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CHAPTER 1 

 
INTRODUCTION 

     
The ASCE Aerodynamics Committee was formed in 1976. Decades before this 

relaxation of urban development regulations resulted in an increase in construction of 
high-rise buildings around the world. There have been a variety of reasons for limiting 
heights of buildings in urban centers. Building heights in Sydney, Australia were 
limited to 150ft (46m), the height of the available fire rescue ladders until 1950. 
Similarly building heights in London, UK, were limited to 30m to ensure fire rescue 
by ladder from the highest floors. In Japan building heights were limited to 31m until 
1963 when floor area to plot ratio regulations were introduced for tall buildings. Until 
1973, buildings in downtown Ottawa, Canada were limited to 149 ft (45.5m) so that 
the Peace Tower on the Parliament buildings would remain prominent on the skyline.  
    Designing these taller buildings presented problems with respect to the simplistic 
wind load codes of the time. Boundary layer wind tunnels were developed to provide 
more detailed information on total wind loads, cladding loads, and safety of wind 
conditions at pedestrian level around buildings. Most wind tunnel studies related to a 
single building or structure, but some studies considered broader regions with respect 
to airborne pollution or relative wind speeds over complex topography. 

In the past, before the emergence of wind engineering, wind was often a 
consideration in urban design, particularly when choosing a site for a new city. 
Designing new cities has been a relatively rare activity in recent decades. However, 
with rapid urbanization generated by increasing affluence, a number of new cities have 
been designed in China and Malaysia in recent years (Table1).  

In the USA existing urban centers have been expanding. This activity can benefit 
from wind engineering, although many urban planners and designers often do not seek 
out professional wind engineering advice. This booklet prepared by the ASCE Task 
Committee on Urban Aerodynamics provides an overview of wind engineering and 
serves as a means to introduce the quantitative methods wind engineering has to offer 
to urban planners and designers who have tended to rely on an intuitive approach.  

Urban planners are expecting that both city populations and the percentage of 
people living in cities will increase (Acioly and Davidson 1996; Bruegmann 2005). 
Predictions are that, between 1990 and 2025, the number of people living in urban 
areas will double to more than 5 billion; if that occurs, then almost two-thirds of the 
world’s population will be living in cities. Interestingly, 90 percent of that increase 
will occur in developing countries (WRP 1996). 

The world’s urban population is currently growing at four times the rate of the rural 
population (Central Intelligence Agency 2009). There is likely to be national and 
global population drift from cold to warm climate regions as winter heating energy 
costs escalate.  In warm humid regions urban environments need adequate flow of air 
to offset outdoor heat stress and better planning and construction to mitigate wind 
damage from hurricanes.   
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OBJECTIVES OF THIS BOOKLET 
 

The objectives of the Task Committee on Urban Aerodynamics were: 
 

I. To identify professional contributions that wind engineers can make to urban 
planning and design. 

II. To assemble information into a booklet for publication by ASCE, promoting 
these quantitative professional contributions that wind engineers can make in 
urban aerodynamics in collaboration with city governments, urban planners, 
and designers. 

III. To prepare a selected bibliography on wind engineering in urban 
aerodynamics as a guide for further reading.   

 
SCOPE 

 
City planners and urban designers need to be aware of tools and quantitative 
techniques used by wind engineers in urban aerodynamics and how they can benefit 
from adopting quantitative techniques in lieu of an intuitive approach. This document 
introduces basic tools and technology used in the study of urban aerodynamics and 
highlights the many advantages wind engineering can offer when integrated into the 
design/development process. This document does not treat the use of wind tunnel 
testing to quantify load effects on structures through pressure or force measurements. 
This is treated by a separate ASCE manual of practice: Wind Tunnel Studies of 
Buildings and Structures (ASCE 2005) and by the ASCE Technical Council on Wind 
Engineering (TCWE).  

 
 

Elements of Urban Aerodynamics 
 

Elements of urban aerodynamics include an understanding of the general global 
circulation within Earth’s atmosphere and the resulting characteristics of wind as they 
vary with latitude. These winds have differing effects on urban populations in colder 
latitudes than populations in warmer latitudes, nearer to the equator. 

Urban planning and urban design considerations of wind are evident in early 
civilizations (see Chapter 2). Some recorded examples include street orientation to 
enhance summer breeze penetration while providing shelter from chilling winter 
winds. Other examples are the choice of sites for new colonial cities to facilitate 
efficient navigation of sailing ships. These early intuitive examples were based on 
general observations of wind effects. More contemporary consideration of urban 
aerodynamics includes development of quantitative approaches to wind engineering 
based on long term statistical wind data.   

 
 

Wind Engineering in Urban Aerodynamics 
 

Contemporary examples of wind engineering in urban aerodynamics reflect earlier 
considerations of street orientation to enhance summer breeze penetration while 
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providing shelter from chilling winter winds. These have benefited from the 
development of quantitative models of human body heat exchange and response to 
thermal environments.  

Other examples of contemporary urban aerodynamics extend considerations to 
include quantitative studies of dispersion of airborne pollutants over urban 
environments, mitigation of high speed wind gusts at pedestrian level near tall 
buildings (Isyumov et al. 1976). Mitigation of wind damage applies to both tornadoes 
in higher latitudes and hurricanes in lower latitudes. Most recent developments tend to 
focus on two considerations: potential for local urban energy from wind turbines, and 
studies to predict likely airborne distribution of toxic materials from biological or 
nuclear weapons detonated in or near urban areas.    

 
 

Tools and Techniques 
 

Boundary-layer wind tunnels are a principal tool of wind engineers in urban planning 
and design projects. The use of small-scale models, in a boundary-layer wind tunnel 
has become routine in the study of the effects of terrain and complex cityscapes on 
airflow at ground level and at elevation in downtown areas for both high-speed 
pedestrian winds and for the removal of stale or polluted air (Sun 1989; Cochran and 
Howell 1990). Boundary layer wind tunnel studies using tracer gas techniques are 
frequently used by wind engineers to assess the probability of acceptable 
concentrations of vehicle exhaust emissions or even chemical agents. Similar studies 
have been used to determine the optimum location of fresh air intake openings for 
building ventilation systems. Likewise, prediction of smoke cloud concentrations by 
wind engineers in urban spaces resulting from building fires can assist in avoiding 
smoke entry into fresh air intakes. 

Computational fluid dynamics (CFD) solves simultaneous Navier-Stokes partial 
differential equations at many millions of grid points in a flow field. This technique 
became practical for large scale flow with the development of super computers. Early 
CFD pioneers in the field of urban aerodynamics (Murakami 1993) found that the 
classic turbulence models frequently used in CFD software were not suited to 
modeling large scale flows around bluff body shapes common in building shapes. 
More recently, the rapid increase in computing speed of smaller computers has made 
CFD accessible to a much wider range of people interested in urban aerodynamics. 
The most critical step in any CFD modeling is to calibrate the settings chosen for the 
modeling by comparing results of CFD computation with some physical 
measurements to validate the CFD output. 

Field studies are used in urban aerodynamics to collect data for direct use in design 
or to use in calibrating fluid dynamics CFD models (Aynsley and Su 2003). Use of 
field studies is often constrained by cost, time, and instrumentation. 

 
 

Selected Bibliography 
 

An important part of the Task Committee’s work is the preparation of a selected 
bibliography on wind engineering in urban planning and design. There are no 
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established text books on the subject of urban aerodynamics, as was the case in wind 
engineering generally in the 1960s. Many of the most relevant publications on the 
subject are in conference proceedings or journals. The selected bibliography included 
in this booklet will provide a useful guide for further reading for people unfamiliar 
with the subject. 

 
 

Table 1. Global Urbanization Trends (Central Intelligence Agency 2009). 
 

Country 
Urban Population % of 

Population 2008 
Urbanization Rate % 
(2005-10 estimate) 

Hong Kong 100 1 
Indonesia 52 3.3 
Malaysia 70 3 

Laos 31 5.6 
Vietnam 28 3.1 

China 43 2.7 
India 29 2.4 

United States 82 1.3 
United Kingdom 90 0.5 

Germany 74 0.1 
Australia 89 1.2 

Venezuela 93 2 
Brazil 86 1.8 
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CHAPTER 2 

 
ELEMENTS OF URBAN AERODYNAMICS 

 
 HISTORIC CONSIDERATION OF WIND IN URBAN PLANNING  

 
There is extensive evidence that previous civilizations gave serious consideration to 
the impact of prevailing winds on urban settlements (Aynsley et al. 1977). Egyptians 
planned the town of Kahan in 2000 B.C. (Figure 1), so that houses for workers on the 
western perimeter shielded the houses for officials in the north from hot desert winds. 
The housing for officials gained full benefit of pleasant winds from the north.  

