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Preface

The subject of this small book is a vast field: continuum physics. Quite naturally, we
cannot go into all the details of its many subdomains. Instead, we provide a bird’s
eye view of the subject .

A continuum is made up of material points. Each material point is a tiny region:
tiny from a human point of view, where the natural scale are meters, kilograms, and
seconds.

The same material point, however, contains very many particles, atoms or
molecules, such that the statistical laws for infinitely many particles apply. In
particular, external parameters change relatively slowly such that each material point
is always very close to thermodynamic equilibrium.

Thus we deal with fields f D f .t; x/, where f stands for a property of the
material point located at x at time t , such as mass density, temperature, tension, and
so forth.

Chapter 1 discusses additive and transportable quantities such as mass, electric
charge, momentum, kinetic, potential and internal energy as well as entropy. For
each such quantity, a balance equation is formulated and related with other balance
equations. Each quantity is described by densities for content, flow, and production.
The balance equations must be respected in any case; they apply to all kinds of
matter in any state. The highlights of this chapter are the precise formulations of
the first and second main laws of thermodynamics in terms of partial differential
equations.

Chapter 2 describes the special continuum under discussion with additional field
equations, such as Hooke’s law, Ohm’s law, optical or acoustical properties, the ideal
gas pressure relation, and so forth. Each closed set of field equations characterizes a
subdomain of continuum physics: elasticity, hydrodynamics, aerodynamics, optics,
rheology, thermo-electricity, diffusion, heat conduction, and so forth.

Next we study Linear Response Theory (Chap. 3). The reaction of a system in
thermodynamic equilibrium to rapid variations of external parameters is worked out
in first order perturbation theory. Linear material equations and explicit expression
for their coefficients are arrived at, such as the dielectric susceptibility as a function
of frequency. Once a tractable model for the system under consideration has been
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vi Preface

established, these coefficients can be calculated. Even more importantly, there are
general relations, such as the Kramers-Kronig or Onsager relations, that can be
shown to be true irrespective of a particular model. A highlight of this chapter is
the derivation of the fluctuation-dissipation theorem, which is very close to a proof
of the second main law of thermodynamics.

In Chap. 4, some standard topics of continuum physics are discussed. These
examples serve to familiarize the reader with what she or he may already know,
but now on a higher level, such as Archimedes’ principle, the first article. Some
topics, however, may be new to the reader. For instance, the last article presents a
simplified model of a white dwarf. There are articles on crystal optics, the electro-
and magneto-optic effect, and on optical activity as well as dielectric waveguides.
Metamaterials and photonic crystals are also introduced. Standard problems of
elasticity such as beam-bending and buckling, stress enhancement, and vibrating
strings and membranes are discussed. The propagation and attenuation of sound
waves in elastic bodies and in air as well as surface acoustic waves are dealt with.
There is an article on surface plasmon polaritons, and we discuss Ohm’s law and
the Hall effect, introducing the Drude model. The reader will find sections on
the laws of Bernoulli, Hagen-Poiseuille and Stokes and on Reynold’s number. An
article on local chemical reactions and diffusion introduces the interesting subject
of pattern formation. Fourier’s classical treatment of a heat conduction problem is
presented and thermoelastic effects explained (Thomson, Seebeck, Peltier). Two
articles illustrate the dissipation-fluctuation theorem: one on the thermal noise of
an Ohmic resistor, and the other on various aspects of Brownian motion. Diffusion,
a standard subject in continuum physics, is nothing else but mass-wise Brownian
motion. A model of the earth’s atmosphere is also discussed.

Chapter 4 could also have been organized into a series of methods of solving
partial differential equations. Some can be solved analytically exploiting symmetry,
others by rewriting them into systems of ordinary differential equations. The articles
on Stokes’ law and on stress concentration introduce the potential method. Various
Computational schemes such as the finite difference method and the finite element
method are also discussed. The sample programs presented are in MATLAB because
this software package is tailored to the needs of physics.

An appendix covers Fields: their transformation properties, how they are dif-
ferentiated and how they can be integrated over paths, areas, and volumes. After
all, continuum physics is formulated in terms of fields and relations between them.
There is also a Glossary, which may serve as a summary of this bird’s eye view of
continuum physics. It provides brief descriptions of the main topics of this book and
lists most of the people who have entered the stage.

The book systematically presents continuum physics theory (balance equations,
material equations, linear response) and substantiates the theory with selected
examples. Both parts are of comparable size. On the one hand, the examples cannot
be understood without a solid theoretical foundation. On the other hand, physical
laws as such are without pertinence if they cannot be shown to be useful for real-
world problems—from Archimedes’ principle to white dwarfs.



Preface vii

This book can be read in practically any order. It is more like a web than
an exposition where the next step cannot be taken without going over all the
previous steps. However, the first few sections on balance equations should be read
first and consecutively because they introduce a precise system of notation that is
nevertheless more or less compatible with a century-old tradition.

This book on Continuum Physics addresses students of physics, engineering, and
related branches of science with a general background in calculus and basic physics.
It will also serve graduate students and lecturers who want to embed their special
field in a wider context.

The book presents the physics of continuously distributed matter in a unified
way. We have built and developed a stringent theoretical framework and discussed
carefully chosen examples. This will enable the reader to assemble the multitude of
principles, rules, laws, effects, and theories of continuum physics—the pieces of a
jigsaw puzzle—into a coherent whole.

Osnabrück, Germany Peter Hertel
February 2012
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Chapter 1
Balance Equations

In this chapter we discuss physical quantities like mass, electric charge, energy and
so on. If two systems are joined, these quantities add. The quantities in question are
bound to particles, atoms or molecules. If they move, they take their properties with
them. Therefore the quantities under discussion are transportable.

Central to continuum physics is the idealization of Material points. It is a good
approximation for very many situations to assume that a region of space can be
divided into cells which are quasi infinitely small on a macroscopic scale and quasi
infinitely large on a microscopic scale. We argue why this is no contradiction.

In section Densities for content, flow and production rate we introduce, for each
additive and transportable quantity, a density, a current density, and a volumetric
production rate. The general balance equation states that the amount of a quantity
within a region might increase because there is more inflow than outflow of this
quantity across the surface or because the quantity is produced within the region.

Next we apply this to particles which come in species. The particles of the same
species are indistinguishable, so we will never enumerate them, we only speak of
how many there are. Since each particle carries a mass and an electric charge with
it, we arrive quite naturally at the appropriate conservation laws. This is the content
of section Particle numbers, mass, and electric charge.

It is now appropriate to discuss the transformation behavior of the current
densities. We must split them into a convection and a conduction contribution such
that the latter transforms as a vector field, i.e., does not depend on the velocity of
the observer. We discuss the consequences for particle numbers, mass, and electric
charge.

Momentum can be transported because particles move, thereby carrying their
momentum with it, and by short range interactions. The latter effect is described
by the stress tensor. We will see that this tensor field should normally be symmetric.

Energy is conserved. We distinguish between kinetic, potential, and internal
energy which separately are not conserved. We arrive at a balance equation
for the internal energy which is a very precise formulation of the first law of
thermodynamics in terms of partial differential equations.

P. Hertel, Continuum Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-29500-3 1, © Springer-Verlag Berlin Heidelberg 2012
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2 1 Balance Equations

Entropy is not conserved. We expand the idea that each material point, because
it is so small, is always almost in thermodynamic equilibrium. The parameters,
however, which describe this local equilibrium, vary from place to place, such
that normally there is no global equilibrium. The production rate of entropy per
unit volume, for which we develop a concrete expression, is never negative. This
statement is the second main law of thermodynamics.

1.1 Material Points

The notion of a material point is central to continuum physics. Such a material point
is a region of space, a cube say, which is so small that it appears as a point to
the engineer. On the other hand, the same material point contains so many atoms
or molecules that one may speak of a large thermodynamic systems. These two
characterizations do not contradict each other, as we will show now.

Let us discuss an example. The material point shall be 1mm � 1mm � 1mm. Its
volume is V D 10�9 m3. Think of an ideal gas under normal conditions.1 One mole
is made up of 6:022141� 1023mol�1 molecules, it occupies a volume of 22:4L.
Hence, the material point contains N D 2:7 � 1016 particles. This is a huge
number, in fact, it is sufficiently close to infinity so that the thermodynamic limit
is applicable.

Thermodynamic laws are derived for N particles in a region of volume V ,
and by sending N;V ! 1 such that the particle density n D N=V remains
constant. The pressure law p D nkBT is an example: the pressure p of an ideal
gas is proportional to the particle density n and the absolute temperature T . kB is
Boltzmann’s constant.2 Only ifN is large enough we can rely onpV D NkBT . And
N for the material point which we have described above is certainly large enough.

But there is more to it. Our material point is an open region. Particles may come
in and may go out. In fact, the numberN of particles within the material point is an
observable. Above we have calculated the average number NN D hN i of particles
within the material point under consideration.

For an ideal gas one finds hN2 i D hN i2 C hN i. The root mean square

fluctuation is defined by ıN D
q

hN2 i � hN i2. We just have seen that for an

ideal gas ıN D
p NN holds true. The relative root mean square fluctuation ıN= NN

diminishes as 1=
p NN for larger and larger systems.

Our model material point contains 2:7�1016 particles on the average, the relative
fluctuations therefore are of order 10�8. This value is small enough to be neglected.

We have just shown that, for an ideal gas under normal conditions, a small cube of
volume V contains so many moleculesN that the thermodynamic limit is applicable

1Pressure 1;013 hPa, 0ıC temperature.
2kB D1:380649� 10�23 J K�1.
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for n D N=V and that fluctuations can safely be neglected. On the other hand, the
system is small enough so that the material point will rapidly reach thermodynamic
equilibrium. Thus, if t denotes time and x D .x1; x2; x3/ is the center of the material
point, we may speak of n D n.t; x/, the particle density now and here. This is a real-
valued function of time and space, a classical field.

Similar considerations apply to other quantities, like pressure or internal energy,
and to other systems such as liquids or solids. We have made plausible that
sufficiently small regions, which appear as a point to the engineer, are large enough
to be described by statistical thermodynamics. This compromise between small
from the engineer’s point of view, and large as judged by statistical physics—this is
the essence of continuum physics. We shall later discuss this in more detail.

In the language of mathematics, a point is an object without internal structure.
Vectors can be points, and functions as well. Material points in this sense have prop-
erties like location with respect to a coordinate system, mass density, temperature,
electrical field strength, and so forth. In the same sense, a vector will have a length,
and a function an attribute like continuous or a value such as an integral. In the
context of continuum physics, it makes no sense to speak of the center of a material
point or of its boundary or volume. Continuum physics is embedded into classical
and quantum mechanics and statistical physics. One thinks and argues in terms of
particles i D 1; 2; : : : ; N of species a with mass ma, charge qa at location xi and
so forth in order to derive the laws of continuum physics. But these laws will be
formulated in terms of classical fields, such as the particle density na D na.t; x/.
At time t and at location x there are na particles of species a per unit volume. Put
otherwise, the material point at x is characterized by an a-particle density na.t; x/,
at time t, and by many more such field values.

The collection of material points form a continuum, and one may speak of
neighboring points. In fact, the notion of differential quotients is a valid idealization.
The fields by which a continuum is described have gradients, or a divergence, or a
curl, and also time derivatives. Continuum physics is described by partial differential
equations and by local relations between properties of material points.

1.1.1 Summary

The notion of a material point is central to continuum physics. Regions which
appear as points to the engineer contain nevertheless so many particles that formulas
of statistical physics may be applied which describe the limit of infinitely many
particles. Statistical fluctuations can safely be neglected. The collection of material
points is a continuum, its properties are described by fields f D f .t; x/ and partial
differential equations as well as local relations involving these fields.
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1.2 Densities for Content, Flow, and Production Rate

Let us denote by Y an additive, transportable quantity. Number of particles, mass,
electric charge, momentum, internal energy or entropy are examples. We talk
about them in the following sections. Here we want to introduce spatial densities,
current densities and volumetric production rates for such additive and transportable
quantities, and the generic balance equation.

1.2.1 Densities

Denote by V a region of three-dimensional space, a ball or a cube say. We call it a
volume, although the same word is used for its content

vol.V/ D
Z

V
dV: (1.1)

dV is the volume element. See Appendix A for paths, surfaces and volumes and the
corresponding integrals of fields.

We denote byQ.Y I t;V/ the content of quantity Y within the volume V at time t .
Y is an additive quantity if

Q.Y I t;V1 [ V2/ D Q.Y I t;V1/CQ.Y I t;V2/ (1.2)

holds true for arbitrary disjoint volumes V1, V2, V1 \ V2 D ;.
Volume obviously is an additive quantity. We shall argue in the next section why

the number of particles of a certain species is additive as well and quantities derived
from it.

Relation (1.2) can be generalized to a decomposition of a volume V into material
points of infinitesimal volume dV . We will write

Q.Y I t;V/ D
Z

V
dV %.Y I t; x/: (1.3)

%.Y I t; x/ is the density of quantity Y at time t at the location x. It has the physical
dimension of Y quantity per unit volume.

1.2.2 Current Densities

Let A be an oriented surface. This is a two dimensional manifold with well defined
front and back side. The well-known Möbius strip is not oriented. The surface of a
sphere is oriented. Points close to the surface are either inside the sphere, at the back
side of the surface, or outside, at the front side.
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At a certain point x 2 A we have a positive surface element dA and a unit vector
n which is normal to the surface and points from the back side towards the front
side. The area of the surface is defined by

area.A/ D
Z

A
dA: (1.4)

The surface integral of a vector field V D V.x/ is written as

Z

A
dA n � V: (1.5)

The field strength V is projected onto the surface normal n, multiplied by dA, and the
infinitesimal contributions are added up. It is common practice to write dA D dA n
such that (1.5) reads Z

A
dA � V: (1.6)

Let us denote by I.Y I t;A/ the net amount of quantity Y which passes, per unit
time, from the back to the front side of the surface. This amount will depend on
time t . The current should be a surface integral for which we write

I.Y I t;A/ D
Z

A
dA � j.Y I t; x/: (1.7)

j.Y / D j.Y I t; x/ is the current density associated with the additive and transportable
quantity Y .

The current density j.Y / indicates magnitude and direction of the local flow of Y .
Its physical dimension is Y quantity per unit time per unit area.

dA � j.Y / D dA n � j.Y / says that the current density has to be projected onto the
normal of the surface element dA. The current density can be decomposed into a
contribution normal and parallel to dA. Only the normal component contributes to
the passage of Y from the back to the front side.

If dA � j.Y / is positive, then Y effectively flows from the back side to the front
side. dA � j.Y / < 0 means that Y effectively flows from the front to the back side.

1.2.3 Production

An additive and transportable quantity Y may be produced or annihilated. Think of
electric field energy which may vanish because it is converted into internal energy,
or heat. Likewise the momentum content of a volume may be increased by external
forces.
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Let us denote by ˘.Y I t;V/ the net amount of Y produced per unit time within
the volume V . This production rate may depend on time t .

We shall represent the production rate as a volume integral of production rates
for material points:

˘.Y I t;V/ D
Z

V
dV �.Y I t; x/: (1.8)

�.Y / D �.Y I t; x/ is the volumetric production rate for the quantity Y , at time t ,
at location x. Volumetric in this context means per unit volume. Source strength is
another name for �.Y / D �.Y I t; x/.

1.2.4 Generic Balance Equation

Consider a volume V with its surface @V . We argue that the amount of Y within V
will change because Y flows in through the surface @V or is produced within V :

dQ.Y I t;V/
dt

D �I.Y I t; @V/C˘.Y I t;V/: (1.9)

This balance equation is valid at all times t and for any volume V .
We now invoke Gauss’ theorem:

Z

@V
dA � V D

Z

V
dV r � V: (1.10)

It is valid for any reasonable volume V and for any piecewise differentiable vector
field V D V.t; x/. r � V is the divergence of V.

We insert this into (1.9) and obtain

Z

V
dV f P%.Y /C r � j.Y /� �.Y / g D 0: (1.11)

P%.Y / D P%.Y I t; x/ is the partial derivative of the density %.Y / with respect to time.
Since Eq. (1.11) holds true for an arbitrary volume V , the integrand has to vanish at
any time and at any location,

P%.Y; t; x/C r � j.Y I t; x/ D �.Y I t; x/: (1.12)

This is the generic balance equation for an additive and transportable quantity Y on
which we will elaborate in the following sections. It must be fulfilled at any time
and everywhere, it is a field equation. We therefore abbreviate Eq. (1.12) to

P%.Y /C r � j.Y / D �.Y /: (1.13)
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With @t as partial derivative with respect to time and @i as partial derivative with
respect to the i th spatial coordinate, Eq. (1.13) may be rewritten as

@t%.Y /C
X

iD1;2;3
@i ji .Y / D �.Y /: (1.14)

Later we will even drop the summation symbols. If in one and the same expression
a spatial index appears twice, summation over it is understood automatically.3 Thus,
Eqs. (1.12)–(1.14) now read

@t%.Y /C @iji .Y / D �.Y /: (1.15)

The symbol i in the above equation is dummy, it does not appear in the result.
@t%.Y /C @kjk.Y / D �.Y / is the same as Eq. (1.15).

Let us add a word of caution. Replace ji .Y / by j 0
i .Y / and �.Y / by � 0.Y / �

@iji .Y /. Then both balance equations

@t%.Y /C @iji .Y / D �.Y / and @t%.Y /C @ij
0
i .Y / D � 0.Y / (1.16)

hold true. The distinction between inflow and production of Y is ambiguous.
Any definition of a current density must be justified by physical, not only formal
reasoning.4

1.2.5 Summary

An additive and transportable quantity Y is locally described by its density %.Y /,
a current density j.Y /, and by a volumetric production rate �.Y /. These fields are
related by the generic balance equation which states that the content increases if
there is a net inflow and/or production. Equations (1.12)–(1.15) describe this
simple consideration by formulas of increasing abstraction. However, the distinction
between inflow and production is not unique, it must be substantiated by physical
insight.

3Einstein’s summation convention.
4A well-known example is the expression for the Poynting vector j.Eem/ D S D E � H for
the energy Eem of an electromagnetic field. Many alternative forms have been proposed such
that the energy current density is restricted to regions where electric charge flows. However, none
of the alternatives is compatible with the notion that field energy is transported by streams of
photons.
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1.3 Particle Numbers, Mass, and Electric Charge

In this section we elaborate on particles and on properties carried by them. Particles
of the same species, like protons or water molecules, are indistinguishable. Only
their number within a specified regions makes sense, but not where they are
located individually. Particles may vanish or appear in chemical reactions which
are described by stoichiometric coefficients. The balance equation for the number
of particles of a certain species is derived. Conservation laws for mass and electric
charge are consequences because these quantities are conserved at the atomic level.

1.3.1 Particle Numbers and Currents

We mark the species of particles by an index a. For example, let us discuss water.
There are H2O molecules (a D 1), H+ ions (a D 2), OH� ions (a D 3), H2

molecules (a D 4) as well as O2 molecules (a D 5). Na, the number of particles of
species a, are additive and transportable quantities.

The density of particles of species a is

%.N a/ D na D na.t; x/: (1.17)

If there are no particles, they cannot flow. Hence, na D 0 always means j.N a/

D 0. j.N a/ ¤ 0 is impossible with na D 0. Therefore, we may divide the particle
current density (where it does not vanish) by the particle density. Put otherwise, we
may write

j.N a/ D na va; (1.18)

where va D va.t; x/ is to be interpreted as the average local velocity of particles of
species a, at location x, at time t .

1.3.2 Chemical Reactions

The number of particles of a certain species is not conserved. Particles may vanish
and appear in chemical reactions.

Let us label by r D 1; 2; : : : the possible chemical reactions. If one reaction of
type r takes place, then �ra particles of species a will be created or annihilated,
depending on the sign.

Table 1.1 may serve as an example. The �ra are stoichiometric coefficients. The
rows in this table must not have a common divisor.

Denote by � r the number of chemical reactions of type r , per unit time and unit
volume. There is no commonly accepted name for it, we call it a volumetric reaction
rate.
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Table 1.1 Chemical reactions of water molecules. a D 1; 2; : : : 5 enumerates the particles
involved. r D 1; 2 labels the reactions. The integer numbers are stoichiometric coefficients

�ra Particle a H2O H+ OH� H2 O2

Reaction r (1) (2) (3) (4) (5)
H2O!HC+OH� (1) �1 1 1 0 0
2H2O!2H2+O2 (2) �2 0 0 2 1

With this in mind we may write

�.Na/ D �a D
X
r

� r�ra: (1.19)

To summarize: The balance equation for particles of species a reads

@tn
a C @in

avai D
X
r

� r�ra: (1.20)

na D na.t; x/ is the density of particles of species a, vai D vai .t; x/ their average
velocity.� r D � r.t; x/ denotes the number of chemical reactions of type r , per unit
time and unit volume. The stoichiometric coefficients �ra are small integer numbers.
Each chemical reaction of type r will produce �ra particles of species a. Note that
na, vai , and � r are fields which depend on time and location. Also note that we apply
Einstein’s summation convention. @inavai stands for @1nava1 C@2nava2 C@3nava3 , the
divergence of the particle current density.

1.3.3 Mass

Mass is the prototype of an additive and transportable quantity which we denote
by M . We follow tradition and abbreviate the mass density %.M/ by %. It is related
with particle densities by the following expression:

% D
X
a

mana: (1.21)

ma is the mass of a single a-particle.
The mass current density is

ji .M/ D
X
a

maji .N
a/ D

X
a

manavai : (1.22)

We define the flow velocity v by setting

ji .M/ D %vi : (1.23)
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This is allowed since there cannot be a mass current without mass.5

Let us compare Eq. (1.22) with Eq. (1.23):

v D
X
a

mana

%
va: (1.24)

Obviously the flow velocity is an average over particle flow velocities. The weight
of species a is its contribution to the mass density.

Let us now discuss the mass production rate

�.M/ D
X
a

ma�.N a/: (1.25)

We refer to Eq. (1.19) and obtain

�.M/ D
X
ar

ma� r�ra: (1.26)

Mass is conserved for each individual reaction.6 This finding is expressed by

X
a

ma�ra D 0: (1.27)

Inserted into Eq. (1.26), this results in �.M/ D 0. The volumetric production rate
of mass vanishes. Mass is conserved.

To summarize: the mass balance equation reads

@t%C @i%vi D 0: (1.28)

% D %.t; x/ denotes the mass density and v D v.t; x/ the flow velocity of the
continuum under consideration.

1.3.4 Electric Charge

Besides mass, particles carry an electric charge. A particle of species a carries an
electric charge qa which is an integer multiple of the elementary charge e.

Electric charge, which we denote by Qe, is another example of an additive and
transportable physical quantity.

5As opposed to charge, where there may be a charge current density while the charge density
vanishes.
6At least in non-relativistic approximation.
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We abbreviate the electric charge density by %e D %.Qe/. It is defined by

%e D
X
a

qana (1.29)

in terms of particle densities.
Likewise the electric current density is defined as

je D
X
a

qaj.N a/ D
X
a

qanava: (1.30)

The volumetric production rate is

�.Qe/ D
X
a

qa�.N a/ D
X
ar

qa� r�ra: (1.31)

Electric charge is conserved for each individual reaction. This finding is
expressed by X

a

qa�ra D 0: (1.32)

Therefore Eq. (1.31) results in
�.Qe/ D 0: (1.33)

Electric charge, like mass, is not produced or annihilated, it is merely redistributed.
We summarize this:

@t%
e C @i j

e
i D 0: (1.34)

In the context of electromagnetism, Eq. (1.34) is called the continuity equation for
electric charge.

1.3.5 Digression on Electromagnetism

The electromagnetic field is produced by electrically charged particles, and it is also
felt only by them. A particle of mass m, charge q and momentum p experiences a
force

Pp D qfE C v � Bg: (1.35)

E is the electric field strength, B the magnetic induction. The momentum p of the
particle and its velocity v are related by

p D mvp
1 � v2=c2

; (1.36)

where c is the speed of light in vacuum.
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The electromagnetic field E;B itself is generated by the density and current
density of electric charge:

�0r � E D %e; (1.37)

1

�0
r � B � �0 PE D je: (1.38)

There are two more equations for the electromagnetic field, namely

r � B D 0 (1.39)

and
r � E C PB D 0; (1.40)

which state that there is no magnetic charge. �0 and �0 are constants which depend
on the system of units. Equations (1.37)–(1.40) are Maxwell’s equations.

Differentiating Eq. (1.37) with respect to time and adding the divergence of Eq.
(1.38) yields

P%e C r � j e D �0r � PE C 1

�0
r � .r � B/� �0r � PE D 0: (1.41)

The first and the last term on the right hand side cancel, and the term in the middle
vanishes as well since it is the divergence of a curl. Conservation of electric charge
is a by-product of Maxwell’s equations. Since chemistry is governed by quantum
theory and electromagnetism, it is no wonder why charge is conserved in chemical
reactions.

1.3.6 Summary

Particles of the same kind are indistinguishable, so we can only count them.Na, the
number of particles of kind a, is an additive and transportable quantity. We denote
its density by na and its current density by nava. va is the average speed of particles
of kind a.

Particles disappear or appear in chemical reactions which are described by
stoichiometric coefficients �ra. In each reaction of type r there appear or disappear
�ra particles of kind a, depending on sign. � r is the volumetric reaction rate, the
number of chemical reactions of type r per unit volume and per unit time. The
volumetric production rate is �.Na/ D P

r �
r�ra.

Mass is conserved in each chemical reaction. Therefore, the mass density % and
the mass current density %v obey the continuity equation7 P%C r � %v D 0. v is the
flow velocity of the continuum under investigation.

7A balance equation with vanishing production term is a continuity equation.
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We have also shown that the conservation of electric charge is a consequence of
Maxwell’s equations. The electric charge density %e and the electric current density
j e obey the continuity equation P%e C r � j e D 0.

1.4 Convection and Conduction

While matter flows it takes its properties along with it. Therefore there is always
a contribution %.Y / vi to the current density ji .Y /. This contribution is termed
“convection” because the quantity in question is simply conveyed. Think of a
conveyer belt. By definition, mass is transported by convection only, ji .M/ D %vi .

1.4.1 Conduction

However, there may be an additional contribution to the current density,

ji .Y / D %.Y /vi C Ji .Y /: (1.42)

This additional current density Ji .Y / describes the conduction of a quantity Y . As
said above, there is no conduction of mass. Conduction is caused by interactions
between neighboring particles.

The conductive contributions to the particle currents are

J ai D Ji .N
a/ D j ai � navi ; (1.43)

for which we may write
J ai D na.vai � vi /: (1.44)

Particle conduction, or diffusion, takes place if the average velocity of a certain kind
of particles va differs from the center of mass, or flow velocity v. If particles of a
certain species move relative to the local center of mass, we speak of diffusion.

The situation is slightly more complicated for the electric chargeQe. The charge
density %e may vanish although there are charged particles. In a metal, the mobile
electrons and the positive ions of the lattice compensate each other, and the charge
density %e vanishes. Nevertheless, there may be an electric current.

The conductive contribution J e
i to the electric current density may be expressed

in terms of diffusion current densities:

J e
i D j e

i � %evi D
X
a

qaJ ai : (1.45)
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1.4.2 Transformation Properties of Currents

As we have just explained, transport is more than convection. There are additional
mechanisms like diffusion of particles, electric conduction, mechanical stress, or
heat flow.

The decomposition (1.42) of a current density into a convective and a conductive
contribution is necessary as well from a formal point of view. We will show now
that J .Y / transforms properly as a vector field, but not j .Y /. Likewise, P%.Y / is not
a proper scalar field.

Events (what happened where and when) are parameterized by a time coordinate
t and three space coordinates8 x1; x2; x3 referring to an inertial system˙ . The same
event has to be parameterized by .t 0; x 0

1; x
0
2; x

0
3/ if another inertial system ˙ 0 is

used. The relation is described by a Galilei transformation:

t D � C t 0 and xi D ai CRij x
0
j C ui t

0 with RijRkj D ıik: (1.46)

� and a describe a time and spatial shift, R a rotation, and u the speed by which ˙
moves with respect to ˙ 0.

A scalar field S is transformed into S 0 according to

S.t;x/ D S 0.t 0;x 0/: (1.47)

Densities %.Y /, but also volumetric production rates �.Y / are scalar fields,
because of dt 0 D dt and dV 0 D dV .

We conclude that the time derivative of a scalar field is not a scalar field because
of

@ 0
t S

0 D @tS C ui @i S: (1.48)

Here and in the following text we drop the arguments; primed fields depend
on primed coordinates, unprimed fields are to be evaluated at the corresponding
unprimed coordinates.

A vector field Vi transforms as

Vi .t;x/ D RijV
0
j .t

0;x 0/: (1.49)

The divergence of a vector field is a scalar field:

@ 0
i V

0
i D Rji@

0
i Vj D RjiRki@kVj D @iVi : (1.50)

Because of
dxi
dt

D Rij
dx 0

j

dt 0 C ui (1.51)

8We always have a Cartesian system of coordinates in mind.
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we find, for an arbitrary scalar field S ,

Svi D Rij .Svj /
0 C Sui : (1.52)

The divergence of this expression transforms as

@ 0
i .Svi /

0 D @i .Svi /� ui @iS: (1.53)

Equations (1.49) and (1.53) say that the sum

@t%.Y /C @i%.Y /vi (1.54)

transforms as a scalar field.
We summarize:

• The density %.Y / is a scalar field,
• The production term �.Y / is a scalar field,
• The conduction current density Ji .Y / is a vector field.

These transformation properties guarantee that balance equations

@t%.Y /C @i ji .Y / D �.Y / (1.55)

or
@t%.Y /C @i%.Y / vi D �@iJi .Y /C �.Y / (1.56)

hold true in all inertial systems.
In the latter version the left hand side, as a sum, transforms as a scalar field just

as each of the two contributions on the right hand side.
For further details see section More on Fields of Appendix A.

1.4.3 Material Time Derivative

This is the right place to introduce another key notion of continuum physics, the
material time derivative Dt . We follow a material point as it flows with the center
of mass velocity v and register temporal changes. f D f .t;x/ is a field, either
scalar or a component of a vector field. The material time derivative is defined by

Dt f .t;x/ D f .t C dt;x C vdt/ � f .t;x/
dt

: (1.57)

With

f .t C dt;x C vdt/ D f .t;x/C dt @t f .t;x/C dt vi @i f .t;x/ (1.58)
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we obtain
Dt D @t C vi @i (1.59)

for the material time differentiation operator, or

Dt D @t C v � r : (1.60)

1.4.4 Specific Quantities

The density %.Y / is the amount of Y per unit volume. In many situations one better
refers to the amount �.Y / of Y per unit mass. We call it a specific quantity. It is
defined by

%.Y / D % �.Y /; (1.61)

where % D %.M/ is the mass density.
We find

Dt % D @t%C vi@i % D �% @ivi ; (1.62)

where we have inserted the mass balance equation. Therefore,

Dt %
�1 D �%�2 Dt % D %�1@ivi (1.63)

holds true. With these preliminaries one can show

%Dt �.Y / D %.Y /@ivi C @t%.y/C vi@i%.Y / D @t%.Y /C @i%.Y /vi : (1.64)

Equation (1.64) suggests yet another form of the balance equation:

%Dt �.Y / D �r � J .Y /C �.Y /: (1.65)

The left hand describes a material point which moves with the local center of mass
velocity v. Dt �.Y / tells how much the specific Y -quantity changes with time, as
seen by a co-moving observer. Multiplication with % re-transforms this expression
into a density. The left hand side of Eq. (1.65) as well as Dt �.Y / are proper scalar
fields.

The right hand side of Eq. (1.65) lists the physical causes for such an increase
with time: inflow by conduction and production. Note that both terms properly
transform as scalars.

By the way, Eq. (1.65), if applied to mass, says that zero equals zero plus
zero. The specific mass density is �.M/ D 1. Clearly, %Dt �.M/ D 0. The
mass conduction contribution J .M/ vanishes by definition, hence its divergence
as well. �.M/ D 0 says that mass cannot be produced or annihilated, but merely
redistributed.
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1.4.5 Summary

We have presented the generic balance equation in three forms:

• @t%.Y / C @iji .Y / D �.Y / is the proper choice when establishing partial
differential equations for mathematical treatment.

• @t%.Y / C @i%.Y /vi D �@iJi .Y / C �.Y / separates into a left hand side which
is a proper scalar and a right hand side which consists of two contribution each
of which transforms properly as a scalar. The conduction current density J .Y /

properly transforms as a vector.
• %Dt �.Y / D �@iJi .Y / C �.Y / rewrites the left hand side of the former

formulation as one term which is easily interpreted from a physics point of view.
Dt is the material time differentiation operator and �.Y / the specific Y quantity,
i.e., the amount of Y per unit mass.

1.5 Linear and Angular Momentum

Linear momentum is an additive and transportable physical quantity. It is transported
not only by convection, but also by conduction. There may be a momentum current
even if matter is at rest. This is achieved by electrostatic interactions between neigh-
boring particles. Momentum may also be produced by external forces. We argue
why the stress tensor is symmetric. In this slender book we discuss gravitation and
electrostatic interaction only. We leave out the third possibility, namely magnetism.
The additional formal complications by far outweigh the benefits for the normal
reader.

1.5.1 Stress and External Forces

Denote by Pk the kth component of linear momentum P . Its density is

%.Pk/ D %vk: (1.66)

The momentum current density is an object with two indexes, one for the
momentum component, the other for the direction of flow. We will write

ji .Pk/ D %vkvi � Tki ; (1.67)

where Ji .Pk/ D �Tki is the conduction contribution. The negative of it, namely
Tki D Tki .t;x/, denotes the stress tensor field. Upon rotation, each index acquires
a rotation matrix, therefore Tki transforms as a tensor of rank 2.
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The momentum production rate is the same as external force. The volumetric
momentum production rate therefore is a force per unit volume. We here discuss just
two such external forces: gravitational and electrostatic. The former is proportional
to the mass density, the latter proportional to the electric charge density. We write

�.Pk/ D fk D %gk C %eEk: (1.68)

g is the gravitational force per unit mass and E the electric field strength. In non-
inertial systems of reference, terms for fictitious forces must be added, such as the
Coriolis force 2% v � ˝ per unit volume in a rotating frame.9

The momentum balance equation may be written as

%Dt vk D @iTki C fk: (1.69)

We read the left hand side as mass times acceleration per unit volume. The right
hand side specifies two causes for this acceleration. One mechanism is by short
range interaction (momentum conduction), the other by long range external forces.

1.5.2 Angular Momentum

We denote by Lk the three components of angular momentum L. Its density is
defined as

%.Lk/ D �krsxr%.Ps/; (1.70)

where �krs is the totally antisymmetric Levi-Civita symbol.
The corresponding current density is again an object with two indexes,

ji .Lk/ D �krsxrji .Ps/: (1.71)

Likewise, we write
�.Lk/ D �krsxr�.Ls/ (1.72)

for the volumetric angular momentum production rate.
We calculate @t%.Lk/C @iji .Lk/� �.Lk/, which should vanish. The result is

�krsxrf@t%.Pk/C @iji .Pk/� �.Pk/g C �krsjr .Ps/: (1.73)

Thus, the angular momentum balance equation is fulfilled if jr .Ps/ D js.Pr/ holds
true, and this amounts to

Trs D Tsr ; (1.74)

the stress tensor has to be symmetric.

9˝ describes the direction and the angular velocity of the rotation.
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In the above argument we have assumed that angular momentum is orbital
angular momentum. This is allowed since we do not consider magnetic fields here.
If however magnetic fields come into the play, as in magneto-hydrodynamics, then
matter may be magnetically polarized, and a spin angular momentum must be taken
into account. In this case, the stress tensor may have an antisymmetric contribution.

1.5.3 Normal and Shear Forces

Let us select a certain material point which flows with velocity v. Its acceleration is

%Dt vi D @iTki C fk; (1.75)

as we have argued above. Recall that vi , Tki , and fk are fields which depend on time
and location. Equation (1.75) holds true at any time t and at any location x.

One might think that the stress field itself is of no importance and that just its
divergence matters. This, however is not true. As will be discussed in Chap. 2, a
construction material can support a maximal stress only. It is therefore worthwhile
to look at the stress tensor more closely.
Tki D Tik is real and symmetric, and it can be orthogonally diagonalized.

There are three mutually orthogonal unit vectors n.1/;n.2/;n.3/ and three eigenvalues
T .1/; T .2/; T .3/ such that

Tkin
.j /
i D T .j /n

.j /
i (1.76)

holds true for j D 1; 2; 3. Recall that T .j / as well as n.j / are fields, the may depend
on time and on location.

The force exercised by the medium on a surface element dA D dAn is

dFk D dATkini : (1.77)

This force is directed normal to the surface element if dF and n are parallel. We
speak of a shear force if dF and n are orthogonal. The normal force component will
push the surface element forward, the shear force component tries to put it side-wise.

However, there is no net force on the surface element because the medium draws
on the back-side and on the front-size of it with equal, but oppositely directed forces.

If we choose surface elements with normal vectors n.1/;n.2/;n.3/, we will not
encounter shear forces. Put otherwise, shear forces can always be transformed away,
although only locally. However, if we have to solve a real-world problem with one
and the same coordinate system, we will encounter shear forces.

By the way, a positive T .j / means tension. The medium on the front-side of the
surface elements pulls on it. A negative T .j / indicates pressure. The medium on the
front-side of the surface elements pushes on it, it presses. We shall discuss this more
closely in the section on Solid Media.
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1.5.4 Summary

We have introduced the momentum density as mass times velocity per unit volume.
This quantity transforms as a vector. The corresponding current density carries two
spatial indexes, one for the momentum component and one for the direction of
flow. Its conduction contribution is called stress and transforms as a second rank
tensor. Without magnetic effects, that is, if angular momentum is orbital angular
momentum only and does not have a spin contribution, the stress tensor turns out
to be symmetric. Locally, it can be diagonalized orthogonally. This defines three
directions such that a corresponding surface element is exposed to normal stress or
normal pressure, and no shear forces are encountered. The volumetric momentum
production rate is the same as external force per unit volume.

1.6 Energy and the First Law of Thermodynamics

In this section we shall discuss the balance equation for energy. Energy comes
in three forms: kinetic, potential, and a rest which is called internal. The balance
equations for kinetic energy is a consequence of the momentum balance equation.
The potential energy balance equation can easily be established as well. The
principle of energy conservation allows to establish the internal energy balance
equations. Of particular interest is the volumetric production rate of internal energy,
the main result of this section.

1.6.1 Kinetic Energy

The density of kinetic energyEk is one half times mass times velocity squared, per
unit volume. As a formula this reads

%.Ek/ D 1

2
%vkvk: (1.78)

�.Ek/ D .1=2/v2 is the specific kinetic energy. Its material time derivative is
vk Dt vk . Inserting the momentum balance equation as described by Eq. (1.69)
yields

%Dt �.E
k/ D vk .@iTki C fk / D @ivkTki � Tki@ivk C vkfk: (1.79)

We introduce the symmetric velocity gradient

Gik D @i vk C @kvi

2
(1.80)



1.6 Energy and the First Law of Thermodynamics 21

and may write
�.Ek/ D �GikTik C vkfk (1.81)

as well as
ji .E

k/ D �vkTki : (1.82)

Recall that Tik is the stress tensor and fk the external force per unit volume.

1.6.2 Potential Energy

We now make use of the fact that the electrostatic force as well as the gravitational
force have a scalar potential which we denote by 	e and 	g, respectively:

Ek D �@k	e and gk D �@k	g: (1.83)

Hence the volumetric production rate of momentum may be written as

�.Pk/ D �%@k	g � %e@k	
e: (1.84)

Note that in almost all cases the gravitational potential is just 	g.t;x/ D gx3
where x3 denotes height above zero level and g D 9:81 m s�2 is the gravitational
acceleration per unit mass at the earth’s surface.

For the density oft potential energy Ep we write the following expression:

%.Ep/ D %	g C %e	e: (1.85)

Both potentials are supposed to vary very slowly with time, they are quasi-static.
Therefore

@t%.E
p/ D 	g@t%C 	e@t%

e D �	g@i ji .M/� 	e@i .Q
e/ (1.86)

holds true. We rewrite this into a gradient and a rest:

� � � D �@i	gji .M/C ji .M/@i	
g � @i	eji .Q

e/C ji .Q
e/@i	

e (1.87)

and conclude
ji .E

p/ D 	gji .M/C 	eji .Q
e/: (1.88)

This is a very plausible expression for the potential energy current density.
The remainder is the volumetric potential energy production rate �.Ep/. Because

of ji .M/ D %vi and ji .Qe/ D %evi C J e
i we arrive at the following expression:

�.Ep/ D �vifi � J e
i Ei : (1.89)
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Recall that f is the external force per unit volume, J e the electric conduction
current, and that E denotes the electric field strength.

1.6.3 Internal Energy

There is more than kinetic and potential energy. Material points have a mass, move
with average velocity v in a gravitational or electrostatic potential and contribute
thereby to the kinetic and to the potential energy. However, material points consist
of very many particles, they are large thermodynamic systems. Its constituents have
different velocities and interact by short range force. The internal state of a material
point gives rise to an energy contribution which we denote by E i.

Note that internal energy is traditionally referred to by U . Therefore we denote
by u the specific internal energy, the internal energy per unit mass. Hence the density
of internal energy is

%.E i/ D %u: (1.90)

Without mass there will be no internal energy.10

Transportation of internal energy by means of conduction is heat conduction.
More precisely, the conduction contribution to the internal energy current density is
the heat current density which we will denote by J .E i/ D J u. Thus the internal
energy current density is

ji .E
i/ D %uvi C J u

i : (1.91)

We know that the sum of kinetic, potential, and internal energy is conserved,
�.Ek/C �.Ep/C �.E i/ D 0, and conclude

�.E i/ D TikGik C J e
i Ei : (1.92)

We have just shown that the balance equation for internal energy may be written
as

%Dt u D �@iJ u
i C TikGik C J e

i Ei : (1.93)

% denotes mass density, u is the specific internal energy and J u the heat current
density. E is the electric field strength and J e the electric conduction current
density. Also recall that Tik denotes the stress tensor and that Gik is the symmetric
velocity gradient as defined in Eq. (1.80).

10We do not discuss radiation in this book. Adding a mass independent term for black body
radiation of temperature T or any other contribution of energy not bound to mass is an easy
exercise.
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1.6.4 Digression on Time Reversal

We discuss time reversal in the context of classical mechanics for pedagogical
reasons. The results, however, are valid for quantum mechanics as well.

Assume a system of particles with masses mr and electric charge qr which, at
time t , are located at xr .t/. The particle density is

n.t;x/ D
X
r

ı3.xr .t/ � x/; (1.94)

the current density
j .t;x/ D

X
r

Pxr .t/ ı3.xr .t/ � x/: (1.95)

Since we study a system with a fixed number of particles, we arrive at

@tnC r � j D 0: (1.96)

There is no room for chemistry in the framework of classical mechanics.
If there is an electromagnetic field E ;B the particles suffer accelerations

mr Rxr .t/ D qr E.t;xr .t//C qr Pxr .t/ � B.t;xr .t//: (1.97)

On the other hand, the electromagnetic field is generated by the charged particles.
The electric charge density is

%e.t;x/ D
X
r

qr ı
3.xr .t/ � x/; (1.98)

the electric current density is given by

j e.t;x/ D
X
r

qr Pxr .t/ ı3.xr .t/ � x/: (1.99)

Charge conservation
@t%

e C r � j e D 0 (1.100)

is a trivial consequence of these definitions.
The electromagnetic field is generated according to Maxwell’s equations:

�0r � E D %e; (1.101)

r � B D 0; (1.102)

��0@tE C 1

�0
r � B D j e; (1.103)
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and
@tB C r � E D 0: (1.104)

The constants �0 and �0 are the vacuum permittivity and permeability, respectively.
Their values depend on the system of units.

Time reversal T means to replace trajectories t ! x.t/ by time reversed tra-
jectories, namely t ! x 0.t/ D x.�t/. With this we deduce the following field
equations11:

n?.t;x/ D n.�t;x/ and j ?.t;x/ D �j .�t;x/ (1.105)

as well as
%e?.t;x/ D %e.�t;x/ and j e?.t;x/ D �j e.�t;x/: (1.106)

Maxwell’s equations are compatible with time reversal if

E?.t;x/ D E.�t;x/ and B?.t;x/ D �B.�t;x/ (1.107)

are fulfilled. Compatible means that the time reversed fields, as generated by
the time reversed electric charge and current density, are solutions of Maxwell’s
equations as well.

The Lorentz formula (1.97) for the action of the electromagnetic field
on a charged particle is compatible with time reversal as well. On the one
hand, mr Rxr

?.t/Dmr Rxr .�t/. On the other hand, qrE .t;xr ?.t// is the same as
qrE.�t;xr .�t//. The same holds true for the second contribution to the Lorentz
force since velocity and magnetic induction acquire a minus sign upon time reversal.

1.6.5 First Law of Thermodynamics

The first law of thermodynamic is a statement about the change of internal energy
in the course of time, as described by Eq. (1.93). The increase in internal energy, as
measured by a co-moving observer, is caused by a net inflow of internal energy by
conduction and by two more terms which are proportional to the velocity gradient
Gij and to the electric field strength E . The factor in front is the stress tensor Tij
and the electric conduction current J e, respectively. See Fig. 1.1 for a sketch.

These factors are conduction current densities of momentum and of electric
charge. We should split each of them into two contributions, namely into Tik D
T 0
ik C T 00

ik and J e
i D J e

i
0 C J e

i
00. The primed contribution behaves normally with

respect to time reversal, as explained above. However, since thermodynamics does
not deal with small, isolated systems, but takes interactions with the environment
into account, there may be abnormal contributions to currents. Upon time reversal
they do not acquire a minus, but a plus sign. The doubly primed currents describe

11A star denotes the time reversed quantity, in this context.
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Fig. 1.1 Volumetric
production rates for kinetic,
potential, and internal energy.
If the arrow points towards an
energy contribution, the
corresponding expression
enters the balance equation
with a plus sign

inelastic, or dissipative effects while the single primed currents stand for reversible,
or elastic processes.

The first law of thermodynamics thus reads

%Dt u D T 0
ikGik C J e

i
0
Ei � @iJ

u
i C T 00

ikGik C J e
i

00
Ei : (1.108)

The first two terms are from elastic contributions and are associated with work.
T 0
ikGik causes an increase in internal energy because of compression or deformation

of matter, as we shall explain later in detail. J e
i

0Ei describes the increase of internal
energy because of dielectric polarization.

The remaining three terms in Eq. (1.108) are associated with heat. This denomi-
nation is evident for @iJ u

i , the net outflow of internal energy. If the internal energy
of a material point increases, its temperature will rise.12

The fourth term T 00
ikGik describes the generation of internal energy by friction

which is irreversible. Older texts sometimes speak of friction heat.
The fifth contribution to Eq. (1.108) is called Joule’s heat, the conversion of

electric field energy into internal energy.
Multiplying Eq. (1.108) by dt and by dV yields

dU D dW C dQ; (1.109)

an abbreviated version of the first law of thermodynamics. dU says that there is an
additive and transportable quantity U , the internal energy. It may change because
of two mechanisms, reversible or not. The reversible part is dW , or work, the
irreversible contribution dQ is heat.

dW and dQ denote infinitesimal changes. There are no additive and transportable
quantities W (for work) or Q (for heat). If you think of a brick, you may speak of
its kinetic energy, its potential energy, and of its internal energy. The internal energy

12Heat and hot are related words in ordinary English, just as Wärme and warm in everyday German,
or calor and calido in Spanish.
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content, however, may not be divided into work or heat. The notions of work or heat
refer to different mechanisms of energy transport.

With

dU D dtdV %Dt u; (1.110)

dW D dtdV T 0
ikGik C dtdV J e

i
0Ei; (1.111)

and
dQ D �dtdV @iJ u

i C dtdV T 00
ikGik C dtdV J e

i
00
Ei (1.112)

we are less general, but much more precise. We clearly say what is the change
of internal energy and identify its causes. Reversible and irreversible. Elastic
deformation or electric polarization, friction or Joule’s heat. And heat conduction.

In the absence of external magnetic fields this is all.
By the way, the volumetric production rate for internal energy does not contain a

contribution due to chemistry. Chemical reactions, as described by their volumetric
reaction rates � r , do not show up. They will appear in the expression of entropy
production, which is the topic of the next section.

1.6.6 Summary

Energy is either kinetic, or potential, or internal. The kinetic and potential energy
balance equations are easily derived from the momentum balance equations. The
internal energy of material points may change because of five effects which are
classified as work and heat. Work is achieved by the reversible compression or
deformation of matter or by electric polarization. The change of internal energy by
irreversible processes (heat) comes from an inflow of internal energy by conduction,
by friction, or by the irreversible transformation of electromagnetic field energy into
internal energy which is known as Joule’s heat. A digression on time reversion
intends to elucidate the difference between normal and abnormal behavior of
currents, or elastic and inelastic (i.e., dissipative) effects.

1.7 Entropy and the Second Law of Thermodynamics

This section is about the very heart of continuum physics. We will cast into
equations the idea that material points are tiny as seen by an engineer and huge in
terms of thermodynamics. Processes, such as the combustion of an air-fuel mixture
in a jet engine, are slow on a micro-physics scale, so that we may assume that each
material point is always very close to thermal equilibrium. However, the parameters
which govern this local thermal equilibrium are fields, they change with time and
depend on location. Although matter is locally in thermodynamic equilibrium,
globally it may be far away from it.
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1.7.1 Thermodynamic Equilibrium

Thermodynamic equilibrium is described by the free energy

F D F.T; 
1; 
2; : : : ; N
1;N 2; : : : /: (1.113)

T denotes the absolute temperature, 
1; 
2 : : : are external parameters, and Na

denotes the number of particles of species a. The partial derivatives of the free
energy can be read off from

dF D �SdT C dW C
X
a

�adNa; (1.114)

where S is the entropy of the system,

dW D �
X
i

�i d
i with �i D � @F
@
i

(1.115)

is called work, and the �a are chemical potentials. The partial derivatives �i are
generalized forces.

We prefer to invoke the internal energy U which is defined by U D F C TS . Its
dependencies on thermodynamic variables and its partial derivatives are to be read
off from

dU D T dS C dW C
X
a

�adNa: (1.116)

Let us now translate this into the language of continuum theory.

1.7.2 Balance Equation for Entropy

We select a material point with constant mass M . Its volume V DV.t;x/ may
change and consequently the density %.t;x/ D M=V.t;x/.

Let us denote by s D �.S/ the specific entropy so that we may write

dS D dtM Dt s D dt V%Dt s: (1.117)

A co-moving observer measures the change of entropy per unit mass. The result is
multiplied by the time span dt and the mass V% the result of which is the change of
entropy.

The change of internal energy dU D dt V Dt u has been worked out before:

dU D dt V f�@iJ u
i C T 0

ikGik C T 00
ikGik C J e

i
0
Ei C J e

i
00
Ei g: (1.118)
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Recall that J u is the heat current, Gik D .@ivk C @kvi /=2 the symmetric velocity
gradient, Tik the stress tensor and J e the electric conduction current. The latter two
are split into elastic and dissipative contributions as indicated by a prime or a double
prime.

The reversible contributions are associated with work:

dW D dt V fT 0
ikGik C J e

i
0Ei g: (1.119)

Changes of chemical composition are expressed by

dNa D M dt Dt

na

%
D dt V f�@iJ ai C

X
r

� r�ra g: (1.120)

Recall that J a is the diffusion current density for particles of species a. The �ra

are stoichiometric coefficients for the chemical reaction labeled by r , and � r is the
number of such reactions per unit time and volume. We have discussed this in the
section on Particle numbers, mass, and electric charge.

We now insert Eqs. (1.117)–(1.120) into Eq. (1.116) and obtain

T%Dt s D �@iJ u
i C T 00

ikGik C J e
i

00 C
X
a

�a@iJ
a
i C

X
r

� raAr : (1.121)

The symbols
Ar D �

X
a

�ra�a (1.122)

stand for the chemical affinity of a reaction of type r .
Dividing Eq. (1.121) by the absolute temperature T we obtain the balance

equation @t%.S/C @iji .S/ D �.S/ for entropy.
The entropy current density is easily worked out,

j .S/ D %sv C 1

T
j u �

X
a

�a

T
J a: (1.123)

Entropy is transported by the flow of matter, or convection. This is the first term.
Entropy also flows if there is a heat current. The heat current is weighted by the
inverse temperature. The smaller the temperature, the more entropy is conducted.
The third term on the right hand side of Eq. (1.123) says that entropy is also
transported by diffusion. A diffusion current is weighted by the ratio of negative
chemical potential and temperature.

The volumetric production rate of entropy will be discussed in the following
subsection. It is more than an expression of fields which we have introduced before.
The second law of thermodynamics states that it cannot be negative.
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1.7.3 Second Law of Thermodynamics

When rewriting Eq. (1.121) into a balance equation for entropy, we have selected
all terms which are divergences. The corresponding current is Eq. (1.123). The
remainder is �.S/, namely the entropy production rate per unit volume. It reads

�.S/ D �hc C �df C � fr C � jh C � ch: (1.124)

It consists of five, and only five terms.13

�hc D J u
i @i

1

T
(1.125)

describes entropy production because of heat conduction (hc). Recall that J u is
the heat current density. Entropy is produced only if the temperature has a non-
vanishing gradient.

�df D �
X
a

J ai @i
�a

T
(1.126)

says that diffusion (df) is accompanied by an increase of entropy. J a is the diffusion
current of particles of species a. Entropy is produces only if the chemical potential
�a divided by the temperature T has a non-vanishing gradient.

The third contribution is related to friction (fr). Gik is a measure of how much
the velocity component vk changes with respect to direction i , or how much the
velocity component vi changes with respect to direction k. Different layers flow
with different velocities, and this produces friction by short range forces between
neighboring layers. Friction contributes to the volumetric production of entropy by
the term

� fr D 1

T
T 00
ik Gik D 1

T
T 00
ik

@i vk C @kvi

2
: (1.127)

Note that it is the dissipative contribution to the stress tensor which multiplies the
velocity gradient.

The fourth term describes the contribution of Joule’s heat to entropy production:

� jh D 1

T
J e
i

00@i	e: (1.128)

Recall that we here discuss only quasi-stationary electric fields which have a
potential, E D �r	e.

Entropy is also produced if chemical reactions take place, so

13If magnetic effects are ignored.
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� ch D 1

T

X
r

� rAr : (1.129)

The larger the chemical affinity for reaction r , and the more reactions take place,
the more entropy will be produced.

The second law of thermodynamics assures

�.S/ � 0: (1.130)

All contributions have the same structure. They are products of a dissipative
current which is multiplied by an expression which would vanish in thermodynamic
equilibrium.

If matter is in a global equilibrium state then the temperature T , the chemical
potentials �a, the flow velocity v and the electric potential 	e will be constant and
all chemical activities vanish. There is no entropy production if the system is in
thermodynamic equilibrium.

Likewise, if there are no heat or diffusion currents, if there is no dissipative stress
(super-fluidity) and no dissipative electric current (superconductivity), and if there
are no chemical reactions: in this case no entropy is produced either.

1.7.4 Summary

A continuum is locally in thermodynamic equilibrium, but not necessarily globally.
Hence, each material point may be characterized by its temperature and by its
chemical potentials. These thermodynamic quantities, however, are fields, they will
change from location to location and in the course of time. The material points
undergo reversible processes. From this we derive expressions for the entropy
current density j .S/ and for the volumetric entropy production rate �.S/. The latter
consists of five, and only five contributions, for heat conduction, diffusion, friction,
Joule’s heat, and chemical activity. None of these terms can be negative, according
to the second law of thermodynamics.



Chapter 2
Material Equations

In the preceding chapter of this book on Continuum Physics we have discussed
the notion of material points. They are infinitely small from a macroscopic point
of view and infinitely large from a microscopic point of view. Just think of the
temperature field T D T .t; x/. The material point at location x at time t is large
enough for obeying the rules of infinitely large systems, such as the ideal gas
law, for example. On the other hand, it is small enough so that it approaches
thermodynamic equilibrium practically immediately. The state of the material point
is always an equilibrium, or Gibbs state which is characterized by parameters such
as temperature or chemical potentials. Hence T DT .t; x/ is defined locally, but may
change from location to location and within the course of time.

From a microscopic point of view, a material point is so large that it is rather clear
whether a particle is inside or outside of it. Those particles which are partly inside
and partly outside form a vanishing minority. Hence, densities are well defined. The
same applies to current densities and to volumetric production rates. If something
inside a material point increases, it must have been migrated from outside to inside,
or it has been produced there. This reasoning is formulated as a balance equation.

We have discussed balance equations for particles of a certain species, for matter
and electric charge. If these particles move, they carry their properties with them.
These properties, however, may be conveyed as well by interaction. The balance
equations for linear momentum and for kinetic, potential, and internal energy are
examples. The notion of internal energy, however, alludes to the fact that material
points are more than small pieces of mass and charge. Poetically speaking, they have
their own life. In particular, they carry energy which is termed internal.

If, moreover, the material point is in thermodynamic equilibrium with its environ-
ment, and keeps to be so, it undergoes a reversible process. In the section on entropy
we have worked out expressions for the entropy current density and the volumetric
entropy production rate. The latter expression, consisting of five terms and should
never be negative. This is the essence of the Second law of thermodynamics.

Up to now there is just a continuum. All balance equations must be fulfilled.
However, there are far too many fields and too few equations for them. In order to
arrive at solutions for a specific problem we have to specify the material at hand.

P. Hertel, Continuum Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-29500-3 2, © Springer-Verlag Berlin Heidelberg 2012
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By specifying particular material equations we describe different fields of
applications, such as hydrodynamics, aerodynamics, elastodynamics, heat transport,
diffusion, charge transport, thermo-electrical effects, or optics. We refrain from
discussing material equation for chemistry1 because this is a book on the physics
of continuous media, not on chemistry.

2.1 Fluid Media

A fluid medium2 cannot support shear forces. More precisely, the reversible part
of the stress tensor must be such that dFi D T 0

ij dAj is proportional to dAi . There
is no perpendicular component, no shear force. Recall that we denote by dA an
infinitesimal area element and by dF the force exercised on it.

Therefore, a fluid medium has to be described by the following material equation:

T 0
ij D �ıij p; (2.1)

where p D p.t; x/ is the pressure field. The minus sign is a convention. Normally,
pressure is positive, such that the medium on the front of dA tries to repel the surface
element. The medium on the backside exercises the same, but oppositely directed
force.

Water and air may serve as prototypes of fluid media. Under ordinary conditions,
water is a fluid proper, i.e., a liquid. Air under normal conditions behaves, to a
very good approximation, as an ideal gas. “Normal” in this context means “as
encountered in nature”.

In the following we will discuss these idealizations in some length, while we just
touch how to describe non-ideal gases and not-Newtonian fluids.

The momentum balance equation (1.69) for a fluid reads

%.@tvk C vi@ivk/ D �@kp C fk C @iT
00
ik : (2.2)

The left hand side of this equation is simply %Dt vk , i.e., mass times acceleration per
unit volume, as felt by a co-moving observer. On the right hand side we find three
terms which describe the cause of acceleration: pressure gradient, external forces,
and friction.

