+1
, (4.14)

fl = fi + 0.5(fi − fi−1)φ(r−), (4.15)

r− =
fi+1 − fi

fi − fi−1
, (4.16)

where φ(r) = max(0, min(1, r)) is the minmod limiter and subscripts r and l corre-

spond to the right and the left state, respectively. We emphasize that the MUSCL

upgrading does not apply across shocks: the shocks are already captured exactly

by the shock-adaptive Godunov scheme based on the Lagrangian coordinates, there

is no room for further improvement by upgrading.

A local Riemann problem is solved at all cell interfaces, including partitions,

for all adjacent cell pairs i and i + 1. A Newton iterative method is employed (see

Use reference [12] of chapter 3) for finding the values of pressure p∗ and velocity

u∗ at the cell interface ξi+1/2. The numerical fluxes are obtained in the following.

Let us consider two cells, i and i + 1, with partition between them having the

slope
dξ

dλ
= σn

i+1/2 > 0(Figure 4.1) (The case σn
i+1/2 < 0 can be derived similarly).

Applying the divergence theorem to the cells i and i + 1, we obtain

Δξn+1
i En+1

i =Δξn
i En

i + σn
i+1/2 · Δλ · E∗

i+1/2
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−Δλ · (F (p∗i+1/2, u
∗
i+1/2) − F (p∗i−1/2, u

∗
i−1/2)), (4.17)

Δξn+1
i+1 En+1

i+1 =Δξn
i+1E

n
i+1 − σn

i+1/2 · Δλ · En
i+1

−Δλ · (F (p∗i+3/2, u
∗
i+3/2) − F (pn

i+1, u
n
i+1)), (4.18)

Figure 4.1 Computational cells i and i + 1 with

partition in between having slope σn
i+1/2

where E∗
i+1/2 is the averaged conserved flow state along the inner (downstream)

side of the shock having speed σn
i+1/2. Using Δξn+1

i = Δξn
i + σn

i+1/2 · Δλ and

Δξn+1
i+1 = Δξn

i+1 − σn
i+1/2 · Δλ, the above equations can be written in the form

En+1
i =En

i − Δλ

Δξn+1
i

(
F (p∗i+1/2, u

∗
i+1/2)

+σn
i+1/2 · (En

i − E∗
i+1/2) − F (p∗i−1/2, u

∗
i−1/2)

)
, (4.19)

En+1
i+1 =En

i+1 −
Δλ

Δξn+1
i+1

(
F (p∗i+3/2, u

∗
i+3/2) − F (pn

i+1, u
n
i+1)

)
, (4.20)

which reproduce the numerical fluxes

(�±)n
i =

{
F (pn

i , un
i ), ±σn

i±1/2 < 0,
F (p∗i±1/2, u

∗
i±1/2) + σn

i±1/2(E
n
i − E∗

i±1/2), ±σn
i±1/2 0

(4.21)

are evaluated at ξi±1/2, where σn
i±1/2 are the slopes dξ/dλ of the interface ξi±1/2 at

λn and E∗
i±1/2 is the averaged conserved flow state along the inner (downstream)

side of the shock relative to the shock-subcell being updated. The speeds σn
i±1/2

of the partitions are updated based on the speeds of the corresponding elemen-

tary shock waves in the local Riemann problems. The presence of a new shock is

tested at all cell interfaces. If the splitting criterion is satisfied, a new partition is

introduced to account for the incoming shock and the cell is split.

Step 3: determination of the step size Δλn. To satisfy the stability

condition of the scheme, the step size is determined as the minimum of the step
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sizes

Δλn =
CFL

max
i

{
|σn

i±1/2|
Δξi

} (4.22)

for the regular cells and

Δλn = min
i

{
Δξi

|σn
i+1/2| + |σn

i−1/2|

}
(4.23)

for the shock-subcells which represents the intersection point of the ± waves in the

shock-subcell, or equivalently, the intersection point of the incoming elementary

wave with the opposing cell interface, also an elementary wave.

For an elementary rarefaction wave, σn
i±1/2 is replaced by the speed of the

leading Mach line (fastest characteristic). For an elementary shock wave, σn
i±1/2

is replaced by the shock speed, since any disturbance propagating in the shock

direction is bounded by the shock, with the flow upstream of the shock being

undisturbed.

Step 4: advancement of the average cell states from λn to λn+1 =

λn + Δλn. The average states En+1
i for all non-terminating cells, with domain

{(λ, ξ) ∈ R2|λn < λ < λn+1, ξn
i−1/2 +σn

i−1/2(λ−λn) < ξ < ξn
i+1/2 +σn

i+1/2(λ−λn)}
(4.24)

are obtained at λn+1 using the difference equation

En+1
i = En

i − Δλn

Δξn+1
i

((�+)n
i − (�−)n

i ) (4.25)

with the composite fluxes given by (4.21). The cell width Δξn+1
i of a shock-subcell

is updated using

Δξn+1
i = Δξn

i + (σn
i+1/2 − σn

i−1/2)Δλn (4.26)

prior to advancing the conserved flow state. For a stationary coordinate contact

line, σn
i+1/2 = 0; for a partition, σn

i+1/2 = σn
Shock, as obtained from the solution

to the local Riemann problem. For a regular rectangular cell, the above difference

equation reduces to the familiar updating formula used in the classical Godunov

scheme.

Step 5: decoding to get Qn+1
i . The decode procedure is straightforward.

From the expression for E = (e1, e2, e3, e4)T, where e1 = ρA, e2 = ρAu, e3 = ρAe
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or e3 =
p

ργ
(for shock-adaptive Godunov scheme) and e4 = A, we have

u=
e2

e1
, (4.27)

ρ=
e1

e4
, (4.28)

p=

⎧⎪⎨⎪⎩
(

e3

e1
− u2

2

)
(γ − 1)ρ, U �= u,

e3 · ργ , U = u, for shock-adaptive Godunov scheme,
(4.29)

A=e4. (4.30)

Step 6: Elimination of the terminating shock-subcells at λn+1 (Only

for shock-adaptive Godunov scheme). The shock-subcells terminating at λn+1

are eliminated by removing the corresponding partitions and the upstream shock-

subcells. This renders the downstream subcell a regular cell at λn+1.

Step 7: Mapping results onto the physical space. To map results from

computational space onto the physical space, trapezoidal integration is applied to

get
xn+1

i = xn
i + 0.5 · Δλ · (Un

i + Un+1
i ). (4.31)

This step in the program is optional since the grid in the physical space does not

participate in the computation; all computations are carried out in the transformed

(λ, ξ) space. It is obvious that we will have some errors during mapping of compu-

tational results onto physical domain, but the errors are small as seen in the test

examples.

Now the numerical procedure for advancing one time step is completed. To

march forward further, one goes back to Step 2 and repeats Steps 2∼6.

A detailed computer code is given in Appendix B, where we have used a pa-

rameter h such that U = hu. It can be used to perform an Eulerian computation

by specifying h = 0, or classical Lagrangian computation by specifying h = 1 and

A = 1/ρ, or the UC computation. The code may also be used to do computer

experiments to see the effects of h on the flow.

4.5 Cure of Defects of Eulerian and Lagrangian Computa-

tion by the UC Method

We now explain how to use the UC method to cure, or avoid, the following defects

of the Eulerian computation:
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(1) Contact smearing;

(2) Slow moving shocks;

(3) Sonic point glitch;

(4) Start-up errors;

(5) Low pressure flow;

(6) Wall-overheating;

(7) Strong rarefaction waves.

Note that defects (4) to (7) are also shared in the classical Lagrangian compu-

tation.

To do the UC computation for cases (1)∼(6) it is adequate, as we shall do, to

use U = u and A = 1/ρ. For case (7), the density variation is great, and it is

necessary to use the coordinates given by (4.4) with U = u, while leaving A to be

determined as part of the solution. This allows us to have a uniform mesh initially

by specifying A = 1.0 at λ = 0.

4.5.1 Contact smearing

Figure 4.2 shows the Eulerian computation for the Riemann problem with initial

data,

(ρ, u, p) =
{

(5.9924, 19.5975, 460.894), 0 x < 1.0,

(5.99242,−6.19633, 46.0950), 1.0 x 2.0,
(4.32)

Figure 4.2 Contact smearing for Riemann problem (4.32): Eulerian computation

employing Godunov MUSCL method with minmod limiter

which consists of two shocks and a contact line in between, where ρ is density

and i internal energy. While the shocks are resolved to within 2 cells, which is
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a fortuitous fact due to characteristics converging to the shocks, the contact line

is badly smeared; the smearing actually increases with the number of marching

time steps. As pointed out earlier, the numerical smearing of the contact is due to

non-alignment of Eulerian coordinate line, x =const., with the contact line. It is

inherent in the Eulerian computation and cannot be substantially reduced, except

with artificial techniques which are not always reliable.

Figure 4.3 shows the classical Lagrangian computation. We see that the shock

resolution is similar to Eulerian computation, and that the contact is more sharply

resolved. We also note the overshoot (undershoot) near the contact.

Figure 4.4 shows the UC computation, i.e., classical Lagrangian plus shock

adaptive Godunov scheme and the use of equation (4.11). It reproduces the exact

analytic solution, as predicted.

Figure 4.3 Contact smearing for Riemann problem (4.32): Lagrangian computation

employing Godunov MUSCL method with minmod limiter

4.5.2 Slow moving shock

In computing an isolated shock, if the shock is slow-moving the disturbances due

to the shock is of low frequencies (long waves). The numerical dissipation near the

shock is small for slow-moving shocks and may not be sufficient to damp the long

waves down. The test case is the Riemann problem with the initial data,[12]

(ρ, u, p) =
{

(3.86, 0.0, 10.33), 0 x < 1.0,

(1.0,−2.63, 1.0), 1.0 x 2.0.
(4.33)
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Figure 4.4 Contact smearing for Riemann problem (4.32): UC computation employing

shock adaptive Godunov MUSCL method with minmod limiter

In these cases, the strong acoustic and entropy waves generated will give rise to

some oscillations in the pressure as well as density[12], where the shock speed is

0.11.

In the Lagrangian coordinates the speed of a shock wave is always greater (in

magnitude) than the characteristic speed, aρ, and hence the shock cannot be slow-

moving. Therefore, the errors due to slow-moving shocks that occur in Eulerian

computation will never occur in Lagrangian computation. This is clearly seen by

comparing the Lagrangian results in Figure 4.6 with the Eulerian ones in Figure

4.5 for the same flow problem. With UC method, both errors are eliminated, as

shown in Figure 4.7.

Figure 4.5 Slowly moving shock wave for Riemann problem (4.33): Eulerian

computation employing Godunov MUSCL method with minmod limiter
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Figure 4.6 Slowly moving shock wave for Riemann problem (4.33): Lagrangian

computation employing Godunov MUSCL method with minmod limiter

Figure 4.7 Slowly moving shock wave for Riemann problem (4.33): UC computation

employing shock adaptive Godunov MUSCL method with minmod limiter

4.5.3 Sonic point glitch

In Eulerian computation, many shock-capturing methods experience difficulties in

the resolution of rarefaction waves. We consider the Riemann problem from[12]

with initial data

(ρ, u, p) =
{

(1.0, 0.75, 1.0), 0 x < 1.0,

(0.125, 0.0, 0.1), 1.0 x 2.0.
(4.34)

Figure 4.8, which uses the first order Godunov method, shows a “glitch” in the

rarefaction waves region. This phenomenon is associated with the fact that at the

point where the “glitch” situates the flow is sonic, hence the characteristic velocity

for the genuinely nonlinear wave field is zero (see [13] and [14] for an explana-

tion). In Lagrangian computation, the corresponding characteristic velocities are
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aρ and −aρ, and will never become zero. Consequently, the sonic point glitch can

never occur in Lagrangian computation, as demonstrated in Figure 4.9 which was

computed using the same Godunov method but based on the Lagrangian equa-

tions. We note that contact overheating (see also 4.5.6 Wall-overheating below) is

greatly smeared in Eulerian computation (Figure 4.8), but is more pronounced in

Lagrangian computation (Figure 4.9). The overheating is completely eliminated

using UC method, as shown in Figure 4.10.

Figure 4.8 Sonic glitch test for Riemann problem (4.34): Eulerian computation

employing Godunov MUSCL method with minmod limiter

Figure 4.9 Sonic glitch test for Riemann problem (4.34): Lagrangian computation

employing Godunov MUSCL method with minmod limiter

4.5.4 Start-up errors[12]

Numerical errors are often observed in using conventional shock-capturing methods

to compute the propagation of an isolated shock, especially when the initial data

are chosen as a sharp discontinuity. These methods require averaging across a



58 Chapter 4 1-D Flow Computation Using the Unified Coordinates

Figure 4.10 Sonic glitch test for Riemann problem (4.34): UC computation employing

shock-adpative Godunov MUSCL method with minmod limiter

shock, leading to a smeared shock profile and, in the process, generating acoustic

and entropy waves. While acoustic waves dissipates quickly the entropy waves

remain observable.

This is again the same Riemann problem as the slowly moving shock test (4.33),

of an isolated shock, initially located at x = 1.0, moving at a speed equal to 0.92.

Eulerian computations are shown in Figure 4.11, whereas Lagrangian computations

are shown in Figure 4.12, both using the conventional Godunov-MUSCL shock-

capturing method. In both cases, the start-up errors occur in the form of entropy

waves in the density profile and in the entropy profile.

Figure 4.11 Start-uperror test for Riemann problem (4.33): Eulerian

computationemploying Godunov MUSCL method with minmod limiter

In our method, the shock is fitted using exact Riemann solution and is taken

to be a cell interface, avoiding cell-averaging across it. Consequently, the start-up

errors are avoided, as shown in Figure 4.13.
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Figure 4.12 Start-up error test for Riemann problem (4.33): Lagrangian computation

employing Godunov MUSCL method with minmod limiter

Figure 4.13 Start-up error test for Riemann problem (4.33): UC computation

employing Godunov MUSCL method with minmod limiter

4.5.5 Low pressure flow

A difficulty occurs in some shock-capturing methods with a linearized Riemann

solution that use conservation formulation[15]. In this formulation the total energy,

density and momentum are the conserved variables, but the pressure p is computed

from the total energy after subtracting the kinetic energy determined from the

momentum and density. In regions of high speed flow, the kinetic energy dominates

the internal energy and inaccuracies in the conserved quantities can easily lead to

the kinetic energy exceeding the total energy, causing computational breakdown in

the form of pressure being negative. It was shown in [15] that this will not happen

with the (first order) Godunov method for the Euler equations but can happen if

a linearized Riemann solution is used.
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The difficulty of negative pressure appearing will never happen in UC method

in which, for the smooth flow regions, pressure is determined from the constancy

of the entropy and the conserved quantity 1/ρ (see (4.11)), and can never become

negative. On crossing a shock, pressure is increased as determined by the exact

Riemann solution and cannot become negative either. Figure 4.14 shows the UC

computation for the expansion flow due to a piston withdrawing at speed equal to

5 from a gas at rest with a unit pressure and density. It is seen that even when

the flow near the piston is almost vacuum, e.g., the pressure is p = 1.6× 10−7, the

flow is computed without any difficulty.

Figure 4.14 Sudden expansion of a gas; UC computation (dots) compared with exact

solution (solid line) at t = 1.0

4.5.6 Wall-overheating

This notorious phenomenon of wall-overheating was first discovered by von

Neumann[16], and has since been a hot topic of research[12,17−28]. It is now realized[12]

that not only sudden compression of a gas due to shock reflection from a solid wall,

but also sudden expansion due to an abrupt withdrawal of a piston from the gas,

will produce this wall-overheating. Most conventional shock-capturing methods

in Eulerian or Lagrangian computation can accurately predict pressure and ve-
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locity in these situations, while under-predicting density, thus over-predicting the

temperature near the wall, hence the name.

Consider the well known Noh’s problem: the initial condition is a uniform

flow with velocity u = −1, density ρ = 1 and pressure p = 0 in a unit domain

0 < x < 1. This flow is reflected at time t = 0 from a solid wall situated at x = 0,

and we want to compute the flow after the reflection. Eulerian computations of

pressure, p velocty u, density ρ and i temperature T are shown in Figure 4.15,

whereas the corresponding, Lagrangian computations are shown in Figure 4.16,

both results are compared with the exact solutions. We see from these figures that

the conventional Godunov-MUSCL method in Eulerian or Lagrangian coordinates

predicts wall pressure and velocity correctly, but it fails to predict the density (and

hence also temperature and entropy) correctly near the wall. The failure is worse

in the Lagrangian computation. Figure 4.17 presents computational results for

the same problem using UC method, i.e., (4.11) with the shock-adaptive Godunov

scheme. The wall overheating is seen completely eliminated; indeed, the exact

solution is reproduced by our method.

Figure 4.15 Noh’s problem; Eulerian computation (dots) employing Godunov-MUSCL

scheme, compared with exact solution (solid line) at t = 0.6
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Figure 4.16 Noh’s problem; Lagrangian computation (dots) employing

Godunov-MUSCL scheme, compared with exact solution (solid line) at t = 0.6

Figure 4.17 Noh’s problem; UC computation (dots) employing shock-adaptive

Godunov-MUSCL scheme, compared with exact solution (solid line) at t = 0.6
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An example of sudden expansion is the flow resulting from an abrupt with-

drawal, at time t = 0, of a piston with a velocity u = −2 from the gas at rest

having pressure p = 1 and density ρ = 1. If a Eulerian mesh is used, this is a

moving boundary problem in that the piston position is not fixed with a mesh line,

and some special treatment must be applied in order to correctly satisfy the bound-

ary condition there. Such treatment would produce additional errors. In contrast,

there is no difficulty in Lagrangian mesh, and we shall present only Lagrangian

computations.

Figure 4.18 shows the computed results using Lagrangian method based on

the conservation form equations (4.3). The method is seen capable of predicting

the wall pressure and velocity (not shown here) correctly, but fails to predict the

wall density, temperature T and entropy S correctly. We note that this failure is

due to the inability of conventional shock-capturing methods to correctly simulate

the flow near the start of the motion. This flow near the start of the motion is

singular in nature. Therefore, spurious entropy is generated near the wall which

remains unchanged with mesh refinement[12]. This is expected, because the flow

near the start of the motion is a centered (rarefaction) waves which has no length

scale. Using UC method, i.e., shock-adaptive Godunov method applied to (4.11),

the wall overheating is completely eliminated while the whole flow field is correctly

predicted, as seen in Figure 4.19.

In both examples, the UC is seen to completely overcome the difficulties of wall-

overheating. We emphasize that the success of the UC method originates from the

use of the entropy conservation equation to replace the energy one[12].

4.5.7 Strong rarefaction waves

Recently, a new defect of conventional shock-capturing methods was found in [29]

due to the presence of strong rarefaction waves. The defect appears in Eulerian,

Lagrangian, and gas-kinetic computation. As an example, consider the Riemann

problem with initial data

(ρ, u, p) =
{

(1000.0, 0.0, 1000.0), 0 x < 0.3,

(1.0, 0.0, 1.0), 0.3 x 1.
(4.35)
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Figure 4.18 Sudden expansion of a gas; Lagrangian computation (dots) employing

Godunov-MUSCL scheme, compared with exact solution (solid line) at t = 1.0

Figure 4.19 Sudden expansion of a gas; UC computation (dots) employing shock-

adaptive Godunov-MUSCL scheme, compared with exact solution (solid line) at t=1.0
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As shown in Figure 4.20, even with 500 cells in one unit, there is still significant

error in the shock location. It is now realized[30] that this is due to the presence

of a strong rarefaction wave which affects the location and strength of the adja-

cent contact line which, in turn, affects the location of the shock front. The UC

method, again, can avoid this error as seen in Figure 4.21. We note that with

the presence of a strong rarefaction wave, the density variation is great. In such

a situation the classical Lagrangian method, which uses ∂x/∂ξ = 1/ρ, will give

large cell disparity and hence error. We use the UC based on the general equa-

tion (4.6) with the entropy equation (4.10) replacing the energy equation in (4.6).

Figure 4.20 Velocities calculated by MUSCL-LLF, MUSCL-ROE, gas-kinetic BGK and

5th-order WENO methods with 500 cells (Tang and Liu[29])

Figure 4.21 Velocities by the UC method with 500 cells



66 Chapter 4 1-D Flow Computation Using the Unified Coordinates

By putting A = 1 at λ = 0, we have a uniform mesh initially, and the difficulty with

large cell disparity is avoided. In this way, the UC is, again, completely satisfactory,

as shown in Figure 4.21.

4.6 Conclusions

From these examples, we conclude that for 1-D flow,

(1) Classical Lagrangian computation is superior to the Eulerian in its sharp

resolution of contact discontinuities. In this regard, we note with pleasant interest

that in the two seminal papers by Von Neumann[31] and by Godunov[32], the clas-

sical Lagrangian gas dynamics equations (4.3) were used, instead of their Eulerian

counterpart (4.1).

(2) The UC computation, with its use of shock-adaptive Godunov scheme in

place of the classical one, and with its use of the entropy conservation equation

in place of the energy conservation equation for smooth flow, is superior to both

Eulerian and Lagrangian computation.

(3) The UC computation is completely satisfactory for 1-D flow.

(4) The UC also applies to the system with real gas effect[33].
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Chapter 5

Comments on Current Methods for

Multi-Dimensional Flow Computation

5.1 Eulerian Computation

The chief advantage of Eulerian computation is that the control volumes, i.e.,

the cells, are fixed in space. This facilitates writing computer codes and, if we

discretize the integral equation (2.17), we automatically obtain a conservative nu-

merical scheme which ensures correct capturing of shocks.

A list of defects of Eulerian computation for 1-D flow has been given in Section

3.7. These carry over to 2-D and 3-D flow, too; the most serious of these is the

smearing of contact discontinuities. A good example is shown in Figure 5.1, where a

Riemann problem for 2-D steady supersonic flow is studied. The large numerical er-

ror around the contact line (slipline) (Figure 5.2) is seen to also affect the accuracy

of the smooth flow computation. As pointed out in Chapter 3, contact smear-

ing is inherent in Eulerian computation because, as in 1-D flow, it does not align

Figure 5.1 2-D steady Riemann problem: sketch
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itself to Eulerian coordinates. Figure 5.3 shows the classical Lagrangian computa-

tion. Figure 5.4 shows results from the unified coordinate computation (for detail,

see Chapter 9), which is completely satisfactory.

Figure 5.2 Density distribution in the 2-D steady Riemann problem; Eulerian

computation (Godunov-MUSCL)

Figure 5.3 Density distribution in the 2-D steady Riemann problem; Lagrangian

computation (Godunov-MUSCL)

Figure 5.4 Density distribution in the 2-D steady Riemann problem; UC computation

(Adaptive Godunov-MUSCL)

There are also defects that exist in multi-dimensional flows only. For exam-

ple, shock instability and carbuncle phenomena can appear for the high speed
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flow around a cylinder when the mesh is well aligned with the flow field[1]. The

main reason for this is due to special dissipative mechanism in the Godunov

method, where the cell averaging is the only source for the artificial dissipation[2].

Therefore, the anisotropy of the dissipative

property triggers the shock instabilities.

For example, a standard shock instability

(carbuncle) phenomena from Roe’s scheme

is shown in Figure 5.5. Even though it is

not totally conclusive at the current stage,

there are many explanations existing in the

literatures[3, 4]. For the UC method, due to

the freedom in imposing the mesh velocity

and the capability of shock fitting by mov-

ing the mesh, it may be possible to avoid

or reduce the carbuncle phenomena.

Figure 5.5 Shock instability[1]

Another serious drawback is that for computing flow past a body, which is the

central problem in CFD, a body-fitted mesh must be generated prior to computing

the flow field. But, mesh generation remains a tedious and time-consuming process,

even after more than three decades of research.

5.2 Lagrangian Computation

For 1-D flow, classical Lagrangian computation was shown in Chapter 4 to be

superior to the Eulerian. Its chief advantage is sharp resolution of contact discon-

tinuities, and this arises from the flow property that a contact line is a material

line and, therefore, aligns with a Lagrangian coordinate. This advantage carries

over to multi-dimensional flow also as seen in Figure 5.3.

However, for multi-dimensional flow, Lagrangian coordinate system has two

serious difficulties.

(1) Due to cell movement and deformation—both are unknown a priori—the

integral equation (2.16) could not be easily written in conservation PDE form. In-

deed, as late as 1999 D. Serre[5] stated that “Writing the equations of gas dynamics

in Lagrangian coordinates is very complicated if (dimension) D 2”. In this re-
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gard, 1-D flow is a fortuitous exception, see (4.3). This has serious consequences.