Vitruvius, a Roman architect and engineer in the first century B.C., wrote in his 
highly influential Ten Books on Architecture (Vitruvius 1960) how Roman garrison 
towns were planned with a rectangular grid pattern of streets obliquely aligned to the 
harsh winter winds to reduce the chilling effects of winter winds. This arrangement 
was said to protect entrances and courtyards. 

 
“Then let the directions of your streets and alleys be laid down on the lines of 

division between the quarters of two winds.   
On this principle of arrangements the disagreeable force of the winds will be shut 

out from dwellings and lines of houses. For if the streets run full in the face of the 
winds their constant blasts rushing in from the open country, and then confined by 
narrow alleys, will sweep through them with great violence.” 

“By shutting out the winds from our dwellings, therefore, we shall not only make  
the place healthful for people who are well, but also in the case of diseases due 
perhaps to unfavourable situations elsewhere, the patient, who in other healthy places 
might be cured by a different form of treatment, will here be more quickly cured by the 
mildness that comes from the shutting out of the winds.” (Vitruvius 1960, pp.25, 27) 

 
These design features were later adopted in the 15th century by the Italian Leon 

Battista Alberti who was responsible for their dissemination through France, Germany 
and Spain as well as Russia. Town planning laws established by the Spanish for their 
new colonial towns in the Americas in the 1500’s included consideration of local 
prevailing winds. These laws required that sites be sheltered from undesirable winds 
and avoid open water to the south and west that would hinder the approach of sailing 
ships with channels leading into the wind. Around 1745, streets in Buenos Aires were 
carefully oriented in the city plan to prevent prevailing winds from sweeping through 
the city (Figure 2).   

The Indian city of Hydrabad, with its narrow streets and alleys, is characterized by 
numerous tall wind scoops rising from the roofs of buildings for natural ventilation 
(Figure 3). These scoops direct prevailing winds down into the buildings through the 
principal rooms and out into the street.  
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INFLUENCE OF INDUSTRIAL REVOLUTION ON TOWN PLANNING 
 

In 1874, the new towns in Sweden built to house workers to meet the needs of 
industrial growth, led to the introduction of planning ordinances to ensure adequate 
daylight and natural ventilation to maintain health of occupants. Urban planners in 
Vienna around 1900 considered prevailing winds in land-use zoning to avoid smoke 
from factories being blown across built-up areas (Aynsley et al. 1977). Similarly the 
English garden cities of Letchworth see Figure 4, and Welwyn have the industrial 
quarter on the east side of the town so the prevailing wind blows the smoke from 
factories away from town. In Russia, the urban planner Muljutin took similar 
precautions when he planned the city of Magnetogorsk. 

New dormitory towns in New Jersey for people who commute to work in New 
York City were planned with shelter belt vegetation. The shelter belts shield the town 
from undesirable winter winds from the northwest while encouraging pleasant summer 
breezes from the southwest (Olgyay 1992, Figure 5).   

 
CONTEMPORARY CONSIDERATION OF WIND IN URBAN 
ENVIRONMENTS 

 
In the 1960s, improved fire safety was gained from the installation of automatic 
sprinkler systems in tall buildings. This, combined with the relaxation of building 
height restrictions, led to a wave of tall office building development. Earlier height 
restrictions of around 150 feet were set by limitations of fire fighting and rescue 
ladders. Wind engineering as we know it today developed with the rapid increase of 
tall building construction during this period.   

 
Pedestrian Level Winds 

 
Increases in gust wind speeds at street level around the base of tall buildings led many 
cities to introduce regulations aimed at controlling winds at street level. Typically the 
regulations called for a report predicting probable street level wind speeds based on a 
wind tunnel study when proposed buildings exceeded a specified height. 

These were the early days in the study of wind around buildings, and people came 
to associate undesirable street level wind effects around the base of these new tall 
buildings (Figure 6) with their height. Building height was only an indirect factor. The 
building shape, location and height relative to nearby buildings were the main factors 
that influenced street level wind environments. All these factors determined during the 
very early stages of development proposals were often decided by people that had no 
specific knowledge or training in the then embryonic field of wind engineering. Many 
uninformed architects and developers saw the new regulations relating to street level 
wind as unnecessary bureaucratic obstructions to their projects. Over the past twenty 
years significant advances have been made in the science of wind engineering. 
International research collaboration has resulted in broad agreement on acceptable 
pedestrian or street level wind criteria (Lawson 1973; Isyumov and Davenport 1975).  

The American Society of Civil Engineers (ASCE 1999) has published 
recommended procedures for conducting wind tunnel studies of buildings and their 
surroundings to ensure consistency between results from different wind tunnels. 
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Standard procedures have been developed for determining the probability of street 
level wind gusts from wind tunnel data together with long term weather records. These 
are discussed in detail in the companion ASCE booklet titled Outdoor Human Comfort 
and Its Assessment (ASCE 2003). 

City governments have responsibility for the safety and convenience of people 
using urban public space in the forms of sidewalks, roadways, parks and other public 
open space under their authority. Combining this responsibility with a growing 
awareness of the public and the legal fraternity of a causal relationship between 
buildings and street level winds, results in an increasing risk of litigation in the event 
of wind related accidents. 

There are a number of cases around the world of wind accidents in which people 
sustained serious injury or were killed. In May of 1972 in Portsmouth, England, an 
elderly lady died after her skull was fractured in a fall caused by a gust of wind at the 
corner of a 16 storey building. In June of the same year in Birmingham, England, 
another elderly woman was lifted off her feet by a gust of wind near a tall block of 
apartments and died of head injuries as a result of her fall (Aynsley 1986). In 
December of 1982 in Canada, a family of four was seriously injured when they were 
blown off a jogging track on the podium roof of the Toronto City Hall (The Globe & 
Mail 1983). 

Within the United States, in 1982 a woman was blown to the ground by a gust of 
wind seriously injuring her shoulder near one of New York’s tallest buildings 
(Aynsley 1986). She later sued the building’s owners, manager, design engineer, 
architect as well as New York City for $6.5 million. The woman’s attorneys claimed 
that the defendants in the case were negligent in allowing a building to be built that 
created dangerous, humanly unmanageable, winds to exist in public spaces. It is 
common for incidents of this type to be settled out of court in order to avoid further 
publicity that may attract frivolous claims. Several incidents involving pedestrian wind 
accidents are reported each year in Boston, which may also indicate a greater 
frequency of reported incidents when a community is sensitized to the problem. 

To avoid liability in urban wind incidents, it appears to be necessary for all parties 
associated with the design, development approval, construction, management and 
ownership of urban buildings to have taken all reasonable action to ensure that 
dangerous humanly unmanageable winds are not created by buildings. In some windy 
cities with long winter freeze conditions, such as Toronto, pedestrian access shifts to 
interconnected underground shopping complexes which reduce risk to pedestrians. 
Many of the pedestrian level wind control measures described above have been 
conceived under influence from community groups that have strong objections to tall 
buildings for other reasons unrelated to environmental wind effects such as pedestrian 
and traffic congestion and loss of sunlight. In a more logical environment there is no 
basis for placing blanket height restrictions on buildings to control street level wind 
environments. Building shape, spacing and height relative to surrounding buildings are 
the critical factors. Because of the infinite variety in the geometry of urban 
development, it is not possible to write general regulations based on geometric 
parameters to control undesirable street level wind effects without placing unnecessary 
restrictions on developers. For these reasons the most reasonable approach to urban 
wind control is to approve building projects on the basis of the results of wind tunnel 
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studies that follow specified procedures and are assessed against established wind 
criteria. 

Developers tend to argue that this approach will not allow them to know whether or 
not their proposal will meet the city’s wind environment criteria until after a wind 
tunnel study is performed. A response to this argument is that most serious street level 
wind problems can usually be detected in a low cost preliminary wind tunnel study for 
a few thousand dollars using inexpensive foam plastic block models in the initial 
design stage of a project. Indeed at this stage it is common to compare the 
performance of a variety of building shapes and positions on a site.  If such studies are 
not performed a developer can get into a position where commitment to a particular 
design leaves him no option but to reduce unacceptable wind conditions by adding 
expensive, unplanned appendages to his building. Detailed wind tunnel studies of the 
final design are still needed to measure probabilities of gust wind speeds for the final 
report to city authorities. As all estimates of the probability of occurrence of various 
wind speeds must be derived from long term wind data, city governments would be 
performing a valuable service if they had probability data prepared for their area. Most 
large wind engineering consultants have detailed wind data and wind tunnel models 
for many areas where there are buildings designed for wind. This helps to reduce the 
costs of wind tunnel studies. 
 