2.1.1 Incompressible Fluids

Water and many oils are practically incompressible media. Their mass density does
only weakly depend on pressure and on temperature. %.t; x/ D const. is a good
approximation within a reasonable pressure and temperature interval.

1The article on Reaction and diffusion is an exception
2As contrasted with a solid medium.
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Because of @t%C @i%vi D 0 we conclude

@i vi D 0: (2.3)

The velocity field of an incompressible fluid is divergence-free. Solutions of the
momentum balance equation (2.2) must additionally fulfill Eq. (2.3).

We mention in passing that a divergence-free field may be represented as the
curl of a vector potential, v D r � A. One can rewrite the momentum balance
equation (2.2) in terms of a vector potential A. A solution then automatically yields
a divergence-free vector field. There is, however, a serious drawback. There are
many vector potentials for one and the same velocity field.

2.1.2 Ideal Gas

If the specific volume of a gas is sufficiently large, it behaves as if there were no
interactions between its particles, it behaves ideally.

The partial pressure of particles of species a is given by

pa D kBT na; (2.4)

where na denotes particle density, and T is the absolute temperature. The partial
pressures of a mixture of ideal gases add up,

p D
X
a

kBT na: (2.5)

We define the molar fractions xa by

xa D na

n
where n D

X
a

na: (2.6)

n is the total number of particles per unit volume, and xa is the percentage of
particles of species a. Note that

P
a xa D 1.

The mass density is
% D

X
a

mana; (2.7)

wherema is the mass of a particle of species a. We may write

% D
X
a

maxa n D mn with m D
X
a

xama: (2.8)

m is the average particle mass with respect to a composition x1; x2; : : : . The ideal
gas law (2.5) may thus be rewritten as
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p D %

m
kBT : (2.9)

The latter form (2.9) is a substantial simplification if the composition of the
ideal gas mixture remains constant. Then, m is a constant, and we may express the
pressure field in terms of temperature and mass density. Air within the troposphere3

is an example.
There is still something to be repaired. Boltzmann’s constant kB and the average

molecular massm hint at micro-physics. We multiply both quantities by Avogadro’s
numberNA. Recall that the amount ofNA particles is a mole4 in terms of chemistry.
R D NAkB is the universal gas constant,5 M D NAm the average molar mass.
With this Eq. (2.9) reads

p D %

M
RT : (2.10)

R is the universal gas constant. Pressure p, temperature T and mass density % are
fields. For most problems the average molar massM is a constant as well.6

2.1.3 Newtonian Fluid Medium

The dissipative contribution T 00
ik must be a symmetric tensor which behaves non-

standard under time reversal. It describes friction. There is no friction if neighboring
material points travel with the same velocity. Hence, the dissipative contribution
to the stress tensor will depend on velocity gradients. A Newtonian fluid is
characterized by a linear dependency which is a very good approximation for many
liquids and gases, such as water and air.

The symmetric velocity gradient Gik may be split into a trace part ıikGjj and
a traceless rest. Both are linear in velocity gradients, behave as second order rank
tensors and transform odd under time reversal. Hence we write

T 00
ik D �bıikGjj C 2�s

�
Gik � 1

3
ıikGjj

�
: (2.11)

�b is the bulk (or volume) viscosity while �s denotes the shear viscosity. Only the
latter comes into play if we investigate incompressible fluids.7

3The region which is afflicted by weather phenomena, roughly the first 15 km. It contains 75% of
the air mass and more than 98% of water vapor.
4One mole of the isotope 12C has a mass of exactly 0.012 kg, by definition.
5R = 8:314 J K�1 mol�1.
60:02897 kg mol�1 for dry air.
7Recall Gjj D @j vj .
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The divergence @iT 00
ik of (2.11) is

�s
vk C �s@k@j vj � 2�s

3
@k@j vj C �b@k@j vj : (2.12)

Therefore, the momentum balance equation for a Newtonian fluid medium reads

%.@t vk C vi@ivk/ D �@kp C fk C �s
vk C f�
s

3
C �bg @k@j vj : (2.13)

We should work out the consequences of the second law of thermodynamics.
The volumetric entropy production rate caused by friction is

� fr D 1

T
T 00
ikGik D �b � 2�s=3

T
.Gjj /

2 C 2�s

T
GikGik: (2.14)

T denotes absolute temperature which is always positive.
If we choose a divergence-free velocity field, � fr � 0 can only be guaranteed if

the shear viscosity vanishes or is positive,

�s � 0: (2.15)

If we insert a velocity field v D �x, Eq. (2.14) yields 9.�b � 2�s=3/�2 C 6�s�2,
divided by T , hence 9�b�2=T . The second law of thermodynamics hence demands

�b � 0: (2.16)

2.1.4 Hydrodynamics

To a very good approximation, water is incompressible and behaves as a Newtonian
fluid. Thus we have to specialize Eq. (2.13) to @j vj D 0.

The momentum balance equation for an incompressible Newtonian fluid reads

%.@t vk C vi@ivk/ D �@kp C fk C �
vk: (2.17)

This is the famous Navier-Stokes equation which governs the field of hydrodynam-
ics. %, the mass density is considered to be constant. v denotes the velocity field,
p is the pressure field, f are external forces per unit volume. � D �s is the (shear)
viscosity of the fluid. Note that only divergence-free velocity fields are admissible.

The term %vi@ivk is quadratic in the velocity field and poses problems for finding
analytic or numerical solutions. It should be compared with the friction term �
vk .
If v is a typical velocity of a problem and ` a typical length, then

Re D %v`

�
(2.18)
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is an estimate of the ratio of inertial to frictional forces. Re is called Reynold’s
number, it is dimensionless.

A small Reynold number means that friction is dominant, the fluid will flow in
smooth layers that glide one over the other. One also speaks of laminar flow. A large
Reynold number predicts turbulence. Re � 104 is a very rough guess for the onset
of turbulence.

Even if the quadratic-in-velocity term %vi @ivk vanishes because of symmetry
reasons, the corresponding solution might be unstable if the Reynold number of the
problem is too big.

2.1.5 Aerodynamics

The basic material equations for aerodynamics are Newton’s expression (2.11) for
internal friction and the ideal gas law (2.10) with a constant molar mass M . Even
with these simplifications, and only if the mechanical aspect is considered, the
problem at hand is already formidable.

The mass density will not be constant, therefore

@t%C @i%vi D 0 (2.19)

must hold. Mass density % and the speed v of flow are interlinked.
The momentum balance equation, with the ideal gas law, reads

%.@t vk C vi@ivk/ D � R

M
@k
%

T
C fk C �s
vk C

�
�s

3
C �b

�
@k@j vj : (2.20)

Another field enters the stage, namely temperature T . Often heat conduction in
gases may be neglected; then the flow is adiabatic. For a gas of diatomic molecules
the following state equation then holds:

T

T0
D
�
%

%0

� 2=5
: (2.21)

.T0; %0/ is a reference point.
Altogether we have five fields: mass density %, the three velocity components

vk , and temperature T . Equations (2.19)–(2.21) are likewise five partial differential
equations. They are intimately coupled.

Note that the shear viscosity �s as well as the bulk viscosity �b will depend
on mass density and on temperature, they may become fields. Additional material
equations �s D �s.%; T / and �b D �b.%; T / have to be specified, if necessary.

Aerodynamics is a vast field. Just think of airplane or automotive engineering,
meteorology and climate models, or such simple things as Bernoulli’s law. We have
just scratched the surface. Non-ideal gases, non-Newtonian friction, non-adiabatic
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flows, chemical reactions such as combustion in a jet engine, and many, many more
effects must be taken into account in real-world problems. It is out of the scope of
this book to go into details.

A non-ideal gas is characterized by a power series

p D RT

M
f%C B2%

2 C � � � g; (2.22)

the so called virial expansion. The coefficients B2, B3 and so forth depend on tem-
perature, they can be calculated if the interaction potential between the molecules is
known.8 It is a fortunate accident that B2 D B2.T / for air nearly vanishes at room
temperature. Carbon dioxide behaves differently. Similar considerations apply for
the osmotic pressure of solvents.

Non-Newtonian friction is, well, non Newtonian. There are many causes for a
deviation. The relationship between the dissipative part of the stress tensor and the
velocity gradient may be linear, but retarded. This is the case for glasses which
behave as elastic solids for short times and as liquids in the long run. Or T 00

ij depends
other than linear on the velocity gradient Gij . A non-laminar air flow may serve as
an example.

2.1.6 Summary

A fluid medium, gas or liquid, cannot support static, or reversible shear forces.
It is characterized by a pressure field. Very simple, but realistic idealizations are
incompressible fluids and ideal gases. We have studied in some detail the concept of
a Newtonian fluid medium the internal frictional forces of which are linear functions
of the velocity gradients. The dynamics of water, or hydrodynamics, is governed
by the Navier-Stokes equation. The Reynold number decides whether the flow is
laminar or turbulent. Aerodynamics, the dynamics of air, is even more complicated
because temperature comes into the game.

2.2 Solid Media

In contrast with a fluid medium, a solid may support static shear forces. That makes
it a solid: it requires strong forces to deform it. Even the elastic part T 0

ik may have
non-diagonal entries. If the solid is relaxed, i.e., if no external forces are exercised,
there will be no stress. If, however, the solid medium suffers strain, there will be
stress. We shall formulate the idea that, to a first approximation, stress and strain are
proportional which is known as Hooke’s law. Before we must explain the notion of
strain.

8By the way, one speaks of the ideal gas because B1 D 1 holds true for all kinds of molecules.
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2.2.1 Strain

Think of a material point at a certain location x. These are the coordinates with
respect to a Cartesian coordinate system if the medium is relaxed. “Relaxed” means
that no forces are present, neither volume forces nor forces upon the boundary of
the medium. We speak of the relaxed state of the solid medium.

If, however, such forces act on the medium, if it is deformed, the material points
of the continuum will be displaced. The material point, formerly at x, will now be
at Nx D x C u. u D u.t; x/ is the displacement field, it describes the displacement,
at time t , of a point which was situated at x before the displacement, when the
medium was relaxed.

Two neighboring points at x and x C dx in the relaxed state will be found at
Nx D x C u.t; x/ and Nx C dNx D x C dx C u.t; x C dx/ in the stressed state. In the
relaxed state, before deformation, their distance was ds where

ds2 D dx21 C dx22 C dx23 D ıikdxidxk: (2.23)

With

d Nxi D dxi C dxj @j ui .t; x/ (2.24)

we arrive at

dNs2 D fıik C @iuk C @kui C .@iuj /.@kuj /g dxidxk: (2.25)

This is the squared distance of the neighboring points after deformation. It was
ds2 D ıikdxidxk in the relaxed state.

We therefore describe the deformation of a solid medium by

2Sik D @iuk C @kui C .@iuj /.@kuj /; (2.26)

such that

dNs2 D ds2 C 2Sikdxidxk (2.27)

holds true. Sik D Sik.t; x/ is the strain tensor field.
If the displacement is achieved by a rigid rotation and a translation,

Nx D a CRx or u D a C .R � I /x; (2.28)

where a is a constant vector and R a constant orthogonal matrix, we work out

2Sik D .R � I /ik C .R � I /ki C .R � I /ij .R � I /kj D 0: (2.29)

This result is evident when looking at Eq. (2.27). Indeed, the strain tensor field
describes deformation. A rigid translation or rotation of a medium does not produce
strain.
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Note that the displacement gradient @iuk is dimensionless. For real solids, these
gradients are small, and the quadratic contribution .@iuj /.@kuj / to Eq. (2.25) may
be neglected. Likewise, the square root of Eq. (2.27) may be approximated by

dNs D ds C Sikdxidxk with Sik D @iuk C @kui
2

: (2.30)

ds was the distance between two neighbors in the relaxed state of the medium. dNs is
the distance between the same material points after a deformation which sends x to
xCu.t; x/. Relation (2.29) is an approximation, it holds true for small displacement
gradients, j@iukj � 1. It should not be used if large deformations of rubber-like
substances are to be modeled.

The mapping x ! Nx D x C u.t; x/ changes the volume element dV into

d NV D dV
@. Nx1; Nx2; Nx3/
@.x1; x2; x3/

; (2.31)

where the quotient denotes the functional determinant. If terms which are quadratic
or of higher order in @ivk are neglected, we obtain the following expression

d NV
dV

D 1C @j uj : (2.32)

This can be written as

d NV � dV

dV
D Sjj : (2.33)

The relative volume change due to deformation is equal to the trace of the strain
field.

2.2.2 Hooke’s Law

Without stress there is no strain. Hooke’s law says that little stress will produce little
strain. Put otherwise, strain is proportional to stress.

The most general linear relation reads

Sij D �ijklT
0
kl : (2.34)

This would mean 84 elasticity constants. However, the strain tensor as well as the
stress tensor are symmetric. Moreover,�ijkl can be defined as a second derivative of
a free energy with respect to Tij and Tkl which assures�ijkl D �klij . This reduces
the number of elasticity constants to maximally 21.
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This is a horribly large number, and it pertains to mono-crystals of the most
complex symmetry only. In practice, matter in its solid state, like steel, concrete, ice
and the like are mixtures of micro-crystallites which are oriented randomly and let
the material appear isotropic. In the following we concentrate on isotropic solids,
but we bear in mind that materials like wood or mono-crystalline LiNbO3 are not
isotropic.

A linear relation between strain and stress for an isotropic material is described
by two constants. The stress tensor itself as well as the unit tensor multiplied be the
trace of the stress tensor are independent symmetric second rank tensor. Following
tradition, we write

Sik D 1C �

E
T 0
ik � �

E
ıikT

0
jj : (2.35)

Note that � is a dimensionless number. The constant E has the dimension of
pressure, or energy density, just as Tjk . It is called the elasticity constant, or Young’s
modulus, and � is known as Poisson’s ratio.

We will work out examples which demonstrate that the elasticity constantE must
be positive. We will likewise demonstrate that Poisson’s ratio is restricted to values
between 0 (very stiff) and 0.5 (rubber, or fluid like):

0 � � � 1

2
: (2.36)

This simply says that an elastic medium, if pressed upon, might either not wield or
will shrink in volume, but not expand.

Hooke’s law for an isotropic elastic medium can also be formulated such that
stress appears as a consequence of strain. One has to work out the trace of Eq. (2.34),

Sjj D 1 � 2�

E
T 0
jj ; (2.37)

and obtains

T 0
ik D E

.1C �/

n
Sik C �

1 � 2�
ıikSjj

o
: (2.38)

Stress is linearly related with strain by the compliance tensor which can be read off
from Eq. (2.38).

2.2.3 Structural Mechanics

The subject of this huge field is the investigation of structures made of solid elastic
material. The purpose of such structures like bridges, houses, cars or spanners is
that they remain intact when used. Bridges should not collapse under normal load,
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houses must be built so that its walls stand up the forces of heavy wind on the roof,
a car should be as light as possible but protect its passengers from the effects of
collisions in the best possible way, and a spanner should not yield unless excessive
torque is applied.

In structural mechanics, static solutions are to be worked out. The momentum
balance equation is to be solved for vanishing flow velocity, v D 0. Without
flow there will be no friction, i.e., T 00

ik vanishes. At a first glance, a simple
thing:

@iT
0
ik C fk D 0: (2.39)

The external forces fk per unit volume must be compensated by the gradient of the
elastic stress tensor.

However, not every solution of Eq. (2.39) is admissible. The reversible contri-
bution to the stress tensor T 0

ik must be derived from a strain tensor by Hooke’s
law (2.38). And: the strain tensor cannot be anything, but must be derived from
a displacement field ui by Eq. (2.30). We refrain here from rewriting the three
equations (2.39) into a system of three coupled partial differential equations for
the three displacement fields u1; u2; u3.

A problem is solved if three functions uk are found which give rise to a strain
tensor Sik D .@iuk C @kui /=2 and, by Hooke’s law, to a stress tensor T 0

ik which
compensates external forces according to Eq. (2.39). And: the solution must match
the boundary conditions of the problem at hand.

The next thing should be to investigate the stress tensor field T 0
ik D T 0

ik.x/.
Note that in structural mechanics only static solutions are studied, therefore the
time argument is absent.

The stress tensor is real and symmetric and can therefore be diagonalized by
an orthogonal coordinate transformation, at least locally. T 0

ik has three eigenvalues
T 1 D T 1.x/, T 2 D T 2.x/, and T 3 D T 3.x/. Negative values denote pressure,
positive values indicate stress.

Now, for each material there is an upper limit of pressure or stress which it
can support. If these limits are exceeded, the material will yield irreversibly, it will
break. Concrete, for example, can support a large pressure, but is feeble with respect
to stress. Therefore, steel rods are embedded to strengthen its ability to withstand
stress.

The main goal of a structural mechanical analysis is to make sure that the
structure is safe. This means that nowhere the material’s limits of admissible stress
or pressure are exceeded. T j D T j .x/ must always be within the limits of allowed
values.

We stop here and do not go into details of the stress-strain relation. As a rule of
thumb, the linear relation (Hooke’s law) is valid up to a certain point (a thousandth
of the elasticity module, or so) where unwanted effects set in, such as permanent
deformations.



42 2 Material Equations

2.2.4 Elastodynamics

In the preceding section we have discussed an elastic medium at rest. We now allow
for oscillating material points. The velocity field vi D Pui is the time derivative of the
displacement field. Because we resort too Hooke’s law, a linear approximation with
respect to u and therefore v, we may safely neglect the @i vivk term. We therefore
obtain the following three partial differential equations:

%Ruk D E

2.1C �/

�

uk C 1

1 � 2� @k@iui
�
: (2.40)

This equation which describes the properties of sound in solids does not contain
a possible external force. The effect of gravity, for example, is usually negligible.
It also refers to an isotropic medium. Moreover, friction has not yet been incorpo-
rated. We shall demonstrate in Chap. 4 that there are transversal and longitudinal
solution with different propagation constants as well as surface acoustic waves
(SAW). Note that E and � in Eq. (2.40) are adiabatic values which will differ from
the values in Eq. (2.38). The former refer to constant entropy (no heat exchange),
the latter to constant temperature.

2.2.5 Summary

A solid, or elastic medium can support shear stress even if at rest. If deformed
moderately, it will return to its normal state when relaxed. Hooke’s law describes the
linear relationship between stress and strain. The latter is a tensor field describing the
deformation of an elastic medium. We discuss the discipline of structural mechanics,
a discipline of physics or engineering science dedicated to the stability of structures
made of elastic solid media. From spanners to skyscrapers. We also talk about elastic
waves.

2.3 Heat Conduction

Although used widely, the title of this section is not quite correct. It suggests that
a physical quantity called heat is transported via conduction. In fact, it is internal
energy which is conducted. Recall that energy, in the context of continuum physics,
is made up of kinetic energy, potential energy, and a rest which is called internal
energy. The first refers to the motion of material points as a whole, the second to
its energy in an external gravitational or electric potential. The last contribution to
energy takes into account the motion of particles within a resting material point.
Also recall that a material point is small on an engineer’s point of view but still
contains a huge number of particles. There are so many particles that the laws of
thermodynamics for infinitely many are applicable.
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2.3.1 Fourier’s Law

The balance equation for internal energy U reads

%Dt u D �@iJ u
i C TikGik C J e

i Ei : (2.41)

Here % is the mass density of the medium and u denotes the specific9 internal
energy. Dt stands for the substantial time derivative, a change in time as observed
by a co-moving observer. The conduction contribution to the internal energy current
density is denoted as Ju. We call it the heat current density. How it depends on other
fields is the subject of this section.

There are at least two mechanisms for the production of internal energy. One is
friction, as described by TikGik. If there is stress (Tik) and a velocity gradient (Gik),
then internal energy will be produced. We have discussed this in the section on fluid
media. Another one is J e

i Ei . If an electric current flows in the presence of an electric
field, then internal energy will be produced as well. We shall discuss this effect
later in the section on charge transport. There are more sources of internal energy
production, for instance by radioactivity. Here we concentrate on a relation between
the heat current density Ju and other fields which will drive it. Let us assume a
situation without electric fields and without concentration gradients first.

Thermodynamic equilibrium is characterized by constant pressure, constant
temperature, constant electric potential and constant chemical potentials. Assume
that one condition is not met, namely constant temperature. As a consequence,
internal energy will flow from warmer into colder regions. A vanishing temperature
gradient will cause no flow of internal energy. We postulate that a small temperature
gradient will drive a small heat current. So we write, in linear approximation,

J u
i D �
ij @j T : (2.42)

This is Fourier’s law: the heat current density is a linear function of the local tem-
perature gradient. The coefficients 
ij are constants for small enough temperature
differences. If the medium is isotropic, then


ij D 
 ıij (2.43)

will hold, with a single heat conduction constant 
. Equation (2.42) then reads

Ju D �
rT : (2.44)

The heat current density is proportional to the temperature gradient. A positive value
of 
 guarantees that internal energy flows from warm to colder regions.

9Per unit mass.
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This is in accordance with the second law of thermodynamics. Recall expression
(1.125) for the volumetric entropy production rate by heat conduction:

�hc D J u
i @i

1

T
: (2.45)

We insert Fourier’s law (2.41) and find

�hc D 1

T 2

ij .@iT /.@j T /: (2.46)

Indeed, the matrix 
ij must be non-negative in order to warrant �hc � 0. For an
isotropic medium this boils down to 
 � 0.

2.3.2 More on Heat Conduction

We assume an isotropic medium in order to simplify the discussion. The heat
conductivity coefficient 
 must not be negative. However, it is not a constant.
It depends on composition (i.e., the material under study) and on the local
equilibrium parameters such a temperature, pressure, and so forth. The transport of
internal energy is a slow process, in general. We need not bother about retardation
or non-local effects. Therefore, within a homogeneous material, 
.x/ D 
.T .x// is
a good approximation in most situations.

Copper is a good heat conductor. Its heat conduction coefficient at T D 300 K
is 
 D 401 W m�1 K�1. The corresponding values for ice, water and air under
normal conditions are 2.18, 0.58 and 0.024, respectively. See the tables of Kaye and
Laby [5].

The high thermal conductivity of metals is due to electrons in the conduction
band. Isolators, such as ice, transport internal energy via phonon diffusion. In gases,
energy transport from one place to another is mediated by collisions of molecules.
Liquids are in-between: nearby molecules are correlated just as in crystals, but
they behave as dense gases otherwise. Therefore, the metal, crystal, liquid and gas
sequence of typical heat transport coefficients is rather plausible.

2.3.3 Heat Equation

Assume a medium at rest, for instance, a solid. Everything shall be in equilibrium
except temperature. T D T .t; x/ depends on the location x and will change with
time t .

The specific energy u, in this situation, will depend on space and time because it
depends on temperature which depends on space and time. Therefore,

%Dt u D %Pu D %
@u

@T
PT (2.47)

holds true.



2.4 Diffusion 45

The partial derivative of the specific10 internal energy with respect to temperature
is the specific heat of the material under discussion. It is usually abbreviated by c.
With Fourier’s law we arrive at

%c PT D @i 
 @i T C �u: (2.48)

Here % is the mass density, c the specific heat, T the temperature, and 
 the heat
conductivity coefficient. �u denotes the amount of internal energy produced per
unit time and per unit volume. All these quantities are fields depending on time and
location. Equation (2.48) is the so-called heat equation.

If there is no internal energy production and if mass density %, specific heat c
and the heat conduction coefficient 
 may be considered constant, the heat equation
simplifies to

PT D �
T ; (2.49)

with

� D 
=c%: (2.50)


D @i@i stands for the Laplacian differential operator. Equation (2.49) is applicable
only if the temperature differences, for a given problem, are small. � is called
thermal diffusivity by many authors.

2.3.4 Summary

Heat conduction is short for the conduction of internal energy. It is caused by a
temperature gradient if all other equilibrium parameters are constant. We explain
Fourier’s law and comment on some subtle points, in particular, why metals, other
solids, liquids and gases exhibit wildly different heat conduction coefficients. We
also digress on the validity of the so called heat equation.

2.4 Diffusion

We discuss in this section the phenomenon that particles of a given kind flow with
another velocity than the center of mass. We recapitulate the appropriate balance
equation and let us guide by the entropy production expression to formulate a
material equation. This then is rewritten into the well-known diffusion equation.

10Recall that specific refers to unit mass.
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2.4.1 Diffusion Currents

We have denoted by na D na.t; x/ the density of particles of kind a. Note that we
cannot enumerate the particles itself because they are indistinguishable. Particles of
species a flow with a velocity va D va.t; x/. The diffusion currents are

Ja D na .va � v/: (2.51)

It is the conduction contribution J.N a/ associated with the number Na of particles
of kind a. The balance equation for Na may be written in different forms, one is

@tn
a C @in

av C @iJ
a
i D �a; (2.52)

where the volumetric production rates is given by

�a D
X
r

� r�ra: (2.53)

It describes the appearance or disappearance of particles due to chemical reaction
which are labeled by an index r . � r is the number of such reactions per unit time
and unit volume. In one reaction �ra particles of kind a are produced or vanish,
respectively. See Table 1.1 for an example.

2.4.2 Chemical Potential

If two systems have the same temperature T , they do not exchange energy. Consider
likewise two systems the volume of the first may grow or shrink at the expense of
the second. If two such systems have the same pressure p, they do not exchange
volume. And if the two systems have the same temperature and pressure, but may
exchange particles of kind a, they will not do so if their chemical potentials �a are
equal. T , p and the �a are equilibrium parameters.

Just look at the expression

�df D �
X
a

J ai @i
�a

T
(2.54)

for the volumetric entropy production rate related with diffusion. Like all other
contributions it is a sum of products. The first factor is a flux, the second would
vanish in an overall equilibrium situation.

We therefore write provisionally

Ja D �
X
b

�ab r �b

T
: (2.55)
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A non-negative matrix of coefficients �ab guarantees that the second law of
thermodynamics is respected. By the way, the matrix � must also be symmetric
because of Onsager’s relations. We come back to this issue in the following chapter.

2.4.3 Diffusion Equation

We now specialize to a much simpler situation where only on species of particles is
not in overall equilibrium. We refer to it by n, J and �: to its density, its diffusion
current and its chemical potential. Moreover, the temperature equilibrium is usually
attained much faster than the equilibrium with respect to diffusion. Therefore we
assume a constant temperature. Equation (2.55) then simplifies to

J D ��
T

r �: (2.56)

� is a positive coefficient.
The chemical potential has a gradient because the particle density is not yet

constant, so we write

J D �Drn; (2.57)

where the diffusion constantD is defined as

D D �

T

@�

@n
: (2.58)

If there are no chemical reactions, and if the medium in which the diffusing
particles are suspended is at rest, we have to solve

@tn D @i D @in; (2.59)

the diffusion equation. If the particle density gradients are small, this simplifies even
more to

Pn D D
n: (2.60)

Note the similarity with the heat equation. After all, heat propagation in dense
media is nothing else than phonon diffusion. Equation (2.59) is occasionally called
Fick’s law.

2.4.4 Digression on Open Systems

We know that � in Eq. (2.58) is positive, and the temperature T as well. In order
to show that also the diffusion constantD is positive, we must provide an argument
why the particle density n increases with �, the chemical potential.
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Denote by H D H.
/ the Hamiltonian11 of the system and by N the particle
number operator. The free energy of such an open12 system is

F.T; 
; �/ D �kBT ln tr e
.�N �H/=kBT : (2.61)

Temperature T and chemical potential � are Lagrange multipliers.
When looking for the maximum of the entropy functional,

S.G/ D max
W
S.W / where S.W / D �kB trW lnW ; (2.62)

the mixed state W is confined by trW D 1, trWH D U and trWN D NN . The
corresponding three Lagrange multipliers are the free energy F , the temperature T ,
and the chemical potential �.

One easily calculates

@F

@�
D �hN i (2.63)

and

@2F

@�2
D �hN2 i � hN i2

kBT
: (2.64)

If we refer to unit volume, the above two results show that indeed

@n

@�
� 0 (2.65)

holds true because of hN2 i � hN i2.

2.4.5 Summary

Diffusion currents of particles are driven by gradients of their chemical potentials
weighted with the inverse temperature. However, heat conduction is usually much
faster than diffusion. So we specialized on diffusion at constant temperature. We
derived the diffusion equation and brought forward an argument why the diffusion
constantD must be positive. These findings are supported by a more detailed study
of Brownian motion in Chap. 4. When combined with chemical reactions, diffusion
may lead to astonishing solutions, as discussed in the article on Reactions and
Diffusion.

11
 stands for the external parameters.
12The number of particles within the system is not fixed.
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2.5 Charge Transport

In this section we will discuss the various contributions to the electric charge
density and the electric charge current density. Ohm’s law is formulated for the
electrochemical potential.

2.5.1 The Electromagnetic Field in Matter

Let us recall Maxwell’s equations for the electromagnetic field E;B:

�0r � E D %e ; (2.66)

r � B D 0 ; (2.67)

1

�0
r � B D �0 PE C je ; (2.68)

r � E D � PB : (2.69)

Assume that a continuum is exposed to an electromagnetic field. One effect will
be that matter gets polarized: there is a certain density of electric dipole moment
which we denote by P. The negative divergence of this polarization is a contribution
to the charge density,

�r � P D %p: (2.70)

We call it the polarization charge density. Likewise, there is a current if the
polarization changes with time,

PP D jp: (2.71)

Another effect of the electromagnetic field will be magnetization. Denote by M
the density of magnetic moments. Its curl is another contribution to the current
density,

r � M D jm: (2.72)

In general, the total charge density is made up of two terms,

%e D �r � P C %f; (2.73)

the current density of three,

je D PP C r � M C jf: (2.74)
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The superscript “f” stands for “free” or “to be freely manipulated”, in contrast to
“p” (enforced by polarization) or “m” (enforced by magnetization).

This is a vicious circle: it is the electric field which causes polarization, the
latter then contributes to the electric charge density which in turn must be known
for working out the electric field. The same applies to the magnetic induction
field.

The well known way out is to define auxiliary fields, the dielectric displacement

D D �0E C P (2.75)

and the magnetic field strength

H D 1

�0
B � M: (2.76)

With it Eq. (2.66) may be reformulated as

r � D D %f; (2.77)

while Eq. (2.68) changes into

r � H D jf C PD: (2.78)

Equations (2.67) and (2.69) remain unchanged.
Now only the density and the current density of free charges show up. The prize

to be paid is that we have to cope with two more vector fields. We require additional
functional relations between the displacement and the electric fields on the one
hand and the magnetic and induction fields on the other. Such relations are material
equations because they depend on the material under investigation.

By the way, differentiating Eq. (2.77) with respect to time and working out the
divergence of Eq. (2.78) shows that not only charge is a conserved quantity, but also
the free charge,

@t%
f C r � jf D 0: (2.79)

We will not discuss magnetization further since magnetism was ignored in the
preceding sections. For an isotropic dielectric medium and for quasi-static fields

D D ��0E (2.80)

is a good approximation. � is the relative dielectric permittivity which can be as
large as 80 (for water at 20ıC) and even larger.

In Chap. 3 we go beyond this, then also rapidly varying electric fields are dealt
with.
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2.5.2 Contributions to the Electric Current Density

We have presented two decompositions of the electric current density, one based on
Maxwell’s equations, the other within the framework of continuum mechanics:

je D PP C jf D .�rP C %f/ v C Je 0 C Je 00
: (2.81)

The first sum describes the decomposition into bound and free charges. The second
sum has four contributions, two for convection and two for conduction. We interpret
these expressions as follows.

• %f v is the convection of free charges.
• Je 0 D PP C .v � r /P D DtP is the substantial time derivative of the polarization.

It describes the reversible (or elastic) charge transport by conduction.
• The remainder jf D Je 00 is responsible for the irreversible (or inelastic) charge

transport by conduction.

The situation simplifies if the medium under discussion is at rest. Then there is
no charge transport by convection. Partial and substantial time derivatives coincide,
and we may write

je D Je D PP C Je 00
: (2.82)

2.5.3 Ohm’s Law

Let us talk about the normal case that charge is transported by electrons. There are
two different causes for electrons to move.

One is the drag of an electric field strength E which exerts a force �eE on
an electron. We here discuss quasi-static electric fields, therefore the electric field
strength can be derived from a potential 	e by E D �r	e.

The second cause is diffusion. If the chemical potential �� of free electrons
has a gradient, it will make these electrons to move whereby each electron carries
the charge �e. Therefore, the electrostatic potential must be supplemented by the
chemical potential divided by the charge �e. We call

 D 	e � ��

e
(2.83)

the electrochemical potential.
Ohm’s law states that the irreversible contribution to the electric conduction

current is proportional to the negative gradient of the electrochemical potential:

J e
i

00 D ��ik@k : (2.84)
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�ik is the conductivity tensor. We will prove in Chap. 3 that it is symmetric if i and k
are exchanged and if an external quasi-static magnetic field is inverted.

The conductivity tensor �ik is also positive. This follows from the second
law of thermodynamics. We have silently assumed that the medium has constant
temperature, therefore the entropy production rate per unit volume is

�.S/ D � 1

T
J e
i

00
@i D 1

T
.@i / �ik .@k /: (2.85)

If there are no chemical reactions which produce differences in the chemical
potential for electrons, and if the medium is isotropic, Ohm’s law says

je D �E: (2.86)

Note that there were quite a few assumptions which lead to this simple form of
Ohm’s law.

In older textbooks you may read of an electromotive force which pumps
electrons. Such pumps may be batteries, photovoltaic cells and voltage differences.

2.5.4 Summary

Charge transport means that charged particles change their location: electrons,
holes or ions. A classification in terms of bound and free charges and their
corresponding current densities is one subject. Another one is the classification
in terms of the general scheme of continuum physics: convection and conduction,
the latter reversible or irreversible. We explain how these different points of view
are to be reconciled. Electrons, holes or ions move because they are dragged by
an electric field, or because they diffuse. The two effects are described by the
electrochemical potential. Ohm’s law states that the irreversible conduction of
electrons is proportional to the negative gradient of the electrochemical potential.
The conductivity tensor is symmetric and positive. The subject will be reconsidered
in Chap. 3. Also see the article on Ohms Law and the Hall effect.

2.6 Thermoelectric Effects

In this section we will discuss cross effects. There is more that one generalized
force and their are many corresponding fluxes. The fluxes depend linearly on the
generalized forces, but the matrix of kinetic coefficients is neither diagonal nor
arbitrary. We postpone a detailed discussion of the underlying Onsager relations
to Chap. 3. In order to be specific we discuss a solid electric conductor such that
electric charge and internal energy may be transported.
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2.6.1 Simultaneous Heat and Charge Transport

We specialize to a solid electrical conductor with non-vanishing electrical and heat
conductivities. The possible fluxes are the electric current density Je and the heat
current density Ju.

If there were no charge transport, the temperature gradient rT would drive the
heat current. And vice versa, if there were no temperature gradient and no heat
current, the gradient of the electrochemical potential r would drive the electric
current. There will be cross effects if both is allowed, charge and heat conduction.

Mobile electrons, which are referred to by an asterisk superscript, will transport
both charge and internal energy. On the other hand, diffusion of phonons13 causes
internal energy transport only. Since each quasi-free electron carries a negative unit
charge we may write

Je D �eJ�: (2.87)

The electrochemical potential is given by

 D 	e � ��

e
; (2.88)

where 	e is the ordinary electrostatic potential.

2.6.2 Forces and Fluxes

In global thermodynamic equilibrium the potentials are constant and the current
densities vanish. rT and r are generalized forces X because they transform as
forces with respect to time reversal, X ! X . Ju and Je are generalized fluxes ˚
because they transform as ˚ ! �˚ .

One should try to define forcesXa and fluxes˚a in such a way that the volumetric
entropy production rate reads

�.S/ D
X
a

˚aXa: (2.89)

Since we always discuss only weak deviations from thermodynamic equilibrium,
we postulate a linear relationship between fluxes and forces:

˚b D
X
a

KbaXa; (2.90)

13Quantized lattice vibrations. Phonons are quasi-particles because they cannot live in free space.
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where Kba are kinetic coefficients. This simply expresses the fact that no forces
produce zero fluxes and that sufficiently small forces cause small fluxes.

A very specialized form of Onsager’s theorem says that the kinetic coefficients
form a symmetric matrix. We postpone a discussion of this theorem to Chap. 3.
There we derive explicit expressions for the kinetic coefficients and show that the
symmetryKab D Kba is a consequence of time reversal invariance.

2.6.3 Kinetic Coefficients for Heat and Charge Transport

The following contributions to the volumetric entropy production rate do not vanish:

�.S/ D Ju � r 1

T
� J� � r �

�

T
� 1

T
Je � E: (2.91)

With the entropy conduction current density

Js D 1

T
.Ju � ��J�/ (2.92)

one may rewrite the volumetric entropy production rate as

�.S/ D � 1

T
.Js � rT C Je � r /: (2.93)

This expression has the form Eq. (2.89) up to a common factor which is irrelevant
here. We therefore postulate

�
Js

Je

�
D �

�
A B

B C

��rT
r 

�
: (2.94)

In accordance with Onsager’s symmetry relation the off-diagonal elements are
equal. Moreover,

A � 0 , C � 0 and AC � B2 (2.95)

will guarantee that the second law of thermodynamics is respected.
The electric current density is usually written as

Je D ��.r C ˛rT /: (2.96)

We recognize � D C , therefore the electric conductivity is always positive. The
sign of ˛ D B=C cannot be predicted from first principles. If the temperature is
the same everywhere, Eq. (2.96) coincides with Ohm’s law (2.84). Moreover, the
chemical potential, which depends on temperature and composition, cannot have a
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gradient in a homogeneous medium. We may then write Je D �E which is Ohm’s
law in a narrower sense.

The second relation in Eq. (2.94) can be formulated as

Ju D �
rT C �Je: (2.97)

Without electric current we obtain Fourier’s law Ju D �
rT . The heat conductivity

 D T .A� B2=C / is guaranteed to be positive.

An additional electric current causes additional heat transport. However, the sign
of � cannot be derived from a general rule, just like that of ˛ in Eq. (2.96). The
coefficients � in Eq. (2.97) and ˛ in Eq. (2.96) are related by

� D T˛ � ��

e
: (2.98)

You will find further details in article on Thomson, Seebeck and Peltier effect.

2.6.4 Summary

In general, if there are many driving forces and equally many fluxes, they are related
by a matrixK of kinetic coefficients. This matrix is symmetric provided that forces
and fluxes are defined in such a way that the volumetric entropy production rate is a
sum of flux times force products. As an example of this Onsager relation we study
an electric conductor of homogeneous composition. There are two driving forces,
namely the electric field strength and the temperature gradient. The corresponding
fluxes are the electric and the heat current densities. Besides Ohm’s and Fourier’s
law, there are cross effects.



Chapter 3
Linear Response Theory

So far we have discussed bulk matter as a collection of material points which
are always in thermodynamic equilibrium with neighboring material points. The
parameters which determine the equilibrium state, such as temperature, pressure or
chemical potentials, may vary from location to location and with time. They are,
however, well defined for each material point.

There are situations where this assumption is unjustified. Just think of the
interaction of light with matter. The electric field strength of a light wave changes
so rapidly that micrometer sized material points have no time to follow. They will
always be away from thermodynamic equilibrium.

In this chapter we discuss the perturbation of matter by a rapidly varying external
parameter and the response to it in first, or linear approximation. We develop the
theory in full generality, but specialize later to the field of optics.

3.1 Statistical Thermodynamics

We summarize the basics of quantum theory and explain the concept of mixed states.
Entropy is a measure of how much a state is mixed. The state of a well isolated
system becomes mixed more and more until its entropy is maximal. This state of
maximal entropy, the Gibbs state, describes the system when it is in equilibrium
with its environment.

3.1.1 Quantum Theory

A physical system is represented by a Hilbert space H. Its elements—we call them
vectors—can be added and multiplied by scalars, here always complex numbers.
For f; g 2 H there is a scalar product .g; f / which is linear in the right hand side.
This means .g; ˛1f1 C ˛2f2/ D ˛1.g; f1/ C ˛2.g; f2/. The scalar product shall
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obey .g; f / D .f; g/� where the asterisk denotes complex conjugation. Recall that
jjf jj2 D .f; f / is never negative. It vanishes if and only if f is the zero vector.

Observables, states and symmetries are represented by linear operators. Such a
linear operator A W H ! H maps the Hilbert space H onto itself such that the
linear combination f D ˛1f1 C ˛2f2 is mapped into Af D ˛1Af1 C ˛2Af2.
Linear operators can be multiplied by a scalar, they can be added, and they can be
multiplied according to .BA/f D B.Af /.

For each linear operator A W H ! H there is an adjoint linear operator
A� W H ! H for which

.g; Af / D .A�g; f / (3.1)

holds true, for all vectors f and g. Note

.BA/� D A�B�: (3.2)

An operator which commutes with its adjoint,

ŒA�; A� D A�A �AA� D 0; (3.3)

is said to be normal. Normal operators have a remarkable property: they can be
diagonalized. There is a complete orthonormal system f1; f2; : : : of vectors such
that

Afi D aifi (3.4)

holds true. The fi 2 H are eigenvectors, the ai 2 C denote the corresponding
eigenvalues. The eigenvectors are normalized and pairwise orthogonal:

.fj ; fi / D ıj i : (3.5)

But most important, the orthonormal system is complete. Any f 2 H can be written
as

f D
X
i

cifi with ci D .fi ; f /: (3.6)

Observables and States

An observable property of the system under consideration is described by a self-
adjoint linear operator M . This means M� D M from which we infer that M is
normal. It can be diagonalized according to

Mfi D mifi ; (3.7)

where the eigenvectors f1; f2; : : : form a complete orthonormal system, and the
eigenvaluesm1;m2; : : : are real. Real because of
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mi D .fi ;Mfi / D .M�fi ; fi / D .Mfi ; fi / D .fi ;Mfi /
� D m�

i : (3.8)

The operator M representing an observable, or measurable property, is called
an observable. Linear or angular momentum, location, energy and so forth are
examples. The eigenvaluesmi of an observable are real numbers.

So called pure1 states are represented by normalized vectors f 2 H. Any such
state may be written as a linear combination according to Eq. (3.6). Because of

1 D .f; f / D
X
j;i

c�
j ci .fj ; fi / D

X
i

jci j2 (3.9)

we interpret jci j2 as the probability that fi is contained in f . If M is measured and
if the system is in state fi , the measurement will result in the valuemi . If the system
has been prepared in a state f , which is a superposition of the eigenstates fi , we
expect the value

hM i D
X
i

jci j2mi D .f;Mf /: (3.10)

The larger the system, the more it is an oversimplification that a system can be
prepared in a pure state as described by a particular vector f 2 H. Realistically, a
certain observable is measured, and the state is a mixture of the pure eigenstates
of that observable. There is a complete orthonormal set of vectors 	i and a
corresponding set of probabilities wi that 	i will be prepared. This information can
be expressed by defining a liner operatorW such that

W	i D wi 	i (3.11)

holds true. We call W a mixed state because it describes a mixture of pure states.2

The expectation value of the observableM in the mixed state W is

hM i D
X
i

wi .	i ;M	i / D
X
i

.	i ;MW	i/ D trWM: (3.12)

Here trA denotes the trace of a linear operator. It is the sum over its diagonal
matrix elements .�i ; A�i /with respect to a complete orthonormal system �1; �2; : : :

For working out the trace one has to refer to a particular complete orthonormal
system, but any other one will lead to the same value. Note that

trAB D
X
i

.�i ; AB�i / D
X
ij

.�i ; A�j /.�j ; B�i / D trBA (3.13)

holds true. We have made use of it when writing Eq. (3.12).

1We shall soon see why they are called so.
2The symbol P in this book is used heavily, for momentum, polarization, and so forth. We therefore
denote the probability operator by W , an allusion to the German word Wahrscheinlichkeit for
probability.
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The eigenvalues of a mixed state are probabilities, real numbers. It is therefore
self-adjoint, W D W �. Moreover, these eigenvalues sum up to 1 which may be
expressed as

trW D 1: (3.14)

In addition, since probabilities can never be negative, a mixed state is represented
by a positive linear operator:

W � 0 (3.15)

meaning .f;Wf / � 0 for all f 2 H.
Any linear operatorW respecting Eqs. (3.14) and (3.15) represents a state.
Let us mention in passing a simple consequence of Eq. (3.12). Denote by H the

energy observable. In a coordinate frame where the center of mass of the system
is a rest the energy expectation value is called internal energy and traditionally
designated as U D trWH . We deduce from Eq. (3.12) the following relation

dU D tr dWH C trW dH D dQC dA: (3.16)

The internal energy may change because of two causes. Either the state or the energy
observable changes. The first contribution is called heat, the second work.3 This
simple consequence of Eq. (3.12) is known as the First law of thermodynamics.

3.1.2 Entropy

We now set out to define a measure for how much a state is mixed.
We prepare the system according to the prescription (3.11): the pure state

	i occurs with probability wi . It has been proven over and over again: single
measurements are not predictable. Nature seems to throw dices. Only a long series
of measurements, an experiment, provides reliable results.

Assume we have performed an experiment by measuring the state N times.
The protocol of the experiment could be 	2; 	5; 	2; 	2; 	1; : : : The state 	i was
encountered ni times, where

P
i ni D N .

There are

˝ D NŠ

n1Š � n2Š � : : : (3.17)

different protocols which are compatible with

wi � ni

N
: (3.18)

3Since the symbol W had to be assigned to the probability operator, we here denote work by dA
alluding to Arbeit, German for work.
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Before performing the experiment we just know the probabilities wi for the
occurrence of the state 	i . Afterwards we know more, namely the protocol. The
information gain, measured in bits, is log2 ˝ . This is the number of yes/no questions
which one must ask in order to learn which protocol has been realized out of ˝
possible protocols. With Stirling’s formula lognŠ � n logn we find

log2 ˝

N
! �

X
i

wi log2 wi D � trW log2 W; (3.19)

with N ! 1. For sufficiently many measurements, the information gain of an
experiment is proportional to the number of measurements. It depends on the
probabilities wi only.

If all probabilities vanish up to one, which is 1, we have a mixture with just
one contribution. This characterizes a non-mixed, or pure state. Repeating the
measurement will always yield the same result, and no information can be gained.
As it should be, the right hand side of Eq. (3.19) vanishes.

Since x ! �x logx on x 2 Œ0; 1� is a non-negative concave function, the right
hand side of Eq. (3.19) will never be negative. It vanishes for pure states and is
positive otherwise. For historical reasons we replace the logarithmus dualis by the
natural logarithm and multiply with Boltzmann’s constant. The result is the entropy
of the state W :

S.W / D �kB trW lnW: (3.20)

It serves as the measure of how much a mixed state is mixed.
Note that two mixed states W1 and W2 can be further mixed by

W D .1 � ˛/W1 C ˛W2 with 0 � ˛ � 1: (3.21)

Obviously this is a state because W � 0 and trW D 1 are fulfilled if the same is
true forW1 and W2. It can be shown that the following inequality holds true:

S.W / � .1 � ˛/S.W1/C ˛S.W2/; (3.22)

with W of Eq. (3.21). The entropy of the mixed state is larger than or equal to the
mixture of entropies. Mixing increases entropy.

By the way, the entropy of a state W depends on its eigenvalues wi only, the
complete orthonormal system 	1; 	2; : : : is irrelevant. This complies with the axiom
that all states are a priori equally probable.

3.1.3 Equilibrium

For an ideally isolated system the state Wt obeys the Schrödinger equation

dWt

dt
D i

„ ŒWt ;H�; (3.23)
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whereH is the energy observable, or energy. The solution

Wt D e
� i

„ tH W0 e
i
„ tH (3.24)

is a unitary transformation which preserves the eigenvalues ofWt . We conclude that
the Schrödinger equation (3.22) preserves entropy. For an autonomous4 system the
entropy of states is conserved.

A sufficiently large system, however, cannot be isolated for a long time from its
environment. One may well hinder it from exchanging energy with its environment,
but the influence of the surrounding world on the time development of the system
cannot be neglected. The second law of thermodynamics, loosely speaking, states
that the degree of mixing, or disorder, increases more and more, although there is
no exchange of energy. We speak of a well, but not ideally isolated system.

The entropy of a well isolated system increases in the course of time until its
maximal value has been reached. The corresponding state G describes the equilib-
rium between a system and its environment. This Gibbs state G is characterized by

S.W / � S.G/ with trWH D U: (3.25)

G must be such that
dS D �kB tr dW lnG (3.26)

vanishes together with dU D tr dWH and tr dW . By multiplying with appropriate
Lagrange multipliers F and T we arrive at

G D e
.F �H/=kBT : (3.27)

The Lagrange parameter F , the free energy, is determined by demanding
trG D 1. We find

F D �kBT ln e
�H=kBT : (3.28)

The second Lagrange parameter, the temperature T , is indirectly determined by
solving

U D trH e
�H=kBT

tr e
�H=kBT

: (3.29)

The right hand side of Eq. (3.29) increases monotonically with T , and therefore the
temperature is uniquely determined.

4Governed by its own laws.
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3.1.4 Summary

The pure states and the observable properties of a system are represented by vectors
f of a Hilbert space H and by self-adjoint linear operators M W H ! H. The
larger the system, the more difficult it is to prepare pure states. In fact, for large
systems states are always mixtures, or mixed states W . The expectation value
hM i D trWM is a bilinear functional of the observable and the mixed state,
and the first law of thermodynamics is a trivial consequence thereof. We argue
why the entropy S D S.W / is a good measure of how much a state is mixed.
A well, but not ideally isolated system tends to get more and more mixed. The
equilibrium between the system and its environment is characterized by maximal
entropy, and we explicitly work out the corresponding Gibbs stateG. Free energyF
and temperature T show up in a natural way.

3.2 Perturbations

The Hamiltonian of the system under discussion may depend on external parame-
ters, H D H.
/. Such parameters describe the action of the environment onto the
system. However, the feedback, the influence of the system onto its environment,
can safely be neglected. If external parameters, such as an electric field, change
very slowly, the equilibrium will follow, and we speak of a reversible process.
Here we discuss rapid changes. There is not enough time for the system to attain
its equilibrium. In this section we will investigate how a system reacts on rapidly
varying external parameters, in particular the electric field strength of a light wave.

3.2.1 Interaction Picture

Let us reflect on the role of time within the framework of quantum physics. Up
to now we spoke of preparing a system in a state W and then measuring M , the
expectation value being hM i D trWM . Time comes into the game by waiting for
a time span t between preparing the state and measuring an observable.

Heisenberg has described this situation by regarding “waiting for a time span t
and then measuringM ” as a new observable, namelyMt .

Since M and Mt have the same eigenvalues, they are related by a unitary
transformation,

Mt D U
�
t MUt ; (3.30)

where Ut obeys
U
�
t Ut D UtU

�
t D I: (3.31)

I denotes the unit operator. We call Ut the waiting operator.
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Now, first waiting t1 and then t2 is the same as waiting a time span t1 C t2.
Consequently,

Ut2Ct1 D Ut2 Ut1 (3.32)

must hold, with U0 D I . These equations are solved by the exponential function:

Ut D e
� i

„ tH (3.33)

with a self-adjoint operatorH . We have split off the imaginary unit i such that Ut is
unitary with a self-adjoint H . The factor 1=„ is there for historical reasons: energy
H D „˝ and angular frequency ˝ were considered to be different quantities in
classical physics.

Note that we may now rewrite Eq. (3.30) as

Mt D U�tMUt (3.34)

or as
d

dt
Mt D i

„ ŒH;Mt �: (3.35)

In the Heisenberg picture, as described by Eq. (3.34), the expectation value ofM
in a state W with a time delay of t is given by

hM it D trWMt: (3.36)

Schrödinger thought differently. Preparing a state W and then waiting the time
span t defines a state Wt . Because of

hM it D trWMt D trWU�tMUt D trUtW U�tM D trWtM (3.37)

we conclude
Wt D UtW U�t : (3.38)

With this, the Schrödinger equation reads

d

dt
Wt D � i

„ ŒH;Wt �: (3.39)

Either the observables change with time and the states remain constant, so the
Heisenberg picture. Or the observables are constant and the states change with time,
so the Schrödinger picture. What can be measured, expectation values, is the same
in both pictures.

We have expounded these different views on time because there is a third view,
known as the interaction picture, which will help us in tackling perturbations.

In many cases the Hamiltonian Ht can be split into a manageable part H and a
small rest Vt which is considered as a perturbation, possibly depending on time.
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Ht D H C Vt : (3.40)

Primarily we think as Schrödinger of statesWt . We transform into the Heisenberg
picture withH only. If there were no perturbation, the transformed states would not
change with time. If there is a small perturbation, the transformed states will depend
only weakly on time. Let us now formulate this.

Define
Wt.t/ D U�tWtUt ; (3.41)

where Ut is given by Eq. (3.33). The following equation of motion

d

dt
Wt .t/ D � i

„ ŒVt .t/;Wt .t/� (3.42)

has to be fulfilled. Indeed, a small perturbation will result in a small rate of change
only. We shall resort to this in the following subsection.

3.2.2 Linear Response

We assume that the system has been in a Gibbs state before the perturbation Vt was
switched on:

Vt ! 0 and Wt ! G for t ! �1: (3.43)

With this initial condition (3.42) can be integrated to

Wt.t/ D G �
Z t

�1
ds

i

„ ŒVs.s/;Ws.s/�: (3.44)

It is an integral equation for t ! Wt.t/ because this operator-valued function
appears on the left hand and on the right hand side. It lends itself to a power series
expansion.

Without any perturbation, the solution would be Wt.t/ D G. We calculate the
next best approximation by inserting G into the right hand side of Eq. (3.44) and
obtain

Wt.t/ D G �
Z t

�1
ds

i

„ ŒVs.s/; G�: (3.45)

This is the linear response to the perturbation by Vt . We will make more out of it.
Let us first undo the transformation to the interaction picture,

Wt D G �
Z t

�1
ds

i

„ ŒVs.s � t/; G�: (3.46)
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The expectation value of an observableM is given by

trWtM D trGM �
Z t

�1
ds tr G

i

„ ŒM; Vs.s � t/�; (3.47)

or

hM it D hM i �
Z t

�1
ds h i

„ ŒM; Vs.s � t/� i: (3.48)

Expectation values h : : : i without a suffix always refer to the Gibbs state.
Let us introduce the age � D t � s of a perturbation, so that we may rewrite

Eq. (3.48) into

hM it D hM i �
Z 1

0

d� h i

„ ŒM.�/; Vt�� .0/� i: (3.49)

Note that we have time-shifted the expectation value by � according to Eq. (3.41).
We now specialize to a time-dependent perturbation of the form

Ht D H �
X
k


k.t/�k; (3.50)

where 
k D 
k.t/ are real valued functions while the �k are observables, i.e., self-
adjoint operators. The linear response of such a perturbation is described by

hM it D hM i C
Z 1

0

d�
X
k

h i

„ ŒM.�/;�k.0/� i
k.t � �/: (3.51)

3.2.3 Perturbation by Light

Normal matter consists of nuclei and electrons which we enumerate by a D 1; 2; : : :

Particle a is located at xa, has momentum Pa, mass ma and electric charge qa. The
Hamiltonian is well described by

H D
X
a

P2a
2ma

C 1

4��0

X
b>a

qbqa

jxb � xaj : (3.52)

In electric dipole approximation the interaction with an external electric field E is
expressed by

Ht D H �
Z

d3x P.x/ � E.t; x/; (3.53)

where
P.x/ D

X
a

qaxaı3.x � xa/ (3.54)

is the polarization, a field of observables.
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Indeed, the perturbation is of the form (3.50), the “sum” being a sum over the
vector components and a spatial integration.

In optics, the polarization caused by a light wave is of particular interest. Hence
we have to discuss

hPj .x/ it D
Z 1

0

d�
X
k

Z
d3y �jk.�; x; y/ Ek.t � �; y/; (3.55)

where

�jk.�; x; y/ D h i

„ ŒPj .�; x/; Pk.0; y/� i: (3.56)

Note that Pj .�; x/ D U��Pj .x/U� is the time-shifted polarization operator.
We add one more assumption, namely that the unperturbed Gibbs state is

invariant under spatial translations. In this case the influence functions (3.56) depend
on � D x � y only, and we may simplify Eq. (3.55) to

hPj .x/ it D
Z 1

0

d�
X
k

Z
d3� �jk.�; �/ Ek.t � �; x � �/ (3.57)

and Eq. (3.56) to

�jk.�; �/ D h i

„ ŒPj .�; �/; Pk.0; 0/� i: (3.58)

We have dropped a possible static polarization contribution hPj .x/ i since we are
interested in optics.

3.2.4 Susceptibility Tensor

Let us Fourier transform the polarization5 Pj .t; x/ D hPj .x/ it ,

Pj .t; x/ D
Z

d!

2�

Z
d3q

.2�/3
e

�i!t
e

iq � x QPj .!; q/: (3.59)

The electric field is transformed likewise. We find

QPj .!; q/ D �0
X
k

�jk.!; q/ QEk.!; q/: (3.60)

The dielectric susceptibility tensor is

5It should be clear from the context whether we speak of the observable or its expectation value in
the perturbed state Wt .
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�jk.!; q/ D 1

�0

Z 1

0

d�
Z

d3� e
i!t

e
�iq � �

�jk.�; �/: (3.61)

A perturbation by a plane wave causes a response with the same angular and spatial
frequency. The proportionality factor, which depends on ! and q, can be calculated,
in principle. It is the causal6 Fourier transform of the influence matrix �jk which
is the expectation value of a certain commutator in the unperturbed state. This
commutator is made up of space- and time-translated polarization observables.

In the remaining sections of this chapter we discuss general properties of the
dielectric susceptibility. It consists of a refractive and a dissipative part which are
related by a Dispersion relation. In the following section on Fluctuations and
dissipation we show that the dissipative part is never negative and thus causes
absorption of field energy by matter. We come very close to a proof of the
Second law of thermodynamics. We finally discuss Onsager’s relations which are
a consequence of time reversal invariance.

3.2.5 Summary

Time in the context of quantum theory is the span between preparing a state and
measuring a property. In the Heisenberg picture the observables depend on the
time span between preparing and measuring while the Schrödinger picture assumes
time-dependent states. The interaction picture is in-between. If the Hamiltonian
Ht D H C Vt can be split into a manageable part H and a time-dependent small
perturbation Vt , the interaction picture leads to a slowly varying state.

By assuming that the system was in a Gibbs state before Vt was switched on, this
initial condition and the equation of motion can be combined to an integral equation
which lends itself to a power series expansion in the perturbation. As a special
case, the interaction of a light wave with normal matter is studied. One arrives
at explicit expressions for the dielectric susceptibility tensor which is the causal
Fourier transform of a certain commutator evaluated in the unperturbed Gibbs
state.

3.3 Dispersion Relations

A causal function f D f .�/ vanishes for � � 0. The real and the imaginary part of
its Fourier transform are intimately related.

6Only perturbations in the past contribute.
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3.3.1 Causal Functions

A real valued causal function f may be written as

f .�/ D �.�/f .�/; (3.62)

where � D �.�/ is the Heaviside step function. It vanishes for � < 0 and equals 1
for positive arguments. Since it will be used in integrals only, its value for � D 0 is
irrelevant.