To begin with, lack of conservation PDE form has prevented Lagrangian scheme to

be a scheme on a moving mesh in Eulerian space; the design of such a scheme has

great historical importance as well as practical application, as pointed out in[6, 7].

Although (2.16) looks very similar to, and indeed simpler than, (2.8) in Eulerian

coordinates, the difficulty in using (2.16) as compared to (2.8) is that the control

volumes (cells) move and deform with the fluid velocity, which is unknown and

has to be determined as part of the solution. Therefore, without conservation form

PDE, additional computation procedure is needed to tract the movement and defor-

mation of the cells while using (2.16). This is usually done by employing staggered

meshes for the velocity which controls the mesh movement and deformation. But

switching between meshes requires interpolations of flow variables and geometries,

producing numerical diffusion.

(2) Computation may break down due to cell deformation. This is because a

Lagrangian computational cell is literally a fluid particle with finite size, no matter

how small, and hence deforms with the fluid. This is illustrated in Figure 5.6 for

a cylindrical explosion, where the computation breaks down after some finite time

t = 0.4, due to severe cell deformation. The break down is typically associated

with the appearance of negative pressure.

Figure 5.6 A typical Lagrangian mesh; Computation breaks down soon afterwards
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Great efforts have been spent in Lagrangian computation to prevent it from

breaking down by using special treatment; the Arbitrary-Lagrangian-Eulerian (ALE)

method represents such a successful treatment.

5.3 The ALE Computation

Early efforts to combine the advantages of both Lagrangian and Eulerian systems

have resulted in the famous Particle-in-Cell method[8, 9] and the Marker-and-Cell

method[10−13].The highly original idea of Harlow developed in the Particle-in-Cell

method of separating a computational cycle into a Lagrangian phase plus a convec-

tive, or remap/rezone, phase has been widely used in many hydrodynamic computer

codes, in particular, in the celebrated ALE code[14−19].

In this method a computational cycle consists of a computation phase in La-

grangian space followed by a remap/rezone phase to the Eulerian or ALE space.

In the Lagrangian phase, it has the advantages as well as the drawbacks of the

Lagrangian computation mentioned above, namely, it resolves contact discontinu-

ities sharply but, due to the lack of conservation PDE form, it uses staggered

meshes and hence produces numerical diffusion arising from switching between

the meshes. Moreover, numerical diffusion is also introduced in the remap/rezone

phase of the computation, because it too requires interpolations of the flow variables

and of geometries. Indeed, it was demonstrated by Hall[20] that rezoning results

in the type of errors encountered in Eulerian solutions and that with continu-

ous remapping/rezoning, ALE computation is equivalent to Eulerian computation.

The remap/rezone phase is, however, needed in order to prevent computational

breakdown.

While ALE has achieved greatly in resolving contact discontinuities, an impor-

tant phase of its computation—the remap/rezone phase—requires the intervention

of the user[18], although new ideas have recently been proposed[19] to avoid it.

5.4 Moving Mesh Methods

In methods of this type, meshes are re-distributed statically, or moved dynami-

cally, according to flow properties so as to increase computational accuracy and

efficiency. These typically require solution to an elliptic equation at every step
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of the re-distribution or movement. Many moving mesh methods have been

developed[21−33].

To account for the effects of re-distribution and movement of the mesh, it is

necessary to have one or more space (or geometric) conservation equations, which

are either derived mathematically or given intuitively, in addition to the physi-

cal conservation laws. While these may be necessary condition(s), it is not cer-

tain whether the effects due to mesh movement on the flow are fully taken into

account.

In a recent paper[34], another defect of moving mesh methods has been found

that in a supersonic flow past a blunt nosed airfoil, although mesh re-distribution

may increase the shock resolution, the accuracies for some integral physical prop-

erties, e.g., lift and drag, can decrease.

Most above moving mesh methods are static ones, where the mesh is re-generated

according to an elliptic solver within every or several time steps. Another type of

moving mesh methods, which have the similarity with the Lagrangian method,

are called dynamic ones. There is a defined governing equation to determine the

mesh moving velocity and the original governing equations are transformed into

the computational space, such as coordinate transformation or mapping. Many

applications for the dynamic moving mesh methods are those related to the scalar

equations with the development of possible singularities[35−39], but are not imme-

diately applicable to the Euler equations of gas dynamics. In engineering, moving

mesh methods have also been successfully developed for the problems with moving

boundaries and interfaces[40, 41].

5.5 Optimal Coordinates

We see from the discussions above, each of the different coordinate systems have

advantages as well as drawbacks, and they tend to be complementary. We should

thus try to find, or construct, an “optimal” system of coordinates.

For compressible flow, we want such a system to possess the following desirable

properties:

(1) Conservation form PDE exists, as in Eulerian system;

(2) Contact discontinuities are sharply resolved, as in Lagrangian system;
(3) Body-fitted mesh can be generated automatically, and, if possible, we may
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also wish our system to be orthogonal and uniform. It is the aim of this book to
show that the unified coordinate system possesses these desirable properties.
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Chapter 6

The Unified Coordinates Formulation of

CFD

6.1 Hui Transformation

We introduce arbitrary coordinates (λ, ξ, η, ζ) via a transformation from Cartesian

(t, x, y, z) as follows: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dt = dλ,

dx = Udλ + Adξ + Ldη + Pdζ,

dy = V dλ + Bdξ + Mdη + Qdζ,

dz = Wdλ + Cdξ + Ndη + Rdζ.

(6.1)

From (6.1), we get

DQ

Dt

⎛⎜⎝ ξ

η

ζ

⎞⎟⎠ = 0, (6.2)

where DQ/Dt = ∂/∂t + Q · ∇x. So the coordinates (ξ, η, ζ), and hence the com-

putational cells, move with the pseudo-particle whose velocity is Q = (U, V, W ).

The above coordinate system includes two important special cases: Eulerian

when Q = 0 and Lagrangian when Q = q, q being the fluid velocity. In the

general case, we have a coordinate system with three degrees of freedom: U, V and

W are arbitrary.

Special cases: For 1-D flow, (6.1) reduces to{
dt = dλ,

dx = Udλ + Adξ,
(6.3)

which is identical to (4.4). For 2-D steady flow, (6.1) reduces to{
dx = Udλ + Adξ,

dy = V dλ + Bdξ.
(6.4)
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For 2-D unsteady flow, (6.1) reduces to⎧⎨⎩
dt = dλ,

dx = Udλ + Adξ + Ldη,

dy = V dλ + Bdξ + Mdη.

(6.5)

For 3-D steady flow, (6.1) reduces to⎧⎨⎩
dx = Udλ + Adξ + Ldη,

dy = V dλ + Bdξ + Mdη,

dz = Wdλ + Cdξ + Ndη.

(6.6)

6.2 Geometric Conservation Laws

Whereas the mesh velocity (U, V, W ) is arbitrary, the nine coefficients A, B, C, · · · , R
in transformation (6.1) are not arbitrary, but must satisfy a set of compatibility

conditions for dx, dy and dz to be total differentials. These conditions are⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂A

∂λ
=

∂U

∂ξ
,

∂L

∂λ
=

∂U

∂η
,

∂P

∂λ
=

∂U

∂ζ
,

∂B

∂λ
=

∂V

∂ξ
,

∂M

∂λ
=

∂V

∂η
,

∂Q

∂λ
=

∂V

∂ζ
,

∂C

∂λ
=

∂W

∂ξ
,

∂N

∂λ
=

∂W

∂η
,

∂R

∂λ
=

∂W

∂ζ
.

(6.7)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂A

∂η
=

∂L

∂ξ
,

∂A

∂ζ
=

∂P

∂ξ
,

∂L

∂ζ
=

∂P

∂η
,

∂B

∂η
=

∂M

∂ξ
,

∂B

∂ζ
=

∂Q

∂ξ
,

∂M

∂ζ
=

∂Q

∂η
,

∂C

∂η
=

∂N

∂ξ
,

∂C

∂ζ
=

∂R

∂ξ
,

∂N

∂ζ
=

∂R

∂η
.

(6.8)

We note that of the eighteen conditions in (6.7) and (6.8), only nine of them are

independent. We shall take the first nine conditions in (6.7), which all involve

λ-derivative and are called time-evolution, to be the independent conditions; the

remaining nine in (6.8), are called free divergence constraints and hold for all time

provided they hold initially. Equations (6.7) are also called geometric conservation

laws.

6.3 Derivation of Governing Equations in Conservation Form

Consider conservation of mass equation, which can be written as
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0=
∂ρ

∂t
+

∂(ρuj)
∂xj

(j = 1, 2, 3)

=
∂(ρuα)
∂xα

(α = 0, 1, 2, 3, x0 = t, u0 = 1) (6.9)

=
∮

∂Ω

ρuαd̂xα,

after using Gauss divergence theorem. Here x0 = t, u0 = 1, Ω is any control volume

and the summation convention has been used.

We define ⎧⎪⎪⎪⎨⎪⎪⎪⎩
d̂x0 = dx1dx2dx3,

d̂x1 = −dx2dx3dx0,

d̂x2 = dx3dx0dx1,

d̂x3 = −dx0dx1dx2

(6.10)

and similarly for d̂ξβ . We further define⎧⎪⎪⎨⎪⎪⎩
x̂0 = (x1, x2, x3),
x̂1 = (x2, x3, x0),
x̂2 = (x3, x0, x1),
x̂3 = (x0, x1, x2)

(6.11)

and similarly for ξ̂β . Then from the transformation we get

d̂xα = Uαβ d̂ξβ , (6.12)

where ξ0 = λ, ξ1 = ξ, ξ2 = η, ξ3 = ζ and

Uαβ =
∂x̂α

∂ξ̂β

. (6.13)

Hence,

0 =
∮

∂Ω

ρuαd̂xα =
∮

∂Ω

ρuαUαβd̂ξβ . (6.14)

Using Gauss divergence theorem, we get

∂Kβ

∂ξβ
= 0, (6.15)

where

Kβ = ρuαUαβ. (6.16)

(6.15) is the mass equation written in conservation form in the arbitrary co-

ordinate system. We can similarly derive the momentum and energy equation in

conservation PDE form.
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To summarize, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂(ρuα)
∂xα

= 0, α = 0, 1, 2, 3,

∂(ρujuα)
∂xα

+
∂p

∂xj
= 0, j = 1, 2, 3,

∂(ρuαH)
∂xα

− ∂p

∂x0
= 0

(6.17)

in the Cartesian coordinates, and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Kβ

∂ξβ
= 0, β = 0, 1, 2, 3,

∂(Kβuj + pUjβ)
∂ξβ

= 0, j = 1, 2, 3,

∂(KβH − pU0β)
∂ξβ

= 0

(6.18)

in arbitrary coordinates. Here H = e + p/ρ.

The physical laws are now written in conservation PDE form (6.18) in arbitrary

coordinates, including the Lagrangian. However, (6.18) is not a closed system,

because it contains (through Uαβ ) new unknowns: the coefficients A, B, C, · · · , R
in the transformation (6.1) . Although unknown, these coefficients are nevertheless

related to the mesh velocity (U, V, W ) via the compatibility conditions (6.7). To

have a system of PDE that is closed and in conservation form it is, therefore,

necessary and sufficient to append the time evolution equations (6.7) to the physical

conservation laws (6.18). (6.7) are called geometric conservation laws (GCL). In

this regard, Eulerian coordinates represent a degenerate case in that the geometric

conservation laws reduce to triviality, and the physical conservation laws alone

suffice as a closed system.

We conclude that (6.18) and (6.7) form a closed system of fourteen conservation

PDE, containing fourteen unknowns: ρ, p, q, A, B, C, · · · , R (the mesh velocities

(U, V, W ) in these equations will be given in Chapter 7). These are

this explains why, as pointed out in Section 5.2, with Lagrangian coordinates, the physical

laws alone cannot be written in closed conservation PDE form; the 1-D case (4.3) is just a

fortuitous exception.
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∂ρΔ
∂λ

+
∂(ρX)

∂ξ
+

∂(ρY )
∂η

+
∂(ρZ)

∂ζ
= 0,

∂ρΔqj

∂λ
+

∂(ρXqj + pJ1)
∂ξ

+
∂(ρY qj + pJ2)

∂η
+

∂(ρZqj + pJ3)
∂ζ

= 0,

j = 1, 2, 3,

∂ρΔe

∂λ
+

∂(ρXe + pJ1 · q)
∂ξ

+
∂(ρY e + pJ2 · q)

∂η
+

∂(ρZe + pJ3 · q)
∂ζ

= 0,

j = 1, 2, 3,

∂A

∂λ
=

∂U

∂ξ
,

∂L

∂λ
=

∂U

∂η
,

∂P

∂λ
=

∂U

∂ζ
,

∂B

∂λ
=

∂V

∂ξ
,

∂M

∂λ
=

∂V

∂η
,

∂Q

∂λ
=

∂V

∂ζ
,

∂C

∂λ
=

∂W

∂ξ
,

∂N

∂λ
=

∂W

∂η
,

∂R

∂λ
=

∂W

∂ζ
.

(6.19)

Here X = (q − Q) · J1, Y = (q − Q) · J2, Z = (q − Q) · J3 and⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

J1 =

⎛⎝MR − NQ

NP − LR

LQ − MP

⎞⎠ , J2 =

⎛⎝CQ − BR

AR − CP

BP − AQ

⎞⎠ ,

J3 =

⎛⎝BN − CM

CL − AN

AM − BL

⎞⎠ , Δ =

∣∣∣∣∣∣
A L P

B M Q

C N R

∣∣∣∣∣∣ .
(6.20)

We remark that the 14-equation system in arbitrary coordinates (6.19) appears

to be much larger than the 5-equation system in Eulerian coordinates (6.17), but

the eigenvalues corresponding to the additional nine equations—the geometric con-

servation laws—are found to be equal to zero (multiplicity 9), giving rise only to

new linearly degenerated waves and no new nonlinear waves (shocks, rarefaction
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waves, etc.). Details of these eigenvalues and their corresponding eigenvectors are

given in [1] for 2-D flow and in [2] for 3-D flow. Therefore, system (6.19) does

not generate spurious nonlinear waves that are not in the original system (6.17).

Computationally (see Chapter 10 for details), the physical conservation laws are

first solved, keeping the geometric variables (A, B, C, · · · , R) fixed, then the mesh

velocity (U, V, W ) are computed, and finally the geometric variables are updated

using the geometric conservation laws alone. In this way, even the additional lin-

early degenerated waves do not appear (see [1, 2]). It is also interesting to observe

that in the important special case of Lagrangian coordinates when Q = q, the

linearly degenerated wave corresponding to the zero eigenvalue is not new but is

already in the original system.

As to computing time requirement, the bulk of it is spent on solving the physical

conservation laws, which is the same as in Eulerian computation. Additional time

used in updating the geometric conservation laws adds about 3% to the total,

while additional time used to compute the mesh velocity (U, V, W ) adds another

5% ∼ 10%, depending on the problems at hand.

In the special case of 2-D flow, the system of governing equations (6.19) simpli-

fies to
∂E

∂λ
+

∂F

∂ξ
+

∂G

∂η
= 0, (6.21)

where

E =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρΔ
ρΔu

ρΔv

ρΔe

A

B

L

M

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρX

ρXu + pM

ρXv − pL

ρXe + p(uM − vL)
−U

−V

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρY

ρY u − pB

ρY v + pA

ρY e + p(vA − uB)
0
0

−U

−V

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.22)

with Δ = AM−BL, X = (q−Q)·J1 = (u−U)M−(v−V )L and Y = (q−Q)·J 2 =

(v − V )A − (u − U)B, where J1 = (M,−L)T and J2 = (−B, A)T. Here X and

Y are the components of the relative velocity in the ∇ξ and ∇η directions with

the length of the boundaries. The first four equations in (6.22) are the physical

conservation laws and the last four the geometric conservation laws.



References 85

References

[1] W.H. Hui, P.Y. Li and Z.W. Li. A unified coordinate system for solving the two-

dimensional Euler equations. J. Comput. Phys., 153: 596-637, 1999.

[2] W.H. Hui and S. Kudriakov. A unified coordinate system for solving the three-

dimensional Euler equations. J. Comput. Phys., 172: 235-260, 2001.



Chapter 7

Properties of the Unified Coordinates

We shall call the system of coordinates (λ, ξ, η, ζ) defined in (6.1) unified in the

sense that it unifies the Eulerian system when Q = 0 with the Lagrangian when

Q = q, and also in the sense that the system of governing equations (6.19) unites

the geometrical conservation laws with the physical ones to form a closed system

of PDE in conservation form.

7.1 Relation to Eulerian Computation

The Eulerian computation is a special case of the unified coordinate (UC) approach

by assigning Q = 0, which makes the system simple. Since the UC system is in a

conservative form, it may be regarded as a moving mesh method in the Eulerian

space. As such, UC has advantages over the Eulerian system in the following

aspects: The mesh velocity can be chosen to make the mesh align with the

contact line or contact surface, see Section 7.4. The UC formulation naturally

provides a foundation for mesh generation, where the mesh velocity can be used

in this process. By properly choosing mesh velocity Q, UC can handle the

interaction problems between flow and solid at ease (see example 4 in Section

12.5).

7.2 Relation to Classical Lagrangian Coordinates

We shall now prescribe conditions to be satisfied by the mesh velocity (U, V, W ) so

as to give the unified coordinates additional useful properties.

For 1-D flow, we require the coordinate ξ in (6.3) to be a material coordinate,

i.e.,
Dqξ

Dt
= 0, (7.1)

hence U = u but A is arbitrary. This includes the classical Lagrangian coordinate
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as a special case when U = u and A = 1/ρ, or, we may say that the unified

coordinate is a generalization of the Lagrangian one in that the coefficient A in

(6.3) is arbitrary rather than equal to 1/ρ.

We also use shock-adaptive Godunov scheme to replace the classical Godunov

scheme and the entropy conservation equation to replace the energy conservation

equation for computing smooth flow, as explained in Chapter 4.

For 2-D flow, we require a coordinate in (6.5), ξ say, to be a material coordinate,

i.e.,
Dqξ

Dt
= 0, (7.2)

plus a mesh angle-preserving (or Jacobian-preserving) condition to jointly deter-

mine the mesh velocity (U, V ).

For 3-D flow, we require two coordinates in (6.1), ξ and η, to be material

coordinates, i.e.,

Dqξ

Dt
= 0,

Dqη

Dt
= 0, (7.3)

plus a mesh skewness-preserving (or Jacobian-preserving) condition to jointly de-

termine the mesh velocity (U, V, W ).

We see from above that the unified coordinates can be regarded as a generaliza-

tion of the classical Lagrangian coodinates, which requires all coordinates (ξ, η, ζ)

to be material coordinates. By requiring only one of the two coordinates in 2-D

flow, and only two of the three coordinates in 3-D, to be material the UC already

possesses the most important advantage of Lagrangian system: sharp resolution

of contact discontinuities (see Sections 7.4 and 7.5). To require the remaining

coordinate also to be material would then inherit the defect of Lagrangian coordi-

nates: computation breakdown due to cell deformation with the fluid. Instead, we

choose the remaining coordinate in such a way as to preserve the mesh angles (and

hence also mesh orthogonality) in 2-D or to preserve mesh-skewness in 3-D, thus

preventing computation breakdown.

7.3 Relation to Arbitrary-Lagrangian-Eulerian Computation

The unified coordinates approach shares the same spirit of the Arbitrary-Lagrangian-

Eulerian (ALE) approach in that it combines the best features of the Lagrangian
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and Eulerian approach[1], or in that the coordinates move at an arbitrary velocity[2].

However, the strategies are quite different. In the ALE approach, “the general

strategy is to perform a Lagrangian time step and to follow it with a re-map step

that maps the solution from the distorted Lagrangian mesh on to the spatially

fixed Eulerian mesh or the ALE mesh”[1, 2]. This is usually done by employing a

staggered mesh. Furthermore, the rezoning/remapping strategies are not generally

prescribed; instead, “rezoning requires the intervention of the user, · · ·, and the suc-

cess of the method depends heavily on the skill and patience of the user”[2]. In our

UC approach we propose a specific rule for mesh movement (see Sections 7.4, 7.5

and 7.8 below), and in our method all computations are done entirely in the trans-

formed space without a staggered mesh and with no explicit rezoning/remapping

to the Eulerian or ALE space; explicit re-mapping causes numerical diffusion.

7.4 Contact Resolution

We now explain in this and the next section how to determine the mesh velocity

so as to get sharp resolution of contacts. Consider the 2-D case first. In this case

there are two arbitrary functions, U and V , and we can prescribe two requirements.

The first requirement is that coordinate η shall be a material coordinate, meaning

Dqη

Dt
= 0. (7.4)

Together with DQη/Dt = 0 in (6.2), we get

Y = (v − V )A − (u − U)B = 0. (7.5)

We observe that contact lines, being material lines, must coincide with coor-

dinate lines and, therefore, can be resolved sharply. Moreover, a material inter-

face (including a free surface) corresponds to η =const. and thus can be resolved

sharply.

7.5 Mesh Orthogonality

The second requirement is that mesh angles, and hence mesh orthogonality, shall

be preserved during the λ-marching computation. This means

∂

∂λ
arccos

( ∇ξ · ∇η

|∇ξ||∇η|
)

=
∂

∂λ
arccos

(
AL + BM√

A2 + B2
√

L2 + M2

)
= 0, (7.6)
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which, after expressing V in terms of U from (7.5) and using the geometric conser-

vation laws of (6.19), yields an ODE for U

∂U

∂η
+ P (η; λ, ξ)U = Q(η; λ, ξ), (7.7)

U(η; λ, ξ) = U0(λ, ξ) at η = η0, (7.8)

where U0(λ, ξ) can be prescribed arbitrarily, and

P (η; λ, ξ) =
S2

T 2Δ

(
A

∂B

∂ξ
− B

∂A

∂ξ

)
− L

AΔ

(
A

∂B

∂η
− B

∂A

∂η

)
,

Q(η; λ, ξ) =
S2A

T 2Δ

(
B

∂u

∂ξ
− A

∂v

∂ξ

)
+

L

Δ

(
A

∂v

∂η
− B

∂u

∂η

)
+ uP (η; λ, ξ)

with

Δ = AM − BL, S2 = L2 + M2, T 2 = A2 + B2.

We note that the mesh-angle preserving condition is not unique, but can be

replaced by any reasonable condition, e.g., preserving the Jacobian Δ, which would

be particularly suitable for incompressible flow computation.

Remark (1) Condition (7.4) alone inherits the advantages of Lagrangian co-

ordinates: sharp resolution of contacts. If we further require

Dqξ

Dt
= 0, (7.9)

then the coordinates (ξ, η) are Lagrangian and computation may break down due

to large cell deformation. This can be prevented by the mesh-angle preserving

condition (7.7), or by the Jacobian-preserving condition. The UC system may be

regarded as a generalization of the Lagrangian system in that we retain only one

condition of Lagrangianess (7.4), while abandoning the other one (7.9) in favor of a

mesh-angle preserving condition, or Jacobian preserving condition. The same may

be said about the 3-D case (see remark (2) below).

(2) In the case of 3-D flow, there are three arbitrary functions U, V and W , so we

should prescribe three requirements: We want η and ζ to be material coordinates,

meaning
Dqη

Dt
= 0 (7.10)

and
Dqζ

Dt
= 0. (7.11)
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(7.10) and the second equation of (6.2) combine to give

Y = (q − Q) · J2 = 0. (7.12)

Similarly, (7.11) and the third equation of (6.2) combine to give

Z = (q − Q) · J3 = 0. (7.13)

As the third condition, we require that the mesh skewness

κ =
|A| · |L| · |P |
A × L · P − 1 =

{
0, orthogonal,
∞, degenerate

(7.14)

be preserved during the λ-marching computation[3]. Here A = (A, B, C)T, L =

(L, M, N)T and P = (P, Q, R)T. This condition is

∂κ

∂λ
= 0. (7.15)

It might seem a possible alternative (to the three conditions (7.10), (7.11) and

(7.15)) to use (7.10) and to preserve the two mesh angles during the λ- marching

computation. This would then have the desirable effect that mesh orthogonality

can also be preserved for 3-D flow (as in the 2-D case) when the mesh is initially

orthogonal. However, this is impossible in general, because it would contradict a

theorem of [4] (see also Section 9.5) that for steady flow past a body, orthogonal

body-fitted mesh is possible if and only if the flow belongs to a special class called

complex-lamellar[5], for which q · ∇× q ≡ 0. We also note that, as in the 2-D case,

the condition of mesh skewness-preserving can be replaced by that of Jacobian-

preserving.

7.6 Unified Coordinates for Steady Flow

In the special case of steady flow, (7.10) and (7.11) become q·∇η = 0 and q·∇ζ = 0.