Summer Breeze Penetration and Urban Heat Islands  

 
City Planners and urban designers also need to be aware that demolition of existing 
buildings can significantly change the local wind environment; for this reason, site 
clearing options to create open public space and parks should be studied in wind 
tunnels. Positive aspects of urban ground level wind such as summer cooling and 
dispersion of vehicle exhaust fumes can also be studied in wind tunnels (ASCE 1999). 
Without by-laws or regulations to give legal status to city planners’ requirements for 
wind tunnel study reports, probably only half of new projects would be tested. Public 
awareness has already been raised to the potential for undesirable wind effects created 
by large buildings and this awareness increases the risk of litigation. 

In urban built environments in warm humid regions, landscaping can play an 
important role in achieving energy efficiency. Urban parks with mature shade trees 
can help to reduce the potential for development of urban heat islands by creating 
breezeways (Yeang1987) through urban environments. General recommendations on 
urban form in warm humid regions are for a general development of low 2 to 3 story 
high buildings in flood free areas facing wide open ended streets with shade trees 
(Awang et al. 1994). To mitigate urban heat island effects, trees are planted along the 
edges of roads as well as in a central median strip. Buildings should have light colored 
exteriors to reduce heat gain from the absorption of solar energy (Akbari et al. 1990). 
Urban heat islands make sleeping difficult without air conditioning in warm humid 
regions. Wind engineers can contribute to the optimum location of such breezeways as 
planned for in Kuala Lumpur, Malaysia.  

CFD analysis of head island effect of the greater Tokyo area at 3:00PM were 
compared from August data for the years 1835 and 1995, Figure 7 (Murakami et al. 
1999). In big cities it is actually common to observe nocturnal air temperature 3-4 °F 
higher than the surrounding areas, and in extreme cases, up to 8 °F higher. During the 
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daytime hours, however, this difference in air temperature between the city and its 
surrounding area is smaller, only about 1-2 °F. The profile of temperature through a 
city shows its highest values roughly coincident with the central business district so 
that temperatures increase with building density (McBoyle 1970).  

The intensity of the heat island is related more to the density of buildings rather 
than to city size (Chandler 1971) in a relatively small scale urban area. In most cases 
the density of buildings and energy consuming activities in the center of cities increase 
with the size of the city. Therefore, there is also a relationship between the size of the 
city and the intensity of the heat island in the city’s centre. 

In the cold climatic conditions of Sweden, it has been noted that energy 
consumption in the intra-city houses may be up to 20% less than on the exposed edge 
(Keeble 1990). This can be attributed to wind shelter, coupled with other elements of 
the urban heat island. 

 
Natural Ventilation for Sustainable Urban Development  

    
The harbor area of Rio de Janeiro, Brazil has undergone extensive revitalization as a 
means for urban sustainability (Laar 2004). Harbor functions are being relocated 
leaving an area of around 500000 m2 available for redevelopment, Figure 8. Urban 
planners and designers have been developing schemes for mixed use including small 
scale industry and training, offices, commerce, residential, leisure and tourism. By 
increased residential density and mixed use neighborhoods, the scheme has the 
potential to drastically reduce vehicular traffic, since one third of residents will not 
commute by vehicle. With widely spaced high-rise buildings, the intention is to 
encourage natural ventilation instead of air conditioning. These high-rise buildings 
will also use façade integrated solar energy for hot water and electrical energy 
production. While quantitative studies of air flow through the development and 
resulting natural ventilation have not been performed to date, the intention is to use 
CFD studies to validate or modify the design for wind. 

Urban energy efficiency in warm humid climates can be improved by encouraging 
multi-use building development to locate housing near places of employment and 
increasing population density with the introduction of slender, widely-spaced 
residential towers above the general 2 to 3 storey development (Joubert 1973). Wind 
engineers can contribute to the design of residential tower buildings so that they have 
greater potential for natural ventilation to provide indoor thermal comfort (Laar 2004). 
Increased urban population also improves the viability of public transport and allows 
urban residents to commute by foot or bicycle, as they do in New York City and most 
cities in Southeast Asia and Europe. 
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Figure 1.  Egyptian town of Kahan and prevailing winds (Aynsley et al. 1977, with 

permission of Elsevier). 
 

 
Figure 2.  Buenos Aires and prevailing winds (Aynsley et al. 1977, with permission 

of Elsevier). 
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Figure 3. Wind scoops in city of Hyderabad (Aynsley et al. 1977, with permission 
of Elsevier). 
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Figure 4. Plan of Letchworth indicating location of industrial areas relative to direction 
of prevailing winds (Aynsley et al. 1977, with permission of Elsevier). 

 

 
Figure 5.  Forest shelterbelt configuration in dormitory town in New Jersey after 

Olgyay(Aynsley et al. 1977, with permission of Elsevier). 

12 URBAN AERODYNAMICS



 
 

 
Figure 6.  Man walking against strong wind, Wellington (Dominion Post Collection, 

Alexander Turnbull Library, Wellington, New Zealand, EP/1967/5183/12). 
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Figure 7.  CFD analysis of heat island effect of the greater Tokyo area at 3:00 PM in 
early August in 1835 and 1995 (Murakami et al. 1999, with permission of Elsevier). 

 
 

 
 

 
Figure 8.  Proposed Harbor Redevelopment in Rio de Janeiro, Brazil with anticipated 

prevailing wind penetration (Laar 2004). 
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CHAPTER 3 

 
WIND ENGINEERING IN URBAN AERODYNAMICS 

 
URBAN HURRICANE AND TORNADO SHELTERS 

 
Urban planners and designers need to consider the need for urban storm shelters in the 
event of extreme wind conditions such as hurricanes and even tornadoes. In some 
urban centers it is not always feasible to evacuate large populations when a hurricane 
approaches. In tall office buildings, walls of fire refuge floors can be economically 
designed to resist more extreme winds and windborne debris than is economic for 
walls on regular office floors. While the threat of tornadoes in urban zones has been 
largely downplayed, cities such as Miami (1997), Nashville (1998) and Fort Worth 
(2000) have recently experienced significant damage to high rise buildings due to 
tornadoes. The higher wind speeds and increased debris associated with tornadoes in 
urban zones create a more significant engineering design challenge (Figure 9). Where 
the risk of flooding is low, tornado shelters are frequently located in below-ground 
level space. 

One of the consequences of Hurricane Andrew in southern Florida during 1992 is 
that many condominium buildings in the fifteen to thirty storey range are now being 
designed with balcony-edge storm shutters. Those shutters are intended to reduce the 
devastating damage that strong wind and rain can have when the building envelope is 
breached. In fact, recent experience in the United States suggests that residential 
damage claims are 40% larger when the building envelope is breached. The increase 
in internal pressure after cladding failure can create other cladding breaches on that 
floor or in that apartment. These events are frequently the cause of massive insurance 
losses. With the shutter option the prudent cladding designer is now interested in two 
physical geometries: (i) the open balcony condition (Figure 10) with no storm shutters 
present and (ii) the building with slab-edge storm shutters installed (Figure 11) 
(Cochran and Peterka 1999a). The latter effectively changes the shape of the building 
from a rough-surfaced collection of protruding balconies to a much cleaner, often 
rectilinear, structure.   

The highest wind forces on the exterior of buildings are due to suction pressures 
near sharp-edged corners or roof edges. The negative cladding load variations with 
and without shutters are shown in Figures 12 and 13. Load variation is indicative of a 
pattern seen for exposed, mid-height buildings in Florida where the storm shutters 
effectively generate higher loads than a building with open balconies. The presence of 
many corner balconies results in typical, peak-negative, cladding loads along the 
corner strips of the walls being reduced by 35-40% when compared to the shuttered 
building, and 45–50% when compared to the ASCE.  

Centrally located balconies on the wide face have no substantial impact on the 
positive or negative design pressures. In fact, the peak-positive pressures seem to be 
essentially unchanged by the presence of the storm shutters in the model studies. 
These observations may encourage designers to consider other design possibilities 
such as moving the storm shutters on the corner balconies to the glass face, or using 
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impact-resistant glazing at these locations. In this way the designer can take advantage 
of the less coherent flow caused by the corner balconies and the resulting lower 
pressures. Another point to note is that if balcony-edge shutters are to be installed on 
an existing building, the designer should be aware that it is very likely the shutter 
loads created by this new corner geometry will be significantly greater than that 
experienced by the glass without the shutters. It should be noted that the presence of 
balconies does not automatically cause reduced cladding pressures. Some structures 
tested showed little or no negative-pressure reduction where wind flow separation can 
remain coherent along the vertical (often narrow) corner. As yet, there is no codifiable 
criterion for the influence of balconies, and recourse to wind-tunnel tests to 
demonstrate a load reduction is still necessary. Few office buildings have storm 
shutters (Figures 9 and 14)). The determination of wind loads on buildings from wind 
tunnel studies can often save costs of structural members that are often much larger 
when designed using more conservative but simpler wind loading calculations. These 
savings are often greater than the cost of a wind tunnel study.   