The convolution theorem states that the Fourier transform of a product is the
convolution of the Fourier transforms. In our case this means

g.!/ D
Z

du

2�
Q�.! � u/ g.u/ (3.63)

where g denotes the Fourier transform of f .
So, we should work out the Fourier transform of the step function,

Q�.!/ D
Z 1

0

d� e
i!�

: (3.64)

This integral makes no sense, so we redefine it as

Q�.!/ D lim
0<�!0

Z 1

0

d� e
i.! C i�/�

; (3.65)

that is
Q�.!/ D lim

0<�!0

1

� � i!
: (3.66)

Equation (3.66) says that, when integrating over !, the pole at ! D 0 should be
shipped around in the upper complex half-plane.

Back to Eq. (3.63). Skipping the � > 0; � ! 0 prefix we may write

g.!/ D
Z

du

2�i

g.u/

u � ! � i�
: (3.67)

Let us now add and subtract a term which describes avoiding the pole in the upper
half plane:

2

v � i�
D 1

v � i�
C 1

v C i�
C 1

v � i�
� 1

v C i�
: (3.68)

Because of
Z

du

2�i
g.u/

�
1

u � ! � i�
� 1

u � ! C i�

�
D g.!/ (3.69)
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we find

g.!/ D �i Pr
Z

du

�

g.u/

u � !
: (3.70)

Equation (3.69) follows from the residuum theorem. In Eq. (3.70) the principal value
integral is understood. One of various definitions is

Pr
Z

du

�

g.u/

u � ! D
�Z !��

�1
C
Z 1

!C�

�
du

�

g.u/

u � !
; (3.71)

with 0 < � ! 0.
We denote the real part of g by g 0 and the imaginary part by g 00 such that g.!/ D

g 0.!/C ig 00.!/ holds true, with real valued functions g 0 and g 00. With this we may
rewrite Eq. (3.70) as

g 0.!/ D Pr
Z

du

�

g 00.u/
u � !

and g 00.!/ D Pr
Z

du

�

g 0.u/
! � u

: (3.72)

If the causal function f is real, its Fourier transform g obeys

g�.!/ D g.�!/: (3.73)

We then may write

g 0.!/ D Pr
Z 1

0

du

�

2u g 00.u/
u2 � !2

(3.74)

and

g 00.!/ D 2! Pr
Z 1

0

du

�

g 0.u/
!2 � u2

: (3.75)

These so called dispersion relations—we shall soon explain why they are called
so—are consequences of f .t/ D 0 for t < 0 where f is any real valued causal
function and g its Fourier transform. Note that they can be formulated with positive
! and u, i.e., with true frequencies.

3.3.2 Kramers-Kronig Relations

If a system is perturbed by an electric field Ek D Ek.t; x/, it responds by a
polarization Pj D Pj .t; x/. The Fourier components of the two fields are related,
in linear approximation, by QPj D �0

P
k �jk

QEk , see Eq. (3.60). Because of

�jk.!; q/ D 1

�0

Z 1

0

d� e
i!�

Z
d3� e

�iq � �
�jk.�; �/ (3.76)
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each component�jk.!; q/ is the Fourier transform (with respect to time) of a causal
function. Recall Eq. (3.58), i.e.,

�jk.�; �/ D h i

„ ŒPj .�; �/; Pk.0/� i: (3.77)

We therefore may write

�jk.!; q/ D �i Pr
Z

du

�

�jk.u; q/
u � !

: (3.78)

Let us decompose the susceptibility tensor into a Hermitian (prime) and a anti-
Hermitian part (double prime):

� 0
jk D �jk C ��

kj

2
and � 00

jk D �jk � ��
kj

2i
(3.79)

such that �jk D � 0
jk C i� 00

jk , always at .!; q/. Equation (3.78) become

� 0
jk.!; q/ D Pr

Z
du

�

� 00
jk.u; q/

u � !
(3.80)

and

� 00
jk.!; q/ D Pr

Z
du

�

� 0
jk.u; q/

! � u
: (3.81)

The Hermitian contribution � 0
jk causes refraction of light and is therefore called

the refractive part. � 00
jk is called the absorptive or dissipative part of the susceptibility

tensor because it describes the absorption of light by the medium under study.
The Kramers-Kronig relations (3.80) and (3.81) say that both, the refractive and
the absorptive contribution to the susceptibility, necessarily depend non-trivially
on the angular frequency !. Dispersion—the dependency of light propagation on
color—is unavoidable. Moreover, there is no refraction without absorption.

Apart from the phenomenon of optical activity, only the susceptibility for q D 0

is of interest in optics. In what follows we assume q D 0, and we write �jk.!/ for
�jk.!; 0/. Because of

� �
kj .�; �/ D �jk.��;��/ (3.82)

we conclude
��
jk.!/ D �kj .�!/: (3.83)

This is the same as Eq. (3.73) except that now the matrix indexes have to be flipped.
Therefore we may rewrite the Kramers-Kronig relations as

� 0
jk.!/ D Pr

Z 1

0

du

�

2u� 00
jk.u/

u2 � !2 (3.84)
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and

� 00
jk.!/ D 2! Pr

Z 1

0

du

�

� 0
jk.u/

!2 � u2
: (3.85)

Note that the dissipative part � 00
jk.!/ is an odd function of !. It vanishes for ! D 0,

and the refractive part is well defined for ! D 0. �jk D ıjk C � 0
jk.0/ is the static

permittivity. Also note that the susceptibility—both the refractive and the dissipative
part—vanish with ! ! 1.

3.3.3 Summary

A causal function f D f .t/ vanishes for t < 0. Its Fourier transform g D g.!/

then fulfills a dispersion relation. The real part of it can be calculated from the
imaginary part, and vice versa. We apply these purely mathematical findings to the
susceptibility tensor. The Hermitian part, which is responsible for the refraction of
light, is intimately related with the anti-Hermitian part which causes absorption.
There is no refraction without absorption (at possibly different frequencies), and
dispersion is unavoidable. Another consequence of these so-called Kramers-Kronig
relations is that the absorptive contribution to the susceptibility vanishes at zero
frequency, and both parts vanish with ! ! 1.

3.4 Fluctuations and Dissipation

We study processes t ! Mt where M is an observable and t denotes time.
Expectation values are always with respect to a Gibbs state G. We will discuss auto-
and cross-correlations and their Fourier transforms, which are spectral densities. The
anti-Hermitian contribution � 00

jk of the susceptibility tensor is linearly related with
the spectral density matrix Sjk . This relation ensures that the anti-Hermitian part
of the susceptibility tensor indeed causes dissipation, i.e., loss of field energy. We
arrive at a weak formulation of the second law of thermodynamics.

3.4.1 Wiener-Khinchin Theorem

Consider a process Mt D U�tMUt where Ut is the waiting operator7

Ut D e
� i

„ tH : (3.86)

7Note that we look upon time within the framework of the Heisenberg picture.
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H is the energy observable of the system, its Hamiltonian.
The equilibrium state of the system is

G D e
.F �H/=kBT (3.87)

where T denotes its temperature and F , the free energy, serves to normalize G.
Because of

hGMt i D trGMt D trGU�tMUt D trUtGU�tM D trGM (3.88)

the expectation value hMt i D hM i does not depend on time. Therefore the
expectation value of the fluctuation

ıMt D Mt � hM i (3.89)

vanishes. However, h .ıMt/
2 i does not vanish, in general. We generalize this finding

and define

K.�/ D h ıMtC� ıMt i C h ıMt ıMtC� i
2

: (3.90)

The symmetric product .ABCBA/=2 of two observablesA andB is an observable,
and therefore the correlation functionK.�/ is real. It depends on � only, and not on t ,
because the expectation value is calculated with respect to the stationary Gibbs state.

Let us now Fourier-decompose the fluctuations,

ıMt D
Z

d!

2�
e

�i!t
ı QM!; (3.91)

or

ıMtC� D
Z

d! 0

2�
e

i! 0.t C �/
ı QM�

! 0 ; (3.92)

and insert this into Eq. (3.90). The result contains a factor

Z
d! 0

2�

Z
d!

2�
e

i.! 0 � !/t
: (3.93)

This factor does not depend on t if the rest contributes only for ! D ! 0. In other
words,

K.�/ D
Z

d!

2�
e

i!�
S.!/; (3.94)

where S.!/ is defined by

h ı QM�

! 0 ı QM! C ı QM! ı QM�

! 0 i
2

D 2� ı.! 0 � !/ S.!/: (3.95)



74 3 Linear Response Theory

Because of hA�A i � 0 we conclude from Eq. (3.95) that the spectral density
S D S.!/ is nowhere negative,

S.!/ � 0: (3.96)

Equation (3.94) together with Eq. (3.96) is known as Khinchin’s or the Wiener-
Khinchin theorem. The correlation functionK D K.�/ for fluctuations in a station-
ary state is the Fourier transform of a non-negative spectral intensity S D S.!/.
Note that K.0/ D h .ıMt/

2 i � 0 is compatible with the Wiener-Khinchin theorem.
This was the first step towards the fluctuation-dissipation theorem. The state

with respect to which we calculate expectation values had to commute with the
Hamiltonian, i.e., it must be stationary. We next specialize to the Gibbs state.

3.4.2 Kubo-Martin-Schwinger Formula

There is a formal similarity between the Gibbs state Gˇ / e
�ˇH

and the waiting

operatorU� D e
� i

„ �H . Somewhat metaphorically, time t is an imaginary inverse
temperature and the inverse temperature ˇ is an imaginary time.

Let us define

Az D e
� i

„ zH
A e

i
„ zH

(3.97)

for a complex number z. We easily may show

Az e
�ˇH D e

�ˇH
e
ˇH

Az e
�ˇH

; (3.98)

or
AzG D GAz�i„ˇ: (3.99)

We multiply from the right with B and form the trace. The result is

hBAz i D hAz�i„ˇB i; (3.100)

the famous KMS formula named after Kubo, Martin, and Schwinger. This relation
characterizes thermodynamic equilibrium with inverse temperature ˇ. A and B
are arbitrary observables, and z is a complex number. A mathematically rigorous
formulation is beyond the scope of this book. Note that „ˇ is a time.
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3.4.3 Callen-Welton Theorem

Assume a time-dependent Hamiltonian Ht D H � 
.t/M and a Gibbs state at
t ! �1. The linear response to this perturbation, as felt by the observable M , is
given by

hM it D hM i C
Z 1

0

d� � .�/ 
.t � �/; (3.101)

where

� .�/ D i

„ hM� M �M M� i (3.102)

is the influence function. Note that only fluctuations contribute,

� .�/ D i

„ h ıM� ıM � ıM ıM� i: (3.103)

Compare this with the correlation function

K.�/ D 1

2
h ıM� ıM C ıM ıM� i: (3.104)

The former expression is the expectation value of a commutator, the latter of an
anti-commutator. There should be a relation between Eqs. (3.103) and (3.104).

Define
	.�/ D h ıM� ıM i; (3.105)

the Fourier transform of which is

Q	.!/ D
Z

d� e
i!�

	.�/: (3.106)

By declaring

f .z/ D
Z

d!

2�
e

�i!z Q	.!/ (3.107)

we analytically continue Eq. (3.105) to complex arguments z.
On the other hand, Az as defined by Eq. (3.97), gives rise to another function

g.z/ D h ıMz ıM i (3.108)

which can be shown to be analytic within a sufficiently broad stripe around the real
axis. Since f and g coincide on the real axis, they are equal in the complex plane
as well. We may therefore write

h ıM� ıM i D f .�/ and h ıM ıM� i D f .� � i„ˇ/: (3.109)
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After these preparations we may represent the influence function and the
correlation function as

� .�/ D i

„ ff .�/ � f .� � i„ˇ/g (3.110)

and

K.�/ D 1

2
ff .�/C f .� � i„ˇ/g; (3.111)

respectively. Inserting Eq. (3.107) yields

� .�/ D i

„
Z

d!

2�
e

�i!�
�
1 � e

�ˇ„! � Q	.!/ (3.112)

and

K.�/ D 1

2

Z
d!

2�
e

�i!�
�
1C e

�ˇ„! � Q	.!/: (3.113)

We can eliminate the unknown function Q	 by equating

Q	.!/ D „
i

Q� .!/
1 � e

�ˇ„! D 2
QK.!/

1C e
�ˇ„! : (3.114)

Note that the Fourier transform of the correlation function is the spectral density
S D S.!/, see Eq. (3.94) with Eq. (3.96). Therefore

Q� .!/ D 2i

„ S.!/ tanh
ˇ„!
2

(3.115)

holds true.
However, we are not interested in the Fourier transform of the influence function

� D � .�/, but in the (generalized) susceptibility

�.!/ D
Z

d� �.�/ e
i!�

� .�/ D 1

2�i

Z
du

Q� .u/
u � ! � i�

: (3.116)

� in this formula denotes an infinitely small positive number. We easily deduce from
this

2i� 00.!/ D Q� .!/ (3.117)

where � 00.!/ is the imaginary, or dissipative, contribution to the susceptibility.
Equations (3.115) and (3.117) amount to

� 00.!/ D 1

„ tanh

�
ˇ„!
2

�
S.!/: (3.118)
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This is the famous dissipation-fluctuation theorem as derived by Callen and Welton.
� 00.!/ describes the dissipation of energy at angular frequency !, and S.!/ is the
fluctuation spectral density at the same angular frequency. Recall 1=ˇ D kBT .

Note that Eq. (3.118) reads

� 00.!/ D !

2kBT
S.!/ (3.119)

for hight temperatures, or small ˇ. Now „ has vanished, we deal with the limiting
case of classical statistical mechanics. The limiting case for small temperatures
reads

� 00.!/ D sgn .!/

„ S.!/: (3.120)

But bear in mind that the spectral density and the dissipative part of the susceptibility
depend on temperature because the expectation values in a Gibbs state do so.

3.4.4 Interaction with an Electromagnetic Field

If the Gibbs state is perturbed by more than one external parameter, according to

Ht D H �
Z

d3x P.x/ � E.t; x/; (3.121)

say, the preceding arguments may easily be adapted.
We not only assume the Gibbs state to be invariant under time translations, but

also under space translations. Therefore the expectation value hPj .t; x/ i, where
Pj .t; x/ D U�tPj .x/Ut , does not depend on the space and time coordinates.
ıPj .t; x/ D Pj .t; x/� hPj i is a fluctuation because its expectation value vanishes.

Its space-time correlation functions are

Kjk.�; �/ D h ıPj .t C �; x C �/ ıPk.t; x/C : : : i
2

; (3.122)

where the dots stand for the preceding factors in reversed order. The Wiener-
Khinchin theorem now reads

Kjk.�; �/ D
Z

d!

2�

d3q

.2�/3
e

i.!� � q � �/
Sjk.!; q/ (3.123)

where Sjk is a non-negative matrix, S � 0.
The subsequent arguments can be translated one-by-one as well.8 The

fluctuation-dissipation theorem no reads

8Note however that the dielectric susceptibility �jk.!; q/ is defined by splitting off a factor 1=�0
because of D D P C �0E, in usual notation.
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� 00
jk.!; q/ D tanh

�
ˇ„!
2

�
Sjk.!; q/

„�0 : (3.124)

For each argument .!; q/ the dissipative part � 00
jk of the dielectric susceptibility is a

non-negative matrix. As we shall show in section Crystal optics in Chap. 4, � 00
jk is

responsible for the attenuation of electromagnetic excitations in passive matter.
By the way, Eq. (3.124) passes the dimension check. The spectral density S

is a Fourier transform of the polarization correlation function K which has the
dimension of polarization squared. Hence, S=�0 is an energy times seconds. Divided
by „, we obtain a dimensionless quantity, namely a susceptibility.

3.4.5 Summary

The correlation function K.�/ for fluctuations ıMtC� and ıMt is the Fourier
transform of a positive spectral density S.!/. This Wiener-Khinchin theorem holds
true if the expectation value is calculated for a stationary state. The waiting operator
Ut and the Gibbs state Gˇ are rather similar. Both depend exponentially on the
energy H . The Kubo-Martin-Schwinger (KMS) formula is a consequence, in fact,
it characterizes the Gibbs state. As it turns out, there is a close relationship between
the dissipative part of the susceptibility and the spectral density which characterizes
fluctuations. We apply this to the interaction between an electromagnetic field
and matter.

3.5 Onsager Relations

The laws of nature do not prefer one direction of time over another, t ! �t is a
symmetry. If a movie runs backwards, there should be no means of telling so. The
second law of thermodynamics seems to prefer a particular arrow of time, but this
is so because we have specified thermodynamic equilibrium conditions in the past
which gives rise to irreversible processes with production of entropy.

We will study in this section the consequences of time reversal invariance for
susceptibilities and for kinetic coefficients, within the framework of linear response
theory. The findings are called Onsager relations. There is, however, a wider field of
symmetry relations which apply to a different class of irreversible processes. They
refer to fluxes which are driven by gradients of local equilibrium parameters, such
as temperature or chemical potentials.
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3.5.1 Time Reversal

The system under discussion is represented by a Hilbert space H of wave functions
	 D 	.x1�1; x2�2; : : : ; xN�N /. There are N particles at locations xa with polariza-
tion (spin projection) � a. The wave function must be symmetric upon interchange
of equal particles if they are bosons, and antisymmetric for particles of half-integer
spin (fermions).9

To every linear operator A we assign a time-reversed operator A? by

.A	/� D A?	�: (3.125)

As usual in physics, � denotes complex conjugation.
Note that the mapping A ! A? is anti-linear in the sense that A C B maps to

A? C B?, but zA becomes z�A?.
A position operator xa for particle a amounts to the multiplication of the wave

function by the corresponding argument which is real. Therefore x?a D xa holds true.
Linear momentum operators Pa are represented by �i„ra, therefore P?a D �Pa.
This is why time reversal is also known as momentum reversal.

Angular momentum operators change their sign upon time reversal as well. The
magnetic moment of a particle is proportional to a linear combination of orbital and
spin angular momentum both of which change sign. Therefore the magnetization10

of matter obeys M?.x/ D �M.x/. The polarization of matter is the sum of dipole
moments qaxa per unit volume, it transforms as P?.x/ D CP.x/.

Maxwell’s equations are invariant with respect to time reversal. We define

• E?.t; x/ D CE.�t; x/
• B?.t; x/ D �B.�t; x/
• %?.t; x/ D C%.�t; x/
• j?.t; x/ D �j.�t; x/
in usual notation. It is a simple exercise to show that the time reversed fields obey
Maxwell’s equation if the original fields do so.

The action of an electromagnetic field on charged particles, as described by the
Lorentz force

PP D q f E C Px � B g; (3.126)

is compatible with time reversal invariance as well.
The Hamiltonian for ordinary matter is

Hm D
X
a

P2a
2ma

C 1

4��0

X
b>a

qb qa

jxb � xaj ; (3.127)

9Photons, deuterium or helium nuclei are bosons, neutrinos, protons and electrons behave as
fermions.
10Magnetic moment per unit volume.
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where ma, qa, xa and Pa are the mass, charge, location, and linear momentum of
particle a, respectively.

Denote by E and B an external quasi-static electric and magnetic induction field,
respectively. The Hamiltonian for matter in such an external field is

H.E ;B/ D Hm �
Z

d3x E.x/ � P.x/ �
Z

d3xB.x/ � M.x/: (3.128)

From what has been said before we conclude

H?.E;B/ D H.E;�B/: (3.129)

Consequently, a Gibbs state transforms as

G?.E ;B/ D G.E;�B/ (3.130)

while the waiting, or time translation, operator obeys

U?
t .E;B/ D U�t .E;�B/: (3.131)

That the magnetic field has to change sign is clear by now. Substituting the time
argument t by �t justifies why one speaks of time reversal.

We conclude this section with the following observation. If 	 is an eigenfunction
of A with eigenvalue a, then 	� is an eigenfunction of A? with eigenvalue a�.
Hence, if M is an observable, so is M?, and if W represents a mixed state, so
does W ?. Observables are characterized by real eigenvalues. States also have real
eigenvalues, moreover, they are probabilities. It is a simple exercise to prove

trWM D trW ?M?: (3.132)

3.5.2 Symmetries for Susceptibilities

We now discuss a Hamiltonian of the form

Ht D H.E ;B/�
X
s


s.t/Vs: (3.133)

The response to such a perturbation, as felt by Vr , is

hVr it D hVr i C
X
s

Z 1

0

d� �rs.E;BI �/ 
s.t � �/; (3.134)

in linear approximation. The matrix of influence functions is given by
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�rs.E;BI �/ D trG.E;B/ i

„ ŒU�� .E;B/VrU�.E ;B/; Vs�: (3.135)

These response functions depend in a complicated way on the external electric and
induction fields E and B.

With Eq. (3.132) we may write the right hand side as

trG?.E;B/
�

i

„ ŒU�� .E;B/VrU�.E;B/; Vs�
� ?
; (3.136)

which equals

� trG.E;�B/ i

„ ŒU� .E;�B/V ?
r U�� .E;�B/; V ?

s � (3.137)

or

trG.E;�B/ i

„ ŒV
?
s ; U� .E;�B/V ?

r U�� .E ;�B/�: (3.138)

Expression (3.138) may be time-shifted by �� . It then reads

trG.E;�B/ i

„ ŒU�� .E ;�B/V ?
s U�.E ;�B/; V ?

r �: (3.139)

We now assume that the observables Vr have a definite parity under time reversal:

V ?
r D �rVr : (3.140)

The time-reversal parity is either C1 or �1, because of .A?/? D A.
The result of all this is

�rs.E;BI �/ D �r �s �sr .E;�BI �/: (3.141)

By multiplying Eq. (3.141) with the step function �.�/ and Fourier transforming,
we arrive at symmetry relations for susceptibilities:

�rs.E;BI!/ D �r �s �sr .E;�BI!/: (3.142)

They should be read as follows. Perturbing matter by Vs and probing the effect
by Vr is the same as perturbing by Vs and monitoring Vr . However, this is true
only if the direction of an external induction field is reversed as well. If the time
reversal parities of Vr and Vs are different, a minus sign shows up. Note that the
symmetry rules (3.142) apply both to the Hermitian contribution � 0

rs.E;BI!/ and
to the absorptive part � 00

rs.E;BI!/.
We call Eq. (3.142) Onsager relations although they were not derived by him

within the framework of linear response theory. He discussed irreversible processes
of a more general nature. There are generalized forces and generalized fluxes. In
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lowest order, fluxes are linearly related with forces. The corresponding matrix of
kinetic coefficients, which describes direct and cross effects, should be symmetric.
We will address this in the next subsection for external parameters as driving forces.
A further section is dedicated to driving forces which are gradients of equilibrium
parameters, such as temperature or chemical potentials.

3.5.3 Symmetries for Conductivities

Let us define the flux of V by

J D PV D i

„ ŒH; V �; (3.143)

where H is the Hamiltonian of the system under discussion. For example, if V D
P.x/ stands for the electric polarization, then

J.x/ D PP.x/ D
X
a

qa Pxaı3.xa � x/ (3.144)

are the three components of the electric current density.
Now, the expectation value of a commutator vanishes, there are no fluxes in

thermal equilibrium.11 Therefore, h J i D 0. With

V.t/ D U�tV Ut (3.145)

we conclude

J.t/ D PV .t/ D d

dt
V .t/: (3.146)

Note that the dot above a symbol for an observable denotes its rate of change
with respect to time, in the language of the Schrödinger picture. In the Heisenberg
picture, where observables—not states—depend on time, the same dot refers to the
derivative with respect to time.

Having said this, we may work out

Jr.t/ D h Jr it D
X
s

Z 1

0

d� P�rs.�/ 
s.t � �/: (3.147)

We refer to the perturbation as described by Eq. (3.133), and we have dropped, for
the moment, the quasi-static external fields E as well as B. The influence functions
P�rs here are the time derivatives of the expressions given by Eq. (3.135). By Fourier

11Super-conductivity or super-fluidity do not fit into this framework.
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transforming Eq. (3.147) we arrive at

QJr .!/ D
X
s

�rs Q
s.!/ (3.148)

with the conductivity matrix

�rs.!/ D
Z 1

0

d� e
i!� P�rs.�/: (3.149)

We differentiate relation (3.141) with respect to time, multiply with the step
function � D �.�/ and perform the Fourier transform. We obtain the following
Onsager relations for conductivities:

�rs.E;BI!/ D �r�s �sr .E;�BI!/: (3.150)

We shall discuss, in section Ohm’s law and Hall effect, an example of an Onsager
relation for conductivities.

3.5.4 Symmetries for Kinetic Coefficients

Onsager’s relations in a more general sense include all sorts of driving forces, not
only perturbations by varying external parameters.12

Just look at the expression (1.124) for the entropy production rate per unit
volume. It may be written as

�.S/ D
X
a

˚aXa; (3.151)

where the ˚a are fluxes and the Xa play the role of driving forces. Normally, in
global thermodynamic equilibrium, the forces as well as the fluxes vanish.

The contribution of heat conduction may serve as an example. It reads

�.S/ D Ju � r 1

T
C � � � (3.152)

In global thermodynamic equilibrium the temperature field would be constant and
there is no gradient of the temperature field. However, if there are temperature

12Every system has an environment. There are actions of the environment on the system such that
the re-action of the system on the environment can be neglected. A parameter describing such a
one-sided action of the environment on a system is called external. Just think of a static electric
field E produced by a plate capacitor the voltage of which is kept constant.
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gradients, they will drive heat13 and possibly other currents. In the current context
we call Ju a flux and r .1=T / a driving force.

If the perturbations of the thermodynamic equilibrium are small, or if we are
close to equilibrium, the following simple argument is rather plausible. Without
driving forces Xa there should be no fluxes. If the driving forces are small, the
fluxes should be small es well. Therefore, close to thermodynamic equilibriums we
expect a linear relationship between fluxes and driving forces,

˚b D
X
a

KbaXa: (3.153)

In Chap. 2 we have discussed quite a few examples.
The elements of the matrix K in Eq. (3.153) are kinetic coefficients. In fact, the

matrixK of kinetic coefficients should have been defined by

Kba D @2�.S/

@Xb@Xa
: (3.154)

It is therefore symmetric. Supporting arguments are:

• Any real valued matrix K may be split into a symmetric and an anti-symmetric
part. The latter would not contribute to entropy production and should vanish.

• X D LX 0 defines new driving forces as linear combinations of old ones.14 In
order to guarantee Eq. (3.151), namely �.S/ D ˚�X, we have to set ˚ 0 D L�˚ .
Now, ˚ 0 D L�˚ D L�KX D L�KLX 0. The new matrix of kinetic coefficients
is K 0 D L�KL. It is symmetric if K is. Onsager’s relations are stable against
linear re-definitions of driving forces.

• If the driving force is an external parameter, such as an electric field strength, we
have already demonstrated Onsager’s theorem.

Onsager’s very general statement on the matrix of kinetic coefficients reads as
follows:

Kba.E ;B/ D Kab.E;�B/: (3.155)

We will not try to prove it because this would open up a new field, that of
non-equilibrium thermodynamics. Onsager’s arguments for his theorem rely on the
ingredients which we have referred to in the preceding sections: first order response
to perturbations of global equilibrium, and symmetry with respect to time reversal.

The matrix K of kinetic coefficients is not only symmetric, but also positive,
as required by the second law of thermodynamics. Note that with K the matrix
K 0 D LKL� is positive as well.

13The heat current density Ju is nothing else but the conduction part of the internal energy current
density.
14The square matrix L must not be singular.
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Temperature gradients, for example, may drive heat currents as well as electric
currents. Likewise, the gradient of an electrochemical potential will generate an
electric as well as a heat current. The cross kinetic coefficients are related by
Onsager’s relations. We shall discuss this in greater detail in the example section
on Thomson, Seebeck and Peltier Effect.

3.5.5 Summary

Small perturbations of the thermal equilibrium state of a system will lead to
small non-equilibrium effects. Such effects are described by susceptibilities, by
conductivities, and by kinetic coefficients. All of them are matrices the first index of
which enumerates the sensor and the second index enumerates the driver. The effect
of driver a on sensor b is the same as the effect of driver b on sensor a. However,
this is true only if interchanging a and b is accompanied by reversing an external
induction field.



Chapter 4
Examples

This is a collection of short articles on various aspects of continuum physics. They
are intended to familiarize the reader with applications, in contrast to the more
formal approach of the preceding chapters. The collection is neither complete nor
systematic, we therefore simply order the articles alphabetically by their titles. The
examples are standard problems in

• Acoustics

– Sound in air
– Bulk and surface waves in solids
– Vibrating strings and membranes

• Optics

– Crystal optics
– Pockels effect
– Faraday effect
– Optical activity
– Metamaterials
– Dielectric planar waveguides
– Surface dielectric waveguide

• Aero- and hydrodynamics

– Archimedes’ principle
– Bernoulli’s law
– Hagen-Poiseuille law
– Stoke’s law
– Reynold’s number
– White dwarfs

P. Hertel, Continuum Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-29500-3 4, © Springer-Verlag Berlin Heidelberg 2012
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• Elasticity

– Elasticity moduli
– Beam bending and buckling
– Stress concentration

• Heat conduction and diffusion

– Fourier’s solution of a heat conduction problem
– Ice layer
– Reactions and diffusion

• Charge conduction

– Ohm’s law and Hall effect
– Thomson, Seebeck and Peltier effect

• Fluctuations

– Brownian motion
– Thermal noise in a resistor

One could also group the articles by the type of differential equation to be
solved: ordinary or partial, the latter elliptical, parabolic or hyperbolic, or of Stefan
type. Other likewise sensible grouping principles would be by substance (fluid,
solid, conducting and so forth) or by transported quantity (particles, electric charge,
momentum, internal energy, electromagnetic field energy).

However, the world, even if looked upon by a physicist, cannot be categorized
convincingly into compartments, and so we order our topics very pragmatically,
namely alphabetically by title. I tried to cover the basics of what is considered to be
continuum physics and illustrate it by 27 articles. These examples are chosen such
that as many aspects as possible are touched.

One article is found here because there is no better place, a discussion on Natural
units, also known as atomic units. After all, the properties of normal matter are
described by the quantum theory of electrostatic interaction. Therefore, any sensible
result is a number multiplying a product of powers of „, e, m and 4��0, that is,
Plank’s constant, the elementary charge, the electron mass and the constant showing
up in Coulomb’s force law.

Occasionally we cite values of physical constants. They are taken mostly from
the tables of Kaye and Laby [5]. These are concise and complete enough for our
purpose. Moreover, they are published by the National Physical Laboratory in the
World Wide Web (http://www.kayelaby.npl.co.uk/).

4.1 Archimedes’ Principle

Archimedes of Syracuse, who lived in the Greek colony on Sicily, was a genius
mathematician and physicist. Among other mathematical laws and practical appli-
cations he found out that the buoyancy of a body in water is equal to the weight of

http://www.kayelaby.npl.co.uk/
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the displaced liquid. With it he could show that the king’s crown did not consist of
gold because it displaced more water than an equally heavy bar of gold. This made
him famous.

It is a seemingly simple task to prove Archimedes’ principle. However, a general
formal derivation is either wrong or restricted to incompressible fluids, such as
water. Nevertheless, the principle is also applied to calculate the buoyant force of
balloons in air which is highly compressible. Most elementary text books avoid this
topic.

A fluid is described by the momentum balance equation (2.2):

%.@tvk C vi@ivk/ D �@kp C fk C @iT
00
ik : (4.1)

The reversible part of the stress tensor is T 0
ik D �pıik , it does not support shear

forces. Recall that % is the mass density, vk the velocity field, p the pressure, and
T 00
ik describes friction. fk is the external force per unit volume.

We look for a static solution. The liquid does not flow. Therefore the velocity
field vanishes and there is no friction. Thus we have to solve

� @kp C fk D 0 (4.2)

with

f1 D f2 D 0 and f3 D �%g; (4.3)

where g D 9:81 m s�1 is the acceleration constant at the earth’s surface. Increasing
x means upwards.

We ask for the force exercised by the fluid on a totally immersed rigid body
occupying the volume1 V . It is given by the surface integral

Fk D
Z

@V
dAiT 0

ik D �
Z

@V
dAkp: (4.4)

4.1.1 Erroneous Reasoning

One is tempted to write

Fk D �
Z

@V
dAkp D �

Z

V
dV @kp D gı3k

Z

V
dV % D gMı3k: (4.5)

1There is no overall accepted terminology which distinguishes between a three-dimensional
manifold V , a volume, and its content V , likewise called volume.
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M is the mass of the displaced fluid, gM its weight, and the buoyancy is directed
opposite to the gravitational force. So far, so good.

However, M is an integral over the interior of the rigid body, so what is the
meaning of % there? Archimedes speaks of the mass of the displaced fluid, hence %
stands for the mass of the fluid in the absence of an immersed body, or what? All
this makes sense only if the mass density is a constant, if the fluid is incompressible.
Then the mass density outside V and inside V—if the volume were flooded—are the
same. However, we did not require that the mass density is constant.

Apart from ambiguities of interpretation, there is a mathematical glitch in
Eq. (4.5). The Gauss theorem was applied which makes sense only for smooth
(continuously differentiable) fields. The mass density certainly is not differentiable,
it will jump at the surface @V . The result (4.5) seems to be all right, but the way
towards it is not.

4.1.2 Incompressible Fluid

If the fluid is supposed to be incompressible, which is a very good approximation for
water, the proof of Archimedes’ principle is simple. Recall that an incompressible
fluid is characterized by the material equation % = const or by @k% D 0.

Equation (4.3) can be reformulated as

fk D �%@k	g D �@k%	g where 	g.x/ D gx3: (4.6)

Equation (4.2) now reads

@k.p C %gx3/ D 0; (4.7)

which implies

p.x/ D p0 � %gx3 (4.8)

and

Fk D %g

Z

@V
dAk x3: (4.9)

This time a continuously differentiable field is to be integrated, and we easily
work out

Z

@V
dAk x3 D

Z

V
dV @kx3 D ı3kV ; (4.10)

where V stands for the volume of the immersed body. Equations (4.9) and (4.10)
say F1 D F2 D 0 and F3 D g%V . This is Archimedes’ principle.
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4.1.3 Compressible Fluid

We want to find out whether Archimedes’ principle is valid for air as well which we
model as an ideal gas:

p D %

M
RT: (4.11)

M is the molar mass and R D 8:314 J K�1 mol�1 the universal gas constant, see
Eq. (2.10). The molar mass for dry air is 0:02897 kg mol�1.

We have to solve the equation for hydrostatic equilibrium

p 0 D �g% D �gM
RT

p; (4.12)

where the prime denotes differentiation with respect to height x3. For a model
atmosphere with constant temperature the solution is

p.x/ D p0 e
��x3 where � D gM

RT
; (4.13)

the barometric formula. Although it does not describe the atmosphere well, it may
serve to derive Archimedes’ buoyancy formula and corrections. We will discuss a
far more realistic model of the atmosphere in another article.

We have to work out the following integral:

Fk D �
Z

@V
dAk p D �

Z

V
dV @k p: (4.14)

Assume that the rigid body is positioned at x D Nx. We introduce local, or center of
buoyancy coordinates � by x D Nx C � in such a way that

Z

V
d3� �k D 0: (4.15)

With this one may write

Fk D �p. Nx/
Z

V
d3� @k e

���3 ; (4.16)

therefore

Fk D �p. Nx/ı3k
Z

V
d3�

�
1 � ��3 C �2

2
�23 C : : :

�
: (4.17)



92 4 Examples

The first term gives

F3 D �p. Nx/V D g%. Nx/V ; (4.18)

as stated by Archimedes’ principle. The second term vanishes. The third term
provides a correction,

F3 D g%. Nx/V
�
1C �2

2V

Z

V
d3� �23 C : : :

�
: (4.19)

If the object has a size `, the correction will be of order �2`2. With 1=�D 8:76 km
for T D 300K, the correction is tiny and can safely be neglected. Other models of
the atmosphere allow a similar observation.

We conclude that Archimedes’ principle holds true both for incompressible and
highly compressible fluids, such as water or air.

4.2 Beam Bending and Buckling

A beam,2 or member, or rod, is a long body of usually constant cross section to be
used in machines and structures of all kind. It serves to guide momentum currents,
i.e., transmit mechanical forces. Let it be wood, reinforced concrete or steel: beams
are used to build houses and their roofs, from huts to skyscrapers, you find them in
cranes, bridges, power line masts, sailing boats, airplanes, ships and cars, and so on.
The theory of elastic beams, as developed by Euler and Bernoulli, provides a tool
for the analysis of stresses within the beam for given load and boundary conditions,
it is the key element of structural engineering. The aim of this short article is to
embed beam theory into the general framework of continuum physics. We follow
the line of arguments of Landau and Lifshitz [6].

A straight beam, when being pressed upon by a force, will deform accordingly,
remaining straight. However, if the force exceeds a certain limit, the beam tends
to bend and finally to buckle and break. We will discuss this phenomenon in more
detail, also because it is an example of spontaneous symmetry breaking.

4.2.1 Beam Theory

The undeformed beam is a cylinder of cross section ˝ and length `. Its axis is
parameterized by z, the cross section by x; y such that x; y; z form a Cartesian
coordinate system. The origin of the cross section coordinates is chosen such that

2Not to be confused with a beam of light or particles.
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Z

˝

dAx D
Z

˝

dAy D 0: (4.20)

dA D dx dy is the area element. The first momenta will vanish. The second
momenta are

Ix D
Z

˝

dAy2 and Iy D
Z

˝

dAx2: (4.21)

The x; y coordinate axes shall be chosen such that the integral of xy over the cross
section vanishes which is always possible. By Eq. (4.20) and the latter requirement
we have defined the cross section coordinates uniquely.3 The undeformed beam is
the region x; y 2 ˝ and z 2 Œ0; `�.

A rectangular beam, for example, is described by x 2 Œ�a=2; a=2� and y 2
Œ�b=2; b=2�. Obviously the first momenta vanish. The second momenta are

Ix D 1

12
a3b and Iy D 1

12
ab3; (4.22)

while the integral of xy vanishes, as it should.
The line .x; y; z/ D .0; 0; z/ is the beam axis. If the beam is weakly bent, the

axis remains unstressed, as we shall see. Therefore, the beam axis and the so called
neutral fiber are one and the same.

Bending Momentum and Elastic Energy

Let us discuss a short piece of the beam at z. Denote by R D R.z/ the radius of
curvature. We assume bending in the x; z plane. Note that R refers to the beam axis.
The radius of curvature for position x is R C x. If follows that the distance dz on
the beam axis becomes, after bending, the distance

dz 0 D R C x

R
dz D

�
1C x

R

�
dz; (4.23)

because tangential lengths change by the ratio R.x/=R.0/ D .R C x/=R. The
relative change by bending is

Szz D dz 0

dz
D x

R
: (4.24)

As announced before, the longitudinal strain vanishes at the beam axis. It varies
linearly with the x coordinate multiplied by � D R�1 which measures curvature.

3Up to interchanging x with y or x ! �x or y ! �y or both.
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The stress corresponding to Eq. (4.24) is

Tzz D E
x

R
: (4.25)

This justifies our choice of the beam axis according to Eq. (4.20): it suffers no stress
upon bending.

The components Txx; Txy D Tyx and Tyy vanish at the boundary @˝ . Because
the radius of curvature is large with respect to x; y within the beam cross section, the
boundary values are to be interpolated linearly. Hence, Txx; Txy D Tyx and Tyy
vanish everywhere, not only at the boundary. A similar argument leads to Txz D
Tzx D Tyz D Tzy D 0. The stress tensor has no other non-vanishing element but Tzz.
The corresponding strain tensor is

Sjk D @j uk C @kuj
2

D
0
@

�� 0 0

0 �� 0
0 0 1

1
A x

R
; (4.26)

according to Hooke’s law. � is Poisson’s ratio. It can be integrated to a displacement
field u.x; y; z/, therefore, the compatibility conditions for the stress tensor are met.

The torque, or bending moment, exercised on the cross section is

My D
Z

˝

dAxTzz D E

R
Iy; (4.27)

where we have used Eqs. (4.25) and (4.21). Since bending takes place in the x; z
plane, the analogous bending momentMx vanishes.

Elastic Energy

Generally, the contribution of deformation to the free energy F is described by

dF D
Z

dV TjkdSjk; (4.28)

which, for a linear medium, can be integrated to

Fel D 1

2

Z
dV TjkSjk: (4.29)

In our case the elastic energy per unit beam length is

dFbnd

dz
D E

2R2

Z

˝

dAx2 D EIy

2R2
D M2

y

2EIy
: (4.30)

Note that E and Iy are constants while R or My depend on z.
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Before bending, the neutral fiber, or beam axis, was the curve z ! .0; 0; z/. After
bending, the same neutral fiber is described by

z ! �.s/ D .X.z/; Y.z/; z/: (4.31)

Let us again specialize to bending in the x; z plane, i.e., to Y.z/ D 0. The tangent
vector is

t.z/ D d�.z/

dz
D
0
@
X 0.z/
0

1

1
A: (4.32)

It is almost a unit vector because

jtj D
p
1CX 02 � 1; (4.33)

since we assumed that the beam is bent just weakly. Put otherwise, the arclength
increment ds and dz are nearly the same,

dz D
p
1CX 02ds D ds C 1

2
X 02ds � ds: (4.34)

Consequently, the radius of curvature is determined by

1

R.z/
D �.z/ D ˙

ˇ̌
ˇ̌dt.z/

dz

ˇ̌
ˇ̌ D X 00.z/: (4.35)

The plus or minus sign takes into account that the center of the curvature circle may
be to the right or left of the curve. The elastic energy can thus be expressed as

Fbnd D E

2

Z `

0

dz
˚
IyX

00.z/2 C IxY
00.z/2

�
; (4.36)

for simultaneous bending in the x; z and in the y; z planes.

External Forces

There may be external forces acting on the beam, perpendicularly or longitudinally.
A perpendicular external force per unit length with components Kx D Kx.z/ and
Ky D Ky.z/ contributes to the free energy with

Fprp D �
Z `

0

dz
˚
Kx.z/X.z/CKy.z/Y.z/

�
: (4.37)
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The work done by the longitudinal force T is T
`. The latter factor, the amount by
which the beam is stretched, is given by


` D
Z `

0

dz
dz � ds

dz
D 1

2

Z `

0

dz
1

2

n
X 0.z/2 C Y 0.z/2

o
: (4.38)

Hence the contribution of a longitudinal force T to the free energy is

Flon D T

2

Z `

0

dz
n
X 0.z/2 C Y 0.z/2

o
: (4.39)

T here stands for tension, not for stress or temperature.

4.2.2 Equilibrium

At the equilibrium configuration the free energy of a system attains a minimum.
In our case, the variation ıF has to vanish for arbitrary small deviations ıX and ıY
from their equilibrium value. ıX and ıY should be compatible with the boundary
conditions of the special problem under study. On either side of the beam, at z D 0

and at z D `, one of three boundary conditions shall be realized:

• Free: X 00 D 0 and X 000 D 0,
• Fixed: X D 0 and X 00 D 0,
• Clamped: X D 0 and X 0 D 0,

and analogously for Y . For example, when partially integrating

ı

Z `

0

dzX 002 D 2

Z `

0

dzX 00ıX 00 D �2
Z `

0

dzX 000ıX 0; (4.40)

the terms X 00.`/ıX 0.`/ and X 00.0/ıX 0.0/ vanish for free, fixed and clamped
boundary conditions. Partially integrating once more gives

ı

Z `

0

dzX 002 D 2

Z `

0

dzX 0000ıX; (4.41)

because X 000ıX vanishes for x D 0 and x D ` if the beam there is free, fixed, or
clamped.

For a beam bent in the x; z plane, the free energy to minimize is

F D
Z `

0

dz

�
EIy

2
X 00.z/2 �Kx.z/X.z/C T

2
X 0.z/2

�
: (4.42)
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With one of the above mentioned boundary conditions for z D 0 and one of them
for z D ` we find

ıF D
Z `

0

dz
˚
EIyX

0000.z/ �Kx � TX 00.x/
�
ıX D 0; (4.43)

which results in

EIyX
0000.z/ D TX 00.z/CKx.z/; (4.44)

and, by an identical line of arguments, in

EIxY
0000.z/ D T Y 00.z/CKy.z/: (4.45)

Recall that E is Young’s elasticity module. Iy and Ix are moments as defined by
Eq. (4.21). Kx and Ky denote external perpendicular forces per unit length in x
or y direction. T is a force in longitudinal direction, usually drawing (T > 0) or
pressing (T < 0) at the front end z D `. The neutral fiber of the undeformed bar,
parameterized by z, is deflected by X.z/ and Y.z/ in x and y direction, respectively.
Equations (4.44) and (4.45) are approximations for weakly bent slender beams.

4.2.3 An Example

Think about a cantilever of length `. It is clamped at z D 0, free at z D ` and bent
by its own weight. We have to solve

EIyX
0000.z/ D Kx where Kx D �g%A: (4.46)

g is the acceleration due to gravity, % denotes mass density, and A is the cantilever’s
cross section area. The boundary conditions to be observed are

X.0/ D 0 , X 0.0/ D 0 , X 00.`/ D 0 and X 000.`/ D 0: (4.47)

We try a polynomial of degree four such that the fourth derivative is a constant. The
boundary conditions at z D 0 and the differential equation suggest

X.z/ D � g%A

24EIy

˚
z4 C a`z3 C b`2z2

�
: (4.48)

The boundary conditions at z D ` require a D �4 and b D 6. The solution therefore
reads

X.z/ D � g%A

24EIy

˚
z4 � 4`z3 C 6`2z2

�
: (4.49)
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With � D z=` we may rewrite this into

X.z/ D �g%A`
4

8EIy

�
1

3
�2 � 4

3
� C 2

�
�2: (4.50)

The expression in � increases monotonically from zero to one, therefore, the factor
in front of the curly bracket is the maximal cantilever deflection.

4.2.4 Buckling Instability

We now discuss a thin rod without lateral forces under pressure. Denote byF D �T
the longitudinal compressing force exerted on the front end at x D `. One has to
solve

EIyX
0000 C FX 00 D 0: (4.51)

We demand the rod to be fixed (but not clamped) at both ends, i.e.,

X.0/ D X.`/ D 0 and X 00.0/ D X 00.`/ D 0: (4.52)

The solution of Eq. (4.51) is a linear combination of its four fundamental solutions,
namely

X.z/ D aC bz C c cos qz C d sin qz with q D
s

F

EIy
: (4.53)

Now, X 00.0/ D 0 says c D 0. X.0/ D 0 requires a D 0. X 00.`/ D 0 may be
satisfied either with d D 0 or with q` D n� for n D 1; 2; : : : The boundary
conditionX.`/ D 0 makes b to vanish.

Define the critical force by

Fcr D �2EIy

`2
: (4.54)

If F < Fcr, the second alternative for satisfying X 00.`/ D 0 is impossible, and
we have to choose d D 0. Our problem then has the solutionX.z/ D 0. The rod can
stand the load and does not bend. This is what we expect from a pillar: it carries its
load, gets a bit shorter and broader, but remains straight.

If F D Fcr, the solution is

X.z/ D d sin qz with q D
s
Fcr

EIy
; (4.55)

for arbitrary d .
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Fig. 4.1 A thin rod with fixed (not clamped) boundary conditions is compressed by a longitudinal
force F . The deflection is described by X.z/ D d sin.�z=`/. As long as the force is smaller than
the critical value Fcr the rod remains straight, d D 0. For larger forces, d increases rapidly and
leading finally to buckling. Outside the shaded region the approximation of small bending is no
longer applicable

If the load surpasses the critical value, F > Fcr, the sinus-like beam deflection
gets larger and larger, and our equations for small deflection are no longer valid.
In fact, the rod will buckle. The straight rod still is a solution to the problem, but it
is unstable.

This phenomenon of spontaneous symmetry breaking was discovered by
Leonhard Euler. We speak of spontaneous symmetry breaking because the mapping
X ! �X is a symmetry of the differential equation (4.51) as well as of the
boundary conditions (4.52). If X is as good as �X , we expect the solution X D 0.
This is true for forces below the critical value. If the force, however, attains the
critical value, there are competing non-symmetric solutions. The symmetry is
broken spontaneously and not by applying a lateral force Kx. See Fig. 4.1 for this
bifurcation type instability.

By the way, if Ix should be smaller than Iy , buckling occurs in the y; z plane, and
the critical force is expression (4.54) wit Ix instead of Iy . The critical force depends
on the boundary conditions for the rod. For example, if both ends are clamped, one
obtains

Fcr D 4�2EIy

`2
: (4.56)

This appears to be reasonable. A rod which is clamped at both ends should be less
prone to buckling.
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4.3 Bernoulli’s Law

Daniel Bernoulli was a member of a large family of learned persons who lived in
various European countries: The Netherlands, Switzerland, Italy, Germany, Russia
and others. His most famous book is Hydrodynamica which was published in 1738
in Latin and contains the well-known law which is related with his name. It states,
in modern language, that the sum of the kinetic energy density and pressure remains
constant if the material point travels along its streamline:

%

2
v2 C p D const: (4.57)

The assumptions for this to be true are

• The medium is a fluid.
• The fluid is incompressible.
• It is also inviscid, i.e., there is no internal friction or it can be neglected.
• The velocity field is stationary.

An incompressible medium has an invariable mass density, its velocity field must
be divergence free:

@i vi D 0: (4.58)

Interestingly, we must not resort to this.
The stress tensor Tik D T 0

ik C T 00
ik has two contributions. The latter, which

describes internal friction, vanishes by assumption. The former is given by

T 0
ik D �pıik; (4.59)

where p denotes the pressure field.
With these simplifications the momentum balance equation is

%vi@ivk D �@kp; (4.60)

where we ignore external forces for the moment.
Now, because we consider a stationary situation, the effect of @t vanishes, and

the substantial time derivative operator is

Dt D vi@i : (4.61)

Therefore,

%Dt vk D �@kp (4.62)
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holds true and consequently

Dt

%

2
vkvk D %vk Dt vk D �vk@kp D � Dtp: (4.63)

This is Bernoulli’s law:

Dt

n%
2

v2 C p
o

D 0: (4.64)

The sum of kinetic energy density and pressure for a material point is constant as
observed by a co-moving observer. Recall that this has been demonstrated only for
an incompressible inviscid fluid and for a stationary velocity field:

• Stationary, because we have set @t D 0.
• Inviscid, because we did not take T 00

ik into account.
• Fluid, because we identified T 0

ik with �pıik .
• Incompressible, because we had to treat % as a constant.

If there is an external conservative force field fk D �@k	, such as produced by
gravitation, than Eq. (4.64) must be changed to

Dt

n%
2

v2 C p C 	
o

D 0: (4.65)

The Bernoulli law is often applied to compressible media as well. Practically
all popular explanations of how an airplane wing produces an upward force refer
to it. But bear in mind that this is an oversimplification. Engineers who construct
airplanes know better.

4.4 Brownian Motion

In 1905 Albert Einstein published three seminal papers in Annalen der Physik. One,
On the Electrodynamics of moving bodies, revolutionized the concept of space and
time. Another one, On a Heuristic Point of View Concerning the Production and
Transformation of Light, suggested that light is made up of particles which we call
photons today. The third important paper4 showed that the molecular theory of heat
predicts stochastic motion of particles suspended in a resting liquid.

Small particles which are suspended in water indeed move in a chaotic way.
The Scottish botanist Robert Brown had discovered this in 1827 when observing

4Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden
Flüssigkeiten suspendierten Teilchen a rough translation of which is On the movement of particles
suspended in a resting liquid as required by the molecular-kinetic theory of heat.
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Fig. 4.2 A simulated random walk of a Brownian particle. The starting point .x; y/ D .0; 0/ is
marked by a filled circle, the end point after 1,000 observations by a white circle

pollen grains, although he was not the first. At first this motion5 was interpreted
as a sign of life, but it soon turned out that powders from ancient rocks showed
the same phenomenon. It was Albert Einstein who demonstrated that the small
particles did not move on their own, but were pushed by the moving molecules
of the environment. He predicted that the displacement grows proportional to the
square root of time and calculated an expression for the proportionality constant.

His predictions where later experimentally verified and allowed to determine the
value of the Boltzmann constant kB. Since Avogadro’s number NA, the number of
particles for one mole, is related with the universal gas constant6 byR D NAkB, the
mass of the proton could be calculated. Einstein’s investigation of Brownian motion
was the first concrete step to relate continuum physics with particle physics. For this
reason I have included the present article. Diffusion is mass-wise Brownian motion.
Brownian motion is diffusion of a single particle. Figure 4.2 shows such a random
walk.

5The term Brownian movement is used in the literature as well.
6A diluted gas of � moles at temperature T within a vessel of volume V exerts a pressure
pD �RTV .
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4.4.1 Einstein’s Explanation

So let us reconstruct Einstein’s arguments. In order to keep the discussion as simple
as possible, we restrict ourselves to the motion in one dimension.

At time t D 0 the Brownian particle is at rest and situated at x D 0. After a time
interval �1 it suffers a collision with a molecule of the environment which translates
it by s1, until, after a time interval �2, it suffers another collision which translates it
by s2, and so forth.

After the nth collision the Brownian particle has been moved by the environ-
ment to

xn D
nX

jD1
sj ; (4.66)

and this location corresponds to time

tn D
nX

jD1
�j : (4.67)

We assume that the �j are independent and equally distributed random variables
with expectation value h �j i D � . We likewise assume that the displacements sj
are independent and equally distributed random variables with expectation values
h sj i D 0 and variance h s2j i D s2.

The law of large numbers states

lim
n!1

tn

n
D �: (4.68)

The central limit theorem states that the probability distribution pn.z/ for xn=
p
n

converges towards the normal distribution p.z/ with variance s2 which is

p.z/ D 1p
2�s2

e
�z2=2s2

: (4.69)

The probability distribution for the location xn therefore is

Gn.x/ � 1p
2�ns2

e
�x2=2ns2

: (4.70)

We replace n by t=� , according to Eq. (4.68), and obtain for the limit of Gn the
following expression:

G.t; x/ D 1p
4�Dt

e
�x2=4Dt

: (4.71)
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We have set

D D s2

2�
: (4.72)

Recall that � D h �j i is the average time between collisions of the environment’s
molecules with the Brownian particle. The displacement of the Brownian particle
between two subsequent collision h sj i vanishes on the average. However, its
variance h s2j i D s2 is positive.

The Brownian particle, which at time t D 0 was located at x D 0, will be found
later within the interval Œx; x C dx� with probability dx G.t; x/.

In three dimension Eq. (4.71) reads

G.t;x/ D G.t; x1/G.t; x2/G.t; x3/ D .4�Dt/�3=2 e
�x2=4Dt

: (4.73)

This function obeys the diffusion equation

PG D D
G (4.74)

with the initial condition

G.0;x/ D ı3.x/: (4.75)

With n0 D n.0;x/ as the initial distribution of particles we easily arrive at the
following expression for the particle distribution at time t :

n.t; x/ D
Z

d3y G.t;x � y/ n0.y/: (4.76)

Indeed, Eq. (4.74) warrants that Eq. (4.76) satisfies the diffusion equation, and
Eq. (4.75) guarantees n.0;x/ D n0.x/.

We have plotted in Fig. 4.3 a simulated cloud of identical Brownian particles
which all have started at the same point and randomly walked for a certain time in
the x; y-plane.

Back to Eq. (4.71). We work out

h x.t/2 i D
Z
dx G.t; x/ x2 D 2Dt: (4.77)

Hence the Brownian particle, as observed in the x; y plane of the microscope, drifts
away from its origin according to

r.t/ D
p

h x.t/2 i C h y.t/2 i D 2
p
Dt: (4.78)
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Fig. 4.3 A cloud of 1,000 Brownian particles which all started at the same location (filled circle).
Their positions in the .x; y/-plane after a certain time are represented by small white circles.
Diffusion is mass-wise Brownian motion

This formula was Einstein’s first contribution to the theory of Brownian motion:
the square root time dependence, and not to underestimate, the interpretation in
terms of expectation values. A measurement of Brownian motion must be repeated
very often such that the averaged results become reliable.

4.4.2 The Diffusion Coefficient

We now recapitulate Einstein’s arguments for the interpretation of the diffusion
coefficientD.

The Brownian particles are spheres of radius R and effective mass7 m. They
swim in a medium with viscosity � and temperature T .

7True mass minus mass of displaced liquid.
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According to the rules of thermodynamics the density of Brownian particles at
height z is

n.z/ D n.0/ e
�mgz=kBT : (4.79)

This will produce a diffusion current density

j d.z/ D �Dn 0.z/ D Dmg

kBT
n.z/: (4.80)

On the other hand, Brownian particles fall down with a velocity v which is governed
by mgD 6��Rv. See the article on Stokes’ law. The corresponding sedimentation
current density is

j s.z/ D � mg

6��R
n.z/: (4.81)

In equilibrium the two currents densities must add up to zero. This is indeed so if

D D kBT

6��R
(4.82)

holds true.
This result is rather plausible. The higher the temperature, the more the environ-

ment will act upon the Brownian particle. If its radius becomes larger, the less it will
respond to pushes of its environment. And likewise, the larger the viscosity of the
environment, the less the particle moves when pushed.

Since the diffusion constant D, temperature T , viscosity � and the radius R for
spherical test particles can be measured, Eq. (4.82) indeed allows to determine
the value of the Boltzmann constant kB and therewith Avogadro’s number NA.
Perrin’s experiments won him the 1926 physics Nobel prize “for his work on the
discontinuous structure of matter, and especially for his discovery of sedimentation
equilibrium”.

4.4.3 Langevin’s Approach

Paul Langevin, a French physicist, has discussed Brownian motion as a stochastic
process. The velocity v D v.t/ of the Brownian particle is a random variable
depending on time. It obeys the following stochastic differential equation:

m Pv C � v D f .t/; (4.83)
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where m is the particle’s mass, � D 6��R the friction constant, and f D f .t/ is
the force exerted by the medium on the particle. It is a stochastic process as well.

Let us digress first on the correlation function of a random process A D A.t/.
The liquid in which the Brownian particle drifts is in thermal equilibrium, its state
is therefore stationary. Expectation values do not depend on time, NA D hA.t/ i is
a constant. It is therefore sufficient to discuss the fluctuation a.t/ D A.t/ � NA of
the random process. The correlation function of such a stationary random process is
defined by

KA.�/ D h a.t C �/ a.t/ i: (4.84)

Expectation values do not depend on time t , but only on the time difference � .
With

a.t/ D
Z

d!

2�
e

�i!t Qa.!/ (4.85)

we write

KA.�/ D
Z

d!

2�
e

�i!t
e

�i!�
Z

d! 0

2�
e

i! 0t h Qa.!/ Qa�.! 0/ i: (4.86)

This expression will depend on time t unless

h Qa.!/ Qa�.! 0/ i D 2�ı.! � ! 0/ SA.!/ (4.87)

holds true. SA.!/ is the spectral intensity of the stochastic process under discussion.
It is a positive8 function.

Inserting Eq. (4.87) into Eq. (4.86) yields

KA.�/ D
Z

d!

2�
e

�i!�
SA.!/: (4.88)

The correlation function is the Fourier transform of a positive spectral density. This
is the Wiener-Khinchin theorem as discussed in Chap. 3.