Hence, fluid velocity vector q lies in the direction of the intersection line between

the surfaces η(x, y, z) =const. and ζ(x, y, z) =const.. At the same time, the second

and the third equations of (6.2) also become Q ·∇η = 0 and Q ·∇ζ = 0, and hence

the mesh velocity vector Q must lie along the same intersection line. Therefore,

Q = hq, (7.16)
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where h can be an arbitrary function. This means the unified coordinates move in

the direction of fluid velocity but not with its speed, in contrast to the Lagrangian

coordinates which move with the fluid both in its direction and speed. This special

case of the UC will be studied in details in Chapter 9.

7.7 Effects of Mesh Movement on the Flow

In Sections 7.4∼7.6, we paid emphasis on sharp resolution of contacts. On the

other hand, if contact resolution is not an important issue, as in some applications,

there is no need to require any of the coordinates in UC to be material. In such

cases we can freely choose the mesh velocity (U, V, W ) to our benefits and regard

the UC as a moving mesh method. As such, it distinguishes from existing moving

mesh methods in that the effects of mesh movement on the flow are now fully

accounted for through the geometric conservation laws which, together with the

physical conservation laws, form a closed system of PDE in conservation form

(equation (6.19)). An example is given in Chapter 12.

7.8 Relation to Other Moving Mesh Methods

For the numerical solution of partial differential equations, the adaptive or mov-

ing mesh methods can be roughly divided into two categories, i.e., the static and

dynamic ones. For the static method, a new mesh is generated according to some

monitor function after every or several time steps in the calculation and all flow

variables are interpolated to the new mesh at a fixed time. By contrast, the UC

uses only one mesh, and therefore does not need interpolation of flow variables and

geometries between two meshes.

For the dynamic moving mesh methods, a mesh equation that involves mesh

velocity is employed to move a mesh within each time step in such a way that the

mesh becomes concentrated in regions of rapid variation of the solution. At the

same time, the original governing equations are transformed into the the moving

mesh space. In this regard, the dynamic moving mesh method is closely related

to the UC method, even though they are targeting on the different equations. For

example, the dynamic moving mesh method is mostly used for the scalar equations,

and the UC method is solely solving the fluid system.
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The mesh equation and the original differential equation are solved simultane-

ously for the dynamic moving mesh method. The moving finite element method[6]

and moving finite difference method[7] have aroused considerable interest. Other

representative research in this aspect is the work by Russell, Huang, et al[8−9].

Different from the UC method, the mesh movement in this approach is usually

based on the error measure or error equi-distribution principle for the determina-

tion of moving mesh equation[11−15]. But, even with so many years research, it is

still surprisingly difficult to describe consistently reliable moving mesh equations.

In 1-D case, in order to keep the equal-partition of the mesh, one of the criterion

of the moving mesh method is to keep M∂x/∂ξ as a constant, where M is the

monitor function to determine the distribution of the mesh. Therefore, we have

∂

∂ξ

(
M∂x

∂ξ

)
= 0. (7.17)

In order to determine the mesh movement, we can make a time derivative to the

above equation,
∂

∂λ

[
∂

∂ξ

(
M∂x

∂ξ

)]
= 0,

from which the mesh velocity can be obtained implicitly,

∂2

∂ξ2
(MU) = − ∂

∂ξ

(
∂M
∂λ

∂x

∂ξ

)
,

where U = ∂x/∂λ is the mesh velocity and A = ∂x/∂ξ. With similar consideration

and the introduction of a relaxation time τ to determine the time scale to settle

down the optimal mesh with equal-distribution, a series of moving mesh velocity

equations have been obtained, such as

∂

∂ξ

(
M∂U

∂ξ

)
= −1

τ

∂

∂ξ
(MA),

U =
1
τ

∂

∂ξ

∂

∂ξ
(MA). (7.18)

In principle, the UC method can adapt the above moving mesh equation as well

in the determination of the mesh velocity U . In other words, the UC approach

can be unified with the above dynamic moving mesh method. Based on the trans-

formation between (t, x) and (λ, ξ) space in the UC approach, the compatibility

condition (geometrical conservation laws) is given explicitly. However, for the dy-

namic moving mesh method, there is no distinction between the difference t and λ,
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and the geometrical conservation law is implicitly satisfied for the scalar equation

in 1-D case. But, solely designing a mesh velocity without explicitly conservation

forms and geometrical conservation laws will meet great barriers in its development

and applications for multidimensional fluid system.

Even though the above moving mesh methods cannot be applicable to gas

dynamic equations, the definition of mesh velocity may become a supplement to

the Lagrangian gas dynamics and be implemented in the UC system. For example,

(7.18) is more likely to define a diffusive mesh velocity associated to the elliptic

system, which can be used to prevent the mesh deformation. Therefore, with proper

choice of the monitor function M, and construct the diffusive mesh velocity in 2-D,

such as

Ud =
1
τ

∂2

∂ξ2
(MA), Vd =

1
τ

∂2

∂η2
(MM)

with M = ∂y/∂η, we can define a generalized Lagrangian type mesh velocity

U = u + Ud, V = v + Vd,

which not only follow the fluid velocity, but also adjust itself to smoothing the

mesh irregularity. A recent study of moving mesh method with dissipative mesh

velocity is presented in [16].

7.9 Relation to Mesh Generation and the Level-Set Function

Method

The UC system can also be used in other frameworks, such as automatic mesh

generation and implementation of level set function. As the body surface is a

material surface, condition (7.5) guarantees that the mesh in UC is automatically

a body-fitted mesh at all time. This provides the foundation for automatic mesh

generation (see Section 10.2 for implementation details).

The function η(x, y, t) given by (7.4) is a level set function, hence there is no

need to introduce an extra level set function when using the level set method.
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Chapter 8

Lagrangian Gas Dynamics

8.1 Lagrangian Gas Dynamics Equations

For simplicity we consider 2-D flow, when (6.1) simplifies to⎧⎨⎩
dt = dλ,

dx = Udλ + Adξ + Ldη,

dy = V dλ + Bdξ + Mdη,

(8.1)

the governing equations (6.19) also reduce to (6.21). In the special case of La-

grangian coordinates, (6.21) simplifies to
∂E

∂λ
+

∂F

∂ξ
+

∂G

∂η
= 0, (8.2)

E =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρΔ
ρΔu

ρΔv

ρΔe

A

B

L

M

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
pM

−pL

p(uM − vL)
−u

−v

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−pB

pA

p(vA − uB)
0
0
−u

−v

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (8.3)

The first four equations of (8.3) are the physical conservation laws and the last four

are the geometric conservation laws.

We remark that this system of Lagrangian gas dynamics equations (8.2) in

conservation PDE form was given for the first time for 2-D flow in [1], and

for 3-D flow in [2]. It is this conservation form PDE that guarentees that shocks

can be captured correctly and provides a foundation for designing schemes that

are moving mesh schemes in Eulerian space. Indeed, the first such scheme has

just been proposed by Despres and Mazeran[3], who ingeniously incorporate the

remaining compatibility conditions
∂A

∂η
=

∂L

∂ξ
,

∂B

∂η
=

∂M

∂ξ
(8.4)
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to rewrite (8.2) into a canonical form.

8.2 Weak Hyperbolicity

Whereas system (6.21) is strongly hyperbolic like the Eulerian case, the Lagrangian

system (8.2) is found in [1] to be only weakly hyperbolic, meaning that while all

eight eigenvalues are real, there does not exist a complete set of eight linearly

independent eigenvectors. This finding is also confirmed in [3].

Since this finding is quite striking, it is necessary here to say more about the

eigen-systems of (8.2). To study the hyperbolicity of (8.2), we rewrite it as

A
∂U

∂λ
+ B

∂U

∂ξ
+ C

∂U

∂η
= S, (8.5)

where

U = (ρ, p, u, v, A, B, L, M)T,

A =
∂E

∂U
, B =

∂F

∂U
, C =

∂G

∂U
,

and S is the source term due to the transformation (8.1), which has no contribu-

tion to the eigen-field. System (8.5) is said to be hyperbolic (also called strongly

hyperbolic, or fully hyperbolic) in λ if

(1) all eigenvalues σ of

det(σA − αB − βC) = 0

are real for every pair (α, β) ∈ R2, α2 + β2 = 1;

(2) associated with the eigenvalues there exists a complete set of eight linearly

independent right eigenvectors in the state space.

Now, from direct computation we find that the eigenvalues of (8.5) are

σ0 =0 (multiplicity 6),

σ± =±a
√

α′2 + β′2, (8.6)

where multiplicity 6 means 6 eigerwalues have the same value, α′ = (αM −
βB)/Δ, β′ = −(αL − βA)/Δ. For σ±, the associated eigenvectors are

r± =
(

1,
1
a2

,
α′

ρσ±
,

β′

ρσ±
,
−αα′

ρ(σ±)2
,
−α′β

ρ(σ±)2
,
−ββ′

ρ(σ±)2
,
−αα′

ρ(σ±)2

)T

. (8.7)
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Associated with the eigenvalue σ0 = 0,

rank(σA − αB − βC)|σ=σ0 = 3,

so we get only 5 linearly independent eigenvectors:

r1 =(0, 0, 0, 0, 1, 0, 0, 0)T,

r2 =(0, 0, 0, 0, 0, 1, 0, 0)T,

r3 =(0, 0, 0, 0, 0, 0, 1, 0)T, (8.8)

r4 =(0, 0, 0, 0, 0, 0, 0, 1)T,

r5 =(0, 1, 0, 0, 0, 0, 0, 0)T.

This means that associated with the eigenvalue σ = 0 (multiplicity 6) there exist

5, and only 5, linearly independent eigenvectors. Consequently, the Lagrangian

system (8.2) does not have a complete set of 8 linearly independent eigenvectors —

one eigenvector is missing—and is therefore weakly hyperbolic. We note that in [3]

the free divergence constraints (8.4) were used to rewrite the system (8.2) (mainly

the mass conservation equation) into canonical form, and it was then found that

three (two in the special case) eigenvectors are missing, although the eigenvalues

are the same as (8.6). Nevertheless, the conclusion is the same: Lagrangian gas dy-

namics system (8.2) is weakly hyperbolic, which appears to be an intrinsic property

of the Lagrangian formulation due to shear discontinuities.

8.3 Non-Equivalency of Lagrangian and Eularian Formula-

tion

Similar to 2-D flow, the 3-D Lagrangian gas dynamics system is also found to

be weakly hyperbolic[2]. This implies that for 2-D and 3-D flow, Lagarangian

system of gas dynamics is not equivalent to the Eulerian system (for the

special case of steady flow, this finding was first reported in [4]). In particular, the

Cauchy problem for weakly hyperbolic systems is not well posed in the sense of

Hadamard; it is well-posed only in a weaker sense, compared with strong hyperbolic

systems.

This seems surprising, in view of the fact that Eulerian system of gas dy-

namics equations is long known to be strongly hyperbolic. However, it has been
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demonstrated[3] that Lagrangian re-formulation of any Eulerian hyperbolic system

will generically lead to a weakly hyperbolic system. A simple example is given

here.

Consider the inviscid hyperbolic Burgers equation

ut + uux = 0. (8.9)

The Lagrangian transformation {
dt = dλ,

dx = udλ + Adξ
(8.10)

changes (8.9) into (
u

A

)
λ

+
(

0 0
−1 0

)(
u

A

)
ξ

= 0. (8.11)

The eigenvalues of the system (8.11) are 0 and 0, but there exists only one linearly

independent right eigenvector (0, 1)T. Hence (8.11) is weakly hyperbolic.

In this regards, the 1-D Lagrangian system of gas dynamics equations (4.3) is

just an exception: it happens to be strongly hyperbolic.
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Chapter 9

Steady 2-D and 3-D Supersonic Flow

9.1 The Unified Coordinates for Steady Flow

As shown in Section 7.6, in the case of steady flow, for two of the unified coordinates

(λ, ξ, η) to be material coordinates, the mesh velocity must be parallel to the fluid

velocity, i.e., (U, V, W ) = h(u, v, w). Therefore, transformation (6.6) becomes⎧⎨⎩
dx = hudλ + Adξ + Ldη,

dy = hvdλ + Bdξ + Mdη,

dz = hwdλ + Cdξ + Ndη,

(9.1)

where h is to be determined later, and u, v, w are the x-, y- and z-component of

fluid velocity q. It is easy to see that

Dξ

Dt
=0,

Dη

Dt
=0. (9.2)

Hence, ξ and η are stream functions in steady flow.

The geometrical state variables T = (A, B, C)T and S = (L, M, N)T satisfy

the compatibility conditions,

∂T

∂λ
− ∂(hq)

∂ξ
=0,

∂S

∂λ
− ∂(hq)

∂η
=0. (9.3)

In the special case of steady 2-D or axisymmetric flow, transformation (9.1)

reduces to {
dx = hudλ + Adξ,

dy = hvdλ + Bdξ.
(9.4)

Here ξ is a stream function and the arbitrary function h is chosen so that the mesh

λ, ξ is orthogonal (see (9.8)).



102 Chapter 9 Steady 2-D and 3-D Supersonic Flow

9.2 Euler Equations in the Unified Coordinates

The Euler equations for 2-D and axisymmetric steady flow in Cartesian coordinates

are

∂

∂x

⎛⎜⎜⎝
ρu

ρu2 + p

ρuv

ρue

⎞⎟⎟⎠+
∂

∂y

⎛⎜⎜⎝
ρv

ρuv

ρv2 + p

ρvH

⎞⎟⎟⎠ = −α

y

⎛⎜⎜⎝
ρv

ρuv

ρv2

ρvH

⎞⎟⎟⎠ , (9.5)

where p is the pressure, e =
1
2
(u2 + v2) +

1
γ − 1

p

ρ
and H = e +

p

ρ
. Here α = 0

denotes 2-D flow and α = 1 denotes axisymmetric flow.

The eigenvalues of (9.5), with respect to the x-direction, are

σ0 =
v

u
(multiplicity 2),

σ± =
uv ± a2

√
M2 − 1

u2 − a2
,

where a is the speed of sound and M =
√

u2 + v2/a is the flow Mach number.

System (9.5) is known to be hyperbolic for supersonic flow: M > 1. However, the

initial value problem for (9.5) is well-posed if and only if

u

a
> 1, (9.6)

which requires the flow in the marching direction, x, be supersonic. It is, therefore,

a stronger condition than simply M > 1.

Under transformation (9.4), (9.5) becomes

∂

∂λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

K

H

Ku + pB

Kv − pA

A

B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

∂

∂ξ
h

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0
−pv

pu

−u

−v

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= −αhKv

y

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0
u

v

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (9.7)

where K = ρ(uB − vA).

We note that while the first 4 equations of (9.7), which are the physical conser-

vation laws transformed from (9.5), are in conservation form they do not form a

closed system as they contain the additional unknowns A and B. It is by appending

the compatibility conditions of the transformation (the last 2 equations of (9.7))
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that they form a closed system of PDE in conservation form. These 2 compatibility

conditions are called geometric conservation laws.

The free function h is chosen to ensure mesh orthogonality. This means that

uA + vB = 0 for all λ, which gives[1]

h = exp
∫ ξ 1

ρq2

∂p

∂ξ
dξ/q. (9.8)

We note that the system of equations (9.7) is in conservation form, so any shock-

capturing method can be employed to solve them. Similar to 1-D flow in Chapter

4, with the application of shock-adaptive Godunov scheme[2, 3] in which the shock

wave is fitted exactly using the Riemann solution without additional cost, the

energy equation can be replaced by conservation of entropy S = p/ργ along a

streamline in smooth flow regions. We also use the mesh orthogonality condition

(9.8), which is equivalent to uA+ vB = 0 for all λ, to eliminate A. Equations (9.7)

are then simplified to
∂F

∂λ
+

∂G
∂ξ

= S, (9.9)

F =

⎛⎜⎜⎜⎜⎜⎝
K

H

S

Ku + pB

Kv − pvB

u

⎞⎟⎟⎟⎟⎟⎠ , G = h

⎛⎜⎜⎜⎜⎝
0
0
0

−pv

pu

⎞⎟⎟⎟⎟⎠ , S = −αhKv

y

⎛⎜⎜⎜⎜⎝
1
0
0
u

v

⎞⎟⎟⎟⎟⎠ . (9.10)

The eigenvalues of (9.9) are[1]

σ0 =0 (multiplicity 3),

σ± =±hq tanμ

T
,

where μ = arcsin
1
M

and T =
√

A2 + B2.

It is shown[4] that (9.9) is hyperbolic if and only if the flow is supersonic, i.e.,

M > 1. (9.11)

It is further shown that condition (9.11) also ensures well-posedness of the initial

value problem for (9.9). We should also remark that under transformation (9.4),

which involves the dependent variables u and v, there is no guarantee that the
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hyperbolic system (9.5) will be transformed to a system of the same type. The fact

that the transformed system (9.9) turns out to be also hyperbolic must be regarded

as fortuitous.

9.3 The Space-Marching Computation

(9.9) is solved using the fractional step method as follows:

Step 1 Solve ∂F /∂λ + ∂G/∂ξ = 0 to get

F ∗ = F n
j − Δλ

Δξ
[G̃j+1/2(F

n) − G̃j−1/2(F
n)]. (9.12)

Step 2 Solve ∂F /∂λ = S to get

F n+1 = F n
j + ΔλS(F ∗). (9.13)

In Step 1, we use the adaptive Godunov scheme[2, 3], where G̃j+1/2 is Godunov

flux.

The procedure of space-marching computation for flow past a body is as follows:

(1) Begin with a column of uniform orthogonal cells, where the uniform flow is

given and is perpendicular to the column.

(2) Solve (9.9) by marching in λ with the Godunov-MUSCL scheme. After one

step Δλ, the initial column of cells moves to the right by hq∞Δλ, where q∞ is the

velocity of the uniform free stream.

(3) After several steps when the initial column of cells has moved to the right

by Δx, the given cell width, add one new column of cells on the left that is identical

to the initial column.

(4) Repeat the above process and, when the cells meet the body surface, im-

pose the boundary conditions there. Since the body surface is a streamline, it

corresponds to a coordinate line and, therefore it is very easy to satisfy boundary

condition there.

(5) Continue this process until the columns of cells cover the whole body surface.

This then completes the wanted computation.

(6) (optional) The mesh at any step λ can be constructed (and plotted) by

integrating (9.4).

Remark (1) With the use of the unified coordinates, only the two momentum

equations in (9.9) need be solved, but the conservation laws of mass, energy and
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entropy (in smooth flow regions) are satisfied exactly. This is to be compared with

Eulerian computation, in which all four equations in (9.5) need be solved. So use

of the unified coordinates not only produces more accurate results but also saves

computing time.

(2) In principle, a space-marching method can also be employed using Eulerian

coordinates. However, in order to do that, a body-fitted mesh must be generated

prior to the marching in order to satisfy the boundary condition correctly. It is

known that even after thirty years of research, mesh-generation remains a major

bottleneck of CFD, as it is tedious, time-consuming and requires experiences and

special training. By contrast, space-marching based on the unified coordinates

requires no mesh-generation prior to flow computation, although the flow-generated

mesh can be constructed if desired. This avoids the cumbersome mesh-generation

stage in Eulerian computation, thus greatly saving computing time.

(3) What is more important is that even after mesh-generation, a space-marching

method using Eulerian coordinates will fail when the flow in the marching direc-

tion, x say, is subsonic, even though the flow is supersonic everywhere (see Example

2 below). By contrast, in computations using the unified coordinates, the space-

marching is along the local flow direction (streamlines), hence it always succeeds,

providing only that the flow is supersonic everywhere.

9.4 Examples

Example 1[1] This is a Riemann problem formed with two intersecting uni-

form streams making an angle of 23 degrees as shown in the Figure 9.1. This

extremely difficult problem was posed by Glaz and Wardlaw[5] and attempts were

made to find its solution using Eulerian computation. Unfortunately, the solution

given in [5] was incorrect. In our computation, we use 20 uniform cells with T = 0.5

for the top part and 30 non-uniform cells with T = 0.05 for the bottom part. This

small initial data of T has the effect of increasing the accuracy in the expansion flow

region. The flexibility in defining the stream function ξ in UC allows us to choose

different scales T for different regions. The computed result for Mach number dis-

tribution is shown in the Figure 9.2, where the very strong slip line is seen resolved

sharply, a task that is almost impossible to achieve by Eulerian computation.
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Figure 9.1 Schematic 2-D Riemann problem

Figure 9.2 Mach number distribution

Example 2[6] This is a supersonic flow of M∞ = 2.0 past a diamond-shaped

airfoil with semi-apex angle of 7.5◦ placed at an angle of attack of 10◦ (Figure 9.3).

Figure 9.3 Diamond-shape airfoil
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The flow-generated meshes at different λ are plotted in Figure 9.4 and Figure

9.5, and the computed pressure contours and surface Mach numbers are plotted in

Figure 9.6, respectively. The computation took very little time (1.8 s on a P4, 2.8

GHz PC machine), and yet the computed results are identical to the exact solution.

Figure 9.4 Flow-generated mesh at λ = 0 (left) and λ = 0.4 (right)

Figure 9.5 Flow-generated mesh at λ = 0.6 (left) and λ = 1.0 (right)
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Figure 9.6 Pressure contours (left) and surface Mach number (right)

In Eulerian computation, a body-fitted mesh must be generated prior to com-

puting the flow. We also note that in this example, a space-marching method

in Eulerian coordinates fails as the x-component (in the free stream direction) of

the flow behind the shock is subsonic. A time-marching method has to be used

whose computing time is more than three orders of magnitude longer (2393 s, same

machine), plus the time (2180 s) spent in generating a body-fitted mesh to begin

the time- marching computation. Yet the computed shock and the Prandtl-Meyer

expansions are smeared (Figure 9.7).

Example 3[6] This is a hypersonic flow of M∞ = 5 past a circular cone with

20◦ apex angle at zero angle of attack. This is an axisymmetric flow and its com-

putation details are different from that for the 2-D of Example 2, where (9.13)

in Step 2 is not needed. In the present axisymmetric flow, we need Step 2. In

particular, (9.12) in Step 1, computes a 2-D flow of M∞ = 5 past a wedge of 20◦,

hence after this step the 2-D entropy of 1.056 immediately behind the shock at

the apex (x = 0) is higher than the corresponding value for the cone, and this

higher value remains constant along the streamline, hence on the cone surface.

This is obviously incorrect. However, the application of (9.13) in Step 2 gives

an axisymmetric correction to the flow field, so that the entropy along streamline
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Figure 9.7 Surface Mach number distribution on diamond-shaped airfoil. Eulerian

computation (5th Order WENO Scheme), 100 × 200 cells. Computing time to 20000

Steps: 2393 s on P4, 2.8 GHz PC machine

Figure 9.8 Entropy distribution along streamlines entering the shock wave at different

position x
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entering the shock wave at later x decreases with x and approaches the correct cone

value (Figure 9.8). The initial surface entropy overshoot is similar to the famous

“wall overheating” paradox of von Neumann.

The computed Mach numbers across the rays from the apex are plotted in Fig-

ure 9.9 and compared to the well-known Taylor-Maccoll solution[7]. The computing

time is small (only 5% of that in Taylor-Maccoll computation), yet the agreement

is excellent, especially the shock is sharply resolved.

Figure 9.9 Mach number distribution, 102 cells. Computing time:

7.21 s (P4, 2.8 GHz)

As seen from these examples, for 2-D steady supersonic flow the unified coordi-

nate computation can resolve both shock and contact sharply and, for flow past a

body it does not require generating a body-fitted mesh prior to computing the flow

field. Moreover, a 2-D steady supersonic flow is computed easily as if it were a 1-D

unsteady flow. We conclude that the unified coordinates as defined by (9.4) plus

the orthogonality condition (9.8) constitutes an optimal coordinate system for 2-D

steady supersonic flow, being robust, accurate, efficient and, for flow past a body,

capable of automatically generating a mesh by the flow being computed.

It is interesting to note that the UC moves with velocity hq, it therefore follows

the fluid particles only in their direction of flow, but not with their speed. We thus

see that the advantage of Lagrangin coordinates is retained simply by following
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the fluid particles in their direction of motion. We then adjust the speed of the

coordinates so that the system is orthogonal. In this way, the disadvantage of the

Lagrangian coordinates in this case, namely cell distortion, is avoided.

9.5 3-D Flow

The situation is more complicated for 3-D flow, partly due to 3-D topology. We

shall first show that, unlike the 2-D case, an optimal coordinate system does not

exist for 3-D flow in general.

Definition 9.1 a coordinate system (λ, ξ, η) is said to be optimal if it is

orthogonal and ∇λ//q.