 
PEDESTRIAN LEVEL WINDS  

 
Some of the earliest problems of strong winds in pedestrian areas caused by tall 
buildings occurred in Boston. The 277 feet (84 m) high Earth Sciences building at 
MIT campus in Cambridge had an arcade through it at ground level. This arcade 
opening was 70 feet wide and 21 feet high through which frequent wind speeds of 
80mph to 90 mph were experienced while wind speeds at level were only 40 mph to 
50 mph (Koppes 1970). Similar problems were occurring downtown at Boston’s 
Prudential Center. These tall buildings create a significant difference in air pressure 
between their windward and leeward faces when wind blows directly onto them. Any 
opening through the building offers an opportunity for air to flow rapidly from the 
high pressure windward region into the low pressure leeward region. 

Parametric studies in boundary layer wind tunnels (Irwin 1981) and computational 
fluid dynamics (CFD) (Stathopoulos et al. 1992) shown in Figures 15, 16 and 17, have 
provided pedestrian level speed-up factors for some simple building geometries. These 
factors, K, are the ratio of locally increased wind speeds due to the presence of a tall 
building to the mean wind speed at that location without the building present. These 
studies often made use of the influence of scale, S, (Wilson 1989) (Figures 15, 16 and 
17) which has been found to govern many pedestrian level wind conditions at normal 
wind incidence. This parameter is derived from the relative dimensions of the 
windward face of rectangular buildings, S=(BLBS

2)0.33, where BL is the larger and BS is 
the smaller dimension of the windward face. The influence scale S becomes a constant 
when BL ≥ 8BS. Buildings in urban environments are rarely in an isolated setting and 
wind tunnel studies or CFD computations are needed to predict pedestrian level wind 
conditions.  

With local mean wind speeds predicted at pedestrian level around buildings, criteria 
for frequency of occurrence such as those indicated in Figure 18 (Melbourne 1978) 
can be used to determine if conditions are acceptable.  

Wind engineering offers two methods for predicting the probability of high wind 
speed at pedestrian level near tall buildings. One method is to model the tall building 
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and its surroundings in a boundary layer wind tunnel and measure the pedestrian level 
wind speeds. Data from such studies can indicate the probability of occurrence of 
wind gusts of various intensities, and also show how much wind gust speeds would 
increase (speed up), compared to conditions before the tall building is constructed. 
Similar studies can be conducted using computational fluid dynamics software on 
computers. These tools allow urban planners and designers to explore the impact of 
alternative urban development on wind conditions at pedestrian level before serious 
mistakes are made. Such mistakes can be very expensive and difficult to correct. 
These are discussed in detail in the companion ASCE booklet titled Outdoor Human 
Comfort and Its Assessment (ASCE 2003). 

 
URBAN DESIGN FOR BREEZE PENETRATION  

 
Higher air temperatures induced in urban environments by heat island effects can have 
serious consequences for vulnerable segments of the population such as infants and 
the elderly. Extensive surveys of deaths in North America attributed to high 
temperatures during heat waves showed mortality rates in excess of the norm with 
increases in air temperature, Weihe (Weihe 1985) documented mortality increases 
from negligible at 90°F through 75% at 100°F to 546% at 110°F. 

High urban air temperatures can be mitigated by urban planning and design that 
promotes breeze penetration (Golany 1995; Evans and De Schiller 1996; Aynsley and 
Gulson 1999). Wind effects on urban heat islands have been mapped in Tucson 
(Comrie 2000). The urban heat island in Tokyo has been simulated by computer 
models (Saitoh et al. 1996).  

Urban density may affect the ventilation conditions in the street and thus also the 
potential for natural ventilation of buildings. It is usually assumed that an increase in 
building density reduces the air flow in an urban area, which is a result of increased 
friction near the ground. However, this influence depends mainly on various physical 
details of urban space, including differences in heights of neighboring buildings and 
their orientation with regard to wind direction. The influence of these variables on 
wind on pedestrians and the dispersion of pollutants near ground level were studied 
with scaled models in boundary layer flow conditions (Isyumov et al. 1985).  

 
WINTER WIND SHIELDING 

 
One study within the British Isles, undertaken in Ireland and sponsored by the 
European Community Research and Development program, showed space-heating 
energy saving of around 5% for wind shelter effects alone (Keeble 1990). However, 
the height of windbreak used was two meters, protecting single-story buildings.  

Trees and other vegetation are frequently used to ameliorate undesirable winds in 
urban areas. Heisler (1990) compared wind speeds in a field study of neighborhoods 
with and without trees and found that neighborhoods with a 77% deciduous tree 
density (by plan area) had a 43% wind speed reduction in winter and a 48% reduction 
in summer. Huang et al. (1990) used this data to estimate the potential heating and 
cooling energy saving from such wind shelter. Peak power savings were estimated at 
3-20% for heating and 17-29% for summer cooling. Stathopoulos et al. (1994) 
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conducted a wind tunnel study of these shielding effects on low buildings. The study 
showed that with a single row of high density trees, air infiltration into low buildings 
four tree heights downwind was reduced by approximately 60%. This would 
correspond to winter energy savings of approximately 15%.   

Obviously in high-rise urban centers it is possible to shape and orient large 
buildings so that much of the pedestrian level spaces are protected from strong chilling 
winds when they prevail from a particular direction.  It is often the case that prevailing 
summer breezes come from a different direction, allowing designers to achieve the 
best for both climate seasons.  

Another wind effect to be accounted for in urban regions with significant snow fall, 
is drifting snow. The geometry of buildings and the spaces around them will generate 
particular drift geometries depending on wind direction (Figure 19). These effects are 
often studied in wind tunnels by observing the scouring effect of wind on small 
lightweight particles (Livesey et al. 1990). The two principal concerns of snow drifts 
are the inconvenient accumulation of snow in busy pedestrian or vehicular routes and 
the distribution of snow accumulations on roofs for snow load considerations. Snow 
loads on roofs can be critical in the case of long-span roof structures (Figure 20). The 
most common method for predicting snow drift geometry is to seed water flow in a 
water tunnel (Figure 21), with small plastic pellets gauged to simulate the relative 
density of snow. 

 
NATURAL VENTILATION OF HIGH-RISE OFFICE BUILDINGS 

 
Potangaroa (2001) conducted a series of parametric boundary layer wind tunnel 
studies at James Cook University on models of rectangular office buildings of various 
heights with floor plan aspect ratios ranging from 1 to 3. Together with these external 
wind pressures, wind pressures were measured in vertical ventilation shafts open at 
roof level at the center of the models. At the time of these tests some architects were 
designing office buildings with extensive screens outside external walls. Wind 
pressures behind such screens were also measured and found to be highly negative 
with low porosity screens with the separating space open at roof level. This led to a 
wind driven natural ventilation scheme where an outer glazed wall formed a vertical 
space around the exterior of the building. This was combined with a rooftop air scoop 
that directed wind down a central ventilation shaft. The ventilating flow entered the 
rooftop scoop and passed down the central ventilation shaft or air well through wall 
openings at each floor. From there it crosses the office floors and passes out through 
windows on external walls and up the cavity or air wall between the external glazed 
screen and the office windows (Figure 22).   

With appropriate geometry this air-well-air-wall air flow arrangement (Figure 22) 
can provide extremely efficient wind driven natural ventilation, even for office 
buildings wedged between adjacent buildings and with only a single external glazed 
wall. 

Given the effectiveness of the air-well-air-wall arrangement a series of calculations 
of indoor thermal comfort were performed using hour by hour wind and air 
temperature and humidity data for a series of hypothetical office buildings. Air flow 
through office space 1 m above floor level was evaluated using CFD software (Figure 
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23). The results of these calculations were compared with estimates of thermal 
comfort in the same buildings designed for simple cross ventilation, Table 2.  
(Potangaroa and Aynsley 2000).  

UMNO is the political party that has enjoyed majority status in Malaysia for many 
years. UMNO commissioned architects to design a 21 storey office headquarters 
building for UMNO in Georgetown. Natural ventilation wind engineers from Australia 
and the UK advised on how wing walls could be used to enhance indoor air flow given 
the direction of prevailing wind incidence on the building. Conceptual studies were 
evaluated using CFD studies of wind-driven indoor air flow. 

Wind engineers conducted boundary layer wind tunnel studies, Figure 24, of the 
proposed new National Library building in Singapore. This sixteen storey building, to 
accommodate both library functions as well as public and cultural events, occupies a 
whole city block. The wind tunnel studies included conventional wind loads as well as 
pedestrian level winds around the building. 