Let us now return to our discussion of Langevin’s approach to Brownian motion.
We assume9

Kf .�/ D hf .t C �/ f .t/ i D � ı.�/: (4.89)

There are two time scales. The interaction of a colliding water molecule with the
Brownian particle lasts only an extremely short time, and succeeding collisions

8More accurately: non-negative.
9Note that t ! f .t/ describes a fluctuation since h f .t/ i D 0.
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are statistically independent. On the other hand, the position of the Brownian
particle can be observed only in time intervals of milliseconds, or so. Therefore,
from the observers point of view, the correlation function of the force can be well
approximated by a ı-function. By the way, the Fourier transform of Eq. (4.89) is �,
a positive constant. Because it does not depend on ! we call f D f .t/ a white
noise10 process.

We Fourier transform Langevin’s equation (4.83) and obtain

.�im! C � / Qv.!/ D Qf .!/; (4.90)

hence the spectral densities are related by

Sv.!/ D �

m2!2 C � 2
: (4.91)

The Fourier transform of Sv is

Kv.�/ D �

m�
e

�� j� j=m
: (4.92)

As is well known, the translational degree of freedom of a particle is associated
with an energy kBT=2, therefore

Kv.0/ D h v.t/2 i D mkBT (4.93)

holds true, i.e.,

Kv.�/ D kBT

m
e

�� j� j=m
: (4.94)

Now, we are interested primarily in the displacement of the Brownian particle
which is

x.t/ D
Z t

0

ds v.s/: (4.95)

Clearly, its expectation value h x.t/ i vanishes because of h v.s/ i D 0. So let us
calculate11

h x.t/2 i D
Z t

0

ds
Z t

0

ds 0 h v.s/ v.s 0/ i; (4.96)

10The electromagnetic field of white light has a spectral density which, at least in the visible region,
does not depend on !, or color.
11We cannot rely on the statement that expectation values do not depend on time. In fact,
demanding x.0/ D 0 breaks time translation symmetry.
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the integrand being the velocity correlation function Kv.s � s 0/. Because it is
symmetric, we rewrite the right hand side as

2

Z t

0

ds
Z s

0

ds 0 Kv.s � s 0/; (4.97)

that is

2kBT

m

Z t

0

ds e
�� s=m Z s

0

ds 0 e
� s 0=m

: (4.98)

The result is

h x.t/2 i D 2kBT

�

�
m

�
� m

�
e

�� t=m C t

�
: (4.99)

Indeed, h x.0/2 i D 0. However, after a short start-up phase, hx.t/2 i increases
linearly with time with a proportionality constant which coincides with Einstein’s
finding.

Have a look on an interesting paper by Newburgh et al. [8] who have to say more
on the subject.

4.5 Bulk and Surface Acoustic Waves in Solids

We show that an isotropic elastic medium allows for longitudinally and transversely
polarized sound waves and discuss their attenuation. The wave equation also has
solutions which are concentrated beneath a surface.

4.5.1 Wave Equation

Recall the momentum balance equation (1.75), namely

%Dt vi D @j Tij C fj ; (4.100)

where % is the mass density, vi the flow velocity, Tij D Tj i the stress tensor and fi
an external force per unit volume. Dt denotes the substantial time derivative. Hence
Dt vi is the acceleration as observed by a co-moving observer.

We specialize to an isotropic elastic medium. fi will play no role. Since the
displacement ui of material points is and remains small, we may write Dt vi D Rui ,
so that we have to solve

%Rui D @j Tij : (4.101)
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For the beginning, let us neglect the irreversible contribution to the stress tensor,
i.e., internal friction. An isotropic medium then is described by

Tij D E

1C �

n
Sij C �

1 � 2� ıij Skk
o
; (4.102)

with

Sij D @iuj C @j ui
2

: (4.103)

Inserting Eq. (4.103) into Eq. (4.102) and this into Eq. (4.101) results in

%Rui D E

2.1C �/

ui C �E

.1C �/.1 � 2�/@i@j uj : (4.104)


 D @j @j is the Laplacian. We introduce the Lamé parameters12

� D E

2.1C �/
(4.105)

and


 D �E

.1C �/.1� 2�/
: (4.106)

With it Eq. (4.104) reads

%Rui D �
ui C .
C �/@i@kuk: (4.107)

This is a linear wave equation.

4.5.2 Bulk Acoustic Waves

Any field can be decomposed into plane waves:

u.t;x/ D a e
�i!t

e
iq � x

: (4.108)

A linear wave equation gives rise to a relation between angular frequency and wave
vector, ! D !.q/. In our case the wave equation reads

%!2ai D �q2ai C .
C �/akqkqi : (4.109)

There are two eigensolutions.

12Note that� coincides with the shear modulus which is also denoted byG. While elasticity moduli
are isothermal quantities, the Lamé parameters refer to adiabatic thermodynamic processes.
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If we choose a k q, we arrive at a mode with

! D ckq where ck D
s

C 2�

%
: (4.110)

The solution for a ? q is given by

! D c?q where c? D
r
�

%
: (4.111)

Equation (4.110) is the dispersion relation for a longitudinally polarized acoustic
wave while Eq. (4.111) refers to a transversal wave. Note that both Lamé constants

 and � are positive. Therefore, the longitudinally polarized mode travels faster,
ck>c?. In seismology, the longitudinal mode is also called primary while the
transversal wave is called secondary. If there is an earthquake, longitudinally
polarized and transversal acoustic waves are excited simultaneously. The former,
however, will arrive first at a seismic monitoring station because it travels faster.

For aluminum, at 20 ıC, longitudinally polarized sound propagates with
ck D 6; 374 m s�1, transversely polarized with c? D 3; 111 m s�1. These values
are taken from the tables of Kaye and Laby [5], published in the Internet by the UK
National Physics Laboratory.

4.5.3 Attenuation

Let us now briefly discuss an inelastic contribution T 00
ij to the stress tensor. It must

be proportional to the velocity Pui . The most general form for an isotropic medium is

T 00
ij D �1 PSij C �2ıij PSkk: (4.112)

Equation (4.107) will now contain additional terms of Puk which show up in
Eq. (4.109) as contributions proportional to �i!. Again, the modes are polarized
either longitudinally or transversely. However, for real !, there is no longer a real
solution for q. Instead, q D k C i˛=2 acquires a small imaginary part such that the
plane wave becomes

ui .t;x/ / e
�i!t

e
ikn � x

e
�˛n � x=2

: (4.113)

n, a unit vector, describes the propagation direction. Since the power carried by
the acoustic wave is proportional to juj2, this will decrease exponentially with
the propagation length, the decay coefficient being ˛. Kaye and Laby [5] cite
˛D 0:40 m�1 for aluminum at 40 MHz.



112 4 Examples

4.5.4 Rayleigh Waves

Assume an isotropic elastic medium in the half space x >0, and vacuum below.
The surface xD 0 can guide acoustic waves the amplitudes of which decrease
rapidly with x! 1 and may travel freely in the y; z-plane. Without loss of
generality we choose z to be the direction of propagation.13 Here we shall study
in detail so-called Rayleigh surface acoustic waves. We will also comment on
generalizations and applications.

One must look for a solution of the wave equation (4.107). Any linear combina-
tion of longitudinally and transversely polarized waves will do. We require that the
wave number q3 D k is the same for both types. Hence the wave vectors are

qk D
0
@

i�k
0

k

1
A and q? D

0
@

i�?
0

k

1
A; (4.114)

where

!2 D c2k.k
2 � �2k/ D c?.k2 � �2?/: (4.115)

Both expressions, namely

uk.t;x/ D
0
@

��k
0

ik

1
A e

��kx e
�i!t

e
ikz

(4.116)

and

u?.t;x/ D
0
@

ik
0

�?

1
A e

��?x e
�i!t

e
ikz

; (4.117)

satisfy the wave equation. In Eq. (4.117) we have chosen a vector with vanishing
y-component, which defines a Rayleigh surface acoustic wave, namely

u.t;x/ D Akuk.t;x/C A?u?.t;x/: (4.118)

However, there are boundary conditions to be taken into account. The momentum
flux through the surface xD 0 must vanish, which means T11 D T21 D T31 D 0 at
xD 0. Put otherwise, there are no forces acting from outside on the surface.

13We freely mix x D .x1; x2; x3/ D .x; y; z/.
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Now, T21 vanishes entirely in our situation. T31 D 0 at xD 0 means

@1u3 C @3u1 D 0 for x D 0; (4.119)

or

2ik�kAk C .k2 C �2?/A? D 0: (4.120)

The remaining boundary condition T11 D 0 at x D 0 reads

2� @1u1 C 
.@1u1 C @3u3/ D 0: (4.121)

With %c2k D 
C 2� and %c2? D � we rewrite this as

c2k @1u1 C .c2k � 2c2?/ @3u3 D 0: (4.122)

Resorting to Eq. (4.118) we calculate

..c2k � 2c2?/k2 � c2k�2k/Ak C 2c2?ik�?A? D 0: (4.123)

The factor in front of Ak may be reformed into �c2?.k2 C �2?/ so that Eq. (4.123)
becomes

.k2 C �2?/Ak � 2ik�?A? D 0: (4.124)

The boundary conditions (4.120) and (4.124) have a non-trivial solution if and only
if the determinant of the coefficient matrix vanishes:

det

�
2ik�k k2 C �2?
k2 C �2? �2ik�?

�
D 4k2�k�? � .k2 C �2?/2 D 0: (4.125)

Let us express this in terms of sound speed v D !=k:

s
1 � v2

c2k

s
1 � v2

c2?
D
�
1 � v2

2c2?

�2
: (4.126)

v must be smaller than c? in order to guarantee real values for �k and �?. Figure
4.4 depicts the left hand and right hand side of Eq. (4.126).

There is exactly one solution to Eq. (4.126), namely v D cR D 2; 906 m s�2 for
aluminum. The speed of sound of the Rayleigh surface acoustic wave for aluminum
coincides with the value cited by Kaye and Laby [5] which, I hope, was measured
and not calculated.
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Fig. 4.4 The left and right hand sides of Eq. (4.126) are plotted over v2=c2
?

for aluminum. The
intersection defines the speed of the Rayleigh surface acoustic wave

4.5.5 More on SAW

Surface acoustic waves, or SAW, is a topic for research and application in various
branches of science. Here we can only touch some of them.

Even for isotropic media, there are two types of surface acoustic wave, Rayleigh
and Love waves. The former have been dealt with in detail. The latter is described by

u?.t;x/ D
0
@
0

k

0

1
A e

��?x e
�i!t

e
ikz

(4.127)

instead of Eq. (4.117). We will not run through the above procedure again.
In the field of seismology, acoustic surface waves are among the main topics.

If an earthquake happens somewhere, then bulk elastic waves and surface waves
are excited. The longitudinally polarized elastic wave is the fastest, its transversely
polarized counterpart is slower. Bulk elastic waves spread out in space, their
intensity falls off like 1=r2 with distance r . Surface waves are even slower. However,
they spread out on a surface, thus their intensity decreases as 1=r only. Moderately
far away from the epicenter of an earthquake, surface waves carry more energy than
bulk waves. The surface waves cause destruction, but they are announced by bulk
waves.

Surface acoustic waves are also of interest in electronics, in particular, if stress is
accompanied by electric phenomena.
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Electric effects, such as piezoelectricity, are described by a relation

Ei D PijkTjk; (4.128)

a linear relationship between the electric field strength Ei and the stress tensor
Tjk . Only crystals which lack inversion symmetry allow for a tensor Pijk of rank
three. Among them are quartz and lithium niobate. Equation (4.128) allows for the
excitation of surface acoustic waves by electric fields and for their electric detection.
Filters, oscillators, transformers and transducers are commercial applications. Each
mobile phone contains an SAW based oscillator. Scientifically, the identification of
surface acoustic waves for non-isotropic crystals is still not yet complete.

4.6 Crystal Optics

The optical properties of a transparent continuum are described by its susceptibility
tensor �ij . We have shown in Chap. 3 how to calculate it from first principles within
the framework of quantum mechanics and statistical thermodynamics. Although
it is impossible to work out the relevant expectation values exactly, a number of
features are true in general. We summarize them and present consequences for the
propagation of light.

4.6.1 Susceptibility

The electric polarization field Pi D Pi.t;x/ depends, in first order perturbation
theory, linearly on the electric field Ei D Ei.t;x/ of a light wave:

Pj .t;x/ D
Z 1

0

d�
Z

d3�
X
k

�jk.�; �/ Ek.t � �;x � �/: (4.129)

Note that the polarization depends on previous perturbations only (causal solution).
By Fourier transforming Eq. (4.129) we obtain

QPj .!; q/ D �0
X
k

�jk QE.!; q/; (4.130)

where �jk D �jk.!; q/ is the susceptibility tensor of the medium under investiga-
tion. ! and q are angular and spatial frequencies.

We shall decompose the susceptibility tensor into its Hermitian and anti-
Hermitian parts,

�jk D � 0
jk C i � 00

jk : (4.131)
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� 0
jk is called the refractive part because it causes refraction of light. The dissipative

or absorptive part � 00
jk causes absorption. Both parts are Hermitian tensors, they

obeyHij D H�
j i .

The refractive part is intimately related with the absorptive part by the dispersion,
or Kramers-Kronig relation:

� 0
jk.!; q/ D Pr

Z 1

0

du

�

2u� 00
jk.u; q/

u2 � !2 : (4.132)

Pr denotes the principal value integral.
As mentioned earlier, the susceptibility is an expectation value with respect to the

system’s equilibrium, or Gibbs state. It therefore depends on all parameters which
determine the Gibbs state, such as temperature T , strain Sij , external electric field
and magnetic induction E and B, respectively, and so forth. Onsager’s reciprocity
theorem states

�jk.!; qIE;B/ D �kj .!; qIE ;�B/: (4.133)

The susceptibility tensor is symmetric under exchange of its indexes, provided an
external quasi-static magnetic induction is reversed as well.

We will discuss in the following the case E D B D q D 0. Effects which are
linear in E are dealt with in an article on the Pockels effect. Another article on the
Faraday effect discusses a linear dependency of the susceptibility on a quasi-static
magnetic induction B. And finally, a first order addition proportional to q is the
subject of an article on Optical activity.

4.6.2 Planar Waves

The permittivity tensor �jk.!/ D ıjk C �jk.!/ appears in Maxwell’s equations.
Each component F D F.t;x/ of the electromagnetic field may be decomposed
into contributions with definite angular frequency ! and spatial frequencies k D
.k1; k2; k3/,

F.t;x/ D
Z

d!

2�

d3k

.2�/3
f .!;k/ e

�i!t
e

ik � x
: (4.134)

In particular, the electric field strength e D e.!;k/ has to obey

fk � k � egj D !2

c2
�jkek: (4.135)

Here c D 1=
p
�0�0 is the vacuum speed of light. Equation (4.135) is a dispersion,

or mode equation. For given ! only certain spatial frequencies k are allowed. The
direction Oe of e, a unit vector, describes the polarization of the plane wave. Note
that Oe and �Oe describe the same polarization. This is reflected by Eq. (4.135) which
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should be rewritten in terms of the polarization vector Oe instead of the electric field
strength14 e.
!=c is usually abbreviated by k0. It is called the vacuum wave number because

of !=c D jkj for the propagation of electromagnetic waves in vacuum. Let us write
k D nk0 Ok with n the refractive index and Ok the propagation direction. With this
abbreviations, Eq. (4.135) reads now

n2f Ok � Ok � Oegj D �jk Oek: (4.136)

4.6.3 Optical Isotropy

A transparent, optically inactive medium is described by a real symmetric permittiv-
ity tensor �jk . This holds true if no quasi-static external electric or magnetic fields
are applied and if the medium suffers no stress.

The permittivity tensor can then be orthogonally diagonalized. There is a
Cartesian coordinate systems such that the permittivity tensor is diagonal. There
are three cases: all diagonal elements are equal, only two are equal, or all three
eigenvalues differ from each other. In the former case one speaks of optical isotropy,
otherwise of birefringence. Here we discuss optically isotropic media.

The permittivity has the form

�jk.!/ D �.!/ıjk; (4.137)

with respect to any Cartesian system of reference.
The mode equation (4.136) now reads

n2f Ok � Ok � Oeg D � Oe: (4.138)

Recall that k D nk0 Ok is the wave vector of the plane wave, !D k0c the correspond-
ing angular frequency, and Oe denotes the polarization vector.

Equation (4.138) demands that Ok and Oe are orthogonal,

Ok � Oe D 0; (4.139)

as well as
n D p

�: (4.140)

Light propagating in an isotropic medium is transversely polarized. Any propagation
direction Ok is admissible. The wave number jkj is larger than that in vacuum by
a factor n D p

�. The refractive index n D n.!/ of the plane wave solution in

14More precisely, its Fourier transform.
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general depends on the angular frequency !. This gives rise to the phenomenon of
dispersion in a beam made up of light of different colors, such as sun light.

Ordinary glass is transparent within the spectral range of visible light and
optically isotropic. Its permittivity depends on ! and on composition. A refractive
index n D 1:50 is a typical value.

4.6.4 Birefringence

Amorphous substances and cubic crystals, such as NaCl (ordinary salt), are optically
isotropic. Crystals with a more complex symmetry, such as lithium niobate, exhibit
two different eigenvalues of the permittivity tensor. Even more complex crystals,
such as potassium niobate, may have three distinct eigenvalues.

Here we discuss in more detail the case of two equal eigenvalues �o which differ
from the third �e. There is a Cartesian coordinate system such that the permittivity
tensor is described by

�jk D
0
@
�o 0 0

0 �o 0

0 0 �e

1
A: (4.141)

We have to solve the dispersion equation (4.136). Note that there is a preferred axis,
the so-called optical axis Oc D .0; 0; 1/. This is the 3-axis in our notation.

An ordinary beam is described by Ok D Oc. Equation (4.138) is satisfied if the
polarization vector Oe is perpendicular to the optical axis, i.e., in the 1-2 plane. The
ordinary beam propagates with a refractive index

no D p
�o: (4.142)

The ordinary beam travels along the optical axis Oc, its polarization is transverse,
i.e., perpendicular to the propagation direction. This behavior is considered to be
ordinary since, for a given direction of propagation, the polarization may be chosen
orthogonal to it, but without further restrictions.

An extraordinary beam is described by Oe D Oc. The polarization of the extraor-
dinary beam is along the optical axis. Equation (4.138) again demands that
polarization Oe and direction Ok of propagation are orthogonal. Hence, the beam
propagates at an arbitrary angle in the 1-2-plane. This behavior, namely fixed
polarization and arbitrary propagation perpendicular to it, is considered to be
extraordinary. The refractive index for an extraordinary beam is ne D p

�e.
If a light beam passes through the surface of a birefringent material it splits into

an ordinary and an extraordinary beam. They travel in possibly different directions
with different refractive indexes. A birefringent crystal exhibits double refraction,
hence its name. There is one optical axis, because two eigenvalues of the permittivity
are equal and differ from the third. Crystals of such a behavior are optically uniaxial.
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Fig. 4.5 A plane wave propagates along Ok in a birefringent medium with optical axis Oc. Initially,
the wave is neither ordinary (Oeo) nor extraordinary (Oee), but a superposition thereof with equal
weights. Having propagated a certain length L, the polarization has become orthogonal to the
initial direction

There are crystals where all three eigenvalues of the permittivity tensor are
different. They have two optical axes and are called optically biaxial. We will not
discuss this situation here.

4.6.5 Polarization Change Due to Birefringence

Assume a situation where the wave propagates in 1-direction, Ok D .1; 0; 0/ through
a medium the optical axis of which is Oc D .0; 0; 1/, the 3-axis. At xD 0 the plane
wave shall be neither ordinary ( Oe2) nor extraordinary ( Oe3), but a superposition
Oe D cos˛ Oe2 C sin ˛ Oe3. See Fig. 4.5 for a sketch.

The ordinary wave propagates with refractive index n0, the ordinary with ne

along Ok. Therefore,

Oe.x/ D e
�ink0x

0
B@

0

cos˛ e
i
nk0x=2

sin˛ e
�i
nk0x=2

1
CA; (4.143)

where n D .no C ne/=2 and
n D .no � ne/.
Define L by 
nk0L D �=4. Having propagated this length, the polarization

is now
Oe.L/ D cos˛ Oe2 � sin ˛ Oe3: (4.144)

In particular, if the angle ˛ is 45ı, Oe.0/ D .0; 1; 1/=
p
2 has changed into Oe.L/ D

.0; 1;�1/=p2. The polarization at x D 0 and at y D L are orthogonal. This effect
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is exploited in Pockels and Kerr cells where the birefringence parameter 
n can be
controlled by an external electric field.

4.6.6 Absorption

Assume that the permittivity15 has a small imaginary part,

�.!/ D � 0.!/C i � 00.!/: (4.145)

From Eq. (4.138) it follows again that the direction of propagation and the
polarization vector are perpendicular, Ok ? Oe D 0. Light in bulk material16 is
transversely polarized.

With k D Nnk0 Ok as before we conclude Nn2 D � 0 C i � 00, or

Nn � p
� 0 C i � 00

2
p
� 0 : (4.146)

We have made use of j� 00j � j� 0j. With z D Ok � x as propagation distance we may
write our solution as

E.t;x/ / e
�i!t

e
�˛z=2

e
ik0nz

; (4.147)

where n D p
� 0 is the (real) refractive index of the wave and

˛ D � 00

n
k0 (4.148)

its absorption, or attenuation constant. Both the refractive index and the absorption
constant will depend on frequency.

Since the intensity S of a light beam is proportional to jE j2, it decreases as

S.z/ D S.0/ e
�˛z

(4.149)

with propagation distance z.
In the above discussion we always had a dielectric medium in mind. The

propagation of light in metals or semi-conductors is another story.

15For simplicity, we assume an optically isotropic medium.
16As contrasted with waveguides.
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4.6.7 Dispersion

The Kramers-Kronig relation

� 0.!/ D 1C Pr
Z 1

0

du

�

2u � 00.u/
u2 � !2

(4.150)

relates17 the refractive part � 0 of the permittivity with the absorptive part � 00. Recall
that Eq. (4.150) is a consequence of the causality principle.

The absorption of light quanta by matter may be traced back to different effects,
such as electronic and vibrational excitations, plasma vibrations, absorption by
dye molecules, and so forth. These absorption processes are restricted to broad
or narrow frequency ranges, so called bands. By representing such a band r by a
central frequency !r and a strength fr , the following representation of Eq. (4.150)
is plausible:

n.!/ D 1C
X
r

fr
!2r

!2r � !2 ; (4.151)

a so called Sellmeier equation. The fr must be positive numbers because of
� 00.!/ � 0.

A spectrometer sorts a beam of incident light according to frequency, or
wavelength, or color. A simple prism may do this, it relies on n D n.!/, i.e., on
dispersion.

4.7 Dielectric Planar Waveguides

A planar waveguide is characterized by a permittivity profile � D �.x/ which does
not depend on y or z. The wave vector lies in the .y; z/ plane, and we choose the z
direction without loss of generality. See Fig. 4.6 for an example. All components of
the electromagnetic field are shaped according to

F.t; x; y; z/ D F.x/ e
�i!t

e
iˇz

: (4.152)

Maxwell’s equations for vanishing charges and currents and for a non-magnetic
medium read

r � H D �i!�0�E and r � E D i!�0 E ; (4.153)

in usual notation. � D �.x/ is the relative permittivity. Note that both divergence
equations are automatically satisfied if ! ¤ 0.

17The principal value symbol Pr specifies how to cope with the singularity at u D !.
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Fig. 4.6 Electric field strength of guided modes vs. depth below surface (microns) of a graded
index waveguides. See the MATLAB program for waveguide parameters

Just as a free photon has two states of polarization, there are two differently
polarized modes, TE and TM. It is the Electric or Magnetic field strength,
respectively, which is Transversal, i.e., orthogonal to the waveguide normal as well
as to the propagation direction.

A TE mode is specified by

E D
0
@
0

E

0

1
A and H D �1

!�0

0
@
ˇE

0

iE 0

1
A; (4.154)

a TM mode by

H D
0
@
0

H

0

1
A and �E D 1

!�0

0
@
ˇH

0

iH 0

1
A: (4.155)

For our geometry, � Ex must be continuous as well as Ey , Ez, Hx , Hy , and Hz.
In the case of a TE mode, E and E 0 must be smooth functions. For a TM mode,H
andH 0=� have to be continuous.

Recall that all fields here are Fourier components of a decomposition into peri-
odic contributions. Since the space-time dependent fields are real, the components
obey F.!/ D F �.�!/. Decomposing the Poynting vector, the energy current
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density, yields four contributions, varying with 2!, �2!, and zero frequency.
The latter is

S D 2Re E � H �: (4.156)

We will study two different kinds of planar waveguides. A graded index
waveguide is characterized by a smoothly varying permittivity profile while a
slab waveguides consists of one ore more homogeneous films of different optical
properties.

4.7.1 TE Modes

For a TE mode, the electric field strength E D E.x/ has to obey

1

k20
E 00 C �.x/E D �effE: (4.157)

This is an eigenvalue problem, the eigenvalue being the effective permittivity �eff D
.ˇ=k0/

2. For a given light source frequency !, the mode equation (4.157) allows to
calculate the possible propagation constants ˇ.

According to Eq. (4.156) the energy current density is

S D 2ˇ

!�0
jE.x/j2: (4.158)

By integrating over x we obtain the power flux per lateral unit length:

dP

dy
D 2ˇ

!�0

Z
dx jE.x/j2: (4.159)

It is therefore natural to define the following scalar product:

.g; f / D
Z

dx g�.x/ f .x/: (4.160)

Note that the TE mode operator18

LTE D 1

k20

d2

dx2
C �.x/ (4.161)

is self-adjoint with respect to the scalar product Eq. (4.160). Hence, the �eff are real.
Since the second derivative operator is negative,19 the eigenvalues �eff are smaller

18LTE is dimensionless which is desirable for numerical investigation.
19A is negative if .f; Af / � 0 for all f , here: .f; f 00/ D �.f 0; f 0/ � 0.
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than the largest permittivity. A guided mode is characterized by .E;E/ < 1, by a
finite total power flux per unit lateral length. Therefore, �eff must be larger than the
permittivities at infinity. Otherwise the solutions would be of sine type at infinity
and could not be normalized. The guided mode fields are mutually orthogonal with
respect to the scalar product (4.160).

All continuity requirements are fulfilled if x ! E.x/ and x ! E 0.x/ are
continuous functions.

4.7.2 TM Modes

For a TM mode, the magnetic field strength has to obey the following mode
equation20

1

k20
�

d

dx
��1 d

dx
H C �H D �effH: (4.162)

This defines again an eigenvalue problem, the eigenvalue being �eff.
Equation (4.155) implies the following expression for the power flux per lateral

unit length:

dP

dy
D 2ˇ

!�0

Z
dx

1

�.x/
jH.x/j2: (4.163)

It is therefore natural to define the scalar product

.g; f / D
Z

dx
1

�.x/
g�.x/ f .x/: (4.164)

It is not difficult to show that the TM mode operator

LTM D 1

k20
�

d

dx
��1 d

dx
C � (4.165)

is self-adjoint with respect to the scalar product Eq. (4.164), hence its eigenvalues
are real and the eigenvectors are orthogonal with respect to that scalar product.

Again, as for TE modes, the differential operator part of Eq. (4.165) is negative,
since .f; f 00/ D �.f 0; f 0/ holds true. Therefore, the allowed effective permittiv-
ities are smaller than the maximum permittivity and larger than the permittivity at
infinity.

All continuity requirements are fulfilled if x ! H.x/ and x ! H 0.x/=�.x/
are continuous. See our article on Surface Plasmon Polaritons where the latter
continuity requirement is essential.

20This is just one of many forms.
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4.7.3 Graded Index Waveguides

Think of a substrate like glass or lithium niobate. Its surface may be treated by
various processes in order to modify the permittivity at the surface, such as in-
diffusion or exchange of ions. Lithium niobate may be covered by a thin titanium
layer which is then allowed to diffuse into the substrate at high temperatures.
Another procedure is to apply benzoic acid which replaces a certain amount of
lithium ions by protons. With glass, one can offer silver ions which are drawn into
the substrate by an electric field.

In any case, a permittivity profile is produced which exceeds the substrate value
by 
�.x/, where x is the depth below the surface at x D 0. The region x < 0

is the cover, usually vacuum or air, or a protective substance. Its permittivity is
denoted by �c. The substrate permittivity �s is larger than �c. Since the concentration
of in-diffused ions follows a Gaussian and since, for not too high concentrations,
the permittivity change is proportional to the concentration of in-diffused ions, we
assume

�.x/ D
(
�c for x < 0

�s C
� e
�.x=w/2

for x > 0
: (4.166)

w denotes the width of the permittivity increase, and 
� the maximum permittivity
enhancement. Equation (4.166) is a rather good approximation for titanium in-
diffused planar waveguides.

The standard procedure to solve such an eigenvalue problem is to approximate
the infinite x axis R by a finite number xj D xmin; xmin C h; : : : ; xmax of
representative points. The field values Fj D F.xj / form a vector. A linear operator
is represented by a square matrix. Here we describe the method of finite differences:
infinitesimals dx are approximated by finite differences, h in our cases. The second
derivative in particular is represented by

f 00.xj / D f 00
j D fjC1 � 2fj C fj�1

h2
; (4.167)

which can be translated into a matrix to be applied to a vector f . This matrix has
a diagonal �2=h2 and adjacent diagonals 1=h2. A multiplication operator, such as
f ! �f is represented by a diagonal matrix with elements �j D �.xj /.

Here is a realization.
Our MATLAB program begins by defining constants. All lengths are measured in

microns.

1 LAMBDA=0.6328;
2 k0=2*pi/LAMBDA;
3 EC=1.000;
4 ES=4.800;
5 ED=0.045;
6 W=4.00;
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Fig. 4.7 Layout of a slab waveguide with one film of enhanced permittivity

The wavelength is that of a helium-neon laser, the cover is air, the substrate
permittivity is that of lithium niobate, and the permittivity profile parameters 
�
(ED) and W are realistic.

We next represent the real axis by a finite set of representative values. They run
from �1 to 4W , in steps of h.

7 xmin=-1.0;
8 xmax=4*W;
9 h=0.1;
10 x=(xmin:h:xmax)’;
11 dim=size(x,1);

The next line defines the permittivity profile:

12 prm=(x<0).*EC+(x>=0).*(ES+ED*exp(-(x/W).ˆ2));

The following piece of code sets up the mode operatorL:

13 next=ones(dim-1,1)/hˆ2/k0ˆ2;
14 main=-2.0*ones(dim,1)/hˆ2/k0ˆ2+prm;
15 L=diag(next,-1)+diag(main,0)+diag(next,1);

Its eigenvectors and eigenvalues are calculated by

16 [evec, eval]=eig(L);

Only eigenvectors with eigenvalues .ˇ=k0/2 D �eff > �s make sense. We isolate
and plot them:

17 eff_eps=diag(eval);
18 guided=evec(:,eff_eps>ES);
19 plot(x,guided);

Figure 4.7 shows the output. There are three guided TE modes which are indexed
by TE0, TE1, and TE2. The lowest order mode, the one with the largest propagation
constant, has no node. The next one has one node, and so forth.
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4.7.4 Slab Waveguides

A slab waveguide is made up of a substrate carrying one ore more homogeneous
films of enhanced permittivity. On top is a cover layer. Here we study a very
simple device. There is just one film with permittivity �f > �s of thickness w. The
permittivity profile is

�.x/ D
8
<
:
�s for x < 0
�f for 0 < x < w
�c for w < x

: (4.168)

Formally, the TE and the TM mode operators, (4.161) and (4.165) respectively,
coincide for such a stepwise constant profile. However since the continuity require-
ments differ, the propagation constants and the modal fields are different for TE and
TM modes.

Let us define

�c D k0
p
�eff � �c , �s D k0

p
�eff � �s and kf D k0

p
�f � �eff: (4.169)

These expressions are positive as long as we insist on �c; �s < �eff < �f.
In the substrate region, the mode equation has two fundamental solutions, namely

E / exp.˙�sx/. We choose the positive sign in order to guarantee decay at
x! �1.

For the TE mode, the field and its derivative have to be continuous at interfaces
between different materials. The solutions in the film region is c cos.kfx/ C
s sin.kfx/. We therefore have to determine the amplitudes c and s such that

1 D c and �s D skf (4.170)

hold true at the interface x D 0 between substrate and film. Therefore

E / cos kfx C �s

kf
sin kfx for 0 < x < w: (4.171)

In the cover x > w the field is a linear combination of two exponential functions,
namely E / a exp.��cx/ C b exp.��cx/. The continuity requirements for TE
modes at x D w are

cos kfw C �s

kf
sin kfw D a e

��cw C b e
�cw

(4.172)

and

kf

�
� sin kfw C �s

kf
cos kfw

�
D �c

�
�a e

��cw C b e
�cw

�
: (4.173)
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Fig. 4.8 Graphical representation of Eqs. (4.174) and (4.175). The cotangent as well as the right
hand sides are plotted vs. effective index neff D p

�eff. The upper curve corresponds to TE,
the lower to TM polarization. The film (refractive index 1.52, thickness 1.8�m) is deposited on
a glass substrate (refractive index 1.49) and covered by air. The simulation is for a helium-neon
laser. There are two guided TE and two guided TM modes

The condition for a guided mode reads b D 0. There must not be an exploding
contribution. Equations (4.172) and (4.173) are compatible only if

cotkfw D k2f � �s�c

kf.�s C �c/
(4.174)

holds true.
An analogous calculation for TM modes results in

cotkfw D
Nkf
2 � N�s N�c

Nkf. N�s C N�c/
(4.175)

where N�c D �c=�c, N�s D �s=�s and Nkf D kf=�f (Fig. 4.8).
Note that the right hand side of Eq. (4.175) is smaller than its TE counterpart.

Therefore, the propagation constants of TM modes are smaller than the correspond-
ing TE values.

Formulas (4.174) or (4.175) allow for an inverse procedure. Assume that at least
two TE modes are guided. One can then, for a guessed film refractive index nf, solve
Eq. (4.174) for the film thickness w. For each mode i , a film thickness wi results,
but they will coincide only if the guessed film refractive index is correct. If there are
more than two modes, the root mean square deviation of calculated film thicknesses
must be minimized. Applying the same procedure to TM modes should result in the
same film parameters.
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4.8 Elasticity Moduli

We repeat that this small book on continuum physics cannot really cover such
a vast field. Instead we try to formulate the foundation—balance equations—and
to characterize entire fields of physics and engineering by material equations. We
have also introduced a systematic way to derive macroscopic laws from quantum
statistical mechanics by working out the linear response to perturbations. The fourth
part is a collection of seemingly randomly chosen examples to make the reader
acquainted with applications. Such as this, where we comment on some standard
problems of elasticity theory.

4.8.1 Strain and Stress

We have introduced in the section on Solid Media a framework how to describe the
deformation and the stress of a solid body. A particular material point, originally at
x, is translated to Nx D x C u, where u D u.t;x/ is the displacement field. The
strain tensor is

Sij D @iuj C @j ui
2

; (4.176)

it will vanish if the solid is translated or rotated as a whole. Hence, the strain really
describes the deformation of the solid such that distances between material points
will change.

Also recall that the momentum current ji .Pk/ consists of the convection part
%vivk and the conduction term Ji .Pk/ D �Tik. HerePk are the three components of
linear momentum, % is the mass density and vi denotes the flow velocity. The stress
tensor Tik is symmetric. It consists of an elastic contribution T 0

ik , which transforms
like the convection part, and an inelastic contribution T 00

ik which is odd under time
reversal and describes friction.

Structural mechanics is concerned with the stability and optimization of mechan-
ical structures like bridges, houses, dams, cars, ship and airplanes, and so forth. The
structure itself can mostly be assumed at rest. See however the section on Bulk and
Surface Acoustic Waves in Solids. So there is no change with time, no flow, and no
friction. We have to solve the momentum balance equation

@iTik C fk D 0; (4.177)

where fk is the external force per unit volume. There can be gravitation or a
fictitious, or pseudo force, for example due to rotation.

If there is no stress, there will be no strain. Hence, a linear relationship between
stress and strain, Hooke’s law, is to be expected.
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4.8.2 Uniaxial Stress

Consider a homogeneous straight square column of height h and cross section q�q.
The column bottom is fixed on a rigid platform, the top is drawn at by a force �q2.
� , as a force per unit area, is the equally distributed stress exerted on the top of the
column.

The height of this column is increased to hC ıh, and ıh will be proportional to
h and to the stress. We express this finding by

ıh

h
D �

E
: (4.178)

The constant E is called the elasticity, or Young’s modulus. Its dimension is force
per area, i.e., Newton per square meter.

The column becomes not only longer, but also thinner. Its lateral dimension
changes from q to q � ıq, and ıq will be proportional to q and � . In the usual
notation this reads

ıq

q
D �

�

E
: (4.179)

The dimensionless number � is Poisson’s ratio.
Young’s modulus and Poisson’s ratio have been introduced formally in the

chapter on Material Equations, here we have given a practical definition.
The deformation of the elastic body can be described by the following displace-

ment field:

u.x/ D
0
@

�ıqx1=q
�ıqx2=q
ıhx3=h

1
A; (4.180)

for a column �q=2 � x1; x2 � q=2 and 0 � x3 � h. The resulting strain tensor is

Sij D
0
@

�ıq=q 0 0

0 �ıq=q 0

0 0 ıh=h

1
A: (4.181)

With Hooke’s law (2.38) for an isotropic medium, namely

Tij D E

1C �

n
Sij C �

1 � 2�
ıij Skk

o
(4.182)

and with Eqs. (4.178), (4.179) and (4.181) one easily works out

T33 D � (4.183)

and vanishes otherwise. This says that only the momentum component P3 flows,
namely in 3-direction, and that its magnitude is � . This was to be expected.
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Obviously the problem has been solved. An external force does not come into
play, the divergence @iTij vanishes, and stress is related with strain in such a way
that the latter can be derived from a displacement field.

Note that the stress tensor is already diagonal and that two of its eigenvalues
vanish. In this case one speaks of uniaxial stress. Also note that Eq. (4.183) is valid
for a column of arbitrary cross section.

4.8.3 Hydrostatic Pressure

Assume a homogeneous elastic body of arbitrary shape immersed in a liquid of
constant pressurep. Outside, the stress tensor is Tij D �pıij because the medium is
fluid and cannot support shear forces. Inside, in the elastic medium, the stress tensor
is also Tij D �pıij although the material could support shear forces. After all, the
stress tensor is a momentum current which must be continuous at the boundary.

The relation between stress and strain is Eq. (4.183) or its inverse

Sij D 1C �

E
Tij � �

E
ıij Tkk; (4.184)

see Eq. (2.35). In our case this means

Sij D �1 � 2�
E

pıij : (4.185)

The strain tensor can be derived from a displacement field

Sij D @iuj C @j ui
2

where u.x/ D �p1 � 2�

E
x: (4.186)

We have chosen x0 D 0 as a reference point within the elastic body, its center of
mass position, for example.

With n, a unit vector, we may write x D rn. The point rn is displaced to
.r � ır/n, and we have just calculated

3
ır

r
D ıV

V
D p

K
; (4.187)

where the so called compression modulusK is given by

K D E

3.1� 2�/
: (4.188)

ıV=V is the relative volume change.
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4.8.4 Torsion

Think about a circular rod of diameter 2R and length `. The rod is fixed at the bottom
while the top is twisted by an angle ˛. Each slab of this rod will be twisted by an
angle ˛x3=` which grows linearly with height x3. The corresponding displacement
field is

u.x/ D
0
@

cos.�x3/x1 � sin.�x3/x2 � x1
sin.�x3/x1 C cos.�x3/x2 � x2

0

1
A: (4.189)

� D ˛=L is the twist, or torsion angle per unit length. Since it is small, we may
write the displacement field as

u1 D ��x2x3 , u2 D C�x1x3 , u3 D 0: (4.190)

This expression leads to the following strain tensor:

Sij D �

2

0
@

0 0 �x2
0 0 x1

�x2 x1 0

1
A: (4.191)

Recall formula (2.33) which says that the relative change of volume elements is
equal to the trace of the strain tensor:

d NV � dV

V
D Skk: (4.192)

We conclude that the volume elements do not change if torsion is applied to an
elastic body, i.e., if it is sheared.

The strain (4.192) is related to a stress tensor

Tij D �E

2.1C �/

0
@

0 0 �x2
0 0 x1

�x2 x1 0

1
A: (4.193)

You may easily verify that @iTij D 0 holds true, that the equation for mechanical
equilibrium is satisfied.

Let us calculate the torque on the entire cross section:

N D
Z

x21Cx22�R2
dx1dx2 .x1T23 � x2T13/ D �E

2.1C �/

�R4

2
: (4.194)
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Our result may be reformulated as

˛

`
D 1

G

N

I
; (4.195)

where N is the torque by which the rod is twisted, I the area moment, and G the
shear modulus. The latter is defined as

G D E

2.1C �/
: (4.196)

The area moment is an integral over the cross section, namely

I D Ix C Iy D
Z

dA .x21 C x22/: (4.197)

For a solid rod of radius R it is given by �R4=2, but Eq. (4.195) holds true for
arbitrary cross sections. See article Beam Bending and Buckling.

4.8.5 Examples: Steel and Rubber

The elasticity modulus of true solids is a microscopic property of bulk matter.
Its physical dimension is a pressure, or an energy density. We therefore expect values
of the order of eV/Å3 D 160GPa.

In fact, the value for stainless steel [5] at room temperature is about E D
215GPa, varying slightly according to composition. Poisson’s ratio turns out to be
about � D 0:29. A value around 0.3 is typical for metals.

However, the decisive quantity in most application is not the elasticity modulus,
but the so called yield stress. If one of the three eigenvalues of the stress tensor, at
any place, exceeds this value, the medium looses its elastic properties. In contrast to
the elasticity modulus or Poisson’s ratio, the yield stress is a consequence of material
imperfections, such as dislocations of all kind. As a rule of thumb, the yield stress
is three orders of magnitude smaller than the elasticity modulus. For example, the
yield stresses of the many brands of steel may vary from 0.28 to 1.6 GPa.

In 1839 Charles Goodyear invented a method how to transform plastic
caoutchouc into elastic rubber. Caoutchouc is made from latex, a milky substance
collected from tapped rubber trees. With the advance of the automobile, rubber was
much needed for tires which gave rise to brutal exploitation of the Amazon and the
Congo region and, less brutally, of Ceylon where the rubber trees could be grown
in plantations. Today the larger part of rubber is produced synthetically.

Rubber almost behaves as a liquid which retains its volume but may be deformed
without much effort. The elasticity modulus practically vanishes. Indeed, Poisson’s
ratio for rubber is close to 1/2, and K D 10GPa is a typical value for the
compression modulus.
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However, rubber-like materials are a class of its own because they can be
deformed to such an extent that the approximation 2Sij D @iuj C @j ui C : : : is
no longer justified. Unfortunately, we cannot delve into more details here.

4.9 Faraday Effect

In 1845 Michael Faraday discovered that a magnetic field may affect the propagation
of light. This was a strong indication that light is an electromagnetic phenomenon,
as was proven shortly afterwards by James Clark Maxwell in his famous Treatise
on Electricity and Magnetism. In this article we study the contribution to the
susceptibility by a quasi-static external or internal magnetic field and its effect
on light propagation. We comment on the reciprocity theorem of signal process-
ing devices and show that only the linear magnetooptic effect allows isolators
which are essential for laser driven glass fiber communication lines. To realize
an integrated magnetooptical isolator with micrometer dimensions is an ongoing
effort.

4.9.1 Susceptibility and Onsager’s Relation

If a medium is perturbed by an electric field, it becomes polarized. For sufficiently
small field strength, the response (polarization) depends linearly on the perturba-
tion (electric field strength). The most general linear and causal dependency is
described by

Pi.t;x/ D
Z 1

0

dt
Z

d3� �ij .�; �/ Ej .t � �;x � �/: (4.198)

Fourier transforming this results in21

QPi.!;k/ D �0�ij .!;k/ QEj .!;k/: (4.199)

Because the speed of light is so much larger than the speed of sound in a solid
or liquid, only k D 0 is of interest in optics.22 The susceptibility tensor is an
expectation value in the Gibbs state. It depends on all parameters which characterize
the thermodynamic equilibrium. Static or slowly varying electric or magnetic fields
are examples.

21Later on we drop the tilde as indicator of a Fourier component.
22Optical activity is an exception.
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We here discuss a transparent material which is characterized by a Hermitian
susceptibility tensor,23 �ij D ��

j i . Onsager’s relation states that �ij for E;B is the
same as �ji for E ;�B. The same holds true for the permittivity tensor �ij or its
inverse ��1

ij .
A power series expansion results in

��1
ij D ��1.0;0/

ij C ��1.1;0/
ijk Ek C ��1.0;1/

ijk Bk C : : :: (4.200)

The first term on the right hand side of Eq. (4.200) is the dielectric permittivity
without an external electric or magnetic field. We have studied it in the article on
Crystal Optics. The second term describes the Pockels effect which is the main topic
of our discourse on Pockels and Kerr Effect. In this article we are concerned with the
third term which describes how a quasi-static magnetic field affects the propagation
of light.

That the medium under study be transparent and Onsager’s relation require that
the first contribution is real and symmetric. For an optically isotropic medium we
may write

��1.0;0/
ij D 1

n2
ıij ; (4.201)

with a real refractive index n. The second contribution vanishes because no electric
field is applied.

The third contribution
ij must fulfill

• 
ij D 
�
j i because the medium is transparent and

• 
ij D �
ji in order to comply with Onsager’s relations.

Hence 
ij is purely imaginary and anti-symmetric. An obvious choice is 
ij D
i��ijkBk, with a real �. Because this contribution will be small, it can be rewritten as

�ij D n2ıij C iK�ijkBk: (4.202)

This formula describes the Faraday effect of an optically isotropic medium. K D
K.!/ is a real number for a given frequency. Less symmetric media must be
characterized by additional contributions.

4.9.2 Rotation of the Polarization Vector

Assume a transparent medium and a magnetic inductionBD .0; 0;B/ in z-direction.
The permittivity tensor will be

23We drop the arguments .!;k D 0/.
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� D
0
@

n2 iKB 0

�iKB n2 0

0 0 n2

1
A: (4.203)

Beams traveling in the x; y-plane are polarized perpendicularly, in z-direction.
They propagate as linearly polarized beams with propagation constant nk0, where
k0 D!=c is the wave vacuum wave number. They are not affected by the Faraday
effect.

Let us now study a plane wave traveling along the z-axis, parallel to the magnetic
field. We look for modes which propagate with a definite propagation constant ˇ in
z-direction,

E.t; x; y; z/ D A Oe e
�i!t

e
iˇz

: (4.204)

E is the electric field strength, A the amplitude, Oe the polarization unit vector, !
the angular frequency and ˇ the propagation constant, an inverse length. It is a
plane wave since x and y do not show up on the right hand side of Eq. (4.204). As
demonstrated in Crystal optics, the following eigenvalue equation has to be solved:

�ij Oej D �2 Oei ; (4.205)

where � D ˇ=k0.
The matrix � of Eq. (4.203) has three real eigenvalues.
One is �2 D n2 with eigenvector Oe D .0; 0; 1/. We have already mentioned it. It

corresponds to beams propagating in the x; y-plane. Their propagation constant is
not affected by the quasi-static magnetic field.

The remaining two eigenvalues are

�2 D n2 ˙KB or �˙ D
p
n2 ˙KB D n˙ KB

2n
: (4.206)

The corresponding normalized eigenvectors are

OeC D 1p
2

0
@
1

�i
0

1
A and Oe� D 1p

2

0
@
1

Ci
0

1
A: (4.207)

They describe circularly polarized waves, because the polarization vector

Re
1p
2

0
@
1

	i
0

1
A e

�i!t
e

iˇ˙z D 1p
2

0
@

cos.!t � ˇ˙z/
	 sin.!t � ˇ˙z/

0

1
A (4.208)

rotates on a circle in the x; y-plane. For fixed time, this is a helix, either left- or right
handed. For fixed location, the polarization vector rotates clock- or anticlock-wise,
respectively.
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Assume that a linearly polarized beam enters the medium at z D 0. Its
polarization vector

Oex D 1p
2

OeC C 1p
2

Oe� (4.209)

say, is a superposition of left- and right-handed polarization. Having traveled the
distance ` with slightly different propagation constants, the polarization vector has
become

1p
2

OeC e
iKBk0`=2n C 1p

2
Oe� e

�iKBk0`=2n D
0
@

cos˚ F`

sin˚ F`

0

1
A: (4.210)

The polarization is again linear, but it has been rotated by the angle `˚ F where

˚ F D KBk0
2n

D �
KB
n
0

D VB: (4.211)

˚ F is the specific24 Faraday rotation. 
0 stands for the vacuum wave length !c=2� .
V is known as Verdet’s constant.

The Verdet constant of water under standard conditions is listed in [5] as
1:65� 10�2 min A�1. This value obviously refers to the magnetic field strength H
which is measured in A/m. Replacing the minute by 2�=.360 � 60/ and H by
B D �0H, we arrive at V D 3:82 T�1 m�1.

4.9.3 Drude Model

Assume an isolator and think of a typical valence electron. Its deviation x from the
equilibrium position obeys the following equation of motion:

mf Rx C � Px C˝2xg D �eE.t/ � e Px � B: (4.212)

m is the electron mass, � describes friction, and m˝2 is the spring constant. On
the right hand side you find the rapidly oscillation electric field E of a light wave
and a quasi-static induction field B. They drive the electron’s motion. Compare this
ansatz with Eq. (4.463) in the article on Surface Plasmon Polaritons in which we
derived an expression for the permittivity � D �.!/ of a noble metal. There we
had to deal with a gas of quasi-free electrons (˝ D 0), and there was no external
induction field.

24In this context: per unit length.
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Assume that the induction points along the z-direction and that the light wave
oscillates with angular frequency ! and is clockwise circularly polarized. We write

E D E e
�i!t OeC , B D B Oez and x D x e

�i!t OeC: (4.213)

Because of Px � B D �!xB OeC, Eq. (4.212) reduces to

mf�!2 � i� ! C˝2gx D �eE C e!Bx; (4.214)

the solution of which is

x D �eE
m.!2 �˝2/C e!B C im!�

: (4.215)

There are N such typical electrons per unit volume, each contributing with �ex
to the polarization. The ratio of polarization to electric field strength gives the
susceptibility

�˙ D e2N

�0

1

m.!2 �˝2/˙ e!B C im!�
: (4.216)

We have already anticipated that the calculation for an anti-clockwise circularly
polarized light wave leads to a minus sign in the B term.

The Drude model may be criticized for many reasons:

• It does not take quantum effects into account.25 Indeed, „ is missing
in Eq. (4.216).

• There is not just one resonance frequency˝ , but a distribution thereof. This can
be remedied.

• The differences between electric conductors, semi-conductors, insulators, solids,
liquids, gases, ferro- and ferrimagnetic substances are ignored.

• and many more objections.

Nevertheless, we have presented the Drude model here in order to show that
an externally applied magnetic induction indeed affects the propagation of left- or
right handed light. Even if the Drude model is too primitive to be taken seriously,
it shows that there must be a Faraday effect. After all, the electric field E of a
light wave affects electrons, in the presence of a quasi-static induction, by a force
�e.E C v � B/. Irrespective of how this is translated into susceptibilities, both
contributions come together.

25At least only indirectly, because n, � and ˝ have to be calculated within the framework of
quantum mechanics. Even for quasi-free electrons, m is the effective mass an expression which
depends explicitly on „.
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4.9.4 Optical Isolator

If a linearly polarized beam passes through a medium in direction of an induction
field, its polarization remains linear. However, this polarization vector becomes
rotated clockwise26 by an amount which is proportional to the thickness of the
sample. Now, if this beam is reflected and runs through the medium in opposite
direction, the polarization vector again becomes rotated, and again clockwise. The
rotation is not undone upon reflection. We will comment on this peculiar finding
later.

The Faraday effect allows to build an optical isolator, a device that is transparent
in forward direction, while it blocks light in backward direction. You need a
polarizer oriented such that only Oey polarized light may pass. Then, there is a
Faraday rotator which produces a 45ı rotation of the polarization vector. A second
polarizer, rotated by 45ı with respect to the first, allows all light to pass on.

Now, if a reflected light beam enters the device in opposite direction, the second
polarizer transmits only that part which is linearly polarized at 45ı. The Faraday
rotator changes this angle to 90ı, and the first polarizer blocks such light which is
polarized along Oex .

The transmission factor in backward direction vanishes ideally. The transmission
factor in forward direction varies from zero (the incoming light is linearly polarized
in Oex direction) to one (the incoming light is linearly polarized in Oey direction). For
unpolarized light the transmission factor in forward direction is one half.

Reversing the propagation direction of a light beam is the same as time
reversal. Maxwell’s equations respect time reversal. How can forward and backward
propagation of light be different? After all, there is the so-called reciprocity theorem
of electrical engineering. It says that any linear device with channels i D 1; 2 : : :

behaves as Oi D P
j Dij Ij where Oi is the output at channel i and Ij the input

at channel j , and that D is a symmetric matrix. That is, reversing the nature of
emitters and receivers is a symmetry. Broadcasting at A and receiving at B weakens
the signal by the same amount as if the same broadcasting station were situated
at B and the signal received at A. In this context, an optical isolator seems to be
impossible. Let us study details.

Time inversion is described by .t;x/ ! .�t;x/. With

f% 0; j 0;E 0;B 0g.t;x/ D f%;�j ;E ;�Bg.�t;x/ (4.217)

the primed fields obey Maxwell’s equations if the unprimed do so. Equation (4.217)
is the base of the reciprocity theorem mentioned above. Note that the Pointing vector
S D E � H changes sign upon time reversal.

If applied to the optical isolator, the entire magnetic field should be reversed.
The rapidly oscillation induction field B of the light wave indeed changes sign

26We assume a positive Verdet constant.
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upon reflection, but not the quasi-static field B of the Faraday rotator, it remains
unchanged. A device like an optical isolator or circulator cannot be realized without
materials which have a preferred magnetic axis. This preference can be induced by
applying an external field, or it may be inherent.

4.9.5 Yttrium Iron Garnet

A quasi-static external magnetic field is rather impracticable. Much better are
materials with an inherent magnetic field such as ferro- or ferrimagnets. However,
most ferromagnetic materials, such as iron, are electric conductors which strongly
absorb light. Yttrium iron garnet, Y3Fe2(FeO4)3, is an artificial ferrimagnetic crystal
which is transparent in the near infrared.27 The specific Faraday rotation of yttrium
iron garnet (YIG) can be manipulated by doping with or substitution of ions.
In particular, the addition of bismuth or cerium proves to be rather efficient. For
integrated optics applications, thin YIG films are grown by liquid phase epitaxy
on gadolinium gallium garnets (GGG). The mismatch of lattice constants produces
strong stresses in the films which cause birefringence in the otherwise optically
isotropic garnets. Specific Faraday rotation constants up to �500 degrees per
millimeter have been reported. This makes an integrated optical isolator of sub-
millimeter length a feasible device.

4.10 Fourier’s Solution of a Heat Conduction Problem

Joseph Fourier, while being prefect of the Département Isère at Grenoble, had
soon complied with his few official duties. He then spent his time by studying the
propagation of heat. The fruit of these studies, the book Théorie analytique de la
chaleur, is considered to be one of the classics of physics because he introduced a
new mathematical technique: decomposing periodic functions into a series of sine
and cosine functions.

The problem to be solved is the following. Denote by T DT .t; x/ the tempera-
ture at time t at a depth x below the surface. T0.t/ D T .t; 0/ is prescribed, it is a
periodic function with period � which may be 1 day or 1 year. Find the solution of

@T

@t
D �

@2T

@x2
; (4.218)

with constant thermal diffusivity. �D 1 � 10�7 m2 s�1 is a typical value. We here
present Fourier’s masterpiece in modern notation.

27Glass fibers have minimal absorption losses at 
 D 1:50�m.
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4.10.1 Representation of a Periodic Function

Since the boundary condition at t D 0 is periodic, the solution will be periodic as
well. Therefore we write

T .t; x/ D
X
k2Z

e
2�ikt=�

�k.x/ (4.219)

which guarantees T .t C �; x/ D T .t; x/. The sum runs over all integer numbers k.
Note ��k D ��

k because the temperature field is real. In what follows we assume
that indexes k are non-negative.

We insert Eq. (4.219) into the heat equation (4.218) and obtain

2�ik

�
�k.x/ D �� 00

k .x/: (4.220)

These ordinary differential equations can be solved analytically.

4.10.2 Ordinary Instead of Partial Differential Equations

Because its coefficients are constant, an exponential function is appropriate,

�k.x/ / e
�kx : (4.221)

We easily arrive at

�k D ˙
r
2�ik

��
D ˙.1C i/

r
�k

��
: (4.222)

We must choose the minus sign in order to exclude exploding solutions. Hence

�k.x/ D �k.0/ e
�.1C i/

p
�k=�� x

: (4.223)

4.10.3 Initial Conditions

What remains is to determine the values �k.0/. Recall that

T .t; 0/ D T0.t/C
X
k2Z

e
2�ikt=�

�k.0/ (4.224)
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is prescribed. We simply work out

1

�

Z �

0

dt e
�2�ikt=�

T0.t/ D �k.0/; (4.225)

because of

1

�

Z �

0

dt e
�2�i.k � j /t=� D ıkj : (4.226)

The contribution for k D 0 is just the average surface temperature NT which
coincides with the constant temperature at large depth. With ��k D ��

k we finally
arrive at

T .t; x/ D NT C 2

1X
kD1

e
�qkx Re �k.0/ e

2�ikt=�
e

�iqkx ; (4.227)

where

qk D
p
�k=��: (4.228)

Re denotes the real part of the expression right to it.
Temperature changes decay exponentially with increasing depth x. qk is the

attenuation constant of the kth Fourier component. Note the depth dependent phase
shift, i.e., the last factor in Eq. (4.227).

With � � 1 � 10�7 m2 s�1 and � D 1 year we find q1 � 1 m�1. So, the yearly
temperature changes affect only a few meters beneath the surface.

Fourier’s invention to decompose periodic functions into harmonics and to solve
the heat equation for each harmonic contribution initiated a substantial progress of
theoretical physics. Therefore, we should be grateful that a competent governor of
a French province was left enough spare time to pursue his hobby.

4.11 Hagen-Poiseuille Law

The laminar flow of a viscous liquid through a straight pipe of circular cross
section—this is a classic of hydrodynamics. The solution seems to be straightfor-
ward, simple and plausible, but can it be trusted? Quite ironically, the relationship
between pressure, flux and pipe diameter was derived independently by a civil
engineer and a physician for problems which cannot be idealized as laminar
flow.
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4.11.1 Exploiting Symmetry

We discuss a circular straight tube with interior diameter 2R. The cross section is
parameterized by x1; x2 and the direction of flow by z D x3. The tube shall be very
long so that the velocity field will not depend on z. Thus one may write

v1 D v2 D 0 and v3 D f .r/ (4.229)

where r D
q
x21 C x22 .