Theorem 9.1[4] For smooth 3-D steady flow, an optimal coordinate system

(λ, ξ, η) exists if and only if the flow satisfies

q · (∇× q) = 0. (9.14)

Flows of this class are called complex-laminar[8].

Remark (1) The 2-D steady gas flow is a special case of the flow for which

(9.14) is satisfied; hence optimal coordinates exist for the 2-D steady supersonic

flow as shown in section 9.4.

(2) Irrotational flow is another special case which satisfies the flow condition

(9.14). In this case, we may simply take λ = ϕ, where ϕ is the velocity potential

for irrotational flow, whilst ξ and η are orthogonal stream functions.

(3) When the flow condition (9.14) is not satisfied, optimal coordinates do not

exist. Now we prove the above theorem.

Proof Suppose that the optimal coordinates exist. Then

∇λ = k(x, y, z)q, (x, y, z) ∈ Ω

for some function k(x, y, z). That is, kq is an irrotational vector field in Ω and

∇× (kq) ≡ 0 in Ω

or

∇ ln k × q + ∇× q ≡ 0 in Ω . (9.15)

Multiplying q with (9.15) yields (9.14).
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Conversely, suppose that (9.14) holds; then by the Pfaffian theorem, there exists

an integrating factor k = k(x, y, z) such that

kq · dr = dφ

is a total differential of some function φ = φ(x, y, z). Thus

∇φ = kq.

Now we let λ = φ and construct the optimal coordinates (λ, ξ, η) by making the

transformation

(x, y, z) → (λ, ξ, η),

where ξ = ξ(x, y, z), η = η(x, y, z) are selected so that they are two independent

families of stream functions whose existence are known a priori; thus

∇ξ ⊥ q, ∇η ⊥ q.

The transformation so constructed is

dλ=λxdx + λydy + λzdz = ∇λ · dr,

dξ = ξxdx + ξydy + ξzdz = ∇ξ · dr, (9.16)

dη = ηxdx + ηydy + ηzdz = ∇η · dr.

Now we need to show that the above transformation belongs to the class (9.1). For

this purpose, we invert (9.16) to get

⎛⎝dx

dy

dz

⎞⎠=
1

det
[
∂(λ, ξ, η)
∂(x, y, z)

]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∣∣∣∣ ξy ξz

ηy ηz

∣∣∣∣ −
∣∣∣∣ λy λz

ηy ηz

∣∣∣∣ ∣∣∣∣ λy λz

ξy ξz

∣∣∣∣
−
∣∣∣∣ ξx ξz

ηx ηz

∣∣∣∣ ∣∣∣∣ λx λz

ηx ηz

∣∣∣∣ −
∣∣∣∣ λx λz

ξx ξz

∣∣∣∣
∣∣∣∣ ξx ξy

ηx ηy

∣∣∣∣ −
∣∣∣∣ λx λy

ηx ηy

∣∣∣∣ ∣∣∣∣ λx λy

ξx ξy

∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎝dλ

dξ

dη

⎞⎠ .

(9.17)

Since ∇ξ ⊥ q,∇η ⊥ q, it follows that

∇ξ ×∇η//q;



9.5 3-D Flow 113

that is, ∣∣∣∣ ξy ξz

ηy ηz

∣∣∣∣
u

=

∣∣∣∣ ξz ξx

ηz ηx

∣∣∣∣
v

=

∣∣∣∣ ξx ξy

ηx ηy

∣∣∣∣
w

≡ h̃.

Meanwhile,

∇λ = (λx, λy, λz) = (ku, kv, kw) = kq;

hence ∣∣∣∣∂(λ, ξ, η)
∂(x, y, z)

∣∣∣∣ =
∣∣∣∣∣∣

λx λy λz

ξx ξy ξz

ηx ηy ηz

∣∣∣∣∣∣ = λxh̃u + λyh̃v + λzh̃w = kh̃q2.

Thus, (9.17) becomes

⎛⎝dx

dy

dz

⎞⎠=
1

kh̃q2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h̃u −
∣∣∣∣ λy λz

ηy ηz

∣∣∣∣ ∣∣∣∣ λy λz

ξy ξz

∣∣∣∣
h̃v

∣∣∣∣ λx λz

ηx ηz

∣∣∣∣ −
∣∣∣∣ λx λz

ξx ξz

∣∣∣∣
h̃w −

∣∣∣∣ λx λy

ηx ηy

∣∣∣∣ ∣∣∣∣ λx λy

ξx ξy

∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎝ dλ

dξ

dη

⎞⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u

kq2
− 1

h̃q2

∣∣∣∣ v w

ηy ηz

∣∣∣∣ 1
h̃q2

∣∣∣∣ v w

ξy ξz

∣∣∣∣
1

kq2

1
h̃q2

∣∣∣∣ u w

ηx ηz

∣∣∣∣ − 1
h̃q2

∣∣∣∣ u w

ξx ξz

∣∣∣∣
w

kq2
− 1

h̃q2

∣∣∣∣ u v

ηx ηy

∣∣∣∣ 1
h̃q2

∣∣∣∣ u v

ξx ξy

∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎝ dλ

dξ

dη

⎞⎠

=

⎛⎝ hu A1 B1

hv A2 B2

hw A3 B3

⎞⎠⎛⎝dλ

dξ

dη

⎞⎠ . (9.18)

This completes the proof. Moreover, we have

h =
1

kq2
or k =

1
hq2

.

Conversely, when transformation (9.18) is given and the flow condition (9.14) is

satisfied, it can be shown similarly that

h =
1

kq2
.
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Although the optimal coordinate system does not exist for general 3-D steady

flow, the UC λ-marching method still gives good results, e.g., good shear layer res-

olution. In the following, a 3-D steady supersonic inviscid corner flow computation

is presented[9], where two intersecting wedges, both with angles of 9.5◦ form an

axial corner over which there is a Mach 3 flow. The flow field consists of two planar

wedge shocks, two embedded shocks, a corner shock and a shear layer. Figure 9.10

shows the geometrical configuration (left) and the computed u-velocity contours

(right) on a typical λ-plane. The corner shock, embedded shocks, and 2-D wedge

shocks are clearly shown. In particular, the triangular slip-surfaces are distinct and

sharp. They all agree with the experimental locations by West and Korkegi[10].

Figure 9.10 Supersonic flow past a corner[9]

Instead of using a shock capturing method, the random choice method has also

been successfully applied in UC to numerically solve 2-D and 3-D supersonic steady

flow problems[11, 12].
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Chapter 10

Unsteady 2-D and 3-D Flow Computation

10.1 Summary of Solution to the 2-D Euler Equations Using

the Unified Coordinates

To illustrate the idea, we consider 2-D flow. Let us first summarize the results in

Chapters 6 and 7. The unified coordinates (λ, ξ, η) are related to the Eulerian ones

(t, x, y) via the transformation⎧⎨⎩
dt = dλ,

dx = Udλ + Adξ + Ldη,

dy = V dλ + Bdξ + Mdη.

(10.1)

From (10.1), we get
DQ

Dt

(
ξ

η

)
= 0, (10.2)

where
DQ

Dt
≡ ∂

∂t
+ Q · ∇x.

So the coordinates (ξ, η), and hence computational cells, move with velocity Q =

(U, V ).

Under transformation (10.1), the system of governing equations becomes

∂E

∂λ
+

∂F

∂ξ
+

∂G

∂η
= 0, (10.3)

where

E =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρΔ
ρΔu

ρΔv

ρΔe

A

B

L

M

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρX

ρXu + pM

ρXv − pL

ρXe + p(uM − vL)
−U

−V

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρY

ρY u − pB

ρY v + pA

ρY e + p(vA − uB)
0
0

−U

−V

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(10.4)
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with Δ = AM − BL, X = (u − U)M − (v − V )L and Y = (v − V )A − (u − U)B.

The first four equations in (10.3) are the physical conservation laws and the last

four are the geometric conservation laws.

Since there are two arbitrary functions U and V , we prescribe two requirements:

(1) Coordinate lines η =const. shall be material lines of fluid particles, meaning

Dqη

Dt
= 0. (10.5)

Together with the second equation of (10.2), we get

(v − V )A = (u − U)B. (10.6)

(2) Mesh angles, and hence mesh orthogonality, shall be preserved during the

λ-marching computation. Thus we have

∂

∂λ
cos−1

( ∇ξ · ∇η

|∇ξ||∇η|
)

=
∂

∂λ
arccos

(
AL + BM√

A2 + B2
√

L2 + M2

)
= 0. (10.7)

After expressing V in terms of U from (10.6) and using the geometric conservation

laws, (10.7) becomes an ordinary differential equation for U ,

∂U

∂η
+ P (η; λ, ξ)U = Q(η; λ, ξ), (10.8)

where

P (η; λ, ξ) =
S2

T 2Δ

(
A

∂B

∂ξ
− B

∂A

∂ξ

)
− L

AΔ

(
A

∂B

∂η
− B

∂A

∂η

)
,

Q(η; λ, ξ) =
S2A

T 2Δ

(
B

∂u

∂ξ
− A

∂v

∂ξ

)
+

L

Δ

(
A

∂v

∂η
− B

∂u

∂η

)
+ uP (η; λ, ξ)

and

Δ = AM − BL, S2 = L2 + M2, T 2 = A2 + B2.

We can specify any initial data for U at η = const..

We note that since (10.3) is in conservation PDE form, it can be solved as

easily as Eulerian system in the λ-ξ-η space by marching in λ. The only difference

is that at each time step we need compute the mesh velocity (U, V ) by solving

(10.8) for U and then (10.6) for V . After that we update the geometric quantities

(A, B, L, M) to be used in the physical conservation laws. Detailed computation

procedure follows.
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10.2 Computation Procedure

We now show how to compute steady flow which may have subsonic regions. Flows

of this type are computed by marching in time λ until a steady state is reached.

An example of time-accurate flow computation is also given at the end of Section

10.3.

The computation procedure for uniform flow past a body is illustrated by a

Mach 0.8 steady flow of air (γ = 1.4) past a NACA 0012 airfoil as follows[1]: Ini-

tialization Stage—automatic generation of body-fitted mesh in a com-

putational window.

Given the mesh sizes Δx and Δy and the number of cells M ×N in the window

(we use M = 200 and N = 100 in the example).

Step 1 Begin with a column of N orthogonal cells, representing the given

uniform flow in the x-direction (Figure 10.1(a)). This gives the initial vales of

(A, B, L, M) = (1, 0, 0, 1). We also take (U, V ) = (u, v) initially.

Figure 10.1 Flow generated mesh at different times

Step 2 Compute the solution to (10.3) by marching in time λ, using dimen-

sional splitting: Splitting into two 1-D systems in λ-ξ and λ-η, each of them is

solved using the standard Godunov/MUSCL scheme with the minmod limiter (De-

tails are as follows: To update the solution from time n to time n+1: Solve the

first four equations (the physical conservation laws) of (10.3) for (ρ, p, u, v) keeping

A, B, L, M, U and V at time n level. Use this updated values together with a

specified initial data to solve (10.8) for U and then (10.6) for V at time n + 1.

Use these 3 updated values of U and V to update (A, B, L, M) at time level
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n + 1 by integrating the geometric conservation laws. At all outer boundaries of

the computational region at every time step, we apply the characteristic boundary

conditions[2]). After one time step Δλ, this column of cells moves to the right by

UΔλ.

Step 3 After several time steps when the initial column of cells has moved to

the right by a distance equal to Δx, add one new column of cells on the left that

is identical to the initial column.

Step 4 Repeat this process of adding cell columns on the left of the computa-

tional region until the leading column meets the body surface (Figure 10.1(b)) we

then impose the boundary condition of zero normal velocity on the body surface.

Step 5 Continue this process until after the columns of cells cover the whole

body surface and further downstream, when we have M columns of cells in the

window (Figure 10.1(d)). This completes the initialization stage, and we now have

a body-fitted mesh (Figure 10.2) and a flow field around the airfoil in the window.

Figure 10.2 Preliminary mesh and surface pressure from UC computation (solid line)

and reference results by Hafez et al.[3] (dots)

The computed mesh is seen orthogonal, as predicted. It is also fairly uniform

in the x-direction, because in solving (10.8) we have specified uniform data for U

at η =const.. The associated flow field computed (e.g., surface pressure in Figure

10.2) is, however, only a very rough approximation to the correct one (see, e.g., the

potential solution of Hafez et al. [3]), partly because it has not reached the steady
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state and partly because the downstream boundary conditions used at the transient

times, e.g., in Figure 10.1 (c), are obviously incorrect as the computational regions

at those times are not the full window.

To progress further, one could use the body-fitted orthogonal mesh generated

so far to perform an Eulerian computation with the associated flow field as an

initial solution. This can be easily done by putting U = V = 0 (without solving

(10.8) and (10.6)) during the subsequent iterations towards a steady state. In this

way, the unified coordinate approach plays the role of mesh generation for Eulerian

computation.

An alternative and better way is to continue the unified coordinate computation

to proceed to the Main Stage—iteration with flow-adjusted meshes.

Step 6 To iterate the solution towards a steady state, whenever we add a new

column of cells on the left of the window we also simultaneously delete the right-

most column of cells from the computation window, thus keeping the window in

the same size. At the same time, we improve the solution by using the information

of the flow field at every time step, e.g., the surface pressure gradient, to adjust the

initial data of U at η =const. in solving (10.8) so that the mesh is refined in regions

of high pressure gradient. We note that this flow-adjusted refined mesh remains

orthogonal. The computed mesh and surface pressure distribution are shown in

Figure 10.3, which are much better than Figure 10.2 and also in good agreement

with the potential flow computation of Hafez et al[3]. The pressure contours at the

same time are shown in Figure 10.4.

Figure 10.3 Self-justified mesh (left) and final pressure distributions (right) from UC

computation (solid line) and reference results by Hafez et al.[3] (solid dots)
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Figure 10.4 Pressure contours

The flow-adjusted mesh in Figure 10.3 looks similar to those obtained by the

Mesh re-distribution method in Euelrian computation. But there are differences:

Mesh re-distribution requires generating another mesh at every time step by solving

an elliptic equation, and conservation properties in the interpolations of geometry

and flow variables between the two meshes must be ensured. These issues do not

arise in our flow-adjusted mesh approach because we need only one mesh; the only

modification is to specify the initial data for U at η =const. by using the pressure

gradient information known at each time step.

In terms of computing time, most of the CPU time is used in solving the Rie-

mann problems for the physical conservation laws, which is the same as in Eulerian

computation. However, additional times are needed to solve (10.8) and to update

the geometric variables (A, B, L, M). These typically increase the CPU time by

5% ∼ 10%. (This can also be reduced if in Step 6 we put U = V = 0 after the

flow-adjusted mesh is well established so that there is no need to solve (10.8) sub-

sequently). On the other hand, mesh re-distribution in Eulerian computation by

solving an elliptic equation increases CPU time. What is most important is that

Eulerian computation always needs generating a body-fitted mesh prior to flow

computation, and this can be time-consuming.

10.3 Examples

Example 1 Example 1 showing a transonic flow computation is already given

above.



10.3 Examples 123

Example 2 Example 2[1] shows a sample computation for a Mach 2.2 steady

flow over a NACA 0012 airfoil at an angle of attack of 8 degrees and a horizontal

air-SF6 material. Figure 10.5 shows the flow-generated meshes at different times,

whereas Figures 10.6 and 10.7 show the computed contours of density, pressure and

entropy at those times. The interface between air and SF6 was initially identified

with a particular value of η and it remained so, because a contact line coincides with

a coordinate line η =const. in the unified coordinate system. The computation

was straight forward, with no special treatment; yet the results are better than the

corresponding Eulerian ones, in particular the interface and the slip line behind

the airfoil are resolved sharper.

Figure 10.5 Flow-generated meshes

Figure 10.6 Density contours

Example 3 This is an unsteady supersonic flow, M∞ = 3.0, past a diamond-

shape airfoil with 10◦ vertex angle which is oscillating about its vertex according

to θ = 2 sin 30πt, where θ is the instantaneous pitching angle. The computed
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flow-generated meshes[4] at different times are plotted in Figure 10.8. It is seen

that at all times of the oscillation, the flow-generated meshes are body-fitted and

are almost orthogonal, although the mesh on the expansion side of the airfoil is

coarsened.

The UC approach also works well with the shallow water wave equations[5].

Figure 10.7 Pressure and entropy contours
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Figure 10.8 Flow-generated meshes for oscillating diamond-shape airfoil. Apex angle

= 10, pitching motion about the apex: θ(t) = 2sin2πt/T , the period of oscillation

T = 2/30, free stream Mach number M = 3.0
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Chapter 11

Viscous Flow Computation Using

Navier-Stokes Equations

11.1 Navier-Stokes Equations in the Unified Coordinates

In the precedent chapters, we have concentrated on inviscid flow. We now extend

the unified coordinates method to viscous flow via the Navier-Stokes equations in

this chapter, and via the BGK modeled Boltzmann equation in the next chapter.

The Navier-Stokes equations in 2-D Eulerian space can be expressed as

∂E

∂t
+

∂F

∂x
+

∂G

∂y
=

∂F v

∂x
+

∂Gv

∂y
, (11.1)

where

E =

⎛⎜⎜⎝
ρ

ρu

ρv

ρe

⎞⎟⎟⎠, F =

⎛⎜⎜⎝
ρu

ρu2 + p

ρuv

(ρe + p)u

⎞⎟⎟⎠, F v =

⎛⎜⎜⎝
0

τxx

τxy

uτxx + vτxy − κx

⎞⎟⎟⎠,

G =

⎛⎜⎜⎝
ρv

ρuv

ρv2 + p

(ρe + p)v

⎞⎟⎟⎠, Gv =

⎛⎜⎜⎝
0

τyx

τyy

uτyx + vτyy − κy

⎞⎟⎟⎠.

For a Newtonian fluid with Stokes hypothesis, the viscous stresses τxx, τxy, τyy and

heat transfer rates κx, κy are

τxx = 2μ
∂u

∂x
− 2

3
μ∇·q, τyy = 2μ

∂v

∂y
− 2

3
μ∇·q, τxy = τyx = μ

(
∂u

∂y
+

∂v

∂x

)
(11.2)

and

κx = −μcp

Pr

∂T

∂x
, κy = −μcp

Pr

∂T

∂y
. (11.3)

Here μ is viscosity coefficient, cp is the specific heat at constant pressure, Pr is the

Prandtl number and T is the temperature.
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With the following transformation between the physical coordinates (t, x, y) and

unified coordinates (λ, ξ, η),⎧⎨⎩
dt = dλ,

dx = Udλ + Adξ + Ldη,

dy = V dλ + Bdξ + Mdη,

(11.4)

we can get the inverse transformation⎛⎝ dλ

dξ

dη

⎞⎠ =

⎛⎝ 1 0 0
ξt ξx ξy

ηt ηx ηy

⎞⎠⎛⎝ dt

dx

dy

⎞⎠ . (11.5)

The Navier-Stokes equations (11.1) in the unified coordinates (λ, ξ, η) become

∂Ē

∂λ
+

∂F̄

∂ξ
+

∂Ḡ

∂η
=

∂F̄ v

∂ξ
+

∂Ḡv

∂η
, (11.6)

where ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ē = ΔE,

F̄ = Δ(ξtE + ξxF + ξyG),

Ḡ = Δ(ηtE + ηxF + ηyG),

F̄ v = Δ(ξxF v + ξyGv),

Ḡv = Δ(ηxF v + ηyGv)

(11.7)

and Δ = ∂(x, y)/∂(ξ, η) = AM − BL.

The coefficient matrix in (11.5) becomes⎛⎝ 1 0 0
ξt ξx ξy

ηt ηx ηy

⎞⎠ =
1
Δ

⎛⎝ Δ 0 0
−X M −L

−Y −B A

⎞⎠ , (11.8)

where X = MU − LV and Y = AV − BU . Hence, the variables in (11.6) are⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ē = ΔE,

F̄ = (−XE + MF − LG),

Ḡ = (−Y E − BF + AG),

F̄ v = (MF v − LGv),

Ḡv = (−BF v + AGv).

(11.9)

The viscous shear stresses given by (11.2) become the following in the transformed

computational space:
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τxx =
μ

Δ

[
4
3
(Muξ − Buη) − 2

3
(−Lvξ + Avη)

]
,

τyy =
μ

Δ

[
4
3
(−Lvξ + Avη) − 2

3
(Muξ − Buη)

]
,

τxy =
μ

Δ
(−Luξ + Auη + Mvξ − Bvη),

(11.10)

and the heat conduction terms in (11.3) are⎧⎪⎨⎪⎩
κx = − μcp

PrΔ
(MTξ − BTη),

κy = − μcp

PrΔ
(−LTξ + ATη).

(11.11)

In the computational space, the viscous flux vector F̄ v and Ḡv are

F̄ v =
μ

Δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0(
4
3
M2+L2

)
uξ− 1

3
MLvξ−

(
4
3
MB+AL

)
uη+

(
− 2

3
AM +BL

)
vη

−1
3
MLuξ +

(
M2 +

4
3
L2

)
vξ +

(
MA − 2

3
BL

)
uη −

(
MB +

4
3
AL

)
vη

1
2

(
4
3
M2 + L2

)
(u2)ξ +

1
2

(
M2 +

4
3
L2

)
(v2)ξ − 1

3
ML(uv)ξ

+
cp(M2+L2)

Pr
Tξ+

1
2

(
− 4

3
MB−AL

)
(u2)η +

1
2

(
− MB− 4

3
AL

)
(v2)η

+
(

MA − 2
3
BL

)
vuη +

(
BL − 2

3
MA

)
uvη +

cp(−MB − AL)
Pr

Tη

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(11.12)

and

Ḡv =
μ

Δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0(
− 4

3
MB−AL

)
uξ+

(
MA− 2

3
BL

)
vξ+

(
4
3
B2+A2

)
uη− 1

3
BAvη(

BL − 2
3
MA

)
uξ −

(
MB +

4
3
AL

)
vξ − 1

3
ABuη +

(
B2 +

4
3
A2

)
vη

1
2

(
− 4

3
MB−AL

)
(u2)ξ− 1

2

(
MB+

4
3
AL

)
(v2)ξ+

(
AM− 2

3
BL

)
uvξ

+
(

BL − 2
3
AM

)
vuξ +

cp(−MB − AL)
Pr

Tξ +
1
2

(
4
3
B2 + A2

)
(u2)η

+
1
2

(
B2 +

4
3
A2

)
(v2)η − 1

3
AB(uv)η +

cp(B2 + A2)
Pr

Tη

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(11.13)
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In order to solve the Navier-Stokes equations under unified coordinate system,

the standard operator-splitting method is usually used, where the inviscid part is

solved based on the Riemann solution as presented in the previous chapter, and

the viscous terms are discretized using central differences.

The advantage for the inviscid flow computation using the unified coordinate

method is mainly due to the fact that there is clear material or slip line, which

can be used as one of the coordinate, such as η =const.. However, for the viscous

flows, there is no sharp slip line, and the shear layer can be considered as an infinite

number of slip lines. The failure of the classical Lagrangian method for the viscous

flow computation is due to the mesh velocity following the fluid velocity in the

dissipative region, such as inside the viscous boundary layer, where boundary cells

can be infinitely deformed. So for computing steady or unsteady viscous flow, it is

necessary to decouple the mesh velocity from the fluid velocity. The strategy used

earlier, such as mesh orthogonality, is a good choice for the viscous flows.

11.2 The Angle-preserving Equation

We now discuss how to use unified coordinates to compte 2-D steady flow via the

Navier-Stokes equations. We shall use the time-marching approach until the flow

field reaches steady state. It is known from Section 7.6 that at steady state the

mesh velocity Q is proportional to the fluid velocity q,{
U = hu,

V = hv.
(11.14)

To accelerate convergence to steady state, we shall use Q = hq during the transition

stage. Accordingly, transformation (11.4) becomes⎧⎨⎩
dt = dλ,

dx = hudλ + Adξ + Ldη,

dy = hvdλ + Bdξ + Mdη.

(11.15)

(11.14) requires the mesh velocity Q to be proportional to the fluid velocity q, and

thus might cause difficulties for viscous flow at solid boundary. But this apparent

difficulty can be overcomed as explained presently.

The angle-preserving h-equation derived by Hui et al.[1] is

S2J
∂h

∂ξ
+ T 2I

∂h

∂η
=
[
S2

(
B

∂u

∂ξ
− A

∂v

∂ξ

)
− T 2

(
M

∂u

∂η
− L

∂v

∂η

)]
h, (11.16)
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where

S2 = L2 + M2, T 2 = A2 + B2.