The boundary layer wind tunnel studies conducted at James Cook University in 
Australia were also used to determine environmental wind conditions in the pedestrian 
street through the complex, and upper-level garden areas (Figure 24). Critical periods 
for outdoor comfort in shaded locations were found from statistical evaluation of 
climate data for this humid tropical location to occur between noon and 6 pm during 
all months of the year based on 90% acceptance adaptive comfort criteria. Also 
studied were the probabilities of thermal comfort in the pedestrian street that was to 
run through the facility at street level. Percentages of time when thermal comfort 
would be unlikely were determined using wind speed coefficients referenced to long 
term wind speed records at Changi airport. As Singapore typically experiences 
significant periods of calm, as evidenced data for nearby Kuala Lumpur, Table 3, 
recommendations were made for the installation of large slow moving energy-efficient 
fans (600L/s.W) to draw large volumes of air down from roof level into the pedestrian 
street at low velocity during calm periods. Liddament et al. (2006) provide a review of 
naturally ventilated office buildings in UK and Europe. 

 
NATURAL VENTILATION OF LOW-RISE BUILDINGS 

 
Lee (1998a) evaluated the natural ventilation potential for indoor thermal comfort in a 
1995 residential development in Townsville, Australia, that included small-lot 
housing. Until the 1980s a typical house site in Townsville had an area of about 700 – 
1,000 m2. In a recent 1995 residential development, the sizes of sites have been 
significantly reduced to 300 m2 to 450 m2. This reduces the potential for natural 
ventilation and creates a reliance on air conditioning for thermal comfort.  

Parametric studies have been performed on arrays of cubic blocks representing 
simple houses showing the reduction of natural ventilation with increases in block 
density (Figure 25) (Lee et al. 1980). A model of portion of an actual Townsville 
subdivision, modeled at a scale of 1:200, was built to measure wind pressures on the 
walls of carefully modeled houses in a boundary layer wind tunnel (Figure 26). 

Using wind frequency data together with air temperature and humidity at 3 hour 
intervals for January, the hottest month in Townsville, the percentage of time that 
indoor thermal comfort could be maintained by natural ventilation was computed. The 
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indoor air velocity in living rooms and the master bedrooms in ten houses were 
estimated from wind pressures on the surface of solid model houses. Some general 
observations from this research were: 

 
1) Houses in the development were designed without consideration of natural 

ventilation. 
2) House designs were frequently reversed in plan to create more visual variety 

without consideration of natural ventilation. 
3) Area of the site occupied by semi-detached houses ranged from 41% to 47%. 

This equates to an overall land coverage density of over 33% when roads are 
taken into account (category C for normal spacing in Figure 25). 

4) Area of the site occupied by two storey terrace houses ranged from 26% to 
29% with enhanced spacing that allows for staggering houses and increased 
potential for natural ventilation (category B for staggered spacing in Figure 
25). 

 
Six out of the ten living rooms had good ventilation potential for indoor thermal 

comfort (>95%) at 3:00 PM. The remaining four living rooms had less than65% 
ventilation potential for indoor thermal comfort. Only two bedrooms had satisfactory 
ventilation potential (>78%) for indoor thermal comfort at 9:00 PM, when people try 
to sleep. The remaining bedrooms could only achieve less than 69% ventilation 
potential for indoor thermal comfort and require air conditioning. Houses designed by 
architects to benefit from natural ventilation often achieve more than96% ventilation 
potential for indoor thermal comfort at 3:00 PM in Townsville but ceiling fans are 
needed at 9:00 PM when winds become calm (Lee 1998a). 

 
HUMAN THERMAL COMFORT IN NATURALLY VENTILATED SPACES 

 
The ASCE published a booklet on Outdoor Human Comfort (ASCE 2003) 
that discusses thermal effects and describes approaches for assessing thermal 
comfort.  There are additional references specifically dealing with comprehensive 
comfort criteria including thermal effects (Wiliams et al. 1992; Soligo et al. 1998).  
The approach described in these papers has been used on a large number of 
projects, primarily in hot climates including Burj, Dubai.   

For the first time the ANSI/ASHRAE Standard 55 (2004) for assessing thermal 
comfort in air conditioned space introduced an alternative method for evaluating 
thermal comfort in naturally conditioned spaces. Naturally conditioned spaces are 
defined as those spaces where the thermal conditions of the space are regulated 
primarily by the opening and closing of windows by the occupants. The adaptive 
model used was that developed by de Dear and Brager (2001) ANSI/ASHRAE 
Standard 55 (2004) provides a graph indicating ranges of air temperature to satisfy 
thermal comfort of 80% of an acclimatized population, based on mean monthly 
temperature generally recommended for design purposes (Figure 27).  

The 2005 ASHRAE Handbook of Fundamentals (ASHRAE 2005) included more 
information on adaptive thermal comfort. These handbooks give equations for 
calculating the temperature for operative comfort.  
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Wind engineers can play an important role in urban planning and design by 
offsetting heat island effects in urban areas with appropriate breeze penetration. The 
cooling effect of air flow past exposed skin is approximately 3.6C for each m/s of air 
flow. This means that a strong breeze of 2 m/s can have a cooling effect of around 
7.2C which can be subtracted from the dry bulb air temperature to give the equivalent 
still air temperature. In most urban areas the mean pedestrian level wind speed is 
significantly less than in surrounding rural areas. Wind speeds in office space are often 
controlled to around 1 m/s to avoid dislodging loose paper on desktops. 

 
BACKUP FOR WIND-DRIVEN NATURALLY VENTILATED SPACES 

 
If wind-driven natural ventilation for indoor thermal comfort is to compete effectively 
with central air conditioning in warm humid regions, evaluation of its effectiveness 
must be extended to accommodate backup mechanical air movement from fans during 
periods of calm (Figure 28). To accomplish this, natural ventilation needs to be 
assessed in terms of the percentage of time that it is likely to be effective in 
maintaining indoor thermal comfort. 

For that period of time when wind-driven natural ventilation is not likely to be 
sufficient, a mechanical back up system should be designed. The cost of this system, 
together with its cost of operation, will be needed to enable meaningful comparison 
with costs of air conditioning systems and their operating costs. Without such 
information it is difficult to present a convincing case for wind-driven natural 
ventilation.   

Where circulator type fans are used, large, high-volume, low-speed fans have the 
potential to be far more energy-efficient than smaller higher speed fans (Aynsley 
2005). This high energy-efficiency in movement of air, up to 1200 cfm/W, results 
from the generally higher energy-efficiency of propellers at low-speed combined with 
the use of low-drag airfoil fan blades mounted at an optimal angle of attack. 

 
DISPERSION OF URBAN AIRBORNE POLLUTANTS  
   

The complex relationships between buoyancy and wind pressure forces during fires 
can be modeled using CFD software. Studies using this technique can be used to 
assess the efficiency of vent openings and the flow path of exhausted smoke. 
Exhausted smoke can sometimes re-enter the building if the smoke plume reattaches 
to the building near another building opening. CFD studies can indicate appropriate 
spacing of vents and other openings to avoid such re-entry under various wind 
conditions. Wind tunnel or CFD studies can be used to determine the optimum 
location for fresh air intakes for HVAC systems with respect to wind pressure and 
pollution sources such as vehicular exhaust fumes and kitchen exhausts.   

Of more interest to urban planners and urban designers are expanded studies.  Such 
studies can consider potential propagation of smoke and toxic fumes released from 
research facilities at universities and medical facilities, Figure 29. Plumes from 
industrial accidents can also be modeled using tracer gas techniques in boundary layer 
wind tunnels or CFD computer software. Figure 30 is a visual display of a potential 
toxic plume moving down a valley in rough terrain toward a nearby city. These 
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displays using flow visualization are not used to quantify toxics; other studies that 
measure toxic concentrations in parts per million using tracer gases are used for that 
purpose.  

 
DISPERSION MODELING IN BOUNDARY LAYER WIND TUNNELS 

 
Flow and dispersion over urban settings are affected by temperature gradients within 
the urban area and outside the urban boundaries as well as by non-uniform roughness 
and topography (Oke 1979; Landsberg 1981). Two primary length scales for 
turbulence result from temperature differences developed by the urban complex itself: 
(1) the differences between surface temperatures over the urban area and the 
surrounding surface area that form the urban heat island, and (2) temperature 
differences between street and building surfaces. The former gives rise to flow 
perturbations of overall urban dimensions (Sethuraman and Cermak 1974) while the 
latter generates local naturally-convective flows of building height and street-width 
dimensions which are strongly modified by wind driven forced convection (Numez 
and Oke 1977; Wedding et al. 1977). 

 Temperature differences, between air in the boundary-layer flow approaching the 
urban area and the upwind surface, cause flow approaching the urban area to be 
thermally-stratified, affecting flow and dispersion over the urban area (Sethuraman 
and Cermak 1975). Air-surface temperature differences over sloping terrain result in 
upslope and down-slope winds that materially affect the urban wind field and 
dispersion (Petersen et al. 1980). As discussed by Changnon (1992), significant local 
weather modifications have been attributed to these large-scale effects.   