The divergence @j vj vanishes because v1 and v2 vanish and because v3 does not
depend on x3. With Eq. (4.229) we have modeled an incompressible fluid.

Besides this material equation for an incompressible fluid we have to solve the
Navier-Stokes equation

%.@tvk C vi@ivk/ D �@kp C �s
vk C fk: (4.230)

Here % is the mass density, fk the external force per unit volume, p denotes the
pressure field, and �s is the shear viscosity. The first term vanishes because we look
for a stationary solution. The second term vi@ivk vanishes as well with Eq. (4.229).
There are no external forces, fk D 0. The pressure gradient must be constant, we
denote it by @3p D �
p=L. L is the tube length and 
p the pressure difference
between entry and exit.

The equation to be solved is

�s

�
f 00 C f 0

r

�
D �
p

L
: (4.231)

The prime stands for the derivative with respect to r . The solution which is regular
at r D 0 and vanishes at r D R is given by

v3 D f .r/ D 
p

4�sL
.R2 � r2/: (4.232)

4.11.2 Flux

The flux28 passing through the tube is

PV D 2�

Z R

0

dr r v3 D �

8�s
R4

p

L
: (4.233)

28Measured in m3 s�1.
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This law—the flux is proportional to the fourth power of the inner tube radius—was
discovered independently by the German engineer Gotthilf Hagen and the French
physician Jean Louis Poiseuille. The former was responsible for the water supply of
Berlin, the latter studied the flow of blood.

The Hagen-Poiseuille law is only valid for a laminar flow where one layer glides
smoothly over the next layer. See the article on Reynolds’ Number for the transition
from laminar to turbulent flow.

Let us work out the power required to pump the volume PV per unit time through
a tube. There are at least three approaches to this problem.

4.11.3 Pump Power

(a) The mean velocity Nv is

Nv D 1

�R2

Z R

0

dr 2�r v3.r/ D 
p

8�sL
R2: (4.234)


p �R2 is the net force exercised on the cross section, and if multiplied by the
average velocity, we calculate

P D PV 
p: (4.235)

A plausible result. First, its physical dimension is energy per time. Second, the more
liquid we want to pump through a tube, the more power we need to do so. If the tube
is small, more pressure difference is required to pump the same amount of liquid,
and the pumping effort grows correspondingly.

(b) But why do we have to use energy for pumping the liquid? Right, there is
internal friction, and mechanical energy is transferred into heat. While flowing,
the liquid gets warmer, and the tube radiates off this internal energy. According
to Eq. (1.93) the production of internal energy by friction29 is described by

�.U / D T 00
jkGjk; (4.236)

where T 00
jk is the irreversible contribution to the stress tensor and Gjk denotes the

symmetric velocity gradient. The latter is

G13 D G31 D 
p

4�sL
x1 and G23 D G32 D 
p

4�sL
x2; (4.237)

29Velocity gradients.
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the remaining entries vanish. According to Eq. (2.11) we may write

T 00
jk D 2�sGjk: (4.238)

The volumetric production rate of internal energy is

�.U / D .
p/2

2�sL2
r2; (4.239)

and the integral over the interior of the entire pipe can be shown to be equal to PV 
p,
the same as Eq. (4.235).

(c) One can also work out the shear force on the interior wall of the pipe. It points
in z-direction and is given by

F3 D
Z L

0

dz
Z 2�

0

d	 R
�
T 00
31

x1

R
C T 00

32

x2

R

�
D 
p �R2: (4.240)

A not so plausible result: the force is the product of the pressure difference, ok, and
the cross section. One would have expected the circumference.

If this force is multiplied by the average speed Nv of Eq. (4.234) we obtain PV
p
as well. The idea is that the liquid is at rest and we move the pipe with velocity Nv.

4.12 Ice Layer

In this example we shall study the growing or melting of an ice layer, a typical Stefan
problem. It is not only internal energy which has to be transported from cooler to
warmer regions. In addition, there is a heat source from freezing or a heat sink from
melting. From a mathematical point of view, we have two differential equations to
solve simultaneously. One is the heat equation within the ice layer, the other one
concerns the location of the solid to liquid phase transition.

4.12.1 Phase Transition Enthalpy

Consider one mole of water at atmospheric pressure pat. Its temperature T depends
on the internal energy U within the system. If we increase U by heating, the
temperature will increase as well. However, if the system is in its solid phase (ice),
and if the temperature has reached the melting point Tm = 0 ıC, the temperature will
remain constant. Added heat is used to melt more and more of the ice, until the
system is entirely in its liquid phase, or water in the narrower sense. The amount
of heat to melt one mole of water at constant atmospheric pressure is traditionally
called the latent melting heat or heat of fusion.
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However, the term fusion enthalpy is more appropriate. Enthalpy, a thermody-
namic potential, is defined by H D H.S; p/ D U C pV where S; p; U; V denote
entropy, pressure, internal energy and volume, respectively. Its partial derivatives
are given by

dH D T dS C V dp: (4.241)

For reversible processes, T dS may be identified with dQ, the amount of internal
energy transferred by heat, not work. Consequently, heating a probe at constant pres-
sure increases its enthalpy. The specific30 fusion enthalpy of water at atmospheric
pressure pDpat is 
Hsl D 3:34 � 105 J kg�1. The suffix sl denotes the solid to
liquid phase transition.

4.12.2 The Problem

Denote by x the depth below a lake’s surface. There is an ice layer of thickness
s D s.t/ which changes in the course of time. Within the ice layer the heat transport
equation

PT D �T 00 (4.242)

has to be solved for the temperature field T D T .t; x/. The constant �, also called
the temperature conductivity, is an abbreviation for

� D 


%Cp
: (4.243)


 denotes the heat conduction coefficient as defined in Fourier’s law,

J u D �
rT : (4.244)

The current density of internal energy, or the heat current density, is proportional to
the temperature gradient, from warm to cold. % is the mass density of ice, and Cp

denotes the specific heat of ice at constant pressure. The heat equation (4.242) has
to be solved for 0 < x < s.t/. Recall that the thickness s D s.t/ of the ice layer
will depend on time.

We simplify the problem by assuming T .t; 0/ D T0 and T .t; x/ D Tm for x �
s.t/. The surface temperature shall be constant, the temperature at the bottom of
the ice layer and below is the melting temperature of 0ıC. This is not completely

30In this context: per unit mass.
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Fig. 4.9 Depth vs.
temperature of an ice layer.
The model assumes a
constant temperature T0 at the
air/ice interface and the
melting temperature Tm of
0ıC at and below the
ice/water interface. The
temperature T D T .t; x/

within the ice layer and the
thickness s D s.t/ of it are
the subject of this article

realistic since very deep lakes have a temperature of 4ıC at the bottom. See Fig. 4.9
for a sketch.

Consider an area dA at the interface between ice and water. During the short
time dt the layer will grow by dxD Ps.t/ dt . The volume dV D Ps.t/dt dA has
been undergone the liquid-solid phase transition thereby liberating the amount
dQ D % dV 
H of heat. This heat must be transported by conduction, dQ D
�dA dtJ u D dA dt 
 T 0.t; s.t//. The temperature gradient refers to the ice/water
interface. Lumping all this together leads to the following ordinary differential
equation:

Ps.t/ D ˛ T 0.t; s.t// with ˛ D 


%
H
D Cp �


H
: (4.245)

Note that thermal conductivity, mass density or specific heat capacity refer to ice.
Let us summarize the problem. The heat equation (4.242) for the temperature

field T D T .t; x/ is to be solved for t � 0 and 0 � x � s.t/. The temperature
boundary values are T .t; 0/ D T0 and T .t; s.t// D Tm, i.e., for a free boundary.
The free boundary itself obeys Eq. (4.245). Both differential equations are inti-
mately coupled, since the solution of the heat equation depends on the boundary,
and the boundary equation requires the temperature gradient at the free boundary.

4.12.3 Crude Approximation

If heat conduction is assumed to be a fast process as compared with melting or
freezing, one might argue as follows. Assume that the temperature changes linearly
with depth,
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T .t; x/ � T0 C Tm � T0
s.t/

x: (4.246)

Then the temperature gradient at the ice/water interface is

T 0.t; s.t// � Tm � T0

s.t/
; (4.247)

and Eq. (4.245) reads

Ps � ˛
Tm � T0

s
: (4.248)

This differential equation may be solved by the separation of variables method, the
result, with s.0/ D 0, is

s.t/ D p
2˛ .Tm � T0/ t : (4.249)

This crude approximation will be compared with the analytical solution which
we shall derive later. It should be the solution for small Stefan numbers S . Read on.

4.12.4 Dimensionless Quantities

Let us first convert the Stefan problem at hand into a form with dimensionless
quantities. We introduce a reference length ` such that � D x=` is the dimensionless
length. Likewise a dimensionless temperature � D .T �T0/=.Tm �T0/ will be used.
The heat equation becomes

@�

@�
D @2�

@�2
(4.250)

if a dimensionless time � D t �=`2 is introduced. We look for a temperature field
� D �.�; �/. With s D �` one writes

d�

d�
D S

@�

@�

ˇ̌
ˇ̌
�D�.�/

: (4.251)

The dimensionless Stefan constant is

S D Cp .Tm � T0/

H

: (4.252)

By the way, Cp for ice is 2:1� 103 J kg�1 K�1. For a temperature difference T0�Tm

of 10ıC and with
H D 3:34 � 105 J kg�1, the problem is characterized by a Stefan
constant of S D 0:063.
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We look for a field � D �.�; �/ and a function � D �.�/ which satisfy the
differential equations (4.250) and (4.251). These functions have to obey the
boundary conditions

�.�; 0/ D 0 and �.�; �.�// D 1 (4.253)

as well as

�.0/ D 0: (4.254)

Fumbling with ` cannot make the Stefan constant S to be unity by retaining a
value one for the temperature conductivity. In fact, from a physical point of view,
there is no inherent unit of length, and therefore we are confronted with differential
equations and boundary conditions which do not contain `, the reference length.
And: just because of this there is an analytical solution.

4.12.5 The Exact Solution

Guided by the crude approximation (4.249) we introduce the variable z D �=2
p
�

and try the following ansatz:
�.�; �/ D f .z/: (4.255)

The heat equation (4.250) says

f 00 C 2zf 0 D 0 or g 0 C 2zg D 0 with g.z/ D f 0.z/: (4.256)

Its solution with �.�; 0/ D 0, or f .0/ D 0 is

f .z/ D a

Z z

0

d� e
��2

: (4.257)

Now, try �.�/ D b
p
� , in accordance with Eq. (4.249). One obtains

d�.�/

d�
D b

2
p
�

D S
@�.�; �.�/

@�
D Sa e

�b2=4 1

2
p
�
; (4.258)

or

b D Sa e
�b2=4

: (4.259)

The remaining boundary condition to be met is

�.�; �.�// D a

Z b=2

0

d� e
��2 D 1: (4.260)
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We eliminate a and arrive at the following transcendental equation

b e
b2=4

Z b=2

0

d� e
��2 D S (4.261)

for the yet unknown constant b in �.�/ D b
p
� . The left hand side behaves as b2=4

for small b and increases monotonically to infinity with b ! 1. Hence, Eq. (4.261)
has a unique solution for any Stefan number S . Once b is known, the constant a in
Eq. (4.257) can be determined from Eq. (4.259).

By the way, our crude approximation presented above is nothing else but the
exact solution for a small Stefan number, i.e., b D 2

p
S . If this number is small,

heat production at the ice/water interface is so slow that the temperature increases
linearly from T0 to Tm which would be the solution of the heat equation for a
constant boundary at x D s. Note that, for small b, the temperature is linear in
z, hence linear in x for each time t .

4.12.6 Discussion

In this article we have presented a model for freezing or melting of ice. In order
to provide an analytical solution we have over-simplified the situation. We have
assumed that the interface between air and ice, a lake’s surface, is at a constant
temperature. Daily or yearly variations should be considered. Moreover, the water
beneath the ice layer was assumed to be at the melting temperature for ice, or the
freezing temperature of water. However, water at large depths has a temperature
of 4ıC which corresponds to the maximal mass density. Hence heat conduction
between the ice/water interface and deeper regions must be taken into account. Also
the air/ice interface must be described more accurately.

Stefan was confronted with measurements of the ice cap thickness around the
north pole. Now his name is connected with a class of differential equations where
parts of the boundary are not fixed, but determined by the solution. There is a rich
literature on numerical procedures all of which are tested on the exact solution which
we have presented here.

4.13 Metamaterials

Metamaterials are artificial regular structures, one, two, or three-dimensional, which
provide for exceptional interactions with electromagnetic waves. Always within a
certain frequency interval, practically any desired permittivity and permeability can
be mimicked, such as a negative permittivity, a negative permeability, or both values
negative.
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Metamaterials are first of all materials, and not devices. They appear to be
homogeneous. Their interaction with electromagnetic waves is described by
complex-valued (relative) permittivities �ij and permeabilities �ij . Metamaterials
are meta, or transcending the category of materials, because they are modified by
structures, or circuits, on a micrometer or nanometer scale. Metamaterials31 may
exhibit properties not found in natural materials.

Modifications on a micrometer scale are relatively easy to fabricate, they
affect the interaction with microwaves. Ever better methods of nanometer scale
manipulations and self-replication techniques will soon allow for exciting appli-
cations in optics. The field of metamaterials is rather new and still dominated by
theoretical investigations, but advances in nanoskills promise a bright future of this
interdisciplinary effort.

A recent monograph on “Waves in Metamaterials” by Solymar and Shamonina
[12] is warmly recommended for detailed studies.

Photonic crystals are another type of artificial materials for advanced optical
applications. The permittivity of a photonic crystal varies regularly with a spatial
frequency comparable with that of light. This results in optical band gaps: frequency
ranges where light cannot propagate.

4.13.1 Resonances

A standard metamaterial is made up of a regular array of identical resonators
the spacing of which is small as compared with the wavelength of harmonically
oscillating traveling electromagnetic fields, that is microwaves or light waves.

Natural optical materials are arrays of copies of the crystallographic unit cell,
each acting as an antenna. They are excited by an incoming oscillating electric field
and, with a certain phase shift, emit an outgoing oscillating electric field. The fields
are superimposed and averaged. Magnetic fields play no role. This explains why
natural optical materials are characterized by a magnetic permeability � D 1.

In contrast, the resonators of a metamaterial are usually LC circuits. They affect
the electric and the magnetic field. Consequently, after averaging, the dielectric
permittivity � D �.!/ and the magnetic permeability � D �.!/ are affected.

Now, resonators are weakly coupled damped harmonic oscillators responding
with large signals if excited close to certain eigen- or resonance frequencies. The
same applies to spatially averaged resonator properties, that is, to permittivity � and
permeability �. Close to such a resonance frequency, the material may exhibit both
a negative permittivity and a negative permeability.

The best studied resonator (for microwave metamaterials) is a pair of split
rings, one inside the other. We show just one example which has been investigated
experimentally by Gundogdu et al. [2] and many others (Fig. 4.10).

31The word seems to be reserved for microwave and optical applications.
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Fig. 4.10 A split ring resonator. When excited by an electromagnetic wave, charge in the rings
flows in opposite direction giving rise to a magnetic field. Likewise, charges of different sign
produce an electric field in the splits and between the rings. This LC resonator supports resonating
waves which are much longer than the dimension of the outer ring

4.13.2 Wave Propagation

Maxwell’s equations, if applied to plane waves

QF e
�i!t

e
ik � x

; (4.262)

in absence of free charges and currents read

k � QH D �!��0 QE and k � QE D !��0 QH ; (4.263)

in usual notation. The remaining divergence equations are satisfied automatically.
Note that a real field F D F.t;x/ can be written in terms of its Fourier

transform as

F.t;x/ D
Z

d!

2�

Z
d3k

.2�/3
QF .!;k/ e

�i!t
e

ik � x

D
Z 1

0

d!

2�

Z
d3k

.2�/3
QF .!;k/ e

�i!t
e

ik � x C c.c: (4.264)

The Fourier transform now extends over positive frequencies only, but has to
be augmented by the complex conjugate expression. In the following we always
assume frequencies to be positive or zero, but we omit the c.c. hint.

Let us write k D k Ok where the unit vector Ok defines the direction of wave
propagation. The polarization vector Oe is orthogonal to it. With QE D QE Oe one obtains

QH D k QE
!��0

Ok � Oe: (4.265)
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Inserting this into Eq. (4.263) yields the dispersion relation

k2 D ��
!2

c2
or k D nk0; (4.266)

with c D p
1=�0�0 as the speed of light in empty space. We abbreviated !=c by k0,

the vacuum wave number of the monochromatic light source under study. According
to our convention on frequencies, this number is never negative.

n D p
�� (4.267)

is the refractive index. Generally, the electric and the magnetic field strength of light
waves are related by

QH D n QE
c�0�

Ok � Oe: (4.268)

The Poynting vector S D E � H of a plain wave thus has four contributions.
QE� � QH �

and QE � QH oscillate with angular frequencies 2! and �2!, respectively.
They do not contribute to field energy transport. The remainder does not oscillate,
it is

S D 2Re QE � QH
�
: (4.269)

We calculate

S D 2n

c�0�
j QEj2 Ok: (4.270)

Natural materials are characterized by �D 1 and �.!/> 0. Then the refractive
index (4.267) is positive and, according to Eq. (4.269), energy and the wave propa-
gate in the same direction. We therefore speak of a forward material. In contrast,
metamaterials, in a certain frequency range, may be characterized by negative
values of both permittivity and permeability. In this case, the refractive index is
still positive, but Eq. (4.269) says that energy and the wave propagate in opposite
direction. A medium with this property is called a backward material.

4.13.3 Normal Refraction

We will now recapitulate the normal situation: a beam passes the interface between
two different natural materials. We index the medium at y > 0 by I and y < 0 by II.
Figure 4.11 sketches the situation. Note that we have plotted the wave vectors ki, kr

and kt of an incident, reflected and transmitted beam, respectively.
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Fig. 4.11 An incident light
wave which propagates in

direction Oki
is partly reflected

( Okr
) and transmitted ( Okt

) at
the interface y D 0 between
two different optical media

In order to be specific, we consider perpendicularly polarized light, perpendicular
with respect to the x; y-plane of incidence. It is well known that at least three waves
are required to solve the problem. We try

QE i D E i Oez e
ik0nI.sin˛ix � cos˛iy/

;

QE r D E r Oez e
ik0nI.sin˛rx C cos˛ry/

;

QE t D E t Oez e
ik0nII.sin ˛tx � cos˛ty/

: (4.271)

At the interface y D 0 the tangential component of the electric field must be
continuous, at all x and at all times t . The latter condition has already been taken
into account: the angular frequencies of all three waves are the same. QEx vanishes
and is therefore continuous. QE z.x; 0; z/ is continuous if

E i C E r D E t (4.272)

as well as
nI sin ˛i D nI sin ˛r D nII sin˛t (4.273)

hold true. Note that the electric field is given by QE i C QE r
in the upper and by QE t

in
the lower half-space.

Equation (4.273) says that the angle of incidence˛i D ˛I and of reflexion ˛r D ˛I

are the same. Moreover, Snell’s law of refraction must hold for ˛t D ˛II, namely

nI sin˛I D nII sin ˛II: (4.274)

At the interface, the normal component � QE y vanishes and is therefore
continuous.
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Let us now study the continuity properties of the magnetic field. It is made up of
these three waves:

QH i D nIE i

c�0�I
.� cos˛I Ox � sin˛I Oy/ e

ik0nI.sin ˛Ix � cos˛Iy/
;

QH r D nIE r

c�0�I
.cos˛I Ox � sin˛I Oy/ e

ik0nI.sin ˛Ix C cos˛Iy/
;

QH t D nIIE t

c�0�II
.� cos˛II Ox � sin ˛II Oy/ e

ik0nII.sin ˛IIx � cos˛IIy/
: (4.275)

The components QH x, QH z and � QH y must be continuous at y D 0.
For QH x this implies [14]

nI cos˛I

�I
.E i � E r/ D nII cos˛II

�II
E t (4.276)

and Eq. (4.273). QH z vanishes and is therefore continuous. That � QH y shall be
continuous is the same as Eqs. (4.272) and (4.273). Equations (4.273) and (4.276)
allow to work out the energy current densities (power) carried by the three waves.

4.13.4 Refraction in a Backward Medium

Let us now study the above problem if one half space is a backward medium. In
order to simplify the discussion we assume that y > 0 is an ideal backward medium,
characterized by �I D �I D �1, while y < 0 is an ideal forward medium, namely
the vacuum with � D � D C1. None of the equations above have to be modified,
we just have to specialize them.

The refractive indexes of both media are nI D nII D 1. Equation (4.273) says that
all angles are equal. Equation (4.272) remains unchanged,E i CE r D E t. However,
Eq. (4.275) becomes E r � E i DE t. Together, these two continuity requirements
result inE i D 0 andE t DE r. Moreover, Eq. (4.270) says that the formerly reflected
beam is now incident while the formerly incident beam has vanished. We sketch this
in Fig 4.12.

Although we have demonstrated the strange refraction behavior for perpendicular
polarization, the same holds true for parallel polarization. Hence, even an unpolar-
ized beam will be bent as depicted in Fig. 4.12. And the same is true if the beam
passes from vacuum to an ideal backward medium: the normal component of the
Poynting vector is continuous, the transversal component changes sign.
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Fig. 4.12 The power flow of a beam which passes from an ideal backward material (upper half )
to an ideal forward medium (vacuum). The arrows represent Poynting vectors, not unit wave
vectors as in Fig. 4.11. The formerly incident beam is absent, the formerly reflected beam is now
incident

Fig. 4.13 A parallel slab of ideal backward material. It maps the upward object at the left into
an equally large upward image at the right. Here we demonstrate the imaging of a point source
(filled dot)

4.13.5 A New Type of Optical Microscope

Among the many interesting applications of this effect we mention just one.
A parallel plate of ideal backward material may serve as a lens, as depicted in
Fig. 4.13. Denote the plate width by 2w. The plane at the distance w to the left is
mapped into a plane at distance w to the right. Upward pointing objects are mapped
into upward pointing objects.

Imaging by a backward medium allows to transfer the information in the near
field. Conventional optical microscopes employ the information of the far field only,
they are limited by diffraction. Metamaterials allow to transcend this limit.
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4.13.6 Photonic Crystals

A photonic crystal is a material the optical permittivity of which varies in a regular
pattern. Since the propagation of light is concerned, they are called photonic. They
are called crystals because the permittivity modulations are regular, albeit the lattice
constant is in the micrometer range, not nanometers. Photonic crystals can be arrays
of regularly spaced identical rib waveguides (1D), arrays of boreholes (2D), or
regularly staples of 2D photonic crystals. A photonic crystal in the narrower sense is
a material with an optical band gap. A plane wave with wave vector k travels with an
angular frequency! D !.k/. For a photonic crystal there is an interval of frequency
values for which there is no wave vector. Waves of these forbidden frequencies
cannot propagate in a photonic crystal giving rise to remarkable applications.

In order to demonstrate the phenomenon of an optical band gap we work out an
extremely simple model. We consider a regular staple of two kind of slabs. The unit
cell is the region �a=2 � x � a=2. There is a slab of higher refractive index n2 for
�d=2 � x � d=2, and outside it the refractive index is n1. This unit cell is copied
and translated by the lattice constant a, N times say.

We consider a plane wave traveling along x. With

E.t;x/ D
0
@

0

E.x/

0

1
A e

�i!t
(4.277)

we have to solve

E 00.x/C k20�.x/E.x/ D 0 where k0 D !

c
: (4.278)

The permittivity �.x/ has the value n22 in the high index slab and n21 outside it.
In each region of constant permittivity the solution is of the form

E.x/ D aC e
Cik0nx C a� e

�ik0nx ; (4.279)

where aC is the amplitude of the plane wave traveling in x-direction while
a� denotes the amplitude of the wave propagating in counter-direction. These
amplitudes at different positions x depend linearly upon each other to be described
by 2 � 2 transfer matrices.

The propagation in a region of constant refractive index n by a distance y is
described by

P.n; y/ D
 

e
Cik0ny 0

0 e
�ik0ny

!
: (4.280)

At a position where the refractive index jumps from n 0 on the left to n 00 to
the right, continuity requirements are to be observed. In our case, the functions
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EDE.x/ and E 0 DE 0.x/ must be continuous, the latter being proportional to the
3-component of the magnetic field strength. It is a simple task to show that the
transfer matrix

D.n 0; n 00/ D 1

2n 00

�
n 00 C n 0 n 00 � n 0
n 00 � n 0 n 00 C n 0

�
(4.281)

fulfills the continuity requirements. Note that D is the unity matrix if there is no
discontinuity.

The passage of light through one unit cell is therefore described by the transfer
matrix

T D P

�
n1;

a � d
2

�
D.n1; n2/P.n2; d/D.n2; n1/P

�
n1;

a � d

2

�
: (4.282)

The transfer matrix of N adjacent unit cells is TN D T N .
We work out

TN

�
0

at

�
D
�
ar
ai

�
: (4.283)

There is an incident wave impinging on the right with amplitude ai running from
right to left. The reflected wave has the amplitude ar . at is the amplitude of the
transmitted wave. The transmittance coefficient is defined by

t D jat j2
jai j2 : (4.284)

We have plotted it in Fig. 4.14 for a structure of four and sixteen unit cells. The
refractive indexes are n1 D 1:0 (air) and n2 D 1:5 (glass). The ratio d=aD 0:5means
that slabs of air and glass are equally thick.
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Already for only 16 unit cells, the frequency band gaps are clearly visible. Note
that the transfer matrix T is unitary which guarantees that the sum of transmitted
and reflected intensity equals the incident intensity. For frequencies in the band gap
the photonic crystal is an ideal reflector.

This is not the right place to go into details of manufacturing and applications
of photonic crystals. Although such crystals are not continuous media proper, they
form a new class of interesting materials which can be tailored to a large extent.
Reference [11] is a valuable source of detailed information.

4.14 Model Atmosphere

In this brief article we study a remarkably accurate model of the earth’s atmosphere,
at least for the lower part of its troposphere. The troposphere is the 15 km thin layer
which is governed by weather phenomena. There is an hourly change of temperature
and pressure, there are clouds, up- and down as well as lateral motion of air masses,
and so forth. To set up all relevant balance- and material equations, to digitize the
problem and to feed in observational data and calculate a reliable weather forecast is
a formidable job. In fact, only with powerful supercomputers a sufficiently accurate
prediction can be made which is faster than the actual progress of time. This is not
the main focus of this book.

Instead, we derive a material equation for air which describes rapid mixing due to
hourly temperature changes. If an air bubble suddenly moves upwards, its volume
will immediately adjusts to the new environment, but there is no time for energy
exchange by heat conduction: the process is adiabatic. Either the bubble is too heavy
with respect to its new environment, and it will sink, or it is too light, and it will rise
even further. One speaks of convection instability. We assume that rising or sinking
air bubbles are in equilibrium with their environment, i.e., that the atmosphere is
labile with respect to adiabatic convection.

4.14.1 Adiabatic Process for a Diatomic Ideal Gas

Denote by F DF.T; V / the free energy of n moles of a fluid medium of homoge-
neous composition. T denotes temperature, and V is the volume. Entropy S and
pressure p are partial derivatives,

dF D �SdT � pdV : (4.285)

We integrate this for an ideal gas,

p D nRT

V
; (4.286)
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of diatomic molecules,

CV D T
@S

@T
D 5

2
nR: (4.287)

RD 8:314 J K�1 mol�1 is the universal gas constant, and CV denotes the heat
capacity at constant volume. Equation (4.287) says that there are three translational
and two rotational degrees of freedom, each contributing with kBT=2 per molecule.
Vibrational degrees of freedom are frozen, and interactions are supposed to be
negligible.

Equations (4.286) and (4.287) may be integrated and yield

F.T; V / D F0 � S0.T � T0/ � 5

2
nRT ln

T

T0
� nRT ln

V

V0
; (4.288)

where T0 and V0 refer to a reference state with F0 D F.T0; V0/ and S0 D S.T0; V0/.
Lines of constant entropy are characterized by

S0 C 5

2
nR ln

T

T0
C nR ln

V

V0
D const: (4.289)

The system in two states .T1; V1/ and .T2; V2/ has the same entropy if

T1

T2

�
V1

V2

� 2=5
D 1 (4.290)

holds true. An equivalent formulation is

T1

T2
D
�
p1

p2

� 2=7
: (4.291)

4.14.2 Convection Neutral Atmosphere

The atmosphere’s temperature T D T .z/ and pressure p D p.z/ depend on
the height z above ground level. Within the troposphere temperature and pressure
change hourly, and air bubbles sink or rise steadily. If a bubble rises from z to zCdz,
its temperature changes according to

� D T .x/

�
p.z C dz/

p.z/

� 2=7
: (4.292)

If the air bubble temperature � is larger than T .z C dz/, the bubble is too hot as
compared with the environment, and it will rise further. Likewise, if � is smaller
than T .z C dz/, it will sink. In both cases there will be up- or downward transport
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of air mass until equilibrium is attained. This equilibrium is characterized by
� DT .z C dz/, or

T 0

T
D 2

7

p 0

p
; (4.293)

where the prime denotes differentiation with respect to z.
The atmosphere as described by T D T .z/ and p D p.z/ is neutral to the ascend

or descend of air masses if Eq. (4.293) is fulfilled. There are still lateral movements
of air masses (winds) because the condition for a convection neutral atmosphere
depends on the situation at ground level.

From a technical point of view Eq. (4.293) is a material equation, just as the
ideal gas law (4.286). It describes the relation between temperature and pressure
of a diatomic ideal gas if there is no heat energy transport. Material equations not
only characterize the material under study, they also take details of processes into
account.

Let us now concentrate on the solution. First of all, the equation of hydrostatic
equilibrium has to be fulfilled, namely

p 0 D �g%; (4.294)

where p D p.z/ denotes the pressure and % D %.z/ the mass density. The symbol
g = 9:81 m s�2 stands for the gravitational acceleration close to the earth’s surface.
We arrive at �p 0

p
D g%0T0

p0

1

T
D �7

2

T 0

T
: (4.295)

This implies that the temperature decreases linearly with height,

T .z/ D T0

n
1 � z

H

o
; (4.296)

where

H D 7

2

p0

g%0
� 30 km: (4.297)

Air pressure decreases according to

p.z/ D p0

n
1 � z

H

o7=2
: (4.298)

H roughly defines the troposphere, the weather region. Formally, at z DH ,
the atmospheric pressure and temperature would become zero. In fact, the model
of neutral adiabatic convection breaks down already at a height of 10 to 18 km,
depending on latitude. Normally, a temperature of �57ıC indicates tropopause, the
height at which weather does no more influence the state of the atmosphere.

Discussing the state of the earth’s atmosphere turns out to be rather complicated.
What is the zero height level? What is temperature in the presence of the sun’s
radiation? How to measure air pressure close to an airplane which necessarily
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modifies its surrounding, and so forth. Meteorology has become a scientific
discipline in its own right, however firmly based on the laws of continuum physics.

4.15 Natural Units

In this book on Continuum Physics we study continuously distributed ordinary
matter. Ordinary matter is a neutral collection of nuclei and electrons at low
temperatures. The electrons move slowly as compared with the speed of light such
that the prevailing force is governed by Coulomb’s law, and all this within the
framework of quantum theory. Consequently, the mass m of the electron, its charge
�e, 4��0 and Planck’s constant „ will enter the stage if properties of ordinary matter
are discussed. Even White Dwarfs are made up of ordinary matter in this sense.

This book adheres strictly to the SI system of units.32 The unit of mass is the
kilogram (kg). Lengths are measured in meters (m) and time in seconds (s). The
fourth base unit is the ampere (A) for an electric current.

4.15.1 SI and Atomic Units

The above mentioned constants of nature are

• „ D 1:054572 � 10�34 kg m2 s�1
• e D 1:602177 � 10�19 s A
• m D 9:109383 � 10�31 kg
• 4��0 D 1:112650 � 10�10 kg�1 m�3 s4 A2

Their dimensions are summarized in Table 4.1.
The matrix of powers in Table 4.1 can be inverted. It gives rise to Table 4.2

which describes how a physical SI-unit can be expressed as a product of powers of
the involved constants of nature.

The atomic energy unit, also called Hartree, is given by

E� D me4

.4��0/2„2 D 27:2 eV: (4.299)

The natural unit of length is

a� D 4��0„2
me2

; (4.300)

32Système international d’unités in French.
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Table 4.1 Physical dimension of the four constants of
nature which govern the physics of ordinary matter. The
numbers indicate the power of the corresponding SI unit

kg m s A

„ 1 2 �1 0
e 0 0 1 1
m 1 0 0 0
4��0 �1 �3 4 2

Table 4.2 SI-units expressed as products of powers of
constants of nature

„ e m 4��0

kg 0 0 1 0
m 2 �2 �1 1
s 3 �4 �1 2
A �3 5 1 �2

which evaluates to 0.529 Å = 52.9 pm. The natural unit of length a� is also known
as Bohr’s radius.

The natural unit of time is

�� D „3.4��0/2
me4

D 2:49 � 10�17 s; (4.301)

the corresponding angular frequency is

!� D 2�

�� D 2:60 � 1017 Hz: (4.302)

In order to decide whether an electric field is small one has to compare with

E� D m2e5

.4��0/3„4 D 0:514 � 1012 Vm�1: (4.303)

Likewise, a magnetic induction has to be compared with

B� D e3m2

„3.4��0/2 D 2:35 � 105 T: (4.304)

T (tesla) is the SI-unit of magnetic induction, the same as Vs m�2.
The following short MATLAB program allows to calculate the atomic unit for any

physical dimension:

1 function [value,power]=atomic_unit(si)
2 val=[1.05457e-34,1.60218e-19,9.10938e-31,4*pi*8.85419E-12];
3 dim=[1 2 -1 0; 0 0 1 1; 1 0 0 0; -1 -3 4 2];



164 4 Examples

4 mid=round(inv(dim));
5 power=si*mid;
6 value=prod(val.ˆpower);

si is a vector of the powers of kg, m, s, and A (SI units of mass, length, time
and electric current). The result is the value of the corresponding atomic unit and
the powers of „, e, m, and 4��0, respectively.

Bohr’s radius, for example, is calculated as

>> length=[0 1 0 0];
>> [astar,powers]=atomic_unit(length);

It returns
astar=5.2917...e-11
and
powers=[2 -2 -1 1].
Compare this with Eq. (4.300).

4.15.2 Remarks

The Schrödinger equation for the hydrogen atom becomes

�
�1
2

 � 1

r

�
 D E ; (4.305)

in natural units. Its solutions are E D �1=2n2 for n D 1; 2; : : : . Hence the ground
state energy of the hydrogen atom is �1=2 atomic units, or �13:6 eV. This and
more complicated equations reduce to the essentials if formulated in atomic units.
The ground state energy of the hydrogen atom is a typical example. Its value is a
number close to 1 multiplied by its natural size which depends on the system of
units. The latter value is easy to work out, all the effort of theoretical physics is to
calculate the number in front of it, here �1=2.

Another example are elasticity moduli. They have the physical dimension of
pressure, or energy density. The atomic unit of pressure is

p� D E�

a�3 D m4e10

„8.4��0/5 D 29:42TPa: (4.306)

Compare this with E � 200GPa for Young’s elasticity module for steel. Although
the order of magnitude is all right, the ratio E=p� � 0:01 is rather small. But bear
in mind that a few powers of 4� may soon lead to large or small numbers. Moreover,
the size of an atom depend on the charge of its nucleus, and so forth. And we might
have compared E with eV/Å3. Work it out! See the article on the Pockels and Kerr
Effect for another example.
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A final remark concerns the speed of light. c, the vacuum light speed, is another
constant of nature. Atomic physics is inherently non-relativistic. Relativistic effects
have to be introduced as corrections. The natural unit of speed is

v� D m2

„4��0 D 2:1877 � 106 m s�1: (4.307)

The ratio

˛ D v�

c
D m2

„c4��0 � 1

137
(4.308)

is called the fine structure constant. It is a dimensionless number, less than 1%.
Have a look at the defining equation for the electromagnetic field:

Pp D qfE C v � Bg: (4.309)

This definition, although very convenient from an engineer’s point of view, is
nevertheless unsatisfactory: the electric field and its magnetic counterpart have
different physical dimensions. From

Pp D q
n
E C v

c
� cB

o
(4.310)

one concludes that both fields, E and cB , are directly comparable. The natural
counterpart of the electric field strength is the induction field strength multiplied by
the velocity of light.

4.16 Ohm’s Law and Hall Effect

Without an external electric field, the electric current normally vanishes in thermal
equilibrium. Superconductivity is a particular case which we will not address here.
An external electric field polarizes matter, and the polarization grows linearly with
the electric field strength, over many orders of magnitude. If the electric field varies
with time, so does the polarization. Its time derivative is nothing else but the electric
conduction current which then is proportional to the electric field strength (Ohm’s
law). The proportionality factor is the electric conductivity which depends on the
angular frequency ! of the electric field. We speak of an electrical conductor if the
conductivity does not vanish with ! ! 0.

In the following we describe the classical Drude model for conductivity. In gen-
eral, the conductivity is a second rank tensor, and we discuss the consequences of
time reversal invariance (Onsager relations). We also investigate the dependency of
the conductivity on an external quasi-static induction field (Hall effect). And finally,
we argue why the electric field strength should be replaced by the negative gradient



166 4 Examples

of the electrochemical potential since it is irrelevant whether the charge current is
driven by the gradient of an electric potential or by the electron’s chemical potential.

4.16.1 Drude Model

The classical Drude model has been mentioned in this book elsewhere, in the articles
on the Faraday Effect as well as on Surface Optical Waveguide. In the former case
it served to qualitatively explain the influence of a quasi-static induction on the
dielectric permittivity of optically transparent media. We also could explain the
complex permittivity of noble metals for sufficiently large wavelengths. Here we
focus on the conductivity of an electrical conductor in the presence of an external
quasi-static induction.

A typical quasi-free electron has mass m, charge �e and a friction constant
m� . We assume the electric field E D E.t/ to point along the 1-direction and
an induction B along the 2-direction. The location x D x.t/ of the electron obeys
the following equation of motion:

m

0
@

Rx1
Rx2
Rx3

1
ACm�

0
@

Px1
Px2
Px3

1
A D �eE.t/

0
@
1

0

0

1
A � eB

0
@

� Px3
0

Px1

1
A: (4.311)

x2.t/ D 0 is an obvious solution. Fourier transforming Eq. (4.311) gives

m!f�! � i� g
0
@

Qx1
0

Qx3

1
A D �e QE.!/

0
@
1

0

0

1
AC i!eB

0
@

� Qx3
0

Qx1

1
A: (4.312)

Let us assume B D 0 for a moment. The solution of Eq. (4.312) then is

Qx1 D e

m!.! C i� /
QE , Qx2 D 0 and Qx3 D 0: (4.313)

For small B (in natural units) we insert the above into Eq. (4.312) and obtain

Qx3 D �i
e

m2!.! C i� /2
B QE: (4.314)

�e Qx is the dipole moment of one electron, of which there are N per unit volume.
The polarization therefore is �eN Qx, its time derivative

QJ e
.!/ D �i!N.�e/ Qx.!/ D Ne2

m.� � i!/
QE ; (4.315)
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in the absence of an external induction. We conclude that the conductivity � is
given by

QJ e
.!/ D �.!/ QE .!/ with �.!/ D Ne2

m.� � i!/
: (4.316)

The first equation is Ohm’s law: the electric current density is proportional to the
electric field, both oscillating with the same angular frequency !. The proportional-
ity factor � D �.!/ likewise depends on!. Its DC33 value �.0/ is finite and positive,
irrespective of the sign of e. It does not matter whether electrons or holes transport
charge. For high frequencies the conductivity becomes complex which describes the
retardation between applied field and resulting current density.

If there is an external induction field, the electric current acquires an addition
which is proportional to the electric field and the induction and perpendicular to
both. This phenomenon is known as Hall effect. We do not bother to write down
the expression for QJ3 corresponding to Eq. (4.314). Later we argue why we should
introduce an electric field QE3 which make QJ3 vanish.

4.16.2 Onsager Relations

In Chap. 3 we derived explicit expressions for permittivities and conductivities.
Although difficult or impossible to work them out, they allow to establish rules
which are independent on the special system under study. They are valid for an
arbitrary Hamiltonian which specifies the system under study. Onsager’s relations
for conductivities are of this type.

In general, the relationship between the driving electric field QEj and the electric
current density QJ e

i is linear:

QJ e
i .!/ D �ij .!/ QEj .!/; (4.317)

the conductivity is described by a tensor.
This tensor does not only depend on angular frequency !, but also on all the

external parameters which affect the thermodynamic equilibrium, like temperature
T , strain S , external static electric field E or magnetic induction B, and so forth.
Onsager’s relations in our case state

�ij .!IT; S;E;B/ D �j i .!IT; S;E;�B/: (4.318)

Transposing the conductivity tensor and inverting the magnetic induction is a
symmetry.

33DC means direct current, as contrasted with AC, alternating current.
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4.16.3 Hall Effect

Let us keep temperature and strain constant. The external static electric field
has already been taken into account since E D QE.0/. For the dependency on the
induction we write

�ij .!IB/ D �ij .!/CHijk.!/Bk C � � �; (4.319)

where the dots indicate terms which are of higher order in the induction. Onsager’s
relations demand the Hijk be antisymmetric in the first pair of indexes, the answer
to which is the Levi-Civita symbol,

Hijk.!/ D �ijkH.!/: (4.320)

Equation (4.320) says

QJ e
i .!/ D �ij .!/ QEj .!/CH.!/�ijk QEj .!/Bk: (4.321)

The first contribution describes Ohm’s law, the conductivity being a symmetric
tensor. The second term causes the Hall effect.

Normally, the boundary conditions forbid a current perpendicular to QE and B.
Then, charges are displaced such that an electric counter-field builds up which
stops the Hall current. Assume an electrically isotropic medium where the driving
electric field Ex is applied along the 1-direction and the induction By along the
2-direction, as assumed above. The current flows in 1-direction, its density is
Jx D �Ex . The Hall current HExBy would flow in 3-direction, but it cannot,
because a field Ez stops it, such that �Ez C HExBy D 0 holds true. One may
reformulate this as

Ez D �HExBy
�

D �HJxBy
�2

D RHJxBy; (4.322)

where RH D �H=�2 is the frequency dependent Hall constant. Kaye and Laby [5]
cite RH = 0:75 V m A�1 T�1 for indium arsenide, a semiconductor with interesting
properties.

By the way, the Hall constant can be interpreted as RH D �1=Nq where N
is the density of charge carriers and q their charge. This is the result of the above
Drude model calculation. Its sign therefore lets decide whether electrons or holes are
responsible for charge transport. The size of the Hall constant is a good measure for
the carrier density. Note, however, that the simple interpretation of the Hall constant
is valid only if there is just one kind of charge carriers.

Unfortunately, discussing the quantum Hall effect is out of the scope of this small
book on Continuum Physics.
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4.16.4 Electro-Chemical Potential

So far we have argued that it is the electric field strength E D �r	e which causes
quasi-free electrons to move. The electric field drags mobile electrons, and because
there are interactions of all types, which amount to friction, there is a steady stream
of charge. The stronger the dragging force, the larger the charge current density.
This is Ohm’s law in a nutshell.

However, mobile electrons may also migrate because their chemical potential
changes from place to place. This effect, electron diffusion, will also cause a
charge current density. In fact, the two causes for the movement of electrons are
inseparable. We have discussed this in the section on Charge Transport.

Denote by �� the chemical potential of electrons and by 	e the electric potential.
The electrochemical potential is defined as

 D 	e � ��

e
: (4.323)

Both contributions drive electrons likewise, and therefore Ohm’s law should be
reformulated as

J e D ��ij @j : (4.324)

Differences 
 of the chemical potential are sometimes called electromotive
forces (emf).

The electrochemical potential is a key notion in electrochemistry. Chemical
reactions in batteries, fuel cells and so forth serve to drive electric currents. A wide
field which, again, we cannot cover here.

4.17 Optically Active Media

There are screw-like media which rotate the polarization vector of linearly polarized
light. In contrast to the Faraday effect, where the left- or right handedness is brought
about by a magnetic field, optically active media are reciprocal. If the beam travels
through the medium in backward direction, the rotation of the polarization vector is
undone. Quartz and suspensions of natural grape sugar are well known examples.

For light of sufficiently low intensity the relationship between electric field
strength and induced polarization is described by the susceptibility tensor,

QPi.!;k/ D �ij .!;k/ QEj .!;k/: (4.325)

We have explained this in detail in Chap. 3 and briefly in our articles on Crystal
Optics, the Pockels and Kerr Effect and the Faraday Effect. In all these cases it
was sufficient to evaluate the susceptibility at k D 0. Here we shall investigate the
dependency on the wave vector in more detail.
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Phonons

A solid medium, ideally, is either a dielectric, an electric conductor or something
in-between, a semi-conductor. The valance electrons of a crystal are grouped in
bands. If all bands are filled, we speak of a dielectric. If the uppermost34 band is
half-filled, we speak of a conductor. If the material is a dielectric, but the energy
gap between the completely filled band and the next one is rather small, we speak of
a semiconductor. With increasing temperature, more and more electrons can jump
from the lower almost filled energy band to the higher almost empty energy band.
There are mobile electrons in the almost empty energy band and missing electrons,
or holes, in the almost full energy band below. If electrons or electron holes are
mobile, light will be absorbed strongly by inducing transitions. For a dielectric this
is impossible since the energy gap between the full band and the above empty band
is too large. Therefore, the typical material required for optical applications is a
dielectric like lithium niobate, yttrium iron garnet, quartz, water or glass. All these
materials have in common that their electric conductivity vanishes. The interaction
between light is not with mobile electrons, but with phonons, the quanta of elastic
vibrations.

Phonons have an energy „!, a momentum p D „k, and are polarized, either
longitudinally (L) or transversely (T1 and T2). The dispersion relation ! D !˛.k/

for ˛ = L, T1 and T2, can be calculated or measured by neutron refraction. If the
unit cell of the crystal contains more than one ion, there are acoustical and optical
branches. The former are of the form !ac

˛ .k/ D c˛jkjC� � � , where c˛ is the speed of
sound for longitudinal or transverse sound waves. The acoustical phonon dispersion
curves will never intersect the photon35 dispersion curve !.k/ D cjkj. However,
the optical phonon branches vary like !op

˛ .k/ D !
op
˛ .0/� ! 00̨k2=2C � � � , they will

always intersect the photon dispersion curve. However, measured in natural units,36

k will be very small.
This section is intended to elucidate a possible dependency of the susceptibility

�.!;k/ on the wave number k. The mechanism which we have discussed here is just
one of many more, it pertains to polaritons which are important for infrared light. In
general, the susceptibility depends on the wave vector k because the interaction of
electromagnetic waves and matter is non-local.

4.17.1 Spatial Dispersion

The angular frequency ! and the wave vector k in Eq. (4.325) are not independent.
After all, the electromagnetic field has to obey Maxwell’s equations which, for this
purpose, read

34With respect to energy.
35c is the vacuum speed of light.
36See the article on Natural Units.
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.k2ıij � kikj / QEj D
�!
c

�2
.ıij C �ij / QEj : (4.326)

We write

k D n
!

c
On and QE D E Oe; (4.327)

where n is the refractive index, On the propagation direction, a unit vector, and
Oe denotes the polarization, likewise a unit vector. With these symbols the wave
equation (4.326) becomes

n2.ıij � Oni Onj / Oej D .ıij C �ij / Oej : (4.328)

There are two cases to be distinguished:

• Longitudinal polarization: On k Oe. Equation (4.328) has no solution. Equation
(4.326) leads to ! D 0. The electromagnetic field is static.

• Transversal polarization: On ? Oe D 0. n2 is an eigenvalue of the permittivity tensor
�ij D ıij C �ij and Oe the corresponding eigenvector.

However, there is a flaw in the above chain of arguments: the dependency of
�ij .!;k/ on k has been ignored. Equation (4.328) implies the following procedure.
Specify an angular frequency ! and a polarization Oe. Work out �ij D�ij .!; 0/.
Then solve Eq. (4.328) for n2 and On. One solution will be On D Oe, discard it. The
remaining two solutions provide refractive indexes n and propagation directions On
of plane light waves. Put otherwise, we assumed k D 0 and have worked out the
propagation vector k. This article tries to remedy this inconsistency, at least in
linear approximation. The propagation constants for light will not only depend on
the angular frequency !, but also on the wave vector k. The former effect is called
dispersion, but it should be called temporal dispersion. The latter effect therefore is
spatial dispersion.

4.17.2 Optical Activity

The interaction between light and a dielectric medium is strongest if phonons and
photons are in resonance, that is, they have the same energy and momentum. We
have argued above that this happens for small wave vectors only, in natural units.
Therefore we postulate a linear dependency of the susceptibility tensor on the wave
vector:

�ij .!;k/ D �ij .!/C �oa
ijk.!/kk C � � �: (4.329)

As demonstrated in Chap. 3, time reversal invariance requires the Onsager
relation

�ij .!;kIE;B/ D �ji .!;�kIE;�B/: (4.330)
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We have exploited this

• For k D E D B D 0 in the article on Crystal Optics,
• For k D B D 0 in the article on the Pockels and Kerr Effect,
• For k D E D 0 in the article on the Faraday Effect,

and we shall now discuss the situation E D B D 0 but k ¤ 0.
The susceptibility tensor (4.329), which should also be Hermitian, can be

written as

�ij .!;k/ D �ij .!/C i�ijkgk.!/ with gk.!/ D Gkl .!/kl : (4.331)

Since the Levi-Civita symbol �ijk is a pseudo-tensor of rank three, the so-called
gyration vector gk must be a pseudo-vector and Gkl a pseudo-tensor of rank two.
Gkl cannot be measured directly because it has to be contracted with the wave

vector k which characterizes the solution. It is an object of theoretical study, only
certain crystal symmetries allow for it. Here it suffices to demonstrate that the
gyration vector g is a pseudo-vector which changes sign if k is inverted. The latter
feature distinguishes it from the gyration vector which describes the Faraday effect.
Equation (4.202) may be rewritten as Eq. (4.331) with

gk D KBk; (4.332)

where B is the quasi-static external magnetic induction. This gyration vector does
not change sign if the propagation vector k of a wave is inverted.

Consider a linearly polarized wave which travels along the direction Og of the
gyration vector

g D g Og (4.333)

of an optically active medium. If it travels a distance `, the polarization vector will
be rotated by an amount ˚ oa`. The specific37 rotation is

˚ oa D gk0

2n
D �

g

n
0
: (4.334)

n is the refractive index, k0 and 
0 denote the vacuum wave number and wavelength
of light, respectively. Equation (4.334) is a symbol-by-symbol translation of the
corresponding formula (4.211) for the specific Faraday rotation.

4.17.3 Quartz

Chemically, quartz is silicon dioxide, SiO2. Its crystal form at room temperature,
also called ˛-quartz, lacks an inversion plane. Optically, it is a transparent uniaxial

37In this context: per unit length.
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mineral with an ordinary index of refraction of 1.5442 and an extraordinary
of 1.5533. The optical axis Oc, however, is a pseudo-vector. Quartz may be either left
handed or right handed. Single large crystals are either totally left handed or totally
right handed, and sometimes twins with left handed and right handed domains.
Statistically, there is no preference for handedness. The laws of nature do not seem
to prefer right handedness to left handedness.

The effects of birefringence are usually much larger than optical activity. Only
for the ordinary beam, which travels along the optical axis Oc, the rotation of
the polarization vector can be observed. For quartz at room temperature and for

D 0:633�m the specific rotation is 18.7ı mm�1, according to Kaye and Laby [5].

The properties of a light beam are judged by an observer who looks into the
beam.38 Right handed quartz rotates the polarization vector counter-clockwise.
Let the thumb of a right hand point into the propagation direction of a beam. The
fingers then indicate the sense of polarization rotation.

Light propagating not in, but counter to the optical axis of a right-handed
quartz will also be right handed. Therefore, a right handed quartz, if rotated by
180ı around an axis which is perpendicular to the optical axis, will also be right-
handed.

4.17.4 Natural Grape Sugar

Glucose is a simple sugar, or monosaccharide. Its summary formula is C6H12O6. It is
produced by the green plants out of water and carbon dioxide and energy, thereby
releasing oxygen. It is burnt, finally, with oxygen, to water and carbon dioxide
providing energy. The glucose molecule comes in two species, one being the mirror
of the other. There are D-glucose molecules39 the structure of which resembles a
right-handed screw. The mirror molecule is named L-glucose, it resembles a left-
handed screw. Both forms have the same binding energy and should be equally
probable. Indeed, this is the case if glucose is synthesized artificially. Naturally
produced glucose, however, is always of the D-type, or dextrose. It is produced
in wine grapes and therefore also known as grape sugar. It is also known as blood
sugar because all other nutrients like starch and similar carbon hydrates, fats and
proteins are transformed by the human digestive systems into D-glucose which may
enter cells and power them.

Physically speaking, a D-glucose molecule is characterized by a unit axial vector
Oc describing its orientation as right-handed. In a solution, for instance in water, the Oc
vectors of the D-glucose molecules are randomly distributed. The average, however
will not result in zero because Oc and �Oc affect light equally.

38What you should not do!
39Latin dexter, right handed.
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A solution of D-glucose is optically isotropic. Any direction will serve as optical
axis. Its optical activity is proportional to the concentration. This provides a conve-
nient method for determining the D-glucose concentration in blood. Normal values
are 100 mg per dL (100 cm3), or 1.00 g per liter blood. Since a normal grown-up
person has approximately 6 L of blood, already 6 g of grape sugar will double the
natural concentration practically immediately. Other sugars, like cane sugar, milk
sugar and so forth are broken down to D-glucose by the digestive system, they
increase the blood sugar level as well, but with a certain retardation.

4.18 Pockels and Kerr Effect

The propagation of light in a transparent medium is governed by the susceptibility
tensor. It describes the polarization response of the medium, in linear approximation,
to perturbations by a rapidly oscillating electric field. The response is retarded,
therefore the susceptibility depends on the light wavelength, or angular frequency.
Moreover, the susceptibility is an expectation value, it depends on all parameters
which describe the thermodynamic equilibrium of the medium under study. Each of
these gives rise to a branch of optics:

• Temperature: thermo-optics
• Stress: photo-elasticity, acousto-optics
• Quasi-static electric field: electrooptics
• Quasi-static magnetic field: magnetooptics

Here we study electrooptic effects. The susceptibility tensor depends on the
quasi-static electric field strength E . We call it quasi-static, because it is an
equilibrium parameter. However, even if it changes with time in the gigahertz (GHz)
range, the thermodynamic equilibrium can follow instantaneously. This has to be
compared with the frequency of light which is one million times larger (PHz).
At these frequencies, which correspond to photon energies of electron volts (eV),
matter reacts with a noticeable retardation. One speaks of the Pockels effect if the
crystal’s symmetry allows for a suitable rank three tensor, such that susceptibility
changes linearly with the external electric field. If there is no Pockels effect, the
quadratic Kerr effect, although much smaller, allows to manipulate the propagation
of light. Modern integrated optical devices rely on dielectric waveguides with
micrometer dimensions: high electric field strengths can be achieved by rather small
voltages.40 Integrated optics has become an engineering science which we cannot
even be touched upon in this small book with its emphasis on balance and material
equations.

40Ten volts per micrometer correspond to hundred thousand Volts per centimeter.



4.18 Pockels and Kerr Effect 175

4.18.1 Dielectric Susceptibility

We assume a linear and causal relationship between the light wave’s electric field
strength and the polarization caused by it,

Pi.t;x/ D
Z 1

0

d�
Z

d3� �ij .�; �/ Ej .t � �;x � �/: (4.335)

Any field f D f .t;x/ may be decomposed uniquely in harmonious contributions:

f .t;x/ D
Z

d!

2�
e

�i!t
Z

d3k

.2�/3
e

ik � x Qf .!;k/; (4.336)

such that Eq. (4.335) becomes

QPi.!;k/ D �0�jk.!;k/ QEj .!;k/: (4.337)

As long as the response (polarization) depends linearly on the perturbation (light
electric field strength), both oscillate with the same temporal and spatial frequencies
(!;k) multiplied by the susceptibility �ij .!;k/. Susceptibility �ij and response
function �ij of Eq. (4.335) are related by

�ij .!;k/ D 1

�0

Z 1

0

d� e
i�!

Z
d3� e

�i� � k
�ij .�; �/: (4.338)

In general, the dependency on the wave vector k is so weak that we may neglect it.41

In the chapter on Linear Resonse Theory, we derived an explicit expression
for the response functions �ij as an equilibrium expectation value of a certain
commutator. This expression allowed to prove a number of properties:

• Refraction and absorption: the susceptibility tensor �ij D � 0
ij C i� 00

ij can be split
into a Hermitian and an anti-Hermitian part. The former describes refraction, the
latter absorption of light.

• Kramers-Kronig relation: the Hermitian part � 0
ij .!/ at a certain frequency ! is a

particular integral of the anti-Hermitian part � 00
ij .u/ at different frequencies u. No

refraction without absorption, albeit at possibly far away frequencies.
• Onsager relation: the susceptibility is invariant with respect to interchanging its

indexes, provided an external induction field B is reversed as well, �ij .B/ D
�ji .�B/.

If there is no quasi-static external induction field, but an electric field E , the
susceptibility tensor is symmetric.

41Optical activity is an exception.
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4.18.2 Pockels Effect

In this article we assume a transparent medium. Because of � 00
ij D 0 the susceptibility

tensor is Hermitian. The same holds true for the (relative) dielectric permittivity
�ij D ıij C �ij , and also for the inverse tensor .��1/ij which is often used in
theoretical optics.

Let us write a Taylor expansion of ��1 with respect to quasi-static fields:

.��1/ij .!IE ;B/ D .��1/.0;0/ij .!/ (4.339)

C .��1/.1;0/ijk .!/Ek (4.340)

C .��1/.0;1/ijk .!/Bk C � � � : (4.341)

The first term on the right hand side is Hermitian and symmetric, hence real
symmetric. We have discussed it in the article on Crystal Optics.

The second term describes the action of a quasi-static electric field in linear
approximation, if crystal symmetry permits it. The corresponding effects go with
the name of Pockels. It is the subject of this article. Following tradition, we denote
.��1/.1;0/ijk by rijk .

The third term describes the Faraday effect which we discuss in another article.
If crystal symmetry does not allow tensors of rank three with appropriate

properties, higher terms must be taken into account, like the Kerr effect, which is
bi-linear in the quasi-static electric field.

4.18.3 Crystal Symmetry 3m

If the crystal has an inversion center, such that x ! �x is a symmetry operation,
there can be no proper tensor of rank three. The Pockels effect shows up only for
non centro-symmetric crystals, such as lithium niobate.