In the following, we will assume that the coefficients (A, B, L, M) are smooth

enough. If the solution is smooth, then with h computed by (11.16), we have that

if the mesh is orthogonal at the flow entry, the entire mesh will become orthogonal

after a sufficiently long time iteration, independently of the orthogonality of the

initial mesh. Orthogonal mesh is known to possess many desirable properties over

non-orthogonal grids, e.g., attaining higher accuracy than non-orthogonal meshes.

As for the inviscid flow case, (11.16) is to be solved at every time step after

the flow variables Q = (ρ, p, u, v)T and the geometric variables K = (A, B, L, M)T

are found. We recall that the h-equation is a first order linear partial differential

equations for h(ξ, η; λ) with λ appearing as a parameter. To find solution h in the

range

0 h 1, (11.17)

we note that (11.16) is linear and homogeneous, therefore it possesses two proper-

ties: positive solution h > 0 always exists; if h is a solution to (11.16) so is

h/C, C being any constant.

In order to ensure a solution satisfying (11.17), Hui et al[1] defined g = ln(hq)

to replace the h equation by

S2(A sin θ − B cos θ)
∂g

∂ξ
+ T 2(M cos θ − L sin θ)

∂g

∂η

=S2

(
B

∂ cos θ

∂ξ
− A

∂ sin θ

∂ξ

)
− T 2

(
M

∂ cos θ

∂η
− L

∂ sin θ

∂η

)
, (11.18)

where q =
√

u2 + v2 and θ is the flow angle: u = q cos θ, v = q sin θ. Now, if g1

is any solution to (11.18) then h = exp(g1)/qC is a solution to (11.16) satisfying

condition (11.17), provided we choose C equal to the maximum of exp(g1)/q over

the whole flow field being computed.

The advantages of replacing (11.16) by (11.18) become more pronounced for the

Navier-Stokes equations. These, along with some further precautions, are explained

in the next section.

11.3 Advantages of the g-equation Over the h-equation

There are three advantages of the g-equation (11.18) over the h-equation (11.16):
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(1) g behaves more smooth than h. Indeed, as shown in [2] for supersonic flow,

g is continuous across a slip line, but q and h are not. As such, accurate solution

in g can be obtained easily from (11.18) but it is difficult to get accurate solution

in h from (11.16).

(2) The mesh moves with the velocity hq. When we have a stagnation point

such as the center of a vortex, a finite speed of the mesh, i.e., hq > 0, implies that

we must have h → ∞ as q → 0. If we force h to be finite as given by solving

the h-equation, the mesh cannot move at the stagnation point so that severe mesh

deformation may still occur. If we solve the g-equation, we can ensure continuity

of g, and hence of hq, everywhere.

(3) The greatest advantage in the context of viscous flow computation is the

simplicity of specifying boundary condition at a nonslip wall. In order to preserve

the mesh angle at the wall, say a line η0, one should not define the boundary

condition in the following way:

∂(hq)
∂η

= 0 at η = η0. (11.19)

The above equation can be rewritten as

h
∂(q)
∂η

+ q
∂h

∂η
= 0 at η = η0.

However, on the wall q = 0, so that we have the following singular boundary

condition which is very difficult to be realized in numerical computation:

∂h

∂η
→ ∞. (11.20)

Since we solve the g-equation, then, by (11.19), the boundary condition becomes

simply
∂g

∂η
= 0 at η = η0. (11.21)

Summing up, while the fluid velocity vector q = 0 holds on a solid boundary,

solving the g-equation with boundary condition (11.21) can give a finite value of hq

on the solid boundary, allowing computational cells (the pseudo particles) to glide

over the solid surface. This could not be achieved if the h-equation were solved,

because the requisite boundary condition (11.20) is difficult to impose.

Some further precautions should be made in order to make the computation

successful:
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(1) the solution hq should be kept in memory since it is with hq that the mesh

moves. If we just keep h, then at a stagnation point one would have h → ∞, which

is very difficult to handle numerically.

(2) when solving (11.18) up to a boundary, one might readily compute the flow

angle by using

cos θ =
u

max(
√

u2 + v2, ε)
, sin θ =

v

max(
√

u2 + v2, ε)
,

where ε is a small parameter used to avoiding division by zero near a stagnation

point. However, this is incorrect and would yield a wrong solution since in such

a way one would have cos2 θ + sin2 θ = 0 at a stagnation point. At a stagnation

point, one could extrapolate the flow angle from nearby points. Here we just solve

(11.18) in the interior domain with g obtained through boundary condition (11.21).

11.4 Boundary Condition and Movement of Boundary

Cells

The following details are programming techniques, which are nevertheless impor-

tant for successful computation of viscous flows.

In the computations performed for inviscid flow past a solid body, a cell interface

is taken to coincide with the solid wall and a ghost cell to lie inside the solid wall so

that the solid wall lies at the middle between the ghost cell and the boundary cell.

For a nonslip wall here, it is more convenient to place the center of the boundary

cell on the wall so that the fluid velocity vanishes there exactly. As explained in

the last section, solution to the g-equation allows the boundary cells to glide over

the wall with velocity hq. In some cases, the wall may involve discontinuities of

slop. These must be taken into account when the boundary cells glide along the

wall. A convenient way is to save the initial boundary points for all the time.

Then the new boundary points are interpolated, by cubic interpolation, from the

fixed initial boundary points under the constraint of orthogonality. If the initial

boundary points were not saved, and one simply interpolates the boundary points

of the new time step from those of the old time step, then slop discontinuities

would propagate irregularly so that the shape of the wall would deform, sometimes

severely. These remarks also apply to inviscid flow computations as in Example 2

of Chapter 9.
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11.5 Solution Strategies

As the system of Navier-Stokes equations (11.6) is in conservation form, any well-

established shock-capturing method can be used to solve the inviscid part. Similar

to the approaches in the earlier chapters, we shall use the Godunov method with

the MUSCL update to higher resolution to solve system (11.6). Details are shown

in the last chapter. The viscous part is discretized by using central differences as

follows.

Applying the divergence theorem to (11.6) over the cuboid cell (i, j, k) results

in

Ek+1
i,j =Ek

i,j −
Δλk

Δξi

(
F

k+1/2

i+1/2,j − F
k+1/2

i−1/2,j

)
− Δλk

Δηj

(
G

k+1/2

i,j+1/2 − G
k+1/2

i,j−1/2

)
,

i = 1, 2, · · · , m; j = 1, 2, · · · , n, (11.22)

where

F
k+1/2

i+1/2,j =F
k+1/2
i+1/2,j + F k

i+1/2,j ,

G
k+1/2

i,j+1/2 =G
k+1/2
i,j+1/2 + Gk

i,j+1/2,

F
k+1/2
i+1/2,j and G

k+1/2
i,j+1/2 are the inviscid fluxes, F k

i+1/2,j ,G
k
i,j+1/2 are viscous contri-

butions defined by second order central differences.

The numerical procedure can now be summarized as follows:

Step 1 Assume the initial conditions of a flow problem are given at t = 0(λ =

0) in the xy plane. Then an appropriate ξ-η coordinate mesh is laid on the xy plane.

A nonuniform mesh on the xy plane corresponds to a uniform mesh on the ξη plane,

with constant Δξi and Δηj , i.e., Δξi = Δξ and Δηj = Δη are independent of i and

j. One would wonder whether the results depend on the choice of the intervals Δξ

and Δη, especially on the relative value Δξ/Δη. The solution is independent of the

choice of Δξ and Δη. However, from a numerical point of view, rounding errors

may make the solution slightly different for different choices of Δξ and Δη. Most

importantly, when using an iterative procedure to solve the equation for g, the

convergence criterion (residue) is dependent on Δξ and Δη. Since the g-equation

(11.18), when literally discretized, contains the coefficient
1

Δξ2Δη2
, it is useful to

let the convergence criterion be defined as

ε =
10−14

Δξ2Δη2
.
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The initial and boundary conditions are defined according to the problem spec-

ified. The initial conditions for A, B, L and M can be computed simply as

Ai,j =
xi+1,j − xi−1,j

2Δξ
, Bi,j =

yi+1,j − yi−1,j

2Δξ
,

Li,j =
xi,j+1 − xi,j−1

2Δη
, Mi,j =

yi,j+1 − yi,j−1

2Δη
.

Step 2 We first describe the general strategy and then the specific steps.

General strategy: Strang splitting. Strang splitting is used to render the 2-D

problem a sequential solutions of two 1-D problems. Let Lξ
Δλ be the difference

operator for the 1-D equation (simply obtained from (11.6) by dropping the
∂

∂η
terms) whose solution after one time step Δλ

Ê
k+1

i,j = Ek
i,j −

Δλk

Δξi

(
F

k+1/2

i+1/2,j − F
k+1/2

i−1/2,j

)
is denoted

Ê
k+1

= Lξ
ΔλEk.

Using Ê
k+1

as initial solution and compute the final solution by

Ek+1 = Lη
ΔλÊ

k+1
= Lη

ΔλLξ
ΔλEk, (11.23)

where Lη
Δλ is the operator for the 1-D equation (simply obtained from (11.6) by

dropping the
∂

∂ξ
terms)

Ek+1
i,j = Ê

k+1 − Δλk

Δηj

(
G

k+1/2

i,j+1/2

(
Ê

k+1
)
− G

k+1/2

i,j−1/2

(
Ê

k+1
))

.

The simple splitting method (11.21) is not very accurate. The Strang splitting[3],

which is more accurate than (11.23), is defined as

Ek+1 = Lξ
Δλ
2
Lη

ΔλLξ
Δλ
2

Ek (11.24)

for marching from λk to λk+1 = λk + Δλ, k = 0, 1, 2, · · ·.
General strategy: time step-wise approach. The geometric conservation laws

are decoupled from the physical conservation laws. Roughly speaking, at each time

step, all the geometrical variables A, B, L, M, h are regarded as constants and we

solve the equations in (11.6). After obtaining the physical variables at the new

time step, we obtain A, B, L, M . Then we solve the equation for g.
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Now let us state the specific steps. Note that we have used an explicit time

integration method.

We first take A, B, L, M, h to be constant over the interval λk < λ < λk+1.

Then for every pair of adjacent cells (i, j) and (i + 1, j),

(0) Compute the time step Δλ. This is defined by using the stability condition

Δλ

2

(
�ξ

Δξ
+

�η

Δη

)
< 1.

Here �ξ is the spectral radius of
dF

dE
and �η that of

dG

dE
. We have

�ξ = max
∀(i,j)

⎧⎨⎩(1 − h)
|uM − vL|

Δ
+ a

√
|uM |2 + |vL|2

Δ

⎫⎬⎭
= max

∀(i,j)

{
(1 − h) |uξx + vξy| + a

√
ξ2
x + ξ2

y

}
,

�η = max
∀(i,j)

⎧⎨⎩(1 − h)
|uB − vA|

Δ
+ a

√
|uB|2 + |vA|2

Δ

⎫⎬⎭
= max

∀(i,j)

{
(1 − h) |uηx + vηy| + a

√
η2

x + η2
y

}
.

where Δ = AM − BL.

We also need a viscous update, which requires the time step to satisfy

Δλ

Re

Δ
2

(
ξx

Δξ2
+

ηy

Δη2

)
< 1.

(1) Do a MUSCL type data reconstruction in a component by component

manner. For example, in the ξ-direction, let f be any of the physical variables

ρ, p, u, v, then, instead of assuming a uniform state in the cells (i, j) and (i + 1, j),

we assume linearly distributed states and use linear extrapolation to determine

cell interface flow variables: fR = fi+1,j − 0.5(fi+2,j − fi+1,j)φ(r+) with r+ =

(fi+1,j − fi,j)/(fi+2,j − fi+1,j) and fL = fi,j + 0.5(fi,j − fi−1,j)φ(r−) with r− =

(fi+1,j − fi,j)/(fi,j − fi−1,j), where φ(r) = max{0, min(1, r)} is the minmod flux

limiter and subscripts R and L of f correspond to right and left states, respectively.

(2) Define the normal direction of the cell interface ξi+ 1
2 ,j between the two

adjacent cells (i, j) and (i + 1, j) as

n =
(∇ξ)i,j + (∇ξ)i+1,j

|(∇ξ)i,j + (∇ξ)i+1,j | .
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Project the velocity vector q = (u, v) into the normal and the tangential compo-

nents (ω and τ).

(3) Solve the Riemann problem to get the interfacial flow variables (ρ, p, ω, τ)T

and hence (ρ, p, u, v)T at ξ = ξi+ 1
2 ,j. These are constants and will be denoted by

(·)i+ 1
2 ,j.See [1] for details.

(4) Update the geometrical variables as follows:(
Ak+1

i,j

Bk+1
i,j

)
=

(
Ak

i,j

Bk
i,j

)
+

Δλk

Δξi
hk

i,j

(
ui+ 1

2 ,j − ui− 1
2 ,j

vi+ 1
2 ,j − vi− 1

2 ,j

)
,

(
Lk+1

i,j

Mk+1
i,j

)
=

(
Lk

i,j

Mk
i,j

)

or compute them directly by using

Ak+1
i,j =(xξ)

k+1
i,j =

xk+1
i+1,j − xk+1

i−1,j

2Δξi
, Bk+1

i,j = (yξ)
k+1
i,j =

yk+1
i+1,j − yk+1

i−1,j

2Δξi
,

Lk+1
i,j =(xη)k+1

i,j =
xk+1

i,j+1 − xk+1
i,j−1

2Δηj
, Mk+1

i,j = (yη)k+1
i,j =

yk+1
i,j+1 − yk+1

i,j−1

2Δηj
.

(5) Calculate the cell interface fluxes. For instance, the 2nd component of the

interface flux F
k+ 1

2
i+ 1

2 ,j
is evaluated as

ρi+ 1
2 ,j(1 − hk

i,j)(ui+ 1
2 ,jM

k+1
i,j − vi+ 1

2 ,jL
k+1
i,j ) + pi+ 1

2 ,jM
k+1
i,j

plus the viscous flux.

(6) Update the conserved variables Ep in the physical conservation laws (11.6)

using

Ek+1
pi,j

= Ek
pi,j

− Δλk

Δξi

(
F

k+ 1
2

i+ 1
2 ,j

− F
k+ 1

2
i− 1

2 ,j

)
.

(7) Decode Ek+1
pi,j

to get Qk+1
i,j , (physical variables), using Δ = Ak+1

i,j Mk+1
i,j −

Bk+1
i,j Lk+1

i,j .

(8) Apply Strang splitting, (11.24), to advance Ek
i,j to Ek+1

i,j (or Qk
i,j to Qk+1

i,j ).

(9) Update hk
i,j to hk+1

i,j by solving (11.18), using the updated values Qk+1
i,j and

Kk+1
i,j (geometrical variables) in its coefficients (Note: this step (9) is, of course, to

be by-passed if h = const. is assumed in the computation).

(10) (optional) Calculate the mesh in the x-y plane at λk+1:
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⎧⎪⎨⎪⎩
xk+1

i,j = xk
i,j +

1
2
(
(hq cos θ) k

i,j + (hq cos θ)k+1
i,j

)
Δλ,

yk+1
i,j = yk

i,j +
1
2
(
(hq sin θ) k

i,j + (hq sin θ)k+1
i,j

)
Δλ.

By a mesh we mean the lines joining the cell centers, not the cell interface lines.

After this, we repeat Step 2 to advance the solution further to λk+2, and so on.

Step 3 The motionless viewing window technique is applied once the mesh

has moved to the right. Accordingly, the column of cells which have moved out of

the original physical domain to the right are deleted, while a new column of cells

is added at the input flow boundary on the left.

In summary, our numerical scheme is second order accurate in space but only

first order accurate in time.

11.6 Test Examples: Shock/Boundary Flow Interaction and

Shock/Shock Interaction

In this section, the unified coordinates approach is tested numerically on two ex-

amples with comparison to the Eulerian approach. One is the shock/boundary flow

interaction with separation. The second one is a shock/shock interaction problem.

The objective of these computations is to show the UC method can handle com-

plex flows while keeping its advantages in resolving discontinuities in the inviscid

flow regime.

As the mesh is adapted at every time step, the UC approach takes more time

than the classical Eulerian approach mainly through the solution of the g-equation,

for which we have simply used an explicit iterative method. It makes the UC

approach to have 50% more CPU time than the Eulerian approach. We believe a

more efficient algorithm to solve the g-equation can substantially reduce the CPU

time.

Example 1 Shock/boundary flow interaction[4]. Shock/boundary layer in-

teraction is an important and complex problem in supersonic and transonic flow

applications. Because of its importance, it has been actively investigated since the

beginning of high-speed aerodynamics in the 1940s. A comprehensive account on

this subject is given in [5], where most of the historical papers and recent publica-

tions are cited. There are essentially three types of shock/boundary layer interac-

tion. Here we only consider the interaction between an oblique incident shock wave
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and a boundary layer. The oblique shock wave is supposed to be strong enough to

induce separation. Our purpose here is to first demonstrate that even with such

a flow (with strong recirculation) the unified coordinate system works. Then we

perform some comparison with known experimental study.

The problem is defined as follows. The freestream condition is M∞ = 3, Re =

104. The incident shock angle is β = 30◦ which corresponds to a deflection angle

θ = 12.8◦. The flow conditions (ρ, u, v, p, M) after the oblique shock are given by

the oblique shock relations
ρ

ρ∞
=

(γ + 1)M2
∞ sin2 β

2 + (γ − 1)M2∞ sin2 β
,

p

p∞
= 1 +

2γ

γ + 1
(M2

∞ sin2 β − 1),

M2 =
M2

∞ +
2

γ − 1
2γ

γ − 1
M2

∞ sin2 β − 1
+

M2
∞ cos2 β

γ − 1
2

M2
∞ sin2 β + 1

,

u = M

√
γp

ρ
cos θ,

v = M

√
γp

ρ
sin θ,

where the deflection angle θ is related to the shock angle β by

tan θ = 2arctan
M2

∞ sin2 β − 1
M2∞(γ + cos 2β) + 2

.

Figure 11.1 Shock/boundary layer interaction. Mesh used for the Eulerian approach.

Δymin = 0.002
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In the computation using the Eulerian system, a mesh of 100× 50 is employed.

Initially, a mesh with Δx = 1/100, Δyi,j=1 = 0.002 and Δyi,j+1/Δyi,j = 1.05 (∀
j ∈ (1, 49)) in the physical plane is laid over a domain of {0 x 1, 0 y 0.5}.
The mesh is shown in Figure 11.1. It is also used as the initial mesh for the unified

coordinates computation.

The Mach contours and the streamlines are shown in Figures 11.2 and 11.3. It

is clear that the interaction induces separation and a vortex is formed.

Figure 11.2 Mach contours obtained using the Eulerian approach

Figure 11.3 Streamlines by the Eulerian approach
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Now consider the unified coordinates approach. The computation uses the

Eulerian mesh given above as the initial mesh. The final mesh produced by the

unified coordinates approach is displayed in Figure 11.4.

Figure 11.4 Shock/boundary layer interaction. Mesh produced by the UC approach

The Mach contours and the streamlines are shown in Figures 11.5 and 11.6,

respectively. It is encouraging that the unified coordinates approach can handle

the case of shock/boundary layer interaction even though a vortex exists. Such a

case had been impossible using the classical Lagrangian approach.

Figure 11.5 Mach contours obtained using the UC approach
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Figure 11.6 Streamlines by the UC approach

Example 2 Shock/Shock interaction. Now consider the problem of shock/shock

interaction. Two oblique shocks are generated by two wedges which cause a de-

flection of the flow by an angle θ = 5◦ (lower wedge) and θ = 15◦ (upper). The

upstream Mach number is M∞ = 4. Figures 11.7 and 11.8 show Mach contours

of inviscid computation using Eulerian and UC approach. After the shock/shock

interaction, the emerged slipline is better resolved in the UC computation in com-

parison with the Eulerian one.

Figure 11.7 Eulerian computation for shock/shock interaction (inviscid flow). Mach

contours for M∞ = 4
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For the viscous flow case, the Reynolds number is Re = 104 An initial mesh of

120×120 will be used. The Mach contours obtained by the Eulerian approach and

unified coordinate approach are displayed in Figures 11.9 and 11.10, respectively.

We note that the leading shocks produced by the UC approach are curves, and

this is due to the effect of boundary layer displacement, which makes the effective

solid surface from a flat one to a parabolic arc. This is less visible in Eulerian

computation.

Figure 11.8 UC computation for shock/shock interaction (inviscid flow). Mach

contours for M∞ = 4

Figure 11.9 Eulerian computation for shock/shock interaction. Mach contours for

M∞ = 4 and Re = 104

The success of this computation clearly shows that the unified coordinate system

works even for a very complex problem for which the classical Lagrangian approach
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should fail to work. Notably, it captures discontinuities more sharply in the inviscid

flow regimes, while it does not break down in the viscous flow regime. This is due

to the use of an h-equation (or g-equation) which avoids severe mesh deformation.

Figure 11.10 UC computation for shock/shock interaction. Mach contours for M∞ = 4

and Re = 104

An important discrepancy is the curvature of the oblique shocks produced by

the upper and lower wedges. The Eulerian approach produces two straight shock

waves (Figure 11.9). This would be qualitatively incorrect, since the increasing

(displacement) thickness of the boundary layer on the wedges should make the

shocks curved. This property is nevertheless well captured by the unified coordinate

system, see Figure 11.10 from which it is clear that the front two oblique shock

waves are curved.

We have also performed a computation using a refined mesh (240×240) for the

Eulerian approach. The Mach contours is shown in Figure 11.11, from which we

see that the oblique shock waves are curved.

To conclude, this chapter extends the unified coordinate system initially pro-

posed for inviscid flow computation to the case of viscous flow computation. In

contrast with the classical Lagrangian approach which fails to work for comput-

ing boundary layer flow due to infinite mesh deformation, the unified coordinate

system—a generalized Lagrangian system-works for boundary layer flow computa-

tions due to its freedom in constructing the mesh velocity.

The unified coordinate system is expected to work better than the Eulerian
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approach since boundary layers can be considered as the superposition of an infinite

number of slip lines and the unified coordinate system works well with sliplines.

Figure 11.11 Eulerian approach for shock/shock interaction with a mesh 240 × 240

points. Mach contours for M∞ = 4 and Re = 104
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Chapter 12

Applications of the Unified Coordinates

to Kinetic Theory

12.1 Brief Introduction of Gas-Kinetic Theory

Besides the macroscopic governing equations—the Navier-Stokes equations, a fun-

damentally different approach to describing viscous flow is based on the microscopic

particle (molecule) motion—the so-called Boltzmann equation. The fluid density

is defined as a collection of individual molecules

ρ =
∑

i

mni, (12.1)

where m is the molecular mass and ni is the particle number density at a cer-

tain velocity. However, due to the huge number of particles in a small volume in

common situations, such as
∑
i

ni = 2.7 × 1019 moleculars in 1 cubic centimeter

at 1 atmosphere and T = 0◦C, to follow each individual particle is impossible.

Instead, a continuous distribution function is used to describe the probability of

particles to be located in a certain velocity interval. For hydrodynamics purpose,

ni is approximated by a gas distribution function

f(xi, t, ci),

where (xi, t) is the location of any point in Eulerian space and time, ci = (cx, cy, cz)

is particle velocity with three components in the x-, y-and z-direction, and the

relation between ni and f is

mni = f(xi, t, ci).

As a result, the sum in (12.1) can be replaced by the integral

ρ =
∫ ∫ ∫

fdcxdcydcz
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in the particle velocity space. For molecules with internal motion, such as rotation

and vibration, the distribution function f can take these internal motion into ac-

count as well through additional variables ςi. The dimension and formulation for

ςi are defined below.

For monatomic gas, the internal degree of freedom N is equal to 0. For diatomic

gases, under the normal pressure and temperature, N is equal to 2 which accounts

for two independent rotational degrees of freedom. The equipartition principle in

statistical mechanics states that each degree of freedom shares an equal amount of

energy
1
2
kT , where k is the Boltzmann constant and T is the temperature. Then

the specific heats Cv and Cp for the gases in equilibrium state have the forms

Cv =
N + 3

2
R, Cp =

(N + 3) + 2
2

R, (12.2)

where R = k/m is the gas constant, m is the mass of each molecule, and the three

accounts for the molecular translation motion in x-, y-and z-direction. From the

above equations, we can obtain the ratio of the principal specific heats, which is

commonly denoted by γ,

γ =
Cp

Cv
=

(N + 3) + 2
N + 3

. (12.3)

So γ is 5/3 for monatomic gas (N = 0) and 7/5 for diatomic gas (N = 2).