Physical modeling in a boundary-layer wind tunnel provides a convenient and 
economical method for systematic investigation of thermal effects on urban flow fields 
and dispersion. In particular, a wind tunnel able to simulate stratified boundary layers 
(stable unstable and elevated inversions) offers many possibilities for flow and 
dispersion studies (Cermak 1981). The following presentation is confined to physical 
modeling of overall thermal effects on flow and dispersion over urban areas caused by 
large-scale temperature differences (the “heat island”) and thermally stratified or 
thermally driven approach flow. A discussion of the processes involved is presented in 
a paper by Oke et al. (1991). 
 
DISPERSION MODELING WITH COMPUTATIONAL FLUID DYNAMICS  

 
A number of studies have indicated that modeling of dispersion of vehicular emissions 
in an urban street canyon using CFD with the k-ε turbulence model was in 
approximate agreement with result from boundary layer wind tunnel studies. The 
difficulty with wind tunnel studies is that all the significant processes involved need to 
be scaled in a consistent manner so that their interaction within the wind tunnel 
reflects conditions at full-scale. The problem with numerical models is that they 
include within their mathematical formulation only a few of the principal processes at 
work. A recent study by Johnson (1999) found that the k-ε turbulence model may 
underestimate the turbulent dispersion taking place, especially near solid surfaces. 
Corrections based on wind tunnel data were suggested as a means to correct the CFD 
output. 
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Terrorist threats have prompted the US Department of Homeland Security to 
sponsor studies of dispersion patterns in a number of US cities (USDHS 2005). These 
urban security projects include CFD modeling as well as validation field studies using 
tracer gas releases (NRC 2003).    

 
URBAN WIND POWER  

   
A quick search on the Internet under wind and urban design will reveal many sites 
with information on cities considering using wind turbines. Wind turbines are an 
increasingly common sight in wind farms in rural settings. In urban settings land is a 
precious commodity. It is for this reason that engineers and urban designers have been 
exploring the feasibility of integrating wind turbines into high-rise buildings (Hartman 
2001). 

 
Some of the issues that arise when integrating wind turbines into buildings are: 
 Noise and vibration from turbines 
 Need to direct wind from varying directions toward the turbines 
 Optimizing location of turbines to catch higher wind speeds, and; 
 Aesthetics 

 
Orientation of the towers is a compromise alignment with respect to the dominant 

prevailing wind directions. This means that some wind energy from other wind 
directions cannot be harvested. The turbines tend to be located as high as possible to 
take advantage of the general increase in wind speed with height above ground. At the 
design stage, wind engineering techniques are used to quantify the potential of future 
wind events to contribute wind energy to the turbines. 
 
Table 2. Relative Effectiveness of Conventional Natural Ventilation and Air-Well-Air-
Wall Natural Ventilation in Maintaining Indoor Thermal Comfort (Potangaroa and 
Aynsley 2000, with permission of Elsevier, University of Reading, U. K.). 

 

 
 
 
 
 

Geographic Location Conventional 
Natural Ventilation 

Air-Well-Air-Wall 
Ventilation 

Kuala Lumpur 15% 34% 
Singapore 40% 60% 

Jakarta 45% 72% 
Hong Kong 85% 92% 

San Francisco 7% 9% 
Los Angeles 17% 19% 
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Table 3. Percentage of calms by month at three hourly intervals for Kuala Lumpur, Malaysia (Courtesy of Richard Aynsley). 
 

Note: Calms represent winds less than 1.4 m/s for wind records 
10m above ground level based on data from 1965 to 1975. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Hour of Day 
3:00 
AM 6:00AM 9:00AM 12:00Noon 15:00PM 18:00PM 21:00PM 24:00Mn Ave.

Month          
Jan 72% 38% 28% 87% 96% 96% 95% 97% 76%
Feb 68% 32% 23% 88% 95% 96% 98% 99% 75%
Mar 64% 33% 17% 87% 95% 95% 98% 98% 73%
Apr 67% 33% 33% 88% 97% 96% 95% 96% 76%
May 50% 21% 27% 90% 95% 94% 90% 92% 70%
Jun 40% 19% 30% 91% 96% 95% 91% 94% 70%
Jul 34% 20% 24% 91% 96% 94% 93% 88% 68%

Aug 36% 19% 25% 88% 95% 93% 89% 90% 67%
Sep 44% 17% 25% 89% 92% 92% 92% 90% 68%
Oct 53% 20% 35% 90% 94% 92% 89% 89% 70%
Nov 63% 30% 39% 91% 94% 91% 93% 93% 74%
Dec 77% 45% 40% 90% 95% 95% 93% 95% 79%
Ave. 56% 27% 29% 89% 95% 94% 93% 93%  
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Figure 9.  Other office buildings were severely damaged by hurricane Wilma. 
(Courtesy of Steven Camposano). 

 
 

 
 

Figure 10. A CPP 1:300 model of a condominium in Naples, Florida open balconies 
(Cochran and Peterka 1999b, with permission of International Association of Wind 

Engineering). 
 
 

 

25URBAN AERODYNAMICS



 
 

Figure 11. A CPP Naples condominium model configuration in Naples, Florida 
with storm shutters (Cochran and Peterka 1999b, with permission of International 

Association of Wind Engineering). 
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Figures 12 and 13. Peak cladding pressures determined from a boundary layer wind 
tunnel study for condominium with and without storm shutters (Cochran and Peterka 

1999b, with permission of International Association of Wind Engineering). 
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Figure 14. Wind engineered storm shutters protected this condominium building from 
hurricane Wilma (Courtesy of Steven Camposano). 

 
 

 
Figure 15. Frontal vortex speed-up factors for wind normal to a slab type buildings 

with respect to scaling factor S (Stathopoulos et al. 1992, with permission of Elsevier). 
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Figure 16. Flow through portal speed-up K factors for wind normal to a slab type 

building with respect to building height (Stathopoulos et al. 1992, with permission of 
Elsevier). 

 
 

 
Figure 17. Gap to corner speed-up ratios for wind normal to slab type buildings with 

respect to spacing/scaling ratio L/S (Stathopoulos et al. 1992, with permission of 
Elsevier). 
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Figure 18. Pedestrian level wind acceptance criteria (Melbourne 1978, with 

permission of Elsevier). 
 

 

 
 

Figure 19. Urban snow drifts modeled in a water tunnel (Courtesy of Rowan 
Williams Davies and Irwin Inc. Guelph, ON Canada). 
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Figure 20. Snow drift pattern on a long span roof (Courtesy of Rowan Williams 
Davies and Irwin Inc. Guelph, ON Canada). 

 
 

 
 

Figure 21. Water tunnel for snow drift modeling at RWDI (Courtesy of Rowan 
Williams Davies and Irwin Inc. Guelph, ON Canada). 
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Figure 22 Air-well to air-wall ventilation for a tall building (Courtesy of Richard 

Aynsley) 
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Figure 23.  Air Velocity Contours inside Office Space with Air-Well-Air Wall 
Ventilation Using CFD Software (Potangaroa 2001, with permission of Regan 

Potangaroa). 
 

 
 

 

 
 

Figure 24. Model of the National Library, Singapore model in a boundary layer wind 
tunnel (Courtesy of Richard Aynsley). 
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Figure 25.  Influence of building density on natural ventilation potential 
(Lee et al. 1980, with permission of ASHRAE Journal). 
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Figure 26. Residential development model in boundary layer wind tunnel (Lee 1998b, 
with permission of Susan Lee). 
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Figure 27.  80% Acceptability Limits for Indoor Operative Temperature based on 
ASHRAE Adaptive Comfort Model for Naturally Conditioned Spaces (Courtesy of 

Richard Aynsley). 
 

 

 
 

Figure 28. High-Volume Low-Speed Energy-Efficient Ceiling Fans (Courtesy of Big 
Ass Fan Co.). 
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Figure 29.  Flow visualization of exhaust plume from a hospital stack  (Courtesy of 
Cermak Peterka Petersen (CPP) Inc.). 

 
 

 
 

Figure 30. Flow visualization of a toxic plume flowing down a valley toward an urban 
center  (Courtesy of Cermak Peterka Petersen (CPP) Inc.). 
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CHAPTER 4 

 
TOOLS AND TECHNIQUES 

 
FLOW VISUALIZATION 

 
Air flow through models of urban environments in wind tunnels is invisible unless 
visualization media are introduced into the air flow. The most common media is 
smoke or other dense fumes such as titanium tetra chloride (Figure 31).  These media 
are often difficult to photograph particularly when their density is too high or too low. 
Also dense smoke in the foreground can obscure smoke in the location of most interest 
to viewers. Other media such as flexible fiber tufts or threads can be attached to 
surfaces to indicate flow close to those surfaces (Figure 32) or attached to the end of a 
moveable wire probe to observe airflow direction and turbulence in space away from 
surfaces. Lightweight granular materials such as granulated cork or expanded 
polystyrene beads are often used to observe ground surface air flows in pedestrian 
areas in models of urban spaces (Figure 33). 
 