The crystallographic point group of LiNbO3 is 3m. There is a threefold symmetry
axis and a mirror plane. The point group contains the identity

I D
0
@
1 0 0

0 1 0

0 0 1

1
A; (4.342)

the reflexion

˘ D
0
@

�1 0 0
0 1 0

0 0 1

1
A; (4.343)
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Table 4.3 Multiplication table of the 3m symmetry group made up of
the mirror transformation ˘ and a rotation R by 120ı and products
thereof

I ˘ R R�1 ˘R R˘

I I ˘ R R�1 ˘R R˘

˘ ˘ I ˘R R˘ R R�1

R R R˘ R�1 I ˘ ˘R

R�1 R�1 ˘R I R R˘ ˘

˘R ˘R R�1 R˘ ˘ I R

R˘ R˘ R ˘ ˘R R�1 I

the rotation

R D
0
@

�p3=4 p
3=4 0

�p3=4 �p1=4 0
0 0 1

1
A; (4.344)

and all of their products. The group 3m is made up of fI;˘;R;R�1;˘R;R˘g.
Table 4.3 describes its structure. You find the productA �B at row A and columnB .

We will now construct the most general tensor rijk D rj ik which is compatible
with the 3m symmetry group.

4.18.4 Symmetry Compatible Tensors

Let us denote by Oc the unit vector of the three-fold rotation symmetry. This is the
z axis of the Cartesian coordinate system. The x; y axes are represented by unit
vectors Ox and Oy , respectively. Apart from Ou D Ox we define two more unit vectors,
namely

Ov D �
r
1

4
Ox C

r
3

4
Oy and Ow D �

r
1

4
Ox �

r
3

4
Oy: (4.345)

Since Ou � Ov D Ov � Ow D Ow � Ou D 1=2, the angle between them is 120ı. Note that Ox, Oy ,
Ou, Ov and Ow are orthogonal to Oc D Oz.

Ox ! � Ox (4.346)

and a cyclic permutation
Ou ! Ov ! Ow ! Ou (4.347)

are symmetries. See Fig. 4.15 for a sketch.
We can construct four tensors of rank three which respect 3m symmetry and are

symmetric in the first two indexes.
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Fig. 4.15 The plane
orthogonal to the Oz D Oc axis.
Ox and Oy as well as Ou, Ov, Ow are
unit vectors. Mirroring with
respect to the Oy; Oc plane (or
Ox ! �Ox) as well as
Ou ! Ov ! Ow ! Ou are
symmetry operations. These
transformations define the 3m
space point group

• Oc ˝ Oc ˝ Oc is obviously symmetric in the first pair of indices and respects
3m-symmetry. We obtain

D
.1/

ijk D Oci Ocj Ock: (4.348)

• Ou ˝ Ou ˝ Oc C� � � can be simplified because Ou ˝ Ou C Ov ˝ Ov C Ow ˝ Ow is proportional
to Ox ˝ Ox C Oy ˝ Oy . In components:

Oui Ouj C Ovi Ovj C Owi Owj / Oxi Oxj C Oyi Oyj : (4.349)

Our second symmetry complying tensor therefore is

D
.2/

ijk D . Oxi Oxj C Oyi Oyj / Ock: (4.350)

• . Ou ˝ Oc C Oc ˝ Ou/˝ Ou C � � � can again by simplified by Eq. (4.349). We arrive at

D
.3/

ijk D . Oxi Ocj C Oci Oxj /xk C . Oyi Ocj C Oci Oyj /yk: (4.351)

• Ou ˝ Ov ˝ Ow is not allowed because the expression changes sign upon Ox ! � Ox.
However, if we replace Ou by Ou 0 D Oc� Ou and likewise for Ov and Ow, then Ou 0˝Ov 0˝ Ow 0
does not acquire this minus sign. Hence we should try the expression

. Ou 0 ˝ Ov 0 C Ov 0 ˝ Ou 0/˝ Ow C cyclic permutations: (4.352)

This ansatz is symmetric in the first index pair and obeys 3m symmetry. It is
proportional to . Ox ˝ Oy C Oy ˝ Ox/˝ Ox C . Ox ˝ Ox � Oy ˝ Oy/˝ Oy . The fourth (and
last) symmetry complying tensor is

D
.4/

ijk D . Oyi Oyj � Oxi Oxj / Oyk � . Oxi Oyj C Oyi Oxj / Oxk: (4.353)
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Table 4.4 Pockels coefficients for lithium niobate in pmV�1. The first column shows the
constants of Eq. (4.354), the second in standard notation. The tensor entries in the third column are
equal to ra. The fourth and fifth column are measured values at constant stress and constant strain,
respectively, for light of a helium-neon laser

ra Also rijk Free Clamped

r1 r33 r333 30.9 30.8
r2 r13 r113 D r223 9.6 8.6
r3 r51 r131 D r311 D r232 D r322 32.6 28.0
r4 r22 r222 D �r121 D �r211 D �r112 6.8 3.4

The symmetry in the first pair of indexes as well as the mirror symmetry are
obvious; the symmetry with respect to 120ı rotations is guaranteed by adding
cyclic permutations.

The tensor of Pockels coefficients can be written as

rijk.!/ D
4X

aD1
ra.!/D

.a/

ijk: (4.354)

Table 4.4 lists the non-vanishing tensor elements. The last two columns are
values for lithium niobate, for constant stress (free) or constant strain (clamped).
The former refer to slowly varying external fields E when stress can follow strain.
The clamped values are applicable if E D E.f / changes so rapidly with frequency
f that there is no time for achieving elastic equilibrium. The listed values from [5]
are for He-Ne laser light, 
 D 632:8 nm.

4.18.5 Digression on Orders of Magnitude

The Pockels coefficients are some 10 pmV�1. Are such values arbitrary, GOD
given? No, as we will argue in this digression on atomic units. After all, solid state
physics is based on quantum theory. In particular, a solid is idealized as an ensemble
of nuclei and their electrons. It is a good approximation to idealize the solid as a
lattice of fixed ions and a cloud of shared electrons which interact via Coulomb
forces. The following constants of nature (or conventions on the system of units)
enter the game. There is e, the charge of the proton and, with a negative sign, of
the electron. Ordinary matter cannot be understood without the laws of quantum
mechanics, hence „ shows up. The mass m of electrons will be found and the factor
4��0 which appears in the Coulomb force law. Atomic units are combinations42

e,m, „ and 4��0 for given physical quantities, such as time, length, voltage, electric
field strength and so on. The atomic unit of electric field strength is

42products of powers of
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E? D m2e5

.4��0/3„4 D 0:514 � 1012 Vm�1: (4.355)

Measured in atomic units, r333 E? � 16 (free) is reasonably large. Lithium niobate is
rather resilient to quasi-static external fields. See the article on Natural Units where
we discuss more examples.

4.18.6 How Light Propagation is Affected

Let us first apply an electric field E D E Oc along the optical axis. According to
Table 4.4 we find

��1 D

0
BBBBB@

1

n2o
C r13 E 0 0

0
1

n2o
C r13 E 0

0 0
1

n2e
C r33 E

1
CCCCCA
: (4.356)

Here, no D 2:286 is the refractive index of the ordinary and ne D 2:200 of the
extraordinary beam.43 See the article on Crystal Optics. Since the electric field
strength is always very small as compared with the atomic unit thereof, we may
write

no.E/ D no � 1

2
n3o r13 E and ne.E/ D ne � 1

2
n3e r33 E : (4.357)

Ordinary or extraordinary beams remain ordinary or extraordinary. However, their
propagation constants now depend linearly on the external electric field strength.
When propagating a distance `, there is a phase shift of 	D �n3rE`=2 which may
be employed for modulating or switching light or for measuring phase shifts, such
as in fiber gyros.

We now discuss an electric field E D E Ox in x direction, perpendicular to the
optical axis. The inverse dielectric permittivity is

��1 D

0
BBBBB@

1

n2o
�r22 E r51 E

�r22 E 1

n2o
0

r51 E 0
1

n2e

1
CCCCCA
: (4.358)

43For He-Ne laser light, from [5].



4.18 Pockels and Kerr Effect 181

Likewise, if the electric field is E D E Oy , one obtains

��1 D

0
BBBBB@

1

n2o
� r22 E 0 0

0
1

n2o
C r22 E r51 E

0 r51 E 1

n2e

1
CCCCCA
: (4.359)

The situation is rather complicated, and we shall not discuss it further.
To summarize: If the external electric field is parallel to the optical axis of a

lithium niobate crystal, it remains optically uniaxial. Its ordinary and extraordinary
indexes of refraction change linearly with the applied field strength. If the external
electric field is perpendicular to the optical axis, the medium becomes optically
biaxial.

4.18.7 Kerr Effect

By the so-called totalitarian principle44 of physics, crystals which lack an inversion
center always show the Pockels effect. However, if there is an inversion center, the
quasi-static external electric field E will modify the susceptibility only in second
order. This so called Kerr effect is quite normal, it does not require a special crystal
symmetry. In fact, it shows up even for optically isotropic media, such as liquids or
cubic crystals. Traditionally, the Kerr constant R is defined as

.��1/.2;0/ijkl D Rıikıjl (4.360)

in the notation of Eq. (4.339), or by

.��1/ij D 1

n2
ıij CREiEj : (4.361)

A contribution proportional to ıij ıkl would simply modify the refractive index n by
a tiny amount, an effect which is difficult to detect.

Assume the electric field pointing in 3-direction, E1 D E2 D 0 and E3 D E . The
dielectric permittivity tensor will be

� D
0
@
n2o 0 0

0 n2o 0

0 0 n2e

1
A; (4.362)

44Everything not forbidden is compulsory.
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with the ordinary index of refraction no D n and an extraordinary refractive index

ne D n � 1

2
n3RE2: (4.363)

The material becomes birefringent, the optical axis being the direction of the quasi-
static external electric field E . The birefringence no � ne grows quadratically with
the field strength.

In a liquid, the quasi-static electric field partially orders molecules with a dipole
moment, thereby making it optically uniaxial. The effect is particularly large for
nitrobenzene,45 namelyRD 1:50 � 10�18 m2 V�2. If an electric field of 10 kV cm�1
is applied, the birefringence is 
nD 2:8 � 10�6. The phase shift between the
ordinary and the extraordinary beam will be �=2 if they propagate a distance
of 5.7 cm.

In a Kerr cell, the linearly polarized light beam propagates along the x axis.
When entering the cell, its electric field shall be E / .0; 1; 1/, a superposition of an
ordinary and an extraordinary beam. Have a look at Fig. 4.5. Both propagate with
slightly different propagation constants, and after a certain length the field will be
E / .0; 1;�1/. When leaving the Kerr cell, the polarization vector has changed
from C45ı to �45ı. Suitably arranged polarizers will make sure that light passes
the Kerr cell. If, however, the electric field is switched off, the beam may not pass
the arrangement of a Kerr cell and the polarizers before and after it. The Kerr effect
allows to switch a light beam by a voltage. Since this is a book on materials, not on
devices, we cannot pursue this thread any further.

4.19 Reactions and Diffusion

Diffusion of one kind of particles in a gas, a liquid, or a solid is a simple
problem. We have discussed it already in our article on Brownian Motion. Moreover,
the diffusion equation for one species of particles is formally similar to the
heat equation. After all, heat conduction is nothing else but phonon diffusion.
Things become really interesting if two or more species of particles diffuse which
locally undergo chemical reactions. Although the diffusion equations are linear
in the concentrations of the involved particles, their interactions are described by
non-linear relations between them. Thus, the combination of localized chemical
reactions and diffusion leads to non-linear systems of partial differential equations,
the solutions of which show remarkable features, for instance spontaneous pattern
formation. This article is intended to be an introduction into an entirely new world
of phenomena.

45Kaye and Laby [5], for He-Ne laser light.
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4.19.1 Gray-Scott Model

Among hundreds of possible examples we concentrate on the Gray-Scott [1] model
because it is simple and yet full of surprising details. There are two species of
particles, U and V. U serves as a substrate. In an auto-catalytic reaction it is
transformed into V by UC2V ! 3V. New U particles enter the reaction region
by passing through a membrane, and V particles pass outside through the same
membrane.

Denote by u D u.x; y/ and v D v.x; y/ the concentration of U and V particles,
respectively. The production rate per unit volume of U particles is

�u D �Ruv2 C F.Nu � u/: (4.364)

The first term on the right hand side takes the mass action law into account. One
U and two V must come into close contact to allow for a chemical reaction. The
rate therefore is proportional to the first power of u and the second power of v.
Any such reaction removes a U particle, therefore the minus sign. R is a positive
constant. The second term formulates that the inflow of U particles is proportional
to the difference between the constant concentration Nu outside and the concentration
u inside the reactor. F is a positive constant.

For the volumetric production rate of V particles we write

�v D CRuv2 � .F CK/v: (4.365)

Any reaction UC2V ! 3V adds one V particle, therefore the CRuv2 contribution.
V particles passing out of the reactor are removed, that is, Nv D 0 outside. The
outflow of V particles therefore is proportional to v, the proportionality constant
F CK may differ from F for the inflow of U particles.

The Gray-Scott model combines this local reaction mechanism with diffusion,
which is described by

@tu D DU
u C �u and @tv D DV
v C �v: (4.366)


 D @x@x C @y@y is the Laplacian in two dimensions.DU andDV are the diffusion
constants for U and V particles, respectively. Although Eq. (4.366) with Eqs. (4.364)
and (4.365) appear to be simple, these equations describe a huge manifold of
solutions which critically depend on the model parameters.

4.19.2 Similarity Considerations

Let us introduce a typical time t� and a typical length `�. We introduce a
dimensionless time by t D t� Ot , dimensionless coordinates by xD `� Ox and yD `� Oy.
The concentration of U particles can be written as u.t; x; y/D Nu Ou.Ot ; Ox; Oy/
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while the distribution of V particles is described by v.t; x; y/D Nu Ov.Ot ; Ox; Oy/.
All headed symbols are dimension-less. Differentiation with respect to time
becomes @t D O@t =t�, and the Laplacian is 
D O
=`2�.

Let us rewrite Eq. (4.366):

O@t Ou D t�DU

`2�
O
Ou � t� Nu2 Ou Ov2 C t�F.1 � Ou/ (4.367)

and

O@t Ov D t�DV

`2�
O
 Ov C t� Nu2 Ou Ov2 � t�.F CK/ Ov: (4.368)

We choose t� and `� such that

t�DU

`2�
D 1 and t�R Nu2 D 1; (4.369)

and we denote DU=DV by � , t�F by f , and t�K by k. Dropping the heads over
symbols we arrive at

@tu D 
u � uv2 C f .1 � u/ (4.370)

and

@tv D 1

�

v C uv2 � .f C k/v: (4.371)

All quantities in Eqs. (4.370) and (4.371) are now dimension-less. The Gray-Scott
model contains three parameters, the ratio � of diffusion constant, the inflow factor
f of U particles and the outflow factor f C k for V particles.46

4.19.3 Homogeneous Solutions

Physical intuition says that any solution of Eqs. (4.370) and (4.371) will converge,
with t ! 1, towards a stationary and homogeneous particle distribution. After
all, diffusion tends to smooth spatial inhomogeneities. So we look for solutions
u.t; x; y/ D u and v.t; x; y/ D v, for particle concentrations, which neither
depend on time t nor on location .x; y/. The Gray-Scott model (4.370), Eq. (4.371)
reduces to

uv2 D f .1 � u/ and uv2 D .f C k/v: (4.372)

46See Pearson [9].
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Fig. 4.16 Parameters of the Gray-Scott model. f from left to right, k from bottom to top.
Parameters in the marked region allow for two stationary homogeneous solutions .u

˙
; v

˙
/ besides

.1; 0/. The dot marks a parameter set for which we later will show a solution

One solution is evident, namely u D 1 and v D 0. The concentration of U and
V particles outside and inside the reaction region are the same. There are, however,
another two solutions, namely

u˙ D 1

2
˙
s
1

4
� .f C k/2

f
with v˙ D f

f C k
.1� u˙/: (4.373)

These additional stationary homogeneous solutions do not exist for all parameter
sets f and k, but only if

f � 0 , .f C k/ � 0 and f � 4.f C k/2 (4.374)

hold true. This delimits the parameter space to

f � 0 and � f � k �
p
f

2
� f : (4.375)

It is usually assumed that U particles pass the membrane more easily than V
particles. This is expressed by k� 0. Then the parameter space is further restricted to

f � 0 and 0 � k �
p
f

2
� f : (4.376)

We have plotted this region in Fig. 4.16.
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Fig. 4.17 The Gray-Scott model has been solved with � D 2, f D 0:050 and k D 0:065. These
parameters correspond to the mark in Fig. 4.16. The partial differential equation has been equipped
with arbitrary initial conditions. This is an early development stage. Worm-like regions expand,
but avoid each other. They have not yet met the boundary. White corresponds to low V, but high U
concentration

4.19.4 Pattern Formation

The diffusion equations (4.370) and (4.371) for u D u.t; x/ and v D v.t; x/ must
be supplemented by an initial and by boundary conditions. The reaction region is
described by the square 0 � x � 1 and 0 � y � 1. In order to simulate translational
invariance, periodic boundary conditions are usually imposed:

u.t; 0; y/ D u.t; 1; y/ as well as u.t; x; 0/ D u.t; x; 1/; (4.377)

and the same for v.t; x; y/. The initial fields u0.x; y/ D u.0; x; y/ and v0.x; y/ D
v.0; x; y/ should respect Eq. (4.377).

We refrain from describing a problem solver. There are many to be found in the
Internet. With one of them, a Java applet, we have produced the following pictures.47

You may specify the parameters f and k, and the program shows a sequence of
u-fields as they develop with time. Initial conditions are either random or standard.
Figure 4.17 is an example.

The next picture Fig. 4.18 shows the solution at an intermediate state of evolution.
Some worms have met the boundary and thus reappear on the opposite side. This is a
consequence of imposing unphysical periodic boundary conditions which, however,
warrant translation symmetry. You cannot mimic the infinite x � y plane by a
necessarily finite mesh on a computer.

47http://www.aliensaint.com/uo/java/rd/ by Jonathan Lidbeck while he was with the University of
Oregon.

http://www.aliensaint.com/uo/java/rd/
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Fig. 4.18 See the caption of Fig. 4.17. The concentration of U particles is shown at an intermediate
state of pattern development

Fig. 4.19 See the caption of Fig. 4.17. This picture displays u.t; x; y/ for t ! 1. In the vicinity
of parameters � D 2, f D 0:050 and k D 0:065 there are non-trivial stationary patterns of which
this is an example

The parameter set � D 2, f D 0:050 and k D 0:065 leads to a stationary pattern
which we show in Fig. 4.19.

For other parameters one will encounter completely different solutions. Some
never converge with time. In other occasions, there is a definite pattern which
however oscillates or moves. There are parameter sets for which dots grow into
small worms which soon split into two other dots resembling bacteria colonies.
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4.19.5 Further Remarks

Models like that of Gray and Scott play an important role in theoretical biology.
It was Alan Turing’s seminal paper on The Chemical Basis of Morphogenesis [13]
where local non-linear reactions and diffusion were combined for the first time
in order to explain forms and patterns. There are stable or quasi-stable states far
away from thermodynamic equilibrium. In this article we cannot go beyond striving
the vast and growing field of research on non-linear phenomena. Simple and plain
equations, such as for diffusion with local non-linear reactions or the Navier-Stokes
equation promise surprises for years to come.

4.20 Reynold’s Number

Fluids, that is liquids or gases, are characterized by the absence of elastic shear
stress. A rather large class of fluids are well described by the non-linear Navier-
Stokes equations for a Newtonian fluid or a variation thereof. Water and air are
among them. Stationary solutions of the Navier-Stokes equation may be scaled
provided the dimension-less Reynold number Re remains unchanged.

4.20.1 Navier-Stokes Equation

The famous Navier-Stokes equation is nothing else but the momentum balance
equation for fluid media with Newton’s friction law. We will further specialize to
an incompressible fluid, such as water.

The momentum balance equation is

@t%vi C @j f%vivj � Tij g D fi : (4.378)

Here % is the mass density, vi denotes the center-of-mass flow velocity, Tij the stress
tensor and fi is the external force per unit volume. The flow of momentum Pi
in direction j has been split into the convection term %vivj and the conduction
contribution �Tij . fi is the production rate of momentum Pi per unit volume.

The stress tensor must be split into an elastic and an inelastic contribution,
Tij DT 0

ij C T 00
ij , respectively. The elastic, or reversible part is

T 0
ij D �p ıij (4.379)

for a fluid medium. There are no off-diagonal elements, or shear forces. p is the
pressure. The inelastic, or irreversible part of the stress tensor, for a Newtonian
fluid, is
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T 00
ij D � f@ivj C @j vi g: (4.380)

This expression guaranties that the stress tensor be symmetric upon exchange of
indexes. It formulates the idea that friction is proportional to velocity differences of
neighboring material points. � D �s is the shear viscosity of the fluid.

Let us further specialize to incompressible fluids, such as water. They are charac-
terized by a constant mass density which, because of @t%C @i%vi D 0 (conservation
of mass) implies

@i vi D 0: (4.381)

Baking all this together gives

%.@tvk C vi@ivk/ D %Dt vk D �@kp C �
vk C fk; (4.382)

the Navier-Stokes equation. Dt denotes the substantial time derivative as felt by a
co-moving observer. The reason for the acceleration of a material point is a negative
pressure gradient, friction, and an external force such as gravitation or a Coriolis
force.

4.20.2 Similarity Considerations

External forces are usually not important in hydrodynamic problems, so we drop
the last term in Eq. (4.382). We choose a typical length `� and a typical velocity v�.
True lengths are written as ` D Ò`�, true velocities as v D Ovv�. Likewise, we
measure time in units of t� D `�=v� and pressure in units of p� D %v2�. With these
conventions, the Navier-Stokes equation (4.382) formally simplifies to

O@t Ovk C Re Ovi O@i Ovk D �O@k Op C O
 Ovk: (4.383)

Re stands for Reynold’s number

Re D %v�`�
�

: (4.384)

You should check the physical dimensions to convince yourself that Re is indeed a
dimension-less number. The Navier-Stokes equation (4.383) is entirely dimension-
less, hence ready for numerical studies. Problems with differing `� and v� but the
same Reynold number are described by one and the same equation. This allows
for simulating real-world problems on small scales. If a ship is modeled ten to one
and the velocity is increased by a factor of ten, the same dimension-less solution
describes both situations.
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4.20.3 Laminar Flow and Turbulence

Physicists like linear problems because they are easy to solve. On the other
hand, non-linearities produce interesting and surprising effects. The Navier-Stokes
equation contains Re as a parameter which continuously changes the equation’s
behavior: from linear to slightly non-linear to highly non-linear, from creeping to
laminar to turbulent.

It is the second term in Eq. (4.383) which is problematic. It may vanish because
Reynold’s number is very small such that Re Ovi O@i Ovk may safely be neglected.
We then speak of a laminar flow because layers48 glide one upon the other with
slightly different velocities. Our article on Stoke’s Law explicitly relies on Re � 1.

However, the term Re Ovi O@i Ovk may also vanish because of symmetry reasons. See
the article on the Hagen-Poiseuille Law. Although there is a plausible solution, it
may be unstable if Reynold’s number is large enough. How largeRemust be in order
to cause turbulence depends very much on details. The transition from laminar to
turbulent flow may be triggered by small obstacles or any kind of surface roughness.
Although much has been said about turbulence, the phenomenon is still more or less
mysterious. This is so because the velocity field depends critically on initial and
boundary conditions such that an impression of randomness springs to mind. The
larger Reynold’s number, the more so.

Horace Lamb, a renowned researcher in hydrodynamics, reportedly [7] said
in an address to the British Association for the Advancement of Science: “I am
an old man now, and when I die and go to heaven there are two matters on
which I hope for enlightenment. One is quantum electrodynamics, and the other
is the turbulent motion of fluids. And about the former I am rather optimistic”.
Also Richard Feynman called turbulence “the most important unsolved problem
of classical physics” [7].

4.21 Sound in Air

Think about a small region with mass M within a gas in equilibrium. If this
region is compressed, there will be a counter force, or pressure, to re-establish
equilibrium. Since the region has mass, the volume then, because of inertia, becomes
too large, and a compressing counter pressure tries to bring it back to equilibrium.
For small deviations from equilibrium, the pressure will be proportional to the
volume deviation from its equilibrium value. These are the ingredients of a harmonic
oscillation. Since the pressure gradients drives a flow of momentum, the oscillation
will propagate from site to site, and we expect pressure deviations to be governed
by a wave equation. In the following we derive the sound wave equation, describe a

48Latin lamina, layer.
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very simple sound source, discuss acoustic energy and present the classical formula
for sound attenuation.

4.21.1 Wave Equation

Let us denote by Np, N% and Nvi D 0 the equilibrium values of pressure, mass density
and center of mass velocity. We write p D Np C Qp, % D N% C Q% and vi D Qvi for
the actual pressure, mass density and velocity of material points. In this article we
shall study small deviations49 from equilibrium only. All equations will be linear in
deviations Qx.

The mass balance equation now reads

@t Q%C N%@i Qvi D 0: (4.385)

The momentum balance equation with Tij D �ıij p becomes

N%@t Qvi C @i Qp D 0: (4.386)

External forces, such as gravitation, play no role here. The term @j %vivj is of second
and higher order and has been dropped. The divergence of Eq. (4.386) is

N%@t @i Qvi C
 Qp D 0: (4.387)

We insert Eq. (4.385) and arrive at

�@2t Q%C
 Qp D 0: (4.388)

This equation applies to all weekly perturbed fluid media. To proceed, we need a
relation between the deviations Qp of pressure and Q% of mass density.

Unfortunately, the ideal gas law50

p D %

M
RT (4.389)

does not help. For deviations it reads

Qp D Q%
M
RT C %

M
R QT ; (4.390)

49In this article the tilde does not denote the Fourier transform, but a small deviation from the
equilibrium value.
50M is the molar mass of air and R denotes the universal gas constant.
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it just would introduce another field, namely the temperature deviation QT from the
equilibrium value.

In our article on a Model Atmosphere we have studied the free energy of a
diatomic ideal gas which describes air very well. We could show that two states—
labeled by 1 and 2—have the same entropy if

T1

T2
D
�
V1

V2

��2=5
D
�
%1

%2

� 2=5
D
�
p1

p2

� 2=7
(4.391)

holds true. With %1 D N%C Q%, %2 D N% and the same for pressure we find

Q% D 5

7

N%
Np Qp D 1

c2
Qp; (4.392)

where c2 is an abbreviation for

c2 D 7

5

Np
N% D 7

5

R NT
M

: (4.393)

We insert this relation into Eq. (4.388) and obtain

�
1

c2
@2t �


�
Qp D 0; (4.394)

a wave equation. Bear in mind that Eq. (4.394) is the result of linearizing various
balance and material equations. Also note that the mass density fluctuation obeys
the same wave equation since Q% and Qp are proportional.

The constant c of Eq. (4.393) is obviously the speed of sound in a diatomic ideal
gas. For T = 20 ıC and with R D 8:314 J K�1 mol�1 and M D 0:02897 kg mol�1
we calculate c D 343m s�1 as the speed of sound in dry air. In dry air, because a
substantial amount of water vapor is not compatible with the assumption of a gas of
diatomic molecules.

The wave equation (4.394) applies to liquids as well. The only difference is that
the speed of sound is given by

c2 D
�
@p

@%

�

S

: (4.395)

The dependency of pressure on the mass density at constant entropy cannot
be calculated so easily. Kaye and Laby [5] cite cD 1; 522 m s�1 for sea water
at 20 ıC.
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4.21.2 Sound Generation

Let us discuss a very simple mechanism for exciting a sound wave. We assume a
pulsating sphere of radiusR.t/ D R0CA cos!t . The radius oscillates harmonically
betweenR0CA andR0�A. A is the amplitude of radius oscillation, a real number.
It is supposed to be small if compared with R0.

The displacement at the sphere’s surface is

Qui .t; R0n/ D Ani e
�i!t

; (4.396)

the velocity there

Qvi .t; R0n/ D �i! Ani e
�i!t

: (4.397)

Here n D x=R0 is the surface normal vector. In these and in the following equations
always the real part is understood such that displacement, velocity, mass density and
pressure are real. For the mass density oscillation we find, with Eqs. (4.385) and
(4.392), the expression

Q%.t; R0n/ D 3 N% A
R0

e
�i!t

: (4.398)

Hence the pressure oscillation at the sphere’s surface is

Qp.t; R0n/ D 3 N% A
R0
c2 e

�i!t D 3 Np A
R0

e
�i!t

: (4.399)

We look for a spherically symmetric solution of the wave equation (4.394) which
vanishes at infinity. Here it is:

Qp.t; rn/ D B
e

ikr

r
e

�i!t
with k D !

c
: (4.400)

The boundary condition (4.399) demands

B D 3 Np e
�ikR0 A; (4.401)

so that the solution is

Qp.t; rn/ D 3 Np A
r

e
ik.r � R0/ e

�i!t
: (4.402)

Recall: the sphere with radius R0 pulsates with amplitude A and angular frequency
! D ck. Np denotes the average pressure, Qp D Qp.t; rn/ the deviation from it at
time t and distance r � R0 from the center of the pulsating sphere. The solution
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is spherically symmetric because the direction unit vector n does not appear on the
right hand side of Eq. (4.400).

Energy

The energy related with sound is neither potential nor internal, but kinetic. Its current
density is given by

ji .E
k/ D Si D �vkTki D pvi ; (4.403)

for a fluid medium. Let us calculate it for the example of a pulsating sphere as
discussed above. Then Si D Qp Qvi in linear approximation (if time averaged).

From Eq. (4.402) we calculate, by Eq. (4.385), the following expression:

Qvi .t; rn/ D 3 Np
N%!

�
k C i

r

�
A

r
e

ik.r � R0/ e
�i!t

ni ; (4.404)

or

Qvi .t; rn/ D 1

c N%
�
1 � 1

ikr

�
Qp.t; rn/ ni : (4.405)

Now, the factor in front of Qp is complex. Its real part defines the velocity variation
which is in phase with pressure oscillations, the imaginary part describes a 90ı phase
shift. Therefore, the energy current density is proportional to 1=r2,

S .t; rn/ D P

4�r2
n; (4.406)

where

P D
Z

rDR0
dA � S (4.407)

is the power fed into the acoustic wave by the pulsating sphere.
Equations (4.402) and (4.405) are exact solutions to the linearized balance

equations of mass and momentum for a fluid medium without dissipation and heat
conduction. Equation (4.405) beautifully shows the distinction between the near
field (1=kr cannot be neglected) and the far field (1=kr � 0).

A pulsating ball is the most simple sound source. Loudspeakers are more refined.
Sound may also be generated by vibrating parts of a car’s engine or body or by
turbulent flow of air, by musical instruments, by the vocal cords, by transducers
relying on the piezoelectric effect and so forth.

Attenuation

Equation (4.406) is a typical result: the energy of an outgoing wave, if integrated
over a sphere of radius r , does not depend on the distance r from the source.
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This finding, namely wave energy conservation, is an idealization. In fact, there
is an irreversible transfer from kinetic energy into internal energy. Two mechanisms
are responsible for the attenuation of sound waves. They can be traced back to two
simplifications we have introduced earlier.

The attenuation of sound waves is not due to the linear approximation. Otherwise,
weak waves should be damped less than stronger waves, which is not true.

We have derived the wave equation (4.394) with a stress tensor Tij D �pıij ,
where p is the pressure. This, however, is only half the truth. The stress tensor
consists of a reversible part—which we have taken into account—and an irreversible
contribution which describes internal friction and has been neglected so far. It will
be linear in the velocity gradient.

We have also assumed that the compressibility is to be calculated for constant
entropy which boils down to neglecting heat conduction. If heat conduction is to be
included, the balance equation for entropy comes into the game. The temperature
field couples to the pressure field in such a way that sound waves are damped.

Quite formally, the dispersion relation ! D !.k/ will acquire small imaginary
terms such that, for given angular frequency !, the corresponding wave vector k is
no longer real. In fact, its imaginary part produces an e

�˛z
factor for a plane wave

running in z-direction.
The inelastic contribution to the stress tensor of a fluid has been discussed in

Chap. 2, it is

T 00
ik D �bıik@j vj C �s

�
@ivk C @kvi � 2

3
ıik@j vj

�
: (4.408)

�b and �s are the bulk and shear viscosity, respectively. The momentum balance
equation (2.13), if linearized, reads

N%ıt Qvi C @i Qp D �s
 Qvi C
�
�s

3
C �b

�
@i@j Qvj ; (4.409)

instead of Eq. (4.386). As before, we work out the divergence and make use of the
mass balance equation. One arrives at

�
@2t � �

N%
@t
�

Q%�
 Qp D 0; (4.410)

where � D 4�s=3C �b.
We assume that the effect of friction, !�= N%c2, is small. Equation (4.410) then

may be rewritten as
�
1

c2
@2t � �

N%c
1

c3
@3t �


�
Qp D 0: (4.411)

We insert a plane wave with real angular frequency ! and complex wave number k.
The wave equation now becomes an algebraic equation, namely
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!2

c2
C i

�

N%c
!3

c3
� k2 D 0; (4.412)

the solution of which is

k D !

c
C i˛ where ˛ D �

2 N%c
!2

c2
: (4.413)

The attenuation coefficient ˛ is proportional to the viscosity coefficient and grows
quadratically with frequency—a plausible result.

By the way, Eq. (4.413) remains correct if heat conductivity is included [10]. One
only has to replace � by

� D 4

3
�s C �b C 2

5

�

Cp
: (4.414)

�s and �b are the shear and bulk viscosities, respectively. The factor 2/5 is specific
for a two atomic gas, such as air. � denotes the heat conduction constant of the gas,
and Cp is the specific heat capacity at constant pressure.

We here have presented the classical theory of sound attenuation which is based
on the assumption that local equilibrium is attained instantaneously. A more detailed
study reveals that relaxations should be taken into account. A small part of the
molecules is not in its vibrational ground state, but excited, and a perturbation by
a pressure wave changes that fraction, until the system relaxes to its equilibrium.
The relaxation times for oxygen and nitrogen are different, so that the dependency
of the attenuation constant on frequency becomes rather complex. The gross ˛ /
!2 feature however still prevails. For further details see Springer Handbook of
Acoustics (loc. cit.).

4.22 Stokes’ Law

We shall work out the drag of an incompressible viscous fluid on a resting sphere,
or the friction encountered when a sphere moves in a resting liquid. We restrict
ourselves to laminar flow, a flow without turbulence. The flow velocity must be
small, or the viscosity high for Stoke’s law to be applicable.

4.22.1 The Problem

Think of a steady flow with constant velocity v1 D v2 D 0 and v3 D v1. This flow
is perturbed by a sphere of radius R fixed at the origin. The boundary conditions
hence are

v.x/ D 0 for r D
q
x21 C x22 C x23 D R (4.415)
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and

v.x/ D
0
@
0

0

v1

1
A for r ! 1: (4.416)

The equation to be solved is Eq. (2.17), the Navier-Stokes equation for a Newtonian
incompressible fluid, namely

%f@t vk C vi@ivkg D �@kp C �
vk: (4.417)

If the velocity is very small, or if the viscosity � is very large, then the second
term on the right hand side of Eq. (4.417) may be neglected. It is precisely this term
which makes the Navier-Stokes equation non-linear with respect to the velocity field
and therefore so difficult to solve. More precisely, we demand that the Reynolds
number of the problem,

Re D %v1R
�

(4.418)

be much smaller than 1. Since we also look for a steady flow, the time derivative
vanishes, and we have to deal with the seemingly simple equations

@kp D �
vk (4.419)

and

@i vi D 0: (4.420)

The latter says that the fluid be incompressible. They describe a creeping or a Stokes
flow.

The problem is to find a divergence free velocity field which respects both
boundary conditions (4.415) and (4.416). The momentum balance equation—or
better, what is left of it—merely serves to determine the pressure.

4.22.2 Vorticity and Stream Function

It is advisable to introduce spherical coordinates r; �; 	 by

x1 D r sin � cos	 , x2 D r sin � sin 	 , x3 D r cos �: (4.421)

There are three unit vectors

nr D
0
@

cos � cos	
cos � sin 	

sin �

1
A , n� D

0
@

� sin � cos	
� sin � sin 	

cos �

1
A , n	 D

0
@

� sin � sin 	
sin � cos	

0

1
A (4.422)
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which are orthogonal with each other. The velocity may be expressed as

v D vrnr C v�n� C v	n	: (4.423)

Since the flow far away from the obstacle and the obstacle itself are invariant with
respect to rotations about the 3-axis, we assume the same symmetry for the solution.
The field v	 vanishes, the components vr and v� depend on r and � only. This is a
considerable simplification. Equation (4.420) now reads

1

r2
@r r

2 vr C 1

r sin �
@� sin � v� D 0: (4.424)

The boundary condition (4.415) is

vr.R; �/ D v� .R; �/ D 0; (4.425)

while Eq. (4.416) says

vr.r; �/ D v1 sin � and r�.r; �/ D v1 cos � for r ! 1: (4.426)

The procedure to solve Eq. (4.424) with boundary conditions such as Eqs. (4.425)
and (4.426) resembles the method which we have explained in the article on Stress
Concentration. There is a stream function � D �.r; �/ such that

vr D 1

r2 sin �
@�� and v� D � 1

r sin �
@r�: (4.427)

This velocity field is automatically free of divergences. Moreover, the stream
function is biharmonic as we shall show next.

Generally, the vorticity of a flow velocity field is defined as

! D r � v; (4.428)

its divergence vanishes, and for a Stokes flow we find 0 D r � rp D �
r � v,
i.e.,

r � ! D 0 and 
! D 0: (4.429)

Let us now specialize to a two-dimensional flow with vx D vx.x; y/ and vy D
vy.x; y/. x; y are Cartesian coordinates where the gradient, divergence and curl
operators are simple expression. The velocity components are derived from a stream
function � D �.x; y/ by

vx D @y� and vy D �@x�: (4.430)
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This velocity field is automatically free of divergences. Its vorticity is calculated to
be !1 D !2 D 0 and !3 D �.@2xC@2y/� . It follows from Eq. (4.429) that the stream
function satisfies



 D
n
@4x C 2@2x@

2
y C @4y

o
� D 0: (4.431)

If a different coordinate system is used, this equation must be translated. We
conclude that the stream function � D �.r; �/ of Eq. (4.427) is biharmonic.

4.22.3 The Solution

We search for a biharmonic stream function � D �.r; �/ which gives rise to a
velocity field vr and v� according to Eq. (4.427). This velocity field must respect
boundary conditions at infinity and at r D R. The former refer to a steady flow with
velocity v in z-direction, the latter require zero velocity at the obstacle. The solution
procedure is very similar to what we have explained in more detail in the article on
Stress Concentration. We do not repeat it here but simply state the result:

vk

v1
D
�
1 � 3

4
� � 1

4
�3
�
ı3k C 3

4
.�� C �3/

xkx3

r2
where � D R

r
: (4.432)

With r ! 1 or � ! 0 the velocity is indeed v1 D v2 D 0 and v3 D v1. Likewise,
for r D R or � D 1, the velocity v vanishes. If you do not shy away from difficult
calculations, check r � v D 0.

The velocity field is best visualized by streamlines x.t/ which are defined by the
differential equation

Px.t/ D v.x.t//: (4.433)

We have plotted them in Fig. 4.20. Dots on the same streamline represent the
position of a material point after fixed time intervals.

4.22.4 Stoke’s Formula

The force exerted by the fluid on the sphere is

Fi D
Z

jxjDR
dAjTij : (4.434)

The stress tensor has two contributions, namely

Tij D T 0
ij C T 00

ij D �pıij C �.@ivj C @j vi /; (4.435)

pressure and friction.
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Fig. 4.20 Laminar flow from left to right around a sphere. The positions z; x of material points are
plotted in equal time steps. The separation of points on a stream line is a measure of speed. This
figure visualizes the integration of Eq. (4.432) with respect to time

The velocity field is known, hence the pressure gradient @kp D �
vk may be
calculated and integrated to

p D p1 � 3

2

R

r2
x3

r
�v1: (4.436)

Its contribution to the force on the sphere is

F 0
3 D 3��Rv1; (4.437)

while F 0
1 D F 0

2 D 0, as expected. Friction contributes by the same amount, namely

F 00
3 D 3��Rv1 (4.438)

and F 00
1 D F 00

2 D 0. Altogether there is a force on the sphere in stream direction of

F D 6��Rv1: (4.439)

This is Stoke’s law: the force is proportional to the viscosity �, to the linear
dimension R and to the flow speed far away from the obstacle. If the obstacle is
a sphere, the geometry factor is 6� .
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Fig. 4.21 The infinite x; y
plane with a circular hole of
radius R at the center. The
plane, far away from the hole,
is under uniaxial stress as
indicated by the force arrows.
A material point P is
characterized either by
Cartesian coordinates .x; y/
or by polar coordinates .r; 	/

Let us stress once more that Stoke’s law (4.439) is valid only for an incompress-
ible Newtonian fluid and for creeping flow.

4.23 Stress Concentration

Imperfections of all kinds may impair the structural properties of devices. In
particular, cracks or similar defects will give rise to locally enhanced stress which
then may surpass its stability limits. We demonstrate this by calculating the stress
distribution in an infinite thin plate under uniaxial stress. At the center, there shall be
an imperfection which we model by a circular hole. It turns out that in the vicinity
of the hole the stress increases by a factor up to three.

4.23.1 Circular Hole in a Thin Plate

Figure 4.21 explains the notation. We will calculate the stress tensor at an arbitrary
point P which may be represented either by Cartesian coordinates x; y or by polar
coordinates r; � for the z D 0-plane. They are related by

x D r cos	 and y D r sin 	: (4.440)

Since the plate is thin, the coordinate z plays no role, we haven a planar problem to
solve. One boundary condition to observe is



202 4 Examples

�
Txx Txy
Tyx Tyy

�
D
�
�1 0

0 0

�
(4.441)

far away from the hole, i.e., for
p
x2 C y2 D r ! 1. The other condition pertains

to the hole boundary at r D R which is formulated best in polar coordinates.
The area element for growing distance r from the z-axis is

dAr D dr dz

0
@

cos	
sin 	
0

1
A; (4.442)

while for growing angle 	 it is

dA	 D rd	 dz

0
@

� sin 	
cos	
0

1
A: (4.443)

The forces in r- and 	-directions are

dFr D dz
˚
Trr dr C Tr	 rd	

�
(4.444)

and

dF	 D dz
˚
T	r dr C T		 rd	

�
; (4.445)

respectively. The stress tensor with respect to polar coordinates is

Trr D cos2 	 Txx C 2 cos	 sin 	 Txy C sin2 	 Tyy; (4.446)

T		 D sin2 	 Txx � 2 cos	 sin 	 Txy C cos2 	 Tyy; (4.447)

and

Tr	 D � cos	 sin 	 Txx C .cos2 	 � sin2 	/ Txy C cos	 sin	 Tyy: (4.448)

The tensor elements (4.446)–(4.448) are functions of r and 	, and the tensor again
is symmetric, Tr	 D T	r .

The boundary condition at the edge of the hole is that the plate does not exert a
normal force, dFr D 0. Therefore,

Trr.R; 	/ D Tr	.R; 	/ D 0 (4.449)

must hold true. The condition for static equilibrium—there are no external forces—
reads

@xTxx C @yTxy D 0 and @xTyx C @yTyy D 0: (4.450)



4.23 Stress Concentration 203

4.23.2 Airy’s Stress Function for Planar Problems

As emphasized in the section on Solid Media, it is not sufficient to solve the
equilibrium equations (4.450) for given boundary conditions. The stress tensor must
be related with a strain tensor by Hooke’s law which, in turn, is to be derived from a
displacement field. There are compatibility requirements to be observed. Normally,
one can guess the form of the displacement field which may contain yet unknown
functions. Deriving the strain and stress tensors yields differential equations for the
unknown functions. In our case, there is no obvious guess for the displacement, we
have to resort to a potential method.

There is an analogy with the electrostatic field which must be a solution of �0r �
E D %. However, not every solution is admissible, it must also respect r � E D 0.
The latter is guaranteed if the electric field is the gradient of a scalar potential,
E D �r˚ . ˚ then has to obey �0
˚ D %.

Something similar is known in elasticity theory. The method is particularly
simple for planar problems. Assume a sufficiently differentiable Airy stress function
˚ D ˚.x; y/ of two variables. The stress tensor is derived from it by

Txx D @2y˚ , Tyy D @2x˚ and Txy D Tyx D �2@x@y˚: (4.451)

We refrain from proving it: any stress tensor defined by Eq. (4.451) satisfies the
compatibility requirements. The translation of Eq. (4.451) into polar coordinates
reads

Trr D
�
1

r
@r C 1

r2
@2	

�
˚ , T		 D @2r ˚ and Tr	 D �@r 1

r
@	 ˚: (4.452)

The Airy stress function itself has to obey



˚ D f@4x C 2@2x@
2
y C @4yg˚ D 0; (4.453)

it is biharmonic.51

4.23.3 The Solution

The stress tensor at infinity is Txx D �1, the remaining elements vanishing.
We achieve this by

51A harmonic function f D f .x; y/ is a solution of 
f D 0 where 
 D @2x C @2y . A biharmonic
function fulfills 

f D 0.
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˚ D �1
2
y2 D �1

2
r2 sin2 	 D �1

4
r2.1 � cos 2	/: (4.454)

This Airy stress function is biharmonic, as any polynomial in x and y of degree
less than four. We shall try to find Airy stress functions which are compatible with
the boundary condition at r D R, one axially symmetric, the other one varying as
cos 2	, and add them as prescribed by Eq. (4.454). Both obey ordinary differential
equations.

An axially symmetric Airy stress function ˚.r; 	/ D f .r/ is biharmonic if it
fulfills

f 0000 C 2

r
f 000 � 1

r2
f 00 C 1

r3
f 0 D 0; (4.455)

its general solution is given by

f D �1R2fa��2 ln � C b��2 C c ln � C d g where � D R

r
: (4.456)

Comparing with Eq. (4.454) leads to a D 0 and b D 1=4. d vanishes if stresses
are worked out. The remaining constant is fixed by Trr .R; 	/ D 0 which results
in c D 1. Note that Tr	 vanishes identically for an axially symmetric Airy stress
function.

Let us now study an Airy stress function˚.r; 	/ D g.r/ cos 2	. It is biharmonic
if g obeys

g 0000 C 2

r
g 000 � 9

r2
g 00 C 9

r3
g 0 D 0; (4.457)

the general solution being

g D �1R2fa��4 C b��2 C c C d�2g: (4.458)

This time the boundary condition (4.454) says a D 0 and b D �1=4. The boundary
conditions Rrr D Tr	 D 0 for r D R, or � D 1, fix the remaining two constants as
c D 1=2 and d D �1=4.

Both Airy stress functions f .r/ and g.r/ cos 2	 guarantee that the force exerted
on the edge of the hole vanishes. Both functions grow as �1r2=4 at r ! 1,
the former without a dependency on 	, the latter must be multiplied by a factor
� cos 2	. Their sum hence solves the problem. From it results the following stress
tensor:

Trr D �1
2

˚
.1 � �2/C .1 � 4�2 C 3�4/ cos 2	

�
; (4.459)

T		 D �1
2

˚
.1C �2/ � .1C 3�4/ cos 2	

�
; (4.460)
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and

Tr	 D �1
2
.�1 � 2�2 C 3�4/ sin 2	: (4.461)

4.23.4 Discussion

The solution (4.459)–(4.461) is highly plausible. It falls off rapidly with r ! 1
apart from Trr .1; 0/ D T		.1; �=2/ D �1. At the edge of the hole, for r D R or
� D 1, both Trr .R; 	/ and Tr	.R; 	/ vanish. In Fig. 4.22 we have plotted the stress
component T		 vs. y, namely

T		.r;
�

2
/ D T		.r;��

2
/ D Txx.0; y/ D �1

�
1C 1

2

R2

y2
C 3

2

R4

y4

�
: (4.462)

The stress, the value of which is �1 far away from the hole, is enhanced by a
factor up to three in the vicinity of the hole. Note that this factor three does not
depend on the radius R of the whole.52

This explains why imperfections, such as small holes, are so dangerous. If the
device, a reactor vessel for example, can support a certain stress and if there is an
imperfection, close to it the stress may exceed the admissible limit. There will be a
crack which, being a further origin of stress enhancement, will propagate until the
device breaks.

52The limit R ! 0 is not allowed because one would leave the realm of continuum physics.
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Or think about a line of holes in a sheet of paper (perforation) in order to control
where the sheet tears apart.

Already ancient shipbuilders knew that the deck of a boat is an important
stabilizing part. There had to be a hole for accommodating the mast. This hole
was the preferred spot where, at heavy sea and consequently large stress, the deck
ruptured. The edge of the hole in the deck had to be reinforced.

Eyelets in sails or garments are other well known reinforcements to counter stress
enhancement by holes.

4.24 Surface Plasmon Polaritons

Light may be guided along a metal’s surface. The metal, gold say, is covered by
a lossless dielectric medium, for instance air. The permittivity of the metal is a
complex number with a large negative real part and, ideally, with a small positive
imaginary part. We shall first study a model for the permittivity of a metal in order
to make sure that these requirements are realistic. We then show that a light wave is
guided by the metal surface.

4.24.1 The Drude Model

Consider the action of an external electric field strength E on a typical electron
within a solid. We denote by m its mass, by �e its charge, and by x the deviation
from the equilibrium position. The following equation of motion has to be solved:

m. Rx C � Px C˝2x/ D �eE .t/: (4.463)

� describes friction,m˝2 is the spring constant.
We Fourier-transform this equation with respect to time and denote by Qx and QE

the Fourier components with respect to angular frequency !. The time derivative
now becomes multiplication with �i!, so that Eq. (4.463) reads

Qx D �e
m

1

�!2 � i!� C˝2
QE : (4.464)

The corresponding dipole moment is �e Qx. We denote byN the number of electrons
per unit volume. The polarization then is QP D � �0 QE with the susceptibility

�.!/ D Ne2

m�0

1

�!2 � i!� C˝2
: (4.465)
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The relative permittivity � D 1C � is

�.!/ D �1 � !2p

!2 C i!�
with !2p D Ne2

m��0
: (4.466)

There are three modifications which have to be explained. First, we speak of
a metal where the electrons in the conduction band form a plasma. Hence, there
is no restoring force, ˝2 D 0. Second, we have written m� instead of m in the
expression for the so called plasma frequency !p. The conduction electrons are
quasi free particles with an effective mass m� which will differ from the mass m of
free electrons. Third, there are also contributions from bound electrons which arise
from much higher frequencies. They will depend only weakly on ! and are included
into �1. The material equation (4.466) describes the dispersion relation for a gas
(plasma) of quasi free electrons, a special case of the original Drude model.

Johnson and Christy have investigated the optical properties of the noble
metals [3], among them gold. �1 in Eq. (4.466) has the value 9.5. The plasma
frequency corresponds to an energy „!p D 8:95 eV, friction is characterized by
„� D 0:069 eV. The corresponding dispersion curve is shown in Fig. 4.23. The free
electron gas model fits data well for photon energies below 2.25 eV.

The permittivity of gold is �m D �6:308C 0:4848 i for light of wavelength

D 0:5513�m which corresponds to „! D 2:25 eV (vertical line in Fig. 4.23).

4.24.2 Guided TM Mode

We denote by x the coordinate perpendicular to the metal surface. x > 0 describes
the cover (subscript c), and x <0 the metal (subscript m). Without loss of generality,



208 4 Examples

the direction of propagation on the surface can be chosen as the z axis. All
components F of the electromagnetic field E ;H are of the form

F.t; x; y; z/ D F.x/ e
iˇz

e
�i!t

: (4.467)

! is the angular frequency of light and ˇ the mode propagation constant.
Maxwell’s equations for vanishing charges and currents and for a non-magnetic

medium read
r � H D �i!�0�E and r � E D i!�0 E ; (4.468)

in usual notation. � D �.x/ is the relative permittivity. Note that both divergence
equations are automatically satisfied if ! ¤ 0.

A TE mode is specified by

E D
0
@
0

E

0

1
A and H D �1

!�0

0
@
ˇE

0

iE 0

1
A; (4.469)

a TM mode by

H D
0
@
0

H

0

1
A and �E D 1

!�0

0
@
ˇH

0

iH 0

1
A: (4.470)

For our geometry, � Ex must be continuous as well as Ey , Ez, Hx , Hy , and Hz.
In the case of a TE mode, E and E 0 must be smooth functions. For a TM mode,H
andH 0=� have to be continuous.

The magnetic field strength obeys the second order differential equation

r � 1

�
r � H D k20H ; (4.471)

with �0�0c2 D 1 and ! D k0c. For a TM surface mode this boils down to

�
�.x/

d

dx

1

�.x/

d

dx
C k20 �.x/

�
H D ˇ2H: (4.472)

For a piecewise constant permittivity profile, Eq. (4.472) simplifies to

H 00 C k20 �.x/H D ˇ2H: (4.473)

Let us define53

�c D C
q
ˇ2 � k20�c: (4.474)

53We choose the square root of a complex number such that its real part is positive.
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Table 4.5 The TM polarized
mode at the surface of gold
for light of „! D 2:25 eV.
See the text for the meaning
of symbols

„! 2.25 eV
k0 11.40 �m�1


 0.5513 �m
�c 1.000
�m �6:308C 0:4848 i
ˇ 12:42C 0:08925 i �m�1

�c 4:931C 0:2247 i �m�1

�m 31:21� 0:9730 i �m�1

` 5.602 �m

Hence, the solution of Eq. (4.473) in the cover region is

H.x/ D e
��cx ; (4.475)

which vanishes with x ! 1. We likewise define

H.x/ D e
C�mx (4.476)

within the metal, where

�m D C
q
ˇ2 � k20�m: (4.477)

With our convention for the square root, Eq. (4.476) will vanish with x! �1.
Moreover, the magnetic field is already continuous at xD 0. In order for
H 0.x/=�.x/ to be continuous there we require

��c

�c
D �m

�m
: (4.478)

Squaring this expression yields

ˇ2 D k20
�m �c

�m C �c
: (4.479)

An ideal medium would have a large negative real permittivity. Then, ˇ2 is
positive, and an undamped TM mode will propagate at the interface. For a small
imaginary contribution to the metal permittivity, a propagation constant ˇ will result
with only a small imaginary contribution. The corresponding TM mode will be
weakly damped. Note that there is at most one solution to Eq. (4.478). We have
listed the waveguide parameters in Table 4.5.

The mode penetrates 1=2Re�m into the metal, that are 16 nm. Figure 4.24 visu-
alizes the TM polarized surface mode. We calculate `D 5:6 �m for the propagation
length `D 1=2 Imˇ of the surface mode. This is large if compared with the mode’s
penetration depth.
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4.24.3 TE Polarization

For a piecewise constant permittivity the TE mode equation is the same as
Eq. (4.473), with H replaced by E . Also the solution is the same. However, this
time the field E and its derivative E 0 must be continuous. Therefore, Eq. (4.478)
has to be replaced by

��c D �m: (4.480)

Squaring this implies �2c D �2m, hence �c D �m D 0. There is no TE polarized
surface mode. This finding holds true for any material on both sides of the interface.

One speaks of surface plasmon polaritons (SPP) because the surface light wave
is associated with a plasma polarization wave. Such excitations are quantized, they
behave as quasi particles, such as conduction band electrons or holes, phonons,
excitons, magnons, solitons, and so forth. Surface plasmon polaritons (SPP) are
always TM polarized. SPPs are a subject of current research.

4.25 Thermal Noise of a Resistor

We have derived the dissipation-fluctuation theorem of Callen and Welton in the
section on Fluctuations and Dissipation. One consequence of it is a proof of the
second main law of thermodynamics, at least for linear responses to perturbations of
thermodynamic equilibrium. In our article on Brownian Motion we independently
arrived at Eq. (4.77) which relates a fluctuation of the position of a Brownian particle
with its diffusion constant. We shall here discuss thermal noise in electric circuits.
Unless a system has been cooled down to zero temperature, its variables fluctuate
about the equilibrium value. In particular, we discuss the simplest component of
electric circuits, an Ohmic resistor R. We shall see that the resistor produces a
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Fig. 4.25 A circuit made up
of a resister R and a
capacitor C . The charges on
the parallel plates are ˙Q,
respectively. I D PQ is the
current, the voltage across the
resister is U

voltage although the circuit of which it is part is completely passive. Its frequency54

distribution is described by Nyquist’s formula. We comment on the role of ensemble
averages as used in theoretical considerations and time averages which can be
measured.

4.25.1 Langevin Equation

Think of a circuit made up of a resistor R and a parallel plate capacitor C . See
Fig. 4.25 for a sketch. There is a charge Qt on the upper plate and a charge �Qt

on the lower. The electric current in the circuit is It D PQt . The voltage across the
capacitor isUt D Qt=C . The same voltage is applied to the Ohmic resistor such that
current and voltage are related by Ut D RIt . Charge Qt , current It and voltage Ut
are time-dependent variables while capacitance C and resistance R are constants.
The differential equation

RC PUt C Ut D 0 (4.481)

has the obvious solution

Ut D U0 e
�t=�

where � D RC (4.482)

is a time constant. But that is not all.
The free quasi-electrons in a conductor are not entirely free. Otherwise a voltage

would accelerate them more and more and there would be an ever increasing current.
Instead, the conduction electrons interact with lattice oscillations, or phonons, which
brake, or decelerate them. In this way, a constant electric field will drive a stationary
electric current.

54We follow electrical engineering tradition and talk of frequencies f instead of angular frequen-
cies ! D 2�f .
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Now, such interactions will also happen if there is no external electric field.
Phonon-electron collisions will spontaneously accelerate conduction electrons,
although randomly. There will be, per unit time, as many kicks to the left as to the
right, and no net current may develop. However, although a particular conduction
electron is not accelerated in the mean, there are random fluctuations. With a small
probability many consecutive kicks into the same direction may occur which lead to
observable currents and voltages.

We formulate this mathematically by a random electromotive voltage V D Vt ,
such that Eq. (4.481) now reads

� PUt C Ut D Vt : (4.483)

The Vt are random variables which are characterized by

hVt i D 0: (4.484)

This says that the fanning electromotive voltages are fluctuations, they vanish on the
average. Their correlation in time is described by

hVt 0Vt 00 i D KV .t
0 � t 00/: (4.485)

With Eq. (4.485) we take into account that the circuit’s parameters do not depend on
time. Only time differences count. The Wiener-Khinchin theorem (3.94) with (3.96)
says that the time correlation function

KV .t/ D
Z

df SV .f / e
2�if t

(4.486)

is the Fourier transform of a positive spectral density function SV D SV .f /. The
latter is defined by

h QV �.f 00/ QV .f 0/ i D ı.f 0 � f 00/SV .f 0/: (4.487)

Equation (4.483) is a Langevin equation, the random voltage being described by
Eqs. (4.484)–(4.486). Its solution depends on initial conditions and the spectral
density function SV D SV .f / � 0.

4.25.2 Nyquist Formula

Let us Fourier transform the Langevin equation:

�2�if � QUf C QUf D QVf ; (4.488)
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which results in

QUf D
QVf

1 � 2�if �
: (4.489)

We conclude that the spectral density of the process t ! Ut is

SU .f / D SV .f /

1C 4�2f 2�2
; (4.490)

see Eq. (4.487).
We now assume that random electromotive voltages are correlated only for an

extremely short time55 as compared with the time constant � of the circuit:

KV .t/ D � ı.t/ or SV .f / D � with � > 0: (4.491)

This behavior is called white noise. Noise, because the signal t ! hVt i vanishes.
White, because the spectral density in the frequency region of interest is constant.
This terminology comes from optics where white light is characterized by a constant
spectral density within the frequency range of visible light.