The thermodynamic aspect of the Navier-Stokes equations is based on the as-

sumption that the departure of the gas from local equilibrium state is sufficiently

small. Although we do not know the real gas distribution function f exactly in the

real flow situation, in classical physics we do know the corresponding equilibrium

state g locally once we know the mass, momentum and energy densities. In the

following, we are going to define the equilibrium distribution and present all its

physical properties. In order to understand the internal variable ςi inside the gas

distribution function, let’s first write down the Maxwell-Boltzmann distribution g

for the equilibrium state,

g =ρ

(
m

2πkT

)N+3
2

exp{−(m/2kT )[(ci − ui)2 + ς2
i ]}

=ρ

(
m

2πkT

)N+3
2

exp{−(m/2kT )[(cx−u)2+(cy−v)2+(cz−w)2+ς2
1 +· · ·+ς2

N ]},
(12.4)
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where ςi = (ς1, ς2, · · · , ςN ) are the components of the internal particle velocity

in N -D, ui = (u, v, w) is the corresponding macroscopic flow velocity with three

components in the x-, y-and z-direction. In the above equation, the parameters

T, ui and ρ, which determine g uniquely, are functions of space and time. Taking

moments of the equilibrium state g, the mass, momentum and energy densities at

any point in space and time can be obtained. In particular, the macroscopic and

microscopic descriptions are related by⎛⎝ ρ

ρui

ρe

⎞⎠ =
∫

g

⎛⎜⎝ 1
ci

1
2
(c2

i + ς2)

⎞⎟⎠dcxdcydczdς1dς2 · · · dςN . (12.5)

More specifically,⎛⎜⎜⎜⎜⎝
ρ

ρu

ρv

ρw

ρe

⎞⎟⎟⎟⎟⎠ =
∫

· · ·
∫ ∞

−∞
g

⎛⎜⎜⎜⎜⎜⎜⎝
1
cx

cy

cz

1
2
(c2

x + c2
y + c2

z + ς2
1 + · · · + ς2

N )

⎞⎟⎟⎟⎟⎟⎟⎠ dcxdcydczdς1 · · · dςN ,

(12.6)

from which the total energy density ρe can be expressed as

ρe =
1
2
ρ

(
u2 + v2 + w2 +

N + 3
m

kT

)
,

which includes both kinetic and thermal energy densities. Note that (12.4) de-

scribes the gas distribution function g in 3-D and the value of N can be obtained

in terms of γ from (12.3). If we re-define the internal variable ςi as a vector in

K-D, in the 3-D case we have

K = N =
−3γ + 5
γ − 1

.

For 1-D gas flow, the macroscopic average velocities in y-and z-direction are

equal to zero with (v, w) = (0, 0). So, the random motion of particles in y-and

z-direction can be included in the internal variable ς of the molecules. As a result,

the internal degree of freedom becomes N + 2, which is denoted again by K with

the relation K = N + 2. The distribution function g in the 1-D case goes to

g =ρ

(
m

2πkT

)N+3
2

exp{−(m/2kT )[(cx−u)2+c2
y+c2

z+ς2
1 +· · ·+ς2

N ]} (12.7)
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=ρ

(
m

2πkT

)K+1
2

exp{−(m/2kT )[(cx − u)2 + ς2]},

where the dimension of ς is K. Substitue N = K−2 into (12.3), we get the relation

between K and γ in the 1-D case,

K =
3 − γ

γ − 1
.

For example, for diatomic gas with N = 2 and γ = 1.4, K is equal to 4, and the

total energy density goes to

ρe =
1
2
ρ

[
u2 +

(K + 1)
m

kT

]
.

In 2-D flow calculations, K is equal to N + 1, and the equilibrium distribution

function is

g =ρ

(
m

2πkT

)N+3
2

exp{−(m/2kT )[(cx − u)2 + (cy − v)2 + c2
z + ς2

1 + · · · + ς2
N ]}

=ρ

(
m

2πkT

)K+2
2

exp{−(m/2kT )[(cx − u)2 + (cy − v)2 + ς2]}. (12.8)

Then the relation between γ and K becomes

K =
4 − 2γ

γ − 1
.

For diatomic gas, K is equal to 3 in the 2-D case and the total energy density

becomes

ρe =
1
2
ρ

[
u2 + v2 +

(K + 2)
m

kT

]
.

In all cases from the 1-D to 3-D, the pressure p is related to ρ and T through the

following relation:

p = nkT =
ρ

m
kT = ρRT,

where n is the particle number density, R is the gas constant and m is the molecule

mass. Note that the pressure is independent of the internal degree of freedom N .

Due to the unique format of the equilibrium distribution function g in classical

statistical physics, at each point in space and time, there is a one to one corre-

spondence between g and the macroscopic densities, e.g., mass, momentum and

energy. So, from macroscopic flow variables at any point in space and time, we
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can construct a unique equilibrium state. However, in real physical situation, gas

does not necessarily stay in the Local Thermodynamic Equilibrium (LTE) state,

such as gas inside a shock or boundary layer, even though we can still construct

a local equilibrium state there from the corresponding macroscopic flow variables.

Usually, we do not know the explicit form of the gas distribution function f in

extremely dissipative flow regions, such as that inside a strong shock wave. What

we know is the time evolution of f , the so-called Boltzmann Equation

ft + cifxi + aifci = Q(f, f) =
∫∫∫

(f ′f ′
∗ − ff∗)B(θ, V )dc∗dθdε, (12.9)

where V = |c − c∗| is the particle collision velocity differences between impact

particles which will be changed to V ′ = |c′ − c′∗| after collision. Here f is the

gas distribution function before collision with f = f(c) and f∗ = f(c∗), and f ′

is the after impact gas distribution function with f ′∗ = f(c′∗) and f ′ = f(c′∗).

The function B depends on the interaction potential of particles. In the above

equation, f is the real gas distribution function, ai is the external force term acting

on the particle in i-th direction, and Q(f, f) is the collision operator. From the

physical constraints of the conservation of mass, momentum and energy during

particle collisions, the following compatibility condition has to be satisfied:∫
ψαQ(f, f)dΞ = 0, (12.10)

where dΞ = dcxdcydczdς1dς2 · · ·dςK and ψα = (1, cx, cy, cz,
1
2
(c2

x + c2
y + c2

z + ς2))T.

For convenience, the following notations will be used:

ς2 = ς2
1 + ς2

2 + · · · + ς2
K , dς = dς1dς2 · · · dςK .

Assuming further that the spatial and temporal variations of the distribution

function f are small on the scale of the mean free path and the mean time interval

between collisions, it is possible to find the first order approximations to the viscous

stress tensor and the heat flux from the Boltzmann equation, which are in agree-

ment with the Navier-Stokes equations. Thus the Navier-Stokes equations may be

regarded as the leading term in an asymptotic expansion of the full Boltzmann

equation in the limit of Kn � 0, where Kn is the Knudsen number. From the

Boltzmann equation, the viscosity and heat conduction coefficients can be derived
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as functions of the basic quantities describing the molecules[1]. For example, the

viscous stress σij and the heat flux κi can be obtained from the gas distribution

function f , such that

σij =
∫

(ci − ui)(cj − uj)fdcxdcydczdς − pδij

and

κi =
1
2

∫
(ci − ui)

(
(cx − u)2 + (cy − v)2 + (cz − w)2 + ς2

)
fdcxdcydczdς, (12.11)

where p is the local pressure. The viscous stress σij and heat conducting κi terms

go to zero if and only if f = g for the flow in equilibrium state.

12.2 Gas-Kinetic BGK Model Under the Unified Coordinate

Transformation

The BGK model of the approximate Boltzmann equation in 2-D space can be

written as[2]

ft + cxfx + cyfy =
g − f

τ
, (12.12)

where f is the gas distribution function and g is the equilibrium state approached

by f . The particle collision time τ determines the closeness between f and g. Both

f and g are functions of space (x, y), time t, particle velocity (cx, cy), and internal

variable ς. In Chapter 6, Hui’s transformation can be used from the physical

domain (t, x, y) to the computational domain (λ, ξ, η),⎧⎨⎩
dt = dλ,

dx = Udλ + Adξ + Ldη,

dy = V dλ + Bdξ + Mdη,

(12.13)

where (U, V ) are the mesh velocity, (A, B, L, M) are determined by the compati-

bility conditions or the geometric conservative laws,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂A

∂λ
=

∂U

∂ξ
,

∂B

∂λ
=

∂V

∂ξ
,

∂L

∂λ
=

∂U

∂η
,

∂M

∂λ
=

∂V

∂η
.

(12.14)



12.3 Numerical BGK-NS Scheme in a Moving Mesh System 153

With the above transformation (12.13), the gas-kinetic BGK equation becomes

∂

∂λ
(Δf)+

∂

∂ξ
{[(cx−U)M−(cy−V )L]f}+ ∂

∂η
{[−(cx−U)B+(cy−V )A]f} =

g − f

τ
Δ,

(12.15)

where Δ = AM − BL is the Jacobian of the transformation.

For an equilibrium flow with distribution f = g, by taking the conservative

moments φ =
(

1, cx, cy,
1
2
(c2

x + c2
y + ς2)

)T

to (12.15), the same Euler equations

(6.21) under the moving mesh in the Eulerian space can be obtained,

∂E

∂λ
+

∂F

∂ξ
+

∂G

∂η
= 0, (12.16)

where

E =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρJ

ρJu

ρJv

ρJe

A

B

L

M

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρX

ρXu + pM

ρXv − pL

ρXe + p(uM − vL)
−U

−V

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρY

ρY u − pB

ρY v + pA

ρY e + p(vA − uB)
0
0

−U

−V

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(12.17)

For the viscous and heat conducting flow, the Chapman-Enskog expansion of

(12.15) up to the 1st order of τ gives

f =g− τ

Δ

(
∂

∂λ
(Δg)+

∂

∂ξ
{[(cx−U)M−(cy−V )L]g}+ ∂

∂η
{[−(cx−U)B+(cy−V )A]g}

)
.

Taking moments of φ again to (12.15) with the above Navier-Stokes distribution

function, we can get the Navier-Stokes equations in moving space, which are pre-

sented in Section 11.1. In this chapter, instead of solving the viscous governing

equations, we are going to solve the gas-kinetic equation (12.15) to compute vis-

cous flow.

12.3 Numerical BGK-NS Scheme in a Moving Mesh

System

In this section, we are going to present the gas-kinetic method to solve (12.15)

by a directional splitting method. For example, the BGK model (12.15) in the
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ξ-direction is

∂

∂λ
(Δf) +

∂

∂ξ
{[(cx − U)M − (cy − V )L]f} =

g − f

τ
Δ. (12.18)

In order to evaluate the fluxes across a moving interface ξ = const., let’s first define

its normal direction n and tangent direction t,

n = ∇ξ/|∇ξ| =
(M,−L)

S
, t =

(L, M)
S

,

where S =
√

M2 + L2 is the physical length of the cell interface. Then, the particle

velocity (cx −U, cy −V ) relative to a moving cell interface can be decomposed into

the normal c̃x and tangential c̃y velocities as well, namely⎧⎪⎪⎨⎪⎪⎩
c̃x =

(cx − U)M
S

− (cy − V )L
S

,

c̃y =
(cx − U)L

S
+

(cy − V )M
S

.

(12.19)

Hence, with the above transformation, (12.18) in the ξ-direction becomes

∂

∂λ
(Δf) +

∂

∂ξ
(Sc̃xf) =

g − f

τ
Δ. (12.20)

This is the basic equation to be solved to construct the gas distribution function f

at the moving cell interface ξ = const., then calculate the numerical fluxes. In the

above equation, Δ is the cell area and S is the cell interface length. At the center

of a moving cell interface the above equation can be re-written as

∂

∂λ
(f) +

∂

∂x̃
(c̃xf) =

g − f

τ
, (12.21)

where x̃ is the length scale in the normal direction of the moving cell interface

in the physical space. Since dλ = dt, the integral solution of the above equation

becomes

f(ξi+1/2, ηj , t, c̃x, c̃y, ς)=
1
τ

∫ t

0

g(x̃′, t′, c̃x, c̃y, ζ)e−(t−t′)/τdt′

+e−t/τf0(x̃i+1/2 − c̃xt, c̃y), (12.22)

where x̃′ = x̃i+1/2 − c̃x(t − t′) is the trajectory of a particle motion relative to

the moving cell interface and f0 is the initial gas distribution function f at the

beginning of each time step (t = 0). The scheme based on the above solution
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will be identical to the BGK-NS method[3], even though the system here (λ, x̃) is

moving relative to the stationary system (t, x). The difference only appears in the

construction of the equilibrium states in both g and f0, which are presented in the

following.

In the local moving frame of reference at interface ξ = const., the Maxwellian

distribution should have the form

g = ρ

(
m

2πkT

)(K+2)/2

exp{−(m/2kT )[(c̃x − ũ)2 + (c̃y − ṽ)2 + ς2]},

where the averaged macroscopic fluid velocity (ũ, ṽ) is related to the fluid velocity

(u, v) in the inertia frame of reference by⎧⎪⎪⎨⎪⎪⎩
ũ =

(u − U)M
S

− (v − V )L
S

,

ṽ =
(u − U)L

S
+

(v − V )M
S

.

(12.23)

Numerically, (12.21) is the same equation as the one we have solved in the Eu-

lerian space, where c̃x, c̃y are the particle velocity and ũ, ṽ are the macroscopic

velocity in the n and t-direction. Then, the standard BGK-NS method[3] can

be used to solve (12.21) to evaluate the time-dependent gas distribution function

f(ξi+1/2, ηj , t, c̃x, c̃y, ς) at the cell interface ξ = ξi+1/2. The detailed formulation

of the gas-kinetic BGK-NS scheme for the Navier-Stokes solutions is given in [3].

Therefore, standing on the moving cell interface the fluxes can be explicitly ob-

tained,⎛⎜⎜⎝
Fρ

Fρũ

Fρṽ

Fρẽ

⎞⎟⎟⎠
i+1/2,j

=
∫

c̃x

⎛⎜⎜⎜⎝
1
c̃x

c̃y

1
2
(c̃x

2 + c̃y
2 + ς2)

⎞⎟⎟⎟⎠f(ξi+1/2, ηj , t, c̃x, c̃y, ς)dΞ . (12.24)

The above fluxes are evaluated standing on the moving reference of frame with mesh

velocity (U, V ), in order to update the conservative variables in the (ξ, η) space,

we need to transfer the fluxes in (12.24) into the fluxes for the mass, momentum

and energy transport of the inertia frame of reference. In other words, the above

obtained gas distribution function f(ξi+1/2, ηj , t, c̃x, c̃y, ς) and its mass flux across

the moving cell interface c̃xf(ξi+1/2, ηj , t, c̃x, c̃y, ς) will carry the mass, momentum
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and energy densities
(

1, cx, cy,
1
2
(c2

x+c2
y+ς2)

)
in the inertia frame of reference. So,

the time-dependent numerical flux in the Eulerian space in the n-direction across

the cell interface ξ = C should be calculated as⎛⎜⎜⎝
Fρ

Fρu

Fρv

Fρe

⎞⎟⎟⎠
i+1/2,j

=
∫

Sc̃x

⎛⎜⎜⎜⎝
1
cx

cy

1
2
(c2

x + c2
y + ς2)

⎞⎟⎟⎟⎠f(ξi+1/2, ηj , t, c̃x, c̃y, ς)dΞ . (12.25)

In the above equation, the distribution function f is a scalar function, which is

invariant under coordinate transformation, but the particle velocities (c̃x, c̃y) and

(cx, cy) are defined differently in the different frame of reference. In order to eval-

uate the above flux integration, the easiest way is to write the (cx, cy) velocities in

terms of (c̃x, c̃y). Based on the transformation (12.19), we have

cx = U +
Mc̃x + Lc̃y

S
, cy = V +

−Lc̃x + Mc̃y

S
.

Therefore, (12.25) becomes⎛⎜⎜⎝
Fρ

Fρu

Fρv

Fρe

⎞⎟⎟⎠
i+1/2,j

=

⎛⎜⎜⎜⎝
SFρ

MFρũ + LFρṽ + SUFρ

−LFρũ + MFρṽ + SV Fρ

(MU−LV )Fρũ+(LU +MV )Fρṽ +SFρẽ+
S

2
(U2+V 2)Fρ

⎞⎟⎟⎟⎠,

(12.26)

where (Fρ,Fρũ,Fρṽ,Fρẽ) are given in (12.24). So the fluxes relative to the moving

cell interface in the Eulerian space is just a linear combination of the fluxes in the

moving frame of reference due to the linear transformation between the inertia and

moving space with relative velocity (U, V ). Similarly, the fluxes at the cell interface

η = const., i.e., G, can be constructed as well.

With the above fluxes, the flow variables can be updated in each moving com-

putational cell by

En+1
i,j = En

i,j+
1

Δξ

∫ tn+1

tn

(F i−1/2,j−F i+1/2,j)dt+
1

Δη

∫ tn+1

tn

(Gi,j−1/2−Gi,j+1/2)dt,

(12.27)

where E = (ρΔ, ρΔu, ρΔv, ρΔe)T and F = (Fρ,Fρu,Fρv,Fρe)T are given in

(12.26), G fluxes in the η-direction.
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12.4 Numerical Procedure

The numerical procedure for the gas-kinetic scheme on a moving and adaptive mesh

can be summarized in the following. In some numerical examples, the adaptive

mesh method is not used, and the corresponding step can be ignored. Also, all

fluid quantities (ρ, ρu, ρv, ρe) and the geometric variables (A, B, M, L) are defined

at each cell center. Any cell interface values are obtained as the average of the

values in the adjacent cells.

Step 1 Initialize the conservative variables (ρ, ρu, ρv, ρe) and (A, B, L, M) at

t = λ = 0 in the xy plane. Usually, ξ and η are the initial arclength of their

corresponding x-and y-coordinate lines. For example, for the rectangular domain,

we take Δξ = Δx, and Δη = Δy when Δx and Δy are constants on the physical

domain initially. Or, we can simply choose two constants to define Δξ and Δη.

Then, (A, B, L, M) are determined according to the definition,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A =
∂x

∂ξ
,

B =
∂y

∂ξ
,

L =
∂x

∂η
,

M =
∂y

∂η
.

(12.28)

Then, we calculate (Δρ,Δρu,Δρv,ΔρE) inside each cell with Δ = AM − BL.

Step 2 Construct or modify the mesh using the adaptive grid method[4],

and update the conservative variables (ρ, ρu, ρv, ρe) inside each cell in the phys-

ical domain. Subsequently, calculate (A, B, L, M) by (12.28) again and update

(Δρ,Δρu,Δρv,Δρe) with the new Δ = AM − BL. The re-distribution of conser-

vative variables in this step is fully conservative.

Step 3 Given a mesh velocity (U, V ) at the center of each cell, such as the fluid

velocity q in the gas-kinetic Lagrangian method, at the cell interface ξ = ξi+1/2

the mesh velocity is calculated as

(U)i+1/2,j =
(U)i,j + (U)i+1,j

2
,

(V )i+1/2,j =
(V )i,j + (V )i+1,j

2
,
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which are the average of the velocities from the neighboring cells. Then, based

on (12.26) the numerical fluxes are calculated across the moving interface. At the

same time, the center of the cell, (xn
i,j , y

n
i,j), moves to a new location through⎧⎨⎩xn+1

i,j = xn
i,j + Ui,j × (tn+1 − tn),

yn+1
i,j = yn

i,j + Vi,j × (tn+1 − tn).
(12.29)

The location of cell vertex is updated by averaging the centers of 4 neighboring

cells.

Step 4 With the new mesh location xn+1, yn+1, calculate (A, B, L, M) and

Δ using (12.28). Then, update the conservative variables by the finite volume

scheme (12.27) in the newly moved cells. It can be shown that the use of (12.28)

to calculate (A, B, L, M) is the same as the geometrical conservation law (12.14),

such as the update of A,

An+1
i,j =

(
∂x

∂ξ

)n+1

i,j

=
xn+1

i+1/2,j − xn+1
i−1/2,j

Δξ

=
xn

i+1/2,j + (U)n
i+1/2,jΔλn − xn

i−1/2,j − (U)n
i−1/2,jΔλn

Δξ

=
xn

i+1/2,j − xn
i−1/2,j

Δξ
+

Δλn

Δξ
((U)n

i+1/2,j − (U)n
i−1/2,j)

=An
i,j +

Δλn

Δξ
((U)n

i+1/2,j − (U)n
i−1/2,j).

Similarly, it is true for B, L and M .

Then go to Step 2 to repeat the above process until the output time.

12.5 Numerical Examples

As mentioned earlier, the main advantage of the current method is that the phys-

ical conservation laws under unified coordinate are coupled with the geometrical

conservation laws. Mathematically, the unified system provides an enlarged and

complete system, which avoids the difficulties in other moving mesh methods to im-

plement the geometrical conservation separately based on physical intuition. Also,

different from the Eulerian and Lagrangian methods, the choice of mesh velocity

(U, V ) becomes a new degree of freedom in the current model. The proper choice of
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the mesh velocity depends on the specific applications to get the optimum accuracy

in the numerical solution. For example, the mesh velocity can be the fluid velocity

in the free surface flow, or follow the oscillating angular velocity for a pitching

airfoil. In the approach by Hui et al[5], preserving the mesh angle has been used to

get the local value h in the determination of mesh velocity (hu, hv). In this section,

the BGK-NS scheme on a moving mesh will be tested on several examples. Differ-

ent choices of the mesh velocity will be used. The numerical results are compared

with the exact solutions, experimental data, and the available solutions obtained

by others.

Example 1: free surface flow. The current approach with the choice of

(U, V ) = (u, v) becomes a purely gas-kinetic Lagrangian method even though it

is solving the viscous governing equations. The use of the fluid velocity as the

mesh velocity can naturally capture the free surface sharply. The case we are

going to study is the dam break problem, where a column of water is released

by removing a vertical diaphragm. This becomes a standard benchmark prob-

lem due to its simple geometry and the available experimental measurement[6].

The initial configuration is shown in the upper left picture in Figure 12.1. In

this example, a rectangular column of water in hydrostatic equilibrium is confined

initially between two vertical walls. The water column is 3.5 units wide and 7.0

units high. The gravity is acting downward with the dimensionless 0.05 unit in

magnitude.

After the diaphragm eruption at time t = 0, the water is pushing out and moves

freely along a dry horizontal floor. The measured quantities include the water wave
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Figure 12.1 Moving meshes at time t = 0, 9.46, 14.0, 19.7

front location L on the floor. In our calculation, 40 × 20 rectangular mesh points

are initially employed in a domain 0 x 3.5, 0 y 7.5. Figure 12.1 presents

the moving meshes at three subsequent times. Since the mesh velocity is equal to

the fluid velocity, the mesh distribution is the same as the water distribution. In a

purely Lagrangian simulation, the mesh is easily tangled at a later time. Since we

have used a mesh smoothing technique through the mesh adaptive method with

a constant monitor function to equally distribute the mesh[4], the moving mesh

becomes generally smooth all over the domain even though the mesh adaptation

steps are applied only a few times.

Figure 12.2 shows the water tip location versus time for both simulation and

experimental measurement. The non-dimensional time in the horizontal coordinate

is normalized by t
√

2g/W , where W is the width of the initial water column. Good

agreements between computation and experiment are evident.

Example 2: shock reflection inside a channel with a ramp. In order to
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Figure 12.2 The time dependent location of water front. Experimental measurement[6]

vs the calculation from UC method

preserve the mesh angles[5], the mesh velocity (U, V ) = (hu, hv) can be obtained

by solving the following equation for h:

∂

∂λ

( ∇ξ

|∇ξ| ·
∇η

|∇η|
)

= 0,

where ∇ξ = (M,−L)/Δ,∇η = (−B,−A)/Δ and θ is the flow angle, u = q cos θ,

v = q sin θ, q =
√

u2 + v2. Let g̃ = ln(hq), then the above equation becomes

S2(A sin θ − B cos θ)
∂g̃

∂ξ
+ T 2(M cos θ − L sin θ)

∂g̃

∂η

=S2

(
B

∂ cos θ

∂ξ
− A

∂ sin θ

∂ξ

)
− T 2

(
M

∂ cos θ

∂η
− L

∂ sin θ

∂η

)
, (12.30)

where S2 = L2 + M2 and T 2 = A2 + B2. Numerically, (12.30) can be solved by an

iterative method to get h at different grid point. The detail description was given

in [5].

In the current supersonic flow of M = 1.8 passing through a ramp in a chan-

nel, (12.30) is used to calculate g̃ and hence h, then determine the mesh veloc-

ity. Here the ramp with 15◦ is placed at the lower wall between x = 0.5 and

x = 1.0. A computational mesh with 180 × 50 mesh points in the physical do-

main {0 x 3.6, 0 y 1.0} is initially generated. An initial flow data with

(p, ρ, M, θ) = (1, 1, 1.8, 0) is imposed inside each cell, as well as at the left boundary.