QUANTIFYING WIND EFFECTS  
 
Any assessment of wind effects in urban environments needs to take account of the 
natural variability of wind. Wind engineering is essentially the estimation of the 
statistical probability of a specific wind effect occurring. Detailed wind frequency data 
collected at airports over periods of 20 to 30 years are the most common source of 
wind data used to determine the relative probability of wind events at a particular 
location (Figure 34). This approach is necessary to determine the level of risk 
associated with the potential damage or benefit of an urban wind effect. 

Probabilities of wind events at other locations distant from an airport can be 
determined from wind tunnel studies, referenced to the airport location where there are 
significant topographic features such as mountains between the airport and the site. 
When the terrain is generally flat, calculations can be used, that take into account of 
changes in ground surface roughness created by buildings and vegetation and distance 
between the airport and the site.  
 
BOUNDARY LAYER WIND TUNNELS  
 
The benefits of wind engineering were first affirmed for tall structures, since 
measurements of load effects by high frequency force balance or aeroelastic models 
were requisite for their design (Isyumov 1982; Tschanz and Davenport 1983). The 
design of these structures also may utilize wind tunnels, Figure 35, for quantification 
of wind pressures on exterior cladding and pedestrian level winds. The tools and 
techniques developed by professional wind engineers to make the latter set of 
measurements also enable the prediction and quantification of wind effects in urban 
developments before the building is constructed, allowing designs to be changed to 
achieve a more favorable wind environment (AAWE 2005). 
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A windy environment around the base of a building, particularly near a main 
entrance or plaza area, will detract from the appeal of the site and perhaps discourage 
clients and shoppers from visiting the area. Similarly, an outdoor pedestrian space, 
such as a recreational pool area of a residential condominium, should be protected 
from strong mean winds. Thus, there is a direct financial motivation to ameliorate the 
wind environment if it is going to adversely impact the appeal of a tenanted building. 
In the extreme case a site may be dangerous, particularly to the infirmed.  

At calmer wind speeds the issues may be quite different. The motivating concern 
may be the removal of stale air and/or viruses, like SARS, from the populated areas of 
cities with many tall, closely spaced buildings. Even the location of local air intakes, 
to avoid noxious or unpleasant odor sources, can be explored in the wind tunnel. Many 
factors will have an impact on the wind conditions around a building or within the 
whole downtown cityscape. The parameters may include: the ambient wind statistics, 
local topography, building massing, nearby foliage and proximity to similarly tall 
structures. It is for this reason that many new-building designers evaluate their project 
in a boundary-layer wind tunnel to inspect an individual building within the cityscape 
(scales 1:200 to 1:500). However, the city planner may wish to explore the future 
optional massing choices for the whole downtown (scales 1:1000 to 1:4000) (Figure 
36) in a more generic sense to decide where to encourage growth, and at what heights 
and densities, in the coming decades (Givoni 1997).  

A detailed manual exists on engineering practice for the boundary layer wind 
tunnel studies. Wind Tunnel Studies of Buildings and Structures (ASCE 1999) 
published by the American Society of Civil Engineers, deals mainly with boundary 
layer wind tunnel studies to determine wind loads. However it also includes two 
sections relevant to urban planning and urban design. One section deals with 
pedestrian level winds, and another on dispersion of airborne pollutants. 

The use of small-scale models, Figure 36, in a boundary-layer wind tunnel, has 
been routinely used to study the effects of terrain and complex cityscapes on airflow at 
ground level, and at elevation, in downtown areas or both high-speed pedestrian-winds 
and for the removal of stale or polluted air (Cochran and Howell 1990). 

 
WIND TUNNEL MEASUREMENTS  

 
Wind tunnels are used not only for visualization of flow fields in urban zones, but also 
for quantification of aerodynamic effects through distributed measurements of wind 
velocity and pressure (Isyumov 1972). To simplify scaling considerations, all data 
measured in wind tunnels is reduced to dimensionless ratios or coefficients. In the case 
of wind pressures at a point on a surface, the pressure measured at that point in the 
wind tunnel is divided by the dynamic pressure, 1/2ρv2, exerted by the approaching 
reference wind at a specified height above ground level (where ρ is the density of air, 
and v is the velocity of the air in consistent units). This ratio, p /(1/2ρv2), is referred to 
as a pressure coefficient. In the case of wind speeds at a point, the wind speed 
measured at that point in the wind tunnel, V1, is divided by the wind speed, Vr, of the 
approaching reference wind at a specified height above ground level. V1 /Vr, is 
referred to as a wind speed coefficient. All such measurements are tied to probability 
of occurrence associated with long-term wind data. 
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The time-averaged wind flow pattern around sharp-edged rectangular buildings 
(bluff bodies), for a particular wind direction, does not change over a wide range of 
wind speeds. Using a coefficient approach allows wind pressures or wind speeds at 
particular points to be calculated from a single pressure coefficient or wind speed 
coefficient for a range of reference wind speeds. 

In the case of buildings or other structures with smooth curved surfaces, time-
averaged air flow patterns are likely to change with increases in wind speed as the air 
flow over the surface detaches and sometimes reattaches at different locations. The 
detachment of flow from the surface is governed by the ratio of the dynamic force to 
the viscous force at that point in the flow. This ratio is the Reynolds number, Re. It can 
be very difficult to achieve all the scaling factors for wind tunnel models of buildings 
with smooth curved surfaces. For this reason wind engineers will often advise urban 
designers to have protrusions, such as protruding columns, on such smooth curved 
surfaces. These protrusions ensure that the surface flow separates at particular points 
on the surface, regardless of wind speed or direction.    

 
Validation of Boundary Layer Wind Tunnel Studies 

 
An obvious question urban planners and designers have is how accurate boundary 
layer wind tunnel studies of pedestrian level winds in urban environments are. Vickery 
(1992) conducted such a study at 1:400 scale comparing three months of one minute 
time-averaged wind records at a local airport with pedestrian level winds in a small 
park in nearby southeastern US city. Buildings around the park varied in height from 
150 ft to 600 feet. 

Wind conditions at pedestrian level were measured in the park and compared with 
those predicted by the wind tunnel study. The comparison was qualitatively very good, 
with both data sets showing simultaneous peaks and valleys of gusts. The fluctuations 
in the estimated wind speeds were greater than those measured on site. This was 
attributed to differences in the averaging times. Over a three month period the mean 
predicted and mean measured wind speeds differed by only 4%. 

 
COMPUTATIONAL FLUID DYNAMICS  

 
Computational fluid dynamics (CFD) is increasingly being used to address problems 
in urban aerodynamics. Urban Aerodynamics simulations generally involve large 
computational domains with many computational cells or control volumes. 
Knowledge of the flow behavior and of the subsequent minimal grid resolution 
requirements for the sub-configurations is important to arrive at optimal mesh 
resolutions and accurate and economical simulations for the urban environment as a 
whole. 

There is a variety of CFD methods they can apply to evaluate the turbulent flow 
around buildings in the urban environment: Direct Numerical Simulation (DNS), 
Large Eddy Simulation (LES) and Reynolds-averaged Navier-Stokes simulation 
(RANS). In addition, hybrid approaches, such as Detached Eddy Simulation (DES) are 
available. DNS requires very extensive computational resources and can at present 
only be applied for flow in simple geometries and at low Reynolds numbers. For the 
complex high-Re number flows in urban aerodynamics, application of DNS will not be 
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possible in the foreseeable future. LES is a simplified method in which the spatially 
filtered Navier-Stokes equations are solved.  RANS refers to the approach with 
equations obtained by averaging the Navier-Stokes equations (time-averaging if the 
flow is statistically steady or ensemble-averaging for time-dependent flows). With 
RANS, only the mean flow is solved while all scales of turbulence have to be 
modelled. The averaging process generates additional unknowns for which turbulence 
models are required. Many turbulence models are available, but there is no single 
turbulence model that is universally accepted as being the best for all types of 
applications. 