For white noise the time correlation functionKU .t/ is

KU .t/ D
Z

df
�

1C 4�2�2f 2
e
2�if t D �

2�
e

�jt j=�
: (4.492)

As is well-known, the field energy stored in a capacitor isW DUQ=2DCU 2=2

which is equal to kBT=2 in thermal equilibrium. Because of KU .0/D hU 2 i we
calculate

kBT D C hU 2 i D CKU .0/ D C
�

2�
D �

2R
(4.493)

or

SU .f / D 2RkBT : (4.494)

SU .f /, as it appears in the Wiener-Khinchin theorem (4.486), is the power per unit
frequency interval. Because, for a positive frequency f , the interval Œf; f C df �
and Œ�f � df;�f � are equivalent, we must write

NSU .f / D SU .f /C SU .�f / D 4RkBT : (4.495)

This is the famous Nyquist formula for Johnson noise. J.B. Johnson discov-
ered this form of noise in 1927 and published rather accurate measurements in
1928. H. Nyquist, an electrical engineer of Swedish roots who emigrated to the
USA, explained it shortly afterwards. Johnson noise is caused by the interactions

55Electronics is limited by �m dimensions, therefore times below �10�14 s cannot be resolved.
The natural time for phonon-electron interactions is the natural atomic time unit of �10�17 s.
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between conduction electrons and thermally induced photons, or lattice vibrations.
Its spectral density NSU .f / does not depend on frequency, at least up to many
GHz. Its dependency on T is obvious: higher temperature, more phonons, more
interactions. The dependency on R is as well simply to explain: the noise of resistors
in series adds up. And: fluctuations in the equilibrium state are always proportional
to the Boltzmann constant kB.

4.25.3 Remarks

Note that the capacitance C does not show up in Nyquist’s formula. We could
have analyzed a circuit made up of a resistor and an inductor as well. Then the
inductivity L would have dropped out. In fact, any circuit of arbitrary impedanceZ
will serve. The decisive arguments is the equipartition theorem. If the Hamiltonian
of a system is a sum of independent observables squared, then each such degree
of freedom has an energy kBT=2 in thermal equilibrium. This result of classical
statistical mechanics, however, is true only for large enough temperatures. In our
case, hf should be small if compared with kBT . For T D 300K this amounts to
f � 6THz. For higher frequency Nyquist’s formula must be corrected by factor
which depends on x D hf=kBT the limit x ! 0 of which is 1. For details see the
section on Fluctuations and Dissipation.

Electronic circuits suffer from many sources of noise. Johnson noise produced
by Ohmic resistors is just one of them. Any electric current, which is a stream of
charged particles, causes fluctuations because charge is quantized. Such shot noise
was discovered by W. Schottky in 1918. It is particular important if only few (n)
electrons pass a barrier in a short time. Then the current density fluctuation, which
is proportional to

p
n, cannot be ignored.

Another remark seems to be appropriate. No measuring device can measure a
signal instantaneously. Neither the human eye nor an electronic device may correlate
an event with a precise time, there is always a certain time resolution which imposes
a limit on the accuracy. In particular electronic devices always measure a time
average which can be adjusted. In fact, measured values of a signal t ! At are
always time averages, for instance with constant weight:

TAV.At / D 1

2�

Z tC�

t��
dsAs: (4.496)

The expectation value hAt i is something else. One has to set up an array of
N identical systems, start the same process A at time t D 0 in each system and
measure .At /n at time t for system n D 1; 2; : : : N . The ensemble average is

EAV.At / D 1

N

NX
nD1
.At /n; (4.497)



4.26 Thomson, Seebeck and Peltier Effect 215

its limitN ! 1 is the expectation value hAt i. The latter is the object of theoretical
reasoning.

The ergodicity hypothesis states that time averages and ensemble averages
coincide for long enough averaging times � in almost all cases. We just mention
this here because the Nyquist formula must be interpreted differently when justified
theoretically and checked experimentally. We shall not dwell on this point any more
because it is basic to science, in particular physics. How to translate mathematical
equations into prescriptions for verifying them experimentally? Or the other side
of the same coin: How to map empirical rules into relations between mathematical
objects which can be checked for logical truth?

4.26 Thomson, Seebeck and Peltier Effect

In this article on transport we will discuss cross effects: there is more than one
generalized force driving more than one generalized flux. To be specific, we want to
investigate solid electrical conductors which are good heat conductors as well. Let
us see why and how heat and charge conduction are intermingled.

4.26.1 Solid Conductors

There is no mass flow, and there are no chemical reactions. Free quasi-electrons
are the only species of mobile charged particles, we index them by an asterisk
superscript. Recall that electric charge transport (j e) is by convection (%ev)
or conduction (J e), the latter being reversible (J e 0) or irreversible (J e 00). The
reversible part coincides with the time derivative of the polarization which is of no
interest here. The irreversible part corresponds to the motion, by drift or diffusion,
of free electrons, J f. In this context we may write the electric current density as

J e D �eJ �: (4.498)

There is a current density J � of electrons each carrying its charge �e. However,
electrons will transport not only charge, but also internal energy.

Phonons, the quanta of lattice vibrations, are also mobile quasi-particles, they
transport internal energy. Phonon diffusion, or heat conduction in this context, is
described by the associated heat current J u.

There are two species of mobile particles, phonons and electrons, and two cor-
responding currents, namely J u and J e. There are also two driving forces, namely
rT and r , the gradients of temperature T and of the electrochemical potential

 D 	e � ��

e
: (4.499)
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4.26.2 Charge and Heat Transport

Let us recall the expression

�.S/ D J u � r 1

T
C J � � r ��

T
C 1

T
J e � E (4.500)

for the amount of entropy produced per unit volume per unit time. The entropy
conduction current is given by

J s D 1

T

�
J u C ��

e
J e
�
: (4.501)

It is a simple exercise to rewrite Eq. (4.500) into

�.S/ D � 1

T
.J s � rT C J e � r /: (4.502)

This sum of “flux times force” terms suggests the following linear relationship

�
J s

J e

�
D �

�
A B

B C

��rT
r 

�
: (4.503)

We have already taken into account Onsager’s relation by postulating a symmetric
matrix of kinetic coefficients. This matrix must also be positive which amounts to
A � 0, C � 0, and AC � B2. By comparing

J e D ��.r C ˛rT / (4.504)

with Eq. (4.503) we recognize � D C , therefore the electric conductivity � is
always positive. The sign of ˛ D B=C cannot be predicted from first principles.
If the temperature is the same everywhere, Eq. (4.504) coincides with Ohm’s
law (2.86). Moreover, the chemical potential, which depends on composition and
temperature, cannot have a gradient within a homogeneous material, and we may
write J e D ��E . Equation (4.504) is a generalization of Ohm’s law, it allows for
a temperature gradient which will also drive a charge current.

The second relation contained in Eq. (4.503) may be expressed as

J u D �
rT C �J e (4.505)

where 
 D T .A � B2=C / is the heat conductivity. It is guaranteed to be positive.
The coefficients � in Eq. (4.505) and ˛ in Eq. (4.504) are related by

� D T˛ � ��

e
: (4.506)
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Without electric current we obtain Fourier’s law J u D �
rT . An additional
electric current causes additional heat transport. However, the sign of � (just as
the sign of ˛) cannot be predicted from first principles.

4.26.3 Thomson Effect

Let us work out the heating of a particular material point. We have to calculate

@t%u D �r � J u C J e � E : (4.507)

This expression takes into account that there is no difference between ordinary
and substantial time derivative and that only Joule’s heat J e � E contributes to the
production of internal energy. By solving Eq. (4.504) for the electrical field strength
we arrive at

E D J e

�
C ˛rT � r ��

e
: (4.508)

This is to be multiplied by J e. On the other hand, because of r � J e D 0,
we obtain

�r � J u D r � 
rT � J er�: (4.509)

We refer to Eq. (4.506) and conclude

@t%u D r � 
rT C J e � J e

�
� J e � Tr˛: (4.510)

The first term describes the net inflow of internal energy as caused by a temperature
gradient. The second contribution is the rate of internal energy production per unit
volume if an electric current flows in a conducting medium, it is always positive.56

The third term describes the Thomson effect. In a homogeneous material it takes the
form �J e � rT where the Thomson coefficient is given by

� D �T @˛
@T
: (4.511)

This contribution to the heating of a material point is proportional to the electric
current and to the temperature gradient. It changes sign if the direction of the electric
current is reversed.

56It vanishes in a super-conductor where 1=� D 0.
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Fig. 4.26 Two wires of different materials A andB are soldered to a circuit. One soldering contact
is kept at temperature T1, the other at T2. The electric current I flows in the indicated direction if
˛A > ˛B and T2 > T1

4.26.4 Seebeck and Peltier Effect

So far we have always assumed that the medium under investigation is spatially
homogeneous. We now mention two related effects which show up if different
conducting or semi-conducting materials are involved.

Imagine a simple circuit made up of two homogeneous wires of different
composition A and B soldered at points P1 and P2. These soldering contacts are
kept at temperatures T1 and T2, respectively. See Fig. 4.26 for a sketch. If the circuit
is open, so that no electric current can flow, Eq. (4.504) reads �r D ˛rT . The
line integral around the circuit is the electromotive force U ,

U D �
I

ds r D
I

ds ˛rT D
Z T2

T1

dT .˛A � ˛B/: (4.512)

The circuit is assumed to run from pointP1 via wire A to point P2 and back via wire
B to point P1. This thermoelectric electromotive force requires different materials
and different temperatures at the soldering contacts. If the circuit is electrically
closed by an external load, it will drive a current

I D U

Ri CRe
; (4.513)

where Ri and Re denote the internal and the external resistance, respectively.
The existence of an electromotive force (4.512) caused by soldering different

conductors is known as the Seebeck effect. Ironically, Seebeck himself detected
the magnetic field associated with Eq. (4.513). He never spotted it down to a
current caused by an electromotive force. The Seebeck effect may serve for the
direct heat to power conversion. It is, however, rather inefficient. With today’s
materials the degree of efficiency is much below the Carnot limit .T2�T1/=T2 where
T2 is the higher temperature. Best results are obtained with p-n-semiconductor
couples.



4.27 Vibrating Strings and Membranes 219

The Peltier effect is related to the Seebeck effect. If an electric current J e

flows through a thermocouple, heat is delivered to or subtracted from the soldering
contact, depending on the direction of the electric current.

Consider the interface between two different conducting materials A and B .
Assume the temperature to be constant on both sides. The normal component of the
electric current must be continuous as well as the electric and the electrochemical
potential. We conclude that the coefficient � of Eq. (4.505) jumps by

˘ D T .˛A � ˛B/ (4.514)

at the interface between material A and B . Therefore, the heat current jumps by

J u
B � J u

A D ˘J e: (4.515)

This heat current difference is maintained by the heat reservoir to which the interface
is coupled. ˘ is the Peltier coefficient which depends on temperature and on the
composition of the two materials soldered together. The Peltier effect allows to heat
or cool a soldering contact as desired by controlling an electric current. However,
Peltier refrigerators are rather inefficient.

4.27 Vibrating Strings and Membranes

We did not touch the subject in the theory part. Elasticity theory there was concerned
with elastic media in three dimensional space. However, there are one- and two-
dimensional idealizations, strings and membranes. In both cases we speak of
tension: force and force per length, respectively. Likewise � denotes the mass per
unit length of a string or the mass per unit area of a membrane.

4.27.1 Strings

Assume a thin string under tension � . The string is a straight line with constant small
cross section which we parameterize by x. A particular material point at x is drawn
at from both sides. The string y > x draws at the material point with a force �.x/,
the string y < x with ��.x/. The force on an interval x � y � x C dx then is
�.x C dx/ � �.x/ D � 0.x/dx. The unperturbed string shall be at rest, hence the
tension � does not depend on x, it is a constant with the physical dimension of a
force.

We now assume that the string is displaced in z-direction by u D u.x/. The curve

�.x/ D
0
@
x

0

u.x/

1
A (4.516)
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has a tangent vector

d�.x/

dx
D t.x/ D

0
@

1

0

u 0.x/

1
A (4.517)

the length of which is

jt.x/j D
q
1C u 0.x/2: (4.518)

The force exercised by the string to the left of x is

F .x/ D �� 1q
1C u 0.x/2

0
@

1

0

u 0.x/

1
A; (4.519)

while the string right to x C dx draws with

F .x C dx/ D C� 1q
1C u 0.x C dx/2

0
@

1

0

u 0.x C dx/

1
A: (4.520)

We assume that the displacement gradient is small, ju 0.x/j � 1. Then the sum of
the two forces (4.519) and (4.520) has no x-component, and the z-component is

dF.x/ D � dx u 00.x/: (4.521)

This force is balanced by the product of mass times acceleration. With � as mass
per unit string length we write

�
1

c2
@2t � @2x

�
u D 0 where c D

r
�

�
: (4.522)

This is a one-dimensional wave equation, the sound velocity being c.

4.27.2 Membranes

Consider a region ˝ in the x; y plane. It shall be covered by a thin membrane
under constant tension � . Tension in the context of a tow-dimensional manifold
is a force per unit length. Likewise, we speak of a mass � per unit area. More
generally, tension should be described by a symmetric tensor � in two dimensions.
�xx may differ from �yy . Just think of a thin rubber band which is stretched much
in x-direction and less in y-direction. Here we concentrate on a fluid-like tension, a
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situation without shear, where the tension is proportional to the unit tensor. Let us
displace the membrane in z-direction by u D u.x; y/. A membrane element Œx; x C
dx� � Œy; y C dy� suffers four forces each of which has a z-component because the
tangential planes of the surface

�.x; y/ D
0
@

x

y

u.x; y/

1
A (4.523)

are inclined. There is one force proportional to dy at x, another one proportional
to dx at y, a third proportional to dy at x C dx, and a fourth proportional to dx at
y C dy.

We assume a small displacement gradient, j@u=@x j � 1 and j@u=@y j � 1. The
x- and the y-components of the total force add up to zero, while the z-component is

dF.x; y/ D � dx dy

�
@2u.x; y/

@x2
C @2u.x; y/

@y2

�
: (4.524)

This force is compensated by a term of type mass times acceleration:

� dx dy Ru D dF ; (4.525)

which boils down to a wave equation for the time-dependent displacement
u D u.t; x; y/. In fact, we arrive at

�
1

c2
@2t � @2x � @2y

�
u D 0 where c D

r
�

�
: (4.526)

Note the physical dimensions. � is measured in Newton per meter, and� in kilogram
per square meter, hence c is a velocity. For the vibrating string, � was measured in
Newton and � in kg per meter, so the symbol c in Eq. (4.523) is a velocity as well.

4.27.3 String Eigenmodes

Think about a string of length ` such that u.0/ D u.`/ D 0. In order to be
concrete, we refer to a violin string which is tuned to the standard pitch of !=2� D
f D 440Hz. The four strings of a violin can individually be stressed such that the
required tension � results which gives rise to a desired sound velocity c.

The eigenmodes are solutions of the wave equation which oscillate harmonically:

u.t; x/ D u.x/ sin!t: (4.527)

The function u D u.x/ has to obey
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�u 00 D !2

c2
u with u.0/ D u.`/ D 0: (4.528)

This is a typical eigenvalue problem.
For square-integrable complex-valued functions f; g we may define the follow-

ing scalar product:

.g; f / D 1

`

Z `

0

dx g�.x/ f .x/: (4.529)

The operator @2x on the left hand side of Eq. (4.529) with its boundary conditions57

is self-adjoint,
.g; f 00/ D .g 00; f /: (4.530)

It follows that the system of eigensolutions is complete.
The eigensolutions of Eq. (4.528) obviously are

un.x/ D p
2 sin

n�x

`
for n D 1; 2; : : :: (4.531)

They form a complete set of normalized, mutually orthogonal functions:

• They are normalized, .un; un/ D 1,
• Different eigenfunctions are orthogonal, .um; un/ D 0 form ¤ n,
• They are complete so that any reasonable function may be written as a superpo-

sition of eigenfunctions.

The latter statement says that, for any square integrable function f D f .x/, the
sequence

fN .x/ D
NX
nD1
.un; f / un.x/ (4.532)

converges towards f in the sense of

lim
N!1

1

`

Z `

0

dx jf .x/ � fN .x/j2 D 0: (4.533)

Please note that the function f must not vanish at x D 0 or x D ` although all fN
do so. fN ! f in general does not converge point-wise. Likewise, f must not be
differentiable although each fN is infinitely often differentiable. Figure 4.27 depicts
an example.

Figure 4.27 may serve as a crude example for how a string is excited. On a
guitar, or on a piano, the string is hit at a certain place, usually somewhere around
the middle. This produces a triangle function like displacement which is made up of
the fundamental tone and a series of overtones, or harmonics, with definite phases.

57@2x is defined for twice differentiable functions vanishing at x D 0 and x D `.
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Fig. 4.27 The triangle function on 0 � x � 1 and its representation by only three terms of the
expansion into eigenfunctions. The discrepancy is largest where the function is not differentiable

This superposition of vibrations is coupled into the musical instrument which in turn
produces more vibrations with different frequencies.

A string of length ` with tension � and mass � per unit length produces a
fundamental tone with angular frequency

!1 D �c

`
with c D

r
�

�
: (4.534)

The basic tone and its overtones are characterized by

!n D n!1 for n D 1; 2; : : :: (4.535)

With a guitar or a violin, a player may determine the effective length `� of a
string. The frequency then changes as `=`�. Particular frequency ratios are perceived
as specially harmonious, like 2:1 (octave), 3:2 (perfect fifth58) or 4:3 (perfect fourth),
and so on. The sensory concordance of a perfect fifth and a few more intervals can
easily be understood: the third octave of the lower tone and the second octave of the
higher are the same. Probably for this reason, the four strings of the violin family
of musical instruments are tuned in perfect fifths. When tuning the instrument, the
player increases or decreases tension until the interval to the adjacent string is a
perfect fifth which produces a particularly pleasant sound.

58Also quint, Quinte (German), quinta (Italian).
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There are very many musical scales most of which repeat after one octave.
Most common in western music are the diatonic major and minor scales. C major
is made up of C-D-E-F-G-A-B-C, where the steps E-F and B-C are half tones, the
remaining are whole tones.59 A-minor is the scale A-B-C-D-E-F-G-A. Again the
half tone steps are B-C and E-F, but in a different order as compared with the major
scale.

In just (or pure) intonation the frequency ratios are rational numbers with small
nominators and denominators. They are D:CD9:8, E:CD5:4, F:CD4:3, G:CD3:2,
A:CD5:3 and B:CD15:8. This one is good for a piece of music in C-major or
A-minor. However, if the same ratios are to be valid for a work in D-major, for
example, then E:D should be 9:8, but it is (5/4):(9/8)D10:9. Thus, apart from the
violin family, all instruments had to be exchanged or re-tuned, if possible.

During Bach’s lifetime a new tuning scheme for keyboard instruments and
harpsichords came into use. A scale consists of five whole tone and two half tone
intervals, altogether twelve half tones. If the half tone ratio is fixed, namely

R D 12
p
2 D 1:0594631 : : : ; (4.536)

then a whole tone interval is just two half tone intervals, and each tone has a fixed
frequency irrespective of the musical scale. Raising a tone by a half tone or lowering
the next whole tone by a half tone is the same, as expressed by D[DC] and so on.
This tuning scheme, the chromatic scale, was called “well tempered”.

However, there is a price to pay. For example, the perfect fifth of a scale is
described by the ratio 3:2. In the well tempered tuning it is R7 D 1:498. The
discrepancy of 0.13% can be perceived by the human ear (and brain), in principle.
However, keyboard instruments or harpsichords produce tones of rather short
duration ı� . Consequently, not one frequency f is excited, but many, and their
spread ıf is given by ı� ıf � 1. With ı� D 1 s the frequency spread is 1 Hz.
0.13% of 440 Hz is 0.6 Hz, so the discrepancy is tolerable.

The well-tempered clavier60 by Johann Sebastian Bach comes in two volumes
of 24 pieces each. For all tones of the chromatic scale there is a major part and
a minor part: C major, C minor, C] major, C] minor, . . . , B major and B minor.
All these preludes and fugues could be played on one and the same instrument
without re-tuning ! Bach himself regarded Das wohltemperierte Clavier as central
to his work, and many of his admirers look at it as central to western classical music
in general.

There is much more to say on vibrating strings and music, but we have to stop
here.

59In German nomenclature B is denoted as H and H[ as B; cf. the well-known B-A-C-H motif.
60Das wohltemperierte Clavier in German. Clavier in this context is any keyboard instrument,
not just the piano or Klavier in German. The first volume was completed in 1722, the second in
1742.
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4.27.4 Membrane Eigenmodes

As explained above, a vibrating membrane is described by the wave equation
(4.526). The displacement z D u.t; x; y/ is to be calculated within a region ˝
subject to the boundary condition u.t; x; y/ D 0 on .x; y/ 2 @˝ , the boundary.

We look for eigenmodes which oscillate harmonically in time,

u.t; x; y/ D u.x; y/ sin!t: (4.537)

The function u D u.x; y/ has to obey

n
�@2x � @2y

o
u D !2

c2
u and u.x; y/ D 0 on .x; y/ 2 @˝: (4.538)

This is a standard eigenvalue problem.
We define the scalar product for two functions living on˝ as

.g; f / D 1

area.˝/

Z

˝

dxdy g�.x; y/f .x; y/: (4.539)

With it, the two-dimensional Laplacian @2x C @2y is self-adjoint, and the set of
eigensolutions of Eq. (4.536) is complete.

As an example, consider the rectangle ˝D Œ0; a� � Œ0; b�. Its eigenfunctions
factorize, they are

umn D 2 sin
m�x

a
sin

n�y

b
for m D 1; 2; : : : and n D 1; 2; : : :: (4.540)

They form a complete orthonormal set:

.urs; umn/ D ırmısn; (4.541)

and any square integrable function u D u.x; y/ on ˝ can be written as

u.x; y/ D
1X
mD1

1X
nD1

.umn; u/ umn.x; y/: (4.542)

Figure 4.28 visualizes the mode u32 on a square region as a contour plot.
There is also an exact solution for a circular disk which models a drum. However,

apart from such highly symmetric situations, the eigenvalue problem has to be
solved numerically. Standard methods are the finite difference method FDM and
the finite element method FEM.
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Fig. 4.28 The eigenmode u32 of a rectangular membrane. The contour lines correspond to equal
displacement z D u.x; y/. Adjacent vibrations oscillate with opposite phase: upper left upwards,
lower left and upper second downwards, and so on

This is not the place to elaborate on numerical methods for solving partial
differential equations, however, a few remarks seem to be appropriate. The finite
difference method and the finite element method have in common that they represent
the region ˝ by representative points and the field u by values at these points
which are variables. The finite difference method in its simplest form relies on equal
spacing. .x; y/ is represented by .ih; jh/ where h is the mesh spacing and i; j are
integers. The two dimensional Laplacian is approximated by

.
u/i;j D uiC1;j C ui;jC1 C ui�1;j C ui;j�1 � 4ui;j
h2

: (4.543)

The eigenvalue problem thus becomes a matrix problem Lu D 
u where u is a
vector of variables, and the entries of L can be read off from Eq. (4.543). For this
the matrix ui;j of variables has to be reshaped to a vector. The finite difference
method is easy to program from scratch, but almost never the best choice.

In contrast, the finite element method is almost always the most efficient, but very
difficult to program. One has to rely on professional programs, such as the FEM
toolbox of MATLAB. The region ˝ is structured by a triangulation. Figure 4.29 is
an example. Each node is associated with the field value there, a variable. Again,
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Fig. 4.29 A very crude approximation to the back of a violin. Its eigenmodes are calculated by
the finite element method. This is the mesh of triangles by which the region ˝ is approximated

the eigenvalue problem is reduced to a matrix problem Lu D 
u. However, one is
not bound to equal spacing. The triangulation may be refined where necessary, even
automatically.

We have calculated, by the finite element method FEM, the second lowest
eigenmode of a membrane which resembles the back of a violin. The approximation
is really very crude. First of all, the violin’s resonance body is more than the back.
Second, the back is not flat as was assumed here. Third, the back is made of wood
which behaves very an-isotropically. Its wave equation is certainly not so simple as
Eq. (4.526). Fourth, the back is not just wood, but varnished. It is well-known that
the famous families Amati, Stradivari and Guarnieri of Cremona in Italy zealously
kept the secret of their varnishes. See Fig. 4.30.

Again, we must stop here although there is much more to say about vibrating
membranes and plates.

Let us finally turn to a mathematical problem. The wave equation (4.526) refers
to a region ˝ . Different regions will result in different sets of eigenvalues !n, or
spectra. Apart from symmetry operations like mirroring, the spectra of different ˝
shapes are different. Are they? This question has been condensed into the question
Can one hear the shape of a drum?, an old standing problem. It was answered by
Mark Kac [4] to the negative. There are differing regions ˝ which give rise to the
same spectrum.
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Fig. 4.30 The second excited mode of a crude model for a violin back as calculated with the finite
element method. See Fig. 4.29 for the decomposition of ˝ into finite elements

4.28 White Dwarfs

A normal star collapses if it has burnt most of its hydrogen into helium. In its core,
nuclear reactions are then ignited which fuse helium into carbon and oxygen.61

Thereby the star blows up and becomes a red giant, such as Betelgeuse. When the
core is small enough, no further fusion reactions are possible and the core blows off
its hull. The dense core is a plasma of carbon and oxygen nuclei and electrons. It is
the degeneracy pressure of the electron gas which stabilizes the core, a white dwarf.
It is called a dwarf because its diameter is comparable to that of the earth, although
its mass is comparable to that of the sun. It is a white dwarf because the remaining
internal energy is radiated off by a small surface with a high color temperature.
White dwarfs cool down more and more until they become invisible. In our vicinity,
eight out of hundred stars are still visible white dwarfs, and many more are no more
visible.

The best known is the companion of Sirius. Before being spotted optically, it was
predicted to be responsible for the Kepler orbit of Sirius, or Sirius A. This star
has 2.1 sun masses and is 25 times as bright as the sun. Sirius B, the white dwarf
companion, has a mass comparable to that of the sun, but it is 400 times fainter.

61These two nuclei have rather large binding energies per nucleon, they are made up of three
resp. four helium nuclei. Iron has the largest binding energy, it is the most common remnant of
supernovae.
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4.28.1 The Model

Since this is not a textbook on astrophysics, we restrict ourselves to the essentials.
We assume that the model white dwarf is electrically neutral everywhere, that it
does not rotate, and that it is close to its final stage which is described by zero
temperature. Gravitation is balanced by the degeneracy pressure of electrons only
which we assume to be free particles. We assume rotational symmetry such that
fields depend on r only, the distance from the star’s center. We treat the electrons
non-relativistically.

Denote by

M.r/ D 4�

Z r

0

ds s2%.s/ (4.544)

the mass within a sphere of radius r . % D %.r/ denotes mass density, as usual. The
gravitational force per unit volume at distance r is given by

f .r/ D �G %.r/M.r/

r2
; (4.545)

where G denotes the universal gravitational constant.62 The star is gravitationally
stable if the negative pressure gradient p 0.r/ and f .r/ add up to zero everywhere:

p 0.r/ D f .r/: (4.546)

This is the momentum balance equation for a resting fluid medium within its own
gravitational field.

4.28.2 Equation of State

To proceed, we must relate pressure with mass density. Denote by n the density of
electrons and by � their chemical potential. They are related by

n.T; �/ D
Z 1

0

d� z.�/
1

e
.� � �/=kBT C 1

; (4.547)

because electrons are fermions.

62The gravitational force of a rotationally symmetric mass distribution is the same as that of a point
mass at the origin. Only mass which is closer to the origin contributes. This finding goes back to
Newton.
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z D z.�/ is the number of states per unit energy and per unit volume, of a single
particle. For free particles,

z.�/ D 1

�2

�
2m

„2
� 3=2 p

� (4.548)

describes the density of states. We have set � D .„k/2=2m and used the well-known
result that the phase space volume d3k d3x=.2�„/3 corresponds to one state. The
pressure of such a gas of non-interacting fermions is

p.T; �/ D 2

3

Z 1

0

d� z.�/
�

e
.� � �/=kBT C 1

: (4.549)

The limit T ! 0 results in

n.0; �/ D
Z �

0

d� z.�/ D 2

3�2

�
2m

„2
� 3=2

�3=2 (4.550)

and

p.0; �/ D 2

3

Z �

0

d� z.�/ � D 4

15�2

�
2m

„2
� 3=2

�5=2: (4.551)

By eliminating the chemical potential � we arrive at the following relation
between pressure and particle density:

p D a
„2
m
n5=3: (4.552)

Indeed, this is an energy density, or a pressure. The numerical factor has the value

a D 1

5

�
3�2

2

�2=3
D 1:2058: (4.553)

Now, carbon and oxygen contain equally many protons as neutrons. Hence one
electron is related with approximately 2mp, twice the mass of a proton. Since we
assume that matter is locally neutral, the searched for relation between pressure and
mass density is given by

p D a
„2
me

�
%

2mp

� 5=3
: (4.554)

Besides a numerical constant a the mass me and mp of electrons and protons
respectively show up as well as Planck’s constant „. This material equation is of
truly quantum-mechanical origin.



4.28 White Dwarfs 231

4.28.3 Orders of Magnitude

Let us consider a white dwarf consisting of N D 1057 nucleons, roughly 0.85 sun
masses. Its radius is denoted by R. A very rough estimate is

p 0 � „2
me

N5=3

R5
1

R
(4.555)

for the pressure gradient and

f � G
m2

pN
2

R2
1

R3
(4.556)

for the gravitational force per unit volume. Equating these estimates yields

R � „2
mem2

pG
N�1=3; (4.557)

which amounts to 6,500 km. Note that this value—about the radius of our earth—
is determined by the universal gravitational constant G, the masses of electrons
and protons, Planck’s constant „, and the number N of nucleons which make up a
normal star like the sun. Note also that less massive white dwarfs are larger.

4.28.4 Numerical Solution

Let us measure length in units of `� DR, mass in units ofM� DmpN . We likewise
introduce %� DM�=R3 and p� D „2N 5=3=meR

4 as units of mass density and
pressure, respectively. In these units63 the equations under study read

p 0 D �M%
r2
; (4.558)

M 0 D 4�r2%; (4.559)

and

p D b%5=3: (4.560)

bD 0:3798 is an abbreviation for 2�5=3a where a was defined in Eq. (4.553).
Note that (4.558) and (4.559) are dimension-less equations suitable for numerical
treatment.

63The distance from the star’s center is rR�, and so on. All physical quantities are now
dimensionless.
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Fig. 4.31 Pressure p (decreasing) and mass M (increasing) of a white dwarf vs. distance r from
the center in natural units. We have assumed zero temperature, two nucleons per electron which
are treated non-relativistically. r D 1 corresponds to 6,500 km, M D 1 to 0.85 sun masses

We have integrated this coupled system of two ordinary differential equations
with the initial conditions p.0/ D 1:0 andM.0/ D 0. Figure 4.31 depicts the result.

4.28.5 Remarks

Historically, the fate of stars was a subject of much discussion and speculation. What
would happen if they cool down so that thermal pressure could no longer stabilize
them from gravitational collapse? It was a very short time span when many old
riddles were solved. In 1926 Erwin Schrödinger was able to calculate the stationary
states of the hydrogen atom. Before, in classical electrodynamics, moving charges
would radiate off energy, an electrostatic counterpart of the Kepler system of two
attracting masses was not possible.

Also in 1926, Enrico Fermi published a paper on the quantum-statistical behavior
of identical particles with half-integer spin (now called fermions). In particular, the
Pauli exclusion principle proved to be a limiting case for T D 0, the periodic system
of elements could be explained as well as the basic properties of solids (isolators,
conductors).

In the same year 1926 R.H. Fowler recognized the relevance of quantum
mechanics for astrophysics. Besides thermal pressure (ideal gas law), there is a
degeneracy pressure which derives from the fact that fermions, such as electrons,
dislike to be at the same location. In a paper “On dense matter” he wrote that a white
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dwarf is nothing else but a giant molecule. Only a short time later S. Chandrasekhar
calculated the limiting mass of a white dwarf by taking the relativist energy-
momentum relation into account (which won him a Nobel prize).

This Chandrasekhar limit64 has turned out to be of utmost importance in the field
of experimental cosmology. There are binary star systems where one member is
a white dwarf. The other member is surrounded by a large cloud of matter which
feeds the white dwarf. The white dwarf continuously sucks in matter until it reaches
the Chandrasekhar limit. Then it suffers a supernova explosion with a characteristic
luminosity versus time pattern. All such type Ia supernovae are alike, they serve
as a standard candle. The absolute luminosity is always the same, but the apparent
luminosity depends on distance r by a 1=r2 law. Therefore, type Ia supernova allow
to determine cosmic distance.

64The mass of a white dwarf cannot exceed 1.44 sun masses.



Appendix A
Fields

A physical quantity which depends on time and space is described by a field.
The quantity itself may be a scalar, a vector, or a second-rank tensor. Practically
everything in this book is a field.

Fields, although they describe physical properties, must be represented by
mathematical functions which depend on a time coordinate t and three space
coordinates x D .x1; x2; x3/ with respect to an inertial system. Since there are many
inertial systems, the same physical field will be represented by many mathematical
fields.

In the section on Covariance we discuss how to make sure that different inertial
systems and therefore different field representations describe the same physical
situation. Relativistic effects are not touched upon in this book, therefore the non-
relativistic limit is quite sufficient.

Section Differentiating Fields covers those differentiation operations which guar-
antee that covariant fields are mapped into covariant fields: gradient, divergence, and
curl.

In section Paths, Surfaces and Volumes we discuss how to describe one, two and
tree dimensional manifolds of three dimensional space. These are paths, surfaces
and volumes, respectively.

We show in Integrating Fields how to define path, surface and volume integrals
of scalar and vector fields and examine generalizations of the fundamental theorem
of calculus.

The local center of mass velocity field v plays a particular role in Continuum
Physics. Some useful notions and formulas referring to the velocity field are
presented in section More on Fields. Some of the arguments presented here were
already put forward in section Convection and Conduction of Chap. 1.

Fields are functions f D f .t; x1; x2; x3/. Partial differentiation with respect to
the first argument is denoted by @t in operator notation. Likewise, differentiation
with respect to x1; x2; x3 is denoted by @1; @2; @3. We adhere to Einstein’s conven-
tion: if, within a term, an index i D 1; 2; 3 occurs twice, a sum over it is silently
understood, such as aibi D a1b1 C a2b2 C a3b3.

P. Hertel, Continuum Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-29500-3, © Springer-Verlag Berlin Heidelberg 2012
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A.1 Covariance

Theoretical physics tries to build bridges between the world of things and events
on the one and mathematics on the other hand. We have to translate from the real
world to mathematics, do our calculations according to the laws of mathematics,
and re-translate the results to the real world. A physicist has been educated within
this scheme of thinking that he hardly notices it any more.

Just think about the length of an object. You must specify a number and a
reference length, meters say. “He measures 1.85” may be correct within a certain
context, but “he measures 1.85 m” is better, or “he measures 185 cm”. This example
should have made clear that the translation of physical properties to numbers
requires a reference system, and also, that there are many of them, such as meter,
centimeter, inches, typographical points, and so forth.

A.1.1 Inertial Systems of Reference

Fields describe events, physical properties which are answers to what? when?
and where? questions. Time is measured by a good clock which, if events occur
periodically, always indicates the same period. Locations are characterized by
referring to a coordinate system. We here restrict ourselves to Cartesian coordinates,
three identical measuring rods at right angles. The marks on such a rod are equally
spaced which can be verified by translating one with respect to another. If two
points A and B are characterized by coordinates .a1; a2; a3/ and .b1; b2; b3/, their
distance is

d D
p
.b1 � a1/2 C .b2 � a2/2 C .b3 � a3/2; (A.1)

the Pythagoras formula in three-dimensional space. Equation (A.1) holds true only
for a Cartesian coordinate system.

Since Galileo Galilei we know that there are preferred systems, so called inertial
systems. Normally, bodies are inert in the sense of “lazy”, they do not change their
state of motion unless forced to do so. A body which is not acted upon by a force
travels on a trajectory

x.t/ D x0 C t v: (A.2)

Equation (A.2) characterizes an inertial system ˙ of reference. A rotating coor-
dinate system or a more and more retarding clock will not give rise to linear
trajectories like Eq. (A.2).

There are inertial systems of reference, however, there are many of them. If the
when? and where? questions of a typical event are answered by t; x1; x2; x3 with
respect to ˙ and by t 0; x 0

1; x
0
2; x

0
3 with respect to ˙ 0, the following relation must

hold true:
t D t 0 C � and x D a CRx 0 C ut 0: (A.3)



A.1 Covariance 237

Fig. A.1 Sending the inertial system ˙ into ˙ 0 by �1 and then, by �2, to ˙ 00. This is the same
as sending ˙ to ˙ 00 by �

Here R is an orthogonal matrix,

RR� D R�R D I or RijRkj D ıik: (A.4)

An orthogonal matrix guarantees that the distance between two points is the same if
calculated with primed or unprimed coordinates.

Inserting a trajectory Eq. (A.2) into Eq. (A.3) results in another trajectory where
time and location are related by linear functions.

Equation (A.3) describes a Galilei transformation � D f�; a; R;ug.
If �1 sends .t; x/ to .t 0; x 0/ and �2 sends .t 0; x 0/ to .t 00; x 00/, the transformation

� D �2 � �1 directly sends .t; x/ to .t 00; x 00/. We easily work out

� D �2 � �1 D f�2 C �1; a2 CR2a1; R2R1;u2 CR2u1g: (A.5)

This is indeed a Galilei transformation because the productR2R1 of two orthogonal
matrices is again an orthogonal matrix. See Fig. A.1 for a sketch.

Galilei transformations form a group. There are various subgroups:

• Time translations: � D f�; 0; I; 0g
• Spatial translations: � D f0; a; I; 0g
• Rotations: � D f0; 0;R; 0g
• Proper rotations: � D f0; 0;R; 0g where det.R/ D 1

• Proper Galilei transformations: � D f0; 0; I;ug
Because of f0; 0; I;u2g � f0; 0; I;u1g D f0; 0; I;u2 C u1g we conclude that

velocities add as vectors. This is in disagreement with the fact that the velocity c
of light is always the same. Galilei transformations are approximations for small
relative velocities. A fully relativistic description of continuum mechanics is not
within the scope of this book, it is not required.
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A.1.2 Tensor Fields

One and the same event is characterizes by coordinates .t; x/ with respect to an
inertial system ˙ and by .t 0; x 0/ when referring to another inertial system ˙ 0. If
the event is associated with a property which can be expressed by a single number
S D S.t; x/, we speak of a scalar field. This is a function of four arguments. With
respect to the inertial system ˙ 0 the same physical field is expressed by a different
function, namely S 0 D S 0.t 0; x 0/. Both functions shall represent the same physical
field, therefore

S.t; x/ D S 0.t 0; x 0// (A.6)

must hold true, where � D f�; a; R;ug transforms from ˙ 0 to ˙ according to
Eq. (A.3).

We speak of a vector field if the event is associated with a vector V. A vector field
is represented by three functions Vi D Vi .t; x/with respect to the inertial coordinate
system ˙ and by three different functions V 0

i with respect to ˙ 0 such that

Vi .t; x/ D Rij V
0
j .t

0; x 0/ (A.7)

holds true.
A tensor field Tij in the narrow sense of the word has two indexes and

transforms as
Tij .t; x/ D RikRjlT

0
kl .t

0; x 0/: (A.8)

A tensor field in the wider sense has n D 0; 1; 2 : : : indexes and transforms as
above, with one R matrix for each index. The number of indexes is the rank of the
tensor. Hence, a scalar field is a rank zero tensor field, a vector field is a tensor field
of rank 1, a proper tensor field has two indexes, and so forth.

Physical laws must be formulated as equations T .t; x/ D 0 where T stands for
a tensor field of a certain rank. Then, and only then, the expression is true for all
inertial systems and expresses the same physical information.

Here are some recipes how to construct valid tensor expressions:

• A linear combination of two tensors of the same kind is again such a tensor, such
as Cij D ˛Aij C ˇBij

• The product of a scalar and a tensor field is again such a tensor field, such as
Cij .t; x/ D S.t; x/Tij .t; x/

• The product Cij D AiBj of two vector fields A and B is a tensor field
• Summing over a pair of identical indexes results in a tensor of rank minus two,

such as in S D AiBi where A and B are vector fields and S is a scalar field
• The Kronecker symbol ıij is a constant tensor field of rank 2, because of
RikRjlıkl D ıij
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• The Levi-Civita symbol �ijk is a constant pseudo-tensor of rank three. Because
of1

RilRjmRkn�lmn D det.R/ �ijk (A.9)

it transforms as a rank three tensor if det.R/ D 1, that is for proper rotations.
It acquires a minus sign for improper rotations. Such objects are called pseudo-
scalars, pseudo-vectors, and so forth

• If A and B are proper vectors, then C D A � B transforms as a pseudo-vector,
because of Ci D �ijkAjBk . However, if A is a proper vector and B a pseudo-
vector, then C will transform as a proper vector

A.2 Differentiating Fields

We show that the time derivative @t does not behave as a scalar. We shall postpone
this problem to section More on Fields of this appendix where we justify the
decomposition of current densities into a convection and a conduction contribution.
The three partial differentiation operators @i with respect to location transform as a
proper vector giving rise to gradient, divergence, and curl fields.

A.2.1 Time Derivative

Consider a scalar field. When changing from one inertial system to another by a
Galilei transformation � D f�; a; R;ug according to Eq. (A.3), the field transforms
as described by Eq. (A.6), that is

S 0.t 0; x 0/ D S.t; x/ D S.� C t 0; a CRx 0 C ut 0/: (A.10)

The partial derivative with respect to t 0, i.e., by keeping x 0 fixed, results in

@t 0S 0.t 0; x 0/ D @tS.t; x/C ui @iS.t; x/: (A.11)

We conclude that the partial time derivative of a scalar field does not transform as a
scalar under Galilei transformations. Put otherwise, @t is not a scalar.

1Equation (A.9) holds true for any 3� 3 matrix R. In fact, it defines its determinant.
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A.2.2 Gradient

Consider a scalar field S which is characterized by Eq. (A.10). We differentiate it
with respect to x 0

i treating t 0 as constant. The result is

@S 0

@x 0
i

D @S.� C t 0; a CRx 0 C ut 0/
@xj

Rj i ; (A.12)

which we abbreviate to

@ 0
i S

0.t 0; x 0/ D Rji@j S.t; x/ D .R�/ij @j S.t; x/: (A.13)

Because of RR� D I this may be rewritten as

@iS.t; x/ D Rij @
0
j S

0.t 0; x 0/: (A.14)

Gi D @iS is the gradient of a scalar field S , it transforms as a proper vector field.

A.2.3 Divergence

The above finding says that the differentiation operator @i transforms as a vector.
So, if Vi is a vector field, then @j Vi transforms as a tensor, and the same applies to
tensors of higher rank. By what has been said before, the divergenceD D @iVi of a
vector field will transform as a scalar field:

@iVi .t; x/ D @ 0
i V

0
i .t

0; x 0/: (A.15)

The divergence of the gradient of a scalar field S , namely


S D @i@iS; (A.16)

is a scalar field as well. 
 denotes the Laplacian operator.

A.2.4 Curl

If Vi is a vector field, its curl is defined as

Ci D �ijk@j Vk: (A.17)
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It transforms as a pseudo vector field:

Ci.t; x/ D det.R/RijC
0
j .t

0; x 0/ (A.18)

in familiar notation.
A curl field is always divergence free, because of

@iCi D �ijk@i @j Vk D 0: (A.19)

While @i @j is symmetric, the Levi-Civita symbol �ijk is antisymmetric when
interchanging i and j . Summing over i and j results in zero.

For the same reason, the curl of a gradientGi D @iS always vanishes,

�ijk@jGk D �ijk@j @kS D 0: (A.20)

A.3 Paths, Surfaces and Volumes

Fields, living in a three dimensional space and depending on time, can be integrated
over one-, two-, or three-dimensional manifolds, namely paths, surfaces and
volumes. We explain how these manifolds are defined. The time argument t is kept
constant in this and following sections, so we drop it entirely.

A.3.1 Paths

A path C is parameterized by a differentiable mapping of an interval into three
dimensional space,

u ! �.u/ where u 2 Œu0; u1� and u0 < u1: (A.21)

x0 D �.u0/ is the start point, x1 D �.u1/ the end point.
Now, assume a monotonously increasing function f which maps the interval

ŒNu0; Nu1� onto Œu0; u1�. We define by

N�.Nu/ D �.u/ D �.f .Nu// (A.22)

the composition N� D � ı f . If Nu runs from Nu0 to Nu1, N�.Nu/ runs from x0 to x1 on the
same path as above, and in the same order. We say that u ! �.u/ and Nu ! N�.Nu/ are
equivalent parameterizations.

We see that the same path can be parameterized by different functions �.u/, N�.Nu/,
and so forth. In fact, the class of all equivalent parameterizations is the path. See
Fig. A.2 for a sketch.
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Fig. A.2 Two different
parameterizations of the same
path C

So far we demanded that the parameterization be differentiable. This can be
relaxed. Consider two paths C 0 and C 00. The former starts at x 0

0 and ends at x 0
1,

the latter at x 00
0 and x 00

1 . If it happens that the end point of C 0 coincides with the start
point of C 00, we may join them to one path C D C 0 C C 00. C is obviously continuous
and consist of two differentiable pieces. It starts at x 0

0 and ends at x 00
1 . In general,

a path is made up of finitely many differentiable pieces.
If the start and end points of a path are the same, we speak of a closed path.
The boundary of a path C which begins at xs and ends at xe is denoted by @C. It

is the ordered set fxs; xeg.
For each differential piece we can define the tangent vector by

t.u/ D d�.u/

du
: (A.23)

If we calculate the tangent vector with respect to another parameterization we
find

Nt.Nu/ D du.Nu/
dNu t.u/: (A.24)

Hence, Nt and t are parallel,2 although not equal. This means that the tangential
unit vector does not depend on the particular parameterization, it is a property of the
path.

There is a particular parameterization s ! �.s/ such that jt.s/j D 1 holds
everywhere. In this case we call s the arc length. If the starting point of a path C
is characterized by s0 and the end point by s1, the path length of C is ` D s1 � s0.

2Note that du=dNu is positive.
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A circle in the x; y-plane may serve as an example:

s ! �.s/ D R

0
@

cos.s=R/
sin.s=R/

0

1
A for s 2 Œ0; 2�R�: (A.25)

Its tangent vector is given by

t.s/ D
0
@

� sin.s=R/
cos.s=R/

0

1
A ; (A.26)

a unit vector. Hence s serves as the arc length. The circumference (path length) of
the circle is 2�R. Note that the circle is a closed path.

Assume we use the arc length s as a parameter. We may write

d2�.s/

ds
D dt.s/

ds
D �.s/n.s/: (A.27)

The normal vector n should have unit length which defines the curvature �.s/ � 0.
The radius of curvature at s is given byR.s/ D 1=�.s/, it is likewise zero or positive
(possibly infinite). Because of

0 D d

ds
1 D d

ds
t.s/ � t.s/ D 2t.s/ � dt.s/

ds
(A.28)

the normal vector n is perpendicular to the tangent vector t. The normal vector points
towards the origin of a circle of radius R which locally approximates the curve in
second order.

The normal vector n.s/ for the circle Eq. (A.25) turns out to

d

ds

0
@

� sin.s=R/
cos.s=R/

0

1
A D 1

R
n.s/ where n D

0
@

� cos.s=R/
� sin.s=R/

0

1
A : (A.29)

For a circle of radius R the radius of curvature R.s/ is the same everywhere,
namely R.

A.3.2 Surfaces

We repeat the above pattern for a two-dimensional manifold. The rectangle R D
Œu0; u1� � Œv0; v1� is mapped by three differentiable functions � D �.u; v/ into the
three-dimensional space. Such a two-dimensional manifold is called a surface A.
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Fig. A.3 Rectangle R D Œu0; u1� � Œv0; v1� and the four pieces of its boundary @R

The boundary of R consists of four pieces, @R D @R1 C @R C @R3 C @R4. It
is a path which runs counter-clockwise, see Fig. A.3.

Again, we may choose another rectangle NR D ŒNu0; Nu1� � Œ Nv0; Nv1�. Let u1 D
f1.Nu; Nv/ and u2 D f2.u; v/ be two differentiable functions which map NR onto R.
We require the mapping to be invertible. This is the case if the so-called Jacobian

@.f1; f2/

@.Nu; Nv/ D det

0
BBB@

@f1

@u

@f2

@u

@f1

@v

@f2

@v

1
CCCA (A.30)

vanishes nowhere. We also restrict the mapping by demanding that the orientation
of the boundary @ NR is counter-clockwise.

The boundary @A of a surface A is the mapping by � D �.u; v/ of the boundary
@R. It inherits its orientation, and this is also true for another parameterization N� D
N�.Nu; Nv/.

We now have two tangential vectors, namely

t1.u; v/ D @�.u; v/

@u
and t2.u; v/ D @�.u; v/

@v
: (A.31)

They are nowhere parallel. They span the tangential plane which consists of all
linear combinations of t1.u; v/ and t2.u; v/.
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Fig. A.4 A is a larger
spherical disk without a
smaller one (gray). The
boundary consists of two
disjoint closed paths @A2 and
@A4. The normal vector n is
the same everywhere

Because of

Nt1 D @u

@Nu t1 C @v

@Nu t2 and Nt2 D @u

@ Nv t1 C @v

@ Nv t2 (A.32)

we see that this plane is the same for all parameterizations. Therefore, the normal
vector3

n.u; v/ D t1.u; v/ � t2.u; v/
jt1.u; v/ � t2.u; v/j (A.33)

is well defined, irrespective of the parameterization.
In general, a surface consists of finitely many differentiable pieces which are

sewn together in such a way that it is continuous.
A surface is closed if it has no boundary.
Let us illustrate all this by an example:

�.r; 	/ D
0
@
r cos	
r sin 	
0

1
A for r 2 ŒR1; R� and 	 2 Œ0; 2��: (A.34)

The boundary consists of four pieces (see Fig. A.3).

• @A1: A straight line from .R1; 0/ to .R; 0/ in the x; y plane.
• @A2: A counter-clockwise circle with radius R around the coordinate center.
• @A3: A straight line from .R; 0/ to .R1; 0/.
• @A4: A clockwise circle with radius R1 around the coordinate center.

The first and the third contribution drop out, their sum is the null path. See Fig. A.4
for a sketch.

Note that, with R1 ! 0, the inner circle becomes the null path, and the surface
is a plane disk of radius R.

3Not to be confused with the normal vector of a path.
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A.3.3 Volumes

A volume V , a three-dimensional manifold, is described by a differentiable mapping
� of a cuboid Q into three-dimensional space. We characterize the cuboid by Q D
Œu0; u1�� Œv0; v1�� Œw0;w1� and write � D �.u; v;w/ with .u; v;w/ 2 Q. We require
that the Jacobian

J D @.�1; �2; �3/

@.u; v;w/
D det

0
BBBBBBBBBB@

@�1

@u

@�2

@u

@�3

@u

@�1

@v

@�2

@v

@�3

@v

@�1

@w

@�2

@w

@�3

@w

1
CCCCCCCCCCA

(A.35)

vanishes nowhere. Note that the rows in Eq. (A.35) are the three tangential vectors.
They must be linearly independent which is expressed by J ¤ 0.

The cuboidQ has a boundary @Q which is made up of eight differentiable pieces.
Each piece shall be oriented such that the normal vector points outward. The surface
@Q is mapped by � D �.u; v;w/ to the surface @V of the volume which is closed.

As an example, let us study a ball B of radiusR. We parameterize it by4

�.r; �; 	/ D
0
@
r cos � cos	
r cos � sin 	
r sin �

1
A ; (A.36)

where 0 � r � R, ��=2 � � � �=2 and 0 � 	 � 2� .
The Jacobian is

@.�1; �2; �3/

@.r; �; 	/
D r2 cos �: (A.37)

It is singular at the center (r D 0) and on the earth axis (� D ˙�=2). We shall
ignore this complication for the moment.

Let us discuss the six pieces of the surface.

• r D 0: the center, a point. Plays no role.
• r D R: the ball surface proper.
• � D ��=2: the south pole, a point. Does not contribute.
• � D �=2: the north pole. To be ignored.
• 	 D 0: a disk of radius R such that the poles and Greenwich are located at its

boundary.
• 	 D 2�: the same as above, but with opposite orientation.

4Geographical coordinates.
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The last two contributions cancel each other, and therefore the boundary @B
is parameterized by �.	; �/ D �.R; �; 	/. Note that we have interchanged the
arguments � and 	. By this we achieve that the normal vector

n.�; 	/ / @�

@	
� @�

@�
D R2 cos �

0
@

cos � cos	
cos � sin 	

sin �

1
A (A.38)

points radially away from the ball. Compare with Eq. (A.36).

A.4 Integrating Fields

Fields, which live in three dimensional space and depend on time, can be integrated
over one-, two-, or three-dimensional manifolds. We only discuss situations where
these paths, surfaces and volumes are at rest, so that we may drop the time
argument. The field integrals which we present here do not depend on the particular
parameterization which we employ for calculating them. They are scalars. We also
deal with generalizations of the fundamental theorem of calculus.

A.4.1 Path Integrals

We want to integrate a vector field V D V.x/ along a path C. Let � D �.u/ be a
parameterization of the path, for u0 � u � u1. We consider two neighboring points
�.u/ and �.u C du/. The vector transporting the first to the second point is

ds D �.u C du/� �.u/ D d�.u/

du
du: (A.39)

With this in mind we define
Z

C
ds � V D

Z u1

u0

du
d�.u/

du
� V.�.u//: (A.40)

The notation suggests that the integral depends on the path and on the vector field
only, and this is so indeed.

Let us choose another parameterization N� D N�.Nu/ D �.u/ of the same path C.
We calculate

Z Nu1

Nu0
dNu d N�.Nu/

dNu � V. N�.Nu// D
Z u1

u0

du
dNu
du

d�.u/

dNu � V.�.u//; (A.41)
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Fig. A.5 An infinitesimal
surface element. The vectors
dsu and dsv span a
parallelogram. The vector
product dsu � dsv is normal
to the surface element, the
modulus equals its area

and because of
d�.u/

dNu
dNu
du

D d�.u/

du
(A.42)

the integral (A.41) is the same as Eq. (A.40). For calculating the path integral one
requires a particular parameterization, but any other parameterization will serve as
well.

A.4.2 Surface Integrals

Let us parameterize a surface A by the mapping � D �.u; v/ where u 2 Œu0; u1� and
v 2 Œv0; v1�. We concentrate on a typical surface element. This is spanned by vectors
dsu D �.uCdu; v/��.u; v/ and dsv D �.u; vCdv/��.u; v/. Note dsu D du @�=@u
and dsv D dv @�=@v (Fig. A.5).

The vector product dA D dsu � dsv is a vector perpendicular to the surface
element. Its modules is equal to the area of the surface element dA. This motivates
us to define the surface integral of a vector field V D V.x/ as

Z

A
dA � V D

Z u1

u0

du
Z v1

v0

dv

�
@�.u; v/

@u
� @�.u; v/

@v

�
� V.�.u; v//: (A.43)

The field is projected onto the normal of a surface element and multiplied by its
area, and the integral is a “sum” over all surface elements.

The surface integral (A.44) does not depend on the particular parameterization
which we employ to calculate it. We select another representation N�.Nu; Nv/ D �.u; v/.
Because of

dNud Nv D dudv
@.Nu; Nv/
@.u; v/

(A.44)

and
@.Nu; Nv/
@.u; v/

 N�.Nu; Nv/
@Nu �

N�.Nu; Nv/
@ Nv

!
D @�.u; v/

@u
� @�.u; v/

@v
(A.45)
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we conclude

Z Nu1

Nu0
dNu
Z Nv1

Nv0
d Nv
 
@ N�.Nu; Nv/
@Nu � @ N�.Nu; Nv/

@ Nv

!
� V. N�.Nu; Nv// D

Z

A
dA � V: (A.46)

Indeed, the surface integral is the same for all parameterizations.
As an example, let us work out the integral of V.x/ D x=jxj3 over a sphere S of

radiusR. We parameterize

�.�; 	/ D R

0
@

cos � cos	
cos � sin 	

sin �

1
A D R n (A.47)

for ��=2 � � � �=2 and 0 � 	 � 2� . With Eq. (A.38) one calculates

dA D R2 d� cos � d	 n (A.48)

and Z

S
dA � V D

Z �=2

��=2
d�
Z 2�

0

d	 R2 cos �
1

R2
n � n D 4�: (A.49)

A.4.3 Volume Integrals

We speak about a volume V which is parameterized by � D �.u; v;w/. The three
vectors dsu D �.u C du; v;w/ � �.u; v;w/ and similarly dsv and dsw span an
infinitesimal volume element. Its content is

dV D .su � sv/ � sw D du dv dw
@.�1; �2; �3/

@.u; v;w/
: (A.50)

See Eq. (A.35) for the definition of the Jacobian.
The volume integral of a scalar field S D S.x/ is given by

Z

V
dV S D

Z u1

u0

du
Z v1

v0

dv
Z w1

w0

dw
@.�1; �2; �3/

@.u; v;w/
S.�.u; v;w//: (A.51)

Again, the volume integral does not change if calculated with another parameter-
ization. With N�.Nu; Nv; Nw/ D �.u; v;w/ one finds

dNu d Nv d Nw @.
N�1; N�2; N�3/
@.Nu; Nv; Nw/ D du dv dw

@.Nu; Nv; Nw/
@.u; v;w/

@.�1; �2; �3/

@.Nu; Nv; Nw/ : (A.52)
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The product of the Jacobians in Eq. (A.52) is @.�1; �2; �3/=@.u; v;w/, and we
arrive at

Z Nu1

Nu0
dNu
Z Nv1

Nv0
d Nv
Z Nw1

Nw0
d Nw @. N�1; N�2; N�3/

@.Nu; Nv; Nw/ S.
N�.Nu; Nv; Nw// D

Z

V
dV S: (A.53)

The volume element for spherical coordinates Eq. (A.36) reads

dV D dr d� d	 r cos �: (A.54)

A.4.4 Stokes’ and Gauss’ Theorems

The fundamental theorem of calculus reads

Z b

a

dx f 0.x/ D f .b/ � f .a/; (A.55)

where f D f .x/ is a differentiable function on Œa; b�. There are generalizations for
one-, two- and three-dimensional manifolds.

The Gradient Theorem

Consider a path C and a scalar field S with gradient rS . Let � D �.u/ be a
parameterization. We calculate

Z u1

u0

du
d�.u/

du
� rS.�.u// D

Z u1

u0

du
dS.�.u//

du
D S.x1/� S.x0/: (A.56)

The left hand side is a path integral which does not depend on the particular
parameterization, and the same applies to the right-hand side. Recall that x0 and
x1 are the starting and the end points of the path, respectively. Hence we may write

Z

C
ds � rS D S.x1/� S.x0/: (A.57)

The similarity with Eq. (A.55) is obvious.