Reflection boundary conditions are used at the top and bottom walls. When h is

chosen according to (12.30), the mesh will automatically preserve the mesh angle,
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which is shown in Figure 12.3. Figure 12.4 presents pressure and Mach number

distributions after the steady state solution is obtained. The shocks and slipline

are seen sharply resolved.

Figure 12.3 Computational mesh due to the implementation of mesh angle preservation

Figure 12.4 Computed flow with shock seflection in a channel

Example 3: viscous flow above an oscillating wall. This is called Stokes’

second problem, which considers fluid motion above an infinite flat plate execut-

ing sinusoidal oscillations parallel to itself. The fluid above the plate is initially

stationary. The governing equation for velocity u in the x-direction is

∂u

∂t
= ν

∂2u

∂y2
, (12.31)

with the boundary conditions

uwall(0, t) = u0 cosωt, u(∞, t) = 0.

The exact solution for the above problem is

u(y, t) = u0e−y
√

ω/2ν cos
(

ωt − y

√
ω

2ν

)
. (12.32)
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At y = 4
√

ν/ω, the amplitude of u is equal to u0 exp(−4/
√

2) = 0.05u0, which

means that the influence from the wall is confined within a distance of order

δ ∼ 4
√

ν/ω. Since the gas-kinetic scheme solves the compressible Navier-Stokes

equations, in order to simulate the above incompressible limiting solution the Mach

number for the compressible flow takes a small value, i.e., M = 0.15. The kine-

matic viscosity coefficient takes a value ν = 0.00046395, and a mesh size 10 × 70

mesh points is used.

In the current calculation, we have used two ways to determine the mesh ve-

locity. In the first case, we used the purely Lagrangian method for the viscous

solution, where the mesh velocity follows the fluid one. Due to large velocity shear

in the boundary layer, the Lagrangian method will stretch the mesh severely. This

is the main reason why nobody really used Lagrangian method for the viscous flow

computation. However, it is still theoretically interesting to see the solution using

gas-kinetic Lagrangian method. Figure 12.5 shows the mesh (left) and velocity

(right) at time ωt = π/25 when the mesh follows the fluid velocity. Even though

the mesh has been stretched greatly, it is surprising that the numerical solution

is very close to the exact solution. This proves the robustness and accuracy of

the current kinetic scheme for the viscous computation. With increasing time, the

mesh will be stretched further until 20 mesh points are not enough to follow the

time increasing velocity arc-length. Eventually, the computation will stop. If the

Figure 12.5 Lagrangian gas-kinetic scheme for viscous flow. Mesh (left) and velocity

(right) distributions at time ωt = π/25
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mesh velocity at all mesh points follow the wall velocity, such as (U, V ) = (uwall, 0),

the mesh will not get tangled. Figure 12.6 shows the mesh and simulation results

at ωt = π/2.

Figure 12.6 Gas-kinetic scheme for viscous flow with (U, V ) = (uwall, 0). Mesh (left)

and velocity (right) distributions at time ωt = π/2

Example 4: freely falling plates. In the 2-D experiment conducted by An-

dersen, Persavento and Wang[7], a small rectangular aluminum plate was designed

to fall freely in a water tank. For the falling plate, many physical quantities were

measured, such as the plate trajectory and falling speed. The fluid force and torque

on the plate were calculated according to the experimental data. Here we apply the

above UC method to solve the 2-D Navier-Stokes equations to study the rich hydro

dynamical behavior of falling plates. In the following, we simulate the plate move-

ment under the following conditions: the plate thickness to width ratio β = 1/8,

the plate thickness h = 0.081 cm, the density of the fluid ρf = 1.0g cm−3, the

density of the plate ρb = 2.7g cm−3, and their ratio ρb/ρf = 2.7. In the current

simulations, the Reynolds number for a rectangular plate is Re = lut/ν = 837.

The radius of the computational domain has a value about five times the length

of the longer axis of the plate, i.e., r = 5L and L is the chord length. In or-

der to confirm the convergence of the computational results, a larger domain with

r = 10L was also used. In both cases, two stretched meshes are generated around

the falling plates with 200 × 50 and 400 × 100 mesh points separately. Since the
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solution close to the plate is well resolved by the small cell size and different mesh

stretching parameters are used, the simulation results on different computational

domain basically capture mesh refinement effects.

Following the experiment, the rectangle plate is released at an initial angle

of 0.25π radian with respective to the horizontal axis, with an initial velocity

u = (−8.92 cm/s, −8.92 cm/s). The computational mesh around the rectangle

is fixed with the rigid body motion of the plate, as shown in Figure 12.7. With the

above initial condition, the rectangular plate first has a fluttering motion from side

to side, then after a while it starts to tumble. Since the experimental results pre-

sented in [7] were for the tumbling section, the numerical data in the correspond-

ing section is extracted and compared with the experimental data. Figure 12.8

shows the rectangular plate trajectory of the current simulation and experimental

measurement[7]. The agreement is seen very good. Quantitatively, the averaged x-

and y-direction velocity components become (Vx = 15.1 cm/s, Vy = −11.8 cm/s),

and the angular velocity is (ω = 15.0 rad/s), which have an excellent match with

the experimental results (see Table 12.1).

Figure 12.7 computational mesh fixed to the rectangle

Table 12.1 Experimental and numerical falling plate averaged translational and

angular velocities

Vx /(cm/s) Vy/(cm/s) ω/(rad/s)

experiment (Andersen et al. [7]) 15.9±0.3 −11.5±0.5 14.5±0.3

computation 15.1±0.30 −11.8±0.37 15.0±0.36

Based on the numerical computations, Figures 12.9∼12.11 present the compo-

nents of the fluid forces and their torque as a function of the plate orientation
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(phase) and evolution time respectively. In order to get a comparison on the dy-

namical forces for different plate shapes, the computational results for an ellipse

is also included [8]. In Figure 12.9, the horizontal axis of the left plot is the an-

gle of the tumbling plate. However, the horizontal axis of the right plot uses the

real evolution time. The phase differences between the rectangle and ellipse plates

movement can be clearly observed from the right plot. From these figures, rea-

sonable agreements between the experimental data [7] and the current numerical

solutions are obtained. The elliptic plate rotates much faster than the rectangular

one. The vorticity field for a full tumble rotation around the rectangular plate is

shown in Figure 12.12.

Figure 12.8 Trajectories of the falling rectangle in the tumbling section: experiment

and computation solutions

Figure 12.9 x-direction fluid force Fx on the plate during the tumbling process for both

ellipse and rectangle. The horizontal axis are rotational angle (left) and dimensionless

time (right)
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Figure 12.10 y-direction fluid force Fy on the plate during the tumbling process for

both ellipse and rectangle. The horizontal axis are rotational angle (left) and

dimensionless time (right)

Figure 12.11 Torques on the plate during the tumbling process for both ellipse and

rectangle. The horizontal axis are rotational angle (left) and dimensionless time (right)
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Figure 12.12 Vorticity field of a falling rectangle plate at four instants during a full

rotation

12.6 Conclusion

In this chapter, the unified coordinate approach is successfully applied to the kinetic

theory-based equation. In particular, the Boltzmann BGK-type equation is written

in a generalized form (12.15) under Hui’s unified coordinate transformation. A

unified numerical scheme for the viscous solution is then developed. This is a finite

volume gas-kinetic scheme on a moving mesh in the Eulerian space and the mesh

velocity can be properly chosen to capture flow movement with moving boundaries.

The Eulerian and Lagrangian methods are two limiting cases for the current scheme.

The current unified gas-kinetic method has been applied to many flow problems,

such as the free surface flow and Mach reflection inside a channel, where both

inviscid and viscous solutions have been accurately obtained. The great advantage

of using unified coordinates, i.e., the Hui’s transformation, is that a variable and

arbitrary mesh velocity can be used and the geometrical conservation laws are

naturally coupled with the fluid dynamic equations. The physical and geometrical

variables can be updated simultaneously. Due to the simple straight line particle

motion and the relaxation term in the gas-kinetic model, the numerical treatment

of the complicated viscous terms in the Navier-Stokes equations under the unified

coordinate transformation can be avoided.
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Chapter 13

Summary

A system of unified coordinates (UC) has been introduced via transformation (6.1).

It has three degrees of freedom — the mesh velocity — and unifies the traditional

Eulerian and Lagrangian systems while including them as special cases. Based on

(6.1), contributions are made to CFD as follows.

Theoretically,

(1) The governing equations of fluid flow in any moving coordinates can be

written as a system of closed conservation PDEs; consequently, shocks can be

captured correctly and the effects of mesh movement on the flow are fully accounted

for.

(2) The system of Lagrangian gas dynamics equations is written in conservation

PDE form, putting it on the same footing as Eulerian gas dynamics and providing a

foundation for developing Lagrangian schemes as moving mesh schemes in Eulerian

space.

(3) The Lagrangian system of gas dynamics equations in 2-D and 3-D is shown

to be weakly hyperbolic whereas the Eulerian one is fully hyperbolic; they are,

therefore, not equivalent to each other.

Computationally,

(4) The UC is superior to both Eulerian and Lagrangian systems in that contact

discontinuities are resolved sharply without mesh tangling.

(5) For flow past a body, the UC avoids the tedious and time-consuming task

of mesh generation; the mesh in UC is automatically generated by the flow.

(6) Boundary conditions on moving boundaries are satisfied easily in UC, mak-

ing it efficient to compute fluid-solid interaction problems, as examplified by the

falling-plate problem in Chapter 12.

(7) The UC approach provides a new dynamic moving mesh method which
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has the distinct feature that the effects of mesh movement on the flow are fully

accounted for.



Appendix A

Riemann Problem for 1-D Flow in the

Unified Coordinate

The Riemann problem for 1-D unsteady flow written in the unified coordinates is⎧⎪⎪⎨⎪⎪⎩
∂E

∂λ
+

∂F

∂ξ
= 0, λ > 0,

Q(0, ξ) =
{

Ql, ξ < 0,

Qr, ξ > 0,

(A.1)

where Ql and Qr are the constant vectors representing the flow states on the

left and right side, respectively. From now on, we shall consider only the simpler

case when h is a constant in the range 0 h 1. The general case when h is a

function of the coordinates is discussed in this book. With h = const., (4.6) is a

system of conservation law equations with constant coefficients and a solution to

the Riemann problem depends on ζ =
λ

ξ
alone, i.e., it is a self-similar solution of

the form Q = Q(ζ). It is constructed by piecing the smooth solutions with the

discontinuous solutions.

Nonlinearity of Characteristic Fields

Case 1: σ1 = 0. We have
r1 · ∇σ1 = 0. (A.2)

Hence, the characteristic field corresponding to σ1 = 0 is linearly degenerate.

Case 2: σ2 =
(1 − h)u

A
. We have

r2 · ∇σ2 =
[
(1 − h)u

A

]
ρ

= 0. (A.3)

So the characteristic field corresponding to σ2 =
(1 − h)u

A
is also linearly degener-

ate.
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Case 3: σ± =
(1 − h)u ± a

A
. We have

∇σ± =
(
± γ

2aρA
,∓ a

2ρA
,
(1 − h)

A
,−σ±

A

)
, (A.4)

hence

r± · ∇σ± = ±γ + 1
2aρA

�= 0 (A.5)

and the σ± characteristic fields are genuinely nonlinear.

Smooth Solution

The smooth solution from the σ± characteristic fields can be derived from the

following system of ODE:

dρ

dp
=

1
a2

, (A.6)

du

dp
=± 1

aρ
, (A.7)

dA

dp
=∓ h

ρaσ±
. (A.8)

The solution for ρ, u, A relates the flow state Q = (p, ρ, u, A)T in the rarefaction fan

to the initial state Q0 = (p0, ρ0, u0, A0)T upstream of the fan through the following

expressions:

ρ=ρ0

(
p

p0

)1/γ

, (A.9)

u ∓ 2a

γ − 1
=u0 ∓ 2a0

γ − 1
, (A.10)

A=A0 exp
(∫ p

p0

∓hdp

aρ((1 − h)u ± a)

)
. (A.11)

To find the solution inside the rarefaction fan, we consider the characteristic

ray through the origin (0, 0) and a general point (λ, ξ) inside the fan. The slope of

the characteristic is
dξ

dλ
=

ξ

λ
= σ± =

(1 − h)u ± a

A
. (A.12)
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Making use of (A.9)∼(A.11), (A.12) becomes an equation for p

(
ξ

λ

)
as follows:

f(p) =

⎛⎝γ + 1 − 2h

p
γ−1
2γ

0

⎞⎠ p
γ−1
2γ −2(1−h)+

γ − 1
a0

(1−h)u0± γ − 1
a0

A0
ξ

λ
exp(g(p)) = 0,

(A.13)

where

g(p) =
∫ p

p0

∓hdp

aρ((1 − h)u ± a)
. (A.14)

The other flow variables ρ, u and A as functions of
ξ

λ
can be easily found from

(A.9)∼(A.11).

Discontinuous Solutions

We start from the Rankine-Hugoniot jump conditions of the system (A.1):

σ[ρA]= [(1 − h)ρu], (A.15)

σ[ρuA]= [(1 − h)ρu2 + p], (A.16)

σ[ρeA]= [(1 − h)ρue + up], (A.17)

σ[A]=−[hu], (A.18)

where [.] denotes the jump across the discontinuity whose speed is denoted by

σ =
dξ

dλ
.

Case 1: shock wave. We denote the pre-shock flow state by Q0 = (p0, ρ0, u0,

A0)T and the post shock flow state by Q = (p, ρ, u, A)T, respectively. Then the

shock jump relations after some algebraic manipulations can be expressed in terms

of α =
p

p0
as follows:

ρ=ρ0
α(γ + 1) + γ − 1
α(γ − 1) + γ + 1

, (A.19)

u=u0 ± a0

γ
(α − 1)

⎛⎜⎜⎝
2γ

γ + 1

α +
γ − 1
γ + 1

⎞⎟⎟⎠
1/2

, (A.20)

A=A0 − h(u − u0)
σsh±

, (A.21)
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where

σsh± =
(1 − h)u0

A0
± a0

A0

(
γ + 1
2γ

α +
γ − 1
2γ

)1/2

. (A.22)

Formulas (A.19)∼(A.22) hold for h, 0 h 1.

Case 2: slip line (a). For the slip line corresponding to the slope σ2 =

(1 − h)u
A

, from Rankine-Hugoniot jump conditions (A.15)∼(A.18), we find

u=u0, (A.23)

p=p0, (A.24)

A=A0, if h �= 1. (A.25)

The only variable which can change its value freely across the slip line is the density

ρ.

Case 3: slip line (b). The other degenerate wave corresponds to the slope

σ1 = 0. From the Rankine-Hugoniot jump conditions, we have

u=u0, (A.26)

p=p0, (A.27)

ρ=ρ0, if h �= 1. (A.28)

The only variable which can change its value across this wave is A.

In the Lagrangian case when h = 1, σ1 = σ2 = 0, and the two slip lines coincide.

In this case, the jump relations across the slip line are

u=u0, (A.29)

p=p0, (A.30)

but ρ and A can jump arbitrarily.



Appendix B

Computer Code for 1-D Flow in the

Unified Coordinate

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C FIRST ORDER GODUNOV OR GODUNOV SCHEME WITH MUSCL
C IN UNIFIED COORDINATES FOR ONE-DIMENSIONAL UNSTEADY FLOW.
C
C
C
C GOVERNING EQUATION
C
C E_lamda + F_ksi = 0
C
C WHERE
C / rho*A \ / (1-h)*rho*u \
C E = | rho*u*A | F = | (1-h)*rho*u^2+p |
C | rho*e*A | | (1-h)*rho*u*e+u*p |
C \ A / \ -h*u /
C HERE
C rho : DENSITY
C u : VELOCITY COMPONENT IN EULERIAN COORDINATES
C p : PRESSURE
C e : INTERNAL ENERGY: 0.5*(u*u)+p/((gamma-1)*rho)
C A : GEOMETRICAL VARIABLE
C h : PARAMETER OF TRANSFORMATION 0 <= h <= 1
C
C REFERENCE:
C W. H. HUI and S. KOUDRIAKOV, THE ROLE OF COORDINATES IN THE
C COMPUTATION OF DISCONTINUITIES IN ONE-DIMENSIONAL FLOW,
C Computational Fluid Dynamics Journal, Vol 8, no 4,
C January, 2000
c********************************************************
c PRINCIPAL VARIABLES:
C********************************************************
C D : ARRAY OF DENSITIES
C U : ARRAY OF VELOCITIES
C P : ARRAY OF PRESSURES
C C : ARRAY OF SPEEDS OF SOUND
C CU : ARRAY OF GEOMETRIC VARIABLES ’A’
C E1 : ARRAY OF CONSERVATIVE VARIABLES E1=rho*A
C E2 : ARRAY OF CONSERVATIVE VARIABLES E2=rho*u*A
C E3 : ARRAY OF CONSERVATIVE VARIABLES E3=rho*e*A
C E4 : ARRAY OF CONSERVATIVE VARIABLES E4=A
C F1,FF1 : ARRAY OF FLUXES FF1=F1=(1-h)*rho*u
C F2,FF2 : ARRAY OF FLUXES FF2=F2=(1-h)*rho*u^2+p
C F3,FF3 : ARRAY OF FLUXES FF3=F3=(1-h)*rho*u*e+u*p
C F4,FF4 : ARRAY OF FLUXES FF4=F4=-h*u
C XX : ARRAY OF POSITIONS IN PHYSICAL SPACE
C SPEED1 : ARRAYS OF OF SHOCK SPEEDS
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C SPEED2 : OR FASTEST MACH LINES
C TOL : TOLERANCE ERROR
C SEC : PARAMETER FOR THE MUSCL UPGRADING
C SEC=0.0 --- FIRST-ORDER GODUNOV SCHEME
C SEC=0.5 --- GODUNOV SCHEME WITH MUSCL
C DT : TIME STEP
C DX : SIZE OF THE COMPUTATIONAL CELL
C CFL : CFL NUMBER
C MD : MAXIMUM DIMENSION OF ARRAYS
cCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

PARAMETER (MD=1500)
DIMENSION D(0:MD),U(0:MD),P(0:MD),C(0:MD),CU(0:MD)
DIMENSION E1(0:MD),E2(0:MD),E3(0:MD),E4(0:MD)
DIMENSION F1(0:MD),F2(0:MD),F3(0:MD),F4(0:MD)
DIMENSION FF1(0:MD),FF2(0:MD),FF3(0:MD),FF4(0:MD)
DIMENSION XX(0:MD), SPEED1(0:MD), SPEED2(0:MD)
COMMON /ARRAYS/ D,U,P,C,CU,E1,E2,E3,E4,F1,F2,F3,F4
COMMON /ARRAYS/ FF1,FF2,FF3,FF4,XX
COMMON /GAMMAS/ GAMMA,G1,G2,G3,G4,G5,G6,G7,G8,G9
COMMON /SCALARS/ M,DX,DT,DOMLEN
COMMON /STATES/ DLB,ULB,PLB,CLB,DRB,URB,PRB
COMMON /STATES/ CRB,CULB,CURB
COMMON /MSTATES/ DMB,UMB,PMB,CUMB
COMMON /TSTATES/DL,UL,PL,DR,UR,PR,CUL,CUR,H
EXTERNAL FUNCL,FUNCR,FMINMOD
OPEN(UNIT=90,FILE=’input.dat’,STATUS=’UNKNOWN’)
READ(90,*)XL ! LEFT END OF X-DOMAIN
READ(90,*)XR ! RIGHT END OF X-DOMAIN
READ(90,*)M ! NUMBER OF POINTS PROFILES
READ(90,*)GAMMA ! RATIO OF SPECIFIC HEATS
READ(90,*)TIMEOUT ! OUTPUT TIME
READ(90,*)DLB ! DENSITY ON LEFT SIDE
READ(90,*)ULB ! SPEED ON LEFT SIDE
READ(90,*)PLB ! PRESSURE ON LEFT SIDE
READ(90,*)DRB ! DENSITY ON RIGHT SIDE
READ(90,*)URB ! SPEED ON RIGHT SIDE
READ(90,*)PRB ! PRESSURE ON RIGHT SIDE
READ(90,*)CULB ! GEOMETRIC PARAMETER ON LEFT
READ(90,*)CURB ! GEOMETRIC PARAMETER ON RIGHT
READ(90,*)H ! PARAMETER IN TRANSFORMATION
CLOSE(90)

C compute gammas
G1=(GAMMA-1.0)/(2.0*GAMMA)
G2=(GAMMA+1.0)/(2.0*GAMMA)
G3=2.0*GAMMA/(GAMMA-1.0)
G4=2.0/(GAMMA-1.0)
G5=2.0/(GAMMA+1.0)
G6=(GAMMA-1.0)/(GAMMA+1.0)
G7=0.5*(GAMMA-1.0)
G8=1.0/GAMMA
G9=GAMMA-1.0

c************************************************
c data for descrete calculations
c************************************************

CFL=0.8
SEC = 0.0
DOMLEN = XR-XL
DX = DOMLEN/REAL(M)
TIME = 0.0
CALL INICON1

0001 CONTINUE
C********************************************
C SET TRANSMISSIVE BOUNDARY CONDITIONS
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C*******************************************
D(0) = D(1)
U(0) = U(1)
P(0) = P(1)
CU(0) = CU(1)
D(M+1) = D(M)
U(M+1) = U(M)
P(M+1) = P(M)
CU(M+1)= CU(M)

C*********************************************
C CALCULATE FLUX ON THE INTERFACE
C********************************************

DO 0002 I=0,M
IF ((I .GE. 2).AND.(I .LE. (M-2))) THEN
DTOP=D(I)-D(I-1)
DBOT=D(I+1)-D(I)
DL=D(I)+SEC*FMINMOD(DTOP,DBOT)

C******************************************
UTOP=U(I)-U(I-1)
UBOT=U(I+1)-U(I)
UL=U(I)+SEC*FMINMOD(UTOP,UBOT)

C*******************************************
PTOP=P(I)-P(I-1)
PBOT=P(I+1)-P(I)
PL=P(I)+SEC*FMINMOD(PTOP,PBOT)

C******************************************
CUTOP=CU(I)-CU(I-1)
CUBOT=CU(I+1)-CU(I)
CUL=CU(I)+SEC*FMINMOD(CUTOP,CUBOT)

C*********************************************
DTOP=D(I+2)-D(I+1)
DBOT=D(I+1)-D(I)
DR=D(I+1)-SEC*FMINMOD(DTOP,DBOT)

C********************************************
UTOP=U(I+2)-U(I+1)
UBOT=U(I+1)-U(I)
UR=U(I+1)-SEC*FMINMOD(UTOP,UBOT)

C********************************************
PTOP=P(I+2)-P(I+1)
PBOT=P(I+1)-P(I)
PR=P(I+1)-SEC*FMINMOD(PTOP,PBOT)

C*******************************************
CUTOP=CU(I+2)-CU(I+1)
CUBOT=CU(I+1)-CU(I)
CUR=CU(I+1)-SEC*FMINMOD(CUTOP,CUBOT)

ELSE
DL=D(I)
UL=U(I)
PL=P(I)
CUL=CU(I)
DR=D(I+1)
UR=U(I+1)
PR=P(I+1)
CUR=CU(I+1)

ENDIF
CALL RIEMANN(PM,UM)

C****************************************************
CL=SQRT(GAMMA*PL/DL)
CR=SQRT(GAMMA*PR/DR)
IF(PM.GT.PL) THEN

C left wave is shock
SL=(1.0-H)*UL/CUL-CL*SQRT(G2*PM/PL+G1)/CUL
CUML=CUL-H*(UM-UL)/SL
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SPEED2(I) = SL
ELSE

C left wave is expansion wave
A = PL
B = PM
CALL QK15(FUNCL,A,B,RESULT,ABSERR,RESABS,RESASC)
CUML=CUL*EXP(RESULT)
SPEED2(I) = ((1.0-H)*UL-CL)/CUL
IF(ABS(PM-PL) .LE. 0.000001) SPEED2(I)=0.0

ENDIF
c*****************************************************

IF(PM.GT.PR) THEN
C right wave is shock

SR=(1.0-H)*UR/CUR+CR*SQRT(G2*PM/PR+G1)/CUR
CUMR=CUR-H*(UM-UR)/SR
SPEED1(I+1) = SR

ELSE
C right wave is expansion wave

A = PR
B = PM
CALL QK15(FUNCR,A,B,RESULT,ABSERR,RESABS,RESASC)
CUMR=CUR*EXP(RESULT)
SPEED1(I+1) = ((1.0-H)*UR+CR)/CUR
IF(ABS(PM-PR) .LE. 0.000001) SPEED1(I+1)=0.0