The statistically steady RANS method is the one that has been most widely applied 
and validated in computational urban aerodynamics. It has been used for a wide range 
of building applications including estimating pressure coefficients (Murakami et al. 
1992; Richards and Hoxey 1992; Stathopoulos and Zhou 1993; Stathopoulos 1997; 
Oliveira and Younis 2000; Meroney et al. 2002), wind-driven rain (Choi 1993; Choi 
1994; Blocken and Carmeliet 2002, Blocken and Carmeliet 2004; Tang and Davidson 
2004), pollutant dispersion (Dawson et al. 1991; Cowan et al. 1997; Leitl et al. 1997; 
Li and Stathopoulos 1997; Meroney et al. 1999; Meroney 2004), pedestrian wind 
conditions (Stathopoulos and Baskaran 1996; Richards et al. 2002; Yoshie et al. 2007), 
snow drift (Sundsbo 1998; Thiis 2000) and cooling tower drift (Meroney 2006; 
Meroney 2008). Although many applications of RANS in the past have been limited to 
isolated buildings or relatively simple building arrangements, significant differences 
have been found in comparisons with wind tunnel and full-scale measurements in 
specific cases. These are attributed to turbulence model limitations and to the 
statistically steady solution of flows that exhibit pronounced transient features, such as 
intermittent separation, recirculation zones and vortex shedding. In addition, a wide 
range of other computational aspects can contribute to uncertainties and errors, 
divided by Franke et al. (2007) into two broad categories: physical and numerical. 
Physical modeling errors and uncertainties result from assumptions and 
approximations made in the mathematical description of the physical process.  

LES is a time-dependent approach in which more of the turbulence is resolved. It 
therefore has a larger potential to provide accurate results than statistically steady 
RANS simulations (Murakami et al. 1992; Tominaga et al. 1997). LES also provides 
more information about the flow, such as instantaneous and peak wind speeds, 
pressures and pollutant concentrations. However, it requires considerably higher CPU 
times and memory than RANS. It also requires time and space resolved data as 
boundary conditions to properly simulate the inflow. Such experimental data are rarely 
available in practice (Franke et al. 2007). LES is also considered to require more 
experience for users to apply effectively than does RANS. Consequently, the practical 
application of computational urban aerodynamics will continue to be based on 
statistically steady RANS for a considerable time to come.  

Recently, various sets of guidelines for the use of CFD have been developed and 
assembled to help users avoid, reduce and estimate the errors and uncertainties in 
applying CFD. Casey and Wintergerste (2000) have provided a very extensive set of 
guidelines for industrial CFD applications, many of which are also applicable to 
computational urban aerodynamics. Franke et al. (2007) have assembled a 
comprehensive best practice guideline document for the CFD simulation of flows in 
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the urban environment. Also, recommendations for particular applications such as 
pedestrian wind conditions around buildings have been developed (Mochida et al. 
2002; Yoshie et al. 2007). Other efforts have focused on specific problems in CWE, 
such as those encountered in simulating equilibrium atmospheric boundary layers in 
computational domains (e.g. Blocken et al. 2007a; 2007b; Hargreaves and Wright 
2007; Yang et al. 2008). Most of these guidelines apply to statistically steady RANS 
simulations. 

Independent of whether RANS or LES is employed, evaluating the accuracy of 
CFD results by comparing them with wind tunnel or field experiments is very 
important because turbulence models are based on assumptions and no turbulence 
model is universally valid for all applications. Physical modeling therefore remains an 
indispensable tool in all applications of wind engineering. 

One of the most common sub-configurations is a passage between two parallel 
buildings. In the past, CFD for wind speed in passages between buildings has been 
conducted by many authors. However, for the specific situation of wind flow parallel 
to the passage between two generic buildings of equal height, relatively few numerical 
studies have been made. In particular, grid resolution guidelines are limited. In a 
recent comprehensive publication of recommendations for CFD simulations of the 
pedestrian wind environment, Franke et al. (2004) mentioned that an initial minimum 
grid resolution guideline for the built environment is to use at least 10 cells per cube 
root of the building volume and at least 10 cells per building separation. A grid-
sensitivity analysis starting from these initial guidelines is recommended.  

Wind engineering studies of wind speed in urban spaces that are used to assess 
pedestrian thermal comfort may not indicate that the air in wake regions is re-
circulating in eddies. This can be problematic with respect to ensuring fresh air in 
outdoor spaces. Some CFD software is able to trace the paths of specific parcels of air 
and indicate the age of air, or length of time the parcel has occupied a particular 
region in the air flow.   

Teams of urban designers, planners, architects and wind engineers collaborate to 
explore quantitative estimates of air flow through alternative design proposals. An 
example of the potential for natural ventilation and pedestrian comfort in high-density 
housing can be found in the Vanke Doushi Garden development in Beijing, which is 
currently exploring the use of CFD techniques (Jiang et al. 2005). The final design has 
a wall of high-rise apartments 33m to 90 m high to shelter smaller buildings from the 
chilling winter winds at over 7 m/s from the north. This design maintained natural 
ventilation from pleasant southerly breezes during summer months. Acceleration 
factors for ground level winds in schemes for urban development can be found from 
CFD analysis. Finally, Figure 37, taken from van Hooff and Blocken (2010), shows 
wind speed amplification factors evaluated from a CFD analysis of wind flow around 
a stadium in the wake of other buildings in an urban environment. 

 
 

FIELD STUDIES 
 

Street intersections are often the windiest locations in urban environments. A 
wintertime survey of more than 300 pedestrians’ perceptions of environmental 
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conditions was conducted between 10:00 AM and 2:00 PM in Sydney, Australia 
(Aynsley 1973). A car fitted with instruments accompanied pedestrian survey teams to 
record wind speed, wind direction, air temperature, noise level, and solar radiation 
intensity at each location at the time of the surveys. During the same period another 
survey was conducted of people’s preferences for city parks and plazas occupied 
during lunch hour. Similarly detailed recent studies of environmental conditions in 
urban street canyons have been conducted in Japan.      

Field studies of wind effects provide useful information on existing conditions, to 
explore and compare wind conditions in a variety of urban design options (Aynsley 
2001). 

 
 

 
 

Figure 31. Urban air flow visualization using smoke (Courtesy of Cermak Peterka 
Petersen (CPP) Inc.). 
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Figure 32. Urban flow visualization using tufts (Aynsley et al. 1997, with permission 
of Elsevier). 

 

 
 

Figure 33. Urban flow visualization with foam plastic beads (Courtesy of Richard 
Aynsley). 
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Figure 34. A polar plot of probability of occurrence, as a percentage of time of 
summer wind speeds from all directions at Hartsfield, Atlanta, GA, USA (Courtesy of 

Richard Aynsley). 
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Figure 35. An Urban Model inside a Boundary Layer Wind Tunnel (Courtesy of 
Boundary Layer Wind tunnel Laboratory, University of Western Ontario). 

 
 

 
 

Figure 36. A 1:2000 model in the University of Western Ontario boundary layer wind 
tunnel for study of winds over the complex terrain (Davenport and Isyumov 1967, 

with permission of Boundary Layer Wind tunnel Laboratory, University of Western 
Ontario). 
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Figure 37.  Contours of non-dimensional wind speeds U/U10 at 10m above the stadium 
ArenA deck and its surrounding buildings for an oblique wind direction and U10=5 

m/s (van Hooff and Blocken 2010, with permission of Elsevier). 
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CHAPTER 5 

 
CONCLUDING REMARKS 

 
At the Twelfth World Meteorological Congress in 1995 (WMC 1995), it was observed 
that almost half of the global population inhabit urban centers. A similar international 
conference on Biometeorology and Urban Climatology, was held in Sydney, Australia 
in 1999 (ICUC 1999). 
 

Topics discussed at these conferences include: 
 Pedestrian comfort  
 Mitigation of airborne pollution from traffic and industry  
 Mitigation of urban heat island effects by breeze penetration 
 Potential for urban energy generation from wind turbines 

 
This has led to increased interest in the impact of urban microclimates including wind 
effects on urban planning and design, and promises expanding opportunities for 
collaboration between urban planners, designers, and wind engineers.  

Urban planners and designers, prior to 1960, did consider the impacts of wind on 
urban development but in a non-quantitative manner. Modern wind engineering began 
around 1960 with the relaxation of building height restrictions in many urban areas 
that resulted in the construction of large numbers of tall buildings in urban centers 
around the world. With increased redevelopment in urban areas came regulations to 
counter airborne pollution from vehicles in deep street canyons and thermal comfort 
and safety from strong wind gusts at pedestrian level near some tall buildings. More 
recently the integration of wind turbines into tall office buildings has been explored.  

Boundary layer wind tunnels became the major tool for studying urban 
aerodynamics. Field studies have confirmed the validity of these wind tunnel studies. 
Computational fluid dynamics became more common in wind engineering much later 
with the rapid increase in computing power of small computers. There is still a need 
for more field studies to validate output from CFD studies and build general 
confidence in the method. More recently urban planners and designers have begun to 
work with wind engineers in order to use quantitative wind data to inform urban 
planning and design.  

The greatest potential for saving energy in urban environments comes from 
utilizing natural ventilation for indoor thermal comfort in warm-humid, winterless 
climate regions. Sadly, many current urban commercial and residential developments 
in these regions make no attempt to use natural ventilation, but rely solely on 
refrigerative air conditioning. One area often overlooked in natural ventilation design 
is consideration of the backup system of energy efficient fans to maintain air 
movement during periods of calm.   
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