The Curl, or Stokes’ Theorem

Consider a surface A and a vector field V D V.x/. The boundary @A D @A1 C
@A2 C @A3 C @A4 consists of four smooth pieces which we have enumerated as
shown in Fig. A.3.
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Stokes’ theorem says

Z

A
dA � .r � V/ D

Z

@A
ds � V: (A.58)

The proof of this curl theorem is similar to that of the gradient theorem, but not quite
as simple.

We choose a parameterization � D �.u; v/ and integrate over u 2 Œu0; u1� and
v 2 Œv0; v1�.

The integrand is5

�ijk�ilm
@�j

@u

@�k

@v
@lVm.�/: (A.59)

The two epsilons contract to

�ijk�ilm D ıklıjm � ıkmıjl ; (A.60)

giving rise to
@�j

@v

@�k

@v
@kVj � @�k

@u

@�j

@v
@j Vk: (A.61)

This may be rewritten as
@�k

@v

@Vk

@u
� @�k

@u

@Vk

@v
: (A.62)

The first contribution equals

@

@u

@�k

@v
Vk � Vk @

2�k

@u@v
; (A.63)

the second reads

� @

@v

@�k

@u
Vk C Vk

@2�k

@v@u
: (A.64)

Two terms drop out, and we are left with

Z u1

u0

du
Z v1

v0

dv

�
@

@u

@�

@v
� V.�/� @

@v

@�

@u
� V.�/

�
(A.65)

for the left hand side of Eq. (A.58). Integrating the first term over u yields two
boundary terms, and another two contributions come from integrating the second
term over v. They are

Z v1

v0

dv
@�.u1; v/

@v
� V.�.u1; v// (A.66)

5Einstein’s summation convention.
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and

�
Z v1

v0

dv
@�.u0; v/

@v
� V.�.u0; v//: (A.67)

These are path integrals of V over @A2 and @A4 with proper signs (see Fig. A.3).
Integrating the second term in Eq. (A.65) yields the remaining path integrals. We
have thus proven Stokes’ theorem.

The Divergence, or Gauss’ Theorem

Assume a volume V and a v field V D V.x/. The divergence, or Gauss’ theorem
reads Z

V
dV r � V D

Z

@V
dA � V: (A.68)

The proof is similar to the proof of Stokes’ theorem, although it requires a lot of
bookkeeping. We will not present it here.

The result is rather plausible. The integral of a field derivative over a manifold
coincides with the integral of the field over a manifold with one dimension less. For
a surface the field and the field derivative must be vectors, i.e., a vector field and its
curl. For a volume the field must be a vector and the field derivative a scalar, i.e., the
divergence of a vector field.

A.5 More on Fields

We have mentioned already that the time derivative of a scalar field does not behave
as a scalar field under Galilei transformations. Therefore, time derivatives must
always be accompanied by expression which compensate for this. We shall discuss
the transformation properties of balance equations and justify why the conduction
contribution to currents transforms as a vector field.

A.5.1 Densities and Current Densities

Denote by � D 1; 2; : : : the particles of a certain species. Its density is

n.t; x/ D
X
�

h ı3.x � x�.t// i: (A.69)

x�.t/ is the observable “location of particle � at time t” in the Heisenberg picture
and h : : : i denotes the expectation value of the (local) Gibbs state.
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If .t 0; x 0/ and .t; x/ are related by a Galilei transformation

t D t 0 C � and x D a CRx 0 C ut 0; (A.70)

we easily show
n.t; x/ D n 0.t 0; x 0/; (A.71)

because of ı3.z/ D ı3.Rz/. Recall that R is an orthogonal matrix.
Thus, particle densities transform as scalar fields, and the same applies to the

mass density
%.M I t; x/ D

X
a

mana.t; x/: (A.72)

a D 1; 2; : : : enumerates the particle species, and ma is the mass of a particle of
species a.

The particle current density belonging to Eq. (A.69) is

j.t; x/ D
X
�

h Px� ı3.x � x�.t// i: (A.73)

It transforms as
j.t; x/ D R j 0.t 0; x 0/C n.t 0; x 0/ u: (A.74)

The particle current density does not transform as a vector field, and the same is true
for the mass current density

j.M I t; x/ D
X
a

ma ja.t; x/ (A.75)

for which we find

j.M I t; x/ D R j 0.M I t 0; x 0/C %.M I t 0; x 0/ u: (A.76)

Recall that the local center of mass velocity field v D v.t; x/ is the mass
current density divided by the mass density. With respect to the Galilei group it
transforms as

v.t; x/ D R v 0.t 0; x 0/C u: (A.77)

This is highly plausible.
There is nothing particular about the particle current density and its transforma-

tion behavior (A.75). Any current density transforms in this way,

j.Y I t; x/ D R j 0.Y I t 0; x 0/C %.Y I t 0; x 0/ u: (A.78)

We conclude that the conduction current density

J.Y I t; x/ D j.Y I t; x/� %.Y I t; x/ v.t; x/ (A.79)

transforms properly as a vector field.
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A.5.2 Time Derivatives

Let us work out the transformation behavior of P%C @i%vi for a physical quantity Y
which we do not write explicitly. We calculate

@t 0% 0 C @ 0
i %

0v 0
i D @t%C ui @i%C @i%vi � ui @i %: (A.80)

RR� has already been worked in. We conclude that expression P%.Y / C @i%.Y /vi
is a scalar field, just as @iJi .Y /. It follows from the prototype balance equation
that volumetric production rates �.Y / are scalar fields as well. We have used these
findings before, see subsection Transformation properties of currents in Chap. 1.

What about Dt D @t C v � r , the substantial time derivative?
For an arbitrary scalar field S we write

Dt 0S 0 D @tS C ui @iS C vi@iS � ui @iS: (A.81)

If follows that the substantial time derivative operator Dt transforms as a scalar
under Galilei transformations.



Glossary

The entries in this list of key words and persons are ordered alphabetically. F is a
hint to another glossary entry. Persons are briefly described by their origin, field
of activity, and life span. The association British, English, Irish or Scottish is
somewhat arbitrary. Likewise, the distinction between natural science, philosophy,
mathematics, astronomy, physics, chemistry and engineering is less clear for earlier
centuries.

A

Airy, George: English astronomer and mathematician, 1801–1892. Mentioned in
article Stress Concentration.

Ampère, André-Marie: French physicist, 1775–1836.

Ångström, Anders Jonas: Swedish physicist, 1814–1874.

Archimedes, of Syracuse: Greek mathematician, physicist, engineer, inventor, and
astronomer, 285–212 BC.

Archimedes’ principle The buoyancy force of a partially or totally immersed
body is equal to the weight of the displaced fluid. Although strictly valid only for
an F incompressible fluid, the corrections for compressible media, like an F ideal
gas, are tiny. Read the corresponding article.

Avogadro, Amadeo: Italian physicist, 1776–1856.

Avogadro’s number One mole of the C12 isotope weighs 12 g, by definition.
This mass consists of NA atoms, a number which is known as Avogadro’s
or F Loschmidt’s number. Avogadro’s number NA=6.022141�1023 links contin-
uum physics to microphysics. For example, F Boltzmann’s constant kB and the
F universal gas constant R are related by R D NAkB.

P. Hertel, Continuum Physics, Graduate Texts in Physics,
DOI 10.1007/978-3-642-29500-3, © Springer-Verlag Berlin Heidelberg 2012
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B

Bach, Johann Sebastian: German musical composer, 1685–1770. Mentioned in
article Vibrating Strings and Membranes.

Balance equation Balance equations state that a F quantity Y within a certain
region of space, or volume, may change in the course of time because of inflow
via the surface or production within. This is expressed by the balance equation
@t%.Y /C@iji .Y / D �.Y /. Here %.Y /, j.Y / and �.Y / are the F density, F current
density and F volumetric production rate of quantity Y , respectively. Read section
Densities for Content, Flow and Production Rate for their definition and section
More on Fields for transformation properties.

Beam bending A beam, if not strained, is a long straight column of constant cross
section. It serves to guide momentum, i.e., transmit forces. The partial differential
equations of elasticity theory simplify considerably if fields are approximated
linearly with respect to cross section coordinates. There is a neutral fiber (x D
y D 0 and 0 � z � `) the displacement of which is described by X.z/ and Y.z/.
Both displacements obey ordinary differential equation of fourth order, the solutions
of which are governed by transversal loads, longitudinal stress or pressure, and
boundary conditions. Beams tend to buckle if the pressure on the top face exceeds a
certain limit, F Euler instability. Read article Beam Bending and Buckling.

Bernoulli, Jakob: Swiss mathematician and physicist, 1645–1705. Mentioned in
articles Beam Bending and Buckling and Bernoulli’s Law.

Boltzmann, Ludwig: Austrian physicist, 1844–1906.

Boltzmann constant Introduced by Max Planck who recognized that the entropy
of thermodynamics and the logarithm of the micro-canonical sum of states are pro-
portional. In this book, we have introduced kB by S.W / D �kB trW lnW , where
W describes the mixed state and S.W / its entropy. Today’s rather accurate value
kB=1:380649� 10�23 J K�1results from an accurate determination of F Avogadro’s
number by particle counting. Earlier less precise values came from fluctuation
measurements ( F Johnson noise, F Nyquist formula, and F Brownian motion).

Brown, Robert: Scottish botanist, 1773–1858.

Brownian motion A particle which is just large enough to be seen in a microscope
moves seemingly at random if suspended in a liquid. F Einstein was the first
to propose that it is the thermally agitated environment which kicks the particle.
Moreover, he could work out the root mean square displacement as a function of
time. This discovery allowed to measure the F Boltzmann constant, or, equivalently,
F Avogadro’s number. We not only present Einstein’s original reasoning, but also
solve the F Langevin equation for the motion of a particle with friction driven by
a random force of constant spectral density, or F white noise. Brownian motion is
the diffusion of a single particle, or, put otherwise, diffusion is mass-wise Brownian
motion. Read the corresponding article.
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Buckling Long thin beams tend to buckle if they have to stand too large an axial
force. F Euler instability.

C

Chandrasekhar, Subrahmanyan: Indian/US-American astrophysicist, 1910–1995.

Chandrasekhar’s limit The mass of a F white dwarf must not exceed 1.44 sun
masses. White dwarfs with sub-critical mass which suck up matter from a com-
panion star will explode if Chandrasekhar’s limit is reached. The corresponding Ia
supernova serves as a standard candle, it allows to measure the distance of far away
objects. More in article White Dwarfs.

Chemical potential A physical system is always a subsystem within its environ-
ment. If particles of species a are allowed to cross the boundary of the system, in and
out, equilibrium is characterized by equal chemical potential �a inside and outside.
Read section Statistical Thermodynamics. Gradients of a chemical potential cause
diffusion. F Electrochemical potential.

Chemical reaction In a chemical reaction, which is assumed to occur instan-
taneously, particles of certain species vanish and other particles appear. In one
reaction of type r , �ra particles of species a are created. A negative value indicates
disappearance. The �ra are F stoichiometric coefficients, they have no common
divisor. Let � r denotes the number of reactions of type r per unit volume and
per unit time. The volumetric production rate of a-particles is given by �.Na/ DP

r �
r�ra.

Compression modulus An elastic body subject to hydrostatic pressure p expe-
riences a relative volume change p=K . The compression modulus is given by
K D E=3.1 � 2�/ where E and � are F Young’s modulus and F Poisson’s ratio,
respectively. Read article Elasticity Moduli.

Conduction Transport of a quantity Y by interaction, not F convection. Examples
are diffusion of particles, of phonons (heat conduction) and the elastic or inelastic
transport of momentum as described by the stress tensor. F Current density. Read
section Convection and Conduction.

Conductivity F Ohm’s law for electric conductivity. Conductivities in a wider
sense are defined as follows. Denote by 
1; 
2 : : : the external parameters (forces) of
a system and by Vr D �h @H=@
r i the corresponding reactions, such that the work
done on a system is dA D �Pr Vr d
r . Denote by ˚r D PVr the rate of change, or
flux. For oscillating forces one obtains, in linear approximation, a linear relationship
Q̊
r D P

s Krs
Q
r between fluxes and forces (the tilde denotes the Fourier transform).

The proportionality constants Krs D Krs.!/ are generalized conductivities. This
matrix fulfills F Onsager’s relations. Interchanging the indexes r and s as well as
inverting a quasi-static magnetic field is a symmetry.

Convection If matter flows, its material points transport their properties Y from
one place to another. The corresponding current density is %.Y / v, where v is
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the center of mass flow velocity. F Current density. Read section Convection and
Conduction.

Current density The current of quantity Y through a surface element dA is given
by dI.Y / D j.Y / � dA. Its physical dimension is [Y] per second per square meter.
Current densities are classified as convective (the quantity is transported together
with mass by flowing) or conductive (transported by interactions). The former is
given by %.Y / v, the latter is the rest J.Y / D j.Y / � %.Y / v. The conduction
current density, in turn, may be split into an elastic (reversible) and an inelastic
(irreversible) contribution, J 0.Y / and J 00.Y /, respectively; they behave oppositely
upon time reversal. Only conduction currents transform properly as F vectors and
may be associated with other vector fields by F material equations.

Curve F Path.

D

Degeneracy pressure There are two sorts of particles. F Fermions want to be
alone, F bosons like other particles close by. Fermions, in particular electrons,
cannot occupy the same state more than once ( F Pauli exclusion principle), they
are degenerate. The pressure p D p.T; n/ of non-interacting fermions obeys the
ideal gas formula for very small particle density n. In particular, it vanishes with
T ! 0. For large n, however, there is a degeneracy pressure proportional to n5=3

even for zero temperature. This pressure stabilizes a F white dwarf which consist
of a plasma of carbon and oxygen nuclei and electrons. Read article White Dwarfs
for the material equation of a dense gas of non-interacting fermions.

Density A F quantity Y is an additive and transportable property of a system. The
content of Y in a volume V may therefore by written as a volume integral over a
density field %.Y / D %.Y I t; x/. The physical dimension of %.Y / is [Y] per cubic
meter. Density in this book is practically always quantity per unit volume, although
in some situations we speak of a surface charge density or of the density of states,
and so forth. F Balance equation.

Descartes, René (Cartesius): French philosopher and mathematician, 1596–1650.

Dielectric permittivity F Dielectric susceptibility.

Dielectric susceptibility An oscillating electric field strength QEj .!/ produces
a polarization QPi.!/ which is, in linear approximation, proportional to it. The
proportionality factor in QPi.!/ D �0�ij QEi.!/ defines the dielectric susceptibility
�ij D �ij .!/. The properties of it are thoroughly studied in Chap. 3. Recall that
the dielectric displacement is QDi D �0Ei C QPi D �0�ij QEj . Therefore the (relative)
dielectric permittivity is given by �ij .!/ D ıij C �ij .!/.

Dielectric waveguide A device which guides light within a region of increased
dielectric permittivity. A planar waveguide is characterized by a profile � D �.x/,
a linear waveguide by � D �.x; y/. Modes are solutions of Maxwell’s equations of
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the form F.t; x/ D f .x/ exp .iˇz/ exp .�i!t/ for planar waveguides and with f D
f .x; y/ for linear waveguides. For given angular frequency !, only some discrete
propagation constants ˇ1; ˇ2; : : : are allowed. Read the article Planar Dielectric
Waveguides and Surface Plasmon Polaritons.

Diffusion constant The current density for F particles of species a is given by
j.N a/ D nav CJa, where na denotes the particle density and v is the center of mass
flow velocity. The F conduction part Ja is proportional to the driving force, usually
the gradient of the chemical potential �a. For constant temperature, the chemical
potential depends on location via the particle density, therefore Ja D �Drna
is a plausible material equation (Fick’s law). The diffusion constant D cannot be
negative, according to the F second main law of thermodynamics. Read section
Diffusion of Chap. 2.

Diffusion equation If particles are suspended in a medium at rest, they tend
to diffuse until a spatially constant distribution is attained. The particle density
n D n.t; x/ obeys Pn D D
n, the diffusion equations. F Fick’s law. Read section
Diffusion of Chap. 2. Diffusion combined with chemical reactions may produce
interesting effects, such as pattern formation. F Reaction-diffusion.

Dispersion relation A causal function f obeys f .t/ D �.t/f .t/, where � is
Heaviside’s step function. The Fourier transform Qf consequently is a convolution
of Qf itself and the Fourier transform of the step function. The resulting relation
describes dispersion, because Qf D Qf .!/ necessarily depends on !. The real, or
refractive part, is an integral over the imaginary, or absorptive part. There is no
refraction without absorption. F Kramers-Kronig relations which specialize this to
the field of optics. Read the corresponding section of Chap. 3. Also F Sellmeier
formula.

Drude, Paul: German physicist, 1863–1906.

Drude model In a solid, a typical electron is bound to an ion. Its deviation x
from the equilibrium position is influenced by external electric and magnetic fields
according to m.Rx C � Px C ˝2x/ D �efE C Px � Bg. � describes friction, m˝2 is
the spring constant, E and B are the electric field strength and magnetic induction,
respectively. The Drude model provides rough estimates for the F dielectric sus-
ceptibility, the F electric conductivity, the F Hall effect and the F Faraday effect.

E

Einstein, Albert: German physicist, 1879–1955. Mentioned in article Brownian
Movement.

Einstein summation convention If in an expression an index referring to space
directions occurs twice, a sum over it is automatically understood. Thus the
divergence of a vector field V , namely r �V or @1V1C@2V2C@3V3 reads @kVk with
Einstein’s summation convention. The index k is dummy, it may be replaced by any
other symbol not yet in use. An expression in this context is a product of tensors.
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Electrochemical potential Mobile Electrons migrate because of two different
reasons. They are either dragged by an electric field, the negative gradient of the
electrical potential, or by a varying chemical potential �� of mobile electrons. The
sum 	e � ��=e is the electrochemical potential. Its negative gradient drives the
irreversible electric current density. Some authors also refer to N�� D �� � e	e as
electrochemical potential. Read sections Charge Transport and Ohm’s Law and Hall
Effect.

Energy In quantum theory, the waiting operator is as UtD exp.�itH=„/.
t denotes F time and H , the Hamilton operator, is the system’s energy. For an
autonomous system, it is conserved: its expectation value does not depend on time.
In continuum physics, it is split into kinetic, potential and F internal energy which
are additive transportable quantities. Read section Statistical Thermodynamics as
well as Energy and the First Law of Thermodynamics.

Entropy A F mixed state is described by a probability matrix W . There is a
complete set 	1; 	2; : : : of pure states which occur with probabilities w1;w2; : : :
How much a state is mixed is described by it entropy S.W / D �kB

P
i wi ln wi .

The entropy of a pure state vanishes, it is positive otherwise. Mixing two mixed
states increases the entropy. Read section Statistical Thermodynamics. Also
F Boltzmann’s constant.

Euler, Leonhard: Swiss mathematician and physicist, 1707–1783.

External parameter A physical system is always embedded in its environment.
Changes in the system influence the environment, and changes in the environ-
ment are felt by the system. However, there are situations where the influences
of the environment, described by parameters 
1; 
2; : : : cause changes in the system
the influence of which on the environment may safely be neglected. Put otherwise,
the feedback vanishes or is made to vanish. Such parameters, as the voltage of
a power supply, the volume within which a fluid is confined, or the gravitational
action of the earth on a small piece of matter, are called external parameters. The
Hamiltonian H D H.
1; 
2; : : : / of the system may depend on such external
parameters. They appear as parameters to be adjusted at will or given.

F

Faraday, Michael: English physicist, 1791–1867.

Faraday effect An external or internal quasi-static magnetic field affects the
propagation of light. A linearly polarized beam propagating in field direction splits
into circularly polarized beams with slightly differing refractive indexes. When
leaving the probe, the beam is again linearly polarized. However, the polarization
vector has been rotated by an angle which is proportional to the sample thickness.
The proportionality factor, the F specific Faraday rotation, can be estimated with the
aid of the F Drude model. If the reflected light beam passes through the same probe
in backward direction, the rotation is not undone, but continues. The Faraday effect
is non-reciprocal, as contrasted with F optical activity. Read the corresponding
article.
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Fermi, Enrico: Italian/US-American physicist, 1901–1954.

Fick’s law The diffusion current density is proportional to the particle density
gradient, i.e., J D �Drn. The diffusion constantD is positive.

First main law The energy of a system can be classified as kinetic, potential,
or internal. Kinetic and potential energy can be transformed away by choosing an
appropriate system of reference. The HamiltonianH then describes internal energy
U D hH i D trWH , where W is the system’s state. This bilinear expression says
dU D tr dWH C trW dH , or dU D dQ C dA. The internal energy of a system
may change because of heat or work. The former is brought about by a change of
the system’s state, the latter by an infinitesimal change of the external parameters of
the Hamiltonian, dH.
/ D ��r d
r . Within the framework of continuum physics,
the substantial change of internal energy %Dt u is made up of five terms. T 0

ikGik
describes compression work, J e

i
0Ei is the work done to polarize a medium, �@iJ u

i

is the net heat inflow, T 00
ikGik the friction heat, and J e

i
00Ei is Joule’s heat. Read

section Energy and the First Law of Thermodynamics.

Fluid A fluid, or a fluid medium, is characterized by the absence of shear stress
if at rest or moving with constant velocity. The elastic part T 0

ik of the stress
tensor does not have non-diagonal entries. In fact, it is proportional to the unit
tensor multiplied by �p, where p denotes the F pressure field. One distinguishes
between gases and liquids, the former being highly compressible, the latter nearly
F incompressible. Air under normal conditions is a prototype of a gas. Water under
normal conditions is the prototype of an incompressible liquid. However, there is a
continuous transition from liquid to gas when temperature and pressure are changed.
Read section Fluid Media of Chap. 2.

Fourier, Joseph: French mathematician and physicist, 1768–1830.

Fourier’s law The conduction part of the F internal energy (heat) current density
is proportional to the temperature gradient, i.e., J u

i D �
 @iT . The proportionality
factor 
 is the F thermal conductivity of the material. F Heat equation.

Fowler, Ralph: British physicist, 1889–1944. Mentioned in article White dwarfs.

Free energy Introduced as a Lagrange parameter, the free energy F depends
on F temperature and the F external parameters of the system. It is well defined
for a system in its equilibrium, or F Gibbs state. The free energy serves as a
thermodynamic potential: to each variable there is a conjugate property which is
calculated as a partial derivative. For example, @F.T; V; : : : /=@V D �p.T; V; : : : /
for volume V and F pressure p. Read section Statistical Thermodynamics.

G

Galilei transformation If .t; x/ are time-space coordinates with respect to an
F inertial frame of reference ˙ , then ˙ 0 with coordinates .t 0; x 0/ is likewise an
inertial frame if new and old coordinates are related by a Galilei transformation
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t D t 0 C � and x D a C Rx 0 C ut 0. R is an orthogonal matrix. The Galilei group
consists of all transformations � D f�; a; R;ug.

Galileo, Galilei: Italian astronomer, mathematician and physicist, 1564–1642.

Gibbs, J. Willard: US-American physicist and chemist, 1839–1903.

Gibbs state The Gibbs state describes a system in thermal equilibrium. Among
all F mixed states W of a system with a given F internal energy U , the Gibbs
state G is maximally mixed, i.e., has the largest F entropy S.G/ � S.W /. The
Gibbs state depends on F temperature T and F external parameters. If the system
is open not only to energy, but also to particle exchange with the environment,
the Gibbs state will also depend on F chemical potentials. Read section Statistical
Thermodynamics of Chap. 3.

Goodyear, Charles: US-American inventor, 1800–1860. Mentioned in article Elas-
ticity Moduli.

Gray-Scott model A model with two species of particles U and V which mimics
an auto-catalytic reaction U+2V!3V. New U particles enter the reactor via a
membrane, and V particles pass outside through the same membrane. The particles
are allowed to diffuse. In certain regions, the solution depends critically on the
model parameters and gives rise to different kinds of regular patters which are either
stable or oscillate. Read article Reactions and Diffusion.

Guided optical mode A packet of electromagnetic waves in a homogeneous
medium may be focused, but finally spreads out in space. The medium must be
inhomogeneous if microwaves or light waves are to be concentrated in a narrow
region. Confining light in metallic tubes leads to unacceptably high losses by
F Joule’s heat. Instead, a region of increased dielectric permittivity may confine
the wave, or guide it. F Dielectric waveguides. However, only discrete modes may
propagate in planar or linear waveguides. If the waveguide is much broader than
high, the modes are either F transversal electric or magnetic. An optical TM mode
can also be guided along the interface of a dielectric and a conducting medium with
negative permittivity. F Surface plasmon polaritons.

H

Hagen, Gotthilf: German physicist and hydraulic engineer, 1797–1884.

Hagen-Poiseuille law A circular pipe of length L and inner diameter 2R trans-
ports an amount of liquid per unit time given by PV D �R4p 0=8�. Here p 0 D 
p=L

is the pressure decrease per unit length and � the viscosity. This formula was
derived independently by F Hagen and F Poiseuille. It is valid for small F Reynold
numbers only, i.e., for laminar, not turbulent flow. Read the corresponding article.

Hall, Edwin: US-American physicist, 1855–1938.

Hall effect Assume an electric current density QJ e
x in x-direction and a static

magnetic induction By in y-direction. There will be an electric field strength



Glossary 263

QEz D RH QJ e
xBy in z-direction. This is true if boundary conditions prohibit a current

in z-direction, a current which is stopped by QEz. The Hall constant RH D RH.!/

depends on the angular frequency of the AC current QJ e, its sign indicates whether
electrons or holes are the principal charge carriers. See article Ohm’s Law and Hall
Effect for details.

Heat equation If the F specific F internal energy depends on location only via
its dependency on temperature T , an equation PT D �
T can be derived. � D 
=%c

is called the thermal diffusivity of the material. F Fourier’s law for the definition
of thermal conductivity 
. % is the mass density and c denotes the specific heat
capacity. Read section Heat conduction of Chap. 2.

Heisenberg picture F Time.

Heisenberg, Werner: German physicist, 1901–1976.

Hooke, Robert: British mathematician and physicist, 1635–1703.

Hooke’s law Strain, by definition, vanishes in an unstressed, relaxed elastic body.
Therefore, it is a plausible assumption that F strain depends linearly on F stress, an
assumption which can be traced back to Robert Hooke. Usually, before the stress-
strain relation becomes nonlinear, the medium ceases to be elastic, it is deformed
irreversibly or it brakes, often because of defects (read article Stress Concentration).
In a crystalline medium with very low symmetry, the linear relation between strain
and stress may contain as many as 21 formally independent elasticity constants.
For isotropic media, cubic or amorphous, there are just two independent elasticity
constants of which there are various combinations. F Young’s modulus, F Poisson’s
ratio, F compression modulus, F shear modulus, F Lamé constants.

I

Ideal gas If N particles are confined within a volume V the boundary of which
has temperature T , the pressure at low particle density is given by p D NkBT=V .
With � D N=NA as the number of moles, one may also write p D �RT=V . R is
the F universal gas constant and NA represents F Avogadro’s number. All gases at
low enough pressure behave the same with respect to pressure. The heat capacity
and other thermal properties, however, depend on internal degrees of freedoms.
F degeneracy pressure.

Incompressible The isothermal compressibility is defined by 1=�T .T; V / D
�V @p.T; V /=@V , in usual notation. A similar formula holds for the adiabatic
compressibility. A fluid is (idealized) incompressible if its compressibility vanishes.
The mass density in this case does not depend on pressure. In continuum physics, an
incompressible fluid is characterized by a constant mass density. Mass conservation
implies that the divergence of the velocity field vanishes, @ivi D 0. Water or
hydraulic oil are nearly incompressible.

Inertial frame of reference A frame of reference consists of a good clock and a
Cartesian coordinate system. It is an inertial system if bodies which are not acted
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upon by true forces move on straight lines with constant velocity. Since there is a
maximal speed, namely that of light in vacuum, transformations from one to another
inertial frame of reference are described by Einstein’s special theory of relativity. In
this book we consistently refer to the limit of small velocities which is described
by F Galilei transformations. Laws should be formulated in such a way that their
meaning does not depend on the special inertial frame of reference. They should be
equations between F tensor fields.

Interaction picture F Time.

Internal energy F Material points carry kinetic, potential, and interior energy.
There is a balance equation %Dt u D �@iJ u

i C�u for the F specific internal
energy u. Ju is the heat current density and �u denotes the volumetric production
rate for internal energy because of friction, Joule’s heat, and other effects like
radioactivity.

J

Johnson, John Bertrand: US-American electrical engineer, 1887–1970.

Johnson noise Electrons passing through an Ohmic resistor suffer friction by
interacting with lattice vibrations. The other side of the same medal is that lattice
vibrations produce spontaneous, random electric currents. Therefore, even in a
completely passive electric circuit there is a thermal electromotive force producing
noisy signals. This phenomenon was discovered by Johnson and explained by
Nyquist. F Nyquist formula.

Joule’s heat Internal energy E i D U may change with time because of five
causes: inflow, compression, polarization, friction and the irreversible motion of
charges counter to an electric field. The latter effect is called Joule’s heat, it is the
contribution Je 00 �E to �.U /, the volumetric production rate of internal energy. Je 00 is
the irreversible part of the electric conduction current, the left hand side of F Ohm’s
law.

K

Kelvin, Lord (William Thomson): British physicist, 1824–1907.

Kerr effect If an external quasi-static electric field E is applied, the dielectric
permittivity tensor will change. If a first order dependency is possible, it will
dominate, F Pockels effect. If however, the crystal under discussion has an inversion
center, the second order term has to be taken into account. For an optically isotropic
medium, the Kerr constant R is defined by .��1/ij D .1=n2/ıij C REiEj where n
is the refractive index.

Khinchin, Alexandr: Russian mathematician, 1894–1959.

Khinchin’s theorem F Wiener-Khinchin theorem.
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Kinetic coefficients Denote by Xs driving thermodynamic forces, normally
gradients of equilibrium parameters such as temperature, flow velocity, chemical
potentials, electric potential. They drive fluxes ˚s which normally vanish in
thermodynamic equilibrium. Heat currents, irreversible momentum flows T 00

ij or
diffusion currents are examples. Forces and fluxes are properly defined if the
volumetric entropy production rate can be written as �.S/ D .1=T /

P
r ˚rXr . For

small departures from thermodynamic equilibrium one may write ˚r D P
s KrsXs .

The matrix of kinetic coefficients Krs is symmetric. Interchanging indexes r and s
and inverting an external quasi-static magnetic field is a symmetry. F Onsager’s
relations.

Kramers, Hans: Dutch physicist, 1894–1952.

Kramers-Kronig relation F Dispersion relation.

Kronig, Ralph: German/US-American physicist, 1904–1995.

L

Lamb, Horace: British mathematician and physicist, 1849–1934. Mentioned in
article Reynold’s Number.

Lamé, Gabriel: French mathematician, 1795–1870.

Lamé constants F Hooke’s law for an isotropic elastic medium may be formu-
lated as T 0

ij D 2�Sij C 
ıij Skk. Sij is the strain tensor, Skk its trace. The Lamé
constants can be expressed in terms of F Young’s modulus and F Poisson’s ratio as

 D E�=.1C�/.1�2�/ and � D E=2.1C�/. Lamé’s constants are normally used
in wave equations, they are therefore adiabatic values.

Langevin equation A differential equation for a time dependent random variable.
It usually contains a driving force which is described by its F spectral density. See
articles Brownian Motion and Thermal noise where the driving force is assumed to
be F white noise.

Langevin, Paul: French physicist, 1872–1946.

Laplace, Pierre-Simon: French mathematician and astronomer, 1749–1827.

Levi-Civita, Tullio: Italian mathematician, 1873–1941.

Lithium niobate A crystal of 3m symmetry with excellent acoustical and optical
properties. It has a polar c-axis and therefore allows tensors of rank three which
are symmetric in one pair of indexes. Consequently, the material shows a large
F Pockels effect, second harmonic generation (SHG, frequency doubling), direct
and inverse piezoelectricity, acousto-optic effects, and so forth. When doped with
erbium ions, lithium niobate becomes a laser material. When doped with iron ions,
it shows a large photo-voltaic effect allowing for holographic information storage.
Mentioned in articles Bulk and Surface Acoustic Waves in Solids, Crystal Optics,
Dielectric Planar Waveguides and discussed in detail in Pockels and Kerr Effect.
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Lorentz force An electromagnetic field E;B exerts a force Pp D qfE C v � Bg on
a particle with mass m, charge q and velocity v. This force is responsible for the
F Faraday effect and the F Hall effect.

Lorentz, Hendrik Antoon: Dutch physicist, 1853–1928.

Loschmidt, Johann Joseph: Austrian chemist and physicist, 1821–1895.

Loschmidt’s number F Avogadro’s number.

Love, Augustus E.: English mathematician, 1863–1940.

Love wave An acoustic, horizontally polarized surface wave. Love waves travel
faster than F Rayleigh waves.

M

Material equation The set of F balance equations is incomplete, it involves
too many fields. Moreover, these balance equations are valid for properties of
continuously distributed matter in general, irrespective of the particular substance
involved. Material equations supplement the set of balance equations by relations
between properties of F material points which may contain parameters. Examples
are F Ohm’s law, the condition for a F Newtonian fluid, F Hooke’s law, but also
expressions for F dielectric permittivities or for the F degeneracy pressure of a
dense Fermi gas. Chapter 2 is an overview which is expanded in Chap. 4.

Material point The key notion of continuum physics. A material point is a
region in space which is very small from an engineer’s point of view. On the
other hand, a material point contains such a huge number N of particles that the
laws of equilibrium thermodynamic for N ! 1 apply. These descriptions do not
contradict in general. A rule of thumb says that relative fluctuations

p
N=N should

be negligible or at least less than 10�5, the normal measuring accuracy. Read the
corresponding section Material Points of Chap. 1.

Maxwell, James Clerk: Scottish physicist and mathematician, 1831–1879.

Maxwell’s equations The equations which govern the electromagnetic field E;B,
as set up by Maxwell, belong to the greatest achievements of science. Here the
interaction of the electromagnetic field with continuously distributed matter is a
main focus. In particular, optics as a discipline based on Maxwell’s equations is
dealt with in Chap. 3 and in various articles: Crystal optics, Dielectric Planar Wave-
guides, Faraday Effect, Metamaterials, Optical Activity, Pockels and Kerr Effect
and Surface Plasmon Polaritons. Also read article Ohm’s Law and Hall Effect.
Maxwell’s equations are presented and commented on in subsection Digression on
electromagnetism.

Metamaterial Regular patterns of resonators with a distance much smaller than
the wavelength of microwaves can be described by frequency dependent permittivity
and permeability tensors. These may exhibit properties not found in natural
materials, such as a negative refractive index. Advances in nano-technology and
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self-assembling may allow in the future to fabricate metamaterials also for optical
applications such as F super lenses. Read article Metamaterials.

Mixed state Systems containing many particles cannot properly be described by
wave functions, or pure states. Instead, if 	1; 	2; : : : is a complete set of mutually
orthogonal (distinct) pure states, each of them occurs with a certain probability
w1;w2; : : : There is a self-adjoint linear operator W with eigenvectors 	i and
eigenvalues wi . It describes a mixture of pure states, or a mixed state. Mixed
states are characterized by W � 0, trW D 1 and by an F entropy S.W / D
�kB trW lnW . F Boltzmann constant. Read section Statistical Thermodynamics.

N

Navier, Claude-Louis: French physicist, 1785–1836.

Navier-Stokes equation The momentum balance equation for an F incompres-
sible F Newtonian fluid, %f@t C @j vj gvi D �@ip C �
vi . p and vi are the
pressure and flow velocity fields, % and � describe the constant mass density and the
viscosity of the liquid. The flow behavior, whether creeping, laminar or turbulent, is
characterized by geometrical details and F Reynold’s number. Read section Fluid
Media and article Reynold’s Number.

Newton, Isaak: English physicist and mathematician, 1642–1727.

Newtonian fluid Tij D �pıij C �f@ivj C @j vi g says that the medium is fluid
and that frictional forces are proportional to velocity gradients. Water and hydraulic
oil are well described as F incompressible Newtonian fluids. There are differing
reasons why a material does not behave as a Newtonian fluid. Either the relationship
between frictional force and velocity gradient is retarded, as in glass, or non-linear,
as in air.

Nyquist, Harry: US-American physicist and electrical engineer, 1889–1976. Men-
tioned in article Thermal Noise.

Nyquist formula An ohmic resistor generates white F Johnson noise. The power
dP in a frequency interval df is 4RkBT df , so Nyquist’s formula. R and T

denote the resistor’s resistance and temperature, respectively. The power is defined
as P.f / D h QV .f /2 i, where QV .f / is the Fourier transform of the noisy voltage
across the resistor. Nyquist’s formula allows to measure the Boltzmann constant kB.
Read article Thermal Noise.

O

Ohm’s law Mobile electrons will move if they are dragged by an external field
or if their concentration differs from location to location. Put otherwise, if the
F electrochemical potential is not constant, its gradient causes electrons to move.
Ohm’s law states that the irreversible conduction current density is proportional to
the negative gradient of the electrochemical potential, J e

i
00 D ��ij @j . Without
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chemical effects Ohm’s law reads J e
i

00 D �ijEj . This linear relationship between
the electric current density and the gradient of the electrochemical potentials holds
true for many orders of magnitude. The �ij are F conductivities. They have to obey
F Onsager’s relations.

Onsager, Lars: Norwegian/US-American physical chemist, 1903–1976.

Onsager relations Properly defined F susceptibilities, F conductivities or
F kinetic coefficients for cross-effects are described by symmetric matrices.
Interchanging the indexes for cause and effect is a symmetry, provided a quasi-
static external magnetic or induction field is inverted as well. Onsager’s relations
are a consequence of time reversal invariance. Read the corresponding section of
Chap. 3.

Optical activity Crystals or suspensions of molecules with a screw structure show
optical activity. The refractive indexes for left or right handed circularly polarized
light beams differ by a small amount. A linearly polarized light beam passing
through a probe of optically active material will leave it as a linearly polarized beam.
But its polarization vector has been rotated by an angle which is proportional to the
probe thickness. The phenomenon is similar to the F Faraday effect. However, if
the light beam is reflected and passes through the sample in reverse direction, the
polarization rotation is undone. Read the corresponding article.

Optical isolator An ideal optical isolator is a device which transmits light in
forward direction without loss and blocks it completely in backward direction. Only
the F Faraday effect allows for a non-reciprocal propagation of light. The standard
device consists of a suitably arranged series of polarizer, Faraday rotator, polarizer,
Faraday rotator and polarizer. The Faraday rotators rotate the plane of polarization
by 45ı. The polarizers let pass light at zero, 45ı and 90ı, respectively. Read
the corresponding article for details. While micro-optical isolators are commercial
products, their integrated optics counterparts are still the object of intensive research
and development. The preferred material is suitably modified F yttrium iron garnet.

P

Particles Although continuum physics is considered a discipline of classical
physics, it is firmly embedded in quantum mechanics. The particles of a certain
species, electrons say, can be counted, but not addressed individually. Particles of
the same species are indistinguishable. Na is the number of particles of species a,
a F quantity. Continuum physics therefore has to do with particle densities na,
particle current densities j a and volumetric production rates �a only. Particles of
a certain species are produced or annihilated in F chemical reactions.

Pascal, Blaise: French mathematician, physicist and philosopher, 1623–1662.

Path A one-dimensional manifold in three-dimensional space. Also called a
curve. Described by continuous and piecewise differentiable parameterizations �.s/.
At each point, t.s/ D d�.s/=ds spans a straight line, the tangent. A path has a
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starting and an end point. If they coincide, the path is closed. A path can be assigned
a length which does not depend on the special parameterization for calculating it.
Read more in Appendix A.

Pauli exclusion principle Particles of half integer spin, so called fermions, cannot
occupy the same state more than once. Consequently, even at zero temperature, there
is a F degeneracy pressure. The Pauli exclusion principle also serves to explain the
periodic table of elements.

Pauli, Wolfgang: Austrian/Swiss physicist, 1900–1958.

Peltier, Jean: French physicist, 1785–1845.

Peltier effect Consider a simple circuit of two wires of different material soldered
together at P1 and P2. If an electric current is made to flow through this circuit, the
temperatures at the soldering points will differ, the difference being proportional to
the current. Read article Thomson, Seebeck and Peltier effect.

Perrin, Jean Baptiste: French physicist, 1870–1942.

Photonic crystals A photonic crystal is a material the optical permittivity of
which varies in a regular pattern. Since the propagation of light is concerned, they
are called photonic. They are called crystals because the permittivity modulations
are regular, albeit the lattice constant is in the micrometer range, not nanometers.
Photonic crystals can be arrays of regularly spaced identical rib waveguides (1D),
arrays of boreholes (2D), or regularly staples of 2D photonic crystals. A photonic
crystal in the narrower sense is a material with an optical band gap. A plane wave
with wave vector k travels with an angular frequency ! D !.k/. For a photonic
crystal there is an interval of frequency values for which there is no wave vector.
Waves of these forbidden frequencies cannot propagate in a photonic crystal giving
rise to remarkable applications.

Pockels effect If a quasi-static electric field is applied, the dielectric permittivity
changes, in lowest order, by an amount which is proportional to E . This electrooptic
Pockels effect is described by .��1/ij D .��1/0ij C rijkEk C : : : A tensor rijk of rank
three which is symmetric in the first index pair is possible only if the crystal has no
inversion center. F Lithium niobate is an example. In article Pockels and Kerr effect
we study the corresponding crystal symmetry group 3m in detail. The dots in the
above expression indicate an addition which is quadratic in E describing the F Kerr
effect.

Pockels, Friedrich: German physicist, 1865–1913.

Poiseuille, Jean: French physician and physiologist, 1797–1869. F Hagen-
Poiseuille law.

Poisson, Siméon Denis: French mathematician and physicist, 1781–1840.

Poisson’s ratio A column of height h and square cross section A D `2 is fixed
at the bottom and pressed upon at the top with a force F D pA. The relative
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height change ıh=h is p=E, which defines F Young’s module E . The relative
lateral dimension change ı`=` is written as �p=E . This defines Poisson’s ratio �.
By applying pressure, the column’s volume should not increase, which amounts
to 0 � � � 1=2. � D 1=2 says that the volume does not change; rubber is an
example. Normal metals and other common construction materials, such as steel,
are characterized by � � 0:3. Read section Solid Media of Chap. 2.

Pressure A F fluid, gaseous or liquid, cannot exert shear stress if the medium is
at rest. Its stress tensor, precisely its reversible contribution, is proportional to the
unit tensor multiplied by �p, where p denotes the pressure field. If there is a shear
force, it results from friction. Thermodynamic stability demands that pressure p is
never negative. Pressure is a force per unit area or energy density, its SI unit is Pa
(Pascal). F incompressible, F ideal gas, F degeneracy pressure, F free energy.

Q

Quality As contrasted with F quantity, this word describes properties of material
points for which adding makes no sense. Examples are temperature, pressure,
chemical potential, electric potential and so forth. In thermodynamic terminology,
variables describe a quality if they are intensive. They remain the same if systems
in equilibrium are joined. A F specific quantity is a quality.

Quantity Within the framework of continuum physics, quantity refers to an
observable property of a system which can be added and transported. F Particles
of a certain species, mass, charge, momentum, kinetic, potential and internal energy
as well as entropy are examples. For each quantity Y there is a F density %.Y / D
%.Y I t; x/, a F current density j.Y / D j.Y I t; x/ and a F volumetric production
rate �.Y / D �.Y I t; x/ which obey a F balance equation. In thermodynamic
terminology, quantities are extensive. They add if systems are joined.

R

Rayleigh, Lord (John William Strutt): British physicist, 1842–1919.

Rayleigh wave A surface acoustic wave with vanishing transversal component
of the displacement field. It travels slower than a bulk acoustic wave in the
same medium. Its energy remains concentrated below the surface, i.e., it decays
proportional to the inverse distance between source and receiver. Read article Bulk
and Surface Acoustic Waves.

Reaction-diffusion Interesting and surprising solutions show up if several kinds
of particles locally undergo chemical reactions and propagate by diffusion. Here the
F Gray-Scott model is discussed in some detail. Read the corresponding article.

Reynold, Osborne: British physicist, 1842–1912.

Reynold’s number With % the mass density and � the viscosity of an incompress-
ible fluid, Re D %v`=� is a dimensionless number. v denotes a typical velocity and
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` a typical length of a problem. Problems with the same Reynold number Re have
similar solutions. Laminar flow is characterized by a small Reynold number, large
values indicate turbulence.

S

Scalar field A field S with only one component is a scalar field if S.t; x/ D
S 0.t 0; x 0/ holds true. Primed objects refer to the new inertial system, unprimed to
the old. Time and space coordinates are related by the F Galilei transformation
t D t 0 C � , x D a CRx 0 C ut 0. A scalar transforms as a constant scalar field. Read
more in Appendix A.

Schottky, Walter: German physicist, 1886–1976. Mentioned in article Thermal
Noise of a Resistor.

Schrödinger, Erwin: Austrian physicist, 1887–1961.

Schrödinger picture F Time.

Second main law The so-called second main law of thermodynamics states that
the volumetric production rate �.S/ of entropy S is never negative. There are
many sloppier formulations of it. “There is no perpetuum mobile of the second
kind”, a machine which will not cease to move without making use of temperature
differences. Or, “disorder ever increases”. We prove, in section Fluctuations and
Dissipation of Chap. 3, that a system interacting with an electromagnetic field
always absorbs field energy. This is rather close to a proof of the second main law
since the reasoning can easily be generalized to more general perturbations of the
equilibrium.

Seebeck, Thomas Johann: Baltic-German physicist, 1770–1831.

Seebeck effect Consider a simple circuit of two wires of different material sol-
dered together at P1 andP2. If the soldering points are kept at different temperatures
T1 and T2, respectively, an electric current is invoked which is proportional to the
temperature difference. Read article Thomson, Seebeck and Peltier effect.

Sellmeier, Wolfgang: German physicist.

Sellmeier formula The refractive part of the permittivity is an integral of the
absorptive part, F Kramers-Kronig relation. Contributions come from absorption
bands which are represented by a central frequency and a weight. Sellmeier’s
formula is a representation of the permittivity by pole contributions. Read article
Crystal Optics.

Shear modulus G D E=2.1 C �/ appears in torsion problems. E is F Young’s
modulus and � denotes F Poisson’s ratio. Formally, the shear modulus coincides
with the F Lamé constant �. However, the former refers to isothermal, the latter to
adiabatic deformations.
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Specific A certain physical quantity Y per unit mass. Denoted generically by
�.Y /. With % D %.M/ as mass density and %.Y / as density of Y , we may write
%.Y / D % �.Y /. In this book we reserve the word specific consequently as referring
to unit mass. Exceptions are the specific rotations of the polarization vector which
are meant per unit optical path length. F Faraday effect and F optical activity.

Spectral density F Wiener-Khinchin theorem.

Stefan, Jožef: Slovenian/Austrian physicist, 1835–1893.

Stoichiometric coefficients In a chemical reaction like 2H2+O2!2H2O, two H2

and one O2 molecules vanish while two H2O molecules appear. This reaction is
characterized by the stoichiometric coefficients �1 D �2, �2 D �1 and �3 D 2.
The superscripts a D 1; 2; 3 stand for H2, O2 and H2O molecules, respectively.
Negative stoichiometric coefficients mean disappearance, positive values indicate
creation. The stoichiometric coefficients have no common divisor. Stoichiometric
coefficients �ra refer to a reaction of type r . F Chemical reaction.

Stokes, George: British physicist and mathematician, 1819–1903. F Navier-Stokes
equation. Read article Stokes’ Law.

Strain An elastic solid, if relaxed, is described by its F material points at
locations x at time t . If it s acted upon, the same material points become located
at x 0 D x C u.t; x/. However, a translation or rigid rotation does not really affect
the material. We therefore calculate distances between neighbored points x 0 and
x 0 C dx 0. In linear approximation it is given by jdx 0j2 D jdxj2 C Sij dxidxj .
The symmetric tensor field Sij D Sij .t; x/ characterizes the strain. Note that Sij
vanishes if the medium is translated or rigidly rotated.

Stress Momentum Pj may be transported by convection and conduction. The
conduction current density Ji .Pj / D �Tij defines the stress tensor Tij . The force
exerted by the medium on the front size of a surface element dAi is dFj D dAiTij .
The stress tensor appears in the momentum balance equation %Dt vi D @j Tij C fi ,
where % is the mass density, vi the velocity field and �.Pi / D fi the external force
per unit volume. The stress tensor may be split into an elastic, or reversible part T 0

ij

and an inelastic, or irreversible contribution T 00
ij . Angular momentum conservation

demands that both parts are symmetric.

Strutt, John William (Lord Raleigh): British physicist, 1842–1919.

Super lens An optical imaging device the resolution of which is not limited by
diffraction. It may be realized with future F metamaterials of negative index of
refraction. A conventional lens (e.g., of an optical microscope) provides only the
information surviving in the far field while super lenses analyze the near field. Read
article Metamaterials.

Surface A two-dimension manifold in three-dimensional space. Sometimes also
called an area. Described by piecewise differentiable parameterizations �.s1; s2/.
At each point of the surface, there are two non-vanishing tangential vectors t1 D
@�=@s1 and t2 D @�=@s2 which span a plane. n D t1 � t2 defines the normal vector.
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Its direction does not depend on the particular parameterization. A surface A has a
boundary @A, a closed path. The surface is closed if its boundary curve vanishes.
Read more in Appendix A.

Surface plasmon polaritons The surface of a high F conductivity metal, which is
covered by air or another dielectric medium, may carry a F guided optical wave of
F transverse magnetic polarization. It is localized within a few tens of nanometers
close to the surface. The electromagnetic wave is in resonance with a polarization
wave of the conduction band plasma. One speaks of polaritons because the plasma
oscillations behave as quasi-particles. For low enough photon energies, the F Drude
model describes the F dielectric susceptibility well, at least for noble metals such
as gold. Read the corresponding article.

Susceptibility F Dielectric susceptibility for a definition in the narrow sense.
Generally, a system with a time-dependent Hamiltonian Ht D H � P

s 
s.t/Vs
responds by time-dependent expectations values hVr it D Vr.t/. Their Fourier
transforms depend linearly on the Fourier transforms of the driving parame-
ters, QVr.!/ D P

s �rs.!/
Q
s.!/. The proportionality factors �rs are generalizes

susceptibilities. They obey F dispersion relations and F Onsager relations. The
susceptibilities depend not only on angular frequency, but on all parameters which
affect the thermodynamic equilibrium, such as temperature, stress, quasi-static
external electric and magnetic fields, and so forth.

T

Temperature The equilibrium, or F Gibbs states of a system in contact with its
environment is characterizes by maximal F entropy. The corresponding optimiza-
tion must take auxiliary conditions into account: the searched for state has to be
normalized, trG D 1, and its internal energy U D trGH is prescribed. One
Lagrange parameter is the free energy, the other one the temperature of the system.
It follows that temperature is well defined only for equilibrium states, for example,
of a F material point. Read section Statistical Thermodynamics.

Tensor field Functions Tij ::: D Tij :::.t; x/ with N indexes transform are tensor
fields of rank N . Upon a F Galilei transformation t D t 0 C � and x D a CRx 0 C
ut 0 the tensor transforms as Tij :::.t; x/ D RimRjn � � �T 0

mn:::.t
0; x 0/. Tensors of rank

zero are scalars. Tensors of rank one are called vectors. Tensors of rank two are
proper tensors. The Kronecker symbol ıij is a constant tensor of rank 2. Equations
between tensor fields of the same rank prevail in this book, they guarantee that laws
formulated in this way are valid irrespective of a special inertial frame of reference.

Tesla, Nikola: Serbian mechanical and electrical engineer, 1856–1943.

Thermal conductivity F Fourier’s law.

Thermal diffusivity F Heat equation.

Thomson effect The density of internal energy may change because of a net heat
inflow, F Joules heat, and a third term �Je �rT . This contribution, which describes
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the Thomson effect, is proportional to an electric current and a heat gradient. It
changes sign if the electric current is reversed. � is the Thomson coefficient of the
electric conductor. Read article Thomson, Seebeck and Peltier effect.

Thomson, William (Lord Kelvin): British physicist, 1824–1907.

Time Time in physics is usually the time span t between preparing a state W
and measuring an observable property M . Waiting is described by a family of
unitary operators Ut . In the Schrödinger picture, preparing W and waiting defines
a new state Wt D UtW U�t . In the Heisenberg picture, waiting and measuring M
defines a new observable Mt D U�tMUt . Both views are equivalent because of
trWtM D trWMt . The interaction picture is useful if the Hamiltonian splits into
a manageable part H and a perturbation V . The transformation from Schrödinger’s
to the interaction picture is performed with H only instead ofH CV . Read section
Perturbations of Chap. 3.

Time reversal The transformation t ! �t refers to relations between physical
objects explicitly or implicitly depending on F time t . Because of x ! x and Px !
�Px the transformation is also called reversal of motion. F Maxwell’s equations as
well as the F Lorentz force are compatible with time reversal. The F Second Law
of Thermodynamics, namely �.S/ � 0, is not because the initial conditionWt ! G

for t ! �1 has been implemented which breaks time reversal invariance. Read
section Onsager Relations of Chap. 3.

Transverse electric, magnetic A planar dielectric waveguide is characterized by
� D 1 and � D �.x/. Guided modes travel in z direction. Thus the x � z plane
is singled out. If the electric field is perpendicular to this plane, we speak of a TE
mode, transverse electric. Likewise, if the magnetic field is perpendicular, the guided
mode is called TM. This terminology also applies to linear waveguides if they are
much broader than high. For linear waveguides of circular cross section, like glass
fibers, a distinction between TE and TM makes no sense.

Turing, Alan: British mathematician and computer scientist, 1912–1954. Men-
tioned in article Reactions and Diffusion.

U

Universal gas constant Any gas, at low enough density, behaves ideally.
Pressure p, volume V , absolute temperature T and the number N of particles
are related by pV D NRT . With n D N=NA as the number of moles, this may be
rewritten as pV D nRT . R = 8:314 J K�1 mol�1 is the universal gas constant, NA

denotes F Avogadro’s number.

V

Vector field A field Vi with three components is a vector field if Vi .t; x/ D
Rij V

0
j .t

0; x 0/ holds true. Primed objects refer to the new inertial system, unprimed
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to the old. Time and space coordinates are related by the F Galilei transformation
t D t 0 C � , x D a CRx 0 C ut 0. A vector transforms as a constant vector field.

Verdet, Émile: French physicist, 1824–1866. Mentioned in article Faraday Effect.

Viscosity Adjacent layers of a fluid exert shear forces if the flow with differ-
ent velocities. An incompressible F Newtonian fluid is characterized by T 00

ij D
�s.@i vj C @j vi /, the coefficient �s being the shear viscosity. For a compressible
fluid, a bulk viscosity coefficient �b must also be taken into account. Read section
Fluid Media. Viscosity describes internal friction, an irreversible effect.

Volta, Allesandro: Italian physicist and chemist, 1775–1827.

Volume A three-dimension manifold in three-dimensional space. Sometimes
also called a region. Described by piecewise differentiable parameterizations
�.s1; s2; s3/. At each point of the volume, there are three linear independent
tangential vectors tk D @�=@sk . The boundary @V of a volume V is a closed
surface. The content V D vol.V/ of a volume is also called its volume. Read more
in Appendix A.

Volumetric production rate The quantity Y in a certain volume changes because
of outflow and production. The former is described by the current I.Y / across the
surface, the latter by the production rate. This rate may be written as an volume
integral of a volumetric production rate �.Y / D �.Y I t; x/ which is a scalar
field. The volumetric production rate appears in the generic F balance equation
@t%.Y / C @iji .Y / D �.Y /. �.M/ and �.Q/ (mass and electric charge) always
vanish. Particles of a certain species may be produced in chemical reactions. The
volumetric production rate for momentum Pi is nothing else than the external force
per unit volume, �.Pi / D fi . Kinetic, potential and internal energy and entropy
may be produced as well.

W

White dwarf A normal star, like our sun, will finally become instable because its
hydrogen fuel has been fused into helium ash. The hydrostatic equilibrium between
gravitational pull and thermal pressure can no longer be maintained, and the star
suffers a series of relatively rapid transitions. In the end, the star is either a white
dwarf, a neutron star, or a black hole. A plasma of positively charged carbon and
oxygen nuclei and negatively charged electrons exerts a F degeneracy pressure
which is able to stabilize the star, even for low or vanishing temperature. However,
the star’s mass must not exceed F Chandrasekhar’s limit. White dwarfs are dwarfs,
since the sun will be as large as the earth, and appear white because the remnant
energy is to be radiated off a comparatively small surface. Read article White
Dwarfs.

White noise If a fluctuation now is not correlated with the fluctuation a short
time later, one speaks of white noise. Consider the process t ! Mt where the
Mt are time-dependent random variables (in the language of classical physics) or
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observables (in the terminology of quantum physics). ıMt D Mt � hMt i is a
fluctuation, the deviation from the mean value. K.�/ D h ıMtC�ıMt i or a similar
expression in quantum theory denotes the time-correlation function which, for a
stationary state, depends on the time span � only. The F Wiener-Khinchin theorem
guarantees that the correlation function is the Fourier transform of the process’
spectral density, a positive function. If the spectral density does not depend on
frequency, or if the correlation function may be approximated by a ı-function,
the fluctuation behaves as white noise. Mentioned in articles Brownian Motion and
Thermal Noise of a Resistor.

Wiener, Norbert: 1894–1964, US-American mathematician.

Wiener-Khinchin theorem Consider a stationary state of a system and a process
Mt . M is an observable depending on time t . Its fluctuation is ıMt D Mt � hM i.
Note that hMt i D hM i does not depend on time. The time correlation function
K.�/ D h ıMtC�ıMt i likewise does not depend on time t . The Wiener-Khinchin
theorem states that the Fourier transform S D S.!/ of the time correlation
function K D K.�/ is nowhere negative. S D S.!/ is the spectral density of the
process under consideration. Read section Fluctuation and Dissipation and articles
Brownian Motion and Thermal Noise of a Resistor.

Y

Yttrium iron garnet An artificially grown crystal (YIG) with interesting mag-
netooptic properties. Y3Fe2(FeO4)3 is ferrimagnetic. There are two oppositely
magnetized sub-lattices. The crystal is transparent in the infrared region used for
glass fiber communication applications. By doping it with rare earth ions, it acquires
interesting magnetooptic properties, such as a large specific Faraday rotation. YIG
is the preferred material for an integrated F optical isolator. Read article Faraday
Effect.

Young, Thomas: British physicist and physiologist, 1773–1829. Also known for
deciphering the Rosette stone.

Young’s modulus A column of height h and cross sectionA is fixed at the bottom
and pressed upon at the top with a force F D pA. The relative height change ıh=h
is p=E , which defines the elasticity, or Young’s modulusE . F Poisson’s ratio. Read
section Solid Media of Chap. 2 and article Elasticity Modules.
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