ENDIF
C********************************************************

S=0.0
CALL SAMPLE(PM,UM,CUML,CUMR,S,PS,US,DS)

c********************************************************
F1(I) = (1.0-H)*DS*US
F2(I) = F1(I)*US+PS
F3(I) = F1(I)*(US*US/2.0+PS/(G9*DS))+PS*US
F4(I) =-H*US

0002 CONTINUE
C**********************************************************
C CHOOSING TIME STEP
C**********************************************************

SMAX = 0.0
DO 777 I=1,M
IF(SMAX .LE. ABS(SPEED1(I))) SMAX=ABS(SPEED1(I))

777 CONTINUE
DO 778 I=1,M
IF(SMAX .LE. ABS(SPEED2(I))) SMAX=ABS(SPEED2(I))

778 CONTINUE
IF(SMAX.GT.0.0) THEN

DT=CFL*DX/SMAX
ELSE

DT=CFL*0.1*DX
ENDIF
IF(TIME.LE.TIMEOUT.AND.TIME+DT.GT.TIMEOUT)THEN

DT=TIMEOUT-TIME
TIME=TIMEOUT

ELSE
TIME=TIME+DT

ENDIF
print*,"dt=,time=",DT,TIME
IF(ABS(TIME-TIMEOUT).LT.0.00001) GO TO 98

C***********************************************************
C UPDATING CONSERVATIVE VARIABLES
C***********************************************************

DO 0003 I=1,M
E1(I)=E1(I)-(DT/DX)*(F1(I)-F1(I-1))
E2(I)=E2(I)-(DT/DX)*(F2(I)-F2(I-1))
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E3(I)=E3(I)-(DT/DX)*(F3(I)-F3(I-1))
E4(I)=E4(I)-(DT/DX)*(F4(I)-F4(I-1))

0003 CONTINUE
C***********************************************************
C DECODING TO GET PHYSICAL VARIABLES
C***********************************************************

DO 0004 I=1,M
UOLD = U(I)
D(I) = E1(I)/E4(I)
U(I) = E2(I)/E1(I)
CU(I)= E4(I)
TEMP = E3(I)/E1(I)-U(I)*U(I)/2.0
P(I) = TEMP*G9*D(I)
XX(I)=XX(I)+0.5*DT*H*(U(I)+UOLD)

0004 CONTINUE
GO TO 0001

C***********************************************************
C PRINT RESULTS INTO THE FILE ’results.dat’
C***********************************************************
98 OPEN(UNIT=7,FILE=’results.dat’,STATUS=’UNKNOWN’)

DO 0005 I=1,M
WRITE(7,6) I*DX,XX(I),D(I),U(I),P(I),

1 D(I)*LOG(P(I)/(D(I)**GAMMA))
0006 FORMAT(F10.6,2X,5(F12.5,1X))
0005 CONTINUE

END

C**********************************************************
C**********************************************************

SUBROUTINE RIEMANN(P,U)
C**************************************************
C compute pressure P and velocity U
C on the slip line (contact line)
C Newton-Raphson method is used to find P
C**************************************************

COMMON /GAMMAS/ GAMMA,G1,G2,G3,G4,G5,G6,G7,G8,G9
COMMON /TSTATES/DL,UL,PL,DR,UR,PR,CUL,CUR,H
DATA TOL,NRITER/1.0E-10,50/
DU=UR-UL

C compute sound speeds
CL=SQRT(GAMMA*PL/DL)
CR=SQRT(GAMMA*PR/DR)

C compute critical velocity
DUCRIT=G4*(CL+CR)-DU

C check for generation of vacuum
IF(DUCRIT.LE.0.0) THEN

C vacuum is generated by given data
WRITE(6,*)’VACUUM IS GENERATED BY GIVEN DATA’
STOP

ENDIF
C guess value is computed

CALL STARTE(P,DL,UL,PL,CL,DR,UR,PR,CR)
P0=P
DO 0001 K=1,NRITER

CALL PREFUN(FL,FLD,P,DL,PL,CL)
CALL PREFUN(FR,FRD,P,DR,PR,CR)
P = P -(FL+FR+DU)/(FLD+FRD)
CHA = 2.0*ABS((P-P0)/(P+P0))
IF(CHA.LE.TOL)GOTO 0002
IF(P.LT.0.0)P=TOL
P0=P

0001 CONTINUE
WRITE(6,*)’DIVERGENCE IN NEWTON-RAPHSON SCHEME’
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0002 CONTINUE
C compute U

U = 0.5*(UL+UR+FR-FL)
RETURN
END

C****************************************************
C choose initial P for iteration
C Reference: E.Toro "Rieman Solvers and
C Numerical methods for Fluid Dynamics"
C**************************************************

SUBROUTINE STARTE(P,DL,UL,PL,CL,DR,UR,PR,CR)
C hybrid starter using PVRS, TRRS and TSRS

COMMON /GAMMAS/ GAMMA,G1,G2,G3,G4,G5,G6,G7,G8,G9
DATA TOL,QMAX/1.0E-10,2.0/

C compute guess value from PVRS riemann solver
PV = 0.5*(PL+PR)-0.125*(UR-UL)*(DL+DR)*(CL+CR)
PMIN = AMIN1(PL,PR)
PMAX = AMAX1(PL,PR)
QRAT = PMAX/PMIN
IF(QRAT.LE.QMAX.AND.(PMIN.LE.PV.AND.PV.LE.PMAX)) THEN

C use PVRS solution as guess
P=AMAX1(TOL,PV)

ELSE
IF(PV.LT.PMIN) THEN

C use two-rarefaction solution
PNU = CL+CR-G7*(UR-UL)
PDE = CL/PL**G1 + CR/PR**G1
P = (PNU/PDE)**G3

ELSE
C two-shock approximation with PV as estimate

GEL = SQRT((G5/DL)/(G6*PL+AMAX1(TOL,PV)))
GER = SQRT((G5/DR)/(G6*PR+AMAX1(TOL,PV)))
P = (GEL*PL+GER*PR-(UR-UL))/(GEL+GER)
P = AMAX1(TOL,P)

ENDIF
ENDIF
RETURN
END

C************************************************
C function for iteration
C************************************************

SUBROUTINE PREFUN(F,FD,P,DK,PK,CK)
C pressure functions are evaluated

COMMON /GAMMAS/ GAMMA,G1,G2,G3,G4,G5,G6,G7,G8,G9
IF(P.LE.PK) THEN

C rarefaction wave
PRAT = P/PK
F = G4*CK*(PRAT**G1 -1.0)
FD = (1.0/(DK*CK))*PRAT**(-G2)

ELSE
C shock wave

AK = G5/DK
BK = G6*PK
QRT = SQRT(AK/(BK+P))
F = (P-PK)*QRT
FD = (1.0 - 0.5*(P-PK)/(BK+P))*QRT

ENDIF
RETURN
END

C*************************************************************
C*************************************************************

SUBROUTINE QK15(F,A,B,RESULT,ABSERR,RESABS,RESASC)
C***BEGIN PROLOGUE QK15
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C***DATE WRITTEN 800101 (YYMMDD)
C***REVISION DATE 870530 (YYMMDD)
C***CATEGORY NO. H2A1A2
C***KEYWORDS 15-POINT GAUSS-KRONROD RULES
C***AUTHOR PIESSENS, ROBERT, AND DE DONCKER, ELISE,
C APPLIED MATH. AND PROGR. DIV. - K. U. LEUVEN
C***PURPOSE To compute I = Integral of F over (A,B), with error estimate
C and J = integral of ABS(F) over (A,B)
C***DESCRIPTION
C
C From the book "Numerical Methods and Software"
C by D. Kahaner, C. Moler, S. Nash
C Prentice Hall 1988
C
C Real version
C
C PARAMETERS ON ENTRY
C F - Real
C Function subprogram defining the integrand
C FUNCTION F(X). The actual name for F needs to be
C Declared E X T E R N A L in the calling program.
C
C A - Real: Lower limit of integration
C
C B - Real: Upper limit of integration
C
C PARAMETERS ON RETURN
C RESULT - Real: Approximation to the integral I
C Result is computed by applying the 15-POINT
C KRONROD RULE (RESK) obtained by optimal addition
C of abscissae to the7-POINT GAUSS RULE(RESG).
C
C ABSERR - Real: Estimate of the modulus of the absolute error,
C which should not exceed ABS(I-RESULT)
C
C RESABS - Real: Approximation to the integral J
C
C RESASC - Real: Approximation to the integral of ABS(F-I/(B-A))
C over (A,B)
C***REFERENCES PIESSENS R. ET. AL., "QUADPACK: A SUBROUTINE PACKAGE FOR
C AUTOMATIC INTEGRATION" SPRINGER, BERLIN 1983.
C***ROUTINES CALLED R1MACH
C***END PROLOGUE QK15
C

REAL A,ABSC,ABSERR,B,CENTR,DHLGTH,EPMACH,F,FC,FSUM,FVAL1,FVAL2,
1 FV1,FV2,HLGTH,RESABS,RESASC,RESG,RESK,RESKH,RESULT,UFLOW,
2 WG,WGK,XGK
INTEGER J,JTW,JTWM1
EXTERNAL F

C
DIMENSION FV1(7),FV2(7),WG(4),WGK(8),XGK(8)

C
C THE ABSCISSAE AND WEIGHTS ARE GIVEN FOR THE INTERVAL (-1,1).
C BECAUSE OF SYMMETRY ONLY THE POSITIVE ABSCISSAE AND THEIR
C CORRESPONDING WEIGHTS ARE GIVEN.
C
C XGK - ABSCISSAE OF THE 15-POINT KRONROD RULE
C XGK(2), XGK(4), ... ABSCISSAE OF THE 7-POINT
C GAUSS RULE
C XGK(1), XGK(3), ... ABSCISSAE WHICH ARE OPTIMALLY
C ADDED TO THE 7-POINT GAUSS RULE
C
C WGK - WEIGHTS OF THE 15-POINT KRONROD RULE
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C
C WG - WEIGHTS OF THE 7-POINT GAUSS RULE
C

DATA XGK(1),XGK(2),XGK(3),XGK(4),XGK(5),XGK(6),XGK(7),XGK(8)/
1 0.9914553711208126D+00, 0.9491079123427585D+00,
2 0.8648644233597691D+00, 0.7415311855993944D+00,
3 0.5860872354676911D+00, 0.4058451513773972D+00,
4 0.2077849550078985D+00, 0.0D+00 /
DATA WGK(1),WGK(2),WGK(3),WGK(4),WGK(5),WGK(6),WGK(7),WGK(8)/
1 0.2293532201052922D-01, 0.6309209262997855D-01,
2 0.1047900103222502D+00, 0.1406532597155259D+00,
3 0.1690047266392679D+00, 0.1903505780647854D+00,
4 0.2044329400752989D+00, 0.2094821410847278D+00/
DATA WG(1),WG(2),WG(3),WG(4)/
1 0.1294849661688697D+00, 0.2797053914892767D+00,
2 0.3818300505051189D+00, 0.4179591836734694D+00/

C
C
C LIST OF MAJOR VARIABLES
C -----------------------
C
C CENTR - MID POINT OF THE INTERVAL
C HLGTH - HALF-LENGTH OF THE INTERVAL
C ABSC - ABSCISSA
C FVAL* - FUNCTION VALUE
C RESG - RESULT OF THE 7-POINT GAUSS FORMULA
C RESK - RESULT OF THE 15-POINT KRONROD FORMULA
C RESKH - APPROXIMATION TO THE MEAN VALUE OF F OVER (A,B),
C I.E. TO I/(B-A)
C
C MACHINE DEPENDENT CONSTANTS
C ---------------------------
C
C EPMACH IS THE LARGEST RELATIVE SPACING.
C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
C
C***FIRST EXECUTABLE STATEMENT QK15
c EPMACH = R1MACH(4)
c UFLOW = R1MACH(1)
C
c

EPMACH = 0.6D-07
UFLOW = 0.12D-37

CENTR = 0.5E+00*(A+B)
HLGTH = 0.5E+00*(B-A)
DHLGTH = ABS(HLGTH)

C
C COMPUTE THE 15-POINT KRONROD APPROXIMATION TO
C THE INTEGRAL, AND ESTIMATE THE ABSOLUTE ERROR.
C

FC = F(CENTR)
RESG = FC*WG(4)
RESK = FC*WGK(8)
RESABS = ABS(RESK)
DO 10 J=1,3

JTW = J*2
ABSC = HLGTH*XGK(JTW)
FVAL1 = F(CENTR-ABSC)
FVAL2 = F(CENTR+ABSC)
FV1(JTW) = FVAL1
FV2(JTW) = FVAL2
FSUM = FVAL1+FVAL2
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RESG = RESG+WG(J)*FSUM
RESK = RESK+WGK(JTW)*FSUM
RESABS = RESABS+WGK(JTW)*(ABS(FVAL1)+ABS(FVAL2))

10 CONTINUE
DO 15 J = 1,4

JTWM1 = J*2-1
ABSC = HLGTH*XGK(JTWM1)
FVAL1 = F(CENTR-ABSC)
FVAL2 = F(CENTR+ABSC)
FV1(JTWM1) = FVAL1
FV2(JTWM1) = FVAL2
FSUM = FVAL1+FVAL2
RESK = RESK+WGK(JTWM1)*FSUM
RESABS = RESABS+WGK(JTWM1)*(ABS(FVAL1)+ABS(FVAL2))

15 CONTINUE
RESKH = RESK*0.5E+00
RESASC = WGK(8)*ABS(FC-RESKH)
DO 20 J=1,7

RESASC = RESASC+WGK(J)*(ABS(FV1(J)-RESKH)+ABS(FV2(J)-RESKH))
20 CONTINUE

RESULT = RESK*HLGTH
RESABS = RESABS*DHLGTH
RESASC = RESASC*DHLGTH
ABSERR = ABS((RESK-RESG)*HLGTH)
IF(RESASC.NE.0.0E+00.AND.ABSERR.NE.0.0E+00)
1 ABSERR = RESASC*AMIN1(0.1E+01,
2 (0.2E+03*ABSERR/RESASC)**1.5E+00)
IF(RESABS.GT.UFLOW/(0.5E+02*EPMACH)) ABSERR = AMAX1
1 ((EPMACH*0.5E+02)*RESABS,ABSERR)
RETURN
END

C*************************************************
C Functions for finding pressure
c inside left and right expansion fan
C*************************************************

REAL FUNCTION FUNCL(X)
COMMON /GAMMAS/ GAMMA,G1,G2,G3,G4,G5,G6,G7,G8,G9
COMMON /TSTATES/ DL,UL,PL,DR,UR,PR,CUL,CUR,H
REAL X

CL=SQRT(GAMMA*PL/DL)
AL=(1.0-H)*(UL+2.0*CL/G9)
AL=AL*SQRT(GAMMA*DL/(PL**G8))
BL=G3*(1.0-H)+GAMMA
FUNCL = H/(AL*X**G2-BL*X)

RETURN
END

C*****************************************************
REAL FUNCTION FUNCR(X)
COMMON /GAMMAS/ GAMMA,G1,G2,G3,G4,G5,G6,G7,G8,G9
COMMON /TSTATES/ DL,UL,PL,DR,UR,PR,CUL,CUR,H
REAL X

CR=SQRT(GAMMA*PR/DR)
AR=(1.0-H)*(UR-2.0*CR/G9)
AR=AR*SQRT(GAMMA*DR/(PR**G8))
BR=G3*(1.0-H)+GAMMA
FUNCR = -H/(AR*X**G2+BR*X)

RETURN
END

c*******************************************************
c function limiter for second-order terms
c******************************************************

REAL FUNCTION FMINMOD(X,Y)
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PROD=X*Y
IF (PROD .LE. 0.0) THEN
FMINMOD=0.0

ELSE
AX=ABS(X)
AY=ABS(Y)

IF (AX .LE. AY) THEN
FMINMOD=X
ELSE
FMINMOD=Y
ENDIF
ENDIF
RETURN
END

C*********************************************************
c
C*************************************************
C sampling the solution
C This subroutine gives exact solution
C as a function of angle (S)
c************************************************

SUBROUTINE SAMPLE(PM,UM,CUML,CUMR,S,P,U,D)
C solution is sampled according to wave patterns
c values in: PM, UM, S
c values out: P, U, D

COMMON /GAMMAS/ GAMMA,G1,G2,G3,G4,G5,G6,G7,G8,G9
COMMON /TSTATES/ DL,UL,PL,DR,UR,PR,CUL,CUR,H
EXTERNAL FUNCL,FUNCR
CL=SQRT(GAMMA*PL/DL)
CR=SQRT(GAMMA*PR/DR)

c********************************************************
IF(((1.0-H)*UM).GE.0.0) THEN

CUM=CUMR
ELSE

CUM=CUML
ENDIF

C********************************************************
IF(S.LE.((1.0-H)*UM/CUM)) THEN

C sample point is to the left of the contact
IF(PM.LE.PL) THEN

C left fan
SHL=((1.0-H)*UL-CL)/CUL
IF(S.LE.SHL) THEN

C left data state
D=DL
U=UL
P=PL

ELSE
CML= CL*(PM/PL)**G1
STL= ((1.0-H)*UM-CML)/CUML
IF(S.GT.STL) THEN

C middle left state
D=DL*(PM/PL)**G8
U=UM
P=PM

ELSE
C an left state (inside fan)

TOL=1.0E-06
NRITER=20
P00=(PM+PL)/2.0
P=P00
DO 0007 K=1,NRITER

CALL FUNL(FFL,FDL,S,P)
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P = P - FFL/FDL
CHA = 2.0*ABS((P-P00)/(P+P00))
IF(CHA.LE.TOL)GOTO 0009
IF(P.LT.0.0)P=TOL
P00=P

0007 CONTINUE
WRITE(6,*)’DIVERGENCE IN NEWTON-FUN SCHEME’

0009 CONTINUE
A=PL
B=P
CALL QK15(FUNCL,A,B,RESULT,ABSERR,RESABS,RESASC)
CU=CUL*EXP(RESULT)
U = 2.0*(CL+G7*UL+CU*S)/(2.0*(1.0-H)+G9)
D = DL*(P/PL)**G8

ENDIF
ENDIF

ELSE
C left shock

PML = PM/PL
SL = (1.0-H)*UL/CUL-CL*SQRT(G2*PM/PL+G1)/CUL
IF(S.LE.SL) THEN

C left data state
D = DL
U = UL
P = PL

ELSE
C middle left state (behind shock)

D = DL*(PML+G6)/(PML*G6+1.0)
U = UM
P = PM

ENDIF
ENDIF

ELSE
C right of contact

IF(PM.GT.PR) THEN
C right shock

PMR = PM/PR
SR = (1.0-H)*UR/CUR+CR*SQRT(G2*PM/PR+G1)/CUR
IF(S.GE.SR) THEN

C right data state
D = DR
U = UR
P = PR

ELSE
C middle right state (behind shock)

D = DR*(PMR+G6)/(PMR*G6+1.0)
U = UM
P = PM

ENDIF
ELSE

C right fan
SHR=((1.0-H)*UR+CR)/CUR
IF(S.GE.SHR) THEN

C right data state
D=DR
U=UR
P=PR

ELSE
CMR= CR*(PM/PR)**G1
STR= ((1.0-H)*UM+CMR)/CUMR
IF(S.LE.STR) THEN

C middle right state
D=DR*(PM/PR)**G8
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U=UM
P=PM

ELSE
C fan right state (inside fan)

TOL=1.0E-06
NRITER=20
P00=(PM+PR)/2.0
P=P00
DO 0006 K=1,NRITER

CALL FUNR(FFR,FDR,S,P)
P = P - FFR/FDR
CHA = 2.0*ABS((P-P00)/(P+P00))
IF(CHA.LE.TOL)GOTO 0008

c print*,"pr,ffr,fdr",P,FFR,FDR
IF(P.LT.0.0)P=TOL
P00=P

0006 CONTINUE
WRITE(6,*)’DIVERGENCE IN NEWTON-FUN SCHEME’

0008 CONTINUE
A=PR
B=P
CALL QK15(FUNCR,A,B,RESULT,ABSERR,RESABS,RESASC)
CU=CUR*EXP(RESULT)
U = 2.0*(-CR+G7*UR+CU*S)/(2.0*(1-H)+G9)
D = DR*(P/PR)**G8

ENDIF
ENDIF

ENDIF
ENDIF
RETURN
END

C************************************************
C solution inside the fan
C*************************************************

SUBROUTINE FUNR(FFR,FDR,S,P)
COMMON /GAMMAS/ GAMMA,G1,G2,G3,G4,G5,G6,G7,G8,G9
COMMON /TSTATES/ DL,UL,PL,DR,UR,PR,CUL,CUR,H
EXTERNAL FUNCR
CL=SQRT(GAMMA*PL/DL)
CR=SQRT(GAMMA*PR/DR)
AA=(2.0*(1.0-H)+G9)/(PR**G1)
BB=G9*(1.0-H)*UR/CR-2.0*(1.0-H)
CC=G9*CUR*S/CR
A=PR
B=P
CALL QK15(FUNCR,A,B,RESULT,ABSERR,RESABS,RESASC)
FFR=AA*(P**G1)+BB-CC*EXP(RESULT)
FDR=G1*AA*(P**(-G2))-CC*EXP(RESULT)*FUNCR(P)

RETURN
END

C******************************************************
SUBROUTINE FUNL(FFL,FDL,S,P)
COMMON /GAMMAS/ GAMMA,G1,G2,G3,G4,G5,G6,G7,G8,G9
COMMON /TSTATES/ DL,UL,PL,DR,UR,PR,CUL,CUR,H
EXTERNAL FUNCL
CL=SQRT(GAMMA*PL/DL)
CR=SQRT(GAMMA*PR/DR)
AA=(2.0*(1.0-H)+G9)/(PL**G1)
BB=G9*(1.0-H)*UL/CL+2.0*(1.0-H)
CC=G9*CUL*S/CL
A=PL
B=P
CALL QK15(FUNCL,A,B,RESULT,ABSERR,RESABS,RESASC)



Appendix B Computer Code for 1-D Flow in the Unified Coordinate 189

FFL=AA*(P**G1)-BB+CC*EXP(RESULT)
FDL=G1*AA*(P**(-G2))+CC*EXP(RESULT)*FUNCL(P)

RETURN
END

C*********************************************
C initila data for the Riemann problem
C*********************************************

SUBROUTINE INICON1
PARAMETER (MD=1500)
DIMENSION D(0:MD),U(0:MD),P(0:MD),C(0:MD),CU(0:MD)
DIMENSION E1(0:MD),E2(0:MD),E3(0:MD),E4(0:MD)
DIMENSION F1(0:MD),F2(0:MD),F3(0:MD),F4(0:MD)
DIMENSION FF1(0:MD),FF2(0:MD),FF3(0:MD),FF4(0:MD)
DIMENSION XX(0:MD), SPEED1(0:MD), SPEED2(0:MD)
COMMON /ARRAYS/ D,U,P,C,CU,E1,E2,E3,E4,F1,F2,F3,F4
COMMON /ARRAYS/ FF1,FF2,FF3,FF4,XX
COMMON /GAMMAS/ GAMMA,G1,G2,G3,G4,G5,G6,G7,G8,G9
COMMON /SCALARS/ M,DX,DT,DOMLEN
COMMON /STATES/ DLB,ULB,PLB,CLB,DRB,URB,PRB
COMMON /STATES/ CRB,CULB,CURB
COMMON /MSTATES/ DMB,UMB,PMB,CUMB
COMMON /TSTATES/DL,UL,PL,DR,UR,PR,CUL,CUR,H

C*****************************************************
C INITIALISATION OF PHYSICAL VARIABLES
C*****************************************************

XX(0) = 0.0
DO 0001 I=1,M

XX(I) = I*DX
X = I*DX
IF(X.LE.(DOMLEN/2.0)) THEN

D(I) = DLB
U(I) = ULB
P(I) = PLB
C(I) = SQRT(GAMMA*PLB/DLB)
CU(I)= CULB

ELSE
D(I) = DRB
U(I) = URB
P(I) = PRB
C(I) = SQRT(GAMMA*PRB/DRB)
CU(I)= CURB

ENDIF
C*****************************************************
C INITIALISATION OF CONSERVATIVE VARIABLES
C*****************************************************

E1(I) = D(I)*CU(I)
E2(I) = E1(I)*U(I)
E3(I) = E1(I)*(U(I)*U(I)/2.0+P(I)/(G9*D(I)))
E4(I) = CU(I)

0001 CONTINUE
RETURN
END
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